

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

HARVARD COLLEGE LIBRARY

CARL FRIEDRICH GAUSS WERKE

BAND II.

CARL FRIEDRICH GAUSS

WERKE /

ZWEITER BAND.

ZWEITER ABDRUCK

9 HERAUSGEGEBEN

VON DER

KÖNIGLICHEN GESELLSCHAFT DER WISSENSCHAFTEN

ZU

GÖTTINGEN

, 1876.

Math 181.1

1877, April 20.

THEOREMATIS ARITHMETICI

DEMONSTRATIO NOVA

AUCTORE

CAROLO FRIDERICO GAUSS

SOCIETATI REGIAE SCIENTIARUM TRADITA IAN. 15. 1808.

Commentationes societatis regiae scientiarum Gottingensis. Vol. xvi.

Gottingae MDCCCVIII.

Digitized by Google

1

THEOREMATIS ARITHMETICI

DEMONSTRATIO NOVA.

1.

Quaestiones ex arithmetica sublimiori saepenumero phaenomenon singulare offerunt, quod in analysi longe rarius occurrit, atque ad illarum illecebras augendas multum confert. Dum scilicet in disquisitionibus analyticis plerumque ad veritates novas pertingere non licet, nisi prius principiis, quibus innituntur, quaeque ad eas viam quasi patefacere debent, penitus potiti simus: contra in arithmetica frequentissime per inductionem fortuna quadam inopinata veritates elegantissimae novae prosiliunt, quarum demonstrationes tam profunde latent tantisque tenebris obvolutae sunt, ut omnes conatus eludant, acerrimisque perscrutationibus aditum denegent. Tantus porro adest tamque mirus inter veritates arithmeticas, primo aspectu maxime heterogeneas, nexus, ut haud raro, dum longe alia quaerimus, tandem ad demonstrationem tantopere exoptatam longisque antea meditationibus frustra quaesitam longe alia via quam qua exspectata fuerat felicissime perveniamus. Plerumque autem huiusmodi veritates eius sunt indolis, ut pluribus viis valde diversis adiri queant, nec semper viae brevissimae sint, quae primo se In magno itaque certe pretio habendum erit, si, tali veritate longe incassum ventilata, dein demonstrata quidem sed per ambages abstrusiores, tandem viam simplicissimam atque genuinam detegere contigerit.

2.

Inter quaestiones, de quibus in art. praec. diximus, locum insignem tenet theorema omnem fere theoriam residuorum quadraticorum continens, quod in Disquisitionibus arithmeticis (Sect. IV.) theorematis fundamentalis nomine distinctum

Pro primo huius elegantissimi theorematis inventore ill. LEGENDRE absque dubio habendus est, postquam longe antea summi geometrae Euler et Lagrange plures eius casus speciales iam per inductionem detexerant. Conatibus horum virorum circa demonstrationem enumerandis hic non immoror; adeant quibus volupe est opus modo commemoratum. Adiicere liceat tantummodo, in confirmationem eorum, quae in art. praec. prolata sunt, quae ad meos conatus pertinent. In ipsum theorema proprio marte incideram anno 1795, dum omnium, quae in arithmetica sublimiori iam elaborata fuerant, penitus ignarus et a subsidiis literariis omnino praeclusus essem: sed per integrum annum me torsit, operamque enixissimam effugit, donec tandem demonstrationem in Sectione quarta operis illius traditam Postea tres aliae principiis prorsus diversis innixae se mihi obtunactus essem. lerunt, quarum unam in Sectione quinta tradidi, reliquas elegantia illa haud inferiores alia occasione publici iuris faciam. Sed omnes hae demonstrationes. etiamsi respectu rigoris nihil desiderandum relinquere videantur, e principiis nimis heterogeneis derivatae sunt, prima forsan excepta, quae tamen per ratiocinia magis laboriosa procedit, operationibusque prolixioribus premitur. tionem itaque genuinam hactenus haud affuisse non dubito pronunciare: esto iam penes peritos iudicium, an ea, quam nuper detegere successit, quamque pagellae sequentes exhibent, hoc nomine decorari mereatur.

3.

Theorema. Sit p numerus primus positivus; k integer quicunque per p non divisibilis;

A complexus numerorum 1, 2, 3
$$\frac{1}{2}(p-1)$$

B complexus horum
$$\frac{1}{2}(p+1)$$
, $\frac{1}{2}(p+3)$, $\frac{1}{2}(p+5)$... $p-1$

Capiantur residua minima positiva productorum ex k in singulos numeros A secundum modulum p, quae manifesto omnia diversa erunt, atque partim ad A partim ad B pertinebunt. Iam si ad B omnino μ residua pertinere supponantur, erit k vel residuum vel non-residuum quadraticum ipsius p, prout μ par est vel impar.

Dem. Sint residua ad A pertinentia haec $a, a'a'' \ldots$, reliqua ad B pertinentia $b, b', b'' \ldots$, patetque posteriorum complementa $p - b, p - b', p - b'' \ldots$ cuncta a numeris $a, a', a'' \ldots$ diversa esse, cum his vero simul sumta comple-

xum A explere. Habemus itaque

$$1.2.3....\frac{1}{2}(p-1) = a a'a''....(p-b)(p-b')(p-b'')...$$

Productum posterius autem manifesto fit

$$\equiv (-1)^{\mu} a a' a'' \dots b b' b'' \dots \equiv (-1)^{\mu} k \cdot 2 k \cdot 3 k \dots \frac{1}{2} (p-1) k$$

$$\equiv (-1)^{\mu} k^{\frac{1}{2}(p-1)} 1 \cdot 2 \cdot 3 \dots \frac{1}{2} (p-1) \pmod{p}$$

Hinc erit

$$1 \equiv (-1)^{\mu} k^{\frac{1}{2}(p-1)}$$

sive $k^{\frac{1}{2}(p-1)} \equiv \pm 1$, prout μ par est vel impar, unde theorema nostrum protinus demanat.

4.

Ratiocinia sequentia magnopere abbreviare licebit per introductionem quarundam designationum idonearum. Exprimet igitur nobis character (k, p) multitudinem productorum ex his

$$k, 2k, 3k \ldots \frac{1}{2}(p-1)k,$$

quorum residua minima positiva secundum modulum p huius semissem superant. Porro existente x quantitate quacunque non integra, per signum [x] exprimemus integrum ipsa x proxime minorem, ita ut x-[x] semper fiat quantitas positiva intra limites 0 et 1 sita. Levi iam negotio relationes sequentes evolventur:

I.
$$[x]+[-x]=-1$$
.

II. [x]+h=[x+h], quoties h est integer.

III.
$$[x] + [h - x] = h - 1$$
.

IV. Si x-[x] est fractio minor quam $\frac{1}{4}$, erit [2x]-2[x]=0; si vero x-[x] est maior quam $\frac{1}{4}$, erit [2x]-2[x]=1.

V. Facente itaque residuo minimo positivo integri h secundum modulum p infra $\frac{1}{2}p$, erit $\left[\frac{2h}{p}\right] - 2\left[\frac{h}{p}\right] = 0$; iacente autem residuo illo ultra $\frac{1}{2}p$, erit $\left[\frac{2h}{n}\right] - 2\left[\frac{h}{p}\right] = 1$.

VI. Hinc statim sequitur (k, p) =

$$\left[\frac{2k}{p}\right] + \left[\frac{4k}{p}\right] + \left[\frac{6k}{p}\right] \cdot \cdot \cdot \cdot + \left[\frac{(p-1)k}{p}\right] - 2\left[\frac{k}{p}\right] - 2\left[\frac{2k}{p}\right] - 2\left[\frac{3k}{p}\right] \cdot \cdot \cdot \cdot - 2\left[\frac{\frac{1}{2}(p-1)k}{p}\right].$$

VII. Ex VI. et I. nullo negotio derivatur

$$(k, p) + (-k, p) = \frac{1}{2}(p-1)$$

Unde sequitur, — k vel eandem vel oppositam relationem ad p habere (quatenus huius residuum aut non-residuum quadraticum est) ut +k, prout p vel formae 4n+1 fuerit, vel formae 4n+3. In casu priori manifesto — 1 residuum, in posteriori non-residuum ipsius p erit.

VIII. Formulam in VI. traditam sequenti modo transformabimus. Per III. fit $\left[\frac{(p-1)k}{p}\right] = k-1-\left[\frac{k}{p}\right], \ \left[\frac{(p-3)k}{p}\right] = k-1-\left[\frac{3k}{p}\right], \ \left[\frac{(p-5)k}{p}\right] = k-1-\left[\frac{5k}{p}\right]....$

Applicando hasce substitutiones ad $\frac{p+1}{4}$ membra ultima seriei superioris in illa expressione, habebimus

primo, quoties p est formae 4n+1

$$(k, p) = \frac{1}{4}(k-1)(p-1) - 2\left\{ \left[\frac{k}{p} \right] + \left[\frac{3k}{p} \right] + \left[\frac{5k}{p} \right] \cdot \dots + \left[\frac{\frac{1}{4}(p-3)k}{p} \right] \right\} - \left\{ \left[\frac{k}{p} \right] + \left[\frac{2k}{p} \right] + \left[\frac{3k}{p} \right] \cdot \dots + \left[\frac{\frac{1}{4}(p-1)k}{p} \right] \right\}$$

secundo, quoties p est formae 4n+3

$$(k, p) = \frac{1}{4}(k-1)(p+1) - 2\left\{ \left[\frac{k}{p} \right] + \left[\frac{3k}{p} \right] + \left[\frac{5k}{p} \right] \cdot \dots + \left[\frac{\frac{1}{4}(p-1)k}{p} \right] \right\} - \left\{ \left[\frac{k}{p} \right] + \left[\frac{2k}{p} \right] + \left[\frac{3k}{p} \right] \cdot \dots + \left[\frac{\frac{1}{4}(p-1)k}{p} \right] \right\}$$

IX. Pro casu speciali k = +2 e formulis modo traditis sequitur $(2, p) = \frac{1}{4}(p + 1)$, sumendo signum superius vel inferius, prout p est formae 4n + 1 vel 4n + 3. Erit itaque (2, p) par, adeoque 2Rp, quoties p est formae 8n + 1 vel 8n + 7; contra erit (2, p) impar atque 2Np, quoties p est formae 8n + 3 vel 8n + 5.

5.

THEOREMA. Sit x quantitas positiva non integra, inter cuius multipla x, 2x, 3x... usque ad nx nullum fiat integer; ponatur [nx] = h, unde facile concluditur, etiam inter multipla quantitatis reciprocae $\frac{1}{x}$, $\frac{3}{x}$... usque ad $\frac{h}{x}$ integrum non reperiri. Tum dico fore

$$|x| + |2x| + |3x| ... + |nx| + |\frac{1}{x}| + |\frac{2}{x}| + |\frac{3}{x}| ... + |\frac{h}{x}| = nh.$$

Dem. Seriei $[x] + [2x] + [3x] \dots + [nx]$, quam ponemus = 2, membra prima usque ad $\left[\frac{1}{x}\right]^{\text{tum}}$ inclus. manifesto omnia erunt = 0; sequentia usque ad $\left[\frac{2}{x}\right]^{\text{tum}}$ cuncta = 1; sequentia usque ad $\left[\frac{3}{x}\right]^{\text{tum}}$ cuncta = 2 et sic porro. Hinc fit

$$\Omega = 0 \times \left[\frac{1}{x}\right]
+ 1 \times \left\{\left[\frac{2}{x}\right] - \left[\frac{1}{x}\right]\right\}
+ 2 \times \left\{\left[\frac{3}{x}\right] - \left[\frac{2}{x}\right]\right\}
+ 3 \times \left\{\left[\frac{4}{x}\right] - \left[\frac{3}{x}\right]\right\}
\text{etc.}
+ (h-1) \left\{\left[\frac{h}{x}\right] - \left[\frac{h-1}{x}\right]\right\}
+ h \left\{n - \left[\frac{h}{x}\right]\right\}$$

Q. E. D.

6

Theorems. Designantibus k, p numeros positivos impares inter se primos quoscunque, erit

$$\left. \begin{array}{l} \left[\frac{k}{p}\right] + \left[\frac{2k}{p}\right] + \left[\frac{3k}{p}\right] \cdot \cdot \cdot \cdot + \left[\frac{\frac{1}{2}(p-1)k}{p}\right] \\ + \left[\frac{p}{k}\right] + \left[\frac{2p}{k}\right] + \left[\frac{3p}{k}\right] \cdot \cdot \cdot \cdot + \left[\frac{\frac{1}{2}(k-1)p}{k}\right] \end{array} \right\} = \frac{1}{4}(k-1)(p-1).$$

Demonstr. Supponendo, quod licet, k < p, erit $\frac{\frac{1}{2}(p-1)k}{p}$ minor quam $\frac{1}{2}k$, sed maior quam $\frac{1}{2}(k-1)$, adeoque $\left[\frac{\frac{1}{2}(p-1)k}{p}\right] = \frac{1}{2}(k-1)$. Hinc patet, theorema praesens ex praec. protinus sequi, statuendo illic $\frac{k}{p} = x$, $\frac{1}{2}(p-1) = n$, adeoque $\frac{1}{2}(k-1) = h$.

Ceterum simili modo demonstrari potest, si k fuerit numerus par ad p primus, fore

$$\begin{vmatrix} \left[\frac{k}{p}\right] + \left[\frac{2k}{p}\right] + \left[\frac{3k}{p}\right] \cdot \dots + \left[\frac{\frac{1}{2}(p-1)k}{p}\right] \\ + \left[\frac{p}{k}\right] + \left[\frac{2p}{k}\right] + \left[\frac{3p}{k}\right] \cdot \dots + \left[\frac{\frac{1}{2}kp}{k}\right] \end{vmatrix} = \frac{1}{2}k(p-1)$$

At huic propositioni ad institutum nostrum non necessariae non immoramur.

7.

Iam ex combinatione theorematis praec. cum propos. VIII. art. 4. theorema fundamentale protinus demanat. Nimirum denotantibus k, p numeros primos positivos inaequales quoscunque, et ponendo

$$(k, p) + \left[\frac{k}{p}\right] + \left[\frac{2k}{p}\right] + \left[\frac{3k}{p}\right] \cdot \cdot \cdot \cdot + \left[\frac{\frac{1}{2}(p-1)k}{p}\right] = L$$

$$(p, k) + \left[\frac{p}{k}\right] + \left[\frac{2p}{k}\right] + \left[\frac{3p}{k}\right] \cdot \cdot \cdot \cdot + \left[\frac{\frac{1}{2}(k-1)p}{k}\right] = M$$

per VIII. art. 4. patet, L et M semper fieri numeros pares. At per theorema art. 6. erit

$$L+M=(k, p)+(p, k)+1(k-1)(p-1)$$

Quoties igitur $\frac{1}{2}(k-1)(p-1)$ par evadit, quod fit, si vel uterque k, p vel saltem alteruter est formae 4n+1, necessario (k,p) et (p,k) vel ambo pares vel ambo impares esse debent. Quoties autem $\frac{1}{2}(k-1)(p-1)$ impar est, quod evenit, si uterque k, p est formae 4n+3, necessario alter numerorum (k,p), (p,k) par, alter impar esse debebit. In casu priori itaque relatio ipsius k ad p et relatio ipsius p ad k (quatenus alter alterius residuum vel non-residuum est) identicae erunt, in casu posteriori oppositae.

Q. E. D.

SUMMATIO

QUARUMDAM SERIERUM

SINGULARIUM

AUCTORE

CAROLO FRIDERICO GAUSS

EXHIBITA SOCIETATI D. XXIV. AUGUST. MDCCCVIII.

Commentationes societat	is regiae	scientiarum	Gottingensis	recentiores.	Vol.	I.
Gottingae MDCCCXI.						

П.

SUMMATIO

QUARUMDAM SERIERUM SINGULARIUM.

1.

Inter veritates insigniores, ad quas theoria divisionis circuli aditum aperuit, locum haud ultimum sibi vindicat summatio in Disquiss. Arithmet. art. 356 proposita, non modo propter elegantiam suam peculiarem, miramque foecunditatem, quam fusius exponendi occasionem posthac dabit alia disquisitio, sed ideo quoque, quod eius demonstratio rigorosa atque completa difficultatibus haud vulgaribus premitur. Quae sane eo minus exspectari debuissent, quum non tam in ipsum theorema cadant, quam potius in aliquam theorematis limitationem, qua neglecta demonstratio statim in promtu est, facillimeque e theoria in opere isto explicata derivatur. Theorema illic exhibitum est in forma sequente. Supponendo n esse numerum primum, denotandoque indefinite omnia residua quadratica ipsius n inter limites 1 et n-1 incl. sita per a, omniaque non-residua inter eosdem limites iacentia per b, denique per a arcum $\frac{360^{\circ}}{n}$, et per a integrum determinatum quemcunque per a non divisibilem, erit

I. pro valore ipsius n, qui est formae 4m+1,

$$\Sigma \cos akw = -\frac{1}{2} \pm \frac{1}{2} \sqrt{n}$$

$$\Sigma \cos bkw = -\frac{1}{2} \pm \frac{1}{2} \sqrt{n}, \text{ adecque}$$

$$\Sigma \cos akw - \Sigma \cos bkw = \pm \sqrt{n}$$

$$\Sigma \sin akw = 0$$

$$\Sigma \sin bkw = 0$$

II. pro valore ipsius n, qui est formae 4m + 3,

 $\Sigma \cos ak\omega = -\frac{1}{2}$ $\Sigma \cos bk\omega = -\frac{1}{2}$ $\Sigma \sin ak\omega = \pm \frac{1}{2} \sqrt{n}$ $\Sigma \sin bk\omega = \mp \frac{1}{2} \sqrt{n}$ $\Sigma \sin ak\omega - \Sigma \sin bk\omega = + \sqrt{n}$

Hae summationes l.c. omni rigore demonstratae sunt, neque alia difficultas hic remanet nisi in determinatione signi quantitati radicali praefigendi. Nullo quidem negotio ostendi potest, hoc signum eatenus a numero k pendere, quod semper pro cunctis valoribus ipsius k, qui sint residua quadratica ipsius n, signum idem valere debeat, et contra signum huic oppositum pro omnibus valoribus ipsius k, qui sint non-residua quadratica ipsius n. Hinc totum negotium in valore k=1 versabitur, patetque, quam primum signum pro hoc valore valens innotuerit, pro omnibus quoque reliquis valoribus ipsius k signa statim in promtu fore. Verum enim vero in hac ipsa quaestione, quae primo aspectu inter faciliores referenda videtur, in difficultates improvisas incidimus, methodusque, qua ducente sine impedimentis hucusque progressi eramus, auxilium ulterius prorsus denegat.

2.

Haud abs re erit, antequam ulterius progrediamur, quaedam exempla summationis nostrae per calculum numericum evolvisse: huic vero quasdam observationes generales praemittere conveniet.

I. Si in casu eo, ubi n est numerus primus formae 4m+1, omnia residua quadratica ipsius n inter 1 et $\frac{1}{2}(n-1)$ incl. iacentia indefinite per a' exhibentur, omniaque non-residua inter eosdem limites per b' constat, omnes n-a' inter ipsos a, omnesque n-b' inter b comprehensos fore: quamobrem quum omnes a', b', n-a', n-b' manifesto totum complexum numerorum $1, 2, 3 \ldots n-1$ expleant, omnes a' cum omnibus n-a' iuncti omnes a completentur, et perinde omnes b' cum omnibus n-b' iuncti omnes b' comprehendent. Hinc erit

$$\Sigma \cos ak\omega = \Sigma \cos a'k\omega + \Sigma \cos (n-a')k\omega$$

$$\Sigma \cos bk\omega = \Sigma \cos b'k\omega + \Sigma \cos (n-b')k\omega$$

$$\Sigma \sin ak\omega = \Sigma \sin a'kw + \Sigma \sin (n-a')k\omega$$

$$\Sigma \sin bk\omega = \Sigma \sin b'k\omega + \Sigma \sin (n-b')k\omega$$

Iam quum habeatur $\cos(n-a')k\omega = \cos a'k\omega$, $\cos(n-b')k\omega = \cos b'k\omega$, $\sin(n-a')k\omega = -\sin a'k\omega$, $\sin(n-b')k\omega = -\sin b'k\omega$, patet sponte fieri

$$\Sigma \sin a k \omega = \Sigma \sin a' k \omega - \Sigma \sin a' k \omega = 0$$

$$\Sigma \sin b k \omega = \Sigma \sin b' k \omega - \Sigma \sin b' k \omega = 0$$

Summatio cosinuum vero hanc formam assumit

$$\Sigma \cos ak\omega = 2\Sigma \cos ak\omega$$

$$\Sigma \cos bkw = 2\Sigma \cos bk\omega$$

unde fieri debebit

$$1 + 4 \sum \cos a'k\omega = \pm \sqrt{n}$$

$$1 + 4 \sum \cos b'k\omega = \mp \sqrt{n}$$

$$2 \sum \cos a'k\omega - 2 \sum \cos b'k\omega = \pm \sqrt{n}$$

II. In casu eo, ubi n est formae 4m+3, complementum cuiusvis residui a ad n erit non-residuum, complementum que cuiusvis b erit residuum; quocirca omnes n-a convenient cum omnibus b, omnesque n-b cum omnibus a. Hinc colligitur

$$\Sigma \cos ak\omega = \Sigma \cos (n-b)k\omega = \Sigma \cos bk\omega$$

quare quum omnes a et b iuncti omnes numeros $1, 2, 3, \ldots, n-1$ expleant, adeoque fiat $\sum \cos ak\omega + \sum \cos bk\omega = \cos k\omega + \cos 2k\omega + \cos 3k\omega + \cot + \cos(n-1)k\omega = -1$, summationes

$$\sum \cos ak\omega = -\frac{1}{4}$$

$$\sum \cos bk\omega = -\frac{1}{4}$$

sponte sunt obviae. Perinde erit

$$\Sigma \sin ak\omega = \sum \sin (n-b)k\omega = -\sum \sin bk\omega$$

unde patet, quomodo summationum

$$2 \sum \sin ak \omega = \pm \sqrt{n}$$
$$2 \sum \sin bk \omega = \mp \sqrt{n}$$

altera ab altera pendeat.

3.

Ecce iam computum numericum pro aliquot exemplis:

I. Pro n = 5 adest valor unus ipsius a', puta a' = 1, valorque unus ipsius b', puta b' = 2; est autem

$$\cos \omega = + 0.3090169944$$
 $\cos 2\omega = - 0.8090169944$ adeoque $1 + 4\cos \omega = + \sqrt{5}$, $1 + 4\cos 2\omega = - \sqrt{5}$.

II. Pro n = 13 adsunt tres valores ipsius a', puta 1, 3, 4, totidemque valores ipsius b', puta 2, 5, 6, unde computamus

$$\cos \omega = + 0.8854560257$$
 $\cos 2\omega = + 0.5680647467$
 $\cos 3\omega = + 0.1205366803$ $\cos 5\omega = - 0.7485107482$
 $\cos 4\omega = - 0.3546048870$ $\cos 6\omega = - 0.9709418174$
 $\cos 6\omega = - 0.9709418174$
 $\cos 6\omega = - 0.9709418174$

Hinc
$$1 + 4 \Sigma \cos a' \omega = + \sqrt{13}$$
, $1 + 4 \Sigma \cos b' \omega = - \sqrt{13}$.

III. Pro n = 17 habemus quatuor valores ipsius a', puta 1, 2, 4, 8, totidemque valores ipsius b', puta 3, 5, 6, 7. Hinc computantur cosinus

$$\cos \omega = + 0.9324722294$$
 $\cos 3\omega = + 0.4457383558$
 $\cos 2\omega = + 0.7390089172$ $\cos 5\omega = - 0.2736629901$
 $\cos 4\omega = + 0.0922683595$ $\cos 6\omega = - 0.6026346364$
 $\cos 8\omega = - 0.9829730997$ $\cos 7\omega = - 0.8502171357$
 $\cos 7\omega = - 0.8502171357$
 $\cos 7\omega = - 0.8502171357$

Hinc
$$1 + 4 \sum \cos a' \omega = + \sqrt{17}$$
, $1 + 4 \sum \cos b' \omega = - \sqrt{17}$.

IV. Pro n = 3 adest valor unicus ipsius a, puta a = 1, cui respondeț $\sin \omega = + 0.8660254038$

Hinc $2\sin\omega = +\sqrt{3}$.

V. Pro n = 7 adsunt valores tres ipsius a, puta 1, 2, 4: hinc habentur sinus

 $\sin \omega = + 0.7818314825$ $\sin 2 \omega = + 0.9749279122$ $\sin 4 \omega = - 0.4338837391$ $\overline{\text{Summa}} = + 1.3228756556$, adeoque $2 \Sigma \sin a \omega = + \sqrt{7}$.

VI. Pro n = 11 valores ipsius a sunt 1, 3, 4, 5, 9, quibus respondent sinus

 $\sin \omega = + 0.5406408175$ $\sin 3\omega = + 0.9898214419$ $\sin 4\omega = + 0.7557495744$ $\sin 5\omega = + 0.2817325568$ $\sin 9\omega = - 0.9096319954$ Summa = + 1.6583123952, et proin $2\Sigma \sin a\omega = + \sqrt{11}$.

- VII. Pro n = 19 valores ipsius a sunt 1, 4, 5, 6, 7, 9, 11, 16, 17, quibus respondent sinus

 $\sin \omega = + 0.3246994692$ $\sin 4\omega = + 0.9694002659$ $\sin 5\omega = + 0.9965844930$ $\sin 6\omega = + 0.9157733267$ $\sin 7\omega = + 0.7357239107$ $\sin 9\omega = + 0.1645945903$ $\sin 11\omega = - 0.4759473930$ $\sin 16\omega = - 0.8371664783$ $\sin 17\omega = - 0.6142127127$ Summa = + 2.1794494718, adeoque $2\Sigma \sin a\omega = +\sqrt{19}$.

4

In omnibus hisce exemplis quantitas radicalis signum positivum obtinet, idemque facile pro valoribus maioribus n=23, n=29 etc. confirmatur, unde fortis iam probabilitas oritur, hoc generaliter perinde se habere. Sed demonstratio huius phaenomeni e principiis l. c. expositis peti nequit, plenissimoque iure altioris indaginis aestimanda est. Propositum itaque huius commentationes eo tendit, ut demonstrationem rigorosam huius elegantissimi theorematis, per plures annos olim variis modis incassum tentatam, tandemque per considerationes singulares satisque subtiles feliciter perfectam in medium proferamus, simulque theorema ipsum salva seu potius aucta elegantia sua ad longe maiorem generalitatem evehamus. Coronidis denique loco nexum mirabilem arctissimum inter hanc summationem aliudque theorema arithmeticum gravissimum docebimus. Speramus, hasce disquisitiones non modo per se geometris gratas fore, sed methodos quoque, per quas haec omnia efficere licuit, quaeque in aliis quoque occasionibus utiles esse poterunt, ipsorum attentione dignas visum iri.

5.

Petita est demonstratio nostra e consideratione generis singularis progressionum, quarum termini pendent ab expressionibus talibus

$$\frac{(1-x^m) (1-x^{m-1}) (1-x^{m-2}) \dots (1-x^{m-\mu+1})}{(1-x) (1-xx) (1-x^{\ell}) \dots (1-x^{\mu})}$$

Brevitatis caussa talem fractionem per (m, μ) denotabimus, et primo quasdam observationes generales circa huiusmodi functiones praemittemus.

I. Quoties m est integer positivus minor quam μ , functio (m, μ) manifesto evanescit, numeratore factorem $1-x^0$ implicante. Pro $m=\mu$, factores in numeratore identici erunt ordine inverso cum factoribus in denominatore, unde erit $(\mu, \mu) = 1$: denique pro casu eo, ubi m est integer positivus maior quam μ , habentur formulae

$$(\mu + 1, \mu) = \frac{1 - x^{\mu + 1}}{1 - x} = (\mu + 1, 1)$$

$$(\mu + 2, \mu) = \frac{(1 - x^{\mu + 2})(1 - x^{\mu + 1})}{(1 - x)(1 - x^{\mu})} = (\mu + 2, 2)$$

$$(\mu + 3, \mu) = \frac{(1 - x^{\mu + 2})(1 - x^{\mu + 3})(1 - x^{\mu + 1})}{(1 - x)(1 - x^{\mu})(1 - x^{\mu})} = (\mu + 3, 3) \text{ etc.}$$

sive generaliter

$$(m, \mu) = (m, m - \mu)$$

II. Porro facile confirmatur, haberi generaliter

$$(m, \mu+1) = (m-1, \mu+1) + x^{m-\mu-1} (m-1, \mu)$$

quamobrem, quum perinde sit

$$(m-1, \mu+1) = (m-2, \mu+1) + x^{m-\mu-2}(m-2, \mu)$$

$$(m-2, \mu+1) = (m-3, \mu+1) + x^{m-\mu-3}(m-3, \mu)$$

$$(m-3, \mu+1) = (m-4, \mu+1) + x^{m-\mu-4}(m-4, \mu), \text{ etc.}$$

quae series continuari poterit usque ad

$$(\mu + 2, \mu + 1) = (\mu + 1, \mu + 1) + x(\mu + 1, \mu)$$

= $(\mu, \mu) + x(\mu + 1, \mu)$

siquidem m est integer positivus maior quam $\mu+1$, erit

$$(m, \mu+1) = (\mu, \mu) + x(\mu+1, \mu) + xx(\mu+2, \mu) + x^3(\mu+3, \mu) + \text{etc.} + x^{m-\mu-1}(m-1, \mu)$$

Hinc patet, si pro aliquo valore determinato ipsius μ quaevis functio (m,μ) integra sit, existente m integro positivo, etiam quamvis functionem $(m,\mu+1)$ integram evadere debere. Quare quum suppositio illa pro $\mu=1$ locum habeat, eadem etiam pro $\mu=2$ valebit, atque hinc etiam pro $\mu=3$ etc., i. e. generaliter pro valore quocunque integro positivo ipsius m erit (m,μ) functio integra, sive productum

$$(1-x^m)(1-x^{m-1})(1-x^{m-2})\ldots(1-x^{m-\mu+1})$$

divisibile per

$$(1-x)(1-x^2)(1-x^3)...(1-x^{\mu})$$

6.

Duas iam progressiones considerabimus, quae ambae ad scopum nostrum ducere possunt. Progressio prima haec est

11.

$$1 - \frac{1 - x^{m}}{1 - x} + \frac{(1 - x^{m})(1 - x^{m-1})}{(1 - x)(1 - x x)} - \frac{(1 - x^{m})(1 - x^{m-1})(1 - x^{m-2})}{(1 - x)(1 - x x)(1 - x^{n})} + \text{etc.}$$

sive

$$1-(m, 1)+(m, 2)-(m, 3)+(m, 4)$$
 etc.

quam brevitatis caussa per f(x, m) denotabimus. Primo statim obvium est, quoties m sit numerus integer positivus, hanc seriem post terminum suum m+1 tum (qui fit $= \pm 1$) abrumpi, adeoque in hoc casu summam fieri debere functionem finitam integram ipsius x. Porro per art. 5. II. patet, generaliter pro valore quocunque ipsius m haberî

$$1 = 1$$

$$-(m, 1) = -(m-1, 1) - x^{m-1}$$

$$+(m, 2) = +(m-1, 2) + x^{m-2}(m-1, 1)$$

$$-(m, 3) = -(m-1, 3) - x^{m-3}(m-1, 2), \text{ etc.}$$

adeoque

$$f(x,m) = 1 - x^{m-1} - (1 - x^{m-2})(m-1,1) + (1 - x^{m-3})(m-1,2) - (1 - x^{m-4})(m-1,3) + \text{etc.}$$

Sed manifesto fit

$$(1-x^{m-2})(m-1,1) = (1-x^{m-1})(m-2,1)$$

$$(1-x^{m-3})(m-1,2) = (1-x^{m-1})(m-2,2)$$

$$(1-x^{m-4})(m-1,3) = (1-x^{m-1})(m-2,3), \text{ etc.}$$

unde deducimus aequationem

$$f(x,m) = (1-x^{m-1})f(x, m-2)$$
 [1]

7

Quum pro m=0 fiat f(x,m)=1, per formulam modo inventam erit

$$f(x, 2) = 1-x$$

$$f(x, 4) = (1-x)(1-x^3)$$

$$f(x, 6) = (1-x)(1-x^3)(1-x^5)$$

$$f(x, 8) = (1-x)(1-x^3)(1-x^5)(1-x^7), \text{ etc.}$$

sive generaliter pro valore quocunque pari ipsius m

$$f(x,m) = (1-x)(1-x^3)(1-x^5)\dots(1-x^{m-1}) \dots (2)$$

Contra quum pro m=1 fiat f(x, m)=0, erit etiam f(x,3)=0 f(x,5)=0 f(x,7)=0 etc.

sive generaliter pro valore quocunque impari ipsius m

$$f(x, m) = 0$$

Ceterum summatio posterior iam inde derivari potuisset, quod in progressione

$$1-(m, 1)+(m, 2)-(m, 3)+\text{etc.}+(m, m-1)-(m, m)$$

terminus ultimus primum destruit, penultimus secundum etc.

8

Ad scopum quidem nostrum sufficit casus is, ubi m est integer positivus impar: sed propter rei singularitatem etiam de casibus iis, ubi m vel fractus vel negativus est, pauca adiecisse haud poenitebit. Manifesto tunc series nostra haud amplius abrumpetur, sed in infinitum excurret, facileque insuper perspicitur, divergentem eam fieri, quoties ipsi x valor minor quam 1 tribuatur, quapropter ipsius summatio ad valores ipsius x qui sint maiores quam 1 restringi debebit.

Per formulam [1] art. 6. habemus

$$f(x,-2) = \frac{1}{1-\frac{1}{x}}$$

$$f(x,-4) = \frac{1}{1-\frac{1}{x}} \cdot \frac{1}{1-\frac{1}{x^8}}$$

$$f(x,-6) = \frac{1}{1-\frac{1}{x}} \cdot \frac{1}{1-\frac{1}{x^8}} \cdot \frac{1}{1-\frac{1}{x^8}}, \text{ etc.}$$

ita ut valor functionis f(x, m) etiam pro valore negativo integro pari ipsius m in terminis finitis assignabilis sit. Pro reliquis vero valoribus ipsius m functionem f(x, m) in productum infinitum sequenti modo convertemus.

Crescente m in valorem negativum infinitum, functio f(x, m) transit in

$$1 + \frac{1}{x-1} + \frac{1}{x-1} \cdot \frac{1}{xx-1} + \frac{1}{x-1} \cdot \frac{1}{xx-1} \cdot \frac{1}{x^2-1} + \text{etc.}$$

Haec itaque series aequalis est producto infinito

$$\frac{1}{1-\frac{1}{x}} \cdot \frac{1}{1-\frac{1}{x^2}} \cdot \frac{1}{1-\frac{1}{x^2}} \cdot \frac{1}{1-\frac{1}{x^7}}$$
 etc. in infin.

Porro quum generaliter sit

$$f(x,m) = f(x,m-2\lambda) \cdot (1-x^{m-1}) (1-x^{m-3}) (1-x^{m-3}) \cdot (1-x^{m-3}) \cdot (1-x^{m-2\lambda+1})$$

erit

$$f(x,m) = f(x,-\infty) \cdot (1-x^{m-1})(1-x^{m-3})(1-x^{m-5}) \text{ etc. in infin.}$$

$$= \frac{1-x^{m-1}}{1-x^{-1}} \cdot \frac{1-x^{m-3}}{1-x^{-2}} \cdot \frac{1-x^{m-5}}{1-x^{-5}} \cdot \frac{1-x^{m-7}}{1-x^{-7}} \text{ etc. in infin.}$$

quos factores tandem continuo magis ad unitatem convergere palam est.

Attentionem peculiarem meretur casus m = -1, ubi fit

$$f(x,-1) = 1 + x^{-1} + x^{-3} + x^{-6} + x^{-10} + \text{etc.}$$

Haec itaque series aequatur producto infinito

$$\frac{1-x^{-1}}{1-x^{-1}} \cdot \frac{1-x^{-4}}{1-x^{-3}} \cdot \frac{1-x^{-4}}{1-x^{-3}} \text{ etc.}$$

sive scribendo x pro x^{-1} , erit

$$1 + x + x^3 + x^6 + \text{ etc.} = \frac{1 - xx}{1 - x} \cdot \frac{1 - x^6}{1 - x^5} \cdot \frac{1 - x^6}{1 - x^7} \cdot \frac{1 - x^6}{1 - x^7} \text{ etc.}$$

Haec aequalitas inter duas expressiones abstrusiores, ad quas alia occasione reveniemus, valde sane est memorabilis.

9

Secundo loco considerabimus progressionem hancce

$$1 + x^{\frac{1}{2}} + x + x + \frac{(1-x^{m})(1-x^{m-1})}{(1-x)(1-xx)} + x^{\frac{3}{2}} + \frac{(1-x^{m})(1-x^{m-1})(1-x^{m-2})}{(1-x)(1-xx)(1-x^{2})} + \text{etc.}$$

sive

$$1 + x^{\frac{1}{2}}(m, 1) + x(m, 2) + x^{\frac{3}{2}}(m, 3) + xx(m, 4) + \text{etc.}$$

quam per F(x, m) denotabimus. Restringemus hanc disquisitionem ad casum eum, ubi m est integer positivus, ita ut haec quoque series semper abrumpatur

cum termino $m+1^{to}$, qui est $=x^{4m}(m,m)$. Quum sit

$$(m,m) = 1, (m,m-1) = (m,1), (m,m-2) = (m,2), etc.$$

progressio ita quoque exhiberi poterit:

$$F(x,m) = x^{\frac{1}{4}m} + x^{\frac{1}{4}(m-1)}(m,1) + x^{\frac{1}{4}(m-2)}(m,2) + x^{\frac{1}{4}(m-3)}(m,3) + \text{etc.}$$

Hinc fit

$$(1+x^{\frac{1}{2}m+\frac{1}{2}})F(x,m) = 1+x^{\frac{1}{2}}(m,1)+x(m,2)+x^{\frac{1}{2}}(m,3)+\text{ etc.}$$
$$+x^{\frac{1}{2}}x^{m}+x.x^{m-1}(m,1)+x^{\frac{1}{2}}.x^{m-2}(m,2)+\text{ etc.}$$

Quare quum habeatur (art. 5. II)

$$(m, 1) + x^m = (m+1, 1)$$

 $(m, 2) + x^{m-1}(m, 1) = (m+1, 2)$
 $(m, 3) + x^{m-2}(m, 2) = (m+1, 3)$, etc.

provenit

Sed fit F(x,0) = 1: quamobrem erit

$$F(x, 1) = 1 + x^{\frac{1}{2}}$$

$$F(x, 2) = (1 + x^{\frac{1}{2}})(1 + x)$$

$$F(x, 3) = (1 + x^{\frac{1}{2}})(1 + x)(1 + x^{\frac{1}{2}}), \text{ etc.}$$

sive generaliter

$$F(x,m) = (1+x^{\frac{1}{2}})(1+x)(1+x^{\frac{1}{2}})\dots(1+x^{\frac{1}{2}m}) \qquad (1+x^{\frac{1}{2}m})$$

10

Praemissis hisce disquisitionibus praeliminaribus iam propius ad propositum nostrum accedamus. Quum pro valore primo ipsius n quadrata $1, 4, 9 \dots (\frac{1}{2}(n-1))^2$ omnia inter se incongrua sint secundum modulum n, patet, illorum residua minima secundum hunc modulum cum numeris a identica esse debere, adeoque

$$\sum \cos ak\omega = \cos k\omega + \cos 4k\omega + \cos 9k\omega + \text{etc.} + \cos (\frac{1}{2}(n-1))^2 k\omega$$

$$\sum \sin ak\omega = \sin k\omega + \sin 4k\omega + \sin 9k\omega + \text{etc.} + \sin (\frac{1}{2}(n-1))^2 k\omega$$

Perinde quum eadem quadrata 1, 4, 9 $(\frac{1}{2}(n-1))^2$ ordine inverso congrua sint his $(\frac{1}{2}(n+1))^2$, $(\frac{1}{2}(n+3))^2$, $(\frac{1}{2}(n+5))^3$ $(n-1)^2$, etiam erit

$$\sum \cos ak\omega = \cos (\frac{1}{2}(n+1))^2 k\omega + \cos (\frac{1}{2}(n+3))^2 k\omega + \text{etc.} + \cos (n-1)^2 k\omega$$

$$\sum \sin ak\omega = \sin (\frac{1}{2}(n+1))^2 k\omega + \sin (\frac{1}{2}(n+3))^2 k\omega + \text{etc.} + \sin (n-1)^2 k\omega$$

Statuendo itaque

$$T = 1 + \cos k\omega + \cos 4k\omega + \cos 9k\omega + \text{etc.} + \cos (n-1)^2 k\omega$$

$$U = \sin k\omega + \sin 4k\omega + \sin 9k\omega + \text{etc.} + \sin (n-1)^2 k\omega$$

erit

$$1 + 2\sum \cos ak \omega = T$$
$$2\sum \sin ak \omega = U$$

Hinc patet, summationes, quales in art. 1. propositae sunt, pendere a summatione serierum T et U, quocirca, missis illis, disquisitionem nostram his adaptabimus, eaque generalitate absolvemus, ut non modo valores primos ipsius n, sed quoscunque compositos complectatur. Numerum k autem supponemus ad n primum esse: nullo enim negotio casus is, ubi k et n divisorem communem haberent, ad hunc reduci poterit.

11.

Designemus quantitatem imaginariam $\sqrt{-1}$ per i, statuamusque

$$\cos k\omega + i\sin k\omega = r$$

unde erit $r^n = 1$, sive r radix aequation is $r^n - 1 = 0$. Facile perspicietur, omnes numeros $k, 2k, 3k \dots (n-1)k$ per n non divisibiles at que inter se secundum modulum n incongruos esse: hinc potestates ipsius r

$$1, r, rr, r^3 \ldots r^{n-1}$$

omnes erunt inaequales, singulae vero quoque aequationi $x^n-1=0$ satisfacient. Hanc ob caussam hae potestates omnes radices aequationis $x^n-1=0$ repraesentabunt.

Hae conclusiones non valerent, si k divisorem communem haberet cum n. Si enim ν esset talis divisor communis, foret $k \cdot \frac{n}{\nu}$ per n divisibilis, adeoque potestas inferior quam r^n , puta $r^{\frac{n}{\nu}}$, unitati aequalis. In hoc itaque casu potestates ipsius r ad summum $\frac{n}{\nu}$ radices aequationis $x^n-1=0$ exhibebunt, et quidem revera tot radices diversas sistent, si ν est divisor communis maximus nume-

rorum k, n. In casu nostro, ubi k et n supponuntur inter se primi, r commode dici potest radix propria aequationis $x^n-1=0$: contra in casu altero, ubi k et n haberent divisorem communem (maximum) v, r vocaretur radix impropria illius aequationis, manifesto autem tunc eadem r foret radix propria aequationis $x^{\frac{n}{v}}-1=0$. Radix impropria simplicissima est unitas, in eoque casu, ubi n est numerus primus, impropriae aliae omnino non dabuntur.

12.

Quodsi iam statuimus

$$W = 1 + r + r^4 + r^9 + \text{etc.} + \text{etc.}^* + r^{(n-1)^3}$$

patet fieri W = T + iU, adeoque T esse partem realem ipsius W, atque U prodire ex parte imaginaria ipsius W factore i suppresso. Totum itaque negotium reducitur ad inventionem summae W: ad hunc finem vel series in art. 6 considerata, vel ea quam in art. 9 summare docuimus, adhiberi potest, prior tamen minus idonea est in casu eo, ubi n est numerus par. Nihilominus lectoribus gratum fore speramus, si casum eum, ubi n impar.est, secundum methodum duplicem tractemus.

Supponamus itaque primo, n esse numerum imparem, r designare radicem propriam aequationis $x^n-1=0$ quamcunque, et in functione f(x,m) statui x=r, atque m=n-1. Hinc patet fieri

$$\frac{\frac{1-x^{m}}{1-x}}{\frac{1-r}{1-r}} = \frac{1-r^{-1}}{1-r} = -r^{-1}$$

$$\frac{\frac{1-x^{m-1}}{1-xx}}{\frac{1-x^{m}}{1-x^{3}}} = \frac{\frac{1-r^{-3}}{1-r^{3}}}{\frac{1-r^{-3}}{1-r^{3}}} = -r^{-3}, \text{ etc.}$$

usque ad

$$\frac{1-x}{1-x^m} = \frac{1-r^{-m}}{1-r^m} = -r^{-m}$$

(Haud superfluum erit monere, has aequationes eatenus tantum valere, quatenus r supponitur radix propria: si enim esset r radix impropria, in quibusdam illarum fractionum numerator et denominator simul evanescerent, adeoque fractiones indeterminatae fierent).

Hinc deducimus aequationem sequentem

$$f(r,n-1) = 1 + r^{-1} + r^{-3} + r^{-6} + \text{etc.} + r^{-\frac{1}{2}(n-1)n}$$
$$= (1-r)(1-r^{3})(1-r^{5})\dots(1-r^{n-2})$$

Eadem aequatio etiamnum valebit, si pro r substituitur r^{λ} , designante λ integrum quemcunque ad n primum: tunc enim etiam r^{λ} erit radix propria aequationis $x^n-1=0$. Scribamus itaque pro r, r^{n-2} sive quod idem est r^{-2} , eritque

$$1+r^2+r^6+r^{12}+\text{etc.}+r^{(n-1)n}=(1-r^{-2})(1-r^{-6})(1-r^{-10})\dots(1-r^{-2(n-2)})$$

Multiplicemus utramque partem huius aequationis per

$$r \cdot r^3 \cdot r^5 \cdot \dots r^{(n-2)} = r^{\frac{1}{4}(n-1)^2}$$

prodibitque, propter

$$r^{2+\frac{1}{4}(n-1)^{2}} = r^{\frac{1}{4}(n-3)^{2}}, \qquad r^{(n-1)n+\frac{1}{4}(n-1)^{2}} = r^{\frac{1}{4}(n+1)^{2}}$$

$$r^{6+\frac{1}{4}(n-1)^{2}} = r^{\frac{1}{4}(n-5)^{2}}, \qquad r^{(n-2)(n-1)+\frac{1}{4}(n-1)^{2}} = r^{\frac{1}{4}(n+3)^{2}}$$

$$r^{12+\frac{1}{4}(n-1)^{2}} = r^{\frac{1}{4}(n-7)^{2}}, \qquad r^{(n-3)(n-2)+\frac{1}{4}(n-1)^{2}} = r^{\frac{1}{4}(n+5)^{2}}, \text{ etc.}$$

aequatio sequens

$$r^{\frac{1}{4}(n-1)^{2}} + r^{\frac{1}{4}(n-3)^{2}} + r^{\frac{1}{4}(n-5)^{2}} + \text{etc.} + r + 1$$

$$+ r^{\frac{1}{4}(n+1)^{2}} + r^{\frac{1}{4}(n+8)^{2}} + r^{\frac{1}{4}(n+5)^{2}} + \text{etc.} + r^{\frac{1}{4}(2n-2)^{2}}$$

$$= (r - r^{-1})(r^{3} - r^{-3})(r^{5} - r^{-5}) \cdot \dots \cdot (r^{n-2} - r^{-n+2})$$

aut, partibus membri primi aliter dispositis,

$$1+r+r^4+\text{etc.}+r^{(n-1)^2}=(r-r^{-1})(r^3-r^{-3})\ldots(r^{n-2}-r^{-n+2})$$

13.

Factores membri secundi aequationis [5] ita quoque exhiberi possunt

$$r - r^{-1} = -(r^{n-1} - r^{-n+1})$$

$$r^{3} - r^{-3} = -(r^{n-3} - r^{-n+3})$$

$$r^{5} - r^{-5} = -(r^{n-5} - r^{-n+5}), \text{ etc.}$$

usque ad

$$r^{n-2}-r^{-n+2}=-(r^2-r^{-2})$$

quo pacto aequatio ista hanc formam assumit:

$$W = (-1)^{\frac{1}{2}(n-1)}(r^2-r^{-2})(r^4-r^{-4})(r^6-r^{-6}) \cdot \dots \cdot (r^{n-1}-r^{-n+1})$$

Multiplicando hanc aequationem per [5] in forma primitiva, prodit

$$W^2 = (-1)^{\frac{1}{2}(n-1)}(r-r^{-1})(r^2-r^{-2})(r^3-r^{-3})\dots(r^{n-1}-r^{-n+1})$$

ubi $(-1)^{\frac{1}{2}(n-1)}$ est vel = +1 vel = -1, prout n est formae $4\mu+1$, vel formae $4\mu+3$. Hinc

$$W^{2} = \pm r^{\frac{1}{2}n(n-1)}(1-r^{-2})(1-r^{-4})(1-r^{-6})\dots(1-r^{-2(n-1)})$$

Sed nullo negotio perspicitur, r^{-2} , r^{-4} , r^{-6} ... r^{-2n+2} exhibere omnes radices aequationis $x^n-1=0$, radice x=1 excepta, unde locum habere debebit aequatio identica indefinita

$$(x-r^{-2})(x-r^{-4})(x-r^{-6})\dots(x-r^{-2n+2})=x^{n-1}+x^{n-2}+x^{n-3}+\text{etc.}+x+1$$

Quamobrem statuendo x = 1, fiet

$$(1-r^{-2})(1-r^{-4})(1-r^{-6})\dots(1-r^{-2n+2})=n$$

et quum manifesto sit $r^{\frac{1}{2}n(n-1)} = 1$, aequatio nostra transit in hanc

$$W^2 = \pm n \ldots \ldots \ldots$$
 [6]

In casu itaque eo, ubi n est formae $4\mu+1$, fiet

$$W = \pm \sqrt{n}$$
, et proin $T = \pm \sqrt{n}$, $U = 0$

Contra in casu altero, ubi n est formae $4\mu + 3$, fiet

$$W = \pm i \sqrt{n}$$
, adeoque $T = 0$, $U = \pm \sqrt{n}$

14.

Methodus art. praec. valorem tantummodo absolutum aggregatorum T, U assignat, ambiguumque linquit, utrum statuere oporteat T in casu priori atque U in casu posteriori $= +\sqrt{n}$, an $= -\sqrt{n}$. Hoc autem, saltem pro casu eo ubi k = 1, ex aequatione [5] sequenti modo decidere licebit. Quum sit, pro k = 1,

П.

$$r-r^{-1} = 2 i \sin \omega$$

$$r^{3}-r^{-3} = 2 i \sin 3 \omega$$

$$r^{5}-r^{-5} = 2 i \sin 5 \omega \text{ etc.}$$

aequatio ista transmutatur in

$$W = (2 i)^{\frac{1}{2}(n-1)} \sin \omega \sin 3 \omega \sin 5 \omega \dots \sin (n-2) \omega$$

Iam in casu eo, ubi n est formae $4\mu+1$, in serie numerorum imparium

1, 3, 5, 7
$$\frac{1}{2}(n-3)$$
, $\frac{1}{2}(n+1)$ $(n-2)$

reperiuntur $\frac{1}{2}(n-1)$, qui sunt minores quam $\frac{1}{2}n$, hisque manifesto respondent sinus positivi; contra reliqui $\frac{1}{2}(n-1)$ erunt maiores quam $\frac{1}{2}n$, hisque sinus negativi respondebunt: quapropter productum omnium sinuum statuendum est aequale producto e quantitate positiva in multiplicatorem $(-1)^{\frac{1}{2}(n-1)}$, adeoque W aequalis erit producto e quantitate reali positiva in i^{n-1} sive in 1, quoniam i^{n-1} atque n-1 per 4 divisibilis: i. e. quantitas W erit realis positiva, unde necessario esse debebit

$$W = +\sqrt{n}, T = +\sqrt{n}$$

In casu altero, ubi n est formae $4\mu+3$ in serie numerorum imparium

1, 3, 5, 7
$$\frac{1}{2}(n-1)$$
, $\frac{1}{2}(n+3)$ $(n-2)$

priores $\frac{1}{4}(n+1)$ erunt minores quam $\frac{1}{4}n$, reliqui $\frac{1}{4}(n-3)$ autem maiores. Hinc inter sinus arcuum ω , 3ω , 5ω $(n-2)\omega$ negativi erunt $\frac{1}{4}(n-3)$, adeoque W erit productum ex $i^{\frac{1}{4}(n-1)}$ in quantitatem realem positivam in $(-1)^{\frac{1}{4}(n-3)}$; factor tertius est $=i^{\frac{1}{4}(n-3)}$, qui cum primo iunctus producit $i^{n-2}=i$, quoniam $i^{n-3}=1$. Quamobrem necessario erit

$$W = +i\sqrt{n}$$
, atque $U = +\sqrt{n}$

15.

Iam ostendemus, quo pacto eaedem conclusiones e progressione in art. 9 considerata deduci possint. Scribamus in aequ. [4] pro x^{4} , $-y^{-1}$, eritque

$$1-y^{-1} \frac{1-y^{-2m}}{1-y^{-3}} + y^{-2} \frac{(1-y^{-2m})(1-y^{-2m+3})}{(1-y^{-3})(1-y^{-4})} - y^{-3} \frac{(1-y^{-2m})(1-y^{-2m+3})(1-y^{-2m+4})}{(1-y^{-3})(1-y^{-4})(1-y^{-3})} + \text{etc.}$$

usque ad terminum m+1 tum

$$= (1-y^{-1})(1+y^{-2})(1-y^{-3})(1+y^{-4}) \dots (1+y^{-m}) \dots [7]$$

Quodsi hic pro y accipitur radix propria aequationis $y^n-1=0$, puta r, atque simul statuitur m=n-1, erit

$$\frac{1-y^{-9m}}{1-y^{-8}} = \frac{1-r^{8}}{1-r^{-8}} = -r^{2}$$

$$\frac{1-y^{-9m+8}}{1-y^{-4}} = \frac{1-r^{4}}{1-r^{-4}} = -r^{4}$$

$$\frac{1-y^{-9m+4}}{1-y^{-6}} = \frac{1-r^{6}}{1-r^{-6}} - r^{6}$$

usque ad

$$\frac{1-y^{-3}}{1-y^{-3m}} = \frac{1-r^{2n-3}}{1-r^{-2n+3}} = -r^{2n-2}$$

ubi notandum, nullum denominatorum $1-r^{-2}$, $1-r^{-4}$ etc. fieri = 0. Hinc aequatio [7] hancce formam assumit

$$1+r+r^4+r^9+$$
 etc. $+r^{(n-1)^3}=(1-r^{-1})(1+r^{-2})(1-r^{-3})...(1+r^{-n+1})$

Multiplicando in membro secundo huius aequationis terminum primum per ultimum, secundum per penultimum etc., habemus

$$(1-r^{-1})(1+r^{-n+1}) = r-r^{-1}$$

$$(1+r^{-2})(1-r^{-n+2}) = r^{n-2}-r^{-n+2}$$

$$(1-r^{-3})(1+r^{-n+3}) = r^{3}-r^{-3}$$

$$(1+r^{-4})(1-r^{-n+4}) = r^{n-4}-r^{-n+4} \text{ etc.}$$

Ex his productis partialibus facile perspicietur conflari productum

$$(r-r^{-1})(r^3-r^{-3})(r^5-r^{-5}) \cdot \cdot \cdot \cdot (r^{n-4}-r^{-n+4})(r^{n-2}-r^{-n+2})$$

quod itaque erit

$$=1+r+r^4+r^9+\text{etc.}+r^{(n-1)^6}=W$$

Haec aequatio identica est cum aequ. [5] in art. 12 e progressione prima derivata, ratiociniaque dein reliqua eodem modo adstruentur, ut in artt. 13 et 14.

16.

Transimus ad casum alterum, ubi n est numerus par. Sit primo n formae $4\mu+2$ sive impariter par, patetque, numeros $\frac{1}{4}nn$, $(\frac{1}{4}n+1)^2-1$, $(\frac{1}{4}n+2)^2-4$ etc. sive generaliter $(\frac{1}{4}n+\lambda)^2-\lambda\lambda$ per $\frac{1}{4}n$ divisos producere quotientes impares, adeoque secundum modulum n congruos fieri ipsi $\frac{1}{4}n$. Hinc colligitur, si r sit radix propria aequationis $x^n-1=0$, adeoque $r^{\frac{1}{4}n}=-1$, fieri

$$r^{(\frac{1}{2}n)^{3}} = -1$$
 $r^{(\frac{1}{2}n+1)^{3}} = -r$
 $r^{(\frac{1}{2}n+2)^{3}} = -r^{4}$
 $r^{(\frac{1}{2}n+2)^{3}} = -r^{9}$ etc.

Hinc in progressione

$$1+r+r^4+r^9+\text{etc.}+r^{(n-1)^2}$$

terminus $r^{(\frac{1}{2}n)^2}$ destruct primum, sequens secundum etc., adeoque erit

$$W = 0$$
, $T = 0$, $U = 0$

17.

Superest casus, ubi n est formae 4μ sive pariter par. Hic generaliter $(\frac{1}{4}n + \lambda)^2 - \lambda\lambda$ divisibilis erit per n, adeoque

$$r^{(\frac{1}{2}n+\lambda)^2}=r^{\lambda\lambda}$$

Hinc in serie

$$1+r+r^4+r^9+\text{etc.}+r^{(n-1)^2}$$

terminus $r^{(\frac{1}{2}n)^2}$ aequalis erit primo, sequens secundo etc., ita ut fiat

$$W = 2(1+r+r^4+r^9+\text{etc.}+r^{(\frac{1}{2}n-1)^2})$$

Iam supponamus, in aequ. [7] art. 15 statui $m = \frac{1}{2}n-1$, et pro y accipi radicem propriam aequationis $y^n-1 = 0$, puta r. Tunc perinde ut in art. 15 aequatio sequentem formam obtinet:

$$1+r+r^4+\text{etc.}+r^{(\frac{1}{2}n-1)^2}=(1-r^{-1})(1+r^{-2})(1-r^{-3})\ldots(1-r^{-\frac{1}{2}n+1})$$

sive

$$W = 2(1-r^{-1})(1+r^{-2})(1-r^{-3})(1+r^{-4})\dots(1-r^{-\frac{1}{2}n+1}) \quad . \quad . \quad [8]$$

Porro quum sit $r^{in} = -1$, adeoque

$$\begin{aligned} 1 + r^{-2} &= -r^{\frac{1}{2}n-2} \left(1 - r^{-\frac{1}{2}n+2} \right) \\ 1 + r^{-4} &= -r^{\frac{1}{2}n-4} \left(1 - r^{-\frac{1}{2}n+4} \right) \\ 1 + r^{-6} &= -r^{\frac{1}{2}n-6} \left(1 - r^{-\frac{1}{2}n+6} \right) \text{ etc.} \end{aligned}$$

productumque e factoribus $-r^{\frac{1}{2}n-2}$, $-r^{\frac{1}{2}n-4}$, $-r^{\frac{1}{2}n-6}$ etc. usque ad $-r^2$ fiat $=(-1)^{\frac{1}{2}n-1} r^{\frac{1}{2}nn-\frac{1}{2}n}$, aequatio praecedens ita quoque exhiberi potest

$$W = 2(-1)^{\frac{1}{4}n-1} r^{\frac{1}{4}nn-\frac{1}{2}n} (1-r^{-1})(1-r^{-2})(1-r^{-3})(1-r^{-4}) \dots (1-r^{-\frac{1}{4}n+1})$$

Quum habeatur

$$1-r^{-1} = -r^{-1} (1-r^{-n+1})$$

$$1-r^{-2} = -r^{-2} (1-r^{-n+2})$$

$$1-r^{-3} = -r^{-3} (1-r^{-n+3}) \text{ etc.}$$

erit

$$(1-r^{-1})(1-r^{-2})(1-r^{-3})\dots(1-r^{-\frac{1}{2}n+1})$$

$$= (-1)^{\frac{1}{2}n-1} r^{-\frac{1}{2}nn+\frac{1}{2}n} (1-r^{-\frac{1}{2}n-1})(1-r^{-\frac{1}{2}n-2})(1-r^{-\frac{1}{2}n-3})\dots(1-r^{-n+1})$$
adeoque

$$W = 2(-1)^{\frac{2}{4}n-2} r^{-\frac{1}{4}nn} (1-r^{-\frac{1}{4}n-1}) (1-r^{-\frac{1}{4}n-2}) (1-r^{-\frac{1}{4}n-3}) \dots (1-r^{-n+1})$$

Multiplicando hunc valorem ipsius W per prius inventum, adiungendoque utrimque factorem $1-r^{-\frac{1}{2}n}$, prodit

$$(1-r^{-\frac{1}{2}n})W^{2} = 4 (-1)^{n-3} r^{-\frac{1}{2}n} (1-r^{-1}) (1-r^{-2}) (1-r^{-3}) \dots (1-r^{-n+1})$$

Sed fit

$$1-r^{-\frac{1}{2}n} = 2$$

$$(-1)^{n-3} = -1$$

$$r^{-\frac{1}{2}n} = -r^{\frac{1}{2}n}$$

$$(1-r^{-1})(1-r^{-2})(1-r^{-3}) \dots (1-r^{-n+1}) = n$$

Unde tandem concluditur

$$W^2 = 2r^{4n}n \quad . \quad . \quad . \quad . \quad . \quad . \quad [9]$$

Iam facile perspicietur. r^{in} esse vel = +i vel = -i, prout scilicet k vel formae $4\mu+1$ sit, vel formae $4\mu+3$. Et quum sit

$$2i = (1+i)^2, -2i = (1-i)^2$$

erit in casu eo, ubi k est formae $4\mu+1$,

$$W = \pm (1+i)\sqrt{n}$$
, adeoque $T = U = \pm \sqrt{n}$

in casu altero autem, ubi k est formae $4\mu + 3$

$$W = \pm (1-i)\sqrt{n}$$
, adeoque $T = -U = \pm \sqrt{n}$

18.

Methodus art. praec. valores absolutos functionum T, U suppeditavit, conditionesque assignavit, sub quibus signa aequalia vel opposita illis tribuenda sint: sed signa ipsa hinc nondum determinantur. Hoc pro eo casu, ubi statuitur k=1, sequenti modo supplebimus.

Statuamus $\rho = \cos \frac{1}{2}\omega + i\sin \frac{1}{2}\omega$, ita ut fiat $r = \rho\rho$, patetque, propter $\rho^n = -1$ aequationem [8] ita exhiberi posse

$$W = 2(1+\rho^{n-2})(1+\rho^{-4})(1+\rho^{n-6})(1+\rho^{-8})\dots(1+\rho^{-n+4})(1+\rho^{3})$$

sive factoribus alio ordine dispositis

$$W = 2(1+\rho^2)(1+\rho^{-4})(1+\rho^6)(1+\rho^{-8})\dots(1+\rho^{-n+4})(1+\rho^{n-2})$$

Iam fit

$$\begin{array}{rcl}
 & & = 2 \rho \cos \frac{1}{2} \omega \\
 & & + \rho^{-4} & = 2 \rho^{-2} \cos \omega \\
 & & + \rho^{+6} & = 2 \rho^{3} \cos \frac{3}{2} \omega \\
 & & + \rho^{-8} & = 2 \rho^{-4} \cos 2 \omega, \text{ etc.}
 \end{array}$$

usque ad

$$1+\rho^{-n+4} = 2\rho^{-\frac{1}{2}n+2}\cos(\frac{1}{4}n-1)\omega$$

$$1+\rho^{n-2} = 2\rho^{\frac{1}{2}n-1}\cos(\frac{1}{4}n-\frac{1}{4})\omega$$

Quamobrem habetur

$$W = 2^{\frac{1}{n}} \rho^{\frac{1}{n}} \cos \frac{1}{2} \omega \cos \omega \frac{1}{2} \omega \ldots \cos (\frac{1}{2} n - \frac{1}{2}) \omega$$

Cosinus in hoc productum ingredientes manifesto omnes positivi sunt, factor $\rho^{\dagger n}$ autem fit = $\cos 45^{\circ} + i \sin 45^{\circ} = (1+i)\sqrt{\frac{1}{2}}$. Hinc colligimus, W esse productum ex 1+i in quantitatem realem positivam, unde necessario esse debebit

$$W = (1+i)\sqrt{n}, \quad T = +\sqrt{n}, \quad U = +\sqrt{n}$$

19.

Operae pretium erit, omnes summationes hactenus evolutas, hic in unum conspectum colligere. Generaliter scilicet est.

T =	U =	prout n est formae
$\pm \sqrt{n}$	$\cdot \pm \sqrt{n}$	4 µ
$\pm \sqrt{n}$	0	4 μ+1
0	0	$4\mu + 2$
0	$\pm \sqrt{n}$	$4\mu + 3$

et in casu eo, ubi k supponitur = 1, quantitati radicali signum positivum tribui debet. Omni itaque iam rigore ea, quae pro valoribus primis ipsius n in art. 3 per inductionem animadverteramus, demonstrata sunt, nihilque superest, nisi ut signa pro valoribus quibuscunque ipsius k in omnibus casibus determinare doceamus. Sed antequam hoc negotium in omni generalitate aggredi liceat, primo casus eos, ubi n est numerus primus vel numeri primi potestas, propius considerare oportebit.

20.

Sit primo n numerus primus impar, patetque per ea, quae in art. 10 exposuimus, esse $W=1+2\sum r^a=1+2\sum R^{ak}$, si statuatur $R=\cos\omega+i\sin\omega$, denotante a ut illic indefinite omnia residua quadratica ipsius n inter 1 et n-1 contenta. Quodsi quoque per b indefinite omnia non-residua quadratica inter eosdem limites exprimimus, nullo negotio perspicitur, omnes numeros ak congruos fieri secundum modulum n vel omnibus a vel omnibus b (nullo ordinis respectu habito), prout k vel residuum sit vel non-residuum. Quamobrem in casu priori erit

$$W = 1 + 2 \sum R^a = 1 + R + R^4 + R^0 + \text{etc.} + R^{(n-1)^3}$$

adeoque $W = +\sqrt{n}$, si n est formae $4\mu + 1$, atque $W = +i\sqrt{n}$, si n est formae $4\mu + 3$.

Contra in casu altero, ubi k est non-residuum ipsius n, erit

$$W = 1 + 2\Sigma R^b$$

Hinc quum manifesto omnes a, b complexum integrum numerorum $1, 2, 3 \dots$ expleant, adeoque sit

$$\Sigma R^a + \Sigma R^b = R + R^2 + R^3 + \text{etc.} + R^{n-1} = -1$$

fiet

$$W = -1 - 2\Sigma R^a = -(1 + R + R^4 + R^9 + \text{etc.} + R^{(n-1)^2})$$

adeoque $W = -\sqrt{n}$, si n est formae $4\mu + 1$, atque $W = -i\sqrt{n}$, si n est formae $4\mu + 3$.

Hinc itaque colligitur

primo, si n est formae $4\mu+1$, atque k residuum quadraticum ipsius n,

$$T = +\sqrt{n}, \quad U = 0$$

secundo, si n est formae $4\mu+1$, atque k non-residuum ipsius n,

$$T = -\sqrt{n}, \quad U = 0$$

tertio, si n est formae $4\mu + 3$, atque k residuum ipsius n,

$$T=0$$
, $U=+\sqrt{n}$

quarto, si n est formae $4\mu + 3$, atque k non-residuum ipsius n

$$T=0, \qquad U=-\sqrt{n}$$

21.

Sit secundo n quadratum altiorve potestas numeri primi imparis p, statuaturque $n = p^{2x}q$, ita ut sit q vel = 1 vel = p. Hic ante omnia observare convenit, si λ sit integer quicunque per p^x non divisibilis, fieri

$$r^{\lambda\lambda} + r^{(\lambda+p^{x}q)^{a}} + r^{(\lambda+2p^{x}q)^{a}} + r^{(\lambda+3p^{x}q)^{a}} + \text{etc.} + r^{(\lambda+n-p^{x}q)^{a}}$$

$$= r^{\lambda\lambda} \left\{ 1 + r^{2\lambda p^{x}q} + r^{4\lambda p^{x}q} + r^{6\lambda p^{x}q} + \text{etc.} + r^{2\lambda(n-p^{x}q)} \right\} = \frac{r^{\lambda\lambda}(1-r^{2\lambda n})}{1-r^{2\lambda p^{x}q}} = 0$$

Hinc facile perspicietur, fieri

$$W = 1 + r^{p^{2x}} + r^{4p^{2x}} + r^{9p^{2x}} + \text{etc.} + r^{(n-p^x)^2}$$

Termini enim reliqui progressionis

$$1+r+r^4+r^9+\text{etc.}+r^{(n-1)^3}$$

distribui poterunt in $(p^x-1)q$ progressiones partiales, quae singulae sint p^x terminorum, et per transformationem modo traditam summas evanescentes conficiant.

Hinc colligitur, in casu eo, ubi fit q = 1, sive ubi n est potestas numeri primi cum exponente pari, fieri

$$W = p^x = +\sqrt{n}$$
, adeoque $T = +\sqrt{n}$, $U = 0$

Contra in casu eo, ubi q = p, sive ubi n est potestas numeri primi cum exponente impari, statuemus $r^{p^{1n}} = \rho$, unde ρ erit radix propria aequationis $x^p-1 = 0$, et quidem $\rho = \cos\frac{k}{p}360^0 + i\sin\frac{k}{p}360^0$, ac dein

$$W = 1 + \rho + \rho^4 + \rho^9 + \text{etc.} + \rho^{(p^{x+1}-1)^3} = p^x (1 + \rho + \rho^4 + \rho^9 + \text{etc.} + \rho^{(p-1)^9})$$

Sed summa seriei $1+\rho+\rho^4+\rho^9+\text{etc.}+\rho^{(p-1)^9}$ per art. praec. determinatur, unde sponte concluditur, fieri

$$W = \pm \sqrt{n} = T$$
, si fuerit p formae $4\mu + 1$
 $W = \pm i\sqrt{n} = iU$, si fuerit p formae $4\mu + 3$

signo positivo vel negativo valente, prout k fuerit residuum vel non-residuum ipsius p.

22.

Facile quoque ex iis, quae in artt. 20. et 21 exposita sunt, derivatur propositio sequens, quae infra usum notabilem nobis praestabit. Statuatur

$$W' = 1 + r^h + r^{4h} + r^{9h} + \text{etc.} + r^{h(n-1)^3}$$

Π.

denotante h integrum quemcunque per p non divisibilem, eritque in casu eo, ubi n = p, vel ubi n est potestas ipsius p cum exponente impari,

W' = W, si fuerit h residuum quadraticum ipsius p W' = -W, si fuerit h non-residuum quadraticum ipsius p

Patet enim, W' oriri ex W, si pro k substituatur kh; in casu priori autem k et kh similes erunt, in posteriori dissimiles, quatenus sunt residua vel non-residua ipsius p.

In case eo autem, ubi n est potestas ipsies p cum exponente pari, manifesto fit $W' = +\sqrt{n}$, adeoque semper W' = W.

23.

In artt. 20. 21. 22 consideravimus numeros primos impares, taliumque potestates: superest itaque casus, ubi n est potestas binarii.

Pro n=2 manifesto fit W=1+r=0.

Pro n=4 prodit $W=1+r+r^4+r^9=2+2r$: hinc W=2+2i, quoties k est formae $4\mu+1$, atque W=2-2i, quoties k est formae $4\mu+3$.

Pro n = 8 habemus $W = 1 + r + r^4 + r^9 + r^{16} + r^{25} + r^{36} + r^{49} = 2 + 4r + 2r^4 = 4r$. Hinc erit

$$W = (1+i)\sqrt{8}$$
, quoties k est formae $8\mu+1$
 $W = (-1+i)\sqrt{8}$, quoties k est formae $8\mu+3$
 $W = (-1-i)\sqrt{8}$, quoties k est formae $8\mu+5$
 $W = (1-i)\sqrt{8}$, quoties k est formae $8\mu+7$

Si n est altior potestas binarii, statuamus $n = 2^{2x}q$, ita ut q sit vel = 1 vel = 2, atque x maior quam 1. Hic ante omnia observari debet, si λ sit integer quicunque per 2^{x-1} non divisibilis, fieri

$$r^{\lambda\lambda} + r^{(\lambda+2^{n}q)^{3}} + r^{(\lambda+2\cdot2^{n}q)^{3}} + r^{(\lambda+3\cdot2^{n}q)^{3}} + \text{etc.} + r^{(\lambda+n-2^{n}q)^{3}}$$

$$= r^{\lambda\lambda} \{1 + r^{2^{n+1}\lambda q} + r^{2\cdot2^{n+1}\lambda q} + r^{3\cdot2^{n+1}\lambda q} + \text{etc.} + r^{(2n-2^{n+1}q)\lambda}\} = \frac{r^{\lambda\lambda}(1 - r^{2\lambda n})}{1 - r^{2^{n+1}\lambda q}} = 0$$

Hinc facile perspicietur, fieri

$$W = 1 + r^{2^{2x-3}} + r^{4 \cdot 2^{2x-3}} + r^{9 \cdot 2^{2x-3}} + \text{etc.} + r^{(n-2^{x-1})^3}$$

Statuamus $r^{2^{2\pi-3}} = \rho$, eritque ρ radix aequationis $x^{4q}-1 = 0$, et quidem $\rho = \cos\frac{k}{4q}360^0 + i\sin\frac{k}{4q}360^0$; dein fiet

$$\dot{W} = 1 + \rho + \rho^4 + \rho^9 + \text{etc.} + \rho^{(2^{p+1}q-1)^9}$$

= $2^{x-1}(1 + \rho + \rho^4 + \rho^9 + \text{etc.} + \rho^{(4q-1)^9})$

Sed summa seriei $1+\rho+\rho^4+\rho^9+\text{etc.}+\rho^{(4q-1)^9}$ per ea, quae de casibus n=4, n=8 explicavimus, determinatur, unde colligimus in casu eo, ubi q=1, sive ubi n est potestas numeri 4, fieri

$$W = (1+i)2^x = (1+i)\sqrt{n}$$
, si fuerit k formae $4\mu+1$
 $W = (1-i)2^x = (1-i)\sqrt{n}$, si fuerit k formae $4\mu+3$

quae sunt ipsissimae formulae pro n=4 traditae; in casu eo autem, ubi q=2, sive ubi n est potestas binarii cum exponente impari maiori quam 3, fieri

$$W = (1+i) 2^{x} \sqrt{2} = (1+i) \sqrt{n}$$
, si fuerit k formae $8\mu + 1$
 $W = (-1+i) 2^{x} \sqrt{2} = (-1+i) \sqrt{n}$, si fuerit k formae $8\mu + 3$
 $W = (-1-i) 2^{x} \sqrt{2} = (-1-i) \sqrt{n}$, si fuerit k formae $8\mu + 5$
 $W = (1-i) 2^{x} \sqrt{2} = (1-i) \sqrt{n}$, si fuerit k formae $8\mu + 7$

quae quoque prorsus conveniunt cum iis, quae pro n = 8 tradidimus.

24.

Etiam hic operae pretium erit, rationem summae progressionis

$$W' = 1 + r^h + r^{4h} + r^{9h} + \text{etc.} + r^{h(n-1)^2}$$

ad W determinare, ubi h integrum quemcunque imparem denotat. Quum W' oriatur ex W, mutando k in kh, valor ipsius W' perinde a forma numeri kh pendebit, ut W a forma ipsius k. Statuamus $\frac{W'}{W} = l$, patetque

I. in casu eo, ubi n = 4, vel altior potestas binarii cum exponente pari, fieri

l=1, si fuerit h formae $4\mu+1$

l = -i, si fuerit h formae $4\mu + 3$, atque k formae $4\mu + 1$

l = +i, si fuerit h formae $4\mu +3$, atque k eiusdem formae.

II. in casu eo, ubi n = 8, vel altior potestas binarii cum exponente impari, fieri

l=1, si fuerit h formae $8\mu+1$, l=-1, si fuerit h formae $8\mu+5$, l=+i, si fuerit vel h formae $8\mu+3$, atque k formae $4\mu+1$, vel h formae $8\mu+7$, atque k formae $4\mu+3$, l=-i, si fuerit vel h formae $8\mu+3$, atque k formae $4\mu+3$, vel h formae $8\mu+7$, atque k formae $4\mu+1$.

Per praecc. determinatio summae W pro iis casibus, ubi n est numerus primus vel numeri primi potestas, complete perfecta est: superest itaque, ut eos quoque casus absolvamus, ubi n e pluribus numeris primis compositus est, huc viam nobis sternet theorema sequens:

25.

THEOREMA. Sit n productum e duobus integris positivis inter se primis a, b, statuaturque

$$P = 1 + r^{aa} + r^{4aa} + r^{9aa} + \text{etc.} + r^{(b-1)^a aa}$$

$$Q = 1 + r^{bb} + r^{4bb} + r^{9bb} + \text{etc.} + r^{(a-1)^a bb}$$

Tum dico fore W = PQ.

Demonstr. Designet α indefinite numeros $0, 1, 2, 3 \dots a-1$, δ indefinite numeros $0, 1, 2, 3 \dots b-1$, ν indefinite numeros $0, 1, 2, 3 \dots n-1$. Tunc patet esse

$$P = \Sigma r^{aa66}, \quad Q = \Sigma r^{bb\alpha\alpha}, \quad W = \Sigma r^{\nu\nu}$$

Hinc erit $PQ = \sum r^{aabb+bbaa}$, substituendo pro a et b omnes valores, omnibus modis inter se combinatos; hinc porro propter 2abab = 2abn, erit $PQ = \sum r^{(ab+ba)^a}$. Sed nullo negotio perspicitur, singulos valores ipsius ab+ba inter se diversos esse, atque alicui valori ipsius b aequales. Hinc erit $PQ = \sum r^{bb} = b$.

Ceterum notandum est, r^{aa} esse radicem propriam aequationis $x^b-1=0$, atque r^{bb} radicem propriam aequationis $x^a-1=0$.

26.

Sit porro n productum e tribus numeris inter se primis a, b, c, patetque, si statuatur bc = b', etiam a et b' inter se primos fore; adeoque W productum e duobus factoribus

$$1 + r^{aa} + r^{4aa} + r^{9aa} + \text{etc.} + r^{(b'-1)^8aa}$$

$$1 + r^{b'b'} + r^{4b'b'} + r^{9b'b'} + \text{etc.} + r^{(a-1)^8b'b'}$$

Sed quum r^{aa} sit radix propria aequationis $x^{bc}-1=0$, erit ipse factor prior productum ex

$$1 + \rho^{bb} + \rho^{4bb} + \rho^{9bb} + \text{etc.} + \rho^{(c-1)^{2}bb}$$

$$1 + \rho^{cc} + \rho^{4cc} + \rho^{9cc} + \text{etc.} + \rho^{(b-1)^{2}cc}$$

si statuitur $r^{aa} = \rho$. Hinc patet, W esse productum e factoribus tribus

$$1 + r^{bbcc} + r^{4bbcc} + r^{9bbcc} + \text{etc.} + r^{(a-1)^3bbcc}$$

$$1 + r^{aacc} + r^{4aacc} + r^{9aacc} + \text{etc.} + r^{(b-1)^3aacc}$$

$$1 + r^{aabb} + r^{4aabb} + r^{9aabb} + \text{etc.} + r^{(c-1)^3aabb}$$

ubi r^{bbcc} , r^{aacc} , r^{aabb} erunt resp. radices propriae aequationum $x^a-1=0$, $x^b-1=0$, $x^c-1=0$.

27.

Hinc facile concluditur generaliter, si n sit productum e factoribus quotcunque inter se primis a, b, c etc., W fieri productum e totidem factoribus, qui sint

$$\frac{nn}{1 + raa} + raa + raa + raa + etc. + raa - etc. + etc. + raa - etc. + et$$

ubi $r^{\frac{nn}{aa}}$, $r^{\frac{nn}{bb}}$, $r^{\frac{nn}{cc}}$ etc. erunt radices propriae aequationum $x^a-1=0$, $x^b-1=0$, $x^c-1=0$ etc.

28.

Ex his principiis transitus ad determinationem completam ipsius W pro valore quocunque ipsius n sponte iam obvius est. Decomponatur scilicet n in facto-

res a, b, c etc. tales, qui sint vel numeri primi inaequales, vel potestates numerorum primorum inaequalium, statuatur $r^{\frac{nn}{a\bar{a}}} = A$, $r^{\frac{nn}{b\bar{b}}} = B$, $r^{\frac{nn}{c\bar{c}}} = C$ etc. eruntque A, B, C etc. radices propriae aequationum $x^a - 1 = 0$, $x^b - 1 = 0$, $x^c - 1 = 0$ etc., atque W productum e factoribus

$$1 + A + A^{4} + A^{9} + \text{etc.} + A^{(a-1)^{2}}$$

$$1 + B + B^{4} + B^{9} + \text{etc.} + B^{(b-1)^{2}}$$

$$1 + C + C^{4} + C^{9} + \text{etc.} + C^{(c-1)^{3}}$$

Sed hi singuli factores per ea, quae in artt. 20, 21, 23 docuimus, determinari poterunt, unde etiam valor producti innotescet. Regulas pro determinandis illis factoribus hic in unum obtutum collegisse haud inutile erit. Quum radix A fiat $=\frac{kn}{a}\cdot\frac{360^{\circ}}{a}$, aggregatum $1+A+A^4+A^9+\text{etc.}+A^{(a-1)^9}$, quod per L denotabimus, perinde per numerum $\frac{kn}{a}$ determinabitur, ut in disquisitione nostra generali W per k. Duodecim iam casus sunt distinguendi.

I. Si a est numerus primus formae $4\mu+1$, puta =p, vel potestas talis numeri primi cum exponente impari, simulque $\frac{kn}{a}$ residuum quadraticum ipsius p, erit $L=+\sqrt{a}$.

II. Si manentibus reliquis $\frac{kn}{a}$ est non-residuum quadraticum ipsius p, erit $L = -\sqrt{a}$.

III. Si a est numerus primus formae $4\mu+3$, puta =p, vel potestas talis numeri primi cum exponente impari, simulque $\frac{kn}{a}$ residuum quadraticum ipsius p, erit $L=+i\sqrt{a}$.

IV. Si, manentibus reliquis ut in III, $\frac{kn}{a}$ est non-residuum quadraticum ipsius p, erit $L = -i\sqrt{a}$.

V. Si a est quadratum, altiorve potestas numeri primi (imparis) cum exponente pari, erit $L = +\sqrt{a}$.

VI. Si a=2, erit L=0.

VII. Si a=4, altiorve potestas binarii cum exponente pari; simulque $\frac{kn}{a}$ formae $4\mu+1$, erit $L=(1+i)\sqrt{a}$.

VIII. Si, manentibus reliquis ut in VII, $\frac{kn}{a}$ est formae $4\mu + 3$, erit $L = (1-i)\sqrt{a}$.

IX. Si a=8, altiorve potestas binarii cum exponente impari, simulque $\frac{kn}{a}$ formae $8\mu+1$, erit $L=(1+i)\sqrt{a}$.

X. Si, manentibus reliquis ut in IX, $\frac{kn}{a}$ est formae $8\mu + 3$, erit $L = (-1+i)\sqrt{a}$.

XI. Si manentibus reliquis $\frac{kn}{a}$ est formae $8\mu + 5$, erit $L = (-1-i)\sqrt{a}$. XII. Si manentibus reliquis $\frac{kn}{a}$ est formae $8\mu + 7$, erit $L = (1-i)\sqrt{a}$.

29

Sit exempli caussa n = 2520 = 8.9.5.7, atque k = 13. Hic erit

pro a=8, per casum XII, $L=(1-i)\sqrt{8}$ pro factore 9, per casum V, summa respondens erit $=\sqrt{9}$ pro factore 5, per casum II, summa respondens erit $=-\sqrt{5}$ pro factore 7, per casum III, summa respondens erit $=+i\sqrt{7}$

Hinc fit $W = (1-i) \cdot (-i) \cdot \sqrt{2520} = (-1-i)\sqrt{2520}$. Sit pro eodem valore ipsius n, k = 1: tunc respondebit

factori 8 summa $(-1+i)\sqrt{8}$

factori 9 summa √9

factori 5 summa √5

factori 7 summa $-i\sqrt{7}$

Hinc conflatur productum $W = (1+i)\sqrt{2520}$.

30.

Methodus alia, summam W generaliter determinandi, petitur ex iis, quae in artt. 22. 24 exposita sunt. Statuamus $\cos \omega + i \sin \omega = \rho$, atque

$$\rho^{\frac{nn}{aa}} = \alpha, \ \rho^{\frac{nn}{bb}} = b, \ \rho^{\frac{nn}{cc}} = \gamma \text{ etc.}$$

ita ut habeatur $r = \rho^k$, $A = \alpha^k$, $B = \delta^k$, $C = \gamma^k$ etc. Tunc erit

$$1+\rho+\rho^4+\rho^9+\text{etc.}+\rho^{(n-1)^3}$$

productum e factoribus

$$1+\alpha+\alpha^{4}+\alpha^{9}+\text{etc.}+\alpha^{(a-1)^{8}}$$

$$1+\beta+\beta^{4}+\beta^{9}+\text{etc.}+\beta^{(b-1)^{8}}$$

$$1+\gamma+\gamma^{4}+\gamma^{9}+\text{etc.}+\gamma^{(c-1)^{2}}, \text{ etc.}$$

adeoque W productum e factoribus

$$w = 1 + \rho + \rho^{4} + \rho^{9} + \text{etc.} + \rho^{(n-1)^{3}}$$

$$\mathfrak{A} = \frac{1 + A + A^{4} + A^{9} + \text{etc.} + A^{(a-1)^{3}}}{1 + \alpha + \alpha^{4} + \alpha^{9} + \text{etc.} + \alpha^{(a-1)^{3}}}$$

$$\mathfrak{B} = \frac{1 + B + B^{4} + B^{9} + \text{etc.} + B^{(b-1)^{3}}}{1 + 6 + 6^{4} + 6^{5} + \text{etc.} + 6^{(b-1)^{3}}}$$

$$\mathfrak{E} = \frac{1 + C + C^{4} + C^{9} + \text{etc.} + C^{(c-1)^{3}}}{1 + \gamma + \gamma^{4} + \gamma^{9} + \text{etc.} + \gamma^{(c-1)^{3}}}$$

Iam factor primus w determinatus est per disquisitiones supra traditas (art. 19); factores reliqui vero \mathfrak{A} , \mathfrak{B} , \mathfrak{C} etc. prodeunt per formulas artt. 22. 24, quas ut omnia iuncta habeantur, hic denuo colligimus*). Duodecim casus hic sunt distinguendi, scilicet

I. Si a est numerus primus (impar) = p, vel talis numeri potestas cum exponente impari, atque k residuum quadraticum ipsius p, erit factor respondens $\mathfrak{A} = +1$.

II. Si manentibus reliquis k est non-residuum quadraticum ipsius p, erit $\mathfrak{A} = -1$.

III. Si a est quadratum numeri primi imparis, altiorve eius potestas cum exponente pari, erit $\mathfrak{A} = +1$.

IV. Si a est = 4, aut altior binarii potestas cum exponente pari, simulque k formae $4\mu+1$, erit $\mathfrak{A}=+1$.

V. Si, manentibus reliquis ut in IV, k est formae $4\mu + 3$, atque $\frac{n}{a}$ formae $4\mu + 1$, erit $\mathfrak{A} = -i$

VI. Si, manentibus reliquis ut in IV, k est formae $4\mu + 3$, atque $\frac{n}{a}$ formae $4\mu + 3$, erit $\mathfrak{A} = +i$.

VII. Si a est = 8, aut altior binarii potesțas cum exponente impari, atque k formae $8\mu+1$, erit $\mathfrak{A}=+1$.

VIII. Si, manentibus reliquis ut in VII, k est formae $8\mu + 5$, erit $\mathfrak{A} = -1$.

IX. Si, manentibus reliquis ut in VII, k est formae $8\mu + 3$, atque $\frac{n}{a}$ formae $4\mu + 1$, erit $\mathfrak{A} = +i$.

^{*)} Manifesto, quae illic erant k et k, hic erunt $\frac{n}{a}$ et k respectu factoris secundi, $\frac{n}{b}$ et k respectu factoris tertii etc.

X. Si, manentibus reliquis ut in VII, k est formae $8\mu + 3$, atque $\frac{n}{2}$ formae $4\mu + 3$, erit $\mathfrak{A} = -i$.

XI. Si, manentibus reliquis ut in VII, k est formae $8\mu + 7$, atque $\frac{n}{3}$ formae $4\mu + 1$, erit $\mathfrak{A} = -i$.

XII. Si, manentibus reliquis ut in VII, k est formae $8\mu + 7$, atque $\frac{n}{2}$ formae $4\mu + 3$, erit $\mathfrak{A} = +i$.

Casum eum, ubi a = 2, praeterimus; hic quidem \mathfrak{A} foret $= \frac{1}{2}$ sive indeterminatus, sed tunc semper W = 0.

Factores reliqui B, C etc. perinde pendent a b, c etc., ut A ab a, quatenus in illorum determinationem ingrediuntur.

31.

Secundum hanc methodum alteram exemplum primum art. 29 ita se habet:

Factor w fit $= (1+i)\sqrt{2520}$

Pro a = 8 factor respondens \mathfrak{A} fit, per casum VIII, = -1

Factori ipsius n secundo 9 respondet factor +1 (per casum III.)

Factori 5 respondet factor —1 (per casum II.)

Factori 7 respondet factor —1 (per casum II.)

Hinc conflatur productum $W = (-1 - i)\sqrt{2520}$, ut in art. 29.

32.

Quum valor ipsius W per methodos duas determinari possit, quarum altera relationibus numerorum $\frac{nk}{a}$, $\frac{nk}{b}$, $\frac{nk}{c}$ etc. ad numeros a, b, c etc. innititur, altera vero a relationibus ipsius k ad numeros a, b, c etc. pendet, inter omnes has relationes nexus quidam conditionalis intercedere debet, ita ut quaevis e reliquis determinabilis esse debeat. Supponamus, omnes numeros a, b, c etc. esse numeros primos impares, atque k accipi = 1; distribuanturque factores a, b, c etc. in duas classes, quarum altera contineat eos, qui sunt formae $4\mu+1$, et qui denotentur per p, p', p'' etc., altera vero constet ex iis, qui sunt formae $4\mu + 3$, et qui exprimantur per q, q', q'' etc.: multitudinem posteriorum designabimus per m. His ita factis, observamus primo, n fieri formae $4\mu+1$, si m fuerit par (quorsum etiam referri debet casus is, ubi factores classis alterius omnino desunt, sive ubi m=0), contra n fieri formae $4\mu+3$, si m fuerit impar. Iam determinatio П.

ipsius W per methodum primam ita perficitur. Pendeant numeri P, P' P'' etc., Q, Q', Q'' etc. ita a relationibus numerorum $\frac{n}{p}$, $\frac{n}{p'}$, $\frac{n}{p''}$ etc., $\frac{n}{q}$, $\frac{n}{q'}$, $\frac{n}{q''}$ etc. ad numeros p, p', p'' etc., q, q', q'' etc. resp., ut statuatur

$$P=+1$$
, si $\frac{n}{p}$ est residuum quadraticum ipsius p $P=-1$, si $\frac{n}{p}$ est non-residuum quadraticum ipsius p

et perinde de reliquis. Tunc erit W productum e factoribus $P \backslash p$, $P' \backslash p'$, $P'' \backslash p''$ etc. $iQ \backslash q$, $iQ' \backslash q'$, $iQ'' \backslash q''$ etc., adeoque

$$W = PP'P'' \dots QQ'Q'' \dots i^m \sqrt{n}$$

Per methodum secundam, aut potius statim per praecepta art. 19, erit

 $W = +\sqrt{n}$, si *n* est formae $4\mu+1$, vel quod eodem redit, si *m* est par $W = +i\sqrt{n}$, si *n* est formae $4\mu+3$, vel si *m* est impar.

Utrumque casum simul complecti licet per formulam sequentem:

$$W = i^{mn} \sqrt{n}$$

Hinc itaque colligitur

$$PP'P'' \dots QQ'Q' \dots = i^{mm-m}$$

Sed i^{mm-m} fit = 1, quoties m est formae 4μ vel $4\mu+1$, atque = -1, quoties m est formae $4\mu+2$ vel $4\mu+3$, unde deducimus sequens elegantissimum

THEOREMA. Denotantibus a, b, c etc. numeros primos impares positivos inaequales, quorum productum statuitur = n, et inter quos m sint formae $4\mu + 3$, reliqui formae $4\mu + 1$: multitudo eorum ex his numeris a, b, c etc., quorum non-residua resp. sunt $\frac{n}{a}$, $\frac{n}{b}$, $\frac{n}{c}$ etc., par erit, quoties m est formae 4μ vel $4\mu + 1$, impar vero, quoties m est formae $4\mu + 2$ vel $4\mu + 3$.

Ita e. g. statuendo a=3, b=5, c=7, d=11, habemus tres numeros formae $4\mu+3$, puta 3, 7 et 11; est autem 5.7.11 R3; 3.7 11 R5; 3.5.11 R7; 3.5.7 N11, sive unicus $\frac{n}{d}$ est non-residuum ipsius d.

33.

Celeberrimum theorema fundamentale circa residua quadratica nihil aliud est, nisi casus specialis theorematis modo evoluti. Limitando scilicet multitudinem

numerorum a, b, c etc. ad duos, patet, si unus tantum ex ipsis, vel neuter, sit formae $4\mu+3$, fieri debere vel simul aRb, bRa, vel simul aNb, bNa; contra si uterque est formae $4\mu+3$, unus ex ipsis alterius non-residuum esse debebit, atque hic illius residuum. En itaque demonstrationem quartam huius gravissimi theorematis, cuius demonstrationem primam et secundam in Disquisitionibus Arithmeticis, tertiam nuper in commentatione peculiari tradidimus (Commentt. T. XVI): duas alias principiis rursus omnino diversis innitentes in posterum exponemus. Summopere sane est mirandum, quod hocce venustissimum theorema, quod primo omnes conatus tam pertinaciter eluserat, tot postea viis toto coelo inter se distantibus adiri potuerit.

34.

Etiam theoremata reliqua, quae quasi supplementum ad theorema fundamentale efficient, scilicet per quae dignoscuntur numeri primi, quorum residua vel non-residua sunt —1, +2 et —2, ex iisdem principiis derivari possunt. Incipiemus a residuo +2.

Statuendo n=8a, ita ut a sit numerus primus, atque k=1, per methodum art. 28. W erit productum e duobus factoribus, quorum alter erit $+\sqrt{a}$, vel $+i\sqrt{a}$, si 8, vel quod idem est 2, est residuum quadraticum ipsius a; contra $-\sqrt{a}$ vel $-i\sqrt{a}$, si 2 est non-residuum ipsius a. Factor secundus autem est

$$(1+i)\sqrt{8}$$
, si a est formae $8\mu+1$
 $(-1+i)\sqrt{8}$, si a est formae $8\mu+3$
 $(-1-i)\sqrt{8}$, si a est formae $8\mu+5$
 $(1-i)\sqrt{8}$, si a est formae $8\mu+7$

Sed per art. 18 semper erit $W = (1+i)\sqrt{n}$; dividendo hunc valorem per quatuor valores factoris secundi, patet, factorem primum fieri debere

+
$$\sqrt{a}$$
, si a est formae $8\mu + 1$
- $i\sqrt{a}$, si a est formae $8\mu + 3$
- \sqrt{a} , si a est formae $8\mu + 5$
+ $i\sqrt{a}$, si a est formae $8\mu + 7$

Hinc sponte sequitur, in casu primo et quarto 2 esse debere residuum ipsius a, in casu secundo et tertio autem non-residuum.

35.

Numeri primi, quorum residuum vel non-residuum est —1, facile dignoscuntur adiumento theorematis sequentis, quod etiam per se ipsum satis memorabile est.

THEOREMA. Productum e duobus factoribus

$$W' = 1 + r^{-1} + r^{-4} + \text{etc.} + r^{-(n-1)^{3}}$$

$$W = 1 + r + r^{4} + \text{etc.} + r^{(n-1)^{3}}$$

est = n, si n est impar; vel = 0, si n est impariter par; vel = 2n, si n est pariter par.

Demonstr. Quum manifesto fiat

$$W = r + r^{4} + r^{9} + \text{etc.} + r^{nn}$$

$$= r^{4} + r^{9} + \text{etc.} + r^{(n+1)^{2}}$$

$$= r^{9} + \text{etc.} + r^{(n+2)^{2}} \text{ etc.}$$

productum WW' ita quoque exhiberi poterit

$$1+r+r^{4}+r^{9}+\text{etc.}+r^{(n-1)^{2}}$$

$$+r^{-1}(r+r^{4}+r^{9}+r^{16}+\text{etc.}+r^{nn})$$

$$+r^{-4}(r^{4}+r^{9}+r^{16}+r^{25}+\text{etc.}+r^{(n+1)^{2}})$$

$$+r^{-9}(r^{9}+r^{16}+r^{25}+r^{36}+\text{etc.}+r^{(n+2)^{3}})$$
etc.
$$+r^{-(n-1)^{2}}(r^{(n-1)^{2}}+r^{nn}+r^{(n+1)^{3}}+r^{(n+2)^{3}}+\text{etc.}+r^{(2n-2)^{3}})$$

quod aggregatum verticaliter summatum producit

Iam si n impar est, singulae partes huius aggregati, praeter primam n, erunt = 0; secunda enim manifesto fit $\frac{r(1-r^{2n})}{1-r^n}$, tertia $\frac{r^{n}(1-r^{4n})}{1-r^n}$ etc. Quoties vero n par est, excipere insuper oportebit partem

$$r^{1nn}(1+r^n+r^{2n}+r^{3n}+\text{etc.}+r^{nn-n})$$

quae fit $= nr^{\frac{1}{4}nn}$. In casu priori itaque fit WW' = n, in posteriori autem $= n + nr^{\frac{1}{4}nn}$; sed $r^{\frac{1}{4}nn}$ fit = +1, si n est pariter par, tunc itaque prodit WW' = 2n; contra fit $r^{\frac{1}{4}nn} = -1$, si n est impariter par, ubi itaque evadit WW' = 0. Q. E. D.

36.

Iam per art. 22 constat, si n sit numerus primus impar, $\frac{W}{W}$ fieri = +1 vel = -1, prout -1 fuerit residuum vel non-residuum ipsius n. Hinc in casu priori esse debebit $W^2 = +n$, in posteriori $W^2 = -n$; quamobrem per art. 13 concludimus, casum priorem tunc tantum locum habere posse, quando n sit formae $4\mu+1$, casumque posteriorem, quando n sit formae $4\mu+3$.

Denique e combinatione conditionum pro residuis +2 et -1 inventarum sponte sequitur, -2 esse residuum cuiusvis numeri primi formae $8\mu+1$ vel $8\mu+3$, atque non-residuum cuiusvis numeri primi formae $8\mu+5$ vel $8\mu+7$.

THEOREMATIS FUNDAMENTALIS

IN

DOCTRINA DE RESIDUIS QUADRATICIS

DEMONSTRATIONES ET AMPLIATIONES NOVAE

AUCTORE

CAROLO FRIDERICO GAUSS

SOCIETATI REGIAE SCIENTIARUM TRADITAE 1817. FEBR. 10.

Commentationes societatis regiae scientiarum Gottingensis recentiores. Vol. IV.

Gottingae MDCCCXVIII.

THEOREMATIS FUNDAMENTALIS

TN

DOCTRINA DE RESIDUIS QUADRATICIS

DEMONSTRATIONES ET AMPLIATIONES NOVAE.

Theorema fundamentale de residuis quadraticis, quod inter pulcherrimas arithmeticae sublimioris veritates refertur, facile quidem per inductionem detectum, longe vero difficilius demonstratum est. Saepius in hoc genere accidere solet, ut veritatum simplicissimarum, quae scrutatori per inductionem sponte quasi se offerunt, demonstrationes profundissime lateant et post multa demum tentamina irrita, longe forte alia quam qua quaesitae erant via, tandem in lucem protrahi possint. Dein haud raro fit, quam primum una inventa est via, ut plures subinde patefiant ad eandem metam perducentes, aliae brevius et magis directe, aliae quasi ex obliquo et a principiis longe diversis exorsae, inter quae et quaestionem propositam vix ullum vinculum suspicatus fuisses. Mirus huiusmodi nexus inter veritates abstrusiores non solum peculiarem quandam venustatem hisce contemplationibus conciliat, sed ideo quoque sedulo investigari atque enodari meretur, quod haud raro nova ipsius scientiae subsidia vel incrementa inde demanant.

Etsi igitur theorema arithmeticum, de quo hic agetur, per curas anteriores, quae quatuor demonstrationes inter se prorsus diversas*) suppeditaverunt; plene

Digitized by Google

^{*)} Duae expositae sunt in *Disquisitionum Arithmeticarum* Sect. quarta et quinta; tertia in commentatione peculiari (*Commentt. Soc. Gotting. Vol. XVI*), quarta inserta est commentationi: *Summatio quarundam serierum singularium* (*Commentt. Recentiores, Vol. I*).

absolutum videri possit, tamene denuo ad idem argumentum revertor, duasque alias demonstrationes adiungo, quae novam certe lucem huic rei affundent. Prior quidem tertiae quodammodo affinis est, quod ab eodem lemmate proficiscitur; postea vero iter diversum prosequitur, ita ut merito pro demonstratione nova haberi possit, quae concinnitate ipsa illa tertia si non superior saltem haud inferior videbitur. Contra demonstratio sexta principio plane diverso subtiliori innixa est novumque sistit exemplum mirandi nexus inter veritates arithmeticas primo aspectu longissime ab invicem remotas. Duabus hisce demonstrationibus adiungitur algorithmus novus persimplex ad diiudicandum, utrum numerus integer datus, numeri primi dati residuum quadraticum sit an non-residuum.

Alia adhuc affuit ratio, quae ut novas demonstrationes, novem iam abhinc annos promissas, nunc potissimum promulgarem, effecit. Scilicet quum inde ab anno 1805 theoriam residuorum cubicorum atque biquadraticorum, argumentum longe difficilius, perscrutari coepissem, similem fere fortunam, ac olim in theoria residuorum quadraticorum, expertus sum. Protinus quidem theoremata ea, quae has quaestiones prorsus exhauriunt, et in quibus mira analogia cum theorematibus ad residua quadratica pertinentibus eminet, per inductionem detecta fuerunt, quam primum via idonea quaesita essent: omnes vero conatus, ipsorum demonstrationibus ex omni parte perfectis potiundi, per longum tempus irriti manserunt. Hoc ipsum incitamentum erat, ut demonstrationibus iam cognitis circa residua quadratica alias aliasque addere tantopere studerem, spe fultus, ut ex multis methodis diversis una vel altera ad illustrandum argumentum affine aliquid conferre posset. Quae spes neutiquam vana fuit, laboremque indefessum tandem successus prosperi sequuti sunt. Mox vigiliarum fructus in publicam lucem edere licebit: sed antequam arduum hoc opus aggrediar, semel adhuc ad theoriam residuorum quadraticorum reverti, omnia quae de eadem adhuc supersunt agenda absolvere, atque sic huic arithmeticae sublimioris parti quasi valedicere constitui.

THEOREMATIS FUNDAMENTALIS IN THEORIA RESIDUORUM QUADRATICORUM

DEMONSTRATIO QUINTA.

1.

In introductione iam declaravimus, demonstrationem quintam et tertiam ab eodem lemmate proficisci, quod commoditatis caussa, in signis disquisitioni praesenti adaptatis hoc loco repetere visum est.

LEMMA. Sit m numerus primus (positivus impar), M integer per m non divisibilis; capiantur residua minima positiva numerorum

$$M, 2M, 3M, 4M \dots + (m-1)M$$

secundum modulum m quae partim erunt minora quam ‡m, partim maiora: posteriorum multitudo sit = n. Tunc erit M residuum quadraticum ipsius m, vel non-residuum, prout n par est, vel impar.

DEMONSTR. Sint e residuis illis ea, quae minora sunt quam $\frac{1}{2}m$, haec a, b, c, d etc., reliqua vero, maiora quam $\frac{1}{2}m$, haec a', b', c', d' etc. Posteriorum complementa ad m, puta m-a', m-b', m-c', m-d' etc. manifesto cuncta minora erunt quam $\frac{1}{2}m$, atque tum inter se tum a residuis a, b, c, d etc. diversa, quamobrem cum his simul sumta, ordine quidem mutato, identica erunt cum omnibus numeris $1, 2, 3, 4 \ldots \frac{1}{2}(m-1)$. Statuendo itaque productum

$$1 \cdot 2 \cdot 3 \cdot 4 \cdot \dots \cdot \frac{1}{2}(m-1) = P$$

erit

$$P = abcd \ldots \times (m-a')(m-b')(m-c')(m-d') \ldots$$

adeoque

$$(-1)^n P = abcd \ldots \times (a'-m)(b'-m)(c'-m)(d'-m) \ldots$$

Porro fit, secundum modulum m,

$$PM^{\frac{1}{2}(m-1)} \equiv abcd.. \times a'b'c'd'.. \equiv abcd.. \times (a'-m)(b'-m)(c'-m)(d'-m)..$$

adeoque

$$PM^{\frac{1}{4}(m-1)} \equiv P(-1)^n$$

Hinc $M^{i(m-1)} \equiv \pm 1$, accepto signo superiori vel inferiori, prout *n* par est vel impar, unde adiumento theorematis in *Disquisitionibus Arithmeticis* art. 106 demonstrati lemmatis veritas sponte demanat.

2

THEOREMA. Sint m, M integri positivi impares inter se primi, n multitudo eorum e residuis minimis positivis numerorum

$$M, 2M, 3M \dots \frac{1}{2}(m-1)M$$

secundum modulum m, quae sunt maiora quam ‡m; ac perinde N multitudo eorum e residuis minimis positivis numerorum

$$m, 2m, 3m \dots \frac{1}{2}(M-1)m$$

secundum modulum M, quae sunt maiora quam $\frac{1}{2}M$. Tunc tres numeri n, N, $\frac{1}{2}(m-1)(M-1)$ vel omnes simul pares erunt, vel unus par duoque reliqui impares.

DEMONSTR. Designemus

per f complexum numerorum 1, 2, 3 $\frac{1}{2}(m-1)$ per f complexum numerorum m-1, m-2, m-3 $\frac{1}{2}(m+1)$ per F complexum numerorum 1, 2, 3 $\frac{1}{2}(M-1)$ per F complexum numerorum M-1, M-2, M-3 $\frac{1}{2}(M+1)$

Indicabit itaque n, quot numeri Mf residua sua minima positiva secundum modulum m habeant in complexu f', et perinde N indicabit, quot numeri mF habeant residua sua minima positiva secundum modulum M in complexu F'. Denique designet

```
\varphi complexum numerorum 1, 2, 3 . . . . . \frac{1}{2}(mM-1)

\varphi' complexum numerorum mM-1, mM-2, mM-3 . . . . . \frac{1}{2}(mM+1)
```

Quum quilibet integer per m non divisibilis secundum modulum m vel alicui residuo ex f vel alicui ex f congruus esse debeat, ac perinde quilibet integer per M non divisibilis secundum modulum M congruus sit vel alicui residuo ex F vel alicui ex F: omnes numeri φ , inter quos manifesto nullus per m et M simul divisibilis occurrit, in octo classes sequenti modo distribui possunt.

I. In prima classe erunt numeri secundum modulum m alicui numero ex f, secundum modulum M vero alicui numero ex F congrui. Designabimus multitudinem horum numerorum per α .

- II. Numeri secundum modulos m, M resp. numeris ex f, F' congrui, quorum multitudinem statuemus = 6.
- III. Numeri secundum modulos m, M resp. numeris ex f, F congrui, quorum multitudinem statuemus $= \gamma$.
- IV. Numeri secundum modulos m, M resp. numeris ex f', F' congrui, quorum multitudo sit $= \delta$.
- V. Numeri per m divisibiles, secundum modulum M vero residuis ex F congrui.
- VI. Numeri per m divisibiles, secundum modulum M vero residuis ex F' congrui.
- VII. Numeri per M divisibiles, secundum modulum m autem residuis ex f congrui.
- VIII. Numeri per M divisibiles, secundum modulum m vero residuis ex f congrui.

Manifesto classes V et VI simul sumtae complectentur omnes numeros mF, multitudo numerorum in VI contentorum erit = N, adeoque multitudo numerorum in V contentorum erit $\frac{1}{2}(M-1)-N$. Perinde classes VII et VIII simul sumtae continebunt omnes numeros Mf, in classe VIII reperientur n numeri, in classe VII autem $\frac{1}{2}(m-1)-n$.

Prorsus simili modo omnes numeri φ' in octo classes IX..XVI distribuentur, in quo negotio si eundem ordinem servamus, facile perspicietur, numeros in classibus

contentos resp. esse complementa numerorum in classibus

contentorum ad mM, ita ut in classe IX reperiantur δ numeri; in classe X, γ et sic porro. Iam patet, si omnes numeri primae classis associentur cum omnibus numeris classis nonae, haberi omnes numeros infra mM, qui secundum modulum m alicui numero ex f, secundum modulum M vero alicui numero ex F sunt congrui, quorumque multitudinem aequalem esse multitudini omnium combinationum singulorum f cum singulis F, facile perspicitur. Habemus itaque

$$\alpha+\delta=\pm(m-1)(M-1)$$

similique ratione etiam erit

$$6+\gamma = \frac{1}{4}(m-1)(M-1)$$

Iunctis omnibus numeris classium II, IV, VI, manifesto habebimus omnes numeros infra $\frac{1}{2}mM$, qui alicui residuo ex F' secundum modulum M congrui sunt. Iidem vero numeri ita quoque exhiberi possunt:

$$F', M+F', 2M+F', 3M+F' \dots + (m-3)M+F'$$

unde omnium multitudo erit $= \frac{1}{2}(m-1)(M-1)$, sive habebimus

$$6+\delta+N=\frac{1}{2}(m-1)(M-1)$$

Perinde e iunctione omnium classium III, IV, VIII colligere licet

$$\gamma + \delta + n = \frac{1}{2}(m-1)(M-1)$$

*Ex his quatuor aequationibus oriuntur sequentes:

$$2\alpha = \frac{1}{4}(m-1)(M-1) + n + N$$

$$2\beta = \frac{1}{4}(m-1)(M-1) + n - N$$

$$2\gamma = \frac{1}{4}(m-1)(M-1) - n + N$$

$$2\delta = \frac{1}{4}(m-1)(M-1) - n - N$$

quarum quaelibet theorematis veritatem monstrat.

3.

Quodsi iam supponimus, m et M esse numeros primos, e combinatione theorematis praecedentis cum lemmate art. 1 theorema fundamentale protinus demanabit. Patet enim,

I. quoties uterque m, M, sive alteruter tantum, sit formae 4k+1, numerum $\frac{1}{2}(m-1)(M-1)$ fore parem, adeoque n et N vel simul pares vel simul impares, et proin vel utrumque m et M alterius residuum quadraticum, vel utrumque alterius non-residuum quadraticum.

II. Quoties autem uterque m, M est formae 4k+3, erit $\frac{1}{4}(m-1)(M-1)$ impar, hinc unus numerorum n, N par, alter impar, et proin unus numerorum m, M alterius residuum quadraticum, alter alterius non-residuum quadraticum. Q. E. D.

THEOREMATIS FUNDAMENTALIS IN THEORIA RESIDUORUM QUADRATICORUM DEMONSTRATIO SEXTA,

1.

Theorems. Designante p numerum primum (positivum imparem), n integrum positivum per p non divisibilem, x quantitatem indeterminatam, functio

$$1+x^n+x^{2n}+x^{3n}+\text{etc.}+x^{np-n}$$

divisibilis erit per

$$1 + x + xx + x^3 + \text{etc.} + x^{p-1}$$

DEMONSTR. Accipiatur integer positivus g ita ut fiat $gn \equiv 1 \pmod{p}$, statuaturque gn = 1 + hp. Tunc erit

$$\frac{1+x^n+x^{2n}+x^{2n}+etc. x^{np-n}}{1+x+xx+x^3+etc. x^{p-1}} = \frac{(1-x^{np})(1-x)}{(1-x^n)(1-x^p)} = \frac{(1-x^{np})(1-x^{pn}-x+x^{hp+1})}{(1-x^n)(1-x^p)} = \frac{1-x^{np}}{1-x^p} \cdot \frac{1-x^{pn}}{1-x^n} - \frac{x(1-x^{np})}{1-x^n} \cdot \frac{1-x^{hp}}{1-x^p}$$

adeoque manifesto functio integra. Q. E. D.

Quaelibet itaque functio integra ipsius x per $\frac{1-x^{np}}{1-x^n}$ divisibilis, etiam divisibilis erit per $\frac{1-x^p}{1-x}$.

2.

Designet α radicem primitivam positivam pro modulo p, i. e. sit α integer positivus talis, ut residua minima positiva potestatum $1, \alpha, \alpha\alpha, \alpha^3 \ldots \alpha^{p-2}$ secundum modulum p sine respectu ordinis cum numeris $1, 2, 3, 4 \ldots p-1$ identica fiant. Designando porro per fx functionem

$$x + x^{a} + x^{aa} + x^{aa} + \text{etc.} + x^{a^{p-a}} + 1$$

patet, $fx-1-x-xx-x^3-\text{etc.}-x^{p-1}$ divisibilem fore per $1-x^p$, adeoque a potiori per $\frac{1-x^p}{1-x}=1+x+xx+x^3+\text{etc}+x^{p-1}$, per quam itaque functionem ipsa quoque fx divisibilis erit. Hinc vero sequitur, quum x exprimat quantitatem indeterminatam, esse quoque $f(x^n)$ divisibilem per $\frac{1-x^{np}}{1-x^n}$, et proin (art. praec.) etiam per $\frac{1-x^p}{1-x}$, quoties quidem n sit integer per p non divisibilis. Contra, quoties n est integer per p divisibilis, singulae partes functionis $f(x^n)$ uni-

tate deminutae divisibiles erunt per $1-x^p$; quamobrem in hoc casu etiam $f(x^n)-p$ per $1-x^p$ et proin etiam per $\frac{1-x^p}{1-x}$ divisibiles erit.

3.

THEOREMA. Statuendo

$$x-x^{a}+x^{aa}-x^{a^{a}}+x^{a^{a}}-\text{etc.}-x^{a^{p-1}}=\xi$$

erit $\xi \xi + p$ divisibilis per $\frac{1-x^p}{1-x}$, accepto signo superiori, quoties p est formae 4k+1, inferiori, quoties p est formae 4k+3.

DEMONSTR. Facile perspicietur, ex p-1 functionibus hisce

$$+ x^{\xi} - xx + x^{a+1} - x^{aa+1} + \text{etc.} + x^{a^{p-s}+1}$$

$$- x^{a} \xi - x^{2a} + x^{aa+a} - x^{a^{s}+a} + \text{etc.} + x^{a^{p-s}+a}$$

$$+ x^{aa} \xi - x^{2aa} + x^{a^{s}+aa} - x^{a^{s}+aa} + \text{etc.} + x^{a^{p+a}+aa}$$

$$- x^{a^{s}} \xi - x^{2a^{s}} + x^{a^{s}+a^{s}} - x^{a^{s}+a^{s}} + \text{etc.} + x^{a^{p+s}+a^{s}}$$

etc. usque ad

$$-x^{\alpha^{p-2}}\xi-x^{2\alpha^{p-3}}+x^{\alpha^{p-1}+\alpha^{p-2}}-x^{\alpha^{p}+\alpha^{p-3}}+\text{etc.}+x^{\alpha^{2p-4}+\alpha^{p-2}}$$

primam fieri = 0, singulas reliquas autem per $1-x^p$ divisibiles. Quare per $1-x^p$ etiam divisibilis erit omnium summa, quae colligitur

$$= \xi \xi - (f(xx)-1) + (f(x^{\alpha+1})-1) - (f(x^{\alpha\alpha+1})-1) + (f(x^{\alpha^2+1})-1) - \text{etc.} + (f(x^{\alpha^{p-2}+1})-1)$$

$$= \xi \xi - f(xx) + f(x^{\alpha+1}) - f(x^{\alpha\alpha+1}) + f(x^{\alpha^2+1}) - \text{etc.} + f(x^{\alpha^{p-2}+1}) = \Omega$$

Erit itaque haecce expressio Ω etiam divisibilis per $\frac{1-x^p}{1-x}$. Iam inter exponentes 2, $\alpha+1$, $\alpha\alpha+1$, α^3+1 $\alpha^{p-2}+1$ unicus tantum erit divisibilis per p, puta $\alpha^{\frac{1}{2}(p-1)}+1$, unde per art. praec. singulae partes expressionis Ω hae

$$f(xx)$$
, $f(x^{\alpha+1})$, $f(x^{\alpha\alpha+1})$, $(fx^{\alpha^{\alpha}+1})$ etc.

excepto solo termino $f(x^{x^{\frac{1}{2}(p-1)}+1})$, divisibiles erunt per $\frac{1-x^p}{1-x}$. Istas itaque partes delere licebit, ita ut per $\frac{1-x^p}{1-x}$ etiam divisibilis maneat functio

$$\xi\xi + f(x^{a^{\frac{1}{4}(p-1)}+1})$$

ubi signum superius vel inferius valebit, prout p est formae 4k+1 vel formae 4k+3. Et quum insuper $f(x^{a\frac{1}{2}(p-1)+1})-p$ divisibilis sit per $\frac{1-x^p}{1-x}$, erit etiam $\xi\xi + p$ per $\frac{1-x^p}{1-x}$ divisibilis. Q. E. D.

Ne duplex signum ullam ambiguitatem adducere possit, per ε numerum +1 vel -1 denotabimus, prout p est formae 4k+1 vel 4k+3. Erit itaque $\frac{(1-z)(\xi\xi-\varepsilon p)}{1-z^p}$ functio integra ipsius x, quam per Z designabimus.

4.

Sit q numerus positivus impar, adeoque $\frac{1}{2}(q-1)$ integer. Erit itaque $(\xi\xi)^{\frac{1}{2}(q-1)}$ — $(\varepsilon p)^{\frac{1}{2}(q-1)}$ divisibilis per $\xi\xi-\varepsilon p$, et proin etiam per $\frac{1-x^p}{1-x}$. Statuamus $\varepsilon^{\frac{1}{2}(q-1)}=\delta$, atque

$$\xi^{q-1} - \delta p^{\frac{1}{4}(q-1)} = \frac{1-x^p}{1-x} \cdot Y$$

eritque' Y functio integra ipsius x, atque $\delta = +1$, quoties unus numerorum p, q, sive etiam uterque, est formae 4k+1; contra erit $\delta = -1$, quoties uterque p, q est formae 4k+3.

5.

Iam supponamus, $\cdot q$ quoque esse numerum primum (a p diversum) patetque per theorema in *Disquisitionibus Arithmeticis* art. 51 demonstratum,

$$\xi^q - (x^q - x^{q\alpha} + x^{q\alpha\alpha} - x^{q\alpha^2} + \text{etc.} - x^{q\alpha^{p-2}})$$

divisibilem fieri per q, sive formae qX, ita ut X sit functio integra ipsius x etiam respectu coëfficientium numericorum (quod etiam de functionibus reliquis integris hic occurrentibus Z, Y, W subintelligendum est). Designemus pro modulo p atque radice primitiva α indicem numeri q per μ , i.e. sit $q \equiv \alpha^{\mu} \pmod{p}$. Erunt itaque numeri q, $q\alpha$, $q\alpha\alpha$, $q\alpha^3$, ..., $q\alpha^{p-2}$ secundum modulum p resp. congrui numeris α^{μ} , $\alpha^{\mu+1}$, $\alpha^{\mu+2}$..., α^{p-2} , 1, α , $\alpha\alpha$..., $\alpha^{\mu-1}$, adeoque

$$x^{q} - x^{a^{\mu}}$$
 $x^{qa} - x^{a^{i+1}}$
 $x^{qa} - x^{a^{\mu+1}}$
 $x^{q\dot{a}^{2}} - x^{a^{\mu+1}}$

П.

$$x^{qa^{p-\mu-2}} - x^{a^{p-3}}$$
 $x^{qa^{p-\mu-1}} - x$
 $x^{qa^{p-\mu}} - x^a$
 $x^{qa^{p-\mu+1}} - x^{aa}$
 \vdots
 $x^{\mu a^{p-3}} - x^{a^{\mu-1}}$

per $1-x^p$ divisibiles. Quibus quantitatibus, alternis vicibus positive et negative sumtis atque summatis, patet, per $1-x^p$ divisibilem esse functionem

$$x^{q} - x^{qa} + x^{qaa} - x^{qa^{a}} + \text{ etc. } -x^{qa^{p-a}} \mp \xi$$

valente signo superiori vel inferiori, prout μ par sit vel impar, i. e. prout q sit residuum quadraticum ipsius p vel non-residuum. Statuemus itaque

$$x^{q} - x^{qa} + x^{qaa} - x^{qa^{a}} + \text{etc.} - x^{qa^{p-a}} - \gamma \xi = (1 - x^{p})W$$

faciendo $\gamma = +1$, vel $\gamma = -1$, prout q est residuum quadraticum ipsius p vel non-residuum, patetque, W fieri functionem integram.

6.

His ita praeparatis, e combinatione aequationum praecedentium deducimus

$$q\xi X = \varepsilon p(\delta p^{\sharp (q-1)} - \gamma) + \frac{1-x^p}{1-x} \cdot (Z(\delta p^{\sharp (q-1)} - \gamma) + Y\xi\xi - W\xi(1-x))$$

Supponamus, ex divisione functionis ξX per

$$x^{p-1} + x^{p-2} + x^{p-3} + \text{etc.} + x + 1$$

oriri quotientem U cum residuo T, sive haberi

$$\xi X = \frac{1-x^p}{1-x} \cdot U + T$$

ita ut U, T sint functiones integrae, etiam respectu coëfficientium numericorum, et quidem T ordinis certe inferioris, quam divisor. Erit itaque

$$qT - \varepsilon p(\delta p^{\dagger(q-1)} - \gamma) = \frac{1-x^p}{1-x} \cdot (Z(\delta p^{\dagger(q-1)} - \gamma) + Y\xi\xi - W\xi(1-x) - qU)$$

quae aequatio manifesto subsistere nequit, nisi tum membrum a laeva tum membrum a dextra per se evanescat. Erit itaque $\epsilon p(\delta p^{\frac{1}{2}(q-1)}-\gamma)$ per q divisibi-

lis, nec non etiam $\delta p^{\frac{1}{2}(q-1)} - \gamma$, adeoque etiam propter $\delta \delta = 1$, numerus $p^{\frac{1}{2}(q-1)} - \gamma \delta$ per q divisibilis erit.

Quodsi iam per \mathcal{G} designatur unitas positive vel negative accepta, prout p est residuum vel non-residuum quadraticum numeri q, erit $p^{\frac{1}{2}(q-1)}$ — \mathcal{G} per q divisibilis, adeoque etiam $\mathcal{G} - \gamma \delta$, quod fieri nequit, nisi fuerit $\mathcal{G} = \gamma \delta$. Hinc vero theorema fundamentale sponte sequitur. Scilicet

- I. Quoties veluterque p, q, vel alteruter tantum est formae 4k+1, adeoque $\delta = +1$, erit $\delta = \gamma$, et proin vel simul q residuum quadraticum ipsius p, atque p residuum quadraticum ipsius q; vel simul q non-residuum ipsius p, atque p non-residuum ipsius q.
- II. Quoties uterque p, q est formae 4k+3, adeoque $\delta = -1$, erit $\delta = -\gamma$, adeoque vel simul q residuum quadraticum ipsius p, atque p non-residuum ipsius q; vel simul q non-residuum ipsius p, atque p residuum ipsius q. Q. E. D.

Algorithmus novus ad decidendum, utrum numerus integer positivus datus numeri primi positivi dati residuum quadraticum sit an non-residuum.

1.

Antequam solutionem novam huius problematis exponamus, solutionem in *Disquisitionibus Arithmeticis* traditam hic breviter repetemus, quae satis quidem expedite perficitur adiumento theorematis fundamentalis atque theorematum notorum sequentium:

- I. Relatio numeri a ad numerum b (quatenus ille huius residuum quadraticum est sive non-residuum), eadem est quae numeri c ad b, si $a \equiv c \pmod{b}$.
- II. Si a est productum e factoribus a, b, γ , δ etc., atque b numerus primus, relatio ipsius a ad b ita a relatione horum factorum ad b pendebit, ut a fiat residuum quadraticum ipsius b vel non-residuum, prout inter illos factores reperitur multitudo par vel impar talium, qui sint non-residua ipsius b. Quoties itaque aliquis factor est quadratum, ad eum in hoc examine omnino non erit respiciendum; si quis vero factor est potestas integri cum exponente impari, illius vice ipse hic integer fungi poterit.
- III. Numerus 2 est residuum quadraticum cuiusvis numeri primi formae 8m+1 vel 8m+7, non-residuum vero cuiusvis numeri primi formae 8m+3 vel 8m+5.

Proposito itaque numero a, cuius relatio ad numerum primum b quaeritur: pro a, si maior est quam b, ante omnia substituetur eius residuum minimum positivum secundum modulum b, quo residuo in factores suos primos resoluto, quaestio per theorema II reducta est ad inventionem relationis singulorum horum factorum ad b. Relatio factoris 2, (siquidem adest vel semel, vel ter, vel quinquies etc.) innotescit per theorema III; relatio reliquorum, per theorema fundamentale, pendet a relatione ipsius b ad singulos. Hoc itaque modo loco unius relationis numeri dati ad numerum primum b iam investigandae sunt aliquae relationes numeri b ad alios primos impares ipso b minores, quae problemata eodem modo ad minores modulos deprimentur, manifestoque hae depressiones successivae tandem exhaustae erunt.

2.

Ut exemplo haec solutio illustretur, quaerenda sit relatio numeri 103 ad 379. Quum 103 iam sit minor quam 379, atque ipse numerus primus, protinus applicandum erit theorema fundamentale, quod docet, relationem quaesitam oppositam esse relationi numeri 379 ad 103. Haec iterum aequalis est relationi numeri 70 ad 103, quae ipsa pendet a relationibus numerorum 2, 5, 7 ad 103. Prima harum relationum e theoremate III innotescit. Secunda per theorema fundamentale pendet a relatione numeri 103 ad 5, cui per theorema I aequalis est relatio numeri 3 ad 5; haec iterum per theorema fundamentale pendet a relatione numeri 5 ad 3, cui per theorema I aequalis est relatio numeri 2 ad 3, per theorema III nota. Perinde relatio numeri 7 ad 103 per theorema fundamentale a relatione numeri 103 ad 7 pendet, quae per theorema I aequalis est relationi numeri 5 ad 7; haec iterum per theorema fundamentale pendet a relatione numeri 7 ad 5, cui aequalis est per theorema I relatio numeri 2 ad 5 per theorema III nota. iam hanc analysin in synthesin transmutare placet, quaestionis decisio ad quatuordecim momenta referetur, quae complete hic apponimus, ut maior concinnitas solutionis novae eo clarius elucescat.

- 1. Numerus 2 est residuum quadraticum numeri 103 (theor. III).
- 2. Numerus 2 est non-residuum quadraticum numeri 3 (theor. III).
- 3. Numerus 5 est non-residuum quadraticum numeri 3 (ex I et 2).
- 4. Numerus 3 est non-residuum quadraticum numeri 5 (theor. fund. et 3).
- 5. Numerus 103 est non-residuum quadraticum numeri 5 (I et 4).

- 6. Numerus 5 est non-residuum quadraticum numeri 103 (theor. fund. et 5).
- 7. Numerus 2 est non-residuum quadraticum numeri 5 (theor. III).
- 8. Numerus 7 est non-residuum quadraticum numeri 5 (I et 7).
- 9. Numerus 5 est non-residuum quadraticum numeri 7 (theor. fund. et 8).
- 10. Numerus 103 est non-residuum quadraticum numeri 7 (I et 9).
- 11. Numerus 7 est residuum quadraticum numeri 103 (theor. fund. et 10).
- 12. Numerus 70 est non-residuum quadraticum numeri 103 (II, 1, 6, 11).
- 13. Numerus 379 est non-residuum quadraticum numeri 103 (I et 12).
- 14. Numerus 103 est residuum quadraticum numeri 379 (theor. fund. et 13).

In sequentibus brevitatis caussa utemur signo in Comment. Gotting. Vol. XVI introducto. Scilicet per [x] denotabimus quantitatem x ipsam, quoties x est integer, sive integrum proxime minorem quam x, quoties x est quantitas fracta, ita ut x-[x] semper fiat quantitas non negativa unitate minor.

3

PROBLEMA. Denotantibus a, b integros positivos inter se primos, et positb $[\frac{1}{2}a] = a'$, invenire aggregatum

$$\left[\frac{b}{a}\right] + \left[\frac{2b}{a}\right] + \left[\frac{3b}{a}\right] + \left[\frac{4b}{a}\right] + \text{etc.} + \left[\frac{a'b}{a}\right]$$

Sol. Designemus brevitatis caussa huiusmodi aggregatum per $\varphi(a,b)$, ita ut etiam fiat

$$\varphi(b,a) := \left[\frac{a}{b}\right] + \left[\frac{2a}{b}\right] + \left[\frac{3a}{b}\right] + \text{etc.} + \left[\frac{b'a}{b}\right]$$

si statuimus $[\frac{1}{2}b] = b'$. In demonstratione tertia theorematis fundamentalis ostensum est, pro casu eo, ubi a et b sunt impares, fieri

$$\varphi(a,b)+\varphi(b,a)=a'b'$$

facileque Candem methodum sequendo veritas huius propositionis ad eum quoque casum extenditur, ubi alteruter numerorum a, b est impar, uti illic iam addigitavimus. Dividatur, ad instar methodi, per quam duorum integrorum divisor communis maximus investigatur, a per b, sitque b quotiens atque b residuum; dein dividatur b per b et sic porro, ita ut habeantur aequationes

$$a = 6b+c$$

$$b = \gamma c+d$$

$$c = \delta d+e$$

$$d = \epsilon e + f \text{ etc.}$$

Hoc modo in serie numerorum continuo decrescentium b, c, d, e, f etc. tandem ad unitatem perveniemus, quum per hyp. a et b sint inter se primi, ita ut aequatio ultima fiat

$$k = \lambda l + 1$$

Quum manifesto habeatur

$$\begin{bmatrix} \frac{a}{b} \end{bmatrix} = \begin{bmatrix} 6 + \frac{c}{b} \end{bmatrix} = 6 + \begin{bmatrix} \frac{c}{b} \end{bmatrix}$$
$$\begin{bmatrix} \frac{2a}{b} \end{bmatrix} = \begin{bmatrix} 26 + \frac{2c}{b} \end{bmatrix} = 26 + \begin{bmatrix} \frac{2c}{b} \end{bmatrix}$$
$$\begin{bmatrix} \frac{3a}{b} \end{bmatrix} = \begin{bmatrix} 36 + \frac{3c}{b} \end{bmatrix} = 36 + \begin{bmatrix} \frac{3c}{b} \end{bmatrix}$$

etc., erit

$$\varphi(b,a) = \varphi(b,c) + \mathbf{1} \mathcal{C}(b'b' + b')$$

et proin

$$\varphi(a,b) = a'b' - \frac{1}{2} \delta(b'b' + b') - \varphi(b,c)$$

Per similia ratiocinia fit, si statuimus $[\frac{1}{2}c] = c'$, $[\frac{1}{2}d] = d'$ $[\frac{1}{2}e] = e'$ etc.,

$$\varphi(b,c) = b'c' - \frac{1}{2}\gamma(c'c' + c') - \varphi(c,d)$$

$$\varphi(c,d) = c'd' - \frac{1}{2}\delta(d'd' + d') - \varphi(d,e)$$

$$\varphi(d,e) = d'e' - \frac{1}{2}\varepsilon(e'e' + e') - \varphi(e,f)$$

etc. usque ad

$$\varphi(k,l) = k'l' - \frac{1}{2}\lambda(l'l' + l') - \varphi(l,1)$$

Hinc, quoniam manifesto est $\varphi(l, 1) = 0$, colligimus formulam

$$\varphi(a,b) = a'b' - b'c' + c'd' - d'e' + \text{ etc. } \pm k'l' \\ -\frac{1}{2}6(b'b' + b') + \frac{1}{2}\gamma(c'c' + c') - \frac{1}{2}\delta(d'd' + d') + \frac{1}{2}\epsilon(e'e' + e') - \text{ etc. } \pm \lambda(l'l' + l')$$

4.

Facile iam ex iis, quae in demonstratione tertia exposita sunt, colligitur, relationem numeri b ad a, quoties a sit numerus primus, sponte cognosci e va-

lore aggregati $\varphi(a, 2b)$. Scilicet prout hoc aggregatum est numerus par vel impar, erit b residuum quadraticum ipsius a vel non-residuum. Ad eundem vero finem ipsum quoque aggregatum $\varphi(a, b)$ adhiberi poterit, ea tamen restrictione, ut casus ubi b impar est ab eo ubi par est distinguatur. Scilicet

- I. Quoties b est impar, erit b residuum vel non-residuum quadraticum ipsius a, prout $\varphi(a, b)$ par est vel impar.
- II. Quoties b est par, eadem regula valebit, si insuper a est vel formae 8n+1 vel formae 8n+7; si vero pro valore pari ipsius b modulus a est vel formae 8n+3 vel formae 8n+5, regula opposita applicanda erit, puta, b erit residuum quadraticum ipsius a, si $\varphi(a,b)$ est impar, non-residuum vero, si $\varphi(a,b)$ est par.

Haec omnia ex art. 4 demonstrationis tertiae facillime derivantur.

5.

Exemplum. Si quaeritur relatio numeri 103 ad numerum primum 379, habemus, ad eruendum aggregatum $\varphi(379, 103)$,

$$a = 379$$
 $a' = 189$ $b = 103$ $b' = 51$ $6 = 3$ $c = 70$ $c' = 35$ $\gamma = 1$ $d = 33$ $d' = 16$ $\delta = 2$ $e = 4$ $e' = 2$ $\epsilon = 8$

hinc

$$\varphi(379, 103) = 9639 - 1785 + 560 - 32 - 3978 + 630 - 272 + 24 = 4786$$

unde 103 erit residuum quadraticum numeri 379. Si ad eundem finem aggregatum (379, 206) adhibere malumus, habemus hocce paradigma:

379	189	
206	103	1
173	86	1
33	16	5
8	4	4

unde deducimus

 $\varphi(379, 206) = 19467 - 8858 + 1376 - 64 - 5356 + 3741 - 680 + 40 = 9666$ quapropter 103 est residuum quadraticum numeri 379.

6.

Quum ad decidendam relationem numeri b ad a non opus sit, singulas partes aggregati $\varphi(a,b)$ computare, sed sufficiat novisse, quot inter eas sint impares, regula nostra ita quoque exhiberi potest:

In exemplo nostro series a', b', c', d', e' duas successiones imparium sistit, unde $\mu = 2$; in serie b', γ' , δ' , ϵ' , duo quidem impares adsunt, sed quibus in serie b', c', d', e' respondent numeri formae 4n+3, unde $\nu = 0$. Fit itaque $\mu + \nu$ par, adeoque 103 residuum quadraticum numeri 379.

THEORIA

RESIDUORUM BIQUADRATICORUM

COMMENTATIO SECUNDA

AUCTORE

CAROLO FRIDERICO GAUSS

SOCIETATI REGIAE TRADITA 1831. APR. 15.

Commentationes societatis regiae scientiarum Gottingensis recentiores. Vol. vii.

Gottingae MDCCCXXXII.

THEORIA RESIDUORUM BIQUADRATICORUM.

COMMENTATIO SECUNDA.

24.

In commentatione prima ea, quae ad classificationem biquadraticam numeri +2 requiruntur, complete absoluta sunt. Dum scilicet omnes numeros per modulum p (qui supponitur esse numerus primus formae 4n+1) non divisibiles inter quatuor complexus A, B, C, D distributos concipimus, prout singuli ad potestatem exponentis $\frac{1}{2}(p-1)$ evecti congrui fiunt secundum modulum p ipsi +1, +f, -1, -f, denotante f radicem alterutram congruentiae $ff \equiv -1$ (mod. p): invenimus, diiudicationem, cuinam complexui adnumerandus sit numerus +2, pendere a discerptione numeri p in duo quadrata, ita quidem, ut si statuatur p = aa + bb, denotante aa quadratum impar, bb quadratum par, si porro signa ipsorum a, b ita accepta supponantur, ut habeatur $a \equiv 1 \pmod{4}$, $b \equiv af \pmod{p}$, numerus +2 ad complexum A, B, C, D pertinere debeat, prout $\frac{1}{2}b$ sit formae $\frac{1}{2}a$, $\frac{1}{2}$

Sponte quoque hinc demanat regula classificationi numeri -2 inserviens. Scilicet quum -1 pertineat ad classem A pro valore pari ipsius $\frac{1}{2}b$, ad classem C vero pro impari: pertinebit, per theorema art. 7, numerus -2 ad classem A, B, C, D, prout $\frac{1}{2}b$ est formae 4n, 4n+3, 4n+2, 4n+1 resp.

Haec theoremata etiam sequenti modo exprimi possunt:

Pertinet	+2	— 2
ad complexum	si b, secundum modul	um 8, fit congruus ipsi
A	0	0
\boldsymbol{B}	2 a	6 a
$oldsymbol{C}$	4 a	4 a
$oldsymbol{D}$	6 a	2 a

Facile intelligitur, theoremata sic enunciata haud amplius pendere a conditione $a \equiv 1 \pmod{4}$, sed etiamnum valere, si fuerit $a \equiv 3 \pmod{4}$, dummodo conditio altera, $af \equiv b \pmod{p}$, conservetur.

Aeque facile perspicitur, summam horum theorematum eleganter contrahi posse in formulam unicam, puta:

si a et b positive accipiuntur, semper fit
$$b^{rac{1}{2}ab} \equiv a^{rac{1}{2}ab} \, 2^{rac{1}{2}(p-1)} \, (\mathrm{mod.} p)$$

25.

Videamus nunc, quatenus inductio classificationem numeri 3 indigitet. Tabula art. 11 ulterius continuata (semper adoptata radice primitiva minima) monstrat, +3 pertinere

ad complexum												
\boldsymbol{A} pro			B pro				C pro			$oldsymbol{D}$ pro		
p	a	b	p	a	b	p	a	b	p	a	b	
13	— 3	+ 2	17	+ 1	- 4	37	+ 1	6	5	+ 1	+ 2	
109	- 3	十10	29	+ 5	+ 2	61	十 5	- 6	41	十 5	- 4	
181	+ 9	+10	53	7	+ 2	73	3	8	149	— 7	+10	
193	— 7	-12	89	+ 5	— 8	97	+ 9	+4	173	+13	+ 2	
229	15	+ 2	101	+ 1	+10	157	11	-6				
277	+ 9	+14	113	— 7	8	241	-15	-4				
,		' '	137	-11	4							
			197	+ 1	14							
			233	+13	+ 8						•	
			257	+ 1	16							
			269	+13	+10							
			281	+ 5	+16							
			293	+17	+ 2							

Primo saltem aspectu nexum simplicem inter valores numerorum a, b, quibus idem complexus respondet, non animadvertimus. At si perpendimus, diiudicationem similem in theoria residuorum quadraticorum per regulam simpliciorem absolvi respectu numeri — 3, quam respectu numeri + 3, spes affulget successus aeque secundi in theoria residuorum biquadraticorum. Invenimus autem, — 3 pertinere ad complexum

A pro	B pr	B pro			C pro			$oldsymbol{D}$ pro		
$p \mid a \mid b$	p a	b	p	а	b	p	а	b		
37 + 1 - 6	5 + 1	+ 2	13	— 3	+ 2	29	+ 5	+ 2		
61 + 5 - 6	17 + 1	— 4	73	— 3	 8	41	+ 5	 — 4		
157 -11 - 6	89 + 5	- 8	97	+ 9	+ 4	53	— 7	+ 2		
193 - 7 - 12	113 - 7	— 8	109	3	+10	101	+ 1	+10		
	137 -11	4	181	+ 9	+10	197	+ 1	14		
	149 - 7	+10	229	15	+ 2	269	+13	+10		
	173 +13	+ 2	241	15	- 4	293	+17	+ 2		
	233 +13	+ 8	277	+ 9	+14					
	257 + 1	16								
	281 + 5	+16								

ubi lex inductionis sponte se offert. Scilicet pertinet -3 ad complexum

- A, quoties b per 3 divisibilis est, sive $b \equiv 0 \pmod{3}$
- B, quoties a+b per 3 est divisibilis, sive $b \equiv 2a \pmod{3}$
- C, quoties a per 3 est divisibilis, sive $a \equiv 0 \pmod{3}$
- D, quoties a-b per 3 divisibilis est, sive $b \equiv a \pmod{3}$

26.

Numerum +5 adscribendum invenimus complexui

A pro p = 101, 109, 149, 181, 269

B pro p = 13, 17, 73, 97, 157, 193, 197, 233, 277, 293

C pro p = 29, 41, 61, 89, 229, 241, 281

D pro p = 37, 53, 113, 137, 173, 257

In considerationem vocatis valoribus numerorum a, b singulis p respondentibus, lex hic aeque facile, ut pro classificatione numeri — 3, prehenditur. Scilicet incidimus in complexum

A, quoties $b \equiv 0 \pmod{5}$

B, quoties $b \equiv a$

C, quoties $a \equiv 0$

D, quoties $b \equiv 4a$

Manifestum est, has regulas complecti casus omnes, quum pro $b \equiv 2a$, vel $b \equiv 3a \pmod{5}$, fieret $aa + bb \equiv 0$, Q. E. A., quum per hypothesin p sit numerus primus a 5 diversus.

27.

Perinde inductio ad numeros —7, —11, +13, +17, —19, —23 applicata satisque producta sequentes regulas indigitat:

Pro numero -7

 $A \mid a \equiv 0$, vel $b \equiv 0 \pmod{.7}$

 $B \mid b \equiv 4a$, vel $b \equiv 5a$

 $C \mid b \equiv a$, vel $b \equiv 6a$

 $D \mid b \equiv 2a$, vel $b \equiv 3a$

Pro numero -11.

 $A \mid b \equiv 0, 5a, \text{ vel } 6a \pmod{11}$

 $B \mid b \equiv a, 3a \text{ vel } 4a$

 $C \mid a \equiv 0$, vel $b \equiv 2a$ vel 9a

 $D \mid b \equiv 7 a, 8 a \text{ vel } 10 a$

Pro numero +13.

 $A \mid b \equiv 0, 4a, 9a \pmod{13}$

 $B \mid b \equiv 6a, 11a, 12a$

 $C \mid a \equiv 0; b \equiv 3a, 10a$

 $D \mid b \equiv a, 2a, 7a$

Pro numero +17.

 $A \mid a \equiv 0; b \equiv 0, a, 16a \pmod{17}$

 $B \mid b \equiv 2a, 6a, 8a, 14a$

 $C \mid b \equiv 5a, 7a, 10a, 12a$

 $D \mid b \equiv 3a, 9a, 11a, 15a$

Pro numero -19.

$$A \mid b \equiv 0, 2a, 5a, 14a, 17a \pmod{19}$$

$$B \mid b \equiv 3a, 7a, 11a, 13a, 18a$$

$$C \mid a \equiv 0; b \equiv 4a, 9a, 10a, 15a$$

$$D \mid b \equiv a, 6a, 8a, 12a, 16a$$

Pro numero — 23.

$$A \mid a \equiv 0$$
; $b \equiv 0, 7a, 10a, 13a, 16a (mod. 23)$

$$B \mid b \equiv 2a, 3a, 4a, 11a, 15a, 17a$$

$$C \mid b \equiv a, 5a, 9a, 14a, 18a, 22a$$

$$D \mid b \equiv 6a, 8a, 12a, 19a, 20a, 21a$$

28.

Theoremata specialia hoc modo per inductionem eruta confirmari inveniuntur, quousque haec continuetur, formamque criteriorum pulcherrimam manifestant. Si vero inter se conferuntur, ut conclusiones generales inde petantur, primo statim aspectu se offerunt observationes sequentes.

Criteria diiudicationis, ad quemnam complexum referendus sit numerus primus $\pm q$ (sumendo signum superius vel inferius, prout q est formae 4n+1 vel 4n+3), pendent a formis numerorum a, b inter se collatorum respectu moduli q. Scilicet

I. quoties $a \equiv 0 \pmod{q}$, $\pm q$ pertinet ad complexum determinatum, qui est A pro q = 7, 17, 23, nec non C pro q = 3, 11, 13, 19, unde coniectura oritur, casum priorem generaliter valere, quoties q sit formae $n \pm 1$, posteriorem vero, quoties q sit formae $n \pm 1$. Ceterum complexus $n \pm 1$ iam absque inductione excluduntur pro valore ipsius $n \pm 1$ per $n \pm 1$ per $n \pm 1$ mod. $n \pm 1$ per $n \pm 1$ p

II. Quoties autem a per q non est divisibilis, criterium pendet a valore expressionis $\frac{b}{a} \pmod{q}$. Admittit quidem haec expressio q valores diversos, puta 0, 1, 2, 3....q-1: sed quoties q est formae 4n+1, excludendi sunt bini valo-

res expressionis $\sqrt{-1} \pmod{q}$, qui manifesto nequeunt esse valores expressionis $\frac{b}{a} \pmod{q}$, quum p = aa + bb semper supponatur esse numerus primus a q diversus. Quapropter multitudo valorum admissibilium expressionis $\frac{b}{a} \pmod{q}$ est q = q - 2, pro $q \equiv 1 \pmod{4}$, dum manet q = q pro $q \equiv 3 \pmod{4}$.

Iam hi valores in quaternas classes distribuuntur, puta, ut quidam, indefinite per α denotandi, respondeant complexui A; alii per δ denotandi complexui B; alii γ complexui C; denique reliqui δ complexui D, ita scilicet, ut $\pm q$ complexui A, B, C, D adscribendus sit, prout habeatur $b \equiv \alpha a$, $b \equiv \delta a$, $b \equiv \gamma a$, $b \equiv \delta a \pmod{q}$.

At lex huius distributionis abstrusior videtur, etiamsi quaedam generalia promte animadvertantur. Multitudo in ternis classibus eadem reperitur, puta $= \frac{1}{4}(q-1)$ vel $\frac{1}{4}(q+1)$, dum in una (et quidem in eadem, quae respondet complexui cum criterio $a \equiv 0$) unitate minor est, ita ut multitudo omnium criteriorum diversorum respectu singulorum complexuum fiat eadem, puta $= \frac{1}{4}(q-1)$ vel $\frac{1}{4}(q+1)$. Porro animadvertimus, 0 semper in prima classe (inter α) reperiri, nec non complementa numerorum α , δ , γ , δ ad q, puta $q-\alpha$, $q-\delta$, $q-\gamma$, $q-\delta$ resp. in classe prima, quarta, tertia, secunda. Denique valores expressionum $\frac{1}{\alpha}$, $\frac{1}{\delta}$, $\frac{1}{\gamma}$, $\frac{1}{\delta}$ (mod. q) pertinere videmus ad classem primam, quartam, tertiam, secundam, quoties criterium $a \equiv 0$ respondet complexui A; ad classem tertiam, secundam, primam, quartam resp. autem, quoties criterium $a \equiv 0$ refertur ad complexum C. Sed ad haec fere limitantur, quae per inductionem assequi licet, nisi audacius ea, quae infra e fontibus genuinis haurientur, anticipare nobis arrogemus.

29.

Antequam ulterius progrediamur, observare convenit, criteria pro numeris primis (positive sumtis, si sunt formae 4n+1, negative, si formae 4n+3) sufficere ad diiudicationem pro omnibus reliquis numeris, si modo theorema art. 7, atque criteria pro -1 et ± 2 in subsidium vocentur. Ita e.g. si desiderantur criteria pro numero ± 3 , criteria in art. 25 prolata, quae referentur ad -3. etiamnum pro ± 3 valebunt, quoties $\pm b$ est numerus par: contra complexus A, B, C, D cum complexibus C, D, A, B permutandi erunt, quoties $\pm b$ est impar, unde sequuntur praecepta haecce:

```
+3 pertinet

ad complexum | si

A | b \equiv 0 \pmod{12}; vel simul a \equiv 0 \pmod{3}, b \equiv 2 \pmod{4}

B | b \equiv 9a vel 10a \pmod{12}

C | b \equiv 6a \pmod{12}; vel simul a \equiv 0 \pmod{3}, b \equiv 0 \pmod{4}

D | b \equiv 2a vel 4a \pmod{12}
```

Perinde criteria pro ± 6 petuntur e combinatione criteriorum pro ± 2 et -3; scilicet

```
+6 pertinet

ad complexum | si

A | b \equiv 0, 2a, 22a \pmod{24}; vel simul a \equiv 0 \pmod{3}, b \equiv 4a \pmod{8}

B | b \equiv 4a, 6a, 8a \pmod{24}; vel simul a \equiv 0 \pmod{3}, b \equiv 2a \pmod{8}

C | b \equiv 10a, 12a, 14a \pmod{24}; vel simul a \equiv 0 \pmod{3}, b \equiv 0 \pmod{8}

D | b \equiv 16a, 18a, 20a \pmod{24}; vel simul a \equiv 0 \pmod{3}, b \equiv 6a \pmod{8}

—6 vero
```

```
ad complexum

A

b \equiv 0, 10 a, 14 a (mod. 24); vel simul a \equiv 0 \pmod{3}, b \equiv 4 a (mod. 8)

B

b \equiv 4 a, 8 a, 18 a (mod. 24); vel simul a \equiv 0 \pmod{3}, b \equiv 6 a (mod. 8)

C

b \equiv 2a, 12 a, 22 a (mod. 24); vel simul a \equiv 0 \pmod{3}, b \equiv 0 \pmod{8}

b \equiv 6a, 16a, 20 a (mod. 24); vel simul a \equiv 0 \pmod{3}, b \equiv 2 a (mod. 8)
```

Simili modo criteria pro numero +21 concinnabuntur e criteriis pro -3 et -7; criteria pro -105 e criteriis pro -1, -3, +5, -7, etc.

30.

Amplissimam itaque messem theorematum specialium aperit inductio, theoremati pro numero 2 affinium: sed desideratur vinculum commune, desiderantur demonstrationes rigorosae, quum methodus, per quam in commentatione prima numerum 2 absolvimus, ulteriorem applicationem non patiatur. Non desunt quidem methodi diversae, per quas demonstrationibus pro casibus particularibus potiri liceret, iis potissimum, qui distributionem residuorum quadraticorum inter complexus A, C spectant, quibus tamen non immoramur, quum theoria genera-

lis omnes casus complectens in votis esse debeat. Cui rei quum inde ab anno 1805 meditationes nostras dicare coepissemus, mox certiores facti sumus, fontem genuinum theoriae generalis in campo arithmeticae promoto quaerendum esse, uti iam in art. I addigitavimus.

Quemadmodum scilicet arithmetica sublimior in quaestionibus hactenus pertractatis inter solos numeros integros reales versatur, ita theoremata circa residua biquadratica tunc tantum in summa simplicitate ac genuina venustate resplendent, quando campus arithmeticae ad quantitates imaginarias extenditur, ita ut absque restrictione ipsius obiectum constituant numeri formae a+bi, denotantibus i pro more quantitatem imaginariam $\sqrt{-1}$, atque a, b indefinite omnes numeros reales integros inter $-\infty$ et $+\infty$. Tales numeros vocabimus numeros integros complexos, ita quidem, ut reales complexis non opponantur, sed tamquam species sub his contineri censeantur. Commentatio praesens tum doctrinam elementarem de numeris complexis, tum prima initia theoriae residuorum biquadraticorum sistet, quam ab omni parte perfectam reddere in continuatione subsequente suscipiemus*).

31.

Ante omnia quasdam denominationes praemittimus, per quarum introductionem brevitati et perspicuitati consuletur.

Campus numerorum complexorum a+bi continet

- I. numeros reales, ubi b = 0, et, inter hos, pro indole ipsius a
 - 1) cifram
 - 2) numeros positivos
 - · 3) numeros negativos
- II. numeros imaginarios, ubi b cifrae inaequalis. Hic iterum distinguuntur
 - 1) numeri imaginarii absque parte reali, i. e. ubi a = 0
- 2) numeri imaginarii cum parte reali, ubi neque b neque a=0. Priores si placet numeri imaginarii puri, posteriores numeri imaginarii mixti vocari possunt.

^{*)} Obiter saltem hic adhuc monere convenit, campum ita definitum imprimis theoriae residuorum biquadraticorum accommodatum esse. Theoria residuorum cubicorum simili modo superstruenda est considerationi numerorum formae a+bh, ubi h est radix imaginaria aequationis $h^2-1=0$, puta $h=-\frac{1}{2}+\sqrt{\frac{3}{4}}.i$; et perinde theoria residuorum potestatum altiorum introductionem aliarum quantitatum imaginariarum postulabit.

Unitatibus in hac doctrina utimur quaternis. +1, -1, +i, -i, quae simpliciter positiva, negativa, positiva imaginaria, negativa imaginaria audient.

Producta terna cuiuslibet numeri complexi per -1, +i, -i illius socios vel numeros illi associatos appellabimus. Excepta itaque cifra (quae sibi ipsa associata est), semper quaterni numeri inaequales associati sunt.

Contra numero complexo coniunctum vocamus eum, qui per permutationem ipsius i cum —i inde oritur. Inter numeros imaginarios itaque bini inaequales semper coniuncti sunt, dum numeri reales sibi ipsi sunt coniuncti, siquidem denominationem ad hos extendere placet.

Productum numeri complexi per numerum ipsi coniunctum utriusque normam vocamus. Pro norma itaque numeri realis, ipsius quadratum habendum est.

Generaliter octonos numeros nexos habemus, puta

$$\begin{vmatrix} a+bi \\ -b+ai \\ -a-bi \\ -a-bi \\ b-ai \end{vmatrix} \begin{vmatrix} a-bi \\ -b-ai \\ b+ai \end{vmatrix}$$

ubi duas quaterniones numerorum associatorum, quatuor biniones coniunctorum conspicimus, omniumque norma communis est aa+bb. Sed octo numeri ad quatuor inaequales reducuntur, quoties vel $a=\pm b$, vel alteruter numerorum a,b=0.

E definitionibus allatis protinus demanant sequentia:

Producto duorum numerorum complexorum coniunctum est productum e numeris, qui illis coniuncti sunt.

Idem valet de producto e pluribus factoribus, nec non de quotientibus.

Norma producti e duobus numeris complexis aequalis est producto ex horum normis.

Hoc quoque theorema extenditur ad producta e quotcunque factoribus et ad quotientes.

Cuiusvis numeri complexi (excipiendo cifram, quod plerumque abhinc tacite subintelligemus) norma est numerus positivus.

Ceterum nihil obstat, quominus definitiones nostrae ad valores fractos vel adeo irrationales ipsorum a, b extendantur; sed a+bi tunc tantum numerus complexus integer audiet, quando uterque a, b est integer, atque tunc tantum rationalis, quando uterque a, b rationalis est.

32.

Algorithmus operationum arithmeticarum circa numeros complexos vulgo notus est: divisio, per introductionem normae, ad multiplicationem reducitur, quum habeatur

$$\frac{a+bi}{c+di} = (a+bi) \cdot \frac{c-di}{cc+dd} = \frac{ac+bd}{cc+dd} + \frac{bc-ad}{cc+dd}.i$$

Extractio radicis quadratae perficitur adiumento formulae

$$\sqrt{(a+bi)} = \pm (\sqrt{\frac{\sqrt{(aa+bb)+a}}{2}} + i\sqrt{\frac{\sqrt{(aa+bb)-a}}{2}})$$

si b est numerus positivus, vel huius

$$\sqrt{(a+bi)} = \pm (\sqrt{\frac{\sqrt{(aa+bb)+a}}{2}} - i\sqrt{\frac{\sqrt{(aa+bb)-a}}{2}})$$

si b est numerus negativus. Usui transformationis quantitatis complexae a+bi in $r(\cos\varphi+i\sin\varphi)$ ad calculos facilitandos, non opus est hic immorari.

33.

Numerum integrum complexum, qui in factores duos ab unitatibus diversos*) resolvi potest, vocamus numerum complexum compositum; contra numerus primus complexus dicetur, qui talem resolutionem in factores non admittit. Hinc statim patet, quemvis numerum compositum realem etiam esse compositum complexum. At numerus primus realis poterit esse numerus complexus compositus, et quidem hoc valebit de numero 2 atque de omnibus numeris primis realibus positivis formae 4n+1 (excepto numero 1), quippe quos in bina quadrata positiva decomponi posse constat; puta, fit 2 = (1+i)(1-i), $5 \equiv (1+2i)(1-2i)$, 13 = (3+2i)(3-2i), 17 = (1+4i)(1-4i) etc.

Contra numeri primi reales positivi formae 4n+3 semper sunt numeri primi complexi. Si enim talis numerus q esset $= (a+bi)(\alpha+6i)$, foret etiam $q = (a-bi)(\alpha-6i)$, adeoque $qq = (aa+bb)(\alpha\alpha+66)$: at qq unico tantum modo in factores positivos unitate maiores resolvi potest, puta in $q \times q$, unde esse debere $q = aa+bb = \alpha\alpha+66$, Q. E. A.; quum summa duorum quadratorum nequeat esse formae 4n+3.

^{*)} sive, quod idem est, tales, quorum normae unitate sint maiores.

Numeri reales negativi manifesto easdem denominationes servant, quas positivi, idemque valet de numeris imaginariis puris.

Superest itaque, ut inter numeros imaginarios mixtos, compositos a primis dignoscere doceamus, quod fit per sequens

Theorems. Quivis numerus integer imaginarius mixtus a+bi est vel numerus primus complexus, vel numerus compositus, prout ipsius norma est vel numerus primus realis, vel numerus compositus.

Dem. I. Quoniam numeri complexi compositi norma semper est numerus compositus, patet, numerum complexum, cuius norma sit numerus primus realis, necessario esse debere numerum primum complexum. Q. E. P.

II. Si vero norma aa+bb est numerus compositus, sit p numerus primus positivus realis illam metiens. Duo iam casus distinguendi sunt.

- 1) Si p est formae 4n+3, constat, aa+bb per p divisibilem esse non posse, nisi p simul metiatur ipsos a, b, unde a+bi erit numerus compositus.
- 2) Si p non est formae 4n+3, certo in duo quadrata decomponi poterit: statuemus itaque $p = \alpha\alpha + 66$. Quum fiat

$$(a\alpha+b\beta)(a\alpha-b\beta) = aa(\alpha\alpha+\beta\beta)-\beta\beta(aa+b\beta)$$

adeoque per p divisibilis, p certo alterutrum factorem $a\alpha + b\delta$, $a\alpha - b\delta$ metietur, et quum insuper fiat

$$(a\alpha + b\beta)^2 + (b\alpha - a\beta)^2 = (a\alpha - b\beta)^2 + (b\alpha + a\beta)^2 = (a\alpha + b\beta)(\alpha\alpha + \beta\beta)$$

adeoque per pp divisibilis, patet, in casu priori etiam ba-ab, in posteriori ba+ab per p divisibilem esse debere. Quare in casu priori

$$\frac{a+bi}{a+bi} = \frac{aa+bb}{p} + \frac{ba-ab}{p} \cdot i$$

erit numerus integer complexus, in posteriori autem

$$\frac{a+bi}{a-6i} = \frac{aa-b6}{p} + \frac{ba+a6}{p} \cdot i$$

integer erit. Quum itaque numerus propositus vel per a+6i vel per a-6i divisibilis sit, quotientisque norma $=\frac{aa+bb}{p}$ per hyp. ab unitate diversa fiat, patet, a+bi in utroque casu esse numerum complexum compositum. Q. E. S.

34

Totum itaque ambitum numerorum primorum complexorum exhauriunt quatuor species sequentes:

- 1) quatuor unitates, 1, +i, -1, -i, quas tamen, dum de numeris primis agemus, plerumque tacite subintelligemus exclusas.
 - 2) numerus 1+i cum tribus sociis -1+i, -1-i, 1-i.
 - 3) numeri primi reales positivi formae 4n+3 cum ternis sociis.
- 4) numeri complexi, quorum normae sunt numeri primi reales formae 4n+1 unitate maiores, et quidem cuivis normae tali datae semper octoni numeri primi complexi et non plures respondebunt, quum talis norma unico tantum modo in bina quadrata decomponi possit.

35.

Quemadmodum numeri integri reales in pares et impares distribuuntur, atque illi iterum in pariter pares et impariter pares, ita inter numeros complexos distinctio aeque essentialis se offert: sunt scilicet

vel per 1+i non divisibiles, puta numeri a+bi, ubi alter numerorum a, b est impar, alter par;

vel per 1+i neque vero per 2 divisibiles, quoties uterque a, b est impar; vel per 2 divisibiles, quoties uterque a, b est par.

Numeri primae classis commode dici possunt numeri complexi impares, secundae semipares, tertiae pares.

Productum e pluribus factoribus complexis semper impar erit, quoties omnes factores sunt impares; semipar, quoties unus factor est semipar, reliqui impares; par autem, quoties inter factores vel saltem duo semipares inveniuntur, vel saltem unus par.

Norma cuiusvis numeri complexi imparis est formae 4n+1; norma numeri semiparis est formae 8n+2; denique norma numeri paris est productum numeri formae 4n+1 in numerum 4 vel altiorem binarii potestatem.

36.

Quum nexus inter quaternos numeros complexos socios analogus sit nexui inter binos numeros reales oppositos (i. e. absolute aequales signisque oppositis affectos), atque ex his vulgo positivus tamquam primarius merito considerari soleat:

quaestio oritur, num similis distinctio inter quaternos numeros complexos socios stabiliri possit, et pro utili haberi debeat. Ad quam decidendam perpendere oportet, principium distinctionis ita comparatum esse debere, ut productum duorum numerorum, qui inter socios suos pro primariis valent, semper fiat numerus primarius inter socios suos. At mox certiores fimus, tale principium omnino non dari, nisi distinctio ad numeros integros restringatur: quinadeo distinctio utilis ad numeros impares limitanda erit. Pro his vero finis propositus duplici modo attingi potest. Scilicet

I. Productum duorum numerorum a+bi, a'+b'i ita comparatorum, ut a, a' sint formae 4n+1, atque b, b' pares, eadem proprietate gaudebit, ut pars realis fiat $\equiv 1 \pmod{4}$, atque pars imaginaria par. Et facile perspicietur, inter quaternos numeros impares associatos unum solum sub illa forma contentum esse.

II. Si numerus a+bi ita comparatus est, ut a-1 et b vel simul pariter pares sint, vel simul impariter pares, eius productum per numerum complexum eiusdem formae eadem forma gaudebit, facileque perspicitur, e quaternis numeris imparibus associatis unum solum sub hac forma contineri.

Ex his duobus principiis aeque fere idoneis posterius adoptabimus, scilicet inter quaternos numeros complexos impares associatos eum pro primario habebimus, qui secundum modulum 2+2i unitati positivae fit congruus: hoc pacto plura insignia theoremata maiori concinnitate enunciare licebit. Ita e.g. sunt numeri primi complexi primarii -1+2i, -1-2i, +3+2i, +3-2i, +1+4i, +1-4i etc., nec non reales -3, -7, -11, -19 etc. manifesto semper signo negativo afficiendi. Numero complexo impari primario coniunctus quoque primarius erit.

Pro numeris semiparibus et paribus in genere similis distinctio nimis arbitraria parumque utilis foret. E numeris primis associatis 1+i, 1-i, -1+i, -1-i unum quidem prae reliquis pro primario eligere possumus, sed ad compositos talem distinctionem non extendemus.

37.

Si inter factores numeri complexi compositi inveniuntur tales, qui ipsi sunt compositi, atque hi iterum in factores suos resolvuntur, manifesto tandem ad factores primos delabimur, i. e. quivis numerus compositus in factores primos resolubilis est. Inter quos si qui non primarii reperiuntur, singulorum loco substitua-

tur productum primarii associati per i, —1 vel — i. Hoc pacto patet, quemvis numerum complexum compositum M reduci posse ad formam

$$M=i^{\mu}A^{\alpha}B^{\delta}C^{\gamma}\dots$$

ita ut A, B, C etc. sint numeri primi complexi primarii inaequales, atque $\mu = 0$, 1, 2 vel 3. Circa hanc resolutionem theorema se offert, unico tantum modo eam fieri posse, quod theorema obiter quidem consideratum per se manifestum videri posset, sed utique demonstratione eget. Ad quam sternit viam sequens

THEOREMA. Productum $M = A^a B^b C^{\dagger} \dots$, denotantibus A, B, C etc. numeros primos complexos primarios diversos, divisibile esse nequit per ullum numerum primum complexum primarium, qui inter A, B, C etc. non reperitur.

Dem. Sit P numerus primus complexus primarius inter A, B, C etc. non contentus, sintque p, a, b, c etc. normae numerorum P, A, B, C etc. Hinc facile colligitur, normam numeri M fore $=a^ab^6c^7$ etc., unde hic numerus, si M per P divisibilis esset, per p divisibilis esse deberet. Quum singulae normae sint vel numeri primi reales (e serie 2, 5, 13, 17 etc.), vel numerorum primorum realium quadrata (e serie 9, 49, 121 etc.), sponte patet, illud evenire non posse, nisi p cum aliqua norma a, b, c etc. identica fiat: supponemus itaque p = a. At quum P, A per hyp. sint numeri primi complexi primarii non identici, facile perspicietur, haec simul consistere non posse, nisi P, A sint numeri complexi imaginarii coniuncti, et proin p = a numerus primus realis impar, (non quadratum numeri primi): supponemus itaque A = k + li, P = k - li. Hinc (extendendo notionem et signum congruentiae ad numeros integros complexos) erit $A \equiv 2k \pmod{P}$, unde facile colligitur

$$M \equiv 2^{\alpha} k^{\alpha} B^{\ell} C^{\gamma} \dots \pmod{P}$$

Quapropter dum M per P divisibilis supponitur, erit etiam

$$2^{\alpha}k^{\alpha}B^{\delta}C^{\gamma}\ldots$$

per P divisibilis, adeoque norma huius numeri, quae fit

$$= 2^{2a}k^{2a}b^6c^7\ldots$$

divisibilis per p. At quum 2 et k per p certo non sint divisibiles, hinc sequi-

tur, p cum aliquo numerorum b, c etc. identicum esse debere: sit e.g. p = b. Hinc vero concludimus, esse vel B = k + li, vel B = k - li, i. e. vel B = A, vel B = P, utrumque contra hyp.

Ex hoc theoremate alterum, quod resolutio in factores primos unico tantum modo perfici potest, facillime derivatur, et quidem per ratiocinia iis, quibus in *Disquisitionibus Arithmeticis* pro numeris realibus usi sumus (art. 16), prorsus analoga: quapropter illis hic immorari superfluum foret.

38.

Progredimur iam ad congruentiam numerorum secundum modulos complexos. Sed in limine huius disquisitionis convenit indicare, quomodo ditio quantitatum complexarum intuitui subiici possit.

Sicuti omnis quantitas realis per partem rectae utrinque infinitae ab initio arbitrario sumendam, et secundum segmentum arbitrarium pro unitate acceptum aestimandam exprimi, adeoque per punctum alterum repraesentari potest, ita ut puncta ab altera initii plaga quantitates positivas, ab altera negativas repraesentent: ita quaevis quantitas complexa repraesentari poterit per aliquod punctum in plano infinito, in quo recta determinata ad quantitates reales refertur, scilicet quantitas complexa x+iy per punctum, cuius abscissa =x, ordinata (ab altera lineae abscissarum plaga positive, ab altera negative sumta) =y. Hoc pacto dici potest, quamlibet quantitatem complexam mensurare inaequalitatem inter situm puncti ad quod refertur atque situm puncti initialis, denotante unitate positiva deflexum arbitrarium determinatum versus directionem arbitrariam determinatam; unitate negativa deflexum aeque magnum versus duas directiones laterales normales.

Hoc modo metaphysica quantitatum, quas imaginarias dicimus, insigniter illustratur. Si punctum initiale per (0) denotatur, atque duae quantitates complexae m, m' ad puncta M, M' referentur, quorum situm relative ad (0) exprimunt, differentia m-m' nihil aliud erit nisi situs puncti M relative ad punctum M': contra, producto mm' repraesentante situm puncti N relative ad (0), facile perspicies, hunc situm perinde determinari per situm puncti M ad (0), ut situs puncti M' determinatur per situm puncti cui respondet unitas positiva, ita ut haud inepte dicas, situs punctorum respondentium quantitatibus complexis mm'

m, m', 1 formare proportionem. Sed uberiorem huius rei tractationem ad aliam occasionem nobis reservamus. Difficultates, quibus theoria quantitatum imaginariarum involuta putatur, ad magnam partem a denominationibus parum idoneis originem traxerunt (quum adeo quidam usi sint nomine absono quantitatum impossibilium), Si, a conceptibus, quos offerunt varietates duarum dimensionum, (quales in maxima puritate conspiciuntur in intuitionibus spatii) profecti, quantitates positivas directas, negativas inversas, imaginarias laterales nuncupavissemus, pro tricis simplicitas, pro caligine claritas successisset.

39.

Quae in art. praec. prolata sunt, ad quantitates complexas continuas referuntur: in arithmetica, quae tantummodo circa numeros integros versatur, schema numerorum complexorum erit systema punctorum aequidistantium et in rectis aequidistantibus ita dispositorum, ut planum infinitum in infinite multa quadrata aequalia dispertiant. Omnes numeri per numerum complexum datum a+bi=mdivisibiles item infinite multa quadrata formabunt, quorum latera $= \sqrt{(aa+bb)}$ sive areae =aa+bb; quadrata posteriora ad priora inclinata erunt, quoties quidem neuter numerorum a, b est = 0. Cuivis numero per modulum m non divisibili respondebit punctum vel intra tale quadratum situm vel in latere duobus quadratis contiguo; posterior tamen casus locum habere nequit, nisi a, b divisorem communem habent: porro patet, numeros secundum modulum m congruos in quadratis suis locos congruentes occupare. Hinc facile concluditur, si colligantur omnes numeri intra quadratum determinatum siti, nec non omnes qui forte in duobus eius lateribus non oppositis iaceant, denique his adscribatur numerus per m divisibilis, haberi systema completum residuorum incongruorum secundum modulum m, i. e. quemvis integrum alicui ex illis et quidem unico tantum congruum esse debere. Nec difficile foret ostendere, horum residuorum multitudinem aequalem esse moduli normae, puta =aa+bb. Sed consultum videtur, hoc gravissimum theorema alio modo pure arithmetico demonstrare.

40.

THEOREMA. Secundum modulum complexum datum m = a + bi, cuius norma aa + bb = p, et pro quo a, b sunt numeri inter se primi, quilibet integer complexus congruus erit alicui residuo e serie 0, 1, 2, 3 p-1, et non pluribus.

Demonstr. I. Sint α , δ integri tales qui faciant $\alpha a + \delta b = 1$, unde erit $i = \alpha b - \delta a + m(\delta + \alpha i)$

Proposito itaque numero integro complexo A+Bi, habebimus

$$A+Bi = A+(\alpha b-\delta a)B+m(\delta B+\alpha Bi)$$

Quare denotando per h residuum minimum positivum numeri A + (ab - ba)B secundum modulum p, statuendoque

$$A+(ab-6a)B=h+kp=h+m(ak-bki)$$

erit

$$A + Bi = h + m(6B + ak + (aB - bk)i)$$

sive

$$A + Bi \equiv h \pmod{m}$$
. Q. E. P.

II. Quoties eidem numero complexo duo numeri reales h, h' secundum modulum m congrui sunt, etiam inter se congrui erunt. Statuamus itaque h - h' = m(c + di), unde fit

$$(h-h')(a-bi) = p(c+di)$$

adeoque

$$(h-h')a = pc, \quad (h-h')b = -pd$$

nec non, propter $a\alpha + b\beta = 1$,

$$h-h'=p(c\alpha-d6)$$
, i. e. $h\equiv h'(\text{mod.}p)$

Quapropter h et h', siquidem sunt inaequales, ambo simul in complexu numerorum $0, 1, 2, 3 \dots p-1$ contenti esse nequeunt. Q. E. S.

41.

THEOREMA. Secundum modulum complexum m = a + bi, cuius norma aa + bb = p, et pro quo a, b non sunt inter se primi, sed divisorem communem maximum λ habent (quem positive acceptum supponimus), quilibet numerus complexus congruus est residuo x + yi tali, ut x sit aliquis numerorum $0, 1, 2, 3 \ldots \frac{p}{\lambda} - 1$, atque y aliquis horum $0, 1, 2, 3 \ldots \lambda - 1$, et quidem unico tantum inter omnia p residua, quae tali forma gaudent.

Demonstr. I. Accipiendo integros α , δ ita, ut fiat $\alpha a + \delta b = \lambda$, erit $\lambda i = \alpha b - \delta a + m(\delta + \alpha i)$. Iam sit A + Bi numerus complexus propositus, y residuum minimum positivum ipsius B secundum modulum λ , atque x residuum minimum positivum ipsius $A + (\alpha b - \delta a) \cdot \frac{B - y}{\lambda}$ secundum modulum $\frac{p}{\lambda}$, statuaturque

$$A+(\alpha b-6a)\cdot \frac{B-y}{\lambda}=x+\frac{p}{\lambda}\cdot k$$

Hinc erit

$$A + Bi - (x + yi) = \frac{p}{\lambda} \cdot k + (B - y)i - (\alpha b - \delta a) \frac{B - y}{\lambda}$$
$$= \frac{p}{\lambda} \cdot k + \frac{B - y}{\lambda} \cdot m(\delta + \alpha i)$$
$$= (\frac{a}{\lambda} - \frac{b}{\lambda} \cdot i)km + \frac{B - y}{\lambda}(\delta + \alpha i)m$$

i. e. per m divisibilis, sive $A + Bi \equiv x + yi \pmod{m}$ Q. E. P.

II. Supponamus, secundum modulum m eidem numero complexo congruos esse duos numeros x+yi, x'+y'i, qui proin etiam inter se congrui erunt secundum modulum m. A potiori itaque secundum modulum λ congrui erunt, adeoque $y \equiv y' \pmod{\lambda}$. Quodsi igitur uterque y, y' inter numeros $0, 1, 2, 3 \dots \lambda - 1$ contentus esse supponitur, necessario debet esse y = y'. Hoc pacto vero etiam fiet $x \equiv x' \pmod{m}$, i. e. x-x' per m, adeoque $\frac{x-x'}{\lambda}$ integer per $\frac{a}{\lambda} + \frac{b}{\lambda}i$ divisibilis, sive

$$\frac{x-x'}{\lambda} \equiv 0 \pmod{\frac{a}{\lambda} + \frac{b}{\lambda} \cdot i}$$

Hinc autem, quum $\frac{a}{\lambda}$, $\frac{b}{\lambda}$ sint numeri inter se primi, concluditur per partem secundam theorematis art. praec., $\frac{x-x'}{\lambda}$ etiam per normam numeri $\frac{a}{\lambda} + \frac{b}{\lambda} \cdot i$, i. e. per numerum $\frac{p}{\lambda\lambda}$ divisibilem fore, adeoque x-x' per $\frac{p}{\lambda}$. Quapropter si etiam uterque x, x' in complexu numerorum 0, 1, 2, 3 $\frac{p}{\lambda}$ —1 contentus esse supponitur, necessario erit x = x', sive residua x+yi, x'+y'i identica. Q. E. S.

Ceterum sponte patet, huc quoque referendum esse casum, ubi modulus est numerus realis, puta b=0, et proin $\lambda=\pm a$, nec non eum, ubi modulus est numerus pure imaginarius, puta a=0, et proin $\lambda=\pm b$. In utroque casu habetur $\frac{p}{\lambda}=\lambda$.

42.

Referendo itaque omnes numeros complexos secundum modulum datum inter se congruos ad eandem classem, incongruos ad diversas, omnino aderunt p classes totum numerorum integrorum ambitum exhaurientes, denotante p normam moduli. Complexus totidem numerorum e singulis classibus desumtorum exhibebit systema completum residuorum incongruorum, quale in artt. 40, 41 assignavimus. Et in hocce quidem systemate electio residuorum classes suas quasi repraesentantium innixa erat principio ei, ut in quavis classe adoptaretur residuum x+yi tale, pro quo y habeat valorem minimum, atque inter omnia, quibus idem valor minimus ipsius y inest, id, pro quo valor ipsius x est minimus, exclusis valoribus negativis tum pro x tum pro y. Sed ad alia proposita aliis principiis uti conveniet, imprimisque notandus est modus is, ubi residua talia adoptantur, quae per modulum divisa offerunt quotientes simplicissimos. si $\alpha + \beta i$, $\alpha' + \beta' i$, $\alpha'' + \beta'' i$ etc. sunt quotientes e divisione numerorum congruorum per modulum oriundi, differentiae tum quantitatum α , α' , α'' etc. inter se erunt numeri integri, tum differentiae inter quantitates 6, 6', 6" etc., patetque. semper adesse residuum unum, pro quo a et 6 iaceant inter limites 0 et 1, limite priori incluso, posteriori excluso: tale residuum simpliciter vocamus residuum minimum. Si magis placet, loco illorum limitum etiam hi adoptari possunt -1 et +1 (altero admisso, altero excluso): residuum tali limitationi respondens absolute minimum dicemus.

Circa haec residua minima offerunt se problemata sequentia.

43.

Residuum minimum numeri complexi dati A+Bi secundum modulum a+bi, cuius norma =p, invenitur sequenti modo. Si x+yi est residuum minimum quaesitum, erit (x+yi)(a-bi) residuum minimum producti (A+Bi)(a-bi) secundum modulum (a+bi)(a-bi), i. e. secundum modulum p. Statuendo itaque

$$aA+bB=Fp+f$$
, $aB-bA=Gp+g$

ita ut f, g sint residua minima numerorum aA+bB, aB-bA, secundum modulum p, erit

II.

$$x+yi=\frac{f+gi}{a-bi}$$

sive

$$x = \frac{af - bg}{p} = A - aF + bG$$
$$y = \frac{ag + bf}{p} = B - aG - bF$$

Manifesto residua minima f, g vel inter limites 0 et p-1, vel inter hos $-\frac{1}{4}p$ et $+\frac{1}{4}p$ accipi debent, prout numeri complexi vel residuum simpliciter minimum vel absolute minimum desideratur.

44.

Constructio systematis completi residuorum minimorum pro modulo dato pluribus modis effici potest. Methodus prima ita procedit, ut primo determinentur limites, intra quos termini reales iacere debent, ac dein pro singulis valoribus intra hos limites sitis assignentur limites partium imaginariarum. Criterium generale residui minimi x+yi pro modulo a+bi in eo consistit, ut tum $ax+by=\xi$, tum $ay-bx=\eta$ iaceat inter limites 0 et aa+bb, quoties de residuis simpliciter minimis agitur, vel inter limites $-\frac{1}{2}(aa+bb)$ et $+\frac{1}{2}(aa+bb)$, quoties residua absolute minima desiderantur, limite altero excluso. Regulae speciales distinctionem casuum, quos varietas signorum numerorum a, b affert, requirerent, cui tamen evolvendae, quum nulli difficultati obnoxia sit, hic immorari supersedemus: sufficiat, methodi indolem per unicum exemplum exposuisse.

Pro modulo 5+2i residua simpliciter minima x+yi ita comparata esse debent, ut tum $5x+2y=\xi$, tum $5y-2x=\eta$ aequetur alicui numerorum $0, 1, 2, 3 \dots 28$. Aequatio $29x=5\xi-2\eta$ ostendit, valores positivos ipsius x maiores esse non posse quam $\frac{5\cdot 28}{29}$, negativos abstrahendo a signo non maiores quam $\frac{2\cdot 28}{29}$. Omnes itaque valores admissibiles ipsius x erunt -1, 0, 1, 2, 3, 4. Pro x=-1 debet esse 2y aequalis alicui numerorum $5, 6, 7 \dots 33$, atque 5y alicui horum $-2, -1, 0, 1 \dots 26$; hinc valor minimus ipsius y est +3, maximus +5. Tractando perinde valores reliquos ipsius x, oritur sequens schema omnium residuorum minimorum:

x	y
-1	3, 4, 5
0	0, 1, 2, 3, 4, 5
+1	1, 2, 3, 4, 5, 6
+2	1, 2, 3, 4, 5, 6
+3	2, 3, 4, 5, 6
+4	2, 3, 4

Simili modo pro residuis absolute minimis, ξ et η alicui numerorum -14, -13, -12.... +14 aequales esse debent; hinc 29x nequit esse extra limites -7.14 et +7.14, adeoque x alicui numerorum -3, -2, -1, 0, 1, 2, 3 aequalis esse debet. Pro x=-3 erit $2y=\xi-5x=\xi+15$ alicui numerorum 1, 2, 3.... 29 aequalis, $5y=\eta+2x=\eta-6$ autem alicui horum -20, -19, -18.... +8: hinc prodit pro y valor unicus +1. Tractando eodem modo valores reliquos ipsius x, habemus schema omnium residuorum absolute minimorum:

\boldsymbol{x}	y
— 3	+1
— 2	-2, -1, 0, +1, +2
<u> </u>	-3,-2,-1,0,+1,+2
0	-2, -1, 0, +1, +2
+1	-2, -1, 0, +1, +2, +3
+2	-2, -1, 0, +1, +2
+3	<u>-1</u>

45.

In applicatione methodi secundae duos casus distinguere conveniet.

In casu priori, ubi a et b divisorem communem non habent, fiat $\alpha a + \beta b = 1$, sitque k residuum minimum positivum ipsius $\beta a - \alpha b$ secundum modulum p. Hinc aequationes identicae

$$a(6a-\alpha b)=6p-b(\alpha a+6b), \quad b(6a-\alpha b)=-\alpha p+a(\alpha a+6b)$$
docent, esse $ak\equiv -b, bk\equiv a \pmod p$. Statuendo itaque ut supra $ax+by=\xi$,

15*

 $ay-bx=\eta$, erit $\eta\equiv k\xi$, $\xi\equiv -k\eta \pmod{p}$. Omnes itaque numeri $\xi+\eta i$, quibus residua simpliciter minima x+yi respondent, habebuntur, dum vel pro ξ deinceps accipiuntur valores $0, 1, 2, 3 \dots p-1$, et pro η residua minima positiva productorum $k\xi$ secundum modulum p, vel ordine alio pro η illi valores et pro ξ residua minima productorum $-k\eta$. E singulis $\xi+\eta i$ dein respondentes x+yi invenientur per formulam

$$x+yi = \frac{\xi+\eta i}{a-bi} = \frac{a\xi-b\eta}{p} + \frac{a\eta+b\xi}{p} \cdot i$$

Ceterum obvium est, η , dum ξ unitate crescat, vel augmentum k vel decrementum p-k pati, adeoque x+yi

vel mutationem
$$\frac{a-kb}{p} + \frac{ak+b}{p} \cdot i$$
 vel hanc $\frac{a-kb}{p} + b + (\frac{ak+b}{p} - a)i$

quae observatio ad constructionem faciliorem reddendam inservit.

Denique patet, si residua absolute minima x+yi desiderentur, haec praecepta eatenus tantum mutari, quatenus ipsi ξ deinceps tribuendi sint valores inter limites $-\frac{1}{2}p$ et $+\frac{1}{2}p$, dum pro η accipere oporteat residua absolute minima productorum $k\xi$. Ecce conspectum residuorum minimorum pro modulo 5+2i hoc modo adornatorum:

Residua simpliciter minima.

$\xi + \eta i$	x+yi	ξ+η i	x+yi	E+ni	x+yi
0	0	10 + 25i	+5i	20 + 21i	+2+5i
1+17 i	-1+3i	11 + 13i	+1+3i	21+ 9i	+3+3i
2+ 5 i	+ i	12+ i	+2+i	22+26 i	+2+6i
3 + 22i	+1+4i	13 + 18i	+1+48	23 + 14i	+3+41
4+10i	+21	14+ 6i	+2+2i	24+ 2i	+4+2;
5 + 27i	-1+5i	15+231	+1+5i	25+19i	+3+5i
6+15i	+3i	16+11:	+2+3i	26+ 7 <i>i</i>	+4+3i
7+3i	+1+ i	17 + 28i	+1+6i	27 + 24 i	+3+6i
8+201	+4i	18 + 16i	+2+41	28+12i	+4+4i
9+8i	+1+2i	19+ 4i	+3+2i	! !	

Residua absolute minima.

ξ+η <i>i</i>	x+yi	'ξ+ηs	x+yi	$\xi + \eta i$	x+yi
-14- 6 <i>i</i>	-2-2i	-4-10i	- 2 i	+ 5 - 2i	+1
-13+11i	-3+i	-3+7i	-1+i	+6-14i	+2-2i
-12-i	-2-i	-2-5i	- i	+7+3i	+1+i
-11 - 13i	-1-3i	-1+12i	-1+2i	+ 8- 9;	+2-i
-10+4i	-2	0	0	+ 9+ 8;	+1+2i
— 9— 8 <i>i</i>	-1-2i	+1-12i	+1-2i	+10-4i	+2
-8+9i	-2+i	+2+5i	+ i	+11+13i	+1+3i
-7-3i	-1-i	+3-7i	+1-i	+12+ i	+2+i
				+13-11i	
-5+2i	<u> </u>			+14+ 66	+2+2i

Casum secundum, ubi a, b non sunt inter se primi, facile ad casum praecedentem reducere licet. Sit λ divisor communis maximus numerorum a, b, atque $a = \lambda a'$, $b = \lambda b'$. Denotet F indefinite residuum minimum pro modulo λ , quatenus tamquam numerus complexus consideratur, i. e. exhibeat indefinite numerum talem x+yi, ut x, y sint vel inter limites 0 et λ , vel inter hos $-\frac{1}{4}\lambda$ et $+\frac{1}{4}\lambda$ (prout de residuis vel simpliciter vel absolute minimis agitur): denotet porro F' indefinite residuum minimum pro modulo a'+b'i. Tunc erit (a'+b'i)F+F' indefinite residuum minimum pro modulo a+bi, prodibitque systema completum horum residuorum, dum omnia F cum omnibus F' combinantur.

46.

Duo numeri complexi inter se primi dicuntur, si praeter unitates alios divisores communes non admittunt: quoties autem tales divisores communes adsunt, ii divisores communes maximi vocantur, quorum norma maxima est.

Si duorum numerorum propositorum resolutio in factores primos praesto est, determinatio divisoris communis maximi prorsus eodem modo perficitur, ut pro numeris realibus (*Disquiss. Ar.* art. 18). Simul hinc elucet, omnes divisores communes duorum numerorum datorum metiri debere eorundem divisorem communem maximum hoc modo inventum. Quare quum sponte iam pateat, ternos numeros huic socios etiam esse divisores communes, semper quaterni numeri, et non plu-

res, divisores communes maximi appellandi erunt, horumque norma erit multiplum normae cuiusvis alius divisoris communis.

Si resolutio duorum numerorum propositorum in factores simplices non adest, divisor communis maximus adiumento similis algorithmi eruitur, ut pro numeris realibus. Sint m, m' duo numeri propositi, formeturque per divisionem repetitam series m'', m''' etc. ita, ut m'' sit residuum absolute minimum ipsius m secundum modulum m', dein m''' residuum absolute minimum ipsius m' secundum modulum m'' et sic porro. Denotando normas numerorum m, m', m''' etc. resp. per p, p', p'' etc., erit $\frac{p''}{p'}$ norma quotientis $\frac{m''}{m'}$, adeoque per definitionem residui absolute minimi certo non maior quam $\frac{1}{2}$; idem valet de $\frac{p'''}{p''}$ etc. Quapropter integri reales positivi p', p'', p''' etc. seriem continuo decrescentem formabunt, unde necessario tandem ad terminum 0 pervenietur, sive, quod idem est, in serie m, m', m''', m'''' etc. tandem ad terminum perveniemus, qui praecedentem absque residuo metitur. Sit hic $m^{(n+1)}$, statuamusque

$$m = km' + m''$$
 $m' = k'm'' + m'''$
 $m'' = k''m''' + m''''$

etc. usque ad

$$m^{(n)} = k^{(n)} m^{(n+1)}$$

Percurrendo has aequationes ordine inverso, elucet, $m^{(n+1)}$ singulos terminos praecedentes $m^{(n)} \dots m''$, m', m metiri; percurrendo autem easdem aequationes ordine directo, manifestum est, quemvis divisorem communem numerorum m, m' etiam metiri singulos sequentes. Conclusio prior docet, $m^{(n+1)}$ esse divisorem communem numerorum m, m'; posterior autem, hunc divisorem esse maximum.

Ceterum quoties residuum ultimum $m^{(n+1)}$ alicui quatuor unitatum 1, -1, i, -i aequale evadit, hoc indicium erit, m et m' inter se primos esse.

47.

Si aequationes art. praec., omissa ultima, ita combinantur, ut m'', m''', $m'''' \dots m^{(n)}$ eliminentur, orietur aequatio talis

$$m^{(n+1)} = hm + h'm'$$

ubi h, h' erunt integri, et quidem, si designatione in Disquiss. Ar. art. 27 introducta uti placet

$$h = \pm [k', k'', k''' \dots k^{(n-1)}] = \pm [k^{(n-1)}, k^{(n-2)} \dots k'', k']$$

$$h' = \mp [k, k', k'', k''' \dots k^{(n-1)}] = \mp [k^{(n-1)}, k^{(n-2)} \dots k'', k', k]$$

valentibus signis superioribus vel inferioribus, prout n par est vel impar. Hoc theorema ita enunciamus:

Divisor communis maximus duorum numerorum complexorum m, m' redigi potest ad formam hm + h'm', ita ut h, h' sint integri.

Manifesto enim hoc non solum de eo divisore communi maximo valet, ad quem algorithmus art. praec. deduxit, sed etiam de tribus illi associatis, pro quibus loco coëfficientium h, h' accipere oportebit vel hos hi, h'i vel -h, -h', vel -hi, -h'i.

Quoties itaque numeri m, m' inter se primi sunt, satisfieri poterit aequationi

$$1 = hm + h'm'$$

Propositi sint e.g. numeri 31+6i=m, 11-20i=m'. Hic invenimus

$$k = i,$$
 $m'' = +11-5i$
 $k' = +1-i,$ $m''' = +5-4i$
 $k'' = +2,$ $m'''' = +1+3i$
 $k''' = -1-2i,$ $m''''' = +i$

atque hinc

$$[k', k'', k'''] = -6 - 5i$$

 $[k, k', k'', k'''] = +4 -10i$

et proin

$$m'''' = i = (6 + 5i)m + (4 - 10i)m'$$

nec non

$$1 = (5 - 6i)m + (-10 - 4i)m'$$

quod calculo instituto confirmatur.

48.

Per praecedentia omnia, quae ad theoriam congruentiarum primi gradus in arithmetica numerorum complexorum requiruntur, praeparata sunt: sed quum illa

essentialiter non differat ab ea, quae pro arithmetica numerorum realium locum habet, atque in *Disquisitionibus Arithmeticis* copiose exposita est, praecipua momenta hic adscripsisse sufficiet.

I. Congruentia $mt \equiv 1 \pmod{m'}$ aequivalet aequationi indeterminatae mt+m'u=1, et si huic satisfit per valores t=h, u=h', illius solutio generaliter exhibetur per $t\equiv h \pmod{m'}$: conditio autem solubilitatis est, ut modulus m' cum coëfficiente m divisorem communem non habeat.

II. Solutio congruentiae $ax+b \equiv c \pmod{M}$ in casu eo, ubi a, M sunt inter se primi, pendet a solutione huius

$$at \equiv 1 \pmod{M}$$

cui si satisfacit t = h, illius solutio generalis continetur in formula

$$x \equiv (c - b) h \pmod{M}$$

III, Congruentia $ax + b \equiv c \pmod{M}$ in casu eo, ubi a, M divisorem communem λ habent, aequivalet huic

$$\frac{a}{\lambda} \cdot x \equiv \frac{c-b}{\lambda} \pmod{\frac{M}{\lambda}}$$

Dum itaque pro λ adoptatur divisor communis maximus numerorum a, M, solutio congruentiae propositae ad casum praecedentem reducitur, patetque, ad resolubilitatem requiri et sufficere, ut λ etiam differentiam c-b metiatur.

49.

Hactenus elementaria tantum attigimus, quae tamen nexus caussa omittere non licuit. In disquisitionibus altioribus arithmetica numerorum complexorum arithmeticae realium in eo similis est, quod theoremata elegantiora et simpliciora prodeunt, dum tales modulos, qui sunt numeri primi, solos admittimus: revera illorum extensio ad modulos compositos plerumque prolixior quam difficilior est, et laboris potius quam artis. Quapropter in sequentibus imprimis de modulis primis agetur.

50.

Denotante X functionem indeterminatae x talem

$$Ax^{n}+Bx^{n-1}+Cx^{n-2}+$$
 etc. $+Mx+N$

ubi n est integer realis positivus, A, B, C etc. integri reales vel imaginarii, m autem integer complexus: vocabimus hic quoque radicem congruentiae $X \equiv 0 \pmod{m}$ quemlibet integrum, qui pro x substitutus ipsi. X valorem per modulum m divisibilem conciliat. Solutiones per radices secundum modulum congruas non spectabimus tamquam diversas.

Quoties modulus est numerus primus, talis congruentia ordinis n hic quoque plures quam n solutiones diversas admittere non potest. Denotante α integrum quemvis determinatum (complexum), X adiumento divisionis per $x-\alpha$ indefinite ad formam $X = (x-\alpha)X' + h$ reduci potest, ita ut h fiat integer determinatus atque X' functio ordinis n-1 cum coëfficientibus integris. Iam quoties α est radix congruentiae $X \equiv 0 \pmod{m}$, manifesto h divisibilis erit per m, sive habebitur indefinite $X \equiv (x-\alpha)X' \pmod{m}$.

Perinde si denotante $\mathfrak G$ integrum determinatum, X' ad formam $(x-\mathfrak G)X''+h'$ reducitur, X'' erit functio ordinis n-2 cum coefficientibus integris. Si vero $\mathfrak G$ supponitur esse radix congruentiae $X\equiv 0$, etiam satisfacere debet huic $(\mathfrak G-\alpha)X'\equiv 0$, nec non huic $X'\equiv 0$, siquidem radices α , $\mathfrak G$ sunt incongruae, unde colligimus, etiam h' per m divisibilem esse debere, sive indefinite $X\equiv (x-\alpha)(x-\mathfrak G)X''\pmod{m}$.

Simili modo accedente radice tertia γ prioribus incongrua, habebimus indefinite $X \equiv (x-\alpha)(x-\beta)(x-\gamma)X'''$, ita ut X''' sit functio ordinis n-3 cum coëfficientibus integris. Eodem modo ulterius procedere licet, patetque simul, coëfficientem termini altissimi in singulis functionibus esse = A, quem per m non divisibilem esse supponere licet, alioquin enim congruentia $X \equiv 0$ essentialiter ad ordinem inferiorem referenda esset. Quoties itaque adsunt n radices incongruae, puta $\alpha, \beta, \gamma \ldots \nu$, habebimus indefinite

$$X \equiv A(x-\alpha)(x-\beta)(x-\gamma) \dots (x-\nu) \pmod{m}$$

quapropter substitutio novi valoris singulis α , β , γ v incongrui certo ipsi X valorem per m non divisibilem conciliaret, unde theorematis veritas sponte sequitur.

Ceterum haec demonstratio essentialiter convenit cum ea, quam in *Disq*. Ar. art. 43 tradidimus, et cuius singula momenta pro numeris complexis perinde valent ac pro realibus.

Digitized by Google

51.

Quae in Sectione tertia Disquisitionum Arithmeticarum circa residua potestatum tradita sunt, ad maximam partem, levibus mutationibus adhibitis, etiam in arithmetica numerorum complexorum valent: quinadeo demonstrationes theorematum plerumque retineri possent. Ne tamen quid desit, theoremata principalia demonstrationibus concisis firmata proferemus, ubi semper subintelligendum est, modulum esse numerum primum.

THEOREMA. Denotante k integrum per modulum m, cuius norma = p, non divisibilem, erit $k^{p-1} \equiv 1 \pmod{m}$.

Demonstr. Constituant a, b, c etc. systema completum residuorum incongruorum pro modulo m, ita tamen, ut residuum per m divisibile omissum sit, adeoque multitudo illorum numerorum, quorum complexum denotamus per C, sit = p-1. Sit porro C' complexus productorum ka, kb, kc etc. Ex his productis per hyp. nullum erit divisibile per m, quare singula habebunt residua congrua in complexu C, puta fieri poterit $ak \equiv a'$, $bk \equiv b'$, $ck \equiv c'$ etc. (mod. m), ita ut numeri a', b', c' etc. ipsi in complexu C inveniantur: denotemus complexum numerorum a', b', c' etc. per C''. Sint C, C', C'' producta e singulis numeris complexuum C, C', C'' resp., sive

$$P = abc \dots$$

$$P' = k^{p-1}abc \dots = k^{p-1}P$$

$$P'' = a'b'c' \dots$$

Quum numeri complexus C'' deinceps congrui sint numeris complexus C', erit $P'' \equiv P'$ sive $P'' \equiv k^{p-1}P$. At quum facile perspiciatur, binos quosvis numeros complexus C'' inter se incongruos, adeoque omnes inter se diversos esse, necessario numeri complexus C'' cum numeris complexus C prorsus conveniunt, ordine tantummodo mutato, unde fit P'' = P. Erit itaque $(k^{p-1}-1)P$ numerus per m divisibilis, unde, quum m sit numerus primus singulos factores ipsius P non metiens, necessario $k^{p-1}-1$ per m divisibilis esse debebit. Q. E. D.

52.

THEOREMA. Denotante k, ut in art. praec., integrum per modulum m non divisibilem, atque t exponentem minimum (praeter 0), pro quo $k^t \equiv 1 \pmod{m}$, erit t divisor cuiusvis alius exponentis u, pro quo $k^u \equiv 1 \pmod{m}$.

Demonstr. Si t non esset divisor ipsius u, sit gt multiplum ipsius u proxime maius quam u, adeoque gt-u integer positivus minor quam t. Ex $k^i \equiv 1$, $k^u \equiv 1$, sequitur $0 \equiv k^{gt}-k^u \equiv k^u(k^{gt-u}-1)$, adeoque $k^{gt-u} \equiv 1$, i. e. datur potestas ipsius k cum exponente minori quam t unitati congrua, contra hyp.

Tamquam corollarium hinc sequitur, t certo metiri numerum p-1.

Numeros tales k, pro quibus t = p-1, etiam hic radices primitivas pro modulo m vocabimus: quales revera adesse iam ostendemus.

53.

Resolvatur numerus p-1 in factores suos primos, ita ut habeatur

$$p-1=a^{\alpha}b^{6}c^{\gamma}\ldots$$

designantibus a, b, c etc. numeros primos reales positivos inaequales. Sint A, B, C etc. integri (complexi) per m non divisibiles, atque resp. congruentiis

$$x^{\frac{p-1}{a}} \equiv 1$$
, $x^{\frac{p-1}{b}} \equiv 1$, $x^{\frac{p-1}{a}} \equiv 1$ etc.

secundum modulum *m non* satisfacientes, quales dari e theoremate art. 50 manifestum est. Denique sit *h* congruus secundum modulum *m* producto

$$A^{\frac{p-1}{a^a}}B^{\frac{p-1}{b^b}}C^{\frac{p-1}{c^r}}\dots$$

Tunc dico, h fore radicem primitivam.

Demonstr. Denotando per t exponentem infimae potestatis h^t unitati congruae, erit, si h non esset radix primitiva, t submultiplum ipsius p-1, sive $\frac{p-1}{t}$ integer unitate maior. Manifesto hic integer factores suos primos reales inter hos a, b, c etc. habebit: supponamus itaque, (quod licet), $\frac{p-1}{t}$ esse divisibilem per a, statuamusque p-1=atu. Erit itaque, propter $h^t\equiv 1$, etiam $h^{tu}\equiv 1$ sive

$$A^{\frac{p-1}{a^a},\frac{p-1}{a}} B^{\frac{p-1}{b^b},\frac{p-1}{a}} C^{\frac{p-1}{b^a},\frac{p-1}{a}} \dots \equiv 1$$

At manifesto $\frac{p-1}{ab\theta}$ est integer, adeoque

$$B^{\frac{p-1}{b^{\sigma}}\cdot\frac{p-1}{a}} = (B^{p-1})^{\frac{p-1}{ab^{\sigma}}} \equiv 1$$

perinde etiam

$$\frac{p-1}{C} \cdot \frac{p-1}{a} \equiv 1, \text{ et sic porro; quapropter esse debet } A^{\frac{p-1}{a^a} \cdot \frac{p-1}{a}} \equiv 1$$

Iam determinetur integer positivus à talis, ut fiat

$$\lambda b^6 c^7 \ldots \equiv 1 \pmod{a}$$

quod fieri poterit, quum numerus primus a ipsum b^6c^7 ... non metiatur, statuaturque λb^6c^7 ... = $1+a\mu$. Manifesto fit

$$A^{\lambda \cdot \frac{p-1}{a^a} \cdot \frac{p-1}{a}} \equiv 1$$
, sive, quoniam $\lambda \cdot \frac{p-1}{a^a} \cdot \frac{p-1}{a} = (1+a\mu)^{\frac{p-1}{a}} = (p-1)\mu + \frac{p-1}{a}$ habemus $A^{(p-1)\mu} \cdot A^{\frac{p-1}{a}} \equiv 1$, at que hinc, quum sponte sit $A^{(p-1)\mu} \equiv 1$, etiam $A^{\frac{p-1}{a}} \equiv 1$, quod est contra hypothesin. Suppositio itaque, t esse submultiplum ipsius $p-1$, consistere nequit, eritque adeo necessario h radix primitiva.

54.

Denotante h radicem primitivam pro modulo m, cuius norma = p, termini progressionis

$$1, h, hh, h^3 \dots h^{p-2}$$

inter se incongrui erunt, unde facile colligitur, quemlibet integrum non divisibilem per modulum uni ex istis congruum esse debere, sive illam seriem exhibere systema completum residuorum incongruorum exclusa cifra. Exponens eius potestatis, cui numerus datus congruus est, vocari potest huius *index*, dum h tamquam basis consideratur. Ecce quaedam exempla, ubi cuivis indici residuum absolute minimum apposuimus.

Exemplum primum.

$$m = 5 + 4i$$
, $p = 41$, $h = 1 + 2i$

Ind.	Residuum	Ind.	Residuum	Ind.	Residuum	Ind.	Residuum	Ind.	Residuum
0	+1	8	- 4	16	-2+2i	24	+2i	32	+1+i
1	+1+2i	9.	-3+i	17	-1+2i	25	3 i	33	+1+3i
2	+1-i	10	— i	18	+4i	26	+2+2i	34	+2
3	+3+i	11	+2-i	19	+1+3i	27	+2+i	35	3
4	— 2 i	12	-1-i	20	1	28	+4	36	+2-2i
5	+3i	13	+1-3i	21	-1-2i	29	+3-i	37	+1-2i
6	-2-2i	14	— 2	22	-1+i	30	+ 1	38	4 i
7	-2-i	15	+ 3	23	-3-i	31	-2+i	39	-1 - 3i

Exemplum secundum.

m = 7, p = 49, h = 1 + 2i

Ind.	Residuum	Ind.	Residuum	Ind.	Residuum	Ind.	Residuum	Ind.	Residuum
0	+1	10	-1-i	20	+2i	30	+2-2i	40	+3
1	+1+2i	11	+1-3i	21	+3+2i	31	-1+2i	41	+3-i
2	-3-3i	12	— i	22	-1+i	32	+2	42	-2-2i
3	+3-2i	13	+2-i	23	-3- i	33	+2-3i	43	+2+i
4	3 i	14	-3+3i	24	— 1	34	+1+i	44	- 2 i
5	-1 - 3i	15	2 3i	25	- 1 - 2 i	35	-1+3i	45	-3-2i
6	-2+2i	16	— 3	26	+3+3i	36	+i	46	+1-i
7	+1-2i	17	-3+i	27	-3+2i	37	-2+i	47	+3+i
8	2	18	+2+2i	28	+3i	38	+3-3i		•
9	-2+3i	19	-2-i	29	+1+3i	39	+2+3i		

55.

Adiicimus circa radices primitivas et algorithmum indicum quasdam observationes, demonstrationibus propter facilitatem omissis.

I. Indices secundum modulum p-1 congrui in systemate dato residuis secundum modulum m congruis respondent et vice versa.

II. Residua, quae respondent indicibus ad p-1 primis, etiam sunt radices primitivae et vice versa.

III. Si accepta radice primitiva h pro basi, radicis alius primitivae h' index est t, et vice versa t' index ipsius h, dum h' pro basi accipitur, erit $tt' \equiv 1 \pmod{p-1}$; et si iisdem positis indices cuiusdam alius numeri in his duobus systematibus resp. sunt u, u', erit $tu' \equiv u$, $t'u \equiv u' \pmod{p-1}$.

IV. Dum numeri 1, 1+i eorumque terni socii (tamquam nimis ieiuni) a modulis nobis considerandis excluduntur, restant numeri primi ii, quos in art. 34 tertio et quarto loco posuimus. Posteriorum normae erunt numeri primi reales formae 4n+1; priorum normae autem quadrata numerorum primorum realium imparium: in utroque igitur casu p-1 per 4 divisibilis est.

V. Denotando indicem numeri -1 per u, erit $2u \equiv 0 \pmod{p-1}$, adeoque vel $u \equiv 0$, vel $u \equiv \frac{1}{2}(p-1)$: at quum index 0 respondeat residuo +1, index numeri -1 necessario debet esse $\frac{1}{2}(p-1)$.

VI. Perinde denotando per u indicem numeri i, erit $2u \equiv \frac{1}{4}(p-1)$ (mod. p-1), adeoque vel $u \equiv \frac{1}{4}(p-1)$ vel $u \equiv \frac{1}{4}(p-1)$. Sed hic ambiguitas ab electione radicis primitivae pendet. Scilicet si radice primitiva h pro basi ac-

cepta index numeri i est $\frac{1}{4}(p-1)$, index fiet $\frac{3}{4}(p-1)$, dum pro basi accipitur h^{μ} , designante μ integrum positivum formae 4n+3 ad p-1 primum, e. g. ipsum numerum p-2, et vice versa. Quare semissis altera radicum primitivarum conciliat numero i indicem $\frac{1}{4}(p-1)$, altera indicem $\frac{1}{4}(p-1)$, manifestoque pro illis basibus -i indicem $\frac{1}{4}(p-1)$, pro his indicem $\frac{1}{4}(p-1)$ habebit.

VII. Quoties modulus est numerus primus realis positivus formae 4n+3, puta =q, adeoque p=qq, indices omnium numerorum realium per q+1 divisibiles erunt; denotante enim t indicem numeri realis k, erit, propter $k^{q-1} \equiv (\text{mod. } q), (q-1)t \equiv 0 \pmod{qq-1}$, adeoque $\frac{t}{q+1}$ integer. Perinde indices numerorum pure imaginariorum ut ki per $\frac{1}{2}(q+1)$ divisibiles erunt. Patet itaque, radices primitivas pro talibus modulis inter solos numeros mixtos quaerendas esse.

VIII. Contra pro modulo m, qui est numerus primus complexus mixtus, (cuiusque proin norma p est numerus primus realis formae 4n+1), radices primitivae quaelibet etiam inter numeros reales eligi possunt, inter quos completum adeo systema residuorum incongruorum monstrare licet (art. 40). Manifesto autem quilibet numerus realis, qui est radix primitiva pro modulo complexo m, simul erit in arithmetica numerorum realium radix primitiva pro modulo p, et vice versa.

56.

Etiamsi theoria residuorum et non-residuorum quadraticorum in arithmetica numerorum complexorum sub ipsa theoria residuorum biquadraticorum contenta sit, tamen antequam ad hanc transeamus, illius theoremata palmaria hic seorsim proferemus: brevitatis vero caussa de solo casu principali, ubi modulus est numerus primus complexus (impar), hic loquemur.

Sit m talis modulus, atque p eius norma. Manifesto quivis integer (per m non divisibilis, quod hic semper subintelligendum) quadrato secundum modulum m congruus fieri vel potest vel non potest, prout illius index, radice aliqua primitiva pro basi accepta, par est vel impar; in casu priori ille integer residuum quadraticum ipsius m dicetur, in posteriori non-residuum. Hinc concluditur, inter p-1 numeros qui systema completum residuorum incongruorum (per m non divisibilium) exhibeant, semissem ad residua quadratica, semissem alteram ad non-residua quadratica referri. Cuivis vero alii numero extra illud systema idem

character hoc respectu tribuendus est, quo gaudet numerus systematis illi congruus.

Porro ibinde sequitur, productum e duobus residuis quadraticis, nec non productum e duobus non-residuis esse residuum quadraticum, contra productum e residuo quadratico in non-residuum fieri non-residuum; et generaliter productum e quotcunque factoribus esse residuum quadraticum vel non-residuum, prout multitudo non-residuorum inter factores par sit vel impar.

Pro distinguendis residuis quadraticis a non-residuis statim se offert criterium generale sequens:

Numerus k per modulum non divisibilis huius residuum vel non-residuum quadraticum est, prout habetur vel $k^{\frac{1}{2}(p-1)} \equiv 1$, vel $k^{\frac{1}{2}(p-1)} \equiv -1 \pmod{m}$.

Veritas huius theorematis statim inde sequitur, quod, accepta radice primitiva quacunque pro basi, index potestatis $k^{\frac{1}{2}(p-1)}$ fit vel $\equiv 0$ vel $\equiv \frac{1}{2}(p-1)$, prout index numeri k par est vel impar.

57.

Facile quidem est, pro modulo dato systema residuorum incongruorum completum in duas classes, puta residua et non-residua quadratica distinguere, quo pacto simul omnibus reliquis numeris classes suae sponte assignantur. At longe altioris indaginis est quaestio de criteriis ad distinguendum modulos eos, pro quibus numerus datus est residuum quadraticum, ab iis, pro quibus est non-residuum.

Quod quidem attinet ad unitates reales +1 et -1, hae in arithmetica numerorum complexorum sunt reapse quadrata, adeoque etiam residua quadratica pro quovis modulo. Aeque facile e criterio art. praec. sequitur, numerum i (et perinde -i) esse residuum quadraticum cuiusvis moduli, cuius norma p sit formae n+1, non-residuum vero cuiusvis moduli, cuius norma sit formae n+1. Quum manifesto nihil intersit, utrum numerus n, an aliquis numerorum ipsi associatorum n+1, n+1, n+1, n+1, n+1, adeoque statuendo modulum n+1, esse associatorum primarium (art. 36, II), adeoque statuendo modulum n+1, esse n+1, esse n+1, n+1, n+1, n+1, n+1, esse n+1, n+1

Quum diiudicatio characteris numeri compositi, utrum sit residuum quadraticum an non-residuum, pendeat a characteribus factorum, manifesto sufficiet, si evolutionem criteriorum ad distinguendos modulos, pro quibus numerus datus k sit residuum quadraticum, ab iis, pro quibus sit non-residuum, ad tales valores ipsius k limitemus, qui sint numeri primi, insuperque inter associatos primarii. In qua investigatione inductio protinus theoremata maxime elegantia suppeditat.

Incipiamus a numero 1+i, qui invenitur esse residuum quadraticum modulorum

$$-1+2i$$
, $+3-2i$, $-5-2i$, $-1-6i$, $+5+4i$, $+5-4i$, -7 , $+7+2i$, $-5+6i$, etc.

non-residuum quadraticum autem sequentium

$$-1-2i$$
, -3 , $+3+2i$, $+1+4i$, $+1-4i$, $-5+2i$, $-1+6i$, $+7-2i$, $-5-6i$, $-3+8i$, $-3-8i$, $+5+8i$, $+5-8i$, $+9+4i$, $+9-4i$ etc.

Si hunc conspectum, in quo semper e quaternis modulis associatis primarium apposuimus, attente examinamus, facile animadvertimus, modulos a+bi in priori classe omnes esse tales, pro quibus a+b fiat $\equiv +1 \pmod{8}$, in posteriori vero tales, pro quibus $a+b \equiv -3 \pmod{8}$. Manifesto hoc criterium, si loco moduli primarii m adoptamus associatum -m, ita immutari debet, ut pro modulis prioris classis sit $a+b \equiv -1$, pro modulis posterioris $\equiv +3 \pmod{8}$. Quare, siquidem inductio non fefellerit, generaliter, designante a+bi numerum primum, in quo a impar. b par, 1+i fit eius residuum quadraticum vel non-residuum quadraticum, prout $a+b \equiv \pm 1$, vel $\equiv \pm 3 \pmod{8}$.

Pro numero -1-i eadem regula valet, quae pro 1+i. Contra considerando 1-i tamquam productum ex -i in 1+i, manifestum est, numero 1-i eundem characterem competere, qui tribuendus sit ipsi 1+i, quoties b sit pariter par, oppositum autem, quoties b sit impariter par, unde facile colligitur. 1-i esse residuum quadraticum numeri primi a+bi, quoties sit $a-b\equiv \pm 1$, nonresiduum autem, quoties habeatur $a-b\equiv \pm 3 \pmod{8}$, semper supponendo, a esse imparem, b parem.

Ceterum haec secunda propositio e priori etiam deduci potest adiumento theorematis generalioris, quod ita enunciamus:

In theoria residuorum quadraticorum character numeri $\alpha + \delta i$ respectu moduli a + bi idem est, qui numeri $\alpha - \delta i$ respectu moduli a - bi.

Demonstratio huius theorematis inde petitur, quod uterque modulus eandem normam p habet, atque quoties $(\alpha+6i)^{\frac{1}{2}(p-1)}-1$ per a+bi divisibilis est, etiam $(\alpha-6i)^{\frac{1}{2}(p-1)}-1$ per a-bi divisibilis evadit, quoties autem $(\alpha+6i)^{\frac{1}{2}(p-1)}+1$ per a+bi divisibilis est, etiam $(\alpha-6i)^{\frac{1}{2}(p-1)}+1$ per a-bi divisibilis esse debet.

59.

Progrediamur ad numeros primos impares.

Numerum -1+2i invenimus esse residuum quadraticum modulorum +3+2i, +1-4i, -5+2i, -5-2i, -1-6i, +7-2i, -3+8i, +5-8i, +5-8i, +9+4i etc.

non-residuum autem modulorum -1-2i, -3, +3-2i, +1+4i, -1+6i, +5+4i, +5-4i, -7, +7+2i, -5+6i, -5-6i, -3-8i, +9-4i etc.

Reducendo modulos prioris classis ad residua eorum absolute minima secundum modulum -1+2i, haec sola invenimus +1 et -1, puta $+3+2i \equiv -1$, $+1-4i \equiv -1$, $-5+2i \equiv +1$, $-5-2i \equiv -1$ etc.

Contra omnes moduli posterioris classis congrui inveniuntur secundum modulum -1+2i vel ipsi +i, vel ipsi -i.

At numeri +1, -1 ipsi sunt residua quadratica moduli -1+2i, atque +i et -i eiusdem non-residua: quocirca, quatenus inductioni fidem habere licet, prodit theorema: Numerus -1+2i est residuum vel non-residuum quadraticum numeri primi a+bi, prout hic est residuum vel non-residuum quadraticum ipsius -1+2i, siquidem a+bi est primarius e quaternis associatis, vel potius, si a est impar, b par.

Ceterum ex hoc theoremate sponte sequentur theoremata analoga circa numeros +1-2i, -1-2i, +1+2i.

60.

Instituendo similem inductionem circa numerum —3 vel +3, invenimus, utrumque esse residuum quadraticum modulorum +3+2i, +3-2i,
IL

$$-1+6i$$
, $-1-6i$, -7 , $-5+6i$, $-5-6i$, $-3+8i$, $-3-8i$, $+9+4i$, $+9-4i$ etc.

non-residuum vero horum -1+2i, -1-2i, +1+4i, +1-4i, -5+2i, -5-2i, +5+4i, +5-4i, +7+2i, +7-2i, +5+8i, +5-8i etc.

Priores secundum modulum 3 congrui sunt alicui ex his quatuor numeris +1, -1, +i, -i; posteriores autem alicui ex his +1+i, +1-i, -1+i, -1-i. Illi sunt ipsa residua quadratica numeri 3, hi non-residua.

Docet itaque haec inductio, numerum primum a+bi, supponendo a imparem, b parem, ad numerum -3 (nec non ad +3) eandem relationem habere, quam hic habet ad illum, quatenus scilicet alter alterius residuum quadraticum sit aut non-residuum.

Extendendo similem inductionem ad alios numeros primos, ubique hanc elegantissimam reciprocitatis legem confirmatam invenimus, deferimurque ad theorema hocce fundamentale circa residua quadratica in arithmetica numerorum complexorum:

Denotantibus a+bi, A+Bi numeros primos tales, ut a, A sint impares, b, B pares: erit vel uterque alterius residuum quadraticum, vel uterque alterius non-residuum.

At non obstante summa theorematis simplicitate, ipsius demonstratio magnis difficultatibus premitur, quibus tamen hic non immoramur, quum theorema ipsum sit tantummodo casus specialis theorematis generalioris, summam theoriae residuorum biquadraticorum quasi exhaurientis. Ad hanc igitur iam transeamus.

61.

Quae in art. 2 prioris commentationis de notione residui et non-residui biquadratici prolata sunt, etiam ad arithmeticam numerorum complexorum extendimus, et perinde ut illic etiam hic disquisitionem ad modulos tales, qui sunt numeri primi, restringimus: simul plerumque tacite subintelligendum erit, modulum ita accipi, ut sit inter associatos primarius, puta = 1 secundum modulum 2+2i, nec non numeros, de quorum charactere (quatenus sint residua biquadratica vel non-residua) agitur, per modulum non esse divisibiles.

Pro modulo itaque dato numeri per eum non divisibiles in tres classes dispertiri possent, quarum prima contineret residua biquadratica, secunda non-residua biquadratica ea, quae sunt residua quadratica, tertia non-residua quadratica. Sed hic quoque praestat, loco tertiae classis binas stabilire, ut omnino habeantur quaternae.

Assumta radice quacunque primitiva pro basi, residua biquadratica habebunt indices per 4 divisibiles sive formae 4n; non-residua ea, quae sunt residua quadratica, habebunt indices formae 4n+2; denique non-residuorum quadraticorum indices erunt partim formae 4n+1, partim formae 4n+3. Hoc modo classes quaternae quidem oriuntur, at distinctio inter binas posteriores non esset absoluta, sed ab electione radicis primitivae pro basi assumtae dependens; facile enim perspicitur, semissem radicum primitivarum non-residuo quadratico dato conciliare indicem formae 4n+1, semissem alteram vero indicem formae 4n+3. Quam ambiguitatem ut tollamus, supponemus semper talem radicem primitivam adoptari, pro qua index 1(p-1) competat numero 1 (conf. art. 55, VI). Hoc pacto classificatio oritur, quam concinnius independenter a radicibus primitivis ita enunciare possumus.

Classis *prima* contineat numeros k eos, pro quibus fit $k^{\frac{1}{2}(p-1)} \equiv 1$; hi numeri sunt moduli residua biquadratica.

Classis secunda contineat eos, pro quibus $k^{\frac{1}{2}(p-1)} \equiv i$.

Classis tertia eos, pro quibus $k^{\frac{1}{2}(p-1)} \equiv -1$.

Classis quarta denique eos, pro quibus $k^{\frac{1}{2}(p-1)} \equiv -i$.

Classis tertia comprehendet non-residua biquadratica ea, quae sunt residua quadratica; inter secundam et quartam non-residua quadratica distributa erunt.

Numeris harum classium tribuemus resp. characteres biquadraticos 0, 1, 2, 3. Si characterem λ numeri k secundum modulum m ita definimus, ut sit exponens eius potestatis ipsius i, cui numerus $k^{\frac{1}{2}(p-1)}$ congruus est, manifesto characteres secundum modulum 4 congrui pro aequivalentibus habendi sunt. Ceterum haec notio tantisper ad modulos eos limitatur, qui sunt numeri primi: in continuatione harum disquisitionum ostendemus, quomodo etiam modulis compositis adaptari possit.

62.

Quo facilius inductio copiosa circa numerorum characteres adstrui possit, tabulam compendiosam hic adiungimus, cuius auxilio character cuiusvis numeri propositi respectu moduli, cuius norma valorem 157 non transscendit, levi opera obtinetur, dummodo ad observationes sequentes attendatur.

Quum character numeri compositi aequalis sit (sive secundum modulum 4 congruus) aggregato characterum singulorum factorum, sufficit, si pro modulo dato characteres numerorum primorum assignare possumus. Porro quum characteres unitatum -1, i, -i manifesto sint congrui numeris $\frac{1}{2}(p-1)$, $\frac{1}{2}(p-1)$, secundum modulum 4, etiam sufficiet, characteres numerorum inter associatos primariorum exhibuisse. Denique quum moduli secundum modulum m congrui eundem characterem habeant, sufficit, characteres talium numerorum in tabulam recipere, qui continentur in systemate residuorum absolute minimorum. Praeterea per ratiocinium simile ut in art. 58 demonstratur, si pro modulo a+bi character numeri A+Bi sit λ , pro modulo a-bi autem λ' sit character numeri A-Bi, semper esse $\lambda \equiv -\lambda' \pmod{4}$, sive $\lambda+\lambda'$ per 4 divisibilem: quapropter sufficit, in tabulam recipere modulos, in quibus b est vel 0 vel positivus.

Ita e.g. si quaeritur character numeri 11-6i respectu moduli -5-6i, substituimus loco horum numerorum hosce 11+6i, -5+6i; dein determinamus (art. 43) residuum absolute minimum numeri 11+6i secundum modulum -5+6i, quod fit $-1-4i=-1\times(1+4i)$; quare quum pro modulo -5+6i character ipsius -1 sit 30, character numeri 1+4i autem, ex tabula, 2, erit 32 sive 0 character numeri 11+6i pro modulo -5+6i, et proin per observationem ultimam etiam character numeri 11-6i pro modulo -5-6i. Perinde si quaeritur character numeri -5+6i respectu moduli 11+6i, illius residuum absolute minimum 1-5i resolvitur in factores -i 1+i, 3-2i, quibus respondent characteres 117, 0, 1, unde character quaesitus erit 118 sive 2; idem character etiam numero -5-6i respectu moduli 11-6i tribuendus est.

Modulus.	Character.	Numeri.
- 3	3	1+i
+3+2i	3	1+i
+1+4i	1	-1+2i
	3	1+i
-5 + 2i	0	-1-2i
	1	1+i
	2	-1+2i
-1+6i	0	3
	1	1+i, $-1+2i$

Modulus.	Character.	Numeri.
-1+6i	2	-1-2 <i>i</i>
+5+4i	0	1+;
	1	_3
	3	-1+2i, -1-2i
 7	0	-3
	1	-1+2i, $3-2i$
	2	1+i
	3	-1-2i, $3+2i$
+7+2i	0	1+i, $3+2i$, $3-2i$, $1-4i$
	1	—3
	2	-1-2i, $1+4i$
	3	-1+2i
-5+6i	0	1+i, -3 , $3+2i$, $3-2i$
	1	1-4:
	2	1+46
	3	-1+2i, -1-2i
-3+8i	0	-1+2i, $3-2i$, $1-4i$
	1	1+i, $3+2i$
	2	-3
	3	-1-2i, $1+4i$, $-5+2i$
+5+8i	0	—1 — 2 i
	1	-5-2i, $-1+6i$
	2	-1+2i, $3-2i$
	3	1+i, -3 , $3+2i$, $1+4i$, $1-4i$
+9+4i	0	-1+2i, $3+2i$
	1	1+i, -1-2i, 3-2i
	2	-3, 1+4i
	3	1-4i, -5+2i
-1+10i	0	1+i, $-1+2i$, $-1-2i$, $3+2i$
	1 2	—3
	Į.	3-2i, -5+2i, 5-4i
	3	1+46, 1-46

Modulus.	Character.	Numeri.
+3+10i	1	1+i, $-1-2i$, $1-4i$
	2	-3, 3+2i, 1+4i, -5-2i
	3	-1+2i, $3-2i$
-7 + 8i	0	1+i, -7
	1	3+2i, $3-2i$, $1-4i$, $-5-2i$
	2	-1-2i, $1+4i$, $-5+2i$, $-1-6i$
	3	-1+2i, -3 , $-1+6i$
<u> 1 1</u>	0	3
	1	1+i, $3-2i$, $1+4i$, $-5+2i$, $5+4i$
	2	-1+2i, $-1-2i$
	3	3+2i, $1-4i$, $-5-2i$, $5-4i$
-11+4i	0	1+i, $-1+2i$, $3+2i$, $5+4i$
	1.	-1-2i, -1+6i
	2	-5+2i
	3	-3, 3-2i, 1+4i, 1-4i, -5-2i
+7+10i	0	1+4i, $1-4i$, $-1+6i$, $-1-6i$
	1	-1+2i, $3+2i$, $-5+2i$
	2	1+i, 3-2i
	3	-1-2i, -3 , $-5-2i$
+11+6i	0.	1+i, $-1+2i$, -3 , $1+4i$, $1-4i$, -7
	1	-1-2i, $3+2i$, $3-2i$
	2	-5-2i, $-1+6i$, $5-4i$
	3	-5+2i, $5+4i$, $7-2i$.

63.

Operam nunc dabimus, ut criteria communia modulorum, pro quibus numerus primus datus characterem eundem habet, per inductionem detegamus. Modulos semper supponimus primarios inter associatos, puta tales a+bi, pro quibus vel $a \equiv 1$, $b \equiv 0$, vel $a \equiv 3$, $b \equiv 2 \pmod{4}$.

Respectu numeri 1+i, a quo initium facimus, inductionis lex facilius arripitur, si modulos prioris generis (pro quibus $a \equiv 1$, $b \equiv 0$) a modulis posterioris generis (pro quibus $a \equiv 3$, $b \equiv 2$) separamus. Adiumento tabulae art. praec. invenimus respondere

charactere m	modulis primi generis.	
0	5+4i, $-7+8i$, $-7-8i$, $-11+4i$	
1	1-4i, $-3+8i$, $-3-8i$, $9+4i$, -11	
2	5-4i, -7 , $-11-4i$	
3	-3, $1+4i$, $5+8i$, $5-8i$, $9-4i$	

Si haec septemdecim exempla attente consideramus, in omnibus invenimus characterem $\equiv \frac{1}{2}(a-b-1) \pmod{4}$.

Perinde respondet

character	modulis secundi generis.
0	3-2i, $-1-6i$, $7+2i$, $-5+6i$, $-1+10i$, $11+6i$
1	-5+2i, $-1+6i$, $7-2i$, $-1-10i$, $3+10i$
2	-1+2i, $-5-2i$, $3-10i$, $7+10i$
3	-1-2i, $3+2i$, $-5-6i$, $7-10i$, $11-6i$

In omnibus his viginti exemplis, levi attentione adhibita, invenitur character $\equiv \frac{1}{4}(a-b-5) \pmod{4}$.

Facile has duas regulas in unam pro utroque modulorum genere valentem contrahere licet, si perpendimus, $\frac{1}{4}bb$ esse pro modulis prioris generis $\equiv 0$, pro modulis posterioris generis $\equiv 1 \pmod{4}$. Est itaque character numeri 1+i respectu moduli cuiusvis primi inter associatos primarii $\equiv \frac{1}{4}(a-b-1-bb) \pmod{4}$.

Obiter hic annotare convenit, quum $(b+1)^2$ semper sit formae 8n+1, sive $\pm(2b+bb)$ par, characterem istum semper parem vel imparem fieri, prout $\pm(a+b-1)$ par sit vel impar, quod quadrat cum regula pro charactere quadratico in art. 58 prolata.

Quum $\frac{1}{4}(a-b-1)$, $\frac{1}{4}(a-b+3)$ sint integri, quorum alter par, alter im par, ipsorum productum par erit, sive $\frac{1}{4}(a-b-1)(a-b+3) \equiv 0 \pmod{4}$. Hinc loco expressionis allatae pro charactere biquadratico haec quoque adoptari potest

$$\frac{1}{8}(a-b-1-bb) - \frac{1}{8}(a-b-1)(a-b+3) = \frac{1}{8}(-aa+2ab-3bb+1)$$

quae forma eo quoque nomine se commendat, quod non restringitur ad modulos primarios, sed tantummodo supponit, a esse imparem, b parem: manifesto enim in hac suppositione vel a+bi, vel -a-bi erit numerus inter associatos primarius, valorque istius formulae pro utroque modulo idem.

64.

Proficiscendo a regula ultima in art. praec. eruta invenimus esse

numeri	characterem ==
-1+i	$\frac{1}{8}(aa + 2ab - bb - 1)$ $\frac{1}{8}(-aa + 2ab + bb + 1)$
-1-i	$\frac{1}{8}(-aa+2ab+bb+1)$
+1-i	$\frac{1}{8}(aa+2ab+3bb-1)$

Hoc statim inde sequitur, quod character ipsius i est $\pm (aa + bb - 1)$, character ipsius -1 autem $\pm (aa + bb - 1) \equiv \pm bb$, quum aa - 1 semper sit formae 8n. Manifesto hae quatuor regulae, etiamsi hactenus ab inductione mutuatae sint, ita inter se sunt nexae, ut quamprimum unius demonstratio absoluta fuerit, tres reliquae simul sint demonstratae. Vix opus est monere, etiam in his regulis tantummodo supponi a imparem, b parem.

Si formulas ad modulos primarios restrictas adhibere non displicet, hac forma uti possumus. Est

numeri
 character

$$-1+i$$
 $\frac{1}{4}(-a-b+1-bb)$
 $-1-i$
 $\frac{1}{4}(a-b-1+bb)$
 $+1-i$
 $\frac{1}{4}(-a-b+1+bb)$

Formulae simplicissimae prodeunt, si, ut initio inductionis nostrae feceramus, modulos primi et secundi generis distinguimus. Est scilicet character

numeri	pro modulis primi generis	pro modulis secundi generis
-1+i	+(-a-b+1)	1 (-a-b-3)
-1-i	$\frac{1}{4}(a-b-1)$	$\frac{1}{4}(a-b+3)$
+1-i	+(-a-b+1)	$\frac{1}{4}(-a-b+5)$

65.

Pro numero -1+2i, ad quem iam progredimus, eandem distinctionem inter modulos a+bi eos, pro quibus $a\equiv 1$, $b\equiv 0$, atque eos, pro quibus $a\equiv 3$, $b\equiv 2$ quoque adhibebimus, Tabula art. 62 docet, respectu illius numeri respondere

characterem	modulis primi generis
0	-3+8i, $+5-8i$, $+9+4i$, $-11+4i$
1	+1+4i, $+5-4i$, -7 , $-3-8i$
2	+1-4i, $+5+8i$, $-7-8i$, -11
3	-3, +5+4i, +9-4i, -7+8i, -11-4i

Revocatis singulis his modulis ad residua absolute minima secundum modulum -1+2i, animadvertimus, omnes, quibus respondet character 0, esse $\equiv 1$; eos, quibus character 1 respondet, $\equiv i$; eos, quorum character est 2, fieri $\equiv -1$; denique omnes, quorum character est 3, fieri $\equiv -i$. At characteres numerorum 1, i, -1, -i pro modulo -1+2i ipsi sunt 0, 1, 2, 3 resp.; quapropter in omnibus his 17 exemplis character numeri -1+2i respectu moduli prioris generis a+bi, cum charactere huius numeri respectu moduli -1+2i identicus est.

Perinde adiumento tabulae invenitur, respondere

characterem	modulis secundi generis	
0	+3+2i, $-5-2i$, $-1+10i$, $-1-10i$, $+11+6i+3-2i$, $-1+6i$, $-5-6i$, $+7+10i$, $+7-10i-5+2i$, $-1-6i$, $+7-2i-1-2i$, $+7+2i$, $-5+6i$, $+3+10i$, $+3-10i$, $+11-6i$	
1	+3-2i, $-1+6i$, $-5-6i$, $+7+10i$, $+7-10i$	
2	-5+2i, $-1-6i$, $+7-2i$	
3	-1-2i, $+7+2i$, $-5+6i$, $+3+10i$, $+3-10i$, $+11-6i$	

Revocatis his modulis ad residua minima secundum modulum -1+2i, omnia, quibus resp. characteres 0, 1, 2, 3 respondent, congrua inveniuntur numeris -1, -i, +1, +i; his vero ipsis numeris, si vice versa -1+2i pro modulo adoptatur, competunt characteres 2, 3, 0, 1 resp. Quapropter in omnibus his 19 exemplis character numeri -1+2i respectu moduli secundi generis duabus unitatibus differt a charactere huius numeri respectu numeri -1+2i pro modulo habiti.

Ceterum nullo negotio perspicitur, prorsus similia respectu numeri —1—2i locum habitura esse.

66.

Pro numero — 3 distinctionem inter modulos primi generis et secundi omittimus, quum eventus doceat, illam hic superfluam esse. Respondet itaque

18

II.

character	modulis
0	-1+6i, -1-6i, -7, -5+6i, -5-6i, -11, 11+6i, 11-6i $-1-2i, 1-4i, -5+2i, 5+4i, 7+2i, 5-8i, -1+10i, -7-8i,$ $-11-4i, 7-10i$
1	-1-2i, $1-4i$, $-5+2i$, $5+4i$, $7+2i$, $5-8i$, $-1+10i$, $-7-8i$,
	114i, 710i
2	3+2i, $3-2i$, $-3+8i$, $-3-8i$, $9+4i$, $3+10i$, $3-10i$
3	3+2i, $3-2i$, $-3+8i$, $-3-8i$, $9+4i$, $3+10i$, $3-10i-1+2i$, $1+4i$, $-5-2i$, $5-4i$, $7-2i$, $5+8i$, $-1-10i$, $-7+8i$,
	-11+4i, $7+10i$

Revocatis his modulis ad residua minima secundum modulum 3, videmus, eos, quibus respondet character 0, esse partim $\equiv 1$, partim $\equiv -1$; eos, quorum character est 1, fieri vel $\equiv 1-i$, vel $\equiv -1+i$, eos, quorum character est 2, fieri vel $\equiv i$, vel $\equiv -i$; denique eos, quibus competit character 3, esse vel $\equiv 1+i$, vel $\equiv -1-i$. Ex hac itaque inductione colligimus, characterem numeri -3 pro modulo, qui est numerus primus inter associatos primarius, identicum esse cum charactere huius ipsius numeri, dum 3, sive, quod eodem redit, -3 tamquam modulus consideratur.

67.

Simili inductione circa alios numeros primos instituta, invenimus, numeros $3 \pm 2i$, $-1 \pm 6i$, $7 \pm 2i$, $-5 \pm 6i$ etc. suppeditare theoremata ei similia, ad quod in art. 65 respectu numeri -1 + 2i pervenimus; contra numeros $1 \pm 4i$, $5 \pm 4i$, $-3 \pm 8i$, $5 \pm 8i$, $9 \pm 4i$ etc. perinde se habere ut numerum -3. Inductio itaque perducit ad elegantissimum theorema, quod ad instar theoriae residuorum quadraticorum in arithmetica numerorum realium Theorema fundamentale theoriae residuorum biquadraticorum nuncupare liceat, scilicet:

Denotantibus a+bi, a'+b'i numeros primos diversos inter associatos suos primarios, i. e. secundum modulum 2+2i unitati congruos, character biquadraticus numeri a+bi respectu moduli a'+b'i identicus erit cum charactere numeri a'+b'i respectu moduli a+bi, si vel uterque numerorum a+bi, a'+b'i, vel alteruter saltem, ad primum genus refertur, i. e. secundum modulum 4 unitati congruus est: contra characteres illi duabus unitatibus inter se different, si neuter numerorum a+bi, a'+b'i ad primum genus refertur, i. e. si uterque secundum modulum 4 congruus est numero 3+2i.

At non obstante summa huius theorematis simplicitate, ipsius demonstratio inter mysteria arithmeticae sublimioris maxime recondita referenda est, ita ut, saltem ut nunc res est, per subtilissimas tantummodo investigationes enodari possit, quae limites praesentis commentationis longe transgrederentur. Quamobrem promulgationem huius demonstrationis, nec non evolutionem nexus inter hoc theorema atque ea, quae in initio huius commentationis per inductionem stabilire coeperamus, ad commentationem tertiam nobis reservamus. Coronidis tamen loco iam hic trademus, quae ad demonstrationem theorematum in artt. 63.64 propositorum requiruntur.

68.

Initium facimus a numeris primis a+bi talibus, pro quibus b=0 (tertia specie art. 34), ubi itaque (ut numerus inter associatos primarius sit) a debet esse numerus primus realis negativus formae — (4n+3), pro quo scribemus — q, quales sunt — 3, — 7, — 11, — 19 etc. Denotando per λ characterem numeri 1+i, illo numero pro modulo accepto, esse debet

$$i^{\lambda} \equiv (1+i)^{\frac{1}{2}(qq-1)} \equiv 2^{\frac{1}{2}(qq-1)} \cdot i^{\frac{1}{2}(qq-1)} \pmod{q}$$

Sed constat, 2 esse residuum quadraticum, vel non-residuum quadraticum ipsius q, prout q sit formae 8n+7, vel formae 8n+3, unde colligimus, esse generaliter

$$2^{\frac{1}{2}(q-1)} \equiv (-1)^{\frac{1}{2}(q+1)} \equiv i^{\frac{1}{2}(q+1)} \pmod{q}$$

adeoque evehendo ad potestatem exponentis $\pm (q+1)$

$$2^{\frac{1}{2}(qq-1)} \equiv i^{\frac{1}{2}(q+1)^2} \pmod{q}$$

Aequatio itaque praecedens hanc formam induit

$$i^{\lambda} \equiv i^{\frac{1}{2}(q+1)^2 + \frac{1}{2}(qq-1)} \equiv i^{\frac{1}{2}(qq+q)} \pmod{q}$$

unde sequitur

$$\lambda \equiv \frac{1}{4}(qq+q) \equiv \frac{1}{4}(q+1)^3 - \frac{1}{4}(q+1) \pmod{4}$$

sive quum habeatur $\frac{1}{4}(q+1)^2 \equiv 0 \pmod{4}$, $\lambda \equiv -\frac{1}{4}(q+1) \equiv \frac{1}{4}(a-1) \pmod{4}$.

Quod est ipsum theorema art. 63 pro casu b = 0.

69.

Longe vero difficilius absolvuntur moduli a+bi tales, pro quibus non est b=0 (numeri quartae speciei art. 34), pluresque disquisitiones erunt praemittendae. Normam aa+bb, quae erit numerus primus realis formae 4n+1, designabimus per p.

Denotetur per S complexus omnium residuorum simpliciter minimorum pro modulo a+bi=m, exclusa cifra, ita ut multitudo numerorum in S contentorum sit =p-1. Designet x+yi indefinite numerum huius systematis, statuaturque $ax+by=\xi$, $ay-bx=\eta$. Erunt itaque ξ , η integri inter limites 0 et p exclusive contenti; in casu praesente enim, ubi a, b inter se primi sunt, formulae art. 45, puta $\eta \equiv k\xi$, $\xi \equiv -k\eta \pmod{p}$ docent, neutrum numerorum ξ , η esse posse =0, nisi alter simul evanescat, adeoque fiat x=0, y=0, quam combinationem iam eiecimus. Criterium itaque numeri x+yi in S contenti, consistit in eo, ut quatuor numeri ξ , η , $p-\xi$, $p-\eta$ sint positivi.

Praeterea observamus pro nullo tali numero esse posse $\xi = \eta$; hinc enim sequeretur $p(x+y) = a(\xi+\eta) + b(\xi-\eta) = 2a\xi$, quod est absurdum, quum nullus factorum 2, a, ξ per p divisibilis sit. Simili ratione aequatio $p(x-y+a+b) = 2a\xi + (a+b)(p-\xi-\eta)$ docet, esse non posse $\xi+\eta=p$. Quapropter quum numeri $\xi-\eta$, $p-\xi-\eta$ esse debeant vel positivi vel negativi, hinc petimus subdivisionem systematis S in quatuor complexus C, C', C'', C''', puta ut coniiciantur

in complexum	numeri pro quibus
C	$\xi - \eta$ positivus, $p - \xi - \eta$ positivus
C'	$\xi - \eta$ positivus, $p - \xi - \eta$ negativus
C "	$\xi - \eta$ negativus, $p - \xi - \eta$ negativus
C '''	$\xi - \eta$ negativus, $p - \xi - \eta$ positivus

Criterium itaque numeri complexus C proprie sextuplex est, puta sex numeri ξ , η , $p-\xi$, $p-\eta$, $\xi-\eta$, $p-\xi-\eta$ positivi esse debent; sed manifesto conditiones 2, 5 et 6 iam sponte implicant reliquas. Similia circa complexus C', C'', C''' valent, ita ut criteria completa sint triplicia, puta

pro complexu	positivi esse debent numeri
\overline{c}	η , $\xi = \eta$, $p = \xi = \eta$
$oldsymbol{C'}$	$p = \xi, \xi = \eta, \xi + \eta = p$
$oldsymbol{C''}$	$p-\eta$, $\eta-\xi$, $\xi+\eta-p$
C'''	ξ , $\eta - \xi$, $p - \xi - \eta$

Ceterum vel nobis non monentibus quisque facile intelliget, in repraesentatione figurata numerorum complexorum (vid. art. 39) numeros systematis S intra quadratum contineri, cuius latera iungant puncta numeros 0, a+bi, (1+i)(a+bi), i(a+bi) repraesentantia, et subdivisionem systematis S respondere partitioni quadrati per rectas diagonales. Sed hocce loco ratiocinationibus pure arithmeticis uti maluimus, illustrationem per intuitionem figuratam lectori perito brevitatis caussa linquentes.

70.

Si quatuor numeri complexi r = x + yi, r' = x' + y'i, r'' = x'' + y''i, r'' = x'' + y''i, r'' = x'' + y''i ita inter se nexi sunt, ut habeatur r' = m + ir, r'' = m + ir' = im - ir, atque primus r ad complexum C pertinere supponitur, reliqui r', r'', r''' resp. ad complexus C', C'', C''' pertinebunt. Statuendo enim $\xi = ax + by$, $\eta = ay - bx$, $\xi' = ax' + by'$, $\eta' = ay' - bx'$, $\xi'' = ax'' + by''$, $\eta'' = ay'' - bx''$, invenitur

$$\eta = p - \xi' = p - \eta'' = \xi''' \\
\xi - \eta = \xi' + \eta' - p = \eta'' - \xi'' = p - \xi''' - \eta''' \\
p - \xi - \eta = \xi' - \eta' = \xi'' + \eta'' - p = \eta''' - \xi'''$$

unde adiumento criteriorum theorematis veritas sponte demanat. Et quum rursus fiat r = m + ir''', facile perspicietur, si r supponatur pertinere ad C', numeros r', r'', r''' pertinere resp. ad C'', C'', C'', si ille ad C''', hos ad C''', C, C'; denique si ille ad C''', hos ad C, C', C''.

Simul hinc colligitur, in singulis complexibus C, C', C'', C''' aeque multos numeros reperiri, puta $\frac{1}{2}(p-1)$.

37.

THEOREMA. Si denotante k integrum per m non divisibilem singuli numeri complexus C per k multiplicantur, productorumque residuis simpliciter minimis secun-

dum modulum m inter complexus C, C', C'', C''' distributis, multitudo eorum, quae ad singulos hos complexus pertinent, resp. per c, c', c'' denotatur: character numeri k respectu moduli m erit $\equiv c'+2c''+3c'''$ (mod. 4).

Demonstr. Sint illa c residua minima ad C pertinentia α , δ , γ , δ etc.; dein c' residua ad C' pertinentia haec $m+i\alpha'$, $m+i\delta'$, $m+i\gamma'$, $m+i\delta'$ etc.; porro c'' residua ad C'' pertinentia haec $(1+i)m-\alpha''$, $(1+i)m-\delta''$, $(1+i)m-\gamma''$, $(1+i)m-\delta''$ etc.; denique c''' residua ad C''' pertinentia haec $im-i\alpha'''$, $im-i\delta'''$, $im-i\delta'''$ etc. Iam consideremus quatuor producta, scilicet

- 1) productum ex omnibus $\frac{1}{2}(p-1)$ numeris complexum C constituentibus:
- 2) productum productorum, quae e multiplicatione singulorum horum numerorum per k orta erant;
- 3) productum e residuis minimis horum productorum, puta e numeris α , δ , γ , δ etc., $m+i\alpha'$, $m+i\delta'$ etc. etc.
- 4) productum ex omnibus c+c'+c''+c''' numeris α , δ , γ , δ etc., α' , δ' , γ' , δ' etc., α'' , δ'' , γ'' , δ'' etc.

Denotando haec quatuor producta ordine suo per P, P', P", P", manifesto erit

$$P'=k^{\frac{1}{2}(p-1)}P,\ P'\equiv P'',\ P''\equiv P'''^{\frac{1}{2}(p'+2c''+3c''')}\pmod{m}$$

et proin

$$Pk^{\frac{1}{4}(p-1)} \equiv P'''i^{c'+2c''+3c'''} \pmod{m}$$

At facile perspicietur, numeros α' , δ' , γ' , δ' etc., α'' , δ'' , δ'' etc., α''' , δ''' etc., α''' , δ''' etc. omnes ad complexum C pertinere, atque tum inter se tum a numeris α , δ , γ , δ etc. diversos esse, sicuti hi ipsi inter se diversi sint. Omnes itaque hi numeri simul sumti, et abstrahendo ab ordine, prorsus identici esse debent cum omnibus numeris complexum C constituentibus, unde colligimus P = P''', adeoque

$$Pk^{\frac{1}{4}(p-1)} \equiv Pi^{\sigma'+2\sigma''+3\sigma''} \pmod{m}$$

Denique quum singuli factores producti P per m non sint divisibiles, hinc concluditur

$$k^{\frac{1}{4}(p-1)} \equiv i^{c'+2c''+3c'''} \pmod{m}$$

unde c'+2c''+3c''' erit character numeri k respectu moduli m. Q. E. D.

72.

Quo theorema generale art. praec. ad numerum 1+i applicari possit, complexum C denuo in duos complexus minores G et G' subdividere oportet, et quidem referemus in complexum G numeros eos x+yi, pro quibus $ax+by=\xi$ minor est quam $\pm p$, in alterum G' eos, pro quibus ξ est maior quam $\pm p$; multitudinem numerorum in complexibus G, G' contentorum resp. per g, g' denotabimus, unde erit $g+g'=\pm (p-1)$.

Criterium completum numerorum ad G pertinentium itaque erit, ut tres numeri η , $\xi - \eta$, $p - 2\xi$ sint positivi: nam conditio tertia pro complexu C, secundum quam $p - \xi - \eta$ positivus esse debet, sub illis implicite iam continetur, quam sit $p - \xi - \eta = (\xi - \eta) + (p - 2\xi)$. Perinde criterium completum numerorum ad G' pertinentium consistet in valoribus positivis trium numerorum η , $p - \xi - \eta$, $2\xi - p$.

Hinc facile concluditur, productum cuiusvis numeri complexus G per numerum 1+i pertinere ad complexum C'''; si enim statuitur

$$(x+yi)(1+i) = x'+y'i$$
, atque $ax'+by' = \xi'$, $ay'-bx' = \eta'$, invenitur $\xi' = \xi - \eta$, $\eta' - \xi' = 2\eta$, $p - \xi' - \eta' = p - 2\xi$

i. e. criterium pro numero x+yi complexui G subdito identicum est cum criterio pro numero x'+y'i ad complexum C''' pertinente.

Prorsus simili modo ostenditur, productum cuiusvis numeri complexus G' per 1+i pertinere ad complexum C''.

Erit itaque, si in art. praec. ipsi k valorem 1+i tribuimus, c=0, c'=0, c'=g', c''=g, et proin character numeri 1+i fiet $3g+2g'=\frac{1}{4}(p-1)+g$. Et quum characteres numerorum i, -1, sint $\frac{1}{4}(p-1)$, $\frac{1}{4}(p-1)$, characteres numerorum -1+i, -1-i, 1-i resp. erunt $\frac{1}{4}(p-1)+g$, g, $\frac{1}{4}(p-1)+g$. Totus igitur rei cardo iam in investigatione numeri g vertitur.

73.

Quae in artt. 69—72 exposuimus, proprie independentia sunt a suppositione, m esse numerum primarium: abhinc vero saltem supponemus, a imparem, b parem esse, praetereaque a, b et a—b esse numeros positivos. Ante omnia limites valorum ipsius x in complexu G stabilire oportet.

Statuendo $ay-bx=\eta$, $(a+b)x-(a-b)y=\zeta$, $p-2ax-2by=\theta$, criterium numerorum x+yi ad complexum G pertinentium consistit in tribus conditionibus, ut η , ζ , θ sint numeri positivi. Quum fiat $px=(a-b)\eta+a\zeta$, $p(a-2x)=a\theta+2b\eta$, manifestum est, x et 2a-x esse debere numeros positivos, sive x alicui numerorum 1, 2, 3... $\pm(a-1)$ aequalem. Porro quum sit $(a-b)\theta=2b\zeta+p(a-b-2x)$, patet, quamdiu x minor sit quam $\pm(a-b)$, conditionem secundam (iuxta quam ζ positivus esse debet) iam implicare tertiam (quod θ debet esse positivus); contra quoties x sit maior quam $\pm(a-b)$, conditionem secundam iam contineri sub tertia. Quamobrem pro valoribus ipsius x his $1, 2, 3 \dots \frac{1}{2}(a-b-1)$ tantummodo prospiciendum est, ut η et ζ positivi evadant, sive ut y maior sit quam $\frac{bx}{a}$ et minor quam $\frac{(a+b)x}{a-b}$: pro valore itaque tali dato ipsius x aderunt numeri x+yi omnino

$$\left[\frac{(a+b)x}{a-b}\right]-\left[\frac{bx}{a}\right]$$

si uncis in eadem significatione utimur, qua iam alibi passim usi sumus (Conf. Theorematis arithm. dem. nova art. 4 et Theorematis fund. in doctr. de residuis quadr. etc. Algorithm. nov. art. 3). Contra pro valoribus ipsius x his $\frac{1}{4}(a-b+1)$, $\frac{1}{4}(a-b+3)\ldots\frac{1}{2}(a-1)$ sufficiet, ut ipsis η et θ valores positivi concilientur, sive ut y maior sit quam $\frac{bx}{a}$ et minor quam $\frac{p-2ax}{2b}$ sive $\frac{1}{4}b+\frac{aa-2ax}{2b}$: quare pro valore tali dato ipsius x aderunt numeri x+y i omnino

$$\left[\frac{1}{2}b + \frac{aa - 2ax}{2b}\right] - \left[\frac{bx}{a}\right]$$

Hinc itaque colligimus, multitudinem numerorum complexus G esse

$$g = \sum \left[\frac{(a+b)x}{a-b} \right] + \sum \left[\frac{1}{2}b + \frac{aa-2ax}{2b} \right] - \sum \left[\frac{bx}{a} \right]$$

ubi in termino primo summatio extendenda est per omnes valores integros ipsius x ab 1 usque ad $\frac{1}{2}(a-b-1)$, in secundo ab $\frac{1}{2}(a-b+1)$ usque ad $\frac{1}{2}(a-1)$, in tertio ab 1 usque ad $\frac{1}{2}(a-1)$.

Si characteristica φ in eadem significatione utimur, ut loco citato (Theorematis fund. etc. Algor. nov. art. 3), puta ut sit

$$\varphi(t,u) = \left[\frac{u}{t}\right] + \left[\frac{2u}{t}\right] + \left[\frac{3u}{t}\right] \cdot \cdot \cdot \cdot + \left[\frac{t'u}{t}\right]$$

denotantibus t, u numeros positivos quoscunque, atque t' numerum $[\frac{1}{2}t]$, terminus ille primus fit $= \varphi(a-b, a+b)$, tertius $= -\varphi(a,b)$; secundus vero fit

$$= \frac{1}{4}bb + \sum \left[\frac{aa - 2ax}{2b}\right]$$

Sed fit, scribendo terminos inverso ordine,

$$\Sigma\left[\frac{aa-2ax}{2b}\right]=\left[\frac{a}{2b}\right]+\left[\frac{5a}{2b}\right]+\left[\frac{5a}{5b}\right]+\ldots+\left[\frac{(b-1)a}{2b}\right]=\varphi(2b,a)-\varphi(b,a)$$

Formula itaque nostra sequentem induit formam:

$$g = \varphi(a-b, a+b) + \varphi(2b, a) - \varphi(a, b) - \varphi(b, a) + \pm bb$$

Consideremus primo terminum $\varphi(a-b, a+b)$, qui protinus transmutatur in $\varphi(a-b, 2b)+1+2+3+$ etc. $+\frac{1}{2}(a-b-1)$ sive in

$$\varphi(a-b, 2b) + \frac{1}{8}((a-b)^2-1)$$

Dein quum per theorema generale fiat $\varphi(t, u) + \varphi(u, t) = [\frac{1}{2}t] \cdot [\frac{1}{2}u]$, dum t, u sunt integri positivi inter se primi, habemus

$$\varphi(a-b, 2b) = \frac{1}{2}b(a-b-1)-\varphi(2b, a-b)$$

adeoque

$$\varphi(a-b, a+b) = \frac{1}{6}(aa+2ab-3bb-4b-1)-\varphi(2b, a-b)$$

Disponamus partes ipsius $\varphi(2b, a-b)$ sequenti modo

Series secunda manifesto fit

$$= \varphi(b, a-b) = \varphi(b, a) - 1 - 2 - 3 - \text{etc.} - \frac{1}{2}b = \varphi(b, a) - \frac{1}{8}(bb+2b)$$

seriem primam ordine terminorum inverso ita exhibemus:

$$\left[\frac{1}{2}(a+1-b)-\frac{a}{2b}\right]+\left[\frac{1}{2}(a+3-b)-\frac{3a}{2b}\right]+\left[\frac{1}{2}(a+5-b)-\frac{5a}{2b}\right]+\text{etc.}+\left[\frac{1}{2}(a-1)-\frac{(b-1)a}{2b}\right]$$

quae expressio, quum denotante t numerum integrum, u fractum, generaliter sit [t-u] = t-1-[u], mutatur in sequentem

$$\frac{1}{8}b(2a-4-b)-\left[\frac{a}{2b}\right]-\left[\frac{3a}{2b}\right]-\left[\frac{5a}{2b}\right]-\text{ etc. }-\left[\frac{(b-1)a}{2b}\right]$$

$$=\frac{1}{8}b(2a-4-b)-\varphi(2b,a)+\varphi(b,a)$$

11.

Hinc fit

$$\varphi(2b, a-b) = 2\varphi(b, a) - \varphi(2b, a) + 1b(a-3-b)$$

et proin

$$\varphi(a-b,a+b) = \varphi(2b,a)-2\varphi(b,a)+\frac{1}{8}(aa-bb+2b-1)$$

Substituendo hunc valorem in formula pro g supra tradita, insuperque $\varphi(a,b)$ $+\varphi(b,a) = \pm b(a-1)$, obtinemus

$$g = 2\varphi(2b,a) - 2\varphi(b,a) + \frac{1}{8}(aa - 2ab + bb + 4b - 1)$$

74.

Per ratiocinia prorsus similia absolvitur casus is, ubi manentibus a, b positivis a-b est negativus, sive b-a positivus. Aequationes $p(a-2x)=2b\eta+a\theta$, $p(b-a+2x)=2b\zeta+(b-a)\theta$ docent, $\frac{1}{2}a-x$ atque $x+\frac{1}{2}(b-a)$ positivos, et proin x alicui numerorum $-\frac{1}{2}(b-a-1)$, $-\frac{1}{2}(b-a-3)$, $-\frac{1}{2}(b-a-5)\ldots+\frac{1}{2}(a-1)$ aequalem esse debere. Porro ex aequatione $px+(b-a)\eta=a\zeta$ sequitur, pro valoribus negativis ipsius x conditionem, ex qua η debet esse positivus, iam contineri sub conditione, ex qua ζ debet esse positivus, contrarium vero evenire, quoties ipsi x valor positivus tribuatur. Hinc valores ipsius y pro valore determinato negativo ipsius x inter $\frac{(a+b)x}{a-b}$ et $\frac{p-2ax}{2b}$, contra pro valore positivo ipsius x inter $\frac{bx}{a}$ et $\frac{p-2ax}{2b}$ contenti esse debent: manifesto pro x=0 hi limites sunt 0 et $\frac{p-2ax}{2b}$, valore y=0 ipso excluso. Hinc colligitur

$$g = -\sum \left[\frac{(a+b)x}{a-b}\right] + \sum \left[\frac{1}{2}b + \frac{aa-2ax}{2b}\right] - \sum \left[\frac{bx}{a}\right]$$

ubi in termino primo summatio extendenda est per omnes valores negativos ipsius x inde a -1 usque ad $-\frac{1}{2}(b-a-1)$; in secunda per omnes valores ipsius x inde a $-\frac{1}{2}(b-a-1)$ usque ad $\frac{1}{2}(a-1)$; in tertia per omnes valores positivos ipsius x inde a +1 usque ad $\frac{1}{2}(a-1)$: hoc pacto e summatione prima prodit $-\varphi(b-a,b+a)$, e secunda perinde ut in art. praec. $\frac{1}{2}bb+\varphi(2b,a)-\varphi(b,a)$, denique e tertia $-\varphi(a,b)$, sive habetur

$$g = -\varphi(b-a, b+a)+\varphi(2b, a)-\varphi(b, a)-\varphi(a, b)+\pm bb$$

Iam simili modo ut in art. praec. evolvitur

$$\varphi(b-a, b+a) = \varphi(b-a, 2b) - \frac{1}{5}((b-a)^{3} - 1)$$

$$= \frac{1}{5}(3bb - 2ab - aa - 4b + 1) - \varphi(2b, b-a)$$

nec non

$$\varphi(2b, b-a) = \varphi(2b, a) - 2\varphi(b, a) + 1b(b-1-a)$$

adeoque

$$\varphi(b-a,b+a) = 2\varphi(b,a)-\varphi(2b,a)+\frac{1}{8}(bb-aa-2b+1)$$

tandemque

$$g = 2\varphi(2b,a) - 2\varphi(b,a) + \frac{1}{8}(aa - 2ab + bb + 4b - 1)$$

Evictum est itaque, eandem formulam pro g valere, sive sit a-b positivus sive negativus, dummodo a, b sint positivi.

75.

Ut reductionem ulteriorem assequamur, statuemus

$$L = \left[\frac{a}{2b}\right] + \left[\frac{2a}{2b}\right] + \left[\frac{3a}{2b}\right] + \text{ etc.} + \left[\frac{\frac{1}{2}ba}{2b}\right]$$

$$M = \left[\frac{(\frac{1}{2}b+1)a}{2b}\right] + \left[\frac{(\frac{1}{2}b+2)a}{2b}\right] + \left[\frac{(\frac{1}{2}b+3)a}{2b}\right] + \text{ etc.} + \left[\frac{ba}{2b}\right]$$

$$N = \left[\frac{a+b}{2b}\right] + \left[\frac{2a+b}{2b}\right] + \left[\frac{3a+b}{2b}\right] + \text{ etc.} + \left[\frac{\frac{1}{2}ba+b}{2b}\right]$$

Quum facile perspiciatur, haberi generaliter $[u]+[u+\frac{1}{4}]=[2u]$, quamcunque quantitatem realem denotet u, fit $L+N=\varphi(b,a)$, et quum manifesto sit $L+M=\varphi(2b,a)$, erit

$$\varphi(2b,a)-\varphi(b,a)=M-N$$

Porro autem obvium est, aggregatum termini primi seriei N cum penultimo termino seriei M, puta $\left[\frac{a+b}{2b}\right]+\left[\frac{(b-1)a}{2b}\right]$ fieri $=\frac{1}{2}(a-1)$, atque eandem summam effici e termino secundo seriei N cum antepenultimo seriei M, et sic porro: quare quum etiam terminus ultimus seriei M fiat $=\frac{1}{2}(a-1)$, ultimus vero terminus seriei N sit $=\left[\frac{a+2}{4}\right]=\frac{1}{4}(a-1)$, valente signo superiori vel inferiori, prout a est formae 4n+1 vel 4n-1: erit

$$M+N=\frac{1}{4}(a-1)b+\frac{1}{4}(a+1)$$

et proin

$$\varphi(2b, a) - \varphi(b, a) = \frac{1}{4}(a-1)b + \frac{1}{4}(a-1) - 2N$$

19*

Formula itaque pro g in artt. 73 et 74 inventa, transit in sequentem

$$g = \frac{1}{8}((a+b)^2-1)+2n-4N$$

statuendo a + 1 = 4n, ubi n erit integer. Sed quum hinc habeatur 1 = 16nn - 8an + aa, formula haec etiam sequenti modo exhiberi potest:

$$g = \frac{1}{8}(-aa + 2ab + bb + 1) + 4(\frac{1}{2}(a+1)n - nn - N)$$

Quapropter quum g sit character numeri -1-i pro modulo a+bi, hic character fit $\equiv \frac{1}{2}(-aa+2ab+bb+1) \pmod{4}$, quod est ipsum theorema supra (art. 64) per inductionem erutum, sponteque inde demanant theoremata circa characteres numerorum 1+i, 1-i, -1+i. Quamobrem haec quatuor theoremata, pro casu eo, ubi a et b sunt positivi, iam rigorose sunt demonstrata.

76.

Si manente a positivo b est negativus, statuatur b = -b', ut fiat b' positivus. Quum iam evictum sit, ita pro modulo a+b'i characterem numeri -1-i esse $\equiv \frac{1}{8}(-aa+2ab'+b'b'+1) \pmod{4}$, character numeri -1+i pro modulo a-b'i per theorema in art. 62 prolatum erit $\equiv \frac{1}{8}(aa-2ab'-b'b'-1)$, i. e. character numeri -1+i pro modulo a+bi fit $\equiv \frac{1}{8}(aa+2ab-bb-1)$: hoc vero est ipsum theorema in art. 64 allatum, unde tria reliqua circa characteres numerorum 1+i, 1-i, -1-i sponte demanant. Quapropter ista theoremata etiam pro casu, ubi b negativus est, demonstrata sunt, scilicet pro omnibus casibus, ubi a est positivus.

Denique si a est negativus, statuatur a = -a', b = -b'. Quum itaque per iam demonstrata character numeri 1+i respectu moduli a'+b'i sit $\equiv \frac{1}{8}(-a'a'+2a'b'-3b'b'+1) \pmod{4}$, nihilque intersit, utrum numerum a'+b'i an oppositum -a'-b'i moduli loco habeamus; manifesto character numeri 1+i respectu moduli a+bi est $\equiv \frac{1}{8}(-aa+2ab-3bb+1)$, et similia valent circa characteres numerorum 1-i, -1+i, -1-i.

Ex his itaque colligitur, demonstrationem theorematum circa characteres numerorum 1+i, 1-i, -1+i, -1-i (artt. 63. 64) nulli amplius limitationi obnoxiam esse.

ANZEIGEN

EIGNER

SCHRIFTEN.

Göttingische gelehrte Anzeigen. 1808 Mai 12.

Eine vom Herrn Prof. Gauss am 15. Januar d. J. der königl. Societät der Wissenschaften überreichte Abhandlung,

Theorematis arithmetici demonstratio nova,

deren Inhaltsanzeige wir hier noch nachzuholen haben, hat das berühmte Fundamental-Theorem der Lehre von den quadratischen Resten zum Gegenstande, welches sowohl in der ganzen höhern Arithmetik, als in den angrenzenden Theilen der Analysis eine so wichtige Rolle spielt. Bekanntlich heisst eine ganze Zahl a quadratischer Rest der ganzen Zahl b, wenn es Zahlen der Form xx-agibt, die durch b theilbar sind, sowie im entgegengesetzten Falle a quadratischer Nichtrest von b genannt wird: die Zahl a kann positiv oder negativ sein, b hingegen wird immer als positiv angesehen. Die höhere Arithmetik lehrt, dass alle Primzahlen b, für welche eine gegebene Zahl a quadratischer Rest ist, unter gewissen linearischen Formen begriffen sind, so wie wiederum andere linearische Formen alle Primzahlen enthalten, von denen a Nichtrest ist. So ist z.B. —1 quadratischer Rest aller Primzahlen der Form 4n+1, quadratischer Nichtrest aller Primzahlen der Form 4n+3; ferner +2 ist quadratischer Rest aller Primzahlen der Form 8n+1, 8n+7, hingegen quadratischer Nichtrest aller Primzahlen der Formen 8n+3, 8n+5. Aehnlicher specieller Lehrsätze gibt es eine unendliche Menge, die sich aber alle aus der Verbindung der beiden angeführten

mit folgendem allgemeinen ableiten lassen: Zwei ungleiche positive (ungerade) Primzahlen, p, q, haben allemal gleiche Relation wechselseitig zu einander (d. i. die eine ist quadratischer Rest oder Nichtrest der andern, je nachdem die andere Rest oder Nichtrest der ersten ist), wenn entweder beide von der Form 4n+1 sind, oder wenigstens die eine: hingegen ist ihre wechselseitige Relation entgegengesetzt (d. i. die eine ist Nichtrest der andern, wenn diese Rest von jener ist, und umgekehrt), so oft beide zugleich von der Form 4n+3 sind. Dies ist das erwähnte Fundamental-Theorem, welches man in mehr als einer Gestalt ausdrücken kann: die hier gewählte ist diejenige, in der es in der Abhandlung des Hrn. Prof. Gauss neu bewiesen ist.

Die schönsten Lehrsätze der höhern Arithmetik, und namentlich auch diejenigen, wovon hier die Rede ist, haben das Eigne, dass sie durch Induction leicht entdeckt werden, ihre Beweise hingegen äusserst versteckt liegen, und nur durch sehr tief eindringende Untersuchungen aufgespürt werden können. Gerade dies ist es, was der höhern Arithmetik jenen zauberischen Reiz gibt, der sie zur Lieblingswissenschaft der ersten Geometer gemacht hat, ihres unerschöpflichen Reichthums nicht zu gedenken, woran sie alle andere Theile der reinen Mathematik so weit übertrifft. Die beiden oben erwähnten Specialsätze waren schon FERMAT bekannt, welcher, seiner Behauptung nach, auch im Besitz ihrer Beweise war: ob er sich darin nicht täuschte, können wir nicht entscheiden, da er nie Etwas davon bekannt gemacht hat: aber für möglich dürfen wir es gewiss halten, da mehrere Beispiele von Selbsttäuschung bei andern grossen Geometern, namentlich bei Euler, Legendre und auch bei Fermat selbst, vorhanden sind. Von dem ersten jener Theoreme gab Eulen den ersten Beweis; allein das andere zu demonstriren, glückte diesem grossen Geometer, seiner eifrigen, viele Jahre hindurch fortgesetzten, Bemühungen ungeachtet, nicht; erst Lagrange war es vorbehalten, diese Lücke auszufüllen. Beide Geometer bewiesen auch noch verschiedene andere specielle Sätze, eine grössere Anzahl aber, die sie durch Induction fanden, entzog sich ihren Bemühungen, sie zu beweisen, stets. Es ist indess ein merkwürdiges Spiel des Zufalls, dass beide Geometer durch Induction nicht auf das allgemeine Fundamental-Theorem gekommen sind, das einer so einfachen Darstellung fähig ist. Dieses ist zuerst, obwohl in einer etwas andern Gestalt; von LEGENDRE vorgetragen, in der Histoire de l'Académie des Sciences de Paris 1785; sowohl hier, als nachher in seinem Werke: Essai d'une théorie des nombres, hat

dieser treffliche Analyst den Beweis auf sehr scharfsinnige Untersuchungen zu gründen gesucht, die aber gleichwohl nicht zu dem gewünschten Ziele geführt haben, welches, wenn wir uns nicht irren, auch auf diesem Wege nicht erreicht werden konnte.

Der Verfasser der Abhandlung, welcher diese Anzeige gewidmet ist, betrat die Bahn der höhern Arithmetik zu einer Zeit, wo ihm alle frühern Arbeiten andrer Geometer in dieser Wissenschaft ganz unbekannt waren; diesem Umstande ist es hauptsächlich zuzuschreiben, dass er überall einen ganz eigenthümlichen Gang genommen hat. Jenes Fundamental-Theorem fand er zwar schon sehr früh durch Induction, allein erst ein ganzes Jahr später gelang es ihm, nach vielen Schwierigkeiten und vergeblichen Versuchen, den ersten vollkommen strengen Beweis aufzufinden, der im vierten Abschnitte seiner Disquisitiones Arithmeticae entwickelt ist: dieser Beweis gründet sich aber auf sehr mühsame und weitläuftige In der Folge kam er noch auf drei andre Beweise, die Auseinandersetzungen. zwar von jener Unbequemlichkeit frei sind, aber dagegen andre sehr tiefliegende und ihrem Inhalte nach ganz heterogene Untersuchungen voraussetzen: der eine dieser Beweise ist gleichfalls in dem angeführten Werke Art. 262 mitgetheilt. die beiden andern werden zu ihrer Zeit bekannt gemacht werden. Immer blieb also noch der Wunsch übrig, dass es möglich sein möchte, einen kürzern, von fremdartigen Untersuchungen unabhängigen, Beweis zu entdecken. Der Verf. hofft daher, dass die Freunde der höhern Arithmetik mit Vergnügen einen fünften Beweis sehen werden, der in gegenwärtiger Abhandlung auf weniger als fünf Seiten vorgetragen ist, und in jeder Hinsicht nichts zu wünschen übrig zu lassen Bei der gedrängten Kürze, worin dieser Beweis abgefasst ist, können wir freilich hier von dem Gange desselben nur eine unvollkommene Idee geben: mehr würde hier aber auch um so überflüssiger sein, da der XVIte Band der Commentationes, worin er bereits abgedruckt ist, nächstens erscheinen wird.

Die Grundlage des Beweises ist folgender neuer Lehrsatz: Wenn p eine (positive ungerade) Primzahl, k eine beliebige, durch p nicht theilbare, ganze Zahl bedeutet; wenn ferner unter den Resten, die aus der Division der $\frac{1}{2}(p-1)$ Producte k, 2k, 3k.... $\frac{1}{2}(p-1)k$ durch p entstehen, in allen sich μ Reste befinden, die grösser als $\frac{1}{2}p$ sind (also $\frac{1}{2}(p-1)-\mu$ solche, die kleiner sind als $\frac{1}{2}p$), so wird k ein quadratischer Rest von p sein, wenn μ gerade ist, hingegen ein quadratischer Nichtrest, wenn μ ungerade ist. Die Zahl μ , die bloss von k

und p abhängig ist, mag durch das Zeichen (k, p) dargestellt werden. Durch eine Reihe von Schlüssen, die keines Auszugs fähig sind, wird nun gezeigt, dass, wenn k und p zwei ungerade Zahlen sind, die keinen gemeinschaftlichen Theiler haben, allemal $(k, p) + (p, k) + \frac{1}{4}(k-1)(p-1)$ eine gerade Zahl wird: daraus folgt also, dass, so oft k und p beide von der Form 4n+3 sind, nothwendig eine der Zahlen (k, p), (p, k) gerade, die andere ungerade sein muss; in allen übrigen Fällen hingegen, d. i. so oft beiden Zahlen k und p, oder wenigstens einer, die Form 4n+1 zukommt, werden nothwendig entweder (k,p), (p,k)beide zugleich gerade, oder beide zugleich ungerade sein. Hieraus folgt, in Verbindung mit obigem Lehrsatze, die Wahrheit des Fundamental-Theorems von selbst. -- Auf demselben Wege, auf dem diese Resultate gefunden werden, wird in der Abhandlung zugleich ein neuer Beweis für die oben erwähnten beiden Specialsätze gegeben: es lässt sich nemlich leicht zeigen, dass $(-1, p) = \frac{1}{2}(p-1)$, also gerade oder ungerade, je nachdem p die Form 4n+1 oder 4n+3 hat; eben so wird $(2, p) = \frac{1}{2}(p-1)$, wenn p die Form 4n+1 hat, und $(2, p) = \frac{1}{2}(p+1)$, wenn p von der Form 4n+3 ist, daher (2,p) gerade wird, so oft p die Form 8n+1 oder 8n+7 hat, hingegen ungerade, so oft p von der Form 8n+3oder 8n+5 ist.

Göttingische Gelehrte Anzeigen. 1808 September 19.

Eine von Hrn. Prof. Gauss der königl. Societät der Wissenschaften übergebene Vorlesung:

Summatio quarumdam serierum singularium,

hat zum Zweck, eine merkwürdige, zur Theilung des Kreises gehörige, Untersuchung, wozu der Grund bereits in den Disquisitionibus Arithmeticis gelegt war, ausführlicher und in grösserer Allgemeinheit zu entwickeln, sie mit vollständigen Beweisen zu versehen, und ihren unerwarteten Zusammenhang mit andern wichtigen Wahrheiten zu zeigen. Wenn n eine Primzahl, k eine beliebige, durch n nicht theilbare, ganze Zahl, ω den Bogen $\frac{1}{n}360^{\circ}$ bedeutet, und die verschiedenen, unter den Zahlen 1, 2, 3, 4, n-1 befindlichen, quadratischen Reste von n durch a, a', a'' u. s. w., hingegen die nach Ausschluss dieser von jenen übrig bleibenden, oder die quadratischen Nicht-Reste von n, durch n, n, n, n u. s. w. vorgestellt werden: so ist in dem angeführten Werke Art. 356 bewiesen, dass in dem Falle, wo n von der Form n und n ist,

$$\cos ak\omega + \cos a'k\omega + \cot a''k\omega + \text{etc.} \\
-\cos bk\omega - \cos b'k\omega - \cos b''k\omega - \text{etc.} \\
= \pm \sqrt{n}$$
und
$$\sin ak\omega + \sin a'k\omega + \sin a''k\omega + \text{etc.} \\
-\sin bk\omega - \sin b'k\omega - \sin b''k\omega - \text{etc.} \\
= 0$$

Digitized by Google

hingegen in dem Falle, wo n von der Form 4m+3 ist, die Summe der ersten Reihe = 0, und die der zweiten = $+\sqrt{n}$ wird. Das der Wurzelgrösse vorzusetzende Zeichen hängt von dem Werthe der Zahl k oder vielmehr von dessen Relation zu n ab, und lässt sich leicht für alle Werthe von k bei einem gegebenen Werthe von n bestimmen, sobald es für einen bestimmt ist. Man kann nemlich zeigen, dass für alle Werthe von k, welche quadratische Reste von n sind, durchaus einerlei Zeichen gilt. und dann das entgegengesetzte für alle diejenigen, die quadratische Nichtreste von n sind. Da in dem angeführten Werke die Untersuchung so weit bereits geführt, und nur die Bestimmung des Zeichens für irgend einen Werth von k noch übrig war: so hätte man glauben sollen, dass nach Beseitigung der Hauptsache diese nähere Bestimmung sich leicht würde ergänzen lassen, um so mehr, da die Induction dafür sogleich ein äusserst einfaches Resultat gibt: für k=1, oder für alle Werthe, welche quadratische Reste von n sind, muss nemlich die Wurzelgrösse in obigen Formeln durchaus positiv genommen werden. Allein bei der Aufsuchung des Beweises dieser Bemerkung treffen wir auf ganz unerwartete Schwierigkeiten, und dasjenige Verfahren, welches so genugthuend zu der Bestimmung des absoluten Werths jener Reihen führte, wird durchaus unzureichend befunden, wenn es die vollständige Bestimmung der Zeichen gilt. Den metaphysischen Grund dieses Phänomens (um den bei den Französischen Geometern üblichen Ausdruck zu gebrauchen) hat man in dem Umstande zu suchen, dass die Analyse bei der Theilung des Kreises zwischen den Bögen w, 2w, 3w...(n-1)w keinen Unterschied macht, sondern alle auf gleiche Art umfasst; und da hiedurch die Untersuchung ein neues Interesse erhält: so fand Hr. Prof. Gauss hierin gleichsam eine Aufforderung, nichts unversucht zu lassen, um die Schwierigkeit zu besiegen. Erst nach vielen und mannigfaltigen vergeblichen Versuchen ist ihm dieses auf einem auch an sich selbst merkwürdigen Wege gelungen. Er geht nemlich von der Summation einiger Reihen aus, deren Glieder unter folgender Form begriffen sind:

$$\frac{(1-x^{98})(1-x^{98-1})(1-x^{98-2})\dots(1-x^{98-\mu+1})}{(1-x)(1-xx)(1-x^2)\dots(1-x^{\mu})}$$

Bezeichnet man, der Kürze halber, eine solche Function durch (m, μ) , welche, wie in der Abhandlung gezeigt wird, immer eine ganze Function von x ist: so brechen die Reihen

1-
$$(m, 1)$$
+ $(m, 2)$ - $(m, 3)$ + etc.
1+ $x^{\ddagger}(m, 1)$ + $x(m, 2)$ + $x^{\ddagger}(m, 3)$ + etc.

nach dem m+1^{sten} Gliede ab, insofern m eine ganze positive Zahl bedeutet, und die Summe der ersten Reihe wird für gerade Werthe von m

$$= (1-x)(1-x^3)(1-x^5)\dots(1-x^{m-1})$$

und = 0 für ungerade Werthe von m; hingegen die Summe der zweiten Reihe wird allemal

$$= (1+x^{\frac{1}{2}})(1+x)(1+x^{\frac{1}{2}}) \dots (1+x^{\frac{1}{2}m})$$

Auch für gebrochene und negative Werthe von m führt die Summation dieser Reihen auf interessante Resultate, obwohl dieselben zu der gegenwärtigen Absicht nicht nöthig sind: wir begnügen uns, nur eines derselben hier anzuführen. Die unendliche Reihe

$$1+x+x^3+x^6+x^{10}+$$
 etc.

wo die Exponenten die Trigonalzahlen sind, ist das Product aus den Factoren

$$\frac{1-xx}{1-x} \times \frac{1-x^4}{1-x^5} \times \frac{1-x^6}{1-x^5} \times \frac{1-x^6}{1-x^7}$$
 etc.

oder, wenn man lieber will, aus

$$(1+x)^{2}(1+xx)^{2}(1+x^{2})^{2}(1+x^{4})^{2}$$
 etc.

in

$$(1-x)(1-xx)1-x^3)(1-x^4)$$
 etc.

Die Entwickelung der Art, wie diese Summationen auf den Hauptgegenstand angewandt werden, würde uns hier zu weit führen: wir dürfen die Leser um so eher auf diese selbst verweisen, da sie bald im Druck erscheinen wird. Jene oben angeführten Summationen sind nur eine specielle Anwendung von der Summation folgender Reihen:

$$1 + \cos k\omega + \cos 4k\omega + \cos 9k\omega + \text{etc.} + \cos (n-1)^2 k\omega = T$$
$$\sin k\omega + \sin 4k\omega + \sin 9k\omega + \text{etc.} + \sin (n-1)^2 k\omega = U$$

welche in der Abhandlung für alle Werthe von k, und ohne die Einschränkung,

158 ANZEIGE.

dass n eine Primzahl sei, gelehrt wird. Es wird nemlich gezeigt, dass

$$T=\pm\sqrt{n}, T=\pm\sqrt{n}, T=0, T=0$$

und

$$U = \pm \sqrt{n}$$
, $U = 0$, $U = 0$, $U = \pm \sqrt{n}$

wird, je nachdem n von der Form 4m, 4m+1, 4m+2, 4m+3 resp. ist; das Zeichen der Wurzelgrösse hängt hier wiederum von k ab, und die die Unterscheidung vieler einzelner Fälle nöthig machende Bestimmung desselben auf zwei verschiedenen Wegen wird so entwickelt und bewiesen, dass nichts zu wünschen übrig bleiben wird. Die Vergleichung dieser beiden Wege unter sich führt noch auf folgenden sehr merkwürdigen Lehrsatz: Wenn n das Product aus einer beliebigen Anzahl ungleicher ungerader Primzahlen a, b, c, d u. s. w. ist, unter welchen sich zusammen μ von der Form 4m+3 befinden: wenn ferner unter jenen Factoren zusammen v vorkommen, von deren jedem das Product der übrigen (also resp. $\frac{n}{a}$, $\frac{n}{b}$, $\frac{n}{c}$, $\frac{n}{d}$ u. s. w.) ein quadratischer Nichtrest ist; so wird ν gerade sein, so oft μ von der Form 4m oder 4m+1 ist, hingegen ungerade, so oft μ von der Form 4m+2 oder 4m+3 ist. Von diesem Lehrsatze ist das bekannte Fundamental-Theorem bei den quadratischen Resten nur ein specieller Fall, sowie umgekehrt jener leicht aus diesem abgeleitet werden kann. Man sieht sich also durch diese Untersuchungen zugleich im Besitz von einem vierten Beweise dieses wichtigen Theorems, welches von dem Verf. zuerst auf zwei ganz verschiedenen Wegen in den Disquisitionibus Arithmeticis und auf einem dritten eben so verschiedenen unlängst in einer eigenen Abhandlung bewiesen war.

Göttingische	gelehrte	Anzeigen.	1817	März	10.

Am 10. Februar wurde der Königl. Societät von Hrn. Hofr. Gauss eine Vorlesung eingereicht, überschrieben:

Theorematis fundamentalis in doctrina de residuis quadraticis demonstrationes et ampliationes novae.

Es ist eine Eigenthämlichkeit der höhern Arithmetik, dass so viele ihrer schönsten Lehrsätze mit grösster Leichtigkeit durch Induction entdeckt werden können, deren Beweise jedoch nichts weniger als nahe liegen, sondern oft erst nach vielen vergeblichen Versuchen mit Hülfe tiefeindringender Untersuchungen und gläcklicher Combinationen gefunden werden. Dies merkwärdige Phänomen entspringt aus der oft wunderbaren Verkettung der verschiedenartigen Lehren in jenem Theile der Mathematik, und eben daher kommt es, dass häufig solche Lehrsätze, von denen anfangs ein Beweis Jahre lang vergeblich gesucht war, späterhin sich auf mehreren ganz verschiedenen Wegen beweisen lassen. Sobald ein neuer Lehrsatz durch Induction entdeckt ist, hat man die Auffindung irgend eines Beweises freilich als das erste Erforderniss zu betrachten: allein nachdem ein solcher geglückt ist, darf man in der höhern Arithmetik die Untersuchung nicht immer als abgeschlossen und die Aufspürung anderer Beweise als überflüssigen Luxus ansehen. Denn theils kommt man gewöhnlich auf die schönsten und einfachsten

160 ANZEIGE.

Beweise nicht zuerst, und dann ist gerade die Einsicht in die wunderbare Verkettung der Wahrheit der höhern Arithmetik dasjenige, was einen Hauptreiz dieses Studiums ausmacht, und nicht selten wiederum zur Entdeckung neuer Wahrheiten führt. Aus diesen Gründen ist hier die Auffindung neuer Beweise für schon bekannte Wahrheiten öfters für wenigstens eben so wichtig anzusehen, als die Entdeckung der Wahrheit selbst. Kennern der höhern Arithmetik sind diese Betrachtungen nicht neu; man weiss, dass ein grosser Theil von Eulers Verdiensten um dieselbe in der Auffindung von Beweisen für Lehrsätze besteht, die schon von Fermat wie es scheint durch Induction gefunden waren.

Die Lehre von den quadratischen Resten gibt einen einleuchtenden Beleg zu dem vorhin Gesagten. Sie beruhet hauptsächlich auf dem sogenannten Fundamental-Theorem, welches darin besteht, dass die wechselseitigen Relationen zweier (ungeraden positiven) Primzahlen zu einander (in sofern der eine quadratischer Rest oder Nichtrest der andern ist) einerlei sind, so oft eine der Primzahlen oder beide unter der Form 4k+1 stehen, entgegengesetzt aber, so oft beide Primzahlen von der Form 4k+3 sind. Für solche Leser, die mit der höhern Arithmetik weniger bekannt sind, erinnern wir, dass eine ganze Zahl quadratischer Rest einer andern heisst, wenn die erstere um ein Vielfaches der andern vermehrt ein Quadrat geben kann; Nichtrest hingegen, wenn dies nicht möglich ist. Die Geschichte dieses schönen durch Induction äusserst leicht zu findenden Lehrsatzes wollen wir hier nicht vollständig wiederholen, sondern nur bemerken, dass der Verfasser vorliegender Abhandlung, nach Anfangs ziemlich lange vergeblich angestellten Untersuchungen, nach und nach bereits vier unter sich ganz verschiedene Beweise gegeben hat, wovon zwei in den Disquisitionibus Arithmeticis enthalten sind, der dritte den Gegenstand einer eigenen Abhandlung im sechzehnten Bande der Commentationen ausmacht, und der vierte in eine Abhandlung summatio quarumdam serierum singularium im ersten Bande der Commentationes recentiores verwebt ist; über diese beiden Abhandlungen kann man unsere Anzeigen 1808. Mai 12 und Sept. 19 nachsehen, wo auch vollständigere geschichtliche Nachweisungen befindlich sind. Dass der Verf. bei diesen vier Beweisen, ungeachtet jeder derselben für sich in Rücksicht auf Strenge nichts zu wünschen übrig lässt, noch nicht stehen geblieben ist, bedarf zwar bei den Freunden der höhern Arithmetik keiner Rechtfertigung; indessen würde er doch wahrscheinlich sich nicht so eifrig bemüht haben, jenen Beweisen noch andere hinzuzufügen, wenn

nicht ein besonderer Umstand ihn dazu veranlasst hätte', der hier erwähnt wer-Seit dem Jahre 1805 hatte er nemlich angefangen, sich mit den Theorien der cubischen und biquadratischen Reste zu beschäftigen, welche noch weit reichhaltiger und interessanter sind, als die Theorie der quadratischen Reste. Es zeigten sich bei jenen Untersuchungen dieselben Erscheinungen wie bei der letztern, nur gleichsam mit vergrössertem Massstabe. Durch Induction, sobald nur der rechte Weg dazu eingeschlagen war, fanden sich sogleich eine Anzahl höchst einfacher Theoreme, die jene Theorien ganz erschöpfen, mit den für die quadratischen Reste geltenden Lehrsätzen eine überraschende Aehnlichkeit haben, und namentlich auch zu dem Fundamentaltheorem das Gegenstück darbieten. Allein die Schwierigkeiten, für jene Lehrsätze ganz befriedigende Beweise zu finden. zeigten sich hier noch viel grösser, und erst nach vielen, eine ziemliche Reihe von Jahren hindurch fortgesetzten Versuchen ist es dem Verfasser endlich gelungen, sein Ziel zu erreichen. Die grosse Analogie der Lehrsätze selbst, bei den quadratischen und bei den höhern Resten, liess vermuthen, dass es auch analoge Beweise für jene und diese geben müsse; allein die zuerst für die quadratischen Reste gefundenen Beweisarten vertrugen gar keine Anwendung auf die höhern Reste, und gerade dieser Umstand war der Beweggrund, für jene immer noch andere neue Beweise aufzusuchen. Der Verf. wünscht daher, dass man die vorliegende Abhandlung, die für die Theorie der quadratischen Reste noch einige neue Hülfsquellen eröffnet, als Vorläuferin der Theorie der cubischen und biquadratischen Reste betrachte, die er in Zukunft bekannt zu machen denkt. und die zu den schwierigsten Gegenständen der höhern Arithmetik gehören.

Die gegenwärtige Abhandlung besteht aus dreien von einander unabhängigen Theilen. Sie enthält nemlich den fünften und sechsten Beweis des Fundamental-Theorems und eine neue, mit dem dritten Beweise zusammenhängende Methode, zu entscheiden, ob eine vorgegebene ganze Zahl von einer gegebenen Primzahl quadratischer Rest oder Nichtrest sei. Unter den vier ersten Beweisen war der dritte unstreitig derjenige, der die grösste Einfachheit mit Unabhängigkeit von fremdartigen Untersuchungen vereinigte, daher ihn auch Legendre in die neue Ausgabe seines Essai d'une théorie des nombres aufgenommen hat. Der fünfte Beweis scheint dem dritten in beiden Hinsichten wenigstens gleich zu kommen. Beide Beweise haben insofern einige Verwandtschaft, dass sie von einem und demselben Lehnsatze ausgehen, sind aber bei der weitern Ausführung völlig von ein-

Digitized by Google

ander verschieden. Dieser Lehnsatz besteht in Folgendem: Wenn m eine (positive ungerade) Primzahl; M eine ganze durch m nicht theilbare Zahl bedeutet, wenn ferner unter den Resten, die aus der Division der Producte

$$M, 2M, 3M, 4M \dots \frac{1}{2}(m-1)M$$

durch m entstehen, die Anzahl derjenigen, die grösser als $\frac{1}{2}m$ sind, durch n bezeichnet wird, so ist M quadratischer Rest oder Nichtrest von m, jenachdem n gerade oder ungerade ist. Um nun zu dem Beweise des Fundamentallehrsatzes zu gelangen, wird angenommen, dass auch M eine ungerade positive Primzahl und N in Beziehung auf M und m dasselbe bedeutet, was n in Beziehung auf m und m ausdrückt, so dass n gerade oder ungerade entscheidet, ob m quadratischer Rest oder Nichtrest von m ist. Durch eine sehr kurze Reihe von Schlüssen zeigt der Verfasser, dass die Anzahl aller positiven ganzen Zahlen, die zugleich kleiner als $\frac{1}{2}m$ sind, mit m dividirt einen Rest kleiner als $\frac{1}{2}m$ und mit m dividirt einen Rest kleiner als $\frac{1}{2}m$ geben,

$$=\frac{1}{8}(m-1)(M-1)+\frac{1}{2}n+\frac{1}{2}N$$

und folglich allemal

$$\frac{1}{4}(m-1)(M-1)+n+N$$

eine gerade Zahl sei. So oft also wenigstens eine der Zahlen m, M von der Form 4k+1 ist, mithin $\frac{1}{2}(m-1)(M-1)$ gerade, wird auch n+N gerade sein, folglich entweder n und N beide gerade, oder beide ungerade. Wenn hingegen sowohl m als M von der Form 4k+3 ist, wird nothwendig n+N ungerade, folglich eine der Zahlen n, N gerade, die andere ungerade sein. Hieraus folgt in Verbindung mit obigem Lehnsatze das Fundamental-Theorem von selbst.

Der sechste Beweis ist zwar von gleicher Kürze und Concinnität wie der fünfte, beruhet aber doch auf etwas künstlichern Combinationen. Der beschränkte Raum dieser Blätter erlaubt nur, mit Uebergehung des Einzelnen, hier das Hauptmoment zu berühren. Es bezeichnen

- p, q zwei (ungleiche positive ungerade) Primzahlen,
- α eine sogenannte radix primitiva für den Modulus p, d. i. eine durch p nicht theilbare (hier positive) ganze Zahl von der Art, dass keine niedrigere Potenz als α^{p-1} nach dem Modulus p der Einheit congruent wird
- x eine unbestimmte Grösse

E die Function

$$x-x^{\alpha}+x^{\zeta}-x^{\eta}+x^{\theta}$$
— etc. $-x^{\lambda}$

wo (des bequemern Drucks wegen) ζ , η , θ . . . λ statt der Zahlen $\alpha\alpha$, α^3 , α^4 . . . α^{p-2} gesetzt sind;

- e die Einheit, positiv genommen, wenn p von der Form 4k+1, negativ. wenn p von der Form 4k+3 ist;
- δ die Einheit, positiv genommen, wenn wenigstens eine der Zahlen p,q von der Form 4k+1 ist, negativ, wenn beide von der Form 4k+3 sind;
- γ die Einheit, positiv genommen, wenn q ein quadratischer Rest von p ist, negativ, wenn q quadratischer Nichtrest von p ist;
- 6 die Einheit, positiv genommen, wenn p ein quadratischer Rest von q, negativ, wenn p ein quadratischer Nichtrest von q ist.

Nach diesen Vorbereitungen folgt leicht aus dem 51. Art. der Disquisitiones Arithmeticae, dass die Function

$$\xi^q - x^q + x^{q\alpha} - x^{q\zeta} + x^{q\eta} - x^{q\theta} + \text{etc.} + x^{q\lambda}$$

entwickelt lauter durch q theilbare Coëfficienten bekommt, und daher, wenn diese Function = qX gesetzt wird, X eine auch in Beziehung auf die Coëfficienten ganze Function werde. Durch Schlässe, in die näher einzugehen hier zu weitläufig sein würde, wird in der Abhandlung bewiesen, dass die Function $qX\xi$ mit $x^{p-1} + x^{p-2} + x^{p-3} + x^{p-4} + \text{etc.} + x + 1$ dividirt, den Rest

$$ep(\delta p^{\frac{1}{2}(q-1)}-\gamma)$$

gibt, daher aus der Division der Function X mit demselben Divisor der Rest

$$\frac{\varepsilon p \left(\delta p^{\frac{1}{2}\left(q-1\right)}-\gamma\right)}{q}$$

hervorgehen wird. Diese Grösse muss daher nothwendig eine ganze Zahl sein, woraus, weil $\delta \delta = 1$ ist, leicht geschlossen wird, dass

$$p^{\frac{1}{2}(q-1)}-\gamma\delta$$

durch q theilbar sein müsse. Da nun auch $p^{t(q-1)}$ —6 durch q nach einem bekannten Theorem theilbar ist, so wird nothwendig $\mathfrak{G} = \gamma \delta$ sein, woraus wiederum das Fundamental-Theorem von selbst folgt.

Das Fundamental-Theorem, verbunden mit einigen bekannten Lehnsätzen, kann zwar zu einer ziemlich kurzen Auflösung der Aufgabe dienen, zu entscheiden, ob eine vorgegebne ganze positive Zahl von einer gegebnen Primzahl quadratischer Rest oder Nichtrest sei, wie in der Abhandlung ausführlich gezeigt ist. Allein bei weiterm Nachdenken über den dritten Beweis des Fundamental-Theorems kam der Verf. auf eine noch viel geschmeidigere Auflösung, welche die dritte Abtheilung der Abhandlung ausmacht, und wovon wir hier blos die Endregel hersetzen, indem wir die Entwickelung ihrer Gründe Kürze halber übergehen. Wenn entschieden werden soll, ob die ganze positive Zahl b, welche durch die Primzahl a nicht theilbar ist, von dieser ein quadratischer Rest oder Nichtrest sei, so bilde man, ganz auf dieselbe Art, wie wenn der grösste gemeinschaftliche Divisor von a und b gesucht werden sollte, die Gleichungen

$$a = 6b+c$$

$$b = \gamma c+d$$

$$c = \delta d+e$$

$$d = \epsilon e+f \text{ u. s. w.}$$

bis man in der Reihe der Zahlen a, b, c, d, e, f u.s. w. auf die Einheit kommt. Man bezeichne die Zahlen $\frac{1}{4}a, \frac{1}{4}b, \frac{1}{4}c, \frac{1}{4}d$ u.s. w., mit Weglassung des ihnen anhängenden Bruches $\frac{1}{4}$, in so fern einige der Zahlen a, b, c, d u.s. w. ungerade sind, durch a', b', c', d' u.s. w.; man nenne μ die Anzahl der in der Reihe a', b', c', d' u.s. w. vorkommenden Folgen zweier ungeraden Zahlen unmittelbar nach einander, endlich nenne man ν die Anzahl derjenigen ungeraden Zahlen in der Reihe b', c', d', e' u.s. w. der Ordnung nach eine Zahl von der Form 4k+1 oder 4k+2 entspricht. Dies vorausgesetzt, wird b quadratischer Rest oder Nichtrest von a sein, je nachdem $\mu+\nu$ gerade oder ungerade ist, den einzigen Fall ausgenommen, wo zugleich b gerade und a von der Form 8k+3 oder 8k+5 ist, in welchen von jener Regel das Gegentheil Statt findet, so dass ein gerades $\mu+\nu$ anzeigt, dass b quadratischer Nichtrest von a ist, ein ungerades $\mu+\nu$ hingegen, dass b quadratischer Rest von a ist.

Göttingische gelehrta Anseigen. 1825 April 11.

Am 5. April überreichte Hr. Hofr. Gauss der Königl. Societät eine Vorlesung, überschrieben:

Theoria Residuorum Biquadraticorum, Commentatio prima.

Die Theorie der quadratischen Reste bildet bekanntlich einen der interessantesten Theile der Höhern Arithmetik, welchen man jetzt nach vielfach wiederholten Untersuchungen als vollendet und abgeschlossen betrachten kann: die Geschichte desselben betreffende Nachrichten findet man in diesen Blättern 1808 Mai 12 und Sept. 19, und 1817 März 10. An letzterm Orte sind auch bereits einige vorläufige Nachrichten über die Nachforschungen mitgetheilt, welche der Verfasser der vorliegenden Abhandlung seit dem Jahre 1805 über die verwandte, eben so fruchtbare und interessante, aber sehr viel schwierigere Theorie der cubischen und biquadratischen Reste angestellt hatte. Obgleich schon damals im Besitz der wesentlichen Momente dieser Theorie, ist er doch bisher durch andere Arbeiten abgehalten, öffentlich etwas davon bekannt zu machen, und erst jetzt ist es ihm möglich geworden, sich mit der Ausarbeitung eines Theils dieser Untersuchungen zu beschäftigen. Der Anfang ist jetzt mit der Theorie der biquadratischen Reste gemacht, die der Theorie der quadratischen Reste näher verwandt ist, als die der cubischen. Inzwischen ist die gegenwärtige Abhandlung

166 ANZEIGE.

noch keinesweges dazu bestimmt, den überaus reichhaltigen Gegenstand zu erschöpfen. Die Entwickelung der allgemeinen Theorie, welche eine ganz eigenthümliche Erweiterung des Feldes der höhern Arithmetik erfordert, bleibt vielmehr der künftigen Fortsetzung vorbehalten, während in diese erste Abhandlung diejenigen Untersuchungen aufgenommen sind, welche sich ohne eine solche Erweiterung vollständig darstellen liessen. Von den Resultaten kann in dieser Anzeige nur ein Theil ausgehoben werden.

Eine ganze Zahl a heisst biquadratischer Rest der ganzen Zahl p, wenn es Zahlen der Form x^4-a gibt, die durch p theilbar sind; biquadratischer Nichtrest hingegen, wenn keine Zahlen jener Form durch p theilbar sein können. Offenbar sind alle biquadratischen Reste von p zugleich quadratische Reste derselben Zahl, und also alle quadratischen Nichtreste auch biquadratische Nichtreste: allein nicht alle quadratischen Reste sind zugleich biquadratische Reste. Es ist zureichend, die Untersuchungen auf den Fall einzuschränken, wo p eine Primzahl von der Form 4n+1, und a nicht durch p theilbar ist, da alle anderen Fälle sich leicht auf diesen zuräckführen lassen.

Die Untersuchungen über diesen Gegenstand zerfallen in zwei Abtheilungen, je nachdem p oder a als gegeben angesehen wird. Die erstere ist von viel geringerer Schwierigkeit als die zweite, und verglichen mit letzterer als ganz elementarisch zu betrachten. Alles Wesentliche, was darüber zu sagen ist, enthält die Abhandlung vollständig.

Aus der zweiten Abtheilung hingegen sind hier nur erst einige specielle Fälle abgehandelt, die sich ohne zu grosse Zurüstungen abmachen liessen, und als Vorbereitungen zu der künftig zu gebenden allgemeinen Theorie dienen können. Dies sind diejenigen, wo a=-1, und $a=\pm 2$ gesetzt wird. Der erstere Fall hat gar keine Schwierigkeit: es war auch schon in dem Werke, Disquisitiones Arithmeticae, gezeigt, dass -1 ein biquadratischer Rest von p ist, so oft p die Form 8n+1 hat, hingegen ein blos quadratischer Rest und biquadratischer Nichtrest von p, wenn p von der Form 8n+5 wird. Ganz anders verhält es sich mit dem Fall $a=\pm 2$. Es ist zwar längst bekannt, dass +2 und -2 von p quadratische und also auch biquadratische Nichtreste sind, wenn p die Form 8n+5 hat, und wenigstens quadratische Reste, wenn p von der Form 8n+1 ist, wie auch dass bei dieser Form von p entweder +2 und -2 zugleich biquadratische Reste, oder zugleich biquadratische Nichtreste werden: al-

lein die Unterscheidung, welcher dieser beiden Fälle eintrete, ist eine Untersuchung von viel höherer Art, und es werden dazu in der Abhandlung zwei verschiedene Criterien entwickelt.

Das erste Criterium hängt mit der Zerlegung der Zahl p in ein einfaches und ein doppeltes Quadrat zusammen, die bekanntlich (da, wie schon bemerkt ist, angenommen wird, dass p eine Primzahl sei) immer möglich und nur auf Eine Art möglich ist. Setzt man p = gg + 2hh, so wird + 2 ein biquadratischer Rest von p, wenn q von der Form n+1 oder n+1 od

Das zweite Criterium hängt zusammen mit der Zerlegung der Zahl p in zwei Quadrate, die bekanntlich auch immer möglich und nur auf Eine Art möglich ist. Setzt man p = ee + ff, und nimmt an, dass ee das ungerade, ff das gerade Quadrat bedeutet, so bringt schon die vorausgesetzte Form von p = 8n + 1 mit sich, dass auch $\frac{1}{2}f$ eine gerade Zahl wird, also f entweder von der Form m + 4: im ersten Fall nun wird m + 2 biquadratischer Rest, im andern biquadratischer Nichtrest von m + 2 sein.

Wir deuten hier nur die Bemerkung an, wozu die höhere Arithmetik so oft Gelegenheit gibt, dass nicht so wohl die Schönheit und Einfachheit der Theoreme selbst, als die Schwierigkeit ihrer Begründung sie vorzäglich merkwürdig macht. Sobald man einmal veranlasst ist, das Dasein eines Zusammenhanges zwischen dem Verhalten der Zahl +2 und den beiden angeführten Zerlegungen der Zahl p zu vermuthen, ist es äusserst leicht, diesen Zusammenhang durch Induction wirklich zu entdecken. Allein schon bei dem ersten Criterium ist der Beweis dafür nicht ganz leicht zu führen, viel tiefer versteckt liegt er aber bei dem zweiten, wo er mit anderweitigen subtilen Hülfsuntersuchungen innigst verkettet ist, die ihrerseits wieder zu einer merkwürdigen Erweiterung der Theorie der Kreistheilung führen. Diese wunderbare Verkettung der Wahrheiten ist es vorzüglich. was, wie man schon oft bemerkt hat, der höhern Arithmetik einen so eigenthümlichen Reiz gibt. Diese Begründungen selbst vertragen übrigens natürlich hier keinen Auszug, und müssen in der Abhandlung selbst nachgesehen werden. Allein ein paar andere neue arithmetische Theoreme, welche gleichfalls mit der Begründung des zweiten Criterium innigst verbunden sind, verdienen wohl, ihrer Einfachheit wegen, hier noch besonders herausgehoben zu werden.

Wenn p eine Primzahl von der Form 4k+1 ist, und =ee+ff ge-

168 ANZEIGE.

setzt wird, so dass ee das ungerade, ff das gerade Quadrat bedeutet; wenn man ferner

$$1 \cdot 2 \cdot 3 \cdot \ldots \cdot k = q$$

 $(k+1)(k+2)(k+3) \cdot \ldots \cdot 2k = r$

setzt, so wird allemal $\pm e$ der kleinste Rest sein, welcher hervorgeht, indem man $\frac{r}{2q}$ mit p dividirt, und $\pm f$ der kleinste Rest, welchen man aus der Division von $\pm rr$ mit p erhält (kleinsten Rest immer so verstanden, dass er zwischen den Grenzen $-\pm p$ und $+\pm p$ genommen wird). Die Zahl $\frac{r}{2q}$, welche für p=5 den Werth 1 erhält, kann man für grössere Werthe von p auch in folgende Form setzen

$$\frac{6.10.14.18....(p-3)}{2.3.4.5....k}$$

Es ist sehr merkwürdig, dass so die Zerlegung der Zahl p in zwei Quadrate ganz auf directem Wege erhalten werden kann: aber fast noch merkwürdiger ist ein dabei Statt findender Nebenumstand. Allemal nemlich findet man durch dieses Verfahren die Wurzel des ungeraden Quadrates, e, mit positivem Zeichen, wenn e, positiv genommen, von der Form 4m+1 ist, und mit negativem, wenn e positiv genommen von der Form 4m+3 ist. Hingegen hat für das Zeichen, mit welchem die Wurzel des geraden Quadrats, f, aus jener Operation hervorgeht, noch durchaus keine allgemeine Regel aufgefunden werden können, weder a priori, noch auf dem Wege der Induction, und der Verfasser empfiehlt daher, am Schlusse der Abhandlung, diesen Gegenstand den Freunden der höhern Arithmetik zu weiterer Nachforschung, überzeugt, dass mit dem Gelingen derselben sich zugleich eine ergiebige Quelle neuer Erweiterungen dieses schönen Theils der Mathematik eröffnen werde.

Göttingische	gele	hrte A	nzeigen.	1831	April 2	3.

Eine am 15. April von dem Hofr. Gauss der Königl. Societät überreichte Vorlesung:

Theoria residuorum biquadraticorum, commentatio secunda,

ist die Fortsetzung der bereits im sechsten Bande der Commentationes novae abgedruckten Abhandlung, wovon auch in unsern Blättern zu seiner Zeit 1825 April 11 eine Anzeige gemacht war. Auch diese Fortsetzung, obgleich mehr als doppelt stärker wie die erste Abhandlung, erschöpft den überaus reichhaltigen Gegenstand noch nicht, und erst einer künftigen dritten Abhandlung wird die Vollendung des Ganzen vorbehalten bleiben.

Obgleich die Grundbegriffe dieser Lehren und der Inhalt der ersten Abhandlung als allen, die aus der höhern Arithmetik ein Studium gemacht haben, bekannt vorausgesetzt werden können, wollen wir doch jene zur Bequemlichkeit solcher Freunde dieses Theils der Mathematik, welchen die erste Abhandlung nicht gleich zur Hand ist, hier kurz in Erinnerung bringen. In Beziehung auf eine beliebige ganze Zahl p heisst eine andere k ein biquadratischer Rest, wenn es Zahlen der Form x^k-k gibt, die durch p theilbar sind; im entgegengesetzten Fall heisst sie biquadratischer Nichtrest von p. Es ist zureichend, sich hiebei auf den Fall einzuschränken, wo p eine Primzahl der Form 4n+1, und k durch

Digitized by Google

dieselbe nicht theilbar ist, da alle andere Fälle entweder für sich klar, oder auf diesen zurückzuführen sind.

Für einen solchen gegebenen Werth von p zerfallen sämmtliche durch p nicht theilbare Zahlen in vier Classen, wovon die eine die biquadratischen Reste, eine zweite solche biquadratische Nichtreste, die quadratische Reste von p sind, enthält, und in die beiden übrigen die biquadratischen Nichtreste, welche zugleich quadratische Nichtreste sind, vertheilt werden. Das Princip dieser Vertheilung besteht darin, dass allemal entweder k^n-1 , oder k^n+1 , oder k^n-f , oder k^n+f durch p theilbar sein wird, wo f eine ganze Zahl bedeutet, die ff+1 durch p theilbar macht. Jeder, dem die elementarische Terminologie bekannt ist, sieht von selbst, wie diese Worterklärungen in dieselbe eingekleidet werden.

Die Theorie dieser Classificirung nicht nur für den an der Oberfläche liegenden Fall k = -1, sondern auch für die, subtile Hülfsuntersuchungen erfordernden, Fälle k = +2, findet sich in der ersten Abhandlung ganz vollendet. Im Anfang der gegenwärtigen Abhandlung wird nun zu grösseren Werthen von kfortgeschritten: man braucht aber dabei zunächst nur solche in Betracht zu ziehen, die selbst Primzahlen sind, und der Erfolg zeigt, dass die Resultate am einfachsten ausfallen, wenn man die Werthe positiv oder negativ nimmt, je nachdem sie, absolut betrachtet, von der Form 4m+1 oder 4m+3 sind. Die Induction gibt hier sofort mit grosser Leichtigkeit eine reiche Ernte von neuen Lehrsätzen. wovon wir hier nur ein paar anführen. Die Numerirung der Classen mit 1, 2, 3, 4 wird auf die Fälle bezogen, wo k^n den Zahlen 1, f, -1, -f congruent wird; zugleich ist für die Zahl f immer derjenige Werth angenommen, welcher a+bfdurch p theilbar macht, wenn aa+bb die Zerlegung von p in ein ungerades und ein gerades Quadrat vorstellt. So findet sich durch die Induction, dass die Zahl -3 allemal zu der Classe 1, 2, 3, 4 gehört, je nachdem b, a+b, a, a-bdurch 3 theilbar ist; dass die Zahl +5 der Reihe nach zu jenen Classen gehört, je nachdem b, a-b, a, a+b durch 5 theilbar ist; dass die Zahl -7 in die Classe 1 fällt, wenn a oder b; in die Classe 2, wenn a-2b oder a-3b; in die Classe 3, wenn a-b oder a+b; in die Classe 4, wenn a+2b oder a+3bdurch 7 theilbar ist. Aehnliche Theoreme ergeben sich in Beziehung auf die Zahlen —11, +13, +17, —19, —23 u.s.f. So leicht sich aber alle dergleichen specielle Theoreme durch die Induction entdecken lassen, so schwer scheint es, auf diesem Wege ein allgemeines Gesetz für diese Formen aufzufinden, wenn auch manches Gemeinschaftliche bald in die Augen fällt, und noch viel schwerer ist es, für diese Lehrsätze die Beweise zu finden. Die für die Zahlen +2 und -2 in der ersten Abhandlung gebrauchten Methoden vertragen hier keine Anwendung mehr, und wenn gleich andere Methoden ebenfalls das, was sich auf die erste und dritte Classe bezieht, zu erledigen dienen könnten, so zeigen sich doch solche zur Begründung von vollständigen Beweisen untauglich.

Man erkennt demnach bald, dass man in dieses reiche Gebiet der höhern Arithmetik nur auf ganz neuen Wegen eindringen kann. Der Verf. hatte schon in der ersten Abhandlung eine Andeutung gegeben, dass dazu eine eigenthümliche Erweiterung des ganzen Feldes der höhern Arithmetik wesentlich erforderlich ist, ohne damals sich näher darüber zu erklären, worin dieselbe bestehe: die gegenwärtige Abhandlung ist dazu bestimmt, diesen Gegenstand ins Licht zu setzen.

Es ist dieses nichts anders, als dass für die wahre Begründung der Theorie der biquadratischen Reste das Feld der höhern Arithmetik, welches man sonst nur auf die reellen ganzen Zahlen ausdehnte, auch über die imaginären erstreckt werden, und diesen das völlig gleiche Bürgerrecht mit jenen eingeräumt werden muss. Sobald man dies einmal eingesehen hat, erscheint jene Theorie in einem ganz neuen Lichte, und ihre Resultate gewinnen eine höchst überraschende Einfachheit.

Ehe jedoch in diesem erweiterten Zahlengebiet die Theorie der biquadratischen Reste selbst entwickelt werden kann, müssen in jenem die dieser Theorie vorangehenden Lehren der höhern Arithmetik, die bisher nur in Beziehung auf reelle Zahlen bearbeitet sind, an dieser Erweiterung Theil nehmen. Von diesen vorgängigen Untersuchungen können wir hier nur Einiges anführen. Der Verf. nennt jede Grösse a+bi, wo a und b reelle Grössen bedeuten, und i der Kürze wegen anstatt $\sqrt{-1}$ geschrieben ist, eine complexe ganze Zahl, wenn zugleich a und b ganze Zahlen sind. Die complexen Grössen stehen also nicht den reellen entgegen, sondern enthalten diese als einen speciellen Fall, wo b=0, unter sich. Zur bequemen Handhabung war es erforderlich, mehrere auf die complexen Grössen sich beziehende Begriffsbildungen mit besondern Benennungen zu belegen, welche wir aber in dieser Anzeige zu umgehen suchen werden.

So wie in der Arithmetik der reellen Zahlen nur von zwei Einheiten, der positiven und negativen, die Rede ist, so haben wir in der Arithmetik der com172 ANZEIGE.

plexen Zahlen vier Einheiten +1, -1, +i, -i. Zusammengesetzt heisst eine complexe ganze Zahl, wenn sie das Product aus zwei von der Einheit verschiedenen ganzen Factoren ist; eine complexe Zahl hingegen, die eine solche Zerlegung in Factoren nicht zulässt, heisst eine complexe Primzahl. So ist z. B. die reelle Zahl 3, auch als complexe Zahl betrachtet, eine Primzahl, während 5 als complexe Zahl zusammengesetzt ist =(1+2i)(1-2i). Eben so wie in der höhern Arithmetik der reellen Zahlen spielen auch in dem erweiterten Felde dieser Wissenschaft die Primzahlen eine Hauptrolle.

Wird eine complexe ganze Zahl a+bi als Modulus angenommen, so lassen sich aa+bb unter sich nicht congruente, und nicht mehrere, complexe Zahlen aufstellen, von denen eine jede vorgegebene ganze complexe Zahl congruent sein muss, und die man ein vollständiges System incongruenter Reste nennen Die sogenannten kleinsten und absolut kleinsten Reste in der Arithmetik der reellen Zahlen haben auch hier ihr vollkommenes Analogon. So besteht z.B. für den Modulus 1+2i das vollständige System der absolut kleinsten Reste aus den Zahlen 0, 1, i, -1 und -i. Fast die sämmtlichen Untersuchungen der vier ersten Abschnitte der Disquisitiones Arithmeticae finden mit einigen Modificationen. auch in der erweiterten Arithmetik ihren Platz. Das berühmte Fernatsche Theorem z.B. nimmt hier folgende Gestalt an: Wenn a+bi eine complexe Primzahl ist, und k eine durch jene nicht theilbare complexe Zahl, so ist immer $k^{aa+bb-1} \equiv 1$ für den Modulus a+bi. Ganz besonders merkwürdig ist es aber, dass das Fundamentaltheorem für die quadratischen Reste in der Arithmetik der complexen Zahlen sein vollkommenes, nur hier noch einfacheres, Gegenstück hat: sind nemlich a+bi, A+Bi complexe Primzahlen, so dass a und A ungerade, b und B gerade sind, so ist die erste quadratischer Rest der zweiten, wenn die zweite quadratischer Rest der ersten ist, hingegen die erste quadratischer Nichtrest der zweiten, wenn die zweite quadratischer Nichtrest der ersten ist.

Indem die Abhandlung nach diesen Voruntersuchungen zu der Lehre von den biquadratischen Resten selbst übergeht, wird zuvörderst anstatt der blossen Unterscheidung zwischen biquadratischen Resten und Nichtresten eine Vertheilung der durch den Modulus nicht theilbaren Zahlen in vier Classen festgesetzt. Ist nemlich der Modulus eine complexe Primzahl a+bi, wo immer a ungerade, b gerade vorausgesetzt, und der Kürze wegen p statt aa+bb geschrieben wird, und k eine complexe durch a+bi nicht theilbare Zahl, so wird allemal $k^{\frac{1}{2}(p-1)}$

einer der Zahlen +1, +i, -1, -i congruent sein, und dadurch eine Vertheilung sämmtlicher durch a+bi nicht theilbarer Zahlen in vier Classen begründet, denen der Reihe nach der biquadratische Character 0, 1, 2, 3 beigelegt wird. Offenbar bezieht sich der Character 0 auf die biquadratischen Reste, die übrigen auf die biquadratischen Nichtreste, und zwar so, dass dem Character 2 zugleich quadratische Reste, den Charactern 1 und 3 hingegen quadratische Nichtreste entsprechen.

Man erkennt leicht, dass es hauptsächlich darauf ankommt, diesen Character blos für solche Werthe von k bestimmen zu können, die selbst complexe Primzahlen sind, und hier führt sogleich die Induction zu höchst einfachen Resultaten.

Wird zuerst k = 1+i gesetzt, so zeigt sich, dass der Character dieser Zahl allemal $\equiv \frac{1}{6}(-aa+2ab-3bb+1) \pmod{4}$ wird, und ähnliche Ausdrücke finden sich für die Fälle k = 1-i, k = -1+i, k = -1-i.

Ist hingegen $k = \alpha + 6i$ eine solche Primzahl, wo α ungerade und δ gerade ist, so ergibt sich durch die Induction sehr leicht ein dem Fundamentaltheorem für die quadratischen Reste ganz analoges Reciprocitätsgesetz, welches am einfachsten auf folgende Art ausgedrückt werden kann:

Wenn sowohl a+b-1 als a+b-1 durch 4 theilbar sind (auf welchen Fall alle übrigen leicht zurückgeführt werden können), und der Character der Zahl a+bi in Beziehung auf den Modulus a+bi durch λ , hingegen der Character von a+bi in Beziehung auf den Modulus a+bi durch l bezeichnet wird: so ist $\lambda=l$, wenn zugleich eine der Zahlen b, b (oder beide) durch 4 theilbar ist. hingegen $\lambda=l+2$, wenn keine der Zahlen b, b durch 4 theilbar ist.

Diese Theoreme enthalten im Grunde alles Wesentliche der Theorie der biquadratischen Reste in sich: so leicht es aber war, sie durch Induction zu entdecken, so schwer ist es, strenge Beweise für sie zu geben, besonders für das zweite, das Fundamentaltheorem der biquadratischen Reste. Wegen des grossen Umfanges, zu welchem schon die gegenwärtige Abhandlung angewachsen ist, sah sich der Verfasser genöthigt, die Darstellung des Beweises für das letztere Theorem, in dessen Besitz er seit 20 Jahren ist, für eine künftige dritte Abhandlung zurückzulassen. Dagegen ist in vorliegender Abhandlung noch der vollständige Beweis für das erstere die Zahl 1+i betreffende Theorem (von welchem die an-

deren für 1-i, -1+i, -1-i abhängig sind) mitgetheilt, welcher schon einigen Begriff von der Verwicklung des Gegenstandes geben kann.

Wir haben nun noch einige allgemeine Anmerkungen beizufügen. Die Versetzung der Lehre von den biquadratischen Resten in das Gebiet der complexen Zahlen könnte vielleicht manchem, der mit der Natur der imaginären Grössen weniger vertraut und in falschen Vorstellungen davon befangen ist, anstössig und unnatürlich scheinen, und die Meinung veranlassen, dass die Untersuchung dadurch gleichsam in die Luft gestellt sei, eine schwankende Haltung bekomme, und sich von der Anschaulichkeit ganz entferne. Nichts würde ungegründeter sein, als eine solche Meinung. Im Gegentheil ist die Arithmetik der complexen Zahlen der anschaulichsten Versinnlichung fähig, und wenngleich der Verf. in seiner diesmaligen Darstellung eine rein arithmetische Behandlung befolgt hat, so hat er doch auch für diese die Einsicht lebendiger machende und deshalb sehr zu empfehlende Versinnlichung die nöthigen Andeutungen gegeben. welche für selbstdenkende Leser zureichend sein werden. So wie die absoluten ganzen Zahlen durch eine in einer geraden Linie unter gleichen Entfernungen geordnete Reihe von Punkten dargestellt werden, in der der Anfangspunkt die Zahl 0, der nächste die Zahl 1 u. s. w. vertritt; und so wie dann zur Darstellung der negativen Zahlen nur eine unbegrenzte Verlängerung dieser Reihe auf der entgegengesetzten Seite des Anfangspunkts erforderlich ist: so bedarf es zur Darstellung der complexen ganzen Zahlen nur des Zusatzes, dass jene Reihe als in einer bestimmten unbegrenzten Ebene befindlich angesehen, und parallel mit ihr auf beiden Seiten eine unbeschränkte Anzahl ähnlicher Reihen in gleichen Abständen von einander angenommen werde, so dass wir anstatt einer Reihe von Punkten ein System von Punkten vor uns haben, die sich auf eine zweifache Art in Reihen von Reihen ordnen lassen, und zur Bildung einer Eintheilung der ganzen Ebene in lauter gleiche Quadrate dienen. Der nächste Punkt bei 0 in der ersten Nebenreihe auf der einen Seite der Reihe, welche die reellen Zahlen repräsentirt, bezieht sich dann auf die Zahl i, so wie der nächste Punkt bei 0 in der ersten Nebenreihe auf der andern Seite auf - i u. s. f. Bei dieser Darstellung wird die Ausführung der arithmetischen Operationen in Beziehung auf die complexen Grössen, die Congruenz, die Bildung eines vollständigen Systems incongruenter Zahlen für einen gegebenen Modulus u. s. f. einer Versinnlichung fähig, die nichts zu wünschen übrig lässt.

Von der andern Seite wird hiedurch die wahre Metaphysik der imaginären Grössen in ein neues helles Licht gestellt.

Unsere allgemeine Arithmetik, von deren Umfang die Geometrie der Alten so weit überflügelt wird, ist ganz die Schöpfung der neuern Zeit. Ursprünglich ausgehend von dem Begriff der absoluten ganzen Zahlen hat sie ihr Gebiet stufenweise erweitert; zu den ganzen Zahlen sind die gebrochenen, zu den rationalen die irrationalen, zu den positiven die negativen, zu den reellen die imaginären hinzugekommen. Dies Vorschreiten ist aber immer anfangs mit furchtsam zögerndem Schritt geschehen. Die ersten Algebraisten nannten noch die negativen Wurzeln der Gleichungen falsche Wurzeln, und sie sind es auch, wo die Aufgabe, auf welche sie sich beziehen, so eingekleidet vorgetragen ist, dass die Beschaffenheit der gesuchten Grösse kein Entgegengesetztes zulässt. Allein so wenig man in der Allgemeinen Arithmetik Bedenken hat, die gebrochenen Zahlen mit aufzunehmen, obgleich es so viele zählbare Dinge gibt, wobei eine Bruchzahl ohne Sinn ist, eben so wenig durften in jener den negativen Zahlen gleiche Rechte mit den positiven deshalb versagt werden, weil unzählige Dinge kein Entgegengesetztes zulassen: die Realität der negativen Zahlen ist hinreichend gerechtfertigt, da sie in unzähligen andern Fällen ein adäquates Substrat finden. Darüber ist man nun freilich seit langer Zeit im Klaren: allein die den reellen Grössen gegenübergestellten imaginären - ehemals, und hin und wieder noch jetzt, obwohl unschicklich, unmögliche genannt - sind noch immer weniger eingebürgert als nur geduldet, und erscheinen also mehr wie ein an sich inhaltleeres Zeichenspiel, dem man ein denkbares Substrat unbedingt abspricht, ohne doch den reichen Tribut, welchen dieses Zeichenspiel zuletzt in den Schatz der Verhältnisse der reellen Grössen steuert, verschmähen zu wollen.

Der Verf. hat diesen hochwichtigen Theil der Mathematik seit vielen Jahren aus einem verschiedenen Gesichtspunkt betrachtet, wobei den imaginären Grössen eben so gut ein Gegenstand untergelegt werden kann, wie den negativen: es hat aber bisher an einer Veranlassung gefehlt, dieselbe öffentlich bestimmt auszusprechen, wenn gleich aufmerksame Leser die Spuren davon in der 1799 erschienenen Schrift über die Gleichungen, und in der Preisschrift über die Umbildung der Flächen leicht wiederfinden werden. In der gegenwärtigen Abhandlung sind die Grundzüge davon kurz angegeben; sie bestehen in Folgendem.

Positive und negative Zahlen können nur da eine Anwendung finden, wo

das gezählte ein Entgegengesetztes hat, was mit ihm vereinigt gedacht der Vernichtung gleich zu stellen ist. Genau besehen findet diese Voraussetzung nur da Statt, wo nicht Substanzen (für sich denkbare Gegenstände) sondern Relationen zwischen je zweien Gegenständen das gezählte sind. Postulirt wird dabei, dass diese Gegenstände auf eine bestimmte Art in eine Reihe geordnet sind z. B. A, B, C, D...., und dass die Relation des A zu B als der Relation des B zu C u. s. w. gleich betrachtet werden kann. Hier gehört nun zu dem Begriff der Entgegensetzung nichts weiter als der Umtausch der Glieder der Relation, so dass wenn die Relation (oder der Uebergang) von A zu B als +1 gilt, die Relation von B zu A durch —1 dargestellt werden muss. Insofern also eine solche Reihe auf beiden Seiten unbegrenzt ist, repräsentirt jede reelle ganze Zahl die Relation eines beliebig als Anfang gewählten Gliedes zu einem bestimmten Gliede der Reihe.

Sind aber die Gegenstände von solcher Art, dass sie nicht in Eine, wenn gleich unbegrenzte, Reihe geordnet werden können, sondern sich nur in Reihen von Reihen ordnen lassen, oder was dasselbe ist, bilden sie eine Mannigfaltigkeit von zwei Dimensionen; verhält es sich dann mit den Relationen einer Reihe zu einer andern oder den Uebergängen aus einer in die andere auf eine ähnliche Weise wie vorhin mit den Uebergängen von einem Gliede einer Reihe zu einem andern Gliede derselben Reihe, so bedarf es offenbar zur Abmessung des Ueberganges von einem Gliede des Systems zu einem andern ausser den vorigen Einheiten +1 und -1 noch zweier andern unter sich auch entgegengesetzten +i und -i. Offenbar muss aber dabei noch postulirt werden, dass die Einheit i allemal den Uebergang von einem gegebenen Gliede einer Reihe zu einem bestimmten Gliede der unmittelbar angrenzenden Reihe bezeichne. Auf diese Weise wird also das System auf eine doppelte Art in Reihen von Reihen geordnet werden können.

Der Mathematiker abstrahirt gänzlich von der Beschaffenheit der Gegenstände und dem Inhalt ihrer Relationen; er hat es blos mit der Abzählung und Vergleichung der Relationen unter sich zu thun: insofern ist er eben so, wie er den durch +1 und -1 bezeichneten Relationen, an sich betrachtet, Gleichartigkeit beilegt, solche auf alle vier Elemente +1, -1, +i und -i zu erstrecken befugt.

Zur Anschauung lassen sich diese Verhältnisse nur durch eine Darstellung

im Raume bringen, und der einfachste Fall ist, wo kein Grund vorhanden ist, die Symbole der Gegenstände anders als quadratisch anzuordnen, indem man nemlich eine unbegrenzte Ebene durch zwei Systeme von Parallellinien, die einander rechtwinklig durchkreuzen, in Quadrate vertheilt, und die Durchschnittspunkte zu den Symbolen wählt. Jeder solche Punkt A hat hier vier Nachbaren, und wenn man die Relation des A zu einem benachbarten Punkte durch +1 bezeichnet, so ist die durch -1 zu bezeichnende von selbst bestimmt, während man, welche der beiden andern man will, für +i wählen, oder den sich auf +i beziehenden Punkt nach Gefallen rechts oder links nehmen kann. schied zwischen rechts und links ist, so bald man vorwärts und rückwärts in der Ebene, und oben und unten in Beziehung auf die beiden Seiten der Ebene einmal (nach Gefallen) festgesetzt hat, in sich völlig bestimmt, wenn wir gleich unsere Anschauung dieses Unterschiedes andern nur durch Nachweisung an wirklich vorhandenen materiellen Dingen mittheilen können*). Wenn man aber auch über letzteres sich entschlossen hat, sieht man, dass es doch von unserer Willkür abhing, welche von den beiden in Einem Punkte sich durchkreuzenden Reihen wir als Hauptreihe, und welche Richtung in ihr man als auf positive Zahlen sich beziehend ansehen wollten; man sieht ferner, dass wenn man die vorher als + i behandelte Relation für +1 nehmen will, man nothwendig die vorher durch -1 bezeichnete Relation für +i nehmen muss. Das heisst aber, in der Sprache der Mathematiker, +i ist mittlere Proportionalgrösse zwischen +1 und -1 oder entspricht dem Zeichen $\sqrt{-1}$: wir sagen absichtlich nicht die mittlere Proportio-! nalgrösse, denn -i hat offenbar gleichen Anspruch. Hier ist also die Nachweisbarkeit einer anschaulichen Bedeutung von V-1 vollkommen gerechtfertigt, und mehr bedarf es nicht, um diese Grösse in das Gebiet der Gegenstände der Arithmetik zuzulassen.

Wir haben geglaubt, den Freunden der Mathematik durch diese kurze Darstellung der Hauptmomente einer neuen Theorie der sogenannten imaginären Grössen einen Dienst zu erweisen. Hat man diesen Gegenstand bisher aus einem falschen Gesichtspunkt betrachtet und eine geheimnissvolle Dunkelheit dabei ge-

^{*)} Beide Bemerkungen hat schon Kant gemacht, aber man begreift nicht, wie dieser scharfsinnige Philosoph in der ersteren einen Beweis für seine Meinung, dass der Raum nur Form unserer äussern Anschauung sei, zu finden glauben konnte, da die zweite so klar das Gegentheil, und dass der Raum unabhängig von unserer Anschauungsart eine reelle Bedeutung haben muss, beweiset.

funden, so ist dies grossentheils den wenig schicklichen Benennungen zuzuschreiben. Hätte man +1, -1, \sqrt{-1} nicht positive, negative, imaginäre (oder gar unmögliche) Einheit, sondern etwa directe, inverse, laterale Einheit genannt, so hätte von einer solchen Dunkelheit kaum die Rede sein können. Der Verf. hat sich vorbehalten, den Gegenstand, welcher in der vorliegenden Abhandlung eigentlich nur gelegentlich berührt ist, künftig vollständiger zu bearbeiten, wo dann auch die Frage, warum die Relationen zwischen Dingen, die eine Mannigfaltigkeit von mehr als zwei Dimensionen darbieten, nicht noch andere in der allgemeinen Arithmetik zulässige Arten von Grössen liefern können, ihre Beantwortung finden wird.

ANZEIGEN

NICHT EIGNER

SCHRIFTEN.

Göttingische gelehrte Anzeigen.	1809 Mārz 11.

Recherches sur l'irréductibilité Arithmétique et Géométrique des nombres et de leurs puissances. 1808. (Ohne Druckort. 25 S. in gr. Quart.)

Eine Schrift, deren Zweck dahin geht, die irrationalen Wurzelgrössen in Gestalt von rationalen Grössen darzustellen. Wir müssen uns begnügen, die Freunde der Mathematik auf dieses Werkchen aufmerksam gemacht zu haben, da die Grenzen dieser Blätter uns nicht verstatten, in die Darstellung und Prüfung des dem Verf. eigenthümlichen Gesichtspunkts und der von der gewöhnlichen ganz abgehenden Behandlung der Wurzelgrössen hier umständlicher einzugehen.

Göttingische Gelehrte Anzeigen.	1812 März 23.

Cribrum Arithmeticum, sive tabula continens numeros primos a compositis segregatos, occurrentes in serie numerorum ab unitate progredientium usque ad decies centena milia et ultra haec ad viginti millia (1020000). Numeris compositis, per 2, 3, 5 non dividuis, adscripti sunt divisores simplices, non minimi tantum, sed omnino

omnes. Confecit Ladislaus Chernac, Pannonius, A. L. M. Philos. et Medic. Doctor, in almo lyceo Daventriensi philosophiae professor. Daventriae 1811. (Auf Kosten des Verfassers, gedruckt bei J. H. Lange. XXII u. 1022 S. gr. Quart.)

Der vollständige Titel dieses wichtigen und sehr verdienstlichen Werks bezeichnet den Inhalt schon hinreichend: es ist eine durch eine eben so sorgfältige als mühsame Arbeit von mehreren Jahren berechnete Tafel für alle einfache Factoren aller durch 2, 3 und 5 nicht theilbaren Zahlen von 1 bis 1020000, sauber und, soviel wir bei hin und wieder angestellter Prüfung gefunden haben, sehr correct gedruckt. Wie schätzbar ein solches der Arithmetik gemachtes Geschenk sei, beurtheilt ein Jeder leicht, der viel mit grössern Zahlenrechnungen zu thun Der Verf. verdient doppelten Dank, sowohl für seine höchst mühsame Arbeit selbst, wodurch er seinen Namen den unvergesslichen von Rhaeticus, Pittiscus, BRIGG, VLACQ, WOLFRAM, TAYLOR u. A. zugesellt hat, als für den gewiss sehr erheblichen auf den Druck gemachten Aufwand, wofür sich sonst schwerlich ein Verleger gefunden haben möchte. Schon öfters sind dergleichen Tafeln, obwohl meistens in geringerer Ausdehnung, berechnet, aber entweder ganz im Manuscripte geblieben, oder im Abdruck nicht vollendet. Lambert munterte bekanntlich ehedem nach besten Kräften zur Fortsetzung der Pellschen, bis 100000 gehenden und oft abgedruckten, Tafel auf, und einer von Bernoulli in Lambert's Briefwechsel gegebenen Nachricht zufolge hatte Oberreit sie bis 500000 fortgeführt, wovon die Abschrift in Schulze's Hände gekommen war. Anton Felkel hatte sie, wie in der Monatl. Correspondenz 2. Bd. S. 223 berichtet wird, bis zu zwei Millionen in der Handschrift vollendet, und wollte sie späterhin bis 2460000 geben; allein was davon in Wien auf öffentliche Kosten bereits gedruckt war, wurde, weil sich keine Käufer fanden, im Türkenkriege zu Patronen verbraucht! So ging eine verdienstliche vieljährige Arbeit für das Publicum verloren: um so mehr hielten wir es für Pflicht, die Erscheinung des gegenwärtigen Werks hier anzuzeigen. Die erste Million ist nun für Jedermanns Gebrauch da; und wer Gelegenheit und Eifer für diesen Gegenstand hat, möge daher seine Mühe auf das Weitere richten.

Göttingische gelehrte Anzeigen. 1814 November 3.

Tables des diviseurs pour tous les nombres du deuxième million, ou plus exactement depuis 1020000 à 2028000, avec les nombres premiers qui s'y trouvent. Par J. Ch. Burckhardt, membre de l'institut impérial, du bureau des longitudes de France, et de plusieurs autres sociétés savantes. Paris, 1814. M^{me} V^e Courcier. (VIII. u. 112 S. in Folio.)

Früher, als wir bei der Anzeige der die erste Million umfassenden Factorentafel von CHERNAC zu hoffen gewagt hätten, können wir schon die Vollendung und Erscheinung einer ähnlichen Tafel für die zweite Million berichten. Der verdiente Verfasser, dessen Name schon die grösste Sorgfalt und Genauigkeit verbürgt, hat sich durch diese mühsame Arbeit alle Freunde der Arithmetik sehr verpflichtet. Chernac's Tafel für die erste Million gibt alle einfachen Factoren; die Burckhardt'sche für die zweite hingegen nur jedesmal den kleinsten Divisor. Die vollständige Zerlegung einer Zahl der zweiten Million erfordert also die Division mit dem kleinsten Divisor und das Aufsuchen des Quotienten in der Chranac'schen Tafel: allein diese kleine Mühe ist von gar keiner Erheblichkeit gegen den grossen Vortheil, die Tafel in einem so viel kleineren Raum zu besitzen, wobei die Aussicht bleibt, mit der Zeit die Tafel noch bis zu zehn Millionen ausgedehnt zu sehen. Die Zusammendrängung in den kleinen Band hat der Verfasser theils durch die Beschränkung auf den kleinsten Divisor, theils durch einen möglichst öconomischen Druck möglich gemacht. Wenn a unbestimmt jede der achtzig Zahlen unter 300 bedeutet, die durch 2, 3 und 5 nicht theilbar sind, so ist überhaupt jede durch 2, 3 und 5 nicht theilbare Zahl in der Form 300n+a begriffen. Alle achtzig Zahlen, für welche n einerlei Werth hat, finden sich in Einer verticalen Columne, und solcher Columnen enthält jede Seite dreissig. Jede Seite umfasst also von neuntausend in der natürlichen Ordnung fortschreitenden Zahlen alle, welche durch 2, 3 oder 5 nicht theilbar sind.

Die Methode, nach welcher Herr Burckhardt seine Tafel construirt hat, verdient hier noch eine besondere Erwähnung. Er liess ein Netz in Kupfer stechen, wo durch 81 horizontale und 78 verticale Linien ein in 80×77 d.i. 6160 kleine Quadrate getheiltes Rechteck gebildet wurde, und davon die nöthige Ansahl von Abdrücken machen. An der Seite konnten sogleich die achtzig Werthe

von a mit gestochen werden; die Werthe von 300n in fortlaufender Ordnung wurden mit der Feder über die 77 verticalen Columnen geschrieben. jedes Blatt alle durch 2, 3 und 5 nicht theilbaren Zahlen vor, welche unter je 23100 in natürlicher Ordnung fortschreitenden Zahlen befindlich sind, und 44 Blätter sind hinreichend, eine ganze Million zu umfassen. Man sieht leicht, dass die Zahlen, deren kleinster Theiler 7 oder 11 ist, auf jedem folgenden Blatte in derselben Ordnung wiederkehren, daher diese Divisoren sogleich auf die Kupferplatte gestochen werden konnten, und mithin auf jedem Blatte schon von selbst an den gehörigen Plätzen erschienen. Um nun die folgenden Divisoren z. B. 13 einzutragen, nahm Herr B. von einem überzähligen Blatt der Breite nach blos 13 Columnen, und indem er dasselbe als den Anfang seiner Tafel betrachtete, schnitt er alle die Quadrate, die den Divisor 13 enthalten mussten, aus. brauchte also dieses Gitter nur auf die dreizehn ersten Columnen des ersten Blattes zu legen, dann auf die dreizehn folgenden u.s.w., um sogleich alle Plätze zu sehen, die, in so fern sie nicht schon 7 oder 11 enthielten, mit 13 ausgefüllt werden mussten. Eben so wurde nachher mit dem Divisor 17 u. s. w. verfahren. Bis zum Divisor 73 reichten auf diese Weise die überzähligen Blätter hin; für die grössern Divisoren 79, 83 u.s.w. scheint Herr B. den Rahmen aus zwei oder mehreren Theilen zusammengesetzt zu haben. Bei den Divisoren hingegen, die über 500 hinausgehen, zog Herr B. vor, die Vielfachen durch Addition zu suchen, wobei er für den andern Factor blos die Primzahlen zu nehmen brauchte. Wir finden dies ganze Verfahren höchst zweckmässig, und würden es allen denen zur Nachahmung empfehlen, die etwa Neigung haben sollten, die Tafel noch weiter fortzusetzen. Für die dritte und vierte Million hat inzwischen der Verfasser selbst schon einen grossen Theil der Rechnungen ausgeführt, daher wir gegründete Hoffnung haben, auch diese demnächst durch den Druck bekannt gemacht zu sehen.

Göttingische gelehrte Anzeigen. 1816 November 7.

Tables des diviseurs pour tous les nombres du troisième million, ou plus exactement, depuis 2028000 à 3036000, avec les nombres premiers qui s'y trouvent, par. J. Chr. Burckhardt, membre de l'académie royale des sciences, du bureau des longi-

tudes de France et de plusieurs autres sociétés savantes. Paris 1816. M^{me} V^e Courcier. (112 Seiten in Folio.)

Da wir bereits bei der Anzeige der Tafel für die Factoren der zweiten Million die von dem verdienten Verf. angewandte Berechnungsmethode und die Einrichtung der Tafel selbst umständlich beschrieben haben, so können wir uns hier mit der blossen Anzeige von der Erscheinung der Tafel für die dritte Million begnügen. In Kurzem haben wir nun auch noch die Tafel für die erste Million, auf dieselbe Art dargestellt von dem Verf. zu erwarten, so dass dann die ganze Tafel bis über drei Millionen nur einen mässigen Band ausmachen wird. Dem Verf. gebührt dafür der Dank aller Freunde der Arithmetik, die durch diese mühsame Arbeit ein Bedürfniss in einer Ausdehnung befriedigt sehen, die alles, was man noch vor wenigen Jahren zu hoffen wagen konnte, weit übersteigt.

Göttingische gelehrte Anzeigen. 1817 August 9.

Tables des diviseurs, pour tous les nombres du premier million, ou plus exactement depuis 1 à 1020000, avec les nombres premiers qui s'y trouvent; par J. Chr. Burchhard, membre de l'académie des sciences dans l'institut royal, du bureau des longitudes de France, et de plusieurs autres sociétés savantes. Paris 1817. M^{mo} V° Courcier. (114 Seiten in Folio.)

Indem wir uns hier auf die Anzeigen der Tafeln für die zweite und dritte Million beziehen, kündigen wir jetzt blos das wirkliche Erscheinen dieser Factorentafeln für die erste Million an. Wir besitzen also nunmehr ein zusammenhängendes Ganzes für die drei ersten Millionen. Für die gegenwärtige erste Million bediente sich der Verfasser theils des Cribrum Arithmeticum von Chernac, theils einer handschriftlichen Tafel von Schenmark, welche die Bibliothek des Königlichen Instituts besitzt. Letztere war indessen nicht ganz mit aller zu wünschenden Sorgfalt construirt, und die Entscheidung in Fällen, wo beide von einander abwichen, welche von beiden Recht habe, war oft ziemlich mühsam. In der Chernac'schen Tafel zeigte sich nur eine sehr geringe Anzahl von Fehlern, welche Herr Burckhardt hier mitgetheilt hat.

186 ANZEIGE.

Auch für die vierte, fünfte und sechste Million hat der Verf. die Materialien bereits grösstentheils vorräthig, und er erbietet sich, diese Fortsetzung zu liefern, wenn der Verleger durch einen hinreichenden Absatz der drei ersten Millionen aufgemuntert wird. Es wäre in der That sehr zu beklagen, wenn die Früchte einer so mühsamen und nützlichen Arbeit der Welt entzogen werden sollten.

Göttingische gelehrte Anzeigen. 1925 December 19.

Der Königl. Societät ist abseiten des Herrn Erchinger zu Thuningen im Königreich Würtemberg eine kleine Abhandlung vorgelegt worden, welche die

Geometrische Construction des regelmässigen Siebenzehnecks

zum Gegenstande hat. Die Allgemeine Theorie der regelmässigen Vielecke hat bekanntlich durch die innige Verbindung, in welche sie mit der höhern Arithmetik gebracht ist, eine neue Gestalt und Erweiterung erhalten; ein, wenn gleich verhältnissmässig nur kleiner Theil derselben ist die Theorie derjenigen Vielecke, die sich geometrisch beschreiben lassen. Seit dem Zeitalter der Griechen wusste man, dass das Dreieck, Fünfeck, Funfzehneck und alle diejenigen Vielecke, welche durch Verdopplung oder wiederholte Verdopplung der Seitenzahl aus diesen entspringen, jene Eigenschaft haben, und man glaubte, behauptete auch wohl ausdrücklich, dass dieses die einzigen seien. Die höhere Arithmetik hat gelehrt, dass dieses ein Irrthum war: indem sie die wahren Quellen der ganz allgemeinen Theorie offen legte, ergab sich von selbst, dass es ausser den genannten Vielecken noch unzählige andere gibt, die geometrisch construirt werden können, von denen das Siebenzehneck das einfachste ist. Die Ueberlegenheit der Analyse, welche das Allgemeinste, wie das Besondere mit gleicher Leichtigkeit umfasst, über die Geometrie, die immer beim Besondern stehen bleiben muss, beim Fortschreiten von den einfachern Fällen zu den zusammengesetztern durch stets vergrösserte Verwicklung aufgehalten wird, und jenen den bekannten nächsten Fall schwerlich jemals ohne fremde Hülfe erreicht hätte, zeigt sich dabei im hellsten Lichte. zwischen ist es immer wichtig, interessant und wünschenswerth, dass auch die rein geometrischen Behandlungen fortwährend cultivirt werden, und dass die Geo-

metrie wenigstens einen Theil der neuen Felder, die die Analyse erobert, sich aneigne. Ref. ist nicht bekannt, dass bisher jemand die Construction des Siebenzehnecks öffentlich behandelt hätte, ausser Herrn Pauken in den Schriften der Kurländischen Gesellschaft und in seiner Geometrie. Verschieden davon und mehr im rein geometrischen Geiste durchgeführt ist die von Hrn Erchinger, welche in Folgendem besteht. (Die dazu gehörige Figur, eine gerade Linie, auf welcher der Folge nach die Punkte DBGAIFCE liegen, kann jeder sich selbst zeichnen.) Eine nach Gefallen angenommene gerade Linie AB verlängere man rückwarts und vorwarts nach C und D so, dass $AC \times BC = AD \times BD = 4AB \times AB$ werden; ferner bestimme man die Punkte E, G an beiden Seiten der verlängerten Linie CA so, dass $AE \times EC = AG \times CG = AB \times AB$, und den Punkt F auf der Seite A der verlängerten Linie BA so, dass $AF \times DF = AB \times AB$ wird; endlich theile man AE in I so, dass $AI \times EI = AB \times AF$ werde, wo AI der kleinere, und EI der grössere Abschnitt von AE ist. dann ein Dreieck, in welchem zwei Seiten jede =AB, die dritte =AI wird. Beschreibt man um dieses Dreieck einen Kreis, so wird AI die Seite des in den Kreis beschriebenen regelmässigen Siebenzehnecks sein.

Wenn man die Richtigkeit dieser Construction durch die Vergleichung mit der in den Disquisitiones Arithmeticae Art. 354 als ein Beispiel aufgestellter Theorie des Siebenzehnecks prüft, so bemerkt man leicht, dass jene nichts anders ist, als die geometrische Uebersetzung derjenigen Gleichungen, auf welche die Anwendung der allgemeinen Theorie führt: in der That sind die Entfernungen der Punkte C, D, E, F, G, I von A nichts anderes, als die Grössen, die a.a.O. mit (8.1), (8.3), (4.1), (4.3), (4.9), (2.1) bezeichnet sind, wenn man das positive und negative Zeichen durch die Lage ausdrückt, und die Entfernung des Punktes B von A in eben dem Sinn genommen = -1 setzt. Allein das eigentlich Verdienstliche der Abhandlung des Hrn. Erchinger besteht nicht sowohl in der Aufstellung der Construction selbst, da die Analyse bereits den einfachsten Weg vorgezeichnet hatte, als in der rein geometrischen Begründung ihrer Richtigkeit, und diese ist mit so musterhafter mühsamer Sorgfalt, alles nicht rein Elementarische zu vermeiden, durchgeführt, dass sie dem Verf. zur Ehre gereicht, und den Wunsch veranlasst, dass sein in der That nicht gemeines mathematisches Talent alle Aufmunterung finden möge.

Göttingische gelehrte Anzeigen. 1831 Juli 9.

Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen von Ludwig August Seeber, Dr. der Philosophie, ordentl. Professor der Physik an der Universität in Freiburg. Freiburg im Breisgau 1831. (248 S. in 4.)

Die Functionen zweier unbestimmten Grössen x und y von der Gestalt axx + 2bxy + cyy, wo a, b, c bestimmte ganze Zahlen vorstellen, bilden bekanntlich unter dem Namen der quadratischen Formen, oder, wo eine weitere Unterscheidung erforderlich wird, der binären quadratischen Formen, einen der interessantesten und reichhaltigsten Gegenstände der höheren Arithmetik. Die dabei zunächst vorkommenden Aufgaben: zu entscheiden, ob eine solche gegebene Form eine andere a'x'x' + 2b'x'y' + c'y'y' unter sich begreift, d. i. durch eine Substitution $x = \alpha x' + \delta y'$, $y = \gamma x' + \delta y'$, in welcher $\alpha, \delta, \gamma, \delta$ ganze Zahlen sind, in dieselbe verwandelt werden kann; ob eine solche Relation zweier Formen eine gegenseitige ist, wo die Formen äquivalent heissen; ferner in beiden Fällen alle möglichen Umformungen der einen in die andere anzugeben; endlich alle möglichen Darstellungen einer gegebenen ganzen Zahl durch eine gegebene Form vermöge ganzer Werthe der unbestimmten Grössen aufzufinden — diese Aufgaben sind in den Disquisitiones Arithmeticae vollständig aufgelöset, machen aber von dem die quadratischen Formen betreffenden Abschnitte dieses Werks nur den bei weitem kleineren Theil aus. Die darauf folgenden feineren Untersuchungen erforderten zum Theil eine vorläufige Bearbeitung eines um eine Stufe höheren und viel grössere Schwierigkeiten darbietenden Feldes, nemlich der Lehre von ähnlichen Functionen dreier unbestimmter Grössen x, y, z, welche also die Gestalt haben axx+byy+czz+2a'yz+2b'xz+2c'xy, und ternäre quadratische Formen heissen. Die Auflösung der diese ternären Formen betreffenden Hauptaufgaben ist in dem erwähnten Werke entwickelt, jedoch nur so weit, als zu dem angezeigten Zwecke nothwendig war. Nach einem Zwischenraum von dreissig Jahren hat nun der Verfasser des vorliegenden Werks zuerst diese Untersuchungen wieder aufgenommen, und in Beziehung auf die eine Hauptgattung der ternären Formen, nemlich die positiven, dasjenige was in den Disquisitiones Arithmeticae unvollendet gelassen war, zur Vollständigkeit gebracht. Für diejenigen, welche aus der höheren Arithmetik ein tieferes Studium gemacht haben, würden wir dasjenige, was in dem vorliegenden Werke Neues geleistet ist, mit wenigen Worten bezeichnen können; allein, um auch andern verständlich zu sein, müssen wir uns etwas mehr Ausführlichkeit verstatten, und wir thun dies um so lieber, da diese Untersuchungen auch ausserhalb des Gebietes der höheren Arithmetik ein eigenthümliches Interesse haben.

Die Eigenschaften einer binären Form axx+2bxy+cyy hängen vornehmlich von der Zahl bb-ac ab, welche daher der Determinant jener Form heisst. Zwei äquivalente Formen haben allemal gleiche Determinanten. Allein nicht alle Formen, die einen gegebenen Determinanten haben, sind darum schon äquivalent, vielmehr zerfallen solche Formen in eine kleinere oder grössere, aber stets endliche Anzahl von Classen, so dass die zu einerlei Classe gehörigen unter sich äquivalent, die zu verschiedenen Classen gehörenden hingegen nicht äquivalent sind. Durch Formen, deren Determinant positiv ist, lassen sich ohne Unterschied positive und negative Zahlen darstellen; hingegen durch Formen mit negativem Determinanten sind nur solche Zahlen darstellbar, welche mit a und c einerlei Zeichen haben, daher hier positive und negative Formen unterschieden werden. Die einfachsten Formen in jeder Classe haben bestimmte Kriterien, heissen reducirte Formen, und können als Repräsentanten der ganzen Classe betrachtet werden.

Aehnliche Verhältnisse in Beziehung auf die ternären Formen sind in den Disquisitiones Arithmeticae nachgewiesen. Determinant der ternären Form

$$axx + byy + czz + 2a'yz + 2b'xz + 2c'xy$$

heisst die Zahl

$$aa'a'+bb'b'+cc'c'-abc-2a'b'c'$$

Auch hier ist zur Aequivalenz zweier Formen die Gleichheit der Determinanten erforderlich, aber nicht zureichend, sondern sämmtliche Formen mit einem bestimmten Determinanten zerfallen in eine endliche Anzahl von Classen, in deren jeder die einfachsten Formen reducirte heissen können und alle übrigen gleichsam repräsentiren. Mit dem Unterschiede zwischen positiven und negativen Formen verhält es sich aber hier anders, als bei den binären Formen. Für jeden gegebenen Determinanten, er sei positiv oder negativ, gibt es theils Formen, durch welche

190 ANZEIGE.

ohne Unterschied positive und negative Zahlen darstellbar sind (indifferente Formen), theils solche Formen, durch die entweder nur positive oder nur negative Zahlen sich darstellen lassen (positive oder negative Formen); allein positive Formen gibt es nur für negative Determinanten, und negative nur für positive. Uebrigens ist es von selbst klar, dass die Qualification einer Form, insofern sie indifferent, positiv oder negativ ist, zugleich der ganzen Classe, zu welcher sie gehört, zukommt. Das vorliegende Werk beschränkt sich auf die positiven Formen, deren Determinanten also negativ sein müssen: offenbar findet aber alles, was von diesen gilt, von selbst seine Uebertragung auf die negativen Formen, während die in dem Werke ganz ausgeschlossenen indifferenten Formen eine ganz abweichende Behandlung erfordern.

In den Disquisitiones Arithmeticae war, wie schon erwähnt ist, die Theorie der ternären Formen nur so weit entwickelt, als für den dortigen Zweck nöthig war, und daher die Aufgabe, die Aequivalenz zweier gegebenen ternären Formen zu entscheiden, noch nicht in vollständiger Allgemeinheit aufgelöset. daselbst gezeigt, wie man zu jeder vorgegebenen Form eine äquivalente der einfachsten Art finden, und dass es solcher reducirten Formen für jeden gegebenen Determinanten nur eine endliche Anzahl geben könne; allein da es in jeder Classe mehrere solcher reducirten Formen gibt, die sich nicht in allen Fällen sogleich als äquivalent ergeben, so fehlte noch ein Kriterium, woran man die Aequivalenz oder Nicht-Aequivalenz solcher Formen mit Gewissheit erkennen kann. Dieses Bedürfniss hat nun der Verfasser des vorliegenden Werks in Beziehung auf die positiven Formen vollständig und mit musterhafter Gründlichkeit gehoben. Sein Verfahren ist übrigens etwas anders eingekleidet, als wir die Sache so eben ausgesprochen haben, und wie sie sich verhalten müsste, wenn man in den Begriff der reducirten positiven Formen nur die wesentlichsten Bedingungen der grössten Einfachheit aufnimmt, welche in dem Fall der positiven Formen die sind, dass die (ihrer Natur nach positiven) Zahlen a, b, c nicht kleiner sein dürfen, als respective b' oder c', a' oder c', a' oder b' ohne Rücksicht auf die Zeichen. Herr SEEBER hat nemlich dem Begriffe der reducirten Formen noch solche Modificationen hinzugesetzt, dass es in jeder Classe immer nur Eine der Art geben kann, Eine aber geben muss. Wegen eines schönen von Herrn Skeben durch Induction gefundenen weiter unten noch zu erwähnenden Theorems führen wir hier die Hauptbedingungen, welche Hr. S. in den Begriff der reducirten Formen aufgenommen hat, an: diese sind 1) dass unter den Zahlen a', b', c' nicht zwei von entgegengesetzten Zeichen sein dürfen; 2) dass ohne Rücksicht auf das Zeichen 2b' und 2c' nicht grösser als a sein dürfen, ferner a und 2a' nicht grösser als b, und b nicht grösser als c; 3) dass in dem Fall, wo a', b', c' zugleich negativ sind, die doppelte Summe dieser Zahlen nicht grösser als a+b sein darf. Die übrigen noch für einige specielle Fälle hinzukommenden Modificationen können wir hier übergehen.

Den Hauptinhalt des Werkes macht nun zuerst die Auflösung der Aufgabe ans, zu jeder gegebenen positiven Form eine äquivalente zu finden, die nach der festgesetzten Definition den Character einer reducirten hat, und dann der strenge Beweis des Lehrsatzes, dass zwei nicht identische reducirte Formen nicht äquivalent sein können, oder was dasselbe ist, dass es in jeder Classe nur eine reducirte Form gibt. Dem Geiste der Gründlichkeit, womit diese Gegenstände durchgeführt sind, müssen wir volle Gerechtigkeit widerfahren lassen, und wenn wir es dabei bedauern müssen, dass damit eine sehr grosse und vielleicht manchen abschreckende Weitläuftigkeit verbunden gewesen ist, da die Auflösung des Problems 41 Seiten, und der Beweis des Theorems 91 Seiten einnimmt, so wollen wir dies doch keinesweges als einen Tadel angesehen wissen. Wenn ein schwieriges Problem oder Theorem aufzulösen oder zu beweisen vorliegt, so ist allezeit der erste und mit gebührendem Danke zu erkennende Schritt, dass überhaupt eine Auflösung oder ein Beweis gefunden werde, und die Frage, ob dies nicht auf eine leichtere und einfachere Art hätte geschehen können, bleibt so lange eine müssige, als die Möglichkeit nicht zugleich durch die That entschieden wird. Wir halten es daher für unzeitig, hier bei dieser Frage zu verweilen. __ Der übrige Theil des Werkes enthält noch hauptsächlich die mit gleicher Gründlichkeit durchgeführten Auflösungen der Aufgaben: zu entscheiden, ob eine gegebene Form eine andere gegebene ihr nicht äquivalente unter sich begreife; alle möglichen Transformationen einer gegebenen Form in eine gegebene äquivalente oder nur unter ihr begriffene zu finden; endlich für einen gegebenen Determinanten alle möglichen Classen positiver ternärer Formen anzugeben.

Wir müssen noch bemerken, dass Herr Seeber die Gestalt der ternären Formen etwas anders gefasst hat, als in den *Disquisitiones Arithmeticae* geschehen war, wo, mit Vorbedacht, die Coëfficienten der Producte yz, xz, xy als gerade Zahlen vorausgesetzt waren, wogegen Hr. S. auch ungerade zulässt, und daher

mit a', b', c' bezeichnet, was oben mit 2a', 2b', 2c' bezeichnet war, Offenbar ist die grössere Allgemeinheit, welche dadurch erreicht wird, nur scheinbar, oder doch überflüssig, da alles was von solchen Formen mit ungeraden Coëfficienten gesagt werden kann, sich auch von selbst ergibt, wenn man anstatt derselben ihr Doppeltes in Betracht zieht: wir können daher diese Abänderung, wodurch überdies einiger Verlust an Einfachheit entsteht, nicht billigen. Eine Folge davon ist gewesen, dass das, was Herr Seeber Determinant nennt, allemal das Vierfache von der Zahl ist, welche in den Disquisitiones Arithmeticae diesen Namen führt. In gegenwärtiger Anzeige haben wir die Terminologie der Disquisitiones Arithmeticae beibehalten.

Bei dem zuletzt erwähnten Problem (zu jedem gegebenen Determinanten alle möglichen reducirten Formen anzugeben) hat Herr Seeber, um Grenzen für die drei ersten Coëfficienten zu haben, ein Theorem benutzt, vermöge dessen das Product derselben abc nicht grösser sein kann, als der dreifache Determinant. Dieses Theorem ist von Hn. Seeber strenge bewiesen; allein in der Vorrede bemerkt er, dass er unter mehr als 600 von ihm untersuchten Fällen nicht einen einzigen gefunden habe, wo jenes Product das Doppelte des Determinanten überschritten hätte, und hält es daher für höchst wahrscheinlich, dass diese engere Begrenzung allgemeingültig sei; es sei ihm jedoch nicht gelungen, einen strengen Beweis dafür zu finden. Da dieses auf dem Wege der Induction von Herrn Seeber gefundene Theorem sowohl an sich merkwürdig, als für die Abkürzung der Auflösung der erwähnten Aufgabe wichtig ist, so wollen wir hier, um auch unsererseits in dieser Anzeige einen Beitrag zur Vervollkommnung dieser Theorie zu geben, einen sehr einfachen Beweis beifügen. Es müssen dabei zwei Fälle unterschieden werden.

I. Wenn von den Zahlen a', b', c' keine negativ ist, so setze man

$$b-2a'=d$$
, $c-2b'=e$, $a-2c'=f$
 $c-2a'=g$, $a-2b'=h$, $b-2c'=i$

wo aus der Definition der reducirten positiven Formen sogleich folgt, dass wenn

$$axx + byy + czz + 2a'yz + 2b'xz + 2c'xy$$

eine solche ist, keine jener sechs Zahlen negativ ist, so wie sich von selbst versteht, dass a, b, c positiv sind. Bezeichnet man nun den (negativen) Determi-

nanten der Form durch -D, so hat man, wie man sich durch die Entwickelung leicht überzeugt, die identische Gleichung

$$2D - abc = aa'd + bb'e + cc'f + a'hi + b'gi + c'gh + ghi$$

in welcher keines der sieben Glieder zur Rechten negativ sein kann, und folglich abc nicht grösser als 2D. Dasselbe folgt auf gleiche Weise aus der identischen Gleichung

$$2D - abc = aa'g + bb'h + cc'i + a'ef + b'df + c'de + def$$

II. Wenn keine der Zahlen a', b', c' positiv ist, setze man

$$b+2a'=d$$
, $c+2b'=e$, $a+2c'=f$
 $c+2a'=g$, $a+2b'=h$, $b+2c'=i$
 $b+c+2a'+2b'+2c'=k$
 $a+c+2a'+2b'+2c'=l$
 $a+b+2a'+2b'+2c'=m$

und den Determinanten der Form wie vorhin = -D. Vermöge der Definition der reducirten positiven Formen wird keine der neun Zahlen d, e, f, g, h, i, k, l, m negativ sein können, und so ergibt sich aus der identischen Gleichung

$$6D - 3abc = -aa'(d+2k) - bb'(e+2l) - cc'(f+2m) - a'hi - b'gi - c'gh + def + 2ghi$$

 in welcher, weil a', b', c' nicht positiv, sondern negativ oder Null sind, alle Glieder zur Rechten positiv oder Null werden, dass 3abc nicht grösser als 6D, oder abc nicht grösser als 2D sein kannn. Dasselbe folgt eben so aus der identischen Gleichung

$$6D-3abc = -aa'(g+2k)-bb'(h+2l)-cc'(i+2m)-a'ef-b'df-c'de+2def+ghi$$

Beide Gleichungen sind symmetrisch. Verzichtet man auf völlige Symmetrie, so ist der Beweis mit einer noch geringern Anzahl von Gliedern zu führen, z.B. durch die identische Gleichung

$$8D-4abc = -2aa'(g+k)-2bb'(e+l)-4cc'm+(c+e)df+(c+g)hi$$
IL

Wir wollen nun noch einiges über die Bedeutung der positiven binären und ternären quadratischen Formen ausser dem Gebiete der höheren Arithmetik hinzusetzen: von den negativen besonders zu handeln ist unnöthig, und die indifferenten entziehen sich dieser Behandlung ganz.

Die positive binäre Form axx + 2bxy + cyy stellt allgemein das Quadrat der Entfernung zweier unbestimmter Punkte in einer Ebene vor, deren Coordinaten in Beziehung auf zwei unter einem Winkel, dessen Cosinus $=\frac{b}{J_{ac}}$ ist, gegen einander geneigte Axen um $x\sqrt{a}$, $y\sqrt{c}$ verschieden sind. Insofern x und yalso nur ganze Zahlen bedeuten sollen, bezieht sich die Form auf ein System parallelogrammatisch geordneter Punkte, die in den Durchschnitten zweier Systeme von Parallellinien liegen. Die Linien jedes Systems sind in gleichen Entfernungen von einander, und zwar sind die des einen, wenn sie parallel mit den Linien des zweiten gemessen werden, $= \sqrt{a}$; die Entfernungen des andern, parallel mit den Linien des ersten gemessen, $= \sqrt{c}$: die Neigung beider Systeme gegen einander die oben angegebene. Auf diese Weise erscheint die Ebene in lauter gleiche Parallelogramme getheilt, deren Eckpunkte das Punktensystem ausmachen, ohne dass irgend einer der Punkte innerhalb eines Parallelogrammes fallen kann. Der Determinant mit positivem Zeichen genommen, also ac-bb, bedeutet das Quadrat des Flächeninhalts eines Elementar-Parallelogramms. Ein und dasselbe System solcher Punkte kann auf unendlich viele verschiedene Arten parallelogrammatisch abgetheilt, und also auf ebenso viele verschiedene Formen zurückgeführt werden: alle diese verschiedenen Formen sind aber, was in der Kunstsprache aquivalent heisst, und der Inhalt eines Elementar-Parallelogramms bleibt alle-Zwei Formen, die nicht äquivalent sind, von denen aber die eine die andere unter sich begreift, beziehen sich auf dasselbe System von Punkten, aber die erstere Form auf das ganze System, die zweite auf einen Theil. Zwei Formen, die, nach der Kunstsprache, uneigentlich äquivalent (improprie aequivalentes) heissen, beziehen sich auf zwei gleiche aber verkehrt liegende Systeme von Punkten, indem man sich die Ebene umgekehrt gelegt denkt u.s. w.

Auf gleiche Weise bedeutet allgemein die positive ternäre Form

$$axx + byy + czz + 2a'yz + 2b'xz + 2c'xy$$

das Quadrat der Entfernung zweier unbestimmter Punkte im Raume, deren Coordinaten in Beziehung auf drei Axen (1), (2), (3) die Unterschiede $x\sqrt{a}$, $y\sqrt{b}$, $z\sqrt{c}$

geben: die Cosinus der Winkel zwischen den Axen (2) und (3), (1) und (3), (1) und (2) sind hier resp. $\frac{a'}{\sqrt{bc}}$, $\frac{b'}{\sqrt{ac}}$, $\frac{c'}{\sqrt{ab}}$. Insofern hier x, y, s blos ganze Zahlen bedeuten sollen, bezieht sich die Form auf ein System parallelepipedisch geordneter, d, i. durch die Durchschnitte dreier Systeme paralleler äquidistanter Ebenen sich ergebender Punkte. Der ganze Raum erscheint so in lauter gleiche Parallelepipeden getheilt, deren Eckpunkte jenes System von Punkten ausmachen. und das Quadrat des Rauminhalts eines Elementar-Parallelepipedum ist dem mit positivem Zeichen genommenen Determinanten der ternären Form gleich. quivalente Formen repräsentiren ein und dasselbe System von Punkten, nur auf andere Axen oder Fundamentalebenen bezogen. Auf gleiche Weise finden alle andere Hauptmomente der Theorie der ternären Formen hier ihre geometrische Bedeutung, das Enthaltensein einer Form unter einer andern, die Darstellung einer bestimmten Zahl oder einer unbestimmten binären Form durch eine ternäre. die Lehre von den zugeordneten ternären Formen (formae adiunctae), das Wegfallen der Unterscheidung zwischen eigentlicher und uneigentlicher Aequivalenz. das Wesen der reducirten Formen u. s. w., wir müssen uns aber auf obige Andeutungen beschränken, zumal da das vorliegende Werk, welches die ternären Formen lediglich aus rein arithmetischem Gesichtspunkte betrachtet, nur mittelbarer Weise Veranlassung dazu gegeben hat. Man wird wenigstens daraus erkennen, welch ein reiches Feld hier den Untersuchungen geöffnet ist, die nicht blos für sich ein hohes theoretisches Interesse haben, sondern auch zu einer eben so bequemen als allgemeinen Behandlung aller Relationen unter den Krystallformen benutzt werden können. In das Detail dieser Benutzung einzugehen, ist hier der Ort nicht: wir dürfen jedoch die Bemerkung nicht übergehen, dass wenn gleich ursprünglich angenommen ist, dass a, b, c, a', b', c' ganze Zahlen vorstellen, doch der grösste Theil der Lehre von den ternären Formen, und namentlich dasjenige, was für jene Benutzung erforderlich ist, auch unabhängig von jener Voraussetzung gültig bleibt. In der That führen zwar Hauv's Angaben bei den meisten Krystallgattungen auf sehr einfache ganze Werthe der Coëfficienten in den ternären Formen, welche sich auf die jenen entsprechende Anordnung des Punktensystems beziehen; allein die genaueren späteren Messungen von Wolla-STON, MALUS, BIOT, KUPFFER u. a. stehen damit im Widerspruch, und machen es zweifelhaft, ob rationale Verhältnisse jene Coëfficienten überall naturgemäss sind; jedenfalls aber lassen sich, wenn man nicht in der Theorie die Beschränkung auf ganze Werthe der Coëfficienten weglassen will, da es dabei nicht auf absolute Werthe, sondern nur auf ihr Verhältniss unter einander ankommt, allezeit ganze Zahlen finden, die den Messungsresultaten so nahe kommen, wie man nur will.

Schliesslich wollen wir noch dem oben angeführten Seeber'schen Lehrsatze seine geometrische Bedeutung unterlegen. Wenn ein Parallelepipedum so beschaffen ist, dass keine seiner zwölf Kanten (unter denen je vier einander gleich sind) grösser ist, weder als eine der zwölf Diagonalen von Seitenflächen (die paarweise gleich sind), noch als eine der vier Diagonalen des Parallelepipedum: so ist der mit $\sqrt{2}$ multiplicirte Rauminhalt desselben nicht kleiner, als der Rauminhalt eines aus denselben Kanten gebildeten rechtwinklichten Parallelepipedum.

HANDSCHRIFTLICHER

NACHLASS.

SOLUTIO CONGRUENTIAE $X^m-1 \equiv 0$.

ANALYSIS RESIDUORUM. CAPUT SEXTUM. PARS PRIOR.

237.

In Cap. m docuimus, congruentiam $x^n \equiv 1$, si pro modulo accipiatur numerus primus p, habere μ radices, quando μ est maxima communis mensura numerorum n et p-1, hasque radices cum radicibus congr. $x^{\mu} \equiv 1$ penitus convenire. Quamobrem eum casum considerare sufficit, ubi n est pars aliquota numeri p-1. Quod autem non modo congruentiae $x^n-1 \equiv 0$ sed cuiusvis alius solutio pro modulis quibuscunque ex solutione pro modulis, qui sunt numeri primi, possit derivari, iam passim est ostensum in fraque (Cap. vm) fusius docebitur.

238.

Sed ne hic quidem subsistere opus est; namque eodem Capite m exposuimus, congruentiae $x^n \equiv 1$ solutionem a resolutione similium congruentiarum pendere $x^a \equiv 1$, $x^b \equiv 1$ etc., ubi a, b etc. sunt numeri primi aut numerorum primorum potestates et n productum ex his numeris. Si scilicet A, B etc. sunt respective radices quaecunque congruentiarum $x^a \equiv 1$, $x^b \equiv 1$ etc., productum ex his AB... erit aliqua e radicibus congruentiae $x^n \equiv 1$. Nostrae igitur investigationes ad solutionem congruentiae $x^n \equiv 1 \pmod{p}$ restringentur, quando p est numerus primus, n numerus primus aut numeri primi potestas, simulque pars aliquota numeri p-1.

239.

Porro ex Cap. m constat, inter congruentiae $x^n \equiv 1$ radices semper aliquas dari, per quarum potestates omnes ceterae exhiberi possunt. Ita si r designet huiusmodi radicem (primitivam supra diximus, quando n = p-1, hancque expressionem hic quamquam significatione latiori retinebimus) omnes congr. propos. radices erunt

$$1, r, rr, r^3 \ldots r^{n-1}$$

Huiusmodi ergo radices omni studio sunt investigandae, quoniam his inventis ceterae sponte patebunt. Brevitatis gratia quamcunque ipsius r potestatem per exponentem uncis inclusum designamus, ita ut (0) denotet unitatem, (1) radicem quamcunque primitivam congruentiae $x^n \equiv 1$, (2) ipsius (1) quadratum etc.: ita ut haec series (0), (1), (2), (3), (n-1) omnes radices amplectatur. Ceterum constat, (k) semper fore talem radicem primitivam, quoties k ad n est primus; i. e. nostro casu (ubi n est numeri primi t potestas m0, quoties m1 insum m2 in non dividit. Manifesto vero signa (1), (2) etc. per se sunt indeterminata; sed simulac ipsi (1) valor aliquis determinatus tribuitur, omnia cetera determinata fient.

240.

Quoniam radices primitivas prae ceteris investigare propositum est, has a ceteris primum separare oportet. Quod fiet, si e serie $(0), (1), (2) \dots (n-1)$ omnes terminos (k) eiiciamus, ubi k per t dividitur; quodsi autem n est numerus primus seu v = 1, unicus (0) erit abrogandus. Priusquam vero ad disquisitionem radicum superstitum progrediamur, lectorem sedulo admonemus exempla aliquot sibi conficere, ut omnia, quae sine his forsan generalius dicta viderentur, in concreto intueri possit. Nos aliquod apponimus; sed non ideo superfluum erit alia proprio Marte elaborare.

Sit p = 29; n = 7 et septenae congruentiae $x^7 \equiv 1 \pmod{29}$ radices erunt 1, 7, 16, 20, 23, 24, 25. Quoniam n est numerus primus, omnes hae radices praeter 1 erunt primitivae; posito igitur 7 = (1) signa haec significabunt:

Quivis ceterum memor erit, signa (n) et (0), (n+1) et (1) etc. et in genere (a) et (b) aequivalere, quoties $a \equiv b \pmod{n}$.

241.

Sed ad nostrum propositum alio adhuc modo erit procedendum. Videlicet eos tantum terminos (k) retinemus, ubi k iper t non dividitur, quorum multitudo est $\frac{t-1}{t}$. $n = \lambda$; omnes autem hi numeri (aut ipsis secundum n congrui) per potestates successivas alicuius numeri exhiberi possunt. Sit hic $= \rho$; quare omnes radices primitivae congruentiae $x^n \equiv 1$ ita denotabuntur

(1)
$$(\rho)$$
 (ρ^2) (ρ^3) \dots $(\rho^{\lambda-1})$

Hoc autem artificio id obtinemus, ut omnes radices non primitivae penitus excludantur, cuius rei rationes et emolumenta infra clarius cognoscentur. In nostro igitur exemplo ponere possumus $\rho=3$ et radices congruentiae $x^7\equiv 1$ primitivae ita ordinantur

242.

Ne lector ignarus sit, quorsum disquisitiones sequentes tendant, theorema, quod demonstrandum atque dilucidandum nobis proponimus, indicare iuvabit.

Si numerus λ (qui est $= t^{\gamma-1} \cdot t - 1$) habeat factores simplices a, b, c, d etc. et sit $\lambda = a^{\alpha}b^{\beta}c^{\gamma}...$, resolutio congruentiae $x^{n} - 1 \equiv 0$ pendet a resolutione $\alpha + \beta + ...$ congruentiarum inferiorum, quarum α sunt gradus a, β gradus b, γ gradus c etc.

Ita in nostro exemplo congruentiae $x^7 \equiv 1$ resolutio pendet a congruentia secundi gradus et ab alia tertii gradus; perspiciturque in genere numquam gradum harum congruentiarum a modulo p pendere. Ut autem ad huius theorematis demonstrationem perveniamus, necesse est aliquas propositiones ad nexum inter congruentias earumque radices spectantes praemittere, quamquam proprie in Cap. octavo hae disquisitiones ulterius sint persequendae.

243.

THEOREMA. Si congruentia

$$x^m + Ax^{m-1} + Bx^{m-2} + \ldots + N \equiv 0 \pmod{primus}$$

ita sit comparata, ut confecto producto ex m factoribus x-r, x-r', x-r'', x-r''... quod sit $x^m+ax^{m-1}+bx^{m-2}...+n$, sit $A\equiv a$, $B\equiv b$, $C\equiv c$ etc. secundum mod. p, quantitates r, r', r''... erunt radices congruentiae propositae nullasque alias habebit.

Demonstratio. I. Erit semper

$$x^{m} + Ax^{m-1} + Bx^{m-2} + \ldots \equiv x^{m} + ax^{m-1} + bx^{m-2} + \ldots \pmod{p}$$

Sed posterior congruentiae pars fit = 0 ponendo x = r, x = r', x = r'' etc., quare pro his ipsius x valoribus prior pars fiet $\equiv 0 \pmod{p}$. Q. E. Primum.

II. Si autem alius adhuc valor ρ nulli horum r, r' etc. congruus congruentiae propositae satisfaceret, foret

$$0 \equiv \rho^{m} + A \rho^{m-1} + B \rho^{m-2} + \ldots \equiv \rho^{m} + a \rho^{m-1} + b \rho^{m-2} + \ldots$$
$$\equiv (\rho - r)(\rho - r')(\rho - r'') \cdot \ldots$$

sed quoniam nullus factorum $\rho - r$, $\rho - r'$, $\rho - r''$, etc. est $\equiv 0$, productum ex omnibus fieri $\equiv 0$, ob p primum est absurdum. Quare praeter radices r, r' etc. nullae dantur aliae. Q. E. Secundum.

244.

PROBLEMA. Sint $r, r', r'' \dots$ quantitates incognitae, quarum multitudo sit = m, quarum summa sit $= \alpha$, summa quadratorum = 6, summa cuborum $= \gamma \dots$, summa potestatum, quarum exponens est $m, = \mu$, danturque non hi numeri (quorum multitudo etiam = m) ipsi, sed alii α' , δ' , γ' etc. singulis congrui secundum modulum p, qui sit numerus primus et > m, invenire congruentiam m^{ti} gradus, cuius radices sint r, r', r'' etc.

Solutio. Considerentur r, r', r" etc. quasi radices alicuius aequationis

$$x^{m} + Ax^{m-1} + Bx^{m-2} + Cx^{m-3} + \dots = 0$$

determinenturque eius coëfficientes A, B, C etc. (adhibendo tantummodo congruentiam loco aequalitatis) ad methodum cognitam, faciendo scilicet

$$-A \equiv \alpha'$$

$$-2B \equiv \beta' + A\alpha'$$

$$-3C \equiv \gamma' + A\beta' + B\alpha'$$

$$-4D \equiv \delta' + A\gamma' + B\beta' + C\alpha'$$
etc.
$$-mN \equiv u' + A\lambda' + \text{etc.}$$

Hi vero coëfficientes non possunt esse indeterminati, quia omnes numeri $1, 2, 3 \dots m < p$. Dico congruentiam

$$x^{m} + Ax^{m-1} + Bx^{m-2} + \ldots + N \equiv 0$$

esse quaesitam.

Demonstr. Ponatur aequationem, cuius radices sunt r, r', r'', r''' etc., esse hanc

$$x^{m} + ax^{m-1} + bx^{m-2} + \ldots = 0$$

eritque

$$-a = \alpha$$

$$-2b = 6+a\alpha$$

$$-3c = \gamma+a6+b\alpha$$

$$-4d = \delta+a\gamma+b6+c\alpha$$
etc.

Cuique autem manifestum hinc erit, fore

$$a \equiv A$$
, $b \equiv B$, $c \equiv C$ etc. (mod. p)

quare per § praec. numeri r, r', r" etc., qui sunt radices aequationis

$$x^{m} + ax^{m-1} + bx^{m-2} + \dots = 0$$

erunt simul radices congruentiae

$$x^{m} + Ax^{m-1} + Bx^{m-2} + ... \equiv 0$$
 Q. E. D.

Exempla componenda lectoribus linquimus.

245.

Ad propositum nostrum revertimur. Retentis characteribus §§. 242 et antec. adhibitis ostendere aggredimur, si λ sit productum e factoribus quibuscunque 26*

efg etc., radices congruentiae $x^n \equiv 1$ primitivas, quarum multitudo est λ , ita in e classes discerpi posse, ut aggregata radicum in eandem classem relatarum per congruentiam gradus e^{ti} dentur; his vero tamquam cognitis suppositis quamvis classem ita in f ordines subdividi posse, ut aggregata cuiusvis ordinis per congruentiam f^{ti} gradus dentur, hique ordines rursus subdividi possunt etc., usque dum ad singulas radices perveniatur.

246.

Definitio. Complexum terminorum omnium in tali forma $(\rho^{ko+\alpha})$ (§. 241) contentorum periodum completam sive simpliciter periodum dicemus. Designat vero e divisorem aliquem numeri λ ; α numerum quemcunque datum, k omnes numeros integros a 0 usque ad $\frac{\lambda}{\epsilon}$ —1; brevitatis vero gratia talem periodum ita designamus $(e \cdot \alpha)$. Ita in exemplo nostro termini

Iam si omnes termini in periodos quomodocunque distribuantur, singulaeque periodi iterum in periodos minores et sic porro, dicimus, id obtineri quod in §. praec. promisimus.

Antequam vero hanc expositionem ipsam aggrediamur, ostendemus, formationi talis periodi, quamquam a duabus quantitatibus quodammodo arbitrariis r, ρ dependeat, nihil tamen vagi inesse, seu quomodocunque hae quantitates eligantur, semper eosdem terminos in eandem periodum concurrere (siquidem quot terminos periodus continere debeat, fuerit praescriptum).

Criterium, duos terminos A, B in eadem periodo esse, inde petitur, quod uterque in tali forma continetur: $(\rho^{ke+\alpha})$ sive esse $A \equiv r^{\rho^{ke+\alpha}}$, $B \equiv r^{\rho^{ke+\alpha}} \pmod{p}$. Hic autem r est radix primitiva congruentiae $x^n \equiv 1 \pmod{p}$; ρ vero radix primitiva congruentiae $x^{\lambda} \equiv 1 \pmod{n}$; vide supra.

Demonstrandum est, si loco numerorum r, ρ alii eligantur, puta s, ϵ , tunc A et B in similibus formis $s^{\sigma^{le+\theta}}$, $s^{\sigma^{le+\theta}}$ comprehendi.

Sit $s^m \equiv r \pmod{p}$; $\sigma^{\mu} \equiv \rho \pmod{n}$ et $m \equiv \sigma^{\zeta} \pmod{n}$, quod fieri potest, quia r, ρ sunt radices primitivae: erit vero m primus ad n, μ ad λ (Cap. III). Per debitas substitutiones obtinebimus

$$A \equiv s^{\sigma^{\mu h \sigma + \mu \alpha + \xi}}, \quad B = s^{\sigma^{\mu h \sigma + \mu \alpha + \xi}} \qquad Q. E. D.$$

247.

THEOREMA. Productum e binis periodis similibus independenter a numero p componi potest per additionem periodorum similium et numerorum datorum.

(Periodos similes vocamus, quae aeque multos terminos comprehendunt sive ubi numerus e est idem).

Exempl. Sit n = 7, productum e periodis (1)+(6) et (2)+(5) erit (propter $(a) \times (b) = (a+b)$) (3)+(6)+(8)+(11) sive constat e periodis (3)+(4) et (1)+(6).

Demonstr. Sit $\frac{\lambda}{\epsilon} = f$, atque periodi datae $(e \cdot \alpha)$ et $(e \cdot \delta)$ seu aggregata

$$(\rho^{\alpha}) + (\rho^{\alpha+e}) + (\rho^{\alpha+2e}) + \dots + (\rho^{\alpha+(f-1)e}) \cdot \dots \cdot P$$

 $(\rho^{6}) + (\rho^{6+e}) + (\rho^{6+2e}) + \dots + (\rho^{6+(f-1)e}) \cdot \dots \cdot Q$

Productum PQ ex f^2 terminis constabit. Hi vero ita sunt ordinandi. Formentur f series, quarum singulae ex f terminis constent. Prima complectatur productum ipsius P in (ρ^6) , secunda productum $P.(\rho^{6+\sigma})$ etc. etc. In prima serie primum locum occupet productum ex parte (ρ^{α}) oriundum, secundum productum ex $(\rho^{\alpha+\sigma})$ et sic cetera deinceps; in secunda vero primus locus producto e parte $(\rho^{\alpha+\sigma})$ oriundo tribuatur, secundus producto e parte $(\rho^{\alpha+2\sigma})$ etc., ultimus denique producto e parte (ρ^{α}) ; tertia inchoet a producto e parte $(\rho^{\alpha+2\sigma})$ et sic porro, post productum e parte ultima sequatur productum e parte prima et secunda etc. etc., sive partibus successivis periodi P per 1, 2, 3 . . . z et periodi P per P partes constituantur

Tunc omnes termini in singulis seriebus eundem locum occupantes in f ordines colligantur; et dico

1° si aliquis terminis = 1, tum omnes ceteros eiusdem ordinis etiam fore = 1

2° quemvis ordinem, in quo nullus terminus = 1, periodum formare. — Manifesto his demonstratis propositum consecuti erimus.

Forma generalis talis ordinis erit

$$(\rho^{\alpha+ko}+\rho^{6}), \ (\rho^{\alpha+(k+1)o}+\rho^{6+o}), \ (\rho^{\alpha+(k+2)o}+\rho^{6+2o}), \ . \ . \ (\rho^{\alpha+(k+f-1)o}+\rho^{6+(f-1)o})$$

potest enim pro $\rho^{\alpha+(k-1)\theta}$ etiam scribi $\rho^{\alpha+(k+f-1)\theta}$ propter $ef = \lambda$ et $\rho^{\lambda} \equiv 1$ (mod. n), et sic de antecedentibus. Ponatur $\rho^{\alpha+k\theta} + \rho^{\delta} \equiv \rho^{\alpha} \pmod{n}$, quod est permissum, nisi forte $\rho^{\alpha+k\theta} + \rho^{\delta}$ per n divisibilis*), poteritque ordo ita exhiberi (ρ^{α}) , $(\rho^{\alpha+\theta})$, $(\rho^{\alpha+2\theta})$... $(\rho^{\alpha+(f-1)\theta})$, qui manifesto est periodus $(e \cdot \alpha)$; si vero $\rho^{\alpha+k\theta} + \rho^{\delta}$ per n dividitur, omnes ordinis termini erunt $\equiv (0)$ i. e. $\equiv 1$. Q. E. D.

Annot. Demonstratio haec simul methodum facillimam ostendit productum evolvendi. Aliam infra dabimus, quae hac quidem praerogativa caret, sed ob simplicitatem non contemnenda videtur.

248.

Periodos omnes minores, quae periodum maiorem constituunt, periodorum systema nominamus. Ita periodi

$$(ef * \alpha), (ef * f + \alpha), (ef * 2f + \alpha) \dots (ef * (e - 1)f + \alpha)$$

e quibus componitur periodus $(f \cdot \alpha)$, hoc nomine designabuntur. Rite ordinatum erit, si numeri post signum \cdot positi, ut hic α , $f + \alpha$, $2f + \alpha$, secundum seriem arithmeticam (cuius differentia est f) progrediantur; similia denique erunt systemata, si tam minores quam maiores periodi sint similes.

THEOREMA. Si periodi systematum duorum similium rile ordinatorum invicem multiplicentur, prima scilicet in primam, secunda in secundam, tertia in tertiam etc., summa omnium productorum e periodis maiori similibus et numeris datis componi potest.

Demonstr. Sint systemata

$$(ef*\alpha), (ef*\alpha+f), (ef*\alpha+2f) \dots$$

 $(ef*\delta), (ef*\delta+f), (ef*\delta+2f) \dots$

^{*)} Propositio paullo aliter exprimi debebit, si s generaliter numeri primi potestatem denotat; quando vero est numerus primus, nihil immutandum.

Producta e singulis periodis systematis prioris in periodos respondentes posterioris constabunt (§. praec.) e numeris integris et periodis similibus. Sed parvula attentio ad genesin harum periodorum docebit, si

 $(ef*\alpha) \times (ef*\delta)$ constet ex numero integro N et periodis (ef*A), (ef*B), (ef*C) etc. tum constare producta

$$\begin{array}{l} (ef * \alpha + f) \times (ef * \delta + f) \text{ ex } N \text{ et perr. } (ef * A + f), \ \ (ef * B + f), \ \ (ef * C + f) \text{ etc.} \\ (ef * \alpha + 2f) \times (ef * \delta + 2f) \text{ ex } N \text{ et perr. } (ef * A + 2f), \ \ (ef * B + 2f), \ \ (ef * C + 2f) \text{ etc.} \\ \text{et generaliter} \end{array}$$

$$(ef \cdot \alpha + \mu f) \times (ef \cdot b + \mu f)$$
ex N et perr. $(ef \cdot A + \mu f)$, $(ef \cdot B + \mu f)$, $(ef \cdot C + \mu f)$ etc.

Unde sponte patet, omnium periodorum summam fore

$$eN+(f \cdot A)+(f \cdot B)+(f \cdot C)$$
 etc. Q. E. D.

Etiam haec demonstratio methodum suppeditat summam illam inveniendi.

249.

Facile est hoc theorema generalius adhuc reddere. Scilicet si habeantur quotcunque systemata rite ordinata similia fiantque producta ex omnibus periodis primis, secundis etc., omnium horum productorum summam constare e numeris et periodis maioribus. Si omnia haec systemata aequalia assumantur, summa potestatum quarumcunque omnium periodorum constabit e numeris et periodis maiori similibus. Iam hinc patescit, quorsum haec tendant. Sit $\lambda = efgh...$; discerpantur omnes radices primae in e periodos A, A', A'' etc., quaevis harum iterum in f: B, B', B'' etc., harum singulae in g: C, C', C'' etc. Iam omnium periodorum summa datur, est scilicet $\equiv -1$. Sed secundum ea, quae modo diximus, dabitur etiam

$$(A)^2 + (A')^2 + (A'')^2 + (A''')^2 + \text{ etc.}$$

 $(A)^3 + (A')^3 + (A'')^3 + (A''')^3 + \text{ etc.}$
etc. etc.

Hinc e §. 244 congruentia gradus e^{ti} inveniri poterit, cuius radices sint A, A', A'' etc. Iam his tamquam cognitis suppositis, quaevis periodus discerpatur in minores

$$A ext{ in } B, B', B'' \dots$$

 $A' ext{ in } B^{(n)}, B^{(n+1)}, B^{(n+2)} \dots$
etc.

Datur ergo $B+B'+B''+\ldots \equiv A$. Sed constat

$$(B)^{2}+(B')^{2}+(B'')^{2}+\ldots$$

 $(B)^{3}+(B')^{3}+(B'')^{3}+\ldots$
etc.

ex unitatibus et periodis A, A', A'' etc. Quare B, B', B'' etc. dabuntur per congruentiam gradus f^{ti} , ex qua inveniri possunt; similique modo periodi, ex quibus constant A', A'' etc., poterunt determinari. Quisquis autem hinc videbit, prorsus simili methodo quamvis periodum in minores subdividi posse, donec ad radices ipsas perveniatur.

250.

Sed in harum regularum applicatione difficultas occurrit, quam dimovere debemus. Quoniam scilicet quaevis congruentia plures radices habeat, quod cuique signum tribuendum sit, ut ab invicem rite dignosci possint, est videndum. Quoniam periodorum designatio a numeris r, ρ pendet, qui ad libitum assumi possunt, necessario etiam designationi aliquid arbitrarii inhaerere debet. Numerus quidem ρ iam ab initio est stabiliendus. Methodi nostrae indoles in eo potissimum consistit, ut ex periodis maioribus periodos minores deducamus. Sed hoc sine debito periodorum ordine, quem per signa assecuti sumus, fieri nequit. Quare eo nitendum est, ut omnes periodi, quamprimum sunt inventae, signis suis distinguantur.

Sit periodus A designata per $(e * \alpha)$ atque in f periodos B, C, D etc. discerpta, quas designare oportet. Patet quamvis in tali forma fore contentam $(ef * ke + \alpha)$; sed dico, pro aliqua earum B numerum k ad libitum assumi et inde ceterarum collocationem derivari posse.

Sit R radix aliqua primitiva congr. $x^n \equiv 1$ constetque B e terminis $R^{\mu} + R^{\nu} + \text{etc.}$, sit $\frac{1}{\mu} \rho^{ke+a} \equiv \frac{1}{\nu} (\text{mod. } n)$ et quoniam valor ipsius r est arbitrarius (si modo A nanciscatur signum $(e \cdot \alpha)$, quod sponte fieri manifestum est), ponatur $r \equiv R^{\nu} (\text{mod. } p)$; quare terminus primus ipsius B erit $r^{\rho^{ke+a}}$ et B per

 $(ef * ke + \alpha)$ designare licet. Si loco ipsius R^{μ} terminum R^{ν} consideravissemus, alium ipsius r valorem nacti essemus; sed sine negotio perspicitur, pro quacunque radice ρ , radicem r, $\frac{\lambda}{ef}$ valores diversos habere posse.

251.

Iam quomodo ex designatione unius periodi ceterae signis suis distinguantur, videamus. Ad hunc vero finem aliam methodum quaerere oportet reliquas periodos inveniendi; namque quatenus reliquae ut ipsa A radices alicuius congruentiae sunt, nullus in illis ordo cernitur. Ponamus ipsum A ita esse designatum $(ef \cdot 0)$, ex praecc. sequitur, fore

$$A^2$$
 formae $M + N(ef \cdot 0) + O(ef \cdot 1) + P(ef \cdot 2) + \dots$
 A^3 formae $M' + N'(ef \cdot 0) + O'(ef \cdot 1) + \dots$
etc.
$$A^{ef-1}$$
 formae $M^* + N^*(ef \cdot 0) + O^*(ef \cdot 1) + \dots$

His accedit congruentia

$$(ef \cdot 0) + (ef \cdot 1) + \dots + (ef \cdot ef - 1) \equiv -1$$

Habentur itaque ef—1 congruentiae lineares totidemque quantitates incognitae, quae igitur per eliminationem determinari possunt.

Annot. Casus occurrere potest, quo quantitates incognitae per huiusmodi expressiones dantur $\frac{V}{Wp}$; quomodo vero huic difficultati remedium afferri possit, infra docebimus. Hic, quoniam hic casus perraro occurrere potest, ei immorari nolumus.

252.

Haec in genere de solutione congruentiarum purarum sufficiant. Passim infra multa adhuc de ipsis dicentur; praesertim multa ex solutione aequationum purarum huc trahi possunt, quae loco suo annotare non negligemus. Exemplum adhuc apponimus, quo cum praeceptis collato, omnia minus peritis clariora fient.

Sit n = 31, p = 311, sive investigandae sunt radices congruentiae x^{31} —1 $\equiv 0 \pmod{311}$. Statim radix primitiva congruentiae y^{30} —1 $\equiv \pmod{31}$ est quaerenda, qualis est $y \equiv 3$. Ponamus itaque $\rho \equiv 3$ et omnes congruentiae propositae radices primitivas primum in 5 periodos discerpamus, scilicet

11.

$$(5 \cdot 0) \cdot \dots \cdot (1) + (26) + (25) + (30) + (5) + (6)$$

 $(5 \cdot 1) \cdot \dots \cdot (3) + (16) + (13) + (28) + (15) + (18)$
 $(5 \cdot 2) \cdot \dots \cdot (9) + (17) + (8) + (22) + (14) + (23)$
 $(5 \cdot 3) \cdot \dots \cdot (27) + (20) + (24) + (4) + (11) + (7)$
 $(5 \cdot 4) \cdot \dots \cdot (19) + (29) + (10) + (12) + (2) + (21)$

Per calculos requisitos invenietur summa periodd. $\equiv -1$, quadrat. $\equiv 25$, cub. $\equiv 26$, biquad. $\equiv 249$, pott. quintt. $\equiv 564$.

Quare periodi erunt radices congruentiae

$$x^5 + x^4 - 12x^3 - 21x^2 + x + 5 \equiv 0$$

Porro autem invenitur

$$(5 \cdot 0)^2 \equiv 6 + 2(5 \cdot 0) + 2(5 \cdot 3) + (5 \cdot 4)$$

$$(5 \cdot 0)^3 \equiv 12 + 15(5 \cdot 0) + 4(5 \cdot 1) + 3(5 \cdot 2) + 6(5 \cdot 3) + 6(5 \cdot 4)$$

$$(5 \cdot 0)^4 \equiv 90 + 60(5 \cdot 0) + 28(5 \cdot 1) + 26(5 \cdot 2) + 49(5 \cdot 3) + 38(5 \cdot 4)$$

et hinc per eliminationem

$$5(5 \cdot 1) \equiv 3(5 \cdot 0)^{4} - (5 \cdot 0)^{3} - 33(5 \cdot 0)^{2} - 24(5 \cdot 0) + 15$$

$$5(5 \cdot 2) \equiv -2(5 \cdot 0)^{4} - (5 \cdot 0)^{3} + 22(5 \cdot 0)^{2} + 31(5 \cdot 0)$$

$$5(5 \cdot 3) \equiv (5 \cdot 0)^{4} - 2(5 \cdot 0)^{3}$$

$$5(5 \cdot 4) \equiv -2(5 \cdot 0)^{4} + 4(5 \cdot 0)^{3}$$

Congruentiae vero inventae una radix est \equiv 17; quare si ponatur $(5 \cdot 0) \equiv$ 17, erit $(5 \cdot 1) \equiv$ 183, $(5 \cdot 2) \equiv$ 263, $(5 \cdot 3) \equiv$ 91, $(5 \cdot 4) \equiv$ 67.

Iam periodi inventae iterum discerpantur singulae in ternas; scilicet

$$(5.0)$$
 in (15.0) , (15.5) , (15.10) sive in $(1)+(30)$, $(26)+(5)$, $(25)+(6)$
 (5.1) in (15.1) , (15.6) , (15.11) sive in $(3)+(28)$, $(16)+(15)$, $(13)+(18)$ etc.

Ponatur periodos, in quas discerpta est

(5.0) esse radices congr.
$$x^3 + Ax^2 + Bx + C \equiv 0$$

(5.1) $x^3 + A'x^2 + B'x + C' \equiv 0$
(5.2) $x^3 + A''x^2 + B''x + C'' \equiv 0$
etc.

eritque

$$A \equiv -(5 \cdot 0), \quad B \equiv (5 \cdot 0) + (5 \cdot 3), \quad C \equiv -2 - (5 \cdot 4)$$

 $A' \equiv -(5 \cdot 1), \quad B' \equiv (5 \cdot 1) + (5 \cdot 4), \quad C' \equiv -2 - (5 \cdot 0)$
etc. etc.

Quare

(15.0), (15.5), (15.10) erunt radices congr.
$$x^3-17x^2+108x-60 \equiv 0$$
 (15.1), (15.6), (15.11) (15.2), (15.7), (15.12) (15.3), (15.8), (15.13) (15.4), (15.9), (15.14)

Hic autem habetur

$$(15 \cdot 0)^{3}$$
 $\longrightarrow 3(15 \cdot 0) \Longrightarrow (15 \cdot 1)$
 $(15 \cdot 1)^{3}$ $\longrightarrow 3(15 \cdot 1) \Longrightarrow (15 \cdot 2)$
etc.

Unde si una radicum primae congruentiae, 10, ponatur (15+0) habetur

$$(15 \cdot 0) \equiv$$
 $(15 \cdot 1) \equiv$
 $(15 \cdot 10) \equiv$
 $(15 \cdot 1) \equiv$
 $(15 \cdot 6) \equiv$
 $(15 \cdot 11) \equiv$
 $(15 \cdot 2) \equiv -151$
 $(15 \cdot 7) \equiv$
 $(15 \cdot 12) \equiv$
 $(15 \cdot 3) \equiv -39$
 $(15 \cdot 8) \equiv$
 $(15 \cdot 13) \equiv$
 $(15 \cdot 4) \equiv -112$
 $(15 \cdot 9) \equiv$
 $(15 \cdot 14) \equiv$

Tandem harum singularum periodorum capiantur termini constituentes eruntque

(1), (30) radices congr.
$$x^2 - (15 \cdot 0)x + 1 \equiv 0$$

(3), (28) $x^2 - (15 \cdot 1)x + 1 \equiv 0$
etc.

Prima congruentiae radices sunt 126 et 195, quae igitur erunt radices primitivae congruentiae $x^{31} \equiv 1$ et ex his reliquae sine negotio deduci possunt.

DISQUISITIONES GENERALES DE CONGRUENTIIS.

ANALYSIS RESIDUORUM CAPUT OCTAVUM.

330.

Quae in Sectionibus praecedentibus de congruentiis sunt tradita, simplicissimos tantum casus attinent methodisque particularibus plerumque sunt eruta. In hac Sectione periculum faciemus congruentiarum theoriam, quantum quidem adhuc licet, ad altiora principia reducere, simili fere modo ut aequationum theoria considerari solet, quacum insignis intercedit analogia, uti iam saepius observavimus. Quoniam igitur omnes congruentiae algebraicae unicam incognitam involventes ad hanc formam reduci possunt

$$X \equiv 0$$

ubi X est functio algebraica incognitae x, nullas fractiones involvens, huiusmodi functiones imprimis erunt considerandae.

331.

Si P, Q sint functiones indeterminatae x huius formae

$$A+Bx+Cxx+Dx^3+\ldots$$

$$H+Ix+Kxx+Lx^3+\ldots$$

(quales abhinc semper per functiones simpliciter designamus) et in utraque coëfficientes similium ipsius x potestatum secundum quemcunque modulum sint con-

grui, functiones secundum hunc modulum congruae dicentur. Perspicuum autem est, functiones congruas, si pro indeterminata valores aequales aut congrui accipiantur, valores congruos nancisci. Quae in Capp I. et II. de numeris demonstravimus, plerumque etiam de functionibus sunt tenenda; ita si $P \equiv P'$, $Q \equiv Q'$, $R \equiv R'$ etc., patet, fore P + Q + R etc. $\equiv P' + Q' + R' + \text{etc.}$; $P - Q \equiv P' - Q'$; $PQ \equiv P'Q'$; PQR etc. $\equiv P'Q'R'$ etc. Demonstrationes facillimae, possuntque simili modo adornari ut Cap. I^{mo}.

Si $PQ \equiv R$, functionem Q per $\frac{R}{P}$ designabimus apposito modulo, dicemusque, Q esse quotientem, si R per P secundum hunc modulum dividatur. Manifestum autem est, loco ipsius Q omnes functiones ipsi congruas accipi posse, quas omnes tamquam *unicum* valorem spectabimus. Infra vero ostendemus, quibus casibus talis quotiens plures valores (i. e. incongruos) nancisci possit.

Si modulus sit numerus primus et divisor Q unicum tantum terminum involvat Hx^h , cuius coëfficiens H per modulum non dividitur, i.e. si modo H non sit $\equiv 0$, quotiens plures valores habere nequit. Si enim esset $QA \equiv P$ et $QB \equiv P$, foret $Q(A-B) \equiv 0$. Iam sit

$$Q \equiv \ldots + Hx^h + Ix^{h+1} + \text{etc.}$$

ita ut H per p non dividatur, et

$$A-B \equiv Lx^l + Mx^{l+1} + \text{ etc.}$$

ita ut L per p non dividatur (hanc autem formam A-B habebit, quia supponimus A non $\equiv B$). Foretque $Q(A-B) \equiv HLx^{k+l} + \text{ etc.} \equiv 0$. Q. E. A., quia HL non $\equiv 0$.

Facile iam regulae dantur functionem P per Q, siquidem fieri potest, dividendi; sit

$$P \equiv a x^{a} + b x^{a+1} + c x^{a+2} + \text{ etc. } + k x^{x}$$

$$Q \equiv m x^{\mu} + n x^{\mu+1} + q x^{\mu+2} + \text{ etc. } + t x^{\tau}$$

ita ut a, k, m, t per modulum non dividantur, debetque esse α non $<\mu$, \times non $<\tau$. Divisio autem simili modo institui potest, ut in calculo logistico communi, modo semper pro quotiente numerus integer accipiatur; scilicet quotiens semper

hanc formam habebit $\frac{r}{m}$, quod secundum modulum determinari debet. Iam zi postquam $x+\mu-\alpha-\tau+1$ termini sunt inventi, residuum remaneat, quod erit formae

$$Ax^{x+\mu-\tau+1}+Bx^{x+\mu-\tau+2}+\ldots+Cx^x$$

neque omnes coëfficientes A, B, C.. sint $\equiv 0$, P per Q dividi nequit.

Ceterum patet, divisionem etiam a terminis, qui maximas dimensiones habent, kx^x , tx^x incipi potuisse; operatio facilitabitur, si Q ad formam redigatur

$$mx^{\mu}(1+qx+rxx+\text{etc.})$$

unde fiet posito $mv \equiv 1$

$$\frac{P}{Q} = \frac{v P : x^{\mu}}{1 + q x + \text{etc.}}$$

tunc vero divisio per methodos communes perfici potest.

333.

THEOREMA. Si $x \equiv a$ fuerit radix congruentiae $\xi \equiv 0$, ξ per x-a dividi poterit secundum congruentiae modulum.

Demonstratio. Si enim dividi non posset, foret $\xi \equiv (x-a)\xi' + b$, ita ut b per modulum dividi non posset. Iam si x ponatur $\equiv a$, ξ fiet $\equiv 0$ (hyp.), quare $(x-a)\xi' + b \equiv 0$; sed tunc etiam $(x-a)\xi' \equiv 0$, quare b necessario erit $\equiv 0$.

334.

PROBLEMA. Datis binis functionibus, earum communem divisorem (maximae dimensionis) invenire secundum modulum datum.

Solutio. Sint functiones A, B. Habeat A totidem aut plures dimensiones quam B; dividatur A per B, si fieri potest sine residuo, B erit divisor communis quaesitus. Si residuum maneat C, hoc inferiorem dimensionem habebit, quam B. Sit itaque

$$A \equiv aB + C$$
, $B \equiv bC + D$, $C \equiv cD + E$, etc.

ita ut A, B, C, D, a, b, c etc. sint functiones, et dimensiones functionum A, B, C, D etc. constituant seriem decrescentem. Iam si tandem aliqua divisio succedat, ex. gr. $D \equiv dE$, ultimus divisor erit divisor communis quaesitus; si vero nulla succedat, tandem ad residuum pervenietur, quod nullam dimensionem

habeat i. e. ad numerum; hoc autem casu functiones A, B communem divisorem non habent.

Demonstr. Si divisor E functionem praecedentem sine residuo dividat, omnes antecedentes dividere facile perspicitur; quare E erit divisor communis functionum A, B. Q. E. Pr. Si autem daretur divisor maioris dimensionis, puta E', hic propter $C \equiv A - aB$ etiam C similique argumento etiam D etc. adeoque E divideret, functio maioris dimensionis functionem minoris. Q. E. A. Q. E. Scd. Hinc etiam patet, si divisor communis ullius dimensionis datur, ad residuum nullius dimensionis perveniri non posse; alias enim functio nullius dimensionis per functionem alicuius dimensionis divideretur. Q. E. A.

335.

THEOREMA. Si A, B sint functiones inter se primae secundum modulum p; A autem dimensionis α , B dimensionis δ ; inveniri poterunt functiones P, Q, dimensionum quae sunt respective $< \delta$, $< \alpha$, ita ut

$$PA + QB \equiv 1 \pmod{p}$$

Demonstr. Hoc enim casu erit

$$A \equiv aB + C$$
, $B \equiv bC + D$, etc. $K \equiv kL + M$

ita ut dimensiones functionum A, B, C, D, ... K, L, M continuo decrescant et M nullam dimensionem habeat. Iam formentur series

$$a, a', a'', a''', \ldots a^{(x)}$$

 $1, b, b', b'', \ldots b^{(x-1)}$

ita ut

$$a' \equiv ba+1$$
 $a'' \equiv ca'+a$ $a''' \equiv da''+a'$ etc.
 $b' \equiv cb+1$ $b'' \equiv db'+b$ $b''' \equiv eb''+b'$ etc.

eritque

$$A-aB \equiv +C$$
, $bA-a'B \equiv -D$, $b'A-a''B \equiv +E$, etc.

uti sine negotio perspicitur; hinc tandem

$$b^{(x-1)}A-a^{(x)}B\equiv \pm M$$

Iam sit $\frac{1}{\pm M} \equiv \mu$, eritque ponendo $P \equiv \mu b^{(x-1)}$, $Q \equiv -\mu a^{(x)}$

$$PA + QB \equiv 1$$

Porro vero manifestum est,

Dimens. ipsius B+Dim. ipsius a esse =Dim. A.

$$Dim. C + Dim. b = Dim. B$$

etc.

Dim.L + Dim.k = Dim.K

Quare

$$Dim. L + Sum. Dim. a, b, ... k = Dim. A$$

Patet vero dimensionem ipsius $a^{(x)}$ adeoque etiam

Dim. ipsius Q esse = Sum. Dim. a, b, c, ... i. e. = α — Dim. L itaque

Dim. ipsius
$$P = 6 - \text{Dim.} L$$
 Q. E. D.

336.

Hinc autem sequitur, si M est divisor communis maximae dimensionis functionum A, B, semper poni posse

$$AP+BQ \equiv M$$

Exempla praecedentis theorematis brevitatis gratia omitto, sed lectores non negligent, per ea facilitatem huius generis problemata tractandi sibi comparare. Ceterum operae pretium erit admonere, theorema praecedens etiam de functionibus absolute sumtis valere, quarum quidem coëfficientes sint numeri rationales. Hoc ex demonstrationis modo per se elucebit. Nobis autem ei rei immorari non licet. Similia lector etiam non admonitus in sequentibus observabit.

Si A nec cum B nec cum C divisorem ullius dimensionis communem habeat, etiam cum producto BC nullum habebit divisorem communem. Sit enim

$$PA+QB \equiv 1$$
, erit $PAC+QBC \equiv C$

Iam si A cum BC divisorem M communem haberet, hic etiam ipsam C divideret contra hyp. Hinc generaliter si functio A ad B, C, D etc. prima, etiam ad omnium productum erit prima.

Si A, B, C, D etc. nullum divisorem habeant omnibus communem, fieri potest

$$PA+QB+RC+SD+$$
 etc. $\equiv 1$

Sit divisor maximae dimensionis inter A et B, M; inter M et C, M'; inter M' et D, M'' etc.: patet, ultimum huius seriei terminum fore nullis dimensionis (hyp.). Quare poni poterit

$$aA+bB \equiv M$$
, $mM+cC \equiv M'$, $m'M'+dD \equiv M''$, etc.

unde substitutionibus factis theorematis veritas apparet.

337.

THEOREMA. Si A, B, C etc. sint functiones inter se primae (quarum binae quaeque nullum habeant divisorem communem) secundum modulum p, et functio M secundum eundem modulum per singulas sit divisibilis; etiam per omnium productum erit divisibilis.

Demonstr. Poni enim potest $PA+QB \equiv 1$, quare erit

$$\frac{M}{A}Q + \frac{M}{B}P \equiv \frac{M}{AB}$$

Iam quum C ad AB prima, erit etiam M per ABC divisibilis similique ratiocinio per ABCD etc.

338.

Si congruentia $\xi \equiv 0$ habeat radices $x \equiv a$, $x \equiv b$, $x \equiv c$ etc., ξ per productum ex (x-a), (x-b), (x-c) etc. dividi poterit; cum enim a, b, c, etc. supponantur incongrui, functiones x-a, x-b, x-c etc. erunt primae inter se, et quum ξ per singulas dividatur, etiam per productum ex omnibus dividetur. Hinc patet, radicum multitudinem congruentiae dimensionem superare non posse: quae est demonstratio huius theorematis, quam polliciti sumus.

Sed simul hinc perspicitur, quomodo congruentiarum solutio partem tantummodo constituat multo altioris disquisitionis, scilicet de resolutione functionum in factores. Manifestum est, congruentiam $\xi \equiv 0$ nullas habere radices reales, si ξ nullos factores unius dimensionis habeat; at hinc nihil obstat, quominus ξ in factores duarum, trium pluriumve dimensionum resolvi possit, unde radices quasi imaginariae illi attribui possint. Revera, si simili licentia, quam recentiores mathematici usurparunt, uti talesque quantitates imaginarias introducere vo-

luissemus, omnes nostras disquisitiones sequentes incomparabiliter contrahere licuisset; sed nihilominus maluimus omnia ex principiis deducere *).

339.

Functiones secundum modulum determinatum primae vocantur, quae per nullas functiones inferiorum dimensionum secundum hunc modulum dividi possunt.

Ita omnes functiones unius dimensionis erunt primae, functiones autem duarum dimensionum aut erunt primae aut ex binis unius dimensionis compositae: quare ξ erit functio prima duarum dimensionum, si congruentia $\xi \equiv 0$ nullas radices reales admittit. Ex. gr. xx+x+1 pro modulo 5 est prima, quia

$$xx+x+1 \equiv (x-2)^2-3 \pmod{5}$$

et 3 non-residuum quadraticum numeri 5.

Hae vero functiones primae prae omnibus attentionem nostram desiderant. Quamvis enim aliae quam primi gradus ad inveniendas radices reales inservire non possint, amplior earum consideratio tum ob insignes ipsarum proprietates tum ob alias egregias veritates ex his deducendas sese commendat.

340.

THEOREMA. Functio quaecunque aut est prima aut ex functionibus primis composita; posteriorique casu unico tantum modo e functionibus primis componi potest.

Demonstr. Nisi enim functio proposita A sit prima, per aliam inferioris dimensionis B dividetur. Si B non est functio prima, per aliam C inferioris gradus dividetur, itaque pergendo patet, tandem ad functionem primam deveniri, quoniam alias haec series foret infinita, quod, quoniam dimensiones perpetuo decrescunt, absurdum est. Jam si ultima functio prima sit L, haec omnes antecedentes metietur. Quare $A \equiv LA'$ eritque A' inferioris dimensionis quam A. Quod iterum fiet $A' \equiv L'A''$ etc., patet, tandem ad functionem primam perveniri, adeoque A erit \equiv producto e functionibus primis L, L', L'' etc. Q. E. Pr.

Iam si etiam esset $A \equiv MM'M''$ etc. neque omnes L, L', L'' etc. eaedem cum omnibus M, M', M'' etc., eiiciantur eae, quae utrique seriei communes

^{*)} Alia forsan occasione de hac re opinionem nostram fusius explicabimus.

sunt. Remaneantque λ , λ' , λ'' ...; μ , μ' , μ'' , ... eritque μ ad λ , λ' , λ'' etc. prima, quare etiam ad productum $\lambda\lambda\lambda''$ etc.; tamen esse debet

$$\lambda\lambda\lambda''\ldots \equiv \mu\mu'\mu''\ldots \ i.\ e.\ \frac{\lambda\lambda\lambda'''\ldots}{\mu} \equiv \mu'\mu''\ldots \ Q.\ E.\ A.$$

341.

Primum caput harum investigationum in eo consistet, ut functionum primarum cuiusvis dimensionis multitudinem determinemus. Quoniam enim pro modulo determinato numerus omnium functionum diversarum (incongruarum) cuiuslibet gradus est definitus, ex his vero aliae sunt ex primis inferiorum graduum compositae, aliae primae, etiam harum numerus finitus erit. Rigorosa huius rei evolutio satis est lubrica; a casibus simplicioribus incipiemus.

Posito modulo = p, numerus omnium functionum diversarum n^{ti} gradus huius formae

$$x^{n} + Ax^{n-1} + Bx^{n-2} + Cx^{n-3} + \text{etc.}$$

erit p^n ; coëfficientium enim A, B, C etc. numerus est n; et quum quivis independenter a reliquis possit esse $\equiv 0, 1, 2, 3 \dots (p-1) \pmod{p}$, ex combinationum theoria sequitur, p^n combinationes diversas haberi; quae igitur omnium functionum diversarum huius gradus complexum definiunt.

Ita functiones unius dimensionis erunt p, scilicet x, x+1, x+2 usque ad x+p-1; functiones duarum dimensionum pp etc.

342.

Iam supra monuimus, omnes functiones primi gradus pro primis habendas esse; si igitur, quod ad propositum nostrum sufficit, ad eas functiones nos restringamus, quarum terminus summus habet coëfficientem 1, erunt p functiones primi gradus seu unius dimensionis.

Functiones secundi gradus omnes aut e binis primi gradus erunt compositae aut primae. Iam ex combinationum theoria constat, p res diversas admissis repetitionibus $\frac{p \cdot p + 1}{1 \cdot 2}$ modis diversis combinari posse, quare totidem functiones erunt e binis primis unius dimensionis compositae, adeoque $pp - \frac{p \cdot p + 1}{1 \cdot 2} = \frac{1}{2}(pp - p)$ functiones primae duarum dimensionum.

Simili modo e functionibus omnibus tertii gradus, quarum numerus est p^3 , excludendae sunt eae, quae e ternis primis unius dimensionis componuntur, quarum numerus est $\frac{p \cdot p + 1 \cdot p + 2}{1 \cdot 2 \cdot 3}$; insuperque eae, quae e functione prima unius aliaque duarum dimensionum componuntur, quarum numerus est $p \cdot \frac{1}{2}(pp - p)$; quibus deletis restabunt $\frac{1}{2}(p^3 - p)$; tot igitur sunt primae trium dimensionum. Elucet hoc modo semper continuari posse.

343.

Ut autem hae operationes facilius absolvantur simulque ad evolutionem legis generalis via sternatur, rem generaliter considerabimus. Brevitatis gratia designamus per (1) multitudinem functionum primarum unius dimensionis, per (2) numerum functionum primarum duarum dimensionum, sic porro per (1²) multitudinem functionum e binis primis unius dimensionis compositarum etc. etc., generaliter per (1²2³37...) multitudinem functionum omnium, quae e functionibus primis compositae sunt, scilicet ex α unius, δ duarum, γ trium etc. dimensionum, quarum itaque dimensio erit $\alpha+2\delta+3\gamma+$ etc. Tum per praecedentia theoriamque combinationum elucet, fore

$$(1^{\alpha}2^{\delta}3^{\gamma}4^{\delta}...) = (1^{\alpha})(2^{\delta})(3^{\gamma})(4^{\delta})..$$
$$(1^{\alpha}) = \frac{(1).(1)+1.(1)+2.(1)+3...(1)+\alpha-1}{1...2...3...4...\alpha}$$

seu generaliter

$$(a^{\alpha}) = \frac{(a) \cdot (a) + 1 \cdot (a) + 2 \cdot (a) + 3 \cdot \dots \cdot (a) + \alpha - 1}{1 \cdot 2 \cdot 3 \cdot 3 \cdot 4 \cdot \dots \cdot \alpha}$$

Denique manifestum est, si omnes modi diversi numerum n e numeris 1, 2, 3, ... per additionem componendi colligantur, qui designentur per $\alpha.1+6.2+\gamma.3+$ etc., summam omnium harum expressionum $(1^{\alpha}2^{\delta}3^{\gamma}..)$ aequalem fore multitudini omnium functionum n dimensionum, i. e. p^n . Ita

$$p = (1)$$

$$pp = (1^{2}) + (2)$$

$$p^{3} = (1^{3}) + (1 \cdot 2) + (3)$$

$$p^{4} = (1^{4}) + (1^{2} \cdot 2) + (1 \cdot 3) + (2^{2}) + (4)$$
etc.

Perspicuum est, in expressione p^n praeter quantitates (1), (2), (3) etc. etiam hanc

ingredi (n), unde patet, quomodo omnes quantitates per praecedentes sint determinandae. Ita invenitur

$$344 - 346$$
.

Observatur ex hoc seriei initio, summum terminum expressionis (n) esse $\frac{1}{n}p^n$, ad quem, si n est primus, accedit $-\frac{1}{n}p$; at si n est compositus, lex minus elucet. Si vero attentius rem consideramus, videmus esse

$$p = (1)$$
 $p^5 = 5(5)+(1)$
 $pp = 2(2)+(1)$ $p^6 = 6(6)+3(3)+2(2)+(1)$
 $p^3 = 3(3)+(1)$ $p^7 = 7(7)+(1)$
 $p^4 = 4(4)+2(2)+(1)$ $p^8 = 8(8)+4(4)+2(2)+(1)$ etc.

ubi lex progressionis est manifesta; scilicet si omnes numeri n divisores sint α , β , γ , δ etc., erit

$$p^n = \alpha(\alpha) + \delta(\delta) + \gamma(\gamma) + \delta(\delta) + \text{ etc.}$$

Huius observationis generalitatem iam demonstrare accingimur.

Ostendimus summam omnium talium expressionum $(1^{\alpha})(2^{\delta})(3^{\gamma})$... si semper $\alpha + 2\beta + 3\gamma + \ldots = n$, exhaurire omnes functiones n dimensionum adeoque esse $= p^n$. Hinc patet, — — . Si

$$\left(\frac{1}{1-x}\right)^{(1)} \left(\frac{1}{1-x^2}\right)^{(2)} \left(\frac{1}{1-x^2}\right)^{(3)} \dots$$
 evolvatur in seriem $1 + Ax + Bx^2 \dots = P$,

erit

$$A = p$$
, $B = p^3$, $C = p^3$ etc.
 $\frac{x d P}{P d x} = \frac{(1)x}{1-x} + \frac{2(2)x^3}{1-x^3} + \frac{3(3)x^3}{1-x^3} \dots$

[hinc substituendo $\frac{px}{1-px}$ pro $\frac{x d P}{P dx}$ et evolvendo singulas fractiones in series infinitas theorematis veritas sponte elucet.]

347.

Theorema hoc etiam alio modo exprimi potest. Scilicet si numeri n divisores omnes sint n, 1, δ , δ' , δ'' , δ''' etc., theorema in eo consistit, ut sit

$$p^n = n(n) + (1) + \delta(\delta) + \delta'(\delta') + \text{etc.}$$

Iam patet, productum ex (n) functionibus primis, quae sunt n dimensionum, habere n(n) dimensiones et sic de reliquis, quare

Productum ex omnibus functionibus primis dimensionis unius, dimensionum n, δ , δ' etc. habebit p^n dimensiones.

Facile nunc est ex hoc theoremate valorem expressionis (n) ipsum deducere, sed brevitatis gratia analysin, quae non est difficilis, supprimimus. Sit itaque $n = a^a b^b c^{\gamma}$ etc., ita ut a, b, c etc. sint numeri primi diversi, eritque

$$n(n) = p^n - \sum p^{\frac{n}{a}} + \sum p^{\frac{n}{ab}} - \sum p^{\frac{n}{abc}} \text{ etc.}$$

ubi $\sum p^{\frac{n}{abc}}$ significat complexum omnium expressionum huic $p^{\frac{n}{abc}}$ similium, si quantitates a, b, c.. quomodocunque inter se permutentur. Ita pro n = 36 erit $36(36) = p^{36} - p^{18} - p^{13} + p^6$.

Unam adhuc observationem adiicere liceat. Si n est formae a^a et a primus, erit $n(n) = p^n - p^{\frac{n}{a}}$, quare, quum (n) necessario sit integer, erit quicquid sit p,

$$p^n \equiv p^{\frac{n}{d}} \pmod{n}$$

quare, si p ad a primus erit,

$$p^{n-\frac{n}{a}} \equiv 1 \pmod{n}$$

et pro $\alpha = 1$

$$p^{a-1} \equiv 1 \pmod{a}$$

Memorabile est, haec theoremata tam diversis modis erui posse.

348.

PROBLEMA. Data aequatione

$$x^{m} + Ax^{m-1} + Bx^{m-2} + Cx^{m-3} + etc. + M = 0$$

cuius radices sunt x = a, x = b, x = c etc., invenire aequationem, cuius radices sint $x = a^{\tau}$, $x = b^{\tau}$, $x = c^{\tau}$ etc.

Solutio prima. Quaerantur per theorema notum summae radicum aequationis propositae, earum quadratorum, cuborum etc. usque ad potestatem $m\tau^{\text{tans}}$. Hinc igitur habentur etiam summae radicum aequationis quaesitae nec non quadratorum etc. scilicet Σa^{τ} , $\Sigma a^{2\tau}$ etc., unde per idem theorema coëfficientes determinari possunt.

Ad praxin quidem haec solutio est facilior; sed ad institutum nostrum nec non ad ostendendum, coëfficientes aequationis quaesitae fore integros, si aequationis propositae coëfficientes fuerint integri, quae sequitur magis est accomodata.

Solutio secunda. Sit θ radix prima aequationis $x^{\tau} = 1$, fiatque productum ex

$$x^{m} + Ax^{m-1} + Bx^{m-2} + \text{etc.}$$
 $x^{m} + A\theta x^{m-1} + B\theta\theta x^{m-2} + \text{etc.}$
 $x^{m} + A\theta\theta x^{m-1} + B\theta^{4}x^{m-2} + \text{etc.}$
etc.
 $x^{m} + A\theta^{r-1}x^{m-1} + B\theta^{2r-2}x^{m-2} + \text{etc.}$

Huius itaque producti radices erunt

i. e. productum aequale erit huic

$$(x^{\tau}-a^{\tau})(x^{\tau}-b^{\tau})(x^{\tau}-c^{\tau})$$
 . . .

adeoque huius formae

$$x^{\tau m} + A'x^{\tau(m-1)} + B'x^{\tau(m-2)} + \text{ etc.}$$

Iam si pro x^{τ} scribatur x, erit

$$x^m + A'x^{m-1} + B'x^{m-2} + \text{etc.} = (x - a^{\tau})(x - b^{\tau})(x - c^{\tau})$$
.

adeoque

$$x^{m} + A'x^{m-1} + B'x^{m-2} + \text{etc.} = 0$$

aequatio quaesita. Quod vero hic A', B' etc. sint non solum rationales sed etiam integri, facile ex theoria aequationis $x^{\tau} = 1$ deducitur.

Quoniam hac operatione in sequentibus saepe utemur, per (P, ρ^{τ}) indica-

bimus functionem, qua cifrae aequali posita aequatio proveniens habeat radices, quae sunt potestates τ^{tae} radicum aequationis P=0.

Si $P \equiv Q$ secundum modulum quemcunque, erit etiam $(P, \rho^{\tau}) \equiv (Q, \rho^{\tau})$ secundum eundem modulum.

349.

THEOREMA. Coëfficiens termini x^n in (P, ρ^{τ}) congruus est secundum modulum τ coëfficiens termini $x^{\tau n}$ in P^{τ} , siquidem τ est numerus primus (quod pro hoc casu est tertia solutio problematis praecedentis).

Demonstr. Ex capite sexto sequitur, producti

$$(x^{m} + Ax^{m-1} + \text{etc.}) (x^{m} + A\theta x^{m-1} + \text{etc.}) \dots$$

coëfficientem quemcunque habere hanc formam, postquam pro θ^{τ} substituta est unitas.

$$E+(1+\theta+\theta\theta+\text{etc.}+\theta^{\tau-1})F$$

Quodsi iam θ consideretur tamquam radix prima aequationis $x^{\tau} = 1$, totum productum abibit in E; si vero ponatur $\theta = 1$, totum productum abibit in $P^{\tau} = E + \tau F$, quare erit coëfficiens termini $x^{n\tau}$ in P^{τ} congruus secundum modulum τ coëfficienti termini $x^{n\tau}$ in E, i. e. coëfficienti termini x^n in (P, ρ^{τ}) .

350.

THEOREMA. Si T est numerus primus, erit

$$(P, \rho^{\tau}) \equiv P(mod. \tau)$$

Demonstr. Sit coëfficiens termini x^n in $(P, \rho^{\tau}) = N'$, in P vero eiusdem termini coëfficiens = N. Tunc posito

$$P = x^m + Ax^{m-1} + \text{etc.} + Nx^n + \text{etc.}$$

erit

$$P^{\tau} \equiv x^{m\tau} + A^{\tau}x^{(m-1)\tau} + \text{etc.} + N^{\tau}x^{n\tau} + \text{etc.} \pmod{\tau}$$

adeoque (§. praec.) $N \equiv N^{\tau} \pmod{\tau}$; quare, quum $N^{\tau} \equiv N$, erit $N' \equiv N$. Q. E. D.

Hinc etiam patet, esse $(P, \rho^{\alpha}) \equiv (P, \rho^{\alpha\tau})$ et $(P, \rho^{\tau}) \equiv (P, \rho^{\tau\tau})$, unde generaliter

$$(P, \rho^{\alpha}) \equiv (P, \rho^{\alpha \tau^k}) \pmod{\tau}$$

351.

THEOREMA. Datur valor numeri \vee minor quam p^m , ita ut functio $x^\vee-1$ per functionem propositam P m dimensionum, cuius pars infima indeterminatam x non involvit, secundum modulum p dividi possit.

Dem. Dividatur per P series functionum 1, x, xx... usque ad x^{p^m-1} , simulac dimensionem m superant, et quoniam nulla per P sine residuo dividi poterit, omnia residua ad hanc formam redigi poterunt

$$Ax^{m-1}+Bx^{m-2}+..+N$$

ita ut omnes coëfficientes sint positivi et $\langle p \rangle$. Sed patet, quum nunquam omnes possint esse = 0, p^m-1 tantummodo functiones dari, quarum alicui singulae aequales esse debent, quare quum usque ad potestatem ipsius x, cuius exponens est p^m-1 , p^m residua habeantur, necessario duo ad minimum eadem esse debent. Prodeat igitur idem residuum, si x^a et x^{a+v} per P dividantur, ita ut $a+v < p^m$. Quare $x^{a+v}-x^a$ per P dividi poterit. Hinc quoniam (hyp.) x adeoque etiam x^a functio est ad P prima, etiam x^v-1 per P dividi poterit Q. E. Q.

Coroll. Si x^{ν} —1 per P dividatur, etiam $x^{k\nu}$ —1 per P dividi poterit. denotante k numerum quemcunque integrum.

352.

THEOREMA. Manentibus denominationibus ut in §. praec., si P fuerit functio prima et x^{\vee} infima potestas, quae unitate mulctata per P dividi possit, erit \vee aut p^m-1 aut pars aliquota huius numeri, excepto unico casu, ubi $P \equiv x$.

Dem. Quoniam P est functio prima m dimensionum, dabuntur p^m-1 functiones diversae pauciorum quam m dimensionum (exclusa scilicet ab omnium numero functione 0), quae omnes ad P erunt primae. Iam quum x^{\vee} supponatur esse infima potestas, quae per P divisa unitatem relinquit, palam est, si omnes inferiores potestates ab 1, x, . . usque ad $x^{\vee-1}$ per P dividantur, \vee residua diversa prodire, quae per A generaliter designentur. Iam si haec exhauriant omnia quae sunt possibilia, theorema erit demonstratum; sin vero quaedam nondum sint in eorum numero, sit quodcunque eorum B; iam perspicuum est, functionem Bx^{\vee} per P divisam residuum B dare et generaliter esse $Bx^{\vee+k} \equiv Bx^k \pmod{P}$; sed omnes functiones ab B usque ad $Bx^{\vee-1}$ diversa inter se et ab residuis A II.

dabunt residua; si scilicet esset $Bx^{\lambda} \equiv Bx^{\lambda+\delta} \pmod{P}$, foret etiam $1 \equiv x^{\delta} \pmod{P}$, et $\delta < \nu$ contra hyp.; si vero esset $Bx^{\lambda} \equiv x^{\mu} \pmod{P}$, foret $B \equiv x^{\mu+\nu-\lambda} \pmod{P}$ adeoque B unum ex residuis A contra hyp. Quare patet haberi adhuc ν nova residua. Simili modo ulterius progredi licebit (omnino ut supra §..) apparebitque numerum omnium residuorum possibilium p^m-1 esse aut $= \nu$, aut $= 2\nu$, aut $= 3\nu$, aut generaliter multiplum numeri ν . Q. E. D.

353.

Ex theoremate prace. et Coroll. §. 351 sequitur, quamvis functionem primam n dimensionum metiri functionem $x^{p^n-1}-1$ secundum modulum p. Omnes itaque functiones unius dimensionis excepta unica, quae est $\equiv x$, metientur $x^{p-1}-1$, quod est theorema Fermatianum; omnes autem functiones primae secundi gradus i. e. formae xx+Ax+B metientur functionem $x^{pp-1}-1$ etc. Iam sint numeri n divisores omnes n, δ , δ' , δ'' etc. .1, patetque, p^n-1 etiam per $p^{\delta}-1$, $p^{\delta'}-1$, $p^{\delta''}-1$ etc. p-1 dividi posse, quare functio $x^{p^n-1}-1$ per omnes functiones primas dimensionum n, δ , δ' , δ'' etc. usque ad functiones primas unius dimensionis (exclusa functione x) dividi poterit, quare etiam (quum omnes hae functiones sint absolute adeoque etiam inter se primae) per productum ex omnibus. Sed idem hoc productum habet p^n-1 dimensiones (§. 347.) (ob deficientiam unius functionis x); quare patet, hoc productum ipsum ipsi $x^{p^n-1}-1$ (mod. p) congruum esse debere.

354.

Theorema. Si functio x^3 —1 per functionem P dividitur, erit

$$(P, \rho^{kv+t}) \equiv (P, \rho^t)$$

denotantibus k, t numeros quoscunque integros.

Dem. Sit

$$P = x^{m} + Ax^{m-1} + Bx^{m-2} + \text{etc.}$$

notum est, si

$$\frac{mx^{m-1} + (m-1)Ax^{m-2} + \text{ etc.}}{x^m + Ax^{m-1} + \text{ etc.}}$$

in seriem infinitam formae

$$m\frac{1}{x}+\alpha\frac{1}{xx}+6\frac{1}{x^2}+\gamma\frac{1}{x^4}+$$
 etc.

evolvatur, fore α summam radicum aequationis P = 0, δ summam quadratorum etc. Unde sine labore deducitur, potestatum $\nu+1$, $\nu+2$ etc. tarum summam congruam esse summae radicum, quadratorum etc. Hinc vero nisi modulus est aequalis aut inferior numero dimensionum functionis P, sequitur esse

$$(P, \rho^{\nu+1}) \equiv P, \quad (P, \rho^{\nu+2}) \equiv (P, \rho^2), \quad (P, \rho^{\nu+3}) \equiv (P, \rho^3) \text{ etc.}$$

Istum autem casum infra considerabimus.

355.

THEOREMA. Si in serie

$$(P, \rho^0), (P, \rho) (P, \rho^2), (P, \rho^3)$$
 etc.

post terminum v^{tum} sequentes primis deinceps sunt congrui, x^{v} —1 per P dividi poterit, siquidem P nullum factorem pluries contineat.

Dem. Posito $\frac{dP}{dx} = Q$, erit Q functio ad P prima. Sit

$$\frac{Q}{P} \equiv \frac{A}{x} + \frac{B}{xx} + \frac{C}{x^2} + \text{ etc.}$$

tum post terminum $\frac{N}{x^p}$ sequetur (hyp.)

$$\frac{A}{x^{\nu+1}} + \frac{B}{x^{\nu+2}} + \frac{C}{x^{\nu+2}} + \text{ etc.}$$

Quare erit

$$\frac{Q}{P} = \frac{Ax^{p-1} + Bx^{p-3} + \text{etc.}}{x^p - 1}$$

unde patet, functionem $x^{\nu}-1$ per P dividi posse. Q. E. D.

356.

THEOREMA. Si P sit functio ipsius x prima m dimensionum et X functio ipsorum x, x^p , x^{pp} , x^{ps} . $x^{p^{m-1}}$, in quam omnes hae quantitates aequaliter ingrediantur, i.e. quae eadem maneat, quomodocunque eae inter se permutentur, functio X per P divisa dabit residuum, quod erit numerus.

Dem. Sit residuum

$$Ax^{m-1}+Bx^{m-2}+\ldots+N\equiv\xi$$

omnes coëfficientes A, B, C... usque ad N exclusive erunt $\equiv 0$. Hoc ita demonstratur. Quum X— ξ per P dividatur, etiam X^p — ξ^p per P dividi pote29*

rit. Sed facile perspicitur, X^p esse id, quod fit X, si pro x ponatur x^p , pro x^p , x^{pp} etc... et pro $x^{p^{m-1}}$, x^{p^m} seu quod idem est x. Hinc patet, esse $X^p \equiv X \pmod{P}$; quare, quum $X^p \equiv \xi^p$ et $X \equiv \xi \pmod{P}$, erit etiam $\xi^p \equiv \xi \pmod{P}$ seu

$$\xi^p - \xi \equiv 0 \pmod{P}$$

At $\xi^p - \xi$ secundum modulum p congruum est producto ex ξ , $\xi + 1$, $\xi + 2$, ... usque ad $\xi + p - 1$, qui factores omnes ad P primi erunt, nisi ξ sit simpliciter numerus. Quare etiam $\xi^p - \xi$ alio modo per P divisibilis non erit. Q. E. D.

Huiusmodi functiones sunt summa omnium, summa quadratorum, cuborum etc., summa productorum e binis, ternis etc. Quis vero sit ille numerus, per § sq. determinabimus:

357.

THEOREMA. Sit functio prima § praec.

$$P \equiv x^{m} - Ax^{m-1} + Bx^{m-2} - Cx^{m-3} + etc.$$

erit residuum, si summa quantitatum x, x^p etc. $x^{p^{m-1}}$ per P dividatur, $\equiv A$, si summa productorum e binis, $\equiv B$, si summa productorum e ternis, $\equiv C$ etc.

Dem. Sint functiones illae X, Y, Z etc. earumque residua ordine suo numeri A', B', C' etc. Iam facile intelligitur, esse x, x^p , x^{pp} etc. radices aequationis

$$z^{m} - Xz^{m-1} + Yz^{m-2} - Zz^{m-3} + \text{etc.} = 0$$

Quare erit ponendo z = x

$$x^{m} - Xx^{m-1} + Yx^{m-2} - Zx^{m-3} + \text{etc.} = 0$$

Sed functiones X-A', Y-B', Z-C' etc. per P dividi possunt, quare etiam functio

$$x^{m} - A'x^{m-1} + B'x^{m-2} - C'x^{m-3} + \text{etc.}$$

Hoc autem aliter fieri nequit, nisi sit $A' \equiv A$, $B' \equiv B$, $C' \equiv C$ etc. Q. E. D.

Ceterum notum est, quaecunque alia functio sit X ipsorum x, x^p etc. [in quam omnes hae quantitates aequaliter ingrediantur,] eam semper ex his deduciposse. Ita erit

$$x^2 + x^{2p} + x^{2pp} + \text{etc.} \equiv AA - 2B \pmod{P}$$
 etc. etc.

Exempl. Sit p = 5 et $P \equiv x^2 + 2x + 3$, erit functio $x + x^5$ per P divisa = -2, $x^6 \equiv 3$ etc. etc.

THEOREMA. Sit P functio prima et x^{\vee} infima potestas ipsius x, quae per P divisa dat residuum 1; porro sit $P \equiv (P, \rho^n)$, erit n alicui numeri p potestati secundum \vee congruus.

Dem. Supra ostendimus, si P sit

$$= x^{m} + Ax^{m-1} + Bx^{m-2} + \text{etc.}$$

fore

$$z^{m} + Az^{m-1} + Bz^{m-2} + \text{etc.} - (z-x)(z-x^{p}) ... (z-x^{p^{m-1}})$$

per P divisibilem. Simili modo sequeretur esse

$$z^{m} + Az^{m-1} + Bz^{m-3} + \text{etc.} - (z-x^{n})(z-x^{np}) \dots (z-x^{np^{m-1}})$$

per P divisibilem. Quoniam autem hi factores inter se sunt primi, necessario singuli singulis secundum P, p congrui esse debent. Quare $z-x^*$ debet esse $z = z - x^{p^*}$ i. e. $p^* \equiv \pi \pmod{\nu}$. Q. E. D. *)

De inventione divisorum primorum functionis x"-1 secundum modulum primum.

360

Si ν per modulum p seu per aliquam eius potestatem est divisibilis, sit $\nu = p^k \lambda$, eritque

$$x^{\nu}-1 \equiv (x^{\lambda}-1)^{p^{k}} \pmod{p}$$

Unde manifestum est, eum tantummodo casum considerari oportere, ubi v per p non dividitur.

Productum ex Π , (Π, ρ^s) , (Π, ρ^s) etc. (Π, ρ^p) est $\equiv (s^p-1)^m \pmod{P}$; est enim

$$(z-x)(s-x^2)(s-x^2)\dots(s-x^p) \equiv (s-x^p)(s-x^{2p})(s-x^{2p})\dots(s-x^{pp}) \equiv \text{etc.} \equiv z^p-1$$

^{*)} Si $(P, \rho^a) \equiv (P, \rho^b) \pmod{p}$ erit $a \equiv p^a b \pmod{N}$.

Demonstratio. Sit $z^m + Az^{m-1} + Bz^{m-2} + ... = \Pi$ erit $(\Pi, \rho^a) \equiv (\Pi, \rho^b) \pmod{P}$; est autem

 $^{(\}Pi, \rho^a) \equiv (s - x^a) (z - x^{ap}) (s - x^{app}) \dots (s - x^{apm-1}), (\Pi, \rho^b) \equiv (s - x^b) (z - x^{bp}) (s - x^{bpp}) \dots (s - x^{bpm-1})$ unde patet propositio.

In serie P, (P, ρ^s) , (P, ρ^s) etc.... (P, ρ^r) omnes divisores primi functionis x^r-1 occurrunt, et quidem quisque m vicibus. Inde patet, productum ex omnibus esse $\equiv (x^r-1)^m$.

Si $p^m \equiv 1 \pmod{\nu}$ et quidem m quam minimus, tum patet $x^{p^m-1}-1$ per $x^{\nu}-1$ dividi posse. Quamobrem $x^{\nu}-1$ alios divisores habere nequit quam $x^{p^m-1}-1$. At haecce expressio habet divisores primos m dimensionum aliosque, quorum dimensionum numerus est divisor numeri m. Tales igitur etiam $x^{\nu}-1$ habebit. Quot autem cuiusvis generis habeat, per exemplum declaramus, unde facile lex generalis deduci poterit.

Sit v = 63 et p = 13, erit m = 6. Quare $x^{63}-1$ secundum modulum 13 factores primos habebit sex, trium, duarum dimensionum uniusque. Iam palam est, productum ex factoribus unius dimensionis fore divisorem communem (maximae dimensionis) functionum $x^{63}-1$ et $x^{12}-1$ i. e. x^3-1 ; quare tres erunt factores primi unius dimensionis. Productum ex omnibus factoribus primis duarum dimensionum uniusque erit divisor communis functionum $x^{63}-1$ et $x^{168}-1$ i. e. $x^{21}-1$; quare erunt $\frac{21-3}{2}$ sive 9 factores duarum dimensionum. Productum ex factoribus primis trium dimensionum uniusque erit divisor communis functionum $x^{63}-1$ et $x^{2196}-1$ i. e. x^9-1 ; quare erunt $\frac{9-3}{3}$ i. e. 2 divisores trium dimensionum. Tandem reliqui erunt sex dimensionum, quorum igitur numerus $= \frac{63-6-18-3}{3}$ i. e. 6.

Facile per attentam huius rei ponderationem sequens regula generalis deducitur:

Sit δ divisor ipsius m, sint omnes numeri δ divisores ipso δ minores δ' , δ'' , δ''' etc. Sint divisores communes maximi ipsius ν cum $p^{\delta}-1$, $p^{\delta'}-1$, $p^{\delta''}-1$ etc. respective μ , μ' , μ'' etc., sit $\frac{\mu}{\mu'}$, $\frac{\mu}{\mu'''}$, $\frac{\mu}{\mu'''}$ etc. $=\lambda'$, λ'' , λ''' etc. habebitque $x^{\nu}-1$ $\frac{1}{\delta}$ ties tot divisores primos δ dimensionum, quot infra numerum μ sunt numeri per nullum numerorum λ' , λ'' , λ'''' etc. divisibiles.

361.

THEOREMA. Si functio X indeterminatae x per aliam ξ dividi possit et X si pro x scribatur x^k , transeat in X', X' per $(\xi, \rho^{\frac{1}{k}})$ dividi poterit.

Dem. Sit $X \equiv \xi v$ transcantque ξ , v in ξ' , v', si pro x scribatur x^k . Patet, fore $X' \equiv \xi' v'$. At ξ' per $(\xi, \rho^{\frac{1}{k}})$ dividi potest. Quare etiam X'. Q.E.D.

362.

His principiis positis facili negotio divisores primos functionis x^{3} —1 determinare possumus. Supponimus, omnes eos divisores, qui etiam functionem ali-

quam $x^{\nu}-1$ dividunt, existente $\nu<\nu$, iam inventos esse, reliquosque investigare proponi. Hi autem omnes in hac expressione comprehendi possunt (P, ρ^k) , si P sit unus ex ipsis et pro k omnes numeri minores quam ν ad ipsumque primi substituantur.

In Cap. vi ostendimus, quomodo radices primae aequationis $x^{\gamma} = 1$ ita in classes discerpi possint, ut, omnibus per alicuius potestates expressis, eadem in classes distributio habeatur, quaecunque radix prima pro hac basi accipiatur; periodos huiusmodi radicum complexus vocavimus. Iam patet, functiones x, x^{α} , x^{β} , x^{γ} etc., designantibus α , β , γ etc. omnes numeros ad γ primos, simili modo in periodos resolvi posse, quamque periodum maiorem rursus in minores donec tandem ad periodos formae x^k , x^{kp} , x^{kpp} ... $x^{kp^{m-1}}$ perveniatur. Hoc ita facto patet

- 1°. Quoniam periodus quaeque ex huiusmodi periodis minimis $x^k + x^{kp} + \text{etc.}$ composita est, si per quamcunque functionem primam m dimensionum dividatur, residuum fore numerum.
- 2°. Quum omnes periodi termini semper ad hanc formam reduci queant $x^{x \cdot a^a b^b c^a} \cdot \cdot$, ubi x. a, b, c.. sunt numeri determinati, pro a, b, γ .. autem omnes valores substitui possunt; patet, periodum in se ipsam mutari, si pro x substituatur x^k et k sit formae $a^a b^b c^{\gamma}$.. (mod. γ), unde facile perspicitur omnes functiones P, (P, ρ^k) etc., designante k huiusmodi numerum, si periodus per eas dividatur, idem residuum dare.
- 3° . Quare periodus subducto tali residuo per productum ex omnibus functionibus (P, ρ^k) dividi poterit.

363.

Summa rei in hoc vertitur, ut haec residua determinentur. Primo quaeratur residuum, quod periodus maxima per productum ex omnibus functionibus primis idoneis dabit. Si hoc productum sit

$$\equiv x^{\lambda} - Ax^{\lambda-1} + \text{etc.}$$

erit residuum hoc $\equiv A$. Huius autem producti forma facile invenitur et ex Cap. vi sequitur esse A=0, si ν per quadratum dividi possit, contra esse A aut =+1 aut =-1, prout multitudo factorum primorum numeri ν sit par aut impar.

Iam resolvatur haec periodus maxima in periodos inferiores repraesententurque periodi cuiusvis termini per $x^{kp^{\pi}u}$, ita ut k in quavis periodo sit numerus

determinatus, pro diversis vero variabilis, π et u autem in quavis periodo variabiles, eos autem valores, quos in aliqua periodo habent, etiam in reliquis adipisci possint. Supponatur aliquantisper aliqua functio prima P pro basi sitque residuum, quod periodi $\sum x^{p^n u}$, $\sum x^{k'p^n u}$ etc. per eam divisae praebent respective A, A' etc., erit $\sum x^{p^n u} - A$ per productum ex omnibus functionibus (P, ρ^u) divisibilis. $\sum x^{k'p^n u} - A'$ per productum ex omnibus functionibus $(P, \rho^{k'u})$ etc. etc. At facile liquet, quantitates A, A' etc. esse radices congruentiae datae. Scilicet sint periodi radicum aequationis x' = 1 periodis praecedentibus correspondentes radices aequationis Q = 0, erunt A, A' etc. radices congruentiae $Q \equiv 0$. Namque erit

$$A + A' + \text{ etc.} \equiv \text{summae periodorum},$$

 $AA + A'A' + \text{ etc.} \equiv \text{summae quadratorum periodorum}$

etc. etc. Calculus enim prorsus similis erit ei, quem Cap. vi exposuimus, si pro ρ substituatur α , quoniam etiam hic poni potest pro α unitas, uti illic pro α .

Inventis radicibus A, A' etc. aliqua pro residuo periodi $\sum x^{p^n u}$ eligatur et inde reliquarum residua simili modo uti Cap. vi ordinentur. Namque illud etiam hic arbitrio relinquitur, quum functio P sit prorsus hactenus indeterminata. Calculus sequens omnino analogus est ei, quem Cap. vi pertractavimus, singula exponere nimis prolixum nobis foret. Tandem postquam ad $\sum x^{p^n}$ perventum est, rei summa perfecta est. Namque posito

$$P \equiv x^{m} + ax^{m-1} + bx^{m-2} + \text{ etc.}$$

erit $-a \equiv \sum x^{p^n}$, eodem modo coëfficiens secundus reliquarum functionum (P, ρ^k) , hahebitur, unde reliqui ipsius P determinari possunt. Saepius evenire potest, ut ad congruentias identicas perveniatur, ex quibus nihil derivari posse videtur. Quomodo huic difficultati obveniri possit, infra monstrabitur.

364.

Omnia haec per exemplum multo clariora fient. Resolvenda proponitur functio x^{15} —1 secundum modulum 17 in factores. Erit m = 4 et quoniam productum ex omnibus functionibus elementaribus

$$\equiv \frac{x^{18}-1 \cdot x^{-1}}{x^{8}-1 \cdot x^{8}-1} = x^{8}-x^{7}+x^{5}-x^{4}+x^{8}-x+1$$

Quare duo tantummodo erunt factores primi quatuor dimensionum P et P'. Iam $x, xx, x^4, x^7, x^8, x^{11}, x^{13}, x^{14}$ in has duas periodos distribuantur

$$\Sigma x^{17^a} \equiv x + xx + x^4 + x^8, \quad \Sigma x^{7.17^a} \equiv x^7 + x^{11} + x^{13} + x^{14}$$

Sit secundum alteram functionem P, P'

$$\Sigma x^{17^a} \equiv A$$
, $\Sigma x^{7.17^a} \equiv A'$

eritque

$$A + A' \equiv 1$$

$$AA \equiv \sum x^{2 \cdot 17^{a}} + \sum x^{3 \cdot 17^{a}} + \sum x^{5 \cdot 17^{a}} + \sum x^{9 \cdot 17^{a}}$$

$$A'A' \equiv \sum x^{14 \cdot 17^{a}} + \sum x^{6 \cdot 17^{a}} + \sum x^{5 \cdot 17^{a}} + \sum x^{3 \cdot 17^{a}}$$

quare

$$AA + A'A' \equiv \sum x^{17^a} + \sum x^{7.17^a} + 4\sum x^{3.17^a} + 2\sum x^{5.17^a} \equiv 1 - 4 - 4 \equiv -7$$

Hinc A et A' erunt radices congruentiae

$$xx-x+4 \equiv 0 \pmod{17}$$

quae sunt 6, 12. Hinc P dividet

$$x^{8} + x^{4} + xx + x - 6$$

eritque

$$\equiv x^4 - 6x^3 - 2xx - 12x + 1$$

P' autem erit $\equiv (P, \rho^7)$ eritque

$$\equiv x^4 - 12x^3 - 2xx - 6x + 1$$

365.

Sufficit nobis hic possibilitatem solutionum harum monstravisse. Multa artificia, quibus hae operationes sublevari possunt, praeterimus brevitatis gratia. At consequentias quasdam pergraves praetermittere non possumus.

Per praecedentia demonstratum est, omnes aequationes auxiliares pro solutione aequationis x'=1, si in congruentias convertantur, habere radices possibiles, quando periodus

П.

$$x+x^p+x^{pp}+\ldots+x^{p^{m-1}}$$

nondum est disiuncta. Subsistamus in casu, ubi ν est numerus primus; erit m divisor ipsius $\nu-1$. Hic itaque congruentiae auxiliares, si numerus periodorum, quae per illas inveniuntur, est pars aliquota numeri $\frac{\nu-1}{m}$, habebunt radices reales. Si itaque $\frac{\nu-1}{m}$ est par i. e. si m est divisor numeri $\frac{\nu-1}{2}$ seu si p = 1 (mod. ν) seu si p est residuum quadraticum numeri primi ν , aequatio quadratica, per quam radices in duas periodos dividuntur, habebit radices reales secundum modulum p. At in Cap. ν 1 monstravimus, hanc aequationem posito ν 2 an ν 3 semper esse ν 4 an ν 4 an ν 5. Quare habetur insigne

Theorema. Si numerus primus p est residuum quadraticum numeri primi 4n+1, congruentia

$$xx+x \mp n \equiv 0 \pmod{p}$$

habebit radices reales, adeoque etiam congruentia

$$4xx+4x+4n\equiv 0$$
 seu $(2x+1)^2+\nu\equiv 0$

i. e. $\pm v$ erit residuum quadraticum numeri p.

366.

Haec igitur est tertia theorematis fundamentalis Capitis IV completa demonstratio, eo magis attentione digna, quod principia, e quibus est petita, ab iis quibus ad priores usi sumus, prorsus sunt diversa. At ex eodem hoc fonte, sed via opposita quartam deducamus. Scilicet sit ν numerus primus formae $4n\pm1$, p alius primus quicunque, sitque $\pm\nu$ residuum quadraticum numeri p, demonstrabimus, p fore residuum quadraticum numeri ν .

Sit p^m minima potestas numeri p, quae sit $\equiv 1 \pmod{\nu}$. Divisores elementares functionis $\frac{x^p-1}{x-1}$ secundum p habebunt m dimensiones, quare omnium numerus erit $=\frac{\nu-1}{m}$. Iam quoniam $+\nu Rp$, congruentia

$$xx+x+n \equiv 0 \pmod{p}$$

erit resolubilis; sint radices A, A'. Distribuantur functiones a, aa, ... a^{n-1} in binas classes per ξ , ξ' designandas, erit

$$\xi + \xi' \equiv A + A' + (1 + x + xx + \dots + x^{\nu-1})$$

$$\xi \xi' \equiv AA' + \lambda (1 + x + xx + \dots + x^{\nu-1})$$

quare

$$(z-\xi)(z-\xi')-(z-A)(z-A')$$

per quemvis divisorem elementarem functionis $\frac{x^p-1}{x-1}$ erit divisibilis. Hinc autem quivis horum divisorum elementarium aut $\xi - A$ et $\xi' - A'$, aut $\xi - A'$ et $\xi' - A$ dividet. Hinc patet (quoniam A non $\equiv A'$), si pro x ponatur x^p , ξ et ξ' non immutari. Si enim ξ in ξ' et vice versa transiret, $\xi - A$ et $\xi - A'$ per eandem functionem primam dividerentur. Q. E. A. Hinc denique sequitur, $\frac{v-1}{2}$ per m dividi seu $p^{\frac{v-1}{2}} - 1$ per v. Quare p erit residuum quadraticum ipsius v. Q. E. D.

Facile autem est omnes theorematis fundamentalis casus ex utroque theore-

367.

Quamvis ad casum, ubi v est numerus primus, hic nos restrinxerimus, tamen etiam, si v sit compositus, theoremata analoga haud magno negotio determinari possunt, quod fusius exponere brevitatis gratia nunc non licet.

Manifestum est, similes observationes etiam de maiori periodorum multitudine formari posse. Ita si $\frac{v-1}{m}$ per 3 dividitur i. e. si p est residuum cubicum numeri primi v, aequatio, per quam radices aequationis $x^v = 1$ in tres periodos distribuuntur quamque in Cap. vi a priori determinandam docuimus, solubilis erit secundum modulum p et vice versa Ita ex. gr. congruentia $x^3 + xx - 2x - 1 \equiv 0$ secundum modulum primum quemcunque, qui est formae 7n + 1, resolvi potest, si vero aliam formam habeat, non poterit.

Non difficile nobis foret hoc Caput multis aliis observationibus locupletare, nisi limites, intra quos restringi oportet, vetarent. Iis qui ulterius progredi amant, haec principia viam saltem addigitare poterunt.

368.

Congruentiam aliquam $S \equiv 0$ radices seu generalius divisores aequales - habere dicimus, si per functionis alicuius potestatem dividi possit.

Num congruentia proposita divisores aequales habeat, eodem modo diiudicatur, uti in aequationum theoria. Ponamus

$$X \equiv \xi^m P$$

patet fore

$$\frac{\mathrm{d} X}{\mathrm{d} x} \equiv \xi^{m-1} (m P \frac{\mathrm{d} \xi}{\mathrm{d} x} + \xi \frac{\mathrm{d} P}{\mathrm{d} x})$$

quare $\frac{dX}{dx}$ per ξ^{m-1} dividetur. Generaliter sit

$$X \equiv A^a B^b C^c$$
 etc.

ubi A, B, C etc. denotant functiones primas diversas, erit

$$\frac{\mathrm{d}X}{\mathrm{d}x} \equiv X(\frac{a\,\mathrm{d}A}{A\,\mathrm{d}x} + \frac{b\,\mathrm{d}B}{B\,\mathrm{d}x} + \frac{c\,\mathrm{d}C}{C\,\mathrm{d}x} + \text{etc.})$$

unde patet, nisi aliquis numerorum a, b, c etc. per modulum dividatur, $\frac{dX}{dx}$ per $A^{a-1}B^{b-1}C^{c-1}$ etc. dividi posse, non autem per A^a , B^b , C^c etc. Hinc sequitur

THEOREMA. Si functionum X et $\frac{\mathrm{d}\,X}{\mathrm{d}\,x}$ divisor communis maximae dimensionis sit ξ , omnes factores primos, quos ξ habet, etiam X habebit et quidem quemvis toties +1 vice quoties ξ , si igitur X et $\frac{\mathrm{d}\,X}{\mathrm{d}\,x}$ sint functiones inter se primae, X nullos factores aequales habebit.

369.

Exemplum I. Quaeritur an functio

$$x^5 + 3x^4 - 6x^3 + 3x - 4 \dots (X)$$

secundum modulum 17 divisores aequales habeat. Erit

$$\frac{dX}{dx} \equiv 5x^4 - 5x^3 - xx + 3$$

Hinc invenitur, functiones X et $\frac{dX}{dx}$ inter se esse primas, quare X divisores acquales non habet.

Exemplum II. Sit

$$X \equiv x^5 + 6x^4 - 3x^3 - 4xx + 2x - 3 \pmod{13}$$

erit

$$\frac{dX}{dx} \equiv 5x^4 - 2x^3 + 4xx + 5x + 2$$

maxima vero functionum X, $\frac{dX}{dx}$ communis mensura $\equiv 5xx+7x+7$ seu mul-

tiplicata per 8: xx+4x+4; at quum hic divisor sit $\equiv (x+2)^2$, functio X per $(x+2)^3$ dividi poterit quotiensque (qui est xx+11) nullum amplius divisorem duplicem involvit.

370. 371.

Si ex §.§. praecc. functio X ita est exhibita $A^aB^bC^c$ etc., ita ut A, B, C etc. inter se sint primae et numeri a, b, c etc. inaequales, resolutio etiam ulterius extendi potest. Sit itaque X functio, quae nullos amplius divisores aequales involvit. Supra vidimus, x^p-x esse productum ex omnibus functionibus primis unius dimensionis. Sit ξ divisor communis maximae dimensionis functionum X et x^p-x , erit ξ productum ex omnibus divisoribus ipsius X unius dimensionis, et $\frac{X}{\xi}$ huiusmodi divisores non amplius habebit. Quodsi autem inveniatur, functiones X et x^p-x esse inter se primas, X nullum divisorem unius dimensionis habebit adeoque congruentia $X\equiv 0$ radices reales non habebit. Porro quoniam $x^{pp}-x$ est productum ex omnibus functionibus primis duarum dimensionum uniusque, divisor communis maximae dimensionis functionum $x^{pp}-x$ et $\frac{X}{\xi}$, ξ' involvet omnes divisores ipsius X, qui sunt duarum dimensionum. Hinc ulterius progrediendo perspicitur, X hoc modo in factores ξ , ξ' , ξ'' etc. resolvi, qui continent respective omnes divisores unius, duarum, trium etc. dimensionum.

372.

Si autem productum ex pluribus functionibus primis eiusdem dimensionis datum est, singulae functiones tentando erui debebunt. Magnam analogiam habet hoc problema cum eo, quod numerorum compositorum factores quaerere iubet. Hic vero iam a priori determinatur, an functio proposita in factores adhuc discerpi possit. Quum et hic factorum omnium possibilium multitudo sit finita, simili subsidio ut supra uti possumus. Sed huic rei inhaerere nolumus, nam calculator exercitatus principia probe assecutus, quando opus est, facile artificia particularia reperiet.

Progredimur ad aliud caput, scilicet ad considerationem congruentiarum, si modulus non est numerus primus, uti hactenus semper supposuimus. Praesertim vero hic ille casus attentione dignus est, ubi modulus est numeri primi potestas, tum per se tum quod ad aliqua dubia removenda (§. §. ..) necessarius sit.

373.

PROBLEMA. Si functio X secundum modulum p in factores inter se primos ξ , ξ' , ξ'' etc. sit resoluta, X secundum modulum pp in similes factores Ξ , Ξ' , Ξ'' etc. resolvere ita, ut sit

$$\xi \equiv \Xi$$
, $\xi' \equiv \Xi'$, $\xi'' \equiv \Xi''$, etc. (mod. p)

Sol. Sit
$$X \equiv \xi \psi \pmod{p}$$
 seu $X = \xi \psi + p\Sigma$. Ponatur

$$\Xi = \xi + p \varphi$$
, $\Psi = \psi + p \omega$

erit

$$\Xi\Psi = X - p\Sigma + (\varphi\psi + \xi\omega)p + pp\varphi\omega$$

Si igitur $\Xi\Psi$ esse debet $\equiv X(\bmod.pp)$, necessario debet esse $\varphi\psi + \xi\omega - \Sigma$ per p divisibilis. At cum ψ et ξ secundum modulum p sint functiones inter se primae, φ et ω ita determinari poterunt, ut haec conditio adimpleatur (§. 336), et quidem insuper ita, ut dimensiones ipsarum φ et ω sint respective unitate minores dimensionibus functionum ξ , ψ . Hinc erit $X \equiv \Xi\Psi(\bmod.pp)$. Patet, simili modo Ψ rursus in factores $\Xi'\Omega$ discerpi posse, ita ut alter Ξ' sit $\Xi\xi'$ (mod. p) et ita porro, unde tandem

$$X \equiv \Xi \Xi' \Xi'' \text{ etc. (mod. } pp). Q. E. Fac.$$

374.

Facile hinc probari potest, functionem X etiam secundum modulos p^3 , p^4 etc. in factores resolvi posse. Generaliter sit

$$X \equiv PQ \pmod{p^m}$$
 seu $X = PQ + p^mR$

et functio P ad ipsam Q prima secundum modulum p; posito

$$P' = P + Ap^m, \quad Q' = Q + Bp^m$$

erit

$$P'Q' = X - p^m R + (AQ + BP)p^m + ABp^{2m}$$

Hinc pro quovis modulo p^{\vee} (\vee existente > m et < 2m+1) erit

$$P'Q' \equiv X$$
, si $R \equiv AQ + BP \pmod{p^{\nu-m}}$

Ex his perspicitur, si functio X aequales non habeat divisores secundum modulum p, eam secundum modulum p^k similiter in factores discerpi posse, uti secundum modulum p. At si X divisores aequales habeat, res fit multo magis complicata neque adeo ex principiis praecedentibus prorsus exhauriri potest. Quare quum quae huc pertineant cuncta communicare non possimus, unicum casum tantummodo considerabimus, qui plurimum occurrit cuiusque enodatio ad quaedam in praecedentibus dubia solvenda requiritur. Hic est, si factores aequales unius dimensionis tantum respiciantur. Hic proprie etiam ad congruentiarum radices inveniendas adhiberi potest. Generaliter alia occasione hanc rem pertractabimus.

Sit igitur $X \equiv X'(x-a)^m \pmod{p}$ et functio X' ad x-a prima; desiderantur omnes divisores unius dimensionis huic x-a secundum modulum p congrui ipsius X secundum modulos pp, p^3 etc. (Supponimus, functionem X absolute per x-a dividi non posse; alias enim x-a secundum modulum quemcunque functionem X divideret). Si substituatur z+a pro x, habebitur

$$Z \equiv Z'z^m \pmod{p}$$
 seu $Z = Z'z^m + pA$

Iam si Z secundum modulum pp per aliquem divisorem formae $z+\alpha p$ dividi potest, necessario A debet esse formae zZ''+pB. Nisi hoc sit, disquisitio iam est finita. Ponamus igitur

$$Z \equiv Z'z^m + pZ''z \pmod{p}$$
 seu $Z = Z'z^m + pZ''z + ppB$

patetque, Z per z ac quemcunque alium divisorem huic secundum modulum p congruum dividi posse.

Ut attentio fixetur, ponemus m = 4, facile perspicietur, quemvis alium casum simili modo tractari posse. Iam si Z secundum modulum p^3 per aliquem divisorem formae $z + \alpha p$ dividi potest, erit

$$0 \equiv -\alpha ppZ'' + ppB \pmod{z + \alpha p, p^3} \quad \text{seu} \quad \alpha Z'' \equiv B \pmod{z, p}$$

Iam tres casus esse possunt

1) si $Z'' \equiv 0 \pmod{z,p}$ et B non $\equiv 0$, tunc patet, nullum ipsius α valorem congruentiae satisfacere adeoque Z secundum modulum p^s nullum divisorem formae $z+\alpha p$ habere. Quare disquisitio erit finita

2) si nec Z'' nec $B \equiv 0 \pmod{z, p}$; tunc α unicum valorem habebit, scilicet

$$\alpha \equiv \frac{B}{Z''} \pmod{3,p}$$

Quare erit unicus divisor $\equiv z + \alpha p \pmod{p}$ ipsius Z secundum modulum p^3 ; eritque

$$Z \equiv V(z+\alpha p)+p^3W$$

Iam ponatur divisor ipsius $Z(\text{mod. }p^4)$ $z+\alpha p+\delta pp$ eritque

0 =

BEMERKUNGEN ZUR ANALYSIS RESIDUORUM.

Die beiden vorstehenden Abhandlungen sind einem umfangreichen Manuscripte entnommen, welches den Titel Analysis Residuorum führt und vermuthlich aus dem Jahre 1797 oder 1798 stammt; durch eine gänzliche Umarbeitung sind aus demselben später die Disquisitiones Arithmeticae entstanden. Der vollständige Titel des Caput sextum lautet:

Solutio congruentiae $x^m-1 \equiv 0$ et aequationis $x^m-1 = 0$; cum dilucidationibus super theoria polygonorum regularium.

Der zweite Theil desselben (§§. 253—278) ist seinem wesentlichen Inhalte nach in die siebente Section der Disqq. Arithm. übergegangen.

Ausserdem ist noch zum Theil erhalten das Caput septimum. Variae quarundam investigationum praecedentium applicationes (§§. 279—302). Es zerfällt in folgende Unterabtheilungen:

De fractionum communium transmutationibus (§§. 279-281).

De fractionum communium in decimales conversione (§§. 282-292).

De resolutione aequationis indeterminatae xx = a + by (§§. 293-297).

De resolutione aequationis indeterminatae axx + byy = c (§§. 298-301).

De investigatione divisorum numerorum (§. 302; die folgenden Bogen fehlen).

Dies alles ist fast wörtlich in die sechste Section der Disqq. Arithm. aufgenommen.

Die beiden hier mitgetheilten Abschnitte behandeln die Gegenstände, welche, wie aus der Vorrede und den Artikeln 11, 44, 61, 62, 65, 84 der Disqq. Arithm. hervorgeht, den Inhalt der achten Section dieses Werkes bilden sollten. Es verdient indessen bemerkt zu werden, dass dieser Plan später wieder abgeändert ist; es findet sich nemlich unter den Manuscripten ein Fragment mit der Ueberschrift Sectio octava: Quarundam disquisitionum ad circuli sectionem pertinentium uberior consideratio. Dasselbe be-

Digitized by Google

ginnt mit Art. 367 und sollte also die Fortsetzung der Disqq. Arithm. bilden; die wenigen noch vorhandenen Artikel sind aber später ihrem Inhalte nach in die Abhandlung Summatio quarumdam serierum singularium übergegangen, und deshalb wird dieses Fragment von der gegenwärtigen Ausgabe ausgeschlossen.

In dem vorstehenden Abdruck der beiden Theile der Analysis Residuorum ist der Text des Originals im Wesentlichen treu beibehalten, obgleich dasselbe in formeller Beziehung nicht druckfertig zu nennen ist; in den folgenden Bemerkungen sind die wichtigsten Abänderungen bezeichnet, und zugleich einige Erläuterungen hinsugefügt.

§. 237. Vergl. Disqq. Arithm. artt. 61, 62.

II.

- 6, 239. Vergl. Disqq. Arithm. artt. 53, 54, 65.
- §. 241. Wenn $n = 2^p$ und $v \ge 3$ ist, so existirt swar keine Zahl ρ von der angegebenen Art, aber die ganze Untersuchung wird hierdurch nicht wesentlich geändert.
- §. 251. Vermuthlich sollte die hier bemerkte Schwierigkeit durch die Einführung höherer Potenzen von p als Moduln beseitigt werden. Vergl. §§. 363, 372, 373.
 - §. 332. Die Voraussetzung, dass der Modulus eine Primzahl ist, wird bis §. 372 incl. beibehalten.
 - §. 338. Das unvollständige Citat kann auf Disqq. Arithm. art. 44 bezogen werden.
- §§. 344—346. Von den beiden im Manuscript vorhandenen Beweisen ist hier der erste, welcher mit den Worten iam demonstrare accingimur eingeleitet wird und sich auf eine nähere Untersuchung der Ausdrücke (1°26°37°...) gründet, nach der eigenen Vorschrift des Verfassers ganz unterdrückt ('Tota praecedens demonstratio una cum altera theorematis praec., quam adiicere mens erat, supprimenda erit, quoniam aliam infinities simpliciorem deteximus. Nititur ea huic fundamento'.); in dem obigen Ausdruck ist ferner der zweite Beweis dadurch abgekürzt, dass die Entwicklung von $\frac{x d P}{P d x}$ statt derjenigen von $\frac{x d P}{d x}$ betrachtet wird, wodurch zugleich eine im Original enthaltene Beziehung auf den unterdrückten ersten Beweis umgangen wird.
- §. 348. Der Ausdruck radix prima ist hier in derselben Bedeutung zu nehmen, wie der Ausdruck radix propria in der Abhandlung Summatio quarumdam serierum singularium art. 11. Bei der Behauptung, dass die Coëfficienten A'. B'... des entwickelten Productes ganze rationale Zahlen sind, wird auf das sechste Capitel verwiesen, in welchem aber die Theorie der Gleichung $x^{\tau}-1=0$ nur für den Fall behandelt wird, dass τ eine Primzahl ist; die Form des Beweises in §. 349 führt sunächst auf folgende Ergänzung. Wird das entwickelte Product in die (für alle Wurzeln der Gleichung $\theta^{\tau}=1$ geltende) Form

$$S = E + F\theta + \ldots + N\theta^{\tau-1}$$

gebracht, so sind die Coëfficienten E, F... N ganze rationale Functionen von x mit ganzen rationalen Coëfficienten; da ferner das Product ungeändert bleibt, wenn θ durch θ^k ersetzt wird, wo k irgend eine relative Primzahl zu τ bedeutet, so gilt dasselbe von dem Ausdruck S, und hieraus ergibt sich ohne Schwierigkeit, dass alle diejenigen in S enthaltenen Potenzen von θ , deren Exponenten s einen und denselben grössten gemeinschaftlichen Divisor mit τ haben, auch identische Coëfficienten haben müssen; da endlich eine jede Summe solcher Potenzen θ^s immer eine ganze Zahl ist, so leuchtet ein, dass der Ausdruck S, und folglich auch das in Rede stehende Product eine ganze Function von x mit ganzen Coëfficienten ist, was zu zeigen war. Ebenso geht aus dieser Betrachtung zugleich die Richtigkeit der Bemerkung am Schlusse des Paragraphen hervor. Andere Gründe lassen indessen vermuthen, dass dem Verfasser schon damals das allgemeine Theorem über die Transformation der symmetrischen Functionen (Demonstratio nova altera theorematis omnem functionem etc. art. 4) bekannt war, aus welchem sich die obigen Sätze als unmittelbare Folgerungen ergeben.

§. 352. Das Zeichen $R \equiv S \pmod{P}$ oder auch $R \equiv S \pmod{P,p}$ bedeutet hier und im Folgen-

den, dass die Differens R-S nach dem Modul p den Divisor P hat. — Das unvollständige Citat kann auf Disqq. Arithm. art. 49 besogen werden.

$$(x-R(a))(x-R(b))(x-R(c))\dots$$
 und $(x-S(a))(x-S(b))(x-S(c))\dots$

einander nach dem Modul p congruent.

§ 355. Es wird in §. 368 gezeigt, dass P und $\frac{dP}{dx}$ keinen gemeinschaftlichen Divisor haben, wenn P keinen Factor mehr als einmal enthält.

§§. 358, 359. Die unter den Text gesetzte Note ist einem einzelnen Blatt entnommen, welches wahrscheinlich den schon in der Handschrift gestrichenen §. 359 ersetzen sollte.

§. 360. In dem Ausdruck des Theorems ist eine Ungenauigkeit der Handschrift berichtigt.

§. 361. Hier bedeutet der Exponent $\frac{1}{k}$ in dem Zeichen $(\xi, \rho, \overline{k})$ jede positive ganze Zahl k' von der Beschaffenheit, dass $kk' \equiv 1 \pmod{\nu}$ wird, wo ν die kleinste positive ganze Zahl ist, für welche x''-1 durch ξ nach dem Modul p theilbar wird; hierbei ist vorauszusetzen, dass ξ nicht durch x theilbar nach dem Modul p, und ausserdem, dass k relative Primzahl zu ν ist. Die Richtigkeit der Behauptung, dass ξ' durch $(\xi, \rho, \overline{k})$ theilbar ist (mod. p), ergibt sich aus ξ . 354.

§. 363. Die Schlussbemerkung bezieht sich vermuthlich auf die Einführung von Moduln, welche Potenzen der Primzahl p sind; vergl. §§, 251, 372, 373.

§. 367. Die Wurzeln der Gleichung $x^6 + xx - 2x - 1 = 0$ sind die zweigliedrigen Perioden, in welche die Wurzeln der Gleichung $\frac{x^7 - 1}{x - 1} = 0$ zerfallen. Dasselbe Beispiel findet sich auch auf einem einzelnen Blatt, wo das Hauptresultat der §§. 362, 363 unter dem Titel 'der goldene Lehrsatz' ausgesprochen ist.

§, 371. Dieser Paragraph sollte ein Beispiel enthalten; doch ist dasselbe nicht ausgeführt.

R. DEDEKIND.

DISQUISITIONUM CIRCA AEQUATIONES PURAS

ULTERIOR EVOLUTIO.

1.

Quum methodus ea, per quam in *Disquiss. Arithm*. art. 360 aequationem $x^n-1=0$ solvere docuimus, theoriam foecundissimam et gravissimam constituat, cuius prima tantum momenta in opere illo attingere licuit, gratum geometris fore speramus, si hoc argumentum denuo hic resumimus, quae breviter tantum partimque demonstrationibus suppressis adumbrata fuerant, uberius tractamus, et quae ex illo tempore accesserunt incrementa profundius persequimur.

Exponens n supponitur esse numerus primus, numerusque n-1 in factores $a \times b \times \gamma$ resolutus; porro designamus per g aliquam radicem primitivam pro modulo n. Exhibeat r indefinite radicem aequationis $x^n-1=0$, atque R indefinite radicem aequationis $x^b-1=0$. Designando itaque peripheriam circuli, cuius radius = 1, per P, quantitatemque imaginariam $\sqrt{-1}$ per i, omnes radices aequationis $x^b-1=0$, sive omnes valores ipsius R exhibebuntur per formulam

$$\cos\frac{kP}{\theta} + i\sin\frac{kP}{\theta}$$

exprimente k indefinite numeros integros $0, 1, 2, 3 \dots 6-1$. Porro patet, omnes potestates cuiusvis radicis R ipsas quoque esse radices, nec non, si R fuerit radix valori ipsius k ad 6 primo respondens, omnes potestates $R^0, R, R^3, R^3 \dots R^{6-1}$ inter se diversas esse, adeoque totum radicum complexum exhaurire; in hoc casu ipsam R radicem propriam aequationis $x^6-1=0$ dicemus; contra radix R va-

lori ipsius k ad δ non primo respondens impropria vocabitur, nulloque negotio perspicitur, si δ fuerit divisor communis maximus numerorum k et δ , fore $R^{\frac{\theta}{\delta}} = 1$, omnes vero potestates R^0 , R, R^2 , R^3 $R^{\frac{\theta}{\delta}-1}$ inter se diversas, adeoque R radicem propriam aequationis $x^{\frac{\theta}{\delta}} - 1 = 0$. Eadem de aequatione $x^n - 1 = 0$ valebunt, sed huius radices omnes necessario sunt propriae radice 1 excepta.

2.

His praemissis disquisitio nostra imprimis versabitur circa functiones huius formae, e 6γ terminis conflatas

$$r+Rr^{g^a}+R^2r^{g^{2a}}+R^3r^{g^{3a}}\dots+R^{6\gamma-1}r^{g^{a6\gamma-a}}$$

quas compendii caussa per hunc characterem [r, R] designabimus. Singuli termini talis expressionis sunt producta e potestatibus ipsius r in potestates ipsius R; illarum exponentes progressionem geometricam constituunt, exponentes harum arithmeticam. Exponentes

1,
$$g^{a}$$
, g^{ba} , g^{ba} $g^{ab\gamma-a}$

omnes inter se incongrui sunt secundum modulum n, adeoque illae potestates ipsius r inter se diversae; ulterius vero continuatae eandem seriem denuo inciperent, quum sit $g^{ab\gamma} \equiv 1 \pmod{n}$, adeoque $r^{g^{ab\gamma}} = r$. Factores alteri autem

1,
$$R$$
, R^3 , R^3 $R^{6\gamma-1}$

constituent γ periodos aequales, quem sit $R^6 = 1$, $R^{6-1} = R$ etc. Hinc patet, functionem [r, R] ita quoque exhiberi posse

$$r + r^{gab} + r^{g2ab} + r^{g2ab} + r^{gab\gamma-ab} + R (r^{ga} + r^{gab\gamma-ab+a} + r^{g2ab+a} + r^{gab\gamma-ab+a}) + R^{2} (r^{g2a} + r^{gab+2a} + r^{g2ab+2a} + r^{gab\gamma-ab+2a}) + \text{etc.} + R^{b-1} (r^{gab-a} + r^{g2ab-a} + r^{g3ab-a} + r^{g3ab-a})$$

sive introducendo signum art. 343 Disq. Ar.

$$[r,R] = (\gamma,1) + R(\gamma,g^{\alpha}) + R^{2}(\gamma,g^{2\alpha}) + \dots + R^{6-1}(\gamma,g^{\alpha\delta-\alpha})$$

3

Si pro radice r unitatem accipimus, habemus

$$[1,R] = 1 + R + R^2 + R^3 \dots + R^{\ell_{\gamma-1}} = \gamma (1 + R + R^2 + R^3 \dots + R^{\ell-1})$$

huius valor erit = 6γ , si etiam pro R accipitur radix 1, sed = 0 pro quovis alio valore ipsius R. Contra manente r indeterminata, positaque R = 1, erit $[r,1] = r + r^{g^{\alpha}} + r^{g^{2\alpha}} + r^{g^{3\alpha}} \dots + r^{g^{\alpha\delta\gamma-\alpha}}$, sive adhibito signo in Disq. Ar. introducto, $[r,1] = (6\gamma,1)$, i. e. constabit e periodo 6γ radicum, e quibus una est ipsa r. Quoties est $\alpha = 1$, haec periodus omnes radices $r, r^2, r^3, \dots, r^{n-1}$ complectetur ordine tantum mutato.

Notentur adhuc relationes sequentes, quarum ratio sponte elucet:

$$[r,R] = R[r^{g^a},R] = R^2[r^{g^{2a}},R]$$
 sive generaliter $= R^k[r^{g^{ak}},R]$

denotante k integrum positivum quemcunque. Hinc patet, functionem $[r^m, R]$ vel esse = [1, R], scilicet si fuerit m divisibilis per n, vel reduci posse ad formam $R^{\mu}[r^{g^{\nu}}, R]$ in casibus reliquis et quidem ita, ut sit $\nu < \alpha$. Si enim m non est divisibilis per n, congruus erit secundum modulum n alicui potestati ipsius g, cuius exponens ad instar Disq. Ar. per ind. m commode exprimitur; statuendo itaque ind. $m = \lambda \alpha + \nu$, quod manifesto fieri potest, ita ut sit $\nu < \alpha$, erit $[r^m, R] = [r^{g^{\lambda \alpha + \nu}}, R] = R^{-\lambda}[r^{g^{\nu}}, R]$: faciendus est itaque $\mu = -\lambda$ aut si exponentem positivum desideras, $\mu \equiv -\lambda \pmod{6}$.

4.

THEOREMA. Designante r' perinde ut r indefinite radicem aequationis $x^n-1=0$, nec non R' perinde ut R indefinite radicem aequationis $x^0-1=0$, erit productum

$$[r,R] \times [r',R'] = [rr',RR'] + R[r^{g^a}r',RR'] + R^3[r^{g^{2a}}r',RR'] + R^3[r^{g^{3a}}r',RR'] \dots + R^{6\gamma-1}[r^{g^{a6\gamma-a}}r',RR']$$

Demonstr. Absolvendo multiplicationem ipsius [r, R] per singulas partes ipsius [r', R'], productum in hac forma exhiberi potest

$$[r,R]r'+RR'[r^{g^{\alpha}},R]r'^{g^{\alpha}}+R^{2}R'^{2}[r^{g^{2\alpha}},R]r'^{g^{2\alpha}}+R^{3}R'^{3}[r^{g^{3\alpha}},R]r'^{g^{3\alpha}}....+R^{b\gamma-1}R'^{b\gamma-1}[r^{g^{ab\gamma-a}},R]r'^{g^{ab\gamma-a}}$$

246 NACHLASS.

Collectis dein singularum partium rite evolutarum terminis primis, prodit [rr', RR]; perinde collectis terminis secundis, emergit $R[r^{ga}r', RR']$ et sic porro, unde tandem producti forma tradita conflatur. Q. E. D.

Ceterum per solam permutationem ipsarum r, R cum r', R' patet, idem productum etiam sub hanc formam poni posse:

$$[rr', RR'] + R'[rr'^{ga}, RR'] + R'^{2}[rr'^{g2a}, RR'] + R'^{3}[rr'^{g3a}, RR'] + R'^{6\eta-1}[rr'^{ga6\eta-a}, RR']$$

Hinc porro concluditur, si etiam r'', r''' etc. indefinite exprimant radices aequationis $x^n-1=0$, nec non R'', R''' etc. indefinite radices aequationis $x^0-1=0$, productum e functionibus [r,R], [r',R'], [r'',R''], [r''',R'''] etc., quantacunque fuerit ipsarum multitudo, aequale fore aggregato

$$\Sigma R^{k'} R^{nk''} R^{mk'''}$$
 etc. $[rr'^{gak'}r^{ngak''}r^{mgak'''}$ etc., $RR'R''R'''$ etc.]

substitutis pro k', k'', k''' etc. omnibus numeris 0, 1, 2, 3 . . . 6γ —1, omnibus modis diversis possibilibus inter se combinatis, quo pacto omnino $6^{\mu-1}\gamma^{\mu-1}$ termini emergent, si per μ multitudo illarum functionum inter se multiplicatarum denotatur.

5.

Formula, per quam in art. praec. productum e functionibus quotcunque expressimus, generalis est, neque ullum nexum inter radices r, r', r'', r''' etc., vel inter R, R', R'', R''' etc. supponit. Nullo inde negotio deducitur, si radices r', r'', r''' etc. tamquam potestates ipsius r, radicesque R', R'', R''' etc. tamquam potestates ipsius R considerare liceat, singulas partes producti sub forma $R^{M}[r^{m}, R^{\lambda}]$ comprehensas fore, ubi exponens λ pro singulis idem erit, scilicet $R^{\lambda} = RR'R''R'''$ etc. Quamobrem per ea, quae in art. 3 monuimus, huiusmodi productum reducetur ad formam sequentem

$$\begin{array}{l} A\, [\, {\bf 1}\, , R^{\lambda}] \, + \, B\, [r, R^{\lambda}] \, + \, B'[r^g, R^{\lambda}] \, + \, B''[r^{g^a}, R^{\lambda}] \, + \, {\rm etc.} \\ + \, B^{(\alpha-1)}\, [r^{g^{\alpha-1}}, R^{\lambda}] \end{array}$$

ubi singuli coëfficientes A, B, B', B'', B''' etc. erunt formae

$$h+h'R+h''R^2+h'''R^3+\text{etc.}+h^{(6-1)}R^{6-1}$$

designantibus h, h', h", h" etc. numeros determinatos integros.

Casus simplicissimus is erit, ubi ponitur r = r' = r'' = r''' etc., nec non R = R' = R'' = R''' etc.; tunc productum nostrum transit in potestatem $[r, R]^{\lambda}$, quae itaque ad formam supra traditam semper reveniet.

6.

Statuendo itaque $\lambda = 6$, potestas $[r, R]^6$ hanc formam nanciscetur:

$$A[1,1] + B[r,1] + B'[r^g,1] + \text{etc.} + B^{\alpha-1}[r^{g^{\alpha-1}},1]$$

$$= 6\gamma A + B(6\gamma,1) + B'(6\gamma,g) + B''(6\gamma,g^2) + \text{etc.} + B^{(\alpha-1)}(6\gamma,g^{\alpha-1}) = \theta'$$

Quodsi itaque non modo valor radicis R (adeoque et valores coëfficientium A, B, B' etc.), sed etiam valores singulorum aggregatorum $\delta \gamma$ terminorum $(\delta \gamma, 1)$, $(\delta \gamma, g)$ etc. cogniti supponuntur, valor ipsius θ' sponte innotescet, unde erui poterit [r, R] per formulam ${}^{\delta}\!\!\!/ \theta'$. Haec expressio δ valores diversos admittit; unde dubium videri posset, quemnam adoptare oporteat: facile autem ostenditur, hoc prorsus arbitrarium esse, quoties R sit radix propria aequationis $x^{\delta}-1$ = 0. In hoc enim casu patet, illos δ valores expressionis radicalis ${}^{\delta}\!\!\!/ \theta'$ fore

$$[r,R], [r^{g^{\alpha}},R], [r^{g^{2\alpha}},R] \ldots [r^{g^{\alpha\delta-\alpha}},R]$$

quippe quarum functionum potestates \mathcal{E}^{tae} per art. 3 inter se aequales erunt, ipsae vero inter se ipsis \mathcal{E} radicibus diversis aequationis $x^6-1=0$ proportionales: sed quamdiu aggregata \mathcal{E}_{γ} terminorum $(\mathcal{E}_{\gamma}, 1)$, $(\mathcal{E}_{\gamma}, g)$ etc. tantum cognita sunt, ipsa radix r eatenus tantum determinata est, quod in complexu $(\mathcal{E}_{\gamma}, 1)$ contenta esse debet, arbitrariumque manet, quamnam ex hoc complexu pro r adoptemus. Hae radices vero sunt r, r^{g^a} , $r^{g^{2a}}$ etc., et proin etiam e functionibus [r, R], $[r^{g^a}, R]$, $[r^{g^{2a}}, R]$ etc. quamlibet pro [r, R] adoptare possumus.

Hae conclusiones non valerent, si R non esset radix propria aequationis $x^6-1=0$; supponendo enim, R esse radicem propriam aequationis $x^6-1=0$, ita ut 6' sit divisor ipsius 6, facile patet, fieri

$$[r,R] = [r^{gab'},R], \quad [r^{ga},R] = [r^{gab'+a},R] \text{ etc.}$$

adeoque in complexu \mathcal{E} functionum $[r, R], [r^{g^a}, R] \dots [r^{g^{ab-a}}, R]$ tantummodo \mathcal{E}' diversas reperiri, et proin etiam e valoribus expressionis \mathcal{E}' haud plures quam \mathcal{E}' admissibiles esse, reliquos \mathcal{E}' autem spurios. At nullo negotio perspicitur, in hoc casu haud opus esse usque ad potestatam \mathcal{E}^{tam} functionis [r, R] ascen-

dere, sed iam potestatem $[r, R]^{6'}$ ad formam nostram

$$6\gamma A + B(6\gamma, 1) + B'(6\gamma, g) + B''(6\gamma, g^2)$$
 etc.

reduci. Habebimus itaque [r, R] per expressionem talem $\sqrt[6]{\theta}$, nihilque intererit, quemnam valorem huius expressionis adoptemus.

7.

Perinde ut [r, R] etiam functiones $[r, R^2]$, $[r, R^3]$ etc. sive generaliter $[r, R^k]$ determinare licebit: patet enim, si substituendo in θ' loco ipsius R potestates R^2 , R^3 etc. R^k emergere supponantur functiones θ'' , θ''' etc. $\theta^{(k)}$, fore $[r, R^2]^6 = \theta''$, $[r, R^3]^6 = \theta'''$ etc. et generaliter $[r, R^k]^6 = \theta^{(k)}$; quamobrem hae quoque functiones per expressiones radicales exprimi poterunt, $[r, R^2] = \sqrt[6]{\theta''}$ etc. Sed haud convenit, hisce expressionibus radicalibus uti, quoties quantitas aliqua per functionem ipsarum [r, R], $[r, R^2]$ etc. exprimenda est. Scilicet quum singularum valores haud penitus determinati sint, dubium maneret, quosnam inter se combinare liceret: manifesto autem hoc neutiquam arbitrarium est; facile enim perspicitur, simulac pro [r, R] valor determinatus accipiatur, etiam omnes $[r, R^2]$, $[r, R^3]$ etc. valores penitus determinatos nancisci debere, qui autem per expressiones radicales non indicantur. His itaque reiectis, expressiones alias indagare oportet, quarum adiumento $[r, R^3]$, $[r, R^3]$ etc. rationaliter per [r, R] atque quantitates cognitas exhibeantur, quod facile sequenti modo efficimus.

Per theorema art. 4, eaque quae in art. 5 docuimus, etiam productum $[r, R^k] \times [r, R]^{6-k}$ ad formam talem

$$6\gamma A + B(6\gamma, 1) + B'(6\gamma, g) + B''(6\gamma, g^2) + \text{etc.} + B^{(\alpha-1)}(6\gamma, g^{\alpha-1})$$

reducetur, ubi A, B, B', B'' etc. erunt functiones rationales ipsius R. Positis itaque productis

$$[r, R^2] \times [r, R]^{6-2} = \vartheta''$$

 $[r, R^3] \times [r, R]^{6-3} = \vartheta'''$
 $[r, R^4] \times [r, R]^{6-4} = \vartheta''''$
etc.

erunt etiam 8", 8", 8"" etc. quantitates rationaliter assignabiles, atque

$$[r,R^2] = \frac{\vartheta''}{\vartheta'} [r,R]^2$$

 $[r,R^3] = \frac{\vartheta'''}{\vartheta'} [r,R]^3$
 $[r,R^4] = \frac{\vartheta''''}{\vartheta'} [r,R]^4$
etc.

Hae expressiones itaque valores functionum $[r, R^2]$, $[r, R^3]$ etc. rationaliter exhibent, siquidem non fuerit [r, R] = 0, in quo casu indeterminatae fierent: at rigorose demonstrare possumus, numquam fieri posse [r, R] = 0, quoties quidem r denotet radicem ab 1 diversam, etiamsi expositionem huius demonstrationis, ne hic nimis prolixi fiamus, ad aliam occasionem nobis reservare oporteat.

8.

Quae in artt. praecc. exposuimus, usum praestant, si a periodis $\delta \gamma$ terminorum ad periodos γ terminorum descendere propositum est. Nullo scilicet negotio perspicitur, denotante R radicem propriam, haberi

$$\begin{array}{ll} \mathfrak{G}(\gamma,1) &= (\mathfrak{G}\gamma,1) + [r,R] + [r,R^2] + [r,R^3] + \text{ etc.} + [r,R^{6-1}] \\ \mathfrak{G}(\gamma,g^{\alpha}) &= (\mathfrak{G}\gamma,1) + R^{6-1}[r,R] + R^{6-2}[r,R^2] + R^{6-3}[r,R^3] + \text{ etc.} + R[r,R^{6-1}] \\ \mathfrak{G}(\gamma,g^{2\alpha}) &= (\mathfrak{G}\gamma,1) + R^{26-2}[r,R] + R^{26-4}[r,R^2] + R^{26-6}[r,R^3] + \text{ etc.} + R^2[r,R^{6-1}] \\ \text{ etc.} \end{array}$$

Si hic pro singulis [r,R], $[r,R^2]$ etc. expressiones radicales $\sqrt[6]{6}$, $\sqrt[6]{6}$ etc. acciperentur, valor cuiusvis seriei inter valores 6^{6-1} dubius esset, qui contra adoptatis expressionibus rationalibus pro $[r,R^2]$ etc. ambiguitati alii non erit obnoxius, nisi quae per rei naturam est inevitabilis. Haec observatio attentionem ill. Lagrange subterfugisse videtur, qui methodum nostram in Disquis, arithm. art. 360 traditam, ubi haud inconsulto neglectis expressionibus radicalibus solas rationales proposueramus, simplificavisse sibi visus est, dum illas pro his substituit (Traité de la résolution numérique des équations; édition 2^{me} pag. 311).

Ceterum vix opus est hic monere, simulac valores periodorum $(\gamma, 1)$, (γ, g^2) etc., aut tantummodo unius ex ipsis eruti sint, valores omnium reliquarum periodorum γ terminorum rationaliter inde deduci posse. Descensus itaque a periodis $\delta \gamma$ terminorum ad periodos γ terminorum requirit solutionem aequationum $x^6 = 1$, $x^6 = \theta'$, operationesque reliquae rationaliter perficientur.

9.

Haec omnia eodem fere modo iam in Disquis. Ar. pertractata fuerant; quaedam autem illic adiecta fuerant suppressa demonstratione, quam hic explere consultum iudicamus. Annuntiavimus illic, evolutionem valoris quantitatis radicalis $\sqrt[6]{\theta}$, quae quandoquidem θ' est quantitas imaginaria, sectionem tum rationis tum anguli in θ partes requirere videtur, a sola posteriori pendere, prioremque semper ad solam extractionem unius radicis quadratae reduci posse: hoc ita demonstramus.

Designando ut supra quantitatem imaginariam $\sqrt{-1}$ per i, statuendoque $\theta' = P + iQ$, atque aliquem valorem expressionis $\sqrt[6]{\theta'} = p + iq$, ita ut P, Q, p, q sint reales, constat, si quantitates positivae E, e angulique F, f ita determinentur, ut sit $P = E \cos F$, $Q = E \sin F$, $p = e \cos f$, $q = e \sin f$, fore $e = \sqrt[6]{E}$, atque f aequalem alicui ex angulis

$$\frac{1}{6}F$$
, $\frac{1}{6}(F+360^{0})$, $\frac{1}{6}(F+720^{0})$... $\frac{1}{6}(F+(6-1)360^{0})$

Determinabitur itaque f ger sectionem anguli F in 6 partes, at extractione radicis $\sqrt[6]{E}$ sequenti modo supersedere possumus. Quodvis productum $r^k R^K$ partem suam realem habet communem cum $r^{-k} R^{-K}$, partes imaginariae autem factorem i implicantes in his productis aequales sed oppositae erunt. Hinc sponte sequitur $[r^{-1}, R^{-1}] = p - iq = e(\cos f - i \sin f)$, adeoque

$$[r,R] \times [r^{-1},R^{-1}] = e^2$$

Sed productum illud per theorema art. 4 fit

=
$$[1,1] + R[r^{g^{\alpha}-1},1] + R^2[r^{g^{2\alpha}-1},1] + \text{etc.} + R^{\ell\gamma-1}[r^{g^{2\delta}\gamma-\alpha-1},1]$$

= $6\gamma + R(6\gamma, g^{\alpha}-1) + R^2(6\gamma, g^{2\alpha}-1) + \text{etc.} + R^{\ell\gamma-1}(6\gamma, g^{2\ell\gamma-\alpha}-1)$

quae quantitas determinabilis est, si R omnesque periodi $\delta \gamma$ terminorum cognitae supponuntur. Determinatio ipsius e itaque solam extractionem radicis quadratae postulat.

In casu speciali, ubi $\alpha = 1$, singulae periodi $(6\gamma, g^2-1)$, $(6\gamma, g^2-1)$ etc. manifesto sunt $= r + r^2 + r^3 + r^4 +$ etc. $+ r^{n-1}$, adeoque

$$ee = 6\gamma + (R + R^2 + R^3 + \text{etc.} + R^{6\gamma-1})(r + r^2 + r^3 + \text{etc.} + r^{n-1})$$

= $6\gamma + 1 = n$

siquidem r et R radices ab 1 diversas exhibere supponuntur, et proin semper $e = \sqrt{n}$ (Disq. arithm. art. 360 fin.).

10.

Hactenus disquisitionem nostram summa generalitate instituimus, ut valores quoscunque numerorum α , β , γ complectatur: abhinc vero ad casum magis limitatum, ubi $\alpha = 1$, transibimus, qui ad disquisitiones foecundissimas et elegantissimas viam nobis sternet. Exprimet itaque signum [r,R] functionem

$$r + Rr^{g} + R^{2}r^{g^{2}} + R^{3}r^{g^{3}} + \text{etc.} + R^{n-2}r^{g^{n-2}}$$

ubi n est numerus primus, r indefinite radix aequationis $x^n-1 = 0$ (radice 1 non excepta), R indefinite radix aequationis $x^6-1 = 0$, denotante \mathcal{E} divisorem datum ipsius n-1, denique g integer, qui est radix primitiva determinata pro modulo n. Porro brevitatis caussa scribemus

$$1+r+r^2+r^3+\text{etc.}+r^{n-1}=s$$

 $1+R+R^2+R^3+\text{etc.}+R^{n-2}=S$

unde patet s fieri = n pro r = 1, sed s = 0 pro quovis alio valore ipsius r, et perinde S = n-1 pro R = 1, sed S = 0 pro quovis alio valore ipsius R.

Per art. 3 itaque habemus [1,R] = S, [r,1] = s-1; porro pro quovis valore integri m per n non divisibili $[r^m,R] = R^{-\inf m}[r,R]$, aut generalius $[r^m,R^M] = R^{-M\inf m}[r,R^M]$, ubi ind m est exponens potestatis numeri g secundum modulum n ipsi m congruae. Applicando hanc transformationem ad ea, quae in art. 5 documus, sequitur, productum e duabus pluribusve functionibus talibus $[r^h,R^H]$ reduci ad formam hanc

$$A[1,R^{\lambda}]+B[r,R^{\lambda}]$$

ubi A et B erunt furctiones rationales ipsius R cum coëfficientibus integris, atque λ aggregatum omnium valorum ipsius H. Magni momenti erit, huiusmodi transformationes ad algorithmum expeditum reducere, ad quem finem imprimis indoles producti e duabus functionibus propius nobis consideranda erit.

11.

Productum $[r, R^{\mu}] \times [r, R^{\nu}]$ per theorema art. 4 fit =

$$\begin{split} \cdot \left[r^{2}, R^{\mu + \nu} \right] + R^{\mu} \left[r^{g+1}, R^{\mu + \nu} \right] + R^{2\mu} \left[r^{g^{2}+1}, R^{\mu + \nu} \right] + R^{3\mu} \left[r^{g^{2}+1}, R^{\mu + \nu} \right] + \text{ etc.} \\ + R^{(n-2)\mu} \left[r^{g^{n-2}+1}, R^{\mu + \nu} \right] \end{split}$$

Inter n-1 exponentes 2, g+1, g^2+1 , g^3+1 etc. $g^{n-2}+1$ unus tantum reperietur per n divisibilis. puta $g^{\frac{1}{2}(n-1)}+1$, aggregati itaque nostri terminus respondens erit $R^{\frac{1}{2}(n-1)\mu}[1, R^{\mu+\nu}]$: hic terminus erit = 0, quoties non est $R^{\mu+\nu}=1$, et = $(n-1)R^{\frac{1}{2}(n-1)\mu}=\pm(n-1)$, pro $R^{\mu+\nu}=1$. Partes reliquae aggregati nostri, quarum summam statuemus = Ω , sequenti modo transformantur:

$$egin{aligned} & [r^2, \quad R^{\mu+
u}] = R^{-(\mu+
u)\mathrm{ind}\,2} & [r, R^{\mu+
u}] \ R^{\mu} & [r^{g+1}, \quad R^{\mu+
u}] = R^{\mu-(\mu+
u)\mathrm{ind}(g+1)} & [r, R^{\mu+
u}] \ R^{2\mu} & [r^{g^2+1}, R^{\mu+
u}] = R^{2\mu-(\mu+
u)\mathrm{ind}(g^2+1)} & [r, R^{\mu+
u}] \ R^{3\mu} & [r^{g^2+1}, R^{\mu+
u}] = R^{3\mu-(\mu+
u)\mathrm{ind}(g^2+1)} & [r, R^{\mu+
u}] \end{aligned}$$
 etc.

Hinc colligimus

I.
$$\Omega = [r, R^{\mu+\nu}] \times \sum R^{\mu \operatorname{ind} x - (\mu+\nu) \operatorname{ind} (x+1)}$$

si pro x successive substituuntur valores 1, g, g^2 , g^3 ... g^{n-2} excepto hoc $g^{4(n-1)}$, seu quod manifesto eodem redit, si pro x substituuntur valores 1, 2, 3, 4... n-2, quoniam valores hi illis (etsi ordine mutato) congrui sunt secundum modulum n.

Statuendo integro y ipsi x reciprocum secundum modulum n, i. e. ita determinatum, ut fiat $xy \equiv 1 \pmod{n}$, erit ind $x \equiv -\text{ind} y \pmod{n-1}$, atque ind $(x+1) + \text{ind} y \equiv \text{ind} (xy+y) \equiv \text{ind} (1+y) \pmod{n-1}$; hinc fit

$$\mu \operatorname{ind} x - (\mu + \nu) \operatorname{ind} (x+1) \equiv -\mu \operatorname{ind} y - (\mu + \nu) \left\{ \operatorname{ind} (y+1) - \operatorname{ind} y \right\}$$
$$\equiv \nu \operatorname{ind} y - (\mu + \nu) \operatorname{ind} (y+1)$$

Quamobrem quum numeri ipsis 1, 2, 3 ... n-2 reciproci cum his ipsis ordine tantum mutato conveniant, etiam erit

II.
$$Q = [r, R^{\mu+\nu}] \times \sum R^{\nu \operatorname{ind} y - (\mu+\nu)\operatorname{ind}(y+1)}$$

substituendo pro y successive numeros 1, 2, 3...n-2. Eadem formula immediate ex I derivatur, quum manifesto numeros μ , ν inter se permutare liceat.

Denique statuendo integrum z ipsi x+1 reciprocum secundum modu-

lum n, sive $xz+z \equiv 1 \pmod{n}$, erit $\operatorname{ind}(1-z) \equiv \operatorname{ind} x + \operatorname{ind} z \pmod{n-1}$, $\operatorname{ind}(x+1) \equiv -\operatorname{ind} z \pmod{n-1}$ adeoque

$$\mu \operatorname{ind} x - (\mu + \nu) \operatorname{ind} (x + 1) \equiv \mu \left(\operatorname{ind} (1 - z) - \operatorname{ind} z \right) + (\mu + \nu) \operatorname{ind} z$$

$$\equiv \mu \operatorname{ind} (1 - z) + \nu \operatorname{ind} z$$

Quare quum percurrente x valores 1, 2, 3...n-2, numerus z percurrere debeat valores 2, 3, 4...n-1 (etsi alio ordine), nanciscimur expressionem tertiam

substituendo pro z successive valores 2, 3, 4...n—1, aut si mavis

IV.
$$Q = [r, R^{\mu+\nu}] \times \sum R^{\mu \operatorname{ind}(n+1-z)+\nu \operatorname{ind}z}$$
$$= [r, R^{\mu+\nu}] \times \sum R^{\mu \operatorname{ind}z+\nu \operatorname{ind}(n+1-z)}$$

Quum habeatur ind $(1-z) = \frac{1}{2}(n-1) + ind(z-1)$, productum nostrum ita quoque exhiberi poterit:

$$\begin{array}{l} [r,R^{\mu}] \times [r,R^{\nu}] = R^{\frac{1}{2}(n-1)\mu} \{ [1,R^{\mu+\nu}] + [r,R^{\mu+\nu}] \times \sum R^{\mu \operatorname{ind}(s-1) + \nu \operatorname{ind} z} \} \\ = R^{\frac{1}{2}(n-1)\nu} \{ [1,R^{\mu+\nu}] + [r,R^{\mu+\nu}] \times \sum R^{\mu \operatorname{ind} z + \nu \operatorname{ind}(s-1)} \} \end{array}$$

ubi semper pro z substituendi concipiuntur valores 2, 3, 4 n-1.

Ceterum in omnibus his formulis pro numeris

$$\mu$$
 ind $x = (\mu + \nu)$ ind $(x+1)$, ν ind $y = (\mu + \nu)$ ind $(y+1)$, μ ind $(1-z) + \nu$ ind z

etc. manifesto ipsorum residua minima secundum modulum 6 substitui poterunt.

Si
$$\mu + \nu \equiv 0 \pmod{6}$$
 erit

$$[r, R^{\mu}][r, R^{\nu}] = (n-1)R^{\frac{1}{2}(n-1)\mu} + (r+r^2+r^3+..+r^{n-1})\times (1+R^{\mu}+R^{2\mu}+R^{3\mu}+..+R^{(n-2)\mu}-R^{\frac{1}{2}(n-1)\mu})$$

1 2.

Productum $[1, R^{\mu}] \times [r, R^{\nu}]$ per theorema art. 4 fit

$$= [r, R^{\mu+\nu}] + R^{\mu}[r, R^{\mu+\nu}] + R^{2\mu}[r, R^{\mu+\nu}] + \text{etc.} + R^{(n-2)\mu}[r, R^{\mu+\nu}]$$

$$= [r, R^{\mu+\nu}] \times (1 + R^{\mu} + R^{2\mu} + R^{3\mu} + \text{etc.} + R^{(n-2)\mu})$$

$$= [r, R^{\mu+\nu}] \times \frac{n-1}{6} (1 + R^{\mu} + R^{2\mu} + R^{3\mu} + \text{etc.} + R^{(\delta-1)\mu})$$

Hinc productum $[1, R^{\mu}] \times [1, R^{\nu}]$ evolvitur in

$$\frac{n-1}{6}[1, R^{\mu+\nu}] \times (1 + R^{\mu} + R^{2\mu} + R^{3\mu} + \text{etc.} + R^{(6-1)\mu})$$

Nullo iam negotio generaliter productum $[r^m, R^\mu] \cdot [r^{m'}, R^{\mu'}]$ erui poterit, quum enim fiat $[r^m, R^\mu] = R^{-\mu \operatorname{ind} m}[r, R^\mu]$ pro valore ipsius m per n non divisibili, et $= [1, R^\mu]$ pro valore divisibili, et quum similis transformatio de factore altero $[n^{m'}, R^{\mu'}]$ valeat, multiplicatio vel ad problema art. praec. reducetur, vel ad casus eos, quos in hoc art. consideravimus.

13.

Postquam productum e duobus factoribus evolvere docuimus, evolutio producti e factoribus pluribus nulli difficultati obnoxia erit. Producto $[r, R^{\mu}] \times [r, R^{\nu}]$ ad formam $A[1, R^{\mu+\nu}] + B[r, R^{\mu+\nu}]$ reducto, patet, si accedat factor tertius $[r, R^{\pi}]$, productum fieri $= C[1, R^{\mu+\nu+\pi}] + D[r, R^{\mu+\nu+\pi}]$ statuendo

$$[r, R^{\mu+\nu}][r, R^{\pi}] = c[1, R^{\mu+\nu+\pi}] + d[r, R^{\mu+\nu+\pi}]$$

atque

$$C = Bc$$
 $D = Bd + A\{1 + R^{\mu+\nu} + R^{2\mu+2\nu} + \text{ etc. } + R^{(n-2)(\mu+\nu)}\}$

Hinc potest $[r,R]^{\lambda}$ facile ad formam $A[1,R^{\lambda}]+B[r,R^{\lambda}]$ reduci poterit.

Exempli caussa evolvemus potestates functionis [r, R] pro n = 11, 6 = 5, ubi statuemus g = 2. Hinc respondebunt

Habemus itaque ad evolutionem quadrati $[r, R]^2$ secundum formulam I art. 11:

μ ==	$\mu = 1, \nu = 1$					
valores ipsius $x \dots \dots$. 1	١.	2.3.4.	5.	6.7.	8. 9
$\operatorname{ind} x$. ().	1.8.2.	4.	9.7.	3.6
$2 \operatorname{ind}(x+1) \dots \dots \dots$. 2	2.1	6.4.8.	18.1	14.6.	12.10
Res. min. ipsius ind $x-2$ ind $(x+1)$						
secundum modulum 5	. 3	3.	0.4.4.	1.	0.1.	1. 1

unde deducimus

$$\Omega = [r, R^2] \times \{2 + 4R + R^3 + 2R^4\}$$

atque

1°.
$$[r,R]^2 = [1,R^2] + [r,R^2] \times \{2+4R+R^3+2R^4\}$$

Eadem expressio resultat ex formula III art. 11 scilicet

Prorsus simili modo invenitur

2°.
$$[r, R^2] \cdot [r, R] = [1, R^3] + [r, R^3] \times \{2 + R + 4R^2 + 2R^3\}$$

3°. $[r, R^3] \cdot [r, R] = [1, R^4] + [r, R^4] \times \{2 + 4R + R^3 + 2R^4\}$

Denique fit

4°.
$$[r,R^4] \cdot [r,R] = [1,1] + [r,1] \times \{1 + 2R + 2R^2 + 2R^3 + 2R^4\}$$

Hinc multiplicando aequationem 1° per [r, R] et substituendo pro $[r, R^{\circ}].[r, R]$ valorem suum ex 2° , nec non

$$[1,R^2].[r,R] = [r,R^3].\{2+2R+2R^2+2R^3+2R^4\}$$

deducimus

$$[r,R]^3 = [1,R^5] \times \{2+4R+R^3+2R^4\} + [r,R^3] \times \{12+22R+18R^2+24R^3+15R^4\}$$

et simili modo

$$[r,R]^{4} = [1,R^{4}] \times \{12 + 22R + 18R^{2} + 24R^{3} + 15R^{4}\}$$

$$+[r,R^{4}] \times \{164 + 170R + 205R^{2} + 180R^{3} + 190R^{4}\}$$

$$[r,R]^{5} = [1,1] \times \{164 + 170R + 205R^{2} + 180R^{3} + 190R^{4}\}$$

$$+[r,1] \times \{1836 + 1830R + 1795R^{2} + 1820R^{3} + 1810R^{4}\}$$

$$= 1640 + 1700R + 2050R^{2} + 1800R^{3} + 1900R^{4}$$

$$+(1836 + 1830R + 1795R^{2} + 1820R^{3} + 1810R^{4})(s-1)$$

$$= 918Ss - 98S - (6R + 41R^{2} + 16R^{3} + 26R^{4})s$$

$$+66R + 451R^{2} + 176R^{3} + 286R^{4}$$

Calculus in praecc.'ita absolutus, ut ad omnes valores ipsius r ipsiusque R extendi possit, notabiliter contrahitur, si ipsam R statim ab initio tamquam radicem propriam aequationis $x^6-1=0$ consideramus. Hacce suppositione productum $[r,R^{\mu}]\times[r,R^{\nu}]$ reducetur ad formam $B[r,R^{\mu+\nu}]$, quoties $\mu+\nu$ per δ non est divisibilis; quando vero $\mu+\nu$ per δ divisibilis est, illud productum fit $=(n-1)R^{\frac{1}{2}(n-1)\mu}+[r,1]\Sigma R^{\mu \operatorname{ind} x}$, substituendo pro ind x omnes numeros $0,1,2,3\ldots n-2$ excepto hoc $\frac{1}{2}(n-1)$. Hinc facile colligitur (si μ et proin etiam ν per δ non est divisibilis), in hoc casu esse

$$[r, R^{\mu}].[r, R^{\nu}] = R^{\frac{1}{2}(n-1)\mu} \{n-1-[r, 1]\}$$

adeoque = 0 pro r = 1, et = $nR^{\frac{1}{2}(n-1)\mu}$ pro quovis alio valore ipsius r. Ceterum quum $R^{\frac{1}{2}(n-1)\mu}$ fiat = +1, vel = -1, prout $\frac{n-1}{6}$. μ est numerus par vel impar, productum nostrum fit in casu priori = n, in posteriori = -n.

Hinc porro sequitur, statui posse

$$[r,R]^2 = A'[r,R^2]$$

 $[r,R^2] \cdot [r,R] = A''[r,R^3]$
 $[r,R^3] \cdot [r,R] = A'''[r,R^4]$

etc. usque ad

$$[r, R^{6-2}] \cdot [r, R] = A^{(6-2)}[r, R^{6-1}]$$

unde habemus

$$[r, R]^2 = A'[r, R^2]$$

 $[r, R]^3 = A'A''[r, R^3]$
 $[r, R]^4 = A'A''A'''[r, R^4]$

etc. Denique

$$[r,R]^6 = \pm nA'A''A''' \dots A^{(6-2)}$$

ubi signum superius vel inferius accipiendum est, prout $\frac{n-1}{6}$ par est vel impar. Patet itaque, postquam valor ipsius [r, R] inventus fuerit, functiones re-

liquas

$$[r,R^3] = \frac{[r,R]^9}{A'}, \quad [r,R^3] = \frac{[r,R]^9}{A'A''}$$
 etc.

hic multo expeditius determinari posse, quam in casibus iis, ubi α non est = 1,

ut iam in Disq. Ar. (Art. 360, m) monuimus. Per considerationem uberiorem indolis functionum A', A'' etc. hae operationes adhuc magis facilitabuntur.

15.

In art. 9 ostendimus, valorem functionis [r,R] reduci posse ad formam $\sqrt{n(\cos f + i \sin f)}$, eodemque modo functiones $[r,R^2]$, $[r,R^3]$ etc. usque ad $[r,R^{6-1}]$ ad similem formam reduci poterunt. Statuamus

$$[r, R] = \sqrt{n(\cos f' + i\sin f')}$$

$$[r, R^2] = \sqrt{n(\cos f'' + i\sin f'')}$$

$$[r, R^3] = \sqrt{n(\cos f''' + i\sin f''')}$$
etc.

eritque

$$A' = \sqrt{n(\cos(2f'-f'') + i\sin(2f'-f''))}$$

$$A'' = \sqrt{n(\cos(f'+f''-f''') + i\sin(f'+f''-f'''))}$$

$$A''' = \sqrt{n(\cos(f'+f'''-f'''') + i\sin(f'+f'''-f''''))}$$
etc.

Hinc patet, si functiones A', A", A" etc. reducantur ad formas

$$A' = a'(\cos b' + i\sin b')$$

$$A'' = a''(\cos b'' + i\sin b'')$$

$$A''' = a'''(\cos b''' + i\sin b''')$$
etc

et quidem ita, ut omnes a', a", a" etc. sint positivi, fore

$$a' = a'' = a''' \text{ etc.} = \sqrt{n}$$

 $f' = \frac{1}{6}(b' + b'' + b''' + \text{ etc.} + b^{(6-2)})$

si fuerit $\frac{n-1}{6}$ par, vel

$$f' = \frac{1}{6}(180^{\circ} + b' + b'' + \text{ etc. } + b^{(6-2)})$$

si fuerit $\frac{n-1}{6}$ impar, ac dein

$$[r,R] = \sqrt{n(\cos f' + i\sin f')}$$

$$[r,R^3] = \sqrt{n(\cos(2f' - b') + i\sin(2f' - b'))}$$

$$[r,R^3] = \sqrt{n(\cos(3f' - b' - b'') + i\sin(3f' - b' - b''))}$$
etc.

IL.

denique erit per formulas art. 8

et perinde prodeunt valores functionum $(\frac{n-1}{6},g)$, $(\frac{n-1}{6},g^2)$, $(\frac{n-1}{6},g^3)$ etc., si in hac formula pro f' resp. substituitur $f'-\frac{360^\circ k}{6}$, $f'-2\frac{260^\circ k}{6}$, $f'-3\frac{360^\circ k}{6}$ etc., supponendo $R=\cos\frac{360^\circ k}{6}+i\sin\frac{360^\circ k}{6}$.

16.

Simplificatio nova ex observatione sequente petitur. Quum per art. 14 fiat

$$\pm [r,R][r,R^{6-1}] = [r,R^{2}][r,R^{6-2}] = \pm [r,R^{3}][r,R^{6-3}]$$
 etc. $= n$

accipiendo [in producto primo, tertio etc.] signum superius vel inferius, prout $\frac{n-1}{6}$ par est vel impar, esse debebit in casu priori

$$\cos(f'+f^{(6-1)}) = \cos(f''+f^{(6-2)}) = \cos(f'''+f^{(6-2)})$$
 etc. = 1

in posteriori

$$-\cos(f'+f^{(6-1)})=\cos(f''+f^{(6-2)})=-\cos(f'''+f^{(6-2)})\text{ etc.}=1$$

et in utroque casu

$$\sin(f'+f^{(6-1)}) = \sin(f''+f^{(6-2)}) = \sin(f'''+f^{(6-3)})$$
 etc. = 0

Hinc statuere licebit in casu priori

$$f^{(6-1)} = -f', f^{(6-2)} = -f'', f^{(6-3)} = -f'''$$
 etc.

in posteriori

$$f^{(6-1)} = 180^{0} - f', \quad f^{(6-2)} = -f'', \quad f^{(6-3)} = 180^{0} - f''' \text{ etc.}$$

hinc vero sequitur, in priori casu esse

$$b^{(6-2)} = b',$$
 $b^{(6-3)} = b'',$ $b^{(6-4)} = b'''$ etc.
 $A^{(6-2)} = A',$ $A^{(6-3)} = A'',$ $A^{(6-4)} = A'''$ etc.

in posteriori vero

$$b^{(6-2)} = b' - 180^{\circ}$$
, $b^{(6-3)} = b'' + 180^{\circ}$, $b^{(6-4)} = b''' - 180^{\circ}$ etc. $A^{(6-2)} = -A'$, $A^{(6-3)} = -A''$, $A^{(6-4)} = -A'''$ etc.

ita ut multitudo functionum A', A'', A''' etc. ad semissem reducatur. Hinc porro colligitur, in priori casu fore

$$f' = \frac{1}{6}(2b' + 2b'' + \text{ etc.} + 2b^{(\frac{1}{6}-1)})$$

$$(\frac{n-1}{6}, 1) = -\frac{1}{6} + \frac{\sqrt{n}}{6}\{2\cos f' + 2\cos(2f' - b') + 2\cos(3f' - b' - b'') + \text{ etc.}$$

$$+ 2\cos((\frac{1}{6}b' - 1)f' - b' - b'' - \text{ etc.} - b^{(\frac{1}{6}b' - 1)})$$

$$+ \cos(\frac{1}{6}b'f' - b' - b'' - \text{ etc.} - b^{(\frac{1}{6}b' - 1)})\}$$

(ubi terminus ultimus manifesto est = cos 0 = 1) vel

$$f' = \frac{1}{6}(2b' + 2b'' + \text{etc.} + 2b^{(\frac{1}{6}(6-3))} + b^{(\frac{1}{6}(6-1))})$$

$$(\frac{n-1}{6}, 1) = -\frac{1}{6} + \frac{\sqrt{n}}{6} \{2\cos f' + 2\cos(2f' - b') + 2\cos(3f' - b' - b'') + \text{etc.} + 2\cos(\frac{1}{6}(6-3))f' - b'' - \text{etc.} - b^{(\frac{1}{6}(6-3))}\}$$

prout 6 par est vel impar; et in casu posteriori

$$f' = \frac{1}{6}(2b' + 2b'' + \text{etc.} + 2b^{(\frac{1}{6}-1)})$$

$$(\frac{n-1}{6}, 1) = -\frac{1}{6} + \frac{\sqrt{n}}{6}\{2\cos(2f' - b') + 2\cos(4f' - b' - b''') + \text{etc.}$$

$$+ 2\cos((\frac{1}{6}b' - 2)f' - b'' - \text{etc.} - b^{(\frac{1}{6}b - 3)})$$

$$+ \cos(\frac{1}{6}bf' - b' - b'' - \text{etc.} - b^{(\frac{1}{6}b - 1)})\}$$

$$+ i\frac{\sqrt{n}}{6}\{2\sin f' + 2\sin(3f' - b' - b'') + \text{etc.}$$

$$+ 2\sin((\frac{1}{6}b' - 1)f' - b' - b'' - \text{etc.} - b^{(\frac{1}{6}b - 2)})\}$$

vel

$$f' = \frac{1}{6}(2b' + 2b'' + \text{etc.} + 2b^{(\frac{1}{6}-1)} + 180^{0})$$

$$(\frac{n-1}{6}, 1) = -\frac{1}{6} + \frac{\sqrt{n}}{6}\{2\cos(2f' - b') + 2\cos(4f' - b' - b'' - b''') + \text{etc.}$$

$$+ 2\cos((\frac{1}{6}b' - 1)f' - b' - b'' - \text{etc.} - b^{(\frac{1}{6}b' - 2)})\}$$

$$+ i\frac{\sqrt{n}}{6}\{2\sin f' + 2\sin(3f' - b' - b'') + \text{etc.}$$

$$+ 2\sin((\frac{1}{6}b' - 2)f' - b' - b'' - \text{etc.} - b^{(\frac{1}{6}b' - 3)})$$

$$+ \sin(\frac{1}{6}b' f' - b' - b'' - \text{etc.} - b^{(\frac{1}{6}b' - 1)})\}$$

prout +6 par est vel impar. De periodis reliquis $\frac{n-1}{6}$ terminorum eadem valent, quae supra annotavimus. Generaliter itaque hinc concluditur, ad determinationem harum periodorum requiri sectionem circuli integri in 6 partes, a qua

constructio angulorum b', b", b" etc. rationaliter pendet, dein divisionem anguli b'+b''+b'''+ etc. in \mathcal{E} partes, denique radicem quadratam \sqrt{n} . Quodsi statuitur statim $\theta = \frac{1}{2}(n-1)$, periodi illae manifesto coincidunt cum duplicatis cosinibus angulorum $\frac{360^{\circ}}{n}$, $2\frac{360^{\circ}}{n}$, $3\frac{360^{\circ}}{n}$ etc. usque ad $\frac{1}{2}(n-1)\frac{360^{\circ}}{n}$, ita ut divisio circuli in n partes pendeat a divisione circuli integri in $\frac{1}{2}(n-1)$ partes, divisione anguli, qui illa sectione perfecta construi potest, in $\frac{1}{2}(n-1)$ partes, atque quantitate radicali \sqrt{n} . Si usque ad sinus angulorum $\frac{360^{\circ}}{n}$ etc. progredi constitutum est, una operatione amplius opus erit.

17.

Resumanus ad maiorem illustrationem exemplum art. 13, ubi invenimus

$$A' = A''' = 2 + 4R + R^{3} + 2R^{4} = 2R - 2R^{3} - R^{3}$$
$$A'' = 2 + R + 4R^{3} + 2R^{3} = -R + 2R^{2} - 2R^{4}$$

Accipiendo pro R valorem $\cos 72^{\circ} + i \sin 72^{\circ}$, erit

$$A' = A''' = 2\cos 72^{0} - 3\cos 144^{0} + i(2\sin 72^{0} - \sin 144^{0})$$

$$A'' = -3\cos 72^{0} + 2\cos 144^{0} + i(\sin 72^{0} + 2\sin 144^{0})$$

Determinabuntur itaque anguli b', b" per aequationes

1)
$$\sin b' = \frac{2\sin 72^{\circ} - \sin 144^{\circ}}{\sqrt{11}}$$

$$\cos b' = \frac{2\cos 72^6 - 3\cos 144^6}{\sqrt{11}}$$

3)
$$\tan b' = \frac{2 \sin 72^{\circ} - \sin 144^{\circ}}{2 \cos 72^{\circ} - 3 \cos 144^{\circ}}$$
4)
$$\sin b'' = \frac{\sin 72^{\circ} + 2 \sin 144^{\circ}}{\sqrt{11}}$$

4)
$$\sin b'' = \frac{\sin 72^{\circ} + 2 \sin 144^{\circ}}{\sqrt{11}}$$

5)
$$\cos b'' = \frac{-3\cos 72^{\circ} + 2\cos 144^{\circ}}{\sqrt{11}}$$
6)
$$\tan b'' = \frac{\sin 72^{\circ} + 2\sin 144^{\circ}}{-3\cos 72^{\circ} + 2\cos 144^{\circ}}$$

$$\tan b'' = \frac{\sin 72^{\circ} + 2\sin 144^{\circ}}{-3\cos 72^{\circ} + 2\cos 144^{\circ}}$$

Quaelibet aequationum 1, 2, 3 sufficit ad determinandum angulum b', si quadrans in quo accipiendus est innotuerit; hoc e signis quantitatum 2 sin 720 - sin 1440, $2\cos 72^{0} - 3\cos 144^{0}$ decidi debebit: idem valet de angulo b". In casu nostro b' accipietur inter 0 et 90°, b" inter 90° et 180°. Si aequationis 3 numerator et denominator multiplicantur per -3 cos 720 + 2 cos 1440, transibit in hanc

$$\tan b' = \frac{2}{11} \left\{ -\sin 72^0 + 13\sin 144^0 \right\}$$

et perinde ex aequatione 6, multiplicato numeratore et denominatore per $2\cos 72^{\circ} - 3\cos 144^{\circ}$, prodit

$$tang b'' = \frac{2}{11} \{-13 \sin 72^0 - \sin 144^0 \}$$

Hinc fit in numeris

$$tang b' = +0.4316226944$$
, $log tang b' = 9.6351042715$ $b' = 23^{\circ}20'46''04603$
 $tang b'' = -0.8355819332$, $log tang b'' = 9.9219890411$ n $b'' = 140^{\circ}7'$ 6''52441

unde derivatur

$$5f' = 186^{\circ}48'38''61647, \quad f' = 37^{\circ}21'43''723294$$

Habemus itaque

$$(2,1) = -\frac{1}{5} + \frac{\sqrt{11}}{5} \{ 2\cos 37^0 \ 21'43''723294 + 2\cos 51^0 \ 22'41''400558 \}$$

$$(2,2) = -\frac{1}{5} + \frac{\sqrt{11}}{5} \{ 2\cos 325^{\circ}21'43''723294 + 2\cos 267^{\circ}22'41''400558 \}$$

$$(2,4) = -\frac{1}{4} + \frac{\sqrt{11}}{4} \{ 2\cos 253^{\circ}21'43''723294 + 2\cos 123^{\circ}22'41''400558 \}$$

$$(2,8) = -\frac{1}{5} + \frac{\sqrt{11}}{5} \{ 2\cos 181^{\circ}21'43''723294 + 2\cos 339^{\circ}22'41''400558 \}$$

$$(2,5) = -\frac{1}{4} + \frac{\sqrt{11}}{4} \{ 2\cos 109^{\circ}21'43''723294 + 2\cos 195^{\circ}22'41''400558 \}$$

unde invenitur

$$(2,1) = +1,6825070652 = 2 \cos \frac{360^{\circ}}{11}$$

$$(2,2) = +0,8308299 = 2 \cos \frac{720^{\circ}}{11}$$

$$(2,4) = = 2 \cos \frac{1440^{\circ}}{11}$$

$$(2,8) = = 2 \cos \frac{2880^{\circ}}{11}$$

$$(2,5) = = 2 \cos \frac{1800^{\circ}}{11}$$

18.

Exemplum aliud nobis suppeditabit aequatio $x^{17}-1=0$, quam per aliam methodum iam in *Disquis. Arithm.* pertractaveramus. Statuemus itaque n=17, 6=8, g=3; hinc respondent

numeris 1. 2.3.4.5.6.7.8.9.10.11.12.13.14.15.16 indices 0.14.1.12.5.15.11.10.2.8.7.13.4.9.6.8

Hinc invenimus

$$A' = A''''' = 2R + 2R^{2} + 3R^{4} + 4R^{5} + 2R^{6} + 2R^{7}$$

$$A'' = A'''' = 2 + 3R + R^{3} + R^{4} + 3R^{5} + 4R^{6} + R^{7}$$

$$A''' = A'''' = 3 + 3R + 2R^{2} + 3R^{2} + R^{5} + 2R^{6} + R^{7}$$

sive, quum in hoc casu fiat $R^4+1=0$

$$A' = A''''' = -3 - 2R - 2R^{3}$$

 $A'' = A'''' = 1 - 4R^{3}$
 $A''' = A''' = 3 + 2R + 2R^{5}$

Statuendo itaque $R = \cos 45^{\circ} + i \sin 45^{\circ}$ erit

$$A' = A''''' = -3 - 2i\sqrt{2}, \quad A'' = A'''' = 1 - 4i, \quad A''' = A'''' = 3 + 2i\sqrt{2}$$

Invenientur itaque b', b", b" per aequationes

$$\sin b' = -\sqrt{\frac{8}{17}} \quad \sin b'' = -\sqrt{\frac{1}{17}} \quad \sin b''' = +\sqrt{\frac{8}{17}} \\
 \cos b' = -\sqrt{\frac{9}{17}} \quad \cos b'' = +\sqrt{\frac{1}{17}} \quad \cos b''' = +\sqrt{\frac{9}{17}} \\
 \tan b' = +\sqrt{\frac{9}{17}} \quad \tan b''' = +\sqrt{\frac{9}{17}}$$

unde deducimus

$$b' = 223^{0}18'49'', \quad b'' = 284^{0}2'10, \quad b''' = 43^{0}18'49'' = b'-180^{0}$$

$$4f' = 550^{0}39'48'', \quad f' = 137^{0}39'57''$$

$$(2,1) = -\frac{1}{8} + \frac{\sqrt{17}}{8} \{2\cos 137^{0}39'57'' + 2\cos 52^{0}1'5'' + 2\cos 265^{0}38'52'' + 1\}$$

$$(2,4) = -\frac{1}{8} + \frac{\sqrt{17}}{8} \{2\cos 92^{0}39'57'' + 2\cos 322^{0}1'5'' + 2\cos 130^{0}38'52'' - 1\}$$

$$(2,9) = -\frac{1}{8} + \frac{\sqrt{17}}{8} \{2\cos 47^{0}39'57'' + 2\cos 232^{0}1'5'' + 2\cos 355^{0}38'52'' + 1\}$$

$$(2,10) = -\frac{1}{8} + \frac{\sqrt{17}}{8} \{2\cos 2^{0}39'57'' + 2\cos 142^{0}1'5'' + 2\cos 220^{0}38'52'' - 1\}$$

$$(2,13) = -\frac{1}{8} + \frac{\sqrt{17}}{8} \{2\cos 317^{0}39'57'' + 2\cos 322^{0}1'5'' + 2\cos 310^{0}38'52'' - 1\}$$

$$(2,5) = -\frac{1}{8} + \frac{\sqrt{17}}{8} \{2\cos 272^{0}39'57'' + 2\cos 322^{0}1'5'' + 2\cos 310^{0}38'52'' - 1\}$$

$$(2,15) = -\frac{1}{8} + \frac{\sqrt{17}}{8} \{2\cos 27^{0}39'57'' + 2\cos 142^{0}1'5'' + 2\cos 175^{0}38'52'' + 1\}$$

$$(2,11) = -\frac{1}{8} + \frac{\sqrt{17}}{8} \{2\cos 182^{0}39'57'' + 2\cos 142^{0}1'5'' + 2\cos 40^{0}38'52'' - 1\}$$

$$\begin{array}{lll} \frac{1}{4}(2,1) & = +0.092268 = \cos \frac{4}{17}360^{0} \\ \frac{1}{4}(2,3) & = & = \cos \frac{4}{17}360^{0} \\ \frac{1}{4}(2,9) & = & = \cos \frac{2}{17}360^{0} \\ \frac{1}{4}(2,10) & = & = \cos \frac{4}{17}360^{0} \\ \frac{1}{4}(2,13) & = +0.93247 & = \cos \frac{4}{17}360^{0} \\ \frac{1}{4}(2,5) & = & = \cos \frac{8}{17}360^{0} \\ \frac{1}{4}(2,15) & = & = \cos \frac{8}{17}360^{0} \\ \frac{1}{4}(2,11) & = & = \cos \frac{7}{17}360^{0} \end{array}$$

Ab his disquisitionibus generalioribus supra functiones [r,R], quae theoriam secundam aequationum purarum in art. 360 Disquiss. Ar. inchoatam magis illustrant et ampliant, ad casuum quorundam specialium considerationem accuratiorem (puta si pro 6 valores determinati accipiuntur) progredimur; plures hinc investigationes non minus fertiles quam elegantes prodibunt, quarum aliae quidem iam in Disq. Ar. (artt. . . .) pertractatae erant (sed per methodum diversam), aliae vero tamquam prorsus novae considerandae sunt. Mirum vero nexum inter hasce disquisitiones Arithmeticamque sublimiorem, quae incrementa maxima hactenusque inexspectata inde capit, in commentatione alia mox publici iuris facienda evolvere nobis reservamus. — Ceterum in tota disquisitione sequente supponemus, pro r accipi radicem propriam aequationis $x^n-1=0$, et pro R radicem propriam aequationis $R^6-1=0$.

19.

Initium facimus a valore 6 = 2, ubi itaque pro R accipiendus est valor —1. Functio itaque nostra [r, R] fit

$$= r - r^g + r^{g^s} - r^{g^s} \cdot \ldots \cdot - r^{g^{n-s}}$$

habeturque

$$[r,R] = -[r^g,R] = +[r^{g^s},R] = -[r^{g^s},R]$$
 etc.

et generaliter, designante à integrum quemcunque per n non divisibilem

 $[r^{\lambda}, R] = +[r, R]$ si λ est residuum quadraticum ipsius n, $[r^{\lambda}, R] = -[r, R]$ si λ est non-residuum quadraticum ipsius n.

Porro patet, si residua quadratica ipsius n inter 1, 2, 3...n-1 contenta indefinite designentur per a, atque non-residua ipsius n inter eosdem limites per b, numeros

$$1, g^2, g^4 \ldots g^{n-3}$$

si ad ordinem non respiciatur, congruos esse secundum modulum n numeris a, et perinde numeros

$$g, g^3, g^5 \ldots g^{n-2}$$

congruos ipsis b, ita ut fiat $[r, R] = \sum r^a - \sum r^b$.

Quodsi itaque statuimus $\frac{360^{\circ}}{n} = \omega$, atque $r = \cos k\omega + i\sin k\omega$, erit $[r,R] = \sum \cos ak\omega - \sum \cos bk\omega + i\sum \sin ak\omega - i\sum \sin bk\omega$. Iam per art. 14 quadratum functionis [r,R] erit = +n vel = -n, prout π est formae 4z+1 vel 4z-1, adeoque in casu priori $[r,R] = \pm \sqrt{n}$, in posteriori $[r,R] = \pm i\sqrt{n}$; signum vero quantitati radicali praefixum ambiguum manet. Hinc derivantur summationes sequentes

I. Si n est formae 4z+1

$$\sum \cos ak\omega - \sum \cos bk\omega = \pm \sqrt{n}$$

$$\sum \sin ak\omega - \sum \sin bk\omega = 0$$

II. Si n est formae 4z-1

$$\sum \cos ak\omega - \sum \cos bk\omega = 0$$

$$\sum \sin ak\omega - \sum \sin bk\omega = \pm \sqrt{n}$$

Praeterea quum manifesto totus complexus numerorum a, b conveniat cum his $1, 2, 3 \dots n-1$, fit $\sum r^a + \sum r^b = r + r^2 + r^3 + \text{etc.} + r^{n-1} = -1$, et proin $\sum \cos ak\omega + \sum \cos bk\omega = -1$, $\sum \sin ak\omega + \sum \sin bk\omega = 0$. Hinc e summationibus praecedentibus demanant sequentes:

I. Pro casu priori

$$\Sigma \cos ak \omega = -\frac{1}{2} + \frac{1}{2} \sqrt{n}$$

$$\Sigma \cos bk \omega = -\frac{1}{2} + \frac{1}{2} \sqrt{n}$$

$$\Sigma \sin ak \omega = \Sigma \sin bk \omega = 0$$

II. Pro casu posteriori

 $\Sigma \cos ak\omega = \Sigma \cos bk\omega = -\frac{1}{2}$ $\Sigma \sin ak\omega = \frac{1}{2} \sqrt{n}$ $\Sigma \sin bk\omega = \frac{1}{2} \sqrt{n}$

Hae summationes per methodum haud multum diversam in *Disquiss. Arr.* art. 356 iam sunt erutae; neutra quidem methodus ambiguitatem signi quantitati radicali praefigendi tollere valet, attamen hunc defectum in commentatione peculiari nuper supplevimus, ubi demonstratum est, pro valore k=1 signa superiora in omnibus formulis allatis accipi debere.

BEMERKUNGEN.

Von der ursprünglichen Fortsetzung dieser Abhandlung von art. 19 an, welche der Behandlung specieller Fälle gewidmet war, sind nur noch einige Artikel vorhanden, die sich mit der quadratischen Gleichung beschäftigen, deren Wurzeln die beiden $\frac{n-1}{2}$ -gliedrigen Perioden sind; das Manuscript bricht im Anfang der Untersuchung ab, durch welche das Vorzeichen der bei der Auflösung derselben auftretenden Quadratwurzel bestimmt werden sollte; aus der Uebereinstimmung dieses noch vorhandenen Anfangs mit der Abhandlung Summatio quarumdam serierum singularium geht hervor, dass der Verfasser seinen Plan änderte, um die eben erwähnte Bestimmung des Vorzeichens zum Gegenstande einer besondern Abhandlung zu machen. Vergleicht man hiermit das Citat im art. 8 (wo im Manuscript statt der zweiten Ausgabe des Werkes von Lagrange durch ein Versehen die dritte angegeben war), so ergibt sich, dass diese Handschrift aus dem Jahre 1808 stammt. Dass aber die Publication des Vorhergehenden nicht aufgegeben war, lehrt ein bei art. 19 offenbar in späterer Zeit eingeschobenes Blatt, auf welchem eine andere Fortsetzung beginnt und bezüglich der Bestimmung des Vorzeichens schon auf die Abhandlung Summatio etc. verwiesen wird. Diese zweite Fortsetzung, welche aber auch bald abbricht, ist hier mitgetheilt. Der Text des durchaus druckfertigen Manuscriptes ist bei der Herausgabe treu beibehalten, nur in art. 16 mussten die Formeln für den zweiten Fall hinzugefügt werden.

R. DEDEKIND.

DÉMONSTRATION DE QUELQUES THÉORÈMES CONCERNANTS

8

LES PÉRIODES DES CLASSES DES FORMES BINAIRES DU SECOND DEGRÉ.

Théorème. I. Le nombre des classes (pr. pr.) d'un même déterminant, qui élevées à la dignité P^{ms} , P étant ou un nombre premier ou la puissance d'un nombre premier $= p^{\pi}$, produisent la classe principale K, est égal ou à 1 ou à une puissance de ce même nombre premier p.

Démonstration. Soit (Ω) le groupe entier de toutes les classes en question et n leur nombre. Puisque la classe principale K est nécessairement contenue dans (Ω) , le théorème est évident, si elle y est la seule. Mais s'il y en a d'autres, le nombre des classes contenues dans la période de chacune sera une puissance de p; soit une d'elles A, et supposons que sa période (\mathfrak{A}) contienne p^a classes, qui seront toutes comprises dans (Ω) . Or si les classes de cette période (\mathfrak{A}) épuisent (Ω) , on aura $p^a = n$, et le théorème sera démontré; sinon, soit B une classe quelconque de (Ω) non contenue dans (\mathfrak{A}) , et supposons que sa période soit développée jusqu'à ce qu'on y parvienne à une classe bB, qui soit en même temps parmi les classes de (\mathfrak{A}) , ce qui doit nécessairement arriver, parceque du moins la classe principale est commune à cette période et à (\mathfrak{A}) . Or supposant que bB soit la première classe dans la période de B commune à (\mathfrak{A}) , ou b le plus petit possible, je dis

1°. Que b sera une puissance de p. Car il est évident qu'en faisant $b = p^6 h$, bB = iA et $hk \equiv 1 \pmod{p^{\pi}}$ (ce qui se pourra) on aura $kbB = p^6 hkB = p^6 B = ikA$,

c'est à dire que p^6B sera aussi parmi les classes de (\mathfrak{A}), d'où il s'ensuit que h= et $b=p^6$.

- 2°. Qu'en désignant les classes K, B, 2B, ..., (b-1)B par (\mathfrak{B}) , toutes les compositions d'une classe de (\mathfrak{A}) avec une classe de (\mathfrak{B}) donneront p^{a+b} classes différentes. Car en supposant mA+nB=m'A+n'B et n=n', on aura necessairement m=m'; si n>n', on aura (n-n')B=(m'-m)A, ce qui est impossible, si l'on n'a pas n=n'.
- 3° . Que ces p^{x+6} classes différentes seront comprises sous (\mathfrak{Q}) , ce qui est évident.

Or, si ces $p^{\alpha+6}$ classes épuisent (Ω) , le thèorème est démontré; sinon, on choisira nne autre classe de (Ω) non contenue parmi celles-là, savoir C; on continuera sa période jusqu'à ce qu'on y parvienne à une classe déjà comprise sous les classes composées de (\mathfrak{A}) et (\mathfrak{B}) . Par un raisonnement semblable au précédent on démontrera, que l'exposant de cette classe doit être une puissance de p, p^{γ} , et que la composition des p^{γ} classes premières de la période de C avec les $p^{\alpha+6}$ classes déjà trouvées donnera $p^{\alpha+6+\gamma}$ classes différentes toutes comprises dans (Ω) . Si ces classes n'épuisent pas encore (Ω) , on traitera de la même manière une quatrième classe D etc., et il est évident que (Ω) étant formé d'un nombre fini de classes, ces opérations finiront aussi et qu'on aura n égal à une puissance de p. C. Q. F. D.

THÉORÈME. II. Le nombre de toutes les classes du genre principal étant exprimé par $a^{\alpha}b^{6}c^{7}$ etc., a, b, c, dénotant des nombres premiers différents, il y aura dans ce genre a^{α} , b^{6} , c^{7} etc. classes, qui étant élevées à la dignité a^{α} , b^{6} , c^{7} etc. resp. produisent la classe principale.

Démonstration Soient A, A', A'' etc. toutes les classes qui élevées à la dignité a^a produisent K et (\mathfrak{A}) leur totalité; de même B, B', B'' etc. (\mathfrak{B}) , C, C', C'', (\mathfrak{C}) etc. etc. Je dis que de la composition de toutes les classes de (\mathfrak{A}) avec toutes les classes de (\mathfrak{B}) avec toutes les classes de (\mathfrak{C}) etc. il proviendra des classes différentes entre elles. Car si $A+B+C\ldots=A'+B'+C'\ldots$ etc., on aura, en faisant A-A'=A'', B-B'=B'' etc.,

$$A'' + B'' + C'' \text{ etc.} = K$$

donc élevant à la dignité $b^6 c^7$ etc., $(b^6 c^7 \ldots) A'' = K$, d'où il s'ensuit facilement 34*

A'' = K et A = A' et de la même manière on aura B = B', C = C' etc. Soit la totalité de ces classes = (S). De plus il est clair que toutes ces classes seront du genre principal. Enfin il ne peut exister aucune classe dans le genre principal qui ne soit comprise sous (S). Soit . . .

BEMERKUNG.

Dieses im Jahre 1801 geschriebene Fragment bezieht sich auf Disq. Arithm. art. 306, IX. Das Wort dignité wird hier in einem soust nicht üblichen Sinne gebraucht.

STERM.

DE NEXU INTER MULTITUDINEM CLASSIUM, IN QUAS FORMAE BINARIAE SECUNDI GRADUS DISTRIBUUNTUR, EARUMQUE DET ERMINANTEM.

COMMENTATIO PRIOR

SOCIETATI REGIAE EXHIBITA 1834

1.

Triginta tres iam elapsi sunt anni, ex quo principia nexus mirabilis, cui haec commentatio dicata est, deteximus, uti iam in fine Disquisitionum Arithmeticarum annunciatum est. Sed aliae occupationes ab hac scrutatione per longum tempus detraxerant, donec recentiori tempore ad eam reverti et per novas curas eam ampliare contigit. Attamen quum haec nova Arithmeticae Sublimioris pars limites unius commentationis excedat, haecce prior formis determinantium negativorum dicata erit: formae vero determinantium positivorum, quae tractationem prorsus peculiarem requirunt, commentationi alteri reservatae manere debebunt.

2

Basis totius argumenti est disquisitio peculiaris circa multitudinem omnium combinationum valorum integrorum, quos duo numeri integri indefiniti x, y intra ambitum praescriptum accipiunt. Manifesto hoc problema etiam sub aspectu geometrico exhiberi potest, ut eruatur multitudo numerorum complexorum, quorum repraesentatio intra figuram praescriptam cadit. Indoles figurae ex indole lineae quae eam circumdat, adeoque pendebit vel ab unica aequatione inter coordinatas x, y (quoties peripheria est curva in se rediens) vel a pluribus huiusmodi aequa-

270 NACHLASS.

tionibus (quoties constat e pluribus partibus curvis seu rectis), pendebitque ab arbitrio nostro, utrum puncta numeris integris complexis respondentia, si quae forte in ipsa peripheria sint, multitudini annumerare velimus an inde excludere.

In repraesentatione analytica problematis conditiones illius limitationis semper ita exhiberi poterunt, ut functio data variabilium x, y vel una vel plures P, Q, R etc. nancisci debeant valores positivos, vel non-negativos (prout valor 0 vel excluditur vel admittitur).

Ita e. g. si figura praescripta est circulus, cuius radius $= \sqrt{A}$, dum centrum cadit in punctum numero complexo integro respondens, conditio analytica erit, ut A-xx-yy non sit negativus, siquidem, quod semper supponemus, puncta in ipsa peripheria sita retinere placet. Si figura est triangulum, tres functiones lineares ax+by+c, a'x+b'y+c', a''x+b''y+c'' valores non-negativos habere debent, similiterque in aliis casibus.

3.

Solutio problematis exacta, generaliter loquendo, ita procedere debet, ut primo e natura conditionum variabilis altera e. g. x intra limites coërceatur, inter quos valores singuli integri deinceps percurrant, et quot valores integri alterius y singulis respondeant, eruere oportet, quorum multitudines dein in summam colligi debent. In casibus specialibus plerumque aderunt artificia specialia ad laborem abbreviandum.

E. g. si figura, ut supra, est circulus, cuius radius $= \sqrt{A}$, sit r integer proxime minor quam \sqrt{A} , vel ipse \sqrt{A} , si A est quadratum. Perinde sint r', r'', r''' etc. $r^{(r)}$ integri proxime minores quam $\sqrt{(A-1)}$, $\sqrt{(A-4)}$, $\sqrt{(A-9)}$ etc. usque ad $\sqrt{(A-r)}$. Tunc multitudo quaesita erit

$$= 2r+1+2(2r'+1)+2(2r''+1)+2(2r'''+1)+ \text{ etc.}$$

$$= 1+4r+4r'+4r''+4r'''+ \text{ etc.} + 4r^{(r)}$$

Brevior erit in hoc exemplo methodus sequens. Sit q integer proxime minor quam $\sqrt{\frac{1}{4}}A$ (vel huic aequalis, quoties est integer), atque $r^{(q+1)}$, $r^{(q+2)}$, $r^{(q+3)}$ etc. integri proxime minores quam $\sqrt{(A-(q+1)^2)}$, $\sqrt{(A-(q+2)^2)}$, $\sqrt{(A-(q+3)^3)}$ etc. usque ad $\sqrt{(A-r)}$. Tunc erit multitudo quaesita

$$= 4qq+1+4r+8(r^{(q+1)}+r^{(q+2)}+r^{(q+3)}+\text{ etc.}+r^{(r)})$$

Per	hanc	formulam	ernta	est.	mul	titudo
- -	HOHO	TOT III UIGIII	CIULA	CDU	шии	wuuuu

A		A		A	1
100	317	1000	3149	10000	31417
200	633	2000	6293	20000	62845
300	949	3000	9425	30000	94237
400	1257	4000	12581	40000	125629
500	1581	5000	15705	50000	157093
600	1885	6000	18853	60000	188453
700	2209	7000	21993	70000	219901
800	2521	8000	25137	80000	251305
900	2821	9000	28269	90000	282697
1000	3149	10000	31417	100000	314197

4

Ad propositum nostrum non requiritur determinatio exacta, sed potius indagatio expressionis, quae ad multitudinem exactam quam prope velis accedere potest, dum limites in infinitum ampliantur. Sed ante omnia quum haec aliquid vagi involvant, rem exactius explicare oportet.

Supponemus itaque, functiones P, Q, R etc. praeter variabiles x, y implicare elementum constans k, ita ut singulae P, Q, R etc. sint functiones homogeneae trium quantitatum x, y, k. Hoc pacto figura per aequationes P = 0, Q = 0, R = 0 etc. determinata pendebit a k, ita ut valoribus diversis ipsius k respondeant figurae similes et respectu initii coordinatarum similiter positae, dimensionesque lineares similes valoribus ipsius k, areae valoribus ipsius kk proportionales erunt. Denotetur iam multitudo punctorum intra figuram per M, area per V, patetque M et V, crescente k, crescere debere; crescente vero k in infinitum, M et V ad rationem aequalitatis quam proxime velis accedent, vel si elementarem claritatem postulas, proposita quantitate quantumvis parva λ , semper assignari poterit terminus talis, ut pro quolibet valore ipsius k hunc terminum superante certo $\frac{M}{V}$ iacere debeat inter $1-\lambda$ et $1+\lambda$. Secundum morem suetum hoc ita indicare licet: fieri M=V pro valore infinito ipsius k.

In exemplo nostro conditio requisita locum tenet, statuendo $k = \sqrt{A}$, curvaque fit circulus, cuius area $= \pi A$, denotante π semicircumferentiam circuli pro radio = 1. Numeri supra traditi convergentiam luculenter addigitant.

Ceterum si operae pretium esset, facile demonstrationem illius theorematis antiquo rig ore absolvere possemus, quam tamen hocce quidem loco supprimere maluimus ad difficiliora properantes.

5.

In hacce commentatione limes per unicam aequationem talem exprimetur axx+2bxy+cyy=A, ita quidem ut a, b, c sint integri, atque bb-ac numerus negativus quem statuemus =-D. Manifesto curva figuram definiens erit ellipsis, patetque facile, quadrata semiaxium esse radices aequationis

$$(ac-bb)qq-(a+c)Aq+AA=0$$
 sive $=A(\frac{a+c\pm\sqrt{(abb+(a-c)^2)}}{2(ac-bb)})$

Productum harum radicum fit $\frac{AA}{ac-bb} = \frac{AA}{D}$, proin area ellipsis $= \frac{\pi A}{\sqrt{D}}$. Hinc itaque colligitur, multitudinem omnium combinationum valorum integrorum ipsarum x, y, pro quibus axx + 2bxy + cyy valorem A non superet, crescente A continuo magis appropinquare ad $\frac{\pi A}{\sqrt{D}}$, et pro A infinito huic valorem aequalem statui debere. Ceterum manifestum est, hocce respectu nihil interesse, utrum combinatio x = 0, y = 0 reliquis annumeretur, an inde excludatur. Hoc itaque modo multitudo quaesita (in ratione posteriori) nihil aliud est, nisi aggregatum multitudinum repraesentationum singulorum numerorum 1, 2, 3, ... A per formam binariam secundi gradus axx + 2bxy + cyy; et quum inter illos numeros alii omnino per hanc formam repraesentari nequeant, alii plures, alii pauciores repraesentationes admittant, quantitas $\frac{\pi}{\sqrt{D}}$ consideranda erit tamquam valor medius multitudinis repraesentationum numeri positivi indefiniti per formam quamlibet, cuius determinans = -D.

ß.

Antequam quae hinc sequantur generaliter perscrutemur, ut modus argumentationis facilius penetrari possit, casus quosdam singulares evolvere visum est. Resumamus itaque primo formam xx + yy, pro qua itaque multitudo repraesentationum numeri indefiniti valorem medium $= \pi$ nanciscitur. Multitudo vero repraesentationum actualium numeri dati haud difficile e principiis generalibus in Disquisitionibus Arithmeticis stabilitis determinatur. Designemus per fA multitudinem repraesentationum numeri A, quae erit = 4, si A = 1 vel 2 vel potestas binarii; = 8, si A est numerus primus formae 4n+1, vel productum

talis numeri primi in potestatem binarii; = 0, si A est numerus primus formae 4n+3, vel per talem numerum primum divisibilis, neque vero per ipsius quadratum; denique generaliter

vel =
$$4(\alpha+1)(\beta+1)(\gamma+1)...$$

vel = 0

prout, reducto numero A ad formam $2^{\mu}Sa^{\alpha}b^{\delta}c^{\gamma}...$, designantibus a, b, c etc. numeros primos inaequales formae 4n+1, S autem productum e numeris primis formae 4n+3, si qui inter factores numeri A semel pluriesve occurrunt, numerus S est vel quadratum vel non quadratum. Patet itaque, fA unice pendere a modo, quo numeri primi 3, 5, 7, 11, 13 etc. inter factores numeri A reperiuntur, ita ut generaliter statuere oporteat

$$fA = 4(3).(5).(7).(11).(13)...$$

si valores characterum (3), (5), (7) etc. ita acceptos supponimus, ut denotante p numerum primum sit

primo (p) = 1, si p ipsum A non metitur

secundo $(p) = \alpha + 1$, si p est formae 4n + 1, atque p^{α} potestas summa ipsum A metiens

tertio (p) = 0, si p est formae 4n+3, atque exponens potestatis altissimae ipsius p ipsum A metientis est impar: denique

quarto (p) = 1, si p est formae 4n + 3, atque exponens potestatis summae ipsius p ipsum A metientis est par.

Manifesto casus primus sub secundo et quarto continetur.

Hoc itaque modo termini progressionis f1, f2, f3, f4 etc. valde irregulariter procedunt, etiamsi quo maior multitudo sumatur, eo accuratius valor medius $= \pi$ inde surgere debeat. Aggregatum $f1+f2+f3+\ldots+fA$ denotabimus per FA.

7.

Statuamus iam generaliter fm+f3m=f'm, perspicieturque facile, fieri

$$f'A = 4(5).(7).(11).(13)...$$

Digitized by Google

i. e. f'A a relatione ipsius A ad divisorem 3 erit independens, unde seriei f'1, f'2, f'3, f'4, f'5, f'6 etc. irregularitas tum serius incipiet tum longe minor erit. Porro si statuimus

$$f'1+f'2+f'3+f'4+$$
 etc. $+f'm=F'm$

erit

$$F'3A = F3A + f3 + f6 + f9 + ... + f9A$$

= $F3A + FA$

Hinc facile concluditur crescente A in infinitum, statui debere

$$F'3A = 4\pi A$$

sive valorem medium terminorum seriei f'1, f'2, f'3. f'4 etc. esse

$$= 4\pi$$

Simili modo statuendo generaliter -f'm+f'5 m = f''m, fiet

$$f''A = 4(7)(11)(13)...$$

sive e serie nova f'''1, f''2 etc. abeunt vacillationes a relatione ad numerum 5 pendentes. Statuendoque aggregatum

$$f''1+f''2+f''3+\ldots+f''m=F''m$$

fiet

$$F''^5m = -F'm + F'^5m$$

unde concluditur crescente m in infinitum, statui debere

$$F''5m = \frac{4}{3}\pi.4m$$

sive valorem medium terminorum seriei esse $= \frac{1}{4} \cdot \frac{1}{4}\pi$.

Si eodem modo ulterius procedimus, progressiones novas formando, dum deinceps factores (7), (11), (13), (17) etc. tollimus, hae continuo magis ad invariabilitatem appropinquabunt, valoresque medii deinceps novos factores \$, †, †, †, †, †, †, † etc. nanciscentur, ubi denominatores erunt numeri primi serie naturali, numeratores vero unitate vel maiores vel minores, prout illi sunt formae 4n-1, vel 4n+1. Quare quum hoc processu in infinitum continuato valor con-

stans 4 valori medio continuo propior fieri debeat, habemus

$$4 = \pi \cdot \frac{1}{4} \cdot \frac{1}{4$$

sive

$$\pi = 4 \cdot \frac{3}{3+1} \cdot \frac{5}{5-1} \cdot \frac{7}{7+1} \cdot \frac{11}{11+1} \cdot \frac{13}{13-1} \cdot \dots$$

Si singulae fractiones evolvuntur in series infinitas

$$\frac{3}{3+1} = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots$$

$$\frac{5}{5-1} = 1 + \frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \dots$$

$$\frac{7}{7+1} = 1 - \frac{1}{7} + \frac{1}{49} - \frac{1}{343} + \dots$$
etc.

productum facile evolvitur in

cuius seriei summam esse $= \frac{1}{4}\pi$ vulgo notum est. Revera via inversa olim iam hinc aequalitas inter $\frac{1}{4}\pi$ et productum infinitum $\frac{1}{4}.\frac{1}{4}.\frac{3}{4}.$ ab ill. Euler erutum fuerat (*Introd. in analys. inf.* T. 1. Cap. xv. art. 285).

8.

Consideremus secundo loco formam xx+2yy, pro qua multitudo repraesentationum numeri indefiniti valorem medium $=\frac{\pi}{\sqrt{2}}$ habebit. Designando per fA multitudinem repraesentationum numeri dati A per istam formam, haec erit =2 pro A=1 vel A=2, vel quoties A est potestas binarii; porro fA=4, quoties A est aliquis e serie numerorum primorum, quorum residuum quadraticum est -2, sive qui sunt formae 8k+1, 8k+3, puta A=3, 11, 17, 19, 41, 43 etc.; denique fA=0, quoties A est numerus primus, cuius non-residuum quadraticum est -2, puta e serie 5, 7, 13, 23, 29, 31 etc. sive vel formae 8k+5, vel formae 8k+7. Generaliter vero statui debet

vel
$$fA = 2(\alpha+1)(6+1)(\gamma+1)...$$

vel $fA = 0$

prout reducto numero A ad formam $2^{\mu}Sa^{\alpha}b^{6}c^{\gamma}...$, designantibus a, b, c etc. numeros primos inaequales formae 8k+1, 8k+3, contra S productum e nu-

meris reliquis (formae 8k+5, 8k+7), si qui inter factores numeri A habentur, prout S est quadratum vel non quadratum. Hinc per ratiocinia prorsus similia ut in art. praec. a serie f1, f2, f3, f4, f5 etc., puta 2, 2, 4, 2, 0, 2 etc. deinceps ad alias continuo longius constantes progrediemur, quarum valores medii sint deinceps $\frac{\pi}{\sqrt{2}}$, $\frac{\pi}{\sqrt{2}} \cdot \frac{2}{3}$, $\frac{\pi}{\sqrt{2}} \cdot \frac{2}{3} \cdot \frac{6}{5}$, $\frac{\pi}{\sqrt{2}} \cdot \frac{2}{3} \cdot \frac{6}{5}$ etc.; progrediemur ita, ut deducamur ad aequationem

$$2 = \frac{\pi}{\sqrt{2}} \cdot \frac{2}{3} \cdot \frac{6}{5} \cdot \frac{8}{7} \cdot \frac{10}{11} \cdot \frac{14}{13} \cdot \frac{16}{17} \cdot \frac{18}{19} \cdot \dots$$

ubi denominatores constituunt seriem naturalem numerorum primorum, numeratores vero unitate minores sunt, quoties denominatores sunt formae 8k+1, vel 8k+3, contra unitate maiores, quoties denominatores sunt formae 8k+5 vel 8k+7.

[II.]

DE NEXU INTER MULTITUDINEM CLASSIUM, IN QUAS FORMAE BINARIAE SECUNDI GRADUS DISTRIBUUNTUR, EARUMQUE DETERMINANTEM.

COMMENTATIO PRIOR
SOCIETATI REGIAE EXHIBITA 1887 . . .

1.

Triginta sex elapsi sunt anni, ex quo principia nexus mirabilis in hac commentatione tractandi detecta sunt, uti iam in fine Disquisitionum arithmeticarum annuntiatum est. Sed aliae occupationes per longum tempus ab hac scrutatione detraxerant, donec recentiori tempore ad eam reverti, et per novas curas eam ampliare contigerit. Attamen quum ambitus huius novae Arithmeticae Sublimioris partis limites unius commentationis transgrediatur, haecce prior formis determinantium negativorum dicata erit: formae autem determinantium positivorum, quae tractationem prorsus peculiarem requirunt, commentationi alteri reservatae manebunt.

2.

Ad propositum nostrum opus erit theoremate per se quidem arithmetico, cuius tamen indolem commodius et clarius per considerationes in forma geometrica exhibendas ob oculos ponere licet.

Proposita in plano indefinito figura per lineam qualemcunque terminata, illius area approximative assignari poterit, si plano in quadrata dispertito multitudo tum eorum quae integra sunt intra figuram, tum eorum quae ambitus figurae secat, numeretur, manifestoque area justo minor vel maior prodibit, prout quadrata posteriora vel omittuntur vel prioribus adnumerantur: si vero quadrata posteriora in limine sita, ad normam qualiscunque principii, partim excludere partim adnumerare placuerit, error modo positivus modo negativus esse poterit, necessario tamen minor quam aggregatum cunctorum quadratorum in limine. Quo minora quadrata accipiantur, eo exactius hoc modo area determinabitur, talemque approximationem in infinitum producere sive quadrata tam parva accipere licebit, ut error quavis quantitate data minor evadat. Quod quamquam iam per se evidens esse videatur, tamen demonstratione rigorosa munire non aspernabimur.

Bina quadrata vel unum punctum angulare, vel duo, vel nullum commune habere possunt; in casu primo et secundo contigua, in tertio disiuncta dicentur. Manifesto quadrata, quae omnia inter se contigua sint, quaterna tantum exstant, adeoque inter quina quadrata diversa duo ad minimum disiuncta inveniri debent. Iam quum distantia inter duo puncta in quadratis disiunctis sita nequeat esse minor quam latus quadratorum, quod per a designabimus, patet, si punctum a quocunque alicuius quadrati loco profectum deinceps quadratum secundum, tertium, quartum traiecerit, tandem ad quintum pervenerit, longitudinem viae certe non esse minorem quam a. Et quum simili ratione si linea continuo alia quadrata permeat, pars inter quadratum quintum et nonum, nec non inter nonum et decimum tertium etc. non possit esse minor quam a, facile colligimus, lineam quamcunque in se ipsam redeuntem, quae omnino n quadrata diversa attigerit, certo non posse esse minorem quam $\frac{(n-4)a}{4}$. Vice versa itaque linea clausa, cuius longitudo est = l, certo plura quam $4 + \frac{4l}{a}$ quadrata diversa attigisse non potest. Quorum area = 4aa + 4al quum decrescente a in infinitum quavis quantitate data minor fieri possit, idem a potiori valebit de errore quadraturae de qua supra diximus.

3.

Principium admissionis vel exclusionis quadratorum in limite figurae positorum multis modis diversis condi posset: simplicissimum tamen videtur, tantummodo situm centri cuiusque quadrati respicere, ita ut admittantur quadrata, quorum centra sunt intra figuram, excludantur ea, quorum centra sunt extra figuram, denique arbitrio relinquatur, utrum centra, quae forte in peripheria ipsa sunt, interioribus vel exterioribus adnumerare malimus. Loco centrorum etiam quaevis alia puncta in singulis quadratis similiter sita adoptare possemus.

Hoc pacto res eo redit, ut in plano puncta aequidistantia et in rectis aequidistantibus ita disseminata concipiamus, ut quadrata offerant: quo facto per theorema art. praec. affirmare possumus, multitudinem punctorum in figura contentorum in quadratum distantiae binorum punctorum proximorum multiplicatam areae figurae quam prope velis aequalem evadere, si modo distantia ista satis parva accipiatur, sive ad instar vulgaris loquendi modi, productum illud aream exhibere, si distantia sit infinite parva.

4.

Curva per aequationem inter coordinatas orthogonales p, q hance

$$app + 2bpq + cqq = 1$$

expressa, est sectio conica, et quidem ellipsis, si a, c atque ac-bb sunt quantitates positivae: area hac ellipsi circumscripta invenitur $=\frac{\pi}{\sqrt{(ac-bb)}}$. Valor quantitatis app+2bpq+cqq extra ellipsem ubique fit maior quam 1, intra ellipsem minor quam 1, negativus nullibi.

Concipiatur systema punctorum per planum, in quo ellipsis sita est, ita disseminatorum, ut forment quadrata, quorum latera $=\lambda$ axibus coordinatarum sint parallela, ubi nihil refert, utrum initium coordinatarum sive centrum ellipsis cum aliquo horum punctorum coincidat necne. Sit multitudo punctorum intra ellipsem, adnumeratis si quae sunt in ipsa peripheria, =m, eritque per theorema art. praec. $\frac{\pi}{\sqrt{(a\,c-b\,b)}}$ limes quantitatis $m\lambda\lambda$, ad quem quam prope velis accedit, decrescente λ in infinitum.

Si initium coordinatarum cum aliquo systematis puncto coincidere supponimus, statuendo $p = \lambda x$, $q = \lambda y$, manifesto pro singulis punctis systematis x et y erunt numeri integri, et vice versa quaevis combinatio valorum integrorum

quantitatum x, y respondebit alicui systematis puncto. Hinc numerus m nihil aliud est, nisi multitudo omnium combinationum valorum integrorum quantitatum x, y, pro quibus F non fit maior quam M, si brevitatis caussa functionem, seu formam secundi ordinis axx+2bxy+cyy per F, atque quantitatem $\frac{1}{\lambda\lambda}$ per M denotamus. Determinans huius formae est bb-ac, pro quo scribemus D. Hoo pacto theorema nostrum iam ita enunciandum erit.

Theorems I. Multitudo m omnium combinationum valorum integrorum indeterminatarum x, y, pro quibus valor formae determinantis negativi — D limitem M non egreditur, fit = $\frac{\pi M}{\sqrt{D}}$, proxime quidem, sed approximatione in infinitum crescente, dum M crescit in infinitum. Vix erit monendum, approximationem infinitam hic (et perinde in sequentibus) non ita intelligendam, ac si differentia inter $\frac{\pi M}{\sqrt{D}}$ et m ipsa in infinitum decrescat, sed ratio inter has quantitates ad aequalitatem in infinitum appropinquabit, sive $\frac{\pi M}{m\sqrt{D}}-1$ in infinitum decrescet.

5.

Ad dinumerationem reapse efficiendam ita procedi potest, ut pro singulis valoribus integris ipsius x inter limites $-\sqrt{\frac{c\,M}{D}}$ atque $+\sqrt{\frac{c\,M}{D}}$ sitis bini valores ipsius y aequationi F=M respondentes computentur, unde multitudo integrorum inter hos iacentium sponte habetur. Quum haec multitudo eadem sit pro valoribus oppositis ipsius x, laboris dimidia fere parte liberamur. Res ita quoque perfici potest, ut valores ipsius x dinumerentur singulis valoribus ipsius y inter limites $-\sqrt{\frac{a\,M}{D}}$ atque $+\sqrt{\frac{a\,M}{D}}$ respondentes. Per combinationem idoneam utriusque methodi labor amplius sublevari potest, quod tamen fusius hic non exsequimur: sufficiat de casu simplicissimo quaedam adiungere.

Sit forma F = xx + yy, sive curva circulus, designentque $r, r', r'', r''' \dots x^{(r)}$ numeros integros proxime minores quam

$$\sqrt{M}$$
, $\sqrt{(M-1)}$, $\sqrt{(M-4)}$, $\sqrt{(M-9)}$... $\sqrt{(M-r)}$

vel si quae inter has quantitates sunt integri, hos ipsos. Tunc erit multitudo quaesita

$$m = 2r+1+2(2r'+1)+2(2r''+1)+2(2r'''+1)+ \text{ etc.} +2(2r'''+1)$$

= 1+4r+4r'+4r''+4r'''+ etc. +4r'(r)

Expeditius autem idem assequimur, denotando per q integrum proxime

minorem quam $\sqrt{+}M$ (vel hanc quantitatem ipsam, si fit numerus integer) adiumento formulae

$$m = 4qq+1+4r+8(r^{(q+1)}+r^{(q+2)}+r^{(q+3)}+$$
 etc. $+r^{(r)}$)

Hoc modo eruta sunt sequentia.

M	m	M	m	M	m
100	317	1000	3149	10000	31417
200	633	2000	6293	20000	62845
300	949	3000	9425	30000	94237
400	1257	4000	12581	40000	125629
500	1581	5000	15705	50000	157093
600	1885	6000	18853	60000	188453
700	2209	7000	21993	70000	219901
800	2521	8000	25137	80000	251305
900	2821	9000	28269	90000	282697
1000	3149	10000	31417	100000	314197

Ű.

Theoremati art. 4 maiorem generalitatem conciliamus sequenti modo.

THEOREMA II. Si non omnes combinationes valorum integrorum quantitatum x, y pro quibus F non egreditur valorem M, colligendae sunt, sed tantummodo per saltus, puta eae, ubi x congruus est numero dato G secundum modulum datum g, atque y congruus numero dato H secundum modulum datum h, harum combinationum multitudo m' exprimetur proxime per $\frac{\pi M}{g h \sqrt{D}}$, approximatione in infinitum aucta, dum M in infinitum crescet.

Revera statuendo x = gx' + G, y = hy' + H, patet, m' esse multitudinem omnium combinationum valorum integrorum quantitatum x', y', pro quibus

$$agg(x'+\frac{G}{g})^{2}+2bgh(x'+\frac{G}{g})(y'+\frac{H}{h})+chh(y'+\frac{H}{h})^{2}$$

valorem M non egrediatur. Manifesto igitur si in plano systema punctorum perinde quidem ut in art. 4 disseminatum supponimus, attamen ita ut non initium coordinatarum sed punctum, cuius coordinatae sunt $p = \frac{G\lambda}{g}$, $q = \frac{H\lambda}{h}$, cum aliquo systematis puncto coincidat, m' exprimet multitudinem punctorum intra el-

lipsin, cuius aequatio est

$$aggpp + 2bghpq + chhqq = 1$$

iacentium semper adnumeratis si quae sunt in peripheria ipsa. Cuius ellipsis area $=\frac{\pi}{gh\sqrt{(ac-bb)}}=\frac{\pi}{gh\sqrt{D}}$ erit limes, ad quem productum $m'\lambda\lambda=\frac{m'}{M}$ in infinitum appropinquabit, decrescente λ vel crescente M in infinitum.

Ceterum manifestum est, theorema nostrum complecti casum ubi alterutra indeterminatarum x, y sola per saltus progredi debet, dum alterius valor nulli conditioni subiicietur. Patet enim, hoc idem esse, ac si vel h vel g statuatur = 1.

7

Quae hactenus exposita sunt, ab indole coefficientium formae axx+2bxy+cyy sunt independentia: abhinc vero supponemus, hosce coefficientes esse integros. Ita quaevis combinatio valorum integrorum quantitatum x, y ipsi formae valorem integrum conciliabit, sive repraesentationi alicuius numeri integri per istam formam respondebit. Hinc patet, complexum omnium combinationum valorum integrorum quantitatum x, y, per quos forma F = axx+2bxy+cyy valorem non maiorem limite M nanciscatur, esse idem ac complexum omnium repraesentationum numerorum integrorum limitem M non egredientium, sive usque ad hunc limitem incl., si ipse est numerus integer. Quodsi itaque brevitatis gratia multitudinem repraesentationum diversarum numeri determinati integri n per formam F per F(n), vel quatenus ambiguitas non metuenda simpliciter per Fn denotamus, numerus supra per m expressus erit Fn0 + Fn1 + Fn2 + Fn3 + etc. + Fn4, theoremaque primum sequentem induit formam.

THEOREMA III. Aggregatum F0+F1+F2+ etc. +FM proxime exprimitur per $\frac{\pi M}{\sqrt{D}}$, approximatione in infinitum crescente, dum M in infinitum augetur.

8.

Theoremati tertio repraesentationes omnium numerorum spectanti aliud adiungere convenit, solos numeros impares spectans. Manifesto per formam F numeri impares repraesentari nequeunt, si a et c simul sunt numeri pares: quapropter disquisitio ad tres reliquos casus restricta erit.

I. Quoties a est impar, c par, numerus impar repraesentatur, tribuendo ipsi x valorem imparem, valore ipsius y arbitrario manente. Theorema II. ita-

que, statuendo g=2, G=1, h=1, docet, multitudinem omnium combinationum valorum talium ipsorum x, y, qui formae valorem imparem limite M non maiorem concilient, approximatione infinita exprimi per $\frac{\pi M}{2\sqrt{D}}$, crescente M in infinitum.

II. Quoties a est par, c impar, ad repraesentationem numeri imparis requiritur, ut y sit impar, unde statuendo g = 1, h = 2, H = 1, ad eandem conclusionem deferimur.

III. Quoties tum a tum c impar est, vel valor impar ipsius x cum valore pari ipsius y combinari debet, vel valor par ipsius x cum valore impari ipsius y, ut prodeat valor impar formulae. Multitudo omnium combinationum tum prioris generis tum posterioris, pro quibus valor formae limitem M non egreditur, approximatione infinita per $\frac{\pi M}{4\sqrt{D}}$ exprimitur, quapropter multitudo omnium combinationum, quae formae valores impares limitem M non egredientes producunt, etiam hic approximatione infinita per $\frac{\pi M}{2\sqrt{D}}$ exprimitur.

Iam quum complexus omnium talium combinationum nihil aliud sit, nisi complexus omnium repraesentationum omnium numerorum $1, 3, 5, 7 \dots M$, quoties M est integer impar, vel $1, 3, 5, 7 \dots M-1$, quoties M est par, habemus

THEOREMA IV. Aggregatum

$$F_1+F_3+F_5+F_7...+F_M$$
 vel $F_1+F_3+F_5+F_7...+F_{(M-1)}$

(prout M impar est vel par) approximatione infinita exprimitur per $\frac{\pi M}{2\sqrt{D}}$, siquidem F est forma, in qua alteruter coëfficientium a, c vel uterque est impar.

[III.]

Es sei C der Complexus der Repräsentanten sämmtlicher Classen der formae proprie primitivae für den Determinant — D. Wir bezeichnen durch (n) die Anzahl aller Darstellungen der Zahl n durch Formen aus dem Complexus C. Es sei p eine ungerade Primzahl. Dann ist

- 1. (pn) = (n) wenn p ein Divisor von D
- 2. (pn) = (n) + (h)3. (pn) = -(n) + (h) wenn p Nichtdivisor von D {Divisor von xx + D Nichtdivisor von xx + D

wo $n = hp^{\mu}$, μ beliebig und h nicht durch p theilbar.

Im Fall 1. ist
$$(h) = (ph) = (pph) = (p^3h)$$
 etc.

2.
$$(ph) = 2(h), (pph) = 3(h), (p^3h) = 4(h)$$
 etc.

3.
$$(ph) = 0$$
, $(pph) = (h)$, $(p^3h) = 0$, $(p^4h) = (h)$ etc.

Aus jeder Classis pr. pr. für den Determinans = -D, deren Anzahl $= \lambda$, sei eine Form ausgewählt, und der Complexus dieser Form sei L.

Man bezeichne durch fA die Anzahl sämmtlicher Darstellungen der Zahl A durch Formen aus L.

Es sei ferner $f(A; p) = f^{A}_{\overline{p}^{a}}$, wenn p^{a} die höchste Potenz der Primzahl p ist, welche A misst; ferner $f(A; p, q) = f^{A}_{\overline{p}^{a}q^{\beta}}$, wenn q eine andere Primzahl, deren höchste A messende Potenz $= q^{\delta}$ und so ferner $f(A; p, q, r) = f^{A}_{\overline{p}^{a}q^{\beta}r^{\prime}}$ wenn r eine dritte Primzahl, deren höchste Potenz A messend r^{γ} ist u.s.w.

[IV.]

Man bezeichne durch (n) die Anzahl der Werthe x aus dem Complexus

$$0, 1, 2, 3, 4 \dots p^n - 1$$

für welche $xx-D=xx-ap^{\mu}$ durch p^n theilbar ist.

(6) =
$$p^3$$
 (5) = pp (5) = pp
(7) = p^3 (6) = p^3 (6) = p^3
(8) = 0 (7) = 0 (7) = $2p^3$
(9) = 0 (8) = 0 (8) = $2p^3$
etc. etc.

Man mache nun

Dann ist

$$(1) - \frac{(2)}{p} = (1)' \qquad fp = (1)'$$

$$(2) - \frac{(3)}{p} = (2)' \qquad fpp = 1 + (2)'$$

$$(3) - \frac{(4)}{p} = (3)' \qquad fp^3 = (1)' + (3)'$$

$$(4) - \frac{(5)}{p} = (4)' \qquad fp^4 = 1 + (2)' + (4)'$$
etc.

Es ist folglich,
$$\frac{p-1}{p}(1+\frac{fp}{p}+\frac{fpp}{pp}+\frac{fpp}{p^3}+\text{ etc.})=T$$
 gesetzt,
$$\frac{p+1}{p}T=1+\frac{(1)'}{p}+\frac{(2)'}{pp}+\frac{(3)'}{p^3}+\frac{(4)'}{p^4}+\text{ etc.}=1+\frac{(1)}{p}=1+\frac{1}{p}$$
Also $T=1$

[**V**.]

Multitudo classium mediocris *) circa determinantem negativum — D est proxime

$$= \frac{\pi \sqrt{D}}{4(1+\frac{1}{2}\sqrt{1+\frac{1}{2}}\frac{1}{2}+\text{ etc.})}$$

Multitudo vera exprimitur sequentibus formulis, ubi brevitatis caussa scribitur m pro multitudine mediocri, M pro vera; p, q exprimunt omnes numeros impares primos ipsum D non metientes, ille divisores, hic non-divisores ipsius $\Box + D$; r numeros **) primos ipsum D metientes:

^{*) [}Vergl. Disquies. Arithm. art. 302; die dortige Formel weicht um eine Constante & von der hier im Text vorkommenden ab.]

^{**) [}impares.]

I.
$$M = m$$
 Prod. ex $\frac{p^{3} + p^{3}}{p^{3} - 1} \cdot \frac{q^{3} - q^{3}}{q^{3} - 1} \cdot \frac{r^{3} - r}{r^{3} - 1}$

II. $M = \frac{\pi \sqrt{D}}{4}$ Prod. ex $\frac{p+1}{p} \cdot \frac{q-1}{q} \cdot \frac{rr-1}{rr}$

III. NB. $M = \frac{2\sqrt{D}}{\pi}$ Prod ex $\frac{p}{p-1} \cdot \frac{q}{q+1}$

IV. $M = \sqrt{\left\{\frac{D}{2}\right\}}$ Prod. ex $\frac{p+1}{p-1} \cdot \frac{q-1}{q+1} \cdot \frac{rr-1}{rr}$

V. $M = \frac{2\sqrt{D}}{\pi} \left\{1 + \frac{1}{2} + \frac{1}$

NB. Die Formel III wird unmittelbar aus der Vergleichung der beiden Arten, die darstellbaren Zahlen bis zu einer gewissen Grenze zu zählen, abgeleitet.

[VI.]

Theorema. Multitudo classium, in quas omnes formae binariae proprie primitivae determinantis negativi — D^*), aequalis est

$$\frac{\pi}{4} \times \sqrt{D} \times \text{Prod. ex.} \frac{p-1}{p} \frac{q+1}{q} \times \frac{rr-1}{rr}$$

designantibus

p omnes numeros primos ***) quorum non-res. est — D

q omnes numeros primos **) quorum res. — D

r omnes numeros primos**) ipsum D metientes

$$= \frac{\frac{\pi}{4}\sqrt{D \text{ Prod. ex}} \frac{rr-1}{rr}}{1 \pm \frac{1}{4} \pm \frac{1}{4} \text{ etc.}}$$

ubi in denom. signum posit. praeponitur fractt., quarum denom. sunt in forma non divis.; negat. iis, quarum denom. sunt in forma divisorum ipsius xx+D; eae vero, quarum denom. ad D non forent primi, omnino omittuntur ***).

^{*) [}distribuuntur.]

^{**) [}impares.]

Bezeichnet man mit *m* alle positiven ganzen Zahlen, die relative Primzahlen zu 2 *D* sind, und benutzt man das durch Jacobi verallgemeinerte Symbol von Legenden, so ist die obige Regel für die Zeichenbestimmung in folgender Weise zu berichtigen: in der vorhergehenden Formel ist der Nenner

$$= \frac{2\sqrt{D(1\pm\frac{1}{2}\pm\frac{1}{2}\dots)}}{\pi} = \frac{\cot \theta \pm \cot \theta \cdot \theta \pm \cot \theta \cdot \theta \cdot \dots \pm \cot \theta \cdot \theta}{N:\sqrt{D}}$$

ponendo $\theta = \frac{\pi}{N}$, $N = \{\frac{1}{4}\}D$ et ponendo pro n omnes numeros ad D primos signo ut supra determinato *).

Pro determ. pos. erit mult. Classium **)

$$= \frac{2\sqrt{D(1\pm\pm\pm\pm\cdots)}}{\log T + U\sqrt{D}}$$

Designantibus T, U valores minimos quantitatum t, u aequationi tt—Duu = 1 satisfacientes

$$= \frac{\log \sin \frac{1}{2} \theta \pm \log \sin \frac{1}{2} \theta \pm \log \sin \frac{1}{2} \theta \text{ etc.}}{\log T + U \sqrt{D}}$$

[VII.]

Pro determinante negativo -p, qui***) est numerus primus formae 4n+1, multitudo classium est +) = $(\alpha-6)$, ubi α multitudo residuorum quadraticorum in quadrante primo

б multitudo non-residuorum.

$$1 \pm \frac{1}{4} \pm \frac{1}{4} \text{ etc.} = \sum \pm \left(\frac{-D}{m}\right) \frac{1}{m}$$

wo das obere oder untere Zeichen zu nehmen ist, je nachdem die Zahl m ein Product aus einer geraden oder ungeraden Anzahl (gleicher oder ungleicher) Primzahlen ist; dagegen ist im Zähler der nachfolgenden Formel

$$1 \pm \frac{1}{2} \pm \frac{1}{2} \cdot \cdot \cdot = \sum_{m=1}^{\infty} \left(\frac{-D}{m} \right) \cdot \frac{1}{m} \right]$$

- *) [Siehe die weiter unten folgende Note zu diesem Fragment.]
- **) [In der nachfolgenden Formel bedeutet D den positiven Determinanten, und es ist

$$1 \pm \frac{1}{2} \pm \frac{1}{2} \dots = \sum \left(\frac{D}{m}\right) \frac{1}{m}$$

- ***) [d. h. wenn p eine positive Primsahl von der Form 4n+1 ist.]
 - †) [multitudo classium est = $2(\alpha 6)$.]

[VIII.] $b \equiv 2m + a - 1 \; (\text{mod. 8})$ wo m die [halbe] Anzahl der Classen für den Determinans -p

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	ا ا		1 1	م ا	2m+a-1-b	1	б
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>p</u>	m	а	b	f	8	α	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	2	+ 1	— 4	- 4	+1	3	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	4	+ 5	+ 4	+ 9	+1	3	4
97 2 + 9 + 4 + 22 + 1 5 6 113 4 -7 + 8 + 15 -1 9 4 137 4 -11 + 4 + 37 -1 3 8 193 2 -7 + 12 + 81 -2 11 6 233 6 + 13 + 8 + 144 + 2 15 2 241 6 + 15 + 4 + 64 -1 13 6 257 8 + 1 + 16 + 16 0 15 4 281 10 + 5 - 16 + 53 + 5 9 10 313 4 + 13 - 12 - 25 + 1 5 12 337 4 + 9 + 16 - 148 0 7 12 353 8 + 17 + 8 + 42 + 3 15 8 13 1 - 3 - 2 + 5 0 0 15 4	73	2		8	+ 27	+1	1	6
97 2 + 9 + 4 + 22 + 1 5 6 113 4 -7 + 8 + 15 -1 9 4 137 4 -11 + 4 + 37 -1 3 8 193 2 -7 + 12 + 81 -2 11 6 233 6 + 13 + 8 + 144 + 2 15 2 241 6 + 15 + 4 + 64 -1 13 6 257 8 + 1 + 16 + 16 0 15 4 281 10 + 5 - 16 + 53 + 5 9 10 313 4 + 13 - 12 - 25 + 1 5 12 337 4 + 9 + 16 - 148 0 7 12 353 8 + 17 + 8 + 42 + 3 15 8 13 1 - 3 - 2 + 5 0 0 15 4		6	+ 5		+ 34	+ 3	9	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	97	2	+ 9	+ 4	+ 22	+1	5	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	113	4	— 7	+ 8	+ 15			4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4			十 37		3	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	— 7		+ 81	— 2	11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		6	+13	+ 8	+144	+2	15	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	241	6	+15	+ 4	+ 64	— 1	13	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	257	8	+ 1	+16	+ 16		15	4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	281	10	+ 5		+ 53	+5	9	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	313	4	+13	—12	25	+1	5	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	337	4	+ 9	+16	-148	0	7	12
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	353	8	1.17		+ 42	+3	15	8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	1	+ 1		+ 2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	1	- 3		+ 5			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	+ 5	+ 2	+ 12	+1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 7	1	+ 1	- 6	— 6	+1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	3	7	— 2	+ 23			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	+ 5		+ 11	+ 2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	101	7	+ 1			+3	٠	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	109	3	— 3	+10	+ 33	<u> </u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	149	7	7	-10	+ 44	+ 2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	157	3	-11	- 6	 28	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	173	7	+13	+ 2	+ 80	+ 3		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	181	5	+ 9	+10	19			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	197	5	+ 1	-14	14			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	229	5	15	+ 2	-107	<u> </u>		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	269	11	+13		82			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	277	3		+14	60	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	293	9	+17		+138			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	317	5	-11					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	349	7	+ 5	+18		0		
389 11 +17 -10 -115 +6	373	5			+104			
		11	+17			+6		
	397	3	-19	-6	+ 63	— 1		

[IX.]

Vertheilung der quadratischen Reste in Octanten.

p Primzahl; (r) Anzahl der quadratischen Reste von p, welche zwischen $(r-1)^{\frac{p}{8}}$ und $r^{\frac{p}{8}}$ liegen.

Erster Fall; p = 8n + 1.

2t Anzahl der Classen für den Determinans -p;

2u Anzahl der Classen für den Determinans - 2p.

$$(1) = (8) = \frac{1}{4}(2n+t+u)$$

$$(2) = (4) = (5) = (7) = \frac{1}{2}(2n+t-u)$$

$$(3) = (6) = \pm (2n - 3t + u)$$

p	2n	t	u	(1)	(2)	(3)	p	2 n	t	u	(1)	(2)	(3)
17	4	2	2	2	1	0	233	58	6	4	17	15	11
41	10	4	2	4	3	.0	241	60	6	10	19	14	13
73	18	2	8	7	3	5	257	64	8	8	20	1'6	12
89	22	6	4	8	6	2	281	70	10	4	21	19	11
97	24	2	10	9	4	7	313	78	4	18	25	16	21
113	28	4	4	9	7	5	337	84	4	12	25	19	21
137	34	4	6	11	8	7	353	88	8	12	27	21	19
193	48	2	10	15	10	1.3	401	100	10	6	29	26	19

Zweiter Fall; p = 8n + 5.

2t Anzahl der Classen für den Determinans —p;

2u Anzahl der Classen für den Determinans -2p.

$$(1) = (3) = (6) = (8) = 1(2n-t+u)$$

$$(2) = (7) = \frac{1}{4}(2n+3t-u+2)$$

$$(4) = (5) = 1(2n - t - u + 2)$$

p	2 n	t	u	(1)	(2)	(4)	p	2 n	t	u	(1)	(2)	(4)
5	0	1	1	0	1	0	181	44	5	9	12	13	8
13	2	1	3	1	1	0	197	58	5	5	12	15	10
29	6	3	1	1	4	1	229	56	5	13	16	15	10
37	8	1	5	3	2	1	269	66	1 1 ¹	5	15	24	13
53	12	3	3	3	5	2	277	68	3	11	19	17	14
61	14	3	5	4	5	2	293	72	9	9	18	23	14
101	24	7	3	5	11	4	317	78	5	7	20	22	17
109	26	3	5	7	8	5	349	86	7	13	23	24	17
149	36	7	3	8	14	7	373	92	5	13	25	24	19
157	38	3	13	12	9	6	389	96	11	7	23	31	20
173	42	7	5	10	15	8	397	98	3	21	29	22	19

Dritter Fall; p = 8n + 3.

t Anzahl der Classen für den Determinans —p

2u Anzahl der Classen für den Determinans -2p.

$$(1) = (4) = (7) = \frac{1}{4}(2n+t-u)$$

$$(2) = (5) = (8) = \frac{1}{4}(2n-t+u)$$

$$(3) = \frac{1}{4}(2n+t+u+2)$$

(6)
$$= \frac{1}{2}(2n-t-u+2)$$

\boldsymbol{p}	2 n	t	u	(1)	(2)	(3)	(6)	p	2 n	t	u	(1)	(2)	(3)	(6)
3	0	1	1	0	0	1	0	163	40	3	11	8	12	14	7
11	2	3	1	1	0	2	0	179	44	15	3	14	8	16	7
19	4	3	3	1	1	3	0	211	52	9	5	14	12	17	10
43	10	3	5	2	3	5	1	227	56	15	7	16	12	20	9
59	14	9	3	5	2	7	1	251	62	21	7	19	12	23	9
67	16	3	7	3	5	7	2	283	70	9	15	16	19	24	12
83	20	9	5	6	4	. 9	2	307	76	9	17	17	21	26	13
107	26	9	3	8	5	10	4	331	82	9	11	20	21	26	16
131	32	15	3	11	5	13	4	347	86	15	5	24	19	27	17
139	34	9	7	9	8	13	5	379	94	9	11	23	24	29	19

Vierter Fall; p = 8n + 7.

t Anzahl der Classen für den Determinans -p;

2u Anzahl der Classen für den Determinans — 2p.

$$= \frac{1}{4}(2n+2t-u)$$

$$(2) = (3) = (5) = \frac{1}{4}(2n + u + 2)$$

$$(4) = (6) = (7) = \frac{1}{4}(2n - u + 2)$$

$$(8) = \pm (2n - 2t + u)$$

p	2 n	t	u	(1)	(2)	(4)	(8)	p	2 n	t	u	(1)	(2)	(4)	(8)
7	0	1	2	0	1	0	0	191	46	13	4	17	13	11	6
23	4	3	2	2	2	1	0	199	48	9	10	14	15	10	10
31	6	3	4	2	3	1	1	223	54	7	16	13	18	10	14
47	10	5	4	4	4	2	1	239	58	15	4	21	16	14	8
71	16	7	2	7	5	4	1	263	64	13	6	21	18	15	11
79	18	5	4	6	6	4	3	271	66	11	12	19	20	14	14
103	24	5	10	6	9	4	6	311	76	19	6	27	21	18	11
127	30	5	8	8	10	6	7	359	88	19	· 6	30	24	21	14
151	36	7	6	11	11	8	7	367	90	9	20	22	28	18	23
167	40	11	6	14	12	9	6	383	94	17	12	29	27	21	18

[X.]

Vertheilung der quadratischen Reste in Zwölftel.

p Primzahl; (r) Anzahl der quadratischen Reste von p, welche zwischen $\frac{r-1}{12}p$ und $\frac{r}{12}p$ liegen.

Erster Fall; p = 24n + 1.

2 t Anzahl der Classen für den Determinans —p

4u Anzahl der Classen für den Determinans - 3p

$$= \frac{1}{6}n + 3t + 2u$$

$$(2) = (4) = (6) = (7) = (9) = (11) = \frac{1}{2}(6n - 3t + 2u)$$

$$(3) = (5) = (8) = (10) = \frac{1}{6}(6n + 3t - 4u)$$

Zweiter Fall; p = 24n + 13.

2t Anzahl der Classen für den Determinans -p;

4u Anzahl der Classen für den Determinans — 3p.

$$(1) = (3) = (10) = (12) = \frac{1}{2}(2n+1+t)$$

$$(2) = (6) = (7) = (11) = \frac{1}{2}(2n+1-t)$$

$$(4) = (9) = \frac{1}{2}(2n+1-t+2u)$$

$$(5) = (8) = \frac{1}{2}(2n+1+t-2u)$$

p	n	t	u	(1)	(2)	(4)	(5)
13	0	1	1	1	0	1	0
37	1	1	2	2	1	3	0
61	2	3	2	4	i	3	2
109	4	3	3	6	3	6	3
157	6	3	4	8	5	9	4
181	7	5	3	10	5	8	7
229	9	5	3	12	7	10	9

Dritter Fall; p = 24n + 5.

2t Anzahl der Classen für den Determinans -p;

2u Anzahl der Classen für den Determinans -3p.

$$(1) = (2) = (6) = (7) = (11) = (12) = n$$

$$(3) = (10) = \frac{1}{2}(2n+1+t)$$

$$(4) = (9) = \frac{1}{4}(2n - t + u)$$

$$(5) = (8) = \frac{1}{4}(2n+1-u)$$

p	n	t	*	(1)	(3)	(4)	(5)
5	0	1	1	0	1	0	0
29	1	3	3	1	3	1	0
53	2	3	5	2	4	. 3	0
101	4	7	5	4	8	3	2
149	6	7	7	6	10	6	3
173	7	7	9	7	11	8	3
197	8	5	11	8	11	11	3
2 69	111	11	7	11	17	9	8

Vierter Fall; p = 24n + 17.

2t Anzahl der Classen für den Determinans -p;

2u Anzahl der Classen für den Determinans -3p.

$$(1) = (2) = (6) = (7) = (11) = (12) = \frac{1}{2}(6n+3+u)$$

$$(3) = (10) = \pm (6n + 6 + 3t - 2u)$$

$$(4) = (9) = \frac{1}{2}(6n+3-3t+u)$$

$$(5) = (8) = \frac{1}{6}(6n + 6 - 2u)$$

\boldsymbol{p}	n	t	u	(1)	(3)	(4)	(5)
1.7	0	2	3	1	1	0	0
41	1	4	3	2	3	0	1
89	3	6	3	4	6	1	3
113	4	4	9	6	4	4	2
137	5	4	9	7	5	5	3
233	9	6	15	12	8	9	5
257	10	8	9	12	12	8	8

BEMERKUNGEN ZUR ABHANDLUNG

DE NEXU INTER MULTITUDINEM CLASSIUM, IN QUAS FORMAE BINARIAE SECUNDI GRADUS DISTRIBUUNTUR, EARUMQUE DETERMINANTEM.

Zu I. und II.

Die zweite Formel für die Anzahl der innerhalb des Kreises liegenden Punkte (I. art. 3 und II. art. 5) ergiebt sich aus der Betrachtung des in denselben eingeschriebenen Quadrates, dessen Seiten den Coordinatenaxen parallel sind; die Vergleichung beider Formeln führt zu dem auch arithmetisch leicht zu beweisenden Satze

$$r'+r''+\ldots+r^{(g)}=qq+r^{(g+1)}+r^{(g+3)}+\ldots+r^{(r)}$$

aus welchem sich wieder die Richtigkeit der ersten von den beiden folgenden Regeln ergiebt, die sich auf einem besondern Blatt vorfanden:

"Auflösungen der Gleichung $xz+yy\leq A$; formula

$$1 + 4\sqrt{A} + 4\sqrt{4A} + 8\sum(\sqrt{A-nn}) - n$$

we bei jeder Wurzel der Bruch weggelassen und von n=1 bis $n=\sqrt{A}$,, (soll heissen $\sqrt{\frac{1}{4}}A$)" summirt wird. Andre Formel

$$1+4\left\{A-\frac{A}{8}+\frac{A}{5}-\frac{A}{7}+\frac{A}{9}-\frac{A}{11}...\right\}$$

wo bei jedem Theil der Bruch weggelassen."

Diese letstere Formel folgt aus dem später (I. art. 6) sur Anwendung kommenden Satze über die Anzahl aller verschiedenen Darstellungen einer bestimmten Zahl durch die Form xx + yy (vergl. Disqq. Arithm. art. 182, Note), welcher leicht in den folgenden umgeformt werden kann: die Anzahl der verschiedenen Darstellungen einer positiven ganzen Zahl m durch die Form xx + yy ist = 4(a-b), wo a, b die Anzahlen der Divisoren von m bedeuten, welche resp. von der Form 4n+1, 4n+3 sind. Aus der Vergleichung

dieser arithmetischen Formel mit der (in I. art. 5 oder II. art. 4) durch geometrische Betrachtungen gewonnenen mittlern Darstellungsansahl erhält man leicht und in aller Strenge das bekannte Resultat

$$\frac{\pi}{4} = 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{4} + \dots$$

welches in der Abhandlung (I. art. 7) durch eine ähnliche Vergleichung, aber mit Hülfe unendlicher Producte abgeleitet wird.

Zu III und IV.

Ist C der Complex aller positiven, nicht eigentlich-äquivalenten formae proprie primitivae von negativem Determinant -D, und legt man den Variabeln dieser Formen je swei Werthe bei, welche relative Primsahlen su einander sind, so ist die Ansahl aller Darstellungen einer positiven gansen Zahl m gleich $\varepsilon\psi(m)$, wo ε die Ansahl der Auflösungen der Gleichung; tt+Duu=1, und $\psi(m)$ die Ansahl der jenigen Wurzeln n der Congruens $nn+D\equiv 0 \pmod{m}$ bedeutet, für welche die drei Zahlen m, 2n und $\frac{nn+D}{m}$ ohne gemeinschaftlichen Divisor sind (Disqq. Arithm. art. 180). Der Factor ε ist =4 für D=1, in allen andern Fällen =2. Ist ferner $m=p^np''''p'''''$..., wo p,p',p''... von einander verschiedene Primsahlen bedeuten, so ist $\psi(m)=\psi(p^n)\psi(p'''')\psi(p''''')$...; bedeutet $\mathfrak{A}(m)$ die Ansahl der Wurseln n der Congruens $nn+D\equiv 0 \pmod{m}$, und bedient man sich des von Luckburgen eingeführten, von Jacobi verallgemeinerten Zeichens, so ist $\psi(p^n)=\mathfrak{A}(p^n)=1+\left(\frac{-D}{p}\right)$, wenn p nicht in 2D aufgeht, sonst aber $=\mathfrak{A}(p^n-\frac{1}{p}\mathfrak{A}(p^{n+1});$ die Ansahl $\mathfrak{A}(p^n)$ lässt sich immer leicht bestimmen (Disqq. Arithm. art. 104), für die Folge reicht aber die Bemerkung aus, dass $\mathfrak{A}(p^n)$ immer von π unabhängig wird, sobald π eine gewisse Grösse überschreitet.

Legt man den Variabeln der in dem Complex C enthaltenen Formen alle ganszahligen Werthe ohne Ausnahme bei (Disqq. Arithm. art. 181), so wird die Anzahl (m) aller Darstellungen der Zahl m gleich ef(m), wo $f(m) = \sum \phi\left(\frac{m}{\mu \mu}\right)$ ist, und das Summenzeichen sich auf alle quadratischen Divisoren $\mu \mu$ der Zahl m bezieht. Hieraus folgt unmittelbar

$$f(m) = f(p^m p'^{m'} p''^{m''} \dots) = f(p^m) f(p'^{m'}) f(p'^{m''}) \dots$$

und

$$f(p^{\pi}) = \psi(p^{\pi}) + \psi(p^{\pi-2}) + \psi(p^{\pi-4}) + \dots$$

welche Reihe so lange fortzusetzen ist, als die Exponenten π , $\pi-2$, $\pi-4$... nicht negativ werden. Wenn p nicht in 2D aufgeht, so folgt hieraus

$$f(p^n) = 1 + \left(\frac{-D}{p}\right) + \left(\frac{-D}{pp}\right) + \dots + \left(\frac{-D}{p^n}\right)$$

und allgemein, wenn m relative Primsahl su 2D ist,

$$f(m) = \Sigma \left(\frac{-D}{n}\right)$$

wo das Summenseichen sich auf alle Divisoren a der Zahl m bezieht.

Aus diesen Bemerkungen ergiebt sich unmittelbar die Richtigkeit der im Text (III, 1, 2, 3) aufgestellten Sätze über die Ansahl (m), wenn man für den ersten derselben noch die Bedingung hinsufügt, dass D nicht durch pp theilbar sein darf (die Bestimmung der Classenanzahl ist schon in den Disqq. Arithmart. 256 auf den Fall zurückgeführt, in welchem D durch kein Quadrat theilbar ist). Zugleich findet man, auch ohne Rücksicht auf diese Beschränkung, dass die unendliche Reihe

$$1 + \frac{f(p)}{p} + \frac{f(pp)}{pp} + \frac{f(p^{a})}{p^{a}} + \dots$$

den Werth

$$\frac{1}{1 - \frac{1}{p}} \text{ oder } \frac{1}{1 - \frac{1}{p}} \cdot \frac{1}{1 - (\frac{-D}{p}) \frac{1}{p}}$$

hat, je nachdem 2D durch die Primzahl p theilbar oder nicht theilbar ist.

Zu V.

Die zu der Formel III hinzugefügte Bemerkung giebt den Weg an, auf welchem der Verf. zur Bestimmung der Anzahl k der in dem Complex C enthaltenen Formen gelangt ist. Aus geometrischen Betrachtungen (vergl. I. art. 5 und II. art. 4) ergiebt sich, dass der Grenzwerth, welchem sich der Quotient

$$\frac{(1)+(2)+(3)+\ldots+(m)}{m}$$

mit unbegrenst wachsendem se nähert, d. h. die mittlere Ansahl der Darstellungen einer unbestimmten positiven gansen Zahl

$$=k\frac{\pi}{\sqrt{D}}$$

ist; ein sweiter Ausdruck für denselben Grenswerth lässt sich auf verschiedene Arten aus der Natur der im Vorhergehenden bestimmten Anzahl $(m) = \varepsilon f(m)$ der Darstellungen der Zahl m ableiten. Der zu diesem Zweck von dem Verf. zunächst eingeschlagene Weg scheint nach den vorhandenen Bruchstücken (1. artt. 7, 8; III und IV) folgender gewesen zu sein.

Ist $\theta(m)$ irgend eine Function der positiven gansen Zahl m, und p irgend eine Primzahl, so kann man aus $\theta(m)$ immer eine neue Function $\theta'(m)$ ableiten, deren Werth unabhängig davon ist, ob und wie oft p als Factor in m enthalten ist, und welche für alle durch p nicht theilbaren Zahlen m mit $\theta(m)$ übereinstimmt; eine solche Function erhält man, wenn man $\theta'(m) = \theta\left(\frac{m}{p^{r}}\right)$ setzt, wo p^{π} die höchste in m aufgehende Potenz von p bedeutet; und man kann sagen, dass die Function $\theta'(m)$ aus $\theta(m)$ durch Elimination der Primzahl p entsteht. Bildet man auf diese Weise aus f(m) eine neue Function f'(m) durch Elimination der Primzahl 2, aus dieser die Function f''(m) durch Elimination von 3 u.s.f., so wird jede folgende dieser Functionen einen regelmässigern Verlauf haben, als die vorhergehenden; eliminirt man eine Primzahl nach der andern, wie sie ihrer Grösse nach auf einander folgen, so wird eine solche Function

 $\theta(m)$ für unendlich viele Werthe von m den Werth f(1) = 1 haben, und namentlich für alle diejenigen Werthe von m, welche kleiner sind als die zuletzt eliminirte Primzahl. Durch unendliche Fortsetsung dieses Processes nähert man sich immer mehr der Function $f^{\infty}(m)$, welche für alle Werthe von m den Werth 1 hat, und deren mittlerer Werth folglich ebenfalls = 1 ist. Gelingt es nun den mittlern Werth irgend einer Function $\theta(m)$ durch denjenigen der nächstfolgenden $\theta'(m)$ auszudrücken, so wird man auch den mittlern Werth der Function f(m) durch eine unendliche Kette von Operationen finden können.

Ist p die Primzahl, durch deren Elimination $\theta'(m)$ aus $\theta(m)$ entsteht, so ist $\theta(m) = \theta'(m) f(p^n)$, wenn p^n wieder die höchste in m aufgehende Potenz von p bedeutet. Für den Fall, dass p nicht in 2 D aufgeht, findet man hieraus leicht, dass

$$\theta'(m) = \theta(mp) - \left(\frac{-D}{p}\right)\theta(m)$$

ist; setzt mah zur Abkürzung

$$\theta(m) = \theta(1) + \theta(2) + \ldots + \theta(m)$$

$$\theta'(m) = \theta'(1) + \theta'(2) + \ldots + \theta'(m)$$

so ergiebt sich

$$\theta'(mp) = \theta(mp) - \left(\frac{-D}{p}\right)\theta(m)$$

und hieraus, wenn man mit m, m' resp. die mittlern Werthe der Functionen 9(m), 9'(m) bezeichnet,

$$\omega = \frac{\omega'}{1 - \left(\frac{-D}{p}\right)\frac{1}{p}}$$

Wenn aber die Primzahl p in 2D aufgeht, so findet swar swischen den Functionen $\theta(m)$ und $\theta'(m)$ im Allgemeinen keine so einfache Besiehung mehr Statt; indessen ergiebt sich auf ähnliche Art leicht, dass in diesem Fall $\omega = \omega'$ ist. Ein anderer Weg, die Besiehung swischen ω und ω' in beiden Fällen abzuleiten, ist folgender. Setzt man

$$\theta(m) = \Sigma \theta(\mu)$$

we das Summenzeichen sich auf alle Zahlen μ bezieht, die nicht durch p theilbar und ausserdem nicht grösser als m sind, und bezeichnet man mit m', m'', m''' . . . resp. die grössten in $\frac{m}{p'}$, $\frac{m'}{p}$, $\frac{m''}{p}$. . . enthaltenen ganzen Zahlen, so ist

$$\theta(m) = \theta(m) + \theta(m')f(p) + \theta(m'')f(pp) + \theta(m''')f(p^0) + \dots$$

$$\theta'(m) = \theta(m) + \theta(m'') + \theta(m''') + \theta(m''') + \dots$$

und hieraus folgt

$$\frac{\omega}{\omega'} = \left(1 - \frac{1}{p}\right)\left\{1 + \frac{f(p)}{p} + \frac{f(pp)}{pp} + \frac{f(p^{0})}{p^{0}} + \dots\right\}$$

was mit dem eben gefundenen Resultat übereinstimmt (vergl. die Note zu III und IV).

Der mittlere Werth der Function f(m) ist daher gleich dem unendlichen Product

$$\Pi \frac{1}{1 - \left(\frac{-D}{p}\right) \frac{1}{p}}$$

in welchem p alle in 2D nicht aufgehenden Primzahlen durchlaufen muss, und hieraus folgt

$$k = \frac{\epsilon \sqrt{D}}{\pi} \prod \frac{1}{1 - \left(\frac{-D}{p}\right) \frac{1}{p}}$$

Hinsichtlich der Strenge dieser Deduction bleibt aber ein Bedenken übrig, welches sich auf die Methode bezieht, den mittlern Werth der Function f(m) durch successive Elimination aller Primsahlen su bestimmen; denn wenn es auch einleuchtet, dass der Werth der durch Elimination der ersten n Primsahlen erhaltenen Function $f^{(n)}(m)$ mit dem der Function $f^{\infty}(m) = 1$ übereinstimmt, so lange m kleiner bleibt als die suletzt eliminirte Primsahl, und dass also durch die Wahl eines hinreichend grossen Werthes n diese Uebereinstimmung bis su jeder vorher vorgeschriebenen Grösse der Zahl m getrieben werden kann, so ist hiermit allein doch keineswegs erwiesen, dass mit unbegrenzt wachsendem n der mittlere Werth der Function $f^{(n)}(m)$ sich dem mittlern Werthe der Function $f^{\infty}(m)$, d. h. dem Werthe 1 unbegrenzt nähert. In welcher Weise der Verf. diese Lücke auszufüllen beabsichtigte, lässt sich aus den vorhandenen Papieren nicht mit Sicherheit erkennen; doch führt die schon oben (in der Note su I) mitgetheilte Formel

$$1+4\left\{A-\frac{A}{3}+\frac{A}{5}-\frac{A}{7}+\frac{A}{9}-\frac{A}{11}\cdots\right\}$$

für die Anzahl der Paare von Zahlen, deren Quadratsumme den Werth Δ nicht übertrifft, zu der Vermuthung, dass der Verf., mit Umgehung des unendlichen Productes, für den mittlern Werth der Function f(m) unmittelbar die unendliche Reihe

$$\Sigma\left(\frac{-D}{n}\right)\frac{1}{n}$$

gefunden hat, in welcher n der Grösse nach alle positiven ganzen Zahlen durchlaufen muss, die relative Primzahlen zu 2D sind. Die einfachste Art, diesen Uebergang anzudeuten, scheint die folgende zu sein.

Ist μ der grösste aller derjenigen Divisoren einer Zahl m, welche relative Primzahlen zu 2D sind, und setzt man $\theta(m) = f(\mu)$, so ist $\theta(m)$ diejenige Function, welche durch Elimination aller in 2D aufgehenden Primzahlen aus f(m) entsteht, und deren mittlerer Werth nach dem Obigen mit demjenigen der Eunction f(m) übereinstimmt. Da nun $\theta(m) = \Sigma\left(\frac{-D}{n}\right)$ ist, wo n alle Divisoren von μ , d. h. alle diejenigen Divisoren von m durchläuft, welche relative Primzahlen zu 2D sind, so ergiebt sich die der obigen analoge Formel

$$\theta(m) = \theta(1) + \theta(2) + \ldots + \theta(m) = \Sigma \left(\frac{-D}{n}\right) \frac{m}{n}$$

wo in der Summe rechter Hand der Buchstabe n alle relativen Primzahlen zu 2D durchläuft, und von dem Quotienten $\frac{m}{n}$ immer nur die grösste in ihm enthaltene ganze Zahl beisubehalten ist. Ordnet man die Glieder dieser Reihe so, dass die Zahlen n ihrer Grösse nach wachsend auf einander folgen, so nimmt der Factor $\frac{m}{n}$ fortwährend ab oder doch wenigstens nie zu, und die Reihe bricht ab, sobald n > m wird. Ausserdem ergiebt sich aus dem Fundamentaltheorem in der Theorie der quadratischen Reste und aus der Verallgemeinerung desselben, dass die Summe von je $\varphi(4D)$ auf einander folgenden Werthen des Factors $\left(\frac{-D}{n}\right)$ verschwindet, woraus folgt, dass die Summe von noch so vielen auf einander folgenden Werthen

desselben ihrem absoluten Werth nach die endliche, nur von dem Determinant D abhängige Grösse $\Delta = \varphi(2D)$ niemals übertrifft. Verbindet man diese beiden Bemerkungen mit einander, so findet man leicht, dass die Summe aller auf das Glied $(\frac{D}{n})\frac{m}{n}$ folgenden Glieder absolut genommen kleiner als $\Delta \frac{m}{n}$ ist, und dasss folglich der Quotient $\Theta(m)$: m bei unendlich wachsendem m die in der angegebenen Art geordnete, convergirende unendliche Reihe

$$\Sigma\left(\frac{-D}{n}\right)\frac{1}{n}$$

zum Grenzwerthe hat. Nachdem so der gemeinschaftliche mittlere Werth der Functionen $\theta(m)$ und f(m) gefunden ist, erhält man unmittelbar

$$k = \frac{\varepsilon \sqrt{D}}{\pi} \sum \left(\frac{-D}{n}\right) \frac{1}{n}$$

Es verdient noch bemerkt zu werden, dass die Artikel 6 und 8 der Abhandlung II auf eine in mancher Beziehung einfachere und auch leicht auszuführende Behandlungsweise des Problems hindeuten, bei welcher nur die Darstellungen ungerader oder sogar nur solcher Zahlen betrachtet werden, die relative Primzahlen zu 2 D sind.

Zu VI und VII.

Die Art, wie der Verf. die Summation der Reihe $\Sigma(\frac{D}{n})\frac{1}{n}$ ausgeführt hat, ergiebt sich aus einigen speciellen Beispielen, welche sich auf einzelnen Blättern voründen.

Ist $D \equiv s \pmod{4}$, so folgt aus dem Fundamentaltheorem in der Theorie der quadratischen Reste mit Benutzung der Reihe

cotang
$$u = \frac{1}{u} + \frac{1}{u - \pi} + \frac{1}{u + \pi} + \frac{1}{u - 2\pi} + \frac{1}{u + 2\pi} + \dots$$

dass

u.

$$\Sigma\left(\frac{-D}{n}\right)\frac{1}{n} = \Sigma\left(\frac{n}{D}\right)\frac{1}{n} = \frac{\pi}{2D}\Sigma\left(\frac{\nu}{D}\right)\operatorname{cotang}\frac{\nu\pi}{2D}$$

ist, wo v alle relativen Primzahlen zu 2D durchläuft, die kleiner als D sind; setzt man

$$\sqrt{-1} = i$$
, $\cos \frac{2\pi}{D} + i \sin \frac{2\pi}{D} = r$

und bezeichnet mit μ alle relativen Primzahlen zu D, welche nicht grösser als D sind, so lässt die vorstehende Summe sich leicht in die folgende umformen

$$\Sigma\left(\frac{-D}{n}\right)\frac{1}{n} = \frac{\pi i}{4D}\left(\frac{2}{D}\right)\Sigma\left(\frac{\mu}{D}\right)\frac{r^{\mu}-1}{r^{\mu}+1}$$

wendet man nun die für jede Wurzel ω der Gleichung $\omega^D=$ 1 gültige Formel

38

$$\frac{\omega-1}{\omega+1}=\Sigma(-1)^{\alpha-1}\omega^{\alpha}$$

an, in welcher α die Zahlen 1, 2, 3... (D-1) durchlaufen muss, so erhält man durch Umkehrung der Summationsordnung

$$\Sigma\left(\frac{-D}{n}\right)\frac{1}{n} = \frac{\pi i}{4D}\left(\frac{2}{D}\right)\Sigma(-1)^{\alpha-1}\Sigma\left(\frac{\mu}{D}\right)r^{\alpha\mu}$$

Die auf μ bezügliche Summation lässt sich bekanntlich mit Hülfe der in der Abhandlung Summatio quarumdam serierum singularium bewiesenen Sätze ausführen; beschränkt man sich auf den Fall, in welchem D durch kein Quadrat theilbar ist, so findet man allgemein

$$\Sigma(rac{\mu}{D})r^{a\mu}=\left(rac{a}{D}
ight)i\left(rac{D-1}{2}
ight)^{2}$$
 \sqrt{D}

wo $(\frac{a}{D})=0$ gesetzt werden muss, falls a keine relative Primsahl su D ist. In dem Fall $D\equiv 3 \pmod 4$ erhält man daher

$$\Sigma\left(\frac{-D}{n}\right)\frac{1}{n} = \frac{\pi}{4\sqrt{D}}\left(\frac{2}{D}\right)\Sigma(-1)^{\alpha}\left(\frac{\alpha}{D}\right) = \frac{\pi}{2\sqrt{D}}\Sigma\left(\frac{\alpha'}{D}\right)$$

wo α' alle relativen Primzahlen zu D durchläuft, die kleiner als $\frac{1}{2}D$ sind; da endlich $\epsilon=2$ ist, so wird die Anzahl der Classen

$$k = \Sigma \left(\frac{a'}{D}\right)$$

Ist dagegen $D \equiv 1 \pmod{4}$, so erhält man mit Benutzung der Reihe

$$cosec u = \frac{1}{u} - \frac{1}{u - \pi} - \frac{1}{u + \pi} + \frac{1}{u - 2\pi} + \frac{1}{u + 2\pi} - \dots$$

auf ähnliche Weise

$$\Sigma\left(\frac{-D}{n}\right)\frac{1}{n} = \Sigma(-1)^{\frac{n-1}{2}}\left(\frac{n}{D}\right)\frac{1}{n} = \frac{\pi}{2D}\Sigma(-1)^{\frac{\nu-1}{2}}\left(\frac{\nu}{D}\right)\operatorname{cosec}\frac{\nu\pi}{2D} = \frac{\pi}{2D}\Sigma\left(\frac{\mu}{D}\right)\frac{r^{\mu}}{r^{2\mu}+1}$$

wo die Buchstaben v und μ die frühere Bedeutung haben; schliesst man den evidenten Fall D=1 aus und wendet die für jede Wurzel ω der Gleichung $\omega^D=1$ (mit Ausnahme von $\omega=1$) gültige Formel

$$\frac{\omega}{\omega \omega + 1} = 1 + \Sigma \omega^{4\alpha''} + \Sigma \omega^{D-4\alpha''}$$

an, in welcher a'' die Zahlen 1, 2, 3 . . . $\frac{1}{4}(D-1)$ durchlaufen muss, so ergiebt sich, wieder unter der Beschränkung, dass D durch kein Quadrat theilbar ist,

$$\Sigma\left(\frac{-D}{n}\right)\frac{1}{n}=\frac{\pi}{\sqrt{D}}\Sigma\left(\frac{a''}{D}\right)$$

und hieraus, da e = 2 ist,

$$k=2\Sigma(\frac{a''}{D})$$

Ganz ähnlich würden sich die Fälle behandeln lassen, in welchen D gerade ist. -

Was die Bestimmung der Classen-Anzahl für positive Determinanten D betrifft, so finden sich ausser der im Text mitgetheilten Schlussformel nur einzelne geometrische Figuren vor, welche Hyperbel-Sectoren von endlichen Dimensionen darstellen, und neben denselben Ungleichungen, durch welche die Punkte, deren Coordinaten die Variabeln der quadratischen Formen sind, in das Innere eines solchen Hyperbel-Sectors gedrängt werden. Diese Hyperbel-Sectoren treten an die Stelle der Ellipsen, welche den quadratischen Formen von negativen Determinanten entsprechen, und durch die Bestimmung ihres Flächeninhalts ergiebt sich wieder die mittlere Darstellungsanzahl, wenn nämlich nur solche Darstellungen zugelassen werden, bei welchen die Variabeln den eben erwähnten Ungleichungen Genüge leisten. Andererseits dienen diese Ungleichungen dazu, aus den unendlich vielen Darstellungen einer Zahl m, welche alle zu einer und derselben Wurzel n der Congruenz $nn-D\equiv 0\ (\mathrm{mod.}\frac{m}{\mu\ \mu})$ gehören und welche den sämmtlichen Auflösungen der Gleichung tt - Duu = 1 entsprechen (vergl. Disqq. Arithm. art. 205), eine einzige zu isoliren und alle andern auszuschliessen. Die Anzahl aller zugelassenen Darstellungen der Zahl m durch den Complex aller nicht eigentlich äquivalenten formae proprie primitivae ist dann gleich dem Werth der Function f(m), in welcher nur -D durch D zu ersetzen ist, und aus der Betrachtung der Eigenschaften derselben ergiebt sich, wie früher bei negativen Determinanten, ein zweiter Ausdruck für die mittlere Darstellungsanzahl; die Vergleichung desselben mit dem vorher durch geometrische Betrachtungen abgeleiteten Werthe führt dann unmittelbar zu der Bestimmung der Anzahl der Classen.

Zu VIII.

Hier bedeutet p eine positive Primzahl von der Form 4n+1; die Bezeichnung stimmt mit der in der Abhandlung Theoria residuorum biquadraticorum I. art. 23 angewendeten überein; es ist also

$$f \equiv 1 \cdot 2 \cdot 3 \cdot \dots \cdot \frac{1}{4}(p-3) \cdot \frac{1}{4}(p-1) \pmod{p}$$

 $p = aa + bb; \ a \equiv 1 \pmod{4}; \ b \equiv af \pmod{p}$

die mit a, 6 bezeichneten Zahlen sind durch die Zerlegung $p = \alpha \alpha + 266$ bestimmt. Die Columne f ist den beiden vorgefundenen Tabellen hinzugefügt; ausserdem sind einige Lücken in denselben ausgefüllt.

Der im Text aufgestellte Satz hängt mit dem biquadratischen Charakter der Zahl 2 zusammen; da nämlich (vergl. Theoria resid. biqu. I. art. 21)

$$\frac{p-1}{2^{\frac{1}{4}}} \equiv f^{\frac{1}{2}b} \pmod{p}$$

ist, so folgt aus der Congruenz

$$b \equiv 2m + a - 1 \pmod{8}$$

die andere

$$\frac{p-1}{2,\frac{4}{2}} \equiv f^{m} + \frac{a-1}{2} \pmod{p}$$

und umgekehrt jene aus dieser. Der Beweis dieser letztern Congruenz ergiebt sich leicht auf folgende Art. Ist μ die Anzahl der quadratischen Reste a_i , welche zwischen a_i und a_i liegen, so ist (nach VII)

$$m = 2\mu - \frac{1}{4}(p-1)$$

und die Anzahl der quadratischen Reste α_s , welche zwischen p und p liegen, ist = p + p + p. Ist nun $p = 1 \pmod{8}$, also die Zahl 2 quadratischer Rest, so stimmen die Zahlen p = p + p + p im Complex mit den Zahlen p = p + p + p und p = p + p im Complex mit den Zahlen p = p + p und p = p + p im Complex mit den Zahlen p = p + p und p = p + p im Complex mit den Zahlen p = p + p und p = p + p im Complex mit den Zahlen p = p + p und p = p + p im Complex mit den Zahlen p = p + p und p = p + p in p = p + p und p = p + p und p = p + p und p = p + p in p = p + p und p = p un

$$\frac{p-1}{2^{\frac{1}{4}}}A \equiv (-1)^{\frac{1}{4}(p-1)-\mu}A(\text{mod}.p)$$

und folglich

$$\frac{p-1}{2^{\frac{1}{4}}} \equiv (-1)^{\mu} \equiv f^{2\mu} \equiv f^{m+\frac{1}{4}(p-1)} \pmod{p}$$

da ferner in diesem Fall $b \equiv 0 \pmod{4}$, und folglich

$$\frac{p-1}{4} = (a+1)\frac{a-1}{4} + \frac{bb}{4} \equiv 2\frac{a-1}{4} \equiv \frac{a-1}{2} \pmod{4}$$

ist, so erhält man die zu beweisende Congruenz

$$\frac{p-1}{2} \equiv f^{m+\frac{a-1}{2}} \pmod{p}$$

Ist dagegen $p \equiv 5 \pmod{8}$, also die Zahl 2 quadratischer Nichtrest, so stimmen die Zahlen $2\alpha_a$ und $p-2\alpha_a$ mit den sämmtlichen zwischen 0 und $\frac{1}{2}p$ liegenden quadratischen Nichtresten überein; bezeichnet man ihr Product mit B, und das Product der Zahlen α_a und α_a wieder mit A, so ist

$$f \equiv AB$$
, $(-1)^{\frac{p-1}{4}} - \mu \stackrel{p-1}{2^{\frac{1}{4}}} A \equiv B \pmod{p}$

erhebt man diese beiden Congruenzen zum Quadrat, indem man berücksichtigt, dass

$$ff \equiv -1, \quad 2^{\frac{p-1}{2}} \equiv -1 \pmod{p}$$

ist, so erhält man

$$-1 \equiv AABB, -AA \equiv BB$$

und hieraus $A^a \equiv +1$; da nun A ein Product aus quadratischen Resten, also AA ein Product aus biquadratischen Resten und folglich selbst ein biquadratischer Rest ist, so muss $AA \equiv +1$ sein, weil -1 ein biquadratischer Nichtrest ist. Hieraus folgt

$$\frac{p-1}{4} - \mu \quad \frac{p-1}{4} \equiv AB \equiv f(\text{mod. } p)$$

und

$$\frac{p-1}{2} \equiv (-1)^{\mu-1} f \equiv f^{2\mu-1} \equiv f^{\frac{m+p-5}{4}} \pmod{p}$$

da endlich in diesem Fall $b \equiv 2 \pmod{4}$, und folglich

$$\frac{p-5}{4} = (a+1)\frac{a-1}{4} + \frac{bb-4}{4} \equiv 2\frac{a-1}{4} \equiv \frac{a-1}{2} \pmod{4}$$

ist, so erhält man wieder die zu beweisende Congruenz

$$\frac{p-1}{2^{\frac{1}{4}}} \equiv f^{m+\frac{a-1}{2}} \pmod{p}$$

Zu IX.

Es sei p eine positive ungerade durch kein Quadrat theilbare Zahl, und

$$S_{r} = \Sigma \left(\frac{s_{r}}{p}\right)$$

wo s_r alle relativen Primzahlen zu p durchlaufen muss, welche zwischen $(r-1)\frac{p}{8}$ und $r\frac{p}{8}$ liegen; bezeichnet man die Anzahlen der nicht eigentlich äquivalenten fermae proprie primitivae für die Determinanten -p und -2p resp. mit C_i und C_s , so ist (vergl. Direction Recherches sur diverses applications etc. §. 11 in Czelle's Journal XXI)

$$C_4 = 2(S_4 + S_5), \quad C_5 = 2(S_4 - S_4)$$

oder

$$C_1 = S_1 + S_2 + S_3 + S_4$$
, $C_3 = 2(S_3 + S_3)$

je nachdem $p \equiv 1$ oder $\equiv 3 \pmod{4}$ ist. Bedenkt man ferner, dass die Zahlen s_4 und s_5 im Complex mit den Zahlen $2s_4$ und $p-2s_4$, und ebenso die Zahlen s_5 und s_4 im Complex mit den Zahlen $2s_5$ und $p-2s_5$ übereinstimmen, und dass im Falle $p \equiv 1 \pmod{4}$ die Summe $s_1 + s_2 + s_5 + s_4 = 0$ ist, so ergeben sich in beiden Fällen noch zwei neue Relationen zwischen den vier Summen s_4 , s_5 , s_5 , s_5 , s_6 , so dass jede derselben durch s_6 und s_6 ausgedrückt werden kann. Man erhält auf diese Weise, wenn $s_6 \equiv 1 \pmod{4}$ ist,

$$S_{4} = S_{6} = \frac{1}{2} \left(\frac{2}{p}\right) C_{4} + \frac{1}{2} C_{5}$$

$$S_{5} = S_{7} = \frac{1}{2} \left(2 - \left(\frac{2}{p}\right)\right) C_{4} - \frac{1}{2} C_{5}$$

$$S_{5} = S_{6} = -\frac{1}{2} \left(2 + \left(\frac{2}{p}\right)\right) C_{4} + \frac{1}{2} C_{5}$$

$$S_{6} = S_{5} = \frac{1}{2} \left(\frac{2}{p}\right) C_{4} - \frac{1}{2} C_{5}$$

und, wenn $p \equiv 3 \pmod{4}$ ist

$$S_{1} = -S_{3} = \frac{1}{2} \left(3 + \left(\frac{2}{p} \right) \right) C_{1} - \frac{1}{2} C_{3}$$

$$S_{3} = -S_{7} = -\frac{1}{2} \left(1 - \left(\frac{2}{p} \right) \right) C_{1} + \frac{1}{2} C_{3}$$

$$S_{3} = -S_{4} = \frac{1}{2} \left(1 - \left(\frac{2}{p} \right) \right) C_{1} + \frac{1}{2} C_{3}$$

$$S_{4} = -S_{5} = \frac{1}{2} \left(1 - \left(\frac{2}{p} \right) \right) C_{1} - \frac{1}{2} C_{2}$$

Ist p eine Primzahl, so findet man hieraus unmittelbar die im Text angegebenen Formeln für die Anzahl der quadratischen Reste, welche in den einzelnen Octanten enthalten sind.

Zu X.

Es sei p eine positive und durch kein Quadrat theilbare Zahl von der Form $6n \pm 1$, und

$$S_r = \Sigma(\frac{s_r}{p})$$

wo s, alle relativen Primzahlen su p durchlaufen muss, welche swischen $(r-1)\frac{p}{12}$ und $r\frac{p}{12}$ liegen; beseichnet man die Anzahlen der nicht eigentlich äquivalenten formae proprie primitivae für die Determinanten -p und -3p mit C_4 , C_3 , so findet man leicht (vergl. Dirichler Recherches etc. §. 11 oder die Note zu VI und VII)

$$C_{\bullet} = 2(S_{\bullet} + S_{\bullet} + S_{\bullet}), \quad C_{\bullet} = 2(S_{\bullet} + S_{\bullet} - S_{\bullet} - S_{\bullet})$$

oder

$$C_1 = S_1 + S_2 + S_3 + S_4 + S_5 + S_6$$
, $C_2 = 2(S_2 + S_3 + S_4 + S_5)$

je nachdem p ≡ 1 oder ≡ 3 (mod. 4) ist. Berücksichtigt man ferner, dass

die Zahlen s_1 und s_2 mit den Zahlen $2s_1$ und $p-2s_2$,, ,, s_3 und s_4 ,, ,, ,, $2s_3$ und $p-2s_4$,, ,, s_5 und s_6 ,, ,, ,, $2s_5$ und $p-2s_4$

und ebenso

die Zahlen
$$s_4$$
, s_5 , s_8 mit den Zahlen $3s_4$, $3s_8 - p$, $p - 3s_8$, s_8 ,

übereinstimmen, und dass im Falle $p \equiv 1 \pmod{4}$ die Summe $S_1 + S_3 + S_4 + S_5 + S_4 + S_5 + S_6 = 0$ ist, so erhält man ausser den beiden obigen noch vier neue Relationen zwischen den sechs Summen $S_4, S_5, \ldots S_6$, so dass dieselben sämmtlich aus C_4 und C_5 bestimmt werden können. Man erhält auf diese Weise, wenn $p \equiv 1 \pmod{4}$ ist,

$$S_{1} = S_{13} = \frac{1}{2} \left(1 + \left(\frac{3}{p} \right) \right) C_{1} + \frac{1}{12} \left(1 + \left(\frac{2}{p} \right) \right) C_{2}$$

$$S_{2} = S_{11} = -\frac{1}{2} \left(1 + \left(\frac{3}{p} \right) \right) C_{1} + \frac{1}{12} \left(1 + \left(\frac{2}{p} \right) \right) C_{2}$$

$$S_{2} = S_{10} = \frac{1}{2} C_{1} - \frac{1}{2} \left(1 + \left(\frac{2}{p} \right) \right) C_{2}$$

$$S_{4} = S_{0} = -\frac{1}{2} C_{1} - \frac{1}{2} \left(2 - \left(\frac{2}{p} \right) \right) C_{2}$$

$$S_{5} = S_{3} = \frac{1}{2} \left(1 + \left(\frac{3}{p} \right) \right) C_{1} - \frac{1}{12} \left(5 - \left(\frac{2}{p} \right) \right) C_{2}$$

$$S_{6} = S_{7} = -\frac{1}{2} \left(1 + \left(\frac{3}{p} \right) \right) C_{1} + \frac{1}{12} \left(1 + \left(\frac{2}{p} \right) \right) C_{2}$$

und, wenn $p \equiv 3 \pmod{4}$ ist.

$$S_{1} = -S_{13} = \frac{1}{13} \left(9 + 3\left(\frac{2}{p}\right) - \left(\frac{3}{p}\right) + \left(\frac{6}{p}\right)\right) C_{1} - \frac{1}{2} C_{2}$$

$$S_{2} = -S_{14} = \frac{1}{4} \left(-1 + \left(\frac{2}{p}\right) + \left(\frac{3}{p}\right) - \left(\frac{6}{p}\right)\right) C_{1} + \frac{1}{4} C_{2}$$

$$S_{3} = -S_{10} = \frac{1}{4} \left(-\left(\frac{3}{p}\right) + \left(\frac{6}{p}\right)\right) C_{4}$$

$$S_{4} = -S_{9} = \frac{1}{4} \left(3 - 2\left(\frac{3}{p}\right) - \left(\frac{6}{p}\right)\right) C_{4}$$

$$S_{5} = -S_{6} = \frac{1}{4} \left(-1 - \left(\frac{2}{p}\right) + \left(\frac{3}{p}\right) + \left(\frac{6}{p}\right)\right) C_{4} + \frac{1}{4} C_{4}$$

$$S_{9} = -S_{7} = \frac{1}{4} \left(3 - 3\left(\frac{2}{p}\right) + \left(\frac{3}{p}\right) - \left(\frac{6}{p}\right)\right) C_{4} - \frac{1}{4} C_{8}$$

Ist p eine Primzahl, so findet man aus dem ersten System die im Text angegebenen Formeln; für die andern Fälle erhält man ähnliche Formeln aus dem zweiten System.

R. DEDEKIND.

GEOMETRISCHE SEITE DER TERNÄREN FORMEN.

Ein Punkt im Raume (0) sei als Anfangspunkt angenommen. Der Uebergang von da zu drei andern Punkten P, P', P'', die mit jenem nicht in einer Ebene liegen, sei resp. t, t', t''; wo, so oft keine Verwechslung möglich ist, die Punkte P, P', P'' selbst durch (t), (t'), (t'') bezeichnet werden mögen.

Es sei ferner allgemein (t, t') das Product der Länge der beiden Linien t, t' in den Cosinus ihrer Neigung etc.

Man hat allgemein $(\alpha t + \alpha' t' + \alpha'' t'' + \dots \quad 6u + 6'u' + 6''u'' + \dots)$ wenn man die Multiplication

$$(\alpha t + \alpha' t' + \alpha'' t'' + \ldots) \times (\beta u + \beta' u' + \beta'' u'' + \ldots)$$

ausführt und statt tu, tu', tu'', t'u', t'u''. u.s. w. (t,u), (t,u'), (t,u'), (t',u'), (t',u'') u.s.w. schreibt.

Jeder Punkt im Raume wird durch ein Trinomium

$$(xt+x't'+x''t'')$$

dargestellt werden können.

Für alle Punkte, die in einer bestimmten Ebene liegen, wird dann eine Gleichung

$$\lambda x + \lambda' x' + \lambda'' x'' = L$$

II.

statt finden, wo λ , λ' , λ'' , L bestimmte Zahlen bedeuten. Für eine Ebene durch die drei Punkte μt , $\mu' t'$, $\mu'' t''$ ist

$$\lambda \mu = \lambda' \mu' = \lambda'' \mu'' = L$$

Schreibt man

$$(t,t)=a,\ (t',t')=a',\ (t'',t'')=a'',\ (t',t'')=b',\ (t,t'')=b''$$

und

$$a'a'' - bb = A$$
, $aa'' - b'b' = A'$, $aa' - b''b'' = A''$
 $b'b'' - ab = B$, $bb'' - a'b' = B'$, $bb' - a''b'' = B''$
 $D = aa'a'' + 2bb'b'' - abb - a'b'b' - a''b''b''$

so ist

$$T = At + B''t' + B't''$$
 senkrecht gegen t' und t''
 $T' = B''t + A't' + Bt''$
 t''
 t''
 t''

und allgemein, wenn

$$\lambda x + \lambda' x' + \lambda'' x'' = L$$

die Gleichung einer Ebene ist, so wird die Linie

$$\lambda T + \lambda' T' + \lambda'' T''$$

gegen dieselbe senkrecht sein.

Es ist dann ferner

$$a T + b'' T' + b' T'' = Dt$$

 $b'' T + a' T' + b T'' = Dt'$
 $b' T + b T' + a'' T'' = Dt''$

und die Linien t, t', t" sind senkrecht gegen die Ebenen, deren Gleichungen

$$ax + b''x' + b'x'' = \text{Const}$$

 $b''x + a'x' + bx'' = \text{Const}$
 $b'x + bx' + a''x'' = \text{Const}$

Der doppelte Flächeninhalt des Dreiecks durch die Punkte mt, m't', m''t'' ist aequal der Quadratwurzel aus dem Werthe der Form

$$F \ldots \begin{pmatrix} A, A', A'' \\ B, B', B'' \end{pmatrix}$$

wenn substituirt wird X = m'm'', X' = mm'', X'' = mm', während der sechsfache Cubikinhalt der Pyramide, die sich dadurch mit dem 0 Punkte bildet, $= mm'm'' \lor D$ wird, folglich ist das Perpendikel

$$= \sqrt{\frac{D}{F(\frac{1}{m'}, \frac{1}{m'}, \frac{1}{m''})}}$$

T, T', T'' beziehen sich ebenso auf die Form $\begin{pmatrix} AD, A'D, A''D \\ BD, B'D, B''D \end{pmatrix}$ wie t, t', t'' auf $\begin{pmatrix} a, a', a'' \\ b, b', b'' \end{pmatrix}$

Die drei Wurzeln der Gleichung

$$0 = p^{3} - pp(a + a' + a'') + p(A + A' + A'') - D$$

stellen die Quadrate der drei Hauptaxen eines in dasjenige Parallelepipedum einbeschriebenen Ellipsoids vor, auf welches sich die ternäre positive Form

$$\binom{a, a', a''}{b, b', b''}$$
 mit Adjuncte $\binom{A, A', A''}{B, B', B''}$ und Determ. $= -D$

bezieht.

Beziehung der Raumverhältnisse auf ein gegebenes Tetraeder.

Es seien (0), (1), (2), (3) die vier Ecken, gegenüberstehenden Flächen und Perpendikel. Es kommen dann jedem Punkte des Raums P gegen einen beliebigen Anfangspunkt M vier Coordinaten zu x, x', x'', x''', unter welchen aber die Relation

$$x + x' + x'' + x''' = 0$$

Statt findet. Es bedeutet nemlich x den Quotienten, wenn man die Distanz des 39*

Punktes P von einer durch M mit dem Planum (0) parallel gelegten Ebene mit dem Perpendikel (0) dividirt u. s. f.

Allgemein ist dann

$$-(PM)^2 = xx'(01)^2 + xx''(02)^2 + xx'''(03)^2 + x'x''(12)^2 + x'x'''(13)^2 + x''x'''(23)^2$$

Das Grundgesetz der Crystallisation lässt sich am kürzesten so aussprechen: Zwischen je fünf Ebenen, welche dabei vorkommen, gibt es folgende Relation:

Sind ihre Normalen auf der Kugelfläche (0), (1), (2), (3), (4), so sind allezeit die Producte sin 102. sin 304, sin 103. sin 204, sin 203. sin 104 in einem rationalen Verhältnisse; ist dies wie α : 6: γ , so ist $\delta = \alpha + \gamma$.

Sind die Coordinaten der 5 Punkte auf der Kugelfläche

in rationalem Verhältnisse stehen.

Allgemein seien 1, 2, 3, 4, 5 die 5 Punkte auf der Kugelfläche, 0 der Mittelpunkt; dann stehen, wenn 12 den körperlichen Inhalt des Tetraeders 0345 bedeutet

ebenso

Transformationen der Form $\begin{pmatrix} 5, & 5, & 5 \\ -1, & -1, & -1 \end{pmatrix}$ Det. = 108

Setzt man die ursprüngliche Form allgemein $\begin{pmatrix} t, & t, & t \\ u, & u, & u \end{pmatrix}$

und eine abgeleitete

$$\begin{pmatrix} T, & T, & T \\ U, & U, & U \end{pmatrix}$$

so ist

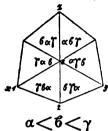
1,
$$T = 3t - 2u$$
 $U = -t + 2u$
2, $T = 2t + 2u$ $U = t + 3u$
3, $T = 6t + 10u$ $U = 5t + 11u$
4, $T = 9t + 16u$ $U = 8t + 17u$

Die Form $\begin{pmatrix} 1, 3, k \\ 0, 0, 0 \end{pmatrix}$ geht durch die Substitution

$$x = u + u' - 2u''$$
 umgekehrt $6u = x + 3y + 2z$
 $y = u - u'$ $6u' = x - 3y + 2z$
 $z = u + u' + u''$ $6u'' = -2x + 2z$
 $x \equiv z \pmod{3}, \quad x \equiv y \pmod{2}$

über in $\binom{4+k}{k-2}, \frac{4+k}{k-2}, \frac{4+k}{k-2}$

Um den Kalkspath zu produciren ist k = 0.973103 zu setzen.


Hind die complexen Werthe der orthographischen Projection von drei gleich langen und unter einander senkrechten Graden a, b, c, so ist aa+bb+cc=0, allgemein kann man setzen, p und q beliebige complexe Zahlen bedeutend

$$a = (p-q)(q-pii), b = (q-qi)(pii-pi), c = (qi-p)(pi-q)$$

Hexakisoctaeder.

Gleichung: px + qy + rs = 1

2.
$$\frac{1}{6+\gamma}$$

$$\frac{1}{6+\gamma}$$
 0

3.
$$\frac{1}{\alpha+6+7}$$
 $\frac{1}{\alpha+6+7}$ $\frac{1}{\alpha+6+7}$

Sechsfacher Inhalt einer Elementarpyramide
$$=\frac{1}{7 \cdot (6+7)(\alpha+6+7)}$$

Alle [Flächen] sind um eine Kugel beschrieben, deren Halbmesser
$$=\frac{1}{\sqrt{(\alpha\alpha+66+\eta\gamma)}}$$

Doppelte Fläche eines Dreiecks
$$=\frac{\sqrt{(\alpha\alpha+66+\gamma\gamma)}}{\gamma(6+\gamma)(\alpha+6+\gamma)}$$

Kante 1.2 =
$$\frac{\sqrt{(66+\gamma\gamma)}}{\gamma(6+\gamma)}$$
, 1.3 = $\frac{\sqrt{((\alpha+6)^2+2\gamma\gamma)}}{\gamma(\alpha+6+\gamma)}$, 2.3 = $\frac{\sqrt{(2\alpha\alpha+(6+\gamma)^2)}}{(6+\gamma)(\alpha+6+\gamma)}$

Cosinus Kanten Winkel
$$3.1.2 = \frac{\alpha 6 + 66 + \gamma \gamma}{\sqrt{(66 + \gamma \gamma)((\alpha + 6)^2 + 2\gamma \gamma)}}$$

Sinus
$$= \frac{\gamma \cdot \sqrt{(\alpha \alpha + 66 + \gamma \gamma)}}{\sqrt{(66 + \gamma \gamma)((\alpha + 6)^2 + 2\gamma \gamma)}}$$

Vorkommende Werthe.

		•	
7.	0. 0.	1	Hexaeder

абү

BEMERKUNGEN.

Neben den vorstehenden Notisen, welche die in der Anzeige von Seeren's Untersuchungen der ternären Formen gegebenen Gesichtspunkte theilweise weiter entwickeln, sind in der Handschrift mehre eigne mit einem achtzölligen Reichembach'schen Theodolithen ausgeführte Crystallmessungen aufgezeichnet. Die einzelnen Protokolle enthalten das jedesmalige Datum der Beobachtung, woraus zu ersehen ist, dass diese Untersuchung dem Monat Juli 1831 angehört.

Aus der Theorie der indifferenten ternären quadratischen Formen findet sich im handschriftlichen Nachlass nur der folgende, wahrscheinlich in der Zeit der Ausarbeitung der Disqu. Arr. aufgezeichnete Lehrsatz

'Omnes transformationes formae ternariae

$$\binom{1, 1, -1}{0, 0, 0}$$

in se ipsam exhibentur per formulam

accept is α , δ , γ , δ it aut fiat $\alpha\delta - \delta\gamma = 1$.

Es entstehen nemlich alle Transformationen, in denen die neun Coëfficienten ganze Zahlen sind, wenn für α , δ , γ , δ sowohl alle die der Bedingungsgleichung genügenden ganzen Zahlen und zwar zwei gerade und zwei ungerade gesetzt werden, als auch alle die ungeraden Vielfache von $\sqrt{4}$, welche dieselbe Bedingungsgleichung $\alpha\delta - \delta\gamma = 1$ erfüllen.

Zu Seite 309. Chaux carbonatée équiaxe, inverse, contrastante und mixte sind die von Haur (Traité de Minéralogie 1801 Tome II pag. 132, 137) gebrauchten Benennungen.

Die Tafel der Transformationen der Form $\binom{5,\ 5,\ 5}{1,\ 1,\ 1}$ enthält in der ersten Verticalreihe die Coëfficienten der Substitution, in der sweiten die dadurch entstandene neue Form, in der dritten die der letztern Form entsprechende primitive, wenn diese nicht selbst schon eine solche ist, und in der vierten deren Adjuncta.

SCHURDIG.

ZUR THEORIE DER BIQUADRATISCHEN RESTE.

[I.]

1.

Wir erweitern das Gebiet der höhern Arithmetik, indem wir darin auch die imaginären Grössen aufnehmen. Bei der gegenwärtigen Untersuchung nennen wir eine ganze imaginäre Zahl jede Grösse x+iy, wenn x, y reelle ganze Zahlen sind.

2.

Die unendliche Anzahl imaginärer ganzer Zahlen lässt sich am bequemsten durch Punkte in einer unbegrenzten Ebene sinnlich darstellen; wir nennen schlechthin denjenigen Punkt, dessen Abscisse x, die Ordinate y ist, den Punkt x+iy, alle Punkte, die ganze Zahlen vorstellen, sollen Ganzepunkte heissen.

3.

Um etwas bestimmtes festzusetzen, sollen die Abscissen immer auf der linken Seite positiv, die Ordinaten oben positiv sein.

4.

Die gerade Linie von dem Punkte x+iy zu dem Punkte x'+iy' gezogen soll schlechtweg die gerade Linie (x+iy, x'+iy') heissen, wir nehmen dabei zugleich, insofern es darauf ankommt, auf die Richtung Rücksicht und unterscheiden also die gerade Linie x+iy, x'+iy' von der x'+iy', x+iy.

40

II.

5.

Der Kürze wegen wollen wir imaginäre Grössen wie x+iy auch durch einen einzigen Buchstaben bezeichnen, wie z.

6.

Die Figur, welche durch die geraden Linien $zz', z'z'', z''z''' \dots z^{n-1}z^n, z^nz$ begrenzt wird, nennen wir schlechtweg die Figur $zz'z''z''' \dots z^n$. Wir schliessen dabei den Fall nicht aus, wo etwa einige dieser Linien einander schneiden.

7

Durch $S(z, z', z'', \ldots z^n)$ bezeichnen wir allgemein die Summe von so vielen reellen ganzen Zahlen, als Ganzepunkte innerhalb der Figur liegen, indem wir für jeden Punkt, um den die Grenzlinie der Figur einmal, zweimal, dreimal u.s.w. herumgeht, die Zahl ± 1 , ± 2 , ± 3 etc. setzen; die obern Zeichen gelten, wenn die Grenzlinie den Punkt so umgibt, dass dieser auf der rechten Seite der Figur liegt, die untern im entgegengesetzten Fall. Schneiden sich also keine Seiten der Figur, so ist $S(z,z',z'',\ldots)$ schlechthin die Anzahl der Punkte innerhalb der Figur, positiv oder negativ genommen.

8.

Offenbar ist immer

$$S(z, z', z'' \dots z^n) = S(z', z'', z''' \dots z^n, z) = S(z'', z''' \dots z')$$
 etc.
= $-S(z^n, z^{n-1} \dots z'', z', z) = -S(z^{n-1}, z^{n-2} \dots z', z, z^n)$ etc.

9

Wie es hiebei mit den auf der Grenzlinie selbst liegenden Punkten gehalten werden soll, muss noch näher bestimmt werden. Es gibt viele Fälle, wo auf der Grenzlinie gar keine ganze Punkte liegen können: dann ist keine Bestimmung nöthig. Liegen aber auf der Grenzlinie zz' solche Punkte, so zeigen wir durch ein zwischen z und z' eingeschobenes + an, dass diese Punkte so betrachtet werden sollen, als lägen sie rechts von der Grenzlinie, so wie durch ein —, als lägen sie links. Auch werden wir wol ein 0 oder ‡ einschieben, wodurch angedeutet werden soll, dass sie gar nicht oder nur mit dem halben Werthe auf je-

der Seite in Betracht gezogen werden sollen. Falls einer oder der andere der Punkte z, z', z'' etc. selbst ein Ganzepunkt, so wird er, wo nicht ausdrücklich das Gegentheil gesagt wird, gar nicht mitgezählt, als insofern er zugleich etwa als Nicht-Eckpunkt auch in Betracht kommt.

10.

Lehrsätze. Wenn alle z, z', z'' etc. um eine und dieselbe Ganzezahl vermehrt werden, so bleibt das S ungeändert.

Wenn i in — i und jedes Bindezeichen ins entgegengesetzte verwandelt wird, so ändert S bloss das Zeichen.

$$S(z,z',z''\ldots z^n) = S(z,u,u'\ldots u^n,z',z'',z^n) - S(z,u,u'\ldots u^n,z') = S(z,u,u',u''\ldots u^n,z^m,z^{m+1}\ldots z^n) - S(z,u,u',u''\ldots u^n,z^m,z^{m-1}\ldots z',z)$$

wo die Bindezeichen correspondiren müssen, aber zwischen den rückwärts laufenden Gliedern entgegengesetzt werden.

Ist ζ eine ganze Zahl = a + bi, so ist, wenn die gegenüberliegenden Bindezeichen entgegengesetzt,

$$S(z, z', z' + \zeta, z + \zeta) = [bx' - ay'] - [bx - ay]$$

Hiebei ist zu bemerken, dass wenn bx'-ay' selbst eine ganze Zahl ist, diese für [bx'-ay'] angenommen werde, wenn das Bindezeichen zwischen z' und $z'+\zeta$ + ist, hingegen 1 oder $\frac{1}{2}$ weniger, wenn dieses Bindezeichen — oder $\frac{1}{2}$ ist; bei bx-ay gilt das Umgekehrte.

Uebrigens gilt die Formel nur für den Fall, wo a und b keinen gemeinschaftlichen Divisor haben; ist ihr grösster gemeinschaftlicher Theiler = h, so hat man dafür zu nehmen

$$h\left[\frac{b\,x'-a\,y'}{h}\right]-h\left[\frac{b\,x-a\,y}{h}\right]$$

11

Wenden wir uns nun näher zu unserm Gegenstande selbst. Wenn für den Modulus m = a + bi die Zahlen f, f', f'' etc. so beschaffen sind, dass sie erstlich alle nach dem Modulus m unter sich incongruent sind, zweitens aber jede ganze Zahl einer von ihnen nothwendig congruent sein muss, so nennen wir den

Inbegriff der Zahlen f, f', f'' etc. das System der Primitivreste von m. Ihre Anzahl ist immer = aa + bb.

12.

Man kann das System der Primitivreste auf vielfache Art bilden; die einfachste ist, die Punkte innerhalb des Quadrats 0, m, (1+i)m, im zu wählen; dazu müssen aber noch hinzugefügt werden

- I. der Punkt oder die Grösse 0
- II. alle Punkte auf zwei einander nicht gegenüberliegenden Grenzlinien.

Anstatt auf einer der 4 Grenzlinien alle Punkte zu nehmen, kann man sie auch auf mehren zugleich nehmen.

Diese Auswahl dieser Punkte auf den Grenzlinien, falls welche darauf fallen, kann auf mehrfache Art geschehen, so dass obigen Bedingungen Genüge geschieht. Am einfachsten ist die folgende Manier.

Man nehme auf der Grenzlinie 0, m alle Punkte zwischen 0 und ‡m inclusund auf der Grenzlinie 0, im alle Punkte von ‡im bis im exclusive und auf ähnliche Art bei den beiden andern.

Man kann diese beiden Manieren so sinnlich darstellen

13.

Schliesst man von den Primitivpunkten aus

- I. Bloss den Punkt 0, wenn a gerade und b ungerade oder umgekehrt.
- II. Die Punkte 0 und $\frac{1}{2}(1+i)m$, wenn a und b beide ungerade.
- III. Die vier Punkte $0, \frac{1}{2}m, \frac{1}{2}(1+i)m, \frac{1}{2}im$, wenn a und b beide gerade, so nennen wir die übrigbleibenden eigentliche Primitivpunkte, die ausgeschlossenen uneigentliche. Die Anzahl von jenen ist also

in Fall I =
$$aa+bb-1$$

II = $aa+bb-2$
III = $aa+bb-4$

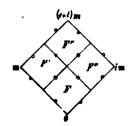
also immer durch 4 theilbar.

14

Diese eigentlichen Primitivpunkte lassen sich in 4 Classen F, F', F'', F''' theilen, so dass

$$iF \equiv F'$$
 $iF' \equiv F''$ $iF'' \equiv F'''$ $iF''' \equiv F$
 $-F \equiv F''$ $-F' \equiv F'''$ $-F'' \equiv F'$
 $-iF \equiv F'''$ $-iF' \equiv F$ $-iF'' \equiv F''$

Hiebei findet nun folgendes höchst wichtige Theorem statt.


Es sei M eine Zahl, welche mit m keinen Factor gemein hat. Von den Zahlen MF gehören in die Classe F eine Anzahl von n

F'	n'
F''	n"
F‴	n'''

und der kleinste Rest von n'+2n''+3n'' nach dem Modulus 4 sei =N, also N einer der 4 Zahlen 0, 1, 2, 3 gleich: unter dieser Voraussetzung ist N unabhängig von der Art der Vertheilung der Primitivreste in Classen. Wir nennen ihn den Decident des biquadratischen Verhältnisses der Zahl M zu m.

15.

Die einfachste Art der Vertheilung ist allerdings folgende

Inzwischen kann in speciellen Fällen eine andere Vertheilung vortheilhafter sein.

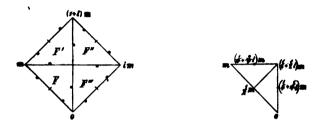
16.

Sind f, f', f'' etc. die sämmtlichen Primitivreste des Modulus m, so ist

$$S(z + \frac{f}{m}, z' + \frac{f}{m}, z'' + \frac{f}{m}, \text{ etc.})$$

$$+ S(z + \frac{f'}{m}, z' + \frac{f'}{m}, z'' + \frac{f'}{m}, \text{ etc.})$$

$$+ S(z + \frac{f''}{m}, z' + \frac{f''}{m}, z'' + \frac{f''}{m}, \text{ etc.})$$


$$+ \text{ etc.}$$

$$= S(mz, mz', mz'', \text{ etc.})$$

17.

Theorie des biquadratischen Restes 1+i.

Der Modulus soll mit dem Reste keinen Theiler gemein haben, wir nehmen also an, dass von den Zahlen a und b die eine gerade, die andere ungerade sei. Die Vertheilung der eigentlichen Primitivreste in die vier Classen stellt folgendes Schema vor

Zu n sind zu rechnen alle Zahlen auf

$$\text{der Linie } 0 \dots \underline{4}m \qquad \qquad \text{Anzahl } = g$$

Zu n' alle Zahlen auf

der Linie
$$0 \dots (1+1)m$$
 Anzahl $= g'$

Zu n" alle Zahlen innerhalb

des Dreiecks
$$\frac{1}{2}m$$
, m , $(\frac{1}{4} + \frac{1}{2}i)m$ Anzahl = h

Zu n''' alle Zahlen innerhalb

des Dreiecks
$$0, \pm m, (\pm + \pm i)m$$
 Anzahl $= h'$

und ausserdem alle Zahlen auf

der Linie
$$(\frac{1}{4} + \frac{1}{4}i)m \cdot (\frac{1}{4} + \frac{1}{4}i)m$$
 Anzahl = g''

Man hat immer g'+g''=g, aa+bb=p, $\frac{1}{2}(p-1)=g+g'+g''+h+h'$ Der Decident ist also

$$D = S(0_{(+)}, \frac{1}{2}m, (\frac{1}{2} + \frac{1}{2}i)m_{(-)}) + \frac{1}{2}(p-1) + 2g''$$

Man nehme nun an, dass für den Modulus m+1+i

so hat man

$$\begin{array}{l} \Delta S(0_{(+)}, \frac{1}{2}m, (\frac{1}{2} + \frac{1}{2}i)m_{(-)}) \\ = + S(0_{(+)}, (\frac{1}{2} + \frac{1}{2}i)m, (\frac{1}{2} + \frac{1}{2}i)m + i_{(-)}) \\ - S(0_{(+)}, \frac{1}{2}m, \frac{1}{2}m + \frac{1}{2} + \frac{1}{2}i_{(-)}) \\ - S(\frac{1}{2}m, (\frac{1}{2} + \frac{1}{2}i)m, (\frac{1}{2} + \frac{1}{2}i)m + i, \frac{1}{2}m + \frac{1}{2} + \frac{1}{2}i) \end{array}$$

Das letzte dieser S ist

$$= [\frac{1}{2}(a-b)] - [\frac{1}{2}a] - S((\frac{1}{2}+\frac{1}{2}i)m, \frac{1}{2}m, \frac{1}{2}m + \frac{1}{2}-\frac{1}{2}i)$$

wenn a ungerade oder gerade

$$= [\frac{1}{2}(a-b)] - [\frac{1}{2}a] - S(-\frac{1}{2} + \frac{1}{2}i, \frac{1}{2}m - \frac{1}{2} + \frac{1}{2}i, \frac{1}{2}m + i)$$

$$= [\frac{1}{2}(a-b)] - [\frac{1}{2}a] + S(0_{(+)}, \frac{1}{2}m, \frac{1}{2}m + \frac{1}{2} + \frac{1}{2}i_{(-)})$$

$$- S(0_{(+)}, (\frac{1}{2} + \frac{1}{2}i)m, (\frac{1}{2} + \frac{1}{2}i)m + i_{(-)})$$

Also

$$\Delta D = -\left[\frac{1}{4}(a-b)\right] + \left[\frac{1}{4}a\right] + 2S(0_{(+)}, (\frac{1}{4} + \frac{1}{4}i)m, (\frac{1}{4} + \frac{1}{4}i)m + i_{(-)}) + a + b + 1 \\ -2S(0_{(+)}, \frac{1}{4}m, \frac{1}{4}m + \frac{1}{4} + \frac{1}{4}i_{(-)}) - 2g'' + 2G''$$

Die Bindezeichen gelten alle für den Fall, wo a-b positiv ist, sonst nimmt man die entgegengesetzten.

Wir zerlegen ferner
$$S(0_{(+)}, (\frac{1}{4} + \frac{1}{4}i)m, (\frac{1}{4} + \frac{1}{4}i)m + i_{(-)})$$
 in
$$S(0_{(+)}, (\frac{1}{4} + \frac{1}{4}i)m, (\frac{1}{4} + \frac{1}{4}m) + \frac{1}{4}i_{(-)}) + [\frac{1}{4}(a - b)] - [\frac{1}{4}(a - b)] - [\frac{1}{4}(a - b)] - S((\frac{1}{4} + \frac{1}{4}i)m, (\frac{1}{4} + \frac{1}{4}i)m - \frac{1}{4}i_{(-)})$$

Der letzte Theil

$$= -S(\frac{1}{2} + \frac{1}{2}i_{(-)}, (-\frac{1}{4} - \frac{1}{4}i)m + \frac{1}{2} + \frac{1}{2}i, (-\frac{1}{4} - \frac{1}{4}i)m + \frac{1}{2}(+))$$

$$= -S(-\frac{1}{2} - \frac{1}{2}i_{(-)}, (\frac{1}{4} + \frac{1}{4}i)m - \frac{1}{2} - \frac{1}{2}i, (\frac{1}{4} + \frac{1}{4}i)m - \frac{1}{2}(+))$$

$$= -S(-\frac{1}{2} - \frac{1}{2}i_{(+)}, (\frac{1}{4} + \frac{1}{4}i)m - \frac{1}{2} - \frac{1}{2}i, (\frac{1}{4} + \frac{1}{4}i)m - \frac{1}{2}(-)) + g'' - G''$$

$$= S(0_{(+)}, (\frac{1}{4} + \frac{1}{4}i)m, (\frac{1}{4} + \frac{1}{4}i)m + \frac{1}{2}i_{(-)})$$

$$-S(0_{(+)}, \frac{1}{2}m, \frac{1}{2}m + \frac{1}{4} + \frac{1}{2}i_{(-)}) + g'' - G''$$

Dadurch wird also

$$\Delta D = + \left[\frac{1}{2}(a-b)\right] + \left[\frac{1}{2}a\right] - 4S(-\frac{1}{2} - \frac{1}{2}i_{(+)}, \frac{1}{2} + \frac{1}{2}im - \frac{1}{2} - \frac{1}{2}i, (\frac{1}{2} + \frac{1}{2}i)m - \frac{1}{2}(-)\right) - 2\left[\frac{1}{2}(a-b)\right] + a + b + 1$$

Für den Fall der Vermehrung des Modulus um 1-i, -1+i, -1-i ist keine besondere Untersuchung nöthig, weil offenbar die Moduli m, im, -m, -im gleiche Decidenten haben. Wir haben also folgende Lehrsätze:

Ist der Decident des Modulus a+bi, = D, so sind die Decidenten von

Hieraus ferner

Das Resultat der vorhergehenden Untersuchungen ist also folgendes:

Für den Modulus m = a + bi, wo a ungerade, b gerade, wird

$$D^{\frac{1+i}{m}} = \frac{1}{8}(-aa + 2ab + bb - 8b + 1) \text{ (und wenn } a + bi = 1 + (2 + 2i)(a + bi))}$$

$$oder \frac{1}{8}(-aa + 2ab - 3bb + 1) \equiv -(a - b)^{2} - b$$

$$D^{\frac{1-i}{m}} = \frac{1}{8}(+aa + 2ab - bb - 8b - 1) \text{ oder } \frac{1}{8}(+aa + 2ab + 3bb - 1)$$

$$D^{\frac{-1-i}{m}} = \frac{1}{8}(-aa + 2ab + bb + 1) = b + aa + 2ab - bb = b + (a + b)^{2}$$

$$D^{\frac{-1+i}{m}} = \frac{1}{8}(+aa + 2ab - bb - 1) = a + aa - 2ab - bb \equiv -a - (a + b)^{2}$$

$$D^{\frac{i}{m}} = \frac{1}{8}ab$$

$$D^{\frac{i}{m}} = \frac{1}{8}(aa + bb - 1)$$

$$D^{\frac{-1}{m}} = \frac{1}{8}(aa + bb - 1)$$

Allgemeines Theorem über die Decidenten.

Es seien A, B, C etc. ungleiche (unger. imag.) Primzahlen, deren keine die Zahl M misst: alsdann ist

$$D\frac{M}{A^aB^0C^{\gamma}D^b} = aD\frac{M}{A} + 6D\frac{M}{B} + \gamma D\frac{M}{C} + \text{etc.}$$

$$M^{\frac{1}{4}(aa+bb-1)} \equiv i^{\frac{D}{A+bi}} \pmod{(a+bi)} \text{ wenn } a+bi \text{ eine Primzahl}$$

$$D\frac{1+i}{m} = \frac{1}{8}(-aa+2ab-3bb+1) = -\frac{1}{8}(3(a-b)\mp1)(a-b\mp1) \text{ wenn } a \equiv \frac{1}{8}$$

$$D\frac{1-i}{m} = \frac{1}{8}(+aa+2ab+3bb-1)$$

$$D\frac{-1-i}{m} = \frac{1}{8}(-aa+2ab+bb+1) = \frac{1}{8}(a-b\mp1)(a-b\mp3) \text{ wenn } a \equiv \pm1$$

$$D\frac{-1+i}{m} = \frac{1}{8}(+aa+2ab-bb-1)$$
II.

Allgemein
$$m \equiv 1 \mod . (1+i)$$

$$D = -P. \text{ Real. } \frac{(1+i)(m^4-1)}{16} = \text{Coeff. im. } \frac{m^4-1}{8+8i}$$

$$D = +P. \text{ Real. } \frac{(1-i)(m^4-1)}{16} = \text{Coeff. im. } \frac{m^4-1}{8-8i}$$

$$\frac{1+i(\mod . 16)}{a}$$

$$0 \quad 2 \quad 4 \quad 6 \quad 8 \quad 10 \quad 12 \quad 14$$

$$1 \quad 0 \quad 3 \quad 3 \quad 0 \quad 2 \quad 1 \quad 1 \quad 2$$

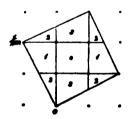
$$3 \quad 3 \quad 3 \quad 0 \quad 2 \quad 1 \quad 1 \quad 2 \quad 0$$

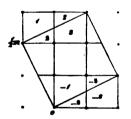
$$5 \quad 1 \quad 2 \quad 0 \quad 3 \quad 3 \quad 0 \quad 2 \quad 1$$

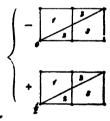
$$7 \quad 2 \quad 0 \quad 3 \quad 3 \quad 0 \quad 2 \quad 1 \quad 1$$

$$9 \quad 2 \quad 1 \quad 1 \quad 2 \quad 0 \quad 3 \quad 3 \quad 0$$

$$11 \quad 1 \quad 1 \quad 2 \quad 0 \quad 3 \quad 3 \quad 0 \quad 2$$


$$13 \quad 3 \quad 0 \quad 2 \quad 1 \quad 1 \quad 2 \quad 0 \quad 3$$


[18.]


Theorie des biquadratischen Restes —1—2i.

Der Modulus = m = a + bi soll so beschaffen sein, dass a ungerade, b gerade; auch setzen wir voraus, dass derselbe eine Primzahl sei.

Der Decident wird durch folgende Schemata vorgestellt, von deren Identität man sich leicht überzeugt:

Der Kürze wegen bezeichnen wir $S(x, x+\alpha, x+\alpha+\beta, x+\beta)$ durch $[x, \alpha, \beta]$ so dass

$$[x, \alpha, \delta] = -[x, \delta, \alpha] = [x + \alpha, \delta, -\alpha] = -[x + \alpha, -\alpha, \delta]$$

$$= [x + \alpha + \delta, -\alpha, -\delta] = -[x + \alpha + \delta, -\delta, -\alpha]$$

Setzt man ferner

$$\frac{m}{-2-4i} = \frac{-a-2b}{10} + \frac{-b+2a}{10}i = Q$$

so besteht der Decident aus folgenden acht Theilen

$$I = [0, \frac{1}{4}, -iQ]$$

$$-2II = -2[0, \frac{1}{4}, Q]$$

$$III = +[Q, \frac{1}{4}, -iQ]$$

$$IV = +[-iQ, \frac{1}{4}, Q]$$

$$-3V = -3[Q, \frac{1}{4}, Q]$$

$$-3VI = -3[2Q, \frac{1}{4}, -iQ]$$

$$+2VII = +2[(1-i)Q, \frac{1}{4}, Q]$$

$$+VIII = +[0, \frac{1}{4}, \frac{1}{4}im]$$

Ist F indefinite ein Elementarrest des Modulus —1—2i, so hat man

$$\Sigma[2FQ, \frac{1}{2}, iQ] = [0, -\frac{1}{2} - i, \frac{1}{2}im]$$

Setzt man also für F: 0, 1, i, -1, -i so hat man

$$0 = [0, \frac{1}{2}, iQ] = IX$$

$$+[2Q, \frac{1}{2}, iQ] = X$$

$$+[2iQ, \frac{1}{2}, iQ] = XI$$

$$+[-2Q, \frac{1}{2}, iQ] = XII$$

$$+[-2iQ, \frac{1}{2}, iQ] = XIII$$

$$-[0, -\frac{1}{2} - i, \frac{1}{2} im] = -XIV$$

Man setze dies zu dem vorigen Werth des Decident hinzu. Aus dieser Vereinigung fliessen folgende Resultate

(1) Da $(1+2i)Q+\frac{1}{2}$ eine ganze Zahl ist, so wird

(2) Wir ziehen zusammen IV, — 3V, X, XIII auf folgende Weise

$$IV = +[-2Q + \frac{1}{2}i, \frac{1}{2}, Q] = [-2iQ - \frac{1}{2}, \frac{1}{2}i, iQ]$$

$$V = -[2Q, +\frac{1}{2}, -Q] = -[-2iQ, -\frac{1}{2}i, iQ]$$

$$X = [+iQ - \frac{1}{2}i, \frac{1}{2}, iQ]$$

$$= [-iQ + \frac{1}{2}i, -\frac{1}{2}, -iQ] = [-2iQ - \frac{1}{2} + \frac{1}{2}i, \frac{1}{2}, iQ]$$

$$XIII = [-2iQ, \frac{1}{2}, iQ]$$

Also die ganze Ausbeute aus diesen Theilen

$$-4V +R(-2iQ)-R(-iQ)-I(-2iQ)+I(-iQ) -Quadr. [-2iQ-1+1i] +Quadr. [-2iQ+1-1i]$$

(3) I, -2II, -3VI, +2VII, +IX, +XII zusammengezogen geben folgendes

$$\begin{split} \mathbf{I} &= [0, \frac{1}{2}, -iQ] \\ \mathbf{II} &= [0, -\frac{1}{2}i, -iQ] \\ \mathbf{VI} &= [iQ - \frac{1}{2}i, \frac{1}{2}, -iQ] = [\frac{1}{2} - \frac{1}{2}i, -\frac{1}{2}, iQ] = [-\frac{1}{2} + \frac{1}{2}i, \frac{1}{2}, -iQ] \\ \mathbf{VII} &= [-Q - \frac{1}{2}i, \frac{1}{2}, Q] = [-\frac{1}{2} + \frac{1}{2}i, -\frac{1}{2}, -iQ] \\ \mathbf{IX} &= [0, -\frac{1}{2}, -iQ] \\ \mathbf{XII} &= [0, -\frac{1}{2}, -iQ] \\ \mathbf{XII} &= [-iQ + \frac{1}{2}i, \frac{1}{2}, iQ] = [\frac{1}{2} + \frac{1}{2}i, -\frac{1}{2}, -iQ] \\ &= +4\mathbf{I} - 4\mathbf{II} - 4\mathbf{VI} + 4\mathbf{XII} \\ &- I(\frac{1}{2}i) + I(-iQ + \frac{1}{2}i) + I0 - I(-iQ) - 2R0 + 2R(-iQ) \\ &+ 2\mathbf{Quadr}. & (-iQ + \frac{1}{2} + \frac{1}{2}i) \\ &= 4\mathbf{I} - 4\mathbf{II} - 4\mathbf{VI} + 4\mathbf{XII} \\ &+ R(-1 - 2i)Q - R(-2iQ) - I(-iQ) + 2R(-iQ) \\ &+ 2\mathbf{Quadr}. & (-2iQ + \frac{1}{2} + \frac{1}{2}i) \end{split}$$

Dies Alles zusammen gibt folglich

$$+4I-4II-4V-4VI+4XII+\frac{1}{2}(a-1)-\frac{1}{2}b$$

+Quadr.(-2iQ+\frac{1}{2}-\frac{1}{2}i)+2Quadr.(-2iQ+\frac{1}{2}+\frac{1}{2}i)-Quadr.(-2iQ-\frac{1}{2}+\frac{1}{2}i)

Endlich gibt VIII—XIV = $\frac{1}{2}(a-1) + \frac{1}{2}b$

Also da die drei Quadrattheile dem Decident von $\frac{m}{-1-2i}$ gleich sind, so wird

Dec.
$$\frac{-1-2i}{m} \equiv a-1 + \text{Dec.} \frac{m}{-1-2i}$$
 W. Z. B. W.

Wahrscheinlich wird der Beweis noch sehr dadurch vereinfacht werden können, dass

$$\operatorname{Dec.} \frac{1+2i}{m} = i (-i)m - (-i+i)m$$

[19.]

Durch Induction ist folgendes gefunden

Dec.
$$\frac{a-bi}{a+bi} \equiv \frac{aa+2ab-1}{4}$$
, $a \equiv 1 \pmod{4}$
 $\equiv \frac{aa+2ab+2bb-1}{4}$, $a+bi \equiv 1 \pmod{2+2i}$

Hiemit steht Folgendes in Verbindung:

Es sei aa + bb = p (Primzahl) $a \equiv 1 \pmod{4}$

so ist

$$\alpha \equiv \delta$$
, $\delta \equiv \gamma$ wenn $\frac{1}{2}b$ gerade $\alpha \equiv -\delta$, $\delta \equiv -\gamma$ wenn $\frac{1}{2}b$ ungerade

$$\pm \alpha \delta \equiv i$$
, $\pm \delta \delta \equiv 2b$, $\frac{6}{\alpha} \equiv 2a$, $\frac{6}{1+\alpha \delta} \equiv \sqrt{a}$, $\pm \delta (1-\alpha \delta) \equiv \sqrt{a}$

Es wird demnach nur darauf ankommen die Decidenten bei reellen Resten zu bestimmen

$$a^{\dagger bb} \cdot b^{\dagger (as-1)} \equiv 1 \pmod{(aa+bb)}$$
 si $a \equiv 1 \pmod{4}$ b par $aa+bb$ primus

Will man blos mit reellen Zahlen zu thun haben, so kommt es auf folgendes Haupttheorem an. Es sei a-1 durch 4, b durch 2 theilbar; a und b ohne gemeinschaftlichen Divisor, k bedeute die Zahlen 1, 2, 3 . . . aa+bb-1.

Es sei

 α die Zahl aller Werthe von k, wo die kleinsten

Reste von ak, bk, aak, abk alle zwischen 0 und $\frac{1}{2}(aa+bb)$ liegen

$$ak, bk, aak, -abk$$

$$\gamma$$
 $ak, bk, -aak, -abk$

$$\delta$$
 $ak, bk, -aak, abk$

alsdann ist $6+2\gamma+3\delta-\frac{1}{4}(aa-1)$ durch 4 theilbar.

[II.]

VORBEREITUNGEN ZUR ALLGEMEINEN THEORIE DER BIQUADRATISCHEN RESTE.

(1.)

Es sei P = x + iy, wo weder x noch y eine ganze Zahl ist. Wir bezeichnen die Zahl +1 durch LP, L'P, L''P, L'''P, p is nachdem p im ersten, zweiten, dritten oder vierten Quadranten liegt (im ersten und zweiten Quadranten ist p gerade, im dritten und vierten ungerade; im ersten und vierten ist p gerade, im zweiten und dritten ungerade). In allen Fällen, wo diese Zeichen nicht p sind, werden sie p vorausgesetzt. Man hat dann folgende 24 Relationen

$L(P\pm 1)=L'P$	$L(P \pm i) = L''P$	$L(P \pm 1 \pm i) = L'P$
$L'(P\pm 1)=LP$	$L'(P \pm i) = L''P$	$L'(P \pm 1 \pm i) = L'''P$
$L''(P\pm 1) = L'''P$	$L''(P \pm i) = L'P$	$L''(P\pm 1\pm i)=LP$
L'''(P+1) = L''P	L'''(P+i) = LP	$L'''(P \pm 1 \pm i) = L'P$
	, . —	
LiP = L'''P	L(-P) = L'P	L(-iP) = L'P
L'iP = LP	L'(-P) = L'''P	L'(-iP) = L''P
L''iP = L'P	L'(-P) = LP	L''(iP) = L'''P
L'''iP = L''P	L'''(-P) = L'P	L'''(-iP) = LP

(2.)

Durch PP' oder z bezeichnen wir eine Linie, die von P anfängt und in P' endigt. Sie braucht nicht gerade zu sein. Wir legen allen geraden Linien von 2x+2iy nach 2x+(2y+1)i gezogen (wo x,y indefinite alle ganzen Zahlen bedeuten) eine positive und eine negative Seite bei; für jene wählen wir die rechte, für diese die linke. Durch Tz bezeichnen wir die Anzahl aller Schnitte

der Linie z mit den eben gedachten Linien, als positiv gezählt diejenigen, wo z von der negativen Seite auf die positive übergeht, als negativ die andern. Ferner setzen wir

$$Tz - T(z-1) = Sz$$

(z-1) ist eine der z parallele Linie, die von dem Punkte P-1 nach P'-1 geht). Offenbar brauchen wir nur dem oben gedachten System von Linien noch die von 2x+1+2yi nach 2x+1+(2y+1)i gezognen beizufügen und deren linke Seiten positiv und die rechten als negativ zu betrachten, um in Sz die Anzahl aller Schnitte von z mit diesem zweifachen System von Geraden zu erkennen. Wir haben nun ferner

$$T(-z) = -T(z+i)$$
 $T(z) + T(z+i) = [\frac{1}{2}x] - [\frac{1}{2}x']$
 $S(z+1) = -Sz$
 $S(z+i) = -Sz + LP + L''P - LP' - L''P'$
 $S(z+1+i) = Sz - LP + L''P + LP' + L''P'$
 $Siz = Sz - LP + LP'$
 $S(-z) = Sz - LP - L''P + LP' + L''P'$
 $S(-iz) = Sz + LP - L'P'$

1.

Wir betrachten in der Ebene zwei Gattungen von Punkten; einmal die, denen ganze Zahlen entsprechen; dann diejenigen, welche durch Producte aus ganzen Zahlen in die Grösse $Q = \frac{m}{2M}$ bestimmt werden. Wir können dieselben durch die Benennungen Punkte der ersten und Punkte der zweiten Ordnung unterscheiden.

2

Indem wir jeden Punkt der zweiten Ordnung mit seinen vier Nachbarn durch gerade Linien verbinden, die wir *Ligaturen* nennen werden, theilt sich die ganze Ebene in unendlich viele Quadrate. Die Punkte der ersten Ordnung liegen theils innerhalb dieser Quadrate, theils auf den Ligaturen innerhalb der Gren-

zen derselben, theils auf den Grenzen der Ligaturen, das letzte, wenn sie zugleich Punkte der zweiten Ordnung sind. Ist kQ ein solcher Punkt, so muss insofern m, M ohne gemeinschaftlichen Theiler und beide ungerade sind, k durch M theilbar sein.

3

Bei den Ligaturen können wir zugleich einen Unterschied zwischen dem Anfangspunkte und Endpunkte machen, also PQ von QP unterscheiden, oder auch in einigen Fällen diesen Unterschied bei Seite setzen. Wir nennen zwei solche Ligaturen entgegengesetzte. Bezeichnen können wir überhaupt am bequemsten die Ligaturen durch ihren Anfangs- und Endpunkt, die man allenfalls in eine Klammer einschliessen mag. Einer Ligatur entgegengesetzte soll durch das doppelte Ueberstreichen angedeutet werden QP = PQ.

4.

Jedes der gedachten Quadrate wird von vier solchen Ligaturen eingeschlossen $\{kQ,(k+1)Q\}, \{(k+1)Q,(k+1+i)Q\}, \{(k+1+i)Q,(k+1)Q\}, \{(k+i)Q,kQ\},...Q\}$ denen es zur rechten liegt. Es ist wichtig hiebei auf die Form der Zahl k zu sehen, und wir unterscheiden in dieser Beziehung viererlei Quadrate, je nachdem $k \equiv 0, 1, 1+i, i \pmod{2}$ ist, und bedienen uns dann der Zahlen 0, 1, 2, 3, die wir resp. die Intensoren der Quadrate nennen.

5.

Den Ligaturen legen wir dieselben Intensoren bei, welche die ihnen zur rechten liegenden Quadrate haben.

6.

Wir haben nun ein anderes grösseres Quadrat Ω' zu betrachten, nemlich dasjenige, welches entsteht, wenn das in 4 angezeigte für k=0, mit M multiplicirt wird: dies wird also durch die geraden Linien μ , μ' , μ'' , μ''' begrenzt

$$\{0, \frac{1}{2}m\}, \{\frac{1}{2}m, \frac{1}{2}(1+i)m\}, \{\frac{1}{2}(1+i)m, \frac{1}{2}im\}, \{\frac{1}{2}im, 0\}$$

Es besteht aus ganzen Quadraten Q und Stücken solcher Quadrate; man zähle

alle Punkte der ersten Ordnung innerhalb desselben zusammen, indem man für jeden Punkt den Intensor des Quadrats Q, worin er liegt, nimmt, diese Summe oder deren kleinster Rest nach dem Modulus 4 heisst der Decident von M für den Modulus m, und bestimmt die biquadratische Modalität von M in Beziehung auf diesen Modulus.

7.

Wir zerlegen das Quadrat Ω' in 5 Stücke auf folgende Art. Man verbinde den Punkt 0 mit $\frac{1}{2}(1+i)(m-1)$ durch die Linie λ , die durch lauter Ligaturen innerhalb Ω' gehe. Es sei

$$\frac{1}{2}m+i\lambda=\lambda', \quad \frac{1}{2}(1+i)m-\lambda=\lambda'', \quad \frac{1}{2}im-i\lambda=\lambda'''$$

diese 4 Linien gehen also von den Ecken des Quadrats Ω' aus ins Innere und endigen sich an den vier Ecken des innersten Quadrats, dessen Intensor 0 sein wird, wenn $m \equiv 1 \pmod{2+2i}$; die Ligaturen dieses Quadrats seien ν , ν' , ν'' .

Die 5 Stücke werden also begrenzt sein

I. ...
$$\mu$$
, λ' , $\overline{\nu}$, $\overline{\lambda}$

II. ... μ' , λ'' , $\overline{\nu}'$, $\overline{\lambda}''$

III. ... μ'' , λ''' , $\overline{\nu''}$, $\overline{\lambda'''}$

IV. ... μ''' , λ , $\overline{\nu'''}$, $\overline{\lambda'''}$

V. das innere Quadrat ν , ν' , ν'' , ν'''

Der Decident ist also die Aufzählung aller Punkte erster Ordnung in I. II. III. IV.

8.

Der Kürze wegen soll Intensor irgend eines Punkts der Intensor des Quadrats sein, in dem er liegt, und durch vorgesetztes Y ausgedrückt werden.

9.

Der Decident ist also

$$\Sigma \Upsilon P + \Sigma \Upsilon P' + \Sigma \Upsilon P'' + \Sigma \Upsilon P'''$$

wo P alle Punkte in I. u. s. w. bedeuten.

П.

42

10.

Wir betrachten nun noch den Raum VI = -iIV, welcher ausserhalb Ω' liegt, sich aber durch μ an I anschliesst und mit ihm zusammen den Raum ω ausmacht, der aus AA + BB vollständigen Quadraten besteht. Bedeutet Π alle ganzen; Π' alle um $\frac{1}{2}i$ vermehrten ganzen Punkte dieses Raumes, so lässt sich leicht beweisen, dass der Decident

= ΣΥΠ-ΣΥΠ'+ Anzahl aller ganzen Punkte innerhalb VI
- Anzahl aller halben Punkte innerhalb VI.

11.

Man denke sich von jedem ganzen Punkte k nach $k+\frac{1}{2}i$ gerade Linien gezogen, deren rechte Seite als positiv, die linke als negativ angesehen wird. Es sei l eine Linie, und Sl bezeichne die Summe aller Schnitte der l mit jeuem System von Linien, diejenigen als positiv angesehen, wo l von der negativen auf die positive übergeht, die entgegengesetzten Schnitte als negativ. Man hat dann für den Decidenten folgenden Ausdruck

$$\Sigma(\Upsilon l.Sl) + \Sigma Sl - S\mu$$

wo l alle Ligaturen der Quadrate in ω bedeuten (immer so genommen, dass die Quadrate ihnen zur rechten liegen) und wo l' diejenigen Ligaturen bedeutet, die auf dem Umfange der Figur ω zwischen 0 und $\frac{1}{2}m$ liegen, also ausserhalb Ω' .

Alle Ligaturen l bestehen aus

- 1) l'
- 2) l'' die innerhalb Ω' liegenden Grenzligaturen also λ' , $\overline{\lambda}$.
- 3) l''' die im Innern von ω liegen.

Verstände man unter l indefin. alle Ligaturen, die sich innerhalb ω oder auf den Grenzen dieser Figur befinden, insofern sie von Punkten $\frac{km}{2M}$ ausgehen, so dass k durch 1+i theilbar ist, so wäre der Decident

$$= \Sigma \alpha . Sl - S\mu$$

wo $\alpha = 1$ für alle Ligaturen im Innern von ω

 $\alpha = \Upsilon l + 1$ für alle Grenzligaturen ausserhalb Ω' , deren Richtung in der von 0 nach $\frac{1}{2}m$ gehenden Grenze liegt

 $\alpha = -(\overline{\Upsilon}\lambda + 1) = -\Upsilon l$ für alle auf dieser Grenze, die in entgegengesetztem Sinne laufen

 $\alpha = \Upsilon l$ für alle Grenzligaturen innerhalb Ω' , deren Richtung auf 0 zugeht

 $\alpha = -\Upsilon l + 1$ für alle Grenzligaturen innerhalb Ω' , deren Richtung von 0 abwärts geht.

12.

Wir können nun die sämmtlichen vorkommenden l (nach der letzten Manier) zu zweien combiniren, nemlich l mit $\frac{1}{l}m-l$, welche wir verbundene Ligaturen nennen wollen; eine einzige ist hiervon ausgenommen, welche isolirt steht oder mit ihrer verbundenen Ligatur identisch ist, nemlich diejenige, welche von

$$\frac{1}{2}(M-1)\cdot\frac{m}{2M}$$
 nach $\frac{1}{2}(M+1)\frac{m}{2M}$ läuft

für verbundene Ligaturen ist das α immer einerlei.

[III.] THEORIE DER BIQUADRATISCHEN RESTE.

1

Kleinste Reste des Modulus m = a + bi heissen die ganzen Zahlen $\mu = \alpha + 6i$, für welche $\frac{\mu}{m} = x + yi$ so beschaffen ist, dass x und y positiv und kleiner als 1 sind. Es kommt noch dazu der Rest 0*). Ihre Anzahl ist = aa + bb.

2.

In sofern aa+bb ungerade ist, wird aa+bb von der Form 4n+1 sein. Den kleinsten Rest 0 ausgeschlossen, theilen sich die übrigen in vier Classen. Zur ersten Classe f zählen wir diejenigen, wo x und y kleiner als $\frac{1}{2}$ sind,

^{*)} und wenn a und b etwa den gemeinschaftlichen Divisor e haben, die Zahlen $\frac{m}{e}$, $\frac{2m}{e}$, $\frac{3m}{e}$. $\frac{(e-1)m}{e}$. Jedoch wollen wir diesen Fall vorerst von der Untersuchung ausschließen.

die zweite
$$f'$$
 wo $x>\frac{1}{2}$, $y<\frac{1}{2}$
dritte f'' $x>\frac{1}{2}$, $y>\frac{1}{2}$
vierte f''' $x<\frac{1}{2}$, $y>\frac{1}{2}$

Man erhält alle Reste

$$f'$$
 aus $if+m$
 f'' aus $-f+(1+i)m$
 f''' aus $-if+im$

3.

Es sei M eine andere Zahl, die mit m keinen Factor gemein hat, so wird

$$M^{aa+bb-1} \equiv 1 \pmod{m}$$

sein: folglich $M^{\frac{1}{4}(aa+bb-1)}$ entweder $\equiv 1$, oder $\equiv i$, oder $\equiv -1$, oder $\equiv -i$ d. i. $\equiv i^{\epsilon}$, wo ϵ eine der vier Zahlen 0, 1, 2, 3 vorstellt. Im ersten Fall wird M biquadratischer Rest von m sein, mithin auch quadratischer. Im dritten ist M quadratischer aber nicht biquadratischer Rest; im zweiten und vierten sowohl quadratischer als biquaduatischer Nichtrest. Wir nennen dies ϵ , wovon die biquadratische Modalität der Zahl M in Beziehung auf den Modulus m abhängt, den Decidenten von M beim Modulus m. Die Induction lehrt folgenden schönen Lehrsatz. "Sind M und m ungerade Primzahlen von der Form $1+(2+2i)\mu$, so dass μ eine ganze Zahl ist, so ist die Differenz der beiden Decidenten, von M beim Modulus m, und von m beim Modulus M entweder m0 oder m2; das erstere, wenn wenigstens eine der Zahlen m3, m4 von der Form m5 das andere, wenn beide von der Form m6 von der Form 1+4 m8 ist; das andere, wenn beide von der Form 1+2 m4 von der Form 1+2 m5 hier Theorem der Reciprocität ist dem bei den Quadratischen Resten bei blos reellen Zahlen analog.

4.

Man multiplicire alle Zahlen f mit M, und suche deren kleinste Reste nach dem_Modulus m. Es seien darunter α zu f gehörig

$$egin{array}{cccc} f & f' \ \gamma & f'' \ \delta & f''' \end{array}$$

so ist $\epsilon \equiv 6 + 2 \gamma + 3 \delta \pmod{4}$.

Beweis. Der Inbegriff derjenigen Zahlen aus f, deren Producte mit M Reste zu f gehörig geben, sei g; der Inbegriff derjenigen, deren Producte Reste aus f' geben, sei g', und ebenso g'' g'''; so werden die kleinsten Reste von

$$-ig'M$$
, $-g''M$, $ig'''M$

alle in f enthalten, und sowohl unter sich als von den kleinsten Resten der Producte gM verschieden sein, folglich das Product aus allen

$$gM$$
, $-ig'M$, $-g''M$, $+ig'''M$

dem Producte aller f congruent sein, mithin auch dem Producte aller g, g', g'', g'''. Jenes Product ist aber gleich dem Producte aus allen g, g', g'', g''' in

$$M^a \cdot (-iM)^6 \cdot (-M)^{\gamma} \cdot (iM)^{\delta}$$

also dies letzte Product = 1

folglich $M^{\alpha+6+\gamma+\delta}(-i)^6(-1)^{\gamma}i^{\delta} \equiv 1$ oder $M^{\alpha+6+\gamma+\delta} \equiv i^6(-1)^{\gamma}(-i)^{\delta} \equiv i^{6+2\gamma+3\delta}$

woraus der Lehrsatz von selbst folgt.

5

Die Entscheidung, ob der kleinste Rest einer Zahl N nach dem Modulus m zur Classe f, f', f'' oder f''' gehöre, ist leicht. Ist nemlich ω die in $\frac{N}{m}$ enthaltene ganze Zahl, so wird jener Rest $= N - \omega m$ sein, und also zu f, f', f'' gehören, je nachdem

 $\frac{N}{m} - \omega = x + iy$

gesetzt

$$x < \frac{1}{2}, y < \frac{1}{2}$$

 $x > \frac{1}{2}, y < \frac{1}{2}$
 $x > \frac{1}{2}, y > \frac{1}{2}$

 $x < \frac{1}{2}, y > \frac{1}{2}$

ist. In diesen 4 Fällen wird der Reihe nach die in $\frac{2N}{m}$ enthaltene ganze Zahl folgende sein

 2ω $2 \omega + 1$ $2 \omega + 1 + i$ $2 \omega + i$

Hieraus ist klar, dass der kleinste Rest von N nach dem Modulus m zu f, f', f'', f''' gehören werde, je nachdem die in $\frac{2N}{m}$ enthaltene ganze Zahl $= \xi + \eta i$ gesetzt

ξ gerade
ξ ungerade
η gerade
ξ ungerade
η ungerade
ξ gerade
η ungerade

6.

Hienach findet sich der Decident von M nach dem Modulus m auf folgende Art. Man suche die ganzen Zahlen, die in allen einzelnen $\frac{2fM}{m}$ enthalten sind. Diese allgemein durch x+yi bezeichnet, lasse man ganz aus der Acht, diejenigen, wo x und y beide gerade sind, rechne für jede derjenigen, wo x und y beide ungerade und y gerade ist, eins, entnehme für jede derjenigen, wo x und y beide ungerade sind, zwei, und drei für jede von denen, wo x gerade, y ungerade ist. Von der Summe aller dieser Zahlen nehme man den kleinsten Rest nach y0, welcher der verlangte Decident sein wird. Wir drücken dies so aus

Kürze halber wollen wir n durch die Characteristik θ bezeichnen, $n = \theta \frac{2fM}{m}$

$$-\Sigma\left\{\left[\frac{2\,k\,m'\,M}{p}\right]^2+\left[\frac{2\,k\,m'}{p}\right]^3\right\}$$

für diejenigen Werthe von $\left[\frac{2 k m' M}{p}\right]$ die durch 1+i theilbar sind.

^{*)} Um zu entscheiden, in welche Classe M in Beziehung auf m gehört, wählt man diejenigen Werthe von k (unter den Zahlen 1, 2, 3...p-1) aus, wodurch $\left[\frac{2 \ k \ m' M}{p}\right]$ gerade wird, und addirt $-\sum \left[\frac{2 \ k \ m'}{p}\right]^2$ Nimmt man k nur bis $\frac{1}{k}p$, so hat man zu summiren

7. 8.

Diese Regel ist allgemein, was für eine Zahl auch M bedeute. Für den Fall, der zunächst den Gegenstand unserer Untersuchung ausmachen soll, wo M ungerade und von der Form 1+(2+2i)N vorausgesetzt wird, ist eine etwas abgeänderte Vorschrift zweckmässiger.

Man denke sich die Zahlen f wiederum in 4 Classen zerlegt; in die erste setzt man die (h), deren Doppeltes sich auch noch in f findet; in die zweite h' zählen wir die, deren Doppelte 2h' zu f' gehören, und ebenso h'' und h''' bedeuten diejenigen, deren Doppelte zu f'' und f''' 'gehören. Es ist also der Decident k

$$\varepsilon = \Sigma \theta \frac{2 h M}{m} + \Sigma \theta \frac{2 h' M}{m} + \Sigma \theta \frac{2 h'' M}{m} + \Sigma \theta \frac{2 h'' M}{m}$$

Den Complexus aller 2h und -2h''+(1+i)m nennen wir H den von allen -i(2h'-m) und i(2h''-im) nennen wir H'

H und H' umfassen also alle f, jene sind die geraden, diese die ungeraden. Ferner sind folgende Relationen in Anwendung zu bringen

$$\theta i N = 1 + \theta N$$

$$\theta(-N) = 2 + \theta N$$

$$\theta(-iN) = 3 + \theta N$$

$$\theta(N+1) = 1 - \theta N$$

$$\theta(N+1+i) = 2 + \theta N$$

$$\theta(N+i) = 3 - \theta N$$

folglich

$$\theta \frac{(-2h'i+mi)M}{m} = 3 - \theta \frac{-2h'iM}{m} = -\theta \frac{2h'M}{m}$$

$$\theta \frac{(-2h''+m(1+i))M}{m} = 2 + \theta \frac{-2h''M}{m} = \theta \frac{2h''M}{m}$$

$$\theta \frac{(2h'''i+m)M}{m} = 1 - \theta \frac{2h'''iM}{m} = -\theta \frac{2h'''M}{m}$$

und

$$\mathbf{\varepsilon} = \sum \theta \frac{2hM}{m} - \theta \frac{(-2h'i + mi)M}{m} + \theta \frac{(-2h'' + m(1+i))M}{m} - \theta \frac{(2h'''i + m)M}{m}$$
$$= \sum \theta \frac{HM}{m} - \sum \theta \frac{H'M}{m}$$

oder

$$\varepsilon = \Sigma \pm \theta \frac{fM}{m}$$

ubi signum superius accipiendum pro paribus f, inferius pro imparibus.

Es sei nun allgemein $f = \xi + \eta i$. Die Zahlen ξ , η sind durch die Bedingung, dass f ein kleinster Rest von m sein, oder $\frac{f}{m} = x + yi$ gesetzt, x und yzwischen den Grenzen 0 und 1 liegen müssen, innerhalb gewisser Grenzen beschränkt, wofür sich durch Unterscheidung der verschiedenen Fälle leicht bestimmte Regeln geben liessen. Ertheilen wir n einen bestimmten Werth, so wird wie derum & seine bestimmten Grenzen haben. Z. B. wenn wir annehmen, dass a negativ, b positiv ist, so muss, da

$$x = \frac{a\xi + b\eta}{aa + bb}$$
$$y = \frac{a\eta - b\xi}{aa + bb}$$

- damit x positiv werde $\xi < -\frac{b}{a}\eta$ I.
- damit y positiv werde $\xi < \frac{a}{b} \eta$
- III. damit $x < \frac{1}{2}$ werde $\xi > \frac{aa+bb-2b\eta}{2a}$ IV. damit $y < \frac{1}{2}$ werde $\xi > \frac{2a\eta aa bb}{2b}$

für positive n schliesst die zweite Bedingung bereits die erste ein, für negative η hingegen ist es umgekehrt; ebenso ist die dritte Bedingung schon in der vierten enthalten,

wenn
$$\eta < \frac{1}{2}(a+b)$$
 und umgekehrt, wenn $\eta > \frac{1}{2}(a+b)$

Wir haben indessen nicht nöthig alle acht Fälle, die hier eintreten können, besonders zu betrachten, sondern bezeichnen nur für einen bestimmten Werth von n die kleinere Grenze von & durch &, die grössere durch & und bemerken nur, dass bei diesen Grenzwerthen immer entweder x=0, y=0, $x=\frac{1}{2}$, $y=\frac{1}{2}$ ist, und zwar dass

wenn in der obern Grenze in der untern Grenze
$$x = \frac{1}{2}$$
 oder $y = 0$ in der untern Grenze $x = 0$ oder $y = \frac{1}{2}$ a neg. $x = 0$ oder $x = 0$

sein muss. Wir werden diese vier Fälle Kürze halber so unterscheiden, dass wir sagen, im ersten gehöre m zum ersten Quadranten, im zweiten zum zweiten etc.

10

Wir wollen nun das Aggregat aller $\pm \theta \frac{fM}{m}$ näher betrachten, bei denen η einen bestimmen Werth hat. Indem ξ nach und nach stetig von dem kleinsten Werthe ξ^0 bis zum grössten ξ^{00} wächst, wird sich

$$\frac{(\xi+\eta i)M}{m}=X+Yi$$

auch nach dem Gesetze der Stetigkeit ändern, und zwar wird, wenn $\frac{M}{m}$ im ersten Qradranten liegt, sowohl X als Y beständig wachsen; liegt $\frac{M}{m}$ im zweiten Quadranten, so wird X beständig abnehmen und Y zunehmen; im dritten Quadranten wird das umgekehrte vom ersten, im vierten das umgekehrte vom zweiten Statt finden. Allein die in X+iY enthaltene ganze Zahl wird sich sprungsweise ändern, indem entweder [X] oder [Y] sich um Eine Einheit ändert. Es seien die Werthe von ξ , wo ein solcher Uebergang Statt findet, d. i. wo entweder X oder Y eine ganze Zahl wird, der Reihe nach folgende

Hier muss bemerkt werden, dass weder diese Werthe noch ξ^0 und ξ^{00} ganze Zahlen sein können, ausgenommen für $\eta = 0$, wo entweder ξ^0 oder $\xi^{00} = 0$ wird. Es sei nun

$$\theta = \frac{(\xi' + \eta i)M}{m} - \theta = \frac{(\xi^0 + \eta i)M}{m} = \delta' \text{ (anders aussudräcken)}$$

$$\theta = \frac{(\xi'' + \eta i)M}{m} - \theta = \frac{(\xi'' + \eta i)M}{m} = \delta''$$
etc.
$$\theta = \frac{(\xi^{00} + \eta i)M}{m} - \theta = \frac{(\xi^{0-1} + \eta i)M}{m} = \delta^{0}$$

43

so sieht man leicht, weil zwischen ξ^0 und ξ' $[\frac{1}{2}\xi'] - [\frac{1}{2}\xi^0]$ gerade und $[\frac{1}{2}\xi'+\frac{1}{2}] - [\frac{1}{2}\xi^0+\frac{1}{2}]$ ungerade ganze Zahlen liegen etc., dass, blos den bestimmten Werth von η betrachtet,

$$\begin{split} (\pm 1) & \Sigma \theta \frac{fM}{m} = \{ [\frac{1}{2}\xi'] - [\frac{1}{2}\xi'] - [\frac{1}{2}\xi' + \frac{1}{2}] + [\frac{1}{2}\xi^0 + \frac{1}{2}] \} \cdot \theta \frac{(\xi^0 + \eta i)M}{m} \\ & + \{ [\frac{1}{2}\xi''] - [\frac{1}{2}\xi''] + [\frac{1}{2}\xi' + \frac{1}{2}] \} \cdot \{ \theta \frac{(\xi^0 + \eta i)M}{m} + \delta' \} \\ & + \{ [\frac{1}{2}\xi''] - [\frac{1}{2}\xi''] + [\frac{1}{2}\xi'' + \frac{1}{2}] \} \cdot \{ \theta \frac{(\xi^0 + \eta i)M}{m} + \delta' + \delta'' \} \\ & + \text{etc.} \\ & + \{ [\frac{1}{2}\xi^{00}] - [\frac{1}{2}\xi^{00} + \frac{1}{2}] + [\frac{1}{2}\xi^{0} + \frac{1}{2}] \} \cdot \{ \theta \frac{(\xi^0 + \eta i)M}{m} + \delta' + \delta'' + \dots + \delta^{n} \} \\ & = - ([\frac{1}{2}\xi^0] - [\frac{1}{2}\xi^0 + \frac{1}{2}]) \cdot \theta \frac{(\xi^0 + \eta i)M}{m} \\ & - ([\frac{1}{2}\xi'] - [\frac{1}{2}\xi' + \frac{1}{2}]) \cdot \delta'' \\ & - \text{etc.} \\ & - ([\frac{1}{2}\xi^n] - [\frac{1}{2}\xi^n + \frac{1}{2}]) \cdot \delta^n \\ & + ([\frac{1}{2}\xi^{00}] - [\frac{1}{2}\xi^{00} + \frac{1}{2}]) \cdot \theta \frac{(\xi^{00} + \eta i)M}{m} \end{split}$$

(wo das obere Zeichen für gerade η, das untere für ungerade gilt.)

Die Zahlen δ' , δ'' , δ''' u. s. w. können keine andere Werthe haben als +1 und -1. Den Werth +1 bekommt δ' , wenn, die Werthe von X, Y, die zu ξ' gehören, durch X', Y' bezeichnet,

$\frac{M}{m}$ im 1. Quadr.	$\frac{M}{m}$ im 2. Quadr.
X' ganze gerade Zahl	X' ganze gerade Zahl
und [Y] ungerade	[Y] gerade
Y' ganze gerade Zahl	Y' ganze gerade Zahl
$ \text{und} \ [\boldsymbol{X}] \ \text{gerade}$	[X] gerade
$\frac{M}{m}$ im 3. Quadr.	$\frac{M}{m}$ im 4. Quadr.
X' ganze gerade Zahl	X' ganze gerade Zahl
$\mathbf{und} \; [\mathbf{\textit{Y}}] \; \mathbf{gerade}$	[Y] ungerade .
f - 1 8 - 1	[L] angorado
Y' ganze gerade Zahl	Y' ganze gerade Zahl

So oft sich eine dieser Bedingungen in die entgegengesetzte ändert, wird $\delta = -1$; so oft sich beide ändern, bleibt $\delta = +1$.

11.

Zur bequemern Uebersicht dieser Rechnungen dienen folgende Formeln:

es ist
$$m = a+bi$$
, $aa+bb = d$
 $M = A+Bi$, $AA+BB = D$
 $\frac{dM}{m} = a+bi$, $a = aA+bB$, $b = aB-bA$
 $\frac{\xi+i\eta}{m} = x+iy$, $M(x+iy) = X+iY$

Ist gegeben η und X, so wird

1.
$$\xi = \frac{6\eta}{a} + \frac{dX}{a}$$

$$2. \quad Y = \frac{D\eta}{a} + \frac{6X}{a}$$

Ist gegeben η und Y, so wird

$$3. \quad \xi = -\frac{a\eta}{6} + \frac{dY}{6}$$

4.
$$X = -\frac{D\eta}{6} + \frac{\alpha Y}{6}$$

Ist gegeben η und x, so wird

$$\xi = -\frac{b\eta}{a} + \frac{dx}{a}$$

6.
$$X = -\frac{B\eta}{a} + \frac{as}{a}$$

7.
$$Y = \frac{A\eta}{a} + \frac{6x}{a}$$

Ist gegeben η und y, so wird

8.
$$\xi = \frac{a\eta}{b} - \frac{dy}{b}$$

9.
$$X = \frac{A\eta}{h} - \frac{ay}{h}$$

10.
$$Y = \frac{B\eta}{b} - \frac{6y}{b}$$

12.

Die Regel des 10. Art. lässt sich nun so ausdräcken. Indem η einen bestimmten Werth erhält, ist

$$\Sigma \pm \theta \frac{fM}{m} = k^{0} \theta (X^{0} + Y^{0} i) - k^{00} \theta (X^{00} + Y^{00} i) + \Sigma k$$
43*

Hier ist $k^0 = 0$, wenn $[\xi^0]$ gerade; $k^0 = +1$, wenn $[\xi^0]$ ungerade und η gerade; $k^0 = -1$, wenn $[\xi^0]$ ungerade und η ungerade ist; k^{00} wird eben so durch $[\xi^{00}]$ und η bestimmt. Endlich ist Σk ein Aggregat von so vielen Zahlen, als es zwischen $\xi = \xi^0$ und $\xi = \xi^{00}$ ganze Werthe von X oder Y gibt; jedesmal ist k = 0, wenn das entsprechende $[\xi]$ gerade ist, hingegen $= \pm 1$, wenn $[\xi]$ ungerade ist. Das Zeichen wird auf folgende Art bestimmt. Ist X eine ganze Zahl, so wird k = 1, wenn zugleich

 η gerade X gerade [Y] gerade $\frac{M}{m}$ im zweiten oder dritten Quadranten d. i. α negative

Ist eine oder drei dieser Bedingungen nicht vorhanden, so wird k = -1; fehlen zwei oder alle vier, so bleibt k = 1. Ist hingegen Y eine ganze Zahl, so wird k = 1, wenn von den 4 Bedingungen

 η gerade Y gerade [X] gerade $\frac{M}{m}$ im ersten oder zweiten Quadranten d. i. δ positiv

alle oder zwei oder keine erfällt ist.

13.

Jetzt haben wir noch die Fälle besonders zu betrachten, wo ξ^0 oder $\xi^{\bullet 0}$ (oder X^0 , Y^0 , X^{00} , Y^{00}) eine ganze Zahl ist. Es sind hier vier Fälle zu unterscheiden, indem wir a und A ungerade setzen.

I. Liegt m im ersten Quadranten, so wird für $x = \frac{1}{2}$, y = 0; $\eta = \frac{1}{2}b$ eine ganze Zahl; es ist dann $Y^{00} = \frac{1}{2}B$ eine ganze Zahl und $\theta(X^{00} + Y^{00}i)$ wird nur dann $= \theta(\frac{1}{2}A + \frac{1}{2}Bi)$ sein, wenn δ negativ ist, bei einem positiven δ hingegen wird dafür $\theta(\frac{1}{2}A + (\frac{1}{2}B - 1)i)$ genommen werden.

II. Liegt m im zweiten Quadranten, so wird für x = 0, y = 0; $\eta = 0$. Hier wird für diesen Werth von η , $X^{00} = 0$, $Y^{00} = 0$. Man hat dann

$$\theta(X^{00}+Y^{00}i)=2$$
, je nachdem $\frac{M}{m}$ in 1.

3 2.

0 3.

1 4. Quadr. liegt, und $k^{00}=1$

III. Liegt m im dritten Quadranten, so wird für $x = \frac{1}{2}$, y = 0; $\eta = \frac{1}{2}b$ eine ganze Zahl, wofür $X^0 + Y^0i = \frac{1}{2}A + \frac{1}{2}Bi$. Man setzt dann

$$\theta(X^0+Y^0i)=\theta(\frac{1}{2}A+(\frac{1}{2}B-1)i)$$

so oft 6 negativ ist.

IV. Liegt m im vierten Quadranten, so ist für $\eta = 0$, $\theta(X^0 + Y^0 i = 0, 1, 2, 3 \text{ zu setzen, je nachdem } \frac{M}{m} \text{ im } 1.2.3.4.$ Quadranten liegt $k^0 = 0$.

14.

Aus den vorhergehenden Untersuchungen folgt nunmehr folgende Bestimmung des Decidenten.

Man sammle alle Werthe von x und y, die *innerhalb* der Grenzen 0 und $\frac{1}{2}$ liegen und wofür entweder η und X oder η und Y eine ganze Zahl ist, und bestimme für jedes x+iy nach den Regeln des 12. Art. den Werth von k.

Man sammle ferner alle Werthe auf den Grenzen d. i. wo entweder x=0 oder $\frac{1}{2}$, während y zwischen 0 und $\frac{1}{2}$, oder y=0 oder $=\frac{1}{4}$, während x zwischen 0 und $\frac{1}{4}$, die so beschaffen sind, dass η eine ganze Zahl und $[\xi]$ ungerade, und bestimme das zugehörige l auf folgende Weise. Es sei $\theta M(x+yi)=\pm \theta$, das obere Zeichen für gerade, das untere für ungerade η

so ist für m im

 für
 1. Quadr. | 2. Quadr. | 3. Quadr. | 4. Quadr.

$$y = 0$$
 | $l = -\theta$ | $l = -\theta$ | $l = +\theta$ | $l = +\theta$
 $x = \frac{1}{2}$ | $l = -\theta$ | $l = +\theta$ | $l = +\theta$ | $l = -\theta$
 $y = \frac{1}{2}$ | $l = +\theta$ | $l = +\theta$ | $l = -\theta$ | $l = -\theta$
 $x = 0$ | $l = +\theta$ | $l = -\theta$ | $l = -\theta$ | $l = -\theta$ | $l = -\theta$

342

Kürzer so

 $l=\pm 6$

das Zeichen ist dasselbe wie das von a wenn x = 0das entgegengesetzte wenn $x = \frac{1}{2}$ das entgegengesetzte wenn y = 0

Zu $\Sigma k + \Sigma l$ kommt dann noch hinzu

wenn m im zweiten Quadranten liegt: 2, 1, 0, 3 $\}$ je nachdem $\frac{M}{m}$ im wenn m im vierten Quadranten liegt: 0, 1, 2, 3, 4. Quadr.

wenn m im ersten Quadranten liegt und $\frac{1}{2}(a-1)$ ungerade ist

$$\theta(\frac{1}{2}A + (\frac{1}{2}B - 1)i)$$
 wenn 6 positiv $\theta(\frac{1}{2}A + \frac{1}{2}Bi)$ wenn 6 negativ

wenn m im dritten Quadranten liegt und $\frac{1}{2}(a-1)$ ungerade ist

$$-\theta(\frac{1}{2}A+\frac{1}{2}Bi) \text{ wenn } \theta \text{ positiv}$$

$$-\theta(\frac{1}{2}A+(\frac{1}{2}B-1)i) \text{ wenn } \theta \text{ negativ.}$$

[IV.]

1.

Biquadratischer Rest? m = a + bi; aa + bb = dModulus M = A + Bi, AA + BB = D

$$\frac{mD}{M} = \mu \qquad \qquad \mu = \alpha + 6i, \quad \alpha = aA + bB, \quad 6 = Ab - Ba$$

$$\xi + \eta i = \pi; \quad \pi m = x + yi = p; \quad \pi M = X + Yi = P$$

Relationen

$$x = a\xi - b\eta$$
 $d\xi = ax + by$ $D\xi = AX + BY$
 $y = b\xi + a\eta$ $d\eta = -bx + ay$ $D\eta = -BX + AY$
 $X = A\xi - B\eta$ $dX = ax + by$ $Dx = aX - bY$
 $Y = B\xi + A\eta$ $dY = -bx + ay$ $Dy = bX + aY$

$$6\xi = -Bx + bX = Ay - aY$$

$$6\eta = -Ax + aX = -By + bY$$

$$\alpha\xi = Ax + aY = By + aX$$

$$\alpha\eta = -Bx + aY = Ay - bX$$

Diejenigen π , wo ξ und η zwischen 0 und $\frac{1}{2}$ liegen, sollen durch π^0 bezeichnet werden, und die entsprechenden p und P durch p^0 und P^0 ; diejenigen π , wo $\eta = 0$ und ξ zwischen 0 und $\frac{1}{4}$, durch π' ; die, wo $\xi = \frac{1}{4}$ und η zwischen 0 und $\frac{1}{4}$, durch π'' ; diejenigen π , wo $\eta = \frac{1}{4}$ und ξ zwischen 0 und $\frac{1}{4}$, durch π''' ; endlich die wo $\xi = 0$ und η zwischen 0 und $\frac{1}{4}$, durch π''' .

Der Decident von $\frac{m}{W}$ wird so gefunden:

Man sammle alle ganzen P^0 , für welche mithin x^0 und y^0 gebrochen sein werden; die respectiven Intensoren von p^0 seien t^0 d.i. die Zahlen 0, 1. 2, 3, je nachdem

$$[x^0]$$
 gerade, ungerade, ungerade, gerade $[y^0]$ gerade, gerade, ungerade, ungerade

So ist der gesuchte Decident $= \sum t^0$, wo das obere Zeichen für gerade P^0 , das untere für die ungeraden zu nehmen ist.

Dies ist die erste Methode.

2.

Wir wollen nun die einzelnen P^0 nach den Werthen von Y^0 zusammenordnen. Indem wir uns auf den Fall einschränken, wo a, b, A, B positiv sind, ist der kleinste Werth von $Y^0 \dots +1$, der grösste $\frac{1}{4}(A+B-1)$. Für jeden bestimmten Werth von Y^0 müssen die Werthe von X^0 zwischen bestimmten Grenzen liegen, nemlich

I. wenn A - B positiv ist

wenn zwischen und
$$Y < \frac{1}{2}B$$
 $-\frac{BY^{\circ}}{A}$ $\frac{AY^{\circ}}{B}$ $Y = \frac{1}{2}B$ $-\frac{BB}{2A}$ $\frac{1}{2}A$ $\frac{AY^{\circ}}{B}$ $\frac{1}{2}A$ $\frac{AY^{\circ}}{A} + \frac{D}{2A}$ $\frac{AY^{\circ}}{B} - \frac{D}{2B^{\circ}}$ $\frac{BY^{\circ}}{A} + \frac{D}{2A}$

II. Wenn A - B negativ ist.

wenn
$$Y < \frac{1}{4}A$$
 $\frac{AY^{\circ}}{A}$ $\frac{AY^{\circ}}{B}$ $\frac{AY^{\circ}}{B}$ $Y > \frac{1}{4}A$ und $X = \frac{1}{4}B$ $\frac{AY^{\circ}}{B} = \frac{D}{2B}$ $\frac{AY^{\circ}}{B} = \frac{AY^{\circ}}{B}$ $\frac{AB-D}{2B}$ $\frac{AY^{\circ}}{B} = \frac{AY^{\circ}}{A} + \frac{D}{2A}$

In den kleinern Grenzen ist entweder $\xi = 0$ oder $\eta = \frac{1}{4}$, in den grössern Grenzen hingegen entweder $\eta = 0$ oder $\xi = \frac{1}{4}$. Es lässt sich leicht beweisen, dass nie die Grenzen von x ganze Zahlen sind.

3.

Wir wollen nun die Partialsummen für jedes bestimmte Y^0 auf eine andere Weise darstellen. Auf den Grenzen wird p bestimmte Werthe haben, die durch p^* , p^{**} bezeichnet werden mögen, und während X stetig von der einen Grenze zur andern sich ändert, wird p stetig von p^* zu p^{**} übergehen. Allein die in [p] enthaltene ganze Zahl wird hiebei sprungweise geändert, indem immer entweder der reelle oder der imaginäre Theil sich um eine Einheit ändert. Es geschehen die Aenderungen bei den Werthen von X

$$X', X'', X''' \dots X^{\mu}$$

die bereits nach ihrer Grösse geordnet sind und denen die Werthe von p

$$p', p'', p'''$$
...

entsprechen.

Das letzte X^{μ} kann auch mit $X^{\bullet \bullet}$ identisch sein, wenn \mathfrak{G} positiv, oder X' mit X^{\bullet} identisch etc.

Die x sind hier zunehmend, also wenn x^* eine ganze Zahl, wird sie für x^{μ} gezählt.

Die y sind zunehmend bei positiven \mathcal{E} , da wird y^* ganz mitgezählt abnehmend bei negativen \mathcal{E} , da wird y^* mitgezählt.

Die Intensoren von p^* , p^{**} seien λ^* und λ^{**}

der Intensor von
$$p'$$
 an bis $p'' ldots \lambda^* + \delta'$

$$p'' bis p''' ldots \lambda^* + \delta' + \delta''$$

$$p^{\mu} bis p^{**} ldots \lambda^* + \delta' + \delta'' ldots + \delta^{\mu} = \lambda^{**}$$

so wird die Partialsumme, in sofern Yo gerade,

$$= \lambda_{s}^{*}(g-h) + (\lambda^{*} + \delta')(g'-h') + (\lambda^{*} + \delta' + \delta'')(g''-h'') + \text{etc.} + \lambda^{**}(g^{\mu} - h^{\mu})$$

wo g die Anzahl der geraden X^0 von X^* bis X', h die der ungeraden bedeutet.

4

Diese Formel lässt sich auch so darstellen:

$$\lambda^* \left\{ \left[\frac{1}{2} X^* - \frac{1}{2} \right] - \left[\frac{1}{2} X^* \right] \right\} \\ + \delta' \left\{ \left[\frac{1}{2} X' - \frac{1}{2} \right] - \left[\frac{1}{2} X' \right] \right\} \\ + \delta'' \left\{ \left[\frac{1}{2} X'' - \frac{1}{2} \right] - \left[\frac{1}{2} X'' \right] \right\} \\ + \text{ etc.} \\ + \delta^{\mu} \left\{ \left[\frac{1}{2} X^{\mu} - \frac{1}{2} \right] - \left[\frac{1}{2} X^{\mu} \right] \right\} \\ - \lambda^{**} \left\{ \left[\frac{1}{2} X^{**} - \frac{1}{2} \right] - \left[\frac{1}{2} X^{**} \right] \right\}$$

oder durch

II.

$$\lambda^*\epsilon^* + \delta'\epsilon' + \delta''\epsilon'' + \text{ etc. } + \delta^\mu\epsilon^\mu - \lambda^{**}\epsilon^{**}$$

wo allgemein $\epsilon = 0$ wenn [X] ungerade

und = -1 wenn [X] gerade ist und Y gerade +1 wenn [X] gerade und Y ungerade.

б

Für δ hingegen hat man die Werthe

-		`	•
		positiv	negativ
wenn x eine ganze gerade Zahl, $[y]$ $\{y\}$	gerade	— 1	<u> </u>
$[oldsymbol{y}]$:	ungerade	+1	+1
x eine ganze ungerade Zahl, $[y]$ $\{y\}$	gerade	+1	+1
$[oldsymbol{y}]$:	ungerade	—1	1
y eine ganze gerade Zahl, $[x]$	gerade	3	+3
[x]	ungerade	—1	+1
y eine ganze ungerade Zahl, $[x]$ $\{x\}$	gerade	+3	3
[x]	ungerade	+1	-1
		4.	4

5.

Hieraus leiten wir folgende zweite Methode den Decidenten zu bestimmen ab.

- I. Man sammle alle Combinationen von ganzen Werthen von Y und x, die folgende Eigenschaften haben
 - 1. dass $\xi = \frac{Ax + bY}{a}$ zwischen 0 und $\frac{1}{2}$ falle, wobei die zweite Grenze inclusive genommen wird
 - 2. dass $\eta = \frac{-Bx + aY}{a}$ zwischen 0 und + falle, die erste Grenze inclusive genommen.
 - II. Man berechne dafür

$$X = \frac{Dx + 6Y}{a}$$
$$y = \frac{6x + dY}{a}$$

III. Man lasse alle diejenigen weg, wo [X] eine ungerade Zahl ist, und theile die übrigen, wo [X] gerade ist, in zwei Classen;

in die erste Classe setze man diejenigen, wo zugleich

Y gerade, x gerade, [y] gerade oder wo eine dieser Bedingungen Statt findet;

in die zweite Classe diejenigen, wo zwei dieser Bedingungen oder gar keine Statt hat,

oder in I. wo
$$[Y+x+y]$$
 gerade
II. wo $[Y+x+y]$ ungerade

und nenne den Ueberschuss der Anzahl in der ersten Classe über die in der zweiten c.

- IV. Man sammle alle Combinationen von ganzen Werthen von Y und y, die folgende Eigenschaften haben:
 - 1. dass $\xi = \frac{Ay aY}{6}$ zwischen 0 und $\frac{1}{2}$ falle, die erste Grenze inclusive, wenn 6 negativ, die zweite inclusive, wenn 6 positiv;
 - 2. dass $\eta = \frac{-By + bY}{6}$ zwischen 0 und $\frac{1}{2}$ falle, die erste Grenze inclusive bei positivem 6, die zweite bei negativem.

[V.]

[1.]

Modulus
$$M = A + Bi$$
 $AA + BB = D$

Rest $m = a + bi$, $aa + bb = d$
 $\frac{mD}{M} = \mu = \alpha + 6i = aA + bB + (Ab - Ba)i$
 $\xi + \eta i = \pi$, $\pi m = p = x + yi$; $\pi M = P = X + Yi$

w eine unbestimmte unendlich kleine reelle positive Grösse.

[2.]
Vorbereitung.

I. Man sammle alle π , wo

ξ nicht negativ und nicht grösser als ‡
η positiv und kleiner als ‡
Entweder x oder y eine Ganze
Entweder X oder Y eine Ganze

und bestimme für jedes π die Grösse ϵ nach folgender Regel:

Es sei p^{0} die nächste Ganze durch 1+i theilbare bei p P^{0} die nächste Ganze durch 1+i theilbare bei P

und setze $\epsilon = \pm 1$, wo das Zeichen immer dasselbe ist wie das Zeichen des imaginären Theils der Grösse

$$\frac{p-p^{\bullet}}{P-P^{\bullet}}(\alpha-6i)$$

folgendes sind die Specialregeln: Erste Classe, x und X Ganze

$$6\xi = -Bx + bX$$

$$6\eta = -Ax + aX$$

$$6y = -ax + dX$$

$$6Y = -Dx + aX$$

 $\epsilon = -1$, wenn 6 positix, x gerade, [y] gerade, X gerade, [Y] gerade oder wenn nur eine ungerade Anzahl dieser Bedingungen gilt.

€ = +1, wenn keine oder eine gerade Anzahl dieser Bedingungen gilt.

Zweite Classe, y und Y Ganze

$$egin{aligned} 6\xi &= +Ay - aY \ 6\eta &= -By + bY \ 6x &= +ay - dY \ 6X &= +Dy - aY \end{aligned}$$

 $\varepsilon = -1$, wenn \mathcal{E} positiv, [x] gerade, y gerade, [X] gerade, Y gerade oder wenn eine ungerade Anzahl dieser Bedingungen gilt.

 $\varepsilon = +1$, wenn keine oder eine gerade Anzahl gilt.

Dritte Classe, y und X Ganze

$$\alpha\xi = +By+aX$$

$$\alpha\eta = +Ay-bX$$

$$\alpha x = -6y+dX$$

$$\alpha Y = +Dy-6X$$

 $\epsilon = -1$, wenn α positiv, [x], y, X, [Y] alle Gerade oder wenn eine ungerade Anzahl dieser Bedingungen gilt.

€ = +1, wenn keine oder eine gerade Anzahl Statt hat.

Vierte Classe, x und Y Ganze

$$\alpha\xi = +Ax+bY$$

$$\alpha\eta = -Bx+aY$$

$$\alpha y = +6x+dY$$

$$\alpha X = +Dx+6Y$$

 $\mathbf{e} = +1$, wenn α positiv, x, [y], [X], Y alle Gerade oder bei einer ungeraden Anzahl dieser Bedingungen.

€ = -1, bei keiner oder einer geraden Anzahl derselben.

[3.]

II. Man sammle alle π , wo

 ξ positiv und kleiner als $\frac{1}{2}$ $\eta = \omega$ und entweder X oder Y eine Ganze,

und setze e = +1 so dass das Zeichen des imaginären Theils von

$$\frac{M}{P-P^0}$$

zu nehmen ist.

Specialregel: Erste Classe, X ganz

$$A\xi = + X + B\omega$$
 $Ax = + aX - 6\omega$
 $Ay = + bX - a\omega$
 $AY = + BX + D\omega$

- $\epsilon = -1$, wenn A positiv, X und [Y] gerade oder wenn nur eine Bedingung gilt.
- $\epsilon = +1$, wenn keine oder zwei gelten.

Zweite Classe, Y ganz

$$B\xi = + Y - A\omega$$

$$Bx = + aY - a\omega$$

$$By = + bY - b\omega$$

$$BX = + AY - D\omega$$

- e = +1, wenn B positiv, [X] und Y gerade oder wenn nur eine Bedingung gilt.
- € = -1, wenn keine oder zwei gelten.

[4.]

III. Man sammle alle π , wo

 ξ und η denselben Bedingungen unterworfen sind wie in II. entweder x oder y Ganze,

und setze & = +1 mit dem Zeichen des imaginären Theils von

$$\frac{m}{p-p^{\bullet}}$$

Specialregeln: Erste Classe, x ganz

$$a\xi = + x + b\omega$$

$$ay = +bx + d\omega$$

$$aX = +Ax + b\omega$$

$$aY = +Bx + a\omega$$

- $\mathbf{z} = -1$, wenn a positiv, x, [y] beide gerade oder wenn nur eine Bedingung gilt.
- = +1, wenn keine oder zwei gelten.

Zweite Classe, y ganz

$$b\xi = + y - a\omega$$

$$bx = + ay - d\omega$$

$$bX = + Ay - a\omega$$

$$bY = + By + b\omega$$

- $\mathbf{z} = +1$, wenn b positiv, [x] und y gerade oder wenn nur eine Bedingung gilt.
- € = -1, wenn keine gilt.

[5.]

IV. Man sammle alle π , wo

$$\xi = \frac{1}{2} + \frac{1}{2}\omega$$
 η positiv und kleiner als $\frac{1}{2}$
 X oder Y ganz,

und setze e = +1 mit dem Zeichen des imaginären Theils von

$$\frac{iM}{P-P^4}$$

Specialregeln: Erste Classe X eine Ganze,

$$2B\eta = +A - 2X + A\omega$$

$$2Bx = -6 + 2bX - 6\omega$$

$$2By = +\alpha - 2aX + \alpha\omega$$

$$2BY = +D - 2AX + D\omega$$

- $\bullet = +1$, wenn B positiv, X, [Y] gerade oder bei einer Bedingung,

Zweite Classe, Y eine Ganze

$$2A\eta = -B + 2Y - B\omega$$

$$2Ax = +\alpha - 2bY + \alpha\omega$$

$$2Ay = +6 + 2aY + 6\omega$$

$$2AX = +D - 2BY + D\omega$$

 $\epsilon = +1$, wenn A positiv, [X], Y gerade, oder bei einer

ε = -1, bei keiner oder zwei Bedingungen.

[6.]

V. Man sammle alle π , wo

 ξ , η denselben Bedingungen unterworfen sind wie in IV, und wo x oder y eine ganze Zahl,

und setze $\epsilon = \pm 1$ mit dem Zeichen des imaginären Theils von

$$\frac{im}{p-p^{\circ}}$$

Specialregeln: Erste Classe, x eine Ganze

$$2b\eta = +a - 2x + a\omega$$

$$2by = +d - 2ax + d\omega$$

$$2bX = +6 + 2Bx + 6\omega$$

$$2bY = +\alpha - 2Ax + \alpha\omega$$

e = +1, wenn b positiv, x, [y] gerade oder bei einer Bedingung,

€ = -1, bei keiner oder zwei Bedingungen.

Zweite Classe, y eine Ganze

$$2a\eta = -b + 2y - b\omega$$

$$2ax = +d - 2by + d\omega$$

$$2aX = +\alpha - 2By + \alpha\omega$$

$$2aY = -6 + 2Ay - 6\omega$$

 $\epsilon = +1$, wenn a positiv, [x], y gerade, oder bei einer Bedingung,

[7.]

Die erste Methode gibt nun folgendes Resultat:

Hier ist

für
$$AB$$
 | $Q =$
+ + | —Intens. + $\mu\omega i$ + Int. $\frac{1}{2}m$ — $\mu\omega i$
+ - | —Intens. + $\mu\omega i$ + Int. $\frac{1}{2}mi$ — $\mu\omega i$
— — | —Intens. — $\mu\omega i$ — Int. $\frac{1}{2}mi$ + $\mu\omega i$
— + | —Intens. — $\mu\omega i$ — Int. $\frac{1}{2}mi$ + $\mu\omega i$

folgende Tabelle stellt dies dar

$$\alpha$$
 6
 A B
 A B
 A B
 A B
 $+++$
 $++$
 $+ - -+$
 $++$
 $++$
 $++$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$
 $-+$

Pars prior ipsius

$$2Q ... -3 - (\alpha GAB) + (A\alpha) + (AG) + (B\alpha) - (BG)$$

Das ganze 2 Q für

$$\frac{m-1}{2} \text{ impar } -3+4(A)-(B)-(B)+(\alpha A)+(\alpha B)+(BA)-(BB)-(\alpha BAB)$$

$$\frac{m-1}{2} \text{ par } -3 + 2(A) + (B) + (6) + (\alpha A) + (\alpha B) + (6A) - (6B) + 2(6AB) - (\alpha 6AB)$$

Beispiel

[8.]

Wir wollen nunmehro das Resultat von I näher betrachten. Es sind vier Combinationen

1°, wenn x und X Ganze sind. Man hat hier

$$egin{aligned} egin{aligned} eta &= -Bx + bX \ eta &= -Ax + aX \ eta y &= -lpha x + dX \ eta Y &= -Dx + lpha X \end{aligned}$$

Es seien y^0 und Y^0 die absolut kleinsten Reste von $-\alpha x + dX$, $-Dx + \alpha X$ nach dem Modulus δ und $\delta y = \delta y' + y^0$, $\delta Y = \delta Y' + Y^0$ und man setze

$$6u = -By^0 + bY^0$$
 $y^0 = +au - bt$
 $6t = -Ay^0 + aY^0$ $Y^0 = +Au - Bt$

so werden t, u ganze Zahlen sein, nemlich

$$-u+ti = M(x+y'i)-m(X+Y'i)^*$$

 $i(t+ui) = Mi(y'-y)-mi(Y'-Y)$

und man hat dann $\varepsilon = -1$, wenn t+u gerade, δ , y^0 , Y^0 positiv, oder wenn zwei oder keine Bedingung gilt. sonst $\varepsilon = +1$ Wir setzen

$$t+ui = +\theta$$
 wenn y^0 und Y^0 beide positiv
 $-\theta$ y^0 und Y^0 beide negativ
 $+\theta'$ y^0 positiv Y^0 negativ
 $-\theta'$ y^0 negativ Y^0 positiv

jedem durch 1+i theilbaren θ entspricht dann ein $\epsilon = -1$ jedem durch 1+i theilbaren θ' $\epsilon = +1$ jedem durch 1+i untheilbaren θ $\epsilon = +1$ jedem durch 1+i untheilbaren θ' $\epsilon = -1$

insofern 6 positiv.

Für negative 6 ist es umgekehrt.

[9.]

 2^0 , wenn y und Y Ganze. Es seien hier x', X' die nächsten Ganzen bei x und X, und

$$x-x'=\frac{x^0}{6}, \quad X-X'=\frac{X^0}{6}$$

und man setze

$$6(t+ui) = -Mx^0 + mX^0 = -Mp^0 + mP^0, \quad t+ui = Mp' - mP'$$
d. i.

$$6t = -Ax^{0} + aX^{0} \qquad x^{0} = -bt + au$$

$$6u = -Bx^{0} + bX^{0} \qquad X^{0} = -Bt + Au$$

Man hat dann

 $\varepsilon = -1$, wenn 6 positiv, x^0 positiv, X^0 positiv, t+u gerade etc.

Wir setzen

$$t+ui = +\theta$$
 wenn x^0 und X^0 positiv $+\theta''$

$$= -\theta$$
 wenn beide negativ $-\theta''$

$$= +\theta'$$
 wenn x^0 positiv, X^0 negativ $-\theta$

$$= -\theta'$$
 wenn x^0 negativ, X^0 positiv $+\theta$

wo für ε dieselbe Regel gelten wird wie oben

Man kann nun beweisen

- 1) Dass alle θ , die aus (1) und aus (2) hervorgegangen sind, unter einander verschieden sind. Ihr Complexus heisse θ .
- 2) Dass alle $\theta = T + Ui$ die Eigenschaft haben, dass

$$-bT+aU$$

$$-BT+AU$$

positive Zahlen kleiner als 46 sind

- 3) Dass wenn T, U zwei der eben genannten Bedingungen unterworfene ganze Zahlen sind, T+Ui sich gewiss in θ findet. (wie denn? es wird auf obige Gleichung * gegründet.)
- 4) Auf ähnliche Weise verhält es sich mit θ' , deren Complexus θ' aus denjenigen Zahlen T'+U'i bestehen wird, für welche

$$-bT'+aU'$$

$$-(-BT'+AU')$$

positive Zahlen kleiner als 46.

In unserm Falle ist

Hier ist

$$\theta = -\cdot M + \cdot m$$

$$\theta' = -\cdot M - \cdot m$$

$$\theta'' = +\cdot Mi + \cdot m$$

$$\theta''' = +\cdot Mi - \cdot m$$

[10.]

 3° . y und X Ganze. Es seien x', Y' die nächsten Ganzen bei x und Y, und

$$x'+y''=p', X+Y''=P'; p-p'=\frac{p^{\circ}}{a}, P-P'=\frac{p^{\circ}}{a}$$

und man setze

$$i(t+ui) = Mp' - mP' = -\frac{Mp^0}{a} + \frac{mP^0}{a} = -\frac{Mx^0}{a} + \frac{miY^0}{a}$$
 d. i.
 $\alpha t = -Bx^0 + aY^0$ so ist $x^0 = -bt + au$
 $\alpha u = +Ax^0 + bY^0$ $Y^0 = +At + Bu$

Man hat dann

 $\epsilon = -1$, wenn α positiv, x^0 positiv, Y^0 positiv, t + u gerade etc.

Wir setzen

$$t+ui = +\theta''$$
 wenn x^0 positiv, Y^0 positiv $+\theta'$

$$= +\theta'''$$
 wenn x^0 positiv, Y^0 negativ $-\theta''$

$$-\theta''$$
 wenn x^0 negativ, Y^0 negativ $-\theta'$

$$-\theta'''$$
 wenn x^0 negativ, Y^0 positiv $+\theta'''$

Es wird also für jedes $\theta'' \dots \epsilon = -1$ $\theta''' \dots \epsilon = +1$

insofern θ'' oder θ''' durch 1+i theilbar und α positiv.

[11.]

4^{te} Classe x und Y Ganze. Nach ähnlichen Praemissen wie in 3 setze man

$$-(t+ui) = Mp' - mP' = -\frac{Mp^{\circ}}{a} + \frac{mP^{\circ}}{a} = -\frac{Miy^{\circ}}{a} + \frac{mX^{\circ}}{a}$$

$$\alpha t = -By^{\circ} - aX^{\circ} \qquad y^{\circ} = -bt + au$$

$$\alpha u = +Ay^{\circ} - bX^{\circ} \qquad X^{\circ} = -At - Bu$$

Man hat dann

e = +1 wenn α positiv, y^0 positiv, X^0 positiv, t+u gerade etc.

Wir setzen

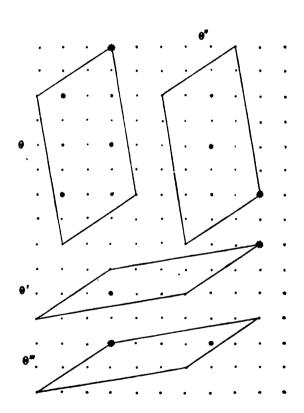
$$t+ui = +\theta''$$
 wenn y^0 positiv X^0 negativ
 $+\theta'''$ wenn y^0 positiv X^0 positiv
 $-\theta'''$ wenn y^0 negativ X^0 positiv
 $-\theta'''$ wenn y^0 negativ X^0 negativ

für e gilt dann die Regel, dass (wie oben in 3), insofern a positiv

Der Complexus aller θ'' aus 3 und 4, den wir durch θ'' bezeichnen, besteht also aus allen Zahlen T+Ui, wofür

$$\begin{array}{c} -b\ T+a\ U\\ \text{und}\ +A\ T+B\ U \end{array} \begin{array}{c} \text{positiv und kleiner als}\ \ \frac{1}{2}\alpha\\ \text{der Complexus aller}\ \ \theta'''\ \dots\ (\theta''')\ \ \text{aus denen, wo}\\ -b\ T+a\ U\\ -A\ T-B\ U \end{array} \begin{array}{c} \text{positiv und kleiner als}\ \ \frac{1}{2}\alpha \end{array}$$

[12.]


Nach obiger Verbesserung heisst also die Regel so: Es enthalte

insofern resp. 6 oder α positiv.

$$\theta$$
 alle Zahlen $T+Ui$, wo $+bT-aU$ positiv $-BT+AU$ positiv und $<\frac{1}{2}\delta$ θ' alle Zahlen $T+Ui$, wo $-bT+aU$ positiv $+AT+BU$ positiv und $<\frac{1}{2}\delta$ θ'' alle Zahlen $T+Ui$, wo $-bT+aU$ positiv $-BT+AU$ positiv und $<\frac{1}{2}\delta$ θ''' alle Zahlen $T+Ui$, wo $+bT-aU$ positiv $+AT+BU$ positiv und $<\frac{1}{2}\delta$

Für alle durch		wenn
1+i theilbaren	£ ==	
0	+1	6 positiv
θ'	—1	a positiv
θ"	1	6 positiv
θ‴	+1	α positiv

$$\begin{array}{c|c|c|c} \theta & \theta' & \theta'' & \theta'' & \theta''' \\ 0-i & -1 & +2-i & +1 & +1 & +1 & +1 & -1 & -1 \\ 0-2i & +1 & +3-i & -1 & +1+i & -1 & -1 & -2 & +1 \\ +1-i & +1 & +1 & +1 & +1+2i & +1 & -2 & +1 \\ +1-3i & +1 & +1 & +1 & +1 & +1 & +1 \end{array}$$

[13.]

Hieraus fliesst folgende Regel. Es sei das Resultat aus den Vorschriften

II ...
$$G$$
, III ... g , IV ... H , V ... h

So ist

$$4\theta = R = 0$$

$$4\theta' = -g + G - h - H + R'$$

$$4\theta'' = -2g + 2G + R''$$

$$4\theta''' = -g + G + h + H + R'''$$

In unserm Beispiele ist

$$G=0$$
, $g=-1$, $H=-1$, $h=+2$, $R'=0$, $R''=+2$, $R'''=-2$
 $4\theta=0$, $4\theta'=+1-1+0=0$, $4\theta''=+2+2=+4$, $4\theta'''=+1+1-2=0$

und die Correctionen R, R' etc. werden so bestimmt: Es ist

$$R = \begin{cases} -(6) + \frac{1}{2}(\alpha 6) + \frac{1}{2}(\alpha 6 a b A B) \\ -\frac{1}{2}(b) - \frac{1}{2}(B) \\ +(6) - \frac{1}{2}(\alpha 6) - \frac{1}{2}(\alpha 6 a b A B) \\ +\frac{1}{2}(b) + \frac{1}{2}(B) \end{cases}$$

$$R' = \begin{cases} +(\alpha) - \frac{1}{2}(\alpha 6) + \frac{1}{2}(\alpha 6 a b A B) \\ -\frac{1}{2}(b) - \frac{1}{2}(A) \\ 0 \\ -\frac{1}{2}(a) + \frac{1}{2}(B) \end{cases}$$

$$R'' = \begin{cases} +(6) + \frac{1}{2}(\alpha 6) + \frac{1}{2}(\alpha 6 a b A B) \\ -\frac{1}{2}(b) + \frac{1}{2}(B) \\ +(6) + \frac{1}{2}(\alpha 6) + \frac{1}{2}(\alpha 6 a b A B) \\ -\frac{1}{2}(b) + \frac{1}{2}(A) \\ 0 \\ +\frac{1}{2}(a) + \frac{1}{2}(A) \end{cases}$$

$$R''' = \begin{cases} -(\alpha) - \frac{1}{2}(\alpha 6) + \frac{1}{2}(\alpha 6 a b A B) \\ -\frac{1}{2}(b) + \frac{1}{2}(A) \\ 0 \\ +\frac{1}{2}(a) + \frac{1}{2}(A) \end{cases}$$

wo die in Parenthese stehenden Grössen blos die Zeichen hergeben.

Es ist also

$$R+R'+R''+R'''=2(\alpha \delta ab AB)-2(b)+2(B)+2(\delta)$$

folglich

$$\begin{array}{l} \theta + \theta' + \theta'' + \theta''' = -g + G + \frac{1}{2} (\alpha \operatorname{dab} A B) + \frac{1}{2} (\theta) - \frac{1}{2} (b) + \frac{1}{2} (B) \\ = -g + G + S \end{array}$$

ab	+	+	_	+			+	
$\overline{A B}$	αб	S	а б	S	аб	S	αб	S
++	++	+1	-+	+1		+1	+-	+1
-+	+-	0 —1	++	+1 -1	-+ ++	+2 +1		+1 +1
		1 1	+	—1 —2	++	+1 1	 + ++	+1
+-	- + + +		 -	-1 -1	+-	0 —1	++	+1 -1

[14.]

Hienach bekommt nun die erste Regel folgende Gestalt:

4 Dec. = I.
$$-4\Sigma\epsilon$$
 von denen, wo y ganz, $[x]$ gerade

II. $+4\Sigma\epsilon$ von denen, wo $[x]$ gerade, $[y]$ ungerade

III. $-\Sigma\epsilon$ von allen

IV. $+4\Sigma\epsilon$ von denen, wo nicht zugleich $[x]$ und $[y]$ gerade

 $+Q+S$

In unserm Beispiel

$$\begin{array}{cccc}
I & \dots & 0 \\
II & \dots & -4 \\
III & & +1 \\
IV & & 0 \\
Q & & -5 \\
S & & 0 \\
\hline
 & -8 \\
\end{array}$$

Man denke sich nun in III diejenigen besonders bemerkt, wo y ganz, [x] gerade, so ist

IL.

III.
$$\Sigma \varepsilon$$
 von allen $-4\Sigma \varepsilon$ der besonderen = Intensor $(\frac{1}{2}-\omega)m$ — Intens. $\omega m = -W$

Hier ist

$$W = \begin{vmatrix} a & b \\ + + & -3 & -1 \\ - + & -2 & 0 \\ - - & +2 & 0 \\ - + & +3 & +1 \\ \frac{m-1}{2} & \frac{m-1}{2} \end{vmatrix}$$
par impar

Also

4 Decident = I.
$$-4\Sigma\epsilon$$
 y ganz, [x] gerade
II. $+4\Sigma\epsilon$ [x] gerade, [y] ungerade
III. $-4\Sigma\epsilon$ y ganz, [x] gerade
IV. $+4\Sigma\epsilon$ alle wo nicht zugleich [x], [y] gerade
 $+Q+S+W$

Tabelle für +(Q+S+W)

[15.]

Die zweite Methode ist folgende:

Decident = I. +
$$\Sigma \epsilon$$
, wo Y ganz, [X] gerade
-4 $\Sigma \epsilon$, unter diesen, wo noch y ganz, [x] gerade

II.
$$+ \sum \lambda \epsilon$$
, wo Y ganz, [X] gerade; λ ist der Intensor von p

II. —
$$\sum \lambda' \epsilon$$
, wo X ganz, [Y] ungerade

$$\lambda'$$
 der Intensor von $ip = 1, 2, 3, 0$

wenn
$$\lambda = 0, 1, 2, 3$$

IV.
$$+$$
 $\Sigma \lambda \epsilon$, wo Y ganz, $[X]$ gerade, λ der Intensor von p

IV.
$$+ \sum \lambda' \epsilon$$
, wo X ganz, [Y] gerade

$$\lambda'$$
 der Intensor von $im - ip = 0 3 2 1$

wenn Int.
$$p = 0 1 2 3$$

$$+q$$

Hier ist q = 0, wenn $\frac{M-1}{2}$ ungerade i.e. nur durch 1 + i, nicht durch 2 theilbar, und nicht zugleich AB + -, hingegen übrigens

wo doppelte Zahlen stehen, gilt die erste für gerade $\frac{m-1}{2}$, die andere für ungerade.

II. desunt. IV.
$$X \begin{vmatrix} 12x \\ 0 \end{vmatrix} + 20 + 20 \omega \begin{vmatrix} -9 \\ -37 \end{vmatrix} - 1 \begin{vmatrix} 2 \\ 2 \end{vmatrix} \begin{vmatrix} 2 \\ -2 \end{vmatrix} + 1 \begin{vmatrix} +24 \\ +28 \end{vmatrix} + 20 \omega \begin{vmatrix} -3 \\ -3 \end{vmatrix} \begin{vmatrix} -39 \\ +1 \end{vmatrix} \begin{vmatrix} -1 \\ 0 \end{vmatrix} \begin{vmatrix} 0 \\ 0 \end{vmatrix} = 0$$

Was aus II genommen ist, vereinigt sich in folgendes Resultat

II. — Σε, wo Y ganz, [X] gerade
+4Σε, von eben diesen, wenn zugleich [x] gerade, [y] ungerade
II. + Σλ'ε, wo Y ganz, [X] gerade
— Σλ'ε, wo X ganz, [Y] ungerade, λ' der Intensor von ip

Die beiden letzten Theile vereinigen sich wiederum in

III.
$$+ \Sigma \varepsilon$$
, wo [X] gerade, [Y] ungerade $-4\Sigma \varepsilon$, wenn zugleich x eine Ganze, [y] ungerade $+r+s$

wo
$$r = 0$$
, wenn $AB \dots \left\{ \begin{array}{l} + + \\ - + \\ - - \end{array} \right.$

und $r = Int.\omega mi$, wenn AB...+

 $s = -\operatorname{Int}(\frac{1}{2} - \omega)mi$, wenn $\frac{M-1}{2}$ gerade und B positiv, in allen andern Fällen = 0

In unserm Beispiele

III. Fällt aus. r = 0, s = 0

Was aus IV genommen ist, vereinigt sich in folgende Resultate

IV. $+4\Sigma\epsilon$, wo Y ganz, [X] gerade und nicht zugleich [x] gerade, [y] gerade $-\Sigma\lambda'\epsilon$, wo Y ganz, [X] gerade $+\Sigma\lambda'\epsilon$, wo X ganz, [Y] gerade wo λ' Int. von im-ip

Die zwei letzten Theile vereinigen sich wiederum zu

V. $+ \Sigma \varepsilon$, we nicht zugleich [X] und [Y] gerade $-4\Sigma \varepsilon$, we zugleich x eine Ganze, [y] gerade +w

Hier ist w = 0, wenn $\frac{M-1}{2}$ gerade und A positiv; in allen übrigen Fällen = - Intensor $(\frac{1}{2}i + \omega)m$

In unserm Beispiele

$$\begin{array}{c|c}
V. \\
y & 6x & 6X & 6Y & \epsilon \\
0 & +13 & +9 & -20 & +1
\end{array}$$

$$w = -2$$

Tafel für q, r, s, w und deren Summe.

a b	AB	αb	$\frac{M-1}{2}$	ger.	$\frac{m-1}{2}$	ger.	<u>M</u>	ung	;. <u>m-</u>	-1 — g€	er.	<u>M-1</u>	ger.	<u>m—1</u>	ung.	<u>M-1</u>	ung.	$\frac{m-1}{2}$	ung.
++			0	0	0	o + 3 o o	l o	0	0	0	0	+ 1 + 2	o —	2	0 0	0	0	0 — 2 0 — 2	- 2
	-+	+-	0	0	0	0 0 0 0 0 3 0 0	0	0	0	o o	0	0	e —	2	2 - 4	0	0	o — 2 o — 2	- 2 - 2
		 	— 3	0	0	o — 3	0	0	0	0	0	— I	0	o —	2 - 3	0	0	0 2	- 2
	+-	-+	— r -	 I	0	0 0	- 1	+ 1	0	0	0	- 2 - 1 +	- I	0	0 0	- 1	+ 1	0 2	— 2 — 2
		++	0-	+ 1	0	0 † 1	•	+ t	0	• +	· I	o +	- I	0	0+1	0-	+ 1	0 — 2	— r
-+	++	-+	+ 3	0	0	0+3	0	0				+ 1						o — 3	
		++	+ 3	0	° —	0 + 3	0	0	0 —	I —	- I - T	+ 1	0 —	2	0 — I	0		o — 3 o — 3	
	-	++	0	o	ò	1 — 1 1 — 1	0	0	o —	ı —	- I	0	o	. 2	3 5	0		o — 3	
		+-	— 3	0	0 —	1-4	0	0	o —	<u> </u>	·I	— I	0	0 -	3-4	0	0	o — 3	— 3
	+-		- 3 - 2 -	↓ 2	0	0 0	- 2	+ 2	0-	ı —	. I	- 1 - 2 -	- 2.	0	3 - 4	- 2	+ 2	o 3 o 3	— 3 — 3
		 +	— I -	2	0	0 + z	- 1	+ 2	o —	I	0	— z 4	- 2	0	0 + 1	- 1 -	+ 2	o — 3	— ž
	++	. — —	0	0-	- I	o — 1	0	0	<u>•</u> —	<u> </u>	· 1	+ 2	o —	3	o — 1	0		o — 3	
	-+	-+ -+	T 3	0-	- I	1 - 2	0	0	°-	ı —	. 1	- 1	0-	3 . 3 -	3 - 6		0	o — 3 o — 3	— 3 — 2
		++	0	۰-	- I	I - 2	0	0	о —	1 —	I	0	o —	3	3 — 6	0	0	o — 3	— 3
		+ + + -	- 3	0	o 	1 — 1	0	0				— 2 — 1							
	+-	+-	— 3 -	 3	0	0 0	— 3	+ 3	o —	I -	- I	- 3 4	- 3	0	0 0	- 3 -	+ 3	o — 3	- 3
			- 2 -	+ 3	0	0 + 1	- 2	+ 3	o —	I	0	2 -	- 3	0	0+1	-2-	+ 3	o 3	— 2
+-	++	<u>+ -</u>	0	o —		o — 1				0		+ 2 + 2			0 — 1			0 — 2	
	-+		o	0 -	. 1	0 — I						0			0 — I 2 — 5			o — 2 o — 2	
	•	 -+ -+	0	o —	· I	o — 1	0	0	0	0	0	0	o	3 -	2 — 5	0	0	0 2	- 2
		- + +	0	0	0	0 0						— 2 — 2	0	0-	2 - 4	0		0 2	
	+-	++	0	0	0	0 0						0			2 — 4 0 0			0 — 2 0 — 2	
	•	+-	— 3	0	0	o — 3		0	0			— 3	0	0	o — 3	 3	0	o — 2	— 5

[16.]

Es ist folglich

Dec.
$$\frac{m}{M}$$
 — Dec. $\frac{M}{m}$ =

I. $-4\Sigma \varepsilon$, wo y, Y ganz, [x], [X] gerade

II. $+4\Sigma\epsilon$, Y ganz, [X] gerade, [x] gerade, [y] ungerade

III. $-4\Sigma\varepsilon$, x ganz, [X] gerade, [Y] ungerade, [y] ungerade

IV. $+4\Sigma\epsilon$, Y ganz, [X] gerade, und nicht zugleich [x], [y] gerade

V. $-4\Sigma\varepsilon$, x ganz, [y] gerade und nicht zugleich [X], [Y] gerade $+\psi$

Hier ist ϕ in folgender Tabelle dargestellt

Hier gelten die ersten beiden Columnen für $\frac{1}{2}(M-1)$ gerade

letzten beiden

für $\frac{1}{2}(M-1)$ ungerade

die erste und dritte

für ½ (m —1) gerade

zweite und vierte

für $\frac{1}{2}(m-1)$ ungerade

[17.]

Die 128 Fälle, welche in obiger Tafel bei der Bestimmung von ψ unterschieden sind, lassen sich viel kürzer auf folgende Weise umfassen:

$$\psi = k + l$$

k = -4, wenn zugleich a, A, a, b, B, 6 die Zeichen +++-- haben, sonst immer

$$k = 0$$

Zu versuchen ist noch, ob es vortheilhafter ist, A und a positiv, dagegen aber $m \equiv 1$, $M \equiv 1$ nur nach mod. 2 (nicht nach Modulus 2+2i) zu nehmen. Das Endresultat muss werden

Alles nach Mod. 4.

[VI.]

THEORIE DER BIQUADRATISCHEN RESTE.

1.

Eine Reihe ganzer complexer Zahlen φ , φ' , φ'' u. s. w. sei so beschaffen, dass erstlich sie unter einander alle incongruent sind nach dem Modulus $\mu = \alpha + \delta i$, α und δ ganze reelle Zahlen bezeichnend, zweitens dass jede ganze complexe Zahl einer von jenen nach dem Modulus μ congruent ist. Unter dieser Voraussetzung heisst der Inbegriff der Zahlen φ , φ' , φ'' u. s. w. ein vollständiges Restsystem für den Modulus μ . Es ist bewiesen, dass die Anzahl der darin begriffenen Zahlen der Norm von μ , d. i. der Zahl $\alpha\alpha + \delta\delta$ gleich ist, welche mit ν bezeichnet werden soll.

2.

Unter den Zahlen φ , φ' , φ'' u. s. w. ist Eine durch μ theilbare; wird dieselbe ausgeschlossen und der Inbegriff der übrigen mit χ bezeichnet, so bildet χ ein vollständiges System der durch den Modulus untheilbaren Reste, deren Anzahl = v-1. Beschränken wir die Untersuchung auf ungerade Modulen, so ist v-1 durch 4 theilbar. Es werden dann ferner f, if, -f, -if unter sich incongruent sein, folglich diejenigen Zahlen in χ , welche resp. denen if, -f, -if congruent sind, unter sich und von f verschieden. (Associirte und zusammengesetzte Zahlen.)

Hieraus ergibt sich eine Zerlegung von χ in vier Gruppen oder partielle Systeme x, x', x'', x'''. Man setzt eine beliebige Zahl aus χ , z. B. φ in die Gruppe x, und die drei den Zahlen $i\varphi$, $-\varphi$, $-i\varphi$ congruenten Glieder von χ , der Reihe nach in die Gruppen x', x'', x'''. Nachdem diese vier Zahlen aus χ gestrichen sind, setzt man eine beliebige der übrigen wieder in x, und die drei auf ähnliche Art davon abhängigen in x', x'', x'''. So fährt man fort, bis das ganze System χ vertheilt ist. Die Gruppen x, x', x'', x''' sollen zusammengehörige Viertelsysteme heissen. Es ist klar, dass sie folgende Eigenschaften haben:

- 1) Jedes Viertelsystem besteht aus $\pm (v-1) = \pm (\alpha\alpha + \delta\delta 1)$ Zahlen.
- 2) Das Charakteristische eines Viertelsystems ist, dass keine der darin befindlichen Zahlen weder selbst, noch ihr Product in i, —1, oder —i, einer andern aus demselben Viertelsystem congruent ist, jede durch μ nicht theilbare Zahl aber, entweder selbst oder ihr Product durch i, —1, oder —i sich darin findet, oder einer daraus congruent ist.
- 3) So wie aus der Multiplication der Zahlen in x mit i, —1 und —i, resp. die Zahlen in x', x", x" entstehen, oder ihnen congruente, so reproducirt die Multiplication der Zahlen in x', mit jenen Factoren, resp. die Zahlen in x", x"', x; die Multiplication der Zahlen x" reproducirt auf ähnliche Weise die Zahlen x"', x, x'; endlich die Multiplication der Zahlen x" reproducirt x, x', x". Kürze halber kann diese gegenseitige Abhängigkeit der vier Viertelsysteme so ausgedrückt werden x' ≡ ix, x" ≡ -x ≡ ix', x" ≡ ix" ≡ -x' ≡ -ix.

3.

Wenn m eine complexe ganze Zahl bedeutet, die mit μ keinen gemeinschaftlichen Divisor hat, und die sämmtlichen Zahlen eines Viertelsystems κ mit m multiplicirt werden, so bilden die Producte, oder beliebige ihnen congruente Zahlen ihrerseits auch ein Viertelsystem; und ebenso entstehen durch Multiplication der Zahlen der Systeme κ' , κ'' , κ''' noch drei Viertelsysteme, die mit jenem zusammengehören werden. Der Beweis ist leicht zu führen. Diese vier neuen Systeme mögen mit $m\kappa$, $m\kappa'$, $m\kappa''$, $m\kappa'''$ bezeichnet werden, gleichviel, ob die Producte selbst oder nur ihnen congruente Zahlen gewählt werden. Im letztern Fall kann dies so geschehen, dass man immer nur solche wählt, die sich in einem der Systeme κ , κ' , κ'' , κ''' befinden. Auf diese Art ist also das System κ , wenigstens allgemein zu reden, auf zwei verschiedene Arten in Viertelsysteme zerlegt. Nehmen wir an, dass $m\kappa$ gemeinschaftlich hat

mit $x \dots \lambda$ Zahlen $x' \dots \lambda'$ Zahlen $x'' \dots \lambda''$ Zahlen $x''' \dots \lambda'''$ Zahlen

so wird auch x' mit mx', x" mit mx'', x" mit mx''' gemein haben λ Glieder; II.

x" mit mx', x" mit mx'', x mit mx''', λ' Glieder u. s. w. Es sei & der kleinste Rest von $\lambda' + 2\lambda'' + 3\lambda'''$ nach dem Modulus 4, oder & eine der vier Zahlen 0, 1, 2, 3, je nachdem $\lambda' + 2\lambda'' + 3\lambda'''$ von der Form 4n, 4n + 1, 4n + 2, 4n + 3 ist. Ich behaupte nun, dass & von der Anordnung des Viertelsystems x unabhängig ist.

Um die Beweisführung zu erleichtern, bediene ich mich folgender Bezeichnung. $\Pi\psi$ soll die Zahl 0, 1, 2. 3 bezeichnen, je nachdem die durch μ nicht theilbare Zahl ψ sich (selbst oder durch Congruenz Repräsentation) in der Gruppe x, x', x'', x''' befindet. Von selbst hat man daher die Folge

- I. $\Pi(i\phi) \equiv 1 + \Pi \psi \pmod{4}$.
- II. Die Zahl $i^{-\Pi\psi}$. ψ findet sich, entweder selbst oder durch Congruenz Repräsentation in der Gruppe x.
- III. $\Sigma \Pi m \phi \equiv \epsilon$, (mod. 4), wenn die Summation über alle in x befindliche Glieder ϕ erstreckt wird.

Es sei nun k ein anderes Viertelsystem, bestehend aus f, f', f'' u. s. w., während x aus $\varphi, \varphi', \varphi''$ u. s. w. besteht. Ich setze voraus, was erlaubt ist, da die Ordnung der Glieder in x willkürlich, dass f mit φ identisch oder zusammenhängend ist, f' mit φ' , f'' mit φ'' u. s. w. Die mit k zusammenhängenden Viertelsgruppen seien $k'(\equiv ik)$, $k''(\equiv -k)$, $k'''(\equiv -ik)$. Es habe ferner die Charakteristik P in Beziehung auf die Gruppen k, k', k'', k''' dieselbe Bedeutung wie Π in Beziehung auf x, x', x'', x''', so dass $P\psi = 0, 1, 2, 3$, je nachdem ψ zu k, k', k'', k''' gehört.

Es wird demnach, wenn man von der Vertheilung der χ in die Viertelsysteme k, k', k'', k''' anstatt von x, x', x'', x''' ausgeht, an die Stelle von x treten der kleinste Rest von x treten x treten

Wir schreiben diese Grösse so

$$Pmf + Pmf' + Pmf'' + Pmf''' + u.s.w.$$

$$-Pm\phi - Pm\phi' - Pm\phi'' - Pm\phi''' - Pm\phi''' + Pm\phi'' + Pm\phi'' + Pm\phi'' + Pm\phi'' - \Pim\phi'' - \Pim\phi'' - \Pim\phi''' - Pm\phi''' - Pm\phi'' - Pm\phi'' - Pm\phi'' - Pm\phi'' - Pm\phi''' - Pm\phi'' - Pm\phi''$$

Da der Voraussetzung nach f und φ congruent sind oder zusammengehören, so gilt dasselbe auch von mf und $m\psi$ und man hat

$$f \equiv i^{-P\varphi} \varphi \atop i^{-Pm\varphi} m f \equiv i^{-Pm\varphi} m \varphi$$
 mod. μ

woraus leicht folgt $Pmf - Pm\phi \equiv -P\phi \pmod{4}$ und das Aggregat der beiden obersten Reihen $\equiv -\Sigma P\phi$. Da nun ferner $Pm\phi - \Pi m\phi \equiv P(i^{-\Pi m\phi} m\phi)$ ist, $m\phi \cdot i^{-\Pi m\phi}$ zu z gehört und der Inbegriff aller $m\phi \cdot i^{-\Pi m\phi}$ ohne Rücksicht auf die Ordnung mit allen ϕ übereinkommt, so wird das Aggregat aller $P(m\phi \cdot i^{-\Pi m\phi})$ aequal sein dem Aggregat aller $P\phi$; folglich das Aggregat der dritten und vierten Reihe $\equiv \Sigma P\phi \pmod{4}$, also das Aggregat aller vier Reihen $\equiv 0 \pmod{4}$ W. Z. B. W.

Da also ε , unabhängig von der Wahl der Viertelsysteme blos von m und μ abhängt, so werden wir ε den Character der Zahl m in Beziehung auf den Modulus μ nennen und mit Ch. $m \pmod{\mu}$ bezeichnen. Man sieht leicht, dass dies nur eine Generalisirung derjenigen Definition ist, die (Art...) für den Fall, wo μ eine Primzahl ist, gegeben ist, oder sie unter sich begreift.

4.

Ich gehe jetzt zu bestimmten Anordnungen der Viertelsysteme über, und werde den mit m zu bezeichnenden Modulus = ea + ebi setzen, so dass die positive ganze Zahl e den grössten reellen Divisor, oder den grössten Divisor, welchen die beiden Bestandtheile von m haben, bedeutet, oder a, b Primzahlen unter sich. Das am einfachsten angeordnete Viertelsystem wird das sein, dessen Glieder x+iy so beschaffen sind, dass ax+by positiv und kleiner als $\frac{1}{2}e(aa+bb)$, ay-bx nicht negativ, und gleichfalls kleiner als $\frac{1}{2}e(aa+bb)$ wird; die letztere Bedingung wird geflissentlich so ausgedrückt, dass auch die Fälle, wo ay-bx=0 wird, darunter begriffen sind. Man sieht leicht, dass solcher Fälle zusammen $\frac{1}{2}(e-1)$ sein werden, nemlich

$$x = a,$$
 $y = b$
 $x = 2a,$ $y = 2b$
 $x = 3a,$ $y = 3b$
u.s. w. bis
 $x = \frac{1}{2}(e-1)a,$ $y = \frac{1}{2}(e-1)b$

also gar keine, wenn die Bestandtheile von m keinen gemeinschaftlichen Divisor

haben. Nennen wir dieses Viertelsystem k, und k', k'', k''' diejenigen, welche entstehen, indem man die zu k gehörigen Zahlen mit i, -1, -i multiplicirt, oder man mag auch setzen

$$k' = m + ik$$
, $k'' = (1+i)m - k$, $k''' = im - ik$

Auf diese Art erhält man folgende Regel, um zu beurtheilen, ob eine beliebige vorgegebene durch m nicht theilbare ganze Zahl x+iy congruent sei einem Gliede von k, k', k'' oder k''', nemlich indem man kann 2(ax+by) in die Form Pe(aa+bb)+Q, 2(ay-bx) in die Form Re(aa+bb)+S bringen, so dass P, Q, R, S ganze reelle Zahlen und zwar

wenn x+iy congruent ist einer Zahl aus

so dass	k	k'	k "	k'''
\boldsymbol{P}	gerade	ungerade	ungerade	gerade
\boldsymbol{R}	gerade	gerade	ungerade	ungerade
$oldsymbol{Q}$	positiv	positi v	positiv	nicht negativ
e(aa+bb)-Q	positiv	nicht negativ	positiv	positiv
S	nicht negativ	positiv	positiv	positiv
e(aa+bb)-S	positiv	positiv	nicht negativ	positiv

Man erleichtert sich die Uebersicht, wenn man die Fälle, wo keine der Zahlen ax + by, ay - bx durch e(aa + bb) theilbar ist, von den übrigen unterscheidet.

I. Im ersten Falle hat man für P schlechthin die (algebraisch) kleinere der beiden ganzen Zahlen zu nehmen, zwischen welche (ausschliesslich) $\frac{2(ax+by)}{\epsilon(aa+bb)}$ fallen wird, und eben so für R die kleinere der beiden, zwischen welche $\frac{2(ay-bx)}{\epsilon(aa+bb)}$ fällt.

II. Ist ax + by durch e(aa + bb) theilbar, so wird ay - bx zwar durch aa + bb, nicht aber durch e(aa + bb) theilbar sein (weil sonst x + iy durch ea + ebi theilbar sein würde). Ist nun R, d. i. die Zahl, welche zunächst kleiner ist als $\frac{2(ay - bx)}{e(aa + bb)}$, gerade, so wird x + iy einer Zahl aus k' congruent sein nach dem Mod. ea + ebi, einer aus k'' hingegen, wenn R ungerade ist.

III. Ist ay + bx durch e(aa + bb) theilbar, nicht aber ax + by, so wird x+iy einer Zahl aus k, oder aus k'' congruent sein. je nachdem die ganze Zahl, welche algebraisch zunächst kleiner ist als $\frac{2(ax+by)}{e(aa+bb)}$, gerade oder ungerade ist.

5.

Man leitet aus obigem ohne Mühe folgende Methode ab zur Bestimmung des Characters einer gegebenen ganzen Zahl M = A + Bi in Beziehung auf den ungeraden sie nicht messenden Modulus m = ea + ebi.

Zur Abkürzung bedienen wir uns folgender Bezeichnung. Wenn p irgend eine gebrochene reelle Zahl vorstellt, soll durch [p] diejenige ganze Zahl bezeichnet werden, die zugleich p-[p] und 1+[p]-p positiv macht. Bei dieser Definition ist also die Anwendung der Bezeichnung auf ganze Zahlen ausgeschlossen. Fasste man die Definition so, dass weder p-[p] noch 1+[p]-p negativ sein soll, so würde das Zeichen [p] für den Fall, wo p ganze Zahl ist, zweideutig sein. Man könnte auch, wie in einer früheren Abhandlung geschehen ist, die Bedingung so stellen, dass 1+[p]-p positiv und p-[p] nur nicht negativ sein soll. Für unsern Zweck ist es etwas bequemer, sich an die erste Begriffsbestimmung zu halten.

Das Viertelsystem k bilden hienach alle ganzen Zahlen f, wofür wenn man $\frac{2f}{m} = \xi + \eta i$ setzt, ξ zwischen 0 und 1 ausschliesslich, η zwischen 0 und 1, die 0 eingeschlossen liegt, oder

$$\label{eq:tau_eq} \begin{array}{ll} [\xi] = 0\,, & [\eta] = 0\\ \text{oder} & [\xi] = 0\,, & \eta = 0 \end{array}$$

Setzt man nun für jedes f, $\frac{2fM}{m} = \xi + i\eta$ und nimmt

$\Psi f = 0$	wenn zugleich	[ξ] gerade und entweder	[η] gerade oder	η ganz
1		$[\eta]$ gerade und entweder	[ξ] ungerade oder	ξ ganz
2		$[\xi]$ ungerade und entweder	$[\eta]$ ungerade oder	η ganz
3		$[\eta]$ ungerade und entweder	[ξ] gerade oder	ξ ganz

tabellarisch so

	[η] gerac	le	$[\eta]$ ungerade	η ganz
[ξ] gerade	0	•	3	0
$[\xi]$ ungerade	1		2	2
ξ ganz	1		3	

was man durch $\nabla(\xi+i\eta)$ bezeichnen mag, so wird der gesuchte Character der Zahl M in Beziehung auf den Modulus m aequal dem kleinsten Reste von $\Sigma \Psi f$ nach dem Modulus 4.

6.

Die im vorhergehender Art. gegebene Vorschrift ist allgemein: für den Fall, wo M ungerade ist, werden wir ihr aber eine andere Gestalt geben. Wir werden zugleich annehmen, dass die reellen Theile von m und M ungerade, also die imaginären gerade sind.

Wir lassen jeder zu dem Viertelsysteme k gehörenden Zahl f eine andere g correspondiren, die aus f auf folgende Art abgeleitet wird. Indem man $\frac{2f}{m} = \xi + i\eta$ setzt, unterscheidet man vier Fälle

I. Wenn $[2\xi] = 0$ und entweder $[2\eta] = 0$ oder $\eta = 0$

II. Wenn $[2\xi] = 1$ und entweder $[2\eta] = 0$ oder $\eta = 0$

III. Wenn $[2\xi] = 0$ und $[2\eta] = 1$

IV. Wenn $[2\xi] = 1$ und $[2\eta] = 1$

Im ersten Falle wird man g = 2f, im zweiten g = im - 2if, im dritten g = m + 2if, im vierten g = (1+i)m - 2f setzen. Man sieht leicht, dass der Inbegriff aller g ein vollständiges Viertelsystem l bildet; ihre Charakteristik ist, dass zugleich, wenn man $\frac{g}{m} = \xi + i\eta$ setzt

entweder $[\xi] = 0$, $[\eta] = 0$

oder $\eta = 0$, $[\xi] = 0$ und g durch 1+i theilbar

oder $\xi = 0$, $[\eta] = 0$ und g durch 1+i nicht theilbar

Daraus folgt, dass l sich von k nur dadurch unterscheidet, dass diejenigen Zahlen in k, für welche $\eta = 0$, und die durch 1+i untheilbar sind, nemlich

$$a+bi$$
, $3(a+bi)$, $5(a+bi)$... $\frac{e-3}{2}(a+bi)$ oder bis $\frac{e-1}{2}(a+bi)$

je nachdem e von der Form 4n+1 oder 4n+3, in l fehlen und dagegen in letzterm Complex die Producte jener Zahlen in i auftreten. Zugleich sieht man, dass für e=1, d. i. wenn m durch keine reelle ganze Zahl theilbar ist, k und l ganz gleich sind.

Es kommt nun darauf an, Ψf unmittelbar aus dem dem f entsprechenden g abzuleiten. Das Resultat ist, dass für obige 4 Fälle

I. $\Psi f = \nabla \frac{gM}{m}$

II. $\Psi f = \begin{cases} -\nabla \frac{gM}{m} & \text{wenn weder reeller noch imaginärer Th. von } \frac{gM}{m} & \text{ganz} \\ 1 - \nabla \frac{gM}{m} & \text{wenn einer von beiden ganz} \end{cases}$

III. wie II. IV. wie I.

BEMERKUNGEN.

Die Bruchstücke, die hier im Druck mit I und II bezeichnet sind, gehören nach dem Orte zu urtheilen, den die betreffenden Handschriften in einem Notizbuche einnehmen, dem Jahre 1811 oder der zunächst folgenden Zeit an. Von den vorangehenden Versuchen, den Beweis des Fundamentaltheorems für biquadratische Reste nach den hier für den Rest 1+ i angewandten Methoden durchzuführen, ist eine Aufzeichnung vorhanden, welche den speciellen Fall des Restes 1+ 2 i erledigt und von derjenigen Bestimmung des biquadratischen Characters ausgeht, die man als Note dem Art. 6 des Bruchstücks III beigefügt hat. Im übrigen lassen sich die historischen Angaben, die Gauss in den Anzeigen seiner arithmetischen Abhandlungen veröffentlicht hat, mit Hülfe des Nachlasses dahin ergänzen, dass die in den Artt. 15 bis 20 der Theoria residuorum biquadrat. aufgenommenen Lehrsätze schon vor der Ausarbeitung der Theoria motus corporum coel. niedergeschrieben sind. Die in den Anzeigen erwähnten Untersuchungen über cubische Reste werden wohl nicht zur Ausarbeitung gelangt sein; aufgezeichnet finden sich davon die mit den Hülfsmitteln, welche die Abhandlung Disquisitionum eiren aequationes puras ulterior evolutio bietet, durchgeführten Beweise der Reciprocitätssätze für zwei Primzahlen, von denen die eine reell ist.

Die Bruchstücke III bis VI bilden in der Handschrift besondere Hefte und für die drei ersten derselben weist die Form der Schriftzüge auf eine Zeit, die der für die Bruchstücke I und II nicht fern liegt, während für das letzte, Nr. VI, ein bedeutend späterer Zeitpunkt angenommen werden muss.

[I.] Art. 10. Die Bestimmung der Anzahl der Ganzepunkte in $(z, z', z' + \zeta, z + \zeta)$ ergibt sich aus dem Satze: bedeuten a und b relative Primzahlen, so geht die von $\xi + \eta i$ nach $\xi + \eta i + a + bi$ gezogene Gerade durch Einen Ganzepunkt, wenn der imaginäre Theil von $(\xi + \eta i) \cdot (-a + bi)$ eine ganze Zahl ist.

[I.] Art. 17. Die erste Umformung des letzten S in dem Ausdrucke für $\triangle S$ erhält man, wenn man das betreffende Flächenstück in solche drei Theile zerlegt, dass jenes S in

$$S(\frac{1}{2}m + \frac{1}{2} - \frac{1}{2}i, (\frac{1}{2} + \frac{1}{2}i)m, (\frac{1}{2} + \frac{1}{2}i)m + i, \frac{1}{2}m + \frac{1}{2} + \frac{1}{2}i(+)) - S(\frac{1}{2}m, \frac{1}{2}m + \frac{1}{2} + \frac{1}{2}i(+), \frac{1}{2}m + \frac{1}{2} - \frac{1}{2}i) - S((\frac{1}{2} + \frac{1}{2}i)m, \frac{1}{2}m, \frac{1}{2}m + \frac{1}{2} - \frac{1}{2}i)$$

übergeht, und wenn man dann die Ganzepunkte in dem ersten Flächentheile mit Hülfe des Satzes in Art. 10 auszählt und ferner berücksichtigt, dass in dem zweiten Flächentheile sich kein Ganzepunkt befindet.

Die zweite Umformung erhält man, wenn man die den Eckpunkten des dritten Flächentheils entsprechenden Grössen mit i multiplicirt und um die ganze Zahl $(1-i)\frac{m-1}{2}$ vermehrt, endlich die dritte Umformung, wenn man mit der zuletzt entstandenen Figur nach Vorschrift des Art. 16 diejenige vergleicht, die gegen jene die Ortsverschiedenheit $\frac{-1}{1-k}$ hat.

- [I.] Art. [18.] Eine Erläuterung zum ersten Schema findet man in dem später niedergeschriebenen hier mit [II.] bezeichneten Bruchstücke Art. 1 bis 6.
- [I.] Art.[18.](2.) Die geometrische Deutung ergibt mit Zuhülfenahme der beiden Systeme von Ganzepunkten

$$[-2iQ - \frac{1}{2}, \frac{1}{2}, iQ] = [-2iQ + \frac{1}{2}, \frac{1}{2}, iQ] = IV^{\circ} \text{ und } -[-2iQ + \frac{1}{2}i, -\frac{1}{2}i, iQ] = -[-2iQ - \frac{1}{2}i, -\frac{1}{2}i, iQ] = X^{*}$$
 die Gleichungen

$$\begin{aligned} & \text{IV} - \text{IV}^* + \left[-2\,i\,Q,\,\,\frac{1}{4}\,i,\,\,-\frac{1}{2} \right] = -\,\mathbb{X} + \mathbb{X}^* + \left[-i\,Q,\,\,\frac{1}{2}\,i,\,\,-\frac{1}{2} \right] \\ & \text{XIII} + \text{IV}^* = \left[-2\,i\,Q,\,\,1,\,\,i\,Q \right] = -\,I(-\,2\,i\,Q) + I(-\,i\,Q) \\ & \text{V} + \mathbb{X}^* = -\left[-2\,iQ,\,\,-i,\,i\,Q \right] = R(-\,2\,i\,Q) - R(-\,i\,Q) \end{aligned}$$

wenn allgemein Rx und Ix die grössten Gansen des reellen Theils und des Coëfficienten des imaginären Theils von x bedeuten.

 $[-2iQ, \frac{1}{4}i, -\frac{1}{4}]$ ist aber die Anzahl der Ganzepunkte in dem Quadrate, dessen Mittelpunkt sich in $-2iQ-\frac{1}{4}+\frac{1}{4}i$ befindet und zwischen dessen Endpunkten die Ortsunterschiede $\frac{1}{4}$ und $\frac{1}{4}i$ Statt haben.

 $[-iQ, \frac{1}{2}i, -\frac{1}{2}]$ oder $[-2iQ, -\frac{1}{2}i, \frac{1}{2}]$ ist die Anzahl der Ganzepunkte in einem gleichen Quadrate mit dem Mittelpunkte $-2iQ + \frac{1}{4} - \frac{1}{4}i$.

[I.] Art. [18.] (3.) Mit Zuhülfenahme der Ganzepunkte $[0, \frac{1}{2}i, -iQ] = -[-\frac{1}{2}i, -\frac{1}{2}i, -iQ] = I^{\bullet}$ erhält man

$$\begin{aligned} & \text{VII} - \text{XII} &= \text{I} - \text{I}^{\bullet} + \left[-i \, Q, \, \frac{1}{2}, \, \frac{1}{2} \, i \, \right] = \text{I} - \text{I}^{\bullet} + \left[-2 \, i \, Q, \, \frac{1}{2}, \, \frac{1}{2} \, i \, \right] \\ & \text{II} - \text{I}^{\bullet} &= \left[0, \, -i, \, -i \, Q \right] = -R \, 0 + R(-i \, Q) \\ & \text{IX} - \text{I} &= \left[0, \, -1, \, -i \, Q \right] = I \, 0 - I(-i \, Q) \\ & \text{VI} - \text{XII} &= -\left[\frac{1}{2} \, i, \, -1, \, -i \, Q \right] = -I(\frac{1}{2} \, i) + I(-i \, Q + \frac{1}{2} \, i) \\ & \text{VIII} - \text{XIV} &= -\left[\frac{1}{2}, \, -1 - i, \, \frac{1}{2} \, i \, m(-) \right] = \frac{a-1}{2} + \frac{b}{2} \end{aligned}$$

[II.] Art. 10. Es ist

 $\Upsilon P' \equiv -\Upsilon(-iP' + \frac{1}{2}im), \quad \Upsilon P'' \equiv -1 - \Upsilon(P'' - \frac{1}{2}im), \quad \Upsilon P''' \equiv 1 + \Upsilon(-iP''') \pmod{4}$ und $-iP' + \frac{1}{2}im, P'' - \frac{1}{2}im$ sind die um $\frac{1}{2}i$ vermehrten Ganzepunkte resp. in I, VI.

[III.] Art. 6. Die in der Note angegebenen Regeln für die Bestimmung des Dec. $\frac{M}{m}$ habe ich der vorliegenden Abhandlung aus einem andern Orte der Handschriften beigefügt. Die erste dieser beiden Regeln, die wie leicht zu sehen mit der zweiten übereinstimmt, folgt aus der des Art. 6, weil

$$k \equiv f \cdot i^{-n} \pmod{m}, \quad n = \theta \frac{2fM}{m}, \quad p = m m', \quad \left[\frac{2 k m'}{p}\right]^{2} \equiv \theta \frac{2 k m'}{p} \pmod{2 + 2i}$$

ist.

- [III.] Art. 8 enthält in der Handschrift ein Beispiel zu Art. 7, nemlich die Bestimmung des Decidenten von -1+2i für den Modulus -11+4i.
- [III.] Art. 10. In Bezug auf die Bemerkung 'anders auszudrücken' kann man Art. 3 des folgenden Bruchstücks [IV] vergleichen.
- [IV.] Die Art. 1. 2. 4 enthalten in der Handschrift ausser dem hier Abgedruckten noch die Anwendung auf die beiden Beispiele für m = 5 + 8i, M = 9 + 4i und für m = 9 + 4i, M = 5 + 8i.
- [V.] Art. [7.] Es bezeichnet hier Dec. $\frac{m}{M}$ wie in Art. 1 des vorhergehenden Bruchstücks [IV] den Werth von

$$\Sigma(-1)^{X}\Sigma(-1)^{Y}$$
 Int. p

worin die Summation über alle ganze Zahlen X und Y auszudehnen ist, für welche die zugehörigen ξ und η innerhalb der Grenzen 0 und $\frac{1}{2}$ liegen.

Die Formeln für den Decidenten in Art. 7 und 15 sind nach der Angabe des Textes auf zwei be-II. sondern Wegen gefunden, um aber diese Erläuterungen nicht zu sehr auszudehnen, werden sie hier aus einer gemeinsamen Quelle abgeleitet.

Indem X irgend einen bestimmten ganzzahligen Werth annimmt, sei Y^* das kleinere, Y^{**} das grössere der beiden Y, welche den Grenzwerthen von ξ , η entsprechen. Die zu Y^* und Y^{**} zugehörigen Werthe von p seien p^* und p^{**} , die ebenso wie Y^* und Y^{**} einander nicht gleich werden können, weil die Summe Σ sich nicht über die Grenzwerthe von ξ und η erstreckt.

Führt man auf dieselbe Weise wie in den beiden vorhergehenden Aufsätzen [III] und [IV] die Summation über alle bei demselben X Statt habenden Werthe von Y aus, setzt dabei für die Anzahl der zwischen Y' und Y'' liegenden ungeraden Zahlen $\begin{bmatrix} 1 \\ 1 \end{bmatrix} Y' - 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 1 \end{bmatrix} Y' - 1 \end{bmatrix}$ und fügt die Intensoren, die sich auf die Grenzen $\xi = 0$ und = 1 beziehen, zwei Mal aber mit entgegengesetzten Zeichen hinzu, so erhält man für $\Sigma (-1)^Y$ Int. p den aus sieben Theilen bestehenden Ausdruck

$$-\Sigma[-\operatorname{Int.}(p-\mu\omega i)+\operatorname{Int.}(p+\mu\omega i)] \text{ worin alle } p \text{ aufsunehmen, für welche } [Y] \text{ gerade,}$$

$$x \text{ oder } y \text{ gans, incl. } \xi=0 \text{ und } \frac{1}{2}, \text{ excl. } \eta=0 \text{ und } \frac{1}{2}$$

$$-\operatorname{Int.}(p^*-\mu\omega i) \text{ wenn } [Y^*] \text{ gerade } \begin{cases} \xi=0 \text{ oder } \frac{1}{2}, 0<\eta<\frac{1}{2} \end{cases}$$

$$-\operatorname{Int.}(p^*+\mu\omega i) \text{ wenn } [Y^*] \text{ gerade } \end{cases}$$

$$+\operatorname{Int.}(p^*+\mu\omega i) \text{ wenn } [Y^*] \text{ gerade } \end{cases}$$

$$+\operatorname{Int.}(p^*+\mu\omega i) \text{ wenn } [Y^*] \text{ gerade } \end{cases}$$

$$+\operatorname{Int.}(p^*+\mu\omega i) \text{ wenn } [Y^*] \text{ gerade } \end{cases}$$

$$+\operatorname{Int.}(p^*+\mu\omega i) \text{ wenn } [Y^*] \text{ gerade } \end{cases}$$

$$+\operatorname{Int.}(p^*+\mu\omega i) \text{ wenn } [Y^*] \text{ gerade } \end{cases}$$

$$\rbrace \xi=0 \text{ oder } \frac{1}{2}, \eta=0 \text{ oder } \frac{1}{2}$$

welcher mit $(-1)^X$ multiplicirt und über alle ganzzahligen X summirt den Decidenten $\frac{m}{M}$ ergibt.

Aus dem ersten Theil des Ausdrucks entsteht auf diese Weise von den nach Art. 2 Vorschrift I gebildeten ε

$$\Sigma \varepsilon$$
 wo X ganz, [Y] gerade
$$-\Sigma \varepsilon$$
 wo ausserdem y ganz, [x] gerade

Für die folgenden Theile kann

$$\begin{array}{l} --(B) \; \mathrm{Int.} \, (p-B\,\mu\,\omega\,i) \; \; \mathrm{wenn} \; \; \xi = 0 \\ +(B) \; \mathrm{Int.} \, (p+B\,\mu\,\omega\,i) \; \; \mathrm{wenn} \; \; \xi = \frac{1}{4} \\ \\ -(A) \; \mathrm{Int.} \, (p+A\,\mu\,\omega\,i) \; \; \mathrm{wenn} \; \; \eta = 0 \\ +(A) \; \mathrm{Int.} \, (p-A\,\mu\,\omega\,i) \; \; \mathrm{wenn} \; \; \eta = \frac{1}{2} \\ \\ \\ -\frac{1}{4} [(A') + (B')] \; \mathrm{Int.} \, (p+A'\mu\,\omega\,i) \; \; \mathrm{wenn} \; \; X \; \; \mathrm{ganz}, \; \; [Y+A'\omega] \; \mathrm{gerade}, \; \; \xi \; \mathrm{und} \; \eta = 0 \; \; \mathrm{oder} \; \frac{1}{4} \\ \\ \end{array}$$

gesetzt werden, worin A' = +A oder -A ist, wenn $\eta = 0$ oder $\frac{1}{4}$, B' = +B oder -B, wenn $\xi = 0$ oder $\frac{1}{4}$, und worin s. B. (A):+1 oder -1 bezeichnet, jenachdem A positiv oder negativ ist.

Multiplicirt man mit $(-1)^X$, führt die Summation über X aus, lässt dabei in diesen Ausdrücken u. zwar im ersten $p-B\mu\omega i$, $P-BD\omega i$, $\pi-AB\omega i-BB\omega$, X, [Y] bez. in ip, iP, $i\pi$, -Y, [X] zweiten $p+B\mu\omega i$, $P+BD\omega i$, $\pi+AB\omega i+BB\omega$, X, [Y] . . . p, P, π X, [Y] dritten $p+A\mu\omega i$, $P+AD\omega i$, $\pi+A\Delta\omega i+AB\omega$, X, [Y] . . . p, P, π X, [Y] vierten $p-A\mu\omega i$, $P-AD\omega i$, $\pi-A\Delta\omega i-AB\omega$, X, [Y] . . im-ip, iM-iP, $i-i\pi$, Y-B, A-1-[X]

übergehen und bezeichnet das aus dem fünsten Ausdruck sich ergebende Resultat mit Q., so entsteht

Die Untersuchung der einzelnen Fälle lässt erkennen, dass unter der Voraussetzung $M \equiv 1 \pmod{2+2i}$

$$Q_i = -\operatorname{Int.} \mu \omega i$$
 ist, wenn M im 1. Quadranten liegt $-\operatorname{Int.} (\frac{1}{2}mi + \mu \omega i)$, wenn M im 2. Quadr. und $\frac{M-1}{2}$ gerade $+\operatorname{Int.} (\frac{1}{2}mi - \mu \omega i)$, wenn M im 4. Quadr. und $\frac{M-1}{2}$ gerade

indem man eine complexe Zahl gerade oder ungerade nennt, je nachdem sie durch 2 theilbar ist oder nicht.

Hiernach wird also bei Anwendung der in den Vorschriften II und IV bestimmten s

Dec.
$$\frac{m}{M} = I$$
, $\Sigma \varepsilon$, wo X ganz, $[Y]$ gerade $-4\Sigma \varepsilon$, wo noch y ganz, $[x]$ gerade II , $-\Sigma \varepsilon Int. ip$, wo Y ganz, $[X]$ gerade IV , $+\Sigma \varepsilon Int. p$, wo X ganz, $[Y]$ gerade II , $+\Sigma \varepsilon Int. p$, wo X ganz, $[Y]$ gerade IV , $+\Sigma \varepsilon Int. (im-ip)$, wo Y ganz, $[X]$ gerade $+Q$.

In einer andern Form erhält man den Ausdruck für den Decidenten, wenn man zuerst nach X summirt und dabei die Anzahl der zwischen X' und X'' liegenden ungeraden Zahlen durch $[\frac{1}{2}X'' + \frac{1}{2}] - [\frac{1}{4}X' + \frac{1}{2}]$ darstelllt, nemlich

Dec.
$$\frac{m}{M} = I$$
, Σs , we Y gans, $[X]$ ungerade $-4\Sigma s$, we noch y gans, $[x]$ gerade II, $-\Sigma s$ Int. ip , we X gans, $[Y]$ gerade IV, $+\Sigma s$ Int. p , we Y gans, $[X]$ ungerade II, $+\Sigma s$ Int. p , we Y gans, $[X]$ ungerade IV, $+\Sigma s$ Int. $(im-ip)$, we X gans, $[Y]$ ungerade $+Q_s$

$$Q_s = -\operatorname{Int.}(-\mu \omega)$$
, wenn M im 2. Quadr. $+\operatorname{Int.}(\frac{1}{2}m - \mu \omega)$, wenn M im 1. Quadr. und $\frac{M-1}{2}$ ungerade $-\operatorname{Int.}(\frac{1}{2}m + \mu \omega)$, wenn M im 3. Quadr. und $\frac{M-1}{2}$ ungerade

Führt man die Summation nach Y suerst aus, wählt aber die sweite so eben angewandte Art der Bestimmung der Anzahl der swischen swei Werthen liegenden ungeraden Zahlen, so wird

Dec.
$$\frac{m}{M} = 1$$
, $\Sigma \varepsilon$, we X ganz, $[Y]$ ungerade $-4\Sigma \varepsilon$, we noch y ganz, $[x]$ gerade II, $-\Sigma \varepsilon \operatorname{Int.} ip$, we Y ganz, $[X]$ ungerade IV, $+\Sigma \varepsilon \operatorname{Int.} p$, we X ganz, $[Y]$ ungerade II, $+\Sigma \varepsilon \operatorname{Int.} p$, we X ganz, $[Y]$ ungerade IV, $+\Sigma \varepsilon \operatorname{Int.} (im-ip)$, we Y ganz, $[X]$ ungerade $+Q_{\varepsilon}$

$$Q_3 = -\operatorname{Int.}(-\mu \omega i)$$
, wenn M im 3. Quadr.

 $-\operatorname{Int.}(\frac{1}{2}mi + \mu \omega i)$, wenn M im 2. Quadr. und $\frac{M-1}{2}$ ungerade $+\operatorname{Int.}(\frac{1}{2}mi - \mu \omega i)$, wenn M im 4. Quadr. und $\frac{M-1}{2}$ ungerade

Summirt man suerst noch X und gebraucht dabei die erste Art der Darstellung der Anzahl der zwischen zwei Werthen liegenden ungeraden Zahlen, so erhält man die in [V.] Art. 15 angegebene Form für den Decidenten, wo die Grösse q auch durch folgende Gleichung definirt werden kann

$$q = -\operatorname{Int.} \mu \omega$$
, wenn M im 4. Quadr.
 $+\operatorname{Int.} (\frac{1}{4}m - \mu \omega)$, wenn M im 1. Quadr. und $\frac{M-1}{2}$ gerade
 $-\operatorname{Int.} (\frac{1}{4}m + \mu \omega)$, wenn M im 3. Quadr. und $\frac{M-1}{2}$ gerade

Die Vereinigung dieser vier Ausdrücke für den Decidenten bildet das in [V.] Art. 7 aufgestellte Resultat, weil Int.ip - Int.p gleich 3 wird für [x] gerade [y] ungerade, sonst aber gleich 1, ferner Int.(im-ip) + Int.p gleich 0 für [x] gerade [y] gerade, in den übrigen Fällen aber gleich 4.

[V.] Art. [7.] Die erste Tafel für das Beispiel gibt in der ersten Spalte die zu jedem ganzzahligen P zugehörigen Werthe von $\frac{37 \cdot P}{M}$ oder $37 \cdot (\xi + \eta i)$, wenn $0 < \xi < \frac{1}{2}$, $0 < \eta < \frac{1}{2}$ ist, in der zweiten $\frac{37 \cdot Pm}{M}$ oder $37 \cdot p$, in der dritten die in p enthaltene grösste ganze Zahl, in der vierten \pm Int. p, wo das obere Zeichen gilt, wenn P durch 1+i theilbar, das untere, wenn P nicht durch 1+i theilbar ist.

[V.] Art. [9.]. [12.] Die verbesserte Bezeichnungsweise der θ ist nur bei der zweiten und dritten Classe Artt. 9. 10 angedeutet, aber auch auf die erste und vierte Artt. 8. 11 auszudehnen. Hiernach wird ein $\theta^{\lambda} = T + Ui$ denjenigen Index λ , = 0, 1, 2 oder 3 haben, für welchen die durch die Gleichungen

$$i^{\lambda}M = \mathfrak{A} + \mathfrak{B}i, \quad i^{-\lambda}\mu = \rho + \sigma i$$

$$\sigma \varphi^{\bullet} = -\operatorname{Coeff.} \operatorname{Img} \theta^{\lambda}(a - bi) = + b T - a U$$

$$\sigma \Phi^{\bullet} = + \operatorname{Coeff.} \operatorname{Img} \theta^{\lambda}(\mathfrak{A} - \mathfrak{B}i) = -\mathfrak{B} T + \mathfrak{A} U$$

bestimmten Grössen φo und Φo zwischen o und 4 liegen.

Um nach den Andeutungen in Art. 9 (3) zu beweisen, dass, wenn T, U zwei ganze reelle Zahlen sind, welche die so eben aufgestellten Bedingungen erfüllen, T+Ui sich auch in dem bei einer der vier Combinationen Artt. 8. 11. bestimmten Complexus θ^1 befindet, bezeichne man mit φ' , Φ' diejenigen ganzen complexen Zahlen, für welche die Gleichung

$$T + Ui = \varphi' i^{\lambda} M + \Phi' m$$

Statt hat und für welche eine der vier Grössen $\pm \frac{\varphi' - \varphi^0}{m}$, $\pm i \frac{\varphi' - \varphi^0}{m}$ so beschaffen, dass der reelle Theil und der Coëfficient des imaginären Theils zwischen 0 und \pm liegen (Theoria residuorum biquadr. artt. 45, 46). Die betreffende Grösse ist dann, wie man aus der Untersuchung der in den vier Combinationen enthaltenen sechzehn einzelnen Fälle leicht ersieht, $\frac{p}{m}$ und die ihr entsprechende Grösse unter $\pm \frac{\Phi' - \Phi^0}{m}$, $\pm i \frac{\Phi' - \Phi^0}{M}$ ist $\frac{P}{M}$, weil $\frac{\Phi' - \Phi^0}{M} = -\frac{\varphi' - \varphi^0}{m}i^k$ wird.

Aus dieser Art der Darstellung der Grössen $\frac{p}{m}$ oder $\frac{P}{M}$ folgt auch, dass 1, $\Sigma \varepsilon$ von allen aus

Aus dieser Art der Darstellung der Grössen $\frac{p}{m}$ oder $\frac{P}{M}$ folgt auch, dass I, $\Sigma \varepsilon$ von allen aus $\theta + \theta' + \theta'' + \theta'''$ besteht, worin θ^{λ} die Summe derjenigen ε bedeutet, die für jeden Ganzepunkt θ innerhalb des Parallelogramms $0, \frac{1}{2}m, \frac{1}{2}m + \frac{1}{2}i^{\lambda}M, \frac{1}{2}i^{\lambda}M$,

= +1 zu setzen sind, wenn θ durch 1+i theilbar und Coëff. Imag. $\mu i^{-\lambda}$ positiv oder wenn keine Bedingung gilt, dagegen

= -1 wenn nur eine gilt.

[V.] Art. 13. Die Bestimmung von θ^{λ} kann entweder durch die oben für Dec. $\frac{m}{M}$ angewandten vier verschiedenen Summationsarten oder, was im Wesentlichen dasselbe ist, nach den in [II.] Art. 11 angedeuteten Methoden ausgeführt werden, bei welchen dann die vier Constructionen zu Grunde zu legen sind, die durch Verbindung der Punkte, deren θ ein Vielfaches von 1+i ist, resp. mit den Punkten $\theta+1$, $\theta+i$, $\theta-1$ und $\theta-i$ entstehen.

Lässt man in der Begrenzung des zuvor erwähnten Parallelogramms allen den Punkten ein θ entsprechen, für welche der reelle oder imaginäre Theil von θ eine ganze Zahl wird, bezeichnet mit θ ° die nächste durch i+i theilbare Ganze bei θ , mit i die Ortsverschiebung von einem Punkte des geraden Begrenzungsstückes, das den Punkt θ enthält, bis zu irgend einem nachfolgenden Punkte derselben Geraden, also z. B. bei jenem Parallelogramm der Reihe nach die Grössen m, Mi^{λ} , -m, $-Mi^{\lambda}$, und setzt

$$\varepsilon = \pm 1$$
 mit dem Zeichen des imaginären Theils von $\frac{l}{\theta - \theta}$

so ergibt die Vereinigung der auf die eine oder andere Weise erhaltenen vier Resultate $4\theta^{\lambda}=-\Sigma\epsilon$.

Die gesonderte Bestimmung der den Eckpunkten entsprechenden 9 und ε wird umgangen, wenn man dies Parallelogramm durch ein anderes ersetzt, dessen Begrenzungen den Begrenzungen des erstern

unendlich nahe sind, und welches die beiden Punkte 0 und $+m++i^2M$ nicht einschliesst. Die Begrenzung eines solchen Parallelogramms erhält man, wenn man sie an die positiven Seiten der Linien

$$0 \cdot \ldots + m, \quad + m + + i^{\lambda} M \cdot \ldots + m, \quad + m + + i^{\lambda} M \cdot \ldots + i^{\lambda} M, \quad 0 \cdot \ldots + i^{\lambda} M$$

legt. Lässt man den vier so entstandenen Geraden der Reihe nach die unendlich kleinen positiven Grössen ω_1 , ω_2 , ω_3 , ω_4 entsprechen, so kann man für die auf ihnen liegenden Punkte θ

$$\theta = p = m(\xi + \omega_1 i), \quad -\theta i^{\lambda} + \frac{1}{2}mi^{\lambda} + \frac{1}{2}M = P = M(\xi + \omega_2 i), \quad -\theta + \frac{1}{2}m + \frac{1}{2}Mi^{\lambda} = p = m(\xi + \omega_2 i), \quad \theta i^{-\lambda} = P = M(\xi + \omega_4 i) \text{ wenn } \lambda \text{ gerade}$$

$$\theta = p = m(\xi + \omega_1 i), \ \theta i^{1-\lambda} - \frac{1}{2}mi^{1-\lambda} + \frac{1}{2}M = P = M(\frac{1}{2} + \omega_1 + \eta i), \ \theta i + \frac{1}{2}m - \frac{1}{2}Mi^{1+\lambda} = p = m(\frac{1}{2} + \omega_2 + \eta i), \ \theta i^{-\lambda} = P = M(\xi + \omega_1 i) \ \text{wenn } \lambda \text{ ungerade}$$

setzen, worin ξ und η auch theilweise zur Schliessung der Figur das Gebiet der reellen Werthe von θ bis $\frac{1}{2}$ um unendlich kleine Grössen überschreiten.

Bezeichnen G, g, H, h die Summen der resp. nach den Vorschriften II, III, IV, V (in Artt. 3 bis 6) gebildeten ε , und umfassen G' oder G, und g' oder g, diejenigen ε , welche für die beim zweiten Parallelogramm etwa auftretenden unendlich kleinen Werthe von ξ Statt haben, im Uebrigen aber resp. nach den Vorschriften II und III gebildet sind, beziehen sich ferner G'' oder G_{μ} und g'' oder g_{μ} ebenso auf dieselben Vorschriften aber auf die unendlich kleinen Werthe von $\frac{1}{2} - \frac{1}{2}$, und endlich H', h, H'', h resp. auf die Vorschriften IV, V, IV, V und die unendlich kleinen Werthe resp. von $\frac{1}{2} - \frac{1}{2}$, $\frac{1}{2} - \frac{1}{2}$, $\frac{1}{2}$

$$4 \theta^{\lambda} = -(g + g' + g'') - i^{\lambda} (G + G' + G'') + i^{\lambda} (g + g_{i} + g_{u}) + (G + G_{i} + G_{u}) \quad \text{wenn } \lambda \text{ gerade}$$

$$4 \theta^{\lambda} \equiv -(g + g' + g'') - i^{\lambda - \lambda} (H + H' + H'') - i^{\lambda - \lambda} (h + h_{i} + h_{u}) + (G + G_{i} + G_{u}) \quad \text{wenn } \lambda \text{ ungerade}$$

Für denjenigen Eckpunkt θ des Parallelogramms, welcher dem Punkte 0 zunächst liegt, bezeichne ξ_1 den zugehörigen Werth von dem ξ der ersten Seite, ξ_2 den zugehörigen Werth von dem ξ der vierten Seite, so dass

$$\theta = m(\xi, +\omega, i) = i^{\lambda} M(\xi, +\omega, i)$$

wird, dann ergibt sich dasjenige ξ , welchem auf der ersten Seite oder deren Verlängerung ein Punkt p mit dem reellen Theile gleich 0 entspricht, aus der Gleichung

(Real.
$$p = 0$$
), $\xi - \xi_1 = \sigma a \mathfrak{A} \omega_1 - \sigma \omega_4$

worin die positiven Factoren der unendlich kleinen positiven Grössen durch die Einheit ersetzt sind und c. A die durch

$$\rho + \sigma i = i^{-\lambda}(\alpha + 6i), \quad \Re + \Re i \equiv i^{\lambda}(A + Bi)$$

bestimmten reellen Grössen bedeuten. Dieser Punkt p liegt auf der ersten Seite selbst, wennn $\xi - \xi_1$ positiv, also, indem man ω_1 unendlich klein gegen ω_2 annimmt, wenn σ negativ ist. Der dem Punkte p zunächst liegende Punkt p^0 , dessen darstellende Zahl durch 1+i getheilt wird, ist der Punkt σ , also hat

lmag. $\frac{m}{p-p^0}$ oder Imag. $\frac{1}{\xi+\infty,i}$ das Minuszeichen. Man erhält daher für Real. p=0:

$$\varepsilon = -1$$
 wenn $(\sigma) = -1$, $\varepsilon = 0$ wenn $(\sigma) = +1$, d.i. $\varepsilon = -\frac{1}{2} + \frac{1}{4}(\sigma)$

und auf dieselbe Weise für Imag. p = 0

$$\xi - \xi_i = \sigma \delta \mathfrak{B} \omega_i - \sigma \omega_a$$
, Imag. $\frac{m}{p - p^0} = \text{Imag.} \frac{1}{\xi + \omega_i i}$, $\varepsilon = -\frac{1}{4} + \frac{1}{4} (\sigma)$ also $g' = -1 + (\sigma)$

In Bezug auf die vierte Seite wird $P^{\bullet}=0$, Imag. $\frac{M}{P-P^{\bullet}}=$ Imag. $\frac{1}{E+m.i}$

also für Real.
$$(i^{\lambda}P) = 0$$
; $\xi - \xi_{\bullet} = -\sigma a \mathfrak{A} \omega_{\bullet} + \sigma \omega_{\bullet}$, $\varepsilon = -\frac{1}{4} + \frac{1}{4}(\sigma a \mathfrak{A})$

und für Imag.
$$(i^{\lambda}P) = 0$$
; $\xi - \xi_{\bullet} = -\sigma b \mathcal{B} \omega_{\bullet} + \sigma \omega_{\bullet}$, $\varepsilon = -\frac{1}{4} + \frac{1}{4}(\sigma b \mathcal{B})$

demnach
$$G_i = -1 + \frac{1}{2}(\sigma a \mathfrak{A}) + \frac{1}{2}(\sigma b \mathfrak{B})$$
 oder, weil $\rho = a \mathfrak{A} + b \mathfrak{B}$ ist, $G_i = -1 + \frac{1}{2}(\rho \sigma) + \frac{1}{2}(\rho \sigma a b \mathfrak{A} \mathfrak{B})$

Der Theil R_i^{λ} von $4\theta^{\lambda}$, der aus dem unendlich nahe bei dem Punkte o liegenden Stücke der Begrenzung entsteht, ist also

$$R_1^{\lambda} = +G_1 - g' = -(\sigma) + \frac{1}{4}(\rho \sigma) + \frac{1}{4}(\rho \sigma a b \mathfrak{A})$$

Durch ähnliche Betrachtungen findet man für die Theile R_1^{λ} , R_2^{λ} , R_4^{λ} , welche ebensolche Besiehungen resp. zu den Punkten $\frac{1}{2}m$, $\frac{1}{2}m+\frac{1}{2}Mi^{\lambda}$, $\frac{1}{2}Mi^{\lambda}$ haben, wie R_4^{λ} zum Punkte 0, bei geradem λ

$$\begin{array}{ll} R_{1}{}^{\lambda} = -g'' - i^{\lambda}G'' = -\frac{1}{2}(b) - \frac{1}{2}(\mathfrak{B}), & R_{1}{}^{\lambda} = -i^{\lambda}G' + i^{\lambda}g_{1} = i^{\lambda}(a) - \frac{1}{2}i^{\lambda}(\rho a b \mathfrak{AB}) \\ R_{1}{}^{\lambda} = +i^{\lambda}g_{1} + G_{1} = \frac{1}{2}i^{\lambda}(b) + \frac{1}{2}i^{\lambda}(\mathfrak{B}) \end{array}$$

bei ungeradem λ

$$R_{a}^{\lambda} = -g'' - i^{1-\lambda}H'' = -\frac{1}{2}(b) - \frac{1}{2}(8), \quad R_{a}^{\lambda} = -i^{1-\lambda}H' - i^{\lambda-1}h_{i} = 0,$$

$$R_{a}^{\lambda} = -i^{\lambda-1}h_{ii} + G_{ii} = \frac{1}{2}i^{\lambda+1}(a) + \frac{1}{2}i^{\lambda+1}(8)$$

[V.] Art. [14.] Die Auswerthung der Summen von den nach Vorschrift III gebildeten ε ergibt sich aus der durch die Definition der ε leicht zu verificirenden Gleichung

III,
$$\Sigma \varepsilon$$
 von allen $-4\Sigma \varepsilon$ von denen, wo y ganz, $[x]$ gerade $=$ III, $\Sigma [-1nt.(p-m\omega)+1nt.(p+m\omega)]$

worin p alle Werthe annimmt, die den unter Vorschrift III angegebenen Bedingungen genügen. Diese Intensoren lassen sich nemlich mit Ausnahme der beiden dem kleinsten (ξ^*) und dem grössten zulässigen Werthe (ξ^{**}) von ξ entsprechenden Intensoren, welche resp. gleich

- Int.
$$(p^* - m\omega)$$
 und + Int. $(p^{**} + m\omega)$ oder - Int. (ωm) und + Int. $(\frac{1}{2} - \omega)m$

sind, immer zu je zweien + Int. $(p'+m\omega)$ und - Int. $(p''-m\omega)$ so zusammen ordnen, dass zwischen ξ' und ξ'' , welche den Grössen p' und p'' entsprechen, kein Werth von ξ liegt, der den reellen oder imaginären Theil von p zu einer ganzen Zahl macht, so dass also die zwei Intensoren sich stets gegenseitig annulliren.

II,
$$+\Sigma\epsilon \operatorname{Int.}ip$$
 wo Y ganz $[X]$ gerade, $-\Sigma\epsilon \operatorname{Int.}ip$ wo X ganz $[Y]$ ungerade
$$=\Sigma[-\operatorname{Int.}i(p-m\,\omega)+\operatorname{Int.}i(p+m\,\omega)] \text{ für diejenigen } p, \text{ für welche } x \text{ oder } y \text{ gans, } [X] \text{ gerade}$$

$$Y \text{ ungerade, } 0 < \xi < \frac{1}{4}, \quad \eta = \omega$$

$$+\operatorname{Int.}i(p^*-m\,\omega) \text{ wenn } [X^*] \text{ gerade } [Y^*] \text{ ungerade}$$

$$-\operatorname{Int.}i(p^{**}+m\,\omega) \text{ wenn } [X^{**}] \text{ gerade } [Y^{**}] \text{ ungerade}$$

wie man sich leicht überzeugt, wenn man auf der zweiten Seite der Gleichung die Summation nach dem in der vorhergehenden Note angewandten Verfahren über jedes so kleine Intervall von ξ , bis ξ , ausführt, dass es zwischen ξ , und ξ , kein ξ gibt, welches in dem zugehörigen P den reellen oder imaginären Theil zu einer ganzen Zahl macht. Die Anwendung der nach Vorschrift III gebildeten ε lässt die zweite Seite dieser Gleichung die in Art. 15. aufgestellte Form annehmen.

[V.] Art. [15.] Die Verwandlung der Summen von den nach Vorschrift IV gebildeten λ'ε in die Summen der ε aus V ergibt sich durch eben solche Betrachtungen wie die in der letzten Note angewandten, wenn noch die Gleichung

V,
$$\Sigma \varepsilon$$
 von allen, $-4\Sigma \varepsilon$ wo x ganz $[y]$ gerade, $= + \text{Int.} (\frac{1}{2} im + m\omega) - \text{Int.} (\frac{1}{2} im + \frac{1}{2} - \omega m)$

su Hülfe gezogen wird, die der zuvor ermittelten Auswerthung der Summe von den e in Vorschrift III entspricht.

[V.] Art. [17.] Bestimmt man die Hülfsgrössen
$$U$$
, T , L , V durch die Gleichungen $U = 1 - 2(B) - (AB) + (aa) + (bb) + (ab) - (ba) + (abab) - (ababAB)$ oder $U = (1 + (A))(1 - (B))(1 - (ab) + (bb) + (ab))$ weil $(aa) + (bb) = (A) + (Aabab)$, $(ab) - (ba) = (B) - (Babab)$ ist, $T = -2 + (a) + (b) - (b) - 2(B) - (aab)$ oder $T = -2 + (a) + (b) - (b) - 2(B) - (aA) + (bB) - (bAB)$ $L = (1 + (A))(1 + (B))(1 + b) - (1 - (A))(1 - (B))(1 - (b))$ $V = (1 + (A))(1 - (B))(-2(a) + 2(b) + (ab) + (ab))$ oder $V = (1 + (A))(1 - (B))(-(a) + (b) + (b) + (ab) - (bab) + (ab))$ weil $(a) + (b) = (b) + (bab)$ wenn A positiv B negativ

und bezeichnet mit W'. S', Q' die Grössen, in welche die W, S, Q des Ausdrucks für den Dec. $\frac{m}{M}$ in Art.14. übergehen, wenn man darin m mit M also $\alpha + \delta i$ mit $\alpha - \delta i$ vertauscht, so wird

$$\begin{array}{lll} 2\,W' = -\,5\,(B) - (A\,B) & \text{wenn } \frac{M-1}{2} \text{ gerade} \\ \\ 2\,W' = -\,(B) - (A\,B) & \text{wenn } \frac{M-1}{2} \text{ ungerade} \\ \\ 2\,S' = -\,(a\,6\,a\,b\,A\,B) - (6) - (B) + (b) \\ \\ 2\,Q' + \,2\,S' + \,2\,W' = \,2\,T + \,U & \text{wenn } \frac{M-1}{2} \text{ gerade} \\ \\ 2\,Q' + \,2\,S' + \,2\,W' = -\,4 + \,4\,(a) + \,U & \text{wenn } \frac{M-1}{2} \text{ ungerade} \\ \\ 8\,\psi = \,8\,(q + r + s + w) - (2\,Q' + \,2\,S' + \,2\,W') \end{array}$$

Ersetzt man hier s(q+r+s+w) durch dessen in Art. 15 aufgestellten Werth, bringt ihn aber unter die Form

$$2T+4L+V$$
 wenn $\frac{M-1}{2}$ gerade $\frac{m-1}{2}$ gerade $2T-16+16(A)+V$ wenn $\frac{M-1}{2}$ gerade $\frac{m-1}{2}$ ungerade $-4+4(a)+V$ wenn $\frac{M-1}{2}$ ungerade $\frac{m-1}{2}$ gerade $-20+4(a)+V$ wenn $\frac{M-1}{2}$ ungerade $\frac{m-1}{2}$ ungerade

und beachtet, dass

$$V-U=-\frac{1}{2}(1+(a))(1+(A))(1+(a))(1-(b))(1-(B))(1-(b))$$

ist, so erhält man für ψ die in Art. 17 angegebene Bestimmungsart.

[VI.] Art. 3. Das unvollständige Citat kann auf Art. 4 des Bruchstücks III bezogen werden.

SCHERING.

ZUR THEORIE DER COMPLEXEN ZAHLEN.

[I.]

NEUE THEORIE DER ZERLEGUNG DER CUBEN.

I. Wir nehmen an, es gebe eine Auflösung der Gleichung $x^3+y^3+z^3=0$, nemlich x=a, y=b, z=c, wo a, b, c keinen gemeinschaftlichen Divisor haben, folglich auch unter sich Primzahlen sind. Wir setzen

$$b+c = \alpha$$

$$c+a = 6$$

$$a+b = \gamma$$

wo nothwendig auch α , δ , γ unter sich Primzahlen sein werden. Hätten nemlich α und δ einen gemeinschaftlichen Divisor, so würde dieser auch a^3 und b^3 messen, es müssten daher auch a und b einen gemeinschaftlichen Divisor haben.

Wir werden nun haben

$$(6+\gamma-\alpha)^3+(\gamma+\alpha-6)^3+(\alpha+6-\gamma)^3=0$$

allein es ist identisch

$$(\theta + \gamma - \alpha)^3 + (\gamma + \alpha - \theta)^3 + (\alpha + \theta - \gamma)^3 = (\alpha + \theta + \gamma)^3 - 24\alpha\theta\gamma$$

Es wird folglich

$$(\alpha+\beta+\gamma)^3=44\alpha\beta\gamma$$

Sind α , δ , γ reelle Zahlen, so wird $\alpha + \delta + \gamma$ durch 3 theilbar sein, also $\alpha + \delta + \gamma$)³ durch 27, folglich $\alpha \delta \gamma$ durch 9. Es muss daher eine der Zahlen α , δ , γ z. B. γ durch 9 theilbar sein, also c^3 ebenfalls, folglich c durch 3.

Sind hingegen α , β , γ imaginäre Zahlen, so schliessen wir, dass $\alpha + \beta + \gamma$ durch $1 - \epsilon$, folglich $24\alpha\beta\gamma$ durch $(1 - \epsilon)^3$, mithin $\alpha\beta\gamma$ durch $1 - \epsilon$ theilbar sein müsse. Es ist also eine der Zahlen α , β , γ durch $1 - \epsilon$ theilbar und folglich auch eine der Zahlen α , β , c.

II. Wir haben allgemein die identische Gleichung

$$(p+q+r)^{3}+(p+q\epsilon+r\epsilon\epsilon)^{3}+(p+q\epsilon\epsilon+r\epsilon)^{3}$$

$$= 27 p q r+3 (p+q+r) (p+q\epsilon+r\epsilon\epsilon) (p+q\epsilon\epsilon+r\epsilon)$$

Ist folglich p+q+r=0, so wird

$$(p+q\varepsilon+r\varepsilon\varepsilon)^3+(p+q\varepsilon\varepsilon+r\varepsilon)^3-27\,pqr=0$$

Sind hier p, q, r, selbst Cuben, nemlich resp. $= a^3, b^3, c^3$; d. i. existirt eine Auflösung der Gleichung $x^3 + y^3 + z^3 = 0$, so wird

$$a^3+b^3\epsilon+c^3\epsilon\epsilon=a'$$

 $a^3+b^3\epsilon\epsilon+c^3\epsilon=b'$
 $-3abc=c'$

gesetzt, auch $a'^3 + b'^3 + c'^3 = 0$ werden. Aus dieser neuen Auflösung kann man auf gleiche Weise eine dritte ableiten u.s.w. Man überzeugt sich leicht, dass wenn die erste Auflösung in reellen Zahlen ist, auch die dritte eine solche sein wird.

Es ist noch zu bemerken, dass wenn a, b, c keinen Factor gemein haben, dasselbe auch von a', b', c' gelten wird, den Factor $1-\epsilon$ abgerechnet. Es ist nemlich

$$\frac{a'}{1-\epsilon} = -\epsilon \epsilon a^3 + \epsilon b^3 = a^2 - \epsilon c^3 = -b^3 + \epsilon \epsilon c^3$$

$$\frac{b'}{1-\epsilon} = a^3 - \epsilon b^3 = -\epsilon \epsilon a^3 + \epsilon c^3 = \epsilon \epsilon b^3 - c^3$$

$$\frac{c'}{1-\epsilon} = (\epsilon \epsilon - 1) a b c$$

Die beiden ersten Zahlen haben also weder mit a, noch mit b, noch mit c einen Factor gemein, können auch nicht durch $1-\varepsilon$ theilbar sein, wenn nicht a, b, c

zugleich durch 1-& theilbar sind: daher haben jene auch keinen Factor mit der dritten gemein.

III. Aber auch der umgekehrte Weg wird offen stehen. Wir haben gesehen, dass eine der Grössen durch $1-\varepsilon$ theilbar ist: dies mag c sein. Da man statt a auch $a\varepsilon$ oder $a\varepsilon\varepsilon$ substituiren kann, und ebenso statt b auch $b\varepsilon$ oder $b\varepsilon\varepsilon$, so dürfen wir voraussetzen, dass a entweder $\equiv 1$ oder $\equiv -1$ sein wird; wir werden das erstere voraussetzen, da im andern Fall $b\equiv 1$ sein würde und nur mit a vertauscht zu werden brauchte. Wir setzen demnach

$$a = 1 + 3\alpha$$
$$b = -1 + 36$$

und

$$\frac{a\varepsilon + b\varepsilon\varepsilon}{\varepsilon - \varepsilon\varepsilon} = 1 + (\varepsilon\varepsilon - \varepsilon)(\alpha\varepsilon + \delta\varepsilon\varepsilon) = A$$

$$\frac{a\varepsilon\varepsilon + b\varepsilon}{\varepsilon - \varepsilon\varepsilon} = -1 + (\varepsilon\varepsilon - \varepsilon)(\alpha\varepsilon\varepsilon + \delta\varepsilon) = B$$

$$\frac{a + b}{\varepsilon - \varepsilon\varepsilon} = (\varepsilon\varepsilon - \varepsilon)(\alpha + \delta) = C$$

wo A+B+C=0 wird, und $ABC=\frac{a^2+b^2}{(\varepsilon-\varepsilon\varepsilon)^3}=\left(\frac{c}{\varepsilon\varepsilon-\varepsilon}\right)^3$

Da hier

$$a = -\epsilon A + \epsilon \epsilon B$$

$$b = \epsilon \epsilon A - \epsilon B$$

so können A und B keinen Factor gemein haben, weil ein solcher sonst auch gemeinschaftlicher Factor von a und b sein würde. Wegen A+B+C=0 kann folglich auch C keinen Factor weder mit A noch mit B gemein haben. Hieraus folgt leicht, dass A und B und mithin auch C Cuben sind. Denn $(\frac{c}{\epsilon \varepsilon - \epsilon})^3$ wird durch $\epsilon - \epsilon \varepsilon$, folglich auch durch $(\epsilon - \epsilon \varepsilon)^3$ theilbar sein oder $\alpha + 6$ durch $\alpha + 6$ du

Setzen wir nun

$$A = a^{\prime 3}$$

$$B = b^{\prime 3}$$

$$C = c^{\prime 3}$$

so haben wir aus der Auflösung der Gleichung $x^3+y^3+z^3=0$

$$\begin{aligned}
 x &= a \\
 y &= b \\
 z &= c
 \end{aligned}$$

eine andere abgeleitet

$$x = a'$$

$$y = b'$$

$$z = c'$$

$$\text{wo } a'^3 b'^3 c'^3 = \frac{c^3}{(\epsilon \epsilon - \epsilon)^3}$$

wo folglich c' den Factor 1— ε einmal weniger enthalten wird, als c. Dies ist aber absurd, wenn c nur durch eine bestimmte Potenz von 1— ε theilbar, d. i. wenn c von 0 verschieden ist. Denn durch Fortsetzung dieser Operationen würde man sonst am Ende auf eine Auflösung kommen, wo z gar nicht durch 1— ε theilbar wäre gegen (I).

Einen ähnlichen Weg kann man für die 5^{ten} Potenzen nehmen. Ist nemlich $a^5+b^5+c^5=0$, so setzt man $b+c=\alpha$, c+a=6, $a+b=\gamma$, so wird

$$0 = (2a)^{5} + (2b)^{5} + (2c)^{5} = (6 + \gamma - \alpha)^{5} + (\gamma + \alpha - 6)^{5} + (\alpha + 6 - \gamma)^{5}$$
$$= (\alpha + 6 + \gamma)^{5} - 80 \alpha 6 \gamma (\alpha \alpha + 66 + \gamma \gamma)$$

Es kann aber nicht $(\alpha+6+\gamma)^5=80\,\alpha\,6\gamma(\alpha\,\alpha+6\,6+\gamma\,\gamma)$ werden ohne dass eine der Zahlen α , β , γ durch 1— ϵ theilbar sei. Denn wären sie alle nicht theilbar, so müsste sowohl $\alpha+6+\gamma$ als $\alpha\alpha+6\,6+\gamma\,\gamma$ durch 1— ϵ theilbar sein, folglich auch $2(\alpha\alpha+6\,6+\gamma\gamma)+2(\alpha+6+\gamma)(\alpha+6-\gamma)=(2\alpha+6)^2+366$, was unmöglich ist.

Man kann dies auch so darstellen. Ist $a^5 + b^5 + c^5 = 0$, so wird

$$4(a+b+c)^{5} = 5(b+c)(c+a)(a+b)[(a+2b+3c)^{2}+3(a+c)^{2}-8(a+b+c)c]$$

$$= 5(b+c)(c+a)(a+b)[(b-c)^{2}+3(b+c)^{2}+4(a+b+c)a]$$

$$4(a+b+c)^{5}+5abc[(b-c)^{2}+3(b+c)^{2}] = 5(a+b+c)\{...\}$$

Uebrigens würde der Beweis dem vorigen sehr ähnlich.

Versucht man aber denselben Gang bei den siebenten Potenzen, so gelingt es nicht zu beweisen, dass bei einer gegebenen Auflösung

$$a^7 + b^7 + c^7 = 0$$

nothwendig eine der Grössen a, b, c durch 7 theilbar sein müsse. Es folgt nemlich nur

$$(\alpha+\beta+\gamma)^7 = 5\alpha\beta\gamma\{3(\alpha^4+\beta^4+\gamma^4)+10(\alpha\alpha\beta\beta+\alpha\alpha\gamma\gamma+\beta\beta\gamma\gamma)\}$$

welches bestehen kann, ohne dass α, β, γ durch 1—ε theilbar wäre.

Hoffentlich wird sich indessen dies in Zukunft aus der Natur der Determinanten und der Einheitszahlen ableiten lassen.

[II.]

BESTIMMUNG DER NACHSTEN GANZEN ZAHL.

Es sei
$$\varepsilon^3 = 1$$
, $m = a + b\varepsilon + c\varepsilon\varepsilon$
 $2a - b - c = A + \alpha$
 $2b - c - a = B + \delta$
 $2c - a - b = C + \gamma$

wo A, B, C ganze Zahlen; α, δ, γ positive echte Brüche sind. Man hat dann

$$A+B+C+\alpha+6+\gamma=0$$

also drei Fälle zu unterscheiden:

I.
$$\alpha + 6 + \gamma = 0$$
, folglich $\alpha = 0$, $\delta = 0$, $\gamma = 0$

1, $A \equiv B \equiv C \pmod{3}$. Hier ist m selbst eine ganze Zahl.

2,
$$A - B \equiv B - C \equiv C - A \equiv \pm 1 \pmod{3}$$
. Hier ist $m \pm \frac{\varepsilon - \varepsilon \varepsilon}{3}$. ε^n eine ganze Zahl.

II.
$$\alpha + \beta + \gamma = 1$$
.

Hier ist
$$A+B\varepsilon+C\varepsilon\varepsilon+1$$

 $A+B\varepsilon+C\varepsilon\varepsilon+\varepsilon$
 $A+B\varepsilon+C\varepsilon\varepsilon+\varepsilon\varepsilon$

392 NACHLASS.

jedes durch 1— & theilbar, und eine dieser Zahlen durch 3. Der Quotient oder

$$m+\frac{\varepsilon^n-\alpha-6\varepsilon-\gamma\varepsilon\varepsilon}{3}$$

die gesuchte ganze Zahl.

III.
$$\alpha + \beta + \gamma = 2$$

Hier sind
$$A+B\varepsilon+C\varepsilon\varepsilon+\varepsilon+\varepsilon\varepsilon$$

 $A+B\varepsilon+C\varepsilon\varepsilon+\varepsilon\varepsilon+1$
 $A+B\varepsilon+C\varepsilon\varepsilon+1+\varepsilon$

durch 1-2 und eine dieser Zahlen durch 3 theilbar. Der Quotient, oder

$$m + \frac{\epsilon^n(\epsilon + \epsilon \epsilon) - \alpha - 6\epsilon - \gamma \epsilon \epsilon}{3}$$

ist die gesuchte ganze Zahl.

In allen drei Fällen hat der Rest die Form

$$x+y\varepsilon+z\varepsilon\varepsilon$$

so dass x, y, z ohne Rücksicht auf das Zeichen kleiner als $\frac{1}{2}$ und x+y+z=0 wird. Dadurch wird aber nothwendig

$$xx+yy+zz = 2xx-2yz = 2yy-2xz = 2zz-2xy < 3$$

weil von den drei Grössen x, y, z nothwendig zwei einerlei Zeichen haben. Folglich ist der Determinant des Restes

$$= \frac{1}{2}(xx+yy+zz) < \frac{1}{2}$$
 Q. E. D.

Die Bestimmung der nächsten ganzen Zahl geschieht bequemer auf folgende Art. Es sei vorgegeben $a+b\varepsilon+c\varepsilon\varepsilon=m$, man setze

$$b-a = C+\gamma$$

$$c-b = A+\alpha$$

$$a-c = B+6$$

wo A, B, C die nächst kleinern ganzen Zahlen; α , δ , γ positive Brüche sind. Hier sind drei Fälle zu unterscheiden:

4.
$$\alpha + 6 + \gamma = 0$$
, so ist m selbst ganze Zahl

II. $\alpha + 6 + \gamma = 1$, so ist die nächste ganze Zahl

$$B+(B+C)\varepsilon$$
 wenn α der grösste Bruch ist.
$$C\varepsilon+(A+C)\varepsilon\varepsilon$$
 δ
 $A+B$. $+A\varepsilon\varepsilon$ γ

II. $\alpha + 6 + \gamma = 2$, so ist die nächste ganze Zahl

$$B+1+(B+C+2)\varepsilon$$
 wenn α der kleinste Bruch ist.
 $(C+1)\varepsilon+(A+C+2)\varepsilon\varepsilon$ 6
 $A+B+2$. $+(A+1)\varepsilon\varepsilon$ γ

In II, 1 ist der Rest $6+(6+\gamma)\varepsilon$, dessen Determinant

$$= 66 + 6\gamma + \gamma\gamma = 1 - \frac{1}{4} [(\alpha - 6)(1 + 36) + (\alpha - \gamma)(1 + 3\gamma)]$$

Noch einfacher so:

Man ordne die Brüche a-[a], b-[b], c-[c] nach ihrer Grösse: so heissen sie der Reihe nach p, q, r. Sind alle drei gleich gross, so ist m eine ganze Zahl. Sind sie aber ungleich, so sei t ein beliebiger Bruch zwischen

$$p$$
 und q , jenachdem $q-p$ am grössten ist q und r $r-q$ r und $1+p$ $1+p-r$

Sodann ist

$$[a-t]+[b-t]\varepsilon+[c-t]\varepsilon\varepsilon$$

die nächste ganze Zahl.

[III.]

Es sei $\epsilon^5 = 1$

$$a + b\varepsilon + c\varepsilon\varepsilon + d\varepsilon^{2} + e\varepsilon^{4} = q'$$

$$a + b\varepsilon^{-1} + c\varepsilon^{-2} + d\varepsilon^{-3} + e\varepsilon^{-4} = q''''$$

$$(a - b)^{2} + (b - c)^{2} + (c - d)^{2} + (d - e)^{2} + (e - a)^{2} = 2p'$$

$$(a - c)^{2} + (b - d)^{2} + (c - e)^{2} + (d - a)^{2} + (e - b)^{2} = 2p''$$

$$q'q''' = -p'\varepsilon - p''\varepsilon\varepsilon - p''\varepsilon^{3} - p'\varepsilon^{4} = P'$$

$$q''q''' = -p'\varepsilon\varepsilon - p''\varepsilon^{4} - p''\varepsilon - p'\varepsilon^{3} = P''$$

Determinant = P'P' = -p'p' + 3p'p'' - p''p''

Mensura = 2p' + 2p'' = 2P' + 2P''

$$= 5 (a a + b b + c c + d d + e e) - (a + b + c + d + e)^{2}$$

Multiplicando per 1— ε fit mensura nova = 8p'

Höchste Mensur =
$$2(\frac{\sin 72^{\circ}}{\sin 36^{\circ}} + \frac{\sin 36^{\circ}}{\sin 72^{\circ}})\sqrt{D} = 4,472\sqrt{D}$$

$$Modulus = 1 - \varepsilon$$

$$1 - \varepsilon = x$$

$$\varepsilon = 1 - x$$

$$\varepsilon \varepsilon = 1 - 2x + xx$$

$$\varepsilon^{3} = 1 - 3x + 3xx - x^{3}$$

$$\varepsilon^{4} = 1 - 4x + 6xx - 4x^{3} + x^{4}$$

$$= -4 + 6x - 4xx + x^{3}$$

Also

$$\frac{\frac{1-\varepsilon^{n}}{1-\varepsilon}}{\varepsilon^{n}} \equiv n \mod (1-\varepsilon)$$

$$\varepsilon^{n} \equiv 1-nx \mod (1-\varepsilon)^{2}$$

$$\left(\frac{\varepsilon+\varepsilon^{4}}{\varepsilon\varepsilon+\varepsilon^{3}}\right)^{n} \equiv 1+nxx \mod (1-\varepsilon)^{3}$$

Also eine Zahl, welche $\equiv 1 \mod (1-\epsilon)^3 \mod nur \dim eine Einzahl sein, wenn sie zugleich <math>\equiv 1 \pmod{5}$.

[IV.]

EINIGES UBER DIE MENSUR DER ZAHLEN.

Es sei $\varepsilon^n = 1$, n Primzahl

$$m = a + a'\varepsilon + a''\varepsilon\varepsilon + a'''\varepsilon^3 + \dots + a^{(n-1)}\varepsilon^{n-1} = f\varepsilon$$

$$D = f\varepsilon \cdot f\varepsilon\varepsilon \cdot f\varepsilon^3 \cdot \dots f\varepsilon^{n-1}$$

$$f\varepsilon \cdot f\varepsilon^{n-1} = -b'(\varepsilon + \varepsilon^{n-1}) - b''(\varepsilon^2 + \varepsilon^{-2}) - b'''(\varepsilon^3 + \varepsilon^{-3}) \cdot \dots$$

so ist

$$2b' = (a-a')^2 + (a'-a'')^2 + (a''-a''')^2 + \text{ etc.}$$

$$2b'' = (a-a'')^2 + (a'-a''')^2 + (a''-a'''')^2 + \text{ etc.}$$
etc.

hier sind also b', b'', b'''... lauter positive Grössen; sie heissen *Partialmensuren* von m, so wie ihre Summe

$$b'+b''+b'''+$$
 etc. = $n(a a + a'a' + a''a'' + ...) - (a + a' + a'' +$ etc.)²

die Generalmensur. Setzt man

$$f \varepsilon . f \varepsilon^{n-1} = c', \quad f \varepsilon \varepsilon . f \varepsilon^{n-2} = c'' \quad \text{etc.}$$

so ist

$$c'+c''+c'''+\text{ etc.}+c^{\frac{1}{2}(n-1)}=b'+b''+b'''+\text{ etc.}+b^{\frac{1}{2}(n-1)}$$

$$c'(\varepsilon+\varepsilon^{n-1})+c''(\varepsilon\varepsilon+\varepsilon^{n-2})+c'''(\varepsilon^3+\varepsilon^{n-3})+\text{ etc.}=2(b'+b''+b'''+\text{ etc.}+b^{\frac{1}{2}(n-1)})-nb''$$

$$c'(2-\varepsilon-\varepsilon^{n-1})+c''(2-\varepsilon\varepsilon-\varepsilon^{n-2})+c'''(2-\varepsilon^3-\varepsilon^{n-3})+\text{ etc.}=nb'$$

$$b'>\frac{n-1}{2n}(nD)^{\frac{2}{n-1}},\ b'+b''+b'''+\text{ etc.}>\frac{n-1}{2}.D^{\frac{2}{n-1}}$$

Ist allgemein

$$f\varepsilon.f\varepsilon^{n-1} = A + A'\varepsilon + A''\varepsilon\varepsilon + A'''\varepsilon^3 + \dots$$

so ist die Generalmensur $\triangle = -A - A' - A'' - \text{etc.} + nA$ Mensur von $(1+\varepsilon)f\varepsilon$... $\triangle' = 4 \triangle - 2n(A - A') = 4 \triangle - 2nb'$ Ist $a+a'+a''+\ldots = 0$, so ist $\triangle = n(aa+a'a'+a''a''+\text{etc.})$ und ist $A+A'+A''+\ldots = 0$, so ist $\triangle = nA$, $\triangle' = n(2A+2A')$

Ist also einer der Coëfficienten A', A'' etc. negativ und absolut grösser als $\frac{1}{2}A$, so lässt sich die Mensur salvo determinante herabbringen.

[V.]

Sollte sich bestätigen, dass jede Einheitszahl blos aus Factoren von der Form

$$\frac{\varepsilon^{\alpha}-\varepsilon^{\beta}}{\varepsilon^{\gamma}-\varepsilon^{\beta}}$$

zusammengesetzt wäre, so würde folgender Satz bewiesen sein:

Ist $f(\varepsilon)$ eine Einheitszahl, so ist

$$\frac{f(\varepsilon)}{f(\varepsilon^{-1})} = \varepsilon^n$$

Auch ohne jenen Satz vorauszusetzen ist der Schlusssatz leicht zu beweisen. Es sei

$$\frac{f\varepsilon}{f\varepsilon^{-1}} = F\varepsilon$$

so ist

$$F\varepsilon \cdot F\varepsilon^{-1} = 1$$

woraus mit Hülfe der Lehre von der Mensur leicht gefolgert wird, dass

$$F\varepsilon = \pm \varepsilon^n$$

Das untere Zeichen ist aber unmöglich, weil sonst $f\varepsilon$ durch 1— ε theilbar sein müsste.

Dass der Determinant einer von 0 verschiedenen Zahl nicht = 0 sein könne, lässt sich leicht beweisen. Wenn der Determinant durch m theilbar ist, so ist die Zahl selbst durch $1-\varepsilon$ theilbar; folglich wenn der Determinant durch m^{m-1} theilbar ist, muss die Zahl selbst durch m theilbar sein. Welches absurd ist, da beim Det. 0 die Zahl erst salvo Det. so oft durch m dividirt werden könnte, bis sie nicht mehr theilbar wäre. Der erste Satz aber erhellt so. Es sei die vorgegebene Zahl

$$a+b\varepsilon+c\varepsilon\varepsilon+$$
 etc. $\equiv a+b+c$.. mod. $1-\varepsilon$

also Determinans $\equiv (a+b+c..)^{m-1} \mod 1 - \epsilon$.

[VI.]

Es sei $\varepsilon^n = 1$

$$f\varepsilon = a + b\varepsilon + c\varepsilon\varepsilon + d\varepsilon^3 + \text{etc.}$$

 $m = \text{Determinans dieser Zahl}$
 $\frac{m}{f\varepsilon} = f\varepsilon\varepsilon \cdot f\varepsilon^3 \cdot ... f\varepsilon^{n-1} = A + B\varepsilon + C\varepsilon\varepsilon + \text{etc.} = F\varepsilon$

Der Zahl $f\varepsilon$ entspricht eine Wurzel der Congruenz $x^n \equiv 1 \pmod{m}$. Es sei dieselbe r. Man hat

$$nA = F_1 + F_{\varepsilon} + F_{\varepsilon} + ...$$

$$nB = F_1 + \varepsilon^{-1} F_{\varepsilon} + \varepsilon^{-2} F_{\varepsilon} + ...$$

$$nC = F_1 + \varepsilon^{-2} F_{\varepsilon} + \varepsilon^{-4} F_{\varepsilon} + ...$$
etc.

also, da $F \varepsilon \varepsilon$, $F \varepsilon^3$, $F \varepsilon^4$ etc. durch $f \varepsilon$ theilbar sind,

$$nA-F1-\varepsilon(nB-F1)$$

 $nA-F1-\varepsilon(nC-F1)$
 $nA-F1-\varepsilon^3(nD-F1)$
etc.

alle durch fe theilbar, oder auch

$$n(A-B)-\varepsilon n(B-C)$$

 $n(B-C)-\varepsilon n(C-D)$
etc.

durch $f\varepsilon$ theilbar; folglich [wenn $f\varepsilon$ durch $1-\varepsilon$, und $F\varepsilon$ durch eine ganze reelle Zahl nicht theilbar ist]

$$\varepsilon \equiv \frac{A-B}{B-C} \equiv \frac{B-C}{C-D} \equiv \frac{C-D}{D-E}$$
 etc. (mod. $f\varepsilon$)

BEMERKUNGEN.

Die hier unter der gemeinsamen Ueberschrift, zur Theorie der complexen Zahlen, zusammengestellten Untersuchungen bilden zerstreute Notizen in der Handschrift. Sie enthalten die wesentlichen Momente des Beweises vom Fermatschen Satze für die dritte und fünfte Potenz. Die aus dritten Wurzeln der Einheit zusammengesetzten Zahlen sind in unvollständigen hier nicht abgedruckten Aufzeichnungen sowohl mit Hülfe der Theorie der binären quadratischen Formen, als auch der Kreistheilung untersucht. Bei Gelegenheit der Anwendung der letztern und zwar während der Ausarbeitung der Abhandlung Disquisitionum circa aequationes puras ulterior evolutio ist noch die ternäre cubische Form aufgestellt, in welche $27 \frac{x^n-1}{x-1}$ für eine Primzahl $n \equiv 1 \mod 3$ verwandelt werden kann, und zugleich die Theorie der Composition der mit jener verwandten Form $X^0 + mY^2 + mmZ^3 - 3mXYZ$ entwickelt.

Die in den Untersuchungen des Bruchstück [I] vorausgesetzte Eigenschaft der aus dritten Wurzeln der Einheit gebildeten ganzen Zahlen, dass jede nur auf Eine Weise in Primfactoren zerlegt werden kann, ergibt sich aus dem Euchreischen Verfahren, die gemeinsamen Theiler zweier Zahlen zu bestimmen, wenn dabei der unter [II] abgeleitete Satz über die nächste ganze Zahl für irgend eine vorgegebene Bruchzahl in Anwendung gebracht wird.

Dass dieselbe Fundamentaleigenschaft auch den aus fünften Wurzeln der Einheit zusammengesetzten Zahlen zukommt, folgt daraus, dass der nach einer ganz analogen Regel wie in [II] gebildete Bruchrest entweder von m oder doch von m multiplicirt in eine geeignete Einheitszahl E so beschaffen ist, dass er durch Subtraction von der vorgegebenen Zahl mE eine ganze Zahl entstehen lässt und dass sein Determinant die Einheit nicht übertrifft. Die Einheitszahlen lassen sich aber, wie in [III] angedeutet, aus der Theorie der binären quadratischen Formen vom Determinant 5 in Verbindung mit der Zerlegung irgend einer reellen Primzahl in vier Factoren (z. B. 11 = Det. $(2+\varepsilon)$) ableiten, nemlich als Producte der Potenzen von ε und $1+\varepsilon$.

Schering.

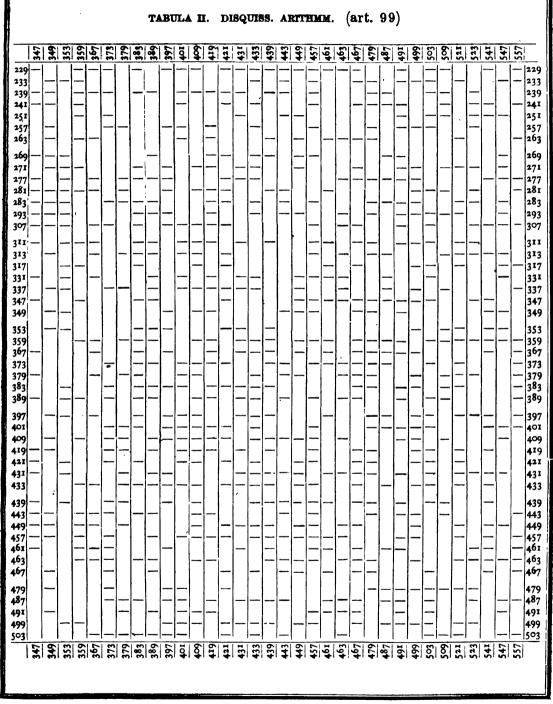
TAFEL

DES QUADRATISCHEN CHARACTERS

DER PRIMZAHLEN VON 2 BIS 997 ALS RESTE

IN BEZUG

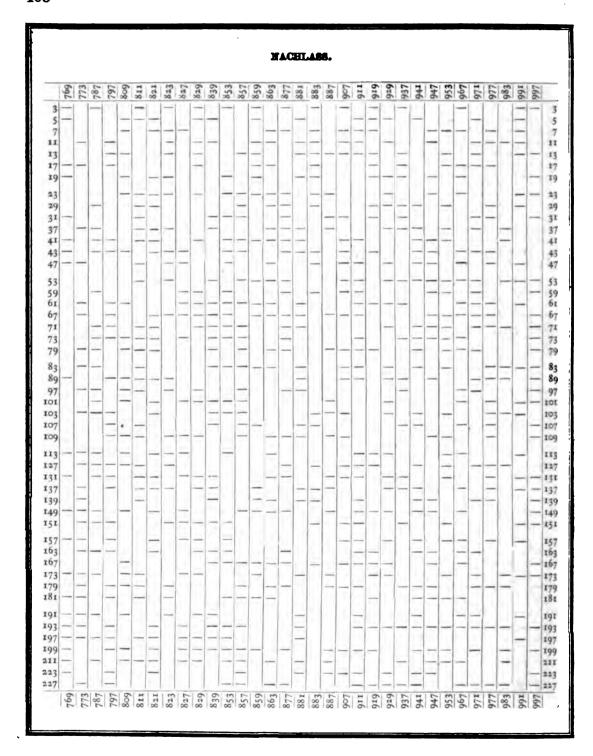
AUF DIE PRIMZAHLEN VON 3 BIS 503 ALS THEILER.

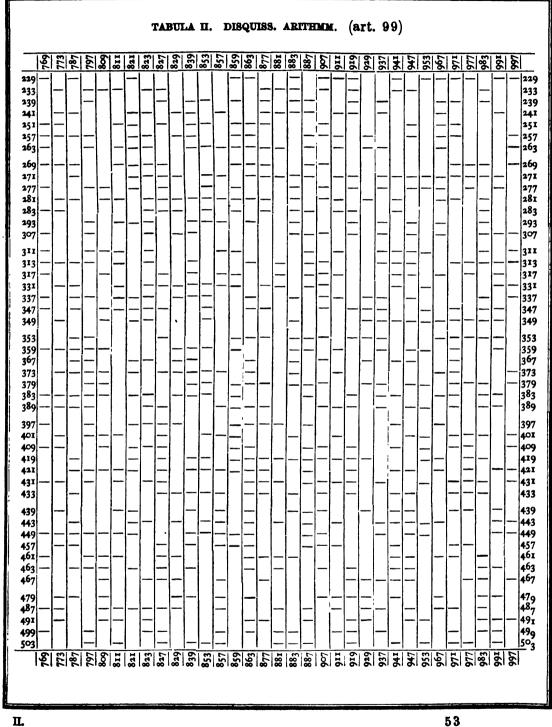

																		88													•			
14	m	1.5	1	=	13	17	12	1 %	18	31	37	14	12	4	53	59	9	6	ī	73	. 6	8	8	97	ē	103	107	8	13	127	131	137	139	-
3	-		-		[-	Ì					-		-			_	-	i-		i –	iΞ			-								Ī		3
5 —		-	_	_				-	-		_		_		-			_	_		_				_		-	_	_	_		-		7
13	_	-		-	_	_		:_	_	-	-		_	-	_	-	_	-	-		_		-	-	_		_		_		_	-	- 1	11
17 —					-		-	,					-		-	_						-	_		_	-				-		-	-	17
19		_	_	-		Γ	-	1					-	_		ľ	-			_		-									_		_	19
23 — 29	Γ	_	_		_			_		-		_		_	_	_		_	_	_		_			_		_	_		_				23 29
31 — 37	_	-	_				-	ĺ		-		_	l	_				<u> -</u>		<u> </u>		_		-	_	-	_	-	-	_	-			31 37
41 -	 	-					}	-		-	!—	 -	_		! !		-			i–		_				-	-		-	-	_			3/ 41
43 47 —	-			-	-			-		-	_	 	-	_	<u> </u>	_	_	-	_		i=	=	_	_	_		-	-		_	_		-	43 47
53		'	_		_	_			_		_		-	_	' 	_							_				_				_			53
59 61			-			-	-		-	1		-		_	-	-			-		-			_		_			_	-	1		-	59 61
67	Γ				_		. _	-	- -		_			-	!	_		_	-	_	ĺ	_	_			-	-	_		_	-			67
71 — 73 —		-						: _	_		_	_	-		İ		_			_	_	-	_	_	-	-	_	_		_				71 73
79 —		_		-	-		-	-	·								ļ	-	•	<u> </u> _	-	-	-	-	_						-			79
83	-			-		-	1	-	-	-	-		ĺ	_		-	-					-						_	-	-!	-			83
89 — 97 —	_	_		_						_			_	_	_			-		_	<u> </u>		_	_	_	_		_	_					89 97
101 —			_						: _	-		_	-	-		_	_		_		_	_		_	-								- 1	101 103
107	-				_		-	-	-	İ	-	<u> </u>			_	Ì	_			١ ١	_	_	-		-		-				Ì	-	1	107
109	_	一	_					1		-			-				-	1	_	_			-						_		-	_	1	109
113 —			_	_	-	_	. _			_	_	_		_	_				_	_	_	-		_		_	-	-	_	_	_	ļ		113 127
131	-	-	_									-	-	1	-		·-						-		_				-	ļ	-			131 137
137 —		_		_	_				_	_		_	į	_			_	_	_		_	_	-			ļ	=		-	_'	_	-		139
149 151 —		_	-	_						_	_		_			_		-						_		<u> </u>			-	_	ł			149 151
157	_			_	_		<u> </u> _			_	_			_				 							_			_	_	_			- 1	 157
163 167 —												-	-	_	-		-		-			-		-					-	_	-		- 1	163
173			_			1	i_	_	1	_	_	_		_			_	_		_		_	_;		İ		_	_	_	_	Ì	-		167 173
179				_			-							-		_		_									-						-)	179 181
191 —				_		_		L	_										ĺ		_			_		_	_	_					ı	191
193 -	-						1	-								-		-				-		-	-		-	-			-	-		107
197		_	_		_			1						_		-	_				_	-	_	-	\neg	_	-	-		ᅵ	_		— ;	197 199
211		-			-		-				-			-	-				-	-	-	-		l	-	一	-	-	-			-	—];	2 I I
223 — 227			_	_		-	_	_	_	-	-				_	_			_	_	_		\exists	_	=	_		_	_	_		_	— :	223 227
4	"	~	7	H	13	17	10	1 2	, 5	3	37	7	1.2	14	53	59	9	67	71	73	2	8	8	6	101	ន្ត	Š	8	113	127	131	137	139	

								-2-		BU														t.			· -				<u>.</u>				
	-		~	7	=	=	7	2	8	2	31	37	4	#	47	53	59	5	2	71	73	2	∞.	∞,	6	Ö	2	5	3	113	12	3	137		
229	_	_	_	_	_	_	-		_	_	_	_		_						_				_	_		_	_	_	_		-			229 233
239 241		_			_		-			_			_		_	_	_	_		-		_	_		_	_			-	_	-				239 241
251		-	-	_			-		-		-								-		-	-	-	-		-	_			-		_			251
257 263	_	_			_	_	_		_	_	_	_		_				_					_	_			-		_				_	_	257 263
269			-		_	-			-			-		_		-	1	_	-		-	-		-	_		-				-	-			269
271	_	_		_		_	_	_	_	_	_		_		_		-	_	_	_		_	_							_		_			271 277
281 283	-		-	_		_	-		_	_	-			-		-		_		_	_	-	_	_	_	_			-	_	_				281 283
293											-	-				-	-	-	-	-	-		-		-			-	-				-		293
307		_	_		_	_	_					_			_																			_	307 311
313	-	i-			_	_		-												-		-	-		-		-	-		-			-	-	313
317 331			-		_		_	_	_		_			_		_		_	_	_		_	_	_		_	_		-	_		_		_	317 331
337 347	_	_		-	_	_			1	_	_	-	_	_		_		_	_	_	_	_	_	_			-		_		_	_	_		337 347
349		-	-			ł	-	-	'	-	-	-	-						-		-													-	349
353 359	_	_	_			İ		-	_	-		_		-				-			_	_			-	_			-	-	_				353 359
367				_		<u>'</u>		١,			-	-	-		-	-	_	-	-		_			-			_	-					_		367
373 379		-	-	_				_	<u>'</u> —		_	_	_					_	_			_	_	_	_	_	_	_	_		_		_	_	373 379
383 389	_	-	_	_	_	_	_	_	_	-	-		_	-					_		_	_			_	_	-			_	_		_	-	383 389
397		_			_			<u> </u>	.—	_	_	-		_	_				_		-	_	_		_			_			_	_			397
401 409	_	_	_	-	-		_		_	-			_	_	-	_				_	-		-	_			_			-		_	_		401 409
419 421		_	_	_		-	_	İ		-		-	-	-	-		-				-	_			_			_				_	-	_	419
431	_	_	_					-		_			_			-		-											_					_	42I 43I
433	_				_											-						_							_					-	433
439 443		-			_		-					-	-			_	_	_		_		-		-			-		_	_	_	_	_	_	439 443
449 457	_	_	_	_	-		_	_	-	_			-		_	-	_	_			_	_			_			_	_		_	_	-		449 457
461 463	_		-					-	-				-	_		-	_	_	-						_			-					-	-	461
467		-		-		-	-		-		-		-	_	_	_	-			-			-	_	-				_	-	-		-		463 467
479 487		-	-	-	-				-									_		_					_			_	-		_	-	-		479 487
491		-	-		-	-	_					-	-	_				_		_		-	_		-	-		_			_	-	_	-	491
499 503	_	_		_		_			_	-	-			_	_		_	_			_	_	_			-	-	-		_	-		-	-	499 503
1	4	3	2	7	I	13	17	13	23	3	3	37	4	43	47	53	29	9	6	7.	73	2	83	8	6	Ö	3	5	8	113	127	131	137	139	<u></u>
_	-		-	_	,	-		-	-		_						_			-	_		-		=	-		_	-	-		-	_		
II.																													5	1					

	149	1	115	1.0	2.10	15	10	H	1 =	1 2	210	10	H	1 00	1	6	1 60	10	H	H	1	1.00	16		1	-	Im	1 60	1	1 11	1.65		I H	
3	1	1-	1-	162	167	173	170	181	101	193	197	199	211	1 223	227	229	233	239	241	25	25	263	36	271	27	281	1 283	29	307	311	313	31	331	32
5	_	-					-	-	-			-	-			-		-	-	-			-	-		-				-			-	
1			-	-			-	-	-		Ī	-		-		-				_	_		_		-					-	-	=	=	
7	_	_	Ξ			-	_	Ī	Ξ				Г	-		_	-	_		_	_	_		_	-	_	-		_	-	-		_	-
9			-	-					-		-	-				-	-	-		-		-		-	-		-			-	-			
3	_			-	_	_	Ξ	_			=	_	T	_	_		=	_	_		Ξ		_		Ξ	_	_		-	-	_	_	-	
7	Ξ	_	=	-		_		_	-	-			_		-		_				-					-	-		_	-				_
3				-	1	_					-			-		V.			-	-			-	-	-		-		-			D		-
7	-		-		Ī	-		Y,	-	i P								=	_	Ξ		-	_	_	-		_						-	-
3	-			=	_						-	-	-	-	-	-			-				-	-		-		-	-	-		-	-	
t ·	-			-	-		-	Ĺ			=	_				-					_	=	_	_			_	-				Ξ		
-		=	=		_		_	Ī	_			_	_	\equiv		_	_			-		_	_	_	Ξ		T	Ξ		_	_	T		
1		_			_	-							-	\equiv	-					-								-				=		_
	1	-			_	_		q	_	=	_	_			_	_			_						_			_				_	Ш	
		_	-	_			-	j						-	_		-					-		-	-				_	-			-	
			-				_	-		-	-		-	-	-		-	-		-					1	-	-		-			-		
-	-	-		-						-	-	-	. ;	-	-		-	-	-	-		-	l	-			-	-			-		-	_
-				_		_							_		_		_		_			_						_						_
\ -	-		-	-			-		-		-	-	-		_					-		-	-	-										
		_			_	-		_		_	-		_								-	-				-	=	-		_	-			_
¦ -	_			_		_	_	_	_	-						_		-		_	-		_		i	_		_	_		-	_	_	_
									-	-				-	-	-		-	-	\neg			-					1	-	-	-	,	-	
		_	_	_	_		_			-	=	_		_	_		-	-		_	-	=				_	-		_	_	<u>_</u>	-		
1-	_	-	_	-	_	_	_			L.		_ GII	-		_	_	-			_	_	_	_			-	-	-		_	_	_	_	_
-	-	-				-	-		-	_	_			ă				-										-	_			=		-
1			V	_					_	_		_	_					_	_				_	_							i			1
		-	-	Щ			-				_	-	-			-		_	-		=	1			-							-	-	-
		-	-				V			-		-			-			-		-	-	-	-	-				-		-	-		-	
-		_		_				_		ī	_	_	Ξ	_	_	1		_	=	_	_		-				-			-				Ī
1	149				-	-		-		1			100		-			-			-	-		-	. 1					-		-	-	=

-	12	5	1.	163	191	3	6.	181	161	193	161	661	211	213	227	239	233	239	7	251	257	263	592	271	277	281	283	293	307	311	313	317	331	337
-	-	_	_		_	_		=		-	!—			1		_	<u> -</u>			_		_		_	-		_	=		-			_	_
		_	-	-				_	_	_	_ 		_	<u> </u>		_	_	_		_		-	-	_	_	_	-	-	-	-	_	U	L	
-	-		_			L	-	-		_	<u>-</u>	_		_	_		-	_	_	-	_	-		-		5		_		-		-	-	-
-	-	-	-			-	-	-		!				 			-				1	-	-			-			-	Ť	-	-	-	-
1		_		_	-	Γ	-		_				_	-		-	_		<u> </u>					_		-		_		-	1		_	
-	-		_	_	-			_	-		ļ		-	-					_			_		_	_	Ξ	L	7	_	ī	_	_	_	_
; -	-		-	_	 		-	_	-	_	<u> </u>	_	=		-	-	_	_		-	_	7	Ξ	Ξ	_	7	-	=	-	-		-	_	-
-	-		_	_	-		_	-	-	_	_	_		_	-	_	_			-	_		-		_			-	-	_	=	Ī		
-	_	-	_	-	_	_		<u></u>		_	-	-		L					-			-	-		-	-	-		-	_	Ξ		-	Ξ
-	-	İ	_	_	-	_	_		-	_	-			-			_	_	-				-	-		-	-				Ξ		+	-
-	-		_		_	_		F	_		_	-				_			_	_		-	_	-	-	=	1	_		Ī				ā
	ľ	-	_		_			_	_						Γ		_	_			_				_		_			_	T.			
-	- -	- -				_		_	<u> </u>	-		_	_		_	_	-		-	_						_	=					-	-	
-	_	_		-	_		_	-	_	_	-		_		_	-		_		_	_				_		-		=					_
-	-		_			-	_	_		_			_		-	-		_		-		-			_			-			-	-	_	
	-	_		_	_	_	_		_							-					_			_	_	_	Ä	_	_					
-	- -	-		_	_	_	_	_	_	_	_			_	_	_		_	-			-		_		_			=	_	Ξ	_	-	Ξ
_	_ -	-	_	_	_	-		 <u> </u>	_		-	_				_		_	_	-	-		Ξ		_	=	_		_		_	_		_
!	- ; - i	-	-	_	_	-	_		_		_	_	<u> </u>	_	-	_	_		_		_	-	_	1	_		-	_	-					_
 -					-			ļ 	<u>-</u>			-	-	<u> </u> -						_			_	_		_	-		-				_	
- 					_			-	_	-	_	_			<u> </u> _	E				-		_	_	_				_					_	-
		-	_	_	-			_	_	_		-		-	-	_						-				-				_		-	-	
- -	- -	-	_	_		F	F			_		_	_	-	-	-	-	F	-	_					_		-					-	-	-
	-	-	_	-	<u> </u>	-		-	_	_	_		-				-		- -		-	_	_	_ _	<u> </u>			-		_	<u>-</u>		-	_
		_		-	_		-	_			_	<u> </u>	_	-	_	-	-		-	_	_	_	_		_	_		_	_					- -
	1					<u> -</u>					_	_		<u> -</u>	<u> </u>	<u> -</u>	_	239			_	_		-	,	<u> -</u>	<u> </u>	_	307			_		


															1	NA	СН	LA	88.									٧						
_	347	349	353	359	367	373	379	383	389	397	401	409	419	421	431	433	439	443	449	457	461	463	467	479	487	49r	499	503	509	521	523	541	547	557
3		Ξ			_		_		_					_	_				_		_	-		_	-	_			_	_	П	_		
7	-			-		-	-		-		-			-	-				-	-		-			-	-	-					-	-	
3						_										_	_	_					-			-		_		_	-		-	
7						-		-				-		_		-				Ξ	Ξ			_		_			-		_			_
3																								1	_						М	_		
9	-	-	-			-		-		_	-		-		-		-			-		-			-		-		-	-	-		-	-
7					_							П	Ξ										7			_		_	_	Ξ		7		
1		-	-	-	-	-			-		-	-	-		=	-		-	-	Н	-		-		-	-			_		-	-		
7	4		_					_								- 3				-	П			_		_				_	_	4		
3					-							-			-	-	_		-		_		Н		-					-	-	-	_	
9				_		-		-	_							-				1				Ξ						-	-	10	-	_
7		-		-					-	-			-	-	-		-		-	-	-		-	-		-		1	-		-			-
3		ш	_					_			_							1		_				_	_		_	_			_			Ξ
9	-				-			-	-	-				-	-	-	-	1		Н			-		-		-				-	-	-	-
3		-	-			-		-		-					-			-		G,										-			-	
7			_			\Box	-		_	-			-	_	-				_		_	4	-	-	_	-		-	-	-			_	_
3					Ξ													- 1		١.		1	_						Ξ					
7				П		-	x	-		-				-			-			-		-	-					-					-	
9																																		
7			_		_			_	=	-		2			-	-		-	-	-		-		-		П	1	-	-	-	-			8
7			-	. 1										-				Ц					Ξ	_			_		_			_	_	
9	-			-	-							-		-		-			1		-	-						-			-	-		-
9				-			F			_	_									-	_				_	-		-		-		_		
7	_	_	_						_			u	-		-				-	-	-		-		4	1					-		-	_
3			_			-	-										-		Li														-	
3	4			-	-		-	-	-	-	-	6	-		-			Н				-	-	-				-	-		-	-		-
9	_	_		Ξ					_	П		П					-		-		_	_			=	_					-1			_
1			_					_						_	_	_			_	-		_	-	-		_	-	-						
3				-	1		-	-	-			-							-				-								-	1	-	
7							-	_							-	-		-			_	-		-	-				-	-	-			
3								-	_						-								-		\equiv	-	_							
7	_	_		-	- 1				,1)	397		_					439	443	449	457	-	463	467	-	-		1	-	1	1	-	-	547	-



II.

Ţ,	9	8	1.	11	87	593	8	Ö	5	13	717	616	31	14	43	47	53	929	19	73	177	83	16	Į,	81	2	727	33	33	3	121	157	191
3	~	<u></u>	-	<u>- </u>				-	-1	<u>- </u>		-	-	9	-	•		•	-	-	9	ا	<u>-</u>		-	7	-	-	-	1	-	-	
7		_	_				_	_		_	_	_	_	_			_	_	-	_		_	_	_	_	_			_	_	_	_	
3				-	-			_			-	-	-		F	-	-		-			-	-		-	_	_				_	_	
7	-	-		-	-	-	_			-			_	ī				_	-					_			_	_	_			-	-
9			_	-	-	-				-	-	-	-			-	-						-	<u> </u>	-	-	-	-	_			-	-
9			_	_	_	_	-j	-	-	_			_	Ý	_	_	Т		_	_		_	_	_	_	_			_				
1	-			-		_	-		-		-		١.,	8			-	-	-			-	-	-			-	-	,				
7	1	_					_	_	-	_	_	_	_			-			_	_	_		_	-		_		_	_	_	_		-
3	-	_	_				-	_		_	_	_			_				_			_		-	_			_	_				_
3				_	_		_		_			_		N		_			_	_		_					_			_	_	_	
9				-		-	-				-	-	-	-	-	-	-		-		-				-		_	-		-		-	$\left - \right $
7		_	_					_	-	-	_	_		l,	_	В		_					_		_	_		_		_	_	_	-
3		_	-		_	_				-	-	_		7	-	-				_	_					-	_	_	_			_	
9	_	_	-			_	-				_			-	-		-				-	-				-	-				-	-	-
3	-					-					-	_						-		-			-	-			-	-	-		-	-	
9			_		-	_		_	_	=	_	_	_	_	=	_			_	_	-	_	_	_			_	_		_	_	-	
3	-	-	_	İ	_	-		-	_			_	_	_			-			_	_	-	-	- -	_		-			-	_	_	-
7		_	-	-	-		_							1	-		_		-		_	-	-				-			-			-
9			_			-						-							-			_					-			-	<u> </u>		ļ
7	-	_		_	_	-		_	_		_				-		_		_	_			-		-	_	-	_	=			_	
1	_	-	l	-	_		-	-	_	_	_		-	-		=		-			_	_	-	_		_	İ	ĺ	-				_
7	_	_			_	-		_	-	_		-				-				-	-	_		-		-			-		ĺ		-
9	_	_	<u> </u>	_	_			 		_			-	-	Ξ	-	-			_	-		-	_	_	-	_		-	_	_	_	-
7			_	<u> </u> _		_		<u> </u> _			_	_	-			-	-	-			_				_		-	_	_	_		İ	
7	_			-		-	_	_	-	_	_		_	-		-			-	-	_		-	_	-			_	-	<u> -</u>		_	_
3			-			İ			-			-		-	-			-	-		-	_	-	-	1		-	-	-	-			
79 31	_			_	_	-	_	-	_	_	-	-			=	-			_			-	_		_		_	_	_	-	_	<u> </u> _	
) 1,				_		_	_		_	_		_		-				-		_	_		_	_	_		_	_		_		-	
3	_		-	-	-	-			_				_	-	-						-				-						_		
)7:)9:	_	_			_		-	_	_	-	[-				-	-	=	-	_		-	<u> </u>	-	-	-	-	[-	
II,						-	_	-	-		_		-			-	-			_		_	_	_	-	_	_			_	_		
3	563			1	_	 _		1-		_	1	-						_	_	. _			_		_	.[1	Ì	 _	 _	1_	.

	563	269	571	577	587	593	299	138	ğ	613	617	619	631	641	643	647	633	629	199	673	677	683	169	701	8	719	727	733	739	743	751	757	19/
9		_			-	 -	Ī	Ī	-		-	_	-	<u> </u>	<u> </u>		Ī.		-	-	Ī	-		_			Ī	-	<u> </u>	-	-	-	
3	_		_	_	_		_	_	_	_			_		-	-	<u> </u>		-	_		-		_			_		1		-		-
וו	_	_	-				Γ	_	_		_		-	_				_	_	_		_				_	_	_	_	_		F	П
1		_	_	-		<u> </u>		ĺ	_		_	_									 - ,	_	_		_	-	-		-	_		-	
7	_		_		-	-				-			-		-	_	-			-		-	1	-	-	-	-		_				
3	_	_		_	-			_	_				_		Γ	_		_		_	-	_				١.		_					F
9	_				_	-	_				-	_	_	_	-	ĺ	-	-	_								-			-	-		
71				_	-	_	_	_		_	_			_	<u> </u>						_				_		_		_	_		-	
31		-	-		-			-	-				-	_	_	-				_		_	: .			-	_			-		-	
33	-			-					-						-	-		-	-		_	-		-	-		-				-		-
73	l —	_	_	-	_			_	_		_	_	_	_	_	-	_	_		_	_		i	_	_	-	_		_				
11	_																		L														
13		_	_	_	_	_	_	_	_	_	_		_		_	_	_	_	_			-		_	_		_	_	_	_		F	
17		-	-	-								-		-	-		i	_		-	-	-	-	-		_		-	_		, N	-	
31		-			-		-	-	-						1	-		-	_			-		-				-	-	-	-	-	
37 17	. –	_				_	_			ľ	_	_	_		_	_	_		_					_		_	_	_ :		_			
19	-			-	_				-	-	-		_	_		-	-		_	_		_		_			_		_	_			
53	1		_			_			_	_		ļ		_							_		_				_						
59							-	-		-			-	_		_	-!	-	-	j		-				-	_	-		-			
67		_	-	_	-	-		-	-			-	-	-			ı	-												_		-	
73 79		_				_	_	_		_			_	_	_	_	-	_						_	_		_			_	_		
33					_		-		-				-	_	_			-	-		_	_	i	-		_	_	-					_
89	1	-					-		-			-		_			-	-	-			_	-	-	-	-		-		-	Ιİ	i	-
97	1	-			_	-	-						-		-	-	-			-		-		-	-	-	-				-	-	_
29 20			_	_		_	_	_	-	_		-			-		-	_		1	_	_	-		_	-			_	_	-	-	-
.y 19			_				_		_		_						ı	_		<u>—</u> [_				_			_	_	l i	ĺ '	_
21	5				-		-	-		-	_			-	-		-	l	-	-	_	ļ						-	-	-		-	-
31		-				'			-	_			_	_	_	-		-	-	—	_			-	-	_		_		_		_	-
33	! !	_											_					ļ								-	_						-
39		_		_	_	_	_		_	_	_	_	_	_	_	_			_	_				_		_	_			_	_	_	_
19			_	_		-				_					_	_	-		_	-	_		_	_									_
7		-	-		-	-		-	-			-	-				-		-	-	-				-	-			-	-	-	-	-
3	_		_	_	_	_	_				_	_		_				_		_	_	_	_		_	_	_			_			_
7	_				_		_	_		_		_		_			_	_		_	_					_		_	_	_	_		!—
6	_ '	_	_	_	_		_	_	_		_	_		_		_		_		_	_				_	_				_		_	
7	_	_	_		_	_			-		-	_	_		_		-					_	_	_	_	-	_			-	-	_	_
1							-				-				-	-		-		-		-		_	-						-		_
9	-	_			_		_	_			_	_	_	_	_	_		_	_	_	_	-	L	_			_	-				-	L
	563	_	571			_		_					_	_	!	1		_		673		1			`		_	!	_				_

IL.

T A F E L

ZUR VERWANDLUNG

GEMEINER BRÜCHE MIT NENNERN AUS DEM ERSTEN TAUSEND

IN DECIMALBRÜCHE.

NACHLASS.

```
3 | (1)..6; (0)..3
  7 (0)..428571
  9 (1)..2; (2)..4; (3)..8; (4)..7; (5)..5; (0)..1
 II (1)..81; (2)..63; (3)..27; (4)..54; (0)..90
 13 (1) .. 615384; (0) .. 769230
 17 (0)..5882352941 176470
 19 (0)..5263157894 73684210
 23 (0)..4347826086 9565217391 30
 27 (1)..740; (2)..481; (3)..962; (4)..925; (5)..851; (0)..370
 29 (0)..3448275862 0689655172 41379310
 31 (1) .. 4838709677 41935; (0) .. 3225806451 61290
 37 (1)..351; (2)..756; (3)..783; (4)..918; (5)..594; (6)..972; (7)..864; (8)..324; (9)..621;
        (10)...108; (11)...540; (0)...270
 41 (1)..46341; (2)..78048; (3)..68292; (4)..09756; (5)..58536; (6)..51219; (7)..07317; (0)..24390
 43 (1)..5116279069 7674418604 6; (0)..2325581395 3488372093 0
 47 (1)..2127659574 4680851063 8297872340 4255319148 936170
 49 (0)..2040816326 5306122448 9795918367 3469387755 to
 53 (1)...9056603773 584; (2)...5471698113 207; (3)...2264150943 396; (0)...1886792452 830
 59 (0)..1694915254 2472881355 9322033898 3050847457 6271186440 67796610
 61 (0)..1639344262 2950819672 1311475409 8360655737 7049180327 8688524590
 67 (1)..7910447761 1940298507 4626865671 641; (0)..1492537313 4328358208 9552238805 970
 71 (1)..7323943661 9718309859 1549295774 64788; (0)..1408450704 2253521126 7605633802 81690
 73 (1)..68493150; (2)..42465753; (3)..12328767; (4)..61643835; (5)..08219178; (6)..41095890
                   (7)..05479452; (8)..27397260; (0)..13698630
 79 (1)..6708860759 493; (2)..4556962025 316; (3)..2151898734 177; (4)..2405063291 139;
                          (5)..9746835443 037; (0)..1265822784 810
81 (1)..358024691; (2)..938271604; (3)..320987654; (4)..530864197; (5)..839506172; (0)..123456790
83 (1)...0240963855 4216867469 8795180722 8915662650 6;
    (o)..1204819277 1084337349 3975903614 4578313253 0
89 (1)..3707865168 5393258426 9662921348 3146067415 7303;
    (0)..1123595505 6179775280 8988764044 9438202247 1910
97 (0)..1030927835 0515463917 5257731958 7628865979 3814432989 6907216494 8453608247 4226804123
        7113402061 855670
101 (1)..1980; (2)..3960; (3)..7920; (4)..5841; (5)..1683; (6)..3366; (7)..6732; (8)..3465; (9)..6930;
               (10)...3861; (11)...7722; (12)...5445; (13)...0891; (14)...1782; (15)...3564; (16)...7128;
               (17)..4257; (18)..8514; (19)..7029; (20)..4059; (21)..8118; (22)..6237; (23)..2475;
               (24)..4950; (0)..0990
103 (1)..5825242718 4466019417 4757281553 3980; (2)..4951456310 6796116504 8543689320 3883
   (0)..0970873786 4077669902 9126213592 2330
```

VERWANDLUNG GEMEINER BRÜCHE IN DECIMALBRÜCHE.

107	(1) 8878504672	8971962616	8224299065	4205607476	6355140186	915		
	(0)0934579439	2523364485	9813084112	1495327102	8037383177	570		
109	(0)0917431192	6605504587	1559633027	5229357798	1651376146	7889908256	8807339449	5412844036
i	6972477064	2201834862	38532110					
113	(0)0884955752	2123893805	3097345132	7433628318	5840707964	6017699115	0442477876	1061946902
	6548672566	3716814159	2920353982	30				
121	(1)8925619834	7107438016	52; (2)	2396694214 8	3760330578 5	1; (3)388	84297520 6611	570247 93;
	(4)5950413223	1404958677	68; (o)	0826446280	9917355371	90;		
127	(1) 3464566929	1338582677	1653543307	0866141732	28; (2).	. 7244094488	1889763779	5275590551
	1811023622	04; (0)	787401574 8	3031496062 9	921259842	196850393	70	
131	(0)0763358778	6259541984	7328244274	8091603053	4351145038	1679389312	9770992366	4122137404
	5801526717	5572519083	9694656488	5496183206	1068702290		•	
137	(1)87591240;	(2)510948	390; (3)	13138686;	(4) 5766423	3; (5)91	970802; (6).	. 03649635;
1	(7)43795620;.	(8) 2554744	5; (9)06	569343; (10)78832116;	(11)459	85401; (12)	51824817;
	(13)21897810;							
139	(1)6187050359						3 5251798561	1510791366
	9064748201)071942446	0 431654676	2 589928057	5 53956834	3 237410	
149	(0)0671140939	5973154362	4161073825	5033557046	9798657718	1208053691	2751677852	3489932885
		5637583892					· · · · · ·	. ,,,
151	(1)5496688741							19867
	(0)0662251655							
157	(1) 1464968152	•						
	(0)0636942675						0191082802	
163	(1)2944785276						8711656441 71	
	, , , , , , , , , ,	5153374233					0981595092 02	
167	(0)0598802395	2095808383		3173652694	6107784431	1377245508	9820359281	4371257485
· I	• •	6047904191		6586826347	3053892215	5688622754	4910179640	7185628742
	514970							
169	(1)1065088757	3964497041	4201183431	9526627218	9349112426	0355029585	7988165680	47337278
1	(0)0591715976	3313609467	_		4082840236	6863905325	4437869822	48520710
173			_	0462427745	664; (2).	. 6705202312	1387283236	9942196531
	7919075144	- / >	. 9826589595	3757225433	5260115606			0578034682
		9132947976	8786127167	630				
179					0446927374	3016759776	5363128491	6201117318
"		4413407821			7486033519			6368715083
	7988826815				,			. .
181	(0)0552486187		0331491712	7071823204	4198895027	6243093922	6519337016	5745856353
		9447513812						3480662983
į	• • • • • • • • • • • • • • • • • • • •	4088397790	J. 7 J.J	, , ,		.,,,	,	J. 1-7-3
'	T-2T-T2T-	T3/11/						

Digitized by Google

NACHLASS.

	NACHLASS.
191	(1)2198952879 5811518324 6073298429 3193717277 4869109947 6439790575 9162303664 9214659685
	8638743455 49738; (0)0523560209 4240837696 3350785340 3141361256 5445026178 0104712041
ł	8848167539 2670157068 0628272251 30890
193	(o)o518134715
	4611398963 7305699481 8652849740 9326424870 4663212435 2331606217 6165803108 8082901554
	4041450777 2020725388 6010362694 30
197	(1)7055837563 4517766497 4619289340 1015228426 3959390862 9441624365 4822335025 3807106598
}	9847715736 04060913; (0)0507614213 1979695431 4720812182 7411167512 6903553299 4923857868
	0203045685 2791878172 5888324873 09644670
199	(1)3819095477 3869346733 6683417085 4271356783 9195979899 4974874371 8592964824 1206030150
	7537688442 211055276; (0)0502512562 8140703517 5879396984 9246231155 7788944723 6180904522
	6130653266 3316582914 5728643216 080402010
211	(1)3317535545 0236966824 6445497630; (2)3222748815 1658767772 5118483412; (3)2559241706
	1611374407 5829383886; (4)7914691943 1279620853 0805687203; (5)5402843601 8957345971
	5639810426; (6)7819905213 2701421800 9478672985; (0)0473933649 2890995260 6635071090
223	(a):.0448430493 2735426008 9686098654 7085201793 7219730941 7040358744 3946188340 8071748878 9237668161 4349775784 7533632286 9955156950 6726457399 1031390134 5291479820 6278026905
	8295964125 5605381165 9192825112 1076233183 8565022421 5246636771 30
227	(1)1806167400 8810572687 2246696035 2422907488 9867841409 6916299559 4713656387 6651982378
/	8546255506 6079295154 1850220264 317; (0)0440528634 3612334801 7621145374 4493392070
	4845814977 9735682819 3832599118 9427312775 3303964757 7092511013 2158590308 370
220	(0)0436681222 7074235807 8602620087 3362445414 8471615720 5240174672 4890829694 3231441048
	0349344978 1659388646 2882996069 8689956331 8777292576 4192139737 9912663755 4585152838
	4279475982 5327510917 0305676855 8951965065 5021834061 1353711790 39301310
233	(0)0429184549 3562231759 6566523605 1502145922 7467811158 7982832618 0257510729 6137339055
	7959914163 0901287553 6480686695 2789799570 8154506437 7682403433 4763948497 8540772532
	1888412017 1673819742 4892703862 6609442060 0858369098 7124463519 3133047210 30
239	(1)4644351; (2)2552301; (3)933C543; (4)6569037; (5)9916317; (6)7071129; (7)7489539;
-	(8)2133891; (9)4686192; (10)4016736; (11)0585774; (12)0502092; (13)7573221;
	(14)5062761; (15)7196652; (16)1882845; (17)5899581; (18)6485355; (19)6987447;
	(20)4560669; (21)9623430; (22)6820083; (23)8702928; (24)4602510; (25)1087866;
l i	(26)8075313; (27)2635983; (28)2259414; (29)9079497; (30)7782426; (31)2384937;
	(32)3472803; (33)1548117; (0)0418410
241	
	(3)8589211618 2572614107 8838174273; (4)0248962655 6016597510 3734439834;
	(5)3485477178 4232365145 2282157676; (6)8796680497 9253112033 1950207468;
	(7)3153526970 9543568464 7302904564; (0)0414937759 3360995850 6224066390 (1)6748971193 4156378600 8230452; (3)8683127572 0164609053 4979423; (3)4403292181 0699588477
243	
	3662551: (4)6213991769 5473251028 8065843; (5)3909465020 5761316872 4279835; (0)0411522633 7448559670 7818930
	(0)4443,364/9 /010930

VERWANDLUNG GEMEINER BRÜCKE IN DECIMALBRÜCHE.

```
251 (1)..4223107569 7211155378 4860557768 9243027888 4462151394;
    (2)...8764940239 0438247011 9521912350 5976095617 5298804780;
    (3)..2908366533 8645418326 6932270916 3346613545 8167330677;
    (4)..2828685258 9641434262 9482071713 1474103585 6573705179;
    (0)..0398406374 5019920318 7250996015 9362549800 7968127490
257 (O)..0389105058 3657587548 6381322957 1984435797 6653696498 0544747081 7120622568 0933852140
         0778210116 7315175097 2762645914 3968871595 3307392996 1089494163 4241245136 1867704280
         1556420233 4630350194 5525291828 7937743190 6614785992 2178988326 8482490272 3735408560
         3112840466 926070
263 (o)..0380228136 8821292775 6653992395 4372623574 1444866920 1520912547 5285171102 6615969581
         7490494296 5779467680 6083650190 1140684410 6463878326 9961977186 3117870722 4334600760
         4562737642 5855513307 9847908745 2471482889 7338403041 8250950570 3422053231 9391634980
         9885931558 9353612167 30
269 (0)..0371747211 8959107806 6914498141 2639405204 4609665427 5092936802 9739776951 6728624535
         3159851301 1152416356 8773234200 7434944237 9182156133 82899 62825 2788104089 2193308550
         1858736059 4795539033 4572490706 3197026022 3048327137 5464684014 8698884758 3643122676
         5799256505 5762081784 38661710
271 (1)..22140; (2)..32841; (3)..97047; (4)..82287; (5)..93726; (6)..62361; (7)..74169; (8)..45018;
         (9)..70110; (10)..20664; (11)..23985; (12)..43911; (13)..63468; (14)..80811; (15)..84870;
         (16)..09225; (17)..55350; (18)..32103; (19)..92619; (20)..55719; (21)..34317; (22)..05904;
         (23)..35424; (24)..12546; (25)..75276; (26)..51660; (27)..09963; (28)..59778; (29)..58671;
         (30)...52029; (31)...12177; (32)...73062; (33)...38376; (34)...30258; (35)...81549; (36)...89298;
         (37)..35793; (38)..14760; (39)..88560; (40)..31365; (41)..88191; (42)..29151; (43)..74907;
         (44)..49446; (45)..96678; (46)..80073; (47)..80442; (48)..82656; (49)..95940; (50)..75645;
        (51)..53874; (52)..23447; (53)..39483; (0)..03690
277 (1):.8880866425 9927797833 9350180505 4151624548 7364620938 6281588447 653429602
    (2)..0469314079 4223826714 8014440433 2129963898 9169675090 2527075812 274368231
    (3)..7545126353 7906137184 1155234657 0397111913 3574007220 2166064981 949458483
    (0)..0361010830 3249097472 9241877256 3176895306 8592057761 7328519855 595667870
281 (1)..9217081850 5338078291 81494661; (2)..7722419928 8256227758 00711743;
    (3)..7010676156 5836298932 38434163; (4)..8576512455 5160142348 75444839;
    (5)..3131672597 8647686832 74021352; (6)..9110320284 6975088967 97153024;
    (7)..1957295373 6654804270 46263345; (8)..5693950177 9359430604 98220640;
    (9)..7473309608 5409252669 03914590; (0)..0355871886 1209964412 81138790
283 (1)...1519434628 9752650176 6784452296 8197879858 6572438162 5441696113 0742049469 9646643109
        5406360424 0282685512 3674911660 7773851590 1060070671 3780918727 9
    (0)..0353356890 4593639575 9717314487 6325088339 2226148409 8939929328 6219081272 0848056537
         1024734982 3321554770 3180212014 1342756183 7455830388 6925795053 0
```

NACHLASS	٠.
----------	----

89	(0)0346020761	2456747404	8442906574	3944636678	2006920415	2249134948	0968858131	487889273
	5640138408	3044982698	9619377162	6297577854	6712802768	1660899653	9792387543	252595155
	0934256055	3633217993	0795847750	8650519031	1418685121	1072661359	861591 6 955	017301038
	6228373702	4221453287	1972318339	10				
93	(1)0375426621	1604095563	1399317406	1433447098	9761092150	1706484641	6382252559	726962457
	3788395904	4368600682	5938566552	9010238907	8498293515	3583617747	440273	
	(0)0341296928	3276450511	9453924914	6757679180	8873720136	5187713310	5802047781	56996587
	0716723549	4880546075	0853242320	8191126279	8634812286	6894197952	218430	
27	(1)4951140065	1465798045	6026058631	9218241042	3452768729	6416938110	7491856677	5 2442 996
-	2671009771	9869706840	3908794788	2736156351	7915309446	2540716612	3778501628	664
	(0)0325732899	0228013029	3159609120	5211726384	3648208469	0553745928	3387622149	83713355
	8859934853	4201954397	3941368078	1758957654	7231270358	3061889250	8143322475	570
11	(1)2958199356	9131832797	4276527331	1897106109	3247588424	4372990353	6977491 961	41479099
-	8456591639	8713826366	5594855305	4662379421	2218649517	6848874598	0707395498	39228
	(0) 0321543408	3601286173	6334405144	6945337620	5787781350	4823151125	4019292604	50160771
	4180064308	6816720257	2347266881	0289389067	5241157556	2700964630	2250803858	52090
13	(0)0319488817	8913738019	1693290734	8242811501	5974440894	5686900958	466453 6741	21405750
	8722044728	4345047923	3226837060	7028753993	6102236421	7252396166	1341853035	14376996
	5111821086	2619808306	7092651757	1884984025	5591054313	0990415335	4632587859	42492012
	9552715654	9520766773	1629392971	2460063897	7635782747	6038338658	1469648562	30
17	(1)2397476340	6940063091	4826498422	7129337539	4321766561	5141955835	9621451104	10094637
	(2)0220820189	2744479495	2681388012	6182965299	6845425867	5078864353	3123028391	16719242
	(3)5678233438	4858044164	0378548895	8990536277	6025236593	0599369085	1735015772	87066246
	(0)0315457413	2492113564	6687697160	8832807570	9779179810	7255520504	7318611987	38170347
31	(1)1178247734	1389728096	6767371601	2084592145	0151057401	8126888217	5226586102	71903323
	2839879154	0785498489	425981873 1					
	(2)3595166163	1419939577	0392749244	7129909365	5589123867	0694864048	33 ⁹ 3685 800	60422960
	5075528700	9063444108	7613293051	•	• -	• • • •		
	(0)0302114803	6253776435	0453172205	4380664652	5679758308	1570996978	8519637462	23564954
	2779466193	3534743202	4169184290	· ·				
37	(0)0296735905	0445103857	5667655786	3501483679	5252225519	2878338278	9317507418	39762611
•	5964391691	3946587537	0919881305	6379821958	4569732937	6854599406	5281899109	79228486
	6884272997	0326409495		3234421364	9851632047	4777448071	2166172106	82492581
	2373887240	3560830860	5341246290	8011869436	2017804154	3026706231	4540059347	18100890
	7715133531	157270						,
43	(0)0291545189	5043731778	4256559766	7638483965	0145772594	7521865889	2128279883	38192419
ا -:	5072886297	3760932944	6064139941	6909620991	2536443148	6880466472	3032069970	84548104
	6268221574		1516034985	4227405247	8134110787	1720116618	0758017492	71137026
	9067055393	5860058309	0379008746	3556851311	9533527696	7930	.5 .15	

VERWANDLUNG GEMEINER BRÜCHE IN DECIMALBRÜCHE. 347 | (x)..6023054755 0432276657 0605187319 8847262247 8386167146 9740634005 7636887608 0691642651 2968299711 8155619596 5417867435 1585014409 2219020172 9106628242 0749279538 9048991354 4668587896 253 (o)..o288184438 0403458213 2564841498 5590778097 9827089337 1757925072 0461095100 8645533141 2103746397 6945244956 7723342939 4812680115 2737752161 3832853025 9365994236 3112391930 8357348703 170 349 (1)...3037249283 6676217765 0429799426 9340974212 0343839541 5472779369 6275071633 2378223495 7020057306 5902578796 5616045845 272206 (2)..8194842406 8767908309 4555873925 5014326647 5644699140 4011461318 0515759312 3209169054 4412607449 8567335243 5530085959 885386 (0)..0286592951 2893982808 0229226361 0315186246 4183381088 8252148997 1346704871 0601719197 7077363896 8481375358 1661891117 478510 353 (1)..7932011331 4447592067 9886685552 40; (2)..2096317280 4532577903 6827195467 42; (3)..8696883852 6912181303 1161473087 81; (4)..3512747875 3541076487 2521246458 92; (5)..8356940509 9150141643 0594900849 85; (6)..3994334277 6203966005 6657223796 03; (7)..1841359773 3711048158 6402266288 95; (8)..1558073654 3909348441 9263456090 65; (9)..3626062322 9461756373 9376770538 24; (10)..1529745042 4929178470 2549575070 82; (0)..0283286118 9801699716 7138810198 30; 359 (1)...3286908077 9944289693 5933147632 3119777158 7743732590 5292479108 6350974930 3621169916 4345403899 7214484679 6657381615 5988857938 7186629526 4623955431 7548746518 1058485821 7270194986 072423398 (0)..0278551532 0334261838 4401114206 1281337047 3537604456 8245125348 1894150417 8272980501 3927576601 6713091922 0055710306 4066852367 6880222841 2256267409 4707520891 3649025069 6378830083 565459610 361 (0)...0277008310 2493074792 2437673130 1939058171 7451523545 7063711911 3573407202 2160664819 9445983379 5013850415 5124653739 6121883656 5096952908 5872576177 2853185595 5678670360 1108033240 9972299168 9750692520 7756232686 9806094182 8254847645 4293628808 8642659279 7783933518 0055401662 0498614958 4487534626 0387811634 3490304709 1412742382 2714681440 4432132963 9889196675 90 367 (0)...0272479564 0326975476 8392370572 2070844686 6485013623 9782016348 7738419618 5286103542 2343324250 6811989100 8174386920 9809264305 1771117166 2125340599 4550408719 3460490463 2152588555 8583106267 0299727520 4359673024 5231607629 4277929155 3133514986 3760217983 6512261580 3814713896 4577656675 7493188010 8991825613 0790190735 6948228882 8337874659 4005449591 2806539509 5367847411 4441416893 732970 373 (1)..1983914209 1152815013 4048257372 6541554959 7855227882 0375335120 6434316353 8873994638 0697050938 3378016085 7908847184 9865951742 6273458445 0402144772 1179624664 8793565683 6461126005 3619302949 061662 (0)..0268096514 7453083109 9195710455 7640750670 2412868632 7077747989 2761394101 8766756032 1715817694 3699731903 4852546916 8900804289 5442359249 3297587131 3672922252 0107238605 8981233243 9678284182 305630

Digitized by Google

379	(0)0263852242	7440633245	3825857519	7889182058	0474934036	9393139841	6886543535	6200527704
	4854881266	4907651715	0395778364	1160949868	0738786279	6833773087	0712401055	4089709762
	5329815303	4300791556	7282321899	7361477572	5593667546	1741424802	1108179419	5250659630
1	6068601583	1134564643	77 947229 55	1451187335	0923482849	6042216358	8390501319	2612137203
ŀ	1662269129	287598 9445	9102902374		6992084432	71767810		-
383	(0)0261096605	7441253263	7075718015	6657963446		5430809399	4778067885	1174934725
ļ	8485639686	6840731070	4960835509	1383812010	4438642297	6501 3 05483	0287206266	3185378590
	0783289817	2323759791	1227154046	9973890339	4255874673	6292428198	4334203655	3524804177
	5456919060	0522193211	4882506527	4151436031	3315926892	9503916449	0861618798	9556135770
	2349869451	6971279373	3681462140	9921671018	2767624020	8877284595	30	/*
389	(0)0257069408	7403598971	7223650385		3984575835	4755784061	6966580976	8637532133
	6760925449	8714652956	2982005141	38817 48071	97 94 344473	0077120822	6221079691	5167095115
	6812339331	6195372750	6426735218	5089974293	0591259640	1028277634	9614395886	8894601542
	4164524421	5938303341	9023136246		4550128534	7043701799	4858611825	1928020565
	5526992287	9177377892	0308483290	4884318766	0668380462	7249357326	47814910	, <u>.</u>
397	(1)3501259445	8438287153	6523929471	0327455919	3954659949	6221662468	5138539042	8211586901
	7632241813	602015113;	(2)5667506:	297 22921914	135 76826196.	47 355163727	9 5969773299	7481108212
	3425692695	2141057934 5	50881612 09 06	68 010075; (3	3) 377833753	31 486146095	7 1788413098	2367758186
	3979848866	4987405541 5	5617128463 47	760705289 67:	25440806 049	5340050; (o)	0251889168	7657430710
	4785894206	5491183879	0931989924	4332493702	7707808564	2317380352	6448362720	303022670
401	(1)7381546134	6633416458	8528678304	2394014962	5935162094	7630922693	2668329177	0573566084
I	7880299251	8703241895	2618453865	3366583541	1471321695	7605985037	4064837905	2369077306
1	7331670822	94 264 33915	2119700748	1296758104				
	(0)0249376558	6034912718	2044887780	-	2768079800	4987531172	0698254364	0897755610
Ì	9725685785	5361596009	9750623441	3965087281	7955112219	4513715710	7231920199	5012468827
	9301745635	9102244389	0274314214	4638403990				•
409	(1)2542787286	0635696821	5158 9242 05	37 897 31051	3447432762	8361858190	7090464547	6772616136
Ì	9193154034	2298288508	5574572127	1393643031	7848410757	9462102689	4865525672	3716381418
ļ	0929095354	5232273838	6308068459	6577017114	9144		•	- •
	(0)0244498777	5061124694	3765281173	5941320293	3985330073	3496332518	3374083129	5843520782
	3960880195	5990220048	8997555012	2249388753	0562347188	2640586797	0660146699	2665036674
١	8166259168	7041564792	1760391198	0440097799	5110			
419	(0)0238663484	4868735083	5322195704	0572792362	7684964200	4773269689	7374701670	6443914081
ļ	1455847255	3699284009	5465393794	7494033412	8878281622	9116945107	3985680190	9307875894
	9880668257	75 65632458	2338902147	9713603818	6157517899	7613365155	1312649164	6778042959
Ì	4272076372	3150357995	2267303102	6252983293	5560859188	5441527446	3007159904	5346062052
	5059665871	1217183770	8830548926	0143198090	6921241050	1183317422	4343675417	6610978520
1	2863961813	84248210			•	- -	- ·-··	
						,		

	1	VERWANDL	UNG GEME	in er br üc	HE IN DEC	IMALBRÜC E	Œ.	
421	(1)2826603325	4156769596	1995249406	1757719714	9643705463	1828978622	3277909738	7173396674
	5843230403	8004750593	8242280285	0356294536	8171021377	6722090261		
	(2)2636579572	4465558194	7743467933	4916864608	0760095011	8764845605	7007125890	7363420427
	5534441805	2256532066	5083135391	9239904988	1235154394	2992874109		
	(0)0237529691	2114014251	7814726840	8551068883	6104513064	1330166270	7838479809	9762470308
	7885985748	2185273159	1448931116	3895486935	8669833729	2161520190		•
43I	(1)4872389791	1832946635	7308584686	7749419953	5962877030	1624129930	39443 ¹ 5545	2436194895
	5916473317	8654292343	3874709976	7981438515	0812064965	1972197772	6218097447	7958236658
	9327146171	6937354988	3990719257	5406032482	5986078886	31090		•
	(0)0232018561	4849187935	0348027842	2273781902	5522041763	3410672853	8283062645	0116009280
1	7424593967	5174013921	1136890951	2761020881	6705336426	9141531322	5058004640	3712296983
	7587006960	5568445475	6380510440	8352668213	4570765661	25290		
433	(0)0230946882	2170900692	8406466512	7020785219	3995381062	3556581986	1431870669	745958 4295
	6120092378	7528868360	2771362586	6050808314	0877598152	4249422632	7944572748	2678983833
	7182448036	9515011547	3441108545	0346420323	3256351039	2609699769	0531177829	0993071593
	5334872979	2147806004	6189376443	4180138568	1293302540	4157043879	9076212471	1316397228
	6374133949	1916859122	4018475750	5773672055	4272517321	0161662817	5519630484	9884526558
	8914549653	5796766743	6489607390	30				
439	(1)4920273348	5193 6 21867	8815489749	4305239179	9544419134	3963553530	7517084282	4601366742
	5968109339	4077448747	1526195899	7722095671	9817767653	7585421412	3006833712	9840546697
	0387243735	7630979498	8610478359	9088838268	7927107061	503416856		
	(0)0227790432	8018223234	6241457858	7699316628	7015945330	2961275626	4236902050	1138952164
	0091116173	1207289293	8496583143	5079726651	4806378132	1184510250	5694760820	0455580865
	6036446469	2482915717	5398633257	403189066 0	5922551252	847380410		
443	(1)4176072234	76 29 796 839	7291196388	2618510158	0135440180	5869574492	0993227990	9706546275
	3950338600	4514672686	2302483069	9774266365	6884875846	5011286681	7155756207	6749435665
	9142212189	6162528216	7042889390	5191873589	1647855530	4740406320	5	
	(0)0225733634	3115124153	4988713318	2844243792	3250564334	0857787810	3837471783	2957110609
	4808126410	8352144469	5259593 679	4582392776	5237020316	0270880361	1738148984	19 864 55981
į	9413092550	7900677200	9029345372	4604966139	9548532731	3769751693	0	
449	(1)7572383073	4966592427	6169265033	40; (2).	. 7461024498	8864142538	9755011135	85;
	(3)'3674832962	1380846325	1670378619	15; (4)	.4944320712	6948775055	6792873051	22;
1	(5)8106904231	6258351893	0957683741	64; (6)	.5634743875	2783964365	2561247216	03;
	(7)1581291759	4654788418	7082405345	21; (8)	. 3763919821	8262806236	0801781737	19;
İ	(9) 7973273942	0935412026	7260579064	58; (10).	. 1091314031	1804008908	6859688195	99;
	(11)7104677060	1 3 3 6 3 0 2 8 9 5	3229398663	69; (12)	1559020044	5434298440	9799554565	70;
	(13)3006681514	4766146993	3184855233	85; (o)	. 0222717149	2204899777	2828507795	10

461 463		603938730 6126914666 743982494 175054704 696312364 976138828 433839479 7483731019 665943600 0737527114 518358531	2910 8 5339 5 8315 5 2954 5 9516 4 2516 6 3344 3 9265 9 5227 9 5227 4 9674 3 1749	0284463 9268490 5098468 4048240 5259562 5268980 5263991 5472883 7765726 7895878	8949671 1531724 2713347 0437636 363238 4772236 323210 0325379 6811279 5249457 4555314	1772 8665 7921 5761 5120 4273 4121 9609 9826	8227571 4288840 2078774 2253829 4879649 3501094 3188720 4750542 5444685 4642082 6507592 6225596 5788336	162 9 617 6 321 9 991 9 173 2 299 9 466 9 129 9	5820568 0678331 6630291 5908091 903729 535792 349240 3774403 5010849 8893701 2842641	3927 6980 6936 6280 9124 7570 7809 3470 5986 9327 8590	789934 30634 54266 08752 72647 49891 11062 71583 98481 54880	13544 57330 95842 73522 70240 54013 90672 51409 56182	4×5754 45 975929 70 0×5184 45×193 978308 2×2581 3×16702	99234 99781 93817 90585 90260
46x ((a) 0765864332 1356673960 (b) 0218818380 1816192560 (c) 0216919739 7874186550 6832971800 3036876355 0238611713 5661605206 (1) 7580993520	603938730 6126914666 743982494 175054704 696312364 976138828 433839479 7483731019 665943600 0737527114 518358531	8 5339 5 8315 5 2954 5 9516 4 2516 6 3344 3 9262 9 5227 8 6764 4 9674 3 1749	9168490 (1098468 (1048140 (104	1531726 271334 271334 20437636 363238 477223 323210 325275 6811275 524945 4555314	8665 7921 5761 5120 4273 4121 9609 9826 7700	2078774 2253829 4879649 3501094 3188720 4750542 5444685 4642082 6507592 6225596	617 (321 (890) 091 (173) 299 (466) 129 (130)	0678331 6630190 5908090 9037190 535791 349240 3774403 5010843 8893700 2841641	6980 6936 6280 9124 7570 7809 3470 5986 9327 8590	30634 54266 08752 72647 49891 11062 71583 98481 54880	57330 95842 73522 70240 54013 90672 51409 56182 69414	4×5754 45 975929 70 0×5184 45×193 978308 2×2581 3×16702	9781 3817 30585 30260 3449 8199
46x (1356673960 (o)o218818380 1816192560 (o)o216919739 7874186550 6832971800 3036876355 0238611713 5661605206 (1)7580993520	6126914664 7439824944 1750547044 696312364 976138828 433839479 748373101 665943600 0737527114 518358531	8315 \$ 2954 \$ 9518 4 2519 6 3344 3 9262 9 5227 8 6767 4 9674 3 1749	; c98468 ; c48x4c ; 599562 526898; c563991 ; 47288; 7765726 ; 7895878	271334* 0 043763(3 363238) 0 477223(3 223210) 0 0325375(6 6811275(5 524945(4555314	7921 5761 5120 4273 4121 9609 9826	2253829 4879649 3501094 3188720 4750542 5444685 4642082 6507592 6225596	321 (890) 091 (173) 299 (466) 429 (190)	6630291 5908091 9037291 5357921 349240 3774403 5010845 8893704	6936 6280 9124 7570 7809 3470 5986 9327 8590	54266 08752 72647 49891 11062 71583 98481 54880	95842 73522 70240 54013 90672 51409 56182 69414	45 975929 70 015184 451193 978308 212581 316702	9781 3817 30585 30260 3449 8199
461 (463 ((o)o218818380 1816192560 (o)o216919739 7874186550 6832971800 3036876355 0238611713 5661605206 (1)7580993520	743982494 175054704 696312364 976138828 433839479 748373101 665943600 073752711 518358531	\$ 2954 \$ 9515 4 2516 6 3344 3 9262 9 5227 8 6764 4 9674 3 1744	1048140 3599562 5268980 0563991 147288 <u>1</u> 1765726 1620390	0437636 363238 477223 323210 323210 6811279 6811279 4555314	6761 5120 4273 4131 9609 9826 7700	4879649 3501094 3188720 4750542 5444685 4642082 6507592 6225596	890 091 173 299 466 129 130	5908099 9037199 535791° 349240° 377440° 5010849 8893709 284164	6280 9124 7570 7809 3470 5986 9327 8590	08752 72647 49891 11062 71583 98481 54880	73522 70240 54013 90672 51409 56182	975929 70 015184 451193 978308 212581 316702	3817 30585 30460 3449 38199
461 (463 (1816192560 (0)0216919739 7874186550 6832971800 3036876355 0238611713 5661605206 (1)7580993520	175054704; 696312364; 976138828; 433839479; 7483731010; 6659436000; 0737527111; 518358531;	5 95x4 4 25x4 6 3344 3 9262 9 5227 8 6764 4 9674	3599562 5268986 5563991 1472885 1765726 1895878	363238 477223 323210 323210 6811279 6811279 4555314	\$120 \$273 \$131 \$609 \$826 \$7700	3501094 3188720 4750542 5444685 4642082 6507592 6225596	091 173 299 466 129 1190	903719 535791 349240 377440 5010845 889370 2841641	9124 7570 7809 3470 5986 9327 8590	72647 49891 11062 71583 98481 54880	70240 54013 90672 51409 56182 69414	70 015184 451193 978308 212581 316702	33817 30585 30460 3449 38199
463	(o)o216919739 7874186550 6832971800 3036876355 0238611713 5661605206 (1)7580993520	696312364 9761388286 433839479 7483731010 665943600 0737527114 518358531	4 2510 6 3344 3 9265 9 5227 8 6767 4 9674	5268980 5563991 147288 <u>5</u> 1765726 1895878	477223: 323210: 325275: 6811275: 524945: 4555314	4273 4131 9609 9826 7700	3188720 4750542 5444685 4642082 6507592 6225596	173 299 466 129 190	535791' 349240' 377440; 5010845 889370; 2841641	7570 7809 3470 5986 9327 8590	49891 11062 71583 98481 54880	54013 90672 51409 56182 69414	978308 212581 316702	3449 8199
463	7874186550 6832971800 3036876355 0238611713 5661605206 (1)7580993520	9761388286 4338394793 7483731019 6659436000 0737527114 5183585313	6 3344 3 9262 9 5227 8 6769 4 9674 3 1744	0563991 1472885 1765726 1895878 1620390	323210 325379 6811279 5249457 4555314	4121 9609 9826 7700	4750542 5444685 4642082 6507592 6225596	299 466 129 190	349240 377440 501084 589370 284164	7809 3470 5986 9327 8590	11062 71583 98481 54880	90672 51409 56182 69414	451193 978308 212581 316702	3449 8199
	6832971800 3036876355 0238611713 5661605206 (1)7580993520	4338394793 7483731019 6659436000 0737527114 518358531	3 926: 9 522; 8 676; 4 9674 3 174;	1472885 1765726 1895878 1620390	6811279 5 5249453 4555314	9609 9826 7700 1533	5444685 4642082 6507592 6225596	466 ; 129 ; 190 ;	377440; 501084; 889370; 2841641	3470 5986 9327 8590	71583 98481 54880	51409 56182 69414	978308 212581 316702	80260 3449 8199
	3036876355 0238611713 5661605206 (1)7580993520	7483731019 6659436000 0737527114 518358531	9 5227 B 6767 4 9674 3 1749	765726 7895878 1620390	6811279 5249457 4555314	9826 7700 1533	4642082 6507592 6225596	129 ! 190 ! 529 :	5010845 889370 2841641	986 9327 8590	98481 54880	56182 69414	212581 316702	3449 8199
	0238611713 5661605206 (1)7580993520	665943600 0737527114 518358531	8 6764 4 9674 3 1749	7895878 1620390	5249451 4555314	7700 1533	6507592 6225596	190 S	889370 284164	9327 8590	54880	69414	316702	8199
	5661605206 (1)7580993520	0737527114 518358531	4 9674 3 174	620390	4555314	1533	6225596	529	284164	B590	•			•
	(1)7580993520	518358531	3 174					• •		• •	00090			624I
				3460043	196544	2764	5788236	022		2774	00080			624 I
- 1	0006470481	£					37 -33	733	O43330	3/**	90200	77753	779997	
	30004/34	041405082	5 0539	956803	455723	5421	1663066	954	643628	5097	19222	46220	3023	
- 10	(2)9092872570	194384449	2 440	5047516	198704	1036	71 7062 6	349	8920081	6393	08855	29157	667386	i 609 0
	7127429805	615550755	9 395	148380	295896	3282	9373650	107	991360	691 T	44708	42332	6133	
- 10	(o)02159 82 721	382289416	B 466	226781	8574514	ю 38	87688 9 8	488 :	120950	3239	74082	07343	412526	19978
1	4017278617	710583153	3 4773	3218142	5485961	1123	1101511	879	049676	0259	17926	56587	4730	
ГThe	iler	391	1 13	27	31 37	4 1	43 53	67	71	73	79 8	Br 83	8 9	101
	mitivwursel	• •	2 6	2	17 5	6	28 26	•		, s	,,	tr 50	•	2
<u></u>					, ,					•		•	•	
		103 107	121	127	137 139	151	157	163	169	173	191	197	199	211
Prin	nitivwurzel	6 63	35	106	12 92	114	. 18.	70	137	82	157	73	127	7
The	iler	227 239	241	243	251 271	277	7 281	283	293	307	311	317	331	347
Prir	mitivwurzel .	163 35	14	65	111 6	80	54	259	89	138	258	71	37	125
The	iler	349 353	359	373	397 401	409	421	431	439	443	449	457	4637	
Prir	mitivwursel . 2	220 28	299	82	133 190	174	54	31	285	240	34	264	174	

VERWANDLUNG GEMEINER BRÜCHE IN DECIMALBRÜCHE.

67	2141327623	1263383297	6445396145	6102783725	9100642398	2869379014	9892933618	843683083
	1177730192	7194860813	7044967880	0856531049	2505353319	0578158458	2441113490	364025695
	3147751605	9957173447	5374732334	0471092077	0877944325	4817987152	0342612419	700214132
	• • • •				•			
79	2087682672	2338204592	9018789144	0501043841	3361169102	2964509394	5720250521	920668058
	5511482254	6972860125	2609603340	2922755741	1273486430	0626304801	6701461377	870563674
	2150313152	4008350730	6889352818	3716075156	5762004175	3653444676	4091858037	578288100
								•
87	2053388090	3499759753	5934291581	1088295687	8850102669	4045174537	9876796714	579055441
	7843942505	1334702258	7268993839	8357289527	7207392197	1252566735	1129363449	691991786
	4763860369	6098562628	3367556468	1724845995	8932238193	0184804928	1314168377	823408624
	2997946611	9096509240	2464065708	4188911704	3121149897	3305954825	4620123203	285420944
	5852156057	4948665297	7412731006	1601642710	4722792607	8028747433	2648870636	550308008
	1355236139	6303901437	3716632443	5318275154	0041067761	8069815195	0718685831	622176591
	7577002053							
91	2036659877	8004073319	7556008146	6395112016	2932790224	0325865580	4480651731	160896130
	4623217922	6069246435	8452138492	8716904276	9857433808	5539714867	6171079429	735234215
	8594704684	3177189409	3686354378	8187372708	7576374745	4175152749	4908350305	498981670
	6109979633	4012219959	2668024439	9185336048	8798370672	0977596741	3441955193	482688391
	3869653767	8207739307	5356415478	6150712830	9572301425	6619144602	8513238289	20570264
	5784114052	9531568228	1059063136	4562118126	2729124236	2525458248	4725050916	496945010
	8329938900							
99	2004008016	0320641282	5651302605	2104208416	8336673346	6933867735	4709418837	67535070
	0280561122	2444889779	5591182364	7294589178	3567134268	5370741482	9659318637	27454909
	9639278557	1142284569	1382765531	0621242484	9699398797	5951903807	6152304609	21843687
	4749498997	9959919839	6793587174	3486973947	8957915831	6633266533	0661322645	29058116:
	2464929859	7194388777	5551102204	4088176352	7054108216	4328657314	6292585170	'34068136
	2545090180	3607214428	8577154308	6172344689	3787575150	3006012024	0480961923	847695390
	8156312625	2505010020	• • • •					
03	1988071570	5765407554	6719681908	5487077534	7912524850	8946322067	5944333996	023856858
	4691848906	5606361829	0258449304	1749502982	1073558648	1113320079	5228628230	61630218
	7872763419	4831013916	5009940357	8528827037	7733598409	5427435387	6739562624	254473161
	3379721669	9801192842	9423459244	5328031809	1451292246	5208747514	9105367793	240556660
	3976143141	1530815109	3439363817	0974155069	5825049701	7892644135	1888667992	047713717
	9383697813	1212723658	0516898608	3499005964	2147117296	2226640159	0457256461	232604373
	5745526838	9662027833	0019880715	• • • • •			-	• •

Digitized by Google

				NACHLA	.88.			
509	1964636542	2396856581	5324165029	4695481335	9528487229	8624754420	4322200392	9273084479
	3713163064	8330058939	0962671905	6974459724	9508840864	4400785854	6168958742	6376129666
	0117878192	5343811394	8919449901	7681728880	1571709233	7917485265	2259332023	5756385068
	7622789783	8899803536	3457760314	3418467583	4970530451	8664047151	2770137524	5579567779
	9607072691	5520628683	6935166994	1060903732	8094302554	0275049115	9135559921	4145383104
	1257367387	0333988212	1807465618	8605108055	0098231827	1119842829	0766208251	4734774066
	7976424361	4931237721	0216110019					
521	1919385796	5451055662	1880998080	6142034548	9443378119	0019193857		
523	1912045889	1013384321	2237093690	2485659655	8317399617	5908221797	3231357552	5812619502
	8680688336	5200764818	3556405353	7284894837	4760994263	8623326959	8470363288	7189292543
1	0210325047	8011472275	3346080305	9273422562	1414913957	9349904397	7055449330	7839388145
	3154875717	0172084130	0191204588					
529	1890359168	2419659735	3497164461	2476370510	3969754253	3081285444	2344045368	6200378071
	8336483931	9470699432	8922495274	1020793950	8506616257	0888468809	0737240075	6143667296
	7863894139	8865784499	0548204158	7901701323	2514177693	7618147448	0151228733	4593572778
	8279773156	8998109640	8317580340	2646502835	5387523629	4896030245	7466918714	5557655954
	6313799621	9281663516	0680529300	5671077504	7258979206	0491493383	7429111531	1909262759
	9243856332	7032136105	8601134215	5009451795	8412098298	6767485822	3062381852	5519848771
	2665406427	2211720226	8431001890					
541	1848428835	4898336414	0480591497	2273567467	6524953789	2791127541	5896487985	2125693160
	8133086876	1552680221	8114602587	8003696857	6709796672	8280961182	9944547134	9353049907
	5785582255	0831792975	9704251386	3216266173	· 75231053 60	4436229205	1756007393	7153419593
	3456561922	3659889094	2698706099	8151571164	5101663385	9519408502	7726432532	3475046210
	7208872458	4103512014	7874306839	1866913123	8447319778	1885397412	1996303142	3290203327
	1719038817	∞5545286 <u>5</u>	0646950092	4214417744	9168207024	0295748613	6783733826	2476894639
	5563770794	8243992606	2846580406	6543438077	6340110905	7301293900	1848428835	
547	1828153564	8994515539	3053016453	3820840950	6398537477	1480804387	5685557586	8372943327
	2394881170	0182815356						
557	1795332136	4452423698	3842010771	9928186714	5421903052	0646319569	1202872531	4183123877
	9174147217	2351885098	7432675044	8833034111	3105924596	0502692998	2046678635	5475763016
	1579892280	0718132854	5780969479	3536804308	7971274685	8168761220	8258527827	6481149012
	5673249551	1669658886	8940754039	4973070017				
563	1776198934	2806394316	1634103019	5381882770	8703374777	9751332149	2007104795	7371225577
	2646536412	0781527531	0834813499	1119005328	5968028419	1829484902	3090586145	6483126110
	1243339253	9964476021	3143872113	6767317939	6092362344	5825932504	4404973357	0159857904
	0852575488	4547069271	7584369449	3783303730	0177619893			
569	1757469244	2882249560	6326889279	4376098418	2776801405	97539543°5	7996485061	5114235500
	8787346221	4411247803	1634446397	1880492091	3884007029	8769771528	9982425307	5571177504
	3936731107	2056239015	8172231985	9402460456	9420035149	3848857644	9912126537	7855887521

9683655536 0281195079 0861159929 7012302284 7100175746

57 =	1751313485	1138353765	3239929947	4605954465	8493870402	8021015761	8213660245	183887915
	3695271453	5901926444	8336252189	1418563922	9422066549	9124343257	4430823117	3380035026
	2697022767	0753064798	5989492119	0893169877	4080560420	3152364273	20 49 03 6 777	583187390
	4290718038	5288966725	0437828371	2784588441	3309982486	8651488616	4623467600	700525394
	4553415061	2959719789	8423817863	3975481611	2084063047	2854640980	7355516637	478108581
	3607705779	3345008756	5674255691	7688266199	6497373029	7723292469	3520140105	078809106
	3012259194	3957968476	3572679509	6322241681	2609457092	8196147110	3327495621	716287215
	1155866900	1751313485	• • • •					
577	1733102253	0329289428	0762564991	3344887348	3535528596	1871750433	2755632582	322357019
	6412478336	2218370883	8821490467	9376083188	9081455805	8925476603	1195840554	592720970
	3726169844	0207972270	3639514731	3691507798	9601386481	8024263431	5424610051	993067590
	8786828422	8769497400	3466204506	0658578856	1525129982	6689774696	7071057192	374350086
i	5511265164	6447140381	2824956672	4436741767	7642980935	8752166377	8162911611	785095320
	2391681109	1854419410	7452339688	0415944540	7279029462	7383015597	9202772963	604852686
	0849220103	9861351819	7573656845	7538994800	6932409012	1317157712	3050259965	337954939
	4142114384	7487001733						
587	1703577512	7768313458	2623509369	1763202725	7240204429	3015332197	6149914821	124361158
	3270868824	5315161839	8637137989	7785349233	3901192504	2589437819	4207836456	558773424
	9080068143	1005110732	5383304940	3747870528	1090289608	1771720613	2879045996	592844974
	4633730834	7529812606	4735945485	5195911413	9693356047	7001703577	• • • •	
593	1686340640	8094435075	8853288364	2495784148	3979763912	3102866779	0893760539	.629005059
	2192242833	0522765598	6509274873	5244519392	9173693086	0033726812	8161888701	517706576
	2849915682	9679595278	2462057335	5817875210	7925801011	8043844856	6610455311	973018549
	4704890387	858347386z	7200674536	2563237774	0303541315	3456998313	6593591905	564924114
	7116357504	2158516020	2360876897	1332209106	2394603709	9494097807	7571669477	234401349
	7251264755	4806070826	3069139966	2731871838	1112984822	9342327150	0843170320	404721753
	9426644182	1247892074	1989881956	1551433389	5446880269	8145025295	1096121416	526138279
	3254637436	7622259696	4586846543	0016863406				
599	1669449081	8030050083	4724540901	5025041736	2270450751	2520868113	5225375626	043405676
	2687813021	7028380634	3906510851	4190317195	3255425709	5158597662	7712854757	929883138
	6427378964	9415692821	3689482470	7846410684	4741235392	3205342237	0617696160	367111853
	8848080133	5559265442	4040066777	9632721202	0033388981	6360601001		
601	1663893510	8153078202	9950083194	6755407653	9101497504	1597337770	3826955074	875207986
	8885191347	7537437603	9933444259	5673876871	8801996672	2129783693	8435940099	833610648
	1846921797	0049916805	3244592346	0898502495	8402662229	6173044925	1247920133	111480865
	2462562396	0066555740	4326123128	1198003327	7870216306	1564059900	1663893510	

607	1647446457	9901153212	5205930807	2487644151	5650741350	9060955518	9456342668	8632619439
	8682042833	6079077429	9835255354	2009884678	7479406919	2751235584	8434925864	9093904448
	1054365733	1136738056	0131795716	6392092257	∞16474464			
613	1631321370	3099510603	5889070146	8189233278	9559543230	0163132137	• • • •	
617	1620745542	9497568881	6855753646	6774716369	5299837925	4457050243	1118314424	6353322528
	3630470016							
619	1615508885	2988691437	8029079159	9353796445	8804523424	8788368336	0258481421	6478190630
	0484652665	5896607431	3408723747	9806138933	7641357027	4636510500	8077544426	4943457189
	0145395799	6768982229	4022617124	3941841680	1292407108	2390953150	2423263327	948303715
	7043618739	9030694668	8206785137	3182552504	0387722132	4717285945	0726978998	3844911147
	0113085621	9709208400	6462035541	1954765751	2116316639	7415185783	5218093699	5153473344
	1033925686	5912762520	1938610662	3586429725	3634894991	9224555735	0565428109	8546042003
	2310177705	9773828756	0581583198	7075928917	6090468497	5767366720	5169628432	9563812600
	9693053311	7932148626	8174474959	6122778675	2827140549	2730210016	• • • •	
631	1584786053	8827258320	1267828843	1061806656	1014263074	4849445324	8811410459	5879556259
	9049128367	6703645007	9239302694	1362916006	3391442155	3090332805	0713153724	2472266244
	0570522979	3977812995	2456418383	5182250396	1965134706	8145800316	957210 7 765	4516640253
	5657686212	3613312202	8526148969	8890649762	2820919175	9112519809	8256735340	729001584
641	1560062402	4960998439	9375975039	0015600624	• •			
643	1555209953	3437013996	8895800933	1259720062	2083981337	4805598755	8320373250	3888024883
	3592534992	2239502332	8149300155					
647	1545595054	0958268933	5394126738	7944358578	0525502318	3925811437	4034003091	1901081916
	5378670788	2534775888	7171561051	0046367851	6228748068	0061823802	1638330757	3415765069
	5517774343	1221020092	7357032457	4961360123	6476043276	6615146831	5301391035	548686244
	0401854714	0649149922	7202472952	0865533230	2936630602	7820710973	7248840803	709428129
	2998454404	9459041731	0654605873	2612055641	4219474497	6816074188	5625965996	928803891
	0834621329	2117465224	1112828438	9489953632	1483771251	9319938176	1978361 669	2426584234
	9304482225	6568778979	9072642967	5425038639	8763523956	7233384853	1684698608	9644513137
	5579598145	28593508 5 0	077279752 7	0479134466	7697063369	3972179289	0262751159	1962905718
	7017001545	• • • •						
653	1	1470137825	4211322312	4042879019	9081163859	1117917304	7473200612	5574272588
	0551301684	5329249617	1516079632	4655436447	1669218989	2802450229	7090352220	5206738131
	6998468606	4318529862	1745788667	6875957120	9800918836	1408882082	6952526799	3874425727
	4119448698	3154670750	3828483920	3675344563	5528330781	0107197549	7702909647	7794793261
	8683001531	• • • •						

VERWANDLUNG GEMEINER BRÜCHE IN DECIMALBRÜCHE. 659 | 1517450682 5781487101 6691957511 7587253414 2640364188 6176024279 2109256449 66 z 3609129814 5506419400 8559201141 2268188302 42510699CO

Digitized by Google

		•						
709	1410437235	5430183356	8406205923	8363892806	7700987306	0648801128	3497884344	1466854724
	9647390691	1142454160	7898448519	0409026798	3074753173	4837799717	9125528913	9633286318
	7588152327	2214386459	8025387870	2397743300	4231311706	6290550070	5218617 79 1	50 9167842 0
	3102961918	1946403385	0493653032	4400564174	8942172073	3427362482	3695345557	1227080394
	9224259520	4513399153	7376586741	8899858956	2764456981	6643159379	4076163610	7193229901
	2693935119	8871650211	5655853314	5275035260	9308885754	5839210155	1480959097	3201692524
Ì	6826516220	0282087447	1086036671	3681241184	7672778561	3540197461	2129760225	6699576868
	8293370944	9929478138	2228490832	1579689703	8081805359	6614950634	6967559943	582510 5782
	7926657263	7517630465	4442877291	9605077574	0479548660	0846262341	3258110014	
719	1390320584	1446453407	5104311543	8108484005	5632823365	78581363 0 0	4172461752	4339360222
!	5312934631	4325452016	6898470097	3574408901	2517385257	3018080667	5938803894	2976356050
	0695410292	0723226703	7552155771	9054242002	7816411682	8929068150	2086230876	2169680111
	2656467315	7162726008	3449235048	6787204450	6258692628	6509040333	7969401947	1488178025
	0347705146	0361613351	8776077885	9527121001				
727	1375515818	4319119669	8762035763	4112792297	1114167812	9298486932	5997248968	36313617 6 0
	6602475928	4731774415	4057771664	3741403026	1348005502	0632737276	4786795048	1430536451
	1691884456	6712517193	9477303988	9958734525	4470426409	9037138927	0976616231	0866574965
	6121045392	0220082530	9491059147	1801925722	1458046767	5378266850	0687757909	2159559834
1	9381017881	7056396148	5557083906	4649243466	2998624484	1815680880	3301237964	2365887207
1	7028885832	1870701513	0674002751	0316368638	2393397524	0715268225	5845942228	3356258596
	9738651994	4979367262	7235213204	9518569463	5488308115	5433287482	8060522696	0110041265
	4745529573	5900962861	0729023383	7689133425	0343878954	6079779917	4690508940	8528198074
	2778541953	2324621733	1499312242	0907840440	1650618982	1182943603	8514442916	0935350756
	5337001375							
729	1371742112	£828532235 93	964 33470 5075	445816 18655	69272 97668 03	840 8779 1495	19 8902606310	0137174211
733	1364256480	2182810368	3492496589	3587994542	9740791268	7585266030	0136425648	••••
739	1353179972	9364005412	7198917456	0216508795	6698240866	0351826792	9634641407	3071718538
	5656292286	8741542625	1691474966	1705006765	8998646820	0270635994	5872801082	5439783491
	2043301759	1339648173	2070365358	5926928281	4614343707	7131258457	3748308525	0338294993
	2341001353	• • • •						
743	1345895020	1884253028	2637954239	5693135935	3970390309	5558546433	3781965006	7294751009
	4212651413	1897711978	4656796769	8519515477	7927321668	9098250336	4737550471	0632570659
	4885598923	2839838492	5975773889	6366083445	4912516823	6877523553	1628532974	4279946164
	1991924629	8788694481	8304172274	5625841184	3876177658	1426648721	3997308209	9596231493
	9434724091	5208613728	1292059219	3808882907	1332436069	9865410497	9811574697	1736204576
	0430686406	4602960969	0444145356	6621803499	3270524899	0578734858	6810228802	1534320323
	0148048452	2207267833	1090174966	3526244952	8936742934	0511440107	6716016150	7402422611
	0363391655	4508748317	6312247644	6837146702	5572005383	5800807537	0121130551	8169582772
	5437415881	5612382234	1857335127	8600269179	∞40376850	6056527590	8479138627	1870794078
	0619111709	2866756393	0013458950					

VERWANDLUNG GEMEINER BRÜCHE IN DECIMALBRÜCHE.

75 1	1331557922	7696404793	6085219707	0572569906	7909454061	2516644474	0346205059	9201065246
	3382157123	8348868175	7656458055	9254327563	2490013315			
757	1321003963	0118890356	6710700132					
761	1314060446	7805519053	8764783180	0262812089	3561103810	7752956636	0052562417	8712220762
	1550591327	2010512483	5742444152	4310118265	4402102496	7148488830	4862023653	0880420499
	3429697766	0972404730	6176084099	8685939553	2194480946	1235216819	9737187910	6438896189
	2247043363	9947437582	1287779237	8449408672	7989487516	4257555847	5689881734	5597897503
	2851511169	5137976346	9119579500	6570302233	9027595269	3823915900	1314060446	
769	1300390117	0351105331	5994798439	5318595578	6736020806	2418725617	6853055916	7750325097
	5292587776	33289986 99	6098829648	8946684005	2015604681	4044213263	9791937581	2743823146
	9440832249	6749024707	4122236671	0013003901				
773	1293661060	8020698576	9728331177	2315653298	8357050452	7813712807	2445019404	9159120310
	4786545924	9676584734	7994825355	7567917205	6921096675	2910737386	8046571798	1888745148
	7710219922	3803363518	75808538 16	3001293661	• • • •		·	
787	1270648030	4955527318	9326556543	8373570520	965 692 5031	7662007623	8881829733	1639135959
	3392630241	4231257941	5501 9 05972	0457433290	9783989834	8157560355	7814485387	5476493011
	4358322744	5997458703	9390088945	3621346886	9123252858	9580686149	9364675984	7522236340
	5336721728	0813214739	5171537484	1168996188	0559085133	4180432020	3303684879	2884371029
	2249047013	9771283354	5108005082	5921219822	1092757306	2261753494	2820838627	7001270648
								,
797	1254705144	2910915934	7553324968	6323713927	2271016311	1668757841	9071518193	2245922208
	2810539523	2120451693	8519447929	7365119196	9887076537	0138017565	8720200752	8230865746
	5495608531	9949811794	2283563362	6097867001				
809	1236093943	1396786155	7478368355	9950556242	2744128553	7700865265	7601977750	3090234857
ŀ	8491965389	3695920889	9876390605	6860321384	4252163164	4004944375	7725587144	6229913473
-	4239802224	9690976514	2150803461	0630407911	0012360939	• • • •		
311	1233045622	6880394574	5992601726	2638717632	5524044389	6424167694	2046855733	6621454993
- 1	8347718865	5980271270	0369913686	8064118372	3797780517	8791615289	7657213316	8927250308
	2614056720	09 8643649 8	1504315659	6794081381	0110974106	0419235511	7139334155	3637484586
	9297163995	0678175092	4784217016	0295930949	4451294697	9038224414	3033292231	8125770653
	5141800246	6091245376	0789149198	5203452527	7435265104	8088779284	8335388409	3711467324
- 1	2909987669	5437731196	0542540073	9827373612	8236744759	5561035758	3230579531	4426633785
- -	4500616522	8113440197	287 2996 300	8631319358	8162762022	1948212083	8471023427	8668310727
- [.	4969173859	4327990135	6350184956	8434032059	1861898890	2589395807	6448828606	6584463625
	1541307028	3600493218	2490752157	8298397040	6905055487	0530209617	7558569667	0776818742
	2934648581	9975339087	5462392108	5080147965	4747225647	3489519112	2071516646	1159062885
- 1								

821	1218026796	5895249695	4933008526	1875761266	7478684531	0596833130	3288672350	7917174177
	8319123020	7064555420	2192448233	8611449451	8879415347	1376370280	1461632155	9074299634
	5919610231	4250913520	0974421437	2716199756	3946406820	9500609013	3982947624	8477466504
	2630937880	6333739342	2655298416	5651644336	1753958587	0889159561	5103532277	7101096224
	1169305724	7259439707	6735688185	1400730816	0779537149	8172959805	1157125456	7600487210
	7186358099	8781973203	4104750304	5066991473	8124238733	2521315468	9403166869	6711327649
	2082825822	1680876979	2 935444579	7807551766	1388550548	1120584652	8623629719	8538367844
	0925700365	4080389768	5749086479	9025578562	7283800243	6053593179	0499390986	6017052375
	1522533495	7369062119	3666260657	7344701583	4348355663	8246041412	9110840438	4896467722
	2898903775	8830694275	2740560292	3264311814	8599269183	9220462850	1827040194	8842874543
	2399512789	2813641900	1218026796	• • • •				
823	1215066828	6755771567	4362089914	9453219927	0959902794	6537059538	2746051032	8068043742
	4058323207	7764277035	2369380315	9173754556	5006075334	1433778857	8371810449	5747266099
	6354799513	9732685297	6913730255	1640340218	7120291616	0388821385	1761846901	5795868772
	7825030376	6707168894	2891859052	2478736330	4981773997	5698663426	4884568651	2758201701
	0935601458	0801944106	9258809234	5078979343	8639125151	8833535844	4714459295	2612393681
	6524908869	9878493317	1324422843	2563791008	5054678007	2904009720	5346294046	1725394896
	7193195625	7594167679	2223572296	4763061968	4082624544	3499392466	5856622114	2162818955
	0425273390	0364520048	6026731470	2308626974	4835965978	1287970838	3961117861	4823815309
	8420413122	7217496962	3329283110	5710814094	7752126366	9501822600	2430133657	3511543134
	8724179829	8906439854	1919805589	3074119076	5492102065	6136087484	8116646415	5528554070
	4738760631	8347509113	0012150668					
827	1209189842	8053204353	0834340991	5356711003	6275695284	1596130592	5030229746	0701330168
	8270858524	7883917775	0906892382	1039903264	8125755743	6517533252	7206771463	1197097944
	3772672309	5525997581	6203143893	5912938331	3180169286	5779927448	6094316807	7388149939
	5405078597	3397823458	2829504232	1644498186	2152357920	1934703748	4885126964	9334945586
	4570737605	8041112454	6553808948	0048367593	7122128174*	1233373639	6614268440	1451027811
	3663845223	7001209189	• • • •					•
B29	1206272617	6115802171	2907117008	4439083232	8106151990	3498190591	0735826296	7430639324
	4873341375	1507840772	0144752714	1133896260	5548854041	0132689987	9372738238	8419782870
	9288299155	6091676718	9384800965	0180940892	6417370325	6936067551	2665862484	9215922798
	5524728588	6610373944	5114595898	6731001206				
339	1191895113	2300357568	5339690107	2705601907	0321811680	5721096543	5041716328	9630512514
	8986889153	7544696066	7461263408	8200238379	0226460071	5137067938	0214541120	3814064362
	3361144219	3087008343	2657926102	5029797377	8307508939	2133492252	6817640047	6758045292
	0143027413	5876042908	2240762812	8724672228	843861740r	6686531585	2205005959	4755661501
	7878426698	4505363528	0095351609	0584028605	4827175208	5816448152	5625744934	4457687723
	4803337306	3170441001						

VERWANDLUNG GEMEINER BRÜCHE IN DECIMALBRÜCHE.

841	1189060642	0927467300	8323424494	6492271105	8263971462	5445897740	7847800237	812128418
	4934601664	6848989298	4542211652	7942925089	1795481569	5600475624	2568370986	920332936
	7978596908	4423305588	5850178359	0963139120	0951248513	6741973840	6658739595	719381688
	6611177170	0356718192	6278240190	24 97027348	3947681331	7479191438	7633769322	235434007
	3436385255	6480380499	4054696789	5362663495	8382877526	7538644470	8680142687	277051129
	0760998810	9393579072	5326991676	5755053507	7288941736	0285374554	1022592152	199762187
	7158145065	3983353151	0107015457	7883472057	0749108204	5184304399	5243757431	629013079
	6706302021	4030915576	6944114149	8216409036	8608799048	7514863258	0261593341	260404280
	1831153388	8228299643	2818073721	7598097502	9726516052	3186682520	80856123 66	230677764
	6599286563	6147443519	6195005945	3032104637	3365041617	1224732461	3555291319	85731272
	4887039239	0011890606						
353	1172332942	5556858147	7139507620	1641266119	5779601406	7995310668	2297772567	40914419
	5193434935	5216881594	3728018757	3270808909	7303634232	1219226260	2579132473	62250879
	9706916764	3610785463	0715123094	9589683470	1055099648	3001172332	• • • •	
857	1166861143	5239206534	4224037339	5565927654	6091015169	1948658109	6849474912	48541423
	0595099183	1971995332	5554259043	1738623103	8506417736	2893815635	9393232205	36756126
	1003500583	4305717619	6032672112	0186697782	9638273045	5075845974	3290548424	73745624
	0711785297	5495915985	9976662777	1295215869	3115519253	2088681446	9078179696	61610268
	8063010501	7502917152	8588098016	3360560093	3488914819	1365227537	9229871645	27421236
	2812135355	8926487747	9579929988	3313885647	6079346557	7596266044	3407234539	08984830
	5134189031	5052508751	4585764294	0490081680	2800466744	4574095682	6137689614	93582263
	0618436406	0676779463	2438739789	9649941656	9428238039	6732788798	1330221703	61726954
	2415402567	0945157526	2543757292	8821470245	0408401400	2333722287	0478413068	84480746
	1131855309	2182030338	3897316219	3698949824	9708284714	1190198366	3943990665	11085180
	3477246207	7012835472	5787631271	8786464410	7351225204	2007001166	• • • •	
59	1164144353	8998835855	6461001164			,		
363	1158748551	5643105446	1181923522	5955967555	0405561993	0475086906	- 1413673232	90845886
	2641946697	5666280417	1494785631	5179606025	4924681344	1483198146	0023174971	03128621
	9223638470	4519119351	1008111239	8609501738	1228273464	6581691772	8852838933	951332560
	3429895712	6303592120	5098493626	8829663962	9200463499	4206257242	1784472769	409038238
	0220162224	7972190034	7624565469	2931633835	4577056778	6790266512	1668597914	25260718
	4101969872	5376593279	2584009269	9884125144	8435689455	3881807647	7404403244	49594438
	6952491309	3858632676	7091541135	5735805330	2433371958	2850521436	8482039397	450753186
	5851680185	3997682502	8968713789	1077636152	9548088064	8899188876	0139049826	18771726
	5341830822	7114716106	6048667439	1657010438	7369640787	9490150637	3117033603	70799536
	0579374275	7821552723	0590961761	29 779837 77	5202780996	5237543453	0706836616	454229432
	1320973348	7833140208	5747392815	7589803012	7462340672	0741599073	0011587485	

Digitized by Google

83694 86316 39566 16419 72519 81 11350 11237 90124 63223 59591 83995 83 11325 27293 58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 8162 58737 87598 85343 91770 07 11025 53142	250855 441277 698973 670467 961231 995438 073779 1723041 485811 1360953	1881413911 0809578107 7742303306 5028506271 4709236031 9965792474 7956867196 9977298524 5777525539	0604332953 1835803876 7274800456 3797035347 9270239452 3443557582 3677639046	2497149372 8529076396 1003420752 7765108323 6795895096 6681870011	8620296465 8072976054 5655644241 8312428734 9213226909	2223489167 7320410490 7331812998 3215507411 9201824401	6168757126 3078677309 8597491448 6305587229	567844925 007981755 118586088 190421892
86316 39566 16419 72519 81 11350 11237 90124 63223 59591 83995 83 11325 27293 58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	698973 670467 961231 995438 073779 723041 485811	7742303306 5028506271 4709236031 9965792474 7956867196 9977298524	7274800456 3797035347 9270239452 3443557582 3677639046	1003420752 7765108323 6795895096 6681870011	5655644241 8312428734 9213226909	7331812998 3215507411	8597491448 6305587229	118586088
39566 16419 72519 81 11350 11237 90124 63223 59591 83995 83 11325 27293 58776 28652 38052 19705 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	670467 961231 995438 073779 723041 485811	5028506271 4709236031 9965792474 7956867196 9977298524	3797°35347 927°239452 3443557582 3677639°46	7765108323 6795895096 6681870011	8312428734 9213226909	3215507411	6305587229	
16419 72519 81 11350 11237 90124 63223 59591 83995 83 11325 27293 58776 28652 38052 19705 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	961231 995438 073779 1723041 1485811 1360953	4709236031 9965792474 7956867196 9977298524	9270239452 3443557582 3677639046	6795895096 6681870011	9213226909			100431801
772519 81 11350 11237 90124 63223 59591 83995 83 11325 27293 58776 28652 38052 19705 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	995438 973779 1723041 1485811 1360953	9965792474 7956867196 9977298524	3443557582 3677639046	6681870011		9201824401	-60	- 304-103
81 11350 11237 90124 63223 59591 83995 83 11325 27293 58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	073779 1723041 1485811 1360953	7956867196 9977298524	3677639046				3683010262	25769669
11237 90124 63223 59591 83995 83 11325 27293 58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	723041 485811 360953	9977298524			- -			
90124 63223 59591 83995 27293 58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	485811 360953			5380249716	2315550510	7832009080	5902383654	93757094
63223 59591 83995 83995 27293 58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	360953	5777525539	4040862656	0726447219	0692395005	6753688989	7843359818	38819523
59591 83995 27293 58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 11025 53142		31113-3337	1600454029	5119182746	8785471055	6186152099	8864926220	20431328
83995 83 11325 27293 58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	137343	4619750283	7684449489	2167990919	4097616345	0624290578	8876276958	00227014
83 11325 27293 58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142		9273552780	9307604994	3246311010	2156640181	6118047673	0987514188	42224744
27293 58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	545970	4880817253	1214528944	3813847900	1135073779			
58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	502831	2570781426	9535673839	1845979614	9490373725	9343148357	8708946772	36693091
58776 28652 38052 19705 87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	331823	3295583238	9580973952	4348810872	0271800679	5016987542	4688561721	404303510
38052 19705 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	689694	2242355605	8890147225	3680634201	5855039637	5990939977	3499433748	584371460
38052 19705 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	232163	0804077010	1925754813	1370328425	8210645526	6138165345	4133635334	08833522
87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	209513	0237825594	5639864099	6602441506	2287655719	1392978482	4462061155	15288788
87 11273 67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	554926	3873159682	8992072480	1812004530	0113250283	• • • •		•
67869 16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	395715	8962795941	3754227733	9346110484	7801578354	0022547914	3179255918	82750845
16572 37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	922209	6956031567	0800450958	2863585118	3765501691	0935738444	1939120631	34160090
37767 17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	271702	3675310033	8218714768	8838782412	6268320180	3833145434	0473506200	67643742
17361 20518 51521 88162 58737 87598 85343 91770 07 11025 53142	775648	2525366403	6076662908	6809470124	0135287485	9075535512	9650507328	07215332
20518 51521 88162 58737 87598 85343 91770 07 11025 53142	189402	4802705749	7181510710	2593010146	5614430665	1634723788	0496054114	99436302
51521 88162 58737 87598 85343 91770 07 11025 53142	860202	9312288613	3032694475	7609921082	2998872604	2841037204	0586245772	26606538
88162 58737 87598 85343 91770 11025 53142		6459977452	0856820744	0811724915	4453213077	7903043968	4329199549	04171364
58737 87598 85343 91770 07 11025 53142		3089064261	5558060879	3686583990	9808342728	2976324689	9661781285	23111612
87598 85343 91770 07 11025 53142		8196166854	5659526493	7993235625	7046223224	3517474633	5963923337	09131905
85343 91770 11025 53142		5140924464	4870349492	6719278466	7418263810	5975197294	2502818489	28974069
91770 07 11025 53142		3348365276	2119503945	8850056369	7857948139	7970687711	3866967305	52423900
53142		33403032/0	~~~7J~37 7 J	00,00,0,0	/03/740-37	/9/000//11	300090/305	32423900
53142		4145534729	8787210584	3439911797	1334068357	2216097023	7500504807	05622932
		2381477398	0154355016	5380374862	1830209481	8081587651	1532524807	
x0076		23014//390	0134333010	53003/4002	1030209461	0001507051	5986769570	01102535
	•	8040480000	4.048*4006	-96-6000				
1	604840	8342480790	3402854006	5861690450	0548847420	4171240395	1701427003	29308452
1	694840	2085620197	5850713501	6465422612	5137211855	1042810098	7925356750	82327113
i	423710	5521405049	3962678375	4116355653	1284302963	7760702524	6981339187	70581778
1 -	423710 605927	8880351262 4720087815	3490669593	8529088913	2821075740	9440175631	1745334796	92645444
16026	423710 605927 151481		5872667398	4632272228	3205268935 0801317233	2360043907 8090010976	7936333699	23161361

VERWANDLUNG GEMEINER BRÜCHE IN DECIMALBRÜCHE.

919	1088139281	8280739934	7116430903	1556039173	0141458106	6376496191	5125136017	4102285092
	4918389553	8628944504	8966267682	2633297062	0239390642	0021762785	6365614798	6942328618
	0631120783	4602829162	1327529923	8302502720	3482045701	8498367791	0772578890	0979325353
	6452665941	2404787812	8400435255	7127312295	9738846572	3612622415	6692056583	2426550598
٠	4766050054	4069640914	0 36996 735 5	8215451577	8019586507	0729053318	8248095756	256800870 5
	1142546245	9194776931	4472252448	3133841131	6648531011	9695321001	• • • •	•
929	1076426264	8008611410	1184068891	2809472551	1302475780	4090419806	2432723358	4499461786
	8675995694	294 94 07965	5543595263	7244348762	1097954790	0968783638	3207750269	1065662002
	1528525296	0172228202	3681377825	6189451023	6049515608	1808396124	8654467168	9989235737
	3519913885	8988159311	0871905274	4886975242	1959095801	9375672766	4155005382	1313240043
	0570505920	3444564047	3627556512	3789020452	0990312163	6167922497	3089343379	9784714747
	0398277717	9763186221	7438105489	7739504843	9181916038	7513455328	3100107642	• • • • •
937	1067235859	1248665955	1760939167	5560298826	0405549626	4674493062	9669156883	6712913553
ļ	8954108858	0576307363	9274279615	7950907150	4802561366	0618996798	2924226254	0021344717
	1824973319	1035218783	3511205976	5208110992	5293489861	2593383137	6734258271	0779082177
!	1611526147	2785485592	3159018143	0096051227	3212379935	9658484525	0800426894	3436499466
	3820704375	6670224119	5304162219	8505869797	2251867662	7534685165	4215581643	5432230522
	9455709711	8463180362	8601921024	5464247598	7193169690	5016008537	8868729989	3276414087
	5133404482	3906083244	3970117395	9445037353	2550693703	3084311632	8708644610	4589114194
	2369263607	2572038420	4909284951	9743863393	8100320170	7577374599	7865528281	7502668089
	6478121664	8879402347	9188900747	0651013874	0661686232	6574172892	2091782283	8847385272
Ì	1451440768	4098185699	0394877267	8762006403	4151547491	9957310565	6350053361	7929562433
	2977588046	9583778014	9413020277	4813233724	6531483457	8441835645	6776947705	4429028815
	3681963713	9807897545	3575240128	0683030949	8399146211	3127001067	• • • •	
941	1062699256	1105207226	3549415515	4091392136	0255047821	4665249734	3251859723	6981934112
	6461211477	1519659936	2380446333	6875664187	0350690754	5164718384	6971307120	0850159404
;	8884165781	0839532412	3273113708	8204038257	1732199787	4601487778	9585547290	1168969181
,	7215727948	9904357066	9500531349	6280552603	6131774707	7577045696	0680127523	9107332624
	8671625929	8618490967	0563230605	7385759829	9681190223	1668437832	0935175345	3772582359
	1923485653	5600425079	7024442082	8905419766	2061636556	8544102019	1285866099	8937300743
	8894792773	6450584484	5908607863	9744952178	5334750265	6748140276	3018065887	3538788522
	8480340063	7619553666	3124335812	9649309245	4835281615	3028692879	9149840595	1115834218
	9160467587	6726886291	1795961742	8267800212	5398512221	0414452709	8831030818	2784272051
ĺ	0095642933	0499468650	3719447396	3868225292	2422954303	9319872476	0892667375	1328374070
	1381509032	9436769394	2614240170	0318809776	8331562167	9064824654	6227417640	8076514346
j	4399574920	2975557917	1094580233	7938363443	1455897980	8714133900	1062699256	
!			-					

947	1055966209	0813093980	9926082365	3643083421	3305174234	4244984160	5068637803	590285110
	7645195353	7486800422	3864836325	2375923970	4329461457	2333685322	0696937697	993664202
	4551214361	1404435058	0781414994	7201689545	9345300950	3695881731	7845828933	474128827
}	7750791974	6568109820	4857444561	7740232312	5 6 59978880	6758183738	1203801478	352692713
!	3315733896	5153115100	3167898627	2439281942	977 824 70 9 6	0929250263	9915522703	273495248
	5205913410	7708553326	2935586061	2460401267	1594508975	7127771911	2988384371	700105596
953	1049317943	33 683 10598	1112277019	9370409233	9979013641	1332633788	0377754459	601259181
- 1	3200419727	1773347324	2392444910	8079748163	6935991605	4564533053	5152151101	783840503
	7261280167	8908709338	929 6 95697 7	9643231899	2654774396	6421825813	2214060860	440713536
	0146904512	0671563483	7355718782	7911857292	7597061909	7586568730	3252885624	344176285
	1448058761	8048268625	3934942287	5131164742	9171038824	7639034627	4921301154	249737670
	1416579223	5047219307	4501573976	9150052465	8971668415	5299055613	8509968520	461699895
	6820566631	6894018887	7229800629	5907660020	9863588667	3662119622	2455403987	408184679
	5802728226	6526757607	5550891920	2518363064	0083945435	4669464847	8488982161	594963275
	7198321091	2906610703	0430220356	7681007345	2256033578	1741867785	9391395592	864637989
	0954879328	4365162644	2812172088	1427072402	9380902413	4312696747	1143756558	237145855
	9412381951	7313746065	0577124868	8352570828	9611752360	9653725078	6988457502	62329485
	4207764952	7806925498	4260230849	9475341028	3315844700	9443861490	0314795383	00104931
961	1040582726	3267429760	6659729448	4911550468	2622268470	3433922996	8782518210	19771071
	0208116545	2653485952	1331945889	6982310093	6524453694	0686784599	3756503642	03954214
	0041623309	0530697190	4266389177	9396462018	7304890738	8137356919	8751300728	40790842
	2008324661	8106139438	0853277835	5879292403	7460978147	7627471383	9750260145	68158168
•	4401664932	3621227887	6170655567	1175858480	7492195629	5525494276	7950052029	13631633
!	4880332986	4724245577	5234131113	4235171696	1498439125	9105098855	3590010405	
967	1034126163	3919338159	2554291623	5780765253	3609100310	2378490175	8014477766	28748707
	2295760082	7300930713	5470527404	3433298862	4612202688	7280248190	2792140641	15822130
•	9896587383	6608066184	0744570837	6421923474	6639089968	9762150982	4198552223	37125129
ı	5770423991	7269966928	6452947259	5656670113	7538779731	1271975180	9720785935	88417786
	311-4-3/7-	, , , , ,	13-741-37	- J 1 - J			,	

VERWANDLUNG GEMEINER BRÜCHE IN DECIMALBRÜCHE.

971	1029866117	4047373841	4006179196	7044284243	0484037075	1802265705	4582904222	4510813594
	2327497425	3347064881	5653964984	5520082389	289392 3789	9073120494	3357363542	7394438722
	9660144181	2564366632	3377960865	0875386199	7940267765	1905252317	1987641606	5911431513
	9031925849	6395468589	0834191555	0978372811	5345005149	3305870236	8692070030	8959835221
	4212152420	1853759011	3285272914	5211122554	0679711637	4871266735	3244078269	8249227600
	4119464469	6x89495365	6024716786	8177136972	1936148300	7209062821	8331616889	8043254376
	9309989701	3388259526	2615859938	2080329557	1575695159	6292481977	3429454170	9577754891
	8640576725	0257466529	3511843460	3501544799	1761071060	7621009268	7950566426	3645726055
	6127703398	5581874356	3336766220	3913491246	1380020597	3223480947	4768280123	5839340885
	6848609680	7415036045	3141091658	0844490216	2718846549	9485066941	2976313079	2996910401
	6477857878	4757981462	4098867147	2708547888	7744593202	8836251287	3326467559	2173017507
	7239958805	3553038105	0463439752	8321318228	6302780638	5169927909	3717816683	8311019567
	4562306900	1029866117						
97 7	1023541453	4288638689	8669396110	5424769703	1729785056	2947799385	8751279426	8167860798
	3623336745	1381780962	1289662231	3203684749	2323439099	2835209825	9979529178	9314227226
	2026612077	7891504605	9365404298	8741044012	2824974411	4636642784	0327533265	0972364380
•	7574206755	3735926305	0153531218	0143295803	4800409416	5813715455	4759467758	4442169907
	8812691914	0225179119	7543500511	7707267144	3193449334	6980552712	3848515864	8925281473
	8996929375	6397134083	9303991811	6683725690	8904810644	8311156 6 01	8423746161	7195496417
	6049129989	7645854657	1136131013	3060388945	7523029682	7021494370	5220061412	4872057318
	3213920163	7666325486	1821903787	1033776867	9631525076	7656090071	6479017400	2047082906
	8577277379	7338792221	0849539406	3459570112	5895598771	7502558853	6335721596	7246673490
	2763561924	2579324462	6407369498	4646878198	5670419651	9959058341	8628454452	4053224155
	5783009211	8730808597	7482088024	5649948822	9273285568	0655066530	1944728761	5148413510
	7471852610	0307062436	0286591606	9600818833	1627430910	9518935516	8884339815	7625383828
	0450358239	5087001023	:.:.					
83	1017293997	9654120040	6917599186	1648016276	7039674465	9206510681	5869786368	2604272634
	7914547304	1709053916	5818921668	3621566632	7568667344	8626653102	7466937945	0661241098
	6775178026	4496439471	0071210579	8575788402	8484231943	0315361159	3692777212	6144455747
	7110885045	7782299084	4354018311	2919633774	1607324516	7853509664	2929806714	1403865717
	1922685656	1546286876	9074262461	8514750762	9704984740	5900305188	1993896236	0122075279
	7558494404	8830111902	3397761953	2044760935	9104781281	7904374364	1912512716	1749745676
	5005086469	9898270600	2034587995	9308240081	3835198372	3296032553	4079348931	841302 136 3
	1739572736	5208545269	5829094608	3418107833	1637843336	7243133265	5137334689	7253306205
	4933875890	1322482197	3550556052	8992878942	0142421159	7151576805	6968463886	0630722278
	7385554425	2288911495	4221770091	5564598168	8708036622	5839267548	3214649033	5707019328
	5859613428	2807731434	3845371312	3092573753	8148524923	7029501525	9409969481	1800610376
	3987792472	0244150559	5116988809	7660223804	6795523906	4089521871	8209562563	5808748728
	3825025432	3499491353	0010172939					
	, 5, 5, 5, 5							

Digitized by Google

5667001003

				NACHI	LASS.			
991	1009081735 3834510595 4571140262 3370332996 0807265388 3067608476	6205852674 3582240161 3612512613 9727547931 4964682139 2865792129	4530776992 5216952573 3824419778 2532795156 1624621594	5095862764 9364278506 1584258324 0020181634 4076690211 3491422805	5590312815 9243188698 7124117053 9071644803	0363269424 3380423814 9845610494 4813319878 2290615539 2704339051		6639757820 1231079717 8678102926 2976791120 1311806256 4984863773
997	9656912209 1003009027 2998996990	8890010090 0812437311 9729187562	9358074222 6880641925	6680040120 7773319959	3610832497 8796389167	4924774322 5025075225	9689067201 6770310932	6048144433 7983951855

T A F E L

DER

FREQUENZ DER PRIMZAHLEN.

2 135										
2 135 52 97 102 93 154 90 202 87 87 87 88 302 83 354 80 402 71 452 76 453 63 4120 54 92 104 80 154 77 204 78 253 78 303 72 353 82 403 76 453 65 4120 54 92 105 91 105 91 105 91 105 91 105 91 105 76 125 84 205 77 255 76 305 88 355 87 407 67 457 73 8 107 58 91 108 76 158 88 208 87 258 78 306 80 357 79 406 83 456 82 7117 57 99 107 92 157 76 207 83 257 72 307 82 357 67 407 67 457 73 8 107 58 99 109 91 159 87 209 85 259 86 307 73 358 80 408 81 458 77 111 60 61 88 111 83 161 85 211 84 261 77 311 79 361 68 411 73 461 77 12 103 62 87 112 84 162 84 122 86 273 313 69 360 71 410 82 460 68 111 106 61 88 111 83 161 85 211 84 261 77 311 79 361 68 411 73 461 77 12 103 62 87 114 88 164 83 124 81 128 86 273 313 69 362 76 413 74 463 74 4105 64 93 114 88 164 83 124 81 213 86 265 80 315 76 265 77 415 90 465 85 116 208 66 98 116 93 166 80 216 74 266 78 315 77 366 77 415 90 465 85 117 98 67 84 117 81 167 81 217 76 267 87 317 84 367 85 417 67 467 69 86 319 99 6 69 80 119 79 169 73 219 84 269 73 318 84 366 79 418 81 468 83 120 102 70 78 81 120 87 170 88	ı 168	51 89	101 81	151 85		251 71			401 70	45I 92
a 1 200 54 90 104 80 154 77 204 78 8 24 81 304 84 354 79 404 75 6 44 75 77 75 55 76 305 88 355 87 405 70 455 74 405 70 455 74 406 83 456 82 86 87 306 80 357 67 407 67 457 64 407 67 457 67 407 67 457 67 407 67 457 67 407 67 457 64 77 17 57 99 100 99 109 91 158 88 208 87 83 357 67 358 407 457 455 74 207 83 359 76 337 338 40 407 67 455 77 415 50 407	2 135	52 97	102 93			252 88	302 83		402 71	452 76
5 119 55 90 105 91 155 84 205 77 255 76 305 88 355 87 405 70 455 74 6 114 56 93 106 82 156 85 206 85 256 87 306 80 356 79 407 87 457 73 8 107 57 99 107 91 157 6 207 83 257 73 307 82 337 67 407 87 457 73 8 107 58 91 108 76 158 88 208 87 258 78 308 73 338 80 408 81 458 77 10 112 60 94 110 88 150 85 210 88 260 76 310 80 360 71 410 82 466 68 11 106 61 88 111 83 161 85 211 84 261 77 311 79 361 68 411 73 461 77 12 103 62 87 112 84 164 84 212 86 262 73 313 69 362 79 412 81 465 69 13 109 63 88 113 81 163 81 213 69 263 79 313 69 364 79 413 74 465 74 14 105 64 93 114 88 164 83 214 81 264 84 314 86 364 84 414 69 464 77 15 102 65 80 115 82 166 83 216 77 215 86 266 78 315 77 366 77 416 80 466 74 15 103 66 89 116 93 166 83 217 74 267 87 317 84 367 85 417 67 467 69 18 104 68 93 110 97 169 73 219 84 619 75 319 81 369 72 419 85 469 85 21 104 67 29 122 86 173 81 222 80 270 78 320 86 370 68 420 75 470 72 21 104 74 83 121 88 173 87 222 80 277 78 324 80 377 78 327 74 423 73 473 78 22 104 74 83 121 88 173 87 222 80 277 78 324 80 377 64 422 73 475 79 22 104 74 83 124 88 173 87 222 80 277 78 324 80 377 64 422 73 475 80 23 100 73 90 123 88 173 87 222 80 277 78 324 80 377 64 422 73 475 80 24 104 74 83 124 88 173 87 222 80 277 88 324 80 377 80 427 77 473 73 24 104 74 83 128 86 178 87 222 80 277 88 327 87 337 70 427 77 473 73 24 104 74 83 128 88 173 87 222 80 277 88 324 80 377 78 427 77 473 73 24 104 74 83 128 88 173 87 222 80 277 88 324 80 377 78 427 77 473 73 24 104 74 83 128 86 178 87 128 80 178 80 178 80 178 80 178 80 178 80 178 80 178 80 178 80 178 80 178 80 178 80 178 80 178 80 178	3 127	53 89	103 87	153 88	203 78	253 78	303 72	353 82	403 76	453 63
6 114 56 93 106 82 156 85 206 85 256 87 306 80 356 79 406 83 456 87 7117 57 99 107 92 157 76 207 83 257 77 23 07 83 357 87 407 67 457 87 91 10 10 10 60 94 110 88 116 85 210 88 260 87 310 80 360 71 410 82 400 87 111 106 61 88 111 83 161 85 210 88 260 87 310 80 360 71 410 82 465 87 12 103 62 87 112 84 162 84 213 86 210 88 210 87 310 80 360 71 410 82 465 69 13 10 63 81 13 81 163 81 213 69 26 37 3 312 69 360 71 410 82 465 69 13 10 60 63 87 112 88 164 83 214 81 264 84 314 85 264 84 314 85 264 87 15 102 65 80 115 82 165 77 215 86 265 80 315 76 265 77 415 90 465 85 16 108 66 98 116 93 166 80 217 78 217 78 217 98 67 84 117 81 167 81 217 76 81 217 76 267 87 317 84 367 77 415 90 465 85 20 102 70 81 120 87 170 87 220 91 270 78 320 86 370 88 270 78 1120 87 170 87 220 91 270 78 320 86 370 88 270 74 417 82 21 04 72 95 122 86 172 81 22 80 272 78 122 86 172 81 22 80 272 78 123 88 124 88 174 79 224 80 274 71 324 71 374 73 378 478 89 23 81 277 86 277 83 322 80 370 88 242 77 64 247 71 324 71 374 73 378 32 80 97 84 129 89 120 88 89 120 89 120 89 120 89 120 89 120 88 89 120 89 120 89 120 89 120 88 89 120 89 120 89 120 89 120 89 120 89 120 89 120 89 120 89 120 89 120 89 120 89 120 88 89 120 89 120 89 120 88 89 120 89 120 89 120 89 120 88 120 89 120 88	4 120	54 92	104 80	154 77	204 78				404 75	454 72
7 117 57 99 107 92 157 76 207 83 258 77 2 307 83 357 67 407 67 457 73 91 100 112 60 94 110 88 160 85 210 88 208 87 258 78 308 73 358 80 408 81 458 77 101 112 60 94 110 88 160 85 210 88 210 87 6 131 80 360 76 310 80 360 71 410 82 460 68 111 63 61 88 111 83 161 85 211 84 261 77 311 79 361 68 411 73 465 63 131 79 361 68 411 73 465 63 131 79 361 68 411 73 465 74 465 7	5 119	55 90	105 91	155 84	205 77	255 76	305 88	355 87	405 70	455 74
7 117 57 99 107 92 157 76 207 83 258 77 2 307 83 357 67 407 67 457 73 91 100 112 60 94 110 88 160 85 210 88 208 87 258 78 308 73 358 80 408 81 458 77 101 112 60 94 110 88 160 85 210 88 210 87 6 131 80 360 76 310 80 360 71 410 82 460 68 111 63 61 88 111 83 161 85 211 84 261 77 311 79 361 68 411 73 465 63 131 79 361 68 411 73 465 63 131 79 361 68 411 73 465 74 465 7	6 114	56 93	106 82	156 85	206 85	256 87	306 80	356 79	406 83	456 82
8 107 58 91 108 76 158 88 208 87 258 78 308 73 3\$8 80 408 82 458 77 9 110 59 90 109 91 159 87 209 85 259 86 309 76 319 83 409 79 440 68	-		107 92		207 83	257 72	307 82	357 67	407 67	
9 110 59 90 109 91 159 87 209 85 259 86 309 76 359 82 409 79 459 75 10 110 60 94 110 88 160 85 210 88 260 76 310 80 360 71 140 82 460 78 111 106 61 88 111 83 161 85 211 84 261 77 311 79 361 68 411 73 465 77 14 105 22 465 77 14 105 22 465 77 14 105 22 465 85 16 108 66 98 116 93 166 80 117 81 67 81 217 76 267 87 317 84 367 77 415 90 465 85 16 108 66 98 116 93 166 80 217 76 81 217 76 267 87 317 84 368 79 418 82 468 83 218 80 102 70 81 120 87 170 81 71 81 167 81 217 76 217 81 217 81 217 76 217 81 217 81 217 76 217 81 217		1 -1	108 76	158 88	208 87	258 78	308 73		408 81	458 77
10 112 60 94 110 88 160 85 210 88 260 76 310 80 360 71 410 82 460 68 11 106 61 88 111 83 1161 85 211 84 261 77 311 79 361 68 411 73 461 77 12 103 63 87 112 84 162 84 112 86 261 73 311 79 361 68 411 73 461 77 13 109 63 88 113 81 163 81 213 69 263 79 313 86 363 76 413 74 463 74 14 105 64 93 114 88 164 83 214 81 264 84 314 86 364 84 414 69 464 77 15 102 65 80 115 82 165 77 215 86 265 80 315 76 265 77 415 90 465 85 16 108 66 98 116 93 166 80 216 74 266 78 315 76 265 77 415 90 465 85 16 108 66 98 116 90 168 83 218 80 268 94 318 84 366 77 416 80 466 74 99 99 46 98 0 119 79 169 73 219 84 267 87 317 84 367 97 418 82 469 85 20 102 70 81 120 87 170 87 220 91 270 78 320 86 370 68 420 75 470 72 21 98 71 98 121 88 171 87 221 78 21 78 87 222 91 270 78 320 86 370 68 420 75 470 72 21 98 71 98 122 86 172 87 222 92 270 78 320 86 370 68 420 75 470 72 21 104 72 95 122 86 172 81 222 80 272 78 320 86 372 76 413 75 471 87 822 104 72 95 122 86 172 81 222 80 272 78 32 83 275 80 372 76 421 77 473 73 24 104 74 83 124 88 174 89 223 81 273 83 323 81 373 81 423 77 473 73 24 104 74 83 124 88 174 89 224 80 274 71 324 71 374 73 424 83 474 78 25 94 75 92 125 83 175 83 225 83 275 80 325 87 375 82 425 81 475 80 26 98 79 84 129 89 179 83 128 80 178 73 128 80 128 80 73 330 86 378 71 428 78 477 85 32 93 93 93 123 86 128 86 178 73 128 80 178 73 128 80 128 80 73 330 81 380 83 430 89 480 71 342 80 138 80 38 138 81 318 81 318 91 233 76 283 77 33 81 423 77 479 75 280 80 91 130 83 188 94 230 88 27 333 80 38 38 38 34 30 89 480 71 348 82 349 89 133 80 188 87 133 89 123 87 183 91 233 76 283 77 338 80 38 77 433 79 77 424 77 77 47 89 93 79 84 129 89 179 89 123 88 79 84 137 99 87 88 137 96 187 79 123 76 187 71 337 84 387 79 74 427 79 74 89 93 89 81 81 817 87 91 87 77 124 80 128 80 77 338 80 38 79 47 71 477 75 487 89 128 80 79 83 80 80 81 318 80 88 87 133 80 38 87 74 433 84 483 82 83 99 89 89 13 88 89 18			109 91	159 87	209 85	259 86	309 76	359 83	409 79	
12 103 62 87 112 84 162 84 212 86 262 73 311 69 362 79 412 81 462 69 13 109 63 88 113 81 163 81 213 69 263 79 313 86 363 76 413 74 463 74 463 74 465 71 465 7	•	2.7	110 88	160 85	210 88	260 76	310 80	360 71	410 82	460 68
12 103 62 87 112 84 162 84 212 86 262 73 311 69 362 79 412 81 462 69 13 109 63 88 113 81 163 81 213 69 263 79 313 86 363 76 413 74 463 74 463 74 465 71 465 7	11 106	61 88	111 83	161 85	211 84	261 77	311 79	361 68	4II 73	461 77
13 109 63 88 113 81 169 81 213 69 163 79 313 86 363 76 413 74 469 74 14 105 64 93 114 88 164 83 214 81 264 84 314 86 364 84 414 69 464 77 19 8 15 102 65 80 115 82 165 77 215 86 265 80 315 76 265 77 415 90 465 85 16 16 168 66 98 116 93 166 80 216 74 266 78 316 77 366 77 415 90 465 85 18 104 68 99 118 90 168 83 218 80 268 94 317 84 367 85 417 67 467 69 18 104 68 99 118 90 169 73 219 84 169 75 319 81 369 72 419 85 469 85 20 102 70 81 120 87 170 87 220 91 270 78 320 86 370 68 420 75 470 72 21 98 122 86 172 81 222 80 272 78 322 80 372 76 422 73 472 78 23 100 73 90 123 88 173 89 223 81 273 83 333 81 373 84 423 77 473 73 24 104 74 23 124 88 174 79 224 80 274 71 344 71 374 73 424 83 475 80 26 98 77 98 122 86 178 87 226 84 276 83 326 85 376 85 426 74 476 86 27 101 77 83 127 83 177 95 227 76 27 83 327 87 337 80 427 71 477 75 226 84 176 77 83 127 83 177 95 227 76 27 83 327 87 378 82 425 81 778 83 278 80 91 130 83 180 94 230 88 178 87 32 228 80 278 74 338 86 378 77 473 73 474 88 27 101 77 83 127 83 177 95 227 76 27 83 337 87 3 377 80 427 71 477 75 28 99 80 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 330 83 180 94 230 88 278 74 333 80 380 83 430 89 480 71 330 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 330 80 133 80 133 80 133 80 133 80 133 87 183 91 233 80 133 80 83 88 71 428 78 488 71 30 88 81 31 80 94 237 81 82 85 330 77 337 70 429 71 479 85 83 199 80 80 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 330 80 133 80 83 880 71 330 80 133 80 133 80 138 80 148 79 237 76 237 77 337 70 385 78 433 84 70 488 70 148 88 91 89 148 87 130 88 71 234 71 244 80 237 70 438 77 338 79 98 88 137 96 188 79 237 76 237 77 333 77 73 387 77 429 71 479 85 80 80 80 80 80 80 80 80 80 80 80 80 80		62 87	112 84	162 84	212 86		312 69	362 79	412 81	
14 105 64 93 114 88 164 83 214 81 266 84 314 86 364 84 414 69 464 77 15 102 65 80 115 82 165 77 215 86 265 80 315 76 265 77 415 90 465 85 16 16 108 66 98 116 93 167 81 217 76 266 78 315 77 366 77 415 90 465 85 18 104 68 99 118 90 168 83 218 80 268 94 318 84 368 79 418 82 468 83 19 94 69 80 119 79 169 73 219 84 269 75 319 81 369 72 419 85 220 102 70 81 120 87 170 87 220 91 270 78 320 86 370 68 420 75 470 72 21 98 71 98 121 88 171 87 221 78 221 78 322 80 372 76 422 73 472 78 23 100 73 90 123 88 173 89 223 81 273 83 333 333 81 423 77 473 73 24 4104 74 83 124 88 174 79 224 80 272 78 332 86 376 85 420 75 477 82 25 94 75 92 125 83 175 83 225 83 275 80 325 87 375 82 425 81 475 80 29 98 79 84 129 89 179 89 229 89 379 84 129 89 179 89 229 89 279 81 330 87 183 185 181 71 231 88 187 33 180 330 81 380 83 430 89 480 71 329 82 92	_	63 88	113 81	163 81	213 69			363 76	413 74	463 74
15 102 65 80 115 82 165 77 215 86 265 80 315 76 265 77 415 90 465 85 16 108 66 98 116 93 166 80 216 74 266 78 316 77 366 77 416 80 466 74 17 98 67 84 117 81 167 81 217 76 267 87 317 84 366 78 41 76 76 467 69 18 104 68 99 118 90 168 83 218 80 268 94 318 84 368 79 418 82 468 83 19 94 69 80 119 79 169 73 219 84 269 75 319 81 369 72 419 85 469 85 21 102 70 81 120 87 170 87 220 91 270 78 320 86 370 68 420 75 470 72 221 104 72 95 122 86 172 81 222 80 272 78 320 86 370 68 420 75 470 72 23 100 73 90 123 88 173 87 221 78 271 84 321 79 371 70 421 75 472 78 23 100 73 90 123 88 174 89 224 80 274 71 374 73 373 81 423 77 473 73 24 104 74 83 124 88 174 79 224 80 274 71 374 73 374 73 424 83 474 78 25 94 75 94 125 83 175 83 255 83 255 83 255 83 255 87 375 82 425 81 475 80 26 98 76 91 126 84 176 75 226 84 176 83 324 77 337 80 427 71 477 75 228 80 478 89 128 86 178 73 228 80 278 74 338 86 378 78 425 81 475 80 29 98 79 84 129 89 179 80 229 89 379 84 129 89 179 80 229 89 379 81 33 73 37 37 429 71 479 80 229 89 38 92 80 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 331 95 81 88 131 85 181 71 231 84 281 87 331 80 381 72 431 76 487 69 33 106 33 89 133 87 183 91 233 76 183 77 333 78 1 423 77 449 71 479 80 229 89 38 92 80 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 331 80 381 72 431 76 483 77 333 70 80 427 71 477 75 483 100 84 84 134 81 184 79 234 71 284 72 334 80 384 81 434 80 484 75 339 90 87 66 139 85 188 87 238 77 333 76 335 77 385 80 436 87 79 37 70 482 77 1 477 75 487 89 90 80 90 94 140 84 190 88 240 79 290 84 340 89 144 87 190 88 240 79 290 84 340 89 144 87 190 88 240 79 290 84 340 89 144 87 190 79 237 76 237 76 237 76 237 76 237 76 237 76 237 76 237 76 237 76 237 76 237 76 237 77 238 77 249 7		64 93	114 88			264 84	314 86	364 84		
16 108 66 98 116 93 166 80 216 74 266 78 317 84 367 85 416 80 466 74 467 87 317 84 367 85 417 67 66 69 18 104 68 91 118 90 168 83 218 80 268 94 318 84 368 79 419 85 469 85 19 94 69 80 119 79 169 73 219 84 169 75 319 81 369 72 419 85 470 72 21 98 71 98 121 88 171 87 221 78 321 79 371 70 421 75 471 83 21 98 71 98 122 86 173 83 323 83 323 81 437 73 424 417 73 442 73 <td></td> <td>65 80</td> <td>115 82</td> <td>165 77</td> <td>215 86</td> <td>265 80</td> <td></td> <td>265 77</td> <td></td> <td>465 85</td>		65 80	115 82	165 77	215 86	265 80		265 77		465 85
17 98 67 84 117 81 167 81 217 76 267 87 317 84 367 85 417 67 467 69 18 104 68 99 118 90 168 83 218 80 20 80 19 79 169 73 219 84 269 75 319 81 369 72 419 85 469 85 20 102 70 81 120 87 170 87 220 91 270 78 320 86 370 68 420 75 470 72 21 98 71 98 121 88 171 87 221 78 271 84 321 79 371 70 421 75 471 87 221 104 72 95 122 86 172 81 222 80 272 78 322 80 372 76 422 73 472 78 23 100 73 90 123 88 173 89 233 81 273 83 323 81 373 81 423 77 473 73 41 410 4 74 83 124 88 174 79 224 80 277 78 320 47 13 74 73 424 83 474 78 25 94 75 92 125 83 175 83 225 83 275 80 325 87 375 82 425 81 475 80 26 98 76 91 126 84 176 75 226 84 276 83 327 87 337 78 0 427 71 477 75 82 94 78 93 128 86 178 73 228 80 278 74 328 85 378 71 428 78 478 75 92 29 8 79 84 129 89 179 89 229 89 279 81 329 73 377 71 429 71 479 85 30 92 80 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 31 95 81 88 131 85 181 71 231 84 281 87 331 80 381 72 431 76 432 79 85 33 106 83 89 133 87 183 91 233 76 283 77 333 77 80 427 71 479 85 33 106 83 89 133 87 183 91 233 76 283 77 333 77 80 427 71 479 85 33 106 83 89 133 87 183 91 233 76 283 77 333 77 80 427 71 479 85 33 92 88 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 31 85 81 81 71 231 84 281 87 331 80 381 72 431 76 481 79 234 71 184 79 234 71 187 337 84 387 78 437 79 488 78 33 90 88 78 81 137 96 187 79 237 76 287 77 338 79 78 437 79 488 86 63 79 98 87 88 137 96 187 79 237 76 287 77 342 77 389 78 443 79 444 88 89 99 87 143 87 199 88 240 79 290 84 340 68 390 84 440 75 499 78 444 88 99 89 144 87 199 88 240 79 290 84 340 68 390 84 440 75 499 78 444 85 94 86 144 77 194 84 244 77 294 68 344 80 394 87 444 88 94 89 198 78 88 148 83 198 87 248 79 290 84 340 68 390 75 144 88 3198 87 248 79 290 84 340 68 390 75 144 88 3198 87 248 79 290 84 340 89 397 75 44	-	-	_	1	216 74	266 78	216 77		416 80	
18 164 68 99 1 18 90 1 68 83 2 18 80 2 68 94 3 18 84 3 68 79 4 18 82 4 69 83 19 94 69 80 1 19 79 169 73 219 84 2 69 75 3 19 81 3 69 72 4 19 85 4 69 85 20 102 70 81 121 88 171 87 2 21 78 271 84 3 21 79 371 70 4 21 75 471 87 21 08 71 98 1 21 88 173 89 2 21 81 2 22 80 272 78 3 22 80 3 27 66 422 73 41 83 174 79 2 22 80 2 27 83 3 28 80 3 27 76 4 22 73 471 3 474 74 42 74 83 2 27 80 3 25 87 3 75						, ,				
19 94 69 80 119 79 169 73 219 84 269 75 319 81 369 72 419 85 469 85 20 102 70 81 120 87 170 87 220 91 270 78 320 86 370 68 420 75 470 72 21 104 72 95 1122 86 172 81 22 28 0 272 78 322 80 372 76 422 73 472 78 23 100 73 90 123 88 173 89 223 81 273 83 323 81 373 81 423 77 473 73 24 104 74 83 124 88 174 79 224 80 274 71 324 71 374 73 424 83 474 78 25 94 75 92 125 83 175 83 225 83 275 80 325 87 375 82 425 81 475 80 26 98 76 91 126 84 176 75 226 84 276 83 327 73 377 84 427 71 477 75 83 427 89 128 86 178 73 228 80 278 74 328 86 378 71 448 78 478 89 128 86 178 73 228 80 278 74 328 86 378 71 447 77 75 83 92 29 89 279 81 329 73 379 77 429 71 479 85 33 92 80 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 31 95 81 88 131 85 181 71 231 84 281 87 331 80 381 72 431 76 481 77 83 31 95 81 88 131 85 181 71 231 84 281 87 333 80 381 72 431 76 481 77 83 31 95 81 88 133 85 183 91 233 76 283 77 333 72 383 74 433 84 483 82 31 95 81 88 133 85 183 91 233 76 283 77 333 72 383 74 433 84 483 82 33 92 82 132 83 182 79 232 78 82 85 332 80 384 81 334 80 443 80 183 183 91 233 76 283 77 333 70 385 78 433 84 483 87 331 95 81 88 71 335 80 183 91 233 76 283 77 333 72 383 74 433 84 483 82 34 100 84 84 134 82 184 79 234 71 284 72 334 80 384 81 434 80 484 75 339 90 89 76 139 85 188 87 79 237 76 287 71 337 84 387 79 442 77 487 87 88 89 31 38 80 188 87 238 77 333 70 385 78 433 80 448 77 34 88 89 31 38 80 188 87 238 77 333 70 385 78 433 80 448 70 488 78 83 99 87 61 339 85 188 87 238 77 338 80 388 69 440 75 490 78 444 85 94 86 144 77 194 84 190 88 240 79 290 84 340 68 390 84 440 75 490 78 444 85 94 86 144 77 194 84 244 77 294 68 344 80 394 87 444 85 493 89 99 87 143 82 193 89 243 76 293 78 343 77 339 86 444 85 493 69 99 87 143 82 193 89 243 76 293 78 343 77 339 86 444 85 493 69 99 87 143 82 193 89 243 76 293 78 343 77 339 86 444 85 493 69 99 87 143 82 193 89 243 76 293 78 343 77 339 86 444 85 493 67 99 97 84 147 84 197 76 247 84 297 294 68 344 80 399 87 144 85 199 89 87 144 87 199 76 247 84 297 82 347 77 399 87 444 87 99 79 84 144 88 199 89 8		1 -5 -								
20 70 81 120 87 170 87 220 91 270 78 320 86 370 68 420 75 470 72 21 98 71 98 121 88 171 87 221 78 271 84 321 79 371 70 421 75 471 87 22 104 72 95 122 86 173 89 223 80 272 78 322 70 372 76 421 74 73 90 123 88 173 89 223 81 273 83 323 81 373 81 423 77 73 33 423 77 473 73 424 704 473 33 475 80 223 80 274 71 33 373 81 425 81 775 83 225 83 276 83 326 85 376 85 426 74 476 83<										
21 98										. , .
22 104	2.1 08	71 08	121 88		221 78	271 84	321 70		A2T 75	
23 100	•						222 80	-	1	
24 104 74 83 124 88 174 79 224 80 274 71 324 71 374 73 424 83 476 78 25 94 75 92 125 83 175 83 225 83 275 80 325 87 375 82 425 81 476 80 26 98 76 91 126 84 176 75 226 84 276 83 327 73 377 80 427 71 477 75 28 94 78 95 128 86 178 73 228 80 278 74 328 86 378 71 429 71 479 85 29 98 79 84 129 89 179 89 229 80 278 74 328 36 380 380 430 89 480 71 429 71 479 71 479 71 </td <td>•</td> <td>1</td> <td></td> <td></td> <td></td> <td>' 1</td> <td></td> <td></td> <td></td> <td></td>	•	1				' 1				
25 94 75 92 125 83 175 83 225 83 275 80 325 87 375 82 425 81 475 80 26 98 76 91 126 84 176 75 226 84 276 83 326 85 376 85 426 74 476 86 27 101 77 83 127 83 177 95 227 76 277 83 327 73 377 80 427 71 477 75 28 94 78 95 128 86 178 73 228 80 278 74 328 86 378 71 428 78 478 69 29 98 79 84 129 89 179 89 229 89 279 81 329 73 379 77 429 71 479 85 30 92 80 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 31 95 81 88 131 85 181 71 231 84 281 87 331 80 381 72 431 76 481 77 32 92 82 92 132 83 182 79 232 78 282 85 332 82 382 76 432 79 482 878 33 106 83 89 133 87 183 91 233 76 283 77 333 72 383 74 433 84 483 82 34 100 84 84 134 82 184 79 234 71 284 72 334 80 384 81 434 80 484 75 35 94 85 87 135 80 185 83 235 87 285 90 335 77 385 78 435 85 485 65 36 92 86 85 136 89 186 91 236 73 286 77 336 77 386 80 436 82 486 63 37 99 87 88 137 96 187 79 237 76 287 71 337 84 387 78 437 73 487 82 39 90 89 76 139 85 189 80 128 73 288 71 338 80 38 86 94 480 75 48 89 99 94 140 84 190 88 240 79 290 84 340 68 390 84 440 75 490 78 44 88 91 89 141 87 191 75 241 80 291 84 341 84 391 81 441 79 491 78 442 101 92 85 142 87 193 81 242 91 292 77 342 77 392 79 442 72 492 76 44 85 94 86 144 77 194 84 244 77 294 68 344 80 394 87 444 88 494 82 45 96 95 87 145 79 195 74 245 78 295 85 345 80 395 75 445 82 495 80 46 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 496 87 47 90 97 84 147 84 197 76 247 84 297 82 347 77 399 82 449 70 499 72	•									
26 98 76 91 126 84 176 75 226 84 276 83 326 85 376 85 426 74 476 86 27 101 77 83 127 83 177 95 227 76 277 83 327 73 377 80 427 71 477 75 28 94 78 95 128 86 178 73 228 80 278 74 328 86 378 71 428 78 479 85 30 92 80 91 130 83 180 94 230 88 280 73 330 81 380 83 480 71 481 77 31 95 81 88 131 85 181 71 231 84 281 87 331 80 382 72 431 76 481 77 31 95 81 88 131 <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		1								
27 101 77 83 127 83 177 95 227 76 277 83 327 73 377 80 427 71 477 75 28 94 78 95 128 86 178 73 228 80 278 74 328 86 378 71 428 78 478 69 29 98 79 84 129 89 179 89 229 89 279 81 329 73 379 77 429 71 479 85 30 92 80 91 130 83 180 94 230 88 280 73 331 80 381 72 431 76 481 77 31 95 81 88 131 85 181 71 231 84 281 87 331 80 382 76 432 79 482 79 482 78 33 106 83 89 133 87 183 91 232 78 282 85 332 82 382 76 432 79 482 78 481 77 34 100 84 84 134 82 184 79 234 71 284 72 334 80 384 81 433 84 483 82 36 92 86 85 136 89 186 91 236 73 286 77 336 77 386 80 436 82 486 63 37 99 87 88 137 96 187 79 237 76			i .					ı		
28 94 78 95 128 86 178 73 228 80 278 74 328 86 378 71 428 78 479 89 29 89 279 81 329 73 379 77 429 71 479 85 30 92 80 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 31 95 81 88 131 85 181 71 231 84 281 87 331 80 381 72 431 76 481 77 31 165 83 89 133 183 183 12 231 78 282 78 332 82 382 76 432 79 482 78 33 106 83 89 133 183 12 233 76 283 77 334 80 384<	,									
29 98 79 84 129 89 179 89 229 89 279 81 329 73 379 77 429 71 479 85 30 92 80 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 31 95 81 88 131 85 181 71 231 84 281 87 331 80 381 72 431 76 481 77 32 92 82 92 132 83 182 79 232 78 282 85 332 82 382 76 432 79 482 78 33 106 83 89 133 87 183 91 233 76 283 77 333 72 383 74 433 84 484 75 35 94 86 85 136 <td>_</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	_	1								
30 92 80 91 130 83 180 94 230 88 280 73 330 81 380 83 430 89 480 71 31 95 81 88 131 85 181 71 231 84 281 87 331 80 381 72 431 76 481 77 32 92 82 92 132 83 182 79 232 78 282 85 332 82 382 76 432 79 482 78 33 106 83 89 133 87 183 91 233 76 283 77 333 72 383 74 433 84 483 82 78 285 90 335 77 385 78 485 81 236 73 286 77 336 77 386 80 436 82 486 63 37 99 87 88 137 96 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										
31 95 81 88 131 85 181 71 231 84 281 87 331 80 381 72 431 76 481 77 32 92 82 92 132 83 182 79 232 78 282 85 332 82 382 76 432 79 482 78 33 106 83 89 133 87 183 91 233 76 283 77 333 72 383 74 433 84 483 82 34 100 84 84 134 82 184 79 234 71 284 72 334 80 384 81 434 80 484 75 35 94 85 87 135 80 185 83 235 87 285 90 335 77 385 78 435 85 485 65 36 92 86 85 136 89 186 91 236 73 286 77 336 77 386 80 436 82 486 63 37 99 87 88 137 96 187 79 237 76 287 71 337 84 387 78 437 73 487 82 38 94 88 93 138 80 188 87 238 73 288 71 338 80 388 69 438 70 488 78 39 90 89 76 139 85 189 80 239 87 289 85 339 77 389 75 439 75 489 83 40 96 90 94 140 84 190 88 240 79 290 84 340 68 390 84 440 75 490 78 44 188 91 89 141 87 191 75 241 80 291 84 341 84 391 81 441 79 491 78 44 101 92 85 142 87 193 81 242 91 292 77 342 77 393 86 443 85 493 67 444 85 93 87 143 82 193 89 243 76 293 78 343 77 393 86 443 85 493 67 5 445 89 486 90 97 84 147 77 194 84 244 77 294 68 344 80 394 87 444 88 494 82 495 89 89 87 144 84 197 76 247 84 297 82 347 80 397 75 446 68 496 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 446 68 496 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 496 87 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 446 68 496 87 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 446 68 496 87 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 446 68 496 87 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 446 68 496 87 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 446 68 496 87 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 446 68 496 87 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72							1-			
32 92 82 92 132 83 182 79 232 78 282 85 332 82 382 76 432 79 482 78 33 106 83 89 133 87 183 91 233 76 283 77 333 72 383 74 433 84 483 82 34 100 84 84 134 82 184 79 234 71 284 72 334 80 384 81 434 80 484 75 35 94 85 87 135 80 185 83 235 87 285 90 335 77 385 78 435 85 485 65 36 92 86 85 136 89 186 91 236 73 286 77 336 77 386 80 436 82 486 63 37 99 87 88 137 96 187 79 237 76 287 71 337 84 387 78 437 73 487					-		**	• •		
33 106					- 1					
34 100 84 84 134 82 184 79 234 71 284 72 334 80 384 81 434 80 484 75 35 94 85 87 135 80 185 83 235 87 285 90 335 77 385 78 435 85 486 63 36 92 86 85 136 89 187 79 237 76 287 71 337 84 387 78 437 73 487 82 38 94 88 93 138 80 188 87 238 73 288 71 338 80 388 69 438 70 488 78 39 90 89 76 139 85 189 80 239 87 289 85 339 77 389 75 439 75 449 78 41 88 91 89 141 87 191 75 241 80 291 84 341 84 391 81 441 79 491 7		1 - 5 1					75			
35 94 85 87 135 80 185 83 235 87 285 90 335 77 385 78 435 85 485 65 36 92 86 85 136 89 186 91 236 73 286 77 336 77 386 80 436 82 486 63 37 99 87 88 137 96 187 79 237 76 287 71 337 84 387 78 437 73 487 82 388 94 88 93 138 80 188 87 238 73 288 71 338 80 388 69 438 70 488 78 39 90 89 76 139 85 189 80 239 87 289 85 339 77 389 75 439 75 489 83 40 96 90 94 140 84 190 88 240 79 290 84 340 68 390 84 440 75 490 78 41 88 91 89 141 87 191 75 241 80 291 84 341 84 391 81 441 79 491 78 42 101 92 85 142 87 193 89 242 91 292 77 342 77 392 79 442 72 492 76 43 102 93 97 143 82 193 89 243 76 293 78 343 77 393 86 443 85 493 67 44 85 94 86 144 77 194 84 244 77 294 68 344 80 394 87 444 88 494 82 45 96 95 87 145 79 195 74 245 78 294 68 344 80 395 75 445 82 495 80 46 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 496 87 49 90 97 84 147 84 197 76 247 84 207 82 347 80 397 75 447 68 497 68 48 95 98 82 148 83 198 87 248 79 298 73 348 82 398 75 448 73 498 81 49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72	-	1 1						1		
36 92 86 85 136 89 186 91 236 73 286 77 386 80 436 82 486 63 37 99 87 88 137 96 187 79 237 76 287 71 337 84 387 78 437 73 487 82 38 94 88 93 138 80 188 87 238 73 288 71 338 80 388 69 438 70 488 78 39 90 89 76 139 85 189 80 239 87 289 85 339 77 389 75 439 75 489 83 40 96 90 94 140 84 190 88 240 79 290 84 340 68 390 84 440 75 490 78 41 88 91 89 141 87 191	J .	1					J . 1	1		
37 99 87 88 137 96 187 79 237 76 287 71 337 84 387 78 437 73 487 82 38 94 88 93 138 80 188 87 238 73 288 71 338 80 388 69 438 70 488 78 39 90 89 76 139 85 189 80 239 87 289 85 339 77 389 75 439 75 489 83 41 88 91 89 141 87 191 75 241 80 291 84 341 84 391 81 441 79 491 78 42 101 92 85 142 87 193 81 242 91 292 77 342 77 392 79 442 72 492 76 43 102 93 97 143 82 193 89 243 76 293 78 343 77 393 86 443 85 493								1	1	
38 94 88 93 138 80 188 87 238 73 288 71 338 80 388 69 438 70 488 78 39 90 89 76 139 85 189 80 239 87 289 85 339 77 389 75 439 75 489 83 40 96 90 94 140 84 190 88 240 79 290 84 340 68 390 84 440 75 490 78 41 88 91 89 141 87 191 75 241 80 291 84 341 84 391 81 441 79 491 78 42 101 92 85 142 87 193 81 242 91 292 77 342 77 392 79 442 72 492 76 43 102 93 97 143 82 193 89 243 76 293 78 343 77 393 86 444 77 194		1	, ,	,			1			
39 90 89 76 139 85 189 80 239 87 289 85 339 77 389 75 439 75 489 83 40 96 90 94 140 84 190 88 240 79 290 84 340 68 390 84 440 75 490 78 41 88 91 89 141 87 191 75 241 80 291 84 341 84 391 81 441 79 491 78 42 101 92 85 142 87 193 89 243 76 293 78 343 77 393 86 443 85 493 67 444 85 94 86 144 77 194 84 244 77 294 68 344 80 394 87 444 88 494 82 45 96 95 87 145 79 195 74 245 78 294 68 344 80 394 87 444 88 494 82 495 80 86 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 496 87 47 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 447 68 496 87 48 95 98 82 148 83 198 87 248 79 298 73 348 82 398 75 448 73 498 81 49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72		1 1								
40 96 90 94 140 84 190 88 240 79 290 84 340 68 390 84 440 75 490 78 41 88 91 89 141 87 191 75 241 80 291 84 341 84 391 81 441 79 491 78 42 101 92 85 142 87 193 89 243 76 293 78 343 77 393 86 443 85 493 67 43 102 93 97 143 82 193 89 243 76 293 78 343 77 393 86 443 85 493 67 44 85 94 86 144 77 194 84 244 77 294 68 344 80 394 87 444 88 494 82 45 96 95 87 145 79 195 74 245 78 295 85 345 80 395 75 445 82 495 80 46 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 496 87 47 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 447 68 497 68 48 95 98 82 148 83 198 87 248 79 298 73 348 82 398 75 448 73 498 81 49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72	• • •	1 - /9			- 1			1	,	•
41 88 91 89 141 87 191 75 241 80 291 84 341 84 391 81 441 79 491 78 42 101 92 85 142 87 193 81 242 91 292 77 342 77 392 79 442 72 492 76 43 102 93 97 143 82 193 89 243 76 293 78 343 77 393 86 443 85 493 67 44 85 94 86 144 77 194 84 244 77 294 68 344 80 394 87 444 88 494 82 45 96 95 87 145 79 195 74 245 78 295 85 345 80 395 75 445 82 495 80 46 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 496 87 47 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 447 68 497 68 48 95 98 82 148 83 198 87 248 79 298 73 348 82 398 75 448 73 498 81 49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72		1 - 1	1			1				
42 101 92 85 142 87 192 81 242 91 292 77 342 77 392 79 442 72 492 76 43 102 93 97 143 82 193 89 243 76 293 78 343 77 393 86 443 85 493 67 44 85 94 86 144 77 194 84 244 77 294 68 344 80 394 87 444 88 493 82 45 96 95 87 145 79 195 74 245 78 295 85 345 80 395 75 445 82 495 80 46 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 497 68 47 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 448 73 498	-	1 ' ' '						- 1	440 75	
43 102 93 97 143 82 193 89 243 76 293 78 343 77 393 86 443 85 493 67 44 85 94 86 144 77 194 84 244 77 294 68 344 80 394 87 444 88 494 82 45 96 95 87 145 79 195 74 245 78 295 85 345 80 395 75 445 82 495 80 46 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 496 87 47 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 447 68 497 68 48 95 98 82 148 83 198 87 248 79 298 73 348 82 398 75 448 73 498 81 49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72	•	1			-		1			
44 85 94 86 144 77 194 84 244 77 294 68 344 80 394 87 444 88 494 82 495 80 395 75 145 79 195 74 245 78 295 85 345 80 395 75 145 82 495 80 46 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 496 87 47 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 447 68 497 68 48 95 98 82 148 83 198 87 248 79 298 73 348 82 398 75 448 73 498 81 49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72	-	, ,					• • •	:-		
45 96 95 87 145 79 195 74 245 78 295 85 345 80 395 75 445 82 495 80 46 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 496 87 47 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 447 68 497 68 48 95 98 82 148 83 198 87 248 79 298 73 348 82 398 75 448 73 498 81 49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72	_	1 23 22		,,,,,				3/3		
46 86 96 95 146 85 196 85 246 80 296 75 346 76 396 72 446 68 496 87 47 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 447 68 497 68 48 95 98 82 148 83 198 87 248 79 298 73 348 82 398 75 448 73 498 81 49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72							- · · · - I			494 82
47 90 97 84 147 84 197 76 247 84 297 82 347 80 397 75 447 68 497 68 48 95 98 82 148 83 198 87 248 79 298 73 348 82 398 75 448 73 498 81 49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72	45 96	95 87					345 80	395 75		495 80
48 95 98 82 148 83 198 87 248 79 298 73 348 82 398 75 448 73 498 81 49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72	46 86									
49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72	47 9 0					297 82		397 75		
49 89 99 87 149 83 199 96 249 88 299 73 349 77 399 82 449 70 499 72	48 95			198 87		298 73	348 82		448 73	498 81
50 98 100 87 150 91 200 77 250 80 ' 300 78 350 82 400 81 450 80 500 81		1 1								499 72
	50 98	100 87	150 91	200 77	250 80	300 78 I	350 82	400 81	450 80	500 8z

FREQUENZ DER PRIMZAHLEN.

501 78	551 79	601 75	651 61	701 75	751 68	801 85	851 70	901 74	951 76
502 74	552 75	602 73	652 74	702 71	752 85	802 66	852 77	902 73	952 70
503 67	553 7I	603 83	653 85	703 81	753 73	803 70	853 74	903 70	953 78
504 76	554 80	604 76	654 69	704 71	754 7I	804 69	854 66	904 63	954 65
505 76	555 77	605 73	655 78	705 87	755 83	805 78	855 71	905 81	955 73
• • •				1			1	' '	
506 83	556 61	606 74	656 73	706 68	756 70	806 79	856 73	906 70	956 76
507 76	557 88	607 72	657 71	707 82	757 66	807 68	857 78	907 80	957 58
508 71	558 68	608 78	658 70	708 74	758 68	808 70	858 76	908 80	958 69
509 76	559 74	609 78	659 79	709 77	759 79	809 69	859 69	909 79	959 77
510 75	560 77	610 80	660 73	710 77	760 77	810 78	860 71	910 82	960 69
511 72	561 86	611 73	661 83	711 78	761 77	811 78	86x 77	911 62	961 68
512 82	562 61	612 71	662 70	712 76	762 80	812 72	862 74	912 81	962 88
513 70	563 83	613 76	663 74	713 72	763 68	813 69	863 83	913 71	963 71
514 77	564 67	614 79	664 77	714 73	764 79	814 72	864 60	914 54	964 74
515 81	565 77	615 71	665 77	715 66	765 72	815 78	865 80	915 73	965 74
	1	1		1-			-		
516 66	566 78	616 75	666 77	716 83	766 82	816 69	866 80	916 70	966 70
517 85	567 72	617 85	667 73	717 69	767 78	817 75	867 68	917 72	967 73
518 83	568 72	618 81	668 73	718 65	768 68	818 75	868 78	918 79	968 66
519 76	569 71	619 67	669 66	719 67	769 77	819 62	869 80	919 75	969 75
520 78	570 80	620 73	670 74	720 74	770 74	820 83	870 73	920 71	970 73
521 73	571 85	621 77	671 75	721 78	771 77	821 75	871 79	921 72	971 76
522 83	572 72	622 70	672 76	722 77	772 75	822 72	8 2 58	922 72	972 78
523 79	573 85	623 74	673 76	723 73	773 70	823 84	873 76	923 72	973 74
524 69	574 72	624 75	674 77	724 86	774 76	824 78	874 65	924 81	974 63
525 77	575 70	625 68	675 69	725 75	775 72	825 71	875 75	925 76	975 85
	Į.	•	'• •				1		•
526 79	576 77	626 69	676 75	726 69	776 67	826 81	876 80	926 80	976 70
527 84	577 78	627 70	677 74	727 76	777 70	827 78	877 75	927 74	977 66
528 72	578 77	628 70	678 63	728 75	778 76	828 69	878 67	928 63	978 60
529 70	579 76	629 71	679 82	729 76	779 81	829 69	879 68	929 70	979 80
530 78	580 77	630 75	680 83	730 75	780 71	830 68	880 75	930 80	980 65
531 80	581 73	631 67	681 75	731 69	781 70	831 76	881 8o	931 69	981 67
532 68	582 79	632 81	682 78	732 76	782 82	832 79	882 69	932 69	982 75
533 79	583 73	633 77	683 66	733 71	783 68	833 82	883 72	933 76	983 70
534 74	584 78	634 70	684 78	734 75	784 74	834 68	884 73	934 68	984 70
535 72	585 72	635 82	685 72	735 74	785 75	835 67	885 69	935 81	985 74
	I			1			, ,		1
536 71	586 81	636 78	686 74	736 79	786 77	836 73	886 77	936 68	986 76
537 87	587 79	637 73	687 74	737 69	787 70	837 71	887 76	937 71	987 76
538 67	588 87	638 74	688 82	738 78	788 • 73	838 64	888 71	938 71	988 63
539 78	589 73	639 59	689 74	739 70	789 80	839 80	889 77	939 72	989 71
540 71	590 68	640 72	690 79	740 81	790 68	840 69	890 68	940 68	990 72
54¥ 73	591 71	641 77	691 60	741 67	791 78	841 70	891 68	941 74	991 71
542 77	592 67	642 71	692 79	742 74	792 71	842 69	892 80	942 79	992 79
543 78	593 80	643 68	693 77	743 73	793 82	843 83	893 69	943 72	993 65
544 81	594 77	644 70	694 73	744 67	794 71	844 68	894 72	944 76	994 68
545 68	595 78	645 86	695 76	745 64	795 73	845 78	895 74	945 73	995 78
		1	1						
546 68	596 77	646 75	696 77	746 67	796 79	846 70	896 80	946 66	996 69
547 73	597 79	647 74	697 73	747 76	797 77	847 69	897 64	947 72	997 69
548 76	598 73	648 79	698 79	748 71	798 72	848 77	898 75	948 66	998 83
549 77	599 72	649 73	699 62	749 76	799 71	849 75	899 76	949 67	999 74
550 78	600 73	650 84	700 72	750 72	800 81	850 68	900 61	950 75	1000 65

П.

			1	0000	œ.		0000	00							1:	2000	∞.	13	30000	00			
	0	I	2	3	4	5	6	7	8	9			0	1	2	3	4	5	6	7	8	9	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	2 11 14 26 19 11 8 6	1 4 8 10 14 17 19 13 6 6 1 1	2 5 8 18 23 21 9 8 4 2	2 4 18 21 23 7 13 5 6	3 3 12 16 24 14 14 9 3 1	1 1 6 10 22 24 15 14 5 1	2 9 10 19 17 20 12 5 3 2	1 3 4 12 15 22 17 13 9 1	1 3 5 15 17 20 15 11 7 4 1	1 8 8 15 21 17 16 9 5	1 4 21 54 114 171 217 164 126 71 39 12 6	3 4 5 6 7 8 9 10 11 12	2 3 7 15 16 24 17 8 3 3 1	2 7 12 14 15 19 12 11 6	2 4 7 12 13 25 16 7 10 3 1	1 5 3 15 19 24 11 10 8 2	4 5 10 17 21 17 12 10 3	3 7 14 16 20 15 13 4 5 1	1 12 9 16 15 22 14 5 3	1 4 2 15 15 22 18 13 3 6 I	3 3 6 20 24 19 13 9	1 3 10 12 14 24 14 9 10	1 1 2 1 1
1	752	719							700	737	7210		676	744 (722	689	70
				∫ d/lop									•			∫ d/log			123,3 				
	0								* 8	9				ı				14			8	91	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	4 5 8 14 21 22 13 9 1	3 6 13 20 19 13 14 6 4 1	1 3 7 7 10 17 22 10 16 10 2 1 1	3 5 12 20 19 12 17 10 2	3 9 11 17 21 18 7 8 2	3 4 11 17 21 20 11 9 1	2000 6 3 4 9 18 20 17 16 6 4 1 1	7 1 2 5 12 16 18 19 14 8 5	6 12 17 29 9 12 3 9	2 1 6 9 14 27 20 11 8 2	0 I 5 25 57 107 170 217 160 131 5 2 11 5 2 17194	1 2 3 4 5 6 7 8 9 10 11 12 13 14	3 3 3 17 15 22 14 17 5 4	1 1 10 13 14 18 22 11 6 2 1 1	1 1 7 11 17 26 14 12 2	3 3 11 14 18 16 14 11 1	1 2 6 15 20 21 14 12 5 1 1	5 1 1 2 8 12 18 16 13 9 15 3 2	6 I 2 7 8 8 23 16 21 I 12 5 3 2	7 2 6 8 17 28 17 7 8 6 1	1 5 6 14 16 19 15 13 6 3 1 1	1 5 10 19 23 15 13 7 3 3 3	1 1 2 1 1

FREQUENZ DER PRIMZAHLEN.

1400	•	•	٠	1500000	

	150	149	148	147	146	145	144	143	142	141	- 1
-	Ī						•				0
5	1			1	I	I		I			1
7	1	2				2		1	1		2
19	0	2	4	2	2	I	2	0	3	3 8	3
72	8	5	9	9	7	6	4	8	8	8	4
129	13	16	15	14	11	13	14	7	9	17	5
183	19	16	16	11	19	20	18	20	23	21	6
179	22	15	II	18	24	13	18	18	23	17	7 8
183	14	23	18	17	14	24	17	28	16	12	8
98	8	7	12	13	10	6	15	4	11	12	9
73	9	8	9	8	7	9	7	7	2	7	0
34	4	4	5	6	3	2	4	2	2	2	I
16	1	2	I	I	2	2	I	3	2	1	2
2	- 1					1		X			3

| 679 680 717 723 703 701 716 705 706 698 | 7028

$$\int \frac{\mathrm{d}\,x}{\log x} = 7048,78186$$

1600000...1700000

_	161	162	163	164	165	166	167	168	169	170	
0								I			I
1						2				1	2
2	I	3	I		1	I	2			2	11
3	3	3	3	4	4	2	2	4	4		29
4	7	4	9	7	7	10	4	4	10	6	68
5	10	11	8	12	11	11	13	12	18	14	120
6	18	22	15	19	15	II	14	19	10	16	159
7 8	22	15	14	21	25	18	22	24	24	18	203
8	14	23	25	15	17	16	17	15	13	19	174
9	8	12	18	12	12	2.I	12	8	14	13	130
10	7	2	5	8	4	6	II	7	4	9	63
11	7	3	1	1	3	I	3	2	2	3	26
12	2	I	1	1			_	4		-	9
13	I				1				I		3
14		I									1
15						I					1

$$\int \frac{\mathrm{d}\,x}{\log x} = 6985,13714$$

1500000 . . . 1600000

151	152	153	154	155	156	157	158	159	160	
										0
					1	1				2
		1	1	2		2		I	3	10
2		4	2	2	3	5	3	6	1	28
8	5	5	7	9	13	6	10	7	7	77
8	19	9	13	11	9	12	15	11	17	124
16	20	25	21	20	12	26	14	23	22	199
19	21	18	19	18	15	12	19	11	20	172
19	12	15	18	15	17	10	17	15	11	149
16	14	16	12	8	17	15	6	11	9	124
8	3	5	4	9	7	5	10	10	2	63
	5	2	2	3	3	3	2	4	5	29
4			I	3	1	1	4	I	2	17
	I				2	2			I	6
	2 8 8 16 19	2 8 5 8 19 16 20 19 21 16 14 8 3 5	1 2 4 8 5 5 8 19 9 16 20 25 19 21 18 19 12 15 16 14 16 8 3 5 2 4	1 1 2 4 2 8 5 5 7 7 8 19 9 13 16 20 25 21 18 19 19 12 15 18 16 14 16 12 8 3 5 4 5 2 2 4	1 1 2 2 4 2 2 8 5 5 7 9 8 19 9 13 11 16 20 25 21 20 19 21 18 19 18 19 12 15 18 15 16 14 16 12 8 8 3 5 4 9 5 2 2 3 4 1 3	1 1 2 2 3 3 8 5 5 7 9 13 8 19 9 13 11 9 16 20 25 21 20 12 19 21 18 19 18 15 17 16 14 16 12 8 17 5 2 2 3 3 3 4 1 3 1	1 1 2 2 2 3 5 8 5 5 7 9 13 6 8 19 9 13 11 9 12 16 20 25 21 20 12 26 19 21 18 19 18 15 12 19 12 16 16 14 16 12 8 17 15 8 3 5 4 9 7 5 5 2 2 3 3 3 4 1 1 3 1 1	1 1 2 2 2 3 5 3 8 5 5 7 9 13 6 10 8 19 9 13 11 9 12 15 16 20 25 21 20 12 26 14 19 21 18 19 18 15 12 19 19 12 15 16 14 16 12 8 17 15 6 8 3 5 4 9 7 5 10 5 2 2 3 3 3 3 2 4 1 3 1 1 4	1 1 2 2 15 16 17 16 18 3 5 4 9 7 5 10 10 5 2 2 3 3 3 2 4 4 1 3 1 1 4 1	1 1 2 2 1 3 3 6 1 3 8 5 5 7 9 13 6 10 7 7 8 19 9 13 11 9 12 15 11 17 16 20 25 21 20 12 26 14 23 22 19 12 15 18 15 17 10 17 15 18 15 17 10 17 15 11 16 14 16 12 8 17 15 6 11 9 8 3 5 4 9 7 5 10 10 2 5 2 2 3 3 3 3 2 4 5 4 1 3 1 1 4 1 2

| 731 702 691 686 698 714 680 701 693 675 | 6971

$$\int \frac{\mathrm{d}\,x}{\log x} = 7015,78776$$

1700000...1800000

	180	179	178	177	176	175	174	173	172	171	
											0
I							I				1
5	1			I	2					I	2
30	2	3	5	3	4	3	3		4	3	3
70	7	10	6	6	8	5	6	6	9	7	4
152	15	13	13	2 I	15	12	16	19	15	13	5
174	17	18	13	15	14	20	22	22	16	17	
194	15	17	21	19	19	22	15	22	21	23	7 8
147	13	19	18	13	15	16	15	II	16	II	
124	15	10	14	12	10	15	11	8	II	18	9
61	II	5	9	6	9	2	7	8	I	3	το
26	2	4	I	4	4	3	I	3	3	I	II
IO	2	I				I	1		3	2	12
5							2	1	I	I	3
_	- 1										14
1											15
6021	712	68a	700	670	684	706	68g	601	68s	605	

695 685 691 689 706 684 679 700 689 713 | 693

$$\int \frac{\mathrm{d}x}{\log x} = 6956,53562$$

1800000		T	o	o	o	o	O	o

	181	182	183	184	185	186	187	188	189	190	
0											
1											
2	1	1	2	I		2				3	10
3	3	2	I	5	I	I	I	2	3	3	22
4	3 6	5	10	12	7	6	5	5	8	7	71
4 5 6	14	15	10	11	11	12	19	17	12	14	135
	13	20	14	15	21	19	16	19	23	15	175
7 8	25	26	18	17	21	21	20	22	19	17	206
8	15	19	13	18	22	15	19	15	11	14	161
9	10	7	19	13	9	8	10	12	10	_	113
IO	9	4	8	6	6	13	4	6	8	10	74
II	2		4			3	5	3	5	2	23
12	2	1	1	2	2		1		1		10
13	İ										i
14	1										l
	704	672	718	674	700	707	703	689	697	691	6955

$$\int \frac{\mathrm{d}x}{\log x} = 6929,73917$$

2000000 . . . 2100000

	201	201	203	204	205	206	207	208	209	210	
0											
1					2	I					3
2			2	2	1			2	2	I	10
3	3	3	5	2	2	3	4	5	2	3	32
4	7	8	9	4	8	5	6	7	9	6	69
5	13	10	9	15	13	10	12	13	9	15	119
6	25	20	13	16	26	23	25	14	17	18	197
7 8	10	22	23	25	13	23	18	23	25	22	204
8	13	17	15	22	12	13	12	16	18	19	157
9	16	15	11	4	11	12	II	14	11	10	115
10	10	2	8	6	11	7	7	3	3	6	63
11	2	I	5	3		1	3	3	3		21
12	1	2			I	2	2		I		8
13	I			1							2
	1										!

| 705 691 693 690 671 696 694 674 686 674 | 6874

$$\int \frac{\mathrm{d}\,x}{\log x} = 6880,780$$

1900000 . . . 2000000

	191	192	193	194	195	196	197	198	199	200	
0											
I	I										1
2			I			1	2		1		5
3	4	3	Ì	3	10	1	3	4	4	2	34
4	5	4	4	6	4	9	7	10	11	7	67
5	12	18	15	18	11	12	II	16	II	12	136
6	19	20	18	16	17	24	20	20	18	10	182
7 8	21	20	23	27	20	16	25	17	21	31	221
8	16	10	16	14	14	18	17	15	8	20	148
9	15	14	8	8	9	12	8	8	15	6	103
0	5	6	8	6	11	4	5	5	6	6	62
11	2	4	6	2	3	2	ı	3	2	5	30
12		1		1				2	1		5
3					I		I		I		3
14						1			1	1	1 3

 $\int \frac{\mathrm{d}\,x}{\log x} = 6904,54424$

2100000 . . . 2200000

	211	212	213	214	215	216	217	218	219	220	
0											
1		1					I				2
2	r	I	1			I	1	1	1	2	9
3	5	3	3	1	4		2	3	2	4	27
3 4 5 6	7	. 7	, 2	13	5	3	9	6	9	8	69
5	12	14	20	16	16	12	17	13	12	14	146
6	12	20	17	14	16	25	16	23	21	19	183
7	19	14	18	23	26	22	18	22	22	17	201
8	22	21	20	20	12	16	20	10	12	15	168
9	12	10	8	7	9	10	7	13	16	17	109
10	6	5	6	2	7	7	8	5	2	4	52
11	3	2	3	I	4	2	I		2		18
12	1	1	1	1	I	2		2			9
13		¥	I	1					I		4
14				1				2			3
	699	683	697	673	693	712	666	69 r	679	664	6857

 $\int \frac{\mathrm{d}x}{\log x} = 6858,292$

FREQUENZ DER PRIMZAHLEN.

2200000	٠		22	α	20	O	a

	230	229	228	227	226	225	224	223	222	22 I	
- 2		I				I					1
9	2	3			2		I	1			2
29	2	2	2	2	I	2	7	4	2	5	3
73	9	6	7	7	7	10	5	5	9	8	
138	9	15	14	14	10	11	13	16	24	12	5
179	22	21	17	16	20	18	18	12	18	17	4 5 6
205	18	19	25	23	20	18	21	25	17	19	7
168	22	16	17	13	24	18	15	19	12	12	7 B
113	7	13	9	16	11	19	9	6	9	14	9
44	3		5	7	3	1	6	6	6	7	ó١
30	5	2	2	2	2	2	4	4	2	5	r I
10	1	2	2				1	2	I	I	2

| 701 660 695 680 683 688 701 694 662 685 | 6849

$$\int \frac{\mathrm{d}\,x}{\log x} = 6836,977$$

2400000 . . . 2500000

	241	242	243	244	245	246	247	248	249	250	
1									I		1
2	2						I	1	2	3	9
3	4	6	4	4	1	5	3	5	3	2	37
4	12	8	7	7	9	7	10	5 8	3 6	4	78
5	13	14	17	19	15	12	18	11	11	17	147
	18	16	21	20	18	22	18	18	20	22	193
7 8	21	16	19	20	17	17	21	22	19	17	189
8	10	16	14	14	21	17	10	17	16	16	151
9	8	13	9	11	7	12	6	11	12	13	102
to	9	6	5	4	6	4	8	6	7	3	58
ı I	2	4	3	I	4	I	4	r	2	1	23
12	I		I		I	I	I			2	7
13		I			I	2			I	- 1	5

o 690 672 657 701 687 666 672 687 674 | 67

$$\int \frac{\mathrm{d}\,x}{\log x} = 6797,394$$

2300000 . . . 2400000

1	231	232	233	234	235	236	237	238	239	240	
I	1	I	I		I						4
2			I		2	2	I	2	I	2	11
3	4	1	2	3	4	3	2	6	4	3	32
4	8	12	10	9	8	7	3	13	7	9	86
5	13	18	13	14	17	12	10	13	10	16	136
6	15	16	21	20	16	21	26	11	14	16	176
7	22	25	20	20	13	16	26	18	19	15	194
8	13	9	16	21	17	15	15	15	21	16	158
9	13	9	6	7	14	14	8	13	14	14	112
ioi	7	5	3	2	5	5	8	7	8	5	55
11	3	3	4	3	3	5	1	2	2	2	28
12	. I		3	1		-				2	7
13		I	_								I

 $\int \frac{\mathrm{d}\,x}{\log x} = 6816,706$

2500000 . . . 2600000

	251	252	253	254	255	256	257	258	259	260	
1	Π	1	I						-	I	3
2	r	2		I	I						5
3	4		6	6	2	2	1	2	8	4	35
4	7	18	9	7	8	6	IO	7	8	8	88
5 6	10	11	7	15	15	23	16	16	10	13	136
6	22	14	20	21	20	15	18	19	20	25	194
7	24	17	12	20	22	22	23	15	13	12	180
8	18	15	20	9	16	18	16	20	19	19	170
9	8	10	13	7	9	7	6	12	6	10	88
10	2	5	8	10	5	4	7	4	9	4	58
II	1	5	3	2	2	I	2	3	5		24
12	1	I	1	2		2	1	2	I	2	13
13	2	r							1	2	6
	677	675	696	670	670	67I	678	698	693	676	6804

 $\int \frac{\mathrm{d}\,x}{\log x} = 6778,960$

2600000	****

	261	262	263	264	265	266	267	268	269	270	
0	i			I							I
Ţ			2					2			4
2	1	2	I		2		1	2	1		σr
3	3	6	2	2	4		3	3	3	2	28
4	9	6	6	12	3	7	7	3 8	6	7	71
5	11	15	14	11	13	17	22	16	18	21	158
6	26	17	14	18	23	19	20	24	19	15	195
7	23	11	27	20	21	21	21	14	22	21	201
8	14	23	16	13	15	16	12	8	12	13	142
9	9	10	13	16	10	10	5	10	5	8	96
10	3	•	5	4	2	. 8	2	5	8	10	53
II	I	1	:	I	3	I	4	4	5	2	22
12	i	3	l	2	4	. 1	I	4	I	1	17
13	1						I				. 1
14							1				1
	65	68	1 672	680	689	695	660	665	681	686	6762

$$\int \frac{\mathrm{d}\,x}{\log x} = 6761,332$$

2800000 . . . 2900000

	290	289	288	287	286	285	284	283	282	281	_
- :	T			I		1					I
1	ļ	1	I		2	5		4	2		2
39	4	2	3	I	3	4	3	4	4	2	3
8	8	10	11	10	8	7	9	6	7	9	4
14	15	18	16	19	16	7	14	14	7	14	5
17	21	15	18	16	18	23	13	20	17	18	6
22	22	21	23	22	27	20	20	21	22	24	7 8
13	14	12	12	9	12	13	20	9	18	13	8
10	11	10	9	14	6	8	12	12	17	10	9
5	3	8	Š	5	7	5	3	6	4	7	10
1	2	1	2	I		5	3	3	1		11
	l	2		2	1	_			1	2	12
	ł					2	2	I		ĺ	13
	l						I			1	14

| 690 695 667 704 671 654 672 653 676 662 | 6744

$$\int \frac{\mathrm{d}\,x}{\log x} = 6728,220$$

2700000 . . . 2800000

	271	272	273	274	275	276	277	278	279	280	
1						I			I		2
2	2		2			2			I		7
3	4	5	6	5	4	4	4	3	3	5	43
	9	7	16	.7	8	9	8	3 8	12	11	95
5	10	14	13	14	13	12	13	17	II	18	135
6	24	18	15	28	19	20	15	21	. 18	17	195
7	18	22	15	20	24	16	23	19	22	9	188
8	13	10	13	12	15	13	20	19	15	15	145
9	9	9	10	4	11	12	9	7	8	8	87
10	6	9	6	7	5	8	7	2	7	10	67
11	3	3	4	2	•	2		3	I	6	24
12	I	3		I	I	1		_	I	I	9
13							Ţ	I			2
14											1
15											
16											
17	I										1
	679	605	644	657	672	671	684	666	662	684	6714

$$\int \frac{\mathrm{d}\,x}{\log x} = 6744,430$$

2900000 . . . 3000000

	291	292	293	294	295	296	297	298	299	300	
I		I							I		2
2		I	2	I	2	2		I	1	3	13
3	3	3	5	2	8	6	4	4	5	4	44
4	7	7	6	6	7	9	6	6	6	4	64
4 5 6	20	11	14	18	12	15	17	19	16	11	153
6	17	21	22	18	18	16	11	26	21	17	187
7	19	30	18	22	22	25	27	13	15	23	214
8	14	11	12	13	17	11	13	11	14	19	134
9	10	9	12	13	9	6	12	12	9	II	103
to	6	4	5	6	3	6	8	7	9	4	58
II	2	1	3	I	·	2	I	•	í	4	15
12	2	1	•	1	2	2		I.	2	•	11
13			1								1
14											
15							1				1
	680	662	671	680	640	652	694	6<8	671	687	6705

$$\int \frac{\mathrm{d}x}{\log x} = 6712,64$$

FREQUENZ DER PRIMZAHLEN.

1000000 . . . 2000000

ı	200	190	180	170	160	150	140	130	120	110	1
I	1			I							0
16	I		1	2	2	5	1	2	I	1	1
72	5	10	5	II	10	7	9	6	5	4	2
259	34	22	30	29	28	19	19	32	25	21	3
668	67	71	70	68	77	72	69	63	57	54	4
1256	136	135	152	120	124	129	119	120	107	114	5
1746	182	175	174	159	199	183	173	160	170	171	5
2030	221	206	194	203	172	179	207	214	217	217	7
1615	148	161	147	174	149	183	161	x 68	160	164	7 8
1180	103	113	124	130	124	98	120	III	131	126	9
687	62	74	6 r	63	63	73	70	73	77	71	10
307	30	23	26	26	29	34	33	35	32	39	11
114	5	10	10	9	17	16	15	9	11	12	12
38	3		5	3	6	2	3	5	5	6	13
8	3		•	r			1	1	2		14
2	_		1	T '							15
1	- 1							I			16

7210 7194 7081 7098 7028 6971 7012 6931 6955 6902 70382

 $\int \frac{\mathrm{d}x}{\log x} = 70427,78$

2000000 . . . 3000000

1	210	220	230	240	250	260	270	280	290	300	l
ां							ı				1
1	3	2	2	4	1	3	4	2	2	2	25
2	10	9	9	II	9	5	10	7	15	13	98
3	32	27	29	32	37	35	28	43	30	44	337
4	69~	69	73	86	. 78	88	71	95	85	64	778
	119	146	138	136	147	136	158	135	140	153	1408
5	197	183	179	176	193	194	195	195	179	187	1878
	204	201	205	194	189	180	201	188	222	214	1998
7 8	157	168	168	158	15Í	170	142	145	132	134	1525
9	115	109	113	112	102	88	96	87	109	103	1034
	63	52	44	55	58	58	53	67	53	58	561
11	21	18	30	28	23	24	22	24	18	15	223
12	8	9	10	7	7	13	17	9	8	11	99
13	2	4		í	Ś	6	ī	2	5	1	27
- 1	-	3		_	,		1		2		6
14		,								1	1
15 16											1
								1			1
17	6874	6857	60	<u> </u>	6-66	6804	6-6-	60.4	6744	6eor	67862

Die 26379^{te} Centade enthält keine Primsahl
Die 27050^{te} Centade enthält 17 Primsahlen. $\int \frac{dx}{\log x} = 67915,733$

GAUSS AN ENKE.

Hochzuverehrender Freund!

— Die gätige Mittheilung Ihrer Bemerkungen über die Frequenz der Primzahlen ist mir in mehr als einer Beziehung interessant gewesen. Sie haben mir meine eigenen Beschäftigungen mit demselben Gegenstande in Erinnerung gebracht, deren erste Anfänge in eine sehr entfernte Zeit fallen, ins Jahr 1792 oder 1793, wo ich mir die Lamberr'schen Supplemente zu den Logarithmentafeln angeschafft hatte. Es war noch ehe ich mit feineren Untersuchungen aus der höhern Arithmetik mich befasst hatte eines meiner ersten Geschäfte, meine Aufmerksamkeit auf die abnehmende Frequenz der Primzahlen zu richten, zu welchem Zweck ich dieselben in den einzelnen Chiliaden abzählte, und die Resultate auf einem der angehefteten weissen Blätter verzeichnete. Ich erkannte bald, dass unter allen Schwankungen diese Frequenz durchschnittlich nahe dem Logarithmen verkehrt proportional sei, so dass die Anzahl aller Primzahlen unter einer gegebenen Grenze n nahe durch das Integral

 $\int \frac{\mathrm{d}\,n}{\log n}$

ausgedrückt werde, wenn der hyperbolische Logarithm. verstanden werde. In späterer Zeit, als mir die in Vega's Tafeln (von 1796) abgedruckte Liste bis 400031 bekannt wurde, dehnte ich meine Abzählung weiter aus, was jenes Verhältniss bestätigte. Eine grosse Freude machte mir 1811 die Erscheinung von Chernac's

cribrum, und ich habe (da ich zu einer anhaltenden Abzählung der Reihe nach keine Geduld hatte) sehr oft einzelne unbeschäftigte Viertelstunden verwandt, um bald hie bald dort eine Chiliade abzuzählen; ich liess jedoch zuletzt es ganz liegen, ohne mit der Million ganz fertig zu werden. Erst später benutzte ich Goldschmidt's Arbeitsamkeit, theils die noch gebliebenen Lücken in der ersten Million auszufüllen, theils nach Burckhardt's Tafeln die Abzählung weiter fortzusetzen So sind (nun schon seit vielen Jahren) die drei ersten Millionen abgezählt, und mit dem Integralwerth verglichen. Ich setze hier nur einen kleinen Extract her:

Unter	gibt es Primzahlen	Integral $\int \frac{\mathrm{d}n}{\log n}$ Abweich.	Ihre Formel Abweich.
500000	41556	41606,4 + 50,4	41596,9 + 40,9
1000000	78501	79627,5+126,5	78672,7 + 171,7
1500000	114112	114263,1+151,1	114374,0+264,0
2000000	148883	149054,8 + 171,8	149233,0+350,0
2500000	183016	183245,0+229,0	183495,1+479,1
3000000	216745	216970,6+225,6	217308,5 + 563,5

Dass Legendre sich auch mit diesem Gegenstande beschäftigt hat, war mir nicht bekannt, auf Veranlassung Ihres Briefes habe ich in seiner Théorie des Nombres nachgesehen, und in der zweiten Ausgabe einige darauf bezügliche Seiten gefunden, die ich früher übersehen (oder seitdem vergessen) haben muss. Legendre gebraucht die Formel

$$\frac{n}{\log n - A}$$

wo A eine Constante sein soll, für welche er 1,08366 setzt. Nach einer flüchtigen Rechnung finde ich danach in obigen Fällen die Abweichung

Diese Differenzen sind noch kleiner als die mit dem Integral, sie scheinen aber bei zunehmendem n schneller zu wachsen als diese, so dass leicht möglich II.

wäre, dass bei viel weiterer Fortsetzung jene die letztern überträfen. Um Zählung und Formel in Uebereinstimmung zu bringen, müsste man respective anstatt A = 1,08366 setzen

1,09040 1,07682 1,07582 1,07529 1,07179 1,07297

Es scheint, dass bei wachsendem n der (Durchschnitts-) Werth von A abnimmt, ob aber die Grenze beim Wachsen des n ins Unendliche 1 oder eine von 1 verschiedene Grösse sein wird, darüber wage ich keine Vermuthung. Ich kann nicht sagen, dass eine Befugniss da ist, einen ganz einfachen Grenzwerth zu erwarten; von der andern Seite könnte der Ueberschuss des A über 1 ganz füglich eine Grösse von der Ordnung $\frac{1}{\log n}$ sein. Ich würde geneigt sein zu glauben, dass das Differential der betreffenden Function einfacher sein muss, als die Function selbst. Indem ich für jene $\frac{dn}{\log n}$ vorausgesetzt habe, würde Legendre's Formel eine Differentialfunction voraussetzen, die etwa $\frac{dn}{\log n - (A-1)}$ wäre. Ihre Formel übrigens würde für ein sehr grosses n als mit

$$\frac{n}{\log n - \frac{1}{2k}}$$

übereinstimmend betrachtet werden können, wo k der Modulus der Briggi'schen Logarithmen ist, also mit Legendre's Formel, wenn man

$$A = \frac{1}{2k} = 1,1513$$
 setzt.

Endlich will ich noch bemerken, dass ich zwischen Ihren Abzählungen und den meinigen ein Paar Differenzen bemerkt habe.

Zwischen 59000 u. 60000 haben Sie 95 ich 94 101000 102000 94 93

Die erste Differenz hat vielleicht ihren Grund darin, dass in Lambert's Suppl. die Primzahl 59023 zweimal aufgeführt ist. Die Chiliade von 101000—102000 wimmelt in Lambert's Supplementen von Fehlern, ich habe in meinem Exemplare 7 Zahlen angestrichen, die keine Primzahlen sind, und dagegen 2 fehlende ein-

geschaltet. Könnten Sie nicht den jungen Dasz veranlassen, dass er die Primzahlen in den folgenden Millionen aus denjenigen bei der Akademie befindlichen Tafeln abzählte, die wie ich fürchte das Publicum nicht besitzen soll? Für diesen Fall bemerke ich, dass in der 2. und 3. Million die Abzählung auf meine Vorschrift nach einem besondern Schema gemacht ist, welches ich selbst auch schon bei einem Theile der ersten Million angewandt hatte. Die Abzählungen von je 100000 stehen auf Einer (klein) Octavseite in 10 Columnen, jede sich auf Eine Myriade beziehend; dazu kommt noch eine Columne davor (links) und eine dahinter rechts; als Beispiel hier eine Verticalcolumne und die beiden Zusatzcolumnen aus dem Intervall 1000000 ... 1100000 — — —

Zur Erläuterung diene z. B. die 1. Verticalreihe. In der Myriade 1000000 bis 1010000 sind 100 Hecatontaden; darunter ist 1 die nur eine Primzahl enthält; gar keine mit 2 oder 3; 2 Stück mit je 4 Primzahlen; 11 Stück mit je 5 u.s. w. alle zusammen geben 752 = 1.1 + 4.2 + 5.11 + 6.14 + .. Die letzte Columne enthält die Aggregate aus den 10 einzelnen. Die Zahlen 14. 15. 16 in der ersten Verticalreihe stehen hier nur zum Ueberfluss, da keine Hecatontaden mit so vielen Primzahlen vorkommen; aber auf den folgenden Blättern bekommen sie Geltung. Zuletzt werden wieder die 10 Seiten in 1 vereinigt, und umfassen so die ganze 2te Million.

Doch es ist Zeit abzubrechen. — — Unter herzlichen Wünschen für Ihr Wohlbefinden

Stets der Ihrige

Göttingen, 24. December 1849.

C. F. GAUSS.

TAFEL

DER ANZAHL DER CLASSEN

BINARER QUADRATISCHER FORMEN.

II.

Centas	ı.	Centas 2.	Centar	3 .		Centas 3.					Centas 4.				
G. I	(17)(61)	G. I(11)(101)	G.I	((9)	. (109)	G. I.		. (9) .	(:	II 1				
I	1. 2. 3.	3 163	7	223			7	343							
	4. 7	5 103. 127	9	211.	24 3(*3*). 283	وا	307	(*3*).	33I.	367				
3	11. 19. 23.	7 151	II	27I				379							
	27. 31. 43.	9 107. 139. 199	13	263			15	347							
	6 7	11 167	15	227.	239		17	383							
5	47 - 79	13 191	21	25I			19	311	• 359						
7	71	15 131. 179					GIT	-		(
9	59. 83	G.II(46)(406)	G. II.	(42)	(482)	3		• 397	()54				
		2 142, 148, 193	3	202.	207. 21	4. 235.	4			382.	-25				
G. 11	. (58) (280)	3 106. 108. 109.	ļ	247.	262. 26	7. 26 8.	5			317.					
I	5. 6. 8.	115. 118. 121.		277.			,	246	261	373.	5*:				
	9. 10. 12.	123. 124. 135.	4	226.	256 . 2 8	9. 292.	1	394		3/3.	3/:				
	13. 15. 16.	147. 157. 162.		295			6			324.	221				
	18. 22. 25.	169. 172. 175.	5	218.	229. 24	2. 250	1			355-					
	28. 37. 58.	187	6	203.	212. 21	9. 233.	Į	387		333.	, .				
2	14. 17. 20.	4 111, 113, 128.	١.	24I.	244. 25	9. 274	7		349•	201					
	32. 34. 36.	137. 158. 178.	1	275.	279. 29	I	8	353		37*					
	39. 46. 49.	183. 196	7	215.	278. 28	4. 287	9			339(*	,*				
	52. 55. 63.	5 .119. 122. 125.	8	254.	257		'	362		337(3				
	64. 73. 82.	143. 159. 166.	9	236.			10	•	. 398						
	97. 100	181. 188. 197	10	206.	281		11		. 389						
3	26. 29. 35.	6 116. 155. 171	11	269			12		. 37I.	305					
	38. 44. 50.	7 101. 134. 149.	12	299			13	314		373					
	51. 53. 54.	173				, ,									
	61. 75. 76.	8 146, 164				(512)				(
	81. 87. 91.	10 194	I	232.			2		_	322.	_				
	92. 99	G. IV (39) (356)	2	_		3. 217.	ŀ			352.	37				
4	41. 62. 68.	1 102, 112, 130.				8. 238.	١ .	400			(
_	94. 95. 98	133. 177. 190			258. 20	5. 282.	3	-		315.	•				
5 6	74. 86	2 114, 117, 126,		288			İ			348.					
0	89	132, 136, 138.	3		-	6. 222.				370.	37				
C TV	(141. 144. 145.		•	• •	7. 245.			. 396	0					
	.(25)(136)					5. 261.	4			308.					
I	21. 24. 30.	156, 160, 180.		•	280. 29	4- 297-	Į.			369.					
	33. 40. 42.	184. 192. 198		300		0 -6-	ł			384.	39				
	45. 48. 57.	3 104. 110. 129.	4		•	8. 260.		399		-6-	-0.				
	60. 70. 72.	140. 152. 170.		272.		<i>c</i>	5			365.	50.				
	78. 85. 88.	174. 176. 182.	5		230. 20	6. 290.	1	329							
2	93	186. 189. 195.		296			7		• 374		,				
2	56. 65. 66.	200	0 3777	т ,	(A)	16.5				• • • • •					
	69. 77. 80.	4 161, 185	I		. ,	(64)	1			345•	35				
	84. 90. 96	G. VIII (4) (32)	1			3. 280.		385							
		1 105. 120. 165. 168	2	264. :	*05		2	336	. 360.	390					
Summe	233 477	Summa 291 895	St	ımma	313	1167	_ 8	umm	325	1	26				
Irreg.	Impr. 74	Irreg. o	Irreg.	I	Im	or. 183.	Irreg.	2	- ,-,	lmpr.	2.				

DETERMINANTES NEGATIVI.

Centas	5.	Centar	ı 6 .	Centa	8 7.		Cent	Centas 8.				
G. I	(10)(174)	G. I	(7)(133)) (13	8) G. T.	G. I (6) (110)				
7	463. 487	9	547	9	643	, (-3	13	727		. ()		
9	499	15	523· 57I	13		631	15		. 751. 78	7		
15	439- 443	21	503. 587	15	619.	683. 69		743		•		
21	431. 467	25	599	25	647	• •	31	719				
25	479	27	563	33	659		"	• •				
27	419. 491		•			7)(71	8) G. II		(39).	. (860)		
G.II.	(33)(512)	G.II.	(40)(724)	3	652	,,,(,-	4	772		. (000)		
3	403. 427	4	562. 577. 583	5		625. 69		• •	• 757			
4	457. 466. 478	5	508. 538. 541	6		617. 62			. 723. 76	3. 775		
5	412. 415. 421.	6	507. 526. 529.	i		655. 66			· 733 · 77			
•	422. 423		543. 567	l		676. 68		799				
6	433. 436. 475.	7	502. 511. 535	7	604.	634. 63	9. 9		. 722. 72	9. 747.		
	484	8	512, 514, 548,	[653		1 1		. 783. 79			
7	447- 454		559. 578	9	661.	675 (*3*). 10	711	. 724. 76	9. 788		
8	407. 409. 452.	9	515. 519. 527.	,	679		111	758	. 767	•		
	47I		531. 556. 557.	10	6or		12	706	. 766			
9	411. 428. 451.		575. 586	11	623.	662. 66	8 13	746	. 764. 77	3		
	459(*). 486	11	551. 554. 591	12	674.	695	15	716	- 779- 79	7		
10	401. 449. 482.	12	539- 542- 579-	13	698		16	791				
	500		593	14	641.	686. 69	2 17	701		_		
13	458.	14	596	16		635. 67	1. 18	731	· 755(*3*)		
14	404	15	509. 524. 566	l		699	20	734	. 761			
15	461	16	521. 569	17	614		21	794				
16	446	O TV	(47) (674)	18	626		ı					
G.IV.	(49)(760)		505. 522. 532.	G. IV	(4	3) (81	2) G. IV	7	(42) .	. (792)		
2	418. 438. 442.	2	553. 568. 592.	2		697	1 2		. 742. 79			
	445. 448. 498		598	3	606.	610. 61	8. 3	702	· 715. 73	0. 748.		
3	405. 417. 424.	3	513. 517. 533.		627.	637. 64	8.	753	. 762. 79	5		
•	430. 432. 435.	3	537. 540. 550.	l	669.	670. 68	2. 4	712	. 717. 72	1. 732.		
	450. 453. 460.		555. 565. 588.	}	685.	688. 70	0	735	. 736. 73	8. 745.		
	472- 473- 477-		595 597	4		632. 64		768	. 784. 78	5. 786.		
	483. 490. 4 92.	4	501. 518. 544.			646. 65	7•	790				
	493. 496	•	558. 564. 573.	j	663		5	726	- 737- 75	0. 752.		
4	402. 406. 410.		574. 576 (*2*).	5		633. 63		754	- 774. 7 ⁸	I		
	414. 441. 444.		580 (*2*). 582.	ł	•	649. 66	• 1		· 713· 72			
	468. 469. 481.		589			678. 68			. 782. 8c			
	485 495	5	534- 572- 590	6		605. 60		• •	. 740. 74	.9. 789		
5	413. 437. 455.	6	516. 549. 594			621. 65	0. 10	776)			
	470. 474. 476.	7	506. 530. 536.			684	1					
	488. 489		58x	7	654		G. V	ш	(13).	(264)		
6	416. 425. 426.	8	.545. 584	8		656	1	760)			
	434. 464. 497			9	629		2	720	• 765. 77	7. 792.		
7	494	G. VII	I(12)(200)	10	689		.	798				
G. VII	I(8)(120)	I	520	G. VI	II(1	2)(21	6) 3	705	. 714. 72	8. 741.		
1	408. 462	2	504. 510. 525.	2		616. 62		744	. 780			
2	420. 429. 456.		528. 552. 561.			645. 66		770	•			
	465. 480		570. 585. 600	1		690. 6 9	- 1					
3	440	3	546. 560	3	665.	680. 69	6.					
	na 3361566	Sum	na 347 1729	Sur	mma :	35018	84	8um	ma 356.	2026		
	reg. i		Summa 347 1729			Irreg. 1			Irreg. 1			

	N	ACHLASS.	
Centas 9.	Centas ro.	Centas II.	Centas 12.
G. I(8)(164)	G.I(8)(174)) G. I (7) (191)	G. I(6)(148)
9 823. 883	9 907	9 1087	15 1123
21 811, 827, 859, 863.		15 1051	21 1163. 1171
29 887	15 947	19 1063	23 1103
33 839	17 991 19 919	23 1039	27 1187(*3*) 41 1151
G. II (34) (750)	27 983	39 1019	1
4 862	31 911	51 1091	G. II (36) (924)
5 847. 853. 877 6 802. 898	45 97 ¹	G. II (35) (880)	6 1108. 1138. 1198 7 1117. 1183
	G. 11 (33) (810)	5 1093	7 1117. 1183 8 1129. 1153. 1156. 1159
1 8 895	5 982	6 1003. 1027. 1033. 1042	9 1107(*3*). 1132. 1135.
9 835. 843. 844. 867.	6 955	8 1024. 1047	1142. 1147
886. 891(*3*)	7 997	9 1018. 1059. 1075(*3*).	10 1143
10 878	8 943. 958. 961	1083. 1099	11 1111. 1114. 1126. 1167
11 829, 871, 879 13 842	9 922. 931. 963. 972		12 1127. 1186. 1191. 1195
14 818. 831	10 916. 927. 937. 977		15 1115. 1174. 1175. 1179 16 1119
15 803. 815. 821. 851.	995- 999	13 1013, 1052, 1061, 1094	1
875	13 934. 951. 998	15 1007. 1069	19 1199
16 809. 857	15 908. 923. 956	16 1028	20 1124
20 881	16 953	17 1079	23 1181
21 899 22 866	18 914. 929. 959.	18 1011. 1055. 1067. 1097 21 1004. 1046	_ · · · · · · · · · · · · · · · · · · ·
	974(*3*) 20 926	22 1049. 1076	25 1109 28 1154
G. IV (47) (1024) 3 808. 813. 814. 817.	4		1
826. 828. 837. 856		G. IV (44) (984)	G. IV (40) (1064)
4 820(*2*). 832. 834.	G. IV (45) (976)	1	3 1162. 1177. 1192
850. 852. 855. 865.		,	4 1149. 1150. 1152. 1168.
868. 873. 882. 889.	940. 942. 949. 970.	· ·	
900 (*2*)	973. 988	1054. 1057. 1060. 1078.	
5 822. 830. 872. 874 6 801. 804. 810. 812.			6 1131, 1134, 1141, 1145.
819. 833. 848. 864	1 94° 9/3· 33 1	5 1037. 1066. 1071. 1098	
876. 890. 894	3 91/. 921. 900. 1000		, ,
7 806. 845. 849. 860.	6 901, 905, 915, 948, 954, 976, 978, 980,		1148. 1157. 1194 8 1146
893	087 085 087 006	7 1010. 1014. 1029. 1086.	·
8 846. 869. 884(*2*).	7 902. 906. 909. 935.	1095	. 10 1184
896 10 824. 836	962	8 1016, 1022, 1025, 1074.	
11 854	8 992	1088(*2*)	12 1106. 1169. 1196
G. VIII (10) (200)	9 944. 950. 989 11 965. 986	9 1041. 1070 111034	G. VIII(18)(408)
2 805. 858. 870. 880.	1	<u>-</u>	2 1105, 1110, 1113, 1120.
807	O	G. VIII(14)(344) 2 1005. 1008. 1032. 1045.	1122. 1128. 1170. 1185.
3 816. 825. 861. 885.	2 910. 912. 952. 957. 960	1065, 1092	1197 3 1144. 1155. 1173. 1176.
888	3 924. 930. 936. 945.		1200
G. XVI(1)(16)	966. 969. 984. 990	4 1040, 1056, 1085	4 1104. 1140
1 840	5 920	5 1001. 1064	5 1160. 1190
Summa 3602154		Summa 3652399	Summa 3822544
Irreg. 4	Irreg. 1	Irreg. 2	Irreg. 2

DETERMINANTES NEGATIVI.

Centas 13.	Centas 14.	Centas 15.
G. I(6)(190)	G. I(7)(191)	G. I(10)(308)
23 1279	11 1303	9 1423
27 1231. 1291	15 1327	21 1483
33 1283	27 1367. 1399	23 1447. 1471
35 1223	33 1307. 1331	33 1459
45 I259(*3*)	45 1319	37 1487
45 57(5 7	G. II(32)(846)	39 1439. 1451. 1499
G. II (38) (986)	5 1318	45 1427
5 1213	6 1387	G. II (26) (746)
6 1227. 1243. 1255. 1282.	7 1372	6 1411. 1467
1297	8 I348	7 1402. 1453
7 1237	9 1306. 1315 (*3*). 1323 (*3*). 1324.	8 1438
8 1201. 1252	1347. 1363. 1366. 1369. 1373. 1383	9 1458. 1468
9 1203. 1207. 1215. 1219.	10 1375	10 1444. 1486. 1489. 1492.
1228 (*3*). 1267 (*3*)	II 1354	II 1429. 1493
10 1261. 1263. 1268.	12 1321. 1339. 1351	15 1431. 1478
12 1202. 1234. 1299	13 1381	16 1412
13 1247	14 1346. 1359	17 1415. 1418
14 1294	15 1388	18 1409. 1433. 1475
15 1250	17 1343	19 1436
16 1217. 1249	18 1355. 1371	21 1403
17 1277	19 1382	26 1481
18 1251. 1262. 1289	21 1322	29 1466
19 1229. 1244	22 1391	30 1454
20 1214. 1271	24 1379	
21 1211. 1226. 1238	25 1301	G. IV(49)(1348) 3 1432. 1435. 1450
29 1286	30 1361	
	G. IV(46)(1340)	4 1408, 1417, 1422, 1402, 1465, 1474, 1477, 1498
G. IV (40) (1008)	4 1312(*2*). 1332(*2*). 1345. 1357.	5 1495. 1497. 1500
3 1222. 1258. 1285	1393	6 1404. 1405. 1407. 1413
4 1204. 1225. 1233. 1246.	5 1317. 1333. 1338. 1342. 1378. 1384.	1420. 1437. 1442. 1443.
1278	1390. 1398	1452. 1457. 1472
5 1210. 1212. 1257. 1264.	6 1308. 1313. 1336. 1337. 1350. 1358.	7 1401. 1414. 1441. 1455
1270. 1273. 1276. 1287	1362. 1377. 1395. 1397	1461. 1473. 1479
6 1208. 1216. 1236. 1242.	7 1311. 1335. 1341. 1352. 1374. 1389.	8 1426, 1434, 1446, 1463
1269. 1275. 1292. 1293.	1396	1476
1296. 1300	8 1314. 1334	9 1419. 1445. 1448. 1490
7 1206	9 1310. 1325. 1328. 1329. 1340.	1491
8 1220 (*2*). 1239. 1241.	1356(*3*)	10 1460, 1494
1253. 1266. 1280. 1298	10 1376	11 1406
9 1235. 1274. 1295	II 1304. 1370	12 1421. 1424. 1484
10 1205. 1284	12 1316. 1385. 1394	14 1469
13 1256	G. VIII (13) (328)	
VIII (16) (416)	G. VIII (320)	2 1428. 1488
	2 1302, 1353, 1360, 1380	3 1425. 1456. 1464. 1480.
2 1240, 1248, 1288, 1290	3 1309. 1330. 1368. 1392	1482, 1485
3 1218, 1230, 1254, 1260.	4 1305, 1344, 1386, 1400	4 1410, 1416, 1430,
1272. 1281	G. XVI(2)(32)	1440(*2*). 1449. 1470
4 1221. 1224. 1232. 1245		7 1496
5 1209. 1265	1 1320, 1365	
Summa 3702600	Summa 3912737	Summa 3782826
Irreg. 4	Irreg. 5 Progr. 3192	Irreg. 1 Propr. 3282

П.

MACHLASS.

Centas 16.	Centas 17.	Centas 18.
G. I(9)(299)	G. I(6)(182)	G. I(5)(95
15 1567	17 1663	15 1723. 1747
19 1543	21 1627	17 1783
21 1523	27 1607	21 1787
27 1579	33 1699	27 1759
33 1531. 1583	39 1667	1
49 1511	45 1619	G. II (35) (1182
5x 1559. 157x	G. II (37) (1116)	10, 1714, 1753, 1774
G. 11 (24) (656)	6 1618	12 1726. 1731. 1732. 1762
6 1507. 1555. 1588	7 1642	1777. 1795 13 1719. 1735. 1741. 1780
7 1527. 1597	8 1657	[
9 1516. 1519. 1549. 1563	9 1603. 1621. 1675 (*).	14 1703. 1711. 1775 15 1707. 1756. 1772, 1779
10 1522	1683. 1687	15 1707. 1756. 1772. 1779 17 1733
11 1503. 1591	10 1678, 1681, 1684	18 1727. 1763 (*3*). 1791
12 1502. 1587	11 1639. 1654. 1693	19 1754
17 1532. 1546. 1594	12 1647. 1651	21 1709. 1715. 1724
18 1539(*3*)	13 1669	23 1718
19 1535	14 1609. 1623. 1697	24 1751
20 1553	15 1611. 1622. 1643. 1682	25 1766. 1799
22 1538, 1556	16 1636	26 1721
25 1514	19 1637. 1671 20 1604	29 1706
27 1574	•	30 1739
G. IV (53) (1564)	21 1613, 1658 22 1631, 1646, 1655	
3 1558. 1593	26 1679	G. IV (41) (1260
4 1510. 1513 (*2*). 1528.	27 1676. 1691	, ,
1537. 1552. 1578.	28 1601	4 1717. 1737. 1738. 1780 1792
1582 (*2*). 1600(*2*)	G. IV(41)(1312)	5 1702. 1750. 1758. 1761
5 1534, 1542, 1570, 1573.	3 1612	1765. 1773. 1786. 1798
1576	4 1633. 1660. 1698	6 1728, 1743, 1744, 1771
6 1501, 1506, 1521, 1525.	5 1626. 1648. 1660. 1662.	1782. 1797
1548. 1572. 1575. 1585	1688, 1692, 1695	7 1757. 1788
7 1557. 1562. 1564. 1565.	6 1615. 1620. 1635. 1659.	8 1764(°2°), 1767
1569. 1577	1666. 1668. 1690. 1696	9 1701. 1712. 1713. 1730
8 1504. 1508. 1536. 1551.	7 1606. 1614. 1630. 1670	1734- 1755 (*). 1793
1561. 1568 (*2*). 1598	8 1602. 1628. 1673	10 1745. 1746. 1748. 1778
9 1515. 1541. 1547. 1566.	9 1644. 1674. 1689	1796
1599 10 1509, 1524, 1544, 1592	10 1625. 1629. 1652	11 1742
10 1509, 1524, 1544, 1592 11 1586	11 1641. 1686	13 1790
12 1517, 1526, 1550, 1580	12 1649, 1661, 1664, 1694	16 1769. 1784
1595	13 1685	17 1781
13 1529. 1589	14 1616	G. VIII (18) (536
G. VIII(13)(360)	16 1634	2 1705. 1710. 1752. 1768
2 1540	G. VIII (15) (368)	3 1720. 1722. 1729. 1740
3 1512. 1518. 1530. 1533.	2 1605, 1632, 1645, 1653	1800
1545. 1554. 1584	1672. 1677	4 1716. 1725. 1776. 1794
4 1520, 1590(*2*), 1596	3 1617. 1638	5 1749. 1770
5 1505. 1581	4 1608. 1610. 1624. 1640.	6 1704. 1736. 1760
G. XVI(1)(32)	G. XVI(1)(32)	
2 1560	2 1680	G. XVI(1)(32
		2 1785
Summa 389 2911 Irreg. 6 Propr. 3416	Summa 3803010 Irreg. 1 Impr. 513	Summa 399 310

DETERMINANTES NEGATIVI.										
Centas 19.	Centas 20.	Centas 21.								
G. I (7) (263)	G. I (6) (252)	G. I (8) (28)								
15 1867	21 1987	21 2011. 2083								
19 1831	27 199 9	27 2003								
27 1879	33 J95 ¹	33 2027								
43 1847	39 1907	35 2087								
45 1823. 1871	63 1931 (*3*)	45 2039. 2063								
69 1811 3 H (27) (201)	69 1979	57 2099								
6 1807. 1873	G. II (33) (1090)	G. II (30) (105)								
7 1852	7 1948	6 2017. 2062 8 2095								
8 1800 1808	8 1983									
9 1843. 1863. 1882	9 1915. 1927. 1933. 1963. 1996 10 1906. 1975	12 2059. 2098								
10 1858	10 1900. 1975 11 1903. 1942	14 2007. 2018								
11 1849	12 1939. 1982. 1993	15 2043. 2071. 2092								
12 1803	14 1954	16 2048								
14 1801. 1838	15 1923	17 2026. 2029								
75 1819. 1835. 1875. 1891. 1894	40 49-81 4943	19 2031, 2069								
17 1877	18 1913. 1966. 1967. 1971 (*3*)									
18 1899 19 1861	21 1901. 1959. 1973. 1997	21 2012								
20 1839	22 1919	22 2089								
21 1851. 1859. 1868. 1883	25 1916	24 2019 25 2042								
23 1814	26 1934	27 2051. 2075 (*3*)								
24 1895	27 1964, 1994 28 1991	28 2066								
28 1874	35 1949	30 2036. 208x								
30 1844	GIV (sa) (rash)	32 2084								
36 1889	2 TOTR	G.IV(42)(1376								
3. IV (45) (1416)	4 1912. 1918 (*2*). 1945. 1957	4 2020. 2077								
4 1813. 1842. 1864. 1897 5 1810. 1857. 1887. 1893	5 1930, 1962, 1969, 1981	5 2032. 2073. 2074								
6 1812. 1815. 1818. 1825. 1827.		6 2022. 2025. 2028. 2035. 2050. 205:								
1837. 1878. 1888. 1892. 1900		2067. 2068. 2082. 2086. 2096								
7 1816. 1846. 1855. 1898	7 1909. 1929. 1935	7 2008. 2033. 2044. 2055. 2058. 2094								
8 1802, 1808, 1866, 1876, 1884										
9 1804. 1809. 1821. 1834. 1836.	9 1902. 1944. 1955. 1977. 1998									
1853. 1862	10 1921. 1928. 1952. 1956. 1985.	12 2006, 2009, 2045								
10 1805. 1817. 1829. 1841. 1850.	2000 12 1982, 1986, 1988	13 2015								
1854	13 1902, 1900, 1900	15 2096								
12 1856. 1865	14 1910	17 2021								
13 1832	17 1046	18 2054								
14 1826 16 1886 (*2*)	G. VIII (18) (184)	G. VIII (19) (63:								
3. VIII (16) (496)	2 1002	2 2002, 2013, 2000, 2000								
2 1870, 1885	3 1905. 1932. 1950. 1960. 1968.	3 2037. 2065 4 2010. 2016. 2046. 2072. 2100								
2 1830. 1833. 1840. 1890	1995									
A 1824, 1845, 1860, 1872	4 1920. 1938. 1953. 1974. 1980.	5 2030, 2070, 2085, 2093								
5 1806, 1820, 1869, 1880, 1881.		6 2001. 2064. 2090								
1896	5 1904 1965,	7 2024 C XVI								
3. XVI (1) (16)		G. XVI(1)(3:								
1 1848	7 1976	2 2040								
Summa 393 3185	Summa 388 3282	Summa 404337								
rreg. 1 Impr. 513	Irreg. 3 Impr. 556	Irreg. 1 Impr. 56								

MACH LASS.												
Centas	_		2148.	Centa	-			2278	Centa	•	7	2314.
	. (5) (14	9)	2157.		(7)	(217)	7	2217.	1	(7)		2382
-	2143		2163.	15	2203			2238.	15	2347	8	-3-4-
	2179 2187 (*3*)	7	2172. 2110.	21	2251 2287		8	2270 2236.	29	2311. 2383		2312.
	2131	7	2140.	33	2267		·	2245.	39	2371		2313. 2329(*2*).
	2111		2146.	35	2239			2254(*2*)	. 57	2339		2343.
G.ÏÍ	.(33) .(117	4)	2149.	39	2207			2286.	59	2399		2350.
	2113.	•	2165	45	2243(*3	")、		2292.	63	2351	۵.	2356
	2137	8	2134.		.(29).(1	084)		2298 2214.		. (32). (1	106) 9	•
	2122. 2167.		2176(*2*) 2192	7	2293 2221.		9	2214. 2221.	8	2335 2302.		2344. 2349.
	2188	9	2106.	'	2227.			2235 (*3*)		2308.		2355.
10	2164		2108.	1	2283			2341.	1	2377		236I.
	2182		2117.	10	2281			2253.	11	2326.		2387
	2107.		2124.	11	2215.			2266.		2374	11	33 1
	2116 2102.		2133 (*3*)	12	2263 2209			2295. 2300	12	2307. 2323.	12	2364. 2316. ·
-3	2102.		21/3.	13	2218		10	2249.	1	2395		2331.
14	2127		2198	14	2258			2250.	13	2362.		2376.
15	2151.	10	2150.	15	2237.			2255.	1	2367		2379(*2*).
	2191		2154.	Ì	2269.			2282	14	2359		2390
16	2153.		2166.	1	2284. 2299		11	2204. 2216	15	2303.	14	• •
17	2194 2103.	11	2177 2135	16	2206		12	2211.	1	2319. 2341.		2354- 2384
-,	2119	12	2105.	17	2234			2225.	1	2363	15	
18	2155.		2156.	18	2228			2229	16	2386	•	2330.
	2161.		2168.	20	2297		13	2222	17	2333.	_	2378
	2199		2169.	21	2213.		14	2274	1	2389.	16	- 55
21	2123. 2138.	7.4	2196 2114.	22	2259 2271		15	2264. 2285	19	2391 2381	18 O	2369 II • (20). (648)
	2147.	-4	2144.	24	2273		16	2201	20	2375	2	
	2171.		2162	27	2252.		19	2294	21	2342.	3	
	2183.	15	2189		2291	(.(17).(584)	2348.	•	2346.
	2186	16 C VIII	2180	28	2279		2.	2233.	1	2357		2352.
24 28	2195	G. VIII.	. (14) . (424) 2128.	32	223I 2276		•	2277 2205.	24	2327. 2372	•	2370.
30 30	2129 2126.	7	2170	36	2270	*)	•	2205. 2220.	25	2372		2373. 2380
3~	2159	3	2160.	39	2246	•		2262	27	2315(*3	") 4	2320.
32	2174	•	2185.	G. IV	. (46) . (I	612)	4	2208.	30	2393		2328.
39	2141 .(46).(159:	. \	2190.	4				2232.	32	2306		2337.
G. 1V	(4b) · (159:	2)	2193. 2200	1	2342. 2248.			2244. 2256.	G 1V	2309 .(40).(15	20)	2340.
5	2101. 2118.	4	2112 (*2*)		2272			2250. 2265.	4	2332	~·)	2365. 2385(*2*).
	2125.	•	2130.	5	2202.			2289.	1	2353.		2397.
	2152.		2142	1	2230.			2296	1	2368		2400 (*2*).
	2158.	5	2109.		2247.		5	2226.		2398	5	2360.
	2173.		2121.		2290		4	2288	6	-3-3-		2394.
4	2178	-	2136	6	2223. 2257.		6 7	2240 2210	1	2317. 2322.	0	2301.
v	2104. 2115.		2120 (2)(80)	2257. 2260.		9	2261	1	2322. 2338.	7	2376 2345
	2132.		2145	Ί	2268 .	G		.(I)(32)l	2358.	G. X	VI.(1)(32)
	2139.	3	1-		2275.		2	2280		2388		2310
		Summa	399341			Sur	nma	401352	9			
Irreg.			Impr. 58	Irreg.	4			Impr. 57	Irreg.	. 5		Impr. 611

DETERMINANTES NEGATIVI.															
Centar	3 25.				Centa	B 26.			2536.		Centa	18 27.			2698
G. I.	(5) (217)	2482.		G. I.	(7)	(201)		2556		G. I .	(7) .	(231) 7	2607
21	2467	//	2488.		21	2503	(30-)		2583		15	2647.	(-3-	′ ś	2601.
33	2423		2493		33	2539		8	2506.		-	2683			2628(*2*)
37	2447	7	2416.		35	2543			2513.	,	23	2671			2655.
57	2459		2431.		41	2551			2528.	,	39	2659			2674.
69_	2411	_	2438.		51	2531			2560.	,	43	2663			2686
G. II.	• (35) • (1	250)	24 97		57	2591			2569.	,	45	2699(*	*3*)	9	
9	2403 (*3	•). 8			63	2579			2589		51	2687			2634.
	2437(*3	"). 9		~ 3~)∙		.(29).(1028)	9	2522.		G.II.		(1196)		2635.
	2443.	_	2461		. 8	2578			2555.		10	2638			2637.
	2458	10	,		9	2515.			2581.		11	2623.			2646(*3*)
10	2407.	11	•		1	2557.	* \		2595			2662.		•	2673. 27∞ (*3*)
	2452.		2489.			2563 (* 2566.	3 J.	10				2677 2611.		10	
	2473. 2487.	12	2492 2420	(*,*)		2572			2529.		12	2689.		10	2678
	2500	12	2432.	. ,	10	2572 2527			2532. 2596	'	١.	2692		11	2645.
12	•		2450.		12	2527 2587.		11	2570.		14	2612			2648.
	2468.		2466.			2593			2573		15	2602.			2649.
	2479		2484.		13	2524		12	2597		-,	2643			2672
13	2428		2499		15	2523.		13	2510		16	2617.		12	
14	2401.	13				2575.		14	2501.	,		2633.			2691.
•	2446.	-	2469.			2518.		•	2525.		1	2657			2696
	2455		2481			2599			2586		18	2619(1	*3*).	13	2679
15	2476	14	2429.		16	2521		15	2526.			2627.	•	15	2 630.
16	2434.		2486		18	2511.			2534.		!	2644			2684.
	2462	15	•			2547			2537.		21	2693			2690.
17	2463		2444		19	2554			2540		23	2614.			2694
18	2417.	17			20	2559		16	2546.			2615		16	,
	249I	18		/ \	21	2507.		-0	2561		24	2631.			2639.
19	2477		II . (22).		1	2571		18	2504.	'	26	2654		17	26 69 26 66
20	2402.	3			22	2567.	G	viii	2516 [.(18) .	(6.8)		2642 2675(*	*.*\ .	18	2681
	2404. 2498		2424.			2594 2582.	·		2508.		27 30.				. (17) . (584
21	2427		2440. 2457.	1	25	2588		3	2530.		3 0.	2606	·	2	2632
22	2439		2472.		28	2564			2550.		31	2621		3	2613.
27	2426		2485		32	2519.			2553.		33	2636		,	2622.
28	2495	4	. 2436.		J-	2558			2562.		39	2651			2680.
30	2483	,	2442.		35	2549			2590		42	2609			2685.
31	247I		2445.		G.IV	• (45) • (:	1752)	4	2568.		G. IV	. (46).	(1776)		2697
33	2435		2448	(*2*).	4	2533			2580.		3	2608		4	2652.
38	244I		2464.			2542(*2	·*)		2584		4	2605			2665.
39	2474		2465.		5	2577		5	2505.		5	2641			2688
	(38).(14	172)	2470.		6	2512.			2541.		6	2620.		5	2610.
4	2410		2478.			2517.			2544.			2629.			2618.
5	2422.		2490.			2538.			2552	•		2650.			2625.
	2433.	_	2496		j	2545.		2	2585			2653.			2664.
_	2494	5	2405.		l	2548.		0	2565.			2658.		6	2670. 2604.
6	2412.		2409.			2592.			2574. 2600			2667. 2668.		U	2660
	2413.		2415. 2460		_	2598		Q	2576			2676.		7	2616
	2425.	4	2408.		7	2502. 2509.	G		2576 [.(1).	. (22)	!	2682.	c		[(1)(32
	2451.		2400. 2480			2535.	J		2520	• (34)		2695.	•		2640
	2475.	Summa		2600		-232.	8	ma		276-	!		Q,,,		401 381
Irreg.		oamm s	403 Impr.	3059 595	Irreg.	2	Sun	-	405 • • [mpr.		Irreg	. 7	Su	_	mpr. 62

II.

				NAC	HLASS.						
Centas 28.		2703.	Centa	5 29.		2847.	Centa	8 30.			
G.I(6)	(208)	2761.	G.I.	. (6) (250)	2848(*2*		.(6) (3	22)	8	2944.
21 2707	()	2766.	25	2887	,	2868.	31	2927	,	•	2946 .
2767		2782	27	2803		2884	33	2971			2949.
33 2731	8	2733.	33	2851	9	2806.	39	2963			2980(*2*)
39 2791		2742.	45	2843	•	2828.	59	2903		9	2950.
41 2719		27 75•	57	2879		2835(*3*)). 73	2999		•	2955.
53 2711		2785	63	2819		2862.	87	2939			2988.
G. II . (29) . (1190) 9	•		. (32).(129	8)	2887.	G. II	• • (33) • (1266)		2989
9 2787.		2770.	8	2878		2888.	8	2962		10	2919.
2797		2778.	10	2818.		2890.	9	2902.			2929.
10 2722.		2781.		2836.		2895		2923.			2948 .
2743		2795	l	2857	10			2998			2975
12 2713 13 2762	10	• •	11	2815.	•	2844. 2862	10	2983		II	2922.
		2751	12	2863 2827		2869.	LI .	2917.			2933.
14 2734.	11		12	2809.		2871. 2874.		2935			2934.
2753 15 2727.	. 12	2701. 2702 (*2*).		2823.		2874. 2896	12	2947.			2967
2732.		2739.	1	2839.	11	_ •	1	2953.		12	2993(*2*)
2764		2754	1	2854	12			2995		13	2901.
18 2723.		2780	15	2875.		2822.	13	2908		-4	2984
2763(*	(q*). II	•	-3	2883.		2824.	14	2932 2956.		16	2921.
2783	3 /3	2792		2899		2825.	15	2930. 2986			2994. 2996.
19 2738.	14		16	2833		2852.	17	2918		z 8	2990. 2915.
2746.	-1	2768.	18	2867.		2873.	18	2916.		• 0	2915. 2924
2799		2774		2897		2900.	1	2943.		20	292 4 2936.
20 2777	15		19	2858	İ3	2826.		2 979			2954.
21 2749.	_	2796	20	2866	15	2813.	20	2942.			298I
2779	17	2726	23	2837	•	2864.	1	2959	G.V	Ш	·(24) · (888)
22 2798	18	2705.	24	2811		2889	21	2911.		2	2968
²⁷ ²⁷⁴⁷ .		2786	26	2807	16	2882	1	2931.		3	2905.
27 59	20		27	2859.	21	2834	.1	2972		•	2920.
29 2741	٠	2756 (*2*)		2891(*3*)	G.VI	LI(17). (648	24	2974.			2937.
30 2708		III.(16).(568	30	2801.	2	2832	1	299I			2970.
31 273 5	2	,,,		2855	3	2808.	26	2969			2982.
39 2771	3		31	2876		286 0	27	2951.			2992
40 2729		2800	33	2861	4	2821.	1	2957		4	2928.
41 2789	96.)	2706.	34	2804.		2829.	30	2978.			2940.
G. IV.(47).(1	804)	2709.	j	2831.		2850(*2*)	'1	2987			2952.
4 2773. 2788		2717.	36	2894 2846		2865. 2880.	33	2906			2958.
5 2776		2745. 2772.		-(43).(168c		2898	35	2909			2985
6 2704.		2772. 2790.	4	•(43)•(1080 2842.	•	~*	43	2966	.00\	5	2904.
2710.		2790. 2793	1	2893	5	2838.		. (37).(15	(86)		2910.
2715.		2/93 2712.	5	2830.		2877.	5	2965			2926.
2718.	3	2769	1	2853		2877. 2886	6	2907.			2990.
2725.	6	2720.	6	2802.	6	2820	1	2914.		6	3000
2740.	•	2736.	1	2872.	7	_	1	2938.		6	•
2748.		2784	1	2892	8			2977. 2007			2925.
2752.		2765	7	. *	•	2849	7	2997			2961. 2964.
2755.		VI.(2) (64))	2881	G. XV	1.(2)(96	al ⁷	2913. 2930.			2904. 2976
2758.		2730.	8			2805.	1	2930. 2941.		8	
2794		2760		2845.	,	2856	1	2973		•	2945. 2960
	Summa	4123894	il		Summa		-		Summ	-	
Irreg. 3		Impr. 644	-	•		Impr. 63	-1		Ormin	d.	412 4064

	DETERMINANTES NEGATIVI.												
Centag	B 43•		4263.	Centa	8 51.			5052.	Centa	s 61.		6004.	_
	.(7)(425	(:)	4285.	G. I.	. (8) (546)		5053.	G. I	(7)(252)	6008.	
27	4243	,	4293.	25	5023	34"/		5056.	27	6007.	,,,	6025.	
45	4219		4294.	45	5003			5072.		6043		6027.	
51	4231		4300(*3*)	57	5059			5092	45	6067(*3*		6057.	•
63	4283	11	4215.	63	5011	:	11	5093	1	6091(*3*	')	6066.	
65	4271		4238.	69	5087	1	[2	5022.	57	6079		6077.	
69	4211		4281.	83	5039			5076	71	6047	١.	6084.	
105 G II	4259 (32) • (1592)	٠	4298	87	5051		13	5029.	18 TI	6011(*3*)	6099.	•\
	4222.) 12	4212 (*2*).		5099 (22) . (1		14	5090 5046.	12	6073		6100(*2	~)
12	4258.		4232. 4251.	11	5077	1104)	-4	5074	15	6022	13	6033. 6094	
	4267.		4275 (*2*)		5098		15	5019.	17	6037	14		
	4273		4292	15				5030.	18	6087	15	_	
13	4207.	13		-	5062			5094	22	6082.	- J	6039.	
-	4282	•	4206.	16	5086		16	5012.	l	6092		6050.	
14	4279		4208.	18	5007.		_	5031 (*2*)		6098		608r.	
15	4204.		4234	1	5041.	1	18	5004.	25	6031.	_	6093.	
	4227	14	. •	ł	5042.			5033.	1	6053	16		
17	4261	15	4235.	1	5063	•		5034.	27	6075(*3*	') 18	,-	• \
18	4201. 4291 (*3*).		4250. 4266	21	,			5048.	1	6046 6038		6083(*3	-)
	4291 (3)·	17	4269		5043. 5091			5054. 5069 (*3*)	31	6019	19 20		
19	4252	18	4220.	24	5095			5075 (*3*)	35	6029	20	6054	
21	4203.		4265.	25	5071		19		39	6059	21		
	4253		4268	27	5067.		•	5018	41	6023		6095	
22	4223	19	4254	'	5078	:	20	5057.	42	6051	24		٠*).
24	4239.	20	4214	30	5009			5084	46	6002		6068.	
	4287.		(22)(976)		5079		22	5015	48	6071		6086	
- 6	4295	3	4218.	39	5021	•	26	5024.	49	6044	25	-	
26	4217. 4244		4257• 4272	42 45	5006 5036(*3	η,	30	5045 5066	58	6089 6074	26 28		
27	4262.	4	• • •	58	5081	G.		(16). (784					
-,	4299		4240.		· (51) · (2)		3	5032	7	6013.	G.vir	I. (14).(76	68)
30	4276		4260.	6	5020.	, ,	4	5037	1 '	6028	3	6097	٠٠,
31	4247		4270.	i	5065.		5	5061.	8	6001(*2*	'). 4	6040.	
39	4229		4278	1	5083			5080		6052(*2*	') ·	6042	
40	4286	5	4230.	7	5038		6	5010.	9	6015.	. 6		
42	4274 .		42 33•	8	5002.			5025.	1	6021(*3*	')•	6024.	
54	4226.		4242.	ł	5008.			5049.	1	6055.		6030.	
-6	424I		4264. 4284	}	5017.			5070.	1	6063. 6064.	٥	6048 6022.	
G. IV	. 4289 . (38). (1780)	6		1	5058 . 5089			5073. 5082.	1	6070.	8	6032. 6061.	
6	4225.	•	4248.	9	• ,			5085.	1	6076.		6069.	
-	4237		4277	'	5014.			5088.	1	6078.		6080	
	4288	7	4209	1	5035.			5100	i	6085(*3*	') 9		
7	4210.		4221.		5050.		8	5064	10	6010.		6020.	
_	4213		4224.	1	5055.		9	5096	1	6034.	~ ~	6096	
8	4228.		4296	1	5068(*3		10 7 17 T		J	6049.		/I • (4) · (20	28)
_	4249		4280		5097	G.2		. (3) . (128	4	6058.	3	6045.	
9			4256 . (1) (48)	10	-		2	5005	11	6088. 6012		6072.	
	4246. 4255.	3]	5028. 5044.		3	5016. 5040	112	6003.	4	6090 6006	
				1	2 44 .	Qumm					Summa		
	oun	ma 41	5 4821	Irreg.		Summa	B 4	<u> </u>	Irreg.		SIIIIIII B	439 • • 57	/6 I

NACHLASS.											
Centas 62.	6181	Centas 63.	14	6228.	Centas 91.	9051.					
G. I (5) (265		G. I (7)		6245.	G. I (6) (386						
33 6163	6174.	43 6247	(47/)	6260.	27 9067	17 9002.					
39 6199	6185	45 6211		6276	35 9007	9057.					
41 6143	15 6102.	51 6203.	15	6214.	45 9043	9070					
59 6151	6109.	6271.		6234.	63 909 I	18 9012.					
93 6131	6125.	6287		6249	99 9011	9015.					
G.II. (28) . (1704	,) 6126.	77 6263	16	6231.	117 9059	9069(*).					
11 6127	6129.	129 6299		6233.	G. II (26) . (1960						
14 6103	6171	G. II (28) . ((1678)	6244.	15 9013	19 9053.					
15 6115.	16 6144.	12 6238.		6272 (*4*)	18 9003(*3*).	9095					
6147	6189	6295	17 18	6294 6226 (*3*).	9055	20 9039.					
16 6178	17 6128. 6184	15 6259. 6268	10	6251	19 9034 21 9004.	9054. 9062.					
18 6183. 6187.	18 6111.	16 6217	19	6281.	9046	9081					
6196	6135.	18 6267(*		6289	26 9079	21 9036					
19 6172	6156(*3*)			6261	27 9031.	22 9084					
21 6133	6164	20 6223.	21	6266	9094	27 9008.					
22 6121	19 6140	6241.	22	6224	29 9098	9050.					
27 6122	20 6114.	6274	23	6278	30 9001.	9074					
29 6166	6137.	23 6218.	24	6209.	9076	28 9089					
30 6139	6161.	6277		6215	33 9068	30 9005.					
33 6124.	6176.	25 6207.	25	6206	36 9049.	9035.					
6167	618 6	6250	27	6296	9083	9056.					
34 6113	22 6152.	27 6227(*	35	6254	40 9023	9077					
35 6134.	6194	29 6229		23) . (1176)		G.VIII(23).(1640)					
6197	25 6170 28 6146	30 6212. 6219	3	6232 6273	44 9047 45 9019(*3*)	5 9010 6 9040.					
37 6173	G. VIII(20).(1200		4 5	6205.	45 9019(*3*) 46 9038	9042.					
40 6159 41 6119	4 6118	33 6243 36 6242	3	6213.	48 9092	9045.					
41 6119 42 6155.	5 6136.	38 6257		6258.	54 9099(*3*)	9072.					
6158	6153.	42 6275		6280.	57 9029	9085.					
45 6107	6162.	45 6239.		6285	69 9014.	9100					
49 6191	6168	6291(*	3 *) 6	6210.	9071	7 9078.					
53 6101	6 6132.	51 6236.		6222.	80 9026	9080.					
60 6179	6138.	6284		6225.	G. IV . (42) . (2928)	• •					
G. IV. (44). (2568		57 6269	44.	6237.	8 9087.	9093					
6 6157	6165.	63 6221(*		6288.	9088	8 9016(*2*).					
7 6108.	6177.	G. IV . (39) . (2420)	6290.	9 9022.	9024.					
6142.	6180.	6 6220.	_	6300 6248.	9037-	9060					
6193 8 6112.	6192. 6195	7 6253	7	6256.	9073.	9 9061. 9074					
6148	7 6141	8 6202.		6265.	9097 10 9025.	90/4 10 9020					
9 6130.	9 6188	6208(*	2*)	6279.	9058	11 9006					
6154.	10 6110	9 6235.	- ,	6293	11 9052	12 9021.					
6175	12 6104.	6252.	8	6204	12 9018.	9065					
10 6106.	6200	6297	9	6264	9027.	14 9096					
6117.	13 6116	10 6246.	10	6201	9028	17 9086					
6169.	15 6149	6292	11	6230	13 9082	18 9044					
6198	G. XVI (3) (128)			(3)(176)		G.XVI(3)(176)					
11 6182.	2 6160	12 6255	3		9032.	3 9030.					
6190	3 6105.	6286 (*	2~) 4	6240.	9066	9048					
12 6123 (*2*).	6120	13 6282		6270	15 9033.	5 9009					
	nma 4455865		Summa 4	45 1 • • 59 05	Imag 6	umma 457090					
Irreg. 2	Impr. 975	urreg. 9			Irreg. 6	Impr. 1122					

	DETERMINANTES NEGATIVI.											
Centas	92.		9136.	Centa	B 93.	14	9217.	Centa	s 94.		9316(*2*)	
	.(5)(295)		9195.		.(4) (34		9226.	G. I	(6) (4	.78) x7		
	9199		9196	33	9283	-,	9253	41	9319	18		
	9103.	17	9158	75	9227	15	9212.	5 x	9343		9357.	
	9127	18	9154	93	9203		9250.	55	9391		9362.	
63	9187	19	9146	139	9239		9276	. 87	9323		9376.	
	9151	20	9169	1	. (27) . (20	92) 16	9214(*2*		9311		9385(*3*).	
li e	. (30) . (2208)	21	9126.	13	9277		9216.	147	9371		9 396.	
13	9157	••	9197	17	9223			- 1	. (27). (189 9307.)4) 21	9398	
1	9172	22	9138. 9189	10	9241. 9298	17	9252 9254	15	9307. 9388	21	9334. 9368.	
	9133 9124.	24	9113.	21	9235	18	9234	18	9355		9392	
11	9183		9159	25	9293	21	9201.	21	9397	23	•	
N	9115	25	9101.	27	9211.		9229.	23	9382		9317.	
11	9181	-3	9125	'	9247		9261	25	9375	23	9365	
11	9109.	27	9164.	29	9244	22	9233.	26	9337	24	9308.	
•	9123.	28	9116	30	9271		9245	27	9349		9399	
İ	9167.	30	9140	31	9263	24	9275•	28	9327	27	9369.	
	9175	31	9191	33	9267		9291	30	9346.		9374-	
u	9137	32	9104 (*2*)	35	9279	25	9231.		9358.	30	9386	
1	9148	33	9149	36	9259	-6	9294	1	9363.	32	9344(*2)	
1	9147	34	9110 (a6) (zmra)	37	9274	20	. 9218.	۱	9364	33	9329.	
H -	,		(26).(1752) 9108	39	9242. 9286.	27	9290 9260(*3*) 32	9377 9326.	G VII	9389 I (25). (1752)	
	9122.	4	9100	l	9287	29	9200(3	/ 34	9332	4		
	9166	5	9160	40	9278	30	9284	36	9347.	. •	9328.	
	9143 9107.	6	9112.	45	9251(*3*)	32	9224	1	9379.		9373	
,	9171	•	9130.	49	9221	36	9266(*2*	')	9395	5	9333	
	9188		9145.	54	9209	G.VĬII	(20) . (144	o) 41	9302	6	9352	
47	9173		9150	60	9257	6	9205.	46	9351	7	9321.	
54	9134.	7	9174	63	9206		9213.	49	9335		9361.	
	9155	8	9135.	66	9236		9265.	51	9383	_	938z	
56	9182		9144.	75	9299		9270.	52	9359	8	9312(*2*).	
57	9179		9156.	80	9281	۵۱	9288.	56	9314		9348.	
60	9131		9168.	i	. (47) . (321		9300	57	9356		9372.	
	9119		9184.	7 8	9262	7 8	9256	G IV	934I . (39) . (284	.2)	9393	
, .	9194		9192.	•	9202. 9208.	•	9222. 9225.		9340.	μο)	9394-	
	9161		9198 9105.		9232		9273.	7	9340.	9	9400 9390	
R	.(36) .(2652) 9178	9	9114.	10	9238.		9280(*21	•). 9	9342(*3*)			
7 8	9178(*2*).		9180.		9289		9285		9370		9338.	
ľ	9193		9185.	II	9237.	9	9272	11	9304.		9366	
9	9132.		9200	Ì	9258	10	9210	1	9322	II		
l ′	9139.	10	9128.	12	9207.	11	9230	12	9378.		9309.	
	9162.		9152	ļ	9219.	12	9204.		9 387		9336	
	9163(*3*)	11	9129.	l	9220(*2*)		9264	13	9313.	12	,	
10	9190		9170	1	9228.		9269.		9318	14	9350.	
•	9121.		9141 '	1	9243(*2*)		9296	1 14	9353-	•-	9380	
•	9142.		9176 [(a) (776)	1	9268.		9246 /I.(1)(4	8)	9394	G X V	9 320 I.(3)(176)	
	9153.		I (3) (176)		9292.		9282	15			9384	
3	9186	3	9177		9259. 929	" G.XX	XII (1).(6	الما	9331. 9339		9345·	
	9117	4	9120. 9165	13		0.2.2		16		•	9360	
15	9106.			1	9255		454 72		· · · · · · · · · · · · · · · · · · ·	umma		
Irreg.			465 7083 npr. 1207	Irreg.]	454 · · · /2 mgr. 11	45 Irreg.			mpr. 1210	

II.

					WAC	HLA	88.					
				Centa	- 06				Centa			
Centa		14	9436		•	·\		13-1-			15	9639
4	(8)(70	08) 15	9443-		(5) (9547		15	9542 9582		(5) (33 9643		.960 6
33	9403 9463	17	9452 9410	39 69	9511.		16	95 44	33 57	9619	17 18	9603.
45 75	9439	18	9444-	1 3	9587		17	9564	71	9679	20	9675(*3 *) .
91	9431	-	9477-	129	9551		18	9558	77	9631		9693(*3*).
101	9479		9482.	£65	9539		19	9565	95	9623	19	9638.
105	9419		9495	G. 11	(28) . (19	964)	20	9503(*2*).	G.II.	. (29) . (210	8)	9694
123	9467	20	9500	16	9508			9589.	12	9667	20	9608.
135	9491	21	9414.	17	9535			9591.	19	9661		9616.
	. (24) . (17	706)	9481.	18	9523.			9593	20	9697		9650.
16	9433		9489. 9499	20	9583 959 8	,	21	9515. 9561	21	9607. 9613		9653 9699
18	9475 9466.	22	9499 944I	24	9502.		24	9519.	24	960I	21 22	9654.
-9	9487	24	9422(*2*).		9507	•	•	9579	26	9655		9684
20	9442	•	9426.	25	9559	:	25	9530.	27	9627(*3*).	23	9695
21	9427		9474-	26	9543		•	9584		9663.	24	9641.
24	9406.		9488	27	9531(*3*).		27	9509		9683(*3*)		96 66
	9409.	28	9494	l	9563.		18	9536	28	9604.	25	9609
(9423	29	9449		9574(*3*)		30	9506		9634.	29	9617.
30	9459	30	9455	29	9532	-	38	9569		9649		9674-
33	9421 9458	35 36	9470 9476	30	9571	a v	40 TIT	9554 (26) . (1960)	30	9687. 9691	**	9698 9621
34 36	945°	42	9434	33 34	9527 9556	u, ,	4	9568	32	9662	30 32	9665
30	9497(*3*)		7 7 37 (25) . (1744)	34	9586		5	9592	33	9692	33	9635
39	9484	4	9430	38	9524.		6	9552.	36	9668	42	9686
40	9473	Š	9417		9567			9585.	42	9651		(22).(1600)
42	9428	6	9408.	42	9518			9597	43	9647	4	9640
45	9411.		9432.	43	9578		7	9528	44	9602	5	9618.
	9437	•	9438.	48	9566		8	9510(*2*).	45	9626		9625.
46	9407		9465.	49	9599			9513(*2*).	49	9677		9685.
51	9413	_	9492	51	9575			9537· 9540(*2*)·	52	9689		9688
57 63	9461 9404	7	9453· 9462	59	9596 9572			9540(2).	55 57	9629 9659	6	9648. 9696
71	9446	8	9424.	61	9572			9600(*2*).	63	967I	7	9633.
	. (41) . (298	8)	9460.	64	9521		9	9541.	66	9611	,	9646
8	9412(*2*)	•	9485.	G.IV	. (38) . (270	ю)	1	9548.	69	9644	8	9645.
	9457(*2*)	١.	9486.	8	9538.			9555(*3*)	G. ÍV	(41).(310	o8)	9669
	9472		9490	l	9562.		10	,,,	9	9612(*3*).	9	9630.
9	9493	9	9420.	1	9577			9534-		9615.		9657
11	9402.		9450(*3*).	10	9517.			9594		9622.	10	9620.
	9447. 9496	10	9471 9440	1	9553-		12	9504. 9516(*2*).	,,	9678 9628		9636
12	9445.	11	9429.	12	9573 9505.			9560	10	9670	11 12	9681 9605.
	9469.		9456		9522.	:	13	9545.	12	9652.	2.2	9632.
	9483.	12	9425.		9526.		•	9594		9673(*2*).	•	9680(*2*)
	9498		9435-	i	9550.	:	14	958I		9676.	15	9624
13			9464	1	9580.	:		9512		9682.	16	9614
	9418.		9416	1	9595(*2*)	~ .		9590		9700	18	9656
	9448.		9401	13		G.2		[.(3).(176)	13	9637		.(3)(192)
	9454· 9468.		.(2)(112)	ı	9549-		3	9520.	14	9642.	3	9672
	9408. 9478	3	9480 9405	74	9557 9501			9570		9658.	4	9690
			4527258		9501.	Summ		9576		9664	5	9660
Irreg.	. e	Summa		Irreg.		oumm	18	469 7271	Irreg.	t	Summa	451 7340
i				·					5.			

DETERMINANTES NEGATIVI.											
Centas	98.	17	9711	Centa	99•		9814.	Centa			9921.
G. I	(6)(524)		9715.	G. I	. (8) . (638)		9848	G. I	.(4)(228)	1	9969.
39	9739-		9723.	49	9871	17	9852.	39	9967		9978
	9787		9782	51	9883		9893.	45	9907(*3*)	16	9961.
•	9767	19	9773	63	9811(*3*).	-0	9897	69	993I		9985
_	9743	20	9714-		9859	18	9801(*3*). 9844.	G. II.	9923 (28).(2302)	17	9919. 9 9 65
•	9791	21	9796 9708.	75 91	9887 9839		9873.	16	9991	18	9910.
133 C	9719 24).(1646)	**	9710.	111	9803		9891	18	9934(*3*)		9915.
	9703		9770.	135	9851	19	9815.	23	9927.		9964
	9748(*3*).		9774		. (22) . (1700	o) ´	9879]	9973	19	9951.
	9783	22	9725.	20	9892	21	9855	25	9949	•	9957.
19	9727		9756	21	9829.	22	9841	27	9963(*3*)		9 97 7
	9733	24	9728)	9862.	25	9830	28	9903.	20	9992
	9742	26	9794		9868	26	9812.		9943	21	9909
	9763	27	9704.	22	9847 9817.		9876 9831	30	9938.	22	9953.
25 26	9781 9769.	28	9726 9716.	24	9874	27 28	9881(*2*)	31	9979 9901		9956. 9962.
	9709. 9778	20	9734	26	9838	31	9884	32	9986		9999
	9747(*3*)·	29	976I	28	9886.	32	9809(*2*)	34	9998	23	9917.
	9751	30	9746	l	9895	34	9824	38	9908	•	9994
	9755	33	9740	30	9857	37	9854	39	9914.	25	9981
33	9799	36	9779	34	9826	39	9896		9987	26	9924
	9754	38	9701	42	9827	41	9869	42	9939•	27	9989
	9788		(24).(1752)		9899(*3*)		(24). (1712)		9947	28	9926.
	9707•	5	9717.	48	9863 9818	5 6	9877 9804.	46	9983	**	9980
	9771 0722	6	9730 9760.	49 51	9819	v	9810.	47	9935• 9946	30	9932. 9950
	972 3 9721.	·	9790	52	9833		9828.	50	9902	34	9911
-	9759	7	9724.	57	9836		9867.	60	9995		(18).(1328
~~	973I	•	9752	60	9875		9888.	63	9971	4	9982
76	9764	8	9702(*2*).	70	9806		9900	65	9959	5	9976
	9749	_	9729.	77	9866	7	9805.	67	994I	6	9928.
	(43). (3292	·)	9735•		. (43) . (3164	.)	9858.	76	9929		9940.
•	9718		9758.	6	9823		9885	G.IV.	9974		9990
-	9772		9780. 9792(*2*)	8	9802 9865	8	9816. 9856.	ł	. (46) . (32 4 8)	7 8	9906
	973 2. 9702	9	9792(2)	°	983 3.		9860	7	9937 9925.	•	9930. 9975•
	9793 9738.	7	9709.	, ,	9843.	9	9825(*3*).	,	9958.		9984
	9753 9 753		9720(*3*)	l	9853.	•	9849(*3*).		9997	10	9918
	9706.	10	974I.		9898		9889	10	9913.	11	9968
	9745•		9750.	10	9808.	10	9821.		9942.	12	9905.
	9762		9798	1	9837.	•	9834	i	9948.		9920.
	9712.	11	9737•		9850	11	9894	•	10000		9936.
	9713		9786 9800	11	9813	12	9861. 9864	11	9970		9954-
	9757·	12	9800 9789	12	9872. 9835	13	9842	12	9916. 9912.	13	9996 9966
	9775• 0784	14		13	9°35 9846 ·	16	9845		9952.	14	
	9784 9766.	•5	9785	14	9820.	17	9890		9955(*2*).		I (4) (240
-	9777·	G. XV	I(3)(192)		9878		[(3)(192)	1	9972(*2*)	3	9933
	9795	4		15	9822.	3	9870	13	9993	4	9912.
16	9736.	•	9765.	1	9882	4	9880	14		-	9945.
	9797		9768	16	9807.	5	9840	15			9960
		Summa	4667406			Summa	4647406	1_	S	umma	452 734
Irreg.				Irreg.	7			Irreg.			

Nachlass.												
Centas	117.		11694	Centar	118.			11776.	Centa	B 119.		11874
G. I	. (1) (147	16	11629.	G. I	(5)	. (319)		11796	G. I	(7) (50)	5) 19	11841
	11699	,	11665	39	11743		7	11761	31	11863	20	11822(*2*).
	. (35) . (2896	i) 17	11672	41	11719	1	8	11754.	39	11827		11836.
16	11617	18	11601.	63	11731			11772	47	11887		11847.
18	11698		11627.	81	11779(*	'3*) I	9	11706	61	11839		11858.
19	11677		11637.	95	11783	-	O	11716.	75	11867		11866
	11614		11664	_	. (28) . (11768	113	11807	21	11859.
	11668	19	11687	18	11707	2	I	11724.	139	11831		11888
	11647	21	11644	21	11767	_	_	11799		.(23).(1990	•	11898
	11643.	23	11618	22	11727.	2		11703.	21	11878	23	11829 11826.
	11683(*3*)	24	11615		11758			11732. 11749	24	11812.	24	11889.
	11663 11 6 02.	25	11693 11604.	25 29	11734 11722		5	11709.	ł	11854		11896
J-	11602. 11623.	26	11664.	30	11755	•	כי	11769.	27	11851(*3*).	. 26	11834.
	11623.		11679	31	11701.			11780	\ -'	11881		11894
	11686	28	11646	3-	11708	2	7	11795(*3*)	30	11875	27	11804.
3,	12603.	29	11630	33	11703.		•	11798.	33	11884	•	11810.
	11631.	32	11666.	33	11763	2	8	11786	39	11852		11861
	11633.	•	11684	36	11762	2	9	11731.	40	11833.	29	11882
	11667.	33	11624	39	11747.		•	11741.		11897	35	11870
	11671.	35	11606	1	11787	3	0	11774	43	11821	36	11849
	11689. (J. VII	I (27) . (2248)	40	11791	3	4	11729	45	11871.	37	11885
	11691.		11610.	49	11789			11744	1	11899(*3*)	42	11891
	11695		11620.	50	11794			(23) . (1744)	49	11813.	A 43	11864
٠.	11642		11628.	53	11751			11713(*3*)				I (22).(1688)
42	11657		11656.	54	11723		6	11715.	52	11876 11828.	4 6	11872
43	11626		11680.	60	11711.			11718.	54	11843(*3*)	v	11817. 11845.
45	11611 11621	8	11697 11605.		11771.			11748. 11752	58	11855		11869m
51	11021	•	11622.	61	11735.		7	11720.	70	11801		11895
54 56	11678		11658.	"	11738		′	11742.	72	11819	7	11830.
	11612		11670.	65	11759			11778	75	11879	,	11890
63	11675		11682	73	11717		8	11712.	G. IV.	(44).(3608)	8	11805.
	11639	9	11613.	87	11756			11725(*2*).	8	11848		11808(*2*).
•	11636	•	x1655	98	11714			11753.	9	11803.		21877
73	11654	10	11616.	G. IV	. (40) . (3	100)		11770.		11818.	9	11802.
81	11651(*3*)		11625.	8	11797			11784.	ŀ	11893		11820.
	11681		11676	9	11782		_	11790	10	11860.		11825
	. (35) . (267		11688	10	11785		9	11800		11862	10	11850.
8	11650	12		11	11740.		0	11792	11	11815		11900
9	11608.		11661.		11757		1 2	11736	12	11823	II	11837. 11868
	11692		11700(*2*) 11634.	12	11733.	•	-	11739. 11745	13	11842.	12	11844.
11	11653	13	11634.	1	11788	f	5	11766		11892	1.0	11886
12	11635.		11649	14	11728.		6	11780	15	11824.	16	11814.
.**	11641.	IA	11690	-7	11746.			11726.	1	11853.		11840
	11673	=	11660.	l	11764			11765		11883		11816
12	11632.		11696	15	11710.	G.X	ΙVΣ	. (4) (320)	16			I .(4) (304)
-3	11674	21	11609	-	11773.			11760		11809.	2	11880
14	11652.		VI . (2) . (128)		11793			11704.		11811.		11832
•	11662	3	11685		11705.		_	11730	1	11835(*3*)	. 6	11856.
15	11607.		11640		11775.		6	11781	1	11873.		11865
-	Sun		459 8091			Summe	1 46	69 8043		8u	mma	469 8095

DETERMINANTES NEGATIVI. Millias I. Centas 120. G. II (402) (6068) 11956. 6. G. I...(93)..(1277) 5. 9. 10. G. I...(7)..(547)11991 16. 18. 1. 2. 3. 39 11923 11918. 12. 13. 15. 11971(*3*) 4. 7 . . 5 22. 25. 28. 37. 58 . . 15 11993. 17. 20. 32. 34. 14. 11903. 11994 11. 19. 3 36. 46. 11939(*3*) 11978 39. 49. 20 23. 27. 63. 64. 73. 82. 55. 83 11927 11901. 31. 43. 67. 163 . . 8 97. 100. 142. 148. 193 . . 20 11957 11959 95 26. 29. 35. 38. 11987 11989 47. 79. G.II. (22).(1912) 11926. 103. 127 . 50. 51. 53. 54• 6r. 75. 76. 81. 87. 91. 11953 11964. 71. 151. 20 11972(*2*) 223. 343. 92. 99. 106. 108. 109. 21 11962 115. 118. 121. 123. 124. 463. 487 . . 6 11995 11936. 24 11907(*9*). 59. 83. 135. 147. 157. 162. 169. 11945 172. 175. 187. 202. 207. 11911. 11919. 107. 139. 214. 235. 247. 262. 267. 199. 211. 11967 11930. 268. 277. 298. 358. 397. 243 (*3*). 11943. 11942. 403. 427. 541. 652 49 11961(*3*) 11947 283. 307 (*3*). 41. 62. 68. 94. 95. 11983 11951 98. 111. 113. 128. 137. 331. 367. 33 11974 11912. 158. 178. 183. 196. 226. 379 499 11948 11979 11966(*2*) 256. 289. 292. 295. 313. 547. 643. 41 11941 32 823. 883. 48 337. 382. 388. 415. 457. 11963 11931 33 907 . . . 18 466. 478. 562. 577. 583. 40 11924 49 11933. 167. 271. 772. 862 32 11954 11999 11 G.VIII (22). (1832) 74. 86. 119. 122. 125. 50 11975 967 143. 159. 166. 181. 188. 6 13 191. 263. 11915 11914. 57 66 607. 631. 197. 218. 229. 242. 250. 11906 11937. 69 11968. 727 5 303. 316. 317. 319. 346. 22001 131. 179. 361. 373. 375. 394. 412. 71 11981 11977 227. 239. **421. 422**. 423. 508. 538**.** 73 11996 11973 11920(*2*). 613. 625. 694. 709. 757. 347 439 11969 847. 853. 877. 982 39 G.IV.(45). (3564) 11940. 443. 523. 571. 619. 89. 116. 155. 171. 203. 11946 11992 212. 219. 233. 241. 244. 683. 691. 11922. 11913. 739. 751. 11925. 259. 274. 275. 279. 291. 11932. 787. 947.. 16 302. 323. 324. 327. 334. 11938. 11935. 351. 355. 363. 387. 433. 11958 11949. 383. 991 . . 2 436. 475. 484. 507. 526. 19 311. 359. 11902. 11952 529. 543. 567. 603. 617. 11997. 919 11965 622. 628. 655. 667. 673. 12000 21 251. 431. 11905 11908. 11904. 467. 503. 676. 687. 718. 723. 763. 775. 802. 898. 955 11917. 11910 587. 743. 11934 811. 827. 101. 134. 149. 173. 215. 11929. 15 278. 284. 287. 338. 349. 859. 863..10 11950. 16 11976. 391. 447. 454. 502. 511. 11980. 11984 25 479· 599· 535. 604. 634. 639. 653. 11988(*2*). 647 11990 703. 733. 778. 807. 83**8.** 419. 491. 11998 11921 27 G.XVI. (4).. (288) 841. 892. 997 28 563. 983 . . 4 11986 11928 29 887 146. 164. 254. 257. 353. 11944. 3 719. 911 . . 2 407. 409. 452. 471. 512. 11955 11985 31 514. 527. 548. 559. 578. 17 11982 11960 33 659. 839 . . 2 722. 799. 895. 943. 958. 18 11970 971 1 11916. 45 Irreg. 2 Summa 471...8143 pr. 2130 Irreg. 8 Impr. prim. 1361

Digitized by Google

67

			NACHLASS.	
H			NACHLASS.	
9	194. 236. 293. 332. 335.	1	340. 352. 372. 400. 418.	6 329. 416. 426. 434. 464.
<i>'</i>	339(*3*). 362. 411. 428.		438. 442. 445. 448. 498.	497. 516. 549. 594. 602.
į	451. 459. 486. 515. 519.		505. 522. 553. 568. 592.	605. 620. 621. 650. 651.
i i	53x. 556. 557. 575. 586.		598. 658. 697. 708. 742.	684. 704. 713. 725. 756.
1	661. 675(*3*). 679. 707.		793. 928 67	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1	729. 747. 771. 783. 796.	3	104. 110. 129. 140. 152.	810. 812. 819. 833. 848.
	835. 843. 844. 867 886.	1	170. 174. 176. 182. 186.	864. 876. 890. 894. 901.
	891(*3*). 922. 931. 963.	ľ	189. 195. 200. 201. 204. 216. 222. 231. 234. 237.	905. 915. 948. 954. 976. 978. 980. 981. 985. 987.
10	972 · · · · · · · · 37 206. 281. 386. 398. 401.	1	245. 246. 249. 255. 261.	996
.~	449. 482. 500. 601. 711.	}	270. 286. 294. 297. 300.	7 341. 374. 494. 506. 530.
	724. 769. 788. 878. 916.		304. 309. 315. 318. 325.	536. 581. 654. 806. 845.
	927. 937. 977		342. 348. 364. 366. 368.	849. 860. 893. 902. 906.
11	269. 326. 389. 551. 554.		370. 378. 393. 396. 405.	909. 935. 962 18
	591. 623. 662, 668. 758.		417. 424. 430. 432. 435.	8 545. 584. 644. 656. 710.
B	767. 829. 842. 871. 879 . 15		450. 453. 460. 472. 473.	740. 749. 789. 846. 869.
12	299. 356. 371. 395. 539.		477. 483. 490. 492. 493.	884 (*2*). 896. 992 13
	542. 579. 593. 674. 695.		496. 513. 517. 533. 537. 540. 550. 555. 565. 588.	9 944. 950. 989 3 10 689. 776. 824. 836 4
	706. 766. 932. 939. 964. 979 995. 999 18		595. 597. 606. 610. 618.	10 689. 776. 824. 836 4 1 1 1 1 854. 965. 986 3
13	314. 458. 698. 746. 764.	i	627. 637. 648. 669. 670.	
-3	773. 934. 951. 998 9		682, 685, 688, 700, 702.	pr. 6904
14	404. 596. 641. 686. 692.	1	715. 730. 748. 753. 762.	
	818. 831		784. 795. 808. 813. 814.	G.VIII (87) (1496)
15	461. 509. 524. 566. 611.		817. 826. 827. 837. 856.	1 105. 120. 165. 168. 210.
t i	635. 671. 677. 699. 716.	ŀ	913. 918. 925. 933. 940.	240. 273. 280. 312. 330.
Ħ	779. 797. 803. 815. 821.		942. 949. 970. 973. 988 . IIO	
16	851. 875. 908. 923. 956 . 20 446. 521. 569. 791. 809.	•	260. 272. 276. 305. 306.	520. 760 17 2 264. 285. 336. 360. 390.
10	857. 953	1	308. 320. 350. 354. 369.	420. 429. 456. 465. 480.
17	614. 701		376. 377. 380. 384. 392.	504. 510. 525. 528. 552.
18	626. 731. 755 (*3*) 914.		399. 402. 406. 410. 414.	561. 570. 585. 600. 609.
\$	929. 959. 974 (*3*) 7		441. 444. 468. 469. 481 .	616. 624. 630. 645. 660.
20	734- 761. 881. 926 4	ļ	485. 495. 501. 518. 532.	672. 690. 693. 720. 765.
21	794. 899		544. 558. 564. 573. 574.	777. 792. 798. 805. 858.
22	866		576(*2*), 58c(*2*), 582. 589, 612, 632, 640, 642.	870. 880. 897. 910. 912. 952. 957. 960 43
23	<u></u>	İ	646. 657. 663. 712. 717.	952. 957. 960 43 3 440. 546. 560. 665. 680.
11116	g. 5 omnes *3* pr. 7394		721. 732. 735. 736. 738.	696. 705. 714. 728. 741.
li	•	İ	745. 768. 785. 786. 790.	744. 780. 816. 825. 861.
G. 1	IV (417) (6620)		820(*2*). 832. 834. 850.	885. 888. 924. 930. 936.
I	21. 24. 30. 33. 40.		852. 855. 865. 868. 873.	945. 966. 969. 984. 990 . 25
1	42. 45. 48. 57. 60.	1	882. 889. 900(*2*). 903.	4 770
H	70. 72. 78. 85. 88.	1	904. 933. 938. 946. 975.	5 920
1	93. 102. 112. 130. 133. 177. 190. 232. 253 · · · 24	5	994	I 840
2	56. 65. 66. 69. 77.	,	321. 344. 365. 381. 413.	
1	80. 84. 90. 96. 114.	1	425. 437. 455. 470. 474.	Multitudo integra omnium
H	117. 126. 132. 136. 138.		476. 488. 489. 534. 572.	
	141. 144. 145. 150. 153.	1	590. 608. 615. 629. 633.	generum = 3277
	154. 156. 160. 180. 184.	!	636. 638. 649. 664. 666.	classium $p \cdot p \cdot p = 15467$
H	192. 198. 205. 208. 213.	İ	678. 681. 726. 737. 750.	$\sqrt{1 + \sqrt{2 + + \sqrt{1000}}} = 21097,661$ Quotiens = 0.733
t	217. 220. 225. 228. 238. 252. 258. 265. 282. 288.		752, 754, 774, 781, 822, 830, 872, 874, 917, 921,	,,,,,
li	301. 310. 322. 328. 333.		968. 1000 47	Irreg. 11, 5 (*2*), 6 (*3*)
	J Jp J J JJJ-	•		

Millias III. G. I (64) (2470) 13			DE	ETERMINANTES NEGATIVI.
G. I	Mil	line III	1	2410, 2468, 2470, 2587, 28 2066, 2120, 2270, 2405
13 2143			!	
15		2742	l	
21 2011. 2083. 2179. 2251. 2467. 253. 2707. 2767. 8 2367. 1428. 2524. 2762. 2809. 2823. 2839. 2854. 2908. 2809. 2823. 2839. 2854. 2908. 33 2367. 1428. 2524. 2758. 2809. 2823. 2839. 2854. 2908. 33 2369. 2428. 2251. 2258. 2908. 33 2387. 2311. 2333. 33 2327. 2267. 2423. 2539. 2401. 2446. 2455. 2612. 2734. 2753. 2932. 12 23731. 2851. 2971. 3731. 2859. 2401. 2446. 2455. 2612. 2734. 2753. 2932. 12 2393. 2437. 2269. 2884. 3209. 2437. 2269. 2884. 2299. 2303. 2319. 2341. 333. 2007. 2267. 2423. 2559. 2403. 2476. 2523. 2575. 2883. 2899. 2562. 2643. 2747. 2732. 2764. 2875. 2883. 2899. 2562. 2643. 2747. 2732. 2764. 2875. 2883. 2899. 2956. 2886. 28 236. 2476. 2523. 2575. 2883. 2899. 2956. 2886. 28 246. 2457. 2431. 2439. 2699*. 2883. 2899. 2956. 2886. 28 2477. 2732. 2764. 2875. 2883. 2899. 2956. 2886. 28 2477. 2732. 2764. 2875. 2771			1	2995 21 30 2036. 2081. 2126. 2159.
2467 2503. 2707. 2767. 8 2307. 2420. 2724. 2702. 2702. 2867. 2270. 2878. 2878. 1 23 2671 1 2809. 2823. 2839. 2854. 2988 13 27 2003. 2187. 2803 3 14 2007. 2018. 2127. 2258. 2988 13 297 1 2359. 2407. 2446. 4455. 2612. 2734. 2753. 2932. 12 2519. 2558 6 31 2927 1 2047. 2426. 2924. 275. 2369. 2234. 275. 2306. 2239. 2563. 2379. 2563. 2379. 2575. 367. 2379. 2543. 3 3 2309. 2435. 2636. 2861. 3299. 2930. 2319. 2341. 2266. 2289. 2502. 2643. 2772. 2752. 2755. 2878. 2599. 2602. 2643. 2772. 2752. 2755. 2883. 2899. 2956. 2966. 2863. 2219 (**2**). 2464. 2474. 2651. 2579. 2884. 3 3 35 2549. 2909 3 36 2219 (**3**). 2466. 2474. 2651. 2797. 2471 38 2441 1 1 1 2771 3 36 2219 (**3**). 2466. 2474. 2651. 2797. 2772. 2762. 2764. 2875. 2883. 2899. 2956. 2968. 28 28 2479. 2939. 2633. 2129 (**2**). 2771 3 32471. 241. 2462. 2474. 2651. 2797. 2479. 247	_		13	
232 2671		2467 2503. 2707. 2767 8	İ	2367. 2428. 2524. 2762. 2708. 2801. 2855. 2978.
14 2007. 2018. 2127. 2258. 32 2084. 2174. 2276. 2306. 329 2287. 2311. 2383 3 31 2927	23	2671 I	l	
2369. 2487. 2311. 2383	r -	2887	14	2007. 2018. 2127. 2258. 22 2084. 2174. 2276. 2206
2612. 2734. 2753. 2932. 12 31 2927	1 1 -	2003. 2187 . 2803 3		
33 2027. 2267. 2423. 2539.				
2731. 2851. 2971		2027. 2267. 2422. 2520.	15	2043. 2071. 2092. 2151.
35	"	2731. 2851. 2971 7	l	
2373	35	2087. 2239. 2543 3	1	
2791. 2963 6 41	37	2447 I		
2883. 2899. 2956. 2986. 28 2663	39			
43	i			
2386. 2434. 2462. 2521. 2843	1 1 -	2551. 2719 2	16	
2843			l .	2386. 2434. 2462. 2521. 41 2789
49 2111	7		l `	2617. 2633. 2657. 2833 12 42 2609
2463. 2918 10 2463. 2918 10 2711	49		17	
18 2255. 2161. 2199. 2228. 2417. 2491. 2511. 2547. 2619 (*3*). 2627. 2644. 2723. 2763 (*3*). 2783. 2608	m -		i	111081 10
2417. 2491. 2511. 2547. 2619 (*3*). 2627. 2644. 2723. 2763 (*3*). 2783. 2999	8 1	2711	18	
2619 (*3*). 2627. 2644. 2723. 2763 (*3*). 2783. 2867. 2897. 2916. 2943. 2999	57			2417. 2491. 2511. 2547. G. IV (430) (16232)
63 2351. 2579. 2819 3 69 2411	60			
69 2411		3//		2723. 2763 (*3*). 2783. 4 2020. 2077. 2212. 2242.
73 2999		2411		
G. II (311) (11646) 6 2017. 2062		2999 I	١	
2858	87		19	
G. II (311) (11646) 20 2078. 2297. 2375. 2402. 2118. 2125. 2152. 2158. 2107. 2062		Irreg. 3	1	
6 2017. 2062	G. 11	[(311) (11646)	20	2078. 2297. 2375. 2402. 2118. 2125. 2152. 2158.
8 2095, 2113, 2137, 2302. 21 2012, 2123, 2138, 2147 2433, 2494, 2577, 2641, 2308, 2377, 2578, 2878. 2171, 2183, 2186, 2213. 2776, 2830, 2853, 2965, 24			}	
2308. 2377. 2578. 2878. 2171. 2183. 2186. 2213. 2776. 2830. 2853. 2965 24				
2300. 2377. 2570. 2070. 2171. 2103. 2180. 2213. 2770. 2830. 2853. 2905 24	8	2095. 2113. 2137. 2302.	21	
	H	2308. 2377. 2578. 2878. 2962 9		2171. 2183. 2186. 2213. 2776. 2830. 2853. 2965 24 2259. 2342. 2348. 2357. 6 2022. 2025. 2028. 2035.
9 2023. 2038. 2047. 2053. 2427. 2507. 2571. 2693. 2050. 2052. 2067. 2068.				
2122. 2167. 2188. 2221. 2749. 2779. 2911. 2931. 2082. 2086. 2096. 2104.	ľ	3 2 22		
2227. 2283. 2403(*3*). 2972 21 2115. 2132. 2139. 2148.	H	2227. 2283. 2403 (*3*).	ĺ	2972 21 2115. 2132. 2139. 2148.
2437 (*3*). 2443. 2458. 22 2089. 2271. 2439. 2567. 2157. 2163. 2172. 2223.	H		22	
2515. 2557. 2563 (*3*). 2594. 2798 6 2257. 2260. 2268. 2275.	H			
2566. 2572. 2787. 2797. 23 2614. 2615. 2837 3 2278. 2305. 2317. 2322. 2902. 2923. 2998 24 24 2019. 2195. 2273. 2327. 2338. 2358. 2388. 2412.	B		-	
2902. 2923. 2998 24 24 2019. 2195. 2273. 2327. 2338. 2358. 2388. 2412. 10 2164. 2281. 2407. 2452. 2372. 2631. 2654. 2811. 2413. 2425. 2451. 2475.	10		24	
2473. 2487. 2500. 2527. 2974. 2991			1	
2638. 2722. 2743. 2818. 25 2042. 2396. 2582. 2588 . 4 2517. 2538. 2545. 2548.			25	
2836. 2857. 2983 15 26 2642. 2807. 2969 3 2592. 2598. 2620. 2629.	ľ			2642. 2807. 2969 3 2592. 2598. 2620. 2629.
11 2182. 2215. 2263. 2326. 27 2051. 2075 (*3*). 2252. 2650. 2653. 2658. 2667.	11		27	2051. 2075 ("3"). 2252. 2650. 2653. 2658. 2667.
2374. 2623. 2662. 2677. 2291. 2315 (*3*). 2426. 2668. 2676. 2682. 2695.	ŧ		1	
2815. 2863. 2917. 2935 12 2675 (*3*). 2747. 2759. 2698. 2704. 2710. 2715. 12 2059. 2098. 2107. 2116. 2859. 2891 (*3*) 2951. 2718. 2725. 2740. 2748.		· • • · · · · · · · · · · · · · · · · ·	1	
12 2059. 2098. 2107. 2116. 2859. 2891 (*3*) 2951. 2718. 2725. 2740. 2748. 2209. 2307. 2323. 2395. 2957	X ''		l	
יייין אייני	ľ	73-13-3323-		-/J/

	NACHLASS.										
	2802. 2872. 2892. 2907. 2914. 2938. 2977. 2997 76		2156. 2168. 2169. 2196. 2211. 2225. 2229. 2316.	2100. 2112 (*2*). 2130. 2142. 2208. 2232. 2244.							
7	2008. 2033. 2044. 2055.		2331. 2366. 2379 (*2*).	2256. 2265. 2289. 2296.							
	2058. 2094. 2110. 2140.	1	2390. 2420 (*2*). 2432.	2320. 2328. 2337. 2340. 2365. 2385 (*2*). 2397.							
	2146. 2149. 2165. 2217. 2238. 2270. 2314. 2382.	1	2450. 2466. 2484. 2499. 2597. 2661. 2691. 2696.	2305. 2305 (2). 2397. 2400 (*2*). 2436. 2442.							
Ĭ	2416. 2431. 2438. 2497.	1	2701. 2702 (*2*). 2739.	2445. 2448 (*2*). 2464.							
ħ .	2502. 2509. 2535. 2536.	1	2754. 2780 2816. 2822.	2465, 2470, 2478, 2490,							
l	2556. 2583. 2607. 2703. 2761. 2766. 2782. 2812.		2824. 2825. 2852. 2873. 2900. 2993 (*2*) 39	2496. 2568. 2580, 2584. 2652. 2665. 2688. 2706.							
•	2881. 2913. 2930. 2941.	13	2015. 2222. 2453. 2469.	2709. 2717. 2745. 2772.							
ł	2973 37		2481. 2510. 2679. 2721.	2790. 2793. 2821. 2829.							
8	2004. 2005. 2034. 2041.	١	2792. 2826. 2901. 2984 12	2850 (*2*). 2865. 2880. 2898. 2928. 2940. 2952.							
	2056. 2134. 2176 (*2*). 2192. 2236. 2245. 2254(*2*).	14	2114. 2144. 2162. 2274. 2324. 2354. 2384. 2429.	2958. 2985 57							
Ì	2286. 2292. 2298. 2304.		2486. 2501. 2525. 2587.	5 2030. 2070. 2085. 2093.							
	2312. 2313. 2329 (*2*).		2744. 2768. 2774 15								
l	2343, 2350, 2356, 2454, 2506, 2513, 2528, 2560,	15	2096. 2189. 2264. 2285. 2321. 2330. 2378. 2406.	2288. 2360. 2394. 2405. 2409. 2415. 2460. 2505.							
Į .	2569. 2589. 2601. 2628(*2*).		2444. 2526. 2534. 2537.	2541. 2544. 2552. 2585.							
ı	2655. 2674. 2686. 2733.		2540. 2630. 2684. 2 690 .	2610. 2618. 2625. 2664.							
1	2742. 2775. 2785. 2817.	1	2694. 2750. 2796. 2813.	2670. 2712. 2769. 2814. 2838. 2877. 2886. 2904.							
H	2845. 2847. 2848(*2*) 2868. 2884. 2944. 2946.	16	2864. 2889 22° 2180. 2201. 2336. 2546.	2910, 2926, 2990, 3000, . 36							
Ŋ	2949. 2980 (*2*) 47		2561. 2624 (*2*). 2639.	6 2001, 2064, 2090, 2240,							
9	2014. 2049. 2060. 2076.		2669. 2882. 2921. 2994.	2301. 2376. 2408. 2480.							
1	2079. 2091. 2106. 2108.		2996	2564. 2574. 2600. 2604. 2660. 2720. 2736. 2784.							
H	2117. 2124. 2133 (*3*). 2175. 2181. 2198. 2214.	17	2054. 2369. 2414. 2504.	2820. 2912. 2925. 2961.							
Ŋ	2221. 2235 (*3*). 2241.		2516. 2681. 2705. 2786.	2964. 2976 22							
l	2253. 2266. 2295. 2300.		2915. 2924 10	1							
i i	2318. 2344. 2349. 2355. 2361. 2387. 2430 (*3*).	19	2294	2616. 2765. 2870 7 8 2576. 2840. 2849. 2945.							
Ħ	2461. 2522 2555. 2581.		2954. 2981 5	2960 5							
ti .	2595. 2626. 2634. 2635.	21	2834 I								
H	2637. 2646 (*3*). 2673. 2700 (*3*). 2716. 2770.	[Irreg. 13 (2). 6 (3). Sa 19	Irreg. 5 (2)							
l	2778 2781. 2795. 2806.										
	2828. 2835 (*3*). 2862.			G. XVI (11) (400)							
H	2887, 2888, 2890, 2895. 2950, 2955, 2988, 2989, . 58	2	2002. 2013. 2080. 2088. 2128. 2170. 2233. 2277.	2 2040. 2145. 2280. 2310. 2520. 2640. 2730. 2760 8							
10	2950. 2955. 2988. 2989 58 2057. 2061. 2150. 2154.		2392. 2632. 2737. 2832.	3 2184. 2805. 2856 3							
	2166. 2177. 2249. 2250.		2968								
	2255. 2282. 2449. 2514.	3	2037. 2065. 2160. 2185	Summa omnium							
ı	2529. 2532. 2596. 26 5 6. 2678. 2724. 2751. 2810.	1		gener. p.p.p = 4054 exsp. 4051,3							
I	2844. 2869. 2871. 2874.		2352. 2370. 2373. 2380.	class. $p.p.p = 37092 37074.3$							
1	2896. 2919. 2929. 2948.	1	2418. 2424. 2440. 2457.	impr. $p.p = 6182$							
11	2975 29	1	2472. 2485. 2508. 2530. 2550. 2553. 2562. 2590.	Irreg. $18(*2*)$. $19(*3*)$. $8a = 37$							
**	2135. 2204. 2216. 2334. 2364. 2421. 2489. 2492.	1	2613. 2622, 2680, 2685.								
l	2570. 2573. 2645. 2648.	1	2697. 2728. 2800. 2808.	1							
ľ	2649. 2672. 2757. 2841.	1	2860, 2905, 2920, 2937,	1							
12	2922. 2933. 3934. 2967 20 2006. 2009. 2045. 2105.	۱ 4	2970. 2982. 2992 43 2010. 2016. 2046. 2072.	İ							
l		_		-							

DETERMINANTES NEGATIVI. Millias X. 9397. 9427. 9607. 9613. 9733. 9829. 9862. 9868 . . 12 51 9383. 9413. 9575. 9819 . . Genera I. 27 9067 9283. 9403. 9643 9209 24 9406, 9409, 9423, 9502. 9007 55 9629 9507. 9601. 9763. 9817. 9547 9739 9787 9967 9 56 9182. 9314 9874 41 9319 25 9293. 9375. 9559. 9781. 57 9029. 9179. 9356. 9461. 9043. 9463. 9907 (*3*) 45 9659. 9836 9949 49 9871 9079. 9337. 9543. 9655. 59 9596 9199. 9343. 9883 ŞΙ 7 60 9131. 9257. 9572. 9875. 9769. 9778. 9838 55 939I 9031. 9094. 9109. 9123. 9103. 9127. 9619 9031. 9094. 9109. 9123. 9167. 9175. 9211. 9247. 9349. 9531(*3*). 9563. 9574(*3*). 9627(*3*). 9663. 9683(*3*). 9747(*3*). 9751. 9963(*3*). 57 6r 9533 9091. 9187. 9811 (*3*). 9859 62 9119 9151 63 9194. 9206. 9404. 9671. 9971 69 9511. 9587. 9931 9679 18 64 9521 9227. 9439. 9887. 9923 28 9137. 9327. 9604. 9634. 9649. 9886. 9895. 9903. 65 9959 · · · · · · · · · · · · 77 87 9631 66 9236. 9611 9323 9 | 67 9941 9943 • • • • • • • • • 9767 4 | 69 29 9098. 9148. 9244. 9532. . 9014. 9071. 9341. 9644 . . 91 9431. 9839 30 9001. 9076. 9147. 9271. 70 93 9203 9346. 9358. 9363. 9364. 9459. 9571. 9687. 9691. 71 9623 95 9161 72 97 9311 9299 9755. 9857. 9938. 9979 . . 16 75 9011 99 2 76 9764. 9929 IOI 9479 9866 4 77 32 9111. 9377. 9662. 9986 . . 105 9419- 9743 9026. 9281 33 9068. 9267. 9421. 9527. III 9059. 9803 6 8r 9749 110 **9791** 123 9467 Summa 265 . . 19580 9458. 9556. 9586. 9826. 120 9551 Irreg. 14. 133 9719 35 9279 9754 135 9491. 9851 36 9049. 9083. 9143. 9259. Genera IV. 139 9239 9347. 9379. 9395. 9451. 9497(*3*). 9668 6 9823 147 937I 7 9178. 9262. 9340. 9367. 10 165 9718. 9802. 9937 8 9087. 9088. 9118 (*2*). 9274. 9788 57 . . . 4401. 9524. 9567. 9908 3 9193. 9202. 9208. 9232. 9412(*2*). 9457(*2*). 9472. 9538. 9562. 9577. 39 9107. 9171. 9242. 9286. 9287. 9484. 9707. 9771. 9914. 9987 9667 10 40 9023. 9188. 9278. 9473 . . 9865 9157. 9277 13 9 9022. 9037. 9073. 9097. 41 9302........ 1 9172 9132. 9139. 9162. 9163 (*3*). 9342 (*3*). 9370. 9493. 9612 (*3*). 9615. 9622. 9013. 9307. 9388 9041. 9428. 9518. 9651. 9827. 9939. 9947 9433. 9508. 9991 16 9223. 9535. 9703 · · · · · 9003 (*3*). 9055. 9241. 9578. 9647. 9722 3 43 3 9678. 9772. 9832. 9843. 44 9047. 9602 9019 (*3*). 9251 (*3*). 9298. 9355. 9475. 9523. 9583. 9748 (*3*). 9783. 9853. 9898. 9925. 9958. 9411. 9437. 9626. 9899(*3*). 6 9997 10 9025. 9058. 9190. 9238. 11 46 9934 (*3*) 9038. 9351. 9407. 9721. 9034. 9133. 9466. 9487. 6 - 9289. 9517. 9553. 9573. 9759. 9983 19 9173. 9935. 9946 3 9628. 9732. 9793. 9808. 9661. 9727 47 48 9092. 9566. 9731. 9863 . . 9837. 9850. 9913. 9942. 9124. 9183. 9442. 9598. 20 9948. 10000 6 49 9221. 9335. 9599. 9677. 9697. 9892 9004. 9046. 9115. 9235. 5 11 9052. 9237. 9258. 9304.

Digitized by Google_

NACHLASS.

_	9322. 9402. 9447. 9496.	20	9039. 9054. 9062. 9081.		nera VIII.
	9670. 9738. 9753. 98x3.	İ	9169. 9500. 9503 (*2*).	4	9108. 9310. 9328. 9373.
	9970 13	1	9589. 9591. 9593. 9608.	1	9430. 9568. 9640. 9982.
12	9018. 9027. 9028. 9121.	1	9616. 9650. 9653. 9714.	5	9010. 9102. 9160. 9333.
	9142. 9153. 9186. 9207.	1	9796. 9992 17	-	9417. 9592. 9618. 9625.
l	9219. 9220 (*2*). 9228.	21	9036. 9126. 9197. 9201.	1	9685. 9688. 9717. 9730.
ļ	9243 (*2*). 9268. 9292.	}	9229. 9261. 9334. 9368.	1	9877. 9976 14
1	9295. 9297. 9378. 9387.		9392. 9414. 9481. 9489.	6	9040. 9042. 9045. 9072.
	9445, 9469, 9483, 9498.	1	9499. 9515. 9561. 9699.	1	9085. 9100. 9112. 9130.
	9505. 9522. 9526. 9550.	1	9708. 9710. 9770. 9774.	Í	9145. 9150. 9206. 9213.
1	9580. 9595 (*2*). 9652.	1	9855. 9909 22	ł	9265. 9270. 9288. 9300.
1	9673 (*2*). 9676. 9682.	22	9084. 9138. 9189. 9233.	l	9352. 9408. 9432. 9438.
İ	9700. 9706. 9745. 9762.	1	9245. 9305. 9317. 9441.	l	9465. 9492. 9552. 9585.
1	9835. 9872. 9916. 9922.	ł	9654. 9684. 9725. 9756.	l	9597. 9648. 9696. 9760.
j	9952. 9955(*2*). 9972(*2*) 43	1	9841. 9953. 9956. 99 62.	i	9790, 9804, 9810, 9828.
13	9082. 9117. 9249. 9255.	1	9999		9867, 9888, 9900, 9928.
1	9313. 9318. 9415. 9418.		9365. 9695. 9917. 9994 4		9940, 9990 38
1	9448. 9454. 9468. 9478.	24	9113. 9159. 9275. 9291.	7	9078, 9080, 9090, 9093,
	9514. 9549. 9557. 9637.	i	9308. 9399. 9422 (*2*).	1	9174. 9256. 9321. 9361.
Ì	9712. 9713. 9846. 9993 20	i	9426. 9474. 9488. 9519.		9381, 9453, 9462, 9528,
14			9579. 9641. 9666. 9728 15		9633. 9646. 9724. 9752.
1	9226. 9253. 9353. 9354.	25	9101. 9125. 9231. 9294.		9805, 9858, 9885, 9906, 20
	9436. 9501. 9529. 9542.		9530. 9584. 9609. 9830.	8	9016 (*2*). 9024. 9060.
ł	9642. 9658. 9664. 9757.		9981 9	1	9135. 9144. 9156. 9168.
l			9218. 9290. 9794. 9812.		9184. 9192. 9198. 9222.
	9988 21		20/01 27 4 4 4 4 5 1 4	1	9225. 9273. 9280 (*2*).
15		27	9008. 9050. 9074. 9164.	1	9285. 9312(*2*). 9348. 9372. 9393. 9394. 9400.
	9136. 9195. 9196. 9212. 9250. 9276. 9325. 9331.		9260 (*3*), 9369, 9374. 9509, 9704, 9726, 9831.	l	9424- 9460- 9485- 9486-
ł	9339. 9443. 9452. 9582.		9989 12		9490. 9510(*2*). 9513(*2*).
!	9639. 9766. 9777. 9795.	28	,,,,,	ĺ	9537- 9540 (*2*). 9588.
l	9822. 9882. 9904. 9921.		9716. 9734. 9881 (*2*).		96∞ (*2*). 9645. 9669.
	9969. 9978 26	ĺ	9926. 9980 9	ł	9702 (*2*). 9729. 9735.
16	9214 (*2*). 9216 (*2*).	29		l	9758. 9780. 9792 (*2*).
1	9248 (*2*). 9252. 9301.	1	9698. 9761 6	1	9816. 9856. 9860. 9930.
	9316 (*2*). 9544. 9610.	30	9005. 9035. 9056. 9077.	1	9975- 9984 • • • • 46
	9736. 9797. 9807. 9814.	١	9140. 9284. 9386. 9455.	9	9061, 9064, 9105, 9114.
	9848. 9961. 9985 15		9506. 9621. 9746. 9932.	-	9180. 9185. 9200. 9272.
17		1	9950	l	9390. 9420. 9450 (*3*).
1	9254. 9303. 9410. 9564.	31	9191. 9884	i I	9471. 9541. 9548. 9555(*3*).
ł	9606. 9711. 9852. 9893.	32	9104(*2*). 9224. 9344(*2*).	1	9630. 9657. 9705. 9709.
I	9897. 9919. 9965 15		9665, 9809 (*2*) 5	İ	9720 (*3*). 9825 (*3*).
18		33	9149. 9329. 9389. 9635.		9849 (*3*). 9889 23
l	9075 (*3*). 9154. 9234.	1		1	9020. 9128. 9152. 9210.
Ī	9315 (*3*). 9357. 9362.	34	9110. 9824. 9911 3		9330. 9338. 9366. 9440.
1	9376. 9385 (*3*). 9396.	35	9470	1	9525. 9534. 9594. 9620.
ł	9398. 9444. 9477. 9482.		9266 (*2*). 9476. 9779 · · 3		9636. 9741. 9750. 9798.
l	9495. 9558. 9603. 9675(*3*).	37	9854	l .	9821. 9834. 9918 19
l	9693 (*3*). 9715. 9723.	38		11	
1	9782. 9801 (*3*). 9844.	39	9896		9306. 9309. 9336. 9429.
	9873. 9891. 9910. 9915.	40		•	9456. 9681. 9737. 9786.
١	9964 31	41	9869	t .	9894. 9968
19		42	9434. 9686 2	12	
	9638. 9694. 9773. 9815.		Summa 416 30144	1	9264. 9324. 9425. 9435. 9464. 9504. 9516 (*2*).
i	9879. 9951. 9957. 9977 12	Irr	eg. 20(-2-). II(-3-)	ı	2444 204 2010 (.S.).

	DETERMINANTES NEGATIVI.		
9560, 9605, 9632, 9680(*2*). 9900, 9861, 9864, 9905, 9920, 9936, 9954, 9996 , 23 13 9545, 9594, 9842, 9966 , 4	Octingenti determ. neg. formae $-(15n+7)$. G.I(2793)	7	1282. 1297. 1387. 1507. 1807. 2017. 2062 12 502. 892. 997. 1117. 1237. 1372. 1402. 1597.
14 9096, 9269, 9296, 9350, 9380, 9416, 9581, 9789, 9944	3 67	8	2302. 2377. 2962. 3217.
15 9246, 9320, 9512, 9590, 9624, 9776, 9785	9 307(*3*). 367. 547. 907. 1087 5	9	922. 1132. 1147. 1207. · · · · · · · · · 9 · · · · · · · · ·
18 9044. 9656	13 607. 727		2227. 2437 (*3*). 2557. 2572. 2797. 2902. 3037. 3292. 3427. 3532. 5692 22
Irreg. 11 (*2*). 5(*3*) Genera XVI.	19 3607. 4327. 5527 3 21 1627. 1987. 2467. 2707. 2767. 3067. 3187. 3907.	10	937. 1492. 1522. 2407. 2452. 2527. 2722. 2857. 3007. 3412. 3697. 4057. 4162. 4372. 4852
3 9030. 9048. 9177. 9281. 9384. 9480. 9520. 9570. 9672. 9870. 9933	5107. 5647 10 23 1447. 3847	II	1942. 2182. 2662. 2677. 2917. 3637. 3802. 4957. 5077. 5212. 6127. 6637 12
4 9120. 9165. 9345. 9360. 9405. 9690. 9744. 9765. 9768. 9880. 9912. 9945.	4987. 6007. 6427. 7027. 9067. 10627 9 29 2287. 7207. 7687 3	12	1732. 1762. 1777. 2107. 2587. 2692. 2827. 2947. 3127. 3202. 3742. 3787. 4132. 4222. 4267. 4387.
5 9009. 9576. 9660, 9840 4 28 1680.	31 3727. 8647		4657. 4747. 4867. 4882. 5182. 5587. 5707. 5947. 7417. 7492. 7522. 7987.
Genera XXXII. 2 9240	37 6367 1	13	4207. 4282. 5482. 6742. 6847. 6997. 8422. 8572.
Summam omnium classium p.p.p. 72549 exsp. 72572	41 11047	14	8842. 9157. 9277. 10207. 11302 17 2932. 3022. 3457. 3487. 5422. 5602. 5812. 5887.
$\Sigma_{\gamma} V D 72775$ generum $p.p.p.$ 4595 exsp. 4594.9	6607. 8287. 8467. 8707. 9907 (*3*). 10267 9 47 7927. 11887 2 51 6907. 10687	15	6337. 8017. 8782. 9172 12 2092. 2602. 3142. 3517. 3667. 3877. 4087. 4357.
Irreg. 31(*2*). 32(*3*) 63 Quotiens maximus 1,729662 ex 9434. IV, 42 minimus	53 11287		4492. 4627. 5047. 5062. 5437. 6022. 6442. 6667. 6727. 6892. 6922. 7087. 7162. 7387. 7477. 7627.
o,2421048 ex 9823. IV, 6 Multitudo classium minor quam semissis radicis 244	69 10867 1 Irreg. 6	16	8227. 8677. 8812. 8947. 9307. 10147. 10732. 10957 32 2617. 3247. 4612. 4702. 6217. 7177. 8452. 8962.
minor quam radix maior semissi 566 maior radice 199	G. II (343) (10010) 1 22. 37 2 2 52. 82. 97. 142 4 3 157. 172. 187. 202. 247.	i	10327, 10462, 11617 11 4762, 4927, 5197, 5287, 5557, 6037, 6502, 6652,
	262. 277. 397. 427. 652 . 10 4 292. 337. 382. 457. 562. 577. 772. 862 8 5 412. 757. 847. 877. 982 . 5		6982. 7132. 7327. 7402. 7642. 7702. 8047. 8317. 10042. 11482 18 4297. 5737. 5767. 5857(*3*).
	6 622. 667. 802. 1027. 1042.	18	6187. 6382. 6577. 6787.

NACHLASS.

	NACHLASS.	
7057. 7267 (*3*). 7732. 7807. 8107 (*3*). 8212. 8347. 8407. 8482. 8737. 8767. 10747(*3*). 10882. 11257. 11347. 11707 24 19 4252. 4597. 4822. 5722. 6172. 9487. 9727. 10597.	2482. 2512. 2752. 2872. 2977. 3052. 3232. 3337. 3577. 3592. 3652. 3892. 3937. 3997. 4012. 4117. 4192. 4237. 4417. 4432. 4477. 4537. 4552. 4642.	12 5617. 6562. 6877. 7042. 7552. 7957. 8392. 8722. 9142. 9292. 9652. 9682. 9922. 9952. 10237. 10387. 10612. 10672. 11017. 11542. 11737. 11917
10837. 11062. 11197. 11677 12 20 3442. 4177. 7012. 8542. 9442. 9697. 9892. 10162. 10177 9	5842. 6157. 6262. 6307. 6352. 6472. 6682. 6862.	10117. 11632 6 14 8032. 9217. 9757. 11662. 11842 5 15 8797. 10072. 10507 3
21 5242. 5932. 6487. 7147. 7447. 8182. 8332. 9397. 9427. 9607. 9862. 10012. 10102. 10342. 10927. 11002. 11227. 11317. 11767. 11962 20	7 2497. 2782. 2812. 3097. 3112. 3277. 3352. 3562. 3982. 4582. 4732. 5122. 5137. 5302. 5902. 5977.	16 10282. 10897. 11392 (*2*). 11857
22 6082. 6772. 7297. 7537. 7822. 9742. 9847. 11167 . 8 23 6277. 6397. 7237. 7717. 8902. 9382. 10522. 10762 . 8	6142. 6517. 7792. 9262. 9367. 9802. 9937 23 8 3262 (*2*). 3682. 3757. 3772. 3832. 4402. 4672(*2*).	2632. 2737 6 3 2992. 3157. 3952. 4522. 5032. 5797. 6097. 6232.
8902. 9302. 10522. 10702	4777 (*2*). 5002. 5017. 5257. 5392. 5572. 5632. 5752. 5917. 5962. 6052(*2*).	6832. 7912 10 4 3472. 4312. 5152 (*2*). 5992. 6622. 6952. 7072(*2*). 7672 (*2*). 8437. 8512.
25 10477	6757. 6817. 7252. 7312. 7357. 7582 (*2*). 7597. 8122. 8197. 8257. 8497. 8992 (*2*). 9202. 9232.	8932. 9982. 11152. 11872 14 5 5512. 7192. 7462. 7657. 7777. 8632. 9592. 9877. 11242. 11362. 11557 11
28 11497	9412 (*2*). 9457 (*2*). 9472. 9562. 9577. 10132(*2*). 10312. 10537. 10642. 11092. 11377. 11512, 11572. 11797 50 9 4042. 4072. 4147. 4837.	6 8272. 9112. 9352. 10192. 10582. 10792. 10912. 11032. 11077. 11137. 11752. 11977 12 7 8602
Irreg. 6 G. IV (310) (9688) I II2. 232 2	5542. 5677. 5782. 5872. 6322. 6412. 6457. 7102. 7117. 7372. 7852. 7942. 8062. 8092. 8152. 8242(°3°).	Omnia gen. 2451 exsp. 2445,10 omnes class. 24347 exsp. 24358,82 8n3068 8n+43010 8n+23062 8n+63034} 6096
2 217. 322. 352. 442. 532. 592. 697. 742. 1012 9 3 472. 517. 637. 682. 817. 1072. 1162. 1177. 1192.	9832. 9997. 10222. 10252(*3*). 10717. 10822.	8n + 6 3034 8n + 1 3076 8n + 5 3026 8n + 3 3033 8n + 7 3038 6071
1222. 1432. 1612 12 4 712. 832. 1057. 1312(*2*). 1357. 1417. 1462. 1477. 1537. 1552. 1582(*2*). 1717. 1792. 1897. 1912. 1957. 2077. 2212. 2242.	11407.11692.11782.11992 40 10 4462.4807.5092.5332. 6292.6592.6712.6802. 6937.7432.7897.8077. 8137.8302.8557.8617. 8692.8857.8977.9517.	8n + 73038 $7n1153411$ $7n + 11153009$ $7n + 2142975$ $7n + 4142993$ $R73438977$
2272. 2322. 2542 (*2*). 2842. 3172 (*2*). 3322. 3502 (*2). 3712 27 5 1102. 1342. 1702. 2032. 2152. 2422. 3082. 3367.	10057. 10087. 10297. 10402.	7n+31143979 7n+51143998 7n+61143982 N7342.11959 Classes impr. 4049
3382. 3397. 3817. 3922. 4102. 4342. 5272. 537 16	9052. 9322. 10417. 10492.	Proprise cum impropriis

DETERMINANTES NEGATIVI. 1418. 1828. 2111. 2108. 10198. 11173 Octingenti det. neg. 2578. 2878 10 20 1018. 1228 (*3*). 1363. 3748. 5143. 6223. 6718. formae -(15n+13)6898. 7063. 7423. 8098. G. I.... (91) (2561)1468. 1603. 1843. 1933. 8158. 9598. 10063. 10513. 3 43. 163 10993. 11428. 11953 . . . 15 1963. 2023. 2038. 2053. 103 2188. 2443. 2458. 2563(*3*). 4198. 6133. 6508. 6523. 223. 343. 463. 7213. 7318. 7948. 7978. 2923. 2998. 3238. 3523. 283. 643. 823. 883. 1423. 3628. 3733. 3763. 4348. 8518. 9613. 9733. 9868. 1303 10093. 10123. 10363. 10378. 4678. 5413 2143 10453. 10828. 11023. 11068. 1678. 1753. 1858. 2473. 523. 1123. 1723. 2203. 2638. 2743. 2818. 2983. 11263. 11323. 11878 23 2683 3028. 3103. 3118. 3508. 5113. 5953. 5983. 7663. 1663. 1783 4153 7783. 7873. 7903. 7993. 1063. 1543. 3343. 3463. . 11 1693, 1903, 2263, 2623. 8713.10273.10708.11668. 1483. 2083. 2503. 4603. 2863. 3418. 3703. 3868. 11758 5923 3958. 4918. 5098. 8023. 23 5788. 8278. 8293. 8893. 4783. 6703 8143 9973. 10423. 10618 5023. 5503 12 1993. 2098. 2323. 2593. 4798. 6943. 7003. 7108. 2803. 3163. 3643. 3943. 8083. 8503. 8683. 8818. 2713. 2953. 3283. 3313. 4243. 4363. 4483. 4723. 4903. 5443 (*3*). 6043. 9763. 10843. 10963. 11143. 3403. 3433. 3778. 3883. 11203 11353.11563 4063. 4258. 4273. 4513. 6763. 6883. 7723 (*3*). 8563. 8803 (*3*). 11383 . 17 4843. 5188. 5233. 5758. 10783. 11548 5938. 6073. 6238. 8068 . 8788. 9778. 9838 8203. 11683 (*3*) 26 2383. 3583. 3823. 5743. 13 2218. 2428. 2908. 3373. 8863 3613. 3853. 3898. 4093. 28 9943. 10078. 11038. 11593 . 11863 9148 4618. 4933. 5383. 5818. 4423. 4663. 5623. 5683. 5878. 6598. 7078. 8383. 9358. 11623 30 6163. 6343. 6823. 7603. 8743. 10333. 10543 . . . 31 11983 8443. 9283. 9403. 9643. . 12 14 3673. 3988. 4078. 4183. 10183. 10468 32 11503 4468. 4948. 5218. 5263. 11338 4003. 7243. 7963. 11743. 6103. 6388. 6658. 6673. 11833 11923 7438. 7753. 7858. 8233. 10903 8353. 11113. 11278 . . . G. IV (320) (10088) 43 8263 1 88. 133. 253 15 2518. 3148. 3223. 4138. 5323. 5563 (*3*). 9043. 4813. 5203. 5398. 5653. 5803. 6268. 6403. 6463. 2 208, 238, 328, 418, 448. 9463. 10243. 10663. 553. 568. 598. 658. 793. 10723 (*3*). 11083 . . . 6778. 6988. 7123. 7303. 8623. 9343. 9883. 10303. 7363. 7468. 7483. 8053. 3 493. 688. 748. 808. 913. 11443 8458. 8698. 9013. 9388. 973. 988. 1048. 1258. 8923. 9103 10483. 10588 1558. 1708. 1978. 2608. . 13 26 2833. 4993. 6178. 6628. 868. 1078. 1168. 1393. 1408. 1498. 1513 (*2*). 7183. 7393. 8548. 8578. G. II (340) (10110) 9433. 9508. 10558 11 1528. 1633. 1738. 1813. 1 13. 28. 58 1918 (*2*). 2248. 2353. 73. 148. 193 3253. 4303. 5308. 5578. 118. 268. 298. 358. 403 2368. 2533. 2773. 2788(*2*). 7333. 7558. 8038. 9223. 2893. 3088. 3193. 3298. 178. 313. 388. 478. 583 . 9703 18 3043. 3793. 4963. 5458. 5998. 6283 (*3*). 6418. 6553. 6583 (*3*). 6793. 373. 508. 538. 613. 853. 3448 8 1273. 1333. 1378. 1573. 1093. 1213. 1318 433. 628. 673. 718. 763. 1648. 1798. 2158. 2173. 7543. 9298. 9523. 9583. 9748(*3*). 10003. 10018. 898. 1003. 1033. 1108. 2398. 3133. 3178. 3388. 3928. 3973. 4558. 4873. . 1138. 1198. 1243. 1588. 10228. 10603. 10753. 1888, 2068, 2278, 2338. 1618. 1873 15 2413. 2488. 2548. 2653. 10798 (*3*), 11698 703. 733. 778. 838. 1183. 5158. 5638. 6373. 6733. 1453. 1948. 2293 8 19 2668. 2698. 2758. 2938. 3073. 3208. 3268. 3478. 7573. 7933. 8983. 9133. 943. 958. 1153. 1348.

Digitized by Google

NACHLASS. DETERMINANTES NEGATIVI. 8428. 9028. 9268. 9673(*2*). [Det. in cent. 10000 formae 15 n] 3598. 3658. 3718. 4018. G. VIII (3) (2464) 4033. 4108. 4123. 4168. 10048, 10258, 10348, 10768. 11008. 11218. 11308. 11488. **∡8** 4288. 4393. 4438. 4453. 999975 11578.11788.11908.11998 4708. 4753. 4768. 4978. 63 999945 G. XVI 13 8938. 9313. 9418. 9448. 5083. 5128. 5173. 5293. 999930 5338. 5518. 5548. 5713. 5728. 6028. 6433. 6493. 9478. 10498. 10678. 10918. (3) (2224) 11098. 11518 10 39 999915 *44 14 6478, 7138, 9253, 9658. 6913. 7018. 7093. 7228. 999900 999990(*2*) 7813. 8248. 9823 9988, 10573. 10633. 10933. G. XXXII ... (1) (576) 2008. 3538. 3568. 3838. 11233. 11728 10 15 8368. 10408. 10813. 11413. 18 4213. 4333. 4498. 4543. 999960 4573. 5038. 5488. 5608. 11773 104 4264 5833. 5863. 6013. 6193. Impr. 592 G. VIII (48) (1600) 6253. 6538. 6568. 6973. 2 1288, 1768, 2128, 2233. 7198. 7408. 9178. 9718. Quotiens <+< <1<] 10858. 10873 2968. 4048 in Cent. 11 Det. 24 . 1 . 56 . . 19 2848 (*2*). 3013. 3058. 3328. 3358 (*2*). 3493. 4228. 4318 (*2*). 4633(*2*). 4738. 5008. 5248 (*2*). 3 2728. 3553. 3913. 4648. 4888. 5278. 6448 12 28 21 13 21 21 4 3808. 5593. 5698. 5848. 6118. 6328(*2*). 6688(*2*). 14 16 57 15 21 62 17 5428. 5533. 5668. 5908. 6148 (*2*). 6208 (*2*). 6868 (*2*). 6958 (*2*). 6853. 7378. 8398. 8848. 16 22 56 22 8968. 9328. 9373. 9568. 10168 (*2*). 10528 (*2*) 17 29 52 19 18 25 18 57 7033. 7168. 7288. 7588. 10948. 11368. 11713 (*2*) 19 22 14 5 4408. 5368. 6808. 9688. 7648. 7828. 8308. 8338. 6**1** 20 21 18 8638 (*2*). 8653. 8878(*2*). 9088. 9118 (*2*). 9193. 10153. 10738 21 18 62 20 7888. 8533. 9928. 10318. 18 22 19 11473. 11968 9208. 9538. 10033. 10138. 23 19 61 20 11533. 11848 7 8113. 11128. 11248 18 24 27 55 3688. 4378. 4528. 4588. 25 3 I 51 18 G. XVI (1) (32) 4693. 4828. 5068 (*3*). 26 26 20 5773. 6313. 6359. 6643. 27 30 19 6748. 7258. 7513. 7528. 7678. 7693 (*3*). 7708. Summa G. 2451 Cl. 24391 28 27 20 Irreg. 37 impr. 4075 57 58 29 23 20 7738. 7918. 8188. 8218. 18 30 8323 (*3*). 8488. 8668. 117 24 20 8908. 8998. 9073. 9163(*3*). 15n + 7,13118 20 19 9493. 9853. 9898. 9958. 78 115 . 3435 ... 230 .. 6846 119 15 10213. 10288. 10393. 10693. 71+1..114..2988...229.. 5997 120 19 11158. 11188. 11608. 11803. 78 + 2..114..2987...228.. 5962 11818.11893 78+4..114..2994...228.. 5987 4858. 5053. 5473. 5968. 6058. 6088. 6613. 7153. $R_7 \dots 342 \dots 8969 \dots 685 \dots 17946$ 7n + 3..114..4005...228...79847273. 7453. 7498. 7798. 78+5..114..3975...228.. 7973 8128. 8173. 8473. 8593. 7n + 6..115..4007...229...7989N7 ... 343 . 11987 ... 685 .. 23946 8608. 8758. 8773. 8833. 8953. 9058. 9238. 9553. Omnes . 800 . 24391 . . 1600 . . 48738 9628. 9793. 9808. 9913. 10108. 10438. 10888. 10978. Quot. min. 0,2349782 ex 163,2608 11053. 11293. 11398. 11458. max. 0,7354322 ex 11833 Det. formae 37 -(15n+13)..68305271128278728. 10648. 11638. 11653 -(15n + 7)...69 316 264 130 21 5353. 5893. 6838. 6928. 0,3 0,4 0,5 0,6 7048. 7348. 7633. 7843.

DETERMINANTES NEGATIVI, POSITIVI.

De	terminan	tes	Determinantes	Centas 2.	Centas 3.
	negativi.		positivi.	Excidunt 4.	G. I
				G. I (11)	1 233. 241. 277
in Cent	. Quotiens		Centas I.	1 109. 113. 125.	281. 293
	. 1,271998 ex	det So	Excidunt determinan-	137. 149. 157.	
	. 0,2626128	58		173. 181. 193	3 229. 257. 269
	•	194	tes quadrati 10.		G. II
2	1,435917	163	G. I (12)	3 101. 197	1 201, 202, 206
	0,2349782 1,685723	2141	I 2. 5. I3.	G. II (41)	211. 212. 213.
22	0,2808228		17. 29. 41.	1 103. 106. 107.	214. 217. 218.
	1,645848	2143 2246	53. 61. 73.	103. 106. 107.	229. 236. 237.
23		. ,	89. 97	118. 122. 124.	239. 242. 243.
••	0,2923654	2293	3 37	127. 128. 129.	
24	1,479278	2369	3 3/	, ,	244. 245. 249. 250. 251. 253.
	0,2897240	2335 2609	G. II (51)	131. 133. 134.	261. 262. 263.
27	1,6445315	2683	1 3. 6. 7.	139. 142. 151. 153. 158. 161.	265. 268, 271
-0	0,2895883	2789	8. 10. 11.	162, 163, 164.	278. 283. 284.
28	1,5527075	2783	12, 14, 18,	166. 167. 172.	292. 297. 298
	0,3030216 1,5778996	2783	19. 20. 21.	174. 177. 179.	2 205, 221, 274
29		2893	22. 23. 26.	185. 188. 191.	1 ''
	0,2974718		27. 28. 31.		3 233. 226. 254. 291
30	1,604748	2939 2968	32. 33. 38.	199 2 145. 146. 178.	
	0,2936893	9026	43. 44. 45.	194	G. IV
91	1,684117	9020	46. 47. 50.	3 141. 148. 189	1 203. 204. 207.
	0,2835515	9007	52. 54. 57.	3 141. 140. 109	215. 216. 222.
92	1,586777		58. 59. 62.	G. IV (40)	228. 230. 232.
	0,2717044	9157 9281	65. 67. 68.	I 102. 104. 105.	234. 238. 246.
93	1,660820	-	69. 71. 74.	110. 111. 112.	247. 248. 252.
	0,2699414	9277	76. 77. 83.	114. 115. 119.	258, 259, 260,
94	1,518533	9371	85. 86. 92.	123. 126. 130.	266. 267. 270.
	0,2893063	9367	93. 94. 98.	132. 135. 136.	272. 273. 275.
95	1,72966	9434	2 34. 82	138. 140. 143.	276. 279. 282.
- 1	0,3287980	9472	3 79	147. 152. 154.	285. 286. 287.
96	1,689400	9539	3 79	155. 156. 159.	290. 294. 295.
	0,3269906	9577	G. IV (27)	160. 165. 170.	296. 299. 300
97	1,707014	9686 9667	I I5. 24. 30.	171. 175. 176.	2 219. 220. 224.
	0,2440986		35. 39. 40.	180. 182. 183.	288
9 9	1,650848	9869	42. 48. 51.	184. 186. 187.	3 235
	0,2420048	9823	55. 56. 60.	190. 192. 198.	, , , , ,
100	1,702214 0,2808862	9974	63. 66. 70.	200	G. VIII
	•	9937 11681	72. 75. 78.		1 210. 231. 240.
117	1,6654535		80. 84. 87.	G. VIII (4)	255. 264. 280
0	0,2964744	11650	88. 90. 91.	1 120, 150, 168.	255. 204. 200
t 18	1,810938	11714	95. 96. 99	195	}
	0,294621	11797	. 73' 7°' 77'	•70	•.
119	1,579112	11864 11863			
	0,2846194	•	i		
120	1,5326965	11921			
	0,3287433	11992			

NACHLASS. DETERMINANTES POSITIVI.

Centas 9.	Centas 10.	1	
G. I (7)	G. I (6) (8)	G. I	
r 809. 821. 853.	1 929. 937. 941.	1	313. 317
857. 881	953- 977	3	349. 373. 389.
3 829. 877	3 997)	397. 5 57. 6 77.
3 029. 0//	3 777	<u> </u>	701. 709. 733.
G. II (32)	G. II (38) (130)	ł	757. 761
r 801. 811. 823.	r 907. 908. 911.	5	40I
827. 833. 838.	913. 917. 919.	7	-
844. 845. 849.	921. 922. 926.	,	577
859. 862. 863.	932. 947. 949.	G. II	
865. 869. 873.	956. 958. 964.	1	407 404 40H
878. 883. 886.	965. 967. 971.	•	301. 302. 307.
887. 889. 893	972. 974. 981.	2	309. 311. 314.
2 802. 818. 866	983. 989. 991.	1	305
	998	3	316. 321. 325.
3 813. 837. 839. 842. 892	2 914	١ .	326
	3 905. 909. 916.	5	727
5 817 6 898	925. 933. 934.	G. IV	
14 (841)	973. 985. 993	U. 1V	0
14 (041)			303. 304. 308.
G. IV (52)	5 982 6 901		310. 318. 319.
I 803. 804. 805.	[15 961]	!	320. 327
806. 807. 808.	[12 30.7]	2	306. 322. 323
810. 814. 815.	G. IV (40) (224)	G. VIII	
822. 824. 825.	т 902. 918. 923.	1 - 1 - 1 - 1 - 1	
826. 830. 831.	927. 928. 931.	I	312. 315
872. 874. 875.	938. 942. 944.		
836. 843. 846.	945. 946. 948.		
847. 848. 850.	950. 951. 954.		
851. 852. 854.	955. 957. 962.	1	
856. 860. 861.	968. 969. 970.		
864. 867. 868.	976. 978. 980.		
871. 872. 875.	986, 988, 995,		
879. 882. 885	996. 999. 1000	i	
2 812. 820. 828.	2 939- 943- 959-	ŀ	
876. 884. 890.	963. 979. 992	ł	
891. 896. 897	3 906. 940	l	
3 874. 894. 895.	4 904 994	İ	
899	7 7-4 774	l	
099	G. VIII (16) (144)	1	
G. VIII (8)	1 903. 912. 915.	Ì	
r 816. 819. 855.	920. 924. 930.	ì	
858. 888	935. 936. 952.	1	
2 870. 880. (900)	966. 975. 984.	1	
2 0,0. 000. (900)	987. 990	1	
G. XVI (r)	2 910. 960	1	
1 840		1	
* 040	Summa 370	ţ	

T A F E L

ZUR

CYKLOTECHNIE.

II.

NACHLASS. ZERLEGBARE aa+1.

2	5	119	73-97	500	53-53-89	1341	73.109.113	3405	29.29.61.113
3	5	123	5.17.89	507	5.5.53.97	1385	41.149.157	3458	5.73.181.181
4	17	128	5.29.113	512	5.13.37.109	1393	5.5.197.197	3522	29.37.53.109
	13	129	53.157	515	13.101.101	1407	5.5.17.17.137	3532	5.5.17.149.197
5 6	37	132	5.5.17.41	524	37.41.181	1432	5.5.5.5.17.193	3583	5.13.17.37.157
7	5.5	133	5.29.61	538	5.13.61.73	1433	5.29.73.97	3740	41.41.53.157
8	5.13	142	5.37.109	557	5.5.5.17.73	1467	5.29.41.181	3782	5.5.29.109.181
9	41	157	5.5.17.29	560	53.61.97	1477	5.13.97.173	3793	5.5.53.61.89
10	IOI	162	5.29.181	568	5.5.5.29.89	1560	17.37.53.73	3957	5.5.13.13.17.109
11	61	172	5.62.97	577	5.13.13.197	1567	5.41.53.113	4193	5.5.5.5.5.29.97
12	5.29	173	5-41-73	599	17.61.173	1568	5.5.5.13.17.89	4217	5.13.29.53.89
13	5.17	174	13.17.137	606	13.13.41.53	1597	5.37.61.113	4232	5.5.41.101.173
14	197	182	5.5.5.5.53	616	13.17.17.101	1607	5.5.13.29.137	4246	13.17.29.29.97
15	113	183	5.17.197	621	29.61.109	1636	17.29.61.89	4327	5.89.109.193
17	5.29	185	109.157	657	5.5.89.97	1744	137.149.149	4484	17.89.97.137
18	5.5.13	191	17.29.37	660	37.61.193	1772	5.17.17.41.53	4535	17.53.101.113
19	181	192	5.73.101	682	5.5.5.61.61	1818	5.5.5.137.193	4545	13.37.109.197
21	13.17	193	5.5.5.149	684	13.17.29.73	1823	5.17.113.173	4581	13.53-97.157
22	5.97	200	13.17.181	693	5.5.5.17.113	1832	5.5.17.53.149	4594	13.17.29.37.89
23	5.53	211	113.197	697	5.13.37.101	1893	5.5.13.37.149	4662	5.13.13.17.17.89
27	5.73	212	5.89.101	701	17.97.149	1918	5.5.37.41.97	4747	5.17.41.53.61
28	5.157	216	13.37.97	743	5.5.61.181	1929	13.13.101.109	4906	13.53.181.193
30	17.53	233	5.61.89	746		1955		4937	
31	13.37	237	1 - 1	757	13.13.37.89	1984	13.29.37.137	4952	5.73.173.193 5.37.41.53.61
32	5.5.4I	239	5.41.137 13.13.13.13	772	5.5.73.157	2010	13.29.53.197	5053	
33	5.109		• • •		5.13.53.173	2013	13.17.101.181	5087	5.13.41.61.157
	13.89	242	5.13.17.53	776	73.73.113	2013	5.29.89.157		5.17.29.29.181
34	1	251	17.17.109	1	13.137.173		5.5.29.41.137	5257	5.5.13.17.41.61
37 38	5.137	253	5.37.173	798	5.13.97.101	2042	5.29.149.193	5283	5.13.17.73.173
	5.17.17	255 265	13.41.61		5.5.5.53.101	2059	13.41.41.97	5357	5.5.61.97.97
41	29.29	268	13.37.73	829	17.17.29.41	2153	5.13.181 197	5443	5.5.5.5.137.173
43	5.5.37	11 -	5.5.13.13.17	853	5.13.29.193	2163	5.13.17.29.73	5507	5.5.13.13.37.97
44	13.149	278	5.13.29.41	1	5.5.29.29.37	2191	89.149.181	5648	5.17.53.73.97
46	1 /	293	5.5.17.101	905	13.17.17.109	2309	13.53.53.73	5667	5.29.37.41.73
47	5.13.17	294	13.61.109	919	37.101.113	2350	17.17.97.197	5701	29.53.97.109
50	1 ' -	302	5.17.29.37	922	5.17.73.137	2428	5.41.149.193	5767	5.13.17.101.149
55		307	5.5.5.13.29	924	53.89.181	2436	13.13.13.37.73	5928	5.29.29.61.137
57	1	313	5.97.101	931	13.17.37.53	2515	101.173.181	5962	5.13.29.109.173
68	13.3.3.3.	319	1	945	29.89.173	2540	1 7 - 7	6065	17.53.137.149
70	1 5 5 7	327	10	948	5.17.97.109	2547	5.37.89.197	6107	5.5.17.17.29.89
72	1	342	1	993	5.5.13.37.41	2621	13.37.37.193	6118	5.5.13.41.53.53
73	,	343	1	999	17.149.197	2673	10 0	6252	5.17.29.101.153
75 76		360		1032	5.5.13.29.113	2697	5.41.113.157	6481	17.37.173.193
76 80	1	378		1057	5.5.5.41.109	2738	5.13.29.41.97	6682	5.5.5.29.109.113
	3773	394		1067	5.17.37.181	2801	1	6898	5.13.17.17.17.149
81	1	401	1	1068	5.5.5.5.5.5.73	2818	5.5.5.17.37.101	6908	5.13.73.89.113
83	1	403	1	1087	5.13.61.149	2917	5.13.29.37.61	6943	5.5.5.29.61.109
91	1 *	408	5.13.13.197	1118	5.5.17.17.173	2943	5.5.5.5.13.13.41	6962	5.37.37.73.97
93	1	411	1	1123	5.13.89.109	3039	17.61.61.73	7093	5.5.13.17.29.157
98	10.	437	5.13.13.113	1143	5.5.17.29.53	3112	5.13.13.73.157	7161	17.101.109.137
99	,	438		1148	5.29.61.149	3141	13.13.17.17.101	7443	5.5.5.37.53.113
IOC	1.3 3.	443		1196	53-137-197	3149	17.29.89.113	7697	5.17.29.61.197
105	1 5	447	5.13.29.53	1228	5.17.113.157	3166	17.41.73.197	7782	5.5.13.17.97.113
111		463		1239	41.97.193	3207	5.5.29.41.173	8224	13.17.29.61.173
	1 / 70 700	11 460	5.113.193	1270	61.137.193	3323	5.13.29.29.101	8307	5.5.5.5.5.61.181
112	5.13.193	467 499	1	1303				8368	

ZUR CYKLOTECHNIE. ZERLEGBARE aa+1.

8393	5.5.13.29.37.101	20080	13.29.61.89.197	44179	13.13.13.17.17.29.53	104818	5.5.5.5.17.29.181.
8457	5.5.53.137.197	20457	5.5.13.29.149.149	44507	5.5.13.113.149.181	•	197
8578	5.37.41.89.109	21124	29.41.53.73.97	44733	5.89.101.113.197	106242	5.53.53.73.101.109
9133	5.17.37.89.149	21705	13.17.61.101.173	45050	13.41.109.181.193	109637	5.13.17.29.37.37.
9152	5.29.41.73.193	21907	5.5.29.29.101.113	45068	5.5.5.41.61.73.89	, ,,	137
9193	5.5.5.5.17.41.97	22008	5.41.109.149.157	46444	13.41.149.157.173	112595	17.29.41.53.61.97
9298	5.41.53.73.109	22157	5.5.13.37.137.149	46617	5.53.137.173.173	112782	5.5.17.37.41.109.
9431	17.97.149.181	22231	29.37.41.41.137	47403	5.13.29.37.89.181	,	181
9466	29.37.37.37.61	24263	5.13.17.41.73.89	47783	5.13.17.53.101.193	114669	17.37.53.53.61.61
9667	5.13.41.89.197	24331	13.17.89.101.149	48187	5.97.101.137.173	117251	41.97.101.109.157
9703	5.13.13.17.29.113	24778	5.29.149.157.181	48737	5.29.29.53.73.73	117307	5.5.5.13.149.157.
9762	5.17.37.157.193	24816	17.17.61.181.193	49083	5.13.17.73.109.137	,5-,	181
9872	5.13.13.29.41.97	25462	5.13.17.37.101.157	50052	5.17.41.41.89.197	117372	5.13.17.17.53.101.
9901	13.13.29.73.137	25523	5.53.73.113.149	51115	17.17.17.29.53.173	,,,,	137
10298	5.17.61.113.181	25683	5.13.17.17.97.181	51387	5.17.37.53.89.89	128482	5.5.17.29.89.101.
10312	5.29.53.101.137	25793	5.5.17.29.137.197	51412	5.17.61.61.61.137		149
10833	5.17.41.113.149	25943	5.5.5.13.29.37.193	51917	5.13.37.53.97.109	129553	5.13.13.17.61.61.
11018	5.5.157.157.197	26018	5.5.13.97.109.197	52571	37.41.61.109.137	""	157
11471	13.17.41.53.137	27493	5.5.17.17.17.17.181	54193	5.5.5.5.5.41.73.157	133749	13.13.37.53.137.197
11981	13.17.41.89.89	28205	13.29.73.97.149	54358	5.13.29.73.109.197	136293	5.5.17.41.53.89.113
12332	5.5.13.41.101.113	28322	5.13.13.13.13.41.137	54507	5.5.37.53.157.193	136404	13.17.29.97.173.173
12433	5.13.61.101.193	28862	5.17.17.53.73.149	57532	5.5.17.41.41.41.113	137717	5.13.53.89.157.197
12882	5.5.17.37.61.173	29757	5.5.41.61.73.97	66347	5.13.13.17.37.41.101	137883	5.13.17.29.29.53.
12943	5.5.5.5.13.13.13.61	30027	5.29.89.181.193	67333	5.17.53.61 73.113	0. 0	193
13043	5.5.17.17.61.193	30103	5.13.17.41.73.137	67852	5.13.37.89.137.157	141743	5.5.89.149.157.193
13068	5.5.5.53.149.173	30383	5.17.17.37.89.97	68463	5.13.17.113.137.137	143382	5.5.13.13.17.17.113.
13241	29.101.173.173	31752	5.17.17.37.109.173	71564	37.61.97.149.157		149
13252	5.13.13.37.41.137	32258	5.13.37.41.61.173	71700	13.29.37.41.89.101	145046	13.29.37.101.109.
13545	17.17.53.53.113	32406	17.17.17.37.53.109	72662	5.13.17.29.37.61.73		137
13918	5.5.13.37.89.181	32807	5.5.5.13.61.61.89	74043	5.5.13.37.37.61.101	145231	13.37.37.41.97.149
14140	17.29.37.97.113	32885	13.13.109.149.197	75382	5.5.13.17.73.73.193	148158	5.53.61.61.113.197
14318	5.5.5.13.17.41.181	32973	5.13.37.37.41.149	78629	13.17.41.41.53.157	148582	5.5.13.53.73.97.181
14573	5.17.73.109.157	33307	5.5.5.5.17.53.197	80593	5.5.17.17.17.137.193	150522	5.13.17.29.37.97.
14646	13.37.41.73.149	34208	5.13.13.17.29.53.53	80802	5.37-41.53.109.149		197
14773	5.13.13.29.61.73	34367	5.13.37.41.53.113	81141	13.61.137.157.193	155317	5.41.61.73.73.181
14942	5.13.13.37.37.193	35857	5.5.17.61.137.181	81749	13.17.17.53.97.173	157308	5.13.29.29.41.61.
14958	5.13.101.173.197	36673	5.17.29.37.73.101	83071	37.61.89.89.193		181
15075	13.17.53.89.109	37057	5.5.5.5.73.101.149	83247	5.13.13.13.29.73.149	157318	5.5.5.5.5.5.13.37
16513	5.29.53.113.157	37448	5.13.13.53.173.181	84141	13.29.29.41.53.149		37.89
16928	5.17.109.157.197	37770	13.17.29.41.61.89	85353	5.13.17.37.41.41.53	159772	5.37.53.101.149.173
17191	13.17.61.97.113	38326	29.37.41.173.193	86143	5.5.13.17.61.101.109	160590	29.29.29.89.109.109
17557	5.5.5.17.29.41.61	38807	5.5.5.17.37.61.157	88668	5.5.13.17.73.101.193	161832	5.5.13.13.29.37.53
17766	13.37.73.89.101	39082	5.5.41.73.137.149	88699	29.53.89.149.193	-60	109
17923	5.61.61.89.97	39307	5.5.5.13.13.13.29.97	88733	5.13.41.97.97.157	162014	13.17.73.89.101.181
18258	5.29.97.137.173	39818	5.5.5.5.17.37.37.109	88868	5.5.29.37.37.73.109	173932	5.5.5.5.5.13.73.101.
18432	5.5.5.17.29.37.149	40188	5.13.37.61.101.109	89361	29.37.137.157.173		_
18543	5.5.13.17.29.29.37	40515	17.53.61.109.137	89471 90212	13.13.41.41.73.193	174118	5.5.17.41.89.113. 173
19123 19283	5.29.37.173.197	41187	5.5.5.13.53.97.197	90212	5.13.37.89.193.197 5.5.13.17.61.89.137	177144	17.29.73.89.97.101
19326	5.37.37.157.173	41319	5.17.37.37.37.197	93020		180107	5.5.13.29.97.113.
19534	13.29.61.109.149 13.13.13.29.53.113	41688	13.41.101.101.157 5.17.41.53.97.97	93197	13.13.17.17.29.41.149 5.37.53.53.61.137		157
19653	5.37.61.109.157	42658	5.13.13.97.149.149	99557	5.5.5.5.41.41.53.89	181343	5.5.17.37.53.109.
19703	5.13.13.29.89.89	42932	5.5.5.29.29.89.197	99893	5.5.29.181.193.197		181
19902	5.73.89.89.137	43633	5.13.29.41.109.113	101343	5.5.13.29.41.97.137	181743	5.5.17.17.73.173.
			5.5.5.5.13.17.89.157		5.37.41.41.97.173	1 ,.2	181
-,,	J.: 1						

NACHLASS. ZERLEGBARE aa+1.

184133 | 5.29.73.101.101.157 500150 | 41.61.73.73.137.137 1477034 | 37.37.41.53.53.101.137 189782 5.5.13.61.89.137.149 508929 1518057 13.13.37.53.53.73.101 5.5.5.13.13.41.61.113.193 518734 1528649 190393 5.5.13.13.137.173.181 13.17.37.37.53.97.173 13.37.53.61.61.109.113 5.13.41.61.73.101.113 1615463 191407 5.5.13.13.17.37.61.113 520463 5.13.17.37.53.73.73.113 191807 5.5.5.13.17.41.109.149 534568 5.5.5.13.89.89.149.149 1618855 17.29.37.53.89.97.157 29.29,41.89.89.97.101 194708 5.5.29.41.73.101.173 538275 17.61.73.97.109481 1635786 548630 1664957 201106 | 17.17.61.89.149.173 37.41.89.109.113.181 5.5.13.37.73.89.113.157 208048 5.53.89.109.113.149 566793 5.5.17.29.29.41.97.113 1750507 5.5.13.53.53.89.109.173 1766693 210195 61.113.137.149.157 567923 5.13.17.17.17.41.109.113 5.5.5.5.5.5.29.97.157.173 5.5.17.29.97.109.113.113 210943 5.5.5.13.37.37.73.137 571459 13.13.13.13.17.37.61.149 1824257 586455 211765 13.13.17.17.41.53.89.193 13.17.53.89.137.157 29.41.73.89.113.197 1909461 606325 216676 13.29.41.97.173.181 13.37.97.137.149.193 1954207 5.5.13.61.61.89.113.157 607533 219602 5.17.37.37.37.53.89.97 5.17.17.53.53.109.109 5.17.29.73.97.97.109 1984933 617427 221382 5.5.13.73.101.113.181 5.13.13.17.29.53.89.97 2036069 17.41.41.61.61.101.193 228068 623888 2050706 5.5.5.17.29.61.101.137 5.13.37.41.113.181.193 13.17.17.17.41.53.157.193 232643 627391 2052057 5.5.13.13.13.41.61.197 41.41.53.113.113.173 5-5-5-5-5-5.5.17.29.73-97-193 662843 236151 | 17.17.41.89.137.193 2126007 5.5.17.29.29.181.181.193 5.5.17.113.137.173.193 247643 5.5.17.29.73.173.197 672717 2277387 5.13.29.29.53.89.89.113 5.89.97.157.173.193 249501 13.53.53.61.89.157 683982 5.5.17.29.61.61.101.101 2298668 5.5.13.13.17.17.29.37.37.109 5.13.17.17.89.109.173 700107 2343692 5.17.41.41.61.73.89.97 251103 5.5.13.17.41.53.137.149 256638 | 5.13.29.37.61.113.137 703175 2353918 5.5.13.17.29.29.61.113.173 13.17.17.29.97.149.157 260359 13.13.17.41.53.61.89 704683 5.13.29.61.97.113.197 2379723 5.13.29.37.53.53.97.149 262433 5.17.29.29.53.61.149 721068 5.5.5.5.17.29.109.113.137 5.5.5.5.13.17.41.53.89.111 2457057 263317 5.17.17.17.89.101.157 780262 5.17.17.29.37.41.61.157 2471717 5.37.41.109.137.149.181 263557 5.5.5.13.37.41.73.193 783568 5.5.5.5.17.29.101.109.181 2475918 5.5.17.53.61.157.157.181 265842 5.13.17.17.101.193.193 791532 5.5.53.89.149.181.197 2478328 5.13.29.37.89.97.101.101 793921 5.5.13.61.97.113.157.181 267657 5.5.41.41.61.89.157 17.17.17.29.73.157.193 2484968 281897 5.13.29.37.37.89.173 812447 5.29.29.41.89.137.157 2680168 5.5.29.61.73.109.137.149 5.5.13.13.53.53.61.113 286018 832902 5.13.13.13.17.109.173.197 2733307 5.5.5.5.5.5.13.13.13.17.37.173 287228 5.17.17.29.73.149.181 848871 29.53.73.113.157.181 2809305 13.17.29.37.37.61.73.101 5.17.17.37.89.97.181 289238 899168 5.5.17.37.53.73.97.137 2923783 5.13.17.37.41.109.149.157 292362 5.13.17.41.61.157.197 907567 5.29.37.41.89.109.193 2959007 5.5.17.37.97.101.157.181 5.5.5.5.41.53.181.181 298307 911111 17.41.101.173.173.197 3014557 5.5.5.5.5.5.5.41.53.53.10I 3025001 307939 13.29.61.101.137.149 936513 5.37.37.41.89.97.181 13.13.17.17.61.73.109.193 5.5.5.29.53.101.149.173 13.29.101.113.149.149 1000193 3136570 13.13.29.37.53.61.97.173 309070 320078 1010027 5.13.41.61.73.89.97 5.13.61.89.89.109.149 3139557 5.5.5.5.5.5.13.29.73.73.157 322392 5.13.17.41.89.149.173 1024240 37.61.109.157.157.173 3272693 5.5.5.13.37.41.101.137.157 5.5.5.5.5.13.29.37.41.61 1031675 5.13.13.13.13.41.73.97.137 330182 13.13.17.53.73.113.157.197 3370437 5.5.5.5.53.101.181.181 5.13.61.89.89.89.197 331068 1049433 3449951 13.13.13.53.61.89.97.97 5.5.5.5.13.13.13.37.61.181 383807 | 5.5.5.13.37.73.97.173 1059193 3637197 5.13.17.29.61.89.193.197 385692 | 5.13.17.61.89.137.181 1067157 5.5.41.113.157.173.181 3800438 5.13.29.29.97.101.149.181 5.13.29.41.89.101.109 3801448 1068182 389163 5.5.5.17.17.41.61.73.173 5.29.37.53.61.73.101.113 1083493 3815076 13.13.17.37.53.109.137.173 390112 5.13.17.17.17.17.17.17.97 5.5.13.61.61.61.73.109 1089593 5.5.61.89.149.149.197 3894873 5.13.13.37.89.101.137.197 403639 29.29.37.97.137.197 409557 5.5.5.5.13.13.73.73.149 1131527 5-41-53-53-73-97-157 3911450 29.29.41.97.137.173.193 3931663 5.13.29.37.41.109.137.181 1139557 5.5.5.5.5.5.5.17.37.73.**18**1 411787 5.17.17.53.97.101.113 418048 5.97.97.109.173.197 5.5.13.41.61.73.101.109 4000300 13.13.13.17.17.73.137.181.181 1143007 4079486 1197943 5.5.5.5.5.17.17.37.109.197 13.17.17.53.61.73.137.137 444753 5.53.109.113.157.193 5.5.5.5.5.13.13.29.53.197 447342 5.17.29.41.97.137.149 1264557 4218932 5.5.5.5.29.41.41.61.61.157 5.5.5.29.37.73.101.109 5.5.29.37.37.61.73.193 464307 1306143 4466678 5.13.17.73.97.109.149.157 5.17.53.109.137.157.173 4650839 465525 13.13.29.89.97.113.197 1351742 17.17.89.113.137.157.173 5.5.5.5.17.29.101.157.193 5.5.13.113.113.137.197.197 465694 13.13.17.29.73.181.197 1373307 4697282 5.29.41.41.113.181.193 478707 5.5.13.13.13.17.41.41.73 1387203 4751232 | 5.5.13.17.29.73.97.101.197 485298 5.13.13.13.13.29.29.37.53 1402232 5.5.17.37.41.113.137.197 4773557 5.5.5.29.29.41.113.149.157 5033696 | 13.17.37.37.89.89.97.109 494607 | 5.5.29.89.101.137.137 1413443 | 5.5.13.29.37.41.89.157

ZUR CYKLOTECHNIE. ZERLEGBARE aa+1.

```
5982670
                 13.13.13.17.41.53.53.53.157
                                                        23747457
                                                                   5.5.17.17.17.17.17.17.37.73.173
                                                       24208144
      6151956
                                                                   29.29.29.37.37.53.61.61.89
                 13.17.29.29.73.97.113.149
      6208047
                                                        24280807
                 5.17.17.17.17.29.41.41.197.197
                                                                   5.5.5.5.13.13.17.53.109.157.181
      6225244
                                                        24310918
                                                                   5.5.13.13.37.41.53.89.113.173
                 29.37.41.53.53.53.61.97
      6315768
                 5.5.17.17.53.61.73.149.157
                                                        31011557 5.5.5.13.17.61.97.109.137.197
      6356150
                13.29.37.37.61.61.109.193
                                                        32944452
                                                                 5.13.13.29.29.41.53.53.89.149
      6367252
                                                        34436768 5.5.17.61.97.101.137.173.197
                 5.13.17.29.29.61.73.97.101
      6656382
                                                        34602875
                 5.5.13.29.41.41.137.137.149
                                                                  13.17.17.29.37.53.113.137.181
      6817837
                 5.17.17.53.61.149.173.193
                                                        45500682
                                                                   5.5.5.37.53.53.61.89.149.197
      6829610
                13.17.17.53.61.101.193.197
                                                        53365057
                                                                  5.5.5.13.37.89.97.101.157.173
      6981694
                                                                  5.5.13.17.37.37.101.109.137.149
                13.41.97.137.181.193.197
                                                       58305593
      7138478
                 5.29.37.41.73.89.181.197
                                                        75505943
                                                                  5.5.5.37.37.53.89.137.149.173
      7620661
                5.17.37.73.101.101.137.181
                                                       95665578
                                                                   5.13.37.41.73.181.181.197.197
      7691443
                                                                   13.13.13.13.13.17.37.37.53.157.173
                5.5.5.37.53.97.101.109.113
                                                      111530944
      8082212
                5.13.17.17.37.53.97.101.181
                                                      121042733
                                                                   5.17.41.73.97.97.101.157.193
      8571779
                                                      160007778
                13.13.29.41.73.101.137.181
                                                                   5.13.13.17.17.29.29.73.73.149.157
      8809432
                5.5.5.13.89.101.149.181.197
                                                      167207057
                                                                   5.5.5.5.17.17.17.29.73.109.109.181
      9407318
                5-5-5-5-5-5-37-41-53-73-193
                                                      168623905
                                                                   13.13 13.13.17.29.29.37.89.97.109
      9548768
                                                      185507821
                5.5.13.13.17.41.53.61.61.157
                                                                   13.13.17.29.29.53.61.101.113.193
      9614382
                5.5.29.37.53.61.61.101.173
                                                      193788912
                                                                   5.13.17.17.37.37.37.53.73.101.101
      9639557
                5.5.5.5.5.5.13.17.17.53.109.137
                                                      201229582
                                                                   5.5.13.13.17.17.17.17.17.53.97.101
      9689961
                13.29.29.37.61.113.113.149
                                                      211823957
                                                                   5.5.17.17.53.101.137.149.157.181
     10328193
                                                      284862638
                                                                   5.13.17.17.17.17.29.29.41.41.97.109
                5.5.5.13.17.29.53.53.137.173
     10669731
                17.89.97.101.101.193.197
                                                      299252491
                                                                   13.29.37.97.109.109:113.157
     11131086
                                                      317742693
                                                                   5.5.5.13.29.41.73.89.137.149.197
                13.13.17.17.37.61.73.89.173
     12477035
                                                      327012132
                                                                  5.5.13.17.17.29.89.109.149.157.173
                17.17.17.29.29.29.37.97.181
                                                      599832943
                                                                  5.5.5.5.13.17.29.37.37.41.73 97.113
     12514913
                5.13.41.53.137.149.157.173
     12750353
                5.13.17.17.41.61.73.137.173
                                                      830426722
                                                                  5.13.13.61.97.149.157.173.173.197
     14698000
                                                                  5.17.17.61.73.113.157.173.173.181
                                                     1112115023
                13.13.17.17.29.61.97.149.173
     15165443
                                                     1282794079
                                                                   13.17.29.29.73.89.97.113.181.197.197
                5.5.5.5.37.53.61.97.101.157
     15986082
                                                     2189376182
                                                                   5.5.5.17.17.29.29.53.61.61.89.89.101
                5.5.13.17.109.109.137.157.181
     16317267
                                                                   5.5.13.17.29.41.53.53.113.149.157.181
                5.13.17.17.61.61.101.109.173
                                                     2971354082
     18378313
                                                     3955080927
                                                                  5.13.17.17.17.17.53.53.61.61.101.149.173.197
                5.13.13.17.37.61.137.193.197
                                                                  13.13.29.29.61.109.109.137.157.157.193
     18975991
                13.17.17.17.53.61.89.97.101
                                                     8193535810
     20198495
                13.17.41.89.101.101.137.181
                                                    14033378718
                                                                  5.5.13.13.17.17.61.61.61.61.73.73.157.181
     22866693 | 5.5.5.5.41.61.73.101.113.197
 13 5. 8. 18. 57. 239
    4. 13. 21. 38. 47. 268
    12. 17. 41. 70. 99. 157. 307
    6. 31. 43. 68. 117. 191. 302. 327. 882. 18543*
    9. 32. 73. 132. 278. 378. 829. 993. 2943
    23. 30. 83. 182. 242. 401. 447. 606. 931. 1143. 1772. 6118. 34208. 44179. 85353. 485298
    11. 50. 72. 133. 255. 438. 682. 2673. 2917. 4747*. 4952. 5257. 9466. 12943. 17557. 114669. 330182 27. 46. 173. 265. 319. 538. 557. 684. 1068. 1560*. 2163. 2309. 2436. 3039. 5667. 8368. 14773. 48737. 72662.
 73
       478707
    34. 55. 123. 233. 411. 500. 568. 746. 1568. 1636*. 3793. 4217. 4594. 4662. 6107. 11981. 19703. 24263. 32807.
 89
    37770°. 45068. 51387. 99557. 157318. 260359. 24208144
22. 75. 119. 172. 216. 463. 507. 560. 657. 1433*. 1918. 2059. 2738. 4193. 4246. 5357. 5507. 5648. 6962. 9193°.
 97
       9872. 17923. 21124. 29757. 30383. 39307. 41688. 112595. 320078. 390112*. 617427. 1984933. 2343692.
       3449051. 6225244
    10. 91. 111. 192. 212. 293. 313. 394. 515. 616*. 697. 798. 818. 1303. 2818. 3141. 3323. 8393. 17766. 36673*.
IOI
       66347. 71700. 74043. 173932. 177144. 508929. 683982. 1635786. 2478328. 2809305*. 3014557. 6367252.
       18975991. 193788912. 201229582. 2189376182
109 | 33. 76. 142. 251. 294. 360. 512. 621. 905. 948*. 1057. 1123. 1929. 2801. 3521. 3957. 5701. 6943. 8578. 9298*.
```

71

NACHLASS. ZERLEGBARE aa+1 UND aa+4.

l						
				. 88868. 106242. 160 8623905. 284862638	590. 161832°. 219602. 3	89163.464307.607533.
113	15. 98. 128.	427. 692.	776. 919. 1012. 114	11. 1567°. 1597. 314	9. 3405. 4535. 6682. (5908, 7443, 7782, 9703.
-3					7532. 67333. 136293*. 1	
- 1						
	520403. 50	0793. 5079:	23. 1528049. 10154	03. 1024257. 227730	37*. 2457057. 3801448.	7691443. 599632943
¥37					161. 9901. 10312. 11471	
	28322. 301	03*- 40517-	49083. 51412. 5257	71. 68463. 90657. 931	97. 101343. 109637. 11	7372". 145046. 210943.
-	228068. 25	6638. 49460	07. 500150. 721068	. 899168. 1477034. ;	3370434*. 4079486. 969	39557
149	44. 105. 192.	401. 701.	1087. 1148. 1744. 1	812. 1891 . 5767. 60	65. 6898. 9133. 10833	. 14646, 18432, 19326,
"					39082. 42658. 80802.	
ļ					39*. 309070. 409557. 4	
Ì					9961. 32944452. 58305	
57					7. 3112. 3583. 3740. 4	
1					4193. 67852. 715 64°. 1	
1	129553. 18	0107. 1841:	33. 210195. 211769	5. 249503. 263317 [*] .	267657. 703175. 7802	162. 812447. 1131527.
Į	1413443. I	618855. 166	4957. 1954207. 292	3783*. 3139557. 323	72693. 4218932. 44666	78. 4773557. 5982 67 0.
			165443. 16000778*.		, ,, ,, ,,	
173					5283. 5443. 5962. 8224	4. 12882. 12068. 12241.
73					115. 81749. 89361*. 10	
	10250 . 19		31/32. 32230. 4 042		113. 01/49. 09301 . 10	
					18734. 627391. 10001	
	1351742. 1	750507. 176	00093. 2353918. 273	3307*. 3130570. 381	5076. 4650839. 961438:	2. 10328193. 11131086.
_ /	12514913.	12750353. 14	4698000. 1631 <i>7</i> 267*.	23747457. 24310918.	53365057. 75505943.	111530944. 327012132
181	19. 162. 200.	343. 524.	743 . 924. 1067. 146	7. 2010 [*] . 2191. 2515	. 3458. 3782. 5087. 830	7. 9431. 10298. 13918.
					82. 117307. 148582*. 1	
ļ					3307. 331068. 385692. 5	
					75918. 2484968. 295900	
					20198495. 24280807.	340020/3. 10/20/05/.
			3. 2971354082* . 14			
103	81. 112. 407.	660. 853.	1239. 1270. 1432. 1	XIX. 2042 T. 2428, 21	12I. 2202. 4227. AQOD. A	LQ27. D48I. QI52. Q7D2.
,,	12433*. 13				47783. 54507. 75382*.	
,,	88668. 886	043. 14942. 99. 89471.	. 24816. 25943. 30 137883. 141743. 23	027. 28326. 45050. 6151. 263557*. 26588	47783. 54507. 75382*. 42. 444753. 606385. 62	80593. 81141. 83071. 3888. 662843. 672717.
,,	88668. 886	043. 14942. 99. 89471.	. 24816. 25943. 30 137883. 141743. 23	027. 28326. 45050. 6151. 263557*. 26588	47783. 54507. 75382*. 42. 444753. 606385. 62	80593. 81141. 83071. 3888. 662843. 672717.
,,	88668. 886 793921. 90	043. 14942 99. 89471. 97567. 130	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307°. 13	027. 28326. 45050. 6151. 263557*. 2658 87203. 1518057. 190	47783. 54507. 75382*. 42. 444753. 606385. 62 09461. 2036069. 205076	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007.
	88668. 886 793921. 90 3025001. 3	043. 14942 99. 89471. 97567. 130 911450. 63	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9	027. 28326. 45050. 6151. 263557*. 2658 87203. 1518057. 190 407318. 121042733.	47783, 54507, 75382*, 42, 444753, 606385, 62 09461, 2036069, 205070 185507821, 8193535810	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007.
197	88668. 886 793921. 90 3025001. 3 14. 183. 211.	043. 14942 99. 89471. 07567. 130 911450. 63 408. 577.	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393.	027. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 190 407318. 121042733. 1984. 2153*. 2350.	47783, 54507, 75382*, 42, 444753, 606385, 62 09461, 2036069, 205070 185507821, 8193535810 2547, 3166, 3532, 45	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 0 45. 7697. 8457. 9667.
	88668. 886 793921. 99 3025001. 3 14. 183. 211. 11018, 149	043. 14942. 99. 89471. 97567. 130. 911450. 63 408. 577. 58°. 16928	. 24816. 25943. 30 137883. 141743. 23! 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. . 19123. 19911. 20	027. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 190 407318. 121042733. 1984. 2153*. 2350. 080. 25793, 26018.	47783, 54507, 75382*, 42, 444753, 606385, 62 09461, 2036069, 205070 185507821, 8193535810 2547, 3166, 3532, 45 31885, 33307, 40568, 4	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 0 45. 7697. 8457. 9667. 41187*. 42932. 44733.
	88668. 886 793921. 90 3025001. 3 14. 183. 211. 11018. 149 50052. 543	043. 14942. 99. 89471. 97567. 1300 911450. 63. 408. 577. 58*. 16928 58. 90212.	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. . 19123. 19911. 20 99893. 104818. 133	027. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 194 407318. 121042733. 1984. 2153*. 2350. 080. 25793, 26018. 749. 137719. 148158	47783. 54507. 75382*. 42. 444753. 606385. 62 09461. 2036069. 205076 185507821. 8193535810 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 0 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639.
	88668. 886 793921. 90 3025001. 3 14. 183. 211. 11018, 149 50052. 543 418048. 46	043. 14942 99. 89471. 07567. 130 911450. 63 408. 577. 58*. 16928 58. 90212.	. 24816. 25943. 30 137883. 141743. 23 5143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 14. 586455. 704683*	027. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 190 407318. 121042733. 1984. 2153*. 2350. 800. 25793, 26018. 749. 137719. 148158 . 791532. 832902. 9	47783, 54507, 75382*, 42, 444753, 606385, 62 09461, 2036069, 20507(185507821, 8193535810, 2547, 3166, 3532, 4558, 32885, 33307, 40568, 47, 15151, 1031675, 10494; 11111, 1031675, 10494;	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 0 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943.
	88668. 886 793921. 90 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1	043. 14942 99. 89471. 97567. 130 911450. 63. 408. 577. 58*. 16928 58. 90212. 5525. 46569	. 24816. 25943. 30 137883. 141743. 23 5143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 94. 586455. 704683* 17197*. 3894873. 46	027. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 194 407318. 121042733. 1984. 2153*. 2350. 880. 25793, 26018. 749. 137719. 148158 . 791532. 832902. 9 97282. 4751232. 620	47783, 54507, 75382*, 42, 444753, 606385, 62 09461, 2036069, 20507, 185507821, 8193535810, 2547, 3166, 3532, 40568, 4*, 150522, 232643, 24, 11111, 1031675, 10494, 8047, 6829610, 698169	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 0 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432.
	88668. 886 793921. 90 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1.	043. 14942: 99. 89471. 07567. 1300 911450. 63. 408. 577. 158*. 16928 58. 90212. 5525. 46565 402232. 363	. 24816. 25943. 30 137883. 141743. 23 5143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 14. 586455. 704633* 17197*. 3894873. 46 . 22866693. 31011	027. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 194 407318. 121042733. 1984. 2153*. 2350. 880. 25793, 26018. 749. 137719. 148158 . 791532. 832902. 9 97282. 4751232. 620	47783, 54507, 75382*, 42, 444753, 606385, 62 09461, 2036069, 20507(185507821, 8193535810, 2547, 3166, 3532, 4558, 32885, 33307, 40568, 47, 15151, 1031675, 10494; 11111, 1031675, 10494;	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 0 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432.
	88668. 886 793921. 90 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1.	043. 14942 99. 89471. 97567. 130 911450. 63. 408. 577. 58*. 16928 58. 90212. 5525. 46569	. 24816. 25943. 30 137883. 141743. 23 5143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 14. 586455. 704633* 17197*. 3894873. 46 . 22866693. 31011	027. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 194 407318. 121042733. 1984. 2153*. 2350. 880. 25793, 26018. 749. 137719. 148158 . 791532. 832902. 9 97282. 4751232. 620	47783, 54507, 75382*, 42, 444753, 606385, 62 09461, 2036069, 20507, 185507821, 8193535810, 2547, 3166, 3532, 40568, 4*, 150522, 232643, 24, 11111, 1031675, 10494, 8047, 6829610, 698169	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 0 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432.
197	88668. 886 793921. 94 3025001. 314. 183. 213. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731.	043. 14942 99. 89471. 17567. 1301 9911450. 63 408. 577. 58*. 16928 58. 90212. 5525. 46565 402232. 363 18378313* . 39550809	. 24816. 25943. 30 137883. 141743. 23' 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. . 19123. 19911. 20 99893. 104818. 133 14. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011	027. 28326. 45050. 6151. 263557* 2658. 87203. 1518057. 190. 407318. 121042733. 1984. 2153*. 2350. 080. 25793, 26018. 749. 137719. 148158. 791532. 832902. 9 97282. 4751232. 620 1557. 34436768. 45	47783. 54507. 75382*. 42. 444753. 606385. 62 09461. 2036069. 205070 185507821. 8193535810 2547. 3166. 3532. 45 32885. 33307. 40568. **. 150522. 232643. 24 11111. 1031675. 10494 8047. 6829610. 69816 500682. 95665578. 3	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 0. 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 47138478. 8809432. 17742693. 830426722.
197	88668. 886 793921. 99 3025001. 314. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1. 10669731. 1282794079 Zerlegbare a	043. 14942 99. 89471. 77567. 1301 9911450. 63 408. 577. 58°. 16928 58. 90212. 5525. 46565 402232. 363 18378313°. 39550809	. 24816. 25943. 30 137883. 141743. 23 5143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 14. 586455. 704633* 17197*. 3894873. 46 . 22866693. 31011	027. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 194 407318. 121042733. 1984. 2153*. 2350. 880. 25793, 26018. 749. 137719. 148158 . 791532. 832902. 9 97282. 4751232. 620	47783, 54507, 75382*, 42, 444753, 606385, 62 09461, 2036069, 20507, 185507821, 8193535810, 2547, 3166, 3532, 40568, 4*, 150522, 232643, 24, 11111, 1031675, 10494, 8047, 6829610, 698169	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 0 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432.
197	88668. 886 793921. 99 3025001. 314. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1. 10669731. 1282794079 Zerlegbare a	043. 14942 99. 89471. 17567. 1301 9911450. 63 408. 577. 58*. 16928 58. 90212. 5525. 46565 402232. 363 18378313* . 39550809	. 24816. 25943. 30 137883. 141743. 23' 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. . 19123. 19911. 20 99893. 104818. 133 14. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011	027. 28326. 45050. 6151. 263557* 2658. 87203. 1518057. 190. 407318. 121042733. 1984. 2153*. 2350. 080. 25793, 26018. 749. 137719. 148158. 791532. 832902. 9 97282. 4751232. 620 1557. 34436768. 45	47783. 54507. 75382*. 42. 444753. 606385. 62 09461. 2036069. 205070 185507821. 8193535810 2547. 3166. 3532. 45 32885. 33307. 40568. **. 150522. 232643. 24 11111. 1031675. 10494 8047. 6829610. 69816 500682. 95665578. 3	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 0 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432. 17742693. 830426722.
197	88668. 886 793921. 99 3025001. 314. 183. 213. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5	043. 14942 99. 89471. 77567. 1301 9911450. 63 408. 577. 58°. 16928 58. 90212. 5525. 46565 402232. 363 18378313°. 39550809	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. . 19123. 19911. 20 99893. 104818. 133 14. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27	283 13.61.101 309 5.13.13.113	47783. 54507. 75382*. 42. 444753. 606385. 62 09461. 2036069. 20507 185507821. 8193535810 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24 11111. 1031675. 10494: 8047. 6829610. 69816: 500682. 95665578. 3	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 045. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432. 17742693. 830426722.
1 3	88668. 886 793921. 99 3025001. 3 14. 183. 211 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 39 13 43	043. 14942 99. 89471. 17567. 1301 911450. 63 408. 577. 58°. 16928 58. 90212. 5525. 46565 402232. 363 18378313°. 39550809 4 4. 5.5.61 17.109	. 24816. 25943. 30 137883. 141743. 23 5143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 04. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127 13.17.73 141 5.41.97 143 113.181	227. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 199. 407318. 121042733. 1984. 2153*. 2350. 080. 25793, 26018. 749. 137719. 148158 791532. 832902. 9 97282. 4751232. 620 1557. 34436768. 45	47783. 54507. 75382*. 42. 444753. 606385. 62 20461. 2036069. 20507 185507821. 8193535810 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24 11111. 1031675. 10494: 8047. 6829610. 69816: 500682. 95665578. 3:	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 045. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432. 17742693. 830426722.
197 1 3 5	88668. 886 793921. 99 3025001. 3 14. 183. 211 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 39 13 43 29 49	043. 14942 99. 89471. 17567. 1301 911450. 63 408. 577. 58°. 16928 58. 90212. 5525. 46565 402232. 363 18378313° 39550809 4+4. 5.5.61 17.109 5.13.37	. 24816. 25943. 30 137883. 141743. 23 5143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 94. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127 13.17.73 141 5.41.97 143 113.181 161 5.5.17.61	227. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 199. 407318. 121042733. 1984. 2153*. 2350. 080. 25793, 26018. 749. 137719. 148158. 791532. 832902. 9 97282. 4751232. 620. 1557. 34436768. 45	47783. 54507. 75382*. 42. 444753. 606385. 62 20461. 2036069. 20507 185507821. 8193535810 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24 11111. 1031675. 10494: 8047. 6829610. 69816: 500682. 95665578. 3: 691 5.29.37.89 705 13.13.17.173 749 5.29.53.73 759 5.29.29.137	80593. 81141. 83071. 3888. 662843. 672717. 206. 2052057. 2126007. 2045. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 24. 7138478. 8809432. 17742693. 830426722. 1159 5.37.53.137 1305 97.97.181 1351 5.17.109.197 1371 5.41.53.173
197 1 3 5 7	88668. 886 793921. 99 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 13 43 29 49 53 53	043. 14942 99. 89471. 17567. 1301 911450. 63 408. 577. 58°. 16928 58. 90212. 5525. 46569 402232. 363 18378313* . 39550809 4+4. 5-5.61 17.109 5.13.37	. 24816. 25943. 30 137883. 141743. 23 5143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 34. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127 13.17.73 141 5.41.97 143 113.181 161 5.5.17.61 169 5.29.197	227. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 199. 407318. 121042733. 1984. 2153*. 2350. 080. 25793, 26018. 749. 137719. 148158. 791532. 832902. 9 97282. 4751232. 620 1557. 34436768. 45	47783. 54507. 75382*. 42. 444753. 606385. 62 209461. 2036069. 20507 185507821. 8193535816 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24 11111. 1031675. 10494 18047. 6829610. 69816 500682. 95665578. 3 691 5.29.37.89 705 13.13.17.173 749 5.29-53.73 759 5.29.29.137 761 5.55.41.113	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 045. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432. 17742693. 830426722. 1159 5-37-53-137 1305 97-97-181 1351 5-17-109-197 1371 5-41-53-173 1381 5-13-13-37-61
197 1 3 5 7 9	88668. 886 793921. 99 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 39 13 43 29 49 53 5-17 59	043. 14942 99. 89471. 77567. 1301 911450. 63. 408. 577. 58*. 16928 58. 90212. 5525. 46569 402232. 363. 18378313* . 39550809 4+4. 5.5.61 17.109 5.13.37 29.97 5.17.41	24816. 25943. 30 137883. 141743. 23 5143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 44. 586455. 704683* 17197*. 3894873. 46 22866693. 31011 27 127 13.17.73 141 5.41.97 143 113.181 161 5.5.17.61 169 5.29.197 179 5.13.17.29	283 13.61.101 283 13.61.101 309 5.13.13.13 331 5.5.53.73 339 13.109.109	47783. 54507. 75382*. 42. 444753. 606385. 62 09461. 2036069. 205076 185507821. 8193535816 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24 11111. 1031675. 10494: 8047. 6829610. 698166 500682. 95665578. 3: 691 5.29.37.89 705 13.17.173 749 5.29.53.73 759 5.29.29.137 761 5.5.9.41.113 829 5.13.97.109	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 07. 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432. 17742693. 830426722. 1159 5-37-53-137 1305 97-97-181 1351 5-17.109.197 1371 5-41-53-173 1381 5-13-13-37-61 1499 5-41-97-113
197 1 3 5 7 9 11	88668. 886 793921. 99 3025001. 314. 183. 213. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 13 43 29 49 553 5.17 59 5.5.5	043. 14942 99. 89471. 77567. 1301 9911450. 63 408. 577. 58°. 16928 58. 90212. 5525. 4656 402232. 363 18378313* . 39550809 4 + 4. 5.5.61 17.109 5.13.37 29.97 5.17.41 5.5.149	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393 19123. 19911. 20 99893. 104818. 133 14. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127 13.17.73 141 5.41.97 143 113.181 161 5.5.17.61 169 5.29.197 179 5.23.17.29 199 5.89.89	283 13.61.101 309 5.13.13.113 315.5.53.73 32.89.97 339 33.109.109 417 17.53.193	47783. 54507. 75382*. 42. 444753. 606385. 62 09461. 2036069. 205076 185507821. 8193535810 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24 11111. 1031675. 10494: 8047. 6829610. 69816: 500682. 95665578. 3: 691	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 07. 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432. 17742693. 830426722. 1159 5.47.109.197 1371 5.47.53.173 1381 5.17.109.197 1371 5.41.53.173 1381 5.13.13.37.61 1499 5.41.97.113 1581 5.41.89.137
197 1 3 5 7 9 11 13	88668. 886 793921. 99 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 13 43 29 49 53 5.17 59 5.5-5 61 173 63	043. 14942 99. 89471. 77567. 1301 9911450. 63 408. 577. 58*. 16928 58. 90212. 5525. 46565 402232. 363 18378313* 39550809 a + 4. 5.5.61 17.109 5.13.37 29.97 29.137	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393 19123. 19911. 20 99893. 104818. 133 24. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127 13.17.73 141 5.41.97 143 113.181 161 5.5.17.61 169 5.29.197 179 5.13.17.29 199 5.89.89 205 13.53.61	283 13.61.101 309 5.13.13.113 311 5.5.53.73 32.109.109 4.17 3.109.109 4.17 3.109.109 4.17 3.109.109 4.17 3.109.109 4.17 3.17	47783. 54507. 75382*. 42. 444753. 606385. 62 20461. 2036069. 20507 185507821. 8193535816 2547. 3166. 3532. 45 32885. 33307. 40568. 4 11111. 1031675. 10494: 8047. 6829610. 69816: 500682. 95665578. 3: 691 5.29.37.89 705 13.13.17.173 749 5.29.53.73 759 5.29.29.137 761 5.5.5.41.113 829 5.13.97.109 841 5.17.53.157 943 17.17.17.181	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 045. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432. 17742693. 830426722. 1159 5.37.53.137 1305 97.97.181 1351 5.17.109.197 1371 5.41.53.173 1381 5.13.13.37.61 1499 5.41.97.113 1581 5.41.89.137 1745 13.29.41.197
197 1 3 5 7 9 11 13	88668. 886 793921. 99 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 39 43 29 49 53 53 5.17 59 5.5-5 61 173 63 5-73 81	043. 14942 99. 89471. 77567. 1301 9911450. 63 408. 577. 58°. 16928 58. 90212. 5525. 4656 402232. 363 18378313* . 39550809 4 + 4. 5.5.61 17.109 5.13.37 29.97 5.17.41 5.5.149	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393 19123. 19911. 20 99893. 104818. 133 14. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127 13.17.73 141 5.41.97 143 113.181 161 5.5.17.61 169 5.29.197 179 5.23.17.29 199 5.89.89	283 13.61.101 309 5.13.13.113 315.5.53.73 32.89.97 339 33.109.109 417 17.53.193	47783. 54507. 75382*. 42. 444753. 606385. 62 09461. 2036069. 205076 185507821. 8193535810 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24 11111. 1031675. 10494: 8047. 6829610. 69816: 500682. 95665578. 3: 691	80593. 81141. 83071. 3888. 662843. 672717. 206. 2052057. 2126007. 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432. 17742693. 830426722. 1159 5.37.53.137 1305 97.97.181 1351 5.17.109.197 1371 5.41.53.173 1381 5.13.13.37.61 1499 5.41.97.113 1581 5.41.89.137 1745 13.29.41.197 1801 5.37.89.197
197 1 3 5 7 9 11 13 19	88668. 886 793921. 99 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 13 43 29 49 53 5.17 59 5.5-5 61 173 63	043. 14942 99. 89471. 77567. 1301 9911450. 63 408. 577. 58*. 16928 58. 90212. 5525. 46565 402232. 363 18378313* 39550809 a + 4. 5.5.61 17.109 5.13.37 29.97 29.137	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393 19123. 19911. 20 99893. 104818. 133 24. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127 13.17.73 141 5.41.97 143 113.181 161 5.5.17.61 169 5.29.197 179 5.13.17.29 199 5.89.89 205 13.53.61	283 13.61.101 309 5.13.13.113 311 5.5.53.73 32.109.109 4.17 3.109.109 4.17 3.109.109 4.17 3.109.109 4.17 3.109.109 4.17 3.17	47783. 54507. 75382*. 42. 444753. 606385. 62 20461. 2036069. 20507 185507821. 8193535816 2547. 3166. 3532. 45 32885. 33307. 40568. 4 11111. 1031675. 10494: 8047. 6829610. 69816: 500682. 95665578. 3: 691 5.29.37.89 705 13.13.17.173 749 5.29.53.73 759 5.29.29.137 761 5.5.5.41.113 829 5.13.97.109 841 5.17.53.157 943 17.17.17.181	80593. 81141. 83071. 3888. 662843. 672717. 206. 2052057. 2126007. 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432. 17742693. 830426722. 1159 5.37.53.137 1305 97.97.181 1351 5.17.109.197 1371 5.41.53.173 1381 5.13.13.37.61 1499 5.41.97.113 1581 5.41.89.137 1745 13.29.41.197 1801 5.37.89.197
197 1 3 5 7 9 11 13 19 21	88668. 886 793921. 99 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 39 43 29 49 53 53 5.17 59 5.5-5 61 173 63 5-73 81	043. 14942 99. 89471. 77567. 1301 911450. 63 408. 577. 58*. 16928 58. 90212. 5525. 46565 402232. 363 18378313*. 39550809 a + 4. 5.5.61 17.109 5.13.37 29.97 5.17.41 5.5.149 29.137 5.13.101	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 94. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127 13.17.73 141 5.41.97 143 113.181 161 5.5.17.61 169 5.29.197 179 5.13.17.29 199 5.89.89 205 13.53.61 211 5.5.13.137	227. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 199. 407318. 121042733. 1984. 2153*. 2350. 080. 25793, 26018. 749. 137719. 148158. 791532. 832902. 9 97282. 4751232. 620. 1557. 34436768. 45 283 13.61.101 309 5.13.13.113 311 5.5.53.73 335 13.89.97 359 5.149.173 393 13.109.109 417 17.53.193 449 5.13.37.73 469 5.29.37.41 485 17.101.137	47783. 54507. 75382*. 42. 444753. 606385. 62 20461. 2036069. 20507 185507821. 8193535816 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24 11111. 1031675. 10494: 8047. 6829610. 69816: 500682. 95665578. 3: 691 5.29.37.89 705 13.13.17.173 749 5.29.53.73 759 5.29.29.137 761 5.5.5.41.113 829 5.13.97.109 841 5.17.53.157 943 5.17.53.157 943 5.5.5.13.17.37	80593. 81141. 83071. 3888. 662843. 672717. 206. 2052057. 2126007. 207. 8457. 9667. 41187*. 42932. 44733. 207. 292362. 403639. 207. 138478. 8809432. 207. 207. 207. 207. 207. 207. 207. 207.
197 1 3 5 7 9 11 13 19 21 23	88668. 886 793921. 99 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 13 43 29 49 53 5.17 59 5.5.5 61 173 63 5.73 81 5.89 83 13.41 99	043. 14942 99. 89471. 17567. 1301 911450. 63 408. 577. 58*. 16928 58. 90212. 5525. 46565 402232. 363 18378313* 1. 39550809 4 + 4. 5.5.61 17.109 5.13.37 29.97 5.17.41 5.5.139 5.13.101 61.113 5.37.53	. 24816. 25943. 30 137883. 141743. 23 5143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393. 19123. 19911. 20 99893. 104818. 133 24. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127 127 127 13.17.73 141 5.41.97 143 113.181 161 5.5.17.61 169 5.29.197 179 179 5.3.17.29 199 5.89.89 205 13.53.61 211 5.5.13.137 213 17.17.157 219 5.53.181	227. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 199. 407318. 121042733. 1984. 2153*. 2350. 080. 25793, 26018. 749. 137719. 148158. 791532. 832902. 9 97282. 4751232. 620. 1557. 34436768. 45 283 13.61.101 309 5.13.13.113 311 5.5.53.73 335 13.89.97 359 5.149.173 393 13.109.109 417 17.53.193 419 5.13.37.73 469 5.29.37.41 485 17.101.137 527 29.61.157	47783. 54507. 75382*. 42. 444753. 606385. 62 20461. 2036069. 20507 185507821. 8193535810 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24 11111. 1031675. 10494: 8047. 6829610. 69816: 500682. 95665578. 3: 691 5.29.37.89 705 13.13.17.173 749 5.29.53.73 759 5.29.29.137 761 5.55.41.113 829 5.13.97.109 841 5.17.53.157 943 17.17.17.181 961 5.55.13.17.37 1043 5.55.513.17.37	80593. 81141. 83071. 3888. 662843. 672717. 206. 2052057. 2126007. 245. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 24. 7138478. 8809432. 27742693. 830426722. 1159
197 1 3 5 7 9 11 13 19 21 23 25	88668. 886 793921. 99 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1. 10669731. 1282794079 Zerlegbare a 5 39 13 43 29 49 53 5.17 59 5.5.5 61 173 63 5.73 63 5.73 63 5.73 63 13.41 99 17.37 101	043. 14942 99. 89471. 77567. 1301 9911450. 63 408. 577. 58°. 16928 58. 90212. 5525. 46569 402222. 363 . 39550809 a + 4. 5.5.61 17.109 5.13.37 29.37 5.17.41 5.5.149 29.137 5.13.101 61.113 5.37.53 5.13.157	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393 19123. 19911. 20 99893. 104818. 133 14. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127	227. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 199. 407318. 121042733. 1984. 2153*. 2350. 680. 25793, 26018. 749. 137719. 148158. 791532. 832902. 9 97282. 4751232. 620 1557. 34436768. 45 283 13.61.101 309 5.13.13.113 311 5.5.53.73 335 13.89.97 359 5.149.173 393 13.109.109 417 17.53.193 419 5.13.37.73 469 5.29.37.41 485 17.101.137 527 29.61.157 535 17.113.149	47783. 54507. 75382*. 42. 444753. 606385. 62 09461. 2036069. 205076 185507821. 8193535816 2547. 3166. 3532. 45 32885. 33307. 40568. 4 *. 150522. 232643. 24 11111. 1031675. 10494: 8047. 6829610. 698166 500682. 95665578. 3: 691 5.29.37.89 705 13.13.17.173 749 5.29.29.137 759 5.29.29.137 761 5.55.41.113 829 5.13.97.109 841 5.17.53.157 943 17.17.17.181 961 5.55.13.17.37 1043 13.13.41.157 1047 89.109.113	80593. 81141. 83071. 3888. 662843. 672717. 06. 2052057. 2126007. 07. 45. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 94. 7138478. 8809432. 17742693. 830426722. 1159
197 1 3 5 7 9 11 13 19 21 23 25 29	88668. 886 793921. 99 3025001. 3 14. 183. 211. 11018. 149 50052. 543 418048. 46 1264557. 1 10669731. 1282794079 Zerlegbare a 5 39 13 43 29 49 53 5.17 59 5.5.5 61 173 63 5.73 81 5.89 83 13.41 99 17.37 101 5.13.13 111	043. 14942 99. 89471. 77567. 1301 99.1450. 63 408. 577. 58*. 16928 58. 90212. 5525. 46565 402232. 363 18378313* . 39550809 4 + 4. 5.5.61 17.109 5.13.37 29.97 5.17.41 5.5.149 29.137 5.13.101 61.113 5.37.53 5.13.157 5.5.17.29	. 24816. 25943. 30 137883. 141743. 23 6143. 1373307*. 13 56150*. 6817837. 9 999. 1196. 1393 19123. 19911. 20 99893. 104818. 133 14. 586455. 704683* 17197*. 3894873. 46 . 22866693. 31011 27 127 13.17.73 141 5.41.97 143 113.181 161 5.5.17.61 169 5.29.197 179 5.3.17.29 199 5.89.89 205 13.53.61 211 5.5.13.137 213 17.17.157 219 5.53.181 237 13.29.149 247 17.37.97	227. 28326. 45050. 6151. 263557*. 2658. 87203. 1518057. 199. 407318. 121042733. 1984. 2153*. 2350. 080. 25793, 26018. 749. 137719. 148158. 791532. 832902. 9 97282. 4751232. 620. 1557. 34436768. 45 283 13.61.101 309 5.13.13.113 311 5.5.53.73 335 13.89.97 359 5.149.173 393 13.109.109 417 17.53.193 419 5.13.37.73 469 5.29.37.41 485 17.101.137 527 29.61.157	47783. 54507. 75382*. 42. 444753. 606385. 62 09461. 2036069. 205076 185507821. 8193535816 2547. 3166. 3532. 45 32885. 33307. 40568. 4 **. 150522. 232643. 24 11111. 1031675. 10494: 8047. 6829610. 69816: 500682. 95665578. 3: 691	80593. 81141. 83071. 3888. 662843. 672717. 206. 2052057. 2126007. 245. 7697. 8457. 9667. 41187*. 42932. 44733. 7643. 292362. 403639. 33. 1089593. 1197943. 24. 7138478. 8809432. 27742693. 830426722. 1159 5.37.53.137 1305 97.97.181 1351 5.17.109.197 1371 5.41.53.173 1381 5.13.13.37.61 1499 5.41.97.113 1581 5.41.97.113 1581 5.41.97.113 1581 5.41.99.197 1801 5.37.89.197 1801 5.37.89.197 1809 5.37.101.193 12025 13.29.73.149

ZUR CYKLOTECHNIE. ZERLEGBARE aa+4.

	1.	•	1 6		
2677	1 ' ' ' -	11	5.13.17.61.97.137		5.5.53.61.89.89.157
3039	1	31351	1	326957	37.37.41.101.109.173
3339	1	32003		349835	17.41.73.97.137.181
3351	1	32139		355989	5.5.5.5.13.17.37.137.181
3377		32239		387921	1
3717	29.53.89.101	37579	5.17.29.41.89 157	396783	13.13.29.61.61.89.97
3749	5.17.37.41.109	44301		408489	5.5.5.5.13.29.73.89.109
4021	5-17-37-53-97	47389	5.5.53.97.101.173	466489	5.5.5.13.17.29.61.61.73
4123	17.29.29.29.41	47761	5.5.5.5.17.17.73.173	563235	13.17.41.61.61.97.97
4215	13.73.97.113	47829	5.17.37.41.113.157	567629	5.13.37.73.109.113.149
4761	5.5.5.13.13.29.37	49813	13.53.101.181.197	582997	37.41.73.113.157.173
4989	5-5-5-13-17-17-53	57989	5.5.5.53.53.61.157	588489	5.5.5.5 5.61.89.137.149
5041	5.13.13.17.29.61	63911	5.5.13.13.17.29.37.53	628261	5.5.5 13.17.29.41.61.197
5 567	13.17.17.73.113	66361	5.5.41.113.193.197	634205	37.53.73.109.149.173
5573	29.61.97.181	79011	5.5.5.5.13.89.89.97	637855	13.37.41.41.61.73.113
5717	13.13.41.53.89	79871	5.29.37.61.101.193	834267	17.17.17.29 137.181.197
5821	5.13.37.73.193	81487	13.13.73.73.73.101	840421	5.13 17.137.149.173.181
6061	5.5.13.17.61.109	81669	5.13.29.113.173.181	851929	5.17.53.73.89.137.181
6261	5.5.5.53.61.97	86487	17.17.41.41.89.173	922769	5.13.13.17.41.61.137.173
6989	5.5.5.53.73.101	91587		966391	5.13.17.29 29.37.157.173
7319	5.17.73.89.97	95963		1029353	61.61.89.109.149.197
7745	13.13.37.53.181	99011		1165689	5.5.29 41.41.53.109.193
8049	5.17.53.73.197	99407		1230349	
8579	5.29.53.61.157	108111	5.5.13.17 97.113.193	1299241	
8879	5.29.41.89.149	110211	5.5.13 37.73.101.137	1341429	5.29.61.73.89 173.181
9801	5.17.73.113.137	114611		1362611	5.5.13 37.89.89.101.193
9817	17.37.37.41.101	115983		1493911	5.5.13.29.101.109.137.157
9947	73.89.97.157	117281	5.29.61.89.101.173	1499001	5.13.13.17.73.73.149.197
10039	5.5.13.17.17.29.37	128359	5.13.17.29.53.89.109	1780489	5.5.5.29.37.41.53.73.149
12383	37.109.193.197	139701	5.13.53.149 193.197	1996199	5.13.13.17.17.37.53 53.757
12605	17.37.41.61.101	140489	5.5.5.41.113.173.197	2028211	5.5.13.17.41.41.53.61.137
12815	13.13.41.137.173	140871	5.13.17.37.61.73.109	2050005	17.29.61.73.89.137.157
13251	5.17.101.113.181	142047	29.29.41 53.61.181	2159739	5.5.5 5.13.17.37.41.113 .197
13489	5-5-5-5-5-5-5-17-137	148939	5.5.29.29.73.97.149	3376311	5.5.13.13.13.17.17.61.61.193
13507	17.17.41.89.173	183739		3666653	13.13.17.41.53.97.149.149
14261	5.5.5.89.101.181	191279		3872099	5-13.13.17.37.41.41.97.173
14901	5.13.13.13.17.29.41	203091		4370811	5.5.13.17.53.61.89.197
16041	5.73.89.89.89	205111	(4490249	5.13.29.61.73.89.137.197
20511	5.5.5.13.17.97.157	206707	1	4705711	5.5.13.17.17.17.17 41.101.197
20769	5-29-37-37-41-53	207171	5.13.17.29.89.101.149	5125339	5.5.17.17.29 37.97.181.193
20875	13.29.53.113.193	211221	5.13.13.37.61.149.157	5472411	5.5.17.29.41.41.89.109.149
21139	5.5.17.37.157.181	228179	5.13.13.61.73.101.137	6101547	13.13.13.17.29.37.61.97.157
21161	5.5.13.89.113.137	234333	37-37-37-41-137-193	6489011	5.5.5.5.17.37.41.89.149.197
21189	5.5.37.61.73.109	234881	5.13.13.17.17.17.97.137	8175989	5.5.5.5.5.13.17.37.97.149.181
22805	13.17.89.137.193	241511	5.5.5.5.13.17.37.101.113	8649761	5.5.5.13.17.37.61.101.109.109
23311	5.5.29.41.101.181	244299	5.13.17.37.97.101.149	8812979	5.17.17.17.29.73.89.97.173
23901	5.29.137.149.193	245293	109.113.137.181.197	9530277	13.13.17.17.17.73.89.113.149
23915	13.29.73.113.173	247699	5.13.17.41.61.149.149	10126399	5.13.17.29.29.53.89.149.157
25689	5.5.29.41.149.149	257065	13.17.101.109.157.173	10251621	5.13.17.17 29.61.101.173.181
27355	13.37.53.149.197		5.5.5.5.5.5.29.37.41.101	10763489	5.5.5.5.5.5.61.61.101.109.181
27411	5.5.41.61.61.197	269459	5.17.37.37.53.61.193	10831321	5.17.29.29.41.61.73.89.101
27429	5.17.29.37.73.113		5.5.29.61.97.113.173	11398611	5.5.13.17.53.97.137.173.193
27611	5.5.41.61.89.137	302111	5.5.41.61.97.101.149	11483821	5.29.53.61.101.113.157.157
29169	5.13.29.41.101.109	306757	17.29.53.101.181.197	15035789	5.5.37.41.41.53.101.157.173
29691 1	5.17.17.29.109.193	313489	5.5.5.5.5.17.17.17.37.173	17363031 '	5.13.13.41.73.89.89.101.149

NACHLASS. ZERLEGBARE aa+4 UND aa+9.

```
148757489 | 5.5.5.13.13.17.37.41.41.61.109.149
     23866411 | 5.5.13.17.17.17.61.157.193.193
     25252451 5.13.29.37.41.97.97.137.173
                                                          150446761 | 5.5.5.13.17.37.53.113.137.137.197
     31456571 | 5.13.17.41.97.101.109.113.181
                                                          322564791 | 5.13.17.29.29.29.37.53.101.101.193
     34411159 5.13.37.41.61.73.89.357.193
                                                          657182319 5.17.17.61.97.97.113.149.157.197
     35272357 | 13.13.13.13.17.29.61.97.101.137
                                                        1359685525 13.17.53.61.61.97.113.157.157.157
                                                       4949475989 5.5.5.5.5.13.13.29.29.37.37.41.61.89.181
28608252345 13.29.29.29.37.53.61.73.97.113.149.181
     35944451 | 5.13.17.17.17.29.73.89 109.197
     61017271 13.13.13.17.29.37.61.97.157
    107402539 5.5.13.29.37.61.109.149.173.193
                                                      112899039159 5.13.13.17.17.17.17.29.37.41.61.73.73.73.173
    143828743 29.29.37.37.53.97.113.157.197
  5 1. 11
 13 3. 29
 17 9
    5. 111. 179
 29
    25. 49. 1011. 4761. 10039
 37
    23. 59. 469. 4123. 14901
 53 7. 99. 961. 4989. 20769. 63911
    39. 61. 205. 1381. 5041
    19. 127. 311. 419. 749. 466489
 73
 89 21. 199. 691. 1089. 5717. 16041
    53. 141. 247. 335. 4021. 6261. 7319. 79011. 396783. 5632354
    81. 121. 283. 3717. 6989. 9817. 12605. 32239. 81487. 263489*. 10831321
    43. 261. 393. 829. 2355. 2441. 3749. 6061. 21189. 29169*. 32003. 128359. 140871. 408489. 1230349.8649761
POI
    83. 309. 761. 1047. 1499. 2343. 5567. 27429. 203091. 206707*. 244299. 637855
    63. 211. 485. 611. 759. 1159. 1581. 3351. 9801. 13489*. 21161. 27611. 29929. 95963. 110211. 228179.
137
       224881. 2028211. 35272357
     61, 237, 535, 1131, 2025, 3339, 8879, 25689, 148939, 207171*, 244299, 247699, 302111, 567629, 588489;
149
       1780489. 3666653. 5472411. 9530277. 17363031*. 148757489
     101. 213. 527. 841. 1043. 8579. 9947. 20511. 37579. 47829*. 57989. 91587. 99011. 211221. 317039. 1493911.
157
       1996199. 2050005. 6101547. 10126399*. 11483821. 61017271. 1359685525
    13. 359. 679. 705. 1371. 12815. 13507. 23915. 44301. 47389*. 47761. 86487. 117281. 183739. 257065. 289589.
173
    313489. 326957. 582997. 634205*. 922769. 966391. 3872099. 8812979. 15035789. 25252451. 112899039159
143. 219. 943. 1305. 2677. 3039. 5573. 7745. 13251. 14261*. 21139. 23311. 81669. 99407. 115983. 142047.
181
       191279. 205111. 349835. 355989*. 840421. 851929. 1341429. 8175989. 10251621. 10763489. 31456571.
       4949475989. 28608252345
193 31. 417. 1899. 4215. 5821. 20875. 22805. 23901. 29691. 79871*. 108111. 114611. 234333. 269459. 1165689.
       1362611. 3376311. 5125339. 11398611. 23866411*. 34411159. 107402539. 322564791
197 169, 1351, 1745, 1801, 3377, 8049, 12383, 27355, 27411, 31351*, 32139, 49813, 66361, 139701, 140489,
       245293. 306757. 387921. 628261. 834267*. 1029353. 1299241. 1499001. 2159739. 4370811. 4490249.
       4705711. 6489011. 35944451. 143828743*. 150446761. 657182319
Zerlegbare aa + 9
                         68 | 41.113
                                                                            446 | 5.5.73.109
                                       143 | 53.193
                                                        241 | 5.37.157
                                                                                                      5-5-5-37-137
          22 17.29
                         71 5.5.101
                                             5.5.13.73
                                                       254 5.5.29.89
                                                                                                 811
                                       154
                                                                            454
                                                                                 5.5.5.17.97
                                                                                                      5.17.53.73
          26
                             17.157
                                             61.197
                                                        271
                                                                                                      5.5.13.17.61
    13
              5.137
                         73
                                       155
                                                             5.5.13.113
                                                                            464
                                                                                 5.17.17.149
                                                                                                 821
                                            13.17.113 281 5.53.149
97.137 284 5.13.17.73
          28
                         76 5.13.89
                                       158
                                                                                                848 29.137.181
 4
    5.5
              13.61
                                                                            521
                                                                                 5.5.61.89
                            5.5.5.5.5 163
                                                                                                 869 5.13.37.157
   17
          29
              5.5 17
                                                                            529 5.5.29.193
                         80 | 13.17.29
                                       166
                                             5.37.149
                                                        301
                                                             5.13.17.41
              5.97
                                                                                 13.101.100
    29
          31
                                                      314
                                                                            535
                                                                                                 943
                                                                                                     37.61.197
                         89 5.13.61
    73
          37
              13.53
                                       167
                                            13.29.37
                                                             5.13.37.41
                                                                            544
                                                                                 5.13.29.157
                                                                                                97I
                                                                                                     5.5.109.173
                         94 5.29.61
                                      175
                                             17.17.53
                                                             17.37.197
10
                                                                                 41.41.89
    100
          41
              5.13.13
                                                      1, 352
                                                                            547
                                                                                                991
                                                                                                      5.17.53.109
              5.5.5.17
                                                                                 5.13.37.137
          46
                        106 5.13.173
                                       181
                                             5.29.113
                                                              5.5.13.13.17
                                                                                               1015 | 17.157 193
11
                                                        379
                                                                            574
                        109 5.29.41
                                             5.41.89
                                                              17.29.173
13
    89
          50
              13.193
                                       191
                                                                            610
                                                                                 37.89.113
                                                                                                1042
                                                         413
                                                                                                     13.17.17.17.17
                                       196 5.5.29.53
14
              37.41
                        119 : 5.13.109
                                                        419
                                                              5.97.181
                                                                            629
                                                                                 5.5.41.193
                                                                                                1055
   5-4I
          55
                                                                                                      13.13.37.89
   5.53 56
              5.17.37
                        124 5.17.181 211 5.61.73
                                                             17.73.149
                                                                            704 5.5.5.5.13.61
                                                                                               1070 61.137.137
                                                        430
             | 29.73 | 128 | 13.13.97 | 232 | 13.41.101 | 436 | 5.193.197 | 13.173 | | 131 | 5.17.101 | 239 | 5.29.197 | 437 | 17.41.137
17
   149
         65
                                                                          722 37./3.->
746 5.5.113.197
                                                                            722 37.73.193
                                                                                               1081 | 5.13.89.101
                                                                                              1129 5.5.13.37.53
```

zur cyklotechnie. zerlegbare aa+9.

i							
1144	5.17.89.173	7196	5.5.17.37.37.89	47335	13.29.89.173.193	250250	37.41.53.61.113.113
1175	41.113.149	7271	5.5.17.37.41.41	48046	5.5.5.5.13.29.97.101	252328	13.41.89.97.101.137
1259	5.13.89.137	7489	5.29.41.53.89	48829	5.5.5.5.17.29.53.73	263681	5.13.13.37.101.101.
1298	13.29.41.109	7616	5.13.53.113.149	49883	13.17.17.41.41.197	li .	109
1309	5.53.53.61	7646	5.5.13.13.101.137	49924	5.17.41.73.97.101	265256	5.17.29.41.61.101.113
1324	5.13.149.181	7729	5.5.97.109.113	54871	5-5-13-17-53-53-97	280750	13.13.17.61.61.73.101
1421	5.5.5.41.197	7934	5.17.53.89.157	54926	5.37.41.41.89.109	286904	5.5.17.29.29.41.41.137
1559	5.17.17.29.29	9650	29.113.157.181	55709	5.97.109.149.197	293687	17.37.61.73.89.173
1618	97-137-197	10012	13.13.29.113.181	57701	5.37.41.41.53.101	311921	5.5.5.17.53.61.73.97
1627	13.17.53.113	10154		57839	5.13.13.13.13.13.17.53	313454	5.5.5.13.13.13.13.13.
1646	5.5.29.37.101	10447	29.73.149.173	62402	13.13.17.89.97.157	l	29.73
1675	13.29.61.61	10736	5.13.97.101.181	66584	5.13.17.17.53.61.73	314257	17.17.73.109.109.197
1687	73.101.193	11074	5.13.61.157.197	70171	5.5.5.17.37.173.181	316739	5.17.37.41.73.73.73
1805	13.29.29.149	11671	5-5-5-41-97-137	71021	5.5.13.13.13.17.37.73	324952	29.37.41.89.149.181
1831	5.13.17.37.41	12109	5.17.41.109.193	71276	5.17.61.89.101.109	341569	5.17.29.29.53.89.173
1909	5.13.17.17.97	12191	5-37-41-97-101	71354	5.5.17.37.41.53.149	347543	17.29.41.113.137.193
1979	5.5.29.37.73	13561	5.13.13.17.37.173	73972	13.17.29.53.89.181	356809	5.13.29.37.41.113.197
2069	5.13.13.17.149	14029	5.5.13.29.53.197	78829	5.5.5.5.29.37.41.113	377804	5.5.13.109.113.181.
2182	13.29.73.173	15004	5.5.13.37.97.193	79051	5.13.13.37.37.37.73		197
2351	5.13.17.41.61	16096	5.5.13.13.13.53.89		13.17.17.17.17.37.89	386722	13.29.109.109.173.193
2528	17.41.53.173	16291	5.13.17.29.41.101	84818	17.29.29.61.73.113	393079	5.5.5.13.17.137.137.
2596	5.5.17.101.257	17029	5-5-17-41-53-157	86221	5.5.61.73.173.193		149
2719	5.13.29.37.53	¥7357	13.41.41.61.113	88411	5.13.37.73.113.197	415825	17.37.37.109.173.197
2839	5.61.73.181	17668	17.29.37.109.157	95071	5.5.13.37.61.61.101	419246	5.5.29.53.137.173 193
2953	13.17.109.181	18671	5.5.5.5.5.17.17.193	95188	13.13.13.17.41.61.97	423475	17.41.89.89.109.149
3038	17.29.97.193	19504	5.5.17.89.89.113	105274	10.00.00	448280	41.41.41.89.181.181
3089	5-17-37-37-41	20651	5.61.61.73.157	109279	5.5.29.37.41.61.89	496004	5.5.13.17.37.41.149.
3458	29.41.89.113	20813	17.37.53.73.89	109991	5.13.53.89.109.181	i ,	197
3496	5-5-37-73-181	22085	13.41.53.89.97	112171	5.5.5.17.109.157.173	512579	5-5-5-5-5-13-17-37-53-
3571	5.5.37.61.113	22367	17.17.37.149.157	114499	5.29.29.41.193.197	1	97
3677	13.13.13.17.181	22700	13.17.29.37.41.53	114896		520921	5.5.5.13.53.97.109.149
4136	5.13.17.113.137	23425	29.29.41.73.109	115079		524704	5.5.5.13.13.29.41.97.
4171	5.5.5.13.53.101	23671	5.5.5.5.13.29.29.41		5.13.53.73.157.173		113
4196	5.5.41.89.193	23879		127114		528967	17.29.101.109.149.173
4237	37.41.61.97	24001		133523		539996	5.5.13.13.37.109.109.
4459	5.17.29.37.109	24311		134764			157
4489	5.53.193.197	25645		137659		541829	5.5.5.13.17.29.41.41.
4496	5.5.13.37.41.41	26141	5.13.17.37.61.137	141581			109
4565	13.41.113.173	27341	5.13.17.17.101.197			550985	37.41.61.101.109.149
4786	5.13.53.61.109	27731	5.13.29.37.37.149	147409	5.13.13.41.53.61.97	554279	5.5.13.13.37.61.89.181
5029	5.5.13.13.41.73	27805	13.37.73.101.109	154679		599510	13.17.29.29.109.113.
5111	5.13.13.13.29.41	27844	5.13.13.13.13.61.89		5.5.17.17.61.157.173	6	157
5125	37.37.53.181	28804	5.5.29.37.157.197	157454	5.5.5.13.37.41.89.113	693775	17.17.17.41.97.109.
5198	13.13.29.37.149	28973	17.41.73.73.113	167689		700061	113
5401	5.17.29.61.97	30544	5.17.29.37.53.193	170107	13.17.17.29.37.37.97 61.89.113.137.181	1 .	5.13.41.53.89.101.193 5.17.29.29.29.41.41.73
5549	5.13.41.53.109	,	5.5.13.89.113.173	178336		713291	5.5.5.13.37.149.157.
5579	5.5.5.13.61.157	34010	13.13.29.53.61.73	178988	5.13.13.41.61.101.149	744421	197
5605 5921	13.17.17.37.113	39704	13.41.137.137.149	180416	5.13.17.29 89.101.113	745249	5.13.13.29.29.53.73.
6329	5.5.5.17.73.113	40030	5.5.5.13.73.97.137	190021	5.5.17.41.53.113.173	/ 7 3 ~ 7 7	3.13.13.29.29.73.
6346	5.5.5.5.5.13.17.29	40304	17.41.97.137.173 5.5.73.73.89.137	190541	5.17.41.137.193.197	792113	29.61.89.101.109.181
6421	5.5.13.17.37.197	42173	29.29.89.109.109	193546		847319	5.17.37.73.101.113.137
6494	5.37.37.61.101	42421	5.5.5.5.13.37.41.73	193340		859379	5.5.17.29.29.53.101.
6641	5.13.37.53.173	43864	5.13.37.89.89.101	219754	5.5.13.17.17.53.89.109	-373/7	193
	5.5.53.97.18I		5.5.5.13.73.109.173	11 1	5.5.13.17.17.29.73.157	l	/
	J.J.J3.7/***	41-7-1	3 3.33.133.413	77-1-	33 3: 1::1::2:13::31		

II.

NACHLASS. ZERLEGBARE aa + 9.

```
895208
                   13.17.17.17.29.41.61.173
                                                        9250762
                                                                   41.89.97.101.101.137.173
          89586z
                   5.17.29.89.97.109.173
                                                        10419736
                                                                   5.13.13.29.37.73.101.109.149
          937766
                   5.13.17.29.41.53.73.173
                                                       11077571
                                                                   5.5.13.13.41.109.113.149.193
          947329
                   5.5.5.37.73.89.109.137
                                                        12519856
                                                                   5.13.37 37.41.53.61.97.137
          970454
                                                       13237028
                   5.5.5.37.73.97.149.193
                                                                   17.29.37.41.61.149.149.173
          984934
                   5.13.17.29.29.61.109.157
                                                        13382956
                                                                   5.13.17.29.29.37.137.193.197
          987406
                                                       14937769
                   5.17.53.73.101.149.197
                                                                   5.13.17.37.53.61.61.101.137
         1196173
                   53.89.97.101.113.137
                                                       19912579
                                                                   5.5.5.5.5.13.41.41.97.173.173
         1202704
                                                       20620229
                   5.5.5.17.17.37.61.113.157
                                                                   5.5.37 37.61.73.73.97.197
         1256084
                   5.13.17.29.53.61.97.157
                                                       22181629
                                                                  5.5.13.13.13.17.29.37.41.53.113
                                                       23504986
         1297090
                   13.29.37.41.109.137.197
                                                                   5.13.13.13.29.29.29.41.53.73
         1460288
                   13.13.13.17.29.101.101.193
                                                       25674911
                                                                   5.13.29.37.41.73.89.113.157
         1717025
                                                       26999399
                   13.29 41.53.73.157.157
                                                                  5.13.13.29.37.97.109.193.197
                   5.5.5.5.5.17.29.37.157.181
         1799921
                                                       33399844
                                                                  5.17.17.29.37.37.41.73.73.89
                                                       33753059
         1800254
                   5.5.17.37.97.101.109.193
                                                                   5.13.13.41.89.97.101.109.173
         2153956
                   5.17.101.101.157.173.197
                                                       34618846
                                                                  5.5.13.13.13.17.17.37.97.109.193
         2253046
                   5.5.5.5.5.29.41.53.149.173
                                                       34792409
                                                                  5.13.13.13.17.29.41.101.137.197
         2347195
                   17.29.41.53.137.137.137
                                                       40103726
                                                                  5.17.37.41.109.109.197
         2362579
                   5.5.5.5.5.5.5.13.29.37.197
                                                       41494546
                                                                  5.5.5.13.61.61.89.109.149.197
         2382560
                                                       48279454
                   13.29.37.101.113.181.197
                                                                  5.5.5.5.13.29.41.41.41.61.181
         2454779
                   5.5.13.41.73.109.157.181
                                                       60740461
                                                                  5.13.17.17.17.41.73.97.101.197
         2473954
                   5.5.5.13.17.17.29.41.97.113
                                                       64370954
                                                                  5.5.5.13.17.37.53.61.73.89.193
         2579296
                   5.5.5.5.17.29.41.61.89.97
                                                       96499349
                                                                  5.13.17.29 37.41.61.73.137.157
                   5.17.17.17.37.41.53.61.61
         2710934
                                                      105742171
                                                                  5.5.5.13.17.29.29.37.41.41.53.73
         2867521
                   5.5.17.61.73.101.137.157
                                                       110518796
                                                                  5.5.5.13.37.53.53.61.73.109.149
         2960596
                   5.5.13.17.41.53.73.73.137
                                                      111009121
                                                                  5.5.13.17.17.37.37.37.73.113.157
         3045079
                   5.5.5.5.13.17.17.101.113.173
                                                      113737804
                                                                  5.5.13.13.29.29.53.73.89.97.109
         3287839
                   5.17.17.17.29.53.53.73.73
                                                      117290203
                                                                  17.29.37.41.53.73.109.113.193
         3386888
                   13.13.17.29.37.137.157.173
                                                      149574656
                                                                  5.29.41.61.73.137.173.181.197
                                                      163030454
         3569269
                   5.13.29.41.53.89.101.173
                                                                  5.5.5.13.13.17.37.37.53.73.89.157
         4046131
                   5.13.17.29.89.101.157.181
                                                      165242573
                                                                  13.29.37.41.73.97.109.157.197
         4546271
                                                      178643779
                   5.5.13.17.41.53.53.109.149
                                                                  5.5.13.41.41.61.113.137.157.197
                                                      200760094
         4699704
                   5.5.5.13.61.73.113.137.197
                                                                  5.13.17.17.37.37.37.41.53.101.193
         4889605
                                                      323643829
                   37.41.53.61.73.173.193
                                                                  5.5.5.5.5.5.13.13.17.37.61.73.73 97
         8026096
                   5.5.17.37.37.89.101.109.113
                                                      401580454
                                                                  5.5.5.13.53.61.73.73.97.137.137.193
                                                      478666540
         8182343
                   17.17.29.41.73.73.101.181
                                                                  17.17.29.37.41.61.73.149.157.173
         8931226 | 5.37.53.61.89.89.113.149
9237421 | 5.5.5.5.5.13.17.17.29.29.29.149
                                                     1411168679 | 5.5.13.17.17.89.113.157.173.197.197
 5 1. 4. 79
    2. 11. 41
 13
    5. 29. 46. 379. 1042
 17
    7. 22. 80. 1559. 6329
    19. 56. 167
 37
 41 14. 55. 109. 301. 314. 1831. 3089. 4496. 5111. 7271*. 23671
    16. 37. 175. 196. 1129. 2719. 22700. 57839
 53
 61 28. 89. 94. 704. 821. 1309. 1675. 2351. 146794. 2710934*
 73 8. 65. 154. 211. 284. 811. 1979. 5029. 34010. 42421*. 48829. 66584. 71021. 79051. 313454. 316739.
      713291. 3287839. 23504986. 105742171*
    13. 76. 191. 254. 521. 547. 1055. 7196. 7489. 16096*. 20813. 27844. 84563. 109279. 33399844
 97 31. 128. 454. 1909. 4237. 5401. 10154. 22085. 54871. 95188*. 147409. 170107. 311921. 512579. 2579296.
       323643829
    71. 131. 232. 1081. 1646. 4171. 6494. 12191. 16291. 43864*. 48046. 49924. 57701. 95071. 280750. 745249
IOI
109 10. 119. 446. 535. 991. 1298. 4459. 4786. 5549. 6421*. 23425. 27805. 42173. 54926. 71276. 219754.
       263681. 541829. 113737804
```

ZUR CYKLOTECHNIE. ZERLEGBARE aa + 9 UND aa + 16.

- 113 68. 158. 181. 271. 610. 1627. 3458. 3571. 5605. 5921°. 7729. 17357. 19504. 28973. 78829. 84818. 115079. 157454. 180416. 250250°. 265256. 524704. 693775. 2473954. 8026096. 22181629
 137 26. 163. 437. 574. 796. 1070. 1259. 4136. 7646. 11671°. 24001. 26141. 39704. 40304. 193829. 252328.
- 137 26. 163. 437. 574. 796. 1070. 1259. 4136. 7646. 11671*. 24001. 26141. 39704. 40304. 193829. 252328. 286904. 847319. 947329. 1196173*. 2347195. 2960596. 12519856. 14937769
 149 17. 166. 281. 430. 464. 1175. 1805. 2069. 5198. 7616*. 27731. 38608. 71354. 114896. 127114. 154679.
- 149 17. 166. 281. 430. 464. 1175. 1805. 2069. 5198. 7616*. 27731. 38608. 71354. 114896. 127114. 154679 178336. 393079. 423475. 520921*. 550985. 4546271. 8931226. 9237421. 10419736. 110518796
- 157 73. 241. 544. 869. 2596. 5579. 7934. 17029. 17668. 20651*. 22367. 62402. 105274. 133523. 249871. 539996. 599510. 984934. 1202704. 1256084*. 1717025. 2867521. 25674911. 96499349. 111009121. 163030454
 173 67. 106. 413. 971. 1144. 2182. 2528. 4565. 6641. 10447*. 13561. 33629. 40030. 47296. 112171. 116881.
- 173 67. 106. 413. 971. 1144. 2182. 2528. 4565. 6641. 10447*. 13561. 33629. 40030. 47296. 112171. 116881. 141581. 154729. 178988. 190021*. 293687. 341569. 528967. 895208. 895861. 937766. 2253046. 3045079. 3386888. 3569269*. 9250762. 13237028. 19912579. 33753059. 478666540
- 181 124. 419. 848. 1324. 2839. 2953. 3496. 3677. 5125. 6821*. 9650. 10012. 10736. 24311. 25645. 70171. 73972. 109991. 174427. 193546*. 324952. 448280. 554279. 792113. 1799921. 2454779. 4046131. 8182343. 48279454
- 193 50. 143. 529. 629. 722. 1015. 1687. 3038. 4196. 12109*. 15004. 18671. 30544. 47335. 86221. 134764. 137659. 347543. 386722. 419246*. 700061. 859379. 970454. 1460288. 1800254. 4889605. 11077571. 34618846. 64370954. 117290203*. 200760094. 401580454
- 197 155. 239. 352. 436. 746. 943. 1421. 1618. 4489. 6346*. 11074. 14029. 23879. 27341. 28804. 49883. 55709. 88411. 114499. 167689*. 190541. 314257. 356809. 377804. 415825. 496004. 744421. 987406. 1297090. 2153956*. 2362579. 2382560. 4699704. 13382956. 20620229. 26999399. 34792409. 40103726. 41494546. 60740461*. 149574656. 165242573. 178643779. 1411168679

\mathbf{z}	erlegbare a	1 a + 1	6.	1553	5.5.13.41.181	5473	5.17.53.61.109	20167	5.41.97.113.181
I	17	241	13.41.109	. 1717	5.41.73.197	5635	13.13.13.97.149	23677	5.53.97.113.193
3	5.5	253	5.5.13.197	1837	5.17.29.37.37	5897	5.5.5.29.53.181	24447	5.5.13.13.17.53.
5	41	257	5.73.181	1929	137.157.173	5921	13.89.157.193		157
7	5.13	263	5.101.137	2203	5.5.13.109.137	6051	13.17.29.29.197	24785	13.13.17.29.73.
9	97	271	17.29.149	2223	5.29.173.197	6081	37.53.109.173	1 _	101
11	137	279	13.53.113	2243	5.13.17.29.157	6427	5.17.53.53.173	25617	5.13.29.37.97.97
13	5.37	309	29.37.89	2301	29.41.61.73	6605	61.73.97.101	28581	13.53.73.109.
17	5.61	357	5.13.37.53	2447	5.5.17.37.193	6727	5.13.61.101.113		149
19	13.29	383	5.13.37.61	2455	29.37.41.137	7345	17.89.181.197	29217	5.13.37.37.53.
23	5.109	397	5.5.5.13.97	2477	5.13.13.53.137	7413	5.17.37.101.173		181
27	5.149	403	5 5.73.89	2593	5.13.13.73.109	7547	5.5.13.13.13.17.61	29853	5.5.5.17.41.53.
33	5.13.17	487	5.13.41.89	2687	5.17.29.29.101	7683	5.17.37.137.137		193
35	17.73	505	37.61.113	2823	5.17.29.53.61	7703	5.5.13.41.61.73	36107	5.13.17.53.113.
39	29-53	545	17.101.173	2957	5.13.17.41.193	7963	5.13.89.97.113		197
45	13.157	569	41.53.149	3095	17.37.97.157	8141	73.89.101.101	36823	5.13.17.41.173.
47	5.5.89	579	13.17.37.41	3113	5.13.29.53.97	8523	5.37.41.61.157	1	173
53	5.5.113	619	29.73.181	3153	5.5.13.13.13.181	8747	5.5.101.157.193	37579	5.17.29.41.89.
6x	37.101	647	5.5.5.17.197	3247	5.5.53.73.109	9133	5.13.61.109.193		157
67	5-17-53	677	5.29.29.109	3293	5.101.109.197	9353	5.5.5.13.13.41.101	38863	5.13.17.17.37.
77	5.29.4I	747	5.5.13.17.101	3603	5.5.5.17.41.149	10003	5.5.13.37.53.157		41.53
87	5.37.4I	851	13.17.29.113	3607	5.13.13.89.173	11967	5.13.17.29.41.109	39653	5.5.29.101.109.
97	5.5.13.29	897	5.5.5.41.157	3777	5.13 41.53.101	12045	13.29.53.53.137	١ ـ	197
103	5.5.5.5.17	903	5.5.13.13.193	3847	5.5.29.137.149	12257	5.29.53.113.173	40853	5.5.5.13.61.113.
105	61.181	987	5.17.73.157	4453	5.5.17.37.97	12603	5.5.5.5.13.113.173	1	149
131	89.193	1021	13.17.53.89	4497	5.5.61.89.149	12667	5.37.73.109.109	41373	5.13.29.29.173.
135	17.29.37	1203	5.5.13.61.73	4505	13.13.29.41.101	13397	5.5.5.13.17.73.89		181
137	5.13.17.17	1237	5.29.61.173	4601	29.37.109.181	16897	5.5.5.17.29.41.113	44269	17.53.61.181.
141	101.197	1293	5.13.17.17.89	4647	5.5.5.13.97.137	17477	5.17.17.29.37.197		197
147	5.5.5.173	1353	5.5.5.5.29.101	4853	5.5.5.29.73.89	17635	13.41.53.101.109	44947	5.5.13.17.17.
173	5.53.113	1359	13.17.61.137	4897	5.5.5.5.17.37.61	17853	5.5.5.109.149.157		137.157
227	5.13.13.61	1463	5.13.13.17.149	5337	5.13.17.149.173	19991	17.29.61.97.137	۱ '	

NACHLASS. ZERLEGBARE aa+16.

```
1626475 | 13.29.41.73.109.137.157
 45793 5.13.37.89.97.101
                               171293 | 5.17.29.41.41.73.97
 52157 | 5.17.17.17.37.41.73
                                                                      2008103
                               172569
                                       13.29.29.101.149.181
                                                                               5.5.5.13.41.53.61.97.193
                                                                      2083893 5.13.17.53.73.89.101.113
 52379 37.73.89.101.113
                               174727
                                        5.13.17.37.53.73.193
 52393 5. 17.29.41.157.173
                               232147 5.5.5.13.41.41.109.181
                                                                      2116091 | 17.29.37.101.113.137.157
                               239387
                                       5.53.97.109.113.181
                                                                      2373167 5.17.29.37.41.53.157.181
 57323 | 5 *13.17.29 41.41.61
                                       5.5.17.41.89.193.193
 57803 | 5.5.89.97.113.137
                               240347
                                                                      2960653 5.5.13.13.17.17.17.101.113
                               242897
                                       5.5.5.17.17.97.113.149
                                                                      3258603 | 5.5.5.37.41.61.61.101.149
 66333 | 5.13.17.17.29.41.197
                               251817 | 5.13.29.41.53.113.137
                                                                      3611583 5.17.29.37.61.109.137.157
 67327 | 5.37.41.61.97.101
                                       5.13.13.17.29.29.29.193
                               260033
                                                                      3898603 | 5.5.5.13.13.37.41.73.73.89
 68215 37.61.101.137.149
       5.5.101.101.109.173
                               260575 | 17.29.61.73.157.197
                                                                      4945505 13.13.17.17.17.29.89.101.113
 69347
 73467 5.29.41.89.101.101
                               300527
                                       5.13.17.37.113.113.173
                                                                      5431603 5.5.5.17.17.29.41.73.97.97
                               374203 | 5.5.17.89.113.181.181
                                                                      8180243 | 5.13.29.29.37.37.41.53.53.113.193
 74133 5.13.13.41.41.53.73
                                                                     8268383 | 5.13.13.29.41.73.73.113.113
9993613 | 5.13.29.37.53.53.61.61.137
 81413 5.13.29.29.29.37.113
                               378671 13.13.37.41.53.61.173
                               434441 | 13.13.37.37.41.101.197
 82817
       5.13.73.89.109.149
 82893 | 5.17.37.73.173.173
                               577603 5.5 5.5.29.29.41.113.137
                                                                     10311423 | 5.41.41.61.109.113.113.149
                               648447 | 5.5.13.17.61.61.113.181
                                                                    15305803 | 5.5.13.37.53.101.109.173.193
103317
       5.13.13.29.37.61.193
       5.13.61.101.157.173
                               650103 | 5.5.5.5.29.37.73.89.97
658783 | 5.17.17.29.41.41.61.101
                                                                    16626883 | 5.17.73.101.109.149.157.173
104293
                                                                    17545053 | 5.5.13.17.17.41.53.101.109.137
113699
       29.29.29.53.73.137
                                                                    17916571 17.37.37.61.73.109.157.181
126497
       5.5.13.53.61.97.157
                               696353 5.5.5.5 17.17.37.37.37.53
                               748853 5.5.5.5.5.61.109.137.197
                                                                    18500917 | 5.13.29.41.41.61.89.101.197
130553 5.5.13.53.97.101.101
                               870487
                                       5.13.61.73.97.137.197
                                                                    19344643 5.13.13.29.41.73.73.113.113
132143 5.29.53.193.193
                                                                    20278927 | 5.13.17.29.53.73.113.149.197
                               873503 5.5.13.13 61.109.157.173
139477 | 5.37.41.97.137.193
150897 5.5.5.13.29.61.89.89
                               970497 | 5 5.17.37.53.73.113.137
                                                                    22858302 | 5.5.17.17.17.17.17.29.53.61.157
154821 29.37.41.41.97.137
                                                                    38648107 5.17.17.29.97.109.109.157.197
                              1193679 13 29.41.41.101 113.197
158373 | 5.13.17.37.61.89.113
                              1229533 5.13.13.53.53.53.61.197
                                                                    40473647 | 5.5.5.5.13.37.41.73.97.137.137
                              1259837 5.13.13.17.29.37.89.89
                                                                    46113113 | 5.13.13.17.29.37.53.73.181.197
158509 17.17.53.101.109.149
                            1335487 5.17.89.97.113.137.157
161399 17.17.53.89.97.197
                                                                  1082687431 | 13.17.29 53.61.97.109 157.173.197
162383 | 5.17.89.149.149.157 | | 1404163 | 5.13 13.37.41.97.101.157 || 1254102921 | 13.13.17.17.41.53.61.97 101.137.181
  5 3
 13 7
 17
    1. 33. 103. 137
 29
    19. 97
    13. 135. 1837
 37
 41 5. 77. 87. 579
 53 | 39. 67. 357. 38863. 696353
     17. 227. 383. 2823. 4897. 7547. 57323
     35. 1203. 2301. 7703. 52157. 74133
 73
     47. 309. 403. 487. 1021. 1293. 4853. 13397. 150897. 1259837*. 3898603
     9. 397. 3113. 4453. 25617. 171293. 650103. 5431603
 97
     61. 747. 1353. 2687. 3777. 4505. 6605. 8141. 9353. 24785*. 45793. 67327. 73467. 130553. 658783
101
109 23. 241. 677.2593. 3247. 5473. 11967. 12667. 17635
113 | 53. 173. 279. 505. 851. 6727. 7963. 16897. 52379. 81413*. 158373. 2083893. 2960653. 4945505. 8268383. 19344643
137
     11. 263. 1359. 2203. 2455. 2477. 4647. 7683. 12045. 19991*. 57803. 113699. 154821. 251817. 577603.
       970497. 9993613. 17545053. 40473647
     11. 271. 569. 1463. 3603. 3849. 4497. 5635. 28581. 40853*. 68215. 82817. 158509. 242897. 3258603. 10311423
149
    45. 897. 987. 2243. 3095. 8523. 10003. 17853. 24447. 37579*. 44947. 126497. 162384. 1335487. 1404163.
157
       1626475. 2116091. 3611583. 22858302
     147. 545. 1237. 1929. 3607. 5337. 6081. 6427. 7413. 12257*. 12603. 36823. 52393. 69347. 82893. 104293.
173
       300527. 378671. 873503. 16626883*
     105. 257. 619. 1553. 3153. 4601. 5897. 20167. 29217. 41373*. 172569. 232147. 239387. 374203. 648447. 2373167.
TRT.
       17916571. 1254102921
     131. 903. 2447. 2957. 5921. 8747.9133. 23677. 29853. 103317. 132143 139477. 174727. 240347. 260033. 2008103.
193
       8180243 15305803
    141. 253. 647. 1717. 2223. 3293. 6051. 7345. 17477. 36107*. 39653. 44269. 66333. 161399. 260575. 434441.
197
       748853. 870487. 1193679. 1229533*. 18500917. 20278927. 38648107. 46113113. 1082687431
```

zur cyklotechnie. Zerlegbare aa+25.

	rlegbare			4264	17.61.89.197	11	17.37.73.157.173
I 1	13	324	13.41.197	4458	13.89.89.193	50051	13.17.173.181.181
2 2	29	326	13.13.17.37	4798	13.89.101.197	56913	13.17.37.37.53.101
3 1	17	354	17.73.101	4814	17.17.17.53.89	60347	13.17.29.29.97.101
	4I	363	13.37.137	5154	17.89.97.181	68626	13.13 17.53.157.197
	Ġχ	376	13.73.149	5251	13.13.29.29.97	85699	37.61 89.101.181
7 3	37	377	17.37.113	5706	13.101.137.181	87989	17.53.113.193.197
	89	414	37.41.113	5927	13.13.37 53.53	93469	13.13.13.17.29.37.109
- 1	53	433	29.53.61	6001	29.73.97.173	95473	13.13.13.73.157.181
- 1 -	73	437	29.37.89	6157	17.53.109.193	101151	37 41.101.173.193
	/3 13.13	454	13.101.157	6581	29.53.73.193	108871	17.53 173.193.197
	-33 97	488	37.41.157	6616	13.17.37 53.101	121479	17.17.29.41.109.197
	7/ 13.17	521	13.53.197	7359	13.97.109.197	141777	13.17.37.73.113.149
	157	573	13.73.173	7676	53.73.97.157	144808	13.41.61.61.97.109
	-	611	29.41.157	7753	41.61.61.197	1	13.41.41.97.101.109
- 1	193	11	,	8147	29.37.157.197	152803	13.29.37 41.137.149
	13.29	636	13.29.29.37	8231		155187	
- 1	17.29	638	13.173.181		17.101.109.181	1 2 1	73.97.101.113 149
	17.41	677	13.17.17.61	8776	13.13.37.109 113	160314	29.37 41.61.61.157
- 1	13.113	733	37-53-137	9209	73.73.73.109	172561	13.13.13.13.37.73.193
	37.53	753	13.113.193	10049	41.89.101.137	183971	17.37.41.73.89.101
	17-137	768	13.17.17.157	10001	13.17.29.53.149	188618	13.17.17 29 53.61.101
5 I	13.101	816	41.109.149	10501	37.73.137.149	214482	29.37.53.61.89.149
53	13.109	819	17.109.181	12468	13.29.41.89.113	214631	13.29.41.73.137.149
54	17-173	857	13.13.41.53	12526	17.17.29.97.193	234852	17.41.53.73.113.181
56 :	29.109	858	37.101.197	13786	73.101.149.173	249014	13.73.73.89.89.113
62	53-73	898	13.17.41.89	13787	89 97.101.109	257841	13.29.61.89.101.149
	37.61	959	29.101.157	14067	13.29.37.41.173	279007	13.13.17.29.29.89.181
	17.149	984	29.173.193	14756	13.37.41.61.181	329219	17.37.73.89.89.149
1	41.149	1092	61.113.173	15807	13.17.29.101.193	329848	13.17.17.29.37.137.197
	37.89	1104	13.29.53.61	17057	13.13.53.109.149	382537	13.17.17.29.61.101.109
_ ' '	73.97	1177	37.97.193	18123	13.29.37.61.193	422419	17.17.17.41.53.61.137
	41.181	1252	73.109.197	18771	13.13.13 17.53.89	458742	17.17.113.173.193.193
_ 1	29.137	1364	13.13.101.109	18823	13.29.41.73.157	484041	13.29.37.37.61.61.61
-	53.89		13.17.41.113	19553	13.17.17.17.41.73	546534	13.13.37.41.41.157.181
٠, ١, ٠	· · ·	1431	•	19751	17.17.17.29.37.37	564812	13.37.37.41.53.73.113
	17.17.17	1442	13.17.97.97	11		735331	13.13.37.41.53.101 197
- 1	13.17.61	1544	17.17.73.113	20502	13.53.61.73.137		13.13.13.13.17.37.89.173
	13.29.37	1561	,	21009	13.17.37.137.197	743781	
- 1	41.173	1733	97.113.137	21319	13.37.37.113.113	867847	17.89.89.137.137.149
'	41.197	1767	13.29.41.101	21527	13.53.61.137.149	938003	13.29.53.61.61.61.97
- 1	101.113	1887	29.29.29.73	21644	13.13.17.41.41.97	1000154	13.13.29.29.37.37 .53.97.
- 1	13.13.73	2128	17-41-73-89	23488	29.37.53.89.109	1964806	13.13.17.29.41.73 113.137
68 3	13.41.53	2144	13.29.89.137	24101	13.29.61.73.173	2144583	13.41.53.61.73.101.181
74	157.193	2341	13.41.53.97	24358	17-29-41-149-197	3589859	17.17.73.109.113.137.181
8r :	13.13.97	2434	17.29.61.197	25401	13.17.97.101.149	3879591	13.37.53.89.113.149.197
or i	17.29.41	2751	17.41.61.89	26707	29.29.37.73.157	5693622	13.13.13.53.97.101.157.181
07 1	13.17.97	2887	13.17.109.173	30467	17.41.41.109.149	6991009	13 17.17.37.53.113.149.197
09	13.41.41	2989	13.17.17.29.41	31226	17.53.61.113.157	7062082	13.29.29.41.53.73.149.193
- 1	149.173	3199		33381	29.37.53.97.101	8489259	13.17.29.29.29.41.41.41.97
	17.37.101	3323	37.37.37.109	38011		8717008	13.13 17.17.37.37.89.113.1 1
	13.29.89	3471	17.37.61.157	38134	17.41.97.137.157	9707868	13.29.29.37.101.113.137.1 49
	181.197	3522	13.17.37.37.41	40559	13.17.17.37.61.97	10305788	13.17.37.53 101.109.113.1 97
' 1	• •	3654	13.61.113.149	41037	29.41.73.89.109	17462342	12.27.61.61.89.89.137.157
	13.53.109			41891	17.37.73.97.197	38722306	13.13.29.37.61.89.89.109.15
- 1	17-37-73	3686	17.41.101.193			48162204	13.17.37.37.41.53.101.181.19
	17.53 53	3788	17.61.101.137	44407	13.17.17.37.41.173	60000000	13.17.17.53.61.61.101.137.18
II	13.61.61	4219	17.41.113.113	40002	13.17.53.53.01.01	11 00920523	13.1/.1/.33.01.01.101.103/.11

Digitized by Google

NACHLASS. ZERLEGBARE aa+25 UND aa+36.

```
63769026 | 17.29.37.41.53.89.101.101.113
                                                          190067607 | 73.89.97.101.101.109.149.173
        111771087 13.17.37.61.61.89.113.137.149
                                                          308956283 | 13.29.29.37-41.53.61.73.89.137
        141757784 13.17.53.61.89 113.137.137.149
                                                          569329071 13.13.29.37.41.97.101.109.137.149
        172642653 | 13.17.29.73.89.89.137.149.197
13 | I. 12
17
    3. I4. 99
29 2. 27. 31
37 7. 118. 326. 636. 19751
41 4. 37. 201. 209. 2989. 3522
    9. 44. 168. 309. 857. 5927
 61 6. 67. 116. 311. 433. 677. 1104. 48062. 484041
    11. 62. 157. 303. 1887. 19553
    8. 81. 97. 259. 437. 898. 2128. 2751. 4814. 18771*
    13. 84. 181. 207. 1442. 2341. 5251. 21644. 40559. 938203*. 1000154. 8489259
101 51. 252. 354. 1767. 6616. 33381. 56913. 60347. 183971. 188618*
109 53. 56. 274. 1364. 3323. 9209. 13787. 23488. 41037. 93469*. 144808. 152762. 382537
    38. 151. 377. 414. 1431. 1544. 4219. 8776. 12468. 21319*. 249014. 564812. 8717008. 63769026
    48. 89. 363. 733. 1733. 2144. 3199. 3788. 10049. 20502*. 422419. 1964806. 308956283
137
149 71. 78. 376. 816. 1561. 3654. 20061. 10501. 17057. 21527*. 25401. 30467. 141777. 152803. 155187 214482.
    214631. 257841. 329219. 867847*. 9707868. 111771087. 141757784. 569329071
17. 454. 488. 611. 768. 959. 3471. 7676. 18823. 26707*. 31226. 38011. 38134. 160314. 17462342. 38722306
    54. 119. 227. 573. 1092. 2887. 6001. 13786. 14067. 24101*. 44407. 49943. 743781. 190067607
173
181 86. 638. 819. 5154. 5706. 8231. 14756. 50051. 85699. 95473*. 224852. 279007. 546534. 2144583. 3589859.
       5693622. 60920523
    19. 174. 753. 984. 1177. 3686. 4458. 6157. 6581. 12526. 15807. 18123. 101151. 172561. 458742. 7062082.
193
       48162204
197 127. 267. 324. 521. 858. 1252. 2434. 4264. 4798. 7359*. 7753. 8147. 21009. 24358. 41891. 68626. 87989.
       108871. 121479. 329848*. 735331. 3879591. 6991009. 10305788. 172642653
```

	Zerlegbare aa	+ 36.		II 2557	5.13.17.61.97	10565	13.13.41.89.181
1	1 37	295	13.37.181	2567	5.5.29.61.149	13763	5.13.17.37.41.113
5	6 1	307	5.109.173	2963	5.89.109.181	13823	5.13.109.149 181
7	5.17	347	5.13.17.109	3181	13.37.109.193	14543	5.13.29.29.53.73
11	157	445	37.53.101	3553	5.13.29.37.181	15245	13.37.61.89.89
13	5.4I	479	29.41.193	3767	5.5.17.173.193	15733	5.5.29.29.61.193
17	5.5.13	517	5.5.17.17.37	4031	41.61.73.89	17617	5.5.29-41.53.197
23	5.113	565	29.101.109	4277	5.17.29.41.181	18659	13.17.97.109.149
35	13.97	617	5-5-97-157	4883	5.5.37.149.173	22345	17.29.53.97.197
41	17.101	667	5-5-13-37-37	5009	13.97.101.197	22481	13.17.17.17.41.193
43	5.13.29	673	5.17.73.73	5321	13.13.29.53.109	22583	5.5.17.101.109.109
61	13.17.17	737	5.13.61.137	5467	5.5.5.5.17.29.97	22733	5.5.13 13.13.97.97
67	5.5.181	763	5.13.13.13.53	5495	13.13.29.61.101	22867	5.5 29.37.101.193
73	5-29-37	953	5.13.89.157	5497	5.173.181.193	23753	5.37.113.137.197
85	53.137	971	13.29.41.61	6217	5.5.5.37.61.137	29129	13.53.89.101.137
89	73.109	1183	5.5.17.37.89	6221	29.73.101.181	29995	13.13.13.13.17.17.10
95	13.17.41	1333	5.5.17.37.113	6655	29.41.193.193	30845	13.13.17.41.41.197
113	5.13.197	1463	5.41.53.197	6827	5.17.61.89.101	31885	13.17.29.41.53.73
115	89.149	1517	5.5.13.73.97	7547	5-37-37-53-157	32647	5.13.17.73.73.181
127	5,53.61	1673	5.13.17.17.149	7717	5.5.5.53.89.101	38893	5.73.109.193.197
191	13.53.53	1717	5.5.5.5.53.89	7813	5.17.61.61.193	38923	5.17.37.53.62.149
203	5.73.113	1873	5.41.109.157	7861	13.17.137.157	39347	5.13.41.53.97.113
217	5.5.5.13.29	220I	13.41.61.149	7919	37.97.101.173	42133	5.5.17.17.17.97.149
233	5.5.41.53	2251	17.17.89.197	8459	13.17.41.53.149	44327	5.29.29.37.73.173
293	5.89.193	2383	5.5.13.101.173	10261	13.17.53.89.101	48967	5.5.5.13.17.29.41.73

ZUR CYKLOTECHNIE. ZERLEGBARE aa+36 und aa+49.

```
49517 | 5.5.29.113.173.173
                               174565 | 29.37.37.41.97.193
                                                                     1097105 | 13.17.17.97.109.157.193
                               182743 5.17.29.29.29.89.181
  54167 | 5.5.13.13.37.137.137
                                                                     1396529 | 13.13.13.37.41.53.61.181
  61117
        5.5.13.29.61.73.89-
                               189353
                                        5.17.109.157.157.157
                                                                     2390717
                                                                              5.5.5.13.17.29.29.37.61.109
 62825 | 13.17.37.41.61.193
                               101203
                                        5.53.53.73.181.197
                                                                     2525527
                                                                              5.13.17.61.89 97.97.113
 74603 5.13.17.29.29.53.113
                                                                     5318933 | 5.5.13.17.29.89.97.113.181
                               206407
                                       5.17.17.29.41.137.181
                               256693 5.17.17.29.61.149.173
 87217 | 5.5.5.17.17.29.53.137
                                                                     6920333 | 5.5.13.17.17.17.37.61.97.137
 96227
                               387833
                                       5.13.37.53.53.61.73
        5.17.53.109.109.173
                                                                     9439957
                                                                              5.17.17.17.17.17.37.37.53.173
125909 13.17.61.73.89.181
                               427795 | 13.17.37.37.53.101.113
                                                                    11776417
                                                                              5.5.17.41.73.73.89.97.173
130613 | 5.41.53.73.137.157
                               429347 5.13.13.37.173.173.197
                                                                    45435967 | 5.5.5.29.41.53.61.113.193.197
                               449921 | 13.29.37.41.41.89.97
141709 13.13.29.37.37.41.73
                                                                   70145903
                                                                              5.13.13.17.41.53.73.97.113.197
                               533789 | 13.13.29.29.113.113.157
151163 5.29.61.109.137.173
                                                                   90115783
                                                                              5.5.5.5.5.5.5.5.5.5.13.13.13.17.61.73
161035 13.41.53.61.101.149
                               726029 | 17.17.29.29.101.109.197 |
                                                                  716295433 | 5.5.13.13.29.29.37.41.61.89 89.197
171655 89.97.109.173.181
                              | 837533 | 5.5.5.37.97.101.113.137 | 2009136133 | 5.5.13.17.41.61.73.89.97.113.181.197
 13
     17
     7. 61
 17
     43. 217
 29
 37
     1. 73. 517. 667
 41
     13. 95
 53
    191. 233. 763
     5. 127. 971
     673. 14543. 31885. 48967. 141709. 387833. 90115783
 73
    1183. 1717. 4031. 15245. 61117
     35, 1517. 2557. 5467. 22733. 449921
 97
     41. 445. 5495. 6827. 7717. 10261
109 89. 347. 565. 5321. 22583. 29995. 2390717
113 | 23. 203. 1333. 13763. 39347. 74603. 427795. 2525527
137 85. 737. 6217. 29129. 54167. 87217. 837533. 6920333
     115. 1673. 2201. 2567. 8459. 18659. 38923. 42133. 161035
     11. 617. 953. 1873. 7547. 7861. 130613. 189353. 533789
157
173 307. 2383. 4883. 7919. 44327. 49517. 96227. 151163. 256693. 9439957*. 11776417
181 67. 295. 2963. 3553. 4277. 6221. 10565. 13823. 32647. 123909*. 171655. 182743. 206407. 1396529. 5318933
193 293. 479. 3181. 3767. 5497. 6655. 7813. 15733. 22481. 22867*. 62825. 174565. 1097105
197 113. 1463. 2251. 5009. 17617 22345. 23753. 30845. 38893. 191203*. 429347. 726029. 45435967. 70145903.
       716295433. 2009136133
                                                        289 | 5.61.137
                                                                            589 | 5.13.17.157
                                                                                                  906 | 5.13.73.173
Zerlegbare aa + 49 |
                                        139 | 5.13.149
                         61 5.13.29
                                             17.29.41
                                                         295
                                                              13.17.197
                                                                            591 5.181.193
                                                                                                  919
                                                                                                       5.13.73.89
 x | 5.5
          23 | 17.17
                             5.13.37
                             5.5.13.17 149
                                             5.5.5.89
                                                         296
                                                               5.89.197
                                                                            594 5.13.61.89
                                                                                                  979
                                                                                                       5.13.73.101
                         74
 2
    53
           24
               5.5.5.5
           26
                             5.17.37
                                             13.13.137
                                                         314
                                                               5.109.181
                                                                            601
                                                                                                  992
                                                                                                       13.17.61.73
 3
    29
               5.5,29
                         79
                                        152
                                                                                 5.5.5.5.17.17
                         96
          29
                                       159
                                             5.17.149
                                                               5.13.29.53
                                                                            606
                             5.17.109
                                                         316
                                                                                 5.17.29.149
                                                                                                 1009
                                                                                                       5.17.53.113
    5.13
              5.89
                             5.5.197
                                             5.29.101
                                                         321
                                                               5.13.13.61
                                                                            634
                                                                                 5-37-41-53
                                                                                                 1031
    37
           30
               13.73
                         99
                                                                                                       5.13.13.17.
 6
                                             5.5.17.73
                                                         331
                                                              5.97.113
   5.17
                             5.5.5.41
                                        176
                                                                            641 5.13.29.109
          31
               5.101
                        IOI
                                                                                                         37
                                                         334 5.13.17.101 667 13.109.157
    113
                                                                                                       5.29.37.101
 8
                        103
                                        181
                                             5.17.193
                                                                                                 1041
           32
               29.37
                             73.73
                                                                                                 1111 | 5.17.53.137
                                             5.13.13.41
                             5.41.53
                                        186
                                                          347
                                                              13.41.113
                                                                                 5.5.101.181
 9
    5.13
           39
               5.157
                        104
                                                                                                 1128 17.29.29.89
                        106
                             5.37.61
                                             5.5.13.61 351 5.5.5.17.29
                                                                            691 5.17.53.53
               17.97
                                        199
10
    149
                             13.17.53
                                                               13.53.101
               5.173
                        108
                                        205
                                             109.193
                                                         373
                                                                            719
                                                                                 5.13.41.97
                                                                                                 1179
                                                                                                       5.13.17.17
11
    5.17
           41
                                                         374 5-5-29-193
12
    193
           43
               13.73
                        113
                             13.17.29
                                        214
                                             5.53.173
                                                                            776
                                                                                 5.5.13.17.109
                                                                                                         37
               17.61
                        116
                             5-37-73
                                        227
                                             17.37.41
                                                         449 5.5.37.109
                                                                            799 | 5.5.113.113
                                                                                                 1186
                                                                                                       5.29.89.109
    109
          45
13
               13.181 118
                                             5.29.181
                                                         474 5.5.89.101
                                                                            809
                                                                                                 1221 | 5.29.53.97
                                        229
                                                                                 5.29.37.61
    137
           48
                             89.157
                                                                           824 5.5.157.173
                                                        533 17.61.137 824 5.5.157.173 550 13.17.37.37.37 839 5.17.41.101
16
    5.61
          | 51
               5.5.53
                       121
                             5.13.113
                                        234
                                             5.97.113
                                                                                                 1252
                                                                                                       13.17.41.
                                             5.5.17.73
17
   13.13 55
               29.53
                        122
                             109.137
                                        249
                                                                                                         172
19 5.41 57 17.97
22 13.41 60 41.89
                                        251 | 5.5.13.97 | 554 | 5.29.29.73 | 844 | 5.17.17.17.29 | 1364 | 5.37.89.
                        132 101.173
                                        264 | 5.13.29.37 | 555 | 13.17.17.41 | 899 | 5.5.5.53.61
                        137 97.97
```

NACHLASS. ZERLEGBARE aa+49.

1274	5.5.13.37.157	5226	5.5.5.41.73.73	25726	5.5.5.29-41.61.73	124029	5.13.13.37.37.61.109
1395		584I	5.13.37.41.173	25931	5.13.17.41.41.181	131863	13.17.37.97.97.113
1556			41.41.109.197	26016	5.17.29.37.41.181		5.5.5.5.5.41 101.137
1592	, ,	6000	5.17.29.73.101	26337	113.113.157.173	138199	5.5.13.17.101.109.157
1 1600		6309	5.13.53.53.109	27200	13.37.97.101.157	139551	5.5.13.29.53.101.193
162		6381	5.17.17.73.193	27564	5.13.13.73.109.113	141633	17.17.17.17.29.41.101
1629	100,	6574	5.5.13.13.53.193	27721	5.17.17.29.53.173	148439	5.37.41.73 101.197
1649		'	5 5.5.5.13.29.101	29254	5.13.13.53.97.197	150410	17.37.41.61.73.197
168		6998	13.17.37.53.113		5.5.13.17.17.41.113	150681	5.29.53.97.97.157
175	10		5.5.13.29.41.137	30179	5.61.73.113.181	154876	5.5.17.41.73.109.173
176		7316	5.17.53.109.109	30424	5.5.13.17.29.53.109	I 57995	29.37.41.53.53.101
192			13.17.41.41.149	31274	5.5.5.5.13.17.73.97	160168	17.37-41.53.137.137
194		7914	5.29.61.73 97	3249I	5.13.37.41.53.101	163609	5.13.13.37.41.53.137
206		8149	5.5.5.5.5.5.5.5.5.17	33258	13.17.17.37.73.109	166851	5.5.5.5.5.13.41.61.137
207		8219	5.37.41.61.73	34134	5.13.41.53.73.113	167124	5.5.13.13.29.37.61.101
215	1	8251	5.5.13.17.61.101	35303	17.37.61.109.149	174074	5.5.13.17.157.181.193
237	1	8515	37.89.101.109	35361	5.41.113.137.197	178149	5.5.5.5.17.89.97.173
238		8753	13.137 137.157	35524	5.5.5.17.17.181.193	179565	13.17.29.113.113.197
252		8919	5.17.41.101.113	36149	5.5.5.13.13.157.197		5.5.17.17.109.113.197
257		9161	5.13 29.113.197	37409		189538	73.109.149.157.193
259		9301	5.5.73.137.173	37836	5.17.17.61.109.149	207814	5.13.17.17.97.137.173
260		9546	5.13.97.97.149	38601	5.5.5.13.17.149.181	213263	29.37.41.73.73.97
265		9616	5.13.13.17.41.157	39901	5.5.13.13.29.73.89	217351	5.5.5.13.13.17.17.53.73
281		9837	13.17.37.61.97	41801	5.5.41.61.89.157	231755	13.17.17.17.61.61.113
285	, , , , , , ,	9993	13 149 149.173	41859	5.73.89.149.181	273694	5.17.37.41.53.97.113
293	1	10291	5.17.37.113.149	43416	5.13.13.13.29.61.97	281226	5.5.5.5.61.73.157.181
294	4 5 61.157.181	10630	13.13.61.97.113	44677	13.53.97.109.137	288901	5-5.29.37.53.149.197
299	· [-	10651		44976	1		5.5.5.5.13.29.37.53.97
310	0 17.29 101.193	10727	29.97.113.181	46229	5.17.29.41.97.109	307519	5.13.17.17.29.29.41.73
315	6 5.17.17.61.113	10761		48317	13.13.29.37.41.157	343066	5.13.17.17.17.41.89.101
325	1 5.5.29.37.197	10887	41.89.109.149	49099	5.5.41.73.89.181	345094	
350	1 5.5.13.109.173	11185	1	50632	1	361409	5.13.17.53.61.101.181
354	7 17.37.73.137	11632	1	51176	1	375967	5.17.37.53.61.149
370	9 5.13 29.41.89	12151		54274	1 1	401444	5.13.17.17.29.29.101.
375	3 13.41.73.181	12489	1	55774	1		101
403	4 5.13.29.89.97	13101	5.5.5.5.17.41.197	58881	1 0 00 10 0	408628	41.53.89.89.89.109
406	5 13.37.89.193	13329		64051	1	415848	13.17.17.37.101.109.
421	1 5.97.101.181	14351	1	64644	1	1	113
428	6 5.13.41.61.113	14656	1	67785		417317	13.41.61.113.137.173
432	4 5.5.17.29.37.41	14811		69983	1	418021	5.13.37.41.61.97.157
439	9 5.5.5.5.113.137	15356		72851	1000		5.5.5.17.61.89.101.173
455	6 5.29.37.53.73	15425		73043		462953	
462		15661	15 0 0	73672		521044	5.13.13.17.17.73.97.157
463		16393		73721	1	527329	5.17.37.61.61.109.109
465		16446		76534	1	658576	1
471	5 13.13.17.53.73	17247		80841	10 , ,,,,,	60-1	157
474		18099		82307	1 1	689601	
475		18976		11	1 - 1 - 2 - 1	788493	
477	8 37.41.101.149	19743	1	87369		935601	
491			1	88213	10		41.41
492	29.53.53.149	20999		88406	1	979976	
502		21768		88989		10==04	197
510	. 1333 73		5.17.29.41.53.89	89149		1055864	
	5.13.17.89.137		5.13.13.53.97.113	92049	10000	i	157
522	11 5.101.137.197	1, 22509	5.41.41.157.193	102735	13.13.13.89.137.197	u.	-
ľ							

ZUR CYKLOTECHNIE. ZERLEGBARE aa+49 UND aa+64.

```
1538221 | 5.13.13.29.53.61.109.137
                                                               5456999 | 5.5.41.73.73.101.137.197
             1686759
                       5.13.29.29.41.41.113.137
                                                               7936717
                                                                          13.29.37.41.41.41.181.181
             2001229
                       5.13.17.29.41.53.149.193
                                                               8555207
                                                                          13.17.41.53.61.73.109.157
             2446492
                                                                          5.5 5.5.13.13.13.41.89.157.197
                       13.41.73.89.101.109.157
                                                              12448726
             3254151
                       5.5.13.17.29.41.61.73.181
                                                              21432310
                                                                          5.17.37.73.149.173.197.197
             1297075
                       37.41.53.53.73.101.173
                                                              40407039 | 5.17.37.41.53.89.97.101.137
             3643774
                       5.5.5.13.17.41.109.137.157
                                                              41719774 | 5.5.5.17.17.29.29.41.41.173.197
             4515359 | 5.13.13.13.17.17.113.157.181
                                                             118135085 | 17 17.37.41.61.101.109.137.173
             5307581 | 5.17.37.53.73.73.101.157
  5 | I. 24
     4. 9. 17
6. 11. 23. 74. 601. 8149
 13
 17
     3. 26. 61. 113. 351. 844
     5. 32. 69. 79. 264. 550. 1031. 1179
     19. 22. 101. 142. 186. 227. 555. 1621. 4324. 935601*
 53
     2. 51. 55. 104. 108. 316. 634. 691
     16. 45. 106. 199. 321. 809. 899. 2151. 2578. 2851*. 20297
     30. 43. 103. 116. 176. 249. 554. 992. 4556. 4715*. 5226. 8219. 10761. 14351. 25726. 217351. 307519
89 29. 60. 149. 594. 919. 1128. 1395. 1751. 3709. 4657*. 10651. 12489. 21834. 39901
97 40. 57. 137. 251. 719. 1221. 1592. 4034. 5101. 7914*. 9837. 31274. 43416. 80841. 88989. 213263. 299399
101 31. 171. 334. 373. 474. 839. 979. 1041. 2595. 6029*. 6899. 8251. 32491. 44976. 51176. 141633. 157995.
        167124. 343066. 401444
109
      13. 96. 449. 641. 776. 1186. 1949. 4918. 6309. 7316*. 8515. 30424. 33258. 46229. 73043. 124029.
        408628. 527329
     8. 121. 234. 331. 347. 799. 1009. 1364. 1929. 2607*. 2817. 2930. 3156. 4286. 6998. 8919. 10630. 13329. 18976. 22156. 27564*. 29501. 34134. 58881. 64644. 89149. 131863. 231755. 273694. 415848
113
     15. 122. 152. 289. 533. 1111. 2999. 3547. 4399. 5191*. 7276. 14811. 17247. 18099. 44677. 73721. 133149.
        160168. 163609. 166851*. 1538221. 1686759. 40407039
     10. 139. 159. 606. 1629. 1649. 2076. 2374. 4778. 4927°. 7440. 9546. 10291. 10887. 11185. 35303. 37836.
        72851. 375967. 462953*
     39. 118. 589. 667. 1374. 1609. 1766. 4749. 8753. 9616*. 15425. 16446. 19743. 20999. 27200. 41801.
157
        48317. 55774. 67785. 69983*, 73672. 138199. 150681. 428021. 521044. 658576. 1055864. 2446492.
        3643774. 5307581*. 8555207
173 41. 132. 214. 824. 906. 1252. 1689. 2381. 3501. 5841*. 9301. 9993. 12151. 15356. 26337. 27721. 37409.
        64051. 154876. 178149*. 207814. 345094. 417317. 448976. 3297075. 118135085
     48. 229. 314. 676. 2944. 3753. 4211. 4754. 10727. 11632*. 25931. 26016. 30179. 38601. 41859. 49099.
50632. 82307. 281226. 361409*. 3254151. 4515359. 7936717
193 12. 181. 205. 374. 591. 1556. 2521. 3100. 4065. 6381*. 6574. 14656. 16393. 22569. 35524. 88213. 88406.
        92049. 139551*. 174074. 189538. 689601. 2001229
197 | 99. 295. 296. 2069. 2659. 3251. 4629. 4630. 5024. 5221*. 6008. 9161. 13101. 15661. 21768. 29254. 35361.
        36149. 54274. 76534*. 83430. 87369. 102735. 148439. 150410. 179565. 187249. 288901. 788493. 979976*.
        5456999. 12448726. 21432319. 41719774
                                                     159 | 5-37-137
   Zerlegbare aa + 64.
                                  69 | 5.5.193
                                                                          381 | 5.5.37.157
                                                                                                571 | 5.13.29.173
                                                     181 | 5.5.13.101
                                                                          389 5.13.17.137
                                                                                                581 5.5.5.37.73
                                  79
                                      5.13.97
 1 , 5.13
               25 | 13-53
                   13.61
                                  81
                                                     183 13.29.89
                                                                          391 | 5.13.13.181
                                                                                                661 | 5.17.53.97
               27
                                      5-5-5-53
 3
    73
                   5.181
                                                          5.5.17.113
                                                                          393 17.61.149
                                  85
                                                     210
                                                                                                703
                                                                                                     13.193.197
    89
               29
                                      37.197
 5
                   5.5.41
                                      61.149
                                                          17.29.101
                                                                               37-37-137
                                                                                                707
                                                                                                     41.89.137
                                  95
                                                     223
                                                                          433
    111
               31
 7
                                                                          441 5.13.41.73
                                                                                                     53.89.109
                                      97-137
                                                          5.37.113
                                                                                                717
 9
    5.29
               49
                   5.17.29
                                 115
                                                     233
                   5.13.41
                                 121
                                      5.17.173
                                                     281
                                                          5.5.29.109
                                                                          455 29.37.193
                                                                                                729
                                                                                                    5.13.13.17.37
11
               51
    5-37
                                 131 | 5.5.13.53
                                                          5.97.197
                                                                          461 5.17.41.61
                                                                                                831 5.5.5.5.5.13.17
                                                     309
                   13.13.17
15
   17.17
                                                          5.13.29.61
                                                                                                873 | 53.73.197
   5.5.17
               63
                   37.109
                                 149 | 5.61.73
                                                     339
                                                                         467 | 13.97.173
19
                              149 5.01.73
                                                    359 5.17.37.41
                                                                                               879 5.29.73.73
               67 29.157
                                                                         529 5.17.37.89
21 5.101
```

NACHLASS. ZERLEGBARE aa+64.

```
13889
                                2601
      911
           5.13.113.113
                                       5.13.29.37.97
                                                                        5.41.89.97.109
            13.17.29.137
                                 2625
                                       5.13.53.73.137
                                                                13911
                                                                        5.13.13.29.53.149
      937
      989
           5.13.101.149
                                277 I
                                       5.73.109.193
                                                                14451
                                                                        5.29.73.109.181
     1035
            17.29.41.53
                                 2989
                                       5.13.13.97.109
                                                                16069
                                                                       5.5.13.37.109.197
                                                                16985
     1097
                                       5.13.37.37.113
            41.149.197
                                 3171
                                                                        17.29.53.61.181
     1141
            5.17.17.17.53
                                 3199
                                       5.13.29.61.89
                                                                17421
                                                                        5.13.137.173.197
     1169
                                 3413
                                       29.41.97.101
                                                                18<11
            5.5.5.13.29.29
                                                                        5.13.17.17.17.29.37
     1171
            5.13.17.17.73
                                 3721
                                        5.17.29.41.137
                                                                18563
                                                                        13.37.41.101.173
                                        5.5.13.17.17.173
                                                                18685
     IIQI
                                                                        17.29.73.89.109
            5.53.53.101
                                 4031
     1247
            13.37.53.61
                                 406 r
                                        5.17.17.101.113
                                                                24061
                                                                        5.29.29.37.61.61
                                 4109
                                       5.13.13.13.29.53
                                                                24261
                                                                        5.17.17.37.101.109
     1343
            29.37 41.41
                                                                27665
     1419
            5.5.5.89.181
                                 4315
                                        13 41.181.193
                                                                        13 37.41.197.197
            5.37.61.197
     1491
                                        5.5.5.13.61.197
                                                                29019
                                                                        5.5.37.53.89.193
                                 4419
     1589
            5.41.109.113
                                 454I
                                        5.17.41.61.97
                                                                29981
                                                                        5.5.37.41.137.173
     1609
                                                                        5.5.5.5.13.17.53.137
            5-41-73-173
                                 4979
                                        5.29.37.97.157
                                                                31669
     1613
                                        13.61.181.181
            13.17.61.193
                                 5097
                                                                58397
                                                                        13.17.29.37.73.197
     1637
                                 5169
                                        5.5.5.37.53.109
                                                                59279
            13 13.101.157
                                                                        5.13.53.73.89.157
     1681
                                 538z
                                                                88789
            5.5.17.61.109
                                        5.5.13.41.41.53
                                                                        5.13 17.29.37.61.109
     1691
            5.13.29.37.41
                                 5459
                                       5.13.17.149.181
                                                                103481
                                                                        5.5.13.13.17.29.53.97
                                                               132081
     1749
                                        5.17 37.61.173
            5.17.17.29.73
                                 5761
                                                                        5.5.5.5.5.5.5.13.89.193
     1839
            5.37.101.181
                                 5869
                                                                        5.17.29.41.53.61.89
                                        5.5.89.113.137
                                                                170529
                                 6081
     1861
            5-37-97-193
                                        5.5.5.29.101.101
                                                                       5.5.5.5.5.13.13.17.37.137
                                                               213331
                                 7781
     1999
            5.41.101.193
                                        5.5.29.37.37.61
                                                                383229
                                                                       5.17.17.61.89.97.193
                                                                728391
                                                                       5.13.73.97.101.101.113
     2019
            5.5.41.41.97
                                 9039
                                        5.29.37.97.157
     204I
            5.73.101.113
                                 9779
                                        5-37-73-73-97
                                                               1934581
                                                                        5.5.5.5.13.17.17.17.29.53.61
                                                              2446081
     2055
            13.17.97.197
                                10519
                                                                        5.5.5.13.17.17.37.53.73.89
                                        5.37.37.53.61
     208 T
            5.5.5.5.13.13 41
                                10527
                                        41.109.137.181
                                                               4056181
                                                                        5.5.13.17.29.41.101.137.181
     2131
            5.5.13.89.157
                                10831
                                        5.5.5.5.17.61.181
                                                              5106581
                                                                        5.5.5.13.17.37.41.61.101.101
                                11511
     2201
            5.53.101.181
                                        5.17.41.193.197
                                                              14836119 | 5.5.13.13.17.17.17.17.29.137.157
     2445
            13.29.101.157
                                13331
                                       5.5.5.5.5.29.37.53
                             13581 5.5.5.17.29 41.73
     2479 | 5.73.113.149
 17
    15. 19. 53. 831
    9. 49. 1169
 29
    11. 729. 18511
    31. 51. 359. 1343. 1691. 2081
    25. 81. 131. 1035. 1141. 4109. 5381. 13331
    27. 339. 461. 1247. 7781. 10519. 24061. 1934581
    3. 149. 441. 581. 879. 1171. 1749. 13581
    5. 183. 529. 3199. 170529. 2446081
    79.661. 2019. 2601. 4541. 9779. 103481
 97
    21. 181. 223. 1191. 3413. 6081. 5106581
109 63. 155. 281. 717. 1681. 2989. 5169. 13889. 18685. 24261*. 88789
    7. 219. 233. 911. 1589. 2041. 3171. 4061. 728391
137 115, 159, 389, 433, 707, 937, 2625, 3721, 5869, 31669*, 213331
149 95. 393. 989. 2479. 13911
157 67. 381. 1637. 2131. 2445. 4979. 9039. 59279. 1483619
    121. 467. 571. 1609. 4031. 5761. 18563. 29981
181 29. 391. 1419. 1839. 2201. 5097. 5459. 10527. 10831. 14451*. 16985. 4056181
193 | 69. 455. 1613. 1861. 1999. 2771. 4315. 29019. 132081. 383229
197 | 85. 309. 703. 873. 1097. 1491. 2055. 4419. 11511. 16069*. 17421. 27665. 58397
```

ZUR CYKLOTECHNIE. ZERLEGBARE aa + 81.

Zerl	egbare aa -	⊢ 81.	ŀ	1807	5.53.61.101	10118	5-37-53-53-197
1	41	323	5.53.197	2008	5.13.17.41.89	10577	5.29.41.97.97
2	5.17	352	5.137.181	2009	13.29.53.101	11563	
4	97	376		2041	97.109.197	12143	5.29.29.89.197
5	53	389		2051	29.29.41.61	12565	13.17.29.109.113
7	5.13	406	17.89.109	2125	13.29.53.113	15233	
8	5.29	409	13.41.157	2138	5.5.5.13.29.97	16237	5.5.5.17.17.41.89
10	181	427	5.17.29.37	2293	5.17.157.197	16522	5.17.29.37.41.73
11	101	461	13.13.17.37	2312	5.5.29.73.101	16777	5.13.13.17.97.101
13	5.5.5	472	5.29.29.53	2450	13.17.157.173	17888	
17	5.37	487	5.5.5.13.73	2531	17.29.73.89	17972	5.13.29.53.53.61
19	13.17	491		2623	5.41.97.173	18887	
20	13.37	1	17.41.173	2705			5.5.29.37.61.109
22	5.113	533	5.157.181	2888	17.29.41.181	18974	13.13.17.29.29.149
	5.61	547	5.173.173	1	5.5.5.5.5.17.157	19558	5.13.13.41.61.181
23		553	5.13.13.181	2906	13.37.97.181	20362	
28	5.173	566	13.157.157	3088	5.5.13.13.37.61	23368	5.13.13.53.89.137
32	5.13.17	575	37.41.109	3238	5.5.41.53.193	24083	5.13.157.157.181
37	5.5.29	578	5.13.53.97	3322	5.13.41.41.101	24499	13.17.61.113.197
38	5.5.6z	587	5.5.61.113	3347	5.13.17.37.137	24958	5.17.37.37.53.101
40	41.41	617	5.13.29.101 -	3503	5.13.13.53.137	29153	5.13.17.29.89.149
43	5.193	631	13.17.17.53	3517	5.13.17.29.193	29242	5.17.17.61.89.109
49	17.73	662	5.5.89.197	3791	29.37.37.181	29765	17.37.41.89.193
50.	29.8 9	683	5.13 37.97	3988	5.5.29.97.173	30218	5.13.41.41.61.137
53	5.17.17	694	53.61.149	4010	13.13.17.29.193	31487	5.5.5.5.5.4I.53.73
58	5.13.53	733	5.17.29.109	4112	5.5.5.17.73.109	31843	5.13.17.17.137.197
59	13.137	737	5.5.5.41.53	4354	17.61.101.181	34763	5-5-5-5-17-29-37-53
62	5.5.157	763	5.5.5.17.137	4388	5.5.5.13.17.17.41	35137	5.5.17.73.101.197
71	13.197	797	5.17.37.101	4429	29.41.73.113	35783	5.13.17.17.173.197
79	29.109	862	5.5.5.5.29.41	4648	5.13.29.73.157	37147	
83	5.17.41	877	5.13.61.97	4657	5.101.109.197	38201	
91	37.113	920	17.17.29.101	4837	5.5.41.101.113	44987	• , , , •,
95	29.157	1018	5.17.89.137	5083		46963	
97	5.13.73	1037	5.5.137.157	5162	5.5.61.101.173	56387	- 0 0 / / 00 / 0
98	5.13.149	1060	13.13.61.109	5557	5.13.17.89.157	57037	5.5.13.17.37.73.109
101	53.97	1108	5.41.53.113	5747		60743	
112	5.5.5.101	1118	5.53.53.89	5792	5.13.13.29.37.37	61337	5.5.41.109.113.149
122	5.41.73	1168		5833		69107	
124		1201	5-29-97-97	6013	5.17.17.61.193		5.17.53.53.73.137
128	13.29.41 5.37.89	11	37.101.193			79813	13.13.29.37.137.193
		1229	13.13.41.109	6233	5.13.37.41.197	1 11 7	5.5.13.17.53.73.149
137	5.5.13.29	1243	5.17.61.149	6458	5.17.37.89.149	86528	5.17.29.97.173.181
139	89.109	1265	73.97.113	6532	5.5.37.113.157	87263	5.5.5.5.5.13.17.37.149
163	5.5.13.41	1277	1	6689	13.97.113.157	97577	5.29.61.73.73.101
188	5.5.13.109	1313	5.5.29.29.41	6883	5.13.13.17.17.97	98063	5.5.73.97.157.173
191	101.181	1436	13.41.53.73	7097	5.29.29.53 113	121933	5.13 41.97.149.193
202	5.13.17.37	1447	5.17.109.113	7160	53.61.101.157	132683	5.17.29.109.181.181
215	13.13.137	1463	5.5.13.37.89	7793	5.13.29.89.181	157723	5.13.13.29.53.61.157
217	5.53.89	1475	13.13.41.157	8158	5.13.13.17.41.113	168703	5.37.37.61.173.197
247	5-41-149	1487	5.5.5.5.29.61	8273	5.29.53.61.73	181508	5.41.41.101.197.197
248	5.109.113	1585	53.137.173	8638	5.5.5.13.17.37.73	195787	5.5.13.17.29.37.53.61
253	5.13.17.29	1639	41.181.181	9028	5.13.73.89.193	237322	5.13.13.13.17.17.113.15
268	5.73.197	1645	13.29.37.97	9101	41.73.101.137	269861	13.37.41.101.101.181
287	5.5.17.97	1685	17.37.37.61	9295	61.73.89.109	278297	5.5.13.37.97.113.113
292	5.13.13.101	1702	5.17.173.197	9562	5.5.13.29.89.109	297212	5.5.13.97.113.137.193
313	5.5.37.53	1703	5.29.73.137	9587	5.5.13.13.73.149	314387	5.5.41.41.73.89.181
	- ~	, , ,	1 - 7 - 7		5.17.29.97.193		5.5.5.5.13.13.29.89.197

NACHLASS. ZERLEGBARE aa+81.

```
2898587
                349487 |
                         5.5.5.29.29.53.97.113
                                                                      5.5.17.29.73.137.173.197
                474013
                         5.5.5.13.17.17.29.73.113
                                                            3559861
                                                                      13.37.61.89.109.113.197
                609161
                         13.73.73.113.137.173
                                                            4034153
                                                                      5.13.13.17.29.41.53.89.101
                                                                      5.5.17.37.37.37.89.101.113
                647665
                         29.37.53.97.193.197
                                                            4676188
                934862
                                                            4802183 | 5.73.97.109.113.137.193
                         5.5.5.13.13.17.17.37.53.73
                         5.13.41.89.101.137.193
                                                            4947916
               1125533
                                                                      17.17.37.53.61.73.89.109
                                                            6678737 | 5.5.5.17.17.29.41.53.97.101
                         5.5.29.37.41.61.73.137
               1158413
               1880912 5.5.13.17.37.53.53.61.101
                                                            9578563 | 5.5.13.17.17.17.29.61.109.149
                                                           34928797
               2023513 | 5.5.5.5.37.41.97.113.197
                                                                     5.13.13.17.29.37.53.53.73.193
               2092285 17.17.37.37.37.41.41.89
                                                          59554033 5.13.13.13.37.61.73.89.101.109
 13 7
     2. 19. 32. 53. 1787
     8. 37. 137. 253
 29
     17. 20. 202. 427. 461. 5792
 37
     1. 40. 83. 124. 163. 862. 1313. 4388
     5. 58. 313. 472. 631. 737. 5083. 34763
     23. 38. 1487. 1685. 2051. 3088. 17972. 195787
     49. 97. 122. 389. 487. 1436. 8273. 8638. 16522. 31487. 46963. 934862
     50. 128. 217. 1118. 1463. 2008. 2531. 6013. 16237. 56387. 2092285
     4. IOI. 287. 578. 683. 877. 1168. 1645. 2138. 6883. 10577
 97
     11. 112. 292. 617. 797. 920.1807. 2009. 2312. 3322. 16777. 24958. 97577. 1880912. 4034153. 6678737
     79. 139. 188. 406. 575. 733. 1060. 1229. 4112. 9295. 9562. 18887. 29242. 57037. 60743. 4947916. 59554033
109
     22, 91. 248., 317. 587. 1108. 1265. 1447. 2125. 4429. 4837. 7097. 8158. 12565. 15233. 278297. 349487.
       474013. 4676188
     59. 215. 763. 1018. 1703. 3347. 3503. 9101. 17888. 23368. 30218. 69107. 1158413
    98. 247. 694. 1243. 6458. 9587. 18974. 29153. 61337. 79813. 87263. 9578563
62. 95. 376. 409. 566. 1037. 1475. 2888. 4648. 5557. 6532. 6689. 7160. 37147. 157723. 237322
28. 491. 547. 1585. 2450. 2623. 3988. 5162. 11563. 98063. 609161
149
173
     10. 191. 352. 533. 553. 1277. 1639. 2705. 2906. 3791. 4354. 7793. 19558. 24083. 38201. 86528. 132683.
        269861. 314387
193 43. 1201. 3238. 3517. 4010. 5747. 5833. 9028. 9607. 29765. 69244. 121933. 297212. 1125533. 4802183. 34928797
197 71. 268. 323. 662. 1702. 2041. 2293. 4657. 6233. 10118. 12143. 20362. 24499. 31843. 35137. 35783. 44987.
       168703. 181508. 327737. 647665. 2023513. 2898587. 3559861
```

CIRCULI QUADRATURA NOVA.

```
I. Acotg. 5 = (2) - (13).
```

```
26684971 0210071265 7279572372 8848455203 4183360499 1499728341 833
                   364 7220869565 2173913043 4782608695
                                                          6521739130
                                                          4575866188 769
                        4977954329 5694145758 6618876941
                         (43).....204560302 8420465116
                                                          2790697674
                            (47).....299441 4645858042 5531914893 617
                               (51) .....441 5293752324 0156862745 098
                                  (55)..... 6550690367 0843578181 818
                                     (59).....9770521 2254817540 338
                                         (63).....14640 2730743726 600
                                           (67).....22 0259630730 860
                                               (71)......332561019 920
                                                   (75).....503719 091
(79).....765 142
                                                         (83) . . . . . 165
                                                            (87)......
   26684971 0210071630 9478396268 6921374192 0505397169 7498644659 104
0,2000640569 5190437336 8654456654 4566544566
                                                           6654456654 456
                                               5445665445
                                                          1764705882
               7710131 0688316235
                                   2941176470
                                               5882352941
                                               1379310344
                         185127900
                                   6896551724
                                                           8275862068
                                                          7696610135
                            260673
                                   0412205651 4831745270
                                      7830238 1276333963
                                                          9002267573
                                (53).....16 9947155749 8300377358 490
(57).....252833663 2909752140 350
                                       (61).....378007 0506907695 003
                                          (65) . . . . . . 567 5921253449
                                              (69)......8555011744 329
                                                 (73).....12937990 364
                                                    (77) . . . . 19625 419
                                                        (81).....29 850
                                                            (85) . . . . . . 45
0,2000640569 5198147467 9528161463 4824308667 9015775954 9600162348 045
   26684971 0210071630 9478396268 6921374192 0505397169
                                                          7498644659 104
0,1973955598 4988075837 0049765194 7902934475 8510378785 2101517688 941
```

Digitized by Google

NACHLASS.

```
II. Acotg. 70 = 2(2) - 2(13) - (29)
```

```
· 0,0142857142 8571428571 4285714285 7142857142 8571428571
                                                            4285714285
                                                            2594752186
                                                                        588
   3) 29154 5189504373
                         1778425655 9766763848
                                                3965014577
                                                            7096447908
                                                                        609
             9499018266
          7)
                         1986077229
                                     7257095257
                                                9282441839
                         7890201240 2509644305
                12142656
                                                            0693284989
                                                                       369
                                                1546792335
                                                            0887896588
                                                                        773
                    2478
                         0932222490
                                     0490308090
                                                6745213631
                 11)
                          5057333106
                                                            3736915897
                                     6306222511 8552396982
                     13)
                            1032108
                                     7972715555
                                                 6146643346
                                                            3229334064
                                     6344484227 6644111559
                                                            8665965170
                         15)
                                210
                             17)
                                      429866221 2709519206
                                                            4407891013
                                                                       300
                                          87727 8002593779
                                                                        268
                                 19)
                                                            4298858753
                                                                        949
                                                            9549856909
                                     21)
                                            17 9036327059
                                                  36538025
                                         23)
                                                            9306030583
                                                                        588
                                                            7399858373
                                              25)
                                                      7456
                                                            5217836705
                                                                        790
                                                  27)
                                                               3105680
                                                                       960
                                                     29)
                                                                   633 812
                                                          31)
                                                                        128
                                                              33)
                                                            7531584062 196
        9718 1729834791 0592808551 9922254616 1321671525
                 1734665 2555743034 3215663472 1649541762
                                                            1527612141
                           459757555 1482383864 7141126998
                                                            3976083263
                                  14 0422965615 1776274103
                                                            9911064344
                                                                        68 r
                                                            1805203092
                                           4617 2526452304
                                                                        277
                                                    1588609 8230696981
                                                                       871
                                                              563623581 695
                                                                    20
                                                                        447
         9718 1731569456 3608309155 5043272185 4416655304 3545867487
                                                                        890
 0,0142857142 8571428571 4285714285 7142857142
                                                 8571428571
                                                            4285714285
                                                                        714
                                                             9419289581
           1 1899803653 2397215445
                                                                        721
                                     9451419051
                                                 5856488367
                                     0054478676
                     275 3436913610
                                                 7416134847
                                                             8987544065
                               79392 9844055042
                                                            0248410312
                                                                        65 I
                                                 7395895642
                                        25286248
                                                             3200464177
                                                                        252
                                                 3100559953
                                                                        997
                                                 8525539383
                                                             8073802709
                                                        298
                                                            2695994334
                                                                        943
                                                                        446
                                                                 107092
                                                                          3
 0,0142857144 0471232500 0119922734 6518096163 0866047064 6911326560
         9718 1731569456 3608309155 5043272185 4416655304 3545867487
 0,0142847425 8739663043 6511613579 1474823977 6449391760 3365459072 256
```

CIRCULI QUADRATURA NOVA.

III. A cotg. 99 = -(2) + 2(13) - (29).

```
10306 1015212836
                       4555667892 0621375472 9212335579
                                                        0328548210
         1 0515357128
                       1335022514
                                  8344109925
                                             0559046254
                                                        0127571528
               1072886
                      1471414653
                                                       3228255032
       7)
                                  8633643925 1020361090
                       4670081768
                  109
                                  6617552662 3737477845
                                                       2290911973
              11)
                        111689631 8506950061 4898861083
                                                       3430495960
                  13)
                           11395 7383788077
                                                        4633550708
                                            7534424942
                               1 1627118027 5561425816
                                                       2373699984
                                     1186319 5620402145
                           17)
                                                       27254743C8
                                        121 0406654464
                                                       0491044329
                                    21)
                                             123498281
                                                       2431434654
                                                       5796595391
                                        23)
                                                 12600
                                            25)
                                                     1 2856422466
                                                                  625
                                                 27)
                                                          1311745
                                                                   837
                                                              133
                                                           31)
                                                                   13
      3435 3671737612 1518555964
                                  0207125157
                                             6404111859
                                                        6776182736
                                                                  799
                                             5860051584
               153269
                       4495916379
                                                        3318322147
                                  1233377703
                                             3172623734
                         10153602
                                  8955177278
                                                        8493681450
                                   775141201 8370761721
                                                        0824913332
                                             3705613392
                                                        8446897069
                                                        8512895451 815
                                                   547
                                                            48583
                                                                  184
      3435
           3671890881 6024625946 1170821347 7513162840
                                                       6372940772
                                                                  546
0,0101010101
            0101010101
                       0101010101
                                  101010101 0101010101
                                                        101010101
            2103071425 6267004502
                                  9668821985 0111809250
                                                        8025514305
                                                        5810101330
                       1630099085
                                  4068616962 4859719760
                             876
                                  5952599082 9041109610
                                                       9587196208
                                                                  360
                                       69783 5036494243 8395616135
                                               5880870
                                                       5353877840
                                                                  668
                                                         514256898
                                                                  665
                                                                  615
0,0101010101 2204081538 7998024565
                                  9791117914 9156023837
                                                        7787572825
                                                        6372940772
            3671890881 6024625946 1170821347
                                             7513162840
0,0101006665 8532190657 1973398619 8620296567 1642860997 1414632052 646
```

NACHLASS. CIRCULI QUADRATURA NOVA.

IV. Acotg. 307 = -3(2) + 3(5) + (13) + (29).

```
0,0032573289
             9022801302 9315960912 0521172638 4364820846
                                                                      833
                                                           9055374592
     345
5)
             36669764 6489336152 1087234559 3817877050
7) 389 0742400417 25802055
                                                           1556823471
                                                                      597
                                                           8899421286
                                                          6274855960
                                                                      501
                          41281419
                                    3298311709
                                               4522474201
                                                           4009658191
                                                                      131
                              438 0037913381 6985798496
                                                           2620441698
                                     46473043 8878046300
                            13)
                                                          7405517516
                                              0879254719
                                                           3742187243
                                          493
                                         17)
                                                 52317576
                                                          3638805103
                                                                      367
                                                          0995380734
                                                                      067
                                               19)
                                                    555
                                                    21)
                                                            58897127 616
                                                                 624 909
                                                          23)
       115 2029549465 7814333365 0256662391 3698056442
                                                          0518941157 199
0,0032
                    55 5818927202 4654329166 4095858262
                                                           8039265137
                                39 8185264852 8816890772 3874585608
                                           32 8725283647 9582812482 903
                                                          2157651617 582
                                                       29
                                                                  27 169
        115 2029549521 3633260607 3096256443 5336089154 4173256031 037
0,0032573289 9022801302 9315960912 0521172638 4364820846
                                                           9055374592
                7333952 9297867230 4217446911 8763575410 1779884257 283
                           4586824 3699812412 1613608244 6001073132
                                                                      347
                                       3574849 5298311253
                                                          9031193655 139
                                                  3077504
                                                           4919929711
                                                                      962
                                                              2804625 124
0,0032573289 9030135255 8618414966 8442006812 0043393260 0790259974 688
        115 2029549521 3633260607 3096256443 5336089154 4173256031
0,0032573174 7000585734 4985154359 5345750368 4707304105 6617003943 651
```

TABULA ARCUUM TANGENTIBUS PRIMIS DATIS RESPONDENTIUM IN PARTIBUS BADII AD 110 FIGURAS.

5	0,7853981633	∞80611621	4256231461	2144020285	3705428612	0263810933	0887201978	6
	0,5880026035			0854276017	0724605592	4353726047	2072	
	0,2449786631							
29	0.3805063771	1236486630	3587916810	4331044974	0571365810	0837576305	623	
37	0,1651486774	1462683827	9128289643	9435540983	8			

ZUR BERECHNUNG DER GEMEINEN LOGARITHMEN.

Man suche die Logarithmen von

$$\log \frac{1024^{3}}{*} = a$$

$$\log \frac{1024^{3}}{*} = b$$

$$\log \frac{81^{3}}{*} = c$$

$$\log \frac{125^{10}}{*} = d$$

$$\log \frac{99^{3}}{*} = e$$

(* zeigt einen um 1 kleinern Nenner als Zähler an) so ist, wovon man sich leicht überzeugen kann:

$$\log 2 = \frac{14\frac{1}{2} + \frac{1}{2}a + 2b - \frac{1}{2}c - 2d + e}{49} = f$$

Noch kann man leicht herleiten

$$\log 41 = a + 12f - 2 = g$$

$$\log 3 = \frac{1 + c + 4f + g}{8}$$

 $\log 11.31$ und $\log \frac{11}{7}$ und also auch $\log 7.31$

II.

[Die Anwendung dieser Brüche zur Bestimmung der Logarithmen der nebenstehenden kleinen Primzahlen mit Hülfe der noch wachsenden Potenzen von $\frac{1}{x}$ fortschreitenden sehr rasch convergirenden Reihen für $\log \frac{x}{x-1}$ ergibt sich unmittelbar aus dem zu Anfang ausgeführten Beispiel.

Es lassen sich übrigens zur Bestimmung der Logarithmen der kleinsten Primzahlen 2, 3, 7 noch vortheilhaftere Reihen aufstellen wenn man diese Gaussischen Zahlen auf geeignete Weise mit den von Huyghens (Hugenn, Opera varia, Lugduni 1724 pag. 457) angegebenen verbindet:

2

$$1000$$
 11
 $9800 = 100.2.7^8$
 19
 $28899 = 3^8.13^8.19$
 $1024 = 2^{10}$
 $9801 = 3^4.11^5$
 $28900 = 100.17^5$
 3
 $32805 = 3^8.5$
 13
 $123200 = 100.2^4.7.11$
 23
 $25920 = 10.2^8.3^4$
 $32768 = 2^{18}$
 $123201 = 3^6.13$
 $25921 = 7^8.23^8$
 7
 $2400 = 100.2^6.3$
 17
 $2600 = 100.2.13$
 29
 $613088 = 2^5.7^8.17.23$
 $2401 = 7^4$
 $2601 = 3^8.17^8$
 $613089 = 3^6.29^8$

```
31 116280 = 10.28.38.17.19
                                                                                     73 5116644 = 2^{8} \cdot 3^{8} \cdot 13^{8} \cdot 29^{8}
                                           53 3059000 = 100.7.19.23
      116281 = 112, 31
                                                3059001 = 3<sup>8</sup>, 11<sup>8</sup>, 53<sup>8</sup>
                                                                                          5116645 = 7.17.19.31.73
37 165648 = 2ª. 3. 7. 17. 29
                                           59 5851560 = 10.28.3.118.13.31
                                                                                     79 5997600 = 100.2^{8}.3^{2}.7^{8}.17
                                               5851561 = 41^8.59^8
                                                                                          5997601 = 31^3.79^3
      165649 = 112.37
                                           61 3575880 = 10.2°.3°.7.11.43
41 1413720 = 10.2<sup>3</sup>.3<sup>3</sup>.7.11.17
                                                                                     83 1164240 = 10.2^{8}.3^{8}.7^{2}.11
                                               3575881 = 31°.61°
     1413721 = 29^2.41^8
                                                                                          1164241 = 138.838
43 .978120 = 10.28.38.11.13.19
                                           67 	1620528 = 2^4, 3.7^8, 13
                                                                                     89 	 2859480 = 10.2^8.3^8.13^8.47
                                               1620529 = 19^2.67^8
                                                                                          2859481 = 19^{8}.89^{3}.
      978121 = 232.43
47 664848 = 25.36.7.13
                                           71 	 2016399 = 3.7^{8}.11.29.43
                                                                                     97 1138488 = 28. 3.13.41.89
                                               2016400 = 100.28.718
      664849 = 31^2.47^8
                                                                                          1138489 = 112.972
```

Zur Bestimmung der Logarithmen für alle die Primzahlen, welche kleiner als 200 sind, kann man mit Vortheil die in den Tabellen für Cyklotechnie gefundenen Zerlegungen von aa+1, a+2, ... aa+81 benutzen, wenn man sich auf diejenigen Zahlen a beschränkt, welche selbst nur Primzahlen unter 200 als Theiler enthalten. Die übrigen a lassen sich dann zur Bestimmung der Logarithmen der darin vorkommenden grösseren Primtheiler verwerthen.]

NACHLASS. QUADRATORUM MYRIAS PRIMA.

_																				
<u> </u>	10	20	30						90	<u> </u>	11	21	31	41	51	61	71	81	91	1_
∞	1000	4000				36000	49000				11	1			26010	37210				
1	02	04				1	1 4	t .		2001	12		1				24			201
2	04	08	1 1					.		004	14			1				· · -		
3	06	12		, ,		٠.		48 64		009	18	,		34	1			_	l'	609
1	08	16	24	32	1 1	1 :	ì	1	1	•	il		1 "	42				1 "	1	
5 6	10	20					, ,		81090		21	1 -	1 .	51					82901	
	12	24	:			1 /		(• •	81108		23			59			50495		, -	236
7	14	28		56			49098			049	25	1	1			37295			37	
H 1	16 18	32		64	25090		49112 26	1		064 081	27 29	1	1			37307 19	23 37	39 55	33	664 881
9		36	1 - 1	1 -	1 1		1 :		1		11 -	1 '''	1	h		1 1			1 1	
10	20	40			1				,		32								82992	
I	22	44		,		, , , ,	7.0		81198 81216		34 36			16900				05788 65804	83010	
3	24 26	48	1 -	16096		1 "		64208	1	169	38			16	, ,		50594	20	í -	544 769
3	28	52 56	1 1		, - 1		49196			196	40		9696	24			50608	36) :	996
1 1	1	1 1	1	Ι	1 1		1	l .	-		1	1	1	1 .	1 1		(
5	30		1				49210		, ,	225	43	:		33		37393	23	53	83083 83101	225
	32	64 68	,			36192 36204			81288		- 45 - 47	77 81	1 -	41 49	1 1	37405 17	37	658 8 5		689
7	34 36	1	1 -		اندا			64288		324	49	1 - 1	1 -0	57				65901		924
19	38		1 1	1	25190			64304		361	52	1 -	1 -1		26204			18		161
1		80	1	1		i		1		-		1 1		l	1 7				1 -	1
20 I	40 42	1	1				49294		,	400	1254	94 4498		74 82			50694 50708	34 50	74 83192	1400 64 T
2	44	1			1 1		49308		81396	44I 484		4502						66	83210	884
3	46	: 1			1				81414		61	07	53	16999		3749I	37	83		129
4	1048	4096				36288		64384	32	576	63					37503		65999	1 1	376
	1	4100	1	1 - 1	1 1	. !	1 1	1.	1 1	625	65			' '	1		- 1			625
5	50 52	04	1					16		676	67	15		15 23	65 75	27			83283	
7	54	08	1 -		1 1	1	1 :		81486		70		1 -	32			50794		83302	
8	56		1		ا نما		49392		81504		72	28		40			50808	64		384
29	58			-	1 1	48	49406		22	841	74	1 1		48			22	80		64 I
30	60	20	80	40	1		1 '		•	900	76	36	9796	56	1 1	76	26	66096	56	900
3,1	62	24						64496	T-	961	79			65		37589				161
2	65	29	1 1					64513		024	81		09	73		37601		29	83393	424
3	67		9199			36397			81595		83	49		81		13	79	45	83411	689
4	69				41	36409	77	45	81613	156	85	53	21	89		25	50893	6r		956
5	72	41	11	81	51	21	49491	61	31	225	88	58	28	17098	68	38	50908	78	48	225
5 6	73	45		89			1	77		296	90	62			78			66194	66	496
7 8	75	49		16297		45	19	64593		369	93	66	40	14		62	36	66210	83484	769
8	77	53	29	16305	81	1 2'			81 6 85		95	71	47		26399	75	51	27	83503	044
39	79	57	35	13	2539I	69	47	25	81703	521	1297	75	53	31	26409	87	65	43	21	321
40	8 r	61		31	25401	8 r	61	41	21	600	1299	79	59	39	19	37699	79	59	39	6∞
Ī	83	65	-47	29	11	36493	75	57	39	681	1301	83		47	29	37711		75	57	88 I
2	85	69	53		21		49589	73		764	04	88		56	40	24	51008		76	164
3	87	73			-			64689	75	849	06		78	64	50	36			83594	
4	89	77	65	53	41	29	17	64705	81793	936	08	4596	84	72	60	48	36	24	83612	736
5 6	92	82			J -		32	22	81812	025	11	4 6 01	91	8 r	71	61	51	41		025
	94	86						38		116	13			89	_	73	65	57		316
7	96	90		1 1.				1	,	209	15	09	9903	17197	26491	85	79	73		609
	1098		90		. –	, ,		70	, ,		17	13	09	17205	2650I	37797	51093	66389	83685	904
94	1100	4198	9290	10394	25492	30590	49088	04780	81884	401	1320	4618	9910.	17214	26512	37810	51108	00400	1837041	 201
1																				

							Qī	JADR	ATOR	UM	MYR	IAS :	PRIM	A.						
	10		30	40	50	60	70	<u>'</u>	, 90		11		31	41				81	91	
_		_		16402		-						4622		17222					83722	
2	04 06	06	08 14	18	12 22	14 26	16 30	ł		601 704	24	ł	1	,				1		801
3		14	20		32	38	1 -			809	29	35		, -,			65	71	77	104 409
4	10	18	26	34	42	50	58	66	74	916	31	39	47	55	63	71	79	66487	83795	71 6
5 6	, -	23	33	43	53	63		9	81993		34	44			1 1				83814	
7	15 17	27 31	39 45	51 59	63 73		49787 49801			249	36 38	48 52		. ,-		37896 37908		20 36		336
8	19			67	1 1	36699		,		364	40	56			26604	20				649 964
59	í	39	57	75	25593	36711	29		1	481	43	61	, ,,	17297	15	33	51		83887	182
60	– "		63		25603	23	43		82083		45	65		17305	25				83905	600
1 2		47 51	69	91 16499	13 23	35 47	57	79 64995	82101	72I 844	50	69 74	1	13			79 51294	10660 18		921
3	-/	55		16507	33		49885			969	52		10004				51308	34		244 569
4	32	60	88	16	44	72	499∞	28	56	096	54	82	10	38		37994	22	50		896
5			9394	24	54	84	14		74	225	57	87	17	• • • •		38007	37	67	83997	225
7			9400	32 40		36796 36808	28 42	76	82192 82210	356 480	1359	91 4695	23 29		87 26697	19 31	51 6e	83 66699	84015	
8	40		12	48	84	20	56	65092		624			36		26708	44	80	66716		889 224
69	42	ŀ	18	56	25694	32	73	65108	46	76 1	66	٠.	42	80	18		51394	32		561
70		84			25704	44		24	64	900	68	08	48	88	28		51408			900
1 2	1 7,	89	31 37	73 81	15 25		49999 50013		82283 82301		71	13		17397 17405	39 4 0	81 38093	23 37			241 584
3	,		43	89	35	81	27	73	19	329	75	21	67	13		38105	51			929
4	53	4301	49	16597	45	36893	41	65189		476	78	26	74	22	70	18	66			276
5	55	05	55 61	16605	55	36905	55 69	65205		625	80 82	30 34	80 86	30 38	80 26790	30	80			625
7	, J	13	67	13 21	65 75	17			82391	776 929	85	39	93		2680I		51494 51509			976 329
8	62	18	74	30	86		50098	53	82409	084	87		10099	55	11	67	23			684
79		22	80	-	25796	-	50112	70		24 I	90	٠,١	10106	64	22	80	38		1	041
80	1.1	26 30			25806 16	66 78		65286 65302	1	400 561	92	52 56	12 18	72 80		38192 38204	52 66			400
2			9498	62		36990			82482		97	61	25	89	53	17	81			761 124
3		38	9504	70		37002	68		82500			65	•	17497	63		51595		i	489
4		43	11	79	47	15	83	-		1	1401	69		17505	73		51609		1	856
5	77 79	47 51	23	16695	57 67	,	50197	67 83	37 55	225 396	04	74 78	44' 50	14 22	84 26894	54 66	24 38			225 596
7	8í	55		16703	77	51	25	65399	73	569	08	82	56		26904	78	52			969
8 89			35	11	87 25897	63			82591 82609		11	87 91	63 69	39		38291	67 81			344
11		63	41	1 1	25908	75	53 68	48	1	100		4796	76	•		38303	51696			721
90 I			54	ام!		37100	82	64	46	281		4800	82	64	46	28	51710			100 481
2	92	76	60	44	28	12	50296	80	64	464	20				56	40	24			864
3				1 7 9			50310	65512	82582	649 826	23 25		10195 10201				39 53			249
1	1199	10000	1			49				025	28		i	17598				_		636
6		1000		77	69	61	53	45	37	216	30	22	14	17606	26998	38390	82			416
7		4397								409	1000				27008	38402				809
9	1207	4401	9597	16793	25999				82791	801	35 1437	4835	10133	17631	27029	38427	51811			204 601
							2,000										-			

II.

	N	∆ CI	HLA	88		INI	OICE	28 I	ER	PRI	MZ	HLI	en i	M B	ЮBI	ERN	ZA	HLE	NRE	ich	E.			
	-1+26	-1-2i	-3	3+2i	3—21	1+48	1-4	-5+3	-5-21	-1+6	-1-6	5+4	<u>5</u>	1	7+26	7-21	-5+6	5-61	-3+8i	-3-8	5+8	5—8	9+4	9-4
		198	i-1	1-1-	+1-1	1-1-	2-1+	+1+1	-1+i	+1+	-1+6	+2-6	+1-2	+1-2	1+1-	i+i	1-1	-1-t	i+i	1-1-	1-1	1-1	1+1	1+4
i 1+i 1-i -1+2i -1-2i	I 2 I * I	I 3 2 3 * I	2 3 1 7 5	3 7 4 4 11	3 4 1 5 4 2	4 7 3 9 14 3	4 5 1 2 15	7 1 22 18 12	7 22 15 12 18	9 1 28 13 6	9 28 19 6 31 16	10 32 22 27 31	10 2 32 21 17	12 46 34 25 31 16	13 40 27 19 10	13 40 10 45 47	15 16 1 35 39 12	15 31 16 9 5	18 1 55 68 11	18 37 19 65 68 42	22 23 1 10 40 51	22 23 1 40 54 29	73 20 81	7 79 63 44
3+2i 3-2i 1+4i 1-4i -5+2i -5-2i	3 1 2 0 2	1 2 2 3 2 0	6 2 3 1 1 3	* 7 9 1 3 5	7 3	# 10 11	9 11 6 * 12 13	13 9 15 20 *	23 27 20 I 25	14 17 21 2 5 28	35 14 2 3 28 23	26 3 8 19 29 24	33 6 9 8 24 39	3 21 29 11 30 18	4 44 22 24 51 15	44 24 22 41 25	28 52 38 41 19 36	52 28 11 38 36 49	9 44 23 52 71 30	44 27 52 5 66 53	79 82 27 15 8 53	38 57 81 5 75	36 89 78 79 91 70	23 60 1 18 58 85
-1+6i -1-6i 5+4i 5-4i -7 7+2i	3 3 1 1	3 1 3 0	4 4 5 7 4 1	5	3 8 11 6 1	6 4 5	3 3 12 7	19 22 5 16 10 21	5 16 19 10	# 11 25 33 10	29 * 15 7 10 25	33 15 * 32 1 36	5 3 32 * 11 7	10 9 15 *	27 7 16 35 28	33 1 9 16 28 43	34 29 46 32 23 55	59 34 3 ² 46 53 26	39 49 69 31 51 37	67 21 13 15 33 10	65 12 26 33 83 87	87 55 70 61 85	39 32 4 37 11 27	32 9 43 28 5
7-2i -5+6i -5-6i -3+8i -3-8i 5+8i	3 0 1 2	3 3 0 0	3 0 0 6 2	2 6 10 5 4 7	10 10 6 4 11	7 15 8	14 1 6 18 19	23 25 6 7 26 4	7 6 11 26 21	7 4 9 3 15 9	19 27 4 33 21 8	37 2 4 9 21 38	36 4 22 31 19	20 43 13 23 17	37 8 1 6 39	* 8 11 6 27 7	26 * 1 33 43 25	25 31 * 13 3 2	46 21 25 * 62 24	55 43 39 26 * 56	19 85 46 28 24	65 2 19 24 28 30	23 45 83 73 67 77	21 29 3 13 7
5-8i 9+4i 9-4i -1+10i -1-10i 3+10i	0 3 2 2 1	1 0 2 2	5 2 6 5 7 2	8 11 2 0	5 8 0 2 9	9 14 1 7 1 6	7 2 7 1 5	19 11 14 16 3	4 14 25 17 16 24	35 4 31 35 23	27 4 17 17 13	23 28 35 21 30	18 25 28 10 31 18	37 39 33 5 35 38	33 3 13 46 9	39 29 35 46 50	2 21 37 50 15	55 7 51 45 50 56	56 1 65 39 70 14	24 11 19 34 21 2	74 49 23 57 86 69	* I 71 42 79 51	# 6 IO 42 65	35 90 * 54 22 31
3-10i -7+8i -7-8i -11 -11+4i	1 3 2 2	3 2 1 2	6 7 5 0 3	3 1 3 11 4	0	3 14 15 5	10 9 2 3 15	24 22 23 1	14 9 22 15 27	24 7 22 24 29	5 22 25 24 13	38 7 5 37 36	27 15 37 7 29	26 12 36 40 26	50 5 49 12 32	23 23 31 12 21	56 48 . 6 . 15 . 57	54 6 48 45 29	38 4 29 61 54	50 47 4 7 30	29 11 68 16 41	3 68 77 16 18	49 58 46 94 9	47 82 70 34 38
-11-4i 7+10i 7-10i 11+6i 11-6i	3 2 I	3 2	3 1 4 4	9 3 4 11 1	9 7 5	4	4 12 0	13 3 15 17 4	14 1 17 4 3	10 20 12	11 10 26 12 20	39 23 20 7 34	13 14 37	17 23	12 18 23	32 12 6 49 18	59 44 22 8 59	27 22 44 29 8	66 29 13 43 54	18 31 47 18 25	58 13 77	63 14 25 11 35	69 75 44	39 75 84 20 69
$ \begin{array}{c c} -23+2i \\ -23-2i \\ -9+20i \\ -9-10i \\ -7+12i \end{array} $	٥	3 0 0	7 5 2 6 4	2 8 11 7 0	8 2 1 5	15 12 3 10 9	4 9 6 5 4	27 15 8 16 12	1 13 16 8 13	20 18 19 21 1	18 20 3 1	18 32 20 7	32 38 37 20 22	15	33 36 42 11 30	36 7 37 42 5	37 5 42 42	7 24 42 35 19	26 28 53 41 59	28 62 59 71 50	72 22 39 56 81	66 72 56 17 64	38 35 61 16 87	77 26 16 19 87

HÜLFSTAFEL

BEI AUFLÖSUNG DER UNBESTIMMTEN GLEICHUNG

A = fxx + gyy

VERMITTELST DER AUSSCHLIESSUNGSMETHODE.

Es wird vorausgesetzt, dass man zum Excludens eine Primzahl p gewählt habe, durch welche keine der Zahlen A, f, g theilbar ist. Auch beschränkt sich die Tafel auf die zwei Fälle, da der Werth des Ausdrucks $\frac{\Delta}{f}$ (mod. p) entweder ein bestimmter quadratischer Rest (allemal 1), oder ein bestimmter quadratischer Nichtrest des Modulus p ist. Endlich hat man sich begnügt, die Tafel nur für den Fall einzurichten, wo fg ein quadratischer Rest von p ist, und den entgegengesetzten ganz übergangen. Der sechste Abschnitt der Disquisitiones Arithmeticae gibt hinlängliche Belehrung, wie man das, was die Tafel nicht unmittelbar enthält, leicht aus derselben ableiten könne.

Beispiele. Es sei die aufzulösende Gleichung 21680143 = xx + 78yy

fg = N, $\frac{A}{f} \equiv 3 \equiv 2.2^2$ 1) Excludens = 5 Ex tabula 1,4 pro fg = R adeoque 0,2,3 pro fg = N,

et pro cas upr. 0,1,4 sive excl. 5n+2

fg = R, $\frac{A}{f} \equiv 2 \equiv 1.3^2$ 2) Excludens = 7

Pro casu praes. 0, 3, 6, 1, 4 et excl. 7n + 2Ex tabula 0, 1, 2, 5, 6

fg = R, $\frac{A}{f} \equiv 1$ 3) Excludens = 11 . habentur itaque 0, 1, 3, 5, 6, 8, 10 excl. 11n+2,4

 $fg = N, \quad \frac{d}{f} \equiv 9 \equiv 1.3^{1}$ 0. 1. 3. 4. 6 4) Excludens = 17

0. 3. 8. 5. 1

0, 2, 3, 4, 6, 7

Excludens +1, 5, 8

	Werth von	Zahlen denen positiv oder nega- tiv genommen x nach dem Mo-	clu-	A	f		fgR	p
P	$\frac{A}{f}(\text{mod.}p)$	dulus p congruent sein muss.	dens p	f	A	Admittuntur		Excluduntur
3	1	o, 1	3	1 2		0	1.2	0
	2	1		-				60.0
				1		0	1.4	2.3
5	1	0, 1	5	2		1.4		0.2.3
	2	1		3	1 2	2.3	- 0	
14				1 4	4	0	2.3	
7	1	0, 1, 2		1	1	0.2.5	1.6	3-4
Ò	6	2, 3		2	4	0.1.6	3.4	2.5
			C-2	3	5	1.3.4.6		0.2.5
11	1	0, 1, 3, 5	7	4		0.3.4	2.5	1.6
-	10	1, 3, 4		5		1.2.5.6	- 7	0.3.4
		-1.31.4	1	6	6	2-3-4-5		0.1.6
	2.01	6	1	1		0.3.5.6.8		2.4.7.9
13	2	0, 1, 2, 6	(2		1.2.3.8.9.10	1.10	0.4.5.6.7
	2	1, 4, 3	ľ	3		0.3.4.7.8	6	1.2.9.10
		Landa National Control of the Contro	1	4	2	0.1.5.6.10	2.0	3.4.7.8
17	1	a, 1, 3, 4, 6	1		9	0.1.2.9.10	7	3.5.6.8
	3	1, 2, 4, 6	11	6		1.4.5.6.7.10		0.2.3.8.9
2				7		2.3.5.6.8.9		0.1.4.7.10
19	1	0, 1, 2, 3, 4, 7	4	8		2.4.5.6.7.9		0.1.3.8.10
	18	1, 3, 6, 7, 8	1	9		0.2.4.7.9	3.8	1.5.6.10
				10	10	1.3.4.7.8.10	- 19	0.2.5.6.9
23	1	0, 1, 4, 8, 9, 10, 11		1		0.2.6.7.11		3.4.5.8.9.10
-3	22	1, 2, 3, 4, 6, 8		2		1.4.5.8.9.12	1.12	0.2.3.6.7.10.11
		9 20 30 10 30		3	1	0.2.5.8.11		1.3.6.7.10.12
		0, 1, 5, 6, 8, 9, 11, 13		4		0.1.4.9.12	9	3.5.6.7.8.10
29	1 2	1, 3, 5, 6, 8, 13, 14		5		1.2.3.10.11.12	-	0.4.5.6.7.8.9
	-	1, 3, 5, 0, 0, 13, 14		6		3.4.6.7.9.10		0.1.2.5.8.11.12
		Lat. Such as as as	13	7	2	2.4.6.7.9.11		0.1.3.5.8.10.12
31	1	0, 1, 2, 4, 5, 7, 10, 11, 13	1	8	5	2.3.5.8.10.11		0.1.4.6.7.9.12
	30	4, 5, 6, 8, 11, 12, 13, 14	1	9		0.5.6.7.8	3. 10	1.2.4.9.11.12
			1	10		0.1.3.10.12	6.7	2.4.5.8.9.11
37	1	0, 1, 2, 7, 8, 10, 11, 14, 16, 18		11		1.5.6.7.8.12	(1)	0.2.3.4.9.10.11
	2	1, 3, 6, 7, 8, 14, 15, 17, 18		12	12	0.3.4.9.10	5.8	1.2.6.7.11.12
			1	1		0.3.4.6.11.13.14		2.5.7.8.9.10.12.15
41	1	0, 1. 3, 9, 12, 13, 14, 16, 17, 18, 19		2		0.1.2.7.10.15.16	6. 11	3.4.5.8.9.12.13.14
7-	3	1, 2, 6, 7, 8, 9, 11, 12, 13, 17		3		1.2.4.6.11.13.15.16	7.	0.3.5.7.8.9.10.12.14
	-	2		4		0.5.6.8.9.11.12	2. 15	1.3.4.7.10.13.14.16
	1	0, 1, 2, 3, 7, 8, 9, 11, 13, 17, 18, 20			7	1.2.3.8.9.14.15.16	3	0.4.5.6.7.10.11.12.1
43	42	1, 2, 5, 6, 7, 8, 9, 16, 17, 19, 21		6	3	2.5.6.7.10.11.12.15	12	0.1.3.4.8.9.13.14.16
	4-			7	5	3.4.5.7.10.12.13.14	- 9	0.1.2.6.8.9.11.15.16
			17	8		0.2.3.4.13.14.15	-	1.6.7.8.9.10.11.16
47	1 .6	0, 1, 4, 6, 9, 10, 11, 16, 18, 19, 20, 22, 23	1	9				2.4.6.7.10.11.13.15
	46	2, 3, 5, 9, 13, 15, 16, 18, 19, 21, 22, 23		10		1.3.5.6.11.12.14.16		0.2.4.7.8.9.10.13.15
				11		3.6.7.8.9.10.11.14		0.1.2.4.5.12.13.15.1
53	1	0, 1, 4, 5, 8, 10, 12, 13, 14, 16, 19, 20, 21, 22		12		2.4.5.8.9.12.13.15	8 0	1.4.5.6.11.12.13.16
	2	1, 3, 7, 8, 11, 12, 15, 16, 18, 21, 24, 25, 26		13		1.4.7.8.9.10.13.16	- 9	0.2.3.5.6.11.12.14.1
			1	14		0.4.6.8.9.11.13	7.10	1.2.3.5.12.14.15.16
59	1	0, 1, 3, 5, 10, 11, 13, 14, 15, 17, 19, 22,	1	16		0.1.5.7.10.12.16		2.3.6.8.9.11.14.15
-	100	23, 24, 25, 29	_	_	-	Excludentur	3	Admittuntur
	58	1, 3, 6	p	$\frac{A}{f}$	J	280.000	- NT	The second secon
				J	A		fgN	P

nachlass. Hülfstafel zur auflösung der Gleichung A=fxx+gyy.

clu-	$\frac{1}{f}$	· · · · · · · · · · · · · · · · · · ·	gRp	
<i>p</i> .	f A	Admittuntur		Excluduntur
	1 1	0.2.3.4.7.12.15.16.17	1.18	5.6.8 9.10.11.13.14
i	2 10	1.2.4.6.9.10.13.15.17.18		0.3.5.7.8.11.12.14.16
	3 13	4.5.6.7.9.10.12.13.14.15	ŀ	0.1.2.3.8.11.16.17.18
- 1		0.4.5.6.8.11.13.14.15	2. 17	1.3.7.9.10.12.16.18
	5 4	0.1.2.6.8.11.13.17.18	9. 10	3 4.5.7.12.14.15.16
	6 16	0.1.3 4.9.10.15.16.18		2 6.7.8.11.12.13.17
		0.1.3.5.6.13.14.16.18	8. 11	2.4.7.9.10.12.13.15
i	8 12	1.2.4.7.8.11.12.15.17.18	Ì	0.3.5.6.9.10.13.14.16
19	9 17	0.2.6.7.9.10.12.13.17	3. 16	1.4.5.8.11.14.15.18
** I	0 2	1.2.3.5.9.10.14.16.17.18	-	0.4.6.7.8.11.12.13.15
		0.2 5.8.9 10.11.14.17	7.12	1.3.4 6.13.15.16.18
1	2 8	1'5.7.8.9.10.11.12.14.18		0.2.3.4.6.13.15.16.17
I		2.3.4.5.8.31.14.15.16.17		0.1.6.7.9.10.12.13.18
1		3.4.6.8.9.10.11.13.15.16		0.1.2 5.7.12.14.17.18
		2.3.5.6.7.12.13.14.16.17		0.1.4.8.9.10.11.15.18
1 -		0.3.7.8.9.10.11.12.16	4. 15	1.2.5.6.13.14.17.18
		0.1.4.5.6.13.14.15.18	6. 13	2.3.8.9.10.11.16.17
1	8 18	1.3.6.7.8.11.12.13.16 18		0.2.4.5.9.10.14.15.17
	1 1	0.4.8.9.10.11.12.13.14.15.19	1. 22	2.3.5.6.7.16.17.18.20.21
!	2 12	0.1.3.4.6 9.14.17.19.20.22	5. 18	2.7.8.10.11.12.13.15.16.21
	3 8	0.1.5.6.8.10.13.15.17.18.22	7. 16	2.3.4.9.11.12.14.19.20.21
		0.1.3.5.7.8.15.16.18.20.22		4.6.9.10.11.12.13.14.17.19
1	5 14	1.2.4.5.7.9.14.16.18.19.21.22		0.3.6.8.10.11.12.13.15.17.20
1	6 4	0.2.4 5.6.7.16.17.18.19.21	11.12	1.3.8.9.10.13.14.15.20.22
		1.2.7.8.9.11.12.14.15.16.21.22		0.3 4.5.6.10.13.17.18.19.20
- 1	8 3	0.2.5.6.8.11.12.15.17.18.21	10.13	1.3.4.7.9.14.16.19.20.22
1		0.1.4 7.10.11.12.13.16.19.22	3.20	2.5.6.8.9.14.15.17.18.21
- 1		1.2.3.5.10.11.12.13.18.20.21.22		0.4.6.7.8.9.14.15.16.17.19
22		3.4.5.7.8.10 13.15.16.18.19.20	!	0.1.2.6.9.11.12.14.17.21.22
- 1		0.2.3.7.10.11.12.13.16.20.21		1.4.5.6.8.15.17.18.19.22
		0.1.2.3.8.9.14.15.20.21.22		4.5.7.10.11.12.13.16.18.19
1		1.5.6.9.10.11.12.13.14.17.18.22	1	0.2.3.4.7.8.15.16.19.20.21
		3.5.6.7.9.11.12.14.16.17.18.20		0.1.2.4.8.10.13.15.19.21.22
- 1		0.2.6.7.9.10.13.14.16.17.21	4.19	1.3.5.8.11.12.15.18.20.22
	1 1	1.2.3.4.6.10.13.17.19.20.21.22	_	0.5.7 8.9.11.12.14.15.16.18
1	8 9	0.3.4.5.9.11.12.14.18.19.20	8. 15	1.2.6.7.10.13.16.17.21.22
1		1.4.6.7.8.11.12.15.16.17.19.22	}	0.2.3 5.9.10.13.14.18.20.21
1		2.4.5.8.9.10.13.14.15.18 19.21	1	0.1.3.6.7.11.12.16.17.20.22
1 -	- 1	3.6.7.8.9.10.13.14.15.16.17.20	1	0.1.2.4.5.11.12.18.19.21.22
2	2 22	2.3.4.6.8.11.12.15.17.19.20.21	L	0.1.5.7.9.10.13.14.16.18.22
$rac{1}{p}$	$\frac{\overline{f}}{2}$	Excluduntur		Admittuntur
נו י	$f \mid A$	l ' J	gNp	1

11.

SECTIO OCTAVA.

QUARUNDAM DISQUISITIONUM AD CIRCULI SECTIONEM PERTINENTIUM UBERIOR CONSIDERATIO.

367.

Quae in posteriore Sectionis septimae parte inde ab art 355 tradidimus, gravia utique specimina exhibent de magna theoriae sectionis circuli fertilitate, nec non de nexu miro, qui hanc disciplinam cum variis disquisitionibus arithmeticis iungit. Illic vero, spatii temporisque angustia nimis coarctati, leviter tantum huncce campum stringere potuimus, qui quo ulterius in eo progredimur, eo largiore messe conatus nostros remuneratur. Propositum itaque nobis est, unam alteramve quaestionum ibi inceptarum hic denuo resumere copiosiusque pertractare: certoque lectores non sine magna admiratione plurium problematum arithmeticorum, quae toto hinc coelo dissita esse quisque expectavisset, solutionem huic fundamento inniti videbunt.

368.

Argumentum fertilissimum suppeditat disquisitio in art. 356 inchoata, ubi complexu radicum aequationis $x^n-1=0$ (unitate exclusa) in duas classes discerpto, aggregatum in utraque classe definire docuimus, quae scilicet prodierunt $= -\frac{1}{2} + \frac{1}{2}\sqrt{n}$ et $-\frac{1}{2} - \frac{1}{2}\sqrt{n}$ pro casu ubi n est formae 4n+1, aut $= -\frac{1}{2} + \frac{1}{2}\sqrt{-n}$ et $-\frac{1}{2} - \frac{1}{2}\sqrt{-n}$ pro casu ubi n est formae 4n+3. Attamen illic non solum limitationem ad casum ubi n est numerus primus nobis im-

posueramus, sed etiam, quod multo adhuc gravioris erat momenti, signum quantitatis radicalis indefinitum reliquimus, seu potius hanc determinationem paucis addigitatam demonstratione solida fulcire negleximus. Hos itaque defectus ante omnia supplere oportebit.

369.

Jam sit itaque n numerus integer positivus quicunque, R radix aequationis $x^n-1=0$ talis, cuius nulla potestas inferior quam n^{ta} unitati aequalis fiat (V. art. 359, II.), designemusque per $[\lambda]$, ut in Sect. VII potestatem R^{λ} , ita ut [0]=1,[1],[2],[3]....[n-1] omnes radices aequationis $x^n-1=0$ exhibeant. Porro denotemus aggregatum

$$[0]+[1]+[4]+[9]+\ldots+[(n-1)^2]$$
 per $\Sigma[\mathfrak{Q}]$

et generalius

$$[0]+[\lambda]+[4\lambda]+[9\lambda]....+[\lambda(n-1)^2] \text{ per } \Sigma[\mathfrak{Q}\lambda]$$

ita ut $\mathfrak Q$ indefinite quadrata numerorum $0, 1, 2, 3 \dots n-1$ indicet. Patet igitur, sicut generaliter est $[\lambda] = [\mu]$, si λ , μ sunt integri quicunque (positivi seu negativi) secundum n congrui, ita etiam fore $\Sigma[\mathfrak Q\lambda] = \Sigma[\mathfrak Q\mu]$, si $\lambda \equiv \mu$. His ita praeparatis habemus sequens.

370

PROBLEMA. Productum e duobus aggregatis $\Sigma[\mathfrak{Q}]$ et $\Sigma[-\mathfrak{Q}]$ assignare. Solutio. Quum sit $nn \equiv 0$, $(n+1)^2 \equiv 1$, $(n+2)^2 \equiv 4$ etc. (mod. n), facile patet fieri $\Sigma[\mathfrak{Q}]$

$$= [1] + [4] + [9] + [16] \dots + [nn]$$

$$= [4] + [9] + [16] + [25] \dots + [(n+1)]^{2}$$

$$= [9] + [16] + [25] + [36] \dots + [(n+2)^{2}]$$
etc. aut generaliter
$$= [kk] + [(k+1)^{2}] + [(k+2)^{2}] + [(k+3)^{2}] \dots + [(n+k-1)^{2}]$$

Hinc
$$[-kk] \times \Sigma[\mathfrak{Q}]$$

= $[0] + [2k+1] + [4k+4] + [6k+9] \cdot \dots + [(n-1)^2 + 2(n-1)k]$

Hinc evolvitur
$$\Sigma[-\mathfrak{D}] \times \Sigma[\mathfrak{D}]$$
 in
$$-[0]+[1]+[4]+[9]....+[(n-1)^2]$$

$$+[0]+[3]+[8]+[15]....+[nn-1]$$

$$+[0]+[5]+[12]+[21]....+[nn+2n-3]$$

$$+[0]+[7]+[16]+[27]....+[nn+4n-5]$$

$$+ etc.$$

$$+[0]+[2n-1]+[4n]+[6n+3]....+[3nn-6n+3]$$

Quas partes verticaliter summando prodit

$$n[0] + [1] \times \frac{1 - [2n]}{1 - [2]} + [4] \frac{1 - [4n]}{1 - [4]} + [9] \frac{1 - [6n]}{1 - [6]} + \text{etc.} + [(n-1)^2] \times \frac{1 - [2nn-2n]}{1 - [2n-2]}$$

in qua expressione omnes partes praeter primam evanescent, quoties n est impar; tunc enim omnes 1-[2n], 1-[4n], 1-[6n] etc. fiunt = 0, nullus vero denominatorum 1-[2], 1-[4], 1-[6], 1-[8] etc. usque ad 1-[2n-2]. Quando vero n est par, etiam inter denominatores unus est = 0 puta 1-[n], cui respondet terminus $[\frac{1}{4}nn] \times \frac{1-[nn]}{1-[n]}$; summa partium autem ex quibus hic ortus est fit $= n[\frac{1}{4}nn]$. Hic denuo duo casus sunt distinguendi. Quando n est pariter par, fit $\frac{1}{4}nn \equiv 0 \pmod{n}$ adeoque $[\frac{1}{4}nn] = 1$; quando vero n est impariter par, fit $\frac{1}{4}nn \equiv \frac{1}{4}n \pmod{n}$ adeoque necessario $[\frac{1}{4}nn] = -1$. Hinc denique colligitur

- 1) pro valore impari ipsius n fit productum quaesitum = n
- 2) pro valore pariter pari fit productum = 2n
- 3) pro valore impariter pari fit = 0. Q. E. I.

371.

Operae iam pretium erit, indolem aggregati $\Sigma[\mathfrak{Q}]$ propius considerare.

I. Quum pro quadratis 0, 1, 4, 9, 16 etc. ipsorum residua minima secundum modulum n substituere liceat, patet si M designet indefinite residua quadratica numeri n a 0 usque ad n-1, atque m multitudinem radicum congruentiae $xx \equiv M(\text{mod.}m)$, fieri $\Sigma[\mathfrak{D}] = \Sigma m[M]$. Numerum m in articulis 104, 105 determinare docuimus.

II. Si n est numerus primus (impar), erit pro $M \equiv 0$, m = 1, pro quovis autem alio valore ipsius M, m = 2. Si autem n est potestas numeri primi imparis $= p^{\nu}$, erit m = 2 pro quovis valore ipsius M per p non divisibili -

372:

Si n est numerus primus (impar), residua m consistent ex cifra, pro qua M = 1, et ex $\frac{1}{2}(n-1)$ aliis numeris, pro quibus M = 2. Designando haec residua (excluso residuo 0) indefinite per μ , erit progressio nostra $= 1 + 2\sum r^{\mu}$. Porro si per ν designantur indefinite omnes reliqui numeri infra n, quorum multitudo quoque erit $\frac{1}{2}(n-1)$ et qui omnia non-residua quadratica ipsius n infra n complectentur, manifesto erit

$$1 + \sum r^{\mu} + \sum r^{\nu} = 1 + r + rr + r^{3} + \dots + r^{n-1} = \frac{1-r^{n}}{1-r} = 0$$

Quare ponendo summam progressionis nostrae sive $1+2\Sigma r^{\mu}=A$, erit $1+2\Sigma r^{\nu}=-A$, nec non $\Sigma r^{\mu}-\Sigma r^{\nu}=A$.

Per art. 356 fit itaque $A = \pm \sqrt{n}$ vel $\pm \sqrt{-n}$, prout n est $\equiv 1$ vel $\equiv 3 \pmod{4}$. Sed signum radicis hinc nondum determinatur.

Si in progressione nostra, quam per Π designabimus, pro r substituitur alia similis radix aequationis $x^n-1=0$, puta $r'=r^{\lambda}$, supponamus inde prodire Π' .

373.

Si n est quadratum altiorve potestas numeri primi, puta $= p^{\pi}$, residua m quaedam consistent e numeris per p non divisibilibus, alia erunt divisibilia per pp neque per altiorem potestatem ipsius p, alia per p^4 neque vero per p^5 dividi poterunt et sic porro usque ad ea quae per $p^{\pi-2}$ neque vero per $p^{\pi-1}$ divisibilia sunt, sive per $p^{\pi-1}$ neque vero per p^{π} , prout π par est sive impar; his denique accedit residuum 0, quod est unicum per p^{π} divisibile (conf. art. 102). Iam designando per p indefinite residua quadratica numeri p infra p cifra exclusa (quorum multitudo p indefinite residua quadratica numeri p infra p cifra exclusa (quorum multitudo p indefinite residua quadratica numeri p infra p cifra exclusa (quorum multitudo p indefinite residua quadratica numeri p infra p cifra exclusa (quorum multitudo p infra p infra p cifra exclusa (quorum multitudo p infra p infra p infra p infra p infra p

$$= 2 \sum r^{\mu + kp} = 2 \sum r^{\mu} \cdot \sum r^{kp} = 2 \sum r^{\mu} \cdot \frac{r^{p^{m}} - 1}{r^{p} - 1} = 0$$

Secunda residuorum classis exhibebitur per $\mu pp + kp^3$ ubi pro k substituendi sunt omnes integri a 0 usque ad $p^{\pi-3}$ —1 ita ut omnium residuorum in hac II.

forma contentorum multitudo sit $= \frac{1}{2}(p-1)p^{\pi-3}$; pro singulis autem fit M = 2p. Summa terminorum in Π hinc oriundorum fit

=
$$2p \sum r^{\mu pp+kp^2}$$
 = $2p \sum r^{\mu pp} \cdot \sum r^{kp^2}$ = $2p \sum r^{\mu pp} \cdot \frac{r^{p^n}-1}{r^{p^2}-1}$ = 0

siquidem $\pi > 3$. Similiter classis tertia, quarta etc. exhibebitur per $\mu p^4 + kp^5$, $\mu p^6 + kp^7$ etc. ubi pro k omnes integri a 0 usque ad $p^{\pi-5} - 1$, $p^{\pi-7} - 1$ etc. accipi debent; pro his fit M = 2pp, $M = 2p^3$ etc. Et summa terminorum in Π e classe tertia, quarta etc. ortorum evanescet, siquidem $\pi > 5$, $\pi > 7$ etc. resp.

Hinc colligitur, pro casu ubi π par est, in Π eos tantummodo terminos remanere, qui residuo 0 respondent, qui sunt = 1; pro his vero fit $M = p^{\frac{1}{4}\pi}$, its ut summa omnium terminorum in Π fiat = $p^{\frac{1}{4}\pi}$.

GAUSS AN DIRICHLET.

A	Monsieur				
	Monsieur	Lejeune	DIRICHLET	à P	aris.

Schon früher würde ich Ihnen meinen Dank für die mir gütigst übersandte Abhandlung und das grosse Vergnügen welches Sie mir dadurch gemacht haben, bezeugt haben, wenn ich nicht gewünscht hätte, erst etwas von dem Erfolg dessen zu erfahren, was ich in Beziehung auf Ihre, und ich kann hinzusetzen meine eigenen Wünsche in Berlin zu thun versucht habe. Ich freue mich ungemein jetzt aus einem von dem Secretair der Akademie in Berlin erhaltenen Briefe zu sehen, dass wir hoffen können, dass man Ihnen bald im Vaterlande eine angemessene Fixirung zu verschaffen geneigt sein wird.

Es ist mir eine um so erfreulichere Erscheinung, dass Sie mit grosser Neigung demjenigen Theile der Mathematik anhängen, der von jeher mein Lieblingsstudium gewesen ist, je seltener dieselbe ist. Ich wünsche Ihnen herzlich eine äussere Lage, wo Sie soviel als möglich Herr Ihrer Zeit und der Wahl Ihrer Arbeiten bleiben. Ich selbst wurde gleich nach dem Erscheinen meiner Disquisitiones durch andersartige Beschäftigungen, und später, durch meine äussern Verhältnisse sehr gehindert, meiner Neigung in dem Maasse nachzuhängen wie ich Anstatt eines zweiten Theils jenes Werks, den ich früher beabsichtigte, werde ich mich aller Wahrscheinlichkeit nach darauf beschränken mässen, von Zeit zu Zeit ein Memoire über einen einzelnen Gegenstand zu liefern. Die drei Abhandlungen dieser Art, die bisher im 16. Band der hiesigen Commentationen, und im ersten und vierten der Commentationes recentiores erschienen sind, enthalten aber (einen Theil der zweiten abgerechnet) keine von den Gegenständen, die ich schon 1801 zur Fortsetzung im Auge hatte, sondern neue; und so beziehen sich auch meine spätern Arbeiten dieser Art gleichfalls auf einen neuen Gegenstand, namentlich die Theorie der Biquadratischen Reste, die ich etwa in drei Abhandlungen zu geben denke; die erste davon wird in kurzem für den sechsten Band der Comment. rec. gedruckt werden, und die Hauptmaterialien für das Uebrige sowie für die ähnliche Theorie der cubischen Reste, ist, obgleich noch wenig davon ordentlich zu Papier gebracht ist, im Wesentlichen als abgemacht zu betrachten.

Empfehlen Sie mich gefälligst dem Herrn von Humboldt, falls er noch in Paris ist, und entschuldigen mich, dass ich jetzt nicht an ihn selbst schreibe, mit der Besorgniss, dass mein Brief ihn nicht treffen möchte, da er, wie ich höre, Paris zu verlassen die Absicht hatte.

· Mit aufrichtiger Hochschätzung

Ihr ergebenster C. F. GAUSS.

Göttingen den 13. September 1826.

Für Ihr gütiges Schreiben, und die gefällige Uebersendung Ihrer beiden Abhandlungen statte ich Ihnen, mein hochgeschätzter Freund, meinen verbindlichsten Dank ab. Ich sehe mit Vergnügen das steigende Interesse, welches man gegenwärtig an den Untersuchungen der Höhern Arithmetik zu nehmen anfängt. Die glückliche Art, wie Sie das zweite auf die biquadratische Residualität der Zahl 2 aus dem ersten ableiten, hat mir sehr wohl gefallen.

Personal Vermuthlich hat jetzt der 6. Band unsrer Commentationen seinen Weg nach Breslau gefunden, und meine Commentatio prima über die biquadratischen Reste wird Ihnen also wol gegenwärtig bekannt sein: wenn sich eine Gelegenheit darbieten sollte, würde ich auch mit Vergnügen Ihnen einen besondern Abdruck derselben übersenden. Ich hätte unter mehrern Beweisarten für das darin vorkommende Theorem wählen können; es wird Ihnen aber nicht entgehen, warum ich den daselbst ausgeführten hier vorgezogen habe, hauptsächlich nemlich, weil die Classification von 2 bei denjenigen Moduln, für welche es quadratischer Nichtrest ist (unter B oder D) als ein wesentlicher integrirender Theil des Theorems betrachtet werden muss, auf welchen die meisten andern Beweisarten nicht anwendbar scheinen.

Die ganze Untersuchung, deren Stoff ich schon seit 23 Jahren vollständig besitze, die Beweise der Haupttheoreme aber (zu welchen das in der ersten Commentation noch nicht zu rechnen ist) seit etwa 14 Jahren — (obwol ich wünsche und hoffe, an letztern, den Beweisen, noch einiges vereinfachen zu können) — habe ich auf ungefähr 3 Abhandlungen berechnet. Mit der Abfassung der zweiten habe ich bereits jetzt einen Anfang gemacht, und hoffe sie in nicht langer Zeit zu vollenden, falls nicht die neuerdings mir wieder aufgetragenen Messungsgeschäfte dabei noch einige Verzögerung verursachen.

Das Schlusstheorem $b \equiv \frac{1}{2}rr \pmod{p}$ hatte ich schon vor drei Jahren in den hiesigen gel. Anzeigen mit bekannt, und auf den merkwürdigen dabei noch zu lösenden Knoten aufmerksam gemacht; ich habe aber bisher nicht gehört, dass jemand einen Versuch dazu gemacht hätte. Vor einigen Tagen ist es mir nun mit der einen Hälfte wirklich gelungen, und dieser Fund hat mir um so mehr Vergnügen gemacht, da er sich gar nicht auf Induction gründet — denn ich gestehe, dass ich gerade diesen Zusammenhang nicht erwartet hätte — sondern a priori auf die Combination anderweitiger sehr verschlungener und interessanter, schon 28 Jahr alter, aber noch gar nicht bekannt gemachter Untersuchungen,

wovon eine leise Andeutung in der Schlussanmerkung der Disquis. Arithm. S. 668 [Gauss Werke B. I. S. 466] gegeben ist.

Es ist dies nemlich ein ausreichendes Criterium für den Fall, wo p von der Form 8n+5 ist.

Es sei die Anzahl der Classen, welche die binären Formen in jeder der beiden Gattungen für den Determinant — p bilden = k. Der Anfang einer von mir bis zu dem Determinant — 3000 construirten Tafel steht Disquis. Arithm. p. 520. [art. 303.] Auch ist noch zu bemerken, dass für ein p von der angenommenen Form, allemahl k = 2m + 1 wird, wenn m die Anzahl der Zerlegungen von p in drei positive Quadrate bedeutet (ich sage positiver, um 0 auszuschliessen), wie Legendre durch Induction gefunden, und in den Disquis. Arithm. zuerst aus der Theorie der ternären Formen bewiesen ist. Man hat z. B.

für
$$p = 5$$
, 13, 29, 37, 53, 61, 101, 109, 149, 157 u. s. w. $k = 1$, 1, 3, 1, 3, 3, 7, 3, 7, 3 $m = 0$, 0, $\frac{1}{4}$ $\frac{0}{1}$ $\frac{1}{9}$ $\frac{1}{1}$ $\frac{3}{4}$ $\frac{1}{6}$ $\frac{3}{9}$ $\frac{1}{1}$ $\frac{3}{4}$ $\frac{1}{4}$ $\frac{3}{6}$ $\frac{1}{4}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{1}{6}$ $\frac{3}{6}$ $\frac{1}{6}$ $\frac{3}{6}$ $\frac{1}{6$

Dies vorausgesetzt, ist allemahl derjenige Werth von b, welcher $\equiv \frac{1}{2}rr \pmod{p}$ ist, $\equiv 2k + a - 1 \equiv 4m + a + 1 \pmod{8}$

wodurch das Zeichen von b vollkommen bestimmt ist. Sehen Sie hier 22 Beispiele, indem ich die Ausdehnung der am Schluss der Abhandlung gegebenen Tafel verdopple.

p	k	а	b	.	p	k	а	b
5	1	+ 1	+ 2		181	5	+ 9	+10
13	1	— 3	– 2		197	5	+ 1	-14
29	3	+ 5	+ 2	1	229	5	-15	+ 2
37	1	+ 1	- 6	1 1	269	11	+13	+10
53	3	- 7	2		277	3	+ 9	-14
61	3	+ 5	- 6		293	. 9	+17	+ 2
101	7	<u> </u>	-10		317	5	<u>-</u> 11	+14
109	3	- 3	+10		349	7	+ 5	-18
149	7	7	10		373	5	· 7	+18
157	3	11	— 6		389	11	+17	10
173	7	+13	+ 2		397	3	<u>-</u> 19	- 6
	•	• • '	• • •	, 11	·	'		80

II.

Man kann die Vorschrift also auch so ausdrücken, (immer voraussetzend $p \equiv 5 \pmod{8}$)

Es ist
$$b \equiv a+1 \pmod{8}$$
, wenn m gerade $b \equiv a+5$ wenn m ungerade.

Ich wage noch keine Vermuthung, ob ein noch einfacheres Criterium möglich ist, woran man den Fall des geraden m von dem des ungeraden im Voraus unterscheiden könnte, d. i. ohne den Werth von m selbst zu kennen, da, wie ich schon oben bemerkt habe, dies Rapprochement noch ganz neu ist.

Für den Fall $p \equiv 1 \pmod{8}$, bleibt zwar obige Congruenz $b \equiv 2k + a - 1 \pmod{8}$ richtig, entscheidet aber nicht mehr über das Zeichen von b, da sie dem positiven und negativen Werthe von b zugleich genug thut. Es ist hier nemlich k immer gerade, = 2m (wenn die Bedeutung von m eben so ausgesprochen wird wie oben) oder = 2m + 2, wenn man unter m die Anzahl der Zerlegungen von p in 3 positive ungleiche Quadrate versteht, und $b \equiv 0 \pmod{4}$, oder $b \equiv -b \pmod{8}$. Ich vermuthe dass der Fall $p \equiv 1 \pmod{8}$ oder $b \equiv 0 \pmod{4}$ altioris indaginis ist und vielleicht wieder

$$b \equiv 4 \pmod{8}$$
 leichter als $b \equiv 0 \pmod{8}$
 $b \equiv 8 \pmod{16}$ leichter als $b \equiv 0 \pmod{16}$

u. s. w.

Mit ausgezeichneter Hochachtung beharre ich

Ihr freundschaftlich ergebenster

Göttingen den 30. Mai 1828.

C. F. GAUSS.

BEMERKUNGEN.

Diesem sweiten Bande von Gauss Werken habe ich alle Abhandlungen, Aufsätze und Tafeln aus dem Gebiete der Höheren Arithmetik, soweit die sieben Sectionen der Disqu. Arithm. sie nicht schon umfassen, einverleibt, und zwar die in den 'Commentationes societatis regiae scientiarum Gottingensis' (in Quart) veröffentlichten fünf Abhandlungen, die in den 'Göttingischen Gelehrten Anzeigen' (in Octav) erschienenen (von Gauss nicht unterzeichneten, aber durch die Acten der Göttinger Universitäts-Bibliothek in Betreff der Autorschaft verificirten) Anzeigen sowohl dieser eignen als auch einiger anderer nichteigner Schriften, und eine Auswahl aus dem Handschriftlichen Nachlasse.

Beim zweiten Abdruck habe ich noch die Tabellen 'Circuli quadratura nova' 'Zur Berechnung der Logarithmen' 'Quadratorum myrias prima' 'Indices der Primzahlen im höhern Zahlenreiche' 'Hülfstafel zur Auflösung der unbestimmten Gleichung A = fxx + gyy vermittelst der Ausschliessungsmethode' ferner 'Sectio octava', so weit sie aufgeschrieben ist und endlich zwei Briefe von Gauss an Dirichler als wesentliche Stücke der Geschichte der Höheren Arithmetik hinzugefügt.

Zur bessern Uebersicht der Gegenstände in einem so umfangreichen Bande sind die Lehrsätze auf gleiche Weise durch den Druck ausgezeichnet. Zum leichtern Gebrauch sowohl der ältern Ausgaben wie der vorliegenden ist bei den Verweisungen auf die Disq. Arithm. statt der Nummer der Seite die der Artikel gesetzt, so wie bei den Angaben von Abhandlungen statt des Orts ihrer Veröffentlichung deren eigner Titel. Die Note, die dem Art. 2 der Abhandlung 'Theorematis arithmetici demonstratio nova' ursprünglich

beigegeben war und die eine Berichtigung des Art. 139 Disqu. Arithm. enthielt, ist dort der betreffenden Stelle eingefügt. Die Note auf Seite 91 ist einer handschriftlichen Notiz entlehnt. Ausserdem unterscheidet sich die vorliegende Ausgabe von den früheren nur durch die Berichtigung einiger Druckfehler. Die von mir hinzugefügten Einschaltungen sind durch eckige Klammern [] kenntlich gemacht.

Die Tafel des quadratischen Characters der Primzahlen ist nach der Weise der in Art. 99 beschriebenen und (in Art. 331) zur Zerlegung der Zahlen vorzugsweise angewandten Tabula II der Disqu. Arithm. gedruckt. Die Handschrift unter dem Titel 'Quadratorum numeris primis divisorum residua lateralia' hat in den Schriftzügen am meisten Aehnlichkeit mit der des zweiten Theiles der Tafel zur Verwandlung gemeiner Brüche in Decimalbrüche, sie enthält an der Stelle der den Quadratischen Rest anzeigenden horizontalen Striche kleine Kreise, von denen immer diejenigen durch Linien verbunden sind, die in benachbarten horizontalen oder verticalen Reihen vorkommen. Bei der Correctur wurde ich auf mehrere Fehler aufmerksam, habe dann bei einer einmaligen Vergleichung mit Jacoba's Canon Arithmeticus 190 Abweichungen in den Angaben der Charactere und nach directer Bestimmung diese in Uebereinstimmung mit jenen gedruckten Tafeln gefunden, dem entsprechend ist hier die Ausgabe berichtigt.

Von der Tafel zur Verwandlung gemeiner Brüche in Decimalbrüche ist hier der erste Theil der Tabula III. der Disqu. Arithm. ähnlich eingerichtet, er enthält für die Primzahlen und deren Potenzen p^{π} , welche zwischen 3 und 463 liegen, die Mantissen (1), (2)...(0) der Decimalbrüche von $\frac{10.r}{p^{\pi}}$, $\frac{10.rr}{p^{\pi}}$... $\frac{10}{p^{\pi}}$, worin r die Einheit bedeutet, also (1) = (2) = ...(0) wird, wenn 10 Primitivwurzel von p^{π} ist, sonst aber r die kleinste unter denjenigen Primitivwurzeln von p^{π} bezeichnet, für welche als Basis der Index von 10 den kleinsten Werth annimmt. Die von 1 verschiedenen Werthe von r habe ich zur Erleichterung des Gebrauchs auf Seite 420 der Tafel beigefügt. Die Handschrift, in der auch noch nicht die Unterscheidungsziffern der verschiedenen Perioden angegeben sind, entspricht äusserlich am meisten der Analysis residuorum und scheint in der Zeit dem hier als zweiten Theil der ganzen Tafel hingestellten Stücke voraufsugehen. Dieser zweite Theil enthält für die Primzahlen und deren Potenz p^{π} zwischen 467 und 997 die Mantissen der Decimalbrüche von $\frac{100}{p^{\pi}}$. Die Handschrift gibt die Theiler in abnehmender Reihenfolge und schliesst mit den Worten: Explicitus October 11. 1795. Im Drucke habe ich beim Theiler 191 Periode (1) die 71ste Ziffer hinzugefügt und beim Theiler 829 eine zwischen der 151 und 152sten Ziffer stehende Zahl fortgelassen.

Die von Gauss selbst in einem Briefe (Seite 444) erläuterte Tafel der Frequenz der Primzahlen besteht für ihren ersten Theil, welche die Anzahl der Primzahlen in jedem der 1000 ersten Chiliaden gibt in einer Handschrift von Gauss, es finden sich im Nachlass aber nicht die in dem Briefe angedeuteten Abzählungen der der ersten Million angehörenden Hunderte, die eine bestimmte Anzahl von Primzahlen enthalten. Der andere Theil der Tafel nemlich für die zweite und dritte Million ist einer von Goldschmidt allein herrührenden Handschrift entlehnt. Herr Meissel hat durch Abzählung und durch seine Formel die folgenden Berichtigungen zu Seite 436 und 437 gefunden:

Chilias	GAUSS	Wahrer Werth	Chilias	GAUSS	Wahrer Werth
20.	102	104	546	68	69
159	87	77	601	75	76
199	96	86	625	68	₇ 8
206	85	83	668	73	74
245	78	88	675	69	73
289	85	77	784	74	75
290	84	85	800	8 r	71
334	80	81	879.	68	78
352	80	8 1	985	74	70
501	78	79			

Die in dem Briefe von Gauss an Encke erwähnte Formel Encke's scheint die folgende

$$\frac{n}{\log n} \sqrt{\log n}$$

zu sein, welche Excke in einem Briefe an Gauss vom 4. Dec. 1849 mittheilt.

Die Tafel der Anzahl der Classen binärer quadratischer Formen gibt die Anzahl der Genera und Classen so wie den Index der Irregularität für die negativen Determinanten in den Hunderten 1 bis 30, 43, 51, 61, 62, 63, 91 bis 100, 117 bis 120, dann noch in einer besondern Zusammenstellung für die des 1. 3. und 10ten Tausend, für die 800 ersten von der Form -(15n+7) und -(15n+13), sowie für einige sehr grosse Determinanten, ferner für die positiven Determinanten des 1. 2. 3. 9. 10^{ten} Hundert und für einige andere. Die Handschrift besteht aus einzelnen Zetteln, auf denen die Tafeln verschiedenartig eingerichtet sind, z. B. ist bei den ältern das Wort Ordo statt Genus gebraucht, so bei den einzelnen Centaden mit Ausnahme der 9. und 10. positiver Determinanten, dann aber auch bei einzelnen vorläufigen Zusammenstellungen in Chiliaden. Zur leichtern Uebersicht ist hier überall die Bezeichnung der Disqu. Arithm. gewählt, auch die grössten und kleinsten Quotienten aus der Anzahl der Classen dividirt durch den Determinanten, sowie die Anzahl der Determinanten, für welche der Quotient innerhalb gewisser Grenzen fällt, sind wegen Mangel an Raum nicht unter die einzelnen Centaden gesetzt sondern am Ende der Tafel für die negativen Determinanten zusammengestellt. Aus einigen übrig gebliebenen Aufzeichnungen scheint hervorzugehen, dass Gauss zuerst die Classen für die Determinanten berechnet hat, die demselben Hundert und demselben Reste bei dem Theiler 15 angehören. Die Determinanten dieser Abtheilungen sind dann nach der Anzahl der Genera und Classen und zuletzt alle die demselben Hundert angehörigen auf die hier wiedergegebene Weise geordnet. Den Tafeln der einzelnen Centaden sind manche spätere Berichtigungen eingefügt, nicht aber den Zusammenstellungen in Tausenden. Zeitbestimmungen enthalten nur die beiden Tafeln mit den Determinanten der Form -(15n+7) und -(15n+13) nemlich resp. 'Expl. In. Febr. 1801' und 'Expl. 27 Febr. 1807.'

In diesen Tafeln habe ich unter anderen die folgenden Fehler bemerkt, denen ich hier zur leichtern Controle die Periodenzahlen der Fundamentalolassen wie z. B. 4. 2 bei dem Determinanten II.

81

— 11713 und die durch Formen der resp. Fundamentalclassen dargestellten Zahlen wie 31. 37. 2 beifüge, indem, wie in meiner Abhandlung Band 14 der Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen, als Fundamentalclassen solche Classen genommen werden, die in Vereinigung mit den Classen ihrer Perioden durch Composition jede eigentlich primitive Classe des Determinanten einmal und nur einmal hervorbringen.

Es sind schon die Angaben fortgelassen: und hinzugefügt: Centas 9 G. IV . . . 3 . , - 827[21::3] Centas 9 G. IV . . . 3 . . - 828[6.2::31.23] 14 - 2587 [24::11] - 2586[28.2::7.2] IV 14 26 IV 26 - 2564[56::3] 26 - 2565 [12.2.2::7.2.5] 26 - 9059[117::5] 91 91 117 - 9059[117::5] -- 11956*2*[36.2::11.49] IV -11966 *2*[32.4::5.83] IV 120 120 + 37[3::3] 1 + 37[3::3] Ι + 101[3::4] 1 + 101[3::4] 2

Bei der Tafel für Centas 3 und der letzten auf Seite 476, welche in der Handschrift mit einer von der hier abgedruckten äusserlich verschiedenen Aufzeichnung der Centas 1 und 2 vereinigt vorkommen, sind die zwölf Abtheilungen statt mit I. Ordo unicus. 1; I. O. 2; I. O. 3; I. O. 4; II. Ordines duo. 1. 1; II. O. 1. 2; II. O. 2. 2; II. O. 3. 3; III. Ordines quatuor. 1. 1. 1. 1; III. O. 1. 1. 2. 2; III. O. 2. 2. 2. 2; IV. Ordines octo 1. 1. 1. 1. 1. 1. 1. 1. 1. 1; hier auf die sonst angewandte Weise mit G. I. 1; G. I. 3; G. I. 5; G. I. 7; G. II. 1; G. II. 2; G. II. 3; G. II. 5; G. IV. 1; G. IV. 2; G. IV. 3; G. VIII. 1; bezeichnet. Die Rechnung ergibt nemlich z. B. 269. I. 3 [3::4]; 235. IV. 3 [6. 2::3. 5]; 401. I. 5 [5::9]; 577. I. 7 [7::3]; 727. II. 5 [10::3]. (Genera I statt Genus I auf Seite 469 ist ein Druckfehler).

In Folge von Druckfehlern ist auszulassen: und hinzuzufügen:

Nach meiner Berechnung ist noch auszulassen: und hinzuzufügen:

```
Centas 10. G. II.... 9... - 972[6.3::7.13]
                                                   Centas ro. G. II .... 9 — 972 *3*[6.3::7.13]
                          - 1660[10.2::11.5]
                                                                 IV
                                                                            - 1700[24.2::3.17]
       17
                                                          17
              IV
                          - 1982[24::3]
                                                                 IV
                                                                            - 1937[24. 2::7. 2]
                                                          20
              17
                          - 2096[30.2::3.4]
                                                                 IV
                                                                            - 2097[12.2::47.2]
       21
                                                         21
              IV
                          - 222I [18::10]
                                                                 I۷
                                                                            - 2224[18.2::5.16]
       23
                                                          23
              IV
                          - 2376[12.2.2::5.8.8]
                                                                ΙV
                                                                            - 2366[24.2::3.2]
                    12
       24
                                                          24
              IV
                          - 2887 [25::8]
                                                                ΙV
                                                                            - 2885 [18. 2::3.5]
       29
                     9
                                                          29
       61
              IV
                     7
                          - 6028 [12.2::13.4]
                                                          61
                                                                IV
                                                                            - 6028[12.2::13.4]
                                                                           - 9546[26. 2. 2:: 5. 3. 37]
            VIII
                          - 9594 [20.2.2:: 31.2.13]
                                                         96
                                                               VIII
       96
                     13
              IV
                          -11780[16.4.2::3.8.19]
      118
                                                                ΙV
                                                                            -11750[50.2::3.47]
                     25
                                                         118
             VIII
                          -11780[16.4.2::3.8.19]
                                                                            -- 11780 *2* [16. 4.2::3. 8. 19]
      118
                     16
                                                               VIII
                                                         118
             VIII
                          -11840[24.2.2::5.9.7]
                                                               VIII
                                                                            -11840*2*[16.4.2::3.16.5]
       IIQ
                                                         119
```

```
Millias I G. II... 3... 541 [10::11]
                                                Millias I. G. II.... 5... 415[10::13]
        I
              11
                         - 415 [10::13]
                                                       1
                                                             II
                                                                    5 - 541[10::11]
        I
              II
                         - 527[18::3]
                                                       I
                                                                        - 459*3*[6.3::5.9]
        Ι
              п
                         - 722 [18::3]
                                                       Ι
                                                                       — 527[18::3]
        I
              \mathbf{II}
                         - 194[20::5]
                                                       1
                                                             II
                                                                       - 722 [18::3]
        I
                                                       I
              \mathbf{II}
                          - 459[6.3::5.9]
                                                             II
                                                                       - 972*3*[6.3::7.13]
        I
                                                       I
                          — 972[6.3::7.13]
                                                             II
                                                                       - 194[20::5]
        1
              II
                         - 842 [26::13]
                                                       I
                                                             II
                    11
                                                                   13 - 842 [26::13]
        I
                                                       Ι
                                                            IV
              1V
                          — 784 [8.2::5.4]
                                                                    2 - 532[4.2::13.7]
                                                       I
        1
              IV
                         - 532[4.2::13.7]
                                                            IV
                                                                    4 - 784[8.2::5.4]
        1
                         — 425[12.2::3.17]
                                                       1
              IV
                                                            IV
                                                                    6 - 425 [12.2::3.17]
        I
                         - 608 [12.2::13.27]
                                                       I
                                                            I٧
             IV
                                                                    6 - 608 [12.2::13.27]
        1
              IV
                         - 629 [18.2::5.2]
                                                       1
                                                            ١٧
                                                                       - 629 [18.2::5.2]
       ш
                          — 2578[16::13]
                                                     Ш
                                                             II
              II
                    15
                                                                       - 2518 [30::19]
       X
               I
                                                      X
                                                              I
                   111
                          - 9059[117::5]
                                                                 117
                                                                       - 9059[117::5]
                          - 2788*2*[8.2::19.17] formae-(15n+13)IV 4
formae—(15n+13)IV
                                                                       — 2788 [8. 2 :: 19. 17]
```

Die Tafeln zur Cyklotechnie geben für 2452 Zahlen von der Form aa+1, aa+4, aa+9, aa+8z die sämmtlichen ungeraden Primtheiler p neben den zugehörigen a und zwar in solchen Fällen, wo die Primtheiler alle unter 200 liegen, nur dann werden aa+1 u.s. f. zerlegbar genannt.

Zur leichtern Uebersicht beim Gebrauche hat Gauss für jede Tafel, aus der sich die vollständigen Zerlegungen von Zahlen einer der besonderen Formen bestimmen lassen, eine Hülfstafel aufgestellt, die neben jeder Primzahl p solche Zahlen a enthält, deren um 1 oder 4... vermehrtes Quadrat die Zahl p zum grössten Primtheiler hat.

Der Hauptzweck der Tafeln ist die Erleichterung, die sie für die genaue Berechnung der Bögen gewähren, deren Cotangenten gegebene rationale Zahlen sind. Zunächst können nemlich mit ihrer Hülfe die Bögen für kleine Cotangenten aus den Bögen für grosse Cotangenten zusammengesetzt und dadurch die noch erforderlichen Berechnungen der Reihen, welche die Bögen in ihren Cotangenten ausdrücken, auf ein sehr geringes Maass beschränkt werden. Die hierauf hinzielenden Entwickelungen, die sich in dem handschriftlichen Nachlass finden, sind wenig ausgedehnt, die folgende ist die am weitesten fortgeführte. Es bezeichnen darin

[2] [5] [13] [17] [29] [37] [41] [53] [61] ... [197] (18) (57) (239)
$$(\frac{79}{3})$$
 ... die Bögen der Cotangenten

1 2
$$\frac{3}{2}$$
 4 $\frac{5}{2}$ 6 $\frac{5}{4}$ $\frac{7}{2}$ $\frac{6}{5}$... 14 18 57 239 $\frac{79}{3}$...

Mit Hülfe der Tafeln ist durch Zerlegung von 18 + i, 57 + i, 239 + i in ihre complexe Primfactoren

$$(18) = 2[2] - 2[5] - [13]$$

$$(57) = -[2] + 3[5] - [13]$$

$$(239) = 3[2] -4[13]$$

gefunden und hieraus

$$[2] = 12(18) + 8(57) - 5(239)$$

$$[5] = 7(18) + 5(57) - 3(239)$$

$$[13] = 9(18) + 6(57) - 4(239)$$

ferner mit Hülfe der Tafeln

$$(268) = -2[5] + 2[13] - [17]$$

$$(38) = -[5] + 2[17]$$

und hieraus durch Elimination von [17] und Einsetzen der zuvor erhaltenen Werthe von [5], [13]

$$(38) + 2(268) = (18) - (57) - (239)$$

Die Elimination von (18) hat dann die neue Bestimmung ergeben

$$[2] = 12(38) + 20(57) + 7(239) + 24(268)$$

$$[5] = 7(38) + 12(57) + 4(239) + 14(268)$$

$$[13] = 9(38) + 15(57) + 5(239) + 18(268)$$

$$[17] = 4(38) + 6(57) + 2(239) + 7(268)$$

Nach folgeweiser Anwendung der Cotangenten 117, 327, 882, 18543, 307, 278, 378, 829, 993, 2943, 447, 606, 931, 1143, 1772, 6118, 34208, 44179, 85353, 485298, 17772, 9466, 330182, 5257, 114669, 12943 sind endlich [2][5]...[61] durch (5257), (9466)...(485298) ausgedrückt und deren Coëfficienten in den folgenden Spalten zusammengestellt:

	5257	9466	12943	34208	44179	85353	114669	330182	485298
2	+ 2805	— 398	+ i950	+ 1850	+ 2021	+ 2097	+ 1484	+ 1389	+ 808
5	+ 1656	— 235	+ 1151	+ 1092	+ 1193	+ 1238	+ 876	+ 820	+ 477
13	+ 2100	298	+ 1460	+ 1385	+ 1513	十 1570	+ 1111	+ 1040	+ 605
17	+ 875	- I24	+ 608	+ 577	+ 630	+ 654	+ 463	+ 433	+ 252
29	+ 1359	- 193	+ 945	+ 896	+ 979	+ 1016	+ 719	+ 673	+ 391
37	+ 590	84	+ 410	+ 389	+ 425	+ 44I	+ 312	+ 292	+ 170
41	+ 2410	- 342	+ 1675	+ 1589	+ 1736	+ 1802	+ 1275	+ 1193	+ 694
53	+ 994	- 141	+ 691	+ 655	+ 716	+ 743	+ 526	+ 492	+ 286
61	+ 2481	— 352	+ 1725	+ 1637	十 1788	+ 1855	+ 1313	+ 1229	+715

Von der Richtigkeit dieser Gleichungen, welche zur Bestimmung von [2][5]....[61] dienen können, überzeugt man sich unmittelbar durch die aus obigen Tafeln sich ergebenden Zerlegungen

$$(5257) = [2] + 2[5] - [13] + [17] \cdot \cdot - [41] \cdot - [61]$$

$$(9466) = 2[2] \cdot \cdot \cdot - [29] - 3[37] \cdot \cdot - [61]$$

$$(12943) = [2] - 4[5] + 3[13] \cdot \cdot \cdot - [61]$$

$$(34208) = 2[2] - [5] - 2[13] + [17] + [29] \cdot \cdot - 2[53] \cdot \cdot$$

$$(44179) = 3[2] \cdot - 3[13] - 2[17] - [29] \cdot \cdot + [53] \cdot \cdot$$

$$(85353) = -[2] - [5] + [13] - [17] \cdot - [37] + 2[41] - [53] \cdot \cdot$$

$$(114669) = -3[2] \cdot \cdot + [17] \cdot + [37] \cdot + 2[53] + 2[61]$$

$$(330182) = -4[2] + 5[5] + [13] \cdot + [29] - [37] - [41] \cdot + [61]$$

$$(485298) = -2[2] - [5] + 4[13] \cdot - 2[29] + [37] \cdot + [53] \cdot$$

Die von den Rechnern bis jetzt angewandten Arten zur Bestimmung von $\frac{\pi}{4} = (r)$ stellt Gauss in der folgenden Uebersicht zusammen

```
(1) = 4(5) - (239) auch CLAUSEN
MACHIN
               = (2)+(3) (EULER à GOLDBACH 1746 Mai 28)
EULER
              = 5(7) + 2(\frac{79}{3}) (VEGA Thesaurus logar. p. 633)
VEGA
              = 2(3)+(7) auch CLAUSEN (Astr. Nachr. B. 25. S. 209)
VEGA
              = 4(5) - (70) + (99) (Philos. Trans. 1841. p. 283)
RUTHERFORD
DASE
               = (2)+(5)+(8) (CRELLE Journal. B. 27. S. 198)
               = 12(18) + 8(57) - 5(239)
GAUSS. 1.
               = 12(38) + 20(57) + 7(239) + 24(268)
GAUSS. 2.
```

Die ersten Rechnungen für die Tafeln gehören der Zeit der Ausarbeitung der Disquiss. Arr. an, sie sind dann besonders in den Jahren 1846 und 47 gefördert. Am 21. Juli 1847 waren 2283 Zerlegungen nach der hier wiedergegebenen Ordnung in Tafeln gebracht, die übrigen 169 sind später berechnet, und ich habe sie diesem Abdruck (der sich vom Original in der Einrichtung nur durch die des leichtern Satzes wegen statt der Potenzen angewandte Schreibweise der Wiederholung der Factoren unterscheidet) mit eingeordnet.

Die Manuscripte mit diesen letzten Rechnungen scheinen die Resultate in der Form zu enthalten, wie sie unmittelbar gefunden wurden. Die Reihenfolge, in welcher dabei die Zahlen a auftreten, lässt vermuthen, dass nur für die kleinern die Theiler von aa + 1 u.s.f. aufgesucht wurden, und dass die grössern Zahlen sich aus diesen durch Anwendung besonderer Kunstgriffe ergeben haben. Aufgeseichnet ist aber nur folgende Regel: Aus drei Zahlen a, 2a - n, 2a + n findet sich eine vierte

$$\frac{4a^3-(nn-3)a}{nn+1}$$

Diese ist immer eine ganze Zahl für n = 0 und n = 1, sonst nur

für
$$a \equiv 0$$
 und $\equiv \pm \sqrt{-1}$ mod $(nn+1)$ wenn n gerade
und für $a \equiv 0$ und $\equiv \pm \sqrt{-1}$ mod $\frac{nn+1}{2}$ wenn n ungerade
Beispiele $a = 253$, $n = 6$, 1750507
 $a = 294$, $n = 11$, 832902
 $a = 119$, $n = 1$, 3370437
 $a = 57$, $n = 3$, 74043
 $a = 123$, $n = 9$, 90657

Zu der vierten Zahl gehören nemlich keine andern Primtheiler als zu den ersten dreien und davon sind auch nur diejenigen ungeraden Primtheiler ausgeschlossen, welche der Zahl zugehören.

Die Tabelle 'Quadratorum myrias prima' enthält in der Zeile der Überschrift die Tausende und Hunderte, in der ersten senkrechten Spalte die Zehner und Einer der Grundsahl ferner in der letsten II.

82

senkrechten Spalte jeder einzelnen Tabelle die drei niedrigsten Ziffern des Quadrates und in dem Innern die vier oder fünf höheren Ziffern des Quadrates.

Die Tabelle 'Indices der Primzahlen im Hühern Zahlenreiche' enthält in der obersten horizontalen Reihe den jedesmaligen Modulus, in der zweiten Reihe die zur Anwendung gekommene Basis, in der ersten senkrechten Spalte die Restzahlen und im Innern die Indices. Die Sterne * bezeichnen die Reste Null.

Die Handschrift des Bruchstückes der 'Sectio octava. Quarundam disquisitionum ad circuli sectionem pertinentium uberior consideratio' scheint der Zeit der Umarbeitung der 'Analysis residuorum' in die 'Disquisitiones arithmeticae' ansugehören. Die Briefe von Gauss an Diriculum bestätigen die Ansicht, dass Gauss auch in der höheren Arithmetik erheblich mehr entdeckt hat als im Nachlasse sich findet.

Scherfing.

INHALT.

GAUSS WERKE BAND II. HÖHERE ARITHMETIK.

ndlungen.	
heorematis arithmetici demonstratio nova	eite :
ummatio quarumdam serierum singularium	_
heorematis fundamentalis in doctrina de residuis quadraticis demonstrationes	
et ampliationes novae	- 47
heoria residuorum biquadraticorum. Commentatio prima 1825 Apr	61
heoria residuorum biquadraticorum. Commentatio secunda 1831 Apr	
gen eigner Schriften.	
heorematis arithmetici demonstratio nova	<u> </u>
ummatio quarumdam serierum singularium	
heorematis fundamentalis in doctrina de residuis etc 1817 März .	
heoria residuorum biquadraticorum. Comm. I	
heoria residuorum biquadraticorum. Comm. II	
gen nicht eigner Schriften.	
DALBERG] Recherches sur l'irréductibilité Arithmétique et Géométrique des nom-	
bres et de leurs puissances	— 181
HERNAC. Cribrum Arithmeticum	- 181
URCEHARDT. Tables des diviseurs 1814 Nov. 1816 Nov. 1817 Aug	
RCHINGER. Construction des Siebenzehnecks	
	<u> </u>
REBER. Untersuchungen über die Eigenschaften der positiven ternären quadratischen Formen	— 181

Nac	h lass.
	Analysis residuorum:
	Caput sextum. Pars prior. Solutio congruentiae $x^m-1\equiv 0$ Seite 198
	Caput octavum. Disquisitiones generales de congruentiis
	Disquisitionum circa aequationes puras ulterior evolutio
	Démonstration de quelques théorèmes concernants les périodes des classes des formes binaires
	du second degré
	De nexu inter multitudinem classium in quas formae binariae secundi gradus distribuuntur
	earumque determinantem. L. II X
	Geometrische Seite der ternären Formen
	Zur Theorie der biquadratischen Reste. I VI
	Zur Theorie der complexen Zahlen. I VI
	Tafel des quadratischen Characters der Primzahlen
	Tafel zur Verwandlung gemeiner Brüche in Decimalbrüche
	Tafel der Frequenz der Primzahlen
	Tafel der Ansahl der Classen binärer quadratischer Formen 449
	Tafel sur Cyklotechnie
	Circuli quadratura nova
	Zur Berechnung der Logarithmen
	Quadratorum myrias prima
	Indices der Primsahlen im höhern Zahlenreiche
	Hülfstafel zur Auflösung der Gleichung $A = fxx + gyy$
	Sectio octava. Quarumdam disquisitionum ad circuli sectionem pertinentium uberior consideratio. — 516
	Briefe von Gauss an Dirichlet

GÖTTINGEN, DRUCK DER DIETERICHSCHEN UNIVERSITÄTS-BUCHDRUCKEREI.