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PREFACE

HE first edition of this book, which was the first English
Diophantus, appeared in 1885, and has long been out of

print. Inquiries made for it at different times suggested to me
that it was a pity that a treatise so unique and in many respects
so attractive as the Arithmetica should once more have become
practically inaccessible to the English reader. At the same time
I could not but recognise that, after twenty-five years in which so
much has been done for the history of mathematics, the book
needed to be brought up to date. Some matters which in 1885
were still subject of controversy, such as the date of Diophantus,
may be regarded as settled, and some points which then had to
be laboured can now be dismissed more briefly. Practically the
whole of the Introduction, except the chapters on the editions of
Diophantus, his methods of solution, and the porisms and other
assumptions found in his work, has been entirely rewritten and
much shortened, while the chapters on the methods and on the
porisms etc., have been made fuller than before. The new text of
Tannery (Teubner 1893, 1895) has enabled a number of obscure
passages, particularly in Books V and VI, to be cleared up and,
as a basis for a reproduction of the whole work, is much superior to
the text of Bachet. I have taken the opportunity to make my
version of the actual treatise somewhat fuller and somewhat closer
to the language of the original. In other respects also I thought
I could improve upon a youthful work which was my first essay in
the history of Greek mathematics. When writing it I was solely
concerned to make Diophantus himself known to mathematicians,
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and I did not pay sufficient attention to Fermat’s notes on the
various problems. It is well known that it is in these notes that
many of the great propositions discovered by Fermat in the
theory of numbers are enshrined; but, although the notes are
literally translated in Wertheim’s edition, they do not seem to
have appeared in English; moreover they need to be supple-
mented by passages from the correspondence of Fermat and from
the Doctrinae analyticae Inventum Novum of Jacques de Billy.
The histories of mathematics furnish only a very inadequate
description of Fermat’s work, and it seemed desirable to attempt
to give as full an account of his theorems and problems in
or connected with Diophantine analysis as it is possible to
compile from the scattered material available in Tannery and
Henry’s edition of the Oenvres de Fermat (1891—1896). So much
of this material as could not be conveniently given in the notes
to particular problems of Diophantus I have put together in
the Supplement, which is thus intended to supply a missing
chapter in the history of mathematics. Lastly, in order to make
the book more complete, I thought it right to add some of the
more remarkable solutions of difficult Diophantine problems given
by Euler, for whom such problems had a great fascination; the last
section of the Supplement is therefore devoted to these solutions.

T. L. H.

Oclober, 1910.
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INTRODUCTION

CHAPTER 1
DIOPHANTUS AND HIS WORKS

THE divergences between writers on Diophantus used to begin,
as Cossali saidl, with the last syllable of his name. There is now,
however, no longer any doubt that the name was Diophantos, not
Diophantes=.

The question of his date is more difficult. Ab#’lfaraj, the
Arabian historian, in his History of the Dynasties, places Diophantus
under the Emperor Julian (A.D. 361-3), but without giving any
authority ; and it may be that the statement is due simply to a
confusion of our Diophantus with a rhetorician of that name,
mentioned in another article of Suidas, who lived in the time of
Julian®. On the other hand, Rafael Bombelli in his Algebra,

1 Cossali, Origine, trasporto in Italia, primi progressi in essa dell’ Algebra (Parma,
179%-9), I. p. 61: ““Su la desinenza del nome comincia la diversita tra gli scrittori.”

2 Greek authority is overwhelmingly in favour of Diophantos. The following is the
evidence, which is collected in the second volume of Tannery’s edition of Diophantus
(henceforward to be quoted as “Dioph.,” “Dioph. II. p. 36” indicating page 36 of
Vol. 11., while * Dioph. II. 20” will mean progosition 20 of Book 1L): Suidas s.v.
Trarte (Dioph. 11. p. 36), Theon of Alexandria, on Ptolemy’s Synfaxis Book I. c. g
(Dioph. 11. p. 35), Anthology, Epigram on Diophantus (Ep. X1v. 126; Dioph. 11 p. 60),
Anonymi prolegomena in Introductionem arithmeticam Nicomachi (Dioph. II. p. 73),
Georgii Pachymerae paraphrasis (Dioph. 11. p. 122), Scholia of Maximus Planudes
(Dioph. 11. pp. 148, 177, 178 etc.), Scholium on Iamblichus /» Nicomacki arithm. introd.,
ed. Pistelli, p. 127 (Dioph. 11. p. 72), a Scholium on Dioph. II. 8 from the MS. ¢4
(Dioph. 11. p. 260), which is otherwise amusing (H yux# oov, Abparre, eln perd Tod
Saravd &veka is duskoNas Tdr Te EN\wy oov Bewpnudrwy kal 8% kai Tob mapbvros ewprh-
paros, ‘ Your soul to perdition, Diophantus, for the difficulty of your problems in general
and of this one in particular ) ; John of Jerusalem (1othc.) alone (Vita Joannis Damas-
ceni X1.: Dioph. 11. p. 36), if the reading of the MS. Parisinus 1559 is right, wrote, in
the plural, os Oufaybpar 7 Atbpavrar, where however Awbgavrac is clearly a mistake for
Abpavrot.

3 AuBdwios, coguehs *Avrioxels, Tév éml "Tovhiavol Tod Baciéws xpbrwy, xal uéxp
Oeodoclov Tol mpeaBurépov * Bacyaviov warpbs, padyrhs Awpdvrov.

H. D, I
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published in 1572, says dogmatically that Diophantus lived under
Antoninus Pius (138-161 A.D.), but there is no confirmation of this
date either.

The positive evidence on the subject can be given very shortly.
An upper limit is indicated by the fact that Diophantus, in his
book on Polygonal Numbers, quotes from Hypsicles a definition
of such a numberl. Hypsicles was also the writer of the sup-
plement to Euclid’s Book XIIL on the Regular Solids known as
Book XIV. of the Elements; hence Diophantus must have written
later than, say, 150 B.C. A lower limit is furnished by the fact that
Diophantus is quoted by Theon of Alexandria®; hence Diophantus
wrote before, say, 350 A.D. There is a wide interval between
150 B.C. and 350 A.D., but fortunately the limits can be brought
closer. We have a letter of Psellus (11th ¢)) in which Diophantus
and Anatolius are mentioned as writers on the Egyptian method
of reckoning. “Diophantus,” says Psellus?, “dealt with it more
accurately, but the very learned Anatolius collected the most
essential parts of the doctrine as stated by Diophantus in a
different way (reading érépws) and in the most succinct form,
dedicating (wpocepdvnoe) his work to Diophantus.” It would
appear, therefore, that Diophantus and Anatolius were contem-
poraries, and it is most likely that the former would be to the
latter in the relation of master to pupil. Now Anatolius wrote
about 278-9 A.D., and was Bishop of Laodicea about 280 A.D. We
may therefore safely say that Diophantus flourished about 250 A.D.
or not much later. This agrees well with the fact that he is not
quoted by Nicomachus (about 100 A.D.), Theon of Smyrna (about
130 A.D.) or lamblichus (end of 3rd c.).

! Dioph. I p. 470-2.

? Theo Alexandrinus in primum librum Ptolemaci Mathematicae Compositionis (on c.
1X.) : see Dioph. II. p. 35, ka6’ & kal Abgavrés gnor’ Tis yap povddos duerabérov odons
kal éordons wdvrore, TO woNamAaciatbuevoy eldos ér’ atrhy abrd To eldos drrai Kk.T.é

% Dioph. I1. p. 38~9: mepl 8¢ his alyvwriaxis pe@bdov Tavrys Abpavros uév diéhafer
dkpBéarepor, 6 8¢ Noyidraros’Avarbhios Td cuvextikdraTa uépn Ths kar' éxelvov émioThuns
dmoNefduevos érépw (2 érépws or éralpy) AwpdyTy cuvorTikdrara mpocepwvynoe., The MSS.
read érépw, which is apparently a mistake for érépws or possibly for éralpp. Tannery con-
jectures ¢ éralpg, but this is very doubtful ; if the article had been there, Awgdrry rg
éralpp would have been better. On the basis of éralpy Tannery builds the further
hypothesis that the Dionysius to whom the A»étAmetica is dedicated is none other than
Dionysius who was at the head of the Catechist school at Alexandria 232-247 and was
Bishop there 248-265 A.D. Tannery conjectures then that Diophantus was a Christian
and a pupil of Dionysius (Tannery, ¢‘Sur la religion des derniers mathématiciens de
Pantiquité,” Extrait des Annales de Philosophie Chrétienne, 1896, p. 13sqq.). It is

however difficult to establish this (Hultsch, art. ¢ Diopbantos aus Alexandreia” in Pauly-
Wissowa’s Real-Encyclopidie der classischen Altertumswissenchafen).
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The only personal particulars about Diophantus which are
known are those contained in the epigram-problem relating to him
in the Anthology® The solution gives 84 as the age at which he
died. His boyhood lasted 14 years, his beard grew at 21, he
married at 33; a son was born to him five years later and died, at
the age of 42, when his father was 8o years old. Diophantus’ own
death followed four years later?. It is clear that the epigram was
written, not long after his death, by an intimate personal friend
with knowledge of and taste for the science which Diophantus
made his life-work?

The works on which the fame of Diophantus rests are:

(1) The Awithmetica (originally in thirteen Books).
(2) A tract On Polygonal Numbers.
Six Books of the former and part of the latter survive,
Allusions in the Arithmetica imply the existence of
(3) A collection of propositions under the title of Porisms;
in three propositions (3, 5 and 16) of Book V. Diophantus quotes
as known certain propositions in the Theory of Numbers, prefixing
to the statement of them the words “ We have it in the Porisms
that...... ? (xouev év Tols Ioplopacw 811 k.7.E).

A scholium on a passage of Iamblichus where he quotes a
dictum of certain Pythagoreans about the unit being the dividing
line (uefdpiov) between number and aliquot parts, says “thus
Diophantus in the Moriastica*......for he describes as ‘parts’ the
progression without limit in the direction of less than the unit.”
Tannery thinks the Mopiaoricd may be ancient scholia (now
lost) on Diophantus I Def. 3’ sqq.’; but in that case why should
Diophantus be supposed to be speaking? And, as Hultsch

1 Anthology, Ep. x1v. 126; Dioph. 11. pp. 60-1.

2 The epigram actually says that his boyhood lasted 3 of his life; his beard grew
after ¢ more; after $ more he married, and his son was born five years later; the son
lived to half his father’s dge, and the father died four years after his son. Cantor (Gesck.
d. Matk. 15, p. 465) quotes a suggestion of Heinrich Weber that a better solution is
obtained if we assume that the son died at the time when his father’s age was double his,
not at an age equal to half the age at which his father died. In that case

pxtysx+3x+5+4(r—4)+4=x, or 3x=196 and x=653.
This would substitute 10§ for 14, 16} for 2r, 15?; for 33, 30% for 42, 61} for 80,
and 6354 for 84 above. I do not see any advantage in this solution. On the contrary,
I think the fractional results are an objection to it, and it is to be observed that the
scholiast has the solution 84, derived from the equation
I+ tir+5+ixta=a

3 Hultsch, art. Diophantos in Pauly-Wissowa’s Real- Encyclopidie.

4 Iamblichus Zr Nicormacki arithm. introd. p. 127 (ed. Pistelli) ; Dioph. II. p. 72.

5 Dioph. 11. p. 72 note.

I—2
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remarks, such scholia would more naturally have been quoted
as oydMa and not by the separate title Mopiaomikal. It may
have been a separate work by Diophantus giving rules for reckon-
ing with fractions; but I do not feel clear that the reference
may not simply be to the definitions at the beginning of the
Avithmetica.

With reference to the title of the Arithmetica, we may observe
that the meaning of the word dpfunrika here is slightly different
from that assigned to it by more ancient writers. The ancients
drew a marked distinction between apifunticy and NoyioTikd,
though both were concerned with numbers. Thus Plato" states
that dpBunTie is concerned with the abstract properties of
numbers (as odd and even, etc.), whereas Moyioriey} deals with the
same odd and even, but in relation to one another®. Geminus also
distinguishes the two terms® According to him dpifunricd deals
with numbers 27 themselves, distinguishing linear, plane and solid
numbers, in fact all the forms of number, starting from the unit,
and dealing with the generation of plane numbers, similar and
dissimilar, and then with numbers of three dimensions, etc.
MoyioTikn on the other hand deals, not with the abstract properties
of numbers in themselves, but with numbers of concrete things
(aiaOnTdv, sensible objects), whence it calls them by the names of
the things measured, ¢¢. it calls some by the names pup\irns and
¢raritnst. But in Diophantus the calculations take an abstract
form (except in V. 30, where the question is to find the number
of measures of wine at two given prices respectively), so that the
distinction between Moyiorikry and dpifunriy is lost.

We find the Arithmetica quoted under slightly different titles.
Thus the anonymous author of prolegomena to Nicomachus’
Introductio Avithmetica speaks of Diophantus’ “ thirteen Books of
Arithmetic®” A scholium on Jamblichus refers to “the last
theorem of the first Book of Diophantus’ Elements of Arithmetic

1 Hulisch, Zoc. cit.

2 Gorgias, 431 B, C: 7o pév &Xha kabdwrep 1) dpubunTich % Noyiorech Exees mepl T8 adrd
Yép éote, 6 Te dpmiov Kal 1O wepurrby: Siagépe 8¢ rooolirov, 8ri kal wpds abrd kal wpds
EN\pha 7hs Exew mAjGous émrromel O wepurTdv Kal TO dpriov f) NoyioTucH.

3 Proclus, Comment. on Euclid 1., p. 39, 14~40, 7.

4 Cf. Plato, Laws 819 B, C, on the advantage of combining amusement with instruction
in arithmetical calculation, e.g. by distributing apples or garlands (uidwv 7¢ Twwr
Suavopal kal oregdvwy) and the use of different bowls of silver, gold, or brass etc. (¢dhas
dpa xploov xal xahkod kal &pylpov kal Towobrwy Twdy dNNwy kepavwivTes, of 3¢ Shas wuws
Biadidbvres, dmep elmov, els wadidw dvapubrrovres Tas Tdy dvaykalwp dpibuldy xphoes).

® Dioph. 1I. p. 73, 26.
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(apibunTicfs orovyedaews)t.” A scholium on one of the epigrams
in Metrodorus’ collection similarly speaks of the “ Elements of
Diophantus®”

None of the MSS. which we possess contain more than the
first six Books of the Azit/unetica, the only variation being that
some few divide the six Books into seven?®, while one or two give
the fragment on Polygonal Numbers with the number viii. The
idea that Regiomontanus saw, or said he saw, a MS. containing
the thirteen Books complete is due to a misapprehension. There
is no doubt that the missing Books were lost at a very early date.
Tannery* suggests that Hypatia’s commentary extended only to
the first six Books, and that she left untouched the remaining
seven, which accordingly were first forgotten and then lost; he
compares the case of Apollonius’ Conzcs, the first four Books of
which were preserved by Eutocius, who wrote a commentary on
them, while the rest, which he did not include in his commentary,
were lost so far as the Greek text is concerned. While, however,
three of the last four Books of the Cozics have fortunately reached
us through the Arabic, there is no sign that even the Arabians
ever possessed the missing Books of Diophantus. Thus the
second part of an algebraic treatise called the Fadksz by Abia
Bekr Muh. b, al-Hasan al-Karkhi (d. about 1029) is a collection of
problems in determinate and indeterminate analysis which not -
only show that their author had deeply studied Diophantus, but in
many cases are taken direct from the Arsthmetica, with the change,
occasionally, of some of the constants. In the fourth section of
this work, which begins and ends with problems corresponding to
problems in Diophantus Books II. and III respectively, are 25
problems not found in Diophantus; but the differences from
Diophantus in essential features (¢£. several of the problems lead
to equations giving irrational results, which are always avoided
by Diophantus), as well as other internal evidence, exclude the
hypothesis that we have here a lost Book of Diophantus®. Nor is
there any sign that more of the work than we possess was known

! Dioph. 11. p. 72, 17 ; Iamblichus (ed. Pistelli), p. 132, 12.

2 Dioph. 1L p. 62, 25.

3 ¢.g. Vaticanus gr. 200, Scorialensis Q-1-15, and the Broscius MS. in the University
Library of Cracow ; the two last divide the first Book into two, the second beginning
immediately after the explanation of the sign for m#nus (Dioph. 1. p. 14, 1).

4 Dioph. 11. p. xvii, xviii.

5 See F. Woepcke, Extrait du Fakhri, traité d'Algbre par Abou Bekr Mokammed

ben Alkagan Alkarkhi (manuscrit 952, supplément arabe de la bibliothdque Impériale), Paris,
1853.
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to Ab@’l Wafa al-Biizjani (940~998 A.D.), who wrote a “commentary
(Zafsir) on the algebra of Diophantus” as well as a “Book of
proofs of the propositions used by Diophantus in his work...”
These facts again point to the conclusion that the lost Books were
lost before the 10th c.

Tannery’s suggestion that Hypatia’s commentary was limited
to the six Books, and the parallel of Eutocius’ commentary on
Apollonius’ Conics, imply that it is the ZJast seven Books, and the
most difficult, which are lost. This view is in strong contrast to
that which had previously found most acceptance among com-
petent authorities. The latter view was most clearly put, and
most ably supported, by Nesselmann?, though Colebrooke? had
already put forward a conjecture to the same effect ; and historians
of mathematics such as Hankel, Moritz Cantor, and Giinther have
accepted Nesselmann’s conclusions, which, stated in his own
words, are as follows: (1) that much less of Diophantus is wanting
than would naturally be supposed on the basis of the numerical
proportion of 6 to 13; (2) that the missing portion is not to be
looked for at the end but in the middle of the work, and indeed
mostly between the first and second Books. Nesselmann’s general
argument is that, if we carefully read the last four Books, from the
third to the sixth, we find that Diophantus moves in a rigidly
defined and limited circle of methods and artifices, and that any
attempts which he makes to free himself are futile; “as often as
he gives the impression that he wishes to spring over the magic
circle drawn round him, he is invariably thrown back by an
invisible hand on the old domain already known ; we see, similarly,
in half-darkness, behind the clever artificcs which he seeks to use
in order to free himself, the chains which fetter his genius, we hear
their rattling, whenever, in dealing with difficulties only too freely
imposed upon himself, he knows of no other means of extricating
himself except to cut through the knot instead of untying it”
Moreover, the sixth Book forms a natural conclusion to the whole,
in that it consists of exemplifications of methods explained and
used in the preceding Books. The subject is the finding of right-
angled triangles in rational numbers such that the sides and area
satisfy given conditions, the geometrical property of the right-angled
triangle being introduced as a fresh condition additional to the
purely arithmetical conditions which have to be satisfied in the

1 digebra der Griechen, pp. 264-273.
3 Aigedra of the Hindus, Note M, p. lxi.
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problems of the earlier Books. But, assuming that Diophantus’
resources are at an end in the sixth Book, Nesselmann has to
suggest possible topics which would have formed approximately
adequate material for the equivalent of seven Books of the
Avrithmetica. The first step is to consider what is actually wanting
which we should expect to find, either as foreshadowed by the
author himself or as necessary for the elucidation or completion of
the whole subject. Now the first Book contains problems leading
to determinate equations of the first degree; the remainder of the
work is a collection of problems which, with few exceptions, lead
to indeterminate equations of the second degree, beginning with
simpler cases and advancing step by step to more complicated
questions. There would have been room therefore for problems
involving (1) determinate equations of the second degree and (2)
indeterminate equations of the firsz. There is indeed nothing to
show that (2) formed part of the writer’s plan; but on the other
hand the writer's own words in Def. 11 at the beginning of the
work promise a discussion of the solution of the complete or
adfected quadratic, and it is clear that he employed his method of
solution in the later Books, where in some cases he simply states
the solution without working it out, while in others, where the
roots are “irrational,” he gives approximations which indicate
that he was in possession of a scientific method. Pure quadratics
Diophantus regarded as simple equations, taking no account of the
negative root. Indeed it would seem that he adopted as his
ground for the classification of quadratics, not the index of the
highest power of the unknown quantity contained in it, but the
number of terms left in it when reduced to its simplest form. His
words are!: “If the same powers of the unknown occur on both
sides, but with different coefficients (un oporAn65 &€), we must
take like from like until we have one single expression equal to
another. If there are on both sides, or on either side, any terms
with negative coefficients (év é\\eiyreat Twwa €l8n), the defects must
be added on both sides until the terms on both sides have
none but positive coefficients (évvrdpyovra), when we must again
take like from like until there remains one term on each side.
This should be the object aimed at in framing the hypotheses of
propositions, that is to say, to reduce the equations, if possible,
until one term is left equated to one term. But afterwards I will

1 Dioph. 1. Def. 11, p. 14.
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to Abi’'l Wafi al-Biizjani (940-998 A.D.), who wrote a “commentary
(fafsir) on the algebra of Diophantus” as well as a “Book of
proofs of the propositions used by Diophantus in his work...”
These facts again point to the conclusion that the lost Books were
lost before the 10th c.

Tannery’s suggestion that Hypatia’s commentary was limited
to the six Books, and the parallel of Eutocius’ commentary on
Apollonius’ Conics, imply that it is the Jasz seven Books, and the
most difficult, which are lost. This view is in strong contrast to
that which had previously found most acceptance among com-
petent authorities. The latter view was most clearly put, and
most ably supported, by Nesselmann?, though Colebrooke? had
already put forward a conjecture to the same effect ; and historians
of mathematics such as Hankel, Moritz Cantor, and Giinther have
accepted Nesselmann’s conclusions, which, stated in his own
words, are as follows: (1) that much less of Diophantus is wanting
than would naturally be supposed on the basis of the numerical
proportion of 6 to 13; (2) that the missing portion is not to be
looked for at the end but in the middle of the work, and indeed
mostly between the first and second Books. Nesselmann’s general
argument is that, if we carefully read the last four Books, from the
third to the sixth, we find that Diophantus moves in a rigidly
defined and limited circle of methods and artifices, and that any
attempts which he makes to free himself are futile; “as often as
he gives the impression that he wishes to spring over the magic
circle drawn round him, he is invariably thrown back by an
invisible hand on the old domain already known ; we see, similarly,
in half-darkness, behind the clever artifices which he seeks to use
in order to free himself, the chains which fetter his genius, we hear
their rattling, whenever, in dealing with difficulties only too frecly
imposed upon himself, he knows of no other means of extricating
himself except to cut through the knot instead of untying it”
Moreover, the sixth Book forms a natural conclusion to the whole,
in that it consists of exemplifications of methods explained and
used in the preceding Books. The subject is the finding of right-
angled triangles in rational numbers such that the sides and area
satisfy given conditions, the geometrical property of the right-angled
triangle being introduced as a fresh condition additional to the
purely arithmetical conditions which have to be satisfied in the

1 Algebra der Griechen, pp. 264~273.
3 digedra of the Hindus, Note M, p. Ixi.
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problems of the earlier Books. But, assuming that Diophantus’
resources are at an end in the sixth Book, Nesselmann has to
suggest possible topics which would have formed approximately
adequate material for the equivalent of seven Books of the
Avrithmetica. The first step is to consider what is actually wanting
which we should expect to find, either as foreshadowed by the
author himself or as necessary for the elucidation or completion of
the whole subject. Now the first Book contains problems leading
to determinate equations of the first degree; the remainder of the
work is a collection of problems which, with few exceptions, lead
to indeterminate equations of the second degree, beginning with
simpler cases and advancing step by step to more complicated
questions. There would have been room therefore for problems
involving (1) determinate equations of the second degree and (2)
indeterminate equations of the firsz. There is indeed nothing to
show that (2) formed part of the writer’s plan; but on the other
hand the writer's own words in Def. 11 at the beginning of the
work promise a discussion of the solution of the complete or
adfected quadratic, and it is clear that he employed his method of
solution in the later Books, where in some cases he simply states
the solution without working it out, while in others, where the
roots are “irrational” he gives approximations which indicate
that he was in possession of a scientific method. Pure quadratics
Diophantus regarded as simple equations, taking no account of the
negative root. Indeed it would seem that he adopted as his
ground for the classification of quadratics, not the index of the
highest power of the unknown quantity contained in it, but the
number of terms left in it when reduced to its simplest form. His
words are': “If the same powers of the unknown occur on both
sides, but with different coefficients (u7 duomAn67 8¢), we must
take like from like until we have one single expression equal to
another. If there are on both sides, or on either side, any terms
with negative coefficients (év éNAelreat Twa €idn), the defects must
be added on both sides until the terms on both sides have
none but positive coefficients (évvrdpyorra), when we must again
take like from like until there remains one term on each side.
This should be the object aimed at in framing the hypotheses of
propositions, that is to say, to reduce the equations, if possible,
until one term.is left equated to one term. But afterwards I will

! Dioph. 1. Def. 11, p. 14.
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show you also how, when two terms are left equal to one term,
such an equation is solved.” That is to say, reduce the quadratic,
if possible, to one of the forms ax?= bz, ax*=c, or bxr=c; 1 will
show later how to solve the equation when three terms are left of
which any two are equal to the third, ze the complete quadratic
ax*+ bx + c=0, excluding the case ax®+ br +c=0. The exclusion
of the latter case is natural, since it is of the essence of the work
to find rational and positive solutions. Nesselmann might have
added that Diophantus’ requirement that the equation, as finally
stated, shall contain only positive terms, of which two are equated
to the third, suggests that his solution would deal separately with
the three possible cases (just as Euclid makes separate cases of the
equations in his propositions VI. 28, 29), so that the exposition
might occupy some little space. The suitable place for it would
be between the first and second Books. There is no evidence
tending to confirm Nesselmann’s further argument that the six
Books may originally have been divided into even morc than
seven Books. He argues from the fact that there are often better
natural divisions in the middle of the Books (eg. at I 19) than
between them as they now stand; thus there is no sign of a
marked division between Books I. and II. and between Books II.
and IIL, the first five problems of Book IL and the first four of
Book 1IL recalling similar problems in the preceding Books
respectively. But the latter circumstances are better explained,
as Tannery explains them, by the supposition that the first
problems of Books II. and IIL are interpolated from some ancient
commentary. Next Nesselmann points out that there arc a
number of imperfections in the text, Book V. especially having
been “treated by Mother Time in a very stepmotherly fashion”;
thus it seems probable that at V. 19 three problems have dropped
out altogether. Still he is far from accounting for seven whole
Books; he has therefore to press into the service the lost
“Porisms” and the tract on Polygonal Numbers.

If the phrase which, as we have said, occurs three times in
Book V., “We have it in the Porisms that...,” indicates that the
“Porisms” were a definite collection of propositions concerning
the properties of certain numbers, their divisibility into a certain
number of squares, and so on, it is possible that it was from the
same collection that Diophantus took the numerous other pro-
positions which he assumes, either cxplicitly enunciating them, or
implicitly taking them for granted. May we not then, says
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Nesselmann, reasonably suppose the “Porisms” to have formed
an introduction to the indeterminate and semi-determinate analy-
sis of the second degree which forms the main subject of the
Avwithmetica, and to have been an integral part of the thirteen
Books, intervening, probably, between Books I. and II.? Schulz, on
the other hand, considered this improbable, and in recent years
Hultsch® has definitely rejected the theory that Diophantus filled
one or more Books of his Arithmetica exclusively with Porisms.
Schulz’s argument is, indeed, not conclusive. It is based on the
consideration that “ Diophantus expressly says that his work deals
with arithmetical problems®”; but what Diophantus actually says is
“ Knowing you, O Dionysius, to be anxious to learn the solution
(or, perhaps, ‘discovery,” elipeawv) of problems in numbers, I have
endeavoured, beginning from the foundations on which the study is
built up, to expound (dmosTiocar=to lay down) the nature and
force subsisting in numbers,” the last of which words would easily
cover propositions in the theory of numbers, while “ propositions,”
not “ problems,” is the word used at the end of the Preface, where
he says, “let us now proceed to the propositions (wpordoess) ......
which have been treated in thirteen Books.”

On reconsideration of the whole matter, I now agree in the
view of Hultsch that the Porisms were not a separate portion of
the Arithmetica or included in the A#ithmetica at all. If they had
been, I think the expression “we have it in the Porisms” would
have been inappropriate. In the first place, the Greek mathe-
maticians do not usually give references in such a form as this
to propositions which they cite when they come from the same
work as that in which they are cited ; as a rule the propositions
are quoted without any references at all. The references in this
case would, on the assumption that the Porisms were a portion of
the thirteen Books, more naturally have been to particular pro-
positions of particular Books (cf. Eucl. XIL 2, “ For it was proved

1 Hultsch, Joc. cit.

2 The whole passage of Schulz is as follows (pref, xxi): * Es ist daher nicht unwahr-
scheinlich, dass diese Porismen eine eigene Schrift unseres Diophantus waren, welche
vorziiglich die Zusammensetzung der Zahlen aus gewissen Bestandtheilen zu ihrem
Gegenstande hatten. Konnte man diese Schrift als einen Bestandtheil des grossen in
dreizehn Biichern abgefassten arithmetischen Werkes ansehen, so wire es sehr erklirbar,
dass gerade dieser Theil, der den blossen Liebhaber weniger anzog, verloren ging, Da
indess Diophantus ausdriicklich sagt, sein Werk behandele arzthmetische Probleme, so hat
wenigstens die letztere Annahme nur einen geringen Grad von Wahrscheinlichkeit.”
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-in the first theorem of the 1oth Book that...”). But a still vaguer
reference would have been enough, even if Diophantus had chosen
to give any at all ; if the propositions quoted had preceded those
in which they are used, some expression like TodTo yap wpo-
yéypamrar, “for this has already been proved,” or 8édewxrtar yap
codro, “for this has been shown,” would have sufficed, or, if the
propositions occurred later, some expression like as é&fjs Sevybrioeras
or Seiyfraerar v fudy YoTepov, “as will be proved in due course”
or “later.” The expression “we have it in the Porisms” (in the
plural) would have been still more inappropriate if the “Porisms”
had been, as Tannery supposes?, not collected together as one or
more Books of the A#ithmetica, but scattered about in the work as
corollaries to particular propositions® And, as Hultsch says, it is
hard, on Tannery’s supposition, to explain why the three particular
theorems quoted from “the Porisms” were lost, while a fair
number of other additions survived, partly under the title wépioua
(cf. 1. 34, 1. 38), partly as “lemmas to what follows,” Mjuua els 7o
é€ijs (cf. lemmas before IV. 34, 35, 36, V. 7, 8, VL 12, 15). On the
other hand, there is nothing improbable in the supposition that
Diophantus was induced by the difficulty of his problems to give
place in a separate work to the “porisms” necessary to their
solution,

The hypothesis that the Porisms formed part of the Arithmet-
e being thus given up, we can hardly hold any longer to
Nesselmann’s view of the contents of the lost Books and their
place in the treatise; and I am now much more inclined to the
opinion of Tannery that it is the last and the most difficult Books
which are lost. Tannery’s argument seems to me to be very
attractive and to deserve quotation in full, as finally put in the
preface to Vol IL of his Diophantus®, He replies first to the
assumption that Diophantus could not have proceeded to problems
more difficult than those of Book V. “But if the fifth or the sixth
Book of the Arithmetica had been lost, who, pray, among us would
have believed that such problems had ever been attempted by the
Greeks? It would be the greatest error, in any case in which a

1 Dioph. 11, p. xix.

2 Thus Tannery holds (/. ciz.) that the solution of the complete guadratic was given
in the form of corollaries to I.27, 30; and he refers the three “‘porisms” quoted in v. 3,
5, 16 respectively to a second (lost) solution of r11. o, to 111. 15, and to IV. 1, a.

% Dioph. 11. p. xx,
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thing cannot clearly be proved to have been unknown to all the
ancients, to maintain that it could not have been known to some
Greek mathematician. If we do not know to what lengths
Archimedes brought the theory of numbers (to say nothing of
other things), let us admit. our ignorance. But, between the
famous problem of the cattle and the most difficult of Diophantus’
problems, is there not a sufficient gap to require seven Books to
fill it? And, without attributing to the ancients what modern
mathematicians have discovered, may not a number of the things
attributed to the Indians and Arabs have been drawn from
Greek sources? May not the same be said of a problem solved by
Leonardo of Pisa, which is very similar to those of Diophantus but
is not now to be found in the Arithmetica? In fact, it may fairly
be said that, when Chasles made his reasonably probable restitution
of the Porisms of Euclid, he, notwithstanding the fact that he had
Pappus’ lemmas to help him, undertook a more difficult task than
he would have undertaken if he had attempted to fill up seven
Diophantine Books with numerical problems which the Greeks
may reasonably be supposed to have solved.”

On the assumption that the lost portion came at the end of the
existing six Books, Schulz supposed that it contained new methods
of solution in addition to those used in Books I. to VI, and in
particular extended the method of solution by means of the double
equation (Suwhj) iooTns or Simhoicdérys). By means of the double
equation Diophantus shows how to find a value of the unknown
which will make two expressions (linear or quadratic) containing it
simultaneously squares. Schulz then thinks that he went on, in
the lost Books, to make #zree such expressions simultaneously
squares, Z.e, advanced to a #riple equation. But this explanation
does not in any case take us very far,

Bombelli thought that Diophantus went on to solve deter-
minate equations of the third and fourth degree!; this view,
however, though natural at that date, when the solution of cubic
and biquadratic equations filled so large a space in contemporary
investigations and in Bombelli's own studies, has nothing to
support it.

Hultsch? seems to find the key to the question in the fragment
of the treatise on Polygonal Numbers and the developments to

1 Cossali, 1. pp. 75, 76. 2 Hultsch, Joc. cit.
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which it might have been expected to lead. In this he differs
from Tannery, who says that, as Serenus’ treatise on the sections
of cones and cylinders was added to the mutilated Conics of
Apollonius consisting of four Books only, in order to make up a
convenient volume, so the tract on Polygonal Numbers was added
to the remains of the Azithmetica, though forming no part of the
larger work?, Thus Tannery would seem to deny the genuineness
of the whole tract on Polygonai Numbers, though in his text he
only signalises the portion beginning with the enunciation of the
problem “ Given a number, to find in how many ways it can be
a polygonal number” as a “vain attempt by a commentator” to
solve this problem. Hultsch, on the other hand, thinks we may
conclude that Diophantus really solved the problem. He points
out moreover that the beginning of the tract is like the beginning
of Book I. of the Arit/imetica in containing definitions and pre-
liminary propositions. Then came the difficult problem quoted,
the discussion of which breaks off in our text after a few pages;
and to this it would be easy to tack on a great varicty of other
problems. Again, says Hultsch, the supplementary propositions
added by Bachet may serve to give an approximate idea of the
difficulty of the problems which were probably treated in Books VIL.
and the following. And between these and the bold combination
of a triangular and a square number in the Cattle-Problem
stretches, as Tannery says, a wide domain which was certainly
not unknown to Diophantus, but was his hunting-ground for the
most various problems. Whether Diophantus dealt with plane
numbers, and with other figured numbers, such as prisms and
tetrahedra, is uncertain.

The name of Diophantus was used, as were the names of Euclid,
Archimedes and Heron in their turn, for the purpose of palming
off the compilations of much later authors. Tannery prints in
his edition three fragments under the head of “Diophantus
Pseudepigraphus.” The first?, which is not “from the Arithmetic
of Diophantus ” as its heading states, is worth notice as containing
some particulars of one of “two methods of finding the square
root of any square number ”; we are told to begin by writing the
number “according to the arrangement of the Indian method,” ze.
according to the Indian numerical notation which reached us
through the Arabs. The fragment is taken from a Paris MS.

! Dioph. 11. p. xviii. 2 Dioph. IL p. 3, 3~X4.
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(Supplem. gr. 387), where it follows a work with the title ’Apys
Tiis peydhys kal lvduefis Yrdudoplas (Z.e. Yndopopias), written in
1252 and raided about half a century later by Maximus Planudes.
The second fragment? is the work edited by C. Henry in 1879 as
Opusculum de multiplicatione et divisione sexagesimalibus Diophanto
vel Pappo attribuendum. The third? beginning with Asodavrov
émumedoperpuka, is a compilation made in the Byzantine period out
of late reproductions of the yewuerpodpeva and orepeoperpovueva
of Heron. The second and third fragments, like the first, have
nothing to do with Diophantus.

! Dioph. 11. p. 3, 15-15, 17. 3 Dioph. 11 p. 15, 18-31, 22.



CHAPTER II

THE MSS. OF AND WRITERS ON DIOPHANTUS

For full details of the various MSS. and of their mutual
relations, reference should be made to the prefaces to the first and
second volumes of Tannery’s edition®. Tannery’s account needs
only to be supplemented by a description given by Gollob? of
another MS. supposed by Tannery to be non-existent, but actually
rediscovered in the Library of the University of Cracow (Nr 544).
Only the shortest possible summary of the essential facts will be
given here.

After the loss of Egypt the work of Diophantus long remained
almost unknown among the Byzantines; perhaps one copy only
survived (of the Hypatian recension), which was seen by Michael
Psellus and possibly by the scholiast to Iamblichus, but of which
no trace can be found after the capture of Constantinople in 1204.
From this one copy (denoted by the letter @ in Tannery’s table of
the MSS.) another MS. () was copied in the 8th or gth century;
this again is lost, but is the true archetype of our MSS. The
copyist apparently intended to omit all scholia, but, the distinction
between text and scholia being sometimes difficult to draw, he
included a good deal which should have been left out. For
example, Hypatia, and perhaps scholiasts after her, seem to have
added some alternative solutions and a number of new problems ;
some of these latter, such as IL 1-7, 17, 18, were admitted into the
text as genuine,

The MSS. fall into two main classes, the ante-Planudes class,
as we may call it, and the Planudean. The most ancient and the
best of all is Matritensis 48 (Tannery’s 4), which was written in
the 13th century and belongs to the first class; it is evidently a
most faithful copy of the lost archetype (a). Maximus Planudes
wrote a systematic commentary on Books I.and II.,and his scholia,

! Dioph. I. pp. iii~v, II. pp. xxii-xxxiv.

* Eduard Gollob, * Ein wiedergefundener Diophantuscodex ” in Zeilschrift fiir Math.

w. Physék, XLIV. (1899), hist.-litt. Abtheilung, pp. 137-140.
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which are edited by Tannery for the first time, are preserved in the
oldest representative which we possess of the Planudean class,
namely, Marcianus 308 (Tannery’s B), itself apparently copied
from an archetype of the 14th century now lost, with the exception
of ten leaves which survive in Ambrosianus Et 1 57 sup.

Tannery shows the relation of the MSS. in the following
diagram:
(2) Lost copy of the Hypatian recension.

(a) Lost copy, of eighth or ninth c.
(PLANUDEAN CLASS)

(FIIRST CLASS)

| |

1. Matritensis 48 = 4, Lost MS. of the 14th c. of which ten leaves

I 13th c. T are extant in Ambrosianus Et 157 sup.

2. Vaticanusgr.1gr= "/, 10. Marcianus 308=25;,

I second half of r5th c. ' beginning of r5th c.

3. Vaticanus gr. 304, |
beginning of 16th c. 1. Guelferbytanus 14. Ambrosianus

L Gudianus 1, 15th c. A g1 sup.
(x545)

4. Parisinus 2379=C 12. Palatinus gr. 397, 15. Vaticanus gr. 200
(after first  two end of 16th c. (1545)

Books),
middle of x6th c.

5. Parisinus 2378=2, 13. Reginensis 128, 16. Scorialensis T-I~11
middle of 16th c. end of 16th c. (1545)

. | .

6. Neapolitanus 4. Parisinus 2379=C 17. Parisinus 2485=2%;
I C 1y, (first two Books) middle of 16th c.
middle of 16th c.

18. Scorialensis

7. Urbinas gr. 74, 20. Taurinensis C III 16 R-III-18,

end of 16th c. middle of 16th c.
21. Parisinus Axs. 8406

8. Oxon. Baroccianus = 19. Ambrosianus
166 (part of Book I. Q 121 sup. (part of
only) 22. Scorialensis -I-15, Book I1.),

middle of 6th ¢. middle of 16th ¢,
23. Scorialensis R-II-3,
end of 16th c.
?
24. Oxon. Savilianus,
end of 16th c.
L - v -—
Auria’s recension made up out of MSS. 2, 3, 15 above and Xylander’s
translation : 25. Parisinus 2380=20.

26. Ambrosianus E 5 sup.

2%7. MS. (Patavinus) of Broscius (Brozek) now at Cracow.
28. Lost MS. of Cardinal du Perron.
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The addition of a few notes as regards the most important and
interesting of the MSS.,, in the order of their numbers in Tannery’s
arrangement, will now sufficiently complete the story.

1. The best and most ancient MS., that of Madrid (Tannery’s
A), was unfortunately spoiled at a late date by corrections made,
especially in the first two Books, from some MS. of the Planudean
class, in such a way that the original reading is sometimes entirely
erased or made quite illegible. In these cases recourse must be
had to the Vatican MS. 191I.

2. The MS. Vaticanus graecus 191 was copied from 4 before
it had suffered the general alteration by means of a MS. of the
other class, though not before various other corrections had been
made in different hands not easily distinguished ; thus ¥V some-
times has readings which Tannery found to have arisen from some
correction in A. A appears to have been at Rome for a con-
siderable period at the time when 7 was copied; for the librarian
who wrote the old table of contents! at the beginning of I inserted
in the margin in one place?® the word ap&auevos, which had been
omitted, direct from the original (4).

3. Vat. gr. 304 was copied from V, not from 4; Tannery
inferred this mainly from a collation of the scholia, and he notes
that the word dp£auevos above mentioned is here brought into the
text by the erasure of some letters. This MS. 304, being very
clearly written, was used thenceforward to make copies from. The
next five MSS. do not appear to have had any older source.

4. The MS. Parisinus 2379 (Tannery’s C) was that used by
Bachet for his edition. It was written by one Ioannes Hydruntinus
after 1545, and has the peculiarity that the first two Books were
copied from the MS. Vat. gr. 200 (a MS. of the Planudean class),
evidently in order to include the commentary of Planudes, while
the MS. Vat. gr. 304 belonging to the pre-Planudes class was
followed in the remaining Books, no doubt because it was con-
sidered superior. Thus the class of which C is the chief repre-
sentative is a sort of mixed class.

5, 6. Parisinus 2378 =2, and Neapolitanus 111 C 17, were
copied by Angelus Vergetius. In the latter Vergetius puts the

! The MS. 7 was made up of various MSS. before separated. The old table of
contents has Awddyrov dpibunrich: dpuovicd didpopa. The dpuovekd include the Zntro-
duction to Harmony by Cleonides, but without any author’s name. This fact sufficiently
explains the exror of Ramus in saying, Schola mathematica, Bk 1. p. 35, ““Scripserat et
Diophantus harmonica.”

? Dioph. 1. p. 2, 5-6.
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numbers A, B, I, A, E, Z, H at the top of the pages (as we put
headlines) corresponding to the different Books, implying that he
regarded the tract on Polygonal Numbers as Book VII.

The other MSS. of the first class call for no notice, and we pass
to the Planudean class.

9. Tannery, as he tells us, congratulated himself upon finding
in Ambrosianus Et 157 sup. ten pages of the archetype of the
class, and eagerly sought for new readings. So far, however, as he
was able to carry his collation, he found no difference from the
principal representative of the class (B;) next to be mentioned.

10. The MS. Marcianus 308 (= 5,) of the 15th century formerly
belonged to Cardinal Bessarion, and was seen by Regiomontanus
at Venice in 1464. It contains the recension by Planudes with his
comimentary.

11. It seems certain that the Wolfenbiitte] MS. Guelferbytanus
Gudianus I (15th c) was that which Xylander used for his
translation ; Tannery shows that, if this was not the MS. lent
to Xylander by Andreas Dudicius Sbardellatus, that MS. must
have been lost, and there is no evidence in support of the latter
hypothesis. It is not possible to say whether the Wolfenbiittel
MS. was copied from Marcianus 308 (B,) or from the com-
plete MS. of which Ambrosianus Et 157 sup. preserves the ten
leaves.

12. Palatinus gr. 391 (end of 16th c.) has notes in German in
the margin which show that it was intended to print from it; it
was written either by Xylander himself or for him. It is this MS.
of which Claudius Salmasius (Claude de Saumaise, 1588-1653)
told Bachet that it contained nothing more than the six Books,
with the tract on Polygonal Numbers.

13. Reginensis 128 was copied at the end of the 16th century
from the Wolfenbiittel MS.

14, 15. Ambrosianus A 9I sup. and Vaticanus gr. 200 both
come from B, ; as they agree in omitting V. 28 of Diophantus, one
was copied from the other, probably the latter from the former.
They were both copied by the same copyist for Mendoza in 1545.
Vat. gr. 200 has headings which make eight Books ; according to
Tannery the first Book is numbered &/, the fourth & ; before v. 20
(in Bachet’s numbering)—should this be IV. 20 ?—is the heading
Acopdvrov €, before the fifth Book Aw¢drrov s, before the sixth
Awopdvrov ¢, and before the tract on Polygonal Numbers
Acogdyrov 5 ; this wrong division occurs in the next three MSS.

H. D. 2
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(16, 17, 18 in the diagram), all of which seem to be copied from
Vat. 200.

The MSS. numbered 20, 21, 22, 23 in the diagram are of the
hybrid class derived from Parisinus 2379 (C). Scorialensis Q-I-15
and Scorialensis R-II1-3, the latter copied from the former, have
the first Book divided into two (cf. p. 5 above), and so make
seven Books of the Aritiumetica and an eighth Book of the
Polygonal Numbers.

27. The Cracow MS. has the same division into Books as the
MSS. last mentioned. According to Gollob, the collation of this
MS.,, so far as it was carried in 1899, showed that it agrees in the
main with 4 (the best MS.), B, (Marcianus 308) and C (Parisinus
2379); but, as it contains passages not found in the two latter, it
cannot have been copied from either of them.

25. Parisinus 2380 appears to be the copy of Auria’s
Diophantus mentioned by Schulz as having been in the library of
Carl von Montchall and bearing the title “ Diophanti libri sex, cum
scholiis graecis Maximi Planudae, atque liber de numeris poly-
gonis, collati cum Vaticanis codicibus, et latine versi a Josepho
Auria”

The first commentator on Diophantus of whom we hear is
Hypatia, the daughter of Theon of Alexandria ; she was murdered
by Christian fanatics in 415 A.D. According to Suidas she wrote
commentaries on Diophantus, on the Astronomical Canon (sc. of
Ptolemy) and on the Conics of Apollonius®. Tannery suggests
that the remarks of Michael Psellus (11th c.) at the beginning of
his letter about Diophantus, Anatolius, and the Egyptian method
of arithmetical reckoning were taken bodily from some MS. of
Diophantus containing an ancient and systematic commentary ;
and he believes this commentary to have been that of Hypatia. I
have already mentioned the attractive hypothesis of Tannery that
Hypatia’s commentary extended only to our six Books, and that
this accounts for the loss of the rest.

Georgius Pachymeres (1240 to about 1310) wrote in Greek a
paraphrase of at least a portion of Diophantus. Sections 25-44 of

! Schulz, Diophantus, pref. xliii.

% Suidas s.v. “Praria: Eypaper dmbuvmue els Abpavrov, <els> 7dv dorpovouskdy kavéva,
els 76 kwvikd 'AmoN\wvlov Sméuvqua. So Tannery reads, following the best MSS. ; he
gives ample reasons for rejecting Kuster’s conjecture els Awgdrrov 7dv dorpovopsdv xaviva,
viz. (1) that the order of words would have been 7év Awgdwrov dorpovoundy xavbva,
(2) that there is nothing connecting Diophantus with astronomy, while Suidas mentions,
s.v. ©dwv, a commentary els 7o Lroheualov mrpdxeipor xaviva.
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this survive and are published by Tannery in his edition of
Diophantus®. The chapters lost at the beginning may have con-
tained general observations and introductions to the first two
paragraphs of Book I.; section 25 begins with the third paragraph
(Def. 1), and the rest of the fragment takes us up to the problem
inI 11,

Soon afterwards Maximus Planudes (about 1260-1310) wrote
a systematic commentary on Books I, II.  This is also included by
Tannery in his edition?

There are a number of other ancient scholia, very few of which
seemed to Tannery to be worth publication?

But in the meantime, and long before the date of Georgius
Pachymeres, the work of Diophantus had become known in Arabia,
where it was evidently the subject of careful study. We are told
in the Fikrist, the main part of which was written in the year
987 A.D, (1) that Diophantus was a Greek of Alexandria who
wrote a book “On the art of algebrat” (2) that Abu’l Wafa
al-Biizjani (940-998) wrote (2) a commentary (Zzfsir) on the
algebra of Diophantus and (§) a book of “proofs to the pro-
positions used by Diophantus in his book and to that which
he himself (Ab@'l Wafa) stated in his commentary®” (3) that
Qusta b. Luqa al-Ba'labakki (died about g91z) wrote a “com-
mentary on three and a half Books of Diophantus’ work on
arithmetical problems®” Qusta b. Liqga, physician, philosopher,
astronomer, mathematician and translator, was the author of works
on Euclid and of an “introduction to geometry ” in the form of
question and answer, and translator of the so-called Books XIV., XV.
of Euclid; other Arabian authorities credit him with an actual
“ translation of the book of Diophantus on Algebra”.” Lastly, we
are told by Ibn abi Usaibi‘a of “marginal glosses which Ishaq b.
Yiinis (died about 1077), the physician of Cairo, after Ibn al-
Haitham, added to the book of Diophantus on algebraic problems.”
The title is somewhat obscure; probably Ibn al-Haitham (about
965~1039), who wrote several works on Euclid, wrote a commentary
on the Arithmetica and Ishaq b. Yinis added glosses to this
commentary®

1 Dioph. I11. pp. 78-122. 2 Dijoph. I11. pp. 125-255.

3 The few that he gives are in Vol. I pp. 256-260; as regards the collection in
general cf. Hultsch in Beriiner philologische Wockenschrift, 1896, p. 615,

4 Fikrist, ed. Suter, p. 22. 5 ibid. p. 39. 8 ibid. p. 43.

7 Suter, Die Mathematiker und Astvonomen der Araber, 1900, p. 41.

8 Suter, gp. ¢it, pp. 107-8. CL. Bibliotheca Mathematica 1vy, 1903—4, p. 290.
2—2
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To Regiomontanus belongs the credit of being the first to call
attention to the work of Diophantus as being extant in Greek.
We find two notices by him during his sojourn in Italy, whither he
journeyed after the death of his teacher Georg von Peurbach,
which took place on the 8th April, 1461. In connexion with
lectures on the astronomy of Alfraganus which he gave at Padua
he delivered an Oratio introductoria in omnes scientias inathe-
maticas’. In this he observed: “No one has yet translated from
the Greek into Latin the fine thirteen Books of Diophantus, in
which the very flower of the whole of Arithmetic lies hid, the ars
vei et cemsus which to-day they call by the Arabic name of
Algebra?” Secondly, he writes to Bianchini, in answer to a letter
dated 5th February, 1464, that he has found at Venice “Diofantus,”
a Greek arithmetician, who has not yet been translated into Latin;
that in his preface Diophantus defines the various powers up to
the sixth; but whether he followed out all the combinations of
these Regiomontanus does not know: “for not more than six
Books are found, though in the preface he promises thirteen. If
this book, which is really most wonderful and most difficult, could
be found entire, I should like to translate it into Latin, for the
knowledge of Greek which I have acquired while staying with my
most reverend master [Bessarion] would suffice for this....” He
goes on to ask Bianchini to try to discover a complete copy and,
in the meantime, to advise him whether he should begin to translate
the six Books® The exact date of the Orazio is not certain.
Regiomontanus made some astronomical observations at Viterbo
in the summer and autumn of 1462, He is said to have spent a
year at Ferrara, and he seems to have gone thence to Venice.
Extant letters of his written at Venice bear dates from 27th July,
1463, to 6th July, 1464, and it may have been from Venice
that he made his visit to Padua. At all events the Oretio at
Padua must have been near in time to the discovery of the
MS. at Venice.

Notwithstanding that attention was thus called to the work, it

1 Printed in the work Rudimenta astronomica Alfragani, Nirnberg, 1537.

2 As the ars red et census, the solution of determinate quadratic equations, is not found
in our Diophantus, it would seem that at the time of the Oratio Regiomontanus had only
looked at the MS. cursorily, if at all.

8 The letter to Bianchini is given on p. 135 of Ch. Th. v. Murr's Memoratilia,
Norimbergae, 1786, and partly in Doppelmayer’s Historische Nachrickt von den Niirn-
bergischenn Mathematicis und Kiinstlern (Nimberg, 1730), p. 5, note y.
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seems to have remained practically a closed book from the date of
Maximus Planudes to about 1570. Luca Paciuolo, towards the
end of the 15th c, Cardano and Tartaglia about the middle of the
16th, make no mention of it. Only Joachim Camerarius, in a
letter published in 1556, mentions that there is a MS. of
Diophantus in the Vatican which he is anxious to see. Rafael
Bombelli was the first to find a MS. in the Vatican and to conceive
the idea of publishing the work. This was towards 1570, for in his
Algebra? published in 1572 Bombelli tells us that he had 7% 24
years last past discovered a Greek book on Algebra written by “a
certain Diofantes, an Alexandrine Greek author, who lived in the
time of Antoninus Pius”; that, thinking highly of the contents of
the work, he and Antonio Maria Pazzi determined to translate it ;
that they actually translated five books out of the seven into
which the MS. was divided ; but that, before the rest was finished,
they were called away from it by other labours. Bombelli did not
carry out his plan of publishing Diophantus in a translation, but
he took all the problems of the first four Books and some of those
of the fifth, and embodied them in his Algebra, interspersing them
with his own problems. He took no pains to distinguish
Diophantus’ problems from his own; but in the case of the former
he adhered pretty closely to the original, so that Bachet admits his
obligations to him, remarking that in many cases he found

1 De Graecis Latinisque numerorum notis et praeterea Saracenis sew Indicis, ete. etc.,
studio Joachimi Camerarii, Papeberg, 1556.

2 Nesselmann tells us that he has not seen this work but takes his information about
it from Cossali, I was fortunate enough to find in the British Museum one of the copies
dated 1579 (really the same as the original edition of 1572 except that the title-page and
date are new, and a dedicatory letter on pp. 3-8 is reprinted; there were not two
separate editions). The title is L’ 4lgebra, opera di Rafael Bombelli da Bologna diuisa in
tre Libri...... In Bologna, Per Giovanni Rossi, MDLXXIX. The original of the passage
from the preface is :

< Questi anni passati, essendosi ritronato una opera greca di questa disciplina nella
libraria di Nostro Signore in Vaticano, composta da un certo Diofante Alessandrino Autor
Greco, il quale fu & tempo di Antonin Pio, e havendomela fatta vedere Messer Antonio
Maria Pazzi Reggiano, publico lettore delle Matematiche in Roma, e giudicatolo con lui
Autore assai intelligente de’ numeri (ancorche non tratti de’ numeri irrationali, ma solo
in lui si vede vn perfetto ordine di operare) egli, ed io, per arrichire il mondo di cosl fatta
opera, ci dessimo & tradurlo, e cinque libri (delli sette che sono) tradutti ne habbiamo; lo
restante non hauendo potuto finire per gli trauagli auenuti all’ uno, e all’ altro; e in detta
opera habbiamo ritrouato, ch’ egli assai volte cita gli Autori Indiani, col che mi ha fatto
conoscere, che questa disciplina appo gl’ indiani prima fii, che & gli Arabi.” The last
words stating that Diophantus often quotes from Indian authors are no doubt due to
Bombelli’s taking for part of Diophantus the tract of Maximus Planudes about the Indian,

method. of reckoning.
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Bombelli’s translation better than Xylander’s and consequently
very useful for the purpose of amending the latter?,

It may be interesting to mention a few points of notation in
this work of Bombelli. At the beginning of Book IL he explains
that he uses the word “tanto” to denote the unknown quantity,
not “cosa” like his predecessors; and his symbol for it is &, the
square of the unknown (#?) is 2, the cube ; and so on. For plus
and minus (pin and meno) he uses the initial letters p and s
Thus corresponding to #+ 6 we should find in Bombelli 1L 2. 6,
and for #* + §x— 4, 12 p. 5L m. 4. This notation shows, as will be
seen later, some advance upon that of Diophantus in one important
respect,

The next writer upon Diophantus was Wilhelm Holzmann who
published, under the Graecised form of his name, Xylauder, by
which he is generally known, a work bearing the title : Diophanti
Alexandrini Revum Avithmeticarum Libri sex, quovumne primi duo
adiecta habent Scholia Maximi (ut contectura est) Planudis. Item
Liber de Numeris Polygonis sew Multangulis. Opus incomparabile,
wevae Arithmeticae Logisticae pevfectionem continens, paucis adhuc
wisum. A Guil. Xylandro Augustano incredibili labore Latiné
vedditum, et Commentariis explanatum, ingue lucem editum, ad
Tllustriss. Principem Ludovicum Vuirtembergensem. Basileae per
Eusebium Episcopium, et Nicolai Fr. haevedes. MDLXX V. Xylander
was according to his own statement a “public teacher of Aristotelian
philosophy in the school at Heidelberg2?” He was a man of almost
universal culture?, and was so thoroughly imbued with the classical
literature, that the extraordinary aptness of his quotations and his
wealth of expression give exceptional charm to his writing whenever
he is free from the shackles of mathematical formulae and techni-
calities. The ZEpistola Nuncupatoria is addressed to the Prince
Ludwig, and Xylander neatly introduces it by the line “ Qfferimus
numeros, numeri sunt principe digni.” This preface is very quaint
and interesting. He tells us how he first saw the name of
Diophantus mentioned in Suidas, and then found that mention

. 1 “Sed suas Diophanteis quaestionibus ita immiscuit, ut has ab illis distinguere non
sit in promptu, neque vero se fidum satis interpretem pracbuit, cum passim verba
Dﬁxqphantl immutet, hisque pleraque addat, pleraque pro arbitrio detrahat. In multis
nihilominus interpretationem Bombellii, Xilandriana praestare, et ad hanc emendandam
me adjuvisse ingenue fateor.” Ad lectorem.

: ;;Publliacush philosophiae Aristoteleae in schola Heidelbergensi doctor.”
ven Bachet, who, as we shall see iti s him “ Vi i
discipin excultus’,” , , Was no favourable critic, calls him “Vir omnibus
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had been made of his work by Regiomontanus as being extant
in an Italian library and having been seen by him. But, as the
book had not been edited, he tried to think no more of it but,
instead, to absorb himself in the study of such arithmetical books
as he could obtain, and in investigations of his own. Self-taught
except in so far as he could learn from published works such as
those of Christoff Rudolff (of the “Coss ™), Michael Stifel, Cardano,
Nufiez, he yet progressed so far as to be able to add to, modify
and improve what he found in those works. As a result he fell
into what Heraclitus called olnaw, {epdv vocoy, that is, into the
conceit of “being somebody” in the field of Arithmetic and
“Logistic”; others too, themselves learned men, thought him an
arithmetician of exceptional ability. But when he first became
acquainted with the problems of Diophantus (he continues) right
reason brought such a reaction that he might well doubt whether he
ought previously to have regarded himself as an object of pity or of
derision. He considers it therefore worth while to confess publicly his
own ignorance at the same time that he tries to interest others in
the work of Diophantus, which had so opened his eyes. Before this
critical time he was so familiar with methods of dealing with surds
that he had actually ventured to add something to the discoveries
of others relating to them ; the subject of surds was considered to
be of great importance in arithmetical questions, and its difficulty

1 T cannot refrain from quoting the whole of this passage : “‘Sed cium ederet nemo :
cepi desiderium hoc paulatim in animo consopire, et eorum quos consequi poteram
Arithmeticorum librorum cognitione, et meditationibus nostris sepelire. Veritatis porrd
apud me est autoritas, ut ei coniunctum etiam cum dedecore meo testimonium lubentissimé
perhibeam, Quod Cossica seu Algebrica (cum his enim reliqua comparata, id sunt quod
umbrae Homericé in Necya ad animam Tiresiae) ea ergo qudd non assequebar modo,
quanquam mutis duntaxat usus preceptoribus caetera adrodidaxros, sed et augere, nariare,
adeoque corrigere in loco didicissem, quae summi et fidelissimi in docendo uiri Christifer
Rodolphus Silesius, Micaelus Stifelius, Cardanus, Nonius, aliique litteris mandauerant :
incidi in ofnow, lepdw véoow, ut scité appellauit Heraclitus sapientior multis aliis philoso-
phis, hoc est, in Arithmetica, et uera Logistica, putaui me esse aliquid: itaque de me
passim etiam a multis, iisque doctis uiris iudicatum fuit, me non de grege Arithmeticum
esse. Verum ubi primim in Diophantea incidi: itame recta ratio circumegit, ut flendisne
mihi ipsi anted, an uerd ridendus fuissem, haud iniuria dubitauerim. Operae precium est
hoc loco et meam inscitiam inuulgare, et Diophantei operis, quod mihi nebulosam istam
caliginem ab oculis detersit, immd eos in coenum barbaricum defossos eleuanit et repur-
gauit, gustum aliquem exhibere. Surdorum ego numerorum tractationem ita tenebam,
ut etiam addere aliorum inuentis aliquid non poenitendum auderem, atque id quidem in
rebus arithmeticis magnum habetur, et difficultas istarum rerum multos a 1nathematibus
deterret. Quanto autem hoc est praeclarius, in iis problematis, quae surdis etiam
numeris uix posse uidentur explicari, rem eo deducere, ut quasi solum arithmeticum
uertere iussi obsurdescant illi plané, et ne mentio quidem eorum in tractatione ingenio.
sissimarum quaestionum admittatur.”
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was even such as to deter many from the study of mathematics.
«But how much more splendid,” says Xylander, “in the case of
problems which seem to be hardly capable of solution even with
the help of surds, to bring the matter to the point that, while the
surds, when bidden (so to speak) to plough the arithmetic soil,
become true to their name and deaf to entreaty, they are not so
much as mentioned in these most ingenious solutions!” He then
describes the enormous difficulties which beset his work owing
to the corruptions in his text. In dealing, however, with the
mistakes and carelessness of copyists he was, as he says, no novice;
for proof of which he appeals to his editions of Plutarch, Stephanus
and Strabo. This passage, which is good reading, but too long
to reproduce here, I give in full in the note’. Next Xylander
tells us how he came to get possession’ of a manuscript of Dio-
phantus. In October of the year 1571 he made a journey to
Wittenberg ; while there he had conversations on mathematical
subjects with two professors, Sebastian Theodoric and Wolfgang
Schuler by name, who showed him a few pages of a Greek

1 «Id uerd mihi accidit durum et uix superabile incommodum, qudd mirifict deprauata
omnia inueni, cim neque problematum expositio interdum integra esset, ac passim numeri
(in quibus sita omnia esse in hoc argumento, quis ignorat?) tam problematum quim
solutionum siue explicationum corruptissimi. Non pudebit me ingenue fateri, qualem me
heic gesserim.  Audacter, et summo cum feruore potius quam alacritate animi opus ipsum
initio sum aggressus, laborque mihi omnis uoluptati fuit, tantus est meus rerum arithmeti-
carum amor. quin etgratiam magnam me apud omnes liberalium scientiarum amatores ac
patronos initurum, et praeclare de rep. litteraria meriturum intelligebam, eamque rem
mihi laudi (quam & bonis profectam nemo prudens aspernatur) gloriaeque fortasse etiam
emolumento fore sperabam. Progressus aliquantulum, in salebras incidi: quae tantum
abest ut alacritatem meam retuderint, ut etiam animos mihi addiderint, neque enim mihi
novum aut insolens est aduersus librariorum incuriam certamen, et hac in re militaui, (ut
Horatii nostri uerbis utar) non sine gloria. quod me non arroganter dicere, Dio,
Plutarchus, Strabo, Stephanusque nostri testantur. Sed cum mox in ipsum pelagus
monstris scatens me cursus abripuit : non despondi equidem animum, neque manus dedi,
sed tamen saepius ad oram unde soluissem respexi, quadm portum in quem esset euadendum
cogitando prospicerem, deprachendique non minus uer¢ quidm cleganter ea cecinisse
Alcaeum, quae (si possum) Latiné in hac quasi uotiua mea tabula scribam.

Qui uela uentis uult dare, dum licet,

Cautus futuri praeuideat modum

Cursus. mare ingressus, marino

Nauiget arbitrio necesse est.
Sané quod de Echeneide pisce fertnr, enm nauim cui se adplicet remorari, poené credibile
fecit mihi mea cymba tot mendorum remoris retardata. Ixpediui tamen me ita, ut facilé
omnes mediocri de his rebus iudicio praediti, intellecturi sint incredibilem me laborem et
aerumnas difficilimas superasse : pudore etiam stimulatum oneris quod ultro mihi impos-
uissem, non perferendi. Paucula quaedam non plané explicata, studio et certis de causis
in alium locum reiecimus. Opus quidem ipsum ita absoluimus ut neque eius nos pudere
debeat, et Arithmeticae Logisticesque studiosi nobis se plurimum debere sint haud dubie
professuri,”
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manuscript of Diophantus and informed him that it belonged to
Andreas Dudicius whom Xylander describes as “Andreas Dudicius
Sbardellatus, hoc tempore Imperatoris Romanorum apud Polonos
orator.”  On his departure from Wittenberg Xylander wrote out
and took with him the solution of a single problem of Diophantus,
to amuse himself with on his journey. This he showed at Leipzig
to Simon Simonius Lucensis, a professor at that place, who wrote to
Dudicius on his behalf. A few months afterwards Dudicius sent
the MS. to Xylander and encouraged him to persevere in his
undertaking to translate the A#z¢hmetica into Latin. Accordingly
-Xylander insists that the glory of the whole achievement belongs
in no less but rather in a greater degree to Dudicius than to
himself. Finally he commends the work to the favour of Prince
Ludwig, extolling the pursuit of arithmetical and algebraical
science and dwelling in enthusiastic anticipation on the influence
which the Prince’s patronage would have in helping and advancing
the study of Arithmetict. This Epistola Nuncupatoria bears the
date 14th August, 1574% Xylander died on the 10th of February
in the year following that of the publication, 1576.

Tannery has shown that the MS. used by Xylander was
Guelferbytanus Gudianus 1. Bachet observes that he has not been
able to find out whether Xylander ever published the Greek text,
though parts of his commentary seem to imply that he had, or at
least intended to do so. It is now clear that he intended to bring
out the text, but did not carry out his intention. Tannery observes
that the MS. Palatinus gr. 391 seems to have been written either by
Xylander himself or for him, and there are German notes in the
margin showing that it was intended to print from it.

Xylander's achievement has been, as a rule, quite inadequately
appreciated. Very few writers on Diophantus seem to have studied
the book itself: a fact which may be partly accounted for by its
rarity. Even Nesselmann, whose book appeared in 1842, says that
he has never been able to find a copy. Nesselmann however seems
to have come nearest to a proper appreciation of the value of the
work : he says “Xylander's work remains, in spite of the various

1 ¢ TToc non modd tibi, Princeps Illustrissime, honorificum erit, atque gloriosum; sed
te labores nostros approbante, arithmeticae studium clim alibi, tum in tua Academia et
Gymnasiis, excitabitur, confirmabitur, prouehetur, et ad perfectam eius scientiam multi tuis
auspiciis, nostro labore perducti, magnam hac re tuis in remp. beneficiis accessionem
factam esse gratissima commemoratione praedicabunt.”

2 ¢« Heidelberga. postrid. Eidus Sextiles cIo 10 LXX1V.”
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defects which are unavoidable in a first edition of so difficult an
author, especially when based on only one MS. and that full of
errors, a highly meritorious achievement, and does not deserve
the severe strictures which it has sometimes had passed upon it.
It is true that Xylander has in many places not understood his
author, and has misrepresented him in others; his translation is
often rough and un-Latin, this being due to a too conscientious
adherence to the actual wording of the original; but the result
was none the less brilliant on that account. The mathematical
public was put in possession of Diophantus’ work, and the
appearance of the translation had an immediate and enormous
influence on the development and shaping of Algebral” As a
rule, the accounts of Xylander's work seem to have been based
on what Bachet says about it and about his obligations to it.
When I came to read Bachet myself and saw how disparaging,
as a rule, his remarks upon Xylander were, I could not but suspect
that they were unfair. His repeated and almost violent repudiation
of obligation to Xylander suggested to me the very thing which he
disclaimed, that he was under too great obligation to his predecessor
to acknowledge it duly. I was therefore delighted at my good
fortune in finding in the Library of Trinity College, Cambridge,
a copy of Xylander, and so being able to judge for myself of
the relation of the later to the earlier work. The result was to
confirm entirely what I had suspected as to the unfair attitude
taken up by Bachet towards his predecessor. I found it every-
where; even where it is obvious that Xylander’s mistakes or
difficulties are due only to the hopeless state of his solitary MS.
Bachet seems to make no allowance for the fact. The truth is that
Bachet’s work could not have been as good as it was but for the
pioneer work of Xylander; and it is the great blot in Bachet’s
otherwise excellent edition that he did not see fit to acknowledge
the fact.

I must now pass to Bachet's work itself. It was the first
edition published which contained the Greek text, and appeared
in 1621 bearing the title: Diophanti Alexandrini Arithmeticorum
libri sex, et de numeris multangulis liber wnus. Nunc primim
Graece et Latine edits, atque absolutissimis Commentariis illustyats.
Auctore Clandio Gaspare Backheto Meziviaco Sebusiano, V.C. Lutetiae
Parisiorum, Sumpiibus Hieronymi Dyovart®, via Jacobaen, sub Scuto

! Nesselmann, p. 279-8o.
% For ¢ sumptibus Hieronymi Drovart etc.” some copies have “ sumptibus Sebastiani
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Solari. MDCXXI Bachet’s Greek text is based, as he tells us,
upon a MS. which he calls “codex Regius,” now in the Bibliothéque
Nationale at Paris (Parisinus 2379); this MS. is his sole authority,
except that Jacobus Sirmondus had part of a Vatican MS. (Vat.
gr. 304) transcribed for him. He professes to have produced a
good Greek text, having spent incalculable labour upon its emenda-
tion, to have inserted in brackets all additions which he made to it,
and to have given notice of all corrections, except those of an
obvious or trifling nature; a few passages he has left asterisked, in
cases where correction could not be safely ventured upon. He
is careful to tell us what previous works relating to the subject he
had been able to consult. First he mentions Xylander (he spells
the name as X7lander throughout), who had translated the whole of
Diophantus, and commented upon him throughout, “except that
he scarcely touched a considerable part of the fifth book, the whole
of the sixth and the treatise on multangular numbers, and even
the rest of his work was not very successful, as he himself admits
that he did not thoroughly understand a number of points.” Then
he speaks of Bombelli (as already mentioned) and of the Zefetica of
Vieta (in which the author treats in his own way a large number
of Diophantus’ problems: Bachet thinks that he so treated them
because he despaired of restoring the book completely). Neither
Bombelli nor Vieta (says Bachet) made any attempt to demonstrate
the difficult porisms and abstruse theorems in numbers which
Diophantus assumes as known in many places, or sufficiently
explained the causes of his operations and artifices. All these
omissions on the part of his predecessors he thinks he has supplied
in his notes to the various problems and in the three books of
“Porisms” which he prefixed to the work® As regards his Latin
translation, he says that he gives us Diophantus in Latin from the
version of Xylander most carefully corrected, in which he would
have us know that he has done two things in particular, first,

Cramoisy, via Jacobaea, sub Ciconiis.” The copy (from the Library of Trinity College,
Cambridge) which I used in preparing my first edition has the former words; a copy in
the Library of the Athenaeum Club has the latter.

1 On the nature of some of Bachet’s proofs Nicholas Saunderson (formerly Lucasian
Professor) remarks in Elements of Algebra, 1740, apropos of Dioph. I11. 15: ¢ M. Bachet
indeed in the 16th and 17th props. of his second book of Porisms has given us demonstra-
tions, such as they are, of the theorems in the problem: but in the first place he
demonstrates but one single case of those theorems, and in the next place the demonstra-
tions he gives are only synthetical, and so abominably perplexed withal, that in each
demonstration he makes use of all the letters in the alphabet except I and O, singly to
represent the quantities he has there occasion for.”
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corrected what was wrong and filled the numerous lacunae,
secondly, explained more clearly what Xylander had given in
obscure or ambiguous language; “I confess however,” he says,
“that this made so much change necessary, that it is almost
fairer to attribute the translation to me than to Xilander. But if
anyone prefers to consider it as his, because I have held fast, tooth
and nail, to his words when they do not misrepresent Diophantus,
I have no objection.” Such sentences as these, which are no
rarity in Bachet’s book, are certainly not calculated to increase
our respect for the author. According to Montucla?, “the historian
of the French Academy tells us” that Bachet worked at this edition
during the course of a quartan fever, and that he himself said that,
disheartened as he was by the difficulty of the work, he would never
have completed it, had it not been for the stubbornness which his
malady generated in him.

As the first edition of the Greek text of Diophantus, this work,
in spite of any imperfections we may find in it, does its author all
honour.

The same edition was reprinted and published with the addition
of Fermat's notes in 1670 : Dioplanti Alexandrini Avithmeticorum
libyi sex, et de numeris multangulis liber unus. Cum conumentariis
C. G. Bacheti V.C. et obsevuationibus D. P. de Fermat Senatovis
Tolosani. Accessit Doctrinae Analyticae inuentum nouum, collectuin
ex variis eiusdem D. de Fevmat Epistolis. Tolosae, Excudebat
Bernardus Bosc, ¢ Regione Collegii Societatis Jesu. MDCLXX.
This edition was not published by Fermat himself, but by his
son after his death. S. Fermat tells us in the preface that this
publication of Fermat’s notes to Diophantus® was part of an
attempt to collect together from his letters and elsewhere his
contributions to mathematics, The “Doctrinae Analyticac In-
uentum nouum” is a collection made by Jacobus de Billy*

1 Deinde Latinum damus tibi Diophantum ex Xilandri versione accuratissimd castigata,
in qua duo potissimaum nos praestitisse scias velim, nam ct deprauata correximus, hiantesque
passim lacunas repleuimus: et quae subobscurd, vel ambigué fuerat interpretatus Xilander,
dilucidius exposuimus; fateor tamen, inde tantam inductam esse mutationem, vt prope-
modum aequius sit versionem istam nobis quam Xilandro tribuere. Si quis autem potius
ad eum pertinere contendal, qudd eius verba, quatenus Diophanto fraudi non crant,
mordicus retinuimus, per me licet.” 4 1. 323.

# Now published in Buvres de Fermat by P. Tannery and C. Ilenry, Vol. 1. (1891),
Pp- 280~342 (the Latin original), and Vol. 111. (1896), pp. 241-274 (French translation).

4 Now published in Buvres de Fermat, 11, 323-398 (French translation). De
Billy had already published in 1660 a book under the title Digphantus geometra sive
opus conlextum ex arithmetica et geometria.
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from various letters which Fermat sent to him at different times.
The notes upon Diophantus’ problems, which his son hopes will
prove of value very much more than commensurate with their
bulk, were (he says) collected from the margin of his copy of
Diophantus. From their brevity they were obviously intended
for the benefit of experts!, or even perhaps solely for Fermat’s
own, he being a man who preferred the pleasure which he had
in the work itself to any reputation which it might bring
him. Fermat never cared to publish his investigations, but was
always perfectly ready, as we see from his letters, to acquaint
his friends and contemporaries with his results. Of the notes
themselves this is not the place to speak in detail. This edition
of Diophantus is rendered valuable only by the additions in it
due to Fermat; for the rest it is a mere reprint of that of 1621.
So far as the Greek text is concerned, it is very much inferior
to the first edition. There is a far greater number of misprints,
omissions of words, confusions of numerals; and, most serious of
all, the brackets which Bachet inserted in the edition of 1621 to
mark the insertion of words in the text are in this later edition
altogether omitted. These imperfections have been already noticed
by Nesselmann® Thus the reprinted edition of 1670 is untrust-
worthy as regards the text.

In 1585 Simon Stevin published a French version of the first
four books of Diophantus3. It was based on Xylander and was
a free reproduction, not a translation, Stevin himself observing that
the MS. used by Xylander was so full of mistakes that the text of

Y Lectori Benewolo, p. iii : *“ Doctis tantum quibus pauca sufficiunt, harum obserua-
tionum auctor scribebat, vel potius ipse sibi scribens, his studiis exerceri malebat quam
gloriari; adeo autem ille ab omni ostentatione alienus erat, vt nec lucubrationes suas
typis mandari curauerit, et suorum quandoque responsorum autographa nullo seruato
exemplari petentibus vitrd miserit ; norunt scilicet plerique celeberrimorum huius saeculi
Geometrarum, quam libenter ille et quant humanitate, sua iis inuenta patefecerit.”

2 ¢«Was dieser Abdruck an dusserer Eleganz gewonnen hat (denn die Bachet’sche
Ausgabe ist mit dusserst unangenehmen, namentlich Griechischen Lettern gedruckt), das
hat sie an innerm Werthe in Bezug auf den Text verloren. Sie ist nicht bloss voller
Druckfehler in einzelnen Worten und Zeichen (z. B. durchgehends = statt 3, goo)
sondern auch ganze Zeilen sind ausgelassen oder doppelt gedruckt (z. B. IIL 12 eine
Zeile doppelt, 1v. 25 eine doppelt und gleich hinterher eine ausgelassen, IV. 52 eine
doppelt, V. 11 eine ausgelassen, desgleichen V. 14, 25, 33, VI. 8, 13 und so weiter), die
Zahlen verstiimmelt, was aber das Aergste ist, die Bachet’schen kritischen Zeichen sind
fast iiberall, die Klammer durchgiingig weggefallen, so dass diese Ausgabe als Text des
Diophant vollig unbrauchbar geworden ist,” p. 283.

3 Included in 2’ Arithmetigue de Simon Stevin de Bruges...A Leyde, De I'Imprimerie
de Christophle Plantin, CI0 . ID . LXXXV.
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Diophantus could not be given word for word’. Albert Girard
added the fifth and sixth books to the four, and this complete
version appeared in 16252

In 1810 was published an excellent translation (with additions)
of the fragment upon Polygonal Numbers by Posclger : Dioplanius
von Alexandyien iiber die Polygonal-Zallen. Uebersetst init Zusitsen
von F. Th. Poselger. Leipsig, 1810.

In 1822 Otto Schulz, professor in Berlin, published a very
meritorious German translation with notes: Diophantus wvon
Alexandria avithmetische Aufgaber nebst dessen Schrift itber die
Polygon-Zallen. Aus dem Grieckischen tibersetst und 1t An-
merkungen begleitet won Otto Schuls, Professor am Bevlinisch-
Cilnischen Gymnasium sum graucn Kloster. Bevlin, 1822. In der
Schlesingerschen Buck- und Musikhandlung. The work of Poselger
just mentioned was with the consent of its author incorporated in
Schulz’s edition along with his own translation and notes upon
the larger treatise, the A#itlmetica. According to Nesselmann
Schulz was not a mathematician by profession; he produced,
however, a thoroughly useful edition, with notes chiefly upon
the matter of Diophantus and not on the text (with the exception
of a very few emendations): notes which, almost invariably correct,
help much to understand the author. Schulz’s translation is based
upon the edition of Bachet’s text published in 1670.

Another German translation was published by G. Wertheim
in 1890 : Diz Arithmetik und die Schrift tiber Polygonalsalilen des
Diophantus von Alexandyia, Ubersetst und mit Anmerkungen
begleitet von G. Werthesin (Teubner). Though it appearcd before
the issue of Tannery’s definitive text, it is an excellent translation,
the translator being thoroughly equipped for his task ; it is valuable
also as containing Fermat’s notes, also translated into German, with
a large number of other notes by the translator clucidating both
Diophantus and Fermat, and generalising a number of the problems
which, with very few exceptions, receive only particular solutions
from Diophantus himself. Wertheim has also included 46 epigram-
problems from the Greck anthology and the enunciation of the
famous Cattle-Problem attributed to Archimedes.

! See Bibliotheca Mathematica Vilg, 19067, p. 59.

¥ L' Arithmetique de Simon Stevin de Bruges, Reueué, corrigre & augmenlee de plusicurs
traicles ¢t annotalion par Albert Girard Samidois Mathematicien. A Leide, de
I'Imprimerie des Klzeviers C10.10.cxXxv. Reproduced in the edition of Zes (Zuwres
Mathematiques de Simon Stevin de Bruges. Lar dlber! Girard, Leyde, e, 10 cxxxiv.
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No description is necessary of the latest edition, by Tannery,
in which we at last have a definitive Greek text of Diophantus
with the ancient commentaries, etc., Diophanti Alexandrini opera
omnia cum Graecis commentariss. Edidit et Latine interpretatus
est Paulus Tannery (Teubner). The first volume (1893) contains
the text of Diophantus, the second (1895) the Pseudepigrapha,
Testimonia veterum, Pachymeres’ paraphrase, Planudes’ com-
mentary, various ancient scholia, etc., and 38 arithmetical epigrams
in the original Greek with scholia. Any further edition will neces-
sarily be based on Tannery, who has added all that is required in
the shape of introductions, etc.

Lastly we hear of other works on Diophantus which, if they
were ever written, are lost or remain unpublished. First, we find
it asserted by Vossius (as some have understood him) that the
Englishman John Pell wrote an unpublished Commentary upon
Diophantus. John Pell (1611-1685) was at one time professor
of mathematics at Amsterdam and gave lectures there on Dio-
phantus, but what Vossius says about his commentary may
well be only a recommendation to undertake a commentary,
rather than a historical assertion of its completion. Secondly,
Schulz states in his preface that he had lately found a note in
Schmeisser's Ortiodidaktik dev Mathematik that Hofrath Kausler
by command of the Russian Academy prepared an edition of
Diophantus’, This seems however to be a misapprehension on the
part of Schulz. Kausler is probably referring, not to a translation
of Diophantus, but to his memoir of 1798 published in Nova Acta
Acad. Petropol. X1. p. 125, which might easily be described as an
Ausarbeitung of Diophantus’ work.

I find a statement in the New American Cyclopaedia (N ew York,
D. Appleton and Company), Vol. V1., that “a complete translation
of his (Diophantus’) works into English was made by the late
Miss Abigail Lousada, but has not been published.”

1 The whole passage of Schmeisser is: *‘Die mechanische, geistlose Behandlung der
Algebra ist ins besondere von Herrn Hofrath Kausler stark geriigt worden. In der
Vorrede zu seiner Ausgabe des Jfakerschen Exempelbuchs beginnt er so: ¢ Seit mehreren
Jahren arbeitete ich fiir die Russisch-Kaiserliche Akademie der Wissenschaften Diophants
unsterbliches Werk iiber die Arithmetik aus, und fand darin einen solchen Schatz von
den feinsten, scharfsinnigsten algebraischen Auflsungen, dass mir die mechanische,
geistlose Methode der neuen Algebra mit jedem Tage mehr ekelte u.s.w.’” (p. 33).



CHAPTER III
NOTATION AND DEFINITIONS OF DIOPHANTUS

As it is my intention, for the sake of brevity and per-
spicuity, to make use of the modern algebraical notation in giving
my account of Diophantus’ problems and general methods, it is
necessary to describe once for all the machinery which our author
uses for working out the solutions of his problems, or the notation
by which he expresses such relations as would be represented in
our time by algebraical equations, and, in particular, to illustrate
the extent to which he is able to manipulate unknown quantities.
Apart, however, from the necessity of such a description for the
proper and adequate comprehension of Diophantus, the genecral
question of the historical development of algcbraical notation
possesses great intrinsic interest. Into the gencral history of this
subject I cannot enter in this essay, my object being the elucidation
of Diophantus ; I shall accordingly in general confine myself to an
account of his notation solely, except in so far as it is interesting
to compare it with the corresponding notation of his editors and
(in certain cases) that of other writers, as, for example, certain of
the early Arabian algebraists.

First, as to the representation of an unknown quantity. The
unknown quantity, which Diophantus defines as containing wAf6fos
povddwv ddpioTov, re. an undefined number of units (def. 2), is
denoted throughout by what was printed in the editions before
Tannery’s as the Greek letter ¢ with an accent, thus ¢, or in the
form ¢ This symbol in verbal description he calls ¢ dp:fuds, “ the
number,” z.,, by implication, the number par excellence of the problem
in question. In the cases where the symbol is used to denote in-
flected forms, ¢g., the accusative singular or the dative plural, the
terminations which would have been added to the stem of the full
word dpifuds were printed above the symbol ¢ in the manner of an
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exponent, thus " (for ap.fudy, as ™ for rév), s°°, the symbol being
in addition doubled in the plural cases, thus ss%, g¢°%, ¢¢, g¢°%, for
apifuot x.m.&,. When the symbol is used in practice, the coefficient
is expressed by putting the required Greek numeral immediately
after it, thus ¢s° ta corresponds to 11%, ¢’ @ to # and so on.

Tannery discusses the question whether in the archetype (2) of
the MSS. this duplication of the sign for the plural and this
addition of the terminations of the various cases really occurred®.
He observes that any one accustomed to reading Greek MSS. will
admit that the marks of cases are common in the later MSS. but
are very frequently omitted in the more ancient. Further, the
practice of duplicating a sign to express the plural is more ancient
than that of adding the case-terminations. Tannery concludes that
the case-terminations (like the final syllables of abbreviations used
for other words) were very generally, if not always, wanting in the
archetype (2). If this seems inconsistent with the regularity with
which they appear in our MSS,, it has to be remembered that 4
and B, do not represent the archetype (@) but the readings of a, the
copyist of which probably took it upon himself to substitute the
full word for the sign or to add the case-terminations. Tannery’s
main argument is the frequent occurrence of instances where the
wrong case-ending has been added, eg:, the nominative for the
genitive ; the conclusion is also confirmed by instances in which
different cases of the word dp.8uds, e.g. apibuod, aptfudv, and even
dpiBudy written in full are put by mistake for xal owing to the
resemblance between the common abbreviation for xal and the
sign for a@piBusds, and of course in such cases the abbreviation would
not have had the endings. As regards the duplication of the sign
for the plural, Tannery admits that this was the practice of the
Byzantines ; but he considers that the evidence is against sup-
posing that Diophantus duplicated the sign; he does not do so
with any other of his technical abbreviations, those for uovds,
Sdvaues, etc.  Accordingly in his text of Diophantus Tannery has
omitted the case-endings and written the single sign for apifuss
whether in the singular or in the plural; in his second volume,
however, containing the scholia, etc., he has retained the duplicated
sign.

On the assumption that the sign was the Greek final sigma, it
was natural that Nesselmann should explain it by the supposition

! Dioph. II. pp. xxxiv-xxxix.
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that Diophantus, in search of a convenient symbol for his unknown
quantity, would select the only letter of the Greek alphabet which
was not already appropriated as a numeral’. But he made the
acute observation? that, as the symbol occurred in many places (of
course in Bachet's text) for a@pifuos used in the ordinary un-
technical sense, and was therefore, as it appeared, not exclusively
used to designate the unknown quantity, the technical apefuds, it
must after all be more of the nature of an abbreviation than an
algebraical symbol like our #. It is true that this uncertainty in
the use of the sign in the MSS. is put an end to by Tannery, who
uses it for the technical dptfuds alone and writes the untechnical
dpuBuss in full ; but, even if Diophantus’ practice was as strict as
this, I do not think this argues any difference in the nature of the
abbreviation. There is also a doubt whether the final sigma, s,
was developed as distinct from the form o so early as the date of
the MSS. of Diophantus, or rather so early as the first copy of his
work, if the author himself really gave the explanation of the sign
as found in our text of his second definition. These considerations
suggested to me that the sign was not the final sigma at all, but
must be explained in some other way. I had to look for con-
firmation of this to the precise shape of the sign as found in extant
"MSS. The only MS. which I had the opportunity of inspecting
personally was the MS. of the first ten problems of Diophantus in
the Bodleian; but here I found strong confirmation of my view in
the fact that the sign appeared as’<3, quite different in shape from,
and much larger than, the final sigma at the end of words in the
same MS. (There is in the Oxford MS. the same irregularity as
was pointed out by Nesselmann in the use of the sign sometimes
for the technical, and sometimes for the untechnical, dpifudss.)
But I found evidence that the sign appeared elsewhere in some-
what different forms. Thus Rodet in the Journal Asiatique of
January, 1878, quoted certain passages from Diophantus for the
purpose of comparison with the algebra of Muhammad b. Misa
al-Khuwarazmi. Rodet says he ccpied these passages cxactly
from Bachet's MS.; but, while he generally gives the sign as the
final sigma, he has in one case Yy* for dpifuoi. In this last case

! Nesselmann, pp. 29o-I. N 2 ibid. pp. 300-1.

3 Anextreme case is érafa 76 To Sevrépou’er dpifuod évbs, where the sign (contrary to
what would be expected) means the untechnical dpifuds, and the technieal is writien in
full.  Also in the definition 6 8¢ undly Tobrwy Tav ldwpdrwr KTHodpevos.. dpbuds kakeiras

the word dpibusbs is itself denoted by the symbol, showing that the word and the symbol
are absolutely convertible.
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Bachet himself reads 5. But the same form Yyo which Rodet
gives is actually found in three places in Bachet’s own edition.
(1) In his note to IV. 3 he gives a reading from his own MS. which
he has corrected in his own text and in which the signs Ya and
4y7 occur, evidently meaning ap:fuds @ and dpefuoi 7, though the
sign should have been that for épifuoodv (= 1/%). (2) In the text of
IV. 13 there is a sentence (marked by Bachet as interpolated) which
contains the expression Y7, where the context again shows that
Yy is for dpefuoi. (3) At the beginning of v. g there is a difficulty
in the text, and Bachet notes that his MS. has wijre 6 dimhaciov
avTod Y where a Vatican MS. reads dpifudv (Xylander notes that
his MS. had in this place prjre ¢ Simhaciov avrod dp wo G i
It is thus clear that the MS. (Paris. 2379) which Bachet jand,
sometimes has the sign for dpifués in a form which is atqd be
sufficiently like Y to be taken for it. Tannery states that t}’lqppro_
of the sign found in the Madrid MS. (4) is Y, while B, has gee in
form (§) nearly approaching Bachet’s reproduction of it. -

It appeared also that the use of the sign, or some:hing like
it, was not confined to MSS. of Diophantus; on refésence to
Gardthausen, Grieckhische Palacograplie, 1 found under _he head
“hieroglyphisch-conventionell ” an abbreviation ¢, {4 fir dpifuds,
-oi, which is given as occurring in the Bodleian MSg of Euclid
(D’Orville 3o1) of the gth century. Similarly Lehmarf® notes as
a sign for dpefués found in that MS. a curved line similar to that
which was used as an abbreviation for «al. He adds that the
ending is placed above it and the sign is doubled for the plural.
Lehmann'’s facsimile is like the form given by Gardthausen, but has
the angle a little more rounded. The form yy* above mentioned
is also given by Lehmann, with the remark that it seems to be
only a modification of the other. Again, from the critical notes to
Heiberg’s texts of the Arenarius of Archimedes it is.clear that the
sign for dpifuds occurred several times in the MSS. in a form
approximating to that of the final sigma, and that there was the
usual confusion caused by the similarity of the signs for apifuss
and kai®. In Hultsch’s edition of Heron, similarly, the critical
notes to the Geodaesia show that one MS. had an abbreviation for

1 Lehmann, Die tackygraphischen Abkiirzungen der griechischen Handsckriften, 1880,
p- 107 : “ Von Sigeln, welchen ichauch anderwirts begegnet bin, sind zu nennen dpibuébs,

das in der Oxforder Euclidhandschrift mit einer der Note «xal Zhnlichen Schlangenlinie

bezeichnet wird.”
2 Cf. Heiberg, Q tiones Archimedear, pp. 172, 174, 187, 188, 191, 192 5 Aschimedis
opera omnia, 11., pp. 268 sqq.

3—2
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dpiBuds in various forms with the case-endings superposed ; some-
times they resembled the letter {, sometimes p, sometimes O and
once £. Lastly, the sign for dpifuds resembling the final sigma
evidently appeared in a MS. of Theon of Smyrna®
All these facts strongly support the assumption that the sign
was a mere tachygraphic abbreviation and not an algebraical
symbol like our #, though discharging much the same function.
The next question is, what is its origin ? The facts (1) that the
sign has the breathing prefixed in the Bodleian MS., which writes
'S5 for apifuds, and (2) that in one place Xylander’s MS. read ap
tor the full word, suggested to me the question whether it could
be - 5 contraction of the first two letters of dpubuds ; and, on con-
sident ation, this seemed to me quite possible when I found a
Ontra‘f‘tlon for ap given by Gardthausen, namely op. It is easy to
see that simplification of this in different ways would readily
’H%Educ signs like the different forms shown above. This then
was th}"t,'v_.pothesis which I put forward twenty-five years ago, and
which 1\‘.still hold to be the easiest and best explanation. Two
alterna‘ives are possible. (1) Diophantus may not have made the
contraction himself. In that case I suppose the sign to be a cur-
sive contigction made by scribes ; and I conceive it to have come
about throkgh the intermediate form $. The loss of the downward
stroke, or W the loop, would produce a close approximation to
ich we know. (2) Diophantus may have used a sign
ot exactly, like that which we find in the MSS.
For it is from a papyegs of 154 A.D., in writing of the class which
Gardthausen calls the “ € contraction ¢/ for
the two letters is taken. The great advantage of my hypothesis is
that it makes the sign for dpifuos exactly parallel to those for the
powers of the unknown, eg., 47 for ddwaus and K¥ for xidfBos, and

to that for the unit povds which is denoted by Jlol, with the sole
difference that the letters coalesce into one instead of being
written separately.

Tannery’s views on the subject are, I think, not very con-
sistent, and certainly they do not commend themselves to me. He
seems to suggest that the sign is the ancient letter Koppa, perhaps
slightly modified ; he first says that the sign in Diophantus is
peculiar to him and that, although the word dp:fuds is very often

the forms w
approxxmately,

1 Heron, ed. Hultsch, pp. 146, 148, 149, 150.
2 Theon of Smyrna, ed. Hiller, p. 56, critical notes.
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represented in mathematical MSS. by an abbreviation, it has much
oftener the form §' or something similar, closely resembling the
ancient Koppa. In the next sentence he seems to .say that “on
the contrary the Diophantine abbreviation is an inverted di-
gamma”; yet lower down he says that the copyist of a (copied
from the archetype @) got the form Y by simplifying t}Te more
complicated Koppa. And, just before the last remark, ht\has
stated that in the archetype 2 the form must have been S or very
like it, as is shown by the confusion with the sign for xai. (IﬂtJﬂﬁ.
is so, it can hardly have been peculiar to Diophantus, seeing,'that
the same confusion occurs fairly often in the MSS. of :other
authors, as above shown.) I think the last consideration (ithe con-
fusion with «ai) is very much against the Koppa-hypothesis ; and,
in any case, it seems to me very unlikely that a sign would be
used by Diophantus for the unknown which was already appro-
priated to the number go. And I confess I am unable to see in
the sign any resemblance to an inverted digamma.

Hultsch! regards it as not impossible that Diophantus may
have adopted one of the signs used by the Egyptians for their
unknown quantity Zaw, which, if turned round from left to right,
would give Y; but here again I see no particular <}semblance.
Prof. D’Arcy Thompson?® has a suggestion that the sign might be
the first letter of cwpds, a heap. But, apart from 42« fact that the
final sigma (s) is not that first letter, there is no trace whatever
in Diophantus of such a use of the word cwpds; and, when
Pachymeres® speaks of a number being cwpela povadwr, he means
no more than the mA#fos movddwr which he is explaining : his
words have no connexion with the Egyptian faz.

Notwithstanding that the sign is not the final sigma, I shall
not hesitate to use ¢ for it in the sequel, for convenience of
printing. Tannery prints it rather differently as s.

We pass to the notation which Diophantus used to express the
different powers of the unknown quantity, corresponding to % 2
and so on. He calls the square of the unknown quantity Svwauss,
and denotes it by the abbreviation 4. The word 8vvaputs,
literally “power,” is constantly used in Greek mathematics for

1 Art. Diophantus in Pauly-Wissowa's Real-Encyclopidie der classischen Altertums-
wissenschaften.

2 Transactions of the Royal Society of Edinburgh, Vol. XXXVIIL. (1896), pp. 607-9.

8 Dioph. 1. p. 78, 4. Cf. Tamblichus, ed. Pistelli,p.7,7; 34, 35 81, 14, where swpela
is similarly used to elucidate wA7jfos.
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square'. With Diophdntus, however, it is not any square, but only
the square of the unknown; where he speaks of any particular
square numbgr, it is Terpdywvos apifuss. The higher powers of the
unknown /’\juantity which Diophantus makes use of he calls «9Bos,
Svvapodivaus, SuvaudkvBos, kvBdruBos, corresponding respectively
to 2% & 25 x5 Beyond the sixth power he does not go, having
no gccasion for higher powers in the solutions of his problems. For
thése powers he uses the abbreviations K¥, 474, dX7¥, K*K re-
Xﬁ‘e"’,tively. There is.a difference between Diophantus’use of the word
Svvajues and of the complete words for the third and higher powers,
namety that the latter are not always restricted like 8dvapus to powers
of the wnknown, but may denote powers of ordinary known num-
bers as well. This is no doubt owing to the fact that, while there
are two'words Suwvapts and Terpdywvos which both signify “square,”
there is only one word for a third power, namely xdBos. It is
importé:nt, however, to observe that the abbreviations X*, 474,
AK*, K¥K, are, like 8dwaus and A7, only used to denote powers
of the unknown. The coefficients of the different powers of the
unknown, like that of the unknown itself, are expressed by the
addition of the Greek letters denoting numerals, eg., AKX ¥ k¢ cor-
responds \ 4 62° Thus in Diophantus’system of notation the signs
4% and the st represent not merely the exponent of a power like
the 2 in #* but the whole expression x* There is no obvious
connexion between the symbol 4 and the symbol s of which it is
the square, as there is between 2* and %, and in this lies the great
inconvenience of the notation. But upon this notation no advance
was made by Xylander, or even by Bachetand Fermat. They wrote
AV (which was short for Numerus) for the s of Diophantus, Q (Quad-
ratus) for A%, C (Cubus) for K*, so that we find, for example,
10 + 5V = 24, corresponding to #* + 5+ =24. Other symbols were
however used even before the publication of Xylander’s Diophantus,
eg. in Bombelli’s Algebra. Bombelli denotes the unknown and its
powers by the symbols & 2,3, and so on. But it is certain that
up to this time (1572) the common symbols had been R (Radiz
or Res), Z (Zensus, ie. square), C (Cubus). Apparently the first
important step towards 2%, 2% etc., was taken by Vieta (1540—

! In Plato we have divams used for a square number (ZEmacus, 31) and also
(Zheactetus, 147 D) for a sguare root of a number which is not a complete square, i.e. for
a surd ; but the commonest use is in geometry, in the form duwvdue, * in square,” e.g. “ 4.8
is duvduec double of BC” means ‘482 = 2BC3”
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1603), who wrote Ag, Ac, Agg, etc. (abbreviated for A guadratus
and so on) for the powers of 4. This system, besides showing the
con .exion between the different powers, has the infinite advantage
that by means of it we can use in one and the same soiution any
number of unknown quantities. This is absolutely impossitle with
the notation used by Diophantus and the earlier algebraists.
Diophantus in fact never uses more than one unknown quantity in
the solution of a problem, namely the dpifuds or s.

Diophantus has no symbol for the operation of multiplication ;
it is rendered unnecessary by the fact that his coefficients are all
definite numbers or fractions, and the results are simply put down
without any preliminary step which would call for the use of a
symbol. On the ground that Diophantus uses only numerical
expressions for coefficients instead of general symbols, it might
occur to a superficial observer that there must be a great want
of generality in his methods, and that his problems, being solved
with reference to particular numbers only, would possess the
attraction of a clever puzzle rather than any more general interest.
The answer to this is that, in the first place, it was absolutely
impossible that Diophantus should have used any other than
numerical coefficients, for the reason that the available symbols of
notation were already employed, the letters of the Greek alphabet
always doing duty as numerals, with the exception of the final s.
In the second place, it is not the case that the use of none but
numerical coefficients makes his solutions any the less general.
This will be clearly seen when I come to give an account of his
problems and methods.

Next as to Diophantus’ expressions for the operations of
addition and subtraction. For the former no symbol at all is
used : it is expressed by mere juxtaposition, thus X¥a 4% vy sé
corresponds to #°4 1322452 In this expression, however, there
is no absolute term, and the addition of a simple numeral, as
for instance B, directly after & the coefficient of s, would cause
confusion. This fact makes it necessary to have some expression
to distinguish the absolute term from the variable terms. For this
purpose Diophantus uses the word wovades, or units, and denotes

them after his usual manner by the abbreviation M. The number
of units is expressed as a coefficient. Thus corresponding to
the expression #*+134*+5x+2 we should find in Diophantus

K¥aA4%7se M B. As Bachet uses the sign + for addition, he
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has no occasion for a distinct symbol to mark an absolute term.
He accordingly writes 1C+ 130+ 5V +2. It is worth observing,
however, that the Italians do use a symbol in this case, namely NV
(Numero), the first power of the unknown being with them R
(Radice). Cossali! makes an interesting comparison between the
terms used by Diophantus for the successive powers of the unknown
and those employed by the Italians after their instructors, the
Arabians. He observes that Fra Luca (Paciuolo), Tartaglia, and
Cardano begin their scale of powers from the power o, not from the
power I, as does Diophantus, and he compares the scales thus:

Scala Diofantea. Scala Araba.
ecsreesransenniisen e 1. Numero...il Noto.
x 1. Numero...l' Ignoto. 2. Cosa, Radice, Lato.
42 2. Podestd. 3. Censo.
x% 3. Cubo. 4. Cubo.
x* 4. Podesta-Podesta. 5. Censo di Censo.
x% 5. Podesta-Cubo. 6. Relato 1°
x5 6. Cubo-Cubo. 7. Censo di Cubo, o Cubo di Censo.
%7 . 8. Relato 2°.
£ 8. 9. Censo di Censo di Censo.
X0 g 1o. Cubo di Cubo.

and so on. So far, however, as this is meant to be a comparison
between Diophantus and the early Arabian algebraists themselves
(as the title “ Scala Araba” would seem to imply), there appears to
be no reason why Cossali should not have placed some term to
express Diophantus’ povades in the same line with NMuscro in the
Arabian scale, and moved the numbers 1, 2, 3, etc. onc place
upwards in the first scale, or downwards in the second. As
Diophantus does not go beyond the sixth power, the last three
places in the first scale are left blank. An examination of these
two scales will show also that the evolution of the successive
powers differs in the two systems. The Diophantine ternf for
them are based on the addition of exponents, the Arabic on

1 Upon Wallis’ comparison of the Diophantine with the Arabian scale Cossali
remarks : ‘‘ma egli non ha riflettuto a due altre differenze tra le scale medesime. T.a
prima si &, che laddove Diofanto denomina con singolarita Mumero il numero ignoto,
denominando Monade il numero dato di comparazione: gli antichi italiani degli arabi
seguaci denominano questo il Numero; e Radice, o Lato, o Cosa il numero sconosciuto.
La seconda ¢, che Diofanto comincia la scala dal numero ignoto; e Fra Luca, Tartaglia,
Cardano la incominciano dal numero noto. Ecco le due scale di rincontro, onde meglio
risaltino all’ occhio le differenze loro”, 1. p. 195.
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their multiplication’. Thus the “cube-cube” means in Diophantus
2%, while the Italian and Arabian system uses the expression “ cube
of cube” and applies it to 2°. The first system may (says Cossali)
be described as the method of representing each power by the
product of the two lesser powers which are the nearest to it, #%e
method of multiplication; the second the method of elevation, i.e. the
method which forms by the process of squaring and cubing all
powers which can be so formed, as the 4th, 6th, 8th, oth, etc.
The intermediate powers which cannot be so formed are called
in Ttalian Relazz. Thus the fifth power is Relato 1° #7 is
Relato 2° 2 is Censo di Relato 1°, #* is Relato 3° and so on.
Another name for the Relati in use among European algebraists in
the 16th and 17th centuries was sursolida, with the variants super-
solida and surdesolida.

It is interesting to compare with these systems the Egyptian
method described by Psellus?. The next power after the fourth
(Suvapodivaus), i.e. 2% the Egyptians called “ the first undescribed ”
(&\oyos here apparently meaning that of which no account can
be given), because it is neither a square nor a cube; alternatively
they called it “the fifth number,” corresponding to the fifth power
of x. The sixth power they apparently called “cube-cube”; but
the seventh was “the second undescribed” (&\oyos SedTepos), as
being the product of the square and the “first undescribed,” or,
alternatively, the “seventh number.” The eighth power was the
“quadruple-square” (reTpam\f 8vvauss), the ninth the “extended
cube” (xvBos éfehikrds).. Thus the “first undescribed” and the
“second undescribed ” correspond to “Relato 1°” and “Relato 2°”
respectively, but the “quadruple-square” exhibits the additive
principle. '

For subtraction Diophantus uses a symbol. His full term for
negation or wanting is heiyris, corresponding to Jmwapfis which
denotes the opposite. The symbol used to denote it in the MSS,,
and corresponding to our — for minus, is (Def. 9 kal Ts Aelfrens
anueiov ¥ A\wés kdTo vebov, A) “an inverted ¥ with the top

1 This statement of Cossali’s needs qualification however. Thereisatleast one Arabian
algebraist, al-Karkhi (died probably about 1029), the author of the Fa%rz, who uses the
Diophantine system of powers of the unknown depending on the addition of exponents.
Al-Karkhi, namely, expresses all powers of the unknown above the third by means of
mal, his term for the square, and 428, his term for the cube of the unknown, as follows.
The fourth power is with him »aZ mal, the fifth mal ka'é, the sixth ka'b ka'b, the seventh
mal mal ka'b, the eighth mal #a'é #a'é, the ninth 2a'b £a'd 44’6, and so on. Among the

Italians too there was an exception, Leonardo of Pisa, who proceeded on the additive
principle (Bibliotheca Mathematica, V1y 1905-6, p. 310). 2 Dioph. 11. p. 37-38.
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shortened, A.” As Diophantus uses no distinct sign for +, it
is clearly necessary, in order to avoid confusion, that all the
negative terms in an expression should be placed together
after all the positive terms. And so in fact he does place them.
Thus corresponding to 2®— 52°+ 8z — 1, Diophantus would write

K¥asiNATeMa With respect to this curious sign, given in
the MSS. as T and described as an inverted truncated ¥, I believe
that I was the first to suggest that it could not be what it is
represented as being. Even when, as in Bachet’s edition, the
sign was printed as «qv I could not believe that Diophantus used
so fantastic a sign for minus as an inverted truncated ¥. In
the first place, an inverted ¥ seems too far-fetched; to one who
was looking for a symbol to express mzinus many others more
natural and less fantastic than v\ must have suggested themselves.
Secondly, given that Diophantus used an inverted ¥, why should he
truncate it? Surely that must have been unnecessary; we could
hardly have expected it unless, without it, confusion was likely
to arise; but \p could not well have been confused with anything.
This very truncation itself appears to throw doubt on the description
of the symbol as we find it in the MS. I concluded that the con-
ception of this symbol as an inverted truncated ¥ was a mistake,
and that the description of it as such is not Diophantus’ description,
but an explanation by a scribe of a symbol which he did not
understand®. I believe that the true explanation is the following.
Diophantus here took the same course as in the case of the other
symbols which we have discussed (those for apifuos, Svvauss, etc.).
As in those cases he took for his abbreviation the first letter of the
word with such an addition as would make confusion with numbers
impossible (namely the second letter of the word, which in cach of
the cases happens to come later in the alphabet than the corre-
sponding first letter), so, in seeking an abbreviation for Xeiyrs
and cognate inflected forms developed from Aur, he began by
taking the initial letter of the word. The uncial? form is A
Clearly A by itself would not serve his purpose, since it denotes
a number. Therefore an addition is necessary. The second letter
is E, but AE is equally a number. The second letter of the stem

1 I am not even sure that the description can be made to mean all that it is intended
to mean. éA\més scarcely seems to be sufficiently precise. Might it not be applied to
A with any part cut off, and not only the top?

2 I adhere to the uncial form above for clearness’ sake. If Diophantus used the
* Majuskelcursive ” form, the explanation will equally apply, the difference of form being
for our purpose negligible.
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M is |, but Al is open to objection when so written. Hence
Diophantus placed the | zuside the A, thus, A. Of the possibility
of this I entertain no doubt, because there are undoubted cases
of combination, even in uncial writing, of two letters into one sign.
I would refer in particular to X, which is an uncial abbreviation for
TAAMNTON. Now this sign, A, is an inverted and truncated ¥
(written in the uncial form, ¥); and we can, on this assumption,
easily account for the explanation of the sign for mznus which is
given in the text.

The above suggestion, made by me twenty-five years ago,
seems to be distinctly supported by what Tannery says of the form
in which the sign appears in the MSS.! Thus he remarks (1) that
the sign in the MSS. is often made to lean to the right so that it
resembles the letter Lambda, (2) that Planudes certainly wrote X as
if he meant to write the first letter of \eijres, and (3) that the
letter A appears twice in 4 where it seems to mean Aoiwds. Yet
in his edition of Diophantus Tannery did not adopt my explanation
or even mention it, but explained the sign as being in reality
adapted from the old letter Sampi (), the objection to which
suggestion is the same as that to which the identification of ¢ with
Koppa is open, namely that ? represented the number goo, as ¢
represented 9o. Tannery however afterwards? saw reason to
abandon his suggestion that the symbol was originally an archaic
form of the Greek Sampi rather than “un monogramme se
rattachant 4 la racine de Aeiyus.” The occasion for this change
of view was furnished by the appearance of the same sign in the
critical notes to Schone’s edition of the Metrica of Heron3, which
led Tannery to re-examine the evidence of the MSS. of Diophantus
as to the sign and as to the exact word or words which it re-
presented in different places, as well as to search for any similar
expressions denoting subtraction which might occur in the works
of other Greek mathematicians. In the MSS. of Diophantus,
when the sign is resolved by writing a full word instead of it,
it is generally resolved into Aeiyres, the dative of Aefyres; in such
cases the only grammatical possibility is to construct it with the
genitive case of the quantity subtracted, the meaning then being
“ with the wanting, or deduction, of ...”. But the best MS. (4)

1 Dioph. 1I. p. xli.

2 Bibliotheca Mathematica Vg, 1904—5; Pp. 5-8-

3 Heronis Alexandrini opera, Vol. 111., 1903, pp, 156, 8, 10. The MS. reading is
povddwy o8 (P ¢ &, the meaning of which is 74 — ¢4
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has in some places the nominative Aeiyres, while in others it has the
symbol instead of parts of the verb \elmew, namely MNireov or
Aeiyras and once even Mmwae; hence we may conclude that in the
cases where 4 and B, have \eifre: followed by the accusative (which
is impossible grammatically) the sign was wrongly resolved, and
the full word should have been a participle or other part of the
verb Aeimrew governing the accusative. The question therefore
arises whether Diophantus himself uscd the dative Aeiyres at all
or whether it was introduced into the MSS. later. Certain it is
that the use is foreign to Classical Greek; but, even if it began
with Diophantus, it did not finally hold the field before the time of
Planudes. No evidence for it can be found in Greek mathe-
maticians before Diophantus. Ptolemy has in two places Aeirav
and \elmovoav respectively, followed by the accusative, and in
one case 76 amwo Ths [N Newpbév Omo Tod amo Tis ZI (where the
meaning is ZM-A®*). Consequently we cannot supposec that the
sign where it occurs in the Metrica of Heron represents the dative
AefYres; it must rather stand for a participle, active or passive.
Tannery suggests that the full expression in that passage was
povdSwy 08 Aeipfévros Teocoapakadexdrov, the participle being
passive and the construction being the genitive absolute; but I
think a perhaps better alternative would be wovdSwr 08 \eiwpaodv
Tecoaparaidécarov, where the active participle would govern
the accusative case of the term subtracted. From all this we
may infer that the sign had no exclusive reference to the sub-
stantive Aefyrss, still less to the dative case of that substantive, but
was a conventional abbreviation associated with the root of the
verb Aeimesv. In these circumstances I think I may now fairly
claim Tannery as, substantially, a convert to my view of the
nature of the sign.

For division it often happens that no symbol is necessary,
ie. in the cases where the divisor divides the dividend without
a remainder. In other cases the quotient has to be expressed
as a fraction, whether the divisor is a specific number or contains
the variable. The case of division comes then under that of
fractions.

Fractions are represented in different ways according as they are
submultiples (fractions with unity as numerator) or not. In the
case of submultiples the Greeks did not write the numerator, but
only the denominator, distinguishing the submultiple from the
cardinal number itself by affixing a certain sign. In more recent
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MSS. a double accent was used for this purpose: thus "= 3.
Diophantus follows this plan in the hypothesis and analysis of his
problems, though in the solutions he seems to have written the
numerator e and assimilated the notation to that used for other
fractions. The sign, however, added to the cardinal number to
express the submultiple takes somewhat different forms in A :
sometimes it is a simple accent, sometimes more elaborate, as »
above the letter and to the right, or actually forming a continuation
of the numeral sign, ¢g. " =4. Tannery adopts as the genuine
mark in Diophantus the affix X in place of the accent: thus ¢*=1.
For 4 he writes L’ as being most suitable for the time of Diophantus,
though 4 has <, sometimes without the dot.

Of the other class of fractions (numerator not unity) ¢ stands by
itself, having a peculiar sign of its own ; curiously enough it occurs
only four times in Diophantus. A has a sign for it which was
confused with that for dp:fuds in one place; Tannery judges from
the Greek mathematical papyrus of Achmim? that its original form
was ¢ ; he himself writes in his text the common form «. In the
rare cases where the first hand in the oldest MS. (4) has fractions
as such with numerator and denominator written in full, the
denominator is written above the numerator. Tannery therefore
adopts, in his text, this way of writing fractions, separating the

73
. . . — 121
numerator and denominator by a horizontal line: thus pra=—c.

K’
It is however better to omit the horizontal line (cf. pﬂ in Kenyon
Papyri 1L No.-cclxv. 40; also the fractions in Schéne’s edition
of Heron’s Metrica). Once we find in the same MS. (4)in the first
hand the form =215, In this latter method of writing fractions
the denominator is written as we write exponents ; and this is the
method adopted by Planudes and by Bachet in his edition.
Another alternative is to write the numerator first, and then the
denominator after it in the same line, marking the denominator with
the submultiple sign in some form; thus 48 would mean £ ; this is
the most convenient method for purposes of printing. Or the de-
nominator may be written as an abbreviation for the ordizal number,
and the case-termination may be added higher up; eg. 7 ky**= 50
twenty-thirds. But the denominators are nearly always omitted

1 Published by Baillet in Mémosres publits par les Membres de la Mission archiologigue
frangaise au Caire, T. Ix, Fascicule x, pp. 1-88. Paris, 1891.
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altogether in the first hand of 4 ; in the first two Books 5, and the
second hand of 4 give the denominator in the place in which we write
an exponent, following the method of Planudes; in the last four
Books both MSS. almost invariably omit the denominator. In
some cases the omission is not unnatural, z.e. where the denominator
has once been given, and it is almost superfluous to repeat it
in other fractions immediately following which have the same
denominator ; in other cases it was probably omitted because the
superposed denominator was taken by the copyist to be an inter-
linear scholium. A few examples of fractions from Diophantus
may be added :

18 ¢ g @.06  facg

LL‘—-—— (v. 10); ,vas'— (IV 28); ervm= Toao1 (V.9);
Bys —— 1834}

. Sxea = 32~7—o (Iv. 16);  pxa® ,aw\OL’ =—I—‘—2i:i (1v. 39);

pv3
TmiL’ = 380% v. 2),
152

Diophantus however often expresses fractions by putting év
pople or popiov between the numerator and denominator ze. he

says one number divided by another. Cf. M pv. ;"%17-8 popiov

ks . Bpwd = 1507984/262144 (IV. 28), where of course M = puptddes
(tens of thousands); ﬁ.lex v pople p/c,B.,a/ce—-25600/1221025
(v. 22). As we said, the most orthodox way of writing a sub-
multiple was to omit the numerator (unity) and usc the denominator
with a distingunishing sign attached, eg. sX or ¢'=}. But in his
solutions Diophantus often uses the form applicable to fractions

L
other than submultiples; eg. he writes a for Ei—z_ (1v. 28).

Numbers partly integral and partly fractional, where the
fraction is a submultiple or the sum of submultiples, arc written
much as we write them, the fraction simply following the integer ;
eg. ay*=1%; in the Lemma to V. 8 we have BL' s/ =24} or 2§,
where % is decomposed into submultiples as in Heron. Cf. also
(UL 11) To L 15X =370 % .

Before leaving the subject of numerical notation, it may be
convenient to refer to the method of writing large numbers.

¥
Myriads (tens of thousands) are expressed by M, myriads to the
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second power by MM” or, in words, Sevrépa pvpids. The de-
nominator 187474560 in V. 8 would thus be written popiov Sevrépas

puptddos a kal pupiddev mpdTwy mpul kal u 8¢E, and the fraction
131299224/1629586560 would be written devrépa uvpias a mpdra

(nvpeades) syprb m Bard popiov Sevrépwr pupiddov is TpdTev

(uupsidor) Bom M e HE-

But there is another kind of fraction, besides the purely
numerical one, which is ‘continually occurring in the Arithmetica,
such fractions namely as involve the unknown quantity in some
form or other in their denominators. The simplest case is that in
which the denominator is merely a power of the unknown, .
Concerning fractions of this kind Diophantus says (Def. 3): “ As
fractions named after numbers have similar names to those of the
numbers themselves (thus a third is named from three, a fourth
from four), so the fractions homonymous with the numbers just
defined are called after them; thus from dpfuds we name
the fraction dpifuoctév [ie. 1/x from z], 76 SuvapooTév from
Stvaus, ™0 xvBooTov from «kvBos, ™0 OSuvapoduvapecTiv from
Suwwapoduvapis, 10 SuvaporxvBoordy from SwvauirvBos, and To
kvBorxvBoaTév from xvBéxvBos. And every such fraction shall
have, above the -sign' for the homonymous number, a line to
indicate the species.” Thus we find, for example, 1V. 3, X 3 cor-
responding to 8/z and, Iv. 15, sX Ae for 35/z. Cf. A¥%aw for 250/#

Where the denominator is a compound expression involving the
unknown and its powers, Diophantus uses the expedient which he
often adopts with numerical fractions when the numerators and
denominators are large numbers, namely the insertion of év pople
or wopiov between the expressions for the numerator and de-
nominator. Thus in VI. 12 we have

AT EM B év popip ATAa ™ A AE
= (60%? 4+ 2520)/(x* + 900 — 60x?),
and in VI 14
AT e NMe & poplp ATA @M s A AT B
= (1522 — 36)/(2* + 36 — 122%).

For loos, equal, connecting the two sides of an equation, the
sign in the archetype seems to have been «*; but copyists intro-

1 Hultsch, Joc. cit.
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duced a sign which was sometimes confused with the sign Y for
aptBuos ; this was no doubt the same abbreviation Y as that shown
(with terminations of cases added above) in the list given at
the end of Codex Parisinus 2360 (Archimedes) of contractions
found in the “very ancient” MS. from which it was copied and
which was at one time the property of Georgius Vallak

Diophantus evidently put down his equations in the ordinary
course of writing, ze they were written straight on, as are the
steps in the propositions of Euclid, and not put in separate lines for
each step in the process of simplification. In the scholia of
Maximus Planudes however we find conspectuses of the problems
with steps in separate lines which, except for the slightly more
cumbrous notation, make the work scarcely more difficult to follow
than it is in our notation® Though in the MSS. we have the
abbreviation { to denote equality, Bachet makes no use of any
symbol for the purpose in his Latin translation. He uses
throughout the full Latin word. It is interesting however to observe
that in the notes to his earlier translation (1575) Xylander had
already used a symbol to denote equality, namely |, two short
vertical parallel lines. Thus we find, for example (p. 76),

10+ 12||1Q+6N+9,
which we should express by 2% + 12 = 22+ 62+ 9.

Now that we have described in detail Diophantus’ method of
expressing algebraical quantities and relations, it is clear that it is
essentially different in its character from the modern notation.
While in modern times signs and symbols have been developed

1 Heiberg, Quaestiones Archimedeas, p. 115.

2 One instance will suffice. On the left Planudes has abbreviations for the words
showing the nature of the steps or the operations they involve, e.g. &f. = &becais (setting-
out), Terp. =Terpaywriopbs (squaring), covb. = cdvbesis (adding), d¢.=dgalpeos (subtrac-
tion), pep. = pepiopbs (division), ¥m.=bwapbs (resulting fact).

Dioph. 1. 28.
Planudes. Modern equivalent.
k o7 [Given numbers] 20, 208
&h. sa uot MOTA sa Put for the numbers x+ 10, 10~ .
Terp. 4 VassRuop AY00p Assi Squaring, we have x%+ 202+ 100,
2%+ 100 ~ 20x.

otvd, A¥BueT  I°  wooy Adding, 242+ 200=208.
ap.  4¥B o oy Subtracting, 242=8.
uep.  4¥a 1o pod Dividing, x%=4.

& © pop x=2.
. uoB BoY Result : [the numbers are] 12, 8.
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which have no intrinsic relationship to the things which they
represent, but depend for their use upon convention, the case
is quite different in Diophantus, where algebraic notation takes
the form of mere abbreviation of words which are considered as
pronounced or implied.

In order to show in what place, in respect of systems of
algebraic notation, Diophantus stands, Nesselmann observes that
we can, as regards the form of exposition of algebraic operations
and equations, distinguish three historical stages of development,
well marked and easily discernible. (1) The first stage Nessel-
mann represents by the name Rikeforical Algebra or “reckoning by
complete words.” The characteristic of this stage is the absolute
want of all symbols, the whole of the calculation being carried on
by means of complete words, and forming in fact continuous prose.
As representatives of this first stage Nesselmann mentions Iambli-
chus (of whose algebraical work he quotes a specimen in his fifth
chapter) “and all Arabian and Persian algebraists who are at
present known.” In their works we find no vestige of algebraic
symbols; the same may be said of the oldest Italian algebraists
and their followers, and among them Regiomontanus. (2) The
second stage Nesselmann proposes to call the Syncopated Algebra.
This stage is essentially #ketorical, and therein like the first in
its treatment of questions; but we now find for often-recurring
operations and quantities certain abbreviational symbols. To
this stage belong Diophantus and, after him, all the later
Europeans until about the middle of the seventeenth century
(with the exception of Vieta, who was the first to establish,
under the name of Logistica speciosa, as distinct from Logistica
numerosa, a regular system of reckoning with letters denoting
magnitudes and not numbers only). (3) To the third stage
Nesselmann gives the name Symbolic Algebra, which uses a com-
plete system of notation by signs having no visible connexion
with the words or things which they represent, a complete language
of symbols, which supplants entirely the »hetorical system, it being
possible to work out a solution without using a single word of the
ordinary written language, with the exception (for clearness’ sake)
of a connecting word or two here and there, and so on’. Neither

1 It may be convenient to note here the beginnings of some of our ordinary algebraical
symbols. The signs + and ~ first appeared in print in Johann Widman’s arithmetic
(1489), where however they are scarcely used as regular symbols of operation ; next they
are found in the Rechenbuch of Henricus Grammateus (Schreiber), written in 1518 but
perhaps not published till 1521, and then regularly in Stifel's d7ithmetica integra (1544)

H. D. 4
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is it the Europeans from the middle of the seventeenth century
onwards who were the first to use symbolic forms of Algebra.
In this they were anticipated by the Indians.

Nesselmann illustrates these three stages by three examples,
quoting word for word the solution of a quadratic equation
by Muhammad b. Miisa as an example of the first stage, and
the solution of a problem from Diophantus as representing the
second.

First Stage. Example frorn Muhammad b. Misa (ed. Rosen,
p- 5). “A sguare and ten of its 7oots are equal to nine and thirty
dirhems, that is, if you add ten 7oois to one sguare, the sum is equal
to nine and thirty. The solution is as follows. Take half the number
of #oots, that is in this case five; then multiply this by itself, and
the result is five and twenty. Add this to the nine and thirty,
which gives sixty-four; take the square root, or eight, and subtract
from it half the number of 7oofs, namely five, and there remain
three: this is the zooz of the square which was required, and the
square itself is 7znel”

Here we observe that not even are symbols used for numbers,
so that this example is even more “#»leforical” than the work of
Iamblichus who does use the Greek symbols for his numbers.

as well as in his edition of Rudolff's Coss (1553). Vieta (1540-1603) has, in addition,
= for ~. Robert Recorde (1510-1558) had already in his Algebra (Z%e Whetstone of
Witte, 155%7) used =(but with much longer lines) to denote equality (* bicause noc.z.
thynges, can be moare equalle”). Harriot (1560-1621) denoted multiplication by a dot,
and also by mere juxtaposition of letters; Stifel (r487-1567) had however already
expressed the product of two magnitudes by the juxtaposition of the two letters represent-
ing them. Oughtred (1574-1660) used the sign x for multiplication. Ilarriot also
introduced the signs > and < for greater and less respectively. - for division is found
in Rahn’s Algebra (1659). Descartes introduced in his Geometry (163%) our method of
writing powers, as a3, a* etc. (except a2, for which he wrote aa) ; but this notation was
practically anticipated by Pierre Hérigone (Cowrs mathématique, 1634), who wrote az, a3,
a4, etc., and the idea is even to be found in the Rechenbuch of Grammateus above
mentioned, where the successive powers of the unknown are denoted by pri, se, ter, etc.
The use of x for the unknown quantity began with Descartes, who first used sz, then y, and
then x for this purpose, showing that he intentionally chose his unknowns from the last
letters of the alphabet. A/ for the square root is traceable to Rudolff, with whom it had
only two strokes, the first (down) stroke being short, and the other relatively long.
! Thus Muhammad b. Miisa states in words the following solution.

x%+ 102 =30,

2+ 108 +25=04;
therefore x+5=8,
x=3,
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Second Stage. As an example of Diophantus I give a trans-
lation word for word of 11. 8. So as to make the symbols correspond

exactly I use S (Sguare) for AT (Sdvapss), N (Number) for s, U

(Units) for M (uovaes).

“To divide the proposed square into two squares. Let it be
proposed then to divide 16 into two squares. And let the first be
supposed to be 1.5; therefore the second will be 16 U—1S. Thus
16 U — 1.5 must be equal to a square. I form the square from any
number of N’s minus as many U’s as there are in the side of
16 U’s. Suppose this to be 2V —40U. Thus the square itself will
be 4516 U—16/. These are equal to 16U —1S. Add to each
the negative term (7 \elyrss, the deficiency) and take likes from
likes. Thus 5S are equal to 164V, and the &V is 16 fifths. One
[square] will be 358, and the other &, and the sum of the two
makes up 4%, or 16 U, and each of the two is a square.”

Of the #4ird stage any exemplification is unnecessary.

To the form of Diophantus’ notation is due the fact that he
is unable to introduce into his solutions more than one unknown
quantity. This limitation has made his procedure often very dif-
ferent from our modern work. In the first place we can begin
with any number of unknown quantities denoted by different
symbols, and eliminate all of them but one by gradual steps in the
course of the work; Diophantus on the other hand has to perform
all his eliminations beforehand, as a preliminary to the actual
work, by expressing every quantity which occurs in the problem
jn terms of only one unknown. This is the case in the great
majority of questions of the first Book, which involve the solu-
tion of determinate simultaneous equations of the first degree
with two, three, or four variables; all these Diophantus expresses’
in terms of one unknown, and then proceeds to find it from a
simple equation. Secondly, however, this limitation affects much of
Diophantus’ work injuriously ; for, when he handles problems which
are by nature indeterminate and would lead with our notation to an
indeterminate equation containing two or three unknowns, he is
compelled by limitation of notation to assume for one or other of
these some particular number arbitrarily chosen, the effect of the
assumption being to make the problem a determinate one. How-
ever, it is but fair to say that Diophantus, in assigning an arbitrary
value to a quantity, is careful to tell us so, saying, “for such and
such a quantity we put any number whatever, say such and such a

4—2
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number.” Thus it can hardly be said that there is (as a rule) any
loss of generality. We may say, then, that in general Diophantus is
obliged to express all his unknowns in terms, or as functions, of
one variable. He compels our admiration by the clever devices
by which he contrives so to express them in terms of his single
unknown, s, as to satisfy by that very expression of them all
conditions of the problem except one, which then enables us to
complete the solution by determining the value of s. Another
consequence of Diophantus’ want of other symbols besides s to
express more variables than one is that, when (as often happens)
it is necessary in the course of a problem to work out a subsidiary
problem in order to obtain the coefficients etc. in the functions of ¢
which express the numbers to be found, the unknown quantity
which it is the object of the new subsidiary problem to find is also
in its turn denoted by the same symbol ¢; hence we often have
in the same problem the same variable ¢ used with two different
meanings. This is an obvious inconvenience and might lead to
confusion in the mind of a careless reader. Again we find two
cases, II. 28 and 29, where for the proper working-out of the
problem two unknowns are imperatively necessary. We should of
course use x and y; but Diophantus calls the first ¢ as usual; the
second, for want of a term, he agrees to call “ome unit,” se. 1.
Then, later, having completed the part of the solution necessary to
find ¢, he substitutes its value, and uses ¢ over again to denote
what he had originally called “1”—the second variable—and so
finds it. This is the most curious case of all, and the way in which
Diophantus, after having worked with this “1” along with other
numerals, is yet able to put his finger upon the particular place
,where it has passed to, so as to substitute s for it, is very remark-
able. This could only be possible in particular cases such as those
which I have mentioned; but, even here, it seems scarcely possible
now to work out the problem by using # and 1 for the variables
as originally taken by Diophantus without falling into confusion.
Perhaps, however, in working out the problems before writing them
down as we have them Diophantus may have given the “1” which
stood for a variable some mark by which he could recognise it
and distinguish it from other numbers.

Diophantus will have in his solutions no numbers whatever
except “rational” numbers; and in pursuance of this restriction he
excludes not only surds and imaginary quantities, but also negative
quantities. Of a negative quantity per se, 7.e. without some positive
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quantity to subtract it from, Diophantus had apparently no con-
ception. Such equations then as lead to surd, imaginaty, ot
negative roots he regards as useless for his purpose: the solution
is in these cases adtwaros, impossible. So we find him (v. 2)
describing the equation 4 =4x+20 as dromos, absurd, because it
would give x=—4. Diophantus makes it his object throughout
to obtain solutions in rational numbers, and we find him frequently
giving, as a preliminary, the conditions which must be satisfied in
order to secure a result rational in his sense of the word. In the-
great majority of cases, when Diophantus arrives in the course of
a solution at an equation which would give an irrational result, he
retraces his steps and finds out how his equation has arisen, and
how he may, by altering the previous work, substitute for it
another which shall give a rational result. This gives rise, in
general, to a subsidiary problem the solution of which ensures
a rational result for the problem itself Though, however, Dio-
phantus has no notation for a surd, and does not admit surd
results, it is scarcely true to say that he makes no use of quadratic
equations which lead to such results. Thus, for example, in V. 30
he solves such an equation so far as to be able to see to what
integers the solution would approximate most nearly.



CHAPTER 1V

DIOPHANTUS METHODS OF SOLUTION

BEFORE I give an account in detail of the different methods
which Diophantus employs for the solution of his problems, so far
as they can be classified, it is worth while to quote some remarks
which Hankel has made in his account of Diophantus’. Hankel,
writing with his usual brilliancy, says in the place referred to, “The
reader will now be desirous to become acquainted with the classes
of indeterminate problems which Diophantus treats of, and with
his methods of solution. As regards the first point, we must observe
that included in the 130 (or so) indeterminate problems, of which
Diophantus treats in his great work, there are over 5o different
classes of problems, strung together on no recognisable principle
of grouping, except that the solution of the earlier problems facili-
tates that of the later. The first Book is confined to determinate
algebraic equations; Books IL to V. contain for the most part
indeterminate problems, in which expressions involving in the first
or second degree two or more variables are to be made squares or
cubes. Lastly, Book VI is concerned with right-angled triangles
regarded purely arithmetically, in which some linear or quadratic
function of the sides is to be made a square or a cube. That is all
that we can pronounce about this varied series of problems without
exhibiting singly each of the fifty classes. Almost more different
in kind than the problems are their solutions, and we are completely
unable to give an even tolerably exhaustive review of the different
turns which his procedure takes. Of more general comprehensive
methods there is in our author no trace discoverable: every
question requires a quite special method, which often will not
serve even for the most closely allied problems. It is on that

Y Zur Geschichte der Mathematih in Alterthum und Mittelalter, Leipzig, 1874,
ppr 164-5.
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account difficult for a modern mathematician even after studying
100 Diophantine solutions to solve the 101st problem; and if we
have made the attempt, and after some vain endeavours read
Diophantus’ own solution, we shall be astonished to see how
suddenly he leaves the broad high-road, dashes into a side-path
and with a quick turn reaches the goal, often enough a goal with
reaching which we should not be content; we expected to have
to climb a toilsome path, but to be rewarded at the end by an
extensive view; instead of which our guide leads by narrow,
strange, but smooth ways to a small eminence; he has finished!
He lacks the calm and concentrated energy for a deep plunge
into a single important problem; and in this way the reader also
hurries with inward unrest from problem to problem, as in a
game of riddles, without being able to enjoy the individual one.
Diophantus dazzles more than he delights. He is in a wonderful
measure shrewd, clever, quick-sighted, indefatigable, but does not
penetrate thoroughly or deeply into the root of the matter. As
his problems seem framed in obedience to no obvious scientific
necessity, but often only for the sake of the solution, the solution
itself also lacks completeness and deeper signification. He is a
brilliant performer in the a## of indeterminate analysis invented by
him, but the scierzce has nevertheless been indebted, at least directly,
to this brilliant genius for few methods, because he was deficient
in the speculative thought which sees in the True more than the
Correct. That is the general impression which I have derived from
a thorough and repeated study of Diophantus’ arithmetic.”

It might be inferred from these remarks of Hankel that
Diophantus’ object was less to teach methods than to obtain a
multitude of mere results. On the other hand Nesselmann
observes! that Diophantus, while using (as he must) specific
numbers for numbers which are “given” or have to be arbitrarily
assumed, always makes it clear how by varying our initial as-
sumptions we can obtain any number of particular solutions of
the problem, showing “that his whole attention is directed to
the explanation of the method, to which end numerical examples
only serve as means”; this is proved by his frequently stopping
short, when the method has been made sufficiently clear, and
the remainder of the work is mere straightforward calculation.
The truth seems to be that there is as much in the shape of general

Y Algebra der Griechen, pp. 308~9.
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methods to be found in Diophantus as his notation and the nature
of the subject admitted of. On this point I can quote no better
authority than Euler, who says': “ Diophantus himself, it is true,
gives only the most special solutions of all the questions which he
treats, and he is generally content with indicating numbers which
furnish one single solution. But it must not be supposed that his
method was restricted to these very special solutions. In his
time the use of letters to denote undetermined numbers was not
yet established, and consequently the more general solutions which
we are now enabled to give by means of such notation could not
be expected from him. Nevertheless, the actual methods which he
uses for solving any of his problems are as general as those which
are in use today; nay, we are obliged to admit that there is
hardly any method yet invented in this kind of analysis of which
there are not sufficiently distinct traces to be discovered in Dio-
phantus.”

In his 8th chapter, entitled “Diophantus’treatment of equations?,”
Nesselmann gives an account of Diophantus’ solutions of (1) Deter-
minate, (2) Indeterminate equations, classified according to their
kind. In chapter 9, entitled “Diophantus’ methods of solutions,”
he classifies these “methods” as follows*: (1) “ The adroit assump-
tion of unknowns,” (2) “Method of reckoning backwards and
auxiliary questions,” (3) “Use of the symbol for the unknown in
different significations,” (4) “Method of Limits,” (5) “Solution by
mere reflection,” (6) “Solution in general expressions,” (7) “Arbi-
trary determinations and assumptions,” (8) “Use of the right-
angled triangle.”

At the end of chapter 8 Nesselmann observes that it is not
his solutions of equations that we have to wonder at, but the art,
amounting to virtuosity, which enabled Diophantus to avoid such
equations as he could not technically solve. We look (says Nessel-
mann) with astonishment at his operations, when he reduces the
most difficult problems by some surprising turn to a quite simple

Y Nove Commentarii Academiae Petropolitanae, 17567, Vol. VL. (176 1), p- 155= Com-
mentationes arithmeticae collectae (ed. Fuss), 1849, 1. p. 193.

2 ¢ Diophant’s Behandlung der Gleichungen.”

8 “Diophant’s Auflosungsmethoden.”

4 (1) *‘Die geschickte Annahme der Unbekannten,” (2) “ Methode der Zuriick-
rechnung und Nebenaufgabe,” (3) “Gebrauch des Symbols fiir die Unbekannte in
verschiedenen Bedeutungen,” (4) ““Methode der Grenzen,” (5) ¢ Auflésung durch blosse
Reflexion,” (6) *‘ Auflssung in allgemeinen Ausdriicken,” (7) * Willkiihrliche Bestim-
mungen und Annahmen,” (8) *Gebrauch des rechtwinkligen Dreiecks.”
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equation. Then, when in the gth chapter Nesselmann passes to the
“methods,” he prefaces it by saying: “To give a complete picture
of Diophantus’ methods in all their variety would mean nothing else
than copying his book outright. The individual characteristics of
almost every problem give him occasion to try upon it a peculiar
procedure or found upon it an artifice which cannot be applied to
any other problem....Meanwhile, though it may be impossible to
exhibit all his methods in any short space, yet I will try to describe
some operations which occur more often or are particularly re-
markable for their elegance, and (where possible) to bring out
the underlying scientific principle by a general exposition and by
a suitable grouping of similar cases under common aspects or
characters.” Now the possibility of giving a satisfactory account of
the methods of Diophantus must depend largely upon the meaning
we attach to the word “method.” Nesselmann’s arrangement seems
to me to be faulty inasmuch as (1) he has treated Diophantus’
solutions of equations, which certainly proceeded on fixed rules,
and therefore by “method,” separately from what he calls “methods
of solution,” thereby making it appear as though he did not
look upon the “treatment of equations” as “methods”; (2) the
classification of the “Methods of solution” seems unsatisfactory.
Some of the latter can hardly be said to be me#kods of solution at
all; thus the third, “ Use of the symbol for the unknown in different
significations,” might be more justly described as a “hindrance to
the solution”; it is an zmcomvenience to which Diophantus was
subjected owing to the want of notation. Indeed, on the as-
sumption of the eight “methods,” as Nesselmann describes them,
it is really not surprising that no complete account of them
could be given without copying the whole book. To take the
first, “the adroit assumption of unknowns.” Supposing that a
number of essentially different problems are proposed, the differences
make a different choice of an unknown in each case absolutely
necessary. That being so, how could a rule be given for all cases?
The best that can be done is to give a number of typical instances.
Precisely the same remark applies to “methods” (2), (5), (6), (7).
The case of (4), “ Method of Limits,” is different; here we have
a “method” in the true sense of the term, ze. in the sense of an
instrument for solution. And accordingly in this case the method
can be exhibited, as I hope to show later on; (8) also deserves
to some extent the name of a “method.”
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In one particular case, Diophantus formally states a method or
rule; this is his rule for solving what he calls a “double-equation,”
and will be found in IL. 11, where such an equation appears for the
first time. Apart from this, we do not find in Diophantus’ work
statements of method put generally as book-work to be applied to
examples. Thus we do not find the separate rules and limitations
for the solution of different kinds of equations systematically
arranged, but we have to seek them out laboriously from the
whole of his work, gathering scattered indications here and there,
and to formulate them in the best way that we can.

I shall now attempt to give a short account of those methods
running through Diophantus which admit of general statement.
For the reasons”which I have stated, my arrangement will be
different from that of Nesselmann ; I shall omit some of the heads
in his classification of “methods of solution”; and, in accordance
with his remark that these “methods” can only be adequately
described by a transcription of the entire work, I shall leave them
to be gathered from a perusal of my reproduction of Diophantus’
book.

I shall begin my account with

I. DIOPHANTUS TREATMENT OF EQUATIONS.

This subject falls naturally into two divisions: (A) Determinate
equations of different degrees, (B) Indeterminate equations.

(A) Determinate equations.

Diophantus was able without difficulty to solve determinate
equations of the first and second degrees; of a cubic equation we
find in his A#ithmetica only one example, and that is a very
special case. The solution of simple equations we may pass over;
we have then to consider Diophantus’ methods of solution in the
case of (1) Pure equations, (2) Adfected, or mixed, guadyatics.

(1) Pure determinate equations.

By pure equations I mean those equations which contain only
one power of the unknown, whatever the degree. The solution is
effected in the same way whatever the exponent of the term in the
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unknown; and Diophantus treats pure equations of any degree
as if they were simple equations of the first degree.

He gives a general rule for this case without regard to the
degree: “If a problem leads to an equation in which any terms
are equal to the same terms but have different coefficients, we must
take like from like on both sides, until we get one term equal to
oneterm. But, if there are on one side or on both sides any negative
terms, the deficient terms must be added on both sides until all the
terms on both sides are positive, Then we must take like from like
until one term is left on each side.” After these operations have -
been performed, the equation is reduced to the form 4Ax™ =28 and
is considered solved. The cases which occur in Diophantus are
cases in which the value of x is found to be a rational number,
integral or fractional. Diophantus only recognises one value of »
which satisfies this equation; thus, if # is even, he gives only the
positive value, excluding a negative value as “impossible.” In the
same way, when an equation can be reduced in degree by dividing
throughout by any power of x, the possible values, =0, thus
arising are not taken into account. Thus an equation of the form
#*= ax, which is of common occurrence in the earlier part of the
book, is taken to be merely equivalent to the simple equation x=a.

It may be observed that the greater proportion of the problems
in Book I are such that more than one unknown quantity is sought.
Now, when there are two unknowns and two conditions, both
unknowns can easily be expressed in terms of one symbol. But,
when there are three or four quantities to be found, this reduction
is much more difficult, and Diophantus shows great adroitness in
effecting it: the ultimate result being that it is only necessary
to solve a simple equation with one unknown quantity.

(2) Mixed quadratic equations.

After the remarks in Def. 11 upon the reduction of equations
until we have one term equal to another term, Diophantus
adds?: “But we will show you afterwards how, in the case also
when two terms are left equal to a single term, such an equation
can be solved.” That is to say, he promises to explain the
solution of a mixed quadratic equation. In the Awithmetica,
as we possess the book, this promise is not fulfilled. The first

1 Def. 11.
2 Yorepov 8¢ aou Selfoper kai wds U0 elddv lowy évl karaewpfévrwy TO TowolTOY NeTai.
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indications we have on the subject are a number of cases in which
the equation is given, and the solution written down, or stated to
be rational, without any work being shown. Thus

(1v. 22) 2*=4x — 4, therefore x=2;
(1v. 31) 3252%=3x 4 18, therefore x = £& or f;
(V1. 6) 842*+ yx =7, whence x = §;
(VL. 7) 84x— 7x=7, hence x=1%;
(V1. 9) 6302%— 732 =06, therefore x = £ ;
and (VL 8) 630x%+ 73x =06, and x is rational.

These examples, though proving that Diophantus had somehow
arrived at the result, are not in themselves sufficient to show that
he was necessarily acquainted with a regular method for the
solution of quadratics; these solutions might (though their variety
makes it somewhat unlikely) have been obtained by mere Zrial.
That, however, Diophantus’ solutions of mixed quadratics were not
merely empirical is shown by instances in v. 30. In this problem
he shows that he could approximate to the root in cases where it is
not “rational.” As this is an important point, I give the substance
of the passage in question: “This is not generally possible unless
we contrive to make x>} (2*—60) and <}(2*—60). Let then
2 — 60 be > 5%, but 22— 60< 8x. Since then 22— 60 > 5z, let 60 be
added to both sides, so that #* > 5z + 60, or #2= 52 + some number
> 60; therefore # must not be less than 11.” In like manner
Diophantus concludes that “#? = 8z + some number less than 6o;
therefore » must be found to be not greater than 12.”

Now, solving for the positive roots of these two equations, we
have

£>%(5++265) and £ <4+ 4/76,

or £>106394... and x< 12'7177....

It is clear that # may be < 11 or >12, and therefore Dio-
phantus’ limits are not strictly accurate. As however it was
doubtless his object to find znfegral limits, the limits 11 and 12
are those which are obviously adapted for his purpose, and are
a fortiori safe.

In the above equations the other roots obtained by prefixing
the negative sign to the radical are negative and therefore would
be of no use to Diophantus. In other cases of the kind occurring
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in Book V. the equations have both roots positive, and we have to
consider why Diophantus took no account of the smaller roots in
those cases.

We will take first the equations in V. 10 where the inequalities

to be satisfied are
J2E > 1722+ 17  ceiiiiiiieiienneeenn, (1).

T2 <IOF2H 10 ceiiiiiiininiiienaenn, (2).
Now, if a, B be the roots of the equation
2 —px + g=0 (p, g both positive),
and if a > B, then

(2) in order that 2~ px + ¢ may be >0
we must have x> a or < 8,

and (4) in order that 22 — px + ¢ may be <0
we must have x <a and > 8.
(1) The roots of the equation
1728 — 722 +17=0

are 36 £ V1007, ; that is, 7.173.“ and 42167,
and, in order that 172%— 722+ 17 may be <0, we must have
2T 73 * but> 4267

(2) The roots of the equat1on
19x%— 722+ 19 =0

36+ ~/935; that is, 66'577... , 4 5422...
I9 19 19
and, in order that 192® — 722 4+ 19 may be >0, we must have

66°577... '422...

5775 o « 542

Diophantus says that x must not be greater than ¢} or less than
88. These are again doubtless intended to be @ fortiori limits;
but ¢§ should have been ¢%,and the more correct way of stating the
case would be to say that, if # is not greater than $f and not less
than §%, the given conditions are @ fortiori satisfied.

Now consider what alternative (if any) could be obtained, on
Diophantus’ principles, if we used the lesser positive roots of the

are

b

x>
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equations. If, like Diophantus, we were to take a fortior: limits,
we should have to say
x< {5 but > &,
which is of course an impossibility. Therefore the smaller roots
are here useless from his point of view.
This is, however, not so in the case of another pair of in-
equalities, used later in V. 30 for finding an auxiliary #, namely

2+ 60> 22z,
224+ 60< 24%.
The roots of the equation
2 —22¢x+60=0
are 11 + V61 ; that is, 1881... and 3'18...;
and the roots of the equation #* — 244+ 60=0
are 12 + V/84; that is, 21°'16... and 2'83....
In order therefore to satisfy the above inequalities we must have
x>1881...or < 318...,
and %< 21'16 ... but > 2:83.

Diophantus, taking @ fortior: integral limits furnished by the
greater roots, says that x must not be less than 19 but must be
less than 21. But he could also have obtained from the smaller
roots an integral value of x satisfying the necessary conditions,
namely the value x=3; and this would have had the advantage
of giving a smaller value for the auxiliary # than that actually
taken, namely 20! Accordingly the question has been raised?
whether we have not here, perhaps, a valid reason for believing
that Diophantus only knew of the existence of roots obtained by
using the positive sign with the radical, and was unaware of the
solution obtained by using the negative sign. But in truth we
can derive no certain knowledge on this point from Diophantus’
treatment of the particular equations in question. Thus, eg., if he
chose to use the first of the two equations

72x > 1728417,
72% < 192%+ 19,
for the purpose of obtaining an upper limit only, and the second
1 This is remarked by Loria (Ze scienze esatte dell antica Grecia, V. p. 128).
But in fact, whether we take 20 or 3 as the value of the auxiliary unknown, we get
the same value for the original x of the problem. For the original x has to be found
from #2-6o=(x—m)? where m is the auxiliary x; and we obtain x=114 whether we
put 22— 60=(x—20)? or x*-Go=(x-3)*
2 Loria, 0. cit. p. 129.
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for the purpose of obtaining a lower limit on/y, he could ozly use
the values obtained by using the positive sign. Similarly, if, with

the equations
22 4 60 > 22z,

2%+ 60 < 24%,

he chose to use the first in order to find a lower limit only, and
the second in order to find an upper limit oy, it was not open to
him to use the values corresponding to the negative sign®

For my part, I find it difficult or impossible to believe that
Diophantus was unaware of the existence of two real roots in
such cases. The numerical solution of quadratic equations by the
Greeks immediately followed, if it did not precede, their geometrical
solution. We find the geometrical equivalent of the solution of
a quadratic assumed as early as the fifth century B.C,, namely by
Hippocrates of Chios in his Quadrature of lunes®, the algebraic form
of the particular equation being 2+ 4§.ar=04% The complete
geometrical solution was given by Euclid in VI 27-29: and the
construction of VI. 28 corresponds in fact to the negative sign
before the radical in the case of the particular equation there
solved, while a quite obvious and slight variation of the con-
struction would give the solution corresponding to the positzve sign.
In VI 29 the solution corresponds to the positive sign before the
radical; in the case of the equation there dealt with the other sign
would not give a “real” solution® It is true that we do not find
the negative sign taken in Heron any more than in Diophantus,
though we find Heron* stating an approximate solution of the
equation

x (14 —x) =6720[144,

without showing how he arrived at it; x is, he says, approximately
equal to 8%. It is clear however that Heron already possessed
a scientific method of solution. Again, the author of the so-called
Geometry of Heron® practically states the solution of the equation

H2 4+ 3Pr=212

_ W/ (154 x 212 4 841) — 29
11 ’

in the form x

! Enestrdm in Bibliotheca Mathematica 1X3, 1908-9, pp. 71-2.

2 Simplicius, Comment. in Aristot. Phys., ed. Diels, p. 64, 18; Rudio, Der Bericht
des Simplicius tider die Quadraturen des Antiphon und des Hippokrates, 1907, p. 58, 8-11.

3 The Thirteen Books of Euclid's Elements, Cambridge, 1908, Vol. I1. pp. 257-267.

4 Heron, Metrica, ed. Schéne, pp. 148~r51. The text has 8 as the approximate solu-
tion, but the correction is easy, as the inference immediately drawn is that 14 —x=75%.

6 Heron, ed. Hultsch, p. 133, 10~23. See M. Cantor, Geschichtz der Math. 1g, p. 405.
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showing pretty clearly the rule followed after the equation had
been written in the form

121224+ 638xr =212 X 154.

We cannot credit Diophantus with less than a similar uniform
method; and, if he did not trouble to give two roots where both
were real, this seems quite explicable when it is remembered that he
did not write a text-book of algebra, and that his object through-
out is to obtain a single solution of his problems, not to multiply
solutions or to show how many can be found in each case,

In solving such an equation as

ax®—bx+c=0,
it is our modern practice to divide out by 2 in order to make the
first term a square. It does not appear that Diophantus divided
out by «; rather he multiplied by @ so as to bring the equation
into the form :
ax*— abr +ac=0;

then, solving, he found

: ax=3%b4 v (28 —ac),

and wrote the solution in the form

x=1}& + /\/(ibf‘——zzc)’

wherein his method corresponds to that of the Pseudo-Heron above
referred to.

From the rule given in Def. 11 for removing by means of addition
any negative terms on either side of an equation and taking equals
from equals (operations called by the Arabians afjebr and almuka-
bala) it is clear that, as a preliminary to solution, Diophantus so
arranged his equation that all the terms were positive. Thus,
from his point of view, there are three cases of mixed quadratic
equations.

Case 1. Form ma? + px=q; the root is
=32+ (32 +mg)

.

according to Diophantus. An instance is afforded by vi. 6. Dio-
phantus namely arrives at the equation 622+ 3x =7, which, if it is
to be of any service to his solution, should give a rational value
of x; whereupon he says “the square of half the coefficient! of »

1 For *coefficient” Diopbantus simply uses wA#fos, multitude or number; thus
“number of dpifuot” = coeff. of x. The absolute term is described as the ‘¢ units.”
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together with the product of the absolute term and the coefficient
of 22 must be a square number ; but it is not,” z.e. 1 2* + g, or in
this case (§)*+ 42, must be a square in order that the root may be
rational, which in this case it is not.

Case 2. Form mz®=px+¢. Diophantus takes

L3NS )
m

An example is IV. 39, where 222> 6r+ 18, Diophantus says:
“To solve this take the square of half the coefficient of z, 7. 9, and
the product of the absolute term and the coefficient of 22, Zze. 36.
Adding, we have 45, the square root! of which is not?< 7. Add
half the coefficient of #, [and divide by the coefficient of #*]; whence
xis not <5.” Here the form of the root is given completely; and
the whole operation of finding it is revealed. Cf. 1v. 31, where
Diophantus remarks that the equation 54°= 3z + 18 “is not rational.
But 3, the coefficient of 2% is a square plus I, and it is necessary
that this coefficient multiplied by the 18 units and then added to
the square of half the coefficient of x, namely 3, that is to say 2%,
shall make a square.”

Case 3. Form mx*+ g =px. Diophantus’ root is

b2+ V(P = mg)
m
Cf in v. 10 the equation already mentioned, 1722+ 17 < 72
Diophantus says: “ Multiply half the coefficient of x into itself and
we have 12096; subtract the product of the coefficient of x* and the
absolute term, or 289. The remainder is 1007, the square root of
which is not® > 31. Add half the coefficient of #, and the result is
not >67. Divide by the coefficient of 2% and x is not >67/17.”
Here again we have the complete solution given. Cf. VI. 22, where,
having arrived at the equation 172x= 3362+ 24, Diophantus
remarks that “this is not always possible, unless half the coefficient
of # multiplied into itself, msnus the product of the coefficient of x2
and the units, makes a square.”
For the purpose of comparison with Diophantus’ solutions of
quadratic equations we may refer to a few of his solutions of

1 The *“square root” is with Diophantus whevpd, or ¢‘side.”
2 v, though not accurate, is clearly the nearest integral limit which will serve the

purpose.
3 As before, the nearest infzgral limit.

H. D. 5
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(3) Simultaneous equations involving quadratics.
Under this heading come the pairs of equations

g (t. 27)
;_'::772 :Zl } , (L 28.)
E—;:Z; } (L. 30.)

I use Greek letters to distinguish the numbers which the
problem requires us to find from the one unknown which Dio-
phantus uses and which I shall call .

In the first two of the above problems, he chooses his x thus.
Let, he says, .
E-n=2r  (E>n).

Then it follows, by addition and subtraction, that

E=a+x n=a-=x

Consequently, in I 27,

En=(a+x)(a—x)=0a"-22=B,
and z is found from this “pure” quadratic equation.

If we eliminate £ from the original equations, we have

n*—2an+ B =0,

which we should solve by completing the square (2 — %)% whence
(¢ —n)r=a*— B,

which is Diophantus’ ultimate equation with @ — 9 for .

Thus Diophantus’ method corresponds here again to the ordi-
nary method of solving a mixed quadratic, by which we make it
into a pure quadratic with a different .

In 1. 30 Diophantus puts &+ 7=2zx, and the solution proceeds
in the same way as in L 27.

In 1. 28 the resulting equation in x is

§2+r”2=(a +x)2+(a —-—x2=2(a2+x2)=B.

(4) Cubic equation.

There is no ground for supposing that Diophantus was acquainted
with the algebraical solution of a cubic equation. Itis true that there
is one cubic equation to be found in the A#zzkmetica, but it is only
a very particular case. In VI 17 the problem leads to the equation

2H+2x+3=2"4+3xr-322— 1,
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and Diophantus says simply “ whence x is found to be 4.” All
that can be said of this is that, if we write the equation in true
Diophantine fashion, so that all the terms are positive,
P+ r=42"+4.
This equation being clearly equivalent to
z(#+1)=4(2+1),

Diophantus no doubt detected the presence of the common factor
on both sides of the equation. The result of dividing by it
is x =4, which is Diophantus’ solution. Of the other two roots
=4 4/(— 1) no account is taken, for the reason stated above.

It is not possible to judge from this example how far Dio-
phantus was acquainted with the solution of equations of a degree
higher than the second.

I pass now to the second general division of equations.

(B) Indeterminate equations.

As I have already stated, Diophantus does not, in his
Awithmetica as we have it, treat of indeterminate equations of the
first degree. Those examples in Book I. which would lead to such
equations are, by the arbitrary assumption of a specific value for
one of the required numbers, converted into determinate equations.
Nor is it likely that indeterminate equations of the first degree
were treated of in the lost Books. For, as Nesselmann observes,
while with indeterminate quadratic equations the object is to obtain
a rational result, the whole point in solving indeterminate simple
equations is to obtain a result in Zwfegral numbers. But Diophantus
does not exclude fractional solutions, and he has therefore only to
see that his results are posizive, which is of course easy. Inde-
terminate equations of the first degree would therefore, from
Diophantus’ point of view, have no particular significance. We
take therefore, as our first division, indeterminate equations of
the second degree.

(@) Indeterminate equations of the second degree.

The form in which these equations occur in Diophantus is
invariably this: one or two (but never more) functions of the
unknown quantity of the form Ax*+Bx+ C or simpler forms
are to be made rational square numbers by finding a suitable
value for . Thus the most general case is that of solving one or
two equations of the form A2 + Br+ C =32

5—2
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(1) Siugle equation.

The single equation takes special forms when one or more of
the coefficients vanish or satisfy certain conditions. It will be well
to give in order the different forms as they can be identified in
Diophantus, premising that for “=*” Diophantus simply uses the
formula ioov TeTpaydve, “is equal to a square,” or moiei TeTpdywvor,
“ makes a square.”

1. Equations which can always be solved rationally. This is
the case when 4 or C or both vanish.

Form Bx=3%. Diophantus puts for 3® any arbitrary square
number, say 2. Then x=n?/B.

Ex. IIL 5: 2x=17% »* is assumed to be 16, and x= 8.

Form Bx+ C=3%. Diophantus puts for »? any square »? and
x=(m?— C)/B. He admits fractional values of z, only taking
care that they are “rational,” Ze rational and positive.

Ex. IIL 6: 6r+ 1 = =121, say, and x= 20.

Form Ax*+ Bxr=3%. Diophantus substitutes for y any multiple
2
of z, as %x; whence Ax+ B = % x, the factor x disappearing and
Bn

d ~ A’
Exx 1L 21: 422+ 3xr=2"=(32), say, and x=35.
IL 33: 1628+ 7 =3%= (5%, say, and z=14.

the root x = 0 being neglected as usual. Thus x=

2. Equations which can only be rationally solved if certain
conditions are fulfilled.

The cases occurring in Diophantus are the following.

Form A4x*+ C=y% This can be rationally solved according to
Diophantus

(«) When A4 is positive and a square, say 2>
Thus %2+ C=3% In this case 3? is put =(ax + m);

therefore @2 + C=(ax + m),
C—m?
and x=+= )
2ma

(m and the doubtful sign being always assumed so as to give x
a positive value).

(B) When Cis positive and a square number, say ¢
Thus 42*+ *=3* Here Diophantus puts y = (mx +¢);
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therefore Ax*+ E=(mx + c),

271C
and xr=+ ;mé.

(y) When one solution is known, any number of other
solutions can be found. This is enunciated in the Lemma to VI 15
thus, though only for the case in which C is negative: “Given two
numbers, if, when one is multiplied by some square and the other
is subtracted from the product, the result is a square, then another
square also can be found, greater than the aforesaid square which
has the same property.” It is curious that Diophantus does not
give a general enunciation of this proposition, inasmuch as not
only is it applicable to the cases + 4#*+ C=3" but also to the
general form Ax*+ Bxr 4 C=~

' Diophantus’ method of finding other greater values of x satisfy-
ing the equation Ax®— C'=3? when one such value is known is as
follows.

Suppose that x, is the value already known and that ¢ is the
corresponding value of .
Put x=x+ & in the original expression, and equate it to
(g — %E)*, where % is some integer.
Since A+ Ep—C=(g—£E),
it follows (because by hypothesis A?— C =¢4?) that
28 (A% +kg) = (B - A),

whence E= %ﬂ) »
and r=z+ 2_(%12{1_‘-2_@_) .

In the second Lemma to VI. 12 Diophantus does prove that the
equation A2?+ C=y* has an infinite number of solutions when
A+ C is a square, ze. in the particular case where the value z=1
satisfies the equation. But he does not always bear this in mind;
for in IIL 10 the equation 52424 12 =3* is regarded as impossible of
solution although 52 + 12 =64, a square, and a rational solution is
therefore possible. Again in IIL 12 the equation 26622 — 10 =32 is
regarded as impossible though x = 1 satisfies it.

The method used by Diophantus in the second Lemma to
VL 12 is like that of the Lemma to VI I5.

Suppose that 4 + C= g%

Put 1+ £ for x in the original expression A42% + C, and equate it
to (¢ — ££)?, where £ is some integer.



70 INTRODUCTION

Thus A1+ Ep+ C= (g — k&),
and it follows that 2£E(A4 + #g) =8 (& — 4),
so that E= 21:5@ )

2(A +£q)
and =14 “BE_Z -

It is of course necessary to choose £ such that 22> 4.

* It is clear that, if =0 satisfies the equation, C is a square, and

therefore this case (y) includes the previous case (B).

It is to be observed that in VI. 14 Diophantus says that a rational
solution of the equation

Axr— A =9°

is impossible wnless A is the sum of two squares.

[In fact, if #=p/q satisfies the equation, and Ax?~ 2= 43,
we have Ap = gt + kgt

NCANNC A
O_r A”(}>+(p)']
Lastly, we have to consider
Form Ax*+ Bx+ C=3"

This equation can be reduced by means of a change of variable
to the preceding form wanting the second term. For, if we put
r=z- % , the transformation gives
4A4C—~ B _

T 4d
Diophantus, however, treats this form of the equation quite

separately from the other and less fully. According to him the
rational solution is only possible in the following cases.

2

A+

(@) When 4 is positive and a square, or the equation is
@2* + Br+ C=3~
Diophantus then puts 3*= (ax — »)? whence
= _m_ﬂ:__C_ (Exx. 1L 20, 22 etc.)
2am+ B ’
(8) When C'is positive and a square, or the equation is
Ar*+ Br + 2=y~
Diophantus puts »* = (¢ — mx)’, whence
2mec+ B

;ZT:Z. (EXX. Iv. 8, o] etc.)
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(y) When }B2 - 4A(C is positive and a square number. Dio-
phantus never expressly enunciates the possibility of this case;
but it occurs, as it were unawares, in IV. 31. In that problem

3xr+18—22
is to be made a square. To solve this Diophantus assumes
3t + 18 — 22 =4x?

which leads to the quadratic 3#+ 18 — 52 = 0; but “the equation
is not rational.” Accordingly the assumption 4#* will not do;
“and we must find a square [to replace 4] such that 18 times
(this square + 1) + ($)* may be a square.” Diophantus then solves
the auxiliary equation 18(w*+1)+%=77% finding m»=18. He
then assumes 3z 4 18 — x* = (18)2+?, which gives 3252°— 32 —18=0,
“and x = &, that is £ .2

1 'With this solution should be compared the much simpler solution of this case given
by Euler (4lgebra, tr. Hewlett, 1840, Part 11. Arts. 50-53), depending on the separation
of the quadratic expression into factors. (Curiously enough Diophantus does not separate
quadratic expressions into their factors except in one case, V1. 19, where however his
purpose is quite different : he has made the sum of three sides of a right-angled triangle
422+ 62+ 2, which has to be a cube, and, in order to simplify, he divides throughout by
x+ 1, which leaves 4x+2 to be made a cube.)

Since 382 - AC is a square, the roots of the quadratic 4x%+ Bx+ C=o0 are real, and
the expression has two real linear factors. Take the particular case now in question,
where Diophantus actually arrives at 3o+ 18— ® as the result of multiplying 6 —x and
3+, but makes no use of the factors.

We have 30+ 18— a?=(6-x) (3 +).
Assume then 6-2)(3+x)= 9—5(6—:;)9,
and we have P6-2)=g*(3+x),
2238
p+g

where g, ¢ may be any numbers subject to the condition that 2p?>4%. If g2=g, ¢?=16,
we have Diophantus’ solution x=2—5 .

In general, if Ax?+ Bx+ C=(f+gx) (k+kx),
we can put (f+gx) (& +kx) =%: (F+g=p,
whence g+ kx) = p2( f+gw),

Y ol
and A

This case, says Euler, leads to a fourth case in which 4x2+ Bx+ C=y? can be solved,
though neither 4 nor C is a square, and though B%*— 44 C is not a square either. The
fourth case is that in which 4x%+ Bx + C is the sum of two parts, one of which is a square
and the other is the product of two factors linear in . For suppose

Ax?+Bx+C=22+X7,
where Z=dx+te, X=fx+g, Y=hx+k
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It is worth observing that from this example of Diophantus we

can deduce the reduction of this'general case to the form
Ax2 4+ C=y?

wanting the middle term.

Assume, with Diophantus, that 4x?+ Br + C = m*x*: therefore
by solution we have
_—3BN{B*— AC+ Cw?
- A —m? ’
and x is rational provided that }B*— AC+ Cwm? is a square. This
condition can be fulfilled if }B*— AC is a square, by the pre-

x

2
We can then put Z’+XY=(Z+;—’X) ,
g
whence Y= 21—) Z +£2—X,
7 7
2 v
or 11x+k=2}(dr+e)+F fx+8),
that is, x(P2f+2p9d — g*) = kg — 2pqe - p2g-
Ex. 1. Equation 24%- 1=3% .
Put 22~ 1=x2+(x+ 1)(x—1)={x+§(x+x)} .
2
Therefore #-1=1la+l (x+1),
7 &
and x(B+apg- )=~ (#*+4).

As 2® is alone found in our equation, we can take either the positive or negative sign
and we may put

%= p2+ ([2
Prapg-4*
Ex. 2. Equation 2a%+2=737
Here we put 222+ 2=4+2(x+1)(x-1).
2

Equating this to {z 1—‘3 (e+ 1)} )
we have 2(x—1)=4‘§+§;(x+ 1),
or . %(#* = o) = = (2% + 427 +2°),
and Pt bk

,‘qﬁ_'p'.!

It is to be observed that this method enables us to solve the equation
Axt—ci=y*
whenever it can be solved rationally, 7.e. whenever 4 is the sum of {wo squares (d2+¢2,
say). For then
Ax®— E=d’2+ (ex—c) (ex+c).

In cases not covered by any of the above rules our only plan is to try to discover one
solution empirically. If one solution is thus found, we can find any number of others; if
we cannot discover such a solution by trial (even after reducing the equation to the
simplest form 4’x'*+ C=y3), recourse must be had to the method of continued fractions
elaborated by Lagrange (cf. Oeuwvres, 11. pp. 377~535 and pp. 655—726 ; additions to
Euler’s 4/gebra).
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ceding case. If }B*—A4C is not a square, we have to solve
(putting, for brevity, D for } B2 — AC) the equation

D + Cm? =J/2a
and the reduction is effected.

(2) Double-equation.

By the name “double-equation” Diophantus denotes the pro-
blem of finding one value of the unknown quantity which will make
two different functions of it simultaneously rational square numbers.
The Greek term for the “double-equation” occurs variously as irhoi-
aotns, S} ladtys or Sumr\f locwais. We have then to solve the
equations

mx®+ ox +a=1’

n2+ Br+b= w”}
in rational numbers. The necessary preliminary condition is that
each of the two expressions can severally be made squares. This
is always possible when the first term (in #°) is wanting. This is
the simplest case, and we shall accordingly take it first.

1. Double-equation of the first degree.

Diophantus has one general method of solving the equations
axr+a=1u
Br+b= 'w’} ’
taking slightly different forms according to the nature of the
coefficients.

(a) First method of solution of
ar+a= us}
Bx+b=w?"
This method depends upon the identity
F@+af-F@2-9F=22

If the difference between the two expressions in x can be separated
into two factors p, g, the expressions themselves are equated
to {4 (# *g)}* respectively. Diophantus himself (II. 11) states his
rule thus.

“QObserving the difference [between the two expressions], seek
two numbers such that their product is equal to this difference;
then equate either the square of half the difference of the two
factors to the lesser of the expressmns or the square of half the
sum to the greater.” .
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We will take the general case and investigate to what particular
classes of cases the method is applicable, from Diophantus’ point
of view, remembering that his cases are such that the final quadratic
equation in x always reduces to a simple equation.

Take the equations

ax+ a =1’
Bx+b= w”} '
Subtracting, we have
(a—B)zx+(a—=b)=u*—n

We have then to separate (a—RB)x +(a2—8) into two factors;
let these be g, {(a— B) x+(a— b)}/2.

We write accordingly

(a—Bx+a—25
+tw=" -2 - .=
utw p ,
® ¥ w=2.
Thus uz=a;r+a=i{(_“_?_@%'ti"_&+p}a;
therefore {(a=B)x+a—b+p) =42 (ax +a),

or (a—Byx*+2x{(a—B)(a—b+p) —2pa} +(a - b+ —4ap°=0,
that is, (a—B)yx*+2x{(a—B)(a—b)—p* (a+B)}
+(a—b)—22(e+b)+ 4 =o0.

Now, in order that this equation may reduce to a simple
equation, either

(1) The coefficient of #* must vanish, so that
a= B;
or (2) The absolute term must vanish, that is,
=22 (@+b)+(@—br=o,
or {#* = (@ + &)} = 4a,
so that 4 must be a square number.

Therefore either @ and & are both squares, in which case we
may substitute ¢ and 4? for them respectively, p being then equal
to ¢ + 4, or the ratio of  to & is the ratio of a square to a square.

With respect to (1) we observe that on one condition it is not
necessary that a — 8 should vanish, 7.¢. provided we can, before
solving the equations, make the coefficients of x the same in both
expressions by multiplying either equation or both equations by
some square number, an operation which does not affect the
problem, since a square multiplied by a square is still a square.
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In other words, it is only necessary that the ratio of @ to 8 should
be the ratio of a square to a square?.

Thus, if a/B=m*/n* or an® =Bm?, the equations can be solved
by multiplying them respectively by #? and »?; we can in fact
solve the equations

any +a=u?
artx + o= w?’

like the equations
ax +a=1u" }
ar+b=w"?’
in an infinite number of ways.
Again, the equations under (2)

oax + =1k
Br+dt= w“‘}

can be solved in two different ways according as we write them in
this form or in the form

ady + 2d® ="

Bz + 2dr = w'a} ’
obtained by multiplying them respectively by 4 ¢% in order that
the absolute terms may be equal

I shall now give those of the possible cases which we find solved

in Diophantus’ own work. These are equations

(1) of the form

(s

amrx+a=1’
an’x+b=w

1 Diophantus actually states this condition in the solution of 1v. 32 where, on arriving
at the equations

8 -3x=12"

8-x= zﬂ}

?
he says: “And this is not rational because the coefficients of x have not to one another
the ratio which a square number has to a square number.”

Similarly in the second solution of 111. 15 he states the same condition along with an
alternative condition, namely that 2 has to & the ratio of a square to a square, which is
the second condition arrived at under (2) above. On obtaining the equations

4x+3=2 }
63x+s53=w?| "’
Diophantus observes ‘‘But, since the coefficients in one expression are respectively greater
than those in the other, neither have they (in either case) the ratio which a square number
has to a square number, the hypothesis which we took is useless.”
Cf. also 1v. 39 where he says that the equations
8x+4= uﬁ}
6x + 4=
are possible of solution because there is a square number of units in each expression.
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a case which includes the more common one where the coefficients
of x in both are egual;
(2) of the form
axr + & = u?)
Br+dd= w“} ’
solved in two different ways according as they are written in this
form or in the alternative form
adix + A = u"
Betx 4+ ¢d* = w'*} ’

General solution of Form (1) or
am’y + a =1
antr + b = w"} )
Multiply by #% #* respectively, and we have to solve the
equations
am* iz + an? = 1
amniy + b= 'w"“} ’

The difference is an®—bm?; suppose this separated into two
factors 2, ¢.

Let Wt =p,
WFw=gq;
therefore W=}(p+q), w*=%2(p—-9)7
and am*nis+ et =% (p + g)},
or am*n’z + bm* =} (p —q).

Either equation gives the same value of z, and
(PP —d (@t b

am*n?

since pg = an® — bm’.
Any factors p, ¢ may be chosen provided that the resulting

value of x is positive.
Ex. from Diophantus :

65 — 6x= 22

6§ —zar= }; (. 32.)
therefore 260 — 242 = 2

65 —24r=2]"

The difference = 195 =15 . 13, say;
therefore 2 (15— 132=6% —24x; that is, 24 =64, and x=§.
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General solution (first method) of Form (2), or

ox + & =u?
Br+di= w’s} ’

In order to solve by this method, we multiply by &% ¢
respectively and write

ad’z + PP =u* }
Bex + et =ur)’
u being supposed to be the greater.

The difference = (ad?— Bc%) . Let the factors of this be gz, ¢.

Therefore wr=1%( }x +9)

w=3(pr—q)

Thus x is found from the equation

adix + cd =% (px + 9)-
This equation gives
P22+ 22 (pg — 20d%) + ¢* — 462d* =0,
or, since pg = (ad®— Bc?),
P22 — 2z (ad?+ BE) + ¢* — 4c°d*=0.

In order that this may reduce to a simple equation, as Dio-
phantus requires, the absolute term must vanish,
or g = 4c°d?
and g=2cd.

Thus our method in this case furnishes us with only o7e solution
of the double-equation, ¢ being restricted to the value 2.4, and the
solution is

P (ad?+ B _ 88242 (ad® + B
7 (ad? =By

Ex. from Diophantus. This method is only used in one par-
ticular case (IV. 39), where ¢=@* as the equations originally stand,
the equations being

8x+4= u*}
6x+4 =w*)’
The difference is 2x, and ¢ is necessarily taken to be 24/4, or 4;
the factors are therefore %z, 4.
Therefore 8r+4=31@x+4),
and . r=1I2.

General solution (second method) of Form (2) or

ax + 2 =1u?
Br+di=wt)"
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The difference =(a — B) z + (¢ — 4?).

Let the factors of this be g, {(a — B) x + ¢ — 2%}/p.

Then, as before proved (p. 74), # must be equal to (¢ + ).
Therefore the factors are

Bx+c+d ct+d,

and we have finally

=8 )
ax+c"_4<£+a,x+c+d+c+a’
_I(2=B :
-
a—R c(a—pB) -
Therefore (ci a’) +44{ cid a}—o,

which equation gives two possible values for . Thus in this case
we can find by our method w0 values of x, since one of the factors
2 may be either (¢ +d) or (¢ —d).

Ex. from Diophantus. To solve the equations

on+9=uﬂ}

PP S (. 15.)

The difference is here 5x + 5, and Diophantus chooses as the
factors 5, x+ 1. This case therefore corresponds to the value
¢+d of p. The solution is given by

(37 + 3)*= 107 + 9, whence x = 28.

The other value, ¢ — &, of p is in this case excluded, because it
would lead to a negative value of z.

The possibility of deriving any number of solutions of a double-
equation when one solution is known does not seem to have been
noticed by Diophantus, though he uses the principle in certain
cases of the single equation (see above, pp. 69, 70). Fermat was the
first, apparently, to discover that this might always be done, if one
value @ of x were known, by substituting x + @ for x in the equa-
tions. By this means it is possible to find a positive solution, even
if @ is negative, by successive applications of the principle.

But, nevertheless, Diophantus had certain peculiar artifices by
which he could arrive at a second value. One of these artifices
(which is made necessary in one case by the unsuitableness of the
value of x found by the ordinary method) gives a different way of
solving a double-equation from that which has been explained, and
is used only in one special case (IV. 39).
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(B) Second method of solving a double-equation of the first
degree.
Consider only the special case
hx + n? =1,
2+ ))x+ n=vr
Take these expressions, and #?, and write them in order of
magnitude, denoting them for convenience by 4, B, C.
A=+ x+n, B=lhx+n, C=n

A-B f A—-B=fx
Therefore =% and B_C= /zx} .
Suppose now that  /ix + 2 =(y + 2n);
therefore hx =y + 2my,
and 4-B=L (5 +2my)
or A=(y+n)2+!/:(y2+zny);

thus it is only necessary to make this expression a square.
Assume therefore that

(I +Z}£)y’+2n<7]:+ I)y+ﬂ’=(py—n)2;

and any number of values for y, and therefore for #, can be found,
by varying 2.

Ex. from Diophantus (the only one), Iv. 30.

In this case there is the additional condition of a limit to the
value of . The double-equation

8r+ 4 =12
6xr+4=2
has to be solved in such a manner that < 2.
Here j;—:—g: %, and B is taken! to be (y + 2)~
Therefore A~-B=}(+47);
therefore A=3(P+)+r+47+4
=P+ +4,

which must be made a square.

1 Of course Diophantus uses the same variable x where I have for clearness used y.
Then, to express what I have called » later, he says: “I form a square from 3 minus
some number of x's, and x becomes some number multiplied by 6 and then added to 12,
divided by the difference by which the square of #z¢ number exceeds 3.”
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If we multiply by £, we must make
3+ 12y 4+ 9 =a square,
where y must be < 2.
Diophantus assumes
3+ 127 +9=03 —m),
_bm 412
=3
and the value of # is then taken such as to make y < 2.
It is in a note on this problem that Bachet shows that the
double-equation

whence

ax+a=1u
Bx+b= wg}

can be rationally solved by a similar method provided that the

coefficients satisfy either of two conditions, although none of the

coefficients are squares and neither of the ratios a: 8 and «:4 is

equal to the ratio of a square to a square. Bachet’s conditions are:

(1) That, when the difference between the two expressions
is multiplied or divided by a suitably-chosen number, and the
expression thus obtained is subtracted from the smaller of the
original expressions, the result is a square number, or

(2) That, when the difference between the two expressions
is multiplied or divided by a suitably-chosen number, and the
smaller of the two original expressions is subtracted from the
expression obtained by the said multiplication or division, the
result is a number bearing to the multiplier or divisor the ratio
of a square to a squarel.

1 Bachet of course does not solve equations in general expressions (his notation does
not admit of this), but illustrates his conditions by equations in which the coefficients are
specific numbers. I will give one of his illustrations of each condition, and then set the
conditions out-more generally.

Case (1). Equations 3x+13=2?)
X+ 7= wﬁ} i
difference 2x+ 6

The suitably-chosen number (to dizide by in this case) is 2 ;
% (difference)=x + 3,
and (lesser expression) —% (difference) =x+ 7 ~ (x + 3)=4, that is, a square.
‘We have then to find two squares such that
their difference =2 (difference between lesser and 4).

Assume that the lesser=(y+2)% 2 being the square root of 4.
Therefore (greater square) =3 (lesser) - 8

=37+ 12y +4.



DIOPHANTUS METHODS OF SOLUTION 81

2. Double-equation of the second degree,

or the general form
A+ Br+ C=w?
A2+ Bx+ C =ur
These equations are much less thoroughly treated in Diophan-
tus than those of the first degree. Only such special instances

To make 3%+ 127+ 4 a square we put
37+ 1 +4=0-p)

where p must lie between certain limits which have next to be found. The equation gives
12445
-3

In order that y may be positive, g2 must be >3; and in order that the second of the
original expressions, assumed equal to (y+2)%, may be greater than 7 (it is in fact x +7),
we must have (y+2)> 2§ (an a fortior limit, since 2§>4/7), or y>%.

Therefore @+12>F(F-3),

or 169+ 57>32%
Suppose that 322=16p+ 53%, which gives p=73.
Therefore p<7% but p*>3.

Put p=3 in the above equation ; therefore
3+ 1y +4=(2-32)%

and V=4
Therefore x=(y+2)*-7=129.
Case (2). Equations 6x+25=22]
ax+ 3= w”} ’
difference Fraz

The suitable-number (again to dévzde by) in this case is 2;
% (difference) =2x+ 11,
and % (difference) — (lesser expression) =8=12.4,
where 2 is the divisor used and 4 is the ratio of a square to a square.
Hence two squares have to be found such that
(their difference) =2 (sum of lesser and 8).
If the lesser is 2, the greater is 332+ 16=(4 — #)? say.
Bachet gives, as limits for g,
P 4d, 1)2 >3
and puts p=3. This gives y=4, so that x=63%.
Let us now state Bachet’s conditions generally.
Suppose the equations to be
ax+a=ul }
Bx+b=u?"
The difference is (a~ g8) x+ (2 - 4). '
This has to be multiplied by a—f— which is the ¢“suitable ” factor in this case, and, if
we subtract the product from Bx+ 4, we obtain

B

—a——(a—b), or

-8

_ap
...ﬂ *
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occur as can be easily solved by the methods which we have
described for equations of the first degree.
The following types are found.
(1) P+ ar +a =
P2x2+[3x+5=w2}
The difference is (@ — B)x + (@ — &), and, following the usual
course, we may, ¢.g., resolve this into the factors

(1) The first of Bachet’s conditions is that

ab-af
a- 13

(2) The second condition is that

=a square = p%/¢?, say.

g .
or af-ob_ a ratio of a square to a square.

B

It is to be observed that the first of these conditions can be obtained by considering

the equation
(@-p)#*+ax{(a-B) (@-2) -2 (a+B)} +(a-2)* - 2p*(a + ) +2*=o0,
obtained on page 74 above.

Diophantus only considers the cases in which this equation reduces to a simple
equation; but the solution of it as a mixed quadratic gives a rational value of x provided
that

{@-B) (a-0) -2 (a+p)}*~ (a~B)*{(a- 8)* - 22 (a+8) +2*} is a square,
that is, if
2{(a+8)*~(a-B)*} +22*{(a+8) (@ - B)*~ (a®~ f%) (2 ~ 4)} is a square,
which reduces to afp?+(a—B) (ab-aB)=a square .......eeoreeennenn, e (A).
This can be solved (cf. p. 68 above), if

a': : ;ﬁ is a square. (Bachet’s first condition.)
Again take Bachet’s second condition
aB-ab _ _7
5= a square = 5 say,
and substitute 8#%[s? for @B~ aé in the equation (A) above.
Therefore afp?—(a-B)B 7—; =a square,
or afp'? -~ (e — B) B=a square.

This is satisfied by 2/'=r1; therefore (p. 69) any number of other solutions can
be found.
The second condition can also be obtained directly by eliminating x from the equations
ax+a=u?
Bx+ &-—wﬁ} ;

for the result is e u? + aﬂ a['

which can be rationally solved if

ap - ab
8

4
=a square.
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(@ — 5){ Bx+ I}

as usual, we put ‘

p’x*+ax+a=i(a;-———6x+1 +a—b)2,

-6
jﬂ
)
In order that  may be rational a condition is necessary; thus
x is rational if

or prt4Bxr+b==

-8

a—

Q

p=

] -

U

This is the case in the only instance of the type where « is not
equal to 4, namely (IIL 13)
422+ 15x=u“} .
422 —xr —4=u?"’
the difference is 162+ 4, and the resolution of this into the factors
4, 4% + 1 solves the problem.
In the other cases of the type a=4; the difference is then
(@~ B) z, which is resolved into the factors

a—f .
‘TP—, 2px;
and we put p*xe+ax+a=i<a_ﬁ+2px>2,
4\ 2p
1/a—p 2
or 22 + x+a=~< -2 ),
P+ B i\ 2
whence B, (ﬂ)ﬂ— a.
2 4p
Exx. from Diophantus:
x2+x—1=u21(
P 1= (v. 23.)
and g o )
2P+ 1=0f

(2) The second type found in Diophantus?® is
rtor+a=u
Br+a=u?)’
where one equation has no term in 2%, and p=1,a=24.
1 Tt is perhaps worth noting that the method of the ‘‘ double-equation > has a distinct
advantage in this type of case. The alternative is to solve by the method of Euler (who

does not use the *“ double-equation ), 7. to put the linear expression equal to 2 and then,
substituting the value of x (in terms of p) in the quadratic expression, to solve the

6—2
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The difference 22 + (¢ — B) x is resolved into the factors
r@x+a—pB);
and we put Br+a=1%(a- B
which gives x.

resulting equation in p. But the difficulties would generally be great, Take the case of
VI. 6 where

2
=t I} have to be made squares.
14%+1
If igx+1=2% x=(~1)[14;
2 1)2
therefore Zrr= i 14;) + 1 has to be made a square,
or 2*—2p*+ 197 =a square.

This does not admit of solution unless we could somehow discover empirically orze
value of p which would satisfy the requirement, and this would be very difficult.
Let us take an easier case for solution by this method,

24 1=122
x+r=w?’

which is solved by Euler (4/gebra, Part 11. Art. 222), and let us compare the working of
the two methods in this case.

1. Euler’s method. Assuming x+ 1=2* and substituting 22~ 1 for x in the quadratic

expression, we have
24 —2p*+2=a square.

This can only be solved generally if we can discover one possible value of p by trial ;
this however is not difficult in the particular case, for p=1 is an obvious solution.

To find others we put 1 +¢ instead of # in the expression to be made a square; this
gives

I+44%+ 4¢° + ¢*=a square.
This can be solved in several ways.

1. Suppose 1448+ 43 + P = (1 +¢0)2;
thus 49 +44°=29% whence y= —i, p=-:- and x= 3
2. Suppose 1442+ 4+ 4= (1 - 99%;
thus s Hag’= —2g and g=-3, o= 'i and x= "%.
3. Suppose 1+ 492+ 488+ g4 = (1 29 = g%)3;
and we find, in either case, that g= ~ 2, so that p= -1, x=o0.
4- Suppose 1+49%+ 403+ = (1 + 29%)%;
2
and we have 4¢°+y*=44% whence q——-g, p=§ and x= (?%) - 1=i"93.

This value of x satisfies the conditions, for

2 2
x+r=<-7-) , x“+1=1§—§£= (5—{) .
3 81 9
The above five suppositions therefore give only two serviceable solutions

x=-—§, =%,

4 9
To find another solution we take one of the values of g already found, say ¢g= - %, and
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Exx. from Diophantus :

P—12=122
637 — 12=w’}’ (V. 1)
P+ 1=
I4x+ 1= w”}’ (V1. 6)
2% — 6144x + 1048576 = u*
:: _*_524___102}. (VL. 22.)

. I s . . R
substitute » — s for g. This gives p=1+g=7+ é, and we substitute this value for p in the
expression g* — 252+ 2.

We have then :—g - % »— i 72+ 273+ 74 to be made a square, or

25 — 247 — 82+ 3273 4 16#4=2a square.

1. We take 5+/r+4s2 for the root, so that the absolute term and the term in »4
may disappear. We can make the term in » disappear also by putting 10/= —24 or
f= —%2. ‘We then have

=872+ 323 =12(f 2L 40) £ 85,

(2) The upper sign gives

-8+ 327=40+/2+8f7,

I
and r=(F1+48)/(32-8) =2
b =3 =g =580
thus 2 by and x=p2%-1 00

(&) The lower sign gives
—8+32r= - 40+/2-8f7,

and r=(f2- 3a)l(3a+8) =~ 1
thus #= 3 , and .ac::i-’-g-Ji as before.
20 400
3 2
We have therefore x+1= (‘,’—t) , and X2+1= (@2) .
20 400

2. Another solution is found by assuming the root to be 5+ /7 +¢7* and determining
fand g so that the absolute term and the terms in 7, #* may vanish; the resalt is

__I2 172 _2/g—331 1550
r= 5' %5 T "6 T 860!
_ 2239 2047837 _(2239\*
whence T 1722’ x—1965284’ x+1—(x7n>
2, ._ (3603685\%
and x+l—(2—965284 .
I1. Method of “ double-equation.”
22+ =43,
%+ 1=22

The difference =% - .
(1) If we take as factors x, x—1 and, as usual, equate the square of half their

. I
difference, or ;, to x+ 1, we have

or z=-=3,
4
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The absolute terms in the last case are made equal by multiply-
ing the second equation by (128)? or 16384.

(3) One separate case must be mentioned which cannot be
solved, from Diophantus’ standpoint, by the foregoing method,
but which sometimes occurs and is solved by a special artifice.

The form of double-equation is

ax®+ar=1u)... T ¢ 9§
Bt br=wf....ooiiiiiinl. ceeened(2).
Diophantus assumes 12 = 1s?,
whence, by (1), x = a|(m® - a),

(2) If we take %x, 2x— 2, as factors, half the sum of which is 3.:‘— 1, so that the

absolute terms may disappear in the resulting equation, we have

28 o 5 _
"—6—.1'1 zx—-xz,
9,5
or 6% 2
and =,
9

(3) To find another value by means of the first, namely x= — % , we substitute y—%
for x in the original expressions. We then have to solve
_3 25 _ 0
Py tE=u
NI
J p .

Multiply the latter by 'z_f so as to make the absolute terms the same, and we must have

Subtract from the first expression, and the difference is y’-—"’f: y=y ( y- %f) ; then,
equating the square of half the difference of the factors to the smaller expression,

we have
LY 25,
4 (4) =37t
so that 961 = 4009+ 100.
Therefore
_86x . _3_561 _[31\* _ (689\?
J’_4.oo’ and x—y-4—-4oo, x+r—(5) , 1= 00/

(4) If we start from the known value ‘-‘93 and put y+i<-’ for x in the equations, we

obtain Euler’s fourth value of x, namely "357?-3-7.
2965284
Thus all the four values ohtained by Euler are more easily obtained by the method of
the ‘ double-equation.” ’



DIOPHANTUS’ METHODS OF SOLUTION 87

and, by substitution in (2), we derive that

a \? ba
B (m’ — a) + A, must be a square,

@B + ba (1 — a)
(m* — o)
We have therefore to solve the equat}on
abm® + & (aB — ab) =17,
and this form can or cannot be solved by the methods already

given according to the nature of the coefficients’. Thus it can
be solved if (28~ ab)/a is a square or if /5 is a square.

or =a square,

Exx. from Diophantus:

6x° + 4x = 1?
6x“+§x=w“}’ (VL. 12.)
6x% — jxr =12
6x’—§x=wﬂ}' (VL. 14)

(6) Indeterminate equations of a degree higher than the second.

(1) Single equations.

These are properly divided by Nesselmann into two classes ;
the first comprises those problems in which it is required to make
a function of #, of a degree higher than the second, a square; the
second comprises those in which a rational value of x has to be
found which will make any function of #, not a square, but a higher
power of some number. The first class of problems requires the
solution in rational numbers of

Ax"+ Bx" 1+ ...+ Kx + L =37
the second the solution of

Az + Bx™ ...+ Kx + L =25
for Diophantus does not go beyond making a certain function of
x a cube. In no instance, however, of the first class does the index
n exceed 6, while in the second class # does not (except in a
special case or two) exceed 3.

1 Diophantus apparently did not observe that the above form of double-equation can
be reduced to one of the first degree by dividing by x2 and substituting y for 1/x, when it
becomes

atay=u?
B+by=22

Adapting Bachet’s second condition, we see that the equations can be rationally solved
if (Ba — ab)/a is a square, which is of course the same as one of the conditions under which
the above equation #é7%+a (aB — ab) can be solved.
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First Class. Equation
Ax*+ Bx 4 .+ Kx+ L =3~
The forms found in Diophantus are as follows:

1. Equation AxS+ B+ Cxr + d? =52

Here, as the absolute term is a square, we might put for y
the expression mx + @, and determine 7z so that the coefficient
of x in the resulting equation vanishes. In that case

2md=C, and m = (CJ2d;
and we obtain, in Diophantus’ manner, a simple equation for z,
giving
C*— 4d*B
T T4dMA

Or we might put for y the expression #%?+nx+ d, and deter-
mine 2, # so that the coefficients of , #? in the resulting equation
both vanish, in which case we should again have a simple equa-
tion for . Diophantus, in the only example of this form of
equation which occurs (VI. 18), makes the first supposition. The
equation is

=32 3xr + 1 =373

and Diophantus assumes y = §x + 1, whence = 2.

2. Equation Azx*+ BrS+ Cx*+ Dr+ E =3~

In order that this equation may be solved by Diophantus’
method, either 4 or £ must be a square. If 4 is a square and

B .

equal to 2% we may assume y=ax2+ﬁx+7z, determining 7z so
that the term in #? vanishes. If E is a square (= ¢?), we may write
J'=mx“+-§—);x+ ¢, determining sz so that the term in #2 in the

resulting equation may vanish. We shall then, in either case,
obtain a simple equation in .
The examples of this form in Diophantus are of the kind
a*xt + Br* + Cx* + Dx + 2 =9,
where we can assume y =t ax®+ £z + ¢, determining 4 so that in
the resulting equation the coefficient of x* or of # may vanish;
when we again have a simple equation.
Ex. from Diophantus (1. 28):
oxt — 41+ 622 — 122+ 1 =7,
Diophantus assumes y = 3#*— 6z + 1,and the equation reduces to
32%%—36x?=0, whence x=§.
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Diophantus is guided in his choice of signs in the expression
+ ax® + kx + ¢ by the necessity for obtaining a “ rational” result.

Far more difficult to solve are those equations in which, the
left-hand expression being bi-quadratic, the odd powers of x are
wanting, ze. the equations Ax*+ Cx?+E =3* and Ax*+ E=p",
even when 4 or E is a square, or both are so. These cases
Diophantus treats more imperfectly.

3. Equation Azt + Cxt+ E=5°
Only very special cases of this form occur. The type is
@t — e =,
which is written

2
aﬂxﬂ—ﬁ+-g—= /2
=7

Here y is assumed to be ar or ¢z, and in either case we have
a rational value for .
Exx. from Diophantus:

25
25x2_9+2172= 3 (V. 27.)
This is assumed to be equal to 252
25 2 25 2
—x?—25+—= =97 V. 28.
2 5+ =7 (v.28)

where »? is assumed to be equal to 25/422

4. Equation Azt 4+ E =~
The case occurring in Diophantus is 4+ 97 =3* (V. 29). Dio-
phantus tries one assumption, ¥ =22 — 10, and finds that this gives
=, which leads to no rational result. Instead, however, of
investigating in what cases this equation can be solved, he simply
drops the equation ¢+ 97 = #* and seeks, by altering his original
assumptions, to obtain, in place of it, another equation of the same
type which can be solved in rational numbers. In this case, by
altering his assumptions, he is able to replace the refractory equa-
tion by a new one, x*+ 337=3" and at the same time to find a
suitable substitution for y, namely y=x?- 25, which brings out
a rational result, namely =12 This is a good example of his
characteristic artifice of “Back-reckoning,” as Nesselmann calls it.

5. Equatioh of sixth degree in the special form
28— Ax*+ Br+ =3~

1 “Methode der Zuriickrechnung und Nebenaufgabe.”
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It is only necessary to put ¥ =x%+¢, and we have
—Ax*+ B =2cx?,
B
A+2c’
which gives a rational solution if B/(4 + 2¢) is a square.

or x

6. If, however, this last condition does not hold, as in the case
occurring IV. 18, 2°—162°+ x + 64 =2% Diophantus employs his
usual artifice of “back-reckoning,” which enables him to replace
the equation by another, #®— 12823+ x + 4096 =3° where the
condition is satisfied, and, by assuming y =2%+ 64, x is found to
be .

Second Class. Equation of the form

Axr+ Ban i ...+ Kx+ L =35
Except for such simple cases as Ax? =33, Ax* =3 where it is only
necessary to assume y = mzx, the only cases occurring in Diophantus
are of the forms
Ax*+ Bx+ C=35,
Ax*+ B+ Cx + D=3~

1. Equation Ax*+ Bx + C=3"

There are only two examples of this form. First, in VL. 1 the
expression #* — 4x + 4 is to be made a cube, being already a square.
Diophantus naturally assumes x —2=a cube number, say 8, and
x=1I0.

Secondly, in VI. 17 a peculiar case occurs. A cube is to be
found which exceeds a square by 2. Diophantus assumes (x — I)?
for the cube and (#+ 1)* for the square, and thus obtains the
equation

=3+ 3xr—1=x"+2r+3,

or 23+ x=4x"+4,

previously mentioned (pp. 66-7), which is satisfied by x=4.
The question arises whether it was accidentally or not that this
cubic took so simple a form. Were x—1, ¥+ 1 assumed with
knowledge and intention? Since 27 and 25 are, as Fermat
observes?, the only integral numbers which satisfy the conditions,
it would seem that Diophantus so chose his assumptions as to lead
back to a known result, while apparently making them arbitrarily
with no particular reference to the end desired. Had this not

! Note on V1. 17, Qeuwres, 1. pp. 333—4» IL. p. 434. The fact was proved by Euler
(Algebra, Part 11. Arts. 188, 193). See note on V1. 17 infra for the proof.
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been so, we should probably have found him, here as elsewhere
in the work, first leading us on a false tack and then showing us
how we can correct our assumptions. The fact that he here
makes the right assumptions to begin with makes us suspect that
the solution is not based on a general principle but is empirical
merely.

2. Equation Ax*+ Bx*+ Cx+ D =3
If 4 or D is a cube number, this equation is easy of solution.

For, first, if 4 =43 we have only to write y =ar + , and we

32
obtain a simple equation in z.

Secondly, if D =48, we put y =3%,2 x4+ d.

If the equation is a®+®+ Bx*+ Cr+d®=3% we can use either
assumption, or we may put ¥ =ax + 4, obtaining a simple equation
as before,

Apparently Diophantus used the last assumption only; for
in IV. 27 he rejects as impossible the equation

8 — 2%+ 8xr— 1 =14 .
because ¥y =2x—1 gives a negative value x=— 2, whereas either
of the other assumptions gives a rational valuel.

(2) Double-equations.

. There are a few examples in which, of two functions of x, one
is to be made a square, and the other a cube, by one and the same
rational value of . The cases are for the most part very simple;
¢g. in VL. 19 we have to solve
x+2=p°
2z + 1= zﬂ} !
thus 3* = 22 and z = 2.
A rather more complicated case is VI. 21, where we have the
double-equation
28422 =3*
2B+ 22t r= z’} '
Diophantus assumes y =z, whence x = 2/(* — 2), and we have

() + 2 () + =
mi—2/ " “\mt—2) mr—2 7’

2m*
or m =25

1 There is a special case in which C and D vanish, 42+ Bx*=3% Here y is put
equal to m2x, and x=DB/(m?— 4). Cf. 1v. 6, 28 (2).
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To make 2m* a cube, we need only make 27 a cube or put
m=4. This gives x=14.

The general case

A +Bx*+ Cx=2°
o' +cx =y’}
would, of course, be much more difficult; for, putting y=mzx, we
have
x=c/(m*—b),

and we have to solve

4 (m’c b) + B< b) + C(m’ b) =%
or Comnt + c(Bec—26C) 2 4 bec (6C — Be) + Ad=15,

of which equation the above corresponding equation is a very -
particular case.

Summary of the preceding investigation.

I. Diophantus solves completely equations of the first degree,
but takes pains to secure beforehand that the solution shall be
positive. He shows remarkable address in reducing a number of
simultaneous equations of the first degree to a single equation in
one variable.

2. For determinate equations of the second degree he has
a general method or rule of solution. He takes, however, in the
Arithmetica, no account of more than one root, even where both
roots are positive rational numbers. But, his object being simply
to obtain some solution in rational numbers, we need not be
surprised at his ignoring one of two roots, even though he knew
of its existence.

3. No equations of a degree higher than the second are solved
in the book except a particular case of a cubic.

4. Indeterminate equations of the first degree are not treated
of in the work. Of indeterminate equations of the second degree,
as Ax* + Bx+ C=7 only those cases are fully dealt with in which
A or C vanishes, while the methods employed only enable us to
solve equations of the more general forms

Azx*+ C=9* and Ax*+ Bx+C=3*
when 4, or C, or }B* — A( is positive and a square number, or (in
the case of Ax" + C=y*) when one sclution is already known.
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5. For double-equations of the second degree Diophantus has
a definite method when the coefficient of #* in both expressions
vanishes ; the applicability of this method is, however, subject to
conditions, and it has to be supplemented in one or two cases by
another artifice. Of more complicated cases we find only a few
examples under conditions favourable for solution by his method.

6. Diophantus’ treatment of indeterminate equations of degrees
higher than the second depends upon the particular conditions of
the problems, and his methods lack generality.

7. More wonderful than his actual treatment of equations are
the clever artifices by which he contrives to avoid such equations
as he cannot theoretically solve, eg. by his device of “back-
reckoning,” instances of which would have been out of place in
this chapter and can only be studied in the problems themselves.

I shall not attempt to class as “methods” certain headings
in Nesselmann’s classification of the problems, such as (@) “ Solution
by mere reflection,” (4) “ Solution in general expressions,” of which
there are few instances definitely so described by Diophantus, or
(¢) “ Arbitrary determinations and assumptions.,” The most that
can be done by way of describing these “methods” is to quote
a few characteristic instances. This is what Nesselmann has
done, and he regrets at the end of his chapter on “ Methods of
Solution” that it must of necessity be so incomplete. To under-
stand and appreciate the various artifices of Diophantus it is in
fact necessary to read the problems themselves in their entirety.

With regard to the “ Use of the right-angled triangle,” all that
can be said of a general character is that only “rational” right-
angled triangles (those namely in which the three sides can all be
represented by rational numbers) are used in Diophantus, and
accordingly the introduction of the “right-angled triangle” is
merely a convenient way of indicating the problem of finding
two square numbers, the sum of which is also a square number.
The general form used by Diophantus (except in one case, VI 19,
gv.) for the sides of a right-angled triangle is (a?+ &%), (2*— &%),
2ab, which expressions clearly satisfy the condition

(a2 + %) = (@ — &) + (2ab)
The expression of the sides of a right-angled triangle in this form
Diophantus calls “forming a right-angled triangle from the
numbers @ and 4” His right-angled triangles are of course
formed from particular numbers. “Forming a right-angled



94 INTRODUCTION

triangle from 7, 2” means taking a right-angled triangle with sides
(72 + 2%, (72— 2%, 2.7.2, or 53, 45, 28.

II. METHOD OF LIMITS.

As Diophantus often has to find a series of numbers in
ascending or descending order of magnitude, and as he does not
admit negative solutions, it is often necessary for him to reject
a solution which he has found by a straightforward method
because it does not satisfy the necessary condition; he is then
very frequently obliged to find solutions which lie within certain
limits in place of those rejected.

I. A very simple case is the following: Required to find
a value of x such that some power of it, 7, shall lie between two
given numbers. Let the given numbers be ¢, 8. Then Diophantus’
method is to multiply both 2 and & by 2%, 3 and so on, successively,
until some #th power is seen which lies between the two products.
Thus suppose that ¢* lies between 4" and 4" ; then we can put
z=c¢[p, in which case the condition is satisfied, for (¢[p)* lies
between & and b.

Exx. In 1v. 31 (2) Diophantus has to find a square between
14 and 2. He multiplies both by a square, 64 ; this gives 8o and
128, and 100 is clearly a square which lies between them; there-
fore (42)* or §§ satisfies the prescribed condition.

Here, of course, Diophantus might have multiplied by any
other square, as 16. In that case the limits would have become
20 and 32; between these lies the square 25, which gives the same
square 4§ as that before found.

In VI 21 a sixth power (“cube-cube”) is sought which shall
lie between 8 and 16. The sixth powers of the first four natural
numbers are I, 64, 729, 4096. Multiply 8 and 16 by 2¢ or 64, and
we have as limits 512 and 1024, between which 729 lies. There-
fore 722 is a sixth power satisfying the given condition. To
multiply by 729 in this case would not give us a solution.

2. Sometimes a value of x has to be found which will give
some function of x a value intermediate between the values of two
other functions of x.

Ex. 1. In1v. 25 it is necessary to find a value of x such that
8/(x* + x) shall lie between z and x + 1.
The first condition gives 8 > 2% + 22,
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Diophantus accordingly assumes that
8=(x+3)=2"+2"+4r +4r,
which is greater than x%+ 22

Thus » =} satisfies one condition. It is also seen to satisfy
- 8 .
the second condition, or g <z+1. Diophantus, however, says

nothing about the second condition being satisfied; his method is,
therefore, here imperfect.

Ex. 2. In V. 30 a value of » has to be found which shall make
x>} (#*— 60) but < 1(x*—60),

that is, 22— 60> 5%
»—-60<8x"

Hence, says Diophantus, x is not less than 11 and not greater
than 12. We have already spoken (p. 60 sqq.) of his treatment
of such cases.

Next, the problem in question requires that 22—60 shall be
a square. Assume then that

x2— 60 = (x— m),
and we have z = (m+ 60)/ 2.

Since, says Diophantus, x is greater than 11 and less than 12,
it follows that
m?+ 60> 22 but <24m;

and # must therefore lie between 19 and 21 (cf. p. 62 above).
He puts # =20, and so finds xr=114.

III. METHOD OF APPROXIMATION TO LIMITS.

We come, lastly, to a very distinctive method called by
Diophantus maptadrns or wapicéryros dyeyy. The object of this
is to solve such problems as that of finding two, or three, square
numbers the sum of which is a given number, while each of them
approximates as closely as possible to one and the same number.

This method can be best exhibited by giving Diophantus’ two
instances, in the first of which #wo such squares, and in the second
three, are required. In cases like this the principles cannot be
so well indicated with general symbols as with concrete numbers,
which have the advantage that their properties are immediately
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obvious, and the separate expression of conditions is rendered
unnecessary.
Ex. 1. Divide 13 into two squares each of which >6 (V. g9).
Take half of 13, or 64, and find what small fraction 1/#? added
to it will make it a square: thus

I
5,}.;3%, or 26+?,must be a square.

Diophantus assumes

I I\?
X _ I 612 = 2
26+ (5+y),orzy+r 7+,

whence y = 10 and 1/y* = ¢}y, or 1/ =g}y ; and
6% + g4y =a square, (5
[The assumption of (57+1)* is not arbitrary, for assume
262+ 1 =(py+1) and y is then 2p/(26 —2?); since 1/y should be
a small proper fraction, 5 is the most suitable and the smallest
possible value for g, inasmuch as 26 ~ 2 < 2p or 2+ 2p + 1 > 27.]
It is now necessary, says Diophantus, to divide 13 into two
squares the sides of which are both as near as possible to §3.
Now the sides of the two squares into which 13 is naturally
decomposed are 3 and 2, and
3is > & by o,
2is < §} by 4.
But, if 3 ~4%, 2 + 4§ were taken as the sides of two squares, the
sum of the squares would be
2. 2601

2 (§3r= )

400

which is > 13.

Accordingly Diophantus puts 3 — 9z, 2+ 11x for the sides of
the required squares, where therefore x is not exactly & but
near it.

Thus (3—92)*+(2+ 112) =13,
and Diophantus obtains r=f5.

The sides of the required squares are 457, 258

[It is of course a necessary condition that the original number,
here 13, shall be a number capable of being expressed as the sum
of two squares.]



DIOPHANTUS' METHODS OF SOLUTION 97

Ex. 2. Divide 10 into three squares such that each of them
is > 3 (v. 11).

[The original number, here 10, must of course be expressible
as the sum of three squares.]

Take one-third of 10, or 3}, and find what small fraction of the
form 1/2* added to 3} will make a square; ze. we have to make

9
3O+;72

Diophantus assumes
30+ 1=(+ 1),
whence y = 2 and therefore 1/2? = g4 ; and 34 + 4 =142%, a square.
[As before, if we assume 3092 =(2y + 1)} ¥ =2p/(30—2%); and,
since 1/y must be a small proper fraction, 30 —p? should be < 2,
or 224+2p+1>31. Accordingly Diophantus chooses 5 for p as
being the smallest possible integral value,]

We have now, says Diophantus, to make each of the sides
of our required squares as near as may be to 4t

Now 10=9+1=3+@@+@®)"

and 3, §, # are the sides of three squares the sum of which is 10.

a square, or 309®+ I a square, where 3/x=1/y.

Bringing (3, ¢, 4) and 4! to a common denominator, we have

(88, 33, 3) and -
And 3>4% by 35,
§ <8 by 8,
$<48 by 3
If now we took 3—§5, 3+ 8%, 4+ 384 for sides of squares, the
sum of the squares would be 3 (31)® or 288, which is > 10,
Accordingly Diophantus assumes as the sides of the three
required squares
3—35%, §+374 $+314,
where x must therefore be not exactly 3i; but near it.
Solving (3 —35%) +(3+ 37%)° +(} + 312 =10,
or 10— 1162+ 35554?=10,
we find =45
the required sides are therefore
WL PR, PR,

and the required squares

9 165%9#
Jﬂ%‘ss 41 > 13%85?1" 506 .
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Other instances of the application of the method will be found
in V. 10, 12, 13, 14, where, however, the squares are not required to
be nearly equal, but each of them is subject to limits which may
be the same or different; e¢g. sometimes each square is merely
required to be less than a given number (10, say), sometimes the
squares lie respectively between different pairs of numbers, some-
times they are respectively greater than different numbers, while
they are always subject to the condition that their sum is a given
number.

As it only lies within the scope of this Introduction to explain
what we actually find in Diophantus, I cannot do more than give
a reference to such investigations as those of Poselger in his
“Beitrdge zur unbestimmten Analysis” published in the Adkand-
lungen der Komiglichen Akademie der Wissenschaften zu Beriin aus
dem [ahre 1832, Berlin, 1834. One section of this paper Poselger
entitles “ Anndherungs-methoden nach Diophantus,” and obtains
in it, on Diophantus’ principles, a method of approximation to the
value of a surd which will furnish the same results as the method
of continued fractions, with the difference that the “ Diophantine
method” is actually quicker than the method of continued frac-
tions, so that it may serve to expedite the latter.



CHAPTER V
THE PORISMS AND OTHER ASSUMPTIONS IN DIOPHANTUS

I HAVE already mentioned (it Chapter 1.) the three explicit refer-
ences made by Diophantus to “ The Porisms” and the possibility
that, if these formed a separate work, it may have been from that
work that Diophantus took a number of other propositions relating
to properties of numbers which he enunciates or tacitly takes for
granted in the Arithmetica.

I begin with the three propositions for which he expressly
refers to “ The Porisms.”

Porism 1. In V. 3 he says, “We have it in the Porisms that,
¢If each of two numbers and their product when severally added to
the same given number produce squares, the squares with which
they are so connected are squares of two consecutive numbers.”

That is to say, if x+a=m? y+a=#% and if zy+a is also a
square, then m~z=1.

The theorem is not correctly enunciated, for it would appear
that m ~#n=1 is not the only condition under which the three
expressions may be simultaneously squares.

For suppose

x4+a=m? yt+a=n’, xyta=p.

By means of the first two equations we have

xy+a=mnt—a(m*+n—1)+ a2

In order that

w2 —a(m+ 2 —1)+a
may be a square certain conditions must be satisfied. One suffi-

cient condition is
mE + nt— 1 = 2mn,

or me~n=+1I,
which is Diophantus’ condition.

1 Literally ¢‘(the numbers) arise from two consecutive squares” (yeybvasw éard 5o

TeTparydwwy T@v kard 7O €kfs).
7—2



100 INTRODUCTION

But we may also regard
mn — @ (12— 1) + a*=p°
as an indeterminate equation in » of which we know one solution,
namely m =7+ I.

Other solutions are then found by substituting 2+ (7 + 1) for
m, whence we obtain the equation

(P—=a)s2+2{n*(nt1)—a(nt1)}s
+(r—a) (et 1P—a(m—1)+at=72"
or (B=a)2+2(m—a)(nt1)s+{n(nt1)—al*=2
which is easy to solve in Diophantus’ manner, since the absolute
term is a square.
But in the problem V. 3 #kree numbers are required, such that
each of them, and the product of each pair, when severally added

to a given number, produce squares. Thus if the third number be
4, three additional conditions have to be satisfied, namely

gta=11, sxrt+a=1, zyt+a=nl
The two last conditions are satisfied, if 7 + 1 =1, by putting
e=2(x+Y)— 1 =41+ 4m + 1 — 44,
when xz+a={m(2m+ 1) - 2a}*
and ye+a={(m+1)(2m + 1) — 22}*;
and perhaps this means of satisfying the conditions may have
affected the formulation of the Porism

The problem V. 4 immediately following assumes the truth of
the same Porism with — 2 substituted for + .

Porism 2. In V. 5 Diophantus says, “ Again we have it in the
Porisms that, ‘ Given any two consecutive squares, we can find in
addition a third number, namely the number greater by 2 than the
double of the sum of the two squares, which makes the greatest of
three numbers such that the product of any pair of them added to
either the sum of that pair or the remaining number gives a square.””

That is, the three numbers

wd, (m+1)% 4(m+m+ 1)

! Euler has a paper describing and illustrating a gencral method of finding such
“porisms ” the effect of which is to secure that, when some conditions are satisfied, the
rest are simultaneously satisfied (‘“De problematibus indeterminatis quae videntur plus
quam determinata” in Novi Commentarii Acad. Petropol. 1756~57, Vol. vI. (1761),
p- 85 sqq. = Commeniationes arithmeticae collectae, 1. pp. 245—259). This particular
porism of Diophantus appears as a particular case in § 13 of the paper.
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have the property that the product of any two plus either the sum
of those two or the remaining number gives a square. In fact, if
X, ¥, Z denote the numbers respectively,

XY+ X+ Y=(m+ m+1)%, XY+Z=(m+ m+2)
YZ + Y+ Z=0m*+3m+3), YZ+X=m+3m+2)}
X+ Z+X=0m+ m+2),, ZX+ V=>0m+ m+1)2

Porism 3 occurs in V. 16. Unfortunately the text is defective
and Tannery has had to supply three words?; but there can be no
doubt that the correct statement of the Porism here in question is
“The difference of any two cubes is also the sum of two cubes,”
Ze. can be transformed into the sum of two cubes, or two cubes can
be found the sum of which is equal to the difference between any
two given cubes. Diophantus contents himself with the enuncia-
tion of the proposition and does not show how to prove it or how
he effected the transformation in practice. The subject of the
transformation of sums and differences of cubes was investigated
by Vieta, Bachet and Fermat.

Vieta (Zetetica, IV. 18-20) has three problems on the subject.

(1) Given two cubes, to find in rational numbers two other
cubes such that their sum is equal to the difference of the given
cubes®,

As a solution of a®— & =%+ 43, he finds

x_a(aa—-zb") _b(22-b)
S Tovr VT Tavp

1 Exopev 8¢ év rots Toplopacw 8r < wdprrwy ddo KiBuv % dmepoxh KVBwy <dlo civfeud
éorv>."
2 The solution given by Vieta is obtainable thus. The given cubes being a3, &3, where
a>b, we assume x - 5, @ — kx as the sides of the required cubes.
Thus (x =83+ (a- Ax)3=a’ -3,
whence 23 (1 - 28) + 342 (aA2 - 8) + 3 (62 - a®£) =o.
This reduces to a simple equation if we assume
b2 - a%=o0, or k=4a?,
in which case
2= 300=98) _ 30%
-8 a3+ 8%
and the sides of the cubes are therefore
b(2a3-83)  a(a®~1289)
B+B B+8
Vieta’s second problem is similarly solved by taking a+#, £x—& as the sides of the
required cubes, and the third problem by taking x - &, &x — a as the sides of the required
cubes respectively.
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(2) Given two cubes, to find in rational numbers two
others such that their difference is equal to the sum of the given
cubes.

Solving a® + & = x* — 3?3, we find that

_a{@+2p) _b5(d+¥)
== VT e

(3) Given two cubes, to find in rational numbers two cubes
such that their difference is equal to the difference of the given
cubes.

For the equation a3 — 5* = z* — 7, Vieta finds

b(zat -8 a (283 -
w2 TF ), 5= —‘(asn's'“)
as a solutiont

In the solution of (1) x is clearly negative if 26° > a*; therefore,
in order that the result may be “rational,” 4® must be >24. But
for a “rational ” result in (3) we must, on the contrary, have &® < 282
Fermat was apparently the first to notice that, in consequence, the
processes in (1) and (3) exactly supplement each other, so that by
employing them successively we can effect the transformation
required in (1) even when & is not > 2%

The process (2) is always possible; therefore, by a suitable
combination of the three processes, the transformation of a sum
of two cubes into a difference of two cubes, or of a difference of
two cubes into a sum or a difference of two other cubes is always

1 Vieta’s formulae for these transformations give any number of very special solutions
(in integers and fractions) of the indeterminate equation 43+ 37 + 23=25, including solutions
in which one of the first three cubes is negative. These special solutions are based on
the assumption that the values of two of the unknowns are given to begin with. Euler
observed, however, that the method does not give all the possible values of the other two
even in that case. Given the cubes 33 and 43, the method furnishes the solution
?,3+43+(4—36—75 g (%)3, but not the simpler solution 33+43+53=63. Euler ac-
cordingly attacked the problem of solving the equation 3+3%+33=23 more generally.
He began with assuming only one, instead of two, of the cubes to be given, and, on that
assumption, found a solution much more general than that of Vieta. Next he gave a
more general solution still, on the assumption that zoxe of the cubes are given to begin
with. Lastly he proceeded to the problem 70 find all the sets of three integral cubes the
sten of which is @ cube and showed how to obtain a very large number of such sets
including sets in which one of the cubes is negative (Novi Commentarii Acad. Petropol.
1756-57, Vol. V1. (1761), p. 1588 sq.=Commentationes arithmeticae, 1. pp. 193—207).
The problem of solving #3+y3=23+123 in integers in any number of ways had occupied
Frénicle, who gave a number of solutions (Ocuvres de Fermat, 111. pp. 420, 535) ; but the
method by which he discovered them does not appear.
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practicablel. Fermat showed also how, by a repeated use of the
several processes as required, we can transform a sum of two cubes
into a sum of two other cubes, the latter sum into the sum of two
others and so on ad infinitum?.

Besides the “Porisms” there are many other propositions
assumed or implied by Diophantus which are not definitely called

! Fermat (note on 1v. 2) illustrates by the following case :
Given two cubes 125 and 64, to transform their difference into the sum of two other

cubes.
Here a=5, 6=4, and so 263>43; therefore we must first apply the third process

by which we obtain
(%) -@)
3.8 (242)° _ (5
£-¢=\5 63

3 3
As (%4;—;8> >2 (-5—) , we can, by the first process, turn the difference between the

63
3 3
cubes (Qis and i) into the sum of two cubes.
63 63

“In fact,” says Fermat, “if the three processes are used in turn and continued
ad infinitum, we shall get a succession ad dnfinitum of two cubes satisfying the same
condition ; for from the two cubes last found, the sum of which is equal to the difference
of the two given cubes, we can, by the second process, find two more cubes the difference
of which is equal to the sum of the two cubes last found, that is, to the difference
between the two original cubes; from the new difference between two cubes we can
obtain a new sum of two cubes, and so on ad infnitum.”

As a last illustration, to show how a difference between cubes can be transformed into
the difference between two other cubes even where the condition for process (3) is not
satisfied, Fermat takes the case of 8 ~1, 7.. the case where

a=2, b=1 and a3>283,

First use process (1) and we have

s ()
3 3
Then use process (2), and

() +6)-(=)- (&)
- + (- = — - —) -
3 3 183 183
2 Suppose it required to solve the fourth problem of zransforming the sum of two cubes
into the sum of two other cubes.

Let it be required so to transform 23+13 or g.
First transform the sum into a difference of two cubes by process (z). This gives

84 3= 2)3_(11)3,
B (7 :

The latter two cubes satisfy the condition for process (3) and, applying that process,

we get
(5)'- ()= () - ()
7 7 90391 99391
The cubes last found satisfy the condition for process (1), and accordingly the difference

between the said last cubes, and therefore the sum of the original cubes, is at last trans-
formed into the sum of two other cubes.
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porisms, though some of them are of the same character as the
three porisms above described.
Of these we may distinguish two classes.

1. The first class of theorems or facts assumed without ex-
planation by Diophantus are more or less of the nature of zdestical
Jormulae. Some are quite simple, e.g. the facts that the expressions
{3(@+b6)j2—ab and a*(a+1)*+a*+(a+1)® are respectively
squares, that the expression 2(e*—a2)+ a+(a*—a) is always a
cube, and the like.

Others are more difficult and betoken a certain facility in work-
ing with quasi-algebraical expressions. Examples of this kind are
the following :

(@) If X=a%+42a, V=(a+1)Pxr+2(a+1),or, in other words,
if zxX+1=(ar+1)% 2V +1={(e+1)x+1}3% then XV +1is a
square [IV. 20]. As a matter of fact,

XY +i1={a(a+1)xr+(22+ 1)}
(B) 8 times a triangular number plus 1 gives a square [1v. 38].

In fact, 8 .f(—xg~1—)+ I=(2x+ 1)

(y) If Xta=m*, VYia=(m+1), and Z=2(X+ V)—1,
then the expressions YZ t+a, ZX +a, XV + a are all squares.
(The upper signs refer to the assumption in V. 3, the lower to that
inv. 4.)

In fact, YZ ga={(m+1)(2m+ 1) F 2a}?

ZX ta={m(2m+1)F 2a}?
ta={m(m+1)7al

@) fX=mt2, V=(m+1)*+2, Z=2{m*+(m+1)+ 1} +2,
then the six expressions

YZ-(V+2), ZX-(Z+X), XY—-(X+7)
YZ-X, ZX-Y, XY-2z
are all squares [V. 6).

In fact,

YZ—(Y+2)=(2m*+3m+3),, YZ—X=(2m+3m+4), etc.

2. The second class is much more important, consisting of a
number of propositions in the Theory of Numbers which we find
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" first stated or assumed in the Azithmetica. 1t was, in general, in
explanation or extension of these that Fermat’s most famous notes
were written. How far Diophantus possessed scientific proofs of
the propositions which he assumes, as distinct from a merely
empirical knowledge of them, must remain to a great extent
matter of speculation.

(@) Theorems in Diophantus respecting the composition of num-
bers as the sum of two squares.

(1) Any square number can be resolved into two squares in
any number of ways, II 8.

(2) Any number which is the sum of two squares can be
resolved into two other squares in any number of ways, IL 9.

N.B. Itis implied throughout that the squares may be frac-
tional as well as integral.

(3) If there are two whole numbers eack of whick is the sum of
two squares, their product can be resolved into the sum of two squares
in two ways, I1L 19.

The object of 11I. 19 is to find four rational right-angled triangles
having the same hypotenuse. The method is this. Form two
right-angled triangles from (2, 4) and (¢, d) respectively, Ze. let
the sides of the triangles be respectively

@+ B ot -8, 2ab,
and e+ dy E—-db 2.

Multiplying all the sides in each by the hypotenuse of the other,
we have two triangles with the same hypotenuse, namely

(@ + &) (2 + d?), (& — &) (S + d%), 2ab (¢ + Y,

and (@ + &) (A + a°), (a*+ &) (¢ — d?); 2cd (@® + B°).

Two other triangles having the same hypotenuse are obtained
by using the theorem enunciated. In fact,

@+ 8)(& + d%) =(ac + bd)* + (ad T bc)?

and the triangles are formed from actéd, ad¥ bc, being the
triangles

(@ + B)( + @), 4abcd + (a* — 8 (¢ — d%), 2 (ac + bd)(ad — k),

(@3 + B (@ + d%), 4abed— (a2 — b)( — d?), 2 (ac — bd)(ad + k).
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In the case taken by Diophantus
a2+52= 22 4 I?'=5,
E+dr=3+22=13,
and the four triangles are respectively

(65, 52, 39), (65, 60, 25), (65,63, 16), (65, 56, 33)-
(If certain relations! hold between e, &, ¢, d, this method fails,
Diophantus has provided against them by taking two triangles “in
the smallest numbers” (Jmd \ayioTov dpifudv), namely 3,4, 5 and

5, 12, I3.) v

Upon this problem III. 19 Fermat has a long and important
note which begins as follows®:

“[1] A prime number of the form 4z + I is the hypotenuse of
a right-angled triangle in one way only, its square is so in two
ways, its cube in three, its biquadrate in four ways, and so on ad
infinitum.

“[2] The same prime number 47+ 1 and its square are the
sum of two squares in one way only, its cube and its biquadrate
in two ways, its fifth and sixth powers in three ways, and so on ad
infinitum.

“[3] If a prime number which is the sum of two squares be
multiplied into another prime number which is also the sum of
two squares, the product will be the sum of two squares in two
ways ; if the first prime be multiplied into the square of the second

1 (1) We must not have a/b=c/d or a[b=d|c, for in either case one of the perpendiculars
of one of the resulting triangles vanishes, making that triangle illusory. Nor (2) must
¢/ld be equal to (a+8)/(a-8) or to (a~b)/(a+85), for in the first case ac—~bd=ad+ b,
and in the second case ac+dd=ad-dc, so that one of the sums of squares equal to
(224 8%) (2 +d?) is the sum of two egual squares, and consequently the triangle formed
from the sides of these equal squares is illusory, one of its perpendicular sides vanishing.

2 G. Vacca (in Bibliotheca Mathematica, 113. 1901, pp. 358-9) points out that Fermat
seems to have been anticipated, in the matter of these theorems, by Albert Girard, who
has the following note on Diophantus V. g (Oeuwres mathématiques de Simon Stevin par
Albert Girard, 1634, p. 156, col. 1):

¢ ALB. GIR. Determinaison d’un nombre qui se peut diviser en deux guarres entiers.

I. Tout nombre quarré.

II. Tout nombre premier qui excede un nombre quaternaire de P'unité.

III. Le produict de ceux qui sont tels.

IV. Etle double d'un chacun d’iceux.

Laquelle determinaison n’estant faicte n’y de I’Autheur n’y des interpretes, servira tant
en la presente et suivante comme en plusieurs autres.”

Now Girard died on g December, 1632; and the Theorems of Fermat above
quoted are apparently mentioned by him for the first time in his letter to Mersenne of
25 December, 1640 (Qeuvres de Fermat, 11, p. 213). Was the passage of Girard known
to Fermat ?
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prime, the product will be the sum of two squares in three ways;
if the first prime be multiplied into the cube of the second, the
product will be the sum of two squares in four ways, and so on
ad infinitum”

It is not probable that Diophantus was aware that prime num-
bers of the form 47+ 1 and numbers arising from the multiplication
of such numbers are the only classes of numbers which are always
the sum of two squares; this was first proved by Euler’% But it
is remarkable that Diophantus should have selected the first two
prime numbers of the form 4z + 1, namely 5 and 13, which are
both sums of two squares, as the hypotenuses of his first two right-
angled triangles and then made their product, 65, the hypotenuse
of other right-angled triangles, that product having precisely the
property of being, as in Fermat’s [3], the sum of two squares in
two ways. Diophantus may therefore have had an inkling, whether
obtained empirically or otherwise, of some of the properties enunci-
ated by Fermat.

(4) Still more remarkable is a conditionf possibility of solution
prefixed to the problem v. 9. The object of this problem is “to
divide 1 into two parts such that, if a given number is added to
either part, the result will be a square.” Unfortunately, the text
of the added condition is uncertain. There is no doubt about the
first few words, « The given number must not be odd,” i.e. No number
of the form 4n + 3 [or 4n — 1] can be the sum of two squaves.

The text, however, of the latter half of the condition is corrupt.
The true condition is given by Fermat thus: “ 7he given number
maust not be odd, and the double of it increased by one, when divided
by the greatest squave which measures it, must not be divisible by a
prime number of the form 4n—1” (Note upon V. g; also in a
letter to Robervald) There is room for any number of conjectures
as to what may have been Diophantus’ words*,

1 For a fuller account of this note see the Supplement, section 1.

3 Novi Commentarii Acad. Petropol. 1752-3, Vol. 1V. (1758), pp. 3-40, and 17545,
Vol. v. (1760), pp. 3-58= Commentationes arithmeticae, 1. pp. 155-173 and pp. 210~233 ;
cf. Legendre, Zaklentheorie, tr. Maser, 1. p. 2083 Weber and Wellstein’s Encyclopidie
der Elementar-Matkematik, 1,. pp. 285 sqq.

3 Qcuvres de Fermat, 11. pp. 203~4. See the Supplement, section 1.

4 Bachet's text has 3¢l 8% Tov 6dbuevor phre mepioody elvac, pihre & Surhactwy adrod
Y’ u° &. pelfova Exy uépos 3. 4 perpeirac bmd Tod @b, 9,

He also says that a Vatican MS. reads wire 6 durhaciwv adrol épefudv povdda a.
petfova Exy uépos Téraprov, 1) perpelrar tmd Tob wpdirov dpifuod.

Neither does Xylander help us much. He frankly tells us that he cannot understand
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There would seem to be no doubt that in Diophantus’ condition
there was something about “double the number” (¢e. a number of
the form 4#), also about “ greater by unity ” and “a prime number.”
It seems, then, not unlikely that, if Diophantus did not succeed in
giving the complete sufficient and necessary condition stated by
Fermat, he made an approximation to it; and he certainly knew
that no number of the form 47+ 3 could be the sum of two
squares .

(6) Omn numbers whick ave the sumn of three squares.

In the problem v. 11 a condition is stated by Diophantus re-
specting the form of a number which, added to three parts of unity,
makes each of them square. If @ be this number, clearly 32+ 1
must be divisible into three squares.

Respecting the number @ Diophantus says, “ It must not be 2
or any multiple of 8 increased by 2.”

That is, @ number of the form 24n+ 7 cannot be the sum of three
squares. Now the factor 3 of 24 is irrelevant here, for with respect
to three this number is of the form 3z + 1, and this, so far as 3 is
concerned, might be a square or the sum of two or three squares.
Hence we may neglect the factor 3 in 24s.

We must therefore credit Diophantus with the knowledge of

the passage. ° Imitari statueram bonos grammaticos hoc loco, quorum (ut aiunt) est
multa nescire. Ego verd nescio heic non multa, sed paene omnia. Quid enim (ut
reliqua taceam) est wfre 8 Serhasiwy adrol ap ué a etc., quae causae huius mposdiopiouod,
quae processus? immo qui processus, quae operatio, quae solutio ?”

Nesselmann discusses an attempt made by Schulz to correct the text, and himself
suggests wire Tov durhaslova adrol dpfudv povdde uelfova Exew, 8s werpetrac Umd rTwos
wpdrov dpifuol. But this ignores uépos réraprov and is not satisfactory.

Hankel, however (Gesch. d. Matk. p. 169), says: “Ich zweifele nicht, dass die
von den Msscr. arg entstellte Determination so zu lesen ist: Ael 07 Tov didbuevor wire
wepoody elvar, phre Tov dimhagtova avrol dpibudv povdde & uelfova perpeicfar Ywd TOU
wpdrov apbued, 8s &v pmovdde @ pelfwv Exp pépos Téraprov.” This correction secems a
decidedly probable one. Here the words uépos réraprov find a place; and, secondly,
the repetition of uovdde & pelfwv might well confuse a copyist. 7ov for o0 is of course
natural enough ; Nesselmann reads 7wos for Tov.

Tannery, improving on Hankel, reads Aet 6% Tov 8:5bpevor wire wepirody elvar, pfre
7oy Surhdotor alrod kal movdde mg uelfova perpeisbor Ymd Tov wpdrov dplbuol <ol &
povdde plg pelfwv > Exp pépos Téraprov +, ¢ the given number must not be odd, and twice
it pls 1 must not be measured by any prime number which, when increased by 1, is
divisible by 4.”

1 A discussion of the text and a suggestion as to the considerations which may have
led to the formulation of the condition will he found in Jacobi, ‘¢ Ueber die Kenntnisse
des Diophantus von der Zusammensetzung der Zahlen” (Berliney Monatsberichte, 1847 ;
Gesammelte Werke, V1., 1891, pp. 332-344).
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the fact that no number of the jform 8n-+7 can be the sum of
three squares'.

This condition is true, but does not include @/ the numbers
which cannot be the sum of three squares, for it is not true that
all numbers which are not of the form 8 4 7 are made up of three
squares. Even Bachet remarked that the number 2 might not be
of the form 327+09, or a number of the form 96#+ 28 cannot be
the sum of three squares.

Fermat gives the conditions to which & must be subject thus?.

Write down two geometrical series (common ratio of each 4),
the first and second series beginning respectively with 1, 8,

I 4 16 64 256 1024 4096

8 32 128 512 2048 8192 32768;
then @ must not be (1) any number obtained by taking twice any
term of the upper series and adding all the preceding terms, or
(2) the number found by adding to the numbers so obtained any

multiple of the corresponding term of the second series.
Thus « must not be

8&+2.1 = 8k+2,
328+2.4+1 = 32k+9,
1284 4+2.16 4441 =128%+ 37,

51224 2.64+ 16+ 4+ 1 =512&+ 149,

and so on, where £=0 or any integer.

Thatis,sinceI +4+4*+ ... +4" 7 =3(4"— 1), 2 cannot be either

2.4"+3@"-1)=%(7.4"~1)

or 2.4+ 37 4" —1)=3}(24k. 4"+ 7 4" —1);
therefore 3a + I cannot be of the form 4" (24% + 7) or 4* (8% + 7).

Again, there are other problems, eg. V. 10 and V. 20, in which,
though conditions are necessary for the possibility of solution, none
are mentioned ; but suitable assumptions are tacitly made, without
explanation. It does not follow, from the omission to state the
conditions, that Diophantus was ignorant of even the minutest

points connected with them; as, however, we have no definite
statements, we must be content to remain in doubt.

1 Legendre proved (Zaklentheorie, tr. Maser, 1. p. 386), that numbers of this form are
the only odd numbers which are not divisible into three squares.
2 Note on Diophantus v. r1.
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(¢) Composition of numbers as the sum of four squares.

Every number is either a square or the sum of two, three ov four
squares. This well-known theorem, enunciated by Fermat?, and
proved by Lagrange’ (who followed up results obtained by Euler)
shows at once that any number can be divided into four squares
either integral or fractional, since any square number can be divided
into two other squares, integral or fractional. We have now to look
for indications in the Arithmetica as to how far Diophantus was
acquainted with the properties of numbers as the sum of four squares.
Unfortunately, it is impossible to decide this question with anything
like certainty. There are three problems, IV. 29, 30 and V. 14, in
which it is required to divide a number into four squares, and from
the absence of mention of any condition to which the number must
conform, considering that in both cases where a number is to
be divided into #%rec or fwo squares, V. 11 and V. 9, he does
state a condition, we should probably be right in inferring that
Diophantus was aware, at least empirically, that any number could
be divided into four squares. That he was able to prove the
theorem scientifically it would be rash to assert. But we may
at least be certain that Diophantus came as near to the proof of
it as did Bachet, who takes all the natural numbers up to 120
and finds by trial that all of them can actually be expressed
as squares, or as the sum of two, three or four squares in whole
numbers. So much we may be sure that Diophantus could do, and
hence he might have empirically satisfied himself that it is possible
to divide any number into four squares, integral or fractional, even
if he could not give a rigorous mathematical demonstration of the

general theorem.

1 See note on Diophantus 1v. 29; cf. also section I. of the Supplement.

2 «Démonstration d’un théoréme d'arithmétique ” in Nowveaux Mémoires de I'Acad.
royale des sciences de Berlin, année 1770, Berlin 1772, pp. 123~133 = Oewwres de Lagrange,
111, pp. 187-201 ; cf. Wertheim’s account of the proof in his Diophantus, pp. 324-330.



CHAPTER VI

THE PLACE OF DIOPHANTUS

IN algebra, as in geometry, the Greeks learnt the beginnings
from the Egyptians. Familiarity on the part of the Greeks with
Egyptian methods of calculation is well attested. Thus (1) Psellus
in the letter published by Tannery?! speaks of “the method
of arithmetical calculations used by the Egyptians, by which
problems in analysis are handled” (§ xat Alyvmrriovs Tov
Gplbucy péfodos, 8/ 7is olxovoueitar TE KaTd THY dvalvTikyy
mpoSAipara); the details which he goes on to give respecting
the technical terms for different kinds of numbers, including the
- powers of the unknown quantity, in use among the Egyptians
are doubtless taken from Anatolius. (2) The scholiast to Plato’s
Charmides 165E may be drawing on the same source when he
says that “parts of Aoyiosrics (the science of calculation) are the
so-called Greek and Egyptian methods in multiplications and
divisions, and the additions and subtractions of fractions....The
aim of it all is the service of common life and utility for contracts,
though it seems to deal with things of sense as if they were
perfect or abstract” (3) Plato himself, in the Lawws? says that
free-born boys should, as is the practice in Egypt, learn, side by
side with reading, simple mathematical calculations adapted to their
age, which should be put into a form such as to give amusement
and pleasure as well as instruction; eg. there should be different
distributions of such things as apples, garlands, etc., different
arrangements of numbers of boysin contests of boxing or wrestling,
illustrations by bowls of different metals, gold, copper, silver, etc.,
and simple problems of calculation of mixtures; all of which are
useful in military and civil life and “in any case make men more
useful to themselves and more wide-awake.”

1 Dioph. II. pp. 37-42. 2 Laws, VII. 819 A~C.
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The Egyptian calculations here in point (apart from their
method of writing and calculating in fractions, which differed
from that of the Greeks in that the Greeks worked with ordinary
fractions, whereas the Egyptians separated fractions into sums
of submultiples, with the exception of § which was not decomposed)
are the Zau-calculations, Hoaw, meaning a /eap, is the term used
to denote the unknown quantity, and the calculations in terms
of it are equivalent to the solutions of simple equations with one
unknown quantity’. Examples from the Papyrus Rhind? corre-
spond to the following equations:

w+x=19,
Jr+drtirtr=33,
(x+4x) — 3 (x + 32x) = 10.

Before leaving the Egyptians, it is right to mention their
anticipation, though in an elementary form, of a favourite method
of Diophantus, that of the “false supposition ” or “regula falsi”
as it is sometimes called. An arbitrary assumption is made as to
the value of the unknown, and the value is afterwards corrected
by a comparison of the result of substituting the wrong value in
the original expression with the actual fact. Two instances
mentioned by Cantor® may be given. The first, taken from the
Papyrus Rhind, is the problem of dividing 100 loaves among five
persons in numbers forming an arithmetical progression and such
that one-seventh of the sum of the first three shares is equal to
the sum of the other two. If a+4d, a+3d, a+24d, a+d, a
are the shares, we have

3a+9d=7 (2a+d),
or d=s%a.
Ahmes merely says, without explanation, “ make the difference,
as it is, 54, and then, assuming @ =1, writes the series 23, 173,
12, 64, 1. The addition of these gives 60, and 100 is 1% times 60.
Ahmes says simply “ multiply 1% times” and thus gets the correct
values 38%, 294, 20, 108§, 13. The second instance (taken from
the Berlin Papyrus 6619) is the solution of the equations
x*+ 3% = 100,

xiy=1:4 or y=ixr.

1 For a complete account of the subject the reader is referred to Moritz Cantor’s
Geschichte der Mathematik, 15. Chapler 11., especially pp. 74-81.

% Eisenloht, Eir mathematisches Handbuck der alten Agypter (Papyrus Rhind des

British Museum), Leipzig, 1877.
3 Geschichte der Math. 15. pp. 78-9 and p. 95.
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z is first assumed to be 1, and 22+ 2 is then found to be 25/16.
In order to make 100, 25/16 has to be multiplied by 64 or 82 The
true value of x is therefore 8 times 1, or &.

The simple equations solved in the Papyrus Rhind are just the
kind of equations of which we find numerous examples in the
arithmetical epigrams included in the Greek Anthology. Most
of these appear under the name of Metrodorus, a grammarian,
who probably lived about the time of the Emperors Anastasius I.
(491-518 A.D.) and Justin I. (518-527 A.D.). They were obviously
only collected by Metrodorus, from ancient as well as more recent
sources ; none of them can with certainty be attributed to Metro-
dorus himself. Many of the epigrams (46 in number) lead to
simple equations, . with one unknown, of the type of the /Zau-
equations, and several of them are problems of dividing a number
of apples or nuts among a certain number of persons, that is
to say, the very type of problem alluded to by Plato. For
example, a number of apples has to be determined such that, if
four persons out of six receive one-third, one-eighth, one-fourth
and one-fifth respectively of the total number of apples, while the
fifth person receives ten apples, there remains one apple as the
share of the sixth person, ze

r+fx+ir+ir+i0+1=2

We are reminded of Plato’s allusion to problems about bowls
(¢ptdrar) of different metals by two problems (Anthol. Palat. X1V.
12 and 50) in which the weights of bowls have to be found. We
can now understand the allusions of Proclus! and the scholiast
on Charmides 165 E to up\irar and ¢uaiiras dpibuoi, the adjectives
being respectively formed from pufjhov, an apple, and ¢idry, a
bowl. It is clear from Plato’s allusions that the origin of such
simple algebraical problems dates back, at least, to the fifth
century B.C.

I have not thought it worth while to reproduce at length the
problems contained in the Anthology? but the following is a
classification of them. (1) Twenty-three are simple equations
containing one unknown and of the type shown above; one of
these is the epigram on the age of Diophantus and incidents
in his life (x1v. 126). (2) Twelve more are easy simultaneous

1 Proclus, Comment. on Eucl. I., ed. Friedlein, p. 40, 5.

2 They are printed in Greek, with the scholia, in Tannery’s edition of Diophantus
(11. pp. 43—72 and x), and they are included in Wertheim’s German translation of
Diophantus, pp. 331-343.

H. D. 8
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equations containing two unknowns, and of the same sort as
Diophantus 1. 1-6; or, of course, they can be reduced to a simple
equation with one unknown by means of an easy elimination.
One other (XIV. 51) gives simultaneous equations in three un-
knowns

4 x ¥
xr=y+-,y=2+—, 8=10+7,
I3 F=ITS 3

and one (XIV. 49) gives four equations in four unknowns
X+ 9=40, £+ 2=45, x+u=36, x+y+z+u=060.

With these may be compared Diophantus I. 16-21. (3) Six more
are problems of the usual type about the filling of vessels by pipes:
eg. (XIV. 130) one pipe fills the vessel in one day, a second in two,
and a third in three; how long will all three running together
take to fill it? Another about brickmakers (XIV. 136) is of the
same sort,

The Anthology contains (4) two indeferminate equations of
the first degree which can be solved in positive integers in an
infinite number of ways (X1V. 48 and 144); the first is a distribution
of apples satisfying the equation x —3y=y, where y is not less
than 2, and the original number of apples is 3#; the second leads
to the following three equations between four unknown quantities :

*+y =%+
J«’=2_j/1,
*1=37,

the general solution of which isx =4, y =%, %, = 3%, » = 2k. These
very equations, made however determinate by assuming that
x+y=x+p =100, are solved in Diophantus I 12.

We mentioned above the problem in the Anthology (XIV. 49)

leading to the following four simultaneous linear equations with
four unknown quantities,

x+y=a,
x4+ e=29,
r+u=c,

x+y+e+u=d,

The general solution of any number of simultaneous linear
equations of this type with the same number of unknown quantities
was given by Thymaridas, apparently of Paros, and an early
Pythagorean. He gave a rule, &bpoSos, or method of attack (as
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Tamblichus?, our informant, calls it) which must have been widely
known, inasmuch as it was called by the name of the éwrdvfnua,
“flower” or “bloom,” of Thymaridas. The rule is stated in general
terms, but, though no symbols are used, the content is pure
algebra. Thymaridas, too, distinguishes between what he calls
ddpeoTov, the undefined or unknown quantity, and the dpiouévov,
the definite or known, therein anticipating the very phrase of
Diophantus, m\fjfos povddwv ddpiorov, “an undefined number of
units,” by which he describes his dptfuds or x. Thymaridas’ rule,
though obscurely expressed, states in effect that, if there are =
equations between # unknown quantities %, 24, #; ... #p— of the

following form,
r+x=a,

X+ Xng=ap,
4ottt Epa =
then the solution is given by
e (e, +a,+... +aﬂ_l)—s.
”—2
Iamblichus goes on to show that other types of equations can
be reduced to this, so that the rule does not leave us in the lurch
(0?0 mapérker) in those cases either. Thus we can reduce to
Thymaridas’ form the indeterminate problem represented by the
following three linear equations between four unknown quantities:
rty=a(s+u),
x+e2=>0(u+y),
z+u=c(y+2).
From the first equation we obtain
z+y+zs+u=(a+1)(z+un),
from which it follows that, if #, », 2, # are all to be integers,
Z+y+z+ux must contain ¢+ 1 as a factor. Similarly it must
contain &+ 1 and ¢+ 1 as factors.
Suppose now that x+y+2+u=(e+1)(6+1)(c+1). There-
fore, by means of the first equation, we get

(z+7) (1 +:‘z) ~(a+1)(G+1)(+1),

1 Tamblichus, /7 Nicomacki arithmeticam introductionem (ed. Pistelli), pp. 62,
18-68, 26.

8—2
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or z+y=a(b+1)(c+ 1)
Similarly x+z2=0(c+1)(a+1),
z+u=cla+1)(6+1),
and the equations are in the form to which Thymaridas’ rule is
applicable.
Hence, by that rule,

x=a(b+1)(c+1)+...—(a+ )G+ 10)(c+ I).
2

In order to ensure that » may always be integral, it is only
necessary to assume

r4+y+ztu=2(@+1)(6+1)(c+1)

The factor 2 is of course determined by the number of un-
knowns. If there are z unknowns, the factor to be put in place
of 2isn—2.

Iamblichus has the particular case corresponding to @ =2,
b=3,c=4. He goes on to apply the method to the equations

k
rt+y =7 (s+u)
m
x+z=—;(u+_y),

x+u=§ (y + 2),

for the case where £//=§,m[n=4, p/g =5.

Enough has been said to show that Diophantus was not the
inventor of Algebra. Nor was he the first to solve indeterminate
problems of the second degree.

Take, first, the problem of dividing a square number into two
squares (Diophantus 1L 8), or of finding a right-angled triangle
with sides in rational numbers. This problem was, as we learn
from Proclus?, attributed to Pythagoras, who was credited with

the discovery of a general formula for finding such triangles which
may be shown thus:

nﬁ__ 1 2 nﬂ I 2
””’( 2 ) =( : )
where # is an odd number. Plato again is credited, according
to the same authority, with another formula of the same sort,
(2np + (@ — 1P = (2 + 1)
Y Comment. on Euclid, Book I. pp. 428, 75qq.
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Both these formulae are readily connected with the geometrical
proposition in Eucl. IL 5, the algebraical equivalent of which may

be stated as
a+ b\? a—b\?
(5°) -(557) ==

The content of Euclid Book II. is beyond doubt Pythagorean, and
this way of stating the proposition quoted could not have escaped
the Pythagoreans. If we put 1 for 4 and the square of any odd
number for 2, we have the Pythagorean formula; and, if we put
a=2n? b=2, we obtain Plato’s formula. Euclid finds a more
general formula in Book X. (Lemma following X. 28). Starting
with numbers #=c+ 6 and v =¢ — 4, so that
wy =c® — B,

Euclid points out that, in order that #v may be a square, z and »
must be “similar plane numbers” or numbers of the form s,
mng® Substituting we have

winp? + 7127292)’ (mnp2 - mfzq“)2
2 2 ’

wrnpg? = (

But the problem of finding right-angled triangles in rational
numbers was not the only indeterminate problem of the second
degree solved by the Pythagoreans. They solved the equation

228 =y)f=11
in such a way as to prove that there are an infinite number of
solutions of that equation in integral numbers. The Pythagoreans
used for this purpose the system of “side-” and “diagonal-”
numbers?, afterwards fully described by Theon of Smyrna2 We
begin with unity as both the first “side” and the first “ diagonal ”;
thus
a=1, d=1I
We then form (@, dy), (@, @), etc., in accordance with the following
law,
y=a,+d,, dy=2a,+d,;
As=ay+ d,, dy=2a,+d,;
and so on. Theon states, with reference to these numbers, the
general* proposition that
di¥=2a."t 1,
and observes that (1) the signs alternate as successive &’s and &’s

1 See Proclus, /»# Platonis rempublicam commentarii (Teubner, Leipzig), Vol. 11.

c. 27, p. 27, 11-18.
2 Theon of Smyrna, ed. Hiller, pp. 43, 44-
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are taken, d4®—2ae? being equal to —1I, & — 24 equal to+1,
dg¢ — 2a equal to — 1 and so on, (2) the sum of the squares of all
the &’s will be double of the sum of the squares of 2/ the a’s. For
the purpose of (2) the number of successive terms in each series,
if finite, must of course be even. The algebraical proof is easy.

dlt— 20yt = (263-”,—1 + d’lb—l)g -2 (a'n—l + d‘m—l)“l

= 205" — &no

=—(dna® — 280"

=+ (@n-2? — 204",
and so on, while J2— 222=—1. Proclus tells us that the property
was proved by means of the theorems of Eucl, IL 9, 10, which
are indeed equivalent to

(2x+yP—2@+y)y=22—7"

Diophantus does not particularly mention the indeterminate
equation 2z%—-1=3% still less does he mention “side-” and
“diagonal-” numbers. But from the Lemma to VI. 15 (quoted
‘above, p. 69) it is clear that he knew how to find any number of

solutions when one is known. Thus, seeing that xr=1, y=1 is
one solution, he would put

2 (1 +x)* — 1 =a square
= (pz — 1) say,
whence z=(4+29)/(#*— 2).

Take the value p=2, and we have x=4, or x+1=5; and
2.52—1=49=7% DPutting x+5 in place of x, we find a still
higher value, and so on.

In a recent paper Heiberg has published and translated, and
Zeuthen has commented on, still further Greek examples of in-
determinate analysis. They come from the Constantinople MS.
(probably of 12th c.) from which Schéne edited the Mezrica of
Heron. The first two of the thirteen problems had been published
before (though in a less complete form)?; the others are new.

The first bids us find two rectangles such that the perimeter
of the second is three times that of the first, and the area of the
first is three times that of the second (the first of the two con-
ditions is, by some accident, omitted in the text). The number 3

1 Bibliotheca Mathematica, Villg, 1907-8, pp. 118-134.

2 Hultsch’s Heron, Gesgonica, 78, 79. The two problems are discussed by Cantor,
Agrimensoren, p. 62, and Tannery, Mém. de la soc. des sc. de Bordeaux, 1V,, 1882.
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is of course only an illustration, and the problem is equivalent to
the solution of the equations

v+v=n(xr+y)
apmmay e (1);
the solution given in the text is equivalent to
x=21=1, y=21
= (s~ 2), v= ”} .................. (2).

Zeuthen suggests that this solution may have been arrived at
thus. As the problem is indeterminate, it would be natural to
make trial of some hypothesis, ¢ to put v=#. It would follow

from the first equation in (1) that # is a multiple of 7, say #z. We
have then

Z+y=1+3
zy =n's,
whence = (xr+y)—12
or (=) (y—25)=u(1®—1).

An obvious solution of this is
T—mt=w—1, y—1t=2u0

The second problem is equivalent to the solution of the
equations

r+y=u+v
........................ 1);
xy:;z.zw} (13
and the solution given in the text is
Z4+y=u+v=m—1 .ccvoviiiiinn. (2),
wu=n—1, v=n(nt—1)
B, gy T 3)

In this case trial may have been made of the assumption
V=nx, y=nu,
when the first equation in (1) would give
) (r—1)zx=(n*—1)u,
a solution of which is x=n2—1, u=2—1.

The fifth problem is of interest in one respect. We are asked
to find a right-angled triangle (in rational numbers) with area
of 5 feet. We are told to multiply 5 by some square containing 6
as a factor, eg. 36. This makes 180, and this is the area of the
triangle (9, 0,41). Dividing each side by 6, we have the triangle
required. The' author, then, is aware of the fact that the area
of a right-angled triangle with sides in whole numbers is divisible
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by 6. If we take the Euclidean formula for a right-angled triangle,

thus making the sides
m? — n’ e+ 7°

, a.
2 2

a.mn, a. ,

where @ is any number, and #, # are numbers which are both odd
or both even, the area is
2 (m —n) (1 + »)
4

and, as a matter of fact, the numerator mn (m — ) (m+n) is
divisible by 24, as was proved later (for another purpose) by
Leonardo of Pisal There is no sign that Diophantus was aware
of the proposition; this however may be due to the fact that he
does not trouble as to whether his solutions are integral, but is
satisfied with rational results.

The last four problems (numbered 10 to 13) are of great
interest. They are different particular cases of one problem, that
of finding a rational right-angled triangle such that the numerical
sum of its area and all its three sides is a given number. The
authot’s solution depends on the following formulae, where a, &
are the perpendiculars, and ¢ the hypotenuse, of a right-angled
triangle, S its area, » the radius of its inscribed circle, and
s=%(@+b+0):

S=rs=%ab, r+s=a+b, c=s—r

)

(The proof of these formulae by means of the usual figure, that
used by Heron to prove his formula for the area of a triangle

in terms of its sides, is easy.)
Solving the first two equations, in order to find 2 and 4, we

have

)

a} _r+5F N{(r + 5 = 8rs}
1/ 2

which formula is actually used by the author for finding @ and 4.
The method employed is to take the sum of the area and the three
sides S + 2, separated into its two obvious factors s (# + 2), to put
s(r+2)=4 (the given number), and then to separate 4 into
suitable factors to which s and »+ 2 may be equated. They must
obviously be such that s7, the area, is divisible by 6. To take the
first example where 4 is equal to 280: the possible factors are

! Seritti, ed. B. Boncompagni, 11. (1862), p. 264. Cf. Cantor, Gesch. d. Matk. 11,,
P 40



THE PLACE OF DIOPHANTUS 121

2X 140, 4 X 70, 5% 56, 7 x40, 8x35 10%x28 14x20. The
suitable factors in this case are » 42 =8, s = 35, because 7 is then
equal to 6, and s is a multiple of 6.

The author then says that

_6+35-w{(6+35~8.6.35} _41—-1_

a
2 2
b_4r+1___217
2
and c=35—6=20.

The triangle is therefore (20, 21, 29) in this case. The
triangles found in the other cases, by the same method, are
(9, 49, 41), (8, 15, 17) and (9, 12, 15).

Unfortunately there is no guide to the date of the problems
just given. The form, however, cannot be that in which the
discoverer or discoverers of the methods indicated originally
explained those methods. The probability is that the original
formulation of the most important of the problems belongs to
the period between Euclid and Diophantus. This supposition best
agrees with the fact that the problems include nothing taken from
the great collection in the A#ithmetica. On the other hand, it is
strange that none of the seven problems above mentioned is found
in Diophantus. The five of them which relate to rational right-
angled triangles might well have been included by him ; thus he
finds rational triangles such that the aréa plus or minus one of the
perpendiculars is a given number, but not the rational triangle
which has a given area; and he finds rational triangles such that
the area plus or minus the sum of two sides is a given number,
but not the rational triangle such that the sum of the area and
the three sides is a given number. The omitted problems might,
it is true, have come in the lost Books; but, on the other hand,
Book VI is the place where we should have expected to find
them. Nor do we find in the above problems any trace of
Diophantus’ peculiar methods.

Lastly, the famous Cattle-Problem attributed to Archimedes!
has to be added to the indeterminate problems propounded before
Diophantus’ time. According to the heading prefixed to the
epigram, it was communicated by Archimedes to the mathe-
maticians at Alexandria in a letter to Eratosthenes. The scholiast

1 Archimedes, ed. Heiberg, Vol. 11. p. 450 sqq.
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on Charmides 165E also refers to the problem “called by Archi-
medes the Cattle-Problem.” Krumbiegel, who discussed the
arguments for and against the attribution to Archimedes, con-
cluded apparently that, while the epigram can hardly have been
written by Archimedes in its present form, it is possible, nay
probable, that the problem was in substance originated by
Archimedes’. Hultsch? has a most attractive suggestion as to
the occasion of it. It is known that Apollonius in his dxvrdériov
had calculated an approximation to the value of = closer than
that of Archimedes, and he must therefore have worked out more
difficult multiplications than those contained in the Measuremnent
of a circle. Also the other work of Apollonius on the multipli-
cation of large numbers, which is partly preserved in Pappus, was
inspired by the Sand-reckoner of Archimedes; and, though we
need not exactly regard the treatise of Apollonius as polemical,
yet it did in fact constitute a criticism of the earlier book. That
Archimedes should then reply with a problem involving such a
manipulation of immense numbers as would be difficult even for
Apollonius is not altogether outside the bounds of possibility. And
there is an unmistakable vein of satire in the opening words of
the epigram, “ Compute the number of the oxen of the Sun, giving
thy mind thereto, if thou hast a share of wisdom,” in the tran-
sition from the first part to the second, where it is said that
ability to solve the first part would entitle one to be regarded
as “not unknowing nor unskilled in numbers, but still not yet
to be counted among the wise” and again in the last lines.
Hultsch concludes that in any case the problem is not much
later than the time of Archimedes and dates from the beginning
of the second century B.C. at the latest.

I have reproduced elsewhere?, from Amthor, details regarding
the solution of the problem, and I need do little more than state
here its algebraical equivalent. Eight unknown quantities have
to be found, namely, the numbers of bulls and cows respectively
of each of four colours (I use large letters for the bulls and small
letters for the cows). The first part of the problem connects the
eight unknowns by seven simple equations; the second part adds
two more conditions.

1 Zeitschrift fiir Math. u. Physik (Hist. litt. Abtheilung), xxv. (1880), p. 121 5q.
Amthor added (p. 153 sq.) a discussion of the problem itself.

% Art. Archimedes in Pauly-Wissowa’s Real- Encyclopidie, 11. 1, pp. 534, 535-

8 The Works of drchimedes, pp. 319-326.
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First part of Problem.

@M W=G+HX+Y i (1),
X=GF+HZ+Y . (2),
Z=GF+HW+Y . 3).

(ID) W=GF+3X +2) cooviiiiiiin (&),
2=G+DEZ + 8 ceeiii (5),
g=F+H Y + ) i 6),
=G +H(W+D) cceeeeriiean. )

Second pari.
W+ X =asquare ....coocevinniniinninnnnn. ®),
Y + Z=a triangular number ............ Q).

The solution of the first part gives
W = 10366482, w = 7206360 7,
X = 7460514 n, x=4893246 7,
Y= 41493871, y=154392137,
Z= 73580607, =2=35158207%,
where 7 is an integer. The solution given by the scholiast® corre-
sponds to 7= 280.

The complete problem would not be unmanageable but for the
condition (8). If for this were substituted the requirement that
W + X shall be merely a product of two unequal factors (“ Wurm’s
problem ”), the solution in the least possible numbers is

W =1217263415886, w = 846192410280,
X'= 876035935422, = 574579625058,
Y= 487233469701, y= 638688708099,
Z = 864005479380, 2z=412838131860.

But, if we include condition (8) and first of all find a solution
satisfying the conditions (1) to (8), we have then, in order to
satisfy condition (9), to solve the equation

g(g+1)/2 = 51285802909803 . £
=3.7.11.29.353.4657°. &2
If we multiply by 8, and put
29+1=12 2.4657E=u,
we have the equation
f—1=2.3.7.11.29.353 .4,
or 22— 4720494 w* = 1.
1 Archimedes, ed. Heiberg, Vol. 11. pp. 454, 455-
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The value of W would be a number containing 206545
digits.

Such are the very few and scattered particulars which we
possess of problems similar to those of Diophantus solved or
propounded before his time. They show indeed that the kind of
problem was not invented by him, but on the other hand they
show little or no trace of anything like his characteristic alge-
braical methods. In the circumstances, and in default of discovery
of fresh documents, the question how much of his work represents
original contributions of his own to the subject must remain a
matter of pure speculation. It is pretty obvious that one man
could not have been the author of all the problems contained in
the six Books. There are also inequalities in the work ; some
problems are very inferior in interest to the remainder, and some
solutions may be assumed to be reproduced from other writers
of less calibre, since they reveal none of the mastery of the subject
which Diophantus possessed. Again, it seems probable that the
problem V. 30, which is exceptionally in epigrammatic form, was
taken from someone else. The Awithmetica was no doubt a
collection, much in the same sense as Euclid’s Elemnents were. And
this may be one reason why so little trace remains of earlier
labours in the same field. It is well known that Euclid’s Elesents
so entirely superseded the works of the earlier writers of Elements
(Hippocrates of Chios, Leon and Theudius) and of the great
contributors to the body of the Elements, Theaetetus and Eudoxus,
that those works have disappeared almost entirely. So no doubt
would Diophantus’ work supersede, and have the effect of con-
signing to oblivion, any earlier collections of problems of the
same kind. But, if it was a compilation, we cannot doubt that
it was a compilation in the best sense, therein resembling Euclid’s
Elements; it was a compilation by one who was a master of the
subject, who took account of and assimilated all the best that had
been written upon it, arranged the whole of the available material
in due and progressive order, but also added much of his own, not
only in the form of new problems but also (and even more) in the
mode of treatment, the development of more general methods, and
so on. .

It is perhaps desirable to add a few words on the previous
history of the theory of polygonal numbers. The theory certainly
goes back to Pythagoras and the earliest Pythagoreans. The
triangle came first, being obtained by first taking I, then adding
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2 to it, then 3 to the sum; each successive number would be
represented by the proper number of dots, and, when each number
was represented by that number of dots arranged symmetrically
under the row representing the preceding number, the triangular
form would be apparent to the eye, thus:

Next came the Pythagorean discovery of the fact that a similar
successive addition of odd numbers produced

successive square numbers, the odd numbers __ﬂj- olele
being on that account called gromons, and again : : '. : : :
the process was shown by dots arranged to re- . oo olefe
present squares. The accompanying figure shows : e : .

the successive squares and gnomons.

Following triangles and squares came the figured numbers
in which the “gnomons,” or the numbers added to make one
number of a given form into the next larger of the same form,
were numbers in arithmetical progression starting from 1, but with
common difference 3, 4, 5, etc, instead of 1, 2. Thus, if the
common difference is 3, so that the successive numbers added to
I are 4, 7, 10, etc, the number is a pentagonal number, if the
common difference is 4 and the gnomons 3, 9, 13, etc., the number
is a hexagonal number, and so on. Hence the law that the
common difference of the gnomons in the case of a z-gon is
7—2.

Perhaps these facts had already been arrived at by Philippus
of Opus (4th c. B.C)), who is said to have written a work on
polygonal numbers®. Next Speusippus, nephew and successor of
Plato, wrote on Pythagorean Numbers, and a fragment of his
book survives®, in which linear numbers, polygonal numbers,
triangles and pyramids are spoken of: a fact which leaves no
room for doubt as to the Pythagorean origin of all these con-
ceptions?®,

Hypsicles, who wrote about 170 B.C, is twice mentioned by
Diophantus as the author of a “ definition” of a polygonal number,

1 Buoypdepor, Vitarum scriptores Graecs minores, ed. Westermann, 1845, p. 448.

2 Theologumena arithmeticae (ed. Ast), 1817, pp. 61, 62; the passage is translated with
notes by Tannery, Pour Ikistoire de la science hellene, pp. 386~390.

3 Cantor, Geschichte der Mathematik, Ig, p. 249.
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which is even quoted verbatim’. The definition does not mention
any polygonal number beyond the pentagonal; but indeed this
was unnecessary : the facts about the triangle, the square and the
pentagon were sufficient to enable Hypsicles to pass to a general
conclusion. The definition amounts to saying that the »th a-gon
(1 counting as the first) is

in{z2+@n-1)(@-2)

Theon of Smyrna? Nicomachus? and Iamblichus¢ all devote
some space to polygonal numbers. The first two, who flourished
about 100 A.D., were earlier than Diophantus, and are accordingly
of interest here. Besides a description of the successive polygonal
numbers, Theon gives the theorem that two successive triangular
numbers added together give a square. That is,

(z—1)n 4 n(n+ 1) _ e
2 2

The fact is of course clear if we divide a square
into two triangles as in the figure.

Nicomachus gave various rules for transforming triangles into
squares, squares into pentagons, etc.

1. If we put two consecutive triangles together we get a square
(as in Theon'’s theorem).

2. A pentagon is obtained from a square by adding to it a
triangle the side of which is 1 less than that of the square;
similarly a hexagon from a pentagon by adding a triangle the side
of which is 1 less than that of the pentagon; and so on.

In fact,

n{2+(n—1)(@@-2)}+}(n—1)n=%n[2+(—1){(a+1) - 2}].
Next Nicomachus sets out the first triangles, squares, pentagons,
hexagons and heptagons in a diagram thus :
6 10 15 21 28 36 45 55
9 16 25 36 49 64 81 100

12 22 35 §5I 70 92 II7 14§
15 28 45 66 '91 120 153 190
18 34 55 81 112 148 189 233

Triangles ... 1
Squares I
Pentagons ... 1
Hexagons ... 1
Heptagons... 1

N O\uvt W

and observes that

! Dioph. I. pp. 470-472.

* Expositio rerum mathematicarum od legendum Platonem utilium, ed. Hiller,
PP- 31—40.

3 Introductio arithmetica, ed. Hoche, 11. 8-12, pp. 87-99.

4 In Nicomacki arithmeticam introd., ed. Pistelli, pp. 58-61, 68~72.
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3. Each polygon is equal to the polygon immediately above
it in the diagram plus the triangle with 1 less in its side, z.e. the
triangle in the preceding column.

4. The vertical columns are arithmetical progressions, the
common difference of which is the triangle in the preceding
column.

But Plutarch, a contemporary of Nicomachus, mentioned
another method of transforming triangles into squares: Ewery
triangulay numbey taken eight times and then increased by 1 gives
a square’, That is,

8.ﬂ”—2+—9+1=(2n+1)2.

Diophantus generalised this proposition into his theorem for
transforming amy polygonal number into a square.

If P be a polygonal number, @ the number of angles,

8P (2 — 2)+ (a — 4)* = a square.

He deduces rules for finding a polygonal number when the
side and the number of angles are given, and for finding the side
when the number and the number of its angles are given. These
fine results and the fragment of the difficult problem of finding
the number of ways in which any given number can be a polygonal
number no doubt represent part of the original contributions by
Diophantus to the theory of that class of numbers.

1 Plat. quaest. V. 2, 4, 1003 F.






THE ARITHMETICA
BOOK 1

PRELIMINARY

Dedication.

“Knowing, my most esteemed friend Dionysius, that you are
anxious to learn how to investigate problems in numbers, I have
tried, beginning from the foundations on which the science is
built up, to set forth to you the nature and power subsisting in
numbers.

“ Perhaps the subject will appear rather difficult, inasmuch as
it is not yet familiar (beginners are, as a rule, too ready to despair
of success); but you, with the impulse of your enthusiasm and
the benefit of my teaching, will find it easy to master; for
eagerness to learn, when seconded by instruction, ensures rapid
progress.”

After the remark that “all numbers are made up of some
multitude of units, so that it is manifest that their formation is
subject to no limit,” Diophantus proceeds to define what he calls
the different “species” of numbers, and to describe the abbreviative
signs used to denote them. These “species” are, in the first
place, the various powers of the unknown quantity from the second
to the sixth inclusive, the unknown quantity itself, and units.

Definitions.

A square (=) is Sbvapus (“ power ”5, and its signis a 4 with ¥
superposed, thus 47.

A cube (=x*) is ki9Bos, and its sign K.

A square-square (= %) is Svvapodbvauss?, and its sign is 47 4.

A square-cube (= %) is SuvaudrvBos, and its sign 4K,

A cube-cube (= z° is kuBoxvRos, and its sign X' K.

1 The term dwamoddwams was already used by Heron (Metrica, ed. Schone, p. 48,
11, 19) for the fourth power of a side of a triangle.

H. D. 9
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“It is,” Diophantus observes, “ from the addition, subtraction
or multiplication of these numbers or from the ratios which they
bear to one another or to their own sides respectively that most
arithmetical problems are formed” ; and “each of these numbers...
is recognised as an element in arithmetical inquiry.”

« But the number which has none of these characteristics, but
mevely has in it an indeterminate multitude of wunits (mwhijfos
povddwy ddpiarov) is called apilbucs, ‘number, and its sign is
S [= x].)l

«“ And there is also another sign denoting that which is in-
variable in determinate numbers, namely the unit, the sign being

M with o superposed, thus mr

Next follow the definitions of the reciprocals, the names of
which are derived from the names of the corresponding species
themselves.

Thus

from dpifuds [¥] we derive the term dpiBuoaréy [= 1/%]

o Sdvaus [£7] 1 » SvvapooTéy [= 1/27]

»  &UBos [x7%] » » kvBoardv [= 1/x%]

» Ouvapodivams [£4] » Suvapodvvapoatiév [= 1/x4]
w OuvapbrvBos [#°] ” SvvaporvBoatév [= 1/x7]

»  kuBdruBes [x°] ” ” xvBoxvBooTov [= 1/x°],

and each of these has the same sign as the corresponding original
species, but with a distinguishing mark which Tannery writes in
the form X above the line to the right.

Thus 47X = 1/%% just as ¢X={.

Sign of Subtraction (mznus).

“A minus multiplied by a minus makes a plus’; a minus
multiplied by a plus makes a minus; and the sign of a minus is a
truncated V turned upside down, thus N\

Diophantus proceeds: “It is well that one who is beginning
this study should have acquired practice in the addition, subtraction
and multiplication of the various species. He should know how
to add positive and negative terms with different coefficients to

! The literal rendering would be ‘A wanting multiplied by a wanting makes a
forthcoming.” The word corresponding to mznus is Aetyus (*‘ wanting ”): when it is
used exactly as our mz#nus is, it is in the dative Aelifet, but there is some doubt whether
Diophantus himself used this form (cf. p. 44 above). For the probable explanation of
the sign, see pp. 42-44. The word for *‘forthcoming” is Swapfis, from vmwdpxw, to exist.
Negative terms are elmovra eldn, and positive Swdpyovra.
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other terms?, themselves either positive or likewise partly positive
and partly negative, and how to subtract from a combination of
positive and negative terms other terms either positive or likewise
partly positive and partly negative.

“Next, if a problem leads to an equation in which certain
terms are equal to terms of the same species but with different
coefficients, it will be necessary to subtract like from like on both
sides, until one term is found equal to one term. If by chance
there are on either side or on both sides any negative terms, it will
be necessary to add the negative terms on both sides, until the
terms on both sides are positive, and then again to subtract like
from like until one term only is left on each side.

“This should be the object aimed at in framing the hypotheses
of propositions, that is to say, to reduce the equations, if possible,
until one term is left equal to one term ; dut J will show you later
how, in the case also where two tevims are left equal to one tevm, such
@ problem is solved.”

Diophantus concludes by explaining that, in arranging the
mass of material at his disposal, he tried to distinguish, so far as
possible, the different types of problems, and, especially in the
elementary portion at the beginning, to make the more simple lead
up to the more complex, in due order, such an arrangement being
calculated to make the beginner’s course easier and to fix what
he learns in his memory. The treatise, he adds, has been divided
into thirteen Books.

PROBLEMS

I. To divide a given number into two having a given
difference.
Given number 100, given difference 40.
Lesser number required . Therefore
2% + 40 = 100,
%= 30.
The required numbers are 70, 30.
2. To divide a given number into two having a given ratio.
Given number 60, given ratio 3 : 1.
Two numbers x, 32. Therefore »=15.
The numbers are 45, 15.
1 €ldos, “species,” is the word used by Diophantus throughout.

9—2
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3. To divide a given number into two numbers such that one
is a given ratio of the other plus a given difference’.
Given number 80, ratio 3: 1, difference 4.
Lesser number x. Therefore the larger is 3x -+ 4, and
4x+ 4= 80, so that x=10.
The numbers are 61, 19.

4. To find two numbers in a given ratio and such that their
difference is also given.
Given ratio 5 : 1, given difference 2o0.
Numbers 5%, . Therefore 4 = 20, ¥ =5, and
the numbers are 25, 5

5. To divide a given number into two numbers such that given
fractions (not. the same) of each number when added together
produce a.given number.

Necessary condition. The latter given number must be such
that it lies between the numbers arising when the given fractions
respectively are taken of the first given number.

First given number 100, given fractions § and %, given
sum of fractions 30.
Second part 5x. = Therefore first part = 3 (30 —x).
Hence 9o+ 2x = 100, and z = 5.
The required parts are 75, 25.

6. To divide a given number into two numbers such that a
given fraction of the first exceeds a given fraction of the other
by a given number.

Necessary condition. The latter number must be less than that
which arises when that fraction of the first number is taken which
exceeds the other fraction.

Given number 100, given fractions } and } respectively,
given excess 20.
Second part 6x. Therefore the first part is 4 (» + 20).
Hence 10x+ 80= 100, x = 2, and
the parts are 88, 12.

! Literally “to divide an assigned number into two in a given ratio and difference (&
Noyw xal Swepoxy T4 Sobelop).” The phrase means the same, though it is not so clear, as
Euclid’s expression (Data, Def. 11 and passim) 3ofévre pelfwv 4 év Noywp. According to
Euclid’s definition a magnitude is greater than a magnitude “by a given amount (more)
than in a (certain) ratio” when the remainder of the first magnitude, after subtracting
the given amount, has the said ratio to the second magnitude. This means that, if x, y
are the magnitudes, ¢ the given amount, and 4 the ratio, x — d=4y or x=Ay +d.



BOOK 1 133

7. From the same (required) number to subtract two given
numbers so as to make the remainders have to one another a
given ratio.

Given numbers 100, 20, given ratio 3: 1.
Required number 2. Therefore x — 20 = 3 (x — 100), and
x =140.

8. To two given numbers to add the same (required) number so
as to make the resulting numbers have to one another a given ratio.

Necessary condition. The given ratio must be less than the
ratio which the greater of the given numbers has to the lesser.
Given numbers 100, 20, given ratio 3: 1.
Required number #. Therefore 3z + 60 =x+ 100, and
x =20.

9. From two given numbers to subtract the same (required)
number so as to make the remainders have to one another a given
ratio.

Necessary condition. The given ratio must be greater than the
ratio which the greater of the given numbers has to the lesser.

Given numbers 20, 100, given ratio 6: I.
Required number . Therefore 120 — 6x = 100 —x, and
x=4.

10. Given two numbers, to add to the lesser and to subtract
from the greater the same (required) number so as to make the
sum in the first case have to the difference in the second case
a given ratio.

Given numbers 20, 100, given ratio 4 : I.
Required number ». Therefore (20+x)=4(100- x), and
x=176. )

11. Given two numbers, to add the first to, and subtract the
second from, the same (required) number, so as to make the
resulting numbers have to one another a given ratio.

Given numbers 20, 100, given ratio 3 :1I.
Required number x. Therefore 3+ — 300 =2+ 20, and
x = 160.

12. To divide a given number twice into two numbers such
that the first of the first pair may have to the first of the second
pair a given ratio, and also the second of the second pair to the
second of the first pair another given ratio.
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Given number 100, ratio of greater of first parts to lesser
of second 2:1, and ratio of greater of second parts
to lesser of first parts 3: 1.
x lesser of second parts.
The parts then are
00 — 6x
100 — 2x} and 3 x }
Therefore 300 — 5z = 100, # = 40, and
the parts are (80, 20), (60, 40).

13. Todivide a given number thrice into two numbers such that
one of the first pair has to one of the second pair a given ratio,
the second of the second pair to one of the third pair another
given ratio, and the second of the third pair to the second of the
first pair another given ratio.

Given number 100, ratio of greater of first parts to lesser
of second 3:1, of greater of second to lesser of
third 2:1, and of greater of third to lesser of
first 4:1.

x lesser of third parts.

Therefore greater of second parts = 2z, lesser of second
= 100 — 2%, greater of first = 300 — 6.

Hence lesser of first = 6x—200, so that greater of third
= 24 — 800.

Therefore 254 — 800 = 100, x = 36, and
the respective divisions are (84, 16), (72, 28), (64, 36).

14. To find two numbers such that their product has to their
sum a given ratio. [One is arbitrarily assumed.]

Necessary condition. The assumed value of one of the two
must be greater than the number representing the ratiol
Ratio 3: I, # one of the numbers, 12 the other (> 3).
Therefore 122 = 3x + 36, x =4, and
the numbers are 4, 12.

15. To find two numbers such that each after receiving from
the other a given number may bear to the remainder a given

ratio.
Let the first receive 30 from the second, the ratio being

then 2 : 1, and the second 50 frem the first, the ratio
being then 3:1; take x+ 30 for the second.

+ Literally ‘the number homonynious with the given ratio.”
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Therefore the first = 2 — 30, and
(# + 80) = 3 (2 80).
Thus x = 64, and
the numbers are g8, 94.

16. To find three numbers such that the sums of pairs are
given numbers. :
Necessary condition. Half the sum of the three given numbers
must be greater than any one of them singly.
Let (1) + (2) = 20, (2) + (3) = 30, (3) + (1) = 40.
x the sum of the three. Therefore the numbers are
¥ —30, X¥—40, % —20.
The sum x = 2xr — 9o, and x =45.
The numbers are 135, 5, 25.

17. To find four numbers such that the sums of all sets of three
are given numbers.
Necessary condition. One-third of the sum of the four must be
greater than any one singly.
_Sums of threes 22, 24, 27, 20 respectively.
x the sum of all four. Therefore the numbers are
xX—22, x—24, *—27, x—20.
Therefore 4x — 93 =x, x = 31, and
the numbers are g, 7, 4, I1I.

18. To find three numbers such that the sum of any pair
exceeds the third by a given number.
Given excesses 20, 30, 40.
2« the sum of all three.
We have (1) +(2) =(3) + 20.
Adding (3) to each side, we have: twice (3)+ 20= 2z, and
(3)=x-10.
Similarly the numbers (1) and (2) are x—15, ¥~ 20
respectively.
Therefore 34 — 45 = 2x, x=45, and
the numbers are 30, 25, 35.
[Otherwise thus'. As before, if the third number (3) is z,
(1) +(2)=x+ 20.
Next, if we add the equations
m+@—m=m}
(@+G)—(1)=30)’

! Tannery attributes the alternative solution of I. 18 (as of I 19) to an old scholiast.
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we have  (2) =14} (20 + 30) = 25.

Hence (1)=x—5.
Lastly (3) + (1) = (2) =40,
or 2z — 5§ — 25 = 40.
Therefore x=35.

The numbers are 30, 25, 35.]

19. To find four numbers such that the sum of any three
exceeds the fourth by a given number.
Necessary condition. Half the sum of the four given differences
must be greater than any one of them.
Given differences 20, 30, 40, 50.
2z the sum of the required numbers. Therefore the
numbers are
x—15, ¥—20, ¥ — 25, x — IO,
Therefore 4x — 70 =2z, and x = 35.
The numbers are 20, 15, 10, 25.

[Otherwise thus*. If the fourth number (4) is ,
(D+@)+@)=2+20.

Put (2) +(3) equal to half the sum of the two excesses 20
and 30, Ze. 25 [this is equivalent to adding the two
equations .

(1D +(2)+(3)—(4) = 20,
(2) +(3)+(4) = (1) = 30].

It follows by subtraction that (1)=x— 3.

Next we add the equations beginning with (2) and (3)
respectively, and we obtain

(3)+(4) =% (30 + 40) = 35,

so that (3)=135 -

It follows that (2)=x— 10.

Lastly, since (4) + (1) + (2) — (3) = 50,

3x—15—(35—%)=750, and x=25.
The numbers are accordingly 20, 15, 10, 25.]

20. To divide a given number into three numbers such that the
sum of each extreme and the mean has to the other extreme a
given ratio. ,

Given number 100; and let (1) +(2)=3.(3) and =)+@03)
=4.(1).

! Tannery attributes the alternative solution of 1. xg (as of 1. 18) to an old scholiast.
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z the third number. Thus the sum of the first and second
= 37, and the sum of the three = 4+ = 100.
Hence x = 25, and the sum of the first two = 75.
Let y be the first. Therefore sum of second and third
=4y, 5y =100 and y=20.
The required parts are 20, 55, 25.

21. To find three numbers such that the greatest exceeds the
middle number by a given fraction of the least, the middle exceeds
the least by a given fraction of the greatest, but the least exceeds
a given fraction of the middle number by a given number.

Necessary condition. The middle number must exceed the
least by such a fraction of the greatest that, if its denominator? be
multiplied into the excess of the middle number over the least, the
coefficient of x in the product is greater than the coefficient of
# in the expression for the middle number resulting from the
assumptions made?,

Suppose greatest exceeds middle by } of least, middle
exceeds least by } of greatest, and least exceeds
} of middle by 1o. [Diophantus assumes the three
given fractions or submultiples to be one and the

same.]

x + 10 the least. Therefore middle = 3#, and greatest
= 6x — 30. :

Hence, lastly, 6x—30—3r=}%(x+10),

or x4+ 10=9x—q0, and x=12}.

.The numbers are 45, 37}, 224.

1 As already remarked (p. 52), Diophantus does not use a second symbol for the
second unknown, but makes dptfubs do duty for the second as well as for the first.

2 ¢« Denominator,” literally the “number homonymous with the fraction,” Z.e. the
denominator on the assumption that the fraction is, or is expressed as, a submultiple.

8 Wertheim points out that this condition has reference, not to the general solution of
the problem, but to the general applicability of the particular procedure which Diophantus
adopts in his solution. Suppose X, ¥, Z required such that X - ¥Y=2Z|m, Y- Z=X|/n,
Z-a=Y[p. Diophantus assumes Z=x-+a, whence V=px, X=2n(px~x-a). The
condition states that zp-z>p. If we solve for x by substituting the values of X, ¥, Z
in the first equation, we in fact obtain

m{(np-n-p)x—nal=x+a,
or X (mnp —mn—mp—1)=a(mn+1).

In order that the value of x may be positive, we must have mnp>mn+mp+1,
that is,.

I
nj>n+p+;l

or (if », n, p are positive integers) np>n+p.
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[Another solution.

Necessary condition. The given fraction of the greatest must
be such that, when it is added to the least, the coefficient of x in
the sum is less than the coefficient of z in the expression for the
middle number resulting from the assumptions made®.

Let the least number be x + 10, as before, and the given
fraction }; the middle number is therefore 32.
Next, greatest = middle + § (least) = 34» + 34.
Lastly, r=x+10+3} (3% + 3})
=24r + 11},
Therefore =124, and
the numbers are, as before, 45, 373, 22%.]

22. To find three numbers such that, if each give to the next
following a given fraction of itself, in order, the results after each
has given and taken may be equal.

Let first give 4 of itself to second, second } of itself to
third, third 1 of itself to first.

Assume first to be a number of #’s divisible by 3, say
3%, and second to be a number of uzits divisible by
4, say 4.

Therefore second after giving and taking becomes x+ 3.

Hence the first also after giving and taking must become
x+3; it must therefore have taken x+3—2x, or
3—x; 3—x must therefore be } of third, or third

=15 — 5.
Lastly, 15-5x—-(3—x)+1=x+3,
or 13—4x=x+3, and x=2.

The numbers are 6, 4, 5.

23. To find four numbers such that, if each give to the next
following a given fraction of itself, the results may all be equal.
Let first give } of itself to second, second i of itself
to third, third § of itself to fourth, and fourth } of
itself to first.
Assume first to be a number of #’s divisible by 3, say 3z,
and second to be a number of units divisible by 4,

say 4.

! Tannery attributes this alternative solution, like the others of the same kind, to an
ancient scholiast,

2 Wertheim observes that the scholiast’s necessary condition comes to the same thing
as Diophantus’ own,
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The second after giving and taking becomes x + 3.
Therefore first after giving x to second and receiving
% of fourth =x+ 3; therefore fourth
=6(r+3—2¢r)=18—6x
But fourth after giving 3 —x to first and receiving 1 of
third =z + 3 ; therefore third = 30x — 60.
Lastly, third after giving 6z — 12 to fourth and receiving
I from second =x+ 3.
That is, 24x — 47 =x+ 3, and x=4§4.
The numbers are therefore iff, 4, 120, 1if;
or, after multiplying by the common de-
nominator, 150, 92, 120, I14.

24. To find three numbers such that, if each receives a given
fraction of the sum of the other two, the results are all equal.

Let first receive § of (second + third), second } of
(third + first), and third 1 of (first + second).

Assume first =z, and for convenience’ sake (o mpoyetpov
&exev) take for sum of second and third a number of
units divisible by 3, say 3.

Then sum of the three=x+ 3,

and first + § (second + third)=x+1.

Therefore second + 1 (third + first) =2+ 1;

hence 3 times second + sum of all=4x+ 4,

and therefore second =z +3.
Lastly, third 4+} (first+second)=x+1,
or 4 times third + sum of all=35xr+ 5,
and third=x+%.
Therefore r+@E+PH+@E+E)=x+3,
and r=1%.

The numbers, after multiplying by the common
denominator, are 13, 17, IQ.

25. To find four numbers such that, if each receives a given
fraction of the sum of the remaining three, the four results are

equal.

Let first receive § of the rest, second § of the rest,
third 4 of rest, and fourth } of rest.

Assume first to be # and sum of rest a number of units
divisible by 3, say 3.

Then sum of all=x+ 3.

Now first + } (second + third + fourth) =x+ 1.
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Therefore second + } (third + fourth + first) =2+ 1,

whence 3 times second + sum of all=4x+4,
and therefore second =x +1.

Similarly third =z + %,

and fourth=x+$£.

Adding, we have 4x+4&=x+3,

and r=4%.

The numbers, after multiplying by a common
denominator, are 47, 77, 92, IOI.

26. Given two numbers, to find a third number which, when
multiplied into the given numbers respectively, makes one product
a square and the other the side of that square.

’ Given numbers 200, §; required number x.

Therefore 200t = (5x)% and
xr=38.

27. To find two numbers such that their sum and product are
given numbers.

Necessary condition. ~The square of half the sum must exceed
the product by a square number. é&ori 8¢ Todro TAaTpaTILOV?. '
Given sum 20, given product g6.
2z the difference of the required numbers.
Therefore the numbers are 10+, 10—=x.
Hence 100 ~x?=g6.
Therefore x= 2, and
the required numbers are 12, 8.

28. To find two numbers such that their sum and the sum of
their squares are given numbers.

Necessary condition. Double the sum of their squares must
exceed the square of their sum by a square. & 8¢ kai Todro
TARCUATLOVY,

! There has been controversy as to the meaning of this difficult phrase. Xylander,
Bachet, Cossali, Schulz, Nesselmann, all discuss it. Xylander translated it by “effictum
aliunde.” Bachet of course rejects this, and, while leaving the word untranslated,
maintains that it has an active rather than a passive signification; it is, he says, not
something “made up” (effictum) but something ‘‘a quo aliud quippiam effingi et
plasmari potest,” ** from which something else can be made up,” and this he interprets as
meaning that from the conditions to which the term is applied, combined with the
solutions of the respective problems in which it occurs, the rules for solving mixed
quadratics can be evolved. Of the two views I think Xylander’s is nearer the mark.
mhaouarikby should apparently mean *‘of the nature of a #\doua,” just as Spauarucéy
means something connected with or suitable for a drama; and wAdoua means something
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Given sum 20, given sum of squares 208.
Difference 2x.
Therefore the numbers are 10+x, 10—,
Thus 200 + 22%=208, and x=2.

The required numbers are 12, 8.

29. To find two numbers such that their sum and the difference
of their squares are given numbers.
Given sum 20, given difference of squares 8o.
Difference 2x.
The numbers are therefore 10+%, 10—
Hence (10+x2)*— (10—2x)*= 8o,
or 40r =380, and x=2.
The required numbers are 12, 8.

30. To find two numbers such that their difference and product
are given numbers.

Necessary condition. Four times the product together with
the square of the difference must give a square. &ors 8¢ xai Todro
TAGO LATLECY.

Given difference 4, given product g6.
2x the sum of the required numbers.
Therefore the numbers are x+42, x—2; accordingly
x*—4=96, and x= 10
The required numbers are 12, 8.

31. To find two numbers in a given ratio and such that the
sum of their squares also has to their sum a given ratio.
Given ratios 3:1 and §5: 1 respectively.
Lesser number .
Therefore 10x% = 5. 4x, whence x = 2, and
the numbers are 2, 6.

32. To find two numbers in a given ratio and such that the
sum of their squares also has to their difference a given ratio.
Given ratios 3:1 and 10: 1.
Lesser number x, which is then found from the equation
104%=10. 2%.
Hence x=2, and
the numbers are 2, 6.

“formed ” or ‘‘moulded.” Hence the expression would seem to mean “‘this is of the

nature of a formula,” with the implication that the formula is not difficult to make up
or discover. Nesselmann, like Xylander, gives it much this meaning, translating it “das
ldsst sich aber bewerkstelligen.” Tannery translates wAacuaricéy by *formativum.”
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33. To find two numbers in a given ratio and such that the
difference of their squares also has to their sum a given ratio.
Given ratios 3:1 and 6: 1.
Lesser number x, which is found to be 3.
The numbers are 3, 9.

34. To find two numbers in a given ratio and such that the
difference of their squares also has to their difference a given
ratio.

Given ratios 3:1 and 12: 1.
Lesser number #, which is found to be 3.
The numbers are 3, 9.

Similarly by the same method can be found two numbers in
a given ratio and (1) such that their product is to their sum in a
given ratio, or (2) such that their product is to their difference in a
given ratio.

35. To find two numbers in a given ratio and such that the
square of the lesser also has to the greater a given ratio.
Given ratios 3:1 and 6: I respectively.
Lesser number x, which is found to be 18.
The numbers are 18, 54.

36. To find two numbers in a given ratio and such that the
square of the lesser also has to the lesser itself a given ratio.
Given ratios 3:1 and 6:1.
Lesser number x, which is found to be 6.
The numbers are 6, 18.

37. To find two numbers in a given ratio and such that the
square of the lesser also has to the sum of both a given ratio.
Given ratios 3:1 and 2:1.
Lesser number #, which is found to be 8.
The numbers are 8, 24.

38. To find two numbers in a given ratio and such that the
square of the lesser also has to the difference between them a
given ratio.

Given ratios 3:1 and 6:1,
Lesser number #, which is found to be 12.
The numbers are 12, 36.
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Similarly can be found two numbers in a given ratio and

(1) such that the square of the greater also has to the
lesser a given ratio, or

(2) such that the square of the greater also has to the
greater itself a given ratio, or

(3) such that the square of the greater also has to the sum
or difference of the two a given ratio.

39. Given two numbers, to find a third such that the sums of
the several pairs multiplied by the corresponding third number
give three numbers in arithmetical progression.

Given numbers 3, 5.

Required number .

The three products are therefore 3x + 15, 52+ 15, 8

Now 3x+ 15 must be either the middle or the least of
the three, and 5x+ 15 either the greatest or the
middle.

(1) s5x+15 greatest, 3xr+ 15 least.
Therefore sx+ 15+ 3r+15=2.8z, and

I
r==
4
(2) 5x+15 greatest, 3x+ 15 middle.
Therefore (5x+15)—(3#+15)=3x+ 15— 8z, and
r=3,
7
(3) 8x greatest, 3r+ 15 least.

Therefore 8+ 3z + 15 =2 (52 + 15), and
xr =15.

BOOK II

[The first five problems of this Book are mere repetitions of problems in
Book I. They probably found their way into the text from some ‘ancient
commentary. In each case the ratio of one required number to the other
is assumed to be 2 : 1. The enunciations only are here given.]

1. To find two numbers such that their sum is to the sum of
their squares in a given ratio [cf. L. 31].

2. To find two numbers such that their difference is to the
difference of their squares in a given ratio [cf. I 34].
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3. To find two numbers such that their product is to their sum
or their difference in a given ratio [cf. L 34].

4. Tofind two numbers such that the sum of their squares is to
their difference in a given ratio [cf. 1. 32].

5. Tofind two numbers such that the difference of their squares
is to their sum in a given ratio [cf. I. 33].

6% To find two numbers having a given difference and such
that the difference of their squares exceeds their difference by a
given number.

Necessary condition. The square of their difference must be
less than the sum of the said difference and the given excess
of the difference of the squares over the difference of the
numbers.

Difference of numbers 2, the other given number 20,
Lesser number x. Therefore x + 2 is the greater, and
4x +4 = 22.
Therefore x =44, and
the numbers are 44, 6§.

7% To find two numbers such that the difference of their
squares is greater by a given number than a given ratio of
their difference®. [Difference assumed.)

Necessary condition. The given ratio being 3:1, the square of
the difference of the numbers must be less than the sum of three
times that difference and the given number.

Given number 10, difference of required numbers 2.
Lesser number ». Therefore the greater is # + 2, and
4x+4=3.2+10.
Therefore x = 3, and
’ the numbers are 3, 5.

8. To divide a given square number into two squares®.

! The problems I1. 6, 7 also are considered Ly Tannery to be interpolated from some
ancient commentary.

* Here we have the identical phrase used in Euclid’s Dat (cf. note on p. 132 above) :
the difference of the squares is s dmepoxfs alrdv do8évre GpiBui peliwy 7 év Aoy,
literally *‘greater than their difference by a given number (more) than in a (given) ratio,”
by which is meant ¢‘greater by a given number.than a given proportion or fraction
of their difference.”

3 It is to this proposition that Fermat appended his famous note in which he
enunciates what is known as the “‘great theorem ” of Fermat. The text of the note is
as follows :

““On the other hand it is impossible to separate a cube into two cubes, or a
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Given square number 16.

2° one of the required squares. Therefore 16 — #* must
be equal to a square.

Take a square of the form! (mx—4), m being any
integer and 4 the number which is the square root
of 16, eg. take (2x—4)", and equate it to 16—=x*

Therefore 44°— 162+ 16=16—27%

or 5x*=16x, and r =3¢,

256 144

The required squares are therefore % =

0. To divide a given number which is the sum of two squares
into two other squares?

biquadrate into two biquadrates, or generally any power except a square into two powers
with the same expoment. 1 have discovered a truly marvellous proof of this, which
however the margin is not large enough to contain.”

Did Fermat really possess a proof of the general proposition that x™+ ™ =2" cannot
be solved in rational numbers where » is any number >2? As Wertheim says, one
is tempted to doubt this, seeing that, in spite of the labours of Euler, Lejeune-Dirichlet,
Kummer and others, a general proof has not even yet been discovered. Euler proved
the theorem for =3 and m=4, Dirichlet for m=s5, and Kummer, by means of the
higher theory of numbers, produced a proof which only excludes certain particular
values of 72, which values are rare, at all events among the smaller values of » ; thus
there is no value of 7 below 100 for which Kummer's proof does not serve. (I take
these facts from Weber and Wellstein’s Encyclopidie der Elementar-Mothematik, Ty
p. 284, where a proof of the formula for m=4 is given.)

It appears that the Géttingen Academy of Sciences has recently awarded a prize
to Dr A. Wieferich, of Miinster, for a proof that the equation xP-+yP=2P cannot be -
solved in terms of positive integers not multiples of p, if 2# -2 is not divisible by 2*
« This surprisingly simple result represents the first advance, since the time of Kummer,
in the proof of the last Fermat theorem ™ (Bulletin of the American Mathematical Society,
February 1910).

Fermat says (‘“Relation des nouvelles découvertes en la science des nombres,”
August 1659, Oeuvres, I1. p. 433) that he proved that 7o cube 7s divisible into two cubes by
a variety of his method of infinite diminution (descente infinie or indéfinie) different from
that which he employed for other negative or positive theorems; as to the other cases, see
Supplement, sections I., II.

1 Diophantus’ words are: “I form the square from any number of dpibuol minus
as many units as there are in the side of 16.” It is implied throughout that » must
be so chosen that the result may be rational in Diophantus’ sense, .. rational and
positive.

2 Diophantus’ solution is substantially the same as Euler’s (Algebra, tr. Hewlett,
Part 11. Art. 219), though the latter is expressed more generally.

Required to find x, y such that

2= 2440
If x Z f, theny S &
Put therefore x=f+pz y=g-gz:

H, D, 10
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Given number 13 =22+ 33

As the roots of these squares are 2, 3, take (x + 2)* as the
first square and (mx— 3)? as the second (where 72 is
an integer), say (2% — 3)%

Therefore (#2441 + 4) + (422 +9 — 12x) = I3,

or 5x*+ 13 —8x = 13.

Therefore x=§, and

the required squares are =1

25° 25

10. To find two square numbers having a given difference.
Given difference 60.
Side of one number z, side of the other x plus any

number the square of which is not greater than 6o,

say 3.
Therefore (x+3)—2*=60;
x=28%, and

the required squares are 72%, 132}.

1f. To add the same (required) number to two given numbers
so as to make each of them a square.
(1) Given numbers 2, 3 ; required number .

Therefore F+2
x+3

Teis is called a double-equation (SemhoiaiTys).
To solve it, Zake the difference between the two expressions
and resolve it into two factors*; in this case let us say
4 %
Then Zake either
(@) the square of half the difference between these factors
and equate it fo the lesser expression,

or (b) the square of half the sum and equate it to the

} must both be squares.

grealey.
hence 2/pa+ 22 — 2gyz+ ¢%2 =0,
/ ys+g
= 287-2%p
and . z= pryal
_ 2809+~ | _gt+e(-4Y
so that x= Pig , ¥= Pig y

in which we may substitute all possible numbers for g, ¢.
! Here, as always, the factors chosen must be suitable factors, z.e. such as will lead to
a “rational” result, in Diophantus’ sense,
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In this case (@) the square of half the difference is 325.

Therefore x4+ 2=22F, and x = g;, the squares being 223, 289,

Taking (&) the square of half the sum, we have x + 3 =282,
which gives the same result.

(2) To avoid a double-equation?,

first find a number which when added to 2, or to 3,
gives a square.

Take ¢g. the number #° — 2, which when added to 2 gives
a square.

Therefore, since this same number added to 3 gives a
square,

2*+ 1=a square =(x — 4), say,

the number of units in the expression (in this case 4)
being so taken that the solution may give 2> 2,

Therefore x=18, and

97

the required number is Froia before.

12. To subtract the same (required) number from two given
numbers so as to make both remainders squares.
Given numbers 9, 21.
Assuming 9—=2* as the required number, we satisfy one
condition, and the other requires that 12 + x* shall be
a square.
Assume as the side of this square x mnus some number
the square of which > 12, say 4.
Therefore F—4)y=12+2%
and xr=%.
The required number is then 8%.
[Diophantus does not reduce to lowest terms, but says
x=4 and then subtracts 3 from g or 318,]

1 This is the same procedure as that of Euler, who does not use double-equations.
Euler (4lgebra, tr. Hewlett, Part 11. Art. 214) solves the problem

x+4= u”}
xty=22f '
Suppose xt4=p2;
therefore x=p2—4, and x+7=p2+3.
Suppose that P+3=(p+9);
therefore 2=(3-¢Y/2¢.
Thus x=(9— 2242+ /4g%,

or, if we take a fraction #/s instead of ¢,
x=(gst — 220252 4 14) 4722,
JO0—2
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13. From the same (required) number to subtract two given
numbers so as to make both remainders squares.
Given numbers 6, 7.

(1) Let x be the required number.

Therefore * ~
x

6} are both squares.

The difference is 1, which is the product of, say, 2 and % ;
and, by the rule for solving a double equation,

x~—7=1%, and x=11—26:.

(2) To avoid a double-equation, seek a number which exceeds
a square by 6, say 22 + 6.
Therefore #*— 1 must also be a square = (¥ — 2)? say.
Therefore x =%, and

the required number is 51-231-

14. To divide a given number into two parts and to find a
square which when added to each of the two parts gives a square
number.

Given number 20.
Take two numbers? such that the sum of their squares
< 20, say 2, 3.

1 Diophantus implies here that the two numbers chosen s be such that the sum of
their squares <2o0. Tannery pointed out (Bibliotheca Mathematica, 1887, p. 103) that
this is not so and that the condition actually necessary to ensure a real solution in
Diophantus’ sense is something different. We have to solve the equations

x+y=a, 2+x=12 2+y=12
We assume #=g+m, v=s+#, and, eliminating x, y, we obtain
_a—(m2+n?)
T Ta(m+n)
In order that z may be positive, we must have m2+#2<a; but z need not be positive
in order to satisfy the above equations. What is really required is that x, y shall both be
positive.
Now from the above we derive
x—y=(#2 - 2% =22 (m ~ n) +m2 - n
_ (m—n) (a+2mn)
- m+n ’
Solving for x, g, we have
x_m(a-}-mn-—n’) _n(a+mn-mh)
- m+n T m+n

If, of the two assumed numbers, 7> #, the condition necessary to secure that x, y shall
both be positive is @+ mn> m?.
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Add x to each and square.

We then have
2344244
z2+6x+9)’

é? g} are respectively subtracted, the remainders

are the same square.

Let then #? be the required square, and we have only to
4%+ 4
6x+9
Thus 10x + 13 =20,
and r=5%.

The required parts are then (6—8, 13-—?), and

IO IO

49
I00

and, if

make } the required parts of 20.

the required square is

15. To divide a given number into two parts and to find a
square which, when each part is respectively subtracted from it,
gives a square.

Given number 20.
Take (x + m)* for the required square?, where »® is not
greater than 20,
eg. take (z + 2)%
This leaves a square if either 4x + 4
or 2x+3
Let these then be the parts of 20.

}is subtracted.

1 Here again the implied condition, namely that 2 is not greater than 20, is not
necessary ; the condition necessary for a real solution is something different.

The equations to be solved are x+y=a, 2-x=u2, s2-y=9%

Diophantus here puts (§+m)? for 2%, so that, if x=2m¥+m?, the second equation is
satisfied. Now (§+ )2 - y must also be a square, and if this square is equal to (£ + 77 - 7)2,
say, we must have

y=2nt+2mn-n2.

Therefore, since x+y=a,

2 (m+n) E+m2+ amn - nl=a,

hence P mi+ui—amn
w T 2 (m+n)

and it follows that

k]

_m(a-mn+n?) __n(a-f;m+m2)

x= m+n » I= m+n

If m>n, it is necessary, in order that x, y may both be positive, that 2+ #2> mz,
which is the true condition for a real solution,
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Therefore 6x + 7 = 20, and z =132,

The required parts are therefore (7—6 ﬁ) , and

6’ 6
. . 625
the required square is 56

16. To find two numbers in a given ratio and such that each
when added to an assigned square gives a square.

Given square 9, given ratio 3: 1.

If we take a square of side (mx+ 3) and subtract 9
from it, the remainder may be taken as one of the
numbers required.

Take, e.g., (x+ 3)*— 9, or x* + 6z, for the lesser number.

Therefore 322+ 18x is the greater number, and 3x2+18x+49
must be made a square = (2x — 3)? say.

Therefore x =30, and

the required numbers are 1080, 3240.

17. To find three numbers such that, if each give to the next
following a given fraction of itself and a given number besides,
the results after each has given and taken may be equal.

First gives to second } of itself + 6, second to third } of
itself + 7, third to first } of itself + 8.

Let first and second be 5z, 6x respectively.

When second has taken x+ 6 from first it becomes 7+ + 6
and when it has given x+7 to third it becomes
6xr —1.

But first when it has given x4+ 6 to second becomes
4x—6; and this too when it has taken } of third
+ 8 must become 6x—1.

Therefore } of third + 8 = 2x 4 5, and

third = 142 — 21.

Next, third after receiving } of second + 7 and giving  of
itself + 8 must become 6z — 1.

Therefore 13x —19=6x—1, and r=18

The required numbers are 970, IT"’S, _1_;_5.

! Tannery is of opinion that the problems II. 17 and 18 have crept into the text

from an ancient commentary to Book 1. to which they would more appropriately belong
Cf. 1. 22, 23,
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18. To divide a given number into three parts satisfying the
conditions of the preceding problem®
Given number 8o.
Let first give to second } of itself + 6, second to third
% of itself + 7, and third to first § of itself + 8.
[What follows in the text is not a solution of the problem
but an alternative solution of the preceding. The
first two numbers are assumed to be 5x and 12, and

the numbers found are 11—790 2725‘, 217

19. To find three squares such that the dlfference between the
greatest and the middle has to the difference between the middle
and the least a given ratio.

Given ratio 3: 1.
Assume the least square = 2%, the middle=2%+2x + 1.
Therefore the greatest =2 + 82 + 4 = square = (x + 3)}, say.
Thus =2}, and

the squares are 30}, 12, 61.

20. To find two numbers such that the square of either added
to the other gives a square?

1 Though the solution is not given in the text, it is easily obtained from the gesneral
solution of the preceding problem, which again, at least with our notation, is easy.

Let us assume, with Wertheim, that the numbers required in 11. 17 are 5%, 6y, 72.
Then by the conditions of the problem

4x-6+3+8=5y-7+x+6=62~-8+y+7,
from which two equations we can find x, 2 in terms of y.
In fact x=(26y —18)[19 and z=(17y - 3)/19,

and the general solution is
5(26y-18)19, by, 7(r7y-3)/19-

[In his solution Diophantus assumes x=y, whence y=%].

Now, to solve II. 18, we have only to equate the sum of the three expressions to 8o,
and so find y.

We have . 1631
y(5.26+6.19+7.17)—5.18~7.3=80.19, J':ﬁ
and the required numbers are
9440 9786 9814
3637 363 363 °
2 Euler (4/gebra, Part 11. Art. 239) solves this problem more generally thus.
Required to find x, y such that 22+y and 32+ are squares.
If we begin by supposing a2+ y=22 so that y=22%-x2, and then substitute the value
of y in terms of x in the second expression, we must have
24— 29262 + 24 + x=square.
But, as this is difficult to solve, let us suppose instead that
23+ y=(p-2)2=p% - 3px + 2,
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Assume for the numbers z, 2¢ + 1, which by their form
satisfy one condition.
The other condition gives
42% 4+ 5z + I =square = (2x — 2)?, say.
Therefore x=£;, and
the numbers are 133 , i—g
21. To find two numbers such that the square of either minus
the other number gives a square.
Z+ 1, 2¢ + I are assumed, satisfying one condition.
The other condition gives
4%° + 3x = square = gz°, say.
Therefore x=$, and

the numbers are 8, I

55"

22. To find two numbers such that the square of either added
to the sum of both gives a square.
Assume z, x + 1 for the numbers. Thus one condition is
satisfied.

It remains that
x=+4x+ 2 =square = (x — 2)? say.

Therefore x=1, and
the numbers are i, %

[Diophantus has 3, 12.]

23. To find two numbers such that the square of either minus
the sum of both gives a square.
Assume z, x+ 1 for the numbers, thus satisfying one
condition.
Then 2°—2x—1=square=(x—3)} say.
Therefore =2}, and '
the numbers are 21, 3.

and that Ytx=(g-3)t=gt -2y + 3%
It follows that V+opr=22,
x+2gy=¢2
_o? 2_ 42
whence PO bl ) it ol
4991 47 -1
15 32

Suppose, for example, p=2, g=3, and we have x=a, y= 1—3; and so on. We

must of course choose p, ¢ such that x, » are both positive. Diophantus’ solution is
obtained by putting g= -1, 7=3.
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24. To find two numbers such that either added to the square
of their sum gives a square.
Since 2°+ 322, 2?4 82* are both squares, let the numbers
be 3#? 8#* and their sum x.
Therefore 1214 =2*, whence 1142=2, and x= .

The numbers are therefore z%:’ I;:I .
25. To find two numbers such that the square of their sum
minus either number gives a square.
If we subtract 7 or 12 from 16, we get a square.
Assume then 124% 72* for the numbers, and 1622 for the
square of their sum.
Hence 1922=4x, and x= 4,
The numbers are ;%:, ;TI{:

26. To find two numbers such that their product added to
either gives a square, and the sides of the two squares added
together produce a given number,

Let the given number be 6.

Since x (4x—1)+x is a square, let x, 4x — I be the numbers.

Therefore 4#°+ 3xr—1 is a square, and the side of this
square must be 6 ~— 2z [since 2x is the side of the
first square and the sum of the sides of the square
is 6].

Since 4224 3x— 1=(6—22),

we have » =37, and

37 121
numbers are 3£ 2=,
the numbers >

27. To find two numbers such that their product mznus either
gives a square, and the sides of the two squares so arising when
added together produce a given number.

Let the given number be 5.
Assume 4x+ 1, x for the numbers, so that one condition
is satisfied.
Also 42— 3x — 1=(5—2x)%
Therefore x = 2§, and
26 121

the numbers are o T
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28. To find two square numbers such that their product added
to either gives a square.
Let the numbers? be x*, 2

.':3: jiﬁ} are both squares.
To make the first expression a square we make2*+1a

square, putting

2+ 1= (x— 2), say.

Therefore x =%, and 22 = ;.
We have now to make & (#*+ 1) a square [and y must be

different from x].
Put 97" +9=(3y — 4)’ say,
and y=4.

9 49

Therefore the numbers are 6 26

Therefore

29. To find two square numbers such that their product miznus

either gives a square.
Let 22 5 be the numbers.

Then f 7 } are both squares.

A solution of 22— 1 =(a square) is 2?=2§.
We have now to solve

-3-5_7- — 38 =a square.
Put -1 —( ¥ — 4), say.
Therefore y = lg‘"—, and

the numbers are 29 1%

64 64"
30. To find two numbers such that their product + their sum
gives a square.
Now #° + #* + 2smn is a square.
Put 2, 3, say, for mz, 2 respectively, and of course
2°+ 324 2.2.3 is a square.
Assume then product of numbers = (22 + 3?) #? or 1342 and
sum=2.2.32% or 1222
The product being 1342 let #, 13 be the numbers.
Therefore their sum 14x=1224% and x=1%.
91

The numbers are therefore g, 5

! Diophantus does not use two unknowns, but assumes the numbers to be x2 and 1
until he has found x. Then he uses the same unknown () to find what he had first taken
to be unity, as explained above, p. 52. The same remark applies to the next problem.
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31. To find two numbers such that their sum is a square and
their product + their sum gives a square.

2.2m.m=asquare, and (2m) + #* + 2. 2m.m = a square.

fm=2 424+22+2.4.2=360r4.

Let then the product of the numbers be (4* + 22)2* or 2027,
and their sum 2.4.22% or 1622, and take 2z, 10z for
the numbers.

Then 122 =162% and r = §.

The numbers are g, %o

32. To find three numbers such that the square of any one of
them added to the next following gives a square.

Let the first be #, the second 2z + I, and the third
2(2x+1)+1 or 4r+ 3, so that two conditions are
satisfied.

The last condition gives (4% + 3)* + # = square = (4x — 4)’,
say.

Therefore x = ., and

T I
the numbers are 577, 3—7, 5—979
33. To find three numbers such that the square of any one of
them msnus the next following gives a square.

Assume x + 1, 22 + I, 4v + 1 for the numbers, so that two
conditions are sdtisfied.

Lastly, 16?4+ 7x = square = 252 say,

and r=%

The numbers are %5, 393, 3-’92

34. To find three numbers such that the square of any one
added to the sum of all three gives a square.
{§(m—mn)*+mn is a square. Take a number separable
into two factors (2, 7) in three ways, say 12, which is
the product of (1, 12), (2,6) and (3, 4).
The values then of § (1 — #) are 54, 2, &.
Take 54z, 22, §r for the numbers, and for their sum 1222

Therefore 8z = 122?, and =%
The numbers are 2%, 4 I
3°"3 3
[Diophantus says $, and 22, §, £.]
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35. To find three numbers such that the square of any one

menus the sum of all three gives a square.
{3 (m +n)*—mn is a square. Take, as before, a number
divisible into factors in three ways, as 12.
Let then 6Lz, 4%, 34 be the numbers, and their sum 1222
Therefore 14xr= 1227 and xr=1{.

The numbers are 45’]’, 268, 2%1"
BOOK 1III

1. To find three numbers such that, if the square of any one
of them be subtracted from the sum of all three, the remainder
is a squarel.

Take two squares x*% 4x?; the sum is 522

If then we take 5x* as the sum of the three numbers, and
#, 2x as two of them, we satisfy two conditions.

Next divide 5, which is the sum of two squares, into two
other squares 5, 421 [IL. 9], and assume 3z for the
third number.

Therefore x+ 22+ 3r=752?% andx = {L.

The numbers are X2, 34 34

25’ 25’ 125°
Diophantus writes 8% for x and 8%, 172, 3% for the numbers.
P ) 125 195 13

2. To find three numbers such that the square of the sum of
all three added to any one of them gives a square.
Let the square of the sum of all three be #? and the
numbers 3x2, 822 152
Hence 2622 =%, x =+, and
8 15
the numbers are 676’ &6 56
3. To find three numbers such that the square of the sum of
all three minus any one of them gives a square.
Sum of all three 4« its square 16#? the numbers 712,
1222 1522
Then 342 =4x, x= £, and
28 48 6o
the numbers are By 289 289’

! The fact that the problems I11. 1—4 are very like II. 34, 35 makes Tannery suspect
that they have found. their way into the text from some ancient commentary.
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4. To find three numbers such that, if the square of their sum
be subtracted from any one of them, the remainder is a square.
Sum z, numbers 222 5z?% 1022
Then 1722=x, =4, and
the numbers are %9, %, :T(;'
5. To find three numbers such that their sum is a square and
the sum of any pair exceeds the third by a square,
Let the sum of the three be (x+ 1)?; let first + second
= third + 1, so that third = }#*+ x; let second + third
= first + 2% so that first =x + 1.
Therefore second = Lz* + 4.
It remains that first 4 third = second + a square.
Therefore 24 = square = 16, say, and x = 8.
The numbers are 83, 323, 40.

Otherwise thus'.
First find three squares such that their sum is a square.
Find e¢g what square number +4 49 gives a square,
that is, 36;

4, 36, 9 are therefore squares with the required property.
Next find three numbers such that the sum of each pair=
the third + a given number; in this case suppose
first + second — third = 4,
second + third — first =9,

third + first — second = 36. .
This problem has already been solved [I. 18].
The numbers are respectively 20, 63, 223.

1 We should naturally suppose that this alternative solution, like others, was inter-
polated. But we are reluctant to think so because the solution is so elegant that it
can hardly be attributed to a scholiast. If the solution is not genuine, we have here
an illustration of the truth that, however ingenious they are, Diophantus’ solutions are not
always the best imaginable (Loria, Le sciense esatte nell’ antica Grecia, Libro v. pp. 138-9).
In this case the more elegant solution is the alternative one. Generalised, it is as follows.
We have to find x, y, z so that

-—.x+y+ g=a square
x—-y+z=a sqna.relr s
x+y - z=a square
and also Z+y +z=a square,
We have only to equate the first three expressions to squares a2, #2, ¢2 such that
024824+ 2=a square, #2 say, since the sum of the first three expressions is itself
x+y+z.
The solution is then

x= ; @+, y= i(ﬂ+a’), 2= (a2 ).
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6. To find three numbers such that their sum is a square and
the sum of any pair is a square.
Let the sum of all three be x2+2x -+ 1, sum of first and
second #2, and therefore the third 22+ 1 ; let sum of
second and third be (x — 1)
Therefore the first = 4z, and the second = 2* — 4.
But first + third = square,
that is, 6x+ I =square= I2I, say.
Therefore x = 20, and
the numbers are 8o, 320, 4I.

[An alternative solution, obviously interpolated, is practically
identical with the above except that it takes the square 36 as
the value of 6x+1, so that =3 and the numbers are 10

840 385 456

“ 36 % )
7. To find three numbers in A.P. such that the sum of any
pair gives a square.
First find three square numbers in A.P. and such that half
their sum is greater than any one of them. Let
z% (x+ 1) be the first and second of these ; therefore
the third is 22+ 4x + 2 = (z — 8)?, say.
Therefore xr=§2 or §1;
and we may take as the numbers 961, 1681, 2401.
We have now to find three numbers such that the sums
of pairs are the numbers just found.
The sum of the three = 8922 = 2521, and
the three numbers are 120%, 840%, 1560%.

8. Given one number, to find three others such that the sum
of any pair of them added to the given number gives a square, and
also the sum of the three added to the given number gives a
square.

Given number 3.
Suppose first required number + second =42+ 4%+ 1,
second + third =224+ 6x+6,
sum of all three=x2+8x+13.
Therefore third =4x + 12, second =x*+2x—6, first = 22+ 7.
Also first + third + 3 = a square,
that is, 6x + 22 = square = 100, suppose.
Hence x=13, and
the numbers are 33, 189, 64.
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o. Given one number, to find three others such that the sum
of any pair of them smsnus the given number gives a square, and
also the sum of the three mznus the given number gives a square.

Given number 3.
Suppose first of required numbers + second =22+ 3,

second + third =2+ 2x44,

sum of the three =2*+4x+7.
Therefore third = 4% + 4, second =2* - 2x, first=2x+3.
Lastly, first + third — 3 =6x + 4 = a square = 64, say.
Therefore x = 10,and

(23, 80, 44) is a solution,

10. To find three numbers such, that the product of any pair
of them added to a given number gives a square.

Let the given number be 12. Take a square (say 25)
and subtract 12. Take the difference (13) for the
product of the first and second numbers, and let these
numbers be 13#, 1/x respectively.

Again subtract 12 from another square, say 16, and let the
difference (4) be the product of the second and third
numbers.

Therefore the third number = 4.

The third condition gives 52x%+ I2 =a square; now
52=4.13,and 13 is not a square; but, if it were a
square, the equation could easily be solved®.

Thus we must find two numbers to replace 13 and 4 such
that their product is a square, while either + 12 is
also a square.

Now the product is a square if both are squares ; hence we
must find two squares such that either + 12 = a square.

«This is easy? and, as we said, it makes the equation easy
to solve.”

The squares 4, } satisfy the condition.

1 The equation 5242+ 12 =22 can in reality be solved as it stands, by virtue of the fact
that it has one obvious solution, namely x=1. Another solution is found by substituting
¥+1 for x, and so on. Cf. pp. 69, 70 above. The value x=1 itself gives (13, 1, 4) as
a solution of the problem.

2 The method is indicated in II. 34. We have to find two pairs of squares differing
by 12. (a) If we put 12=6. 2, we have

X 2 I 2
{;(6—2)} +12= {;(6+'z)} )
and 16, 4 are squares differing by 12, or 4 is a square which when added to 12 gives a
square. (&) If we put 12=4.3, we find {5(4— 3)} or ito be a square which when
added to 12 gives a square.
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Retracing our steps, we now put 4z, I/x and z/4 for the
numbers, and we have to solve the equation
#*+ 12 =square = (¥ + 3)}, say.
Therefore x=1{, and

(2, 2, %) is a solution?,

11. To find three numbers such that the product of any pair
minus a given number gives a square.
Given number 10.
Put product of first and second = a square + 10 =4 + I0,
say, and let first = 14, second = 1/x.
Let product of second and third = a square + 10 = 19, say ;
therefore third = 19xz.
By the third condition, 266 — 10 must be a square; but
266 is not a square?
Therefore, as in the preceding problem, we must find two
squares each of which exceeds a square by 10.
The squares 304, 12} satisfy these conditions?®,
Putting now 30}x, 1/%, 12}x for the numbers, we have,
by the third condition, 3708%* — 10 = square [for
370# Diophantus writes 370 5];
therefore 5929x%— 160 =square = (77x — 2)’, say.
Therefore x =44, and
the numbers are

1240} 77 502%
774 77

1 Euler (4/gebra, Part I1. Art. 232) has an elegant solution of this problem in whole
numbers. Let it be required to find x, y, = such that xy +a, yz+ 4, zx +a are all squares.
Suppose xy+a=p% and make z=x+y+g;
therefore szta=x2+txy+gx+a=x2+gx+p%
and rta=ay+Ptoyta=pt+oy+2;
and the right hand expressions are both squares if = = 2p, so that 2=x+y£2p.

We can therefore take any value for  such that g?>ag, split 22—a into factors,
take those factors respectively for the values of x and y, and so find 2.

Z.g. suppose a=12 and p%=25, so that xy=13; let x=1, y=13, and we have
2=14%10=24 Or 4, and (1, I3, 4), (I, I3, 24) are solutions.

% As a matter of fact, the equation 266x% — 10=22 can be solved as it stands, since it
has one obvious solution, namely x=1. (Cf. pp. 69, 70 above and note on preceding
problem, p. 159.) The value x=r gives (14, I, 19) as a solution of the problem.

3 Tannery brackets the passage in the text in which these squares are found, on
the ground that, as the solution was not given in the corresponding place of 1I1. 10, there
was no necessity to give it here. 10 and 1 being factors of 10, *

I 2 I 2
{2 (10— 1)} +10= {; (xo+x)} ;
. - 2
thus 30} is a square which exceeds a square by ro. Similarly {% (5+ 2)} or 12} is such

a square. The latter is found in the text by putting #2 - ro=square=(m - 2)2, whence
m=3}%, and m?=12}.
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12. To find three numbers such that the product of any two
added to the third gives a square.

Take a square and subtract part of it for the third number ;
let #*+6x+9 be one of the sums, and g the third
number.

Therefore product of first and second = 2 + 6x; let first
= x, so that second =x + 6.

By the two remaining conditions

Ior + 54
Ior+ 6

Therefore we have to find two squares differing by 48;
“this is easy and can be done in an infinite number
of ways.”

The squares 16, 64 satisfy the condition. Equating these
squares to the respective expressions, we obtain
x=1, and .

the numbers are 1, 7, 9.

} are both squares.

13. To find three numbers such that the product of any two
minus the third gives a square.
First #, second x+ 4; therefore product =22? 4+ 47, and we
assume third = 4x. g
Therefore, by the other conditions,
4x% 4 15x
e
The difference = 16x + 4 = 4 (4¢ + 1), and we put
F@xr+5) =42+ 157
Therefore x = 3, and
the numbers are

are both squares.

25 105 100
20’ 20’ 20°

14. To find three numbers such that the product of any two
added to the square of the third gives a square™

1 Wertheim gives a more general solution, as follows. If we take as the required
numbers X=1 ax, Y=ax+8&, z=1 82, two conditions are already satisfied, namely

X Y+Z%=a square, and YZ+ X?=a square.
It only remains to satisfy the condition ZX + ¥2=a square, or

a2 + ?—g adx + b4=a square.

Put a*x”+-‘:%ab"x+b4=(ax+kb2)’,
_168% (A1)

and MCICErT

where % remains undetermined,
H. D. II
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First z, second 4x + 4, third 1. Two conditions are thus
satisfied.
The third condition gives
#+(4x + 4)° = a square = (4x— 5%, say-
Therefore x =%, and
the numbers (omitting the common denominator)
are 9, 328, 73.

15. To find three numbers such that the product of any two
added to the sum of those two gives a square’.

[Lemma] The product of the squares of any two con-
secutive numbers added to the sum of the said
squares gives a square?

Let 4, 9 be two of the required numbers, x the third.

10r+9
5x+4
The difference = 52+ 5= 75 (x + I).
Equating the square of half the sum of the factors to
10xr+ 9, we have
fE#x+6)P=10r+0.
Therefore x = 28,.and (4, g, 28) is a solution.

Therefore } are both squares.

1 The problem can of course be solved more elegantly, with our notation, thus. (The
same remark applies to the next problem, 111. 16.)

If x, y, = are the required numbers, xy+x+y, etc. are to be squares. We may
therefore write the conditions in the form
(y+1) (s+1)=a square +1,
(+1)(x+1)=a square +1,
(¥ +1)(y+1)=a square +1.
Assuming a2, 42, (2 for the respective squares, and putting ¥=x+1, 9=y+1, f=2+1,
we have to solve
n¢=a%+1,
gf: 41 3
W=c=2+1.
[This is practically the same problem as that in the Lemma to Dioph. v. 8.]
Multiplying the second and third equations and dividing by the first, we have

£=/{(+1) (2 +1)/(@+1)},
with similar expressions for 9, {

x, ¥, % are these expressions minus 1 respectively. a?, 22, & must of course be so
chosen that the resulting values of £, #, may be rational. Cf. Euler, Commentationes
aritkmeticae, 11. p. 577.

% In fact, @® (a+1)2+ a2+ (a+1)2={a(a+1)+1}%
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Otherwise thus.

Assume first number to be x, second 3.
Therefore 4x + 3 = square = 25 say, whence = 54, and 54,
3 satisfy one condition.

1 This alternative solution would appear to be undoubtedly genuine.
Diophantus has solved the equations
yity+e=ul
ww+zt+x=22 }
xy+x+y=02
Fermat shows how to solve the corresponding problem with fow» numbers instead of
three. He uses for this purpose Diophantus’ solution of V. 5, namely the problem
of finding x2, 32, 2% such that

P22+ 2=72 2x24 =42, 2%l 422=12 }
PR+ 2+ 2=0p, a4 tal=02 a%l4ad+yi=u?
Diophantus finds ( 93 694 ISG) as a solution of the latter problem. Fermat takes

these as the first three of the four numbers which are to satisfy the condition that the
product of any two plus the sum of those two gives a square, and assumes x for the
fourth. Three relations out of six are already satisfied, and the other three require

64 64 73% 64
tx+ r 132, 04
FRARE R I
190, L 198, o 2052 166
9 9’ 9 9

to be made squares: a ‘‘triple-equation” to be solved by Fermat’s method. (See the

Supplement, section V.)
Fermat does not give the solution, but I had the curiosity to work it out in order to

verify to what enormous numbers the method of the triple-equation leads, even in such
comparatively simple cases.
‘We may of course neglect the denominator g and solve the equations
34x + 25=24,
73% + 64=122,
205x+ 196=22

The method gives
_ _ 459818598496844787200

T 63162900482841969g201 ’
the denominator being equal to (23132230399)2
Verifying the correctness of the solution, we find that, in fact,

2
3:.”,:(&5@91)

25 25132230399
£ (10351251901)2
64 25132230399
203 (nz758416or)2
xtr={ ———r ) .
196 25132230399

Strictly speakmg, as the value found for x is negative, we ought to substitute y -4
for it (where —4 is the value found) in the three equations and start afresh. The
portentous numbers which would thus arise must be left to the imagination.

I1—2
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Let the third be z, while 5¢, 3 are the first two.
4x+ 3
64x + 5%
but, since the coeficients in one expression ave rvespectively
greater than those in the other, but neither of the ratios
of corresponding coefficients is that of a square to a
square, our suppositions will not serve the purpose; we

cannot solve by our method.

Hence (to replace 51, 3) we must find two numbers such
that their product + their sum =a square, and the
ratio of the numbers increased by I respectively is
the ratio of a square to a square.

Let these be y and 4y + 3, which satisfy the latter con-
dition; and, in order that the other may be satisfied,
we must have

49" + 8y + 3 =square =(2y — 3)’, say.

Therefore =75

Assume now £, 43, x for the three numbers.

Therefore } must both be squares;

Therefore gﬁig} are both squares,
or, if we multiply by 25 and 100 respectively,
130x+ 105
130x+ 30
The difference is 75 = 3.25, and the usual method of
‘solution gives z = f&.
3 £ 7

The numbers are 157 16" 16°

} are both squares.

16. To find three numbers such that the product of any two

minus the sum of those two gives a square.

Put x for the first, and any number for the second; we
then fall into the same difficulty as in the last
problem.

We have to find two numbers such that

(@) their product minus their sum =a square, and

() when each is diminished by 1, the remainders
have the ratio of squares.
Now 47+ 1, y + 1 satisfy the latter condition.
The former (2) requires that
4y*— 1 =square = (2y — 2)? say,
which gives y = §.
Assume then %2, 28, » for the numbers.
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Therefore % _ i’j} are both squares,
or, if we multlply by 4, 16 respectively,
10x — 14
10x—26]
The difference is 12=2.6, and the usual method gives
x=3.
The numbers are 33 31}—— =g'_;1_

are both squares.

17. To find two numbers such that their product added to
both or to either gives a square.
Assume z, 4 — 1 for the numbers, since
x(4x— 1)+ x = 42*% a square.
Therefore also ﬁi i{; : i } are both squares,
The difference is z=4x. %, and we find
r=255.
65 36

Th -2
e numbers are 224’ 224"

18. To find two numbers such that their product #zzzus either,
or minus the sum of both, gives a square’.

1 With this problem should be compared that in paragraph 42 of Part I. of the
Inventum Novum of Jacobus de Billy (Oeuvres de Fermat, 111 pp. 351-2), where three
conditions correspond to those of the above problem, and there is a fourth in addition.

The problem is to find & g (§>%) such that
E-&n

£ +z : g are all squares.

E-n-#
Suppose n=x, §=1-x; the first two conditions are thus satisfied. The other
two give
. 22—zt 1=22,
x—3x+1=22
Separating the difference 2x into the factors 2, 1, we put, as usual,
(x+%)2=x3—x+ 1,

=3 53
whence T=2s and the numbers are 88"

To find another value of x by means of the value thus found, we put y+% in place of

x in the double-equation, whence

Multiplying the lower expression by 49, we can solve in the usual way. Our expressions



166 THE ARITHMETICA

Assume x + 1, 4 for the numbers, since
4x (¥ + 1)—4x = a square.

Therefore also 4x:+ -1 } are both squares.
422 — x—1
The difference is 4z =4x.1, and we find
x=1%.

The numbers are 2%, 5

19. To find four numbers such that the square of their sum
plus or minus any one singly gives a square.
Since, in any right-angled triangle,
(sq. on hypotenuse) + (twice product of perps.) = a square,
we must seek four right-angled triangles [in rational
numbers] having the same hypotenuse,
or we must find a square which is divisible into two
squares in four different ways; and “we saw how to
divide a square into two squares in an infinite
number of ways.” [IL 8.]
Take right-angled triangles in the smallest numbers,
(3, 4. 5) and (5, 12, 13); and multiply the sides of

arenowy2—— y+ Be 9 and 497 - # y+ 29 , and the difference between them is 48y% - 110y.

The solunon next mentioned by De Billy was clearly obtained by separating this
difference into factors such that, when the square of half their difference is equated to

I .49 440 7
—~y+22, the absolute terms cancel out. The factors are -<
» Ve 7.7,55}' e

220 21 49
=)yl = syt 2
g( 7 55)" } = y 64
4045195 22715927
71362992 71362992
48647065 22715927
7136299'.-. 71362992 °
A solution in smaller numbers is obtained by separating 48y2— 110y into factors such
55

and we put

This gives y= - , whence x= ,and the numbers are

that the terms in #? in the resulting equation cancel out. The factors are 6y, 8y - 3 and
we put
-99) = 49
( ) = y+ 64’
= 7 59 = 47959 . 3 _ 51865
whence y= 16 and x 10416 8 10416

This would give a negative value for 1—x; but, owing to the symmetry of the

original double-equation in x, since x=f::fg satisfies it, so does x=~

10416 41449
51865 and 51865
Cf: note on 1v. 23.

hence the

416
51 86 3
numbers are

: a solution also mentioned by De Billy.
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the first by the hypotenuse of the second and wice
versa.

This gives the triangles (39, 52, 65) and (25, 60, 65); thus
65* is split up into fwo squares in fzwo ways.

Again, 65 is “naturally” divided into two squares in two
ways, namely into 72+ 4? and 82+ 1% “which is due
to the fact that 65 is the product of 13 and 5, each of
which numbers is the sum of two squares.”

Form now a right-angled triangle! from 7, 4. The sides
are (77— 4% 2.7.4, 7°+4%) or (33, 56, 65).

Similarly, forming a right-angled triangle from 8, 1, we
obtain (2.8.1, 8—1? 8+ 17 or 16, 63, 65.

Thus 652 is split into two squares in _four ways.

Assume now as the sum of the numbers.65x and

as first number 2. 39. 522° = 405647
, second ,, 2.25.602° = 30004%
» third ,,  2.33.564%= 3696+
, fourth ,, . 2.16.6322=20162",

the coefficients of x* being four times the areas of the
four right-angled triangles respectively.
The sum 127681* =65z, and x=f%s.
The numbers are

17136600 12675000 15615600 8517600
163021824’ 163021824’ 163021824’ 163021824 °

20. To divide a given number into two parts and to find a
square which, when either of the parts is subtracted from it, gives
a square’

Given number 10, required square 22+ 2z + I.
Put for one of the parts 2x + 1, and for the other 4.
The conditions are therefore satisfied if
6x+1=10.
Therefore x = 1%;
the parts are (4, 6) and the square 6}.

1 If there are two numbers 3, ¢, to ‘‘form a right-angled triangle” from them means
to take the numbers p2+42, p2~ g2, 2¢9. These are the sides of a right-angled triangle,

since
v (P P=(- )+ (g
2 This problem and the next are the same as I1. 15, 14 respectively. It may therefore
be doubted whether the solutions here given are genuine, especially as interpolations
from ancient commentaries occur most at the beginning and end of Books.
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21. To divide a given number into two parts and to find a
square which, when added to either of the parts, gives a square.

Given number 20, required square #°+ 2x + 1.

If to the square there be added either 2x+3 or 42+ 38,
the result is a square.

Take 22 4 3, 4x + 8 as the parts of 20, and 6x+11 =20,
whence z = 1%.

Therefore the parts are (6, 14) and the square 61.

BOOK 1V

1. To divide a given number into two cubes such that the sum
of their sides is a given number?.
Given number 370, given sum of sides 10.
Sides of cubes 5 + x, 5 —x, satisfying one condition.
Therefore 30242 +250=370, ¥x=2,
and the cubes are 73, 3%, or 343, 27.

2. To find two numbers such that their difference is a given
number, and also the difference of their cubes is a given number.
Difference 6, difference of cubes 504.
Numbers z+ 3, r— 3.
Therefore 1842 + 54 = 504, #*=25, and xr = 5.
The sides of the cubes are 8, 2 and the cubes 512, 8.

3. To multiply one and the same number into a square and
its side respectively so as to make the latter product a cube and
the former product the side of the cube.

Let the square be 22 Its side being z, let the number

be 8/x.
Hence the products are 8z, 8, and
(8x) =8.
Therefore 2= 8z, =1, and the number to be multiplied
is 32.

The square is % and its side i

1 It will be observed that Diophantus chooses, as his given numbers, numbers such
as will make the resulting “ pure” quadratic equation give a ‘ rational ” value for x. If
the given numbers are 2a, 25, respectively, we assume é+x, §—x as the sides of the
cubes, and we have

) 258+ 6522 =2a,
so that #=(a—4&)[35; x is therefore ‘‘irrational” unless (z—4&%)/36 is a square. In
Diopbantus’ hypothesis a is taken as 185, and & as 5, and the condition is satisfied. He
shows therefore incidentally that he knew how to find two numbers @, & such that
(a—8)[36 is a square (Loria, Le scienze esatte nell’ antica Grecia, Libro v. pp. 129-30).
A similar remark applies to the next problem, 1v. 2.
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4. To add the same number to a square and its side re-
spectively and make them the same? [7.e. make the first product a
square of which the second product is the side].

Square #? with side .

Let the number added to #* be such as to make a square
say 34%

Therefore 322 + x =side of 42°= 2z, and x =}.

The square is g, its side g, and the number ;E»,

5. To add the same number to a square and its side and make
them the coppositeZ
Square 27 the number a square number of times 2
minus x, say 4% —z.
Hence 52 —x=side of 42* = 2x, and x =§.

The square is ,;95, its side g, and the number Z

25"
6. To add the same square number to a cube and a square
and make them the same.
Let the cube be #* and the square any square number of
times % say 9x%
We want now a square which when added to 9#* makes
a square. Take two factors of 9, say 9 and 1, sub-
tract 1 from o, take half the difference and square.
This gives 16.
Therefore 162 is the square to be added.
Next, 28 + 1622=a cube = 828, say; and »r = 18.

The cube is therefore %, the square 2%"!, and

the added square number 4—:—g£

1 In this and the following enunciations I have kept closely to the Greek partly
for the purpose of showing Diophantus’ mode of expression and partly for the brevity
gained thereby.

In Prop. 4 to ““make them the same” means what I have put in brackets ; to ““make
them the opposite” in Prop. 5 means to make the first product a side of which the second
product is the square.

2 Nesselmann solves the problem generally, thus (Notes in Zeitschrift fiir Matk. u.
Physik, XXXVIL (1892), Hist. litt. Abt. p. 162).

22+ y=/(x+y); therefore x4+ 2x2% +32=x+y, or 32— (1 ~ 222) y=x - &%
Solving for y, we obtain, as one of the solutions,

I I
y=;—x’+ ,\/<;+x—x’).
I

2
To make the expression under the radical a square we put i +x—x2=(mx—-;) ,
mt+r _miimi-m—1
it YT T (e

whence x= Diophantus’ solution corresponds to 7=12,
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7. To add the same square number to a cube and a square
respectively and make them the opposite.
For brevity call the cube (1), the second square (2) and
the added square (3).
Now, since (2) + (3) = a cube, suppose (2) +(3) = (1).
Since @*4 & +2ab is a square, suppose (I)=(a?+ &),
(3) = 2ab, so that the condition that (1) +(3) = square
is satisfied.
But (3) is a square, and, in order that 224 may be a square,
we put a=z, 6 =2x.
Suppose then (1)=22+(2x)=752% (3)=2.x.2r=44%;
therefore (2) = 2% by subtraction.
But 522 is a cube; therefore x =3,
and the cube (I)=125, the square (2)=25, the
square (3)= 100.
Otherwise thus.
Let (2)+ (3)= (1).
Then, since (1) + (3) = a square, we have to find two squares
such that their sum + one of them = a square.
Let the first of these squares be 2%, the second 4.
Therefore 242+ 4 =square = (2x — 2)% say; thus x =4,
and the squares are 16, 4.
Assume now (2) = 4% (3)=164%
Therefore 202? is a cube, so that x= 20;
the cube (1) is 8ooo, the square (2) is 1600, and the
added square (3) is 6400.

8. To add the same number to a cube and its side and make

them the same?,
Added number x, cube 8% say. Therefore second sum
= 3, and this must be the side of 823+ .

That is, 848+ x =272 and 192°=2x, or 194?=1.

1 Nesselmann (g, ¢#. p. 163) gives a more general solution.
We have a8+y=(x+7)3 whence 1 =3x2+ 32y +52
Solving for y, we find
=_3 3 1
y= —;xé: '\/(l -; xz) =z { - 3xr=y/(4-349)}
. _ m \2 . 4mn 2m2 - 672

Lastly, putting 4 - 322= (2— ;x) , we find v e 1 N4-320) == povs o

" — 6mnx (m2 - 3n?)
- 33+ m?
always be positive, m/n must be >3+,/12; Diophantus’ solution corresponds to m =17,
n=1.

If the positive sign be taken, then, in order that y may
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But 19 is not a square. Hence we must find, to replace
it, some square number. Now 19z® arises from
27x% — 8% where 27 is the cube of 3, and 8 the cube
of 2. And the 3x comes from the assumed side 2z,
by increasing the coefficient by unity.

Thus we must find #wo consecutive numbers suck that their
cubes differ by a square.

Let them be 5, 7 + 1.

Therefore 3% + 37 + I = square = (1 —2y)% say, and y=7.

Going back to the beginning, we assume added number
=z, side of cube = 7.

The side of the new cube is then 8z, and

3438+ x = 51245

Therefore 22 = 1h9, and x=4.

is 348 7
The cube is 3 o7 its side ; T and the added

I
number 3

9. To add the same number to a cube and its side and make
them the oppositel

Suppose the cube is 843, its side being 2#; and the added
number is 272%—2x. (The coefficients 8, 27 are
chosen as cube numbers.)

Therefore 354° — 24 =side of cube 274*= 3, or 352" =35.

Tis gives no rational value.

But 35=27+8,and 5=3+2.

Therefore we have to find two cubes such that their sum
has to the sum of their sides the ratio of a square
to a square?

Let sum of sides=any number, 2 say, and side of first
cube = z, so that the side of the other cube is 2 — 2.

1 Nesselmann (gp. cit. p. 163) solves as follows. The equation being x+y=(x3+3)3,

put y=2z- 2% and the equation becomes x#z-a3=23 or 28+ 28=x+s.
Dividing by x+2, we have #2~xz+s2=1.

Solving for x, we obtain x=£ {axa/(4-322}.
2
To make 4-3%? a square, equate it to (13 z—a) ; therefore z= 4'_*_3 31 SO that

X (322 — 2922 .
m'Lmz'(_’:_anTs?l ,and y=z-23. If the positive sign be taken, Diophantus’ solution
corresponds to m=2, n=1.
2 It will be observed that here and in the next problem Diophantus makes no use of

the fact that
(P42 (x+p) =a? - 2y + 32
Cf. note on IV. 11 below.
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Therefore 8 — 12z + 622 must be twice a square.

That ‘is, 4 — 65 + 35° = square = (2 — 42)?% say; #=1§, and
the sides are 1%, 1§.

Neglecting the denominator and the factor 2 in the
numerators, we take 5, 8 for the sides.

Starting afresh, we put for the cube 1252° and for the
number to be added 512#°—5x; we thus get

6374 —5x=8x,and x=14

The cube is Ijg, its side 3 2 and the added number;:;

to. To find two cubes the sum of which is equal to the sum
of their sides.

Let the sides be 2z, 3.

This gives 354%=5x; but tkis equation gives an irrational
vesult,

We have therefore, as in the last problem, to find two
cubes the sum of which has to the sum of their sides
the ratio of a square to a square.

These are found, as before, to be 53, 8.

Assuming then 5, 8+ as the sides of the required cubes,
we obtain the equation 6374°=13%, and x={.

125 512

The cubes are =22
343’ 343°

1 Here, as in the last problem, Diophantus could have solved his auxiliary problem
of making (x®+3%)/(x +) a square by making 22— xy +? a square in the same way as in
Lemma. I. to V. 7 he makes x®+ xy + 3 a square.

The original problem, however, of solving

Brp=x+y
can be more directly and generally solved thus. Dividing out by (x+y), we must have
B-zy+ii=1.

This can be solved by the method shown in the note to the preceding problem.

Alternatively, we may (with Wertheim) put x%- xy+32=(x+4y)? and at the same
time 1=+ (x-+4y).

Thus we have to solve the equations

z(1+28)=y (s —k’)}

x+éy= E4
which gi = 1-# —a 1R
give z T+E+2 J =‘=x+,é+/lv"’

where % remains undetermined.

Diophantus’ solution is obtained by taking the positive sign and putting k=Lor by
4

taking the negative sign and putting 4= ~3.
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11. To find two cubes such that their difference is equal to
the difference of their sides.
Assume 2, 3z as the sides.
This gives 1948 =x, and x is irrational.
We have therefore to find two cubes such that their
difference has to the difference of their sides the
ratio of a square to a squarel. Let them be (z+ 1),
2% so that the difference of the sides may be a square,
namely 1.
Therefore 322+ 32+ 1 =square =(1 — 22)}, say, and g=7.
Starting afresh, assume 7x, 8x as the sides; therefore
1692° =z, and x = .
The sides of the two cubes are therefore 113, %,

1 Nesselmann (Die Algebra der Griechen, pp. 447-8) comments on the fact that
Diophantus makes no use here of the formula (x%-9)/(x~y)=x*+xy + 37, although he
must of course have known it (it is indeed included in Euclid’s much more general
summation of a geometrical progression, 1X. 35). To solve the auxiliary problem in
Iv. 11 he had only to solve the equation

x*+xy+3y =a square,
which equation he does actunally solve in his Lemma I. to v. 7.
The whole problem can be more simply and generally solved thus. We are to have

2B -gp=x-yp,
or 2+ zy+)i=1
Nesselmann’s method of solution (cf. note on 1V. g) gives x=£ {-y=Ja-32},
_ 4mn _ —2mn=(nl-3n? . s L :
and hence y_m2+3n2’ x= po gy . Diophantus’ solution is obtained by

putting 7»=1, z=2 and taking the lower sign.
Wertheim’s method (see note on preceding problem) gives in this case
-2 2k —-1
FEE T VT
where £ is undetermined.
If we take the negative sign and put 2= - 3, we obtain Diophantus’ solution.
Bachet in his notes to 1. 10, 11 solves the problems represented by
a3 B=m (x+y)
subject to the condition that m is either a square or the third part of a syuare. His method
corresponds to that of Diophantus. He does not divide out by x+ y, and he reduces the
problem to the subsidiary one of finding £, 7 such that the ratio of £3:%3 to {7 is the
ratio of a square to a square. His assumptions for the *“sides,” £, 7, are of the same kind
as those made by Diophantus; in the first problem he assumes x, 6 —x and in the second
%, x+2. In fact, it being given that (x3%33)/(x+y)=a, Bachet assumes x+y=2z and
thus obtains
323 —3xz+2%=q,
which equation can easily be solved by Diophantus’ method if a is a square or triple of a
square. .

Fermat observes that the diopirués of Bachet is incorrect because not general. It
should be added that the number (7) may also be the product of a square number into a
prime number of the form 3z+1, as 7, 13, 19, 37 etc. or into any number which has no
factors except 3 and prime numbers of the form 3#+1, as 21, 91 etc.  * The proof and
the solution are to be obtained by my method.”
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12. To find two numbers such that the cube of the greater
+ the less =the cube of the less + the greater™.

Assume 2x, 3x for the numbers.

Therefore 272%+2x=8x+ 3x, or 19x°=x, and =z is
irrational.

But 19 is the difference of two cubes, and 1 the difference
of their sides. Therefore, as in the last problem,
we have to find two cubes such that their difference
has to the difference of their sides the ratio of a
square to a square’

The sides of these cubes are found, as before, to be 7, 8.

Starting afresh, we assume 7., 8x for the numbers; then
34388+ 8xr=51228+ 7x, and x = F.

The numbers are I7§’ % ’
13. To find two numbers such that either, or their sum, or
their difference added to unity gives a square.

Take for the first number any square less 1; let it be,
say, 9x*+ 6x. But the second + 1 =a square; and
first + second + I also=a square. Therefore we must
find a square such that the sum of that square and
gr*+ 61 =a square.

Take factors of the difference 9%+ 6x, say 9z +6, x;
the square of half the difference between these factors
=162+ 247 +9.

Therefore, if we put for the second number this expres-
sion minus 1, or 1622 + 24x + 8, three conditions are
satisfied.

The remaining condition gives difference + 1 = square,
or 7x*+ 18x + 9 =square = (3 — 3%), say.

Therefore x=18, and (3024, 5624) is a solution.

14. To find three square numbers such that their sum is equal
to the sum of their differences.

Sum of differences = (greatest) — (middle) + (middle) —
(least)+(greatest)— least=twice difference of greatest
and least.

This is equal to the sum of all three, by hypothesis.

Let the least square be 1, the greatest 22+ 22+ 1;

! This problem will be seen to be identical with the preceding problem.
2 See note, p. 173.
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therefore twice difference of greatest and least=sum of
the three =222+ 42
But least + greatest =2 + 22 + 2, so that
middle =22+ 22— 2.
Hence #* + 2x — 2 =square = (r — 4)*, say, and x=2.

196 121 1) or (196, 121, 25).

The squares are 250 25

15. To find three numbers such that the sum of any two
multiplied into the third is a given number.
Let (first + second) x third = 35, (second + third) x first
= 27 and (third + first) x second = 32.
" Let the third be z.
Therefore (first + second) = 35/z.
Assume first= 10/x, second = 25/z; then

250
P +IO=271
%+25=32J

These equations are inconsistent; but they would not be if
25 — 10 were equal to 32 —27 or 5.

Therefore we have to divide 35 into two parts (to replace
25 and 10) such that their difference is 5. The parts
are 15, 20, [Cf L 1]

We take therefore 15/ for the first number, 20/x for the
second, and we have

300

T TI5=27
00 .
%+20=32

Therefore x =5, and (3, 4, 5) is a solution?

1 As Loria says (Le scienze esatte nell’ antica Grecia, Libro V. p. 131), this method of
the “false hypothesis,” though somewhat indirect, would not be undeserving of a place
in a modern textbook.

Here again, as in IV. 1, 2, Diophantus tacitly chooses, for his given numbers, numbers
which will make the resulting ‘ pure” quadratic equation give a rational value for x.

We may put the solution more generally thus. We have to solve the equations

(y+2) xr=a, (s+x)y=b, (x+y)z=c.

Diophantus takes z for his principal unknown and, writing the third equation in the
form x+y=c[z, he assumes x=a/s, y=B[z, where a, B have to be determined. One
equation connecting a, 8 is a +B=¢. Next, substituting the values of x, y in the first two
equations, we have

g +a=a, %f +B=15,
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16. To find three numbers such that their sum is a square,
while the sum of the square of each added to the next following
number gives a square.

Let the middle number be any number of #’s, say 4z;
we have therefore to find what square + 4x gives
a square. Split 4x into two factors, say 2z, 2, and
take the square of half their difference, (x —1)> This
is the square required.

Thus the first number is x — 1.

Again, 1622 + third number =a square. Therefore, if we
subtract 162#% from a square, we shall have the third
number. Take as the side of this square the side of
1622, or 4, plus 1.

Therefore third number = (42 + 1)*— 1622 =8x + 1.

Now the sum of the three numbers=a square; therefore
13x=a square = 16937, say’.

The numbers are then 137%— I, 5237 I04)°+ 1.

Lastly, (third)*+ first = a square.

Therefore 108164 + 221)2=a square,

or 10816J2 + 221 = a square = (104y + 1)}, say.

Therefore y =433 = 23,

and (2704 s aroq * zj0q ) 1@ solution.

17. Tofind three numbers such that their sum is a square, while
the square on any one mzinus the next following also gives a square.
The solution is precisely similar to the last.

whence it follows that a — B=a—4. From this condition and a+B=¢, we obtain

=—x-(a—-b+£), 13;=£(—a+b+:).

Thes V(5= {“ et

x=——~/ a (a=b+é)(e+b-¢) c , ﬁ \/{(—a+b+c)(a+b c)}.

2 (- a+b+c) 2(a—b+¢)
Now x, y, 2 must all be rational, and t}us is the case if
—a+bte=297, a-b+c=2rp, a+b-c=apy,

where p, ¢, # are any integers.

This gives a=p(g+7), b=g(r+p), c=7r(p+4);
a fact which can hardly have been unknown to Diophantus, since his values 2=27, é=32,
¢=35 correspond to the values p=3, g=4, »=35 (Loria, Joc. cit.).

! Diophantus uses the same unknown s for y as for «x, writing actually kal ylverac 6
sAY i, literally “and x becomes 1342.”



BOOK IV 17

The middle number is assumed to be 4z The square
which exceeds this by a square is (¥ + 1) and we
therefore take x + 1 for the first number.

For the third number we take 1642 —(4x —1)? or 82— I.

The sum of the numbers being a square,

13x = a square = 16972, say.

The numbers are then 1352+ 1, 5272 1049°— 1.

Lastly, since (third)* — first=a square,

10816y* — 2213® =a square,

or 10816y — 221 =a square = (104y — 1)} say.

Thus y=411,

and (117&935 ) msl 1562 ) xfzgfgs is a solution.

18. To find two numbers such that the cube of the first added
to the second gives a cube, and the square of the second added to
the first gives a'square.

First number x. Therefore second is a cube number
minus x°, say 88—z

Therefore #%—162° + 64 +x=a square = (2° + 8)%, say,
whence 3248=x, or 324%=1. '

This gives an irrational result; » would however be
rational if 32 were a square.

But 32 comes from 4 times 8. We must therefore sub-
stitute for 8 in our assumptions a cube which when
multiplied by 4 gives a square. If ® is the cube,
4® = a square = 16y* say; whence y = 4.

Thus we must assume z, 64 —2* for the numbers.

Therefore 25— 1282 + 4096+ 7 = a square = (2* + 64)? say ;
whence 25628 =z, and x = .

The numbers are %, 262143

16’ 4096

19. To find three numbers indeterminately® such that the
product of any two increased by 1 is a square.
Take for the product of first and second some square
minus 1, say #* + 2x; this satisfies one condition.
Let second =, so that first =2+ 2,
Now product of second and third + 1 =a square; let the
1 The exptession is év 7§ dopiory, which is defined at the end of the problem to mean

in terms of one unknown (and units), so that the conditions of the probleln are satisfied
whatever value is given to the unknown.

H. D. 12
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square be (3x+ 1), so that product of second and
third = gx? + 6x;

therefore third=9x+ 6.

Also product of third and first + 1 = a square; therefore
0x°* + 24x + 13 = a square.

Now, if 13 were a square, and the coefficient of x were
twice the product of the side of this square and the
side of the coefficient of 2%, the problem would be
solved indeterminately.

But 13 comes from 2.6+ I, the 2 in this from twice 1,
and the 6 from twice 3. Therefore we want two
coefficients (to replace 1, 3) such that the product
of their doubles + 1 =a square, or four times their
product + I = a square.

Now four times the product of any two numbers plus the
square of their difference gives a square. Thus the
requirement is satisfied by taking as coefficients any
two consecutive numbers, since the square of their
difference is 1. [The assumption of two consecutive
numbers for the coefficients simultaneously satisfies
the second of the two requirements indicated in the
italicised sentence above.]

Beginning again, we take (#+1)*—1 for the product of
first and second and (2x+ 1)*— 1 for the product of
second and third.

Let the second be z, so that first = x + 2, third = 4x + 4.

[Then product of first and third + I = 44% + 122 + g, and
the third condition is satisfied.]

Thus the required indeterminate solution? is *
(x+2, %, 4% +4).
1 The result obtained by Diophantus really amounts to the more general solution
ax+24, x, (2+1)%x+2(@+1).

With this solution should be compared that of Euler (4/geé7a, Part 11. Art. 231).
1. To determine x, 3, 2 so that

xy+1, yz+1, sx+1 are all squares.

Suppose m+1=p% yrti=g%
so that z=(F-1)fs, y=(¢*-1)/s
Therefore ay+i= (—pi—l—lﬂ(is_—r) + I=a square,

(72— 1) (¢ - 1) +22=a square
=(z~17)? say; [Euler has (s+7)?%]
whence R Gl otk VL C etV
2

>
where any numbers may be substituted for , ¢, ».
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20. To find four numbers such that the product of any two
increased by unity is a square.
For the product of first and second take a square minus 1,
say (x+ 1)*— I =22+ 2.
Let first= x, so that second =x + 2.

For example, if »=pg+ 1, we shall have

O ) R 05 [Vl RV 2 ) st B
2(#g+1) (+ef ' (2+g)
11. But, if whole numbers are required, we put xy+1=_p?% and assume s=x+y+g.
‘We then have xz+1=22+aytoxt1=2t+gx+p3
and yrtr=ay+ 2+ gy +1=>2+ gy + 5%

These expressions are both squares if 4= = 25.
Thus a solution is obtained from xy=p?~ 1 combined with either
z=x+y+2p, or z=x+y—2p.
We take a certain value for 2%, split g% ~ 1 into two factors, take these factors for the
values of x, y respectively, and so find z.
For example, let p=3, so that 22— 1=8; if we make x=12, y=4, we find z=either 12
or o; and in this case x=2, y=4, s=12 is the solution.
If we put p’=(£+1)?, we have xy=£+2{; and if we put x=£¢+ 2, y=§¢, we have
z=f+2+fx2 (E+1)=4£+4 or o.
The solution is then (£+2, £, 4£+4), as in Diophantus. .
Fermat in his note on this problem shows how to find three numbers satisfying not
only the conditions of the problem but three more also, namely that each of the numbers
shall itself when increased by 1 give a square, #.. to solve the equations
w+1=r F+i=8 hti=2, }
1=t p+1=2%, {+i=ul
Solve, he says, the present problem of Diophantus in such a way that the terms

independent of x in the first and third of the numbers obtained by his method shall be
such as when increased by 1 give a square. It is easy to find a value for z such that

2a+1 and 2 (a+ 1)+ 1 are both squares. Fermat taks the value za—;, which satisfies

the conditions, and the general expressmns for the r.hree numbers sought are therefore
169 7235 85
5184 =+ 3% 36’ STV
Each of these has, when increased by 1, to become a square, that is, we have to solve the
triple-equation

162 49 _

5184 +36 i
x+1=2% .

7235 131 _

584" 36 o

Fermat does not give the solution; but it is effected as follows.
Maultiplying the third expression by 36 and the first by % 36 (in order that the

absolute terms in the two may be equal), we have to solve
I12—2
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For the product of first and third take (2x+1)*—1, or
4%+ 4, the coefficient of » being the number next
following the coefficient (1) taken in the first case,
for the reason shown in the last problem;

thus third number = 4x + 4.

Similarly take (3x+ 1)*— I, or 9%+ 6z, for the product of

" first and fourth; therefore fourth =9x+6.

And product of third and fourth + 1

= (4% + 4) (97 +6) + 1 = 362"+ 60z + 25,
which is a square?,

x+1=22

2
(—Ii'i) x+121=u"2
7.12
2
(&5_) x+121=22
12

In order to solve by the method of the triple-equation, we make x+r1 a square by
putting x=32+ 2.

Substitute this value in the other two expressions, and for convenience multiply each
by 144; this gives

(”3) (2 +) +(132)*=2 gqueurE}
(85)2 (2 + 2p) + (132)2=a square
The difference=(y*+2y) (85+L;?') (85 ‘43>

7
738 (452 L2 452
== =y —
77\ 7T
The square of half the difference of the factors equated to the smaller expression gives

1;3 4%2) (143) (2 +29) +(132)%;

whence y= —%; and we find that

#=y8 4 gy = 50193144576

7230457225
It is easily verified that

13 2_ 643149) ( _(1842375\?
+ —_—
(u) r= 85085 *t1 85085
so that the value of x satisfies the three equations.
The numbers satisfying Fermat’s six conditions are then

x69 4 100604981 50193144576 7225 85 _ 48192621
23 _ 100P4RT | o~ SOIOBIMNTO Ly
5184 36 171348100’ 7239457225 5184 36 4008004

1 This resnlts from the fact that, if we have three numbers %, ¥, z such that
ayt+i=(mx+1)? and xz+r1={(m+1)x+1}2,

then ya+1={m (m+1)x+ (2m +1)}2.
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Lastly, product of second and fourth + 1 =922+ 242+ 13;
therefore 92 + 24x + 13 =square = (3 — 4), say;
which gives x = .

All the conditions are now satisfied?,

1 33 68 105

B = 2 ion?
% 15 16 16 1S the solution®

and

1 The remaining condition was: product of second and third + 1 =a square. That this

is satisfied also follows from the general property stated in the last note. In fact
(x+2) (4x+ 4) + 1=422+ 122 +9,

which is a square.

2 With this solution should be compared Euler’s solution (A4igebra, Part 11. Art. 233)
of the problem of finding x, y, 2,  such that the six expressions

xy+a, yzte, zx+a, xv+a, yv+a, wW+a )

are all squares. The solution follows the method adopted to solve the corresponding
problem with three unknowns x, ¥, z only. See note on III. 10 above.

If we begin by supposing xy+a=p? and take z=x-+y+2p, the second and third
expressions become squares (vide note on III 1o, p. 160).

If we further suppose z=x+y—2p, the fourth and fifth expressions also become
squares (vzde the same note).

Consequently we have only to secure that the sixth expression 22+ & shall be a square;

that is,
22+ 2xy+y% — 442+ a=a square,

or (since xy+a=p2?%) 2 - 2xy+ 3 — 3a=a square.
Suppose that (x-2)2-32=(x-y-9)2%;
therefore x—-y=(g2+3a)/2¢,
2
or x=y +4 ;Fqsd‘
Consequently P=xyta=y2+ £ :;’a y+a.
If we put p=y+7, we have .
2ry + 72 =L2t3e y+a
o4 2q g
_ _2gr®—1ag
and Jl—q’—gr+3a’

from which g, x, and therefore 3, v also, are found in terms of ¢, », where ¢, » may have
any values provided that x, y, 2, » are all positive.

Euler observed that this method is not suited for finding integral solutions, and,
pursuing the matter further, he gave the following very elegant solution of Dicphantus’
actual problem (the case where @=1) in integers (‘‘Miscellanea analytica” in Com-
mentationes arithmeticae, 11. pp. 45-0)-

Six conditions have to be satisfied. If x, 3, z, v are the required numbers, let x=un,
y=n, where m, n are any integers such that mn+1="2

Then put 2=+ 2+ 2/, and three conditions are already satisfied, for

xy+ 1=mn+ 1=/[% by hypothesis,
xz+1=m (m+n+2l) +1=(I+m)?
yz+1=n(m+n+ild)+i1=0+n)

The three conditions remaining to be satisfied are

X+ 1=mv+ 1=a square,
Yo+ 1=nv+1=2a square,
2o+ 1=(m+n+2l)v+1=a square.
Let us make the continued product of these expressions a square,
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21. To find three numbers in proportion and such that the
difference of any two is a square.
Assume z for the least, x + 4 for the middle (in order
that the difference of middle and least may be a
square), x + 13 for the greatest (in order that differ-
ence of greatest and middle may be a square).

This product will be found to be
1+2 (mtn+l)v+{(mm+n+l-1} 2t mn(m+n+2l) 23
2
Let us equate this to {I +m+nt+l)v- iv”% , in order that the terms in z, 22 as well
as the absolute term may vanish ; therefore

I
mn (m+n+a2l)= - (m+n+l)+;ﬂ,

whence iw:(m+u+l)+mn (m+n+20)
=(mn+1)(m+n+l)+inn
=2(m+n+l)+imn
=1(l4+m)({+n),

and therefore =4l ({+m) ({+n).

It is true that we have only made the product of the three expressions mz+1, nz+1,
(m+n+2l) 7+ 1 a square; but, as the value of z has turned out to be an integral number,
so that all three formulae are prime to one another, we may conclude that each of the
expressions is a square.

The solution is therefore

x=m, y=n, z=m+n+2l, v=y4l(l+m)(l+n),
where mr+1="2.

In fact, while three of the conditions have been above shown to be satisfied, we find,
as regards the other three, that

20+ 1= g4lm (I+m) (I+n)+1=(22+2lm - 1)%,
yo+1=g4in(l+m)(+n)+1=(22+2ln-1)%
20+ 1=4l (m+7n+20)((+m)(I+n)+ 1= 4B+ 2lm+ 20— 1)2.

It is to be observed that / may be either positive or negative.

Ex. Letm=3, n=8, so that /==%35.

If /= + 5, the solution is 3, 8, 21, 2080 if /= ~ 3§, the solution is 3, 8, 1, 120.

Fermat shows how to solve this problem, alternatively, by means of the “triple-equation.”

Take t4ree numbers with the required property, e.£- 3, 1, 8. Let x be the fourth, and
we have then to satisfy the conditions

3xti=u?, x+1=2% Bx+r=ul

Put x=3%+ 1y, so as to make the second expression a square, and then substitute the

value of x in the other two. We have then the double-equation
3 (P +m)+1=ed,
8(F+2)+r=22

The difference=5(32+25) =5y (¥ +2).

We put then (By+1)2=8 (P +2) +1,
whence y=10, and x=32+ 2y=110, which value satisfies the triple-equation.

The four numbers are then 3, 1, 8, 120, which solution is identical with one of those
ottained by Euler as above.
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If now 13 were a square, we should have an indeterminate
solution satisfying three of the conditions.

We must therefore replace 13 by a square which is the
sum of two squares. Any rational right-angled
triangle will furnish what is wanted, say 3, 4, 5;

we therefore put for the numbers z, x + 9, x+25.

The fourth condition gives

z(x+25)=(r+9)}, and z=8L
Thus 81, #, 5;—6 is a solution.
22. To find three numbers such that their solid content! added
to any one of them gives a square.

Assume continued product 2*+ 2z, first number 1, second
number 4x + 9, so that two conditions are satisfied.

The third number is then (2° + 2x)/(4x + 9)-

This cannot be divided out unless #2:4x=2x:9 or,
alternately, 2 : 2x =4x:9; but it could be done if 4
were half of 9.

Now 4% comes from 6x — 2z, and the 6x in this from
twice 3x; the 9 comes from 32

Therefore we have to find a number 2 to replace 3 such
that 2m — 2 = ym?*: thus #® = 4m — 4, whence? m = 2.

We put therefore for the second number (¥ + 2)2 — (2% + 2%),
or 2x + 4 ; the third number is then

(2 + 22)/(2x + 4) or %x.

Lastly, the third condition requires

2*+2r+ tx=a square = 4%, say.
Therefore x=§,

and (z, 5 6) is a solution?®

1 § é£ avrdv orepeds, ** the solid (number formed) from them " =the continued product
of the three numbers.

2 Observe the solution of a mixed quadratic.

3 Fermat gives a solution which avoids the necessity for the auxiliary problem.

Let the solid content be 22— 2x, the first number 1, and the second number 2x; two
conditions are thus satisfied.

The third number is now a? — 2x divided by 2x. 1, or éx— 1 ; and the third condition
gives
.r"—ilx— 1=a square.
Now x must be greater than 2 ; we therefore put
x’—%x— 1=(x~m)?

where 7 is greater than 2,
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23. To find three numbers such that their solid content mznus
any one gives a square’.
First number z, solid content 22+ x; therefore product of
second and third =x 4+ 1.
Let the second be 1, so that the third is x + 1.
The two remaining conditions require that
P2rr—1
=1
The difference =x =4 . 2z, say;
thus (z+$)P=+#"+x—1,and r=13.

The numbers are 87, 385 .

} shall both be squares. [Double-equation.]

24. To divide a given number into two parts such that their
product is a cube minus its side.
Given number 6. First part x; therefore second =6 — x,
"and 6x — x* = a cube minus its side.
Form a cube from a side of the form mx — 1, say 2z — 1,
and equate 6x — 2* to this cube minus its side.
Thetefore 84° — 122* + 4x=6x =" o

1 A remarkable problem of this kind (in respect of the apparent number of conditions
satisfied) is given by De Billy in' the /nventum Novum, Part 1. paragraph 43 (Oeuvres
de Fermat, 111. p. 351_f: To find three numbers £, %, { (£, {, 9 being in ascending order
of magnitude) such that the following nine expressions may become squares :

(1) &-68ng, (4) n-E-8&5 (1) En-éns,
(2) 2-8ny (5) ¢-&-£ng, (8) #5-#ns,
(3 -6, (6) n-¢-&5, (9) -

Take x, 1, 1 —x as the values of £, 9, { respectively. Then six conditions, namely,
(1), (3)s (4), (6) (7), (8), are all automatically satisfied.
By conditions (2) and (9) alike,

1-x+x?=a square.
And, by (3), 1-3x+x?=a square.

Solving this double-equation in the usual way, we get x=%, and the numbers are

8,53
Another solution can be obtained by putting y+% in place of x in the two expressions,

and so on. Cf. note on 111. 18 above.

It would appear from a letter from Fermat to De Billy of 26 Aug. 1659 (Oeuvres, 11.
PP- 436-8) that this problem and the above single solution were De Billy’s own. De Billy
had supposed that this was the only solution, but Fermat observed that there-were any
number, as the above double-equation has any number of solutions. Fermat gave

10416 41449
(5r865 b 51865

) as another solution,
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Now, if the coefficient of x were the same on both sides,
this would reduce to a simple equation, and x would
be rational.

In order that this may be the case, we must put 7 for 2
in our assumption, where 3#m— =6 (the 6 being
the given number in the original hypothesis). Thus
wm=23.

We therefore assume

@Bx—1y-Q@Bx—1)=6x—2,

or 2728%— 2724+ 6x = 6x — 22,
and r=35.
26 136

The part 2 3,
e parts are =, =

25. To divide a given number into three parts such that their
continued product gives a cube the side of which is equal to the
sum of the differences of the parts.

Given number 4.

Since the product is a cube, let it be 8% the side of
which is 2.

Now (second part) — (first) + (third) — (second) + (third)
— (first) = twice difference between third and first.

Therefore difference between third and first = half sum of
differences =x. .

Let the first be any multiple of z, say 2x; therefore the
third = 32

Hence second = 813/6x* = $x; and, ¢f the second had lain
between the first and third, the problem would have been
solved,

Now the second came from dividing 8 by 2. 3, and the
2 and 3 are not two numbers at random but con-
secutive numbers.

Therefore we have to find two consecutive numbers such
that, when 8 is divided by their product, the quotient
lies between the numbers.

Assume m, m+ 1; therefore 8/(m*+ m) lies between
m and m + I.

w4 m
so that 72+ m + 8 >+ 2w +m,
or 8 > m® + wi,

Therefore +I1>m+1,
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I form a cube such that it has #%, #? as terms, that is, the

cube (7 + %), which is greater than #° 4?2 and I put
(m+3yF=38;

therefore m + = 2,and m=}.

Assume now for first number §x; the third is §x, and
the second is 2.

Multiplying throughout by 15, we take 25z, 272, 4oz,
and the product of these numbers is a cube the
side of which is the sum of their differences.

The sum = 92z = 4, by hypothesis.

Therefore x =,

25 27 40 i
and (2—3, 23 53) are the parts required.

[N.B. The condition 8/(m*+m)<m+1 is ignored in
the work, and is incidentally satisfied.]

26. To find two numbers such that their product added to
either gives a cube.
Let the first number be of the form w8z, say 8.
Second #2 — 1. Therefore one condition is satisfied, since

84— 8x 4 8xr=a cube.

Also 84 —8x+ 22— I =a cube =(2x — 1)}, say.
Therefore 134* = 14%, and r =34,

nmz 27
The numbers are o 1y

27. To find two numbers such that their product minus either
gives a cube.
Let the first be of the form ##x, say 8z, and the second
#*+ 1 (since 82® + 8x ~ 8x=a cube).
Also 822+ 8x—22—1 must be a cube, “which is impossible.”

! Diophantus means that, if we are to get rid of the third power and the absolute
term, we can only put the expression equal to (2x-1)3 which gives a negative and
therefore *impossible ” value for . But the equation is not really impossible, for we can
get rid of the terms in 4% and x? by putting

3
83 +8x-a2-1 = (u—L) , whence x= 1727 s
12 13752
or we can make the term in x and the absolute term disappear by putting
3
818 +-8x ~ 2~ I=(§x— 1) , whence =34,
3 296

Diophantus has actually shown us how to do the former in 1v. 25 just preceding.
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Accordingly we assume for the first number an expression
of the form #3x+ 1, say 8x+ 1, and for the second
number 22 (since 82°+ 2% —2* = a cube).

Also 82%+2? — 8x — 1 =a cube=(2x— 1)} say.

Therefore x = 4,

and the numbers are 5:—35, :%g
28. To find two numbers such that their product + their
sum gives a cube.

Assume the first cube (product +sum) to be 64, and the
second (product — sum) to be 8.

Therefore twice sum of numbers =64 —8=756, and the
sum =28, while the product + the sum =64; therefore
the product = 36.

Therefore we have to find two numbers such that their
sum is 28 and their product 36. If 14+, 14 —x are
the numbers?, we have 196 — 2*= 36, or 2% = 160; and,
if 160 were a square, we should have a rational
solution. .

Now 160 arises from 14*—36, and 14=%.28=4%.56
=1 (difference of two cubes); also 36 =% (sum of
the cubes).

Therefore we have to find two cubes such that

(3 of their difference)? — § their sum =a square.

Let the sides of the cubes be (2 + 1), (¢ — 1);

therefore } of difference = 145*+ 4, and the square of this
is 2} + 1422+ };

 the sum of the cubes is *+ 33;

therefore 2} + 1}2* + }—5° — 32 = a square,

or 9zt + 622 + I — 428 — 122 =2a square =(32%+ I — 62)% say;

whence 32#° = 364% and #=§.

The sides of the cubes are therefore 47, 4, and the cubes
88, ot

Put now product of numbers + their sum = 4%#, and pro-
duct — sum = g.

Therefore their sum = 2488, and their product = 345%.

Now let the first number = x + half sum =z + 1238,

and the second =half sum — x =3238 — x;

therefore IPOTIBL — 43 = 3BT,
and 2621442* = 250000,

1Cf 1oy,
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Therefore x = £03,

and (xslg, ;:—:) is a solution,

Otherwise thus.

If any square number is divided into two parts one of
which is its side, the product of the parts added to
their sum gives a cube.

[That is, # (#*— ) + 2#* —x + x =a cube.]

Let the square be 27 and be divided into the parts z, 22—x.

Then, by the second condition of the problem,

28 —2*— 2* =2*— 22 =a cube (less than 2*)=(§x)} say.

Therefore 848 — 162% =28, so that x = 18,

and (1—6 , 1—4—4) is a solution.
77 49

29. To find four square numbers such that their sum added to
the sum of their sides makes a given number.
Given number 12.
Now 2+ x + } =a square.
Therefore the sum of four squares + the sum of their sides
+ 1=the sum of four other squares=13, by hypothesis.
Therefore we have to divide 13 into four squares; then, if
we subtract { from each of their sides, we shall have
the sides of the required squares.

1 On this problem Bachet observes that Diophantus appears to assume, here
and in some problems of Book V., that any number not itself a square is the sum of
two or three or four squares. He adds that he has verified this statement for all
numbers up to 325, but would like to see a scientific proof of the theorem. These
remarks of Bachet’s are the occasion for another of Fermat’s famous notes: I have
been the first to discover a most beautiful theorem of the greatest generality, namely this:
Every number is either a triangular number or the sum of two or three triangular
numbers ; every number is a square or the sum of two, three, or four squares; every
number is a pentagonal number or the sum of two, three, four or five pentagonal
numbers; and so on ad infinitum, for hexagons, heptagons and any polygons whatever,
the enunciation of this general and wonderful theorem being varied according to the
number of the angles. The proof of it, which depends on many various and abstruse
mysteries of numbers, I cannot give here; for I have decided to devote a separate and
complete work to this matter and thereby to advance arithmetic in this region of inquiry
to an extraordinary extent beyond its ancient and known limits.”

Unfortunately the promised separate work did not appear. The theorem so far as it
relates to squares was first proved by Lagrange (Noww. Mémoires de P Acad. de Berlin,
année 1770, Berlin 1772, pp. 123-133; Oewwres, 111. pp. 189-201), Who followed up
results obtained by Euler. Cf. also Legendre, Zaklentheorie, tr. Maser, 1. pp. 212 sqq.
Lagrange's proof is set out as shortly as possible in Wertheim’s Diophantus, pp. 324~330.
The theorem of Fermat in all its generality was proved by Cauchy (Oezwres, 11¢ série,
Vol. VI. pp. 320-353); cf. Legendre, ZgZlentheorie, tr. Maser, II. pp. 332 Sqq.
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Now 13=4+9= (8% +38) + (i + 55),
and the sides of the required squares are 4}, %, 1, 13,

the squares themselves being :2;’ :430’ ig;, igg

30. To find four squares such that their sum sézzs the sum of
their sides is a given number.

Given number 4.

Now #*—x + } = a square.

Therefore (the sum of four squares) — (sum of their sides)
+ 1 =the sum of four other squares=35, by hypothesis.

Divide 5 into four squares, as o, 3§, £, $8.

The sides of these squares plus § in each case are the sides
of the required squares.

Therefore sides of required squares are 1}, 13 21 1%,

and the squares themselves 121, 169 441 289
100’ 100’ 100° 100"

31. To divide unity into two parts such that, if given numbers
are added to them respectively, the product of the two sums gives

a square.

Let 3, 5 be the numbers to be added; #, 1 —a the parts of 1.
Therefore (x + 3)(6 — x) = 18 + 3x — 2% =a square = 4%, say;
thus 18 + 31 = 542, whick does not give a rational result,
Now 5 comes from a square+ I; and, in order that the
equation may have a rational solution, we must sub-
stitute for the square taken (4) a square such that
(the square + 1). 18 + (§)* =a square.

Put (7* + 1)18 + 2} =a square,
or 72m° + 81 = a square = (8» + g)} say,
and m=18, m*=324.

Hence we must put
(#+3)(6—2)=18+3r—2"=3242"

Therefore! 3252%— 32— 18=0,
*=g5%5 =75,
and (2 5 25) is a solution..

Otherwise thus.

" The numbers to be added being 3, 5, assume the first of
the two parts to be x — 3; the second is then 4 —x.
Therefore  x(9 —x) =a square = 44%, say,
and ' r=3%.
But I cannot take 3 from £, and x must be > 3 and < 4.
! Observe the solution of a mixed quadratic equation.
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Now the value of x comes from 9/(a square + 1), and, since
x> 3, this square + I should be< 3, so that the square
must be less than 2; but, since x <4, the square + 1
must be > £, so that the square must be > §.

Therefore I must find a square lying between § and 2, or
between §} and 328.

100 or 23 satisfies the condition.

Put now x (9 —x) =12
therefore xr =142,
and (:—:-, j-;’) is a solution.

32. To divide a given number into three parts such that
the product of the first and second + the third gives a square.
Given number 6.
Suppose third part = %, second = any number less than 6,
say 2; therefore first part =4 — .
The two remaining conditions require that 8 —2x + x=a
square,

2 :;} are both squares. [Double-equation.]

This does not give a rational vesult (“is not rational”), since
the ratio of the coefficients of x is not & ratio of a square
o a square.

But the coefficients of x are 2 — 1 and 2+ 1; therefore we
must find a number y to replace 2 such that
(¥ + 1)/(y — 1) =ratio of square to square =%, say.

Therefore y+1=4y—4,and y=4.

Put now second part = §; therefore first=1% — .

or

Therefore 88 — 8x + x = a square,

. 65 — 6x
That is, 65 — 24x} are both squares,
or 22(5): ::;} are both squ:ares.

v

The difference = 195 =15 . 13;
we put therefore } (15 — 13)*= 65 — 24x, and x =§.
Therefore the required parts are (g, g, g)l.
1 Fermat observes: ‘“The following is an easier method of solution. Divide the
number 6 into two in any manner, ¢.¢. into 5 and 1. Divide their product less r, that is

4, by 6, the given number: the result is g Subtracting this first from 5 and then from 1,
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33. To find two numbers such that the first with a fraction
of the second is to the remainder of the second in a given ratio,
and also the second with the same fraction of the first is to the
remainder of the first in a given ratio.

Let the first with the fraction of the second = 3 times the
remainder- of the second, and the second with the
same fraction of the first=75 times the remainder of
the first. .

[The fraction may be either an aliquot part or not, 7o
avtd pépos or Ta avra wépn as Diophantus says,
following the ordinary definition of those terms (“the
same part” or “the same parts”): cf. Euclid VIL
Deff. 3, 4.]

Let the second =x+ 1, and let the part of it received by
the first=1;

therefore the first=3x— 1 (since 32— I + I = 3%).

Since the second plzs the fraction of the first= 5 times
the remainder of the first,

the second + the first =6 times the remainder of the first.

And first + second = 4x; therefore remainder of first
=3z, and hence the second receives from the first
3r—I1—%x or fxr—1.

We have therefore to secure that fx—1 is the same
fraction of 3x— 1 that 1 is of ¥+ 1.

This requires that (Jx—1)(x+1)=(3x—1).1;

therefore §2'+4r—1=3x—1,and r=4.

Accordingly the numbers are §, 32; and 1 is % of the
second.

we have as remainders ]3—3 and é, which are the first two parts of the number to be

divided; the third is therefore 53-.”

That is, if £, 7, { be the required parts of the number ¢, Fermat divides a into two
parts x, @ ~ x and then puts

£=x_x(a —ax) -1 =x’:—r ,

x@-2)~1_(@-xP+1

=qg~x—
n z 2 H

whence g—=a_(5+,,)__2(“-;2—1):__2{1”(:1;::)—:} .
The three general expressions in x satisfy the conditions, and x may be given any
value <a.
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Multiply by 7 and the numbers are 8, 12, and the fraction
is 7;; but 8 is not divisible by 12: so multiply by 3,
and (24, 36) is a solution.

Lemma to the next problem.

To find two numbers indeterminately such that their product
together with their sum is a given number,

Given number 8.

Assume the first number to be x, the second 3.

Therefore 3x +x+ 3 =given number=28; xr =32, and the
numbers are £, 3.

Now £ arises from (8—3)/(3 + 1), where 3 is the assumed
second number.

We may accordingly put for the second number (instead
of 3) any (undetermined) number whatever?; then,
substituting this for 3 in the above expression, we
have the corresponding first number.

For example, we may take x — 1 for the second number;

the first is then g — x divided by %, or :% - L

34. To find three numbers such that the product of any two
together with the sum of those two makes a given number2

1 The Greek phrase is éav dpa rdfwuer Tov 8% 0 olovdfmore (olovdfmore s in Lemma
to Iv. 36), ‘“‘If we make the second ” (literally “ pws the second az”) ““any s whatever.”
But the s is not here, as it is in the Lemma to 1v. 36, the actual x of the problem, for
Diophantus goes on to say ‘‘E.g. let the second be x—1.” Inthe Lemma to 1v. 34 the
corresponding expression is ‘‘any quantity whatever” (éooudjrore without s). The
present Lemma amounts to saying that, if xy+x+y=g, then x=(a—y)/(y+1).

-2 This determinate set of equations can of course be solved, with our notation, by
a simple substitution.

The equations yi+y+z=a
2x+z+x=0b
xy+x+y=c;‘
+1) e+ 1)=a+1, 8¥=a+1,
are equivalent to {(s+ 1) (x+1)=5b+1, or $E=b+1,.
(+1)(p+1)=c+1, \&p=c+1,
where E=x+1, 9=y+1, {=2+1.
The solution is E=x+1= \/{(—-——“—l)(ﬁ' I)} etc.
. a+1

In order that the result may be rational, it is only necessary that (z+1) (5 +1) (c+ f)
should be a square ; it is not necessary that eack of the expressions a+71, 5+1, c+1
should be a square, as Diophantus says.
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o

Necessary condition. Each number must be 1 less than some
square .

Let (product + sum) of first and second = 8.
" " " second and third = 15,
" ” third and first =24.

Bytheﬁrst equation, if we divide(8—second)by(second+1), -

we have the first number.
Let the second number be x — 1.

Therefore the first= 9—;f= 9_ I.

Similarly the third number =Ix—6— I.

The third equation remains, which gives
Ii4— I =24, and x=12.

33 7 68
The numbers are 2, 5 1

[-d

. 16!
or, when reduced to a common denominator, 223 34

24 340
60’ 60° 60"

Lemma to the following problem.

To find two numbers indeterminately such that their product
snzznus their sum is a given number.
Given number 8.
First number z, second- 3, suppose; therefore
(product)— (sum) = 3xr —x—3=2xr—3=3_§, and xr=5}.
The first number is therefore 5%, the second 3.
But 54 comes from (8 + 3)/(3 — 1), and we may put for 3
any number whatever.
E.g. put the second number =x+ 1; the first is then z+9

divided by %, or 1 +:%.
35. To find three numbers such that the product of any two
minus the sum of those two is a given number?

Necessary condition. Each of the given numbers must be 1 less
than some square®
Let (product — sum) of first and second = 8.
» " » second and third = 15.
. . third and first = 24.

”» »

1 See last paragraph of preceding note.
2 The notes to 1v. 34 above apply, mufatis mutandis, to this problem as well.

H. D. 13
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By the first equation, if we divide (8 +second) by
(second — 1), we have the first number.

Assuming x + 1 for the second number, we have 1 + g

for the first.

Similarly 1 +I§ is the third number, and two conditions

are satisfied.

The third gives ~5 — 1 =24, and z=12.

57 17 92
The numbers are 2 5 1
or, with a common denominator, ?)5 ’;4, 46?

Lenna to the following problem.

To find two numbers indeterminately such that their product
has to their sum a given ratio.

Let the given ratio be 3:1, the first number z, the
second 3.

Therefore 5x=3(5+ %), ¥ =7%; and the numbers are
7% 5

But 74 arises from 135 divided by 2, while the 15 is the
second number multiplied by the given ratio, and
the 2 is the excess of the second number over the
ratio.

Putting therefore x (instead of 5) for the second number,
we have, for the first number, 3x divided by x — 3.

The numbers are therefore 3x/(x — 3), =

36. To find three numbers such that the product of any two
bears to the sum of those two a given ratio.
Let product of first and second be 3 times their sum.
» »  second and third be 4 times their sum.
» » third and first be 5 times their sum.
Let second number be x; the first is therefore 3z/(x — 3),
by the Lemma, and similarly the third is 4z/(z — 4).
3X 4% 3% 4x
Lastly x—3'x—4=5(x—3+x—4>’
or 124% = 352 — 120x%.
Therefore x =122,

e 360 120 480

and the numbers ar ST’ 230 B°
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37. To find three numbers such that the productof any two
has to the sum of the three a given ratio,

Let product of first and second = 3 times sum of the three,

' » Ofsecond and third =4 " "
» » of third and first =3 » "

First seek three numbers such that the product of any two
has to an aréditrary number (say 5) the given ratio.

Then product of first and second= 15; and, if » be the
second, the first is 15/z.

The product of second and third =20; therefore third
=20/

It follows that 20. 15/2*= 25.

And, if the ratio of 20. 15 to 25 were that of a square to a
square, the problem would be solved.

Now 15 =3.5, and 20 is 4. 5, the 3 and 4 being fixed by
the original hypothesis, but 5 being an arbitrary
number.

We must therefore find a number # (to replace 5) such
that 12#2}/5172 = ratio of a square to a square.

Thus 122, 572 =601 = a square = goo#® say ; and #2=15.

Let then the sum of the three numbers be 15,

Product of first and second is therefore 435, and first =45/,

Similarly third = 60/x.

Therefore 45 .60/x*= 75, and x=6.

Therefore the numbers are 73, 6, 10, and the sum of
these =23%.

Now, #f this sum were 15 instead, the problem wounld be
solved.

1 Loria (gp. cit. p. 130) quotes this problem as an instance of Diophantus’ ingenious
choice of unknowns. Here the equations are, with our notation,

ys=a(x+y+s),
sx=h(x+y+3),
xy=c(x+y+3),
and Diophantus chooses as his principal unknown the sum of the three numbers,
x+y+z=w, say.
We may then write x=cwly, s=awly, so that sr=acw?y*=bw, and _1/‘-*:‘%‘: w.

Putting w=%‘ £, we have
x+y+s=‘—‘;€9, y=%‘é” s=af, x=ck,

from which, by eliminating x, ¥, 2, we obtain §=(b¢ +ca +ab)/ac.
Hence x=(bc +ca+ab)|a, y=(bc+ca+ab)lb, z=(bc+catab)le.
13—2
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Put therefore for the sum of the three numbers 1522 and
for the numbers themselves 73z, 6, 10x.

Therefore 2342 = 1542 so that xr=4,

and 32 22 470 55 5 solution.
30’ 307 30
38. To find three numbers such that their sum multiplied
into the first gives a triangular number, their sum multiplied into
the second a square, and their sum multiplied into the third a cube.

Let the sum be 22, and let the numbers be 72/2? 2/2%, p/2*,
where s, , p are a triangular number, a square and
a cube respectively;

say first number = 6/2?% second 4/#° third 8/22

But the sum is 2*; therefore 18/2* = 2% or 18 =24

Therefore we must replace 18 by some fourth power.

_But 18 =sum of a triangular number, a square and a cube.

Let 2* be the required fourth power, which must therefore be
the sum of a triangular number, a square and a cube.

Let the square be x* —22°+ 1;

therefore the triangular number + the cube = 222 — 1.

Let the cube be 8; therefore the triangular number is
2t —Q.

But 8 times a triangular numéber + 1 = a square ; therefore
164° - 71 = a square= (4x— 1)} say; thus x =9, the
triangular number is 153, the square 6400 and the
cube 8.

Assume then as the numbers 153/2% 6400/#% 8/+%

Therefore 6561/2% = 27 or *=6561, and x=g.

Thus (153 64:", 881 ) is a solution

! The procedure may be shown more generally thus.
Let & », { be the required numbers; suppose

E +n+ g‘ = x‘z’
o (a +1) _B _r
and E 2):; ’ 77‘-1_31 g-—xg-
It follows that xi= ("' +1) +82+93.
Suppose now that 8=a2%- 22 [onphantus and Bachet assume z=1].
Then z (u.+ I) 22222 ~ g4~ 3,

Eight times the left hand side plus 1 gives a square (by the property of triangular
numbers) ; that is,
(2a+ 12 =162%%" - 82* - 8v3+ 1 =a square
=(42x - £)3, say,
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39. To find three numbers such that the difference of the
greatest and the middle has to the difference of the middle and the
least a given ratio, and also the sum of any two is a square.

Ratio 3:1. Since middle number + least = square, let the
square be 4.

Therefore middle > 2; let it be » + 2, so that least=2 —z

Therefore difference of greatest and middle = 6z, whence
the greatest = 7 + 2.

Therefore Sx+4] are both squares. [Double-equation.]

6x+4] ’ 7 -

Take the difference 2z, split it into factors, say iz, 4, and
proceed by the rule; therefore r=112.

But I cannot take 112 from 2; therefore x must be found
to be < 2, so that 6x 44 < 16,

Thus there are to be three squares 8x+ 4, 6x+4 and 4
(the 4 arising from 2. 2), and the difference of the
greatest and middle is } of the difference of the
middle and least.

We have therefore tofind three squares having this property
and such that the least =4 and the middle < 16.

Let side of middle square be #+ 2; therefore excess of
middle over least = 2* + 42, whence excess of greatest
over middle = }z° + 112, and therefore the greatest

=142+ 545+ 4.

This must be a square; therefore, multiplying by 9, we have

122° + 482 + 36 =a square,

nd -
whence x:ﬁ:i@fi? .
8kz

But La.:_x_) must be integral, and therefore « integral, so that %(4:;.::-—/&— 1) must be

2
integral ; that is, W must be integral.

Bachet assumes that it is necessary, with Diophantus, to take 2=1, observing that
trial will show that the problem can hardly be solved otherwise. On this Fermat remarks
that Bachet’s trial had not been carried far enough. We may, he says, put for 4% any
cube, for instance, with side of the form 3z-+1. Suppose, for example, we take 73.
Then [z being 1] we have to make

2x%— 344 a triangle,
and therefore 16x%- 2751 a square, and we may take, if we please, 4x— 3 as the side of
this square [so that £ is in this case 3].

By varying the cubes we may use an unlimited variety of odd numbers, besides 3,
as values for £ which will satisfy the required condition.

Loria (0p. cét. p. 138) points out that the problem could have been more simply
solved by substituting x fer 22 and s for 22 in the above assumptions. The ultimate
expression to be made a square would then have been 16zx — 82%— 872 + 1, and we could
have equated this to A2, thus finding x.
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or 3584+ 125 + 9 = a square = (mz5 — 3)?, say.

It follows that 5= (62 + 12)/(#2* — 3), which must be < 2.

Therefore 6+ 12 < 22722—6, or 21 > 6m + 18.

“When we solve such an equation?, we multiply half the
coefficient of x into itself—this gives g—then multiply
the coefficient of * into the units—2. 18 = 36—add
this last number to the 9, making 45, and take the
side [square root] of 45, which is not less than 7;
add half the coefficient of x—making a number not
less than 10—and divide the result by the coefficient
of #2; the result is not less than 5.”

[32+ 18.2=435, and V45 + % is not less than § +1.]

We may therefore put #z=35+1, or 5, and we thus have

3224122 +9=(3— 52>

Therefore =21, and the side of the middle square is
43, the square itself being 122,

Turning to the original problem, we put 6x+ 4 =184 and

= 3388 which 75 less than 2.

The greatest of the required numbers = 7z + 2 = 2X%%7

726 °
. _ __ 2817
the middle=x+ 2= 726"
o .87
and the least=2 —x = 726"

The denominator not being a square, we can make it
a square by dividing out by 6; the result is
1834 460F 14
121 ' 121 ° 121°
or again, to avoid the } in the numerators, we may
multiply numerators, and denominators, by 4; thus

?4%8, %Zf, 4%84 is a solution?

1 I have quoted Diophantus’ exact words here, with the few added by Tannery,
““making a number not less than ro...coefficient of %, in order to show the precise
rule by which Diophantus solved a complete quadratic.

When he says 1/45 is not less than 7, Diophantus is not seeking exact limits. Since
A/45 is between 6 and 7 we cannot take a smaller integral value than 7 in order to
satisfy the conditions of the problem (cf. p. 65 above).

2 A note in the /nventum Novum (Part 11, paragraph 26) remarks upon the prolix and
involved character of Diophantus’ solution and gives a shorter alternative. The problem

is to solve

E—n=m (n-3%), (>n>¢, and m=3, say)
77+§-=ugs
F+HE=74,
4 p=wl
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40. To find three numbers such that the difference of the
squares of the greatest and the middle numbers has to the differ-
ence of the middle and the least a given ratio, and also the sum of
each pair is a square.

Ratio 3: 1.
Let greatest + middle number = the square 162*; therefore
greatest>8?: letitbe 842+ 2; hence middle=8s*-2.
And, since greatest + middle > greatest + least,
162° > (greatest + least) > 82%;
let greatest + least =9+?, say; therefore least =% — 2,
Now difference of squares of greatest and middle = 642%
and difference of middle and least = 742
But 64 is not equal to 3.7 or 2I.
Now 64 comes from 32.2; therefore we must find a
number # (in place of 2) such that 327 = 21.
Therefore .z = }.
Assume now greatest number = 82* + 3}, middle = 82— 3§,
least = 2% — §}.
[And difference of squares of greatest and middle
=21x=3.72%]
The only condition left is: middle + least = square; that is,
02%— 4% = a square =(3x— 6, say.
Therefore x =43%,

and (13(’519 776000’ 232313757‘&4, ;gf?;; is a solution.

Take an arbitrary square number, say 4, for the sum of 7, {; suppose 2+x=1m, 2—x=,
so that n— {=2x; therefore { —9=3 (9 — {)=6x, whence é=2+7x.

The last two conditions require that

4’:§j} shall be squares.

Replace x by é y-"+:; . This will make 4+ 6x a square. It remains that

4+13—6J'+§)'5=a square

5 \?
_—_(z+;y) , say.

23 6
T 2(3-9)-G-9)

16 X 2 160
and y=qis%0 that .x=3y3+§y=-!—2—I .
1362 402 82

for:
The numbers are therefore a1’ 1a1’ 1ot
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BOOK V

I. To find three numbers in geometrical progression such that
each of them ménus a given number gives a square.
Given number 12,
Find a square which exceeds 12 by a square. “This is
easy [IL 10]; 42} is such a number.”
Let the first number be 42%, the third 22; therefore the
middle number = 6}x.

Fr—12

Therefore 637 — 12} are both squares;

their difference = 2* — 64x =x (x — 6%); half the difference
of the factors multiplied into itself =182; therefore,
putting 64x— 12 =182 we have r=3241,

and <423;, zﬁf’, 113?:83T26]E) is a solution.

2. To find three numbers in geometrical progression such that
each of them when added to a given number gives a square.
Given number z0.
Take a square which when added to 20 gives a square,
say 16.
Put for one of the extremes 16, and for the other 42, so
that the middle term = 4.

2
Therefore :;Ijg} are both squares.

Their difference is 22 — 4x = x (x — 4), and the usual method
gives 4qxr+20=4, whick is absurd, because the 4
ought to be some number greater than 2o0.

But the 4 =} (16), while the 16 is a square which when
added to 20 makes a square; therefore, to replace 16,
we must find some square greater than 4.20 and
such that when increased by 20 it makes a square.

Now 81 > 80; therefore, putting (2 + 9)* for the required
square, we have

(m + 9)* + 20 = square = (m — 11)?, say;

therefore » =4, and the square =(94)*= 9o}.
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Assume now for the numbers 9o}, 9}, 2%, and we have

224 20

9%x+ 20

The difference =z (r—9}), and we put 9lx +20=38L,
Therefore x = £}, and

380% 1681 . .
(QOL 152 ° 23104) is a solution.

} both squares.

3. Given one number, to find three others such that any one of
them, or the product of any two of them, when added to the given
number, gives a square.

Given number 5.

“ We kave it in the Porisis that if, of two numbers, each,
as well as their product, when added to one and the
same given number, severally make squares, the
two numbers are obtained from the squares of con-
secutive numbers?.”

Take then the squares (x+ 3)% (#+4)%, and, subtracting
the given number 5 from each, put for the first
number 2*+6x+4, and for the second #°+8x+11,
and let the third® be twice their sum nus 1, or

4%+ 28x + 29.

1 On this Porism, see pp. 99, Loo ante.

2 The Porism states that, if @ be the given number, the numbers £*~¢a, (x+1)* -2
satisfy the conditions.

In fact, their product + a={x(x+ 1)} ~a (223 +2x+1) +a*+a

={x(x+1)}2-20x (x+1)+a?={x (x+ 1) -a}>

Diophantus here adds, without explanation, that, if X, ¥ denote the above two numbers,
we should assume for the third required number Z=2 (X + ¥) — 1. We want 2472 numbers
such that any fzwo satisfy the same conditions as X, ¥. Diophantus takes for the third
Z=12(X+ Y)—1 because, as is easily seen, with this assumption two out of the three
additional conditions are thereby satisfied.

For Z=2(X+Y)-1=2(x+2xr+1)—ga~1
=(22+1)2- 42;
therefore XZ+a=a®(2x+1)2 ~a{(ax+1)*+ 422} + 40’ +a

=a2(2x+1)2~a. 42 (20 + 1) + 42°
={x(2x+1)~22a}?
while YZta=(x+1)2(ax+1)2~a{(2x+1)2+4 (c+1)%} +4a2+a
=(x+1)2(2x+1)2~a (8 + 12+ 4) + 407
={(x+1) (2x+1)—22}%
The only condition remaining is then
Z+ a=a square,
or (2x+1)3 - 3¢=a square= (2x — £)?, say,
and x is found.
Cf. pp. 100, 104 above.
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Therefore 44°+ 28x + 34 =a square=(2x — 6)? say.
Hence x =4, and (%‘;6—;, %67&65, 2-23—29) is a solution?,
4. Given one number, to find three others such that any one
of them, or the product of any two, smnus the given number gives
a square,
Given number 6.
Take two consecutive squares x% 2*+ 2x + I.
Adding 6 to each, we assume for the first number 22 4 6,
and for the second 2+ 2x + 7.
For the third® we take twice the sum of the first and
second meimus 1, or 4x2*+ 4%+ 25.
Therefore third minus 6 = 42° + 42 + 19=square =(2x—6),
say.
Therefore x =41,

4993 6729 22660\ . :
and (78?’ 82’ o8 ) is a solution.
[The same Porism is assumed as in the preceding problem

but with a mznus instead of a plus. Cf. p. 99 above.]

5. To find three squares such that the product of any two
added fo the sum of those two, or to the remaining square, gives
a square.

“ We have it in the Porisms” that, if the squares on any two
consecutive numbers be taken, and a third number
be also taken which exceeds twice the sum of the
squares by 2, we have three numbers such that the
product of any two added to those two or to the
remaining number gives a square?,

1 Diopha.ntﬁs having solved the problem of finding three numbers £, 9, { satisfying
the six equations
Eta=+  nfta=id,
N+ a=s2, E+a=122
$te=2,  Intae=wd
Fermat observes that we can deduce the solution of the problem

Tv find four numbers such that the product of any pair added to o Given number
produces a square.

Taking three numbers, as found by Diophantus, satisfying the above six conditions,
we take x+1 as the fourth number. We then have three conditions which remain to be
satisfied. These give a ¢ triple-equation * to be solved by Fermat’s method.

% Diophantus makes this assumption for the same reason as in the last problem, V. 3.
The second note on p. 201 covers this case if we substitute —a for throughout.

3 On this Porism, see pp. I00~1 ant. :
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Assume as the first square #*+ 22+ 1, and as the second
2%+ 4x+ 4, so that third number =4 + 122 + 12.
Therefore 2* + 37 + 3 =a square=(x — 3)}, say, and x = }.
Therefore (2—5, 6-4, ggj) is a-solution.
9°9° 9

6. To find three numbers such that each minus 2 gives a
square, and the product of any two mznus the sum of those two,
or minus the remaining number, gives a square.

Add 2 to each of three numbers found as in the Porism
quoted in the preceding problem.

Let the numbers so obtained be 22+2, 22+2r+3,
42% + 42+ 6.

All the conditions are now satisfied’, except one, which
gives

4%+ 4x + 6 — 2 = a square.
Divide by 4, and #* +x + I = a square = (¥ — 2)*, say.
Therefore x=§,

ands—gz—xﬁzié

2% 23 25) is a solution.

Lemma I to the following problem.

To find two numbers such that their product added to the
squares of both gives a square.
Suppose first number., second any number (2), say I.
Therefore x. 1 +#°+ I =2+ 2+ I = asquare = (¥ — 2)’, say.
Thus x=4§, and

(g, 1) is a solution, or (3, 5).

Lemma 11 to the following problem.
To find three right-angled triangles (Ze. three right-angled
triangles in rational numbers®) which have equal areas.
We must first find two numbers such that their product
+the sum of their squares =a square, eg. 3, 5, as in
the preceding problem.

! The numbers are #2+2, (x+1)2+2, 2 {x2+ (x+1)3+ 1} +2; and if X, ¥, Z denote
these numbers respectively, it is easily verified that
XY= (X+Y)=(@2+x+1)2, XY-Z=(@%+x),
XZ - (X+2) =(2x2+x+2)% XZ-Y=(222+x+3)%
and VZ —(V42) =(222+3x+3)%° ¥Z-~X=(222+30+4)%
2 All Diophantus’ right-angled triangles must be understood to be right-angled
triangles with sides expressible in rational numbers. In future I shall say ¢ right-angled
triangle  simply, for brevity.
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Now form right-angled triangles from the pairs of
numbers?

(7, 3% (7,5) (7,3+5)
[Ze. the right-angled triangles (7*+ 32, 72—~ 3% 2. 7. 3), etc.].
The triangles are (40, 42, 58), (24, 70, 74), (15, 112, 113),
the area of each being 840.

1 Diophantus here tacitly assumes that, if ab+4%+62=c? and right-angled triangles
be formed from (c, a), (c, &) and (r, @+85) respectively, their areas are equal. The
areas are of course (¢2-a?)ca, (¢2—4%)cb and {(a+8)*-c?} (@+b)¢c, and it is easy to
see that each =abc (z+46).

Nesselmann suggests that Diophantus discovered the property as follows. Let the
triangles formed from (2, #2), (¢, ), (7, 72) have their areas equal ; therefore

n(m?—n) =g (m2-g%) =7 (2 - m?).

1t follows, first, since mn—nd=m?g - g3,
that m2=(n3—-g®)(n-qg)=n2+ng+g>
Again, given (g, 2, #), to find ».
We have g (m2 - g% =»(* - m?),
and m?— ¢2=7#2+ 7y, from above ;
therefore g(BP+ngy=r(2-n2-ng-q?,
or g (BB +nr)+ g% (n+7)=7r(*-nd).
Dividing by »+ 7, we have gn+gi=r2—rn;
therefore (g+7)n=r~-¢%
and r=g+n.

Fermat observes that, given any rational right-angled triangle, say 2, 4, d, where =
is the hypotenuse, it is possible to find an infinite number of other rational right-angled
triangles having the same area. Form a right-angled triangle from 2% 28d; this gives
the triangle 2¢+48°@%, #*-48°d? 42°6d. Divide each of these sides by 2z (#*-d3),

& being >d; and we have a triangle with the same area %bd as the original triangle.
Trying this method with Diopbantus’ first triangle (40, 42, 58), we obtain as the new

triangle 1412881 1412880 1681
1189 * 1189 ’ 1189°
The method gives (%, I—;E, %) as a right-angled triangle with area equal

to that of (3, 4, 5).

Another method of finding other rational right-angled triangles having the same area as
a given right-angled triangle is explained in the /nzentum Nowvim, Part 1, paragraph 38
(Ervres de Fermat, 111. p. 348).

Let the given triangle be 3, 4, 5, so that it is required to find a new rational right-
angled triangle with area 6.

Let 3, x+ 4 be the perpendicular sides ; therefore

the square of the hypotenuse =2+ 8x+25=a square.

Again, the area is %x+6 3 and, as this is to be 6, it must be six times a certain square ;

that is, §x+6 divided by 6 must be a square, and this again multiplied by 36 must

be a square; therefore
9% + 36 =a square.
Accordingly we have to solve the double-equation
224 8x+25=128
9x+36= v’}
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7. To find three numbers such that the square of any one +
the sum of the three gives a square.
Since, in a right-angled triangle,
(hypotenuse)? + twice product of perps. = a square,
we make the three required numbers hypotenuses and the
sum of the three four times the area.
Therefore we must find three right-angled triangles having
the same area, ¢, as in the preceding problem,
(40, 42, 58), (24, 70, 74), (15, 112, 113).
Reverting to the substantive problem, we put for the
numbers 58z, 74%, 113x; their sum 2452 = four times
the area of any one of the triangles = 336022
Therefore x=,
and (”;—‘?, %%;, 7;9‘%) is a solution.
Lemmna to the following problem.

Given three squares, it is possible to find three numbets such
that the products of the three pairs shall be respectively equal to
those squares.

This gives = _67256°°,
24050601

_ 2896804

whence Z+4= 2405601"

The triangle is thus found to ‘be

2896804 7776485
2405601’ 2405601
724201
2405601’

i

the root of which is -I—‘i‘r%.

The area is 6 times a certain square, namely

Dividing each of the above sides by ;8‘—5-5-51[ » We obtain a triangle with area 6, namely

4653 3404 7776485
851’ 1sal’ 1319901

Another solution of the double-equation, x= - %05: , giving x+ 4.=:’79°, leads to
the same triangle (x—?o’ l—;—e, 1;;:—1) as that obtained by Fermat’s rule (see above).

The method of the fnventum Novwum has a feature in common with the procedure in
the ancient Greek problem reproduced and commented on by Heiberg and Zeuthen
(Bibliotheca Mathematica, Villg, 1907[8, p. 122), where it is required to find a rational
right-angled triangle, having given the area, 5 feet, and where the 5 is multiplied by a
square number containing 6 as a factor and such that the product *“ can form the area of
a right-angled triangle.” 36 is taken and the area becomes 180, which is the area of
(9, 49, 41). The sides of the latter triangle are then divided by 6, and we have the
required triangle (cf. p. 119, aznte)-
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Squares 4, 9, 16.

First number #, so that the others are 4/%, 9/x; and 36/+?=16.

Therefore x=§, and the numbers are (1%, 22, 6).

We observe that 2= ¢, where 6 is the product of 2 and 3,
and 4 is the side of 16.

Hence the following 7ule. Take the product of two sides
(2, 3), divide by the side of the third square 4 [the
result is the first number]; divide 4, 9 respectively
by the result, and we have the second and third
numbers.

8. To find three numbers such that the product of any two +
the sum of the three gives a square.

As in Lemma II to the th problem, we find three right-
angled triangles with equal areas; the squares of
their hypotenuses are 3364, 5476, 12769.

Now find, as in the last Lemma, three numbers such that
the products of the three pairs are equal to these
squares respectively, which we take because each
+ 4 .(area) or 3360 gives a square ; the three numbers
then are

4292y, 32772 [380332x Tannery],

41817 [618788% Tannery].

It remains that the sum of the three = 336022

Therefore 23834806 » [1312992242 Tannery] = 336042

Therefore » = #3R3A808 [#52853%% or J8}8A% Tannery),

781543 781543 781543
255380’ 109520° 67280 |°

I:and the numbers are

9. To divide unity into two parts such that, if the same given
number be added to either part, the result will be a square.

Necessary condition. The given number must not be odd and
the double of it + I must not be divisible by any prime number
which, when increased by 1, is divisible by 4 [Z.e. any prime number
of the form 47— 1]

Given number 6. Therefore 13 must be divided into two
squares each of which >6. If then we divide 13 into
two squares the difference of which < 1, we solve the
problem.

! For a discussion of the text of this condition see pp. 107-8, asnze.
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Take half of 13 or 6%, and we have to add to 6} a small
fraction which will make it a square,

or, multiplying by 4, we have to make %_, + 26 a square,

.. 26x* + I = a square = (5x+ 1)*, say, whence x= 10.
That is, in order to make 26 a square, we must add 3, or,
to make 6% a square, we must add 535, and

ho + 6 = (§)

Therefore we must divide 13 into two squares such that their
sides may be as nearly as possible equal to §%. [This
is the mapioéTyros dywyy described above, pp. 95-8.]

Now 13=2%+3% Therefore we seek two numbers such
that 3 ménus the first =8}, so that the first = 5, and
2 plus the second = §}, so that the second = }}.

We write accordingly (11x + 2)% (3 — gx)? for the required
squares [substituting x for ;]

The sum =2022*— 10x+ 13 =13.

Therefore x= 187, and the sides are 25%, 238,

Subtracting 6 from the squares of each, we have, as the
parts of unity,

4843 5358

10201° 10201

10. To divide unity into two parts such that, if we add different
given numbers to each, the results will be squares.
Let the numbers! be 2, 6 and let them and the unit be
represented in the figure, where DA =2, AB=1,
BE=6, and G is a point in 4B so chosen that DG,
GE are both squares,

D

1>

GB E

Now DE=9q. Therefore we have to divide 9 into two
Squares sucle that one of them lies between 2 and 3.

Let the latter square be 2% so that the other is g—x?
where 3>2%> 2.

Take two squares, one >2, the other <3 [the former
being the smaller], say 28%, $33.

1 Loria (0. cit. p. 1507.), as well as Nesselmann, observes that Diophantus omits to
state the necessary condition, namely that the sum of the two given numbers p/ws 1 must
be the sum of two squares.
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Therefore, if we can make #* lie between these, we shall
solve the problem.
We must have > 17 and < }.
Hence, in making 9 — 2* a square, we must find
x>1l and < .
Put 9 — 2% = (3 — mx), say, whence x = 6mz/(m* + 1).
6w . 1
Therefore % v < ?g .
The first inequality gives 72z > 17272+ 17 ; and
36°—17.17 = 1007,
the square root of which! is not greater than 31;

therefore 722 3 31+36 , L.e. 1 :i> 7
Similarly from the mequahty Igm"'+ 19> 72 we find?
m < £§.

Let m=3%. Therefore 9 — #*=(3 — 34%¢)%, and x=§%.
Therefore 2* =338,
and the segments of 1 are (%g :gz;)

11. To divide unity into three parts such that, if we add the
same number to each of the parts, the results are all squares.

Necessary condition®. The given number must not be 2 or any
multiple of 8 increased by 2.
Given number 3. Thus 10 is to be divided into three
squares such that each > 3.

Take { of 10, or 3}, and find x so that 9—;+ 33 may be a

square, or 302+ I =a square =(5x -+ 1), say.
Therefore x=2, x2=4, 1/2*=}, and
35 + 34 =44 = a square.

Therefore we have to divide 10 into three squares each of
which is as near as possible to &l [wapiodryTos
dyoyr.]

Now 10= 3%+ 12 = the sum of the three squares 9, 3%, &%.

Comparing the sides 3, 4, & with 41,
or (multiplying by 30) 90, 24, 18 with 55, we must
make each side approach 55.

1 Ze. the integral part of the root is »31. The limits taken in each case are a fortiori
limits as explained above, pp. 61-3.

? See p. 61, ante.

¥ See pp. 108-g, ante.
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[Since then $§=3—33=%4+34=3+%}), we put for the
sides of the required numbers
3—35% 31r+4, 37x+3.
The sum of the squares = 355542 — 116 4 10 = 10.
Therefore x = J&,
and this solves the problem.

12. To divide unity into three parts such that, if three different
given numbers be added to the parts respectively, the results are
all squares.

Given numbers 2, 3, 4. Then I have to divide 10 into
three squares such that the first > 2, the second > 3,
and the third > 4.

Let us add % of unity to each, and we have to find three
squares such that their sum is 10, while the first lies
between 2, 2}, the second between 3, 33, and the
third between 4, 43.

It is necessary, first, to divide 10 (the sum of two
squares) into two squares one of which lies between
2, 24; then, if we subtract 2 from the latter square,
we have one of the required parts of unity.

Next divide the other square into two squares, one of
which lies between 3, 3%;

subtracting 3 from the latter square, we have the second
of the required parts of unity.

Similarly we can find the third part?,

1 Diophantus only thus briefly indicates the course of the solution. Wertheim solves
the problem in detail after Diophantus’ manner ; and, as this is by no means too easy,

I think it well to reproduce his solution.
I. It is first necessary to divide 1o into two squares one of which lies between 2

and 3. We use the wapiréryros dywys.
The first square must be in the neighbourhood of 23 ; and we seek a small fraction

% which when added to 2} gives a square: in other words, we must make 4 (z§+ ;—2)
1\2

a square. This expression may be written 1o+ (;y) , and, to make this a square, we put
1072+ 1=(3y+1)% say,

6 2oL R
whence y =6, y2=36, 22=144, so that 23+ .z% = %ﬁ: (;—2 , which is an approximation
to the first of the two squares the sum of which is 1o.

The second of these squares approximates to 74, and we seek a small fraction x% such
2 2
that 74+ }3 is a square, or 30+ (;c) =30+ (;) , say =a square.

H. D. 14
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13. To divide a given number into three parts such that the

sum of any two of the parts gives a square.
Given number 10.

Put 307+ 1=(57 + 1) say;

therefore y =2, y*=4, x*=16, so that 74+ é: I;; <”) (%’%)2
Now, since 1o=124 3% and ;—2: I +xl'z’ while ﬁ—g 3

we put (1 +72)*+(3—3%)°=10,

so that x=£§,

o 14\*_ (43 1849
wrmp= (e ) =(8) =52

N 6\2_ /81\*_ 6561
(3—3")':(3“2—) (29) Bar

Therefore the two squares into which 1o is divided are -, St

these lies in fact between 2 and 23.

1849 and 8361 6561
841

[Cf. v. 9]

, and the first of

II. We have next to divide the square 6561 into two squares, one of which, which

841
we will call 42 lies between 3 and 4. [The method of V. 10 is here applicable.]
Instead of 3, 4 take 456) 62 as the limits.
49 6 _
Therefore A 3 <a?< 5
or 1 <x< §.
4 4
2
And —=— 656 —-22 must be a square —( - x) , say,
sy s 1624
which gives A x—zg B’ |
% has now to be chosen such that .
(1) _ 1622 7
29(1+4) " ¢’
from which it follows that k<28...,
1624 8
nd @) BEA) 4
whence £>2'3.0 .,
We may therefore put k=2'5.
Therefore x= 16“, ﬂ:w,
841 707281
and 6561 e 2893401
841 707281

The three required squares into which 10 is divided are therefore
1849 2624400 2893401
841’ 707281’ 707281 °

And if we subtract 2 from the first, 3 from the second and 4 from the third, we obtain

as the required parts of unity
140447 502557 64277
707281’ 707281 yo7281"
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Since the sum of each pair of parts is a square less than
10, while the sum of the three pairs is twice the
sum of the three parts or 20,

we have to divide 20 into three squares eack of which
is < 10,

But 20 is the sum of two squares, 16 and 4;

and, if we put 4 for one of the required squares, we
have to divide 16 into two squares, each of which is
< 10, or, in other words, into two squares, one of which
lies between 6 and 10. This we learnt how to do?
[v. 10].

We have, when this is done, three squares such that
each is < 10, while their sum is 20;

and by subtracting each of these squares from 10 we
obtain the parts of 10 required.

14. To divide a given number into four parts such that the
sum of any three gives a square.
Given number 10.
Three times the sum of the parts = the sum of four squares.
Therefore 30 has to be divided into four squares, each of
which is < 10.

(1) If we use the method of approximation (wapigétns),
we have to make each square approximate to 7% ;

1 Wertheim gives a solution in full, thus.
Let the squares be x2%, 16 -2, of which one, 2% lies between 6 and 10.

Put instead of 6 and 10 the limits :—5 and g, so that

5

S<x<s.
To make 16 ~ 2% a square, we put
16— 22=(4 - £x)?,
8%
I+

whence x=

8 _ 5 8%
Now (1) TR and (2) TR

S

ﬁn

These conditions give, as limits for Z, 2°84... and 2-21... .
We may therefore e.g. put £=24.

Then x=8-3, x“=£‘9g, 16—-76'3=M-
29 4T 841
The required three squares making up 20 are 4, 6;%9, ?;Tsf.

Subtracting these respectively from 1o, we have the required parts of the given number
2010 1334
10, namely 6, ——-—8“ y _84.1 .

14—2
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then, when the squares are found, we subtract each
from 10, and so find the required parts.

(2) Or observing that 30 =16+9 + 4 + 1, we take 4,9 for
two of the squares, and then divide 17 into two squares,
each of which < 10,

If then we divide 17 into two squares, one of which lies
between 83 and 10, as we have learnt how to do!
[cf. V. 10], the squares will satisfy the conditions.

We shall then have divided 30 into four squares, each of
which is less than 10, two of them being 4, 9 and the
other two the parts of 17 just found.

Subtracting each of the four squares from 10, we have the
required parts of 10, two of which are 1 and 6.

15. To find three numbers such that the cube of their sum
added to any one of them gives a cube.
Let the sum be x and the cubes 71*, 262, 6345
Therefore 9628 =x, or 9622 = 1.
But 96 is not a square; we must therefore replace it by a
square in order to solve the problem.

! Wertheim gives a solution of this part of the problem.
: 2
As usual, we make 8%+ xl‘ s OF 34 + (i) , @ square,

2
Putting zz}'—{, we must make 34+ (yl) a square.

Let 349+ 1=a square= (y - 1)?,
and we obtain y=6, y*=36, a2=144.
2
Thus 8§+L=-x—2~2§=(§§),
144 144 \I2

and %% is an approximation to the side of each of the required squares.

Next, since 17=12+42% and 30=7+23—,_13
5 SInce I7=1%+ 4% an 12 x+m 4 e

we put 17 =(r+23%)%+ (4 - 132)%,
and we obtain z=22,
349
2 6
- . th o 1016) _ 103225
e squares are then (1 +23x ('3"49 121801 ’
and - 13%)'= (I‘m)a =~
(4 - 13%) 349 121801 °

Subtracting each of these from 10, we have the third and fourth of the required parts
of 10, namely
185754 179649

121801° 121801°
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Now g6 is the sum of three numbers, each of which is 1 less
than a cube;

therefore we have to find three numbers such that each
of them is a cube less 1, and the sum of the three
is a square.

Let the sides of the cubes?! be #2441, 2 — 2, 2, whence the
numbers are #m2®+ 3w+ 3m, 7 — 12m+ 6wt —u®, 7;
their sum = gu®— gz + 14 =a square = (3/2 —4), say ;

therefore = £,

and the numbers are 1528, 1837, 7.

Reverting to the original problem, we put x for the sum of
the numbers, and for the numbers respectively

335 A, 74
whence 45740 1% =1,

that is (if we divide out by 15 and by %),

291622 =2235, and r=13.
The numbers are therefore found.

16. To find three numbers such that the cube of their sum
minus any one of them gives a cube.

Let the sum be %, and the numbers §23, 3§27 §32°

Therefore 4§32 =z,

and, if 41 were the ratio of a square to a square, the
problem would be solved.

But $§3% = 3 — (the sum of three cubes).

Therefore we must find three cubes, each of which < 1,
and such that (3 — their sum) = a square.

If, @ fortiori, the sum of the three cubes is made < I, the
square will be >2. Let?it be 2}

1 If g3, 85, &3 are the three cubes, so that 43+53+¢% — 3 has to be 2 square, Diopbantus
chooses ¢8 arbitrarily (8) and then makes such assumptions for the sides of 43, &3, being
linear expressions in #, that, in the expression to be turned into a square, the coefficient
of 8 vanishes, and that of m? is a square. If =, the condition is satisfied by
putting b=234% ~m, where % is any number.

8 Bachet, finding no way of hitting upon 2} as the particular square to be taken
in order that the difference between it and 3 may be separable into three cubes, and
observing that he conld not solve the problem if he took another arbitrary square between
2 and 3, eg. 2§, instead of 23, concluded that Diophantus must have hit upon 23,
which does enable the problem to be solved, by accident.

Fermat would not admit this and considered that the method used by Diophantus for
finding 2} as the square to be taken should not be difficult to discover. Fermmat accord-
ingly suggested a method as follows.

Let x — 1 be the side of the required square lying between 2 and 3. Then 3 - (x— 1)
— -+ 22— 22 and this has to be separated into three cubes. Fermat assumes for the sides
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We have therefore to find three cubes the sum of which
={or #§%;

that is, we have to divide 162 into three cubes.

But 162=125+64 — 27;

and “we have it in the Porisms” that zke difference of
two cubes can be transformed into the sum of itwo
cubes?,

Having thus found the three cubes®, we start again, and
x=2%2% so that x=2.

The three numbers are thus determined.

of two of the required cubes two linear expressions in x such that, when the sum of their
cubes is subtracted from 2 + 2x - &%, the result only contains terms in 22 and 43 or in x
and units.

The first alternative is secured if the sides of the first and second cubes are 1 —%x and

1+.x respectively ; for
2+ox-x%~ (1 - Ex)a— (14+x)p3=~ }x’—éx"'
3 R
This latter expression has to be made a cube, for which purpose we put
26 m3x®
-4,%:;3—513._ T say,

which gives a value for x. We have only to see that this value makes éx less than 1,
and we can easily choose » so as to fulfil this condition.

3

[E.g- suppose m=35, and we find x= i_:" so that
LA . B S gy L)
3 33 3 33 33

and the side of the third cube is —gg .

The square (x - 1)2= (—:—I>2, and in fact 3 - {(gi;)s + (g)s - (g_g)a} = (I_,[_)z.]

We then have three cubes which make up the excess of 3 over a certain square ; but,
while the first of these cubes is <1, the second is > and the third is negative. Hence
we must, like Diophantus, proceed to transform the difference between the two latter
cubes into the sum of two other cubes.

It will, however, be seen by trial that even Fermat’s method is not quite general, for
it will not, as a matter of fact, give the particular solution obtained by Diophantus in
which the square is 2.

! On the transformation of the difference of two cubes into the sum of-two cubes, see

. Pp. I10I-3, ante.

3 3
2 Vieta’s rule gives 43— 33= (?’gil"’) + (g—:) . It follows that

3_162_ (5)3 (1"_‘ : 3)3.
4—216“(5> \m:) Tt 273) °’
and, since 23 =%, the required numbers are

91 8 4998267 8 20338417 8

216" 27" 6028568 27" 120346417 27
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17. To find three numbers such that each of them mnus the
cube of their sum gives a cube.

Let the sum be & and the numbers 213, gz, 2842,

Therefore 392°=1;

and we must replace 39 by a square which is the sum
of three cubes + 3;

therefore we must find three cubes such that their sum
+ 3 is a square,

Let their sides? be 2, 3—, and any number, say 1.

Therefore gm? + 31 ~ 271z = a square = (3m — 7)", say, so
that 72 = §, and the sides of the cubes are §, §, I.

Starting again, we put x for the sum, and for the numbers

34125, 8345, 3002,
whence 14452*=125, 2*=2§, and z=4.
The required numbers are thus found.

18. To find three numbers such that their sum is a square and
the cube of their sum added to any one of them gives a square.

Let the sum be 2? and the numbers 35, 828, 152°

It follows that 26x*=1; and, if 26 were a fourth power, the
problem would be solved.

To replace it by a fourth power, we have to find three
numbers such that each increased by 1 gives a square,
while the sum of the three gives a fourth power.

Let these numbers be w2t — 22, 1%+ 2w, m*— 2 [the sum
being m4]; these are indeterminate numbers satisfying
the conditions.

Putting any number, say 3, for », we have as the required
auxiliary numbers 63, 135, 3.

Starting again, we put 22 for the sum and 3%, 152¢, 632 for
the required numbers,

and we have 8145 =27 so that xr=14.

3 35 _61)
The numbers are tbus found (7 25’ 729" 729)°

19. To-find three numbers such that their sum is a square and
the cube of their.sum smznus any one of them gives a square.

[There is obviously a lacuna in the text after this enunciation ;

for the next words are “ And we have again to divide 2 as before,”

1 Cf. note on V. 15. In this case, if one of the cubes is chosen arbitrarily and =

is another, we have only to put (34 — ) for the side of the third cube in order that, in the

expression to be made a square, the term in 7° may vanish, and the term in ? may be a
square.
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whereas there is nothing in our text to which they can refer, and
the lines which follow are clearly no part of the solution of V. 19.
Bachet first noticed the probability that three problems inter-
vened between V. 19 and V. 20, and he gave solutions of them.
But he seems to have failed to observe that the eight lines or so in
the text between the enunciation of V. 19 and the enunciation of
V. 20 belonged to the solution of the last of the three missing
problems. The first of the missing problems is connected with
V. 18 and 19, making a natural trio with them, while the second and
third similarly make with V. 20 a set of three. The enunciations
were doubtless somewhat as follows.
19a. To find three numbers such that their sum is a square
and any one of them minus the cube of their sum gives a square.
194. To find three numbers such that their sum is a given
number and the cube of their sum plus any one of them gives a
square.
19c. To find three numbers such that their sum is a given
number and the cube of their sum minus any one of them gives a
square,
The words then in the text after the enunciation of v. 19
evidently belong to this last problem.]
The given sum is 2, the cube of which is 8.
We have to subtract each of the numbers from 8§ and
thereby make a square.
Therefore we have to divide 22 into three squares, each
of which is greater than 6 ;
after which, by subtracting each of the squares from 8, we
find the required numbers.
But we have already shown [cf. V. 11] how to divide 22
into three squares, each of which is greater than 6—
and less than 8, Diophantus should have added.
[The above is explained by the fact that, by addition,
three times the cube of the sum minus the sum itself
is the sum of three squares, and three times the
cube of the sum minus the sum =3.8 ~2=22]

! Wertheim adds a solution in Diophantus’ manner. We have to find what small

fraction of the form — we have to add to 22 or 6—6, and therefore to 66, in order to
2 3 9

make a square. In order that 66 +$ may be a square, we put

6622+ 1 =square=(1 +8x2)?, say,
which gives x=8 and 2?=64.
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20. To divide a given fraction into three parts such that any
one of them sminus the cube of their sum gives a square.

Given fraction }.

Therefore each part = gy + a square.

Therefore the sum of the three =} = the sum of three
squares + Z.

Hence we have to divide §$ into three squares, “which is
easy.”

21. To find three squares such that their continued product
added to any one of them gives a square.

Let the “solid content” =22

We want now three squares, each of which increased by 1
gives a square.

They can be got from right-angled triangles? by dividing
the square of one of the sides about the right angle
by the square of the other.

Let the squares then be

525 % $57

The continued product = JA488 25 = %, by hypothesis.

Therefore 133+? = 1; and, if }3$ were a square, the problem
would be solved.

We have therefore to increase 66 by 6 , and therefore 73 by ——6 , in order to make a

square. And in fact 73 +— P 6 (65>

Next, since 22 =3+ 32+ 2% and 65 - 48 =17, while 72— 65=17, we put
22=(3—72)2+ (3 - 7x)3+ (2 + 172)%
5
387"

04.9 1049 1046
3877 387 387’
1100401 1100401 1094116
149769 ' 149769 ' 149769 ’

97751 97751 104036

149769 149769’ 149769
1 As Wertheim observes, 3.2 =+ 2 , and the required fractions into which
64 64 25 400
250 B89 61
1600’ 1600’ 1600 "
2 If @, b be the perpendiculars, ¢ the hypotenuse in a right-angled triangle,

and
Therefore the sides of the squares are —=
the squares themselves

and the required parts of 2 are

; is divided are —=—

a* e
bl +1 =m=a square.

"Diophantus uses the triangles (3, 4, 5), (5, 12, 13), (8, 13, 17)-
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As it is not, we must find three right-angled triangles such
that, if &’s are their bases, and p’s are their perpen-
diculars, g, .25 516,05 = a square;

and, if we assume one triangle arbitrarily (3, 4, 5), we
have ta make 122, p,5:8, a square, or 34,4,/p.0, a square.

“This is easy,” and the three triangles are (3, 4, 3),
(9, 40, 41), (8, 15, 17) or similar to them.

1 Diophantus does not give the work here, but only the result. Bachet obtains it
in this way. Suppose it required to find three rational right-angled triangles (4, ;, &y),
(2, pa, &) and (%3, p3, b3) such that pipapa/bibebs is the ratio of a square to a square.
One triangle (%, , 2y, 4;) being chosen arbitrarily, form two others by putting
ha=k?+p? pa=hl-pP=02, b=1lp,
hg=hi?+ 02, py=Ad-bl=p?, bg=2/by,

2

) ‘%%—f = (7%1) =a square.

. If now Ay=3, p1=4, s=3, the triangles (i3, 2o, b2) and (%3, 23, &3) are (41, g, 40)
and (34, 16, 30) respectively. Dividing the sides of the latter throughout by 2 (which
does not alter the ratio), we have Diophantus’ second and third triangles (9, 40, 41) and
(8 15 17).

Fermat, in his note on the problem, gives the following general rule for finding two
right-angled triangles the areas of which are in the ratio z : z (m>n).

. Form (1) the greater triangle from 27+ 7, 7 — 2, and the lesser from #2422, m -1,
’ or (2) the greater from 2m —n, m -+, the lesser from a2 -m, m+n,
or (3) the greater from  6m, 2m—n, the lesser from g+ 7, ym —2n,
or (4) the greater from m + 47, 2m — 47, the lesser from 62, m—an.

The alternative (2) gives Diophantus’ solution if we put m=3, z=1 and substitute
m—an for an—-m.

Fermat continues as follows: We can deduce a method of finding #4ree right-angled
triangles the areas of which are in the ratio of three given numbers, provided that the
sum of two of these numbers is equal to four times the third. Suppose e.g. that , 7, ¢
are three numbers such that m+g=4n (m>g¢). Now form the following triangles :

and we have

(1) from m+ 42, 2m — 42,
(2) from 67, m—a2n,
(3) from 4n+g, 472-24.
[If 4y, A3, A3 be the areas, we have, as a matter of fact,
Ay|m=As[n=A3)g= — 6m3+ 36m2n+ 144mn? — 38473.]

We can derive, says Fermat, a method of finding three right-angled triangles the areas
of whick themselves form a right-angled triangle. For we have only to find a triangle
such that the sum of the base and hypotenuse is four times the perpendicular. This is
_easy, and the triangle will be similar to (17, 15, 8); the three triangles will then be formed

(1) from 17+4.8, 2.17-4.8 or 49, 2,
(2) from 6.8, 17-2.8 or 48,1,
(3) from 4.8+15, 4.8-2.15 or 47, 2.

[The areas of the three right-angled triangles are in fact 234906, 110544 and 207270,
and these numbers form the sides of a right-angled triangle.]

Hence also we can derive a method of finding three right-angled triangles the areas
of whick are in the ratio of three given squares such that the sum of two of them is equal to
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Starting again, we put for the squares

7525 P 1hed”
Equating the product of these to 2%, we find x to be
rational [x=1% and the squares are 3; x;o’ :}
22. To find three squares such that their continued product
minus any one of them gives a square.
Let the solid content be #* and let the numbers be

obtained from right-angled trlangles, being
82, 752 70
2
Therefore the continued product (—4——5——8—> P=2

5.13.17
4.5.8 \* , 25600 ,
or (5 13. 17)"” " 1221023 =1L
If then 25600 were a fourth power, Ze. if - 4.5.8 were
1221025 5.13.17

a square, the problem would be solved.
- We have therefore to find three right-angled triangles
with hypotenuses /%, /., /; respectively, and with
P1y Pay Ps as one of the perpendiculars in each re-
spectively, such that
Rhiohis pr o ps = a square. Co

Assuming one of the triangles to be (3, 4, 5), so that ¢¢.

/393 =5 .4 =20, we must have
5/ P/ pp= a square.

This is satisfied if &, p; = 5%, 2,.

With a view to this we have first (cf. the last proposition)
to find two right-angled triangles such that, if x,,
are the two perpendiculars in one and x,, y, the two
perpendiculars in the other, £, =54,7,. From such
a pair of triangles we can form two more right-
angled triangles such that the product of the
hypotenuse and one perpendicular in one is five times
the product of the Aypotenuse and one perpendicular in
the other®.

Jfour times the third, and we can also in the same way find three right-angled triangles of
the same area; we can also construct, in an infinite number of ways, fwo »ight-angled
triangles the areas of whick are in a given ratio, by multiplying one of the terms of the
ratio or the two terms by given squares, etc.

1 Diophantus’ procedure is only obscurely indicated in the Greek text. It was
explained by Schulz in his edition (cf. Tannery in Oewwres de Fermat, 1. p. 323, note).
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Since the triangles found satisfying the relationz, =52, 7,
are (5, 12, 13) and (3, 4, 5) respectively?, we have in
fact to find two new right-angled triangles from them,
namely the triangles (%, #,, &) and (/zz, s, by), such that

p=30and kp,=
the numbers 30 and 6 being the areas of the two
triangles mentioned.

These triangles are (63, £3, [4¥]) and (2§, 42, [&]) re-
spectively.

Starting again, we take for the numbers

1027 1840 14400
[42 divided by 24 gives $¢, and §§ divided by 6% gives 134.]

The product =

therefore, taking the square root, we have
4.24.120
5.25.169

so that x=§8, and the required squares are found.

23. To find three squares such that each minus the product of
the three gives a square.

Having given a rational right-angled triangle (z, x, ), Diophantus knows how to find a
rational right-angled triangle (%, #, ) such that hp:-l-xy We have in fact to put

2,2 2 _ 42\2
b=—z, j——-, whence 42 -/z“—-p?-—l— (ZAT‘;JC‘J/-) = (x zzy ) .

Thus, havmg found two triangles (3, 12, 13) and (35 4» 5) with areas in the ratio of 3
to 1 (see next paragraph of text with note thereon), Diophantus takes

lz‘—. 3= 6%,}1_-5-2 _%; and similarly Iz,:i. 5=2%, po= %‘-‘:-‘53.

Cossali (after Bachet) gives a formula for three right-angled triangles such that the
solid content of the three hypotenuses has to the solid content of three perpendiculars
(one in each triangle) the ratio of a square to a square ; his triangles are

2 2.
(1) 4 6, pli=ipotenusa],  (2) ‘.*fb_"‘i, 1?_612, iz_é= "

Bty b glprpap-0) p.abp-b(ap-8Y) _
(3) b 4 b ’ b - 52,

. o, , . 9 02
and, in fact, ﬁﬁﬁ)ﬁ(M) P 4P w;ﬂ{z_ﬂﬂ. e

If i=3, =4, =3, we can get from this triangle the triangles (r3, 5, 12) and
(63, 63, 16), and our equation is : I; ;:::3

! These triangles can be obtained by putting #2=5, z=1 in Fermat’s fourtk formula
(note on last proposition). By that formula the triangles are formed from (9, 6) and
(6, 3) respectively ; and, dividing out by 3, we form the triangles from (3, 2) and (2, I)
respectively.
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Let the “solid content” be #% and let the squares be
formed from right-angled triangles, as before.
If we take the same triangles as those found in the last
problem and put for the three squares
1 e e
each of these sminus the continued product (z%) gives a
square.
It remains that their product =2%;
this gives =48, and the problem is solved.

24. To find three squares such that the product of any two
increased by I gives a square.

Product of first and second + 1 =a square, and the third
is a square; therefore “solid content” 4+ each=a
square.

The problem therefore reduces to V. 21 abovel.

! De Billy in the /nventum Nowvum, Part 11. paragraph 28 (Oewvres de Fermat, 111,
PP- 373—4), extends this problem, showing how to find /o> numbers, three of which (only)
are squares, having the given property, 7.c. to solve the equations

x2x?+1=72 xPagt+i=ud,
x2a+1=52 xlxgtr=tzd
x2x2+1=02, xlxyti1=wt .
First seek three square numbers satisfying the conditions of Diophantus’ problem
9 25 256

V. 24, say (1 6 2’ ﬁ)’ the solution of V. 21 given in Bachet’s edition. We have then

to find a fourth number (x, say) such that

9 \
I6x+l

%" x+1)\ are all squares.

256
a1 x+1

Substitute 16 P+ 32 y for x, so as to make the first expression a square. We have

then to solve the double-equation

1900, 20,4 pms

9
4096 , 8192 _al’
B 2y 1=
7297 7297

which can be solved by the ordinary method.
De Billy does not give the solution, but it may be easily supplied thus.

. 10 64) (lo 64) o
7 =(=24F) (-2 +2
The difference 3 + 27 35 (»*+2y)

_I54 (26 +2.26

T277\2r? " ey )
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25. To find three squares such that the product of any two

minus 1 gives a square.
This reduces, similarly, to V. 22 above.

26. To find three squares such that, if we subtract the product

of any two of them from unity, the result is a square.
" This again reduces to an earlier problem, V. 23.

27. Given a number, to find three squares such that the sum of
any two added to the given number makes a square.

Given number 15.

Let one of the required squares be g;

I have then to find two other squares such that each
+ 24 =a square, and their sum + 15 = a square.

To find two squares, each of which + 24 = a square, take
two pairs of numbers which have 24 for their pro-
duct,

Let one pair of factors be 4/, 6, and let the side of one

square be half their difference orz— 3z

Let the other pair of factors be 3/x, 8%, and let the
side of the other square be half their difference or

1%

Therefore each of the squares + 24 gives a square.
It remains that their sum + 15 =a square;

2

therefore (I—j - )2 + G—- 3x) + I5=asquare,

Equating the square of half the sum of the factors to the larger expression, we have

2
(?ﬁzé) =.Ii°yz+ﬂ°y+1,

27
) - 2 _ 1'118311
whence y= 11520’ and 32 +2y= ~Gassof”
6 1218311 . . .
Therefore x="= (y2+2y)= - -2-- _ which satisfies the equations. In fact
g P+ 74649600’ b
9 gy (HA0TY 35, (3“75 ,an 2—56;\,+1 "733
16 11520/ ' 4 3456
But even here, as the value of » which we have found is neganve, we ought, strictly
1218311

speaking, to deduce a further value by substituting y— -- for x in the equations

74649600
and solving again, which would of course lead to very large numbers.

1 The text adds the words “and [let us take] sides about the right angle in a right-
angled triangle.” 1 think these words must be a careless interpolation: they are not
wanted and give no sense; nor do t,hey occur in the corresponding place in the next
problem.



BOOK V 223
61

2 J— — 2
or ;—r;+25x — Q= a square = 25x° say.

Therefore = §, and the problem is solved .

28. Given a number, to find three squares such that the sum of
any two minus the given number makes a square,
Given number 13.
Let one of the squares be 25;
I have then to find two other squares such that each
+ 12 =a square, and (sum of both) — 13 =a square.
Divide 12 into factors in two ways, and let the factors be

(3%, 4/7) and (47, 3/2).
Take as the sides of the squares half the differences of the

factors, z.e. let the squares be

(n}x-;)ﬂ, (zx— %)2

Each of these + 12 gives a square.
It remains that the sum of the squares — 13 =a square,

or i_%_*_éixe._zs =asquare—6~i,say

Therefore x = 2, and the problem is solved2.

1 Diophantus has found values of £, 9, ¢ satisfying the equations
172+ 2+a=u?
2+ Pre=o } .
2+ 1 +o=n2)
Fermat shows how to find fo#» numbers (not squares) satisfying the corresponding
conditions, namely that the sum of any two added to 2 shall give a square. Suppose a=15.
5’39
100’ 225 °
Assume 22 - 15 as the first of the four required numbers; and let the second be 6x+9
(because ¢ is one of the square numbezs taken and 6 is twice its side); for the same
529
223
Three of the conditions are now fulﬂlled since each of the last three numbers added to
the first (x2— 15) plus 15 gives a square. The three remaining conditions give the triple-
equation

Take three numbers satisfying the conditions of Diophantus’ problem, say 9, —

reason let the third number be - x + — and the fourth 46 x + ==

63x+ 9+——+15- 6};+(*9) =1,

16,4 g4 2294513 +(ZZ) =

15 225 15 15
49 I . 529 - 49
15x+mo “5+15 5x+<6) =uR.

2 Fermat observes that fou» numbers (not squares) with the property indicated can
be found by the same procedure as that shown in the note to the preceding problem.
1If a is the given number, put x2+a for the first of the four required numbers.
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29. To find three squares such that the sum of their squares is
a square.
Let the squares be x? 4, 9 respectively™.
Therefore #*+ 97 = a square = (#?— 10)}, say ;
whence #* = 4.
If the ratio of 3 to 20 were the ratio of a square to a
square, the problem would be solved ; but it is not.
Therefore 7 kave o find two squaves (P ¢° say) and a
number (m, say) such that w —p*—g* has to 2m the
ratio of a squave to @ square.
Let p=2" g*=4 and m=2*+4.
Therefore m?—pt— g = (8 + 4) — 2t — 16 = 822
Hence 85%/(22* + 8), or 42%/(&*+ 4), must be the ratio of a
square to a square.
Put 2+ 4=(s+1), say;
therefore 2= 14, and the squares are g*= 2%, ¢*=4, while
m=06%};
or, if we take 4 times each, =09, ¢*=16, m = 23,
Starting again, we put for the squares z?2, 9, 16;
then the sum of the squares=x*+ 337 =(x*—25), and
r=2%2
The required squares are 52%4, 9, I6.
30. [The enunciation of this problem is in the form of an
epigram, the meaning of which is as follows.]
A man buys a certain number of measures (des) of wine, some
at 8 drachmas, some at 5 drachmas each. He pays for them a
sguare number of drachmas; and if we add 60 to this number, the
result is a square, the side of which is equal to the whole number
of measures. Find how many he bought at each price.
Let x=the whole number of measures ; therefore 22— 6o
was the price paid, which is a square = (¥ — m)?, say.

If now 4%, 2, m? represent three numbers satisfying the conditions of the present
problem of Diophantus, put for the second of the required numbers 242 + 42, for the third
2lx+ 72, and for the fourth 2mx+m2% These satisfy three conditions, since each of the
last three numbers added to the first (x%+a) less the number a gives a square. The
remaining three conditions give a triple-equation.

1 “Why,” says Fermat, ‘‘does not Diophantus seek o fourth powers such 'that
their sum is a square? This problem is in fact impossible, as by my method I am in
a position to prove with all rigour.” It is probable that Diophantus knew the fact
without being able to prove it generally. That neither the sum nor the difference of
two fourth powers can be a square was proved by Euler (Commentationes arithmeticae, 1.
pp- 245qq., and Algedra, Paxt I1. c. XIIL),
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Now £ of the price of the five-drachma measures + § of
the price of the eight-drachma measures =x;

so that x?— 60, the total price, has to be divided into
two parts such that } of one + { of the other = .

We cannot have a real solution of this unless

x>3(x*—60) and < L (x*— 60).

Therefore sx <x%—60< 8x.

(1) Since x> 5x + 60,

x?=5x+ a number greater than 60,

whence x is? noz less than 11.

(2) x2< 8xr+ 60

or x%= 81 4+ some number less than 60,

whence x is?! not greater than 12.

Therefore II<x<I2.

Now (from above) x = (#* + 60)/2m;

therefore 22m < 12 + 60 < 24n.

Thus (1) 22w = » + (some number less than 60),

and therefore »: is? nof less than 19.

(2) 24 = »® + (some number greater than 60),

and therefore 7z is?® less than 21.

Hence we put 7 = 20, and

x?— 60 = (x — 20),

so that ¥ = 114, #*= 132}, and 2*— 60 = 72}.

Thus we have to divide 72} into two parts such that }
of one part plus § of the other = 114.

Let the first part be 52

Therefore } (second part) = 11} — 3,

or second part = g2 — 8z;

therefore 52 + 92 — 82 = 724,

and z=22.
12
Therefore the number of five-drachma ydes = Z—z .
i =59
» » » » eight-drachma ,, = 2.

! For an explanation of these limits see p. 60, azne.
2 See p. 62, ante.

15
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BOOK VI

1. To find a (rational) right-angled triangle such that the
hypotenuse minus each of the sides gives a cube’.

Let the required triangle be formed from z, 3.

Therefore hypotenuse = z* +9, perpendicular =6z, base
=z*—0.

Thus 2% + 99— (#*— 9)=18 should be a cube, but it is not.

Now 18 = 2. 3%; therefore we must replace 3 by 7z, where
2.m%is a cube; and m=2.

We form, therefore, a right-angled triangle from z, 2,
namely (#*+4, 4%, #*—4); and one condition is
satisfied.

The other gives 22— 4r + 4 =2a cube;

therefore (#— 2)? is a cube,or x — 2 is a cube = §, say.

Thus z = 10,

and the triangle is (40, g6, 104).

2. To find a right-angled triangle such that the hypotenuse
added to each side gives a cube.

Form a triangle, as before, from two numbers; and, as
before, one of them must be such that twice its
square is a cube, ze. must be 2.

We form a triangle from =z, 2, namely 2*+44, 4%, 4 —2°;
therefore x? + 4x+4 must be a cube, while 22 must
be less than 4, or z< 2.

Thus x + 2 =a cube which must be <4 and > 2 =27, say.

Therefore x=1¢,

and the triangle is (fg’f , 5%, %1) ,

or, if we multiply by the common denominator, (135,
352, 377)-

3. To find a right-angled triangle such that its area added to
a given number makes a square.
Let 5 be the given number, (32, 47, 5#) the required
triangle.
! Diophantus’ expressions are é év i) dworewoboy, *‘the (number) in (or represent-
ing) the hypotenuse,” 6 & éxarépg T@v pOdv, ‘‘the (number) in (or representing) each
of the perpendicular sides,” é & ¢ éuBads, *‘the (number) in (or representing) the area,”

etc. It will be convenient to say ‘‘the hypotenuse,” etc. simply. It will be observed
that, as between the numbers representing sides and area, all idea of dimension is ignored.
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Therefore 62" 4+ 5 =a square = 9z?, say,

or 3= 3.

But 3 should have to 5 the ratio of a square to a square.

Therefore we must find a right-angled triangle and a
number such that the difference between the square
of the number and the area of the triangle has to 5 the
ratio of a square to a square, 7.. = } of a square.

Form a right-angled triangle from (ﬂz, %);

. I
thus the area is ? —
72"

2.
Let the number be 7z + Tzs’ so that we must have

4.5+I—-m0?1=% of a square;

therefore 4.25+ % =a square,

or 100/ + 505 = a square = (1072 + 5 ), say,

and mo= 2%,

The auxiliary triangle must therefore be formed from 2%,
7, and the auxiliary number sought is 412,

Put now for the original triangle (/ix, px, bx), where (%, p, b)
is the right-angled triangle formed from 2, f; ;

this gives 3 pbx® 4 5 =170889,2

and we have the solution.

[The perpendicular sides of the right-angled triangle are

(2—4’f - —5-2;) xr=334017 and 2z,

58 24
whence B3L181% 4 5 = 17080952
x =14,

and the triangle is
(3P 48, A ]
4. To find a right-angled triangle such that its area minus a
given number makes a square.

Given number 6, triangle (37, 4%, 5%), say.

Therefore 64° — 6 = square =4+, say.

Thus, in this case, we must find a right-angled triangle

and a number such that
(area of triangle) — (number)*=} of a square.

. I
Form a triangle from , pl

15—2
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1 I
Its area is #2 — —,, and let the number be 7z — § . —.
m m

2
Theref 0-1
erefore 6 — S (a square),

or 36m*— 60 =a square = (6772 — 2)}, say.

Therefore 2 =§, and the auxiliary trlangle is formed from
(8, %), the auxxhary number being 1.

We start again, substituting for 3, 4, 5 in the original
hypothesis the sides of the auxiliary triangle just
found, and putting ($5)°+* in place of 4x*; and the
solution is obvious.

[The auxiliary trlangle is (4042, 2, 4407), whence

401522 — 6=(31)?2% and r=§,
so that the requlred trlangle is (4048, 16 4117
5. To find a right-angled triangle such that, if its area be
subtracted from a given number, the remainder is a square.

Given number 10, triangle (3%, 4%, 5%), say.

Thus 10— 62=a square; and we have to find a right-
angled triangle and a number such that

(area of triangle) +(number)2 =+ of a square.

Form a triangle from ", — , the area being #? — g

and let the number be 1—’—2 + 5.

Therefore 262+ 10 = {4; of a square,

or 26077 + 100 =a square,
or again 65m%+ 25 = a square = (8 + 5)?, say,
whence m = 80.

The rest is obvious.
The required triangle is 43332939 -2, 40960001 1
6. To find a right-angled triangle such that the area added
to one of the perpendiculars makes a given number.

Given number 7, triangle (3%, 4%, 5%).

Therefore 622 + 32 =7.

In order that this wiight be solved, it would be necessary that
(kalf coefficient of x) + product of coefficient of x* and
absolute tevm should be a square ;

but (14)*+ 6.7 is not a square.

Hence we must find, to replace (3, 4, 5), a right-angled
triangle such that

(% one perpendicular)? + 7 times area = a square.
Let one perpendicular be 7, the other 1.
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Therefore 3472 + 1 =a square, or I4m+ 1 =a square.
Also, since the triangle is rational, 72 + 1 =a square.}
The difference 12— 14m=m (11 — 14);

and putting, as usual, 7> = 14m + I,

we have m =24,

The auxiliary triangle is therefore (3%, 1, 23) or (24, 7, 25).
Starting afresh, we take as the triangle (247, 7z, 25%).
Therefore 8442+ 7x=7,

and r=1.

We have then (6, %, 24—5) as the solution?,

7. To find a right-angled triangle such that its area minus one
of the perpendiculars is a given number.
Given number 7.
As before, we have to find a right-angled triangle such that
(¥ one perpendicular)® + 7 times area=a square ;
this triangle is (7, 24, 25).
Let then the triangle of the problem be (7x, 24, 25%).
Therefore 84x*— 7x =7,
xr=1%,
and the problem is solved®

1 Fermat observes that this problem and the next can be solved by another method.
“Form in this case,’’ he says, “a triangle from the given number and 1, and divide
the sides by the sum of the given number and 1; the quotients will give the required
triangle.”

In fact, if we take as the sides of the required triangle

(a®+1) x, (a2-1)x, 2ax,
where a is the given number, we have
(a®- 1) ax?+ 2ax=a,
1 a 1
&= tas [ at1’

one root of which is x= —

and the sides of the required triangle are therefore
’ a?+1 a’-1  2a
a+1’ a+1’ a+1’

The solution is really the same as that of Diophantus.

2 Similarly in this case we may, with Fermat, form the triangle from the given number
and 1, and divide the sides by the difference between the given number and 1, and we
shall have the required triangle.

In V1. 6, 7, Diophantus has found triangles ¢; £ # ({ being the hypotenuse), such that

(1) ££n+é=a,

1
and (2) ;ﬁn—fza.
Fermat enunciates the third case
1
() &-fn=a
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8. To find a right-angled triangle such that the area added to
the sum of the perpendiculars makes a given number.
Given number 6.
Again I have to find a right-angled triangle such that
(4 sum of perpendiculars)® + 6 times area = a square.
Let a2, 1 be the perpendicular sides of this triangle ;
therefore } (s + 1)* + 3m = }m® + 34m + ; = a square,
while 72+ 1 must also be a square.
w4+ 14m+ 1
w41
The difference is 2.7, and we put
mr—ym+ 12y =mt+1,
whence m = 3,
and the aux111ary triangle is (43, 1, 33), or (45, 28, 53).
Assume now for the triangle of the problem
(457, 287, 53%).
Therefore 6304+ 732 =06;
x is rational [= {5], and the solution follows.

Therefore } are both squares.

9. To find aright-angled triangle such that the area mznus the
sum of the perpendiculars is a given number.
Given number 6.
As before, we find a subsidiary right-angled triangle such
that (4sum of perpendiculars)’+6 times area=a square.
This is found to be (28, 45, 53) as before.
Taking (28, 45, 53%) for the required triangle,
63022 — 73x=6;
x = £, and the problem is solved®.
10. To find a right-angled triangle such that the sum of its
area, the hypotenuse, and one of the perpendxculars is a given
number.

observing that Diophantus and Bachet appear not to have known the solution, but that
it can be solved ““by our method.” He does not actually give the solution ; but we may
compare his solutions of similar problems in the Znwentum Novum, e.g. those given in
the notes to vI. 11 and V1. 15 below and in the Supplement. The essence of the method
is that, if the first value of  found in the ordinary course is such as to give a negative
value for one of the sides, we can derive from it a fresh value which will make all the
sides positive.
1 Here likewise, Diophantus having solved the problem

- +n)=a,
Fermat enunciates, as to be solved by his method, the corresponding problem

I
f+"l-;f"l=d-
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Given number 4.
If we assumed as the triangle (%, pr, bx), we should have
$pb + hx+ bxr =4,
and, in order that the solution may be rational, we must
find a right-angled triangle such that
1 (hyp. + one perp.)* + 4 times area = a square.
Form a right-angled triangle from 1, 7 + 1.
Then 4 (hyp. +one perp.)* =1 (2 + 20 + 2 + 12 + 2m)?
=t 4o + O+ 4+ 1,
and 4 times area =4 (2 + 1) (3 + 2m2)
= 4% + 12172° 4 8.
Therefore
wt 4 8w + 18712+ 129 + 1 = a square = (642 + 1 — 1%y, say,
whence 7 =4, and the auxiliary triangle is formed from
(1, &) or (5, 9). This triangle is (56, 90, 106) or
(28, 45, 53).
We assume therefore 28z, 457, 53« for the original triangle,
and we have 6301°+ 81xr=4.
Therefore x =145, and the problem is solved.

11. To find a right-angled triangle such that its area mnus
the sum of the hypotenuse and one of the perpendiculars is a given
number.

Given number 4.
We have then to find an auxiliary triangle with the same
property as in the last problem;
therefore (28, 45, 53) will serve the purpose.
We put for the triangle of the problem (28, 45, 53%), and
we have 6301*—81r=4;
x =1}, and the problem is solved™

1 Diophantus has in V1. 10, 11 shown us how to find a rational right-angled triangle
& &, 7 (¢ being the hypotenuse) such that
(x) i?r)+ $+¢ =a,
(2) Ztn-(+b)=a.

Fermat, in the /nventum Novum, Part 111. paragraph 33 (Oeuvres de Fermat, 111.
p- 389), propounds and solves the corresponding problem

(3) $+§-3 8=

In the particular case taken by Fermat a=4. He proceeds thus:
First find a rational right-angled triangle in which (since a=4)

2
{i &+ E)} - 4. %En——‘a square.
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Lemma I to the following problem.

To find a right-angled triangle such that the difference of the
perpendiculars is a square, the greater alone is a square, and further
the area added to the lesser perpendicular gives a square.

Let the triangle be formed from two numbers, the greater
perpendicular being twice their product.

Hence I must find two numbers such that (1) twice their
product is a square and (2) twice their product exceeds
the difference of their squares by a square.

This is true of any two numbers the greater of which
=twice the lesser.

Form then the triangle from x, 2x, and two conditions are
satisfied.

The third gives 6+ + 34*=a square, or 62*+ 3= a square.

I have therefore to find a number such that 6 times its
square + 3 =a square;

one such number is 1, and there are an infinite number of
others?,

If # = 1, the triangle is formed from 1, 2.

Suppose it formed from x+1, .r; the sides then are
{=2x2+ox+1, f=2x+1, =242+ 2x.
2
Thus {§(§’+ E)} ~4- 25n=~\‘++x3+6x2+4x+1—4(zxa+3x=+x)
=xd - 43— 6x2+1
=a square
= (2%~ 2x+1)?, say.
Therefore —6x2=6x2- 4, x=§,and x4+ 1=.§ .
The triangle formed from %’, éis (-1-7-, 15 8

, 9" 99
triangle (17, 15, 8).
Take now 17, 15%, 82 for the sides of the triangle originally required to be found.
We have then

) . Thus we may take as the auxiliary

(+£—§£n=3zx—-60x“=4 H
whence x:é, and the required triangle is < 1?7 , —1375, g) .
[The auxiliary right-angled triangle was of course necessary to be found in order to
make the final quadratic give a rational result.]
Bachet adds after vI. 11 a solution of the problem represented by

I
Jn-¢=a
to which Fermat adds the enunciation of the corresponding problem
1
&= 2 én=a.

! Though there are an infinite number of values of x for which 6x2+ 3 becomes a square,
the resulting triangles are all similar. For, if x be any one of the values, the triangle is
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Lemma I1 to the following problem.

Given two numbers the sum of which is a square, an infinite
number of squares can be found such that, when the square is multi-
plied by one of the given numbers and the product is added to
the other, the result is a square.

Given numbers 3, 6. )

Let 2°42x+ 1 be the required square which, say, when
multiplied by 3 and then increased by 6, gives a square.

We have 32°+ 6xr + g=a square;

and, since the absolute term is a square, an infinite number
of solutions can be found.

Suppose, ¢.g. 32+ 6xr+9=(3—3%)°

and X=4.

The side of the required square is 5, and an infinite
number of other solutions can be found.

12. To find a right-angled triangle such that the area added
to either of the perpendiculars gives a square.

Let the triangle be (57, 127, 13%).

Therefore (1) 302%+ 124 = a square = 3647 say,

and r=2.

But (2) we must also have

3027 + 5x =a square.

This is however not a square when x= 2.

Therefore I must find a square #2#% to replace 364% such
that 12/(s#* — 30), the value of x obtained from the
first equation, is real and satisfies the condition

30%® + 5x = a square.

This gives, by substitution,

(60m2% + 2520)/(12* — 6072 + 9OO) = a square,

or 607° + 2520 = a square.

This could be solved [by the preceding Lemma II] 7f
60+ 2520 were equal to a square.

Now 60 arises from §.12, zZe. from the product of the
perpendicular sides of (5, 12, 13);

2520 is 30.12.(12—3), ze. the continued product of the
area, the greater perpendicular, and the difference
between the perpendiculars. ’

formed from x, 2, and its sides are therefore 322 422, 542 ; that is, the triangles are all
similar to (3, 4» 5). Fermat shows in his note on the following problem, vI. 12, how to
find any number of triangles satisfying the conditions of this Lemma and o similar to
(3: 4, 5). See p. 233, note.



234 THE ARITHMETICA

Hence we must find an auxiliary triangle such that
(product of perps.) + (continued product of area,
greater perp. and difference of perps.)=a square.

Or, if we make the greater perpendiculay a square and
divide out by it, we must have
(lesser perp.) + (product of area and diff. of perps.)

=a square.

Then, assuming that we have found two numbers, (1) the
product of the area and the difference of the perpen-
diculars and (2) the lesser perpendicular, satisfying
these conditions, we have to find a square (7#%) such
that the product of this square into the second of
the numbers, when added to the first number, gives
a square’.

1 The text of this sentence is unsatisfactory. Bachet altered the reading of the MSS.
So did Tannery, but more by way of filling out. The version above follows Tannery’s text,
which is as follows : dwrdyerar els 76 8o dpifpovs ebpbrras [for dvras of MSS.] < 7év e bmd>
7o éufadol kal THis mepoxis T@w Opfav, <kal Tov év 1§ éNdocore T@Y Spfdv >, abbus [for
avriis of MSS.] fyrev Obv Twa, 8s moANamAagiacels éml &va Tov dobévta, < xai wpoohafiw
Tov Eérepor >, woiel TeTpdywrov.

The argument would then be this. If (%, , 6) be the triangle (6> #), we have to make

bp+; &p (6-p) b a square,

or, if 4 is a square, ﬁ+-:- 64 (& - g) must be a square.
The ultimate equation to be solved (corresponding to 6oz?+ 2520=a square) is

épm2+§ 4p (6 - p) b=a square,

or, if 4 is a square, pmd+ i— &p (b-p)=a square ;
and therefore, according to Tannery’s text, “the problem is reduced to this: Having found
two numbers -;—ép (b—2) and p [satisfying the conditions, namely that their sum is a

square, while & is also a square], to find after that a square such that the product of it
and the Jatter number added to the former number gives a square.”
The difficulty is that, with the above readings, there is nothing to coriespond exactly to

the phraseology of the enunciation of Lemma I, which speaks, not of making +2 bp(b-p)
a square when 4 is a square, but of making & -2, 4 and ;H—% 4 all simultaneously :quares.

But the garticular solution of the Lemma, is really equivalent to making & and g +§ 5p(6-p)
simultaneously squares. For the triangle is formed from @, 2a; this method of maling

4 a square (=44?) incidentally makes & -  a square (=4a?), and +-;- 4p becomes 342+ 6at,

while p+§6p(ﬁ— #) becomes 342+64%. Since the solution actually used is e=1, the

effect is the same whichever way the problem is stated. And in any case, whether the
expression to be made a square is 3a%72+ 6a4 or 3a%m*+ 648, the problem equally reduces
to that of making 372+ 6 a square, ’



BOOK VI 235

How to solve these problems is shown in the Lemmas.
The auxiliary triangle is (3, 4, 5). [Lemma 1]
Accordingly, putting for the original triangle (3%, 4z, 57),

we have g;i:j} both squares.
Let x=;lz4_ é be the solution of the first equation ;
then = 16

it — 1202+ 36"
The second equation therefore gives

96 + 12__ a square
nh— 1zni 436 A6 o oduAe
whence 12772° + 24 = a square,

and we have therefore to find a square (#?) such that
twelve times it + 24 is a square; this is possible, since
12 +24 is a square [Lemma II].

A solution is m* = 25,

whence z=#;,

and (53, Ié, @) is the required triangle.
9° I9° 19
13. To find a right-angled triangle such that its area minus
either perpendicular gives a square.
We have to find an auxiliary triangle exactly as in the

last problem ;

Bachet’s reading is dwdyeratr els 70 Vo dplbudv dobévrwv Tol 7€ éuBadol, kal Tijs
éNdogoves T@v mepl THv Spfify, abrols {nreiv Terpdywvdy Twa, 8s moMamAaciacbels éml
&va Tdy dofévTwy, kal wpookaBdw Tov Erepov, wouy TETpAYWYOY.

1 Fermat observes that Diophantus gives only one species of triangle satisfying the
condition, namely triangles similar to (3, 4, 5), but that by his (Fermat’s) method an infinite
number of triangles of different species can be found to satisfy the conditions, the first
being derived from Diophantus’ triangle, the second from the new triangle, and so on.

Suppose that the triangle (3, 4, 5) has been found satisfying the condition that

X
En+§ (- 7). fn=asquare,

where £, 7 are the perpendicular sides and £>17.
To derive a second such triangle from the first (3, 4, 5), assume the greater of the two
perpendicular sides to be 4 and the lesser 3+x.

Then E+E(E-m) .é;r,=36-m.x—8.z”=a square.

Also P=£+n*=25+ 6x+x?=a square.
We have therefore simply to solve the double-equation
36-120— 8x2=u2}
35+ 6x+ 2=a2)’
which is a matter of no difficulty. As a matter of fact, the usnal method gives
+3= 20667 20667 z3729x65> )
5932289 5932289" 7' 5932189

, and the triangle is (
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this triangle is (3, 4, 5), and accordingly we assume for
the triangle of the problem (3x, 4%, 5%).

One condition then gives 61*— 4x =a square =722% say
(m*< 6),

and xr=

4

6 —m*’
The second condition gives 612 — 3x=a square; and, by
substitution,

96 2 _asquare
it —12m2+ 36 6—m? quare,
or 24 + 122* = a square.

This is satisfied by m =1,
16

whence =4, and the required triangle is (fgz 5o 4) .

Or, if we do not wish to use the value 1 for 7,
let 72 =2+ 1, and (dividing by 4) we have
3 +6=352+62+9=a square ;
z must be found to be not greater than 1% (in order that
#3 may be less than 6), and » will not be greater than
22, The solution is then rationall,

14. To find aright-angled triangle such that its area 7xzizus the
hypotenuse or minus one of the perpendiculars gives a square.
Let the triangle be (3%, 4%, 52).
62— 5.1:} are both squares
61°— 3x ’
Making the latter a square (= 72+?), we have

-_3
r= (m? <6).

Therefore

! Diophantus having solved the problem of finding a right-angled triangle ¢, 9, ¢
(¢ being the hypotenuse) such that

I
G-k
are both squares,
I
JEn-n
Fermat enunciates, as susceptible of solution by his method, but otherwise very difficult,
_ the corresponding problem of making

E--tn
both squares.
1
n =i
This problem was solved by Euler (Novi Commentarii Acad. Petropol. 1749, 11. (x751),
PP- 49 5qq. = Commentationes arithmeticae, 1. pp. 63-72).
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The first equation then gives
54 __I5
mi—12m°+ 36 6 —m
or I57° — 36 = a square.

This equation we cannot solve because 15 is not the sum of
two squares'. Therefore we must change the assumed
triangle.

Now (with reference to the triangle 3, 4, 5) 157°=the
continued product of a square less than the area, the
hypotenuse, and one perpendicular ;

while 36 =the continued product of the area, the perpen-
dicular, and the difference between the hypotenuse
and the perpendicular. ‘

Therefore we have to find a right-angled triangle (%, p, &,
say) and a square (##°) less than 6 such that

nthp — s pb . p (e —p) is a square.

If we form the triangle from two numbers X7, X, and
suppose that p=2X,X, and if we then divide
throughout by (X, — X,)* which is equal to z—p, we
must find a square 5*[= #/(X; — X,)*] such that

2fip— 3 pb. p is a square.-

The problem can be solved if X,, X, are “similar plane
numbers®”

Form the auxiliary triangle from similar plane numbers
accordingly, say 4, I. [The conditions are then
satisfied®.]

[The equation for #2 then becomes

8.17m*— 4.15.8.9=a square,

, = a square,

or 136> — 4320 = a square.]
Let* m?= 36. [This satisfies the equation, and 36 <area
of triangle.]

1 See p. 70 above.
2 Diophantus states this without proof. [A *‘ plane number ” being of the form z . &,
a plane number similar to it is of the form ZaZbor :”—9 ab.]
n % 7

The fact stajed may be verified thus. We have

22 (X12+ng) 2 X3 Xg - X1.Xp (X12— ){22) 2X 1 Xo=a square.
The condition is satisfied if 22=_X Xp, for the expression then reduces to 4X732.X%. X53.
In that case X X3 is a square, or X;/Xj is a square.
3 Since X1=4, Xa=1, we have 2 =17, p=8, s=15, 22=X] X9=4, and

zUzp-ipb.;ﬂ:.‘.. 17.8-4.15.8=2.32=064, a square.

)

4 The reason for this assumption is that, by hypothesis, s®=»2/(.Y;~-X,)% or

+=m2[3% and m2=36.
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The triangle formed from 4, 1 being (8, 15, 17), we assume
8z, 15%, 17+ for the original triangle.
We now put 602* — 8x = 3647
and r=1%
The required triangle is therefore <§ 52) R
q g 3'5 3

Lemma to the following problem.

Given two numbers, if, when some square is multiplied into
one of the numbers and the other number is subtracted from
the product, the result is a square, another square larger than
the aforesaid square can always be found which has the same
property.

Given numbers 3, 11, side of square 5, say, so that

3.25 — 11 =064, a square.
Let the required square be (x + 5)%
Therefore

3(x+5)*— 11 =322+ 30r+ 64 = a square
= (8 — 2x)? say,

and x=062,
The side of the new square is 67, and the square itself

4489.

15. To find a right-angled triangle such that the area added
to either the hypotenuse or one of the perpendiculars gives a
square.

In order to guide us to a proper assumption for the
required triangle, we have, in this case, to seek a
triangle (4, p, 4, say) and a square (#2%) such that
m? > % pb, the area, and

whp — % pb.p (h—p) is a square.

Let the triangle be formed from 4, 1, the square (#?)
being 36, as before ;

but, the triangle being (8, 15, 17), the square is not
greater than the area.

We must therefore, as in the preceding Lemma, replace
36 by a greater square.

Now %p=136,and §p6.p (/:—p)=60.8.9=4320,

so that 136m® — 4320 = a square,

which is satisfied by #* = 36 ; and we have to find a larger
square (2%) such that

1362° — 4320 = a square.
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Put =46, and we have
(7n® + 1221 + 36) 136 — 4320 = a square,
or 136+ 16322 + 576 = a square = (km — 24), say.
This equation has any number of solutions ; eg., putting
%= 16, we have
m =20, g=26, and 2*=676.
We therefore put (8x, 15%, 17x) for the original triangle,
and then assume ‘

602%+ 8x = 67627,
whence x =, and the problem is solved:.

! In v1. 14, 15 Diophantus has shown how to find a rational right-angled triangle
$ m, £ (where { is the hypotenuse) such that

(1) Z =g
are both squares,
1

z n-§¢
(@) Z#+g
- are both squares.
I
N & + E
In the Znwentum Nowvum, Part 1. paragraphs 26, 40 (Oenvres de Fermat, 111. pp. 341
—2, 349-50) is given Fermat's solution of a third case in which

s~z
. are both squares.
§-2d
This depends on the Lemma: To find a rational right-angled triangle in which
I I
' (E+ ;-17) - ;f-r]:a square.
Form a right-angled triangle from x+1, 1; the sides are then
x2+2x42, x*+2x, 2x+a.
‘We must therefore have
(%24 2x +2) (234 32 + 1) - (x+ 1) (% + 2x) =a square,
or xA+ 433+ 6224 6x+2=2a square
={(2%+ 22+ 1)?, say.

Therefore x= -, and the triangle has one of its sides x*+2x negative. Instead
2

. . I .
therefore of forming the triangle from Py I or from 1, 2, we form it from x+1, 2 and

repeat the operation. The sides are then
Braex+s, 2+2x-3, 4x+4,
and we have
(#2+ 224 5) (22 + 42 — 1) — (22 + 2) (#2+ 22 — 3) =a square,
or 2+ 428+ 627+ 204+ 1 =u square
=(1+ 10x — *%)?, say,
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16. To find a right-angled triangle such that the number
representing the (portion intercepted within the triangle of the)
bisector of an acute angle is rational®.

A
5 4z
(e} 3-3x D3 B

Suppose the bisector 4D = 5z, and one segment of the
base (DB) = 3x; therefore the perpendicular = 4.
Let the whole base B be some multiple of 3,say 3; then
CD=3 -3
But, since 4D bisects the angle CAB,
AC:CD=AB:BD;
therefore the hypotenuse 4C =4 (3 —37) =4 — 4.

whence x:%é, and the required auxiliary triangle is formed from %9—,2 or from 29, 12,

the sides being accordirgly 983, 697, Gg6.
(Fermat observes that the same result is obtained by putting y —i for x in the
expression x4+ 423+ 642+ 6x+2; for we must have
I

2
y‘+2y3+%y"'+§y+3 =a square:(i-&- 5y~—y5> ) 52y,

11 . .
whence y=-:-§’, so that F=y-o= X—Z, and the triangle is formed from %, 1 or from

29, 12, as before) .
We now return to the original problem of solving

I P ]
[ 2En—u
I
Ly e—
5157; v

We assume for the required triangle (985x, 697, 696x) and we have %f‘))=242 5562,

so that
0857 - 2425.5&2 } must both be squares.
697.x— 242556x%
Assume that 697x — 24255647 = (697)2,
and we have x ~ 34822 =697,

whence r=—— , and the required triangle is (is-i, @7—, 526_)
1045 1045° 1045 1045

[The 985x — 24255647 is a square by virtue of the sides 98, 697, 696 satisfying the

) 8 . -
conditions of the Lemma; for ¢85x— 2425 56x2=x974% - % 6(91 7045)26, which is a square

if 985.1045 —5.697 . 696 is a square, and IO45=697+£ .696.]

} Why did not Diophantus propound the analogous problem *“ To find a right-angled
triangle such that the sides are rational and the bisector of the right angle is also rational *?
Evidently because he knew it to be impossible, as is ¢lear when (, ¢ being the perpen-

diculars) the bisector is expressed as a-%.,\/ 2. (Loria, 0. cit. p. 148 n.)
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Therefore [by Eucl. 1. 47]
162% —32¢x+ 16 =162+,
and xr=.

If we multiply throughout by 32, the perpendicular = 28,
the base = g6, the hypotenuse = 100, and the bisector
= 35- “

17. To find a right-angled triangle such that the area added
to the hypotenuse gives a square, while the perimeter is a cube.

Let the area be x and the hypotenuse some square
minus x, say 16 —x.

The product of the perpendiculars = 2x;

therefore, if one of them be 2, the other is x, and the
perimeter = 18, w/iich is 1ot @ cube.

Therefore we must find some square which, when 2 is
added to it, becomes a cubel

1 #Did Diophantus know that the equation #2+2=12% only admits of one solution
#=5, =37 Probably not’ (Loria, ¢p. czt. p. 155). The fact was noted by Fermat
(on the present proposition) and proved by Euler.

Euler’s proof (4lgebra, Part 11. Arts. 188, 193) is, I think, not too long to be given
here. Art. 188 shows how to find x, ¥ such that ax®+¢y® may be a cube. Separate
ax®+¢y? into its factors & Ja+y /(- ¢), xaJa -3/ (—¢), and assume

watyN(-a={pJatgN (=)}
xNla—yN(-)={pNa-gn/ (=P,
the product (ag®+ ¢¢®)?® being a cube and equal to ax®+cy>
To find values for x and y, we write out the expansions of the cubes in full, and

xnfa+yn(--c)=ap’ Ja+3ap*g (- ) - 3pg*Na—eg* (- <),
xNa-yN(-d)=ap’Ja-3at°q (=)~ 3¢t Na+eg* (- 9),

whence x=ag® - 3¢4q%,
y=3ap°g —cq".
For example, suppose it is required to make x*+3? a cube. Here g¢=1 and ¢=1,
so that x=3-3%9%
y=32%-9%

while #%+3%=(22+¢%8. If now p=2 and ¢=1, we find x=2 and y=11, whence
224 y2=125=355%

Now (Art. 193) let it be required to find, if possible, in integral numbers, other squares
besides 25 which, when added to 2, give cubes.

Since #%+ 2 has to be made a cube, and 2 is double of a square, let us first determine
the cases in which 2%+ 232 becomes a cube. Here a=1, ¢=2, so that

x=p3-6pg%, y=3p%—2¢%;
therefore, since y= 1, we must have
32%-2¢° or (3% - 2gt)=%1;

consequently ¢ must be a divisor of 1.

Let, then, =1, and we shall have 322 —2==1.

‘With the upper sign we have 32?=3 and, taking = - 1, we find x=35; with the lower
sign we get an irrational value of # which is of no use.

H, D. 16
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Let the side of the square be 7+ 1, and that of the cube
#w—1.

Therefore #8— 3w+ 3m—1=m*+2m+3,
from which s is found? to be 4.

Hence the side of the square = 5, and that of the cube = 3.

Assuming now z for the area of the original triangle,
25—z for its hypotenuse, and 2, x for the perpen-
diculars, we find that the perimeter is a cube.

But (hypotenuse)® =sum of squares of perpendiculars ;
therefore 2% — goxr+ 625 =22+ 4;

z=2521 and the problem is solved.

18. To find a right-angled triangle such that the area added
to the hypotenuse gives a cube, while the perimeter is a square.

Area x, hypotenuse some cube minus x, perpendiculars z, 2.

Therefore we have to find a cube which, when 2 is added
to it, becomes a square.

Let the side of the cube be »z — 1.

Therefore 78 — 37 + 3 + 1 = a square = (1§ + 1) say.

Thus 7 =21, and the cube = (31)* = 4313,

Put now x for the area, z, 2 for the perpendiculars, and
4213 _ x for the hypotenuse;

and x is found from the equation (4§42 —x)* =27+ 4.

[# = 24124485, and the triangle is (2, 2§} 34485, 24588832).]

19. To find a right-angled triangle such that its area added to
one of the perpendiculars gives a square, while the perimeter is
a cube.

Matke a vight-angled triangle from some indeterminate odd
number’, say 2z + 1;

then the altitude =22+ 1, the base =24+ 2%, and the
hypotenuse = 22° 4 2x + I.

It follows that there is no square except 25 which has the required property.

Fermat says (‘“‘Relation des nouvelles découvertes en la science des nombres,”
Ocuvres, 11. pp. 433—4) that it was by a special application of his method of descente,
such as that by which he proved that a cube cannot be the sum of two cubes, that he proved
(1) that zhere is only one integral square whick when increased by 2 gives @ cube, and
(2) that there are only two squares in integers whick, wken added to 4, give cubes. The
latter squares are 4, 121 (as proved by Euler, 4/gzéra, Part 11. Art. 192).

1 See pp. 66, 67 above.

2 This is the method of formation of right-angled triangles attributed to Pythagoras.
If m is any odd number, the sides of the right-angled triangle formed therefrom are z,

2 3
E(mﬁ—r), i(mﬁ-i- 1), for m2+ {i (m2 — 1)} = {i (m? + I)} . Cf. Proclus, Comment.

‘om Eucl. 1. (ed. Friedlein), p. 428, 7sqq., ete. etc.
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Since the perimeter =a cube,
422+ 6xr+2=(4r+2)(x+ 1)=a cube;
and, if we divide all the sides by x+ 1, we have to make
4x + 2 a cube,
Again, the area + one perpendicular =a square.
Therefore I AT ]
T+ 1) r+1
22884+ 5%+ 4 + 1
P+2x4+1
But 4+ 2=a cube;
therefore we must find a cube which is double of a
square; this is of course 8.
Therefore 4x + 2= 8, and x=14.

= a square€;

that is,

=2x+ I = a square.

. . . /8 1 17
The required triangle is 5 -55, ?).

20. To find a right-angled triangle such that the sum of its
area and one perpendicular is a cube, while its perimeter is a
square.

Proceeding as in the last problem, we have to make
4% + 2 a square
2x+1 a cube }
We have therefore to seek a square which is double of a
cube; this is 16, which is double of 8.
Therefore 4x+4 2 =16, and »= 3}.

The triangle is (9, 6—3, S5,
9°9° 9
21. To find a right-angled triangle such that its perimeter is
a square, while its perimeter added to its area gives a cube.
Form a right-angled triangle from z, 1.
The perpendiculars are then 2z, 22 — 1, and the hypotenuse
2241,
Hence 222 4 2x should be a square,
and #*+ 22?4+ x a cube.
It is easy to make 22*+ 2x a square; let 222+ 22 =ms?;
therefore x=2/(m*— 2).
By the second condition,

8 8
t b
=2y T =2y + i must bea cube,
. 2t b
z.€6. (1;22‘_‘:5)—3 =a3a cube.

16—2
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Therefore 2m¢=a cube, or 2m =a cube = §, say.

Thus m=4, xr=3%=1%, *=4.

But one of the perpendiculars of the triangle is 22— 1, and
we cannot subtract I from ;.

Therefore we must find another value for x greater than 1 ;
hence 2< m*< 4.

And we have therefore to find a cube such that  of the
square of it is greater than 2, but less than 4.

If 28 be this cube,

2<if< 4,

or 8< £<16.

This is satisfied by &8 = %22, or g#=2L,

Therefore m=%%, m*=%43, and x=§12, the square of
which is > 1.

Thus the triangle is known [10484, 215055 3092337

22. To find a right-angled triangle such that its perimeter is
a cube, while the perimeter added to the area gives a square.

(1) We must first see how, given two numbers, a triangle
may be formed such that its perimeter = one of
the numbers and its area = the other.

Let 12, 7 be the numbers, 12 being the perimeter, 7 the

area.

Therefore the product of the two perpendiculars

=14 =:£r' 14z
If then 31—:, 14x are the perpendiculars,
hypotenuse = perimeter — sum of perps. = 12 ——i— 14x.
Therefore [by Eucl. 1. 47]
%+ 19622+ 172 -—%‘— 3364:=$2 + 19642,

that is, 172 = 336x+2;4,
or 172x = 3362% + 24.

Tis equation gives no rational solution, because 86*— 24.. 336
is not a square.
Now 172 = (perimeter)® + 4 times area,
24.336 =8 times area multiplied by (perimeter)2.
(2) Let now the area =, and the perimeter = any
number which is both a square and a cube, say 64.
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Therefore {3 (642 + 472)}>— 8.642. 7z must be a square,

or 4m® — 24576 + 4194304 = a square.

Therefore 7:* — 61442 + 1048576 = a square

Also m+64=a square} :

To solve this double-equation, multiply the second by
such a number as will make the absolute term the
same as the absolute term in the first.

Then, if we take the difference and the factors as usual,
the equations are solved.

[After the second equation is multiplied by 16384, the
double-equation becomes

#e® — 614472 + 1048576 = a square
1638422 + 1048576 = a square} :

The difference is 722 — 22528.

If 92, 172 — 22528 are taken as the factors, we find 7z = 7680,
which is an impossible value for the area of a right-
angled triangle of perimeter 64.

We therefore take as the factors 11z, {472 — 2048 ; then,
when the square of half the difference is equated to
the smaller of the two expressions to be made squares,
we have

(8972 4 1024)* = 16384772 + 10485 76,
and 7 = 33434,
Returning now to the original problem, we put i, 2mx

for the perpendicular sides of the required triangle,
and we have

(64 I zmm:)2 =1 + 422
x x? ?
which leads, when the value of 22 is substituted, to
the equation
7884822 — 8432x + 225 = O.
The solution of this equation is rational, namely

_527+23 25 . 9

F=79856 248 T 176°
Diophantus would of course use the first value, which
would give (448, 138, 5388) as the required right-
angled triangle. The second value of x clearly gives

the same triangle.]
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23. To find a right-angled triangle such that the square of its
hypotenuse is also the sum of a different square and the side of
that square, while the quotient obtained by dividing the square
of the hypotenuse by one of the perpendiculars of the triangle is
the sum of a cube and the side of the cube.

Let one of the perpendiculars be #, the other 22
Therefore (hypotenuse)®=the sum of a square and its

. r+28
side ; also kil
x

= 4%+ = the sum of a cube and its

side.
It remains that 2* +2* must be a square.
Therefore #* + 1 = a square = (x — 2)}, say.
Therefore = $, and the triangle is found [§, &, 15].

24. To find a right-angled triangle such that one perpendicular
is a cube, the other is the difference between a cube and its side,
and the hypotenuse is the sum of a cube and its side.

Let the hypotenuse be #*+zx and one perpendicular
-z

Therefore the other perpendicular =24*=a cube =25, say.

Thus z =2, and the triangle is (6, 8, 10).

It is on Bachet’s note to V1. 22 that Fermat explains his method of solving
triple-equations, as to which see the Supplement, Section v.

[No. 20 of the problems on right-angled triangles which Bachet
appended to Book vi. (“To find a right-angled triangle such that its area
is equal to a given number”) is the occasion of Fermat’s remarkable note
upon the theorem discovered by him to the effect that 7% area of a right-
angled triangle the sides of which are rational numbers cannot be a square
number.

This note will be given in full, with other information on the same
subject, in the Supplement. ]



ON POLYGONAL NUMBERS

All numbers from 3 upwards in order are polygonal, containing
as many angles as they have units, . 3, 4, 5, etc. )

“ As with regard to squares it is obvious that they are such
because they arise from the multiplication of a number into
itself, so it was found that any polygonal multiplied into a
certain number depending on the number of its angles, with
the addition to the product of a certain square also depending
on the number of the angles, turned out to be a square. This
I shall prove, first showing how any assigned polygonal
number may be found from a given side, and the side from
a given polygonal number. I shall begin by proving the pre-
liminary propositions which are required for the purpose.”

1. If there are three numbers with a common difference, then
8 times the product of the greatest and middle + the square of the
least = a square, the side of which is the sum of the greatest and
twice the middle number.
Let the numbers be A5, BC, BD in the figure, and we
have to prove 848 .BC+ BD*=(AB+ 2BC).

E A Db B

+

By hypothesis AC=CD, AB=BC+(CD, BD=BC-CD.
Now 84B,BC=4AB.BC+ (4BC?*+4BC.CD).
Therefore 84B.BC+ BD?
=4AB.BC+ 45C*+(4BC.CD + BD?)
=4AB.BC+ 4BC*+ AB?, [Eucl. 11. 8]
and we have to see how AB*+4A4AB.BC+ 4BC*can
be made a square.
[Diophantus does this by producing B4 to E, so that
AE = BC, and then proving that
AB*+44B . BC+ 4BC*=(BE+ EA)]
It is indeed obvious that
AB*+ 4AB.BC+ 4BC*=(4AB +2BC).

2. If there are any numbers, as many as we please, in A.P.,
the difference between the greatest and the least is equal to the
common difference multiplied by the number of terms less one.
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[That is, if in an A.P. the first term is @, the common
difference 4 and the greatest term /, 7 being the
number of terms, then

l—a=n-1)b]
Let AB, BC, BD, BE have a common difference.

_ Il

A C D E B

Now AC, CD, DE are all equal.
Therefore £A = AC x (number of terms AC, CD, DE)
= AC x (number of terms in series — 1).

If there are as many numbers as we please in A.P., then

(greatest + least) x number of terms = double the sum of the

terms.

[That is, with the usual notation, 25 =% (/+ a).]
(1) Let the numbers be 4, B, C, D, E, F, the number of
them being eves.

A B . C D E _F
G L M K ) H

Let GH contain as many units as there are numbers,
and let GH, being even, be bisected at XK. Divide
G K into units at L, M.

Since F—-D=C-A,
F+A=C+D.

But F+AdA=(F+A4).GL,

therefore C+D=F+4).LM.

Similarly E+B=(F+A4). MK
Therefore, by addition,
A+B+C+D+E+ F=(F+4).GK.
Therefore 2(4d+B8+..)=2F+4).GK
=(F+4). GH.
(2) Let the number of terms be 04d, the terms being
A,B,C D, E.

A B G ‘D E
F H L K G
Let there be as many units in #G as there are terms,
so that there is an odd number of units. .
Let FH be one of them ; bisect HG at K, and divide #X

into units, at L.
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Since E-C=C(C-A4,
E+A=2C=2C.LK.
Similarly B+D=2C.LH.
Therefore A+E+B+D=2C. HKX
=C. HG.
Also C=C.HF;

therefore, by addition,
A+B+C+D+ E=C.FG;
and, since 2C=A4 +E,
2(A+B+C+D+E)=(A+E).FG.

4 If there are as many numbers as we please beginning with
I and increasing by a common difference, then the sum of all
x 8 times the common difference + the square of (common
difference — 2) = a square, the side of which diminished by 2
= the common difference multiplied by a number which when
increased by 1 is double of the number of terms.

[The A.P. being 1, 14+ 84,... 1+ (2~ 1)4, and s the sum,

we have to prove that

$. 80+ (b—2p=1{b(2n—1)+2p

z.e. 80s = 461> — 4 (b — 2) nb,

or 25 =bn~(6—~2)n

=n{2+(n—1)0}

The proof being cumbrous, I shall add the generalised
algebraic equivalent in a column parallel to the
text.]

Let AB, CD, EF be the termsin | 148, 1+ 28, 1 + 35,....
A.P. after 1.

,
i A K + N B o M
Cw D
E— F
H
Let GH contain as many units n

as there are terms including 1.
Difference between EF and 1
= (diff. between 4B and 1) x (GH-1). l—1=(n—-1)b
[Prop. 2]
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Put AKX, EL, GM each equal

to unity.

Therefore LF=KB.MH.

Make KN =2, and we have to

inquire whether
(sum of terms) x 8K B + NB*
=124+ KB(GH+ HM)}.

Now sum of terms
=y(FE+EL).GH
=y (LF+2EL).GH
=3(KB.MH.GH +2GH),

since LF=KB. MH [above].

Bisecting #7H at O, we have

(sum of terms)
=KB.GH.HO+ GH.

We have therefore to inquire

whether
(KB.GH.HO+GH).8KB + NB*
is a square.

Now KB.GH.HO.8KB
=8GH.HO.KB?
=AGH.HM.KB*

Is then )

AGH.HM .KB*+8KB.GH + NB*
a square?

Now 8GH.KB

=4GM.KB+4(GH+HM) KB,

Also 4GM.KB=2NK.KB;

and, adding VB the right-hand side
becomes KB+ KN2. [Eucl. 11. 7]
Isthen 4GH.HM.KB?
+4(GH+HM)KB+ KB+ KN?
a square?

Again, KB*+4GH.HM .KB?
=GM* . KB*+ 4GH.HM.KB*
=(GH+ HM). KB [Eucl. 11 8]

Is then (GH+HMYy.KB*
+4(GH+HM)KB + KN?

a square?

Make the number NVO' equal to

(GH+ HM).KB;

[Prop. 3]

ON POLYGONAL NUMBERS

Call the expression on
the left-hand side X.

s=+U+1)n
=+(U—-14+2)n
=4 {(m—1)bn+ 27}

n—1

X=bn. .86 + 8bm

+(6—2)

= 4n(n—1) 5+ 8bn+(5—2)

=4n(n—1) 5
+4{n+(m—-1)}o+85+ 22

=(n+n-1PH
t+4{n+(m—1)} o+ 22



thus (GH + HM Y. KB*=NO" as
will be proved laterk

NK = 2.

a square?
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Also 4NO' =2.NO .NK, since
Is then NO:+ NK?+2N0O'.NK

Yes; it is the square on KO

And Therefore
OK—-2=NO'=KB(GH+HM), | X={n+n—1)b+2}’
while GH + HM + 1 = (twice number ={(zn—1)b+ 2]~
of terms).

Thus the proposition is proved.

“The above being premised, I say that,
[5] If there be as many terms as we please in A.P. beginning

from 1, the sum of the terms is polygonal; for it has as many
angles as the common difference increased by 2 contains units, and
its side is the number of the terms set out including 1.”

straight line. Y

plete the figure.

The numbers being as set out in the figure of Prop. 4, we
have, by that proposition,
(sum of terms).8KB + NB*= KO~
Taking another unit 4P, we have K P =2, while KN = 2;
therefore PB, BK, BV are in A.P., so that
8PB.BK + NB*=(PB+ 2KB); [Prop. 1]
and PB+2KB-2=PB+2KB—-PK =3KDB,
while 3+ 1=2.2,0r 3 is one less than the double of 2.
Now, since the sum of the terms of the progression

1 Deferved lemma.
To prove that (GH + HM)?. KB?
={(GH+ HM). KB}
Let a=GH+ HM,
B=KB, D £ E &
v=(GH+HM) . KB.
Place DZ (equal to a) and EF (equal to B) in a

Describe squares DA, EL on DE, EF and com-

Then DE: EF=DH : HF, G H M

and HE:EK=HF:EL.

Therefore A Fis a mean proportional between the two squares,

that is DH . FK=HF?,

or

af . 2= (B2,
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including unity satisfies the same formula? [literally
“does the same problem ”] as 25 does,

while PB is any number and is also always a polygonal,
the first after unity (for AP is a unit and A58 is the
term next after it), and has 2 for its side,

it follows that the sum of all the terms of the progression
is a polygonal with the same number of angles as P5,
the number of its angles being the same as the
number of units in the number which is greater by 2,
or PK, than the common difference KB, and that its
side is GAH which is equal to the number of terms
including 1.

And thus is demonstrated what is stated by Hypsicles in
his definition, namely, that,

“If there are as many numbers as we please beginning
from 1 and increasing by the same common difference,
then, when the common difference is 1, the sum of all
the terms is a triangular number ; when 2, a square;
when 3, a pentagonal number [and so on]. And the
number of the angles is called after the number
exceeding the common difference by 2, and the side
after the number of terms including 1.”

[In other words, if there be an arithmetical progression

I, 146 14+28,...1+(n—1)0,
the sum of the » terms, or 47 {2 + (2 — 1) 8}, is the
zth polygonal number which has (& + 2) angles.]

Hence, since we have triangles when the common dif-
ference is I, the sides of the triangles will be the
greatest term in each case, and the product of the
greatest term and the greatest term increased by I
is double the triangle.

1 Nesselmann (pp. 475-6), exhibits this result thus.

Take the a.p. I, 1+, 1425 .. 1+(2-1)b
If 5 is the sum, 856+ (b—2)2=14{b (22— 1) +2}2.
If now we take the three terms 4~ 2, &, 4+ 2, also in A.p.,

85(b+2)+(6—2)2={(b+2)+26}2
=(36+2)%

Now 5+ 2 is the sum of the first two terms of the first series, and corresponds there-
fore to s when #=2; and 3=2. 2 —1, so that 3 corresponds to 22z — 1.

Hence s and &+ 2 are subject to the same law ; and therefore, as 5+2 is a polygonal
number with & + 2 angles, s is also a polygonal number (the #th) with 5+ 2 angles.



ON POLYGONAL NUMBERS 253

And, since PB is a polygonal with as many angles as
there are units in it,

and 8PB.(PB—2)+(PB—4)= a square (from above,
BK being equal to PB -2, and N5 to P5 —4),

the definition of polygonal numbers will be as follows :

Every polygonal multiplied by 8 times (number of angles
—2)+square of (number of angles — 4) =a square™.

The Hypsiclean definition and the new one being thus
simultaneously proved, it remains to show how, when
the side is given, the prescribed polygonal is found.

For, having given the side GH and the number of angles,
we know KB.

Therefore (GH + HM') KB, which is equal to VO, is also
given ; therefore XO'(=NO'+/ NK or NO'+2) is given.

Therefore KO is given;

and, subtracting from it the given square on NB, we
obtain the remaining term which is equal to the
required polygonal multiplied by 8KX5. Thus the
required polygonal can be found.

Similarly, given the polygonal number, we can find its
side GH. Q. E.D.

Rules for practical use.

(1) To find the number from the side.

Take the side, double it, subtract I, and multiply the
remainder by (number of angles —2). Add 2 to the
product; and from the square of the sum subtract
the square of (number of angles —4). Dividing the
remainder by 8 times (number of angles — 2), we
have the required number,

1 Hultsch points out (art. Diophantos in Pauly-Wissowa’s Real-Encyclopidie der
classischen Altertumswissenschaftern) that this formula
82 (a—2)+ (&~ 4)2=a square
shows that Diophantus intended it to be applied not only to cases where & is greater than
4 but also where =4 or less. For 36, as Diophantus must have known, besides being
the second 36-gon, is also a triangle, a square, and a 13-gon, inasmuch as
8.36(3-2)+(3-4)%= 289=17%
8.36 (4—12)+(4-4)2= 576=247%
8.36(13-2)+ (13- 4)*=3249=57%
And indeed it is evident from Def. g of the Arithmetica that (3 - 4)2=1, while.it is
equally obvious that (4 —4)2=o.
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[If P be the #nth e-gonal number,
P.8(a—2)+(a—4r={2+(r—-1)(a-2)}

plztGn-D(e-2P-(a=ay

or

8(e—2)

(2) To find the side from the number.

Multiply the number by 8 times (number of angles — 2);
add to the product the square of (number of angles —4).

We thus get a square.

Subtract 2 from the side of

this square and divide the remainder by (number of
angles —2). Add 1 to the quotient, and half the
result gives the side required?,

[ I(V{P-8(4“2)+(“"4)2}'—2+ 1)]

n=-
2

a—2

Given a number, to find in how many ways it can be polygonal.

Let AB be the given number, BC |
the number of angles, and in BC take
CD=2,CE=4.

[A4fgebraical equivalent.)
Number 48 =P,
Number of angles BC=a.

L

A ﬁé.zé

— —K

M

Since the polygonal 4B has BC
angles,
(1) 84B.BD + BE*=a square = F(G?,
say.
Cut off AH equal to 1 ;
therefore 848.BD
=4AH.BD+4(AB+BH)BD.
Make DX equal to 4(A4B+ BH),

and for 44AH . BD put 2BD. DE.

8P(a—2)+(a—4)
={z2+(2n—1)(a-2)}
= X? say.
But 8P(a-—2)
= 4(@~2)+ 4(2P—1)(a—2)
= 2(@~2).2+4(2P-1)(a—2).
DK =4(2P-1)

! Fermat has the following note. “‘ A very beautiful and wonderful proposition which
I have discovered shall be set down here without proof. If; in the series of natural
numbers beginning with 1, any number n be multiplied into the next Jollowing, n+1,
the product is twice the nth triangular number; if n be multiplied into the (n+1)t%
triangular number, the product is three times the nth tetrahedral number; if n be
multiplied into the (n+1)th tetrakedrol number, the product is four times the nth triangulo-
triangular number [ figured number of 4tk order]; and so om, ad infinitum. 1 do not
think there can be, in the theory of numbers, any theorem more beautiful or more
general. The margin is too small, and I am not at liberty, to give the proof.”” (Cf.
Letter to Roberval of 4 November 1636, Ocuvres de Fermat, 11. pp. 84, 85.) For a proof,

see Wertheim’s Diophantus, pp. 318-20.
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Therefore
(2) FG*=KD.DB +2BD.DE + BE?,

(3) =KD.DB+BD*+ DE?,
[Eucl. 11. 7]
4) =KB.BD+DE? [Eucl. 1L 1]
But, since DK =4(AB+ BH),
DK >44H >4,
and DC=half 4 or 2;
therefore CK > CD.

Therefore, if DK be bisected at
L, L falls between C and X.
And, since DK is bisected at L,
KB.BD + LD*= LB2,
whence KB.BD=LB*- LD
Therefore, by (4) above,
(5) FG*=RL*— LD*+ DE?,
or FG*+DL*=PBL*+ DE?
(6) or LD*—DE*=LRB?*— FG2

Again, since ED=DC, and DC
is produced to Z,
EL.LC+CD*=DL?;
therefore £L.LC=DL*— D(C?

. =DL*~ DE*
&) =LB*— FG2
Put FM=BL (for BL>FG,
since FG*+DL*=BL2+ ED?,
while DL*> ED?).

Therefore FM?*—FG*=EL.LC.

Now, DX being bisected at L and
being equal to 4 (4B + BH),
DL =2(AB+ BH).

And DC=24H.
Therefore CL =4BH,
or BH=1CL.
But AH(=1)=1EC;
therefore AB=3}EL,
while BH=$}CL.

Therefore AB.BH=#&EL.LC,
or EL.LC=164B.BH.

255

Xt=4(2P-1)(a—2)
+2(a—2).2+(@—4)
=4(2P-1)(a-2)
+ (@—2)+2*
={4(zP-1)+a—2}(a—2)
+ 2*

DL =202P-1)
[BL=2(2P —1)+a—2]

X={2(2P—-1)+a—2]
—{2(2P—-1)P+2?

{2(@P—-1)p — 2

={202P-1)+a—2PP-X? .

[EL=2(2P —1)+2,
CL=2(2P—1)—2]

{22P=1)+2}{2(2P—1)—2}
={2@P—-1)+a— 2P — X

FM=202P-1)+a—2

CL=4(P-1)
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(8) Therefore 1I6P (P —1)
1648 .BH=MF— FG* =[2@P-1)+a—2p-X?
(9) =GM*4+2FG.GM. | ={2(2P—-1)+a—-2-X}
+2X{2(2P—-1)+a—-2-X}
Therefore G is even. [={2(2P-2)-2(n~-1)(a-2)}*
Let GM be bisected at IV ......... +2{2+(2z—1)(a—2)}]
................................................ x{2(2P-2)-2(n-1)(a—2)}]

[Here the fragment ends, and the question of course arises whether
Diophantus ever actually solved the problem of finding in how many
different ways a given number can be a polygonal. Tannery went so far
as to call the whole of the fragment, from and including the enunciation
of the problem, the “vain attempt of a commentator” to solve itk
Wertheim?® has however shown grounds for thinking that Diophantus did
solve the problem and that the fragment is a genuine part of his argument
leading to that result. The equation

8P(a-2)+(a—4)={2+ (2n—-1)(a—2)}
easily reduces (by algebra) to
8P(a—2)=4n(a—2){z + (n—1)(a—2)}
or 2P=n{2+(n—1)(a—2)}

Wertheim has shown how this result can be obtained by a continuation
of the work, from the point where the fragment leaves off, in the same
geometrical form which is used up to that point?, and how, when the

1 Dioph. 1. pp. 476-7, notes.

2 Zeitschrift fiir Math. u. Phystk, hist. litt. Abtheilung, 1897, pp. 121-6.

3 The only thing, so far as I can see, tending to raise doubt as to the correctness of

this restoration is the fact that, supposing it to be required to prove geometrically, from
the geometrical equivalent of
8P(a-2)+ (a—4)2={2+ (222~ 1) (2 - 2)}%,

that 2P=n{2+(n-1)(a-2)},
it can be done much more easily than it is in Diophantus’ proposition as extended by
Wertheim.

For let FG=2+(272—1)(a—2). Cut off FR equal to 2, and produce RF to S so that
RS=a-2.

on(a—2)
——
a2 N
8¢ > R
F 3R T G
‘We have now 82P.SR=FG2~SF?

=(SG-SF)2- SF?
=5G2-25G. SF.
Bisect SG at 7, and divide out by 4;
therefore 2P .SR=ST2-ST.SF
=ST(ST-SF)
=S8T.FT
=ST.(FR+RT).
Now §T=#n.SR, and FR=2, while RT=(n—1). SR=(n—-1)(a~2).
It follows that 2P=n{2+(n-1)(a-2)}
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formula is thus obtained, it can be used for the purpose of finding the
number of ways in which 2 can be a polygonal number. The portion of
the geometrical argument which has to be supplied is, it is true, somewhat
long, and its length and difficulty may, as Wertheim suggests, account for
the copyist having failed, as it were, to see his way through it and having
stopped through discouragement when he had lost his bearings.

I shall now reproduce Wertheim’s suggested restoration of the rest of
the problem. The figure requires some extension, and I accordingly give

a new one after Wertheim.

A H
B 5 — C b J'(—
D
F 3 3 é N M

The last step in the above fragment is
(9) 2FG.GM + GM*=164B . BH.

Bisect GH in N,
so that GN=NM.

Therefore, if we divide by 4,
(10) FG.GN+ GN*=44B. BH,

or

(z1) FN, NG =4A4B. BH.

Put now FR =245, and RS=GN,
so that G.S'= RN, and we have
FS=FR—-RS=24B~ RS,

FN=FR+RN=248+ RN,
GN=RS=24B—FS.
Substituting in (11), we have
(12) 248+ RN)(24B-FS)=4A4B.BH,

2{2+(27—1) (a-2)}
{2(2P~2)-2(n—1)(a—2)}
+{2(2P-2)—2(n—1)(a-2)}?

=16P(P-1)

GN=NM
=z(P-1)—(n-1)(a—2)

{2 +(2z2—1) (a—~2)}
2 (P—1)~(n—1) (a—2)}
+{2(P=1)—(n-1)(a—2)p
=4P (P-1)

{2P+n(a-2)}

{2(P-1)=(n-1)(a-2)}
=4P(P~1)

FS=2P
—{2(P-1)—(n-1)(a—2)}
=2+ (n—1)(a—2)
FN=2P+n(a-2), from above
GN=2(P-1)-(n-1)(a-2)
RN=FN—-24B=n(a~z)
{2P+n(a—2)}
{2 (P=1)~ (n=1) (a2}
=4P(P-1)
17
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or |
(13) 44B°—24B(FS—-RN) 4P
—RN.FS=4A4B"-44AB. AH. —2P{(n—1)(a—2)+2—2n(a—2)}
—n(a-2){(n-1)(a—2)+2}
=4P2—4P
Therefore
(14) 24B(FS—-RN)+ RN . FS 2P{2—(a—2)}
=4A4B.AH, +n(a-2){(n-1)(a—2)+2}
or
(15) 2dB(24H + RN-FS)=RN.FS. | 2P(a-2)
=n(@—2){n-1)(e—-2)+2}

Now RN=FN~ FR=FM~ NM~ FR=FM—-}GM~-FR
~BL—-}GM-24B=BD +}}DK~}GM~2438
=BD+24B+2BH-}GM - 245
=BD+2BH-}GH,

and  FS=FR-RS

=24B-3GM.
Therefore RN~-FES=BD + 2BH—248
=BD-24H,
and RN—~FS+24H=BD.

Again, we have
RN=BD+2BH-YGM=BD+:2BH~}BL+%LFG

=BD+2BH—-3BD-}DL+}FG
=3BD +2BH-}{DL+}FG
=3BD + :BH—-(AB+BH)+}FG
=3BD+BH—-AB+L{FG
=3BD - AH+}FG
=3(BD +FG-24H).

But, from the rule just preceding this proposition,

FG=BD(2n—1)+2;

therefore BD+ FG=2n.BD + 2,
or BD+FG-24H=2n.BD;
therefore RN=n.BD.
Accordingly the equation (15) above becomes
(16) 24B.BD=n.BD. FS, 2P(a—2)
or . =n(e=2){(n—x)(a—2) + 3}
(17) 24B=n. FS. 2P=n{(n—1)(a—2)+2}

Thus the double of any polygonal number must be divisible by its
side, and the quotient is the number arrived at by adding 2 to the product
of (side — 1) and (number of angles — 2).

For a triangular number the quotient is 7 + 1, and is therefore greater
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than the side; and, as the quotient increases by »— 1 for every increase
of 1 in the number of angles (&), it is always greater than the side.

We can therefore use the above formula (17) to find the number of
ways in which a given number 2 can be a polygonal number. Separate 2/
into two factors in all possible ways, excluding 1 .22 Take the smaller
factor as the side (). Then take the other factor, subtract 2 from it,
and divide the remainder by (z - 1). If (2 -1) divides it without a
remainder, the particular factors taken answer the purpose, and the quotient
increased by 2 gives the number of angles (z). If the second factor
diminished by 2 is not divisible by (z—1) without a remainder, the
particular division into factors is useless for the purpose. The number of
ways in which 2 can be a polygonal is the number of pairs of factors
which answer the purpose. There is always one pair of factors which will
serve, namely 2 and 2 itself.

The process of finding pairs of factors is shortened by the following

considerations.
2P=n{(n-1)(a—2)+2};

therefore 2Pln=4+an—a—2n,
)—
and a=2z+ 2—({—»");
7n(n-1)

2 (P—n)
7n(7—1)

2(P—n)>o

n(n—1)

therefore not only 27/~ but also must be a whole number and,

as a is not less than 3,
r=1,

and consequently
~1+J(1+8P)
2

Thus in choosing values for the factor #» we need not go beyond that
shown in the right-hand expression.

Example 1. In what ways is 325 a polygonal number?

Here — 1 + /(1 + 8P)=—1+,/(2601) = 50. Therefore z cannot be
greater than 25. Now 2.325=12.5.5.13, and the only possible values
for » are therefore 2, 5, 10, 13, 25. The corresponding values for a are
shown in the following table.

n<or =

nl 2|5 |10]13]2;5

@ [325(34|9 | 6|3

Example 2. P=r1zo0.

n|2|3|4|5)]6)|8]10]12]15

a |1200 41 | — | — | — | 6 |—|—| 3

17—2



e e e e
I JU T

or
or

—
.

——
[l

1y

)

R TR - 5

1L

—
.

- =
b 3

CONSPECTUS OF THE ARITHMETICA

Equations of the first degree with one unknown.
7. x—a=m(x—1b)

8. x+a=m(x+5).

9. a—x=m(b—x).

10. x+d=m(a—x).

1. x+b=m(x—a).

.39. (@+x)b+(b+x)a=2(a+d)x,

(@a+8)x+(@+x)a=2(a+x)b (a>D)
(a+b)x+(a+x)b=2(b+x)a,j

Determinate systems of equations of the first degree.

1. x+y=a, x—y=>5

x+y=a, x=my.

x—y=a, x=my.

xt+y=a, x=my+o.

DR

i I I
x+y=a, ;lx+;zy=b.

6. x+y=a, %x——;y:b.

CI20 Dy E= P+ Ye= @) Xy =M, 1=K, (%> Xgy V1> Ya)e
. [3. x1+x2=y1+y2=zl+22=a

(2> %3, 31>y 7> %)
Xy =MYsy Y= 22s, 5 =]5x2}

15. x+a=m(y—a), y+b=n(x—20).

.16, y+sz=a, s+x=0, x+y=c
.17, ytztw=a, 2+ w+x=0, w+x+y=¢ x+y+s=4d.

18, y+s3~x=a, s+2x—y=56, x+y—z=0
19. y+s+w—x=a, s+w+x—y=0, w+x+y—s=0
xX+y+z-—w=d.

.20. x+y+z=a, x+y=ms, Y+ I=nx.

I

1 I
F2L E=y4 oz, y=It-g, z=a+]j_y, (x>y>2).

18%, x—(%x+a)+<})z+:)=y—<i—y+b>+ (;-’x+a>)
=z—<;)-z+:> +<£_y+b>,

Determinate systems of equations reducible to the first degree

x+yiz=a

.26, ax=d} dx=oa
.29. x+y=a, 2*—3*=0.

* Probably spurious.
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x=my, B+y*=n(x+y).
x=my, B*+y*=n(x—y)
x=my, B*—y'=n(x+y)
x=my, 22—y =n(x—y).
Cor. 1. x=my, xy=n(x+y).
Cor. 2. x=my, xy=1n(x—y).
x=my, y’=nx,
x=my, y'=ny.
x=my, y*=n(x+y).
x=my, y*=n(x—y).
Cor. x=my, a°=ny.

w  X=my, £*=nx.

w  X=my, P=n(x+y).

w X=my, BE=n(x-p)
x—y=a, X*—y'=x—-y+6b.
yz=m(y+32), sx=n(z+x), xy=p (x+).

Determinate systems reducible to equations of second degree.

L 3I.
1 32.
L 33.
L 34.
L 34.
{ L. 35.
L 36.
L 37.
1 38.
1. 38.
IL 6%,
1v. 36.
L 27
{o 3
1. 28
. 1.
{w. =
1v. I5.
V. 34.
{Iv. 35.
. 37.

x+y=a, xy=2.

x—y=a, xy=24.

x+y=a, £+ =4

BrP=a x+y=04.

B-ypP=a x—y=0.

(y+2)x=a, z+x)y=4, (x+y)z=c

yE+(y+a)=a’-1, mx+ (z+x)=F—1, ap+ (x+y) =2 — 1.
yi—(y+s)=a—1, sx—(8+x)=F—1, ay— (x+y) =c>—1.
ye=m(x+y+z), ax=n(x+y+3), xy=p (x+y+3).

Lemmatov. 8. yz=a% zx =0 xy=~

Systems of equations apparently indeterminate but really reduced, by
arbitrary assumptions, to determinate equations of the first degree.

I 14.
‘ 1. 3%

. t*.
L 2%
1L 4%
IL 5%,
. 7*.

1. 22.

xy=m(x+y) [value of y arbitrarily assumed].
xy=m (x+y) and xy =m (x —y)
(cf 1. 31.) x*+P=m(x+y)
(cf 1. 34.) **~3=m(x~y) [« assumed = 2y).
(cf. 1. 32.) 22+92=m (x—yp)
(cf 1. 33.) a?~P=m(x+y)
#*—3y*=m (x~y)+a [Diophantus assumes x —y = 2].

x_£x+£z=y—£y+—l—x=z-£z+£y [value of y assumed].
m P 7 m 2 %
I I I
x—;ﬂx+—q—w—y-—zy+’-”x
=z._£z+£_y=w—5w+£z [value of y assumed).
2 n g £

* Probably spurious,
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1. 24. x+;—l(y+z)=y+%(g+x)=z+;(x+y)
[value of y + z assumed].

! 1 25. x+;11(y+z+w)=_y+;z(z+w+x)

I I
=z+-(w+x+P)=w+-(x+y+3z
p< ) y( Yy +3)

L [value of y + z +w assumed].

. 7% (cf 1. 22.) x—(%x+a)+<;z+c)

=y—<%y+b>+ (ix+a)=z—<j§z+:>+ (iy+b)

[ratio of x to y assumed].
1 T I I
V. 33. x+;y=m<y-—;y),y+;x_n<x—;x)
[Diophantus assumes ;— y= 1] .

Indeterminate equations of the first degree.
Lemma to 1v. 34. ay+(x+y)=a [Solutions év dopiore.
w o IV.35. ay—(x+y)= a}  practically found in
w o IV. 36, xy=m(x+y) terms of x.]
Indeterminate analysis of the second degree.
1. 8. F+yi=ad
in. 9. X+iyt=a+ R
I 10. x#*—)’=a.
L 11, x+a=u% x+6=7"
{11. 12. a—x=u b—x=7%
I 13. x—a=w) x—46=17%
L I4=1L 21. Xx+y=a, £+22=4% y+52=2~
IL I§=IIL 20. X+y=a, 2—x=0 B -yp=71~
m 16. x=my, d+x=u ®+y=17%
m 19. x*—3P=m(y*—2).
. 20. X+y=u’ P+x=70%
M 2I. P—y=22 P—x=1%
IL 22, 22+ (x+y)=u P+ (x+y)=2~
IL 23. —(x+y)=1% P~ (x+y)=1%
IL 24 (x+))+x=12 (+y)+y=7~
IL 25. (x+9)P—x=4% (x+)2—y=2>~
. 26, xy+x=1’ xy+y=2% u+v=a
I 27. xy—x=14 xy—y=2% u+v=a.
L 28, 2P +aP=ud a¥P+)P=0R
L 29. **P—x"=124 xR —yi=12
IL 30. ay+(x+p)=u, xy— (x+y)=72
* Probably spurious.



1v.
{w
Iv.
IV,

IV.
1v.
1v.

IV.

1v.

IV.
I

13
14.
16.
17.
19.
20.

2I1.
22.

23.
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xp+(x+y)=u’ xy—(x+y)=70% x+y=w’

Prz=1t P2+rx=0% A+y=0’

Y —z=0 F-x=0, FP-y=wt

BPr(x+y+2)=14 P+(x+y+2)=0% 22+ (x+y+2)=2"
B—(x+y+2)=14 P~ (x+y+3)=0% 22— (x+p+35)=20"
(x+y+2)—22=22 (x+y+2)—-)2=7" (x+y+3)-s2=0.
(x+y+2l+x=, (x+y+3)l+y=2% (x+y+2) +z=0"
(x+y+2P—x=0 (x+y+2)2—y=17 (x+y +3)°~-z=202
x—(x+y+2)=u y—(x+y+5P=0 z—(x+y+2) =20
x+y+z=0 y+s—x=0" 3+x—y=7" x+y—z=w"
x+y+z=L y+z=0 2+x=0% x+y=20’

X—y=y—z y+z=0 3+ x=0° x+y=1"
x+y+z+a=0 y+i+a=4 s+x+a=7" x+y+a=1t
x+y+z—a=0 y+s—a=u’ s+x—a=0" x+y-a=w’
yi+va=1 x+a="7, xy+a=12"

yi—a=1u) zx—a=17, xy—a=uw’

yE+x=u sx+y=17°% xy+s=0s

VE—x=1 1Xx—y =70, Xxy—zZ=w

yr+i=1t zx+)°=0% ay+2P=20

ya+(y+e)=0vd sx+(z+x)=20% ap+(x+y) =2~
y2—(y+2a)=u sx—(3+x)=0% xy—(x+y) =2~

xy + (x+y)=0 2y +x=0% xp+y=w’

xy —(x+y)=17 xy—x=7% xy—y=w

2
(xl + %, + Xy + x4)"’ +x= {t;g}':

uﬂ
(%, + x2 +xy+x) kxy= {u,,}

2

wﬂ
w"

(% + 20 + 23+ 2,)* + 205 =

(%, + %g+ x5+ 2,)? +x4_{

P4y =1 x+y=wu.

Bry=u, x+y=1u

xX+1=0% y+1=0% x+y+1=7% x—y+1=w%
B+ E= (B )+ (Pt (s (527>9)
x+y+2=0 2+y=24% P+z=0% P2+x=0"
x+y+s=0 LF—y=2f y-3=1" F-x=0.
YE+1I=0, sx+1=7% ay+1=20>

XaXg+1=7% Xz +1=5% May+1="05,
X%+ I =% X%, + I =17 XX+ I=22

x3=3% x—y=u’, x—z=7", y—z=w* (x>y>3).
xyz+x=127, xyz+y=03% xyz+zr=2"

xXyz—x =0 xyz—y=1°% xXy3—5="10"

* Probably spurious,
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. 29. &P+ +F+@i+a+ytstw=a
{IV. 30. 2+ +2+wi—(x+y+stw)=a
. 31. x+r=1, (x+a)(y+b)=2"
Iv. 32. Xx+y+s=a, xy+s=4 ap—z=1"~
V. 39. x—y=m(y—s), p+s=1 s+x=20% x+y=w’
IV. 40. X*—3*=m(y—s5), y+s=u% s+x=0% x+y=w’
V. 1. x5=3° x—a=4’ y—a=7%, z—a=w’
{V. 2. x3=)% x+a=u y+a=10° s+a=w’
V. 3. x+a=7, yta=5, s+a=">,
yz+a=12, sx+a=v" xy+a=w
V. 4. X—a=7 y—a=s z—a=2~.
yz—a=1u sx—a=0°, xy—a=w’
V. 5. 3R+ x=7% P+ =80 W+ P2=1
PR+ +d=ud PP+ P+ =0 P+ + =l
v. 6. x—2=7% y—2=5, z—2=20,
yE—y—-s=u’ sx—2~2=7° xy—x-y=up
yi—x=u" sx—y=0% xpy—z=2"
Lemma rtov. 7. ay+a®+32=2%
» 2?
v. 7. x*i(x+_y+z)={u,2},y’i(x+y+z)={v,2},
zzi(x+y+z)={:z,z}.
w? 22
v. 8. _yzi(x+_y+z)={u,.z}, zxk (x +y+z)={7/._,},

2
xyi(x+y+z)={::,2}.

9. (cf 1 11.) w+y=1, x+a=4 y+a=17°
II. X+y+3=1, x+a=u% y+a=1% z+a=w"
0. x+y=1, x+a=u" y+b=172~
12. X+y+s=1I, x+a=2 y+b6=7° z+c=u’
13. X+y+z=a, y+3=0} z2+x=7% x+y=w?
14. Z+y+z+w=a
X+y+z=5, y+s+w=03 s+ w+x=0 w+x+y=1~
21. XPF+ =12 2P +yi=77 PP+ P=wlh
22. PP —-a’=12 222 -y =0, 22— =wl
23. 22— =18 Y- a2 =17" P—a’Pr=2nr
24. yPR+1=4 222+ 1=0% 22P+ri1=2
25. yP2-1=0 2x—1=1" 2¥P—1=20"
26. 1 -pg'=2" 1—-RaP=7" 1—aYP=0r
27. P+ +a=12 P+x*+a=17% P+ +a=u’
28. Y +5—a=18 B+ —a=1" x*+y*—a=0ul
- 30. mx+my=u% W+a=(x+y).

<822
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Lemma 2z to vi. 12. ax’+&é=24* (where a+5b=c2).
Lemma to vI. 15.  ax’—d=u* (where ad®—5b=¢ is known).
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[111. 15]. ay+x+y=2, x+I=7§2(}’+ ).

L
[111. 16]. &y —(x+y)=2 x_1=1_”_2(y_1)_

2
[1v. 32]. x+ 1=%(x—r).

[v.21]. a®+1=2" y*+1=0% *+1=0>

Indeterminate analysis of the third degree.

1V.
1v.
{ 1v.
1v.
{

Iv.
1V.
IVv.

IV.
IV.

Iv.

{ Iv.
Iv.

Iv.

[av.

1v.
V.
V.
V.
V.
V.
V. 19 @.
V. 194.

V.Igc.

V.

10.
IT.
12.
18.
24.
25.
26.
27.
28,
28]
38.
15.
16.
17.
18.

19.

20.

3.

6
7.
8.
9

Xy =1wu, xy=1
Bryr=1 2+)'=10%
Bry=0w £+y'=7"
x +P=0 x+y=u
x +yP=u, x+y=1

PPty Re;(lalg); ;:dumble to second
B-p=x -y the same problem
B+y =y +x

BPry=1, yP+ax=0"

x+y=a, xy=u—1u.

x+y+z=a, gr={x—p)+(x—-2)+(@-2)f (x>y>2).

xy+x=u% xy+y=7~

xy—~x=2 xy—y=72°

xy+(x+y) =18, xy—(x+y)=7"

@ -7 -5 (P +5) =

(+y+z)x=bu(u+1), (x+y+2)y=1% (x+y+2)z=20°

(F+y+al+x=0 (x+y+2)P+y=0% (x+y+2)°+z=2

(E+y+af—x=0" (x+y+2P’—y=0% (x+y+2)°—z=2"

a—(x+y+2P=1 y—(x+y+2)°=7%, z—(x+y+2)’=2nt

x+y+z=2 (x+y+sf+x=0" (x+y+2P+y=12°
x+y+2)l+a=vl

Z+y+3=0, (x+y+2P—x=1 (x+y+2P—y=1%
(x+y+2P—s=w’

x+y+z=04 s—(x+y+of=u y—(x+y+3)’ =1,
z2—(x+y+z2P =t

x+y+z=a, (x+y+s5l+x=0’ (x+y+2)°+y=2",
(E+y+2P+s=02

x+y+z=a, (x+y+a)f—x=u (X+y+2Pf—y=13
(x+y+z)P—z=2n

x+y+z=’%, g—(x+y+a)f=1, p— (x+y+2)P°=17

2—(x+y+3)°=n’

[1v. 8] x—y=1, P~ P=2l
2
[1v. g, 10]. x3+_y3=§z(x+_y).

[zv. 11]. x“—ﬁ:—;‘;(x—_y).
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[v.15] 2*+y*+5°—3=02
[v. 16]. 3—-(F+4* + =42
[v. 17]. &*+p*+2+3=20~
Indeterminate analysis of the fourth degree.
V. 29. a+)f+at=
[v. 18). & +p*+52—3=04

Problems of constructmg right-angled triangles with sides in rat10na1
numbers and satisfying various other conditions.

[N.B. I shall use x, y for the perpendicular sides and z for the
hypotenuse in all cases, so that the condition %*+3*=2® must be under-
stood to apply in every case in addition to the other conditions specified.]

Lemma to v. 7. &y =229 =%,,.

VI. 1. s—a=dd, s—y=7"
{VI. z+x=128 s+y=7".
VL lay+a=d"
{ VI txy—a=u’.
VI a—bxy=1’.
VI. jxy+x=a.
{V . txy—x=a.
{v xy+(x+y)=a.
L 9. }y—(x+y)=a
VL 10. jxy+(x+2)=a.
{Vl. 1. tay—(x+2)=a.
Lemma 1 to V. 12. &=, x—y=2" ixy+y=2r
L 12. jxp+x=1 lay+y=7~
{VI. 13. lxy—x=u, tuy-y=17~
L 14. 3xy—z=u% Yay—x=1~

= o=
P S phw o
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{ L 15. $xp+z=2% jay+x=7~
VL 16. £+n=x, E=y/=
L 17. 2xp+z=id x+y+s=7"
{ .18, tay+s=dud, x+y+z=1%
1. 19. fxy+x=1? x+y+s=0°
{ L. 20. ixy+x=1 x+y+z=7~
21. x+y+z=0" Jay+(x+y+32)=20~
{ .22, x+y+z=ud jay+(x+y+5) =0~
VI 23. S=w*+u, PFlx=0"+2.
VL 24, z=2f+u, x=00-v, y=ut.
[vi. 6, 7). (Gx)+imay=1’
[vi. 8,9). {3 (x+2)P+dmay=i
[vi. 10, 11]. {} (3 + %) PP+ dmaxy =12
[vi 12]. y+(x~))-dxy=0, x=2" (x>y).
[V 14, 15]. wlox—fay. 2 (s—2x)=2* (4 <or>}uy).



SUTTLCENMENL

ADDITIONAL NOTES, THEOREMS AND PROBLEMS BY FERMAT,
TO WHICH ARE ADDED SOME SOLUTIONS BY EULER

I HAVE generally referred to the notes of Fermat, and allied propositions
of his, on the particular problems of Diophantus which were the occasion
of such notes, illustrations or extensions; but there are some cases where
the notes would have been of disproportionate length to give in the places
where they occur. Again, some further explanations and additional
theorems and problems given by Fermat are not in the notes to Diophantus
but elsewhere, namely in his correspondence or in the Doctrinae Analyticae
Inventum Novum of Jacques de Billy “based on various letters sent to
him from time to time by Pierre de Fermat” and originally included at the
beginning of the 2nd (1670) edition of Bachet’s Diophantus (the Znzentum
Novum is also published, in a free French translation by Tannery, in
Oeuvres de Fermat, Vol. 111 pp. 323-398). Some of these theorems and
problems are not so closely connected with particular problems in Dio-
phantus as to suggest that they should be given as notes in one place
rather than another. In these circumstances it seemed best to collect the
additional matter at the end of the book by way of Supplement.

In the chapter on the Porisms and other assumptions in Diophantus
(pp- 1o6-110 above) I quoted some famous propositions of Fermat on the
subject of numbers which are the sums of two, three or four square numbers
respectively. The first section of this Supplement shall be devoted to
completing, so far as possible, the story of Fermat's connexion with these
theorems.

SECTION I

ON NUMBERS SEPARABLE INTO INTEGRAL SQUARES.

As already noted, Fermat enunciated, on Diophantus 1v. 29, a very
general theorem of which one part states that Every number is either a
square or the sum of lwo, three or four squares. We shall return to this
later, and shall begin with the case of numbers which are the sum of
two squares,



266 CONSPECTUS OF ARITHMETICA

[v.15] 2+ +72—3=0

[v. 16]. 3—(*+1*+5%)=2a"

[v. 17) &P +p*+F+3=04>
Indeterminate analysis of the fourth degree.
V. 29. A+t gi=an

[v. 18] «2+p*+22—3=0t

Problems of constructing right-angled triangles with sides in rational
numbers and satisfying various other conditions.

[N.B. I shall use «, p for the perpendicular sides and z for the
hypotenuse in all cases, so that the condition #®+y*=2? must be under-
stood to apply in every case in addition to the other conditions specified.]

Lemma to V. 7. Xy =29, =%, %,.

{ L 1. z—x=4% 2—y=7"

2. z+x=1 z+y=70"
3 jay+a=dt
{ 4. jxy—a=22
5. a—}xy=1
vi. 6. jxy+x=a.
{VI. 7. jxy—x=a.
{VI. 8 lxy+(x+y)=a
VI. 9. kxy—(x+y)=a.
VL 10. dxy+(x+2)=a.
{VI 11. txy—(x+3)=a.

Lemma 1 to Vi 12. x=#% x—y=7% lay+y=2nt
VI 12. jxy+x=2 ixy+y=17°
{V. 13. jxy—x=12" txy—y=7~
.14 Jxy—z=2 lay—-x=7~
{ L 15. fxy+z=2" txy+x=7"
VI 16. £+n=x, &n=y/z
17. Yxy+z=0 x+y+z="7~
18. lxy+s=218 x+y+z=0~
19. loy+x=14 x+y+z=7°%
{ I 20. 3xXy+x=18, x+y+2=0%
.21 x4y+z=0’ Jxy+(x+y+2)=7%
{ L 22. x+y+3=208 fap+(x+y+2)=0~
1 23. #=#’+u, Flx=*+0.
V1. 24. z=f+u, x=0"—1, y=2ut.
[vi. 6, 7] (Rx)+imxy=2i.
[vi. 8, 9) {3 (x+))P+imay=2
[vi 10, 11]. {3 (z+2)P+Imay=12
[vi12]. y+(x=)).day=4 x=0° (x>y).
(Vi 14, 15]. #ex—}ay.x(s—x) =2 (4 <or> ay).
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SUPPLEMENT

ADDITIONAL NOTES, THEOREMS AND PROBLEMS BY FERMAT,
TO WHICH ARE ADDED SOME SOLUTIONS BY EULER

I HAVE generally referred to the notes of Fermat, and allied propositions
of his, on the particular problems of Diophantus which were the occasion
of such notes, illustrations or extensions; but there are some cases where
the notes would have been of disproportionate length to give in the places
where they occur. Again, some further explanations and additional
theorems and problems given by Fermat are not in the notes to Diophantus
but elsewhere, namely in his correspondence or in the Doctrinae Analyticae
Inventum Nowum of Jacques de Billy “based on various letters sent to
him from time to time by Pierre de Fermat” and originally included at the
beginning of the 2nd (1670) edition of Bachet’s Diophantus (the /nzentum
Novum is also published, in a free French translation by Tannery, in
Ocuvres de Fermat, Vol. 111 pp. 323-398). Some of these theorems and
problems are not so closely connected with particular problems in Dio-
phantus as to suggest that they should be given as notes in one place
rather than another. In these circumstances it seemed best to collect the
additional matter at the end of the book by way of Supplement.

In the chapter on the Porisms and other assumptions in Diophantus
(pp- 106~110 above) I quoted some famous propositions of Fermat on the
subject of numbers which are the sums of two, three or four square numbers
respectively. The first section of this Supplement shall be devoted to
completing, so far as possible, the story of Fermat’s connexion with these
theorems.

SECTION I

ON NUMBERS SEPARABLE INTO INTEGRAL SQUARES.

As already noted, Fermat enunciated, on Diophantus 1v. 29, a very
general theorem of which one part states that Every number is either a
square or the sum of two, three or four squares. We shall return to this
later, and shall begin with the case of numbers which are the sum of
two squares,
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L. On.numbers which are the sum of two squares.

I may repeat the beginniing of the note on 111 g already quoted (p. 106).

“ A prime number of the forin 472 +1 is the hypotenuse of a right-angled
triangle in one way only, its square 15 80 in two ways, its cube in three, its
biquadrate in four ways, and so on ad nfinitunt.

“The same prime number 4z + 1 and its square are the sum of two
squares in one way only, its cube and its biquadrate in two ways, its fifth
and sixth powers in three ways, and so on ad nfinitum.

“If a prime number which is the sum of two squares be multiplied into
another prime number which is also the sum of two squares, the product
will be the sum of two squares in two ways; if the first prime be multiplied
into the square of the second prime, the product will be the sum of two
squares in three ways ; if the first prime be multiplied into the cube of the
second, the product will be the sum of two squares in four ways, and so on
ad infinitum.”

Before proceeding further with this remarkable note, it is natural to
ask how Fermat could possibly have proved the general proposition that
(a) Eovery prime number of the form 4n+ 1 is the sum of two square
numbers, which was actually proved by Euler. Fortunately we have
in this case a clear statement hy Fermat himself of the line which his
argument took. In his “ Relation des nouvelles découvertes en la science
des nombres” sent by Fermat to Carcavi and shortly after (14 August,
1659) communicated by the latter to Huygens, Fermat begins by a refer-
ence to his method of proof by indefinite diminution (descente infinie or
indéfinie) and proceeds?® thus: “I was a long time before I was able to
apply my method to affizmative questions because the way and manner
of getting at them is much more difficult than that which I employ with
negative theorems. So much so that, when T had to prove that every
prime number of the form 4n+ 1 is made up of two squares, 1 found myself
in a pretty fix. But at last a certain reflection many times repeated gave
me the necessary light, and affirmative questions yielded to my method,
with the aid of some new principles by which sheer necessity compelled me
to supplement it. This development of my argument in the case of these
affirmative questions takes the following line: if a prime number of the
form 47z + 1 selected at random is not made up of two squares, there will
exist another prime number of the same sort but less than the given
number, and again a third still smaller and so on, descending ad 7nfizitum,
until you arrive at the number 5 which is the smallest of all numbers of

1 Nowi C tarii Academiae Petropolit 1752 and 1753, Vol. 1v. (1758),
pp- 3-40, 1754 and 1755, Vol. V. (1760), pp. 3-58= Commentationes arithmeticae
collectae, 1849, 1. pp. 155-173 and pp. 210-233.

2 Qeuvres de Fermat, 11. p. 432.
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the kind in question and which the argument would require z0# to be made
up of two squares, although, in fact, it is so made up. From which we
are obliged to infer, by reductio ad absurdum, that all numbers of the kind
in question are in consequence made up of two squares.”

The rest of the note to Diophantus 11. 19 is as follows.

“ From this consideration it is easy to deduce a solution of the problem

“ 70 find in how many ways a given number can be the hypotenuse of
a right-angled triangle.

“Take all the primes of the form 47+ 1, e.g. 5, 13, 17, which measure
the given number.

“If powers of these primes measure the given number, set out the
exponents of the powers; e.g let the given number be measured by the
cube of 5, the square of 13, and by 17 itself but no other power of 17;
and set out the exponents in order, as 3, 2, I.

¢ Take now the product of the first of these and twice the second, and
add to the product the sum of the first and second : this gives 17. Multiply
this by twice the third exponent and add to the product the sum of 17 and
the third exponent: this gives 52, which is tke number of the different right-
angled triangles whick have the given number for hypotenuse. [If a, b, ¢ be
the exponents, the number of the trianglesis 4abc+ 2 (bc + ca + ab)+a+b +c.]
We proceed similarly whatever the number of divisors and exponents.

“QOther prime factors which are not of the form 4z + 1, and their
powers, do not increase or diminish the number of the right-angled triangles
which have the given hypotenuse. '

“PROBLEM 1. 710 find a number whick is a kypotenuse in any assigned
number of ways.

“Let the given number of times be 7. We double 7: this gives 14.
Add 1, which makes 15. Then seek all the prime numbers which measure
it, Ze. 3 and 5. Next subtract 1 from each and bisect the remainders.
This gives 1 and 2. [In explanation of the process it is only necessary to
observe that, for example, 2 {4abc+ 2 (bc+ca+ad)+a+d+c}+1 is equal
to (22¢+1)(26+1)(2¢+1), and so on.] Now choose as many prime
numbers of the form 47 + 1 as there are numbers in the result just arrived
at, Ze in this case two. Give to these primes the exponents 1, 2 re-
spectively and multiply the results, 7. take one of the primes and multiply
it into the square of the other.

“Itis clear from this that it is easy to find the smallesz number which
is the hypotenuse of a right-angled triangle in a given number of ways.”

[Fermat illustrates the above further in a letter of 25 December 1640
to Mersenne.

2o find a number which is the hypotenuse of 367 different right-angled
triangles and no more.

L Qeuvres de Fermat, 11. pp. 314 5q.
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Double the number and add 1; this gives 735. Take all the divisors
which are prime numbers: these are 3, 5, 7, 7. Subtract 1 from each and
then divide by 2 ; this gives 1, 2, 3, 3. We have then to take four prime
numbers of the form 47+ 1 and give them 1, 2, 3, 3 respectively as ex-
ponents. The product of these powers is the number required.

To find the least suck number, we must take the four Jeast primes of the
form 47z +1, Ze 5, 13, 17, 29, and we must give the smallest of them,
in order, the largest exponent; i.e. we must take 5% 13% 17% and 29 in this
case, and the product of these four numbers is the least number which is
the hypotenuse of 367 right-angled triangles and no more.

If the double of the given number + 1 is a prime number, then there is
only one possible divisor. Suppose the given number is 20; the double
of it plus 1 is 41. Subtracting unity and bisecting, we have 20, so that the
number to be taken is some prime number of the form 47 + 1 to the power
of zo0.]

“PROBLEM 2. 70 find a number wkick shall be the sum of two squares
in any assigned number of ways.

‘Let the given number be 10. Its double is 20, which, when separated
into its prime factors, is 2.2.5. Subtract 1 from each, leaving 1, 1, 4.
Take three different prime numbers of the form 47+ 1, say 5, 13, 17, and
multiply the biquadrate of one (the exponent being 4) by the product
of the other two. The result is the required number.

“By means of this it is easy to find the smallest number which is the
sum of two squares in a given number of ways.

“In order to solve the converse problem,

“Tv jfind in kow many ways a given number is the sum of two squares,
“let the given number be 325. The prime factors of the form 4z + 1
contained in this number are 5, 13, the latter being so contained once only,
the former to the second power. Set out the exponents 2, 1. Multiply
them and add to the product the sum of the two: this gives 5. Add 1,
making 6, and take the half of this, namely 3. This is the number of ways
in which 325 is the sum of two squares.

“If there were three exponments, as 2, 2, 1, we should proceed thus.
Take the product of the first two and add it to their sum: this gives 8.
Multiply 8 into the third and add the product to the sum of 8 and the
third: this gives 17. Add 1, making 18, and take half of this or 9. This
is the number of ways in which the number taken in this second case is
the sum of two squares. [If g, 4, ¢ be the three exponents, the number
of ways is § {abc+ (bc+ca +ab) + (a+& +c)+ 1} provided that the number
represented by this expression is an integer.]

“If the last number which has to be bisected should be odd, we
must subtract 1 and take half the remainder.
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“ But suppose we are next given the foilowing problem to solve:

“70 find a whole number which, when a given number is added to it,
becomes a square, and which is the hypotenuse of any assigned number of
right-angled triangles.

“This is difficult. Suppose e.g. that a number has to be found which
is a hypotenuse in two ways and which, when 2 is added to it, becomes
a square.

“The required number will be 2023, and there are an infinite number
of others with the same property, as 3362 etc.”

2. On numbers whick cannot be the sum of two squares.

In his note on Diophantus v. g Fermat took up 2 remark of Bachet’s
to the effect that he believes it to be impossible to divide 21 into two
squares because “it is neither a square nor by its nature made up of two
squares.” Fermat’s note was: “The number 21 cannot be divided into
two squares (even) in fractions. That I can easily prove. And generally
a number divisible by 3 which is not also divisible by g cannot be divided
into two squares either integral or fractional.”

He discusses the matter more generally in a letter of August 1640
to Roberval'.

“I have made a discovery & propos of the 12th [gth] proposition of
the fifth Book of Diophantus (that on which I have supplied what Bachet
confesses that he did not know and at the same time restored the corrupted
text, a story too long to develop here). I need only enunciate to you my
theorem, while reminding you that I proved some time ago that

“d number of the form an — 1 is neither a square nor the sum of two
squares, either in inlegers or. fractions.”

[This proposition was sent by Mersenne to Descartes, on 22 March
1638, as having been proved by Fermat.]

“For the time I rested there, although there are many numbers of the
form 4z + 1 which are not squares or the sums of squares either, eg. 21,
33, 77, etc., a fact which made Bachet say on the proposed division of 21
into two squares ‘It is, I believe, impossible since 21 is neither a square
nor by its nature made up of two squares;’ where the word 7eo7 (I think)
clearly shows that he was not aware of the proof of the impossibility.
This 1 have at last discovered and comprehended in the following general
proposition.

“If a given number is divided by the greatest square whick measures i,
and the quotient is measured by a prime number of the form 4n — 1, the given
number is neither a square nor the sum of two squares either integral or
JSractional.

1 Qenvres de Fermat, 11. pp. 2034
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“ExampLE. Let the given number be 84. The greatest square which
measures it is 4, and the quotient is 21 which is measured by 3 or by
7, both 3 and 7 being of the form 47— 1. I say that 84 is neither a square
nor the sum of two squares either integral or fractional.

“Let the given number be 77. The greatest square which measures it
is 1, and the quotient is 77 which is here the same as the given number
and is measured by 11 or by 7, each of these numbers being of the form
4n—1. I say that 77 is neither a square nor the sum of two squares,
either in integers or fractions.

“I confess to you frankly that I have found nothing in the theory of
numbers which has pleased me so much as the proof of this proposition,
and I shall be glad if you will try to discover it, if only for the purpose
of showing me whether I think more of my discovery than it deserves.

“Following on this I have proved the following proposition, which
is of assistance in the finding of prime numbers.

“If a number is the sum of two squares prime to one another, I say
thal it cannot be divided by amy prime number of the form 4n— 1.

“For example, add 1, if you will, to an even square, say the square
10 000 000 000, making 10000000 001. 1 say that 10000 000001 cannot
be divided by any prime number of the form 42—1, and accordingly,
when you would try whether it is a prime number, you need not divide by
3, 7, 1T etc.”

(The theorem that Numbers whick are the sum of two squares prime to
one another have no divisors except suck as are likewise the sum of two squares
was proved by Euler'.)

3. DNumbers (1) which are always, (2) which can never be, the sum
of three squares.

(1)  Tke number whick is double of any prime number of the form
8n — 1 is the sum of three squares (Letter to Kenelm Digby of June 1658)*

Z£.g. the numbers 7, 23, 31, 47 etc. are primes of the form 8z—r1; the
doubles are 14, 46, 62, 94 etc.; and the latter numbers are the sums of
three squares.

Fermat adds “I assert that this proposition is true, though I do so in
the manner of Conon, an Archimedes not having yet arisen to assert it
or prove it.”

Lagrange® remarks that he has not yet been able to prove the pro-
position completely. The form 87z — 1 reduces to one or other of the three

v Novi Commentarsi Acad. Petropol. 1752 and 1753, Vol. 1v, (1758), pp. 3-40=
Ce tati arithmeticae, 1. pp. 155-173.

2 Ocuvres de Fermat, 11. pp. 402 5q¢.

3 «Recherches d’Arithmétique” in Berlin Mémoires 1773 and 1775= Omwre: de
Lagrange, I11. p. 795.
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forms 247 —1, 2472 + 7, 24;z + 15, of which the first two only are primes.

Lagrange had previously proved that every prime number of the form

247 + 7 is of the form x*+ 65> The double of this is zx* + 12)? and
2x%+ 1202 = (x + 292 + (x — 29)* + (29)%,

that is, 24 + 123* is the sum of three squares.

The theorem was thus proved for prime numbers of the form 8z —1,
wherever # is not a multiple of 3, but not for prime numbers of the form
247 — 1.

Legendre’, however, has the theorem that Every number whick is the
double of an odd number is the sum of three squares.

(2) No number of the form 24n+17 or 4™(24n +7) can be the sum
of three squares.

This theorem is substantially stated in Fermat’s note on Dioph. v. 11.
We may, as a matter of fact, substitute for the forms which he gives the
forms 87 + 7 and 4™ (87 + 7) respectively.

Legendre® proved that numbers of the form 8z + 4 are the only odd
numbers which are not the sum of three squares.

4. Every number is either a square or ithe sum of two, three or
Jour squares.

This theorem is also mentioned in the ‘“Relation des nouvelles dé-
couvertes en la science des nombres” already quoted, as a case to which
Fermat ultimately found himself able to apply the method of proof by
descente. He says® that there are some other problems which require new
principles in order to enable the method of descente to be applied, and the
discovery of such new principles is sometimes so difficult that they cannot
be arrived at except after very great trouble.

“Such is the following question which Bachet on Diophantus admits
that he could never prove, and as to which Descartes in one of his letters
makes the same statement, going so far as to admit that he regards it as
so difficult that he does not see any means of solving it.

“ Byery number is @ square or the sum of two, three or four squares.

“T have at last brought this under my method, and I prove that, if
a given number were not of this nature, there would exist a number smaller
than it which would not be so either, and again a third number smaller
than the second, etc. ad infinitum ; whence we infer that all numbers are
of the nature indicated.”

In another place (letter to Pascal of 25 September, 1654)*, after quoting
the more general proposition, including the above, that every number is

1 Legendre, Zaklentheorie, tr. Maser, 1. p. 387.
2 Ibid. p. 386.

3 Oewvres de Fermat, 11. p. 433.

4 Jbid. p. 313. !
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made up (1) of one, two, or three triangles, (2) of one, two, three or four
squares, (3) of one, two, three, four or five pentagons, and so on ad znfinitum,
Fermat adds that “to arrive at this it is necessary—

(1) To prove that every prime number of the form an+ 1 is the sum
of two squares, e.g. 5, 13, 17, 29, 37, €ic.;

(2) Given a prime number of the form 47+ 1, as 53, to find, by a
general rule, the two squares of which it is the sum.

(3) Euvery prime number of the form 3n+1 is of the Jorm %2+ 37,
eg. 7, 13, 19, 31, 37, ez

(4) Every prime number of the form 8n+ 1 or 8n + 3 s of the form
2%+ 2% eg 11, 17, 10, 41, 43, €t

(5) There is no rational right-angled triangle in whole numbers the
area of which is a squaze. -

«“This will lead to the discovery of many propositions which Bachet
admits to have been unknown to him and which are wanting in Diophantus.

“I am persuaded that, when you have become acquainted with my
method of proof in this kind of proposition, you will think it beautiful, and
it will énable you to make many new discoveries, for it is necessary, as you
know, that multi pertranseant ut augeatur scientia [Bacon).”

Propositions (3) and (4) will be mentioned again, and a full account
will be given in Section m1. of this Supplement of Fermat’s method, or
methods, of proving (5).

The main theorem now in question that every integral number is the
sum of four or fewer squares was attacked by Euler in the paper! (1754~
1755) in which he finally proved the proposition (1) above about primes
of the form 47 + 1; but, though he obtained important results, he did not
then succeed in completing the proof. Lagrange followed up Euler’s
results and finally established the proposition in 1770% Euler returned
to the subject in 1772 ; he found Lagrange’s proof long and difficult, and
set himself to simplify it?.

(The rest of the more general theorem of Fermat quoted above, the
portion of it, that is, which relates to numbers as the sum of 7 or fewer
n-gonal numbers, was proved by Cauchy*)

! Novi Commentarii Acad. Petropol. for 1754~5, Vol. V. (1760), pp. 3-58= Com-
mentationes arithmeticae collectae, 1849, 1. pp. 210-233.

* Nouveaux Mémoires de I' Acad. Roy. des Sciences de Berlin, année 1770, Berlin 1772,
Pp- 123-133= Oeuvres de Lagrange, 1. pp. 187—201: cf, Wertheim’s account in his
Diophantus, pp. 324-330.

# * Novae demonstrationes circa resolutionem numerorum in quadrata,” Actz Erudit.
Lips. 1773, p- 193; Acta Petrop. 1. 11. 1775, p- 48; Comment. arithm. 1. PP- 538-548.

4 Cauchy, “Démonstration du théoréme général de Fermat sur les nombres polygones,”
Oeuvres, 11° Série, Vol. VI. pp. 320-353. See also Legendre, Zaklentheorie, tr. Maser,
IL. Pp. 332-343-
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Under this heading may be added the further proposition that

“ Any number whatever of the form 81— 1 can only be represented as the
sum of four squares, not only in integers (as others may have seen) dut in
Jractions also, as 1 promise that I will provel.”

5.  On numbers of the forms &2+ 29% &+ 3% &+ 59° respectrvely.

(1) Every prime number of the form 8n+1 or 8n+3 is of the form
&% + 297

This is one of the theorems enunciated in the letter of 25 Sept., 1654,
to Pascal? and also in the letter of June, 1658, to Kenelm Digby?®.

[In a paper of 1754 Euler says that he does not yet see his way to
prove either part of the theorem® In 1759 he says® he can prove the
truth of the theorem for a prime number of the form 8~ + 1, but not for
a prime of the form 8z+3. Later, however, he proved it for prime
numbers of both forms®. Lagrange” also proved it for primes of the form
8n+ 3.]

(2) Every prime number of the form 3n + 1 is of the form x*+ 3%

The theorem is stated in the same two letters to Pascal and Digby
respectively.

Lagrange naturally quotes it as “All prime numbers of the form 67+ 1
are of the form «? + 33%” for of course 37 + 1 is not a prime number unless
7 is even.

" The proposition was proved by Euler®. Lagrange proved® (a) that all
prime numbers of the form 12z~ 5 are of the form x*+ 3% (8) that all
prime numbers of the form 12z—1 are of the form 3x*—3% and (¢) that
all prime numbers of the form 127+ 1 are of do#% the forms x®+ 33® and

-3

(3) No number of the form 3n—1 can be of the form x*+3)%

Inthe “Relation des nouvelles découvertes en la science des nombres®”
Fermat says that this was one of the negative propositions which he proved
by his method of descente.

1 Letter to Mersenne of Sept. or Oct. 1636, Oeuvres de Fermat, 11. p. 66.

2 Qeuvres de Fermat, 1L p. 313.

3 Jbid. 11. p. 403.

4 t“Specimen de usu observationum in mat11e51 pura (De numeris formae 2a2+654)” in
Novi Commentarii Acad. Petrop. 1756-7, Vol. V1. (1761), pp. 185-230= Cammmt
arithm. 1. pp. 174-192.

5 Novi Commentarii Acad. Petrop. 1760~1, Vol. VIIL. (1763), pp. 126-8 = Comment.
arithm. 1. p. 296.

8 Commentationes arithmeticae, 11. p. 607.

7 ¢ Recherches d’Arithmétique” in Oeuwres de Lagrange, 111. pp. 776, 784

8 « Supplementum quorundam theorematum arithmeticorum, quae in nonnullis de-
monstrationibus supponuntur (De numeris formae aa+ 388)” in Novi Comment. Acad.
Pelrop. 1760-1, Vol. VIIL. (1763), pp. 105—128 = Comment. arithm. 1. pp. 287~296.

9 0p. cit., Ocuvres de Lagrange, 111. pp. 784, 791.

W Qeuwres de Fermat, 11. p. 431.

18—2
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(4) If two prime numbers ending in either 3 or 7 whick are also of the
Jorm 4n + 3 are mulliplied fogether, the product is of the form x* + 5~

This theorem also is enunciated in the letter of June, 1658, to Kenelm
Digby. Fermat instances 3, 7, 23, 43, 47, 67 etc. as numbers of the kind
indicated. Take, he says, two of these; eg. 7 and 23. The product 161
will be the sum of a square and 5 times another square, namely 81 + 5. 16.

He admits, however, that he has not yet proved the theorem generally:
“1 assert that this theorem is true generally, and I am only waiting for
a proof of it. Moreover the square of each of the said numbers is the sum of
a square and 5 times another square : this, too, I should like to see proved.”

Lagrange proved this theorem also’. He observes that the numbers
described are either of the form 20z+ 3 or of the form 20z+7, and he
proves that all prime numbers of these forms are necessarily of the form
22°+ 22y + 35°. He has then only to prove that the product of two
numbers of the latter form is of the form x*+ 5%

This is easy, for

(25 + 209 + 39%) (222 + 2xy'+ 35/2) = (202" + %y + ya' + 399 + 5 (% —yax')

6.  Numbers of the forms x*—2)° and 2x*—3°

~

Fermat’s way of expressing the fact that a number is of one of these
forms is to say that it is the sum of, or the difference between, the two smaller
sides, .¢. the perpendicular sides, of a right-angled triangle. Like Diophantus,
he ““forms” a rational right-angled triangle from two numbers x, , taking
as the three sides the numbers &° + 37, #°® — 3%, 22y respectively. The sum
therefore of the perpendicular sides is x* + 2xy —3* or (x + %)’ —23% and
their difference is either #®—2xp—j)* or 2xy—(a2—3?), that is, either
(&9 - 25* or 25~ ().

The main theorem on the subject of numbers of these forms is, as
a matter of fact, contained, not in a letter of Fermat’s, but in two letters
of Frénicle to Fermat dated 2nd August and 6th Sept., 1641, respectively?
It is, however, clear (cf. the letter in which Fermat had on 15th June, 1641,
propounded to Frénicle a problem on such numbers) that the theorem was
at any rate common property between the two.

Frénicle’s two statements of the theorem are as follows :

“Every prime number of the form 8 + 1 is the sum of the two smaller
sides of a (right-angled) triangle, and every number which is the sum of the
two smaller sides of a (right-angled) triangle with sides prime to one another
is of the form 87 + 1.”

‘“Every prime number of the form 8z + 1, or which is the product
of such prime numbers exclusively, is the difference between the two
smaller sides of an infinite number of primitive right-angled triangles.”

1 Op. cit., Ocuvres de Lagrange, 11. PpP. 784, 788-9.
? Qeuvres de Fermat, 11. pp. 231, 235.
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Lagrange ! quotes the theorem in the form

Al prime numbers of the form 8n+ 1 ave of the jform y* — 282

Lagrange himself proves® that all prime numbers of the form 8z — 1 are
of bot/: the forms x* — 2y*and 24— 3% and observes® that this theorem is more
general than that of Fermat so far as prime numbers of the form 8z — 1 are
concerned. This, however, seems scarcely correct if the further explanations
given by Frénicle are taken into account. For Frénicle shows clearly,
in the second of the two letters referred to* that he was fully alive to
the fact that numbers which are of the form x* — 23* are also of the form
2% —4*; and indeed it is obvious that he was aware that

xP—2p®=2(x +y)*— (x + 2p)%

Lagrange proved in addition® that

Euvery prime number of the form 8n + 1 is at the same lime of the three
Jorms x*+ 297, x*— 297 2x° -3

This is, I think, really included in Frénicle’s statements when combined
with Fermat’s theorem (1) above to the effect that every prime number
of the form 8~z + 1 is of the form a?+ 2%

The problem propounded by Fermat to Frénicle in connexion with the
numbers now under consideration was:—-

Given a number, to find in how many ways it can be the sum of the two
smaller sides of a right-angled trz'éngl&

Frénicle replied that this involved also the problem of finding a number
which will be the sum of the two smaller sides of a right-angled triangle in
an assigned number of ways and no more, and tried, but unsuccessfully®,
to bring these problems under a rule corresponding to that by which
Fermat found the number of ways in which a prime number of the form
47+ 1 can be the hypotenuse of a right-angled triangle (see p. 269 above),
but with a prime number of the form 8~ + 1 substituted for the prime
number of the form 47 + 1. I cannot find that Fermat ever communicated
his own solution, at all events in the correspondence which we possess.

SECTION II

EQUATION &% —A4)’=1.

History of the equation up to Fermat’s time.

Fermat was not the first to propound, or even to discover a general
method of solving, the problem of finding any number of integral values of
%, y satisfying the above equation, .wherein 4 is any integral number not
a square. But Fermat rediscovered the problem and was perhaps the first

1 Op. cit., Oewvres de Lagrange, I11. p. 775. 2 Ibid. p. 784. 3 Jbid. p. 788,

4 QOeuwvres de Fermat, 11. pp. 235—240.

5 0p. cit., Ocwwres de Lagrange, 111. p. 790.
8 See Oeuvres de Fermat, 11. pp. 231, 238 sqq.
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to assert that the general solution is always possible whatever be the
(non-square) value of 4. The equation has a history of over zoo00 years,
and that history, even in outline, requires, as it has now obtained, a book
to itself'. This note will therefore be confined, practically, to recalling, in
the briefest possible way, the recorded stages anterior to Fermat, and then
to setting out somewhat fully the passages in Fermat's writings which throw
the most light on his connexion with the subject.

The Pythagoreans.
We have seen (p. 117 above) that the Pythagoreans had already
discovered a general solution of a particular equation of this type, namely

28~ =+1,
by which all the successive values of x, y satisfying the equation were
ascertained. If x=p, y =g satisfies the equation 2x4°— 3° = + 1, they proved
that the equation 2x®—3*=TF 1 is satisfied by

H=p+q, 1=2p+g,
the equation 2x?—3*=+ 1 again by
br=htqn fa=2p1+ 4,
and so on. As p=1, ¢=1 satisfies 24°—?=+1, we have all the suc-
cessive solutions of 22® —3*=+ 1 by forming (#,, 1), (e, ¢) etc. in accord-
ance with the law.

Archimedes.

The solution of the above equation by the Pythagoreans was evidently
used in order to obtain successive approximations to ,/2.

Consequently, when we find Archimedes giving, without explanation, the
fractions $33 and 3351 as being approximately equal to ,/3, the hypothesis of
Zeuthen and Tannery that he arrived at these approximations by obtaining
successive solutions of equations of a similar form, but with 3 substituted
for 2, is one of the most natural that have been suggested®. The equations
are in this case

x - 3h=1,
8 —3yi=-2.

Tannery shows how the law for forming successive solutions of such
simple cases as these can easily be found when we have found by trial
(which is not difficult) the three simplest solutions. If we take the more
general equation

F—ap=7

1 H. Konen, Geschichte der Gleickung 12— Di=1, Leipzig (S. Hirzel), rgor.

2 Zeuthen, ** Nogle hypotheser om Arkhimedes kvadratrodsberegning,” 7idsskrift for
Mathematik, V1. Raekke, 3. Aargang, pp. 150 sqq.; P. Tannery, “Sur la mesure du cercle
d’Archiméde” in Mémoires de In soc. des sciences phys. et nat, de Bordeaux, 11¢ Sér. 1v.
1882, p. 303; see Giinther, ““Die quadratischen Irrationalititen der Alten und derer;
Entwickelungsmethoden” in Abkandlungen sur Gesch, der Mathematik, Heft 1v. 1882,
pp- 87-91; Konen, 0p, cit. p- 15¢ .
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of which x =2, y=g¢ is a known solution, and put
P=ap+ By, q=vp+8,
it is sufficient to know the three simplest solutions in order to find a, 3, v,
8; for, substituting the values of (, ¢), (21, ¢1) and (#,, ¢2) where (2, ¢5)
are formed from (2, ¢,) by the same law as (2, ¢,) are formed from (, ¢),
we have four simultaneous equations in four unknown quantities. Taking
the particular equation
x—3y=1,
we easily find the first three solutions, namely (p =1, g=0), (A1 =2, 51 =1)
and (#y=17, g, = 4), whence
2 =ua, 1=7,
7=2a+P, 4=2y+§,
and a=2, =3, y=1, 8=2, so that
Hh=22+30, n=p+2g.

But there is evidence that Archimedes dealt with much more difficult
equations of the type, for (as stated above, p. 123) the Cattle-Problem
attributed to him requires us to solve in positive integers the equation

**—4729494)° = 1.

There is this difference between this equation and the simpler ones,
above that, while the first solutions of the latter can be found by trial,
the simplest solution of this equation cannot, so that some general method,
e.g. that of continued fractions, is necessary to find even the least solution
in integers. Whether Archimedes was actually able to solve this particular
equation is a question on which there is difference of opinion; Tannery
thought it not impossible, but, as the smallest values of x, y satisfying the
equation have 46 and 41.digits respectively, we may, with Giinther, feel
doubt on the subject’. There is, however, nothing impossible in the
supposition that Archimedes was in possession of a general method of
solving such equations where the numbers involved were not too great for
manipulation in the Greek numeral notation.

Diophantus.
Tannery? was of opinion that Diophantus dealt with the equation
x*—Ar=1
somewhere in the lost Books of the A»itkmetica. Diophantus does indeed
say (Lemma to VI 15) that, if @, & are any numbers and ax* — 4 is a square
when x is given a certain value g, then other values of x greater than p can
also be found which have the same property; and Tannery points out that

! Giinther, 0p. c#t., pp. 92-93 note. Cf. Konen, op. cit., p. I4.
? Tannery, ‘‘L’Arithmétique des Grecs dans Pappus” in Mmoires de la soc. des
sciences phys. et nat. de Bordeaux, 11® Sér. ul., 1880, pp. 370 sq.
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we can, by making suppositions of the same kind as Diophantus makes,
deduce a more general solution of the equation

B—Ayi=1
when one solution (g, ¢) is known.
Put Pr=mx—p, p=%+4,
and suppose

P2 — A= mx*—empx + P — Ax* ~ 2dgx — Ag*=1;

therefore (since p* — Ag*= 1)
mp +Ag
2 w—4’

and, by substitution in the expressions for p,, ¢;, we have

(m2+A)_ﬁ+ 2Amq 2mp +(m2+A)g
m*— A n= m*— A
and in fact p' — Ag*=1.
If an integral solution is wanted, one way of obtaining it is to substitute

#[v for m where #*— Ar*=1, ie. where %, v is another solution of the
original equation, and we then have

=@+ A p+ 2Auvg, ¢,=2puv + (1 + AP q.

But this is all that we can get out of Diophantus as we have him, and
it will be observed that here too we must have ascertained two solutions of
the one equation, or one solution of it and a solution of an auxiliary equation,
before we can apply the method™

1 It may be observed that, in the particular case of the equation #2-33%2=1, the
assumption of #, » satisfying the equation will not enable us to obtain from the formula

Hr=(2+ A2 p+2duvg, q=2puv+ (22+ A22)g

above given the simpler formula otherwise obtained by Tannery (p. 279 above), namely

h=2pt3g, =pteg;
for, if ( #1, g1) is to be a different solution from (2, ¢), we cannot make #=1, =0, but
must take =2, =1, whence, putting 4 =3, we obtain

H=1pt12, 1=4p+17¢,
which is the same as g, g2, the next solution to gy =2p+3¢, s1=p+2¢.

In order to get the latter we have to take #, v satisfying, not x2~332=1, but
a2-3y2= 2.

The values =1, =1 satisfy x2—332= - 2, and
(8 +39%) p+ buzg _ 4p+ Gq

J’l 02— 3712 (21’4“39):
wopt (P +32%g _2ptag_ .
n= u2—3112 —a (?‘}‘ZY) B

and of course 1= +(29+3¢), ¢1= +(#+2¢) can be taken, since they equally satisfy
2= 3l=1.
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The Indian Solution.

If the Greeks did not accomplish the general solution of our equation,
it is all the more extraordinary that we should have such a general solution
in practical use among the Indians as early as the time of Brahmagupta
(born 508 A.p.) under the name of the “cyclic method.” Whether this
method was evolved by the Indians themselves, or was due to Greek
influence and inspiration, is disputed. Hankel held the former view?;
Tannery held the latter and showed how, from the Greek manner of
deducing from one approximation to a surd a nearer approximation, it is
possible, by simple steps, to pass to the Indian method®% The question
presumably cannot be finally decided unless by the discovery of fresh
documents; but, so far as the other cases of solution of indeterminate
equations by the Indians help to suggest a presumption on the subject,
they are, I think, rather in favour of the hypothesis of ultimate Greek
origin. Thus the solution of the equation ax— &y = given by Aryabhata
(born 476 A.p.) as well as by Brahmagupta and Bhaskara, though it
anticipated Bachet’s solution which is really equivalent to our method of
solution by continued fractions, is an easy development from Euclid’s
method of finding the greatest common measure or proving by that process
that two numbers have no common factor (Eucl. vIL 1, 2, X. 2, 3)% and
it would be strange if the Greeks had not taken this step. The Indian
solution of the equation xy =ax+ &y + ¢ by the geometrical form in which
it was clothed, suggests Greek origin®.

The “cyclic method ” of solving the equation
x*—Ay=1

is found in Brahmagupta and Bhaskara® (born 1114 A.D.) and is well
described by Hankel, Cantor and Konen®.

The method is given in the form of dogmatic rules, without any proof
of the assumptions made, but is equivalent to a preliminary lemma followed
by the solution proper.

1 Hankel, Zur Geschichte der Math. im: Alterthum und Mittelalter, pp. 203-4.

2 Tannery, ‘“Sur la mesure du cercle d’Archiméde” in Mém. de lo soc. des sciences
Phys. et nat. de Bordeaux, 11° Sér. 1v., 1882, p. 325; cf. Konen, pp. 27-28; Zeuthen,
¢“L’Oeuvre de Paul Tannery comme historien des mathématiques” in Bzbliotheca Mathe-
matica, Vig, 1905-6, pp. 271-273.

8 G. R. Kaye, “ Notes on Indian mathematics, No. 2, Aryabhata” in Journal of the
Asiatic Society of Bengal, Vol. 1v. No. 3, 1908, pp. 135~138.

4 Cf. the description of the solution in Hankel, p. 199; Cantor, Gesck. d. Matk. 13,
p- 631.

¥ The mathematical chapters in the works of these writers containing the solution in
question are contained in H. T. Colebrooke’s digebra with arithmetic and mensuration
J7om the Sanskrit of Brakmegupta and Bhaskara, London, 1817.

§ Hankel, pp. 200-203; Cantor, Iy, pp. 632-633 ; Konen, op. cit., pp. 19-26.
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Lemma.
If x=p, y=¢ be a solution of the equation
Ay* + 5=
and x =2, y=4 a solution of the equation
Ay +5' = a?,
then, say the Indians, x =’ + Agq’, y =p¢ + #'¢ is a solution of the equation
Ay + 55’ =22
In other words, if
A +s =p*
then A(pg +29) +s5'=(pp' + 4g7)*

This is easily verified’.
In particular, taking s=s", we find, from any solution x=p, y=¢ of

the equation
A yz + 5= x2,

a solution x =2* + Ag*, y=2pg of the equation
Ay + 2= x>
Again, particular use of the lemma can be made when s==%1 or s=1+ 2.
(@) Ifs=+1,and x=p, y=¢is a solution of
Ay +1=2a2
then x =2* + A¢% y = 2p¢ is another solution of the same equation.
If s=—1,and x=p, y=¢is a solution of
Ay —1=2a?
then x = P+ Ag% v =2pgis a solution of
Ay +1 =2
() Ifs=+2,and x=p, y=gis a solution of
Ay +2=a7
then x=2* + 4¢%, y=2pq is a solution of
Ay + 4 =2
In this case, since 2pg is even, the whole result when the values of

z, y are substituted must be divisible by 4, and we have x =} (#* + 4¢?),
¥ =pg as a solution of the equation

AP+ 1=a%

1 For, since s=22— Ag?, s'=4"2— Ag'%,
s'=(£2- 4¢%) (#%- 47?)
=(2)2+(4g9)?- 4 (29 -4 (#9)* .
={(2pV=2dppaq +(490)% - A {(80)? = 28890’ +(#9)%
=(pp' £Agq' P~ A (29 £5'9)%
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Solution proper of the equalion %*—Ay*=1.

We take two numbers prime to one another, 2, ¢, and a third number s
with no square factor, such that

AF +s=p 2
the numbers being also chosen (in order to abbreviate the solution) such
that s is as small as possible, though this is not absolutely necessary.
(This is a purely empirical matter; we have only to take a rough ap-
proximation to ,/4 in the form of a fraction p/g.)

[It follows that 5, ¢ can have no common factor ; for, if § were a
common factor of s, ¢, it would also be a factor of 2 and #% ¢* would have
a common factor. But 2, ¢ are prime to one another.]

Now find a number » such that
Pgr
s

H=+ is a whole number.

[This would be done by the Indian method called cuzfaca (* pulveriser ”),
corresponding to our method by continued fractions.]

Of the possible values of » a value is taken which will make »*—4
as small as possible.

Now, say the Indians, we shall have:

=% is an integral number,
and Ag2+ s, = (_ﬁ_ql;—_x> =p2

(Again the proofs are not given; they are however supplied by Hankel'.)

1 Since q1=1’ _';qr is an integral number, all the letters in g15=p+¢» represent
integers.
Further, s=p2-Ag?;
therefore, eliminating s, we have
a1 (B -Ag)=p+gr,

or 2 - 1)=¢(r+Agq).
Since g, 7 have no’ common factor, ¢ must divide gg; — 1; that is,

-t
4

=an integer.

We have next to prove that s;=(»% - 4)/s is an integer.

Now Ao s —PP-Ag* P -appists
g B ¢

s(gi®s— 251+ 1)
7

~and, since s, ¢ have no common factor, it follows that

¥ -2pp+1_2-4
# s
Also  s=md_o¥k-pnrr g (P-A¢) -wpptr_ (pp-tNE_ L
1 s P = P2 = 7 1%

, since s=p%—~Adg?;

therefore is an integer,

is an integer.




284 SUPPLEMENT

We have therefore satisfied a new equation of the same form as that
originally taken'.

We proceed in this way, obtaining fresh results of this kind, until we
arrive at one in which s=+1 or + 2 or + 4, when, by means of the lemma,
we obtain a solution of

Ay +1=x%

Example. To solve the equation 67)° + 1 =%

Since 82 is the nearest square to 67, we take as our first auxiliary equation
67.12-3=8%sothat p=8,g=1, s=—3.

Thus ¢, =- §+7 We put »=74, which makes ¢, an integer and at the
same time makes § = - Zu—?—s] =6 as small as possible.
Thus n==5 H=(pn-1)lg=-41,
and we have satisfied the new equation
67.5%+6=41"
Next we take g, = 4Lz_5_f_2, and we put 7,=5, giving ¢;=11; thus

7.2
o —
$a =

6
\ z 7 =—1, and ?2=(?1¥2— I)/ﬁ =90, and
' 67.(11)*—7=90%

Next gs=—9—°—171—n3, and we put 7= 9, giving ¢ =—27 ; therefore
75— 6 —go.27—1
S3= 3_7 7=—2, ?3=——9—-;'———-‘=—221, and

67.(27) = 2=(221)%

As we have now brought our s down to 2, we can use the lemma, and
67 (2. 27. 2210 + 4= (2217 + 67 . 27%)},
or 67 (11934)*+ 4 = (97684)%;
therefore, dividing by 4, we have

67 (5967)° + 1 = (48842)"
Of this Indian method Hankel says, “It is above all praise; it is
certainly the finest thing which was achieved in the theory of numbers

! Hankel conjectures that the Indian method may have been evolved somewhat in
this way. .
If Ag2+s5=p2 is given, and if we put 4¢2+5 =2, then
A (27 -2 9)+s5'=(2p - 499
Now suppose £, ¢’ to be determined as whole numbers from the equation gy’ - p'g=1,
and let the resulting integral value of gp’— 4gg’ be 7.
Then A4 +s55'=72, and accordingly »2— 4 must be divisible by s, or &'=(4 -#2)/s is
a whole number.
Eliminating #’ from the two equations in 2/, ¢, we obtain
¢=(2+g (P - 49")=(p+47)s5,
and, as stated in the rule, » has therefore to be so chosen that (#+¢7)/s is an integer.
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before Lagrange” ; and, although this may seem an exaggeration when we
think of the extraordinary achievements of a Fermat, it is true that the
Indian method is, remarkably enough, the same as that which was redis-
covered and expounded by Lagrange in his memoir of 1768'. Nothing is
wanting to the cyclic method except the proof that it will in every case
lead to the desired result whenever 4 is a number which is not a square;
and it was this proof which Lagrange first supplied.

Fermat.

As we have already said, Fermat rediscovered our problem and was

the first to assert that the equation

x—Adyi=1,
where A4 is any integer not a square, always has an unlimited number
of solutions in integers.

His statement was made in a letter to Frénicle of February, 16572
Fermat asks Frénicle for a general rule for finding, when any number not a
Square is given, squares whick, wken they are respectively multiplied by the
given number and wunity is added to the product, give squares. If, says
Fermat, Frénicle cannot give a general rule, will he give the smallest value
of y which will satisfy the equations 613°+ 1 = &? and 109y*+ 1 =73

At the same time Fermat issued a challenge to the same effect to
mathematicians in general, prefacing it by some remarks which are worth
quoting in full4,

“There is hardly any one who propounds purely arithmetical questions,
hardly any one who understands them. Is this due to the fact that up to
now arithmetic has been treated geometrically rather than arithmetically?
This has indeed generally been the case both in ancient and modern
works; even Diophantus is an instance. For, although he has freed
himself from geometry a little more than others have in that he confines
his analysis to the consideration of rational numbers, yet even there
geometry is not entirely absent, as is sufficiently proved by the Zetezica
of Vieta, where the method of Diophantus is extended to continuous
magnitude and therefore to geometry.

“Now arithmetic has, so to speak, a special domain of its own, the
theory of integral numbers. This was only lightly touched upon by Euclid
in his Zlements, and was not sufficiently studied by those who followed
him (unless, perchance, it is contained in those Books of Diophantus of

1 ““Sur la solution des problémes indéterminés du second degré” in Mimoires de
Pl dcad. Royale des Sciences et Belles-Lettres de Berlin, t. XXUI. 1769 (= Oeuvres de
Lagrange, 11. pp. 377 sqq.). The comparison between Lagrange’s procedure and the
Indian is given by Konen, pp. 75-77.

2 Oeuyres de Fermat, 11. pp. 333—4.

3 Fermat evidently chose these cases for their difficulty ; the smallest values satisfying
the first equation are y=226153980, x=1766319049, and the smallest values satisfying
the second are y=15140424455100, x=158070671986249.

4.\ Oenvres de Fermat, 11. pp. 334—5.
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which the ravages of time have robbed us); arithmeticians have therefore
now to develop it or restore it.

“To arithmeticians therefore, by way of lighting up the road to be
followed, I propose the following theorem to be proved or problem to
be solved. If they succeed in discovering the proof or solution, they will
admit that questions of this kind are not inferior to the more celebrated
questions in geometry in respect of beauty, difficulty or method of proof.

“ Given any number whatever which is not a square, there are also given
an infinite number of squares such that, if the square is multiplied into the
given number and unity is added to the product, the result is a squazre.

“ Example. Let 3, which is not a square, be the given number; when
it is multiplied into the square 1, and 1 is added to the product, the result
is 4, being a square.

“The same 3 multiplied by the square 16 gives a product which, if
increased by 1, becomes 49, a square.

“And an infinite number of squares besides 1 and 16 can be found
which have the same property.

“But I ask for a general rule of solution when any number not a square
is given.

“ E.g. let it be required to find a square such that, if the product of the
square and the number 149, or 109, or 433 etc. be increased by r, the
result is a square.”

The challenge was taken up in England by William, Viscount Brouncker,
first President of the Royal Society, and Wallis®. At first, owing apparently
to some misunderstanding, they thought that only rational, and not neces-
sarily integral, solutions were wanted, and found of course no difficulty in
solving this easy problem. Fermat was, naturally, not satisfied with this
solution, and Brouncker, attacking the problem again, finally succeeded in
solving it. The method is set out in letters of Wallis® of 17th December,
1657, and 3oth January, 1658, and in Chapter xcviir of Wallls’ 4/gebra ;
Euler also explains it fully in his 4/gebra®, wrongly attributing it to Pell*.

! An excellent summary of the whole story is given in Wertheim’s paper ¢ Pierre
Fermat’s Streit mit John Wallis” in Abkandlungen sur Gesch. der Matk. 1X. Heft
(Cantor-Festschrift), 1899, pp. 557-576. See also Konen, pp. 29-43.

2 Qeuvres de Fermat, 111. pp. 457480, 490~503. Wallis gives the solution of each
of the three difficult cases last mentioned.

3 Euler, A/gebra, Part 11. chap. VIL

4 This was the origin of the erroneous description of our equation as the ‘¢ Pellian ”
equation. Hankel (p. 203) supposed that the equation was so called because the solution
was reproduced by Pell in an English translation (1668) by Thomas Brancker of Rahn’s
Algebra; but this is a misapprehension, as the so-called ¢‘ Pellian” equation is not so
much as mentioned in Pell’s additions (Wertheim in Bibliotheca Mathematica, 11g,
1902, pp. r24~6; Konen, pp. 33—4 note). The attribution of the solution to Pell was a
pure mistake of Euler’s, probably due to a cursory reading by him of the second volume
of Wallis’ Opera where the solution of the equation ax2+ 1 =32 is given as well as informa-
tion as to Pell’s work in indeterminate analysis. But Pell is not mentioned in connexion
with the equation at all (Eunestrom in Bibliotheca Mathematica, 11z, 1902, p. 206).
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Fermat appears to have been satisfied with the actual solution’, but
later he points out that, although Frénicle and Wallis had given many
particular solutions, they had not supplied a general progf* (i.e. presumably
that the solution is always possible and that the method will always lead
to the solution sought for). He says, “I prove it by the method of
descente applied in a quite special manner....The general demonstration
will be found by means of the descente duly and appropriately applied.”

Further on, Fermat says he has discovered “general rules for solving
the simple and double equations of Diophantus.”

“ Suppose, for example, that we have to make

2x + 7967 equal to a square.

«J have a general rule for solving this equation, if it is possible, or
discovering its impossibility, and similarly in all cases and for all values
of the coefficient of x* and of the absolute term.

“Suppose we have to solve the double-equation

2% + 3 = square
2% + § = square } )

¢ Bachet boasts, in his commentary on Diophantus? of having dis-
covered a rule for solving in two particular cases; I make it general for
all kinds of cases and can determine, by rule, whether it is possible or not*.”

Thus Fermat asserts that he can solve, when it is possible to solve
it, and can determine, by a general method, whether it is possible or
impossible to solve, for any particular values of the constants, the more
general equation

' x?— A4y*=B.

This more general equation was of course solved Ly Lagrange. How

Fermat solved it we do not know. Itis true that he has sometimes been

Y

1 Letter of June, 1658, to Xenelm Digby, Oeuvres de Fermat, 11. p. 402.

2 ¢ Relation des nouvelles découvertes en la science des nombres,” Oenwres, 11. p. 433.

3 See on Diophantus 1V. 39, and above, pp. 80-82.

4 With this should be compared Fermat’s note on Dioph. 1v. 39, where he says,
similarly:

¢ Suppose, if you will, that the double-equation to be solved is

2x+ 5 =square
6x+ 3 =square } )

¢“ The first square must be made equal to 16 and the second to 36; and others will be
found ad infinitum satisfying the question. Nor is it difficult to propound a general rule
for the solution of this kind of question.”

No doubt the double-equation in this case, as in the others referred to in the “Relation,”
would be transformed into the single equation

22— 4:2=B

by eliminating . I think this shows how Fermat was led to investigate our equation:
a question which seems to have puzzled Konen (p. 29), in view of the fact that the actual
equation is not mentioned in the notes to Diophantus, The comparison of the two places
seems to make the matter clear. For example, the two equations mentioned above in
this note lead to the equation #2—342= —12, and the solution 7=6, =4 is easily
obtained. .
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credited with the very same solution of the equation %~ A4)*=1 as that
given by Brouncker and Wallis; but this idea seems to be based on a
misapprehension of a sentence in Ozanam’s Agebra (1702). Ozanam
gives the Brouncker-Wallis solution as “une régle générale pour résoudre
cette question, qui est de M. de Fermat”; and possibly the ambiguity
of the reference of “qui” may have misled Lagrange and others into
supposing that the “régle” was due to Fermat.

For the history of the equation after Fermat’s time I must refer to
other works and particularly that of Konen® Euler, Lagrange, Gauss,
Jacobi, Dirichlet, Kronecker are the great names associated with it. I
will only add a few particulars with regard to Euler® as coming nearest
to Fermat.

In a letter to Goldbach® of roth August, 1730, Euler mentions that he
requires the solution of the equation x*—A4)*=1 in order to make
ax®+bx +¢ a complete square. Fe goes on to observe that the problem
of solving x*— A4y*=1 in integers was discussed between Wallis and
Fermat and that the solution (which he already attributes to Pell) was
set out in Wallis’ Ogera. There is an indication in this very passage that
Euler had then only read the Brouncker-Wallis correspondence cursorily,
for he speaks of the equation 109)?+ 1 =22 as being the most difficult
case solved by them, whereas the most difficult examples actually solved
were 43308+ 1 =aand 313)°+ 1 =%

A paper of a year or two later contained the proof that the evolution
of successive solutions of @x®+ 4x + =" when one is known requires that
one solution of @€ + 1 =+ must also be known. Similarly, in his 4 gebra®,
he shows that the solution of the latter equation is necessary for finding all
the possible solutions of the equation ax® + 4 =37, the importance of which
remark is emphasised by Lagrange®.

In the paper quoted in the last paragraph Euler finds any number
of successive solutions of ax®+ dx+c=3% and the law for forming them,
when we are given one value z of x which will make as®+dx+c a
complete square and one value p of £ which will make 2£ + 1 a complete
square, or, in other words, when a#® + éz + c=m® and ap*+1=4. He
then takes the particular case ax®+ bx+ 42 =" where (since x=o, y=d
satisfies the equation) we can substitute o for # and 4 for # in the
expressions representing the successive solutions of a2 + dx + ¢c= 9%, Then
again, putting =0 and Z=1, he is in a position to write down any

! Konen, 0p. cit.; cf. Cantor’s Geschichte der Mathematik, 1v. Abschnitt XX., as
regards Euler and Lagrange.

2 Cf. Konen, op. czt. pp. 47-38.

3 Correspondance mathématique et physigue de quelgues célébres géometyes du XNVI1122me
siecle, publiée par P. H. Fuss, Pétersbourg, 1843, I. P- 37-

¢ *De solutione problematum Diophanteorum per numeros integros” in Commentarii
Acad. Petropol. 1732-3, V1. (1738), pp. 175 sqq.= Commentationes arithm. 1. PP- 4-10.

5 Algebra, Part 11. ch, V1.
6 Additions to Euler’s 4sedra, ch. viIL
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number of successive solutions of @£’ + 1 =% when one solution ¢£=p,
n=g¢ is known. The successive values of { are

0, By 209, 497~ 2, .-

and the corresponding values of » are

I, § 2¢°— 1, 47° = 3¢, - ,
the law of formation being in each case that, if 4, B be consecutive values
in either series, the next following is 295 — 4.

The question then arises how to find the first values p, ¢ which will
satisfy the equation. Euler first points out that, when & has one of many
particular forms, values of g, # can at once be written down which satisfy
the equation. The following are such cases with the obvious values of
pandg.

a

e—1; =1, g=¢
a=e+1; p=2e g=2&+1,
a=a%"+ 2087 p=¢, g=adt't1
(where a may even be fractional provided a¢’-! is an integer),
a=(a + Be') + 20887 + 2Bt p=¢ g=alt+ R+,
a = Lo £ a1 ; p=re g=akdt £ 1.
But, if @ cannot be put into such forms as the above, then the method
explained by Wallis must be used. Euler illustrates by finding the least
values 2, ¢ which will satisfy the equation 31£2+ 1 =7% and then adds a

table of the least solutions of the equation @+ 1 =* for all values of
@ (which are not squares) from 2z to 68.

The important remark follows (§ 18) that the above procedure at once
gives a very easy way of finding closer and closer approximations to the
value of any surd ./a. For, since ag® + 1 =¢% we have \Ja=,/(¢*- 1)/2,
and, if ¢ (and therefore p also) is large, ¢/ is a close approximation to ,/a;
the error is not greater than 1/(2p%/e). Euler illustrates by taking ,/6.
The first solution of 64 + 1 =1 (after =0, n=1)is p=2,¢g=35. Taking
then the series of values above given for aé? + 1 = 7%, namely

£=o, p, 2p9, 498*—p, ... 4, B, 29qB— A4,
=1, ¢, 2¢°— 1, 4¢°—3¢, ... E, F, 29F — E,
and substituting p =2, ¢=35, the successive corresponding values 7, Q
of £ % respectively become
P=o0, 2, 20, 198, 1960, 19402, 192060, 1901198, ...
Q=1, 5, 49, 485, 4801, 47525, 470449, 4656965, ...
and the successive values Q/2 are closer and closer approximations to /6.
1t will be observed that the method of obtaining successive approximations

H. D. 19
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to J/a from successive solutions of a*+ 1 = 7 is the same as that which,
according to the hypothesis of Zeuthen and Tannery, Archimedes used in
order to find his approximations to /3.

The converse process of finding successive solutions of @¢® + 1 =® by
developing J/a as a continued fraction did not apparently occur to Euler
till later. In two letters' to Goldbach of 4th Sept. 1753 and 23rd Sept.
1755 he speaks of a ““certain ” method and of improvements which he had
made in the “Pellian” method but gives no details. His next paper on
the same subject?® returns to the problem of finding all the solutions of
ax® +bx+c=9" or ax*+b=y* when one is known, and in the course of
his discussion of the latter he arrives at “the following remarkable theorem
which contains within it the foundation of higher solutions.

«If x=a, y =05 satisfies ax® +p =37
and & =¢ y=d4d satisfies aa®+ g =37
then x =bc+ ad, y=bd * aac satisfies ax® + pg = )7

That is to say, Euler rediscovers and recognises the importance of the
lemma to the Indian solution, as Lagrange did later.

More important is the paper of about three years later® in which Euler
obtained the solution of the equation x?— 43*=1 by the process of con-
verting »/4 into a continued fraction, this course being the reverse of that
which was, according to the hypothesis of Tannery and Zeuthen, followed
by Archimedes, and to the feasibility of which Euler had called attention
in 1732-3. He begins by stating, without proof, that, if ¢*=/#*+ 1, then
¢/ is an approximation to .//, and ¢/p is “such a fraction as expresses
the value of /7 so nearly or exceeds it so little that a closer approximation
cannot be made except by bringing in greater numbers.” Next he develops
certain particular surds, namely ,/(13), ./(61) and ,/(67), after which he
states the process generally thus. If ,/z be the given surd and z the root
of the greatest integral square which is less than z, the process will give

the successive quotients g, &, ¢, 4, being found by means of the process
shown in the following table :

L Correspondance etc., ed. Fuss, pp. 614 sq., 629 5q.
. 2 De resolutione formularum quadraticarum indeterminatarum per numeros integros”
in Nowi Commentarii Aced. Petropol. 1762-3, 1X. (1764), pp- 3 $qq.= Commentat. arithm.
L pp. 297-315.

8 “De usu novi algorithmi in problemate Pelliano solvendo” in Nowi Commentaris
Acad. Petropol. 1765, X1. (1767), pp. 28-66= Commentat. arithm. 1. pp. 316-336. The
paper seems to have been read as early as 15 Oct. 1759.
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Take and It follows that
I. A=v . ‘a=z—A2=z—'a2 : aézH_A
. B=as-d p:z'fz=1+a(,4-3) béz-jg—-
1L C=gi-B 'y=.z_ﬁcg=a+b(B—C) c_s_ﬂvc
IV. D=ye-C 5="L7D-2=p+c(b-p) d;”;D
V. E=8d-D e=z_8E2=7+d(D—E) eé’“:E
ete. ete.

(This is of course exactly the process given in text-books of Algebra,
¢.g- Todhunter’s.)

Euler now remarks as follows.

1. Thenumbers 4, B, C, D ... cannot exceed »; the first, 4, is equal
to z; since ¢ = (v + 4)/a, ea — 4 =B = v, and so on.

2. Unless where one of the numbers a, 8, v, 8...1s equal to unity,
none of the corresponding quotients &, 4, ¢, 4 ... can exceed w.

3. When we arrive at a quotient equal to 22, the next quotients will be
a, b, ¢, d ... in the same order.

4. Similar periods occur with the letters a, 8, y, 8... and the term
of this series corresponding to a quotient 2 is always 1.

The successive convergents to the continued fraction are then investi-
gated and it is shown that, for successive convergents ¢/ beginning
with o/1,

F—zpt=—a, +B, —y, +8, —eetc. in order.
It follows that the problem is solved whenever one of the terms with a
positive sign, 8, 8, { etc., becomes 1.

Since unity for one of the terms a, S, y, 8 corresponds to the quotient
27; and each fresh period begins with 27, the first period will produce
a convergent ¢g/p such that ¢>— 3° =+ 1; and the negative sign will apply
if the number of quotients constituting the period is odd, while the positive
sign will apply if the number of quotients is even, In the latter case we
have a solution of our equation at once; if, however, ¢°— zp*=~1, we
must go on to the end of the second period in order to get an even number
of quotients and so satisfy the equation ¢*—zp*=+ 1. Or, says Euler,
instead of going on and completing the second period, we can satisfy
the latter equation more easily thus.

Suppose ¢*— z5° = — 1, and assume

P =2pq, ¢ =2¢"+1.

Then 9 —2p't = 49" + 4G + 1 — 43p°"

=144 (¢ )
=1

19—2
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[This last derivation of a solution of y*—s4* = 1 from a known solution
of 32— zx® = — 1 is of course the same as the Indian method of doing the
same thing, for they assumed 2’ = 2p¢, ¢’ = ¢*+ 28% and ¢* + 28° = ¢*+(¢° + 1).]

‘We thus see that in Euler’s method there is everything necessary to the
complete solution of our equation except the proof that it must always lead
to the desired result. Unless it is proved that the quotient 27 will actually
occur in the development of the continued fraction in every case, we cannot
be sure that the equation has any solution except £ =0, y = I.

I cannot, I think, do better than conclude by a quotation from
H. J. S. Smith, the first part of which is well known?® ¢ Euler observed
that [if 72— DU®*=1] T/U is itself necessarily a convergent to the value
of ,/D, so that to obtain the numbers 7" and U it suffices to develop /D
as a continued fraction. It is singular, however, that it never seems to
have occurred to him that, to complete the theory of the problem, it was
necessary to demonstrate that the equation is always resoluble and that
all its solutions are given by the development of ,/D. His memoir
contains all the elements necessary to the demonstration, but here, as
in some other instances, Euler is satisfied with an induction which does
not amount. to a rigorous proof. The first admissible proof of the re-
solubility of the equation was given by Lagrange in the Mélanges de la
Société de Twrin, Vol. 1v. p. 41°% He there shows that in the development
of /D we shall obtain an infinite number of solutions of some equation of
the form 7?—DU%*=4 and that, by multiplying together a sufficient
number of these equations, we can deduce solutions of the equation
T*-DU®=1. But the simpler demonstration of its solubility which
is now to be found in most books on algebra, and which depends on
the completion of the theory (left unfinished by Euler) of the development
of a quadratic surd as a continued fraction, was first given by Lagrange
in'the Hist. de P Académie de Berlin for 1767 and 1768, Vol. XxIII. p. 272,
and Vol xx1v. p. 2364 and, in a simpler form, in the Additions to Euler’s
Algebra®, Art. 37.”

1 ¢“Report on the Theory of Numbers, Part 111.,” British Association Reports for 1861,
London, 1862, p. 315= Collected Works, Vol. 1., Oxford, 1894, p. 192.

2 It is given in Cantor, Gesck. d. Math. 1v. 1908, p. 159, and referred to by Konen,
0p. cit. p. 5I.

3 ¢¢Solution d’un probléme d’Anthmetxque,” finished at Berlin on z2oth Sept. 1768
and published in Miscell Zaurinensia, 1V. 1766-1769= Oeuvres de Lagrange, 1.
pp- 671-731.

4. The references are: “‘Sur la solution des problémes indéterminés du second degré,”
read 24th Nov. 1768 and published in the Mémoires de I’ Académie Royale des Sciences
et Belles-lettres de Berlin, Vol. XXIIL., 1769, pp. 165-310= Oeuvres de Lagrange, 1L
PP- 377-535;  Nouvelle méthode pour résoudre les problémes indéterminés en nombres
entiers,” read 21st June, 1770, and published in Mimoires de I’Académie Royale des
Sciences et Belles-lettres de Berlin, Vol. XXIV., 1770, pp. 181~256 = Ocuvres de Lagrange,
II. pp. 655-726.

5 The Additions of Lagrange were first printed as an appendix to Zlmens d’ Algibre
par M. L. Euler traduits de Pallemand, Vol. 1., Lyons, 1774; second edition, Daris,
1798 ; they were thence incorporated in Oeuvres de Lagrange, vil. pp. 158 sqq.
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SECTION IIL
THEOREMS AND PROBLEMS ON RATIONAL RIGHT-ANGLED TRIANGLES.

1. On No. 20 of the problems about right-angled triangles added
by Bachet to Book vi (“To find a right-angled triangle such that its
area is equal to a given number”) Fermat has a note which shall be
quoted in full, not only for the sake of the famous theorem enunciated
in it, but because, exceptionally, it indicates the lines on which his proof
of the theorem proceeded.

¢“The area of a right-angled triangle the sides of which
are rational numbers cannot be a square number.

“This proposition,” which is my own discovery, I have at length
succeeded in proving, though not without much labour and hard thinking.
I give the proof here, as this method will enable extraordinary develop-
ments to be made in the theory of numbers.

“If the area of a right-angled triangle were a square, #iere would exist
two biquadrales the difference of whick would be a square number. Con-
sequently #iere would exist two square numbers the sum and difference of
which would both be squares. ‘Therefore we should have a square number
which would be equal to the sum of a square and the double of another
square, while the squares of which this sum is made up would themselves
[z.e. taken once each] have a square number for their sum. Butif a square
is made up of a square and the double of another square, its side, as I can
very easily prove, is also similarly made up of a square and the double of
another square. From this we conclude that the said side is the sum of the
sides about the right angle in a right-angled triangle, and that the simple
square contained in the sum is the base and the double of the other square
the perpendicular.

“This right-angled triangle will thus be formed from two squares,
the sum and the difference of which will be squares. But both these
squares can be shown to be smaller than the squares originally assumed
to be such that both their sum and their difference are squares. Thus,
if there exist two squares such that their sum and difference are both
squares, there will also exist two other integer squares which have the same
property but have a smaller sum. By the same reasoning we find a sum
still smallet than that last found, and we can go on ad infinitum finding
integer square numbers smaller and smaller which have the same property.
This is, however, impossible because there cannot be an infinite series
of numbers smaller than any given integer we please.—The margin is too
small to enable me to give the proof completely and with all detail.

“ By means of these considerations I have also discovered and proved
that no triangular number except 1 can be a biguadrate.”
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As Wertheim says, it may have been by following out the indications
thus given by Fermat that Euler succeeded in proving the propositions
that &*~* and a*+y* cannot be squares, as well as a number of other
theorems connected therewith (Commentationes arithmeticae collectae, 1.
PP 24 5qq.; Algebra, Part 1. Chapter xur).

Zeuthen! suggests a method of filling out Fermat’s argument, thus.

The sides of a rational right-angled triangle can be expressed as

a2 +y7 22—y 2%,

As a common factor in the sides would appear as a square in the
number representing the area, we can neglect such a factor, and assume
that &% —3* and therefore also x +y and x—y are odd numbers and that
x, y are prime to one another, so that x, 3, £+, x —y are all prime to
one another. :

We have now to test the assumption that the area of the triangle

%y (# —7) (% +7)
is a square. If so, the separate factors must be squares, or
x=v y=7°
W+r=p, B —-1P=4%

(“ There would exist two biguadyates the diffevence of whick [1— v*] would
be @ square, and consequently there would exist two squares the sum and differ-
ence of which [1* + v°, u* — v*) would both be squares,” Fermat.)

From the last two equations we obtain

2i=p— = (p—g) (p+ ).

(“ Ve should have a square number whick would be equal to the sum

of a square and the double of another square | * = 20* + ¢*],” Fermat.)

Now p+¢ and g —g¢ are both even numbers because, on the above
assumptions, 2* and ¢* are both odd; but they cannot have any other
common factor except 2, since #* and 2* are prime to one another. It
follows therefore from the last equation that

2m?

?“'9:{ 2 9 ?‘9={
where # 1s an even number.
We obtain, therefore,

% Lt A = (m*)? + (n;)n .

N 2

n

2m?’

o

7
The whole numbers #* and S are therefore sides of a new right-angled

T i
triangle with the square area .
4

! Zeuthen, Geschichte der Mathematik im XV1. und XVIL, Jalrhundert, 1903, p. 163.
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(“If a square is made up of a square and the double of another square
[£* = 22® + ¢*], its side is, as I can very easily prove, also made up of a

square and the double of another square [ p=m+ 2(2)] From this we

conclude that the said side is the sum of the sides about the right angle
in a right-angled triangle, the square [°] being the base and the double of

2
the other square [2 (g) :l the perpendicular,” Fermat.)

That the sides of the new triangle are less than those of the original
triangle is_clear from the fact that the square on its hypotenuse #* or
x is a factor of one of the perpendicular sides of the original triangle'.

As now an infinite series of diminishing positive whole numbers is
impossible, the original assumption from which we started is also impossible.

It will be observed, as Zeuthen says, that the proof includes also the
proof of the fact that 2* —2* cannot be a square and therefore cannot be
a fourth power, from which it follows that the equation #*=7* + %* cannot
be solved in whole numbers, and consequently cannot be solved in rational
numbers either. '

The history of this theorem would not be complete without an account
of a “proof originating with Fermat” which Wertheim has reproduced?®
In the small paper of Fermat’s entitled “ Relation des nouvelles découvertes
en la science des nombres®” containing a statement of his method
of “‘diminution without limit” (descente infinie or indéfinie) and of a
number of theorems which he proved by means of it, there is a remark
that he had sent to Carcavi and Frénicle some proofs based on this
method. And, sure enough, Frénicle gives a proof by this method of
the theorem now in question in his “ Traité des triangles rectangles en
nombres®” Wertheim accordingly concludes that we have here a proof
of Fermat’s. A short explanation is necessary before we come to Frénicle’s
proof. ‘

We obtain a right-angled triangle 2, «, y in rational numbers (2= x? + »?)
if, @, 6 being any integers and a> 4, we put

. 2=+ x=a®-5, y=2ab.

If @ is prime to & and one of these numbers is even, the other odd, then
it is easily shown that the greatest common measure of x, ¥, z is 1.

In the right-angled triangle @® — 4* and 2ab are the perpendicular sides,

1 Zeuthen's inference at this point diverges slightly in form from what we actually find
in Fermat’s own statement of his argument. Fermat does not actually say that the new
right-angled triangle is a triangle in smaller numbers than the original triangle and with
the same assumed property, but that its formation gives us two new square numbers the
sum and difference of which are squares, and which are smaller than the two squares
originally assumed to have this property.

2 Zeitschrift fiir Math. u. Physik, hist. litt. Abtheilung XLIV. 1899, pp. 4-6.

3 Qenwres de Fermat, Vol. 11. pp. 431-6.
4 Mémoires de I’ Académie Royale des Sciences, V., Paris, 1729, pp. 83—166.
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and (a® - &) ab is the area. a, 4 are called the gemerating numbers (the
numbers from which the triangle is formed) and if ¢ is prime to 4, and one
of them is odd and the other even, so that x, y, 5 have no common factor
except 1, the triangle is called a primitive triangle.

If (a*— &%) ad is the area of a primitive right-angled triangle—and it
is enough to prove the proposition for such-—each of the three numbers
a*—#, a, b is prime to the other two. If, then, the product is a square
number, each of the three factors must be square, and in that case o®— #*
will be the difference between two fourth powers. The theorems

(1) the area of a right-angled triangle in rational numbers cannot be
@ square number, and

(2) the difference of two fourih powers cannot be a square,
accordingly state essentially the same fact.

The proof which Frénicle gives of the first of these propositions depends
on the following Lemmas.

Lemma 1. 7F ke 0dd perpendicular of a primitive vight-angled triangle
is a square number, theve exists a second primitive right-angled
triangle with smaller sides which has jfor its odd perpendicular
the root of the said square mumber.

If @® -2 =¢ it follows that @®=4+¢% so that a, 4, ¢ are the sides
of a right-angled triangle. The odd perpendicular of this second triangle
is ¢, for by hypothesis ¢ is odd; consequently the even perpendicular is
4, while @ is the hypotenuse. The triangle is “primitive” because a
common divisor of any two of the three numbers a, 4, ¢ would divide
the third, while by hypothesis @, 4 have no common factor except 1.
Next, the second triangle has smaller sides than the first, since c<c®
a<a®+ 0, b<2ab.

By this lemma we can from the triangle ¢, 40, 41 derive the triangle
3 4, 5, and from the triangle 225, 25312, 25313 the triangle 15, 112, 113

Lemma II. If in a primitive right-angled triangle the hypotenuse as
well as the even perpendicular were square, there would exist a
second primitive right-angled triangle with smaller sides which
would have for hypotenuse the root of the hypotenuse of the first,
Jor odd perpendicular a square number, and jor even perpendicular
the double of a square number. ]

Let the sides of the first triangle be a®+ /2% a®~ 4, 2ab. If 2a2d were

a square, @b would be double of a square; therefore, since a, 4 are prime
to one another, one of these two numbers, namely the odd one, would
be a square, and the other, the even one, would be double of a square.
Let a be the odd one of the two, 4 the even. If now the hypotenuse
a’+ & were a square number % we should have a second right-angled
triangle a, 4, ¢ which would necessarily be primitive and in which the sides
would be smaller than those of the first triangle; for ¢<¢? d<<2aé and
a<a’—-psince a+b>a,a-5Z 1.
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By means of the above two lemmas combined we can now prove that
the avea of a primitive right-angled triangle cannot be a square number.

Let the sides of the triangle be @®+, a®—/*, 2ab. If now the area
were square, the product of the perpendicular sides would be double of
a square. But the perpendicular sides are prime to one another. There-
fore the odd perpendicular a®—4* would be a square, and the even
perpendicular 244 the double of a square. But, if @?—2* were equal to
&, we could (by the first Lemma) find a second primitive triangle with
smaller sides in which the odd perpendicular would be ¢, the even per-
pendicular 4, and the hypotenuse a. Again, since 2a4 would be double
of a square, ad would be a square, and, since « is prime to 4, both @ and
4 would be squares. The second triangle would accordingly have a square
number both for its hypotenuse (@) and for its even perpendicular ().
That is, the second primitive triangle would satisfy the conditions of the
second Lemma, and we could accordingly derive from the second primitive
triangle a third primitive triangle with still smaller sides which would,
exactly like the first triangle, have a square number for its odd perpendicular,
and for its even perpendicular the double of a square number.

From this third triangle we could obtain a fourth, and by means of the
fourth we could obtain a fifth with the same property as the first, and so
we should have an unending series of primitive right-angled triangles, each
successive triangle having smaller sides than the one before, and all being
such that the odd perpendicular would be a square number, the even
perpendicular the double of a square number, and consequently the area
a square number. This, however, is impossible since there cannot be an
unending series of integral numbers less than any given integral number.

Frénicle proves, by similar considerations, that nei?ker can the area of a
right-angled triangle in rational numbers be the double of a square number.

In enunciating Fermat’s problems on right-angled triangles I shall in
future for brevity and uniformity use £, %, { to denote the three sides, while
¢ will always represent the hypotenuse and &,  the two perpendicular sides.

2. 70 find a right-angled triangle ({, & n) suck that

{=u
E+n=2° } .
[Since £ =§ + 77 this problem is equivalent to that of finding x, y such
that .
x+y=2"
x4yt = w‘} ’
which is Question 17 in Chapter x1v. of Euler's 4/gebra, Part 11.]
First method.
Form a right-angled triangle from the numbers x + 1, x; the sides will

then be
(=2x+2x+1, E=2x+1, n=2x2+2x.
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We have then the double-equation
28+ 28 + 1 =u91
20+ 4x + 1 =107 |
The ordinary method of Diophantus gives the solution x=—212; the
triangle will therefore be formed from —£ and —212 or, if we take the
numerators only, — 5 and — 12, and the triangle is (169, ~ 119, 120) which
is equally the result of forming a triangle from + 5 and + 12.

But, as one of the perpendiculars is negative, we must find another
value of x which will make all three sides positive.

We accordingly form a triangle from x + 5 and 12, instead of from
5 and 12, and repeat the operation. This gives for the sides

[=%"+10x+ 169, £é=2x"+10x— 119, 7)=24%+ 120,
and we have to solve the double-equation
27+ 10% + 169 =27,
X+ 34+ 1=7%
Making the absolute term the same in each, we have to solve
&+ 10x + 169 =27,
1692° + 5746x + 169=2"
The difference is 1682 + 5736x, which we may separate into the factors
14x, 12x + 2828 (the sum of the terms in x being 26« or 2. 13x).

Equating the square of half the sum of these factors to the larger
expression, or the square of half their difference to the smaller, we find
in the usual way

x= 2048075
="30566 °

The triangle is therefore formed from 2159895 12 or from 2150905,
246792, and the triangle itself is

4687298610289, 4565486027761, 1061652293520,

the hypotenuse and the sum of the other two sides being severally squares.

Second method.
This is the same as the first method up to the forming of the triangle
from x + 5 and 12 and the arrival at the double-equation
x?+ 102 + 169 = 22
x*+34%+ =7~
Multiply the two expressions together, and we must have
o + 44%° + 510x% + 5756 + 169 = a square
=(13 + 28 2 x — x?)?, say;
this gives, as a matter of fact, the same value of x, namely
== 244333,
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and the triangle is the same as before'.

In his note on Diophantus vi. 22 Fermat says that he confidently
asserts that the above right-angled triangle is the smallest right-angled
triangle in rational numbers which satisfies the conditions.

[The truth of this latter assertion was proved by Lagrange®. Lagrange
observes that, since £+ 7 =7 & + v*= % say, we have, if we put 5 for £ -,

2+ y' =22,
or 20t —yt=12%
and, if x, y is any solution of the latter equation,
=50 +2), 1=40"-2)

! For comparison we may give Euler’s solution (4Jgebra, Part 11., Art. 240; Commnen-
tationes arithmelicae, 11. p. 398).
We have to solve the equations
T xty=ut
x2+y2=ot } :
First make x2+ 2 a square by putting x=a? - 82, y=2as, so that
a2 +y2=(a2+82)2
To make the last expression a fourth power put e=p2 - ¢2, 6=12p¢, so that
a2+ 82=(+%

and accordingly 22 +2=(p2+¢2)4

‘We have now only to make x+y a square.

Now x=a=B=pt - 620 + p, y=2ab=42 - 429%;
therefore P+ ag - 60292 — 4503+ ¢*=a square.

In solving this we have to note that #, 7 should be positive,  must be >g (for other-
wise ¥ would be negative), and a>¢ in order that x may be positive.

Put P4428% ~ 6%~ 4p9°+ = (22 - 229+ ¢’
and we obtain 42%7 - 622 = — 4 287+ 6p%°%, whence plg= % .

But, if we put p=3, g=2, we find x= — 119, a negative value.

To find fresh values, we can substitute for p the expression §¢+#and solve for the
ratio g/r; then, by taking for ¢ the numerator and for » the denominator of the fraction
so found, we find a value for # and thence for x, . This is Euler’s method in the
Algebra. But we avoid the necessity for clearing of fractions if (as in the Comment.
arithm.) we leave 2 as the value of ¢ and substitute 3+ for 3 as the value of 2.

We then have 2= Br+108v+ 5402+ 1228 +24,

’ +4p%7= 216+2160+ 7222+ 8253,
= 6p%2= ~ 216 - 1447 - 2477,
-ap3=~ 96~327,
+gt= 16, : .
whence  x+y=1+1482+ 10202+ 2093+ 24 =a square=(1 + 747 — 22)?, say;
and we obtain )
1343 =427, or z:=li—:?’, and p=3+v= I—:gg, while g=2.

Taking integral values, we put p= 1469, g=84.

Therefore a=1385.1553=2150905, 0=168.1469=246%92,
and x=4565486027761, y=1061652293520,
which is the same as Fermat’s solution.

2 N. Ménoives de P Acad. Royale des Sciences et Belles-lettres de Berlin, année 1777,
Berlin, 1779 = Oenvres de Lagrange, 1v. pp. 377-398.
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He sets himself therefore to find a general solution of the equation
20 —y*=5" and effects it by a method which is a variation of Fermat’s
descente, one of the most fruitful methods, as Lagrange observes, in the
whole theory of numbers. The modified method consists of two parts,
(1) 2 proof that, assuming that there exist integral values of x, y greater
than 1 which satisfy the condition za*-3p*=s% there are still smaller
integral values which will also satisfy it, (2) the discovery of a general
method of deducing the latter from the former. This being done, and
it being known that =1, y = 1 are the minimum values, the successive
higher values are found by reversing the process. Lagrange found that
the four lowest values for x, y give the following pairs of values for &, =,
namely

(I) £=1 s N=0,
(2) €=120 , N=—110,
(3) £€=2276953 y M==473304,

(4) £=1061652293520, n=4565486027761,
so that the last pair (4) are in truth, as Fermat asserts, the smallest possible
values in positive integers.]
3. 7v find a rightangled triangle L, & v suck that

{=u
S—n=7f}'

[This is of course equivalent to solving
x—y= %) [
Bry=at]
Form a triangle from the numbers x + 1, 1 ; the sides will then be
{=x+2x+2, E=x*+2x, n=20+2.
We have then to solve the double-equation
&%+ 2 + 2 =0
X —2=27° } )

Solved in the ordinary way, this gives x =—21%; consequently the
triangle is formed from —4&%, 1, or from -5, 12.

We could proceed, as in the last problem, to deduce a new value for z,
but we observe that the triangle formed from 5, 12, Ze. the triangle 169,
119, 120, satisfies the conditions.

4. T find a right-angled triangle {, & v such that
{= u*}

?

E+my=2"
where m is any number.
Fermat takes the case where 7 = 2.
Form a triangle from #, 1; the sides are then {=at+1, é=2~1,
7 = 24.
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Therefore

w1 must both be squares.
Xt 4x—~1

The difference = 2 — 4, and by the usual method we find x = ;.
But £= & 1 is negative unless x>1. We therefore begin afresh and
form a triangle from x + 5, 12.
The sides of this triangle are
%%+ 10x+ 169, 2+ 10X — 119, 24X+ 120.
We have therefore to solve the double-equation
%+ 102 + 169 = 2*
x°+58x + 121 = ﬁ}
Fermat multiplies the two expressions together and puts
%+ 68x° + 8704 + IT0I2% + 20449 = a square
= (143 + ¥5° % - 33515594°) say 5
therefore o =86081T954LL,
and the triangle is formed from 103447257961, 17749110120.
The double-equation could also have been solved by the usual
Diophantine method, as in the next problem to be given.

5. 70 find a right-angled triangle {, & n such that

f=u
E~my=0° } ’
Suppose that 7= 2.
Form a triangle from x + 1, 1, so that the sides are
{=+2x+2, {=a+2x n=20+2.
Therefore we have to solve
&+ 25+ 2 =11
&?— 22— 4 =17 } )
Solving in the usual manner, we obtain x = — 1Z, so that the triangle is
formed from — %, 1, or from — 5, 12, and is therefore (169, 119, — 120).
We have to replace the value of x by a value which will avoid the
negative sign. Form a triangle, then, from x — 3, 12.
The sides are  #*— 10x + 169, &% — 104 —119, 24%—I20.
The double-equation now becomes
2~ 10 + 169 = 2
x?—58x + 121 ='0’}.
Multiply the second equation by 182, and we have to solve
x° — 102+ 169 =2° }
169 :

1210 — AP + 169 =27

where m is any number.
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The difference = & — 3882 v = L x (24x - 2395).

Equating the square of half the difference of the factors to the smaller
expression (or the square of half the sum to the larger), we have

x=2438430,
and the required triangle is formed from 4363225, 552552, the sides being
19343046113329, 18732418687921, 4821817400400.

Or again in this case we can multiply the expressions x*— rox+ 169

and %* — 58x + 121 and put their product
&t~ 68x° + 870x% — 11012X + 20449 = a square
= (143 — 3% x + %), say,

and the result will be the same as before,
6. v find a right-angled triangle {, & n such that

=
£+ mm= 1/2} ’
where m is any given number.
Let m=3. Form a trangle from x + 1, 1; its sides will be
{=a+2x+2, E=x+2x, n=2x+2.
We have therefore to solve the double-equation
FPr2x=120
224+ 8x+6=1 } '
Solving this in the ordinary manner, we shall find x = %;.
Hence the triangle is formed from 1%, 1, or (in whole numbers) from

13, 12 ; the sides are therefore 313, 25, 312.
Fermat also finds the solution by multiplying the two expressions and

making the product a square;
x* + 10x® + 224° + 122 = a square
) = (2 + 52— $)*, say.
This gives the same value of x as before, x=; and the triangle
is 313, 25, 312.
7. o find a right-angled triangle {, & v such that

f=u
E—mn= ﬂ’} ’
where m is a given number. .

Fermat takes the case 7 = 3.

Remembering that in the corresponding problem with a p/us sign we
found the triangle 313, 25, 312 which is formed from 13, 12, we form the
triangle in this case from x — 13, 12; its sides are

{=u"—26x+313, £{=x"—26x+ 25 7=24%—312.

We have then x*—26x+ 25=1u"

%% —98x + 9671 =zz‘*}'
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Multiplying the first expression by &%, we have to solve the double-

24980 %+ 961 =2 }

x? — 98x + 961 = 2*
The difference = 338.x* — 235305 = 28 (38 5 — 11288),
21881781 the triangle is formed

Proceeding as usual, we find x=2748§
from x — 13, 12, or (in whole numbers) from 23542921, 3820440, and the

equation
gze V-

—936

sides are

568864891005841, 539673367418641, 179888634210480
The same result is obtained by multiplying the expressions x* — 26x + 25
98x + 961 and making the product a square; we put

and x°—g8x
xt — 1242° + 3534%° — 27436x + 24025 = a square
=(o* - 1358w + 155);

and the result is x = 23881731 as before
8. 7y find a right-angled triangle {, & v such that
E=u’
E+my=1° } ’

; the sides are

where m is any given number.
Form a triangle from x + 1,

Suppose 72 = 2.
{=x*t2x+2, E=x*+2x p=2x+2
We have then to solve the double-equation
*% + 22 =1
£ +6x+6=0" } ’
The usual method gives =%, and the triangle is formed from 2, 1, or

(in whole numbers) from 5, 4, being the triangle (41, 9, 40)
Since { +7 = x* + 4% + 4 = a square, we have actually solved the problem

of finding a right-angled triangle {, & v such that
t=u
{+q=2"
{+2g=n?
9- b find a right-angled triangle {, &, 0 such that
E=1u
{—my=2® } ’
where m IS a given number.
Suppose 7 = 2.
Since the corresponding problem with a plus sign just preceding bas
the solution (41, 9, 40) formed from the numbers 5, 4, we form a triangle

in this case from x—~35, 4 ; the sides are
{=a"— 108+ 41, {=x"— 102 +9, 7=8%— 40
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We have then to solve the double-equation
&% — 10x + 9=uﬂ}
&= 268+ 121=2°)

De Billy (or Fermat) observes that this double-equation “seems to admit
of solution in several ways, but it will be found that it is hardly possible to
find a practical solution except by the new method” (expounded earlier in
the Jrventum Nowum) of making the absolute terms equal (instead of using
the equal terms in 2%, which method gives, in fact, the value x=o0). That
is to say, we make the absolute terms in the two expressions equal by

multiplying the first by 222, and the double-equation becomes

12142121054 yo1 ="
x*—26x + 121 = ¢° }

The difference = 31247 - 210 x =S5 (Lta—

Equating the square of half the difference of the factors to 2° or the
square of half their sumn to #% we find x= %8,

Therefore the triangle is formed from 432, 4 or (in whole numbers)
from 493, 132, and the sides are 260473, 225625, 130152.

Since { —n=a—18x + 81 =a square, the above actually amounts to the
solution of the problem of finding a right-angled triangle {, &  sucl that the
three conditions

§=u
{—n=7"
{—2n=u’

are simultancously satisfied.

De Billy (or Fermat) observes however that, while the above oz¢ solution
satisfies the conditions of both problems, it is not so with all solutions of
the problem involving the two conditions only; but only primitive triangles
satisfying the conditions of that problem satisfy the additional condition.
Thus the triangle (624, 576, 240) is such that one of the perpendicular
sides is a square and the difference between the hypotenuse and twice the
other perpendicular is also a square, but the hypotenuse mizus the latter
perpendicular is not a square.

10. 70 find a right-angled triangle {, &, v such that
=2
E+n=u

t-tr="

1-én=2"
Assume x, 1 — « for the sides £ # about the right angle respectively.
This supposition satisfies the second condition.
Again, since {p=x -2 the third and fourth conditions are satisfied,

for 2= w'=1—2x0+ 2%
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It remains to satisfy the conditions
p=1—-x=2
and P=+nt=1—-20+24%=2 square}‘
The difference = 2x*~x=4x (4x—2), and we find, in the usual way,
x=43
The triangle is (£}, 43, &%)

11. 70 find a right-angled triangle ¢, & v such that
E=a cube
é-3&=a sgmzre} '

Fermat assumes £=1, p=ux, so that the first condition is satisfied,
1 being a cube.

‘We must now have I—-3x=2u"
and also C’=$2+qﬂ=1+x‘~’=7ﬁ}'

The difference = x*+ }x = }x (4% + 2), and we find x=— 27

In order to derive a positive value for x we substitute y — 2%2 for x in
the equations, which gives

et

10

$3-hy=u

4609 g

ey

P R

Make the absolute term in the first equation equal to that in the latter
124609
361. 225

]

2

by multiplying by , and we have to solve

2_544 124609 _ 2
Y —w3s) t Foszs U
3 — 268159, 268159
The difference =y* - 353135y =y (0 — $83153)-

We find accordingly

— 187917462543
Y=-"50370928200

and m=y - 45 = 3L

The triangle is then
12. 70 find a right-angled triangle {, & v such that
{+§n=2
Form a triangle from the numbers x + 1, x ; the sides are
{=2x+2x+1, f=2x+1, =22+ 2x,
Thus ¢+ 3&y =24 + 52>+ 32 + I must be a square.
Suppose 26 + 5%+ 3o+ 1=(§x + 1)3
and we have x= —21L

H. D. 20
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Now substitute y — 1% for x in the expression to be made a square, and
we have
28 —134%+ 189 + 288 — 3 square
= (35 +13)" say,

whence y=15282 and x=1588% - 11 = 2813,

The triangle is accordingly found.

13. 70 find a right-angled triangle {, & n suck that
&+ 3&p =1~
Form a triangle as before from x + 1, x, and in this case we shall have
223 + 32% + 3% + 1 =a square

— (3 2
= (3% + 1)? say,
whence x= —3.

Substitute y— £ for x in the expression to be made a square; thus

2y°+ § + 530 + zf%‘% =a square

35y + 18)% say,
whence y——mﬁ”,andx:f’i———s—gg —-3=1425,

the triangle being therefore

5494337 346371 4265025
1229312 Tﬂwn’ 1229312

14. 70 find a right-angled triangle {, & n suck that

(§+mP -3 =0
Let é=x, p=1; then {*=a*+ 1 =2a square
Also, by the condition of the problem, &*+ $x + 1=2a square} .
The usual method of solution gives x=—4%.

Substitute therefore y—$% for x in the two expressions, and we have
the double-equation
P19y 41880 42
y — y + 5 3 2 9 = 'Zl/2,
Or, if we make the absolute term in the first expression the same as in
the second by multiplying by £33,
%{—ﬂy”—3°1251_y+ 5329 _ o }
yz__ﬂ_y_l_ 5329 g0
The dlﬁ‘erence_SQGOyﬂ 2163 _%%y(noy 2183)’
and we find y = §4333%, so that x=y—3§=228088

Therefore the two perpendicular sides of the triangle, in whole numbers,
are 39655, 129648, and the hypotenuse is 135577.



THEOREMS AND PROBLEMS BY FERMAT 307

15. 70 find a right-angled triangle L, & 1 swuck that
(E+0)* + 3én=a square.
This problem is mentioned in Fermat’s letters to St Martin of 3rst May
and to Mersenne of 1st September 1643 The result only is given (in

the letter to Mersenne), and not the solution ; but it can easily be worked

out on the lines of the solution of the preceding problem.
Let {=x, n=1; we must therefore have
4+
rt both squares.
x*+5x+1

Solving in the usual way by splitting the difference §x into the factors
£ .2x we find x—-—%%

Substitute y — 23 for x in the two expressions, and we have to solve
Y-y +@8=1
Y+ 1w+ G)N=
Multiply the last by (§2)® so as to make the absolute terms the same;
and we have to solve

-8y +(8)R=u
@+ (1D By + (B8P =0~

The difference ={(33)* - I})"" +23885y
=348 i+ 42
We therefore put  (y—487 9)2 =238y + (833
whence Y (52— 88) = (&%) - (8%)%

and y =455, so that x=y— 35 = 130282,

The required triangle is therefore (395788, 190281 1) or, in whole
numbers, (205769, 190281, 78320).

16. 10 find a right-angled triangle §, & v such that
G+ m.tén=a square.
Fermat takes the case where 7 = 2.
Form a triangle from the numbers x, 1 ; the sides are then
{=x*+1, é=2—1, g=2x

Thus we must have (2* + 1)* + 2 (x*— 1) a square, that is,

x* + 2% + 22% - 26 + 1 =2 square

=(x*+ x + })?, say,
whence x=4.
1 Oeuvres de Fermat, 11. pp. 260, 263.

20—2
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But this value makes 22—1 negative; so we must seek another by
putting y + 4 for x in the expression to be made a square.
We have 34+ 398 + 319%— %y + 33§ =a square
= (18— ooy + 150 say
This gives y=432823, and x=y+ } =333533.
Therefore the triangle is generated (in whole numbers) from 571663
and 436440.

De Billy adds that there is one case in which the problem is impossible.
Tannery observes in a note that this remark seems to refer to the case in
which 7 =8.

17.  Tv find a right-angled triangle §, &, v such that
E—§én=a square.
Form a triangle from % — 1, 4 ; the sides will then be
{=x*-2x+17, £=x*-2x-15, 7n=8x-8.
Thus (* — 22— 15)*— (45— 4) (x®— 2x— 15) must be a square, that is,
24— 8% —144° + 112x + 165 = a square
= (a®— 4z — 135)% say.
This gives . =— 1%, and accordingly, to find another value, we substitute
y—3&for xin the expressmn to be made a square.

‘We must therefore have

J—38 +1800y7 431y + 812338 =3 square

= 285)\2
=0 —19y—23%)’, say.
This gives y=2423 and x=y - 12 =6871,

The triangle is therefore formed from £28%, 4, or (in whole numbers)
from 6001, 2280.

The sides are therefore 41210401, 30813601, 27364560.

18. 70 find a right-angled triangle L, & n such that (if ¢ > 4)
. (E—7)*—29*=a square.
This problem is enunciated in Fermat’s note on vi. 22. He merely

adds that the triangle (1525, 1517, 156) formed from 39, 2 satisfies the
anlditions, but does not give the solution.

'T‘he_solution is however easy to obtain by his usual method, thus.
Form a triangle from x, 1, so that
{=a+1, é=x—1, g=2a
Then (-n)—2p’=(2®— 20— 1)"— 8
=2t — 4% — 62 + 42 + 1.
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This has to be a square ; let it be equalto (x*—2x — 5)% say ; this gives
4%+ 1=20% + 25,

or X=—

(S0

The triangle formed from —32, 1, or from — 3, 2, will have one side
negative. To avoid this, we proceed as usual to form a triangle from
J—3 2.

Thus {=y'—6x+13 E=3"-6y+5, n=4y-12,
and (E—n)2—29*=(2—10y +17)*—2 (4y — 12)°

=jA—20)°+ 102)°— 148y + I.

In order that this may be a square, suppose it equal to (3°— 10y — 1) or
3 —20°+98)° + zop + 1.

It follows that 102)? — 148y =98)* + 209,
and y=4z.

The triangle required is formed from y—3, 2, that is, from 3g, 2,
and is accordingly 1525, 1517, 156.

Fermat does not tell us in the note on vI. 22 what use he made of this
problem, but the omission is made good in a letter to Carcavi’, where he
says that it was propounded to him by Frénicle (who admitted frankly that
he had not been able to solve it), and that it served to solve another
problem which had occupied Frénicle. The latter problem is the
following.

19. 70 find a right-angled triangle {, & v such that
4

{—n r are all squares.
£-n
Fermat does not actually give the solution, but presumably it was
somewhat as follows.

Form a triangle from two numbers «x, y ; the sides are then
L=a2+3% E=a—3% g=2xp
Now {—n=x*+y?~ 2xy and is ps0 _facto a square.

The other conditions give )
&'+ yi=a square,

and a2~ )2 — 2xy = (%~ y)? - 2)°=a square.

These conditions are satisfied by the two perpendicular sides of the
triangle of the last problem, that is, by x=151%, y= 156.

1 Qeuvres de Fermat, 11 p. 165,
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The triangle required is therefore formed from 1517, 156 and is

(2325625, 2276953, 473304)-

The present seems to be the appropriate place for a problem contained
in a letter from Fermat to Frénicle the date of which was probably

15 June 1641

20. 70 find all the right-angled triangles in integral numbers such that
the perpendicular sides differ by 1.

If a right-angled triangle is formed from x, y, the difference between
the two perpendiculars is either x*—3*—2xy or 2axy—(a’—j?), that is
to say, either (x—y)—29® or 2p°—(x—y)> As this difference is to be 1,
we have to find all the integral solutions of the equation

2 —(x-p)==+1.

Those who are familiar with the history of Greek mathematics will here

recognise an old friend. The equation is in fact the indeterminate

equation

252 - 7’2 =*1,
which the Pythagoreans had already solved by evolving the series of
“side-” and “ diagonal-” numbers described by Theon of Smyrna, the
property of which they proved by means of the geometrical theorems
of Eucl. 11. g, 10.

If x, y are two numbers such that

20— 312 =+1,
then the numbers x + y, 2x + y will satisfy the equation

2ff—pi=—1;
fresh numbers formed from x+y, 24 +y by the same law will satisfy the
equation

252—’72=+ I,
and so on.

Take now the equation
- (r-sf =11,
where x, y are two numbers from which a right-angled triangle has been
formed. We can deduce a right-angled triangle formed from ', 3’ where

Y- (& —y)P=F1;
for by the above law of formation we have only to take
Y=y+(@=y)=x,
&=y =2p+(x=y)=x+y,
whence also &' = 2 + 9.

1 Ocuvres de Fermat, 11. pp. 331 sqq.
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Fermat gave two rules for the formation of this second triangle. The
first rule is in the letter above quoted.

First Rule. 1f %, p, b be any right-angled triangle satisfying the con-
dition (% being the hypotenuse, p> & and p— &= 1), then, if a triangle be
taken in which

the least side =2Z+2 + 24,

the middle side =24+ p+ 26+ 1,
the greatest side= 34+ 2 (p + &),
this triangle also will be a right-angled triangle satisfying the condition.
To verify this from the above considerations we have to consider two
cases, according as 2xy is greater or less than x* — 3>
Take the case in which zxy > 2*—3?; then
2y = (x—yp)li=+1,
and accordingly
2})’2— (xl_yl)2=_ I,
or &%= 97> 2x'y.
The least side, therefore, of the second triangle
25y =25 (20 + y)=2(*+3°) + (229) + 2 (2® =) ;
_ the middle side
x?—y?=2xy' +1;
and the hypotenuse
&%+ %= (2x + ) + 2= 3(2*+7) + 2(2?— 3% + 2ap).
The expressions on the right hand are those given by Fermat’s rule.

Second Rule.

This rule is given in a letter of 31 May 1643 probably addressed
to St Martin.

Fermat says : Given any triangle having the desired property, then, to
find another such triangle from it, *“subtract from double the sum of
all three sides each of the perpendiculars separately [this gives two of the
sides of the new triangle], and add to the same sum the greatest side [this
gives the third side].”

That is to say, the sides of the new triangle are respectively
2 (25 + 2y) — (2 = 37,
2(22? + 2x9) — 229,
2(22° + 2x) + (% + )7).

1 Qewvres de Fermat, 11. p. 359.
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In fact the three expressions reduce as follows :
2(24% + 29) — (22— J7) = 352+ 4xy + i = (23 + )* - &%,
2(25°+ 2xy) — 22y = 22 (2% + ),
2(22% +2xp) + 2 + 30 = (25 + p)% + &
and the result agrees with the formation of the triangle from «', 3 above.

From the triangle (3, 4, 5) we get (20, 21, 29); from the latter the
triangle (119, 120, 169), and so on. The sixth such triangle is (23660,

23661, 33461).

21. v find all the rational right-angled triangles in whole numbers
which are suck that the two perpendiculars differ by any given number.

To his eéxplanation of the First Rule above, applicable to the case
where the given number is 1, Fermat adds in his curt way: *“same method
for finding a triangle such that the difference of the two smaller sides is
a given number. 1 omit the rules, and the limitations, for finding all the
possible triangles of the kind required, for the rule is easy, when the
principles are once admitted.”

He adds, however, to his Second Rule! its application to the case
where the given number is 7.

There are, he says, two fundamental triangles with the desired property,
namely 5, 12, 13 and §, 15, 17. [In the case of the former 2xy > 22— 32,
and in the case of the second x*—3* > 2x.]

From the first triangle (5, 12, 13) we deduce, by the Rule, a triangle
with the sides 2. 30—12,2.30—35, 2. 30+ 13 or (48, 55, 73); from the
second a triangle with the sides 2.40-15, 2.40~8, 2.40+ 17, or
(655 72, 97)-

And so on, ad infinitum.

Next to the explanation of the first of the above Rules Fermat
mentions, in the same letter, the problem

22. 70 find right-angled triangles in integral numbers {, & n (¢>17)
such that
{—n
-7
He observes that alternate triangles of the series in which the two
smaller sides differ by 1 satisfy the conditions, those namely in which the
smallest side % is 22y and not a®—3?; for #®+4* —2xy is a square, and
¢ -7, being equal to 1, is also a square,

} are both squares.

1 Ocuvres de Fermat, 11. p. 259.
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Thus, while 3, 4, 5 does not satisfy the conditions, (2o, 21, 29) does,
and, while the next (119, 120, 169) does not satisfy the conditions, the
triangle after that, namely (696, 697, 985), does.

Frénicle naturally objected, in his reply, that the triangles should not
be limited to those in which the smaller square representing the difference
between the perpendicular sides is 1, and proposed the problem in the form

o find all the triangles (L, & n) such that
{—n

-7

and one square does not measure the other.

} are both squares,

Fermat seems to have, in the first instance, formed the triangle
from two numbers x, y where
x=72+1, y=2r-—2
and then to have given the more general rule of forming a triangle from
x=7+s, y=2(r-9)s,
where #, s are prime to one another (Letter from Frénicle of 6 Sept.
1641)".

It appears from a letter of Fermat’s to Mersenne of 24th January
16432 that St Martin propounded to Fermat the problem, apparently
suggested by Frénicle?,

Given a number, to find how many times it s the difference between the
[perpendicular?) sides of a triamgle which has a squarve number for the
difference between its least side and eack of the two others respectively.

The number given was 1803601800, and Fermat replies that there are
243 triangles, and no more, which satisfy the conditions. He adds “ The
universal method, which I will communicate to him if he asks for it, is
beautiful and noteworthy, although I doubt not that Frénicle has already
given him everything on the subject of these questions.”

23. 70 find two triangles, §, & 1 and U, &, v (§> 4, € > ) suck that
€—§=€-#}
E-n=0-¢)
Suppose the two triangles formed from (x, ) and (x', ') respectively,
the sides being
{=x2+y% E=2xy, n=x-3A
{=2"4y" =2y, y=2-y"
1 Oeuvres de Fermat, 11. p. 233.

23 J%id., p. 250.
3 Ibid., p. 247.
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Then we must have

(x—yP=29"-( —J")”}
and 2P~ (x—y)=(x -y)

which equations show that y =3, and that
(=97 ¥ &-9)

are three squares in arithmetical progression.

Suppose that these squares are 1, 25, 49 respectively; thus y =5;
%—y=1,s0 that x=1+5; &' —y=7, so that &’=5+7.

Fermat accordingly gives the rule: Find three squares in arithmetical
progression ; then form the first triangle from (1) the sum of the sides of
the first and second squares and (z) the side of the second, and the
second triangle from (1) the sum of the sides of the second and third
squares and (2) the side of the second™

In the particular case, the triangles are formed from (6, 5) and from
(12, 5) respectively ; the triangles are therefore (61, 6o, 11) and (169, 120,
119) respectively.

 For solving the problem of jfinding three square numbers in arithmetical
progression Fermat seems first to have given a rule which was not general,
and then in a later document to have formed the sides of the three squares
as follows :
PA—28 Ptors+28% A+ 45+ 2588

Frénicle formed them thus?:

P2~ P+¢5 Fr29-4,
the latter form agreeing with Fermat’s if p=#»+ s, and g =s.

Frénicle expresses his formula neatly by saying that we take for the
side of the middle square the hypotenuse of any primitive triangle formed
from p, g, i.e. p*+4% for the side of the smallest square the difference
between the perpendicular sides of the same triangle, i.e. *— ¢*— 2p¢, and
for the side of the largest square the sum of the perpendicular sides of the
same triangle.

Suppose the primitive triangle is (28, 45, 53) formed from (7, 2).
Then the sides of the three squares in arithmetical progression are 17, 53
and 73, the squares themselves being 289, 2809, 5329. The triangles
derived from these squares and having the above property are formed from
(70, 53) and from (126, 53) respectively, and are therefore (7709, 7420,
2091) and (186835, 13356, 1306%).

v Ocuvres de Fermat, 11. p. 225.
2 Jbid., 11. pp. 234—5-
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24 10 find two right-angled triangles ({, & ) and ({, €, v) such that
§—n'=¢ —77} )
£=¢
Form the triangle { ¢,  from the numbers x, 1 ; then
{=a+1, é=x*-1, n=:2x.
Thus &=+ 1; and, since ¢ —n=f—-n=22—2x—1, it follows that
7 =25+ 2.

It remains to secure that &2+ %= (x> + 1) + (2« + 2)* shall be a square,
that is,
'+ 6x° + 8x + 5§ =a square
=(a%+ 3)% say;
therefore x = §.

Hence the triangle ¢ &, 7 is formed from 4, 1 or from 1, 2 ; but this
solution will not do, as it gives a negative value for & Accordingly
we must find a fresh value for x, which we obtain by forming the triangle
from x + 1, 2.

The sides are then

{=x*+2x+5, E=x’+2x-3, N=4%+4;
thus E=x+2x+5, = —(*—20—7)=4x+ 12.
Therefore (x? + 2 + 5)? + (4% + 12)* must be a square, or
2+ 42° + 3ox?+ 116% + 169 = a square
= (13 + $§x — 2?7, say,
from which we obtain x=— 23525 and the triangle is formed from —§Z3, 2,
or (in whole numbers) from - 979, 1092.

““ We can use these numbers as if both were real and form the triangle
from 1092, 979. We thus obtain the two triangles

2150905, 2138136, 234023,
2165017, 2150905, 246792,
which satisfy the conditions of the question.”

25. 70 find two right-angled triangles (L, & n) and (£, €, 1) such that
E+q=Ef+y ,
. &>
A S G
Form the triangle {, £ » from the numbers x + 1, 1 ; then
{=x*+2x+2, é€=2'+2x n=2%+2.

Thus £ =2+ 220+ 2, and o' = £+ 9—§ = 2x.
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We must now have £? + ¢?= (a2 + 2x + 2)° + (2)° a square ; that is,
x4+ 42° + 1247 + 8x + 4 = a square
=(« + 2% + 4)% say ;
whence x= — 3.
Accordingly we substitute y— £ for x, and we must have
P—2pf+ 15y 289 4 189 =3 square
=02 -1+, say.
This gives y=23}, and x =3} - $ =55%.
The triangle ¢, £, 9 is therefore formed from 23, 1, or from 29, 26, and
is therefore 1517, 165, 1508 ; the triangle {, &, %' is 1525, 1517, 136.
Or again we may proceed thus from the point where we found x =—2.
The triangle ¢, £, 7 may be formed from — 4, 1 or from —1, 2.
‘We therefore form a triangle from x — 1, 2 and start afresh.
The sides are
{=52—2x+5, E=x—2%—3, N=4%—4.
Thus ¢ =2*—2x+5, and = £ +9— =42 - 12.
Hence (x* — 2x + 5)* + (42 — 12)* must be a square; that is,
at— 4% + 3047 — 1162 + 169 =a square
=(13 - $§x+x%)? say.
This gives x=4%%, and the triangle {, £ 7% is therefore formed from
28, 2, or from 29, 26, as before.

The remaining problems on rational right-angled triangles in the
Inventum Novum are cases given in Part 11. of that collection to illustrate
the method of the Triple-Equation due to Fermat and explained by him on
Diophantus vi. 22 as well as, at greater length, in the /nventum Novum.
An account of the method will be found in a later section of this Supple-
ment ; but the problems applying the method to right-angled triangles
will be enunciated here.

26, 70 find a right-angled triangle §, &, v such that
{+m)=2
G+20=10
C+ié=o
E+y=2°
By Problem 2 above find a right-angled triangle %, g, & (% being the

hypotenuse) in which 7, p + & are both squares ; the first condition is thus
satisfied,
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To find z, f, %, pllt Z:ﬁx, E:Px, ﬂ:éx.

The three remaining conditions thus give a “triple-equation” in x.
[The numbers would of course be enormous.]

27.  T0 find a right-angled triangle L, & v suck that
(E+n+P2+Eé=d"
((+n+f+n=2"",
E+n+ P +ml="
where m 1s any given number.
Fermat supposes 7= 2.

Assume for the required triangle (3%, 4%, 5x); we have then the
triple-equation
1445 + 3x =1
1445°+ 4x=7"
1444+ 10x = %°
the solution of which gives x = 31§%5, and the triangle is

507 878 845
380162 3JIB8016» 3TJsO16°

28. 7 find a right-angled triangle {, &, 1 such that
L(-n=2 ’
(E+n+f+é=a
E+n+f+q=2

(E+n+ 0 +mi=2?
Suppose m = 2.

Find a triangle (Problem 3 above) in which ¢, £—7 are both squares,
say the triangle (119, 120, 169). Put 119x, 120%, 169x for the sides of
the required triangle, and we have the “triple-equation ”

1664642% + 119 =1?
1664642% + 1202 =177
1664642%+ 338x=w?
29. 70 find a right-angled triangle {, & v such that
E-Ytg=pr*
(E+n+lf+é=u ’
(+n+ 0 +n=0"
(E+n+ P +ml=n?

where m is any grven number.

* The enunciation has £ (£ - 4¢») instead of £2~ 3£ ; but £ (£ —4&») is inconsistent with
the solution given, and I have therefore altered it so as to correspond to the solution.
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Take a right-angled triangle in which 1,  are the sides about the right
angle and are such that 1 — 2 is a square (Problem 11 above).

Let ¢ be the hypotenuse of the triangle so taken, so that ¢= /(#* + 1),
and take as the sides of the required triangle x, px, gx; we thus have
the triple-equation

(1+p+9)ll+x=12
(1+p+g9rP?+px=1"
(1+2+9) 2+ mgx =t

30. 70 find a right-angled triangle §, &, v such that
§€+n)=2
(+n+ 02 +Eé=0"
(+n+P+n=7
Ern+fP+i=2°
First find a triangle in which one of the perpendiculars is a square, and
the sum of the perpendiculars is also a square, say 40, g, 41.

Take 4oz, 9x, 41x as the sides of the required triangle; and we there-
fore have the triple-equation

8100x% + 40 = 2°
81002% + Qx =7*
810042 + 41x = 2°

SECTION 1V,
OTHER PROBLEMS BY FERMAT.

31. TV find two numbers &, y suck that
(1 £-(&-)
(2) n— (8 — % are all squares.
Gh4)  Exqg—(E-7)
Let £+ 9=1— 24, £ —n=2x, so that {=§, =} — 2%, and
E—nt=20—4a
Thus (3), (4) are both satisfied.
The other conditions (1) and (2) give
45 —2x + =1
4x2—4x+§~=w’}'

The difference =25 =4x.%; and, putting (2x + })? = 4x*— 2 + %, we
find x=%.
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The required numbers are therefore §, %:.

Another pair of numbers satisfying the conditions will be obtained by
substituting y + % for x in the expressions to be made squares, and so on.

32. 7o find two numbers &, 1 suck that
E+nx(E—n)
E+nx(8-7)
Let the numbers be § + x, § —x; therefore £—, as well as £—19? is
equal to 2x. The sum £+ =1.

} are all squares.

Therefore 1 + 2x must be a square, or we have the double-equation
I+2x=1"
I—2x= 212} )
Replace x by $3*+y so as to make 1 + 2x a square ; therefore
I —2y—3°=a square

=(1—3y)} say,
whence y =%, and x=4y*+y =14

The requlred numbers are therefore £, &-

33. 70 find two numbers &, q suckh that
(£+m) (82 + ) = a cube.
Assume £=x, n=2 —x; therefore
E+79) (E+v) =2 (24 — 42+ 4) =2 cube
= (2 —$x)’ say.
This gives x =— 3 ; and to get a “real ” value of x we must substitute
y— 4 for x in the expression to be made a cube.

Thus 4y — 44y + 125 =a cube

(5~ #52), say

125 44y+ 19.‘36 — 85184y3
and y=31%2625 so that x =y -3 =38133.

]

The required numbers are therefore 2133, 12738,

Cor. We observe :

(z) that the numerators 26793, 15799 satisfy the conditions ;

(2) that we have in fact solved the problem 7v divide 2 into two parts
such that twice the sum of their squares is a cube;

(3) that we can solve in the same manner the problem 7o find two
numbers such that any multiple of the sum of their squares is @ cube. Thus

suppose that the multiple is 5; we then assume x and 5-—x for the
numbers and proceed as above;
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(4) that we can also deduce the solution of the following * very fine
problem”

o /ind two numbers such that their di ferem‘e 75 equal to the difference of
their biquadrates or fourth powers.

In other words, we can solve the indeterminate equation
§—m=¢-
For we have only to take the two numbers found above, namely 26793
and 15799, and divide by (as a common denominator) the root of the cube
formed by multiplying their sum by the sum of their squares.

This common denominator is 34540, and the two required numbers are

26793 15799
34540 34540°

This latter problem is alluded to in Fermat’s note to Diophantus 1v. 11
in these terms: “But whether it is possible o find two biguadrates the
difference between which is equal to the difference between their sides is a
question to be investigated by trying the device furnished by our method,
which will doubtless succeed. For let two biquadrates be sought such
that the difference of their sides is 1, while the difference between the
biquadrates themselves is a cube. The sides will, in the first instance, be
-+ and 22. But, as one is negative, let the operation be repeated, in
accordance with my method, and let the first side be x—4%; the second
side will be x + 33, and the new operation will give real numbers satisfying
the condition of the problem .”

34. 70 find two numbers & n suck that
& + 3n' = a square.

Fermat (or De Billy) observes that it must be required that the first
biquadrate (&) shall not be unity, for in that case the problem would be
too easy, since 1+ 3.1=4and 1 + 3. 16 =49.

Assume {=x, p=2x — 1 ; therefore

4xt—12x% + 18x* — 12 + 3 =a square
= (22° - 3% + $)% say.

This gives x=1t x~1=2; and a solution in whole numbers is
é=11,7=3 Infact 11*+3.3"=14641 + 243 =14884 or 122%

We can also take any equimultiples of (11, 3), as (22, 6) and (33, 9);
and the latter pairs of numbers severally satisfy the condition of the
problem.

26793 15799
10994”10994
we can obtain the same solution of the main problem as that given above
26793 15799).

34540’ 34540

1 It gives in fact as a solution of the subsidiary problem, and from this
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SECTION V.
FERMAT'S TRIPLE-EQUATIONS.

Fermat's own description of his method of “triple-equations,” which is
contained in his note on VL. 22, is as follows:

“ Where double-equations do not suffice, we must have recourse to
triple-equations, which are my discovery and lead to the solution of a
multitude of elegant problems.

If, for example, the three expressions

X+ 4, 285+4, 5%+4
have to be made squares, we have a triple-equation the solution of which
can be effected by means of a double-equation. If for » we substitute a
number which when increased by 4 gives a square, e.g. 3* + 4y [ Fermat says
x* + 4x], the expressions to be made squares become
V+ay+4, 2+8y+4, 5°+209+4.
The first is already a square ; we have therefore only to make

2+ 8y+4]

5y + 201+ 4
severally squares.

That is to say, the problem is reduced to a double-equation.

This double-equation gives, it is true, only one solution; but from
this solution we can deduce another, from the second a third, and so on.
In fact, when wg have obtained one value for y [say y=a], we substitute
for y in the equations the binomial expression consisting of y p/us the value
found [Ze. y+a]. In this way we can find any number of successive
solutions each derived from the preceding one.”

The subject is developed in the Doctrinae Analyticae Inventum Novum
of De Billy already mentioned so often.

It will be observed that the absolute term in all the three expressions
to be made squares is a square. It need not be the same square in the
original expressions; if the absolute terms are different squares, the three
expressions can, so far as necessary, be multiplied by squares which will
make the absolute terms the same, when the method will apply.

We may put the solution generally thus. Suppose that

ax + g

ox +¢* }

o+ 7
have to be made squares (&, 4, ¢ or some of them may be negative as well
as positive).

Put ax =" + 2py, '
which makes the first expression a square (or of course we could put
ax = a%® + 2apy).

H. D. 21
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Substitute (3* + 2gy)/a for x in the second and third expressions.

Therefore g (3P +2p0)+¢°

2(_]/“'+2ﬁy)+r2

must both be squares ; or, if we multiply the first expression by 7* and the
second by ¢* (so as to make the absolute terms the same), we have to solve
the double-equation

() + 2py) + g =107,

7 +2py) + g =1

l aln Aloe

Ly 2p. br-_[{r

The difference = L

This has to be separated into two factors of the form Ay, uy + v, where
v must be equal to 2¢7 (in order that, when } {(A + n) ¥ + v} is squared and
equated to the first, or when % {(A— )y —v}* is equated to the second, of
the two expressions, the absolute terms ¢°%* may cancel each other).

A different separation into factors is possible if /2 and ¢/a are both
squares ; but otherwise, as Fermat says, the method gives only one
solution in the first instance ; the above difference must necessarily be
split into the factors

pr—cp) g7 .
agr » and P} + 2g7.

Half the sum of these factors

2 -cp) qr
-y{ T

_1, ”ﬁff:‘_bﬁf:_?"‘z“‘)
=313 < prre +g7.

Squaring this and equating it to 6_72; (3% + 2py) + g% we have

{%y<ag-r+b73j" WT)_!_W} =ér2y_+ Pﬁ L Ly

apgr
therefore

A e
s g+ b - - )

-y {227 %f'i%&pjj} ,

o ‘j‘fﬂ (ag's* + b5 — cBg) — aabpig*rt)

= 2 o+ - apr)
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that is,
(@9 + Bt + Ot~ 28cpy* s — 2cap’pr — 2a268°7°*)
= 4apg’r? (0rp* + p*¢* — ag’r’),
49pg’r (4P + g — ag’r)

or J= a-y“r‘ + G+ Pl — 2bep P — 2capgVt — 2ab879 4]
whence x( _ﬁy > is found.
Exx. from the Inventum Novum.
(1) 22X+ 4
3%+ 4 - to be made squares.
6x+ 4 }

Here a=2,4=6,c=3, p=¢g=7=2; therefore
4.2.32(6.16+3.16~2.16)

Y6 (4+36+0-2.6.3-2.3.2-2.2.6)
__16.7
23’ .
112 112 6 120
and m——(3+ )—-{—2—3~—~i-;3~}—5—-(112—~4 23)—1529.
(2) x+r‘t
3%+ 4  to be made squares.
2x+9J

Here a=1,46=3,c=2, p=1, g=2, »=3; therefore

4-36(3-9+2.4—36)
36°+9. 81+4 16—-12.36—16.36—6.36.9

y=

—4-36 _ 144

—36.46+9.814+4.16 ~ 863’

and =%+ 2= )+ 2 (b4) = 343848

The disadvantage of the method is that it leads so soon to such very
large numbers.

Other examples from the Znventum Novum are the following, which,
like those above given, can be readily solved ab énstio without using the
above general formula.

(3) To solve I+ x=u
I+20=27"
I+50=2"
Put x =3+ 2y, and substituting in the second and third expressions we
have only to solve the double-equation
2%+ 4p+1=0")
gr+rop+1=ut)’
21—2
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The difference = 3 (37 + 29) =37 (» + 2).
Equate the square of half the difference of the factors to the smaller

expression ; thus
G-1p=2t e+,

whence y = -6, and x=3*+ 2y = 24.
(4) ZEquations x+9=2u"
3x+9=2"
5% +9=12"
In this case we put =3+ 6y, and we have to solve
3(f+6)+9=7" }
508+6p) +9=2)"
The difference = 2 (* + 6y) = 2y (¥ + 6) ; we then have
Gy-3)=3"+18+9,

and y = — 84, so that x=3* + 6y =432,
(5) Equations I+ x=u
I—zx:v’“‘}

I+5x=2w"

If we assume x=y* + 2, we find y = & and x=AF.
There are two other problems of the same sort which are curiously
enunciated.

(6) “To find three cubes such that, if we add their sum to numbers
proportional to the cubes respectively, we may have three squares.”

What Fermat really does is to take three cubes (&% &7 ¢°) such that their
sum is a square (this is necessary in order to make the term independent
of x in each of the three expressions a square) and then to assume
@z, #x, >x for the numbers proportional to the cubes. He takes as the
cubes 1, 8, 27, the sum of which is 36. Thus we have the triple-equation

36+ x=u }
36+ 8x=17" L
36+27x=w"

We put x=3"+ 129 in order to make the first expression a square.
Then, solving the double-equation

36+ 8(y*+12y) =0
36+27 ()7 + 12y)=w2}
we obtain y = 28% and x =p* + 12y = 224320,

(7) “To find three different square numbers such that, if we add
to them respectively three numbers in harmonic progression, the three
resulting numbers will be squares.”

Fermat first assumes three square numbers 1, 4, 16 and then takes
2%, 3%, 6x as the required numbers in harmonic progression. (He observes
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that, of the three numbers in harmonic progression, the greatest must be
greater than the sum of the other two.) We thus have the triple-equation

T+2x =2
4+3x=2" },
16 + 6x = 2?

or, if we make the absolute terms the same square,
16+ 32x = 1"
16+ 1220 =27
16+ 6x=2?
Making the last expression a square by putting 33*+ &y for x, we solve
as usual and obtain y =—%L2 and x =} ()° + 8y) = 112536

Fermat observes that triple-equations of the form
2+ x=u
&2+ 200 = } s
X+ 5x=10"
that is to say, of the form
P+ ax=u’
G+ ox=7"
7rx? + cx = P
can be similarly solved, because they can be reduced to the above linear
form by putting » = 1/y and multiplying up by 3*

Examples.
(1) To solve the triple-equation
457 + 20 =18
4% + 6x =7*
4% + gx = 0?
If & = 1/y, this is equivalent to
2y + 4 =u"
6y +4="10"
o +4=w"t
Putting y = }2* + 25 and solving as usual, we find
z=—388 y=137"+22=333], and x=3333.
(2) Equations 2+ x=u
457+ 3x=17° }
ox? + 22 = w?
This is equivalent to
y+r=u* ]
W+4=0"% L.,
2y +g=2"

We put y =2*+ 22 and, solving the double-equation
27 (22 + 22) + 36 = a2
8(2+25)+36=p° }
we find 5= 344 5= 289280 5o that x = TEiTis



326 SUPPLEMENT

(3) “To find three square numbers such that, if we add their sum to
each of their roots respectively, we obtain a square.”

Choose, says Fermat, three squares such that their sum is a square and
such that the root of the greatest is greater than the sum of the roots of the
other two (the reason for this last condition will shortly appear); e.g. let
the squares be 4, 36, 81, the sum of which is r2r1.

Let 422 364% 8122 be the three square numbers required; therefore

T214% + 28 =14
121%° + 6x = 2°
1212°% + 9w = w?

The solution, arrived at as above, is & = Z2%%..

Fermat actually used his triple-equations for the purpose, mainly, of
extending problems in Diophantus where three numbers are found
satisfying certain conditions so as to find fowr numbers satisfying like
conditions. The cases which occur are in his notes to the problems
L. 15, 1V. 19, 20, V. 3, 27, 28; they are referred to in my notes on
those problems.

De Billy observes (what he says Fermat admitted he had not noticed)
that the method fails when, the absolute terms being the same square, the
coefficient of x in one of the linear expressions to be made squares is equal
to the sum of the coefficients of « in the other two. Thus suppose that

I+2% I+3% [+5%
have to be made squares. To make the first expression a square put
x=2)"+2y. The other expressions then become
: I+6y+6)% 1+10)+102
The difference is 4)* + 49 = 2y (2 + 2), and the usual method gives

(y+1)=10/"+ 109 + 1,
or 6*+ 6y = o,
so that y =— 1, and consequently x = 23 + 2y = o.

It does not however follow, says De Billy, that a set of expressions so
related cannot be made squares by one value of x. Thus 1 + 5, 1 + 16
and 1 +21x are all squares if x =3, the squares being 16, 49, 64. He
adds (§ 11) that “ we must observe with Fermat ” that the triple-equation

1+ x=12"

1+2x8=7°

I+ 3x=w’
not only cannot be solved by the above method, but cannot be solved at
all, because “?here cannot be four squares in arithmetical progression,” which

however would be the case if the above equations had a solution and we
took 1 for the first of the four squares.
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The subject of triple-equations has been taken up afresh in a recent

paper by P. v. Schaewen’.
(1) The equations

The following are the main points made.
ax + =1’

bx+ gi=v"
x + 7 =20’
can be reduced to the form
I+a'a ="
I+ =0"
1+ ="
by substituting 7’ for x, where 7 is the least common multiple of #2 ¢° »2
(2) The method of Fermat has the disadvantage that, with one
operation, it only gives one value for & and not by any means always the
smallest solution. From this point of view there is a better method, namely
that of finding the general solution of the first two equations, substituting the
general value of x so found in the third equation and solving the resulting
equation in a new unknown. Consider the equations
I+ax=13
1+dx=7" p.
I +ex=w"

Suppose 1 +ax = % some square. Therefore

1+0x=1 +~§(ﬁ-’—1),
and, multiplying by ¢ we have to make
abp® + at— ab a square.

This is a square if p=1 ; and we therefore substitute g + 1 for . Thus
abg® + 2abg + o = a square

=(Fove)
=57 , Say.

Therefore (ab - ”é) g=2 ( P ab> )
72 n
2an (m — nb)

and ==

h O . abn® — m®
whence P=g+i= B

Y {(mmrz — abn® — m)? — (abr® —m’)2}

and YT Ta (abn® — m?)?

— gmn{m*— (a+ b) mn + abn®}

(abn® — m)?

Substituting this value of x in the expression 1 + ¢x, we have a biquad-

. s M .
ratic expression in which has to be made a square, namely

it — 4o + {4 (@ + B) c — 2ab} m*n® = pabemi® + &*Fn.

1 Bibliotheca Mathematica, 1Xg, 1909, pp. 289-300.
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Example. Find x such that
I -%, 1+ 4%, I+ 7% are all squares.
First find the general value of & which will make the first two ex-
pressions squares ; this is
|~ qymn (m* = 3mn — 47°)
- (m*+ 4n*)

or, if we substitute & for 22/m,
x_k (28 + 34— 2)
T (B+1p
We have now to make 1 + 7x a square ; that is,
B+ 148 + 2387 — 144 + 1 = a square.

The first solution of this is %=+ 1, and by means of these values we get
the further values #=% and % =14 (cf. Euler’s solution of the problem of
making x*+ 1 and x+1 simultaneously squares quoted in my note on
DpD. 84, 85). The corresponding values of x are respectively

3 120 120120
4 29 421°
Fermat’s method gives, as the next solution after %, the value

g= 31204243
WETEIRIEI3E 2L

(3) v. Schaewen observes that the problem of finding x such that three
different expressions of the form #ux + 2 are all squares can always be solved
provided that we know one solution ; in this case the absolute terms need
not be squares. I doubt however if he is right in supposing that the
possibility of solution in this case was not known to Fermat or De Billy.
I think it probable that Fermat at least was aware of the fact; for this case
of the triple-equation is precisely parallel to that of the double-equation

2%+ 5 =0 }

bx+3=w")’
given as a possible case by Fermat in his note on Bachet’s conditions for
the possibility of solving double-equations (cf. note on p. 287 above).
Fermat says that the square to which 2x + 5 should be made equal is 16
and that to which 6x + 3 should be made equal is 36 (corresponding to
x=53), adding that an infinite number of other solutjons can be found.

(4) Lastly, v. Schaewen investigates the conditions under which the
equations
I+ax=0), 1+bx=0% 1+ (a+b)x=2"
which cannot be solved by Fermat’s method, are nevertheless capable of

solution, and shows how to solve them when they Aave a solution other
than x = o,
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SECTION VI
SOME SOLUTIONS BY EULER.

PROBLEM 1. 70 solye generally the indeterminate equation’
B+ + 2=00

Vieta solved this equation on the assumption that two of the four
numbers are taken as known.

[I noted on p. 10z Eulers remark that, if 3%+ 43 is turned into the
difference between two cubes by the direct use of Vieta’s second formula,
the formula gives 3%+ 4° = (472)* - (%%%)° but not 3°+ 4°=6°—5% I ought
however to have observed? that the latter can be obtained from Vieta's f7s#
formula if we multiply throughout by a® +#. The formula then becomes

@ (a® + B =B (@ + BV + o (@° - 20°)° + B (24° - &)

Putting a=2, =1, we have 18%=9+12°+15% which gives (after division
by 3%) 6°=3%+4%+5% The next solution, obtained by putting 2= 3, é=1,
i§84°=28+53+ 75%; if a=3, b=2, we have 105%= 33% + 70°+92%; and
so on. Similarly Vieta’s second formula gives

@ (@ + 28 = a* (@ — ) + B (a® — &) + 8 (2a® + BV,
and we obtain other integral solutions; thus
ifa=2, 6=1, we have 20°= 7°+ 143+ 175
ifa=3, =1, we have 87*=26"+ 55°+ 78%;
and so on.]

(1) A more general solution can be obtained by treating only one of
the three numbers x, y, z as known.

To solve @+t + =17,
put X=pu+7, y=qu—7r;
therefore
@+ 37 (p+q)u+ 37 (P - W +(F+7) W=7

7 ]
= {a + (p+g)u} , say;
and we obtain, after dividing out by (# +¢) %3
(-0 +(P-tr+ Pu=5(p+9)+ 5 (5 +aFn,

Y N. Comment. Acad. Petrop. 1756-57, Vol. VL. (1761), pp. 155 sqq.= Comment.
arithm. 1. pp. 193~206. Cf. pp. 101~-2 above.

2 See Nesselmann’s  Anmerkungen zu Diophant” in the Zeitschrift fiir Matk. u.
Physik, XXXV1L (1892), Hist. litt. Abt. p. 123.
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3a"r*(ﬁ+v)—3a“r(ﬁ—9z’
& (p=pg+q) =7 (p+9)
3@ (p +g) — a7 (28°— 289 — ) — '“(ﬁ+«1)

or U=

ey EF— g+ PP BT
_ 3a'qgr (p+q) —a’r (P +2M—°¢)+f’(ﬁ+q>
= (P —pg+) -7 (2+9)
meat _d#—pg+q) =307 ('~ ) +2a"‘(1’+9)2’
vmet a2y us (7=t~ G0

where a,  and the ratio p : ¢ may be given any values we please.

(2) A more general solution still is obtained if we regard none of the
first three cubes as known.
Suppose that, in the equation

&t + )P+ 7 =0

X =t + pu, v =nt+qu, 5=—nt+ru.

Therefore
DA+ P =ity 30lp ) fu+ 3mp? } v pt) o
+ 37% +3nt b+
+ 377 | —3ur +7
wp+ 7w (g + 7
Put now o=ty P2 gL ) ",

m?
and we have, after division by 23,

3t{mpr+n (P = +u (P + g+ 7 = mp+;z~(q+/)}°
+ W g+ 22 (g + 7))},

whence, neglecting a common factor which may be chosen arbitrarily, we
have

t=mb (P4 g+ P — mp+ w2 (g + 7P,
wu =3P \m’p + 2* (g + 7)* = 3w {mp® + n (¢ — )},
or, if we divide by the factor 7 + 7,
t=a (= g7 + 7°) = 3MnB — 3minip (g + 7) — 18 (g + 7Y,
u=—3mn (g — 7) + 6m°n°p + 3m’n* (g + »),
so that %, y, z and v can be written down.
The solution is, however, still not general.
(3) General solution.
7o find generally all the sets of three cubes the sum of whick is a cube.
Suppose A+ B+ =D or A+ B=D°— (3,
and assume A=p+g, B=p—g, C=r—s5, D=r+s.
Then AP+ B = 28" + 6pg*, DP— C3 = 25° + 6¢%,
so that 2(8*+38) =5 (s + 37).
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This equation cannot subsist unless p?+ 3¢°, s*+ 37° have a common
divisor. Now it is known that numbers of this form have no divisors
except such as are of the same form.

To find them, we introduce six new letters to take the place of
by ¢, 7, 5, thus: let

p=ax+ 30y, s=3cy—dx,

g=bx—ay, r=dy+cx,
whence g%+ 397 = (¢ + 38°) (8 + 397), &+ 372 =(d* + 3¢&) (8 + 39),
and our equation, divided by x* + 3)% becomes

(ax + 38y) (@ + 30°) = (3¢p — ) (&* + 3¢%) 5
x  ~30(a®+ 30 + 3¢(d? + 3¢
so that 3= @+ 351))+d(,z=+3ﬁ) ,
and we may put x=—3nb (a*+ 30°) + 37n¢ (d* + 3¢%),
y=mna(a+ 30 + nd (d*+ 3¢
Hence the values of p, ¢, 7, s are found to be
P =37 (ac+bd) (@ + 3¢%,
g=n(3bc—ad) (@ + 3% — n (a* + 307
r=n(2>+ 37)°—n (36¢c — ad) (& + 36°),
s=3n (ac + bd) (a® + 30°),
and A=n(3ac+ 36c—ad + 30d) (d*+ 3¢*) — 1 (a® + 36%)%
B=n(30c— 3bc+ ad + 35d) (d* + 368) + n (a® + 38°)},
C=n(d*+ 38— n (3ac + 30c — ad + 30d) (@ + 36°),
D=7 (d*+ 38+ n (3ac— 36c + ad + 30d) (a® + 35°).
These values satisfy the equation
A%+ B+ C3 =1,
and, since no restriction has been introduced, the solution is capable of
giving all the sets of three cubes which have a cube for their sum.

More special forms for 4, B, C, D can of course be obtained by putting
zero for one of the letters g, 4, ¢, d, and still more speéial forms by com-
bining with the assumption #=o0 or &=o the assumption &=+ ¢, or com-
bining with the assumption ¢=o or = o the assumption s =+ a.

Two cases are worth noting.

First, suppose &= o, d=¢, and we have :

A = 8nal—nat, B=16nac+na', C=16nc—2na%, D =16nc+ 4na’.

If further we write 24 for @ and /16 for #, we have

A=na(d-a®), B=na(28+a%), C=mnc(@—0a%), D=nc(+24a,
which is equivalent to Vieta’s solution of his second problem.

Secondly, suppose d=o0, 4 =, and we have

A =18nal—16nat, B=16na', C=gnct—24na’, D= gnc’,
or, if we write a for 4,

A=9nac®—na', B=na', C=gnc— 3na*%, D=gnc,:
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which, if # = a=c =1, gives the simplest solution of all
A=8, B=1, C=6, D=9, and 1*+6°+ 8 =9
In proceeding to other solutions we have to remember that, while
A, B, C, D must be integral, they should all be prime to one another; for
those solutions in which 4, B, C, D have a common factor are not new
solutions in addition to that from which the common factor is eliminated.
Thus, while giving any values, positive or negative, to the numbers
a, b, ¢, 4 in the formulae
&= 3ne (2% + 3¢2) — 3nb (a® + 36°),
y=nd (d*+ 3¢) + na (a* + 36%),
we have to choose for # such a fraction as will make x, y prime to one
another. We then form
p=ax+30y, g=bx—ay, r=dy+cx, s=3cy—dx;
and, after again eliminating any common factor, we put
A=p+y, B=p—q, C=r—y5, D=7r+s5,
and we shall have A+ B+ CP= 1P
(The cases in which one of the three cubes 4% 5% C* is negative will
give the solutions of the equation &* +3° = 5°+7°.)
While any values of a, 4, ¢, & may be taken, it is necessary, if we want
a solution in which 4, B, C, D will be small numbers, to choose a, &, ¢, 4
so that @*+ 382 &®+ 32 may have a common factor. Euler accordingly
sets out a table of all numbers of the form #? + 3> less than 1000 (giving
m values from 1 to 31 and # values from 1 to 18), and then chooses out
cases in which a* + 34 4%+ 3¢® have a tolerably large common factor.
Now, assuming that @+ 308 = mk,
d%+ 36 = nk,
we have (supposing further that ac+ 4=/, 30c — ad = g)
A=n(3f+8) —mk,
B=n(3f-g) +m*,
C=nk-m(3/+ ),
D=wk+m(3f-g).
In these formulae /, & may be either positive or negative, the signs of
a, 4, ¢, d being ambiguous ; and we may put
Sf==*(ac+4d) } o f=1%(ac—bd) }
&=+ (30c~ ad) g=+(3bc+ad) "
But, if / changes sign while ¢ remains unaltered, we get numbers of the

same form, only in different order; therefore we may confine ourselves to
the positive sign in £,

either
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Example 1. Let
a’+ 382 =1g, so that a=4, b=,
2%+ 38 = 46, so that (Z:I} orzz’=7} or a’=8}
c=5 c=3 c=2
Then m =1, n=4, k= 19.

The following values for /£ ¢ result, viz.

I f=o, II. f=19, III. /=19,
g=£11, g=%19, g==*19,
V. f=s, V. f=16, VI. f=o,
§=% 37, g=%26, g=+38,
while, since m =1, n =4, £ = 19,
A=12f+48-19,
B =12f~4g+19,
C=304-3/-4&
D =304+3f-¢

The values (VI) f=o, &=+ 38 are excluded because, if f=o0, 4 =-58
and C=D
The values (I) give

A=233+44, thatis, | 4=277 A=18g or A=3
B=271F44 B=227 B=313 B=5
C=241F 11 C=230 | C=252 C=4
D=367F 17 | D=3s6 D=378 D=6
The values (II) and (1II) give, after division by 19,
A=11+4, thatis, A=150r 4=3 A= 1
B=13%4 B=9 B=3 B=17
C=13%1 C=12 C=4 C=14
D=19%1 D=18 D=6 D=z20

The values (IV) give
A= 41+148, thatis,| A= 189 or A= 63 Ad=—107

B= 79F 148 B=-69 B=-23 B= 227
C=289F 37 C= 252 C= 84 C= 326
D=319F 37 D= 282 D= o4 D= 356

Lastly, the values (V) give
A=173+ 104, thatis, A =277 A= 69 or A= 23
B=2117F104 B =107 B=315 B =105
C=256F 26 C=230 C=282 C= o4

D=352F 26 D=326 })=378 D=126
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Thus from the one assumption for a*+ 34 &°+3¢ we have the
following solutions:
227% + 230% + 277 = 356° 1078 +356°= 227" + 326°
107" + 230° + 277° = 326 23%+ 94°= 63°+ 84°
23+ 94"+ 105" = 126"
7P+ o148+ 17°= 20°
P+ £+ 5= 6
Example 2. Assuming
@+ 30°=128, so that a=1 } or a=4} or a=5}
b

b=3 b=2 b=1
4%+ 3¢* =84, so that d=3} or a’=6} or a’=9}
’ =35 c=4 c=1)"’
we have k=28, m=1, 2= 3, and the following solutions will be obtained :
'+ 66+ &= ¢ P+ 12°= ¢*+ 10°

34°+39°+ 65° = 72° 10° + 27° = 19 + 24’

20° + 54° + 79°=87° 17% + 39° = 26° + 36°
P+ £+ PF= 6

38%+48% + 79° = 84°

PROBLEM 2. 70 find three numbers %, y, 3 suck that
X+, X458 Y+5,
=)y ¥—3 JY—35
are all squares.
First solution™.

Assume that x—y=p X—23=¢% y—3=2%
therefore y=x — 2% z=a-¢% and §*=p*+ 2~
The first three formulae now become
X+y=20-p x+z=2x—¢% y+z=28—p"— g%
Suppose that zx—p?—#* =72 so that 2x=#+ 2%+ ¢*; therefore we
have to make # + ¢* and # + g squares, while in addition ¢* =p*+ 7~

Let g=at+ 0 p=a*>-0 r=2ab;
then 2+ (P+BP=£+a"+ 0+ 20
and Pr(@-0P=r+a'+ &*‘—m“b“}

must be made squares.

Comparing now #*+a*+4* with 2+4® and 20%* with 2¢d, let us
suppose cd =o'l = gk, c=['¢" d=R, a*=fF, P=g# (or a=/fh,
&=gk) ; then the assumption £ + a* + # = 2 + 42 will assume the form

2+ foh+ g =gt + AR
or B=fgt— 7+ B — g% = () (gt - 1Y).
1 Algebra, Paxt 11. Art. 235,
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Hence the problem is reduced to finding the differences of two pairs of
fourth powers, namely /*—4* and g* — #%, the product of which is a square.

For this purpose Euler sets out a table of values of m‘—=#* corre-
sponding to different values of m, #, with a view of selecting pairs of
values of m*—#* the products of which are squares.

m? 7* m2-n | mRa? mt -t

4 1 3 5 3-5
9 T 8 10 16. 5
9 4 5 13- 5-13
16 1 15 17 3. 5-17
16 9 7 25 25. 7
25 I 24 26 16. 3.13
25 9 16 34 16. 2.17 |
49 I 48 50 25. 16, 2. 3 |
49 | 16 33 65 3. 5.11.13
64 1 63 65 9. 5. 7.13
81 49 32 130 64. 5.13
121 4 117 125 25. 9. 5.13
121 9 112 130 |16. 2. 5. 7.13
121 49 72 170 144. 5.17 :
144 | 25 119 169 169. 7.17
169 | 1 168 170 |16. 3. 5. 7.17
169 | 81 88 250 25, 16. §5.1I
225 | 64 161 289 289. 7.23 '

One solution is obtained from f? =g, £* = 4, g2 = 81, /*= 49, whence
r=(f=A) (¢ - ) =5.13.64.5.13=(520)*=270400.
Theréfore
a=jfh=21,0=gk=18,p=?-P =117, g=0a"+ B> =165, »=2ab=756;
therefore 20 =72+ #*+ ¢*=869314, Or = 434657
y=x—p= 4200968
s=x—¢=-150568
The last number z may be taken positively ; the difference then becomes
the sum and the sum becomes the difference; therefore
*= 434657, x+y=855625=(925)% x—y= 13689 = (117)}
J=420968, x+z7=7585225=(765)", x —5=284089 =(533)}%
z=150568, 3+ 2=7571536=(756)% y—2z=270400=(520)%
We might also have taken f2=9, =4, g?=121, A*=4, which would
equally have given a solution.
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Second solution®.
This later solution (1780) of Euler’s is worth giving on account of the
variety of the artifices used.
We can make x+y and x —) squares by putting x=p2"+4% 3 = 2pg.
Similarly x + 2z, x — z will be squares if x=7*++° 5 = 27s.
Therefore four conditions will be satisfied if only g*+ ¢* =7+ s
Now [cf. Diophantus 111 19 and pp. 105-6 above] if we put
x = (a®+ ) (& + &%),
x can be made the sum of two squares in two ways ; in fact
p=ac+bd, r=ad + b,
g=ad—"b¢ s=ac—bd,

and
y=2p9 =2 (a%d + abd® — abl®— §cd), =275 =2 (@cd +abc - abd’ — bcd),
so that y+z=4d (=), y—2= 4ab(d®- 7).

These latter expressions have to be made squares.

First make their product *— 2 a square; this means that

ab (a®— ) . cd (d° —¢*) must be made a square,

To effect this, let us assume that «(d® - ¢*) =#%b (&* — %) ; we may
further, since the question depends on the relations between the pairs of
letters a, & and ¢ @, suppose that &= a.

We have then c(a®- A =w'b (a®— 1),

P - . . .

whence a* = G which fraction has accordingly to be made a square.
w2 -, \
Suppose that a =4 -¢, so that e sl & —2bc + ¢ and we have
o=— (27" + 1) Bc+ (n® + 2) bc*;
b A+2

therefore -=—
c 2n°+X
Put 6 =7%+ 2 and c=2#% + 1 ; therefore a =1 —7n*=d.

As we have now made the product of the expressions aé (@* — ¢*) and
¢cd (a*— ) a square, it only remains to make either of them singly a square,
say ab (d®-&).

But ab (22— ) =ab(d~c) (@+0)=3nm* (n* — 1) (n*+ 2)%

We have therefore only to make 3 (#*— 1) a square, which is easy, since
#* —1 has factors ; for we have only to put

Vi
3(n*—1) =% (n+1)3
L+3
38 -f
1 Mémoires de I Académie Inmpériale des Sciences de St Pétersbourg, 1813-14, V1. (1818),
PP- 54 Sqq.= Commentationes arithmeticae, 11, pp. 392~5.

which gives 3(n—1) =§ (n+1), or z=
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[Euler had previously tried the supposition a=4&+¢, which would
require 3(7’+1) to be made a square, which is impossible.]

All the conditions are now satisfied, and we have to find 4, 4, ¢, 4 etc.
sz2g2

in terms of £, g:
61+ azg*
G=d=1=-r=——>2— jb=n+2 =L———,
(3¢* -/ (387
31+ 68 + 278"

(3g*-/70

As the whole solution depends on the ratios of @, 4, ¢, d, we can
multiply throughout by the common denominator, ‘divide by 3, and put

a=d=—4/%, b=/ -2f+9g, c=/f+2f%"+ 98"
whence =—8Fg (Fitogh), r=/"+ 3ot + B1gt,
g=—/"+2fg'- 818", s=—16fg"

[Euler took & to be 72— 1 instead of 1 — 7* and consequently obtained
positive signs for the values of  and s; he also has ¢ =— (/*— 9g*)>, which
appears to be a slip.] )

Assuming therefore any values for #, g in the first instance, we first find
values for @, 4, ¢, &, then values for g, ¢, 7, 5, and lastly values for x, y, 2.

It is to be observed that it is a matter of indifference whether we get negative
values or not ; for positive values can be substituted without danger.

=27 +1=

Euler gives four examples.
If f=1, ¢=1, we find that x, y have equal values; this solution there-
fore does not serve our purpose.
The same is the case if /=3, g=1.
Suppose then that /=2, g¢=1; thereforee=d=—-16, 6= 17, c=33; and
(taking positive signs) we have
p =800, g= 305, r=3817, s=256,
and x=1733025, ¥= 488000, z=418304,
x+y=1105% £—y=495%
x+8=1073% x—3=7561%
y+z= 952% y—5=2064%
If f=1,g=2, we have a=d=16, =137, ¢=153, and
P =4640, g=20705, »=21217, §=256,
leading to large numbers for x, y, 2.

Euler adds that, if x, y, 2 satisfy the conditions of the problem, another
solution is furnished by X, ¥, Z where

X=}(+2-2Y, V=}@+at~p), Z=} @+~ ).

H, D, 22
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PROBLEM 3. 70 find three squares such that the difference of any pair
is a square, or lo find x, y, & such that

&P~ -3 ¥ — 2 are all squares.
Any solution of the preceding problem will satisfy this, but the numbers
would be large and we can get smaller solutions’..

5

Dividing by 2% we have to find three squares, %,J; and 1, such that
Ll o a
G-%) G-1) (&-=

The last two conditions are satisfied if we put
+

® _ P+ and 7 = 7+ I

z p-1 z2 g#-1’

2 2 2
and we have only to make %;— Vol (Prrp @1y e a. square.

-G

are all squares.

Now
(LZ+1f (F+1) (p“+1+q“+1 (p2+1_g“+1
(F-1p (F-1F \F-1 F-1/\F-1 F-1
4(?29”—1)(9” -2
(F-1)F -1

Therefore (2% —1) (¢*—2% or (¢ —1) (;j - 1) has to be made a
square.
(r) The latter expression is a square if

_f’+grs g_K+Z
2y= 2fy ’ p— 2hk

And p¢. 1; = 4% a square; therefore

12 2 ' .
f;;’ ;12;: or fz (f*+g&% . k% (/2 + &) must be a square.

If f=a+8, g=a-b, h=c+d, k=c—d, the expression becomes
4 (&' —5*) (4~ @*), which must be a square.

From the Table to the last problem we may take the values
=9, V=4, #=81, d*=4y,
which make the expression a square.

Thenf— 5, 8&=1, k= 16 k=2 pg—-g—, glp =252 = 88, so that g2 =182,
¢=213, and therefore 2=

x + 8s . .
Therefore > =%—I =— %5 s 'g = ?—}% = ;gg is the solution.

1 Alpebra, Part 11., Arts, 236, 237,
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To obtain whole numbers, we put z=153 and then x=~697 and
y=185.

Thus x*=485809 | and x*—y*=451584=(672)},
P= 34225 Y —8'= 10816 =(104)}
= 23409 &® — 5% = 462400 = (680)>

(2) Without using the Table, we may make (P'#-1) —9—2 - I> a square
in another way.

Put g/p=m or g=mp, and (m*%* - 1) (7*—1) has to be made a square.

This is a square when p =1 ; substitute therefore 1 +s for p and we
have

(m* — 1) (7 — 1 + 4m®s + 678 + 473 + mms%).

Dividing out by (*—1)* and, for brevity, putting & for m*/(m*— 1),

we have .
I + 4as+6as® + 4as® + as’,

which has to be made a square.

Equating this to (1 +/5 +£5%% let us determine £, ¢ so that the first
three terms disappear ;

therefore 2f=4a, or f=2aq,
and 6a=2g+f or g=1(6a-,?) =3a—2a%
Lastly, the equation gives 4a + as = 2/g + g%, so that
o 48—-2f%  4a—124"+80° - 4—12¢+84°  4(2a-1)
g‘z— 40 —12a*+9a%—a 40’ —120°+9a—1 4a°~8a+ 1’

Now # in the expression for @ may have any value.

Ex. 1. Letm=2,s0thata=%;

: _, 5:3__6o 3,_1 __T74.
therefore §=4.2—== 23 T , b= 23’ g 23
whence 4 w - boos .

z 420’ 3 4947

Ex. 2. Letm=2%,sothata=%;

; = £§-_5___2_62 =249 747
therefore s=4.270= Il,p_ =, g==,

whence «/z, y/z are determined.
Euler considers also the particular case in which @ =m?/(m*~1) is a
square, &* say.
The expression I + 45% + 65%+ 45%° + 5%* is then equated to
(1 + 28% + bs%),

and we obtain s=:2—fé—ff andp=1~—2y.

22—2
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Ex. aisasquare if z = $, and in that case $=%. Therefore p=—
g=mp =—21% and accordingly
x _889 y_433
Z 111’ z 145
PROBLEM 4. 70 find three square numbers such that the sum of each
pair is also a square, i.e. to find numbers %, y, & such that
Pryh P+ P
are all squares*.
Dividing by 2% we have to make

x“’ o
2tp B2T0E
all squares.
The second and third are made squares by putting

f=p2—-_I and 'Z=gs_l,'
4 2p z 2g
and it only remains to make

<ﬁ_l)2 (92_1)2 2 1)2 2/.2 T\
7t L) - x) asquare.

This can hardly be solved generally, and accordingly we resort to
particular artifices.

1. Let us make the expression divisible by (2 + 1)% which is easily
done by supposing g+ 1=¢—1, or g=p+ 2, so that ¢+ 1 becomes p + 3.

Thus (p+2)° (p—1)2+2° (B + 3)%, or 2p* + 84°+ 65° — 4p + 4, must be a
square.

Suppose 20°+ 852+ 62— 4p + 4= (g + /P + 2)%
and let us choose f, g such that the terms in g, £* vanish ; therefore f=— 1,
and 4¢+1=6, or g=1

We now have 20 +8=g%+2fg
—25 5
=1/ T

so that p = — 24, and ¢g=- 22, whence
2 F-r_ 515 y_g£-1_ 483
z 2P 48’ 5 270 44’
Making =16. 3. 11, the least common multiple of 48 and 44, we have
the solution
X=11.23.25=6325, y=12.21.23=5796, 5=3.11.16=528,
and o' +yt=23(275" + 2527 =23, 373",
B+ =11 (575%+ 489 =112 5777,
P +58=127(4832+ 44%) =12, 4852

Y Adlgebra, Part 11., Art. 238.
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2, 3. Euler obtains fresh solutions by assuming, first, that
g—1=2 (? + I):
and, secondly, that 7g-1=%(p~-1)
4. Lastly, he makes our expression divisible by both (# +1)* and
(#—1)* at the same time.
For this purpose he takes

P+
T oprr’
_(2+1)(+1) _(2-1)(-1)
whence g+I= PEY, , and g—:__-m_._.

Substituting in the formula ¢*(#*~1)*+ #*(®—1)* the value of ¢ in
terms of p, £ and then dividing by (#°- 1)* we have the expression
(prery g (F-1)
@+ T (an
and we have to make (p#+ 1)* (p + #)* + p* (1* - 1)* a square,
or 2+ 2a@+1)f+ {288+ P+ 1)+ (- 1)} PR rat(PBr1)p+ L

must be a square.

We now equate this to  {#*+ (*+1) g — £},
whence we have
{22+ (E+1)+ (-1 p+2t(P+1)={(P+ 1)~ 282} p— 2/ (£* + 1),

which gives {ar?+ (=10 p+at(@+1) =0,
- .

and 7= +1’

theref PR Sk SN i

erefore prri= =FIo
_=38+1

and q_.————-ts_st )

where # can be chosen arbitrarily.

Ex. Let¢=2z; thenp=-§ ¢g=-21L and
x_pF-1_ 39 y_g-r_ 117

z 2p 8' 1z 2¢ 44
Putting z2=4.4.5.11, the least common multiple of 8o and 44,

we have
X==3.11.13 =— 429,

=—4.5.9.13=—2340,
2= 4.4.5.11= 880,
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and 22+y°=3%. 13 (121 + 3600) =3%. 13%. 61,
2+ =112 (1521 + 6400) =11°. 89%
P2 +5°=20% (13689 + 1936) =20'. 125
ProsrEm 5. (Extension of Dioph. 1v. 20 to fize numbers.)
T find five numbers suck that the product of every pair z'rz:fa_zsed by unity

becomes a square’.

Euler had already shown (see pp. 181, 182 above) that, if mz+1 =2,
then the following fou» numbers which we will call a, &, ¢, 2 have the
property, viz.

a=m, b=n, c=m+n+2l, d=40({+m)(l+n).
If now z is the fifth required number, the four expressions

1+as, 1+03 1+¢s I+dz
must all be squares.

If, says Euler, we had to satisfy these conditions singly, the difficulties
would be insuperable. But here too it happens, as in the former case,
that, if we make the product of the four expressions a square, the
expressions are all severally squares.

Let the product be 1+ 22 + g3 + 72 + 524,
where accordingly
p=a+b+c+d, g=ab+ac+ ad+bc+bd + dd,
r=abc+ abd + acd + bed, s= abcd.
Suppose now that
145+ + 78 + 520 = {1 + 1pz+ (39— 32°) 2°F;
therefore, since the absolute term and the terms in 2, 2° vanish, we have
rss=pGg— 1) + Ge— 15
whence g= r—(—-————;;_(ii;;%]j ;) .
Now it will be found (see the proof lower down) that
-3 =—fs+1);
the denominator of the fraction will therefore be (s — 1)?; that is, the said

denominator fortunately turns out to be a square ; if it were not so, the

single expressions I +az, 1 +43, 1 +v2, 1 +dz could not have been made
squares. '

As it is however, substituting for g —21#* its value in the numerator
and denominator of the fraction for 2, we have

z_4r+2]5(s+ 1)
= . (_‘._I)z ’

Y Commentationes arithmeticae, 11. pp. s0-52.
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and all the conditions will be fulfilled, that is, all the expressions
ab+1, ac+1, ad+1, be+1, M+ 1,

d+1, az+1, bz+1, ¢5+1, dz+1
will be squares.

Lemma. To prove the fact (assumed above) that
Y- ==} (s +1)

For brevity, put m +n+/=f, [({+m) ({+7)=% so that k=f2+lmn;
and, since a=m, b=n, c=f+17, d= 4% we have a + 4 + c=2f, and therefore
P=2f+ 44

Again, since g=(a+d+c)d+(a+b)c+ab,
=8 f% + (m + n)* + 2/ (m + n) + mn;
and, since 77 + 1 = /% the latter expression becomes

=8+, - 1.
Moreover, s=abed = gmnk (f+1);
therefore T4+ —-.8)% + /2 + gmnk (f+ 1),
and we have to see whether the right-hand expression is equal to 2%
Now ‘ }pﬂ—fﬁ+ 4/% + 4k’

Assume then, as a hypothe51s, that
8k +f2+ amnk (f+ 1) =2+ 4.1k + 44
ie. 4/% + gmnk (f+ 1) = 4%,
or, if we divide throughout by 44, .
S+mn(f+10)=Ek=fI*+/mn, from above;
that is, C frfmn=fP,
which is of course true, since mz + 1 = /2
Consequently it is proved that
1+g+s=1p% or (37-3P°)=-(s+1)
Ex. 1. Assume m = 1, 2=3 so that /=2; therefore
—-I, b=3, c¢=3§, d=120,
whence p=132, ¢g= 1475, 7= 4224, s=2880,

and we deduce that
_4: 4224+264 2881 777480

287¢% T 3288641
The conditions are satisfied, for
ab+1=12% ac+1= 3 ad+1=11°%
be+1=5% bd+1=19°% d+1=31%

az+1=(3333)% dz+1=(3258)% c+1=(3§90)%
dz+ 1= (3P
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Ex. 2. To get smaller numbers (since we must put up with fractions)

let us put m=1, =35, so that /=3; therefore
a=1%, b=%, c=6, d=48,
whence 7=57, g=451%, 7=931}, §=360,
_4.9313+114.361 _ 44880
and = 359" = 7128881

ProBLEM 6. Euler has a general solution of the problem of Dioph. 11
15, viz.
7o find three numbers x, y, % such that

xy+x+y, %z+x+2, yIty+z
are all squares®.

(x) Put x+1=4, y+1=28, 2+1=C,s0 that AB—1, AC—1 and
BC~1 have to be made squares.
Let AB=p*+1, AC=¢*+1, BC=#+1;
therefore ABC= J{(#+1)(¢*+1) (A + 1)}
To make this expression rational, let us regard g, ¢ as given and put
(P+1)(P+1)=m+n% so that m=pg+ 1, n=pTFg; therefore
ABC = f{(m*+#7) (7 + 1)} = J{(m7 + n)* + (nr — m)%.
Put the latter root equal to m7 + 7 + £ (n7 — m); therefore
nr — m=2mrt +2nt + nrt®> — mt,
_m(-1)—2nt
T n(f-1) + 2mt’
2 22 tﬂ
le(tz;—lx)w—;;:z)}? and ABC=
thus, since BC=7*+ 1, we have

and '

(P +n?)(B+1)

Therefore #+1=
n(f—1)+2mt’

A__n(i“—1)+zmt
- 41 !

and, since 7} + n*=(p* + 1) (¢* + 1),
(p’+1)(12+ 1)

n(B—1)+2mé’

(@ +1)(#2+1)
T n(B-1)+2mt’
where m=pg + 1, n=p$g.
This solution is very general, inasmuch as we may choose g, ¢ as we
please, thus equating 4B —1, 4C—1 to any given squares; and, as #

can be chosen arbitrarily, we have an infinite number of square values for
BC-~1.

(2) Euler adds two methods of obtaining solutions in integers, the
second of which is interesting.

1 ¢¢Considerationes circa analysin Diophanteam,” Commentationes arithmeticae, 11. P-577-
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Take two fractions i; and g—,so related that ead—&c=+1; and form a
third fraction d—i—z, which is similarly related to either of the former
fractions.
Then the following three numbers will satisfy the conditions :
A=a+8, B=c2>+d%, C=(cta)+(d+5)
For, since ad —bc=+1,
AB = (ac+bd) + 1,
AC=(acta®+od+ 5P +1,
BC=(2tac+d*+ bdp + 1.
(Cf. Dioph. 11, 19.)

Simple solutions are seen thus :

a c a+c

7 4 b+d 4 B c
9; } ,ﬁ I Frrafte
% f_}l j% 2 2fP-af+1 2fi4aftr
5 Ef):_f f;::,x, 5 5/%-4f+1  §FR+6f+2

and so on.

(3) If two of the numbers 4, B are given such that 48 —1=2% we
can find an infinite number of values for a third, C, which with 4, B
will satisfy the conditions.

For, since 4C~ 1 and BC—1 have to be squares, take their product
ABC®— (A4 + B) C+1 and equate it to (»C+1)*; we have then
A+B+2m (A+m) _(B+m)

C=W’ whence AC-I—AB and BC- =T

Therefore we have only to make 4B —* a square ; that is,
2%+ 1—m?=a square =#? say, so that m*+ 2*=p"+ 1,
Take now two fractions @ and a such that ¢*+e*=1,and let m=0ap + 0,
n=oap—aj; then

C= A+ B+2(ap+a)

(sp—ay ~’
where a, a are determined by giving any values whatever to f, g in the
expressions
A S/ 4

ALY Y
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PROBLEM 7. 70 find four numbers suck that the product of any pair
plm the sum of that pair gives a square; o7, in other words, to find four
numbers A, B, C, D such that the product of any pair diminished by 1 is a
square, that is, such that 4

AB-1, AC—1, AD-1, BC—-1, BD-1, CD-1
are all squares. (Cf. Diophantus 1v. 20.)

Let us regard two of the numbers 4, B as given, being such that
AB—1=p" or AB=p"+1.

Let @, a be such fractions that @° + a*=1, and put
A+B+2(ap+a)

ECED
Similarly let 2* + 2= 1, and put for the fourth number
A+B+2(bp+p)
(Bp—=0)
Thus five conditions are satisfied, namely, that
AB-1, AC—-1, BC-1, AD—1, BD—1 are all squares.

The sixth condition, that C.D — 1 shall be a square, gives
(A+Br+2(4+B){(a+d)p+a+ B} +4(ap+a)(bs+B)

—(op —a)* (Bp—8)" =a square,
where 4.8 has at the same time to be equal to g + 1.

C=

D=

Regarding g, o, 4, B and p as given, we have
PRS- RP P St s AaS
and the expression to be made a square becomes the following expression
in powers of 4,
A2 (a+ b)p+ 24 (P + 1) +24(P+1)(a+d)p+ (P + 1)
tod(atB) +4d(ap+a) (Bp+B) +24(F+1)(a+P)
’ . = A(p—ap(Bp -0
“Equate this to the square of ‘
A+ d(arb)p-(F+1)
+4 (a+B),

and we Lave -
A{a+bpp+2(@+b8)(a+B)p+(a+BP—4(s +1)
. —4(ap+a)(6p +B)+(ap — a) (Bp — 0)%
=44 (F +1){(@+8)p +a+p}

whence A is found.

Euler goes on to some partlcula.r cases, of which the following may
be given.

1 Commeniationes arithmeticae, i1, pp. §79-582.
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Suppose 4=—a and B=—a; we then have
A+B+2(ap+a). A+B-2(ap+a)

R O O =)
and the expression above in 4 which had to be made a square becomes
A+ 2 L2 (P + 1) + (B4 1)
— 442 (ap + a)?
- A(ep—a)'

This can be put in the form
AL (F O+ 4L (P 4~ (ap-a)},
by virtue of the relation %+ o*=1. '

Our expression is clearly a square if 4 —(ap~a)?=o0, or ap—a=z,
that is, g = (2 +a)/a, and
: (2+a)a 20471

ap +a= +a=
P+ a e’

and in that case ,
P+ C=A_.+B+2(2a+1)/a=a(A+B).+4a+2
4 4 40 ’
D?a(f4+B)—.4a—-z’
4a
where 4 can be chosen quite arbitrarily.

Putting a=(/*~g%/(f*+g"), a=2/g/(/* +§£), we obtain the following
as a solution, where 7, # can be any integers whatever.

_m(feg) 5ol +8)
Tanfg Tomfy
_(m+3n)f*+(m—n)g De (m— 3 2+ (m+ n) g
B 8mnjy ’ 8mnfe
Ex. Suppose f=1, g=z2, m=5 n=6;
therefore A=3%%, B=3%§, C=i33, D=4t
and AB-1=(})% AC-1=(33)5 AD—I—(“’

BC-1=(18? BD-1=(8), CD—1=(3£3)7 ..
PROBLEM 8. 70 find jfour numbers suck that the product of any pair
added to a given number n gives a square’.

(r) A particular solution is found in this way. LetA B, C’ D be
the required numbers, and, since 4B +z has to be a square, put

A=na*-0, B=nl-d’, )
so that AB=(nac—bd)y—n(ad—bc). [CE the Indian formula above,
p. 282.]

Y Commentationes arithmericae, 11. pp, 552-3.
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The condition that 48 + zis a square is therefore fulfilled, provided
that ad—éc=+1; therefore we have to take fractions ;, fl such that

. . . a+c a—c¢c .
ad— bc =+ 1; and, when this is done, the fractions 5id and =7 will have

the same property in relation to either of the former fractions.
We accordingly put
A=nat-#, B=nl-d°
C=n(a+c)—(+d)?, D=n(a—c)—(0-d)>
Thus five conditions are satisfied, and it only remains to make CD + #
a square; that is,

“7? (@B - O —2m (ad - cd)? + (62— 2°)°
—2n (ad — be)? } =a square.
+n

or, since (ed - bc)f =1,
72 =2y —n{2 (ad—cd)* + 1} + (§* — 4% = a square.
(2) We obtain a general solution by the same method as that applied
above (p. 345) in the problem of making 48 -1, BC -- 1, etc. squares.

Put AB=p"—n; then, to make 4C + n, BC + z both squares, take the
product of these expressions and equate it to (z + Cx)?; therefore
+n(d+B)C+ABC*=7"+22Cx + C*%
n(A+B-2x) 7n(d—x)
2—AB P -AB°
so that (x> — 45)/n must be a square.

whence C= ,and AC+n=

Let then &*—AB=x-p+n=m? or 2> —n?=p*—n.

Similarly let us put 2° —72®=2*—2, so as to get
C=A+ﬁ2— 2x, D= A+§;—zv;

and it remains to make CD + # a square,

that is, (4 +BP~2(x+2)(4 + B) +n’s® + g4av

must be a square.

2_ 2 a_
But, since B =2 A" and 4 + B=A-%”-, the expression becomes

(after multiplication by 4?)
Al =243 (x+0) + 24 (P —n) — 24 (P~ 1) (x + V) + (* —7)?
+nA%*?
+ 44,
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which must be a square ={4%? -4 (x +v) — (#*—z)}® say; therefore
A {5+ ) — 4. (=) = s - 4o} 4 4 (x+0) (F = ) =0,
so that

- 4(x+2) (P - 4(x+2) (P —n)
nt + 4 (P2 —n)— (x+11) +4%0 n(P—1)(F—1)+2x0 + 252 — 37’
or A= 4(x+'v)(1>’—n

n2t —2n (Y +2%) + (v +x)°

(3) A particular solution is obtained by assuming that v=— x, so that

z=y, and
C=A+f2—zx, D=A+ﬁz+2x,
while 4B =2~ n=x— m?
For then we have to make
A+ 4% {2 (p*— n) + ny*— 457} + (#* — 1)* a square ;

that is, (A2 - 2* + n)? + nA%? (9* - 4) = a square.

This is satisfied if we put y =z, so that g*=a*—37.

Suppose p = x —¢#, and we have

_Pt3zm _3n—t 2 3n —2° _ 3w+ 1?
—z—tandp v , Or p———andx—m—-zm s
2 2 2 2
and hence AB= (e —? ),9:2 vt )
4%
We may therefore put
S — 2% _ &(gnu*-2)
A= B=m
o3P (fr PP a(fr3eie = (-0
8gtu ’ &etu

It will be seen that in this solution C+.D=1(4 + B).

PROBLEM g. 70 find four numbers such that the product of any pair
added to the sum of all gives a square.

First find four numbers 4, B, C, D such that the product of any pair
increased by a number 7 gives a square (Problem 8).

Take as the numbers sought m4, mB, mC, mD, and, since m* (4B + #)
is a square or m*4B + m*n is a square, we have only to make 7%z equal to
the sum of the four numbers or 7 (4 + B + C + D), whence

_4+B+C+D
n

1 Commentationes arithmeticae, 11. pp. 583~5.
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But, since in the other problem C+ D=2(A+ B), this gives
3(4+ B) _3n(fr+og)u'=3(f1+g)#
2n 4nfgtu

where # as well as £, g, #and » can be chosen as we please.

m=

Since z# may be chosen arbitrarily, take p°= x%*— 37, as in the last
problem, so that z=1(x*-2%, and 4B=p"-n= 3(4p2 x4,

Accordmgly we may put

A:f_l(.z;ﬁif.), _B:g___(zﬁ—x);
kT4 v
therefore ‘4+B;2<f2+332)?+(fs’333)x
/g ’
and hence _2(f+38)p+ (-6~ 382) x
12fg
_2(P+38 8+ (S +Gji—sg°')x
- 128
and A+B+C+D=2m+3gz)p+(f2‘382)x,
2fg ’
therefore m=(d+ B+ C+ D)jn=L% 3512)71(’; 3 ;J:; )%
Now two of the numbers, 4, B, can be chosen arbitrarily, and
2p+x 3?-—, 2ﬁ—x=£j“;
_34g+ B _ 34g*- BP
therefore Sy - T
so that | » =-;i; (2 —-,pﬂ) - (o4e® "Bi; 2/){%82—3}’ %) ’
4 4 4 kT
while mo3d+B)
‘ 27

If, in order to get rid of fractions, we put 4 = 4af7, B = 45fz, we have
C=(a+8)fg~3a8'+Y*, D=(a+0)fg+ 308" b,
— g 6(a+d 4
el et 0 e Gy
Ex. Letf=2, ¢=1; therefore . .
A=8a, B=84 C=6/~a, D=sa- 25
12 (@+8) 12 (@ + )
“(oe—a8)(@=48)  (4b—0a)(ab—a)’
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The following are simple cases : ‘
(1) a= 5, 6=1, whence 4=40, B= 8, C=1, D=23 m=1L
(2) a=11, b=2, whence 4=88, B=16, C=1, D= 51, m=4%.

If f=5, g=1, we can obtain infegral solutions, thus.

A=20a, B =200, C":3ob +2a, D=8a- 205,
. 30(a+d)
(256 - 9a)(256—a)"
Assuming then a=19, 4 =7, we have
A=380, B=140, C=248, D=12, m=4%,

w

so that the required numbers are

. 47% 175, 310, 15,
the sum of which is ¢75.

We can also solve the corresponding problem :

9A. 70 find four numbers such that the prozlua‘ of any pair minus the
sum of all gives a square.

For we have only to give » a negative value.

PROBLEM 10. 70 find three numbers x, y, s such that

X+y+3 }
yz+zx+xy r are all squares™
xyz J. '

(This may be expressed as the problem of finding g, ¢, # such that the
equation” & — p&+ g€ —r=o0 has all its roots rational while g, ¢, » are
all squares.) ‘ .

Take 7nx, 2y, nz for the numbers required, so that

n(x+y+2)
#* (xy + 2 + yz)  must all be squares.
xys : )

If the first and third conditions are satisfied, we must have, by
multiplication,

xys (% +y + 2) = a square.
Put therefore xpz(x+y +5) =12 (x+y+35)]

2 (% + 3)
— 72 —_
whence xyz=10%(x+y +2), and z= e
Since xys= v_%(%yl’ we must have, in order that sxys may be
a square, '

n = may (x+) (2 -v").

v Nowi Commmtmz Ama’ Pretropol. 1760-61, Vol. VIIL (1763), p. 64 5qq.= Cammm
lationes arithmeticae, 1. Pp. 239—244-
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If the values of z, 7 thus found be taken, the first and third conditions
are satisfied, and the three numbers will be
nx = mPaty (x +y) (xp — o7,
ny = miay? (& +3) @y ~ )
ng = m**xy (% +y)%
The second condition requires that
2
Xy + z(x+y)=xy+%=a square.
Suppose for this purpose that xy—2°=#? (this introduces a restric-
tion because there are doubtless plenty of solutions where xy—2*is not
a square); therefore

PR A G b))
J’" x 3 - ug ]
2
and xy=*+4* x +y=d%iﬂﬂ, so that we must make
2
vg+u2+fﬁ;¢%—+w)a square.
2% +

Put x =2, so that y= , and

{2 (£2+ 1) + )
[
or 20 + P2+ 0 (B + 1)) + 20°0° (£ + 1) + #* = a square,

ie. T(P+1)+4° (3% +2)+44 (£ +1)=a square
={* (£ + 1) + 52}, say.

Therefore  7°(3#+ 2) + ' (#* + 1) = 250° (£ + 1) + 5%},
a Pryr-s

P+t + =a square,

and —u?z = ———-—-—-—2: (t2+ I)— 32‘2 — =a square.
Further, let s = #— 7, and we shall have
7 27f—7 + 1

BB (2r+3) Prot—2(r+1)
Multiply the numerator and denominator by 2#% — 7+ 1, and we have
U (27t— 1+ 1)

W 4rtt—2(37°+ 3r—1)B+(27°+ 3+ 27— 3)P—2(37— 1) (7 + 1)+ 2(r— 1 )(r + 1)

The problem is accordingly reduced to making the denominator of this
fraction a square. If we suppose this done, and Q to be the square root,
while # and 7 are determined as the result of equating the denominator to
@’, we shall have

v 2ri—7+1 + %
;=—-—Q—-, and x=t‘l),y=v‘zm ,

whence we can derive the numbers required.
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Now the denominator to be made a square is easily made such if the
coefficient of #, or the absolute term, is a square; and the absolute term
is a square if 2 (» — 1) is a square.

Case 1. Suppose »=1; the coefficient of #¢ is then a square and the
absolute term vanishes.

We have 42— 1082 + 4# — 8¢ = Q*, while vfu = 2¢]Q.

Suppose Q =272—$Z and we have

£ Qf— 25 —_32 7i= 4 _—__36
42 —8t=22#, and ¢ L it
we therefore put 9 =—36, z=173, ¢=-32, and x=1ty=128; further
_*+%® 31225  25.1249
T 128 128 °
36 4760
a+y=2q8e, 2=T5H0,

and, since xy — 2% =2, the required numbers will be
128%.25.1249.47609. 173~

= 128.128

_ 128.25%. 1249%, 47609. x73
= 128%. 128 £
”2_363.128 25.1249. 47609

- 128. 128°

In order to get rid of fractions, put 7 =128, and we have
nx = 128%. 173%. 1249. 47609 = 490356736 . 59463641,
ny=5°.173%. 1249%. 47609 =934533025. 59463641,
nz = 36%. 1249 . 47609% =61701264.59463641.
The product of the three numbers is obviously a square; their sum is
found to be 25.59463641; and the sum of the products of pairs
=173".59463641°. 18248924559376
=(173.59463641 . 4271876)%

=3 v _ 12f—§
Case JI. Put »=$%; then b 20 and

64— AL + 21235y 28 =
=(§ — %1+ 12, say,

whence 6t -4 A=1L AT and r=4$3.
Accordingly Q =427°, %-—: 12, and we put 2 =19, # = 14.
g"'“ 557 _ 4157
Therefore x=f=60, y= =857 x+y=244§%,

H. D. 23
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and the required numbers are

_60%.557.4157. 196

nx m?=14.60%. c57.4157

60. 60
2
ny=6°' 5§°7 .6‘?5670. 196 7= 14.557%. 4157 if m = 6o.
_361.60.557-4157° L, N
"= 60.60.60 7=197- 5574157
That is, nx= 705600.2315449 = 1633780814400,

ny= 109I72.2315449= 252782198228,
nz = 1500677 . 2315449 = 3474741058973
The product of the three numbers is clearly a square; their sum will be
found to be 2315449 and the sum of the products of pairs
=14°.2315449°. 6631333489
=(14. 2315449 . 81433)%
These numbers are much smaller than those first obtained.
If fractional numbers are admitted, we may divide those found in the

last solution by 2315449% and the solution will Le

705600 190 361
315449 ZII18T» FETT

PROBLEM 11. 70 find four numbers x, y, s, u suck that

THY+I+u

XY+ Y3+ ...

XYZ + Yau + sUX + UXY
xysu

are all squares'.

A general solution being apparently impossible, some particular as-
sumption simplifying the problem had to be made. Euler therefore
assumed as the four numbers

Mab, Mbe, Med, Mda,

which assumption, although five letters are used, involves the restriction
that the product of the first and third numbers is equal to the product of
the second and fourth.

We must therefore have

M (ab+ bc+ cd + da)

M (ab% + bd + cd®a + da*h + 2abed)
M (aB*Pd + ab®d? + a®bed® + a*B%cd)
Mra*Pld?

all squares.

1 Novi Commentarii Acad. Petrop., 1772, XVIL (1773), pPp- 24 $9q. = Commentationes
arithaeticae, 1. pp. 450—~5.
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The above assumption therefore has the advantage of making the
product of the four numbers automatically a square and also of making the
third formula take the form

Mabed (@b + be + cd + da).

Since the first formula M (aé + bc + cd + da) must be a square, it follows
that adcd must be made a square. :
In order to make the first and third formuiae squares, take
M= ab+be+dd+ da,
or, if the latter expression has a square factor, say /2 put
M=(ab + bc + cd + da)|f>.
We now have only two conditions remaining to be satisfied, namely
Qbcd =2 SQUATE .uvevvvriniininiiiininnnnns (z),
ab’c + 6°d + cd®a + da®h + 2abed=a square ............(2).

The expression in (2) reduces to
(@ + @) od + ac (B + d%) + 2abcd,
or bd (a® + %) + (6 + d)? ac=a square.

We have therefore only to find numbers g, 4, ¢, 4 satisfying these two
conditions. It is further to be noted that a, ¢ are connected by a relation
similar to that between &, 4, and the whole question depends on the ratios
a:cand &:d. We may therefore assume @, ¢ prime to one another and
likewise 4, 4 prime to one another, for, if either pair had a common divisor,
it could be omitted and the relation would still be satisfied.

Consider now - the second condition as being the more difficult. Although
two ratios a : ¢, & : 4 are involved, neither can be arbitrarily assumed. For
suppose eg. that & : d=2 : 1; then 24%+ 22+ gac would have to be made
a square; this however is seen to be impossible, for, if we put a=p+g,
c=p—g¢, we obtain the expression 13p°— 5¢% which cannot be made a
square. The same impossibility results if we put & : 4=3 : 1. Therefore
the ratios 2 : ¢ and 4 : 4 can only be certain particular ratios.

Obviously the first class of ratios adapted for our purpose are sgware
ratios. Assume then that 5 :d=2":4% and put

Pr@ ) rac(P+oP=(pga+7 o), say;

therefore w2 (P2 + ¢ a + n’pPg°c = 2mnpga + mic,
a_ " — n’p’g?
so that ¢ (P + Y —zmmpg’

or, if m=+kpg,

» a__ (EB-m)p¢
F' BBy (%>7)

23—z
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Now, if values could be found for %, #, #, ¢ such as would make ac or

n (B - n?){n (£ + )° + 245°%% a square,

we should have a solution of the problem, since, &2 being already a square,

abed would then be a square.

Euler however abandons the investigation

of this general problem as too troublesome and as certain, in any case, to
lead to very large numbers; and, instead, he proceeds to seek solutions
by trial of particular assumptions.

Particular values of a/c in terms of g, ¢ are the following, which are
obtained by putting £=2, z=1; £2=3, n=1; etc

a

2

TPy iy

urn 2=
4
v. ¢
(4
viL. 2
¢
x. 2=
c

e
-
]
It
-

) 2N

/I RIS /I > /™
I I
s

-

e
=N

I

Hlo

|
o

527

4 (P + gy 128y

127

T (P Vi

210"

9p’7

16(£* + 'Y 1408
Taking now the simplest values of 4/d=2%/¢% let us write down the
simplest corresponding values for ¢/c:

NI o9

NI a8

becomes %, —%, £,

4 12
becomes §, 1%,

9

27
becomes 27,

108 4
257 €

becomes

27

138

a_ 85%*
¢~ (FrovEr
_ 150°%°
(B P
_ 240°¢
(7 + @) 2108’
_ 160"
9 (2 + )t 308

etc.

II.

IV,

VI

SR SIK

VIIIL.

a
¢

5 _15 % T 8.
28y T L 13y BOr 33
3

32 32 5 5 __60 20.
I 492 13 37 Ty T9

45
EEEL

108.

36 36
28 TN =5

5 28 64 64
T ¥3» €9y 289

The last assumption gives, “praeter exspectationem,” two cases in which
afc becomes a square; and these give two solutions of our problem.

I.

Putting a= 64, 6= 9, c=49, d=4, we have

M =ab+bc+cd +da=576+ 441 + 196 + 256

=1

and the four numbers are

1469 . 196,

2.

4589 .256, 4589.576, 4589. 1156, 4589

1469 . 256,

1469 . 441,
Putting =64, é=9, c= 289, d=4, we obtain

469,

1469 . 576.

M=576+ 2601 + 1156 + 256 = 458,
and the four numbers are

. 2601.
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Again, the form of the expressions ated, 4d (a*+ ) +ac (& + d)? to be
made squares shows that any values for /¢ obtained by the above process
may be taken as values for §/d. Also a and ¢ may be interchanged. Euler
accordingly sets down as values of 4/d to be tried the following:

He obtains no solution from the assumption 4/d =%, but he is more
successful with the assumption &/d=4.

Putting 6/d =%, we have to make
20 (2% +¢%) + 81ac=a square.

This is satisfied by a/c=1; let therefore a/c=1 + x, and we have to
make 20{(1 + x)?+ 1}+81 (1 + %) a square; that is,

121 + 121% + 204 =a square = (X1 + &p)?, say;

_YP—22p+101 1+ 221 + 10177

therefore x=-—

s ,an

and, by putting 7 =5, »=1 we obtain a/c=1£.

)

121 -229 .4
¢ P —z20 n® — z207°
This solution serves our purpose, since it makes aded a square.
Putting a =16, =35, c=35, d=4, we have
8o+25+20+64 189
= ——————-————————-‘f2 = 7—2— ,

and, if /=3, M=21; the four numbers are therefore

M

21.20, 2I.25, 2I.064, 21.80.
This is a solution in much smaller numbers ; and
the sum of the numbers =g9.z21%
the sum of products of pairs = 110%. 21%
the sum of products of sets of three=120%. 21%
and the product of all four =1600%. 214
When one solution is known, others can be found. Take, for example,
the last solution in which, for 4/d =4, we found that

a y'—22y+10I1
¢ sf—20

In order that abed may be a square, we must have
5(y*—20)(y*— 22y + 101) =a square.
This is satisfied by y =5. Substitute z + 5 for y, and we have
5 (2% + 102 + 5)(#° — 122 + 16) =a square, .

or 400 + 5002 — 4952% — 102° + 52* = a square.
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Equate this expression to (zo + 32z — 3% 2%, and we have

<§2—I—2—5)z———i—ro,

32! 32
whence ' 5= 32-12705 _32-1155 _32. 103 _ 3360"
266321 24211 2201 2201’

therefore y=2z+5=2435F; and the resulting values of a, ¢ are large
numbers which Euler does not trouble to develop. As a matter of fact,

a 55606  4.118%

£ 109465205 - 5.4679%

It follows that
S*M=5.55606 + 5.100465205 + 4. 109465205 + 4. 55696
278480 + 547326025+ 437860820+ 222784

I

985688109;

1

and, putting =9, we have
M = 12168980.
The four numbers are therefore
12168989 . 278480, 12168989 . 547326025,
12168989 . 437860820, 12168989.222784.

PROBLEM 12. 70 find three numbers x, y, z such that the expressions
B+ + 2, Y+ R+ )% o
are both squares’.
In order to satisfy the first condition, we have only to put
x=p*+g* =1 y=2pr, 2z=a2g7,
for then 22+)2+ 2= (P + P+ )= PP say.
The second condition requires that
2+ a8 + %8 = Q%
therefore, since P +2=972 2+ ),
Q=47 (F+7) (P + ¢ =) + 168°¢,
or Qlar=(2' + @) (D + = 7P + 42’g7
In order to get rid of the sixth power of g and so make p* the highest

power of p, suppose that »=p —ng (which introduces no restriction);
therefore ‘

Q[4 (2~ ng) = (2 + ") {2npg + (1 — ) ¢ + 48°¢* (p — ng)*
or  QPlag?(p—ng)=(#*+¢") {2np + (1 — 7*) g}* + 48* (P — ng)™.

1 Acta Acad. Scient. Imp. Petropol., 1779, Vol. I11. (1782), pp. 30 sqq.= Commenta-
tiones arithmeticae, 11. Pp. 457 4.
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Let the latter expression be denoted by &, so that Q=2¢ (s ~ng) &;
and
RE=4(1+2°)p — 4n (1 + #%) g + (1 + 62° + #*) pg°
+ 47 (1 = 23 pg% + (1 — %A
This may be made a square in two ways, either (1) by taking advantage

of the fact that the last term is a square, or (2) by making the first term,
i.e. making 1 + 7% a square.

(1) Put R={(1-7%)¢*+2npg+ap’}’, and make the term in ¢
disappear by choosing a so that 1+ 64+ #*=44"+ 2a(1—#%), or

I+ 27 + 7t
a= EIER we then have .
st (x+7% , 2n(1+7)
4p° — 4np —4(1—n2)’P + 1—72 ?
whence (15—357°+13n*— 2%) p=8n (1 —n*) 3 — 7°) ¢;

this divides throughout by 3 ~ #* and
2_ 8n(1-7)

g 5—t1on+nt
Letp=8n(x1—2%), g=5 100" +7*; then »=p —ng=n (3 + 212~ #*),
while
R=(e-w)g+anpg+ TN Q=3q(p-n) R
and x, y, z can be expressed in terms of .

Ex. 1. Suppose z=2; then
2=—48, ¢g=-19, r=—10, R=7035 (Q=380.7035;
x = 2565, y =960, z= 380, or (dividing throughout by 5) x=7513, y=192,
z=176 (in which case Q =106932, P=7553).
Ex. 2. Suppose z=3; then p=—192, ¢g=—4, »=— 180, or (dividing
by —4)
P$=48, g=1, 7=45 R=14120, Q=1270800;
x=280, y=g90.48, z=qgo.
Dividing the values of «, y, 5 by 10, we have
x=28, y=432, 2z=9, and Q=12708, AP=433.
(2) To make the first term in A a square, suppose I + #°=’, which
is the case whenever # = (a*— 4*)/2ad.
We have then
R = gt — qmm’Bg + (m* + 42°) P4 + 4n (1 = 2°) p* + (1 = 1) ¢*

Euler solves this in three ways.
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First, he puts R=2mp*—nmpg +(1 -~ ¢* and from this, by taking
a=2,b=1, so that =2, m =+ $, he obtains the particular solution

x=-—392, y=1386, z=-—1036,

or x= 196, y= 693, 2= 528

Secondly, he puts R = 2mp* + 27pg + (1 —7*) 4% and deduces, by the same
particular assumptions,

x=936, y=174, 2=3552

or x=468, y=37, z=1776.
Thirdly, he supposes
4 mt+ 3”2
R =2mp?— mnpg + ——°~ ¢,
m + 471 2
where however the last term should apparently be 7 e

Euler’s son, J. A Euler, gave, in a Supplement to his father’s paper,
another solution as follows.
We know that
(-1l +apr=(F+1) and (F#—1)*+ 482 = (2 + 1)%
Multiply the first equation by 4¢° and the second by (#*+ 1)?; this gives
47 (PP — 1) + 168°° = 44 (£ + 1)?
(PP (@ P - (Frrf -,
o (PP (P e (P68 = (B0 1)
Therefore the three numbers
@-1)(F+1), 2¢(2-1), 49
satisfy the first of the conditions.

The sum of the squares of the products of pairs of these numbers must
now be a square; after dividing out by 447 this gives

(=12 (= 1)+ 48 (*— 1)* (£ + 1)%+ 162%* ($*— 1)* =a square.
But (F=1f 448 (B +1F= (£ +1)%
therefore (2*+ 1)*(¢*— 1)* + 16p%°(#* — 1)* must be a square,
For brevity, let 4*=(2* + 1)}, B*=162"(#*—1)} and
A (- 1)*+ B, or A%+ (B2 —24% g + A,
must be a square.
Put A+ (B — 24%) * + A= (Ag* + v)},

A% -2

whence = =B ady



SOLUTIONS BY EULER. PROBLEMS 1z, 13 361

Now both the numerator and denominator of this fraction are squares
if 22 = 4% — B for the numerator becomes A2 and the denominator
~ B +2d J(4'- B),
which is the square of 4 + /(4 ~ BY).
But, putting for 4, B their values in terms of p as above, we have

— B =p 1280+ 380 — 1287+ 1 = (p* ~ 647 + 1)?;

e E $(F-)  _#(Fn)
A+ /(4 - E‘) (P+1)+p— 6p’+1 2t — 4P+ 2 pﬁ—l

therefore

_ 6 —p—1
Thus F—1= T
and the numbers required will be
(6 —2'—1)(#'+1) 87*
(pn — I)’ ’ 4],’ . }g—_'_—l ’
or, if we multiply by (#*—1)3
(' —p~1)(P+1), 4(F-1), 8 (F-1)

The sum of the squares of these numbers turns out to be (2*+ 1)
which is not only a square but a sixth power, while the sum of the squares
of the products of pairs is found to be

169° (= 1)* (2°— 49" + 220 — 4° + 1)},
or 1602 (2* — 1)2{(p*~ 1)* + 16p%}%
Ex. Put p=2, and we have
x=5.7=35 y=7%2, z=96, P+ +2=125"=5"
%2 + 2% + 1% =16. 4.9. 3377 = 8088,

the solution being in smaller numbers than Euler's own.

PrOBLEM 13. 70 jfind* three positive integral numbers x, y, % such that
X+y+s=1
X+ +P= U‘} .
To make &2+ 3+ 2* a square, put x=a®+ 45—, y=2a¢, 2= 25 and we
have a*+ 3% + 2= (a®+ B + &)
We have now to make a®+ & + ¢ a square, and we put similarly
a=p +¢9*—7% b=a2pr, c=297r,
we have then P+ 2+ 2=+ P+
Now let us express x, ¥, z in terms of 2, ¢, 7; this gives
X =+ g+ A+ 2070 + 27— 64°7,
y=agr (B +g-7),
z=8pgr*;

1 Commentationes avithmeticae, 11. pp. 399—400.
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therefore
T+y+a=pr+ gt 7+ 20°0% + 282 — 6°9° + 4127 + 44’7 — 497" + 8pgr.
() Arrange this according to powers of p, and
T4y +s=p+2(g+7) 5+ 86g7 + ¢ + 497 — 6° 7 — agr® + 1A,

In making this a square, we have to see that g, ¢, » are all positive, and
also g+ 4°> 7% Also & + #* must be > A~

Equate the expression to {#* + (7 + 7)*}*, and we have

86q7 +  + 47 — 64 — 4g7° + 7 = (g + 7)",

whence 8pgri=129°7"+ 8¢7°, or p=3%g+r.

Therefore =134 307, b=3gr+27% =297,
where both the letters ¢4, » may be given any positive values.

Ex. 1. Suppose 7= 2, =1 ; therefore
b=4, a=ry, =8, c¢=4;
accordingly the numbers are |
x=409, y=152, 2z=04,
and . x+y+z=625=25% «&*+)°+22=194481=4417=21"%
Ex. 2. Let ¢=2, 7= 2; therefore
?=35 a=25 b=20, c=§
and £=961, y=400, z=320;
therefore x+y+z=1681=41% «%+3%+2%=1185921 =33%
(2) Arrange the expression for x +y +z according to powers of ¢;
this gives
X+)+2=0"+ 47° 7+ 207 (PP — 37°) + 497 (B2 + 27— 7°) + (P + )%
In order that the terms in ¢* and ¢* and the absolute term may vanish,
equate the expression to
{7"+ 297 — (F*+ ),

_2pr(s+7)
9-—2—,2_—],2—-

Ex. Suppose p =1, »=1; therefore

whence we obtain

g=4, a=16, b=2, c=3§,
or (if we divide by 2) a=8, b=1, c=4;
therefore x=49, y=64, 2=8;
and x+y+z=11°, x2*+3)74+42=6561=81*=¢%
These numbers are no doubt the smallest which satisfy the conditions.

The case of three numbers is thus easier than that of two (see p. 299,
note). Euler solves the same problem for four and five numbers, and shows
how the method may be extended to six numbers, and so on indefinitely.
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PROBLEM 14. 70 find three numbers %, y, 2, positive and prime to one
another, suck that both x+y+z and x*+y*+4° are fourth powers'.

As in the above problem, put
x=a*+P - y=za =20,
and further . a=pP+P -7 b=2pr, c=2¢97
and make the expression in p, ¢, » for ¥ +y + z a square by equating it
to {#*+ (¢ +#)*}* as before. This gives p =2¢+7; but we have now, in
addition, to make g%+ (7 + #)* a square.

2 2 __ ,f(?"'")
Put Prlgerp={p+1E7

therefore g g+r) =2+ f’ (74 7).
Substitute $4 + » for g, and this becomes

(=) (g+7) +fg (3¢ + 27) =0,

2
H

2
whence Z zf_jif-fu .
r &-3fk-f
The problem may therefore be solved in this way.
Take 7g=/*+2fg—g* and r=g*— 3/ /3

so that p=1(/?—g?), then find a, 4, ¢ and then again x, 3, z in terms

of £; &
Ex. Let f=1, ¢=3; therefore

g=—2, r=—1, p=—4,

or g=2, =1, p=4.
Thus a=19, 6=8, c=4,
and X =409, ¥y=152, z2=064;
so that x+y+8=0625=5% &P+ )°+28=194481=21%

To find limits for the values of £ g, change the signs of ¢, 7, putting
g=8"—28-f% r=/"+3/8-8& p=3(s"-S)
In order that ¢ may be positive,
glf>1+N2>2.414...,
and, in order that » may be positive,
glf<3(3+413)<3.302 ...
Suppose e.g. that /=2, g=75; then
g=1, r=9, p=4,
or in integers g=2, =18, p=21;
hence a=121, b=1%56, c=12,
x=580993, y=17424, 2=108864,
X+y+z=707281 =29% 2+ +52=349707832321= 769‘.

1 Com tatse arithmeticae, 11. p. 402. .
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ProBLEM 15. (Problem in Fermat’s note on vI. 13.)

Tv find a right-angled triangle (in rational numbers) such that either
of the sides about the right angle less the area gives a square’.

Y

3 2% . %
Let the perpendiculars be 55050 that the area is % ; and

Yy or 2X%—X
PR Y

% or y2—«y  have to be made squares.

z
z
42 +y or 4vx’+y2

as well as .
z

Since the first two expressions are to be squares, their product must be
so also ; therefore

2xy2® — 2x°yz — x9%5 + £%)° = a square

( y—£ yz) say,
and, after dividing by yz, we have

2
2X%— ng xy—-—-lxy +1;2}'Z
_ 2+ PRy — 2pgxy
he
whence g
AR —apgay + £ (22— py)
Thus 25—y = Py = iy
g — ny+g2xy—ngxy _xp(—9q) g)
i 20°x— % T 28x— Py
) o e
and 2xz—xy—_—x(2?x p)? % (2qx py)

zgﬂx_p2 - 242”“_?2 4
_ Q-9 _#y(—g)
wpx—py 2% —pray’
Therefore the two expressions are squares if 2¢%x*— #*xy is a square.
Put 2¢°%° — pray =%
therefore (2¢° =7 =y, or z|y=p*/(20*—7°).
It is sufficient for our solution to know the ratio x/y, since a common
denominator z has already been introduced.

Therefore we may put
x=2" J’=2?’-7‘,

—xy=

L Nozi Commentarii Acad. Petrop., 1749, Vol. IL (1751), pp. 49 5qq. = Commentationes
arithmeticae, 1. pp. 62-72.
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whence g = &f_pﬁlﬁ_@_‘

MPNC L1

and

It only remains to make 4x°+ 5 a square ; that is,
42* + 44*— 44°#” + #* must be a square.

A general solution of this equation giving all possible values of , ¢, #
is impossible. We must therefore be satisfied with particular solutions.

Particular solutions (1) and (2).

Put 4+ ag =4’ A= (B F P
therefore 49— 48P =T 40°7,
and ?2=$§(99"7’ﬂ),

that is, either

(1) =L@~ or (2) 2=L0*-¢).

(1) Nowp=2 J(g~ 7% is satisfied by ¢ = ¢* + &% 7 = 2cd, whence

_@+ra) (-2
T 2ed
or we may put

p=@+d)(*=2%, g=2:d(l+d%), r=4>d"

and we thus find values for

5= ymap—ry Justes)=aprs s=ar S0

Ex. 1. Supposec=2,d=1; then

p=5.3=15 ¢=4.5=20, 7=4.4=16,

.2 28 . 8 2225
X=225 JY=544, Z=225+54:’565= 58 9~ T

(4% +57) = 28 + 7 =706,

and the triangle is »
22 _144  y_ 4352 J(4+)) _ 5648

“ 8’ z 25.89° z 25. 89
Ex. 2. Ifc=3, d=r1, we get the triangle

22 _32.9 y_81.41 N/(490‘"+J"")= 9.881 )
z 185’ 3 25.185’ 2 25.185

And so on.
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(2) In this case p= % J(#* =4, and we have to put

2¢d (&2 — d°
pnid, gmauh, whence p= 24020,
or p=2d(@=d), g=2ed(@+d), r=(+dY,

while \
x=p, y=20"-7, J@4x'+y) =27 z=x+‘z(————‘ﬂ;4) .
' Here, since 24® must be > #°,
824> (¢ +d%* and 2cd \J2 > + d%;
therefore 22> (¢~ d /2)% and
either d>c—d \[2, so that §>

_r_
1+J2’
,\/2—1

If therefore d=1, either c<,/2+1 or ¢>,/2—1. The second
alternative is satisfied by ¢> 1.

or d>d,\[2—¢ so that E,<

Ex. Letc=2,d=1, and we have

P=4.3=12, g=4.5=20, 7=5.5=25;
therefore

175.6 048
x=144, y=175 J@a*+17) =337, z= 144+—%54 =%.
The triangle is therefore

2x _288.25 450, y_25-175 4375, Af(42°+y) _25.337 8425

Z 4048 25 37 2 4048 4048 i z 4048 4048
Perticular solution (3).
Put 4P+ 4g° — 47 + = (20° £ 247
therefore 7 — 447 =+ 8p°¢% and p= +2Z (:2 ¢4¢ ), ;

therefore  either p= é (272 — 84, or p= 4—:} (842 — 27%).
The first value is however useless, since 2¢° — 72> o, or 2¢® > >

We have therefore = 4{5;7 (842 — 27°),
while
x=2, y=20"—7 J(4x?+)})=24"—2¢° and z=x+'%~9)“.

Since 84 — 27° must be a square, put

82— 2= {2, (2¢ + r)}z;
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therefore 49 —2r= (% (2¢ +7), or 4d%q —2d%r = 28 + &7,
whence g=c+2d  r=4d— 208,

4cd (2d%— 2)

29 +7=28d% ,/(84°— 27%) =8cd, and therefore p= SF

Multiplying by 242 + ¢% we have in integers
P=44(2d°~7), ¢=(2d*+P, 7r=2(2d*-2) (2d%+ &),
while x, y, z have the values above stated.
Ex. 1. Put¢=1,d=1; therefore
=4, g=9, 7=6; x=16, y=126, ,J(4x*+3*) =130,

126.25_2_07

and 2=16+ .
36 2

The triangle is therefore
2w _64 g _252  Juw+y) z6o
. .

z 207’ 207’ z 207
This is the triangle in the smallest numbers satisfying the conditions, as
Euler proves later.

Ex. 2. Since 2¢°>7% it follows that ¢/d>2—./2; but it does not
matter whether 24*>¢® or not, since g, ¢, » may be negative as well as
positive.

Put then =2, c= 3; therefore 24* — 2=—1, and 242 + 2= 17.

We then have  p=—24, ¢=289, »=-34;

x=576, y=2.7.41.17% J(42'+y")=2.5.53.313, z=28118335,
The triangle is therefore

2x _ 2304 _j_)___28.41.172 J(4x’+y“)=4.5.53.313
2z 28118255° 2z 281182355’ 3 28118255

It is to be observed that in all the above examples it matters not
whether ¢, d are negative ; it will only result in the values of # or ¢ or »
becoming negative, but the values of x and y will not be thereby changed.
Only z will vary, since z may be either

y(2-9r y(p+g)
9(:+—————‘r2 or .?.‘«‘+--——r2 .'

After remarking that the problem of making
4Pt + 48t — 4P+ 7 or 4p*+ (297 — 7 a square
may be solved generally by equating it to
2
(292 -7+ % Pﬂ) ’

Euler passes to his general solution.
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General solution.
If 2—;, '% are the perpendicular sides of the triangle, let x=ad,
y=a*—5*; the triangle is then
2ab -0 a+5
z Tz ' & 7.
ab (a®— &)
2 )

and the area is

Now we found above, at the beginning of the investigation, that
Lo B ey —2pgry (P —g)
2% —ply 2z — 2y’
or, since ¢ can be taken positively as well as negatively,
xy(pg)
2% — £y’

Z=x+
where x =ab, y=a*— &
And we took 2g2x% — oy = a3,

2 2 9
whence z:x.*.-?.(f_;f_g_).:aé_l_(a bﬂ)rs(pig) .

We have therefore only to satisfy the equation
282%° — PPy = a7,
2
or xy:%(zgﬁ—ﬁ);
and, since xy=ab(a®—08%), we have to find such numbers for a, b that
ab(a®— 8% may be of the form 2f*—g* or (2f*—g%) A
Suppose now that such numbers g, 4 have been found that
ab(a®— &) = (2f* - g% 2~
Then, since x = ab,
T
(=) # =S (= ),
and a natural inference is suggested, namely that
g, abr
? Tf

Let now p = ab, and accordingly

gth regh smabr EDDLEDY,

the triangle is then

2ab _ 2abg*h?
2z abg*h® + (& — &) (ad + SR’
-5 (a@® — %) g%
z  abg'lt + (& - &) (ab £ j%)’
a+p (a® + 8% g%

5 abg + (& - B) (ab £ fA)
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Also from any particular values of @, 4 any number of triangles can be
derived satisfying the conditions.

For, if p=ab, and
ab (@* — B) = (2f*— g 4%,
we have (22~ g*) i2= 29> — 7,
or 2 (fPh— g) =g —
Put 2(fﬁ+g)=7nf(g/z+r), andﬁ-g:f(g}z-r),-

therefore _2mngh— (22* + m®) f/z

272 — m®
_ (7 + ) gh - 4f7mﬂz
27° —
or, in integers, P = (2n*—m°) ad,
g =2mngh — (22° + m®) [,
7= (22 + m°) gh — gmnfh,
while @5 (L)
7.2
2 _ 2 2
Thus the triangle <3:—&, g_z__b* , 2 : b ) is known.

Lastly, to find suitable values for a, 4, Euler writes down all the
numbers from 1 to 200 which are of the form 2¢°— 2 including all the
squares arising from the supposition that z=# and all the doubles of
squares corresponding to #=o. Inspection shows that the table contains
(within the limits) all the prime numbers of the form 8 + 1, and no other
primes, the doubles of the primes, the products of the primes into all
squares and into one another, and the doubles of those products.

Now, since the product . &(a + 8) (e —24) is to be of the form 2#?—27
and the factors a, 4, a+ 4, a—b are either prime to one another or at the
most have 2 as a common divisor, while 2 is itself contained in the form
22— 22 the several factors must all be of that form, in which case the
product will be of that form.

We have therefore first to take some value of 4 in the table and then see
whether there are in the table three other numbers a—4, @, a + 4 differing
by 4. Euler gives a second table showing values of a corresponding to
values 1, 7, 8, 9, 16, 17 etc. of 4.

The values of @ in the table corresponding to #=1 are 8, 17, 63,
72, 127. .

Ex. 1. Take b=1, a=8; therefore

ab=8, a*—8=63, ab(a®-8)=8.9.7=4.9.14,
and 4.9.14=74(2f*—g%), so that A=6, 2/*—g?=14, and accordingly
f=3 &=z
H. D. . 24
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We have therefore in this case

2=82n—m?), g=24mn—18(2n*+m?), r=12(2n’+m’)—"72mn;
or, dividing by 2,

P=8n—4m® g=12mn—18n*—qm?, 7=120+6m— 36mn,
whence p+g=12mn—10n—13m% —p+g=12mn—26n—5m’
while- z2=8+ E?L(P—i—ﬁ
72

-Thus there are any number of values of z from which triangles may be

obtained satisfying the conditions.

The simplest value is found by putting m =1, #=0, whence

r=6, p+g=—13, p—g¢=5,

and either z2=8+%, 25=297
or 2=8+%.169=21215,

The first value gives the triangle in smallest numbers above found
(p- 367),
2ab 64 a'—8 252 4&'+8 260

z 207’ z 207’ P 207"
Substituting 1215 for 207, we have the sides of the triangle corre-
sponding to the second value of z.

The particular triangles are also directly obtained from the values of
a, b, f, g % without bringing in m, #n; for
(&= F) (ab + f7)!
/2 ’

2
that is, z=8+-6—3—(8Tf21—8)=

z=ab+

%

1215
4

297 or
4

Ex. 2, Take b=41, a=112; therefore
ab=7.16.41, a*—-F=71.9.17,
and ab(a®—F)=16.9.7.17.41.71= (22— g) 7,
whence £=12,and 7.17.41.71= zfﬁl—g“.
The simplest solution is f =417, g = 37.
Thus z=ab+ w
&
is easily found, and consequently the triangle
206 &—-F 2+ B
g’ P z
[Euler finds values for £, g by using the formulae
(20— B°) (27"~ &) = (20y + B8)*— 2 (By + al)?
and F-2yf=2(x+y) - (x+29)%
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He does not actually give the steps leading up to the particular
solution f= 417, £=37, but it can be obtained thus.
Since 7=2.2%~1 and 17=2.3—1, we have
7-17=(2.2.3+1.1)*—2(3. 1+2.1)
=13"-2.5%=2(13-5)°— (13— 2.5)=2.8" - 32
Again, since 41=2.52—3% and 71=2.6*-1% it follows that
41.71=(2.5.6—3.1)—2(3.6—5. 1)
=57°—2.13"=2 (57— 130~ (57— 2.13)=2. 44’ 31°
Therefore, by multiplication,
7.17.45.71=(2. 8 — 3% (2. 442~ 31%) =(2.8.44 + 3.31)2—2 (8.31 + 3.44)°
=797"—2.380°=2 (797 — 380)'~ (797 — 2. 380)*=2 . 417*— 37*]

ProBLEMS 16. “De problematibus indeterminatis, quae videntur plus
quam determinatal.”

We have seen that by means of certain “Porisms” stated without
proof Diophantus is able to obtain relations between three numbers
x, », 3 which have the effect that, when they are satisfied, a quite
appreciable number of symmetrical expressions in x, y, z are auto-
matically (as it were) made squares.

It is clear therefore, says Euler, that, if a general method of finding
“porisms” of this kind can be discovered, the whole subject of Diophantine
analysis will be appreciably advanced. Accordingly he proceeds to discuss
such a method.

The method depends on a Lemma the truth of which is evident.

Lemma. JIf values have been found jfor the letters z, y, x ctc. whick
satisfy the equation W=o, where W is any function of those letters,
and P, Q, R eic. are other functions of the letters suck that P+ W,
QxW, REW ctc. are squares, then, if the values of 3,y, x etc. are
taken whick satisfy W= o, the resulting values of P, Q, R ete. will
also be made squares.

Cor. P, Q, R etc. will similarly be made squares if P+al¥, Q+ B W,

R +y W etc. or, more generally, if
PraW+iW? Q+BW+qW?* R+yW+0W?* etc.
are squares.

Conversely, If such values for 2, y, & etc. have been assigned as will
satisfy W= o, all formulae such as P2+ oW, Q*+ BW, R*+ y W etc. will
at the same time be made squares.

1 Novi Commentarii Acad. Petropol., 1756-57, V1. (1761), pp. 85 sqq.= Commenta-
" tiones arithmeticae, 1. pp. 245~259. .
24—2
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And, as the number of such formulae is subject to no limit, it is clear
that an unlimited number of conditions can be prescribed which are all
satisfied provided that the one condition 7= o has been satisfied.

The same Lemma can be extended to the case of cubes or any higher
powers ; for, if = o has been satisfied by certain values, all expressions of
the form 2* + o W will thereby be made cubes, all expressions of the form
P+ o]V will be made fourth powers, and so on.

While it is plain that, if values for 2, y, x etc. are found which satisfy
the condition ¥ =o, all the expressions P*+ oW, Q*+ B W, R%+ y W etc.
will be made squares by the same values of x, ¥, z, the difficulty will be,
when a number of expressions P?+a 7, Q?+ B IV etc. are given which are
capable of being made squares in this way, to identify and separate the
expression ¥ the equating of which to zero will make the rest of the
several expressions automatically squares. It would indeed be easy so to
hide away the composition of the expressions as to make this separation
itself a most arduous problem. On the other hand it is easy and in-
teresting to begin with /#’=0, and then investigate the simpler formulae
which can by this means be made squares. Before proceeding to the
particular cases, Euler observes further that it is convenient to take for 7
an expression in which s, y, x etc. enter symmetrically and can be inter-
changed ; for then, if P? is such a square that P?+al¥ is a square, and
%, ¥, % etc. are interchanged so as to turn 2? into Q2 R2etc, Q?+al¥,
R*+al¥ etc. will also be squares. Also, since solutions in rational
numbers are required, z y, ¥ etc. should not enter in any higher power
than the second into the expression /7. Euler begins with expressions
containing two unknowns z, ¥ only.

Problem (1). Given W=y +z—a=o, 2o find the more simple formulae
whick by means of this equation can be made squares.

When the equation y + 3 —a=o is satisfied, it is clear that the general
formula P*+ M (—a +y + 2) will become a square whatever quantities are
put for 2 and M. Accordingly Euler, by giving 2, M various values,
obtains without difficulty 44 different expressions which become squares
when y+2—a=o.

He supposes M=2, —2, 27, -y, —2—y, y+2+a, n(y+z+a),
(y+z+a)(y~2+a)(z—y +a), and 3 and »°— 1 times the last expression
respectively, and with each of these assumptions he combines one or more
forms for 2. I need only quote a few expressions which are thus made
squares, e.g

-1)+2(-a+y+2)=3*+25+1—2a
(g—1P+2(~a+y+s)=2+2y+1—2af
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(-z+1)—2(~a+y+2)=(y—2)—4s+1+22
(z—y+1P—2(—a+y+2)=(y—s)—4gy+1+ 2a}’
(p—nP+2n(—a+y+2)=y"+ 205+ n*—2na,
(—z—nl+2n(—a+y+5)=(y—2)+ 40z + n*— 2na,
V-y(aty+a)=—yi+a,
+2—(y+2)(~a+y+z)=ay+as
(y+z—al—(y+2)(—a+y+z)=a’—ay—as,
(z-10+(+2+a)(—at+ty+2)="8++52 + 12,
(yz—nY+n(y+z+a)(—a+y+2)=y"2"+n)° + 04’ + ' — nd’,
(3*+ 2+ @)+ (y+ 3 +a) (9—2 +a) (s—y+a) (—a+y + 5)=4(*5*+ a*)* + a°5"),
and so on. Wherever a new expression can be got by interchanging z
and y, this may be done.
Taking the more particular case of W=y +z—1=0, Euler obtains the
following expressions which are thereby made squares,
Praz, Y-y+z y+z Y-
2+4y, #—z+y, -y,
PR +12+ 2% 29+ 2281,
which indeed are easily seen to reduce to squares if we put y+z=1 or
y=1-2
The fact that 3%®+)*+3* is a square if y=71—2z or, more generally, if
y=#122 is included in the Porism in Dioph. v. 5. Similarly
2+ a¥P + a’’
is made a square if we put y=ta +z.

The last expression but one in the first of the above lists, namely
%2 + ny?+ nz® + m* — na®, becomes a square whatever value z has. If =1,

it becomes
PR+l +nt+nt—n
or (9 + n) (82 + 1) — .

That this is a square when z=_y * 1 is part of Diophantus’ assumption
in v. 4 (see p. 104 above).

Euler’s Problems (2) and (3) similarly show how to find a number of
formulae which are all made squares by values of y, s satisfying the
equations W=yz—a(y+35)+b=o0and W=p*+7—2mz—a=o.

He then passes to the cases where there are three unknowns.

Problem (4). Given W=x+y +z—a=o, to find the more noteworthy
Sformulae whick can be made squares by satisfying this equaltion.

In this case the general expression A%+ (x+y+2—a) becomes a
square.
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Put M =22 and P=one of the expressions x — #, y —»n, z—z, or one
of the expressions y+z—#, 2+x—n, £+y—n.
These assumptions make the following expressions squares :
22+ 27 (x +y) + n*— 2na, and the two other similar expressions,
(y +2)* + 20 + 7% — 2ma, » » »
If M= 2nyz, P=yz—ny—nz, and so on,
3+ 2nxyz + 292+ 1% + 20 (n— a) yz
and the two other similar expressions are squares.
If M=~ (a+x+y+32), P=y+s—x and corresponding expressions,
Q% — 4%y — 4%
@ — 4y3 - 4yx }» are all squares.
a?—43%— 43y
In particular, if #=2e, a=1, the following six expressions are made
squares by putting x+y+s=1%:
P+y+z, (y+3)P+a,
P+z+x, (z+x3+y,
2+x+y, (x+y)P+z
If =2, we make the expressions
I—xy—x3
I—y5—yx }
1—gx—xy
all squares by putting x+y+2=2.
Problem (3) finds expressions which are made squares if
W=yz+zx+axy—a(x+y+2)+b=o0
is satisfied.
Problem (6). Given W=a2+3*+ 52— 2y2— 228 — 2y —a = o, %o find
the more simple formulae which can be made squares by means of solving that
equation.

Here the general formula will be
P2+ M(2*+ 9%+ 5° — 293 — 228 — 229 — a).
IfM=-1,P=x+y+3
49% + 43X + 4%y + @ = a square.

If M=—1, P=y+z—x, etc,,

4yz+a}

42x +a [ are squares.

4xy+a
If M=—1, P=y—s3 etc,

a+z(y+3)x—o

a+z (z+x)y—3° }aresquares.
a+z(x+y)z—2
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In the particular case where a = 47, so that
P+ )%+ 2= 292 + 225 + 29 + 47,
yz+nm
2%+ 7
xy+n
yErIX+ay+n

are all squares ;

or our formula gives the means of solving the elegant Diophantine
problem : )

Given any number n, 1o find three numbers suck that the product of any
patr added to n gives a square, and also the sum of the products of the pairs
added 1o n gives @ square.

By solving the equation

W=x+3"+ 2" — 2y3— 282 — 206y — 411 =0,
we obtain g=x+y+2,/(xy+n)
We assume, therefore, such numbers for x, y as will make xy+7 a

square ; suppose xy+n=12% and we then have two values for z, namely
z=x+y+ 2%, each of which along with x, y will satisfy the conditions.

In fact, if 2=x+y+ 2%, while z=,/(xy+2),
s J(wssn)=}@+z-p) =zt
+JOstn) =3O +i-x)=yiuy
+ /s +sx+rxp+n)=}@+y+a)=x+ytu
(Cf. Euler’s solution of Dioph. 1L 10, p. 160 above.)

Problem (7). Given
W=a2+12+2° - 2yz— 220 — 23y — 2a (X + ¥ + ) — b =0,
to find the move noteworthy expressions which can be made squares by
satisfying this equation.
The general expression here is
P L M{x® +9°2+22— 292 — 228 — 2%y — 2a (X +y + 3) ~ b}
If M=—-1, P=x+y+5+a, we have
(@) 4yz+ 435+ 4%y + 4a (% +y +3) +a*+ b=a square.
If M=—1, P=x+y+2—a,
(8) 4y5+ 43 + 4% + a* + b =a square.
If M=—1, P=y+2-x+a, etc.,
r+4a(y+z)+at+5
(¢) 4% +4a(s+x)+a*+5 | are all squares.
4xy +4a(x+y)+a*+0
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I M=~1, P=y+2—2—a, etc.,
4y5+4ax+a*+ 0
(@) 4%x+ 4ay +a*+5 } are all squares.
4xy+ 4as+a*+ o
Cor. 1. In order to solve the problem represented by (¢), equate the
expression 4ay + 4a (x +y) + a® + & to a square «’, whence
4{x+a)(y+a)=1u—b+ 3%
or (x+a)(p+a)=}(P—b+3a%;
x and y are then determined by splitting } (22— + 34? into two factors

and equating x+a, y+a to these factors respectively. Next, solving,
for z, the equation ) ’

242+ P —2pz—22x— 20y - 2a(x+y+2)—b=o,
we find, since 4xy + 4a (% + ) + a*+ b=127 that
g=%+y+atuw.
Cor. 2. If b=—d?% then, by solving the equation
4P+ =2pz + 222 + 2%y + 20 (X + ¥ +2) — a¥,
we make all the following formulae severally squares,
yE+a(y+2), ys+ax,
x+a(z+x), zx+ay,
zy+a(x+y), xy+as
yE+ 2%+ P,
yit+zx+xy+a(x+y+3),
by assuming
g=x+y+atzJixy+a(x+p)l=x+y+azt 2y,
where (x + &) (¥ + @) is put equal to #*+a®
An interesting case of this last problem is that in which a=1; and
from this case we can deduce a solution of a new problem in which the
corresponding expressions with &% 3% 2% in place of x, y, 7 are all squares.
The problem is
T find three square numbers suck that (1) the product of any two added
10 the sum of those two, (2) the product of any two added to the third, (3) the
sum of the products of pairs, (4) the sum of the products of pairs added to
the sum of the numbers themselves, all give squares.
We have to find values of 2% 5% 2* which will make all the following
expressions squares,
Y+ 42,y + a0
222+ 2+ 2% 220+
2R+ x 412 2+
P8+ P+ 2%
YR+ w xR+ a2+ 9P+



SOLUTIONS BY EULER. PROBLEMS 16, 17 377

As we have seen, all these will be squares if
F=x+ + 1+ 2 J(xY + 2* +3°).

We have also seen (Problem (1) above) that x%°+ a®+3® becomes a

square if only y=x+ 1. Put then y=x+ 1, when we have
P=2a%+ 20 + 2 + 2, /(@ + 207+ 307+ 2% + 1) ;

that is, 2=4 (2 +x+ 1)

It only remains to make %®+ « + 1 a square. Equate this to (—x+£)3
and we have

£-1 8L it
X= and /(x*+x+ 1)-—m,
whence g=2 /(& +x+1)= 2%’:}9 .

Therefore the roots of the required squares are

_f-1 42t 2f+2t+2
BT TS TS

Or, putting # = (» — ¢g)/2¢, the values become

x__3g5’+257r—r5‘ ,_r‘-*+zgr—3gﬁ z~r2+3q“’
Sy T T T ey
Letg=1,7=2 and wehave x =2, y=5 2=1; or, if weput /=2 in

the values expressed in terms of 4 the values are x =32, y=§, z= 1%

PROBLEM 17. 70 find two fourth powers A% B* suck that their sum
is equal to the sum of two other fourth powers’.

In other words, to solve the equation 4%+ B*= C*+ D% or (what is
the same thing) 4¢- D*=C*- 5"

It is proved, says Euler, that the sum of two fourth powers cannot be
a fourth power, and it is confidently affirmed that the sum of #iree fourth
powers cannot be a fourth power. But the equation 4%+ Bé— Ct=D*is
not impossible.

First solution.
Suppose A=p+¢, D=p—¢q, C=7+5, B=r—s;
thus the equation Aé—Di= C*— B4
becomes 7P+ P =rs (P + ).
Put p = ax, g= by, »=4x and s =, and we obtain
ab (a*x® + 0%°) = & (B + 37) ;

L Novi Commentarii Acad. Petrogol., 1772, Vol. XVIL (1773), PP. 64 sqq.= Commen-
Zfationes arithmeticae, 1. Pp. 47363 Mémoires de I Acad. Imp. de St Pétersbourg, X1. (1830),
DP. 49 5q.= Comment. arithm., 11. pp. 450-6.

24—3
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_f_]es—a"b
therefore il o

which fraction has therefore to be made a square.

One obvious case is obtained by putting Z = @, for then
P_E=n_ .
2 ab(BF-1)
whence y =@, x=1, so that p=a, g=ab, »=ab, s=a, and the result is
only the obvious case where p=s5, g=7

Following up this case, however, let us put 2=aé (1 + ).

We then have

y“ @B {(6° - 1) + 36°% + 34°2° + 2%} _ & —1+3&'z+3&3z3+6"z*‘
ab (P —1-~3) = P—1-3

therefore, multiplying numerator and denominator by #—1 -2z and ex-
tracting the square root, we obtain

y_aJ{(B =12 +(3E;—1)(*—1) 5+ 38 (B> —2) 2" + & (85— 4) & — b**}
x bP—1—3 ’

To make the expression under the radical a square, equate it to
(1) + fo+ g
and assume £, ¢ such that the terms in 2, 2* vanish.

In order that the term in z may vanish, f=1 (3/*—1), and, in order
that the term in 2> may disappear,

3P B—2)=2-1)g+/ =2 (FF~-1)g+1(96*— 65*+ 1),
3&4— 185 ~1
8(F-1)
The equation to be solved is then reduced to
BB —4)— 2fg=(g+ ) 3

_FP-4) -2
F+g

whence

or

Now 4 can be chosen arbitrarily ; and, when we have chosen it and
thence determined z, we can put

x=8-1-2 y=a(l®-1+fz+g7,
and accordingly

P=a(l-1-3), r=ab(1+2)(P*—1-3),
g=ab(FP—1+/5+82), s=a(l®—1+f5+g8),
where we may also divide out by a.

If x, y have a common factor, we may suppose this eliminated before
2y ¢, 7, § are determined.
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Ex. 1. Let &=z (for & cannot be 1, since then g would be o )
Therefore S=22 g=-13 z=8000

As @ does not enter into the calculation, we may write 1 for it;
therefore

6600 _ 2187 11 6600 25 /6600\%
X=3=5— ) y=3+—.———.<———)
929 2029 2 2929 24 \2929
= 54 35407-1100 3. 28894941
=3 2929 2929°

But the ratio x: y is what we want, and
y _ 328894941 _ 28894941 _ 3210549 _ 1070183
" 2187.2929  2929.729 2929.81 27.2929°
so that we may put

x=179083, y=r1070183.

Further k=2(1+3)="2 9529 _ 19058
2929 2929
Therefore
2 =179083, r=27.19058 = 514566,
¢=2.1070183 = 2140366, s=1070183.
Consequently .
A=p+g=2219449, C=7+s=1584749,
B=r—s=-555617, D=p—g=—2061283,
and 44+ B*=C*+ D*
Ex. 2. Let 4 =3; therefore /=13, g=4%, 5=%3%;
3-369 1107 27.4T

k=3(1+2)-— 169 _-1—69-_ 169 ;
_ 200 8.144
further x_g_ng_ 169’

_ 200 5 200\ o 200 2447 8.89736
y=8+ 169 (13 4" 169>— * 169" 169 169° °
8

x 144.169 _ 6. 169
herefc = S
Therefore y~ 8.89736 3739’
and we may put Xx=1014, ¥=3730.

Accordingly p=1014, 7= 27 6; 1014 = 6642,
g=11217, $=3739;
and therefore A=12231, C=10381,
B=2903, D =-10203,
and again 44+ Bé= C*+ D",
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Another solution in smaller numbers.

In the second of the papers quoted Euler says that, while investigating
quite different matters, he accidentally came across four much smaller
numbers satisfying the conditions, namely,

A=543, B=103, C=359, D=514,
which are such that 4*+ B¢= C*+ D*

He then develops two methods of analysis leading to this particular
solution; but, while they illustrate the extraordinary ingenuity which he

brought to bear on such problems, they are perhaps of less general interest
than the above.
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I. GREEK.

dddvaroes, ‘‘impossible,” 53
dhoyos ( = “‘undescribed” apparently),
Egyptian name for certain powers, 41
dépioros, indeterminate: wAffos wovdSwy
dépiorov, an undetermined number of
units=the unknown, dp:fuds, i.e. x, 32,
115, 130; & 7@ doploTy, indeterminately,
or in terms of an unknown, 17y
dptbuyruch distinguished from hoyeoricd, 4
dpiBubs, number, used by Dioph. as techni-
cal term for unknown quantity (=x),
32, 115, X30; symbol for, 32-37, 130
dpibuorréy (=1/x) and sign for, 47, 130
dromos, “absurd,” 53

dur\f lobrys ox durhoizérys, double-equation,
7. .

Stvaus, ‘“square,” used for square of un-
known (=x?): distingnished from rerpd-
yawos, 37-38 ; sign for, 38, 129; Terpamhi
dvauis, “quadruple-square,” Egyptian
name for eighth power, 41

duwvauodivaus, fourth power of unknown
(=%, sign for, 38, 129

Suvapoduvapmostéy, submultiple of duvauodi-
vams (=1/x%) and sign, 47, 130

SuvaubkyBos, ‘‘square-cube” (=2%), sign
for, 38, 129

SwvapokvBootéy, submultiple of duvauékuBos
(=1/+%) and sign, 47, 130

dwapooréy, submultiple of dvauts (=1/%?)
and sign, 47, 130

€ldos, ““species,” used for the different terms
in an algebraic equation, 7, 130, 131

Eews, “deficiency”: & elyest Twa
eldy, “‘any terms in deficiency,” i.e.
‘“‘any mnegative terms,” 7, I13I

évurdpyovra, “existent,” used for positive
terms, %, 130

émdvinpa  (“flower” or ‘‘bloom™) of
Thymaridas, 114-116

fros, equal, abbreviation for, 47-48

kvBbkuBos, ‘‘cube-cube,” or sixth power
of unknown (=x8), and sign for, 38,
129 -

kvBokvBooréy (=1[x%) and sign, 47, 130

kUBos, cube, and symbol for cube of un-
known, 38, 129; kBos éfehikrés, Egyp-
tian term for ninth power (29), 41 -

kvBocréy (=1/%% and sign, 47, 130

\ebmew, to be wanting: parts of verb used
to express subtraction, 44 ; Aefrovra eldy,
negative terms, 130

Nefyns, ‘‘wanting,” term for subtraction
or negation, 130; Aelye (dat.)=minus,
sign common to this and parts of verb
Aelrew, 41-44 ’

Noyworiks), the science of calculation, 111
distinguished from dpifunrucd, 4

pelgwy 7 & Ny, 1327, 144 2.

pépos, ¢ part,” =an aliquot part or sub-
multiple ; uépy, “parts,” used to describe
any other proper fraction, 191

pepNerns dpbpbs (from pfdor, an apple), 4,
113

povds, “‘unit,” abbreviation for, 39, 130

Moptacrikd, supposed work by Diophantus,
34 -

poplov, or & woply, expressing division or
a fraction, 46, 47

uvptds wpoTy, Sevrépa, 47-48
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opom\n07 (etdn), (powers of unknown)
“with the same coefficient,” ¥

7, value of, calculated by Archimedes
and Apollonius, 122

wapwbrys, mwapiodryros dywyh, approxima-
tion to limits, 95 sq., 207, 208, 209 #.,
211

Thagparikéy, ‘‘formativum”
meaning of, 140 7.

whevpd, side, =square root, 65 7.

m\7jfos, ‘‘number” or ‘‘multitude,” used
for “coefficient,” 64 .

wpbraois, proposition, ¢

(Tannery),

orepeds, solid, used of a number with
three factors, 183 #.

INDEX

cuwpeta povdSwr, “heap” or collection of
units, 37
cwpls, “heap,” 37

Terpam\y  dlvams, ‘‘quadruple-square,”
Egyptian term for eighth power, 41

brapfis, ‘¢ existence,” denoting a positive
term (contrasts with \etyus), 4t

vwdpxovra (eldn), ‘“existent” or positive
(terms), 130 7.

dalirys dpfubs (from guddn, a bowl), 4,
113

dxvrérior of Apollonius, 722
dpiopévos, determinate, 115

II. ENGLISH.

Abi’l-Faraj, 1

Abi’l-Wafa al-Biizjani, 6, 19

Achmim Papyrus, 45

Addition, expressed in Dioph. by juxta-
position, 42; Bombelli’s sign for, 22;
first appearance of +, 49 7.

Ahmes, 112

Alfraganus, 20

Algebra: three stages of development,
49-51

Algebraical notation : Diophantus, 32-39,
4I—44; Bombelli, 22, 38; earlier Italian
algebraists, 38; Xylander, 38, 48; Bachet
and Fermat, 38; Vieta, 38, 39, 50 7.
beginnings of modern signs, 49-507.

Aljabr, 64

al-Karkhi, 5, 41 2.

al-Khuwarazmi, Muhammad b. Misi,
34, 50

Almukabola, 64

Amthor, 122

Anatolius, 2, 18

Andreas Dudicius' Sbardellatus, 17, 25

Angelus Vergetius, 16

Anthology, arithmetical epigrams in, rr3-
1143 on Diophantus, 3; indeterminate
equations in, 114

Apollonjus of Perga, 5, 6, 12, 18, 122

Approximations: Diophantus, 95~98; Py-
thagoreans, 117-118, 278; Archimedes,
278-279

Arabian scale of powers of unknown
compared with that of Diophantus,
40, 41

Arabic versions and commentaries, 19

Archimedes, 11, 12, 35, 278, 279, 290;
Codex Paris. of, 48; Cattle-Problem,
121-124, 2793 Arenarius, 35, 122

Arenarius of Archimedes, 35, 22

Arithmetica of Diophantus : different titles
by which known, 4-5; lost Books, 5-12;
division into Books, 5, 17-18; notation
in, 32~33; conspectus of problems in,
260~266 .

Arithmetical progression, summation of,
248-249

Ars rei et census, 20

Aryabhata, 281

Auria, Joseph, 15, 18

Bachet, 12, 16, 17, 21, 22 22, 25, 26-29, 35,
38, 45, 48, 80-82, 87 n., r1o1, 10772,
109, IIO, I40 #., 173 7., 196-197 7.,
21372, 220 72, 330 #2., 232 7., 234—2357.,
246, 271, 273, 287, 293

¢ Back-reckoning,” 56, 89, 93

Baillet, 45 7.

Bessarion, Cardinal, 17, 20

Bhaskara, 281

Bianchini, 20

Billy, Jacques de, 28, 165 7., 166 7., 184 7.,
221 7., 267, 304, 308, 320, 321, 336
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Bodleian MSS. of Dioph., 15, 34, 353
MS. of Euclid, 33

Bombelli, Rafael, 11, 27; Algebra of,
21, 22 ; symbols used by, 22, 38

Brahmagupta, 281

Brancker, ‘Thomas, 286 .

Brouncker, William, Viscount, 286, 288

Camerarius, Joachim, 21

Cantor, Moritz, 3 #., 6, 63 ., 112, 118 2.,
120 7., 125 7., 281

Cardano, 21, 23, 40

Cattle-Problem of Archimedes, 11, 12,
121-124, 279

Cauchy, 188 7., 274

Censo, or Zensus, =square, 40, 4I

Charmides, scholiast to, 111, 113, 121—
122

Chasles, 11

Cleonides, 16 7.

Coefficient, expressed by w\fjfos, multitude,
39, 647

Colebrooke, 6, 281 7.

Cosa, =the unknown, 22, 40

“« COSS,” 23

Cossali, 1,
220 72.

Cracow MS. of Dioph., 5., 14, 18

Cube: Vieta’s formulae for transforming
the sum of two cubes into a difference
of two cubes and wice versd, 101-103;
Fermat’s extensions, 2574, ; a cube cannot
be the sum of two cubes, 144 72.; Euler’s
solution of problem of finding all sets of
three cubes having a cube for their sum,
329-334; sign for cube of unknown or
% 38, 129

¢ Cube-cube ” (=sixth power of unknown,
or x8), sign for, 38, 129

Cubic equation, simple case of, 66-67,
242

Cuttaca (‘‘pulveriser”), Indian method of,
283

21 7., 40, 4I, 140 ».,

Definitions of Diophantus, 32, 38, 39,
12g-131

¢ Denominator,” 137

Descartes, 271, 273; notation, 507z

Determinate equations : of first and second
degrees, 58 ; pure, 58-59; mixed quad-
ratics, 59-65; simultaneous equations
leading to quadratics, 66; a particular
cubic, 66-64 i

¢ Diagonal-”” numbers, rry, 118, 310

»
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Dionysius, 2 #., 9, 129

Diophantus: spelling of name, 1; date,
1-2; epigram on, 3; works, 3-13; in
Arabia, 3-6, 19; ‘‘Pseudepigraphus,”
12, 31; MSS. of, 14~18; commentators
and editors, 18-31 ; notation of, 3253 ;
methods of solution, 54-98; porisms
of, 3, 8-10, g9-101 ; other assumptions,
103 5q. ; theoremsin theory of numbers,
105-110; on numbers which are the
sum of two squares, 1o05~106; numbers
which are not the sum of two squares,
107-108; numbers not sum of three
squares, 108-109; numbers as sums of
four squares, 110 ; Dioph. not inventor
of algebra, 111-116; nor of indeter-
minate analysis, Irs~r124; his work
a collection in best sense, 124; his ex-
tensions of theory of polygonal numbers,
127

Division, how represented by Dioph.,
4447

Doppelmayer, 20#.

Double-equations (for making two ex-
pressions in x simultaneously squares),
11, 73-87, 91-92; two expressions of
first degree, 73-80, 80-82 7.; two ex-
pressions of second degree or one of first
and one of second, 81-87 ; general rule
for solving, 73, 146; double equations
for making one expression a square and
another a cube, 91-92

Dudicius Sbardellatus, Andreas, 17, 25

Egyptians: Aau, sign for, 37; names for
successive powers, 41 ; beginnings of alge-
bra, Aau-calculations, 111-112; method
of writing fractions, rr2

Eisenlohr, 112 #.

Enestrom, 63 7., 286 7.

Epanthema of Thymaridas, 114-116

Epigrams, arithmetical, in Anthology, rx3—
114; on Diophantus, 3; one in Dio-
phantus (V. 30), 124

Equality: abbreviation for, 47—48; sign in
Xylander, 48 ; the sign = due to Recorde,
50 n.

Equations, s¢¢ Determinate, Ingleterminaté,
Double, Triple, etc. ’

Eratosthenes, 121

Euclid, 8, 11, 12, 19, 63, 119, 124, 132 2.,
144 7., 191 ’

Eudoxus, 124

Euler, 56, 7172 7., 83-85 ., 86 2., go 7.,



384

1007, , 102 #., 107, 110, 145 7., 151 #2.,
160 #., 162 #., 178 2., 181-182 2.,
188 7., 224 #., 236 7., 241 7., 242 7.,
268, 272, 274, 275 286, 288-292,
204, 297, 299 #., Supplement, 329-379
passim

Euler, J. A., 360

Eutocius, 5, 6

Exponents, modern way of writing due
to Descartes, 50 7.

Fokkri, 5, 41 7.

*‘False supposition,” use of, in Egypt,
112-113

Fermat, 28, 29, 30, 38, 78, 9o, 101,
102, 103, I06, 107, 108, 109, I1IO,
144~145 7., 163 12., 173 7., 179-180 7.,
182 n,, 183 »., 184 7., 188 7., 1go-
19X 72, 197 %, 202 #., 204 ., 205 #.,
213-214 7., 218 2., 220 m., 2237,
22Q 7., 230 7., 231 ., 232 K., 233 7
235 #., 236 7., 239 7., 240 7., 241 7.,
242 72, 246, 254 7., Supplement, 267-
328 passim, 364; ‘great theorem of
Fermat,” 144~1457.; Fermat on num-
bers which are, or are not, the sums of
two, three, or four squares respectively,
106-110, 267-275 ; on numbers of form
23— or 22732 276-277, of form
224332 278, and of form 2%+ 53, 276,
277; on equation x#2— 4y2=1, 285-287 ;
xA—yA=22 cannot be solved in integers,
224, 293-297; problems on right-angled
triangles, 204~205 ., 218-219 7., 220 2.,
229 7., 230 22., 331233 #., 235 #., 236 7.,
239-240 2., 297318 ; Fermat’s “ triple-
equations,” 321-328

Fractions : representation of, in Diophantus,
44~47; sign for %, 45; for §, 45;
sign for submultiple, 45—47

Frénicle, 102 1., 276, 277, 285, 287,
295-297, 309, 310, 313, 314

Gardthausen, 35, 36

Geminus, 4

Georg v. Peurbach, 20

Georgius Pachymeres, 18, 19, 31, 37

Girard, Albert, 30, 106 7.

Gromons, 125 .

Gollob, 14, 18

Grammateus (Schreiber), Henricus, 49 #.,
50 7.

Greater and less, signs for, 50 #.

Gitnther, 6, 2787., 279 7,

INDEX

Hankel, 6, 54-55, 108 2., 281, 283, 284,
286 7.

Harriot, 507

Hau (=*heap”), the Egyptian unknown
quantity, 37, 112

Heiberg, 35, 48 ., 118, 205 2.

Henry, C., 13, 28 z.

Hérigone, 30 7.

Heron, 12, 13, 35, 36: 43, 44» 45 63,
129 7.

Hippocrates of Chios, 63, 124

Holzmann, Wilhelm, see Xylander

Hultsch, 27, 3, 4, 9, 10, II, 12, IQ 2.,
38,36, 37, 47 7., 63 7., 1187., 122, 253 72.

Hydruntinus, Ioannes, 16

Hypatia, 5, 6, 14, 18

Hypsicles, 2; on polygonal numbers,
125-126, 252, 253

Tamblichus, 2, 3, 37 7., 49, 50, 115116, 126

Ibn abi Usaibi‘a, 19

Ibn al-Haitham, 19

Identical formulae in Diophantus, 104, 105

Indeterminate equations: single, of second
degree, 67-73 ; of higher degrees, 87—
91 ; how to find fresh solutions when one
is known, 68-70; double-equations for
making two expressions simultaneously
squares, 11, (I) two expressions of first
degree, 73-80, 80-82 7., (2) two of second
degree, or one of second and one of first,
81-87; double-equations for making one
expression a square and another a cube,
91—92; rule for solving double-equations
in which two expressions are to be made
squares, 73, 146 ; indeterminate equations
in Anthology, 114; other Greek ex-
amples, 118-121; 2x2-32==1 solved
by Pythagoreans, 117-118, 278, 310

“Indian method,” 12-13, 217

Indian solution of x2-Ay?=1, 281-285,
290, 292

Inventum Novum of J. de Billy, 28,
165 7., 184 7., 108 7., 204 %., 205 7.,
221 7., 230 7., 231 #., 239 7., Supple-
ment, 265~328 passim

Ioannes Hydruntinus, 16

Ishdaq b. Viinis, 19

Italian scale of powers, 40, 41

Jacobi, 108 7., 288

Ka's, Arabic term for cube of unknown,
4172
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al-Karkhi, 5, 41 7.

Kausler, 31

Kaye, G. R., 281

Kenyon, 45

Konen, 278 #., 279 7., 281 7., 285 n.,
286 7., 288, 292#.

Kronecker, 288

Krumbiegel, 122

Kummer, 145#%.

Lagrange, 72 7., 110, 188 ., 272, 243,
274, 275, 276, 277, 285, 287, 288,
290, 292, 299, 300

Lato, “side,” 40n.

Legendre, 107#%., 109 7., 1887, 273

Lehmann, 35

Lejeune-Dirichlet, 1457., 288

Leon, 124

Leonardo of Pisa, 11, 4I 7., 120

Less and greater, signs for, so7.

Limits : method of, 57, 94, 95; approxi-
mation to, 95-98

Logistica speciosa and Logistica numerosa
distinguished by Vieta, 49

Loria, 62 n., 157 »., 168 n., 175 7.,
1762., 195 2., 197 ., 207 ., 240 7.,
241 7.

Lousada, Abigail, 31
Luca Pacinolo, 21, 40

Madrid MS., 14, 15, 16

Mal, Arabic term for square, 41 7.

Manuscripts of Diophantus, 14-18

Maximus Planudes, 13, 14, 19, 21, 3I,
43) 44 45, 46, 48

Measurement of a circle (Archimedes),
122

Mendoza, 17

Metrica of Heron, 43, 44, 45, 63, 129 2.3
MS. of, 118

Metrodorus, 5, 113 :

Minus, Diophantus’ sign for, 4I-44,
130; same sign in Heron's Metrica,
43, 44; Bombelli’s abbreviation, 22;

modern sign for, 49 ».; Vieta’s
sign for difference between (=for ~),
son.

Montchall, Carl v., 18

Montucla, 28

Moriastica of Diophantus, 3-4

Muhammad b. Miisi al-Khuwarazmi, 34,
50

Multiplication, signs for, 50 7.

Murr, Ch. Th. v., 202.
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Negative quantities not recognised by
Diophantus as real, 52-53

Nesselmann, 6-10, 21 7., 25, 267., 19,
33 34 49-51, 55-58, 67, 87, 89, 93,

¢ 108 #., 140 7., 173 7., 204 7., 207 7.,
252 7,, 329 7.

Nicomachus, 2, 126, 127

Notation, algebraic: three stages, 49-51;
Diophantus’ notation, 32-49, 51-32

Numbers which are the sum of two squares,
105-107, 268-271 ; numbers which are
not, 107-108, 271-272; numbers which
are the sum of three squares, 272-273 ;
numbers which are not, r08-109, 273 ;
numbers not square are the sum of two,
three or four squares, I1o0, 273, 274;
corresponding theorem for triangles,
pentagons, etc., 188, 273

Numerus, numero, term for unknown quan-
tity, 38, 40

- Nufiez, 23

Oughtred, 50 7.
Ozanam, 288

Pachymeres, Georgius, 18, rg, 31, 37

Paciuolo, Luca, 21, 40

Pappus, 11, 13

Papyrus Rhind,
6619, 112

Paris MSS. of Diophantus, 15, 16, 18

Pazzi, A. M., 31

Pell, John, 31, 286 2., 288

““Pellian” equation, origin of this er-
roneous term, 286

Peurbach, G. von, 20

Philippus of Opus on polygonal numbers,
125

Planudes, Maximus, 13, 14, Ig, 2I, 3I,
43s 44> 45, 46, 48

Plato, 4, 387., 111, 113, 116, 125

Plus, signs for, 22, 497.; expressed in
Diophantus by juxtaposition, 39

Plutarch, 127

Polygonal Numbers, treatise on, 3, I1-12,
247-259; sketch of history of subject,
124-127; began with Pythagoreans, 124~
125; figured by arrangement of dots,
125 ; Hypsicles on, 125-126, 252, 253 ;
Diophantus® extensions, 127

Porisms of Diophantus, 3, 8-10, 99-TOI,
201, 207, 3[4

Poselger, 30, 98

Powers of unknown quantity and signs

112; Berlin papyrus
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 for, 37-39, 129; Italian and Arabian

* scale (multiplicative) contrasted with Dio-
phantine (additive), q4o-41; Egyptian
scale, 41

Proclus, 4 7., 113, 116, 117 7., 118, 242 2.

Psellus, 2, 14, 18, 4I, III

Ptolemy, 18, 44 )

Pythagoreans: 3; on rational right-angled
triangles, 116, 242%.; on polygonal
numbers, 124-125; on indeterminate

. equation 24%2-p2=1, 117-118, 278,
310

Quadratic equations in Diophantus, 7~8,
" 59~66; in Hippocrates of Chios, 63;
. in Euclid, 63; in Heron, 63, 64
Quadratic inequalities in Diophantus,

60~63 ; limits to roots, 60-63, 65, 95
Qustd b. Ligd, rg

Radice (=x), 40
Radiz (=x), 38
Rahn, 507., 286 7.
Ramus, 16 7.
Rationality, Diophantus’ view of, 52-53
Recorde, Robert, s07.
Regiomontanus, 5, 17, 20, 23, 49
¢ Regula falsi” in Egypt, 112-113
Relato, Italian term for certain powers
of unknown, 41
Res, alternative for radix, in sense of
unknown quantity, 38
Rhind Papyrus, riz
Right-angled triangles in rational numbers
in Diophantus, 93-94, 105106 ; method
of ¢forming,” 93-94; other methods of
forming attributed to Pythagoras, 116~
117, and to Plato, 116-x17; Euclid’s for-
. mulafor, 117, 120; Pythagorean formula
once used by Diophantus, 242 ; Greek
indeterminate problems on, other than
those of Dioph., 11g-r2r; Fermat’s
theorems and problems on, 204~205 #.,
218-219 #., 220 #., 229 7., 230 7., 231~
.~ 232#., 235 7., 23062, 239-24072., 203—
.318, 364-371
Rodet, 34, 35
;Rosen, 50
,-Rgd.iq, _63 7.
Rudolff, Christoff, 23, 50 7.

gglmasius, Claudiﬁs, 17
Sand-reckoner of Archimedes, 122
Saunderson, N., 27 7.

INDEX

Schaewen, P. v., 327, 328

Schmeisser, 31

Schone, 43, 45, 118

Schreiber, H., see Grammateus

Schuler, Wolfgang, 24

Schulz, 9, 11, 18, 30, 31, 108 7., 1407.,
219 7.

Sebastian Theodoric, 24

Serenus, 12 .

¢‘Side ” =square root, 65 7. ’

¢ Side-” and * diagonal-” numbers, Py-
thagorean solution of 2x2-p*==%1 by
means of, r17-118, 278, 310

Simon Simonius Lucensis, 25

Simplicius, 63 7.

Sirmondus, J., 2%

Smith, H. J. S., 292

¢ Species” (etdn) of algebraical quantities,
7, 130, 131

Speusippus on polygonal numbers, 125

“ Square-cube” (=a5), sign for, 38,
129

Square root, sign A/ for, 50#.; =m\evpd
(side), 65 7.

¢ Square-square ¥ (=ux4), sign for, 38,

. 129

Squares : numbers as sum of two, three,
or four, 110, 273, 274; of two, 105-10%,
268-271; not of two, 107-108, 271~272;
of three, 272—-273; not of three, 108,
109, 273

Stevin, Simon, 29, 307.

Stifel, M., 23, 49 7., 507.

Submultiples, sign for, 45-47; decom-
position of fractions into, 46, 112;
submultiples of unknown and powers,
47

Subtraction, symbol for, 41-44

Suidas, 1, 18, 22

Surdesolides, sursolida or supersolida, 41

Surds, 23-24

Suter, H., 197"

Tangery, P., 2., 3, 5, 6, 8, 10~12, 14~19,
25, 28 7., 31, 32=37, 43-44, 45, 108 .,
111, 118 m., 125 7., 135 %, 138 n.,
144 7., 148 7., 150 7., 156 7., 160 7.,
198 7., 219 7., 234 7., 256, 278, 279,
280, 281, 290, 308

Tanto, unknown quantity, in Bombelli, 22

Tartaglia, 21, 40

Theaetetus, 124

Theon of Alexandria, 2, 18

Theon of Smyrna, 2, 36, 117, 126, 310
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Theudius, 124

Thompson, D’Arcy W., 37

Thymaridas, Epanthema of, 114-116

‘¢ Triple-equations” of Fermat, 163 .,
179#., 182 7., 202#., 2237%., 2247%.,
246, 321-328

“Units” (novddes)=absolute term, 39-40;
abbreviation for, 39, 130

Uunknown quantity (=x), called in Dio-
phantus dpebuébs, * number”: definition
of, 32, 115, 130; symbol for, 32-37,
130; signs for powers of, 38, 129;
signs for submultiples of unknown and
powers, 47, 130; Italian-Arabian and
Diophantine scales of powers, 40, 4I;
Egyptian scale, 4r; x first used by
Descartes, 50 #.; other signs for, L used
by Bombelli, 22, 38, &V (for Numerus)
by Xylander, Bachet, Fermat and others,
38, R (Radix or Res), 38, Radice, Lato,
Cosa, 40n.

Vacca, G., 106 2.

Valla, Georgius, 48

Vatican MSS. of Diophantus, 5 7., 15, 16,
X7

Vergetius, Angelus, 16
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Vieta, 27, 38-39, 49, 50#., IOI, 102,

214 7., 285, 329, 337
Vossius, 31

Wallis, 4072., 286, 287, 288, 289

Weber, Heinrich, 3 z.

Weber and Wellstein, 107 7., 14572.

Wertheim, 30, 110 2., 137 7., 138 #.,
145 #2., 151 72., 161 7., 209 7., 211 7.,
212 72., 216 7., 217 7., 254 7., 256, 257,
286 7., 294, 295

Westermann, 125 7.

Widman, 49 7.

Wieferich, 145 7.

Woepcke, 3 7.

““Wurm’s problem,” r23

x for unknown quantity, originated with
Descartes, 5072

Xylander, 17, 22-26, 27, 28, 29, 33, 38,
107-108 7., 1407. ; Xylander’s MS. of
Diophantus, 17, 25, 36

Zensus (= Censo), term for square of un-
known -quantity, 38

Zetetica of Vieta, 27, Io1, 285

Zeuthen, 1:18-121, 205 7., 278, 28I 7.,
290, 294—295
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