

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

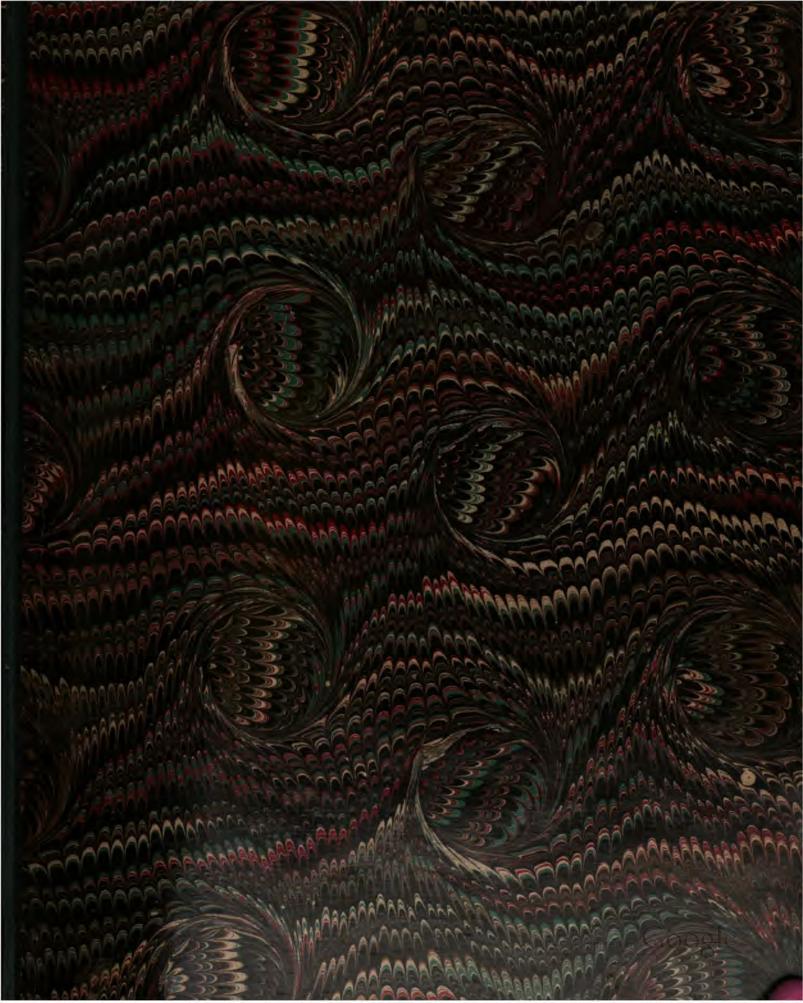
Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/



CARL FRIEDRICH GAUSS WERKE

SIEBENTER BAND.

CARL FRIEDRICH GAUSS WERKE

SIEBENTER BAND

HERAUSGEGEBEN

VON

ERNST JULIUS SCHERING

MITGLIED DER KÖNIGLICHEN GESELLSCHAFT DER WISSENSCHAFTEN ZU GÖTTINGEN.

GOTHA
FRIEDRICH ANDREAS PERTHES
1871.

Math 181.1

JAN 7 1885

Commenced.

(Yet)

THEORIA

MOTUS CORPORUM COELESTIUM

IN

SECTIONIBUS CONICIS SOLEM AMBIENTIUM

AUCTORE

CAROLO FRIDERICO \underline{G} AUSS.

HAMBURGI SUMTIBUS FRID. PERTHES ET I. H. BESSER 1809.

Venditur

PARISIIS ap. Treuttel & Würtz. STOCKHOLMIAE ap. A. Wiborg. MADRITI ap. Sancha.

LONDINI ap. R. H. Evans.

PETROPOLI ap. Klostermann.

FLORENTIAE ap. Molini, Landi & C*

AMSTELODAMI in libraria: Kunst-und Industrie-Comptoir, dicta.

G TH. M.

1

PRAEFATIO.

Detectis legibus motus planetarum Kepleri ingenio non defuerunt subsidia ad singulorum planetarum elementa ex observationibus eruenda. Trono Brahe, a quo astronomia practica ad fastigium antea ignotum evecta erat, cunctos planetas per longam annorum seriem summa cura tantaque perseverantia observaverat, ut Keplero talis thesauri dignissimo heredi seligendi tantummodo cura restaret, quae ad scopum quemvis propositum facere viderentur. Nec mediocriter sublevabant hunc laborem motus planetarum medii summa ismdudum praecisione per observationes antiquissimas determinati.

Astronomi, qui post Kepleman consti sunt planetarum orbitas adiumento observationum recentiorum vel perfectiorum adhuc accuratius dimetiri, iisdem vel adhuc maioribus subsidiis adiuti sunt. Neque enim amplius de elementis plane incognitis eliciendis agebatur, sed nota leviter tantum corrigenda arctioribusque limitibus circumscribenda erant.

Principium gravitationis universalis a summo Newton detectum campum plane novum aperuit, legibusque iisdem, quibus quinque planetas regi Kepler expertus fuerat, levi tantum mutatione facta omnia corpora coelestia necessario obsequi debere edocuit, quorum quidem motus a vi Solis tantum moderentur. Scilicet observationum testimonio fretus Kepler cuiusvis planetae orbitam

ellipsem esse pronunciaverat, in qua areae circa Solem, focum alterum ellipsis occupantem, uniformiter describantur, et quidem ita, ut tempora revolutionum in ellipsibus diversis sint in ratione sesquialtera semiaxium maiorum. Newton, principio gravitationis universalis posito, a priori demonstravit, corpora omnia a Solis vi attractiva gubernata in sectionibus conicis moveri debere, quarum quidem speciem unam, ellipses puta, planetae nobis exhibeant, dum species reliquae, parabolae et hyperbolae, pro aeque possibilibus haberi debeant, modo adsint corpora Solis vi velocitate debita occurrentia; Solem semper focum alterum sectionis conicae tenere; areas, quas corpus idem temporibus diversis circa Solem describat, his temporibus proportionales, areas denique a corporibus diversis, temporibus aequalibus, circa Solem descriptas, esse in ratione subduplicata semiparametrorum orbitarum: postrema harum legum, in motu elliptico cum ultima Kepleri lege identica, ad motum parabolicum hyperbolicumque patet, ad quos haecce applicari nequit, revolutionibus de-Iam filum repertum, quo ducente labyrinthum motuum cometarum antea inaccessum ingredi licuit. Quod tam feliciter successit, ut omnium cometarum motibus, qui quidem accurate observati essent, explicandis sufficeret unica hypothesis, orbitas parabolas esse. Ita systema gravitationis universalis novos analysi triumphos eosque splendidissimos paraverat; cometaeque usque ad illum diem semper indomiti, vel si devicti videbantur mox seditiosi et rebelles, frena sibi iniici passi, atque ex hostibus hospites redditi, iter suum in tramitibus a calculo delineatis prosequuti sunt, iisdem quibus planetae legibus aeternis religiose obtemperantes.

Iam in determinandis cometarum orbitis parabolicis ex observationibus difficultates suboriebantur longe maiores, quam in determinandis orbitis ellipticis planetarum, inde potissimum, quod cometae per brevius temporis intervallum visi delectum observationum ad haec vel illa imprimis commodarum non concedebant, sed iis uti geometram cogebant, quas fors obtulerat, ita ut

methodos speciales in calculis planetarum adhibitas vix umquam in usum vocare licuerit. Magnus ipse Newton, primus saeculi sui geometra, problematis difficultatem haud dissimulavit, attamen, ceu exspectari poterat, ex hoc quoque certamine victor evasit. Multi post Newtonum geometrae eidem problemati operam suam navaverunt, varia utique fortuna, ita tamen, ut nostris temporibus parum desiderandum relictum sit.

Verum enim vero non est praetermittendum, in hoc quoque problemate peropportune difficultatem diminui per cognitionem unius elementi sectionis conicae, quum per ipsam suppositionem orbitae parabolicae, axis maior infinite magnus statuatur. Quippe omnes parabolae, siquidem situs negligatur, per solam maiorem minoremve distantiam verticis a foco inter se different, dum sectiones conicae generaliter spectatae varietatem infinities maiorem admittant. Haud equidem aderat ratio sufficiens, cur cometarum traiectoriae absoluta praecisione parabolicae praesumerentur: quin potius infinite parum probabile censeri debet, rerum naturam unquam tali suppositioni annuisse. quum constaret, phaenomena corporis coelestis in ellipsi vel hyperbola incedentis, cuius axis maior permagnus sit ratione parametri, prope perihelium perparum discrepare a motu in parabola, cui eadem verticis a foco distantia, differentiamque eo leviorem evadere, quo maior fuerit illa ratio axis ad parametrum; porro quum experientia docuisset, inter motum observatum motumque in orbita parabolica computatum vix umquam maiores differentias remanere, quam quae ipsis observationum erroribus (hic plerumque satis notabilibus) tuto tribui poterant: astronomi apud parabolam subsistendum esse rati sunt. Recte sane, quum omnino deessent subsidia, e quibus, num ullae quantaeve differentiae a parabola adsint, satis certo colligi potuisset. Excipere oportet cometam celebrem Halleyanum, qui ellipsem valde oblongam describens in reditu ad perihelium pluries observatus tempus periodicum nobis patefecit: tunc autem axi maiori inde cognito computus reliquorum elementorum vix

pro difficiliori habendus est, quam determinatio orbitae parabolicae. Silentio quidem praeterire non possumus, astronomos etiam in nonnullis aliis cometis per tempus aliquanto longius observatis determinationem aberrationis a parabola tentavisse: attamen omnes methodi ad hunc finem propositae vel adhibitae, innituntur suppositioni, discrepantiam a parabola haud considerabilem esse, quo pacto in illis tentaminibus ipsa parabola antea iam computata cognitionem approximatam singulorum elementorum (praeter axem maiorem vel tempus revolutionis inde pendens) iam subministravit, levibus tantum mutationibus corrigendam. Praeterea fatendum est, omnia ista tentamina vix unquam aliquid certi decidere valuisse, si forte cometam anni 1770 excipias.

Quamprimum motum planetae novi anno 1781 detecti cum hypothesi parabelica conciliari non posse cognitum est, astronomi orbitam circularem illi adaptare inchoaverunt, quod negotium per calculum perfacilem ac simplicem absolvitur. Fausta quadam fortuna orbita huius planetae mediocriter tantum excentrica erat, quo pacto elementa per suppositionem illam eruta saltem approximationem qualemounque suppeditabant, cui dein determinationem elementorum ellipticorum superstruere licuit. Accedebant plura alia peropportuna. Quippe tardus planetae motus, perparvaque orbitae ad planum eclipticae inclinatio non solum calculos longe simpliciores reddebant, methodosque speciales aliis casibus haud accommodandas in usum vocare concedebant, sed metum quoque dissipabant, ne planeta radiis Solis immersus postea quaeritantium curas eluderet (qui metus alias, praesertim si insuper lumen minus vividum fuisset, utique animos turbare potuisset), quo pacto accuratior orbitae determinatio tuto differri poterat, donec ex observationibus frequentioribus magisque remotis eligere liceret, quae ad propositum maxime commodae viderentur.

In omnibus itaque casibus, ubi corporum coelestium orbitas ex observationibus deducere oportuit, commoda aderant quaedam haud spernenda,

methodorum specialium applicationem suadentia vel saltem permittentia, quorum commodorum potissimum id erat, quod per suppositiones hypotheticas cognitionem approximatam quorundam elementorum iamiam acquirere licuerat, antequam calculus elementorum ellipticorum susciperetur. Nihilominus satis mirum videtur, problema generale

Determinare orbitam corporis ecelestis, absque omni suppositione hypothetica, ex observationibus tempus haud magnum complectentibus neque adeo delectum, pro applicatione methodorum specialium, patientibus usque ad initium huius saeculi penitus propemodum neglectum esse, vel saltem a nemine serio ac digne tractatum, quum certe theoreticis propter difficultatem atque elegantiam sese commendare potuisset, etiamsi apud practicos de summa eius utilitate nondum constaret. Scilicet invaluerat apud omnes opinio, impossibilem esse talem determinationem completam ex observationibus breviori temporis intervallo inclusis, male sane fundata, quum nunc quidem certissimo iam evictum sit, orbitam corporis coelestis ex observationibus bonis paucos tantummodo dies complectentibus absque ulla suppositione hypothetica satis approximate iam determinari posse.

Incideram in quasdam ideas, quae ad solutionem problematis magni de quo dixi facere videbantur, mense Septembri a. 1801, tunc in labore plane diverso occupatus. Haud raro in tali casu, ne nimis a grata investigatione distrahamur, neglectas interire sinimus idearum associationes, quae attentius examinatae uberrimos fructus ferre potuissent. Forsan et illis ideolis eadem fortuna instabat, nisi peropportune incidissent in tempus, quo nullum sane faustius ad illas conservandas atque fovendas eligi potuisset. Scilicet eodem circiter tempore rumor de planeta novo Ism. 1 istius anni in specula Panormitana detecto per omnium ora volitabat, moxque ipsae observationes inde ab epocha illa usque ad 11. Febr. ab astronomo praestantissimo Piazzi institutae ad notitiam publicam pervenerunt. Nullibi sane in annalibus astronomiae

occasionem tam gravem reperimus, vixque gravior excogitari posset, ad dignitatem istius problematis luculentissime ostendendam, quam tunc in tanto discrimine urgenteque necessitate, ubi omnis spes, atomum planetariam post annum fere elapsum in coelis inter innumeras stellulas reinveniendi, unice pendebat ab orbitae cognitione satis approximata, solis illis pauculis observationibus superstruenda. Umquamne opportunius experiri potuissem, ecquid valeant ideolae meae ad usum practicum, quam si tunc istis ad determinationem orbitae Cereris uterer, qui planeta inter 41 illos dies geocentrice arcum trium tantummodo graduum descripserat, et post annum elapsum in coeli plaga longissime illinc remota indagari debebat? Prima haecce methodi applicatio facta est mense Oct. 1801, primaque nox serena, ubi planeta ad normam numerorum inde deductorum quaesitus est*), transfugam observationibus Tres alii planetae novi inde ab illo tempore detecti, occasiones reddidit. novas suppeditaverunt, methodi efficaciam ac generalitatem examinandi et comprobandi.

Optabant plures astronomi, statim post reinventionem Cereris, ut methodos ad istos calculos adhibitas publici iuris facerem; verum obstabant plura, quominus amicis hisce sollicitationibus tunc morem gererem: negotia alia, desiderium rem aliquando copiosius pertractandi, imprimisque expectatio, continuatam in hac disquisitione occupationem varias solutionis partes ad maius generalitatis, simplicitatis et elegantiae fastigium evecturam esse. Quae spes quum me haud fefellerit, non esse arbitror, cur me huius morae poeniteat. Methodi enim ab initio adhibitae identidem tot tantasque mutationes passae sunt, ut inter modum, quo olim orbita Cereris calculata est, institutionemque in hoc opere traditam vix ullum similitudinis vestigium remanserit.

^{*)} Dec. 7, 1801 a clar. DE ZACH.

Quamquam vero a proposito meo alienum esset, de cunctis his disquisitionibus paullatim magis magisque perfectis narrationem completam perscribere, tamen in pluribus occasionibus, praesertim quoties de problemate quodam graviori agebatur, methodos anteriores quoque haud omnino supprimendas esse censui. Quin potius praeter problematum principalium solutiones plurima, quae in occupatione satis longa circa motus corporum coelestium in sectionibus conicis vel propter elegantiam analyticam vel imprimis propter usum practicum attentione digniora se mihi obtulerunt, in hoc opere exsequutus sum. Semper tamen vel rebus vel methodis mihi propriis maiorem curam dicavi, nota leviter tantum, quatenusque rerum nexus postulare videbatur, attingens.

Totum itaque opus in duas partes dividitur. In Libro primo evolvuntur relationes inter quantitates, a quibus motus corporum coelestium circa Solem secundum Kepleri leges pendet, et quidem in duabus primis Sectionibus relationes eae, ubi unicus tantum locus per se consideratur, in Sectione tertia et quarta vero eae, ubi plures loci inter se conferuntur. Illae continent expositionem methodorum tum vulgo usitatarum, tum potissimum aliarum illis ni fallor ad usum practicum longe praeferendarum, per quas ab elementis cognitis ad phaenomena descenditur; hae problemata multa gravissima tractant, quae viam ad operationes inversas sternunt. Scilicet quum ipsa phaenomena ex artificiosa intricataque quadam complicatione elementorum componantur, hanc texturae rationem penitius perspexisse oportet, antequam filorum explicationem operisque in elementa sua resolutionem cum spe successus suscipere liceat. Comparantur itaque in Libro primo instrumenta atque subsidia, per quae dein in Libro altero arduum hoc negotium ipsum perficitur: maxima laboris pars tunc iam in eo consistit, ut illa subsidia rite colligantur, ordine apto disponantur et in scopum propositum dirigantur.

Problemata graviora ad maximam partem per exempla idonea illustrata sunt, semper quoties quidem licuit ab observationibus non fictis desumta.

6. TH. M. 2

Digitized by Google

Ita non solum methodorum efficaciae maior fiducia conciliabitur, ususque clarius ob oculos ponetur, sed id quoque cautum iri spero, ut nec minus exercitati a studio harum rerum deterreantur, quae procul dubio partem foecundissimam et pulcherrimam astronomiae theoricae constituunt.

Scripsi Gottingae d. 28 Martii 1809.

LIBER PRIMUS

RELATIONES GENERALES INTER QUANTITATES PER QUAS CORPORUM COELESTIUM MOTUS CIRCA SOLEM DEFINIUNTUR.

SECTIO PRIMA

Relationes ad locum simplicem in orbita spectantes.

1.

Corporum coelestium motus in hoc opere eatenus tantum considerabimus, quatenus a Solis vi attractiva gubernantur. Excluduntur itaque ab instituto nostro omnes planetae secundarii, excluduntur perturbationes, quas primarii in se invicem exercent, excluditur omnis motus rotatorius. Corpora mota ipsa ut puncta mathematica spectamus, motusque omnes ad normam legum sequentium fieri supponimus, quae igitur pro basi omnium disquisitionum in hoc opere sunt habendae.

- I. Motus cuiusvis corporis coelestis perpetuo fit in eodem plano, in quo simul centrum Solis est situm.
- II. Traiectoria a corpore descripta est sectio conica focum in centro Solis habens.
- III. Motus in ista traiectoria fit ita, ut areae spatiorum in diversis temporum intervallis circa Solem descriptorum hisce intervallis ipsis sint proportionales. Temporibus igitur et spatiis per numeros expressis, spatium quodvis per tempus intra quod describitur divisum quotientem invariabilem suppeditat.
- IV. Pro corporibus diversis circa Solem se moventibus horum quotientium quadratà sunt in ratione composita parametrorum orbitis respondentium, atque aggregatorum massae Solis cum massis corporum motorum.

Designando itaque per 2p parametrum orbitae, in qua corpus incedit, per μ quantitatem materiae huius corporis (posit amassa Solis == 1), per $\pm g$ aream

quam tempore t circa Solem describit, erit $\frac{g}{t_V p} \frac{g}{\sqrt{t_1 + \mu}}$ numerus pro omnibus corporibus coelestibus constans. Quum igitur nihil intersit, quonam corpore ad valorem huius numeri determinandum utamur, e motu terrae eum depromemus, cuius distantiam mediam a Sole pro unitate distantiarum adoptabimus: unitas temporum semper nobis erit dies medius solaris. Denotando porro per π rationem circumferentiae circuli ad diametrum, area ellipsis integrae a terra descriptae manifesto erit $\pi \sqrt{p}$, quae igitur poni debet $= \frac{1}{2}g$, si pro t accipitur amus sideralis, quo pacto constans nostra fit $=\frac{2\pi}{t\sqrt{(1+\mu)}}$. Ad valorem numericum huius constantis, in sequentibus per k denotandae, explorandum, statuemus, secundum novissimam determinationem, annum sideralem sive t = 365,2563935, massam terrae sive $\mu = \frac{1}{354710} = 0,0000028192$, unde prodit

$\log 2\pi \dots$	0,7981798684			
Compl. $\log t \ldots \ldots$	7,4374021852			
Compl. $\log \sqrt{(1+\mu)}$	9,9999993878			
$\log k \dots \dots$	8,2355814414			
k = 0.01720209895				

2.

Leges modo expositae ab iis, quae Keplerus noster detexit, aliter non different, nisi quod in forma ad omnia sectionum conicarum genera patente exhibitae sunt, actionisque corporis moti in Solem, a qua pendet factor $\sqrt{(1+\mu)}$, ratio est habita. Si has leges tamquam phaenomena ex innumeris atque indubiis observationibus depromta consideramus, geometria docebit, qualis actio in corpora circa Solem mota ab hoc exerceri debeat, ut ista phaenomena perpetuo producantur. Hoc modo invenitur, Solis actionem in corpora ambientia perinde se exercere, ac si vis attractiva, cuius intensitas quadrato distantiae reciproce proportionalis esset, corpora versus centrum Solis propelleret. Quodsi vero vice versa a suppositione talis vis attractivae tamquam principio proficiscimur, phaenomena illa ut consequentiae necessariae inde derivantur. Hic leges tantum enarravisse sufficiat, quarum nexui cum principio gravitationis hoc loco eo minus opus erit immorari, quum post summum Newton auctores plures hoc argumentum tractaverint, interque eos ill. Laplace in opere perfectissimo, Mécanique Céleste, tali modo, ut nihil amplius desiderandum reliquerit.

3.

Disquisitiones circa motus corporum coelestium, quatenus fiunt in sectionibus conicis, theoriam completam huius curvarum generis neutiquam postulant: quin adeo unica aequatio generalis nobis sufficiet, cui omnia superstruantur. Et quidem maxime e re esse videtur, eam ipsam eligere, ad quam tamquam aequationem characteristicam deferimur, dum curvam secundum attractionis legem descriptam investigamus. Determinando scilicet quemvis corporis locum in orbita sua per distantias x, y a duabus rectis in plano orbitae ductis atque in centro Solis i. e. in altero curvae foco sub angulis rectis se secantibus, et denotando insuper corporis distantiam a Sole (positive semper accipiendam) per r, habebimus inter r, x, y aequationem linearem $r+ax+by=\gamma$, in qua a, b, γ quantitates constantes expriment, et quidem q quantitatem natura sua semper positivam. Mutando rectarum, ad quas distantiae x, y referentur, situm per se arbitrarium, si modo sub angulis rectis se intersecare perseverent, manifesto forma aequationis valorque ipsius γ non mutabuntur, α et θ autem alios aliosque valores nanciscentur, patetque, situm illum ita determinari posse, ut 6 evadat = 0, α autem saltem non negativa. Hoc modo scribendo pro α, γ resp. e, p, aequatio nostra induit formam r + ex = p. Recta, ad quam tunc distantiae y referentur, linea apsidum vocatur, p semiparameter, e excentricitas; sectio conica denique ellipsis, parabolae vel hyperbolae nomine distinguitur, prout e unitate minor, unitati aequalis, vel unitate maior est.

Ceterum facile intelligitur, situm lineae apsidum per conditiones traditas plene determinatum esse, unico casu excepto, ubi tum a tum b iam per se erant = 0; in hoc casu semper fit r = p, ad quascunque rectas distantiae x, y referantur. Quoniam itaque habetur e = 0, curva (quae erit circulus) secundum definitionem nostram ellipsium generi annumeranda est, id vero singulare habet, quod apsidum positio prorsus arbitraria manet, siquidem istam notionem ad hunc quoque casum extendere placet.

4.

Pro distantia x iam angulum v introducamus, qui inter lineam apsidum et rectam a Sole ad corporis locum ductam ($radium\ vectorem$) continetur, et quidem hic angulus ab ea lineae apsidum parte ubi distantiae x sunt positivae incipiat, versusque eam regionem, quorsum motus corporis dirigitur, crescere supponatur.

Hoc mode fit $x = r \cos v$, adeque formula nostra $r = \frac{p}{1 + e \cos v}$, unde protinus derivantur conclusiones sequentes:

- I. Pro v = 0 valor radii vectoris r fit minimum, puta $= \frac{p}{1+e}$: hoc punctum perihelium dicitur.
- II. Valoribus oppositis ipsius v respondent valores aequales ipsius r; quocirca linea apsidum sectionem conicam in duas partes aequales dirimit.
- III. In ellipsi r inde a v=0 continuo crescit, donec valorem maximum $\frac{p}{1-e}$ assequatur in aphelio pro $v=180^\circ$; post aphelium eodem modo rursus decrescit, quo ante increverat, donec pro $v=360^\circ$ perihelium denuo attigerit. Lineae apsidum pars perihelio hinc aphelio illinc terminata axis maior dicitur; hinc semiaxis maior, qui etiam distantia media vocatur, fit $=\frac{p}{1-ee}$; distantia puncti in medio axe iacentis (centri ellipsis) a foco erit $\frac{ep}{1-ee}=ea$, denotando per a semiaxem maiorem.
- IV. Contra in parabola proprie non datur aphelium, sed r ultra omnes limites augetur, quo propius v ad $+180^{\circ}$ vel -180° accedit. Pro $v=\pm180^{\circ}$ valor ipsius r fit infinitus, quod indicat, curvam a linea apsidum a parte perihelio opposita non secari. Quare proprie quidem loquendo de axi maiore vel centro curvae sermo esse nequit, sed secundum analyseos usum consuctum per ampliationem formularum in ellipsi inventarum axi maiori valor infinitus tribuitur, centrumque curvae in distantia infinita a foco collocatur.
- V. In hyperbola denique v inter limites adhuc arctiores coërcetur, scilicet inter $v = -(180^{\circ} \psi)$ et $v = +(180^{\circ} \psi)$, denotando per ψ angulum, cuius cesinus $= \frac{1}{6}$. Dum enim v ad hosce limites appropinquat, r in infinitum crescit; si vero pro v alter horum limitum ipse acciperetur, valor ipsius r infinitus prodiret, quod indicat, hyperbolam a recta ad lineam apsidum angulo $180^{\circ} \psi$ supra vel infra inclinata omnino non secari. Pro valoribus hoc modo exclusis, puta a $180^{\circ} \psi$ usque ad $180^{\circ} + \psi$, formula nostra ipsi r valorem negativum assignat; recta scilicet sub tali angulo contra lineam apsidum inclinata ipsa quidem hyperbolam non secat, si vero retro producitur in alteram hyperbolae partem incidit, quam a prima parte omnino separatam versusque eum focum quem Sol occupat convexam esse constat. Sed in disquisitione nostra, quae ut iam monuimus suppositioni innitur, r sumi positive, ad hanc alteram hyperbolae partem non respiciemus, in qua corpus coeleste tale tantummodo incedere posset, in quod Sol vim non attractivam sed secundum easdem leges repulsivam exerceret. Proprie

itaque loquendo etiam in hyperbola non datur aphelium; pro aphelii analogo id partis aversae punctum quod in linea apsidum iacet, et quod respondet valoribus $v = 180^{\circ}$, $r = -\frac{p}{e-1}$, haberi poterit. Quodsi ad instar ellipsis valorem expressionis $\frac{p}{1-ee}$ etiam hic, ubi negativus evadit, semiaxem maiorem hyperbolae dicere lubet, duplum huius quantitatis puncti modo commemorati distantiam a perihelio simulque situm ei qui in ellipsi locum habet oppositum indicat. Perinde $\frac{ep}{1-ee}$, i. e. distantia puncti inter haec duo puncta medii (centri hyperbolae) a foco, hic obtinet valorem negativum propter situm oppositum.

5.

Angulum v, qui pro parabola intra terminos —180° et +180°, pro hyperbola intra —(180° — ψ) et $+(180° — \psi)$ eoërcetur, pro ellipsi vero circulum integrum periodis perpetuo renovatis percurrit, corporis moti anomaliam veram nuncupamus. Hactenus quidem omnes fere astronomi anomaliam veram in ellipsi non a perihelio sed ab aphelio inchoare solebant, contra analogiam parabolae et hyperbolae, ubi aphelium non datur adeoque a perihelio incipere oportuit: nos analogiam inter omnia sectionum conicarum genera restituere eo minus dubitavimus, quod astronomi gallici recentissimi exemplo suo iam praeiverunt.

Ceterum expressionis $r = \frac{p}{1 + e \cos v}$ formam saepius aliquantulum mutare convenit; imprimis notentur formae sequentes:

$$r = \frac{p}{1 + e - 2e\sin\frac{1}{2}v^2} = \frac{p}{1 - e + 2e\cos\frac{1}{2}v^2} = \frac{p}{(1 + e)\cos\frac{1}{2}v^2 + (1 - e)\sin\frac{1}{2}v^2}$$

In parabola itaque habemus $r = \frac{p}{2\cos\frac{1}{2}v^2}$; in hyperbola expressio sequens imprimis est commoda $r = \frac{p\cos\psi}{2\cos\frac{1}{2}(v+\psi)\cos\frac{1}{2}(v-\psi)}$.

6

Progredimur iam ad comparationem motus cum tempore. Statuendo ut in art. 1 spatium tempore t circa Solem descriptum $= \frac{1}{2}g$, massam corporis moti $= \mu$, posita massa Solis = 1, habemus $g = kt\sqrt{p} \cdot \sqrt{(1+\mu)}$. Differentiale spatii autem fit $= \frac{1}{2}rrdv$, unde prodit $kt\sqrt{p} \cdot \sqrt{(1+\mu)} = \int rrdv$, hoc integrali ita sumto, ut pro t = 0 evanescat. Hace integratio pro diversis sectionum conicarum generibus diverso modo tractari debet, quamobrem singula iam seorsim considerabimus, initiumque ab ELLIPSI faciemus.

Quum r ex v per fractionem determinetur, cuius denominator e duabus partibus constat, ante omnia hoc incommodum per introductionem quantitatis novae pro v auferemus. Ad hunc finem statuemus $\tan \frac{1}{2} v \cdot \sqrt{\frac{1-e}{1+e}} = \tan \frac{1}{2} E$, quo pacto formula ultima art. praec. pro r praebet

$$r = \frac{p \cos \frac{1}{2} E^2}{(1+e) \cos \frac{1}{2} v^2} = p \left(\frac{\cos \frac{1}{2} E^2}{1+e} + \frac{\sin \frac{1}{2} E^2}{1-e} \right) = \frac{p}{1-ee} \left(1 - e \cos E \right)$$

Porro fit $\frac{\mathrm{d}E}{\cos\frac{1}{2}E^2} = \frac{\mathrm{d}v}{\cos\frac{1}{2}v^2} \sqrt{\frac{1-e}{1+e}}$, adeoque $\mathrm{d}v = \frac{p\,\mathrm{d}E}{r\sqrt{(1-e\,e)}}$;

hinc $rrdv = \frac{rpdE}{\sqrt{1-ee}} = \frac{pp}{(1-ee)!} (1-e\cos E)dE$,

atque integrando $kt\sqrt{p}.\sqrt{(1+\mu)} = \frac{pp}{(1-ee)!}(E-e\sin E) + \text{Const.}$

Quodsi itaque tempus a transitu per perihelium inchoamus, ubi v = 0, E = 0 adeoque Const. = 0, habebimus, propter $\frac{p}{1-ee} = a$,

$$E - e \sin E = \frac{k \, t \, \sqrt{(1+\mu)}}{a^{\frac{1}{2}}}$$

In hac aequatione angulus auxiliaris E, qui anomalia excentrica dicitur, in partibus radii exprimi debet. Manifesto autem hunc angulum in gradibus etc. retinere licet, si modo etiam $e\sin E$ atque $\frac{kt\sqrt{(1+\mu)}}{a^{\frac{1}{4}}}$ eodem modo exprimantur; in minutis secundis hae quantitates exprimentur, si per numerum 206264,806 multiplicantur. Multiplicatione quantitatis posterioris supersedere possumus, si statim quantitatem k in secundis expressam adhibemus adeoque, loco valoris supra dati, statuimus k = 3548%,18761, cuius logarithmus = 3,5500065746. — Hoc modo expressa quantitas $\frac{kt\sqrt{(1+\mu)}}{a^{\frac{1}{4}}}$ anomalia media vocatur, quae igitur in ratione temporis crescit, et quidem quotidie augmento $\frac{k\sqrt{(1+\mu)}}{a^{\frac{1}{4}}}$, quod motus medius diurnus dicitur. Anomaliam mediam per M denotabimus.

7.

In perihelio itaque anomalia vera, anomalia excentrica, et anomalia media sunt = 0; crescente dein vera, etiam excentrica et media augentur, ita tamen, ut excentrica minor maneat quam vera, mediaque minor quam excentrica, usque ad aphelium, ubi omnes tres simul fiunt $= 180^{\circ}$; hinc vero usque ad perihelium excentrica perpetuo est maior quam vera, mediaque maior quam excentrica, donec in perihelio omnes tres fiant $= 360^{\circ}$, sive, quod eodem redit, omnes iterum = 0. Generaliter vero patet, si anomaliae verae v respondeat excentrica E mediaque M,

verae $350^{\circ} - v$ respondere excentricam $360^{\circ} - E$ atque mediam $360^{\circ} - M$. Differentia inter anomaliam veram et mediam v - M aequatio centri appellatur, quae itaque a perihelio ad aphelium positiva, ab aphelio ad perihelium negativa est, in perihelio ipso autem et aphelio evanescit. Quum igitur v et M circulum integrum a 0 usque ad 360° eodem tempore percurrant, tempus revolutionis unius, quod et tempus periodicum dicitur, in diebus expressum invenitur, dividendo 360° per motum diurnum $\frac{k\sqrt{(1+\mu)}}{a!}$, unde patet, pro corporibus diversis circa Solem revoluentibus quadrata temporum periodicorum cubis distantiarum mediarum proportionalia esse, quatenus ipsorum massas, aut potius massarum inaequalitatem negligere liceat.

8.

Eas iam inter anomalias atque radium vectorem relationes, quae imprimis attentione dignae sunt, colligamus, quarum deductio nemini in analysi trigonometrica vel mediocriter versato difficultates obiicere poterit. Pluribus harum formularum concinnitas maior conciliatur, introducto pro e angulo cuius sinus est = e. Quo per φ designato, habemus $\sqrt{(1-ee)} = \cos\varphi$, $\sqrt{(1+e)} = \cos(45^{\circ} - \frac{1}{2}\varphi) \cdot \sqrt{2}$, $\sqrt{(1-e)} = \cos(45^{\circ} + \frac{1}{2}\varphi) \cdot \sqrt{2}$, $\sqrt{\frac{1-e}{1+e}} = \tan(45^{\circ} - \frac{1}{2}\varphi)$, $\sqrt{(1+e)} + \sqrt{(1-e)} = 2 \cos \frac{1}{2}\varphi$. Ecce iam relationes praecipuas inter a, p, r, e, φ , v, E, M.

I.
$$p = a \cos \varphi^2$$

II.
$$r = \frac{p}{(1 + e \cos v)}$$

III.
$$r = a(1 - e \cos E)$$

IV.
$$\cos E = \frac{\cos v + e}{1 + e \cos v}$$
, sive $\cos v = \frac{\cos E - e}{1 - e \cos E}$

V.
$$\sin \frac{1}{2}E = \sqrt{\frac{1}{2}(1 - \cos E)} = \sin \frac{1}{2}v \cdot \sqrt{\frac{1 - e}{1 + e \cos v}} = \sin \frac{1}{2}v \cdot \sqrt{\frac{r(1 - e)}{p}}$$

= $\sin \frac{1}{2}v \cdot \sqrt{\frac{r}{a(1 + e)}}$

VI.
$$\cos \frac{1}{2}E = \sqrt{\frac{1}{2}(1 + \cos E)} = \cos \frac{1}{2}v \cdot \sqrt{\frac{1+e}{1+e\cos v}} = \cos \frac{1}{2}v \cdot \sqrt{\frac{r(1+e)}{p}}$$

= $\cos \frac{1}{2}v \cdot \sqrt{\frac{r}{a(1-e)}}$

VII.
$$tang \frac{1}{2}E = tang \frac{1}{2}v tang (45^{\circ} - \frac{1}{2}\varphi)$$

VIII.
$$\sin E = \frac{r \sin v \cos \varphi}{p} = \frac{r \sin v}{a \cos \varphi}$$

Digitized by Google

IX.
$$r\cos v \implies a(\cos E - e) = 2a\cos(2E + 2\varphi + 45^\circ)\cos(2E - 2\varphi - 45^\circ)$$

X.
$$\sin \frac{1}{2}(v - E) = \sin \frac{1}{2}\varphi \sin v \cdot \sqrt{\frac{r}{p}} = \sin \frac{1}{2}\varphi \sin E \cdot \sqrt[p]{\frac{a}{r}}$$

XI.
$$\sin \frac{1}{2}(v+E) = \cos \frac{1}{2} \varphi \sin v \cdot \sqrt{\frac{r}{p}} = \cos \frac{1}{2} \varphi \sin E \cdot \sqrt{\frac{a}{r}}$$

XII. $M = E - e \sin E$.

9.

Si perpendiculum e puncto quocunque ellipsis in lineam apsidum demissum retro producitur, usquedum circulo e centro ellipsis radio a descripto occurrat, inclinatio eius radii, qui puncto intersectionis respondet, contra lineam apsidum (simili modo intellecta ut supra pro anomalia vera) anomaliae excentricae aequalis erit, ut nullo negotio ex aequ. IX. art. praec. deducitur. Porro patet, $r \sin v$ esse distantiam cuiusque puncti; ellipsis a linea apsidum; quae quum per aequ. VIII. fiat $\implies a \cos \varphi \sin E$, maxima erit pro $E \implies 90^\circ$, i. e. in centro ellipsis. Haecce distantia maxima, quae fit $\implies a \cos \varphi = \frac{p}{\cos \varphi} \implies \sqrt{ap}$, semiaxis minor appellatur. In foco ellipsis, i. e. pro $v \implies 90^\circ$, distantia ista manifesto fit $\implies p$, sive semiparametro aequalis.

10.

Aequationes art. 8. omnia continent, quae ad computum anomaliae excentricae et mediae e vera, vel excentricae et verae e media requiruntur. Pro deducenda excentrica e vera vulgo formula VII. adhibetur; plerumque tamen praestat ad hunc finem aequ. X. uti, praesertim quoties excentricitas non nimis magna est, in quo casu E per X. maiori praecisione computari potest, quam per VII. Praeterea adhibita aequatione X., logarithmus sinus E, qui in XII. requiritur; protinus per aequationem VIII. habetur, quem adhibita VII. e tabulis arcessere oporteret; si igitur in illa methodo hic logarithmus etiam e tabulis desumitur, simul calculi recte instituti confirmatio hinc obtinetur. Huiusmodi calculi examina et comprobationes magni semper sunt aestimanda, quibus igitur consulere in omnibus methodis in hoc opere tradendis, ubi quidem commode fieri potest, assiduae nobis ubique curae erit. — Ad maiorem illustrationem exemplum complete calculatum adiungimus.

Data sint v = 310°55'29''64, $\varphi = 14°12'1''87$, $\log r = 0.3307640$; quaeruntur p, a, E et M.


```
\log \sin \varphi . . . . . 9,3897262
          \log \cos v . . . . 9,8162877
                               9,2060139 unde e\cos v = 0,1606993
          \log(1 + e\cos v) \dots 0.0647197
          \log r . . . . . . 0,3307640
          \log p \dots \dots 0,3954837
          \log \cos \varphi^{2} \dots 9,9730448
          \log a \dots 0,4224389
          \log \sin v \dots 9,8782740 n^*
          \log \sqrt{\frac{p}{r}} ... 0,0323598.5
                               9.8459141.5 n
          \log \sin \frac{1}{2} \varphi \dots 9,0920395
          \log \sin \frac{1}{2}(v - E). 8,9379536.5n himc \frac{1}{2}(v - E) = -4^{\circ}58'22''94;
               v - E = -9^{\circ}56'45''88; E = 320^{\circ}52'15''52
Porro fit
     loge . . . . . . . . . 9,3897262
                                               Calvilus pro logsin E per formulam VIII.
     log 206264,8 . . . 5,3144251
                                            \log \frac{\tau}{n} \sin v \dots 9,8135543 n
     loge in sec: . . . 4,7041513
                                            \log \cos \varphi . . . . . 9,9865224
                                            \log \sin E . . . . . 9,8000767n
     \log \sin E ... 9.8000767n
                          4,5042278n hinc esta E in secundis \Rightarrow 31932''14
                                                                       == 8°52'12"14
stque M = 329^{\circ}44'27''66. — Per formulam VII. calculus pro E its se haberet:
      4v = 155 27 44 82
                                            log tang 1 v . . . . 9,6594579n
                                            \log \tan \alpha (45^{\circ} - \frac{1}{2} \varphi). 9,8912427
\log \tan g + E \dots 9,5507006n
unde \frac{1}{2}E = 160^{\circ}26'7''76 stque E = 320^{\circ}52'15''52 ut supra.
```

41.

Problems inversum, celebre sub nomine problematis Kupuzzi, scilicet ex anomalia media invenire versus atque radium vectorem, longe frequentioris usus est. Astronomi sequationem centri per seriem infinitam secundum sinus angulorum M, 2.M, 3.M etc. progredientem exhibere solent, quorum sinuum coefficientes singuli

^{*)} Litera 'n logarithimo affixa indicat, mumerum cui respondet negativum esse.

et ipsi sunt series secundum potestates excentricitatis in infinitum excurrentes. Huic formulae pro aequatione centri, quam plures auctores evolverunt, hic immorari eo minus necessarium duximus, quod, nostro quidem iudicio, ad usum practicum, praesertim si excentricitas perparva non fuerit, longe minus idonea est, quam methodus indirecta, quam itaque in ea forma, quae maxime commoda nobis videtur, aliquanto fusius explicabimus.

Aequatio XII., $E = M + e \sin E$, quae ad transcendentium genus referenda est solutionemque per operationes finitas directas non admittit, tentando solvenda est, incipiendo a valore quodam approximato ipsius E, qui per methodos idoneas toties repetitas corrigitur, usque dum illi aequationi exacte satisfaciat, i. e. vel omni quam tabulae sinuum permittunt praecisione, vel ea saltem, quae ad scopum propositum sufficit. Quodsi hae correctiones haud temere sed per normam tutam atque certam instituuntur, vix ullum discrimen essentiale inter methodum talem indirectam atque solutionem per series adest, nisi quod in illa valor primus incognitae aliquatenus est arbitrarius, quod potius pro lucro habendum, quum valor apte electus correctiones insigniter accelerare permittat. Supponamus, e esse valorem approximatum ipsius E, atque x correctionem illi adhuc adiiciendam (in secundis expressam), ita ut valor $E = \varepsilon + x$ aequationi nostrae exacte satisfaciat. Computetur esin e in secundis per logarithmos, quod dum perficitur, simul e tabulis notetur variatio ipsius log sin e pro 1" variatione ipsius e, atque variatio log e sin e pro variatione unius unitatis in numero esine; sint hae variationes sine respectu signorum resp. λ, μ ubi vix opus est monere, utrumque logarithmum per aequae multas figuras decimales expressum supponi. Quodsi iam ϵ ad verum ipsius Evalorem tam prope iam accedit, ut variationes logarithmi sinus ab a usque ad $\varepsilon + x$, variationesque logarithmi numeri ab esin ε usque ad esin $(\varepsilon + x)$ pro uniformibus habere liceat, manifesto statui poterit $e\sin(\varepsilon + x) = e\sin\varepsilon + \frac{\lambda x}{\mu}$, signo superiori pro quadrante primo et quarto, inferiori pro secundo et tertio valente. Quare quum sit $e + x = M + e \sin(\varepsilon + x)$, fit $x = \frac{\mu}{\mu + \lambda} (M + e \sin \varepsilon - \varepsilon)$, valorque verus ipsius E sive $\varepsilon + x = M + e \sin \varepsilon + \frac{\lambda}{\mu + \lambda} (M + e \sin \varepsilon - \varepsilon)$, signis ea qua diximus ratione determinatis. Ceterum facile perspicitur, esse sine respectu signi $\mu:\lambda=1:e\cos\epsilon$, adeoque semper $\mu>\lambda$, unde concluditur, in quadrante primo et ultimo $M + e \sin \epsilon$ iacere inter ϵ atque $\epsilon + x$, in secundo ac tertio vero $\epsilon + x$ inter ϵ atque $M + e \sin \epsilon$, quae regula attentionem ad signa sublevare potest. Si valor suppositus e nimis adhuc a vero aberraverat, quam ut suppositionem supra traditam pro satis exacta habere liceret, certe per hanc methodum invenietur valor multo propior, quo eadem operatio iterum adhuc, pluriesve si opus videtur, repetenda erit. Nullo vero negotio patet, si differentia valoris primi e a vero tamquam quantitas ordinis primi spectetur, errorem valoris novi ad ordinem secundum referendum fore, et per operationem iteratam ad ordinem quartum, octavum etc. deprimi. Quo minor insuper fuerit excentricitas, eo velocius correctiones successivae convergent.

12.

Valor approximatus ipsius E, a quo calculus incipi possit, plerumque satis obvius erit, praesertim ubi problema pro pluribus valoribus ipsius M solvendum est, e quibus quidam iam absoluti sunt. Dificientibus omnibus aliis subsidiis id saltem constat, quod E inter limites M et $M \pm e$ iacere debet (excentricitate e in secundis expressa, signoque superiori in quadrante primo et secundo, inferiori in tertio et quarto accepto); quocirca pro valore initiali ipsius E vel M vel valor secundum aestimationem qualemcunque auctus seu deminutus adoptari poterit. Vix opus est monere, calculum primum, quoties a valore parum accurato inchoetur, anxia praecisione haud indigere, tabulasque minores quales cel. Lalande curavit, abunde sufficere. Praeterea, ut calculi commoditati consulatur, tales semper valores pro e eligentur, quorum sinus e tabulis ipsis absque interpolatione excerpere licet; puta in minutis seu secundorum denariis completis, prout tabulae per singula minuta seu per singulos secundorum denarios progredientes adhibentur. Ceterum modificationes, quas haec praecepta patiuntur, si anguli secundum divisionem novam decimalem exprimantur, quisque sponte evolvere poterit.

13.

Exemplum. Sit excentricitas eadem quae in exemplo art. 10. $M = 332^{\circ}28'54''77$. Hic igitur est $\log e$ in secundis 4,7041513, adeoque $e = 50600'' = 14^{\circ}3'20''$. Quare quum hic E minor esse debeat quam M, statuemus ad calculum primum $e = 326^{\circ}$, unde per tabulas minores fit

log sin ϵ 9,74756 n, mutatio pro 1' 19, unde $\lambda = 0.32$ log e in sec. . . 4,70415

4,45171n

log sine . . . 9,7663058n
$$\lambda = 29,25$$

$$\frac{\log e \dots 4,7041513}{4,4704571 \text{ n}} \mu = 147$$

$$e\sin\epsilon = -29543'',18 = -8^{\circ}12'23''18$$
 $M + e\sin\epsilon \dots 324 16 31,59$

1 4.

Pro derivatione anomaliae verae radiique vectoris ex anomalia excentrica acquationes art. 8. plures methodos suppeditant, e quibus praestantissimas explicabimus.

I. Secundum methodum vulgarem v peracquationem VII., exque tunc r peracquationem II. déterminantur; hoc modo exemplum art. pract. ita se habet, retinendo pro p valorem in art. 10. traditum:

½ E ← 162° 8′ 14″ 75.	loge 9,3897262		
$\log \tan \frac{1}{2} E \dots 9,5082198 n$	$\log \cos v \dots 9,8496597$		
$\log \tan (45^{\circ} - \frac{1}{2} \varphi)$ 9,8912427	9,2393859		
$\log \tan g_1 v \dots g_{6169771 n}$	ecose = 0,1735345		
$\frac{1}{2}v = 157^{\circ}30'41''50$	$\log p \dots \dots 0,3954837$		
v == 315 1 23,00	$\log(1 + e\cos v) \cdot \cdot \cdot 0,0694959$		
	log r 0,3259878		

II. Brevier est methodus sequens, siquidem plures loci calculandi sunt, pro quibus logarithmos constantes quantitatum $\sqrt{a(1+e)}$, $\sqrt{a(1-e)}$ semel tantum computare oportet. Ex aequationibus V. et VI. habetur

$$\sin \frac{1}{4}v \cdot \sqrt{r} \implies \sin \frac{1}{4}E \cdot \sqrt{a(1+e)}$$

$$\cos \frac{1}{4}v \cdot \sqrt{r} \implies \cos \frac{1}{4}E \cdot \sqrt{a(1-e)}$$

unde $\frac{1}{4}v$ atque $\log \sqrt{r}$ expedite determinantur. Generaliter nimirum, quoties habetur $P\sin Q = A$, $P\cos Q = B$, invenitur Q per formulam $\tan Q = \frac{A}{B}$, atque tunc P per hanc $P = \frac{A}{\sin Q}$, vel per $P = \frac{B}{\cos Q}$: priorem adhibere praestat, quando $\sin Q$ est maior quam $\cos Q$; posteriorem, quando $\cos Q$ maior est quam $\sin Q$. Plerumque problemata, in quibus ad tales aequationes pervenitur (qualia in hoc opere frequentissime occurrent), conditionem implicant, quod P esse debet quantitas positiva; tunc dubium, utrum Q inter 0 et 180° an inter 180° et 360° accipere oporteat, sponte hinc tollitur. Si vero talis conditio non adest, hace determinatio arbitrio nostro relinquitur.

In exemple nostro habemus $e \Rightarrow 0,2453162$,

$$\log \sin \frac{1}{2}E \dots 9,4867632 \qquad \log \cos \frac{1}{2}E \dots 9,9785434 \text{ n} \\
 \log \sqrt{a(1-e)} \dots 9,2588593 \qquad \log \sqrt{a(1-e)} \dots 0,1501020$$

Hinc

$$\begin{cases}
 \log \sin \frac{1}{2}v \cdot \sqrt{r} \cdot \dots \cdot 9,7456225 \\
 \log \cos \frac{1}{2}v \cdot \sqrt{r} \cdot \dots \cdot 0,1286454n \\
 \log \cos \frac{1}{2}v \cdot \dots \cdot 9,9656515n \\
 \log \sqrt{r} \cdot \dots \cdot 9,1629939 \\
 \log r \cdot \dots \cdot 0,3259878
 \end{cases}$$
unde $\log \tan \frac{1}{2}v = 9,6169771n$

$$\frac{1}{2}v = 157^{\circ}30'41''50$$

$$v = 315 \quad 123,06$$

III. His methodistertiam adiicimus, quae aeque fere expedita est ac secunda, sed praecisione, si ultima desideretur, isti plerumque praeferenda. Scilicet primo determinatur r per aequationem III., ac dein v per X. Ecce exemplum nostrum hoc modo tractatum:

Ad calculum confirmandum formula VIII.vel XI. percommoda est, praesertim, si v et r per methodum tertiam determinatae sunt. Ecce calculum:

15.

Quum anomalia media M, ut vidimus, per v et φ complete determinata sit, sicuti v per M et φ , si omnes tres quantitates simul ut variabiles spectentur, inter ipsarum variationes differentiales aequationem conditionalem locum habere debere, cuius investigatio haud superflua erit. Differentiando primo aequationem VII. art. 8., prodit $\frac{\mathrm{d}E}{\sin E} = \frac{\mathrm{d}v}{\sin v} - \frac{\mathrm{d}\varphi}{\cos\varphi}$; differentiando perinde aequationem XII., fit $\mathrm{d}M = (1 - e\cos E)\,\mathrm{d}E - \sin E\cos\varphi\,\mathrm{d}\varphi$. Eliminando ex his aequationibus differentialibus $\mathrm{d}E$, obtinemus

$$d M = \frac{\sin E(1 - e \cos E)}{\sin v} dv - \left(\sin E \cos \varphi + \frac{\sin E(1 - e \cos E)}{\cos \varphi}\right) d\varphi$$

sive substituendo pro $\sin E$, $1 - e \cos E$ valores suos ex aequatt. VIII., III.

$$d M = \frac{rr}{a a \cos \varphi} dv - \frac{r(r+p) \sin v}{aa \cos \varphi^2} d\varphi$$

sive denique, exprimendo utrumque coëfficientem per v et φ tantum,

$$dM = \frac{\cos \varphi^{8}}{(1 + e \cos v)^{2}} dv - \frac{(2 + e \cos v) \sin v \cos \varphi^{9}}{(1 + e \cos v)^{8}} d\varphi$$

Vice versa considerando v tamquam functionem quantitatum M, φ , aequatio hancce formam obtinet:

$$\mathrm{d} v = rac{a a \cos \varphi}{r r} \, \mathrm{d} \, M + rac{(2 + e \cos v) \sin v}{\cos \varphi} \, \mathrm{d} \varphi$$

sive introducendo E pro v

$$dv = \frac{aa\cos\varphi}{rr}dM + \frac{aa}{rr}(2 - e\cos E - ee)\sin E d\varphi.$$

16.

Radius vector r per v et φ vel per M et φ plene nondum determinatus est, sed insuper a p vel a pendet; constabit igitur eius differentiale tribus membrus. Per differentiationem aequationis Π . art 8. nanciscimur

$$\frac{\mathrm{d}r}{r} = \frac{\mathrm{d}p}{p} + \frac{e\sin v}{1 + e\cos v} \,\mathrm{d}v - \frac{\cos\varphi\cos v}{1 + e\cos v} \,\mathrm{d}\varphi$$

Statuendo hic $\frac{dp}{p} = \frac{da}{a} - 2 \tan \varphi d\varphi$ (quod sequitur e differentiatione aequ. I.), exprimendoque secundum art. praec. dv per dM et $d\varphi$, prodit post debitas reductiones

$$\frac{\mathrm{d}r}{r} = \frac{\mathrm{d}a}{a} + \frac{a}{r} \tan\varphi \sin v \,\mathrm{d}M - \frac{a}{r} \cos\varphi \cos v \,\mathrm{d}\varphi, \text{ sive}$$

$$\mathrm{d}r = \frac{r}{a} \,\mathrm{d}a + a \tan\varphi \sin v \,\mathrm{d}M - a \cos\varphi \cos v \,\mathrm{d}\varphi$$

Ceterum hae formulae, sicut eae quas in art. praec. evolvimus, suppositioni innituntur, v, φ et M sive potius dv, $d\varphi$, et d M in partibus radii exprimi. Quodsi igitur variationes angulorum v, φ , M in secundis exprimere placet: vel eas formularum partes quae dv, $d\varphi$ aut d M implicant, per 206264,8 dividere oportet, vel eas, quae continent dv, dv aut dv, per eundem numerum multiplicare. Formulae igitur art. praec., quae hoc respectu sunt homogeneae, mutatione opus non habebunt.

17.

De indagatione aequationis centri maximae pauca adiecisse haud poenitebit. Primo sponte obvium est, differentiam inter anomaliam excentricam et mediam maximum esse pro $E=90^{\circ}$, ubi fit =e (in gradibus etc. exprimenda); radius vector in hoc puncto est =a, unde $v=90^{\circ}+\varphi$, adeoque aequatio centri tota $=\varphi+e$, quae tamen hic non est maximum, quoniam differentia inter v et E adhuc ultra φ crescere potest. Haecce differentia fit maximum pro d(v-E)=0 sive pro dv=dE, ubi excentricitas manifesto ut constans spectanda est. Qua suppositione quum generaliter fiat $\frac{dv}{\sin v}=\frac{dE}{\sin E}$, patet, in eo puncto ubi differentia inter v et E maximum est, esse debere $\sin v=\sin E$; unde erit, per aequatt. VIII. III., $r=a\cos\varphi$, $e\cos E=1-\cos\varphi$, sive $\cos E=+\tan \frac{1}{2}\varphi$. Perinde invenitur $\cos v=-\tan \frac{1}{2}\varphi$, quapropter erit*) $v=90^{\circ}+\arctan \frac{1}{\cos \frac{1}{2}\varphi}$, ita ut aequatio centri tota in hoc puncto fiat $=2\arcsin\tan \frac{1}{2}\varphi+2\sin \frac{1}{2}\varphi$. $\sqrt[4]{\cos\varphi}$, parte

^{*)} Ad ea maxima, quae inter aphelium et perihelium iacent, non opus est respicere, quum manifesto ab iis, quae inter perihelium et aphelium sita sunt, in signis tantum differant.

G. TH. M.

4

secunda in gradibus etc. expressa. — In eo denique puncto, ubi tota aequatio centri ipsa maximum est, fieri debet dv = dM, adeoque secundum art. 15, $r = a\sqrt{\cos\varphi}$; hinc fit $\cos v = -\frac{1-\cos\varphi^4}{e}$, $\cos E = \frac{1-\sqrt{\cos\varphi}}{e} = \frac{1-\cos\varphi}{e(1+\sqrt{\cos\varphi})} = \frac{\tan \frac{1}{2}\varphi}{1+\sqrt{\cos\varphi}}$, per quam formulam E ultima praecisione determinare licet. Inventa E, erit per aequ. X., XII., aequatio centri = $2 \arcsin \frac{\sin \frac{1}{2}\varphi \sin E}{\sqrt[3]{\cos\varphi}} + e \sin E$. Expressioni aequationis centri maximae per seriem secundum potestates excentricitatis progredientem, quam plures auctores tradiderunt, hic non immoramur. Ut exemplum habeatur, conspectum trium maximorum, quae hic contemplati sumus, pro Iunone adiungimus, ubi excentricitas secundum elementa novissima = 0.2554996 supposita est.

Maximum	$\boldsymbol{\mathit{E}}$	E-M	$v -\!\!\!\!-\!\!\!\!\!- E$	v-M
E-M	90° 0′ 0″	14°38′ 20″57	14° 48′ 11″ 48	29°26′32″05
v-E	82 32 9	14 30 54,01	14 55 41,79	29 26 35,80
v-M	86 14 40	14 36 27,39	14 53 49,57	29 30 16,96

18.

In PARABOLA anomalia excentrica, anomalia media atque motus medius fierent = 0; hic igitur istae notiones comparationi motus cum tempore inservire nequeunt. Attamen in parabola angulo auxiliari ad integrandum rrdv omnino opus non habemus; fit enim $rrdv = \frac{ppd\,r}{4\cos\frac{1}{4}v^2} = \frac{ppd\,tang\,\frac{1}{4}v}{2\cos\frac{1}{4}v^2} = \frac{1}{2\cos\frac{1}{4}v^2} + \frac{1}{4}\tan g\,\frac{1}{4}v^2$) d tang $\frac{1}{4}v$, adeoque $\int rrdv = \frac{1}{4}pp(\tan g\,\frac{1}{4}v + \frac{1}{4}\tan g\,\frac{1}{4}v^3) + Const.$ Si tempus a transitu per perihelium incipere supponitur, Constans fit = 0; habetur itaque

$$\tan q \cdot v + \frac{1}{2} \tan q \cdot v^2 = \frac{2tk\sqrt{(1+\mu)}}{p^{\frac{3}{2}}}$$

per quam formulam t ex v, atque v ex t derivare licet, simulac p et μ sunt cognitae. Pro p inter elementa parabolica radius vector in perihelio qui est $\frac{1}{2}p$ exhiberi, massaque μ omnino negligi solet. Vix certe umquam possibile erit, massam corporis talis cuius orbita tamquam parabola computatur, determinare, reveraque omnes cometae per optimas recentissimasque observationes densitatem atque massam tam exiguam habere videntur, ut haec insensibilis censeri tutoque negligi possit.

19.

Solutio problematis, ex anomalia vera deducere tempus, multoque adhuc magis solutio problematis inversi, magnopere abbreviari potest per tabulam auxiliarem, qualis in pluribus libris astronomicis reperitur. Longe vero commodissima est tabula Barkeriana, quae etiam operi egregio cel. Olbers (Abhandlung über die leichteste und bequemste Methode, die Bakn eines Cometen zu berechnen, Weimar 1797) annexa est. Continet ea pro omnibus anomaliis veris a 0 usque ad 180° per singula 5 minuta valorem expressionis 75 tang v + 25 ta medii. Si itaque tempus desideratur anomaliae verae v respondens, dividere oportebit motum medium e tabula argumento v excerptum per $\frac{150 k}{p^{\frac{1}{2}}}$, quae quantitas motus medius diurnus dicitur; contra si e tempore anomalia vera computanda est, illud in diebus expressum per $\frac{150 k}{p^2}$ multiplicabitur, ut motus medius prodeat, quo anomaliam respondentem e tabula sumere licebit. Ceterum manifesto valori negativo ipsius v motus medius tempusque idem sed negative sumtum respondet: eadem igitur tabula anomaliis negativis et positivis perinde inservit. Si pro p distantia in perihelio $\frac{1}{2}p = q$ uti malumus, motus medius diurnus exprimitur per $\frac{k\sqrt{2812.5}}{q!}$, ubi factor constans $k\sqrt{2812.5}$ fit = 0.912279061, ipsiusque logarithmus 9,9601277069. — Inventa anomalia v radius vector determinabitur per formulam iam supra traditam $r = \frac{q}{\cos 4 r^2}$.

20.

Per differentiationem aequationis $\tan \frac{1}{2}v + \frac{1}{4}\tan \frac{1}{2}v^2 = 2tkp^{-\frac{1}{2}}$, si omnes quantitates v, t, p ceu variabiles tractantur, prodit

$$\frac{dv}{2\cos\frac{1}{2}v^{4}} = 2k p^{-\frac{3}{2}}dt - 3tk p^{-\frac{1}{2}}dp, \text{ sive}$$

$$dv = \frac{k\sqrt{p}}{rr} dt - \frac{3tk}{2rr\sqrt{p}} dp$$

Si variationes anomaliae v in secundis expressae desiderantur, etiam ambae partes ipsius dv hoc modo exprimendae sunt, i. e. pro k valorem in art. 6. traditum 3548"188 accipere oportet. Quodsi insuper pro p introducatur $\frac{1}{2}p = q$, formula ita se habebit

$$dv = \frac{k\sqrt{2}q}{rr} dt - \frac{3kt}{rr\sqrt{2}q} dq$$

4*

ubi logarithmi constantes adhibendi sunt $\log k\sqrt{2} = 3,7005215724$, $\log 3 k\sqrt{4} = 3,8766128315$.

Porro differentiatio aequationis $r = \frac{p}{2\cos{\frac{1}{2}v^2}}$ suppeditat

$$\frac{\mathrm{d}r}{r} = \frac{\mathrm{d}p}{p} + \tan q + v \, \mathrm{d}v$$
, sive exprimendo $\mathrm{d}v$ per $\mathrm{d}t$ et $\mathrm{d}p$

$$\frac{\mathrm{d}r}{r} = \left(\frac{1}{p} - \frac{3kt \tan \frac{1}{2}v}{2rr\sqrt{p}}\right) \mathrm{d}p + \frac{k\sqrt{p} \cdot \tan \frac{1}{2}v}{rr} \mathrm{d}t$$

Coefficiens ipsius dp, substituendo pro t valorem suum per v transit in

$$\frac{1}{p} - \frac{3p \tan(\frac{1}{2}v^2)}{4rr} - \frac{p \tan(\frac{1}{2}v^4)}{4rr} = \frac{1}{r} (\frac{1}{2} + \frac{1}{2} \tan(\frac{1}{2}v^2) - \frac{3}{2} \sin(\frac{1}{2}v^2) - \frac{1}{2} \sin(\frac{1}{2}v^2) + \frac{\cos v}{2r}) = \frac{\cos v}{2r}$$

coefficients ipsius dt autemfit = $\frac{k \sin r}{r \sqrt{p}}$. Hinc prodit $dr = \frac{k \sin v}{r \sqrt{p}} dt$, sive introducendo q pro p,

$$dr = \cos v \, dq + \frac{k \sin v}{\sqrt{2} \, q} \, dt$$

Logarithmus constans hic adhibendus est $\log k\sqrt{\frac{1}{4}} = 8,0850664436$.

21.

In HYPERBOLA φ atque E quantitates imaginariae fierent, quales si aversamur, illarum loco aliae quantitates auxiliares sunt introducendae. Angulum cuius cosinus $=\frac{1}{e}$ iam supra per ψ designavimus, radiumque vectorem $=\frac{p}{2e\cos\frac{1}{2}(v-\psi)\cos\frac{1}{2}(v+\psi)}$ invenimus. Factores in denominatore huius fractionis, $\cos\frac{1}{2}(v-\psi)$ et $\cos\frac{1}{2}(v+\psi)$; aequales fiunt pro v=0, secundus evanescit pro valore maximo positivo ipsius v, primus vero pro valore maximo negativo. Statuendo igitur $\frac{\cos\frac{1}{2}(v-\psi)}{\cos\frac{1}{2}(v+\psi)}=u$, erit u=1 in perihelio; crescet in infinitum, dum v ad limitem suum $180^{\circ}-\psi$ appropinquat; contra decrescet in infinitum, dum v ad limitem alterum $-(180^{\circ}-\psi)$ regredi supponitur: quod fiet ita, ut valoribus oppositis ipsius v valores reciproci ipsius u, vel quod idem est valores tales quorum logarithmi oppositi sunt, respondeant.

Hic quotiens u percommode in hyperbola ut quantitas auxiliaris adhibetur; aequali fere concinnitate istius vice fungi potest angulus cuius tangens = $\tan \frac{1}{2}v \cdot \sqrt{\frac{e-1}{e+1}}$, quem ut analogiam cum ellipsi sequamur, per $\frac{1}{2}F$ denotabimus. Hoc modo facile sequentes relationes inter quantitates v, r, u, F colliguntur, ubi a = -b statuimus, ita ut b evadat quantitas positiva.

I.
$$b = p \cot ang \psi^2$$

II.
$$r = \frac{p}{1 + e \cos v} = \frac{p \cos \psi}{2 \cos \frac{1}{2} (v - \psi) \cos \frac{1}{2} (v + \psi)}$$

III.
$$\tan \frac{1}{2}F = \tan \frac{1}{2}v \cdot \sqrt{\frac{e-1}{e+1}} = \tan \frac{1}{2}v \tan \frac{1}{2}\psi = \frac{u-1}{u+1}$$

IV.
$$u = \frac{\cos \frac{1}{2}(v-\psi)}{\cos \frac{1}{2}(v+\psi)} = \frac{1+\tan g \frac{1}{2}F}{1-\tan g \frac{1}{2}F} = \tan g (45^{\circ} + \frac{1}{2}F)$$

V.
$$\frac{1}{\cos F} = \frac{1}{2} \left(u + \frac{1}{u} \right) = \frac{1 + \cos \psi \cos v}{2 \cos \frac{1}{2} (v - \psi) \cos \frac{1}{2} (v + \psi)} = \frac{e + \cos v}{1 + e \cos v}$$

Subtrahendo ab aequ. V. utrimque 1, prodit

VI.
$$\sin \frac{1}{2} v \cdot \sqrt{r} = \sin \frac{1}{2} F \cdot \sqrt{\frac{p}{(e-1)\cos F}} = \sin \frac{1}{2} F \cdot \sqrt{\frac{(e+1)b}{\cos F}}$$

 $= \frac{1}{2} (u-1) \sqrt{\frac{p}{(e-1)u}} = \frac{1}{2} (u-1) \sqrt{\frac{(e+1)b}{u}}$

Simili modo addendo utrimque 1 fit

VII.
$$\cos \frac{1}{2}v \cdot \sqrt{r} = \cos \frac{1}{2}F \cdot \sqrt{\frac{p}{(e+1)\cos F}} = \cos \frac{1}{2}F \cdot \sqrt{\frac{(e-1)b}{\cos F}}$$

= $\frac{1}{2}(u+1)\sqrt{\frac{p}{(e+1)u}} = \frac{1}{2}(u+1)\sqrt{\frac{(e-1)b}{u}}$

Dividendo VI. per VII. ad III. reveniremus; multiplicatio producit

VIII.
$$r \sin v = p \cot \log \psi \tan F = b \tan \psi \tan F$$

= $\frac{1}{2} p \cot \log \psi \cdot \left(u - \frac{1}{u}\right) = \frac{1}{2} b \tan \psi \cdot \left(u - \frac{1}{u}\right)$

E combinatione aequatt. II. V. porro facile deducitur

IX.
$$r \cos v = b \left(e - \frac{1}{\cos F} \right) = \frac{1}{2} b \left(2 e - u - \frac{1}{u} \right)$$

X.
$$r = b\left(\frac{e}{\cos F} - 1\right) = \frac{1}{2}b\left(e\left(u + \frac{1}{u}\right) - 2\right)$$

22.

Per differentiationem formulae IV. prodit (spectando ψ ut quantitatem constantem) $\frac{\mathrm{d} u}{u} = \frac{1}{2} (\tan \frac{1}{2} (v + \psi) - \tan \frac{1}{2} (v - \psi)) \, \mathrm{d} v = \frac{r \tan \psi}{p} \, \mathrm{d} v;$ hinc

$$rr dv = \frac{pr}{u \tan g \psi} du$$
, sive substituendo pro r valorem ex X .,
$$rr dv = b b \tan g \psi \cdot \left(\frac{1}{2} e \left(1 + \frac{1}{u u}\right) - \frac{1}{u}\right) du$$

Integrando deinde ita, ut integrale in perihelio evanescat, fit

$$\int r r \, \mathrm{d} v = b \, b \, \tan \varphi \cdot \left(\frac{1}{4} \, e \left(u - \frac{1}{u} \right) - \log u \right) = k \, t \, \sqrt{p} \cdot \sqrt{1 + u} = k \, t \, \tan \varphi \cdot \sqrt{b} \cdot \sqrt{1 + u}$$

Logarithmus hic est hyperbolicus; quodsi logarithmos e systemate Briggico vel generaliter e systemate cuius modulus $\rightleftharpoons \lambda$ adhibere placet, massaque μ (quam pro corpore in hyperbola incedente haud determinabilem esse supponere possumus) negligitur, aequatio hancee formam induit:

XI.
$$\frac{1}{2}\lambda e^{\frac{uu-1}{u}} - \log u = \frac{\lambda k t}{h^{\frac{1}{4}}}$$

sive introducendo F

$$\lambda e \tan F - \log \tan (45^{\circ} + \frac{1}{4}F) = \frac{\lambda k t}{b!}$$

Si logarithmus Briggicos adhiberi supponimus, habemus $\log \lambda = 9,6377843113$, $\log \lambda k = 7,8733657527$, sed praecisionem aliquantulum maiorem attingere licet, si logarithmi hyperbolici immediate applicantur. Tangentium logarithmi hyperbolici in pluribus tabularum collectionibus reperiuntur, e. g. in iis quas Schulze curavit, maiorique adhuc extensioni in Beni. Ursini Magno Canone Triangulorum logarithmico, Colon. 1624, ubi persingula 10" progrediuntur. — Ceterum formula XI. ostendit, valoribus reciprocis ipsius u, sive valoribus oppositis ipsius u respondere valores oppositos ipsius u, quapropter partes hyperbolae aequales a perihelioque utrimque aequidistantes temporibus aequalibus describentur.

23.

Si pro inveniendo tempore ex anomalia vera quantitate auxiliari u uti placuerit, huius valor commodissime per aequ. IV. determinatur; formula dein II. absque novo calculo statim dat p per r, vel r per p. Inventa u formula XI. dabit quantitatem $\frac{\lambda k t}{b^t}$, quae analoga est anomaliae mediae in ellipsi et per N denotabitur, unde demanabit tempus post transitum per perihelium elapsum. Quum pars prior ipsius N puta $\frac{\lambda e (u u - 1)}{2u}$ per formulam VIII. flat $\frac{\lambda r \sin v}{b \sin \psi}$, calculus duplex huius quantitatis ipsius praecisioni examinandae inservire, aut si mavis, N absque u ita exhiberi potest

XII.
$$N = \frac{\lambda \tan \varphi \sin v}{2 \cos \frac{1}{2} (v + \psi) \cos \frac{1}{2} (v - \psi)} - \log \frac{\cos \frac{1}{2} (v - \psi)}{\cos \frac{1}{2} (v + \psi)}$$

Exemplum. Sit e = 1,2618821 sive $\phi = 37^{\circ}35'0''$, $v = 18^{\circ}51'0''$, $\log r = 0,0333585$. Tum calculus pro u, p, b, N, t ita se habet:

$\log \cos \frac{1}{2} (v -$	$-\psi$) 9,9941706	1. 1	
$\log \cos \frac{1}{2} (v +$	$-\psi$) 9,9450577	hinc $\log u$	0,0491129
	0,0333585	\boldsymbol{u}	= 1,1197289
-	0,4020488	uu	= 1,2537928
$\log p \dots$	0,3746356		
log cotang ψ²	0,2274244		
$\log b \ldots$	0,6020600	Calcul	lus alter
$\log \frac{r}{b} \dots$	9,4312985	$\log(uu-1)$	9,4044793
$\log \sin v$	9,5093258		9,9508871
logλ	9,6377843	logλ	9,6377843
Compl. log si	inψ0,2147309	$\log \frac{1}{2}e$	9,7999888
	8,7931395		8,7931395
Pars prima ip	sins N = 0,0621069		
$\log u$	= 0,0491129		
N	= 0,0129940	$\log N$	8,1137429
$\log \lambda k \ldots$	7,8733658	D:00	0.00000000
	0,9030900	Dinerentia	6,9702758
-	,	$\log t$	1,1434671
		t =	13,91448

24.

Si calculum per logarithmos hyperbolicos exsequi constitutum est, quantitate auxiliari F uti praestat, quae per aequ. III. determinabitur, atque inde N per XI.; semiparameter e radio vectore, vel vicissim hic ex illo per formulam VIII. computabitur; pars secunda ipsius N duplici si lubet modo erui potest, scil. per formulam log hyp tang $(45^{\circ}+\frac{1}{4}F)$, et per hanc log hyp $\cos\frac{1}{4}(v-\psi)$ — log hyp $\cos\frac{1}{4}(v+\psi)$. Ceterum patet, quantitatem N hic ubi $\lambda=1$ in ratione $1:\lambda$ maiorem evadere, quam si logarithmi Briggici adhibeantur. Ecce exemplum nostrum hoc modo tractatum:

$\log \tan \theta \psi$ 9,5318179	
$\log \tan \frac{1}{2}v \dots 9,2201009$	
$\frac{\log \tan \frac{1}{2}F \dots 8,7519188}{}$	$\frac{1}{2}F = 3^{\circ}13^{'}58^{''}12$
loge 0,1010188	
$\log \tan g F$ 9,0543366	
9,1553554	C. $\log \text{hyp} \cos \frac{1}{2} (v - \psi) = 0.01342266$
$e \tan F = 0.14300638$	C. $\log \text{hyp} \cos \frac{1}{2}(v+\phi) = 0,12650930$
$\log \text{hyptang}(45^{\circ} + \frac{1}{4}F) = 0,11308666$	Differentia = 0,11308664
N = 0,02991972	$\log N \dots \dots 8,4759575$
$\log k$ 8,2355814 $\frac{1}{2} \log b$ 0,9030900	Differentia 7,3324914
21080	$\log t \dots $
	t = 13,91445

25.

Ad solutionem problematis inversi, e tempore anomaliam veram radiumque vectorem determinare, primo ex $N = \lambda k b^{-\frac{1}{2}}t$ per aequationem XI. elicienda est quantitas auxiliaris u vel F. Solutio huius aequationis transscendentis tentando perficienda erit, et per artificia iis quae in art. 11. exposuimus analoga abbreviari poterit. Haec autem fusius explicare supersedemus: neque enim operae pretium esse videtur, praecepta pro motu hyperbolico in coelis vix umquam fortasse se oblaturo aeque anxie expolire ac pro motu elliptico, praetereaque omnes casus qui forte occurrere possent per methodum aliam infra tradendam absolvere licebit. Postquam F vel u inventa erit, v inde per formulam III., ac dein r vel per II. vel per VIII. determinabitur; commodius adhuc per formulas VI. et VII. v et r simul eruentur; e formulis reliquis una alterave pro confirmatione calculi, si lubet, in usum vocari poterit.

26.

Exemplum. Manentibus e et b ut in exemplo praecedente, sit t = 65,41236: quaeruntur v et r. Utendo logarithmis Briscicis habemus

 $\frac{\log t \dots 1,8156598}{\log \lambda k b^{-\frac{1}{2}} \dots 6,9702758}$ $\frac{\log N \dots 8,7859356}{\log N \dots 9,06108514}$

Hinc aequationi $N = \lambda e \tan F - \log \tan (45^{\circ} + \frac{1}{4}F)$ satisfieri invenitur per $F = 25^{\circ} 24' 27'' 66$, unde fit per formulam III.

$$\frac{\log \tan \frac{1}{2}F \dots 9,3530120}{\log \tan \frac{1}{2}\psi \dots 9,5318179}$$
$$\log \tan \frac{1}{2}v \dots 9,8211941 \text{ adeoque } \frac{1}{2}v = 33°31'29''89 \text{ atque } v = 67°2'59''78.$$

Hinc porro habetur

C.
$$\log \cos \frac{1}{2} (v + \psi)$$
. 0,2137476
C. $\log \cos \frac{1}{2} (v - \psi)$. 0,0145197
 $\log \frac{p}{2e}$ 9,9725868
 $\log r$ 0,2008541

27.

Si aequatio IV. ita differentiatur, ut u, v, ϕ simul ut variabiles tractentur, prodit

$$\frac{\mathrm{d}u}{u} = \frac{\sin\psi\,\mathrm{d}v + \sin v\,\mathrm{d}\psi}{2\cos\frac{1}{2}(v-\psi)\cos\frac{1}{2}(v+\psi)} = \frac{r\tan\psi}{p}\,\mathrm{d}v + \frac{r\sin v}{p\cos\psi}\,\mathrm{d}\psi$$

Differentiando perinde aequationem XI., inter variationes differentiales quantitatum u, ψ, N emergit relatio

$$\frac{\mathrm{d}N}{\lambda} = \left(\frac{1}{2}e\left(1 + \frac{1}{uu}\right) - \frac{1}{u}\right)\mathrm{d}u + \frac{(uu - 1)\sin\psi}{2u\cos\psi^2}\mathrm{d}\psi, \text{ sive}$$

$$\frac{\mathrm{d}N}{\lambda} = \frac{r}{bu}\mathrm{d}u + \frac{r\sin v}{b\cos\psi}\mathrm{d}\psi$$

Hinc eliminando du adiumento aequationis praecedentis obtinemus

$$\frac{\mathrm{d}N}{\lambda} = \frac{rr}{bb\tan \psi} \mathrm{d}v + \left(1 + \frac{r}{p}\right) \frac{r\sin v}{b\cos \psi} \mathrm{d}\psi, \text{ sive}$$

$$\mathrm{d}v = \frac{bb\tan \psi}{\lambda rr} \mathrm{d}N - \left(\frac{b}{r} + \frac{b}{p}\right) \frac{\sin v \tan \psi}{\cos \psi} \mathrm{d}\psi$$

$$= \frac{bb\tan \psi}{\lambda rr} \mathrm{d}N - \left(1 + \frac{p}{r}\right) \frac{\sin v}{\sin \psi} \mathrm{d}\psi$$

28.

Differentiando aequationem X., omnibus r, b, e, u pro variabilibus habitis, g. Th. M.

substituendo d $e = \frac{\sin \phi}{\cos \phi^3} d\phi$, eliminandoque du adiumento aequationis inter dN, d ψ in art. praec. traditae, prodit

$$dr = \frac{r}{b}db + \frac{bbe(uu-1)}{2\lambda ur}dN + \frac{b}{2\cos\psi^2}\left\{\left(u + \frac{1}{u}\right)\sin\psi - \left(u - \frac{1}{u}\right)\sin\nu\right\}d\psi$$

Coefficiens ipsius dN per aequ. VIII. transit in $\frac{b \sin v}{\lambda \sin \psi}$; coefficiens ipsius d ψ autem, substituendo per aequ. IV., $u(\sin \psi - \sin v) = \sin (\psi - v)$, $\frac{1}{u}(\sin \psi + \sin v) = \sin (\psi + v)$, mutatur in $\frac{b \sin \psi \cos v}{\cos \psi^2} = \frac{p \cos v}{\sin \psi}$, ita ut habeatur

$$dr = \frac{r}{b} db + \frac{b \sin v}{\lambda \sin \psi} dN + \frac{p \cos v}{\sin \psi} d\psi$$

Quatenus porro N ut functio ipsarum b et t spectatur, fit $dN = \frac{N}{t} dt - \frac{1}{2} \cdot \frac{N}{b} db$, quo valore substituto, dr, ac perinde in art. praec. dv, per dt, db, $d\psi$ expressae habebuntur. Ceterum quod supra monuimus etiam hic repetendum est, scilicet si angulorum v et ψ variationes non in partibus radii sed in secundis expressae concipiantur, vel omnes terminos qui dv, $d\psi$ continent per 206264,8 dividi, vel omnes reliquos per hunc numerum multiplicari debere.

29.

Quum quantitates auxiliares in ellipsi adhibitae φ , E, M, in hyperbola valores imaginarios obtineant, haud abs re erit, horum nexum cum quantitatibus realibus, quibus hic usi sumus, investigare: apponimus itaque relationes praecipuas, ubi quantitatem imaginarium $\sqrt{-1}$ per i denotamus.

$$\sin \varphi = e = \frac{1}{\cos \psi}$$

$$\tan (45^{\circ} - \frac{1}{2}\varphi) = \sqrt{\frac{1-e}{1+e}} = i\sqrt{\frac{e-1}{e+1}} = i\tan \frac{1}{2}\psi$$

$$\tan \varphi = \frac{1}{4}\cot (45^{\circ} - \frac{1}{2}\varphi) - \frac{1}{2}\tan (45^{\circ} - \frac{1}{2}\varphi) = -\frac{i}{\sin \psi}$$

$$\cos \varphi = i\tan \varphi$$

$$\varphi = 90^{\circ} + i\log(\sin \varphi + i\cos \varphi) = 90^{\circ} - i\log\tan(45^{\circ} + \frac{1}{2}\psi)$$

$$\tan \varphi = \frac{1}{4}E = i\tan \varphi = \frac{i(u-1)}{u+1}$$

$$\frac{1}{\sin E} = \frac{1}{4}\cot \varphi = \frac{1}{4}E = -i\cot \varphi = \frac{1}{4}E = -i\cot \varphi$$

$$\sin E = i\tan \varphi = \frac{i(u-1)}{2u}$$

$$\cot \varphi = \frac{1}{4}\cot \varphi = \frac{1}{4}\cot \varphi = \frac{1}{4}E = -\frac{i}{\sin \varphi}$$

$$\cot \varphi = \frac{1}{4}\cot \varphi = \frac{1}{4}\cot \varphi = \frac{1}{4}E = -\frac{i}{\sin \varphi}$$

$$\cot \varphi = \frac{1}{4}\cot \varphi = \frac{1}{4}\cot \varphi = \frac{1}{4}E = -\frac{i}{\sin \varphi}$$

$$\cot \varphi = \frac{1}{4}\cot \varphi = \frac{1}{4}\cot \varphi = \frac{1}{4}E = -\frac{i}{\sin \varphi}$$

$$\cot \varphi = \frac{1}{4}\cot \varphi = \frac{1}{4}\cot \varphi = \frac{1}{4}E = -\frac{i}{4}\cot \varphi = -\frac{i}{4}E = -\frac{i}{$$

$$\cos E = \frac{1}{\cos F} = \frac{uu+1}{2u}$$

$$iE = \log(\cos E + i\sin E) = \log \frac{1}{u} \text{ sive}$$

$$E = i\log u = i\log \tan(45^\circ + \frac{1}{2}F)$$

$$M = E - e\sin E = i\log u - \frac{ie(uu-1)}{2u} = -\frac{iN}{\lambda}$$

Logarithmi in his formulis sunt hyperbolici.

30.

Quum omnes quos e tabulis logarithmicis et trigonometricis depromimus numeri praecisionem absolutam non admittant, sed ad certum tantummodo gradum sint approximati, ex omnibus calculis illarum adiumento perfectis proxime tantum vera resultare possunt. In plerisque quidem casibus tabulae vulgares ad septimam figuram decimalem usque exactae, i. e. ultra dimidiam unitatem in figura septima excessu seu defectu numquam aberrantes a vero, praecisionem plus quam sufficientem suppeditant, ita ut errores inevitabiles nullius plane sint momenti: nihilominus utique fieri potest, ut errores tabularum in casibus specialibus effectum suum exserant augmentatione tanta, ut methodum alias optimam plane abdicare aliamque ei substituere cogamur. Huinsmodi casus in iis quoque calculis, quos hactenus explicavimus, occurrere potest; quamobrem ab instituto nostro haud alienum erit, disquisitiones quasdam circa gradum praecisionis, quam tabulae vulgares in illis permittunt, hic instituere. Esti vero ad hoc argumentum calculatori practico gravissimum exhauriendum hic non sit locus, investigationem eo perducemus, ut ad propositum nostrum sufficiat, et a quolibet, cuius interest, ulterius expoliri et ad quasvis alias operationes extendi possit.

31

Quilibet logarithmus, sinus, tangens etc. (aut generaliter quaelibet quantitas irrationalis e tabulis excerpta) errori obnoxius est, qui ad dimidiam unitatem in figura ultima ascendere potest: designabimus hunc erroris limitem per ω , qui itaque in tabulis vulgaribus fit = 0,00000005. Quodsi logarithmus etc. e tabulis immediate desumi non potuit, sed per interpolationem erui debuit, error duplici caussa aliquantulum adhuc maior esse potest. *Primo* enim pro parte proportionali, quoties (figuram ultimam tamquam unitatem spectando) non est integer, adoptari solet integer proxime maior vel minor: hac ratione errorem tantum non usque ad

duplum augeri posse facile perspicitur. Ad hanc vero erroris augmentationem omnino hic non respicimus, quum nihil obstet, quominus unam alteramve figuram decimalem parti illi proportionali affigamus, nulloque negotio pateat, logarithmum interpolatum, si pars proportionalis absolute exacta esset, errori maiori obnoxium non esse quam logarithmos in tabulis immediate expressos, quatenus quidem horum variationes tamquam uniformes considerare liceat. Erroris augmentatio altera inde nascitur, quod suppositio ista omni rigore non est vera: sed hanc quoque negligimus, quoniam effectus differentiarum secundarum altiorumque in omnibus propemodum casibus nullius plane momenti est (praesertim si pro quantitatibus trigonometricis tabulae excellentissimae quas Taylor curavit adhibentur), facilique negotio ipsius ratio haberi possit, ubi forte paullo maior evaderet. Statuemus itaque pro omnibus casibus tabularum errorem maximum inevitabilem = ω, siquidem argumentum (i. e. numerus cuius logarithmus, seu angulus cuius sinus etc. quaeritur) praecisione absoluta habetur. Si vero argumentum ipsum proxime tantum innotuit, errorique maximo, cui obnoxium esse potest, respondere supponitur logarithmi etc. variatio ω' (quam per rationem differentialium definire licet), error maximus logarithmi per tabulas computati usque ad $\omega + \omega'$ ascendere potest.

Vice versa, si adiumento tabularum argumentum logarithmo dato respondens computatur, error maximus ei eius variationi aequalis est, quae respondet variationi ω in logarithmo, si hic exacte datur, vel quae respondet variationi logarithmi $\omega + \omega'$, si logarithmus ipse usque ad ω' erroneus esse potest. Vix opus erit monere, ω et ω' eodem signo affici debere.

Si plures quantitates intra certos tantum limites exactae adduntur, aggregati error maximus aequalis erit aggregato singulorum errorum maximorum, iisdem signis affectorum; quare etiam in subtractione quantitatum proxime exactarum differentiae error maximus summae errorum singulorum maximorum aequalis erit. In multiplicatione vel divisione quantitatis non absolute exactae error maximus in eadem ratione augetur vel diminuitur ut quantitas ipsa.

32.

Progredimur iam ad applicationem horum principiorum ad utilissimas operationum supra explicatarum.

I. Adhibendo ad computum anomaliae verae ex anomalia excentrica in motu elliptico form. VII. art. 8., si φ et E exacte haberi supponentur, in $\log \tan g(45^\circ - \frac{1}{2}\varphi)$

et log tang $\frac{1}{2}E$ committi potest error ω , adeoque in differentia = $\log \tan \frac{1}{2}v$ error 2ω ; error maximus itaque in determinatione anguli $\frac{1}{2}v$ erit $\frac{3\omega d \frac{1}{2}v}{d \log \tan \frac{1}{2}v} = \frac{3\omega \sin v}{2\lambda}$, designante λ modulum logarithmorum ad hunc calculum adhibitorum. Error itaque, cui anomalia vera v obnoxia est, in secundis expressus fit = $\frac{3\omega \sin v}{\lambda} 206265''$ = $0''0712 \sin v$, si logarithmi Bruccici ad septem figuras decimales adhibentur, ita ut semper intra 0''07 de valore ipsius v certi esse possimus: si tabulae minores ad quinque tantum figuras adhibentur, error usque ad 7''12 ascendere posset.

II. Si $e\cos E$ adiumento logarithmorum computatur, error committi potest usque ad $\frac{3\,\varpi\,e\,\cos\,E}{\lambda}$; eidem itaque errori obnoxia erit quantitas $1-e\cos E$ sive $\frac{r}{a}$. In computando ergo logarithmo huius quantitatis error usque ad $(1+\delta)\omega$ ascendere potest, designando per δ quantitatem $\frac{3\,e\,\cos\,E}{1-e\,\cos\,E}$ positive sumtam: ad eundem limitem $(1+\delta)\omega$ ascendit error in $\log r$ possibilis, siquidem $\log a$ exacte datus supponitur. Quoties excentricitas parva est, quantitas δ arctis semper limitibus coërcetur: quando vero e parum differt ab 1, $1-e\cos E$ perparva manet, quamdin E parva est; tunc igitur δ ad magnitudinem haud contemnendam increscere potest, quocirca in hoc casu formula III. art. 8. minus idonea esset. Quantitas δ ita etiam exprimi potest $\frac{3\,(a-r)}{r} = \frac{3\,e\,(\cos v + e)}{1-e\,e}$, quae formula adhuc clarius ostendit, quando errorem $(1+\delta)\omega$ contemnere liceat.

III. Adhibendo formulam X. art. 8. ad computum anomaliae verae ex excentrica, $\log \sqrt{\frac{a}{r}}$ obnoxius erit errori $(\frac{1}{2}+\frac{1}{4}\delta)\omega$, adeoque $\log \sin \frac{1}{4}\varphi \sin E\sqrt{\frac{a}{r}}$ huic $(\frac{1}{4}+\frac{1}{4}\delta)\omega$; hinc error maximus in determinatione anguli r-E vel v possibilis eruitur $=\frac{\omega}{\lambda}(7+\delta)\tan \frac{1}{4}(v-E)$, sive in secundis expressus, si septem figurae decimales adhibentur, $=(0^n166+0^n024\delta)\tan \frac{1}{4}(v-E)$. Quoties excentricitas modica est, δ et $\tan \frac{1}{4}(v-E)$ quantitates parvae erunt, quapropter hace methodus praecisionem maiorem permittet, quam ea quam in I. contemplati sumus: hacece contra methodus tunc praeferenda erit, quando excentricitas valde magna est propeque ad unitatem accedit, ubi δ et $\tan \frac{1}{4}(v-E)$ valores valde considerabiles nancisci possunt. Per formulas nostras, utra methodus alteri praeferenda sit, facile semper decidi poterit.

IV. In determinatione anomaliae mediae ex excentrica per formulam XII. art. 8. error quantitatis $e \sin E$, adiumento logarithmorum computatae, adeoque etiam ipsius anomaliae M, usque ad $\frac{3 \cos e \sin E}{\lambda}$ ascendere potest, qui erroris limes si in secundis expressus desideratur per 206265'' est multiplicandus. Hinc facile concluditur, in problemate inverso, ubi E ex M tentando determinatur, E quan-

titate $\frac{3 \varpi e \sin E}{\lambda} \cdot \frac{\mathrm{d}E}{\mathrm{d}M} \cdot 206265'' = \frac{3 \varpi e a \sin E}{\lambda r} \cdot 206265''$ erroneam esse posse, etsi aequationi $E - e \sin E = M$ omni quam tabulae permittunt praecisione satisfactum fuerit.

Anomalia vera itaque e media computata duabus rationibus erronea esse potest, siquidem mediam tamquam exacte datam consideramus, primo propter errorem in computo ipsius v ex E commissum, qui ut vidimus levis semper momenti est, secundo ideo quod valor anomaliae excentricae ipse iam erroneus esse potuit. Effectus rationis posterioris definietur per productum erroris in E commissi per $\frac{dv}{dE}$, quod productum fit $=\frac{3\varpi s \sin E}{\lambda} \cdot \frac{dv}{dM} \cdot 206265'' = \frac{3\varpi s \sin v}{\lambda r} \cdot 206265'' = \frac{(e\sin v + \frac{1}{2}ee\sin 2v)}{1 - ee} \cdot 0'' 0'' 0'' 1'' 2'', si septem figurae adhibentur. Hic error, pro valoribus parvis ipsius <math>e$ semper modicus, permagnus evadere potest, quoties e ab unitate parum differt, uti tabella sequens ostendit, quae pro quibusdam valoribus ipsius e valorem maximum illius expressionis exhibet.

e	error maximus	e	error maximus	e	error maximus
0,90	0"42	0,94	0"73	0,98	2"28
0,91	0,48	0,95	0,89	0,99	4,59
0,92	0,54	0,96	1,12	0,999	46,23
0,93	0,62	0,97	1,50		

V. In motu hyperbolico, si v per formulam III. art. 21. ex F et ψ exacte notis determinatur, error usque ad $\frac{3 \cos \sin v}{\lambda}$. 206265" ascendere potest; si vero per formulam tang $\frac{1}{2}v = \frac{(u-1) \cot \log \frac{1}{2}\psi}{u+1}$ computatur, u et ψ exacte notis, erroris limes triente maior erit, puta $= \frac{4 \cos \sin v}{\lambda}$. 206265" = 0"09 sin v pro septem figuris.

VI. Si per formulam XI. art. 22. quantitas $\frac{\lambda k t}{b^{\frac{1}{4}}} = N$ adiumento logarithmorum Briggicorum computatur, e et u vel e et F tamquam exacte notas supponendo, pars prima obnoxia erit errori $\frac{5(uu-1)ew}{2u}$, si computata est in forma $\frac{\lambda e(u-1)(u+1)}{2u}$, vel errori $\frac{3(uu+1)ew}{2u}$, si computata est in forma $\frac{1}{4}\lambda eu - \frac{\lambda e}{2u}$, vel errori $\frac{3ew}{2u}$ tamper, si computata est in forma $\frac{1}{4}\lambda eu - \frac{\lambda e}{2u}$, vel vel $\log \frac{1}{4}\lambda$ commissum contemnimus. In casu primo error etiam per $\frac{3ew}{\cos F}$ exprimi potest, unde patet, in casu tertio errorem omnium semper minimum esse, in primo autem vel secundo maior erit, prout u aut $\frac{1}{u} > 2$

vel <2, sive prout $\pm F>36°52'$ vel <36°52'. — Pars secunda ipsius N autem semper obnoxia erit errori ω .

VII. Vice versa patet, si u vel F ex N tentando eruatur, u obnoxiam fore errori $(1 \pm 5 \operatorname{etang} F) \omega \frac{\mathrm{d} u}{\mathrm{d} N}$, vel huic $(1 + \frac{3e}{\cos F}) \omega \frac{\mathrm{d} u}{\mathrm{d} N}$, prout membrum primum in valore ipsius N vel in factores vel in partes resolutum adhibeatur; F autem errori huic $(1 \pm 3 \operatorname{etang} F) \omega \frac{\mathrm{d} F}{\mathrm{d} N}$. Signa superiora post perihelium, inferiora ante perihelium valent. Quodsi hic pro $\frac{\mathrm{d} u}{\mathrm{d} N}$ vel pro $\frac{\mathrm{d} F}{\mathrm{d} N}$ substituitur $\frac{\mathrm{d} v}{\mathrm{d} N}$, emerget effectus huius erroris in determinationem ipsius v, qui igitur erit $\frac{bb \tan \psi (1 \pm 5 \operatorname{etang} F) \omega}{\lambda r r}$ aut $\frac{bb \tan \psi (1 \pm 3 \operatorname{esec} F) \omega}{\lambda r r}$, si quantitas auxiliaris u adhibita est; contra, si adhibita est F, ille effectus fit $\frac{bb \tan \psi (1 \pm 3 \operatorname{etang} F) \omega}{\lambda r r} = \frac{\omega}{\lambda} \left\{ \frac{(1 + e \cos v)^2}{\tan \psi^2} \pm \frac{3 \operatorname{esinv} (1 + e \cos v)}{\tan \psi^2} \right\}$. Adiicere oportet factorem 206265″, si error in secundis exprimendus est. Manifesto hic error tunc tantum considerabilis evadere potest, quando ψ est angulus parvus, sive e paullo maior quam 1; ecce valores maximos huius tertiae expressionis pro quibusdam valoribus ipsius e, si septem figurae decimales adhibentur:

e	error maximus
1,3	0"34
1,2	0,54
1,1	1,31
1,05	3,03
1,01	34,41
1,001	1064,65

Huic errori ex erroneo valore ipsius F vel u orto adiicere oportet errorem in V. determinatum, ut incertitudo totalis ipsius v habeatur.

VIII. Si aequatio XI. art. 22. adiumento logarithmorum hyperbolicorum solvitur, F pro quantitate auxiliari adhibita, effectus erroris in hac operatione possibilis in determinationem ipsius v per similia ratiocinia invenitur

$$= \frac{(1 + e \cos v)^2 \omega'}{\tan \varphi^3} + \frac{3 e \sin v (1 + e \cos v) \omega}{\lambda \tan \varphi^2}$$

ubi per ω' incertitudinem maximam in tabulis logarithmorum hyperbolicorum designamus. Pars secunda huius expressionis identica est cum parte secunda expressionis in VII. traditae, primo vero in ratione $\lambda\omega'$: ω minor quam prima

in illa expressione, i. e. in ratione 1:23, si tabulam Ursini ad octo ubique figuras exactam sive $\omega' = 0,0000000005$ supponere liceret.

33.

In iis igitur sectionibus conicis, quarum excentricitas ab unitate parum differt, i. e. in ellipsibus et hyperbolis, quae ad parabolam proxime accedunt, methodi supra expositae tum pro determinatione anomaliae verae e tempore, tum pro determinatione temporis ex anomalia vera*), omnem quae desiderari posset praecisionem non patiuntur: quin adeo errores inevitabiles, crescentes dum orbita magis ad parabolae similitudinem vergit, tandem omnes limites egrederentur. Tabulae maiores ad plures quam septem figuras constructae hanc incertitudinem diminuerent quidem, sed non tollerent, nec impedirent, quominus omnes limites superaret, simulae orbita ad parabolam nimis prope accederet. Praeterea methodi supra traditae in hocce casu satis molestae fiunt, quoniam pars earum indirecta tentamina saepius repetita requirit: cuius incommodi taedium vel gravius est, si tabulis maioribus operamur. Haud sane igitur superfluum erit, methodum peculiarem excolere, per quam in hoc casu incertitudinem illam evitare, soloque tabulam vulgarium adminiculo praecisionem sufficientem assequi liceat.

34.

Methodus vulgaris, per quam istis incommodis remedium afferri solet, sequentibus principiis innititur. Respondeat in ellipsi vel hyperbola, cuius excentricitas e, semiparameter p adeoque distantia in perihelio $=\frac{p}{1+e}=q$, tempori post perihelium t anomalia vera v; respondeat porro eidem tempori in parabola, cuius semiparameter =2q, sive distantia in perihelio =q, anomalia vera w, massa μ vel utrimque neglecta vel utrimque aequali supposita. Tunc patet haberi

$$\int_{\overline{(1+e\cos v)^2}}^{\underline{p\,p\,d\,v}} : \int_{\overline{(1+\cos w)^2}}^{\underline{4\,q\,q\,d\,v}} = \sqrt{p} : \sqrt{2\,q}$$

integralibus a v = 0 et w = 0 incipientibus, sive

$$\int_{\frac{(1+e)^{\frac{1}{2}} dv}{(1+e\cos v)^{\frac{2}{2}}\sqrt{2}}} = \int_{\frac{2 dw}{(1+\cos w)^{\frac{2}{2}}}}$$

^{*)} Quoniam tempus implicat factorem $a^{\frac{1}{2}}$ vel $b^{\frac{1}{2}}$, error in M vel N commissus eo magis augetur quo maior fuerit $a=\frac{p}{1-ee}$, vel $b=\frac{p}{ee-1}$.

Designando $\frac{1-e}{1+e}$ per a, tang $\frac{1}{2}v$ per θ , integrale prius invenitur

=
$$\sqrt{(1+a) \cdot (\theta + \frac{1}{2} \theta^3 (1-2a) - \frac{1}{6} \theta^5 (2a-3aa) + \frac{1}{7} \theta^7 (3aa-4a^3) - \text{etc.})}$$

posterius = $\tan \frac{1}{2}w + \frac{1}{4}\tan \frac{1}{2}w^3$. Ex hac aequatione facile est determinare w per a et v, atque v per a et w, adiumento serierum infinitarum: pro a si magis placet introduci potest $1-e=\frac{2a}{1+a}=\delta$. Quum manifesto pro a=0 vel $\delta=0$ fiat v=w, hae series sequentem formam habebunt:

$$w = v + \delta v' + \delta \delta v'' + \delta^3 v''' + \text{etc.}$$

$$v = w + \delta w' + \delta \delta w'' + \delta^3 w''' + \text{etc.}$$

ubi v', v'', v''' etc. erunt functiones ipsius v, atque w', w'', w''' etc. functiones ipsius w. Quoties δ est quantitas perparva, hae series celeriter convergent, paucique termini sufficient ad determinandum w ex v, vel v ex w. Ex w invenitur t, vel w ex t eo quem supra pro motu parabolico explicavimus modo.

35.

Expressiones analyticas trium coëfficientium primorum seriei secundae w', w'', w''' Bessel noster evolvit, simulque pro valoribus numericis duorum primorum w', w'' tabulam ad singulos argumenti w gradus constructam addidit (von Zach Monatliche Correspondenz, vol. XII. p. 197). Pro coëfficiente primo w' tabula iam ante habebatur a Simpson computata, quae operi clar. Olbers supra laudato annexa est. In plerisque casibus hacce methodo adiumento tabulae Besselianae anomaliam veram e tempore praecisione sufficiente determinare licet: quod adhuc desiderandum relinquitur, ad haecce fere momenta reducitur:

I. In problemate inverso, temporis puta ex anomalia vera determinatione ad methodum quasi indirectam confugere atque w ex v tentando derivare oportet. Cui incommodo ut obveniretur, series prior eodem modo tractata esse deberet ac secunda: et quum facile perspiciatur, -v' esse eandem functionem ipsius v, qualis w' est ipsius w, ita ut tabula pro w' signo tantum mutato pro v' inservire possit, nihil iam requireretur nisi tabula pro v'', quo utrumque problema aequali praecisione solvere liceat.

II. Interdum utique occurrere possunt casus, ubi excentricitas ab unitate parum quidem differt, ita ut methodi generales supra expositae praecisionem haud sufficientem dare videantur, nimis tamen etiamnum, quam ut in methodo peg. TH. M. culiari modo adumbrata effectum potestatis tertiae ipsius 8 altiorumque tuto contemnere liceat. In motu imprimis hyperbolico eiusmodi casus sunt possibiles, ubi, sive illas methodis adoptes sive hanc, errorem plurium secundorum evitare non possis, siquidem tabulis vulgaribus tantum ad septem figuras constructis utaris. Etiamsi vero huiusmodi casus in praxi raro occurrant, aliquid certe deesse videri posset, si in omnibus casibus anomaliam veram intra 0"1 aut saltem 0"2 determinare non liceret, nisi tabulae maiores consulerentur, quas tamen ad libros rariores referendas esse constat. Haud igitur prorsus superfluam visum iri speramus expositionem methodi peculiaris, qua iamdudum usi sumus, quaeque eo etiam nomine se commendabit, quod ad excentricitates ab unitate parum diversas haud limitata est, sed hocce saltem respectu applicationem generalem patitur.

36.

Antequam hanc methodum exponere aggrediamur, observare conveniet, incertitudinem methodorum generalium supra traditarum in orbitis ad parabolae similitudinem vergentibus sponte desinere, simulac E vel F ad magnitudinem considerabilem increverint, quod quidem in magnis demum a Sole distantiis fiet. Quod ut ostendamus, errorem maximum in ellipsi possibilem, quem in art. 32. IV. invenimus $\frac{3 \omega e \alpha \sin v}{\lambda r}$. 206265" ita exhibemus $\frac{3 \omega e \sqrt{1-ee} \cdot \sin E}{\lambda (1-e\cos E)^2}$. 206265", unde sponte patet, errorem arctis semper limitibus circumscriptum esse, simulac E valorem considerabilem acquisiverit, sive simulac $\cos E$ ab unitate magis recesserit, quantumvis magna sit excentricitas. Quod adhuc luculentius apparebit per tabulam sequentem, in qua valorem numericum maximum istius formulae pro quibusdam valoribus determinatis computavimus (pro septem figuris decimalibus):

$E = 10^{\circ}$	error maximus	= 3"04
20		0,76
30		0,34
40		0,19
50		0,12
60		0,08

Simili modo res se habet in hyperbola, ut statim apparet, si expressio in art. 32. VII. eruta sub hanc formam ponitur $\frac{\omega \cos F(\cos F + 3e \sin F)\sqrt{(ee-1)}}{\lambda (e-\cos F)^2} 206265$ ". Valores

maximos huius expressionis pro quibusdam valoribus determinatis ipsius F tabula sequens exhibet:

\boldsymbol{F}	1	u	error maximus
10°	1,192	0,839	8"66
20	1,428	0,700	1,38
30	1,732	0,577	0,47
40	2,144	0,466	0,22
50	2,747	0,364	0,11
60	3,732	0,268	0,06
70	5,671	0,176	0,02

Quoties itaque E vel F ultra 40° vel 50° egreditur (qui tamen casus in orbitis à parabola parum discrepantibus haud facile occurret, quum corpora coelestia in talibus orbitis incedentia in tantis a Sole distantiis oculis nostris plerumque se subducant), nulla aderit ratio, cur methodum generalem deseramus. Ceterum in tali casu etiam series de quibus in art. 34. egimus nimis lente convergerent: neutiquam igitur pro defectu methodi nunc explicandae haberi potest, quod iis imprimis casibus adaptata est, ubi E vel F ultra valores modicos nondum excrevit.

37.

Resumamus in motu elliptico aequationem inter anomaliam excentricam et tempus

$$E - e \sin E = \frac{kt\sqrt{1+\mu}}{a!}$$

ubi E in partibus radii expressam supponimus. Factorem $\sqrt{(1+\mu)}$ abhinc omittemus; si umquam casus occurreret, ubi eius rationem habere in potestate operaeque pretium esset, signum t non tempus ipsum post perihelium, sed hoc tempus per $\sqrt{(1+\mu)}$ multiplicatum exprimere deberet. Designamus porro per q distantiam in perihelio, et pro E et $\sin E$ introducimus quantitates $E-\sin E$ et $E-\frac{1}{10}(E-\sin E)=\frac{9}{10}E+\frac{1}{10}\sin E$: rationem cur has potissimum eligamus lector attentus ex sequentibus sponte deprehendet. Hoc modo aequatio nostra formam sequentem induit:

$$(1-e)(\frac{9}{10}E + \frac{1}{10}\sin E) + (\frac{1}{10} + \frac{9}{10}e)(E - \sin E) = kt(\frac{1-e}{q})^{\frac{3}{2}}$$

Quaterns E ut quantitas parva ordinis primi spectatur, erit $\frac{1}{100}E + \frac{1}{100}\sin E$ $= E - \frac{1}{100}E^3 + \frac{1}{1000}E^5 - \text{etc.}$ quantitas ordinis primi, contra $E - \sin E = \frac{1}{100}E^5 + \frac{1}{1000}E^5 + \frac{1}{1000}E^7 - \text{etc.}$ quantitas ordinis tertii. Statuendo itaque

$$\frac{\frac{6(E-\sin E)}{\frac{1}{10}E+\frac{1}{10}\sin E}}{\frac{2}{10}E+\frac{1}{10}\sin E}=4A, \quad \frac{\frac{6}{10}E+\frac{1}{10}\sin E}{\frac{2}{10}\sqrt{A}}=B$$

erit $4A = E^2 - \frac{1}{2^4 0} E^4 - \frac{1}{8 0^4 0} E^6$ — etc. quantitas ordinis secundi, atque $B = 1 + \frac{1}{2^2 8^4 0} E^4$ — etc. ab unitate quantitate quarti ordinis diversa. Aequatio nostra autem hinc fit

Per tabulas vulgares trigonometricas $\mathbf{T}_{0}^{\mathbf{S}}E+\mathbf{T}_{0}\sin E$ quidam praecisione sufficiente calculari potest, non tamen $E-\sin E$, quoties E est angulus parvus: hacce igitur via quantitates A et B satis exacte determinare non liceret. Huic autem difficultati remedium afferret tabula peculiaris, ex qua cum argumento E aut ipsum B aut logarithmum ipsius B excerpere possemus: subsidia ad constructionem talis tabulae necessaria cuique in analysi vel mediocriter versato facile se offerent. Adiumento aequationis

$$\frac{9E+\sin E}{20B}=\sqrt{A}$$

etiam \sqrt{A} , atque hinc t per formulam [1] omni quae desiderari potest praecisione determinare liceret.

Ecce specimen talis tabulae, quod saltem lentam augmentationem ipsius $\log B$ manifestabit: superfluum esset, hanc tabulam maiori extensione elaborare, infra enim tabulas formae multo commodioris descripturi sumus:

$\boldsymbol{\mathit{E}}$	$\log B$	\boldsymbol{E}	$\log B$
0°	0,0000000	35°	0,0000645
5	000	40	1099
10	004	45	1758
15	022	50	2675
20	069	55	3910
25	168	60	5526
30	349		

38.

Haud inutile erit, ea quae in art. praec. sunt tradita exemplo illustrare. Proposita sit anomalia vera = 100° , excentricitas = 0.96764567, $\log q = 9.7656500$. Ecce iam calculum pro E, B, A et t:

log tang
$$\frac{1}{2}v$$
 . . 0,0761865
log $\sqrt{\frac{1-e}{1+e}}$. . 9,1079927
log tang $\frac{1}{2}E$. . 9,1841792, unde $\frac{1}{2}E$ =8°41'19"32, atque E =17°22'38"64.

Huic valori ipsius E respondet $\log B = 0,0000040$; porro invenitur in partibus radii E = 0,3032928, $\sin E = 0,2986643$, unde $\frac{9}{20}E + \frac{1}{20}\sin E = 0,1514150$, cuius logarithmus = 9,1801689, adeoque $\log A^{\frac{1}{2}} = 9,1801649$. Hinc deducitur per formulam [1] art. praec.

$$\log \frac{{}^{2}Bq^{4}}{kV(1-e)} \dots 2,4589614 \qquad \log \frac{{}^{2}B(1+9e)}{15k} \left(\frac{q}{1-e}\right)^{\frac{2}{3}} \dots 3,7601038
 \log A^{\frac{1}{2}} \dots 9,1801649 \qquad \log A^{\frac{3}{2}} \dots 7,5404947
 \log 43,56386 = 1,6391263 \qquad \log 19,98014 = 1,3005985
 \frac{19,98014}{63,54400} = t$$

Tractando idem exemplum secundum methodum vulgarem, invenitur $e \sin E$ in secundis = 59610''79 = 16°33'30''79, unde anomalia media = 49'7''85 = 2947''85. Hinc et ex $\log k \left(\frac{1-e}{q}\right)^{\frac{1}{2}} = 1,6664302$ derivatur t = 63,54410. Differentia, quae hic tantum est $\frac{10000}{1000}$ pars unius diei, conspirantibus erroribus facile triplo vel quadruplo maior evadere potuisset.

Ceterum patet, solo adiumento talis tabulae pro $\log B$ etiam problema inversum omni praecisione solvi posse, determinando E per tentamina repetita, ita ut valor ipsius t inde calculatus cum proposito congruat. Sed haec operatio satis molesta foret: quamobrem iam ostendemus, quomodo tabulam auxiliarem multo commodius adornare, tentamina vaga omnino evitare, totumque calculum ad algorithmum maxime concinnum atque expeditum reducere liceat, qui nihil desiderandum relinquere videtur.

39.

Dimidiam fere partem laboris quem illa tentamina requirerent abscindi posse statim obvium est, si tabula ita adornata habeatur, ex qua $\log B$ immediate

argumento A desumere liceat. Tres tunc superessent operationes; prima indirecta, puta determinatio ipsius A, ut aequationi [1] art. 37. satisfiat; secunda, determinatio ipsius E ex A et B, quae fit directe vel per aequationem $E = 2B(A^{\frac{1}{2}} + \frac{1}{15}A^{\frac{3}{2}})$, vel per hanc $\sin E = 2B(A^{\frac{1}{2}} - \frac{3}{4}A^{\frac{3}{2}})$; tertia, determinatio ipsius v ex E per aequ. VII. art. 8. Operationem primam ad algorithmum expeditum et a tentaminibus vagis liberum reducemus; secundam et tertiam vero in unicam contrahemus, tabulae nostrae quantitatem novam C inserendo, quo pacto ipsa E omnino opus non habebimus, simulque pro radio vectore formulam elegantem et commodam nanciscemur. Quae singula ordine suo iam persequemur.

Primo aequationem [1] ita transformabimus, ut tabulam Barkerianam ad eius solutionem adhibere liceat. Statuemus ad hunc finem $A^{\frac{1}{2}} = \tan \frac{1}{2} w \cdot \sqrt{\frac{5-5}{1+9}} \frac{e}{e}$, unde fit 75 tang $\frac{1}{2} w + 25 \tan \frac{1}{2} w^3 = \frac{75 k t \sqrt{(\frac{1}{2} + \frac{3}{2}} e)}{2 B q^{\frac{3}{2}}} = \frac{at}{B}$ designando constantem $\frac{75\,k\sqrt{(\frac{1}{4}+\frac{3}{4}\,e)}}{2\,q^{\frac{3}{4}}}$ per a. Si itaque B esset cognita, w illico e tabula Barkeriana desumi posset, ubi est anomalia vera, cui respondet motus medius $\frac{at}{B}$; ex w derivabitur A per formulam $A = 6 \tan \frac{1}{2} w^2$, designando constantem $\frac{5-5}{1+9} \frac{e}{e}$ per 6. Iam etsi B demum ex A per tabulam nostram auxiliarem innotescat, tamen propter perparvam ipsius ab unitate differentiam praevidere licet, w et A levi tantum errore affectas provenire posse, si ab initio divisor B omnino negligatur. Determinabilities itaque primo, levi tantum calamo, w et A, statuendo B=1; cum valore approximato ipsius A e tabula nostra auxiliari inveniemus ipsam B, cum qua eundem calculum exactius repetemus; plerumque respondebit valori sic correcto ipsius A prorsus idem valor ipsius B, qui ex approximato inventus erat, ita ut nova operationis repetitio superflua sit, talibus casibus exceptis, ubi valor ipsius E iam valde considerabilis fuerit. Ceterum vix opus erit monere, si forte iam ab initio valor ipsius B quomodocunque approximatus aliunde innotuerit (quod semper fiet, quoties e pluribus locis haud multum ab invicem distantibus computandis, unus aut alter iam sunt absoluti) praestare, hoc statim in prima approximatione uti: hoc modo calculator scitus saepissime ne una quidem calculi repetitione opus habebit. Hanc celerrimam approximationem inde assecuti sumus, quod B ab 1 differentia ordinis quarti tantum distat, in coëfficientem perparvum numericum insuper multiplicata, quod commodum praeparatum esse iam perspicietur per introductionem quantitatum $E = \sin E$, $\frac{1}{10} E + \frac{1}{10} \sin E$ loco ipsarum E, $\sin E$.

40.

Quum ad operationem tertiam, puta determinationem anomaliae verae, angulus E ipse non requiratur, sed tantum $\tan \frac{1}{2}E$ sive potius $\log \tan \frac{1}{2}E$, operatio illa cum secunda commode iungi posset, si tabula nostra immediate suppeditaret logarithmum quantitatis $\frac{\tan \frac{1}{2}E}{\sqrt{A}}$, quae ab 1 quantitate ordinis secundi differt. Maluimus tamen tabulam nostram modo aliquantulum diverso adornare, quo extensione minuta nihilominus interpolationem multo commodiorem assecuti sumus. Scribendo brevitatis gratia T pro $\tan \frac{1}{2}E^2$, valor ipsius A in art. 37. traditus $\frac{15}{9}\frac{(E-\sin E)}{E+\sin E}$ facile transmutatur in

$$A = \frac{T - \frac{6}{5}T^{3} + \frac{3}{5}T^{3} - \frac{13}{5}T^{4} + \frac{13}{5}T^{5} - \text{etc.}}{1 - \frac{6}{5}T + \frac{7}{25}T^{2} - \frac{3}{5}T^{5} + \frac{9}{45}T^{4} - \text{etc.}}$$

ubi lex progressionis obvia est. Hinc deducitur per conversionem serierum

$$\frac{A}{T} = 1 - \frac{4}{5}A + \frac{4}{15}\frac{8}{5}A^2 + \frac{2}{5}\frac{8}{5}A^3 + \frac{1}{3}\frac{8}{5}\frac{8}{5}\frac{9}{5}A^4 + \frac{2}{13}\frac{2}{13}\frac{9}{13}\frac{7}{8}\frac{4}{12}\frac{8}{5}A^5 + \text{etc.}$$

Statuendo igitur $\frac{A}{T} = 1 - \frac{1}{2}A + C$, erit C quantitas ordinis quarti, qua in tabulam nostram recepta, ab A protinus transire possumus ad v per formulam

$$tang \frac{1}{2}v = \sqrt{\frac{1+e}{1-e}} \cdot \sqrt{\frac{A}{1-\frac{1}{2}A+C}} = \frac{\gamma \tan \frac{1}{2}w}{\sqrt{(1-\frac{1}{2}A+C)}}$$

designando per γ constantem $\sqrt{\frac{5+5e}{1+9e}}$. Hoc modo simul lucramur calculum percommodum pro radio vectore. Fit enim (art. 8. VI.)

$$r = \frac{q \cos \frac{1}{2} E^2}{\cos \frac{1}{2} v^2} = \frac{q}{(1+T) \cos \frac{1}{2} v^2} = \frac{(1-\frac{4}{5}A+C) q}{(1+\frac{1}{5}A+C) \cos \frac{1}{2} v^2}$$

41.

Nihil iam superest, nisi ut etiam problema inversum, puta determinationem temporis ex anomalia vera, ad algorithmum expeditiorem reducamus: ad hunc finem tabulae nostrae columnam novam pro T adiecimus. Computabitur itaque primo T ex v per formulam $T = \frac{1-e}{1+e} \tan \frac{1}{2} v^2$; dein ex tabula nostra argumento T desumetur A et $\log B$, sive (quod exactius, imo etiam commodius est) C et $\log B$, atque hinc A per formulam $A = \frac{(1+C)T}{1+\frac{1}{4}T}$; tandem ex A et B eruetur t per formulam [1] art. 37. Quodsi hic quoque tabulam Barkerianam in usum vocare placet, quod tamen in hoc problemate inverso calculum minus sublevat, non opus est ad A respicere, sed statim habetur

$$\tan \frac{1}{2} w = \tan \frac{1}{2} v \cdot \sqrt{\frac{1+C}{7 \gamma (1+\frac{1}{4}T)}}$$

atque hinc tempus t, multiplicando motum medium anomaliae verae w in tabula Barkeriana respondentem per $\frac{B}{a}$.

42.

Tabulam, qualem hactenus descripsimus, extensione idonea construximus, operique huic adiecimus (Tab. I.). Ad ellipsin sola pars prior spectat; partem alteram, quae motum hyperbolicum complectitur, infra explicabimus. Argumentum tabulae, quod est quantitas A, per singulas partes millesimas a 0 usque ad 0.300 progreditur; sequentur $\log B$ et C, quas quantitates in partibus 10000000mis, sive ad septem figuras decimales expressas subintelligere oportet cifrae enim primae, figuris significativis praecuntes, suppressae sunt; columna denique quarta exhibet quantitatem T primo ad 5 dein ad 6 figuras computatam, quae praecisio abunde sufficit, quum haec columna ad eum tantummodo usum requiratur, ut argumento T valores respondentes ipsius $\log B$ et C habeantur, quoties ad normam art. praec. t ex v determinare lubet. Quum problema inversum, quod longe frequentioris usus est, puta determinatio ipsius v et r ex t, omnino absque quantitatis T subsidio absolvatur, quantitatem A pro argumento tabulae nostrae eligere maluimus quam T, quae alioquin argumentum aeque fere idoneum fuisset, imo tabulae constructionem aliquantulum facilitavisset. Haud superfluum erit monere, omnes tabulae numeros ad decem figuras ab origine calculatos fuisse, septemque adeo figuris, quas hic damus, ubique tuto confidere licere; mothodis autem analyticis ad hunc laborem in usum vocatis hoc loco immorari non possumus, quarum explicatione copiosa nimium ab instituto nostro distraheremur. Ceterum tabulae extensio omnibus casibus, ubi methodum hactenus expositam sequi prodest, abunde sufficit, quum ultra limitem A = 0.3, cui respondet T = 0.392374 sive E = 64°7', methodis artificialibus commode ut supra ostensum est abstinere liceat.

43.

Ad maiorem disquisitionum praecedentium illustrationem exemplum calculi completi pro anomalia vera et radio vectore ex tempore adiicimus, ad quem finem numeros art. 38. resumemus. Statuimus itaque e = 0.96764567, $\log q = 9.7656500$, t = 63.54400, unde primo deducimus constantes $\log a = 0.3052357$, $\log 6 = 8.2217364$, $\log \gamma = 0.0028755$.

Hinc fit $\log at = 2,1083102$, cui respondet in tabula Barkeri valor approximatus ipsius $w = 99^{\circ}6'$, unde derivatur A = 0,022923, et ex tabula nostra $\log B = 0,0000040$. Hinc argumentum correctum quo tabulam Barkeri intrare oportet fit $= \log \frac{at}{B} = 2,1083062$, cui respondet $w = 99^{\circ}6'13''14$; dein calculus ulterior ita se habet:

	log ta	$\log \frac{1}{2} w^2$ 0,1385934	$log tang + w \dots$. 0,0692967
	log6	8,2217364	logγ	. 0,0028755
	log A	8,3603298	$\frac{1}{2}$ C. $\log(1-\frac{1}{2}A+C)$.	. 0,0040143
	\boldsymbol{A}	=0,02292608	$\log \tan \frac{1}{2}v \dots$. 0,0761865
hinc	$\log B$	perinde ut ante;	$\frac{1}{2}v$	= 50° 0′ 0″
	$oldsymbol{C}$	=0,0000242	$oldsymbol{v}$	= 100 0 0
	1-	$-\frac{1}{2}A + C = 0,9816833$	$\log q$. 9,7656500
	1-	$-\frac{1}{4}A+C=1,0046094$	$2 \operatorname{Comp.log} \cos \frac{1}{2} v$. 0,3838650
			$\log(1-\frac{1}{2}A+C)\dots$. 9,9919714
			$C.\log(1+\frac{1}{4}A+C).$. 9,9980028
			$\overline{\log r}$. 0,1394892

Si in hoc calculo factor B omnino esset neglectus, anomalia vera errorusculo $0^{\circ}1$ tantum (in excessu) prodiisset affecta.

44.

Motum hyperbolicum eo brevius absolvere licebit, quoniam methodo ei quam hactenus pro motu elliptico exposuimus prorsus analoga tractandus est. Aequationem inter tempus t atque quantitatem auxiliarem u forma sequente exhibemus:

$$(e-1)\left(\frac{1}{2^{\frac{1}{6}}}\left(u-\frac{1}{u}\right)+\frac{9}{1^{\frac{9}{6}}}\log u\right)+\left(\frac{1}{1^{\frac{9}{6}}}+\frac{9}{1^{\frac{9}{6}}}e\right)\left(\frac{1}{2}\left(u-\frac{1}{u}\right)-\log u\right)=kt\left(\frac{e-1}{q}\right)^{\frac{3}{2}}$$

ubi logarithmi sunt hyperbolici, atque $\frac{1}{2} \left(u - \frac{1}{u}\right) + \frac{1}{2} \log u$ quantitas ordinis primi, $\frac{1}{2} \left(u - \frac{1}{u}\right) - \log u$ quantitas ordinis tertii, simulac $\log u$ tamquam quantitas parva ordinis primi spectatur. Statuendo itaque

$$\frac{6\left(\frac{1}{2}\left(u-\frac{1}{u}\right)-\log u\right)}{\frac{1}{26}\left(u-\frac{1}{u}\right)+\frac{9}{16}\log u}=4A, \quad \frac{\frac{1}{26}\left(u-\frac{1}{u}\right)+\frac{9}{16}\log u}{2\sqrt{A}}=B$$

7

G. TH. M.

erit A quantitas ordinis secundi, B autem ab unitate differentia ordinis quarti discrepabit. Aequatio nostra tunc formam sequentem induet:

$$B(2(e-1)A^{\frac{1}{2}} + \frac{2}{18}(1+9e)A^{\frac{3}{2}}) = kt(\frac{e-1}{q})^{\frac{3}{2}} \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot [2]$$

quae aequationi [1] art. 37. prorsus analoga est. Statuendo porro $\left(\frac{u-1}{u+1}\right)^2 = T$, erit T ordinis secundi, et per methodum serierum infinitarum invenietur

$$\frac{A}{T} = 1 + \frac{1}{5}A + \frac{7}{15}BA^2 - \frac{1}{5}\frac{1}{5}BA^3 + \frac{1}{5}\frac{1}{5}\frac{1}{5}\frac{1}{5}A^4 - \frac{1}{15}\frac{2}{15}\frac{1}{3}\frac{1}{6}\frac{1}{12}BA^5 + \text{etc.}$$

Quamobrem ponendo $\frac{A}{T} = 1 + \frac{1}{2}A + C$, erit C quantitas ordinis quarti, atque $A = \frac{(1+C)T}{1-\frac{1}{2}T}$. Denique pro radio vectore ex aequ. VII. art. 21. facile sequitur

$$r = \frac{q}{(1-T)\cos\frac{1}{2}v^2} = \frac{(1+\frac{1}{2}A+C)q}{(1-\frac{1}{2}A+C)\cos\frac{1}{2}v^2}$$

45.

Pars posterior tabulae primae operi huic annexae ad motum hyperbolicum spectat, ut iam supra monuimus, et pro argumento A (utrique tabulae parti communi) logarithmum ipsius B atque quantitatem C ad septem figuras decimales (cifris praecedentibus omissis), quantitatem T vero ad quinque dein ad sex figuras sistit. Extensa est haec pars, perinde ut prior, usque ad A=0,300, cui respondet T=0,241207, u=2,930 vel =0,341, $F=\pm52^{\circ}19'$; ulterior extensio superflua fuisset (art. 36.).

Ecce iam ordinem calculi tum pro determinatione temporis ex anomalia vera tum pro determinatione anomaliae verae ex tempore. In problemate priori habebitur T per formulam $T = \frac{e-1}{e+1} \tan \frac{1}{2} v^2$; ex T tabula nostra dabit $\log B$ et C, unde erit $A = \frac{(1+C)T}{1-\frac{1}{2}T}$; hinc tandem per formulam [2] art. praec. invenietur t. In problemate posteriori computabuntur primo logarithmi constantium

$$\alpha = \frac{75 k \sqrt{(\frac{1}{2} + \frac{3}{4}e)}}{2 q^{\frac{1}{4}}}$$

$$6 = \frac{3e - 5}{1 + 9e}$$

$$\gamma = \sqrt{\frac{5e + 5}{1 + 9e}}$$

Tunc determinabitur A ex t prorsus eodem modo ut in motu elliptico, ita scilicet ut motui medio $\frac{at}{B}$ in tabula Barkeri respondeat anomalia vera w atque fiat $A = 6 \tan \frac{1}{2} w^2$; eruetur scilicet primo valor approximatus ipsius A ne-

glecto vel si subsidia adsunt aestimato factore B; hinc tabula nostra suppeditabit valorem approximatum ipsius B, cum quo operatio repetetur; valor novus ipsius B hoc modo prodiens vix umquam correctionem sensibilem passus, neque adeo nova calculi iteratio necessaria crit. Correcto valore ipsius A e tabula desumetur C, quo facto habebitur

$$tang \frac{1}{2}v = \frac{\gamma tang \frac{1}{2}w}{\sqrt{(1+\frac{1}{2}A+C)}}, \quad r = \frac{(1+\frac{1}{2}A+C)q}{(1-\frac{1}{2}A+C)\cos\frac{1}{2}v^2}$$

Patet hinc, inter formulas pro motu elliptico et hyperbolico nullam omnino differentiam reperiri, si modo 6, A et T in motu hyperbolico tamquam quantitates negativas tractemus.

46.

Motum hyperbolicum quoque aliquot exemplis illustravisse haud inutile erit, ad quem finem numeros artt. 23. 26. resumenus.

I. Data sunt e = 1,2618820, $\log q = 0,0201657$, v = 18°51'0": quaeritur t. Habemus

$2 \log \tan g + v \dots$. 8,4402018	$\log T$	7,5038375
$\log \frac{e-1}{e+1} \dots$. 9,0636357	$\log(1+C) \ldots$	0,0000002
$\overline{\log T}$. 7,5038375	$C.\log(1-\frac{1}{5}T)\ldots$	0,0011099
•	= 0,00319034	$\log A$	7,5049476
$\log B$ =	= 0,0000001		
C =	= 0,0000005		
$\log \frac{2Bq^{\frac{3}{4}}}{k\sqrt{(e-1)}} \cdot \cdot \cdot \cdot$. 2,3866444	$\log \frac{2B(1+9e)}{15k} \left(\frac{q}{e-1}\right)^{\frac{3}{4}}$.	2,8843582
$\log A^{\frac{1}{2}} \cdots$. 8,7524738	$\log A^{\frac{1}{2}} \dots \dots$	6,2574214
$\log 13,77584 =$	1,1391182	$\log 0,138605 =$	9,1417796
0,13861			•
13,91445 = t			

II. Manentibus e et q ut ante, datur t=65,41236, quaeruntur v et r. Invenimus logarithmos constantium

$$\log a = 9,9758345$$

 $\log 6 = 9,0251649$
 $\log \gamma = 9,9807646$

Porro prodit $\log at = 1,7914943$, unde per tabulam Barkeri valor approximatus ipsius $w = 70^{\circ}31'44''$, atque hinc A = 0,052983. Huic A in tabula nostra respondet $\log B = 0,0000207$; unde $\log \frac{at}{B} = 1,7914736$, valor correctus ipsius $w = 70^{\circ}31'36''86$. Calculi operationes reliquae ita se habent:

$2 \log \tan \frac{1}{2} w \dots 9,6989398$	$\log \tan \frac{1}{2} w \dots 9,8494699$
log6 9,0251649	logγ 9,9807646
$\log A \dots 8,7241047$	$\frac{1}{4}$ C. $\log(1+\frac{1}{4}A+C)$. 9,9909602
A = 0,05297911	$\log \tan g + v \dots 9,8211947$
$\log B$ ut ante	$\frac{1}{2}v = 33^{\circ}31'30''02$
C = 0,0001252	v = 67 3 0,04
$1 + \frac{1}{2}A + C = 1,0425085$	$\log q$ 0,0201657
$1 - \frac{1}{2}A + C = 0,9895294$	$2 \text{ C.} \log \cos \frac{1}{2} v \dots 0,1580378$
	$\log(1+\frac{1}{2}A+C)$ 0,0180796
•	$C.\log(1-\frac{1}{2}A+C)$. 0,0045713
	$\log r \dots 0,2008544$

Quae supra (art. 26.) inveneramus $v = 67^{\circ}2'59''78$, $\log r = 0,2008541$, minus exacta sunt, proprieque evadere debuisset $v = 67^{\circ}3'0''00$, quo valore supposito valor ipsius t per tabulas maiores fuerat computatus.

SECTIO SECUNDA

Relationes ad locum simplicem in spatio spectantes.

47.

In Sectione prima de motu corporum coelestium in orbitis suis actum est, nulla situs, quem hae orbitae in spatio occupant, ratione habita. Ad hunc situm determinandum, quo relationem locorum corporis coelestis ad quaevis alia spatii puncta assignare liceat, manifesto requiritur tum situs plani in quo orbita iacet respectu cuiusdam plani cogniti (e. g. plani orbitae telluris, eclipticae), tum situs apsidum in illo plano. Quae quum commodissime ad trigonometriam sphaericam referantur, superficiem sphaericam radio arbitrario circa Solem ut centrum descriptam fingimus, in qua quodvis planum per Solem transiens circulum maximum, quaevis autem recta e Sole ducta punctum depinget. Planis aut rectis per Solem ipsum non transeuntibus plana rectasque parallelas per Solem ducimus, circulosique maximos et puncta in sphaerae superficie his respondentia etiam illa repraesentare concipimus: potest quoque sphaera radio ut vocant infinito magno descripta supponi, in qua plana rectaeque parallelae perinde repraesentantur.

Nisi itaque planum orbitae cum plano eclipticae coincidit, circuli maximi llis planis respondentes (quos etiam simpliciter orbitam et eclipticam vocabimus) duobus punctis se intersecant, quae nodi dicuntur; in nodorum altero corpus e Sole visum e regione australi per eclipticam in borealem transibit, in altero ex hac in illam revertet; nodus prior ascendens, posterior descendens appellatur. Nodorum situs in ecliptica per eorum distantiam ab aequinoctio vernali medio

(longitudinem) secundum ordinem signorum numeratam assignamus. Sit, in Fig. 1, Ω nodus ascendens, $A \Omega B$ pars eclipticae, $C \Omega D$ pars orbitae; motus terrae et corporis coelestis fiant in directionibus ab A versus B et a C versus D, patetque angulum sphaericum, quem ΩD facit cum ΩB , a 0 usque ad 180° crescere posse, neque tamen ultra, quin a nodus ascendens esse desinat: hunc angulum inclinationem orbitae ad eclipticam dicimus. Situ plani orbitae per longitudinem nodi atque inclinationem orbitae determinato, nihil aliud iam requiritur, nisi distantia perihelii a nodo ascendente, quam secundum ipsam directionem motus numeramus, adeoque negativam sive inter 180° et 360° assumimus, quoties perihelium ab ecliptica ad austrum situm est. Notentur adhuc expressiones sequentes. Longitudo cuiusvis puncti in circulo orbitae numeratur ab eo puncto, quod retrorsum a nodo ascendente in orbita tantundem distat, quantum aequinoctium vernale ab eodem puncto retroraum in ecliptica: hine longitudo perihelii erit summa longitudinis nodi et distantiae perihelii a nodo; longitudo vera corporis in orbita autem summa anomaliae verae et longitudinis perihelii. Denique longitudo media vocatur summa anomaliae mediae et longitudinis perihelii: haec postrema expressio manifesto in orbitis ellipticis tantum locum habere potest.

48.

Ut igitur corporis coelestis locum in spatio pro quovis temporis momento assignare licest, sequentia in orbita elliptica nota esse oportebit.

- I. Longitudo media pro quodam temporis momento arbitrario, quod epocha vocatur: codem nomine interdum ipsa quoque longitudo designatur. Plerumque pro epocha eligitur initium alicuius anni, scilicet meridies 1. Ianuarii in anno bissestili, sive meridies 31. Decembris anno communi praecedentis.
- II. Motus medius inter certum temporis intervallum, e. g. in uno die solari medio, sive in diebus 365, 3651 aut 36525.
- III. Semiaxis maior, qui quidem omitti posset, quoties corporis massa aut nota est aut negligi potest, quum per motum medium iam detur (art. 7.): commoditatis tamen gratia uterque samper proferri solet.
 - IV. Excentricitas.
 - V. Longitudo perihelii.
 - VI. Longitudo nodi escendentis.
 - VII. Inclinatio orbitae.

Haec septem momenta vocantur elementa motus corporis.

In parabola et hyperbola tempus transitus per perihelium elementi primi vice fungetur; pro II. tradentur quae in his sectionum conicarum generibus motui medio diurno analoga sunt (v. art. 19.; in motu hyperbolico quantitas $\lambda kb^{-\frac{1}{2}}$ art. 23.). In hyperbola elementa reliqua perinde retineri poterunt, in parabola vero, ubi axis maior infinitus atque excentricitas = 1, loco elementi III. et IV. sola distantia in perihelio proferetur.

49.

Secundum vulgarem loquendi morem inclinatio orbitae, quam nos a 0 usque ad 180° numeramus, ad 90° tantum extenditur, atque si angulus orbitae cum arcu ΩB (Fig. 1) angulum rectum egreditur, angulus orbitae cum arcu ΩA (qui est illius complementum ad 180° tamquam inclinatio orbitae spectatur; in tali tune casu addere oportebit, motum esse retrogradum (veluti si in figura nostra $E_{\Omega}F$ partem orbitae repraesentat), ut a casu altero ubi motus directus dicitur distinguatur. Longitudo in orbita tunc ita numerari solet, ut in Ω cum longitudine huius puncti in ecliptica conveniat, in directione ΩF autem decrescat; punctum initiale itaque a quo longitudines contra ordinem motus numerantur in directione ΩF tantundem a Ω distat, quantum aequinoctium vernale ab eodem Ω in directione ΩA . Quare in hoc casu longitudo perihelii erit longitudo nodi deminuta distantia perihelii a nodo. Hoc modo alteruter loquendi usus facile in alterum convertitur, nostrum autem ideo praetulimus, ut distinctione inter motum directum et retrogradum supersedere, et pro utroque semper formulas easdem adhibere possemus, quum usus vulgaris saepenumero praecepta duplicia requirat.

50.

Ratio simplicissima, puncti cuiusvis in superficie sphaerae coelestis situm respectu eclipticae determinandi, fit per ipsius distantiam ab ecliptica (latitudinem), atque distantiam puncti, ubi ecliptica a perpendiculo demisso secatur, ab aequinoctio (longitudinem). Latitudo, ab utraque eclipticae parte usque ad 90° numerata, in regione boreali ut positiva, in australi ut negativa spectatur. Respondeant corporis coelestis loco heliocentrico, i.e. proiectioni rectae a Sole ad corpus ductae in sphaeram coelestem, longitudo λ , latitudo δ ; sit porro u distantia loci helio-

centrici a nodo ascendente (quae argumentum latitudinis dicitur), i inclinatio orbitae, Ω longitudo nodi ascendentis, habebunturque inter $i, u, 6, \lambda - \Omega$, quae quantitates erunt partes trianguli sphaerici rectanguli, relationes sequentes, quas sine ulla restrictione valere facile evincitur:

I.
$$tang(\lambda - \Omega) = \cos i tang u$$

II.
$$tang \delta = tang i sin(\lambda - \Omega)$$

III.
$$\sin \theta = \sin i \sin u$$

IV.
$$\cos u = \cos \theta \cos(\lambda - \Omega)$$

Quando i et u sunt quantitates datae, $\lambda - \Omega$ inde per aequ. I. determinabitur, ac dein 6 per II. vel per III., siquidem 6 non nimis ad $\pm 90^{\circ}$ appropinquat; formula IV. si placet ad calculi confirmationem adhiberi potest. Ceterum formulae I. et IV. docent, $\lambda - \Omega$ et u semper in eodem quadrante iacere, quoties i est inter 0 et 90° ; contra $\lambda - \Omega$ et $360^{\circ} - u$ ad eundem quadrantem pertinebunt, quoties i est inter 90° et 180° , sive, secundum usum vulgarem, quoties motus est retrogradus: hinc ambiguitas, quam determinatio ipsius $\lambda - \Omega$ per tangentem secundum formulam I. relinquit, sponte tollitur.

Formulae sequentes e praecedentium combinatione facile derivantur:

V.
$$\sin(u-\lambda+\Omega) = 2\sin\frac{1}{2}i^3\sin u\cos(\lambda-\Omega)$$

VI.
$$\sin(u-\lambda+\Omega) = \tan \frac{1}{2}i \sin \delta \cos(\lambda-\Omega)$$

VII.
$$\sin(u-\lambda+\Omega) = \tan \theta \sin u$$

VIII.
$$\sin(u + \lambda - \Omega) = 2\cos \frac{1}{2}i^2\sin u\cos(\lambda - \Omega)$$

IX.
$$\sin(u + \lambda - \Omega) = \cot \frac{1}{2} i \sin \delta \cos(\lambda - \Omega)$$

X.
$$\sin(u + \lambda - \Omega) = \cot \frac{1}{2} i \tan \theta \cos u$$

Angulus $u - \lambda + \Omega$, quoties *i* est infra 90°, aut $u + \lambda - \Omega$, quoties *i* est ultra 90°, secundum usum vulgarem reductio ad eclipticam dicitur, est scilicet differentia inter longitudinem heliocentricam λ atque longitudinem in orbita quae secundum illum usum est $\Omega \pm u$ (secundum nostrum $\Omega + u$). Quoties inclinatio vel parva est vel a 180° parum diversa, ista reductio tamquam quantitas secundi ordinis spectari potest, et in hoc quidem casu praestabit, 6 primo per formulam III. ac dein λ per VII. aut X. computare, quo pacto praecisionem maiorem quam per formulam II. assequi licebit.

Demisso perpendiculo a loco corporis coelestis in spatio ad planum eclipti-

cae, distantia puncti intersectionis a Sole distantia curtata appellatur. Quam per r', radium vectorem autem per r designando, habebimus

XI.
$$r' = r \cos \theta$$
.

51.

Exempli caussa calculum in artt. 13. 14. inchoatum, cuius numeros planeta Iunonis suppeditaverat, ulterius continuabimus. Supra inveneramus anomaliam veram $315^{\circ}1'23''02$, logarithmum radii vectoris 0,3259877: sit iam $i=13^{\circ}6'44''10$, distantia perihelii a nodo = $241^{\circ}10'20''57$, adeoque $u=196^{\circ}11'43''59$; denique sit $\Omega = 171^{\circ}7'48''73$. Hinc habemus:

$\log \tan u \dots 9,4630573$	$\log \sin (\lambda - \Omega)$ 9,4348691 n
log cos i 9,9885266	log tang i 9,3672305
$\log \tan(\lambda - \Omega) \dots 9,4515839$	log tang 6 8,8020996 n
$\lambda - \Omega = 195^{\circ}47'40''25$	$6 = -3^{\circ}37'40''02$
λ = 6 55 28,98	$\log \cos 6 \dots 9,9991289$
$\log r$ 0,3259877	$\log \cos(\lambda - \Omega)$ 9,9832852 n
log cos 6 9,9991289	9,9824141 n
$\frac{\log r'\ldots\ldots\ldots0,3251166}{\log r'\ldots\ldots\ldots0}$	$\log \cos u \dots 9,9824141 n$

Calculus secundum formulas III. VII. ita se haberet:

$\log \sin u$.	9,4454714n	$\log \tan \frac{1}{2}i \dots 9,0604259$
$\log \sin i$.	9,3557570	log tang 6 8,8020995 n
logsin6.	8,8012284 n	$\log \cos u \dots 9,9824141 n$
6	= -3°37'40''02	$\frac{\log\sin\left(u-\lambda+\Omega\right).\ 7,8449395}{\log\sin\left(u-\lambda+\Omega\right)}$
		$u - \lambda + \Omega = 0^{\circ}24' 3''34$
		$\lambda - \Omega = 195 47 40,25$

52

Spectando i et u tamquam quantitates variabiles, differentiatio aequationis III. art. 50. suggerit:

 $\cot \operatorname{ang} \ell \operatorname{d} \ell = \cot \operatorname{ang} i \operatorname{d} i + \cot \operatorname{ang} u \operatorname{d} u$

sive

G. TH. M.

XII.
$$d\theta = \sin(\lambda - \Omega)di + \sin i \cos(\lambda - \Omega)du$$

8

Perinde per differentiationem aequationis I. obtinemus

XIII.
$$d(\lambda - \Omega) = -\tan \theta \cos(\lambda - \Omega) di + \frac{\cos \theta}{\cos \theta^2} du$$

Denique e differentiatione aequationis XI. prodit $dr' = \cos \theta dr - r \sin \theta d\theta$ sive

XIV.
$$dr' = \cos \theta dr - r \sin \theta \sin (\lambda - \Omega) di - r \sin \theta \sin i \cos (\lambda - \Omega) du$$

In hac ultima aequatione vel partes quae continent di et du per 206265" sunt dividendae, vel reliquae per hunc numerum multiplicandae, si mutationes ipsarum i et u in minutis secundis expressae supponuntur.

53.

Situs puncti cuiuscunque in spatio commodissime per distantias a tribus planis sub angulis rectis se secantibus determinatur. Assumendo pro planorum uno planum eclipticae, designandoque per z distantiam corporis coelestis ab hoc plano a parte boreali positive, ab australi negative sumendam, manifesto habebimus $z = r \tan \theta = r \sin \theta = r \sin i \sin u$. Plana duo reliqua, quae per Solem quoque ducta supponemus, in sphaera coelesti circulos maximos proiicient, qui eclipticam sub angulis rectis secabunt, quorumque adeo poli in ipsa ecliptica iacebunt et 90° ab invicem distabunt. Utriusque plani polum istum, a cuius parte distantiae positivae censentur, polum positivum appellamus. Sint itaque N et N+90° longitudines polorum positivorum, designenturque distantiae a planis quibus respondent respective per x, y. Tunc facile perspicietur haberi

$$\begin{aligned} x &= r' \cos \left(\lambda - N \right) = r \cos \theta \cos \left(\lambda - \Omega \right) \cos \left(N - \Omega \right) + r \cos \theta \sin \left(\lambda - \Omega \right) \sin \left(N - \Omega \right) \\ y &= r' \sin \left(\lambda - N \right) = r \cos \theta \sin \left(\lambda - \Omega \right) \cos \left(N - \Omega \right) - r \cos \theta \cos \left(\lambda - \Omega \right) \sin \left(N - \Omega \right) \end{aligned}$$

qui valores transeunt in

$$x = r\cos(N - \Omega)\cos u + r\cos i\sin(N - \Omega)\sin u$$

$$y = r\cos i\cos(N - \Omega)\sin u - r\sin(N - \Omega)\cos u$$

Quodsi itaque polus positivus plani ipsarum x in ipso nodo ascendente collocatur, ut sit $N = \Omega$, habebimus coordinatarum x, y, z expressiones simplicissimas

$$x = r \cos u$$

 $y = r \cos i \sin u$

 $z = r \sin i \sin u$

Si vero haec suppositio locum non habet, tamen formulae supra datae formam aeque fere commodam nanciscuntur per introductionem quatuor quantitatum auxiliarium a, b, A, B ita determinatarum ut habeatur

$$cos(N-\Omega) = a sin A$$

$$cos i sin(N-\Omega) = a cos A$$

$$-sin(N-\Omega) = b sin B$$

$$cos i cos(N-\Omega) = b cos B$$

(vid. art. 14. II.). Manifesto tunc erit

$$x = ra\sin(u + A)$$

$$y = rb\sin(u + B)$$

$$z = r\sin i \sin u$$

54.

Relationes motus ad eclipticam in praecc. explicatae manifesto perinde valebunt, etiamsi pro ecliptica quodvis aliud planum substituatur, si modo situs plani orbitae ad hoc planum innotuerit; expressiones longitudo et latitudo autem tunc supprimendae erunt. Offert itaque se problema: e situ cognito plani orbitae aliusque plani novi ad eclipticam derivare situm plani orbitae ad hoc novum planum. Sint $n\Omega$, $\Omega\Omega'$, $n\Omega'$ partes circulorum maximorum, quos planum eclipticae, planum orbitae planumque novum in sphaere coelesti proiiciunt (Fig. 2.). Ut inclinatio circuli secundi ad tertium locusque nodi ascendentis absque ambiguitate assignari possit, in circulo tertio alterutra directio eligi debebit tamquam ei analoga, quae in ecliptica est secundum ordinem signorum; sit haec in fig. nostra directio ab n versus Ω' . Praeterea duorum hemisphaeriorum, quae circulus $n \Omega'$ separat, alterum censere oportebit analogum hemisphaerio boreali, alterum australi: haec vero hemisphaeria sponte iam sunt distincta, quatenus id semper quasi boreale spectatur, quod in circulo secundum ordinem signorum progredienti*) a dextra est. In figura igitur nostra sunt Ω , n, Ω' nodi ascendentes circuli secundi in primo, tertii in primo, secundi in tertio; 180°—n \(\Omega \text{N}', \(\Omega n \Omega' \end{A}' \) $n_{\Omega}'_{\Omega}$ inclinationes secundi ad primum, tertii ad primum, secundi ad tertium. Pendet itaque problema nostrum a solutione trianguli sphaerici, ubi e latere uno

^{*)} Puta in interiori sphaerae superficie, quam figura nostra repraesentat.

angulisque adiacentibus reliqua sunt deducenda. Praecepta vulgaria, quae in trigonometria sphaerica pro hoc casu traduntur, tamquam abunde nota supprimimus: commodius autem methodus alia in usum vocatur ex aequationibus quibusdam petita, quae in libris nostris trigonometricis frustra quaeruntur. Ecce has aequationes, quibus in sequentibus frequenter utemur: designant a, b, c latera trianguli sphaerici atque A, B, C angulos illis resp. oppositos:

I.
$$\frac{\sin\frac{1}{2}(b-c)}{\sin\frac{1}{2}a} = \frac{\sin\frac{1}{2}(B-C)}{\cos\frac{1}{2}A}$$
II.
$$\frac{\sin\frac{1}{2}(b+c)}{\sin\frac{1}{2}a} = \frac{\cos\frac{1}{2}(B-C)}{\sin\frac{1}{2}A}$$
III.
$$\frac{\cos\frac{1}{2}(b-c)}{\cos\frac{1}{2}a} = \frac{\sin\frac{1}{2}(B+C)}{\cos\frac{1}{2}A}$$
IV.
$$\frac{\cos\frac{1}{2}(b+c)}{\cos\frac{1}{2}a} = \frac{\cos\frac{1}{2}(B+C)}{\sin\frac{1}{2}A}$$

Quamquam demonstrationem harum propositionum brevitatis caussa hic praeterire oporteat, quisque tamen earum veritatem in triangulis, quorum nec latera nec anguli 180° excedunt, haud difficile confirmare poterit. Quodsi quidem idea trianguli sphaerici in maxima generalitate concipitur, ut nec latera nec anguli ullis limitibus restringantur (quod plurima commoda insignia praestat, attamen quibusdam dilucidationibus praeliminaribus indiget), casus existere possunt, ubi in cunctis aequationibus praecedentibus signum mutare oportet; quoniam vero signa priora manifesto restituuntur, simulac unus angulorum vel unum laterum 360° augetur vel diminuitur, signa, qualia tradidimus, semper tuto retinere licebit, sive e latere angulisque adiacentibus reliqua determinanda sint, sive ex angulo lateribusque adiacentibus; semper enim vel quaesitorum valores ipsi vel 360° a veris diversi hisque adeo aequivalentes per formulas nostras elicientur. Dilucidationem copiosiorem huius argumenti ad aliam occasionem nobis reservamus: quod vero praecepta, quae tum pro solutione problematis nostri tum in aliis occasionibus formulis istis superstruemus, in omnibus casibus generaliter valent, tantisper adiumento inductionis rigorosae, i. e. completae omnium casuum enumerationis, haud difficile comprobari poterit.

55.

Designando ut supra longitudinem nodi ascendentis orbitae in ecliptica per Ω , inclinationem per i; porro longitudinem nodi ascendentis plani novi in eclip-

tica per n, inclinationem per e; distantiam nodi ascendentis orbitae in plano novo a nodo ascendente plani novi in ecliptica (arcum $n\Omega'$ in Fig. 2.) per Ω' , inclinationem orbitae ad planum novum per i; denique arcum ab Ω ad Ω' secundum directionem motus per Δ : erunt trianguli sphaerici nostri latera $\Omega - n$, Ω' , Δ , angulique oppositi i', 180°—i, ϵ . Hinc erit secundum formulas art. praec.

$$\sin \frac{1}{2}i'\sin \frac{1}{2}(\Omega' + \Delta) = \sin \frac{1}{2}(\Omega - n)\sin \frac{1}{2}(i + \epsilon)$$

$$\sin \frac{1}{2}i'\cos \frac{1}{2}(\Omega' + \Delta) = \cos \frac{1}{2}(\Omega - n)\sin \frac{1}{2}(i - \epsilon)$$

$$\cos \frac{1}{2}i'\sin \frac{1}{2}(\Omega' - \Delta) = \sin \frac{1}{2}(\Omega - n)\cos \frac{1}{2}(i + \epsilon)$$

$$\cos \frac{1}{2}i'\cos \frac{1}{2}(\Omega' - \Delta) = \cos \frac{1}{2}(\Omega - n)\cos \frac{1}{2}(i - \epsilon)$$

Duae primae aequationes suppeditabunt $\frac{1}{2}(\Omega' + \Delta)$ atque $\sin \frac{1}{2}i'$; duae reliquae $\frac{1}{2}(\Omega'-\Delta)$ at que $\cos\frac{1}{2}i'$; ex $\frac{1}{2}(\Omega'+\Delta)$ et $\frac{1}{2}(\Omega'-\Delta)$ demanabunt Ω' et Δ ; ex $\sin \frac{1}{2}i'$ aut $\cos \frac{1}{2}i'$ (quorum consensus calculo confirmando inservit) prodibit i'. Ambiguitas, utrum $\frac{1}{2}(\Omega' + \Delta)$ et $\frac{1}{2}(\Omega' - \Delta)$ inter 0 et 180° vel inter 180° et 360° accipere oporteat, ita tolletur, ut tum sin į i' tum cos į i' fiant positivi, quoniam per rei naturam i' infra 180° cadere debet.

56.

Praecepta praecedentia exemplo illustravisse haud inutile erit. Sit Ω $172^{\circ}28'$ 13''7, $i = 34^{\circ}38'$ 1''1; porro sit planum novum aequatori parallelum, adeoque $n = 180^{\circ}$; angulum ϵ , qui erit obliquitas eclipticae, statuimus = 23° 27′ 55″8. Habemus itaque

```
\Omega - n = -7^{\circ}31'46''3
                                           \frac{1}{2}(\Omega - n) = -3^{\circ}45'53''15
          i+\epsilon
                                       \frac{1}{2}(i-\epsilon)
i-\varepsilon
                   = 11 10 5,3
                                                            = 5 35 2,65
                                           \log \cos \frac{1}{2} (\Omega - n) \dots 9,9990618
\log \sin \frac{1}{2} (\Omega - n) \dots 8,8173026 n
\log \sin \frac{1}{2}(i+\epsilon) \dots 9,6862484
                                           \log \sin \frac{1}{2}(i-\epsilon) . . . 8,9881405
                                           \log \cos \frac{1}{2}(i-\epsilon) \dots 9,9979342
\log \cos \frac{1}{2}(i+\epsilon) \dots 9,9416108
```

Hinc fit

Obtinemus itaque $\frac{1}{2}i' = 5^{\circ}51'56''445$, $i' = 11^{\circ}43'52''89$, $\Omega' = 338^{\circ}30'50''43$, $\Delta = -14^{\circ}52'12''42$. Ceterum punctum n in sphaera coelesti manifesto respondet aequinoctio autumnali; quocirca distantia nodi ascendentis orbitae in aequatore ab aequinoctio vernali (eius rectascensio) erit $158^{\circ}30'50''43$.

Ad illustrationem art. 53. hoc exemplum adhuc ulterius continuabimus, formulasque pro coordinatis respectu trium planorum per Solem transcuntium evolvemus, quorum unum aequatori parallelum sit, duorumque reliquorum poli positivi in ascensione recta 0° et 90° sint siti: distantiae ab his planis sint resp. z, x, y. Iam si insuper distantia loci heliocentrici in sphaera coelesti a punctis Ω , Ω' resp. denotetur per u, u', fiet $u' = u - \Delta = u + 14^{\circ} 52' 12'' 42$, et quae in art. 53. per i, $N - \Omega$, u exprimebantur, hic erunt i', $180^{\circ} - \Omega'$, u'. Sic per formulas illic datas prodit

Habemus itaque

$$x = ar\sin(u' + 248^{\circ}55'22''97) = ar\sin(u + 263^{\circ}47'35''39)$$

 $y = br\sin(u' + 158 + 554,97) = br\sin(u + 172 + 58 + 7,39)$
 $z = cr\sin u' = cr\sin(u + 14 + 52 + 12,42)$

ubi $\log c = \log \sin i = 9,3081870.$

Alia solutio problematis hic tractati invenitur in von Zach Monatliche Correspondenz, Bd. IX. S. 385, Mai 1804 [Gauss' Werke, Bd. VI. S. 94].

57.

Corporis itaque coelestis distantia a quovis plano per Solem transcunte reduci poterit ad formam $kr\sin(v+K)$, designante v anomaliam veram, eritque k sinus inclinationis orbitae ad hoc planum, K distantia perihelii a nodo ascendente orbitae in eodem plano. Quatenus situs plani orbitae, lineaque apsidum in eo, nec non situs plani ad quod distantiae referentur pro constantibus haberi

possunt, etiam k et K constantes erunt. Frequentius tamen illa methodus in tali casu in usum vocabitur, ubi tertia saltem suppositio non permittitur, etiamsi perturbationes negligantur, quae primam atque secundam semper aliquatenus afficiunt. Illud evenit, quoties distantiae referuntur ad aequatorem, sive ad planum aequatorem sub angulo recto in rectascensione data secans: quum enim situs aequatoris propter praecessionem aequinoctiorum insuperque propter nutationem (siquidem de vero non de medio situ sermo fuerit) mutabilis sit, in hoc casu etiam k et K mutationibus, lentis utique, obnoxiae erunt. Computus harum mutationum per formulas differentiales absque difficultate eruendas absolvi potest: hic vero brevitatis caussa sufficiat, variationes differentiales ipsarum i, Ω' , Δ apposuisse, quatenus a variationibus ipsarum $\Omega-n$ atque ϵ pendent.

$$di' = \sin \epsilon \sin \Omega' d(\Omega - n) - \cos \Omega' d\epsilon$$

$$d\Omega' = \frac{\sin \epsilon \cos \Delta}{\sin \epsilon'} d(\Omega - n) + \frac{\sin \Omega'}{\tan \epsilon} d\epsilon$$

$$d\Delta = \frac{\sin \epsilon \cos \Omega'}{\sin \epsilon'} d(\Omega - n) + \frac{\sin \Omega'}{\sin \epsilon'} d\epsilon$$

Ceterum quoties id tantum agitur, ut plures corporis coelestis loci respectu talium planorum mutabilium calculentur, qui temporis intervallum mediocre complectuntur (e. g. unum annum), plerumque commodissimum erit, quantitates a, A, b, B, c, C pro duabus epochis intra quas illi cadunt reipsa calculare, ipsarumque mutationes pro singulis temporibus propositis ex illis per simplicem interpolationem eruere.

58.

Formulae nostrae pro distantiis a planis datis involvunt v et r: quoties has quantitates e tempore prius determinare oportet, partem operationum adhuc contrahere, atque sic laborem notabiliter allevare licebit. Derivari enim possunt illae distantiae per formulam persimplicem statim ex anomalia excentrica in ellipsi, vel e quantitate auxiliari F aut u in hyperbola, ita ut computo anomaliae verae radiique vectoris plane non sit opus. Mutetur scilicet expressio $kr\sin(v+K)$

L. pro ellipsi, retentis characteribus art. 8., in

$$ak\cos\varphi\cos K\sin E + ak\sin K(\cos E - e)$$

Determinando itaque l, L, \(\lambda\) per aequationes

$$ak \sin K = l \sin L$$

 $ak \cos \varphi \cos K = l \cos L$
 $-eak \sin K = -el \sin L = \lambda$

expressio nostra transit in $l\sin(E+L) + \lambda$, ubi l, L, λ constantes erunt, quatenus k, K, e pro constantibus habere licet; sin minus, de illarum mutationibus computandis eadem valebunt, quae in art. praec. monuimus.

Exempli caussa transformationem expressionis pro x in art. 56. inventi apponimus, ubi longitudinem perihelii = 121°17′34″4, φ = 14°13′31″97, $\log a = 0.4423790$ statuimus. Fit igitur distantia perihelii a nodo ascendente in ecliptica = 308°49′20″7 = u-v; hinc K=212°36′56″09. Habemus itaque

$\log ak \dots \dots 0,4411713$	$\log l \sin I$	0,1727600 n
$\log \sin K \dots 9,7315887 \mathrm{n}$	$\log l \cos L$	0,3531154 n
$\log ak\cos \varphi \dots 0,4276456$	$\overline{\text{unde } L}$	= 213°25′51″30
$\log \cos K$ 9,9254698n	$\log l$	= 0,4316627
_	$\log \lambda$	= 9,5632352
	λ	=+0,3657929

II. In hyperbolica formula $kr\sin(v+K)$ secundum art. 21. transit in $\lambda + \mu \tan F + \nu \sec F$, si statuitur $ebk\sin K = \lambda$, $bk\tan \phi \cos K = \mu$, $-bk\sin K = \nu$; manifesto eandem expressionem etiam sub formam $\frac{n\sin(F+N)+\nu}{\cos F}$ reducere licet. Si loco ipsius F quantitas auxiliaris u adhibita est, expressio $kr\sin(v+K)$ per art. 21. transibit in $\alpha + 6u + \frac{1}{u}$, ubi a, b, c0 determinantum per formulas

$$a = \lambda = ebk\sin K$$

$$6 = \frac{1}{2}(\nu + \mu) = -\frac{1}{2}ebk\sin(K - \psi)$$

$$\gamma = \frac{1}{2}(\nu - \mu) = -\frac{1}{2}ebk\sin(K + \psi)$$

III. In parabola, ubi anomalia vera e tempore immediate derivatur, nihil aliud supererit, nisi ut pro radio vectore valor suus substituatur. Denotando itaque distantiam in perihelio per q, exqressio $kr\sin(v+K)$ fit $=\frac{qk\sin v+K}{\cos\frac{1}{2}v^2}$.

59.

Praecepta pro determinandis distantiis a planis per Solem transeuntibus manifesto etiam ad distantias terrae applicare licet: hic vero simplicissimi tantum casus occurrere solent. Sit R distantia terrae a Sole, L longitudo heliocentrica terrae (quae 180° a longitudine geocentrica Solis differt), denique X, Y, Z distantiae terrae a tribus planis in Sole sub angulis rectis se secantibus. Iam si

I. Planum ipsarum Z est ipsa ecliptica, longitudinesque polorum planorum reliquorum, a quibus distantiae sunt X, Y, resp. N et $N+90^{\circ}$: erit

$$X = R\cos(L - N), Y = R\sin(L - N), Z = 0.$$

II. Si planum ipsarum Z aequatori parallelum est, atque rectascensiones polorum planorum reliquorum, a quibus distantiae sunt X, Y, resp. 0 et 90°, habebimus, obliquitate eclipticae per ϵ designata

$$X = R \cos L$$
, $Y = R \cos \epsilon \sin L$, $Z = R \sin \epsilon \sin L$.

Tabularum solarium recentissimarum editores, clarr. De Zach et de Lambre, latitudinis Solis rationem habere coeperunt, quae quantitas a perturbationibus reliquorum planetarum atque lunae producta vix unum minutum secundum attingere potest. Designando latitudinem heliocentricam terrae, quae latitudini Solis semper aequalis sed signo opposito affecta erit, per B, habebimus:

in casu I. in casu II.
$$X = R \cos B \cos (L - N)$$

$$X = R \cos B \sin (L - N)$$

$$X = R \cos B \cos L$$

$$Y = R \cos B \cos \epsilon \sin L - R \sin B \sin \epsilon$$

$$Z = R \sin B$$

$$Z = R \cos B \sin \epsilon \sin L + R \sin B \cos \epsilon$$

Pro $\cos B$ hic semper tuto substitui poterit 1, angulusque B in partibus radii expressus pro $\sin B$.

Coordinatae ita inventae ad centrum terrae referuntur: si ξ , η , ζ sunt distantiae puncti cuiuslibet in terrae superficie a tribus planis per centrum terrae ductis iisque quae per Solem ducta erant parallelis, distantiae illius puncti a planis per Solem transcuntibus manifesto erunt $X+\xi$, $Y+\eta$, $Z+\zeta$, valores coordinatarum ξ , η , ζ autem pro utroque casu facile determinantur sequenti modo. Sit ρ radius globi terrestris (sive sinus parallaxis horizontalis mediae Solis), λ longitudo puncti sphaerae coelestis, ubi recta a terrae centro ad punctum superficiei ductum proiicitur, δ eiusdem latitudo, α ascensio recta, δ declinatio, eritque α , th. M.

in casu I.	in casu II.
$\xi = \rho \cos \theta \cos (\lambda - N)$	ξ == ρ cos δ cos a
$ \eta = \rho \cos \theta \sin (\lambda - N) $	$\eta = \rho \cos \delta \sin \alpha$
$\zeta = \rho \sin \theta$	$\zeta = \rho \sin \delta$

Punctum illud sphaerae coelestis manifesto respondet ipsi zenith loci in superficie (siquidem terra tamquam sphaera spectatur), quocirca ipsius ascensio recta conveniet cum ascensione recta medii coeli sive cum tempore siderali in gradus converso, declinatio autem cum elevatione poli; si operae pretium esset, figurae terrestris sphaeroidicae rationem habere, pro δ elevationem poli correctam, atque pro ρ distantiam veram loci a centro terrae accipere oporteret, quae per regulas notas eruuntur. Ex α et δ longitudo et latitudo λ et δ per regulas notas infra quoque tradendas deducentur; ceterum patet, λ convenire cum longitudine nonagesimi, atque 90° — δ cum eiusdem altitudine.

60.

Designantibus x, y, z distantias corporis coelestis a tribus planis in Sols sub angulis rectis se secantibus; X, Y, Z distantias terrae (sive centri sive puncti in superficie) ab iisdem planis: patet, x-X, y-Y, z-Z fore distantias corporis coelestis a tribus planis illis parallele per terram ductis, hasque distantias ad distantiam corporis a terra ipsiusque locum geocentricum*), i. e. situm proiectionis rectae a terra ad ipsum ductae in sphaera coelesti, relationem eandem habituras, quam x, y, z habent ad distantiam a Sole locumque heliocentricum. Sit Δ distantia corporis coelestis a terra; concipiatur in sphaera coelesti perpendiculum a loco geocentrico ad circulum maximum, qui respondet plano distantiarum s, demissum, sitque a distantia intersectionis a polo positivo circuli maximi, qui respondet plano ipsarum x, denique sit b longitudo ipsius perpendiculi sive distantia loci geocentrici a circulo maximo distautiis s respondente. Tune erit b latitudo aut declinatio geocentrica, prout planum distantiarum s est coliptica aut sequator; contra a+N longitudo seu ascensio recta geocentrica, si N designat in casu priori longitudinem in posteriori ascensionem rectam poli plani distantiarum a. Quamobrem erit

[&]quot;In sensa latiori: proprie enim haec expressio ad eum casum refertur, ubi recta è terrae contro

 $x - X = \Delta \cos b \cos a$ $y - Y = \Delta \cos b \sin a$ $z - Z = \Delta \sin b$

Duae prieres aequationes dabunt a atque $\Delta \cos b$; quantitas posterior (quantitas posterior (quantitas posterior positivam fieri oportet) cum aequatione tertia combinata dabit b atque Δ .

61.

Tradidimus in praecedentibus methodum facillimam, corporis coelestis locum geogentricum respectu eclipticae seu aequatoris, a parallaxi liberum sive ca affectum, ac perinde a nutatione liberum seu ea affectum determinandi. Quod enim attinet ad nutationem, omnis differentia in eo versabitur, utrum aequatoria positionem mediam adoptemus an veram, adeoque, in casu priori longitudines ah acquinoctio medio, in posteriori a vero numeremus, sicuti in casu illo eclipticae obliquitas media, in hoc vera adhibenda est. Ceterum sponte elucet, quo plures abbreviationes in calculo coordinatarum introducantur, eo plures operationes praeliminares esse instituendas: quamobrem praestantia methodi supra explicatae, coordinatas immediate ex anomalia excentrica deducendi, tunc potissimum se manifestabit, ubi multos locos geocentricos determinare oportet: contra quoties unus tantum locus computandus esset, aut perpauci, neutiquam eperae pretium foret, laborem tot quantitates auxiliares calculandi suscipere. Quin potius in tali casu methodum vulgarem hand deserere praestabit, secundum quam ex anomalia excentrica deducitur vera atque radius vector; hinc locus heliocentricus respectu eclipticae; hinc longitudo et latitudo geocentrica, atque hinc tandem rectascensio et declinatio. Ne quid igitur hic deesse videatur, duas ultimas operationes adhuc breviter explicabimus.

62.

Sit corporis coelestis longitudo heliocentrica λ , latitudo 6; longitudo geocentrica l, latitudo b, distantia a Sole r, a terra Δ ; denique terrae longitudo heliocentrica L, latitudo B, distantia a Sole R. Quum non statuamus B=0, formulae nostrae ad eum quoque casum applicari poterunt, ubi loci heliocentrici et geocentricus non ad eclipticam sed ad quodvis aliud planum referuntur, modo denominationes longitudinis et latitudinis supprimere oportebit: praeterea parallances ratio statim haberi potest, si modo locus heliocentricus terrae non ad centrum

sed ad locum in superficie immediate refertur. Statuamus porro $r\cos 6 = r'$, $\Delta\cos b = \Delta'$, $R\cos B = R'$. Iam referendo locum corporis coelestis atque terrae in spatio ad tria plana, quorum unum sit ecliptica, secundumque et tertium polos suos habeant in longitudine N et $N+90^{\circ}$, protinus emergent aequationes sequentes:

$$\begin{split} r'\cos\left(\lambda-N\right)-R'\cos\left(L-N\right) &= \Delta'\cos\left(l-N\right) \\ r'\sin\left(\lambda-N\right)-R'\sin\left(L-N\right) &= \Delta'\sin\left(l-N\right) \\ r'\tan g \delta &= \Delta'\tan g \delta \end{split}$$

ubi angulus N omnino arbitrarius est. Aequatio prima et secunda statim determinabunt l-N atque Δ' , unde et ex tertia demanabit b; ex b et Δ' habebis Δ . Iam ut labor calculi quam commodissimus evadat, angulum arbitrarium N tribus modis sequentibus determinamus:

I. Statuendo N=L, faciemus $\frac{r'}{R'}\sin{(\lambda-L)}=P$, $\frac{r'}{R'}\cos{(\lambda-L)}-1=Q$ invenienturque l-L, $\frac{\Delta'}{R'}$ atque b per formulas

$$\begin{aligned} \tan(l-L) &= \frac{P}{Q} \\ \frac{\Delta'}{R'} &= \frac{P}{\sin(l-L)} = \frac{Q}{\cos(l-L)} \\ \tan g \, b &= \frac{\frac{P'}{R'} \tan g \, b - \tan g \, B}{\frac{\Delta'}{R'}} \end{aligned}$$

II. Statuendo $N=\lambda$, faciemus $\frac{R'}{r}\sin(\lambda-L)=P$, $1-\frac{R'}{r}\cos(\lambda-L)=Q$, eritque

$$\tan (l - \lambda) = \frac{P}{Q}$$

$$\frac{\Delta'}{r'} = \frac{P}{\sin(l - \lambda)} = \frac{Q}{\cos(l - \lambda)}$$

$$\tan b = \frac{\tan b - \frac{R'}{r'} \tan B}{\frac{\Delta'}{r'}}$$

III. Statuendo $N=\frac{1}{2}(\lambda+L)$, invenientur l atque Δ' per aequationes

$$\tan \left(l - \frac{1}{2}(\lambda + L)\right) = \frac{r' + R'}{r' - R'} \tan \left(\frac{1}{2}(\lambda - L)\right)$$

$$\Delta' = \frac{(r' + R') \sin \left(\frac{1}{2}(\lambda - L)\right)}{\sin \left(l - \frac{1}{2}(\lambda + L)\right)} = \frac{(r' - R') \cos \left(\frac{1}{2}(\lambda - L)\right)}{\cos \left(l - \frac{1}{2}(\lambda + L)\right)}$$

ac dein b per aequationem supra datam. Logarithmus fractionis $\frac{r'+B'}{r'-B'}$ com-

mode calculatur, si statuitur $\frac{R'}{r'} = \tan \zeta$, unde fit $\frac{r' + R'}{r' - R'} = \tan (45^{\circ} + \zeta)$. Hoc modo methodus III. ad determinationem ipsius l aliquanto brevior est, quam I. et II., ad operationes reliquas autem has illi praeferendas censemus.

63.

Exempli caussa calculum in art. 51. usque ad locum heliocentricum productum ulterius continuamus. Respondeat illi loco longitudo heliocentrica terrae $24^{\circ}19'49''05 = L$, atque $\log R = 9,9980979$; latitudinem B statuimus = 0. Habemus itaque $\lambda - L = -17^{\circ}24'20''07$, $\log R' = \log R$, adeoque secundum methodum II.,

$\log \frac{R'}{r'} \dots 9,6729813$	$\log(1-Q)$ 9,6526258
$\log \sin(\lambda - L)$ 9,4758653 n	1-Q = 0,4493925
$\log\cos(\lambda-L)$ 9,9796445	Q = 0,5506075
$\log P \dots 9,1488466 \mathrm{n}$	
$\log Q \ldots 9,7408421$	
Hinc $l-\lambda = -14^{\circ}21'6''75$	unde $l = 352^{\circ}34'22''23$
$\log \frac{\Delta'}{Z} \dots 9,7546117$	unde $\log \Delta'$ 0,0797283
log tang 6 8,8020996 n	$\log \cos b \cdot \dots 9,9973144$
$\log tang b \dots 9,0474879 n$	$\log \Delta$ 0,0824139
$b = -6^{\circ} 21'55''07$	•

Secundum methodum III. ex $\log \tan \zeta = 9,6729813$ habetur $\zeta = 25^{\circ}13'6''31$, adeoque

64.

Circa problema art. 62. sequentes adhuc observationes adiicimus.

I. Statuendo in aequatione secunda illic tradita $N = \lambda$, N = L, N = l, prodit $R'\sin(\lambda - L) = \Delta'\sin(l - \lambda)$; $r'\sin(\lambda - L) = \Delta'\sin(l - L)$; $r'\sin(l - \lambda) = R'\sin(l - L)$; aequatio prima aut secunda commode ad calculi confirmationem ap-

plicatur, si methodus I. aut II. art. 62. adhibita est. Ita habetur in exemplo nostro

$$\log \sin (\lambda - L) \dots 9,4758653 n \qquad l - L = -31^{\circ}45' \, 26^{\circ}32$$

$$\log \frac{\Delta'}{7} \dots 9,7546117$$

$$9,7212536 n$$

$$\log \sin (l - L) \dots 9,7212536 n$$

II. Sol duoque in plano eclipticae puncta, quae sunt projectiones loci corporis coelestis atque loci terrae, triangulum planum formant, cuius latera sunt Δ' , R', r', angulique oppositi vel $\lambda - L$, $l - \lambda$, $180^{\circ} - l + L$, vel $L - \lambda$, $\lambda - l_2$ $130^{\circ} - L + l$; ex hoc principio relationes in I. traditae sponte sequuntur.

III. Sol, locus verus corporis coelestis in spatio, locusque verus terrae aliud triangulum formabunt, cuius latera erunt Δ , R, r: angulis itaque his resp. oppositis per S, T, $180^{\circ}-S-T$ denotatis, erit $\frac{\sin S}{\Delta} = \frac{\sin T}{R} = \frac{\sin (S+T)}{r}$. Planum huius trianguli in sphaera coelesti circulum maximum proiiciet, in quo locus heliocentricus terrae, locus heliocentricus corporis coelestis eiusdemque locus geocentricus siti erunt, et quidem ita ut distantia secundi a primo, tertii a secundo, tertii a primo, secundum eandem directionem numeratae, resp. sint S, T, S+T.

IV. Vel ex notis variationibus differentialibus partium trianguli plani, vel aeque facile e formulis art. 62. sequentes aequationes differentiales derivantur:

$$dl = \frac{r'\cos(\lambda - l)}{\Delta'}d\lambda + \frac{\sin(\lambda - l)}{\Delta'}dr'$$

$$d\Delta' = -r'\sin(\lambda - l)d\lambda + \cos(\lambda - l)dr'$$

$$db = \frac{r'\cos b \sin b \sin(\lambda - l)}{\Delta'}d\lambda + \frac{r'\cos b^2}{\Delta'\cos b^2}d\theta + \frac{\cos b^2}{\Delta'}(\tan \theta - \cos(\lambda - l)\tan \theta)dr'$$

ubi partes quae continent dr', $d\Delta'$ per 206265 sunt multiplicandae, vel reliquae per 206265 dividendae, si mutationes angulorum in minutis secundis exprimuntur.

V. Problema inversum, seilicet determinatio loci heliocentrici e geocentrico problemati supra evoluto prorsus analogum est, quamobrem superfluum foret, illi amplius inhaerere. Omnes enim formulae art. 62. etiam pro illo problemate valent, si modo omnibus quantitatibus quae ad locum corporia coelestis heliocentricum spectant cum analogis iis quae ad geocentricum referuntur permutatis, pro L, B resp. substituitur $L+180^{\circ}$, -B, sive quod idem est pro loco heliocentrico terrae geocentricus solis accipitur.

65.

Etiamsi in eo casu, ubi ex elementis datis paucissimi tantum loci geocentrici sunt determinandi, omnia artificia supra tradita, per quae ab anomalia excentrica statim ad longitudinem et latitudinem geocentricam, vel adeo ad rectascensionem et declinationem, transire licet, in usum vocare vix operae pretium sit, quoniam compendia inde demanantia a multitudine quantitatum auxiliarium antea computandarum absorberentur: semper tamen contractio reductionis ad eclipticam cum calculo longitudinis et latitudinis geocentricae lucrum haud spernendum praestabit. Si enim pro plano coordinatarum z assumitur ipsa ecliptica, poli autem planorum coordinatarum x, y collocantur in longitudine Ω , $90^{\circ} + \Omega$, coordinatae facillime absque ulla quantitatum auxiliarium necessitate determinantur. Habetur scilicet

$$x = r \cos u$$
 $X = R' \cos (L - \Omega)$ $x - X = \Delta' \cos (l - \Omega)$
 $y = r \cos i \sin u$ $Y = R' \sin (L - \Omega)$ $y - Y = \Delta' \sin (l - \Omega)$
 $z = r \sin i \sin u$ $Z = R' \tan B$ $z - Z = \Delta' \tan b$

Quoties B = 0, est R' = R, Z = 0. Secundum has formulas exemplum nostrum numeris sequentibus absolvitur: $L = 0 = 213^{\circ}12'0''32$

$\log r$ 0,3259877	$\log R'$ 9,9980979
$\log \cos u \dots 9,9824141 \text{ n}$	$\log \cos(L-\Omega)$ 9,9226027 n
$\log \sin u \dots 9,4454714 \mathrm{n}$	$\log \sin(L-\Omega)$ 9,7384353 n
$\log x \dots 0,3084018 \mathrm{n}$	$\log X$ 9,9207006 n
$\log r \sin u \dots 9,7714591 $ n	
$\log \cos i \dots 9,9885266$	
$\log \sin i \dots 9,3557570$	
$\log y \dots 9,7599857 n$	$\log Y \dots 9,7365332n$
$\log z$	Z = 0
Hine fit	
$\log(x-X) \cdot \cdot \cdot \cdot \cdot 0,0795906 n$	
$\log(y-Y) \cdot \cdot \cdot \cdot \cdot \cdot \cdot 8,4807165 \text{ n}$	
unde $(l-\Omega)$ = 181°26'33"49	$l = 352^{\circ}34'22''22$
$\log \Delta'$ 0,0797283	
log tang b	ð <u></u> 6 21 85,00

66.

$$\sin (45^{\circ} - \frac{1}{2} \delta) \sin \frac{1}{2} (E + a) = \sin (45^{\circ} + \frac{1}{2} l) \sin (45^{\circ} - \frac{1}{2} (\epsilon + b))$$

$$\sin (45^{\circ} - \frac{1}{2} \delta) \cos \frac{1}{2} (E + a) = \cos (45^{\circ} + \frac{1}{2} l) \cos (45^{\circ} - \frac{1}{2} (\epsilon - b))$$

$$\cos (45^{\circ} - \frac{1}{2} \delta) \sin \frac{1}{2} (E - a) = \cos (45^{\circ} + \frac{1}{2} l) \sin (45^{\circ} - \frac{1}{2} (\epsilon - b))$$

$$\cos (45^{\circ} - \frac{1}{2} \delta) \cos \frac{1}{2} (E - a) = \sin (45^{\circ} + \frac{1}{2} l) \cos (45^{\circ} - \frac{1}{2} (\epsilon + b))$$

Aequationes duae primae dabunt $\frac{1}{2}(E+a)$ atque $\sin(45^{\circ}-\frac{1}{2}\delta)$; duae ultimae $\frac{1}{2}(E-a)$ atque $\cos(45^{\circ}-\frac{1}{2}\delta)$; ex $\frac{1}{2}(E+a)$ et $\frac{1}{2}(E-a)$ habebitur a simulque E; ex $\sin(45^{\circ}-\frac{1}{2}\delta)$ aut $\cos(45^{\circ}-\frac{1}{2}\delta)$, quorum consensus calculo confirmando inserviet, determinabitur $45^{\circ}-\frac{1}{2}\delta$ atque hinc δ . Determinatio angulorum $\frac{1}{2}(E+a)$, $\frac{1}{2}(E-a)$ per tangentes suos ambiguitati non est obnoxia, quoniam tum sinus tum cosinus anguli $45^{\circ}-\frac{1}{2}\delta$ positivus evadere debet.

Mutationes differentiales quantitatum a, δ e mutationibus ipsarum l, b secundum principia nota ita inveniuntur:

$$da = \frac{\sin E \cos b}{\cos \delta} dl - \frac{\cos E}{\cos \delta} db$$
$$d\delta = \cos E \cos b dl + \sin E db$$

67.

Methodus alia, problema art. praec. solvendi, ex aequationibus

$$\cos \epsilon \sin l = \sin \epsilon \tan b + \cos l \tan a$$

 $\sin \delta = \cos \epsilon \sin b + \sin \epsilon \cos b \sin l$
 $\cos b \cos l = \cos a \cos \delta$

petitur. Determinetur angulus auxiliaris θ per aequationem

$$tang \theta = \frac{\tan g b}{\sin l}, \text{ eritque}$$

$$tang \alpha = \frac{\cos (\epsilon + \theta) \tan g l}{\cos \theta}$$

$$tang \delta = \sin \alpha \tan g (\epsilon + \theta)$$

quibus aequationibus ad calculi confirmationem adiici potest

$$\cos \delta = \frac{\cos b \cos l}{\cos \alpha}$$
 sive $\cos \delta = \frac{\cos (\epsilon + \theta) \cos b \sin l}{\cos \theta \sin \alpha}$

Ambiguitas in determinatione ipsius α per aequ. secundam eo tollitur, quod $\cos \alpha$ et $\cos l$ eadem signa habere debent.

Hacc methodus minus expedita est, si praeter a et b etiam b desideratur: formula commodissima ad hunc angulum determinandum tunc erit b est b est

68.

Solutio problematis inversi, puta determinatio longitudinis et latitudinis ex ascensione recta et declinatione, eidem triangulo sphaerico superstruitur: formulae itaque supra traditae huic fini accommodabuntur per solam permutationem ipsius b cum δ , ipsiusque l cum —a. Etiam has formulas, propter usum frequentem, hic apposuisse haud pigebit:

Secundam methodum art. 66. habemus

G. TH. M.

$$\sin(45^{\circ} - \frac{1}{2}b)\sin\frac{1}{2}(E-l) = \cos(45^{\circ} + \frac{1}{2}a)\sin(45^{\circ} - \frac{1}{2}(\epsilon + \delta))$$

$$\sin(45^{\circ} - \frac{1}{2}b)\cos\frac{1}{2}(E-l) = \sin(45^{\circ} + \frac{1}{2}a)\cos(45^{\circ} - \frac{1}{2}(\epsilon - \delta))$$

$$\cos(45^{\circ} - \frac{1}{2}b)\sin\frac{1}{2}(E+l) = \sin(45^{\circ} + \frac{1}{2}a)\sin(45^{\circ} - \frac{1}{2}(\epsilon - \delta))$$

$$\cos(45^{\circ} - \frac{1}{2}b)\cos\frac{1}{2}(E+l) = \cos(45^{\circ} + \frac{1}{2}a)\cos(45^{\circ} - \frac{1}{2}(\epsilon + \delta))$$

$$10$$

Contra ad instar methodi alterius art. 67. determinabimus angulum auxiliarem ζ per aequationem

$$ang \zeta = rac{ ang \delta}{\sin \alpha}, ext{ eritque} \ ang l = rac{\cos(\zeta - \epsilon) ang \alpha}{\cos \zeta} \ ang b = \sin l ang (\zeta - \epsilon)$$

Ad calculi confirmationem adiungi poterit

$$\cos b = \frac{\cos \delta \cos \alpha}{\cos l} = \frac{\cos (\zeta - \epsilon) \cos \delta \sin \alpha}{\cos \zeta \sin l}$$

Pro determinatione ipsius E inservient perinde ut in art. praec. aequationes

$$\cos E = \frac{\sin \epsilon \cos \alpha}{\cos b} = \frac{\sin \epsilon \cos l}{\cos \delta}$$
$$\cos b \cos \delta \sin E = \cos \epsilon - \sin b \sin \delta$$

Variationes differentiales ipsarum l, b hisce formulis exhibebuntur:

$$dl = \frac{\sin E \cos \delta}{\cos b} d\alpha + \frac{\cos E}{\cos b} d\delta$$
$$db = -\cos E \cos \delta d\alpha + \sin E d\delta$$

69.

Exempli caussa ex ascensione recta $355^{\circ}43'45''30 = a$, declinatione $-8^{\circ}47'25''$ = δ , obliquitate eclipticae $23^{\circ}27'59''26 = \epsilon$ longitudinem et latitudinem computabimus. Est igitur $45^{\circ}+\frac{1}{2}a = 220^{\circ}51'52''65$, $45^{\circ}-\frac{1}{2}(\epsilon+\delta) = 37^{\circ}39'42''87$, $45^{\circ}-\frac{1}{2}(\epsilon-\delta) = 28^{\circ}52'17''87$; hinc porro

$$\log \cos (45^{\circ} + \frac{1}{2}a) \dots 9,8650820 \text{ n} \qquad \log \sin (45^{\circ} + \frac{1}{2}a) \dots 9,8326803 \text{ n}$$

$$\log \sin (45^{\circ} - \frac{1}{2}(\epsilon + \delta)) \dots 9,7860418 \qquad \log \sin (45^{\circ} - \frac{1}{2}(\epsilon - \delta)) \dots 9,6838112$$

$$\log \cos (45^{\circ} - \frac{1}{2}(\epsilon + \delta)) \dots 9,8985222 \qquad \log \cos (45^{\circ} - \frac{1}{2}(\epsilon - \delta)) \dots 9,9423572$$

$$\log \sin (45^{\circ} - \frac{1}{2}b) \sin \frac{1}{2}(E - l) \dots \dots 9,6511238 \text{ n}$$

$$\log \sin (45^{\circ} - \frac{1}{2}b) \cos \frac{1}{2}(E - l) \dots 9,7750375 \text{ n}$$

$$\text{unde } \frac{1}{2}(E - l) = 216^{\circ}56'5''39; \qquad \log \sin (45^{\circ} - \frac{1}{2}b) = 9,8723171$$

$$\log \cos (45^{\circ} - \frac{1}{2}b) \sin \frac{1}{2}(E + l) \dots 9,5164915 \text{ n}$$

$$\log \cos (45^{\circ} - \frac{1}{2}b) \cos \frac{1}{2}(E + l) \dots 9,7636042 \text{ n}$$

$$\text{unde } \frac{1}{2}(E + l) = 249^{\circ}30'49''94; \qquad \log \cos (45^{\circ} - \frac{1}{2}b) = 9,8239669$$

Fit itaque $E=426^{\circ}26'55''33$, $l=-7^{\circ}25'15''45$, sive quod eodem redit $E=66^{\circ}26'55''33$, $l=352^{\circ}34'44''55$; angulus $45^{\circ}-16$ e logarithmo sinus habetur $48^{\circ}10'58''12$, e logarithmo cosinus $48^{\circ}10'58''17$, e tangente, cuius logarithmus illorum differentia est, $48^{\circ}10'58''14$; hinc $b=-6^{\circ}21'56''28$.

Secundum methodum alteram calculus ita se habet:

$\log \tan \delta \ldots 9,1893062 n$	C. $\log \cos \zeta$ 0,3626190
log sin a 8,8719792 n	$\log \cos(\zeta - \epsilon) \dots 9,8789703$
$\log \tan \zeta \ldots 0,3173270$	log tang a 8,8731869 n
$\zeta = 64^{\circ}17'6''83$	$\log \tan l \dots 9,1147762 n$
$\zeta - \epsilon = 40 \ 49 \ 7,57$	$l = 352^{\circ}34'44''50$
	$\log \sin l \dots 9,1111232 n$
	$\log \tan g(\zeta - \epsilon) \dots 9,9363874$
	log tang b 9,0475106 n
	$b = -6^{\circ}21'56''26$

Ad determinandum angulum E habemus calculum duplicem:

log sin a 9,6001144	logsing 9,6001144
$\log \cos \alpha \dots 9,9987924$	$\log \cos l \dots 9,9963470$
$\text{C.}\log\cos b \ldots \ldots 0,0026859$	$C. \log \cos \delta \dots 0,0051313$
$\log \cos E$ 9,6015927	$\log \cos E$ 9,6015927
unde $E = 66^{\circ}26'55''35$	

76.

Ne quid corum, quae ad calculum locorum geocentricorum requiruntur, hio desideretur, quaedam adhuc de parallaxi atque aberratione adiicienda sunt. Methodum quidem supra iam descripsimus, secundam quam locus parallaxi affectus, i. e. cuilibet in superficie terrae puncto respondens, immediate maximaque facilitate determinari potest: sed quum in methodo vulgari in art. 62. et sequ. tradita locus geocentricus ad terrae centrum referri soleat, in quo casu a parallaxi hiber dicitur, methodum peculiarem pro determinanda parallaxi, quae est inter utrumque locum differentia, adiicere oportebit.

Sint corporis coelestis longitudo et latitudo geocentrica respectu centri terrae \(\lambda \), \(6 \); eaedem respectu puncti cuiusvis in superficie terme \(l \), \(b \); distantia cor10*

poris a terrae centro r, a puncto superficiei Δ ; denique respondeat in sphaera coelesti ipsi zenith huius puncti longitudo L, latitudo B, designeturque radius terrae per R. Sponte iam patet, omnes aequationes art. 62. etiam hic locum esse habituras; sed notabiliter contrahi poterunt, quum R hic exprimat quantitatem prae r et Δ tantum non evanescentem. Ceterum eaedem aequationes manifesto etiamnum valebunt, si λ , l, L pro longitudinibus ascensiones rectas, atque δ , b, B pro latitudinibus declinationes exprimunt. In hoc casu $l-\lambda$, $b-\delta$ erunt parallaxes ascensionis rectae et declinationis, in illo vero parallaxes longitudinis et latitudinis. Quodsi iam R ut quantitas primi ordinis tractatur, eiusdem ordinis erunt $l-\lambda$, $b-\delta$, $\Delta-r$, neglectisque ordinibus superioribus e formulis art. 62. facile derivabitur:

I.
$$l-\lambda = \frac{R\cos B \sin(\lambda - L)}{r\cos 6}$$

II. $b-6 = \frac{R\cos B \cos 6}{r}$ (tangé $\cos(\lambda - L) - \tan B$)

III. $\Delta - r = -R\cos B \sin 6$ (cotangé $\cos(\lambda - L) + \tan B$)

Accipiendo angulum auxiliarem θ ita ut fiat $\tan \theta = \frac{\tan B}{\cos(\lambda - L)}$, aequationes II. III. formam sequentem nanciscuntur:

II.
$$b-6 = \frac{R\cos B\cos(\lambda - L)\sin(6-\theta)}{r\cos\theta} = \frac{R\sin B\sin(6-\theta)}{r\sin\theta}$$
III.
$$\Delta - r = \frac{R\cos B\cos(\lambda - L)\cos(6-\theta)}{\cos\theta} = \frac{R\sin B\cos(6-\theta)}{\sin\theta}$$

Ceterum patet, ut in I. et II. $l-\lambda$ et b-6 in minutis secundis obtineantur, pro R accipi debere parallaxem mediam solarem in minutis secundis expressam; in III. vero pro R eadem parallaxis per 206265" divisa accipienda est. Tandem nullo praecisionis detrimento in valoribus parallaxium pro r, λ , δ , adhibere licebit Δ , l, b, quoties in problemate inverso e loco parallaxi affecto locum ab eadem liberum determinare oportet.

Exemplum. Sit ascensio recta Solis pro centro terrae $220^{\circ}46'44''65 = \lambda$, declinatio $-15^{\circ}49'43''94 = 6$, distantia 0,9904311 = r; porro tempus sidereum in aliquo loco in terrae superficie gradibus expressa $78^{\circ}20'38'' = L$, loci elevatio poli $45^{\circ}27'57'' = B$, parallaxis media solaris 8''6 = R. Quaeritur locus Solis ex hoc loco visus, distantiaque ab eodem.

$\log R$ 0,93450	$\log R$ 0,93450
$\log \cos B$ 9,84593	$\log \sin B$ 9,85299
$C.\log r$ 0,00418	$C.\log r$ 0,00418
C. log cos6 0,01679	$C.\log\sin\theta$ 0,10317
$\log \sin (\lambda - L)$ 9,78508	$\log \sin (\theta - \theta) \dots 9,77152 n$
$\log(l-\lambda) \dots 0,58648$	$\frac{\log(b-6)\ldots\ldots0,66636\mathrm{n}}{}$
$l-\lambda = + 3''86$	b — 6 = — 4"64
$l = 220^{\circ}46'48''51$	$b = -15^{\circ}49'48''58$
$\log ang B \dots \dots 0,00706$	$\log(b-6)$ 0,66636 n
$\log \cos(\lambda - L)$ 9,89909 n	$\log \cot(6-\theta) \dots 0,13522$
$\log \tan \theta \dots 0,10797 n$	$\log r$ 9,99582
$\theta = 127^{\circ}57' 0''$	$\log 1'' \dots 4,68557$
$6 - \theta = -143^{\circ}46'44''$	$\frac{\log(r-\Delta) \dots 5,48297 \mathrm{n}}{}$
	$r-\Delta = -0.0000304$
	$r-\Delta = -0.0000304$ $\Delta = 0.9904615$

71.

Aberratio fixarum, nec non pars ea aberrationis planetarum et cometarum quae soli motui terrae debetur, oritur inde, quod cum terra integra tubus movetur, dum radius luminis ipsius axem opticum percurrit. Corporis coelestis locus observatus (qui et apparens seu aberratione affectus dicitur) determinatur per situm axis optici telescopii ita collocati, ut radius luminis ab illo egressus in via sua utramque huius axis extremitatem attingat: hic autem situs diversus est a situ vero radii luminis in spatio. Distinguamus duo temporis momenta t, t', ubi radius luminis extremitatem anteriorem (centrum vitri obiectivi), ubique posteriorem (focum vitri obiectivi) attingit; sint harum extremitatum loci in spatio pro momento priori a, b; pro posteriori a', b'. Tunc patet, rectam ab' esse situm verum radii in spatio, loco apparenti autem respondere rectam ab vel a'b' (quas pro parallelis habere licet): nullo porro negotio perspicitur, locum apparentem a longitudine tubi non pendere. Differentia inter situm rectarum b'a, b a est aberratio qualis pro stellis fixis locum habet: modum eam calculandi hic tamquam notum silentio transimus. Pro stellis errantibus autem ista differentia nondum est aberratio completa: planeta scilicet, dum radius ex ipso egressus ad terram descendit, locum suum ipse mutat, quapropter situs huius radii non respondet loca geocentrico vero tempore observationis. Supponamus, radium luminis qui tempore t in tubum impingit tempore T e planeta egressum esse; designeturque locus planetae in spatio tempore T per P, tempore t autem per p; denique sit A locus extremitatis antecedentis axis tubi pro tempore T. Tunc patet

- 1° rectam AP exhibere locum verum planetae tempore T.
- 2° rectam ap autem locum verum tempore t.
- 3° rectam ba vel b'a' locum apparentem tempore t vel t' (quorum differentia ceu quantitas infinite parva spectari potest).
- 4° rectam b'a eundem locum apparentem ab aberratione fixarum purgatum.

Iam puncta P, a, b' in linea recta iacent, eruntque partes Pa, ab' proportionales temporum intervallis t-T, t'-t, siquidem motus luminis celeritate uniformi peragitur. Temporis intervallum t'-T propter immensam luminis velocitatem semper est perparvum, intra quod motum terrae tanquam rectilineum ac celeritate uniformi peractum supponere licet: sic etiam A, a, a' in directum iacebunt, partesque Aa, aa' quoque intervallis t-T, t'-t proportionales erunt. Hinc facile concluditur, rectas AP, b'a' esse paralles, adeoque locum primum cum tertio identicum.

Tempus t-T erit productum distantiae Pa in 493°, intra quod lumen percurrit distantiam mediam terrae a Sole, quam pro unitate accepimus. In hec calculo pro distantia Pa etiam PA vel pa accipere licebit, quum differentia nullius momenti esse possit.

Ex his principiis tres demanant methodi, planetae vel cometae locum apparentem pro quovis tempore t determinandi, e quibus modo hanc modo illam praeferre conveniet.

- I. Subtrahatur a tempore proposito tempus intra quod lumen a planeta ad terram descendit: sic prodibit tempus reductum T, pro quo locus verus more solito computatus cum apparente pro t identicus erit. Ad computum reductionis temporis t-T distantiam a terra novisse oportet: plerumque ad hunc finem subsidia commoda non descrunt e. g. per ephemeridem vel levi tantum calamo calculatam, alioquin distantiam veram pro tempore t more solito sed neglecta praecisione nimia per calculum praeliminarem determinare sufficiet.
 - II. Computetur pro tempore proposito t locus verus atque distantia, ex hac

reductio temporis t-T, atque hinc adiumento motus diurni (in longitudine et latitudine vel in ascensione recta et declinatione) reductio loci veri ad tempus T.

III. Computetur locus heliocentricus terrae quidem pro tempore t: locus heliocentricus planetae autem pro tempore T: dein ex horum combinatione more solito locus geocentricus planetae, qui aberratione fixarum (per methodum notam eruenda sive e tabulis depromenda) auctus locum apparentem quaesitum suppeditabit.

Methodus secunda, quae vulgo in usum vocari solet, eo quidem prae reliquis se commendat, quod ad distantiam determinandam numquam opus est calculo duplici, attamen eo laborat incommodo, quod adhiberi nequit, nisi plures loci vicini vel calculentur vel ex observationibus iam innotuerint; alioquin enim motum diurnum pro dato habere non liceret.

Incommodum, quo methodus prima et tertia premuntur, plane tollitur quoties plures loci sibi vicini calculandi sunt. Quam primum enim pro quibusdam distantiae iam innotuerunt, percommode et praecisione sufficiente distantias proxime sequentes per subsidia trita concludere licebit. Ceterum si distantia est nota, methodus prima tertiae ideo plerumque praeferenda erit, quod aberratione fixarum opus non habet; sin vero ad calculum duplicem refugiendum est, tertia eo se commendat, quod in calculo altero locus terrae saltem retinendus est.

Sponte iam se offerunt, quae ad problema inversum requiruntur, puta si e loco apparente verus derivandus est. Scilicet secundum methodum I. retinebis locum ipsum immutatum, sed tempus t, cui locus propositus ut apparens respondet, convertes in reductum T, cui idem tamquam verus respondebit. Secundum methodum II. retinebis tempus t, sed loco proposito adiicies motum intra tempus t-T, quasi istum ad tempus t+(t-T) reducere velles. Secundum methodum III. locum propositum ab aberratione fixarum liberatum tamquam locum verum pro tempore T considerabis, sed terrae locus verus tempori t respondens retinendus est ac si ad istud pertineret. Utilitas methodi tertiae in Libro secundo clarius chacebit.

Ceterum, ne quid desit, adhuc observamus, locum Solis ab aberratione perinde affici ac locum planetae: sed quoniam tum distantia a terra tum motus diurnus propemodum sunt constantes, aberratio ipsa semper valorem tantum non constantem obtinet motui medio solis in 493° aequalem, adeoque = 20"25, quae quantitas a longitudine vera subtrahenda est ut apparens prodeat. Valor aberrationis exactus est in ratione composita distantiae et motus diurni, sive quod eodem redit in ratione inversa distantiae, unde ille valor medius in apogeo 0"34 diminuendus in perigeo tantundem augendus esset. Ceterum tabulae nostrae solares aberrationem constantem — 20"25 iam includunt; quapropter ad obtinendum longitudinem veram tabulari 20"25 addere oportebit.

72.

Finem huic Sectioni imponent quaedam problemata, quae in determinatione orbitarum planetarum et cometarum usum frequentem praestant. Ac primo quidem ad parallaxem reveniemus, a qua locum observatum liberare in art. 70. docuimus. Talis reductio ad centrum terrae, quum planetae distantiam a terra proxime saltem notam supponat, institui nequit, quoties planetae observati orbita omnino adhuc incognita est. Attamen in hoc quoque casu finem saltem eundem assequi licet, cuius caussa reductio ad centrum terrae suscipitur, ideo scilicet, quod hoc centro in plano eclipticae iacente vel iacere supposito plures formulae maiorem simplicitatem et concinnitatem nanciscuntur, quam si observatio ad punctum extra planum eclipticae referretur. Hoc itaque respectu nihil interest, utrum observatio ad centrum terrae an ad quodvis aliud punctum in plano eclipticae reducatur. Iam patet, si ad hunc finem punctum intersectionis plani eclipticae cum recta a planeta ad locum verum observationis ducta eligatur, observationem ipsam nulla prorsus reductione opus habere, quum planeta ex omnibus punctis illius rectae perinde videatur *): quamobrem hoc punctum quasi locum fictum observationis pro vero substituere licebit. Situm illius puncti sequenti modo determinamus.

Sit corporis coelestis longitudo λ , latitudo δ , distantia Δ , omnia respectu loci veri observationis in terrae superficie, cuius zenith respondeat longitudo l, latitudo b; porro sit π semidiameter terrae, L longitudo heliocentrica centri terrae, R eiusdem latitudo, R eiusdem distantia a Sole; denique L' longitudo heliocentrica loci ficti, R' ipsius distantia a Sole, $\Delta + \delta$ ipsius distantia a corpore coelesti. Tunc nullo negotio eruentur aequationes sequentes, denotante R0 angulum arbitrarium:

^{*)} Si ultima praecisio desideraretur, intervallum temporis, intra quod lumen a vero loco observationis ad fictum seu ab hoc ad illum delabitur, tempori proposito vel addere vel inde subducere oporteret, siquidem de locis aberratione affectis agitur: sed haec differentia vix ullius momenti esse potest, nisi latitudo perparva fuerit.

$$R'\cos(L'-N) + \delta\cos\delta\cos(\lambda - N) = R\cos B\cos(L-N) + \pi\cos b\cos(l-N)$$

$$R'\sin(L'-N) + \delta\cos\delta\sin(\lambda - N) = R\cos B\sin(L-N) + \pi\cos b\sin(l-N)$$

$$\delta\sin\delta = R\sin B + \pi\sin b$$

Statuendo itaque

G. TH. M.

I.
$$(R \sin B + \pi \sin b) \cot \log b = \mu$$
, erit
II. $R' \cos (L' - N) = R \cos B \cos (L - N) + \pi \cos b \cos (l - N) - \mu \cos (\lambda - N)$
III. $R' \sin (L' - N) = R \cos B \sin (L - N) + \pi \cos b \sin (l - N) - \mu \sin (\lambda - N)$
IV. $\delta = \frac{\mu}{\cos b}$

Ex aequationibus II. III. determinari poterunt R' et L', ex IV. intervallum temporis tempori observationis addendum quod erit minutis secundis $==493\delta$.

Hae aequationes sunt exactae et generales, poteruntque tunc quoque adhiberi, ubi pro plano ecliptica aequatore substituto L, L', l, λ designant ascensiones rectas, B, b, 6 declinationes. Sed in casu de quo hic potissimum agimus, scilicet ubi locus fictus in ecliptica situs esse debet, exiguitas quantitatum $B, \pi, L'-L$ adhuc quandam formularum praecedentium contractionem permittit. Poterit enim pro π assumi parallaxis media solaris, B pro $\sin B$, 1 pro $\cos B$ et $\cos(L'-L)$, L'-L pro $\sin(L'-L)$. Ita faciendo N=L, formulae praecedentes assumunt formam sequentem:

I.
$$\mu = (RB + \pi \sin b) \operatorname{cotang} 6$$
II.
$$R' = R + \pi \cos b \cos (l - L) - \mu \cos (\lambda - L)$$
III.
$$L' - L = \frac{\pi \cos b \sin (l - L) - \mu \sin (\lambda - L)}{R'}$$

Proprie quidem hic B, π , L-L in partibus radii exprimendi sunt; sed patet, si illi anguli in minutis secundis exprimantur, aequationes I. III. sine mutatione retineri posse, pro II. autem substitui debere

$$R' = R + \frac{\pi \cos b \cos (l-L) - \mu \cos (\lambda - L)}{206265''}$$

Ceterum in formula III. pro denominatore R' absque errore sensibili semper adhibere licebit R. Reductio temporis autem, angulis in minutis secundis expressis, fiet

$$= \frac{493^{\circ}.\,\mu}{206265''.\cos 6}$$

11

73.

		13	'•	
Ex	emplum. Sit $\lambda =$	354°44′54″, €	$3 = -4^{\circ}59'32'', l = 24^{\circ}29'$	b', b = 46°53',
$L=12^{\circ}$	28'54'', B = +0''	49, $R = 0.99$	988839, $\pi = 8^{''}60$. Ecce	iam calculum:
log	gR	. 9,99951	$\log \pi$	0,93450
log	$gB.\ldots$. 9,69020	$\log \sin b$	9,86330
			$\log \pi \sin b \dots$	
Hine log	$g(BR+\pi\sin b)$. 0,83040		
log	cotange	. 1,05873 n		
log	gμ	. 1,88913 n		
log	gπ	. 0,93450	$\log \mu$	1,88913 n
log	$ \cos b \ldots $. 9,83473	$\log 1$ "	4,68557
log	g 1″	. 4,68557	$\log\cos(\lambda-L)$	9,97886
log	$g\cos(l-L)$. 9,99040		6,55356 n
		5,44520	numerus — 0	,0003577
nu	merus +	0,0000279		
Hinc col	ligitur $R' = R + \epsilon$	0,0003856 =	= 0,9992695. Porro erit	
log	$g\pi\cos b$. 0,76923	$\log \mu$	1,88913 n
· log	$g\sin(l-L)$. 9,31794	$\log \sin(\lambda - L) \dots$	9,48371 n
Co	$\operatorname{mpl.log} R' \ldots$. 0,00032	$C. \log R' \ldots \ldots$	0,00032
		0,08749		1,37316
nu	merus	+1"22	numerus	+23''61
Unde col	lligitur $L' = 1$	L-22"39.	Denique habetur	•
log	3μ	. 1,88913n		
C.	log 206265	. 4,68557		
log	g 493	. 2,69285		
C.	log cos 6	. 0,00165		
		9,26920 n		
unde red	luctio temporis =	= -0°186,	adeoque nullius momenti.	

74.

Problema aliud, e corporis coelestis loco geocentrico atque situ plani orbitas eius locum heliocentricum in orbita derivare, eatenus praecedenti affine est, quod quoque ab intersectione rectae inter terram et corpus coeleste ductae cum plano

positione dato pendet. Solutio commodissime petitur e formulis art. 65., ubi characterum significatio haec erat:

L longitudo terrae, R distantia a Sole, latitudinem B statuimus = 0 (quum casus, ubi non est = 0, ad hunc facile reduci possit per art. 72), unde R' = R; l corporis coelestis longitudo geocentrica, b latitudo, Δ distantia a terra, r distantia a Sole, u argumentum latitudinis, Ω longitudo nodi assendentis, i inclinatio orbitae. Ita habemus aequationes

I.
$$r\cos u - R\cos(L-\Omega) = \Delta\cos b\cos(l-\Omega)$$

II.
$$r\cos i \sin u - R\sin(L - \Omega) = \Delta \cos b \sin(l - \Omega)$$

III.
$$r \sin i \sin u = \Delta \sin b$$

Multiplicando aequationem I. per $\sin(L-\Omega)\sin b$, II. per $-\cos(L-\Omega)\sin b$, III. per $-\sin(L-l)\cos b$, fit additis productis

$$\cos u \sin(L - \Omega) \sin b - \sin u \cos i \cos(L - \Omega) \sin b - \sin u \sin i \sin(L - l) \cos b = 0$$
 unde

IV.
$$\tan u = \frac{\sin(L - \Omega)\sin b}{\cos i \cos(L - \Omega)\sin b + \sin i \sin(L - l)\cos b}$$

Multiplicando autem I. per $\sin(l-\Omega)$, II. per $-\cos(l-\Omega)$, prodit productis additis

V.
$$r = \frac{R\sin(L-l)}{\sin u \cos i \cos(l-\Omega) - \cos u \sin(l-\Omega)}$$

Ambiguitas in determinatione ipsius u per aequ. IV., sponte tollitur per aequ. III., quae ostendit, u inter 0 et 180° vel inter 180° et 360° accipi debere, prout latitudo b fuerit positiva vel negativa; sin vero fuerit b=0, aequ. V. docet, statui debere u=0 vel u=180°, prout $\sin(L-l)$ et $\sin(l-\Omega)$ diversa signa habeant, vel eadem.

Computum numericum formularum IV. et V. variis modis per introductionem angulorum auxiliarium contrahere licet. E. g.

statuendo
$$\frac{\tan b \cos (L-\Omega)}{\sin (L-l)} = \tan a$$
, fit $\tan a u = \frac{\sin A \tan (L-\Omega)}{\sin (A+i)}$
statuendo $\frac{\tan a \sin (L-l)}{\cos (L-\Omega)} = \tan a$, fit $\tan a u = \frac{\cos a \sin b \tan (L-\Omega)}{\sin (B+b) \cos a}$

Perinde aequ. V. per introductionem anguli cuius tangens = $\cos i \tan g u$, vel

 $=\frac{\tan (l-\Omega)}{\cos i}$ formam concinniorem nanciscitur. Sicuti formulam V. e combinatione aequationum I. II. obtinuimus, per combinationem aequationum II. III. ad sequentem pervenimus:

$$r = \frac{R\sin(L-\Omega)}{\sin\omega(\cos i - \sin i \sin(l-\Omega))\cot \log b)}$$

et perinde per combinationem aequationum I. III. ad hanc

$$r = \frac{R\cos(L - \Omega)}{\cos u - \sin u \sin i \cos(l - \Omega) \cot \log b}$$

Utramque perinde ut V. per introductionem angulorum auxiliarium simpliciorem reddere licet. Solutiones e praecedentibus demanantes collectae exemploque illustratae inveniuntur in von Zach Monatliche Correspondenz, Bd. V. S. 540 [Gauss Werke, Bd. VI. S. 87, 1802 Juni], quapropter hic evolutione ulteriori supersedemus. — Si praeter u et r etiam distantia Δ desideratur, per aequationem III. determinari poterit.

75.

Alia solutio problematis praec. superstruitur observationi in art. 64. III. traditae, quod locus heliocentricus terrae, geocentricus corporis coelestis eiusdemque locus heliocentricus in uno eodemque circulo maximo sphaerae sunt siti. Sint in Fig. 3. illi loci resp. T, G, H; porro Ω locus nodi ascendentis; Ω T, Ω H partes eclipticae et orbitae, GP perpendiculum ad eclipticam ex G demissum, quod igitur erit =b. Hinc et ex arcu PT=L-l determinabitur angulus T atque arcus TG. Dein in triangulo sphaerico Ω HT data sunt angulus Ω =i, angulus T latusque Ω $T=L-\Omega$, unde eruentur duo reliqua latera Ω H=u atque TH. Tandem erit HG=TG-TH atque TH atque TH

76.

In art. 52. variationes differentiales longitudinis et latitudinis heliocentricae distantiaeque curtatae per variationes argumenti latitudinis u, inclinationis i radiique vectoris r exprimere docuimus, posteaque (art. 64. IV.) ex illis deduximus variationes longitudinis et latitudinis geocentricae, l et b: per combinationem itaque harum formularum dl et db per du, di, $d\Omega$, dr expressae habebuntur. Sed operae pretium erit ostendere, quomodo in hoc quoque calculo reductione loci heliocentrici ad eclipticam supersedere liceat, sicuti in art. 65. locum geocentricum

immediate e loco heliocentrico in orbita deduximus. Ut formulae eo simpliciores evadant, latitudinem terrae negligemus, quum certe in formulis differentialibus effectum sensibilem habere nequeat. Praesto sunt itaque formulae sequentes, in quibus brevitatis caussa ω pro $l-\Omega$, nec non ut supra Δ' pro $\Delta \cos b$ scribimus.

$$\begin{array}{ll} \Delta'\cos\omega &= r\cos u - R\cos(L - \Omega) &= \xi \\ \Delta'\sin\omega &= r\cos i\sin u - R\sin(L - \Omega) &= \eta \\ \Delta'\tan gb &= r\sin i\sin u &= \zeta \end{array}$$

e quarum differentiatione prodit

$$\cos \omega \cdot d\Delta' - \Delta' \sin \omega \cdot d\omega = d\xi$$

$$\sin \omega \cdot d\Delta' + \Delta' \cos \omega \cdot d\omega = d\eta$$

$$\tan b \cdot d\Delta' + \frac{\Delta}{\cos b} db = d\zeta$$

Hinc per eliminationem

$$d\omega = \frac{-\sin\omega \cdot d\xi + \cos\omega \cdot d\eta}{\Delta'}$$

$$db = \frac{-\cos\omega \sin b \cdot d\xi - \sin\omega \sin b \cdot d\eta + \cos b \cdot d\zeta}{\Delta'}$$

Si in his formulis pro ξ , η , ζ valores sui rite substituuntur, $d\omega$ et db per dr, du, di, $d\Omega$ expressae prodibunt; dein, propter $dl = d\omega + d\Omega$, differentialia partialia ipsarum l, b ita se habebunt:

I.
$$\Delta'\left(\frac{\mathrm{d}l}{\mathrm{d}r}\right) = -\sin\omega\cos u + \cos\omega\sin u\cos i$$

II. $\frac{\Delta'}{r}\left(\frac{\mathrm{d}l}{\mathrm{d}u}\right) = \sin\omega\sin u + \cos\omega\cos u\cos i$

III. $\frac{\Delta'}{r}\left(\frac{\mathrm{d}l}{\mathrm{d}u}\right) = -\cos\omega\sin u\sin i$

IV. $\left(\frac{\mathrm{d}l}{\mathrm{d}\Omega}\right) = 1 + \frac{R}{\Delta'}\cos(L - \Omega - \omega) = 1 + \frac{R}{\Delta'}\cos(L - l)$

V. $\Delta\left(\frac{\mathrm{d}b}{\mathrm{d}r}\right) = -\cos\omega\cos u\sin b - \sin\omega\sin u\cos i\sin b + \sin u\sin i\cos b$

VI. $\frac{\Delta}{r}\left(\frac{\mathrm{d}b}{\mathrm{d}u}\right) = \cos\omega\sin u\sin b - \sin\omega\cos u\cos i\sin b + \cos u\sin i\cos b$

VII. $\frac{\Delta}{r}\left(\frac{\mathrm{d}b}{\mathrm{d}u}\right) = \sin\omega\sin u\sin i\sin b + \sin u\cos i\cos b$

VIII. $\frac{\Delta}{R} \left(\frac{\mathrm{d}b}{\mathrm{d}\Omega} \right) = \sin b \sin (L - \Omega - \omega) = \sin b \sin (L - l)$

Formulae IV. et VIII. hic iam in forma ad calculum commodissima apparent; formulae I. III. V. autem per substitutiones obvias ad formam concinniorem rediguntur, puta

I*.
$$\left(\frac{\mathrm{d}l}{\mathrm{d}r}\right) = \frac{R}{r\Delta'}\sin(L-l)$$

III*.
$$\binom{dl}{di} = -\cos\omega \tan b$$

V*.
$$\left(\frac{\mathrm{d}b}{\mathrm{d}r}\right) = -\frac{R}{r\Delta}\cos(L-l)\sin b = -\frac{R}{r\Delta'}\cos(L-l)\sin b\cos b$$

Denique formulae reliquae quoque Π . VI. VII. per introductionem quorundam angulorum auxiliarium in formam simpliciorem abeunt: quod commodissime fit sequenti modo. Determinentur anguli auxiliares M, N per formulas

$$tang M = \frac{tang \omega}{\cos i}, tang N = \sin \omega tang i = tang M \cos \omega \sin i$$

Tunc simul fit

$$\frac{\cos M^{2}}{\cos N^{2}} = \frac{1 + \tan N^{2}}{1 + \tan M^{2}} = \frac{\cos i^{3} + \sin \omega^{2} \sin i^{2}}{\cos i^{2} + \tan \omega^{2}} = \cos \omega^{2}$$

iam quum ambiguitatem in determinatione ipsorum M, N per tangentes suas remanentem ad lubitum decidere liceat, hoc ita fieri posse patet, ut habeatur $\frac{\cos M}{\cos N} = +\cos \omega$, ac proin $\frac{\sin N}{\sin M} = +\sin i$. Quibus ita factis, formulae II. VI. VII. transeunt in sequentes:

II*.
$$\left(\frac{\mathrm{d}\,l}{\mathrm{d}\,u}\right) = \frac{r\sin\omega\cos(M-u)}{\Delta'\sin M}$$
VI*. $\left(\frac{\mathrm{d}\,b}{\mathrm{d}\,u}\right) = \frac{r}{\Delta}\left(\cos\omega\sin i\cos(M-u)\cos(N-b) + \sin(M-u)\sin(N-b)\right)$
VII*. $\left(\frac{\mathrm{d}\,b}{\mathrm{d}\,i}\right) = \frac{r\sin u\cos i\cos(N-b)}{\Delta\cos N}$

Hae transformationes respectu formularum II. VII. neminem morabuntur, respectu formulae VI. autem aliqua explicatio haud superflua erit. Substituendo scilicet in formula VI. primo M-(M-u) pro u, prodit

$$\frac{\frac{\Delta}{r}\left(\frac{\mathrm{d}b}{\mathrm{d}u}\right)}{-\sin\left(M-u\right)\left(\cos\omega\sin M\sin b-\sin\omega\cos i\cos M\sin b+\sin i\cos M\cos b\right)}$$
$$-\sin\left(M-u\right)\left(\cos\omega\cos M\sin b+\sin\omega\cos i\sin M\sin b-\sin i\sin M\cos b\right)$$

Iam fit

$$\cos \omega \sin M = \cos i^2 \cos \omega \sin M + \sin i^2 \cos \omega \sin M$$
$$= \sin \omega \cos i \cos M + \sin i^2 \cos \omega \sin M$$

unde pars prior illius expressionis transit in

$$\sin i \cos (M - u)(\sin i \cos \omega \sin M \sin b + \cos M \cos b)$$

$$= \sin i \cos (M - u)(\cos \omega \sin N \sin b + \cos \omega \cos N \cos b)$$

$$= \cos \omega \sin i \cos (M - u) \cos (N - b)$$

Perinde fit

 $\cos N = \cos \omega^2 \cos N + \sin \omega^2 \cos N = \cos \omega \cos M + \sin \omega \cos i \sin M$ unde expressionis pars posterior transit in

$$-\sin(\mathbf{M}-\mathbf{u})(\cos N\sin b - \sin N\cos b) = \sin(\mathbf{M}-\mathbf{u})\sin(N-\mathbf{b})$$

Hinc expressio VI*. protinus demanat.

Angulus auxiliaris M etiam ad transformationem formulae I. adhiberi potest, quo introducto assumit formam

$$I^{**} \cdot {\binom{\mathrm{d}l}{\mathrm{d}r}} = -\frac{\sin \omega \sin (M-u)}{\Delta' \sin M}$$

e cuius comparatione cum formula I*. concluditur — $R \sin (L - l) \sin M = r \sin \omega \sin (M - u)$; hinc etiam formulae II*. forma paullo adhuc simplicior tribui potest, puta

$$\Pi^{**}$$
. $\left(\frac{\mathrm{d}\,l}{\mathrm{d}u}\right) = -\frac{R}{\Delta'}\sin\left(L - l\right)\cot{\left(M - u\right)}$

Ut formula VI*. adhuc magis contrahatur, angulum auxiliarem novum introducere oportet, quod duplici modo fieri potest, scilicet statuendo

vel tang
$$P = \frac{\tan q(M-u)}{\cos w \sin i}$$
, vel tang $Q = \frac{\tan q(N-b)}{\cos w \sin i}$: quo facto emergit

VI**. $\left(\frac{\mathrm{d}b}{\mathrm{d}u}\right) = \frac{r \sin (M-u) \cos (N-b-P)}{\Delta \sin P} = \frac{r \sin (N-b) \cos (M-u-Q)}{\Delta \sin Q}$

Ceterum quantitates auxiliares M, N, P, Q non sunt mere fictitiae, facileque, quidnam in sphaera coelesti singulis respondeat, assignare liceret: quin adeo hoc modo aequationum praecedentium plures adhuc elegantius exhiberi possent per arcus angulosve in sphaera, quibus tamen eo minus hic immoramur, quum in calculo numerico ipso formulas supra traditas superfluas reddere non valeant.

77.

Iunctis iis, quae in art. praec. evoluta sunt, cum iis quae in artt. 15. 16. 20. 27. 28. pro singulis sectionum conicarum generibus tradidimus, omnia praesto erunt, quae ad calculum variationum differentialium loco geocentrico a variationibus singulorum elementorum inductarum requiruntur. Ad maiorem illustrationem horum praeceptorum exemplum supra in artt. 13. 14. 51. 63. 65. tractatum resumemus. Ac primo quidem ad normam art. praec. dl et db per dr, du, di, $d\Omega$ exprimemus, qui calculus ita se habet:

$\log tang \omega \dots 8,40113$	$\log \sin \omega$ 8,40099n	$\log \tan g(M-u)$. 9,41932 n
$\log \cos i \dots 9,98853$	$\log \tan g i \dots 9,36723$	$\log \cos \omega \sin i$ 9,35562 n
$\overline{\log \tan M8,41260}$	log tang N 7,76822n	$log tang P \dots 0,06370$
$M = 1^{\circ}28'52''$	$N = 179^{\circ}39'50''$	P = 49°11′13"
M-u = 165 17 8	N-b = 186 145	N-b-P = 1365032
I*.	П**.	ш*.
$\log\sin\left(L-l\right)$. 9,72125	(*) 9,63962	$\log \cos \omega$ 9,99986 n
$\log R$ 9,99810	$1.\cot(M-u). 0,58068n$	$\log \tan b \dots 9,04749 n$
$C.\log\Delta'$ 9,92027		$\log\left(\frac{\mathrm{d}l}{\mathrm{d}i}\right)\ldots9,04735\mathrm{n}$
(*) 9,63962	(d#/	(di)
$C.\log r9,67401$		
$\frac{\log\left(\frac{\mathrm{d}l}{\mathrm{d}r}\right) \ldots 9,31363}{\log\left(\frac{\mathrm{d}l}{\mathrm{d}r}\right) \ldots 9,31363}$		
C (a7)		
IV.	V*.	VI**.
IV.	· ·	
IV. $\log \frac{R}{\Delta'} \dots 9,91837$	(**)9,84793	VI**. $\log \frac{r}{\Delta} \cdot \cdot \cdot \cdot \cdot \cdot 0,24357$ $\log \sin (M-u) \cdot 9,40484$
IV. $\log \frac{R}{\Delta'} \dots 9,91837$ $\log \cos (L-l) \cdot 9,92956$	$(**)$ 9,84793 $\log \sin b \cos b$. 9,04212n	$\log \frac{r}{\Delta} \dots 0,24357$
IV. $\log \frac{R}{\Delta'} \dots 9,91837$ $\log \cos(L-l) \cdot 9,92956$ (**) $\dots 9,84793$	$(**)$ 9,84793 $\log \sin b \cos b$. 9,04212n $C.\log r$ 9,67401	$\log \frac{r}{\Delta} \cdot \ldots \cdot 0,24357$ $\log \sin (M-u) \cdot 9,40484$
IV. $\log \frac{R}{\Delta'} \dots 9,91837$ $\log \cos (L-l) \cdot 9,92956$ (**) 9,84793	$(**)$ 9,84793 $\log \sin b \cos b$. 9,04212n	$\log \frac{r}{\Delta} \cdot \dots \cdot 0,24357$ $\log \sin (M-u) \cdot 9,40484$ $1.\cos (N-b-P) \cdot 9,86301 \text{ n}$ $C.\log \sin P \cdot \dots \cdot 0,12099$
IV. $ \log \frac{R}{\Delta'} \dots 9,91837 $ $ \log \cos(L-l) \cdot 9,92956 $ $ (**) \dots 9,84793 $ $ = \log \left(\frac{dl}{d\Omega}\right) - 1 $	$(**)$ 9,84793 $\log \sin b \cos b$. 9,04212n $C.\log r$ 9,67401	$\log \frac{r}{\Delta} \cdot \dots \cdot 0,24357$ $\log \sin (M-u) \cdot 9,40484$ $l.\cos (N-b-P) \cdot 9,86301 n$
IV. $\log \frac{R}{\Delta'} \dots 9,91837$ $\log \cos(L-l) \cdot 9,92956$ $(**) \dots 9,84793$ $= \log \left(\frac{dl}{d\Omega}\right) - 1$ VII*.	(**)	$ \frac{\log \frac{r}{\Delta} \cdot \dots \cdot 0,24357}{\log \sin (M-u) \cdot 9,40484} \\ \frac{1.\cos(N-b-P)}{\cos \sin P \cdot \dots \cdot 0,12099} \\ \frac{\log \left(\frac{db}{du}\right) \cdot \dots \cdot 9,63241n}{\log \left(\frac{db}{du}\right) \cdot \dots \cdot 9,63241n} $
IV.	$(**)9,84793$ $\log \sin b \cos b.9,04212n$ $C.\log r9,67401$ $\log \left(\frac{db}{dr}\right)8,56406$ $$	$\log \frac{r}{\Delta} \cdot \dots \cdot 0,24357$ $\log \sin (M-u) \cdot 9,40484$ $1.\cos (N-b-P) \cdot 9,86301 \text{ n}$ $C.\log \sin P \cdot \dots \cdot 0,12099$ $\log \left(\frac{db}{du}\right) \cdot \dots \cdot 9,63241 \text{ n}$ VIII.
IV. $\log \frac{R}{\Delta'} \dots 9,91837$ $\log \cos(L-l) 9,92956$ $(**) \dots 9,84793$ $= \log \left(\frac{dl}{d\Omega}\right) - 1$ $VII*.$ $\log r \sin u \cos i \dots$ $\log \cos(N-b) \dots$	$(**)9,84793$ $\log \sin b \cos b.9,04212n$ $C.\log r9,67401$ $\log \left(\frac{db}{dr}\right)8,56406$ $9,75999n$ $9,99759n$ $(*)$	$ \frac{\log \frac{r}{\Delta} \cdot \dots \cdot 0,24357}{\log \sin (M-u) \cdot 9,40484} \\ 1.\cos(N-b-P) \cdot 9,86301 \mathbf{n} \\ C.\log \sin P \cdot \dots \cdot 0,12099 \\ \hline \log \left(\frac{db}{du}\right) \cdot \dots \cdot 9,63241 \mathbf{n} $ VIII 9,63962
IV. $ \frac{\log \frac{R}{\Delta'} \dots 9,91837}{\log \cos(L-l) \cdot 9,92956} \\ \xrightarrow{(**)} \dots 9,84793 \\ = \log \left(\frac{dl}{d\Omega}\right) - 1 $ $ VII^*. $ $ \log r \sin u \cos i \dots \\ \log \cos(N-b) \dots \\ C. \log \Delta \dots \dots $	$(**)9,84793$ $\log \sin b \cos b. 9,04212n$ $C.\log r9,67401$ $\log \left(\frac{db}{dr}\right)8,56406$ $9,975999n$ $9,99759n$ $9,91759$ $\log \sin b \cos b$	$ \log \frac{r}{\Delta} \cdot \dots \cdot 0,24357 \\ \log \sin (M-u) \cdot 9,40484 \\ 1.\cos (N-b-P) \cdot 9,86301 n \\ \frac{C.\log \sin P \cdot \dots \cdot 0,12099}{\log \left(\frac{db}{du}\right) \cdot \dots \cdot 9,63241 n} $ VIII
IV. $\log \frac{R}{\Delta'} \dots 9,91837$ $\log \cos(L-l) \cdot 9,92956$ $(**) \dots 9,84793$ $= \log \left(\frac{dl}{d\Omega}\right) - 1$ $VII^*.$ $\log r \sin u \cos i \cdot .$ $\log \cos(N-b) \cdot .$	$(**)9,84793$ $\log \sin b \cos b. 9,04212n$ $C.\log r9,67401$ $\log \left(\frac{db}{dr}\right)8,56406$ $9,97599n$ $9,91759$ $9,91759$ $$	$ \frac{\log \frac{r}{\Delta} \cdot \dots \cdot 0,24357}{\log \sin (M-u) \cdot 9,40484} \\ 1.\cos(N-b-P) \cdot 9,86301 \mathbf{n} \\ C.\log \sin P \cdot \dots \cdot 0,12099 \\ \hline \log \left(\frac{db}{du}\right) \cdot \dots \cdot 9,63241 \mathbf{n} $ VIII 9,63962

Collectis hisce valoribus prodit

$$dl = +0.20589 dr + 1.66073 du - 0.11152 di + 1.70458 d\Omega$$

$$db = +0.03665 dr - 0.42895 du - 0.47335 di - 0.04805 d\Omega$$

Vix necesse erit quod iam saepius monuimus hic repetere, scilicet, vel variationes dl, db, du, di, $d\Omega$ in partibus radii exprimendus esse, vel coefficientes ipsius dr per 206265" multiplicandos, si illae in minutis secundis expressae concipiantur.

Designando iam longitudinem perihelii (quae in exemplo nostro est $52^{\circ}18'9''30$) per Π atque anomaliam veram per v, erit longitudo in orbita $=u+\Omega=v+\Pi$, adeoque $du=dv+d\Pi-d\Omega$, quo valore in formulis praecedentibus substituto, dl et db per dr, dv, $d\Pi$, $d\Omega$, di expressae habebuntur. Nihil itaque iam superest, nisi ut dr et dv ad normam artt. 15. 16. per variationes differentiales elementorum ellipticorum exhibeantur*).

Erat in exemplo nostro, art. 14., $\log \frac{r}{a} = 9,90355 = \log \left(\frac{dr}{da}\right)$

$\log \frac{aa}{rr} \dots \dots 0,19290$	$\log a \ldots \ldots 0,42244$
$\log \cos \varphi \dots 9,98652$	$\log \tan \varphi \ldots 9,40320$
$\log\left(\frac{\mathrm{d}v}{\mathrm{d}M}\right)\ldots\ldots0,17942$	$\log \sin v \dots 9,84931 n$
$2 - e \cos E \qquad = 1,80085$	$\log\left(\frac{\mathrm{d}r}{\mathrm{d}M}\right).\ldots9,67495\mathrm{n}$
ee = 0,06018	$\log a$ 0,42244
1,74067	$\log \cos \varphi \dots 9,98652$
$\log \ldots \ldots 0,24072$	$\log \cos v \dots 9,84966$
$\log \frac{aa}{rr} \dots \dots 0,19290$	$\log\left(\frac{\mathrm{d}r}{\mathrm{d}\varphi}\right)$ 0,25862 n
$\log \sin E$ 9,76634 n	- \αφ/ · · · · · · · · · · · · · · · · · · ·
$\log\left(\frac{\mathrm{d}v}{\mathrm{d}\varphi}\right)$ 0,19996 n	

Hinc colligitur

$$dv = +1,51154 dM-1,58475 d\varphi$$

 $dr = -0,47310 dM-1,81393 d\varphi+0,80085 d\alpha$

12

^{*)} Characterem *M* in calculo sequente haud amplius angulum nostrum auxiliarem exprimere, sed (ut in Sect. I.) anomaliam mediam, quisque sponte videbit.

quibus valoribus in formulis praecedentibus substitutis, prodit

$$dl = +2,41287 d M - 3,00531 d \varphi + 0,16488 d a + 1,66073 d \Pi - 0,11152 d i + 0,04385 d \Omega$$

$$db = -0,66572 d M + 0,61331 d \varphi + 0,02935 d a - 0,42895 d \Pi - 0,47335 d i + 0,38090 d \Omega$$

Si tempus cui locus computatus respondet n diebus ab epocha distare supponitur, longitudoque media pro epocha per N, motus diurnus per 7 denotatur erit M = N + n7 - 11, adeoque $dM = dN + nd7 - d\Pi$. In exemplo nostro tempus loco computato respondens est Octobris dies 17,41507 anni 1804 sub meridiano Parisiensi: quodsi itaque pro epocha assumitur initium anni 1805, est n = -74,58493; longitudo media pro epocha ista statuta fuerat = 41°52′21″61, motusque diurnus = 824″7988. Substituto iam in formulis modo inventis pro dM valore suo, mutationes differentiales loci geocentrici per solas mutationes elementorum expressae ita se habent:

$$dl = 2,41287 dN - 179,96 d7 - 0,75214 d\Pi - 3,00531 d\varphi + 0,16488 d\alpha - 0,11152 di + 0,04385 d\Omega$$

$$db = -0,66572 dN + 49,65 d7 + 0,23677 d\Pi + 0,61331 d\varphi + 0,02935 d\alpha - 0,47335 di + 0,38090 d\Omega$$

Si corporis coelestis massa vel negligitur vel saltem tamquam cognita spectatur, 7 et a ab invicem dependentes erunt, adeoque vel d7 vel da e formulis nostris eliminare licebit. Scilicet quum per art. 6. habeatur $7a^{\frac{3}{2}} = k\sqrt{(1+\mu)}$, erit $\frac{d7}{7} = -\frac{3}{2}\frac{da}{a}$, in qua formula, si d7 in partibus radii exprimenda est, etiam 7 perinde exprimere oportebit. Ita in exemplo nostro habetur

$\log 7 \dots \dots 2,91635$		
log 1" 4,68557		
$\log \frac{\pi}{2} \dots 0,17609$		
$C.\log a$ 9,57756		
$\log \frac{\mathrm{d}7}{\mathrm{d}a} \dots 7,35557 \mathrm{n},$	sive d7	= -0,0022676 d a ,
	atque da	= $-440,99 d7,$

quo valore in formulis nostris substituto, tandem emergit forma ultima:

In evolutione harum formularum omnes mutationes dl, db, dN, dT, $d\Pi$, $d\varphi$, di, dQ in partibus radii expressas supposuimus, manifesto autem propter homogeneitatem omnium partium eaedem formulae etiamnum valebunt, si omnes illae mutationes in minutis secundis exprimuntur.

SECTIO TERTIA

Relationes inter locos plures in orbita.

78.

Comparatio duorum pluriumve locorum corporis coelestis tum in orbita tum in spatio tantam propositionum elegantium copiam subministrat, ut volumen integrum facile complerent. Nostrum vero propositum non eo tendit, ut hoc argumentum fertile exhauriamus, sed eo potissimum, ut amplum apparatum subsidiorum ad solutionem problematis magni de determinatione orbitarum incognitarum ex observationibus, inde adstruamus: quamobrem neglectis quae ab instituto nostro nimis aliena essent, eo diligentius omnia quae ullo modo illuc conducere possunt evolvemus. Disquisitionibus ipsis quasdam propositiones trigonometricas praemittimus, ad quas, quum frequentioris usus sint, saepius recurrere oportet.

I. Denotantibus A, B, C angulos quoscunque, habetur

$$\sin A \sin (C - B) + \sin B \sin (A - C) + \sin C \sin (B - A) = 0$$

$$\cos A \sin (C - B) + \cos B \sin (A - C) + \cos C \sin (B - A) = 0$$

II. Si duae quantitates p, P ex aequationibus talibus

$$p\sin(A-P) = a$$
$$p\sin(B-P) = b$$

determinandae sunt, hoc fiet generaliter adiumento formularum

$$p\sin(B-A)\sin(H-P) = b\sin(H-A) - a\sin(H-B)$$

$$p\sin(B-A)\cos(H-P) = b\cos(H-A) - a\cos(H-B)$$

in quibus H est angulus arbitrarius. Hinc deducuntur (art. 14. II.) angulus H-P atque $p\sin(B-A)$; et hinc P et p. Plerumque conditio adiecta esse solet, ut p esse debeat quantitas positiva, unde ambiguitas in determinatione anguli H-P per tangentem suam deciditur; deficiente autem illa conditione, ambiguitatem ad lubitum decidere licebit. Ut calculus commodissimus sit, angulum arbitrarium H vel = A vel = B vel $= \frac{1}{2}(A+B)$ statuere conveniet. In casu priori aequationes ad determinandum P et p erunt

$$p\sin(A-P) = a$$

$$p\cos(A-P) = \frac{b-a\cos(B-A)}{\sin(B-A)}$$

In casu secundo aequationes prorsus analogae erunt, in casu tertio autem

$$p\sin(\frac{1}{2}A + \frac{1}{2}B - P) = \frac{b+a}{2\cos\frac{1}{2}(B-A)}$$

$$p\cos(\frac{1}{2}A + \frac{1}{2}B - P) = \frac{b-a}{2\sin\frac{1}{2}(B-A)}$$

Quodsi itaque angulus auxiliaris ζ introducitur, cuius tangens $=\frac{a}{b}$, invenietur P per formulam

$$\tan (\frac{1}{2}A + \frac{1}{2}B - P) = \tan (45^{\circ} + \zeta) \tan \frac{1}{2}(B - A)$$

ac dein p per aliquam formularum praecedentium, ubi

$$\frac{1}{4}(b+a) = \sin(45^{\circ}+\zeta)\sqrt{\frac{ab}{\sin 2\zeta}} = \frac{a\sin(45^{\circ}+\zeta)}{\sin \zeta\sqrt{2}} = \frac{b\sin(45^{\circ}+\zeta)}{\cos \zeta\sqrt{2}}$$

$$\frac{1}{4}(b-a) = \cos(45^{\circ}+\zeta)\sqrt{\frac{ab}{\sin 2\zeta}} = \frac{a\cos(45^{\circ}+\zeta)}{\sin \zeta\sqrt{2}} = \frac{b\cos(45^{\circ}+\zeta)}{\cos \zeta\sqrt{2}}$$

III. Si p et P determinandae sunt ex aequationibus

$$p\cos(A-P) = a$$
$$p\cos(B-P) = b$$

omnia in II. exposita statim applicari possent, si modo illic pro A et B ubique scriberetur $90^{\circ} + A$, $90^{\circ} + B$: sed ut usus eo commodior sit, formulas evolutas apponere non piget. Formulae generales erunt

$$p\sin(B-A)\sin(H-P) = -b\cos(H-A) + a\cos(H-B)$$

$$p\sin(B-A)\cos(H-P) = b\sin(H-A) - a\sin(H-B)$$

Transcunt itaque, pro H = A in

$$p\sin(A-P) = \frac{a\cos(B-A)-b}{\sin(B-A)}$$
$$p\cos(A-P) = a$$

Pro H = B, formam similem obtinent; pro $H = \frac{1}{2}(A + B)$ autem fiunt

$$p\sin(\frac{1}{2}A + \frac{1}{2}B - P) = \frac{a - b}{2\sin(\frac{1}{2}B - A)}$$

$$p\cos(\frac{1}{2}A + \frac{1}{2}B - P) = \frac{a + b}{2\cos(\frac{1}{2}B - A)}$$

ita ut introducto angulo auxiliari ζ , cuius tangens $=\frac{a}{b}$, fiat

$$\operatorname{cotang}(\frac{1}{2}A + \frac{1}{2}B - P) = \operatorname{cotang}(\zeta - 45^{\circ}) \operatorname{tang} \frac{1}{2}(B - A)$$

Ceterum si p immediate ex a et b sine praevio computo anguli P determinare cupimus, habemus formulam

$$p\sin(B-A) = \sqrt{(aa+bb-2ab\cos(B-A))}$$

tum in problemate praesente tum in II.

79.

Ad completam determinationem sectionis conicae in plano suo tria requiruntur, situs perihelii, excentricitas et semiparameter. Quae si e quantitatibus datis ab ipsis pendentibus eruenda sunt, tot data adsint oportet, ut tres aequationes ab invicem independentes formare liceat. Quilibet radius vector magnitudine et positione datus unam aequationem suppeditat: quamobrem ad determinationem orbitae tres radii vectores magnitudine et positione dati requiruntur; si vero duo tantum habentur, vel unum elementum ipsum iam datum esse debet, vel saltem alia quaedam quantitas, cui aequationem tertiam superstruere licet. Hinc oritur varietas problematum, quae iam deinceps pertractabimus.

Sint r, r' due radii vectores, qui cum recta in plane orbitae e Sole ad lubitum ducta faciant secundum directionem motus angulos N, N'; sit peare II angulus quem cum eadem recta facit radius vector in perihelio, ita ut radiis vectoribus r, r' respondeant anomaliae verae $N-\Pi$, $N'-\Pi$; denique sit e excentricitas, p semiparameter. Tunc habentur aequationes

$$\frac{p}{r} = 1 + e \cos(N - II)$$

$$\frac{p}{r} = 1 + e \cos(N - II)$$

e quibus, si insuper una quantitatum p, e, II data est, duas reliquas determinare licebit.

Supponamus primo, datum esse semiparametrum p, patetque determinationem quantitatum e et Π aequationibus

$$e\cos(N-II) = \frac{p}{r} - 1$$

$$e\cos(N'-II) = \frac{p}{r'} - 1$$

fieri posse ad normam lemmatis III. in art. praec. Habemus itaque

$$\tan (N-11) = \cot (N'-N) - \frac{r(p-r')}{r'(p-r)\sin(N'-N)}$$

$$\tan (\frac{1}{2}N + \frac{1}{2}N'-11) = \frac{(r'-r)\cot (\frac{1}{2}(N'-N))}{r'+r-\frac{2rr'}{p}}$$

80.

Si angulus Π datus est, p et e determinabuntur per aequationes

$$p = \frac{rr'(\cos(N-\Pi) - \cos(N'-\Pi))}{r\cos(N-\Pi) - r'\cos(N'-\Pi)}$$

$$e = \frac{r'-r}{r\cos(N-\Pi) - r'\cos(N'-\Pi)}$$

Denominatorem communem in his formulis reducere licet sub formam $a\cos(A-\Pi)$, ita ut a et A a Π sint independentes. Designante scilicet H angulum arbitrarium, fit

$$r\cos(N-\Pi)-r'\cos(N'-\Pi) = \begin{cases} (r\cos(N-H)-r'\cos(N'-H))\cos(H-\Pi) \\ -(r\sin(N-H)-r'\sin(N'-H))\sin(H-\Pi) \end{cases}$$

adeoque $= a\cos(A-II)$, si a et A determinantur per aequationes

$$r\cos(N-H)-r'\cos(N'-H)=a\cos(A-H)$$

$$r\sin(N-H)-r'\sin(N'-H)=a\sin(A-H)$$

Hoc modo fit

$$p = \frac{2rr'\sin\frac{1}{2}(N'-N)\sin(\frac{1}{2}N+\frac{1}{2}N'-\Pi)}{a\cos(A-\Pi)}$$

$$e = \frac{r'-r}{a\cos(A-\Pi)}$$

Hae formulae imprimis sunt commodae, quoties p et e pro pluribus valoribus ipsius Π computandae sunt, manentibus r, r', N, N'. — Quum ad calculum quantitatum auxiliarium a, A angulum H ad libitum assumere liceat, e re erit statuere $H = \frac{1}{2}(N+N')$, quo pacto formulae abeunt in has

$$(r'-r)\cos\frac{1}{2}(N'-N) = -a\cos(A-\frac{1}{2}N-\frac{1}{2}N')$$

$$(r'+r)\sin\frac{1}{2}(N'-N) = -a\sin(A-\frac{1}{2}N-\frac{1}{2}N')$$

Determinato itaque angulo A per aequationem

$$\tan(A - \frac{1}{2}N - \frac{1}{2}N') = \frac{r' + r}{r' - r} \tan(\frac{1}{2}(N' - N))$$

statim habetur

$$e = -\frac{\cos(A - \frac{1}{2}N - \frac{1}{2}N')}{\cos\frac{1}{2}(N' - N)\cos(A - \Pi)}$$

Calculum logarithmi quantitatis $\frac{r'+r}{r'-r}$ per artificium saepius iam explicatum contrahere licebit.

81.

Si excentricitas e data est, angulus II per aequationem

$$\cos(A-II) = -\frac{\cos(A-\frac{1}{2}N-\frac{1}{2}N')}{e\cos(\sqrt{N'}-N)}$$

invenietur, postquam angulus auxiliaris A per aequationem

$$tang(A - \frac{1}{2}N - \frac{1}{2}N') = \frac{r' + r}{r' - r} tang \frac{1}{2}(N' - N)$$

determinatus est. Ambiguitas in determinatione anguli A-11 per ipsus cosinum remanens in natura problematis fundata est, ita ut problemati duabus solutionibus diversis satisfieri possit, e quibus quam adoptare quamve reiicere oporteat aliunde decidendum erit, ad quem finem valor saltem approximatus ipsius Π iam cognitus esse debet. — Postquam Π inventus est, p vel per formulas

$$p = r(1 + e\cos(N - \Pi)) = r'(1 + e\cos(N' - \Pi))$$

vel per hanc computabitur

$$p = \frac{2rr'e\sin^2(N'-N)\sin(\frac{1}{4}N+\frac{1}{4}N'-\Pi)}{r'-r}$$

82.

Supponamus denique, tres radios vectores r, r', r'' datos esse, qui cum recta ad lubitum e Sole in plano orbitae ducta faciant angulos N, N', N''. Habebuntur itaque, retentis signis reliquis, aequationes (I.):

$$\frac{p}{n} = 1 + e \cos(N - \Pi)$$

$$\frac{p}{r'} = 1 + e \cos(N' - \Pi)$$

$$_{J''}^{p} = 1 + e \cos(N'' - \Pi)$$

e quibus p, Π , e pluribus modis diversis elici possunt. Si quantitatem p ante reliquas computare placet, multiplicentur tres aequationes (I.) resp. per $\sin(N''-N')$, $-\sin(N''-N)$, $\sin(N'-N)$, fietque additis productis per lemma I. art. 78.

$$p = \frac{\sin(N''-N') - \sin(N''-N) + \sin(N'-N)}{\sin(N''-N') - \frac{1}{r'}\sin(N''-N) + \frac{1}{r''}\sin(N'-N)}$$

Haec expressio propius considerari meretur. Numerator manifesto fit

$$= 2 \sin \frac{1}{2} (N'' - N') \cos \frac{1}{2} (N'' - N') - 2 \sin \frac{1}{2} (N'' - N') \cos (\frac{1}{2} N'' + \frac{1}{2} N' - N)$$

$$= 4 \sin \frac{1}{2} (N'' - N') \sin \frac{1}{2} (N'' - N) \sin \frac{1}{2} (N' - N)$$

Statuendo porro

$$r'r'\sin(N''-N) = n$$
, $rr'\sin(N''-N) = n'$, $rr'\sin(N'-N) = n''$,

patet $\frac{1}{2}n$, $\frac{1}{2}n'$, $\frac{1}{2}n''$ esse areas triangulorum inter radium vectorem secundum et tertium, inter primum et tertium, inter primum et secundum. Hinc facile perspicietur, in formula nova

$$p = \frac{4 \sin \frac{1}{2} (N'' - N') \sin \frac{1}{2} (N'' - N) \sin \frac{1}{2} (N' - N) \cdot r r' r''}{n - n' + n''}$$

denominatorem esse duplum areae trianguli inter trium radiorum vectorum extremitates i. e. inter tria corporis coelestis loca in spatio contenti. Quoties haec loca e. th. m.

parum ab invicem remota sunt, area ista semper erit quantitas perparva et quidem ordinis tertii, siquidem N-N, N'-N' ut quantitates parvae ordinis primi spectantur. Hinc simul concluditur, si quantitatum r, r', r', N, N', N'' una vel plures erroribus utut levibus affectae sint, in determinatione ipsius p errorem permagnum illinc nasci posse; quamobrem haecce ratio orbitae dimensiones eruendi magnam praecisionem numquam admittet, nisi tria loca heliocentrica intervallis considerabilibus ab invicem distent.

Ceterum simulae semiparameter p inventus est, e et 11 determinabuntur e combinatione duarum quarumcunque aequationum I. per methodum art. 79.

83.

Si solutionem eiusdem problematis a computo anguli II inchoare malumus, methodo sequente utemur. Subtrahimus ab aequationem (I.) secunda tertiam, a prima secundam, quo pacto tres novas sequentes obtinemus (II.):

$$\frac{\frac{1}{r'} - \frac{1}{r''}}{2\sin\frac{1}{2}(N'' - N')} = \frac{e}{p}\sin(\frac{1}{2}N' + \frac{1}{2}N'' - \Pi)$$

$$\frac{\frac{1}{r} - \frac{1}{r''}}{2\sin\frac{1}{2}(N'' - N)} = \frac{e}{p}\sin(\frac{1}{2}N + \frac{1}{2}N'' - \Pi)$$

$$\frac{\frac{1}{r} - \frac{1}{r'}}{2\sin\frac{1}{2}(N' - N)} = \frac{e}{p}\sin(\frac{1}{2}N + \frac{1}{2}N' - \Pi)$$

Duae quaecunque ex his aequationibus secundum lemma II. art. 78. dabunt II et $\frac{e}{p}$, unde per quamlibet aequationum (I.) habebuntur etiam e et p. Quodsi solutionem tertiam in art. 78, II. traditam adoptamus, combinatio aequationis primae cum tertia algorithmum sequentem producit. Determinetur angulus auxiliaris ζ per aequationem

$$\tan \zeta = \frac{\frac{r'}{r-1}}{1-\frac{r'}{r''}} \cdot \frac{\sin \frac{1}{2}(N''-N')}{\sin \frac{1}{2}(N'-N)} \quad \text{eritque}$$

$$\tan(1 N + 1 N' + 1 N'' - \Pi) = \tan(45^{\circ} + \zeta) \tan(1 N'' - N)$$

Permutando locum secundum cum primo vel tertio, duae aliae solutiones huic prorsus analogae prodibunt. Quum hac methodo adhibita formulae pro $\frac{e}{p}$ minus expeditae evadant, e et p per methodum art. 80 e duabus aequationum (I.) eruere

praestabit. Ceterum ambiguitas in determinatione ipsius II per tangentem anguli 1 + 1 + 1 = 1 = 1 ita decidi debebit, ut e fiat quantitas positiva: scilicet manifestum est, pro e valores oppositos prodituros esse, si pro II valores 180° diversi accipiantur. Signum ipsius p autem ab hac ambiguitate non pendet, valorque ipsius p negativus evadere nequit, nisi tria puncta data in parte hyperbolae a Sole aversa iaceant, ad quem casum legibus naturae contrarium hic non respicimus.

Quae ex applicatione methodi primae in art. 78, II. post substitutiones operosiores orirentur, in casu praesente commodius sequenti modo obtineri possunt. Multiplicetur aequationum II. prima per $\cos \frac{1}{2}(N'-N')$, tertia per $\cos \frac{1}{2}(N'-N)$ subtrahaturque productum posterius a priori. Tunc lemmate I. art. 78. rite applicato*) prodibit aequatio

$$\frac{1}{2} \left(\frac{1}{r'} - \frac{1}{r''} \right) \cot \arg \frac{1}{2} \left(N'' - N' \right) - \frac{1}{2} \left(\frac{1}{r} - \frac{1}{r'} \right) \cot \arg \frac{1}{2} \left(N' - N \right) \\
= \frac{e}{n} \sin \frac{1}{2} \left(N'' - N \right) \cos \left(\frac{1}{2} N + \frac{1}{2} N'' - H \right)$$

Quam combinando cum aequationum II. secunda invenientur II et $\frac{e}{p}$, et quidem II per formulam

$$\tan g\left(\frac{1}{2}N + \frac{1}{2}N'' - \Pi\right) = \frac{\frac{r'}{r} - \frac{r'}{r''}}{\left(1 - \frac{r'}{r''}\right)\cot \arg \frac{1}{2}(N'' - N') - \left(\frac{r'}{r} - 1\right)\cot \arg \frac{1}{2}(N' - N)}$$

Etiam hinc duae aliae formulae prorsus analogae derivantur, permutando locum secundum cum primo vel tertio.

84.

Quum per duos radios vectores magnitudine et positione datos, atque elementum orbitae unum orbitam integram determinare liceat, per illa data etiam tempus, intra quod corpus coeleste ab uno radio vectore ad alterum movetur, determinabile erit, siquidem corporis massam vel negligimus vel saltem tamquam cognitam spectamus: nos suppositioni priori inhaerebimus, ad quam posterior facile reducitur. Hinc vice versa patet, duos radios vectores magnitudine et positione datos una cum tempore, intra quod corpus coeleste spatium intermedium describit, orbitam integram determinare. Hoc vero problema, ad gravissima in theoria motus corporum coelestium referendum, haud ita facile solvitur, quum expressio temporis

^{*)} Statuendo scilicet in formula secunda $A = \frac{1}{2}(N''-N')$, $B = \frac{1}{2}N + \frac{1}{2}N'' - \Pi$, $C = \frac{1}{2}(N-N')$.

per elementa transscendens sit, insuperque satis complicata. Eo magis dignum est, quod omni cura tractetur: quamobrem lectoribus haud ingratum fore speramus, quod praeter solutionem post tradendam, quae nihil amplius desiderandum relinquere videtur, eam quoque oblivioni eripiendam esse censuimus, qua olim antequam ista se obtulisset frequenter usi sumus. Problemata difficiliora semper iuvat pluribus viis aggredi, nec bonam spernere etiamsi meliorem praeferas. Ab expositione huius methodi anterioris initium facimus.

85.

Retinebimus characteres r, r', N, N', p, e, ll in eadem significatione, in qua supra accepti sunt; differentiam N'-N denotabimus per Δ , tempusque intra quod corpus coeleste a loco priori ad posteriorem movetur per t. Jam patet, si valor approximatus alicuius quantitatum p, e, Π sit notus, etiam duas reliquas inde determinari posse, ac dein per methodos in Sectione prima explicatas tempus motui a loco primo ad secundum respondens. Quod si tempori proposito t aequale evadit, valor suppositus ipsius p, e vel Π est ipse verus, orbitaque ipsa iam inventa: sin minus, calculus cum valore alio a primo parum diverso repetitus docebit, quanta variatio in valore temporis variationi exiguae in valore ipsius p, e, Π respondeat, unde per simplicem interpolationem valor correctus eruetur. Cum quo si calculus denuo repetitur, tempus emergens vel ex asse cum proposito quadrabit vel saltem perparum ab eo differet, ita ut certe novis correctionibus adhibitis consensum tam exactum attingere liceat, quantum tabulae logarithmicae et trigonometricae permittunt.

Problema itaque eo reductum est, ut pro eo casu, ubi orbita adhuc penitus incognita est, valorem saltem approximatum alicuius quantitatum p, e, Π determinare doceamus. Methodum iam trademus, per quam valor ipsius p tanta praecisione eruitur, ut pro parvis quidem valoribus ipsius Ω nulla amplius correctione indigeat, adeoque tota orbita per primum calculum omni iam praecisione determinetur, quam tabulae vulgares permittunt. Vix umquam autem aliter nisi pro valoribus mediocribus ipsius Ω ad hanc methodum recurrere oportebit, quum determinationem orbitae omnino adhuc incognitae, propter problematis complicationem nimis intricatam, vix aliter suscipere liceat, nisi per observationes non nimis ab invicem distantes, aut potius tales, quibus motus heliocentricus non nimius respondet.

86.

Designando radium vectorem indefinitum seu variabilem anomaliae verae $\nu-\Pi$ respondentem per ρ , erit area sectoris a corpore coelesti intra tempus t descripti = $\frac{1}{2}\int\rho\rho\,\mathrm{d}\nu$, hoc integrali a $\nu=N$ usque ad $\nu=N'$ extenso, adeoque, accipiendo k in significatione art. 6., $kt\sqrt{p}=\int\rho\rho\,\mathrm{d}\nu$. Iam constat, per formulas a Coresio evolutas, si φx exprimat functionem quamcunque ipsius x, valorem continuo magis approximatum integralis $\int\varphi x\,\mathrm{d}\,x$ ab x=u usque ad $x=u+\Delta$ extensi exhiberi per formulas

$$\frac{1}{4} \Delta (\varphi u + \varphi (u + \Delta))$$

$$\frac{1}{4} \Delta (\varphi u + 4 \varphi (u + \frac{1}{4} \Delta) + \varphi (n + \Delta))$$

$$\frac{1}{4} \Delta (\varphi u + 3 \varphi (u + \frac{1}{4} \Delta) + 3 \varphi (u + \frac{3}{4} \Delta) + \varphi (u + \Delta))$$

etc.: ad institutum nostrum apud duas formulas primas subsistere sufficiet.

Per formulam itaque primam in problemate nostro habemus $\int \rho \rho \, d \nu = \frac{1}{2} \Delta (rr + r'r') = \frac{\Delta r \, r'}{\cos 2 \omega}$, si statuitur $\frac{r'}{r} = \tan (45^{\circ} + \omega)$. Quamobrem valor approximatus primus ipsius \sqrt{p} erit $= \frac{\Delta r \, r'}{kt \cos 2 \omega}$, quem statuemus $= 3 \, \alpha$.

Per formulam secundam habemus exactius $\int \rho \rho \, d\nu = \frac{1}{2} \Delta (rr + r'r' + 4RR)$, designante R radium vectorem anomaliae intermediae $\frac{1}{2}N + \frac{1}{2}N' - \Pi$ respondentem. Iam exprimendo p per r, R, r', N, $N + \frac{1}{2}\Delta$, $N + \Delta$ ad normam formulae in art. 82. traditae, invenimus

$$p = \frac{4 \sin \frac{1}{r} \Delta^2 \sin \frac{1}{r} \Delta}{\left(\frac{1}{r} + \frac{1}{r'}\right) \sin \frac{1}{r} \Delta - \frac{1}{R} \sin \Delta}, \text{ atque hinc}$$

$$\frac{\cos \frac{1}{r} \Delta}{R} = \frac{1}{r} \left(\frac{1}{r} + \frac{1}{r'}\right) - \frac{2 \sin \frac{1}{r} \Delta^2}{p} = \frac{\cos \omega}{\sqrt{rr' \cos 2 \omega}} - \frac{2 \sin \frac{1}{r} \Delta^2}{p}$$

Statuendo itaque

$$\frac{2\sin\frac{1}{2}\Delta^2\sqrt{(r\,r'\cos2\,\omega)}}{\cos\omega} = \delta, \quad \text{fit}$$

$$R = \frac{\cos\frac{1}{2}\Delta\sqrt{(r\,r'\cos2\,\omega)}}{\cos\omega\left(1 - \frac{\delta}{p}\right)}$$

unde valor approximatus secundus ipsius \sqrt{p} elicitur

$$\sqrt{p} = \alpha + \frac{2\alpha \cos \frac{1}{2} \Delta^2 \cos 2\omega^2}{\cos \omega^3 \left(1 - \frac{\delta}{p}\right)^2} = \alpha + \frac{\epsilon}{\left(1 - \frac{\delta}{p}\right)^2}$$

si statuitur $2\alpha \left(\frac{\cos\frac{1}{2}\Delta\cos^2\omega}{\cos\omega}\right)^2 = \varepsilon$. Scribendo itaque π pro \sqrt{p} , determinabitur π per aequationem $(\pi-\alpha)\left(1-\frac{\delta}{\pi\pi}\right)^2 = \varepsilon$, quae rite evoluta ad quintum gradum ascenderet. Statuamus $\pi = q + \mu$, ita ut sit q valor approximatus ipsius π , atque μ quantitas perexigua, cuius quadrata altioresque potestates negligere liceat: Qua substitutione prodit

$$(q-a)\left(1-\frac{\delta}{q\dot{q}}\right)^{2}+\mu\left\{\left(1-\frac{\delta}{qq}\right)^{2}+\frac{4\delta(q-a)}{q^{3}}\left(1-\frac{\delta}{qq}\right)\right\}=\epsilon, \text{ sive}$$

$$\mu=\frac{\epsilon q^{5}-(qq-aq)(qq-\delta)^{2}}{(qq-b)(q^{5}+3\delta q-4a\delta)}, \text{ adeoque}$$

$$\pi=\frac{\epsilon q^{5}+(qq-b)(\alpha qq+4\delta q-5a\delta)q}{(qq-b)(q^{5}+3\delta q-4a\delta)}$$

Iam in problemate nostro habemus valorem approximatum ipsius π , puta = 3 α , quo in formula praecedente pro q substituto, prodit valor correctus

$$\pi = \frac{243 a^4 \varepsilon + 3 a (9 a a - \delta) (9 a a + 7 \delta)}{(9 a a - \delta) (27 a a + 5 \delta)}$$

Statuendo itaque $\frac{\delta}{27 \alpha \alpha} = 6$, $\frac{\epsilon}{(1-36)\alpha} = \gamma$, formula induit formam hance $\pi = \frac{\alpha(1+\gamma+216)}{1+56}$, omnesque operationes ad problematis solutionem necessariae in his quinque formulis continentur:

I.
$$\frac{r'}{r} = \tan g (45^{\circ} + \omega)$$
II.
$$\frac{\Delta r r'}{3kt \cos 2\omega} = \alpha$$
III.
$$\frac{2 \sin \frac{1}{2} \Delta^{2} \sqrt{(r r' \cos 2\omega)}}{27 \alpha 2 \cos \omega} = 6$$
IV.
$$\frac{2 \cos \frac{1}{2} \Delta^{2} \cos 2\omega^{2}}{(1 - 36) \cos \omega^{2}} = \gamma$$
V.
$$\frac{\alpha (1 + \gamma + 216)}{1 + 56} = \sqrt{p}$$

Si quid a praecisione harum formularum remittere placet, expressiones adhuc simpliciores evoluere licebit. Scilicet faciendo $\cos \omega$ et $\cos 2\omega = 1$ et evolvendo valorem ipsius \sqrt{p} in seriem secundum potestates ipsius Δ progredientem, prodit neglectis biquadratis altioribusque potestatibus

$$\sqrt{p} = \alpha \left(3 - \frac{1}{2} \Delta \Delta + \frac{\Delta \Delta \sqrt{rr'}}{18 \pi a}\right)$$

ubi Δ in partibus radii exprimendus est. Quare faciendo $\frac{\Delta rr'}{kt} = \sqrt{p'}$, habetur

VI.
$$p = p'(1 - \frac{1}{4}\Delta\Delta + \frac{\Delta\Delta\sqrt{rr'}}{3p'})$$

Simili modo explicando \sqrt{p} in seriem secundum potestates ipsius $\sin \Delta$ progredientem emergit posito $\frac{rr'\sin \Delta}{kt} = \sqrt{p''}$

VII.
$$\sqrt{p} = \left(1 + \frac{\sin \Delta^2 \sqrt{rr'}}{6 p''}\right) \sqrt{p''}$$
, sive
VIII. $p = p'' + \frac{1}{3} \sin \Delta^2 \sqrt{rr'}$

Formulae VII. et VIII. conveniunt cum iis, quas ill. Euler tradidit in Theoria motus planetarum et cometarum, formula VI. autem cum ea, quae in usum vocata est in Recherches et calculs sur la vraie orbite elliptique de la comète de 1769, p. 80.

87.

Exempla sequentia usum praeceptorum praecedentium illustrabunt, simulque inde gradus praecisionis aestimari poterit.

I. Sit $\log r = 0.3307640$, $\log r' = 0.3222239$, $\Delta = 7^{\circ}34'53''73 = 27293''73$, t = 21.93391 dies. Hic invenitur $\omega = -33'47''90$, unde calculus ulterior ita se habet:

$\frac{1}{2} \log r r' \cos 2 \omega$ 0,3264519
$2 \log \sin \frac{1}{4} \Delta$ 7,0389972
$\log_{2^{2}7} \dots 8,8696662$
C.logaa0,5582180
$C.\log\cos\omega$ 0,0000210
log6 6,7933543
= 0,0006213757
$1 + \gamma + 216 = 3,0074471$
log 0,4781980
$\log a \cdot \cdot \cdot 9,7208910$
$C.\log(1+56)9,9986528$
$\log \sqrt{p} \dots \dots 0,1977418$
$\log p$ 0,3954836

Hic valor ipsius $\log p$ vix una unitate in figura septima a vero differt: formula VI. in hoc exemplo dat $\log p = 0.3954822$; formula VII. producit 0.3954780; denique formula VIII. dat 0.3954754.

II. Sit $\log r = 0.4282792$, $\log r' = 0.4062033$, $\Delta = 62^{\circ}55'16''64$, t = 259.88477 dies. Hinc eruitur $\omega = -1^{\circ}27'20''14$, $\log \alpha = 9.7482348$, 6 = 0.04535216, $\gamma = 1.681127$, $\log \sqrt{p} = 0.2198027$, $\log p = 0.4396054$, qui valor 183 unitatibus in figura septima iusto minor est. Valor enim versus in hoc exemplo est 0.4396237; per formulam VI. invenitur 0.4368730; per formulam VII. prodit 0.4159824; denique per formulam VIII. eruitur 0.4051103: duo postremi valores hic a vero tantum discrepant, ut ne approximationis quidem vice fungi possint.

88.

Methodi secundae expositio permultis relationibus novis atque elegantibus enucleandis occasionem dabit: quae quum in diversis sectionum conicarum generibus formas diversas induant, singula seorsim tractare oportebit: ab ELLIPSI initium faciemus.

Respondeant duobus locis anomaliae verae v, v' (e quibus v sit tempore anterior), anomaliae excentricae E, E', radiique vectores r, r'; porro sit p semiparameter, $e = \sin \varphi$ excentricitas, a semiaxis maior, t tempus intra quod motus a loco primo ad secundum absolvitur; denique statuamus

$$v'-v=2f, \ v'+v=2F, \ E-E=2g, \ E+E=2G, \ a\cos\varphi=\frac{p}{\cos\varphi}=b$$

Quibus ita factis e combinatione formularum V. VI. art. 8. facile deducuntur aequationes sequentes:

- $[1.] \quad b \sin g = \sin f \cdot \sqrt{rr'}$
- [2.] $b \sin G = \sin F \cdot \sqrt{rr'}$ $p \cos g = (\cos \frac{1}{2} v \cos \frac{1}{2} v' \cdot (1+e) + \sin \frac{1}{2} v \sin \frac{1}{2} v' \cdot (1-e)) \sqrt{rr'}$, sive
- [3.] $p \cos g = (\cos f + e \cos F) \sqrt{rr'}$, et perinde
- [4.] $p\cos G = (\cos F + e\cos f)\sqrt{rr'}$

E combinatione aequationum 3. 4. porro oritur

[5.]
$$\cos f \cdot \sqrt{rr'} = (\cos g - e \cos G) a$$

[6.]
$$\cos F \cdot \sqrt{rr'} = (\cos G - e \cos g) a$$

E formula III. art. 8. nanciscimur

[7.]
$$r'-r = 2 a e \sin g \sin G$$

 $r'+r = 2 a - 2 a e \cos g \cos G = 2 a \sin g^2 + 2 \cos f \cos g \sqrt{rr'}$

unde

$$[8.] a = \frac{r+r'-2\cos f\cos g\sqrt{r}r'}{2\sin g^2}$$

Statuamus

[9.]
$$\frac{\sqrt{\frac{r'}{r}} + \sqrt{\frac{r}{r'}}}{2\cos f} = 1 + 2l, \text{ eritque}$$
[10.]
$$a = \frac{2(l + \sin \frac{1}{2}g^5)\cos f/rr'}{\sin g^2}, \text{ nec non}$$

$$\sqrt{a} = \pm \frac{\sqrt{(2(l + \sin \frac{1}{2}g^5)\cos f/rr')}}{\sin g}$$

ubi signum superius accipere oportet vel inferius, prout $\sin g$ positivus est vel negativus. — Formula XII. art. 8. nobis suppedita aequationem

$$\frac{kt}{a^2} = E' - e\sin E' - E + e\sin E = 2g - 2e\sin g\cos G$$

$$= 2g - \sin 2g + 2\cos f\sin g\frac{\sqrt{rr'}}{a}$$

Quodsi iam in hac aequatione pro a substituitur ipsius valor ex 10, ac brevitatis gratia ponitur

$$[11.] \quad \frac{kt}{2^{\frac{1}{2}}\cos f^{\frac{1}{2}}(rr)^{\frac{1}{2}}} = m$$

prodit omnibus rite reductis

[12.]
$$\pm m = (l + \sin \pm g^{3})^{\frac{1}{2}} + (l + \sin \pm g^{3})^{\frac{3}{2}} \left(\frac{2g - \sin 2g}{\sin g^{3}}\right)$$

ubi ipsi m signum superius vel inferius praefigendum est, prout $\sin g$ positivus est vel negativus.

Quoties motus heliocentricus est inter 180° et 360°, sive generalius quoties cos f est negativus, quantitas m per formulam 11. determinata evaderet imagig. Th. N. 14

naria, atque l negativa, ad quod evitandum pro aequationibus 9. 11. in hoc casu hasce adoptabimus:

[9.*]
$$\frac{\sqrt{\frac{r'}{r}} + \sqrt{\frac{r}{r'}}}{2\cos f} = 1 - 2L$$

$$[11.*] \quad \frac{kt}{2^{\frac{1}{2}}(-\cos f)^{\frac{1}{2}}(rr)^{\frac{1}{2}}} = M$$

unde pro 10. et 12. hasce obtinebimus

$$a = \frac{-2(L-\sin\frac{1}{2}g^{2})\cos f\sqrt{r}r'}{\sin g^{2}}$$

$$+ M = -(L-\sin\frac{1}{2}g^{2})^{\frac{1}{2}} + (L-\sin\frac{1}{2}g^{2})^{\frac{3}{2}} \left(\frac{2g-\sin 2g}{\sin g^{2}}\right)$$

ubi signum ambiguum eodem modo determinandum est ut ante.

89.

Duplex iam negotium nobis incumbit, primum, ut ex aequatione transcendents 12., quoniam solutionem directam non admittit, incognitam g quam commodissime eruamus; secundum, ut ex angulo g invento elements ipsa dednesmus. Quae antequam adeamus, transformationem quandam attingemus, cuius adiumento calculus quantitatis auxiliaris l vel L expeditius absolvitur, insuperque plures formulae post evolvendae ad formam elegantiorem reducuntur.

Introducendo scilicet angulum auxiliarem w per formulam

$$\sqrt[4]{\frac{r'}{r}} = \tan (45^{\circ} + \omega)$$

determinandum, fit

$$\sqrt{\frac{r'}{r}} + \sqrt{\frac{r}{r'}} = 2 + (\tan(45^\circ + \omega) - \cot(45^\circ + \omega))^2 = 2 + 4\tan 2\omega^2$$
unde habetur

$$l = \frac{\sin \frac{1}{2} f^2}{\cos f} + \frac{\tan 2 e^2}{\cos f}$$

$$L = -\frac{\sin\frac{1}{2}f^2}{\cos f} - \frac{\tan 2 e^2}{\cos f}$$

90.

Considerabimus primo casum eum, ubi e solutione aequationis 12. valor non nimis magnus ipsius g emergit, ita ut $\frac{2g-\sin 2g}{\sin g^3}$ in seriem secundum potestates ipsius $\sin \frac{1}{2}g$ progredientem evolvere liceat. Numeratur huius expressionis, quam per X denotabimus, fit

$$=\frac{32}{7}\sin\frac{1}{7}g^{3}-\frac{16}{5}\sin\frac{1}{7}g^{5}-\frac{4}{7}\sin\frac{1}{7}g^{7}-\text{etc.}$$

Denominatur autem

=
$$8 \sin \frac{1}{2} g^{5}$$
 - $12 \sin \frac{1}{2} g^{5}$ + $3 \sin \frac{1}{2} g^{7}$ + etc.

Unde X obtinet formam

$$\frac{1}{3} + \frac{3}{5}\sin\frac{1}{2}g^2 + \frac{1}{5}\sin\frac{1}{2}g^4 + \text{etc.}$$

Ut autem legem progressionis coefficientium eruamus, differentiamus aequationem

$$X \sin g^3 = 2g - \sin 2g$$
, unde prodit
 $3 X \cos g \sin g^3 + \sin g^3 \frac{dX}{dg} = 2 - 2 \cos 2g = 4 \sin g^3$

statuendo porro $\sin \frac{1}{2}g^2 = x$, fit $\frac{dx}{dg} = \frac{1}{2}\sin g$, unde concluditur

$$\frac{\mathrm{d}X}{\mathrm{d}x} = \frac{8 - 6X\cos g}{\sin g^2} = \frac{4 - 3X(1 - 2x)}{2x(1 - x)} \text{ et proin}$$

$$(2x-2xx)\frac{dX}{dx} = 4-(3-6x)X$$

Quodsi igitur statuimus

$$X = \frac{1}{2}(1 + \alpha x + \delta x x + \gamma x^2 + \delta x^4 + \text{ etc.})$$

obtinemus aequationem

$$\frac{2}{3}(ax + (26 - a)xx + (3\gamma - 26)x^3 + (4\delta - 3\gamma)x^4 + \text{ etc.})$$

$$= (8 - 4a)x + (8a - 46)xx + (86 - 4\gamma)x^3 + (8\gamma - 4\delta)x^4 + \text{ etc.}$$

quae identica esse debet. Hinc colligimus $a=\frac{1}{2}$, $6=\frac{1}{2}a$, $\gamma=\frac{10}{2}6$, $\delta=\frac{1}{1}\gamma$ etc. ubi lex progressionis obvia est. Habemus itaque

$$X = \frac{4}{3} + \frac{4.6}{3.5}x + \frac{4.6.8}{3.5.7}xx + \frac{4.6.8.10}{3.5.7.9}x^{6} + \frac{4.6.9.10.10}{3.5.7.9.11}x^{4} + \text{etc.}$$

Hanc seriem transformare licet in fractionem continuam sequentem:

Hanc seriem transformare licet in fractionem contin
$$X = \frac{\frac{4}{3}}{1 - \frac{\frac{6}{5}x}{1 - \frac{\frac{2}{5.7}x}{1 - \frac{\frac{5.8}{7.9}x}{1 - \frac{\frac{1.4}{9.11}x}{1 - \frac{\frac{11.13}{11.13}x}{1 - \frac{\frac{3.6}{13.15}x}{1 - \frac{15.17}x}}}$$

$$1 - \frac{\frac{3.6}{13.15}x}{1 - \frac{\frac{9.12}{15.17}x}{1 - \text{etc.}}}$$
ecundum quam coëfficientes $\frac{6}{5}$, $-\frac{2}{5.7}$, $\frac{5.8}{7.9}$, $\frac{1.4}{9.11}$ etc.

Lex secundum quam coefficientes $\frac{6}{5}$, $-\frac{2}{5.7}$, $\frac{5.8}{7.9}$, $\frac{1.4}{9.11}$ etc. progrediuntur, obvia est; scilicet terminus n^{he} huius seriei fit pro n pari $=\frac{n-3.n}{2n+1.2n+3}$, pro n impari autem = $\frac{n+2.n+5}{2n+1.2n+3}$: ulterior huius argumenti evolutio nimis aliena esset ab instituto nostro. [V.Disquiss generales circa seriem infinitam etc. Gauss Werke, Bd. III. S. 125.] Quodsi iam statuimus

$$\frac{x}{1 + \frac{\frac{2}{5.7}x}{1 - \frac{\frac{5.8}{7.9}x}{1 - \frac{\frac{1.4}{9.11}x}{1 - \text{etc.}}}} = x - \xi$$

fit

$$X = \frac{1}{\frac{1}{4 - \frac{1}{10}}(x - \xi)}, \text{ atque}$$

$$\xi \equiv x - \frac{5}{6} + \frac{10}{9X}, \text{ sive}$$

$$\xi = \frac{\sin g^3 - \frac{1}{4}(2g - \sin 2g)(1 - \frac{6}{4}\sin \frac{1}{4}g^3)}{\frac{1}{10}(2g - \sin 2g)}.$$

Numerator huius expressionis est quantitas ordinis septimi, denominator ordinis tertii, adeoque & ordinis quarti, siquidem g tamquam quantitas ordinis primi, sive x tamquam ordinis secundi spectatur. Hinc concluditur, formulam hance ad computum numericum exactum ipsius ξ haud idoneam esse, quoties g angulum non valde considerabilem exprimat: tunc autem ad hunc finem commode adhibentur formulae sequentes, quae ab invicem per ordinem commutatum numeratorum in coëfficientibus fractis different, et quarum prior e valore supposito ipsius $x - \xi$ haud difficile derivatur *):

atorum in coëfficientibus fractis different, et quarum pri
—
$$\xi$$
 haud difficile derivatur *):

$$[13.] \quad \xi = \frac{\frac{2}{3} x x}{1 + \frac{2}{3} x - \frac{\frac{4}{3} \frac{9}{3} x}{1 - \frac{\frac{4}{3} \frac{9}{3} x}{1 - \frac{\frac{1}{3} \frac{9}{3} x}{1 - \frac{1}{3} \frac{9}{3} \frac{8}{3} x}}}$$

$$1 - \frac{\frac{1}{3} \frac{1}{3} \frac{9}{3} x}{1 - \frac{\frac{1}{3} \frac{9}{3} \frac{8}{3} x}{1 - \frac{1}{3} \frac{9}{3} \frac{8}{3} x}}$$

$$1 - \frac{1}{1 - \frac{1}{3} \frac{9}{3} \frac{8}{3} x}$$

sive

$$\xi = \frac{\frac{\frac{2}{85}xx}{1 - \frac{1}{85}x - \frac{\frac{4}{85}x}{\frac{4}{85}x}}}{1 - \frac{\frac{4}{9}\frac{0}{8}x}{1 - \frac{\frac{1}{148}x}{1 - \frac{\frac{1}{188}x}{1 - \frac{4}{188}x}}}}{1 - \frac{\frac{4}{188}x}{1 - \text{etc.}}}$$

In tabula tertia huic operi annexa pro cunctis valoribus ipsius x a 0 usque ad 0,3, per singulas partes millesimas, valores respondentes ipsius ξ ad septem figuras decimales computati reperiuntur. Haec tabula primo aspectu monstrat exiguitatem ipsius ξ pro valoribus modicis ipsius g; ita e. g. pro $E'-E=10^{\circ}$, sive $g=5^{\circ}$, ubi x=0,00195, fit $\xi=0,0000002$. Superfluum fuisset, tabulam adhuc ulterius continuare, quum termino ultimo x=0,3 respondeat $g=66^{\circ}25$ sive $E'-E=132^{\circ}50'$. Ceterum tabulae columna tertia, quae valores ipsius ξ valoribus negativis ipsius x respondentes continet, infra loco suo explicabitur.

^{*)} Deductio posterioris quasdam transformationes minus obvias aliaque occasione explicandas supponit-

91.

Aequatio 12., in qua, eo de quo agimus casu, manifesto signum superiua adoptare oportet, per introductionem quantitatis \(\xi\) obtinet formam

$$m = (l+x)^{\frac{1}{2}} + \frac{(l+x)^{\frac{1}{2}}}{\frac{1}{2} - \frac{1}{2}(x-\xi)}$$

Statuendo itaque $\sqrt{(l+x)} = \frac{m}{u}$, atque

[14.]
$$\frac{mm}{\frac{1}{2}+l+\xi} = h$$
, omnibus rite reductis prodit

$$[15.] h = \frac{(y-1)yy}{y+\frac{1}{2}}$$

Quodsi itaque h tamquam quantitatem cognitam spectare licet, y inde per aequationem cubicam determinabitur, ac dein erit

$$[16.] x = \frac{mm}{yy} - l$$

Iam etiamsi h implicet quantitatem adhuc incognitam ξ , in approximatione prima eam negligere atque pro h accipere licebit $\frac{mm}{\xi+l}$, quoniam certe in eo de quo agimus casu ξ semper est quantitas valde parva. Hinc per aequationes 15. 16. elicientur g et g; ex g per tabulam III. habebitur g, cuius adiumento per formulam 14. eruetur valor correctus ipsius g, cum quo calculus idem repetitus valores correctos ipsarum g, g dabit: plerumque hi tam parum a praecedentibus different, ut g iterum e tabula III. desumta haud diversa sit a valore primo: alioquin calculum denuo repetere oporteret, donec nullam amplius mutationem patiatur. Simulac quantitas g inventa erit, habebitur g per formulam $\sin \frac{1}{2}g^2 = g$.

Hace precepts referentured casum primum, this cos f positives est; in case alterouble negatives est state in $V(L-x) = \frac{M}{V}$ at que

[14*.]
$$\frac{MM}{L-\frac{1}{4}-\frac{1}{5}} = H$$
, unde aequatio 12* rite reducta transit in hanc [15*.] $H = \frac{(Y+1)YY}{Y-\frac{1}{4}}$

Per hanc itaque acquationem cubicam determinare licet Y ex H, unde rursus x derivabitur per acquationem

$$[16^*.] x = L - \frac{MM}{VV}$$

In approximatione prima pro H accipietur valor $\frac{MM}{L-\frac{1}{2}}$; cum valore ipsius x

inde per aequationes 15*. 16*. derivato desumetur ξ ex tabula III.; hinc per formulam 14*. habebitur valor correctus ipsius H, cum quo calculus codem modo repetetur. Tandem ex x angulus g codem modo determinabitur ut in casu primo.

92.

Quamquam aequationes 15. 15*. in quibusdam casibus tres radices reales habere possint, tamen ambiguum numquam erit, quamnam in problemate nostro adoptare oporteat. Quum enim k manifesto sit quantitas positiva, ex aequationum theoria facile concluditur, aequationem 15. habere radicem unicam positivam vel cum duabus imaginariis vel cum duabus negativis: iam quum $y = \frac{m}{\sqrt{(l+x)}}$ necessario esse debeat quantitas positiva, nullam hic incertitudinem remanere patet. Quod vero attinet ad aequationem 15*., primo observamus, L necessario esse maiorem quam 1: quod facile probatur, si aequatio in art. 89. tradita sub formam

$$L = 1 + \frac{\cos \frac{1}{2} f^2}{-\cos f} + \frac{\tan g \cdot 2 \cdot \omega^2}{-\cos f}$$

ponitur. Porro substituendo in aequatione 12*. pro M, $Y\sqrt{(L-x)}$, prodit Y+1 = (L-x)X, adeoque

$$Y+1>(1-x)X>\frac{1}{2}+\frac{4}{3.5}x+\frac{4.6}{3.5.7}xx+\frac{4.6.8}{3.5.7.9}x^2+\text{ etc.}>\frac{1}{2}$$

et proin $Y > \frac{1}{2}$. Statuendo itaque $Y = \frac{1}{2} + Y'$, necessario Y' erit quantitas positiva, aequatio 15*. autem hine transit in hanc

$$Y'''' + 2Y'Y' + (1-H)Y' + \frac{4}{27} - \frac{7}{8}H = 0$$

quam plures radices positivas habere non posse ex aequationum theoria facile probatur. Hinc colligitur, aequationem 15*. unicam radicem habituram esse maiorem quam +*), quam neglectis reliquis in problemate nostro adoptare oportebit.

93.

Ut solutionem aequationis 15. pro casibus in praxi frequentissimis quantum fieri potest commodissimam reddamus, ad calcem huius operis tabulam peculiarem adiungimus (tabulam II.), quae pro valoribus ipsius h a 0 usque ad 0,6 loga-

^{*)} Siquidem problema revera solubile esse supponimus.

rithmos respondentes ipsius yy ad septem figuras decimales summa cura computatos exhibet. Argumentum h a 0 usque ad 0,04 per singulas partes decies millesimas progreditur, quo pacto differentiae secundae ipsius $\log yy$ evanescentes sunt redditae, ita ut in hac quidem tabulae parte interpolatio simplex sufficiat. Quoniam vero tabula, si ubivis eadem extensione gauderet, valde voluminosa evasisset, ab h=0.04 usque ad finem per singulas tantum millesimas partes progredi debuit; quamobrem in hac parte posteriori ad differentias secundas respicere oportebit, siquidem errores aliquot unitatum in figura septima evitare cupimus. Ceterum valores minores ipsius h in praxi longe sunt frequentissimi.

Solutio aequationis 15. quoties h limitem tabulae egreditur, nec non solutio aequationis 15*. sine difficultate per methodum indirectam vel per alias methodos satis cognitas perfici poterit. Ceterum haud abs re erit monere, valorem parvum ipsius g cum valore negativo ipsius $\cos f$ consistere non posse nisi in orbitis valde excentricis, ut ex aequatione 20. infra in art. 95. tradenda sponte elucebit*).

94.

Tractatio acquationum 12. 12*. in art. 91. 92. 93. explicata, innixa est suppositioni, angulum g non esse nimis magnum, certe infra limitem 66°25', ultra quem tabulam III. non extendimus. Quoties haec suppositio locum non habet, aequationes illae tantis artificiis non indigent: poterunt enim forma non mutata tutissime semper ac commodissime tentando solvi. Tuto scilicet, quoniam valor expressionis $\frac{2g - \sin 2g}{\sin g^2}$, in qua 2g in partibus radii exprimendum esse sponte patet, pro valoribus maioribus ipsius g omni praecisione computari potest per tabulas trigonometricas, quod utique fieri nequit, quamdiu g est angulus parvus: commode, quoniam loci heliocentrici tanto intervallo ab invicem distantes vix umquam ad determinationem orbitae penitus adhuc incognitae adhibebuntur, ex orbitae autem cognitione qualicunque valor approximatus ipsius g nullo propemodum negotio per aequationem 1. vel 3. art. 88. demanat: denique e valore approximato ipsius g valor correctus, aequationi 12. vel 12*. omni quae desideratur praecisione satisfaciens, semper paucis tentaminibus eruetur. Ceterum quoties duo loci heliocentrici propositi plus una revolutione integra complectuntur, memorem esse oportet, quod ab anomalia excentrica totidem revolutiones comple-

^{*)} Ostendit ista aequatio, si cos f sit negativus, \(\phi \) certe maiorem esse debere quam 20°-g.

tae absolutae erunt, ita ut anguli E'-E, v'-v vel ambo iaceant inter 0 et 360°, vel ambo inter multipla similia totius peripheriae, adeoque f et g vel simul inter 0 et 180°, vel inter multipla similia semiperipheriae. Quodsi tandem orbita omnino incognita esset, neque adeo constaret, utrum corpus coeleste, transeundo a radio vectore primo ad secundum, descripserit partem tantum revolutionis, an insuper revolutionem integram unam seu plures, problema nostrum nonnumquam plures solutiones diversas admitteret: attamen huic casui in praxi vix umquam occursuro hic non immoramur.

95

Transimus ad negotium secundum, puta determinationem elementorum ex invento angulo g. Semiaxis maior hic statim habetur per formulas 10. 10*., pro quibus etiam sequentes adhiberi possunt:

[17.]
$$a = \frac{2 m m \cos f / r r'}{y y \sin g^2} = \frac{kktt}{4 y y r r' \cos f^2 \sin g^2}$$
$$[17^*.] \quad a = \frac{-2 M M \cos f / r r'}{Y Y \sin g^2} = \frac{kktt}{4 Y Y r r' \cos f^2 \sin g^2}$$

Semiaxis minor $b = \sqrt{ap}$ habetur per aequationem 1., qua cum praecedentibus combinata prodit

[18.]
$$p = \left(\frac{yrr'\sin 2f}{kt}\right)^2$$
$$[18^*.] \quad p = \left(\frac{Yrr'\sin 2f}{kt}\right)^2$$

Iam sector ellipticus inter duos radios vectores atque arcum ellipticum contentus fit $= \frac{1}{4}kt\sqrt{p}$, triangulum autem inter eosdem radios vectores atque chordam $= \frac{1}{4}rr'\sin 2f$: quamobrem ratio sectoris ad triangulum est ut y:1 vel Y:1. Haec observatio maximi est momenti, simulque aequationes 12. 12*. pulcherrime illustrat: patet enim hinc, in aequatione 12. partes m, $(l+x)^{\frac{1}{4}}$, $X(l+x)^{\frac{1}{4}}$, in aequatione 12*. autem partes M, $(L-x)^{\frac{1}{4}}$, $X(L-x)^{\frac{1}{4}}$ respective proportionales esse areae sectoris (inter radios vectores atque arcum ellipticum), areae trianguli (inter radios vectores atque chordam), areae segmenti (inter arcum atque chordam), quoniam manifesto area prima aequalis est vel summae vel differentiae duarum reliquarum, prout v'-v vel inter 0 et 180° iacet vel inter 180° et 360°. In casu eo, ubi v'-v maior est quam 360°, areae sectoris nec non areae segmenti aream integrae ellipsis toties adiectam concipere oportet, quot revolutiones integras ille motus continet.

15

Quum b sit = $a \cos \varphi$, e combinatione aequationum 1. 10. 10*. porro sequitur

[19.]
$$\cos \varphi = \frac{\sin g \tan g f}{2(l+\sin \frac{1}{2}g^2)}$$

[19.]
$$\cos \varphi = \frac{\sin g \tan g f}{2(l+\sin \frac{1}{2}g^2)}$$

$$\cos \varphi = \frac{-\sin g \tan g f}{2(L-\sin \frac{1}{2}g^2)}$$

unde substituendo pro l, L valores suos ex art. 89. prodit

[20.]
$$\cos \varphi = \frac{\sin f \sin g}{1 - \cos f \cos g + 2 \tan g \cdot 2 \cdot \varpi^2}$$

Haec formula ad calculum exactum excentricitatis non est idonea, quoties haecce modica est: sed facile ex ista deducitur formula aptior sequens

[21.]
$$\tan g \frac{1}{2} \varphi^2 = \frac{\sin \frac{1}{2} (f-g)^2 + \tan g \cdot 2 \cdot \sigma^2}{\sin \frac{1}{2} (f+g)^2 + \tan g \cdot 2 \cdot \sigma^2}$$

cui etiam forma sequens tribui potest (multiplicando numeratorem et denominatoram per cos 2 ω²)

[22.]
$$\tan g \frac{1}{2} \varphi^2 = \frac{\sin \frac{1}{2} (f-g)^3 + \cos \frac{1}{2} (f-g)^2 \sin 2 \omega^2}{\sin \frac{1}{2} (f+g)^3 + \cos \frac{1}{2} (f+g)^3 \sin 2 \omega^2}$$

Per utramque formulam (adhibitis si placet angulis auxiliaribus quorum tangentes $\frac{\tan 2\omega}{\sin \frac{1}{2}(f-g)}$, $\frac{\tan 2\omega}{\sin \frac{1}{2}(f+g)}$ pro priori, vel $\frac{\sin 2\omega}{\tan \frac{1}{2}(f-g)}$, $\frac{\sin 2\omega}{\tan \frac{1}{2}(f+g)}$ pro posteriori) angulum φ omni semper praecisione determinare licebit.

Pro determinatione anguli G adhiberi potest formula sequens, quae sponte demanat e combinatione aequationum 5, 7 et sequentis non numeratae:

[23.]
$$\tan G = \frac{(r'-r)\sin g}{(r'+r)\cos g - 2\cos f \sqrt{r} r'}$$

e qua, introducendo ω, facile derivatur

[24.]
$$\tan g G = \frac{\sin g \sin 2 \omega}{\cos 2 \omega^2 \sin \frac{1}{2} (f-g) \sin \frac{1}{2} (f+g) + \sin 2 \omega^2 \cos g}$$

Ambiguitas hic remanens facile deciditur adiumento aequationis 7., quae docet, G inter 0 et 180° vel inter 180° et 360° accipi debere, prout numerator in his duabus formulis positivus fuerit vel negativus.

Combinando aequationem 3. cum his, quae protinus demanant ex aequatione II. art. 8.

$$\frac{1}{r} - \frac{1}{r'} = \frac{2e}{p} \sin f \sin F$$

$$\frac{1}{r} + \frac{1}{r'} = \frac{2}{p} + \frac{2e}{p} \cos f \cos F$$

nullo negotio derivabitur sequens

[25.]
$$tang F = \frac{(r'-r)\sin f}{2\cos g\sqrt{r}r'-(r'+r)\cos f}$$

e qua, introducto angulo e, prodit

[26.]
$$\tan F = \frac{\sin f \sin 2 \omega}{\cos 2 \omega^2 \sin \frac{1}{2} (f-g) \sin \frac{1}{2} (f+g) - \sin 2 \omega^2 \cos f}$$

Ambiguitas hic perinde tollitur ut ante. — Postquam anguli F et G inventi erunt, habebitur v = F - f, v' = F + f, unde positio perihelii nota erit; nec non E = G - g, E' = G + g. Denique motus medius intra tempus t erit $= \frac{kt}{a^{\frac{1}{4}}} = 2g - 2e\cos G\sin g$, quarum expressionum consensus calculo confirmando inserviet; epocha autem anomaliae mediae, respondens temporis momento inter duo proposita medio, erit $G - e\sin G\cos g$, quae pro lubitu ad quodvis aliud tempus transferri poterit. Aliquanto adhuc commodius est, anomalias medias pro duobus temporum momentis datis per formulas $E - e\sin E$, $E' - e\sin E'$ computare, harumque differentia cum $\frac{kt}{a^{\frac{1}{4}}}$ comparanda ad calculi confirmationem util

96.

Aequationes in art. praec. traditae tanta quidem concinnitate gaudent, ut nihil amplius desiderari posse videatur. Nihilominus eruere licet formulas quasdam alias, per quas elementa orbitae multo adhue elegantius et commodius determinantur: verum evolutio harum formularum paullulo magis recondita est.

Resumimus ex art. 8. aequationes sequentes, quas commoditatis gratia numeris novis distinguimus:

L.
$$\sin \frac{1}{4}v\sqrt{\frac{r}{a}} = \sin \frac{1}{4}E\sqrt{(1+e)}$$

II.
$$\cos \frac{1}{2}v \sqrt[4]{\frac{r}{a}} = \cos \frac{1}{2} E\sqrt{(1-e)}$$

III.
$$\sin \frac{1}{4}v' \sqrt{\frac{r'}{a}} = \sin \frac{1}{4} E' \sqrt{(1+e)}$$

IV.
$$\cos \frac{1}{4}v'\sqrt{\frac{n'}{a}} = \cos \frac{1}{4}E'\sqrt{(1-e)}$$

Multiplicamus I. per $\sin \frac{1}{2}(F+g)$, II. per $\cos \frac{1}{2}(F+g)$, unde productis additis nanciscimur

$$\cos \frac{1}{4} (f+g) \sqrt{\frac{r}{a_1}} = \sin \frac{1}{4} E \sin \frac{1}{4} (F+g) \sqrt{(1+e) + \cos \frac{1}{4} E \cos \frac{1}{4} (F+g)} \sqrt{(1-e)}$$
15*

sive propter
$$\sqrt{1+e}$$
 = $\cos \frac{1}{2} \varphi + \sin \frac{1}{2} \varphi$, $\sqrt{(1-e)} = \cos \frac{1}{2} \varphi - \sin \frac{1}{2} \varphi$, $\cos \frac{1}{2} (f+g) \sqrt{\frac{r}{a}} = \cos \frac{1}{2} \varphi \cos (\frac{1}{2} F - \frac{1}{2} G + g) - \sin \frac{1}{2} \varphi \cos \frac{1}{2} (F + G)$

Prorsus simili modo multiplicando III. per $\sin \frac{1}{2}(F-g)$, IV. per $\cos \frac{1}{2}(F-g)$, prodit productis additis

$$\cos \frac{1}{2} (f+g) \sqrt{\frac{r'}{a}} = \cos \frac{1}{2} \varphi \cos (\frac{1}{2} F - \frac{1}{2} G - g) - \sin \frac{1}{2} \varphi \cos \frac{1}{2} (F+G)$$

Subtrahendo ab hac aequatione praecedentem, oritur

$$\cos \frac{1}{2} (f+g) \left(\sqrt{\frac{r'}{a}} - \sqrt{\frac{r}{a}} \right) = 2 \cos \frac{1}{2} \varphi \sin g \sin \frac{1}{2} (F-G)$$

sive introducendo angulum auxiliarem w

[27.]
$$\cos \frac{1}{2}(f+g)\tan 2\omega = \sin \frac{1}{2}F-G\cos \frac{1}{2}\varphi \sin g\sqrt[4]{\frac{aa}{rr'}}$$

Per transformationes prorsus similes, quarum evolutionem lectori perito relinquimus, invenitur

[28.]
$$\frac{\sin\frac{1}{2}(f+g)}{\cos 2\omega} = \cos\frac{1}{2}(F-G)\cos\frac{1}{2}\varphi\sin g\sqrt[4]{\frac{a}{rr'}}$$

[29.]
$$\cos \frac{1}{2}(f-g) \tan 2\omega = \sin \frac{1}{2}(F+G) \sin \frac{1}{2}\varphi \sin g \sqrt[4]{\frac{aa}{rr'}}$$

$$\frac{\sin\frac{1}{2}(f-g)}{\cos^2\alpha} = \cos\frac{1}{2}(F+G)\sin\frac{1}{2}\varphi\sin g\sqrt[4]{\frac{aa}{r'}}$$

Quum partes primae in his quatuor aequationibus sint quantitates cognitae, ex 27. et 28. determinabuntur $\frac{1}{2}(F-G)$ et $\cos\frac{1}{2}\varphi\sin g\sqrt[4]{\frac{aa}{rr'}}=P$, nec non ex 29. et 30. perinde $\frac{1}{2}(F+G)$ et $\sin\frac{1}{2}\varphi\sin g\sqrt[4]{\frac{aa}{rr'}}=Q$; ambiguitas in determinatione angulorum $\frac{1}{2}(F-G)$, $\frac{1}{2}(F+G)$ ita decidenda est, ut P et Q cum $\sin g$ idem signum obtineant. Dein ex P et Q derivabuntur $\frac{1}{2}\varphi$ et $\sin g\sqrt[4]{\frac{aa}{rr'}}=R$. Ex R deduci potest $a=\frac{RR\sqrt{rr'}}{\sin g^2}$, nec non $p=\frac{\sin f^2\sqrt{rr'}}{RR}$, nisi illa quantitate, quae fieri debet $=\pm\sqrt{(2(l+\sin\frac{1}{2}g^2)\cos f)}=\pm\sqrt{(-2(L-\sin\frac{1}{2}g^2)\cos f)}$, unice ad calculi confirmationem uti malimus, in quo casu a et p commodissime determinantur per formulas

$$b = \frac{\sin f \sqrt{r r'}}{\sin g}, \ a = \frac{b}{\cos \varphi}, \ p = b \cos \varphi$$

Possunt etiam, pro lubito, plures aequationum art. 88. et 95. ad calculi confirmationem in usum vocari, quibus sequentes adhuc adiicimus:

$$\frac{2 \tan 2 w}{\cos 2 w} \sqrt{\frac{rr'}{aa}} = e \sin G \sin g$$

$$\frac{2 \tan 2 w}{\cos 2 w} \sqrt{\frac{pp}{rr'}} = e \sin F \sin f$$

$$\frac{2 \tan 2 w}{\cos 2 w} = \tan \varphi \sin G \sin f = \tan \varphi \sin F \sin g$$

Denique motus medius atque epocha anomaliae mediae perinde invenientur ut in art. praec.

97.

Ad illustrationem methodi inde ab art. 88. expositae duo exempla art. 87. resumemus: anguli auxiliaris ω significationem hactenus observatam, non esse confundendam cum ea, in qua in artt. 86. 87. acceptum erat idem signum, vix opus erit monuisse.

I. In exemplo prime habenus $f = 3^{\circ}47'26''865$, porreque $\log \frac{r'}{r} = 9,9914599$, $\log \tan (45^{\circ} + \omega) = 9,997864975$, $\omega = -8'27''006$. Hinc per art. 89.

adeoque l = 0,0011205691, $\frac{1}{2} + l = 0,8344539$. Porro fit $\log kt = 9,5766974$

$$2 \log kt$$
 9,1533948
 $C.\frac{1}{2} \log rr'$ 9,0205181
 $C.\log 8 \cos f^3$. . . 9,0997636
 $\log mm$ 7,2736765
 $\log (\frac{1}{2} + l)$ 9,9214023
7,3522742

Est itaque valor approximatus ipsius h = 0.00225047, cui in tabula nostra II. respondet $\log yy = 0.0021633$. Habetur itaque $\log \frac{mm}{yy} = 7.2715132$, sive $\frac{mm}{yy} = 0.001868587$, unde per formulam 16. fit x = 0.0007480179: quamobrem quum ξ per tabulam III. omnino insensibilis sit, valores inventi pro h, y, x correctione non indigent. Iam determinatio elementorum ita se habet:

$\log x \cdot \dots \cdot \dots \cdot 6,8739120$ $\log \sin \frac{1}{2}g \cdot \dots \cdot 8,4369560$ $\frac{1}{2}g = 1^{\circ}34'2''0286, \frac{1}{2}(f+g) = 1^{\circ}34'2''0286$	= $3^{\circ}27'45''4611$, $\frac{1}{2}(f-g)$ = $19'41''4039$.
Quare ad normam formularum 27. 28.	29. 30. habetur
- · · · · · · · · · · · · · · · · · · ·	
$\frac{\frac{1}{2}\log a \cdot \dots \cdot 0,6336584}{2,9163482}$	$e \sin E' = -2.7455,08 = -7.3735,08$ Hine anomalia media
log t	pro loco primo = 329 4427,67 pro secundo = 334 45 58,73 Differentia = 5 1 31,06
tempus $t = 18.0 \text{M}^{"} 0.7 = 5^{\circ} \text{M}^{"} 3.1^{"} 0.7^{\circ}$	

II. In exemplo altero fit $f = 31^{\circ}27'38''32$, $\omega = -21'50''565$, l = 0.08635659, $\log mm = 9.3530651$, $\frac{mm}{k+l}$ sive valor approximatus ipsius h = 0.2451454; huic in tabula II. respondet $\log yy = 0.1722663$, unde deducitur $\frac{mm}{yy} = 0.15163477$, x = 0.06527818, hinc e tabula III. sumitur $\xi = 0.0002531$. Quo valore adhibito prodeunt valores correcti h = 0.2450779, $\log yy = 0.1722303$, $\frac{mm}{yy} = 0.15164737$, x = 0.06529078, $\xi = 0.0002532$. Quodsi cum hoc valore ipsius ξ , unica tantum unitate in figura septima a priori diverso, calculus denuo repeteretur: h, $\log yy$, x mutationem sensibilem non acciperent, quamobrem valor inventus ipsius x iam est verus, statimque inde ad determinationem elementorum progredi licet. Cui hic non immoramur, quum nihil ab exemplo praecedente differat.

III. Haud abs re crit, etiam casum alterum ubi $\cos f$ negativus est exemplo illustrare. Sit $v'-v=224^{\circ}0'0''$, sive $f=112^{\circ}0'0''$, $\log r=0.1394892$, $\log r'=0.3978794$, t=206.80919 dies. Hic invenitur $\omega=+4^{\circ}14'43''78$, L=1.8942298, $\log MM=0.6724333$, valor primus approximatus ipsius $\log H=0.6467603$, unde per solutionem aequationis 15*. obtinetur Y=1.591432, ac dein x=0.037037, cui respondet, in tabula III., $\xi=0.0000801$. Hinc oriuntur valores correcti $\log H=0.6467931$, Y=1.5915107, x=0.0372195, $\xi=0.0000809$. Calculo cum hoc valore ipsius ξ denuo repetito prodit x=0.0372213, qui valor, quum ξ inde haud mutata prodeat, nulla amplius correctione indiget. Invenitur dein $\frac{1}{2}g=11^{\circ}7'25''40$, atque hinc perinde ut in exemplo I.

In orbitis tam excentricis angulus φ paullulo exactius computatur per formulam 19*., quae in exemplo nostro dat $\varphi = 75^{\circ}23'8''57$; excentricitas quoque e maiori

praecisione determinatur per formulam $1-2\sin(45^\circ-\frac{1}{4}\phi)^s$ quam per $\sin\phi$; secundum illam fit e=0.96764630.

Per formulam 1. porro invenitur $\log b = 0.6576611$, unde $\log p = 0.0595967$, $\log a = 1.2557255$, atque logarithmus distantiae in perihelio = $\log \frac{p}{1+e} = \log a(1-e) = \log b \tan g(45^{\circ} - \frac{1}{4}\varphi) = 9.7656496$.

In orbitis tantopere ad parabolae similitudinem vergentibus loco epochae anomaliae mediae assignari solet tempus transitus per perihelium; intervalla inter hoc tempus atque tempora duobus locis propositis respondentia determinari poterunt ex elementis cognitis per methodum in art. 41. traditam, quorum differentia vel summa (prout perihelium vel extra duo loca proposita iacet vel intra) quum consentire debeat cum tempore t, calculo confirmando inserviet. — Ceterum numeri huius tertii exempli superstructi erant elementis in exemplo art. 38. et 43. suppositis, quin adeo istud ipsum exemplum locum nostrum primum suppeditaverat: differentiae leviusculae elementorum hic erutorum unice a limitata praecisione tabularum logarithmicarum et trigonometricarum orginem traxerunt.

98.

Solutio problematis nostri pro ellipsi in praecc. evoluta etiam ad parabolam et hyperbolam transferri posset, considerando parabolam tamquam ellipsin, in qua a et b essent quantitates infinitae, $\varphi = 90^{\circ}$, tandem E, E', g, G = 0; et perinde hyperbolam tamquam ellipsin in qua a esset negativa, atque b, E, E', g, G, φ imaginariae: malumus tamen his suppositionibus abstinere, problemaque pro utroque sectionum conicarum genere seorsim tractare. Analogia insignis inter omnia tria genera sic sponte se manifestabit.

Retinendo in PARABOLA characteres p, v, v', F, f, r, r', t in eadem significatione in qua supra accepti sunt, habemus e theoria motus parabolici:

[1.]
$$\sqrt{\frac{p}{2r}} = \cos \frac{1}{2}(F-f)$$

[2.] $\sqrt{\frac{p}{2r'}} = \cos \frac{1}{2}(F+f)$
 $\frac{2bt}{p^3} = \tan \frac{1}{2}(F+f) - \tan \frac{1}{2}(F-f) + \frac{1}{2}\tan \frac{1}{2}(F+f)^3 - \frac{1}{2}\tan \frac{1}{2}(F-f)^3$
 $= \left\{\tan \frac{1}{2}(F+f) - \tan \frac{1}{2}(F-f)\right\} \cdot \left\{1 + \tan \frac{1}{2}(F+f)\tan \frac{1}{2}(F-f) + \frac{1}{2}(\tan \frac{1}{2}(F+f) - \tan \frac{1}{2}(F-f))^2\right\}$
 $= \frac{2\sin f\sqrt{rr'}}{p} \left\{\frac{2\cos f\sqrt{rr'}}{p} + \frac{4\sin f^3rr'}{3pp}\right\}, \text{ unde}$

[3.]
$$kt = \frac{2\sin f \cos f \cdot rr'}{\sqrt{p}} + \frac{4\sin f^{3}(rr')^{\frac{1}{2}}}{3p^{\frac{1}{2}}}$$

Porro deducitur ex multiplicatione aequationum 1. 2.

$$[4.] \qquad \frac{p}{\sqrt{rr'}} = \cos F + \cos f$$

nec non ex additione quadratorum

$$[5.] \quad \frac{p(r+r')}{2rr'} = 1 + \cos F \cos f$$

Hinc eliminato $\cos F$

[6.]
$$p = \frac{2rr'\sin f^2}{r+r'-2\cos f/rr'}$$

Quodsi itaque aequationes 9.9*. art. 88. hic quoque adoptamus, priorem pro cosf positivo, posteriorem pro negativo, habebimus

[7.]
$$p = \frac{\sin f^{3} \sqrt{r} r'}{2 l \cos f}$$

$$[7^{*}.] \qquad p = \frac{\sin f^{3} \sqrt{r} r'}{-2 L \cos f}$$

$$[7^*.] p = \frac{\sin f^2 \sqrt{rr'}}{-2L\cos f}$$

quibus valoribus in aequatione 3. substitutis, prodibit, retinendo characteres m, M in significatione per aequationes 11. 11*. art. 88. stabilita,

[8.]
$$m = l^{\frac{1}{2}} + \frac{1}{4} l^{\frac{3}{4}}$$

[8*.]
$$M = -L^{\frac{1}{2}} + \frac{1}{4}L^{\frac{3}{2}}$$

Hae aequationes convenient cum 12. 12*. art. 88., si illic statuatur g=0. Hinc colligitur, si duo loci heliocentrici, quibus per parabolam satisfit, ita tractentur, ac si orbita esset elliptica, ex applicatione praeceptorum art. 91. statim resultare debere x = 0; vice versa facile perspicitur, si per praecepta ista prodeat x = 0, orbitam pro ellipsi parabolam evadere, quum per aequationes 1. 16. 17. 19. 20. fit $b = \infty$, $a = \infty$, $\varphi = 90^{\circ}$. Determinatio elementorum facillime dein absolvitur. Pro p enim adhiberi poterit vel aequatio 7. art. praesentis, vel aequ. 18. art. 95.*): pro F autem fit ex aequationibus 1. 2. huius art. $\tan \frac{1}{2}F = \frac{\sqrt{r'} - \sqrt{r}}{\sqrt{r'} + \sqrt{r}} \cot \frac{1}{2}f = \sin 2\omega \cot \frac{1}{2}f$, si angulus auxiliaris in eadem significatione accipitur, ut in art. 89.

^{*)} Unde simul patet, y et Y in parabola easdem rationes exprimere ut in ellipsi, v. art. 95. G. TH. M.

Hacce occasione adhuc observamus, si in aequ. 3. pro p substituatur valor eius ex 6., prodire aequationem satis notam

$$kt = \frac{1}{2}(r + r' + \cos f. \sqrt{rr'})(r + r' - 2\cos f. \sqrt{rr'})^{\frac{1}{2}}\sqrt{2}$$

99.

In HYPERBOLA quoque characteres p, v, v', f, F, r, r', t in significatione eadem retinemus, pro semiaxi maiori a autem, qui hic negativus est, scribemus — a; excentricitatem e perinde ut supra art. 21. etc. statuemus = $\frac{1}{\cos \phi}$. Quantitatem auxiliarem illic per u expressam, statuemus pro loco primo = $\frac{C}{c}$, pro secundo = Cc, unde facile concluditur, c semper esse maiorem quam 1., sed ceteris paribus eo minus differre ab 1., quo minus duo loci propositi ab invicem distent. Ex aequationibus in art. 21. evolutis huc transferimus forma paullulum mutata sextam et septimam

[1.]
$$\cos \frac{1}{2}v = \frac{1}{2} \left(\sqrt{\frac{c}{c}} + \sqrt{\frac{c}{C}} \right) \sqrt{\frac{(c-1)\alpha}{c}}$$

$$[2.] \quad \sin \frac{1}{\epsilon} v = \frac{1}{\epsilon} \left(\sqrt{\frac{c}{c}} - \sqrt{\frac{c}{C}} \right) \sqrt{\frac{(e+1)\alpha}{r}}$$

[3.]
$$\cos \frac{1}{2} v' = \frac{1}{2} \left(\sqrt{Cc} + \sqrt{\frac{1}{Cc}} \right) \sqrt{\frac{(c-1)\alpha}{c'}}$$

[4.]
$$\sin \frac{1}{2}v' = \frac{1}{2} \left(\sqrt{Cc} - \sqrt{\frac{1}{Cc}} \right) \sqrt{\frac{(c+1)\alpha}{r'}}$$

Hinc statim demanant sequentes:

[5.]
$$\sin F = \frac{1}{2} \alpha \left(C - \frac{1}{C}\right) \sqrt{\frac{ee - 1}{rr'}}$$

[6.]
$$\sin f = \frac{1}{2}a\left(c - \frac{1}{c}\right)\sqrt{\frac{ee - 1}{rr'}}$$

[7.]
$$\cos F = \left(e\left(c + \frac{1}{c}\right) - \left(C + \frac{1}{C}\right)\right) \frac{a}{2\sqrt{rr'}}$$

[8.]
$$\cos f = \left(e\left(C + \frac{1}{C}\right) - \left(c + \frac{1}{c}\right)\right) \frac{\alpha}{2\sqrt{rr'}}$$

Porro fit per aequ. X. art. 21.

$$\frac{r}{a} = \frac{1}{2} e \left(\frac{C}{c} + \frac{c}{C} \right) - 1$$

$$\frac{r'}{a} = \frac{1}{2} e \left(Cc + \frac{1}{Cc} \right) - 1$$

atque hinc

[9.]
$$\frac{r'-r}{a} = \frac{1}{4} e \left(C - \frac{1}{C}\right) \left(c - \frac{1}{c}\right)$$

[10.] $\frac{r'+r}{a} = \frac{1}{4} e \left(C + \frac{1}{C}\right) \left(c + \frac{1}{c}\right) - 2$

Haec aequatio 10. cum 8. combinata praebet

[11.]
$$a = \frac{r' + r - \left(c + \frac{1}{c}\right) \cos f \cdot \sqrt{rr'}}{\frac{1}{2} \left(c - \frac{1}{c}\right)^2}$$

Statuendo itaque perinde ut in ellipsi $\frac{\sqrt{\frac{r'}{r}} + \sqrt{\frac{r}{r'}}}{2\cos f} = 1 + 2l$, vel = 1 - 2L, prout $\cos f$ est positivus vel negativus, fit

[12.]
$$\alpha = \frac{8\left(l-\frac{1}{2}\left(\sqrt{c}-\sqrt{\frac{1}{c}}\right)^2\right)\cos f.\sqrt{rr'}}{\left(c-\frac{1}{c}\right)^2}$$

[12*.]
$$a = \frac{-s\left(L + \frac{1}{t}\left(\sqrt{c} - \sqrt{\frac{1}{c}}\right)^2\right)\cos f \cdot \sqrt{rr'}}{\left(c - \frac{1}{c}\right)^2}$$

Computus quantitatis l vel L hic perinde ut in ellipsi adiumento anguli auxiliaris ω instituetur. Denique fit ex aequatione XI. art. 22. (accipiendo logarithmos hyperbolicos)

$$\frac{kt}{a^{\frac{1}{2}}} = \frac{1}{2} e \left(Cc - \frac{1}{Cc} - \frac{C}{c} + \frac{c}{C} \right) - \log Cc + \log \frac{C}{c}$$

$$= \frac{1}{2} e \left(C + \frac{1}{C} \right) \left(c - \frac{1}{c} \right) - 2 \log c$$

sive eliminata C adiumento aequationis 8.

$$\frac{kt}{a^{\frac{1}{2}}} = \frac{\left(c - \frac{1}{c}\right)\cos f \cdot \sqrt{rr'}}{\alpha} + \frac{1}{2}\left(cc - \frac{1}{cc}\right) - 2\log c$$

In hac aequatione pro a substituimus valorem eius ex 12. 12*.; dein characterem m vel M in eadem significatione, quam formulae 11. 11*. art. 89. assignant, introducimus; tandemque brevitatis gratia scribimus

$$\frac{1}{4} \left(\sqrt{c} - \sqrt{\frac{1}{c}} \right)^{2} = z, \quad \frac{c \, c - \frac{1}{c \, c} - 4 \log c}{\frac{1}{4} \left(c - \frac{1}{c} \right)^{2}} = Z$$

quo facto oriuntur aequationes

[13.]
$$m = (l-z)^{\frac{1}{2}} + (l-z)^{\frac{3}{2}} Z$$

[13*.]
$$M = -(L+z)^{\frac{1}{2}} + (L+z)^{\frac{3}{2}}Z$$

quae unicam incognitam z implicant, quum manifesto sit Z functio ipsius z per formulam sequentem expressa

$$Z = \frac{(1+2z)\sqrt{(z+zz)} - \log(\sqrt{(1+z)} + \sqrt{z})}{2(z+zz)^{\frac{3}{2}}}$$

100.

In solvenda aequatione 13. vel 13*. eum casum primo seorsim considerabimus, ubi z obtinet valorem haud magnum, ita ut Z per seriem secundum potestates ipsius z progredientem celeriterque convergentem exprimi possit. Iam fit

$$(1+2z)\sqrt{(z+zz)} = z^{\frac{1}{2}} + \frac{\pi}{2}z^{\frac{3}{2}} + \frac{\pi}{8}z^{\frac{1}{2}} \dots, \quad \log(\sqrt{(1+z)} + \sqrt{z}) = z^{\frac{1}{2}} - \frac{\pi}{4}z^{\frac{3}{2}} + \frac{\pi}{40}z^{\frac{1}{2}} \dots$$

adeoque numerator ipsius $Z = \frac{a}{2}z^{\frac{1}{2}} + \frac{1}{2}z^{\frac{1}{2}} \dots$; denominator autem fit $= 2z^{\frac{1}{2}} + 3z^{\frac{1}{2}} \dots$; unde $Z = \frac{1}{2} - \frac{a}{2}z \dots$ Ut legem progressionis detegamus, differentiamus aequationem

$$2(z+zz)^{\frac{1}{2}}Z = (1+2z)\sqrt{(z+zz)} - \log(\sqrt{(1+z)}+\sqrt{z})$$

unde prodit omnibus rite reductis

$$2(z+zz)^{\frac{3}{2}}\frac{dZ}{dz}+3Z(1+2z)\sqrt{(z+zz)}=4\sqrt{(z+zz)}$$

sive

$$(2z+2zz)\frac{dZ}{dz}=4-(3+6z)Z$$

unde simili ratione ut in art. 90. deducitur

$$Z' = \frac{4}{3} - \frac{4 \cdot 6}{3 \cdot 5} z + \frac{4 \cdot 6 \cdot 8}{3 \cdot 5 \cdot 7} z z - \frac{4 \cdot 6 \cdot 8 \cdot 10}{3 \cdot 5 \cdot 7 \cdot 9} z^3 + \frac{4 \cdot 6 \cdot 8 \cdot 10 \cdot 12}{3 \cdot 5 \cdot 7 \cdot 9 \cdot 11} z^4 - \text{etc.}$$

Patet itaque, Z prorsus eodem modo a -z pendere, ut supra in ellipsi X ab x: quamobrem si statuimus

$$Z = \frac{1}{\frac{3}{4} + \frac{9}{10}(z+\zeta)}$$

determinabitur etiam ζ perinde per -z ut supra ξ per x, ita ut habeatur

[14.]
$$\zeta = \frac{\frac{2}{3^{\frac{2}{5}}}zz}{1 - \frac{2}{3^{\frac{2}{5}}}z + \frac{\frac{4}{3}z}{1 + \frac{\frac{4}{3}z}{1 + \frac{7}{4}\frac{3}{3}z}}}{1 + \text{etc.}}$$

sive

$$\zeta = \frac{\frac{\frac{2}{85}zz}{1 + \frac{1}{8}\frac{8}{8}z + \frac{\frac{4}{8}\frac{3}{8}z}{1 + \frac{\frac{4}{9}\frac{9}{8}z}{1 + \frac{\frac{1}{1}\frac{9}{8}z}{1 + \text{etc.}}}}}{1 + \text{etc.}}$$

Hoc modo computati sunt valores ipsius ζ pro z=0 usque ad z=0,3 per singulas partes millesimas, quos columna tertia tabula III. exhibet.

101.

Introducendo quantitatem ζ statuendoque $\sqrt{(l-z)} = \frac{m}{y}$ vel $\sqrt{(L+z)} = \frac{M}{Y}$, nec non

[15.]
$$\frac{mm}{\frac{1}{8}+l+\zeta} = h$$
, vel
[15*.] $\frac{MM}{L-\frac{1}{8}-\zeta} = H$

aequationes 13. 13*. hance formam induunt

$$[16.] \qquad \frac{(y-1)yy}{y+\frac{1}{2}} = h$$

$$[16^*]$$
 $\frac{(Y+1)YY}{Y-\frac{1}{2}} = H$

adeoque omnino identicae fiunt cum iis ad quas in ellipsi perventum est (15. 15*. art. 91.). Hinc igitur, quatenus h vel H pro cognita haberi potest, y vel Y deduci poterit, ac dein erit

$$[17.] \quad z = l - \frac{mm}{yy}$$

$$[17^*.] \quad z = \frac{MM}{YY} - L$$

Ex his colligitur, omnes operationes supra pro ellipsi praescriptas perinde etiam pro hyperbola valere, donec e valore approximato ipsius h vel H eruta fuerit quantitas y vel Y; dein vero quantitas $\frac{mm}{yy}-l$ vel $L-\frac{MM}{YY}$, quae in ellipsi positiva evadere debebat, in parabolaque = 0, fieri debet negativa in hyperbola: hoc itaque criterio genus sectionis conicae definietur. Ex inventa z tabula nostra dabit ζ , hinc orietur valor correctus ipsius h vel H, cum quo calculus repetendus est, donec omnia ex asse conspirent.

Postquam valor verus ipsius z inventus est, c inde per formulam $c = 1 + 2z + 2\sqrt{(z+zz)}$ derivari posset, sed praestat, etiam ad usus sequentes, angulum auxiliarem n introducere, per aequationem tang $2n = 2\sqrt{(z+zz)}$ determinandum; hinc fiet $c = \tan 2n + \sqrt{(1+\tan 2n^2)} = \tan (45^\circ + n)$

102.

Quum in hyperbola perinde ut in ellipsi y necessario esse debeat positiva, solutio aequationis 16. hic quoque ambiguitati obnoxia esse nequit*): sed respectu aequationis 16*. hic paullo aliter ratiocinandum est quam in ellipsi. Ex aequationum theoria facile demonstratur, pro valore positivo ipsius H^{**}) hanc aequationem (siquidem ullam radicem realem positivam habeat) cum una radice negativa duas positivas habere, quae vel ambae aequales erunt puta = $\frac{1}{4}\sqrt{5}-\frac{1}{4}$ = 0,20601, vel altera hoc limite maior altera minor. Iam in problemate nostro (suppositioni superstructo, z esse quantitatem haud magnam, saltem non maiorem quam 0,3, ne tabulae tertiae usu destituamur) necessario semper radicem maiorem accipiendam esse sequenti modo demonstramus. Si in aequatione 13*. pro M substituitur $Y_V(L+z)$, prodit Y+1=(L+z)Z>(1+z)Z, sive $Y>\frac{1}{3}-\frac{4}{3.5}z+\frac{4.6}{3.5.7}zz-\frac{4.6.8}{3.5.7.9}z^3+\text{etc.}$, unde facile concluditur, pro valoribus

^{*)} Vix opus erit monere, tabalam nostram II. in hyperbola perinde ut in ellipsi ad solutionem huius aequationis adhiberi posse, quamdiu h ipsius limites non egrediatur.

^{**)} Quantitas H manifesto fieri nequit negativa, nisi fuerit $\zeta > \frac{1}{6}$; tali autem valori ipsius ζ responderet valor ipsius z maior quam 2,684, adeoque limites huius methodi longe egrediens.

tam parvis ipsius z, quales hic supponimus, semper fieri debere Y>0,20601. Revera calculo facto invenimus, ut (1+z)Z huic limiti aequalis fiat, esse debere z=0,79858: multum vero abest, quin methodum nostram ad tantos valores ipsius z extendere velimus.

103.

Quoties z valorem maiorem obtinet, tabulae III. limites egredientem, aequationes 13. 13*. tuto semper ac commode in forma sua non mutata tentando solventur, et quidem ob rationes iis similes quas in art. 94. pro ellipsi exposuimus. In tali casu elementa orbitae obiter saltem cognita esse supponere licet: tum vero valor approximatus ipsius n statim habetur per formulam tang $2n = \frac{\sin f \sqrt{rr'}}{a \sqrt{(ae-1)}}$, quae sponte demanat ex aequatione 6. art. 99. Ex n autem habebitur z per formulam $z = \frac{1-\cos 2n}{2\cos 2n} = \frac{\sin n^2}{\cos 2n}$, et ex valore approximato ipsius z paucis tentaminibus derivabitur ille, qui aequationi 13. vel 13*. ex asse satisfacit. Possunt quoque illae aequationes in hac forma exhiberi

$$m = \left(l - \frac{\sin n^2}{\cos 2n}\right)^{\frac{1}{2}} + 2\left(l - \frac{\sin n^2}{\cos 2n}\right)^{\frac{3}{2}} \left\{ \frac{\frac{\tan 2n}{\cos 2n} - \log \operatorname{hyp} \tan (45^\circ + n)}{\tan 2n^5} \right\}$$

$$M = -\left(L + \frac{\sin n^2}{\cos 2n}\right)^{\frac{1}{2}} + 2\left(L + \frac{\sin n^2}{\cos 2n}\right)^{\frac{3}{2}} \left\{ \frac{\tan 2n}{\cos 2n} - \log \operatorname{hyp} \tan (45^\circ + n)}{\tan 2n^3} \right\}$$

atque sic, neglecta z, statim valor verus ipsius n erui.

104.

Superest, ut ex z, n vel c elementa ipsa determinemus. Statuendo $a\sqrt{(ee-1)} = 6$, habebitur ex aequatione 6. art. 99.

[18.]
$$6 = \frac{\sin f \sqrt{rr'}}{\tan g \, 2\pi}$$

Combinando hanc formulam cum 12. 12*. art. 99., eruitur

[19.]
$$V(ee-1) = \tan \psi = \frac{\tan f \tan^2 n}{2(l-s)}$$

[19*.]
$$\tan \varphi = -\frac{\tan f \tan 2n}{2(L+z)}$$

unde excentricitas commode atque exacte computatur; ex 6 et $\sqrt{(ee-1)}$ prodibit per divisionem a, per multiplicationem p, ita ut sit

$$\alpha = \frac{2(l-s)\cos f.\sqrt{rr'}}{\tan 2n^2} = \frac{2mm\cos f.\sqrt{rr'}}{yy\tan 2n^2} = \frac{kktt}{4yyrr'\cos f^2\tan 2n^2}$$

$$= \frac{-2(L+s)\cos f.\sqrt{rr'}}{\tan 2n^2} = \frac{-2MM\cos f.\sqrt{rr'}}{YY\tan 2n^2} = \frac{kktt}{4YYrr'\cos f^2\tan 2n^2}$$

$$p = \frac{\sin f.\tan gf.\sqrt{rr'}}{2(l-s)} = \frac{yy\sin f.\tan gf.\sqrt{rr'}}{2mm} = (\frac{yrr'\sin 2f}{kt})^2$$

$$= \frac{-\sin f.\tan gf.\sqrt{rr'}}{2(L+s)} = \frac{-YY\sin f.\tan gf.\sqrt{rr'}}{2MM} = (\frac{Yrr'\sin 2f}{kt})^3$$

Expressio tertia et sexta pro p, quae omnino identicae sunt cum formulis 18. 18*. art. 95., ostendunt, ea quae illic de significatione quantitatum y, Y tradita sunt, etiam pro hyperbola valere.

E combinatione aequationum 6. 9. art. 99. deducitur

$$(r'-r)\sqrt{\frac{ee-1}{rr'}} = e\sin f \cdot \left(C - \frac{1}{C}\right)$$

introducendo itaque ψ et ω , statuendoque $C = \tan (45^{\circ} + N)$, fit

[20.] tang 2
$$N = \frac{2 \sin \psi \tan 2 \omega}{\sin f \cos 2 \omega}$$

Invento hinc C, habebuntur valores quantitatis in art. 21. per u expressae pro utroque loco; dein fiet per aequationem III. art. 21.

$$\tan \frac{1}{2}v = \frac{C-c}{(C+c)\tan \frac{1}{2}\psi}$$

$$\tan \frac{1}{2}v' = \frac{Cc-1}{(Cc+1)\tan \frac{1}{2}\psi}$$

sive introducendo pro C, c angulos N, n

[21.]
$$\tan \frac{1}{2}v = \frac{\sin(N-n)}{\cos(N+n)\tan\frac{1}{2}\psi}$$

[22.]
$$\tan \frac{1}{2}v' = \frac{\sin(N+n)}{\cos(N-n)\tan\frac{1}{2}\psi}$$

Hinc determinabuntur anomaliae verae v, v', quarum differentia cum 2f comparata simul calculo confirmando inserviet.

Denique per formulam XI. art. 22. facile deducitur, intervallum temporis a perihelio usque ad tempus loco primo respondens esse

$$= \frac{\alpha^{\frac{3}{2}}}{k} \left\{ \frac{2 e \cos{(N+n)} \sin{(N-n)}}{\cos{2N} \cos{2n}} - \log{\text{hyp}} \frac{\tan{(45^{\circ} + N)}}{\tan{(45^{\circ} + n)}} \right\}$$

et perinde intervallum temporis a perihelio usque ad tempus loco secundo respondens

$$= \frac{\alpha^{\frac{3}{2}} \left\{ \frac{2 e \cos{(N-n)} \sin{(N+n)}}{\cos{2N} \cos{2n}} - \log \operatorname{hyptang}(45^{\circ} + N) \tan{(45^{\circ} + n)} \right\}}{2 + 2 \cos{(N-n)} \sin{(N+n)}}$$

Si itaque tempus primum statuitur = $T-\frac{1}{2}t$, adeoque secundum = $T+\frac{1}{2}t$, fit

[23.]
$$T = \frac{\alpha^{\frac{1}{k}}}{k} \left\{ \frac{e \tan 2N}{\cos 2n} - \log \tan (45^{\circ} + N) \right\}$$

unde tempus transitus per perihelium innotescet; denique

[24.]
$$t = \frac{2\alpha^{\frac{1}{4}}}{k} \left\{ \frac{e \tan 2n}{\cos 2N} - \log \tan (45^{\circ} + n) \right\}$$

quae aequatio, si placet, ad ultimam calculi confirmationem adhiberi potest.

105.

Ad illustrationem horum praeceptorum exemplum e duobus locis in artt. 23. 24. 25. 46. secundum eadem elementa hyperbolica calculatis conficiemus. Sit itaque $v'-v=48^{\circ}12'0''$ sive $f=24^{\circ}6'0''$, $\log r=0.0333585$, $\log r'=0.2008541$, t=51.49788 dies. Hinc invenitur $\omega=2^{\circ}45'28''47$, l=0.05796039, $\frac{mm}{t+l}$ sive valor approximatus ipsius h=0.0644371; hinc, per tabulam II., $\log yy=0.0560848$, $\frac{mm}{yy}=0.05047454$, z=0.00748585, cui in tabula III. respondet $\zeta=0.0000032$. Hinc fit valor correctus ipsius h=0.06443691, $\log yy=0.0560846$, $\frac{mm}{yy}=0.05047456$, z=0.00748583, qui valores, quum ζ inde non mutetur, nulla amplius correctione opus habent. Iam calculus elementorum ita se habet:

$\log z$	7,8742399	$\log ang f$	9,6506199
$\log(1+z)$	0,0032389	$\log \frac{1}{2} \tan 2 n$.	8,9387394
	8,9387394	$C.\log(l-z)$.	1,2969275
$\log 2 \dots$	0,3010300	$\log \tan \varphi$	9,8862868
$\log \tan 2n \dots$	9,2397694	ψ	$=37^{\circ}34'59''77$
2 n	= 9°51'11''816	(esse	deberet = 37 35 0)
$m{n}$	=45535,908		·
G. TH. M.			17

Digitized by Google

log sin f 9,6110118	G. log 4 sin f 0,6900182
$\log \sqrt{rr'} \dots \dots 0,1171063$	log tang 2 ω 8,9848318
C. log tang 2 n 0,7602306	C.log cos 2 to 0,0020156
log6 0,4883487	$\log \sin \psi$ 9,7852685
log tang ψ 9,8862868	log tang 2 N 9,4621341
loga 0,6020619	$2N = 16^{\circ}9' 46''253$
$\log p \ldots 0,3746355$	N = 8453,127
(esse deberent 0,6020600	N-n = 3917,219
atque 0,8746356)	N+n = 13029,035
$\log \sin (N-n) \cdot \ldots \cdot 8,7406274$	$\log\sin(N+n)\ldots 9,3523527$
$C.\log\cos(N+n) \dots 0.0112902$	$C.\log\cos(N-n)$ 0,0006587
$\log \cot \frac{1}{2} \psi \dots \dots 0,4681829$	$\log \cot \frac{1}{2} \psi \dots 0,4681829$
$\frac{\log \tan \frac{1}{2}v \dots 9,2201005}{}$	$\log \tan \frac{1}{2} v' \dots 9,8211943$
$\frac{1}{2}v$ = 9°25′29″97	$\frac{1}{2}v'$ = 33°31'29"93
$v = 18 \ 50 \ 59,94$	v' = 67 2' 59,86
(esse deberet 18 51 0)	(esse deberet 67 3 0)
$\log e \ldots \ldots 0,1010184$	$\log e \dots \dots \dots \dots \dots 0,1010184$
$\log \tan 2N \dots 9,4621341$	$\log \tan 2n \dots 9,2397694$
$C.\log\cos 2n \dots 0,0064539$	$C.\log\cos 2N$ 0,0175142
9,5696064	9,3583020
numerus $= 0.37119863$	numerus $= 0,22819284$
$\log \text{hyptang}(45^{\circ} + N) = 0,28591251$	$\log \text{hyp tang}(45^{\circ} + n) = 0.17282621$
Differentia $= 0.08528612$	Differentia = 0,05536663
log 8,9308783	log 8,7432480
½ log a 0,9030928	$\frac{3}{2}\log \alpha$
$C.\log k$	$C.\log k$ 1,7644186
$\log T \dots 1,5983897$	log 2 0,3010300
T = 39,66338	$\frac{1}{\log t \ldots 1,7117894}$
ŕ	t = 51,49788

Distat itaque transitus per perihelium a tempore loco primo respondente 13,91444 diebus, a tempore loco secundo respondente 65,41232 diebus. — Ceterum differentias exiguas elementorum hic erutorum ab iis, secundum quae loca proposita calculata fuerant, tabularum praecisioni limitatae tribuere oportet.

106.

In tractatu de relationibus maxime insignibus ad motum corporum coelestium in sectionibus conicis spectantibus, silentio praeterire non possumus expressionem elegantem temporis per semiaxem maiorem, summam r+r' atque chordam duo loca iungentem. Haec formula pro parabola quidem primo ab ill. Eules inventa esse videtur (Miscell. Berolin., T. VII. p. 20), qui tamen eam in posterum neglexit, neque etiam ad ellipsin et hyperbolam extendit; errant itaque, qui formulam clar. Lambert tribuunt, etiamsi huic geometrae meritum, hanc expressionem oblivione sepultam proprio marte eruisse et ad reliquas sectiones conicas ampliavisse, non possit denegari. Quamquam hoc argumentum a pluribus geometris iam tractatum sit, tamen lectores attenti expositionem sequentem haud superfluam agnoscent. A motu elliptico initium facimus.

Ante omnia observamus, angulum circa Solem descriptum 2f (art. 88, unde reliqua quoque signa desuminus) infra 360° supponi posse; patet enim, si iste angulus 360° gradibus augestur, tempus una revolutione sive $\frac{a^{\frac{1}{2}} \cdot 360^{\circ}}{k} \equiv a^{\frac{1}{2}} \times 365,25$ diebus crescere. Iam si chordam per ρ denotamus, manifestum est fieri

$$\rho \rho = (r'\cos v' - r\cos v)^{s} + (r'\sin v' - r\sin v)^{s}$$

adeoque per aequationes VIII. IX. art. 8.

$$\rho \rho = a a (\cos E' - \cos E)^3 + a a \cos \varphi^2 (\sin E' - \sin E)^3$$

$$= 4 a a \sin \varphi^2 (\sin G^2 + \cos \varphi^2 \cos G^2) = 4 a a \sin \varphi^3 (1 - e \cos G^2)$$

Introducamus angulum auxiliarem h talem, ut sit $\cos h = e\cos G$; simul, quo omnis ambiguitas tollatur, supponemus, h accipi inter 0 et 180° , unde $\sin h$ erit quantitas positiva. Quoniam itaque etiam g inter eosdem limites iacet (si enim 2g ad 360° vel ultra ascenderet, motus circa Solem revolutionem integram attingeret vel superaret), ex aequatione praecedente sponte sequitur $\rho = 2a\sin g\sin h$, siquidem chorda tamquam quantitas positiva consideratur. Quum porro habeatur $r+r'=2a(1-e\cos g\cos G)=2a(1-\cos g\cos h)$, patet, si statuatur $h-g=\delta$, $h+g=\epsilon$, fieri

[1.]
$$r + r' - \rho = 2 a(1 - \cos \delta) = 4 a \sin \frac{1}{2} \delta^2$$

[2.]
$$r + r' + \rho = 2a(1 - \cos \epsilon) = 4a\sin 4\epsilon^2$$

Denique habetur $kt = a^{\frac{1}{2}}(2g - 2e \sin g \cos G) = a^{\frac{1}{2}}(2g - 2\sin g \cos h)$, sive

[3.]
$$kt = a^{\frac{1}{2}} (\epsilon - \sin \epsilon - (\delta - \sin \delta))$$

Determinari poterunt itaque, secundum aequationes 1. 2., anguli δ et ϵ ex r+r, ρ et a: quamobrem ex iisdem quantitatibus determinabitur, secundum aequationem 3., tempus t. Si magis placet, haec formula ita exhiberi potest:

$$kt = a^{\frac{1}{2}} \left\{ \arccos \frac{2a - (r + r') - \rho}{2a} - \sin \arccos \frac{2a - (r + r') - \rho}{2a} - \arccos \frac{2a - (r + r') + \rho}{2a} + \sin \arccos \frac{2a - (r + r') + \rho}{2a} \right\}$$

Sed in determinatione angulorum &, e per cosinus suos ambiguitas remanet, quam propius considerare oportet. Sponte quidem patet, à iacere debere inter -180° et +180°, atque e inter 0 et 360°: sed sic quoque uterque angulus determinationem duplicem, adeoque tempus resultans quadruplicem admittere videtur. Attamen ex aequatione 5. art. 88. habemus $\cos f \cdot \sqrt{rr'} = a(\cos g - \cos h)$ $= 2 a \sin \frac{1}{2} \delta \sin \frac{1}{2} \epsilon$: iam $\sin \frac{1}{2} \epsilon$ necessario fit quantitas positiva, unde concludimus, $\cos f$ et $\sin \frac{1}{2} \delta$ necessario eodem signo affectos esse, adeoque δ inter 0 et 180°, vel inter -180° et 0 accipiendum esse, prout $\cos f$ positivus fuerit vel negativus, i. e. prout motus heliocentricus 2f fuerit infra vel supra 180°. Ceterum sponte patet, pro $2f = 180^{\circ}$ necessario esse debere $\delta = 0$. Hoc itaque modo δ plene determinatus est. At determinatio anguli ε necessario ambigua manet, ita ut semper pro tempore duo valores prodeant, quorum quis verus sit, nisi aliunde constet, decidi nequit. Ceterum ratio huius phaenomeni facile perspicitur: constat enim, per duo puncta data describi posse duas ellipses diversas, quae ambae focum suum habeant in eodem puncto dato, simulque eundem semiaxem maiorem*); manifesto autem motus a loco primo ad secundum in his ellipsibus temporibus inaequalibus absolvetur.

^{*)} Descriptio e loco primo circulo radio 2a-r alioque radio 2a-r' e loco secundo, ellipseos focum alterum in intersectione horum circulorum iacere patet. Quare quum generaliter loquendo duae semper dentur intersectiones, duae ellipses diversae prodibunt.

107.

Denotando per χ arcum quemcunque inter — 180° et + 180° situm, et per s sinum arcus $\frac{1}{2}\chi$, constat esse

$$\frac{1}{2}\chi = s + \frac{1}{4} \cdot \frac{1}{2} s^5 + \frac{1}{4} \cdot \frac{1 \cdot 3}{2 \cdot 4} s^5 + \frac{1}{2} \cdot \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} s^7 + \text{etc.}$$

Porro fit

$$\frac{1}{2}\sin\chi = s\sqrt{(1-ss)} = s - \frac{1}{2}s^3 - \frac{1\cdot 1}{2\cdot 4}s^5 - \frac{1\cdot 1\cdot 3}{2\cdot 4\cdot 6}s^7 - \text{etc.}$$

adeoque

$$\chi - \sin \chi = 4 \left(\frac{1}{2} s^3 + \frac{1}{2} \cdot \frac{1}{2} s^5 + \frac{1}{2} \cdot \frac{1 \cdot 3}{2 \cdot 4} s^7 + \frac{1}{2} \cdot \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} s^9 + \text{etc.} \right)$$

Substituimus in hac serie pro s deinceps $\frac{1}{2}\sqrt{\frac{r+r'-\rho}{a}}$, et $\frac{1}{2}\sqrt{\frac{r+r'+\rho}{a}}$, quaeque inde proveniunt multiplicamus per $a^{\frac{1}{2}}$; ita respective oriuntur series

$$\frac{1}{6}(r+r'-\rho)^{\frac{3}{2}} + \frac{1}{80} \cdot \frac{1}{a}(r+r'-\rho)^{\frac{5}{2}} + \frac{2}{1782} \cdot \frac{1}{aa}(r+r'-\rho)^{\frac{7}{2}} + \frac{1}{18482} \cdot \frac{1}{a^3}(r+r'-\rho)^{\frac{3}{2}} + \text{etc.}$$

$$\frac{1}{6}(r+r'+\rho)^{\frac{5}{4}} + \frac{1}{6} \cdot \frac{1}{a}(r+r'+\rho)^{\frac{5}{4}} + \frac{1}{176} \cdot \frac{1}{2} \cdot \frac{1}{aa}(r+r'+\rho)^{\frac{7}{4}} + \frac{1}{186} \cdot \frac{5}{482} \cdot \frac{1}{a^{\frac{5}{4}}}(r+r'+\rho)^{\frac{5}{4}} + \text{etc.}$$

quarum summas denotabimus per T, U. Iam nullo negotio patet, quum sit $2\sin\frac{1}{2}\delta = \pm \sqrt{\frac{r+r'-\rho}{a}}$, signo superiori vel inferiori valente prout 2f infra vel supra 180° est, fieri $a^{\frac{1}{2}}(\delta - \sin \delta) = \pm T$, signo perinde determinato. Eodem modo si pro ϵ accipitur valor minor infra 180° situs, fiet $a^{\frac{1}{2}}(\epsilon - \sin \epsilon) = U$; accepto vero valore altero, qui est illius complementum ad 360° , manifesto fiet $a^{\frac{1}{2}}(\epsilon - \sin \epsilon) = a^{\frac{1}{2}}360^{\circ} - U$. Hinc itaque colligantur duo valores pro tempore t

$$\frac{U \mp T}{k}$$
, atque $\frac{a^{\frac{3}{4}} \cdot 360^{\circ}}{k} - \frac{U \pm T}{k}$

108.

Si parabola tamquam ellipsis spectatur, cuius axis maior infinite magnus est, expressio temporis in art. praec. inventa transit in $\frac{1}{6k}\{(r+r'+\rho)^{\frac{1}{2}}\mp(r+r'-\rho)^{\frac{1}{2}}\}$: sed quum haecce formulae deductio fortasse quibusdam dubiis exposita videri possit, aliam ab ellipsi haud pendentem exponemus.

Statuendo brevitas caussa

tang
$$\frac{1}{2}v = 0$$
, tang $\frac{1}{2}v' = 0'$, fit
$$r = \frac{1}{2}p(1+\theta\theta), \ r' = \frac{1}{2}p(1+\theta'\theta')$$

$$\cos v = \frac{1-\theta\theta}{1+\theta\theta}, \quad \cos v' = \frac{1-\theta'\theta'}{1+\theta'\theta'}$$

$$\sin v = \frac{2\theta}{1+\theta\theta}, \quad \sin v' = \frac{2\theta'}{1+\theta'\theta'}$$

Hinc fit

$$r'\cos v' - r\cos v = \frac{1}{2}p(\theta\theta - \theta'\theta'), \quad r'\sin v' - r\sin v \implies p(\theta' - \theta)$$

adeoque

$$pp = + pp(\theta' - \theta)^2(4 + (\theta' + \theta)^2)$$

Iam facile perspicitur

$$\theta' - \theta = \frac{\sin f}{\cos \psi \cos \psi'}$$

esse quantitatem positivam: statuendo itaque

$$\sqrt{(1+\frac{1}{2}(\theta'+\theta)^2)} = \eta$$
, exit $\rho = p(\theta'-\theta)\eta$

Porro fit

$$r+r'=\frac{1}{2}p(2+\theta\theta+\theta'\theta')=p(\eta\eta+\frac{1}{2}(\theta'-\theta)^2)$$

quamobrem habetur

$$\frac{r+r'+p}{p} = (\eta + \frac{1}{2}(\theta'-\theta))^2$$

$$\frac{r+r'-\rho}{n}=(\eta-\frac{1}{2}(\theta'-\theta))^2$$

Ex aequatione priori sponte deducitur

$$+\sqrt{\frac{1+\eta^2+\rho}{p}}=\eta+\frac{1}{2}(\theta^2-\theta)$$

queniam η et $\theta' - \theta$ sunt quantitates positivae; sed quum $\frac{1}{2}(\theta' - \theta)$ minor sit vel maior quam η , prout

$$\eta \eta - \frac{1}{2} (\theta' - \theta)^2 = 1 + \theta \theta' = \frac{\cos f}{\cos \frac{1}{2} \theta' \cos \frac{1}{2} \theta'}$$

positiva est vel negativa, patet, ex aequatione posteriori concludere oportere

$$\pm \sqrt{\frac{r+r'-\rho}{\rho}} = \eta - \pm (\theta'-\theta)$$

ubi signum superius vel inferius adoptandum est, prout angulus circa solem descriptus infra 180° vel supra 180° fuerit.

Ex aequatione, quae in art. 98. secundam sequitur, porro habemus

$$\frac{\frac{3kt}{p^{\frac{1}{2}}}}{\frac{1}{2}} = (\theta' - \theta) ((1 + \theta \theta' + \frac{1}{2} (\theta' - \theta)^{\frac{1}{2}}) = (\theta' - \theta) (\eta \eta + \frac{1}{12} (\theta' - \theta)^{\frac{1}{2}})$$

$$= \frac{1}{2} (\eta + \frac{1}{2} (\theta' - \theta))^{\frac{1}{2}} - \frac{1}{2} (\eta - \frac{1}{2} (\theta' - \theta))^{\frac{1}{2}}$$

unde sponte sequitur

$$kt = \frac{1}{4} \{ (r + r' + \rho)^{\frac{1}{2}} \mp (r + r' - \rho)^{\frac{1}{2}} \}$$

signo superiori vel inferiori valente, prout 2 f infra vel supra 180° est.

Si in hyperbola signa a, C, c in eadem significatione accipimus, ut in art. 99., habemus ex aequationibus VIII., IX. art. 21.

$$r'\cos v' - r\cos v = -\frac{1}{2}\left(c - \frac{1}{c}\right)\left(C - \frac{1}{C}\right)a$$

$$r\sin v' - r\sin v = \frac{1}{2}\left(c - \frac{1}{c}\right)\left(C + \frac{1}{C}\right)a\sqrt{(ee - 1)}$$

adeoque

$$\rho = \frac{1}{2} \alpha (c - \frac{1}{C}) \sqrt{(ee(C + \frac{1}{C})^2 - 4)}$$

Supponamus γ esse quantitatem per aequationem $\gamma + \frac{1}{\gamma} = e\left(C + \frac{1}{C}\right)$ determinatam: cui quum manifesto duo valores sibi invicem reciproci satisfaciant, adoptamus eum qui est maior quam 1. Ita fit

$$\rho = \frac{1}{2} a \left(c - \frac{1}{c} \right) \left(\gamma - \frac{1}{\gamma} \right)$$

Porro fit

$$r+r'=\frac{1}{2}a(e(c+\frac{1}{c})(C+\frac{1}{C})-4)=\frac{1}{2}a((c+\frac{1}{c})(\gamma+\frac{1}{\gamma})-4)$$

adeoque

$$r + r' + \rho = \alpha \left(\sqrt{c} \gamma - \sqrt{\frac{1}{c} \gamma} \right)^2$$
$$r + r' - \rho = \alpha \left(\sqrt{\frac{\gamma}{c}} - \sqrt{\frac{c}{\gamma}} \right)^2$$

Statuendo itaque $\sqrt{\frac{r+r'+\rho}{4a}} = m$, $\sqrt{\frac{r+r'-\rho}{4a}} = n$, erit necessario $\sqrt{c\gamma} - \sqrt{\frac{1}{c\gamma}} = 2m$; ad decidendam vero quaestionem, utrum $\sqrt{\frac{r}{c}} - \sqrt{\frac{c}{\gamma}}$ fiat = +2n an = -2n, inquirere oportet, utrum γ maior an minor sit quam c: sed ex aequatione 8. art. 99. facile sequitur, casum priorem locum habere, quoties 2f sit infra 180°, posteriorem quoties 2f sit supra 180°. Denique ex eodem art. habemus

$$\frac{kt}{c!} = \frac{1}{2} \left(\gamma + \frac{1}{\gamma} \right) \left(c - \frac{1}{c} \right) - 2 \log c = \frac{1}{2} \left(c \gamma - \frac{1}{c \gamma} \right) - \frac{1}{2} \left(\frac{\gamma}{c} - \frac{c}{\gamma} \right) - \log c \gamma + \log \frac{\gamma}{c}$$

$$= 2m \sqrt{(1+mm)} + 2n \sqrt{(1+nn)} - 2 \log \left(\sqrt{(1+mm)} + m \right) + 2 \log \left(\sqrt{(1+nn)} + n \right)$$

signis inferioribus semper ad casum $2f > 180^{\circ}$ spectantibus. Iam

$$\log (\sqrt{(1+mm)+m)}$$

facile evolvitur in seriem sequentem

$$m - \frac{1}{2} \cdot \frac{1}{2} m^3 + \frac{1}{6} \cdot \frac{1 \cdot 3}{2 \cdot 4} m^5 - \frac{1}{6} \cdot \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} m^7 + \text{etc.}$$

Hoc sponte colligitur ex d $\log (\sqrt{(1+mm)}+m) = \frac{(dm)}{\sqrt{(1+mm)}}$. Prodit itaque

$$2 m \sqrt{(1+mm)} - 2 \log (\sqrt{(1+mm)} + m) = 4 \left(\frac{1}{2} m^3 - \frac{1}{2} \cdot \frac{1}{2} m^5 + \frac{1}{2} \cdot \frac{3}{4} m^7 - \text{etc.}\right)$$

et perinde formula alia prorsus similis, si m cum n permutatur. Hinc tandem colligitur, si statuatur

$$T = \frac{1}{6}(r + r' - \rho)^{\frac{3}{2}} - \frac{1}{80} \cdot \frac{1}{\alpha}(r + r' - \rho)^{\frac{1}{2}} + \frac{2}{1782} \cdot \frac{1}{\alpha\alpha}(r + r' - \rho)^{\frac{7}{2}} - \frac{1}{18432} \cdot \frac{1}{\alpha^3}(r + r' - \rho)^{\frac{3}{2}} + \text{etc.}$$

$$U = \frac{1}{8}(r+r'+\rho)^{\frac{1}{2}} - \frac{1}{8^{\frac{1}{6}}} \cdot \frac{1}{\alpha}(r+r'+\rho)^{\frac{1}{2}} + \frac{1}{17^{\frac{1}{2}}} \cdot \frac{1}{\alpha\alpha}(r+r'+\rho)^{\frac{1}{2}} - \frac{1}{18^{\frac{1}{6}}} \cdot \frac{1}{\alpha^{\frac{1}{2}}}(r+r'+\rho)^{\frac{1}{2}} + \text{etc.}$$

fieri

$$kt = U \mp T$$

quae expressiones cum iis, quae in art. 107 traditae sunt, omnino coincidunt, si illic a in -a mutetur.

Ceterum hae series tum pro ellipsi tum pro hyperbola ad usum practicum tunc inprimis sunt commodae, ubi a vel a valorem permagnum obtinet, i. e. ubi sectio conica magnopere ad parabolae similitudinem vergit. In tali casu etiam ad solutionem problematis supra tractati (art. 85—105.) adhiberi possent: sed quoniam, nostro iudicio, ne tunc quidem brevitatem solutionis supra traditae praebent, huic methodo fusius exponendae non immoramur.

SECTIO QUARTA

Relationes inter locos plures in spatio.

110.

Relationes in hac Sectione considerandae ab orbitae indole independentes solique suppositioni innixae erunt, omnia orbitae puncta in eodem plano cum Sole iacere. Placuit autem, hic quasdam simplicissimas tantum attingere, aliasque magis complicatas et speciales ad Librum alterum nobis reservare.

Situs plani orbitae per duos locos corporis coelestis in spatio plene determinatus est, siquidem hi loci non iacent in eadem recta cum Sole. Quare quum duobus potissimum modis locus puncti in spatio assignare possit, duo hinc problemata solvenda se offerunt.

Supponemus primo, duos locos dari per longitudines et latitudines heliocentricas resp. per λ , λ' ; ℓ , ℓ' designandas: distantiae a Sole in calculum non ingredientur. Tunc si longitudo nodi ascendentis per Ω , inclinatio orbitae ad eclipticam per i denotatur, erit

$$tang \theta = tang i sin(\lambda - \Omega)$$

 $tang \theta' = tang i sin(\lambda' - \Omega)$

Determinatio incognitarum Ω , tang *i* hic ad problema in art. 78. II. consideratum refertur; habemus itaque, ad normam solutionis primae

tang
$$i \sin(\lambda - \Omega) = \tan \theta$$

tang $i \cos(\lambda - \Omega) = \frac{\tan \theta \cdot (-\tan \theta \cos(\lambda' - \lambda))}{\sin(\lambda' - \lambda)}$

ad normam solutionis tertiae autem invenimus o per aequationem

$$\tan(\frac{1}{2}\lambda + \frac{1}{2}\lambda' - \Omega) = \frac{\sin(6' + 6)\tan(\frac{1}{2}(\lambda' - \lambda))}{\sin(6' - 6)}$$

utique aliquanto commodius, si anguli 6, 6' immediate dantur, neque vero per logarithmos tangentium: sed ad determinandum i, recurrendum erit ad aliquam formularum

$$tang i = \frac{tang 6}{\sin(\lambda - \Omega)} = \frac{tang 6'}{\sin(\lambda' - \Omega)}$$

Ceterum ambiguitas in determinatione anguli $\lambda - \Omega$, vel $\frac{1}{2}\lambda + \frac{1}{2}\lambda' - \Omega$ per tangentem suam ita erit decidenda, ut tang *i* positiva evadat vel negativa, prout motus ad eclipticam proiectus directus est vel retrogradus: hanc incertitudinem itaque tunc tantum tollere licet, ubi constat, a quanam parte corpus coeleste a loco primo ad secundum pervenerit; quod si ignoraretur, utique impossibile esset, nodum ascendentem a descendente distinguere.

Postquam anguli Ω , i inventi sunt, eruentur argumenta latitudinum u', u per formulas

$$tang u = \frac{tang(\lambda - \Omega)}{cosi},$$
 $tang u' = \frac{tang(\lambda' - \Omega)}{cosi}$

quae in semicirculo primo vel secundo accipienda sunt, prout latitudines respondentes boreales sunt vel australes. His formulis adhuc sequentes adiicimus, e quibus, si placet, una vel altera ad calculum confirmandum in usum vocari poterit:

$$\cos u = \cos \delta \cos(\lambda - \Omega), \qquad \cos u' = \cos \delta' \cos(\lambda' - \Omega)$$

$$\sin u = \frac{\sin \delta}{\sin i}, \qquad \sin u' = \frac{\sin \delta'}{\sin i}$$

$$\sin(u' + u) = \frac{\sin(\lambda + \lambda' - 2\Omega)\cos \delta \cos \delta'}{\cos i}, \sin(u' - u) = \frac{\sin(\lambda' - \lambda)\cos \delta \cos \delta'}{\cos i}$$

111.

Supponamus secundo, duos locos dari per distantias suas a tribus planis in Sole sub angulis rectis se secantibus; designemus has distantias pro loco primo per x, y, z, pro secundo per x', y', z', supponamusque planum tertium esse ipsam eclipticam, plani primi et secundi autem polos positivos in longitudine N et $90^{\circ}+N$ sitos esse. Ita erit per art. 53., duobus radiis vectoribus per r, r designatis,

$$x = r \cos u \cos(N - \Omega) + r \sin u \sin(N - \Omega) \cos i$$

$$y = r \sin u \cos(N - \Omega) \cos i - r \cos u \sin(N - \Omega)$$

$$s = r \sin u \sin i$$

$$x' = r' \cos u' \cos(N - \Omega) + r' \sin u' \sin(N - \Omega) \cos i$$

$$y' = r' \sin u' \cos(N - \Omega) \cos i - r' \cos u' \sin(N - \Omega)$$

$$z' = r' \sin u' \sin i$$

Hinc sequitur

$$zy'-yz' = rr'\sin(u'-u)\sin(N-\Omega)\sin i$$

$$xz'-zx' = rr'\sin(u'-u)\cos(N-\Omega)\sin i$$

$$xy'-yx' = rr'\sin(u'-u)\cos i$$

E combinatione formulae primae cum secunda habebitur $N - \Omega$ atque $rr'\sin(u'-u)\sin i$, hinc et ex formula tertia prodibit i atque $rr'\sin(u'-u)$.

Quaterus locus, cui coordinatae x', y', z' respondent, tempore posterior supponitur, u' maior quam u fieri debet: quodsi itaque insuper constat, utrum angulus inter locum primum et secundum circa Solem descriptus duobus rectis minor an maior sit, $rr'\sin(u'-u)\sin i$ atque $rr'\sin(u'-u)$ esse debent quantitates positivae in casu primo, negativae in secundo: tunc itaque $N-\Omega$ sine ambiguitate determinatur, simulque ex signo quantitatis xy'-yx' deciditur, utrum motus directus sit, an retrogradus. Vice versa, si de motus directione constat, e signo quantitatis xy'-yx' decidere licebit, utrum u'-u minor an maior quam 180° accipiendus sit. Sin vero tum motus directio, tum indoles anguli circa Solem descripti plane incognitae sunt, manifestum est, inter nodum ascendentem ac descendentem distinguere non licere.

Ceterum facile perspicitur, sicuti $\cos i$ est cosinus inclinationis plani orbitae versus planum tertium, ita $\sin(N-\Omega)\sin i$, $\cos(N-\Omega)\sin i$ esse resp. cosinus inclinationum plani orbitae versus planum primum et secundum; nec non exprimere $rr'\sin(u'-u)$ duplam aream trianguli inter duos radios vectores inclusi, atque zy'-yz'; xz'-zx', xy'-yx' duplam aream proiectionum eiusdem trianguli ad singula plana.

Denique patet, planum tertium pro ecliptica quodvis aliud planum esse posse, si modo omnes magnitudines per relationes suas ad eclipticam definitae perinde ad planum tertium, quidquid sit, referantur.

112

Sint x'', y'', z'' coordinatae alicuius loci tertii, atque u'' eius argumentum latitudinis, r'' radius vector. Designabimus quantitates $r'r''\sin(u''-u')$, $rr''\sin(u''-u)$, quae sunt areae duplae triangulorum inter radium vectorem secundum et tertium, primum et tertium, primum et secundum, resp. per n, n', n''. Habebuntur itaque pro x'', y'', z'' expressiones iis similes, quas in art praec. pro x, y, z et x', y', z' tradidimus, unde adiumento lemmatis I. art. 78. facile deducuntur aequationes sequentes:

$$0 = nx - n'x' + n''x''$$

$$0 = ny - n'y' + n''y''$$

$$0 = nz - n'z' + n''z''$$

[1.]
$$0 = n(\delta \cos \alpha + D \cos L) - n'(\delta' \cos \alpha' + D' \cos L') + n''(\delta'' \cos \alpha'' + D'' \cos L'')$$

[2.]
$$0 = n(\delta \sin \alpha + D \sin L) - n'(\delta' \sin \alpha' + D' \sin L') + n''(\delta'' \sin \alpha'' + D'' \sin L'')$$

[3.]
$$0 = n(\delta \tan \beta + D \tan \beta) - n'(\delta' \tan \beta' + D' \tan \beta') + n''(\delta'' \tan \beta'' + D'' \tan \beta'')$$

113.

Ne formularum prolixitate nimis obruamur, sequentibus abbreviationibus uti placet. Primo designamus quantitatem

$$\tan \theta \sin (\alpha'' - \alpha') + \tan \theta' \sin (\alpha - \alpha'') + \tan \theta'' \sin (\alpha' - \alpha) \text{ per } (0.1.2)$$
:

si in expressione illa pro longitudine et latitudine loco cuivis geocentrico respondentibus substituuntur longitudo et latitudo cuilibet trium locorum heliocentricorum terrae respondentes, in signo (0.1.2) numerum illi respondentem cum numero romano eo commutamus, qui posteriori respondet. Ita e. g. character (0.1.I) exprimet quantitatem

$$tang \delta \sin(L'-\alpha') + tang \delta' \sin(\alpha-L') + tang B' \sin(\alpha'-\alpha)$$

nec non character (0.O.2) hanc

$$\tan \theta \sin(\alpha'' - L) + \tan \theta \sin(\alpha - \alpha'') + \tan \theta'' \sin(L - \alpha)$$

Simili modo characterem mutamus, si in expressione prima pro duabus longitudinibus et latitudinibus geocentricis duae quaecunque heliocentricae terrae substituuntur. Si duae longitudines et latitudines in eandem expressionem ingredientes tantummodo inter se permutantur, etiam in charactere numeros respondentes permutare oportet: hinc autem valor ipse non mutatur, sed tantummodo e positivo negativus, e negativo positivus evadit. Ita e. g. fit (0.1.2) = -(0.2.1) = (1.2.0) = -(1.0.2) = (2.0.1) = -(2.1.0). Omnes itaque quantitates hoc modo oriundae ad sequentes 19 reducuntur

Ceterum facile demonstratur, singulas has expressiones, per productum e tribus cosinibus latitudinum ipsas ingredientium multiplicatas, aequales fieri volumini sextuplo pyramidis, cuius vertex est in Sole, basis vero triangulum formatum inter tria sphaerae coelestis puncta, quae locis expressionem illam ingredientibus respondent, statuto sphaerae radio = 1. Quoties itaque hi tres loci in eodem circulo maximo iacent, valor expressionis fieri debet = 0; quod quum in tribus locis heliocentricis terrae semper locum habeat, quoties ad parallaxes et latitudines terrae a perturbationibus ortas non respicimus, i. e. quoties terram in ipso eclipticae plano constituimus, semper, hacce suppositione valente, erit (O.I.II) = 0,

quae quidem aequatio identica est, si pro plano tertio ecliptica ipsa accepta fuit. Ceterum quoties tum B, tum B, tum B'' = 0, omnes istae expressiones, prima excepta, multo simpliciores fiunt; singulae scilicet a secunda usque ad decimam binis partibus conflatae erunt, ab undecima autem usque ad undevigesimam unico termino constabunt.

114.

Multiplicando aequationem [1.] per $\sin a'' \tan g B'' - \sin L'' \tan g \delta''$, aequationem [2.] per $\cos L'' \tan g \delta'' - \cos a'' \tan g B''$, aequationem [3.] per $\sin (L'' - a'')$, addendoque producta, prodit

[4.]
$$0 = n \{(0.2.\text{II})\delta + (0.2.\text{II})D\} - n'\{(1.2.\text{II})\delta' + (1.2.\text{II})D'\}$$

similique modo, vel commodius per solam locorum inter se permutationem

[5.]
$$0 = n\{(0.1.1)\delta + (0.1.1)D\} + n''\{(2.1.1)\delta'' + (II.1.1)D''\}$$

[5.]
$$0 = n'\{(1.0.0)\delta' + (I.0.0)D'\} - n''\{(2.0.0)\delta'' + (II.0.0)D''\}$$

Quodsi itaque ratio quantitatum n, n' data est, adiumento aequationis 4. ex δ determinare licebit δ' , vel δ ex δ' ; similiterque de aequationibus 5. 6. E combinatione aequationum 4. 5. 6. oritur haec

[7.]
$$\frac{{\scriptstyle (0.2.\text{II})}\delta + {\scriptstyle (0.2.\text{II})}D}{{\scriptstyle (0.1.\text{I})}\delta + {\scriptstyle (0.1.\text{II})}D} \times \frac{{\scriptstyle (1.0.0)}\delta' + {\scriptstyle (I.0.0)}D'}{{\scriptstyle (1.2.\text{II})}\delta' + {\scriptstyle (I.2.\text{II})}D'} \times \frac{{\scriptstyle (2.1.\text{I})}\delta'' + {\scriptstyle (II.1.\text{I})}D''}{{\scriptstyle (2.0.0)}\delta'' + {\scriptstyle (II.0.0)}D''} = -1,$$

per quam e duabus distantiis corporis coelestis a terra determinare licet tertiam. Ostendi potest autem, hanc aequationem 7. fieri identicam, adeoque ad determinationem unius distantiae e duabus reliquis ineptam, quoties fuerit

$$\begin{aligned} & \tan \theta ' \tan \theta '' \sin (L''-L') \sin (L-\alpha) + \tan \theta B' \tan \theta B'' \sin (\alpha''-\alpha') \sin (L-\alpha) \\ & + \tan \theta \delta'' \tan \theta \delta \sin (L-L'') \sin (L'-\alpha') + \tan \theta B'' \tan \theta B \sin (\alpha-\alpha'') \sin (L'-\alpha') \\ & + \tan \theta \delta \tan \theta \delta' \sin (L'-L) \sin (L''-\alpha'') + \tan \theta B \tan \theta B' \sin (\alpha''-\alpha) \sin (L''-\alpha'') \\ & - \tan \theta \delta' \tan \theta B'' \sin (\alpha''-L') \sin (L-\alpha) - \tan \theta B'' \tan \theta \delta'' \sin (L''-\alpha') \sin (L'-\alpha') \\ & - \tan \theta \delta'' \tan \theta B'' \sin (\alpha''-L) \sin (L''-\alpha') - \tan \theta B'' \sin (L''-\alpha') \sin (L''-\alpha'') \\ & - \tan \theta \delta \tan \theta B'' \sin (\alpha''-L) \sin (L''-\alpha'') - \tan \theta B \tan \theta \delta'' \sin (L''-\alpha') \sin (L''-\alpha'') \end{aligned}$$

Ab hoc incommodo libera est formula sequens, ex aequationibus 1. 2. 3. facile demanans:

[8.]
$$(0.1.2)\delta\delta'\delta'' + (O.1.2)D\delta'\delta'' + (0.I.2)D'\delta\delta'' + (0.1.II)D''\delta\delta' + (0.I.II)D'D''\delta + (O.I.II)DD''\delta' + (O.I.2)DD'\delta'' + (O.I.II)DD'D'' = 0.$$

Multiplicando aequationem 1. per $\sin \alpha' \tan \alpha' + \sin \alpha'' + \sin \alpha'' + \cos \alpha' + \cos$

[9.]
$$0 = n\{(0.1.2)\delta + (0.1.2)D\} - n'(I.1.2)D' + n''(II.1.2)D''$$
 et perinde

[10.]
$$0 = n(0.0.2)D - n'\{(0.1.2)\delta' + (0.1.2)D'\} + n''(0.11.2)D''$$

[11.]
$$0 = n(0.1.0)D - n'(0.1.1)D' + n''\{(0.1.2)\delta'' + (0.1.11)D''\}$$

Adiumento harum aequationum e ratione inter quantitates n, n' n'' cognita eruere licebit distantias δ , δ' , δ'' . Sed haecce conclusio generaliter tantum loquendo valet, exceptionemque patitur, quoties fit (0.1.2) = 0. Ostendi enim potest, in hocce casu ex aequationibus 9. 10. 11. nihil aliud sequi, nisi relationem necessariam inter quantitates n, n', n'', et quidem e singulis tribus eandem. Restrictiones analogae circa aequationes 4. 5. 6. lectori perito sponte se offerent.

Ceterum omnes conclusiones hic evolutae nullius sunt usus, quoties planum orbitae cum ecliptica coincidit. Si enim 6, 6, 6, B, B omnes sunt = 0, aequatio 3. *identica* est, ac proin omnes quoque sequentes.

LIBER SECUNDUS

INVESTIGATIO ORBITARUM CORPORUM COELESTIUM EX OBSERVATIONIBUS GEOCENTRICIS

SECTIO PRIMA

Determinatio orbitae e tribus observationibus completis.

115.

Ad determinationem completam motus corporis coelestis in orbita sua requiruntur elementa septem, quorum autem numerus uno minor evadit, si corporis massa vel cognita est vel negligitur; haec licentia vix evitari poterit in determinatione orbitae penitus adhuc incognitae, ubi omnes quantitates ordinis perturbationum tantisper seponere oportet, donec massae a quibus pendent aliunde innotuerint. Quamobrem in disquisitione praesente massa corporis neglecta elementorum numerum ad sex reducimus, patetque adeo, ad determinationem orbitae incognitae totidem quantitates ab elementis pendentes ab invicem vero independentes requiri. Quae quantitates nequeunt esse nisi loca corporis coelestis e terra observata, quae singula quum bina data subministrent, puta longitudinem et latitudinem, vel ascensionem rectam et declinationem, simplicissimum utique erit, tria loca geocentrica adoptare, quae generaliter loquendo sex elementis incognitis determinandis sufficient. Hoc problema tamquam gravissimum huius operis spectandum erit, summaque ideo cura in hac Sectione pertractabitur.

Verum enim vero in casu speciali, ubi planum orbitae cum ecliptica coincidit, adeoque omnes latitudines tum heliocentricae tum geocentricae natura sua evanescunt, tres latitudines geocentricas evanescentes haud amplius considerare licet tamquam tria data ab invicem independentia: tunc igitur problema istud indeterminatum maneret, tribusque locis geocentricis per orbitas infinite multas G. TH. M.

Digitized by Google

satisfieri posset. In tali itaque casu necessario quatuor longitudines geocentricas datas esse oportet, ut quatuor elementa incognita reliqua (excidentibus inclinatione orbitae et longitudine nodi) determinare liceat. Etiamsi vero per principium indiscernibilium haud expectandum sit, talem casum in rerum natura umquam se oblaturum esse, tamen facile praesumitur, problema, quod in orbita cum plano eclipticae omnino coincedente absolute indeterminatum fit, in orbitis perparum ad eclipticam inclinatis propter observationum praecisionem limitatam tantum non indeterminatum manere debere, ubi vel levissimi observationum errores incognitarum determinationem penitus turbare valent. Quamobrem ut huic quoque casui consulamus, alia sex data eligere oportebit: ad quem finem in Sectione secunda orbitam incognitam e quatuor observationibus determinare docebimus, quarum duae quidem completae sint, duae reliquae autem incompletae, latitudinibus vel declinationibus deficientibus.

Denique quum omnes observationes nostrae propter instrumentorum sensuumque imperfectionem non sint nisi approximationes ad veritatem, orbita, sex tantum datis absolute necessariis superstructs, erroribus considerabilibus adhuc obnoxia esse poterit. Quos ut quantum quidem licet extenuemus, summamque adeo praecisionem possibilem attingamus, via alia non dabitur, nisi ut observationes perfectissimas quam plurimas congeramus, elementaque ita perpoliamus, ut non quidem his vel illis praecisione absoluta satisfaciant, sed cum cunctis quam optime conspirent. Quonam pacto talem consensum, si nullibi absolutum tamen ubique quam arctissimum, secundum principia calculi probabilitatis obtinere liceat, in Sectione tertia ostendemus.

Hoe itaque modo determinatio orbitarum, quatenus corpora coelestia secundum leges Kepleri in ipsis moventur, ad omnem quae desiderari potest perfectionem evecta erit. Ultimam quidem expolitionem tunc demum suscipere licebit, ubi etiam perturbationes, quas planetae reliqui motui inducunt, ad calculum erunt revocatae: quarum rationem quomodo habere oporteat, quantum quidem ad institutum nostrum pertinere videbitur, in Sectione quarta breviter indicabimus.

116.

Antequam determinatio alicuius orbitae ex observationibus geocentricis suscipitur, his quaedam reductiones applicandae erunt, propter nutationem, praecessionem, parallaxin et aberrationem, siquidem summa praecisio requiritur: in crassiori enim calculo has minutias negligere licebit.

Planetarum et cometarum observationes vulgo expressae proferuntur per ascensiones rectas et declinationes apparentes, i. e. ad situm aequatoris apparentem relatas. Qui situs quum propter nutationem et praecessionem variabilis adeoque pro diversis observationibus diversus sit, ante omnia loco plani variabilis planum aliquod fixum introducere conveniet, ad quem finem vel aequator situ suo medio pro aliqua epocha, vel ecliptica adoptari poterit: planum posterius plerumque adhiberi solet, sed prius quoque commodis peculiaribus haud spernendia se commendat.

Quoties itaque planum acquatoris eligere placuit, ante omnia observationes nutatione purgandae, ac dein adhibita praecessione ad epocham quandam arbitrariam reducendae sunt: hace operatio prorsus convenit cum ea, per quam e loco stellae fixae observato eiusdem positio media pro epocha data derivatur, adeoque explicatione hic non indiget. Sin vero planum eclipticae adoptare constitutum est, duplex methodus patebit: scilicet vel ex ascensionibus rectis et declinationibus ob nutationem et praecessionem correctis deduci poterunt longitudines et latitudines adiumento obliquitatis mediae, unde longitudines iam ad acquinoctium medium relatae prodibunt; vel commodius ex ascensionibus rectis et declinationibus apparentibus adiumento obliquitatis apparentis computabuntur longitudines et latitudines, ac dein illae a nutatione et praecessione purgabuntur.

Loci terrae singulie observationibus respondentes per tabulas solares computantur, manifesto autam ad idem planum referendi erunt, ad quod observationes corporis coelestis relatae sunt. Quamobrem in computo longitudinia Solia negligetur nutatio; dein vero hace longitudo adhibita praecessione ad epochame fixam reducetur, atque 180 gradibus augebitur; latitudini Solia, siquidem eius rationem habere operae pretium videtur, signum oppositum tribuetur: sic positio terrae heliocentrica habebitur, quam, si aequator pro plano fundamentali electus est, adiumento obliquitatia mediae in ascensionem rectam et declinationem transformare licebit.

117.

Positio terres has modo e tabulis computata ad terras centrum referenda est, locus observatus autem corponia coelestis ad punctum in terras superficie spe-

ctat: huic dissensui tribus modis remedium afferre licet. Potest scilicet vel observatio ad centrum terrae reduci, sive a parallaxi liberari; vel locus heliocentricus terrae ad locum ipsum observationis reduci, quod efficitur, si loco Solis e tabulis computato parallaxis rite applicatur; vel denique utraque positio ad punctum aliquod tertium transferri, quod commodissime in intersectione radii visus cum plano eclipticae assumitur: observatio ipsa tunc immutata manet, reductionemque loci terrae ad hoc punctum in art. 72. docuimus. Methodus prima adhiberi nequit, nisi corporis coelestis distantia a terra proxime saltem nota fuerit: tunc autem satis commoda est, praesertim quoties observatio in ipso meridiano instituta est, ubi sola declinatio parallaxi afficitur. Ceterum praestabit, hanc reductionem loco observato immediate applicare, antequam transformationes art. praec. adeantur. Si vero distantia a terra penitus adhuc incognita est, ad methodum secundam vel tertiam confugiendum est, et quidem illa in usum vocabitur, quoties aequator pro plano fundamentali accipitur, tertia autem praeferetur, quoties omnes positiones ad eclipticam referre placuit.

118.

Si corporis coelestis distantia a terra alicui observationi respondens proxime iam nota est, hanc ab effectu aberrationis liberare licet pluribus modis, qui methodis diversis in art. 71. traditis innituntur. Sit t tempus verum observationis; θ intervallum temporis, intra quod lumen a corpore coelesti ad terram descendit, quod prodit ducendo 493° in distantiam; l locus observatus, l' idem locus adiumento motus geocentrici diurni ad tempus $t+\theta$ reductus; l'' locus l ab ea aberrationis parte purgatus, quae planetis cum fixis communis est; L locus terrae verus tempori t respondens (i. e. tabularis 20"25 auctus); denique L locus terrae verus tempori t respondens. His ita factis erit

- I. l locus verus corporis coelestis ex L visus tempore $t-\theta$
- II. l' locus verus corporis coelestis ex L visus tempore t
- III. l'' locus verus corporis coelestis ex L visus tempore $t-\theta$

Per methodum I. itaque locus observatus immutatus retinetur, pro tempore vero autem fictum $t-\theta$ substituitur, loco terrae pro eodem computato; methodus II. soli observationi mutationem applicat, quae autem praeter distantiam insuper mo-

tum diurnum requirit; in methodo III. observatio correctionem patitur a distantia non pendentem, pro tempore vero fictum $t-\theta$ substituitur, sed retento loco terrae tempori vero respondente. Ex his methodis prima longe commodissima est, quoties distantia eatenus iam nota est, ut reductio temporis θ praecisione sufficiente computari possit.

Quodsi autem haec distantia penitus adhuc incognita est, nulla harum methodorum immediate applicari potest: in prima scilicet habetur quidem corporis coelestis locus geocentricus, sed desideratur tempus et positio terrae a distantia incognita pendentia: in secunda e contrario adsunt haec, deest ille; denique in tertia habetur locus geocentricus corporis coelestis atque positio terrae, sed tempus deest cum illis datis iungendum.

Quid faciendum est itaque in problemate nostro, si in tali casu solutio respectu aberrationis quoque exacta postulatur? Simplicissimum utique est, orbitam primo neglecta aberratione determinare, quae quum effectum considerabilem numquam producere possit, distantiae hinc ea certe praecisione demanabunt, ut iam observationes per aliquam methodorum modo expositarum ab aberratione purgare, orbitaeque determinationem accuratius iterare liceat. lam in hocce negotio methodus tertia ceteris longe praeferenda erit: in methodo enim prima omnes operationes a positione terrae pendentes ab ovo rursus inchoandae sunt: in secunda (quae ne applicabilis quidem est, nisi tanta observationum copia adsit, ut motus diurnus inde elici possit) omnes operationes a loco geocentrico corporis coelestis pendentes denuo instituere oportet: contra in tertia (siquidem iam calculus primus superstructus fuerat locis geocentricis ab aberratione fixarum purgatis) omnes operationes praeliminares a positione terrae et loco geocentrico corporis coelestis pendentes, in computo novo invariatae retineri poterunt. Quin adeo hoc modo primo statim calculo aberrationem complecti licebit; si methodus ad determinationem orbitae adhibita ita comparata est, ut valores distantiarum prodeant prius, quam tempora correcta in calculum introducere opus fuerit. Tunc aberrationis quidem caussa calculus duplex haud necessarius erit, uti in tractatione ampliori problematis nostri clarius apparebit.

119.

Haud difficile esset, e nexu inter problematis nostri data atque incognitas, eius statum ad sex aequationes reducere, vel adeo ad pauciores, quum unam

alteramve incognitam satis commode eliminare liceret: sed quonism nexus ille complicatissimus est, hae acquationes maxime intractabilis evaderent; incognitarum separatio talis, ut tandem acquatio unicum tantummodo continens prodeat, generaliter loquendo*) pro impossibili haberi potest, multoque adeo minus problematis solutionem integram per solas operationes directas absolvere licebit.

Sed ad duarum acquationum solutionem X = 0, Y = 0, in quibus duae tautum incognitae x, y intermixtae remanserum, utique reducere licet problema nostrum, et quidem variis modis. Haud equidem necesse est, ut x, y sint dua ex elementis ipsis: esse poterunt quantitates qualicunque modo cum elementis connexae, si modo illis inventis elementa inde commode derivare licet. Praeteres manifesto haud opus est, ut X, Y per functiones explicitas ipsarum x, y exhibeantur: sufficit, si cum illis per systems acquationum ita iunctae sunt, ut a valoribus datis ipsarum x, y ad valores respondentes ipsarum X, Y descendere in potestata sit.

120.

Quoniam itaque problematis natura reductionem ulteriorem non permittit, quam ad duas acquationes, duas incognitarum electione acquationumque adornatione verapitur, ut tum X et Y quam simplicissime ab x, y pendeant, tum ex harum ratoribus inventis elements ipas quam commodissime demanent: dein vere circumspiciendum exit, quo pacto incognitarum valores acquationibus satisfacientes per operationes non nimis operosas ervere liceat. Quod si ecceis quasi tentaminim bus tantum efficiendum esset, ingens sene ao vix tolerandus labor requireretus qualem fere nihilominus asepius susceperunt astronomi, qui cometatum orbitas per methodum quam indirectam vocant determinaverunt: magnopere utique in tali negotio labor sublevatur ee, quod in tentaminibus primis calculi crassiores sufficiunt, donec ad valores approximates incognitarum perventum fuerit. Quam-primum vero determinatio approximates iam babetur, rem tutis semper expeditisque methodis ad finem perducere liceati, quas antequam ulterius progrediamus hic explicavisse iuvabit.

^{*)} Quoties observationes ab invicem tam parum remotae sunt, ut temporum intervalla tamquam quantitates infinite parvas tractare liceat, huiusmodi separatio utique succedit, totumque problema ad solutionem acquationis almebraique sentini ostative gradus reducitor.

Aequationibus X = 0, Y = 0, si pro x, y valores veri ipsi accipiuntur, ex asse sponte satisfiet; contra si pro x, y valores a veris diversi substituuntur, X et Y inde valores a 0 diversos nanciscentur. Quo propius vero illi ad veros accedunt, eo minores quoque valores ipsarum X, Y emergere debebunt, quotiesque illerum differentiae a veris perexiguae sunt, supponere licebit, variationes in valoribus ipsarum X, Y proxime proportionales esse variationi ipsius x, si y, vel variationi ipsius y, si x non mutetur. Quodsi itaque valores veri ipsarum x, y resp. designantur per ξ , η , valores ipsarum X, Y suppositioni $x = \xi + \lambda$, $y = \eta + \mu$ respondentes per formam $X = a\lambda + 6\mu$, $Y = \gamma\lambda + \delta\mu$ exhibebuntur, ita ut coefficientes a, b, c, b pro constantibus haberi queant, dum c et c perexiguae manent. Hinc concluditur, si pro tribus systematibus valorum ipsarum c, c, a veris parum diversorum, valores respondentes ipsarum c, c determinati sint, valores veros ipsarum c, c inde derivari pesse, quatenus quidem suppositionem istam admittere licet. Statuamus

pro
$$x = a$$
, $y = b$ fieri $X = A$, $Y = B$
 $x = a'$, $y = b'$ $X = A'$, $Y = B'$
 $x = a''$, $y = b''$ $X = A''$, $Y = B''$

habebimusque

$$A = \alpha(a - \xi) + \delta(b - \eta), \quad B = \gamma(a - \xi) + \delta(b - \eta)$$

$$A' = \alpha(a' - \xi) + \delta(b' - \eta), \quad B' = \gamma(a' - \xi) + \delta(b' - \eta)$$

$$A'' = \alpha(a'' - \xi) + \delta(b'' - \eta), \quad B' = \gamma(a'' - \xi) + \delta(b'' - \eta)$$

Hinc fit, eliminatis α , β , γ , δ

$$\xi = \frac{a(A'B'' - A''B') + a'(A''B - AB'') + a''(AB' - A'B)}{A'B'' - A''B' + A''B - AB'' + AB' - A'B}$$

$$\eta = \frac{b(A'B'' - A''B') + b'(A''B - AB'') + b''(AB' - A'B)}{A'B'' - A''B' + A''B - AB'' + AB' - A'B}$$

sive in forma ad calculum commodiori

$$\xi = a + \frac{(a'-a)(A''B-AB'')+(a''-a)(AB'-A'B)}{A'B''-A''B'+A''B-AB''+AB'-A'B}$$

$$\eta = b + \frac{(b'-b)(A''B-AB'')+(b''-b)(AB'-A'B)}{A'B''-A''B'+A''B-AB''+AB''-A'B}$$

Manifesto quoque in his formulis quantitates a, b, A, B, cum a', b', A', B', vel cum his a'', b'', A'', B'' permutare licet.

Ceterum denominator communis omnium harum expressionum, quem etiam sub formam (A'-A)(B''-B)-(A''-A)(B'-B) ponere licet, fit

$$= (a \delta - 6 \gamma) \{ (a' - a)(b'' - b) - (a'' - a)(b' - b) \}:$$

unde patet, a, a, a', b, b', b'' ita accipi debere, ut non fiat $\frac{a''-a}{b''-b} = \frac{a'-a}{b'-b}$, alioquin enim haec methodus haud applicabilis esset, sed pro ξ et η valores fractos suggereret, quorum numeratores et denominatores simul evanescerent. Simul hinc manifestum est, si forte fiat $a\delta-\delta\gamma=0$, eundem defectum methodi usum omnino destruere, quomodocunque a, a', a'', b, b', b'' accipiantur. In tali casu pro valoribus ipsius X formam talem supponere opporteret $a\lambda+6\mu+\epsilon\lambda\lambda+\zeta\lambda\mu+6\mu\mu$, similemque pro valoribus ipsius Y, quo facto analysis methodos praecedenti analogas suppeditaret, e valoribus ipsarum X, Y pro quatuor systematibus valorum ipsarum x, y computatis harum valores veros eruendi. Hoc vero modo calculus permolestus evaderet, praetereaque ostendi potest, in tali casu orbitae determinationem praecisionem necessariam per ipsius rei naturam non admittere: quod incommodum quum aliter evitari nequeat, nisi novis observationibus magis idoneis adscitis, huic argumento hic non immoramur.

121.

Quoties itaque incognitarum valores approximati iam in potestate sunt, veri inde per methodum modo explicatam omni quae desideratur praecisione derivari possunt. Primo scilicet computabuntur valores ipsarum X, Y istis valoribus approximatis (a, b) respondentes: qui nisi sponte iam evanescunt, calculus duobus aliis valoribus ab illis parum diversis (a', b') repetetur, ac dein tertio systemate a'', b'', nisi fortuito ex secundo X et Y evanuerunt. Tunc per formulas art. praec. valores veri elicientur, quatenus suppositio, cui illae formulae innituntur, a veritate haud sensibiliter discrepat. De qua re quo melius iudicium ferri possit, calculus valorum ipsarum X, Y cum illis valoribus correctis repetetur: qui si aequationibus X=0, Y=0 nondum satisfieri monstrat, certe valores multo minores ipsarum X, Y inde prodibunt, quam per tres priores hypotheses, adeoque elementa orbitae hinc resultantia longe exactiora erunt, quam ea, quae primis hypothesibus respondent. Quibus si acquiescere nolumus, consultissimum erit, omissa ea hypothesi quae maximas differentias produxerat, duas reliquas cum quarta denuo iungere, atque sic ad normam art. praec. quintum

systema valorum ipsarum x, y formare: eodemque modo, ubi operae pretium videbitur, ad hypothesin sextam etc. progredi licebit, donec aequationibus X=0, Y=0 tam exacte satisfactum fuerit, quam tabulae logarithmicae et trigonometricae permittunt. Rarissime tamen opus erit, ultra systema quartum progredi, nisi hypotheses primae nimis adhuc a veritate aberrantes suppositae fuerint.

122.

Quum incognitarum valores in hypothesi secunda et tertia supponendi quodammodo arbitrarii sint, si modo ab hypothesi prima non nimis differant, praetereaque caveatur, ne ratio (a''-a):(b''-b) ad aequalitatem huius (a'-a):(b'-b) convergat, plerumque statui solet a'=a, b''=b. Duplex hinc lucrum derivatur: namque non solum formulae pro ξ , η paullo adhuc simpliciores evadunt, sed pars quoque calculi primi eadem manebit in hypothesi secunda, aliaque pars in tertia.

Est tamen casus, ubi aliae rationes ab hac consuetudine discedere suadent: fingamus enim, X habere formam X'-x, atque Y hanc Y'-y, functionesque X', Y' per problematis naturam ita comparatas esse, ut erroribus mediocribus in valoribus ipsarum x, y commissis perparum afficiantur, sive ut $\left(\frac{\mathrm{d}X'}{\mathrm{d}x}\right)$, $\left(\frac{\mathrm{d}Y'}{\mathrm{d}x}\right)$, $\left(\frac{\mathrm{d}Y'}{\mathrm{d}x}\right)$, sint quantitates perexiguae, patetque, differentias inter valores istarum functionum systemati $x=\xi$, $y=\eta$ respondentes, eosque qui ex x=a, y=b prodeunt, ad ordinem quasi altiorem referri posse, quam differentias $\xi-a$, $\eta-b$ at valores illi sunt $X'=\xi$, $Y'=\eta$, hi vero X'=a+A, Y'=b+B, unde sequitur, a+A, b+B esse valores multo exactiores ipsarum x, y, quam a, b. Quibus si hypothesis secunda superstruitur, persaepe aequationibus X=0, Y=0 tam exacte iam satisfit, ut ulterius progredi haud opus sit; sin secus, eodem modo ex hypothesi secunda tertia formabitur faciendo a''=a'+A'=a+A+A', b''=b'+B'=b+B+B', unde tandem, si nondum satis praecisa reperitur, quarta ad normam art. 120. elicietur.

123.

In praec. supposuimus, valores approximatos incognitarum x, y alicunde iam haberi. Quoties quidem totius orbitae dimensiones approximatae in potestate sunt (ex aliis forte observationibus per calculos anteriores deductae iamque per novas corrigendae), conditioni iili absque difficultate satisfieri poterit, quamg. TH. M.

cunque significationem incognitis tribuamus. Contra in determinatione prima orbitae penitus adhuc ignotae (quae est problema longe difficillimum) neutiquam indifferens est, quasnam incognitas adhibeamus; arte potius talique modo eligendae sunt, ut valores approximatos ex ipsius problematis natura haurire liceat. Quod exoptatissime succedit, quoties tres observationes ad orbitae investigationem adhibitae motum heliocentricum corporis coelestis non nimis magnum complectuntur. Huiusmodi itaque observationes ad determinationem primam semper adhibendae sunt, quam dein per observationes magis ab invicem remotas ad lubitum corrigere conveniet. Nullo enim negotio perspicitur, observationum errores inevitabiles calculum eo magis turbare, quo propiores observationes adhibeantur. Hinc colligitur, observationes ad determinationem primam haud temere eligendas, sed cavendum esse, primo ne sint nimis sibi invicem vicinae, dein vero etiam ne nimis ab invicem distent: in primo enim casu calculus elementorum observationibus satisfacientium expeditissime quidem absolveretur, sed his elementis ipsis parum fidendum foret, quinimo erroribus tam enormiter depravata evadere possent, ut ne approximationis quidem vice fungi valerent; in casu altero vero artificiis, quibus ad determinationem approximatam incognitarum utendum est. destitueremur, neque inde aliam derivaremus, nisi vel crassissimam ubi hypotheses multo plures, vel omnino ineptam, ubi tentamina fastidiosissima haud evitare liceret. Sed de hisce methodi limitibus scite iudicare melius per usum frequentem quam per praecepta ediscitur: exempla infra tradenda ostendent, ex observationibus Iunonis 22 tantum diebus ab invicem dissitis motumque heliocentricum 7°35' complectentibus elementa multa iam praecisione gaudentia derivari, ac vicissim, methodum nostram optimo etiamnum successu ad observationes Cereris applicari, quae 260 diebus ab invicem distant, motumque heliocentricum 62°55' includunt, quatuorque hypothesibus seu potius approximationibus successivis adhibitis elementa optime cum observationibus conspirantia producere.

124.

Progredimur iam ad enumerationem methodorum maxime idonearum principiis praecedentibus innixarum, quarum quidem praecipua momenta in libro primo exposita sunt, atque hic tantum instituto nostro accommodari debent.

Methodus simplicissima esse videtur, si pro x, y distantiae corporis coelestis a terra in duabus observationibus accipiantur, aut potius vel logarithmi

harum distantiarum vel logarithmi distantiarum ad eclipticam sive aequatorem proiectarum. Hinc per art. 64, V. elicientur loca heliocentrica et distantiae a Sole ad eadem loca pertinentia; hinc porro per art. 110. situs plani orbitae atque longitudines heliocentricae in ea; hinc atque ex radiis vectoribus temporibusque respondentibus per problema in artt. 85 . . . 105. copiose pertractatum cuncta reliqua elementa, per quae illas observationes exacte repraesentari manifestum est, quicunque valores ipsis x, y tributi fuerint. Quodsi iam per haec elementa locus geocentricus pro tempore observationis tertiae computatur, huius consensus cum observato vel dissensus decidet, utrum valores suppositi veri fuerint, an ab iis discrepent; unde quum comparatio duplex derivetur, differentia altera (in longitudine vel ascensione recta) accipi poterit pro X, alteraque (in latitudine vel declinatione) pro Y. Nisi igitur valores harum differentiarum X, Y sponte prodeunt = 0, valores veros ipsarum x, y per methodum in art. 120 sqq. descriptam eruere licebit. Ceterum per se arbitrarium est, a quibusnam trium observationum proficiscamur: plerumque tamen praestat, primam et postremam adoptare, casu speciali de quo statim dicemus excepto.

Haecce methodus plerisque post explicandis eo nomine praeferenda est, quod applicationem maxime generalem patitur. Excipere oportet casum, ubi duae observationes extremae motum heliocentricum 180 vel 360 vel 540 etc. graduum complectuntur; tunc enim positio plani orbitae e duobus locis heliocentricis determinari nequit (art. 110.). Perinde methodum applicare haud conveniet, quoties motus heliocentricus inter duas observationes extremas perparum differt ab 180° vel 360° etc. quoniam in hoc casu determinatio positionis orbitae accurata obtineri nequit, sive potius, quoniam variationes levissimae in valoribus suppositis incognitarum tantas variationes in positione orbitae et proin etiam in valoribus ipsarum X, Y producerent, ut hae illis non amplius proportionales censeri possent. Verumtamen remedium hic praesto est; scilicet in tali casu non proficiscemur a duabus observationibus extremis, sed a prima et media, vel a media et ultima, adeoque pro X, Y, accipiemus differentias inter computum et observationem in loco tertio vel primo. Quodsi autem tum locus secundus a primo tum tertius a secundo propemodum 180 gradibus distarent, incommodum illud hoc modo tollere non liceret; sed praestat, huiusmodi observationes, e quibus per rei naturam determinatio accurata situs orbitae erui omnino nequit, ad calculum elementorum hand adhibere.

Praeterea hacc methodus eo quoque se commendat, quod nullo negotio aestimari potest, quantas variationes elementa patiantur, si manentibus locis extremis medius paullulum mutetur: hoc itaque modo iudicium ferri poterit qualecunque de gradu praecisionis elementis inventis tribuendae.

125.

Levi mutatione applicata e methodo praecedente secundam eliciemus. distantiis in duabus observationibus profecti, perinde ut in illa, cuncta elementa determinabimus; ex his vero non locum geocentricum pro observatione tertia computabimus, sed tantummodo usque ad locum heliocentricum in orbita progrediemur; ex altera parte eundem locum heliocentricum per problema in art. 74. 75. tractatum e loco geocentrico observato atque situ plani orbitae derivabimus; hae duae determinationes inter se differentes (nisi forte valores veri ipsarum x, ysuppositae fuerint), ipsas X, Y nobis suppeditabunt, accepta pro X differentia inter duos valores longitudinis in orbita, atque pro Y differentia inter duos valores radii vectoris, aut potius logarithmi eius. Haecce methodus iisdem monitionibus obnoxia est, quas in art. praec. attigimus: adiungere oportet aliam, scilicet, equod locus heliocentricus in orbita e geocentrico deduci nequit, quoties locus terrae in alterutrum nodorum orbitae incidit; tunc itaque hanc methodum applicare non Sed in eo quoque casu, ubi locus terrae ab alterutro nodorum perparum distat, hac methodo abstinere conveniet, quoniam suppositio, variationibus parvis ipsarum x, y respondere variationes proportionales ipsarum X, Y, nimis erronea evaderet, per rationem ei quam in art. praec. attigimus similem. Sed hic quoque remedium e permutatione loci medii cum aliquo extremorum, cui locus terrae a nodis magis remotus respondeat, petere licebit, nisi forte in omnibus tribus observationibus terra in nodorum viciniis versata fuerit.

126.

Methodus praecedens ad tertiam illico sternit viam. Determinentur, perinde ut ante, e distantiis corporis coelestis a terra in observationibus extremis longitudines respondentes in orbita cum radiis vectoribus. Adiumento positionis plani orbitae, quam hic calculus suppeditaverit, eruatur ex observatione media longitudo in orbita atque radius vector. Tunc autem computentur ex his tribus locis heliocentricis elementa reliqua per problema in art. 82. 83. tractatum, quae

operatio ab observationum temporibus independens erit. Hoc itaque modo innotescent tres anomaliae mediae atque motus diurnus, unde ipsa temporum intervalla inter observationem primam et secundam, atque inter secundam et tertiam computare licebit. Horum differentiae ab intervallis veris pro X et Y accipientur.

Hacc methodus minus idonea esset, quoties motus heliocentricus arcum exiguum tantum complectitur. In tali enim casu ista orbitae determinatio (ut iam in art. 82. monuimus) a quantitatibus tertii ordinis pendet, adeoque praecisionem sufficientem non admittit. Variationes levissimae in valoribus ipsarum x, y producere possent variationes permagnas in elementis adeoque etiam in valoribus ipsarum X, Y neque has illis proportionales supponere liceret. Quoties autem tres loci motum heliocentricum considerabilem subtendunt, methodi usus utique succedet optime, siquidem exceptionibus in art. praec. explicatis haud turbetur, ad quas manifesto in hac quoque methodo respiciendum erit.

127.

Postquam tres loci heliocentrici eo quem in art. praec. descripsimus modo eruti sunt, sequenti quoque modo procedi poterit. Determinentur elementa reliqua per problema in artt. 85 . . . 105. tractatum primo e loco primo et secundo cum intervallo temporis respondente, dein vero eodem modo e loco secundo et tertio temporisque intervallo respondente: ita pro singulis elementis duo valores prodibunt, e quorum differentiis duas ad libitum pro X et Y accipere licebit. Magnopere hanc methodum commendat commodum haud spernendum, quod in hypothesibus primis elementa reliqua, praeter duo ea quae ad stabiliendum X et Y eliguntur, omnino negligere licet, quae in ultimo demum calculo, valoribus correctis ipsarum x, y superstructo, determinabuntur sive e sola combinatione prima, sive e sola secunda, sive quod plerumque praeferendum est e combinatione loci primi cum tertio. Ceterum electio illorum duorum elementorum, quae generaliter loquendo arbitraria est, magnam solutionum varietatem suppeditat; adoptari poterunt e. g. logarithmus semiparametri cum logarithmo semiaxis maioris, vel prior cum excentricitate, vel cum eadem posterior, vel cum aliquo horum elementorum longitudo perihelii; combinari quoque poterit aliquod horum quatuor elementorum cum anomalia excentrica loco medio in utroque calculo respondente, siquidem orbita elliptica evaserit, ubi formulae 27 . . . 30. art. 96. calculum maxime expeditum afferent. In casibus specialibus autem haec electio quadam circumspectione indiget; ita e. g. in orbitis ad parabolae similitudinem vergentibus semiaxis maior a ipsiusve logarithmus minus idonei forent, quippe quorum variationes immodicae variationibus ipsarum x, y haud proportionales censeri possent: in tali casu magis e re esset eligere $\frac{1}{a}$. Sed his cautelis eo minus immoramur, quum methodus quinta in art. seq. explicanda quatuor hactenus expositis in omnibus fere casibus palmam praeripiat.

128.

Designemus tres radios vectores eodem modo erutos ut in art. 125. 126. per r, r', r''; motum angularem heliocentricum in orbita a loco secundo ad tertium per 2f, a primo ad secundum per 2f'', ita ut habeatur f' = f + f''; sit porro $r'r'' \sin 2f = n$, $rr'' \sin 2f' = n'$, $rr'' \sin 2f'' = n''$; denique producta quantitatis constantis k (art. 2.) in temporis intervalla ab observatione secunda ad tertiam, a prima ad tertiam, a prima ad secundam resp. θ , θ' , θ'' . Incipiatur computus duplex elementorum (perinde ut in art. praec.) tum ex r, r', f'' et θ'' , tum ex r', r'' f, θ : in utroque vero calculo non ad elementa ipsa progredieris, sed subsistes, quamprimum quantitas ea, quae rationem sectoris elliptici ad triangulum exprimit, supraque (art. 91.) per y vel -Y denotata est, eruta fuerit. Sit valor huius quantitatis in calculo primo η'' , in secundo η . Habebimus itaque per formulam 18. art. 95. pro semiparametro p valorem duplicem:

$$\sqrt{p} = \frac{\eta''n''}{0''}$$
, atque $\sqrt{p} = \frac{\eta n}{0}$

Sed per art. 82. habemus insuper valorem tertium

$$p = \frac{4rr'r''\sin f \sin f' \sin f''}{n-n'+n''}$$

qui tres valores manifesto identici esse deberent, si pro x, y ab initio valores veri accepti fuissent. Quamobrem esse deberet

$$\frac{\theta''}{\theta} = \frac{\eta''n''}{\eta n}$$

$$n - n' + n'' = \frac{49\theta''rr'r''\sin f \sin f' \sin f''}{\eta \eta''nn''} = \frac{n'\theta \theta''}{2\eta \eta''rr'r''\cos f \cos f'\cos f''}$$

Nisi itaque his aequationibus iam in primo calculo sponte satisfit, statuere licebit

$$X = \log \frac{\eta^{n\theta''}}{\eta''n''\theta}$$

$$Y = n - n' + n'' - \frac{n'\theta\theta''}{2\eta\eta''rr'r''\cos f\cos f\cos f'\cos f''}$$

Haec methodus applicationem aeque generalem patitur, ac secunda in art. 125. explicata, magnum vero lucrum est, quod in hacce quinta hypotheses primae evolutionem elementorum ipsorum non requirunt, sed in media quasi via subsistunt. Ceterum simulatque in hac operatione eo perventum est, ut praevideri possit, hypothesin novam a veritate haud sensibiliter discrepaturam esse, in hac elementa ipsa vel duntaxat ex r, r', f'' θ'' , vel ex r', r'', f, θ , vel quod praestat ex r, r'', f', θ' , determinare sufficiet.

129.

Quinque methodi hactenus expositae protinus ad totidem alias viam sternunt, quae ab illis eo tantum different, quod pro x et y loco distantiarum a terra, inclinatio orbitae atque longitudo nodi ascendentis accipiuntur. Hae igitur methodi novae ita se habent:

I. Determinantur ex x et y duobusque locis geocentricis extremis secundum art. 74. 75. longitudines heliocentricae in orbita radiique vectores, atque hinc et ex temporibus respondentibus omnia reliqua elementa; ex his denique locus geocentricus pro tempore observationis mediae, cuius differentiae a loco observato in longitudine et latitudine ipsas X et Y suppeditabunt.

Quatuor reliquae methodi in eo conveniunt, quod e positione plani orbitae locisque geocentricis omnes tres longitudines heliocentricae in orbita radiique vectores respondentes computantur. Dein autem

II. elementa reliqua determinantur e duobus locis extremis tantum atque temporibus respondentibus; secundum haec elementa calculantur pro tempore observationis mediae longitudo in orbita atque radius vector, quarum quantitatum differentiae a valoribus prius inventis, i. e. e loco geocentrico deductis, ipsas X, Y exhibebunt.

III. Aut derivantur orbitae dimensiones reliquae ex omnibus tribus locis heliocentricis (artt. 82. 83.), in quem calculum tempora non ingrediuntur: dein temporum intervalla eruuntur, quae in orbita ita inventa inter observationem pri-

mam et secundam, atque inter hanc et tertiam elapsa esse deberent, et quorum differentiae a veris ipsas X, Y nobis suggerent.

- IV. Calculantur elementa reliqua duplici modo, puta tum e combinatione loci primi cum secundo, tum e combinatione secundi cum tertio, adhibitis temporum intervallis respondentibus. Comparatis hisce duobus elementorum systematibus inter se, e differentiis duae quaecunque pro X, Y accipi poterunt.
- V. Sive denique idem calculus duplex tantummodo usque ad valores quantitatis in art. 91. per y denotatae producitur, ac dein pro X, Y expressiones in art. praec. traditae adoptantur.

Ut quatuor ultimis harum methodorum tuto uti liceat, loci terrae pro omnibus tribus observationibus orbitae nodis non nimis vicini esse debent: contra usus methodi primae tantummodo requirit, ut eadem conditio in duabus observationibus extremis locum habeat, sive potius (quoniam locum medium pro aliquo extremorum substituere licet), ut e tribus locis terrae non plures quam unus in nodorum viciniis versentur.

130.

Decem methodi inde ab art. 124. explicatae innituntur suppositioni, valores approximatos distantiarum corporis coelestis a terra, aut positionis plani orbitae, iam in potestate esse. Quoties quidem id agitur, ut dimensiones orbitae, quarum valores approximati iam alicunde innotuerunt, puta per calculum anteriorem observationibus aliis innixum, per observationes magis ab invicem remotas corrigantur, postulatum illud nullis manifesto difficultatibus obnoxium erit. Sed hinc nondum liquet, quonam modo calculum primum aggredi liceat, ubi omnes orbitae dimensiones penitus adhuc incognitae sunt; hic vero problematis nostri casus longe gravissimus atque difficillimus est, uti iam ex problemate analogo in theoria cometarum praesumi potest, quod quamdiu geometras torserit, quotque tentaminibus irritis originem dederit satis constat. Ut problema nostrum recte solutum censeri possit, manifesto conditionibus sequentibus satisfieri oportet, siquidem solutio ad instar normae inde ab art. 119. explicatae exhibetur: Primo quantitates x, y tali modo sunt eligendae, ut valores ipsarum approximatos ex ipsa problematis natura petere liceat, saltem, quamdiu corporis coelestis motus heliocentricus intra observationes non nimis magnus est. Secundo autem requiritur, ut variationibus exiguis quantitatum x, y variationes non nimis magnae

in quantitatibus inde derivandis respondeant, ne errores in illarum valoribus suppositis forte commissi impediant, quominus has quoque pro approximatis habere liceat. Denique tertio postulamus, ut operationes, per quas a quantitatibus x, y successive usque ad X, Y progrediendum est, non nimis prolixae evadant.

Hae conditiones criterium subministrabunt, secundum quod de cuiusvis methodi praestantia iudicium ferri poterit: adhuc evidentius quidem ea applicationibus frequentibus se manifestabit. Methodus ea, quam exponere iam accingimur, et quae quodammodo tamquam pars gravissima huius operis consideranda est, illis conditionibus ita satisfacit, ut nihil amplius desiderandum relinquere videatur. Quam antequam in forma ad praxin commodissima explicare aggrediamur, quasdam considerationes praeliminares praemittemus, aditumque quasi ad illam, qui alias forsan obscurior minusque obvius videri possit, illustrabimus atque aperiemus.

131.

In art. 114. ostensum est, si ratio inter quantitates illic atque in art. 128. per n, n', n'' denotatas cognita fuerit, corporis coelestis distantias a terra per formulas persimplices determinari posse. Quodsi itaque pro x, y assumerentur quotientes $\frac{n}{n'}$, $\frac{n''}{n'}$, pro his quantitatibus in eo casu, ubi motus heliocentricus inter observationes haud ita magnus est, statim valores approximati $\frac{\theta}{\theta'}$, $\frac{\theta''}{\theta'}$ se offerrent (accipiendo characteres θ , θ' , θ'' in eadem significatione ut in art. 128.): hinc itaque solutio obvia problematis nostri demanare videtur, si ex x et y distantiae duae a terra eliciantur, ac dein ad instar alicuius ex quinque methodis artt. 124...128. procedatur. Revera, acceptis quoque characteribus η , η'' in significatione art. 128., designatoque analogice per η' quotiente orto ex divisione sectoris inter duos radios vectores contenti per aream trianguli inter eosdem, erit $\frac{n}{n'} = \frac{\theta}{\theta'} \cdot \frac{\eta'}{\eta}, \quad \frac{n''}{n'} = \frac{\theta''}{\theta'} \cdot \frac{\eta'}{\eta''}, \quad \text{patetque facile, si } n, n', n'' \quad \text{tamquam quantitates}$ parvae primi ordinis spectentur, esse generaliter loquendo $\eta - 1, \eta' - 1, \eta'' - 1$ quantitates secundi ordinis, adeoque valores ipsarum x, y approximatos $\frac{\theta}{\theta'}, \frac{\theta''}{\theta'}$ a veris differre tantummodo quantitatibus secundi ordinis. Nihilominus re propius considerata methodus haecce omnino inepta invenitur, cuius phaenomeni rationem paucis explicabimus. Levi scilicet negotio perspicitur, quantitatem (0. 1. 2), per quam distantiae in formulis 9. 10. 11. art. 114. multiplicatae sunt, ad minimum tertii ordinis fieri, contra e. g. in aequ. 9. quantitates (O. 1. 2), G. TH. M.

(I. 1. 2), (II. 1. 2) primi ordinis; hinc autem facile sequitur, errorem secundi ordinis in valoribus quantitatum $\frac{n}{n'}$, $\frac{n''}{n'}$ commissum producere in valoribus distantiarum errorem ordinis 0. Quamobrem, secundum vulgarem loquendi usum, distantiae tunc quoque errore finito affectae prodirent, quando temporum intervalla infinite parva sunt, adeoque neque has distantias neque reliquas quantitates inde derivandas ne pro approximatis quidem habere liceret, methodusque conditioni secundae art. praec. adversaretur.

132.

Statuendo brevitatis gratia

$$(0.1.2) = a, (0.1.2)D' = -b, (0.0.2)D = c, (0.11.2)D'' = d,$$

ita ut aequatio 10. art. 114. fiat $a\delta' = b + c \cdot \frac{n}{n'} + d \cdot \frac{n''}{n'}$, coefficientes c et d quidem erunt primi ordinis, facile vero ostendi potest, differentiam c - d ad secundum ordinem referendam esse. Hinc vero sequitur, valorem quantitatis $\frac{cn-dn''}{n+n''}$ ex suppositione approximata n:n''=0:0'' prodeuntem errore quarti tantum ordinis affectum esse, quin adeo quinti tantum, quoties observatio media ab extremis aequalibus intervallis distat. Fit enim iste error

$$=\frac{c\theta+d\theta''}{\theta+\theta''}-\frac{cn+dn''}{n+n''}=\frac{\theta\theta''(d-c)(\eta''-\eta)}{(\theta+\theta'')(\eta''\theta+\eta\theta'')}$$

ubi denominator secundi ordinis est, numeratorisque factor alter $\theta\theta''(d-c)$ quarti, alter $\eta''-\eta$ secundi, vel in casu isto speciali tertii ordinis. Exhibita itaque aequatione illa in hacce forma

$$a\delta' = b + \frac{cn + dn''}{n + n''} \cdot \frac{n + n''}{n'}$$

manifestum est, vitium methodi in art. praec. propositae non inde oriri, quod quantitates n, n'' hisce θ , θ'' proportionales suppositae sunt, sed inde, quod insuper n' ipsi θ' proportionalis statuta est. Hoc quippe modo loco factoris $\frac{n+n''}{n'}$, valor minus exactus $\frac{\theta+\theta''}{\theta'}=1$ introducitur, a quo verus

$$= 1 + \frac{\theta \theta''}{2 \eta \eta'' r r' r'' \cos f \cos f \cos f''}$$

quantitate ordinis secundi discrepat (art. 128.).

133

Quum cosinus angulorum f, f', f'', perinde ut quantitates η, η'' ab unitate differentia secundi ordinis discrepent, patet, si pro $\frac{n+n''}{n'}$ valor approximatus $1 + \frac{\theta \theta''}{2\pi r' r''}$ introducatur, errorem quarti ordinis committi. Quodsi itaque loco aequationis art. 114. haecce adhibetur

$$a\delta' = b + \frac{c\theta + d\theta''}{\theta'} \left(1 + \frac{\theta\theta''}{2rr'r''}\right)$$

in valorem distantiae δ' redundabit error secundi ordinis, quando observationes extremae a media aequidistant, vel primi ordinis in easibus reliquis. Sed haecce nova aequationis illius forma ad determinationem ipsius δ' haud idonea est, quia quantitates adhuc incognitas r, r' r'' involvit.

kam generaliter loquendo quantitates $\frac{r}{r'}$, $\frac{r''}{r'r}$ ab unitate differentia primi ordinis distant, et perinde etiam productum $\frac{rr''}{r'r'}$: in casu speciali saepius commemorato facile perspicitur, hoc productum differentia secundi ordinis tantum ab unitate discrepare. Quin adeo quoties orbita ellipsis parum excentrica est, ita ut excentricitatem tamquam quantitatem primi ordinis spectare liceat, differentia $\frac{rr''}{r'r'}$ ad ordinem uno gradu adhuc altiorem referri poterit. Manifestum est itaque, errorem illum eiusdem ordinis ut antea manere, si in aequatione nostra pro $\frac{\theta \theta''}{2\tau r'r''}$ substituatur $\frac{\theta \theta''}{2r}$, unde nanciscitur formam sequentem

$$a\delta' = b + \frac{c\theta + d\theta''}{\theta'} \left(1 + \frac{\theta\theta''}{2\sigma'^2}\right)$$

Continet quidem hace acquatio etiamnum quantitatem incognitam r', quam tamen eliminari posse patet, quum tantummodo a δ' atque quantitatibus cognitis pendeat. Quodsi dein acquatio rite ordinaretur, ad octavum gradum ascenderet.

134.

Ex praecedentibus iam ratio percipietur, cur în methodo nostra pro 3, y resp. quantitates

$$\frac{n''}{n} = P \quad \text{atque} \quad 2\left(\frac{n+n''}{n'}-1\right)r'^{3} = Q$$

accepturi simus. Patet enim primo, si P et Q tamquam cognitse spectentur; δ inde per acquationem

$$a\delta' = b + \frac{c+dP}{1+P} \left(1 + \frac{Q}{2r'^2}\right)$$

determinari posse, ac dein δ et δ'' per aequationes 4. 6. art. 114., quum habeatur

$$\frac{n}{n'} = \frac{1}{1+P} \left(1 + \frac{Q}{2r'^2}\right), \quad \frac{n''}{n'} = \frac{P}{1+P} \left(1 + \frac{Q}{2r'^2}\right)$$

Secundo manifestum est, in hypothesi prima pro quantitatibus P, Q, quarum valores exacte veri sunt

$$\frac{\theta''}{\theta} \cdot \frac{\eta}{\eta''}, \quad \frac{r'r'\theta\theta''}{rr''\eta\eta''\cos f\cos f'\cos f'}$$

statim obvios esse valores approximatos $\frac{\theta''}{\theta}$, $\theta\theta''$, ex qua hypothesi in determinationem ipsius δ' et proin etiam ipsarum δ , δ'' , redundabunt errores primi ordinis, vel secundi in casu speciali pluries commemorato. Ceterum etiamsi his conclusionibus, generaliter loquendo, tutissime fidendum sit, tamen in casu quodam speciali vim suam perdere possunt, scilicet quoties quantitas (0. 1. 2), quae in genere est ordinis tertii, fortuito fit = 0, vel tam parva, ut ad altiorem ordinem referri debeat. Hoc evenit, quoties motus geocentricus in sphaera coelesti prope locum medium punctum inflexionis sistit. Denique apparet, ut methodus nostra in usum vocari possit, necessario requiri, ut motus heliocentricus inter tres observationes non nimis magnus sit: sed haec restrictio, per problematis complicatissimi naturam, nullo modo evitari potest, neque etiam pro incommodo habenda est, quoniam semper in votis erit, determinationem primam orbitae incognitae corporis coelestis novi quam primum licet suscipere. Praeterea restrictio illa sensu satis lato accipi potest, uti exempla infra tradenda ostendent.

135.

Disquisitiones praecedentes eum in finem allatae sunt, ut principia, quibus methodus nostra innititur, verusque eius quasi nervus eo clarius perspiciantur: tractatio ipsa autem methodum in forma prorsus diversa exhibebit, quam post applicationes frequentissimas tamquam commodissimam inter plures alias a nobis tentatas commendare possumus. Quum in determinanda orbita incognita e tribus observationibus totum negotium semper ad aliquot hypotheses, aut potius approximationes successivas reducatur, pro lucro eximio habendum erit, si calculum ita adornare successerit, ut iam ab initio operationes quam plurimas, quae non a P et Q sed unice a combinatione quantitatum cognitarum pendeant, ab ipsis hypothesibus separare liceat. Tunc manifesto has operationes praeliminares, sin-

gulis hypothesibus communes, semel tantum exsequi oportet, hypothesesque ipsae ad operationes quam paucissimas reducuntur. Perinde maximi momenti erit, si in singulis hypothesibus usque ad ipsa elementa progredi haud opus fuerit, horumque computum usque ad hypothesin postremam reservare liceat. Utroque respectu methodus nostra, quam exponere iam aggredimur, nihil desiderandum relinquere videtur.

136.

Ante omnia tres locos heliocentricos terrae in spsaera coelesti A, A', A''(Fig. 4.) cum tribus locis geocentricis respondentibus corporis coelestis B, B', B''per circulos maximos iungere, atque tum positionem horum circulorum maximorum respectu eclipticae (siquidem eclipticam pro plano fundamentali adoptamus), tum situm punctorum B, B', B'' in ipsis computare oportet. a, a', a" tres corporis coelestis longitudines geocentricae; 6, 6', 6" latitudines, l, l', l'' longitudines heliocentricae terrae, cuius latitudines statuimus = 0(artt. 117. 72.). Sint porro γ , γ' , γ'' , circulorum maximorum ab A, A', A''resp. ad B, B', B'' ductorum inclinationes ad eclipticam: quas inclinationes, ut in ipsarum determinatione normam fixam sequamur, perpetuo respectu eius eclipticae partis mensurabimus, quae a punctis A, A', A" secundum ordinem signorum sita est, ita ut ipsarum magnitudo a 0 usque ad 360° numeretur, sive quod eodem redit, in parte boreali a 0 usque ad 180°, in australi a 0 usque ad -180° . Arcus AB, A'B', A''B'', quos semper intra 0 et 180° statuere licebit, designamus per δ, δ', δ". Ita pro determinatione ipsarum γ, δ habemus formulas

[1.]
$$tang \gamma = \frac{tang 6}{\sin(\alpha - l)}$$

[2.] $tang \delta = \frac{tang (\alpha - l)}{\cos \gamma}$

[2.]
$$\tan \delta = \frac{\tan \alpha (\alpha - l)}{\cos \gamma}$$

quibus si placet ad calculi confirmationem adiici possunt sequentes:

$$\sin \delta = \frac{\sin \delta}{\sin \gamma}, \quad \cos \delta = \cos \delta \cos (\alpha - l)$$

Pro determinandis γ' , δ' , γ'' , δ'' , manifesto formulae prorsus analogae habentur. Quodsi simul fuerit 6 = 0, $\alpha - l = 0$ vel = 180°, i. e. si corpus coeleste simul in oppositione vel coniunctione atque in ecliptica fuerit, γ fieret indeterminata: at supponemus, hunc casum in nulla trium observationum locum habere.

Si loco eclipticae aequator tamquam planum fundamentale adoptatum est, ad positionem trium circulorum maximorum respectu aequatoris determinandam praeter inclinationes insuper requirentur rectascensiones intersectionum cum aequatore: nec non praeter distantias punctorum B, B', B'' ab his intersectionibus etiam distantias punctorum A, A', A'', ab iisdem computare oportebit. Quae quum a problemate in art. 110. tractato pendeant, formularum evolutioni hic non immoramur.

137.

Negotium secundum erit determinatio situs relativi illorum trium circulorum maximorum inter se, qui pendebit a situ intersectionum mutuarum et ab inclinationibus. Quae si absque ambiguitate ad notiones claras ac generales reducere cupimus, ita ut non opus sit pro singulis casibus diversis ad figuras peculiares recurrere, quasdam dilucidationes praeliminares praemittere oportebit. Primo scilicet in quovis circulo maximo duae directiones oppositae aliquo modo distinguendae sunt, quod fiet, dum alteram tamquam progressivam seu positivam, alteram tamquam retrogradam seu negativam consideramus. Quod quum per se prorsus arbitrarium sit, ut normam certam stabiliamus, semper directiones ab A, A', A" versus B, B', B" ceu positivas considerabimus; ita e. g. si intersectio circuli primi cum secundo per distantiam positivam a puncto A exhibetur, haec capienda subintelligetur ab A versus B (ut D'' in figura nostra); si vero negativa esset, ipsam ab altera parte ipsius A sumere oporteret. Secundo vero etiam duo haemisphaeria, in quae omnis circulus maximus sphaeram integram dirimit, denominationibus idoneis distinguenda sunt: et quidem hemisphaerium superius vocabimus, quod in superficie interiori sphaerae circulum maximum directione progressiva permeanti ad dextram est, alterum inferius. Plaga itaque superior analoga erit hemisphaerio boreali respectu eclipticae vel aequatoris, inferior australi.

His rite intellectis, ambas duorum circulorum maximorum intersectiones commode ab invicem distinguere licebit: in una scilicet circulus primus e secundi regione inferiori in superiorem tendit, vel quod idem est secundus e primi regione superiore in inferiorem; in altera intersectione opposita locum habent. Per se quidem prorsus arbitrarium est, quasnam intersectiones in problemate nostro eligere velimus: sed ut hic quoque iuxta normam invariabilem procedamus, eas

semper adoptabimus (D, D', D'' in Fig. 4.), ubi resp. circulus tertius A''B'' in secundi A'B', tertius in primi AB, secundus in primi plagam superiorem transit. Situs harum intersectionum determinabitur per ipsarum distantias a punctis A' et A'', A et A'', A et A', quas simpliciter per A'D, A''D, AD', A''D', AD'', A'D'' designabimus. Quibus ita factis circulorum inclinationes mutuae erunt anguli, qui resp. in his intersectionum punctis D, D', D'' inter circulorum se secantium partes eas continentur, quae in directione progressiva iacent: has inclinationes, semper inter 0 et 180° accipiendas, per ϵ , ϵ' , ϵ'' denotabimus. Determinatio harum novem quantitatum incognitarum e cognitis manifesto ab eodem problemate pendet, quod in art. 55. tractavimus: habemus itaque aequationes sequentes:

- [3.] $\sin \frac{1}{2} \epsilon \sin \frac{1}{2} (A'D + A''D) = \sin \frac{1}{2} (l'' l') \sin \frac{1}{2} (\gamma'' + \gamma')$
- [4.] $\sin \frac{1}{2} \epsilon \cos \frac{1}{2} (A'D + A''D) = \cos \frac{1}{2} (l'' l') \sin \frac{1}{2} (\gamma'' \gamma')$
- [5.] $\cos \frac{1}{2} \epsilon \sin \frac{1}{2} (A'D A''D) = \sin \frac{1}{2} (l'' l') \cos \frac{1}{2} (\gamma'' + \gamma')$
- [6.] $\cos \frac{1}{2} \epsilon \cos \frac{1}{2} (A'D A''D) = \cos \frac{1}{2} (l'' l') \cos \frac{1}{2} (\gamma'' \gamma')$

Ex aequationibus 3. et 4. innotescent $\frac{1}{2}(A'D + A''D)$ et $\sin \frac{1}{2}\epsilon$, e duabus reliquis $\frac{1}{2}(A'D - A''D)$ et $\cos \frac{1}{2}\epsilon$; hinc A'D, A''D et ϵ . Ambiguitas determinationi arcuum $\frac{1}{2}(A'D + A''D)$, $\frac{1}{2}(A'D - A''D)$ per tangentes adhaerens conditione ea decidetur, quod $\sin \frac{1}{2}\epsilon$ et $\cos \frac{1}{2}\epsilon$ positivi evadere debent, consensusque inter $\sin \frac{1}{2}\epsilon$ et $\cos \frac{1}{2}\epsilon$ toti calculo confirmando inserviet.

Determinatio quantitatum AD', A''D', ϵ' , AD'', A'D'', ϵ'' prorsus simili modo perficietur, neque opus erit octo aequationes ad hunc calculum adhibendas huc transscribere, quippe quae ex aequ. 3...6. sponte prodeunt, si

resp. commutantur.

Nova adhuc totius calculi confirmatio derivari potest e relatione mutua inter latera angulosque trianguli sphaerici inter puncta D, D', D'' formati, unde demanant aequationes generalissime verae, quamcunque situm haec puncta habeant:

$$\frac{\sin(AD'-AD'')}{\sin\epsilon} = \frac{\sin(A'D-A'D'')}{\sin\epsilon'} = \frac{\sin(A''D-A''D')}{\sin\epsilon''}$$

Denique si loco eclipticae aequator tamquam planum fundamentale electus est, calculus mutationem non subit, nisi quod pro terrae locis heliocentricis A, A', A'' substituere oportet ea aequatoris puncta, ubi a circulis AB, A'B', A''B'' secatur; accipiendae sunt itaque pro l, l', l'' ascensiones rectae harum intersectionum, nec non pro A'D distantia puncti D ab intersectione secunda etc.

138.

Negotium tertium iam in eo consistit, ut duo loci geocentrici extremi corporis coelestis, i. e. puncta B, B'', per circulum maximum iungantur, huiusque intersectio cum circulo maximo A'B' determinetur. Sit B^* haec intersectio, atque δ' — σ eius distantia a puncto A', nec non α^* eius longitudo, δ^* latitudo. Habemus itaque, propterea quod B, B^* , B'' in eodem circulo maximo iacent, aequationem satis notam

$$0 = \tan \theta \sin (\alpha'' - \alpha^*) - \tan \theta^* \sin (\alpha'' - \alpha) + \tan \theta'' \sin (\alpha^* - \alpha)$$

quae, substituendo $\tan \gamma' \sin(\alpha^* - l')$ pro $\tan \beta^*$, sequentem formam induit

$$0 = \begin{cases} \cos(\alpha^* - l') \left\{ \tan \beta \sin(\alpha'' - l') - \tan \beta \delta'' \sin(\alpha - l') \right\} \\ -\sin(\alpha^* - l') \left\{ \tan \beta \cos(\alpha'' - l') + \tan \beta \gamma' \sin(\alpha'' - \alpha) - \tan \beta \delta'' \cos(\alpha - l') \right\} \end{cases}$$

Quare quum sit $tang(\alpha^*-l') = cos \gamma' tang(\delta'-\sigma)$ habebimus

$$\tan g(\delta' - \sigma) = \frac{\tan \theta \sin (\alpha'' - l') - \tan \theta \delta'' \sin (\alpha - l')}{\cos \gamma' (\tan \theta \delta \cos (\alpha'' - l') - \tan \theta \delta'' \cos (\alpha - l')) + \sin \gamma' \sin (\alpha'' - \alpha)}$$

Hinc derivantur formulae sequentes, ad calculum numericum magis accommodatae. Statuatur

[7.]
$$\tan \theta \sin(\alpha''-l') - \tan \theta'' \sin(\alpha-l') = S$$

[8.]
$$\tan \theta \cos(\alpha''-l') - \tan \theta'' \cos(\alpha-l') = T \sin t$$

$$[9.] \quad \sin(a''-a) = T\cos t$$

(art. 14. II.), eritque

[10.]
$$tang(\delta'-\sigma) = \frac{S}{T\sin(t+\gamma')}$$

Ambiguitas in determinatione arcus $\delta' - \sigma$ per tangentem inde oritur, quod circuli maximi A'B', BB'' in duobus punctis se intersecant: nos pro B^* semper adoptabimus intersectionem puncto B' proximam, ita ut σ semper cadat inter

limites — 90° et + 90°, unde ambiguitas illa tollitur. Plerumque tunc valor arcus o (qui pendet a curvatura motus geocentrici) quantitas satis modica erit, et quidem generaliter loquendo secundi ordinis, si temporum intervalla tamquam quantitates primi ordinis spectantur.

Quaenam modificationes calculo applicandae sint, si pro ecliptica aequator tamquam planum fundamentale electum est, ex annotatione art. praec. sponte patebit.

Ceterum manifestum est, situm puncti B^* indeterminatum manere, si circuli BB'', A'B' omnino coinciderent: hunc casum, ubi quatuor puncta A', B, B', B'' in eodem circulo maximo iacerent, a disquisitione nostra excludimus. Conveniet autem in eligendis observationibus eum quoque casum evitare, ubi situs horum quatuor punctorum a circulo maximo parum distat: tunc enim situs puncti B^* , qui in operationibus sequentibus magni momenti est, per levissimos observationum errores nimis afficeretur, nec praecisione necessaria determinari posset. — Perinde punctum B^* indeterminatum manere patet, quoties puncta B, B'' in unum coincidunt*), in quo casu ipsius circuli BB'' positio indeterminata fieret. Quamobrem hunc quoque casum excludemus, quemadmodum, per rationes praecedentibus similes, talibus quoque observationibus abstinendum erit, ubi locus geocentricus primus et ultimus in puncta sphaerae sibi proxima cadunt.

139.

Sint in sphaera coelesti C, C', C'' tria corporis coelestis loca heliocentrica, quae resp. in circulis maximis AB, A'B', A''B'', et quidem inter A et B, A' et B', A'' et B'' sita erunt (art. 64. III.): praeterea puncta C, C', C'' in eodem circulo maximo iacebunt, puta in eo, quem planum orbitae in sphaera coelesti proiicit. Designabimus per r, r', r'' tres corporis coelestis distantias a Sole; per ρ , ρ' , ρ'' eiusdem distantias a terra; per R, R', R'' terrae distantias a Sole. Porro statuimus arcus C'C'', CC'', CC'' resp. = 2f, 2f', 2f'', atque $r'r''\sin 2f = n$, $rr''\sin 2f' = n'$. Habemus itaque f' = f + f'', $AC + CB = \delta$, $A'C' + C'B' = \delta'$, $A''C'' + C''B'' = \delta''$, nec non

Digitized by Google

^{*)} Sive etiam quoties sibi opposita sunt, sed de hoc casu non loquimur, quum methodus nostra ad observationes tantum intervallum complectentes non sit extendends.

$$\frac{\sin \delta}{r} = \frac{\sin AC}{\rho} = \frac{\sin CB}{R}$$

$$\frac{\sin \delta'}{r'} = \frac{\sin A'C'}{\rho'} = \frac{\sin C'B'}{R'}$$

$$\frac{\sin \delta''}{r''} = \frac{\sin A''C''}{\rho''} = \frac{\sin C''B''}{R''}$$

Hinc patet, simulac situs punctorum C, C', C'' innotuerit, quantitates r, r', p', ρ' , ρ'' determinabiles fore. Iam ostendemus, quomodo ille e quantitatibus

$$\frac{n''}{n} = P$$
, $2(\frac{n+n''}{n'}-1)r'^2 = Q$

elici possit, a quibus methodum nostram proficisci iam supra declaravimus.

140.

Primo observamus, si N fuerit punctum quodcunque circuli maximi CC'C'', distantiaeque punctorum C, C', C'' a puncto N secundum directionem candem numerentur, quae tendit a C ad C'', its ut generaliter fiat

$$NC''-NC'=2f$$
, $NC''-NC=2f'$, $NC'-NC=2f''$

haberi aequationem

$$0 = \sin 2f \sin NC - \sin 2f' \sin NC' + \sin 2f'' \sin NC'' \dots \dots \dots (L)$$

Iam supponemus, N accipi in intersectione circulorum maximorum BB^*B'' , CC'C'', quasi in nodo ascendente prioris supra posteriorem. Designemus per \mathfrak{C} , \mathfrak{C}' , \mathfrak{D}'' , \mathfrak{D}' , \mathfrak{D}'' resp. distantias punctorum C, C', C'', D, D', D'' a circulo maximo BB^*B'' , ab alterutra ipsius parte positive, ab altera opposita negative acceptas. Hinc manifesto $\sin \mathfrak{C}$, $\sin \mathfrak{C}'$, $\sin \mathfrak{C}''$ resp. proportionales erunt ipsis $\sin NC$, $\sin NC'$, $\sin NC''$, unde aequatio (I.) sequentem induit formam

$$0 = \sin 2f \sin \mathfrak{C} - \sin 2f' \sin \mathfrak{C}' + \sin 2f'' \sin \mathfrak{C}''$$

sive multiplicando per rr'r"

Porro patet, esse sin $\mathfrak C$ ad sin $\mathfrak D'$, ut sinum distantiae puncti C a B ad sinum distantiae puncti D' a B, utraque distantia secundum eandem directionem mensurata. Habetur itaque

$$-\sin \mathfrak{C} = \frac{\sin \mathfrak{D}' \sin CB}{\sin (AD' - \delta)}$$

prorsusque simili modo eruitur

$$-\sin \mathfrak{C} = \frac{\sin \mathfrak{D}'' \sin CB}{\sin (AD''-\delta)}$$

$$-\sin \mathfrak{C}' = \frac{\sin \mathfrak{D} \sin C'B^*}{\sin (A'D-\delta'+\varsigma)} = \frac{\sin \mathfrak{D}'' \sin C'B^*}{\sin (A'D'-\delta'+\varsigma)}$$

$$-\sin \mathfrak{C}'' = \frac{\sin \mathfrak{D} \sin C''B''}{\sin (A''D-\delta'')} = \frac{\sin \mathfrak{D}' \sin C''B''}{\sin (A''D'-\delta'')}$$

Dividendo itaque aequationem (II.) per r"sin &", prodit

$$0 = n \cdot \frac{r \sin CB}{r'' \sin C''B''} \cdot \frac{\sin (A''D' - \delta'')}{\sin (AD' - \delta)} - n' \cdot \frac{r' \sin C''B''}{r'' \sin C''B''} \cdot \frac{\sin (A''D - \delta'')}{\sin (A'D - \delta' + \sigma)} + n''$$

Quodsi hic arcum C'B' per z designamus, pro r, r', r'' valores suos ex art. praec. substituimus, brevitatisque caussa ponimus

[11.]
$$\frac{R\sin\delta\sin(A''D'-\delta'')}{R''\sin\delta''\sin(AD'-\delta)} = a$$

[12.]
$$\frac{R'\sin\delta'\sin(A''D-\delta'')}{R''\sin\delta''\sin(A'D-\delta'+\bullet)} = b$$

aequatio nostra ita se habebit

Coëifficientem b etiam per formulam sequentem computare licet, quae ex aequationibus modo allatis facile deducitur:

[13.]
$$a \times \frac{R'\sin\delta'\sin(AD''-\delta)}{R\sin\delta\sin(A'D''-\delta'+\epsilon)} = b$$

Calculi confirmandi caussa haud inutile erit, utraque formula 12 et 13 uti. Quoties $\sin(A'D''-\delta'+\sigma)$ maior est quam $\sin(A'D-\delta'+\sigma)$, formula posterior a tabularum erroribus inevitabilibus minus afficietur, quam prior, adeoque huic praeferenda erit, si forte parvula discrepantia illinc explicanda in valoribus ipsius b se prodiderit; contra formulae priori magis fidendum erit, quoties $\sin(A'D''-\delta'+\sigma)$

minor est quam $\sin(A'D - \delta' + \sigma)$: si magis placet, medium idoneum inter ambos valores adoptabitur.

Calculo examinando sequentes quoque formulae inservire possunt, quarum tamen derivationem non ita difficilem brevitatis caussa supprimimus:

$$0 = \frac{a\sin(l''-l')}{R} - \frac{b\sin(l''-l)}{R'} \cdot \frac{\sin(b'-s)}{\sin b'} + \frac{\sin(l'-l)}{R''\frac{s}{4}}$$

$$R'\sin b' = U\cos b \cos b''$$

$$b = \frac{R'\sin\delta'}{R''\sin\delta''} \cdot \frac{U\cos\delta\cos\delta''}{\sin(AD'-\delta)\sin\epsilon'}$$

ubi U exprimit quotientem $\frac{S}{\sin(\delta'-\sigma)} = \frac{T\sin(t+\gamma')}{\cos(\delta'-\sigma)}$ (art. 138. aequ. 10.).

141.

Ex $P = \frac{n''}{n}$, at que aequatione III. art. praec. sequitur $(n+n'')\frac{P+a}{P+1} = b n' \frac{\sin(s-s)}{\sin s}$; hinc vero et ex $Q = 2(\frac{n+n''}{n'}-1)r'^3$ at que

$$r' = \frac{R'\sin\delta'}{\sin z} \text{ elicitur}$$

$$\sin z + \frac{Q\sin z^4}{2R'^2\sin\delta'^2} = b\frac{P+1}{P+a}\sin(z-\sigma), \text{ sive}$$

$$\frac{Q\sin z^4}{2R'^2\sin\delta'^2} = \left(b\frac{P+1}{P+a}-\cos\sigma\right)\sin(z-\sigma) - \sin\sigma\cos(z-\sigma)$$

Statuendo itaque brevitatis caussa

$$[14.] \qquad \frac{1}{2R^{\prime s}\sin\delta^{\prime s}\sin\sigma} = c$$

introducendoque angulum auxiliarem w talem ut fiat

$$\tan g \omega = \frac{\sin \sigma}{b \frac{P+1}{P+a} - \cos \sigma}$$

prodit aequatio (IV.)

$$c Q \sin \omega \sin z^4 = \sin (z - \omega - \sigma)$$

ex qua incognitam z eruere oportebit. Ut angulus ω commodius computetur, formulam praecedentem pro tang ω ita exhibere conveniet

tang
$$\omega = \frac{(P+a) \tan g \sigma}{P(\frac{b}{\cos g} - 1) + (\frac{b}{\cos g} - a)}$$

Quamobrem statuendo

$$[15.] \qquad \frac{\frac{b}{\cos \sigma} - a}{\frac{b}{\cos \sigma} - 1} = d$$

$$\frac{\tan g \sigma}{\frac{b}{\cos g} - 1} = e$$

habebimus ad determinandum w formulam simplicissimam

$$tang \omega = \frac{e(P+a)}{P+d}$$

Computum quantitatum a, b, c, d, e per formulas 11...16., a solis quantitatibus datis pendentem, tamquam negotium quartum consideramus. Quantitates b, c, e ipsae non erunt necessariae, verum soli ipsarum logarithmi.

Ceterum datur casus specialis, ubi haec praecepta aliqua mutatione indigent. Quoties scilicet circulus maximus BB'' cum A''B'' coincidit, adeoque puncta B, B^* resp. cum D', D, quantitates a, b valores infinitos nanciscerentur. Statuendo in hoc casu

$$\frac{R\sin\delta\sin(A'D''-\delta'+\mathfrak{c})}{R'\sin\delta'\sin(A'D''-\delta)}=\pi$$

habebimus loco aequationis III. hancce: $0 = \pi n - \frac{n' \sin(s-\sigma)}{\sin s}$, unde faciendo

$$tang \omega = \frac{\pi \sin \sigma}{P + (1 - \pi \cos \sigma)}$$
, eadem aequatio IV. elicitur.

Perinde in casu speciali, ubi $\sigma = 0$, fit c infinita atque $\omega = 0$, unde factor $c\sin\omega$ in aequatione IV. indeterminatus esse videtur: nihilominus revera determinatus est, ipsiusque valor

$$= \frac{P+a}{2R^{\prime s}\sin\delta^{\prime s}(b-1)(P+d)}$$

uti levis attentio docebit. In hoc itaque casu fit

$$\sin z = R' \sin \delta' \sqrt[3]{\frac{2(b-1)(P+d)}{Q(P+a)}}$$

142.

Aequatio IV., quae evoluta ad ordinem octavum ascenderet, in forma sua non mutata expeditissime tentando solvitur. Ceterum e theoria aequationum facile ostendi potest (quod tamen fusius evolvere brevitatis causa hic supersedemus), hanc aequationem vel duas vel quatuor solutiones per valores reales admittere. In casu priori valor alter ipsius $\sin z$ positivus erit, alterum negativum reiicere oportebit, quia per problematis naturam r' negativus evadere nequit. In casu posteriori inter valores ipsius $\sin z$ vel unus positivus erit, tresque reliqui negativi — ubi igitur haud ambiguum erit, quemnam adoptare oporteat — vel tres positivi cum uno negativo; in hoc casu e valoribus positivis ii quoque si quí adsunt reiici debent, ubi z maior evadit quam δ' , quoniam per aliam problematis conditionem essentialem ρ' adeoque etiam $\sin(\delta'-z)$ quantitas positiva esse debet.

Quoties observationes mediocribus temporum intervallis ab invicem distant, plerumque casus postremus locum habebit, ut tres valores positivi ipsius sinz aequationi satisfaciant. Inter has solutiones praeter veram reperiri solet aliqua, ubi z parum differt a 6', modo excessu, modo defectu: hoc phaenomenon sequenti modo explicandum est. Problematis nostri tractatio analytica ei soli conditioni superstructa est, quod tres corporis coelestis in spatio loci iacere debent in rectis, quarum situs per locum absolutum terrae positionemque observatam determinatur. Iam per ipsius rei naturam loci illi iacere quidem debent in iis rectarum partibus, unde lumen ad terram descendit: sed aequationes analyticae hanc restrictionem non agnoscunt, omniaque locorum systemata, qui quidem cum KEPLERI legibus consentiunt, perinde complecti debent, sive ab hac terrae parte in illis rectis iaceant, sive ab illa, sive denique cum ipsa terra coincidant. Iam hie ultimus casus utique problemati nostro satisfaciet, quum terra ipsa ad normam illarum legum moveatur. Hinc patet, aequationes comprehendere debere solutionem, in qua puncta, C, C', C" cum punctis A, A', A" coincidant (quatenus variationes minutissimas locis terrae ellipticis a perturbationibus et parallaxi inductas negligimus): aequatio itaque IV semper admittere deberet solutionem $z = \delta'$, si pro P et Q valores veri locis terrae respondentes acciperentur. Quatenus autem illis quantitatibus valores tribuuntur ab his non multum discrepantes (quod semper supponere licet, quoties temporum intervalla modica sunt), inter solutiones aequationis IV. necessario aliqua reperiri debet, quae proxime ad valorem $z = \delta'$ accedit.

Plerumque quidem in eo casu, ubi aequatio IV. tres solutiones per valores positivos ipsius sinz admittit, tertia ex his (praeter veram camque de qua modo diximus) valorem ipsius z maiorem quam ò sistet, adeoque analytice tantum

possibilis, physice vero impossibilis erit: tunc itaque quamnam adoptare oportest ambiguum esse nequit. Attamen contingere utique potest, ut aequatio illa duas solutiones idoneas diversas admittat, adeoque problemati nostro per duas orbitas prorsus diversas satisfacere liceat. Ceterum in tali casu orbita vera a falsa facile dignoscetur, quamprimum observationes alias magis remotas ad examen revocare licuerit.

143.

Simulac angulus z erutus est, statim habetur r' per aequationem

$$r' = \frac{R'\sin\delta'}{\sin s}$$

Porro ex aequationibus $P = \frac{n''}{n}$ atque III. elicimus

$$\frac{n'r'}{n} = \frac{(P+a)R'\sin\delta'}{b\sin(s-c)}$$

$$\frac{n'r'}{n''} = \frac{1}{P} \cdot \frac{n'r'}{n}$$

Iam ut formulas, secundum quas situs punctorum C, C'' e situ puncti C' determinandus est, tali modo tractemus, ut ipsarum veritas generalis pro iis quoque casibus, quos Fig. 4. non monstrat, statim eluceat, observamus, sinum distantiae puncti C' a circulo maximo CB (positive sumtae in regione superiori, negative in inferiori) aequalem fieri producto ex $\sin \varepsilon''$ in sinum distantiae puncti C' a D'' secundum directionem progressivam mensuratae, adeoque $= -\sin \varepsilon'' \sin C' D'' = -\sin \varepsilon'' \sin (z + A'D'' - \delta')$; periode fit sinus distantiae puncti C'' ab eodem circulo maximo $= -\sin \varepsilon' \sin C''D'$. Manifesto autem iidem sinus sunt ut $\sin CC'$ ad $\sin CC''$, sive ut $\frac{n''}{rr'}$ ad $\frac{n'}{rr''}$, sive ut n''r'' ad n'r'. Statuendo itaque $C''D' = \zeta''$, habemus

$$V_{\bullet} \qquad r'' \sin \zeta'' = \frac{n'r'}{n''} \cdot \frac{\sin \varepsilon''}{\sin \varepsilon'} \sin (z + A'D'' - \delta')$$

Prorsus simili modo statuendo $CD'=\zeta$ eruitur

VI.
$$r\sin\zeta = \frac{n'r'}{n} \cdot \frac{\sin\epsilon}{\sin\epsilon'} \sin(s + A'D - \delta')$$

VII.
$$r\sin(\zeta + AD'' - AD') = r''P \cdot \frac{\sin \epsilon}{\sin \epsilon''} \sin(\zeta'' + A''D - A''D')$$

Combinando aequationes V. et VI. cum sequentibus ex art. 139. transscriptis

VIII.
$$r'' \sin(\zeta'' - A''D' + \delta'') = R'' \sin \delta''$$

IX.
$$r\sin(\zeta - AD' + \delta) = R\sin\delta$$

quantitates ζ , ζ'' , r, r'' ad normam art. 78. inde derivabuntur. Qui calculus quo commodius absolvatur, formulas ipsas hac attulisse haud ingratum erit. Statuatur

$$\frac{R\sin\delta}{\sin(AD-\delta)} = x$$

[18.]
$$\frac{R''\sin\delta''}{\sin(A''D'-\delta'')} = x''$$

$$\frac{\cos(AD'-\delta)}{R\sin\delta} = \lambda$$

$$[20.] \qquad \frac{\cos(A''D'-\delta'')}{R''\sin\delta''} = \lambda''$$

Computus harum quantitatum, aut potius logarithmorum earum, a P et Q etiamnum independens, tamquam negotium quintum et ultimum in operationibus quasi praeliminaribus spectandum est, commodeque statim cum computo ipsarum a, b sive cum negotio quarto absolvitur, ubi fit $a = \frac{\pi}{a^n}$. — Faciendo dein

$$\frac{n'r'}{n} \cdot \frac{\sin \varepsilon}{\sin \varepsilon'} \cdot \sin(z + A'D - \delta') = p$$

$$\frac{n'r'}{n''} \cdot \frac{\sin \varepsilon''}{\sin \varepsilon'} \cdot \sin(z + A'D'' - \delta'') = p''$$

$$x(\lambda p - 1) = q$$

$$x''(\lambda'' p'' - 1) = q''$$

eliciemus ζ et r ex $r\sin\zeta = p$, $r\cos\zeta = q$, atque ζ'' et r'' ex $r''\sin\zeta'' = p''$, $r''\cos\zeta'' = q''$. Ambiguitas in determinandis ζ et ζ'' hic adesse nequit, quia r et r'' necessario evadere debent quantitates positivae. Calculus perfectus per aequationem VII. si lubet confirmari poterit.

Sunt tamen duo casus, ubi aliam methodum sequi oportet. Quoties scilicet punctum D' cum B vel coincidit vel ipsi in sphaera oppositum est, sive quoties $AD'-\delta=0$ vel = 180°, aequationes VI. et IX. necessario identicae esse debent, fieretque $x=\infty$, $\lambda p-1=0$, adeoque q indeterminata. In hoc casu ζ'' et r'' quidem eo quo docuimus modo determinabuntur, dein vero ζ et r e

combinatione aequationis VII. cum VI. vel IX. elicere oportebit. Formulas ipsas ex art. 78. desumendas huc transscribere supersedemus; observamus tantummodo, quod in eo quoque casu, ubi est $AD'-\delta$ non quidem = 0 neque = 180°, attamen arcus valde parvus, eandem methodum sequi praestat, quoniam tunc methodus prior praecisionem necessariam non admitteret. Et quidem adoptabitur combinatio aequationis VII. cum VI. vel cum IX., prout $\sin(AD''-AD')$ maior vel minor est quam $\sin(AD''-\delta)$.

Perinde in casu, ubi punctum D', vel ipsi oppositum, cum B'' vel coincidit vel parum ab eodem distat, determinatio ipsarum ζ'' , r'' per methodum praecedentem vel impossibilis vel parum tuta foret. Tunc itaque ζ et r quidem per illam methodum determinabuntur, dein vero ζ'' et r'' e combinatione aequationis VII. vel cum V. vel cum VIII., prout $\sin(A''D-A''D')$ maior vel minor est quam $\sin(A''D-\delta'')$. Ceterum haud metuendum est, ne simul D' cum punctis B, B'' vel cum punctis oppositis coincidat, vel parum ab ipsis distet: casum enim eum, ubi B cum B'' coincidit, vel perparum ab eo distat, iam supra art. 138. a disquisitione nostra exclusimus.

144.

Arcubus ζ , ζ'' inventis, punctorum C, C'' positio data erit, poteritque distantia CC''=2f' ex ζ , ζ'' et ϵ' determinari. Sint u, u'' inclinationes circulorum maximorum AB, A''B'' ad circulum maximum CC'' (quae in Fig. 4. resp. erunt anguli C''CD' et $180^\circ-CC''D'$), habebimusque aequationes sequentes, aequationibus 3...6. art. 137. prorsus analogas:

$$\sin f' \sin \frac{1}{2} (u'' + u) = \sin \frac{1}{2} \epsilon' \sin \frac{1}{2} (\zeta + \zeta'')$$

$$\sin f' \cos \frac{1}{2} (u'' + u) = \cos \frac{1}{2} \epsilon' \sin \frac{1}{2} (\zeta - \zeta'')$$

$$\cos f' \sin \frac{1}{2} (u'' - u) = \sin \frac{1}{2} \epsilon' \cos \frac{1}{2} (\zeta + \zeta'')$$

$$\cos f'' \cos \frac{1}{2} (u'' - u) = \cos \frac{1}{2} \epsilon' \cos \frac{1}{2} (\zeta - \zeta'')$$

Duae priores dabunt $\frac{1}{2}(u''+u)$ et $\sin f'$, duae posteriores $\frac{1}{2}(u''-u)$ et $\cos f'$; ex $\sin f'$ et $\cos f'$ habebitur f'. Angulos $\frac{1}{2}(u''+u)$ et $\frac{1}{2}(u''-u)$, qui in ultima demum hypothesi ad determinandum situm plani orbitae adhibebuntur, in hypothesibus primis negligere licebit.

Digitized by Google

Prorsus simili modo f ex ϵ , C'D et C''D, nec non f'' ex ϵ'' , C'D'', C'D'' derivari possent: sed multo commodius ad hunc finem formulae sequentes adhibentur.

$$\sin 2f = r \sin 2f' \cdot \frac{n}{n'r},$$

$$\sin 2f'' = r'' \sin 2f' \cdot \frac{n''}{n'r},$$

ubi logarithmi quantitatum $\binom{n}{n'r}$, $\binom{n''}{n'r}$, iam e calculis praecedentibus adsunt. Totus denique calculus confirmationem novam inde nanciscetur, quod fieri debet 2f+2f''=2f': si qua forte differentia prodeat, nullius certe momenti esse poterit, siquidem omnes operationes quam accuratissime peractae fuerint. Interdum tamen, calculo ubique septem figuris decimalibus subducto, ad aliquot minuti secundi partes decimas assurgere poterit, quam si operae pretium videtur facillimo negotio inter 2f et 2f'' ita dispertiemur, ut logarithmi sinuum aequaliter vel augeantur vel diminuantur, quo pacto aequationi $P = \frac{r\sin 2f''}{r''\sin 2f} = \frac{n''}{n}$ omni quam tabulae permittunt praecisione satisfactum erit. Quoties f et f'' parum different, differentiam illam inter 2f et 2f'' aequaliter distribuisse sufficiet.

145.

Postquam hoc modo corporis coelestis positiones in orbita determinatae sunt, duplex elementorum calculus tum e combinatione loci secundi cum tertio, tum e combinatione primi cum secundo, una cum temporum intervallis respondentibus, inchoabitur. Antequam vero haec operatio suscipiatur, ipsa temporum intervalla quadam correctione opus habent, siquidem constitutum fuerit, secundum methodum tertiam art. 118. aberrationis rationem habere. In hocce scilicet casu pro temporibus veris ficta substituenda sunt, illis resp. $493 \, \rho$, $493 \, \rho$, $493 \, \rho$ minutis secundis anteriora. Pro computandis distantiis ρ , ρ , ρ habemus formulas

$$\rho = \frac{R\sin(AD'-\zeta)}{\sin(\overline{\zeta}-AD'+\delta)} = \frac{r\sin(AD'-\zeta)}{\sin\delta}$$

$$\rho' = \frac{R'\sin(\delta'-z)}{\sin z} = \frac{r'\sin(\delta'-z)}{\sin\delta'}$$

$$\rho'' = \frac{R''\sin(A''D'-\zeta'')}{\sin(\zeta''-A''D'+\delta'')} = \frac{r''\sin(A''D'-\zeta')}{\sin\delta''}$$

Ceterum si observationes ab initio statim per methodum primam vel secundam art. 118. ab aberratione purgatae fuissent, hicce calculus omittendus, neque adeo necessarium foret, valores distantiarum ρ , ρ' , ρ'' eruere, nisi forte ad confirmandum, an ii, quibus calculus aberrationum superstructus erat, satis exacti fuerint. Demique sponte patet, totum istum calculum tunc quoque supprimendum esse, quando aberrationem omnino negligere placuerit.

146.

Calculus elementorum, hinc ex r', r'', 2f atque temporis intervallo correcto inter observationem secundam et tertiam, cuius productum in quantitatem k (art.1.) per θ denotamus, illinc ex r, r', 2f'' atque temporis intervallo inter observationem primam et secundam, cuius productum per k esto $= \theta''$, secundum methodum in artt. 88...105. expositam tantummodo usque ad quantitatem illic per y denotatam producendus est, cuius valorem in combinatione priori per η , in posteriori per η'' denotabimus. Fiat deinde

$$\frac{\theta''\eta}{\theta\eta''} = P', \quad \frac{r'r'\theta\theta''}{rr''\eta\eta''\cos f\cos f'\cos f''} = Q'$$

patetque, si valores quantitatum P, Q, quibus totus hucusque calculus superstructus erat, ipsi veri fuerint, evadere debere P'=P, Q'=Q. Vice versa facile perspicitur, si prodeat P'=P, Q'=Q, duplicem elementorum calculum, si utrimque ad finem perducatur, numeros prorsus aequales suppeditaturum esse, per quos itaque omnes tres observationes exacte repraesentabuntur, adeoque problemati ex asse satisfiet. Quoties autem non fit P'=P, Q'=Q, accipientur P'-P, Q'-Q pro X et Y, siquidem P et Q pro X et Y acceptae fuerint: adhuc magis commodum erit statuere $\log P=x$, $\log Q=y$, $\log P'-\log P=X$, $\log Q'-\log Q=Y$. Dein calculus cum aliis valoribus ipsarum X, Y repetendus erit.

147.

Proprie quidem etiam hic, sicuti in decem methodis supra traditis, arbitrarium esset, quosnam valores novos pro x et y in hypothesi secunda supponamus, si modo conditionibus generalibus supra explicatis non adversentur: attamen quum manifesto pro lucro magno habendum sit, si statim a valoribus magis exactis proficisci liceat, in methodo hacce parum prudenter ageres, si valores

secundos temere quasi adoptares, quum ex ipsa rei natura facile perspiciatur, si valores primi ipsarum P, Q levibus erroribus affecti fuerint, ipsas P', Q' valores multo exactiores exhibituras esse, siquidem motus heliocentricus fuerit modicus. Quamobrem semper ipsas P', Q' pro valoribus secundis ipsarum P, Q adoptabimus, sive $\log P'$, $\log Q'$ pro valoribus secundis ipsarum x, y si $\log P$, $\log Q$ primos designare suppositi sint.

Iam in hac hypothesi secunda, ubi omnes operationes praeliminares per formulas 1...20. exhibitae invariatae retinendae sunt, calculus prorsus simili modo repetetur. Primo scilicet determinabitur angulus ω ; dein z, r', $\frac{n'r'}{n}$, $\frac{n'r'}{n''}$, ζ , r, ζ'' , r'', f, f, f. E differentia plus minusve considerabili inter valores novos harum quantitatum atque primos facile aestimabitur, utrum operae pretium sit, necne, correctionem quoque temporum propter aberrationem denuo computare: in casu posteriori temporum intervalla, adeoque etiam quantitates θ et θ'' eaedem manebunt ut ante. Denique ex f, r', r''; f'', r, r' temporumque intervallis eruentur η , η'' atque hinc valores novi ipsarum P', Q', qui plerumque ab iis, quos hypothesis prima suppeditaverat, multo minus different, quam hi ipsi a valoribus primis ipsarum P, Q. Valores secundi ipsarum X, Y itaque multo minores erunt, quam primi, valoresque secundi ipsarum P', Q' tamquam valores tertii ipsarum P, Q adoptabuntur, et cum his calculus denuo repetetur. Hoc igitur modo sicuti ex hypothesi secunda numeri exactiores resultaverant, quam ex prima, ita e tertia iterum exactiores resultabunt, quam e secunda, possentque valores tertii ipsarum P', Q' tamquam quarti ipsarum P, Q adoptari, atque sic calculus toties repeti, usque dum ad hypothesin perveniatur, in qua X et Y pro evanescentibus habere liceret: sed quoties hypothesis tertia nondum sufficiens videatur, valores ipsarum P, Q in hypothesi quarta adoptandos secundum methodum in artt. 120. 121. explicatam e tribus primis deducere praestabit, quo pacto approximatio celerior obtinebitur, raroque opus erit, ad hypothesin quintam progredi.

148.

Quoties elementa e tribus observationibus derivanda adhuc penitus incognita sunt (cui casui methodus nostra imprimis accommodata est), in hypothesi prima ut iam monuimus pro P et Q valores approximati $\frac{\theta''}{\theta}$ et $\theta\theta''$ accipientur, ubi θ et θ'' aliquantisper ex intervallis temporum non correctis derivandae sunt. Quo-

rum ratione ad intervalla correcta per μ :1 et μ ":1 resp. expressa, habebimus in hypothesi prima

$$X = \log \mu - \log \mu'' + \log \eta - \log \eta''$$

$$Y = \log \mu + \log \mu'' - \log \eta - \log \eta'' + \operatorname{Comp.} \log \cos f + \operatorname{Comp.} \log \cos f'' + 2 \log r' - \log r - \log r''$$

Logarithmi quantitatum μ , μ'' respectu partium reliquarum nullius sunt momenti; $\log \eta$ et $\log \eta''$, qui ambo sunt positivi, in X aliquatenus se invicem destruunt, praesertim quoties temporum intervalla fere aequalia sunt, unde X valorem exiguum modo positivum modo negativum obtinet; contra in Y e partibus negativis $\log \eta$ et $\log \eta''$ compensatio quidem aliqua partium positivarum Comp. $\log \cos f$, Comp. $\log \cos f'$, Comp. $\log \cos f''$ oritur, sed minus perfecta, plerumque enim hae illas notabiliter superant. De signo ipsius $\log \frac{r'r'}{rr''}$ in genere nihil determinare licet.

Iam quoties motus heliocentricus inter observationes modicus est, raro opus erit, usque ad hypothesin quartam progredi: plerumque tertia, saepius iam secunda praecisionem sufficientem praestabit, quin adeo interdum numeris ex ipsa hypothesi prima resultantibus acquiescere licebit. Iuvabit semper, ad maiorem minoremve praecisionis gradum, qua observationes gaudent, respicere: ingratum enim foret opus, in calculo praecisionem affectare centies milliesve maiorem ea quam observationes permittunt. In his vero rebus iudicium per exercitationem frequentem practicam melius quam per praecepta acuitur, peritique facile acquirent facultatem quandam, ubi consistere conveniat recte diiudicandi.

149.

In ultima demum hypothesi elementa ipsa calculabuntur, vel ex f, r, r, vel ex f, r, r, perducendo scilicet ad finem calculum alterutrum, quem in hypothesibus antecedentibus tantummodo usque ad η vel η prosequi oportuerat: si utrumque perficere placuerit, harmonia numerorum resultantium novam totius laboris confirmationem suppeditabit. Attamen praestat, quam primum f, f, f erutae sunt, elementa e sola combinatione loci primi cum tertio derivare, puta ex f, r, r atque temporis intervallo, tandemque ad maiorem calculi certitudinem locum medium in orbita secundum elementa inventa determinare.

Hoc itaque modo sectionis conicae dimensiones innotescent, puta excentricitas, semiaxis maior sive semiparameter, positio perihelii respectu locorum heliocentricorum C, C', C'', motus medius, atque anomalia media pro epocha arbitraria, siquidem orbita elliptica est, vel tempus transitus per perihelium, si orbita fit hyperbolica vel parabolica. Superest itaque tantummodo, ut positio locorum heliocentricorum in orbita respectu nodi ascendentis, positio huius nodi respectu puncti aequinoctialis, atque inclinatio orbitae ad eclipticam (vel aequatorem) determinentur. Haec omnia per solutionem unius trianguli sphaerici efficere licet. Sit Ω longitudo nodi ascendentis; i inclinatio orbitae; g et g'' argumenta latitudinis in observatione prima et tertia; denique $l-\Omega=h$, $l''-\Omega=h''$. Exprimente iam in figura quarta Ω nodum ascendentem, trianguli ΩAC latera erunt $AD'-\zeta$, g, h, angulique his resp. oppositi i, $180^{\circ}-\gamma$, u. Habebimus itaque

$$\sin \frac{1}{2} i \sin \frac{1}{2} (g+h) = \sin \frac{1}{2} (AD'-\zeta) \sin \frac{1}{2} (\gamma+u)$$

$$\sin \frac{1}{2} i \cos \frac{1}{2} (g+h) = \cos \frac{1}{2} (AD'-\zeta) \sin \frac{1}{2} (\gamma-u)$$

$$\cos \frac{1}{2} i \sin \frac{1}{2} (g-h) = \sin \frac{1}{2} (AD'-\zeta) \cos \frac{1}{2} (\gamma-u)$$

$$\cos \frac{1}{2} i \cos \frac{1}{2} (g-h) = \cos \frac{1}{2} (AD'-\zeta) \cos \frac{1}{2} (\gamma-u)$$

Duae primae aequationes dabunt $\frac{1}{2}(g+h)$ et $\sin\frac{1}{2}i$, duae reliquae $\frac{1}{2}(g-h)$ et $\cos\frac{1}{2}i$; ex g innotescet situs perihelii respectu nodi ascendentis, ex h situs nodi in ecliptica; denique innotescet i, sinu et cosinu se mutuo confirmantibus. Ad eundem scopum pervenire possumus adiumento trianguli $\Omega A''C''$, ubi tantummodo in formulis praecedentibus characteres g, h, A, ζ , γ , u in g'', h'', A'', ζ'' , γ'' , u'' mutare oportet. Ut toti labori adhuc alia confirmatio concilietur, haud abs re erit, calculum utroque modo perficere: unde si quae levisculae differentiae inter valores ipsius i, Ω atque longitudinis perihelii in orbita prodeunt, valores medios adoptare conveniet. Raro tamen hae differentiae ad 0''1 vel 0''2 ascendent, siquidem omnes calculi septem figuris decimalibus accurate elaborati fuerant.

Ceterum quoties loco eclipticae aequator tamquam planum fundamentale adoptatum est, nulla hinc in calculo differentia orietur, nisi quod loco punctorum A, A'' intersectiones aequatoris cum circulis maximis AB, A''B'' accipiendae sunt.

150.

Progredimur iam ad illustrationem huius methodi per aliquot exempla copiose explicanda, quae simul evidentissime ostendent, quam late pateat, et quam commode et expedite semper ad finem exoptatum perducat *).

Exemplum primum planeta novus Iuno nobis suppeditabit, ad quem finem observationes sequentes Grenovici factas et a cel. MASKELYNE nobiscum communicatas eligimus.

Te	mp. med.	Gren	0 v.	Ascens. recta app.	Decl. austr. app.
1804 C	ct. 5.	10 ^h	51 ^m 6 ^s	357°10′22″35	6°40′8″
	17	9	58 10	355 43 45,30	8 47 25
	27	9	16 41	355 11 10,95	10 2 28

E tabulis Solaribus pro iisdem temporibus invenitur

•	longit. Solis ab ae- quin. appar.	nutațio	distantia a terra	latitudo Solis	obliquitas appar. eclipticae
Oct. 5	192°28′53″72	+15''43	0,9988839	0"49	23°27′59″48
17	204 20 21,54	+15,51	0,9953968	+0,79	59,26
27	214 16 52,21	+15,60	0,9928340	-0,15	59,06

Calculum ita adstruemus, ac si orbita adhuc penitus incognita esset: quamobrem loca Iunonis a parallaxi liberare non licebit, sed hanc ad loca terrae transferre oportebit. Primo itaque ipsa loca observata ab aequatore ad eclipticam reducimus, adhibita obliquitate apparente, unde prodit:

Cum hoc calculo statim iungimus determinationem longitudinis et latitudinis ipsius zenith loci observationis in tribus observationibus: rectascensio quidem cum

^{*)} Male loquuntur, qui methodum aliquam alia magis minusve exactam pronunciant. Ea enim sola methodus problema solvisse censeri potest, per quam quemvis praecisionis gradum attingere saltem in potestate est. Quamobrem methodus alia alii eo tantum nomine palmam praeripit, quod eundem praecisionis gradum per aliam celerius minorique labore, per aliam tardius graviorique opera assequi licet.

rectascensione Iunonis convenit (quod observationes in ipso meridiano sunt factae), declinatio autem aequalis est altitudini poli = 51°28'39". Ita obtinemus

	Long. ipsius zenith	latitudo	
Oct. 5	24° 29′	46° 53'	
17	23 25	47 24	
27	23 1	47 36	

Iam ad normam praeceptorum in art. 72. traditorum determinabuntur terrae loci ficti in ipso plano eclipticae, in quibus corpus coeleste perinde apparuisset, atque in locis veris observationum. Hoc modo prodit, statuendo parallaxin Solis mediam = 8"6

	Reductio longit.	Reductio distantiae	Reductio temporis
Oct. 5	— 22 " 39	+ 0,0003856	— 0° 19
17	-27, 21	+0,0002329	0, 12
27	-35, 82	+0,0002085	— 0, 12

Reductio temporis ideo tantum adiecta est, ut appareat, eam omnino insensibilem esse.

Deinde omnes longitudines tum planetae tum terrae reducendae sunt ad aequinoctium vernale medium pro aliqua epocha, pro qua adoptabimus initium anni 1805; subducta itaque nutatione adhuc adiicienda est praecessio, quae pro tribus observationibus resp. est 11"87, 10"23, 8"86, ita ut pro observatione prima addere oporteat — 3"56, pro secunda — 5"28, pro tertia — 6"74.

Denique longitudines et latitudines Iunonis ab aberratione fixarum purgandae sunt; sic per regulas notas invenitur, a longitudinibus resp. subtrahi debere 19"12, 17"11, 14"82, latitudinibus vero addi 0"53, 1"18, 1"75, per quam additionem valores obsoluti diminutionem patientur, quoniam latitudines australes tamquam negativae spectantur.

151.

Omnibus hisce reductionibus rite applicatis, vera problematis data ita se habent:

Observationum tempora ad meri-		1	
dianum Parisinum reducta	Oct. 5,458644	17,421885	27,393077
Iunonis longitudines a, a', a"	354°44′31″60	352°34′22″12	351°34′30″01
latitudines 6, 6', 6"	-4 59 31,06	-6 21 55,07	—7 17 50,95
longitudines terrae l, l, l'	12 28 27,76	24 19 49,05	34 16 9,65
logarithmi distantiarum R, R', R''	9,9996826	9,9980979	9,9969678

Hinc calculi art. 136. 137. numeros sequentes producunt

γ, γ΄, γ΄΄ · · · · · · · · · · · · · · · · · ·	196° 0′ 8″36	191°58′ 0″33	190°41′40″17
δ, δ', δ"	18 23 59,20	32 19 24,93	43 11 42,05
logarithmi sinuum	9,4991995	9,7281105	9,8353631
A'D, AD' , AD''	232 6 26,44	213 12 29,82	209 43 7,47
$A"D, A"D', A'D". \ldots$	241 51 15,22	234 27 0,90	221 13 57,87
ε, ε΄, ε΄΄	2 19 34,00	7 13 37,70	4 55 46,19
logarithmi sinuum	8,6083885	9,0996915	8,9341440
$\log \sin \frac{1}{2} \epsilon' \dots \dots$		8,7995259	
log cos ½ ε'		9,9991357	

Porro secundum art. 138. habemus

log tang 6 8,9412494 n	log tang 6" 9,1074080 n
$\log \sin (a''-l') \dots 9,7332391 n$	$\log \sin (a-l')$ 9,6935181 n
$\log \cos(\alpha''-l') \dots 9,9247904$	$\log \cos(\alpha - l') \dots 9,9393180$

Hinc

$$\log(\tan 6 \cos(a''-l') - \tan 6'' \cos(a-l')) = \log T \sin t \dots 8,5786513$$

$$\log \sin(a''-a) = \log T \cos t \dots \dots 8,7423191 \text{ n}$$
Hinc $t = 145^{\circ}32'57''78 \quad \log T \dots 8,8260683$

$$t+\gamma' = 337 30 58,11 \quad \log \sin(t+\gamma') \dots 9,5825441 \text{ n}$$
Denique
$$\log(\tan 6 \sin(a''-l') - \tan 6'' \sin(a-l')) = \log S \dots 8,2033319 \text{ n}$$

$$\log T \sin(t+\gamma) \dots \dots \dots \dots 8,4086124 \text{ n}$$
unde $\log \tan (\delta'-\sigma) \dots \dots \dots \dots 9,7947195$

$$\delta'-\sigma = 31^{\circ}56'11''81, \text{ adeque } \sigma = 0^{\circ}23'13''12.$$

24

Secundum art. 140. fit

$$A''D'-\delta''$$
 = 191°15′18″85 log sin... 9,2904352n log cos... 9,9915661 n
 $AD'-\delta$ = 194 48 30,62 ,, ... 9,4075427n ,, ... 9,9853301 n
 $A''D-\delta''$ = 198 39 33,17 ,, ... 9,5050667n
 $A'D-\delta'+\sigma$ = 200 10 14,63 ,, ... 9,5375909 n
 $AD''-\delta$ = 191 19 8,27 ,, ... 9,2928554 n
 $A'D''-\delta'+\sigma$ = 189 17 46,06 ,, ... 9,2082723 n

Hinc sequitur

$$\log a \dots 9,5494437, \quad a = +0,3543592$$

 $\log b \dots 9,8613533$

Formula 13. produceret $\log b = 9.8613531$, sed valorem illum praeferimus, quoniam $\sin(A'D - \delta' + \sigma)$ maior est quam $\sin(A'D'' - \delta' + \sigma)$.

Porro fit per art. 141.

$$3 \log R' \sin \delta' \dots 9,1786252$$
 $\log 2 \dots 0,3010300$
 $\log \sin \sigma \dots 7,8295601$
 $7,3092153$ adeoque $\log c = 2,6907847$.
 $\log b \dots 9,8613533$
 $\log \cos \sigma \dots 9,9999901$
 $9,8613632$, unde $\frac{b}{\cos \sigma} = 0,7267135$.

Hinc eruitur

$$d = -1,3625052$$

 $\log e = 8,3929518 \text{ n}$

Denique per formulas art. 143. eruitur

$$\log x$$
 0,0913394 n $\log x$ " 0,5418957 n $\log \lambda$ 0,4864480 n $\log \lambda$ " 0,1592352 n

152.

Calculis praeliminaribus hoc modo absolutis, ad hypothesin primam transimus. Intervallum temporis (non correctum) inter observationem secundam et tertiam est dierum 9,971192, inter primam et secundam 11,963241. Logarithmi horum numerorum sunt 0,9987471 et 1,0778489, unde $\log \theta = 9,2343285$, $\log \theta'' = 9,3134303$. Statuemus itaque ad hypothesin primam

$$x = \log P = 0.0791018$$

 $y = \log Q = 8.5477588$

Hinc fit

$$P = 1,1997804, P + a = 1,5541396, P + d = -0,1627248$$

$$\log e \dots 8,3929518 \text{ n}$$

$$\log (P+a) \dots 0,1914900$$

$$\text{C.log}(P+d) \dots 0,7885463 \text{ n}$$

$$\log \tan \varphi \dots 9,3729881, \text{ unde } \varphi = +13^{\circ}16'51''89, \varphi + \varphi = +13^{\circ}40'5''01.$$

$$\log Q \dots 8,5477588$$

$$\log c \dots 2,6907847$$

$$\log \sin \varphi \dots 9,3612147$$

$$\log Q \cos \varphi \dots 9,3612147$$

Aequationi $Qc\sin\omega\sin z^4 = \sin(z-13^\circ40^\prime5^{\prime\prime}01)$ paucis tentaminibus factis satisfieri invenitur per valorem $z=14^\circ35^\prime4^{\prime\prime}90$, unde fit $\log\sin z=9,4010744$, $\log r'=0,3251340$. Aequatio illa praeter hanc solutionem tres alias admittit, puta

$$z = 32^{\circ} 2'28''$$

 $z = 137 27 59$
 $z = 193 4 18$

Tertiam reiicere oportet, quod sin z negativus evadit; secundam, quod z maior fit quam õ; prima respondet approximationi ad orbitam terrae, de qua in art. 142. loquuti sumus.

Porro habemus secundum art. 143.

$$\frac{\log \frac{R'\sin b'}{b} \dots 9,8648551}{\log (P+a) \dots 0,1914900} \\
\frac{\text{C.} \log \sin (z-\sigma) \dots 0,6103578}{\log \frac{n'r'}{n} \dots 0,6667029} \\
\log P \dots 0,0791018}$$

$$z + A'D - \delta' = z + 199^{\circ}47'$$
 1"51 = 214°22' 6"41; log sin = 9,7516736 n
 $z + A'D'' - \delta' = z + 1885432,94 = 2032937,84$; log sin = 9,6005923 n

Hinc fit

$$\log p = 9,9270735 \,\mathrm{n} \,\log p'' = 0,0226459 \,\mathrm{n}$$

ac dein

$$\log q = 0.2930977 \,\mathrm{n} - \log q'' = 0.2580086 \,\mathrm{n}$$

unde prodit

$$\zeta = 203^{\circ}17'31''22 \qquad \log r = 0,3300178$$

 $\zeta'' = 210 \ 10 \ 58,88 \qquad \log r'' = 0,3212819$

Denique per art. 144. obtinemus

$$\frac{1}{2}(u''+u) = 205^{\circ}18'10''53$$

$$\frac{1}{2}(u''-u) = -3 14 2,02$$

$$f = 3 48 14,66$$

$$\log \sin 2f' \dots 9,1218791 \log r \dots 9,1218791$$

$$\log r \dots 0,3300178 \log r'' \dots 0,3212819$$

$$C.\log \frac{n'r'}{n} \dots 9,3332971 C.\log \frac{n'r'}{n''} \dots 9,4123989$$

$$\log \sin 2f \dots 8,7851940 \log \sin 2f'' \dots 8,8555599$$

$$2f = 3^{\circ}29'46''03 2f'' = 4^{\circ}6'43''28$$

Aggregatum 2f + 2f'' hic a 2f' tantummodo 0''01 differt.

Iam ut tempora propter aberrationem corrigantur, distantias ρ , ρ' , $\dot{\rho}''$ per formulas art. 145. computare, ac dein per ipsas tempus 493° vel 0°005706 multiplicare oportet. Ecce calculum

$\log r$ 0,33002	$\log r' \dots 0,32513$	$\log r'' \dots 0,32128$
$\log \sin(AD' - \zeta)$. 9,23606	$\log\sin(\delta'-z)$. 9,48384	$\log \sin(A''D'-\zeta'')$. 9,61384
$C.\log\sin\delta0,50080$	C. $\log \sin \delta'$ 0,27189	$C.\log\sin\delta''$ 0,16464
log ρ 0,06688	$\log \rho' \dots 0,08086$	$\log \rho'' \cdot \ldots \cdot 0,09976$
log const 7,75633	7,75633	7,75633
log reductionis . 7,82321	7,83719	7,85609
reductio $= 0,006656$	0,006874	0,007179

Observationum	Tempora correcta	Intervalla	Logarithmi
I.	Oct. 5,451988	114963023	1,0778409
п.	17,415011	9,970887	•
III.	27,385898	9, 910001	0,9987339

Fiunt itaque logarithmi quantitatum θ , θ'' correcti 9,2343153 et 9,3134223. Incipiendo iam determinationem elementorum ex f, r', r', θ prodit $\log \eta = 0,0002285$, perinde ex f'', r, r', θ'' fit $\log \eta'' = 0,0003191$. Hunc calculum in Libri primi Sect. III. copiose explicatum hic apponere supersedemus.

Tandem habemus per art. 146.

$\log \theta'' \ldots 9,3134223$	$2 \log r' \dots 0,6502680$
$C.\log\theta$ 0,7656847	$\text{C.}\log rr''$ 9,3487003
$\log \eta$ 0,0002285	$\log \theta \theta''$ 8,5477376
$\text{C.}\log\eta''$ 9,9996809	$\text{C.}\log\eta\eta''$ 9,9994524
$\log P' \dots \dots 0,0790164$	$\text{C.}\log\cos f$ 0,0002022
_	$\text{C.}\log\cos f'$ 0,0009579
	$\text{C.log}\cos f'' \dots 0,0002797$
	$\log Q'. \ldots 8,5475981$

E prima itaque hypothesi resultat X = -0.0000854, Y = -0.0001607.

153.

In hypothesi secunda ipsis P, Q eos ipsos valores tribuemus, quos in prima pro P', Q' invenimus. Statuemus itaque

$$x = \log P = 0.0790164$$

 $y = \log Q = 8.5475981$

Quum calculus hic prorsus eodem modo tractandus sit, ut in hypothesi prima, praecipua eius momenta hic apposuisse sufficiet:

ω 13°15′38″13	ζ"210° 8′24″98
$\omega + \sigma133851,25$	$\log r$ 0,3307676
$\log Qc\sin\omega$ 0,5989389	$\log r'' \dots 0,3222280$
z 14 33 19,00	$\frac{1}{2}(u''+u)$ 205 22 15,58
$\log r'$ 0,3259918	$\frac{1}{2}(u''-u)$ —3 14 4,79
$\log \frac{n'r'}{n} \dots 0,6675193$	$2f' \dots 7 34 53,32$
$\log \frac{n'r'}{n''} \dots 0,5885029$	$2f \dots 329 0,18$
ζ 203 16 38,16	$2f'' \dots 4 5 53,12$

Reductiones temporum propter aberrationem denuo computare operae haud pretium esset, vix enim 1" ab iis quas in hypothesi prima eruimus differunt.

Calculi ulteriores praebent $\log \eta = 0,0002270, \log \eta'' = 0,0003173,$ unde deducitur

$$\log P' = 0.0790167, \quad X = +0.00000003$$

 $\log Q' = 8.5476110, \quad Y = +0.0000129$

Hinc patet, quanto adhuc magis exacta sit hypothesis secunda quam prima.

154.

Ne quidquam desiderandum relinquatur, adhuc tertiam hypothesin extruemus, ubi rursus valores ipsarum P', Q' in hypothesi secunda erutos tamquam valores ipsarum P, Q adoptabimus. Statuendo itaque

$$x = \log P = 0.0790167$$

 $y = \log Q = 8.5476110$

praecipua calculi momenta haec inveniuntur:

ω13°15′38″39	ζ"210° 8'25"65
$\omega + \sigma133851,51$	$\log r$ 0,3307640
$\log Q c \sin \omega$ 0,5989542	$\log r'' \dots \dots 0,3222239$
z 14 33 19,50	$\frac{1}{2}(u''+u)$ 205 22 14,57
$\log r'$ 0,3259878	$\frac{1}{2}(u''-u)$ -3 14 4,78
$\log \frac{n'r'}{n} \dots 0,6675154$	$2f' \dots 73453,73$
$\log \frac{n'r'}{n''} \cdot \cdot \cdot \cdot \cdot \cdot \cdot 0,5884987$	$2f \ldots 329 0,39$
ζ 203 16 38,41	2f'' 4 5 53,34

Omnes hi numeri ab iis quos hypothesis secunda suppeditaverat tam parum different, ut certo concludere liceat, hypothesin tertiam nulla amplius correctione indigere *). Progredi itaque licet ad ipsam elementorum determinationem ex 2f, r, r'', θ' , quam huc transscribere supersedemus, quum iam supra art. 97. exempli loco in extenso allata sit. Nihil itaque superest, nisi ut positionem plani orbitae ad normam art. 149. computemus, epochamque ad initium anni 1805 transferamus. Calculus ille superstruendus est numeris sequentibus:

$$AD'-\zeta = 9^{\circ}55'51''41$$

 $\frac{1}{2}(\gamma + u) = 202 18 13,855$
 $\frac{1}{2}(\gamma - u) = -6 18 5,495$

unde derivamus

$$\frac{1}{4}(g+h) = 196^{\circ}43^{'}14^{''}62$$

 $\frac{1}{4}(g-h) = -43724,41$
 $\frac{1}{4}i = 63312,05$

Fit igitur $h=201^{\circ}20'39''03$, adeoque $\Omega=l-h=171^{\circ}7'48''73$; porro $g=192^{\circ}5'50''21$, et proin, quum anomalia vera pro observatione prima in art. 97. inventa sit = $310^{\circ}55'29''64$, distantia perihelii a nodo ascendente in orbita = $241^{\circ}10'20''57$, longitudoque perihelii = $52^{\circ}18'9''30$; denique inclinatio orbitae = $13^{\circ}6'44''10$. — Si ad eundem calculum a loco tertio proficisci malumus, habemus

$$A''D'-\zeta'' = 24^{\circ}18'35''25$$

 $\frac{1}{2}(\gamma''+u'') = 196\ 24\ 54,98$
 $\frac{1}{2}(\gamma''-u'') = -5\ 43\ 14,81$

Hinc elicitur

$$\frac{1}{4}(g''+h'') = 211^{\circ}24'32''45$$

 $\frac{1}{4}(g''-h'') = -114348,48$
 $\frac{1}{4}i = 63322,05$

atque hinc longitudo nodi ascendentis = $l'' - h'' = 171^{\circ}7' 48''72$, longitudo perihelii = $52^{\circ}18'9''30$, inclinatio orbitae = $13^{\circ}6' 44'' 10$, prorsus eaedem ut ante.

^{*)} Si calculus perinde ut in hypothesibus antecedentibus ad finem perduceretur, prodiret X=0, Y=+0.0000003, qui valor tamquam evanescens considerandus est, et vix supra incertitudinem figurae decimali ultimae semper inhaerentem exsurgit.

Intervallum temporis ab observatione ultima usque ad initium anni 1805 et dierum 64,614102; cui respondet motus heliocentricus medius 53293"66 = 14°48'13"66; hinc fit epocha anomaliae mediae pro initio anni 1805 in meridiano Parisino = 349°34'12"38, atque epocha longitudinis mediae = 41°52'21"68.

155.

Quo clarius elucescat, quanta praecisione elementa inventa gaudeant, locum medium ex ipsis computabimus. Pro Oct. 17,415011 anomalia media invenitur = $332^{\circ}28'54''77$, hinc vera $315^{\circ}1'23''02$ atque $\log r' = 0,3259877$ (vid. exempla art. 13. 14.); illa aequalis esse deberet anomaliae verae in observatione prima auctae angulo 2f'', vel anomaliae verae in observatione tertia diminutae angulo 2f, i.e. = $315^{\circ}1'22''98$; logarithmus radii vectoris vero = 0,3259878; differentiae pro nihilo habendae sunt. Si calculus pro observatione media usque ad locum geocentricum continuatur, numeri resultant ab observatione paucis tantum minuti secundi partibus centesimis deviantes (art. 63.), quales differentiae ab erroribus inevitabilibus e tabularum praecisione limitata oriundis quasi absorbentur.

Exemplum praecedens summa praecisione ideo tractavimus, ut appareat, quam facile per methodum nostram solutio quam accuratissima obtineri possit. In ipsa praxi raro opus erit, hunc typum aeque anxie imitari: plerumque sufficiet, sex figuras decimales ubique adhibere, et in exemplo nostro secunda iam hypothesis praecisionem haud minorem, primaque praecisionem abunde sufficientem suppeditavisset. Haud ingratam fore lectoribus censemus comparationem elementorum ex hypothesi tertia erutorum cum iis, quae prodeunt, si hypothesis secunda vel adeo prima perinde ad eundem scopum adhibitae fuissent. Haec tria elementorum systemata in schemate sequente exhibemus:

	ex hypothesi III.	ex hypothesi II.	ex hypothesi I.
Epocha longit. med. 1805	41°52′21″68	41°52′18″40	42°12′37″83
Motus medius diurnus	824"7989	824"7983	823"5025
Perihelium	52 18 9,30	52 18 6,66	5241 9,81
φ	14 12 1,87	14 11 59,94	14 24 27,49
Logar. semiaxis maioris	0,4224389	0,4224392	0,4228944
Nodus ascendens	171 7 48,73	171 7 49,15	171 5 48,86
Inclinatio orbitae	13 6 44,10	13 6 45, 12	15 2 37,50

Computando locum heliocentricum in orbita pro observatione media per secundum elementorum systema, invenitur error logarithmi radii vectoris = 0, error longitudinis in orbita $= 0^{\circ}03$; computando vero istum locum per systema ex hypothesi prima derivatum prodit error logarithmi radii vectoris = 0,0000002, error longitudinis in orbita $= 1^{\circ}31$. Continuando vero calculum usque ad locum geocentricum invenitur:

	ex hypothesi II.	ex hypothesi I.
Longitudo geocentrica	352°34′22″26	352°34′19″97
Error	0,14	2,15
Latitudo geocentrica	6 21 55,06	6 21 54,47
Error	0,01	0,60

156.

Exemplum secundum a Pallade sumemus, cuius observationes sequentes Mediolani factus e Commercio literario clar. DE ZACH., Vol. XIV. pag. 90 excerpimus:

Tempus medium Mediol.	Asc. recta app.	Declin. app.
1805 Nov. 5. 14 ^h 14 ^m 4 ^s	78°20′37″8	27° 16′ 56″ 7 Austr.
Dec. 6. 11 51 27	73 8 48,8	32 52 44,3
1806 Ian. 15. 8 50 36	67 14 11,1	28 38 8,1

Loco eclipticae hic aequatorem tamquam planum fundamentale accipiemus, calculoque ita defungemur, ac si orbita penitus adhuc incognita esset. Primo e tabulis Solis pro temporibus propositis sequentia petimus:

	Longitudo Solis ab aequin. med.	Distantia a terra	Latitudo Solis
Nov. 5	223°14′ 7″61	0,9904311	+ 0"59
Dec. 6	254 28 42,59	0,9846753	+0,12
Ian. 15	295 5 47,62	0,9838153	0,19

Longitudines Solis, adiectis praecessionibus + 7"59, + 3"36, - 2"11 ad initium anni 1806 reducimus, ac dein, adhibita obliquitate media 23°27′53"53 G. TH. M.

latitudinumque ratione rite habita, ascensiones rectas et declinationes inde deducimus. Ita invenimus

	Ascensio recta Solis	Declinatio Solis
Nov. 5	220°46′44″65	15°49′43″94 Austr.
Dec. 6	253 9 23, 26	22 33 39,45
Ian. 15	297 251,11	21 8 12,98

Hae positiones ad centrum terrae referuntur, adeoque parallaxi adiecta ad locum observationis reducendae sunt, quum positiones planetae a parallaxi purgare non liceat. Rectascensiones ipsius zenith in hoc calculo adhibendae cum rectascensionibus planetae conveniunt (quoniam observationes in ipso meridiano sunt institutae), declinatio vero ubique erit altitudo poli = 45°28′. Hinc eruuntur numeri sequentes:

	Asc. recta terrae	Declinatio terrae	Log. dist. a Sole
Nov. 5	40°46′48″51	15°49′48″59 Bor.	9,9958375
Dec. 6	73. 9 23, 26	22 33 42,83	9,9933099
Ian. 15	117 246,09	21 8 17, 29	9,9929259

Loca observata Palladis a nutatione et aberratione fixarum liberanda, ac dein adiecta praecessione ad initium anni 1806 reducenda sunt. Hisce titulis sequentes correctiones positionibus ob⁸ervatis applicare oportebit:

	Observa	atio I.	Observa	atio II.	Observa	tio III.
	Asc. r.	Decl.	Asc. r.	Decl.	Asc. r.	Decl.
Nutatio	-12"86	— 3 ″08	-13"68	— 3″42	-13"06	— 3 ″75
Aberratio	-18,13	- 9,89	-21,51	- 1,63	-15,60	+9,76
Praecessio	+ 5,43	+ 0,62	+ 2,55	+ 0,39	- 1,51	- 0,33
Summa	-25,56	-12,35	-32,64	- 4,66	-30,17	+5,68

Hinc prodeunt positiones sequentes Palladis, calculo substruendae:

T. m. Parisinum	Asc. recta	Declinatio
Nov. 5,574074	78°20′12″24	-27°17′ 9″05
36,475035	73 8 16, 16	-32 52 48,96
76,349444	67 13 40,93	—28 38 2,42

157.

Primo nunc situm circulorum maximorum a locis heliocentricis terrae ad locos geocentricos planetae ductorum determinabimus. Intersectionibus horum circulorum cum aequatore, aut si mavis illorum nodis ascendentibus, characteres \mathfrak{A} , \mathfrak{A}' , \mathfrak{A}'' adscriptos concipimus, distantiasque punctorum B, B', B'' ab his punctis per Δ , Δ' , Δ'' designamus. In maiori operationum parte pro A, A', A'' iam \mathfrak{A} , \mathfrak{A}' , \mathfrak{A}'' , et pro δ , δ' , δ'' iam Δ , Δ' , Δ'' substituere oportebit; ubi vero A, A', A'', δ , δ , δ , δ retinere oporteat, lector attentus vel nobis non monentibus facile intelliget.

Calculo facto iam invenimus

Ascens. recta punctorum	•		
A, A', A"	233°54′57″10	253° 8′57″01	276°40′25″87
γ, γ΄, γ″ · · · · · · · ·	51 17 15,74	90 1 3,19	131 59 58,03
Δ , Δ' , Δ''	215 58 49,27	212 52 48,96	220 9 12,96
δ, δ΄, δ΄	56 26 34,19	55 26 31,79	69 10 57,84
$\mathfrak{A}'D$, $\mathfrak{A}'D'$, $\mathfrak{A}'D''$	23 54 52,13	30 18 3,25	29 8 43,32
$\mathfrak{A}''D$, $\mathfrak{A}''D'$, $\mathfrak{A}'D''$	33 3 26,35	31 59 21,14	22 20 6,91
ε, ε΄, ε΄	47 1 54,69	89 34 57,17	42 33 41,17
logarithmi sinuum	9,8643525	9,9999885	9,8301910
$\log \sin \frac{1}{2} \epsilon' \dots \dots$		9,8478971	
log cos ‡ e'		9,8510614	

In calculo art. 138. pro l' ascensio recta puncti \mathfrak{A}' adhibebitur. Sic invenitur

$$\log T \sin t$$
 8,4868236 n $\log T \cos t$ 9,2848162 n

Hinc $t = 189^{\circ}2'48''83$, $\log T = 9,2902527$; porro $t + \gamma' = 279^{\circ}3'52''02$,

$$\log S$$
 9,0110566n $\log T \sin(t+\gamma')$. 9,2847950n

unde Δ' — $\sigma = 208°1'55''64$, atque $\sigma = 4°50'53''32$.

In formulis art. 140. pro a, b, et $\frac{b}{a}$ ipsos $\sin \delta$, $\sin \delta'$, $\sin \delta''$ retinere oportet, et perinde in formulis art. 142. Ad hos calculos habemus

Digitized by Google

$$\mathfrak{A}''D'-\Delta''$$
 = 171°50′ 8″18 log sin . . 9,1523306 log cos . . 9,9955759 n
 $\mathfrak{A}'D'-\Delta$ = 174 19 13,98 8,9954722 9,9978629 n
 $\mathfrak{A}''D-\Delta''$ = 172 54 13,39 9,0917972
 $\mathfrak{A}'D-\Delta'+\sigma=175$ 52 56,49 8,8561520
 $\mathfrak{A}'D-\Delta$ = 173 9 54,05 9,0755844
 $\mathfrak{A}'D''-\Delta'+\sigma=174$ 18 11,27 8,9967978

Hinc elicimus

$$\log x = 0.9211850$$
, $\log \lambda = 0.0812057$ n
 $\log x'' = 0.8112762$, $\log \lambda'' = 0.0319691$ n
 $\log a = 0.1099088$, $a = +1.2879790$
 $\log b = 0.1810404$
 $\log \frac{b}{a} = 0.0711314$, unde fit $\log b = 0.1810402$.

Inter hos duos valores tantum non aequales medium $\log b = 0,1810403$ adoptabimus. Denique prodit

$$\log c = 1,0450295$$

$$d = +0,4489906$$

$$\log e = 9,2102894$$

quo pacto calculi praeliminares absoluti sunt.

Temporis intervallum inter observationem secundam et tertiam est dierum 39,874409, inter primam et secundam dierum 30,900961: hinc fit $\log \theta = 9,8362757$, $\log \theta'' = 9,7255533$. Statuimus itaque ad hypothesin primam

$$x = \log P = 9,8892776$$

 $y = \log Q = 9,5618290$

Praecipua dein calculi momenta haec prodeunt:

$$\omega + \sigma = 20^{\circ}8'46''72$$

 $\log Q c \sin \omega = 0.0282028$

Hinc fit valor verus ipsius $z = 21^{\circ}11'24''30$, atque $\log r' = 0.3509379$. Tres reliqui valores ipsius z aequationi IV. art. 141. satisfacientes in hoc casu fiunt

$$z = 63^{\circ}41^{'}12^{''}$$

 $z = 101 12 58$
 $z = 199 24 7$

e quibus primus tamquam approximatio ad orbitam terrestrem spectandus est, cuius quidem aberratio, propter nimium temporis intervallum, longe hic maior est, quam in exemplo praecedente. — E calculo ulteriori sequentes numeri resultant:

ζ 195°12′ 2″48
ζ"
$\log r$
$\log r''$ 0,3355758
$\frac{1}{2}(u''+u)$ 266 47 50,47
$\frac{1}{2}(u''-u)$ 43 39 5,33
$2f' \dots \dots 22 \ 32 \ 40,86$
$2f \dots 13 541,17$
2f''

Differentiam inter 2f'' et 2f+2f'', quae hic est 0''36, inter 2f et 2f'' ita dispertiemur, ut statuamus $2f = 13^{\circ}5'40''96$, $2f'' = 9^{\circ}26'59''90$.

Corrigenda iam sunt tempora propter aberrationem, ubi in formulis art. 145. statuendum est $AD'-\zeta=\mathfrak{A}D'-\Delta+\delta-\zeta$, $A''D'-\zeta''=\mathfrak{A}''D'-\Delta''+\delta''-\zeta''$. Habemus itaque

$\log r \dots 0,36$	6470 log	$\mathbf{r}' \dots \dots 0,35094$	$\log r'' \dots \dots$	0,33557
$\log \sin (AD'-\zeta)$ 9,70	6462 l.si	$\sin(\delta'-z) \cdot 9,75038$	$\log \sin(A''D'-\zeta'')$	9,84220
$C.\log\sin\delta$ 0,0	7918 C.	logsin d'0,08431	$C.\log\sin\delta''$	0,02932
log const 7,7	5633 log	const 7,75633	log const	7,75633
7,90	6483	7,94196		7,96342
Reductio temporis 0,00	09222	0,008749		0,009192

Hinc prodeunt

Tempora correcta	Intervalla	Logarithmi
Nov. 5,564852	30,901434	1,4899785
36,466286		1
76,340252	39,873966	1,6006894

unde derivantur logarithmi correcti quantitatum θ , θ'' resp. 9,8362708 atque 9,7255599. Incipiendo dein calculum elementorum ex r', r'', 2f, θ , prodit $\log \eta = 0,0031921$, sicuti ex r, r', 2f'', θ'' obtinemus $\log \eta'' = 0,0017300$. Hinc colligitur $\log P' = 9,8907512$, $\log Q' = 9,5712864$, adeoque

$$X = +0.0014736, Y = +0.0094574$$

Praecipua momenta hypothesis secundae, in qua statuimus

$$x = \log P = 9,8907512$$

 $y = \log Q = 9,5712864$

haec sunt:

ω+σ20° 8′ 0″87
$\log Q c \sin \omega \dots 0,0373071$
z
$\log r'$
ζ
ζ" 196 52 40,63
$\log r \dots 0,3630642$
$\log r''$
$\frac{1}{2}(u''+u)$ 267 6 10,75
$\frac{1}{2}(u''-u)$ 43 39 4,00
2f'
$2f \dots \dots$
2f'' 9 30 14,38

Differentia 0"34 inter 2f et 2f + 2f", ita distribuenda est, ut statuatur $2f = 13^{\circ}1'54''45$, $2f'' = 9^{\circ}30'14''24$.

Si operae pretium videtur, correctiones temporum hic denuo computare, invenietur pro observatione prima 0,009169, pro secunda 0,008742, pro tertia 0,009236, adeoque tempora correcta Nov. 5,564905, Nov. 36,466293, Nov. 76,340280. Hinc fit

$\log \theta$.	•	•								•	9,8362703
$\log \theta''$			•	•	•		•	•			9,7255594
$\log\eta$		•	•	•	•	•	•	•			0,0031790
$\log \eta^{''}$	•	•	•		•	•	•	•		•	0,0017413
$\log P'$		•		•					•		9,8907268
$\log Q'$											9,5710593

Hoc itaque modo ex hypothesi secunda resultat

$$X = -0.0000244$$
, $Y = -0.0002271$

Denique in hypothesi tertia, in qua statuimus

$$x = \log P = 9,8907268$$

 $y = \log Q = 9,5710593$

praecipua calculi momenta ita se habent:

$\omega + \sigma \dots 20^{\circ} 8' 1''62$	$\log r$ " 0,3369536
$\log Qc\sin\omega \dots 0.0370857$	$\frac{1}{2}(u''+u)$ $\frac{267}{5}53''09$
z 21 12 4,60	$\frac{1}{2}(u''-u)$ 43 39 4,19
$\log r' \dots \dots 0,3507191$	$2f' \dots 22327,67$
ζ 195 16 54,08	2f
ζ" 196 52 44,45	2f'' 9 30 10,63
$\log r$	

Differentia 0"38 hic ita distribuetur, ut statuatur $2f = 13^{\circ}1'57''20$, $2f'' = 9^{\circ}30'10''47^{*}$).

Quum differentiae omnium horum numerorum ab iis, quos hypothesis secunda suppeditaverat, levissimae sint, tuto iam concludere licebit, hypothesin

^{*)} Haecee differentia maiuscula, in omnibusque hypothesibus tantum non aequalis, ad maximam partem inde orta est, quod σ duabus fere partibus centesimis minuti secundi iusto minor, logarithmusque ipsius b aliquot unitatibus iusto maior erutus erat.

tertiam nulla amplius correctione opus habituram, adeoque hypothesin novam superfluam esse. Quocirca nunc ad calculum elementorum ex 2f', θ' , r, r'' progredi licebit: qui quum operationibus supra amplissime iam explicatis contineatur, elementa ipsa inde resultantia in eorum gratiam, qui proprio marte eum exsequi cupient, hic apposuisse sufficiet:

Ascensio recta nodi ascendentis in aequatore 158° 40′ 38″ 93
Inclinatio orbitae ad aequatorem
Distantia perihelii a nodo illo ascendente 323 14 56,92
Anomalia media pro epocha 1806
Motus medius (sidereus) diurnus
φ
Logarithmus semiaxis maioris

158.

Duo exempla praecedentia occasionem nondum suppeditaverunt, methodum art. 120. in usum vocandi: hypotheses en im successivae tam rapide convergebant, ut iam in secunda subsistere licuisset, tertiaque a veritate vix sensibiliter aberraret. Revera hocce commodo semper fruemur, quartaque hypothesi supersedere poterimus, quoties motus heliocentricus modicus est, tresque radii vectores non nimis inaequales sunt, praesertim si insuper temporum intervalla parum inter se discrepant. Quanto magis autem problematis conditiones hinc recedunt, tanto fortius valores primi suppositi quantitatum P, Q a veris different, tantoque lentius valores sequentes ad veros convergent. In tali itaque casu tres quidem primae hypotheses ita absolvendae sunt, uti duo exempla praecedentia monstrant (ea sola differentia, quod in hypothesi tertia non elementa ipsa, sed, perinde ut in hypothesi prima et secunda, quantitates η , η'' , P', Q', X, Y computare oportet): dein vero haud amplius valores postremi ipsarum P', Q' tamquam valores novi quantitatum P, Q in hypothesi quarta accipientur, sed hi per methodum art. 120. e combinatione trium primarum hypothesium eruentur. Rarissime tunc opus erit, ad hypothesin quintam secundum praecepta art. 121. progredi. — Iam hos quoque calculos exemplo illustrabimus, ex quo simul clucebit, quam late methodus nostra pateat.

159.

Ad exemplum tertium observationes sequentes Cereris eligimus, quarum prima Bremae a clar. Olbers, secunda Gottingae a clar. Harding, tertia Lilienthalii a clar. Bessel instituta est.

Tempus mediu	n loci observationis	Asc. recta	Declin. boreal.
1805 Sept.	5. 13 ^h 8 ^m 54 ^s	95° 59′ 25″	22° 21′ 25″
1806 Ian.	17. 10 58 51	101 18 40,6	30 21 22,3
1806 Maii	23. 10 23 53	121 56 7	28 2 45

Quum methodi, per quas parallaxis et aberrationis rationem habere licet, si distantiae a terra tamquam omnino incognitae spectantur, per duo exempla praecedentia abunde iam illustratae sint: superfluae laboris augmentationi in hoc tertio exemplo renunciabimus, distantiasque approximatas e Commercio litterario clar. DE ZACH (Vol. XI. p. 284) [GAUSS Werke B. VI. S. 261] eum in finem excerpemus, ut observationes ab effectu parallaxis et aberrationis purgentur. Has distantias una cum reductionibus inde derivatis tabula sequens exhibet:

Distantia Cereris a terra	2,899	1,638	2,964
Tempus, intra quod lumen ad			
terram descendit	23 ^m 49 ^s	13 ^m 28 ^s	24 ^m 21 ^s
Tempus observationis reductum	12 ^h 45 ^m 5 ^s	.10 ^h .45 ^m 23 ^s	9 ^h 59 ^m 32 ^s
Tempus sidereum in gradibus .	355° 55′	97° 59′	210°41'
Parallaxis ascensionis rectae	+1"90	+0"22	—1 "97
Parallaxis declinationis	-2,08	1,90	-2,04

Problematis itaque data, postquam a parallaxi et aberratione liberata, temporaque ad meridianum Parisinum reducta sunt, ita se habent:

	Asc. recta	Declinatio
1805 Sept. 5. 12 ^h 19 ^m 14 ^s	95° 59′ 23″10	22° 21′ 27″08
1806 Ian. 17. 10 15 2	101 18 40,38	30 21 24,20
1806 Maii 23. 9 33 18	121 56 8,97	28 2 47,04

Ex his ascensionibus rectis et declinationibus deductae sunt longitudines et latitudines adhibita obliquitate eclipticae 23°27′55″90, 23°27′54″59, 23°27′53″27; dein longitudines a nutatione purgatae sunt, quae resp. fuit +17″31, +17″88, +18″00, posteaque ad initium anni 1806 reductae, applicata praecessione +15″98, -2″39, -19″68. Denique pro temporibus reductis e tabulis excerpta sunt loca Solis, ubi in longitudinibus nutatio praetermissa, contra praecessio perinde ut longitudinibus Cereris adiecta est. Latitudo Solis omnino neglecta. Hoc modo numeri sequentes in calculo adhibendi resultaverunt:

Temp	18 1805	. Sept.	5,51336	139,42711	265,39813
α,	a',	a"	95° 32′ 18″56	99°49′ 5″87	118° 5′ 28″85
6,	б ′ ,	6"	-0 59 34,06	+7 16 36,80	+73849,39
l,	l',	l"	342 54 56,00	117 12 43,25	241 58 50,71
$\log R$,	$\log R'$,	$\log R''$	0,0031514	9,9929861	0,0056974

Iam calculi praeliminares in artt. 136 ... 140. explicati sequentia suppeditant:

Intervallum temporis inter observationem primam et secundam est dierum 133,91375, inter secundam et tertiam 125,97102: hinc fit $\log \theta = 0,3358520$, $\log \theta'' = 0,3624066$, $\log \frac{\theta''}{\theta} = 0,0265546$, $\log \theta \theta'' = 0,6982586$. Iam praecipua momenta hypothesium trium primarum deinceps formatarum in conspectu sequenti exhibemus:

	I.	П.	III.
$\log P = x$	0,0265546	0,0256968	0,0256275
$\log Q = y$	0,6982586	0,7390190	0,7481055
$\omega + \sigma$	7°15′13″523	7°14′47″139	7°14′45″071
$\log Q c \sin \omega$	1,1546650n	1,1973925n	1,2066327n
$oldsymbol{z}$	7° 3′59″018	7° 2′32″870	7° 2′16″900
$\log r^{'}$	0,4114726	0,4129371	0,4132107
ζ	160°10′46″74	160°20′ 7″82	160°22′ 9″42
ζ"	262 6 1,03	262 12 18,26	262 14 19,49
$\log r$	0,4323934	0,4291773	0,4284841
$\log r''$	0,4094712	0,4071975	0,4064697
$\frac{1}{2}(u''+u)$	262°55′23″22	262°57′ 6″83	262°57′31″17
$\frac{1}{2}(u''-u)$	273 28 50,95	273 29 15,06	273 29 19,56
2f'	62 34 28,40	62 49 56,50	62 53 57,06
2f	31 8 30,03	31 15 59,09	31 18 13,83
2f'''	31 25 58,43	31 33 57,32	31 35 43,32
$\log\eta$	0,0202496	0,0203158	0,0203494
$\log \eta^{''}$	0,0211074	0,0212429	0,0212751
$\log P^{'}$	0,0256968	0,0256275	0,0256289
$\log Q'$	0,7390190	0,7481055	0,7502337
\boldsymbol{X}	-0,0008578	0,0000693	+0,0000014
$oldsymbol{Y}$	+0,0407604	+0,0090865	+0,0021282

Iam designando tres valores ipsius X per A, A', A''; tres valores ipsius Y per B, B', B''; quotientes e divisione quantitatum A'B'' - A''B', A''B - AB'', AB' - A'B per earundem aggregatum ortos resp. per k, k', k'', ita ut habeatur k + k' + k' = 1, denique valores ipsorum $\log P'$ et $\log Q'$ in hypothesi tertia per M et N (qui forent valores novi ipsarum x, y, si hypothesin quartam perinde e tertia derivare conveniret, ut tertia e secunda derivata fuerat): e formulis art. 120.

facile colligitur, valorem correctum ipsius x fieri = M - k(A' + A'') - k'A'', valoremque correctum ipsius y = N - k(B' + B'') - k'B''. Calculo facto prior eruitur = 0,0256331, posterior = 0,7509143. Hisce valoribus correctis iam hypothesin quartam superstruimus, cuius praecipua momenta haec sunt;

ω+σ7°14′45″247	$\log r'' \dots 0,4062033$
$\log Q c \sin \omega$. 1,2094284 n	$\pm (u'' + u) \dots 262^{\circ}57'38''78$
z 7° 2′12″736	$\frac{1}{2}(u''-u)$. 273 29 20,73
$\log r'$ 0,4132817	2f 62 55 16,64
ζ 160°22′45″38	2f 31 19 1,49
ζ'' 262 15 3,90	$2f'' \dots 31 36 15,20$
$\log r$ 0,4282792	

Inter 2f' et 2f+2f'' differentia 0''05 emergit, quam ita distribuemus, ut statuamus $2f=31^{\circ}19'1''47$, $2f''=31^{\circ}36'15''17$. Quodsi iam e duobus locis extremis elementa ipsa determinantur, sequentes numeri resultant:

Anomalia vera pro loco primo 289° 7′39″75
Anomalia vera pro loco tertio 352 2 56,39
Anomalia media pro loco primo 297 41 35,65
Anomalia media pro loco tertia 353 15 22,49
-
Motus medius diurnus sidereus 769"6755
Motus medius diurnus sidereus

Computando ex hisce elementis locum heliocentricum pro tempore observationis mediae, invenitur anomalia media $326^{\circ}19'25''72$, logarithmus radii vectoris 0,4132825, anomalia vera $320^{\circ}43'54''87$: haecce distare deberet ab anomalia vera pro loco primo differentia 2f'', sive ab anomalia vera pro loco tertio differentia 2f, adeoque fieri deberet = $320^{\circ}43'54''92$, sicuti logarithmus radii vectoris = 0,4132817: differentia 0''05 in anomalia vera, octoque unitatum in isto logarithmo nullius momenti censenda est.

Si hypothesis quarta eodem modo ad finem perduceretur, ut tres praecedentes, prodiret X=0, Y=-0.0000168, unde valores correcti ipsarum x, y hi colligerentur

$$x = \log P = 0.0256331$$
 (idem ut in hypothesi quarta)
 $y = \log Q = 0.7508917$

Quibus valoribus si hypothesis quinta superstrueretur, solutio ultimam quam tabulae permittunt praecisionem nancisceretur: sed elementa hinc resultantia vix sensibiliter ab iis discreparent, quae hypothesis quarta suggessit.

Ut elementa completa habeantur, nihil iam superest, nisi ut situs plani orbitae computetur. Ad normam praeceptorum art. 149. hic prodit

	e loco primo	e loco tertio
$g \dots \dots \dots$	$354^{\circ} 9'44''22 g''$	57° 5′ 0″91
$h \dots \dots \dots$	261566,94h''	161 0 1,61
i	. 10 37 33,02	10 37 33,00
Ω	. 80 58 49,06	80 58 49,10
Distantia perihelii a nodo ascendente	. 65 2 4,47	65 2 4,52
Longitudo perihelii	. 146 0 53,53	146 0 53,62

Sumto itaque medio statuetur $i = 10^{\circ} 37' 33'' 01$, $\Omega = 80^{\circ} 58' 49'' 08$, longitudo perihelii = $146^{\circ} 0' 53'' 57$. Denique longitudo media pro initio anni 1806 erit = $108^{\circ} 36' 46'' 08$.

160.

In expositione methodi, cui disquisitiones praecedentes dicatae fuerunt, in quosdam casus speciales incidimus, ubi applicationem non patitur, saltem non in forma ea, in qua a nobis exhibita est. Hunc defectum locum habere vidimus:

primo, quoties aliquis trium locorum geocentricorum vel cum loco respondente heliocentrico terrae, vel cum puncto opposito coincidit (casus posterior manifesto tunc tantum occurrere potest, ubi corpus coeleste inter Solem et terram transiit);

secundo, quoties locus geocentricus primus corporis coelestis cum tertio coincidit; tertio, quoties omnes tres loci geocentrici una cum loco heliocentrico terrae secundo in eodem circulo maximo siti sunt.

In casu primo situs alicuius circulorum maximorum AB, A'B', A''B'' indeterminatus manebit, in secundo atque tertio situs puncti B^* . In hisce itaque casibus methodi supra expositae, per quas, si quantitates P, Q tamquam cognitae spectantur, e locis geocentricis heliocentricos determinare documus, vim suam

perdunt: attamen discrimen essentiale hic notandum est, scilicet in casu primo hic defectus soli methodo attribuendus erit, in casu secundo et tertio autem ipsius problematis naturae; in casu primo itaque ista determinatio utique effici poterit, si modo methodus apte varietur, in secundo et tertio autem absolute impossibilio erit, locique heliocentrici indeterminati manebunt. Haud pigebit, hasce relationes paucis evolvere: omnia vero, quae ad hoc argumentum pertinent exhaurire eo minus e re esset, quod in omnibus his casibus specialibus orbitae determinatio exacta impossibilis est, ubi a levissimis observationum erroribus enormiter affi-Idem defectus etiamnum valebit, quoties observationes haud quidem exacte, attamen proxime ad aliquem horum casuum referuntur: quamobrem in eligendis observationibus huc respiciendum, probeque cavendum est, ne adhibeatur ullus locus, ubi corpus coeleste simul in viciniis nodi atque oppositionis vel coniunctionis versatur, neque observationes tales, ubi corpus coeleste in ultima ad eundem locum geocentricum proxime rediit, quem in prima occupaverat, neque demum tales, ubi circulus maximus a loco heliocentrico terrae medio ad locum geocentricum medium corporis coelestis ductus angulum acutissimum cum directione motus geocentrici format, atque locum primum et tertium quasi stringit.

161.

Casus primi tres subdivisiones faciemus.

I. Si punctum B cum A vel cum puncto opposito coincidit, erit $\delta = 0$ vel = 180°; γ , ϵ' , ϵ'' atque puncta D', D'' indeterminata erunt; contra γ' , γ'' , ϵ atque puncta D, B^* determinata; punctum C necessario coincidet cum A. Per ratiocinia, iis, quae in art. 140. tradita sunt, analoga, facile elicietur aequatio haecce:

$$0 = n' \frac{\sin(s-\sigma)}{\sin s} \cdot \frac{R \sin \delta'}{R'' \sin \delta''} \cdot \frac{\sin(A''D-\delta'')}{\sin(A'D-\delta'+\sigma)} - n''$$

Omnia itaque, quae in artt. 141. 142. exposita sunt, etiam huc transferre licebit, si modo statuatur a=0, atque b per ipsam aequationem 12. art. 140. determinetur, quantitatesque z, r', $\frac{n'r'}{n}$, $\frac{n'r'}{n''}$ perinde ut supra computabuntur. Iam simulac z adeoque situs puncti C' innotuit, assignare licebit situm circuli maximi CC', huius intersectionem cum circulo maximo A''B'' i. e. punctum C'', et proin arcus CC', CC'', C'C'' sive 2f'', 2f', 2f: hinc denique habebitur

$$r = \frac{n'r'}{n} \cdot \frac{\sin 2f}{\sin 2f'}, \quad r'' = \frac{n'r'}{n''} \cdot \frac{\sin 2f''}{\sin 2f'}$$

II. Ad casum eum, ubi punctum B'' cum A'' vel cum puncto opposito coincidit, omnia quae modo tradidimus transferre licet, si modo omnia, quae ad locum primum spectant, cum iis, quae ad tertium referentur, permutantur.

III. Paullo aliter vero casum eum tractare oportet, ubi B' vel cum A' vel cum puncto opposito coincidit. Hic punctum C' cum A' coincidet; γ' , ε , ε'' punctaque D, D'', B^* indeterminata erunt: contra assignari poterit intersectio circuli maximi BB'' cum ecliptica*), cuius longitudo ponatur $= l' + \pi$. Per ratiocinia, iis, quae in art. 140. evoluta sunt, similia, eruetur aequatio

$$0 = n \frac{R \sin \delta \sin (A''D' - \delta'')}{R'' \sin \delta'' \sin (AD' - \delta)} + n'r' \frac{\sin \pi}{R'' \sin (l'' - l' - \pi)} + n''$$

Designemus coëfficientem ipsius n, qui convenit cum a art. 140., per eundem characterem a, coëfficientem que ipsius n'r' per b: ipsum a hic etiam per formulam

$$a = -\frac{R\sin(l'+\pi-l)}{R''\sin(l''-l'-\pi)}$$

determinare licet. Habemus itaque 0 = an + 6n'r' + n'', qua aequatione cum his combinata

$$P = \frac{n''}{n}, \quad Q = 2\left(\frac{n+n''}{n'}-1\right)r'^3, \quad \text{emergit} \quad \frac{6(P+1)}{P+a}r'^4 + r'^3 + \frac{1}{2}Q = 0$$

unde distantiam r' elicere poterimus, siquidem non fuerit 6 = 0, in quo casu nihil aliud illine sequeretur, nisi P = -a. Ceterum etiamsi non fuerit 6 = 0 (ubi ad casum tertium in art. sequ. considerandum delaberemur), tamen semper 6 quantitas perexigua erit, adeoque P parum a -a differre debebit: hine vero manifestum est, determinationem coëfficientis $\frac{6(P+1)}{P+a}$ valde lubricam fieri, neque adeo r' ulla praecisione determinabilem esse.

Porro habebimus $\frac{n'r'}{n} = -\frac{P+a}{6}$, $\frac{n'r'}{n''} = -\frac{P+a}{6P}$: dein simili modo ut in art. 143. facile evolventur aequationes

$$r \sin \zeta = \frac{n'r'}{n} \cdot \frac{\sin \gamma''}{\sin \varepsilon'} \sin (l''-l')$$

$$r'' \sin \zeta'' = -\frac{n'r'}{n''} \cdot \frac{\sin \gamma}{\sin \varepsilon'} \sin (l'-l)$$

$$r \sin (\zeta - AD') = r'' P \frac{\sin \gamma''}{\sin \gamma} \sin (\zeta'' - A''D')$$

^{*)} Generalius, cum circulo maximo AA": sed brevitatis caussa eum tantummodo casum hic consideramus, ubi ecliptica tamquam planum fundamentale accipitur.

e quarum combinatione cum aequatt. VIII. et IX. art. 143., quantitates r, ζ , r'', ζ'' determinare licebit. Calculi operationes reliquae cum supra descriptis convenient.

In casu secundo, ubi B'' cum B coincidit, etiam D' cum iisdem vel cum puncto opposito coincidet. Erunt itaque $AD' - \delta$ et $A''D' - \delta''$ vel = 0 vel = 180°: unde ex aequationibus art. 143. derivamus

$$\frac{\frac{n'r'}{n}}{n} = \pm \frac{\sin \epsilon'}{\sin \epsilon} \cdot \frac{R \sin \delta}{\sin (s + A'D - \delta')}$$

$$\frac{\frac{n'r'}{n''}}{n''} = \pm \frac{\sin \epsilon'}{\sin \epsilon''} \cdot \frac{R'' \sin \delta''}{\sin (s + A'D'' - \delta')}$$

$$R \sin \delta \sin \epsilon'' \sin (z + A'D'' - \delta') = PR'' \sin \delta'' \sin \epsilon \sin (z + A'D - \delta')$$

Hinc manifestum est, z, independenter a Q, per solam P determinabilem esse (nisi forte fuerit A'D'' = A'D vel $= A'D \pm 180^\circ$, ubi ad casum tertium delaberemur): inventa autem z, innotescet etiam r', et proin adiumento valorum quantitatum $\frac{n'r'}{n}$, $\frac{n'r'}{n''}$ etiam $\frac{n}{n'}$, et $\frac{n''}{n'}$; hinc denique etiam

$$Q = 2\left(\frac{n}{n'} + \frac{n''}{n'} - 1\right)r^{3}$$

Manifesto igitur, P et Q tamquam data ab invicem independentia considerari nequeunt, sed vel unicum tantummodo datum exhibebunt, vel data incongrua. Situs punctorum C, C'' in hoc casu arbitrarius manebit, si modo in eodem circulo maximo cum C' capiantur.

In casu tertio, ubi A', B, B', B'' in eodem circulo maximo iacent, D et D'' resp. cum punctis B'', B, vel cum punctis oppositis coincident: hinc e combinatione aequationum VII. VIII. IX. art. 143. colligitur

$$P = \frac{R\sin\delta\sin\epsilon''}{R''\sin\delta''\sin\epsilon} = \frac{R\sin(l'-l)}{R''\sin(l''-l')}$$

In hoc itaque casu valor ipsius P, per ipsa problematis data iam habetur, adeoque positio punctorum C, C', C'' indeterminata manebit.

163.

Methodus, quam inde ab art. 136. exposuimus, praecipue quidem determinationi primae orbitae penitus adhuc incognitae accommodata est: attamen successu aeque felici tunc quoque in usum vocatur, ubi de correctione orbitae proxime

iam cognitae per tres observationes quantumvis ab invicem distantes agitur. In tali autem casu quaedam immutare conveniet. Scilicet quoties observationes motum heliocentricum permagnum complectuntur, haud amplius licebit, $\frac{\theta''}{\theta}$ atque $\theta\theta''$ tamquam valores approximatos quantitatum P, Q considerare: quin potius ex elementis proxime cognitis valores multo magis exacti elici poterunt. Calculabuntur itaque levi calamo per ista elementa pro tribus observationum temporibus loca heliocentrica in orbita, unde designando anomalias veras per v, v', v'', radios vectores per r, r', r'', semiparametrum per p, prodibunt valores approximati sequentes:

$$P = \frac{r \sin(v'-v)}{r'' \sin(v''-v')}, \quad Q = \frac{4r'^{4} \sin\frac{1}{2}(v'-v)\sin\frac{1}{2}(v''-v')}{p \cos\frac{1}{2}(v''-v)}$$

His itaque hypothesis prima superstructur, paullulumque ad libitum immutatis secunda et tertia: haud enim e re esset, P' et Q' hic pro novis valoribus adoptare (uti supra fecimus), quum hos valores magis exactos evadere haud amplius supponere liceat. Hac ratione omnes tres hypotheses commodissime simul absolvi poterunt: quarta dein secundum praecepta art. 120. formabitur. Ceterum haud abnuemus, si quis unam alteramve decem methodorum in artt. 124...129. expositarum in tali casu si non magis tamen aeque fere expeditam existimet, ideoque in usum vocare malit.

SECTIO SECUNDA

Determinatio orbitae e quatuor observationibus, quarum duae tantum completae sunt.

164

Iam in ipso limine Libri secundi (art. 115.) declaravimus, usum problematis in Sect. praec. pertractati ad eas orbitas limitari, quarum inclinatio nec evanescit, nec nimis exigua est, determinationemque orbitarum parum inclinatarum necessario quatuor observationibus superstrui debere. Quatuor autem observationes completae, quum octo aequationibus aequivaleant, incognitarumque numerus ad sex tantum ascendat, problema plus quam determinatum redderent: quapropter a duabus observationibus latitudines (sive declinationes) seponere oportebit, ut datis reliquis exacte satisfieri possit. Sic oritur problema, cui haec Sectio dicata erit: solutio autem, quam hic trademus, non solum ad orbitas parum inclinatas patebit, sed etiam ad orbitas inclinationis quantumvis magnae pari successu applicari poterit. Etiam hic, perinde ut in problemate Sect. praec., casum eum, ubi orbitae dimensiones approximatae iam in potestate sunt, segregare oportet a determinatione prima orbitae penitus adhuc incognitae: ab illo initium faciemus.

165.

Methodus simplicissima, orbitam proxime iam cognitam quatuor observationibus adaptandi, haec esse videtur. Sint x, y distantiae approximatae corporis coelestis a terra in duabus observationibus completis: harum adiumento

computentur loci respondentes heliocentrici, atque hinc ipsa elementa: ex his dein elementis longitudines vel ascensiones rectae geocentricae pro duabus reliquis observationibus. Quae si forte cum observatis conveniunt, elementa nulla amplius correctione egebunt: sin minus, differentiae X, Y notabuntur, idemque calculus iterum bis repetetur, valoribus ipsarum x, y paullulum mutatis. Ita prodibunt tria systemata valorum quantitatum x, y atque differentiarum Y, X, unde per praecepta art. 120. valores correcti quantitatum x, y eruentur, quibus valores X = 0, Y = 0 respondebunt. Calculo itaque simili huic quarto systemati superstructo elementa emergent, per quae omnes quatuor observationes rite repraesentabuntur.

Ceterum, siquidem eligendi potestas datur, eas observationes completas retinere praestabit, e quibus situm orbitae maxima praecisione determinare licet, proin duas observationes extremas, quoties motum heliocentricum 90 graduum minoremve complectuntur. Sin vero praecisione aequali non gaudent, earum latitudines vel declinationes sepones, quas minus exactas esse suspicaberis.

166.

Ad determinationem primam orbitae penitus adhuc incognitae e quatuor observationibus necessario eiusmodi positiones adhibendae erunt, quae motum heliocentricum non nimis magnum complectuntur: alioquin enim careremus subsidiis ad approximationem primam commode formandam. Methodus tamen ea quam statim trademus extensione tam lata gaudet, ut absque haesitatione observationes motum heliocentricum 30 vel 40 graduum complectentes in usum vocare liceat, si modo distantiae a Sole non nimis inaequales fuerint: quoties eligendi copia datur, temporum intervalla inter primam et secundam, secundam et tertiam, tertiam et quartam ab aequalitate parum recedentia accipere iuvabit. Sed hoc quoque respectu anxietate nimia haud opus erit, uti exemplum subnexum monstrabit, ubi temporum intervalla sunt 48, 55 et 59 dierum, motusque heliocentricus ultra 50°.

Porro solutio nostra requirit, ut completae sint observatio secunda et tertia, adeoque latitudines vel declinationes in observationibus extremis negligantur. Supra quidem monuimus, praecisionis maioris gratia plerumque praestare, si elementa duabus observationibus extremis completis, atque intermediarum longitudinibus vel ascensionibus rectis accommodentur: attamen in prima orbitae deter-

minatione huic lucro renuntiavisse haud poenitebit, quum approximatio expeditissima longe maioris momenti sit, iacturamque illam, quae praecipue tantum in longitudinem nodi atque inclinationem orbitae cadit, elementaque reliqua vix sensibiliter afficiat, postea facile explere liceat.

Brevitatis caussa methodi expositionem ita adornabimus, ut omnes locos ad eclipticam referamus, adeoque quatuor longitudines cum duabus latitudinibus datas esse supponemus: attamen quoniam in formulis nostris ad terrae latitudinem quoque respicietur, sponte ad eum casum transferri poterunt, ubi aequator tamquam planum fundamentale accipitur, si modo ascensiones rectae ac declinationes in locum longitudinum et latitudinum substituuntur.

Ceterum respectu nutationis, praecessionis et parallaxis, nec non aberrationis, omnia quae in Sectione praec. exposuimus etiam hic valent: nisi itaque distantiae approximatae a terra aliunde iam innotuerunt, ut respectu aberrationis methodum I. art. 118. in usum vocare liceat, loca observata initio tantum ab aberratione fixarum purgabuntur, temporaque corrigentur, quamprimum inter calculi decursum distantiarum determinatio approximata in potestatem venit, uti infra clarius elucebit.

167.

Solutionis expositioni signorum praecipuorum indicem praemittimus. Erunt nobis

- t, t', t'', t''' quatuor observationum tempora
- a, a', a", a" corporis coelestis longitudines geocentricae
- 6, 6', 6", 6" eiusdem latitudines
- r, r', r'', r''' distantiae a Sole
- ρ, ρ', ρ", ρ" distantiae a terra
- l, l', l''' terrae longitudines heliocentricae
- B, B', B", B" terrae latitudines heliocentricae
- R, R', R'', R''' terrae distantiae a Sole.
- (n01), (n12), (n23), (n02), (n13) areae duplicatae triangulorum, quae resp. inter Solem atque corporis coelestis locum primum et secundum, secundum et tertium, tertium et quartum, primum et tertium, secundum et quartum continentur.

 $\frac{1}{(\eta 01)}$, $\frac{1}{(\eta 12)}$, $\frac{1}{(\eta 23)}$ quotientes e divisione arearum $\frac{1}{2}(n01)$, $\frac{1}{2}(n12)$, $\frac{1}{4}(n23)$ per areas sectorum respondentium oriundi.

$$P' = \frac{\binom{(n \, 1 \, 2)}{(n \, 0 \, 1)}}{\binom{(n \, 0 \, 1)}{(n \, 0 \, 2)}} - 1 r'^{8}, \quad P'' = \frac{\binom{(n \, 1 \, 2)}{(n \, 2 \, 3)}}{\binom{(n \, 1 \, 3)}{(n \, 1 \, 3)}} - 1 r'^{8}$$

v, v', v'', v''' corporis coelestis longitudines in orbita a puncto arbitrario numeratae.

Denique pro observatione secunda et tertia locos heliocentricos terrae in sphaera coelesti per A', A'' denotabimus, locos geocentricos corporis coelestis per B', B'', eiusdemque locos heliocentricos per C', C''.

His ita intellectis negotium primum perinde ut in problemate Sect. praec. (art. 136.) consistet in determinatione situs circulorum maximorum A'C'B', A''C''B'', quorum inclinationes ad eclipticam per γ' , γ'' designamus: cum hoc calculo simul iungetur determinatio arcuum $A'B' = \delta'$, $A''B'' = \delta''$. Hinc manifesto erit

$$r' = \sqrt{(\rho'\rho' + 2\rho'R'\cos\delta' + R'R')}$$

$$r'' = \sqrt{(\rho''\rho'' + 2\rho''R''\cos\delta'' + R''R'')}$$

sive statuendo $\rho' + R'\cos\delta' = x'$, $\rho'' + R''\cos\delta'' = x''$, $R'\sin\delta' = a'$, $R''\sin\delta'' = a''$, $r' = \sqrt{(x'x' + a'a')}$ $r'' = \sqrt{(x''x'' + a''a'')}$

168.

Combinando aequationes 1. et 2. art. 112., prodeunt in signis disquisitionis praesentis aequationes sequentes:

$$0 = (n 12) R \cos B \sin (l - a) - (n 02) (\rho' \cos b' \sin (a' - a) + R' \cos B' \sin (l' - a)) + (n 01) (\rho'' \cos b'' \sin (a'' - a) + R'' \cos B'' \sin (l'' - a))$$

$$0 = (n 23) \left(\rho' \cos \theta' \sin (a''' - a') + R' \cos B' \sin (a''' - l') \right) \\ - (n 13) \left(\rho'' \cos \theta'' \sin (a''' - a'') + R'' \cos B'' \sin (a''' - l'') \right) + (n 12) R''' \cos B''' \sin (a''' - l''')$$

Hae aequationes, statuendo

$$\frac{R'\cos B'\sin(l'-a)}{\cos \delta'\sin(a''-a)} - R'\cos \delta' = b'$$

$$\frac{R''\cos B''\sin(a'''-l'')}{\cos \delta''\sin(a'''-a'')} - R''\cos \delta'' = b''$$

$$\frac{R'\cos B'\sin(a'''-l')}{\cos \delta'\sin(a'''-a')} - R'\cos \delta' = x'$$

$$\frac{R''\cos B'\sin(a'''-a)}{\cos \delta''\sin(a'''-a)} - R''\cos \delta'' = x''$$

$$\frac{R\cos B\sin(l-a)}{\cos \delta''\sin(a'''-a)} = \lambda$$

$$\frac{R'''\cos B'''\sin(a'''-a)}{\cos \delta'\sin(a'''-a')} = \lambda'''$$

$$\frac{\cos \delta'\sin(a'''-a)}{\cos \delta''\sin(a'''-a)} = \mu'$$

$$\frac{\cos \delta'\sin(a'''-a)}{\cos \delta'\sin(a'''-a')} = \mu''$$

omnibusque rite reductis, transeunt in sequentes

$$\frac{\frac{\mu'(1+P')(x'+b')}{Q'}}{1+\frac{Q'}{(x'x'+a'a')^{\frac{3}{4}}}} = x'' + x'' + \lambda P'$$

$$\frac{\frac{\mu''(1+P'')(x''+b'')}{Q''}}{1+\frac{Q''}{(x''x''+a''a'')^{\frac{3}{4}}}} = x' + x' + \lambda'''P''$$

sive, statuendo insuper

$$-x''-\lambda P' = c', \quad \mu'(1+P') = d'$$

 $-x'-\lambda'''P'' = c'', \quad \mu''(1+P'') = d''$

in hasce

I.
$$x'' = c' + \frac{d'(x'+b')}{1 + \frac{Q'}{(x'x'+a'a')^{\frac{3}{2}}}}$$
II. $x' = c'' + \frac{d''(x''+b'')}{1 + \frac{Q''}{(x''x''+a''x'')^{\frac{3}{2}}}}$

Adiumento harum duarum aequationum x' et x'' ex a', b', c', d', Q', a'', b'', c'', d'', Q'', determinari poterunt. Quodsi quidem x' vel x'' inde eliminanda esset, ad aequationem ordinis permagni delaberemur: attamen per methodos indirectas incognitarum x', x'' valores ex illis aequationibus forma non mutata satis expedite elicientur. Plerumque valores incognitarum approximati iam prodeunt, si primo Q' atque Q'' negliguntur; scilicet

$$x' = \frac{c'' + d''(b'' + c') + d'd''b''}{1 - d'd''}$$

$$x'' = \frac{c' + d'(b' + c'') + d'd''b''}{1 - d'd''}$$

Quamprimum autem valor approximatus alterutrius incognitae habetur, valores aequationibus exacte satisfacientes facillime elicientur. Sit scilicet ξ' valor approximatus ipsius x', quo in aequatione I. substituto prodeat $x'' = \xi''$; perinde substituto $x'' = \xi''$ in aequatione II. prodeat inde x' = X'; repetantur eaedem operationes, substituendo pro x' in I. valorem alium $\xi' + \nu'$, unde prodeat $x'' = \xi'' + \nu''$, quo valore in II. substituto prodeat inde x' = X' + N'. Tum valor correctus ipsius x' erit

$$=\xi'+\tfrac{(\xi'-X')\nu'}{N'-\nu'}=\tfrac{\xi'N'-X'\nu'}{N'-\nu'}$$

valorque correctus ipsius

$$x'' = \xi'' + \frac{(\xi' - X') v''}{N' - v'}$$

Si operae pretium videtur, cum valore correcto ipsius x' alioque levius mutato eaedem operationes repetentur, donec valores ipsarum x', x'' aequationibus I., II. exacte satisfacientes prodierint. Ceterum analystae vel mediocriter tantum exercitato subsidia calculum contrahendi haud deerunt.

In his operationibus quantitates irrationales $(x'x' + a'a')^{\frac{1}{2}}$, $(x''x'' + a''a'')^{\frac{1}{2}}$ commode calculantur per introductionem arcuum z', z'', quorum tangentes resp. sunt $\frac{a'}{x'}$, $\frac{a''}{x''}$, unde fit

$$\sqrt{(x'x'+a'a')} = r' = \frac{a'}{\sin z'} = \frac{x'}{\cos z'}$$

$$\sqrt{(x''x''+a''a'')} = r'' = \frac{a''}{\sin z''} = \frac{x''}{\cos z''}$$

Hi arcus auxiliares, quos inter 0 et 180° accipere oportet, ut r', r'' positivi evadant, manifesto cum arcubus C'B', C''B'' identici erunt, unde patet, hacce ratione non modo r' et r'', sed etiam situm punctorum C', C'' innotescere.

Haecce determinatio quantitatum x', x'' requirit, ut a', a'', b', b'', c', c', d'', d'', Q', Q'' cognitae sint, quarum quantitatum quatuor primae quidem per problematis data habentur, quatuor sequentes autem a P', P'' pendent. Iam quantitates P', P'', Q', Q'', exacte quidem nondum determinari possunt; attamen quum habeatur

III.
$$P' = \frac{t'' - t'}{t' - t} \cdot \frac{(\eta \, 0 \, 1)}{(\eta \, 1 \, 2)}$$
IV.
$$P'' = \frac{t'' - t'}{t''' - t''} \cdot \frac{(\eta \, 2 \, 8)}{(\eta \, 1 \, 2)}$$
V.
$$Q' = \frac{1}{2} k k (t' - t) (t'' - t') \cdot \frac{r' r'}{r r''} \cdot \frac{1}{(\eta \, 0 \, 1) (\eta \, 1 \, 2) \cos \frac{1}{2} (v' - v) \cos \frac{1}{2} (v'' - v') \cos \frac{1}{2} (v'' - v')}$$
VI.
$$Q'' = \frac{1}{2} k k (t'' - t') (t''' - t'') \cdot \frac{r'' r''}{r' r'''} \cdot \frac{1}{(\eta \, 1 \, 2) (\eta \, 2 \, 3) \cos \frac{1}{2} (v'' - v') \cos \frac{1}{2} (v''' - v') \cos \frac{1}{2} (v''' - v'') \cos \frac{1}{2} (v''' - v''') \cos \frac{1}{$$

statim adsunt approximati

$$P' = \frac{t'' - t'}{t' - t}, \qquad P'' = \frac{t'' - t'}{t'' - t''}$$

$$Q' = \frac{1}{2}kk(t' - t)(t'' - t'), \quad Q'' = \frac{1}{2}kk(t'' - t')t''' - t''$$

quibus calculus primus superstructur.

169.

Absoluto calculo art. praec. ante omnia arcum C'C'' determinare oportebit. Quod fiet commodissime, si antea perinde ut in art. 137. intersectio D circulorum maximorum A'C'B', A''C''B'', mutuaque inclinatio ε eruta fuerit: invenietur dein ex ε , C'D = z' + B'D, atque C''D = z'' + B''D, per formulas easdem quas in art. 144. tradidimus, non modo C'C'' = v'' - v', sed etiam anguli (u', u''), sub quibus circuli maximi A'B', A''B'' circulum maximum C'C'' secant.

Postquam arcus v''-v' inventus est, v'-v et r eruentur e combinatione aequationum

$$r\sin(v'-v) = \frac{r''\sin(v''-v')}{P'}$$

$$r\sin(v'-v+v''-v') = \frac{1+P'}{P'} \cdot \frac{r'\sin(v''-v')}{1+\frac{Q'}{r'^2}}$$

et perinde r''' atque v'''-v'' e combinatione harum

$$r''' \sin(v''' - v'') = \frac{(r' \sin(v'' - v'))}{P''}$$

$$r''' \sin(v''' - v'' + v'' - v') = \frac{1 + P''}{P''} \cdot \frac{r'' \sin(v'' - v')}{1 + \frac{Q''}{r''^3}}$$

Omnes numeri hoc modo inventi exacti forent, si ab initio a valoribus veris ipsarum P', P'', Q', Q'' proficisci licuisset: tumque situm plani orbitae perinde ut in art. 149. vel ex A'C', u' et γ' , vel ex A''C'', u'' et γ'' determinare conveniret, ipsasque orbitae dimensiones vel ex r', r'', t', t'', et v''-v', vel, quod exactius est, ex r, r''', t, t''', et v'''-v. Sed in calculo primo haec omnia praeteribimus, atque in id potissimum incumbemus, ut valores magis approximatos pro quantitatibus P', P'', Q', Q'' obtineamus. Hunc finem assequemur, si per methodum inde ab art. 88. expositam

ex
$$r$$
, r' , $v'-v$, $t'-t$ eliciamus $(\eta 01)$
 r' , r'' , $v''-v'$, $t''-t'$ $(\eta 12)$
 r'' , r''' , $v'''-v''$, $t'''-t''$ $(\eta 23)$

Has quantitates, nec non valores ipsarum r, r', r'', r''', $cos \frac{1}{2}(v'-v)$ etc. in formulis III...VI. substituemus, unde valores ipsarum P', Q', P'', Q'' resultabunt multo magis exacti quam ii, quibus hypothesis prima superstructa erat. Cum illis itaque hypothesis secunda formabitur, quae si prorsus eodem modo ut prima ad finem perducitur, valores ipsarum P', Q', P'', Q'' multo adhuc exactiores suppeditabit, atque sic ad hypothesin tertiam deducet. Hae operationes tam diu iterabuntur, donec valores ipsarum P', Q', P'', Q'' nulla amplius correctione opus habere videantur, quod recte iudicare exercitatio frequens mox docebit. Quoties motus heliocentricus parvus est, plerumque prima hypothesis illos valores iam satis exacte subministrat: si vero ille arcum maiorem complectitur, si insuper temporum intervalla ab aequalitate notabiliter recedunt, hypothesibus pluries

repetitis opus erit; in tali vero casu hypotheses primae magnam calculi praecisionem haud postulant. In ultima denique hypothesi elementa ipsa ita ut modo indicavimus determinabuntur.

170.

In hypothesi prima quidem temporibus non correctis t, t', t'', t''' uti oportebit, quum distantias a terra computare nondum liceat: simulac vero valores approximati quantitatum x', x'' innotuerunt, illas distantias quoque proxime determinare poterimus. Attamen quum formulae pro ρ et ρ''' hic paullo complicatiores evadant, computum correctionis temporum eousque differre conveniet, ubi distantiarum valores satis praecisi evaserunt, ne calculo repetito opus sit. Quamobrem e re erit, hanc operationem iis valoribus quantitatum x', x'' superstruere, ad quas hypothesis penultima produxit, ita ut ultima demum hypothesis a valoribus correctis temporum atque quantitatum P', P'', Q', Q'' proficiscatur. Ecce formulas, ad hunc finem in usum vocandas:

VIII.
$$\rho'' = x' - R' \cos \delta'$$
VIII.
$$\rho'' = x'' - R'' \cos \delta''$$
IX.
$$\rho \cos \delta = -R \cos B \cos (a - l) + \frac{1 + P'}{P' \left(1 + \frac{Q'}{P'^3}\right)} (\rho' \cos \delta' \cos (a' - a) + R' \cos B' \cos (l' - a)) + \frac{1}{P'} (\rho'' \cos \delta'' \cos (a'' - a) + R'' \cos B'' \cos (l' - a))$$
X.
$$\rho \sin \delta = -R \sin B + \frac{1 + P'}{P' \left(1 + \frac{Q'}{P'^3}\right)} (\rho' \sin \delta' + R' \sin B') + \frac{1}{P'} (\rho'' \sin \delta'' + R'' \sin B'') + \frac{1 + P''}{P'' \left(1 + \frac{Q''}{P''^3}\right)} (\rho'' \cos \delta'' \cos (a''' - a'') + R'' \cos B'' \cos (a''' - l'')) + \frac{1 + P''}{P'' \left(1 + \frac{Q''}{P''^3}\right)} (\rho'' \cos \delta' \cos (a''' - a'') + R' \cos B'' \cos (a''' - l''))$$
XII.
$$\rho''' \sin \delta'' = -R''' \sin B''' + \frac{1 + P''}{P'' \left(1 + \frac{Q''}{P''^3}\right)} (\rho'' \sin \delta'' + R'' \sin B'') + \frac{1}{P''} (\rho' \sin \delta' + R' \sin B'') + \frac{1}{P''} (\rho'' \sin \delta' + R'' \sin B'')$$

Formulae IX...XII. nullo negotio ex aequationibus 1, 2, 3 art. 112. derivantur, si modo characteres illic adhibiti in eos quibus hic utimur rite convertantur. Manifesto formulae multo simpliciores evadunt, si B, B', B'' evanescunt. E combinatione formularum IX. et X. non modo ρ sed etiam 6, et perinde ex XI. et XII. praeter ρ''' etiam 6''' demanat: valores harum latitudirum cum observatis (calculum non ingredientibus), siquidem datae sunt, comparati ostendent, quonam praecisionis gradu latitudires extremae per elementa sex reliquis datis adaptata repraesentari possint.

171.

Exemplum ad illustrationem huius disquisitionis a Vesta desumere conveniet, quae inter omnes planetas recentissime detectos inclinatione ad eclipticam minima gaudet*). Eligimus observationes sequentes Bremae, Parisiis, Lilienthalii et Mediolani ab astronomis clarr. Olbers, Bouvard, Bessel et Oriani institutas:

Tempus med. loci observationis	Ascensio recta	Declinatio
1807 Martii 30. 12 ^h 33 ^m 17 ^s	183° 52′ 40″8	11° 54′ 27″ Bor.
Maii 17. 8 16 5	178 36 42,3	11 39 46,8
Iulii 11. 10 30 19	189 49 7,7	3 9 10, 1 Bor.
Sept. 8. 7 22 16	212 50 3,4	8 38 17, 0 Austr.

Pro iisdem temporibus e tabulis motuum Solis invenimus

		_		olis ab app.	Nutatio	Distantia a terra	Latitudo Solis	Obliquitas eclipt apparens
Martii	30	9°	21	59" 5	+16"8	0,9996448	+ 0"23	23°27′50″82
Maii	17	55	56	20, 0	+16,2	1,0119789	0,63	49,83
Iulii	11	108	34	53, 3	+17,3	1,0165795	-0,46	49,19
Sept.	8	165	8	57, 1	+16,7	1,0067421	+0,29	49,26

^{*)} Milleminus haec inclinatio etimmum satis considerabilis est, ut orbitse determinationem satis tuto atque exacte tribus observationibus superstruere liceat: revera elementa prima, quae hoc modo ex observationibus 19 tantem disbus ad invicem distantibus deducta etant (vid. von Zace Monatl. Corresp., Vol. XV. p. 595. 1807 Iuni) [Gauss Werke B. VI. S. 285], proxime iam accedunt ad ea, quae hic ex observationibus quatuor, 162 diebus ad invicem dissitis, derivabuntur.

Iam loca observata planetae, adhibita eclipticae obliquitate apparente, in longitudines et latitudines conversa, a nutatione et aberratione fixarum purgata, tandemque demta praecessione ad initium anni 1807 reducta sunt, dein e locis Solis ad normam praeceptorum art. 72. derivata sunt loca terrae ficta (ut parallaxis ratio habeatur), longitudinesque demta nutatione et praecessione ad eandem epocham translatae; tandem tempora ab initio anni numerata et ad meridianum Parisinum reducta. Hoc modo orti sunt numeri sequentes:

Hinc deducimus

$$\gamma' = 168^{\circ}32'41''34, \quad \delta' = 62^{\circ}23'4''88, \quad \log a' = 9,9526104$$
 $\gamma'' = 173 \quad 5 \quad 15,68, \quad \delta'' = 100 \quad 45 \quad 1,40, \quad \log a'' = 9,9994839$
 $b' = -11,009449, \quad x' = -1,083306, \quad \log \lambda = 0,0728800, \quad \log \mu' = 9,7139702n$
 $b'' = -2,082036, \quad x'' = +6,322006, \quad \log \lambda''' = 0,0798512n, \quad \log \mu'' = 9,8387061$
 $A'D = 37^{\circ}17'51''50, \quad A''D = 89^{\circ}24'11''84, \quad \epsilon = 9^{\circ}5'5''48$
 $B'D = -25 \quad 5 \quad 13,38, \quad B''D = -11 \quad 20 \quad 49,56$

His calculis praeliminaribus absolutis, hypothesin primam aggredimur. E temporum intervallis elicimus

$$\log k(t'-t) = 9,9153666$$

$$\log k(t''-t') = 9,9765359$$

$$\log k(t'''-t'') = 0,0054651$$

atque hinc valores primos approximatos

$$\log P' = 0.06117$$
 $\log (1+P') = 0.33269$ $\log Q' = 9.59087$ $\log P'' = 9.97107$ $\log (1+P'') = 0.28681$ $\log Q'' = 9.68097$

hine porro

$$c' = -7,68361$$
 $\log d' = 0,04666 \text{ n}$
 $c'' = +2,20771$ $\log d'' = 0,12552$

Hisce valoribus, paucis tentaminibus factis, solutio sequens aequationum I. II. elicitur:

$$z' = 2,04856$$
 $z' = 23°38'17'' log r' = 0,34951$
 $z'' = 1,95745$ $z'' = 27$ 2 0 log $r'' = 0,34194$

Ex z', z'' atque ϵ eruimus C'C'' = v'' - v' = 17°7′5″: hinc v' - v, r, v''' - v'', r''' per aequationes sequentes determinandae erunt:

$$\log r \sin(v'-v) = 9,74942 \quad \log r \sin(v'-v+17°7'5'') = 0,07500$$

$$\log r''' \sin(v'''-v'') = 9,84729 \quad \log r''' \sin(v'''-v''+17°7'5'') = 0,10733$$

unde eruimus

$$v'-v = 14^{\circ}14'32'' \quad \log r = 0,35865$$

 $v'''-v'' = 184833 \quad \log r''' = 0,33887$

Denique invenitur $\log(n01) = 0.00426$, $\log(n12) = 0.00599$, $\log(n23) = 0.00711$, atque hinc valores correcti ipsarum P', P'', Q', Q''.

$$\log P' = 0.05944$$
 $\log Q' = 9.60374$ $\log P'' = 9.97219$ $\log Q'' = 9.69581$

quibus hypothesis secunda superstruenda erit. Huius praecipua momenta ita se habent:

$$c' = -7,67820 \qquad \log d' = 0,045736 \, \text{n}$$

$$c'' = +2,21061 \qquad \log d'' = 0,126054$$

$$z' = 2,03308 \qquad z' = 23^{\circ}47'54'' \qquad \log r' = 0,346747$$

$$z'' = 1,94290 \qquad z'' = 27 \, 12 \, 25 \qquad \log r'' = 0,339373$$

$$C'C'' = v'' - v' = 17^{\circ}8'0''$$

$$v' - v = 14^{\circ}21'36'' \qquad \log r = 0,354687$$

$$v''' - v'' = 18 \, 50 \, 43 \qquad \log r'' = 0,334564$$

$$\log (n \, 01) = 0,004359 \quad \log (n \, 12) = 0,006102 \quad \log (n \, 23) = 0,007280$$

Hinc prodeunt valores denuo correcti ipsarum P', P'', Q', Q'':

$$\log P' = 0.059426$$
 $\log Q' = 9.604749$ $\log P' = 9.972249$ $\log Q'' = 9.697564$

quibus si ad tertiam hypothesin progredimur, numeri sequentes resultant:

$$c' = -7,67815 \qquad \log d' = 0,045729 \, \text{n}$$

$$c'' = +2,21076 \qquad \log d'' = 0,126082$$

$$x' = 2,03255 \qquad z' = 23^{\circ}48'14'' \qquad \log r' = 0,346653$$

$$x'' = 1,94235 \qquad z'' = 27 12 49 \qquad \log r' = 0,339276$$

$$C'C'' = v'' - v' = 17^{\circ}8'4''$$

$$v' - v = 14^{\circ}21'49'' \qquad \log r = 0,354522$$

$$v''' - v''' = 18 51 7 \qquad \log r''' = 0,334290$$

$$\log(n01) = 0,004363 \qquad \log(n12) = 0,006106 \qquad \log(n23) = 0,007290$$

Quodsi iam ad normam praeceptorum art. praec. distantiae a terra supputantur, prodit:

$$\rho' = 1,5635 \qquad \rho'' = 2,1319$$

$$\log \rho \cos \delta = 0,09876 \qquad \log \rho''' \cos \delta''' = 0,42842$$

$$\log \rho \sin \delta = 9,44252 \qquad \log \rho''' \sin \delta''' = 9,30905$$

$$\delta = 12^{\circ}26'40'' \qquad \delta''' = 4^{\circ}20'39''$$

$$\log \rho = 0,10909 \qquad \log \rho''' = 0,42967$$

Hinc inveniuntur

·	Correctiones temporum	Tempora correcta
I	0,007335	89,497827
II	0,008921	435,335581
Ш	0,012165	192,407337
IV	0,015346	251,272756

unde prodeunt valores quantitatum P', P'', Q', Q'' denuo correcti

$$\log P' = 0.059415$$
 $\log Q' = 9.604782$ $\log P'' = 9.972253$ $\log Q'' = 9.697687$

Tandem si hisce valoribus novis hypothesis quarta formatur, numeri sequentes predeunt:

$$c' = -7,678116 \qquad \log d' = 0,045723 \, \text{n}$$

$$c'' = +2,210773 \qquad \log d'' = 0,126084$$

$$x' = 2,032473 \qquad z' = 23^{\circ}48' 16''7 \qquad \log r' = 0,346638$$

$$x'' = 1,942281 \qquad z'' = 27 12 51,7 \qquad \log r'' = 0,339263$$

$$x'' = 17^{\circ} 8' 5'' 1 \qquad \frac{1}{2}(u'' + u') = 176 7 50 5 \qquad \frac{1}{2}(u'' - u') = 4^{\circ}33' 23''6$$

$$x'' = v = 14 21 51,9 \qquad \log r = 0,954503$$

$$x''' - v'' = 18 51 9,5 \qquad \log r''' = 0,334263$$

Hi numeri ab iis, quos hypothesis tertia suppeditaverat, tam parum differunt, ut iam tuto ad ipsorum elementorum determinationem progredi liceat. Primo situm plani orbitae eruimus. Per praecepta art. 149. invenitur ex γ' , u' atque $A'C' = \delta' - z'$, inclinatio orbitae = $7^{\circ}8'14''8$, longitudo nodi ascendentis $103^{\circ}16'37''2$, argumentum latitudinis in observatione secunda $94^{\circ}36'4''9$, adeoque longitudo in orbita $197^{\circ}52'42''1$; perinde ex γ'' , u'' atque $A''C'' = \delta'' - z''$ elicitur inclinatio orbitae = $7^{\circ}8'14''8$, longitudo nodi ascendentis $103^{\circ}16'37''5$, argumentum latitudinis in observatione tertia $111^{\circ}44'9''7$, adeoque longitudo in orbita $215^{\circ}0'47''2$. Hinc erit longitudo in orbita pro observatione prima $183^{\circ}30'50''2$, pro quarta $233^{\circ}51'56''7$. Quodsi iam ex t''' - t, r, r''' atque $v''' - v = 50^{\circ}21'6''5$ orbitae dimensiones determinantur, prodit

Anomalia vera pro loco primo 293°33′43″7
Anomalia vera pro loco quarto 343 54 50,2
Hinc longitudo perihelii 249 57 6,5
Anomalia media pro loco primo 302 33 32,6
Anomalia media pro loco quarto 346 32 25,2
Motus medius diurnus sidereus 978"7216

224 LIBER II. SECTIO II. DETERMINATIO ORBITAE E QUATUOR OBSERVATIONIBUS.

Anomalia media pro initio anni 1807 278°13′39″1
Longitudo media pro eadem epocha 168 10 45,6
Angulus φ
Logarithmus semiaxis maioris

Si secundum haecce elementa pro temporibus t, t', t'', t''' correctis loca planetae geocentrica computantur, quatuor longitudines cum a, a', a'', a''', duaeque latitudines intermediae cum b', b'' ad unam minuti secundi partem decimam conspirant; latitudines extremae vero prodeunt $12^{\circ}26'43''7$ atque] $4^{\circ}20'40''1$, illa 22''4 errans defectu, haec 18''5 excessu. Attamen si manentibus elementis reliquis tantummodo inclinatio orbitae b'' augeatur, longitudoque nodi b'40'' diminuatur, errores inter omnes latitudines distributi ad pauca minuta secunda deprimentur, longitudinesque levissimis tantum erroribus afficientur, qui et ipsi propemodum ad nihilum reducentur, si insuper epocha longitudinis b'' diminuatur.

SECTIO TERTIA

Determinatio orbitae observationibus quotcunque quam proxime satisfacientis.

172.

Si observationes astronomicae ceterique numeri, quibus orbitarum computus innititur, absoluta praecisione gauderent, elementa quoque, sive tribus observationibus sive quatuor superstructa fuerint, absolute exacta statim prodirent (quatenus quidem motus secundum leges Kepleri exacte fieri supponitur), adeoque accitis aliis aliisque observationibus confirmari tantum possent, haud corrigi. enim vero quum omnes mensurationes atque observationes nostrae nihil sint nisi approximationes ad veritatem, idemque de omnibus calculis illis innitentibus valere debeat, scopum summum omnium computorum circa phaenomena concreta institutorum in eo ponere oportebit, ut ad veritatem quam proxime fieri potest Hoc autem aliter fieri nequit, nisi per idoneam combinationem observationum plurium, quam quot ad determinationem quantitatum incognitarum absolute requiruntur. Hoc negotium tunc demum suscipere licebit, quando orbitae cognitio approximata iam innotuit, quae dein ita rectificanda est, ut omnibus observationibus quam exactissime satisfaciat. Etiamsi haec expressio aliquid vagi implicare videatur, tamen infra principia tradentur, secundum quae problema solutioni legitimae ac methodicae subiicietur.

Praecisionem summam ambire tunc tantummodo operae pretium esse potest, quando orbitae determinandae postrema quasi manus apponenda est. Contra quamdiu spes affulget, mox novas observationes novis correctionibus occasionem 6. TH. M.

Digitized by Google

daturas esse, prout res fert plus minusve ab extrema praecisione remittere conveniet, si tali modo operationum prolixitatem notabiliter sublevare licet. Nos utrique casui consulere studebimus.

173.

Maximi imprimis momenti est, ut singulae corporis coelestis positiones geocentricae, quibus orbitam superstruere propositum est, non ex observationibus solitariis petitae sint, sed si fieri potest e pluribus ita combinatis, ut errores forte commissi quantum licet sese mutuo destruxerint. Observationes scilicet tales, quae paucorum dierum intervallo ab invicem distant — vel adeo prout res fert intervallo 15 aut 20 dierum — in calculo non adhibendae erunt tamquam totidem positiones diversae, sed potius positio unica inde derivabitur, quae inter cunctas quasi media est, adeoque praecisionem longe maiorem admittit, quam observationes singulae seorsim consideratae. Quod negotium sequentibus principiis innititur.

Corporis coelestis loca geocentrica ex elementis approximatis calculata a locis veris parum discrepare, differentiaeque inter haec et illa mutationes lentissimas tantum subire debent, ita ut intra paucorum dierum decursum propenaodum pro constantibus haberi queant, vel saltem variationes tamquam temporibus proportionales spectandae sint. Si itaque observationes ab omni errore immunes essent, differentiae inter locos observatos temporibus t, t', t'' etc. respondentes, eosque qui ex elementis computati sunt, i. e. differentisse tum longitudinum tum latitudinum, sive tum ascensionum rectarum tum declinationum, observatarum a computatis, forent quantitates vel sensibiliter aequales, vel saltem uniformiter lentissimeque increscentes aut decrescentes. Respondent e. g. illis temporibus ascensiones rectae observatae α , α' , α'' , α''' etc., computatae autem sint $\alpha + \delta$, $a' + \delta'$, $a'' + \delta''$, $a''' + \delta'''$ etc.; tunc differentiae δ , δ' , δ'' , δ''' etc. a veris elementorum deviationibus eatenus tantum discrepabunt, quatenus observationes ipsae sunt erroneae: si itaque illas deviationes pro omnibus istis observationibus tamquam constantes spectare licet, exhibebunt quantitates &, &', &", &" etc. totidem determinationes diversas eiusdem magnitudinis, pro cuius valore correcto itaque assumere conveniet medium arithmeticum inter illas determinationes, quatenus quidem nulla adest ratio, cur unam alteramve praeferamus. Sin vero observationibus singulis idem praecisionis gradus haud attribuendus videtur, supponamus praecisionis gradum in singulis resp. proportionalem aestimandum esse numeris e, e', e'' etq., i. e. errores his numeris reciproce proportionales in observationibus aeque facile committi potuisse; tum secundum principia infra tradenda valor medius maxime probabilis haud amplius erit medium arithmeticum simplex, sed $\Rightarrow \frac{ee\delta + e'e'\delta' + e''e''\delta'' + e'''e''' + \text{etc.}}{ee + e'e' + e'''e''' + e'''e''' + \text{etc.}}$. Statuendo iam hune valorem medium $\Rightarrow \Delta$, pro ascensionibus rectis veris assumere licebit resp. $\alpha + \delta - \Delta$, $\alpha' + \delta' - \Delta$, $\alpha'' + \delta'' - \Delta$, a"+δ"---Δ, tumque arbitrarium erit, quanam in calculo utamur. Quodsi vero vel observationes temporis intervallo nimis magno ab invicem distant, aut si orbitae elementa satis approximata nondum innotuerant, ita ut non licuerit, horum deviationes tamquam constantes pro observationibus cunctis spectare, facile perspicietur, aliam hinc differentiam non oriri, nisi quod deviatio media sic inventa non tam omnibus observationibus communis supponenda erit, quam potius ad tempus medium quoddam referenda, quod perinde e singulis temporum momentis derivare oportet, ut Δ ex singulis deviationibus, adeoque generaliter ad tempus $\frac{eet + e'e't' + e''e''t'' + e'''e'''' + etc.}{ee + e'e' + e'''e''' + e''''' + etc.}$ Si itaque summam praecisionem appetere placet, pro eodem tempore locum geocentricum ex elementis computare, ac dein ab errore medio Δ liberare oportebit, ut positio quam accuratissima emergat: plerumque tamen abunde sufficiet, ai error medius ad observationem tempori medio proximam referatur. Quae hio de ascensionibus rectis diximus, perinde de declination nibus, aut ai mavis de longitudinibus et latitudinibus valent: attamen semper praestabit, immediate ascensiones rectas et declinationes ex elementis computates oum observatis comparare; sic enim non modo calculum magis expeditum lucramur, praesertim si methodis in artt. 53...60, expositis utimur, sed eo insuper titulo illa ratio se commendat, qued observationes incompletas queque in usum vocare licet, praetereaque si orania ad longitudines et latitudines referrentur metuendum esset, ne observatio quoad ascensionem recte, quoad declinationem male instituta (vel vice versa) ab utraque parte depravetur, atque sic prorsus inutilia evadat. --- Ceterum gradus praecisionis medio ita invento attribuendus secundum principia mox explicanda erit $\Rightarrow \sqrt{(ee + e'e' + e''e'' + e'''e'' + etc.)}$, its ut quatuor vel novem observationes aeque exactae requirantur, si medium praecisione dupla vel tripla gaudere debet, et sic porro.

174.

Si corporis coelestis orbita secundum methodos in Sectionibus praeco traditas

e tribus quatuorve positionibus geocentricis talibus determinata est, quae ipsae singulae ad normam art. praec. e compluribus observationibus petitae fuerant, orbita ista inter omnes hasce observationes medium quasi tenebit, neque in differentiis inter locos observatos et calculatos ullum ordinis vestigium remanebito quod per elementorum correctionem tollere vel sensibiliter extenuare liceret. Iam quoties tota observationum copia intervallum temporis non nimis magnum complectitur, hoc modo consensum exoptatissimum elementorum cum omnibus observationibus assequi licebit, si modo tres quatuorve positiones quasi normales scite eligantur. In determinandis orbitis cometarum planetarumve novorum, quorum observationes annum unum nondum egrediuntur, ista ratione plerumque tantum proficiemus, quantum ipsa rei natura permittit. Quoties itaque orbita determinanda angulo considerabili versus eclipticam inclinata est, in genere tribus observationibus superstructur, quas quam remotissimas ab invicem eligemus: si vero hoc pacto in aliquem casuum supra exclusorum (artt. 160...162.) fortuito incideremus, aut quoties orbitae inclinatio nimis parva videtur, determinationem ex positionibus quatuor praeferemus, quas itidem quam remotissimas ab invicem accipiemus.

Quando autem iam adest observationum series longior plures annos complectens, plures inde positiones normales derivari poterunt: quamobrem praecisioni maximae male consuleremus, si ad orbitae determinationem tres tantum quatuorve positiones excerperemus, omnesque reliquas omnino negligeremus. Quin potius in tali casu, si summam praecisionem assequi propositum est, operam dabimus, ut positiones exquisitas quam plurimas congeramus, atque in usum vocemus. Tunc itaque aderunt data plura, quam ad incognitarum determinationem requiruntur: sed omnia ista data erroribus utut exiguis obnoxia erunt, ita ut generaliter impossibile sit, omnibus ex asse satisfacere. Iam quum nulla adsit ratio, cur ex hisce datis sex haec vel illa tamquam absolute exacta consideremus, sed potius, secundum probabilitatis principia, in cunctis promiscue errores maiores vel minores aeque possibiles supponere oporteat; porro quum generaliter loquendo errores leviores saepius committantur quam graviores; manifestum est, orbitam talem, quae dum sex datis ad amussim satisfacit a reliquis plus minusve deviat, principiis calculi probabilitatis minus consentaneam censendam esse, quam aliam, quae dum ab illis quoque sex datis aliquantulum discrepat, consensum tanto meliorem cum reliquis praestat. Investigatio orbitae, sensu stricto maximam probabilitatem prae se ferentis a cognitione legis pendebit, secundum quam errorum crescentium probabilitas decrescit: illa vero a tot considerationibus vagis vel dubiis — physiologicis quoque — pendet, quae calculo subiici nequeunt, ut huiusmodi legem vix ac ne vix quidem in ullo astronomiae practicae casu rite assignare liceat. Nihilominus indagatio nexus inter hanc legem orbitamque maxime probabilem, quam summa iam generalitate suscipiemus, neutiquam pro speculatione sterili habenda erit.

175.

Ad hunc finem a problemate nostro speciali ad disquisitionem generalissimam in omni calculi ad philosophiam naturalem applicatione foecundissimam ascendemus. Sint V, V', V'' etc. functiones incognitarum p, q, r, s etc., μ multitudo illarum functionum, ν multitudo incognitarum, supponamusque, per observationes immediatas valores functionum ita inventos esse V=M, V'=M', V''=M'' etc. Generaliter itaque loquendo evolutio valorum incognitarum constituet problema indeterminatum, determinatum, vel plus quam determinatum, prout fuerit $\mu < \nu$, $\mu = \nu$, vel $\mu > \nu^*$). Hic de ultimo tantum casu sermo erit, in quo manifesto exacta cunctarum observationum repraesentatio tunc tantum possibilis foret, ubi illae omnes ab erroribus absolute immunes essent. Quod quum in rerum natura locum non habeat, omne systema valorum incognitarum p, q, r, s etc. pro possibili habendum erit, ex quo valores functionum M-V, M'-V', M''-V'', etc. oriuntur, limitibus errorum, qui in istis observationibus committi potuerunt, non maiores: quod tamen neutiquam ita intelligendum est, ac si singula haec systemata possibilia aequali probabilitatis gradu gauderent.

Supponemus primo, eum rerum statum fuisse in omnibus observationibus, ut nulla ratio adsit, cur aliam alia minus exactam esse suspicemur, sive ut errores aeque magnos in singulis pro aeque probabilibus habere oporteat. Probabilitas itaque cuilibet errori Δ tribuenda exprimetur per functionem ipsius Δ , quam per $\varphi \Delta$ denotabimus. Iam etiamsi hanc functionem praecise assignare non liceat,

^{*)} Si in casu tertio functiones V, V', V'', etc. ita comparatae essent, ut $\mu + 1 - \nu$ ex ipsius ve plures tamquam functiones reliquarum spectare liceret, problema respectu harum functionum etiamnum plus quam determinatum foret, respectu quantitatum p, q, r, s etc. autem indeterminatum: harum scilicet valores ne tunc quidem determinare liceret, quando valores functionum V, V', V'' etc. absolute exacti dati essent: sed hunc casum a disquisitione nostra excludemus.

saltem affirmare possumus, eius valorem fieri debere maximum pro $\Delta = 0$, plerumque aequalem esse pro valoribus aequalibus oppositis ipsius Δ , denique evanescere, si pro Δ accipiatur error maximus vel maior valor. Proprie itaque $\varphi \Delta$ ad functionum discontinuarum genus referre oportet, et si quam functionem analyticam istius loco substituere ad usus practicos nobis permittimus, haec ita comparata esse debebit, ut utrimque a $\Delta = 0$ asymptotice quasi ad 0 convergat, ita ut ultra istum limitem tamquam vere evanescens considerari possit. Porro probabilitas, errorem iacere inter limites Δ et $\Delta + d\Delta$ differentia infinite parva $d\Delta$ ab invicem distantes, exprimenda erit per $\varphi \Delta . d\Delta$; proin generaliter probabilitas, errorem iacere inter D et D, exhibebitur per integrale $\int \varphi \Delta . d\Delta$, a $\Delta = D$ usque ad $\Delta = D'$ extensum. Hoc integrale a valore maximo negativo ipsius Δ usque ad valorem maximum positivum, sive generalius a $\Delta = -\infty$ usque ad $\Delta = +\infty$ sumtum, necessario fieri debet $\Delta = 1$.

Supponendo igitur, systems aliquod determinatum valorum quantitatum p, q, r, s etc. locum habere, probabilitas, pro V ex observatione proditurum esse valorem M, exprimetur per $\varphi(M-V)$, substitutis in V pro p, q, r, s etc. valoribus suis; perinde $\varphi(M'-V')$, $\varphi(M''-V'')$ etc. expriment probabilitates, ex observationibus resultaturos esse functionum V', V'' etc. valores M', M'' etc. Quamobrem quandoquidem omnes observationes tamquam eventus ab invicem independentes spectare licet, productum

$$\varphi(M-V).\varphi(M'-V').\varphi(M''-V'')$$
 etc. $= Q$

exprimet exspectationem seu probabilitatem, omnes istos valores simul ex observationibus prodituros esse.

176.

Iam perinde, ut positis valoribus incognitarum determinatis quibuscunque, cuivis systemati valorum functionum V, V', V'' etc. ante observationem factam probabilitas determinata competit, ita vice versa, postquam ex observationibus valores determinati functionum prodierunt, ad singula systemata valorum incognitarum, e quibus illi demanare potuerunt, probabilitas determinata redundabit: manifesto enim systemata ea pro magis probabilibus habenda erunt, in quibus eventus eius qui prodit exspectatio maior affuerat. Huiusce probabilitatis aestimatio sequenti theoremati innititur:

Si posita hypothesi aliqua H probabilitas alicuius eventus determinati E est = h, posita autem hypothesi alia H' illam excludente et per se aeque probabili eiusdem eventus probabilitas est = h': tum dico, quando eventus E revera apparuerit, probabilitatem, quod H fuerit vera hypothesis, fore ad probabilitatem, quod H' fuerit hypothesis vera, ut h ad h'.

Ad quod demonstrandum supponamus, per distinctionem omnium circumstantiarum, a quibus pendet, num H aut H' aut alia hypothesis locum habeat, utrum eventus E an alius emergere debeat, formari systema quoddam casuum diversorum, qui singuli per se (i. e. quamdiu incertum est, utrum eventus E an alius proditurus sit) tamquam aeque probabiles considerandi sint, hosque casus ita distribui:

ut inter ipsos reperiantur	ubi locum habere debet hypothesis	cum modificationibus talibus ut prodire debeat eventus
m	Н	$oldsymbol{E}$
$m{n}$	H	ab E diversus
$m{m}^{'}$	H	E
$m{n}'$	H'	\mathbf{ab} E diversus
** 1	ab H et H' diversa	E
$m{n}^{''}$	ab H et H' diversa	ab E diversus

Tunc erit $h = \frac{m}{m+n}$, $h' = \frac{m'}{m'+n'}$; porro ante eventum cognitum probabilitas hypothesis H erat $= \frac{m+n}{m+n+m'+n'+m''+n''}$, post eventum cognitum autem, ubi casus n, n', n'' e possibilium oumero abeunt, eiusdem hypothesis probabilitas erit $= \frac{m}{m+m'+m''}$; perinde hypothesis H' probabilitas ante et post eventum resp. exprimetur per $\frac{m'+n'}{m+n+m'+n'+m''+n''}$ et $\frac{m'}{m+m'+m''}$: quoniam itaque hypothesibus H et H' ante eventum cognitum eadem probabilitas supponitur, erit m+n=m'+n', unde theorematis veritas sponte colligitur.

Iam quaterus supponimus, praeter observationes V = M, V' = M', V'' = M'' etc. nulla alia data ad incognitarum determinationem adesse, adeoque omnia systemata valorum harum incognitarum ante illas observationes aeque probabilia fuisse, manifesto probabilitas cuiusvis systematis determinati post illas observationes ipsi Ω proportionalis erit. Hoc ita intelligendum est, probabilitatem, quod valores incognitarum resp. iaceant inter limites infinite vicinos p et p+dp, q et q+dq, r et r+dr, s et s+ds etc., exprimi per $\lambda\Omega dpdqdrds$ etc.,

ubi λ erit quantitas constans a p, q, r, s etc. independens. Et quidem manifesto erit $\frac{1}{\lambda}$ valor integralis ordinis $\lambda^u \int^{\mathbf{r}} \Omega \, \mathrm{d} p \, \mathrm{d} q \, \mathrm{d} r \, \mathrm{d} s$..., singulis variabilibus p, q, r, s etc. a valore $-\infty$ usque ad valorem $+\infty$ extensis.

177.

Hinc iam sponte sequitur, systema maxime probabile valorum quantitatum p, q, r, s etc. id fore, in quo Ω valorem maximum obtineat, adeoque ex ν aequationibus $\frac{d\Omega}{dp} = 0$, $\frac{d\Omega}{dq} = 0$, $\frac{d\Omega}{dr} = 0$, $\frac{d\Omega}{ds} = 0$ etc. eruendum esse. Hae aequationes, statuendo M-V=v, M'-V'=v', M''-V''=v'' etc., atque $\frac{d\varphi\Delta}{\varphi\Delta.d\Delta} = \varphi'\Delta$, formam sequentem nanciscuntur:

$$\frac{\mathrm{d} v}{\mathrm{d} p} \varphi' v + \frac{\mathrm{d} v'}{\mathrm{d} p} \varphi' v' + \frac{\mathrm{d} v''}{\mathrm{d} p} \varphi' v'' + \text{etc.} = 0$$

$$\frac{\mathrm{d} v}{\mathrm{d} q} \varphi' v + \frac{\mathrm{d} v'}{\mathrm{d} q} \varphi' v' + \frac{\mathrm{d} v''}{\mathrm{d} q} \varphi' v'' + \text{etc.} = 0$$

$$\frac{\mathrm{d} v}{\mathrm{d} r} \varphi' v + \frac{\mathrm{d} v'}{\mathrm{d} r} \varphi' v' + \frac{\mathrm{d} v''}{\mathrm{d} r} \varphi' v'' + \text{etc.} = 0$$

$$\frac{\mathrm{d} v}{\mathrm{d} s} \varphi' v + \frac{\mathrm{d} v'}{\mathrm{d} s} \varphi' v' + \frac{\mathrm{d} v''}{\mathrm{d} s} \varphi' v'' + \text{etc.} = 0, \text{ etc.}$$

Hinc itaque per eliminationem problematis solutio plene determinata derivari poterit, quamprimum functionis φ' indoles innotuit. Quae quoniam a priori definiri nequit, rem ab altera parte aggredientes inquiremus, cuinam functioni, tacite quasi pro basi acceptae, proprie innixum sit principium trivium, cuius praestantia generaliter agnoscitur. Axiomatis scilicet loco haberi solet hypothesis, si quae quantitas per plures observationes immediatas, sub aequalibus circumstantiis aequalique cura institutas, determinata fuerit, medium arithmeticum inter omnes valores observatos exhibere valorem maxime probabilem, si non absoluto rigore, tamen proxime saltem, ita ut semper tutissimum sit illi inhaerere. Statuendo itaque V = V' = V'' etc. = p, generaliter esse debebit $\varphi'(M-p) + \varphi'(M'-p)$ $+\varphi'(M''-p)+$ etc. = 0, si pro p substituitur valor $\frac{1}{n}(M+M'+M''+$ etc.), quemounque integrum positivum exprimat μ . Supponendo itaque M' = M'' = etc. $= M - \mu N$, erit generaliter, i. e. pro quovis valore integro positivo ipsius μ , $\varphi'(\mu-1)N = (1-\mu)\varphi'(-N)$, unde facile colligitur, generaliter esse debere $\frac{\dot{\varphi}'\Delta}{\Lambda}$ quantitatem constantem, quam per k designabimus. Hinc fit, $\log \varphi \Delta =$ $\pm k\Delta\Delta$ + Const., sive designando basin logarithmorum hyperbolicorum per e, supponendoque Const. = $\log x$,

$$\varphi \Delta = x e^{\frac{1}{2}k\Delta \Delta}$$

Porro facile perspicitur, k necessario negativam esse debere, quo Ω revera fieri possit maximum, quamobrem statuemus $\frac{1}{4}k = -hh$; et quum per theorema elegans primo ab ill. Laplace inventum, integrale $\int e^{-hh\Delta\Delta} d\Delta$, a $\Delta = -\infty$ usque ad $\Delta = +\infty$, fiat $= \frac{\sqrt{\pi}}{h}$ (denotando per π semicircumferentiam circuli cuius radius 1), functio nostra fiet

$$\varphi \Delta = \frac{h}{\sqrt{\pi}} e^{-hh\Delta\Delta}$$

178.

Functio modo eruta omni quidem rigore errorum probabilitates exprimere certo non potest: quum enim errores possibiles semper limitibus certis coërceantur, errorum maiorum probabilitas semper evadere deberet = 0, dum formula nostra semper valorem finitum exhibet. Attamen hic defectus, quo omnis functio analytica natura sua laborare debet, ad omnes usus practicos nullius momenti est, quum valor functionis nostrae tam rapide decrescat, quamprimum $h\Delta$ valorem considerabilem acquisivit, ut tuto ipsi 0 aequivalens censeri possit. Praeterea ipsos errorum limites absoluto rigore assignare, rei natura numquam permittet.

Ceterum constans h tamquam mensura praecisionis observationum considerari poterit. Si enim probabilitas erroris Δ in aliquo observationum systemate per $\frac{h}{\sqrt{\pi}}e^{-hh\Delta\Delta}$, in alio vero systemate observationum magis minusve exactarum per $\frac{h'}{\sqrt{\pi}}e^{-h'h'\Delta\Delta}$ exprimi concipitur, exspectatio, in observatione aliqua e systemate priori errorem inter limites $-\delta$ et $+\delta$ contineri, exprimetur per integrale $\int_{\sqrt{\pi}}^{h}e^{-hh\Delta\Delta}\mathrm{d}\Delta$ a $\Delta=-\delta$ usque ad $\Delta=+\delta$ sumtum, et perinde exspectatio, errorem alicuius observationis e systemate posteriori limites $-\delta$ et $+\delta$ non egredi, exprimetur per integrale $\int_{\sqrt{\pi}}^{h'}e^{-h'h'\Delta\Delta}\mathrm{d}\Delta$ a $\Delta=-\delta$ usque ad $\Delta=+\delta$ extensum: ambo autem integralia manifesto aequalia fiunt, quoties habetur $h\delta=h'\delta$. Quodsi igitur e. g. h'=2h, aeque facile in systemate priori error duplex committi poterit, ac simplex in posteriori, in quo casu observationibus posterioribus secundum vulgarem loquendi morem praecisio duplex tribuitur.

G. TH. M.

30

179.

Iam ea quae ex hac lege sequentur evolvemus. Sponte patet, ut productum $\Omega = h^{\mu} \pi^{-\frac{1}{4}\mu} e^{-hh(vv+v'v'+v''v''+...)}$ fiat maximum, aggregatum vv+v'v'+v''v''+ etc. minimum fieri debere. Systema itaque maxime probabile valorum incognitarum p, q, r, s etc. id erit, in quo quadrata differentiarum inter functionum V, V', V'' etc. valores observatos et computatos summam minimam efficiunt, siquidem in omnibus observationibus idem praecisionis gradus praesumendus est.

Hocce principium, quod in omnibus applicationibus mathesis ad philosophiam naturalem usum frequentissimum offert, ubique axiomatis loco eodem iure valere debet, quo medium arithmeticum inter plures valores observatos eiusdem quantitatis tamquam valor maxime probabilis adoptatur.

Ad observationes praecisionis inaequalis principium nullo iam negotio extendi potest. Scilicet si mensura praecisionis observationum, per quas inventum est V = M, V' = M', V'' = M'' etc. resp. per h, h', h'' etc. exprimitur, i. e. si supponitur, errores his quantitatibus reciproce proportionales in istis observationibus aeque facile committi potuisse, manifesto hoc idem erit, ac si per observationes praecisionis aequalis (cuius mensura = 1) valores functionum hV, h'V', h''V'' etc. immediate inventi essent = hM, h'M', h''M'' etc.: quamobrem systema maxime probabile valorum pro quantitatibus p, q, r, s etc. id erit, ubi aggregatum hhvv+h'h'v'v+h''h''v''v'+ etc. i. e. ubi summa quadratorum differentiarum inter valores revera observatos et computatos per numeros qui praecisionis gradum metiuntur multiplicatarum fit minimum. Hoc pacto ne necessarium quidem est, ut functiones V, V', V'' etc. ad quantitates homogeneas referantur, sed heterogeneas quoque (e. g. minuta secunda arcuum et temporis) repraesentare poterunt, si modo rationem errorum, qui in singulis aeque facile committi potuerunt, aestimare licet.

180.

Principium in art. praec. expositum eo quoque nomine se commendat, quod determinatio incognitarum numerica ad algorithmum expeditissimum reducitur, quoties functiones V, V', V'' etc. lineares sunt. Supponamus essa

$$M - V = v = -m + ap + bq + cr + ds + \text{etc.}$$

 $M' - V' = v' = -m' + a'p + b'q + c'r + d's + \text{etc.}$
 $M'' - V'' = v'' = -m'' + a''p + b''q + c''r + d''s + \text{etc.}$

etc., statuamusque

$$av + a'v' + a''v'' + \text{etc.} = P$$

 $bv + b'v' + b''v'' + \text{etc.} = Q$
 $cv + c'v' + c''v'' + \text{etc.} = R$
 $dv + d'v' + d''v'' + \text{etc.} = S$

etc. Tunc v aequationes art. 177., e quibus incognitarum valores determinare oportet, manifesto hae erunt:

$$P = 0$$
, $Q = 0$, $R = 0$, $S = 0$, etc.

siquidem observationes aeque bonas supponimus, ad quem casum reliquos reducere in art. praec. docuimus. Adsunt itaque totidem aequationes lineares, quot incognitae determinandae sunt, unde harum valores per eliminationem vulgarem elicientur.

Videamus nunc, utrum haec eliminatio semper possibilis sit, an umquam solutio indeterminata vel adeo impossibilis evadere possit. Ex eliminationis theoria constat, casum secundum vel tertium tunc locum habiturum esse, quando ex aequationibus P=0, Q=0, R=0, S=0 etc., omissa una, aequatio conflari potest vel identica cum omissa vel eidem repugnans, sive quod eodem redit, quando assignare licet functionem linearem $\alpha P + \delta Q + \gamma R + \delta S + \text{etc.}$, quae fit identice vel = 0 vel saltem ab omnibus incognitis p, q, r, s etc. libera. Supponamus itaque fieri $\alpha P + \delta Q + \gamma R + \delta S + \text{etc.} = x$. Sponte habetur aequatio identica

$$(v+m)v+(v'+m')v'+(v''+m'')v''+$$
 etc. = $pP+qQ+rR+sS+$ etc.

Quodsi itaque per substitutiones $p = \alpha x$, q = 6x, $r = \gamma x$, $s = \delta x$ etc. functiones v, v', v'' etc. resp. in $-m + \lambda x$, $-m' + \lambda' x$, $-m'' + \lambda'' x$ etc. transire supponimus, manifesto aderit aequatio identica

$$(\lambda \lambda + \lambda' \lambda' + \lambda'' \lambda'' + \text{etc.}) x x - (\lambda m + \lambda' m' + \lambda'' m'' \text{ etc.}) x = x x$$

i. e. erit $\lambda\lambda + \lambda'\lambda' + \lambda''\lambda'' + \text{etc.} = 0$, $x + \lambda m + \lambda'm' + \lambda''m'' + \text{etc.} = 0$: hinc vero necessario esse debebit $\lambda = 0$, $\lambda' = 0$, $\lambda'' = 0$ etc. atque x = 0. Hinc patet, functiones omnes V, V', V'' etc. ita comparatas esse, ut valores ipsarum non mutentur, si quantitates p, q, r, s etc. capiant incrementa vel decrementa quaecunque numeris a, b, b, b etc. proportionalia: huiusmodi autem casus, in quibus manifesto determinatio incognitarum ne tunc quidem possibilis esset, si ipsi veri valores functionum V, V', V'' etc. darentur, huc non pertinere iam supra monuimus.

Ceterum ad casum hic consideratum omnes reliquos, ubi functiones V, V', V'' etc. non sunt lineares, facile reducere possumus. Scilicet designantibus π , χ , ρ , σ etc. valores approximatos incognitarum p, q, r, s etc. (quos facile eliciemus, si ex μ aequationibus V = M, V' = M', V'' = M'' etc. primo ν tantum in usum vocamus), introducemus incognitarum loco alias p', q', r', s' etc., statuendo $p = \pi + p'$, $q = \chi + q'$, $r = \rho + r'$, $s = \sigma + s'$ etc.: manifesto harum novarum incognitarum valores tam parvi erunt, ut quadrata productaque negligere liceat, quo pacto aequationes sponte evadent lineares. Quodsi dein calculo absoluto contra exspectationem valores incognitarum p', q', r', s' etc. tanti emergerent, ut parum tutum videatur, quadrata productaque neglexisse, eiusdem operationis repetitio (acceptis loco ipsarum π , χ , ρ , σ etc. valoribus correctis ipsarum p, q, r, s etc.) remedium promtum afferet.

181.

Quoties itaque unica tantum incognita p adest, ad cuius determinationem valores functionum ap+n, a'p+n', a''p+n'' etc. resp. inventi sunt =M, M', M'' etc. et quidem per observationes aeque exactas, valor maxime probabilis ipsius p erit .

$$= \frac{a m + a' m' + a'' m'' + \text{etc.}}{a a + a' a' + a'' a'' + \text{etc.}} = A$$

scribendo m, m', m'' etc. pro M-n, M'-n', M''-n'' etc.

Iam ut gradus praecisionis in hoc valore praesumendae aestimetur, supponemus, probabilitatem erroris Δ in observationibus exprimi per $\frac{h}{\sqrt{\pi}}e^{-hh\Delta\Delta}$. Hinc probabilitas, valorem verum ipsius p esse =A+p', proportionalis erit functioni

$$e^{-hh((ap-m)^2+(a'p-m')^2+(a''p-m'')^2+\text{ etc.})}$$

si pro p substituitur A+p'. Exponens huius functionis reduci potest ad formam -hh(aa+a'a'+a''a''+etc.)(pp-2pA+B), ubi B a p independens est: proin functio ipsa proportionalis erit huic

$$e^{-hh(a a + a'a' + a''a'' + \text{ etc.})p'p'}$$

Patet itaque, valori A eundem praecisionis gradum tribuendum esse, ac si inventus esset per observationem immediatam, cuius praecisio ad praecisionem observationum primitivarum esset ut $h\sqrt{(a a + a'a' + a''a'' + \text{etc.})}$ ad h, sive ut $\sqrt{(a a + a'a' + a''a'' + \text{etc.})}$ ad 1.

182.

Disquisitioni de gradu praecisionis incognitarum valoribus tribuendo, quoties plures adsunt, praemittere oportebit considerationem accuratiorem functionis vv + v'v' + v''v'' + etc., quam per W denotabimus.

- I. Statuamus $\frac{1}{2} \frac{dW}{dp} = p' = \lambda + \alpha p + 6 q + \gamma r + \delta s + \text{etc.}$, atque $W \frac{p'p'}{a} = W'$, patetque fieri p' = P, et, quum sit $\frac{dW'}{dp} = \frac{dW}{dp} \frac{2p'}{a} \cdot \frac{dp'}{dp} = 0$, functionem W' a p liberam fore. Coefficiens $\alpha = aa + a'a' + a''a'' + \text{etc.}$ manifesto semper erit quantitas positiva.
- II. Perinde statuemus $\frac{1}{2} \cdot \frac{dW'}{dq} = q' = \lambda' + \delta' q + \gamma' r + \delta' s + \text{etc.}$, atque $W' \frac{d'q'}{\delta'} = W''$, eritque $q' = \frac{1}{2} \cdot \frac{dW}{dq} \frac{p'}{a} \cdot \frac{dp'}{dq} = Q \frac{6}{a} \cdot p'$, atque $\frac{dW''}{dq} = 0$, unde patet, functionem W'' tum a p tum a q liberam fore. Hace locum non haberent, si fieri posset $\delta' = 0$. Sed patet, W' oriri ex vv + v'v' + v''v'' + etc., eliminata quantitate p ex v, v', v'' etc. adiumento aequationis p' = 0; hinc δ' erit summa coefficientium ipsius qq in vv, v'v', v''v'' etc. post illam eliminationem, hi vero singuli coefficientes ipsi sunt quadrata, neque omnes simul evanescere possunt, nisi in casu supra excluso, ubi incognitae indeterminatae manent. Patet itaque, δ' esse debere quantitatem positivam.
- III. Statuendo denuo $\frac{1}{4} \cdot \frac{\mathrm{d} W''}{\mathrm{d} r} = r' = \lambda'' + \gamma'' r + \delta'' s + \mathrm{etc.}$, atque $W'' \frac{r'r'}{\gamma''} = W'''$, erit $r' = R \frac{\gamma}{a} p' \frac{\gamma}{6}, q'$, atque W''' libera tum a p, tum a q, tum a r. Ceterum coëfficientem γ'' necessario positivum fieri, simili modo probatur, ut in II. Facile scilicet perspicitur, γ'' esse summam coëfficientium ipsius rr in vv, v'v', v''v'' etc., postquam quantitates p, et q adiumento aequationum p' = 0, q' = 0 ex v, v', v'' etc. eliminatae sunt.

IV. Eodem modo statuendo $\frac{1}{2} \frac{d W'''}{ds} = s' = \lambda''' + \delta'''s + \text{etc.}, \quad W'''' = W''' - \frac{\delta'\delta'}{\delta'''}, \text{ erit } s' = S - \frac{\delta}{a} p' - \frac{\delta'}{6'} q' - \frac{\delta''}{\gamma''} r', \quad W'''' \text{ a } p, q, r, s \text{ libera, atque } \delta'''$ quantitas positiva.

V. Hoc modo, si praeter p, q, r, s adhuc aliae incognitae adsunt, ulterius progredi licebit, ita ut tandem habeatur

$$W = \frac{1}{a} p'p' + \frac{1}{6} q'q' + \frac{1}{7''} r'r' + \frac{1}{6'''} s's' + \text{etc.} + \text{Const.}$$

ubi omnes coëfficientes a, 6', γ", ô" etc. erunt quantitates positivae.

VI. Iam probabilitas alicuius systematis valorum determinatorum pro quantitatibus p, q, r, s etc. proportionalis est functioni e^{-hhW} , quamobrem, manente valore quantitatis p indeterminato, probabilitas systematis valorum determinatorum pro reliquis, proportionalis erit integrali $\int e^{-hhW} dp$ a $p = -\infty$ usque ad $p = +\infty$ extenso, quod per theorema ill. Laplace fit

$$= h^{-1} a^{-\frac{1}{2}} \pi^{\frac{1}{2}} e^{-hh(\frac{1}{6'}q'q' + \frac{1}{7''}r'r' + \frac{1}{8'''}s's' + \text{etc.})}$$

haecce itaque probabilitas proportionalis erit functioni $e^{-hhW'}$. Perinde si insuper q tamquam indeterminata tractatur, probabilitas systematis valorum determinatorum pro r, s etc. proportionalis erit integrali $\int e^{-hhW'} dq$ a $q = -\infty$ usque ad $q = +\infty$ extenso, quod fit

$$=h^{-1}6^{\prime -\frac{1}{2}}\pi^{\frac{1}{2}}e^{-hh}(\frac{1}{7''}r'r'+\frac{1}{8'''}s's'+\text{etc.})$$

sive proportionalis functioni $e^{-hhW''}$: Prorsus simili modo, si etiam r tamquam indeterminata consideratur, probabilitas valorum determinatorum pro reliquis s etc. proportionalis erit functioni $e^{-hhW'''}$ et sic porro. Supponamus, incognitarum numerum ad quatuor ascendere, eadem enim conclusio valebit, si maior vel minor est. Valor maxime probabilis ipsius s hic erit $=-\frac{h'''}{h'''}$, probabilitasque, hunc a vero differentia σ distare, proportionalis erit functioni $e^{-hhh'''s}$, unde concludimus, mensuram praecisionis relativae isti determinationi tribuendae exprimi per $\sqrt{h'''}$, si mensura praecisionis observationibus primitivis tribuendae statuatur =1.

183.

Per methodum art. praec. mensura praecisionis pro ea sola incognita commode exprimitur, cui in eliminationis negotio ultimus locus assignatus est, quod incommodum ut evitemus, coëfficientem δ^m alio modo exprimere conveniet. Exaequationibus

$$P = p'$$

$$Q = q' + \frac{6}{a}p'$$

$$R = r' + \frac{1}{6'}q' + \frac{1}{a}p'$$

$$S = s' + \frac{\delta''}{7''}r' + \frac{\delta'}{6'}q' + \frac{\delta}{a}p'$$

sequitur, ipsas p', q', r', \dot{s}' per P, Q, R, S ita exprimi posse

$$\begin{aligned} p' &= P \\ q' &= Q + \mathfrak{A}P \\ r' &= R + \mathfrak{B}'Q + \mathfrak{A}'P \\ s' &= S + \mathfrak{C}''R + \mathfrak{B}''Q + \mathfrak{A}''P \end{aligned}$$

ita ut A, A', B', A", B", C" sint quantitates determinatae. Erit itaque (incognitarum numerum ad quatuor restringendo)

$$s = -\frac{\lambda'''}{\delta'''} + \frac{\mathfrak{A}''}{\delta'''} P + \frac{\mathfrak{B}''}{\delta'''} Q + \frac{\mathfrak{C}''}{\delta'''} R + \frac{1}{\delta'''} S$$

Hinc conclusionem sequentem deducimus. Valores maxime probabiles incognitarum p, q, r, s etc. per eliminationem ex aequationibus P = 0, Q = 0, R = 0, S = 0 etc. deducendi, manifesto, si aliquantisper P, Q, R, S etc. tamquam indeterminatae spectentur, secundum eandem eliminationis operationem in forma lineari per P, Q, R, S etc. exprimentur, ita ut habeatur

$$p = L + AP + BQ + CR + DS + \text{etc.}$$

 $q = L' + A'P + B'Q + C'R + D'S + \text{etc.}$
 $r = L'' + A''P + B''Q + C''R + D''S + \text{etc.}$
 $s = L''' + A'''P + B'''Q + C'''R + D'''S + \text{etc.}$

His ita factis, valores maxime probaliles ipsarum p, q, r, s etc. manifesto erunt resp. L, L', L'' etc., mensuraque praecisionis his determinationibus tribuendae resp. exprimetur per $\sqrt{\frac{1}{A}}, \sqrt{\frac{1}{B'}}, \sqrt{\frac{1}{C''}}, \sqrt{\frac{1}{D'''}}$ etc., posita praecisione observationum primitivarum = 1. Quae enim de determinatione incognitae s ante demonstravimus (pro qua δ''' respondet ipsi $\frac{1}{D'''}$), per solam incognitarum permutationem ad omnes reliquas transferre licebit.

184.

Ut disquisitiones praecedentes per exemplum illustrentur, supponamus, per observationes, in quibus praecisio aequalis praesumenda sit, inventum esse

$$p-q+2r = 3$$

 $3p+2q-5r = 5$
 $4p+q+4r = 21$

per quartam vero, cui praecisio dimidia tantum tribuenda est, prodiisse

$$-2p+6q+6r=28$$

Loco aequationis ultimae itaque hanc substituemus

$$-p+3q+3r=14$$

hancque ex observatione prioribus praecisione aequali provenisse supponemus. Hinc fit

$$P = 27p + 6q - 88$$

$$Q = 6p + 15q + r - 70$$

$$R = q + 54r - 107$$

atque hinc per eliminationem

$$19899 p = 49154 + 809 P - 324 Q + 6R$$

$$19899 q = 70659 - 324 P + 1458 Q - 27 R$$

$$19899 r = 38721 + 6P - 27 Q + 369 R$$

Incognitarum itaque valores maxime probabiles erunt

$$p = 2,470$$

 $q = 3,551$
 $r = 1,916$

atque praecisio relativa his determinationibus tribuenda, posita praecisione observationum primitivarum = 1,

pro
$$p \dots \sqrt{\frac{19899}{809}} = 4,96$$

pro $q \dots \sqrt{\frac{19899}{1458}} = 3,69$
pro $r \dots \sqrt{\frac{19899}{369}} = 7,34$

185.

Argumentum hactenus pertractatum pluribus disquisitionibus analyticis elegantibus occasionem dare posset, quibus tamen hic non immoramur, ne nimis ab instituto nostro distrahamur. Eadem ratione expositionem artificiorum, per quae calculus numericus ad algorithmum magis expeditum reduci potest, ad aliam occasionem nobis reservare debemus. Unicam observationem hic adiicere liceat. Quoties multitudo functionum seu aequationum propositarum considerabilis est, calculus ideo potissimum paullo molestior evadit, quod coëfficientes per quos aequationes primitivae multiplicandae sunt ut $P,\ Q,\ R,\ S$ etc. obtineantur, plerumque fractiones decimales parum commodas involvunt. Si in hoc casu operae pretium non videtur, has multiplicationes adiumento tabularum logarithmicarum quam accuratissime perficere, in plerisque casibus sufficiet, horum multiplicatorum loco alios ad calculum commodiores adhibere, qui ab illis parum differant. Haecce licentia errores sensibiles producere nequit, eo tantummodo casu excepto, ubi mensura praecisionis in determinatione incognitarum multo minor evadit, quam praecisio observationum primitivarum fuerat.

186.

Ceterum principium, quod quadrata differentiarum inter quantitates observatas et computatas summam quam minimam producere debeant, etiam independenter a calculo probabilitatis sequenti modo considerari poterit.

Quoties multitudo incognitarum multitudini quantitatum observatarum independentium aequalis est, illas ita determinare licet, ut his exacte satisfiat. Quoties autem multitudo illa hac minor est, consensus absolute exactus obtineri nequit, quatenus observationes praecisione absoluta non gaudent. In hoc itaque casu operam dare oportet, ut consensus quam optimus stabiliatur, sive ut differentiae quantum fieri potest extenuentur. Haec vero notio natura sua aliquid vagi involvit. Etiamsi enim systema valorum pro incognitis, quod omnes diffeg. TH. M.

rentias resp. minores reddit quam aliud, procul dubio huic praeferendum sit, nihilominus optio inter duo systemata, quorum alterum in aliis observationibus consensum meliorem offert, alterum in aliis, arbitrio nostro quodammodo relinquitur, manifestoque innumera principia diversa proponi possunt, per quae conditio prior impletur. Designando differentias inter observationes et calculum per Δ , Δ' , Δ'' etc., conditioni priori non modo satisfiet, si $\Delta \Delta + \Delta' \Delta' + \Delta'' \Delta'' +$ etc. fit minimum (quod est principium nostrum), sed etiam si $\Delta^4 + \Delta'^4 + \Delta''^4 +$ etc., vel $\Delta^6 + \Delta'^6 + \Delta''^6 +$ etc., vel generaliter summa potestatum exponentis cuiuscunque paris in minimum abit. Sed ex omnibus his principiis nostrum simplicissimum est, dum in reliquis ad calculos complicatissimos deferremur. Ceterum principium nostrum, quo iam inde ab anno 1795 usi sumus, nuper etiam a clar. Legendre in opere Nouvelles méthodes pour la détermination des orbites des comètes, Paris 1806 prolatum est, ubi plures aliae proprietates huius principii expositae sunt, quas hic brevitatis caussa supprimimus.

Si potestatem exponentis paris infinite magni adoptaremus, ad systema id reduceremur, in quo differentiae maximae fiunt quam minimae.

Ill. Laplace ad solutionem aequationum linearium, quarum multitudo maior est quam multitudo quantitatum incognitarum, principio alio utitur, quod olim iam a clar. Boscovich propositum erat, scilicet ut differentiae ipsae sed omnes positive sumtae summam minimam conficiant. Facile ostendi potest, systema valorum incognitarum, quod ex hoc solo principio erutum sit, necessario*) tot aequationibus e propositarum numero exacte satisfacere debere, quot sint incognitae, ita ut reliquae aequationes eatenus tantum in considerationem veniant, quatenus ad optionem decidendam conferunt: si itaque e. g. aequatio V = M est ex earum numero, quibus non satisfit, systema valorum secundum illud principium inventorum nihil mutaretur, etiamsi loco ipsius M valor quicunque alius N observatus esset, si modo designando per n valorem computatum, differentiae M-n, et N-n eodem signo affectae sint. Ceterum ill. Laplace principium istud per adiectionem conditionis novae quodammodo temperat: postulat scilicet, ut summa differentiarum ipsa, signis non mutatis, fiat m=0. Hinc efficitur, ut multitudo aequationum exacte repraesentatarum unitate minor fiat quam multitudo

^{*)} Casibus specialibus exceptis, ubi solutio quodammodo indeterminata manet.

quantitatum incognitarum, verumtamen quod ante observavimus etiamnum locum habebit, siquidem duae saltem incognitae affuerint.

187.

Revertimur ab his disquisitionibus generalibus ad propositum nostrum proprium, cuius caussa illae susceptae fuerant. Antequam determinationem quam exactissimam orbitae ex observationibus pluribus, quam quot necessario requiruntur, aggredi liceat, determinatio approximata iam adesse debet, quae ab omni-Correctiones his elementis bus observationibus datis haud multum discrepet. approximatis adhuc applicandae, ut consensus quam accuratissimus efficiatur, tamquam problematis quaesita considerabuntur. Quas quum tam exiguas evasuras esse supponi possit, ut quadrata productaque negligere liceat, variationes, quas corporis coelestis loca geocentrica computata inde nanciscuntur, per formulas differentiales in Sect. secunda Libri primi traditas computari poterunt. Loca igitur secundum elementa correcta quae quaerimus computata, exhibebuntur per functiones lineares correctionum elementorum, illorumque comparatio cum locis observatis secundum principia supra exposita ad determinationem valorum maxime probabilium perducet. Hae operationes tanta simplicitate gaudent, ut ulteriori illustratione opus non habeant, sponteque patet, observationes quotcunque et quantumvis ab invicem remotas in usum vocari posse. — Eadem methodo etiam ad correctionem orbitarum parabolicarum cometarum uti licet, si forte observationum series longior adest, consensusque quam optimus postulatur.

188.

Methodus praecedens iis potissimum casibus adaptata est, ubi praecisio summa desideratur: saepissime autem occurrunt casus, ubi sine haesitatione paullulum ab illa remitti potest, si hoc modo calculi prolixitatem considerabiliter contrahere licet, praesertim quando observationes magnum temporis intervallum nondum includunt: adeoque de orbitae determinatione ut sic dicam definitiva nondum cogitatur. In talibus casibus methodus sequens lucro notabili in usum vocari poterit.

Eligantur e tota observationum copia duo loca completa L et L', computenturque pro temporibus respondentibus ex elementis approximatis corporis coelestis distantiae a terra. Formentur dein respectu harum distantiarum tres

hypotheses, retentis in prima valoribus computatis, mutataque in hypothesi secunda distantia prima, secundaque in hypothesi tertia; utraque mutatio pro ratione incertitudinis, quae in illis distantiis remanere praesumitur, ad lubitum accipi poterit. Secundum has tres hypotheses, quas in schemate sequente exhibemus,

	Hyp. I.	Нур. И.	Hyp. 11I.
Distantia*) loco primo respondens	D	$D+\delta$	\overline{D}
Distantia loco secundo respondens	D'	D'	$D'+\delta'$

computentur e duobus locis L, L' per methodos in Libro primo explicatas tria elementorum systemata, ac dein ex his singulis loca geocentrica corporis coelestis temporibus omnium reliquarum observationum respondentia. Sint haec (singulis longitudinibus et latitudinibus, vel ascensionibus rectis et declinationibus seorsim denotatis)

in systemate primo
$$M$$
, M' , M'' etc. in systemate secundo . . . $M+a$, $M'+a'$, $M''+a''$ etc. in systemate tertio $M+6$, $M'+6'$, $M''+6''$ etc. Sint porro resp. loca observata . . . N , N' , N'' etc.

Iam quatenus mutationibus parvis distantiarum D, D' respondent mutationes proportionales singulorum elementorum, nec non locorum geocentricorum ex his computatorum; supponere licebit, loca geocentrica e quarto elementorum systemate computata, quod distantiis a terra $D+x\delta$, $D'+y\delta'$ superstructum sit, resp. fore M+ax+by, M'+a'x+b'y, M''+a''x+b''y, etc. Hinc dein, secundum disquisitiones praecedentes, quantitates x, y ita determinabuntur, ut illae quantitates cum N, N', N'' etc. resp. quam optime consentiant (ratione praecisionis relativae observationum habita). Systema elementorum correctum ipsum vel perinde ex L, L' et distantiis $D+x\delta$, $D'+y\delta'$, vel secundum regulas notas e tribus elementorum systematibus primis per simplicem interpolationem derivari poterit.

^{*)} Adhuc commodius erit, loco distantiarum ipsarum logarithmis distantiarum curtatarum uti.

189.

Methodus haecce a praecedente in eo tantum differt, quod duobus locis geocentricis exacte, ac dein reliquis quam exactissime satisfit, dum secundum methodum alteram observatio nulla reliquis praefertur, sed errores quantum fieri potest inter omnes distribuuntur. Methodus art. praec. itaque priori eatenus tantum postponenda erit, quatenus locis L, L' aliquam errorum partem recipientibus errores in locis reliquis notabiliter diminuere licet: attamen plerumque per idoneam electionem observationum L, L' facile caveri potest, ne haec differentia magni momenti evadere possit. Operam scilicet dare oportebit, ut pro L, L' tales observationes adoptentur, quae non solum exquisita praecisione gaudeant, sed ita quoque comparatae sint, ut elementa ex ipsis distantiisque derivata a variationibus parvis ipsarum positionum geocentricarum non nimis afficiantur. Parum prudenter itaque ageres, si observationes parvo temporis intervallo ab invicem distantes eligeres, talesve, quibus loci heliocentrici proxime oppositi vel coincidentes responderent.

SECTIO QUARTA

De determinatione orbitarum, habita ratione perturbationum.

190.

Perturbationes, quas planetarum motus per actionem planetarum reliquorum patiuntur, tam exiguae lentaeque sunt, ut post longius demum temporis intervallum sensibiles fiant: intra tempus brevius — vel adeo, prout circumstantiae sunt, per revolutionem integram unam pluresve — motus tam parum differet a motu in ellipsi perfecta secundum leges Kepleri exacte descripta, ut observationes deviationem indicare non valeant. Quamdiu res ita se habet, operae haud pretium esset, calculum praematurum perturbationum suscipere, sed potius sufficiet, sectionem conicam quasi osculatricem observationibus adaptare: dein vero, postquam planeta per tempus longius accurate observatus est, effectus perturbationum tandem ita se manifestabit, ut non amplius possibile sit, omnes observationes per motum pure ellipticum exacte conciliare; tunc itaque harmonia completa et stabilis parari non poterit, nisi perturbationes cum motu elliptico rite iungantur.

Quum determinatio elementorum ellipticorum, cum quibus perturbationes iungendae sunt, ut observationes exacte repraesententur, illarum cognitionem supponat, vicissim vero theoria perturbationum accurate stabiliri nequeat, nisi elementa iam proxime cognita sint: natura rei non permittit, arduum hoc negotium primo statim conatu perfectissime absolvere, sed potius perturbationes et elementa per correctiones alternis demum vicibus pluries repetitas ad summum praecisionis

fastigium evehi poterunt. Prima itaque perturbationum theoria superstructur elementis pure ellipticis, quae observationibus proxime adaptata fuerant: dein orbita nova investigabitur, quae cum his perturbationibus iuncta observationibus quam proxime satisfaciat. Quae si a priori considerabiliter discrepat, iterata perturbationum evolutio ipsi superstruenda erit, quae correctiones alternis vicibus toties repetentur, donec observationes, elementa et perturbationes quam arctissime consentiant.

191.

Quum evolutio theoriae perturbationum ex elementis datis ab instituto nostro aliena sit, hic tantummodo ostendendum erit, quomodo orbita approximata ita corrigi possit, ut cum perturbationibus datis iuncta observationibus satisfaciat quam proxime. Simplicissime hoc negotium absolvitur per methodum iis quas in artt. 124. 165. 188. exposuimus analogam. Pro temporibus omnium observationum quibus ad hunc finem uti propositum est, et quae prout res fert esse poterunt vel tres, vel quatuor vel plures, computabuntur ex aequationibus perturbationum harum valores numerici, tum pro longitudinibus in orbita, tum pro radiis vectoribus, tum pro latitudinibus heliocentricis: ad hunc calculum argumenta desumentur ex elementis ellipticis approximatis, quibus perturbationum theoria superstructa erat. Dein ex omnibus observationibus eligentur duae, pro quibus distantiae a terra ex iisdem elementis approximatis computabuntur: hae hypothesin primam constituent; hypothesis secunda et tertia formabuntur, distantiis illis paullulum mutatis. In singulis dein hypothesibus e duobus locis geocentricis determinabuntur positiones heliocentricae distantiaeque a Sole; ex illis, postquam latitudines a perturbationibus purgatae fuerint, deducentur longitudo nodi ascendentis, inclinatio orbitae, longitudinesque in orbita. In hoc calculo methodus art. 110. aliqua modificatione opus habet, siquidem ad variationem secularem longitudinis nodi et inclinationis respicere operae pretium videtur. Scilicet designantibus 6, 6' latitudines heliocentricas a perturbationibus periodicis purgatas; \(\lambda\), \(\lambda'\) longitudines heliocentricas; Ω , $\Omega + \Delta$ longitudines nodi ascendentis; i, $i + \delta$ inclinationes orbitae; aequationes in hac forma exhibere conveniet:

$$\begin{aligned} & \tan \theta = \tan i \sin (\lambda - \Omega) \\ & \frac{\tan i}{\tan (i + \delta)} \tan \theta' = \tan i \sin (\lambda' - \Delta - \Omega) \end{aligned}$$

Hic valor ipsius $\frac{\tan i}{\tan (i+\delta)}$ omni praecisione necessaria obtinetur, substituendo pro i valorem approximatum: dein i et Ω per methodos vulgares erui poterunt.

A duabus porro longitudinibus in orbita, nec non a duobus radiis vectoribus aggregata perturbationum subtrahentur, ut valores pure elliptici prodeant. Hic vero etiam effectus, quem variationes seculares positionis perihelii et excentricitatis in longitudinem in orbita radiumque vectorem exserunt, et qui per formulas differentiales Sect. I. Libri primi determinandus est, statim cum perturbationibus periodicis iungendus est, siquidem observationes satis ab invicem distant, ut illius rationem habere operae pretium videatur. Ex his longitudinibus in orbita radiisque vectoribus correctis, una cum temporibus respondentibus, elementa reliqua determinabuntur: tandemque ex his elementis positiones geocentricae pro omnibus reliquis observationibus calculabuntur. Quibus cum observatis comparatis, eodem modo quem in art. 188. explicavimus systema id distantiarum elicietur, ex quo elementa omnibus reliquis observationibus quam optime satisfacientia demanabunt.

192.

Methodus in art. praec. exposita praecipue determinationi primae orbitae perturbationes implicantis accommodata est: quamprimum vero tum elementa media elliptica tum acquationes perturbationum proxime iam sunt cognitae, determinatio exactissima adiumento observationum quam plurimarum commodissime per methodum art. 187., absolvetur, quae hic explicatione peculiari opus non Quodsi hic observationum praestantissimarum copia satis magna est, magnumque temporis intervallum complectitur, haec methodus in pluribus casibus simul determinationi exactiori massarum planetarum perturbantium, saltem maiorum, inservire poterit. Scilicet, si massa cuiusdam planetae perturbantis in calculo perturbationum supposita nondum satis certa videtur, introducetur, praeter sex incognitas a correctionibus elementorum pendentes, adhucalia μ, statuendo rationem massae correctae ad massam suppositam ut $1+\mu$ ad 1; supponere tunc licebit, perturbationes ipsas in eadem ratione mutari, unde manifesto in singulis positionibus calculatis terminus novus linearis ipsam µ continens producetur, cuius evolutio nulli difficultati obnoxia erit. Comparatio positionum calculatarum cum observatis secundum principia supra exposita, simul cum correctionibus elementorum etiam correctionem µ suppeditabit. Quinadeo hoc modo massae

plurium planetarum exactius determinari poterunt, qui quidem perturbationes satis considerabiles exercent. Nullum dubium est, quin motus planetarum novorum, praesertim Palladis et Iunonis, qui tantas a Iove perturbationes patiuntur, post aliquot decennia hoc modo determinationem exactissimam massae Iovis allaturi sint: quinadeo forsan ipsam massam unius alteriusve horum planetarum novorum ex perturbationibus, quas in reliquos excercet, aliquando cognoscere licebit.

Digitized by Google

TABULAE.

A		Ellipsis	ı	I	Hyperbo	la
	$\log B$	C	T	$\log B$	σ	T
0,000	0	0	0,00000	0	٥	0,00000
0,001	0	•	100	0	0	100
0,002 0,003	0	2	301 301	0	2	200 299
0,004	i	4 7	40I	1	7	399
0,005	2	11	502	2	ιί	498
0,006	3	16	603	3	16	597
0,007	4	22	704	4	22	696
0,008	5	29	805	5 6	29	795 894
0,009 0,010	7	37 46	0,00907 0,01008	7	37 46	0,00992
0,011	9	56	110	9	55	0,01090
0,012	ní	66	212	11	55 66	189
0,013	13	78	314	13	77	287
0,014	15	90	416	15	89	384 482
0,015	17	103	518	17	102	402
0,016	19	118	621	19	116	580
0,01 <i>7</i> 0,018	22	133	723 826	21	131	677
0,019	24 27	149 166	0,01929	24 27	147 164	774 8 72
0,020	30	184	0,02032	30	182	0,01968
0,021	33	203	136	33	200	0,02065
0,022	33 36	223	239	33 36	220	162
0,023	40	244	343	39	240	258
0,024 0,025	43 47	265 288	447 551	43 46	261 283	355
	1 "	200		**	203	451
0,026	51	312	655	50	306	547
0,027	55	336	760	54	330	643
0,028 0,029	59 63	362 388	864 0 02969	54 58 62	355 381	739 834
0,030	67	416	0,03074	67	407	0,02930
0,031	72	444	179	71	435	0,03025
0,032	77	473	284	76 80	463	120
0,033	82	503	389	8 0	492	215
0,034	87	535	495	85	523	310
0,035	92	567	601	91	554	404
0,036	97	600	707	96	585	499
0,037	103	634	813	101	618	593 688
0,038	108	669	0,03919	107	652	
0,039 0,040	114	704 741	0,04025	112	686	. 782 876
					,	

A		Ellipsi	8	E	Iyperbo	la
	$\log B$	C	T	$\log \mathcal{B}$	c	T
0,040	120	741	0,041319	118	722	0,038757
0,041	126	779 818	2387	124	758	0,039695
0,042	133		3457	130	795	0,040632
0,043	139	858	4528	136	833	1567
0,044	146	898	560I	143	872	2500
0,045	152	940	6676	149	912	3432
0,046	159	982	7753	156	953	4363
0,047	166	1026	8831	163	994	5292
0,048	173	1070	0,049911	170	1037	6220
0,049	181	1116	0,050993	177	1080	7147
0, 05 0	188	1162	2077	184	1124	8072
0,051	196	1210	3163	191	1169	8995
0,052	204	1258	4250	199	1215	0,049917
0,053	212	1307	5339	207	1262	0,050838
0,054	220	1358	6430	215	1310	1757
0,055	228	1409	7523	223	1358	2675
0,056	236	1461	8618	231	1407	3592
0,057	245	1514	0,059714	239	1458	4507
0,058	254	1568	0,060812	247	1509	5420
0,059	263	1623	1912	256	1561	6332
0,060	272	1679	3014	265	1614	7243
0,061	281	1736	4118	273	1667	8152
0,062	290 ;	1794	5223	282	1722	9060
0,063	3∞	1853	6331	291	1777	0,059967
0,064	309	1913	7440	301	1833	0,060872
0,065	319	1974	8551	310	1891	1776
0,066	329	2036	0,069664	320	1949	2678
0,067	339	2099	0,070779	. 329	2007	3579
0,068	350	2163	1896	339	2067	4479
0,069	360	2228	3014	349	2128	5377
0,070	371	2294	4 ¹ 35	359	2189	6274
0,071	381	2360	5257	370	2251	7170
0 072	392	2428	6381	380	2314	8064
0,073	403	2497	7507	390	2378	8957
0,074	415	2567	8635	401	2443	0,069848
0,075	426	2638	0,079765	412	2509	0,070738
0,076	437	2709	0,080897	423	² 575	1627
0,077	449	2782	2030	434	2643	2514
0,078	461	2856	3166	445	2711	3400
0,079	473	2930	4303	457	2780	4285
0,08 0	485	3006	5443	468	2850	5168

A	Ellipsis]	Hyperbo	la
	$\log B$	c	T	$\log B$. c	T
0,060	485	3006	0,085443	468	2850	0,075168
0,081	498	3083	6584	480	2921	6050
0,082	510	3160	7727	492	2992	6930
0,083	523	32.89	0,088872	504	3065	7810 8688
0,084 0,085	53.5	3319	0,090019	516 528	3138	
0,085	548	3399	1166	526	3212	0,079564
0,086	561	3481	2319	54 0	3287	0,080439
0,087	575	3564	3472	558	3363	1313
0,088	588	3 ⁶ 47	4627	566	3440	2186
0,089	60s	3732	5784	578	3517	3057
o, os jo	625	3818	6945	59 t	3595	3927
0,091	629	3904	8104	604	3674	4796
0,094	648	3992	0,099266	618	3754	5663
0,098	658	4081	0,100431	631	3885	6529
0,094	67e	4170	1598	645	3917	7394
0,095	687	4261	2766	658	3999	8257
				6		
0,096	70I	4353	3937	672 686	4083	0,089980
0,097	716	4446	51 10 6284		4167	0,009900
	731 746	4539 4634	7461	700 714	4252 4358	1698
0,099	762	4730	8640	728	4330	2555
9,33	,			,	11-1	-333
101,0	777	4826	0,109820	743	4512	3410
0,102	798	4924	0,111003	758	4600	4265
0,103	80g	5023	2188	772	4689	5118
0,104	825	51e3	3375	787	4779	5969
0,105	84z	5204	4569	80s	4870	6820
0,106	857	5925	5754	817	4962	7669
0,107	878	548	6947	833	5054	8517
0,108	89 0	5582	814 <u>2</u>	848	5148	0,099364
0,109	907	5637	0,119839	864	5242	0,100209
0,110	944	5743	0,120588	88 0	5337	1053
0,111	947	5850	1739	8 95	5482	1896
0,112	958	5958	2942	911	5529	2738
0,113	975	6067	4148	928	5626	3578
0,114	998	6177	5355	944	5724	4417
0,115	1011	6488	6564	960	5823	5455
0,116	1049	6400	7776	977	5923	6092
0,117	1047	6513	0,128989	994	6024	6927
0,118	1065	6627	0,130205	IOTO	6125	7761
0,119	1083 -	6742	1423	1027	6228	8594
0,720	HOE	6858	2643	1045	6331	9426
						[
		l	<u> </u>	<u> </u>	·	

بعت حجدوج						
A	Ellipsis			I	Hyperbo	ola
	$\log B$	C	T	log B	C	T
0,120	1102	6858	0,132643	1045	6331	0,109426
0,121	II2I	6976	3865	1062	6435	0,110256
0,122	1139	7094	5089	. 1079	6539	1085
0,123	1158	7213	6315	1097	6645	1913
0,124	1178	7534	7543	1114	6751 6858	2740 3566
0,125	1197	7455	0,138774	1132	w ₅ o	3500
0,126	1217	7 57 7	0,140007	1150	6966	4390
0,127	1236	7701	1241	1268	7075	5213
0,128	1256	7825	2478	1186	7185	6035
0,129	1276	795 ¹	3717	1205	7295	6855
0,130	1296	8077	4959	1223	7406	76 75
0,131	1317	8205	6202	1242	7518	8493
0,132	1337	8334	7448	1261	7631	0,119310
0,133	1358	8463	8695	1280	7745	0,120126
0,134	1378	8594	0,149945	1299	7859	0940
0,135	1399	8726	0,151197	1318	7974	1754
0,136	1421	8859	2452	1337	8090	2566
0,137	1442	8993	3708	1357	8207	3377
0,138	1463	9128	4967	1376	8325	4186
0,139	1485	9264	6228	1396	8443	4995
0,140	1507	9401	7491	1416	8562	5802
0.747	7,520	0.530	0,158756	1436	8682	66og
0,141 0,142	1529 1551	9539 9678	0,160024	1456	8803	7414
0,143	1573	9819	1294	1476	8925	8217
0,144	1596	9960	2566	1497	9047	9020
0,145	1618	10102	3840	1517	9170	0,129822
0,146	1641	10246	5116	1538	9 29 4	0,130622
0,147	1664	10390	6395	1559	9419	1421
0,148	r687	10536	7676	1580	9545	2219
0,149	1710	10683	0,168959	1601	9671	3016
0,150	1734	10830	0,170245	1622	9798	3812
0,151	1757	10979	1533	1643	9926	4606
0,152	1781	11129	2823	1665	10055	5399
0,153	1805	11280	4115	1686	10185	6191
0,154	1829	11432	5410	1708	10315	6982
0,155	1854	11585	67 07	1730	10446	7772
0,156	1878	11739	8006	1752	10578	8561
0,157	1903	11/39	0,179308	1774	10711	0,139349
0,158	1927	12051	0,180612	1797	10844	0,140135
0,159	1952	12208	1918	1819	10978	0920
0,160	1977	12366	3226	1842	11113	1704
<u></u>		<u> </u>	<u> </u>	N		

A		Ellipsi	8		Hyperbo	ola
	$\log B$	C	<i>T</i>	$\log B$	c	T
0,160	1977	12366	0,183226	1842	11113	0,141704
0,161	2003	12526	4537	1864	11249	2487
0,162	2028	12686	5850	1887	11386	3269
0,163	2054	12848	7166	1910	11523	4050
0,164	2080	13011	8484	1933	11661	4829
0,165	2106	13175	0,189804	1956	11800	5608
0,166	2132	13340	0,191127	1980	11940	6385
0,167	2158	13506	2452	2003	12081	7161
0,168	2184	13673	3779	2027	12222	7937
0,169	2211	13841	5109	2 051	12364	8710
0,170	2238	14010	6441	2075	12507	0,149483
0,171	2265	14181	7775	2099	12651	0,150255
0,172	2292	14352	0,199112	2123	12795	1026
0,173	2319	14525	0,200451	2147	12940	1795
0,174	2347	14699	1793	2172	13086	2564
0,175	2374	14873	3137	2196	13233	3331
0,176	2402	15049	4484	2221	13380	4097
0,177	2430	15226	5833	2246	13529	4862
0,178	2458	15404	7184	2271	13678	5626
0,179	2486	15583	8538	2296	13827	6389
0,180	2515	15764	0,209894	2321	13978	7151
0,181	² 543	15945	0,211253	2346	14129	7911
0,182	2572	16128	2614	2372	14281	8671
0,183	2601	16311	3977	2398	14434	0,159429
0,184	2630	16496	5343	2423	14588	0,160187
0,185	266 0	16682	6712	2449	14742	0943
0,186	. 2689	r6868	8083	2475	14898	1698
0,187	2719	17057	0,219456	2502	15054	2453
0,188	2749	17246	0,220832	2528	15210	3206
0,189	² 779	17436	2211	2554	15368	3958
0,190	1809	17627	3592	2581	15526	4709
0,191	2839	17820	4975	2608	15685	5458
0,192	2870	18013	6361	2634	15845	6207
0,193	2900	18208	7750	2661	16005	6955
0,194	293T	18404 18601	0,229141	2688	16167	7702
0,195	2962	10001	0,230535	2716	16329	8447
0,196	2993	18799	1931	2743	16491	9192
0,197	3025	18998	3329	2771	16655	0,169935
0,198	3056	19198	473I	2798	16819	0,170678
0,199	3088	19400	6135	2826	16984	1419
0,200	3120	19602	7541	2854	17150	21 59
	<u> </u>					1

A		Ellipsi	8	I	Hyperbo	la
A	$\log B$	C	T	$\log B$	c	T
0,200	3120	19602	0,237541	2854	17150	0,172159
0,201	3152	19806	0,238950	2882	17317	2899
0,202	3184 3216	20011	0,240361 1776	2910 2938	17484 17652	3637
0,203 0,204	3249	20424	3192	2967	17821	4374 5110
0,205	3282	20632	4612	2995	17991	5845
,,,,,				,,,,	,,,,	
0,206	3315	20842	6034	3024	18161	6579
0,207	3248	21052	7458	3053	18332	7312
0,208	3381	21264	0,248885	3082	18504	8044
0,209	3414	21477	0,250315	3111	18677	8775
0,210	3448	21690	1748	3140	18850	0,179505
	3482	21905	3183	3169	19024	0,180234
0,211 0,212	3516	22122	4620	3199	19199	0962
0,213	3550	22339	6061	3228	19375	1688
0,214	3584	22557	7504	3258	19551	2414
0,215	3618	22777	0,258950	3288	19728	3139
		'''			•	,
0,216	3653	22998	0,260398	3318	19906	3863
0,217	3688	23220	1849	3348	20084	4585
0,218	3723	23443	3303	3378	20264	5307
0,219	3758	23667	4759	3409	20444	6028
0,220	3793	23892	6218	3439	20625	6747
	3829	24119	768 0	3470	20806	7466
0,221 0,222	3865	24347	0,269145	3500	20988	8184
0,223	3900	24576	0,270612	3531	21172	8900
0,224	3936	24806	2082	3562	21355	0,189616
0,225	3973	25037	3555	3594	21540	0,190331
				1		
0,226	4009	25269	5031	3625	21725	1044
0,227	4046	25502	6509	3656 3688	21911	1757
0,228	4082	25737	7990		22098 22285	2468
0,229	4119 4156	25973 26210	0,279474 0,280960	3719 3751	22205 22473	3179 3889
0,230	4*50	20210	0,200,000	3/3*	~~ ~ /3	3009
0,231	4194	26448	2450	3783	22662	4597
0,232	423I	26687	3942	3815	22852	5305
0,233	4269	26928	5437	3847	23042	6012
0,234	4306	27169	6935	38 8 0	23234	6717
0,235	4344	27412	8435	3912	²³⁴²⁵ .	7423
	.co-		0.080000		204-8	8126
0,236	4382	27656	0,289939	3945	23618 23811	8829
0,237	4421	27901 28148	0,291445	3977 4010	24005	0,199530
0,238	4459 4498	28395	2954 4466	4043	24200	0,200231
0,239 0,240	4537	28644	5980	4076	24396	0931
-,	733/		,,,,,,	1		
				l		

33

A	Ellipsis]	Hyperbo	la
	$\log B$	c	T	$\log B$	C	T
0,340	4537	28644	0,295980	4076	24396	0,200931
0,341	4576	2 88 94	7498	4110	24593	1630
0,842	4615	29145	0,299018	4143	24789	2328
0,243	4654	2 93 97	0,300542	4176	24987	3025
0,344	469 4	29651	2068	4210	25185	3721
0,245	47 34	2 99 05	3597	4244	25384	4416
0,246	4774	30161	5129	4277	25584	5110
0,847	4814	30418	6664	4311	25785	5803
0,248	4854	30676	8202	4346	25986	6495
0,849	4894	3935	0,309743	4380	26188	7186
0,250	49 35	31196	0,311286	4414	26391	7876
0,351	4976	31458	2833	4449	26594	85 65
0,352	5017	31721	4382	4483	26799	9254
0,253	5058	31985	5935	4518	27004	0,209941
0,254	5099	32250	7490	4553	27209	0,210627
0,155	5141	32517	0,319048	4588	27416	1313
0,256	5182	32784	0,320610	4623	27623	1997
0,257	5224	33053	2174	4658	27830	2681
0,258	5266	33323	3741	4694	28039	3364
0,259	5309	33595	5312	4729	28248	4045
0,260	5351	33867	6885	4765	28458	4726
0 261	5394	34141	0,328461	4801	28669	5406
0,262	5436	34416	0,330041	4838	2888o	6085
0,263	5479	34692	1623	4873	29092	6763
0,264	5522	3497°	3208	4909	29305	7440
0,265	5566	35248	4797	494 5	29519	8116
0, 26 6	5609	35528	6388	4981	29733	8791
0,267	5653	35809	7983	5018	29948	0,219465
o, 26 8	5697	36091	0,339580	5055	30164	0,220138
0,269	5741	36375	0,341181	5091	30380	0811
0,270	5785	36659	2785	5128	30597	1482
0,271	5829	3 69 45	4392	5165	30815	2153
0,272	5874	37232	6003	5202	31033	2822
0.273	5919	37521	7615	5240	31253	3491
0,274	5964	37810	0,349231	5277	31473	4159
0,275	6009	38101	0.350850	5315	31693	4826
0,176	6054	3 8393	2473	5352	31915	5492
0,277	6100	3868 6	4098	5390	32137	6157
0,278	6145	3898 i	5727	5428	32359	6821
0,279	6191	3927 7	7359	5466	32583	7484
0,280	6237	39 573	8994	5504	32807	8147
						<u> </u>

A		Ellipsi	8	I	Iyperbo	·la
	$\log B$	С	T	log B	С	T
0,280 0,281 0,282 0,283 0,284 0,285 0,286 0,287 0,288 0,289	6237 6283 6330 6376 6423 6470 6517 6564 6612 6660	39573 39872 40171 40472 40774 41077 41381 41687 41994 42302	0,358994 0,360632 2274 3918 5566 7217 0,368871 0,370529 2189 3853	5504 5542 5581 5619 5658 5697 5736 5775 5814 5853	32807 33032 33257 33484 33711 33938 34167 34396 34686 34856	0,228147 8808 0,229469 0,230128 0787 1445 2102 2758 3413 4068
0,290 0,290 0,293 0,294 0,295 0,296 0,297 0,298	6708 6756 6804 6892 6901 6950 6999	42611 42922 43233 43547 43961 44177 44493 44812	7191 0,378865 0,380542 2222 3906 5593 7283 0,388977	5893 5932 5972 6012 6052 6092 6132 6172 6213	35387 35389 35552 35785 36019 36253 36489 36725 36961	5374 6025 6676 7326 7975 8623 9271 0,239917
0,299 0,300	7 097 7147 71 96	45131 45452 45774	0,3869// 0,390673 2374	6253 6294	37199 37437	0,240563

h	log yy	h	log yy	h	log yy
0,0000	0,0000000	0,0040	0,0038332	0,0080	0,0076133
OI	0965	41	0,0039284	81	7071
O2.	1930	42	0,0040235	82	8009
03	2894	43	1186	83	8947
04	3858	44	2136	83 84	0,0079884
o ₅	4821	45	3086	85	0,0080821
		h			i i
o6	5784	46	4036	86	1758
07	6747	47	4985		2694
08	7710	48	5934	8 ₇ 88	3630
09	8672	49	6883	89	4566
10	0,0009634	50	7832	90	5502
	0,000,004	5 °	/	~	3302
		I			_
11	0,0010595	5 ¹	878o	91	6437
12	1556	52	0,0049728	92	7372
13	2517	. 53	0,0050675	93	8306
14	3478	54	1622	94	0,0089240
15	4438	55	2569	95	0,0090174
I I				H	
16	5398	56	3515	96	1108
17	6357	57	4462	97	2041
1 8	7316	58	5407	98	2974
19	8275	50	6353	0,0099	3906
20	0,0019234	59 60	7298	0,0100	4838
	-,,-34		/	,,,,,	4030
		_		ii	1
21	0,0020192	61	8243	01	5770
22	1150	62	0,0059187	02	6702
23	2107	63	0,0060131	૦૩	7633
24	3064	64	1075	O4	8564
25	4021	65	2019	05	0,0099495
					i
26	4977	66	2962	∞6	0,0100425
27	5933	6 ₇ 68	3905	97	1356
28	6889	68	4847	08	2285
29	7845	69	5790	9	3215
30	8 8 00	70	6732	10	4144
		l		II.	
31	0,0029755	71	7673	i	2000
32	0,0030709	72	8614	11	5073 6001
33	1663	73	0,0069555	12 .	
34	2617	73	0,0070496	13	6929
35	3570	75	1436	14	7857
	33/~	l '3	*43*	15	8785
	_			li .	
36	4523	76	2376	16	0,0109712
37	5476	77 78	3316	17	0,0110639
38	6428		4 ² 55	18	1565
39	7380	79	5194	19	2491
0,0040	0,0038332	0,0080	0,0076133	0,0120	0,0113417
		l		H	
		ı		l	
<u>'</u>		<u> </u>		P	1

λ	log y y	h	log yy	h	log yy
<u> </u>					
0,0120	0,0113417	0,0160	0,0150202	0,0200	0,0186501
21	4343	6 1	1115	OI	7403
22	5268	62	2028	02	8364
23	6193	63	2941	૦ 3	0,0189205
24	7118	64 65	3 ⁸ 54 4 76 6	04	°,0190105 1005
25	8043	ν,	4/00	05	1005
26	8967	66	5678	o6	1905
27	0,0119890	6 ₇ 68	6589	97	2805
28	0,0120814	68	7500	o8	3704
29	1737	69	8411	09	4603
30	266 0	70	0,01 59322	10	5502
31	3582	71	0,0160232	11	640I
32	4505	72	1142	12	7299
33	5427	73	2052	13	8197
34	6348	74	2961 3870	14	9094 0,01 99992
35	7269	75	3670	15	0,0199992
36	8190	76	4779 5688	16	0,0200889
37 38	0,0129111	77 78		17	1785
	0,0130032	78	6596	18	2682
39	0952	79 80	7504 8412	19 20	3578
40	1871	80	0412	20	4474
41	2791	81	0,0169319	21	5369
42	3710	82	0,01 <i>7</i> 0226	22	6264
43	4629	83	1133	23	7159 8054
44	5547	84 85	2039	24	8948
45	6465	85	² 945	25	مهون
46	7383	86	3851	26	0,0209842
47	830I	8 ₇ 88 .	4757	27	0,0210736
48	0,0139218	88 . 89	5662 6567	28	1630 2523
49 50	0,0140135	90 90	7471	29 30	3416
	1052	7~	/4/-	30	,
51	1968	91	8376	31	4309
52	2884	92	0,0179280	32	5201
53	3800	93	0,0180183	33	6093
54	4716	94	1087	34	6985
55	563 1	95	1990	35	7876
56	6546	96	2893	36	8768
57 58	7460	97 98	1 3796	37 38	0,0219659
58	8374		4698		0,0220549
59 0,0160	0,0149288	0,01 99 0,0200	5600 0,0186501	39 0,0240	0,0222330
0,0100	5,02,50202	0,0200	3,0.00,00	Springer	-,

					7
h	log y y	h	log y y	h	log yy
0,0240	0,0182330	0,0280	o ,≎e5 77∞	0,0320	0,0292626
41	3220	8 1	8579	21	3494
42	4109	82	0,0259457	22	4361
43	4998	83	0,0260335	23	5228
44 45	5887 6776	84 85	1213 2090	24 25	6095 6961
43	3//0	•,	20,00	~5	, ,,,,,
46	7664	86	2967	26	7827
47	8552	8 ₇ 88	3844	27 28	8693
48	0,0229440	88	4721		c,0299559
49	0,0230328	89	5597	29	0,0300424
50	1215	90	6473	30	1290
51	2102	91	73 49	31	2154
52	2988	92	8224	32	3019
53	3875	93	9099	33	3883
54	4761	94	0,0269974	34	4747
55	5647	95	0,0270849	35	5611
56	6532	96	1723	36	6475
57	7417	97	2597	37	7338
58	8302	98	3471	38	8201
59	0,0239187	o,02 99	4345	39	9064
60	0,0240071	o,o 3 00	5218	40	0,0309926
61	∞956	OI	6091	41	0,0310788
62	1839	02	6964	42	1650
63	2723	∘3	7836	43	2512
64	3606	04	8708	44	3373
65	4489	০5	0,0279580	45	4234
66	5372	∞6	0,0280452	46	5095
67	6254	୍ ମ	1323	47 48	5956
68	7136	o8	2194		6816
69 20	8018 8900	09 10	3065 3936	49 50	7676 8536
70	- Syuu		3930	5∼	3330
71	0,0249781	11	4806	51	0,0319396
72	0,0250662	12	5 67 6	52	0,0320255
73	1543	13	6546	53	1114
74	2423	14	7415	54	1973
75	3303	15	8284	55	2831
76	4183	16	0,0289153	56	3689
77 78	5063	17	0,0290022	57	4547
	5942	18	0 89 0	58	5405
79	6821	19	₹758 0,0292626	59 0.0060	6262 0,0927320
0, 028 0	0. 02<i>5</i>77 00	0,0320	0,621,90020	o,0360	Ojoga/a20
V	·	<u>'</u>			<u> </u>

	log y y	h	log yy	h	log y y
0,0 36 0	0,0327120	0,040	0,0361192	0,080	0,0681057
61	7976	0,041	69646	0,081	88612
62	8833	0,042	78075	0,082	0,0696146
63	0,0329689	0,043	86478	0,083	0,070 3661
64	0,0330546	0,044	0,0394856	0,084	11157
65	1401	0,045	0,0403209	0 085	18633
66	2257	0,046	11537	o,o86	26090
67	3112	0,047	19841	0,087	33527
68	3967	0,048	28121	0,088	40945
69	4822	0.049	36376	0,089	48345
70	5677	0,050	44607	0,090	55725
]]	£		F0 8 * 4	2007	63087
71	6531	0,051	52814	0,091	70430
72	7385	0,052	60997	0,092	
73	8239	0,053	69157	0,093	77754 85060
74	9092	0,054	77294	0,094	92348
75	0,03 399 46	0,055	85407	0,095	92340
76	0,0340799	0,056	0,0493496	0,0 96	0,0799617
77 78	1651	0,057	0,0501563	0,097	0,0 806868
78	2504	o,o <u>5</u> 8	09607	0,098	14101
. 79	33 5 6	o,o <u>5</u> 9	17628	0,099	21316
8 0	4208	0,060	25626	0,100	28513
81	5059	0,061	33602	0,101	35693
82	5911	0,062	41 556	0,102	42854
83	6762	0,063	49488	0,103	49999
84	7613	0,064	57397	0,104	57125
85	8464	0,065	65285	0,105	64235
86	0,0349314	o,o66	73150	0,106	71327
87	0,0350164	0,067	80994	0,107	78401
88	1014	0,068	88817	0,108	85459
89	1864	0,069	0,0596618	0,109	92500
9ó	2713	0,070	0,0604398	0,110	0,0899523
	arka	.~.	12157	0,111	0,0906530
91	3562	0,071	19895	0,112	13520
92	4411	0 072	27612	0,112	20494
93 94	5259 6108	0,073 0 074	35308	0,114	27451
94	6956	0,075	42984	0,115	34391
75	~73°	-1-/3	1-7-1	1	3437
96	7804	0,076	50639	0,116	41315
97	8651	0,077	58274	0,117	48223
98	0,0359499	0,078	65888	0,118	55114
0,0399	0,0360346	0,079	73483	0,119	61990
0,0400	0,0361192	0,0 8 0	0,0681057	0,120	0,0968849

					
λ	log yy	h	log y y	h	log yy
0,120	0,0968849	0,160	0,1230927	0,200	0,1471869
0,121	75692	0,161	37192	0,201	77653
0,122	82520	0,162	43444	0,202	83427
0,123	89331	0,163	49682	0,203	89189
0,124	0,0996127	0,164	55908	0,204	0,1494940
0,125	0,1002907	0,165	62121	0,205	0,1500681
li .			i		ì
0,126	09672	0,166	68321	0,206	06411
0,127	16421	0,167	74508	0,207	12130
0,128	23154	0,168	80683	0,208	17838
0,129	29873	0,169	86845	0,209	23535
0,130	36576	0,170	92994	0,210	29222
	<u> </u>				
0,131	43264	0,171	0,1299131	0,211	34899
0,132	49936	0,172	0,1305255	0,212	40565
0,133	56594	0,173	11367	0,213	46220
0,134	63237	0,174	17466	0,214	51865
0,135	69865	0,175	23553	0,215	57499
0,136	76478	0,176	29628	0,216	63123
0,137	83076	0,177	35690	0,217	68737
0,138	8966o	0,178	41740	0,218	74340
0,139	0,1096229	0,179	47778	0,219	79933
0,140	0,1102783	0,180	53804	0,220	85516
		1	, ,		
0.747	00000				07080
0,141	09323 15849	0,181 0,182	59818 65821	0,221	91089 0,1596652
0,142 0,143	22360	0,182	71811	0,222	0,1602204
0,144	28857	0,184	77789	0,223 0,224	97747
0,145	35340	0,185	83755	0,225	13279
9-43	33342	9,.05	93/33	9	-3-/9
		- 00	0		-00
0,146	41809	0,186	89710	0,226	18802
0,147	48264	0,187	0,1395653	0,227	24315
0,148	54704 61131	0,188 0,189	0,1401585	0,228	29817
0,149 0,150	67544	0,190	07504 13412	0,229 0,230	35310 40793
1	9/344	5,190	-54-2	0,230	4~/93
	1	III.			
0,151	73943	0,191	19309	0,231	46267
0,152	80329	0,192	25194	0,232	51730
0,153	8670I	0,193	31068	0,233	57184 62628
0,154	93059	0,194	36931 42782	0,234 0,235	68063
0,155	-1MAC1	0,195	42/02	,-33	
1		_		4	
0,156	0,1205735	0,196	48622	0,236	73488
0,157	12053	0,197	54450 60068	0,237	78903
0,158	18357	0,198	60268 66074	0,238	84309
0,159 0,160	24649	0,199	0,1471869	0,239	89705
1	0,1230927	0,200	0,14/1009	0,240	0,1695092
		1]		
		H		N .	!
				· · · · · · · · · · · · · · · · · · ·	

λ	log y y	y .	log y y	λ	log yy
0,240	0,1695092	0,280	0,1903220	0,320	0,2098315
0,241	0,1700470	0,281	08249	0,321	0,2103040
0,242	05838	0,282	13269	0,322	97759
0,243	11197	0,283 0,284	18281 23286	0,323	12470
0,244 0,245	16547 21887	0,284	28282	0,324 0,325	17174 21871
-,,5		,,,,,	i	-,55	
0,246	27218	0,286	3327I	0,326	26562
0,247	32540	0,287	38251	0,327	31245
0,248	37853	0,288	43224	0,328	35921
0,249	43156	0,289	48188	0,329	4059I
0,250	4845I	0,290	53145	0,330	45253
i					1
0,251	53736	0,291	58094 6004	0,331	49909
0,25 2 0,253	59013 64280	0,292 0,293	63035 67968	0,332 0,333	54558 59200
0,254	69538	0,294	72894	9333 9334	63835
0,255	74788	0,295	77811	0,335	68464
0,256	80029	0,296	82721	0,336	73085
0,257	85261	0,297	87624	0,337	77700
Q258	90484	0,298	92518	0,338	82308
0,259	0,1795698	0,299	0,1997406	0,339	86920
0,260	0,1800903	0,300	0,2002285	0,340	91 505
	-6				
0,261 0,262	06100 11288	0,301 0,302	07157 12021	0,341 0,342	0,2196093
0,263	16467	0,303	16878	0,343	05250
0,264	21638	0,304	21727	0,344	09818
0,265	26800	0,305	26569	0,345	14380
0,266	31953	0,306	31403	0,346	18935
0,267	37098	0,307	36230	0,347	23483
0,268	42235	0,308	41050	0,348	28025
0,269 0,270	47363 52483	0,309 0,310	45862 50667	0,349 0,350	32561 37090
32/0	, ,,,,	٠,,,	, ,	-133*	3/-9-
0,271	57594	0,311	55464	0,351	41613
0,272	62696	0,312	53444 60254	0,352	46130
0,273	6779x	0,313	65037	0,353	50640
0,274	72877	0,314	69813	0,354	55143
0,275	77955	0,315	<i>7</i> 4581	0,355	59640
	•				
0,276	83024	0,316	79342	0,356	64131
0,277	88085	0,317	84096 88843	0,357	68615
0,278 0,279	93138 0,1898183	0,318	93582	0,358 0,359	73°93 77565
0,280	0,1903220	0,320	0,2098315	0,3 6 0	0,2282031
ll .					
		•			
		<u> </u>			<u> </u>

G. TH. M. 34

		The second secon	A A.A		
Å	log yy	À	log y'y	λ	log y y
					ŕ
a ₂ 60	0,228203I	2,400	0,2455716	0,440	0,2620486
0,361	86490	0,401	59940	0,441	24499
0,362	90943	0,402	64158	0,442	28507
0,363	95390	0,403	68371	9,443	32511
0,364	0,2299831	0,404	72578	0,444	36509
0,365	0,2304265	0,405	76779	0,445	40503
1	1				
.0,366	a8694	0,406	80975	0,446	44492
2,367	13116	0,407	85166	0 ,44 7	48475
2,368	17532	0,408	89351	0,448	52454
0,369	21942	0,409	93531	9,449	56428
0,370	26346	0,410	0,2497705	0,450	60397
•]				1
0.077	20742	0.417	0 ,25 01874	0.45	64362
0,371	30743	0,411 0,412	06038	0,451	6832I
0,372 9,373	35135 39521	0,413	10196	0,452	72276
0, 3 74	43900	0,414	14349	9,453 9,454	76226
0,875	48274	0,415	18496	9455	80171
-19/3	1	-11.3		-1433	7-7-
			2050		0
0,376	52642	0,416	22638	9,456	84111
0,377	57003	0,417	26775	9,457	88046
.0,878	61359 65709	0,418	30906	0,458	91977
0,379 0,280	70053	0,419 0,420	3,5032 39153	0,459 0,460	95903 0,2699824
0,300	/~55	Oppo	30.00	U _I quo	Opensylpan
	į		_		
0,381	74391	0,421	43269	0,461	0,2703741
0,382	78723	0,422	47379	0,462	07652
0,383	83050	0,423	51485	0,463	11559
0,384 0,385	87370 91685	0,424 0,425	55584 59679	0,464 0,465	15462
	9.005	- 	2900/9	0,405	19360
					1
0,386	9,2395993	0,426	63768	0,466	23253
0,387	0,2400296	0,427	67853	0,467	27141
0,388	Q4594 Q8885	0,428	71932	0,468	31025
0,389	1	0,429	76006 80075	0,469	34904
0,390	13171	0,430	۵۵۰/5	9,470	38778
l					
0,391	17451	Q,431	84139	0,471	42648
Q ₂ 392	21725	0,432	88198	0,472	46513
0,393	25994	0,433	92252	9,473	50374
0,394	20257	9434	0,2596300	9,474	54230 58082
0,395	24514	9435	0, 26 00344	9.4 75) Jacob 2
	·		_	•	_
0,396	38766	0,436	04382	0,476	61929
9,397	43012	9437	08415	9,477	65771
0,398	47252	0,438	12444	0,478	69609
0,299 0,400	51487	Q439	16467 . 0 ,262 04 86	°,479	73443
	0,2455716	0,440	ுக்கப்சும்	0,480	0,2777272
	1				
Ħ					l li
	*				

ħ	log y y	h	log y y	A	log g y
0,48c	0,2777373	a,520	0,2926864	c,56e	0,3069938
0,481	810 96	0,521	30518	0,561	73437
0,482	84916	0,522	34168	0,562	76931
0,483	88732	0,523	37813	0,563	80422
0,484	92543	0,524	41455	0,564	89910
0,485	0, 279 6349	0,525	45092	0,565	873 9 4
0,486	0, 280 0151	0,526	48726	o, 566	90874
0,487	0 3949	0,527	52355	0,567	94350
0,488	• • • • • • • • • • • • • • • • • • •	0,528	55981	0,568	0,3099823
0,489	11532	0,529	59602	0,5 69	0,3808292
0,490	15316 .	0,530	63220	o, <i>57</i> 0	Φ475 8
0,491 ·	19096	0,531	66833	0,571	98220
0,492	22872	0,532	70443	0,572	12678
0,493	26644	0,533	74049	0,573	15133
0,494	30411	9534	77650	0,574	18584
0,495	34173	°+535	81248	0,575	22031
0,496	37932	0,536	84842	0,576	25475
0,497	41686	0,537	88432	0,577	28915
0,498	45436	0,538	92018	0,578	32352
0,4 99	49181	0,539	95600	0,579	35785
0,500	52923	0,540	0,2999178	0,580	39215
-3			,		
0,501	5666 0	0,541	0,3002752	o. 58 1	42641
0,502	60392	0,542	06323	0,582	46064
0,503	64121	9-543	09890	0,583	49483
0,504	6 7845	O ₂ 544	13452	0,584	52898
0,505	71565	°-545	17011	0,585	56310
0,506	75281	0,546	20566	0,586	59719
0,507	78992	0,547	24117	0,587	63124
0,508	82700	0,548	27664	0,588	66525
0,509	86403	0,549	31208	0,589	69923
0,510	90102	0,550	34748	o, 59 0	79318
0,511	93797	0,551	38284	0,591	76709
0,512	0,2897487	0,552	41816	0,592	8co96
0,513	0,3901174	9,553	45344	0,593	834Bz
0,514	04856	0,554	48869	0,594	86861
0,515	08535	9,555	52390	0,595	90239
0,516	12209	0,556	55907	0,596	99612
0,517	15879	9,557	59420	0,597	0,3196983
0,518	19545	0,558	62930	0,598	0,3200350
0,519	23207	0,559	66436	0,599	09714
0,500	0,292686¢	0,560	0,30 6993 8	0,600	0,3207074
<u> </u>	L			u	

æ vel s	Ę	ζ	x vel s	ŧ	ζ
					-
0,000	0,0000000	0,000000	0,040	0,0000936	0,0000894
0,001	001	COI	0,041	0984	0938
0,002	002	002	0,042	1033	0984
0,003 0,004	005 009	005	0,043	1084	1031
0,005	014	009 014	0,044 0,045	1135 1188	1079 1128
,,,,,	•		٠,-٠,٠		
0,006	021	020	0,046	1242	1178
0,007	028	028	0,047	1298	1229
0,008	∘37	036	0,048	1354	1281
0,009	047	046	0,049	1412	1334
0,010	°57	05 7	0,050	1471	. 1389
0,011	~~~	069	0.055		
0,011	070 083	082	0,051 0,052	1532 1593	1444 1500
0,013	997	096	0,053	x656	1558
0,014	113	111	0,054	1720	1616
0,015	130	127	O ₂ O55	1785	1675
0,016	148	145	o,o 56	1852	1736
0,01 <i>7</i> 0,018	167 187	164 183	0,057 0,058	1920 1989	1798 1860
0,019	209	204	0,059	2060	1924
0,020	231	226	0,060	2131	1988
	_				•
0,021	255	749	0,061	2204	2054
0,022	280	273	0,062	2278	2121
0,023	306	298	0,063	² 354	2189
0,024	33 4 362	325 352	0,064 0,065	2431 2509	2257
9,005	30-2	33-	9,005	2009	2327
0,026	392	38 <u>i</u>	0,066	2588	2008
0,027	423	410	0,067	2669	2398 24 70
0,028	455	441	0,068	2751	2543
0,029	489	473	0,069	2834	2617
0,030	523	506	0,070	2918	2691
0,031 0,032	559 596	539 575	0,071 0,072	3004	27 6 7
0,033	634	5/5 611	0,072	3091 3180	2844 2922
0,034	674	648	0,074	3269	, 3001
0,035	714	686	0,075	3360	3081
0,036	756	726	0,0 7 6	3453	3i62
0,037 0,038	799 844	766 807	0,077 0,078	3546	3244
0,039	889	850	0,078 0,0 79	3641 3738	3327 3411
0,040	0,0000936	0,0000894	0,080	0,0003835	0,0003496
			ľ		
				<u> </u>	

$oldsymbol{x}$ vel $oldsymbol{s}$	ŧ	ζ	x vel s	Ę	ζ
					
	•				
0,080	0,0003835	0,0003496	0,120	0,0008845	0,0007698
0,081	3934	3582	0,121	8999	7822
0,082	. 4034	3669	0,122	9154	7948 8074
0,083	4136	3757	0,123	9311	8074
0,084	4 2 39	3846	0,124	9469	8202
0,085	4343	3 936	0,125	9628	8330
0,086	4448	4027	0,126	9789	8459
0,087	4555	4119	0,127	0,0009951	8590
0,088	4663	4212	0,128	0,0010115	8721
0,089	4773	4306	0,129	0280	8853
0,090	4884	440I	0,130	0447	8986
0.00	4006		0.747	0615	0.00
0,091 0,092	4996	4496	0,131	0784	9120
0,093	5109 5224	4593 4691	0,132 0,133	0955	9255 9390
0,094	534I	4790	0,134	1128	9527
0,095	5458	4890	0,135	1301	9665
,,,,	3-13-	4-7-	77-33	-3]
0,096	5577	4991	0,136	1477	9803
0,097	5697	5092	0,137	1654	0,0009943
0,098	5819	5195	0,138	1832	0,0010083
0,099	5942	5299	0,139	2012	0224
0,100	6066	5403	0,140	2193	0366
	•			•	
0,101	6192	5509	0,141	2376	0509
0,102	6319	56x6	0,142	2560	0653
0,103 0,104	6448 6578	5723	0,143	2745	0798
0,105	6 7 09	5832	0,144 0,145	2933	0944
, 6,165		5941	0,145	3121	1091
0,106	6842	6052	0,146	9311	1238
0,107	6976	6163	0,147	3503	1387
0,108	7111	6275	0,148	3696	1536
0,109	7248	6389	0,149	3 89 1	1686
0,110	7386	6503	0,150	4087	1838
0,111	7526	6618	0,151	4285	1990
0,112	7667	6734	0,152	4484	2143
0,113	7809	6851	0,153	4684	2296
0,114	7953	6969	0,154	4886	2451
0,115	8098	7088	0,155	5090	2607
0,116	8245	e	0		
0,117	8393	7208 7329	0,156 0,157	5295 5502	2763
0,118	8542	7329 7451	0,157	5502 5710	2921
0,119	8693	7574	0,159	5920	3°79 3238
0,120	0,0008845	0,0007698	0,160	0,0016131	0,0013398

x vel s	2	5	æ vel s	E	٤
W 142 5					
	!	<u> </u>			
	!	i.	B	·	
0,16 0.	choempode	0,0023998	0;900	0 ,00058)77	0,00000907
0 ,161	6344	3559	0 (201	6154	0702
0,162	6559	3721	0;202	6433	○8 97
0,163	6775	3683	0;203	6713	1094
0,164	6992	4947	0,204	6995	1992
0,165	7211	4911	0,205	7278	1490
0,166	7432	4977	· 0;a06	7564	1689
0,167	7 65 4	4543	0,207	7851	1889
0,268	7 0 70	4710	0,408	8139	2090
0,169	8103	4878	0,4209	8429	2891
0,17 0	8330	5047	0 410	8722	2494
e, 171	8558	gar6	0,211	9015	2697
0,172	8788	5987	0,212	9311	290I
0 ,1 73	9020	5958	0,213	9608	3206
9174	9253	5730	0;214	0,0039907	391 I
0,175	9487	5903	0,215	0)0030207	3 9 18
0,176	9724	6077	0,216	0509	3725
0, <i>≇7†</i>) 0, <i>≇7</i> ≸	0 /0011996 1 0 /0011 0201	6252 6428	0,217 0,218	0814 1119	3932
6,1 <i>7</i> 9	0442	6604	0,219	1427	4542 4552
9,180	0685	6782	0/220	1736	4562
	•	·			
4 ,181	0929	696 0	0,421	2047	4974
0,182	1175	7039	0,222	2359	4986
0,183	1422	7919	0,223	2674	5 1799
0,184	1671	7900 7681	0,224	2990	5412
0,185	1922	7001	0;225	3308	. 5627
86يره	2174	7864	0,226	3627	5842
0,187	2428	8047	0,227	3949	6058
o,188	2683	8 2 31	0,228	4273	6975
0,289	294I	8ф16	0,229	4597	6493
0,190	3199	8602	0,230	4924	6911
0.707	3460	8789	0,231	5252	6 9 31
191رہ 192ء	3722	8976	0,232	5582	7251
g)193	3985	92065	0,233	5914	7971
0,194	4251	9,954	0,234	6248	7593
O+195	4518	9544	0,235	6584	78≈6
	4786		0,236	6921	8039
04296	4780 5056	9735 0,00009926	0,237	7260	8263
оу 197 0,1 98	5328	0,0020119	0,238	760x	8487
6,199	5602	OST 2	0,239	7944	8923
0,2000	0, 000,587.7 /	0,0820907	c, zya	O'conigagăi	0,0026939

x vel z	Ę	ξ	$oldsymbol{x}$ vel $oldsymbol{s}$	ŧ	ζ
				_	
0,240	0,0038289	0,0028939	0,270	0,0049485	0,0036087
0,241	8635	9166	0,271	0,0049888	6337
0,242	8983	9394	0,272	0,0050292	6587
0,243	9333	9623	0,273	0699	6839
0,244	0,0039685	0,0029852	0,274	1107	7091
0,245	0,0040039	0,0030083	0,275	1517	7344
0,246	0394	0314	0,276	1930	7598
0,247	0752	0545	0,277	2344	7852
0,248	1111	0778	0,278	2760	8107
0,249	1472	1011	0,279	3178	8 3 63
0,250	1835	1245	0,280	3598	8620
0,251	2199	1480	0,281	4020	8877
0,252	2566	1716	0,282	4444	9135
0,253	2934	1952	0,283	4870	9394
0,254	3305	2189	0,284	5298	9654
0,255	3677	2427	0,285	5728	0,0039914
0,256	4051	2666	0,286	6160	0,0040175
0,257	4427	2905	0,287	6594	0437
0,258	4804	3146	0,288	7030	0700
0,259	5184	3387	0,289	7468	0963
0,260	5566	3628	• 0,290	7908	1227
0,261	5949	3871	0,291	8350	1491
0,262	6334	4114	0,292	8795	1757
0,263	6721	4358	0,293	9241	2023
0,264	7111	4603	0,294	0,0059689	2290
0,265	7502	4848	0,295	0,0060139	2557
0,266	7894	5094	0,296	0591	2826
0,267	8289	5341	0,297	1045	3095
0,268	8686	5589	0,298	1502	3364
0,269	9085	5838	0,299	1960	3635
0,270	0,0049485	0,0036087	0,300	0,0062421	0,0043906

TAFEL

ZUR BERECHNUNG DER WAHREN ANOMALIE IN EINER PARABOLISCHEN BAHN

YON

E. J. SCHERING.

Digitized by Google

u in + in	$\frac{1}{2}w^{3} = m, \log m$	$= \log M + \mu$, \log	$\operatorname{gtg}_{\frac{1}{2}}w = \operatorname{log}_{\frac{1}{2}}$	}W+Nμ+N"	μ" + <i>N</i> ‴μ"
10 + log M	10 + log tg ½ W	N	10 + log N	10 + log N"	to + log A
0.00.0	0.00				
8,58858901	8,58837159	1 - 1000	9,99956549	7,361238 n	7,5452 N
8,66627319	8,66596242	I — 700	9,99937914	7,515565 n	7,6986 n
8,73964843	8,73921305	1-290	9,99913054	7,661071 n	7,8420 n
8,78837604	8,78783147	1-400	9,99891290	7,757437 n	7,9381 n
8,85130031	8,85057346	1 — 300	9,99854993	7,881467 n	8,0603 n
8,89125539	8,89038243	$1 - \frac{1}{1000}$	9,99825934	7,959921 n	8,1373 n
8,94025794	8,93916537	1 — 100	9,99782308	8,055739 n	8,2309 n
8,98039716	8,97908443	1 — 1000	9,99738638	8,133827 n	8,3068 n
9,04396688	9,04221215	r — 1000	9,99651167	8,256574 n	8,4251 n
9,09352648	9,09132751	$1 - \frac{1}{100}$	9,99563519	8,351287 n	8,5153 n
9,14336824	9,14061080	$1 - \frac{1}{80}$	9,99453710	8,445443 n	8,6039 n
9,17335886	9,17020034	$r - \frac{1}{70}$	9,99375105	8,501461 n	8,6558 n
9,20816384	9,20446770	$z - z^1$	9,99270076	8,565770 n	8,7147 n
9,24962910	9,24517476	1 - 10	9,99122608	8,641244 n	8,7825 n
9,27661939	9,27159214	1-40+460	9,99011677	8,689605 n	8,8250 n
9,30091914	9,29531526	1 — 10	9,98900462	8,732561 n	8,8621 n
9,32304352	9,31685929	$1 - \frac{1}{40} - \frac{1}{400}$	9,98788961	8,771143 n	8,8947 n
9,34337293	9,33660457	1 - 180	9,98677173	8,806112 n	8,9237 n
9,36817634	9,36062320	$1 - \frac{1}{30}$	9.98527674	8,848095 n	8,9576 n
9,40143645	9,39269324	$1 - \frac{1}{30} - \frac{1}{200}$	9,98302456	8,903290 n	9,0005 n
9,43099990	9,42105087	$1 - \frac{1}{30} - \frac{1}{100}$	9,98076064	8,950610 u	9,0353 n
9,44018200	9,42982747	$x\frac{1}{20} + \frac{1}{200}$	9,98000337	8,965080 n	9,0456 n
9,46604164	9,45445977	$r - \frac{1}{20}$	9,97772361	9,005051 n	9,0727 n
9,48974967	9,47692394	$1 - \frac{1}{20} - \frac{1}{200}$	9,97543181	9,040616 n	9,0952 n
9,51168702	9,4976∞56	$1 - \frac{800}{100}$	9,97312785	9,072536 n	9,1137 n
9,53214310	9,51677870	1-180-180	9,97081161	9,101388 n	9,1289 n
9,55134305	9,53468313	$x - \frac{7}{100}$	9,96848295	9,127620 n	9,1411 n
9,56946545	9,55149208	$1 - \frac{1}{100} - \frac{1}{200}$	9,96614173	9,151587 n	9,1508 n
9,58665444	9,56734929	r — 180	9,96378783	9,173576 n	9,1582 n
9,60302803	9,58237237	1 - 180 - 180	9,96142109	9,193821 n	9,1635 n
9,61868412	9,59665883	$1 - \frac{9}{100}$	9,95904139	9,212516 n	9,1669 n
9,63370482	9,61029037	10 + 200	9,95664858	9,229822 n	9,1685 n
9,64815975	9,62333617	910	9,95424251	9,245877 n	9,1684 n
9,66210845	9,63585532	10 - 200	9,95182304	9,260798 n	9,1668 n
9,67854372	9,65051500	1-4	9,94884748	9,277639 n	9,1627 n
9,68868582	9,65951055	$1 - \frac{1}{8} + \frac{1}{100}$	9,94694327	9,287625 n	9,1591 n
9,70139815	9,67072933	10 + 180	9,94448267	9,299693 n	9,1531 n

$tg \frac{1}{2}w + \frac{1}{3}tg$	$\frac{1}{2}w^8 = m, \log m$	$= \log M + \mu$, log	$\operatorname{g}\operatorname{t}\operatorname{g}\frac{1}{2}w = \log\operatorname{t}\operatorname{g}\frac{1}{2}$	$W+N\mu+N''$	μ ³ + N‴μ ³
10 + log M	10 + log tg ½ W	N	$10 + \log N$	10 + log N"	10 + log N'''
	. 6	8 1 8			
9,70139815	9,67072933	** + ****	9,94448267	9,299693 n	9,1531 N
9,71377363	9,68158895	I — 1	9,94200805	9,310957 n	9,1457 n
9,72584274	9,69211937	1 - 1 - 200	9,93951925	9,321474 n	9,1371 n
9,737 63 258	9,70234717	1 - 1 - 1 1 0	9,93701611	9,331296 n	9,1270 D
9,75565285	9,71786428	1-+	9,93305321	9,345436 n	19,1085 n
9,7778 0504	9,73674179	1-1-100	9,92795665	9,361354 n	9,0800 n
9,78706331	9,74456508	1-1-10	9,92575397	9,367520 n	9,0661 n
9 ,8 0719686	9,76143937	r—{	9,92081875	9,379945 n	9,0310 n
9,827 76 763	9,77847927	1 - 1 - 100	9,91557570	9,391233 n	8,9875 n
9,84120417	9,78949734	$1 - \frac{1}{6} - \frac{1}{60}$	9,91204483	9,397840 n	1
9,85444839	9,80026941	1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 — 1 —	9,90848502	9,39/840 n 9,403760 n	8,9543 n
9,874∞355	9,81601161	10 8 7 100	9,90308999	9,411434 n	8,9171 n 8,8528 n
	9,01001101			7,4454	
9,89324651	9,83130999	1-1-100	9,89762709	9,417753 n	8, ₇₇₅₅ n
9,91223937	9,84621957	$1 - \frac{1}{6} - \frac{1}{60}$	9,89209460	9,422808 n	8,6801 n
9,93103832	9,86078890	$\frac{7}{10} + \frac{7}{100}$	9,88649073	9,426676 n	8,5575 n
9,94969488	9,87506126	$1 - \frac{1}{4} + \frac{1}{160}$	9,88081359	9,429421 B	8,3879 n
9,96825692	9,88907568	r-1	9,87506126	9,431097 n	8,1121 n
9,98882502	9,90438750	1-1-10	9,86857914	9,431762 n	6,7148 n
9,99910455	9,91195437	1 - 1 - 10	9,86530143	9,431617 n	7,7427
10,01453818	9,92320804	1-1-10	9,8603380x	9,430894 n	8,1572
				1	1
10,03000990	9,93436054	1-1-20	9,85531721	9,429498 n	8,3593
10,04243031	9,94322040	70 + 100	9,85125835	9,427920 n	8,4687
10,06116026	9,95642491	10	9,84509804	9,424798 n	8,5886
10,08004489	9,96954959	10 - 100	9,83884909	9,420780 n	8,6771
10,09274046	9,97826715	$1 - \frac{1}{3} + \frac{1}{60}$	9,83463261	9,417610 n	8,7246
10,10553481	9,98696725	1-1-1-100	9,83037478	9,414048 n	8,7652
10,12493874	10,0000000	1-1	9,82390874	9,407973 n	8,8159
10,14463598	10,01303275	$1 - \frac{1}{3} - \frac{1}{100}$	9,81734497	9,401018 n	8,8572
10,15795259	10,02173285	╬ ┿╬ ╸	9,81291336	9,395891 n	8,8803
10,17240311	10,03107395	<u>1</u> ++	9,80811447	9,389958 n	8,9019
10,19199492	10,04357509	$1 - \frac{1}{3} - \frac{1}{30}$	9,80163235	9,381332 n	8,9260
10,20947419	10,05457223	1+1	9,79588002	9,373105 n	8,9434
10,22012643	10,06120320	10 + 50	9,79239169	9,367860 n	8,9523
10,23939544	10,07306402	1+1	9,78612018	9,357950 n	8,9655
10,26413689	10,08804563	10	9,77815125	9,344487 n	8,9778
10,28709848	10,10170719	$\frac{6}{10} - \frac{1}{100}$	9,77085201	9,331312 n	8,9851
10,31079568	10,11556941	$\frac{6}{10} - \frac{1}{50}$	9,76342799	9,317095 n	8,9892
	1		1	1	1

$tg \pm w + \frac{1}{2}tg \pm w^2 = m$, $log m = log M + \mu$, $log tg \pm w = log tg \pm W + N\mu + N''\mu^2 + N'''\mu^2$								
10 + log M	10 + log tg ½ W	N	10 + log N	10 + log N"	10 + log N'''			
10,31079568	10,11556941	10 - 10	9,76342799	9,317095 IL	8,9892			
10,33531218	10,12966568	10 - 100	9,75587486	9,301787 II	8,9903			
10,36074162	10,14403251	1 + 180	9,74818803	9,285335 n	8,9884			
10,38718953	10,15871021	₹+ 1 0	9,74036269	9,267674 II	8,9837			
10,40083224	10,16617946	$\frac{1}{2} + \frac{2}{260}$	9,73639650	9,258367 n	8,9803			
10,41477576	10,17374370	1+100	9,73239376	9,248729 n	8,9762			
10,43386587	10,18398839	1+16	9,72699873	9,235342 n	8,9697			
10,45859496	10,19707351	1+46	9,72015930	9,217706 n	8,9598			
	• • • • • • • • • • • • • • • • • • • •							
10,48438041	10,21050266	1 + eb	9,71321044	9,199006 n	8,9479			
10,50584503	10,22152073	1+100	9,70757018	9,183228 n	8,9370			
10,52247376	10,22995961	\$ + 260	9,70329138	9,170890 II	8,9280			
10,53959062	10,23856063	ł	9,69897000	9,158096 n	8,9183			
10,55722890	10,24733545	$\frac{1}{2} - \frac{1}{100}$	9,69460520	9,144824 n	8,9077			
10,57542500	10,25629679	1-100	9,69019608	9,131050 n	8,8964			
10,59149582	10,26413689	$\frac{1}{2} - \frac{1}{10}$	9,68638088	9,118823 n	8,8861			
10,61365452	10,27483596	$\frac{1}{2} - \frac{1}{80}$	9,68124124	9,101883 n	8,8714			
10,63378049	10,28444581	1 - 40	9,67669361	9,086428 n	8,8 ₅₇₇			
10,65465063	10,29430663	1 100	9,67209786	9,070343 N	8,8430			
10,66900678	10,30103000	₹ — ₹0	9,66900678	9,059251 n	8,8327			
10,67632482	10,30443897	$\frac{1}{2} - \frac{7}{200}$	9,66745295	9,053590 n	8,8274			
10,69886994	10,31486571	1-100	9,66275783	9,036121 n	8,8108			
10,72236097	10,32561245	1-20+200	9,65801140	9,017887 n	8,7933			
10,74688242	10,33670795	1 - 10	9,65321251	8,998829 n	8,7746			
10,77545373	10,34948500	1+1	9,64781748	8,976609 n	8,7526			
		4 1 4						
10,79941245	10,36007965	10 + 180	9,64345268	8,957976 n	8,7338			
10,81808085	10,36826251	\$+10+300	9,64015004	8,943463 n	8,7191			
10,83739467	10,37666383	\$++6	9,63682210	8,928457 n	8,7038			
10,86767664	10,38970963	$\frac{1}{3} + \frac{1}{10} - \frac{1}{200}$	9,63178187	8,904955 n	8,6796			
10,89968987	10,40334117	\$+16-160	9,62668247	8,8801 57 n	8,6539			
10,92209389	10,41278795	10 + 180	9,62324929	8,862836 n	8,6358			
10,94542777	10,42254902	10 + 60	9,61978876	8,844831 n	8,6169			
10,96270717	10,42972810	10+10	9,61729996	8,831522 n	8,6029			
*** O#\$****								
10,97602309	10,43523276	10 + 10	9,61542395	8,821281 n	8,5921			
10,99520873	10,44312272	10 + 180	9,61278386	8,806549 n	8,5765			
11,01103961	10,44959747	10 + 1000	9,61066016	8,794416 n	8,5636			
11,03564644	10,45959988	$\frac{1}{10} + \frac{1}{200}$	9,60745502	8,775596 n	8,5437			

	1		1	1	I
10 + log M	ro + log tg ½ W	<i>N</i>	10 + log N	10 + log N"	10 + log N
11,03564644	10,45959988	10 + 200	9,60745502	8,775596 n	8,5437
11,04979168	10,46531687	10 + 300	9,60566412	8,764801 n	8,5322
11,07918125	10,47712125	10	9,60205999	8,742427 n	8,5083
11,11016459	10,48946249	$\frac{4}{10} - \frac{1}{300}$	9,59842571	8,718922 n	8,4832
11,14291768	10,50239944	1 + 180	9,59476075	8,694169 n	8,4568
11,17764677	10,51600108	10 — 180	9,59106461	8,668029 n	8,4288
11,21459567	10,53034892	$\frac{1}{3}$, $+\frac{1}{20}$ $+\frac{1}{300}$	9,58733673	8,640339 n	8,3992
11,25405556	10,54554023	$\frac{1}{3} + \frac{1}{20}$	9,58357659	8,610904 n	8,3677
11,29637802	10,56169246	10 - 180	9,57978360	8,579489 n	8,3340
11,34199296	10,57894913	\$+30+160	9,57595719	8,545807 n	8,298 0
11,39143382	10,59748830	\$ + 100	9,57209677	8,509500 u	8,2593
11,44537359	10,61753456	1 + 30 + 300	9,56820172	8,470120 n	8,2173
11,50467823	10,63937680	$\frac{1}{8} + \frac{1}{30}$	9,56427143	8,42,7089 n	8,1715
11,57048816	10,66339543	\$ + 180	9,56030524	8,379646 n	8,1212
11,64434813	10,69010562	10 - 100	9,55630250	8,325758 n	8,0643
11,68494068	10,70468474	\$+ 10	9,55428721	8,297844 n	8,0348
11,75138072	10,72840786	$\frac{1}{3} + \frac{1}{40} - \frac{1}{400}$	9,55124663	8,250734 n	7,9 ⁸ 53
11,82588860	10,75482524	\$ + 50	9,54818461	8,198202 n	7,9303
11,88107697	10,77427846	$\frac{1}{3} + \frac{1}{60} + \frac{1}{600}$	9,54613120	8,159748 n	7,8899
11,94166034	10,79553230	1 + e ¹ 0	9,54406804	8,117137 n	7,8358
11,97912606	10,80862729	\$++0++00	9,54288468	8,091036 n	7,8186
12,03991000	10,82979966	\$ + 1/0	9,5;110357	8,048814 n	7,7749
12,12525478	10,85938920	\$ + 800	9,53886685	7,989772 n	7,7139
12,20069644	10,88542601	· 1/3 + 1/0	9,53711918	7.937793 n	7,6613
12,26829720	10,90867249	1+160	9,53571597	7,891364 n	7,6126
12,33599708	10,93188166	\$ + 1000	9,53444919	7,845004 n	7,5651
12,41178531	10,95778785	1 1000	9,53317870	7,793241 n	7,5122
12,49782844	10,98711325	\$ + 1000	9,53190449	7,734634 11	7,454
12,59729959	11,02091557	1 + 1000	9,53062652	7,667067 n	7,3836
12,71511815	11,06083463	$\frac{1}{3} + \frac{1}{200}$	9,52934479	7,587261 n	7,3026
12,85952557	11,10961757	\$ + 1000	9,52805926	7,489721 n	7,2039
12,97765665	11,14942654	\$ + 3 8 0	9,52720012	7,410118 n	7,1234
13,16426107	11,21216853	1+ 100	9,52612380	7,284648 n	6,9969
13,30914243	11,26078695	\$ + 500	9,52547673	7,187418 n	6,8990
13,52801251 13,75971682	11,33411528	\$ + + 1 	9,52473603	7,040922 n	6,7418

EINRICHTUNG DER TAFEL.

Die Tafel gibt zum logarithmus der mittleren Anomalie den logarithmus tangans der halben wahren Anomalie nach der in der Ueberschrift stehenden Formel für Werthe von $10 + \log m$ innerhalb der Grenzen 8,5 und 13,8 auf weniger als drei Einheiten der achten Decimale genau, wenn für $\log M$ derjenige Werth in der Tafel genommen wird, der dem Werthe $\log m$ zunächst liegt.

Für Werthe von $10 + \log m$, die weniger als 8,5 betragen, ist zu setzen

$$\log \lg \frac{1}{2} w = \log m - m^3 \cdot \text{num} [\log = 9,160663 - 10] - m^4 \cdot \text{num} [\log = 9,0815 - 10]$$

für Werthe, die über 13,8 hinausgehen, entweder

$$\log \lg \frac{1}{2} w = \frac{1}{3} \log 3 m - (3 m)^{-\frac{3}{3}} \cdot \text{num} [\log = 9,637784 - 10]$$

- $(3 m)^{-\frac{1}{3}} \cdot \text{num} [\log = 9,3368 - 10]$

oder

$$\log \sin w = \frac{1}{8} \log \frac{2}{8} m - (\frac{2}{8} m)^{-\frac{4}{3}} \cdot \text{num} [\log = 8,4337 - 10]$$

$$\log 3 = 0,47712125 \qquad \log \frac{2}{8} = 9,57403127 - 10$$

Die Grössen $\log \tan \frac{1}{2} w$ und $\log \sin w$ bestimmen sich, wenn in allen Formeln die Glieder höherer Ordnung als der zweiten unbeachtet gelassen, und die Glieder zweiter Ordnung mit Hülfe vierstelliger Logarithmentafeln berechnet werden, in so weit genau, dass die Fehler vor w weniger als 0'1 beträgt.

BEMERKUNGEN.

Der vorliegende Abdruck der Theoria motus corporum coelestium bildet in Vereinigung mit den sechs Bänden Gauss'ischer Werke, welche ich im Auftrage der königlichen Gesellschaft der Wissenschaften zu Göttingen herausgebe, eine Gesammtausgabe von Gauss Werken. Sie enthält mit Ausschluss einiger Tabellenwerke und der Karten für den Erdmagnetismus alle von Gauss veröffentlichten Arbeiten, ferner aus dem handschriftlichen Nachlasse, der sich im Besitze der königlichen Gesellschaft der Wissenschaften zu Göttingen befindet, alle Aufzeichnungen, die mir ein wissenschaftliches Interesse zu haben schienen. Die Benutzung dieses Nachlasses, auch für die Ausgabe der Theoria motus, hat mir die königliche Gesellschaft freigestellt.

Das von Gauss im Jahre 1809 in 4° veröffentlichte Werk ist hier unverändert abgedruckt. Die Anktindigung, die er selbst von dem Werke in den Göttingischen Gelehrten Anzeigen 1809 Juni 17 gegeben, habe ich ich in Gauss Werken, Band VI. Seite 83 aufgenommen. Die frühern Druckfehler, die grössten Theils schon öffentlich angemerkt waren, zu denen auch noch einige andere von Gauss in seinem Exemplare angezeichnete hinzukommen, habe ich berücksichtigt, über die wenigen den Inhalt betreffenden Abänderungen im Folgenden ausführlich berichtet. Meine Einschaltungen sind von Gauss Worten überall durch besondere [Klammern] abgetrennt. Zur Erleichterung der Benutzung dieser Ausgabe bei Citaten, die sich auf Seitenzahlen der älteren beziehen, habe ich bei dem Inhaltsverzeichniss dieses Bandes die (pag.) der Anfänge der Sectionen in der früheren Ausgabe mit angegeben.

Zu Art. 1.

In einem Briefe vom 23. Febr. 1810 (abgedruckt in der von Freiherrn von Zach herausgegebenen Monatlichen Correspondenz zur Beförderung der Erdund Himmelskunde, Gotha 1810, März. Band XXI. Seite 280) schreibt Gauss: Für die Notirung der Druckfehler [Monatl. Corr. Bd. XXI. S. 281] in meiner Theoria, bin ich Herrn Oriani sehr verbunden. Er hat ganz recht, dass ich [Art. 114. Zeile 16] hinzu zu fügen vergessen habe, dass B, B, B' = 0, vorausgesetzt werden müssen, wenn die Bedingungs-Gleichung, bei welcher die Gleichung [7] unbrauchbar ist, die dort angegebene Gestalt [nemlich:

$$\left. \begin{array}{l} \tan \theta ' \tan \theta '' \sin (L-\alpha) \sin (L''-L') \\ + \tan \theta \delta '' \tan \theta \delta \sin (L'-\alpha') \sin (L-L'') \\ + \tan \theta \delta \tan \theta \delta ' \sin (L''-\alpha'') \sin (L'-L) \end{array} \right\} = 0$$

wie sie in der Ausgabe von 1809 steht] haben soll. Es ist übrigens klar, dass, wenn auch nicht B, B', B'' = 0 sind, doch die Gleichung [7] unbrauchbar sein kann, wenn nemlich der 12 gliedrige Ausdruck, welchen Oriani entwickelt hat, zufällig = 0 oder sehr klein wird.

Dass Euler schon das Theorem gefunden hat, woraus der schöne von mir La Place beigelegte Lehrsatz sehr leicht abgeleitet werden kann, fiel mir selbst schon früher ein, als aber die Stelle Art. 177. schon abgedruckt war; ich wollte es aber nicht unter die Errata setzen, weil La Place wenigstens das obige Theorem doch erst in der dort gebrauchten Form aufgestellt hat.

Die meisten der von Oriani angezeigten Druckfehler hatte ich mir auch schon notirt. Hier sind noch drei andere von ihm übersehene!

Art. 1, Zeile 17: statt inversa lies composita — —

Zu Art. 8.

Handschriftliche Aufzeichnung von Gauss:

$$1 = \cos v \cos E + \frac{\sin v \sin E}{\cos \varphi}$$

$$\cos \varphi = \frac{\sin v \sin E}{1 - \cos v \cos E}$$

$$\sin \varphi = \frac{\cos E - \cos v}{1 - \cos v \cos E}$$

Zu Art. 17.

Neben die Formeln dieses Art. hat Gauss in sein Handexemplar geschrieben:

$$\sin E = \sqrt{\frac{\cos \varphi + 2\sqrt{\cos \varphi + \cos \varphi^{\frac{2}{3}}}}{(1 + \sqrt{\cos \varphi})(1 + \cos \varphi)}}$$

$$\text{aequatio centri} = 2 \arcsin \sqrt{\left(\frac{1}{1 + \cos \varphi} - \frac{\sqrt[4]{(1 - ee)}}{2}\right) + e \sin E}$$

$$= \arccos \frac{-1 + \sqrt{\cos \varphi + \cos \varphi + \cos \varphi^{\frac{2}{3}}}}{1 + \cos \varphi} + e \sin E$$

$$= \arcsin \tan \frac{1}{2} \varphi^{2} \tan g E + e \sin E$$

Zu Art. 40.

Gauss hat in seinem Handexemplar Folgendes aufgezeichnet:

$$tang lac{1}{2}v = M\gamma tang lac{1}{2}w$$
 $r = \frac{q \sec lac{1}{2}v^2}{N}$ $\log M = Am$ $\log N = An$

Zu Art. 39, 43, 46.

In Bezug auf die Benutzung der Barker'schen Tafel bemerkt Gauss in den Astronomischen Nachrichten Nr. 474, 1843 (Gauss Werke Bd. VI. S. 191), dass sie bei grossen Anomalien wegen des beschwerlichen Interpolirens sehr unbequem wird, und gibt ein Verfahren an, wie die Rechnung mit seinen Logarithmeng. TH. M. 36

tafeln auf fünf Decimalstellen und dann mit Matthiessen's Tafeln bis zu sieben Decimalstellen zu führen ist.

Zur Vermeidung der weitläufigen Rechnungen, die mit dem einen oder dem andern Verfahren noch verbunden sind, habe ich oben Seite 274 eine Tafel angefügt, mit deren Hülfe $\log \lg \frac{1}{2} w$ aus $\log m$ bestimmt wird. Auf Seite 278 habe ich den Grad der Genauigkeit angegeben, der bei der verschiedenen Art der Benutzung dieser Tafel erreicht wird.

Zu Art. 54.

Handschriftliche Aufzeichnung von Gauss:

Si duo triangula, communia habent duo latera b, c, erit

I.
$$\frac{\sin\frac{1}{2}(a'-a)}{\sin\frac{1}{2}(A'-A)} = \frac{\sin b \sin\frac{1}{2}(C'+C)}{\cos\frac{1}{2}(B'-B)} = \frac{\sin c \sin\frac{1}{2}(B'+B)}{\cos\frac{1}{2}(C'-C)}$$
II.
$$-\frac{\sin\frac{1}{2}(a'+a)}{\sin\frac{1}{2}(A'-A)} = \frac{\sin b \cos\frac{1}{2}(C'+C)}{\sin\frac{1}{2}(B'-B)} = \frac{\sin c \cos\frac{1}{2}(B'+B)}{\sin\frac{1}{2}(C'-C)}$$
III.
$$-\frac{\sin\frac{1}{2}(a'-a)}{\sin\frac{1}{2}(A'+A)} = \frac{\sin b \sin\frac{1}{2}(C'-C)}{\cos\frac{1}{2}(B'+B)} = \frac{\sin c \sin\frac{1}{2}(B'-B)}{\cos\frac{1}{2}(C'+C)}$$
IV.
$$\frac{\sin\frac{1}{2}(a'+a)}{\sin\frac{1}{2}(A'+A)} = \frac{\sin b \cos\frac{1}{2}(C'-C)}{\sin\frac{1}{2}(B'+B)} = \frac{\sin c \cos\frac{1}{2}(B'-B)}{\sin\frac{1}{2}(C'+C)}$$

[Vergl. Gauss Werke Bd. IV, S. 401 und 405.]

Zu Art. 67.

Handschriftliche Aufzeichnung von Gauss:

$$\sin a \cos b = -\sin \epsilon \sin b + \cos \epsilon \cos b \sin l$$
 $\cos a \cos b = \cos b \cos l$
 $\sin b = +\cos \epsilon \sin b + \sin \epsilon \cos b \sin l$

Zu Art. 88.

Handschriftliche Aufzeichnung von Gauss:

Vorschriften um den Logar.-Sinus eines kleinen Bogens zu finden:

$$\log \sin n'' = \log \sin \varphi = \log \varphi - x \left\{ \frac{1}{2} \varphi \varphi + \frac{1}{1888} \varphi^4 + \frac{1}{28888} \varphi^6 + \frac{1}{27888} \varphi^8 + \text{etc.} \right\}$$

Man bilde die Grössen $\lambda, \lambda', \lambda'', \lambda'''$. . . nach folgendem Gesetze:

$$\lambda = 2 \log n + 8,2307828 - 20 \qquad \lambda = \log \mu$$

$$\lambda' = \lambda + \frac{1}{5} \mu \qquad \lambda' = \log \mu'$$

$$\lambda'' = \lambda' + \frac{5}{2} \frac{9}{10} (\mu' - \mu) \qquad \lambda'' = \log \mu''$$

$$\lambda''' = \lambda'' + \frac{1}{5} \frac{9}{5} (\mu'' - \mu') \qquad \lambda''' = \log \mu'''$$

$$u. s. w. \qquad u. s. w.$$

so ist $\log \sin \varphi = 4,6855749 - 10$ $+ \log n$ $- n^{\infty}$

Beispiel: $\varphi = 37^{\circ}6' = 133560''$

Um aus sin + \varphi den Logarithmen von

$$\frac{\varphi - \sin \varphi}{\frac{4}{3} \sin \frac{1}{2} \varphi^3}$$

zu finden, bediene man sich folgender Näherungsformel:

$$\log\left(\frac{1}{\sin\frac{1}{4}\phi^3} + \frac{2}{3\cdot 5}\right) - \log\left(\frac{1}{\sin\frac{1}{4}\phi^3} - \frac{3}{7}\right)$$

Hiedurch findet man den gesuchten Logarithmen zu gross: folgende Tafel gibt die anzubringende Correction in der 7. Decimale an:

Grenze von		Abzuziehende	
log sin ‡ φ	φ	Correction	
	0	0	
9,069	26°54′	1	
9,147	32 18	2	
9,184	35 9	3	
9,208	37 10	4	
9,226	38 45	5	
9,240	40 3	6	
9,252 9,262	41 10 42 10	7	
9,202	43 3	· 8	
9,279	43 51	9	
9,286	44 35	10	
9,293	45 15	11	

Zu Art. 90 und 100.

Gauss an Bode. Göttingen 1811, Sept. 10.

[Abgedruckt im Astronomischen Jahrbuche für das Jahr 1814, S. 256; herausgegeben von Bode, Berlin 1811.]

— — Noch füge ich Ihrem Wunsche zufolge einen kleinen Zusatz zu meiner Theoria motus corporum coelestium bei.

Zur Auflösung der wichtigen Aufgabe, aus zweien Radiis vectoribus und dem eingeschlossenen Winkel die elliptischen oder hyperbolischen Elemente zu bestimmen, habe ich mich mit grossem Vortheil einer Hülfsgrösse ξ bei der Ellipse, ζ bei der Hyperbel bedient, für welche ich jenem Werke eine Tafel angehängt habe. Berechnet ist diese Tafel nach einem dort angefügten continuirten Bruche, dessen vollständige Ableitung aber dort nicht gegeben ist, und zu dessen theoretischer Entwickelung, die mit andern Untersuchungen zusammenhängt, ich bisher noch nicht Gelegenheit gefunden habe. Es wird daher manchem lieb sein, hier einen andern Weg angezeigt zu finden, auf welchem man jene Hülfsgrösse ebenso bequem hätte berechnen können.

Wir haben (Art. 90.)

$$\xi = x - \frac{1}{6} + \frac{10}{9X} = \frac{xX - \frac{1}{6}X + \frac{10}{9}}{X}$$

Der Zähler dieses Bruches verwandelt sich leicht, wenn man für X die dort gegebene Reihe substituirt, in

$$\frac{8}{10.8}xx\left(1+\frac{2.8}{9}x+\frac{3.8.10}{9.11}xx+\frac{4.8.10.12}{9.11.13}x^3+\frac{5.8.10.12.14}{9.11.13.15}x^4+\text{etc.}\right)$$

Setzt man also die Reihe

$$1 + \frac{2 \cdot 8}{9}x + \frac{3 \cdot 8 \cdot 10}{9 \cdot 11}xx + \text{etc.} = A,$$

so wird

$$xX - \frac{1}{5}X + \frac{1}{5}\theta = \frac{8}{165}Axx$$

$$X = \frac{\frac{4}{1}(1 - \frac{1}{1})\frac{2}{5}Axx}{1 - \frac{1}{5}x}$$

$$\xi = \frac{\frac{2}{15}Axx(1 - \frac{6}{5}x)}{1 - \frac{1}{12}Axx}$$

nach welcher Formel man & immer bequem und sicher berechnen kann. Für & braucht man nur —z statt x zu setzen.

Ich bemerke nur noch, dass man A noch bequemer nach folgender Formel berechnen kann:

$$A = (1-x)^{-\frac{3}{2}} \left(1 + \frac{1.5}{2.9}x + \frac{1.3.5.7.7}{2.4.9.11}xx + \frac{1.3.5.5.7.9}{2.4.6.9.11.13}x^{3} + \text{etc.}\right)$$

Allein die Ableitung dieser Reihe aus der vorigen beruht auf Gründen, die hier nicht ausgeführt werden können. [Sie findet sich in Art. 40. der aus dem handschriftlichen Nachlass in Gauss Werken Bd. III. S. 209 aufgenommenen Abhandlung: Determinatio seriei nostrae per aequationem differentialem secundi ordinis.]

Gauss hat in sein Handexemplar die Formeln

$$y-1 = \frac{1+x}{\frac{3}{4} - \frac{9}{10}(x-\xi)}$$

$$y = 1 + \frac{10}{9}h - \frac{110}{81}hh + \frac{2}{72}\frac{1}{9}h^{3}$$

$$yy = 1 + \frac{20}{9}h - \frac{4}{2}\frac{9}{7}hh + \frac{2}{72}\frac{6}{9}h^{3}$$

$$\frac{1}{yy} = 1 - \frac{20}{9}h + \frac{5}{81}hh - \frac{174}{78}\frac{9}{9}h^{3}$$

Prope fit
$$y = \frac{1}{(1-\frac{1}{4}h)^{\frac{1}{4}}}$$

eingeschrieben; in Bezug auf die letzte will ich hier hinzuftigen, dass den gesuchten Werthen von y für kleine Werthe von h noch näher diejenigen liegen, welche durch die Formel

$$y = (1 + \frac{32}{5}h)^{\frac{12}{5}}$$

bestimmt werden.

Zu Art. 92.

Handschriliche Aufzeichnung von Gauss: Die Gleichung 15* hat:

- 1) Eine reelle negative Wurzel, wenn H zwischen den Grenzen 0 und
- +1+1/5 liegt, nebst zwei imaginären.
 2) Drei reelle Wurzeln, worunter Eine positive, wenn H zwischen $\frac{+1-\sqrt{5}}{6}$ und 0.
- 3) Eine reelle positive Wurzel und zwei imaginäre, wenn H zwischen $+1-\sqrt{5}$ und $-\infty$.
- 4) Drei reelle Wurzeln, unter denen Eine negativ, wenn H zwischen $\frac{+1+\sqrt{5}}{4}$ und $+\infty$.

Offenbar kann also nur von Fall 4 hier die Rede sein, wo sich zwei positive Wurzeln finden. Allein die Eine derselben ist hier immer kleiner als $\frac{-1+\sqrt{5}}{6}$, die andere grösser; letztere kann also allein gültig sein.

Bei dem im Text angezeichneten Verfahren ist klar, dass die letzte Gleichung nur dann zwei positive Wurzeln haben konnte, wenn zugleich 1-H negativ und 147 — 3 H positiv wäre, welches offenbar unmöglich ist, da 147 — 3 H = $\frac{2}{8}(1-H)-\frac{2}{2}\tau$.

Zu Art. 108.

In sein Handexemplar der Theoria motus hat Gauss die folgenden Formeln eingeschrieben:

> η est cosecans anguli inter chardam et axem $\frac{1}{2}(\theta' + \theta)$ ejusdem cotangens $\frac{r'-r}{g}$ ejusdem cosinus = $\cos g$ $p = (r+r')^{\frac{\rho\,\rho - (r'-r)^{\,2}}{\rho\,\rho}} \left\{1 - \frac{1}{4} \frac{\rho^{\,\rho}}{(r'-r)^{\,2}} - \frac{1}{1^{\,6}} \frac{\rho^{\,4}}{(r'+r)^{\,6}} + \ldots\right\}$ = $\frac{1}{2} \sin \sigma^2 \left\{ (r+r) + \sqrt{(r+r)^2 - \rho \rho} \right\}$

Tempus medium inter duo loca parabolica exhibetur per formulam

$$+ \frac{1}{k\sqrt{18}} \left\{ -\left(\frac{r'-r}{\sqrt{\frac{r'+r+\rho}{2}} - \sqrt{\frac{r'+r-\rho}{2}}}\right)^{3} + \frac{3(r'r'-rr)}{\sqrt{\frac{r'+r+\rho}{2}} - \sqrt{\frac{r'+r-\rho}{2}}}\right)^{3} + \frac{1}{2k} \cdot \frac{r'r'-rr}{2} - \frac{1}{2k} \cdot \frac{1}{2k} \cdot \frac{r'r'-rr}{2} - \frac{1}{2k} \cdot \frac{1}{2k} \cdot \frac{r'r'-rr}{2} - \frac{1}{2k} \cdot \frac{1}{$$

An anderen Stellen des handschriftlichen Nachlasses von Gauss finden sich ferner die in diesem Abdrucke mit der Bezeichnungsweise des Art. 108. wiedergegebenen Formeln:

Zur Berechnung der Chorde ρ aus Zeit t'—t und Summe der beiden Radien = r+r'

$$(r+r'+\rho)^{\frac{3}{4}} - (r+r'-\rho)^{\frac{3}{2}} = 6k(t'-t)$$

$$Es \ sei \frac{\sqrt{(1+\frac{\rho}{r+r'})} - \sqrt{(1-\frac{\rho}{r+r'})}}{\sqrt{s}} = \sin \psi$$
[so wird]
$$\frac{1-\sqrt{(1-\frac{\rho\rho}{(r+r')^{\frac{3}{2}}})}}{\frac{1}{4}} = \sin \psi^{2}$$

$$\frac{1+\sqrt{(1-\frac{\rho\rho}{(r+r')^{\frac{3}{2}}})}}{\frac{2}} = \cos 2\psi$$

$$\frac{1}{\sqrt{s}} \cdot \frac{\rho}{r+r'} = \sin \psi \cdot \sqrt{\cos 2\psi}$$

$$\frac{\epsilon}{\sqrt{s}} \cdot \frac{k(t'-t)}{(r+r')^{\frac{3}{4}}} = \sin 3\psi$$
[Setzt man:]
$$\frac{\rho}{r+r'} = \sin \varphi, \quad \frac{r'-r}{\rho} = \sin \tau$$
[so wird:]
$$2k(t-t) = \rho\sqrt{(r'+r)} \cdot \frac{2+\cos \varphi}{3\cos \frac{1}{2}\varphi}$$

$$\frac{Ausschnitt}{Dreieck} = \frac{2+\cos \varphi}{3\cos \frac{1}{2}\varphi}$$

$$\frac{1}{2}(t'+t) = \frac{1}{\epsilon k} 2(r+r')^{\frac{3}{4}} \sin \tau \cos \frac{1}{2}\varphi(3-2\sin \tau^{2}\cos \frac{1}{2}\varphi^{2})$$

$$p = (r+r')\sin \tau^{2} \cdot \cos \frac{1}{2}\varphi^{2} = (r+r')\sin \tau^{2} \cdot \cos 2\psi$$

$$\cos \tau \cdot \tan \varphi = \tan \varphi f$$

$$\tan g \tau \cdot \cos \varphi = \tan g (F - \tau)$$

$$\sin f \cdot \sin \tau \cdot \tan g + \varphi = \sin (2\tau - F)$$

$$\sin f \cdot \sin \tau \cdot \cot \arg \frac{1}{2} \varphi = \sin F$$

F-f und F+f die wahren Anomalien.

Zu Art. 114.

Statt der von Gauss in dem ersten Drucke gegebenen Bedingungsgleichung für die Identität der Gleichung [7] habe ich dort die allgemeine gesetzt. Vergl. oben die Bemerkungen zu Art. 1.

Zu Art. 141.

Handschriftliche Aufzeichnung von Gauss: z saltem duos valores reales habet, quoniam valores ipsius

$$Q\sin z^4 - \sin(z + H)$$

pro z = 0 atque pro $z = 180^{\circ}$ signa opposita habent, z non habet plures valores reales quam 4, quoniam

$$\frac{\sin(z+A)}{\sin z^4}$$

inter z = 0 atque $z = 180^{\circ}$ semel tantum fit maximum semel minimum, ac perinde inter $z = 180^{\circ}$ et 360°. Scilicet hoc evenit quoties

$$2 \tan z = -3 \cot A + \sqrt{9 \cot A^2 - 16} = 8 \tan (z + A)$$

Zu Art. 168.

Handschriftliche Aufzeichnung von Gauss, die Gleichungen I. und II. betreffend:

Quodsi quidem x' et x'' inde eliminanda esset, ad aequationem ordinis 64^{ti} delaberemur.

Zu Art. 176.

Handschriftliche Aufzeichnung von Gauss:

Hätten die Hypothesen H, H' an sich (d. i. vor dem Eintreten von E oder

vor erlangter Kenntniss von diesem Eintreten) ungleiche Wahrscheinlichkeiten μ , μ' gehabt, so wird man ihnen, nach der Erscheinung von E, Wahrscheinlichkeiten beilegen müssen, die den Producten μh , $\mu' h'$ proportional sind.

Zu Art. 177.

In Bezug des Theorems, welches hier dem La Place zugeschrieben wird, ist eine Aeusserung von Gauss schon oben in der Bemerkung zu Art. 1. mitgetheilt.

Das dort erwähnte Verzeichniss der Druckfehler in Dr. Gauss' Theoria motus corporum coelestium etc. Hamburgi 1809 vom Senator Bar. Oriani [Monatl. Corr. Bd. XXI. S. 283] enthält folgende Stelle: Elegans theorema, quod tribuitur Illustr. La Place, revera a Leonardo Eulero primum inventum est. Et enim in Comment. Acad. Petropol. Tom. XVI, Eulerus ostendit, integrale

$$-\int \frac{\mathrm{d}\,x}{\sqrt{\left(\log\frac{1}{x}\right)}}$$

sumtum ab x=1 ad x=0 esse $=\sqrt{\pi}$ existente π semicumferentia circuli, radio =1 descripti. Iamvero ponendo $x=e^{-tt}$ habetur

$$\frac{-\mathrm{d}x}{\sqrt{\left(\log\frac{1}{x}\right)}} = 2e^{-tt}\,\mathrm{d}t$$

Idoque integrale $\int e^{-tt} dt$ a t = 0 ad $t = \infty$ erit $= \frac{1}{2}\sqrt{\pi}$ et propterea idem integrale a $t = -\infty$ ad $t = +\infty$ fiet $= \sqrt{\pi}$.

Neben diese Stelle hat Gauss in sein Handexemplar der Monatl. Corr. die Bemerkung eingeschrieben:

Dies Theorem findet sich a. a. O. nicht, wohl aber p. 101. [Evolutio formulae integralis

$$\int x^{f-1} \, \mathrm{d} \, x (\log x)^{\frac{m}{n}}$$

integratione a valore x = 0 ad x = 1 extensa auctore L. Eulero, Theorema 2, Coroll. 4. §. 16.] folgendes:

$$\int_0^1\!\mathrm{d}\,x.\sqrt{\log\tfrac{1}{x}}=\tfrac{1}{4}\sqrt{\pi}$$

37

G. TH. M.

Schreibt man hier $x = e^{-tt}$, so wird

$$\int_{0}^{\infty} 2tt \ e^{-tt} \mathrm{d}t = \frac{1}{2} \sqrt{\pi}$$

Es ist aber $2tte^{-tt} dt = -d(te^{-tt}) + e^{-tt} dt$ und $te^{-tt} = 0$, so wohl für t = 0 als für $t = \infty$ also

$$\int_{0}^{\infty} e^{-tt} dt = \frac{1}{2} \sqrt{\pi}$$

In seinen Vorlesungen "Methodus quadratorum minimorum ejusque usus in Astronomia, Geodaesia Sublimiori et Scientia naturali" pflegte Gauss diesen Satz in der Weise abzuleiten, dass er die Gleichung

$$\left(\int_{-\infty}^{+\infty} e^{-tt} dt\right)^{2} = \int_{-\infty}^{+\infty} e^{-xx-yy} dx dy = \int_{-\infty}^{+\infty} e^{-\rho\rho} \rho d\rho \int_{0}^{2\pi} d\phi = \pi$$

mit Hülfe geometrischer Betrachtungen aufstellte, und dabei x, y als rechtwinkelige Coordinaten, ρ , φ als Polar-Coordinaten der Punkte in einer Ebene voraussetzte.

Göttingen. Sternwarte. 1871. Juni.

SCHERING.

INHALT GAUSS WERKE BAND VII.

Theoria motus corporum coelestium in sectionibus				
conicis solem ambientium	(pag.	I)	Seite	1
Praefatio	(pag.	III)	Seite	3
LIBER PRIMUS. Relationes generales inter quantitates, per quas corporum coelestium motus circa Solem definiuntur				
Sectio I. Relationes ad locum simplicem in orbita spectantes .	(pag.	1)	Seite	11
Sectio II. Relationes ad locum simplicem in spatio spectantes	(pag.	4 5)	Seite	53
Sectio III. Relationes inter locos plures in orbita	(pag.	82)	Seite	92
Sectio IV. Relationes inter loco splures in spatio	(pag.	125)	Seite	138
LIBER SECUNDUS. Investigatio orbitarum corporum coe- lestium ex observationibus geocentricis. Sectio I. Determinatio orbitae e tribus observationibus completis. Sectio II. Determinatio orbitae e quatuor observationibus, quarum		Í	Seite	
duae tantum completae sunt	(pag.	192)	Seite	210
Sectio III. Determinatio orbitae observationibus quotcunque quam proxime satisfacientis	,	Ť	Seite	2 25
bationum	(pag.	225)	Seite	246
TABULA I. (AD ARTT. 42. 45.)	(pag.	1*)	Seite	252
TABULA II. (AD ART. 93.)	(pag.	9*)	Seite	26 0
TABULA III. (AD ARTT. 90. 100.)	(pag.	17*)	Seite	268
TAFEL für mittlere und wahre Anomalie in parabolischen	•	•		
Bahnen (zu artt. 39. 43. 46)		• •	Seite	273
Bemerkungen			Seite	279

GOTHA,
PERTHES' BUCHDRUCKEREI.

