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PREFACE.

TT is not too much to say that, to the great majority of

-*- mathematicians at the present time, Apollonius is nothing

more than a name and his Conies, for all practical purposes, a

book unknown. Yet this book, written some twenty-one

centuries ago, contains, in the words of Chasles, " the most

interesting properties of the conies," to say nothing of such

brilliant investigations as those in which, by purely geometrical

means, the author arrives at what amounts to the complete

determination of the evolute of any conic. The general neglect

of the " great geometer," as he was called by his contemporaries

on account of this very work, is all the more remarkable from

the contrast which it affords to the fate of his predecessor

Euclid ; for, whereas in this country at least the Elements of

Euclid are still, both as regards their contents and their order,

the accepted basis of elementary geometry, the influence of

Apollonius upon modern text-books on conic sections is, so far

as form and method are concerned, practically nil.

Nor is it hard to find probable reasons for the prevailing

absence of knowledge on the subject. In the first place, it could

hardly be considered sui-prising if the average mathematician

were apt to show a certain faintheartedness when confronted

with seven Books in Greek or Latin which contain 387
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propositions in all; and doubtless the apparently portentous
bulk of the treatise has deterred many from attempting to
make its acquaintance. Again, the form of the propositions is
an additional difficulty, because the reader finds in them none
of the ordinary aids towards the comprehension of somewhat
complicated geometrical work, such as the conventional appro-
priation, in modern text-books, of definite letters to denote
particular points on the various conic sections. On the contrary,
the enunciations of propositions which, by the aid of a notation
once agreed upon, can now be stated in a few lines, were by Apol-
lonius invariably given in vords like the enunciations of Euclid.
These latter are often sufficiently unwieldy: but the incon-
venience is gi-eatly intensified in Apollonius, where the greater
complexity of the conceptions entering into the investigation of
comes, as compared with the more elementary notions relating
to the line and circle, necessitates in many instances an enun-
ciation extending over a space equal to (say) half a page of this
book. Hence it is often a matter of considerable labour even
to grasp the enunciation of a proposition. Further, the propo-
sitions are, with the exception that separate paragraphs mark
the formal divisions, printed continuously; there are no breaks
for the purpose of enabling the eye to take in readily the
successive steps in the demonstration and so facilitating the
comprehension of the argument as a whole. There is no uni-
formity of notation, but in almost every fresh proposition a
different letter is employed to denote the same point: what
wonder then if there are the most serious obstacles in the way
of even remembering the results of certain propositions?
Nevertheless these propositions, though unfamiliar to mathe-
maticians of the present day, are of the very essence of
Apollonius' system, are being constantly used, and must there-
fore necessarily be borne in mind.

The foregoing remarks refer to the editions where Apollonius
can be read in the Greek or in a Latin translation, i.e. to those
of Halley and Heiberg; but the only attempt which has been
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made to give a complete view of the substance of ApoUouius

in a form more accessible to the modern reader is open to

much the same objections. This reproduction of the Conies in

German by H. Balsam (Berlin, 1861) is a work deserving great

praise both for its accuracy and the usefulness of the occasional

explanatory notes, but perhaps most of all for an admirable set

of figures to the number of 400 at the end of the book ; the

enunciations of the propositions are, ho\vever, still in Wi^rds,

there are few breaks in the continuity of the printing, and the

notation is not sufficiently modernised to make the book of any

more real service to the ordinary reader than the original

editions.

An edition is therefore still wanted which shall, while in

some places adhering even more closely than Balsam to the

original text, at the same time be so entirely remodelled by

the aid of accepted modern notation as to be thoroughly

readable by any competent mathematician ; and this want

it is the object of the present work to supply.

In setting myself this task, I made up my mind that any

satisfactory reproduction of the Conies must fulfil certain

essential conditions: (1) it should be Apollonius and nothing

but Apollonius, and nothing should be altered either in the

substance or in the order of his thought, (2) it should be

complete, leaving out nothing of any significance or importance,

(3) it should exhibit under different headings the successive

divisions of the subject, so that the definite scheme followed by

the author may be seen as a whole.

Accordingly I considered it to be the first essential that I

should make myself thoroughly familiar with the whole work at

first hand. With this object I first wrote out a perfectly literal

translation of the whole of the extant seven Books. This was a

laborious task, but it was not in other respects difiicult, owing

to the excellence of the standard editions. Of these editions,

Halley's is a monumental work, beyond praise alike in respect

of its design and execution; and for Books V—vii it is still tht•



only complete edition. For Books i— iv I used for the most

part the new Greek text of Heiberg, a schohir who has earned

the undying gratitude of all who are interested in the history

of Greek mathematics by successively bringing out a critical

text (with Litin translatiun) of Archimedes, of Euclid's Elements,

and of all the writings of Apollonius still extant in Greek. The

only drawback to Heiberg's Apollonius is the figures, which are

poor and not seldom even misleading, so that I found it a great

advantage to have Halley's edition, with its admirably executed

diagrams, before me even while engaged on Books I—IV.

The real diHiculty began with the constructive work of

re-writing the book, involving Jis it did the substitution of a

new and unifonn notation, the condensation of some pro-

j)ositions, the combination of two or more into one, some slight

iv-arrangements of order for the purpose of bringing together

kindred propositions in cases where their separation vas rather

a matter of accident than indicative of design, and so on. The

result has been (without leaving out anything essential or

important) to diminish the bulk of the work by considerably

more than one-half and to reduce to a corresponding extent the

number of separate propositions.

When the re-editing of the Conies was finished, it seemed

necessary for completeness to prefix an Introduction for the

purposes (1) of showing the relation of Apollonius to his pre-

decessoi's in the same field both as regards matter and method,

(2) of exj>laining more fully than was possible in the few notes

inserted in square brackets in the body of the book the mathe-

matical significance of certain portions of the Conies and the

probable connexion between this and other smaller treatises of

Apollonius about which we have information, (8) of describing

and illustrating fully the form and language of the propositions

;is they stiind in the original Greek text. The first of these

purposes required that I should give a sketch of the history of

conic sections up to the time of Apollonius ; and I have ac-

cordingly coiisidrn-d it worth while to make this part of the
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Introduction as far as possible complete. Thus e.g. in the case

of Archimedes I have collected practically all the propositions

in conies to be found in his numerous works with the substance

of the proofs where given ; and I hope that the historical sketch

as a whole will be found not only more exhaustive, for the

period covered, than any that has yet appeared in English, but

also not less interesting than the rest of the book.

For the purposes of the earlier history of conies, and the

chapters on the mathematical significance of certain portions of

the Conies and of the other smaller treatises of Apollonius, I

have been constantly indebted to an admirable work by

H. G. Zeuthen, Die Lehre von den Kegelschnitten im AlteHnm

(German edition, Copenhagen, 188G), which to a large extent

covers the same ground, though a great portion of his work,

consisting of a mathematical analysis rather than a reproduction

of Apollonius, is of course here replaced by the re-edited

treatise itself I have also made constant use of Heiberg's

Litterargeschichtliche Studien ilber Euklid (Leipzig, 1882), the

original Greek of Euclid's Elements, the works of Archimedes,

the] of Pappus and the important Commentary on

Eucl. Book I. by Proclus (ed. Friedlein, Leipzig, 1873).

The frontispiece to this volume is a reproduction of a

quaint picture and attached legend which appeared at the

beginning of Halley's edition. The story is also told elsewhere

than in Vitruvius, but Avith less point (cf Claudii Galeni

Pergameni 7<; iirl c. V. § 8, p. 108, 3-8

ed. I. Marquardt, Leipzig, 1884). The quotation on the title

page is from a vigorous and inspiring passage in Proclus'

Commentary on Eucl. Book i. (p. 84, ed. Friedlein) in which he

is describing the scientific purpose of his work and contrasting

it vith the useless investigations of paltry lemmas, distinctions

of cases, and the like, which formed the stock-in-trade of the

ordinary Greek commentator. One merit claimed by Proclus

for his work I think I may foirly claim for my own, that it

at least contains' 7payaetBeipap e^ei ^; and I
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should indeed be proud if, in the judgnieuL of competent critics,

it should be found possible to apply to it the succeeding phrase,

€\( \.
L•\st\y, wish to express my thanks to my brother,

l)r H. S. Heath, Principal of Mason College, Birmingham,

for his kindness in reading over most of the proof sheets and

for the constant interest which he has taken in the progress

of the work.

T. L. HEATH.

MarcJi, 1896.
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PART I.

THE EARLIER HISTORY OF CONIC SECTIONS
AMONG THE GREEKS.

CHAPTER I.

THE DISCOVERY OF CONIC SECTIONS: MENAECHMUS.

There is perhaps no question that occupies, comparatively, a

larger space in the history of Greek geometry than the problem of

the Doubling of the Cube. The tradition concerning its origin is

given in a letter from Eratosthenes of Gyrene to King Ptolemy

Euergetes quoted by Eutocius in his commentary on the second

Book of Archimedes' treatise On the Sp^re and Cylinder* ;
and the

following is a translation of the letter as far as the point where we

find mention of Menaechmus, with whom the present subject

begins.

" Eratosthenes to King Ptolemy greeting.

"There is a story that one of the old tragedians represented

Minos as wishing to erect a tomb for Glaucus and as saying, when

he heard that it was a hundred feet every way,

Too small thy plan to bound a royal tomb.

Let it be double
;

yet of its fair form

Fail not, but haste to double every sidef.

* In quotations from Archimedes or the commentaries of Eutocius on his

works the references are throughout to Heiberg's edition (Archimedis oprra

omnia cum commeiitariis Eutocii. 3 vols. Leipzig, 1880-1). The reference here

is ni. p. 102.

t 7* '7$ '' iv .
Valckenaer (Diatribe de fragm. Eurip.) suggests that the verses are from the

H. C. ^
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But he was cleurly in error ; for, when the sides are doubled, the area

becomes four times as great, and the solid content eight times

as great. Geometei-s also continued to investigate the question in

wliat manner one miglit double a given solid wliile it remained in

the same form. And a problem of this kind was called the doubling

of the cul>e ; for they starttnl from a culie and sought to double it.

While then for a long time everyone was at a loss, Hippocrates of

(Miios was the first to ohser\e that, if between two straight lines of

which the greater is double of the less it were discovered how to find

two mean proportionals in continueil proportion, the cube would be

doubled ; and thus he turned the dilKculty in the original problem*

into another difliculty no less than the former. Afterwards, they

say, some Delians attempting, in accordance with an oracle, to

double one of the alturs fell into the same difficulty. And they sent

and liegged the geomettM-s who were with Plato in the Academy to

find for them the required solution. And while they set themselves

energetically to work and sought to find two means between two

given straight lines, Archytas of Tarentum is said to have dis-

covered them by means of half-cylinders, and Eudoxus by means
of the so-called curved lines. It is, however, characteristic of them

all that they indeetl gave demonstrations, but were unable to make
the actual construction or to reach the point of practical application,

except to a small extent Menaechmus and that with difficulty."

Home verses at the end of the letter, in commending Eratosthenes'

own solution, suggest that there need be no resort to Archytas'

unwieldy contrivances of cylinders or to " cutting the cone in the

triiuls of Menaechmus t." This last phrase of Eratosthenes appears

Poli/iilus of Euripides, but tlmt the words after \( (or ^) are

Eratosthenes' own, iind that the verses from the trapedy are simply

y' tXeioi -'• ) \^.
It would, however, be strange if Eratosthenes had added words merely for the

puqjOKe of correetinji them again : and Nauck (Tragicuruvi Graecorum Frnijmenta,

Leipzig, ItWJ, p. 871) gives the three verses as above, but holds that they do not
belong to the lOlyidus, adding that they are no doubt from an earlier poet than
Euripides, perhaps Aeschylus.

• TO is translated by Heiberg " haesitatio eius," which no
doubt means " his difliculty." I think it is better to regard as neuter, and
as referring to the problem of doubling the cube.

+ Mii'^x/ii/oi't .
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again, by way of confirmatory evidence, in a passage of Proclus*,

wliere, quoting Geniinus, he says that the conic sections were

discovered by Menaechmus.

Thus the evidence so far shows (1) that Menaechmus (a pupil of

Eudoxus and a conteniporary of Phito) was the discoverer of the

conic sections, and (2) that lie used them as a means of solving the

problem of the doubling of the cube. We learn fui-ther from

Eutociust that IMenaechmus gave two solutions of the problem of

the two mean proportionals, to which Hippocrates had reduced the

oi-iginal problem, obtaining the two means first by the intersection

of a certain parabola and a certain rectangular hyperbola, and

secondly by the intersection of two parabolas
J. Assuming that a, b

are the two given unequal straight lines and .r, y the two required

mean proportionals, the discovery of Hippocrates amounted to the

discovery of the fact that from the relation

!^=i=f (1)X y b

it follows that C-Y .-

^ ,

and, if a - 2b, a? = 2x\

The equations (1) are equivalent to the three equations

x^ = ay, y- = bx, xy = ab (2),

and the solutions of Menaechmus described by Eutocius amount to the

determination of a point as the intersection of the curves represented

in a rectangular system of Cartesian coordinates by any two of the

equations (2).

Let AO, BO be straight lines placed so as to form a right angle

at 0, and of length «, b respectively §. Produce BO to and AO
to y.

* Comm. on End. ., p. Ill (ed. Friedlein). The passage is quoted, witli

the context, in the work of Bietschneider, Die Geometrie nnd die Geometer vor

Kuklides, p. 177.

t Commentary on Archimedex (ed. Heiberg, in. p. 92—98).

X It must be borne in mind that the words parabola and hyperbola could not

have been used by Menaechmus, as will be seen later on ; but the phraseolofiy is

that of Eutocius himself.

§ One figure has been substituted for the two given by Eutociue, so as to

make it serve for both solutions. The figure is identical with that attached to

the second solution, with the sole addition of the portion of the rectangular

hyperbola used in the first solution.

It is a curious circumstance that in Eutocius' second figure the straight line

62
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The firsi solution now consists in drawing a parabola, with

vertex and axis Ox, such that its parameter is equal to BO or h,

and a hyperhola with Ox, Oy as asymptotes such that the rectangle

under the distances of any point on the curve from Ox, Oy respec-

tively is equal to the rectangle under 0, BO, i.e. to ah. If be

*
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vertex is 0, axis Oy and parameter equal to a. The point where

the two parabohis intersect is given by

ar = ay

, , . a X y
wlience, as before, - = - = !f

.

X y b

We have therefore, in these two solutions, the paralwla and the

rectangular hyperbola in the aspect of loci any points of which

respectively fulfil the conditions expressed by the equations in (2);

and it is more than probable that the discovery of IVlenaochmus was

due to efforts to determine loci possessing these characteristic

pioperties rather than to any idea of a systematic investigation of

the sections of a cone as such. This supposition is confirmed by

the very special way in which, as will be seen presently, the conic

sections were originally produced from the right circular cone

;

indeed the special method is difficult to explain on any other

assumption. It is moreover natural to suppose that, after the

discovery of the convertibility of the cube-problem into that of

finding two mean proportionals, the two forms of the resulting

equations would be made the subject of the most minute and

searching investigation. The form (1) expressing the equality of

three ratios led naturally to the solution attributed to Plato, in which

the four lines representing the successive terms of the continued pro-

l^ortion are placed mutually at right angles and in cyclic order round

a fixed point, and the extremities of the lines are found by means of

a rectangular frame, three sides of which are fixed, while the fourth

side can move freely parallel to itself. The investigation of the

form (2) of the equations led to the attempt of Menaechmus to

determine the loci corresponding thereto. It was known that the

locus represented by y^ = ..,, where y is the perpendicular from

any point on a fixed straight line of given length, and x^, x, are the

segments into which the line is divided by the perpendicular, wjvs a

circle ; and it would be natural to assume that the equation y' = bx,

differing from the other only in the fact that a constant is sub-

stituted for one of the variable magnitudes, would be capable of

representation as a locus or a continuous curve. The only difficulty

Avould be to discover its form, and it was here that the cone was

introduced.

If an explanation is needed of the circumstance that Menaech-
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mus should liavc h.-ul recourse to any solid figure, <and to a cone in

piirticulfir, for tlie purpose of producing a plane locus, we find it in

the fact that solid geometry had alreivdy reached a high state of

development, jus is shown by the solution of the problem of the two

mean proportionals by Archytas of Tarentum (born about 430 B.C.).

This solution, in itself perhaps more remarkable than any other,

determines a certain point as the intersection of three surfaces of

revtdution, (1) a right cone, (2) a right cylinder whose base is a

circle on the axis of the cone ivs diameter and passing through the

ft|)ex of the cone, (3) the surface formed by causing a semicircle,

whose diameter is the same as that of the circular base of the cylinder

and whose plane is perpendicular to that of the circle, to revolve

al)out the apex of the cone as a fixed point so that the diameter of

the semicircle nujve.s always in the plane of the circle, in other words,

the surface consisting of half a uplit ring whose centre is the apex of

(he cone and whose inner diameter is indefinitely small. We find that

in the course of the solution («) the intersection of the surfaces (2) and

(3) is said to be a certain curve( rira), being in fact a curve of

double curvature, (h) a circular section of the right cone is used in

the proof, and (c), as the penultimate step, two mean proportionals

are found in one and the same plane (triangular) section of th.e cone*.

• The solution of Archytas is, like the others, given by Eutocius (p, ;»8—102)
nntl is so instructive that I cannot forbear to quote it. Suppose that AC, AB are

the strai^'ht hncs between wl)ich two mean proportionals are to be found. AC
18 then made the diameter of a circle, and AD is placed as a chord in the circle.

A Bcmicircle is drawn with diameter AC but in a plane perpendicular to that
»i AUC, and revolves alwut an axis throuRh .1 perpendicular to the plane of ABC.
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Thus the introduction of cones by Menaechnius should not in itself

be a matter for surprise.

Concerning JNIenaeclinius' actual method of deducing the proper-

ties of the conic sections from the cone we have no definite

information ; but we may form some idea of his probable procedure

A half-cylinder (right) is now erected with ABC as base: this will cut the

surface described by the moving semicircle APC in a certain curve.

Lastly let CD, the tanjicnt to the circle ABC at the point C, meet Alt

produced in I); and suppose the triangle ACD to revolve about AC as axis.

This will generate the surface of a right circular cone, and the point will

describe a semicircle BQE perpendicular to the plane of ABC and having ita

diameter BE at right angles to AC. The surface of the cone will meet in some

point the curve described on the cylinder. Let APC be the conesponding

position of the revolving semicircle, and let AC meet the circle ABC in M.

Drawing PM perpendicular to the plane of ABC, we see that it must meet the

circumference of the circle ABC because is on the cylinder which stands on

ABC as base. Let AP meet the circumference of the semicircle BQE in Q, and

let AC meet its diameter BE in N. Join PC, QM, QN.

Then, since both semicircles are pei^pendicular to the plane ABC, so is their

line of intersection QN. Therefore QN is perpendicular to BE.

Hence QN-=BN . NE = AN . NM.

Therefore the angle AQM is a right angle.

But the angle CPA is also right : therefore MQ is parallel to CP.
It follows, by similar triangles, that

C'A : AP=AP : AM^AM : AQ.

That is, AC : AP^AP : AM=AM : AB,

and AB, AM, AP, AC are in continued proportion.

In the language of analytical geometry, if AC is the axis of x, a line through

.1 perpendicular to AC in the plane of ABC the axis of y, and a line through

A parallel to PM the axis of z, then is determined as the intersection of the

surfaces

x- + U- + '''=^i^' (1).

.c--fi/-'= rtx (2),

.x- + y- + z'^=ajx'- + y- (3),

where AC = a, AB = b.

From the first two equations

and from this equation and (3) we have

a ^ Jx^+y^+z" ^ y/x-'+y'

Jx'^ + y-^ + z' V^+I/- l^

or AC:AP=AP:AM=AM:AB.
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if we bear in mind (1) wljat we are told of the manner in which the

earlier writers on conies produced the three curves from particular

kinds of rii,dit circular cones, and (2) the course followed by Apol-

lonius (and Archimedes) in dealing with sections of any circular cone,

whether right or oblique.

Eutocius, in his comnientaiy on the Conies of Apollonius, quotes

with approval a statement of Geminus to the effect that the ancients

defined a cone as the surface described by the revolution of a right-

angled triangle about one of the sides containing the right angle, and

that they knew no otlier cones than right cones. Of these they dis-

tinguishinl three kinds according as the vertical angle of the cone

was less than, equal to, or greater than, a right angle. Further

they prcKluced only one of the three sections from each kind of cone,

always cutting it by a plane perpendicular to one of the generating

lines, and calling the respective curves by names corresponding to

the particular kind of cone; thus the "section of a right-angled

cone " was their name for a parabola, the " section of an acute-angled

cone" for an ellipse, and the "section of an obtuse-angled cone" for

a hyperbola. The sections are so described by Archimedes.

Now clearly the parabola is the one of the three sections for the

pnKluction of which the use of a right-angled cone and a section at

right angles to a generator gave the readiest means. If iV be a

point on the diameter JiC of any circular section in such a cone, and

if 7' be a straight line drawn in the plane of the section and perpen-

dicular to JiC, meeting the circumference of the circle (and therefore

the surface of the cone) in J',

I'y'-^BN.NC.

Draw AM in the plane of the axial triangle OBC meeting the

generator OB at right angles in .1, and draw AD parallel to BC
meeting OC in D; let DEF, perpendicular to AD or Bt\ meet BC
in and AN produced in /'.

Then AD is bisected by the axis of the cone, and therefore AF
is likewise bisected by it. Draw CG perpendicular to BC meeting

A F produced in G.

Now the angles A iV, BCG are right ; therefore B, A, C, G are

(oncyclic, and

B.V.NC ^AN.NG.

But AN=CD = FG-



MENAECHMUS.

tlierefore, if .1 F meets the axis of the cone in X,

NG = AF^-2AL.

Hence PN' = BN.NC
^2AL.AN,

and, if A is fixed, '2AL is constant.

./
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Mcnapclinius was aware of these general propositions. It is more

proljiil.le that he obtained the equation referred to the asymptotes

from the equation ref«'rred to tlie axes; and in the particular case

which he uses (that of the rectangular hyperbola) this is not difficult.

Thus, if /• Ite a point on the curve and J'K, PK' be perpendicular

to the iusyniptotes (77', CH' of a rectangular hyperbola, and if

li'l'XIi' 1m' j>erjK'ndicular to the bisecUir of the angle Vjetween the

ii.syniptotes, . PK' = the rect. CKPK'
= the quadrilatei-al CKPE,

since aCEK'= APJiA'.

Hence PK . FK' ^ ARON - PEN
= h{CN^-PN')

Nslicrc .'•, // an• the coonlinates of /' referied to the axes of the

liyjKTbola.

We have then U> sljow iiow MeiKWJchnius could obtain from an

obtuse-anglt'd cone, by a section perpendicular to a generator, the

H'ctangular hyperlntla

a:' - y* ^ (const.) = -
, say,

4

or y« _ avr.„

when• ./•,, r, are the distances of the foot of the ordinate y from the

jMiints yl, yl' respectively, and A' -a.
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Take an obtuse-angled cone, and let BC be the diameter of any

circular section of it. Let A be any point on the generator OB, and

through A draw AN -Ai right angles to OH meeting CO produced in

A' and BC in N.

Let y be the length of the straight line drawn from perpen-

dicular to the plane of the axial triangle OBC and meeting the

surface of the cone. Then y will be determined by the equation

f^BN.NC.

Let AD be drawn, as before, parallel to BC and meeting OC in

D, and let OL, DF, CG be drawn perpendicular to BC meeting AX
produced in Z, F, G respectively.

Then, since the angles BAG, BGG are right, the points />, A, C, G
are coneyclic

;

.•. y- = BN.NC = AN.NG.

But NG : AF= CN : AD, by similar triangles,

^A'N : AA'.

AF
Hence AN. '^,.'

AA

2AL
- AA'••^'-'

and the locus of the extrenuty of y fur different positions of tlie

circular section, or (in other words) the section of the cone by a

plane through ^xVperpendicular to the plane of the axial triangle,

satisfies the desired condition procidcl thai -. ., ^^•
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This i-elation, together with the fact that the angle AOL is equal

to half the supplement of the angle A'OA, enables us to determine

the i)osition of tlie apex (f, and therefore the vertical angle, of the

desired cone which is to contain the rectangular hyperbola.

For suppose determined, and draw the circle circumscribing

AOA' ; this will meet LO produced in some point K, and OA' will

l»e its diameter. Thus the angle A'KO is right

;

.•. _ A' = complement of .ALK= ^AOL = ^ LOO - _ A'OK,

whence it follows that the segments AK, A' are equal, and

therefore A' lies on the line })isecting A A' at right angles.

Hut, since the angle ^'- is right, A' also lies on the semicircle

with A'L as diameti^r.

A' is therefore detcniiincd by drawing that semicircle and then

drawing a line bisecting A A' at right angles and meeting the

semicircle. Thus, A' being found and A' Z» joined, is determined.

The foregoing construction for a recttmgular hyperbola can be

• •«lii.illy well applied to the case of the hyperbola generally or of an

2.1
fllipse ; only the value of the const;int - -,- will be ditlerent from

' '' AA
unity. In every case '2AL is equal to the parameter of the ordinates

Ut AA\ or the pai-ameter is equal to twice the distance between the

vertex of the section and the axis of the cone, tSs-
^' (as Archimedes called the principal parameter of the

parabola).

The jissumption that Menaeclinius discovered all three sections

in the manner alx)ve set forth agrees with the reference of

ICratosthenes to tlie " Menaechmean triads," though it is not im-

proliJible that the ellip.se was known earlier as a section of a right

cylinder. Thus a passage of Euclid's Phdenomena says, "if a cone

or cylinder be cut by a plane not parallel to the base, the resulting

section is a section of an acute-angled cone which is similar to a%" showing that Euclid distinguished the two ways of pro-

ducing an ellipse. Heiberg {Littfrargeschichtliche Studien iiher

h'liklid, p. 88) thinks it probable that^ was the name by which

Alenaechnms called the curve*.

It is a question whether Menaeclimus used mechanical contriv-

• The cxpreHeion Ovpeov for the cllipBe occur.s several times in Proclus

imd particularly in a passage in which ueminus is quoted (p. Ill) ; and it

would seem as though this name for the curve was more common in Geminus'
time than the name• "ellipse." [liretschucidcr, p. 170.]
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ances for effecting the coHstruction of his curves. Tlie idea that he

did so rests (1) upon the passage in the letter of Eratosthenes* to

the effect that all who had solved the problem of the two mean pro-

portionals had written theoretically but had not been able to effect

the actual consti-uction and reduce the theory to practice except, to

a certain extent, Menaechmus and that only with dithculty, (2) upon

two well known passages in Plutarch. One of these latter states

that Plato blamed Eudoxus, Archytas and Menaechmus for trying

to reduce the doubling of the cube to instrumental and mechanical

constructions (as though such methods of finding two mean pro-

portionals were not legitimate), arguing that the good of geometry

was thus lost and destroyed, as it was brought back again to the world

of sense instead of soaring upwards and laying hold of those eternal

and incorporeal images amid which God is and thus is ever Godt;

the other passage {Vita MarceUi 14, § 5) states that, in consequence

of this attitude of Plato, mechanics was completely diA-orced from

geometry and, after being neglected by philosophers for a long time,

became merely a part of the science of war. I do not think it

follows from tliese passages that Menaechmus and Archytas made

machines for effecting their constructions; such a supposition would

in fact seem to be inconsistent Avith the direct statement of

Eratosthenes that, with the partial exception of Menaechmus, the

three geometers referred to gave theoretical solutions only. The words

of Eratosthenes imply that Archytas did not use any mechanical

contrivance, and, as regards Menaechmus, they rather suggest such

a method as the finding of a large number of points on the curve J.

It seems likely therefore that Plato's criticism referred, not to the

* See the passage from Eratosthenes, translated above, j). xviii. The Greek

of the sentence in question is : Si €•^>,
Xeipovpyrjaai ets { ^/-.

+ ;' '; rovs '» » ^'
ets opyafiKas - KaraaKevas OTepfoO(%( » [scr. '] ^-
[scr. ] vapfiKOi •).' (( €, ^ ^,'-, alairtp 6 debs del (6.
(Quaest. conviv. viii. 2. 1.)

This is partly suggested by Eutocius' commentary on Apollonius t. 20, 21,

where it is remarked that it was often necessary for want of instruments to

describe a conic by a continuous series of points. This passage is quoted by

Dr Taylor, Ancient and Modern Geometry of Con/r-s-, p. xxxiii.
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use of machines, but simply to the introduction of mechanical

consiilerntioHM in ejvch <jf the three solutions of Archytas, Eudoxus,

and Menaechmus.

Much hivs been written on the difHculty of reconciling the

censure on Archytas and the rest with the fact that a mechanical

solution is attril)ute<l by Eutocius to Plato himself. The most

proljable explanation is io suppose that Eutocius was mistaken in

giving the solution as Plato's ; indeed, h.ul the solution been Plato's,

it is scarcely possible that Eratosthenes should not have mentioned

it along with the others, seeing that he mentions Plato as having

been consulted by tiie Delians on the duplication problem.

Zeuthen luus suggested that Plato's objection may have referred,

in the case of Menaechmus, to the fact that he was not satisfied to

regard a curve as completely defined by a fundamental plane property

such as we express by the equation, but must needs give it a geo-

metrical definition iis a curve arrived at by cutting a cone, in oi-der to

make its f»»rm renli.sable by the senses, though this presentation of

it was not m:ule u.se of in the subsequent investigaticms of its

pioperties ; but this explanation is not so comprehensible if applied

to the objection to Archytas^ solution, where the cui-ve in which the

revolving .semicircle and the fixed half-cylinder intei-sect is a curve

of double curvature and not a plane curve easily represented by an
equation.

•



CHAPTER II.

ARISTAEUS AND EUCLID.

We come next to the treatises which Aristaeus ' the elder' and

Euclid are said to have written; and it will be convenient to deal

with these together, in view of the manner in which the two names

are associated in the description of Pappus, who is our authority

upon the contents of the works, both of which are lost. The passage

of Piippus is in some places obscure and some sentences are put in

brackets by Hultsch, but the following represents substantially its

effect*. "The four books of Euclid's conies were completed by

ApoUonius, who added four more and produced eight books of couics.

Aristaeus, who wrote the still extant iive books of nolid loci con-

nected with the conies, called one of the conic sections the section

of an acute-angled cone, another the section of a right-angled cone

and the third the section of an obtuse-angled cone.... ApoUonius

says in his third book that the ' locus with respect to three or four

lines' had not been completely investigated by Euclid, and in fact

neither ApoUonius himself nor any one else could have added in the

least to what was written by Euclid with the help of those properties

of conies only which had heen proved up to Euclid's time; ApoUonius

himself is evidence for this fact when he says that tiie theory of

that locus could not be completed without the propositions which

he had been obliged to vork out for himself. Now Euclid—regard-

ing Aristaeus as deserving credit for the discoveries he had already

made in conies, and without anticipating him or wishing to construct

anew the same system (such was his scrupulous fairness and his

exemplary kindline.ss towards all who could advance mathematical

science to however small an extent), being moreover in no vise con-

tentious and, though exact, yet no braggart like the other—wrote so

much about the locus as was possible by means of the conies of

Aristaeus, without claiming completeness for his demonstrations.

See Pappus (ed. Hultsch), pp. 672—67.



XXxii THE EAULIEK HISTORY OF COXICS.

Had lie done so he would certainly have deserved censure, but, as

matters stand, he does not by any means deserve it, seeing that

neither is ApoUonius called to account, though he left the most part

of liis conies incomplete. ApoUonius, too, has been enabled to add

tlir lacking portion of the theory of the locus through having become

familiar iK'forehand with what haxl already been written about it by

Euclid and having spent a long time with the pupils of Euclid in

Alexandria, to which training he owed his scientific habit of mind.

Now this ' locus with respect to three and four lines,' the theory of

which he is so proud of having added to (though he should rather

acknowledge his obligations to the original author of it), is arrived at

in this way. If three straight lines be given in position and from

one and the same point straight lines be drawn to meet the three

straight lines at given angles, and if the ratio of the rectangle

contained by two of the straight lines so drawn to the square of the

remaining one be given, then the point will lie on a solid locus given

in position, that is on one of the three conic sections. And, if

straight lines be drawn to meet, at given angles, four straight lines

given in position, and the ratio of the rectangle under two of the

lines so drawn to the rectangle under the remaining two be given,

then in the same way the point will lie on a conic section given in

])Osition."

It is necessary at this point to say a word about the solid locus

(? ). Proclus defines a locus() as " a position of a

line or a surface involving one and the same property"(
<; tv ), and proceeds to say

that loci are divided into two classes, line-loci{ )
and siirface-loci( ). The former, or loci which

are lines, are again divided by Proclus into plane loci and solid loci('' and €(), the former being simply generated

in a plane, like the straight line, the latter from some section of a

solid figure, like the cylindrical helix and the conic sections.

Similarly Eutocius, after giving as examples of the plane locus

(I) the circle which is the locus of all points the perpendiculars

from which on a finite straight line are mean proportionals between

the segments into which th(; line is divided by the foot of the

pcrjM-ndicular, (2) the circle which is the locus of a point whose

distances from two fixed points are in a given ratio (a locus investi-

gat«*d by ApoUonius in tlu! >'/€), proceeds to say that

the so-called solid loci have derived their name from the fact that
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they arise from the cutting of solid figures, as for instaiice the

sections of the cone and several others*. Pappus makes a fui-ther

division of those line-loci which are not i)lane loci, i.e. of the class

which Proclus and Eutocius call by the one name of solid loci, into

solid loci (€€) and linear loci(). Thu.s, he

says, plane loci may be generally described as those which are

straight lines or circles, solid loci as those which are sections of

cones, i.e. parabolas or ellipses or hyperbolas, while lineai- loci are lines

such as are not straight lines, nor circles, nor any of the said three

conic sections t. For example, the curve described on the cylinder in

Archytas' solution of the problem of the two mean proportionals is

a linear locus (being in fact a curve of double curvature), and such

a locus arises out of, or is traced upon, a locus which is a surface

(tottos ). Thus linear loci are those which have a

more complicated and unnatural origin than straight lines, circles

and conies, " being generated from more irregular surfaces and

intricate movements;}:."

It is now possible to draw certain conclusions from the passage

of Pappus above reproduced.

1. The work of Aristaeus on solid loci vas concerned with those

loci which are parabolas, ellipses, or hyperbolas ; in other words, it

was a treatise on conies regarded as loci.

2. This book on solid loci preceded that of Euclid on conies

and vas, at least in point of originality, more important. Though

both treatises dealt with the same subject-matter, the object

and the point of view were different ; had they been the same,

Euclid could scarcely have refrained, as Pappus says he did, from an

attempt to improve upon the earlier treatise. Pappus' meaning

must therefore be that, while Euclid wrote on the general theory of

conies as Apollonius did, he yet confined himself to those properties

which were necessary for the analysis of the solid loci of Aristaeus.

3. Aristaeus used the names "section of a right-angled, acute-

angled, and obtuse-angled cone," by which up to the time of

Apollonius the three conic sections were known.

4. The three-line and four-line locus must have been, albeit

imperfectly, discussed in the treatise of Aristaeus ; and Euclid, in

* Apollonius, Vol. ii. p. 184. + Pappus, p. 62.

X Pappus, p. 270 :- yap ras d% ^' yivtaiv (^ *, -( € tiTi-K(ir\(y -^..
. C. C
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dealing syntlieticiilly with tlie same locus, was unable to work out

the theory completely because he only used the conies of Aristaeus

and did not jxdd fresh discoveries of his own.

5. The Conies of Euclid was superseded by the treatise of

ApoUonius, and, though the Solid Loci of Aristaeus was still extant

in Pappus' time, it is doubtful whether Euclid's work >vas so.

The subject of the three-line and four-line locns will be discussed

in some detail in connexion with ApoUonius ; but it may be

convenient to mention here that Zeuthen, who devotes some bril-

liant chapters to it, conjectures that the imperfection of the

investigations of Aristaeus and Euclid arose from the absence of

any conception of the hyperbola with two branches as forming

one curve (which was the discovery of ApoUonius, as may be in-

ferred even from the fulness with which he treats of the double-

hyperbola). Thus the proposition that the rectangles under the

segments of intei-secting chords in fixed directions are in a constant

ratio independent of the position of the point of intersection is

proved by ApoUonius for the double-hyperbola as well as for the

single branch and for the ellipse and parabola. So far therefore as

the theorem was not proved for the double-hyperbola before ApoUo-

nius, it was incomplete. On the other hand, had Euclid been in

possession of the proof of the theorem in its most general form,

then, a.ssuming e.g. that the three-line or four-line locus was reduced

by Aristaeus' analysis to this particular property, Euclid would

have had the means (which we are told that he had not) of

completing the synthesis of the locus also. ApoUonius probably

mentions Euclid rather than Aristaeus as having failed to complete

the theory for the reason that it Avas Euclid's treatise which was on

the same lines as his own
; and, as Euclid was somewhat later in

time than Aristaeus, it would in any case be natural for ApoUonius

to regard Euclid as the representative of the older and defective

investigations which he himself brought to completion.

AVith regard to the contents of the Conies of Euclid have the

following indications.

1. The scope must have been generally the same as that of the

first three Books of ApoUonius, though the development of the

subject was more .systematic and complete in the later treatise.

This we infer from ApoUonius' own preface as well as from the

statement of Pappus quoted above.

•_'. A more important source of infi>nnalioii, in the sense of
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giving luore details, is at liand in the works of Archimedes, who
frequently refers to propositions in conies as well known and not

requiring proof. Thus

{(f) Tlie fundamental property of the ellipse,

PX' : AN.' = P'N" : AN' . N'A' -- BC" : AC",

tliat of tlie hyperbola,

PN' -.AN. A' = P'N" : AN' . N'A',

and that of the parabola,

PN-=p,,.AN,

are assumed, and must therefore presumably have been contained in

Euclid's work.

(b) At the beginning of the treatise on the area of a

parabolic segment the following theorems are simply cited.

( 1 ) If be a diameter of a segment of a parabola and

QVq ix chord parallel to the tangent at P, QV = Vq.

(2) If the tangent at Q meet VP produced in T, PV= PT.

(3) If QVq, Q'V'q' be two chords parallel to the tangent

at and bisected in V, V,

PV : PV'^QV : Q'V".

'^And these propositions are proved in the elements of conies" (i.e. in

Euclid and Aristaeus).

(c) The third proposition of the treatise On Conoids and

Spheroids begins by enunciating the following theorem : If straight

lines drawn from the same point touch any conic section whatever,

and if there be also other straight lines drawn in the conic section

parallel to the tangents and cutting one another, the rectangles

contained by the segments (of the chords) will have to one another

the same ratio as the squares of the (parallel) tangents. " And this

is proved in the elements of conies
."

(d) In the same proposition we find the following property of

the parabola : If p„ be the parameter of the ordinates to the axis,

and QQ' be any chord not perpendicular to the axis such that the

diameter PV bisects it in V, and if QD be drawn perpendicular

to PV, then (says Archimedes), supposing to be such a length

that

QV-.QD'^p:p,,

the squares of the ordinates to (which are parallel to QQ') are

equal to the rectangles applied to a straight line equal to and of

c'l
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width equal to the respective intercepts on towards P. "For

thi» has been proved in tJie conies."

In otlier words, if /)„, are the parameters corresponding

respectively to the axis and the diameter bisecting QQ',

P'.p. = QV*:QD\
(For a figure and a proof of this property the reader is referred

to the chapter on Archimedes p. liii.)

Euclid still used the old names for the three conic sections, but

he was aware that an ellipse could be obtained by cutting a cone in

any manner by a plane not parallel to the base (assuming the

section to lie wholly between the apex of the cone and its base), and

also by cutting a cylinder. This is expressly stated in the passage

quoted above (p. xxviii) from the Phaenomena. But it is scarcely

possible that Euclid had in mind any other than a right cone ; for,

had the cone been oblique, the statement would not have been true

without a qualification excluding the circular sections subcontrary

to the base of tlie cone.

Of the contents of Euclid's Surface-loci, or ? eVi^avcta,

we know nothing, though it is reasonable to suppose that the

treatise dealt with such loci as the surfaces of cones, spheres and

cylinders, and perhaps other surfaces of the second degree. But

Pappus gives two lemmas to the Surface-loci, one of which (the

second) is of the highest importance*. This lemma states, and

gives a complete proof of, the proposition that the locus of a point

whose distance from a given point is in a given ratio to its distcmce

from a fixed line is a conic section, and is an ellipse, a parabola, or a

hyperbola according as the given ratio is less than, equal to, or greater

than, unity.

The proof in the case where the given ratio is different from

unity is shortly as follows.

J^t .S' be the fixed point, and let SX be the perpendicular from aS"

on the fixed line. Let be any point on the locus and PN perpen-

dicular to SX, so that SP is to XX in the given ratio. Let e be

this ratio, so that

'^ ~ NX•'

Now let be a point on the line SX such that

~ XK' '

• Pappus (ed. Hultsch) p. seqq.
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then, if A" be another point so taken that NK = NK\ we shall have•

, ' + SN' SN' PN' PN'
NX' NK' ~ NX' - NK^ ~ XK . XK'

The position of the points N, K, K' changes with the position of I'.

If we suppose A to be the point on which falls when coincides

with ', we have

SA _ _SN
AX'^" NK'

KAN SK'

A K'S

It follows that -^ , „-T^ are both known and equal, and therefore

SX SK
r, i > TTTr are both known and equal. Hence either of the latter
SA ' SN ^

expressions is equal to

SX - SK XK
SA-SN' "*'' AN'

'hich is therefore known

'"^^
1
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In like iniiiiner, if A' be the point on which iV falls when K'

coincides with ', we liave '

, ^. - « ; and in the same way we shall

XK'
tind that the n-.tio ., „ is known and is equal to

A '

Hence, by multiplication, the ratio .
..'

, , - has a known value.

And, since yj-.
—^-, = e', from above,

This is the property of a central conic, and the conic will be an

ellipse or a hyperbola according as is less or greater than 1 ; for in

the former case the points A, A' will lie on the same side of X and

in the latter case on opposite sides of X, while in the former case

will lie on AA' and in the latter will lie on AA' produced.

The case where e = 1 is easy, and the proof need not be given

here.

We can scarcely avoid the conclusion that Euclid must have

used this pnjposition in the treatise on snrface-loci to which Pappus'

lemma refers, and that the necessity for the lemma arose out of the

fact that Euclid did not prove it. It must therefore have been

assumed by him as evident or quoted as well known. It may
therefore well be that it was taken from some known work*, not

impossibly that of Aristaeus on solid loci.

That Euclid should have been acquainted with the property of

conies referred to the focus and directrix cannot but excite surprise

It is interesting to note in this connexion another passage in Pappus
where he is discussing the various methods of trisecting an angle or circular

arc. He gives (p. 284) a method which " some " had used and which involves

the construction of a hyperbola whose eccentricity is 2.

Suppose it is a segment of a circle which has to be divided into three equal

))arts. Suppose it done, and let .ST be one-third of the arc SPR. Join RP, SP.
Then the angle RSP is equal to twice the angle SRP.
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seeing that this property does not appear at all in Aimllonius, and

the focus of a parabola is not even mentioned by him. The ex-

planation may be that, as we gather from the preface of Apollonius,

he does not profess to give all the properties of cpnics known to

him, and his third Book is intended to give the means for the

svTitliesis of solid loci, not the actual determination of them. The

focal property may therefore have been held to be a more suitable

subject for a treatise on solid loci than for a work on conies proper.

We must not assume that the focal properties had not, up to

the time of Apollonius, received much attention. The contrary

is indeed more probable, and this supposition is supported by a

remarkable coincidence between Apollonius' method of determining

the foci of a central conic and the theorem contained in Pappus'

31st lemma to Euclid's Porisnis.

This theorem is as follows : Let' be the diameter of a semi-

circle, and from A', A let two straight lines be drawn at right angles

to A'A. Let any straight line HH' meet the two perpendiculai-s

in R, R' respectively and the semicircle in Y. Further let YS be

drawn perpendicular to RR', meeting A'A produced in S.

It is to be proved that

AS.SA' = AR.A'R',

i.e. that SA : AR = A'R' : A'S.

Now, since R', A', Y, S are concyclic, the angle A'SR' is equal to

the angle A'YR' in the same segment.

Let SE bisect the angle RSP, meeting RP in and draw EX, PN perpen-

dicular to RS.

Then the angle ERS is equal to the angle ESR, so that RE = ES;
.•. RX=XS, and X is given.

Also RS : SP=RE : EP=RX : XN ;

.•. RS -.RX^SP -.NX.

But J?.S'= 2i?A';

.•. .ST= 2.VA',

whence SP"-= iNX-,

or PN- + SN"-=iNX":

" Since then the two points .S', A' are given, and PX is perpendicular to SX,

while the ratio of NX- to PN- + SN^ is given, lies on a hyperbola."

This is obviously a particular case of the lemma to the (,
-

and the ratio „»,^77.. 's stated in the same form in both cases.
PN- + SN-
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Similarly, the angle AJiiS is equal to the angle AYS.

But, since A' A , R' YS are both right angles,

-A'YR' = ^AYS;
.•. ^A'SE'=^ -ARS;

hence, by similar triangles,

A'R• : A'S = iSA : AR,

or AS.SA' = AR.A'R'.

It follows of course from this that, if the rectangle AR . A'R' is

constant, AS .SA is also constant and -S' is a fixed point.

It will be observed that in Apollonius, in. 45 [Prop. 69], the

complete circle is used, AR, A'R' are tangents at the extremities of

the axis A A' of a conic, and RR' is any other tangent to the conic.

Ho has already proved, iii. 42 [Prop. 66], that in this case

AR . A' R' - BC*, and he now takes two points S, S' on the axis

or the axis produced such that

AS . SA' = AS' . S'A' = JiC\

He then proves that RR' subtends a right angle at each of the

points .V, ", and proceeds to deduce other focal properties.

Thus Apollonius' procedure is exactly similar to that in the

lemma to Euclid's Porisiiis, except that the latter does not bring in

the (.••. This fact goes far to support the view of Zeuthen as to

the origin and aim of Euclid's Porisms, namely, that tliey were

jiartly a sort of by-product in the investigation of conic sections and

})artly a means devised for the furtiier development of the subject.



CHAPTER III.

ARCHIMEDES.

No survey of the history of conic sections could be complete

without a tolerably exhaustive account of everything bearing on the

subject which can be found in the extant works of Archimedes.

There is no trustworthy evidence that Archimedes wrote a

separate work on conies. The idea that he did so rests upon no more

substantial basis than the references to (without any

mention of the name of the author) in the passages quoted above,

which ha'e by some been assumed to refer to a treatise by Archi-

medes himself. But the assumption is easily seen to be unsafe when

the references are compared with a similar reference in another

passage* \vhere by the words iv rfj the Elements

of Euclid are undoubtedly meant. Similarly the words " this is

proved in the elements of conies " simply mean that it is found in

the text-books on the elementary principles of conies. A positive

proof that this is so may be drawn from a passage in Eutocius'

commentary on Apollonius, Heracleidest, the biographer of Archi-

medes, is there quoted as saying that Archimedes was the first to

invent theorems in conies, and that Apollonius, having found that

tiiey had not been published by Archimedes, appropriated them J

;

* Oh lite Sphere luid Cylinder, i. p. 2i. The proposition quoted is Eucl. xii. '2.

t The name appears in the passage referred to as 'RpaKXeios. Apollonius

(ed. Heiberg) Vol. ii. p. 168.

Heracleides' statement that Archimedes was the first to "invent"(( theorems in conies is not easy to explain. Bretschneider (p. 156)

puts it, as well as the charge of plagiarism levelled at Apollonius, down to the

malice with which small minds would probably seek to avenge tiiemsolvos for

the contempt in which they would be held by an intellectual giant like
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and Eutocius subjoins the remark that the allegation is in his

opinion not true, " for on the one hand Archimedes appears in many

passages to have referred to the elements of conies as an older

treatise (), and on the other hand Apollonius does not

profess to be giving his own discoveries." Thus Eutocius regarded

the refei-ence as being to earlier expositions of the elementary

theory of conies by other geometers : otherwise, i.e. if he had

thought that Archimedes referred to an earlier work of his own, he

would not have used the word but rather some expression

like 8(8.
In searching for the various propositions in conies to be found

in Archimedes, it is natural to look, in the first instance, for indica-

tions to show how far Archimedes was aware of the possibility of

jiroducing tiie three conic sections from cones other than right cones

and by plane sections other than those perpendicular to a generator

of the cone. We observe, iirst, that he always uses the old names

"section of a right-angled cone" «tc. employed by Aristaeus, and

there is no doubt that in the three places where the word /^
appears in the Mss. it has no business there. But, secondly, at the

very l)eginning of the treatise On Conoids and Spheroids we find the

following :
" If a cone be cut by a plane meeting all the sides of the

cone, the section will be either a circle or a section of an acute-

angled cone" [i.e. an ellipse]. The way in which this proposition was

proved in the case where the plane of section is at right angles to the

plane of symmetry can be inferred from propositions 7 and 8 of the

same treatise, where it is .shown that it is possible to find a cone of

wliich a given ellipse is a section and whose apex is on a straight

line drawn from the centre of the ellipse (1) perpendicular to the

plane of the ellipse, (2) not perpendicular to its plane, but lying in

a plane at right angles to it and passing through one of the axes

of the ellipse. The problem evidently aniounts to determining the

Apollonius. Heiberg, ou the other hantl, thinks that this is unfair to Hera-

cleides, who was probably misled into making the charge of plagiarism by finding

many of the propositions of Apollonius already quoted by Archimedes as known.
Hcibcrg holds also that Heracloides did not intend to ascribe the actual

invention of conies to Archimedes, but only meant that the olementary theory of

conic sections as formulated by Apollonius was due to Archimedes
; otherwise

Eutocius" contradiction would have taken a different form and he would not
have omitted to point to the well-known fact that Menaechmus was the
dieooverer of the conic sectioue.
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circular sections £ the cone, and this is wliat Archiniedcs proceeds

to do.

(1) Conceive an ellipse with />'/>' as its minor axis and

lying in a plane perpendicular to the plane of the paper : suppose

tiie line CO drawn perpendicular to the plane of the ellipse, and

let be the apex of the required cone. Produce OB, OC, OB', and

in the same plane with them draw BED meeting OC, OB' produced

in E, D respectively, and in such a direction that

BE.ED-.EO^^CA^.CO-

(where CA is half the major axis of the ellipse).

And this is possible, since

BE . ED .EO'>BC. CB' : CO-.

[Both the construction and this last proposition are assumed as

known.]

Now conceive a circle with BD as diameter draAvn in a plane

perpendicular to that of the paper, and describe a cone passing

through this circle and having for its apex.

We have then to prove that the given ellipse is a section of this

cone, or, if is any point on the ellipse, that lies on the surface

of the cone.

Draw PN perpendicular to BB'. Join OX, and produce it to

meet BD in M, and let MQ be drawn in the plane of the circle on

BD as diameter and perpendicular to BD, meeting the circumference

of the circle in Q. Also draw FG, thi-ough , respectively

each parallel to BB'

.
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Now (JM' : //.]f . - . MD : .

= BE.ED:FE.EG

= {BE . ED : . (' : FE . EG)

= {CA"-:CO-).{CO"-:BC .CB')

= CA-.BC.CB'

^'•..•.
. . QAP : PiV- = HM. MK : BN . NB'

^ OM' : 0N\

whence, since PN, QM are parallel, OPQ is a straight line.

But Q is on the circumference of the circle on BD as diameter

;

therefore OQ is a generator of the cone, and therefore lies on the

cone.

Thus the cone passes through all points of the given ellipse.

(2) Let OC not be perpendicular to AA' , one of the axes of

the given ellipse, and let the plane of the paper be that containing

-LI' and 0(\ so that the plane of the ellipse is perpendicular to that

phme. Ijet BB' l)e the other axis of the ellipse.

Now OA, OA' are unequal. Produce OA' to D so that OA
.loin AD, and (h-aw FG through C parallel to it.

OD.
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Conceive a plane tluOUjih AD perpendiculai• to tin• plan»• «.f tlie

paper, and in it describe

either (it), if CB- - Ft' . CG, a circle with diameter A/J,

or (b), if not, an ellipse on AD as axis such that if d he the other

axis

d'.An'=CJr-:FC.CG.

Take a cone with apex and passing through the circle or

ellipse just drawn. This is possible even when the curve is an

ellipse, because the line from to the middle point of AD is perpen-

dicular to the plane of the ellipse, and the construction follows that

in the preceding case (1).

Let be any point on the given ellipse, and we have only to' that lies on the surface of the cone so described.

Draw PX perpendicular to A A'. Join ON, and produce it to

meet AD in M. Through draw HK parallel to A'A. Lastly, draw

MQ perpendicular to the plane of the paper (and therefore perpen-

dicular to both and AD) meeting the ellipse or circle about AD
(and therefore the surface of the cone) in Q.

Then

QM' : HM. MK={QM' : DM. MA) . {DM. MA : HM . MK)

= {d' : . (FC . CG : A'C . CA)

= (CB' : FC.CG).{FC.CG : A'C. CA)

= CB':A'C.CA

= PN^:A'N.NA.

.•. QM' : PN^ = HM . MK : . NA
= 03P : 0N\

Hence OPQ is a straight line, and, Q being on the surface of the

cone, it follows that is also on the surface of the cone.

The proof that the three conies can be produced by means of

sections of any circular cone, whether right or oblique, which are

made by planes perpendicular to the plane of symmetry, but not

necessarily perpendicular to a generating line of the cone, is of course

essentially the same as the proof for the ellipse. It is therefore to

be inferred that Archimedes was equally aware of the fact that the

parabola and the hyperbola could be found otherwise than by the

old method. The continued use of the old names of the curves is of

no importance in this connexion because the ellipse was still called

the "section of an acute-angled cone" after it was discovered that
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it could ])e pnjducwl by means of a plane cutting all the generating

lines of any cone, whatever its vertical angle. Heiberg concludes

that Archimedes only obtained the parabola in the old way

because he describes the parameter as double of the line betAveen

the vertex of the paralx)la and the axis of the cone, which is only

correct in the case of the right-angled cone ; but this is no more

an objection to the continued use of the term as a well-known

description of the parameter than it is an objection to the con-

tinued use by Archimedes of the term "section of an acute-angled

cone" that the ellipse had been found to be obtainable in a different

manner. Zeuthen points out, as further evidence, the fact that we

have the following propositions enunciated by Archimedes vithout

pioof {On Conoids and Spheroids, 11)

:

(1) "If a right-angled conoid [a paraboloid of revolution] be

cut by a plane through the axis or parallel to the axis, the section

will be a section of a right-angled cone the same as that compre-

hending the figure ( ). And its

diameter [axis] will be the common section of the plane which

cuts the figure and of that which is dravn through the axis perpen-

dicular to the cutting plane.

(2) " If an obtuse-angled conoid [a hyperboloid of revolution] be

cut by a plane through the axis or parallel to the axis or through

the apex of the cone enveloping() the conoid, the section

will ])e a section of an obtuse-angled cone : if [the cutting plane

passes] through the axis, the same as that comprehending the figure:

if parallel to the axis, similar to it : and if through the apex of the

cone enveloping the conoid, not similar. And the diameter [axis] of

the section will be the common section of the plane which cuts the

figure and of that drawn through the axis at right angles to the

cutting plane.

(3) " If any one of the spheroidal figures be cut by a plane

through the axis or parallel to the axis, the .section will be a section of

an acute-angled cone : if through the axis, the actual section which

comprehends the figure : if paralle%o the axis, similar to it."

Archiniodes adds that the proofs of all these propositions are

ob\ious. it is therefore tolerably certain that they were based

on the same essential principles as his earlier proofs relating to the

.sections of conical surfaces and the proofs given in his later investi-

gations of the elliptic sections of the various surfaces of revolution.

These depend, as will be seen, on the proposition that, if two chords
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drawn in fixed directions intersect in !i point, the ratio of the rect-

angles under the segments is independent of the position of the

point. This corresponds exactly to the use, in the above proofs with

regard to the cone, of the proposition that, if straight lines Fd, IIK

are diawn in fixed directions between two lines forming an angle,

and if FG, meet in any point M, the ratio FM . MG : HM .MK
is constant ; the latter property being in fact the particular case

of the former where the conic reduces to two straight lines.

Tlie following is a reproduction, given by Avay of example, of the

proposition (13) of the treatise On Conouh and Spheroids which proves

that the section of an obtuse-angled conoid [a hyperboloid of re-

volution] by any plane which meets all the generators of the en-

veloping cone, and is not perpendicular to the axis, is an ellipse

whose major axis is the part intercepted within the hyperboloid of

the line of intersection of the cutting plane and the plane through

the axis perpendicular to it.

Suppose the plane of the paper to be this latter piano, and the

line EC to be its intersection with the plane of section which is

perpendicular to the plane of the paper. Let Q be any point on

the section f»f the hyperboloid, and draw QM perpendicular to liC.
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Lt't ^^-^' the hyperlxtlic section of the hyperboloid made by

the phine of the paper and AD its axis. Through J/ in this plane

(h-aw J'JDF at right angles to A J) meeting the hyperbola in E, F.

Then the section of the hyperljoloid by the plane through EF
perpendicular to AD is a circle, QM lies in its plane, and (? is a

point on it.

Therefore QM' = EM . MF.

Now let PT be that tangent to the hyperbola Avhich is parallel

to BC\ and let it meet the axis in and the tangent at A in 0.

Draw /'' perpendicular to AD.

Then QM- : BM . MC = EM . MF : . MC
= OA' : OP';

which is constant for all positions of Q on the section through BC.

Also OA < OP, because it is a property of hyperholas that

AT<AN, and therefore OT<OP,

whence a fortiori OA <0P.
Therefore Q lies on an ellipse whose major axis is BC.

It is also at once evident that all parallel elliptic sections are

similar.

Archimedes, it will be seen, here assumes two propositions

(rt) that the ratio of the rectangles under the segments of

intersecting chords in fixed directions is equal to the constant ratio

of the squares on the parallel tangents to the conic, and

(0) that in a hyperbola AN>AT.
The first of these two propositions has already been referred to

as liaving been known before Archimedes' time [p. xxxv] ; the second

assumption is also interesting. It is not easy to see how the latter

could be readily proved except by means of the general property

that, if PP' be a diameter of a hyperbola and from any point Q on

the curve the ordinate QV be drawn to the diameter, while the

tangent QT meets the diameter in 2\ then

rP : TP' = PV : P' V,

so that we may probably assume that Archimedes was aware of this

property of the liyperbola, or at least of the particular case of it

where the diameter is the axis.

It is certain that the corresponding general proposition for the

paralxila, PV \ was familiar to him ; for he makes frequent use

..f it.
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As a preliminary to collecting and arranging in order the otlici•

properties of conies either assumed or proved by Archimedes, it may
be useful to note some peculiarities in his nomenclature as compared

with that of Apollonius. The term diameter, when used with

reference to the complete conic as distinguished from a segment, is

only applied to what was afterwards called the axis. In an ellipse

tlie major axis is Sta/xcrpo? and the minor axis a.«
8(. For the hyperbola, by the ' diameter ' is only understood

that part of it which is within the (.single-branch) hj^erbola. Tiiis

infer from the fact that the ' diameter ' of a hyperbola is identified

with the axis of the figiire described by its revolution about the

diameter, while the axis of the hyperboloid does not extend outside

it, as it meets{) the surface in the vertex (), and the

distance between the vertex and the apex of the enveloping cone

[the centre of the revolving hyperbola] is * the line adjacent to the

axis ' (d 7€' ). In the parabola diameters other than

the axis are called * the lines parallel to the diameter
'

; but in a

segment of a parabola that one which bisects the base of the segment

is called the diameter of the segment (). In the ellipse

diameters otlier than the axes have no special name, but are simply

' lines drawn through the centre.'

The term axis is only used with reference to the solids of

revolution. For the complete figure it is the axis of revolution ; for

a segment cut oflf by a plane it is the portion intercepted within tlie

segment of the line, (1) in the paraboloid, dravn through the vertex

of the segment parallel to the axis of revolution, (2) in the hyper-

boloid, joining the vertex of the segment and the apex of the

enveloping cone, (3) in the spheroid, joining the vertices of the two

segments into Avhich the figure is divided, the vertex of any segment

being the point of contact of the tangent plane parallel to the base.

In a spheroid the ' diameter ' has a special signification, meaning

the straight line dravn through the centre (defined as the middle

point of the axis) at right angles to the axis. Thus we are told

that "those spheroidal figures are called similar whose axes have

the same ratio to the diameters*."

The two diameters (axes) of an ellipse are called conjugate

{<;).
The asymptotes of a hyperbola are in Archimedes the straight

lilies nearest to the section of the obtuse-angled conp (at

* On Conoidn mid Spheroids, p. 282.

H. C. d
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eieHaL /?), while what we call the

centre of a liyperbola is for Archimedes the jwint in which the

nearest lines meet (to, ' /,).
Archimedes never speaks of the * centre ' of a hyperbola : indeed the

use of it implies the conception of the two branches of a hyperbola

as forming one curve, which does not appear earlier than in

Apollonius.

When the asymptotes of a hyperbola revolve with the curve

round the axis they generate the cone enveloping or comprehenditig

the liyperboloid, ( (. £ 5
To/i.a5 ?).

The following enumeration* gives the principal properties of

conies mentioned or proved in Archimedes. It will be convenient

to divide them into classes, taking first those propositions which are

either quoted as having been proved by earlier writers, or assumed

as known. They fall naturally under four heads.

I. General.

1. The proposition about the rectangles under the segments of

intersecting chords has been already mentioned (p. xxxv and xlviii).

2. Similar conies. The criteria of similarity in the case of

central conies and of segments of conies are practically the same as

tliose given by Apollonius.

The proposition that all parabolas are similar was evidently

familiar to Archimedes, and is in fact involved in his statement that

all paraboloids of revolution are sim'ilar ( ovv

o/ixotci €vti).

3. Tangents at the extremities of a 'diameter' (axis) are

perpendicular to it.

II. TuE Ellipse.

1. The relations^ : AiV. A'N= FN'- : AN' . A'N'

= BB'- :AA" or CB' : CA'

* A word of acknowledgement is due here to Heiberg for tlie valuable

summary of " Die Kenntnisse des Arcliimedes iiber die Kegelschuitte," contained

in the ZeilHchri/l fur Mathematik xtnd Physik {Hintorisch-Iiterarische Abthcihnig)

IfiHO, j<p. 41

—

)7. This article ie a complete guide to the relevant passages in

Arcliimedes, though I have of course not considered myself excused in any
instiincf fron> referring to the original.
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are constantly used as expressing the fundamental property and the

criterion by which it is established that a curve is an ellipse.

2. The more general proposition

QV -.FV.rV^Q'V"..'
also occurs.

3. If a circle be described on the major axis as diameter, and

an ordinate PN to the axis of the ellipse be produced to meet the

circle in p, then

pN : P^== (const.).

4. The straight line drawn from the centre to the point of

contact of a tangent bisects all chords parallel to the tangent.

5. The straight line joining the points of contact of parallel

tangents passes through the centre ; and, if a line be drawn through

the centre parallel to either tangent and meeting the ellipse in two

points, the parallels through those points to the chord of contact of

the original parallel tangents will touch the ellipse.

6. If a cone be cut by a plane meeting all the generators, the

section is either a circle or an ellipse.

Also, if a cylinder be cut by tAvo parallel planes each meeting all

the generators, the sections will be either circles or ellipses equal

and similar to one another.

III. The Hyperbola.

1. We find, as fundamental properties, the following,

PN^ : P'N" = AN. A' : AN' . A'N\

QV: Q'V" = PV.P'V:PV'.P'r;

but Archimedes does not give any expression for the constant ratios

PN' : AN. A' and QV^ : PV . P'V, from which we may infer that

he had no conception of diameters or radii of a hyperbola not

meeting the curve.

If Che the point of concourse of the asymptotes. A' is arrived at by

producing AC and measuring CA' along it equal to CA ; and the san>e

procedure is used for finding /*', the other extremity of the diameter

through : the lengths A A', PP' are then in each case double of the

line adjacent to the axis [in one case of the whole surface, and in the

other of a segment of which is tlie 'vertex']. This term for AA',

PP' was, no doubt, only used in order to avoid mention of the cone of

(12



Hi THE EARLIER HISTORY OV CONICS.

which the hyperbola is a section, as the introduction of this cone

might have complicated matters (seeing that the enveloping cone also

appears); for it is obvious that A A' appeared first as the distance

along the principal diameter of the hyperbola intercepted between

the vertex and the point where it meets the surface of the opposite

half of the double cone, and the notion of the asymptotes came

later in the order of things.

2. If from a point on a hyperbola two straight lines are drawn

in any directions to meet the asymptotes, and from another point

two other straight lines are similarly drawn parallel respectively to

the former, the rectangles contained by each pair will be equal*.

3. A line through the point of concourse of the asymptotes and

the point of contact of any tangent bisects all chords parallel to the

tangent.

4. If PX, the principal ordinate from P, and P2\ the tangent

at P, meet the axis in N, respectively, then

AN>AT.
5. If a line between the asymptotes meets a hyperbola and is

bisected at the point of concourse, it will touch the hyperbola f.

IV. The Parabola.

1. PN' :P'N'*=:AN :AN' \

and QV':Q'V" = PV.PV' ]'

We find also the forms

'^2^•^
QV'=2y.Pr

j)„ (the principal parameter) is called by Archimedes the parameter

of the ordinates (parallel to the tangent at the -ertex), *
5/, and is also described as the do7ible of the line

extending [from the vertex] to the axis [of the cone] tSs

^.
The term 'parameter' is not applied by Archimedes to p, the

constant in the last of the four equations just given, is simply

described as the line to which the rectangle equal to QV- and of

width equal to F is applied.

2. Parallel chords are bisected by one line parallel to tlie axis
;

• This proposition aud its converse appear in a fragment given by Eutocius

in his note on the 4th proposition of Book ii. On the Sphere and Cylinder.

t Tliis is also used in the fragment quoted by Eutocius.



ARCHIMEDES.

aiul a line parallel tu the axis bisects chords parallel to the tangent

at the point where the said line cuts the parabola.

3. If QD be drawn perpendicular to the diameter PV bisecting

the chord Q VQ', and \i be the parameter

of the ordinates parallel to QQ' , while y^„

is the principal parameter,

p:p,, = QV'-:QD\

[This proposition has already been

mentioned above (p. xxxv, xxxvi). It is

easily derived from ApoUonius' proposi-

tion I. 49 [Prop. -22]. li PV meet the

tangent at A in E, and PT, A intersect

in 0, the proposition in question proves

that

and

OP '.PE = p: 2P1\

OP = },PT ;

.•. =^.
=p.AN.

Thus Q' : QD- = PT' : PN-, by similar triangles,

=^ p. AN : Pa. AN

= P 'Pa-]

t. If the tangent at Q meet the diameter V in , and QV he

an ordinate to the diameter,

PV=PT.

. By the aid of the preceding, tangents can be drawn to a

parabola («) from a point on it, () parallel to a given chord.

6. In the treatise On floatimj bodies( tQv), ii. 5,

we have this proposition : If be a point on the axis, and KF be

measured along the axis away from the vertex and equal to half the

principal parameter, while KII is dravn perpendicular to the

diameter through any point P, then FH is perpendicular to the

tangent at P. (See the next figure.)

It is obvious that this is equivalent to the proposition that the

subnormal at an// jjoint is const(tnt (uul equal to half the priii<;iji<d

parameter.
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7. If QAQ' be a segment of a paraljola such that QQ' is

perpendicuhir to the axis, while QV<],

parallel to the tangent at P, meets the

diameter through in , and if li be

any other point on the curve the ordinate

from which RlIK meets PV in // and

the axis in /, then (J/ being the middle

point of QQ')

PV : PlI ^^^MK : A,

"/o7• this is proved." {On floating bodies,

II. G.)

[There is nothing to show where or

by vhom the proposition was demon-

strated, but the proof can be supplied

as follows

:

, PV MK .

We have to prove that ^ - is jwsittve or zero.

Let Qq meet AM in 0.

PV_ _ PV.AK- .MK
~ ~Now PH PH. A

AK . PV - {AK - AN) {A -AK)
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which is a complete square, and therefore cannot b(i negative

;

'TV MK\

Iv

whence the proposition follows.]

8. If any three similar and similarly situated paraljolic seg-

ments have one extremity () of their bases common and their

bases BQ , BQ.,, BQ.^ lying along the same straight line, and if EO

he dravn parallel to the axis of any of the segments meeting the

tangent at to one of them in E, the common base in 0, and each

of the three segments in B^, B^, R^, then

^ bq^-q^q:

[This proposition is given in this place because it is assumed

without proof {On floating bodies, il. 10). But it may well be that

it is assumed, not because it was too well known to need proof, but

as being an easy deduction from another proposition proved in the

Quadrature of a jiarabola which the reader could work out for

himself. The latter proposition is given below (No. 1 of the next

group) and demonstrates that, if BB be the tangent at to the

segment BB^(J^

,

ER^ : R/J = BO : OQ^.

To deduce from this the property enunciated above, we observe

first that, if V^, V^, V^ be tiie middle points of the bases of the three
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segments and the (parallel) diameters through F,, V^, F^ meet the

respective segments in ^, J\, P^, then, since the segments are

simihar,

/n\ : B]\ : Ji]\ - I\V, : PJ\ : 1\V.,.

It follows that />, 1\, P^, 7^3 are in one straight line.

But, since BE is the tangent at to the segment BR^Q^,

TJ\ = PJ^ (where ,, meets BE in \).

Therelforo, if ,,, ]\P^ meet BE in 7;, 7',,

V. = ^.''-

and ^ = ^.,
and />/i' is therefore a tangent to all three segments.

Next, since ER^ : Rfi - BO : (?(?,,

ER^ : ^0 = 7iO : BQ^

.

Similarly ER, : EO = BO : BQ„,

and ER^ : EO = BO : 7?^^.

From the tirst two relations we derive

EO \BQ^ BqJ
^BO.Q.Q,
bq.-bq:

Similarly
R& ^BOJQ^^

.-similarly
^^ BQ^.BQ^

From the last two results it follows that

R^r BQ.'QM'
9. If two similar parabolic segments with bases BQ , BQ_, be

placed as dt-scribed in the preceding proposition, and if BRJi, be any

I'

f
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straight line tlirough J> cutting the segments in A',, A', re.si»ectively,

then

BQ^ : BQ,,- nn^ : Bli^.

[Let the diameter through /?, meet the tangent at in E, the

other segment in A, and the common Ijase in 0.

Tlien, as in the last proposition,

EB^ : EO = BO : BQ^,

and ER.EO^BO: BQ.^
;

.•. ER -.ER^^BQ^ : BQ.,.

But, since A, is a point within the segment BR(J,, and A'AA^ is the

diameter through A, , we have in like manner

ER : ER^ - ^A, : BR^.

Hence BQ^ : BQ, = BR^ : BR.^.]

10. Archimedes assumes the solution of the problem of placing,

between two parabolic segments, similar and similarly situated as

in the last case, a sti'aight line of a given length and in a direction

parallel to the diameters of either parabola.

[Let the given length be I, and assume the problem solved, A7i,

being equal to l.

Using the last figure, we have

BO ER^

BQ^~ EO'

BO ER
'""^ bcCeo•

Subtracting, we obtain

BO.Q^Q, ^ RR,
.

BQ, . BQ, EO
'

whence /?(9. 0^ - / . ^^^"^^S

which is known.

And the ratio BO : OE is given.

Tiierefore B0\ or OE', can be found, and therefore 0.

Lastly, the diameter through determines AA,.]

It remains to describe the investigations in which it is either

expressed or implied that they represent new developments of the

theory of conies due to Archimedes himself. With the exception of

1 V
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certain propositions relating to the areas of ellipses, his discoveries

mostly have reference to the parabola and, in particular, to the

determination of the area of any parabolic segment.

The preface to the treatise on that subject (which was called by

Archimedes, not€•6<;^, but ircpi) is interesting. After alluding to the attempts of the

earlier geometers to square the circle and a segment of a circle, he

proceeds :
" And after thfit they endeavoured to square the area

bounded by the section of the vhole cone* and a straight line,

assuming lemmas not easily conceded, so that it was recognised by

most people that the problem was not solved. But I am not

aware that any one of my predecessors has attempted to square the

.segment bounded by a straight line and a section of a right-angled

cone, of which problem I have now discovered the solution. For

it is here shown that every segment bounded by a straight line and

a section of a right-angled cone is four-thirds of the triangle which

has the same base and an equal altitude with the segment, and for

the demonstration of this fact the following lemma is assumed f :

that the excess by which the greater of (two) unequal areas exceeds

the less can, by being added to itself, be made to exceed any given

finite area. The earlier geometers have also used this lemma ; for it

is by the use of this same lemma that they have shown that circles

are to one another in the duplicate ratio of their diameters, and that

spheres are to one another in the triplicate ratio of their diameters,

and further that every pyramid is one third part of the prism having

the same base with the pyramid and equal altitude : also, that every

cone is one third part of the cylinder having the same base as

the cone and equal altitude they proved by assuming a certain

lemma similar to that aforesaid. And, in the result, each of the

aforesaid theorems has been accepted
;}: no less than those proved

* There seems to be some corruption here : the expression in the text is ras, and it is not easy to give a natural and intelligible meaning
to it. The section of ' the whole cone ' might perhaps mean a section cutting

right through it, i.e. an ellipse, and the ' straight line ' might be an axis or

a diameter. But Heiberg objects to the suggestion to read tSj^, in view of tlie addition of /tot ii'^iiay, on the ground that the former

expression always signifies the whole of an ellipse, never a segment of it

(Qtuiestioties Archiviedeae, p. 1411).

t Tiie lemma is used in tlie mechanical proof only (Prop. 16 of the treatise)

and not in the geometrical proof, which depends on Eucl. x. 1 (see p. Ixi, Ixiii).

^ The Greek of this passage is :
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without tlie lemma. As therefore my work now pulilishi'd has

satisfied the same test as the propositions referred to, I have

written out the proof of it and send it to you, first as investigated

by means of meclianics and next also as demonstrated by geometry.

Prefixed are, also, the elementary propositions in conies which are of

service in the proof "( ^ ;^ es^^).
The first three propositions are simple ones merely stated without

proof. The remainder, Avhich are given below, were apparently not

considered as forming part of the elementary theory of conies ; and

this fact, together Avith the circumstance that they appear only as

subsidiary to the determination of the areas of parabolic segments,

no doubt accounts for what might at first seem strange, viz. that

they do not appear in the Conies of Apollonius.

1. 1/ Qq be the base of any segment of a parabola, and the

vertex* of the segment, and if the diameter through any other point R
on the curve meet Qq in 0, QP in F, and the tangent at Q in E, then

(1) QV.VO = OF:FR,

(2) QO •.Oq = FP:POf.

( avev €€•4>'.
Here it would seem that^ must be wrong and that the Passive

should have been used.

* According to Archimedes' definition the height (%) of the segment is

" the greatest perpendicular from the curve upon the base," and the vertex

() "the point (on the curve) from which the greatest perpendicular

is drawn." The vertex is therefore P, the extremity of the diameter

bisecting Qq.

t These results are used in the mcchanicnl investigation of the area of

a parabolic segment. The mechanical proof is here omitted both because it is

more lengthy and because for the present purpose the geometrical proof given

below is more germane.
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To prove (1), we draw the onliuate 7i' II' to I'V, meeting QP
in K.

Now J'V : DV^QV : JiW;

therefore, by jjaralleLs,

PQ : PK=PQ' :PF\

In other words, PQ, PF, PK are in continued proportion

;

.•. PQ : PF-^ PF '.

= PF + PQ : + PF
= QF:KF;

tlierefore, by parallels,

QV : VO^OF : FR.

To piOve (2), we obtain from the relation just proved

QV : qO = OF • OR.

Also, since TP = PV, EF=^ OF.

Accordingly, doubling the antecedents in the proportion,

Qq:qO^OE: OR,

or QO .Oq^ER: RO.

It is clear that the equation (1) above is equivalent to a change

of axes of coordinates from the tangent and diameter to the chord

Qq (as axis of .'.;, say) and the diameter through Q (as the axis of y).

d'
For, if QV=a, PV

nd if QO = X, RO = y,

,-e have at once from (1)

_ «_ _ OF
.

X — a OF - y
'

a OF ^'

" •2-~ y ~ y
'

whence j/y = (2fi — x).

Zcutlieu points out (p. Gl) that the results (1) and (2) above can

be put in the forms

RO.OV = FR.qO (1)

and RO.OQ^ER.qO (2)
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and either of these equations represents a particular case of the

parabola as a "locus with respect to four lines." Thus the first

represents the equality of the rectangles formed, two and two, from

the distances of the movable point ' taken in fixed directions from

the fixed lines Qq, PV, PQ and Gq (where Gq is the diameter

through q) ; while the second represents the same property with

respect to the lines Qq, QD (the diameter through Q), QT ami Gq.

2. If RM he a dianiPter bisectiny QV in J/, and RW be the

ordinate to PV from R, then

PV = ^RM.

For PV :PW=QV' -.RW

= ^RW' : RW;
.•. PV=iPW,

and PV=^RM.
3. The triangle PQq is greater than

half the segment PQq.

For the triangle PQq is equal to half

the parallelogram contained by Qq, the

tangent at P, and the diameters through Q, q. It is therefore

greater than half the segment.

Cor. It follows that a j^olygon can he inscribed in the segment

such that the remaining segments are together Jess than any assignable

area.

For, if we continually take away an area greater than the half,

we can clearly, by continually diminishing the remainders, make

them, at some time, together less than any given area (Eucl. x. 1).

4. With the same assntyiptions as in No. 2 aboi'e, the triangle PQq
is equal to eight times the triangle RPQ.

RM bisects Q V, and therefore it bisects PQ (in Y, say).

Therefore the tangent at R is parallel to

Now
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Also, if liW produced moot the curve again in r,

PQq = 8 Prq, similarly.

5. 1/ there be a sei'ies of areas A, B, C, D... each of which isfour

times the next in order, and if the largest, A, is equal to the triatigle

PQq, then tJie snm of all the areas A, B, C, D... will be less than the

area of the parabolic segment PQq.

For, since A PQq :^ 8 A PQR = 8 Pqr,

PQq = i(APQR + A Pqr)
j

therefore, since PQq = A,

A PQR + APqr = B.

In like manner we can prove that the triangles similarly in-

scribed in the remaining segments are together equal to the area C,

and so on.

1^

Therefore A + B + C + J) +

is equal to the area of a certain inscribed polygon, and therefore less

than the area of the segment.

6. Given the series A, B, C, D...just described, if be tlie last

of the seft'ies, then

A + B + C + ...+z+\z=yA.

A
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Now, since exceeds A ^ -C - ... ^ X by an area less than

X, and the segment l)y an area greater than X, it follows that

yl+j5 + C+...+X
is greater tlian the segment : which is impossible, by No. 4 above.

Tims, since the segment is neither greater nor less than /i", it

follows that

the segment = A' = ^ , PQq.

8. The second proposition of the second Book of the treatise On

thr equilibrium of plaries{) gives a special term

for the construction of a polygon in a parabolic segment after the

manner indicated in Nos. 2, 4 and 5 above, and enunciates certain

theorems connected with it, in the following passage :

" If in a segment bounded by a straight line and a section of a

light-angled cone a triangle be inscribed having the same base as

the segment and equal altitude, if again triangles be inscribed in the

remaining segments having the same bases as those segments and

equal altitude, and if in the remaining segments triangles be

continually inscribed in the same manner, let the figure so produced

be said to be inscribed in the recognised manner{-)
in the segment.

Atul it is plain

(1) that the lines joining the two angles of the figwe so inscribed

which are nearest to the vertex of the segment, and the next pairs of

angles in order, be jxirallel to the base of the segment,

(2) that the said lines tvill be bisected by the diameter of the

segment, and

(3) that they will cut the diameter in the proportiojis of (he

successive odd numbers, the number one having reference to [the

length adjacent ] the vertex of the segment.

And these properties have to be proved in their proper

places (ev ^)."
These propositions were no doubt established ])y Archimedes by

means of the above-mentioned properties of parabolic segments ; and

the last words indicate an intention to collect the propositions in

systematic order with proofs. But tiie intention does not appear to

liave been carried out, or at least Ave know of no lost work of

Archimedes in whicli they could have been included. Eutocius

proves them by means of Apollonius' Conies, as he does not appear

to have seen the work on the area of a parabolic segment ; but the

lirst two are easily derived from No. 2 above (p. l.\i).
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The third may be proved as folloAvs.

If QiQjQoQ^PQ^Qofl/ly » a- figure--^, we lia%e,

since <?,<?,, Qj/., are all parallel and bisected by /'K,

,

PI', : PV^ : PV.^ : . ...

= 1 : 4 : 9 : 16
;

whence it follows tliat

PF, : VV,^ : ,^, : V.J\...

= 1:3:5:7 ....

9• -(/' QQ' be a chord of a ^>«•((? bisected in V by the diameter

V, and if PV is of constant length, then the areas of tL• triangle

PQQ' and of the segvtent PQQ' are both constant tvhatever be the

direction of QQ'

.

II. C.
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If BAB' be the particular segment whose vertex is A, so that

BB' is bisected perpendicularly by the axis at the point If where

A.y^PV, and if (JD be drawn perpendicular to PV, we have (by

No. 3 on p. liii)

Also, since AN = PV,

QV : BN-=p :pa\

.•. BN=QD.
Hence BN.AN=QD.PV,

and AABB' = APQQ'.

Therefore the triangle PQQ' is of constant area provided that FV
is of given length.

Also the area of the segment PQQ' is equal to ^. /\PQQ'

;

[No. 7, p. Ixiii].

therefore the area of the segment is also constant under the same

conditions.

10. The area of any ellipse is to that of a circle whose diameter

is equal to the niajm' axis of the ellipse as the minor axis is to the

rmtjor (or the diameter of the circle).

[This is proved in Prop. 4 of the book On Conoids and Spheroids.]

11. The area of an ellipse wJwse axes are a, h is to that of a

circle whose diameter is d, as ah to d^.

[On Conoids and Spheroids, Prop. 5.]

12. The areas of ellipses are to one another as the rectangles

under their axes ; and hence similar ellipses are to one another as the

squares of corresponding axes.

[On Conoids ami Spheroids, Prop. 6 and Cor.]

It is not within the scope of the present Avork to give an account

of the applications of conic sections, by Archimedes and others,

e.g. for the purpose of solving equations of a degree higher than the

second or in the problems known as vcuacts*. The former application

* The word vtvci^, commonly inclinatio in Latin, is difficult to translate

satisfactorily. Its meaning is best gathered from Pappus' explanation. He

says (p. C70) :
" A line is said to verge [vtvuv) towards a point if, being produced,

it reaches the point." As particular cases of the general form of the problem he

gives the following

:

'
' Two lines being given in position, to place between them a straight line

given in length and verging towards a given point."

"A semicircle and a straight Hne at right angles to the base being given in
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is involved in Prop. 4 of Book IT. (hi thr Sp/it're aiifl Ci/Rii'ler, whore

the problem is to cut a given sphere (by a plane) so that the

segments may bear to one another a given ratio. The book On

Spirals contains propositions which assume the solution of certain

i'£vVct9, e.g. Props. 8 and 9, in which Archimedes a.ssumes the

following problem to be eftected : If be any chord of a circle

and any point on the circumference, to draw through a

straight line OBP meeting in D and the circle again in

and such that DP is equal to a given length. Though Archimedes

does not give the solution, we may infei• that he obtained it by

means of conic sections*.

A full account of these applications of conic sections by the

(Greeks be found in the 11th and 12th chapters of Zeuthen's

work. Die Lehre von den Kec/elschnitten im Alterhim.

position, or two semicircles with their bases in a straight line, to place between

the two lines a straight line given in length and verging towards a corner of the

semicircle."

Thus a line has to be laid across two given lines or curves so that it passes

through a given point and the portion intercepted between the Unes or curves is

equal to a given length.

Zeuthen translates the word veOais by " Einschiebung, " or as we might say,

"interpolation" ; but this fails to express the condition that the required line

must pass through a given point, just as the Latin iuclhiatio (and for that

matter the Greek term itself) does not explicitly express the other requirement

that the intercepted portion of the line shall be of given length.

* Cf. Pappus, pp. 298—302.



PART .
INTRODUCTION TO THE CONICS OF APOLLONIUS.

CHAPTER I.

THE AUTHOR AND HIS ACCOUNT OF THE COXICS.

We possess only the most meagre information about ApoUonius,

viz. that he was born at Perga, in Pamphylia, in the reign of

Ptolemy Euergetes (247-222 B.C.), that he flourished under Ptolemy

Philopator, and that he went when quite young to Alexandria, where

he studied under the successors of Euclid. We also hear of a visit

to Pergamum, where he made the acquaintance of Eudemus, to

whom he dedicated the first three of the eight Books of the Conies.

According to the testimony of Geminus, quoted by Eutocius, he was

greatly held in honour by his contemporaries, who, in admiration of

his n)arvellous treatise on conies, called him the "great geometer*."

Seven Books only out of the eight have survived, four in the

original Greek, and three in an Arabic translation. They vere

edited by Halley in 1710, the first four Books being given in Greek

with a Latin translation, and the remaining three in a Latin

translation from the Arabic, to which Halley added a conjectural

restoration of the eighth Book.

TJie first four Books have recently appeared in a new edition by

J. L. Heiberg (Teubner, Leipzig, 1891 and 1893), wliich contains, in

addition to the Greek text and a Latin translation, the fragments

of the other works of ApoUonius wliich are still extant in Greek,

the commentaries and lemmas of Pai)pus, and the commentaries of

lOiitocius.

• The quotation is from the sixth liook of Geminus' .
See ApoUonius (ed. Heibein) Vol. ii. p. 170,
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iulditional light has been thrown on the Arabic text of

Books V. to VII. since the monumental edition of Halley, except as

regards the preface and the first few propositions of Book V., of

which L. M. LudAvig Nix published a German translation in 1889*.

For fuller details relating to the MSS. and editions of the

Conies reference should be made to the Prolegomena to the second

volume of Heiberg's edition.

The following is a literal translation of the dedicatory letters in

which Apollonius introduces the various Books of his Conies to

Eudemus and Attalus respectively.

1. Book I. General preface.

" Apollonius to Eudemus, greeting.

" If you are in good health and circumstances are in other

respects as you Avish, it is Avell ; I too am tolerably well. When
I Avas with you in Pergamum, I observed that you Avere eager t(j

become acquainted with my Avork in conies ; therefore I send you

the first book which I have corrected, and the remaining books

I Avill forward Avhen I have finished them to my satisfection. I

daresay you have not forgotten my telling you that I undertook

the investigation of this subject at the request of Naucrates the

geometer at the time Avhen he came to Alexandria and stayed

with me, and that, after Avorking it out in eight books, I

communicated them to him at once, someAvhat too hurriedly,

Avithout a thorough revision (as he was on the point of

sailing), but putting doAvn all that occurred to me, Avith the

intention of returning to them later. Wherefore I noAv take

the opportunity of publishing each portion from time to time,

as it is gradually corrected. But, since it has chanced that

some other persons also Avho have been Avith me have got the

first and second books before they Avere corrected, do not be

surprised if you find them in a different shape.

* This appeared in a dissertation entitled Das fiinfte Buck der Conica de»

Apollonius von I'erga in der arabischcn Uebersetzung des Thabit ibn Corrah

(Leipzig, 188'J), wbich however goes no further than the middle of the 7tb

proposition of Book v. and ends ou p. 32 in the middle of a .sentence with thu

words " gleich dem Quadrat von "
! The fragment is nevertheless valuable in

that it gives a new translation of the important preface to Book v., part of which

Halley appears to have misundorstood.
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" Now of the eight books the first four form an elemeutary

introduction ; the first contains the modes of producing the

three sections and the opposite branches [of the hyperbola]( avTLKei) and their fundamental properties worked

out more fully and generally than in the writings of other

authors ; the second treats of the properties of the diameters and

axes of the sections as well as the asymptotes and other things of

general imi)ortance and necessary for determining limits of pos-

sibility (77/309 rov<i ^;)*, and what I mean by diameters

and axes you will learn from this book. The third book

contains many remarkable theorems useful for the synthesis

of solid loci and determinations of limits; the most and

* It is not possible to express in one word the meaning of here. In

explanation of it it will perhaps be best to quote Eutocius who speaks of " that[] which does not admit that the proposition is general, but says when
and how and in how many ways it is possible to make the required construction,

like that which occurs in the twenty-second proposition of Euclid's Elements,

From three stniinht lines, irJiich are equal to three {licen straight lines, to

conntruct a triangle: for in this case it is of course a necessary condition

that any two of the straight lines taken together must be greater than

the remaining one," [Comm. on Apoll. p. 178]. In like manner Pappus

[p. 30], in explaining the distinction between a 'theorem' and a 'problem,'

says :
" But he who propounds a problem, even though he requires what is for

some reason impossible of realisation, may be pardoned and held free from

blame ; for it is the business of the man who seeks a solution to determine at

the same time['] the question of the possible and the impossible,

and, if the solution be possible, when and how and in how many ways it is

possible." Instances of the are common enough. Cf. Euclid vi. '27,

which gives the criterion for the possibility of a real solution of the proposi-

tion immediately following ; the there expresses the fact that, for a real

solution of the equation .r((( - .v} = b-, it is a necessai-y condition that b-- ( -\ .

Again, we find in Archimedes, On the Sphere and Cylinder [p. 214], the remark

that a certain problem " stated tiius absolutely requires a, but, if

certain conditions here existing are added, it does not require a."
Many instances will be found in Apollonius' work ; but it is to be observed

that, as he uses the term, it frequently involves, not only a necessary condition,

as in the cases just quoted, but, closely connected therewith, the determination

of the number of solutions. This can be readily understood when the use of the

word in tlie preface to Book iv. is considered. That Book deals with the

number of possible points of intersection of two conies ; it follows that, when
e.g. in the fifth Book hyperbolas are used for determining by their intersections

with given conies the feet of normals to the latter, the number of solutions comes

to light at the same time as the conditions necessary to admit of a solution.
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prettiest of these theorems are new, and, when I had discovered

thera, I observed that Euclid had not worked out the synthesis of

the locus with respect to three and four lines, but only a chance

portion of it and that not successfully: for it was not possible that

the synthesis could have been completed without my additional

discoveries. The fourth book shows in how many ways the

sections of cones meet one another and the circumference of a

circle : it contains other matters in ad<Jition, none of which has

been discussed by earlier writers, concerning the number of points

in which a section of a cone or the circumference of a circle meets

[the opposite branches of a hyperbola] *.

"The rest [of the books] are more by Avay of surplusage

f

(7€€) : one of them deals somewhat fully (eVt

TrXeov) with minima and maxima, one with equal and similar

sections of cones, one with theorems involving determination of

limits{^,), and the last with determinate

conic problems.

* The reading here translated is Heiberg's

< rat's^- , . Halley had read

(€. Heiberg thinks Halley's longer interpolation unnecessary,

but I cannot help thinking that Halley gives the truer reading, for the following

reasons. (1) The contents of Book iv. show that the sense is not really

complete without the mention of the number of intersections of a double-branch

hyperbola with another double-branch hyperbola as well as with any of the

single-branch couics ; and it is scarcely conceivable that AiJoUonius, in

describing what was new in his work, should have mentioned only the less

complicated question. (2) If Heiberg's reading is right we should hardly have

the plural after the disjunctive expres-;ion " a section of a cone or

the circumference of a circle." (3) There is positive evidence for -
in Pappus' quotation from this preface [ed. Hultsch, p. 676], where the

words are , " a section of

a cone with the circumference of a circle and opposite branches with opposite

branches." Thus to combine the reading of our text and that of Pai)pus would

give a satisfactory sense as follows : "in how many points a section of a cone

or a circumference of a circle, as well as opposite branches, may [resiiectively]

intersect opposite branches." See, in addition, the note on the corresponding

passage in the preface to Book iv. given below.

+ has baen translated " more advanced," but literally it

implies extensions of the subject beyond the mere essentials. Hultsch

translates "ad abundautiorem .scientiam pertinent," and Heiberg less precisely

•'ulterius progrediuntur."
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" When all the books arc published it will of course be open

to those who read them to judge them cis they individually

please. Farewell."

2. Preface to Book II.

" Apoliouius to Eudenius, greeting.

"If you are in good health, it is well; I too am moderately

well. I have sent my son Apollonius to you with the second

book of my collected conies. Peruse it carefully and com-

municate it to those who are worthy to take part in such

studies. And if Philonides the geometer, whom I introduced

to you in Ephesus, should at any time visit the neighbourhood

of Pergamum, communicate the book to him. Take care of

your health. Farewell."

3. Preface to Book IV.

" Apollonius to Attains, grec-ting.

" Some time ago, I expounded and sent to Eudemus of

Pergannim the first three books of my conies collected in eight

books ; but, as he has passed away, I have resolved to send the

remaining books to you because of your earnest desire to

possess my Avorks. Accordingly I now send you the fourth

book. It contains a discussion of the question, in how many
points at most it is possible for the sections of cones to meet

one another and the circumference of a circle, on the sup-

position, that they do not coincide throughout, and further in

how many points at most a section of a cone and the circum-

ference of a circle meet the opposite branches [of a hyperbola] *

• Here again Halley adds to the text as above translated the words ^^. Heiberg thinks the addition unnecessary as in the

similar passage in the first ijreface above. I cannot but think that Halley is

right both for the reasons given in the note on the earlier passage, and

because, without the added words, it seems to me impossible to explain satis-

factorily the distinction between the three separate questions referred to in the

next sentence. Heiberg thinks that these refer to the intersections

(1) of conic sections with one another or with a circle,

(2) of sections of a cone with the double-branch hyperbola,

(3) of circles with the double-branch hyperbola.

But to specify separately, as essentially distinct questions, Heiberg "s (2) and
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and, besides these questions, not a few others of a similar

character. Now the first-named ({iiestion Conon expounded to

Thrasydaeus, without however showing proper mastery of the

proofs, for which cause Nicoteles of Cyrene with some reason

fell foul of him. The second matter has merely been mentioned

by Nicoteles, in connexion with his attack upon Conon, as one

capable of demonstration ; but I have not found it so de-

monstrated either by himself or by any one else. The third

(question and the others akin to it I have not found so much as

noticed by any one. And all the matters alluded to, Avhich I

have not found proved hitherto, needed many and various

novel theorems, most of which I have already expounded in the

first three books, while the rest are contained in the present

one. The investigation of these theorems is of great service

both for the synthesis of problems and the determinations of

limits of possibility{ re

<; 8<;). On the other hand Nicoteles, on account

of his controversy with Conon, not have it that any use

can be made of the discoveries of Conon for determinations

of limits : in which opinion he is mistaken, for, even if it is

possible, Avithout using them at all, to arrive at results re-

lating to such determinations, yet they at all events afford a

more ready means of observing some things, e.g. that several

(3) is altogether inconsistent with the scientific method of Apollonius. When
he mentions a circle, it is always as a mere appendage to the other carves{ i\\(i\j/ii rj is his nsual phrase), and it is impossible,

I think, to imagine him drawing a serious distinction between (2) and (3) or

treating the omission of Nicoteles to mention (3) as a matter worth noting,

should surely be something essentially distinct from, not a particular case

of, TO. I think it certain, therefore, that is the case of the

intersection of two double-branch hyperbolas with one another; and the

adoption of Halley's reading would make the passage intelligible. We should

then have the following three distinct cases,

(1) the intersections of single-branch conies with one another or with

a circle,

(2) the intersections of a single-branch conic or a circle with the double-

branch hyperbola,

(3) the intersections of two double-branch hyperbolas ;

and may naturally be taken as referring to those

cases e.f). where the curves toiicli at one or two points.
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solutions are possible or that they are so many in number,

and again that no solution is possible ; and such previous

knowledge secures a satisfactory basis for investigations, while

the theorems in question are further useful for the analyses

of determinations of limits( \€ Be 8io-). Moreover, apart from such usefulness, they are

worthy of acceptance for the sake of the demonstrations

themselves, in the same way as we accept many other things in

mathematics for this and for no other reason."

4. Preface to Book V*.

" Apollonius to Attalus, greeting.

" In this fifth book I have laid down propositions relating

to maximum and minimum straight lines. You must know

that our predecessors and contemporaries have only superficially

touched upon the investigation of the shortest lines, and have

only proved what straight lines touch the sections and, con-

vc'rsel}^ what properties they have in virtue of which they are

tangents. For my part, I have proved these properties in the

first book (without however making any use, in the proofs, of

the doctrine of the shortest lines) inasmuch as I wished to

place them in close connexion Avith that part of the subject in

which I treated of the production of the three conic sections, in

order to show at the same time that in each of the three

sections numberless properties and necessary results appear, as

they do with reference to the original (transverse) diameter.

The propositions in which I discuss the shortest lines I have

separated into classes, and dealt with each individual case by

careful demonstration ; I have also connected the investigation

of them with the investigation of the greatest lines above

mentioned, because I considered that those who cultivate this

science needed them for obtaining a knowledge of the analysis

and determination of problems as well as for their synthesis,

irrespective of the fact that the subject is one of those which

seem worthy of study for their own sake. Farewell."

* In the trauslution of this preface I have followed pretty closelj' the

Geiiiiiiu translation of L. M. L. Nix above referred to [p. Ixix, note]. The
prefaces to Books vi. and vii. are translated from Halley.
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5. Preface to Book VI.

" ApoUonius to Attains, greeting.

" I send you the sixth book of the conies, which embraces

propositions about conic sections and segments of conies et{ual

and unequal, similar and dissimilar, besides some other matters

left out by those who have preceded me. In particular, you

will find in this book how, in a given right cone, a section is to

be cut equal to a given section, and how a right cone is to be

described similar to a given cone and so as to contain a given

conic section. And these matters in truth I have treated

somewhat more fully and clearly than those who wrote before

our time on these subjects. Farewell."

6. Preface to Book VII.

" ApoUonius to Attalus, greeting.

" I send to you with this letter the seventh book on conic

sections. In it are contained very many new propositions

concerning diameters of sections and the figures described upon

them ; and all these have their use in many kinds of problems,

and especially in the determination of the conditions of their

possibility. Several examples of these occur in the determinate

conic problems solved and demonstrated by me in the eighth

book, which is by way of an appendix, and which I will take

care to send you as speedily as possible. Farewell."

The first point to be noted in the above account by ApoUonius

of his own work is tlie explicit distinction which he draws between

the two main divisions of it. The first four Books contain matters

wliich fall within the range of an elementary introduction(
CIS ;), while the second four are extensions beyond

the mere essentials (^.), • (as we may say) more

"advanced,"' provided that we are careful not to undei-stand tlie

relative terms "elementary" and "advanced" in the sense which

we should attach to them in speaking of a modern mathematical

work. Thus it would be wrong to regard the investigations of the

fifth Book as more advanced than the earliei- Books on the ground

that the results, leading to the determination of the evolute of any

conic, are such as are now generally obtained by the aid of the
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differential calculus ; for the investigation of the limiting conditions

for the possibility of drawing a certain number of normals to a

given conic from a given point is essentially similar in character to

many other found in other writers. The only difference is

that, while in the case of the parabola the investigation is not very

difficult, the corresponding propositions for the hyperbola and ellipse

make exceptionally large demands on a geometer's acuteness and

grasp. The real distinction between the first four Books and the

fifth consists rather in the fact that the former contain a connected

and scientific exposition of the general theory of conic sections as

the indispensable basis for further extensions of the subject in

certain special directions, vhile the fifth Book is an instance of such

specialisation ; and the same is true of the sixth and seventh Books.

Tlius the first four Books were limited to what were considered the

essential principles; and their scope was that prescribed by tradi-

tion for treatises intended to form an accepted groundwork for

such special applications as were found e.g. in the kindred theory of

solid loci developed by Aristaeus. It would follow that the subject-

matter would be for the most part the .same as that of earlier

treatises, though it would naturally be the object of Apollonius to

introduce such improvements of method as the state of knowledge

at the time suggested, with a view to securing greater generality

and establishing a more thoroughly scientific, and therefore more

definitive, system. One effect of the repeated working-up, by suc-

cessive authors, of for the most part existing material Avould be to

produce crystallisation, so to speak ; and therefore we should expect

to find in the first four Books of Apollonius greater conciseness than

would be possible in a treatise where new ground was being broken.

In the latter case the advance would be more gradual, precautions

would have to be taken with a view to securing the absolute impreg-

nability of each successive position, and one result Avould naturally

be a certain diffuseness and an apparently excessive attention to

minute detail. We find this contrast in the two divisions of

Apollonius' Conies; in fact, if we except the somewhat lengthy

treatment of a small proportion of new matter (such as the

properties of the hyperbola with two branches regarded as one

conic), tiie first four Books are concisely put together in comparison

with Books v.—VII.

The distinction, therefore, between the two divisions of the work

is the distinction between what may be called a text-book or com-

\.,
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pendium of conic sections and a series of monographs on special

portions of the subject.

For the first four Books it Avill be seen tliat Apollonius does not

chiim originality except as regards a number of theorems in the

third Book and the investigations in the fourth Book about inter-

secting conies ; for the rest he only claims that the treatment

is more full and general than that contained in the earlier works on

conies. This statement is quite consistent with that of Pappus that

in his first four Books Apollonius incorporated and completed('^) the four Books of Euclid on the same subject.

Eutocius, however, at the beginning of his commentary claims

more for Apollonius than he claims for himself. After quoting

Geminus' account of the old method of producing the three conies

from right cones Avith difierent vertical angles by means of plane

sections in every case perpendicular to a genei'ator, he says (still

purporting to quote Geminus), " But afterwards Apollonius of

Perga investigated the general proposition that in every cone,

whether right or scalene, all the sections are found, according as the

plane [of section] meets tlie cone in difierent ways." Again he says,

" Apollonius supposed the cone to be either right or scalene, and

made the sections different by giving different inclinations to the

plane." It can only be inferred that, according to Eutocius,

Apollonius was the first discoverer of the fact that other sections

than those perpendicular to a generator, and sections of cones other

than right cones, had the same properties as the curves produced in

the old way. But, as has already been pointed out, we find (1) that

Euclid had already declared in the Phaenometia that, if a cone

(presumably right) or a cylinder be cut by a plane not parallel to

the base, the resulting section is a "section of an acute-angled cone,"

and Archimedes states expressly that all sections of a cone whicli

meet all the generators (and here the cone may be oblique) are

either circles or "sections of an acute-angled cone." And it cannot

be supposed that Archimedes, or whoever discovered this proposition,

could have discovered it otherwise than by a method which would

equally show that hyperbolic and parabolic sections could be pro-

duced in the same general manner as elliptic sections, which

Archimedes singles out for mention because he makes special use of

them. Nor (2) can any different conclusion be drawn from the

continued use of the old names of the curves even after the more

general method of producing them was known; there is nothing
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unnatural in this because, first, hesitation might well be felt in

giving up a traditiijiiul definition associated with certain standard

propositions, deterniinatif)ns of constiints, itc, and secondly, it is not

thought strange, e.g. in a modern text-book of analytical geometry,

to define conic sections by means of simple properties and equations,

and to adhere to the definitions after it is proved that the curves

represented by tlie general equation of the second degree are none

other than the identical curves of the definitions. Hence we must

conclude that the statement of Eutocius (which is in any case too

general, in that it might lead to the supposition that every hyperlx)la

could be produced as a section of any cone) rests on a misappre-

hension, though perhaps a natural one considering that to him,

living so much later, conies probably meant the treatise of Apollo-

nius only, so that he might easily lose sight of the extent of the

knowledge possessed by earlier writers*.

At the same time it seems clear that, in the generality of his

treatment of the subject from the very beginning, Apollonius was

making an entirely new departure. Though Archimedes vas aware

of the possibility of producing the three conies by means of sections

of an oblique or scalene cone, we find no sign of his having used

sections other than those which are perpendicular to the plane of

synunetry ; in other words, he only derives directly from the cone

the fundamental property referred to an axis, i.e. the relation'
: AN. A'N^.P'N'°- : AN' . A'N',

and must assume that it was by means of the equation referred

to the axes that the more general property

QV : PV.P'V = (const)

was proved. Apollonius on the other hand starts at once with

* There seems also to have been some contusion in Eutocius' mind about the

exact basis of tlic names panihohi, I'lUpse and hyperbola, though, as we .shall see,

Apollonius makes this clear enough by connecting them immediately with

the method of application of areax. Thus Eutocius speaks of the hyperbola

as being so called because a certain pair of angles (the vertical angle of an
obtuse-angled right cone and the right angle at which the section, made in the

old way, is inclined to a generator) together exceed {'(\\) two right

angles, or because the iilane of the section passes beyond ((\\ the apex
of the cone and meets the half of the double cone beyond the apex ; and he gives

similar explanations of the other two names. But on this intei-pretation the

nomenclature would have no significance ; for in each case we could choose

different angles in the figure with equal reason, and so vary the names.
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the most general section of an oblique cone, and proves directly

from the cone that the conic has the latter general property with

reference to a particular diameter arising out of his construction,

which however is not in general one of the principal diameters.

Then, in truly scientific fashion, he proceeds to show directly that

the same property which was proved true with reference to the

original diameter is equally true with reference to any other

diameter, and the axes do not appear at all until they appear as par-

ticular cases of the new (and arbitrary) diametei•. Another indica-

tion of the originality of this fuller and more general vorking-out of

the principal properties ( eVi irXiov

(.-) is, I tliiiik, to be found in the preface to Book V.

as newly translated from the Arabic. ApoUonius seems there to imply

that minimum straight lines (i.e. normals) had only been discussed

by previous Avriters in connexion with the properties of tangents,

whereas his own order of exposition necessitated an early introduc-

tion of the tangent properties, independently of any questions about

normals, for the purpose of eftecting the transition from the original

diameter of reference to any other diameter. This is easily under-

stood when it is remembered that the ordinary properties of

normals are expressed with reference to the axes, and ApoUonius

was not in a position to use the axes until they could be brought in

as particular cases of the new and ai'bitrary diameter of reference.

Hence he had to adopt a different order from that of earlier works

and to postpone the investigation of normals for separate and later

treatment.

All authorities agree in attributing to ApoUonius the designation

of the three conies by the names jjarabola, ellipse and hyperbola

;

but it remains a question whether the exact form in which their

fundamental properties were stated by him, and which suggested the

new names, represented a new discovery or may have been known

to earlier writers of whom may take Archimedes as the repre-

sentative.

It will be seen from ApoUonius i. 11 [Prop. 1] that the fundamental

property proved from the cone for the parabola is that expressed by

the Cartesian equation y^-px, where the axes of coordinates are

any diameter (as the axis of x) and the tangent at its extremity (as

the axis of y). Let it be assumed in like manner for the ellipse and

hyperbola that y is the ordinate drawn from any point to the

original diameter of the conic, the abscissa mejvsured from one
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extremity of the diameter, while .r, is tlie abscissa measured from the

other extremity. Apollonius' procedure is then to take a certain

length (/;, say) determined in a certain manner with reference to the

cone, and to prove, frst, that

y* : x.x,=p : (I (1),

where d is the length of the original diameter, and, secondly, that,

if a perpendicular be erected to the diameter at that extremity of it

from which is measured and of length ]), then y- is equal to a

rectangle of breadth and " applied " to the perpendicular of length

p, but falling short (or exceeding) by a rectangle similar and similarly

situated to that contained l)y ;j and d ; in other words,

or 7/''=;•+^.' (2).

Thus for the ellipse or hypei'lx)la an equation is obtained Avhich

differs from that of the parabola in that it contains another term,

and y* is less or greater than px instead of being equal to it. The

line is called, for all three curves alike, the parameter or latus

rectum corresponding to the original diameter, and the characteristics

expressed by the respective equations suggested the three names.

Thus the parabola is the curve in which the rectangle which is equal

to y^ is applied to and neither falls short of it nor overlaps it,

tlie ellipse and hyperbola are those in which the rectangle is applied

t(j ]> but falls short of it, or overlaps it, respectively.

In Archimedes, on the other hand, while the parameter duly

appears with reference to the parabola, no such line is anywhere

mentioned in connexion with the ellipse or hyperbola, but the

fundamental property of the two latter curves is given in the form

-JL• =-2^
X . a;, . a;,'

'

it being fui-ther noted that, in the ellipse, either of the equal ratios

b* .

is equal to —^ in the case where the etjuation is referred to the axes

and a, b ani the major and minor semi-axes respectively.

Thus Apollonius' equation expressed the equality of two areas,

while Archimedes' equation expressed the equality of two propor-
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tio7is ; and the question is whether Archimedes and his predecessors

were acquainted with the equation of the central conic in the form

in which ApoUonius gives it, in other words, whether tlie special use

of the parameter or L•tus rectum for the purpose of graphically

constructing a rectangle having for one side and equal in area to

y- was new in ApoUonius or not.

On this question Zeuthen makes the following observations.

(1) The equation of the conic in the form

had the advantage that the constant could be expressed in any shape

which might be useful in a particular case, e.g. it might be expressed

either as the ratio of one area to another or as the ratio of one

straight line to another, in which latter case, if the consequent in

the ratio were assumed to be the diameter d, the antecedent would

be the parameter p.

(2) Although Archimedes does not, as a rule, connect his

description of conies Avith the technical expressions used in the

well-knoAvn method of application of areas, yet the practical use of

that method stood in the same close relation to the formula of

Archimedes as it did to that of ApoUonius. Thus, where the axes

of reference are the axes of the conic and a represents the major or

transverse axis, the equation

X. £C,

(const.) = (say)

is equivalent to the equation

^=^. = (3),
ax + x ^ '

and, in one place {On Conoids and Spheroids, 25, p. 420) where

Archimedes uses the property that — has the same value for all
x.x^

points on a hyperbola, he actually expresses the denominator of the

ratio in the form in Avhich it appears in (3), speaking of it as an

area applied to a line equal to a but exceeding hy a square figure( ciSct ^), in other words, as the area denoted

by ax + x^.

(3) The equation —— = (const.) represents y as a mean pro-

portional between and a certain constant multiple of x^, which

H. C. /
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last can easily be expressed as the ordinate Y, corresponding to the

abscissa x, of a point on a certain straight line passing through the

other extremity of the diameter (i e. the extremity from which a;, is

measured). Whether this particular line appeared as an auxiliary

line in the figures used by the predecessors of ApoUonius (of which

there is no sign), or the well-known constructions were somewhat

differently made, is immaterial.

(4) The differences between the two modes of presenting the

fundamental properties are so slight that we may regard Apollonius

as in reality the typical representative of the Greek theory of conies

and as giving indications in his proofs of the train of thought which

had led liis predecessors no less than himself to the formulation of

the various pjOpositions.

Thus, where Archimedes chooses to use projwrtions in investiga-

tions for vhich Apollonius prefers the method of application of

areas which is more akin to our algebra, Zeuthen is most inclined

to think that it is Archimedes who is showing individual peculi-

arities rather than Apollonius, who kept closer to his Alexandrine

predecessors : a view which (he thinks) is supported by the

circumstance that the system of applying areas as found in Euclid

Book II. is decidedly older than the Euclidean doctrine of pro-

portions.

I cannot but think that the argument just stated leaves out of

account the important fact that, as will be seen, the Archimedean

form of the equation actually appears as an intermediate step in the

proof which Apollonius gives of his own fundamental equation.

Therefore, as a matter of fact, the Archimedean form can hardly

be regarded as a personal variant from the normal statement of

the property according to the Alexandrine method. Further, to

represent Archimedes' equation in the form

^ = (const.),
X.Xi ^

'

and to speak of this as having the advantage that the constant may
l)e expressed differently for different purposes, implies rather more

than we actually find in Archimedes, who never uses the constant at

all when the hyperbola is in question, and uses it for the ellipse only

in the case where the axes of reference are the axes of the ellipse,

and then only in the single form -=

.
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Now the equation

_/_ = !'

ax — x^ a-
'

or y = ~ .X 4 . X
,a a

does not give an easy means of exhibiting the area y* as a simple

rectangle applied to a straight line but falling short by another

rectangle of equal breadth, unless we take some line equal to -

and erect it perpendicularly to the abscissa at that extremity of

it Avhich is on the curve. Therefore, for the purpose of arriving at

an expression for y* corresponding to those obtained by means of

the principle of application of areas, the essential thing was the

determination of the parameter and the expression of the con-

stant in the particular form ^ , which however does not appear in

Archimedes.

Again, it is to be noted that, though Apollonius actually sup-

plies the proof of the Archimedean form of the fundamental property

in the course of the propositions i. 12, 13 [Props. 2, 3] establishing

the basis of his definitions of the hyperbola and ellipse, he retraces

his steps in i. 21 [Prop. 8], and proves it again as a deduction from

those definitions : a procedure which suggests a somewhat forced

adherence to the latter at the cost of some repetition. This slight

awkwardness is easily accounted for if it is assumed that Apollonius

was deliberately supplanting an old form of the fundamental

property by a new one ; but the facts are more difiicult to explain

on any other assumption. The idea that the form of the equation

as given by Apollonius was new is not inconsistent with the fact

that the principle of] of areas was older than the

Euclidean theory of proportions ; indeed there would be no cause

for surprise if so orthodox a geometer as Apollonius intentionally

harked back and sought to connect his new system of conies with

the most ancient traditional methods.

It is curious that Pappus, in explaining the new definitions of

Apollonius, says (p. 674) :
" For a certain rectangle applied to a

certain line in the section of an acute-angled cone becomes deficient

by a square{), in the section of an obtuse-angled

cone exceeding by a square, and in that of a right-angled cone

neither deficient nor exceeding." There is evidently some confusion

/2
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here, because in the definitions of Apollonius there is no question

of exceeding or falling-short hy a square, but the rectangle which is

equal to y* exceeds or falls short by a rectangle similar and similarly

situated to that contained by the diameter and the latus rectum.

The description "deficient, or exceeding, by a square" recalls

Archimedes' description of the rectangle . .r, appearing in the

equation of the liyperbola as€ ciSet€ ; so that it

would appear that Pappus somehow confused tlie two forms in

which the two writers give the fundamental property.

It will be observed that the " oppo.sites," by which are meant

the opposite branches of a hyperbola, are specially mentioned as

distinct from the three sections (the words used by Apollonius

being ). They are first intro-

duced in the proposition I. 14 [Prop. 4], but it is in i. 16 [Prop. 6]

that they are for the first time regarded as together forming one

curve. It is true that the preface to Book IV. shows that other

writers had already noticed the two opposite branches of a hyper-

bola, but there can be no doubt that the complete investigation

of their properties was reserved for Apollonius. This view is

supported by the following evidence. (1) The Avords of the first

preface promise something new and more perfect with reference to

the double-branch hyperbola as Avell as the three single-branch

curves ; and a comparison between the works of Apollonius and

Archimedes (who does not mention the two branches of a hyper-

bola) would lead us to expect that the greater generality claimed by

Apollonius for his treatment of the subject would show itself, if

anywhere, in the discussion of the complete hyperbola. The words,

too, about the "new and remarkable theorems" in the third Book

point unmistakeably to the extension to the case of the complete

hyperbola of such properties as that of the rectangles under the

segments of intersecting chords. (2) That the treatment of the two

branches as one curve was somewhat new in Apollonius is attested

by the fact that, notwithstanding the completeness with which he

establishes the correspondence between their properties and those of

the single branch, he yet continues throughout to speak of them as

two independent curves and to prove each proposition vith regard

to them separately and subsequently to the demonstration of it for

the single curves, the result being a certain diflTuseness which might

have been avoided if the first propositions had been so combined as
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to prove each property at one and tlie same time for both double-

branch and single-branch conies, and if the further developments

had then taken as their basis the generalised property. As it is,

the difluseness marking the separate treatment of the double

hyperbola contrasts strongly with the remarkable ingenuity shown

by ApoUonius in compressing into one proposition the proof of a

property common to all three conies. This facility in treating the

three curves together is to be explained by the fact that, as

successive discoveries in conies were handed down by tradition,

the general notion of a conic had been gradually evolved ; whereas,

if ApoUonius had to add new matter with reference to the double

hyperbola, it would naturally take the form of propositions supple-

mentary to those affecting the three single-branch curves.

It may be noted in this connexion that the proposition I. 38

[Prop. 15] makes use for the first time of the secondary diameter {d')

of a hyperbola regarded as a line of definite length determined by

the relation

d^ _P
d' " d'

where d is the transverse diameter and the parameter of the

ordinates to it. The actual definition of the secondary diameter in

this sense occurs earlier in tlie Book, namely between i. 16 and

I. 17. The idea may be assumed to have been new, as also the

determination of the conjugate hyperbola with two branches as the

complete hyperbola which has a pair of conjugate diameters common

with the original hyperbola, the difference that the secondary

diameter of the original hyperbola is the transverse diameter of the

conjugate hyperbola and vice versa.

The reference to Book II. in the preface does not call for any

special remark except as regards the meaning given by ApoUonius

to the terms diameter and axis. The Avords of the preface suggest

that the terms were used in a new sense, and this supposition agrees

with the observation made above (p. xlix) that Avith Archimedes

only the axes are diameters.

The preface speaks of the "many remarkable theorems" con-

tained in Book III. as being useful for "the synthesis of solid

loci," and goes on to refer more particularly to the "locus with

respect to three and four lines." It is strange that in the Book

itself we do not find any theorem stating in terms that a particular

geometrical locus is a conic section, though of course we find
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theoi'ems stating conversely that all points on a conic have a

certain property. The explanation of this is probably to be found

in the fact that the determination of a locus, even when it was a

conic section, was not regarded as belonging to a synthetic treatise

on conies, and the ground for this may have been that the subject

of such loci was extensive enough to require a separate book. This

conjecture is supported by the analogy of the treatises of Euclid and

Aristieus on conies and solid loci respectively, where, so far as we

can judge, a very definite line of demarcation appears to have been

drawn between the determination of the loci themselves and the

theorems in conies Avhich were useful for that end.

There can be no doubt that the brilliant investigations in Book

V. with reference to normals regarded as maximuvi and minimum
straight lines from certain points to the curve were mostly, if not

altogether, new. It will be seen that they lead directly to the

determination of the Cartesian equation to the evolute of any conic.

Book VI. is about similar conies for the most part, and Book VII.

contains an elaborate series of propositions about the magnitude of

various functions of the lengths of conjugate diameters, including

the determination of their maximum and minimum values. A
comparison of the contents of Book VII. with the remarks about

Book VII. and VIII. in the preface to the former suggests that the

lost Book VIII. contained a number of problems having for their

object the finding of conjugate diameters in a given conic such that

certain functions of their lengths have given values. These

problems would be solved by means of the results of Book VII.,

and it is probable that Halley's restoration of Book VIII. represents

the nearest conjecture as to their contents which is possible in the

present state of our knowledge.



CHAPTER II.

GENERAL CnARACTERISTICS.

§ 1. Adherence to Euclidean form, conceptions and

language.

The accepted form of geometrical proposition with whicli Euclid's

Elements more than any other book has made mathematicians

familiar, and the regular division of each proposition into its com-

ponent parts or stages, cannot be better described than in the words

of Proclus. He says*: "Every problem and every theorem which

is complete with all its parts perfect purports to contain in itself all

of the following elements : enunciation(), setting-out {<;),
definition^ (), construction {^), proof (),
conclusion {..). Now of these the enunciation states what

is given and what is that which is sought, the perfect emmciation

consisting of both these parts. The setting-out marks off" what is

given, by itself, and adapts it beforehand for use in the investigation.

The definition states separately and makes clear what the particular

thing is which is sought. The construction adds what is wanting to

the datum for the purpose of finding what is sought. The j^iOof

draws the required inference by reasoning scientifically from ac-

knowledged facts. The conclusion reverts again to the enunciation,

confirming what has been demonstrated. These are all the parts of

problems and theorems, but the most essential and those which are

found in all are enunciation, proof, conclusion. For it is equally

necessary to know beforehand Avhat is sought, and that tliis should

be demonstrated by means of the intermediate steps and the de-

monstrated fact should be inferred ; it is impossible to dispense

• Proclus (ed. Friedlein), p. 203.

t The word definition is used for want of a better. As will appear from

what follows,^ really means a closer description, by means of a concrete

figure, of what the enunciation states in general terms as the property to be

proved or the problem to be solved.



Ixxxviii INTRODUCTION TO APOLLONIUS.

with any of these three things. The remaining parts are often

brought in, but are often left out as serving no purpose. Thus

there is neither settitig-out nor definition in the problem of con-

structing an isosceles triangle having each of the angles at the base

double of the remaining angle, and in most theorems there is no

construction because the setting-otit suffices without any addition

for demonstrating the required property from the data. When then

do say that the setting-oui is wanting? The answer is, when

there is nothing (jiven in the eyiunciation ; for, though the enun-

ciation is in general divided into what is given and what is sought,

this is not always the case, but sometimes it states only what is

sought, i.e. what must be knoAvn or found, as in the case of the

problem just mentioned. That problem does not, in fact, state

beforehand with vhat datum Ave are to construct the isosceles

triangle having each of the equal angles double of the remaining

one, but (simply) that we are to find such a triangle....When,

then, the enunciation contains both (Avhat is given and what

is sought), in that case find both definition and setting-out, but,

whenever the datum is wanting, they too are wanting. For not only

is the setii7ig-out concerned with the datum but so is the definition

also, as, in the absence of the datum, the definition will be identical

with the enunciation. In fact, what could you say in defining the

object of the aforesaid problem except that it is required to find an

isosceles triangle of the kind referred to? But that is what the

entmciation stated. If then the enunciation does not include, on the

one hand, what is given and, on the other, what is sought, there is

no setting-out in virtue of there being no datum, and the definition

is left out in order to avoid a mere repetition of the enunciation."

The constituent parts of an Euclidean proposition be readily

identified by means of the above description without further details.

It will be observed that the word /Aos has here a different

.signification from that described in the note to p. Ixx above. Here
it means a closer definition or description of the object aimed at, by

means of the concrete lines or figures set out in the ('; instead

of the general terms used in the enunciation ; and its purpose is to

rivet the attention better, as indicated by Proclus in a later passage,

TLva^ 6.
The other technical use of the word to signify the limitations to

which the possible solutions of a problem are subject is also described

by Proclus, who speaks of determining " whether what is
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sought is impossible or possible, and far it is practicable and in

how many ways*"; and the/ in this sense appears in the

same form in Euclid as in Archimedes and Apollonius. In ApoUo-

nius it is sometimes inserted in the body of a problem as in the

instance ii. 50 [Prop. 50] given below ; in another case it forms the

subject of a separate preliminary theorem, li. 52 [Prop. 51], the

result being quoted in the succeeding proposition ii. 53 [Prop. 52] in

the same way as the Stopta/xo's in Eucl. vi. 27 is quoted in the

enunciation of vi, 28 (see p. cviii).

Lastly, the orthodox division of a problem into analysis and

synthesis appears regularly in Apollonius as in Archimedes. Proclus

speaks of the preliminary analysis as a way of investigating the

more recondite problems ( ) ; thus it

happens that in this respect Apollonius is often even more formal

than Euclid, who, in the Elements, is generally able to leave out all

the preliminary analysis in consequence of the comparative sim-

plicity of the problems solved, though the Data exhibit the method

as clearly as possible.

In order to illustrate the foregoing remarks, it is only necessaxy

to reproduce a theorem and a problem in the exact form in which

they appear in Apollonius, and accordingly the following propo-

sitions are given in full as typical specimens, the translation on the

right-hand side following the Greek exactly, except that the letters

are changed in order to facilitate comparison vit^l the same propo-

sitions as reproduced in this work and with the corresponding

figures.

III. 54 [Prop. 75 Avith the first figure].

)/ Trepi- If two straight hncs touching a

(( - section of a cune or the circum-, 8e ference of a circle meet, and through

Tois(, Koi the points of contact parallels be

npos TO avTo( drawn to the tangents, and from

fxjOi'iai. - the points of contact straight lines, TO be drawn through the same point of€( the curve cutting the parallels, the(' - rectangle contained by the inter-

vov/ e';(et tK Te ccpts bejirs to the square on the

, ov (( (' line joining the points of contivct( \ the ratio compounded [1] of that8(.( which the square of tlie inner SOg-

* Proclus, p. 202.
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ment of the line joining the point

of concourse of the tangents and

the point of bisection of the line

joining the points of contact bears

to the square of the remaining seg-

ment, and [2] of that which the

rectangle contained by the tangents

bears to the fourth part of the

square on the line joining the

points of contact.

Let QPQ' be a section of a cone

or the circumference of a circle and

QT, Q'T tangents, and let QQ' be

joined and bisected at V, and let

TPV be joined, and let there be

drawn, from Q, Qr parallel to Q'T
and, from Q', Q'r' parallel to QT,

and let any point R be taken on the

curve, and let QR, (^R be joined

and produced to /, r. I say that

the rectangle contained by Qr, Q'r'

has to the square on Q(/ the ratio

compounded of that which the

square on VP has to the square on

PT and that which the rectangle

under QTQ'*h!ifi to the fourth part

of the square on QQ', i.e. the rect-

angle under Q VQ'.

For let there be dra\vn, from R,

KRWR'K', and, from P, LPL'
parallel to QQ' ; it is then clear

that LL' is a tangent. Now, since

QV is equal to VQ', LP is also

equal to PL' and KW to WK' and

R]V to WR' and KR to R'K'.

Since therefore LP, LQ are tan-

gents, and KRK' is drawn parallel

to LP, as the square on QL is to

the square on LP, that is, the rect-

angle under LPL', so is the square

on QK to the rectangle under R'KR,
that is, the reotiingle under K'RK.
And, as the rectangle under L'Q',

* TO , "the rect. under QTQ'," means the rectangle QT. TQ', and
similarly in other cases.



GENERAL CHARACTERISTICS.

. TO Se ,(( ((/ €
npos,

, ," ,
, of c^fi ,• ,, ,. 8f ,

('( ^,/ ', ( , AM

• ,?
f\fi. ( ) , AM? \ ). '

, AM ,
. be,• ,

/ ( BE:.

LQ is to the square on LQ, so is the

rectangle under K'<j', KQ to the

square on KQ ; therefore c.v aerjuo

i\s the rectiingle under L'(J\ LQ is

to the rectangle under LTL, so i.s

the rectangle under K'Q\ KQ to the

rectangle under K'RK. But the

rectangle under K'Q', KQ has to

the rectiingle under K'RK the ratio

compounded of that of Q'K' to A'7?,

that is, oirQ to QQ', and of that of

QK to A7i, that is, of r'•' to Q'Q,

which is the same as the ratio

which the rectangle under r'Q', rQ

has to the square on Q'Q; hence,

as the rectangle mider L'Q', LQ is

to the rectangle under L'PL, so is

the rectangle under r'Q', rQ to the

square on Q'Q. But the rectangle

under Q'L', LQ has to the rectangle

under L'PL (if the rectangle under

L'TL be taken as a me;xn) the ratio

compounded of that Avhich the rect-

angle under Q'L', QL has to the

rectangle under L'TL and the rect-

angle imder L'TL to the rectangle

imder L'PL; hence the rectangle

under r'Q', rQ has to the square on

Q'Q the ratio compounded of that

of the rectangle under Q'L', QL to

the rectangle under L'TI^ and of

the rectangle under L'TL to the

rectangle under L'PL. But, as the

rectangle under L'Q', QL is to the

rectangle under IJTL, so is the

square on VP to the .square on PT,

and, as the rectangle under L'TL is

to the rectangle under7*, .so is the

rectangle under Q'TQ to the rect-

angle under (/ VQ; therefore the rect-

angle under r'<^, rQ has to the .square

on Q(^ the ratio compounded of that

of the square on PV \x> the square

on PT and of the rectangle under

Q'TQ to the rectangle under Q' VQ.
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II. 50 [Prop. 50 (Problem)].

(So far as relating to the hyperbola.)

8<)(! (-€,
iVi

/ ^'/;(.
" , (-, \«( ,( ,

\((( \ •
8(• 6 yap

'.
be

fOTi8• doOe'iaa, . \

^'- \( 8€. \'
• 8( .
8 ( 88 eV €8- .• .• ^ .

\•
(((.( .( (

). 8(( ( (8€( (
tivai ((.

draw a tangent to a given

section of a cone which shall make

with the axis towards the same

parts with the section an angle

equal to a given acute angle.

* # *

Let the section be a hyperbola,

and suppose it done, and let FT be

the tangent, and let the centre C of

the section be taken and let PC be

joined and P^V be perpendicular ;

therefore the ratio of the rectangle

contained by CNT to the square on^ is given, for it is the same as

that of the transverse to the erect.

And the ratio of the square PN to

the square on NT is given, for each

of the angles PTJV, TNP is given.

Therefore also the ratio of the rect-

angle under CNT to the square on

NT is given ; so that the ratio of

CN to NT is also given. And the

angle at is given ; therefore also

the angle at C is given. Thus with

the straight line CN [given] in posi-

tion and at the given point C a

certain straight line PC has been

drawn at a given angle ; therefore

PC is [given] in position. Also the

section is [given] in position ; there-

fore is given. And the tangent

has been drawn ; therefore PT
is [given] in position.

Let the asymptote LC of the

section bo drawn ; then PT pro-

duced will meet the asymptote.

Let it meet it in L ; then the angle

LT^^ will be greater than the angle

LCT. Therefore it will be necessary

for the s^'uthcsis that the given

acute angle should bo greater than



GENERAL CHARAiTERISTICS. xcm

( )\ -- (< ( bodflaa€,
, 8 ,8( (, .\

] , \
]

,( , trrt

, «
. iVel (\, (\ 8( \

, , ,
, .

\oyov ((( • \ ?
\oyov ((. \( \oyov (.

Trpof , ;

\ \ e\fi^ .
( 8,,,^ .• \^. ' ', \(,. (€,, ,

•

' \(((((, \ ((. 8
) " •.
, \ , \ •

the half of that contained by the

asymptotes.

Thus the .synthesis of the prob-

lem will proceed as follows : let the

given hyperl>ola he that of which

.LI' isthe axis and CZim asymptote,

and the given acute angle (being

greater than the angle ACZ) the

angle FED, and let the angle FEII
be equal to the angle ACZ, and let

AZhe drawn from A at right angles

to J.l', and let any point D be

taken on DE, and let a perpendicu-

lar I)F be drawn from it upon EF.

Then, since the angle ZCA is equal

to the angle ffEF, and also the

angles a,t A, F are right, as CA is to

AZ, so is EF to FIT. But EF has

to FIT a greater ratio than it hiis to

FD ; therefore also CA has to AZ a

greater ratio than EF has to FD.

Hence also the .square on CA has to

the square on A a greater ratio

than the square on EF has to the

square on FD. And, as the square

on C.i is to the square on AZ, so is

the transverse to the erect ; therefore

also the transverse has to the erect

a greater ratio than the square on

EF has to the square on FD. If

then we make, as the square on CA
to the square on AZ, so some other

area to the square on FD, that area

will be greater than the square on

EF. Let it be the rectangle under

KFE; and let Z)A' be joined. Then,

since the square on KF is greater

than the rectangle under KFE, the

square on KF luis to the square on

FD a greater ratio than the rectangle

under KFE has to the square on

FD, that is, the square on CA to

the square on AZ. And if we make,

as the .square on KF to the .siiuare

on FD, so the .square on CA to
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another are;i, [the ratio] will be to a

.smaller area than the square on

AZ; and the straight line joining C
to the point taken will make the

triangles similar, and for this rciX-son

the angle ZCA is greater than the

angle DKF. Let the angle ACT be

made equal to the angle DKF;
therefore CP will cut the section.

Let it cut it at P, and from let

be drawn touching the section,

and 7*iV perpendicular ; therefore

the triangle PCN is similar to

DKF. Therefore, a.s is the square

on CN to the square on NP, so is

the square on KF to the square on

FD. Also, as the transverse is to

the erect, so is both the rectangle

under CNT to the square on NP
and the rectangle under KFE to

the square on FD. And conversely,

as the square on PN is to the

rectangle under CNT, so is the

square on DF to the rectangle under

KFE; thereft)re ex aequo, as the

square on CN is to the rectangle

under CXT, so is the square on KF
to the rectangle under KFE. There-

fore, as CN is to NT, so is KF to

FE. But also, as PN is to NC, so

was DF to FK ; therefore ex aequo,

as is to NT, so is DF to FE.

And the angles at N', F are right

;

therefore the angle at is equal to

the angle DEF.

In connexion with the propositions just quoted, it may not be

out of place to remark upon some peculiar advantages of the Greek

language as a vehicle for geometrical investigations. Its richness

in grammatical forms is, from this point of view, of extreme import-

ance. For instance, nothing could be more elegant than the regular

u.se of the perfect imperative passive in constructions; thus, Avhere

we should have to say " let a perpendicular be drawn " or, more

peremptorily, "draw a perpendicular," the Greek expression is
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been drawn" or "suppose it drawn," and similarly in all other cases,

e.g. •€•, €€,,, ;^,
and the like. Neatest of all is the word' with which the

analysis of a problem begins, " suppose it done." The same form is

used very effectively along with the usual expression for a propor-

tion, e.g., ; HK? KE, ? EM, which can

hardly be translated in English by anything shorter than " Let

be so taken that is to as to KE."

Again, the existence of the separate masculine, feminine and

neuter forms of the definite article makes it possible to abbreviate

the expressions for straight lines, angles, rectangles and squares by

leaving the particular substantive to be understood. Tims ; is

77 (), tJie line; - or the word

understood is and the meaning is the aiujle (i.e. the angle

contained by AB and) ; or is( or-), the rectangle contained by AB, ; AB
is AB(^), tJie square on AB. The result is that much
of the language of Greek geometry is scarcely less concise than the

most modern notation.

The closeness with which Apollonius followed the Euclidean

tradition is further illustrated by the exact similarity of language

between the enunciations of Apollonius' propositions about the conic

and the corresponding propositions in Euclid's third Book about

circles. The following are some obvious examples.

Eucl. III. 1. Ap. II. 45,

ToO iVf/j-

(. KfVTpov tvpuv.

Eucl. in. 2. . I. 10.

fVi 7repi0epiiaf '" /, fVi (, pev fVi •((-
(.( evuela ( (vdeui( ,. (( (.

Eucl. . 4, . II. 26.

« ( ' iv (Kkti^ft tj ntpi-, ( (. ,.
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Eucl. III. 7.

e»ri(, (\,/ (' Tivts,(' ( (, '' ,( Se , 8 ae\

(yyiov

(, 8 8e€
('(.

. V. 4 and 6.

(Translated from Halley.)

If a point be taken on the axis

of an ellipse whose distance from

the vertex of the section is equal to

half the latus rectum, and if from

the point any straight lines what-

ever be drawn to the section, the

least of all the straight lines drawn

from the given point will be that

which is equal to half the latus

rectum, the greatest the remaining

part of the axis, and of the rest

those which are nearer to the least

will be less than those more re-

mote

As an instance of Apollonius' adherence to the conceptions of

Euclid's Elements, those propositions of the first Book of the Conies

may be mentioned which first introduce the notion of a tangent.

Thus in I. 17 we have the proposition that, if in a conic a straight

line be drawn through the extremity of the diameter parallel to the

ordinates to that diameter, the said straight line will fall without

the conic ; and the conclusion is drawn that it is a tangent. This

argument recalls the Euclidean definition of a tangent to a circle as

" any straight line which meets the circle and being produced does

not cut the circle." We have also in Apollonius as well as in Euclid

the proof that no straight line can fall between the tangent and the

curve. Compare the following enunciations :

Eucl. HI. 16.

8(" (^\, ( (
( ((( (((
(( /.

. . 32.

8(
), , els( (
\ ( tvuda (-.

Another instance of the orthodoxy of Apollonius is found in the

fact that, when enunciating propositions as holding good of a circle

as well as a conic, he speaks of " a hyperbola or an ellipse or the

circumference of a circle," not of a circle simply. In this he follows

the practice of Euclid based upon his definition of a circle as "a
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plane figure bounded by one line." It is only very exceptionally

that the word circle alone is used to denote the circumference of the

circle, e.g. in Euclid iv. 16 and Apollonius i. 37.

§ 2. Planimetric character of the treatise.

Apollonius, like all the Greek geometers whose works have come

dovn to us, uses the stereon\etric origin of the three conies as

sections of the cone only so far as is necessary in order to deduce

a single fundamental plane property for each curve. This plane

property is then made the basis of the further development of the

theory, proceeds without further reference to the cone, except

indeed when, by way of rounding-ofl' the subject, it is considered

necessary to prove that a cone can be found Avhich will contain any

given conic. As pointed out above (p. xxi), it is probable that the

discovery of the conic sections was the outcome of the attempt of

Menaechmus to solve the problem of the two mean proportionals by

constructing the plane loci represented by the equations

ar - ay, y^ - bx, xy = ah,

and, in like manner, the Greek geometers in general seem to have con-

nected the conic sections with the cone only because it was in their

view necessary to give the curves a geometrical definition expressive

of their relation to other known geometrical figures, as distinct from

an abstract definition as the loci of points satisfying certain conditions.

Hence finding a particular conic was understood as being synonymous

with localising it in a cone, and we actually meet with this idea in

Apollonius i. 52—58 [Props. 24, 25, 27], where the problem of

" finding" a parabola, an ellipse, and a hyperbola satisfying certain

conditions takes the form of finding a cone of Avhich the required

curves are sections. Menaechmus and his contemporaries would

perhaps hardly have ventured, without such a geometrical defini-

tion, to regard the loci represented by the three equations as being

really curves. When however they were found to be producible by

cutting a cone in a particular manner, this fact 38 a sort of

guarantee that they Avere genuine curves ; and there was no longer

any hesitation in proceeding with the further investigation of their

properties in a plane, without reference to their origin in the cone.

There is no reason to suppose that the method adopted in the

Solid Loci of Aristaeus was diflferent. We know from Pappus that

Aristaeus called the conies ])y their original names ; whereas, if (as

H.C. ^''^^^^""• •-

. U
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the title might be thought to imply) he had used in his book the

methods of solid geometry, he would hardly have failed to discover

a more general method of producing the curves than that implied by

their old names. We may also assume that the other predecessors

of Apollonius used, equally with him, the planimetric method ; for

(1) among the properties of conies which were well-known before

his time there are many, e.g. the asymptote-properties of the

hyperbola, vhich could not have been evolved in any natural way

from the consideration of the cone, (2) there are practically no

traces of the deduction of the plane properties of a conic from other

stereometric investigations, even in the few instances where it would

have been easy. Thus it would have been easy to regard an ellipse

as a section of a right cylinder and then to prove the property of

conjugate diameters, or to find the area of the ellipse, by projection

from the circular sections ; but this method does not appear to have

been used.

§ 3. Definite order and aim.

Some Avriters liave regarded the Conies as wanting in system and

containing merely a bundle of propositions thrown together in a

hap-hazard way without any definite plan having taken shape in the

author's mind. This idea may have been partly due to the words

used at the beginning of the preface, where Apollonius speaks of

having put down everything as it occurred to him ; but it is clear

that the reference is to the imperfect copies of the Books Avhich

had been communicated to various persons before they took their

final form. Again, to a superficial observer the order adopted in the

first Book might seem strange, and so tend to produce the same

impression ; for the investigation begins with the properties of the

conies derived from the cone itself, then it passes to the properties

of conjugate diameters, tangents, etc., and returns at the end of the

Book to the connexion of particular conies with the cone, which is

immediately dropped again. But, if the Book is examined more

closely, it is apparent that from the beginning to the end a definite

object is aimed at, and only such propositions are given as are

necessary for the attainment of that object. It is true that they

contain plane properties which are constantly made use of after-

wards ; but for the time being they are simply links in a chain of

proof loading to the conclusion that the parabolas, ellipses and

hyperbolas which Apollonius obtains by any possible section of any
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kind of circular cone are identical with those which are produced

from sections of cones of revolution.

The order of procedure (leaving out unnecessary details) is as

118. First, we have the property of the conic which is the

equivalent of the Cartesian equation referred to the particular

diameter which emerges from the process of cutting the cone, and

the tangent at its extremity, as axes of coordinates. Next, we are

introduced to the conjugate diameter and the reciprocal relation be-

tween it and the original diameter. Then follow properties of tangents

(1) at the extremity of the original diameter and (2) at any other

point of the curve which is not on the diameter. After these come

a series of propositions leading up to the conclusion that any new
diameter, the tangent at its extremity, and the chords parallel to

the tangent (in other words, the ordinates to the new diameter)

have to one another the same relation as that subsisting between the

original diameter, the tangent at its extremity, and the ordinates

to it, and hence that the equation of the conic when referred to

the new diameter and the tangent at its extremity is of the same

form as the equation referred to the original diameter and tangent*.

Apollonius is now in a position to pass to the proof of the

proposition that the curves represented by his original definitions

can be represented by equations of the same form with reference to

reciangulm• axes, and can be produced by mean.s of sections of right

cones. He proceeds to propose tlie problem "to find" a parabola,

ellipse, or hyperbola, when a diameter, the angle of inclination of its

ordinates, and the corresponding parameter are given, or, in other

words, when the curve is given by its equation referred to given

axes. "Finding" the curve is, as stated above, regarded as

synonymous with determining it as a section of a right circular

cone. This Apollonius does in two steps : he first assumes that the

ordinates are at right angles to the diameter and solves the problem

for this particular case, going back to the method followed in his

original derivation of the curA'es from the cone, and not using any of

the results obtained in the intervening plane investigations ; then,

secondly, he reduces the case where the ordinates are not perpen-

* The definiteness of the design up to this point is attested by a formal

recapitulation introduced by Apollonius himself at the end of i. 51 and

concluding with the statemt-nt that " all the properties which have been shown

to be true with regard to the sections by reference to the original diameters

will equally result when the other diameters are taken."

9^
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dicular to tlie diaiiieter to tlie former case, proving by his procedure

that it is always possible to draw a diameter which is at right angles

to the chords bisected by it. Thus what is proved here is not the

mere converse of the first propositions of the Book. If that had

been all that intended, the problems would more naturally have

followed directly after those propositions. It is clear, hoAvever, that

the solution of the problems as given is not possible without the

help of the intermediate propositions, and that Apollonius does in

fact succeed in proving, concurrently with the solution of the

problems, that there cannot be obtained from oblique cones any

other curves than can be derived from right cones, and that all

conies have axes.

The contents of the first Book, therefore, so far from being a

fortuitous collection of propositions, constitute a complete section of

the treatise arranged and elaborated Avith a definite intention

throughout.

In like manner it will be seen that the other Books follow,

generally, an intelligible plan ; as, however, it is not the object of

this introduction to give an abstract of the work, the remaining

Books shall speak for themselves.



CHAPTER III.

THE METHODS OF APOLLONIUS.

As a preliminary to the consideration in detail of the methods

era[)loyed in the Conies, it may be stated generally tliat they follow

steadily the accepted principles of geometrical investigation which

found their definitive expression in the Elements of Euclid. Any

one who has mastered the Elements can, if he remembers Avhat

he gradually learns as he proceeds in his reading of the Conies,

understand every argument of which Apollonius makes use. In

order, however, to thoroughly appreciate the whole course of his

thought, it is necessary to bear in mind that some of the methods

employed by the Greek geometers were much more extensively used

than they are in modern geometry, and were consequently handled

by Apollonius and his contemporary readers witli much greater

deftness and facility than would be possible, without special study,

to a modern mathematician. Hence it frequently happens that

Apollonius omits an intermediate step such as a practised mathema-

tician would now omit in a piece of algebraical work which was

not intended for the mere beginner. In several such instances

Pappus and Eutocius think it necessary to supply the omission by a

lemma.

§ 1. The principal machinery used by Apollonius as well as by

tlie earlier geometers comes under the head of what has been not

inappropriately called a geometrical Algebra; and it will be

convenient to exhibit the part which this plays in the Conies under

the following important subdivisions.

(1) The theory of proportions.

This theory in its most complete form, as expounded in the fifth

and sixth Books of Euclid, lies at the very root of tiie systeiu of
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ApoUoiiius ; and a very short consideration suffices to show how far

it is capable of being used as a substitute for algebraical operations.

Thus it is obvious that it supplies a ready method of effecting the

operations of multiplication and division. Again, suppose, for

example, that we have a series in geometrical progression consisting

of the terms a^, cti, a» ... ,, so that

We have th
\aj a^ V a„

Thus the continued use of the method of proportions enables an

expression to be given for the sum of the geometrical series (cf. the

summation in Eucl. ix. 35).

(2) The application of areas.

AVhether the theory of proportions in the form in Avhich Euclid

presents it is due to Eudoxus of Cnidus (408—355 B.C.) or not,

there is no doubt that the method of application of areas, to which

allusion has already been made, was used much earlier still. AVe

have the authority of the pupils of Eudemus (quoted by Proclus on

Euclid I. 44) for the statement that "these propositions are the

discoveries of the Pythagorean muse, the application of areas, their

exceeding, and their falling short" (17 tc

\ eX\enj/i<;), Avhere we find the very terms afterwards

applied by Apollonius to the three conic sections on the ground of

the corresponding distinction between their respective fundamental

properties as presented by him. The problem in Euclid i. 44 is " to

apply to a given straight line a parallelogram which shall be equal

to a given triangle and have one of its angles equal to a given

rectilineal angle." The solution of this clearly gives the means of

addimj together or subtracting any triangles, parallelograms, or other

figures which can be decomposed into triangles.

Next, the second Book of Euclid (with an extension vhich is

found in vi. 27—29) su^jplies means for solving the problems of

modern algebra so long as they do not involve expressions above the

second degree, and provided, so far as the solution of quadratic

equations is concerned, that negative and imaginary solutions are

excluded ; the only further qualification to be borne in mind is

that, since negative magnitudes are not used in Greek geometry,
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it is often necessary to solve a problem in two parts, with dillerent

figures, where one solution by algebra would cover both cases.

It is readily seen that Book ii. of the Elements makes it possible

to multiply two factors with any number of linear terms in each
;

and the compression of the result into a single product follows by

the aid of the a]rplication-i\\QorQn\. That theorem itself supplies a

method of dividing the product of any two linear factors by a third.

The remaining operations for Avhich the second Book affords the

means are, however, the most important of all, namely,

(a) the iinding of a square whose area is equal to that of a

given rectangle [ii. 14], which ])roblem is the equivalent of extract-

ing the square root, or of the solution of a pure quadratic equation,

(I)) the geometrical solution of a mixed quadratic equation,

wliich can be derived from ii. 5, 6.

In the first case {a) we produce the side of the rectangle to

E, making BE equal to BC ; then bisect in F, and, vith F
as centre and radius FE, draw a circle meeting CB produced in G.

Then FG'^FB'+BG\

Also FG' = FE'^AB.BE^FB ',

whence, taking away the common FB",

BG- = AB.BE.

This corresponds to the equation

X* =( •(1).

and BG or is found.

In the second case (6) we have, if A is divided cijually at C

and unequally at Z>,

A /J. Dli + CD' - Cn-. [Eucl. II.
').J

Now suppose All -a, UB-x.



CIV INTRODUCTION TO AJ'OLLONIUS.

Tlien ax — a* = rect. A
= the gnomon CMF.

Thus, if the area of the gnomon is given (= h^, say), and if a is given

(-^ AB), the problem of solving the equation

ax — x° -b'

is, in the language of geometry, " To a given straight line (a) to

apply a rectangle which shall be equal to a given square {b') and

by a square,^' i.e. to construct the rectangle AJf.

A
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It is clear that it is a necessary condition of tlic possibility of a

eal solution that Ir must not be greater than
( ?: ) , and that tlu•

geometrical solution derived from Euclid does not differ from our

practice of soh'ing a quadratic by completing the square on the side

containing the terms in a;' and ic*.

To show how closely Apollonius keeps to this method and to the old

terminology connected therewith, we have only to compare his way

of describing the foci of a hyperbola or an ellipse. .He says, " Let

a rectangle equal to one fourth part of the 'tiguTe' [i.e. equal to

CB-] be applied to the axis at either end, for the hyperbola or the

opposite brandies exceeding, but for the ellipse deficient, by a

square " ; and the case of the ellijjse corresponds exactly to the

solution of the equation just given.

* It will be observed that, while in this case there are two geometrically

real solutions, Euclid gives only one. It must not however be understood from

this that he was unaware that there are two solutions. The contrary may be

inferred from the proposition vi. 27, in which he gives the stating the

necessary condition corresponding to b-^l-\ ; for, although the separate treat-

ment, in the text translated by Simson, of the two cases where the base of the

applied parallelogram is greater and less than half the given line appears to

be the result of interpolations (see Heiberg's edition. Vol. n. p. 161), the dis-

tinction is perfectly obvious, and we must therefore assume that, in the case

given above in the text, Euclid was aware that x =AD satisfies the equation as

well as x — BD. The reason why he omitted to specify the former solution is no

doubt that the rectangle so found would simply be an equal rectangle but on BD
as base instead of AD, and therefore there is no real object in distinguishing

two solutions. This is easily understood when we regard tlie equation as a

statement of the problem of finding two quantities whose sum («) and product

(//-) are given, i.e. as equivalent to the simultaneous equations

x + y = a,

x)j = b\

These symmetrical equations have really only one solution, as the two

apparent solutions are simply the result of interchanging the values of .r and ij.

This form of the problem was known to Euclid, as appears from Prop. 86 of the

Data (as translated by Simson) :
" If two straight lines contain a parallelogram

given in magnitude, in a given angle ; if both of them together be given, they

shall each of them be given."

From Euclid's point of view the equations next referred to in the text

x^i^ax = b'^

have of course only one solution.
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Again, from the proposition in Euclid ii. 6, ha\e, if A is

bisected at C and produced to JJ,

AD.Dn + CB'^CD\

A C/

L "'

G F

Let us suppose that, in Euclid's figure, AB - a, BD = x.

Then AD.DB = ax + x\

and, if this is equal to b" (a given area), the solution of the equation

ax + - — 1/

is equivalent to finding a gnomon equal in area to 6* and having as

one of the sides containing the inner right angle a straight line

equal to the given length CB or -
. Thus ve know -

j and />', and

we have to find, by the Pythagorean proposition, a square equal to

the sum of two given squares.

To do this Simson draws BO at right angles to vl^ and equal to

0, joins CO, and describes with centre C and radius CO a circle

meeting A produced in D. Thus BD, or x, is found.

Now AD. DB + CB--^ CD-

= C0'

= CB' + B0\

whence A1).DB = B0\

or «a; + ,* — 6*.

This solution corresponds exactly to Apollonius' determination of

the foci of the hyperhola.
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The equation x' — ax = 6"

can be dealt witli in a similar manner.

If AB^a, and if wo suppose the problem solved, so that

AD - X, then

,t• - — ax = AM = the gntnnon CMF,

and, to find the gnomon, we have its area ('), and the area Cli'

1• (0 by which the trnomon diflers from CJ)'. Thus we can find

D (and therefore AD, or x) by the same construction as in the case

innnediately preceding.

Hence Euclid has no need to treat this case separately, l)ecause

it is the same as the preceding except that here is equal to AD
instead of BD, and one solution can be derived frou) the other.

So far Euclid has not put his propositions in the form of an

actual solution of the quadratic equations referred to, though he

has in ii. 5, 6 supplied the means of solving them. In vi. 28, 29

however he has not only made the problem more general by

substituting for the sqttare by Avhich the required rectangle is to

exceed or fall short a paraUelograni similar and similarly situated to

a given parallelogram, but he has put the propositions in the form

of an actual solution of the general quadratic, and has prefixed to

the first case (the deficiency by a parallelogram) the necessary

condition of possibility [vi. 27] corresponding to the obvious

/09 referred to above in connection with the equation

ax — - = h'.

Of the problems in vi. 28, 29 Simson rightly says " These two

problems, to the first of which the 27th prop, is necessary, are the

most general and useful of all in the elements, and are most

frequently made use of by the ancient geometers in the solution of

other problems ; and therefore are very ignorantly left out by Tacquet

and Dechales in their editions of the Elements, who pretend that they

are scarce of any use.*
"

* It is strange that, notwithstanding this observation of Sinisun's, the three

propositions vi. 27, 28, 29 are omitted from Todhunter's Euchd, which contains

a note to this effect :
" We have omitted in the sixtli Book I'ropositious 27, 28,

29 and the first solution which Euchd gives of Proposition 30, as they appear

now to be never required and have been condemned as useless by various

modern commentators ; see Austin, Walker, and Lardner."

I would suggest that all three propositions should be at once restored to the

text-books of Euclid with a note explaining their mathematical significance.
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The enunciations of these propositions are as follows* :

VI. 27. " Of all the parallelograms ajrplied to the same straight

line and deficient hij jmrallelogravis similar and similarly situated to

that which is described upon the half of the line, that tchich is applied

to the half and is similar to its defect, is greatest.

VI. 28. " To a given straight line to apply a parallelogram equal

to a given rectilineal figure and deficient by a jmralMogram similar

to a given jiarallelogram : But the given rectilinealfigure must not he

greater than tlie parallelogram applied to half of the given line and

similar to tloe defect.

VI. 29. " To a given straight line to apply a parallelog7-am equal

to a given rectiliiieal figure and exceeding by a parallelogra7n similar

to a given one."

Corresponding propositions are found among the Data of Euclid.

Thus Prop. 83 states that, ^' If a parallelogram equal to a given

space be applied to a given straight line, deficient by a parallelogi-am

given in species, the sides of the defect are given," and Prop. 8-4 states

the same fact in the case of an excess.

It is worth while to give shortly Euclid's proof of one of these

propositions, and vi. 28 is accordingly selected.

* The translation follows the text of Heiberg's edition of Euclid (Teubner,

1883-8).
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Let AJi be the given stniiglit line, C the given area, D the

parallelogram to which the (Iffcct of th(> roquired parallelogram is to

be similar.

Bisect AB at JE, and on describe a parallelogram OEBF
similar and similarly situated to D [by vi. 18]. Then, by the

[vi. 27], AG must be either equal to C or greater than it.

If the former, the problem is solved ; if the latter, it follows that

the parallelogram EF is greater than C.

Now construct a parallelogram LKNM equal to the excess of

EF over C and similar and similarly situated to D [vi. 25].

Therefore LKNM is similar and similarly situated to EF, while,

if GE, LK, and GF, LM, are homologous sides respectively,

GE>LK, and GF>LM.

Make GX (along GE) and GO (along GF) equal respectively to

LK^ LM, and complete the parallelogram XGOP.
Then GPB must be the diagonal of the parallelogram GB

[vi. 26]. Complete the figure, and we have

EF = C + KM, by construction,

and XO = KM.

Therefore the difference, the gnomon EliO, is equal to C.

Hence the parallelogram TS, which is equal to the gnomon, is

equal to C.

Suppose now that AB -a, SP = x, and that : c is the ratio of

the sides KN, LK of the parallelogram LKNM to one another ; we

then have, if m is a certain constant,

TB = m . ax,

b ,= m.- -,
c

b . C
so that ax— = — .

c in

Proposition 28 in like manner solves tln^ ('(juation

b C
ax + - X' =

c m
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If we compare these equations witli those by which Apollonius

expresses the fundamental property of a central conic, viz.

it is seen that the only difference is that takes the place of a and,

instead of any parallelogram whose sides are in a certain ratio, that

particular similar parallelogram is taken whose sides are />, d.

Further, Apollonius draws ;; at right angles to d. Subject to these

differences, the phraseology of the Conies is similar to that of

Euclid : the square of the ordinate is said to be equal to a rectangle

"applied to "a certain straight line (i.e. ^;»), "having as its width "

(5) the abscissa, and " falling short (or exceeding) by a

figure similar and similarly situated to that contained by the

diameter and the parameter."

It be seen from what has been said, and from the book

itself, that Apollonius is nothing if not orthodox in his adherence to

the traditional method of application of areas, and in his manipula-

tion of equations between areas such as are exemplified in the

second Book of Euclid. From the extensive use Avhich is made of

these principles we may conclude that, where equations between^

areas are stated by Apollonius without proof, though they are not

immediately obvious, the explanation is to be found in the fact

that his readers as well as himself Avere so imbued with the methods

of geometrical algebra that they were naturally expected to be

able to work out any necessary intermediate step for themselves.

And, with regard to the manner of establishing the results assumed

by Apollonius, we may safely infer, with Zeuthen, that it was

the practice to prove them directly by using the procedtire of the

second Book of the Elements rather than by such combinations and

transformations of the results obtained in that Book as we find in

the lemmas of Pappus to the propositions of Apollonius. The

kind of result most frequently assumed by Apollonius is some

relation between the products of pairs of segments of a straight

line divided by points on it into a number of parts, and Pappus'

method of proving such a relation amounts practically to the pro-

cedure of modern algebra, whereas it is niore likely that Apollonius

and his contemporaries would, after the manner of yeonietrical

algebia, draw a figure showii;g the various rectangles and squares,

and thence, in many cases by simple inspection, conclude e.g. that

one rectangle is equal to the sum of two others, and so on.

\
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An instance will make this clear. In Apollonius in. 2G

[Prop. 60] it is assumed that, if E, , B, C, D he points on a line

in the order named, and if AB = CD, then

EC.EB = AB. BD + ED..

This appears at once if we set oft' EB' perpendicular and equal

to EB, and A' along EB' equal to A, and if we complete the

parallelograms as in the figure*.

Similarly Eutocius' lemma to ill. 29 [Prop. 61] is more likely to

represent Apollonius' method of proof than is Pappus' 6th lemma

to Book III. (ed. Hultsch, p. 949).

(3) Graphic representation of areas by means of aux-

iliary lines.

The Greek geometers were fruitful in devices for the compression

of the sum or difference of the ai-eas of any rectilineal figures into a

single area ; and in fact the Elements of Euclid furnish the means

of effecting such compression generally. The Conies of Apollonius

contain some instances of similar procedure which deserve mention

for their elegance. There is, first, the representation of the area of

the square on the ordinate y in the form of a rectangle whose base

is the abscissa x. AVhile the procedure for this purpose is, in

* On the other hand Pappus' method is simply to draw a line with points on

it, and to proceed semi-algebraically. Thus in tliis case [Lemma 4 to Book ni.,

p. 947] he proceeds as follows, first bisecting BC in Z.

CE.EB + BZ-^= EZ\

DE.EA+AZ-^=EZ^,

AZ-^= CA.AB + BZ-.

CE . EB + I}Z-^ = DE . EA + CA .AD + BZ\

CE.EB =DE . A + CA.A B,

and

while

It follows that

whence

(and CA = BD).
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form, closely connected with the traditional application of areas,

its special neatness is due to the use of a certain auxiliary line.

The Cartesian equation of a central conic referred to any diameter

of length d and the tangent at its extremity is (if (/' be the length

of the conjugate diameter)

, d" -d" ,

and the problem is to express the right hand side of the equation in

the form of a single rectangle xY, in other words, to find a simple

construction fur }' where

^ d" _d"

Apollonius' device is to take a length such that

_ (-

d~'d''

(so that is the parameter of the ordinates to the diameter of

length d). If PP' be the diameter taken as the axis of x, and

the origin of coordinates, he draws PL perpendicular to PP' and of

length p, and joins P'L. Then, if PV = x, and if VB drawn parallel

to PL meets P'L in R we have (using the figures of Props. 2, 3), by

similar triangles,

p_VB _ Vli

d~ P'V~d + x'

so that VP ^]) + - X

= Y,

and the construction for is therefore effected.

Again, in v. 1-3 [Prop. 81], another auxiliary line is used

for expressing y"^ in the form of an area standing on a; as base

in the particular case whei-e y is an ordinate to the axis. AM is

drawn perpendicular to' and of length equal to ^ (where p„ is

the parameter corresponding to the axis A A'), and CM is joined.

Tf the urdinate 7W meets CM in //, it is then proved that

»/ 2 (quadrilateral MA Xll).



THE METHODS OF APOLLONirs. Cxiii

Apollonius then proceeds in v. 9, 10 [Prop. 86] to give, by means of

a second auxiliary line, an extremely elegant construction for an
area equal to the difference between the squai-e on a normal PG
and the square on P'G, where P' is any other point on the curve

than P'. The method is as foUoAvs. If PN is the ordinate of P,

measure XG along the axis away from the nearer vertex so that

NG :CN^p^'.AA'[^ CB' : CA'].

In the figures of Prop. 86 let PN produced meet CM in //, as

before. GH is now joined and produced if necessary, forming the

second auxiliary line. It is then proved at once that NG - Nil,

and therefore that

NG'- = 2 NGH,

and similarly that NV = 2 N'GH'.

Hence, by the aid of the expression for y^ above, the areas PG'
and P'G' are exhibited in the figures, and it is proved that

P'G' -PG' = 2A HKH',

so that have in the figures a graphic representation of the

difference between the areas of the two squares effected by means

of the two fixed auxiliary lines CM, GH.

(4) Special use of auxiliary points in Book VII.

The seventh Book investigates the values of certain quadratic

functions of the lengths of any two conjugate diameters PP', DD'
in central conies of different excentricities, with particular reference

to the maximum and minimum values of those functions. The

whole procedure of Apollonius depends upon the reduction of the

ratio CP' : CJ)'^ to a ratio between straight lines MH' and Mil,

where //, //' are fixed points on the transverse axis of the hyperbola

or on either axis of the ellipse, and is a variable point on the

same axis determined in a certain manner with reference to the

position of the point P. The proposition that

PP" : DD" = MH' : Mil

appears in vii. 6, 7 [Prop. 127], and the remainder of the Book is a

sufticient proof of the effectiveness of this formula as the geometrical

substitute for algebraical operations.

The bearing of the proposition may be exhibited as follows, with

the help of the notation of analytical geometry. If the axes of

H. c. h
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coordinates are the principal axes of the conic, and if a, h are the

lengths of the axes, we have, e.g., in the case of the hyperhoL•,

cp.,ci>'
^<"^-^-) -{(!)" -(!)}

CP*-GD* (
where .'>•, y are the coordinates of P.

Eliminating y by means of the equation of the curve, we obtain

CP'-CD'

Apollonius' procedure is to take a certain fixed point // on the

axis whose coordinates are (A, 0), and a variable point whose

coordinates are {x , 0), such that the numerator and denominator of

the last expression are respectively equal to 2ax', 2ah ; whence the

fraction is itself equal to j , and we have

and

h _a'-b'
(i)>

2

From (1) we derive at once

"'=4.»
(2).

whence AH : A'll=¥ : or

^p^iAA'.
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Thus, to find J7, we have only to divide ' in the ratio p„ : AA'.

This is what is done in vii. 2, 3 [Prop. 124].

£1' is similarly found by dividing A'A in the same ratio 2\i '. AA',

and clearly AH = A'H', A'H=AH'.
Again, from (2), we have

f , a\ a'

In other vords, A A' \A'M=CT: CN
or A'M:AM=CN:TN (3).

If now, as in the figures of Prop. 127, draw AQ parallel to

the tangent at meeting the curve again in Q, AQ is bisected by

CP; and, since AA' is bisected at C, it follows that A'Q is parallel

to CP.

Hence, if QM' be the ordinate of Q, the triangles A'QM', CPN
are similar, as also are the triangles AQM', TPN

;

.•. A'M':AM'=CN:TN.

Thus, on comparison with (3), it appears that coincides with

M' ; or, in other words, the determination of Q by the construction

described gives the position of Af.

Since now //, //', are found, and x', h vere so determined

that

CP' + CD' x'

GP'-CD'~ A'

it follows that CP"" : CD'' = x' + h:x'-h,

or PP" : DO" = MH' : MH.

The construction is similar for the ellipse except that in that case

^^' is divided externally at H, H' in the ratio described.

§ 2. The use of coordinates.

We have here one of the most characteristic features of the

Greek treatment of conic sections. The use of coordinates is not

peculiar to Apollonius, but it will have been observed that the same

point of view appears also in the earlier Avorks on the subject. Thus

Menaechmus used the characteristic property of the paraljola which

we now express by the equation y' —px referred to rectangular axes.

He used also the property of the rectangular hyperbola which is

expressed in our notation by tlie equation xy = c*, where the axes of

coordinates are the asymptotes.

2
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Archimedes too used the same form of equation for the parabola,

while his mode of representing the fundamental property of a

central conic

~— = (const.)

can easily be put into the form of the Cartesian equation.

So Apollonius, in deriving the three conies from any cone cut in

the most general manner, seeks to find the relation between the

coordinates of any point on the curve referred to the original

diameter and the tangent at its extremity as axes (in general

oblique), and proceeds to deduce from this relation, when found, the

other properties of the curves. His method does not essentially differ

from that of modern analytical geometry except that in Apollonius

geometrical operations take the place of algebraical calculations.

We have seen that the graphic representation of the area of y-

in the form of a rectangle on as base, Avhere (;r, y) is any point on

a central conic, was effected by means of an auxiliary fixed line P'Z

whose equation referred to PP', PL as rectangular axes is

That an equation of this form between the coordinates x, repre-

sents a straight line we must assume Apollonius to have been aware,

because we find in Pappus' account of the contents of the first Book

of his separate work on plane loci the following proposition :

" If straight lines be drawn from a point meeting at given angles

two straight lines given in position, and if the former lines are in a

given ratio, or if the sum of one of them and of such a line as bears

a given ratio to the second is given, then the point will lie on a

given straight line"; in other words, the equation

x-\-ay = h

represents a straight line, where a, b are positive.

The altitude of the rectangle whose base is and whose area is

equal to y^ is thus determined by a procedure like that of analytical

geometry except that is found by a geometrical construction

instead of being calculated algebraically from the equation of the

auxiliary line
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If it should seem curious that the .auxilitary line is determined with

reference to an independent (rectangular) pair of coordinate axes

diflferent from the oblique axes to which the conic is itself referred,

it has only to be borne in mind that, in order to show the area y' as

a rectangle, it was necessary that the angle between and }' should

be right. But, as soon as the line P'L was once drawn, the object

vas gained, and the subsidiary axes of coordinates vere forthwith

dropped, so that there was no danger of confusion in the further

development of the theory.

Another neat example of the use of an auxiliary line regarded

from the point of view of coordinate geometry occurs in i. 32

[Prop. 11], where it is proved that, if a straight line be drawn from

the end of a diameter parallel to its ordinates (in other Avords, a

tangent), no straight line can fall between the parallel and the

curve. Apollonius first supposes that such a line can be drawn

from passing through K, a point outside the curve, and the

ordinate KQV is drawn. Then, if y', y be the ordinates of A', Q
respectively, and their common abscissa, referred to the diameter

and tangent as axes, we have for the central conic (figures on pp.

23, 24)
?/''>?/* or xY,

where represents the ordinate of the point on the auxiliary line

PL before referred to corresponding to the abscissa (with PP , PL
as independent rectangular axes).

Let y'^ be equal to xY\ so that Y' > 7, and let Y' be measured

along (so that, in the figures referred to, VR - Y, and YS = Y').

Then the locus of the extremity of for different \'alues of is

the straight line P'L, and the locus of the extremity of Y' for

different points on PK is the straight line Pti. It follows, since

the lines P'L, PS intersect, that there is one point (their intersection

R') where F= Y', and therefore that, for the corresponding points

Q', on the conic and the supposed line PK respectively, y = y , so

that Q', are coincident, and accordingly PK must meet the

curve between and A". Hence cannot lie between the tangent

and the curve in the manner supposed.

Here then we have two auxiliary lines used, viz.

Y^P+'^x,
d

and = mx,
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where m is some constant ; and the point of intersection of PK and

the conic is determined b}' the point of intersection of the two

auxiliary lines ; only here again the latter point is found by a

geometrical construction and not by an algebraical calculation.

In seeking in the various propositions of Apollonius for the

equivalent of the Cartesian equation of a conic referred to other

axes different from those originally taken, it is necessary to bear in

mind what has already been illustrated by the original equation

which forms the basis of the respecti\'^e definitions, viz. that, where

the equivalents of Cartesian equations occur, they appear in the

guise of simple equations between areas. The book contains several

such equations between areas which can either be directly expressed

as, or split up into parts Avhich are seen to be, constant multiples of

x^, xy, y^, X, and y, where x, y are the coordinates of any point on

the curve referi'ed to different coordinate axes ; and we have there-

fore the equivalent of so many different Cartesian equations.

Further, the essential difference between the Greek and the

modern method is that the Greeks did not direct their efibrts to

making the fixed lines of the figure as few as possible, but rather to

expressing their equations between areas in as short and simple a

form as possible. Accordingly they did not hesitate to use a number

of auxiliary fixed lines, provided only that by that means the areas

corresponding to the various terms in cc^, xy, . . . forming the Cartesian

equation could be brought together and combined into a smaller

number of terms. Instances have already been given in which such

compression is efiected by means of one or auxiliary lines. In

the case, then, where auxiliary fixed lines are used in addition

to the original axes of coordinates, and it appears that the properties

of the conic (in the form of equations between areas) can be equally

well expressed relatively to the two auxiliary lines and to the two

original axes of reference, we have clearly Avhat amounts to a

transformation of coordinates.

§ 3. Transformation of coordinates.

A simple case is found as early as i. 15 [Prop. 5], where, for the

ellipse, the axes of reference are changed from the original diameter

and the tangent at its extremity to the diameter conjugate to the

first and the corresponding tangent. This transformation may with

sufficient accuracy be said to be effected, first, by a simple transference

of the origin of coordinates from the extremity of the original diameter
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to the centre of the ellipse, and, secondly, by moving the origin a

second time from the centre to i), the end of the conjugate diameter.

We find in fact, as an intermediate step in the proof, the statement

of the property that {d being the original diameter and d' its

conjugate in the figure of Prop. 5)

(0 the rectangle RT.TE

where x, y are the coordinates of the point Q vith reference to the

diameter and its conjugate as axes and the centre as origin ; and

ultimately the equation is expressed in the old form, only with d'

for diameter and for the corresponding parameter, where

p' _d
d'

'

The equation of the hyperbola as well as of the ellipse referred

to the centre as origin and the original diameter and its conjugate

as axes is at once seen to be included as a particular case in I. 41

[Prop. 16], which proposition proves generally that, if two similar

pai-allelograms be described on CP, CV respectively, and an equi-

angular parallelogram be described on QV such that QV is to the

other side of the parallelogram on it in the ratio compounded of the

ratio of CP to the other side of the parallelogram on CP and of the

ratio;? : d, then the parallelogram on QV is equal to the diiierence

between the parallelograms on CP, CV. Suppose now that the

parallelograms on CP, CV are squares, and therefore that the

parallelogram on (^ is a rectangle ; it follows that

„ fdy d ,

= S.y (1).

Apollonius is now in a position to undertake the transformation

to a different pair of axes consisting of any diameter whatever and

the tangent at its extremity. The method which he adopts is to

use the new diameter as what has been termed an auxiliary fixed

line.

It will be best to keep to the case of the ellipse throughout, in

order to avoid ambiguities of sign. Suppose that the new diameter

CQ meets the tangent at in E, as in the figure of l. 47 [Prop. 21];
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then, if from any point R on the curve tiie ordinate 7? IF is draAvn

to PP\ it is parallel to the tangent PE, and, if it meets CQ in

F, the triangles CPE, CWF are similar, and one angle in each

is that between the old and the new diameters.

Also, as the triangles CPE, CWF are the halves of two similar

parallelograms on CP, CW, -we can use the relation proved in i. 41

[Prop. 16] for parallelograms, provided that we take a triangle on

R W as base such that RWP is one angle, and the side WU lying

along WP is determined by the relation

RW CP
WU~' d'

Apollonius satisfies this condition by draAving i2i7 parallel to QT,

the tangent at Q. The proof is as follows.

From the property of the tangent, i. 37 [Prop. 14],

QV'
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72 TF is to Cr. It then follows that the two triangles 7? 11', CFW
have tlie same relation to the original axes, and to the diameter

QQ', as the triangles RFM, CUM have to the new axes, consisting

of QQ' and the tangent at Q, and to the diameter PP', respectively.

Also the triangle CPE has the same relation to the old axes

that the triangle CQT has to the new.

Therefore, in order to prove that a like relation to that in (2)

above holds between three triangles similarly determined with

reference to CQ, the tangent at Q and the diameter ', it has to

be shown that

CQT- CUM^ AEMF.

The first step is to prove the equality of the triangles CPE,

CQT, as to which see note on i. 50 [Prop. 23] and in. 1 [Prop. 53].

We have then, from (2) above,

acqt-acfw^apuw,
or the quadrilateral QTWF=ARUW,

therefore, subtracting the quadrilateral MUWF from each side,

CQT- A CUM= A RMF,

the property which it was required to prove.

Thus a relation between areas has been found in exactly the

same form as that in (2), but with QQ' as the diameter of reference

in place of PP. Hence, by reversing the process, we can determine

the parameter q corresponding to the diameter QQ', and so obtain

the equation of the conic with reference to the new axes in the same

form as the equation (1) above (p. cxix) referred to PP' and its

conjugate ; and, when this is done, have only to move the origin

from C to ^ in order to effect the complete transformation to the

new axes of coordinates consisting of QQ' and the tangent at Q,

and to obtain the equation

Now the original parameter is determined with reference to

the length {d) of PF by the relation

- ^^' - ^^ ^- = ^^ —
d~ GV.VT~CP' PT~ PT' d

'

OP
so that - -pj, • ^PE

;
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and the corresponding -alue for q should accordingly be given by

the equation

which Apollonius proves to be the case in i. 50 [Prop. 23].

No mention of the parabola has been made in the above, because

the proof of the corresponding transformation is essentially the

same ; but it may be noted here that Archimedes was familiar with

a method of effecting the same transformation for the parabola.

This has been already alluded to (p. liii) as easily deducible from

the proposition of Apollonius.

There is another result, and that perhaps the most interesting

of all, which can be derived from the foregoing equations between

areas. We have seen that

7?/=,- aCFJV,

so that AEUW+ aCFW= aCPjE,

i.e. the quadrilateral CFRU^ ACPE.
Now, if PP', QQ' are fixed diameters, and R a variable point on

the curve, we observe that RU, RF are drawn always in fixed

directions (parallel to the tangents at Q, respectively), Avhile the

area of the triangle CPE is constant.

It follows therefore that, if PP, QQ' are two fixed diameters and

iffrom any point R on the curve ordinates be dravm to PF, QQ'

meeting QQ', PP in F, U respectively, then

the area of the quadrilateral CFRU is constant.

Conversely, if in a quadrilateral CFRU the ttvo sides CU, CF lie

along fixed straight lines, ivhile the two other sides are drawnfrom a

moveable jjoint R in given directions ami meeting the fixed lines, and

if the quadrilateral has a constant area, then the locus of the j)oint R
is an ellipse or a hyperbola.

Apollonius does not specifically give this converse proposition,

nor in fact any proposition stating that this or that locus is a conic.

But, as he says in his preface that his work contains " remarkable

theorems which are useful for the synthesis of solid loci," we must

conclude that among them was the proposition which in effect states

that the area of the quadrilateral CFRU is constant, and that the

converse way of stating it was perfectly well known to him.
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It will be seen from the note to Prop. 18 that the proposition

that the area of GFRU is constant is the equivalent of saying that

the equation of a central conic referred to any two diameters as

axes is

ax' +7/ +/ = ,
where a, , y, A are constants.

It is also interesting to observe that this equation is the equiva-

lent of the intermediate step in the transformation from one diameter

and tangent to another diameter and tangent as axes ; in other

Avords, Apollonius passes from the equation referred to one pair of

conjugate diameters to the equation referred to a second 2)<^i'>' of

conjugate diameters hij means of the more general equation of the

cu7've referred to axes consisting of one of each pair of conjugates.

Other forms of the equation of the conic can be obtained, e.g. by

regarding RF, JiU as fixed coordinate axes and expressing the

constancy of the area of the quadrilateral CF'R'U' for any point R'

with reference to RF^ RU as axes. The axes of reference may

then be any axes meeting in a point on the curve.

For obtaining the equation we may use the formula

CFRU^ CF'R'U',

or the other relations derived immediately from it, viz.

F'lRF^ lUU'R',

or FJR'F'^JU'UR,

which are proved in iii. 3 [Prop. 55].

The coordinates of R' would in this case be R'l, R'J.

Similarly an equation can be found corresponding to the property

in III. [Prop. 54] that

HFQ = quadrilateral IITUR.

Again, in. 54, 56 [Prop. 75] lead at once to the "locus \nth

respect to three lines," and from this we obtain the well-known

equation to a conic with reference to two tangents as axes, where

the lengths of the tangents are h, k, viz.

and, in the particular case of the parabola,

©'HD'
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The latter equation can also be derived directly from in. 41

[Prop. 65], which proves that three tangents to a parabola forming

a triangle are divided in the same proportion.

Thus, if X, y be the coordinates of Q with reference to qR, qP as

axes, and if qp = x^, rq =?/, (cf. the figure of Prop. 65), we have, by

the proposition,
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§ 4. Method of finding two mean proportionals.

It will be remembered that Menaechinus' solution of the problem

of the two mean proportionals was eifected by finding the points of

intersection between any two of the curves

.r* = ay, y^ =^bx, xy = ah.

It is clear that the points of intersection of the first two curves

lie on the circle

x^ + y' — bx — ay = 0,

and therefore that the two mean proportionals can be determined by

means of the intersection of this circle with any one of the three curves.

Now, in the construction for two mean proportionals which is

attributed to ApoUonius, we find this very circle used, and we must

therefore assume that he had discovered that the points of inter-

section of the two parabolas lay on the circle.

We have it on the authority of loannes Philoponus* (who

quotes one Parmenio) that ApoUonius solved the problem thus.

Let the two given unequal straight lines be placed at right

angles, as 0, OB.

Complete the parallelogram and draw the diagonal OC On OC
as diameter describe the semicircle OBC, produce OA, OB, and

through C draw DCFE (meeting OA in D, the circle again in F,

and OB in E) so that DC ^ FE. ''And this is assumed as a

postulate unjn'oved."

Now DC=FE, and therefore DF= CE.

* On the Anal. post.

Vol. II. p. 105.

The passage is quoted iu Heiberg's Apolhnitts,
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And, since the circle on OC as diameter passes through A,

OD.DA=FD.DC
= CE.EF
= OE.EB;

.•. OD:OE = BE:AD (1).

But, by similar triangles,

OD:OE=CB:BE
= OA:BE (2).

Also, by similar triangles,

OJ):OE = OA: AC
=: (3).

It follows from (1), (2) and (3) that

OA:BE = BE:AD = AD.OB',

hence BE, AD are the two required mean proportionals.

The important step in the above is the assumed step of drawing

DE through C so that DC = FE.

If we compare with this the passage in Pappus Avhich says that

ApoH'onius "has also contrived the resolution of it by means of the

sections of the cone*," we may conclude that the point F in the

above figure was determined by draAving a rectangular hyperbola

with OA, OB as asymptotes and passing through C. And this is

the actual procedure of the Arabian scholiast in expounding this

solution. Hence it is sufficiently clear that Apollonius' solution

Avas obtained by means of the intersection of the circle on OC as

diameter with the rectangular hyperbola referred to, i.e. by the

intersection of the curves

o:^ + y^ — bx — ay

xy

The mechanical solution attributed to Apollonius is given by

Eutociust. In this solution M, the middle point of OC, is taken,

and with 3i as centre a circle has to be described cutting OA, OB
produced in points D, such that the line DE passes through C

;

and this, the writer says, can be done by moving a i-^der about C as

a fixed point until the distances of D, (the points in which it

crosses OA , OB) from are equal.

* Pappus in. p. 56. ycip 6o\oyo0nes CTepebv elvai

opyaviKuii \\ 11(•,.
t AicLiniedes, Vol. in. pp. 7G—78.

"
1
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It is clear that this solution is essentially the same as the other,

because, if DC be made equal to FE as in the former case, the line

from J/ perpendicular to DE nmst bisect it, and therefore MD = ME.
This coincidence is noticed in Eutocius' description of the solution of

the problem by Philo Byzantinus. This latter solution is the same

as that attributed by loannes Philoponus to Apollonius except

that Philo obtains the required position for DE by mov-ing the ruler

about C until DC, FE become equal. Eutocius adds that this

solution is almost the same as Heron's (given just before and

identical with the niechanical solution of Apollonius), but that

Philo's method is more con'enient in practice (? (-
Tcpov), because it is, by dividing the ruler into equal and con-

tinuous parts, possible to watch the equality of the lines DC, FE
with much greater ease than to make trial with a pair of compasses( «^€) whether MD, ME are equal*.

It may be mentioned here that, when Apollonius uses the

problem of the two mean proportionals in the Conies, it is for the

purpose of connecting the coordinates of a point on a central conic

with the coordinates of the corresponding centre of curvature, i.e. of

the corresponding point on the evolute. The propositions on the

subject are v. 51, 52 [Prop. 99].

§ 5. Method of constructing normals passing through

a given point.

Without entering into details, for vhich reference should be

made to v. 58-63 [Props. 102, 103], it may be stated generally that

Apollonius' method of finding the feet of the various normals passing

through a given point is by the construction of a certain rectangular

hyperbola vhich determines, by its intersections with the conic, the

required points.

The analytical equivalent of Apollonius' procedure is as follows.

Suppose to be the fixed point through which the

normals are to pass, and FGO to be one of those

normals, meeting the major or transverse axis of

a central conic, or the axis of a parabola, in G.

Let FN be the ordinate of F, and OM the

perpendicular from on the axis.

Then, if we take as axes of coordinates the

axes of the central conic, and, for the parabola,

* Archimedes, Vol. iii. p. 70.
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the axis and the tangent at the vertex, and if (x, y), («,, y^ be

the coordinates of P, respectiA'ely, we have

y ^ NG
— y, £c, — X - NG

'

Therefore, (1) for the parabola,

Pa

y

-"' -,—';-

xy
{^.-f)y-y.-^j

= o (1);

(2) for the ellipse or hyperbola,

^ b'
xy {l+^)-x,y±-..y,x = 0.

The intersections of these rectangular hyperbolas with the

respective conies give the feet of the various normals passing

through 0.

Now Pappus criticises this procedure, so far as applied to the ;;?'-

bola, as being unorthodox. He is speaking (p. 270) of the distinction

between the three classes of "plane" (tTriVcSa), "solid" (€€), and

the still more complicated " linear" problems(-),
and says, " Such procedure seems a serious error on the part of

geometers Avhen the solution of a plane problem is discovered by

means of conies or higher curves, and generally when it is solved

by means of a foreign kind (e^ yeVovs), as, for example, the

problem in the fifth Book of the Conies of Apollonius in the case of

the parabola, and the solid vcwts with reference to a circle assumed

in the book about the spiral by Archimedes ; for it is possible

without the use of anything solid to discover the theorem pro-

pounded by the latter...." The first allusion must clearly be to the

use of the intersections of a rectangular hyperbola with the parabola

when the same points could be obtained by means of the intersec-

tions of the latter with a certain circle. Presumably Pappus

regarded the parabola itself as being completely drawn and given,

so that its character as a " solid locus " was not considered to affect

the order of the problem. On this assumption the criticism has no

doubt some force, because it is a clear advantage to be able to effect

the construction by means of the line and circle only.
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The circle in this case can of course be obtained l)y c<jmbining

the equation of the rectangular hyperbola (1) above with that of

the parabola y' — ,,•

Multiply (1) by — , and we have

and, substituting p^^x for if,

--(x,-'|).^-f =0,

whence, by adding the equation of the parabola, we have

But there is nothing in the operations leading to this result

which could not have been expressed in the geometrical language

which the Greeks used. Moreover we have seen that in Ajiollonius'

solution of the problem of the two mean proportionals the same

reduction of the intersections between two conies to the intersec-

tions of a conic and a circle is found. We must therefore assume

that Apollonius could have reduced the problem of the normals to

a parabola in the same way, but that he purposely refrained from

doing so. Two explanations of this are possible; either (1) he

may have been unwilling to sacrifice to a pedantic orthodoxy the

convenience of using one uniform method for all three conies alike,

or (2) he may have regarded the presence of one "solid locus"

(the given parabola) in his figure as determinative of the class of

problem, and may haA'e considered that to solve it with the help of

a circle only would not, in the circumstances, have the effect of

making it a " plane " problem.

H. C.



CHAPTER IV.

THE CONSTRUCTION OF A CONIC BY MEANS OF TANGKNTS.

In Book III. 41-43 [Props. G5, 66, 67] Apollonius gives three

theorems which may be enunciated as follows :

41. If three straight lines, each of which totiches a j)arabola,

meet one anotL•r, they will he cut in the same proportion.

42. If in a central conic parallel tangents he drawn at the

extremities of a fixed diameter, and if hoth tangents be met hy any

variable tangent, the rectangle under the intercepts on the parallel

tangents is constant, being equal to the square on half the parallel dia-

meter, i.e. the diameter conjugate to that joining the jwints of contact.

43. Any tangent to a hyperbola cuts off lengths from the asymp-

totes whose product is constant.

There is an obvious family likeness between these three consecu-

tive propositions, and their arrangement in this manner can hardly

liave been the result of mere accident. It is true that in. 42 [Prop.

66] is used almost directly afterwards for determining tlie foci of a

central conic, and it might be supposed that it had its place in the

book for this reason only; but, if this were the case, we should have

expected that the propositions about the foci would follow directly

after it instead of being separated from it by iii. 43, 44 [Props. 67,

68]. We have also a strong positive reason for supposing that the

arrangement was due to set purpose rather than to chance, namely the

fact that all three propositions can be used for describing a conic by

means of tangents. Thus, if two tangents to a parabola are given,

the first of the three propositions gives a general method of drawing
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any number of other tangents ; while the second and tlnrd <,'ive tlie

simplest cases of the construction of an ellipse and a hyperbjla by

the same means, those cases, namely, in vhich the fixed tangents

employed are chosen in a special manner.

As therefore the three propositions taken together contain the

essentials for the construction of all three conies by this method, it

becomes important to inquire whether Apollonius possessed tlie

means of drawing any number of tangents satisfying the given

conditions in each case. That Apollonius was in a position to solve

this problem is proved by the contents of two of his smaller

treatises. One of these, <; " (two Books On cuttiwj

of a proportion), we possess in a translation by Halley from the

Arabic under the title De sectione rationis ; the other, now lost,

was ' (two Books On cutting off a space, which means

cutting off from two fixed lines lengths, measured from fixed points

on the lines respectively, such that they contain a rectangle of

constant area). Now the very problem just mentioned of drawing

any number of tangents to a parabola reduces precisely to that

which is discussed with great fulness in the former of the two

treatises, while the construction of any number of tangents to

the ellipse and hyperbola in accordance with the conditions of

III. 42, 43 [Props. 66, 67] reduces to two important cases of the

general problem discussed in the second treatise.

I. In the case of the parabola, if two tangents qP, qli and the

points of contact P, R are given, we have to draw through any

point a straight line which will intersect the given tangents

(in r,
J}

respectively) in such a way that

/*?•
: rq = qp : pP,

or Pr : Pq^qp :qR;
that is, we must have

Pr : qj) = Pq : qR (a constant ratio).

In fact, we have to draw a line such that the intercept on one

tangent measured from the point of contact is to the intercept on

the other tangent measured from the intersection of the tangents in

a given ratio. How to do this is shown in the greatest detail in the

first Book <;.
If, again, instead of the points of contact, two other tjingents

are given meeting the fixed tangent qP in r,, r^ and the fixed

tangent qR in ;;,, p,^, we have to draw a straight line rp cutting off

i •>
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along the tangents qP, qR parts measured from r,, jO, respectively

which are in a given proportion, i.e. such tliat

i\r : J)
= ?*,?•., : p^p„ (a fixed ratio)

;

and this problem is solved in the second Book <;.
The general problem discussed in that treatise is, to draw from

a point a straight line which shall cut off" from two given straight

lines portions, measured from two fixed points A, B, which are in a

given proportion, e.g., in the accompanying figure, OKM is to be

drawn so that AM : BN is a given ratio. In the second Book of

the treatise this general case is reduced to a more special one in

which the fixed point occupies a position B' on the first line,
so that one of the intercepts is measured from the intersection of

the two lines. Tlie reduction is made by joining OB and drawing

B'N' parallel to from the point B' in which OB, MA intersect.

Then clearly B'N' : BN is a given ratio, and therefore the ratio

B'N' : AM is given.

We have now to draw a straight line ON' cutting MAB', B'N'

in points J/", N' such that

B'N' . . ^
=- a, given ratio, suppose.

This problem is solved in the first Book, and the solution is

substantially as follows.

Draw OC parallel to N'B' meeting MA produced in C. Now
suppose a point D found on AM such that
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Then, supposing that the ratio ' is niado to , we have

AM
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intercept B'N' is measured from B', the intersection of the two fixed

lines. Apollonius begins by stating the limiting case, saying that

we obtain a solution in a special manner in the case where is the

middle point of CD, so that the given rectangle GM.MD or

CB'.AD has its maximum value.

In order to find the corresponding limiting value of , Apollonius

seeks the corresponding position of D.

„, ,
B'C CM B'M

We have MD=AD=MA^
whence, since MD — CM,

B'C _ C}1 B'M
WIr'M~A'"WA'

and therefore B'M"" = B'C.B'A.

Thus is determined, and therefore D also.

According, therefore, as is less or greater than the particular

OC
value of _ thus determined, Apollonius finds no solution or two

solutions.

At the end we find also the following further determination of

the limiting value of . We have

AD = B'A+ B'C - (B'D + B'C)

= B'A + B'C - 2B'M

= B'A + B'C-2 JB'A . B'C.

Thus, if we refer the various points to a system of coordinates with

B'A, B'N' as axes, and if Ave denote the coordinates of by [x, y)

and the length B'A by li, we have

^J) h + x-2>Jhx'

If we suppose Apollonius to have used these results for the

parabola, he cannot have failed to observe that the limiting case

described is that in which is on the parabola, while iV'OM is the

tangent at ; for, as above,

B'M _ B^
B'A ~ B'M

= -^, by parallels,
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SO that B'A, N'M are divided at J/, respectively in tlie same

proportion.

Further, if we put for the proportion between the lengths of

the two fixed tangents, we obtain, if , k be those lengths,

k^ y
/i h + x-2s/hx'

which is the equation of the parabola referred to the fixed tangents

as coordinate axes, and which can easily be reduced to the sym-

metrical form
7/Ni

©'^(
*; '•

II. In the case of the ellipse and hyperbola the problem is to

draw through a given point a straight line cutting two straight

lines in such a way that the intei'cepts upon them measured from

fixed points contain a rectangle of constant area, and for the ellipse

the straight lines are parallel, while for the hyperbola they meet in

a point and the intercepts on each are measured from the point of

their intersection.

These are particular cases of the general problem which, accord-

ing to Pappus, was discussed in the treatise entitled
;

and, as we are told that the propositions in this work corresponded

severally to those in the , we know that the particular

cases in question were included. We can also form an idea

how the general problem was solved. The reduction to the particular

case where one of the points from which the intercepts are measured

is the intersection of the two fixed lines is effected in the same

manner as in the case of proportional section described above.

Then, using the same figure (p. cxxxii), we should take the point D
(in the position represented by () in the figure) such that

OC . AD =^ the given rectangle.

We have then to draw the line ON'M so that

B'N' .AM^OC .AD,

B'N' AD
UcT-AJr

But, since B'N', OC are parallel,

B'N' _ B'AI

~0C ~ CM'

rx,. . -4 J/ AD DM
Therefore CM= B'M^ BC'
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and the rectangle B'M . MD = AD . B'C, which is given. Hence, as

before, the problem is reduced to an application of a rectangle in

the well-known manner.

The complete treatment of the particular cases of the problem,

with their/, could present no difficulty to Apollonius.

III. It is not a very great step from what we find in Apollonius

to the general theorem that, if a straight line cuts offfrom tivo fixed

straight lines intercepts, measured from given points on the lines

respectively, which contain a rectangle of given area, the envelope of

the first straight line is a conic section touching the two fixed straight

lines.

Thus, suppose BCD to be a parallelogram described about a

conic and E, F to be the points of contact of , CD. If a fifth

tangent MN cuts AB, CD in M, iV and AD, CB in P, Q respectively,

we have, by the proposition of Apollonius,

EA.FD = EM.FN.

Therefore
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Conversely, if the lines AD, DC are given as well as the points

A, C and the area of the rectangle AP . CN, we can deternune the

point F, and therefore also the point where Ali touches the conic.

We have then the diameter EF and the direction of the chords

bisected by it, as well as the tangent AD ; thus we can find the

ordinate to EF drawn through the point of contact of AD, and

hence we can obtain the equation of the conic referred to the

diameter EF and its conjugate as axes of coordinates. Cf. Lemma
XXV. of the first Book of Newton's Principia and the succeeding

investigations.



CHAPTER V.

THE THREE-LINE AND FOUR-LINE LOCUS.

The so-called ( - is, as have

seen, specially mentioned in the first preface of Apollonius as a

subject Avhich up to his time had not received full treatment. He says

that he found that Euclid had not worked out the synthesis of the

locus, but only some part of it, and that not successfully, adding

that in fact the complete theory of it could not be established

Avithout the " new and I'emarkable theorems " discovered by himself

and contained in the third book of his Conies. The words used

indicate clearly that Apollonius did himself possess a complete

solution of the problem of the four-line locus, and the remarks of

Pappus on the subject (quoted above, p. xxxi, xxxii), though not

friendly to Apollonius, confirm the same inference. We must

further assume that the key to Apollonius' solution is to be found

in the third Book, and it is therefore necessary to examine the

propositions iu that Book for indications of the way in which he

went to work.

Tlie three-line locus need not detain us long, because it is really a

particular case of the four-line locus. But we have, in fact, in

in. 53-56 [Props. 74-76] what amounts to a complete demonstration

of the theoretical converse of the three-line locus, viz. the proposition

that, iffrom any point of a conic there he drawn three straight lines

in fixed directions to meet respectively two fixed tangents to the conic

and their chord of contact, the ratio of the rectangle contained by the

first ttoo lines so drawn to the square on the third line is constant.

The proof of this for the case where the two tangents are parallel is

o])tained from iii. 53 [Prop. 74j, and the remaining three propo-

sitions, iiL 54-56 [Props. 75, 76], give the proof where the tangents

are not parallel.
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Tn like manner, we should expect to find the theorem of the

four-line locus appearing, if at all, in the fornj of the converse

proposition stating that every conic section has, tvith reference to any

inscribed quadrilateral, the properties of the four-line locus. It will

be seen from the note following Props. 75, 76 that this theorem is

easily obtained from that of the three-line locus as presented by

Apollonius in those propositions ; but there is nowhere in the Book

any proposition more directly leading to the former. The explana-

tion may be that the constriiction of the locus, that is, the aspect of

the question which would be appropriate to a work on solid loci

rather than one on conies, was considered to be of preponderant im-

portance, and that the theoretical converse was regarded as a

mere appendage to it. But, from the nature of the case, that

converse must presumably have appeared as an intermediate step

in the inestigation of the locus, and it could hardly have

been unknown even to earlier geometers, such as Euclitl and

Aristaeus, who had studied the subject thoroughly.

In these circumstances we have to seek for indications of the

probable course followed by Greek geometers in their investiga-

tion of the four-line locus ; and, in doing so, we have to bear

in mind that the problem must have been capable of partial

solution before the time of Apollonius, and that it could be

completely solved by means of the propositions in his third Book.

We observe, in the first place, that iii. 54-56 [Props. 75, 76],

which lead to the property of the three-line locus, are proved by

means of the proposition that the ratio of the rectangles under the

segments of any intersecting chords drawn in fixed directions is

constant. Also the property of the three-line locus is a particular

case of the property of a conic with reference to an inscribed quadri-

lateral having t\vo of its sides parallel, that case, namely, in which

the two parallel sides are coincident ; and it will be seen that the

proposition relating to the rectangles under the segments of in-

tersecting chords can equally well be used for proving generally

that a conic is a four-line locus with reference to any inscribed

quadrilateral which has two sides parallel.

For, if A is a fixed chord of a conic and Jir a cliord in a given

direction cutting in /, we have

Rl.Ir . ^.

77^ = (^""^'•)•

If we measure JiK along Er equal to //•, the locus of A' is a chord
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DC meeting the diameter which bisects chords parallel to Rr in

the same point in which it is met by, and the points D, C lie on

lines drawn through A, JJ respectively parallel to Jir.

Then, if x, y, z, u be the distances of R from the sides of the

quadrilateral ABCD, we shall have

— = (const.).
yu ^

And, since A BCD may be any inscribed quadrilateral with two

sides parallel, or a trapezium, the proposition is proved generally for

the particular kind of quadrilateral.

If ve have, on the other hand, to find the geometrical locus of a

point R vhose distances x, y, z, u from the sides of such a trapezium

are connected by the above relation, we can first manipulate the

constants so as to allow the distances to be measured in the

directions indicated in the figure, and we shall have

RI.RK RI .Ir
~'

where is a given constant. We must then try to find a conic

whose points R satisfy the given relation, but we must take care to

determine it in such a manner as to show synthetically at the same

time that the points of the conic so found do really satisfy the given

condition ; for, of cour.se, are not yet supposed to know that the

locus is a conic.

It seems clear, as shown by Zeuthen, that the defective state of

knowledge which prevented the predecessors of Apollonius from

completing the determination of the four-line locus had reference

rather to this first step of finding the locus in the particular case of

a trapezium than to the transition from the case of a trapezium to

that of a quadrilateral of any form. The transition was in fact, in
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itself, possible by means which won» within the cf)nipetence of

Euclid, as will presently be seen ; but the ditiiculty in the way of

the earlier step was apparently due to the fact that the conception

of the two branches of a hyperbola as a sinjj;le curve had not

occurred to any one before Apollonius. His preilecessors ac-

cordingly, in the case \vhere the four-line locus is a complete

hyperbola in the modern sense, probably considered only one branch

of it ; and the question which branch it would be would depend on

some further condition determining it as one of the two branches,

e.g. the constant niiglit have been determined by means of a given

point through which the conic or single-branch hyperbola, which it

was required to prove to be the four-line locus, should pass.

To pro\e that such a single branch of a hyperbola, not passing

through all four corners of the quadrilateral, could be the four-line

locus, and also to determine the locus corresponding to the value of

leading to such a hyperbola, it was necessary to know of the

connexion of one branch with the other, and the corresponding

extensions of all the propositions used in the proof of the property

of the inscribed quadrilateral, as well as of the various steps in the

converse procedure for determining the locus. These extensions to

the case of the complete hyperbola may, as already mentioned

(p. Ixxxiv seqq.), be regarded as due to Apollonius. His predeces-

sors could perfectly well have proved the proposition of the in-

scribed trapezium for any single-branch conic ; and it will be seen

that the converse, the construction of the locus, would in the

particular case present no difficulty to them. The difficulty would

come in where the conic was a hyperbola with two branches.

Assuming, then, that the property of the four-line locus was

established with respect to an inscribed trapezium by means of the

proposition that the rectangles under the segments of intersecting

chord.s are to one another in the ratio of the squares on the parallel

tangents, what was wanted to complete the theory \vas (1) the

extension to the case where the tangents are tangents to op-

posite branches of a hyperbola, (2) the expression of the constant

ratio between the rectangles referred to in tliose cases where no

tangent can be drawn parallel to either of the chords, or where a

tangent can be drawn parallel to one of them only. Now we find

(1) that Apollonius proves the propo-sition for the case where the

tangents touch opposite branches in in. 19 [Prop. 59, Case i.].

Also (2) the proposition in. 23 [Prop. 59, Case iv.] proves that,
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where there is no tangent to the hyperbola parallel to either of the

chords, the constant ratio of the rectangles is equal to the ratio of

the squares of the parallel tangents to the conjtigate hyperbola ; and

III. 21 [Prop. 59, Case ii.] deals with the case where a tangent can

be drawn parallel to one of the chords, while no tangent can be drawn

parallel to the other, and proves that, if tQ, the tangent, meets the

diameter bisecting the chord to which it is not parallel in t, and if

tq is half the chord through t parallel to the same chord, the

constant ratio is then tQ^:tq'.

Zeuthen suggests (p. 140) that the method adopted for deter-

mining the complete conic described about a given trapezium ABCD,

which is the locus with respect to the four sides of the trapezium

corresponding to a given value of the constant ratio , may have

been to employ an auxiliary figure for the purpose of constructing a

conic similar to that required to be found, or rather of finding the

form of certain rectilineal figures connected Avith such a similar

conic. This procedure is exemplified in Apollonius, ii. 50-53

[Props. 50-52], Avhere a certain figure is determined by means of a

previous construction of another figure of the same form ; and the

suggestion that the same procedure was employed in this case has

the advantage that it can be successfully applied to each of the

separate cases in Avhich Apollonius gives the different expressions

for the constant ratio between the rectangles under the segments

of intersecting chords in fixed directions.

We have the following data for determining the form of the

conic similar to the required conic circumscribing ABCD : the value

Hi Ir
() of the ratio -rj-jn between the products of segments of lines in

two different directions, and the direction of the diameter P])

bisecting chords in one of the given directions.

I. Suppose that the conic has tangents in both given directions

(which is always the case if the conic is a conic in the old sense of

the term, i.e. if the double-branch hyperbola is excluded).

Let the points of the auxiliary figure be denoted by accented

letters corresponding to those in the figure on p. cxl.

We know the ratio

and, if we choose any straight line for 0'l'\ we know (1) the position
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of a diameter, (2) its extremity P\ (3) the direction of the chords

bisected by the diameter, (4) a point Q' with the tangent at that

point.

Then the intersection of the tangent at Q' with the diameter

and the foot of the ordinate to it from Q' determine, with P\ three

points out of four which are harmonically related, so that the

remaining one, the other extremity {})') of the diameter, is found.

Hence the conic in the auxiliary tigure is determined.

II. Suppose that the conic has no tangent in either direction.

In this case we know the ratio between the tangents to the

hyperbola conjugate to the required auxiliary hyperbola, and ve can

therefore determine the conjugate hyperbola in the manner just

described ; then, by means of the conjugate, the required auxiliary

hyperbola is determined.

III. Suppose that the conic has a tangent in the direction of

AD, but not in the direction of.

In this case, if the tangent Pt parallel to AD and the diameter

bi.secting A meet in t, Apollonius has expressed the constant as

the ratio between the squares of the tangent tP and of tq, the half

of the chord through t parallel to AB. We have then

tq tif

If we now choose t'P' aibitrarily, we have, towards doterniiniiig the

auxiliary similar conic,

(1) a diameter with the direction of chords bisected by it,

(2) one extremity P' of that diameter,

(3) two points q, »' on the curve.
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If y^i Vi ''^''6 *^e ordinates of q^ s with respect to the diameter,

.-Tj, x^ the distances of the feet of the ordinates from P', and .r/, a•/

their distances from the other (unkiiown) extremity of the diameter,

we have

is determined.

The point can thus be found by means of the ratio between

its distances from two known points on the straight line on which

it must lie.

IV. Suppose that the conic has a tangent in tlie direction of

AB, but not in the direction of AD.
Let the tangent at P, parallel to AB, meet the diameter bisecting

BC, AD vat, and let tq parallel to AD meet the conic in q ; we then

have

t'q

t'F'

If we choose either t'q or t'P' arbitrarily, we have

(1) the diameter t'T',

(2) the points P', q on the curve, the ordinates from which to

the diameter meet it in t', T' respectively,

(3) the tangent at P'.

Since t'P' is the tangent at P',

C't' .C'T' = \.a",

where C is the centre, and a' the length of the diameter.
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Therefore, by symmetry, T'q is the tangent at q. [Prop. 42.]

Hence we can find the centre C by joining ', the middle point

of Pq, to 0\ the point of intersection of the tangents, since Y'O'

must be a diameter and therefore meets t'T' in C

.

Thus the auxiliary conic can be readily determined. The

relation between the diameter a and the diameter h' conjugate to it

is given by

tig* _ ;^ _
*

. tr ~ a* ~ a'
•

Thus it is seen that, in all four cases, the propositions of Apollo-

nius supply means for determining an auxiliary figure similar to

that which is sought. The transition to the latter can then be

made in various Avays ; e.g. the auxiliary figure gives at once the

direction of the diameter bisecting AB, so that the centre is given;

and we can effect the transition by means of the ratio between CA
and CA'.

There are, hovever, indications that the auxiliary figures would

not in practice be used beyond the point at which the ratio of the

diameter (a) bisecting the parallel sides of the trapezium to its

conjugate () is determined, inasmuch as we find in Apollonius

propositions which lead dii-ectly to the determination of the absolute

values of a and b when the ratio j-(= -,-, ) is given. The problem to

be solved is, in fact, to describe a conic through two given points A
and such that one diameter of it lies along a given straight line, while

the direction of the chords bisected by the diameter is given, iis well as

the ratio (jj between the length of the diameter and its conjugate.

Suppose that, in the accompanying figure, a straight line is

drawn through parallel to the known direction of the diameter,

H. C.
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and meeting DA produced in 0. Also let OB meet the curve

(which ve will suppose to be an ellipse) again in E.

Then we must have

OB.OE a?

OA.OD'b"

whence OE can be found, and therefore the position of E. The line

bisecting BE and parallel to ylZ> or BC will determine the centre.

AVe have now, for the case of the ellipse, a proposition given

by Apollonius which determines the value of a* directly. By
III. 27 [Prop. 61 (1)] we know that

OB' + OE' + ^;
{0' + OD') = a\

whence a' is at once found.

Similar propositions are given for the hyperbola (see ill. 24-26,

28, 29 [Props. 60 and 61 (2)]). The construction in the case of the

hyperbola is also facilitated by means of the asymptote properties.

In this case, if the letters have the same significations as in the

figure for the ellipse, we find the centre by means of the chord BE
or by using the auxiliary similar figure. The asymptotes are then

determined by the ratio . If these cut the chord AD in K, Z,

then . =,
or AK.KD=lh\

If the required curve is a parabola, the determination of the

auxiliary similar figure after the manner of the first of the four

cases detailed above would show that P', the end of the diameter, is

at the middle point of the intercept between the intersection of the

diameter with the tangent at Q' and with the ordinate from Q' i-espec-

tively. The curve can then be determined by the simple use of the

ordinary equation of the parabola.

So far the determination of the four-line locus has only been

considered in the particular case Avhere two opposite sides of the

inscribed quadrilateral are parallel. It remains to consider the

possible means by which the determination of the locus with

reference to a quadrilateral of any form whatever might have been

reduced to the problem of finding the locus with reference to a

trapezium. As Apollonius' third Book contains no propositions

which can well be used for effecting the transition, it must be

\
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concluded that the transition itself was not affected by Apollonius'

completion of the theory of the locus, but that the key must be

looked for elsewhere. Zeuthen (Chapter 8) finds the key in the

Poi'isms of Euclid*. He notes first tliat Archimedes' proposi-

tion (given on p. lix, Ix above) respecting the parabola exhibits the

curve as a four-line locus with respect to two quadrilaterals, of

which one is obtained from the other by turning two adjacent

sides about the points on the parabola in which they meet the two

other sides. (Thus PQ is turned about Q and takes the position

QT, while PF is turned about its intersection with tlie parabola

at infinity and takes the position of the diameter through Q.)

This suggests the inquiry whether the same means >vliich are

used to effect the transition in this very special case cannot

also be employed in the more general case now under consi-

deration.

As the Porisms of Euclid are themselves lost, it is necessary to

resort to the account vhicll Pappus gives of their contents ; and

the only one of the Porisms which is there preserved in its original

form is as follows t :

If from tivo given points there be drmvn straight Hues which

intersect one another on a straight line given in position, and if one

of the straight lines so dra^vn cuts offfrom a straight line given in

position a certain length measured from a given point on it, then the

other straight line also tvill cut off a portion from another straight

line hearing a given ratio [to the former intercept^

The same proposition is true also when a four-line locus is

substituted for the first-mentioned given straight line and the two

fixed points are any two fixed points on the locus. Suppose that we

take as the two fixed points the points A and C, being two opposite

corners of the quadrilateral A BCD to which the locus is referred,

and suppose the lines from which the intercepts are cut off to be

CE, A drawn respectively parallel to the sides A, EC of the

quadrilateral.

Let be a point on the required locus, and let AD, J J/ meet

* That the Porisim of Euclid were a very important contribution to geometry

is indicated by the description of them in Pappus (p. G48) as a collection most

inRenionsly adapted for the solution of the more weighty problems(-
(is \> ).

t Pappus, p..
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CE in D', M' respectively, while CD, CM meet in D", M"
respectively.

For the purpose of determining the geometrical locus, let the

distances of from , CD be measured parallel to BC, and its

distances from BC, AD parallel to.

Then the ratio of the distances of from CD, BC respectively

be equal to ^^— , and the ratio of the distances of J/ from AB,
Li hd

AE
DA will be equal to -fttt?, •^ D 31

Therefore the fact that the ratio of the rectangles under the

distances of from each pair of opposite sides of the quadrilateral

ABCD is constant may be expressed by the equation

D"3r . CE .,.

-mf^^AE = ''^ say (1),

where /i is a new constant independent of the position of M.

If now be determined by means of the position of a point F of

the locus, we have

D"M" _ D"F" _ F"M"

D'M' " D'F' " F'M'
^*'^'

where F\ F" are the intersections of AF, CE and of CF, AE
respectively.

And, since the last ratio in (2), which is derived from the other

two, remains constant while moves along the required locus, it

follows that that locus is also a four-line locus with reference to the

four sides of the quadrilateral ABCF.
Thus, in order to extend the proposition about an inscribed
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trapezium to a quadrilateral of any forra, or, conversely, to reduce

the determination of a four-line locus with reference to any quadri-

lateral to a similar locus with reference to a trapezium, it was only

necessary to consider the case in which one of the lines AD or AF
coincides with AF. It follows that the four-line locus with reference

to any quadrilateral is, like the four-line locus with reference to a

trapezium, a conic section.

The actual determination of the locus in the general form can

be effected by expressing it in the more particular form.

Suppose that the distances of from AB, CD (reckoned parallel

to BC) are denoted by x, z, and the distances of from BC, A D
(reckoned parallel to A) are y, u respectively. Then the locus is

determined by an equation of the form

xz = \.yii (1),

where is a constant, and x, y are the coordinates of the point

Avith reference to BC, A as axes.

If /*, Q are the points in which the ordinate (y) of meets A D,

respectively,

u = PM
= PQ-MQ (2).

Since (— MQ) is the distance of from A measured parallel to

A, let it be denoted by w,

.

Then, from the figure,

Therefore, from (1),

z — \ , y )
, we derive

from the figure ""
'=-cjr'y^

and we have then to take a point G on AE such that

D'E _D"G
AE ~ CE '

(The point G is thus seen to be a point on the locus.)
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, D'E D"M" D"G
Heuce

^-^ae'-^^ CE '^ ' CE'J

GM"
~ GE -y

where «, is the distance of the point from the line CG measured

parallel to BC.

The equation representing the locus is accordingly transformed

into the equation

xz^ = . 2/w,

,

and the locus is expressed as a four-line locus with reference to the

trapezium ABCG.
The method here given contains nothing which would be beyond

the means at the disposal of the Greek geometers except the mere

notation and the single use of the negati\^e sign in (- 3iQ), which

however is not an essential difference, but only means that, whereas

by the use of the negative sign we can combine several cases into

one, the Greeks would be compelled to treat each separately.

Lastly, it should be observed that the four-line locus with

reference to a trapezium corresponds to the equation

ax' +/ - yy' 4- dx + e7j = 0,

which may be written in the form

X (ax + fiy + d) = -y {yy + e).

Thus the exact determination of the four-line locus with reference

to a trapezium is the problem corresponding to that of tracing a

conic from the general equation of the second degree wanting only

the constant term.



CHAPTER VI.

THE CONSTRUCTION OF A CONIC THROUGH FIVE POINTS.

Since Apollonius was in possession of a complete solution of the

problem of constructing the four-line locus referred to the sides of a

quadrilateral of any form, it is clear that he had in fact solved the

problem of constructing a conic through five points. For, given the

quadrilateral to vhich the four-line locus is referred, and given a

fifth point, the ratio () between the i-ectangles contained by the

distances of any point on the locus from each pair of opposite sides

of the quadrilateral measured in any fixed directions is also given.

Hence the construction of the conic through the five points is

reduced to the construction of the four-line locus where the constant

ratio is given.

The problem of the construction of a conic through five points

is, however, not found in the work of Apollonius any more than the

actual determination of the four-line locus. The omission of the

latter is easily explained by the fact that, according to the author's

own words, he only professed to give the theorems which were

necessary for the solution, no doubt regarding the actual construc-

tion as outside the scope of his treatise. But, as in Euclid we find

the problem of describing a circle about a triangle, it would have

been natural to give in a treatise on conies the construction of a

conic through five points. The explanation of the omission may be

that it was not found possible to present the general problem

in a form sufficiently concise to be included in a treatise embracing

the whole subject of conies. This may be easily understood when

it is remembered that, in the first place, a Greek geometer

would regard the problem as being in reality three problems

and involving a separate construction for each of the three

conies, the parabola, the ellipse, and the liyperbola. He would
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then discover that the construction was not always possible

for a parabola, since four points are sufficient to determine a

parabola; and the construction of a parabola through four points

would be a completely diflerent problem not solved along with the

construction of the four-line locus. Further, if the curve were an

ellipse or a hyperbola, it would be necessary to find a^
expressing the conditions must be satisfied by the particular

points in order that the conic might be the one or the other. If it

were an ellipse, it might have been considered necessary to provide

against its degeneration into a circle. Again, at all events until the

time of ApoUonius, it would have been regarded as necessary to iind

a /xos expressing the conditions for securing that the live points

should not be distributed over both branches of the hyperbola.

Thus it would follow that the complete treatment of the problem by

the methods then in use must have involved a discussion of con-

siderable length which Avould have been disproportionate in such a

work as that of ApoUonius.

It is interesting to note how far what we actually find in

ApoUonius can be employed for the dii-ect construction of a conic

through five points independently of the theory of the four-line

locus. The methods of Book IV. on the number of points in vhich

two conies may intersect are instructive in this connexion. These

methods depend (1) on the harmonic polar property and (2) on the

relation between the rectangles under the segments of intersecting

chords drawn in fixed directions. The former property gives a

method, vhen five points are given, of determining a sixth ; and by

repeating the process over and over again we may obtain as many

separate points on the curve as we please. The latter proposition

has the additional advantage that it alloAvs us to choose more freely

the particular points to be determined ; and by this method can

find conjugate diameters and thence the axes. This is the method

employed by Pappus in determining an ellipse passing through five

points respecting vhich it is known beforehand that an ellipse can

be drawn through them* It is to be noted that Pappus' solution

is not given as an independent problem in conic sections, but it is

an intermediate step in another problem, that of finding the dimen-

sions of a cylinder of which only a broken fragment is given such

that no portion of the circumference of either of its bases is left

whole. Further, the solution is nmde to depend on what is to be

* Pappus (ed. Hultsch), p. 107G seqq.
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found in ApoUonius, and no claim is advanced that it contains

anything more than any capable geometer could readily deduce for

himself from the materials available in the Conies.

Pappus' construction is substantially as follows. If the "iven

points are A, B, C, D, E, and are sucli that no two of the lines

connecting the different pairs are parallel, we can reduce the problem
to the construction of a conic through A, B, />, E, F, where EF is

parallel to AB.

For, if EF be drawn through parallel to AB, and if CD meet

AB in and EF in 0', we have, by the proposition relating to

intersecting chords,

CO.OD : AO. OB = CO' . O'D : EC . O'F,

whence O'F is known, and therefore F is detoriiiined.

We have therefore to construct an ellipse tli rough J, />', /), E, F,

where EF is parallel to AB.

And, if V, )V he the middle points of AB, EF respectively, the

line joining V and W is a diameter.

Suppose BB to be the chord through JJ parallel to the diameter,

and let it meet AB, EF in G, U respectively. Then R is deter-

mined by means of the relation

RG.CD -.BG.GA -RlI.llD : FH .UK (1).
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In order to detenuine R, let I) J}, RA be joined meeting EF in A", L

respectively.

Then

RG . GD : BG . GA = {RH : IIL) . {DII : UK), l^y similar triangles,

= RH.IID : II. IIL.

Therefore, from (1), we have

FU.HE^KII.HL,

whence IIL is found, and therefore L is determined. And the

intersection of AL, DH determines R.

In order to find the extremities of the diameter (PP'), we draw

£D, RF meeting the diameter in M, respectively. And, by the

same procedure as before, ve obtain

/'//. HE : RII. IID = FW . WE : P'W . WP,

by the property of the ellipse.

x\lso FH . HE : RH .HIJ = FW . WE : iVW . WM,

by similar triangles.

Hence P' W . WP = W . WM

;

and similarly we can find the value of P'V. VP.

Pappus' method of determining P, P' by means of the given

A'alues of P' V . VP and FW . WP amounts to an elimination of one

of the unknown points and the determination of the other by an

equation of the second degree.

Take two points Q, Q' on the diameter such that

FV. VP= WV. VQ (a),

P'W.WP= VW.WQ' (),

and V, W, Q, Q' are thus known, while P, P' remain to be found.

It follows from (a) that

FV : VW=QV: VP,

whence FW -.VW^PQ: V.

From this we obtain, by means of (/3),

PQ .PV=Q'W : WP,

so that PQ -.QV^Q'W-.PQ',

or PQ.PQ'^QV.Q'W.

Thus can be found, and siinihuly /''.
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It is noteworthy that Pappus' method of determining the ex-

tremities of the diameter PP' (which is the principal oVyect of his

construction) can be applied to the direct construction of the points

of intersection of a conic determined by five points with any straight

line whatever, and there is no reason to doubt that this construction

could have been effected by Apollonius. But there is a simpler

expedient which we know from other sources that Apollonius was

acquainted with, and Avhich can be employed for the same purpose

when once it is known that tlie four-line locus is a conic.

The auxiliary construction referred to formed the suljject of a

whole separate treatise of Apollonius On deterinhtate section(8.€ TOfxrj•;). The problem is as follows :

Given four points A, B, C, D on a straight line, to det(irmine

another point on the same straight line so that the ratio

AP.CP-.BP. DP
has a given value.

The determination of the points of intersection of the given

straight line and a four-line locus can be immediately transformetl

into this problem. A, B, C, D being in fact the points of intei-section

of the given straight line with the four lines to which the locus

has reference.

Hence it is important to examine all the evidence which we

possess about the separate treatise referred to. This is contained

in the seventh Book of Pappus, who gives a short account of the

contents of the Avork* as well as a number of lemmas to the

different propositions in it. It is clear that the question was very

exhaustively discussed, and in fact at much greater length than

would have been likely had the investigation not been intended as

a means of solving other important problems. The conclusion is

therefore irresistible that, like the Books and<; above mentioned, that On determinate section also was

meant to be used for solving problems in conic sections.

To determine by means of the equation

AP.CP^X.BP.DP,

where A, B, C, D, are given, is now an easy matter because the

problem can at once be put into the form of a quadratic equation,

and the Greeks also would have no difficulty in reducing it to the

usual application of areas. But, if it was intended for application

• Pappus, pp. 042—644.
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in further investigations, the complete discussion of it would

naturally include, not only the finding of a solution, but also the

determination of the limits of possibility and the number of possible

solutions for ditierent positions of the given pairs of points A, C and

B, D, for the cases where the points in either pair coincide, where

one is infinitely distant, and so forth : so that we should expect the

subject to occupy considerable space. And this agrees with what

we find in Pappus, vho further makes it clear that, though we do

not meet with any express mention of series of point-pairs deter-

mined by the equation for different values of , yet the treatise

contained what amounts to a complete theoi-y of Involution. Thus

Pappus says that the separate cases were dealt with in which the

given ratio was that of either (1) the square of one abscissa

measured from the required point or (2) the rectangle contained by

two such abscissae to any one of the following : (1) the square of one

abscissa, (2) the rectangle contained by one abscissa and another

separate line of given length independent of the position of the

required point, (3) the rectangle contained by two abscissae. We
also learn that maxima and minima wei-e investigated. From the

lemmas too we may draw other conclusions, e.g.

(1) that, in the case Avhere =1, and therefore has to be

determined by the equation

AP.CF = BP.DP,

Apollonius used the relation*

BP :DP = AB.BG: AD . DC ;

(2) that Apollonius probably obtained a double point of the

involution determined by the point-pairs A, C and B, D by means of

the relation t

AB . BG .AD.DC = BE' : DE\
Assuming then that the results of the work On determinate

section were used for finding the points of intersection of a straight

line with a conic section represented as a four-line locus, or a conic

determined by five points on it, the special cases and the A'arious

would lead to the same number of properties of the conies

under consideration. There is therefore nothing violent in the

supposition that Apollonius had already set up many landmarks in

the field explored eighteen centuries later by Desargues.

• This appears in the first lemma (p. 704) and is proved by Pappus for

several different cases.

t Cf. Pappus' prop. 4U (p. 732).
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NOTES ON THE TERMINOLOGY OF C4REEK GEOMETRY.

The propositions from the Conies of Apollonius which are given

at length in Chapter II. above will have served to convey some idea

of the phraseology of the Greek geometers ; and the object of the

following notes is to supplement what may be learnt from those

propositions by setting out in detail the principal technical terms

and expressions, with special reference to those which are found in

Apollonius. It will be convenient to group them under different

headings.

1. Points and lines.

A point is, the point A to A or A simply ; a

fuller expression commonly used by the earlier geometers was to()' A, "the point on which (is put the letter) A*." Any
point is , the j^oint (so) arising yci'o'/xcvov(, tlie

point (so) taken , a point not ivithin the section( , any point within the surface

cvTos ^5 €7€9 ; in one point only' tv €, in two

points , and so on.

The following are names for particular points : apex or vertex, centre, point of division?, ])oint of bisection8, extremity iripas.

A line is, a straight line €(- or €€ alone, a

finite straight line eWeia^ ; a curved line is

* A similar expression was {.) ' rj .\B the gtniinht line {on which are

the letters) AB. The same phrases, with the same variation of ca.'ie after txl,

are found frequently in Aristotle, particularly in the logical trefttises and the

Physics.
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conic
; thus <; ? rrj) is that extremity of

the straight line ivhich is on the curve. A sec/ment (of a line as Avell

as a curve) is.
Of lines in relation to other lines we find the terms parallel, a peiyendicular to< ctti (with ace); a straight

line jyroduced is 77 eV cv^cta? ^.
For a line passing through particular points Ave have the follow-

ing expressions used with Sta and the genitive, r^^ii^,«,
; likewise , or (with ace).

Of a line meeting another line (with ace),,, are used ; until it meets is Iws ov or

a;(pis ], point of meeting^ ; tlie line from the jjoint

of concourse to , ctti to ; the straight line

joining H, , cVi , evOeLa ; passes through

the points of contact, ?' ;.
The line is bisected in , - ;

bisecting one another ;?, the line joining their

middle jioints , is cut into equal

and unequal parts «is\, eis 8e .
Straight lines cut off ov intercejyted are €/'/£ or-€, the part cut off ivithout (the curve) cktos,

ivill cut off an eqrial length €, the lengths intercepted on

it bi/ the [conic) section totvards the asyynptotes at aV/.
A point on a line is often elegantly denoted by an adjective

agreeing with it : thus '? from its extremity,

from the extremity of the axis, eV ^,
the line drawn to the extremity of the intercept, at -( the straight lines drawn so as to meet at the

middle point of the section.

2. Angles.

An angle is, an acute angle o^tia, obtuse //,^€,
right ; at right angles to (with dative) or

(with ace); the line A (drawn) from at right angles to,
^ r; ; to cut at right angles Tt/Aveiv, tvill tiot

in general be at right angles but only ivhen... a'ul ,' ...
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.
Vei'ticalliJ opposite (angles) ; /cci/xcrut ; f/tf

angle vertically opposite to the angle,
; the same expression is also used of triangles (e.g. in• ), and of the two halves of a double

cone, which are called vertically opposite surfaces

€€.
The exterior angle of the triangle is <; .
For the angle we find the full expression'-

or "the angle contained by the lines , ," but

more usually or . The angles,
?•(3 (together) equal to a right angle ai viro, .
€.

The adjacent angle, or the sjipplement of an angle, is €€<;-.
To subtend (an angle) is either Avith a simple accusa-

tive, or with and ace. (extend under) as in at ', '
the angles which the homologous sides

stibtend.

3. Planes and plane figures.

A phne is eVtTreSov, a figure or €1809, a figure in the sense

of a diagram or.
(A circle) which is not in tlie same ])lane icith the point 05 oJk

€V ^.
The line of intersection of two planes is their /;.
A rectilineal fig^ire is (Euclid), and among the

figures of this kind are triangle, quadrilateral,
a five-sidedfigure€ etc., being a side.

A circle is, its circximference, a semicircle, a segment of a circle /7/, a segment greater, or

less, than a semicircle , or, ; a segment

of a circle containing an angle equal to tlie angle is\
ttj .

Of quadrilaterals, a parallelogram is, a square', a rectangle or frequently with ur without'^. Diagonal is /€.
To describe a figure upon a given line (as base) is .

Thus the figure has been described upon tlie radius is-
< « <: , the square ZW
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is TO (), the figures on, is

cffi?/. But with the genitive is used of describing a semicircle,

or a segment of a circle, on a given straight line, e.g. cVt ^75^, .7/. Similarly quadrilaterals standing

on the diameters as bases are inl ,€'£€.
A rectangle applied to a given straight line is.(-

(with ace), and its breadth is ?. The rectangle contained by, ZE is TO , ZE or {) ; imll contain (with

another straight line) a rectangle equal to the sqtiare on is taov.
With reference to squares the most important point to notice is

the use of the word SiW/Ats and the various parts of the verb StVa/iiai./ expresses a square (literally a potver) ; thus in Diophantus it

is used throughout as the technical term for the square of the

unknown in an algebraical equation, i.e. for af. In geometrical

language it is used most commonly in the dative singular,, in

such expressions as the following :? oV /7/
8€, " the ratio which " (as one might say) " the inner

segment has to the remaining segment j)ote7itially," meaning the ratio

of the square of the inner segment to that of tlie other. (Similarly

Archimedes speaks of the radius of a circle as being to the

sum of two areas, meaning that the square of the radius is eq^ial etc.)

In like manner, when is used of a straight line, it means

literally that the line is (if squared) capable of producing an area

equal to another, / is in Apollonius (straight

lines) the squares on tvhich are equal to the rectangle contained by ;

7rcpic;(o/x.€vov the square on it is equal to the rectangle

contained by ; MN , the square on MN is equal to the

rectangle Zs. ; ^- 7;-
the square on it will be equal to the rectangle applied to the

straight line so taken in addition (to the figure) ; and so on.

To construct a triangle out of three straight lines is in Euclid L•

€5^€ ^, and similarly Apollonius speaks

of its being possible ck <; , to

construct a triangle from the straight line and ttco straight lines

{equal to) EA. The triangle formed by three straight lines is

/xcvov .
Equiangular is ', similar ,?, similar and similarly

sitiiated/ /? kci/xcvos ; because of the similarity of the

triangles, KEO is T17V , .
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4. Cones and sections of cones.

A cone is ?, a right cone •;, an oblique or scalene cone

6<; ?, the surface of a cone is (, the straiyht

line generating the surface by its motion about the circumference of

a circle is ^, the fixed jyoint through which the

straight line always passes is €£6^, the surface of the

double cone is that ichich consists of tzvo surfaces lying vertically

opposite to one another € 8vo/, the circular base is <;, the apex, the

aans.
A circular section subcontrary to the base is .
In addition to the names parabola, ellipse, and hyperbola (which

last means only one branch of a hyperbola), Apollonius uses the

expression ^ or ^ denoting the opposite

branches of a hyperbola ; also at evavTiov has the same

meaning, and we even find the expression €<; 8vo

for a diametei' of ttvo jmirs of opposite branches, so that conjugate

here means opposite branches. (Cf. too ev ttj in the

one pair of opposites.) Generally, however, the expression

€<; is used of conjugate hyperbolas, which are also called^ or (<; conjugate opposites. Of

the four branches of two conjugate hyperbolas any two adjoining

branches are (.<;.
In the middle of a proposition, where we should generally use the

word curve to denote the conic, Apollonius generally uses

sectimi, sometimes.
5. Diameters and chords of conies.

Diameter is /?, conjttgate diameters , of

which the transverse is , the other {erect) or Sorrcpa

{secondary).

The original diameter (i.e. that first arising out of the cutting of

a cone in a certain manner) is <; '? 8(<; or -
8€, and (in the plural) ) 8(. The

bisecting diameter is 8€. A radi us of a central

conic is simply € (with or without the definite article).

Chords are simply ^ iv ttj }.
6. Ordinates.

The word used is the adverb<; ordinate-wise, and the

advantage of this is that it can be u.scd with any part of the verb

H. C. ^



Cbdi APPENDIX TO INTRODUCTION.

signifying to draw. This verb is either or, the

former being used when the ordinate is drawn doion to the diameter

from a point on the curve, and the latter when it is drawn uptvards

from a point on a diameter. Thus /'? inl/ means suppose an ordinate drawn to the diameter, which

diameter is then sometimes called - > or. An
ordinate is/ or-, and sometimes€-
€<; alone or alone, the other word being understood;

similarly and are used alone for is an ordinate or

has been drawn ordinate-wise. is also used of the tangent

at the extremity of a diameter.

Parallel to an ordinate is or-/? in one word.

7. Abscissa.

The abscissa of an ordinate is

rfj) the (portion) cut off by it from the

diameter towards the vertex. Similarly we find the expressions, or ,8 the
(
portions) cut off by

the ordinate, or by them, towards the extremities of the transverse

side of the figure (as to which last expression see paragraph 9

following).

8. Parameter.

The full phrase is the parameter of the ordinates, which is '-, i.e. the straight line to which

are applied the rectangles which in each conic are equal to the

squares on the ordinates, or (perhaps) to which the said squares are

related (by comparison).

9. The "figure" of a central conic.

The figiire (to cTSos) is the technical term for a rectangle

supposed to be described on the transverse diameter as base and

with altitude equal to the parameter or latus rectum. Its area is

therefore equal to the square on the conjugate diameter, and, with

reference to the rectangle, the transverse diameter is called the

transverse side() and the parameter is the ei-ect side() of the figure (8). We find the following different

expressions, to tyj the figure on (the diameter) ;

AB cT8o5 the figtire applied to (the diameter) AB ; ,
ct8os the figure contained by (the diameter) and (the parameter)
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H. Similarly to€ ? tt7S •; ayo/ACVTj

is the figureformed on the diameter drawn through the point of coiitact

and TO ^ rrj ? €) ctSos is the figure on [the

diameter which is) the chord joining the points of contact (of two

parallel tangents).

TO « onefourth of the figure is, with reference to

a diameter PP', one-fourth of the square of the conjugate diameter

DD\ i.e. CD-.

10. Tangents etc.

To touch is most conniiouly, whether used of straight

lines touching curves or of curves touching each other, a tangent

being of course ; the tangent at , . .
(The simple verb is not generally used in this sense but as

a rule means to meet, or is used of points Ii/ing on a locus. Cf.

Pappus, p. 664, 28, -^/ (.% the point

tvill lie on a straight line given in position
; p. 664, 2, lav eVi-

7€ ^/ if it lies on a plane locus given in position).

The word iwnj/aveiv is also commonly used of touching, e.g. ' eV/^' ^ is touching the section in one point,

innj/avovaa toucliing any one of the sections at random.

Point of contact is, chord of contact -^.
The point of intersection of two tangents is -.
The following elliptical expressions are found in Apollonius :

"
avTov let be the tangent (draivn) from (outside

the curve) ; eav aV , if {there he

d/rawKi)from it (two straight lines of which) one touches, and the other

cuts (the curve).

11. Asjnuptotes.

Though the technical term used by Apollonius for the asymp-

totes is, it is to be observed that the Greek word has a

wider meaning and was used of any lines which do not meet, in

whatever direction they are produced. Thus Proclus*, quoting from

Geminus, distinguishes between (a) which are in one

plane and (b) those which are not. He adds that of

which are in one plane " some are always at the same distance from

one another (i.e. parallel), while others continually diminish the

distance, as a hyperbola apj)roaches the straiglit line and the

* Comment, in End. i. p. 177.
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conchoid the straight line." The same use of in its

general sense is found even in Apollonius, who says (ii. 14)

rg .^ lyyiov( , , tJie lines, (the

asymptotes proper) are nearer than any of the lines which do not

meet the section.

The original enunciation of ii. 14 [Prop. "36] is interesting:

/; el<;^^ eyyioV €-? ^/? fts, the asymptotes and the section, if produced to infinity,

ajyjyroach nearer to one another and come within a distance less than

any given distance.

One of the angles formed by the asymptotes is

the angle containing (or including) the hyperbola, and

similarly we find the expression ctti /aiS? '/
/^ on one of the asymptotes containing the

section.

The space between the asymptotes and the curve is

n7S.
12. Data and hypotheses.

Given is hoOiU or/^
;
given in positio7i /;, given

in magnitude (•^ /'; (of straight lines). For is or will

be, given in position we frequently find ^', without-
/', or even^ alone, as in ^' AE. A more remarkable

ellipse is that commonly found in such expressions as ^'
, 2)Ci')'cdlel to (given) in 2)Ositio7i, and ^' ttj AB, used

of an angle made with AB (given) in positio7i.

Of hypotheses' and the other parts of the same verb are

used, either alone, as in \ let all the

other suppositions be the same, with the same

suppositions, or Avith substantives or adjectives following, e.g.- the line is by hypothesis a circle,

is by hypothesis equal, they meet

by hypothesis. In accordance with the Avell-knovvn (ireek idiom

means which is contrary to the hypothesis.

13. Theorems and problems.

In a theorem loliat is required to be proved is sometimes denoted

by TO, and the requirement in a problem is to '^'.
Thus ^ ', ; ij then

is an axis, that which loas required would have been done. To draiv
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171 the manner required is ayayitv . When the solution

of a problem has been arrived at, e.g. when a required tangent has

been drawn, the tangent is said .
In the: or setting out of a theorem the re-stateiiiont of

what it is required to prove is generally introduced by Apollonius

as well as Euclid by the words, on ; and in one case ApoUonius

abbreviates the re-statement by saying simply ', otl %
I say that the property stated in the enunciation triU be

true ; it is to be proved is Set/cTcov, it renuiins to he proved/
SeiKT€ov, let it be required to dra^v hiov dyayav.

The synthesis of a problem regularly begins with the words-
€^7;£ hrj ().

li. Constructions.

These are nearly always expressed by the use of the perfect

imperative passive (with which may be classified such perfect

imperatives as from '^,' from,
and the imperative from. The instances in ApoUonius

where active forms of transitive verbs appear in constructions are

rare ; but we find the following, idv^ if tve make (one line

in a certain ratio to another), /? ', for in the same manner as before, after

draiviny the tangent AB, / say that...,^ epou/xev

having joined AB we shall prove ; vhile in yap; we have a somewhat violent anacoluthon, /or,

having drawn the taiigent, this touches.

Of the words used in constructions the following are the most

common : to dratv, and other compounds, to join iirtCevy•

nJvai, to produce,, to take or supply,
to cut off^, /,', »', to construct'^,^, to describe' and its compounds, to apply-, to erect, to divide Staipetv, to bisect^'.

Typical expressions are the follo\ving : rrj '
let the angle be constructed eqna^ to the

angle ; 7;/ ypatvo<; tic

circle described icith as centre and at a. distance ;
'

^ AB/ let plane be

erected 071 right angles to the supposed pia 7ie ;( avrrj

let (? a7igle) be made equal to it, let (a line, circle etc.) be set

out, let a segme7it he cut offfrom it,' ivith the saj7ie constructioti.
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No detailed enumeration of the various perfect imperatives is

necessary ; but -^-^ for suppose it done deserves mention for its

elegance.

Let it he conceived is : thus ,
let cone be conceived whose apex is the jyoiiit .

A curious word is , meaning literally to break off and

generally used of two straight lines meeting and forming an angle,

e.g. of two straight lines drawn from the foci of a central conic to

one and the same point on the curve, ' , -- ,, (literally)/rom the points , let

, be broken short off against the curve. Similarly, in a propo-

sition of ApoUonius quoted by Eutocius from the /icvos,
the straight lines drawn from the given jwints to meet on the circum-

ference of the circle are at ZoBkvTiMv ctti '
(,.

15. Operations (Addition, Subtraction etc.).

The usual woi'd for being added is : thus8. , or is bisected in

and has added. Of a magnitude having another added to it the

participle of is used in the same way as for

having something subtracted. Thus KP rj BO
means KP minus or phis BO is equal to.

(with gen.) is also used for plus, e.g. AEB is

equivalent to AE . EB + ZE^

A curious expi'ession is ,, or

meaning t/ie sum of ^, , or ofTZ, .
Of adding or subtracting a common magnitude Kotvo's is used :

thus Kotvov or is let the common [magnitude) be

added, or taken away, the adjective Aoitto's being applied to the

remainder in the latter case.

To exceed is or^, the excess is often ,, ..., exceeds by is

, to differfrom is8 with gen., to differ by is expressed by

the dative, e.g. (a certain triangle) differs from by the triangle

on Pi® as base similar to, '
;
(the area) by which the square on differs

from, the square on A2, ' 2.
For multiplications and divisions the geometrical equivalents

are the methods of proportions and the application of areas ; but of

numerical multiples or fractions of magnitudes the following are
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typical instances : the half of AB, <; AB ; the fourth part

of the figure, «
; fou7• times the rectangle AE .,

TO AEA.

IG. Proportions.

Ratio is ?, tvill be cut in the same ratio «is »', the three jrroportionals Tpcis ; <</ a mean
proportional between ,, , or- dvaXoyov,. The sides about the right angles (are) jyroportional irepl? 7€.

I'he ratio of A to is 6, oV A , or rot• A? TO ? ; stippose the ratio of to made the same as the

ratio of to HB, 7? ? 7^7?? ; has to greater (or less) ratio than has to , to

A TO (or) €€€ ? , or, oV€ ? ; the ratio of the square of the inner segment

to the square of the renipAning segment, ?, ov ? /7/
irpo% 8€.

The following is the ordinary form of a proportion : as the square

on A2 is to the rectangle under B2, 2 so is to, ? aVo A2' 2,? ?. In a proportion the antece-

dents are ^,, i.e. the leading terms, the consequents€ ; as one of the antecedents is to one of the consequents so are

all the antecedents (taken together) to all the consequents (taken together)

? cv yovevv? €v ,?? €€.
very neat and characteristic sentence is that which forms the

enunciation of Euclid v. 19 : eav y cj? ?,?• £^€, ? 5? ?.
If as whole is to a whole so is (a part) taken awaij to (a part) taken

away, the r&mainder also will be to the remainder as the lohole to the

whole. Similarly in Apollonius we have e.g. eVei ? «? ,? ?^, ?, ? ?, since then, as the

whole the square on AE is to the whole the (parallelogram) AZ, so is

(the part) taken away the rectangle under , to (the part) taken

away the (parallelogram), remainder is also to remainder as whole

to whole.

To be compounded of is^, the ratio compounded of 6

(or, from)? ( ( , (
...), the ratio cornpounded (<f the ratios) of tlie sides vy(€yo<;
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€K .^ is moreover used not only of being

a compounded ratio, but also of being eqnal to a ratio compounded

of two others, exen Avhen none of the terms in the two latter ratios

are the same as either term of the fii'st ratio.

Another way of describing the ratio compounded of two others

is to use€ (with gen.) which here implies multiplication and not

addition. Thus 1-175 A2? 2 / <; 2 2 is

the ratio compounded of the ratio of k'% to 2 and that of A2 to 2B.

Similarly ) means let the common
ratio of to be divided out (and not, as usual, subtracted),

KOLvov dividing out by this common ratio.

Taking the rectangle contained by, EZ as a middle term is, taking AH as a common altitude

AH) .
So that the corresponding terms are continuous€

eivat ; so that the segments adjoining the vertex are corre-

sponding teryns cTvai ttj-) /,/'/,.

There remain the technical terms for transforming such a pro-

portion as a :b = c : d. These correspond with the definitions at the

beginning of Eucl. Book v. Thus alternately (usually called

permutando or alternando) means transforming the proportion into

a : c-b : d.

reversely (usually invertendo), b : a==d : c.

is composition of a ratio, by which the ratio a : b

becomes a + b : b. The corresponding Greek term to compo-

nendo is^ Avhich means no doubt, literally, " to one

who has compounded," or " if we compound," the ratios. Thus

is used of the inference that a + b :b = c + d: d.

means divisio7i of a ratio in the sense of separation

or subtraction in the same way as^ signifies addition.

Similarly (the translation of which as divide^ido or

dirimsndo is misleading) means really separating in the sense

of subtracting : thus a - b : b = c — d : d.

conversion of a ratio and conver-

tendo correspond respectively to the ratio a la-b and to the

inference that a : a — b = c : c — d.

St , generally translated ex aequali (sc. distantia), is applied

to tlie inference e.g. from the proportions

a : b : c : d etc. = ^1 : : C : D etc.

that a : d= A : D.

All tlie expressions above explained,, (',,
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in Euclid. In one place we find the variant 8ia 8e »'.
Are in recijrrocal pi-ojiortion is.€.
17. Inferences.

The usual equivalent for therefore is, e.g. iv rrj €Vi0avcta

it is therefore on the surface, iidda apa iariv ; A therefore AB
is a straight line ; ovv is generally used in a somewhat weaker sense,

and in conjunction with some other word, in order to mark the

starting point of an ai'gument rather than to express a formal

inference, so that can usually translate it by then, e.g. «Vei oty

since, then, on\...( it is, then, clear that.... 8 is some-

what similarly used in taking up an argument. .SO that is £,
that is. A corollary is often introduced by •,
oTt, or by it is proved at the same time.

It is at once clear '^, from this it is clear /
/cpo'v, for this reason , for the same reason, wherefore, in the same way as above or before

TOts or (.., similarly it will be shown

€;!(^77€, the same results as before willfollorv, the same proofs tvill apply ^.
Conversely, by the converse of the theorem -, by what zvas j^'oved and its converse

elp- .
By w/tat was before proved in the case of the hyperbola 8ia.

8(.8•(. cttI rijs
; for the same (facts) have been

proved in the case of the jmrallelograms which are t/ieir doubles

CTTi .
By the similarity of the triangles ^ ,

by parallels ?, by the {])ropei-ty of the) section,

parabola, hyjyerbola ^,,.
The properties ivhich have already been proved true of t/ie sections

when the original diameters are taken (as axes of reference)

? €
8€.

Much more . Cf.

much sooner does it cut the section.

18. Conclusions.

Which it teas rpquired to do, to prove 18,^ ;

which is absurd ; and this is impossible, so that the

H. C. in
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original supposition is so also € .
A7id again the absurdity tvill he similarly inferred€ .

19. Distinctions of cases.

Tliese properties are general, hut for the hyperbola only etc.

\, ..., in the third figure «
-^ or , in all the possible cases

(^^^.
20. Direction, concavity, convexity.

In both directions ', totvards the same parts as the

section « ^) ; towards the direction of the point E, inl, * £ ; the same side of the centre as AB, hrl^ , iv c<mv . There is also the expression, meaning literally in the succeeding

2)arts of tJie section, and used of a line cutting a branch of a hyperbola

and passing inside.

The concave parts , the convexities , not having its

concavity (convexity) toioards the same parts

()«, towards the same ])arts as the concavity of the

curve €7ri -, if it touc/oes with its concave

side iav , will touch on its concave side.
Having its convexity turned the opposite loay

^.
21. Infinite, Infinity.

Unlimited or infinite, to increase without limit or indefi-

nitely ( ^€^.
is also used in a numerical sense ; thus in the same way

we shall find an infinite number of diameters hi '(..
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THE CONE.

If a straight line indefinite in length, and passing always

through a fixed point, be made to move round the circumference

of a circle Avhich is not in the same plane with the point, so as

to pass successively through every point of that circumference,

the moving straight line will trace out the surface of a double

cone, or two similar cones lying in opposite directions and

meeting in the fixed point, which is the apex of each cone.

The circle about which the straight line moves is called

the base of the cone lying between the said circle and the

fixed point, and the axis is defined as the straight line drawn

from the fixed point or the apex to the centre of the circle

forming the base.

The cone so described is a scalene or oblique cone except

in the particular case where the axis is perpendicular to the

base. In this latter ca,se the cone is a right cone.

If a cone be cut by a plane passing through the apex, the

resulting section is a triangle, two sides being straight lines

lying on the surface of the cone and the third side being

the straight line which is the intersection of the cutting plane

and the plane of the base.

Let there be a cone Avhose apex is A and whose base is the

circle BC, and let be the centre of the circle, so that .4 is

the axis of the cone. Suppose now that the cone is cut by any

plane parallel to the plane of the base BC, as DE, and let

H. c. I
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the axis meet the plane DE in o. Let be any point on

the intersection of the plane DE and the surface of the cone.

Join Ap and produce it to meet the circumference of the circle

BC in P. Join OP, op.

Then, since the plane passing through the straight lines

0, cuts the two parallel planes BG, DE in the straight

lines OP, op respectively, OP, op are parallel.

.•. op: OP = Ao:AO.

And, BPG being a circle, OP remains constant for all positions

of ^j on the curve DpE, and the ratio Ao: A is also constant.

Therefore op is constant for all points on the section of the

surface by the plane DE. In other words, that section is

a circle.

Hence all sections of the cone ivhich are parallel to the

circular base are circles. [I. 4.]
*

Next, let the cone be cut by a plane passing through the

axis and perpendicular to the plane of the base BG, and let the

section be the triangle ABG. Conceive another plane

drawn at light angles to the plane of the triangle ABG
and cutting off from it the triangle AHK such that AHK is

similar to the triangle ABG but lies in the contrary sense,

i.e. such that the angle is equal to the angle ABG.
Then the section of the cone by the plane HK is called a

subcontrary section( ).
* The references in this form, here and throughout the book, arc to the

original propositions of ApoUonius.
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Let be any point on the intersection of the plane II

with the surfiice, and F any point on the circumference of the

circle BG. Draw PM, FL each perpendicular to the plane of

the triangle ABC, meeting the straight lines HK, BG respec-

tively in M, L. Then PM, FL are parallel.

Draw through the straight line BE parallel to BG, and

it follows that the plane through

DME, PM is parallel to the base

BG of the cone.

Thus the section DPE is a

circle, and DM. ME= PM\
But, since DE is parallel to BG,

the angle AD is equal to the

angle ABG which is by hypothesis

equal to the angle.
Therefore in the triangles iri)if,

EKM the angles HDM, EKM are

equal, as also are the vertical

angles at M.

Therefore the triangles HDM, EKM are similar.

Hence HM : MD = EM : MK.

.•. HM.MK = DM.ME = PM\
And is any point on the intersection of the plane HK

with the surface. Therefore the section made by the plane

HK is a circle.

Thus they-e are two senes of circular sections of an oblique

cone, one series being parallel to the base, and the other consisting

of the sections subcontrary to the first series. [I. 5.]

Suppose a cone to be cut by any plane through the axis

making the triangular section ABG, so that BG is a diameter

of the circular base. Let be any point on the circumference

of the base, let HK be perpendicular to the diameter BG, and let

a parallel to be drawn from any point Q on the surface

of the cone but not lying in the plane of the axial triangle.

Further, let AQha joined and produced, if necessary, to meet

1—2



4 THE COXICS OF APOLLONIUS.

the circumference of the base in F, and let FLF' be the chord

perpendicuhir to BG. Join AL, AF'. Then the straight line

through Q parallel to HK is also parallel to FLF'
;

it follows

therefore that the parallel through Q will meet both AL and

AF'. And AL is in the plane of the axial triangle ABC.

Therefore the parallel through Q will meet both the plane

of the axial triangle and the other side of the surface of the

cone, since AF' lies on the cone.

Let the points of intersection be V, Q' respectively.

Then QV:VQ' = FL: LF', and FL = LF'.

.•. QV= VQ',

or QQ' is bisected by the plane of the axial triangle. [I. C]

Again, let the cone be cut by another plane not passing

through the apex but intersecting the plane of the base in

a straight line DME perpendicular to BC, the base of any axial

triangle, and let the resulting section of the surface of the cone

be DPE, the point lying on either of the sides AB, AG o(

the axial triangle. The plane of the section will then cut the

plane of the axial triangle in the straight line PiU joining to

the middle point of DE.

Now let Q be any point on the curve of section, and through

Q draw a straight line parallel to DE.

Then this parallel will, if produced to meet the other side

of the surface in Q', meet, and be bisected by, the axial
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triangle. But it lies also in the plane of the section DPE\ it

will therefore meet, and be bisected by, PM.

Therefore PM bisects any chord of the section which is

parallel to DE.

Now a straight line bisecting each of a series of parallel

chords of a section of a cone is called a diameter.

Hence, if a cone he cut by a plane which intersects the

circuku' base in a straight line })erpendicular to the base of any

axial triangle, the intersection of the cutting plane and the plane

of the axial triangle will be a diameter of the resulting section

of the cone. [I. 7.]

If the cone be a right cone it is clear that the diameter so

found will, for all sections, be at right angles to the chords

which it bisects.

If the cone be oblique, the angle betAveen the diameter so

found and the parallel chords which it bisects will in general

not be a right angle, but will be a right angle in the particular

case only where the plane of the axial triangle ABC is at right

angles to the plane of the base.

Again, if PJ/ be the diameter of a section made by a plane

cutting the circular base in the straight line DME perpen-

dicular to BC, and if PJ/ be in such a direction that it does not

meet AC though produced to infinity, i.e. if be either

parallel to AC, or makes with PB an angle less than the angle

AC and therefore meets CA produced beyond the apex of the

cone, the section made by the said plane extends to infinity•
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For, if we take any point V on PM produced and draw through

it HK parallel to BC. and QQ' parallel to DE, the plane

through HK, QQ' is parallel to that through DE, BC, i.e. to the

base. Therefore the section HQKQ' is a circle. And D,E,Q,Q'

are all on the surface of the cone and are also on the cutting

plane. Therefore the section DPE extends to the circle HQK,
and in like manner to the circular section through any point

on PM produced, and therefore to any distance from P. [I. 8.]

[It is also clear that = BM.MC, and QV" = HV. VK :

and HV . VK becomes greater as V is taken more distant

from P. For, in the case where is parallel to AC, VK
remains constant while HV increases ; and in the case where the

diameter PM meets CA produced beyond the apex of the cone,

both HV, VK increase together as V moves aAvay from P.

Thus QV increases indefinitely as the section extends to

infinity.]

If on the other hand meets AC, the section does not

extend to infinity. In that case the section will be a circle

if its plane is parallel to the base or subcontrary. But, if the

section is neither parallel to the base nor subcontrary, it

not be a circle. [I. 9.]

For let the plane of the section meet the plane of the base

in DME, a straight line perpendicular to BC, a diameter of the
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circular base. Take the axial triangle through BC meeting the

plane of section in the straight line PP'. Then P, P\ are

all points in the plane of the axial triangle and in the plane

of section. Therefore PP' is a straight line.

If possible, let the section PP' be a circle. Take any \unn\,

Q on it and draw QQ' parallel to DME. Then if Qi^' meets

the axial triangle in V, QV= VQ'. Therefore PP' is the

diameter of the supposed circle.

Let HQKQ' be the circular section through Q(^' parallel to

the base.

Then, from the circles, QV = HV. VK,

QV' = PV.VP'.

.•.HV.VK = PV.VP',

so that HV: VP = P'V: VK.

.•. the triangles VPH, VKP' are similar, and

/.PHV = ^KP'V;
.. ZKP'V= ZABC, and the section PP' is subcontrary

:

which contradicts the hypothesis.

.•. PQP' is not a circle.

It remains to investigate the character of the sections

mentioned on the preceding page, viz. (a) those which extend

to infinity, (b) those Avhich are finite but are not circles.

Suppose, as usual, that the plane of section cuts the circular

base in a straight line D.VE and that ABC is the axial triangle
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Avhose base BG is that diameter of the base of the cone which

bisects DME at right angles at the point ^f. Then, if the

plane of the section and the plane of the axial triangle intersect

in the straight line PM, PM is a diameter of the section

bisecting all chords of the section, as QQ', which are drawn

parallel to BE.

If QQ is so bisected in V,QV is said to be an ordinate, or

a straight line drawn ordinate-'wise(''),
to the diameter PAi ; and the length PV cut olf from the

diameter by any ordinate QV will be called the abscissa of Q V.

Proposition 1.

[I. 11.]

First let the diameter of the section he parallel to one of
the sides of the axial triangle as AC, and let QV be any ordinate

to the diameter PM. Then, if a straight line PL (supposed to be

draiun p)erpendicidar to PM in the plane of the section) be taken

of such a length that PL : PA = BC'^ : A .AC, it is to be proved

that

QV' = PL.PV.

Let HK be draAvn through V parallel to BC. Then, since

QF is also parallel to DE, it follows that the plane through

H, Q, is parallel to the base of the cone and therefore
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produces a circular section whose diameter is UK. Also QV is

at right angles to HK.
.•. HV.VK = QV\

Now, by similar triangles and by parallels,

HV:PV=BC:AC
and VK:PA=BC:BA.

.•. HV. VK.PV.PA=BG':BA.AG.
Hence QV .PV .PA = PL : PA

= PL.PV:PV.PA.
.•. QV'' = PL.PV.

It follows that the square on any ordinate to the fixed

diameter PM is equal to a rectangle applied()
to the fixed straight line PL drawn at right angles to PM with

altitude equal to the corresponding abscissa PV. Hence the

section is called a Parabola.

The fixed straight line PL is called the latus rectum

() or the parameter of the ordinates (' -
Karar^opLevaL €'^<;).

This parameter, corresponding to the diameter PM, will for

the future be denoted by the symbol ;
Thus QV' = p.PV,

or QV'^cPV.

Proposition 2.

[I. 12.]

Next let not be parallel to AC but let it meet CA
produced beyond the apex of tJie cone in P'. Draw PL at Hght

angles to in the plane of the section and of such a length

that PL : PF = BF . FG : AF\ where AF is a straight line

through A parallel to and meeting BG in F. Tlien, if VR
be drawn parallel to PL and P'L be joined and produced to

meet VR in R, it is to be proved that

QV' = PV.VR.

As before, let HK be drawn through V parallel to BG, so

that QV' = HV.VK.
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Then, by similar triangles,

HV:PV=BF:AF,
VK :P'V=FC:AF.

.•. HV.VK :PV.P'V= BF.F('.AF\

Hence QV :PV.P'V=PL .PP'

= VE:P'V
= PV.VR:PV.P'V.

.•. QV' = PV.VR.

It follows that the square on the ordinate is equal to a

rectangle whose height is equal to the abscissa and Avhose base

lies along the fixed straight line PL but overlaps()
it by a length equal to the difference between VR and PL*.

Hence the section is called a Hyperbola.

* Apollonius describes the rectangle PR as applied to the latus rectum but

exceeding by a figure similar and similarly situated to that contained by I'l^ and

PL, i.e. exceeding the rectangle VL by the rectangle LR. Thus, if QV=y,
Py=x, PL=p, and PP':^d,

y-=px + ^.x-,

which is simply the Cartesian equation of the hyperbola referred to oblique axes

coneiatiug of a diameter and the tangent at its extremity.
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PL is called the latus rectum or the parameter of the

ordinates as before, and PP' is oallcil the transverse (
/;

TrXayia). The fuller expression transverse diameter ( /; -rrXayia

/69) is also used; and, even more commonly, Apullunius

speaks of the diameter and the corresponding parameter together,

calling the latter the latus rectum (i.e. the erect side,

ifkevpa), and the former the transverse side { irXayia TrXeupa),

of the figure (') on, or applied to, the diameter{ rrj), i.e. of the rectangle contained by PL, PP' as drawn.

The parameter PL will in future be denoted by jj.

[Coil. It follows from the proportion

QV':PV.P'V=PL:PP'
that, for any fixed diameter PP',

QV iPV.P'Visa constant ratio,

or QF•^ varies as PF.P'F.]

Proposition 3.

[I. 13.]

If meets AC in P' and BG in M, draw AF parallel to

PM nieetiiuj BG produced in F, and draw PL at right angles to

PM in the plane of the section and of such a length that

PL : PP' = BF.FC : AF\ Join P'L and draw VR parallel

to PL meeting P'L in R. It luill he proved that

QV"' = PV.VE.

y
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Draw HK through V parallel to BC. Then, as before,

QV' = HV. VK.

Now, by similar triangles,

HV.PV=BF:AF,
VK:P'V = FG:AF.

.•. HV.VK:PV.P'V = BF.FC :AF\

Hence QV : PV . P'V= PL : PP'

= VR:P'V
= PV. VR.PV.P'V.

.•. QV' = PV.VE.

Thus the aquarc on the ordinate is equal to a rectangle

whose height is equal to the abscissa and Avhose base lies along

the fixed straight line PL but falls short of it (iWeiTrei) by a

length equal to the difference between VR and PL*. The

section is therefore called an Ellipse.

As before, PL is called the latus rectum, or the para-

meter of the ordinates to the diameter PP', and PP' itself is

called the transverse (with or without the addition of

diameter or side of the figure, as explained in the last

proposition).

PL will henceforth be denoted by p.

[Cor. It follows from the proportion

QV':PV.PV' = PL:PP'

that, for any fixed diameter PP',

QV^:PV.P'V is a constant ratio,

or QV varies SisPV.PV.]

* Apollonius describes the rectangle PR as applied to the latiu rectum but

falling short by a figure similar and similarly situated to that contained by PP"

and PL, i.e. falling short of the rectangle VL by the rectangle lAi.

If QV=y, PV=x, PL=p, and PP' = d,

y-=px

Thus ApoUouius' enunciation simply expresses the Cartesian equation referred

to a diameter and the tangent at its extremity as (oblique) axes.
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Proposition 4.

[I. U.]

If a plane cuts both parts of a double cone and does not pass

through the apex, the sections of the two parts of the cone will

both be hyperbolas which will have the same diameter and equal

later-a recta coiTesponding thereto. And such sections are called

OPPOSITE BRANCHES.

Let BChe the circle about which the straight line generating

the cone revolves, and let B'C be any parallel section cutting

the opposite half of the cone. Let a plane cut both halves

of the cone, intersecting the base BC in the straight line DE
and the plane B'C in D'E\ Then' must be parallel to

DE.

Let BC be that diameter of the base which bisects DE at

right angles, and let a plane pass through BC and the apex A
cutting the circle B'C in B'C, which will therefore be a diameter

of that circle and will cut D'E' at right angles, since B'C is

parallel to BC, and DE' to DE.
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Let ^.4i?^' be drawn through A parallel to MM', the straightHr^ join.ng the n.ddle points of DE, D'E' and meeting C^iiA respectively in P, P'. ^ '

Draw perpendiculars PL, P'L to MM' in the plane of thesection and of such length that

PZ .PP' = BF.FG:AF\

P'L':P'P=B'F'.F'C':AF'\

Since now ifP, the diameter of the section DPE when

Sl^aT/plh'ofa/^'" ^^^-^ ^^^ ^^-' ^^^
-'^"

Also since i)'^' is bisected at right angles by the base ofhe axial triangle AB'C, and M'p\n the^lane of he liatriangle meets C'A produced beyond the anex A fh!DPE' i, also a hyperbola.
^

^ ^' '^" ''^'^""

And the two hyperbolas have the same diameter MPP'M.
It remains to prove that PL = P'L'.

We have, by similar triangles,

BF:AF=B'F':AF',

FC :AF=F'C' :AF'.

•BF.FC.AF' = B'F' . F'C : AF'\
Hence pi . pp' ^ p.^, . p,p

-.PL^P^L'.
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Proposition 5.

[I. 15.]

If through C, the middle point of the diameter PP' of (oi

ellipse, a double ordinate BCD' he draiun to PP', BCD' will

bisect all chords parallel to PP', and will tJierefore he a diameter

the ordinates to which are parallel to PP'.

In other words, if the diameter bisect all chords parallel to a

second diameter, the second diameter will bisect all chords

parallel to the first.

Also the parameter of the ordinates to BOB' will he a third

proportional to BB', PP'.

(1) Let QF be any ordinate to PP' , and through Q draw

QQ parallel to PP' meeting BB' in and the ellipse in Q'
\ and

let QV be the ordinate drawn from Q to PP'.
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IThen, if PL is the parameter of the ordinates, and if is

joined and VR, CE, V'R' draAvn parallel to PL to meet P'L, we
have [Prop. 3] QV' = PV. VR,

Q'V'^PV'.V'R';

and QV = QV, because QV is parallel to Q'V and QQ' to PP'.

..PV.VR = PV'.V'R.

Hence PV : PV'=V'R': VR = P'V : P'V.

.'. PV: PV''-PV=P'V' : P'V- P'V,

or PV:VV' = FV':VV'.
..PV=P'V.

Also GP=CP'.

By subtraction, CV = CV\

and .•. Qv = vQ', «o that QQ' is bisected by BD'.

(2) Draw i^A" at right angles to DD' and of such a length

that DB' : PP' = PP' : DK. Join D'A and draw vi' parallel to

DK to meet D'A^ in r.

Also draw Ti?, Xi^if and ES parallel to PP'.

Then, since PC =CP', PS = SL and CE=EH;
.•. the parallelogram (P^) = (>Sri/). .

Also (PP) = ( VS) + (8R) = (SU) + (RH).

By subtraction, (PA) - (PR) = (PA)

;

..GO'-QV' = RT.TE.

But CP- - Q F•' = CP•' - Ov' = P'y . vD.

..D'v.vD = RT.TE (A).

Now PP' : PP' = PP' : PA, by hypothesis.

..DD' :DK = DD":PP"'
= CD' : GP'

= PG.GE:GP'
= RT. TE : RT\

and DD' : P7i^ = D'v : vr

= D'v .vD : vD. vr
;

,'

.•. D'v .vD:Dv.vr = RT.TE: RT\ i

But D'v .vD = RT. TE, from (A) above

;

^^

.•. Dv.vr = RT = CV'=Qv\

I
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Thus DK is the parameter of the ordinates to DD', such

as Qv.

Therefore the parameter of the ordiuates to DD' is a third

proportional to DD', PF.

Cor. We have 00"" = PG.GE
= hPP'.\PL;

..DD" = PP'.PL,

or PP' : DD' = DD' : PL,

and PL is a third proportional to PP', DD'.

Thus the relations of PP', DD' and the corresponding

parameters are reciprocal.

Def. Diameters such as PF, DD', each of which bisects

all chords parallel to the other, are called conjugate diameters.

Proposition 6.

[I. 16.]

Iffrom the middle jjoiiit of the diameter of a hyperbola with

two branches a line be drawn parallel to the ordinates to that

diametei-, the line so draimi ivill be a diameter conjugate to the

former one.

If any straight line be drawn parallel to PP', the given

diameter, and meeting the two branches of the hyperbola in Q, Q'

respectively, and if from C, the middle point of PP', a straight

line be drawn parallel to the ordinates to PF meeting QQ' in

V, we have to prove that QQ' is bisected in v.

Let QV, Q'V be ordinates to PF, and let PL, FL be the

parameters of the ordinates in each bmnch so that [Prop. 4]

H. c. 2
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PL = FL'. Draw VR, V'R parallel to PL, P'L', and let PL,

P'L be joined and produced to meet V'R, VR respectively in

R',R.

Then we have QV'^PV.VR,
qV" = PV' .V'R.

.'. PV. VR = P'V . V'R, and V'R :VR = PV:P'V'.

Also PV : V'R = PR : RL' = RP : PL = P'V : VR.

.•. PV .P'V=V'R' .VR
= PV. RV, from above

;

... PV '.PV=P'V:P'V',

and PV + PV : PV = RV + RV : RV,
or VV .PV=VV':RV';

PF=P'F'.

But CP = CR;
.•. by addition, CF=CF',

or Qv = Q'v.

Hence Gv is a diameter conjugate to PR.

[More shortly, we have, from the proof of Prop. 2,

QV:PV.P'V=PL:PP',
Q'V" :RV.PV = P'L' : PR,

and QV=Q'V, PL = P'L':

.•. PV.RV=PV.RV', or PF : PF' = P'F' : P'F,

whence, as above, PV= P'V'.]

Def. The middle point of the diameter of an ellipse or

hyperbola is called the centre; and the straight line dmwn
parallel to the ordinates of the diameter, of a length equal to

the mean proportional between the diameter and the parameter,

and bisected at the centre, is called the secondary diameter

{8evTepa).
Proposition 7.

[I. 20.]

In a parabola the square on an ordinate to the diamete?'

vanes as the abscissa.

This is at once evident from Prop. 1.
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Proposition 8.

[I. -21.]

In a hi/perhohi, an ellipse, or <i circle, if QV be ani/ nrdindte

to the diameter PP',

QV'xPV.P'V.

[This property is at once evident from the proportion

QV':PV.P'V=PL:PP'
obtained in the course of Props. 2 and 3 ; but ApoUonius gives

a separate proof, starting from the property QV^ = PV.VR
which forms the basis of the definition of the conic, as follows.]

Let QV, Q'V be two oi-dinates to the diameter PP'.

Then QV' = PV.VR,

qV^PV. V'R';

.•. QV .PV.PV= PV.VR : PV.P'V
= VR :P'V=PL:PP'.

2—2
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Similarly QT* : PV'.FV = PL : PP'.

.•. QV':Q'V"' = PV.P'V:PV'.P'V';

and QV^ : PV .P'V is constant ratio,

or QV'ocPV.P'V.

Proposition 9.

[I. 29.]

If a straight line through the centre of a hi/perbola with

two branches meet one branch, it will, if produced, meet the

other also.

Let PP' be the given diameter and C the centre. Let CQ
meet one branch in Q. Draw the ordinate QV to PP', and set

off GV along PP' on the other side of the centre equal

to CV. Let V'K be the ordinate to PP' through V. We
shall prove that QGK is a straight line.

Since CF= CV, and CP = GP', it follows that PV= P'V
;

.•. PV.P'V = PT.PV'.

But QV : KV" = PV.P'V:FV'. PV. [Prop. 8]

.•. QV=KV'; and QV, KV are parallel, while GV = GV.

Therefore QGK is a straight line.

Hence QG, if produced, will cut the opposite branch.
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Proposition lO.

[I. 30.]

any chord through the centreIn a hyperbola or an

is bisected at the centre.

Let PP' be the diameter and G the centre ; and let QQ' be

any chord through the centre. Draw the ordinates QV, Q'V
to the diameter PP'.

Then

PV. P'V: P'V. PV = QV : Q'V'

= (77^ : GV'\ by similar triangles.

.•. CV'±PV.P'V•. CV' = CV"±P'V\PV' : GV
(where the upper sign applies to the ellipse and the lower

to the hyperbola).

.•. GP' : GV = GP" : GV'\

But GP' = GP";

.•. CV'=GV'', and GV = GV'.

And QV, Q'V are parallel

;

.•. GQ=CQ:.
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Proposition 11.

[I. 17, 32.]

If a straight line he draxmi through the extremity of the

diameter of any conic parallel to the ordinates to that diameter,

the straight line will touch the conic, and no othei' straight

line can fall hetiueen it and the conic.

It is first proved that the straight line drawn in the

manner described will fall without the conic.

For, if not, let it fall within it, as PK, where

PM is the given diameter. Then KP, being

drawn from a point on the conic parallel to

the ordinates to PM, will meet PM and will be

bisected by it. But KP produced falls without

the conic ; therefore it Avill not be bisected at P.

Therefore the straight line PK must fall without the conic

and will therefore touch it.

It remains to be proved that no straight line can fall

between the straight line drawn as described and the conic.

(1) Let the conic be a parabola, and let PF be parallel

to the ordinates to the diameter PV. If possible, let PK fall

between PF and the parabola, and draw KV parallel to the

ordinates, meeting the curve in Q.

Then KV':PV''>QV' : PV
>PL.PV:PV'
>PL:PV.

Let V be taken on such that

KV:PV' = PL.PV',
and let V'Q'M be drawn parallel to QV, meeting the curve in

Q' and PK in .1/.
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Then KV'.PV'^FL-.PV
= PL.rV': PV"
= q'V"\PV'\

and KV • PV = MV" : PV'\ by parallels.

Therefore MV" = Q'V'\ and MV = Q'V.

Thus PK cuts the curve in Q', and therefore does not fall

outside it : which is contrary to the hyi^othesis.

Therefore no straight line can fall between PF and the

curve.

(2) Let the curve be a hyperbola or an ellipse or a

cifxle.

Let PF be parallel to the ordinates to PP', and, if pussible,

let PK fall between PF And the curve. Draw KV parallel to

the ordinates, meeting the curve in Q, and draw VR per-
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pendicular to PV. Join P'L and let it (produced if necessary)

meet VR in R.

Then QV = PV. VR, so that KV > PV. VR.

Take a point S on VR produced such that KV' = PV.VS.
Join PS and let it meet P'R in R'. Draw R'V parallel to PZ
meeting PF in V, and through V draw VQ'ili parallel to

QV, meeting the curve in Q' and PK in i¥.

Now

so that

KV' = PV.VS,

.•. VS:KV=KV:PV,
VS:PV=KV':PV\

Hence, by parallels,

VR' :PV' = iyV":PV",

or V is a mean proportional between V, VR',

i.e. MV" = PV'.V'R'

= Q'V, by the property of the conic.

.•. MV' = Q'V'.

Thus PK cuts the curve in Q', and therefore does not fall

outside it : which is contrary to the hypothesis.

Hence no straight line can fall between PF and the curve.
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Proposition 12.

[. 33, 35.]

If a point be taken on the diameter of a parabola outside

the curve and such that TF = PV, where V is the foot of the

ordinate from Q to the diameter FV, the line TQ will touch

the parabola.

We have to prove that the straight line TQ or TQ produced

does not fall within the curve on either side of Q.

For, if possible, let K, a point on TQ or TQ produced,

fall within the curve*, and through draw Q'KV parallel

to an ordinate and meeting the diameter in V and the curve

in q.

Then Q'F'^QF^
>KV'^: QV\ by hypothesis.

> TV'"- : TV\
.-.PV .PV>TV'"- : TV\

Hence

4>TP .PV : VTP . PV > TV" : TV\
and, since TP = PV,

^TP.PV=TV\
.'.^TP.PV'>TV'\

But, since by hypothesis TF' is not bisected in P,

^TP.PV <TV'\
(which is absurd.

Therefore TQ does not at any point fall within the curve,

and is therefore a tangent.

* Though the proofs of this pioposition and tlie uext follow //; form the

method of reductio ad absurdtim, it is easily seen that they give in fact the

direct demonstration that, if A' is any point on the tangent other than Q, the

point of contact, A' lies outside the curve hecause, if KQ'V' be parallel to QV, it

is proved that KV" >Q'V'. The figures in both propositions have accordingly

been drawn in accordance with the facts instead of representing the incorrect

assumption which leads to the iibsurdity in each liise.
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Conversely, if the tangent at Q meet the diameter jif'oduced

.outside the curve in the point T, = PV. Also no straight line

can fall bettveen TQ and the curve.

[ApoUonius gives a separate proof of this, using the method

of reductio ad absurdum.]

Proposition 13.

[I. 34, 36.]

In a hyperbola, an ellipse, or a circle, if PP' be the

diameter and QV an ordinate to it from a point Q, and if a

point be taken on the diameter but outside the curve such that

TP : TP' = PV : VP', then the straight line TQ will touch the

cm^e.

We have to prove that no point on TQ or TQ produced falls

within the curve.
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If possible, let a point on TQ or T(^ produced fall within

the curve*; draw Q'KV parallel to an ordinate meeting the

curve in Q'. Join P'Q, V'Q, producing them if necessary,

and draw through P' , parallels to TQ meeting V'Q, VQ in /,

and H, respectively. Also let the parallel through

meet P'Q in M.

Now, by hypothesis, : PV= TP' : TP

;

.•. by parallels, P'H : PN = P'Q : QM
= P'H:NM.

Therefore PN = NM.

Hence . > . 0.1/,

or :>:;
.: : > OP :,

or .>..
It follows that '. : 'PQ' > .OP : 'fQ'\

.•. by similar triangles

P'V . PV :' > P'V.PV : ",
or P'V.PV:P'V'.PV'>TV':TV";

.'.QV':Q'V">TV':TV"

>QV':KV'\
.•. Q'V < KV, which is contrary to the hypothesis.

Thus TQ does not cut the curve, and therefore it touches it.

Conversely, if the tangent at a point Q meet the diameter

PP' outside the section in the point T, and QV is the ordinate

from Q,

'TP:'TP' = PV: VP'.

Also no other straight line can fall between TQ and the curve.

[This again is separately proved by Apollonius by a simple

reductio ad absurdum.]

* See the note on tlie previous propo^iition.
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Proposition 14.

[I. 37, 39.]

In a hyperbola, an ellipse, or a circle, if QV be an ordinate

to the diameter PP', and the tangent at Q meet PP' in T, then

(1) CV.CT = CP\

(2) QF-• : CV. VT = p : PP' [or CD' : CP^].

pI V C

(1) Since QT is the tangent at Q,

TP :
' = PV :, [Prop. 13]

.•. TP + TP' : TP ~ TP' = PV + P'V : PV ~ P'V-

thus, for the hyperbola,

2CP:26T=26T:2CP;
and for the ellipse or circle,

2CT:2GP = 2CP:2GV;

therefore for all three curves

CV,CT=CP\
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(2) Since CV : CP = (T : CT.

CV~ GP:CV=CP~CT: CP,

Avhence PV : CV = PT : CP,

or PV:PT=CV:CP.
.•. PV : PV+PT = CV : CV+ CP,

or PV:VT=^CV:P'V,

and CV.VT=PV.P'V.

But QV : PF. P'F= /) : PP' (or CD' : CP*). [Prop. 8]

.•. QV : (7F. Fr = ^j : PP' (or CD» : CP').

Cor. It follows at once that QV : VT is equal to the ratio

compounded of the ratios : PP' (or CD' : CP') and C7 : QF.

Proposition 15.

[I. 38, 40.]

If Qv be the ordinate to the diameter conjugate to PP', and

QT, the tangent at Q, iiieet that conjugate diameter in t, then

(!) Cv.Ct=CD\

(2) Qv' :Cv.vt = PP' :p [or CP' : CD'],

(3) tD : tD' = vD' : vD for the hyperbola,

and tD : tD' = vD : vD' for the ellipse and circle.

Using the figures drawn for the preceding proposition, we

have (1)

QV : CV. VT = CD' : CP'. [Prop. U]

But QV:CV=Cv:CV,
and QV:VT=Ct:CT;

.•. QV : CV. VT= Cv.Ct : CV. CT.

Hence Cv . Ct : CV. CT = CD' : CP'.

And CV.CT =CP'; [Pn.p. 14]

.•. Cv.Ct = CD\
(2) As before,

QV : CV. VT=CD' : CP' (or;) : PF).

But QV : CV = Cv : Qv,
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and QV: VT = vt :Qv;

.-.QV'.CV.VT=Cv.vt:Qv'.

Hence Qv' : Cv . vt = CP' :
''

= PP' : ;).

(3) Again,

Ct.Cv = CD' = CD.CD':

.\Ct:CD=CD' :Cv,

and .•. Gt + GD : Gt~GD=GD' + Gv : GD'~Gv.

Thus tD : tD' = vD' : vD for the hypevholu,

and iD' : iZ) = vD' : vD for the ellipse and c?Vcie.

Cor. It follows from (2) that Qv : Gv is equal to the ratio

compounded of the ratios PP' : (or GP^ : CZ)'^) and i/i : Qv.



PROPOSITIONS LEADING TO THE REFERENCE OF

A CONIC TO ANY NEW DIA:\IETER AND THE
TANGENT AT ITS EXTREMITY.

, atid if

Proposition 16.

[I. 41.]

In a hyperbola, an ellipse, or a circle, if equiatir/alar paral-

lelograms (VK), (PM) be described on QV, GP respectivehj, and

tneir .•*» are sucK tMt |^= ^^ .§ [... %.%
{VN) be the parallelogram on CV similar and similarly sit ated

to (PM), then

{VN)±{VK) = {PM),

the lower sign applying to the hyjjerbola.

Suppose to be so taken on KQ produced that

QV:QO = p:PP',

so that QV: QV .QO = QV : PV . PV.
Thus QV.QO = PV.P'V (1).

Also QV: QK = {CP : CM) . (p : PP') = (CP : CiM).{QV: QO),

or (QV : QO) .{QO:QK) = (CP : CM)
.
(QV : QO)

;

.•. QO:QK=CP:CM (2).

But QO:QK=QV.QO:QV.QK
and CP : CM = CP' : CP . CM :
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.•. CP' : GP . CM ^QV.QO'.qV.QK
= PV.P'V . QV.QK, ivom i\).

Therefore, since PM, VK are equiangular,

GP' : PV.P'V=(PM) : (VK) (3).

Hence GP' + V. P'V : GF" = {PM) + ( FZ) : {PM),

Avhere the upper sign applies to the ellipse and circle and the

lower to the hyperbola.

and hence {VN) : {PM) = {PM) + {VK) : {PM),

so that ( VN) = {PM) + { VK),

or {VN)±{VK) = {PM).

[The above proof is reproduced as given by ApoUonius in

order to show his method of dealing with a somewhat compli-

cated problem by purely geometrical means. The proposition

is more shortly proved by a method more akin to algebra as

follows.

We have QF» : GV ~ GP' = GD' : GP\

QV_G^CP ^r. r.r. CD'

GP^'CM'

CD'

and QK

^''^''CP.CM

3r QV=QK

GV'~GP

CP.GM'

CD' : GP\

or QV.QK = GP.GM{^l'-l

..{VK) = {VN)-{PM),

{VN)±{VK) = {PM).]
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Proposition 17.

[I. 42.]

In a parabola, if QV, RW he ordinates to the diameter

through P, and QT, the tangent at Q, and RU parallel to it

meet the diameter in T, U respectively; and if through Q a

parallel to the diameter he drawn meeting RW produced in F
and the tangent at in E, then

RUW = the parallelogram {EW).

Since QT is a tangent,

TV=2PV; [Prop. 12]

.•. AQTV={EV) (1).

Also QV':RW' = PV:PW',
.•. QTV : RUW={EV) : (EW), ZA

and QTV = (EV), from (1)

;

.•. RUW={EW).

Proposition 18.

[I. 43, 44.]

In a hypei'hola, an ellipse, or a circle, if the tangent at Q
and the ordinate from Q meet the diameter in T, V, and if RW
he the ordinate from any point R and RU he parallel to QT ; if

also RW and the parallel to it through meet CQ in F,

respectively, then

A CFW~ A CPE= A RUW.

H. C.
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: CV. VT = p : PP' [or CD' : OP'],

PP') . {CV -.QV); [Prop. 14 and Cor.;

We have QV
whence QV : VT = (p

therefore, by parallels,

RW:WU={p: PP') . (CP : PE).

Thus, by Prop. 16, the parallelograms which are the doubles

of the triangles RUW, CPE, GWF have the property proved in

that proposition. It follows that the same is true of the

triangles themselves,

.•. CFW ~ CPE =ARUW.

[It is interesting to observe the exact significance of this

proposition, which is the foundation of Apollonius' method of

transformation of coordinates. The proposition amounts to

this: If GP, GQ are fixed semidiameters and R a variable

point, the area of the quadrilateral GFRU is constant for all

positions of R on the conic. Suppose now that CP, CQ are

taken as axes of coordinates {CP being the axis of a•). If we

draw RX parallel to CQ to meet GP and RY parallel to CP to

meet CQ, the proposition asserts that (subject to the proper

convention as to sign)

ARYF+CJ CXRY+ RXU = {const.).

But, since RX, RY, RF, BU are in fixed directions,

ARYFcc RY\
or A RYF = ax-

;

CJCXRY^ RX.RY,
CJCXRY=xy,
ARXlJcc RX\
ARXU= yy-.

or

or
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Heuce, if x, y are the coordinates of li,

ax^ +/ +/ = A,

which is the Cartesian equation referred to the centre as origin

and any two diameters as axes.]

Proposition 19.

[I. 45.]

If the tangent at Q and the straight line through R parallel

to it meet the secondary diameter in t, respectively, and Qv, Rw
he parallel to the diameter PP', meeting the secondary diameter

in V, w ; if also Rw meet CQ inf then

= Ruw - CQt.
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and the triangles QvC, Qvt are the halves of equiangular paral-

lelograms on Cv (or QV) and Qv (or CV) respectively: also

CPK is the triangle on CP similar to Qvt.

Therefore [by Prop. 16], CQv ^ A Qvt- A CPK,

and clearly A CQv = A Qvt - A CQt;

:.ACPK= A CQt

Again, the triangle Cfw is similar to the triangle CQv, and

the triangle Rwu to the triangle Qvt. Therefore, for the ordinate

RW,

AC/iu= A Ruw ~ A CPK = A Ruw - CQt.

Proposition 20.

[I. 46.]

In a parabola the straight line draimi through any point

parallel to the diameter- bisects all cho7'ds parallel to the tangent

at the point.

Let RR' be any chord parallel

to the tangent at Q and let it

meet the diameter PF in U. Let

QM drawn parallel to PF meet

RR' in 31, and the straight lines

drawn ordinate-wise through R,

R', in F, F', respectively.

We have then [Prop. 17]

ARUW=njEW,
and AR'UW' = CJEW\
Therefore, by subtraction, the figure RW W'R' = P' W. Take

away the common part R'W'WFM, and we have

RMF= A R'MF'.

And R'F' is parallel to RF;

..RM=MR'.

I
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Proposition 21.

[I. 47, 48.]

In a hyperbola, an ellipse, or circle, the line joining any

point to the centre bisects the chords parallel to tlie tangent at the

point
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Thus (1), iiu the figure is drawn for the hyperbola,

ARUW = quadrilateral EPWF,
and AR'UW = quadrilateral W'F';

.•. , by subtraction, the figure F'W'WF= the figure R'W'WR.
Taking away the common part R'W WFM, we obtain

AFRM = AF'R'M.

And, •.• FR, FR' are parallel,

RM=MR'.
(2) as the figure is drawn for the ellipse,

AGPE-ACFW = ARUW,
ACRE - ACFW = AR'UW,

.•. , by subtraction,

ACF'W - ACFW = ARUW - AR'UW,
or ARUW-\- AGFW = AR'UW + ACF'W.
Therefore the quadrilaterals CFRU, GF'R'U are equal, and,

taking away the common part, the triangle GUM, we have

AFRM=AF'R'M,
and, as before, RM = MR'.

(3) if RR' is a chord in the opposite branch of a hyperbola,

and Q the point where QG produced meets the said opposite

branch, GQ will bisect RR' provided RR' is parallel to the

tangent at Q'.

We have therefore to prove that the tangent at Q is parallel

to the tangent at Q, and the proposition follows immediately*.

* Eutocius supplies the proof of the parallelism of the two tangents as

follows.

We have CV.CT= CP^ [Prop. 14],

and CV'.Cr= CP'^;

:. cv.cT=cv'. or,
and GV=GV', V i7y = Cy'[Prop. 10];

.•. CT=CT'.
Hence, from the as CQT, CQ'T', it follows that QT, Q'T are parallel.
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Proposition 22.

[I. 49.]

Let the tangent to a parabola at F, the extremity of the

ainginal diameter, meet the tangent at any point Q in 0, and the

parallel through Q to the diameter in ; and let RR he any

chord parallel to the tangent at Q meeting PT in U and EQ
produced in ; then, if he taken such that

UQ:QE=p':2QT,

it is to he proved that

RM' = p'.QM.

In the figure of Prop. 20 draw the ordinate Q V.

Then we have, by hypothesis,

0Q:QE = p':2TQ.

Also QE = PV=TP.

Therefore the triangles EOQ, POT are equal.

Add to each the figure QOPWF;

.•. the quadrilateral QTWF= nj{EW) = RUW. [Prop. 17]

Subtract the quadrilateral MUWF;
.•. CJQU= ARMF,

and hence RM . MF = 2QM . QT (1).

But RM : MF =OQ:QE = p': 2\
or RM' : RM .MF = p'

. QM : 2QM . QT.

Therefore, from (1), RM' = . QM.

Proposition 23.

[I. 50.]

If in a hyperhola, an ellipse, or a circle, the tangents at P, Q
meet in 0, and the tangent at meet the line joining Q to the

centre in ; if also a length QL (= p) he taken such that

OQ : QE = QL : 2TQ
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and erected perpendicular to QC ; iffurther Q'L be joined {wJiere

Q' is on QC produced and CQ= CQ'), and MK he drawn parallel

to QL to meet Q'L in (where is the point of concourse of

CQ and RR, a chord parallel to the tangent at Q): then it is

to he proved that

RM' = QM.MK.

In the figures of Prop. 21 draw CHN parallel to QL, meet-

ing QL in and MK in N, and let ii!W be an ordinate to PP',

meeting CQ in F.

Then, since CQ = CQ\ QH = HL.

Also 0Q:QE = QL:2QT

= QH:QT;

.•. RM:MF=QH:QT (A).

Now

/\RUW = /\GFW-AGPE = l^CFW~liCQT'')

.'.in the figures as drawn

(1) for the hyperbola,

ARUW=QTWF,
.•. , subtracting 3IUWF,

•we have

ARMF=QTUM.

(2) for the ellipse and circle,

ARUW = ACQT-AGFW;
.•. CQT= quadrilateral /e UCF;

and, subtracting AMUG, we

have

ARMF=QTUM.
RM.MF=QM{QT+MU) (B).

* It will be observed that Apollonius here assumes the equality of the two

triangles CPE, CQT, though it is not until Prop. 53 [III. 1] that this equality

is actually proved. But Eutocius gives another proof of Prop. 18 which, he says,

appears in some copies, and which begins by proving these two triangles to be

equal by exactly the same method as is used in our text of the later proof. If

then the alternative proof is genuine, we have an explanation of the assumption

here. If not, we should be tempted to suppose that Apollonius quoted the

property as an obvious limiting case of Prop. 18 [I. 43, 44] where II coincides

with Q ; but this would be contrary to the usual practice of Greek geometers

who, no doubt for tlie purpose of securing greater stringency, preferred to give

separate proofs of tlie limiting cases, though the parallelism of the respective

proofs suggests that they were not unaware of the connexion between the

general theorem and its limiting cases. Compare Prop. 81 [V. 2], where

Apollonius proves separately the case where coincides with B, though we have

for tlie sake of brevity only mentioned it as a limiting case.
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Now QT : MU= CQ:GM=QH: MN,

.•.QH + ^fN : QT + MU= QH : QT
= RM : MF [from (A)]

;

.•. QM{QH + MN) : QM{QT+MU) = RM' : RM.MF;

.•. [by (B)] RM* = QM(QH + MN)
= QM.MK.

The same is true for the opposite branch of the hyperbola.

The tangent at Q' is parallel to QT, and P'E' to PE.

[Prop. 21, Note.]

.•. O'Q' : Q'E' =OQ:QE=p' : 2QT=p' : 2Q'r,

whence the proposition follows.

It results from the propositions just proved that in a parabola

all straight lines drawn parallel to the original diameter are

diameters, and in the hyperbola and ellipse all straight lines

drawn through the centre are diameters ; also that the conies

can each be referred indiiferently to any diameter and the

tangent at its extremity as axes.
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Proposition 24. (Problem.)

[I. 52, 53.]

Given a straight line in a fixed plane and terminating in a

fi^ed point, and another straight line of a certain length, to find

a parabola in the plane such that the first straight line is a

diameter, the second straight line is the corresponding parameter,

and the ordinates are inclined to the diameter at a given angle.

First, let the given angle be a right angle, so that the given

straight line is to be the axis.

Let AB be the given straight line terminating at A, pa the

given length.

Produce A to C so that AC > —^ , and let S be a mean
4

proportional between AG and pa- (Thus pa : AC = S' : AG^,

and AC>lpa, Avhence AC'^ > --
, or 2AG > S, so that it is

possible to describe an isosceles triangle having two sides equal

to AG and the third equal to S.)

Let AUG be an isosceles triangle in a plane perpendicular

to the given plane and such that AO = AG, DC = S.

Complete the parallelogram AGOE, and about A as

diameter, in a plane perpendicular to that of the triangle

AUG, describe a circle, and let a cone be drawn with as
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apex and the said circle as base. Then the cone is a right

cone because OE = AG = OA.

Produce OE, OA to H, K, and draw parallel to AE,

and let the cone be cut by a plane through HK parallel to the

base of the cone. This plane will produce a circular section,

and will hitcrscct the original plane in a line PP', cutting AB
at right angles in N.

Now Pa•. AE = AE: AO, since AE= 00== S,AO = AC;
.-. pa:AO = AE':AO'

= AE':AO.OE.
Hence PAP' is a parabola in which ;;„ is the parameter

of the ordinates to AB. [Prop. 1]

Secondly, let the given angle not be right. Let the line

which is to be the diameter be PM, let be the length of the

parameter, and let MP be produced to F so that PF = ^p.

Make the angle FPT equal to the given angle and draw FT
perpendicidar to TP. Draw TiV parallel to PM, and PN perpen-

dicular to TN; bisect TN in A and draw LAE through A
perpendicular to FP meeting PT in ; and let

NA.AL = PN\
Now with axis AN and parameter AL describe a para-

bola, as in the first case.

This will pass through since PN^ = LA . AN. Also PT
will be a tangent to it since AT = AN. And PM is parallel

to AN. Therefore PM is a dia-

meter of the parabola bisecting

chords parallel to the tangent

PT, which are therefore inclined to

the diameter at the given angle.

Again the triangles FTP, OEP
are similar

:

..OP:PE=FP:PT,
= p:-2PT,

by hypothesis.

Therefore is the parameter of tht

the diameter PM. [Prop. 22]

parabola corresponding to
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Proposition 25. (Problem.)

[I. 54, 55, 59.]

Giveti a straight line AA' in a plane, and also another

straight line of a certain length; to find a hyperbola in the plane

such that the first straight line is a diameter of it and the second

equal to the corresponding parameter, while the ordinates to the

diameter make with it a given angle.

First, let the given angle be a ngJit angle.

Let AA', Pa be the given straight lines, and let a circle be

drawn through A, A' in a plane pei-pendicular to the given

plane and such that, if G be the middle point of AA' and DF
the diameter perpendicular to AA

'

,

DC '. CF 1sr AA' '. Pa.

Then, if BC : CF = AA' : pa, we should use the point F for

our construction, but, if not, suppose

DC:GG = AA':pa (GG being less than GF).

Draw GO parallel to AA', meeting the circle in 0. Join AG,

A'O, DO. Draw AE parallel to DO meeting A'O produced

in E. Let DO meet AA' in B,
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Then Z0EA = ZAOD= AnD=zOAE:
.•. OA = OE.

Let a cone be described with for apex and for base the

circle whose diameter AE and whose plane is perpendicular

to that of the circle AOD. The cone will therefore be right,

since OA = OE.

Produce OE, OA to //, and draw parallel to AE.
Draw a plane through HK perpendicular to the plane of the

circle AOD. This plane will be parallel to the base of the cone,

and the resulting section Avill be a circle cutting the original

plane in PP' at right angles to A'A produced. Let GO meet

HK in M.

Then, because A meets HO produced beyond 0, the curve

PAP' is a hyperbola.

And AA':pa = DC:CG
= DB:BO
=.0:0'
= A'B.BA :B0\

But A'B : BO = OM : MH] , . ., . ,

BA:BO = OM :

^^ '''''^'^' '"'''"^^"'•

.•. A'B. : BO'=OIiP : HM.MK.

Hence AA'
: pa= OM' : HM . MK.

Therefore pa, is the parameter of the hyperbola PAP' cor-

responding to the diameter AA'. [Prop. 2]

Secondly, let the given angle not be a right angle. Let

PP', be the given straight lines, OPT the given angle, and

C the middle point of PP'. On CP describe a semicircle, and

let be such a point on it that, if NH is drawn parallel to PT
to meet CP produced in H,

NH':CH.HP=p:PP'*.

* This conetruction is assumed by Apollonius without any explanation ; but

we may infer that it was aiTived at by a method simihir to that adopted for



46 THE CONICS OF APOLLONIUS.

Join NO meeting PT in T, and take A on CN such that

CA^=CT. CN. Join PiY and produce it to so that' =^..
Produce AC to A' so that AC = CA', join A'K, and draw

EOAM through A parallel to PN meeting CP, , A'K in

-£^, 0, Jlf respectively.

With AA' as axis, and AM as the corresponding parameter,

describe a hyperbola as in the first part of the proposition.

This will pass through because PN^ = AN .NK.

a similar case in Prop. 52. In fact the solution given by Eutocius represents

sufficiently closely Apollonius' probable procedure.

If HN produced be supposed to meet the curve again in ", then

N'H.HN=CH.HP;

:. Nm : CH.HP=NH : N'H.

Thus we have to draw HNN' at a given inclination to PC and so that

N'H:NH= PP' : p.

Take any straight line o/3 and divide it at 7 so that

a.y= PP':p.

Bisect 07 in . Then draAV from G, the centre of the semicircle, GR at right

angles to PT which is in the given direction, and let GR meet the circumference

in R. Then RF drawn parallel to PT will be the tangent at R. Suppose RF
meets CP produced in F. Divide FR at .S' so that FS : SR —y : y8, and

produce FR to S" so that RS' = RS.

Join GS, GS', meeting the semicircle in N, N', and join N'N and produce it

to meet CF in H. Then Nil is the straight line which it was required to

find.

The proof is obvious.



PROBLEMS. 47

Also PT be the tangent at because CT.CN=CA\
Therefore CP will be a diameter of the hyperbola bisecting

chords parallel to PT and therefore inclined to the diameter at

the given angle.

Again we have

: 2CP = NH' : CH . HP, by construction,

and 2CP : 2PT = GH : NH
^GH.HP.NH.HP;

.\• =•'•..
= : HP
= OP :, by similar triangles

;

therefore is the parameter corresponding to the diameter PP'.

[Prop. 23]

The opposite branch of the hyperbola with vertex A' can be

described in the same way.

Proposition 26. (Problem.)

[I. 60.]

Criven straight lines bisecting one another at any angle, to

describe two hyperbolas each with two branches such that the

straight lines are conjugate diameter's of both hyperbolas.

Let PP', DD' be the two straight lines bisecting each other

at
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From draw PL perpendicular to PP" and of such a length

that PP' . PL = DD"' ; then, as in Prop. 25, describe a double

hyperbola with diameter PP' and parameter PL and such that

the ordinates in it to PP' are parallel to DD'.

Then PP', DD' are conjugate diameters of the hyperbola

so constructed.

Again, draw DM perpendicular to DD' of such a length that

DM . DD' = PP'^ ; and, with DD' as diameter, and DM as the

corresponding parameter, describe a double hyperbola such that

the ordinates in it to DD' are parallel to PP'.

Then DD', PP' are conjugate diameters to this hyperbola,

and DD' is the transverse, while PP' is the secondary dia-

meter.

The two hyperbolas so constructed are called conjugate

hyperbolas, and that last dra\vn is the hyperbola conjugate to

the first.

Proposition 27. (Problem.)

[I. 56, 57, 58.]

Given a diameter of an ellipse, the corresponding parameter,

and the angle of inclination between the diameter and its ordi-

nates : to find the ellipse.

First, let the angle of inclination be a right angle, and let

the diameter be greater than its parameter.
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Let' he the diameter and AL, straight line of length

Pa perpendicular to it, the parameter.

In a plane at right angles to the plane containing the

diameter and parameter describe a segment of a circle on AA'
as base.

Take AD on AA' equal to AL. Draw A E, A'E to meet at

E, the middle point of the segment. Draw DF parallel to A'E
meeting A in F, and OFN parallel to AA' meeting the

circumference in 0. Join EO and produce it to meet A'A
produced in T. Through any point on OA produced draw

HKMN parallel to OE meeting OA', AA', OF in K, M,

respectively.

TOA = OEA + OAE = AA'O + ^ OA'E -

='=',
and HK is parallel to OE,

whence OH = OKH,

and OH=OK.
. C.
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With as vertex, and as base the circle draAvn with diameter

HK and in a plane perpendicular to that of the triangle OHK,
let a cone be described. This cone be a right cone because

OH = OK.

Consider the section of this cone by the plane containing

AA', AL. This will be an ellipse.

And Pn

Now

AA' = AD :

= AF:

= TO :

= T0':

TA = HN
and

AA'

AE
TE

'.TO.

; . '.
TO.TA = : NO,

TO :' = : NO, by similar triangles,

TA.TA' = HN.NK:NO\
j)a:AA' = HN.NK:NO\

or Pa is the parameter of the ordinates to AA'. [Prop. 3]

Secondly, if the angle of inclination of the ordinates be

still a right angle, but the given diameter less than the para-

meter, let them be BB', BM respectively.

Let C be the middle point ', through it draw^^',

perpendicular to BB' and bisected at C, such that

TO'

that

AA" = BB'.BM:

and draw AL, parallel to BB', such that

BM : BB' = AA' : AL
thus A A' > AL.
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Now with' as diameter and AL as the corresponding

parameter describe an ellipse in which the ordinates to' are

perpendicular to it, as above.

This will be the ellipse required, for

(1) it passes through B, B' because

AL : AA' = BB' : BM
= BB" : AA"
= BC":AC.CA',

(2) BM : BB' = AC' : BC
= AC':BC.CB',

so that BM is the parameter corresponding to BB'.

Thirdly, let the given angle not be a right angle but

equal to the angle CPT, where G is the middle point of the

given diameter PP' ; and let PL be the parameter coiTCspond-

ing to PP'.

Take a point N, on the semicircle which has CP for its

diameter, such that NH drawn parallel to PT satisfies the

relation

NH' : CH.HP = PL : PP'*.

* This construction like that in Prop. 25 is assumed \vithont explanation.

If NH be supposed to meet the other semicircle on CP as diameter in N', the

4—2
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Join CN and produce it to meet PT in T. Take , on CT, such

that GT.CN = CA\ and produce AG to A' so that AG = CA'.

Join PiV and produce it to so that AN'.NK = PN\ Join

-4'ir. Draw AM through A perpendicular to CA (and

therefore parallel to NK) meeting GP produced in E, PT in 0,

and A' produced in M.

Then with axis AA' and parameter AM describe an ellipse

as in the first part of this proposition. This will be the ellipse

required.

For (1) it will pass through •.• PN' = AN.NK. For

a similar reason, it will pass through P' •.• GP' = GP and

GA' = GA.

(2) PT will be the tangent at •.• GT . GN=GA\

(3) We have ]3 : 2CP = NH^ : GH . HP,

and 2GP : 2PT = GH : HN
= GH.HP :NH.HP;

.•. ex aequali : 2PT = NW : NH . HP

= NH:HP
= OP : PE.

Therefore is the parameter corresponding to PP'.

[Prop. 23]

problem here reduces to drawing NHN' in a given direction (parallel to PT) so

that N'H:NH = PP':p,
and tiie construction can be effected by the method shown in the note to Prop. 25

mutatis mutandis.



ASYMPTOTES.

Proposition 28.

[IL 1, 15, 17, 21.]

(1) If PP' he a diameter of a hyperbola and the corre-

sponding parameter, and if on the tangent at there he set off

on each side equal lengths PL, PL', such that

PU = PL" = ip . PP' [= GB'l

then CL, CL' produced will not meet the curve in any finite point

and are accordingly defined as asymptotes.

(2) The opposite branches have the same asymptotes.

(3) Conjugate hyperbolas have their asymptotes common.

(1) If possible, let CL meet the hyperbola in Q. Draw the

ordinate QV, which will accordingly be parallel to LU,

Now p. PP'=p. PP' : PP"'

= PL' : CP•'

= QV':GV\
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But p:PP' = QV':PV.P'V.

... PV.P'V=CV\
i.e. CV - CP' = C]^, which is absurd.

Therefore GL does not meet the hyperbola in any finite

point, and the same is true for CL'.

In other words, GL, GL' are asymptotes.

(2) If the tangent at P' (on the opposite branch) be taken,

and P'M, P'M' measured on it such that P'M' = P'M" = CD\
it folloAvs in like manner that GM, GM' are asymptotes.

Now MM', LL' are parallel, PL = P'M, and PGP' is a

straight line. Therefore LGM is a straight line.

So also is L'GM', and therefore the opposite branches have

the same asymptotes.

(3) Let PP', DD' be conjugate diameters of tAvo conjugate

hyperbolas. Draw the tangents at P, P, D, U. Then [Prop.

11 and Prop. 26] the tangents form a parallelogram, and the

diagonals of it, LM, L'M', pass through the centre.

Also PL = PL' = P'M = P'M' = GD.

Therefore LM, L'M' are the asymptotes of the hyperbola in

which PP' is a transverse diameter and DD' its conjugate.

Similarly DL = DM' = D'L' = D'M= GP, and LM, L'M' are

the asymptotes of the hyperbola in which DD' is a transverse

diameter and PP' its conjugate, i.e. the conjugate hyperbola.

Therefore conjugate hyperbolas have their asymptotes

common.
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Proposition 29.

[II. 2.]

No straight line through G luithin the angle between the

asymptotes can itself he an asymptote.

If possible, let CK be an asymptote. Draw from the

straight line PK parallel to GL and meeting GK in K, and

through draw BKQR parallel to LL', the tangent at P.

Then, since PL = PL', and RR, LL' are parallel, iiF= R'V,

where V is the point of intersection of RR and GP.

And, since PKRL is a parallelogram, PK = LR, PL = KR.

Therefore QR > PL. AhoRQ>PL';
.•. RQ.QR'>PL.PL', or (1).

Again

and

thus

whence

RV"-

P

GV' = PU : GP'=p:PP',

PP' = QV'.PV.P'V
= QV':GV'-GP':

GV' = QV':GV'-GP'
--^RV'-QV: GP';

.GP' = RV'- QV':GP\
PL'=RV'-QV'=RQ.QR',

which is impossible, by (1) above.

Therefore GK cannot be an asymptote.

[Prop. 28]

[Prop. H]

RV

PL'
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Proposition 30.

[11. 3.]

If a straight line touch a hyperbola at P, it will meet

the asymptotes in two points L, L' ; LL' luill he bisected at P,

and Pr = ip.PP'[=GD'].

[This proposition is the converse of Prop. 28 (1) above.]

For, if the tangent at does not meet the asymptotes

in the points L, L' described, take

on the tangent lengths PK, PK'
each equal to CD.

Then GK, GK' are asymptotes

;

which is impossible.

Therefore the points K, K' must

be identical with the points L, L'

on the asymptotes.

Proposition 31. (Problem.)

[11. 4.]

Given the asymptotes and a point on a hyperbola, to find

the curve.

Let GL, GL' be the asymptotes,

and the point. Produce PG
to P' so that GP=GP'. Draw

PK parallel to GL' meeting GL
in K, and let GL be made equal to

twice GK. Join LP and produce

it to L'.

Take a length such that

LL'^ =p.PP', and with diameter PP' and parameter

describe a hyperbola such that the ordinatcs to PP' arc

parallel to /.//. [Prop. 25]
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Proposition 32.

[II. 8, 10.]

If Qq be any chord, it will, if produced both ^vays, meet

the asymptotes in two points as R, r, and

(1) QR, qr will

(2) RQ.Qr = lp.PP'[=CD'l

Tako V the middle point of Qq, and join CV meeting

the curve in P. Then CF is a

diameter and the tangent at

is parallel to Qq. [Prop. 11]

Also the tangent at meets

the asymptotes (in L, L').

Therefore Qq parallel to it also

meets the asymptotes.

Then (1), since Qq is parallel

to LL', and LP = PL', it follows that RV

th(
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Proposition 33.

[II. 11, 16.]

If Q, Q are on opposite branches, and QQ' meet the asi/7)ip-

totes in K, K', and if CF be the seniidianieter parallel to QQ', then

(1) KQ.QK' = CP\

(2) QK=Q'K'.

Draw the tangent at meeting the asymptotes in L, L', and

let the chord Qq parallel to LL' meet the asymptote.s in R, r.

Qq is therefore a double ordinate to CP.

Then we have

: CP' = (PL : CP) . (PL' : CP)

= (RQ:KQ).(Qr:Q]r)

= RQ.Qr:KQ.QK'.

Pr==RQ.Qr;

•.KQ.QK' = CP\

K'Q'.Q'K=CP\

KQ . QK' = CP' = K'Q' . Q'K
;

.•. KQ . {KQ + KK') = K'QXK'Q' + KK'),

whence it follows that KQ = ''^'.

But

Similarly

(2)

[Prop. 32]
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Proposition 34.

[IT. 12.]

If Q, q he any two points on a hyperbola, and parallel

straight lines QH, qh be drawn to meet one asymptote at any

angle, and QK, qk {also parallel to one another) meet the other

asymptote at any angle, then

HQ . QK = hq. qk.

Let Qq meet the asymptotes in R, r.

We have liQ .Qr = Rq .qr;

.•. RQ : Rq = qr : Qr.

But RQ : Rq = HQ : hq,

and qr : Qr = qk : QK
;

.•. HQ : hq = qk : QK,

or HQ . QK = hq . qk.

[Prop. 82]
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Proposition 35.

[II. 13.]

//' in the space between the asymptotes and the hyperbola a

straight line be drawn parallel to one of the asymptotes, it will

meet the hyperbola in one point only.

Let .£^ be a point on one asymptote, and let EF be drawn

parallel to the other.

Then EF produced shall

meet the curve in one point

only.

For, if possible, let it not

meet the curve.

Take Q, any point on the

curve, and draAv QH, QK each

parallel to one asymptote and

meeting the other ; let a point

F be taken on EF such that

HQ.QK=CE.EF.
Join OF and produce it to

meet the curve in q ; and draw

qh, qk respectively parallel to QH, QK.

Then hq.qk = HQ. QK, [Prop. 34]

and HQ.QK=CE. EF, by hypothesis,

:.hq.qk=GE.EF:

which is impossible, •.• hq > EF, and qk > CE.

Therefore EF will meet the hyperbola in one point, as R.

Again, EF will not meet the hyperbola in any other point.

For, if possible, let EF meet it in R' as well as R, and let

RM, R'M' be drawn parallel to QK.

Then ER . RM = ER' . R'M' : [Prop. 34]

which is impossible, •.• ER' > ER.

Therefore EF does not meet the hyperbola in a second

point R'.
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Proposition 36.

[II. 14]

The asymptotes and the hyperbola, as they pass on to infinity,

approach continually nearer, and will come within a distance

less than any assignable length.

Let S be the given length.

Draw two parallel chords Qq, Q'q' meeting the asyntiptotes

in li, r and R', ?•'. Join Cq and produce it to meet Q'q' in F.

Then r'q' . q'R = rq . qK,

and q'R > qR
;

.•. q'r' < qr,

and hence, as successive chords are taken more and more distant

from the centre, qr becomes smaller and smaller.

Take now on rq a length rH less than S, and draw II^f

parallel to the asymptote Cr.

HM will then meet the curve [Prop. 35] in a point M. And,

if MK be drawn parallel to Qq to meet Cr in K,

= rH,

whence MK < S.
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Proposition 37.

[II. 19.]

Any tangent to the conjugate hyperbola luill meet both

branches of the original hyperbola and be bisected at the point

of contact.

(1) Let a tangent be drawn to either branch of the conju-

gate hyperbola at a point D.

This tangent will then meet the asymptotes [Prop. 30], and

will therefore meet both branches of the original hyperbola.

(2) Let the tangent meet the asymptotes in L, and the

original hj^perbola in Q, Q.

Then [Prop. 30] DL = DM.

Also [Prop. 33] LQ = MQ'
;

whence, by addition, DQ = !>(/.
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Proposition 38.

[11. 28.]

If a cJiord Qq in one branch of a hyperbola meet the asymp-

totes in R, r and the conjugate hyperbola in Q', q, then

Q'Q.Qq'=2GD\

Let CD be the parallel semi-diamctcr. Then we have

[Props. 32, 33]

RQ.Qr=CD\

RQ'.qr=CD';

.'. 2CD' = RQ . Qr + RQ' . '
= (RQ + RQ')Qr + RQ'.QQ'

= QQ'.{Qr + RQ')

-=QQ'(Qr + rq')

= QQ'.Qq.



TANGENTS, CONJUGATE DIAMETERS AND AXES.

Proposition 39.

[II. 20.]

If Q he any point on a hyperbola, and CE he drawn from

the centre parallel to the tangent at Q to meet the conjugate

hyperhola in E, then

(1) the tangent at will he parallel to CQ, and

(2) CQ, GE will he conjugate diameters.

Let FP', DD' be the conjugate diameters of reference, and

let QF be the ordinate from Q to PP', and EW the ordinate

from to DD' . Let the tangent at Q meet PP', DD' in

T, t respectively, let the tangent at meet DD' in U, and let

the tangent at D meet EU, CE in 0, respectively.

Let p, p' be the parameters corresponding to PP', DD'
in the two hyperbolas, and we have

(1) PP' :p=p' :DD',

[.p. PP' = DD'\ p' . DD' = PP'']
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and PP' .p = CV.VT: QV\
: OD' =EW : GW . WU. [Prop. 14]

.•. CV.VT.QV"- = EW : CW . WU.
But, by similar triangles,

VT:QV=EW.GW.
Therefore, by division,

CV:QV= EW: WU.
And in the triangles CVQ, EWU the angles at V, W

are equal.

Therefore the triangles are similar, and

^QCV= ZUEW.
But VCE = CEW, since EW, OFare parallel.

Therefore, by subtraction, QCE = CEU
Hence EU is parallel to CQ.

(2) Take a straight line S of such length that

HE:EO = EU : S,

so that *S' is equal to half the parameter of the ordinates to the

diameter EE' of the conjugate hyperbola. [Prop. 23]

Also Ct.QV= GD\ (since QV = Cv),

or Ct:QV=Gf:CD\
Now Ct .QV=tT:TQ=AtCT: ACQT,

and Ce :GD'= A tCT : CDH = AtCT : ACEU
[as in Prop. 28].

It follows that AGQT= ACEU
And zCQT=zCEU.

.•. CQ.QT=CE.EU (A).

But S:EU=OE:EH
= CQ : QT.

.•. S.CE : CE.EU=CQ' -.CQ.QT.

Hence, by (A), S.CE=CQ\
.•. 2S.EE' = QQ'\

where 2S is the parameter corresponding to EE'.

And similarly it may be proved that EE'^ is equal to the

rectangle contained by QQ' and the corresponding parameter.

Therefore QQ', EE' are conjugate diameters. [Prop. 26]

H. c.
')
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Proposition 40.

[II. 87.]

Jf Q, Q' cij-e any points on opposite branches, and the

middle point of the chord QC/, then Cv is the 'secondary"

diameter corresponding to the transverse diameter draiun parallel

to QQ'.

Join Q'C and produce it to meet the hyperbola in q. Join

Qq, and draw the diameter PP' parallel to QQ'.

Then we have

CQ' = Cq, and Q'v = Qv.

Therefore Qq is parallel to Cv.

Let the diameter PP' produced meet Qq in V.

Now QV=Cv=Vq, because CQ' = Cq.

Therefore the ordinates to PP' are parallel to Qq, and

therefore to Cv.

Hence PP', Cv are conjugate diameters. [Prop. 6]

Proposition 41.

[II. 29, 80, 88.]

// two tangents TQ, TQ' he drawn to a conic, and V he the

middle point of the chord of contact QQ', then TV is a diameter.

For, if not, let VE be a diameter, meeting TQ' in E. Join

EQ meetiug the curve in R, and draw the chord RR' parallel to

QQ' meeting EV, EQ' respectively in K, H.

Then, .since RH is parallel to QQ', and QV=Q'V,
RK = KH.
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Also, since RR' is a chord parallel to QQ' bisected by

the diameter EV, RK = KR'.

Therefore KR' = KH : which is impossible.

Therefore EY is not a diameter, and it may be proved

in like manner that no other straight line through F is a

diameter except TV.

Conversely, the diameter of the conic draiun through T, the

point of intersection of the tangents, luill bisect the chord of

contact QQ'.

[This is separately proved by Apollonius by means of

an easy rediictio ad absiirdum.]

Proposition 42.

[II. 40.]

If tQ, tQ' be tangents to opposite branches of a hyperbola,

and a chord RR' be drawn through t parallel to QQ', then the

lines joining R, R' to v, the middle point of QQ', will be tangents

at R, R'.
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Join vt. vt is then the diameter conjugate to the transverse

diameter drawn parallel to QQ', i.e. to PP'.

But, since the tangent Qt meets the secondary diameter

in t,

Cv . a = Ip . PP' [= CD']. [Prop. 15]

Therefore the relation between and t is reciprocal, and the

tangents &t R, R' intersect in v.

Proposition 43.

[II. 26, 4], 42.]

In a conic, or a circle, or in conjugate hyperbolas, if two

chords not passing through the centre intersect, they do not

bisect each other.

Let Qq, Rr, two chords not passing through the centre,

meet in 0. Join CO, and draw the diameters Pj>, P'p' re-

spectively parallel to Qq, Rr.

Then Qq, Rr shall not bisect one another. For, if possible,

let each be bisected in 0.
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Then, since Qq is bisected in and Pp is a diameter

parallel to it, CO, Fp are conjugate diameters.

Therefore the tangent at is parallel to GO.

Similarly it can be proved that the tangent at P' is

parallel to CO.

Therefore the tangents at P, P' are parallel : which is

impossible, since PP' is not a diameter.

Therefore Qq, Rr do not bisect one another.

Proposition 44. (Problem.)

[II. 44, 45.]

To find a diameter of a conic, and the centre of a central

conic.

(1) Draw two parallel chords and join their middle points.

The joining line will then be a diameter.

(2) Draw any two diameters ; and these will meet in, and

so determine, the centre.

Proposition 45. (Problem.)

[II. 4G, 47.]

To find the axis of a parabola, and the axes of a central

ic.

(1) In the case of the parabola, let PD be any diameter.

Draw any chord QQ' perpendicular to PD, and

let be its middle point. Then AN drawn

thr(jugh parallel to PD will be the axis.

For, being parallel to PD, J.iVis a diameter,

and, inasmuch as it bisects QQ' at right angles,

it is the a.xis.

And there is only one axis because there is

only one diameter which bisects QQ'.

V^
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(2) In the Ccose of a central conic, take any point on the

conic, and with centre C and radius CP describe a circle

cutting the conic in P, P', Q', Q.

Let PP', PQ be two common chords not passing through

the centre, and let iV, 31 be their middle points respectively.

Join CN, CM.

Then ON, CM will both be axes because they are both

diameters bisecting chords at right angles. They are also

conjugate because each bisects chords parallel to the other.

Proposition 46.

[II. 48.]

No central conic has more than two axes.

If possible, let there be another axis GL. Through P'

draw P'L perpendicular to CL, and produce P'L to meet the

curve again in R. Join CP, CM.
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Then, since CL is an axis, PL = LR\ therefore also

CP =CP' = CR.

Now in the case of the ht/perhola it is clear that the circle

PP' cannot meet the same branch of the hyperbola in any
other points than P, P'. Therefore the assumption is absurd.

In the ellipse draw RK, PH perpendicular to the (minor)

axis which is parallel to PP'.

Then, since it was proved that CP = CR,

CP' = CR\

or CH' + HP' = CK' + KR \

.\CK'-CH' = HP'-KR' (1).

Now BK.KB' + CK' = CB \

and BH.HB' + CH'=CB\

.•. CK' - CH' = BH . HB' - BK . KB'.

Hence HP' - KR' = HH . HB' - BK . KB', from (1).

But, since PH, RK are ordinates to BB',

PH' : BH. HB' = RK' : BK.KB',

and the difference between the antecedents has been proved

equal to the difference between the consequents.

.'.PH' = BH.HB',

and RK'=- BK.KB'.

.•. P, R are points on a circle with diameter BB' : which is

absurd.

Hence CL is not an axis.
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Proposition 47. (Problem.)

[II. 49.]

To draw a tangent to a parabola through any point on or

outside the curve.

(1) Let the point be on the curve. DraAv per-

peudicular to the axis, and produce A to so that AT = AN.

Joiu PT

Then, since AT=AN, PT is the tangent at P. [Prop. 12]

In the particular case where coincides with A, the

vertex, the perpendicular to the axis through A is the tangent.

(2) Let the given point be any external point 0. Draw
the diameter OBV meeting the curve at B, and make BV
ecpial to OB. Then draw through V the straight line VP
parallel to the tangent at [drawn as in (1)] meeting the

curve in P. Join OP.

OP is the tangent requii'cd, because PV, being parallel to

the tangent at B, is an ordinate to BV, and OB = BV.

[Prop. 12]

[This construction obviously gives the two tangents through

0.]
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Proposition 48. (Problem.)

[II. 49.]

To draiu a tangent to a hyperbola through any point on

or outside the curve.

There are here four cases.

Case I. Let the point be Q ou the curve.

Draw QN perpendicular to the axis AA' produced, and

take on AA' a point such that A'T -. AT = A'N : AN.
Join TQ.

Then TQ is the tangent at Q. [Prop. 13]

In the particular case where Q coincides with A or A' the

perpendicular to the axis at that point is the tangent.

Case II. Let the point be any point within the angle

contained by the asymptotes.

Join CO and produce it both ways to meet the hyperbola in

P, P'. Take a point V on CP produced such that

P'V:PV=OP': OP,

and through V draw VQ parallel to the tangent at [drawn

as in Case I.] meeting the curve in Q. Join OQ.

Then, since QF is parallel to the tangent at P, QV \s an

ordinate to the diameter P'P, and moreover

P'V:PV=OP' : OP.

Therefore OQ is the tangent at Q. [Prop. 13]

[This construction obviously gives the two tangents through

0.]
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Case III. Let the point (J be on one of the asymptotes.

Bisect CO at H, and through draw HP parallel to the other

asymptote meeting the curve in P, Join OP and produce it to

meet the other asymptote in L.

Then, by parallels,

OP : PL = OH : HC,

whence OP = PL.

Therefore OL touches the hyperbola at P. [Props. 28, 30]

Case IV. Let the point lie within one of the exterior

angles made by the asymptotes.

Join CO. Take any chord Qq parallel to CO, and let V be

its middle point. Draw through V the diameter PP'. Then

PP' is the diameter conjugate to CO. Now take on OC
produced a point w such that CO . Cw = ^p . PP' [= C'Z)*], and

draAv through w the straight line wR pai-allel to PP' meeting

the curve in li. Join OR. Then, since Rw is parallel to CP
and Ciu conjugate to it, while CO . Cw = CD^, OR is the tangent

at R. [Prop. 15]
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Proposition 49. (Problem.)

[II. 49.]

To draw a tangent to an ellipse through any point on or

outside the curve.

There are here two cases, (1) where the point is on the

curve, and (2) where it is outside the curve ; and the con-

structions correspond, mutatis mutandis, with Cases I. and II.

of the h^'perbola just given, depending as before on Prop. 13.

When the point is external to the ellipse, the construction

gives, as before, the two tangents through the point.

Proposition 50. (Problem.)

[II. 50.]

To draw a tangent to a given conic making with the auis an

angle equal to a given acute angle.

I. Let the conic be a parabola, and let DEF be the given

acute angle. Draw DF perpendicular to EF, bisect EF at H,

and join DH.

Now let AN be the axis of the parabola, and make the

angle NAP ecjual to the angle DHF. Let AP meet the curve

in P. Draw perpendicular to AN. Produce A to so

that AN = AT, and join PT.

Then PT is a tangent, and wc have to prove that

=.
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Since zDHF = zFAN,

UF:FD = AN:NP.
.•. 2HF.FD = 2AN:NF,

or EF : FD = TiY : NF.

.•.zFTN = zDEF.

II. Let the conic be a central conic.

Then, for the hyperbola, it is a necessary condition of the

possibility of the solution that the given angle DEF must be

gi'cater than the angle botAveen the axis and an asymptote,

or half that between the asymptotes. If DEF be the given

angle and DF be at right angles to EF, let be so taken

on DF that HEF=zACZ, or half the angle between

the asymptotes. Let A he the tangent at A meeting an

asympt(jte in Z.
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\Vc have then CA^ : AZ' (or CA' : CfB') = EF' : FH\

..CA': CB' > EF' : FJ)\

Take a point on FE produced such that

CA':CB' = KF.FE: FD\

Thus KF':FD^>CA':AZ\

Therefore, if DK be joined, the angle DKF is less than the

angle ACZ. Hence, if the angle! be made equal to the

angle DKF, CP must meet the hyperbola in some point P.

In the case of the ellipse has to be taken on EF produced

so that CA- : CB' = KF .FE : FD\ and from this point the

constructions are similar for both the central conies, the angle

AGP being made equal to the angle DKF in each case.

Draw now PN perpendicular to the axis, and draw the

tangent PT.

Then
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First, let PC be parallel to BA'. Then, by parallels,

CP bisects. Therefore the

tangent at is parallel to,
and='.

Secondly, suppose that PC
is not parallel to A', and we

have in that case, draAving PN
perpendicular to the axis,

ZPCN^' BAG.

whence [Prop. 14]

.•. PN' -.CN'^BC' :AC\

PK' : CN' PN' : ON. NT.

.'. CN^NT.

Let FDE be a segment in a circle containing an angle FDF
equal to the angle ABA', and let

DG be the diameter of the circle

bisecting FE at right angles in /.

Divide FE in so that

EiM : MF = GN : NT,

and draw through the chord

HK at right angles to EF. From

0, the centre of the circle, draw (JL

perpendicular to HK, and join

EH, HF.

The triangles DFI, BAG are

then similar, and

FP : ID' = GA' : GB\

Now OD : 01 > LH : LM, since 01 = LM.

.•. 01) :Df<LH:

J
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and, doublinp^ the antecedents,

DG:DI<HK -.HM,

whence GI -.IDkEM: MH.

But GI .ID = FP : TD^ = "" : GB'

= GN.NT:PN\
.•. CN. NT : FN' < KM : MH

<KM.MH:MH'
<EM.MF: MH\

Let ON . NT : PN' = EM. MF : MR\
where R is some point on HK or HK produced.

It follows that MR > MH, and R lies on KH produced.

Join ER, RF.

Now GN . NT : EM . MF = PN^ : RM\
and CN' : ^il/^ = 6'^V . NT : ^il/ . MF
(since Ci\r : iVT = EM : J/i?^).

.•. CN :EM = PN:RM.
Therefore the triangles CPN, ERM are similar.

In like manner the triangles PTN, RFM are similar.

Therefore the triangles CPT, ERF are similar,

and ZCPT= ^ERF;
whence it follows that

CPT is less than EHF, or ^5^'.

Therefore, whether CP is parallel to A' or not, the CPT
is not greater than the ABA'.

Proposition 52. (Problem.)

[II. 51, 53.]

To draw a tangent to any given conic making a given angle

iDitli the diameter through the point of contact.

I. In the case of the jmrahola the given angle must be

an acute angle, and, since any diameter is parallel to the axis,

the problem reduces itself to Prop. 50 (1) above.
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II. In the case of a central conic, the angle CPT must be

acute for the Jiyperhula, and for the ellipse it must not

be less than a right angle, nor greater than the angle ABA', as

proved in Prop. .')!.

Suppose to be the given angle, and take first the particu-

lar case for the ellipse in which the angle is equal to the

angle ABA'. In this case we have simply, as in Prop. 51, to

draw CP parallel to A' (or AB) and to draw through a

parallel to the chord A (or A'B).

Next suppose to be any acute angle for the hyperbola,

and for the ellipse any obtuse angle less than ABA': and

suppose the problem solved, the angle (^PT being e(|ual to .
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Imagine a segment of a circle taken containiug an angle

(EOF) equal to the angle . Then, if a point D on the

circumference of the segment could be found such that, if DM be

the perpendicular on the base EF, the ratio EM .MF : DM^ is

equal to the ratio CA"" : CB\ i.e. to the ratio GN .NT : PN\ we

should have

CPT == EOF,

and ON . NT : PN' = EM . MF :\
and it would follow that triangles PCN, PTN are respectively

similar to DEM, DFM*. Thus the angle DEM would be

equal to the angle PCN.

The construction would then be as follows

:

Draw CP so that the angle PCN is equal to the angle

DEM, and draAv the tangent at meeting the axis' in T.

Also let be pei-pendicular to the axis A'.

Then GN . NT : PN' = CA' : GB' = EM. MF : DM\

and the triangles PGN, DEM are similar, whence it follows

that the tiiangles PTN, DFM are similar, and therefore also

the triangles GPT, EDF*.

.•. zCPT= zEDF = ze.

It only remains to be proved for the hyperbola that, if

the angle PCN be made equal to the angle DEM, CP must

necessarily meet the curve, i.e. that the angle DEM is less

than half the angle between the asymptotes. If ^ is per-

pendicular to the axis and meets an asymptote in Z, we have

EM. MF : DM' = CA' : CB' = GA' : AZ\

.•. EM' : DM' > GA' : AZ\

and the angle DEM is less than the angle ZCA.

We have now shown that the construction reduces itself

to finding the point D on the segment of the circle, such that

EM.MF-.DM'^CA'-.GB'.
• These conclusions are taken for granted by ApoUonius, but they are easily

proved.

H. C. t)
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This is eflfected as follows :

Take lengths , /3 in one straight line such that

a/3 : yS7 = CA' : CB\

^ being measured towards for the hyperbola and away

from for the ellipse ; and let be bisected in .

Draw 01 from 0, the centre of the circle, perpendicular to

EF\ and on 01 or 01 produced take a point such that

OH: HI = By: /3,

(the points 0, H, I occupying positions relative to one another

corresponding to the relative positions of , , ).

Draw HD parallel to EF to meet the segment in D. Let

DK be the chord through at right angles to EF and meeting

it in M.

Draw OR bisecting DK at right angles.

Then RD : DM =^ OH : HI = 8y : ^.

Therefore, doubling the two antecedents,

KD : DM = «7 : 7yS
;

so that KM : DM = : ^.
Thus

KM.MD : DM' = EM.MF : DM' =:^ = CA' : CB\
Therefore the required point D is found.

In the particular case of the hyperbola where CA'= CE^, i.e.

for the rectangular hyperbola, we have EM. MF = DM\ or DM
is the tangent to the circle at D.

Note. ApoUonius proves incidentally that, in the second

figure applying to the case of the ellipse, falls between / and

the middle point (Z) of the segment as follows

:

FLI = lz CRT, which is less than ^ ABA'
;

.•. FLI is less than ABC,
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whence CA' : OB" > FP : fiJ

>L'l :IL.

It follows that : y > f/ : fL,

so that «7 : 7^ > L'L : IL,

and, halving the antecedents,

7 : 7^ > OL : LI,

so that :^>:.
Hence, if be such a point that

8 .^ =: IH,

I is less than IL.

6—2
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Proposition 53.

[III. 1, 4, 13.]

(1) P, Q being any two points on a conic, if the tangent at

and the diameter through Q meet in E, and the tangent at Q
and the diameter through in T, and if the tangents intersect at

0,thm AOPT = AOQE.

(2) If be any point on a hyperbola and Q any point on

the conjugate hyperbola, and if T, have the same significance

before, then CPE = CQT.

(1) Let QV be the ordinate from Q to the diameter

through P.

Then for the parabola we have

TP = PV, [Prop. 12]

so that TV=2PV,

and CJ EV = AQTV.
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Subtracting the common area OPVQ,

AOQE = AOPT.

For the central conic we have

GV.CT=CP\

85

or CV :GT=GV':CF']
.•. ACQV:ACQT = ACQV:AGPE;

.'. AGQT = AGPE.

Hence the sums or differences of the area OTGE and each

triangle are equal, or

AOPT = AOQE.

(2) In the conjur/ate hyperbolas draw GD parallel to the

UNIV.
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tangent at to meet the conjugate hyperbola in D, and draw

QV also parallel to PE meeting CP in V. Then CP, CD are

conjugate diameters of both hyperbolas, and QF is drawn

ordinate-wise to CP.

Therefore [Prop. 15]

CV.CT=CP\

or CP:CT=CV:CP
= CQ:CE;

GP.CE=CQ.Cr.

And the angles PCE, QCT are supplementary
;

.•. ACQT = ACPE.

Proposition 54.

[III. 2, 6.]

// we keep the notation of the last proposition, and if R he
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any other point on the conic, let RU be drawn parallel to QT to

meet the diameter through in U, and let a parallel throu(/h R
to the tangent at meet QT and the diameters through Q, in

H, F, W respectively. Then

AHQF = quadrilateral HTUR.

Let RU meet the diameter through Q in M. Then, as in

Props. 22, 23, Ave have

RMF= quadrilateral QTUM
;

.•., adding (or subtracting) the area HM,

HQF= quadrilateral HTUR.

Proposition 55.

[III. 3, 7, 9, 10.]

//' we keep the same notation as in the last proposition and

take two points R', R on the curve luith points H' , F', etc. corre-

sponding to H, F, etc. and if, further, RU, R'W intersect in I

and R'U', RW in J, then the quadnlaterals F'IRF, lUU'R'
are equal, as also the quadrilaterals FJR'F', JU'UR.

[N.B. It will be seen that in some R

cases (according to the positions of R, R')

the quadrilaterals take a form like that

in the margin, in which case F'IRF must

be taken as meaning the diflfereuce

between the triangles F'MI, RMF.]

I. We have in figs. 1, 2, 3

HFQ = quadrilateral HTUR, [Prop. .54]

AH'F'Q = quadrilateral H'TU'R',

.•. F'H'HF=H'TU'R'~HTUR
= IUU'R' + (IH);

whence, adding or subtracting IH,

F'IRF = IUU'R' (1).
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and, adding {IJ) to bulh,

FJR'F'=JU'UR.

Fig. 1.

II. In Hws. 4, 5, G we have [Prop.s. IS. 53]

so that GQT= quadrilateral CU'R'F',
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and, adding the quadrilateral CF'H'T, we have

AH'F'Q = quadrilateral H'TU'R'.

Fig. 5.

Similarly HFQ = HTUR;
and we deduce, as before,

F'lRF^IUU'R

Thus e.g. in fig. 4,

AH'F'Q" - AHFQ = H'TU'R- HTUR
;

.•. F'H'HF={R'H)-{RU'),

and, subtracting each from {IH),

F'lRF^IUU'R'.
In fig. 6,

F'H'HF = H'TU'R' - AHTW+ ARUW,

.(1).

Fig. (>.
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and, adding (///) to each side,

F'IRF = H'TU'R' + H'TUI

= IUU'R' (1).

Then, subtracting (//) from each side in fig. 4, and sub-

tracting each side from (IJ) in figs. 5, 6, we obtain

FJR'F' =JU'UR (2),

(the quadrilaterals in fig. 6 being the differences between the

triangles FJM', F'R'M' and between the triangles JU'W,RUW
respectively).

III. The same properties are proved in exactly the same

manner in the case where P, Q are on opposite branches, and

the quadrilaterals take the same form as in fig. 6 above.

Cor. In the particular case of this proposition where R'

coincides with the results reduce to

EIRF=APUI,

PJRU = PJFE.

Proposition 56.

[III. 8.]

//' PP', QQ' be two diameters and the tangents at P, P',

Q, Q' be drawn, the former two meeting QQ' in E, E' and the

latter two meeting PP' in T, T', and if the parallel through P'

to the tangent at Q meets the tangent at in luhile the parallel

through Q' to the tangent at meets the tangent at Q in K', then

the quadrilaterals (EP'), (TQ') are equal, as also the quadri-

laterals (E'K), {T'K').

Since the triangles CQT, CPE are equal [Prop. 53] and

have a common vertical angle,

CQ.CT=CP.CE;

.•. CQ '. CE = GP : GT,
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whence QQ' : EQ = PP' : TP,

and the same proportion i.s true for the squares

;

.•. AQQ'K' : AQEO = APP'K :.
And the consequents are equal

;

.•. AQQ'K' = APP'K,

and, subtracting the equal triangles CQT, CPE, we obtain

(EP') = (TQ') (1).

Adding the equal triangles CP'E', CQ'T' respectively, we

have

{E'K) = {T'K') (2).

Proposition 57.

[III. -r>, 11, 12, 14.]

(Application to the case where the ordinates through R, R,
the points used in the last two propositions, are drawn to a

secondary diameter.)

(I) Let Gv be the secondary diameter to which the ordi-

nates are to be drawn. Let the tangent at Q meet it in t, and

let the ordinate Rw meet Qt in h and CQ in /'. Also let Ri,

parallel to Qt, meet Cv in a.

Then [Prop. 19]

ARm- ACfw= ACQt (A)
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and, subtracting the (iiuidnlateral GiuhQ,

ARuw ~A}tQf= Ahtiu
;

.•. AhQf= C[na.an\siteYa\ htuR.

(2) Let R'lu' be another ordinate, and h', w' &c. points

corresponding to h, , &c. Also let Ru, R'lu meet in i and Riu,

R'u m j.

Then, from above,

Ah'Qf = }itiifR',

and AhQf = htuR.

Therefore, subtracting,

f'h'hf = iuii'R — (hi)

and, adding (hi),

fiRf=mu'R' (1).

If we add {i}) to each, we have

fjR'f=ju'uR (2).

[This is obviously the case where is on the conjugate

hyperbola, and we deduce from (A) above, by adding the area

CwRM to each of the triangles Ruw, Gfw,

ACuM'- ARfM= ACQt,

a property of which ApoUonius gives a separate proof.]
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Proposition 58.

[III. 15.]

In the case where P, Q are on the oHginal hijperhola and R
on the conjugate hyperbola, the same properties as those formu-

lated in Propositions 55, 57 still hold, viz.

ARMF^ ACMU= ACQT,

and F'IRF=IUU'R'.

Let D'D" be the diameter of the conjugate hyperbola

parallel to R U, and let QT be drawn ; and from D' draw DG
parallel to PE to meet CQ in G. Then D'D" is the diameter

conjugate to GQ.

Let be the parameter in the conjugate hyperbola corre-

sponding to the transverse diameter D'D", and let be the

parameter corresponding to the transverse diameter QQ' in the

original hyperbola, so that

I . CQ = CD", and . CD' = CC^.

we have [Prop, 23]

Oq:QE = p:2QT = ^^:QT:
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.. D'C:CG = ^:QT

=^.CQ:CQ.QT

= CD":GQ.QT.

Hence DV.CG=CQ.QT,

or AD'CG= AOQT (1).

Again. CM.MU=CQ.QT

= (CQ: !).(/; :2)

= (p'.D'D").{OQ.QE)

= (p : D'D") .(R3I: MF) (2).

Therefore the triangles GMU, RMF, D'CG, being respec-

tively half of equiangular parallelograms on CM (or Rv),

RM (or Cv), CD', the last two of which are similar while the

sides of the first two are connected by the relation (2), have the

property of Prop. 16.

.•. ARMF- ACMU= AD'CG= ACQT (3).

If R' be another point on the conjugate hyperbola, we have,

by subtraction,

R'JFF - RMM'J = MUU'M', or RJFF = RUU'J.

And, adding (IJ),

F'IRF=IUU'R' (4)
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INTERSECTING CHORDS.

Proposition 59.

[III. 16, 17, 18, 19, 20, 21, 22, 23.]

Case I. If OP, OQ be two tangents to any conic and Rr,

R'r two chords parallel to them respectively and intersecting in

J, an internal or e.dernal point, then

OP': OQ' = RJ.Jr:R'J.Jr:

(a) Let the construction and figures be the same as in

Prop. 55.

We have then

RJ.Jr = RW'^JW\

and RW':JW'=ARUW: AJU'W;

.•. RW'~JW':RW' = JU'rR: ARUW.

But RW : 0P'= ARUW : OPT
;

.•. RJ.Jr : OP' = JU'UR: AOPT (1).

Again R'J . Jr = R'M" ~ JM"

and R'M" : JM" = AR'F'M' : AJFM',

m R'M" ~ JM" : R'M" = FJR'F' •. A R'F'M'.

But R'M" :0Q'= A R'F'M' : A OQE
;

.•. R'J.Jr': OQ' = FJR'F: AOQE (2).
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Comparing (1) and (2), we have

JU'UR = FJR'F, by Prop. 55,

and OPT = OQE, by Prop. 53.

Thus BJ. Jr : OP' = R'J. Jr' : 0Q\

or OP' : OQ' = RJ. Jr : R'J. Jr'.

(b) If we had taken the chords R'r^', Rr^ parallel respec-

tively to OP, OQ and intersecting in /, an internal or external

point, we should have established in the same manner that

Or-:OQ' = R'I.Ir;:RI.h\.

Hence the proposition is completely demonstrated.

[Cor. If /, or J, which may be any internal or external

point be assumed (as a particular case) to be the centre, we
have the proposition that the rectangles under the segments of

intersecting chords in fixed directions are as the squares of the

parallel semi-diameters.]

Case II. If be a point on the conjugate hyperbola and
the tangent at Q meet GP in t ; if further qq' be draivn through

t parallel to the tangent at P, and Rr, R'r' be tiuo chords parallel

respectively to the tangents at Q, P, and intersecting at i, then

tQ' : tq" = Ri . ir : R'i . ir'.

Using the figure of Prop. 57, we have

Ri.ir = Mi''-MR\

and Mi^ : MR' = AMfi : AMfR.

Hence Ri . ir : MR' =fiRf : MfR.

Therefore, if QC, qq' (both produced) meet in L,

Ri.ir:tQ'=fiRf: AQtL (1).

Similarly, R'i . ir' : R'w" = iuu'R' .: R'u'w' :

.•
. R'i . ir' : tq' = iuu'R' : AtqK (2),

where qK is parallel to Qt and meets Ct produced in K.
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But, comparing (1) and (2), we have

f'iRf= iuu'R,

and tqK = CLt + ACQt= A QtL.

.•. Ri.ir:tQ' = Ii'i.ir':tq\

or tQ':tq^ = Ri.ir:R'i.ir'.

[Prop. 57]

[Prop. 19]

Case III. If PP' he a diameter and Rr, R'r' he cJwrds

parallel respectively to the tangent at and the diameter PP'
and intersecting in I, then

RI.Ir:R'I.Ir' = p:PP'.

If RW, R'W are ordinates to PF,

: PP' =RW : CW - CP'

= R'W":CW"~CP'

= RW'-'R'W"':CW'

= RI.Ir.R'I.Ir'.

[Prop. 8]

CW

Case IV. If OP, OQ he tangents to a hyperhola and Rr,

R'r' he two chords of the conjugate hyperhola parallel

to OQ, OP, and meeting in I, then

OQ':OP' = RI.Ir.R'I.Ir'.

Using the figure of Prop. 58, we have

OQ' : OQE = RiW : RMF
= MP: AMIF'

= RI.Ir: ARMF- AMIF'

^ Ri.Ir: F'lRF,

H. c. 7
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and, in the same way,

OF': A()PT=R'r.Ir': AR'U'W - AIUW
= R'I.Ir':IUU'R';

whence, by Props. 53 and 58, as before,

()Q':RI.Iv=OP'.R'I.Ir',

or Oqt: OP' = RI.Ir.R'I.Ir'.

Proposition 60.

[III. 24, 25, 26.]

If Rr, R'r' he chords of conjugate hi/perbolas meeting in

and parallel respectively to conjugate diameters PP', DD', then

R0.0r+^^,.RO.0r' = 2CP'

RO.Or R'O.Or' „1

Let Rr, R'r meet the asymptotes in K, k ; K', k', and CD,

CP in w, W respectively. Draw LPL', the tangent at P,

meeting the asymptotes in L, L', so that PL = PL'.

Then LP.PL'=CD\

and LJ' . PL' : GP' = CD^ : CP\

Now LP : CP = K'O : OK,

PL':CP = 0k':0k;

.•. CV : CP' = K'O . Ok' : KO . 0/.•.
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[From this point Apollonius distinguishes five cases: (1)

where is in the angle LCL', (2) where is on one of the

asymptotes, (8) where is in the angle LCk or its opposite, (4)

where is within one of the branches of the original hyperbola,

(5) where lies within one of the branches of the conjugate

hyperbola. The proof is similar in all these cases, and it will

be sufficient to take case (1), that represented in the accom-

panying figure.]

We have therefore

CD' : CP' = K'O . Ok' + C'D' : KO . Ok + CP'

= K'O . Ok' + K'R . R'k' :KO.Ok + CP'

= K'W" -0W"-\- R W" - K'W" : Ow^ - Kiu' + CP'

= RW" - W" : Riv' - Kw' - Riv' +' + CP'

= RO . Or' : RK . Kr + GP' - RO . Or

= RO . Or' : 2CP' - RO . Or (since Kr = Rk),

fip2
whence RO .Or + ^,.R'0. Or' = 2CP\

RO.Or RO . Or
'

or ^p2 + ^^,

[The following proof serves for all the cases : we have

RW - CD' : CW" = CD' : CP"

and Cid" : Riu'' - CP' = CD" : CP'

;

... R'W" - Cid" - CD' : CF' - (Rtu' - CW") = CD' : CP\

so that + RO . Or' - CD' : CP' ±RO.Or= CD' : CP',

whence ± RO . Or' : 2CP' ± RO . Or = CD' : CP'

RO.Or' RO.Or „,

—CD^-^-CP^-^-^

7—2
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Proposition 61.

[III. 27, 28, 29.]

If in ai} ellipse or in conjugate hyj^erholas two chords Rr,

R'r he drawn meeting in and parallel respectively to two

conjugate diameters FP', DD', then

(1) for the ellipse

RO' + Or' +^^3 {RV + Or") = 4CP^

RO^+Or' RO'+Oj''\
or ^p, + ^^, -4,

and for the hyperbolas

RO' + Or' : R'O' + Or" = CP' : CD\

Also, (2) if R'r' in the hyperbolas meet the asymptotes in

K', k', then

K'O' + Ok" + ^GD' : RO' + Or' = CD' : CP\

(1) We have for both curves

CP':CD' = PW.WP'.RW'

= R'w": Div'.w'B'

= CP' + W . WP' ± R'w" : CD' + RW + Dw' . w'D'
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(taking the upper sign for the hyperbolas and the lower

for the ellipse)

;

.•. CP' : CD' = CP' ± CW" + W.WP : CD' + Cw' ± Dw'.w'D',

whence, for the hyperbolas,

CP : CD' = CW" + GW^ : Cw' + Cw"

= UR0' + 0r'):^{RO' + 0r"),

or RO' + Or' : RV + Or" = CP' : CD' (A),

while, for the ellipse,

CP' : CD' = 2CP' -(CW" + CW) : Cw" + Cw^

= ^CP' - {RO' + Or') : {RV + Or"),

, RO'+Or'_^ R'O' + Or"
whence —^pi

—

jjjji
=4 {B).

(2) We have to prove that, in the hyperbolas,

R'O' + Or" = K'O' + Ok" + 2CD'.

Now R'O' - K'O' = R'K" + 2R'K' . K'O,

and Or" - Ok" = r'k" + 2r'k' . k'O

= R'K" + 2R'K'.kO.

Therefore, by addition,

R'O^ + Or'-^ _ K'O' - Ok" = -IR'K' {R'K' + K'O + Ok')

= 2R'K'.R'k'

= 2CD'.

... R'O' + Or" = K'O' + Ok" + 2CD\

whence K'O' + Ok" + 2CD' : RO' + Or' = CD' : CP',

by means of (A) above.
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Proposition 62.

[III. :}(), 31, 82, :v.i U.]

TQ, T(j being taiKjents to a Injperhula, if V he the middle

point of Qq, and if TM he drawn parallel to an asymptote

meeting the curve in. R and Qq in M, luhile VN parallel to

an asymptote meets the curve in R' and the parallel through

to tlie chord of contact in N, then

TR = RM,

VR' = R'N*.

I. Let CV meet the curve in P, and draw the tangent PL,
which is theretbrc parallel to Qq. Also draAv the ordinates

RW, R'W to CP.

Then, since the triangles CPL, 'TWR are similar,

RW : TW = PL' : CP' = CD' : CP'

= RW':PW. WP';

.•. TW'' = PW. WP'.

• It will be observed from this proposition and the next that Apollonius

begins with two particular cases of the general property in Prop. 64, namely

(<i) the caHc where the transversal is parallel to an asymptote, (l>) the case where

the chord of contact is parallel to an asymptote, i.e. where one of the tangents

IB an aHymptute, or a tangent at infinity.
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Also CV.CT=CP',
.•. PW. WF' + GP'=GV.CT+TW\

or CW' = CV.CT+TW\
whence CT(CW+TW) = CV. CT,

and TW= WV.

It follows by parallels that TR = RM (1 ).

Again GP' : PU = WV : W'R"
;

.•. W'V: W'R"' = PW' . WP' : W'R'\

so that PW'.W'P'= W'V\

And GV.CT=GP';
.•. 6^ = CF.Cr+lF^

whence, as before, TW = WV,
and NR' = R'V (2).

II. Next let Q, q be on opposite branches, and let P'P be

the diameter parallel to Qq. Draw the tangent PL, and the

ordinates from R, R', as before.

Let TM, GP intersect in K.

Then, since the triangles GPL, KWR are similar,

GP' : PU = KW : WK\
and GP' : GD' = PW . WP' : WR'

;

.•. KW' = PW.WP'.
Hence, adding GP\

GW'[=Rw''] = KW' + GP\
But Rw' : ii W' + CT^ = 2^i<;•^ : R W' + PZ^

by similar triangles.

Therefore Tw' = RW' - GD'

= Gw' + GV.GT,



104 THE COXICS OF APOLLONIUS.

whence Tw — Cw = CV, or \ = wV\

.•. TR = RM (1).

Again rP' : = W . W'P' : R' W"
= PW'. W'P' + CP": R' W" + CD"

= CW":Ow''^-CV.GT.

Also GP" : PU = R'w'^ :w'V'\

.•. w'V = Cw" + cv.cr,

wliciicc, as before, Tw' = w'F,

and, by parallels, NR' = R'V. (2).

III. The particular case in which one of the tangents is

a tangent at infinity, or an asymptote, is separately proved

as follows.

Let LPL' be the tangent at P. Draw PD, LM parallel to

CL\ and let LM meet the curve in R
and the straight line Pi^ drawn through

parallel to CL in M. Also draw RE
parallel to CL.

Now LP = PL';

.•. PD - CF = FL', FP = CD = DL.

And FP.PD = ER. RL. [Prop. 34]

But ER = LC = 2CD = 2FP:

.•. PD = 2LR,

or LR = RM.

Proposition 63.

[III. 35, 36.]

// PL, the tangent to a hyperbola at P, meet the asymptote

in L, and if PO be parallel to that asymptote, and any straight

line LQOQ' be drawn meeting the hyperbola in Q, Q' and PO in

U, then

Ur : LQ = QV : OQ.
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Wc have, drawing parallels through L, Q, P, Q' to both

asymptotes as in the figures,

LQ = Q'L' : whence, by similar triangles, DL = IQ' = CF
.•. CD = FL,

and CD.DL = FL: LD
= Q'L : LQ
= MD : DQ.

Hence {HD) : (>) = (i/C) : {CQ)

= {MC):{EW),
since (CQ) = {CP) = {E \V). [Prop. 34]

Therefore

{MG) : {EW) = {MC) ± (HD) : (EW) ± (DW)
=^{MH):{EU) (1).

Now {DG) = (HE). [Prop. 34]

Therefore, subtracting CX from both,

{BX) = {XH),

and, adding (XU) to each, (EU) = (HQ).

Hence, from (1), since (EW) = (CQ),

(MG):(CQ) = (MH):(HQ),

or LQ' : LQ = Q'O : OQ.

[Apollonius gives separate proofs of the above for the two

cases in which Q, Q' are (1) on the same branch, and (2) on

opposite branches, but the second proof is omitted for the sake

of brevity.

Eutocius gives two simpler proofs, of which the following is

one.

Join PQ and produce it both ways to meet the asymptotes

in R, R. Draw PV parallel to CR' meeting QQ' in V.
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Then LV=VL'.

But /. = (//.': .•. QV= VQ'.

N( QV: VL' = QP.PR'
= PQ:QR
= OQ : QL.

2QV : 2VL' = OQ : QL,

QQ' : OQ = LL' : QL
;

.•. QO:OQ=LQ':LQ.-\

Proposition 64.

[III. 37, 38, 39, 40.]

(1) If TQ, Tq he tangents to a conic and any straight line

he drawn through meeting the conic and the chord of contact,

the straight line is divided harmonically

;

(2) // any straight line he drawn through V, the middle

point of Qq, to meet the conic and the parallel through to Qq
[or the polar of the point F], this straight line is also divided

harmonically

;

i.e. in the figures drawn below

(1) RT:TR' = RI:IR',

(2) RO:OR' = RV: VR'.
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Let TF be the diameter bisecting Qq in V. Draw as usual

IIRFW, H'R'F'W, EF ordinate-wise to the diameter TF; and

draw RU, R'U' parallel to QT meeting TF in U, U'.

(1) We have then

R'r:IR' = H'Q':HQ'

= AH'F'Q: AHFQ
= H'TU'R' : HTUR. [Props. 54, 55]

Also RT : TR' = R' U" : R U'

= AR'U'W: ARUW;
and at the same time

RT : TR' = TW" : TW
. = ATH'W: ATHW]

.•. Rr:TR= AR'U']V' ~ ATH'W: ARUW - ATHW
= H'TU'R' : HTUR
= RT : IR\ from above.

.•. RT : TR' = RI : IR'.

(2) We have in this case (it is unnecessary to give more

than two figures)

RV: VR" = RU':R'U"

= ARUW: AR'U'W.
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Also MV: VR" = HQ':QH"

= AHFQ : AH'F'Q = HTUR : H'TU'R.

.•. RV: VR" = HTUR + ARUW : H'TU'R' ± AR'U'W
= ATHW: ATH'W
= TW':TW'*

= RO':OR";

that is. RO : OR' = RV : VR'.



INTERCEPTS MADE ON TWO TANGENTS BY
A THIRD.

Proposition 65.

[III. 41.]

If the tangents to a 'parabola at three points P, Q, R form a

triangle pqr, all three tangents are divided in the same propor-

ti&n, or

Pr : rq = rQ : Qp = qp : pR

Let V be the middle point of PR, and join qV, which is

therefore a diameter. Draw T'TQW parallel to it through Q,

meeting Pq in and qR in T. Then QW is also a diameter.

Draw the ordinates to it from P, R, viz. PU, RW, which are

therefore parallel to pQr.
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Now, if ^F passes through Q, the proposition is obvious, and

the ratios will all be ratios of equality.

If not, we have, by the properties of tangents, drawing EBF
the tangent at the point where qV meets the curve,

TQ = QU, T'Q=QW, qB = BV,

whence, by parallels,

Pr = rT, Tp=pR, qF=FR.

Then (1) rP.PT=EP:Pq=l: 2,

and, alternately, rP : PE = TP : Pq

= OP : PV,

Avhence, doubling the consequents,

rP :Pq=OP: PR,

and Pr:rq = PO:OR (1).

(2) rQ'.Qp = PU:RW,

since PU=2rQ, and RW = 2pQ ;

Qp = PO: OR (2).

Rq=pR:RT',

Rp^qR: RT
= VR : RO.

Therefore, doubling the antecedents,

qR:Rp = PR: RO,

whence qp : pR = PO : OR (3).

It follows from (1), (2) and (3) that

Pr : rq = vQ : Qp = qp : pR.

(3) FR

and, alternately, FR
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Proposition 66.

[III. 42.]

If the tangents at the eairemities of a diameter PP' of a

central conic he drawn, and any other tangent meet them in r, r

respectively, then

Pr.P'r' = GD\

Draw the ordinates QV, Qv to the conjugate diameters PP'
and DD' ; and let the tangent at Q meet the diameters in T, t

respectively.

If now, in the case of an ellipse or circle, CD pass through Q,

the proposition is evident, since in that case rP, CD, r'P' will all

be equal.

If not, we have for all three curves

CT.GV=CP\

so that CT:CP = CP: CV
= CT-CP:CP -^GV

= PT:PV:
.•. CT: GP' = PT :PV,

whence GT:P'T = PT: VT.

Hence, by parallels, Gt : P'r' = Pr : QV
= Pr:Gv;

.•. Pr.P'r'^Gv.Gt = GD\
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Proposition 67.

[III. 43.]

If a tangent to a Jii/perbola, LPL', meet the asymptotes in

L, L', the triangle LCL has a constant area, or the rectangle

LC . CU is constant.

Draw PD, PF parcallel to the asymptotes (as in the third

figure of Prop. 62).

LP = PL';

.•. CL = 2CD = 2PF,

CL' = 2CF=2PD.
.•. LG.CL' = ^DP.PF,

which is constant for all positions of P. [Prop. 34]

Proposition 68.

[III. 44.]

If the tangents at P, Q to a hi/perhola meet the asymptotes

respectively in L, L' ; M, M', then LM', L'M are each parallel

to PQ, the chord of contact.

Let the tangents meet at 0.

We have then [Prop. 67]

LC.CL' = MC.CM',

so that LC\ CM' = MC: CL'\

.•. LM' , L'M arc parallel.

It follows that OL : LL' = OM' : M'M,

or, halving the consequents,

OL: LP=OM':M'Q;
.•. l.M', J'Q aru parallfl.



FOCAL PROPERTIES OF CENTRAL CONICS.

The foci are not spoken of by Apollonius under any equiva-

lent of that name, but they are determined as the two points

on the axis of a central conic (lying in the case of the ellipse

between the vertices, and in the case of the hyperbola within

each branch, or on the axis produced) such that the rectangles

AS.SA', AS' .S'A' are each equal to "one-fourth part of the

figure of the conic," i.e. \p„.AA' or CB"^. The shortened

expression by which S, S' are denoted is <;<€, " the points arising out of the application."

The meaning of this appear from the fiill description of the

method by which they are arrived at, which is as follows : iav€ • " }
60' €€ iirl

e'iBei, iirl 8e ^ ,
" if there be applied along the axis in each direction [a rect-

angle] equal to one-fourth part of the figure, in the case of the

hyperbola and opposite branches exceeding, and in the case of

the ellipse falling short, by a square figure." This determines

two points, which are accordingly / 77}<^
. C.
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axis as base which is equal to CB^ but which exceeds or falls

short of the rectangle of equal altitude described on the ivhole

axis by a square. Thus in the figures drawn the rectangles AF,

^'/'are respectively to be equal to CB\ the base AS' falling short

of AA' in the ellipse, and the base A'S exceeding A'A in the

hyperbola, while S'F or SF is equal to S'A' or SA respectively.

The focus of a parabola is not used or mentioned by

Apollonius.

Proposition 69.

[III. 45, 46.]

If Ar, A'r' , the tangents at the extremities of the axis of a

central conic, meet the tangent at any point in r, r' respectively,

then

(1) 7' subtends a right angle at each focus, S, S'
;

(2) the angles rr'S, A'r'S' are equal, as also are the angles

r'rS', ArS.

(1) Since [Prop. 60]

rA.A'r' =^Cn'

= AS .SA', by definition,

rA :AS=SA' : A'r'.
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Hence the triangles rAS, SAY are similar, and

zArS= zA'Sr';

.•. the angles iSA, A'Sr' are together equal to a right angle,

so that the angle rS?-' is a right angle.

And similarly the angle rSV is a right angle,

(2) Since rSr', rS'r' are right angles, the circle on rr' as

diameter passes through S, S'
;

.•. rr'S = rS'S, in the same segment,

= S'r'A', by similar triangles.

In like manner r'rS' = AiS.

Proposition 70.

[III. 47.]

If, in the same ficjures, be the intersection of rS', r'S, then

OP loill he perpendicular to the tangent at P.

Suppose that OR is the perpendicular from to the tangent

at P. We shall show that must coincide with P.

For Or'R = S'r'A', and the angles at R, A' arc right

;

.*. the triangles Or'R, S'r'A' are similar.

8—2
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Thereioie A'r' : r'R = S'r' : r'O

= Sr : I'O, by similar triangles,

= Ar : rR,

because the triangles ArS, RrO are similar;

.•. r'R : Rr = A'r' : Ar

= A'T : TA (1).

Again, if PN be drawn perpendicular to the axis, we have

[Prop. 13] A'T -TA^A'N : A
= r'P : Pr, by parallels.

Hence, from (1), r'R : Rr = r'P : Pr,

and therefore R coincides with P.

It follows that OP is perpendicular to the tangent at P.

Proposition 71.

[III. 48.]

The focal distances of make equal angles with the tangent

at that point.

In the above figures, since the angles rSO, OPr are right

[Props. 69, 70] the points 0, P, r, S are concyclic

;

.•. SPr = SOr, in the same segment.

In like manner S'Pr' = S'Or',

and the angles SOr, S'Or' are equal, being the same or opposite

angles.

Therefore SPr = S'Pr'.

Proposition 72.

[III. 49, 50.]

(1) If, from either focus, as S, SY be drawn perpendicular

to the tangent at any point P, the angle AYA' will be a right

angle, or the locus of is a circle on the aris A A' as diameter.

(2) The line drawn through C parallel to either of the focal

distances of to meet the tangent ivill be equal in length to CA,
or CA'.
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Draw iSiF perpendicular to the tangent, and join, VA'.

Let the rest of the construction be as in the foregoing proposi-

tions.

We have then

(1) the angles rAS, rYS are right

;

.. A, r, Y, S are concyclic, and

ZAYS=ZArS
= 7''8A', since rSi^' is right

= 1^'YA', in the same segment,

S, Y, r', A' being concyclic
;

.". , adding the angle SYA', or subtracting each angle from it,

A A' = SYr' = a right angle.

Therefore lies on the circle having AA' for diameter.

Similarly for F'.

(2) Draw GZ parallel to SP meeting the tangent in Z, and

draw S'K also parallel to SP, meeting the tangent in K.

Now AS.SA' = AS\S'A',

whence AS = S'A', and therefore CS = CS'.

Therefore, by parallels, PZ=ZK.

Again S'KP = SP F, since SP, S'K are parallel,

= ^S'PK; [Prop. 71]

.•. S'P = S'K.

And PZ = ZK;

.•. S'Z is at right angles to the tangent, or coincides with F'.

But F' is on the circle having AA' for diameter

;

.•. GT = CA, or CA'.

And similarly for GY.
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Proposition 73.

[III. 51, 52.]

In an ellipse the sum, and in a hyperbola the difference, of the

focal distances of any point is equal to the a.xis A'.

We have, as in the last proposition, if SP, CY', S'K are

parallel, S'K = ST. Let S'P, CY' meet in M.

Then, since SG = GS',

SP = 2GM,

S'P = S'K=2MY':

.•. SP + S'P = 2(CM + MT)
= 2GY'

= AA'. [Prop. 72]
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Proposition 74.

[Ill 53.]

If PP' he a diameter of a central conic, and Q any other

point on it, and if PQ, P'Q respectively meet the tangents at P',

in R, R, then

PR.P'R = DD'\
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Draw the ordinate QF to.
Now : PP' = QV -.PV.P'V [Prop, i

= (QV:PV).(QV:P'V)

= (PR : PP') . (PR : PP'), by similar triangles

Hence : PF = PR .P'R . PP'\

Therefore PR . PR = . PP'

= DD'\

Proposition 75.

[III. .34, .-)6.]

TQ, TQ' beinij tiuo tangents tu a conic, and R any other

point on it, if Qr, Q'r' he draimi parallel respectively to TQ',

TQ, and if Qr, Q'R meet in r and Q'r', QR in )•'
, then

Qr . Q'r' : QQ"' = (PV' :) {TQ . TQ' : QV\
where is the point of contact of a tangent parallel to QQ'.
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Draw through R the ordinate (parallel to QQf) meeting

the curve again in R and moi-ting TQ, TQ' in K, K' respec-

tively ; also let the tangent at meet TQ, TQ in L, L'. Then,

since PV bisects QQ', it bisects LL , KK\ RK also.

Now QU : LP. PL' = QL• : LP'

= QK':RK.KR' [Prop. 59]

= QK':RK.RK'.

But QL . Q'L' : QL' = QK . Q'K' : QK\

Therefore, ea: aequali,

QL . Q'L' : LP . PL' = QK . Q'K' : RK . RK'

= (Q'K':K'R).(QK:KR)

= {Qr:QQ').{Q'r' -.QQ')

= Qr.Q'r':QQ''-

Qr . Q'r' : QQ" = QL . Q'L' : LP . PL'

= {QL . Q'L' : LT. TL) . {LT . TL' : LP . PL)

= {PV':Pr).CTQ.TQ':QV').
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Proposition 76.

Llll. :.x]

If the tangents are tangents to opposite branches and meet in t,

and if tq is half the chord through t parallel to QQ', while R, r, r

have the same meaning as before, then

Qr.Q'r':QQ"=tQ.tQ':tq\

Let RM be the chord parallel to QQ' drawn through R, and

let it meet tQ, tQ' in L, L'. Then QQ', RR', LL' are all bisected

by tv.

Now [Prop. 59]tq'.tQ'=R'L.LR:LQ'

= L'R.RL:LQ\

But tQ' : tQ . tQ' = LQ' : LQ . L'Q'.

Therefore, ex aequali,

tq' : tQ . tQ' = L'R .RL-.LQ. L'Q'

= (L'R : L'Q') . (RL : LQ)

= {QQ':Qr).(QQ':Q'r') = QQ":Qr

Thus Qr.Q'r':QQ"=tQ.tQ':tq\

[It is easy to sec that the last two propositions give the

property of the three-line locus. For, since the two tangents and

the chord of contact are fixed while the position of R alone

varies, the result may be expressed thus,

Qr . Q'r = (const.).
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Now suppose Q,, Q,, , in the accompanying figure substi-

tuted for Q, Q', respectively in the first figure of Prop. 75,

and we have
Q^r . Qy = (const.)

Draw Rq^, Rq.^ panillel respectively to T,Q,, T^Q^ and

meeting Q^Q^ in q^, q^. Also let Rv^ be drawn parallel to the

diameter CT, and meeting QJ^^ in v,.

Then, by similar triangles,

Q,r:Rq; = ClQ.--Q.q:,

Qy:Rq,= Q,Q,:Q,q,

Hence Q,r . Q/ : % . Rq,' = Q,Q,' : Q,q, . Q,q,.

But Rq^ . %/ : Rv^' = T,Q, . T^Q, : , V\ by similar triangles

.•. Rq^ . Rq^ : jRy/ = (const.).

Also QiQ^ is constant, and Q{i' . Q^/"' is constant, as proved.

It follows that

-flv," : Qii, . Q/y/ = (const.).

But Rv^ is the distance of R from Q,^.^, the chord of

contact measured in a fixed direction (parallel to 0T^)\ and

Qj^,, QjQ'j' are equal to the distances of R from the tangents

jTjQj, jTjQj respectively, measured in a fixed direction (parallel

to the chord of contact). If the distances arc measured in any
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other fixed directions, they will be similarly related, and the

constant value of the ratio will alone be changed.

Hence R is such a point that, if three straight lines be

drawn from it to meet three fixed straight lines at given

angles, the rectangle contained by tw^o of the straight lines so

drawn bears constant ratio to the square on the third. In

other words, a conic is a "three-line locus" where the three

lines are any two tangents and the chord of contact.

The four-line locus can be easily deduced from the three-

line locus, as presented by Apollonius, in the following manner.

If QiQjQgQ^ be an inscribed quadrilateral, and the tangents

at Q^, Q„ meet at ,, the tangents at Q^, Q^ at jT^ and so on,

suppose Bq^, Rq^ drawn parallel to the tangents at Q^, Q^

respectively and meeting Q^Q^ in q^, q^ (in the same way as

Rq^ , Rq•^ were drawn parallel to the tangents at Q, , Q^ to meet

QxQi)' ^i^d let similar pairs of lines Rq^, Rq^' and Rq^, Rq^ be

drawn to meet Q,Q^ and Q^Q, respectively.

Also suppose Rv^ drawn parallel to the diameter GT^, meet-

ing Q,Qj in I'j, and so on.

Then we have

Q^^U Qs^s = ^'2 • ^V 1
^vhere k^, k^, k„ k, are

Qsqs'Q.q: = K-R<[ constants.

Hence we derive

Rv^'-Rv: 'Q.qrQs9:'Q.q/Q.q.

where k is some constant.

But the triangles Qtq^qt', Q^qsi ^^.c. are given in species,

SIS all their sides are in fixed directions. Hence all the ratios

^''', etc. are constant;

Rv^.Rv,
^ ^,
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But Bv^, Rv^, Rv^, Ri\ are straight lines drawn in fixed

directions (parallel to CT,, etc.) to meet the sides of the

inscribed quadrilateral QiQ^Q^Q.i-

Hence the conic has the property of the four-line locus with

respect to the sides of any inscribed quadrilateral.]

The beginning of Book IV. of Apollonius' work contains

a series of propositions, 28 in number, in which he proves

the converse of Propositions 62, 63, and 64 above for a great

variety of different cases. The method of proof adopted is the

reductio ad absurdum, and it has therefore been thought

unnecessary to reproduce the propositions.

It may, however, be observed that one of them [IV. 9] gives

a method of drawing two tangents to a conic from an external

point.

DraAv any two straight lines through each cutting the

conic in two points as Q, Q' and

R, R'. Divide QQ' in and RR'
in 0' so that

TQ:TQ' = QO: 0Q\

TR: TR' = RO' : O'R'.

Join 00', and produce it both ways

to meet the conic in P, P'. Then

P, P' are the points of contact of the

two tangents from T.
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Proposition 77.

[IV. 24.]

No two conies can intersect in snch a way that part of one

of them is common to both, while the rest is not.

If possible, let a portion q'Q'PQ of a conic be common

to two, and let them diverge at Q. Take Q'

any other point on the conmion portion and

join QQ'. Bisect QQ' in 1^ and draw the

diameter PV. Draw rqv(j' parallel to QQ'.

Then the line through parallel to QQ'

will touch both curves and we shall have in

one of them qv = vq', and in the other rv = vq'
;

.•. rv = qv, which is impossible.

There follow a large number of propositions with regard to

the number of points in which two conies can meet or touch

each other, but to give all these propositions in detail would

require too much space. They have accordingly been divided

into five groups, three of which can be combined in a general

enunciation and are accordingly given as Props. 78, 79 and 80,

while indications are given of the proofs by which each

particular case under all the five groups is established. The

terms " conic " and " hyperbola " in the various enunciations do

not (except when otherwise stated) include the double-branch

hyperbola but only the single branch. The term " conic " must

be understdod as including a circle.
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Group I. Propositions depending on the more elementary

considerations affecting conies.

1

.

Two conies having their concavities in opposite directions

will not meet in more than two points. [IV. 35.]

If possible, let ABC, ADBEC be two such conies meeting in

three points, and draw the chords of contact A B,

BC. Then AB, BC contain an angle towards

the same parts as the concavity of ABC. And
for the same reason they contain an angle towards

the same parts as the concavity of ADBEC.

Therefore the concavity of the two curves

is in the same direction : vhich is contrary to

the hypothesis.

2. If a conic meet one branch of a hyperbola in two

points, and the concavities of the conic and the branch are in

the same direction, the part of the conic produced beyond the

chord of contact will not meet the opposite branch of the

hyperbola. [IV. 36.]

The chord joining the two points of intersection will cut both

the lines forming one of the angles made by the asymptotes of

the double hyperbola. It will not therefore fall within the

opposite angle between the asymptotes and so cannot meet the

opposite branch. Therefore neither can the part of the conic

more remote than the said chord.

3. If a conic meet one branch of a hyperbola, it will not

meet the other branch in more points than two. [IV. 37.]

The conic, being a one-branch curve, must have its

concavity in the opposite direction to that of the branch which

it meets in two points, for otherwise it could not meet the

opposite branch in a third point [by the last proposition]. The

proposition therefore follows from (1) above. The same is true

if the conic touches the first branch.

4. A conic touching one branch of a hyperbola with its

concave side will not meet the opposite branch. [IV. 30.]
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Both the conic and the branch which it touches must be on

the same side of the common tangent and therefore Avill be

separated by the tangent from the opposite branch. Whence

the proposition follows.

5. If one branch of a hyperbola meet one branch of

another hyperbola with concavity in the opposite direction

in two points, the opposite branch of the first hyperbola

will not meet the opposite branch of the second. [IV. 41.]

The chord joining the two points of concourse will fall

across one asymptotal angle in each hyperbola. It will not

therefore fall across the opposite asymptotal angle and

therefore will not meet either of the opposite branches.

Therefore neither \vill the opposite branches themselves meet,

being separated by the chord refen-ed to.

6. If one branch of a hyperbola meet both branches of

another hyperbola, the opposite branch of the former will not

meet cither branch of the second in two points. [IV. 42.]

For, if possible, let the second branch of the former meet
(»<• branch of the latter in D, E. Then, joining DE, we use
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the same argument as in the last proposition. For DE
crosses one asymptotal angle of each hyperbola, and it will

therefore not meet either of the branches opposite to the

branches DE. Hence those branches are separated by DE
and therefore cannot meet one another : which contradicts

the hypothesis.

Similarly, if the two branches DE touch, the result will be

the same, an impossibility.

7. If one branch of a hyperbola meet one branch of

another hyperbola with concavity in the same direction, and

if it also meet the other branch of the second hyperbola in one

point, then the opposite branch of the first hyperbola will not

meet either branch of the second. [IV. 45.]

i.1, being th(

H. C.

points of meeting ith the first branch and

9
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C that with the opposite branch, by the same principle as

before, neither AC nor BC will meet the branch opposite to

ACB. Also they will not meet the branch C opposite to

A in any other point than C, for, if either met it in two

points, it would not meet the branch AB, which, however,

it does, by hypothesis.

Hence D will be within the angle formed by AC, BC
produced and will not meet C or AB.

8. If a hyperbola touch one of the branches of a second

hyperbola with its concavity in the opposite direction, the

opposite branch of the first will not meet the opposite branch

of the second. [IV. 54.]

The figure is like that in (6) above except that in this case

D and are two consecutive points ; and it is seen in a similar

manner that the second branches of the hyperbolas are

separated by the common tangent to the first branches,

and therefore the second branches cannot meet.

Group II. containing propositions capable of being ex-

pressed in one general enunciation as follows

:

Proposition 78.

No two conies {including under the term a hyperbola with

two branches) can intersect in more than four points.

1. Suppose the double-branch hyperbola to be alone

excluded. [IV. 2.5.]
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If possible, let there be five points of intersection , B, C,

D, E, being successive intersections, so that there are no others

between. Join AB, DC and produce them. Then

(a) if they meet, let them meet at T. Let 0, 0' be

taken on AB, DC such that A, TD are harmonically divided.

If 00' be joined and produced it will meet each conic, and the

lines joining the intersections to will be tangents to the

conies. Then TE cuts the two conies in different points P, P',

since it does not pass through any common point except E.

Therefore ET : = : IP
\

and ET:TP' = EI:IPy
where 00', intersect at /.

But these ratios cannot hold simultaneously ; therefore the

conies do not intersect in a fifth point E.

(b) If AB, DC are parallel, the conies will be either

ellipses or circles. Bisect AB, DC at M, M' ; MM' is then

a diameter. Draw ENPP' through parallel to AB or DC,

meeting MM' in and the conies in P, P'. Then, since MM'
is a diameter of both,

NP = NE = NP',

which is impossible.

Thus the conies do not intersect in more than four points.

2. A conic section not having two branches will not meet

a double-branch hyperbola in more than four points. [IV. 38.]

This is clear from the fact that [Group I. 3] the conic

meeting one branch will not meet the opposite branch in more

points than two.

9—2
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3. If one branch of hyperbola cut each branch of a second

hyperbola in two points, the opposite branch of the first

hyperbola will not meet either branch of the second. [IV. 43.]

The text of the proof in ApoUonius is corrupt, but Eutocius

gives a proof similar to that in Group I. 5 above. Let HOH'
be the asymptotal angle containing the one branch of the first

hyperbola, and' that containing the other branch. Now
AB, meeting one branch of the second hyperbola, Avill not meet

the other, and therefore AB separates the latter from the

asymptote OK'. Similarly DC separates the former branch

from OK. Therefore the proposition follows.

4. If one branch of a hyperbola cut one branch of a second

in four points, the opposite branch of the first will not meet the

opposite branch of the second. [IV. 44.]

The proof is like that of 1 (a) above. If is the supposed

fifth point and is determined as before, ET meets the inter-

secting branches in separate points, whence the harmonic

jiroptTty produces an absurdity.

5. If one branch of a hyperbola meet one branch of a

second in three points, the other branch of the first will not

meet the other branch of the second in more than one point.

[IV. 46.]

I
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Let the tirst two branches intersect in , B, C\ and (if

possible) the other two in D, E. Then

(«) if AB, DE be parallel, the line joining their middle

points will be a diameter of both conies, and the parallel chord

through C in both conies will be bisected by the diameter;

which is impossible.

(6) If AB, DE be not parallel, let them meet in 0.

Bisect AB, DE in M, M', and draw the diameters MP, MP'
and M'Q, M'Q' in the respective hyperbolas. Then the tangents

at ', will be parallel to ^0,and the tangents at Q', Q parallel

to BO.

L^t the tangents at P, Q and P', Q' meet in T, T'.

Let CRR' be parallel io AO and meet the hyperbolas in

R, R', and DO in 0'.

Then TP' -.TQ'^AO.OB -.DO.OE

= T'P" : T'q\ [Prop. 5i)]

It follows that

RO' . O'G : DO' . O'E = R'O' . O'G : DO' . O'E,

whence RO' . O'G = R'O' .O'G

;

which is impossible.

Therefore, etc.

6. The two branches of a hyperbola do not meet the

two branches of another hyperbola in more points than four.

[IV. 55.]
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Let A, A' be the two branches of the first hyperbola and

B, B' the two branches of the second.

Then (a) if A meet B, B' each in two points, the proposition

follows from (3) above
;

(6) if A meet in tAvo points and B' in one point, A' cannot

meet B' at all [Group I. 5], and it can only meet in one

point, for if A' met in two points A could not have met B'

(which it does)

;

(c) if A meet in two points and A' meet B, A' Avill not

meet B' [Group I. ], and A' cannot meet in more points than

two [Group I. 3]

;

{d) if A meet in one point and B' in one point, A' will

not meet either or B' in two points [Group I. 6]

;

(e) if the branches A, have their concavities in the same

direction, and A cut in four points, A' will not cut B' [case

(4) above] nor [case (2) above]
;

(/) if A meet in three points, A' will not meet B' in

more than one point [case (5) above].

And similarly for all possible cases.

Group III. being particular cases of

Proposition 79.

Two cunicfi {includinij duiible lijperbulas) iuhich touch at one

point cannot intersect in more than two other jwints.

1. The proposition is true of all conies excluding hyperbolas

with tw(j branches. [IV. 20.]

The proof follows the method of Pr(^i). 78 (1) above.
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2. If one branch of a hyperbola touch one branch of another

in one point and meet the other branch of the second hyperbola

in two points, the opposite branch of the first will not meet
either branch of the second. [IV. 47.]

The text of Apollonius' proof is corrupt, but the proof of

Prop. 78 (3) can be applied.

3. If one branch of a hyperbola touch one branch of a

second in one point and cut the same branch in two other

points, the opposite branch of the first does not meet either

branch of the second. [IV. 48.]

Proved by the harmonic property like Prop. 78 (4).

4. If one branch of a hyperbola touch one branch of a

second hyperbola in one point and meet it in one other point,

the opposite branch of the fii^st Avill not meet the opposite

branch of the second in more than one point. [IV. 49.]

The proof follows the method of Prop. 78 (5).

5. If one branch of a hyperbola touch one branch of

another hyperbola (having its concavity in the same direction),

the opposite branch of the first will not meet the opposite

branch of the second in more than two points. [TV. 50.]

The proof follows the method of Prop. 78 (.5), like the last

case (4).

6. If a hyperbola with two branches touch another hyper-

bola vith two branches in one point, the hyperbolas will not

meet in more than two other points. [IV. 56.]

The proofs of the separate cases follow the methods em-

ployed in Group I. 3, 5, and 8.

Group IV. merging in

Proposition 80.

No two conies touching each other at tiuo iJoints can intersect

at any other point.

1. The proposition is true of all conies excluding hyperbolas

with two branches. [IV. 27, 28, 29.]
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Suppose the conies touch at , B. Then, if possible, let

them also cut at G.

(a) If the tangents arc not parallel and C does not lie

between A and B, the proposition is proved from the harmonic

property

;

(6) if the tangents are parallel, the absurdity is proved by

the bisection of the chord of each conic through G by the chord

of contact which is a diameter

;

(c) if the tangents are not parallel, and G is between and

B, draw TVirom the point of intersection of the tangents to the

middle point of. Then TV cannot pass through G, for then

the parallel through G to would touch both conies, which is

absurd. And the bisection of the chords parallel to A through

G in each conic results in an absurdity.

2. If a single-branch conic touch each branch of a hyper-

bola, it will not intersect either branch in any other point,

[IV. 40.]

This follows by the method employed in Group I, 4.

3. If one branch of a hyperbola touch each branch of a

second hyperbola, the opposite branch of the first will not meet

either branch of the second. [IV. 51.]

Let the branch AB touch the branches AG, BE in A, B.

Draw the tangents at ^, J5 meeting in T, If possible, let GD,

the opposite branch to AB^ meet AG in G. Join GT.

Then is within the asymptotes to AB, and therefore GT
falls within the angle ATB. But BT, touching BE, cannot

meet the opposite branch AC. Therefore BT falls on the side

of GT remote from the branch AG, or GT passes through

the angle adjacent to A TB ; which is impossible, since it foils

withiTi the angh- ATB.
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4. If one branch of i)ue hyperbola touch one branch of

another in one point, and if also the other branches touch in

one point, the concavities of each pair being in the same

direction, there arc no other points of intersection. [IV. 52.]

This is proved at once by means of the bisection of chords

parallel to the chord of contact.

5. If one branch of a hyperbola touch one branch of another

in two points, the opposite branches do not intersect. [IV. 53.]

This is proved by the harmonic property.

6. If a hyperbola with two branches touch another hyper-

bola with two branches in two points, the hyperbolas will not

meet in any other point. [IV. 57.]

The proofs of the separate cases follow those of (3), (4), (5)

above and Group I. 8.

Group V. Propositions respecting double contact bet\vcon

conies,

1. parabola cannot touch another parabola in more

points than one. [IV. 30.]

This follows at once from the property that TP = V.

2. A parabola, if it fall outside a h}^erbola, cannot have

double contact with the hyperbola. [IV. 31.]

For the hyperbola

CV:CP = CP:CT
= GV-CP:CP-CT
= PV:PT.

Therefore PV>PT.

And for the parabola P'V=P'T: therefore the hyperbola

falls outside the parabola, which is impossible.

3. A parabola cannot have internal double contact with an

ellipse or circle. [IV. 32]

The proof is similar to the preceding.
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4. A hyperbola cannot have double contact with another

hyjxirbola having the same centre. [IV. 33.]

Proved by means oiGV.CT= CP\

5. If an ellip.se have double contact Avith an ellipse or a

circle having the same centre, the chord of contact will pass

through the centre. [IV. 34.]

Let (if possible) the tangents at A, meet in T, and let V
be the middle point of AB. Then TV is a diameter. If

possible, let G be the centre.

Then CP^= CV. GT=CF\ which is absurd. Therefore the

tangents at ^, 5 do not meet, i.e. they are parallel. Therefore

AB '\& diameter and accordingly passes through the centre.
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Proposition 81. (Preliminary.)

[V. 1, 2, 3.]

If in an ellipse or a hyperbola AM he d7'awn perpendicular

to the aa;is A A' and equal to one-half its parameter, and if CM
meet the ordinate PN of any point on the curve in H, then

PN' = 2 (quadrilateral).

Let AL be twice AM, i.e. let AL be the latus rectum or

parameter. Join A'L meeting PN in R. Then A'L is parallel

to CM. Therefore HR = LM = AM.

Now PN"" = AN. NR
;

[Props. 2, 3]

.•. PN' = AN(AM + HN)

= 2 (quadrilateral).
In the particular ca.sc where is between C and A' in the

fuKJvz .,. ,
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ellipse, the ([uadrilateral becomes the difference between two

triangles, and
P'N" = 2 (

CA - CN'H

'

).

Also, if be the end of the minor axis of the ellipse, the

quadrilateral becomes the triangle CAM, and

BC'^2ACAM.
[The two l;ist cases are proved by Apollonius in separate

pruptisitions. Cf. the note on Prop. 23 above, p. 40.]

Proposition 82.

[V. 4.]

7/i a pardbola, if he a point on the axis such that AE is

e(jual to half the latus rectum, then the minimum strairjht line

from to the curve is AE ; and, if he any other point on the

curve, PE increases as moves further from A on either side.

Also for any point

PE'=AE' + AN-\

Let AL ho the parameter or latus rectum.

Then PN* = AL.AN
= 2AE.AN.

Adding EN*, we have

PE'=2AE.AN+EN'
=^2AE.AN + (AE'- ANf
=^AE'+AN\
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Thus PE'^ > AE' and increases with AN, i.e. as moves

further and further from A.

Also the minimum value of PE is AE, or AE is the

shortest straight line from to the curve.

[In this proposition, as in the succeeding propositions,

Apollonius takes three cases, (1) where is between A and E,

(2) where coincides with and PE is therefore perpen-

dicular to the axis, (3) where AN is greater than AE, and

he proves the result separately for each. The three cases will

for the sake of brevity be compressed, where possible, into one.]

Proposition 83.

[V. 5, G.]

If he a point on the axis of a hyperbola or an ellipse such

that AE is equal to half the latus rectum, then AE is the least

of all the straight lines which can he draimifrom to the curve;

and, if he any other point on it, PE increases as moves

further from A on either side, and

PE" = AE' + AN' .^4^^ [= ^E" + e' • ^N']AA '

{luhere the upper sign refers to the hyperhola)*.

Also in the ellipse A' is the maximum straight line from

to the curve.

Let AL be dravn perpendicular to the axis and equal to

the parameter; and let^X be bisected at if, so that^iT/= J.^".

Let be any point on the curve, and let PN (produced if

necessary) meet CM in and EM in K. Join EP, and draw

MI perpendicular to HK. Then, by similar triangles,

MI = IK, and EN = NK.

* The area represented by the second term on the right-hand side of the

equation is of course described, in Apollonius' phrase, as the rectangle on the

base .-'' similar to that contained by the axis (as base) and the sum (or difference)

of the axis and its parameter. A similar remark applies to the similar expression

on the next page.
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Now PN^ = 2 ((luadrilateral),
and \\'=2;

.•. PE'=2(AEAM+ AMHK)
= AE' + MI.HK
= AE' + MI.(IK±IH)
=' + .{3±)....

[Prop. 81]

(1)•
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Proposition 84.

[V. 7.]

If any point be taken on the a:cis of any conic such that

AO < hpa, then OA is the minimum straight line from

to the cin-ve, and OP (if is any other point on it) increases as

movesfurther and furtlierfrom A.

Let AEhQ set off along the axis equal to half the parameter,

ami join PE, PO, PA.

Then [Props. 82, 83] PE > AE,

so that >\
and a fortiori>,
so that PO>AO.

And, if P' be another point more

remote from A,

P'E > PE.

.•. ZEPP'>ZEP'P;
and a fortioH

OPP' > OFP.

.•. OP'>OP,

and so on.

Proposition 85.

[V. 8.]

I7i a imrahola, if G he a point on the axis such that

AG>\pa, inid if be taken between A and G such that

NG 2'

then, ifNP is dravm perpendicidar to the axis meeting the curve

in P, PG is the minimum straight line from G to the carve [or

the normal at P].
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// F' be any other jymnt on the curve, P'G increases as P' mon

furthei'from in either direction.

Also P'G' = PG'-\-NN'\

Wchave P'N"=pa-AN'
= 2NG.AN'.

Also N'G' = NN'^ + NG' ± 2NG . NN'

(caccording to the position of N').

Therefore, adding,

P'G' = 2NG .AN+ NN'' + NG'

= PN' + NG' + NN"
= PG' + NN''.

Thus it is clear that PG is the minimum straight line from

G to the curve [or the normal at P].

And P'G increases with NN', i.e. as P' moves further from

/* in either direction.

Proposition 86.

[V. 9, 10, 11.]

/// a hyperbola or an ellipse, if G be any point on A' (within

the curve) such that AG>^, and if GN be measured towards

the nearer veiiex A so that

NG :CN = pa:A A' [= CB' : CA'],
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then, if the ordinate through meet the curve in P, PG is the

minimum straight line from G to the curve [or PG is the

nonnal at P] ; ai^d, if P' be any other point on the curve, P'G
increases as P' moves furtherfrom on either side.

Also P'G' - PG' = NN" .
"^-4^4^

[=e\NN'

where P'N' is the ordinatefrom P'.
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Also P'G' = FN" + N'G* = 2 (quadr. AMKN') + 2 H'N'G

= 2 (quadr. AMHG) + ^CsEH'K.

PG''='2/\HH'K

= HI .{H'I±IK)

= HI. {HI ± IK)

P'G'

= HP CA ± AM
' GA

NN'

Thus it follows that PG is the minimum straight line from

G to the curve, and P'G increases with NN' as P' moves

further from in either direction.

In the ellipse GA' will be the maanmum straight line from

G to the curve, as is easily proved in a similar manner.

Cor. In the particular case where G coincides Avith C, the

centre, the two minimum straight lines are proved in a similar

manner to be CB, CB', and the two maxima CA, CA', and CP
increases continually as moves from to A.

Proposition 87.

[V. 12.]

If G be a point on the axis of a conic and GP be the mini-

mum straight line from G to the curve \or the normal at P\ and

if be any point on PG, then OP is the minimum straight line

from to the cui^je, and OP' continually increases as P' moves

from to A [or to A'].

Since FG > PG,

zGPP'>zGPP.
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Therefore, a fortimn,

OP' > OF,
or OP' > OP.

Similarly OP" > OP' [&c. as in Prop. 84].

[There follow three propositions establishing for the three

curves, by redactio ad crbsurdum, the convei-se of the propo-

sitions 85 and 86 just given. It is also proved that the normal

makes with the axis towards the nearer vertex an acute angle.]

Proposition 88.

[Y. 16, 17, 18.]

If E' be a point on the minor axis of an ellipse at a distance

GA'
then E'Bfrom equal to half the parameter of BE' or ^„

is the maximum straight linefrom to the curve ; and, if he

any other point on it, E'P diminishes as moves further from

on either side.

Also E'B'-E'P^Bn'.''-^ [=£«'. '^^] .

ApoUonius proves this sepai-ately for the cases (1) where

^<BB', (2) whei-e ^=BB', and (3) where ^>BB'.

The method of proof is the same for all three cases, and only

the first case of the three is given here.

*'"^"""'~?<"' "vT" ;,'> -----y<• -

10—2
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By Prop. 81 (which is applicable to either axis) we have, if

Bm =^ = BE', and Pn meets Cm, E'm in h, k respectively,

P/i'= 2((iua(lnlatcral mBnh).

Also "=2»1•'.

.'. PE'^=2AmBE'-2Amhk.

But BE'*=1AviBE'.

.•. BE"-PE"=^2Amhk

= mi . (hi — ki) = mi . (hi — mi)

^ mB-CB

whence the proposition folloAVS.

Proposition 89.

[V. 19.]

If BE' be measured along the minor axis of an ellipse equal

CA'^~\
to half the jiciraineter or^ and any point be taken on the

minor axis such that BO > BE', then OB is the maximum
straight line from to the curve; and, if be any otJier point

on it, OP diminishes continually as moves in either direction

from to B'.

The proof follows the method of Props. 84, 87.
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Proposition 90.

[V. 20, 21, 22.]

If g he a point on the minor axis of an ellipse such that

or ^ \ , and if Gn he measured to-

luards so that

Cn:ng = BB':p^[=CB':CA'l

then the perpendicular through to BB' will meet the curve in

two points such that Pg is the maximum straight line from

g to the curve.

Also, if P' he any other point on the curve, P'g diminishes as

P' moves furtherfrom on either side to or B', and

Pg' rg -nn . ^^,
,, CA'-CBn
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Now Pn^= 2 (quadrilateral mBnh),

ng^ = 2A}ing:

.•. Pg'=2(mBnJi + Ahng).

Similarly P'g' = 2 {mBn'h' + hi'g).

By subtraction,

Pg^-Py=2/S},h'l•

= hi . (h'i — ki)

= hi.{h'i — hi)

[Em - BC\
hi'

V BG

-nn . ^^ ,

whence it follows that Pg is the maximum straight line from g
to the curve, and the difference between Pg^ and P'g^ is the

area described.

Cor. 1. It follows from the same method of proof as that

used in Props. 84, 87, 89 that, if be any point on Pg produced

beyond the minor axis, PO is the mammum, straight line that

can be drawn from to the same part of the ellipse in which

Pg is a maximum, i.e. to the semi-ellipse BPB', and if OF be

drawn to any other point on the semi-ellipse, OP' diminishes as

P' moves from to or B'.

Cor. 2. In the particular case where g coincides with the

centre C, the maximum straight line from C to the ellipse is

perpendicular to BB', viz. CA or GA'. Also, if g be not the

centre, the angle PgB must be acute if Pg is a maximum
;

and, if Pg is a maximum [(jr a normal],

(hi: ng = GB': GA\

[This corollary is proved separately by redmtio ad absurdum.]
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Proposition 91.

[V. 2.S.]

If g he on tlie minor axis of an ellipse, and gP is a nicucimum

straight line from g to the curve, and if gP meet the major axis

in G, GP is a minimum straight linefrom G to the cin've.

[In other words, the minimum from G and the maximum
from g determine one and the same normal.]

We have Cn : ng = BB' : pb [Prop. 90]

[= CB'' : CA']

= p„: A A'.

Also Gn : ng = PN : ng

= NG : Pn, by similar triangles.

= NG : CN.

.•. NG'.CN=pa:AA',

or PG is the normal determined as the minimum straight line

from G. [Prop. 86]

Proposition 92.

[V. 24, 25, 26.]

Only one normal can be drawn from any one point of a conic,

whether such normal be regarded as the minimum straight line

from the point in which it meets A A', or as the maximum straight

line from the point in which (in the case of an ellipse) it meets

the minor axis.
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This is at once proved by reductio ad ahsiirdum on assuming

that PG, (meeting the axis AA' in G, H) are minimum

.straight lines from G and to the curve, and on a similar

assumption for the minor axis of an ellipse.

Proposition 93.

[V. 27, 28, 29, 30.]

The nonmil at any point a conic, whetJter regarded

as a minimum straight line from its intei'section with the axis

AA' or as a maximum from its intersection with BE (in the '
case of an ellipse), is perpendicular to the tangent at P.

Let the tangent at meet the axis of the parabola, or the

axis AA' hyperbola or an ellipse, in T. Then we have to

prove that TPG is a right angle.

(1) For the parabola wo have

= ^, and NG = ^',

.•. NG : pa = AN : NT,

•so that TN.NG=pa.AN

= PN\

And the angle at is a right angk•

;

.•. TPG is a right angle.

I
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(2) For the hyperbola or ellipse

PN':CN.NT
=•.' [Prop. U]

= NG : CN, by the property of the minimum,

[Prop. 86]
= TN.NG:CN.NT.

.•. PN^ = TN.NG, while the angle at is right

;

.•. TPG is a right angle.

(3) If Pg be the maximum straight line from g on the

minor axis of an ellipse, and if Pg meet A' in G, PG is

a minimum from G, and the result follows as in (2).

[Apollonius gives an alternative proof applicable to all three

conies. If GP is not perpendicular to the tangent, let GK be

perpendicular to it.

Then GKP > GPK, and therefore GP > GK.

Hence a fortiori GP > GQ, where Q is the point in which

GK cuts the conic; and this is impossible because GP is a

minimum. Therefore &c.]

Proposition 94.

[V. 31, 33, 34.]

(1) In general, if be any point luithin a conic and OP be

a maadmum or a minimum straight line from to the conic, a

straight line PT drawn at right angles to PO will touch the

conic at P.
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(2) If 0' be any point on OP produced outside the conic,

then, of all straight lines drawn from 0' to meet the conic in one

point but not produced so as to meet it in a second point, O'P

vnll be tlie minimum; and of the rest that which is nearer to it

will be less than that which is more remote.

(1) First, let OP be a maocimum. Then, if does not

touch the conic, let it cut it again at Q, and draw OK to meet

PQ in and the curve in R.

i

Then, since the angle OPK is right, OPK > OKP.

Therefore OK > OP, and a fortiori OR > OP : which is

impossible, since OP is a maximum.

Therefore TP must touch the conic at P.

Secondly, let OP be a minimum. If possible, let TP cut the

curve again in Q. From any point between and the curve

draw a straight line to and draw ORK perpendicular to this

line meeting it at and the curve in R. Then the angle OKP
\h a right angle. Therefore OP > OK, and a fortiori OP > OR :

which is impossible, since OP is a minimum. Therefore TP
must touch the curve.
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(2) Let 0' be any point on OP produced. Dmw the

tangent at P, as PK, which is therefore at right angles to OP.

Then draw O'Q, O'R to meet the curve in one point only, and

let O'Q meet PK in K.

Then O'K > O'P. Therefore a fortiori O'Q > O'P, and O'P

is a minimum.

Join RP, RQ. Then the angle O'QR is obtuse, and therefore

the angle O'RQ is acute. Therefore O'R > O'Q, and so on.

Proposition 95.

[V. 35, 86, 37, 38, 39, 40.]

(1) If the normal at meet the lucis of a parabola or the

axis' of a hyperbola or ellipse in G,the angle PGA increases

as or G moves further and further from A, but in the

hyperboL• the angle PGA will ahuays be less than the complement

of half the angle betiueen the asymptotes.

(2) Tiuo normals at points on the same side of the a-xis AA'
will meet on the opposite side of that axis.

(3) Two normals at points on tJie same quadrant of an

ellipse, as AB, will meet at a point luithin the angle ACB'.

(1) Suppose P' is further from the vertex than P. Then,

since PG, P'G' are minimum straight lines from G, G' to the

curve, we have
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(a) For the parabola

and ''>\
'>.
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But AL : AM= CA : AL

,

[Prup. 2.S]

.•. CA .AL>PN:NG\

:. PGN is less than CLA.

(2) It follows at once from (1) that two normals at points

on one side of AA' \\\ meet on the other side of A A'.

(3) Regard the two normals as the maximum straight

lines from g, (/', the points where they meet the minor axis of

the ellipse.

Then On : n'g' = BE : pi, [Prop. 90]

= Cn : ng
;

.•. On' : Cg = On : Gg.

But On >0n•, .•. Og > Og,

whence it follows that Pg, P'g' must cross at a point before

cutting the minor axis. Therefore lies on the side of BB'
toAvards A

.

And, by (2) above, lies below AG; therefore lies within

the '.
Proposition 96.

[V. 41, 42, 43.]

(1) In a parabola or an ellipse any normal PG will meet

the cu?-ve again.

(2) In the hyperbola (a), if AA' he not greater than pa, no

normal can meet the curve in a second point on the same branch

;

but (b), if AA'>pa, some normals luill meet the same branch

again and others not.

(1) For the ellipse the proposition is sufficiently obvious,

and in the parabola, since PG meets a diameter (the axis), it

will meet another diameter, viz. that through the point of

contact of the tangent parallel to PG, i.e. the diameter bisecting

it. Therefore it will meet the curve again.
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(2) (a) Let CL, CL be the asymptotes, and let the

tangent at A meet them in L, L . Take AM equal to ~. Let

FO be any normal and FN the ordinate.

Then, by hypothesis, CA -^ AM,

and CA : AM = CA' :
;

[Prop. 28]

.•. CA If^AL;

hence the angle CLA is not greater than ACL or ACL'.

But CZ^ > PGiV

;

[Prop. 95]

.. /.ACL'>ZFGN.

It follows that the angle ACL' together with the angle

adjacent to FON will be greater than two right angles.

Therefore FO will not meet CL towai'ds L' and therefore

will not meet the branch of the hyperbola again.

(b) Suppose C^ > ^il/ or ^ . Then

LA .AM>LA .AC.

Take a point on AL such that

KA -.AM^LA : AC,
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Join CK, and produce it to meet the hvperbola in P, and

let PN be the ordinate, and PG the normal, at P.

PG is then the minimum from G to the curve, and

NG .CN=pa:AA'

=AM:Aa
Also CN : PN=AC : AK.hy similar triangles.

Therefore, ex aequali, NG : PN = AM : A

= CA : AL, from above.

Hence ^ACL'=Z ACL = PGN;

.•. PG, CL' are parallel and do not meet.

But the normals at points between A and make with the

axis angles less than the angle PGN, and normals at points

beyond make with the axis angles greater than PGN.

Therefore normals at points between A and will not meet

the asymptote CL', or the branch of the hyperbola, again ; but

normals bevond meet the branch again.
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Proposition 97.

[V. 44, 45, 46, 47, 48.]

If Pfi^,^ he nornuds at points on one side of the cucis of

a conic meeting in 0, and if he joined to any othei' point on

the conic (it heincf further supposed in the case of the ellipse

that (ill three lines OP^, OP^, OP cut the same half of the aads),

then

y 1 ) OP cannot he a normal to the curve

;

(2) if OP meet the axis in K, and PG he the normal

at P,

AO <AK when is intermediate between P, and P^, •

and AG> AK when does not lie hetiueen P^ and P^.

I. First let the conic be a parabola.

^,•
Let P^P^ meet the axis in T, and draw the ordinatcs P,-A^,,
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Draw OM perpendicular to the axis, and measure MH
towards the vertex equal to ^

.

Then MH = A\G„

and N^H=G,M.

Therefore MH : HN.^ =, 4- G^M

= PjiVjj : MO, by similar triangles.

Therefore HM. =,^.)
Similarly HM.M0 =^^.] ^ ^'

Therefore \ :\ = P^N^ : P^N^

whence N^h\ : HN^ =\^ : TN^
;

and TN^ = HNJ ^ ^"

If be a variable point and PN the ordinate*, Ave have

now three cases

:

TN<TN^ or HiY^ (1),

TN>TN^ or ^^Y,, but < TN^ or HN^ (2),

TN>TN^ or HN^ (3).

Thus, denoting the several cases by the numbers (1), (2),

(3i, we have
N,N'.TN>N^N:HN^ (1),

<N,N:HN, (2),

<N,N:HN, (3),

and we derive respectively

TN^:TN>HN:HN^_ (1),

<HN'.HN.^ (2),

>HN:HN^ (3).

* It will be obser\-ed that there are three sets of points P, N, K, in the

figure denoted by the same letters. This is done in order to exhibit the three

different cases ; and it is only necessary to bear in mind that attention must
be confined to one at a time as indicated in the course of the proof.

H. c. 11
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If NP meet P^P^ in F, we have, by similar triangles,

P^N, : FX>HN : HN, (1) and (8),

<HN.HN, (2).

But in (1) and (3) FN > PN, and in (2) FN < PN
Therefore, a fortiori in all the cases,^ : PN>HN : HN, (1) and (3),

<HN:HN, (2).

Thus P^N^.N,H>PN.NH (l)and (3),

<PN.NH (2).

Hence HM. MO > PN.NH... (!) and (S)) .,..•,
<PN.NH ^^^\,hy(A)aho.e.

Therefore MO .PN>NH:HM (1) and (3),

<NH:HM (2)

and MO'.PN = MK:NK.
Therefore MK -. NK>NH : HM (1 ) and (3),

<NH:HM (2),

whence we obtain MN : NK >MN : (1) and (3),

<MN:HM (2),

80 that HM or NG >NK in (1) and (3),

and <NK in (2).

Thus the proposition is proved.

II. Let the conic be a hyperbola or an ellipse.

Let the normals at Pj , P.^ meet at 0, and draw OM perpen-

dicular to the axis. Divide CM in (internally for the

hyperbola and externally for the ellipse) so that

CH : HM = AA' : pa [or CA' : CB'],

and let OM be similarly divided at L. Draw HVR parallel

to OM and LVE, Oi?P parallel to CM.
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Suppose P..Pi produced to meet EL in T, and let FiN^,

P.N. meet it in U„ U..

Take any other point on the curve. Join OP meeting
the axes in K, k, and let meet P^P. in Q and EL in U.

11—2
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Now OiY. : N,G, =' .p„ = GH: HM.

Therefore, componendo for the hyperbohx and dividendo for

the ellipse,

CM:GH=GG.:GN^
= GG,~GM:GN,-GH
= MG,'.HN,
= MG,: VU, (A).

Next

FE : EG=AA' : pa = GN^ : .,,
so that FG:GE = GG, : NM,.

Thus FG:N,U,==GG, : N,G,

= Gg. : P.>N.., by similar triangles,

= FG±Gg,'.N.JJ,±PJ(,

= FgS':PJJ, ! (B).

Again

FG. GM : EG. GH = {FG : C^) . {GM : CiO

= {Fg,:PM.;).{MG,: VU,),

from (A) and (B),

and FG . GM = Fg, . MG, ,
'.• Fg,: GM= FG : il/(?o

.

.•. EG.GH = P,U,.U,V,

or GE.EV=PM,.U,V
= PJJi. Ui V, in like manner

;

.•. L\V: U,V=PM,:P,U,
= TU., : TUi, by similar triangles,

whence U,U, : U,V= U,U,: TU,
;

.:TU,= VU,l .^.

and TU,= VUj ^ ^'

Now suppose (1) that AN < AN'^;

then t/^,F > TU, from (C) above
;

.•. UU,:TU>UU,:U,V;
hence ^: 7 > i7F : /7,F;

••• 2\U^.QU>UV: UJ,
by similar triangles.

Therefore PJ\^. UJ>QU. UV,

\ a fortiori >PU.UV,
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But 1\^\ .1\= CE . V, iVuin above•,

= LO.OR, •.• CE.LO = uR.EV;
.•. LO.OR>FU.UV.

Suppose (2) that yliY>^iY, but < xiN^.

Then TU^ < UV;

.•. U^U:Tl\>l\U: UV,

whence TU:TU^> U^V : UV

;

QU:P^U^>U^V: UV,

by similar triangles.

Therefore {a fortiori) PU . UV >P^U^.UJ
>LO.OR

Lastly (3) let AN be > AN,.

Then TU^ > UV;

.•. U^U:TU^< U,U: UV,

whence TU:TU^< UJ: UV,

or QU:P^U^< U^V : UV;

and afortioH >PU . UV\

.•. LO.uR>PU.UV,
as in (1) above.

Thus we have for cases (1) and (3)

LO.OR>PU.UV,
and for (2) LO.OR<PU. UV

That is, we shall have, supposing the upper symbol to refer

to (1) and (3) and the lower to (2),

LO-.PU^ UV:OR,

i.e. LS-.SU^ UV:LV;

.•. LU: US^LU-.LV,

and LV^US.
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It follows that

FO'.LV^FO: SU, or Fk : PU,

or CM:MH^Fk:PU',

.•. FC: CE^Fk:PU

^FkTFC:PU+CE

J Ck :

J CK : i\r/f

.

Therefore, componendo or dividendo,

FE : jB:6' ^ CiV^ : iVZ,

or CN : NK^FE: EC,

i.e. 2^^':j)„.

But (7i\r:i\r(; = yl^':^^;

.•. NK^NG;
i.e, when is not between P^ and P^ NK< NG, and when
lies between P, and P.^, NK>NG, whence the proposition

follows.

Cor. 1. In the particular case of a quadrant of an ellipse

where P, coincides \vith B, i.e. Avhere coincides with g^,

it follows that no other normal besides P,f/i, Bg^ can be drawn

through g^ to the quadrant, and, if be a point between A and

P, , while Pg^ meets the axis in K, NG > NK.

But if lie between P, and P, iVG < NK.

[This is separately proved by ApoUonius from the property

in Prop. 95 (8).]

C(JU. 2. 77<?-ee normals at i^oints on one quadrant of an
ellipse cannot meet at one point.

This follows at once from the preceding propositions.

{
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Cor. 3. Four 7ioi'mals at points on one semi-ellipse bounded

by the major axis cannot meet at one point.

For, if four such normals cut the major axis and meet in one

point, the centre must (1) separate one normal from the three

others, or (2) must separate two from the other two, or (3)

must lie on one of them.

In cases (1) and (3) a contradiction of the preceding

proposition is involved, and in case (2) a contradiction of

Prop. 90 (3) which requires two points of intersection, one on

each side of the minor axis.

Proposition 98.

[V. 49, 50.]

In amj conic, if be any point on the axis such that AM is

not greater than half the latus rectum, and if be any point on

the perpendicular to the axis through M, then no straight

line drawn to any point on the curve on the side of the axis

opposite to and meeting the axis between A and can

be a normal.

Let OP be draAvn to the curve meeting the axis in K, and

let PN be the ordinate at P.

We have in the parabola, since AM'i^^

NM<^, i.e.<NG.

Therefore, a fortiori, < NG.

For the hyperbola and ellipse AA' : jh is not greater

than CA : AM,

and CN:NM>CA :AM;

.•. CN : NM > AA' : pa

>CN:NG;
.•. NM<NG,

and a fortiori \: < NG.

Therefore OP is not a normal.



PROPOSITIOXS LEADING IMMEDIATELY TO THE

DETERMINATION OF THE VOLUTE.

Proposition 99.

[V. 51, 52.]

If AM measured along the axis he greater than ^ {but in

the case of the ellipse less than AC), and if MO be drawn

2)erj)endicular to the a^is, then a certain length [?/] can be assigned

such that

(a) if OM > y, no normal can be drawn through which

cuts the axis ; hut, if OP be any straight line draiun to the curve

cutting the a.ds in K, NK< NG, where is the ordinate and

PG the normal at ;

(b) if OM=y, only one normal can he so drawn through

0, and, if OP he any other straight line drawn to the curve and
meeting the axis in K, < NG, as before

;

(c) if OM < y, two normals can be so draiun through 0,

and, if OP he any other straight line drawn to the curve, NK is

less or greater than NG according as OP is not, or is, inter-

mediate between the two iiornials.

I. Suppose the conic is a parabola.

Measure MH towards t

at .V, so tlmt //.V, = 2.Y,.4

Measure MH towards the vertex equal to §, and divideAH
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Take a length y such that

where P^N^ is the ordinate passing through iV,.

(a) Suppose OM > y.

160

Join QP^ meeting the axis in K^ .

Then y.P^N^ = N^H.HM\
.•. OM:P^N^>N^H:HM,

or MK^ : K^N^ >N^H: HM
;

henee il/iV, : iY,/i^, > il/i\r^ : HM,

so that iVjii, < HM,

i.e. iV^A<f•

Therefore OP^ is not a normal, and N^K^ <N^G^.

Next let be any other point. Join OP meeting the axis

in K, and let the ordinate PN meet the tangent at P, in Q.
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Then, if^iV< AN^ , avc have,

since \=2\ =\,\>;
thus TN^:TN>HN.HN^,
or P^N^: QN>HN:HN^,
and a fortiori

or P^N^.NJI>PN.NH',
But

THE COyiCS OF APOLLONIUS

If AN>AN^,
NJ>NH;

.'. N^N:NH>N^N:NJ,
whence

HN^ \HN>TN: TN^

> QN : P,N^

>PN:P^N^,
a fortiori

.'. P^N^.N^H>PN.NH.
OM . > P^N^ . N^H, by hypothesis

;

OM.MH>PN.NH,
or OM.PN>NH.HM,
i.c. MK:KN>NH:HM,
by similar triangles.

Therefore, componendo, MN : NK > MN : HM,

whence NK < HM ov ^

.

Therefore OP is not a normal, and < NG.

(b) Suppose OM = y, and have in this case

MN. '.NK=MN, .HM,

N.G.or N^K^ =HM=
^

and P,0 is a normal.

If is any other point, we have, as before,

P,N^.N^H>PN.NH,
and PjiYj . N^JI is in this case equal to OM . MH.

Therefore OM . MH > PN . NH,

and it follows as before that OP is not normal, and NK < NG.

(c) Lastly, if J/ < 7/,

OM:P^N^<N^H:HM,

or OM.MH<P^N^.N,H.
Let N^li be measured along iV,P, so that

OM.MH=RN,.N,H



PROPOSITIONS DETERMINING THE EVOLVTE. 171

Thus R lies within the curve.

Let HL be drawn perpendicular to the axis, and with AH,
HL as asymptotes draw a hyperbola passing through R.

This hyperbola will therefore cut the parabola in two points,

say P, P'.

Now, by the property of the hyperbola,

PN.NH= RN^.N^H
= OM . MH, from above

;

.•. OM:PN = NH '.HM,

or MK : KN = NH : HM,

and, componendo, MN : NK = MN : HM

;

.•. NK=HM=^^ = NCr,

and PO is normal.

Similarly P'O is normal.

Thus we have two normals meeting in 0, and the rest of

the proposition follows from Prop. 97.

[It is clear that in the second case where OM=y, is the

intersection of two consecutive normals, i.e. is the centre of

curvature at the point P^.

If then x, y be the coordinates of 0, so that AM=x,
and if 4a=^j„,

HM=2a,

N^H = l{x-1a\

AN^ = ^{x- 2a).

Also y':P^N^'=N^H':HM\

or y':^a.AN^ = N^H' :4a';

.•. af = AN,.N^H'

= ^\{x-2a)\

or 27(/ i/' = 4 (.r - 2(0',

which is the Cartesian e([uation of the evolute of a parabola.]
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II. Lol the curve be a HYPERBOLA or lui ELLIPSE.

Wo have AM > -^^ , so that CA : AxM< AA' : jh-

Q
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Take two mean proportionals OiV,, CI between CA and

CH*, and let P^N^ be the ordinate through iV,.

Take a point L on OM (in the hyperbola) or on OM
produced (in the ellipse) such that OL : LM = AA' : pa. Draw
LVE, OR both parallel to the axis, and CE, HVR both

perpendicular to the axis. Let the tangent at P^ meet the axis

in and EL in W, and let P^N^ meet EL in U^. Join 0P„
meeting the axis in K^.

Let y be such a length that

y : P^N^ = (CM : MH) . {HN^ : iV.C).

(a) Suppose first that OM > y

;

.•. OM'.P^N^>y:P^N^.
But

OM : P,i\^, = (Oil/ : ML) . (il/X : P^N^)

= {OM:ML).{N^U^:P^N^),
and

y : PjiY, = (Ci¥ : il/^) .{\ : i\^,C')

= (Oi¥:i/X).(iyiV^j:i\'',C);

.•. N^U^:P,N^>HA\:Nfi (1),

or P^N^.N^H<CN^.N^U^.

Adding or subtracting the rectangle U^N^ . N^H, we have

P^L\.U,V<CH.HV

<LO.OR, •.• CH : HM=OL : LM.

But, for a normal at Pj, we must have [from the proof of

Prop. 97]

P^U,.UJ=LO.OR.

Therefore P^O is not a normal, and [as in the proof of

Prop. 97]

* For ApoUonius' method of finding two mean proportionals see the Intro-

duction.
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Next let be any other point than P^, and let U, N,
have the same relation to that U^,N^, K^ have to P,.

Also, since U^N^ •,,> HN^ : N<0 by (1) above, let w,

be taken on i/',iV, such that

^\: i\\P^ = HN, : Nfi (2),

and draw wuu^v parallel to WUU^V.

Now CN^ . CT = CA\ so that GN^ : CA = CA : CT

;

.•. CT is a third proportional to CiV,, CA.

But CX^ is a third proportional to CH, CI,

CA\ :CA = CI : CN^ = CH : CI;

.•. CH : CN^ = CN^ : CT

= CH-^ CN^ : 6'iY, ~ CT
= HN^ : N^T.

CH : CN^ = P^u^ : P^iV^,

since n^N^ : i\'',P, = HN^ : iV^C, from (2) above

;

and

And

thus<^,
wu < u^v,

and WjW : uw > u^u : u^v,

whence u^w : uw > nv : n^v.

.'. P,«, : Qu > uv : u^v

(where PiV meets, in Q);

thus PjWj . WjV > Qi< . riv

> Pu . uv,

afortioH.
But, since

HN,'.Nfi=u^N^:P^N^,

P,N^.N,H = CN^.N^u^,

and, adding or subtracting the

rectangle i<,iV, . iV, ff,

\ :\ = P^u^ : P^N^

= u^w .A\T;

u^w = HN^ = u^v.

If AN>AN^,

imi^^> uv
;

.". uu^ : uv > uu^ : wu^,

whence

w?i, : vu > wiL : wu^

> Qi(' ". ;

thus P,u^.u^v>Qu.uv

> Pu . uv,

a fortiori,

and the proof proceeds as in

the first column, leading to

the same result,

PU.UV<LO.OR,
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P^u^.u^v = CH.Hv;

.•. CH.Hv>Pu.uv,

and, adding or subtracting the

rectangle uU. UV,

PU.UV<CH.Hv + uU.UV
for the hyperbola,

or

PU.UV<CH.Hv-uU.UV
for the ellipse,

.•. in either case, a fortiori,

PU.UV<CH.HV,
or PU.UVkLO.OR

Therefore, as in the proof of Prop. 97, PO is not a normal,

hx\tNK<NCT.

(b) Next suppose OM = y, so that Oil/: P,JS\ = y : P,^\,

and obtain in this case

^^:^^ =\ :\0:
.•. CN^.N^U^ = P^A\.N^H.

Adding or subtracting U^N^.N^H, Ave have

P^U^. U,V=CH.HV=LO.OR,

and this [Prop. 97] is the property of the normal at P,.

Therefore one normal can be drawn from 0.

If be any other point on the curve, it will be shown as

before that U^W= U^V, because in this case the lines WV, wv

coincide ; also

UU, : UW> UU, : U,V in the case where UW< U^V,

and

UU^ : UV> UU, -.U^W in the case where U,W > UV,

whence, exactly as before, we derive that

P,U,.U,V>QU.UV
>PU. UV, afortion,

and thence that PU . UV<LO.OR
Therefore PO is not a normal, and NK < -tYG.
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(c) Lastly, if OM < y, wc shall have in this case
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and we shall derive

LO.uR<PJJ^.UJ.

Let S be taken on 1\\ such that LO .OR = SU^. i7, V, and

through ' describe a hyperbola whose asymptotes are VW and

F// produced. This hyperbola will therefore meet the conic in

two points P, P', and by the property of the hyperbola

PU. UV=P'U'. U'V=SU^.UJ^LU.OR,
so that PO, P'O are both normals.

The rest of the proposition follows at once from Prop. 97.

[It is clear that in case (6) is the point of intersection

of two consecutive normals, or the centre of the circle of

curvature at P.

To find the Cartesian equation of the evolute we have

X = CM,
ICHa^ GH _ (1).

Also
_j^_C^HN^

GN ^ N"^
and ^ +^'';• =1 (3),

where the upper sign refers to the hyperbola.

And, lastly, a : GN, = GN^: GI =GI :CH (4).

From (4) GN;' = a.GI,

, ,,„ a.GH
and 6'iV, = ^ ;

.•. GA\' = a\CH (.5)., from (2),

jl_^GAI^ HN,
P^N^ MR- Nfi

ft* + » iV
'

=^.^ .by(3).

H. C. 1 2
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6>
Thus P,i\7=-^

6'

whence P,N; = b\l•.,
^ ^^,)

(6).

ax
But, from (1), CH =

, , ,« .
^ a ± b

Therefore, by (5). CN^' = -^^—yt ,

whence C ;' = a' . [-^^^ (7).

Thus, from (6) and (7), by the aid of (3),

ax \i ( by y^
a*±6V W±bV '

{ax)i + {byf = {a' ± 6^)1]

Proposition lOO.

[V. 53, 54.]

If be a point on the minor axis of an ellipse, then

(a) if OB : BG <^ AA' : pa, and be any point on either of

the quadrants BA, BA' except the point B, and if OP meet the

major axis in K,

PO cannot be a normal, but NK < NG
;

(6) if OB : BC < A A' : pa, one normal only besides OB can

be drawn to either of the tivo quadrants as OP, and, if P' be any

other point, N'K' is less or greater than N'G' according as P'

is furtherfrom, or nearer to, the minor axis than P.

[This proposition follows at once as a particular case of the

preceding, but Apollonius proves it separately thus.]

(a) We have OB : BC < On: jiC

;

.•. On : nC, or CN:NK> AA' : pa,

whence CN : NK > ON : NG,

and NK<NG.
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(b) Suppose now that

0'B:BC<AA':pa.

Take a point on O'B such that

O'n : nC = AA' -.pa-

179
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Proposition lOl.

[V. 5o, 5G, 57.]

If is any point beloiv the axis A A' of an ellipse, and

AM > AC {where is the foot of the perpendicular from

on the aids), then one normal to the ellipse can always be drawn

tlirough cutting the a:vis between A and C, but never more than

one such normal.

Produce OM to L and CM to so that

OL : LM= CH : HM= AA' : p^,

and draw LI, IH parallel and perpendicular to the axis

respectively. Then with IL, I as asymptotes describe a

[rectangular] hyperbola passing through 0.
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This will meet the ellipse in some point P,. For, drawing

AD, the tangent at A, to meet IL produced in I), we have

AH:HM>CH:HM
> AA' : j)a

> OL : LM:

.•. AH.LM>OL.HM,

or AD.DI>UL.LL

Thus, from the property of the hyperbola, it must meet xiD

between A and D, and therefore must meet the ellipse in some

point P,.

Produce OP^ both ways to meet the asymptotes in R, R',

and draw R'E perpendicular to the axis.

Therefore OR=P^R', and consequently EN^ = iMH.

Now AA' :pa = OL:LM

= ME : EK^, by similar triangles.

Also AA':pa = CH:HM;

.•. AA' : Pa = -1/^ - CH : EK^ - MH

since EN^ = MH.

Therefore N^K^ = N^G^, and P^O is a normal.

Let be any other point such that OP meets AC in K.

Produce BC to meet OP, in F, and join FP, meeting the

axis in K'.

Then, since two normals [at P,, B] meet in F, FP is not

a normal, but NK' > NG. Therefore, fortiori, NK > NG.

And, if is between A and P„ < NG. [Prop. 97, Cor. 1.]
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Proposition 102.

[V. 58, 59, GO, 61.]

If be any point outside a conic, but not on the ct-xis iuhose

extremity is A, we can draw a normal to the curve through 0.

For the parabola we have only to measure MH in the

direction of the axis produced outside the curve, and of length

equal to ^ , to draw HR perpendicular to the axis on the same

side as 0, and, with HR, HA as asymptotes, to describe a

[rectangular] hyperbola through 0. This will meet the curve

in a point P, and, if OP be joined and produced to meet
the axis in and HR in R, we have at once = NK.

Therefore

and PK is a normal.

NK^P^.

In the hyperbola or ellipse take on CM or on CM
])(1(•.•(1, and L on OM or OM produced, so that

67/ :HM=OL:LM=AA' Pa-
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Then draw HIR perpendicular to the axis, and ILW
through L parallel to the axis.
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Then OP will be a normal.

For we have (1) : HN = MK : LR',

since OR = PR', and therefore IL = UR'.

Therefore MK : = MO : OL, by similar triangles,

= MC : CH,

•.• CH : HM = OL : LM.

Therefore, alternately,

MK:MC=NH:HG (A).

In case (2) OL : LM = CH : HM,

or OL.LI=GH.HI,

[so that 0, C are on opposite branches of the same rectangular

hyperbola].

Therefore PU : OL = LI : lU,

or, by similar triangles,

UR'.R'L^LI-.IU,

whence R'L =IU=HN]
.•. MK.HN=MK'.R'L

= MO : OL

= MG : GH,

and MK : MG = NH : iTC, as before (A).

Thus, in either case, we derive

GK : GM=GN:GH,

and hence, alternately,

GN.GK = GH:GM,

so that GN:NK=GH: HM
= AA':pa\

.•. NK = NG,

and oy is the normal at P.

I
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(3) For the hyperbola, in the particuhir case where

coincides with C, or is on the conjugate axis, wc need only

divide OC in L, so that

OL : LC=AA':pa,

and then diaw LP parallel to AA' to meet the hyperbola in 1\

is then the foot of the normal through 0, for

AA' .pa=uL: LC

= OP :

= CN.NK,

and NK^NCr.

[The particular case is that in which the hyperbola used

in the construction reduces to two straight lines.]

Proposition 103.

[V. 62, 63.]

If he an internal point, we can draw through (J a normal

to the conic.
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The construction and proof proceed as in the preceding

proposition, mutatis mutandis.

The case of the parabola is obvious ; and for the hi/perhola

or ellipse

MK.HN=OM: OL

= CM : CH.

.•. CM : CH = CM ± MK : CH ± HN
= CK:CN•

.•. NK:CN = HM.CH
= 2^a :AA'\

.•. NK=NG,

and PO is a normal.



OTHER PROPOSITIONS RESPECTING MAXIMA
AND MINIxMA.

Proposition 104.

[V. 64, (J5, 66, 67.]

If be a jjoint below the axis of any conic such that either

no normal, or only one normal, can be drawn to the curve through

which cuts the aa-is {betiueen A and C in the case of the ellipse),

then OA is the least of the lines OP cutting the axis, and that

which is nearer to OA is less than that which is more remote.

If OM be perpendicular to the axis, we must have

AM>^,

and also OM must be either greater than or equal to y, where

(a) in the case of the parabola

ij.P^N^ = N^H:HM:

(6) in the case of the hyperbola or ellipse

with the notation of Prop. 99.

In the case where OM > y, we have proved in Prop. 99 for

all three curves that, for any straight line OP drawn from to

the curve and cutting the axis in K, NK< NG
;

but, in the case where OM = y, < NG for any point

between A and P, except P, itself, for which N^K^ = N^G^.
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Also for any point more remote from A than P^ it is still

true that < NG.

I. Consider now the ease of any of the three conies where,

for all points P, NK < NG.

Let be any point other than A. Draw the tangents

A F, PT. Then the angle OA is obtuse. Therefore the per-

pendicular at A to AO, as AL, falls within the curve. Also,

since < NG, and PG is perpendicular to PT, the

angle OPT is acute.

(1) Suppose, if possible, UP= OA.

With OP as radius and as centre describe a circle.

Since the angle OPT is acute, this circle will cut the tangent PT,

but AL will lie wholly without it. It follows that the circle

must cut the conic in some intermediate point as R. li RU
be the tangent to the conic at R, the angle ORU is acute.

Therefore RU must meet the circle. But it falls wholly

outside it : which is absurd.

Therefore OP is not equal to OA.

(2) Suppose, if possible, OP < OA.
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In this case the circle drawn with as centre and UP
as radius must cut AM in some point, D. And an absurdity is

proved in the same manner as before.

Therefore OP is neither etjual to (JA nor loss than OA,
i.e. ()A < OP.

It remains to be proved that, if P' be a point beyond P,

OP < OP'.

If the tangent TP be produced to T', the angle OPT' is

obtuse because the angle OPT is acute. Therefore the perpen-

dicular from to OP, viz. PE, ialls within the curve, and

the same proof as was used for A, will apply to P, P'.

Therefore OA < OP, OP < OP', &c.

II. Where only one normal, 0P^, cutting the axis can be

drawn from 0, the above proof applies to all points between A
and P, (excluding P, itself) and also applies to the comparison

between tAvo points each of which is more remote from A
than P.
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It only remains therefore to prove that

(a) OP^ > any straight line OP between 0 and OP^,

) OP^ < any straight line OP' beyond OP^.

(a) Suppose first, if possible, that OP = OP^, and let Q be

any point between them, so that, by the preceding proof,

OQ > OP. Measure along OQ a length Oq such that Oq is

greater than OP, and less than OQ. With as centre and Oq as

radius describe a circle meeting OP^ produced in p^. This circle

must then meet the conic in an intermediate point R.

Thus, by the preceding proof, OQ is less than OR, and there-

fore is less than Oq : which is absurd.

Therefore OP is not equal to OP^.

Again suppose, if possible, that OP > OP^. Then, by taking

on OP, a length 0;j, greater than OP^ and less than OP, an

absurdity is proved in the same manner.

Therefore, since OP is neither equal to nor gi-eater than OP^,

OP<OP^.

(b) If OP' lies more remote from 0 than 07-*,, an

exactly similar proof will show that OP^ < OP'.

Thus the proposition is completely established.

Proposition 105. (Lemma.)

[V. 68, 69, 70, 71.]

If two tangents at points Q, Q' on one side of the aads of a
conic meet in T, and if Q be nearer to the axis than Q', then

TQ < TQ'.

The propcjsition is proved at once for the parabola and
hyperbola and for the case where Q, Q' are on one quadrant of

an ellipse: for the angle TVQ' is greater than the angle TVQ,
and QV=Vq.
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Therefore the base TQ is less than the base TQ'.

In the case where Q, Q' are on different quadrants of an

ellipse, produce the ordinate Q'N' to meet the ellipse again

in q. Join q'C and produce it to meet the ellipse in R. Then
Q'N' = N'q', and q'G= CR, so that Q'R is parallel to the axis.

Let RM be the ordinate of R.

NOAV

.•. [Prop. 86, Cor.]

and, as before.

RM>QN;
CQ > CR,

>0Q';

.•. zGVQ>zGVQ'

TQ<TQ'.

Proposition 106.

[V. 72.]

If from a point below the axis of a jxirabola or hyperbola

it is possible to draw two normals OP^, OP^ cutting the axis

(P, being nearer to the vertex A than P^), and if further

be any othei• point on the carve and UP be joined, then
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(1) if lies behueen A and F^, OP^ is the greatest of all

the lines OP, and that which is nearer to OP^ on each side is

greater than that which is more remote;

(2) if lies between P, and P^, or beyond P.^, OP^ is the

least of all the lines OP, and the nearer to OP^ is less than the

more remote.

By Prop. 99, if is between and P,, OP is not a normal,

but NK < NG. Therefore, by the same proof as that employed

in Prop. 104, we find that OP increases continually as moves

from A towards P,.

We have therefore to prove that OP diminishes continually

as moves from P, to Pj. Let be any point between

P, and Pj, and let the tangents at Pj, meet in T. Join OT.

Then, by Prop. 105, , < TP.

Also ,» + OP^' > TP' + 0P\

since AK > AG, and consequently the angle OPT is obtuse.

Therefore OP < OP^.

Similarly it can be proved that, if P' is a point between

andP,, OP'kOP.

That OP increa.ses continually as moves from P, further

away from A and P^ is proved by the method of Prop. 104.

Thus the proposition is established.
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Proposition 1 7 .

[V. 73.]

If be a point below the major axis of an ellipse sucJi that

it is possible to draio through one normal only to the ivhole of

the semi-ellipse ABA', then, ifOP^ be that normal and P, is on

the quadrant AB, OP^ nill he the greatest of all the straight

lines drawn from to the semi-ellipse, and that which is nearer

to OP^ luill be greater than that which is more remote. Also

OA' will be the least of all the straight lines drawn from to

the semi-ellipse.

It follows from Props. 99 and 101 thcat, if OM be per-

pendicular to the axis, must lie between C and A', and that

OAI must be greater than the length y determined as in

Prop. 99.

Thus for all points between A' and B, since is nearer

to A' than G is, it is proved by the method of Prop. 104• that

OA' is the least of all such lines OP, and OP increases con-

tinually as passes from A' to B.

For any point P' between and P, we use the method of

Prop. 106, drawing the tangents at P' and B, meeting in T.

u. c. 13
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Thus we derive at once that OB < 0P\ and similarly that OP'

increases continually as P' passes from to P^.

For the part of the curve between P, and A we employ the

method of reductio ad absurdum used in the second part of

Prop. 104.

Proposition 108.

[V. 74.]

If be a point below the major ao^is of an ellipse such that

two normals only can be draiun through it to the whole semi-

ellipse ABA', then that normal, OP^, which cuts the minor a^is

is the greatest of all straight lines from to the semi-ellipse,

and that which is nearer to it is greater than that which is more

remote. Also OA, joining to the nearer vertex A, is the least

of all such straight lines.

It follows from Prop. 99 that, if be nearer to A than to

A', then P,, the point at which is the centre of curvature,

is on the quadrant AB, and that OP^ is one of the only two

possible normals, Avhile P^, the extremity of the other, is on the

quadrant A' ; also 0M=y determined as in Prop. 99.

In this case, since only one normal can be drawn to the

quadrant AB, we prove that OP
increa.ses as moves from A to

P, by the method of Prop. 104, as

also that OP increases as moves

from P, to B.

That OP increases as moves

from to P^, and diminishes as

it passes from P^ to A', is established by the method employed

in the last proposition.
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Proposition 109.

[V. 75, 76, 77.]

//' he a point below the major axis of an ellipse such that

three normals can be draxun to the semi-ellipse ABA' at points

Pj, Pj, P3, tuhere P,, P^ are on the quadrant AB and P^ on the

quadrant BA', then (if P^ be nearest to the vertex A),

(1) OP^is the greatest of all lines drawn from to points

on the semi-ellipse between A' and P^, and the nearer to OP^ on

either side is greater than the more remote

;

(2) OP^ is the greatest of all linesfrom to points on the

semi-ellipse from A to P^, and the nearer to OP^ on either side

is greater than the more remote,

(3) of the two majdma, OP3 > OP^.

Part (2) of this proposition is established by the method of

Prop. 106.
p^

Part (1) is proved by the

method of Prop. 107.

It remains to prove (3). a|

We have

GN^ •.N^G^ = AA' : p^ = CN^ :^ ;

< MN^ : ^, a fortiori,

whence MG, : , < MG, : Nfi, ;

and, by similar triangles,

OM.P^N^<OM:P,N^,

or P,N^ > P,N,.

If then Pjj^ be parallel to the axis, meeting the curve in

jt), , we have at once, on producing OM to R,

P,R>PA
so that Op, > OP,

;

.•. a fortiori 0P^> OP,.

13—2
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As particular cases of the foregoing propositions we have

(1) If be on the minor axis, and no normal except OB
can be drawn to the ellipse, OB is greater than any other

straight line ft-om to the curve, and the nearer to it is greater

than the more remote.

(2) If be on the minor axis, and one normal (besides OB)

can be drawn to either quadrant as OP,, then OP^ is the

greatest of all straight lines from to the curve, and the nearer

to it is greater than the more remote.



EQUAL AND SIMILAR CONICS.

Definitions.

1. Conic sections are said to be equal Avhen one can be

applied to the other in such a way that they everywhere

coincide and nowhere cut one another. When this is not the

case they are unequal.

2. Conies are said to be similar if, the same number of

ordinates being drawn to the axis at proportional distances

from the vertex, all the ordinates are respectively proportional

to the corresponding abscissae. Otherwise they are dissimilar.

3. The straight line subtending a segment of a circle or a

conic is called the base of the segment.

4. The diameter of the segment is the straight line which

bisects all chords in it parallel to the base, and the point where

the diameter meets the segment is the vertex of the segment.

5. Equal segments are such that one can be applied to the

other in such a way that they everywhere coincide and nowhere

cut one another. Otherwise they are unequal.

6. Segments arc similar in which the angles between the

respective bases and diameters are equal, and in which, parallels

to the base being drawn from points on each segment to meet

the diameter at points proportionally distant from the vertex,

each parallel is respectively proportional to the corresponding

abscissa in each.



198 THE COXICS OF APOLLONIUS.

Proposition llO.

[VI. 1, 2.]

(1) In two parabolas, if the ordinates to a diameter in each

are inclined to the respective diameters at equal angles, and if

the corresponding parameters are equal, the ttuo parabolas are

equal.

(2) If the ordinates to a diameter in each of two hyperbolas

or two ellipses are equally inclined to the respective diameters,

and if the diameters as well as the corresponding parameters are

equal respectively, the two conies are equal, and conversely.

This proposition is at once established by means of the

fundamental properties

( 1 ) QV' = PL.PV for the parabola, and

(2) QV* = PV.VR for the hyperbola or ellipse

proved in Props. 1—3.

Proposition 111.

[VI. 3.]

Since an ellipse is limited, tvhile a parabola and a hyperbola

proceed to infinity, an ellipse cannot be equal to either of the

other curves. Also a parabola cannot be equal to a hyperbola.

For, if a parabola be equal to a hyperbola, they can be

applied to one another so as to coincide throughout. If then

eijual abscissae AN, AN' be taken along the axes in each we
have for the parabola

AN : AN' = PN' : P'N'\

Therefore the same holds for the hyperbola : which is im-

possible, because

PN' : P'N" = AN.A'N : AN' . A'N'.

Therefore a parabola and hyperbola cannot be equal.

[Here follow six easy propositions, chiefly depending upon

the symmetrical form of a conic, which need not be re-

produced.]
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Proposition 112.

[VI. 11, 12, 13.]

(1) All parabolas are similar.

(2) Hyperbolas, or ellipses, are similar to one another when

the "figure" on a diameter of one is similar to the "figure" on a

diameter of the other and the ordinates to the diameters in each

make equal angles ivith the diameters respectively.

(1) The result is derived at once from the property

FN'=Pa.AK
(2) Suppose the diameters to be axes in the first place

(conjugate axes for hyperbolas, and both major or both minor

axes for ellipses) so that the ordinates are at right angles to the

diameters in both.

Then the ratio pa : AA' is the same in both curves. There-

fore, using capital letters for one conic and small letters for the

other, and making AN : an equal to AA' : aa', we have at the

same time

PN^ : AN. A' =pn' : an.na'.

But AN. A' : AN^ = an . na' : /^^

because A'N : AN= a'n : an
;

.•. PN'':AN'=pn':an\

or PN : AN = pn : an,

and the condition of similarity is satisfied (Def. 2).

Again, let', be diameters in two hyperbolas or two

ellipses, such that the corresponding ordinates make equal

angles with the diameters, and the ratios of each diameter to

its parameter are equal.

Draw tangents at P, meeting the axes in T, t respectively.

Then the angles CPT, cpt are equal. Draw AH, ah perpen-

dicular to the axes and meeting CP, cp in H, h ; and on GH,

ch as diameters describe circles, Avhich therefore pass respectively

through A, a. Draw QAR, qar through A, a parallel respec-

tively to the tangents at P, and meeting the circles just

described in R, r.
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Let V, V be the middle points of AQ, aq, so that V, lie on

CP, cp respectively.

Then, since the "figures" on PP'
,
]' are similar,

AV':CV.VH= av' : cv . vh, [ Prop. 1 4]

or AV':AV.VR = av':av.vr,

whence AV : VR = av : vr {a),

and, since the angle A VC is etpial to the angle avc, it follows

that the angles at C, c arc etjual.
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[For, if K, k be the centres uf the circles, and /, i the middle

points 0 AR, ar, we derive from (a)

VA : AI = va : ai
;

and, since ZKVI= kvi,

the triangles KVI, kvi are similar.

Therefore, since VI, vi are divided at -i4, in the same ratio

the triangles KVA, kva are similar;

.•. ZAKV= Zakv:
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hence the halves of these angles, or of their supplements, are

equal, or

KGA = kca.]

Therefore, since the angles at F, j) are also equal, the

triangles CFT, cpt are similar.

Draw PiV,p/i perpendicular to the axes, and it will follow

that

FN':CN.NT = 2^n'-cn.nt,

whence the ratio of' to its parameter and that of «a' to

its parameter are equal. [Prop. 14]

Therefore (by the previous case) the conies are similar.

Proposition 113.

[VI. 14, 15.]

A parabola is neither similar to a hyperbola nor to an

ellipse ; and a hyperbola is not similar to an ellipse.

[Proved by reductio ad absurdum from the ordinate pro-

perties.]

Proposition 114.

[VI. 17, 18.]

(1) If FT,pt be tangents to tivo similar conies meeting the

axes in T, t respectively and making equal angles with them;

if, further, FV, be measured along the diameters through F,

so that

FV:FT = pv:pt,

and if QQ', qq be the chords through V, parallel to FT, pt

respectively: then the segments QFQ', gpq' are similar and
similarly situated.

(2) And, conversely, if the segments are similar and
simiUirly situated, FV: FT= pv :pt, and the tangents are

equally inclined to the axes.
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I. Let the conies be parahokis.

Draw the tangents at A, a meeting the diameters through

P, in H, It, and let PL, pi be such lengths that

PL : 2PT = OP : PH\
and pi : 2pt = op -.pit, )

where 0, are the points of intersection of AH, PT and ah, pt.

Therefore PL, pi are the parameters of the ordinates

to the diameters PV, pv. [Prop. 22]

Hence QV' = PL.PV,

qv^ = pi . pv.

(1) , since zPTA=Zpta,

Z0PH= Zoph,

and the triangles, oph are similar.

Therefore OP : = op : ph

,

so that PL : PT = pi : pt.

But, by h}^othesis,

PV:PT = pv:pt\

.•. PL:PV = pl:pv,

and, since QV is a mean proportional between PV, PL, and qv

between pv, pi,

QV:PV=qv .pv.



204 THE COXICS OF APOLLONIUS.

Similarly, if V, v' be points on PV, pv such that

PV: PV'=2)v :pv',

and therefore PL : PV =pl : pv',

it follows that the ordinates passing through V, v' are in the

same ratio to their respective abscissae.

Therefore the segments are similar. (Def. 6.)

(2) If the segments are similar and similarly situated,

have to prove that

= Zpta,

and PV : PT = pv : 2)t.

Now the tangents at P, are parallel to QQ', qq' respec-

tively, and the angles at V, are equal.

Therefore the angles PTA,pta are equal.

Also, by similar segments,

QV: PV=qv : pv,

while PL : QV = QV : PV, and pi : qv = qv :pv\

.•. PL:PV=pl:pv.

But PL : 2PT = OP : PH)
pi : "Ipt = op : ph j

'

and UP : PH= op : ph,

by similar triangles.

Therefore PV : PT = pv : pt.

II. If the curves be hyperbolas or ellipses, suppose a
similar construction made, and let the ordinates PN, pn be
drawn to the major or conjugate axes. We can use the figures

of Prop. 112, only remembering that the chords arc here QQ',

qq', and do not pass through A, a.

(1) Since the conies are similar, the ratio of the axis to its

parameter is the same for both.
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Therefore FX' : CN . NT = pn' : en . nt. [ Prop. 1 4]

Also the angles PTN, ptn are diual,

therefore PN : NT= pn : nt.

Hence PN : CN =pn : en,

and ZPCN= pen.

Therefore also CPT= cpt

It follows that the triangles, oph are similar.

Therefore OP : PH = op : ph.

But OP : PH = PL : 2PT\

op : ph=pl •.2pt j

'

whence PL : PT = pl : pt.

Also, by similar triangles,

PT :GP=pt:ep;

.•. PL:CP=pl:cp,

or PL: PP'=pl.pp' (A).

Therefore the "figures" on the diameters PP', pp' are

similar.

Again, we made PV : PT =pv : pt,

so that PL: PV= pl : pv (B).

We derive, by the method employed in Prop. 112, that

QV:PV=qv:pv,

and that, \{, be proportionally divided in the points V,
v, the ordinates through these points are in the same ratios.

Also the angles at V, are equal.

Therefore the segments are similar,

(2) If the segments are similar, the ordinates are in the

ratio of their abscissae, and we have

QV:PV=qv
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Then QV: Q' V" = qv' : q'v"

;

.•. PV.VP'-.PV. V'P'=pv.vp''.pv.v'p,

and PV: PV =pv : pv',

so that P'V : P'V =p'v : p'v'.

From these equations it follows that

py : VV'=pv' :vv')

and P'V : FF' = jjV : vy'j
'

whence P'V : V = p'v' : pv
;

.•. P'V . VP -.PV'^ p'v' . v'p : pv'*.

But PV':Q'V'=pv":q'v'*;

.•. P'F'. F'P : Q'V"=p'v'.v'p : q'v'^.

But these ratios are those of PP', pp' to their respective

parameters.

Therefore the "figures" on PP', pp are similar; and, since

the angles at F, are equal, the conies are similar.

Again, since the conies are similar, the " figures " on the

axes are similar.

Therefore PN"" : C'iV . NT = pn' : C7i . nt,

and the angles at N, are right, while the angle CPT is equal

to the angle cpt.

Therefore the triangles CPT, cpt are similar, and the angle

CTP is equal to the angle ctp.

Now, since PV. VP' : QV^ = pv . vp' : qv^,

and QV:PV' = qv':pv'\

it follows that PV : P'V ==pv : p'v,

whence PP' : PV = pp' : pv.

But, by the similar triangles CPT, cpt,

CP : PT = cp : pt,

or PP' :PT = pp' :pt;

.•. PV: PT = pv:pt,

and the proposition is proved.
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Proposition 115.

[VI. 21, 22.]

If two ordinates he drawn to the axes of two parabolas, or the

major or conjugate axes of two similar ellipses or two similar

hyperbolas, as PN, P'N' andpn, p'n, such that the ratios AN : on

and AN' : an' are each equal to the ratio of the respective latera

recta, then the segments PP', pp will he similar ; also PP' will

not he similar to any segment in the other conic which is cut off

by ttvo ordinates other than pn, p'n, and vice versa.

[The method of proof adopted follows the line.s of the

previous propositions, and accordingly it is unnecessary to

reproduce it]

Proposition 116.

[VI. 26, 27.]

If any cone be cut by two parallel planes making hyperbolic

or elliptic sections, the sections will be similar but not equal.

On referring to the figures of Props. 2 and 3, it will be seen

at once that, if another plane parallel to the plane of section be

drawn, it will cut the plane of the axial triangle in a straight

line p'pm parallel to P'PM and the base in a line dme parallel

to DME; also p'pm will be the diameter of the resulting

hyperbola or ellipse, and the ordinates to it will be parallel to

dme, i.e. to DME.

Therefore the ordinates to the diameters are equally

inclined to those diameters in both curves.

Also, if PL, pi are the corresponding parameters,

PL : PP' = BF. FC -.AF'^pl: pp.

'^ crrvr.
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Hence the rectangles PL . PP' and i)l .pp are similar.

It follows that the conies are similar. [Prop. 112]

And they cannot be equal, since PL . PP' cannot be equal to

2)1. pp. [Cf. Prop. 110(2)]

[A similai• proposition holds for the parabola, since, by

Prop. 1, PL : is a constant ratio. Therefore two parallel

parabolic sections have different parameters.]
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Proposition 117.

[VI. 28.]

In a given right cone to find a parabolic section equal to a

given parabola.

Let the given parabola be that of which am is the a.xis and

al the latus rectum. Let the given right cone be OBO, where

is the apex and BC the circular base, and let OBC be a

triangle through the axis meeting the base in BC.

Measure0 along OB such that

al : OA = B(f : BO . 0(1

H. C. 14



210 THE COXIt'S OF APOLLONIUS.

DraAV AM parallel to OC meeting BG in M, and through

AM draw a plane at right angles to the plane OBC and cutting

the circuhvr base in DME.

Thi'u T)E is perpendicular to AM, and the section DAE is

a parabola whose axis is AM.

Also [Prop. 1], \ AL is the latus rectum,

AL:AO = BG' .BO. 00,

whence AL = aI, and the parabola is equal to the given one

[Prop. 110].

No other parabola with vertex on OB can be found which is

equal to the given parabola except DAE. For, if another such

parabola were possible, its plane must be perpendicular to the

plane OBC and its axis must be parallel to 00. If A' were

the supposed vertex and A'L' the latus rectum, we should have

A'L' : A'O = BG^ •. BO . 00 = AL : AO. Thus, if A' does not

coincide with A, A'L' cannot be equal to AL or al, and the

parabola cannot be equal to the given one.

Proposition 118.

[VI. 29.]

Ln a given right cone to find a section equal to a given

hyperbola. {A necessary condition of possibility is that the 7'atio

of the square on the axis of the cone to the square on the radius

of the base must not be greater titan the ratio of the transverse

a.vis of the given hyperbola to its parameter.)

Let the given hyperbola be that of which aa', al are the

transverse axis and parameter respectively.

I. Suppose 07" : BP < aa' : al, vhere I is the centre of the

base of the given cone.

Let a circle be circumscribed about the axial triangle OBC,
and produce 01 to meet the circle again in D.
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where AL, AJj^ arc the parameters of AA', A^A^ in the

sections respectively.

It follows, since AA' = A^A' = aa',

that AL = AJ.^=al.

Hence the two hyperbolic sections are each equal to the given

hyi)crbola.

There are no other equal sections having their vertices on

00.

For ( 1 ), if such a section were possible and OH were parallel

to the axis of such a section, OH could not be coincident

either Avith OQ or OQ'. This is proved after the manner of

the preceding proposition for the parabola.

If then (2) OH meet BO in H, QQ in R, and the circle

again in K, we should have, if the section w^ere possible,

aa' :al=OH^'.BH.HC

= 0H': OH.HK
= OH.HK;

which is impossible, since

aa':al=OI .IE=OH:HR.

II. If or : = aa' : al, we shall have 01 : ID = aa' : al,

and OQ, OQ will both coincide with OD.

In this case there will be only one section equal to the

given hyperbola whose vertex is on OC, and the axis of this

section will be perpendicular to BC.

III. If OP : BP > aa' : al, no section can be found in the

right cone which is equal to the given hyperbola.

For, if possible, let there be such a section, and let ON be

drawn parallel to its axis meeting BG in N.

Thon we must have aa' : al = ON'' : BN . NO,

so that OP :BI.IC> ON^ : BN. NO.

But ON'>OP, while nr.0>. NC•. which is absurd.
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Proposition 119.

LVL 80.]

In a given right cone to find a section equal to a given ellipse.

In this ciise we describe the circle about OBG and suppose

F, F' taken on BO produced in both directions such that, if

OF, OF' meet the circle in Q, Q',

OF:FQ=OF':F'Q' = , at.

Then we place straight lines ', ^1,/!,' in the angle BOG
so that they are each equal to aa\ while ^1.1' is parallel to

OQ and A^A; to OQ.

Next suppose planes drawn through A A', A^A^' each

perpendicular to the plane of OBC, and these planes determine

two sections each of which is equal to the given ellipse.

The proof follows the method of the preceding proposition.
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Proposition 120.

[VI. 31.]

To find a rir/ht cone similar to a given one and containing

a given parabola as a section of it.

Let OBC be an axial section of the given right cone, and

let the given parabola be that of which AN is the axis and AL
the latus rectum. Erect a plane passing through AN and

perpendicular to the plane of the parabola, and in this plane

make the angle NAM equal to the angle OBC.

Let AM be taken of such a length that AL : AM= EG : BO,

and on AM as base, in the plane MAN, describe the triangle

AM similar to the triangle OBC. Then suppose a cone

described with vertex and base the circle on AM as diameter

in a plane perpendicular to the plane AM.

The cone AM will be the cone required.

For = = =',
therefore EM is parallel to AN, the axis of the parabola.

Thus the plane of the given parabola cuts the cone in a

section which is also a parabola.

Now AL:AM = BG:BO
= AM:AE,

or AM' = EA.AL;

.'. AM' •.AE.EM = AL.EM
= AL -.EA.
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Hence AL is the latus rectum of the })arabolic section ot"

the cone made by the plane of the given parabohi. It is also

the latus rectum of the given parabola.

Therefore the given parabola is itself the parabolic section,

and AM is the cone required.

There can be no other right cone similar to the given on•.•,

having its vertex on the same side of the given parabola, and

containing that parabola iis a section.

For, if another such cone be possible, with vertex F, draw

through the axis of this cone a plane cutting the plane of the

given parabola at right angles. The planes must then intersect

in AN, the axis of the parabola, and therefore F must lie in the

plane of ^^lY.

Again, if AF, FR are the sides of the axial triangle of the

cone, FR must be parallel to liN, or to EM, and

^AFR = aBOC=aAEM,

so that F must lie on ^^ or produced. Let AM meet

FR in R.

Then, if ^X' be the latus rectum of the parabolic section of

the cone FAR made by the plane of the given parabola,

AL' :AF = AR':AF.FR
= AM':AE.EM
= AL:AE.

Therefore AL', AL cannot be equal; or the given parabola

is not a section of the cone FA R.

Proposition 121.

[VI. 32.]

To find a nr/ht cone similar to a given one and containing a

given liyperhoki as a section of it. {If OBC be the given cone and

D the centre of its base BG, and if A A', AL be the axis and

parameter of tJie given hyperbola, a necessary condition of

possibility is that the ratio OB' : DB'^ must not be greater than

the ratio AA' : AL.)
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Let a plane be drawn through the axis of the given

hyperbola and perpendicular to its plane; and on ', in the

plane so described, describe a segment of a circle containing an

/p
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Take a point on EI such that FI : IH = AA' : AL, and

through / draw the chord QQ' of the circle parallel to AA'.

Join A'Q, AQ, and in the plane of the circle draw AR making

with AQ an angle equal to the angle OBG. Let AR meet

A'Q produced in R, and QQ' produced in N.

Join FQ meeting ^^' in K.

Then, since the angle QAR is equal to the angle OBC, and

^FQA = \^A'QA = \^BOC,

AR'iH parallel to FQ.

Also the triangle QAR is similar to the triangle OBG.

Suppose a cone formed with vertex Q and base the circle

described on J.ii as diameter in a plane perpendicular to that

of the circle FQA.

This cone will be such that the given hyperbola is a

section of it.

We have, by construction,

AA' : AL = FI -.IH

= FK : KQ, by parallels,

^FK.KQ-.KQ'

= A'K.KA :KQ\

But, by the parallelogram QKAN,

A'K:KQ=^QN:NR,

and KA:KQ = QN : A,

whence A' . : KQ' = QN' : AN . NE.

It follows that

AA':AL = QN':AN.NR.

Therefore [Prop, 2] AL is the parameter of the hyperbolic

section of the cone QAR made by the plane of the given

hyperbola. The two hyperbolas accordingly have the same

axis and parameter, whence they coincide [Prop. 110 (2)]; and

the cone QAR has the re([uired property.
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Another such cone is found by taking the point Q' instead

of Q and proceeding as before.

No other right cone except these two can be found which

is similar to the given one, has its apex on the same side of the

plane of the given hyperbola, and contains that hyperbola as a

section.

For, if such a cone be possible with apex P, draw through

its axis a plane cutting the plane of the given hyperbola at

right angles. The plane thus described must then pass

through the axis of the given hyperbola, whence must lie in

the plane of the circle FQA. And, since the cone is similar to

the given cone, must lie on the arc A'QA.

Then, by the converse of the preceding proof, we must have

(if FP meet A'A in T)

AA':AL=FT:TP;
.•. FT.TP = FI: IH,

which is impossible.

II. Suppose that

OD' :
' = AA' : AL,

so that FI : IE = AA' : AL.

In this case Q, Q' coalesce Avith E, and the cone with

apex and base the circle on AG as diameter perpendicular

to the plane of FQA is the cone required.

III. If UD-: DB''>AA' : AL, no right cone having the

desired properties can be drawn.

For, if possible, let be the apex of such a cone, and we

shall have, as before,

FT:TP = AA'.AL•

But AA' : AL < OD' : DB', or FI : IE.

Hence FT : TP < FI : IE, which is absurd.

Therefore, etc.
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Proposition 122.

[VI. :VA.]

find a right cone similar to a given one and containing

a given ellipse as a section of it.

As before, take a plane through ' perpendiciUar to the

plane of the given ellipse ; and in the plane so drawn describe

on AA' as base a segment of a circle containing an angle equal

to the angle BOC, the vertical angle of the given cone. Bisect

the arc of the segment in F.

Draw two lines FK, FK' to meet AA' produced both ways

and such that, if they respectively meet the segment in Q, Q',

FK : KQ = FK' : K'Q' = AA' : AL.

DraAv QiV parallel to AA', and AN parallel to QF, meeting in N.

Join AQ, A'Q, and let A'Q meet AN in R.

Conceive a cone drawn with Q as apex and as bii.se the circle

on AR as diameter and in a plane at right angles to that

of AFA'.

This cone will be such that the given ellipse is one of

its sections.
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For, since FQ, AR arc parallel,

ZFQR= ^ARQ,

.•. zARQ^zFAA'
= OBG.

And zAQR=zAFA'
= BOG.

Therefore the triangles QAR, OBG are similar, and likewise

the cones QAR, OBG.

AA' : AL = FK : KQ, by construction,

= FK.KQ:KQ'
= A'K.KA:KQ'
= {A'K:KQ).(KA:KQ)
= (QN : NR) .{QN: A ), by parallels,

= QN':AN.NR.
Therefore [Prop. 3] AL is the latus rectum of the elliptic

section of the cone QAR made by the plane of the given

ellipse. And AL is the latus rectum of the given ellipse.

Therefore that ellipse is itself the elliptic section.

In like manner another similar right cone can be found with

apex Q' such that the given ellipse is a section.

No other right cone besides these two can be found satis-

fying the given conditions and having its apex on the same

side of the plane of the given ellipse. For, as in the preceding

proposition, its apex P, if any, must lie on the arc A FA'.

Draw PM parallel to A'A, and A' parallel to FP, meeting

in M. Join AP, A'P, and let A meet A' in S.

The triangle PA'S will then be similar to OBG, and we
shall have PM' : A'M. MS= AT. A' : TP^ = FT. TP : TP\ in

the same way as before.

We must therefore have

AA' : AL = FT: TP
;

and this is impossible, because

AA'.AL = FK:KQ.



VALUES OF CERTAIN FUNCTIONS OF THE
LENGTHS OF CONJUGATE DIAMETERS.

Proposition 123 (Lemma).

[VIL 1.]

In a parabola*, if PN be an ordinate and AH be vieusnred

along the aocis a^uay from and equal to the latus rectum,

AP' = AN.NH. [=AN{AN + p„)]

This is proved at once from the property PN^ = p„ . AN, by

adding AN^ to each side.

Proposition 124 (Lemma).

[VII. 2, :l]

If AA' be divided at H, internally for the hyperbola, and

exte^'nally for the ellipse, so that AH : HA' = p„•. AA\ then,

if PN be any ordinate,

AP':AN.NH=AA'.A'H.

* Though Book VII. is mainly concerned with conjuKato diameters of a

central conic, one or two propositions for the parabola are inserted, no doubt

in order to show, in connection with particular propositions about a central

conic, any obviously correspondinR properties of the parabola.
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Pro(iuce^ to K, so that. = '^*;

thus AN.NK.AN.A'N
= PN':AN.A'N
= p„: AA'

= AH : A'H, by construction,

or NK:A'N = AH.A'H.

[Prop. 8]

It folloAvs that

A'N±NK : A'N = A'H ± AH : A'H
(where the upper sign applies to the hyperbola).

Hence A' : A'N=AA' : A'H;

.•. A'K ±AA'
: A'N ±A'H = AA' : A'H,

or AK:NH = AA':A'H.

Thus AN.AK:AN.NH = AA':A'H.

But AN.AK=AP\ since AN.NK = PN\
Therefore AP^ : AN.NH = AA' : A'H.

The same proposition is true \ AA' is the minor a.xis of an
ellipse and ;>„ the corresponding parameter.
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Proposition 125 (Lemma).

[VII. 4.]

If in a hyperhnUt or an ellipse the tangent at meet the aa-ift

A' in T, and if OD be the semi-diameter pfarallel to PT, then

: CD' = NT : CN.

Draw AE, TF at right angles to CA to meet GP, and

let A meet PT in 0.

Then, if be the parameter of the ortlinates to PP',

we have

^.PT=OP:PE. [Prop. 23]

Also, since CD is parallel to PT, it is conjugate to CP.

Therefore ^.CP = CD' (1).

Now OP :PE=TP:PF;

.•. %.PT = PT.PF,

.PF = Pr

From (1) and (2) we have

: CD^ = PF:GP

= NT -.CN.

.(2).
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Proposition 126 (Lemma).

[VII. 5.]

In a parabola, if he the parameter of the ordinates to the

diameter through P, and X the principal ordinate, and if AL
he the latus rectum,

p^AL + 4>AN.

Let the tangent at A meet PT in and the diameter

through in E, and let PG, at right angles to PT, meet

the axis in G.

Then, since the triangles PTG, EPO are similar,

GT:TP=OP:PE,

'

'
2
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[Note. The property of the normal (iV(V = halt' th.• latus

rectum) is incidentally proved here by regarding it as the

perpendicnlar through to the tangent at that point. Cf.

Prop. 85 where the normal is regarded as the mininnim straight

line from G to the curve.]

Def. If AA' be divided, internally for the hyperbola, and

externally for the ellipse, in each of two points H, H' such that

A'H : AH= AH' : A'H'=AA' : p^,

where pa is the parameter of the ordinates to A A', then AH,
A'H' (corresponding to pa in the proportion) are called

homologues.

In this definition A A' may be either the major or the

minor axis of an ellipse.

Proposition 127.

[VII. 6, 7.]

//" AH, A'H' he the " hoDwlogues" in a hypei'bola or an

ellipse, and PP', DD' any two conjugate diameters, and if AQ
he draivn parallel to DD' meeting the curve in Q, and QM he

perpendicular to AA' , then

PP" : DD" = MH' : MH.

Join A'Q, and let the tangent at meet AA' in T.

Then, since A'C= CA,2a\aQV= VA (where GP meets QA
in V), A'Q is parallel to CV.

Now .CD' = NT : CN [Prop. 1 2]
= AM : A'3i, by similar triangles.

And, also by similar triangles,

CP':Pr = A'Q':AQ\

whence, ex aeqiiali,

CP' : CD' = (AM : A'M) . (A'Q' : AQ')

= (AM : A'M) X {A'Q' : A'M . MH')

X (A'M.MH' : AM. MH) (.1^/

.

MH : AQ').

H. c. I

'•
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But, by Prop. 124,

•.'.' =':',
and AM.MH :AQ' = A'H : AA' = AH' : A A'.

Also A'M.MH' : AM. =(A'M : AM) . (MM' -.

).

It follows that

CP' : CD"" = MH' : MH,

or PP" : DD" = MH' : MH.

This result may of course be written in the form

PP' : = MH' : MH,

where is the parameter of the ordinates to PP'.

Proposition 128.

[VII. 8, 9, 10, 11.]

In the figures of the last proposition the follovnng relations

hold for both the hyperbola and the ellipse :

(1) A A'•' : {PP' + DD'f = A' . MH' : {MH' ± '^MH.MHJ,

(2) AA'•' : PP' . DD' = A'H: x^MH.MH',

(3) AA'' : {PP" ± DD") = A'H : MH+ MH'.

(1) We have

AA" : PP" = CA' : CT'

;

.•. AA" : PP" = CN. GT : GP' [Prop. 14]

= A'M. A'A : A'q\
by similar triangles.

Now A'Q' : A'M. MH' = AA' : AH' [Prop. 124]

= AA':A'H

= A'M. AA: A'M. A'H,
whence, alternately,

A'M. A'A : A'Q' = A'M. A'H : A'lM . MH'.

Therefore, from above,

AA":PP" = A'H:MH' (a),

= A'H.MH': MH'\

15—2
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Again, PP" : DD" = MH' : MH ... {), [Prop. 127]

= MH"':MH.MH'•

PP' '.DD' = MH' : \/MH . MH' (7).

Hence PP' : PP' ± DD' = MH' : MH' + \'MH . MH',

and PP" : (PP' ± DD'f = MH" : {MH' ± ^MH.MH'f

.

Therefore by (a) above, ex aeqmdi,

AA" : {PP• ± DD'f = A'H.MH' : {MH' + ^MH.MH'f.

(2) We derive from (7) above

PP" : PP' . DD' = MH' : ^MWTMH'.

Therefore by (a), ex aequal

AA" : PP' . DD' = A'H : s/MH.MH'.

(3) From {),

PP" : {PP " ± DD") = MH' : MH ± MH'.

Therefore by (a), ex aequali,

AA" : {PP" + DD") = A'H : MH + MH'.

Proposition 129.

[VII. 12, 13, 29, 30.]

/?? every ellipse the sum, and in every hyperbola the difference,

of the squares on any two conjugate diameters is equal to the sum
or difference respectively of the squares on the axes.

Using the figures and construction of the preceding two

propositions, we have

AA" : BB" = AA' : p«

= A'H : AH, by construction,

= A'H -.A'H'.

Therefore

AA" : AA" ± BB" = A'H : A'H ± A'H'

(where the upper sign belongs to the ellipse),

or AA".AA" + BB" = A'H:HH' (a).
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Again, by (a) in Prop. 128 (1),

AA'':FF" = A'H:i]IH',

and, by means of () in the same proposition,

FF" : {FF" + DD") = MH' : MH ± MH'

= MH'.HH'.

From the hist two relations we obtain

AA" : {FF"±DD") = A'H : HH'.

Comparing this with (a) above, we have at once

Proposition 130.

[VII. 14, 15, 16, 17, 18, 19, 20.]

Tlie following results can be denved from the preceding

proposition, viz.

(1) For the ellipse,

AA" : FF" ~ DD" = A'H : 2CJ/;

and for both the ellipse and hyperbola, if denote the parameter

of the ordinates to FF',

(2) AA" : p' = A'H. MH' : MH\

(3) AA" : {FF'±pY = A'H . MH' : {MH ± MH'f,

(4) AA" :FF'.p = A'H : MH, and

(5) AA":FF" + p' = A'H.MH' : MH" ± MH\

(1) We have

AA"' : FF'^ = A'H : MH', [Prop. 128 (1), (a)]

and FF" : FF" - DD" = MH' : MH' ~ [ibid., {}]

=' : 2CM lu the ellipse.

Therefore for the ellipse

AA":FF"-- JJJJ" = A'H : 2CM/.



230 THE coyics of apollonius.

(2) For either curve"
: PP' = A'H : MH', as before,

= A'H.MH':MH'\
and, by Prop. 127,

PP'':f = MH"':MH'•,

.•. AA" : p' = A'H.MH' : MH\

(3) By Prop. 127,

PP' -.^'.•,
.•. PP" : {PP'± =" :( ± MH')\

And ":'•' =.' : MH'\ as before
;

.•. AA" : (PP' ±pf = A'H . MH' : (MH + MH'y.

(4) AA" : PP' = A'H : MH', as before,

and PP".PP'.p = PP' :

= MH'.MH; [Prop. 127]

.•. AA'':PP'.p = A'H:MH.

(5) AA" :PP" = A'H. MH' : MH", as before,

and PP" : PP" ± p' = MH" : MH" ± MH\

by means of Prop. 127 :

:. AA": PP" ± if = A'H. MH' : MH" + MH\

Proposition 131.

[VII. 21, 22, 23.]

In a hyperbola, if AA'
^^.J

BB', then, if PP', DD' he anij

other two conjufjute diameters, P' ^^^ DD' respectively ; and

the ratio PP' : DD' continually \ .

^
> as moves

"^ (or increases
J

farther from A on either side.

Also, if AA' = BB', PP' = DD'.



LENGTHS OF CONJUGATE DIAMETERS. 2^1

(1) Of the figures of Prop. 127, the first corresponds to

the case where AA' > BB', and the second to the case where

AA'kBB'.

Taking then the \ ^ figure respectively, it follows

from

PF'' .DD'* = MH' : MH [Pn.p. 1 27]

that PP' ^j.> DD'.

Also AA ''
: BB"' = AA' : pa = A'H : AH, by construction,

= AH' : AH,

and AH' : AH ^^> MH' : MH,

while MH' : MH \ . \ continually as moves further
(or increases] "^

from A, i.e. as Q, or P, moves further from A along the curve.

Therefore AA" : BB'\^.^ PP" : DD'\

and the latter ratio \
^

i as moves further from ^4.
(or mcreasesj

And the same is true of the ratios

AA' : BB' and PP' : DD'.

(2) AA' = BB', then AA'=pa, and both and //'

coincide with G.

In this case therefore

AH = AH' = AG,

MH = MH' = GM,

and PP' = DD' always.

Proposition 132.

[VII. 2+.]

In an ellipse, if AA' be the imijor, and BB' the minor, a-ris,

and if PP', DD' be any other two conjugate diameters, then

AA' : BB' > PP' : DD',

and the latter ratio diminishes continually as moves from

A to B.
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We have CA' : CB' = AN .
''

: PN'
;

.•. AN.NA'>PN\
and, adding C'iV"^ to each,

CA' > CP\

or AA'>PP' (1).

Also GB' : CA' = BM. MB' : DM'

where DM is the ordinate to BB'.

Therefore BM . MB' < DM\
and, adding CM\ GB' < GD'

;

.•. BB'kDD' (^)•

Again, if P^P^, D^D^ be another pair of conjugates, P,

buing further from A than P, D, will be further from

than D.

And AN. A' : AN^ . N,A' = PN' : P^N;".

But AN^.N^A'>AN.NA';
.•. p,n;'>pn\

and AN^ . N^A' - AN . A' > P^N^' - PN\
But, as above, AN^ . N^A ' > P,N^\

and AN^ . N^A'-AN. A ' = GN' - CiY,"

;

.•. CN' - GN^' > P^N;" - PN'
;

thus GP•' > GP^\

or PP'>PJ\' (3).

In an exactly similar manner we prove that

DD' <D^D; (4).
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We have therefore, by (1) and (2),

AA'.BB'>PP'.DB',

and, by (3) and (4), FP' : DD' > PJ\' : D^D^'.

Cor. It is at once clear, if pa, p, /), are the parameter

corresponding to A A', PP', PyP^y that

Pct<p, P<p„ etc.

Proposition 133.

[VII. 25, 26.]

(1) In a hi/perbola or an ellipse

AA' + BB'<PP' + DD',

where PP\ DD' are any conjugate diameters other than

the axes.

(2) In the hyperbola PP' + DD' increases continually as

moves further from A, while in the ellipse it increases as

moves from A until PP', DD' take the position of the equal

conjugate diameters, lulien it is a maximum.

(1) For the hyperbola

AA" ~ BB" = PP" ~ DD" [Prop. 129]

or {AA' -\- BB') . (^.4' ~ BB') = ( PP' + DD') . (PP' ~ DD '),

and, by the aid of Prop. 131,

AA' ~ BB' > PP' ~ DD'
]

.•. AA' + BB'<PP' + DD'.

Similarly it is proved that PP' + DD' increases as moves

further from A.

In the case where AA'^BB', PP' = DD', and PP'>AA•

.

and the proposition still holds.

(2) For the ellipse

AA' : BB' > PP' : DD'

;

.•. {AA" + BB") : {AA' + BB')' > {PP" + DD") : {PP' + DD'f.*

But AA"+BB" = PP" + DD": [Prop. 12!>]

.•. AA' + BB'<PP' + DD'.

* ApoUouius draws this inference directly, iind gives no intenuediute stt'pe.
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Similarly it may be proved that PP' + DD' increases as

moves from until PP', DD' take the position of the equal

conjugate diameters, when it begins to diminish again.

Proposition 134.

[VII. -27.]

J II every ellipse or hyperbola having unequal axes

AA''-BB'>PP' -DD',

luliei'e PP', DD' are any other conjugate diameters. Also, as

moves from A, PP' - DD' diminishes, in the hyperbola con-

tinually, and in the ellipse until PP', DD' take up the position

of the equal conjugate diameters.

For the ellipse the proposition is clear from Avhat was

proved in Prop. 132.

For the hyperbola

AA" - BB" = PP" ~ DD",

and PP'>AA'.

It follows that

AA' ~BB'>PP' ~DD',

and the latter diminishes continually as moves further

from A.

[This proposition should more properly have come before

Prop, 133, because it is really used (so far as regards the

hyperbola) in the proof of that proposition.]

Proposition 135.

[VII. 28.]

In every hyperbola or ellipse

AA' . BB' < PP' . DD',

and PP' .DD' increases as moves aiuay from A, in the

hyperbola continually, and in the ellipse until PP', DD' coincide

with the equal conjugate diameters.

Wc have AA' + BB' < PP' + DD', [Prop. 133]

so that .•. (AA' +BB'y < (PP' + DD'f.



LENGTHS OF CONJUOATK 1)1•:{> •235

And, for the ellipse.

AA"+ BB" = PP'' + Dl)"'. [Prop. 1 2!)]

Therefore, by subtraction,

AA' .BB' <PP' .DD\

and in like manner it will be shown that PP . DD' increases

until PP', DD' coincide with the equal conjugate diameters.

For the Ityperhola [proof omitted in Apollonius] PP' > A A',

DD' > BB', and PP', DD' both increase continually as moves

away from A. Hence the proposition is obvious.

Proposition 136.
[Vll. :u.]

If PP', DD' be two conjugate diameters in an ellipse or

in conjugate hyperbolas, and if tangents be drawn at the four

extremities forming a parallelogram LL'MM', then

the parallelogram LL'MM' = red. AA' . BB'.

Let the tangents at P, D meet the axis AA' in T, T'

respectively. Let be an ordinate to A A', and take a

length PO such that

PO' = aN.NT.
Now CA' : GB' = CN . NT : PN' [Prop. 1 4]

= PO''.PN\
or . =0::

.•. CA' : CA . CB = PO . C'P : CT . PN.

Hence, alternately,

CA' : PO.CT = CA . GB : GT . PN,

or CT.CN:PO.CT=GA.GB.GT.PN (1).
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Again, : CD' = NT : CN, [Prop. 125]

so that 2 CPT : 2 'DC = NT : CN.

But the parallelogram (CL) is a mean proportional between

2 CTT and 2 A DC,

for 2ACPT:(CL) = PT:CD
= CP : DT'

= {GL)'.2AT'DC.

Also PO is a mean proportional between CN and iVT.

Therefore

2ACPT : (CZ) = PO : CN = PO . CT : CT . CN
= CT.PN : CA . CB, from (1) above.

And 2ACPT=CT.PN;
.•. (CL) = CA . CB,

or, quadrupling each side,

CJLL'MM'^AA'.BB'.

Proposition 137.

[VII. 3:}, S^, :3.5.]

Supposing pa to be the parameter corresponding to the axis

A A' in a Jujperhola, and to be the parameter corresponding

to a diameter PP',

(1) ifAA' he not less than p^, then p„ < p, and increases

continually as moves farther from A ;
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(2) if AA' he lesa than p„ but not less than '-^'
, then p,, < p,

and increases as moves away from A ;

(0) if AA' < -^ , there can be found a diametei' ,^ on

either side of the aa-is suck that p^='2P^P^. Also p» is less

than any other parameter , and increases as moves further

from Po ill either direction.

(1) (o) '=, we have [Prop. 131 (2)]

PP'=p = I)D\

and PP', and therefore p, increases continually as moves

away from A.

(b) If AA'>pa, AA'>BB', and, as in Prop. 131 (1),

PP' : DD', and therefore PP' : p, diminishes continually as

moves away from A. But PP' increases. Therefore in-

creases all the more.

(2) Suppose AA'<pa but ^^.

Let be any point on the branch with vertex A ; draw

A'Q parallel to CP meeting the same branch in Q, and draw

the ordinate QM.

Divide A'A at H, H' so that

A'H : HA = AH' : H'A' = A A' : pa,

as in the preceding propositions.



238 THE COXIC'S OF AI^OLLONIUS.

Thcreiuic " : pa' =' . : AH' (a).

We have now AH > AH' but iif 2AH'.

And MH+HA>2AH;
.•. MH+HA. AH>AH:AH',

or iMH+HA)AH'>AH' ().

It follows that

{MH + HA) AM : (MH + HA) AH', or AM : ^F',

Therefore, componendo,

MH' .AH'< (MH + HA) AM+AH' : AH'

<MH':AH' (7),

whence A'H.MH' : A'H.AH' < MH' : AH\
or, alternately,

A' . MH' : MH' < A'H.AH': AH\
But, by Prop. 130 (2), and by the result (a) above, these

ratios are respectively equal to AA" : p', and AA" : pa.

Therefore AA" : p' < AA" : pa\

or Pa<P-

Again, if Pj be a point further from A than is, and if

A'Q^ is parallel to CP^, and il/, is the foot of the ordinate Qil/,,

then, since AH :|* 2AH',
MH < 2MH'

;

also M^H + HM>2MH.
Thus (, + HM) MH' > MH\
This is a similar relation to that in (/3) above except that

is substituted for A, and M^ for M.

We thus derive, by the same proof, the corresponding result

to () above, or

M^H'.MH' <M^H'.MH\
whence A' . M^H' : M^ H' < A' . MH' : MH\
or AA'^ : p^' < AA" : p\

so that /) < p^ , and the proposition is proved.



LENGTHS OF DIAMKTKllS. •29

(3) Now let ^^' be less than
2

•

Take a point .1/,, such that HH' = '^, and let Q,., 1\ be

related to Mo in the same way that Q, are to il/.

Then PoPo' : Po = M,H' : M,H. [Pn.,,. 127]

It follows, since HH' = H'M„, that

P,= 2P,P:.

Next, let be a point on the curve between P„ and ^l,

and Q, corresponding points.

Then M,H'.H'M<HH'\
since MH'<M,H'.

Add to each side the rectangle {MH + HH) MH', and we

have
(MM+HAI)MH'<iMH\

This again corresponds to the relation () above, with

substituted for , M^ for M, and < instead of >.

The result corresponding to (7) above is

MoH':MH'>MoH'.MH':
.•. .,' : M,W > A'H. MH' : MH\

or AA'':p:>AA":2f.

Therefore >pn•

And in like manner we prove that jj increases as 7^ moves

from Po to ^.

Lastly, let be more remote from A than P^ is.

In this case H'M > 'Mo,

and we have MH' . H'M^ > HH",

and, by the last preceding proof, interchanging and Mo and

substituting the opposite sign of relation,

AA" : p' < AA" : po\

and p>Po•

In the same way we prove that increases ai> moves

further away from and A.

Hence the proposition is established.
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Proposition 138.

[VII. 36.]

In a hyperbola witli unequal axes, if pa he the parameter

corresponding to AA' and that corresponding to PP',

AA' -pa>PP''P,
and PP' - diminishes continually as moves away from A.

With the same notation as in the preceding propositions,

A'H : HA = AH' : H'A' = AA' : p„,

whence AA" : (AA' ~ paf = A'H. AH' : HH".

Also [Prop. 130 (3)]

AA" : (PP' ~ pY = A'H. MH' : HH'\

But A'H.MH'>A'H.AH';
.•. AA'- : (PP' - pY >AA": (A A' - p„f.

Hence AA' ~ ])„> PP' - p.

Similarly, if P,, M^ be further from A than P, are,

we have

A'H.M^H'>A'H.MH',

and it follows that

PP''-p>P^P^' ^p,,
and so on.

Proposition 139.

[VII. 37.]

In an ellipse, if P^Po, Df^D,'hethe equal conjugate diameters

and PP', DD' any other conjiigate diameters, atid if po, p, Pa, Pb
he the parameters corresponding to PqPO, PP', A A', BB'
respectively, then

(1) AA' ~ Pa is the maximum value of PP' - for

all points hetween A and P^, and PP' - diminishes con-

tinually as moves from A to Po,
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(2) BB' - pi, is the maximum value of PP' - for all

points between and 2\,, ami' - diminishes continually

as passes from to Po,

(3) BB'-pu>AA'-pa.

The results (1) and (2) follow at once from Prop. 182.

(3) Since pb : BB' = A A' : y)„, and pt, > A A', it foiiow.s at

once that BB' -^ pi,> AA' ~ pa.

Proposition 140.

[VII. 38, 39, 40.]

(1) In a hyperbola, if AA' be not less than I j)„,

PP' + p >AA'+pa,

luhere PP' is any other diameter and the corresponding

parameter; and PP'+j) will he the smaller the nearer

approaches to A.

(2) If AA' <^p)a, there is on each side of the axis a

diameter, as PqPo, such that P^Po' = ^Po ; (f>i(l ,^^'+ is

less than PP' + p, where PP' is any other diameter on the same

side of the axis. Also PP' + p increases as moves away from
P..

(1) The construction being the same as before, we suppose

(ft) AA'-^pa.

In this case [Prop. 137 (1)] PP' increases as moves from

A, and along with it.

Therefore PP' + also increases continually.

(b) Suppose AA' <pah\\t -i^^pa',

.•. AH'^\AH\
thus AH'-^liAH + AH'),

and {AH +')' -^{AH ^ AH')\

Hence 4>{AH+AH')AM{+)', or AM:AJI',

^^{AH + AIDAM : (.1 // + ' ;

. C, lt>
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and, componendo,':'^^ +')+( +•.( +'.
Now

(3iH + MH'f -{AH +AHy = 2AM(3IH + MH'+AH+AH')

>4>AM{AH + AH');

.•. 4A3T(AH + AH') + (AH + AHy<{]\IH + MHy.
It follows that

MH' : AH' < (MH + MH'y : (AH +,
or A'H.MH' : {MH + MHJ < A'H .AH': {AH + AHJ ;

.•. AA'':{PP' + pf<AA":{AA' + py [by Prop. 180(3)].

Hence AA' + pa< PP' + 2^•

Again, since AH'i 1{AH + AH'),

MH'>l{MH + MH');
.• . 4 {MH + MH') MH' > {MH + MH')\

And, if Pj be another point further from A than is, and

Qi , il/, points corresponding to Q, M, we have, by the same proof

as before (substituting for A , and il/j for M),

'.' : {M^H + M^HJ < A'H.MH' : {MH + MHJ.

We derive PP'+p< P,P^+p,
;

and the proposition is established.

(2) We have AH' < ^AH, so that AH'< \HH'.

Make H'M^ equal to ^HH', so that MoH' = ^MoH.

Then P,P: : ^Jo = M^H' .M,H=l:S,

and PoPo' = f.

Next, since -/-'^' = i -^^o-H",

M,H'=i{M,H + M,H').

Now suppose to be a point between A and Po, so that

il/„7/'>il/ii";

.•. {MoH+M,H'f > {M^H + MH') . 4il/„^'.
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Subtracting from each side the rectangle (M^H + }')„,( + MH'y > (MoH + MH') . ^MH'
;

.•. {M,H + MH') . 4il/il/„ : {M,H ^ MH') . 4MH', or MM.. : Mil',

>{MJI+MH')AMM.. :( + ')\
Therefore, componendo,

,': MH'>(M,H+MH') . 4MM,+{MH+MH'y -. {MH+MH'f

> (MoH + MoH'f : (MH+ MH'f.

Hence

A'H.MoH' : {M,H+M,Hy > . MH' : {MH + MH'f.

Tlierefore [Prop. 130 (3)]

AA" :(' + i>o)' > AA" : {PP'-^pf,

and PP' + p>1\P:+p,.

Again, if Pi be a point betveen and A, we have

(MH + MH'f > (MH + ilA H') . ^MH',

and we prove exactly as before that

P,P;+p,>PP' + p,
and so on.

Lastly, if > M„H, we shall have

(MH + MM') . ^M, H' > ( J/„ // +,'.
If to both sides of this inequality there bo added the

rectangle (MH + ,,') ^fMM^, they become respectively

(MH + M,H') . ^MH' and (.1/// + MH')\

and the method of proof used above gives

PoPo' + p«<PP'+/>,

and so on.

Hence the proposition is established.

IG—2
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Proposition 141.

[VII. 41.]

In any ellipse, if PP' be any diameter and its parameter,

PP' -\-p> AA' -{•>, and PP' + ]) is the less the nearer is to

A. Also'->' + .
Q,

With the same construction as before,

A'H.HA = AH''.H'A'

= AA''.p,

= p,:BB'.

Then AA" : {AA' +2^ = '-' : HH"
= A'H.AH' '.HH'"- (a).

Also AA'^:BB" = AA':pa = A'H:A'H' \

= A'H.A'H':A'H" i.

and BB" : {BB' + p^f = A'H" : HH" J

Therefore, ex aequali,

AA"'.(BB' + p(,f = A'H.A'H':HH'' ().

From (a) and (), since AH' > A'H',

AA' + pa<BB' + pi,.

Again AA":{PP' + pf = A'H.MH' : HH'\ [Prop. 130 (3)]

and AA" :(/ +, = A'H . M,H' : HH'\

vhere Pj is between and B, from which it follows, since

AH' > MH' > M,H' > A'H',

that AA'-\-2)a<PP'+P,' +,,' + ,,
P,P,' + p,<BB' + p,,

and the proposition follows.
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Proposition 142.

[VII. 42.]

//; a hyperbola, if PP' be any diameter luith parameter p,

AA'.pa<PP'.p,

and PP' .p increases as moves away from A.

We have A'H : HA = AA" : AA'.pa,

and A'll : = A A'' : PP'.p, [Prop. 1 30 { 4 )]

while AH<MH•
.•. AA'.pa<PP'.p,

;aid, since MH increases as moves from A, so does PP'.p.

Proposition 143.

[VII. 43.]

In an ellipse AA'.pa< PP'.p, where PP' is any diameter,

and PP'.p increases as moves aivay from A, reaching a

maximum luhen coincides with or B'.

The result is derived at once, like the last proposition, from

Prop. 130 (4).

[Both propositions are also at once obvious since

PP'.p = DD'\]

Proposition 144.

[VII. 44, 45, 4.]

In a hyperbola,

(1) if A A' ^ Pa, or

(2) if AA' < Pa, but AA"^}, {A A' - p„)\ then

AA" + Pa'<PP" + p\

where PP' is any diameter, and PP'^ + j)^ increases as moves

away from A

;
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(3) if'^ < ^(' ~ paT, then there will he found on either

side of the a.ris a diameter PoP» such that PqPo^ = hi^oPo " PoT,

and ," +" will he less than PP'^ + p\ where PP' is any

other diameter. Also PP''- + p^ will he the smaller the nearer

PP' is to PoPJ.

(1) Let AA' be not less than pa-

Then, if PP' be any other diameter, > pa, and increases

as moves further from A [Prop. 137 (1)]; also AA' <PP',

which increases as moves further from A
;

.•. AA"-^pa'<PP"+p\

and PP'^ + p'^ increases continually as moves further from A.

(2) Let AA' be less than pa, but AA" ^ | (AA' ~ paf.

Then, since AA' : j^a = : AH = AH' : A'H',

2AH"^HH'\

and niH'.AH' >HH'\

Adding 2AH .AH' to each side of the last inequality,

2{MH + AH')AH'>2AH.AH'+HH"
>AH' + AH"•,

.•. 2{MH+AH')AM:2{MH + AH')AH', or AM . AH',

< 2 (MH + AH')AM : AH' + AH'\

Therefore, componendo,

MH':AH'<2{MH + AH')AM + AH' + AH".AH' + AH'\

and MH' + MH" = AH' + AH" + 2AM{MH + AH'),

so that MH' : AH' < MH' + MH" : AH' + AH",

or .MH' : MH' + MH" < A'H .AH' : AH' + AH";
.•. AA":PP" + p'<AA":AA" + pa'. [Prop. 130(5)]

Thus AA"-\-pa'<PP"+p'.

Again, since 2MH" > HH",

and (if AM, > AM) 2M,H'. MH' > HH",
we prove in a similar manner, by substituting for A and il/,

for M, that
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(3) Let' bo less than ^{AA' - /)„)',

so that 2.Air<III['\

Make 2MoH'' wiual to HH'\

Now M,H' : M,H = Pol\' : p„ [ .p. 1 27]

so that ," = i (PoPu' ~ }\y.

Next, if be between A and Po>

2.1/oif "* = HH",

and 2M,H'.MH'<HH'\

Adding 2MH.MH' to each side,

2 {M,H + MH') MH' < MIP + MH'\

and, exactly in the same way as before, we prove that

'•-•+<"-' + /.

Again, if Pj be between A and P,

whence (adding 2M,H.M,H')

2 (iViT + M,H') M,H' < M,H' + ,',
and, in the same Avay,

'•^+/</^+•
Similarly /'^ + ,' < ^.1'^ + pa\

Lastly, if AM > AM^,

2MH'.iMoH'>HH",

and, if AM, > AM,

2M,H'.MH'>HH";

whence we derive in like manner that

PP''+/>PuP..'-' + iV,

PJ\"+p;'>PP"+p\

and so on.
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Proposition 145.

[VII. 47, 48.]

In an

(1) if AA" -if \{AA' + pa)\ then " + pa' < PP" + p\
and the latter increases as moves away from A, reaching a

maximum when coincides with ;

(2) if AA'^ > ^{AA' + paf, then there luill be oii each side

of the accis a diameter PqPo such that PqPo'^ = ^{PoPo + 2>)\

and^ - pn will then he less than ''^-p^ in the same

quadrant, while this latter increases as movesfy^om Pq on either

side.

(1) Suppose AA":i(^^{AA'+2)af•

A'H. AH' :' + A'H" = AA" : AA" +Pa'•

Also AA" : BB" = pi, : BB' = AA' : p^ = A'H : A'H'

= A'H. A'H' : A'H",

and BB" : (BB" +pi,') = A'H" : A'H' + A'H''
;

hence, ex aequali,

AA" : {BB" + pi') = A'H . A'H' : A'H' + A'H'\

and, as above,

AA" : {AA'-'+pa') = A'H. AH' : A'H' + A'H".

Again, AA":i^^{AA'+pJ,

.•. 2A'H.AH'^HH'\

whence 2A' .
' < ".

Subtracting2 .', we have

2A'M.MH'<MH' + MH" (1),

.•. 2A'M.AM : 2A'M. MH', or AM : MH',

>2A'M.AM -.MH' + MH",

and, since 2.1'.!/ . AM + MH' + MH" = A'H' + A'H",
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we have, compunendo,

AH' : MH' > A'H' + A'W' : MIP + MH'\

.•. A'H.AH' : A'H' + A'H" > A'U.MW : MIP + MH'\

whence AA"' : (^1^1'" + ^v) > AA '=
: {PP" -f /),

[. 130 (.->)]

Again, either < M,H\ ur J/i/.^ M,H'.

(a) Let MH<M,H'.

Then J/i/-^ + J/7/'^ > J/.y/^ + M,H'\

and J/jiT' + MJi" > M,H' 2 {MJi' - iV//)*
;

.•. JAUi • 2{M,H'- MH) : JAii'. 2 (J/^/i '- J///), or MM, : .1/. //',

> MM, . 2 (i/iZT' - MH) : i/,^^ + J/, H'\

But il/if^ + il/^'* - (M, H' + M,H") = 2 {CM* - CM;')
;

.•. il/J/i . 2(/^' - MH) + M,H" + M,H" = J//P + il///"

;

thus, componendOy we have

MH' : M,H'>MH' + MH" : M,H' + M,H"•

therefore, alternately,

A'H .MH' : MH' + MH" > A'H .M,H' : MJP + MJP\

and yl^'^ : PP"^ +/ > ^1^'^
:
'^+^ [Prop. 130 ()]

so that " + '<,,"+'•
(b) If MH<^M,H\

MH' + MH" ^ M, H' + M, H'\

and it results, in the same way as before, that

A'H.MH' : MH' + MH">A'H.MJP : MJP + Mjr,

and PP''+p-<PJ\''+p;'.

Lastly, since.' : AH' + A'H" = AA" : BB'+po',

and . MJP : M, H' + .1/.//'^ = A A" : i^ /^" + ih\

* As in (1) ftbove,

.V, H- + .V, //'- > 2.1 '.U, . .1/,//

'

> M^ir . 2 (.!/,//' - J/i/), u fortiori.
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it is shown in the same nianiier that

(2) Suppose AA'^ > h {A A' +p„)\

so that 2AH">HH'\
Make 2M,H" equal to HH", so that

MM" = yiH" = HH' . CH'
;

.•. Hir:Mjr = M,H' -OH'

= HH' - M,H' Mjr ~ CH',

whence M,H : CM, = //Zf ' : M,H',

and //^'
. (7J/o = M,H . M,H'•

If then (a) AM < AM,,

^GMo.CH'>2MH.M,H'.

Adding 2MMq.M,H' to each side,

4Cifo . CH' + 2il/il/o • il/oiT' > 2M,H . M,H',

and again, adding '^CM^,

2 (C/il/ + CM,) M,H' > (,' + ,").
It follows that

2 (CM + CM,) MM, : 2(CM + ClM,) M,H', or MM, : M,H',

< 2 (6'i¥+ CM,) MM, : (/„* + ,").
Now 2 (6'/ + CM,) MM, + il/o H' + .¥o^''

so that, componendo,

MH' : il/o//' < MH' + i/i/'^ : M,H' + il/„^",

and

A'H.MW : MH' + MH"<A'H.M,H' : ,' +,\
whence ,," -\- p^' < PI'"' + p\

Similarly, if ^il/j < AM,

•1HH'.CM>2M,H.MH',

and we prove, in the same manner as above,

pp''-^p^<pj>:-^^p;\
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And. since 2////' . ( M/, > II . J/. //
',

in like mauner

Lastly (6), H AM > AM^, the same method of proof gives

etc.

Proposition 146.

[Vll. 41), 50.]

Ill a Ityperhola,

(1) ifAA' >pa, then

AA" - Pa' < PP" - /, where PP' L• amj diameter, and PP" -/
i)icreases as moves fartherfrom A ;

also PP" ~ p' > AA" ~ pa . AA' but < 2 (^ A'^' ~ p^ . AA') :

(2) if AA' < Pa, then

AA''^''Pa>PP''-^p\ which diminishes as moves away' A
;

also PP" ~ p' > 2 (^1^'^ « pa . AA').

(1) As usual, A' : ^i7 = AH' :
^'//' = xl^' : pa\

.•. A'H.AH' : ^if'^ - ^//^ = ^^" :
.1.1'* ~ Pa\

Now iVif ' : ^ii' <MH.AH;
.•. il///' :

^^' < MH' + : AH' + AH
< {MH' + MH) HH' : (.1//' + AH ) HH',

i.e. < MH" - MH' : AH" ~ AH\
Hence

A'H.MH' :
^1/^'* - il/^"^< A'H.AH' :

.1//'^' ~ ^1//*

;

.•. AA" : PP'" - p*< AA" : yl^"" ~ /;„'- [l*iop• 130 (5)]

or ^^'•^-_p«''<PP"^-yr.

Again, if AM^>AM,

MJP.MH'kMJI -Mil-

.•. MJP:MH'<MJl+ MJI : Mir + Mil,
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;ind, i)roccecling as befuro, wo find

and so on.

Now, if FO be measured along PP' eciual to }),

PP"^p'=2P0.0P' + 0P";

.•. PP'' ~ / > PP' . OP' but < 2PP' . OP'.

But PP'.uP' = PP"-PP'.PO

= PP"-p.PP'

= AA"-2)a . AA' [Prop. 12!)]

.•. PP" ~ ^/ > ^1^'^ ~ Pa .
^^' but < 2 (yl^'^ ~ p« . A A').

(2) If^lJ.'<jj„,

il/i/':^/i'>il/i/:yliJ;

.•. J\IB' : ^i/" > MH' + MH : ^iT' + AH,
and

^'i/ .MW : ^'i/ . ^ii' > {MH' + MH)HH' : (^^' + ^ii) iiii',

i.e. > MH" ~ il/Zf^ :
^^'^ ~ AH\

Therefore, proceeding as above, we find in this case

PP"~p'<AA"'-pa\
Similarly

and so on.

Lastly, if PP' be produced to so that PO = p,

AA"-pa.AA' = PP"'-p.PP' [Prop. 129]

= PP'.OP'.

And PP" -- if = PP" - PO'

=2'. +'
>2PP'.0P'

or > 2 (4.4'^ -^„. ^1^1').
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Proposition 147.

[VII. 51.]

In an ellipse,

(1) if PP' he any diameter such that PP' > p,

AA"--p„'>PP"^jf,

and PP'^ - p^ diminishes as moves furtherfrom A ;

(2) if PP' he any diameter such that PP' < p,

BB" -^
Pf,' > PP'•' ^ p\

and PP'^ - p^ diminishes as moves further from B.

{!) In this case (using the figure of Prop. 141)

AH' : MH' < AC : CM

.•. A'H.AH'.A'H.MH'< 2HH' .AC : 2HH' .CM

i.e. < AH" ~ AH' : MH" ~ MH\
Therefore, alternately,

A'H.AH' : AH" ~ AH' < A'H.MH' : MH' - MH\

Hence

AA" : AA" ~ 2^a < AA" : PP" - p\ [Prop. 130 (5)]

and AA"--pa'>PP"'-2}\

Also, if ^lil/j >AM, we shall have in the s;\jik• way

A'H.MH': A'H.Mjr<MH''~ Mil-. MJI '- MJl\

and therefore PP" ~ / > PJ'" - p^, and so on.

(2) must in this case lie between and the extremity

of either of the equal conjugate diameters, and will lie

between C and A' if is on the (juadrant AB.
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Then, if M^ corresponds to another point P,, and AAI^ > AM,
we have

MH'>M^H', and CM < CM^;

.•. A' .
'

: . ili,' > CM : CM^

>2CM.HH':2CM^.HH',

i.e. > MH' - MH" : M^H' ~ M^H'\

whence, in the same manner, we prove

and PP'* - p^ increases as moves nearer to B, being a

maximum when coincides with B.

camiiripor: phintkd «y j. c. f. clay, at the university press.
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