COPERNICUS AND HIS ISLAMIC PREDECESSORS: SOME HISTORICAL REMARKS

F. Jamil Ragep

Based upon research over the past half century, there has been a growing recognition that a number of mathematical models used by Copernicus had originally been developed by Islamic astronomers. This has led to speculation about how Copernicus may have learned of these models and the role they played in the development of his revolutionary, heliocentric cosmology. Most discussion of this connection has thus far been confined to fairly technical issues related to these models; recently, though, it has been argued that the connections may go deeper, extending into the physics of a moving Earth and the way in which astronomy itself was conceived. The purpose of this article is to give an overview of these possible connections between Copernicus and his Islamic predecessors and to discuss some of their implications for Copernican studies.

The Mathematical Background

That Copernicus was acquainted with a number of his Islamic predecessors has been evident since 1543, when Copernicus in *De Revolutionibus* explicitly cited five Islamic authors. The latest of these authors, al-Biṭrūjī,

¹ These are: al-Battānī, al-Biṭrūjī, al-Zarqāllu, Ibn Rushd, and Thābit ibn Qurra. Copernicus also refers to al-Battānī in his *Commentariolus*, which remained unpublished during his lifetime. "Islamic" here refers to the civilization of Islam, not the religion since a number of "Islamic" astronomers, such as Thābit, were not Muslims.

flourished in Spain in the last part of the twelfth century, so Copernicus's references end around 1200, which is the approximate terminus date for Islamic authors who were translated into Latin. Until recently, most historiography related to Copernicus has assumed that this was the end of the story, at least as far as Islamic influence goes. But since the 1950s, a series of discoveries has shaken this neatly constricted picture and caused a major reevaluation of the relation of Copernicus (as well as other Renaissance astronomers) to later Islamic astronomy.

The first modern acknowledgement of a connection between Copernicus and a later (i.e. post-1200) Islamic astronomer was made by J. L. E. Dreyer in 1906. In a footnote, Dreyer noted that the new device invented by Naṣīr al-Dīn al-Tūsī (d. 1274) was also used by Copernicus in Book III, Chapter 4 of De Revolutionibus.² Typical for the time, Dreyer offered no further explanation or speculation; nor did anyone else until the discovery in the 1950s of a connection between another Islamic astronomer and Copernicus. E. S. Kennedy, who was a professor of mathematics at the American University of Beirut, happened by chance to notice some unusual (i.e. non-Ptolemaic) astronomical models while browsing through the Nihāyat al-sūl of 'Alā' al-Dīn ibn al-Shātir, a Damascene astronomer of the fourteenth century who had been the time-keeper of the Umayyad Mosque. Upon showing these to his friend and mentor, Otto Neugebauer of Brown University, Kennedy was amazed to learn that these models were ones that had been thought to have first appeared in the works of Nicholas Copernicus. This led to a series of articles by Kennedy and his students that discussed various aspects of these models by Ibn al-Shātir as well as by other late Islamic astronomers.³

The picture that emerged can be summarized as follows. Islamic authors from an early period were critical of Ptolemy's methods, observations, and models.⁴ One particular irritant was the use of devices by Ptolemy that violated the accepted physical principles that had been adopted by most astrono-

² J. L. E. Dreyer, *History of the Planetary Systems from Thales to Kepler* (Cambridge: Cambridge University Press, 1906), p. 269. Dreyer knew of Ṭūsī's work from the translation by Carra de Vaux of a chapter of his *al-Tadhkira fī'ilm al-hay'a* (Appendix VI of Paul Tannery, *Recherches sur l'histoire de l'astronomie ancienne* [Paris, 1893], pp. 337–361).

³ These have been conveniently collected in E. S. Kennedy and Imad Ghanem (eds.), The Life & Work of Ibn al-Shāṭ ir: An Arab Astronomer of the Fourteenth Century (Aleppo, 1976) and in E. S. Kennedy et al., Studies in the Islamic Exact Sciences (Beirut, 1983), pp. 50–107. The most important of these is E. S. Kennedy, "Late Medieval Planetary Theory," Isis 57 (1966): 84–97.

⁴ See, for example, the very critical remarks, most likely by the Banū Mūsā (ninth century), in Régis Morelon, *Thābit ibn Qurra: Œuvres d'astronomie* (Paris: Les Belles Lettres, 1987), p. 61.

mers in the ancient and medieval periods. Later Islamic astronomers came to list sixteen of these violations: six having to do with having the reference point for uniform motion of an orb being different from the actual center of the orb (often referred to as the "equant" problem); nine having to do with a variety of Ptolemaic devices meant to bring about latitudinal variation in the planets' motions (i.e. deviation north or south of the ecliptic); and, finally, an irregular oscillation of the lunar epicycle due to the reference diameter being directed to a "prosneusis" point rather than the deferent center of the epicycle. ⁵ The earliest systematic attempt in Islam to criticize Ptolemy's methods and devices occurred in al-Shukūk alā Baṭlamyūs (Doubts against Ptolemy) by Ibn al-Haytham (d. ca. 1040), who was better known in Europe for his great work on optics. In addition to his blistering critique of Ptolemy, Ibn al-Haytham also wrote a treatise in which he attempted to deal with some of the problems of Ptolemy's planetary latitude models. 6 A contemporary of Ibn al-Haytham, Abū 'Ubayd al-Jūzjānī, who was an associate of Abū 'Alī ibn Sīnā (=Avicenna, d. 1037), also dealt with these issues and proposed a model to deal with the equant problem.⁷

These early attempts notwithstanding, the major thrust to provide alternative models occurred in the twelfth century and continued for several centuries thereafter. In Islamic Spain, there were a number of criticisms that questioned the very basis of Ptolemaic astronomy, in particular his use of eccentrics and epicycles, which culminated in an alternative cosmological system by al-Biṭrūjī that used only orbs that were homocentric with the Earth.⁸ But though Biṭrūjī's work had important influences in Europe – indeed Copernicus mentions his view that Venus is above the sun⁹ – the Spanish "revolt" against Ptolemy should be seen as episodic rather than marking the beginning of a long-lived tradition of Islamic homocentric astronomy.

 $^{^5}$ F. J. Ragep, Naṣīr al-Dīn al-Ṭūsī's Memoir on Astronomy, 2 vols. (New York: Springer-Verlag, 1993), 1: 48–51.

⁶ Ragep, "Ibn al-Haytham and Eudoxus: The Revival of Homocentric Modeling in Islam," in *Studies in the History of the Exact Sciences in Honour of David Pingree*, edited by Charles Burnett et al. (Leiden: Brill, 2004), pp. 786–809.

⁷ George Saliba, "Ibn Sīnā and Abū 'Ubayd al-Jūzjānī: The Problem of the Ptolemaic Equant," *Journal for the History of Arabic Science* 4 (1980): 376–403.

⁸ See al-Biṭrūjī, *On the Principles of Astronomy*, edited and translated by Bernard Goldstein, 2 vols. (New Haven: Yale University Press, 1971). Cf. A. I. Sabra, "The Andalusian Revolt Against Ptolemaic Astronomy: Averroes and al-Biṭrūjī," in *Transformation and Tradition in the Sciences*, ed. E. Mendelsohn (Cambridge: Cambridge University Press, 1984), pp. 133–153.

⁹ Nicholas Copernicus, *De revolutionibus orbium coelestium*, translated by Edward Rosen as *On the Revolutions* (Baltimore: The Johns Hopkins University Press, 1978), p. 18.

In the Islamic East the situation was otherwise. Beginning in the first half of the thirteenth century, a number of works appeared that proposed alternatives to Ptolemy's planetary models. This was the start of an extremely fruitful period in the history of science in Islam in which a series of creative mathematical models were produced that dealt with the problems of Ptolemaic astronomy. Among the most important of these new models were those of Naṣīr al-Dīn al-Ṭūsī (1201-1274), Mu'ayyad al-Dīn al-ʿUrḍī (d. ca. 1266), Qutb al-Dīn al-Shīrāzī (1236–1311), 'Alā' al-Dīn Ibn al-Shāṭir (d. ca. 1375), and Shams al-Dīn al-Khafrī (fl. 1525). In essence, these astronomers developed mathematical tools (such as the "Tūsī couple" and the "'Urdī lemma") that allowed connected circular motions to reproduce approximately the effects brought about by devices such as Ptolemy's equant.¹⁰ In the case of the rectilinear Tūsī couple, two spheres, one half the size and internally tangent to the other, rotate in opposite directions with the smaller twice as fast as the larger. The result of these motions is that a given point on a diameter of the larger sphere will oscillate rectilinearly. (There is an analogous curvilinear Tūsī couple in which the oscillation is meant to occur on a great circle arc on the surface of a sphere.) What this allowed Tusī and his successors to do was to isolate the aspect of Ptolemy's equant model that brought about a variation in distance between the epicycle center and the Earth's center from the aspect that resulted in a variation in speed of the epicycle center about the Earth. Such mathematical dexterity allowed these astronomers to present models that to a great extent restored uniform circular motion to the heavens while at the same time producing motions of the planets that were almost equivalent to those of Ptolemy.¹¹

The Connection to Copernicus

Noel Swerdlow and Otto Neugebauer, in discussing this Islamic tradition, famously asked: "What does all this have to do with Copernicus?" Their answer was: "Rather a lot." In his commentary on Copernicus's Commen-

¹⁰ Today we would say that these mathematical tools were equivalent to linkages of constant-length vectors rotating at constant angular velocities; but it is important to remember that Islamic astronomers conceived of their devices as physical, not simply mathematical. Cf. Ragep, *Naṣīr al-Dīn*, 2: 433–437.

¹¹ F. Jamil Ragep, "The Two Versions of the $T\bar{u}s\bar{\imath}$ Couple," in David King and George Saliba (eds.), From Deferent to Equant: Studies in Honor of E. S. Kennedy (vol. 500 of The Annals of the New York Academy of Sciences, 1987), pp. 329–356.

¹² N. M. Swerdlow and O. Neugebauer, *Mathematical Astronomy in Copernicus's De Revolutionibus*, 2 parts (New York: Springer-Verlag, 1984), p. 47.

COPERNICUS AND HIS ISLAMIC PREDECESSORS

tariolus, Swerdlow made the case for this connection through a remarkable reconstruction of how Copernicus had arrived at the heliocentric system. According to Swerdlow, Copernicus, somehow aware of this Islamic tradition of non-Ptolemaic astronomy, began his work to reform astronomy under its influence. In particular Copernicus objected explicitly to Ptolemy's use of the equant, something that had been a staple of Islamic astronomy for some five centuries at that point (but which seems to have been missing from European astronomy).¹³ Swerdlow then proposed that although Copernicus was able to use some of these models, in particular those of Ibn al-Shātir, to deal with the irregular motion brought about by the first anomaly (the motion of the epicycle center on the deferent), it was the second anomaly (related to the motion of the planet on the epicycle) that remained problematic. For the outer planets this motion corresponds to the motion of the Earth around the sun, so a transformation of this motion from an epicyclic to an eccentric would lead to a quasi-heliocentric system, whereby the planet goes around the sun. Of course the Earth could still remain at rest while the sun, with the planets going around it, could then go around the Earth. In other words, Copernicus's transformations could have led to a Tychonic system. Swerdlow argued that this was not an option for Copernicus, since it led to the notorious intersection of the spheres of the sun and Mars, which simply was not possible in the solid-sphere astronomy to which Copernicus was committed. Thus Copernicus was compelled to opt for a heliocentric system with the Earth, as a planet, in motion around the sun.¹⁴

In his reconstruction, Swerdlow assumed that Copernicus *must* have had access to the models of his Islamic predecessors. Because of the scarcity of concrete evidence for this assertion (i.e. translated texts in Latin, earlier European references to these models, or the like), Swerdlow was clearly swayed by the similarity of complex geometrical models; independent discovery was simply not an option. As he stated with Neugebauer in 1984:

¹³ Noel M. Swerdlow, "The Derivation and First Draft of Copernicus's Planetary Theory: A Translation of the Commentariolus with Commentary," *Proceedings of the American Philosophical Society* 117 (1973): 423–512 on p. 434.

¹⁴ Admittedly, this is a grossly simplified version of a fuller and much more careful exposition that one may find in Swerdlow and Neugebauer, *Mathematical Astronomy*, 1: 41–64. A good summary is also provided by Michael H. Shank, "Regiomontanus on Ptolemy, Physical Orbs, and Astronomical Fictionalism: Goldsteinian Themes in the 'Defense of Theon against George of Trebizond,'" in *Perspectives on Science: Historical, Philosophical, Social* 10 (2002): 179–207.

The planetary models for longitude in the *Commentariolus* are all based upon the models of Ibn ash-Shāṭir – although the arrangement for the inferior planets is incorrect – while those for the superior planets in *De revolutionibus* use the same arrangement as 'Urdī's (*sic*) and Shīrāzī's model, and for the inferior planets the smaller epicycle is converted into an equivalent rotating eccentricity that constitutes a correct adaptation of Ibn ash-Shāṭir's model. In both the *Commentariolus* and *De revolutionibus* the lunar model is identical to Ibn ash-Shāṭir's and finally in both works Copernicus makes it clear that he was addressing the same physical problems of Ptolemy's models as his predecessors. It is obvious that with regard to these problems, his solutions were the same.

The question therefore is not whether, but when, where, and in what form he learned of Marāgha theory.¹⁵

This has recently been reinforced by Swerdlow:

How Copernicus learned of the models of his [Arabic] predecessors is not known – a transmission through Italy is the most likely path – but the relation between the models is so close that independent invention by Copernicus is all but impossible. ¹⁶

Neugebauer and Swerdlow did have one bit of evidence that seemed to show a likely means of transmission between the Islamic world and Italy. This was a text contained in MS Vat. Gr. 211, in which one finds the Ṭūsī couple (rectilinear version) and Ṭūsī's lunar model. Apparently dating from about 1300, it is either a Greek translation or reworking of an Arabic treatise, made perhaps by the Byzantine scholar Gregory Chioniades.¹⁷ The fact that this manuscript found its way to the Vatican, perhaps in the fifteenth century,

¹⁵ Swerdlow and Neugebauer, *Mathematical Astronomy*, 1: 47. Cf. Neugebauer's earlier remark that "The mathematical logic of these methods is such that the purely historical problem of contact or transmission, as opposed to independent discovery, becomes a rather minor one" (O. Neugebauer, "On the Planetary Theory of Copernicus," in *Vistas in Astronomy* (ed. Arthur Beer), vol. 10, pp. 89–103, on. p. 90; reprinted in idem, *Astronomy and History*, pp. 491–505, on p. 492).

¹⁶ Noel Swerdlow, "Copernicus, Nicolaus (1473–1543)," in *Encyclopedia of the Scientific Revolution from Copernicus to Newton*, ed. Wilbur Applebaum (New York/London: Garland Publishing, Inc., 2000), p. 165.

¹⁷ Swerdlow and Neugebauer claim that it is a translation. The recent editors and translators of the text argue that it is an original Byzantine work that is simply influenced to some degree by Arabic or Persian sources (E. A. Paschos and P. Sotiroudis, *The Schemata*

provides a possible means for the transmission of knowledge of Ṭūsī's models. It is also noteworthy that Ṭūsī's models seem to have been widely known by contemporaries of Copernicus; examples include Giovanni Battista Amico and Girolamo Fracastoro.¹⁸

The historian of astronomy Willy Hartner also pointed to evidence for transmission from Islamic astronomers to Copernicus. Though he states that independent discovery of these models and devices by Copernicus was "possible," "it seems more probable that the news of his Islamic predecessor's model reached him in some way or other." Here Hartner was speaking of the model of Ibn al-Shāṭir; he was more certain that another example "proves clearly" the borrowing by Copernicus of the Ṭūsī couple inasmuch as the lettering in Copernicus's diagram in *De revolutionibus* follows the standard Arabic lettering rather than what one might expect in Latin.¹⁹

Historiographical Reactions

One would have expected that these historical discoveries, some of which are now almost a half-century old, would have caused a substantial reevaluation of the origins of the "scientific revolution" or at the least an attempt to deal with the role of Islamic science in that revolution. The fact that this has not yet occurred to any significant degree may be traced to several factors. First, recent trends in the historiography of science have resulted in critiques of the very notion of a "scientific revolution," which have tended to downplay the traditional preeminence of the Copernicus-Galileo-Newton narrative. ²⁰ But even those who still hold to some notion of a scientific revolu-

of the Stars [Singapore: World Scientific Publishing, 1998], pp. 11–18). The closeness to Islamic sources, though, and the use of the standard Arabic corruption "Kakkaous" rather than the Greek Cepheus argues for a greater dependence than the authors wish to admit. Clearly more research on this question is needed.

¹⁸ See Noel Swerdlow, "Aristotelian Planetary Theory in the Renaissance: Giovanni Battista Amico's Homocentric Spheres," *Journal for the History of Astronomy* 3 (1972): 36–48 and Mario Di Bono, "Copernicus, Amico, Fracastoro and Ṭūsī's Device: Observations on the Use and Transmission of a Model," *Journal for the History of Astronomy* 26 (1995): 133–154. In a passage in III.4 of *De revolutionibus* that was deleted prior to publication, Copernicus himself speaks of others who had used the Ṭūsī device; see Ragep, *Naṣīr al-Dīn*, 2: 431.

¹⁹ Willy Hartner, "Copernicus, the Man, the Work, and Its History," in *Proceedings of the American Philosophical Society* 117, no. 6 (Dec. 1973), pp. 413–422, esp. p. 421.

²⁰ A session at a recent American History of Science Society annual meeting was entitled: "The Late, Great Scientific Revolution." Cf. Margaret J. Osler (ed.), *Rethinking the Scientific Revolution* (Cambridge: Cambridge University Press, 2000).

tion have tended to focus their attention on local contexts (usually European) for explanations and to look at the consequences rather than the origins of Copernicanism.²¹ Second, the increasing realization that Copernicus was rather conservative in his scientific outlook, holding on, for example, to the traditional orbs and their uniform, circular motions, has called his revolutionary status into question. So there seems to be an underlying assumption that the enormous complexity in *De revolutionibus* is more or less irrelevant for the truly important innovation, heliocentrism, which, according to this view, is all that really mattered for Kepler, Galileo, et al. Thus the complicated story of "Copernicus and the Arabs," which is mostly about the complicated but supposedly irrelevant models, becomes more trouble than it is worth.²² Third, despite, but in part due to, the trend towards "political correctness," there has been a tendency to essentialize different scientific traditions, sometimes because of a benign cultural relativism, sometimes for more invidious reasons. Thus the "essential" part of the scientific revolution, of which the de-centering of the Earth is fundamental, is seen as European.²³ Finally, the

²¹ Two recent examples are Peter Dear's, *Revolutionizing the Sciences: European Knowledge and Its Ambitions*, 1500–1700 (Princeton, NJ: Princeton University Press, 2001) and Steven Shapin's, *The Scientific Revolution* (Chicago: University of Chicago Press, 1996). Both ignore Islamic science entirely and scarcely discuss medieval European contributions to the scientific revolution.

²² Copernicus's conservatism was emphasized in 1959 both in a scholarly and in a popular context. As for the former, Derek de Solla Price's "Contra-Copernicus" provided a technical account that showed that Copernicus was really still part of ancient and medieval astronomy. As Price concludes: "... Copernicus made a fortunate philosophical guess without any observation to prove or disprove his ideas, and ... his work as a mathematical astronomer was uninspired. From this point of view his book is conservative and a mere reshuffled version of the Almagest" (Derek J. de S. Price, "Contra-Copernicus: A Critical Re-estimation of the Mathematical Planetary Theory of Ptolemy, Copernicus, and Kepler," in Critical Problems in the History of Science, ed. Marshall Clagett (Madison: The University of Wisconsin Press, 1969), pp. 197–218, on p. 216). The popular presentation of this viewpoint was made by Arthur Koestler in his The Sleep Walkers: A History of Man's Changing Vision of the Universe (London: Hutchinson, 1959), where Copernicus is referred to as the "timid canon." How Copernicus can be "saved" despite this conservatism and/or his connection to Islamic astronomy is well-illustrated by Erna Hilfstein's remarks regarding the significance of Copernicus's achievement: "Copernicus may have used the geometrical devices of his Greek or Arab predecessors, (for example, from the "Maragha School"), yet his system, and the perception of the cosmos it established, was entirely novel ("Introduction to the Softcover Edition" of Nicholas Copernicus, On the Revolutions, trans. and comm. by Edward Rosen (Baltimore: The Johns Hopkins University Press, 1992), p. XIII).

²³ Recent books by medievalists A. C. Crombie and Edward Grant advocate the European nature of modern science, thus reverting to the more traditional viewpoint. See Crombie's *Styles of Scientific Thinking in the European Tradition: The History of Argument*

simple fact of academic boundaries has played a role. Because historians of science specializing in Islamic civilization have tended to be marginalized, in part for disciplinary reasons, in part because of the arcane nature of many of their publications, it has been surprisingly difficult to initiate an on-going dialogue between medieval Latinists, Islamists, and early modernists.²⁴

Although the larger history of science community seems so far to have resisted dealing with the implications of the Islamic connection to Copernicus, some historians of astronomy who do not specialize in Islamic science have been influenced by the discoveries of Kennedy and his colleagues. We have already discussed Neugebauer and Swerdlow. Jerzy Dobrzycki and Richard L. Kremer also explored possible connections between Islamic astronomy and early modern European astronomy in their incisive article "Peurbach and Marāgha Astronomy"; they raised the distinct possibility that Peurbach may well have developed non-Ptolemaic models based upon Islamic sources that were similar (if not the same) as ones that would be used in the next generation by Copernicus. Given this earlier possibility of transmission, they came to this interesting conclusion: "We may be looking for a means of transmission both more fragmentary and widespread than a single treatise, and at least one of the Marāgha sources must have been available to the Latin West before 1461, the year of Peurbach's death."25 But not all historians of early modern astronomy have been so willing to accept a connection, even in the face of numerous coincidences. I. N. Veselovsky claimed that it is more likely that Copernicus got the Tūsī couple from a mathematically-related theorem in

and Explanation Especially in the Mathematical and Biomedical Sciences and Arts (London: Duckworth, 1994) and Grant's The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional, and Intellectual Contexts (Cambridge: Cambridge University Press, 1996) and God and Reason in the Middle Ages (Cambridge: Cambridge University Press, 2001). This view is held both by western and Islamic scholars so cannot be simply ascribed to some biased antagonism towards Islamic civilization. For example, the Iranian expatriate S. H. Nasr has stated that although "all that is astronomically new in Copernicus can be found essentially in the school of al-Ṭūsī", Islamic astronomers were prescient enough not to break with the traditional Ptolemaic cosmology "because that would have meant not only a revolution in astronomy, but also an upheaval in the religious, philosophical and social domains" (S. H. Nasr, Science and Civilization in Islam, 2nd ed. [Cambridge, UK: The Islamic Texts Society, 1987]) p. 174).

²⁴ Cf. Sonja Brentjes, "Between doubts and certainties: on the place of history of science in Islamic societies within the field of history of science," *N.T.M.* 11 (2003): 65–79.

²⁵ Jerzy Dobrzycki and Richard L. Kremer, "Peurbach and Marāgha Astronomy? The Ephemerides of Johannes Angelus and Their Implications," *Journal for the History of Astronomy* 27 (1996): 187–237, on p. 211.

Proclus's *Commentary on the First Book of Euclid's Elements*. ²⁶ More recently, Mario di Bono has maintained that independent rediscovery of the Islamic astronomical models by Copernicus and his contemporaries is at least as plausible as intercultural transmission. Somewhat surprisingly, he uses the number of similarities between Islamic and Copernican astronomy as evidence *against* transmission: "[If] derivation of Copernicus's models from Arab sources ... is the case, it becomes very difficult to explain how such a quantity of models and information, which Copernicus would derive from Arab sources, has left no trace – apart from Ṭūsī's device – in the works of the other western astronomers of the time."²⁷

The Conceptual Background to the Copernican Revolution

Di Bono's article serves to highlight what has been missing in the analysis of the connection between Islamic astronomy and Copernicus. The emphasis on the models alone obscures several crucial historiographical, conceptual, and physical issues that need to be considered when dealing with the Copernican transformations. Let us first look briefly at some of these historiographical issues. What seems to be overlooked by those who advocate a reinvention by Copernicus and/or his contemporaries of the mathematical models previously used by Islamic astronomers is the lack of a historical context for those models within European astronomy. At the least, one would expect to find some tradition of criticism of Ptolemy in Europe in which those models would make sense. But in fact this is not the case. Copernicus's statement of his dissatisfaction with Ptolemaic astronomy, which is the ostensible reason he gives for his drastic cosmological change, had no precedent in Europe but did have a continuous five-hundred-year precedent in the Islamic world. Here is what he says in the introduction to the *Commentariolus*:

... these theories [put forth by Ptolemy and most others] were inadequate unless they also envisioned certain *equant* circles, on account of which it appeared that the planet never moves with uniform velocity either in its *deferent* sphere or with respect to its proper center. Therefore

²⁶ I. N. Veselovsky, "Copernicus and Naṣīr al-Dīn al-Ṭūsī," *Journal for the History of Astronomy* 4 (1973): 128–130. This turns out to be implausible because Copernicus probably did not know of the Proclus theorem (actually the converse of the Ṭūsī-couple) until many years after he used the device.

 $^{^{27}}$ Di Bono, "Copernicus, Amico, Fracastoro and Ṭūsī's Device," pp. 153–154.

COPERNICUS AND HIS ISLAMIC PREDECESSORS

a theory of this kind seemed neither perfect enough nor sufficiently in accordance with reason.

Therefore, when I noticed these [difficulties], I often pondered whether perhaps a more reasonable model composed of circles could be found from which every apparent irregularity would follow while everything in itself moved uniformly, just as the principle of perfect motion requires.²⁸

Since the Commentariolus is the initial work in which Copernicus presents his new cosmology, one would assume that it would be here, and not in the much later *De revolutionibus*, in which we should search for his original motivations.²⁹ What do we learn from this passage? Copernicus puts himself squarely within the tradition of Islamic criticisms of Ptolemy's violations of uniform, circular motions in the heavens. It is important to keep in mind that this tradition began in the Islamic world as early as the eleventh century and led to the series of alternative models outlined above. Furthermore this tradition lasted for some six centuries in which there was a very vigorous discourse that led to various proposals, criticisms, and counter-proposals by an active group of astronomers from many regions of the Islamic world. Those who advocate parallel development would thus seem to be claiming that a centuries-long tradition with no analogue whatsoever in Europe was recapitulated, somehow, in the life of one individual who not only paralleled the criticisms but also the same models and revised models in the course of some 30 years. Needless to say, such an approach is ahistorical in the extreme.

Another point needs to be made here. Di Bono and others have pointed to the Paduan astronomers as a possible source for Copernicus's inspiration. But an important distinction needs to be made. The "return" to homocentric astronomy that was evidently advocated by the Paduans has its parallel and inspiration in the "Andalusian revolt" against Ptolemy in twelfth-century Spain. But this revolt, fomented by such figures as Ibn Bājja, Ibn Ṭufayl, Ibn Rushd (Averroes), and most importantly by al-Biṭrūjī, who advanced an alternative astronomical/cosmological system, needs to be clearly differentiated from

 $^{^{28}}$ Swerdlow, "The Derivation and First Draft of Copernicus's Planetary Theory," pp. 434–435.

²⁹ Recently Bernard R. Goldstein ("Copernicus and the Origin of His Heliocentric System," *Journal for the History of Astronomy* 33 (2002): 219–235) has sought to undermine Swerdlow's reconstruction of the origins of Copernicus's heliocentric system by emphasizing a passage in *De revolutionibus* (I.10). In it Copernicus points to the distance-period relationship of the planets to justify his system, which Goldstein takes to be the initial motivation. But again, it is odd that this is hardly mentioned in the *Commentariolus*.

the type of Islamic astronomy that most closely resembles that of Copernicus, i.e. the Eastern *hay'a* tradition of Ibn al-Haytham, Ṭūsī, 'Urḍī, Shīrāzī, Ibn al-Shāṭir and others.³⁰ What we know from the Andalusian revolt is that its extreme position against Ptolemy's epicycles and eccentrics led to a failed project that had virtually no impact on the Eastern *hay'a* tradition. It would seem odd indeed that this Andalusian tradition, in the guise of Paduan astronomy, would have been a source for Copernicus's alternative models in which epicycles and eccentrics play such a prominent role. It is also important to note that neither among the Paduans nor among European astronomers and natural philosophers before Copernicus is there a criticism of the equant or other Ptolemaic devices that lead to a violation of uniform, circular motion.³¹ One must be careful to distinguish a general criticism of Ptolemy's eccentrics and epicycles (and an advocacy of homocentric astronomy) from the tradition of criticism of Ptolemy's irregular motions that was initiated by Ibn al-Haytham, a tradition that clearly includes Copernicus.

Let us now turn to the conceptual issues involved with the Copernican revolution. In the traditional Aristotelian hierarchy of the sciences, the mathematical sciences (including astronomy) were dependent (or subalternate) to physics/natural philosophy, which itself was subordinate to metaphysics. Obviously in order to overturn the Aristotelian doctrine of a stationary Earth, a doctrine for Aristotelians firmly based upon both natural philosophical and metaphysical principles, Copernicus would have had to conceive of a different type of physics. This physics would need to be, somehow, formulated within the discipline of astronomy itself and somehow independent of Aristotelian natural philosophy. Luckily, he had a number of important precedents for this position.

The most authoritative of these precedents was Ptolemy himself. In the introduction to the *Almagest*, Ptolemy reverses the order of the sciences and places mathematics above natural philosophy and metaphysics (or "theology"), both of which, he claims, "should rather be called guesswork than knowledge." He goes on to say "that only mathematics can provide

³⁰ For this Spanish episode in Islamic astronomy, see Sabra, "The Andalusian Revolt," pp. 133–153.

³¹ It is difficult, if not impossible, to prove a negative, but it is highly suggestive that one does not find the word "equant" in Edward Grant's monumental (816-page) *Planets, Stars, and Orbs: The Medieval Cosmos, 1200–1687* (Cambridge: Cambridge University Press, 1994). Even in the generation immediately before Copernicus, there seems to have been no precedent for what was a commonplace in Islamic astronomy. As Dobrzycki and Kremer state in their "Peurbach and Marāgha Astronomy?": "We know of no extant text by Peurbach or Regiomontanus in which the Ptolemaic models are criticized explicitly on the grounds that they violate uniform, circular motion" (p. 211).

sure and unshakeable knowledge to its devotees, provided one approaches it rigorously."³² Though his position had the *potential* to free the astronomer from the natural philosopher, in actuality a kind of compromise emerged in which the astronomer and the natural philosopher were said to differ not on the actual set of doctrines but rather on the way to prove them. This is clearly laid out in a passage from Geminus preserved in Simplicius' commentary on Aristotle's physics:

Now in many cases the astronomer and the physicist will propose to prove the same point, e.g., that the sun is of great size or that the Earth is spherical, but they will not proceed by the same road. The physicist will prove each fact by considerations of essence or substance, of force, of its being better that things should be as they are, or of coming into being and change; the astronomer will prove them by the properties of figures or magnitudes, or by the amount of movement and the time that is appropriate to it.³³

Most Islamic astronomers followed this formulation, elaborating and clarifying it using the fact/reasoned fact (*quia/propter quid*) distinction of Aristotle's *Posterior Analytics*. Thus the astronomers were seen as giving the facts of various cosmological issues (e.g. that the Earth was spherical) using observational and mathematical tools as is done in Ptolemy's *Almagest*, whereas the proof of the natural philosopher, such as in Aristotle's *De caelo*, provided the reason or the "why" behind these facts.³⁴

This relatively benign view of the relationship between the astronomer and the physicist came, over time, to be modified in significant ways. Most likely under the influence of Islamic theologians, who were fundamentally opposed to Aristotelian notions of natural cause, we can see subtle shifts in how physical principles were presented in the introductory parts of astronomical texts. Naṣīr al-Dīn al-Ṭūsī, for example, presented the critical principle of the uniformity of celestial motion in such a way that it did not depend

³² G. J. Toomer, *Ptolemy's Almagest* (London: Duckworth, 1984), p. 36.

³³ The translation is due to T. L. Heath in his *Aristarchus of Samos* (Oxford: Clarendon Press, 1913), p. 276; reprinted in Morris R. Cohen and I. E. Drabkin, *A Source Book in Greek Science* (Cambridge, MA: Harvard University Press, 1948), pp. 90–91. Cf. G. E. R. Lloyd, "Saving the Appearances," *Classical Quarterly*, 1978, *NS* 28: 202–222, esp. pp. 212–214 (reprinted with new introduction in idem, *Methods and Problems in Greek Science* [Cambridge, England: Cambridge University Press, 1991], pp. 248–277).

³⁴ Ragep, *Naṣīr al-Dīn*, 1: 38–41, 106–107, 2: 386–388.

³⁵ Much of what follows is elaborated in F. Jamil Ragep, "Freeing Astronomy from Philosophy: An Aspect of Islamic Influence on Science," *Osiris* 16 (2001): 49–71.

upon the ultimate cause. Thus the monoformity of falling bodies, and the uniformity of celestial motions, both of which moved "in a single way," was what was important. It became irrelevant that the former was brought about by a "nature" while the latter was brought about by a "soul."³⁶

Slowly, then, we see an attempt in Islamic astronomy to provide a self-contained mathematical methodology that ran parallel to the methods of the natural philosophers. But Ṭūsī for one did not believe that this meant that the astronomer could be completely independent of the natural philosophers and metaphysicians, since there were certain principles that only the natural philosophers could provide the astronomer. In fact this was generally the position of Islamic astronomers with the notable exception of ʿAlī Qūshjī in the fifteenth century.

Qūshjī was the son of the falconer of Ulugh Beg (1394–1449), the Timurid prince who was a generous patron of the sciences and arts. Ulugh Beg was an active supporter and participant in the magnificent Samarqand observatory, which was one of the greatest scientific institutions that had been established up to that time. As a boy, Qūshjī became his protégé and student and eventually occupied an important position at the observatory. After the assassination of Ulugh Beg, Qūshjī was attached to various courts in Iran but would end his career in Constantinople under the patronage of Mehmet II, who had conquered the city for the Ottomans.

Qūshjī held that the astronomer had no need for Aristotelian physics and in fact should establish his own physical principles independently of the natural philosophers.³⁷ This position had profound implications for one principle in particular, namely that the element earth had a principle of rectilinear inclination that precluded it from moving naturally with a circular motion.³⁸ Tūsī had maintained that there was no way for the astronomer, using mathematics and observation, to arrive at the "proof of the fact" that the Earth was either moving or at rest. This was contrary to Ptolemy's position in the *Almagest* (I.7), namely that one could establish a static Earth through observation. After Ṭūsī, we can trace a three-century discussion in which various authors argued whether he or Ptolemy was correct regarding the possibility of an observational proof of the Earth's state of rest. Qūshjī, though, took a somewhat different approach. Starting with his view that the astronomer

³⁶ Ragep, Naṣīr al-Dīn, 1:44–46, 98–101, 2: 380–381.

³⁷ Ragep, "Freeing Astronomy," pp. 61–63.

³⁸ A discussion of this Islamic discourse on the Earth's possible rotation is in F. Jamil Ragep, "Ṭūsī and Copernicus: The Earth's Motion in Context," *Science in Context* 14, nos. 1–2 (2001): 145–163.

should not depend on the natural philosopher, but also rejecting Ptolemy's view that an observational test was possible, Qūshjī made the remarkable claim that nothing false follows from the assumption of a rotating Earth.³⁹

The connection with Copernicus, though, might seem tenuous at best. What makes this an arguable possibility is the remarkable coincidence between a passage in *De revolutionibus* (I.8) and one in Ṭūsī's *Tadhkira* (II.1[6]) in which Copernicus follows Ṭūsī's objection to Ptolemy's "proofs" of the Earth's immobility. This passage, which is quoted by numerous scholars after Ṭūsī, including Qūshjī, formed the starting point for the Islamic discussion of the Earth's possible motion after Ṭūsī. The closeness of the passage in Copernicus is one more bit of evidence that he seems to have been influenced not only by Islamic astronomical models but also by a conceptual revolution that was going on in Islamic astronomy. This conceptual revolution was opening up the possibility for an alternative "astronomical" physics that was independent of Aristotelian physics.

It is this point that has been missed up to now in seeking to understand the Islamic background to Copernicus. Clearly there is more to the Copernican revolution than some clever astronomical models that arose in the context of a criticism of Ptolemy. There also needed to be a new conceptualization of astronomy that could allow for an astronomically-based physics. But there is hardly anything like this in the European tradition before Copernicus. The fact that we can find a long, vigorous discussion in Islam of this issue intricately-tied to the question of the Earth's movement should indicate that such a conceptual foundation was there for the borrowing. It will be argued, of course, that the mechanism for such borrowing has yet to be found. But again, in my opinion it is more important at this point in our knowledge to focus on the *products* rather than the mechanism of transmission. By doing so, we can get a clearer idea not only of the possible Islamic connection to Copernicus but also of the Copernican revolution itself.

³⁹ Ibid., p. 157.

⁴⁰ Ibid., p. 145–148.

⁴¹ In the fourteenth century, one finds Nicole Oresme and Jean Buridan discussing the Earth's rotation. The former, in particular, presents quite cogent reasons why one might believe in this motion. But in the end he rejects them for theological reasons. In both cases, it is clear that they have no interest in a reconceptualization of astronomy along the lines that occurred in Islamic astronomy (ibid., pp. 158–160). The possibility that such a discussion might have taken place in the fifteenth century in the circle of Peurbach and Regiomontanus is being investigated by Michael Shank; cf. his "Regiomontanus on Ptolemy, Physical Orbs, and Astronomical Fictionalism."

Bibliography

- al-Biṭrūjī, Nūr al-Dīn abū Isḥāq. *On the Principles of Astronomy*. Edited and translated by Bernard Goldstein. 2 vols. New Haven: Yale University Press, 1971.
- Brentjes, Sonja. "Between doubts and certainties: on the place of history of science in Islamic societies within the field of history of science." *N.T.M.* 11 (2003): 65–79.
- Carra de Vaux. "Les sphères célestes selon Nasīr Eddin-Attusī." In Paul Tannery, *Recherches sur l'histoire de l'astronomie ancienne*, Appendix VI, pp. 337–361. Paris, 1893.
- Cohen, Morris R. and Drabkin, I. E. *A Source Book in Greek Science*. Cambridge, MA: Harvard University Press, 1948.
- Copernicus, Nicholas. *De revolutionibus orbium coelestium*. Translated by Edward Rosen as *On the Revolutions*. Baltimore: The Johns Hopkins University Press, 1978.
- Crombie, A. C. Styles of Scientific Thinking in the European Tradition: The History of Argument and Explanation Especially in the Mathematical and Biomedical Sciences and Arts. London: Duckworth, 1994.
- Dear, Peter. Revolutionizing the Sciences: European Knowledge and Its Ambitions, 1500–1700. Princeton, NJ: Princeton University Press, 2001.
- Di Bono, Mario. "Copernicus, Amico, Fracastoro and Ṭūsī's Device: Observations on the Use and Transmission of a Model." *Journal for the History of Astronomy* 26 (1995): 133–154.
- Dobrzycki, Jerzy and Kremer, Richard L. "Peurbach and Marāgha Astronomy? The Ephemerides of Johannes Angelus and Their Implications." *Journal for the History of Astronomy* 27 (1996): 187–237.
- Dreyer, J. L. E. *History of the Planetary Systems from Thales to Kepler*. Cambridge: Cambridge University Press, 1906.
- Goldstein, Bernard R. "Copernicus and the Origin of His Heliocentric System." *Journal for the History of Astronomy* 33 (2002): 219–235
- Grant, Edward. *Planets, Stars, and Orbs: The Medieval Cosmos, 1200–1687.* Cambridge: Cambridge University Press, 1994.
- Grant, Edward. The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional, and Intellectual Contexts. Cambridge: Cambridge University Press, 1996.
- Grant, Edward. *God and Reason in the Middle Ages*. Cambridge: Cambridge University Press, 2001.
- Hartner, Willy. "Copernicus, the Man, the Work, and Its History." *Proceedings of the American Philosophical Society* 117, no. 6 (Dec. 1973), pp. 413–422.
- Heath, T. L. Aristarchus of Samos. Oxford: Clarendon Press, 1913.
- Hilfstein, Erna. "Introduction to the Softcover Edition." Nicholas Copernicus,

- On the Revolutions. Translation and commentary by Edward Rosen. Baltimore: The Johns Hopkins University Press, 1992.
- Kennedy, E. S. "Late Medieval Planetary Theory." Isis 57 (1966): 84-97.
- Kennedy, E. S. and Ghanem, Imad (eds.). The Life & Work of Ibn al-Shāṭ ir: An Arab Astronomer of the Fourteenth Century. Aleppo, 1976.
- Kennedy, E. S. et al. Studies in the Islamic Exact Sciences. Beirut, 1983.
- Koestler, Arthur. The Sleep Walkers: A History of Man's Changing Vision of the Universe. London: Hutchinson, 1959.
- Lloyd, G. E. R. "Saving the Appearances." *Classical Quarterly*, 1978, *NS 28*: 202–222; reprinted with new introduction in idem, *Methods and Problems in Greek Science* (Cambridge, England: Cambridge University Press, 1991), pp. 248–277.
- Morelon, Régis. *Thābit ibn Qurra: Œuvres d'astronomie*. Paris: Les Belles Lettres, 1987.
- Nasr, S. H. *Science and Civilization in Islam.* 2nd ed. Cambridge, UK: The Islamic Texts Society, 1987.
- Neugebauer, O. "On the Planetary Theory of Copernicus." *Vistas in Astronomy* (ed. Arthur Beer), vol. 10, pp. 89–103; reprinted in idem, *Astronomy and History* (New York: Springer-Verlag, 1983), pp. 491–505.
- Osler, Margaret J. (ed.). *Rethinking the Scientific Revolution*. Cambridge: Cambridge University Press, 2000.
- Paschos, E. A. and Sotiroudis, P. *The Schemata of the Stars*. Singapore: World Scientific Publishing, 1998.
- Price, Derek J. de S. "Contra-Copernicus: A Critical Re-estimation of the Mathematical Planetary Theory of Ptolemy, Copernicus, and Kepler." In Marshall Clagett (ed.), *Critical Problems in the History of Science*. Madison: The University of Wisconsin Press, 1969, pp. 197–218.
- Ragep, F. Jamil. "The Two Versions of the Ṭūsī Couple." In David King and George Saliba (eds.), From Deferent to Equant: Studies in Honor of E. S. Kennedy (vol. 500 of The Annals of the New York Academy of Sciences, 1987), pp. 329–356.
- Ragep, F. J. Naṣīr al-Dīn al-Ṭūsī's Memoir on Astronomy. 2 vols. New York: Springer-Verlag, 1993.
- Ragep, F. Jamil. "Freeing Astronomy from Philosophy: An Aspect of Islamic Influence on Science." *Osiris* 16 (2001): 49–71.
- Ragep, F. Jamil. "Ṭūsī and Copernicus: The Earth's Motion in Context." *Science in Context* 14, nos. 1–2 (2001): 145–163.
- Ragep, F. Jamil. "Ibn al-Haytham and Eudoxus: The Revival of Homocentric Modeling in Islam." In Charles Burnett, Jan P. Hogendijk, Kim Plofker and Michio Yano (eds.), *Studies in the History of the Exact Sciences in Honour of David Pingree.* Leiden: Brill, 2004, pp. 786–809.
- Sabra, A. I. "The Andalusian Revolt Against Ptolemaic Astronomy: Averroes

- and al-Biṭrūjī." In E. Mendelsohn (ed.), *Transformation and Tradition in the Sciences*. Cambridge: Cambridge University Press, 1984, pp. 133–153.
- Saliba, George. "Ibn Sīnā and Abū 'Ubayd al-Jūzjānī: The Problem of the Ptolemaic Equant." *Journal for the History of Arabic Science* 4 (1980): 376–403.
- Shank, Michael H. "Regiomontanus on Ptolemy, Physical Orbs, and Astronomical Fictionalism: Goldsteinian Themes in the 'Defense of Theon against George of Trebizond." *Perspectives on Science: Historical, Philosophical, Social* 10 (2002): 179–207.
- Shapin, Steven. *The Scientific Revolution*. Chicago: University of Chicago Press, 1996.
- Swerdlow, Noel. "Aristotelian Planetary Theory in the Renaissance: Giovanni Battista Amico's Homocentric Spheres." *Journal for the History of Astronomy* 3 (1972): 36–48.
- Swerdlow, Noel M. "The Derivation and First Draft of Copernicus's Planetary Theory: A Translation of the Commentariolus with Commentary." *Proceedings of the American Philosophical Society* 117 (1973): 423–512.
- Swerdlow, N. M. and Neugebauer, O. *Mathematical Astronomy in Copernicus's De Revolutionibus*. 2 parts. New York: Springer-Verlag, 1984.
- Swerdlow, Noel. "Copernicus, Nicolaus (1473–1543)." In Wilbur Applebaum (ed.), *Encyclopedia of the Scientific Revolution from Copernicus to Newton*. New York/London: Garland Publishing, Inc., 2000.
- Toomer, G. J. Ptolemy's Almagest. London: Duckworth, 1984.
- Veselovsky, I. N. "Copernicus and Naṣīr al-Dīn al-Ṭūsī." *Journal for the History of Astronomy* 4 (1973): 128–130.