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BOOK III.

DEFINITIONS.

1. Equal circles are those the diameters of which are
equal or the radii of which are equal.

<A straight line is said to touch a circle Wthh
meetmg the circle and being produced, does not cut the
circle.

3. Circles are said to touch one another which,
meeting one another, do«not cut one another.

4. In a circle straight lines are said to be equally
distant from the centre when the perpendiculars drawn
to them from the centre are equal.

5. And that straight line is said to be at a greater
distance on which the greater perpendicular falls.

6. A segment of a circle is the figure contained by a
straight line and a circumference of a circle,

7. An angle of a segment is that contained by a
straight line and a circumference of a circle.

8. An angle in a segment is the angle which, when
a point is taken on the circumference of the segment and
straight lines are joined from it to the extremities of the
straight line which is the base of the segment, is contained
by the straight lines so joined.

9. And, when the straight lines containing the angle cut
off a circumference, the angle is said to stand upon that
circumference.

H. E. II. ’ 8

-

/:/'.
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10. “A’sector of a circle is the figure which, when an
angle js-constructed at the centre of the circle, is contained by
the straight lines containing the angle and the circumference
cut off by them.

.. 11. Similar segments of circles are those which
~~admit equal angles, or in which the angles are equal to one

-.~.another.

DEFINITION 1.
"loot xikAot elaiv, dv ai Sudperpor icar eloiv, % dv ai éx Tdv kévTpwy loat elaiv,

Many editors have held that this should not have been included among
definitions. Some, e.g. Tartaglia, would call it a posfulate; others, e.g. Borelli
and Playfair, would call it an axiom ; others again, as Billingsley and Clavius,
while admitting it as a definition, add explanations based on the mode of
constructing a circle; Simson and Pfleiderer hold that it is a theorem. 1
think however that Euclid would have maintained that it is a definition in
the proper sense of the term ; and certainly it satisfies Aristotle’s requirement
that a “definitional statement” (8pwrrikds Adyos) should not only state the
JSact (16 6r) but should indicate the cause as well (De anima 1. 2z, 413 a
13). The equality of circles with equal radii can of course be proved by
superposition, but, as we have seen, Euclid avoided this method wherever he
could, and there is nothing technically wrong in saying “ By egua/ circles 1
mean circles with equal radii.” No flaw is thereby introduced into the system
of the Elements ; for the definition could only be objected to if it could be
proved that the equality predicated of the two circles in the definition was
not the same thing as the equality predicated of other equal figures in the
Elements on the basis of the Congruence-Axiom, and, needless to say, this
cannot be proved because it is not true. The existence of equal circles (in
the sense of the definition) follows from the existence of equal straight lines
and 1. Post. 3.

The Greeks had no distinct word for radius, which is with them, as here,
the (straight line drawn) from the centre v éx 10b xévrpov (edfeta); and so
definitely was the expression appropriated to the radius that éx To% xérpov
was used without the article as a predicate, just as if it were one word. Thus,
e.g., in L 1 ék xérrpov ydp means “for they are radii”: cf. Archimedes, Or
the Sphere and Cylinder 11. 2, 7 BE éx Tob xévrpov éori 100...x0kAov, BE is a
radius of the circle.

DEFINITION 2.

Ebfeia xixhov épdrreafar Néyerar, fjris dmropérny Tob xikAov xai éxSBallopéry
oV Téuvet TOV KUkAov.

Euclid’s phraseology here shows the regular distinction between dwreofac
and its compound éddnreafa:, the former meaning ““to meet” and the latter
“to fouckh.” The distinction was generally observed by Greek geometers
from Euclid onwards. There are however exceptions so far as drrecfac is
concerned ; thus it means ‘“to souck” in Eucl. 1v. Def. 5 and sometimes in
Archimedes. On the other hand, épdmrecfa: is used by Aristotle in certain
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cases where the orthodox geometrical term would be dwrecfac. Thus in
Meteorologica 111. 5 (376 b 9) he says a certain circle will pass through all the
angles (dwacdv épayperar Tdv yondv), and (376 a 6) M will lic on a given
(circular) circumference (8cBopévns wepidpepelas édpdperar 70 M). We shall find
axrecfac used in these senses in Book 1v. Deff. 2, 6 and Deff. 1, 3 respectively.
The latter of the two expressions quoted from Aristotle means that 2ke Jocus
of M is a given cirdle, just as in Pappus dyerar 70 oqpelov Oérer Sedopérns
edeias means that 24e Jocus of the point is a straight line given in position.

DEFINITION 3.

KvxAo épdmreafac dAMjAwy Aéyovrar olrwves drrdpevor GAAJAwy o0 Téuvovow

Todhunter remarks that different opinions have been held as to what is,
or should be, included in this definition, one opinion being that it only means
that the circles do not cut in the neighbourhood of the point of contact,
and that it must be shown that they do not cut elsewhere, while another
opinion is that the definition means that the circles do not cut at all
Todhunter thinks the latter opinion correct. I do not think this is proved ;
and I prefer to read the definition as meaning simply that the circles meet
at a point but do not cut a? that point. 1 think this interpretation
preferable for the reason that, although Euclid does practically assume in
L. 11—13, without stating, the theorem that circles touching at one point
do not intersect anywhere else, he has given us, before reaching that
point in the Book, means for proving for ourselves the truth of that
statement. In particular, he has given us the propositions 111. 7, 8 which,
taken as a whole, give us more information as to the general nature of a
circle than any other propositions that have preceded, and which can be used,
as will be seen in the sequel, to solve any doubts arising out of Euclid’s
unproved assumptions. Now, as a matter of fact, the propositions are not used
in any of the genuine proofs of the theorems in Book 111 ; 111 8 is required
for the second proof of 111. 9 which Simson selected in preference to the first
proof, but the first proof only is regarded by Heiberg as genuine. Hence it
would not be easy to account for the appearance of 1n1. 7, 8 at all unless as
affording means of answering possible odsections (cf. Proclus’ explanation of
Euclid’s reason for inserting the second part of 1. 5).

External and internal contact are not distinguished in Euclid until 111
11, 12, though the figure of 111. 6 (not the enunciation in the original text)
represents the case of internal contact only. But the definition of touching
circles here given must be taken to imply so much about snfernal and external
contact respectively as that (4) a circle touching another internally must,
immediately before ‘“meeting” it, have passed through points within the
circle that it touches, and (4) a circle touching another externally must,
immediately before meeting it, have passed through points ousside the circle
which it touches. These facts must indeed be admitted if inferna/ and
external are to have any meaning at all in this connexion, and they constitute
a minimum admission necessary to the proof of 111. 6.

DEFINITION 4.

kJ ~ -
'Ev xvxAp loov dméxewv amd Tod xévtpov ebletar Aéyovrar, 6tav al dmd Tob
’ *
xérrpov éx’ abras xalerol ayduevar ioar o,

- 1—2
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DEFINITION 5.

Meilov 8¢ dwéxew Aéyerar, ¢’ v 1 peilwv xdberos nimre.

DEFINITION 6.

Tufjpa xixhov éori 70 wepiexopevov axipa vme Te ebfelas xal kvxAov
wepupepeias.

DEFINITION 7.

Tuijpartos 8¢ yuvia éoriv 1) weprexopévn vmd Te ebbelas xai kvxAov Tepipepeias.

This definition is only interesting historically. The angle of a segment,
being the “angle” formed by a straight line and a circumference,” is of the
kind described by Proclus as “mixed.” A particular “angle” of this sort is
the “angle of a semicircle,” which we meet with again in 111. 16, a]ong with
the so-called ‘horn-like angle (xepatoerdsjs), the supposed * angle between
a tangent to a circle and the circle itself. The “angle of a semicircle ” occurs
once in Pappus (vIL. p. 670, 19), but it there means scarcely more than the
corner of a semicircle regarded as a point to which a straight line is directed.
Heron does not give the definition of the angle of a segment, and we may
conclude that the mention of it and of the angle of a semicircle in Euclid is a
survival from earlier text-books rather than an indication that Euclid considered
either to be of importance in elementary geometry (cf. the note on nr. 16
below).

We have however, in the note on 1. 5 above (Vol. 1. pp. 252—3), seen evi-
dence that the angle of a segment had played some part in geometrical proofs up
to Euclid’s time. It would appear from the passage of Aristotle there quoted
(Anal. prior. 1. 24, 41 b 13 5qq.) that the theorem of 1. § was, in the text-books
immediately preceding Euclid, proved by means of the equality of the two
“angles of” any one segment. This latter property must therefore have been
regarded as more elementary (for whatever reason) than the theorem of 1. 5;
indeed the definition as given by Euclid practlcally implies the same thing,
since it speaks of only oze ““angle of a segment,” namely ““the angle contained
by a straight line and a circumference of a circle.” Euclid abandoned the
actual use of the “angle” in question, but no doubt thought it unnecessary
to break with tradition so far as to strike the definition out also.

DEFINITION 8.
Ev 'rp.ma.aﬂ. 8¢ 'yama icr'rw, orav érl Tijs ‘u’epuﬁcp(ms TOD 'rm;,ua‘ros M,¢9~” T

aqueiov xai dr’ abrod dmi 7d 1r¢pa.‘m s cvﬂaas, 7 éore Bdais Tod Turjpatos,
txlevxloow ebbeiar, 1 meprexopévy yuwvia vmo 1oy dmibevxfeody edfedv.

DEFINITION 9.

- ,
"Orav 8¢ ai rtpte’xovo;m. ﬂ.)v -yw,v[av ebleiar dmodapfdvwol Tva Tepidépeay,
* ’,

&r’ éxelvys Aéyerar Befykeévar 7 ywvia.
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DEFINITION IO.

To;uvs 8¢ xixdov ¢ wﬂ.v, drav ‘u-pos 'm xcwpcp Tod KUkAov o'vo"ra0y 'yuww.,
70 tepuxop.svov pa vme TE TOV ‘n)v yoviay mepiexovadv elfady xai Tis
atohpﬁavopcms lﬂl' GW(I)V r(puﬁcpculs

A scholiast says that it was the skoemaker’s knife, axvrorouwds Topevs,
which suggested the name rouevs for a sector of a circle. The derivation of
the name from a resemblance of shape is parallel to the use of dpByhos (also
a shoemaker’s knife) to denote the well known figure of the Book of Lemmas.
partly attributed to Archimedes.

A wider definition of a sector than that given by Euclid is found in a
Greek scholiast (Heiberg’s Euclid, Vol. v. p. 260) and in an-Nairizi (ed. Curtze,
p- 112). “There are two varieties of sectors ; the one kind have the angular
vertices at the centres, the other at the circumferences. Those others which
have their vertices neither at the circumferences nor at the centres, but at
some other points, are for that reason not called sectors but sector-like
figures (topoed oxijpara).” The exact agreement between the scholiast and
an-Nairizi suggests that Heron was the authority for this explanation.

The sector-like figure bounded by an arc of a circle and two lines drawn
from its extremities to meet at any point actually appears in Euclid’s book On
divisions (wept Suawpéogewv) discovered in an Arabic Ms. and edited by
Woepcke (cf. Vol. 1. pp. 8—10 above). This treatise, alluded to by Proclus,
had for its object the division of figures such as triangles, trapezia,
quadrilaterals and circles, by means of straight lines, into parts equal or
in given ratios. One proposmon e.g. is, To drvide a triangle into two equal
parts by a straight line passing through a given point on one side. The
proposition (28) in which the guasi-sector occurs is, 7o divide suck a figure by a
straight line into two equal parts. The solution in this case is given by Cantor
(Gesch. d. Matk. 1,, pp. 287—8).

If ABCD be the given figure, £ the middle point
of BD and EC at right angles to B.D, A
the broken line 4EC clearly divides the figure into
two equal parts.

Join AC, and draw EF parallel to it meeting B
ABin F.

Join CF, when it is seen that CF divides the C
figure into two equal parts.

F

DEFINITION 1I1.

Oy.oux Tpijpara xikdwv éori Ta Sexdpeva ywvias ioas, % év ols ai ywviat irat
AAAPAass eloiv.

De Morgan remarks that the use of the word similar in *similar
segments ” is an anticipation, and that similarity of form is meant. He adds
that the definition is a theorem, or would be if “similar” had taken its final
meaning.



BOOK III. PROPOSITIONS.

ProrosITION 1.

To find the centre of a given circle.

Let ABC be the given circle ;
thus it is required to find the centre of the circle ABC.
Let a straight line 4B be drawn
s through it at random, and let it be bisected
at the point D ;
from D let DC be drawn at right angles
to AB and let it be drawn through to £;
let CE be bisected at F~';
10] say that F is the centre of the circle
ABC.
For suppose it is not, but, if possible,
let G be the centre,
and let GA, GD, GB be joined.
15 Then, since AD is equal to DB,
and DG is common,
the two sides 4D, DG are equal to the two sides
BD, DG respectively ;
and the base GA4 is equal to the base GB, for they are
20 radii ;
therefore the angle A DG is equal to the angle GDB. [1. 8]
But, when a straight line set up on a straight line makes
the adjacent angles equal to one another, each of the equal
angles is right; [1. Def. 10]
25 therefore the angle GD2Z is right.
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But the angle FD2B is also right;

therefore the angle FDB is equal to the angle GDB, the
greater to the less: which is impossible.

Therefore G is not the centre of the circle 4A58C.

3o Similarly we can prove that neither is any other point
except £,
Therefore the point # is the centre of the circle A5C.,

PorisM. From this it is manifest that, if in a circle a
straight line cut a straight line into two equal parts and at
3sright angles, the centre of the circle is on the cutting straight

line.
Q. E. F.

12. For suppose it is not. This is expressed in the Greck by the two words My ydp,
but such an elliptical phrase is impossible in English.

17. the two sides AD, DG are equal to the two sides BD, DG respectively.
As before observed, Euclid is not always careful to put the equals in corresponding order.
The text here has *“ GD, DB.”

Todhunter observes that, when, in the construction, DC is said to be
produced to E, it is assumed that D is within the circle, a fact which Euclid
first demonstrates in 111. 2. This is no doubt true, although the word 8ujxfw,
“let it be drawn through,” is used instead of éxBeBAjobu, “let it be produced.”
And, although it is not necessary to assume that D is within the circle, it is
necessary for the success of the construction that the straight line drawn
through D at right angles to 4.3 shall meet the circle in two points (and no
more): an assumption which we are not entitled to make on the basis of what
has gone before only.

Hence there is much to be said for the alternative procedure reccommended
by De Morgan as preferable to that of Euclid. De Morgan would first prove
the fundamental theorem that “the line which bisects a chord perpendicularly
must contain the centre,” and then make 1i1. 1, 111. 25 and 1v. § immediate
corollaries of it. The fundamental theorem is a direct consequence of the
theorem that, if 2P is any point equidistant from A4
and B, then P lies on the straight line bisecting 45
perpendicularly. We then take any two chords 4.5,

AC of the given circle and draw DO, EO bisecting 8

them perpendicularly. Unless BA4, AC are in one

straight line, the straight lines DO, £0 must meet

in some point O (see note on 1v. 5 for possible

methods of proving this). And, since both DO,

EO must contain the centre, O must be the centre. /

This method, which seems now to be generally
preferred to Euclid’s, has the advantage of showing
that, in order to find the centre of a circle, it is sufficient to know three points
on the circumference. If therefore two circles have three points in common,
they must have the same centre and radius, so that two circles cannot have
three points in common without coinciding entirely. Also, as indicated by
De Morgan, the same construction enables us (1) to draw the complete circle
of which a segment or arc only is given (111, 25), and (2) to circumscribe a
circle to any triangle (1v. 5).
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But, if the Greeks had used this construction for finding the centre of a
circle, they would have considered it necessary to add a proof that no other
point than that obtained by the construction can be the centre, as is clear
both from the similar reductio ad absurdum in m. 1 and also from the fact
that Euclid thinks it necessary to prove as a separate theorem (111. 9) that, if
a point within a circle be such that three straight lines (at least) drawn from it
to the circumference are equal, that point must be the centre. In fact,
however, the proof amounts to no more than the remark that the two
perpendicular bisectors can have no more than one point common.

And even in De Morgan’s method there is a yet unproved assumption.
In order that D0, £0O may meet, it is necessary that 4.8, 4C should not be
in one straight line or, in other words, that BC should not pass through 4.
This results from 11. 2, which therefore, strictly speaking, should precede.

To return to Euclid’s own proposition mr. 1, it will be observed that the
demonstration only shows that the centre of the circle cannot lie on either
side of CD, so that it must lie on CD or CD produced. It is however taken
for granted rather than proved that the centre must be the middle point of
CE. The proof of this by reductio ad absurdum is however so obvious as to
be scarcely worth giving. The same consideration which would prove it may
be used to show that a circle cannot have more than one centre, a proposition
which, if thought necessary, may be added to 111. 1 as a corollary.

Simson observed that the proof of 11. 1 could not but be by reductio ad
absurdum. At the beginning of Book 111. we have nothing more to base the
proof upon than the definition of a circle, and this cannot be made use of
unless we assume some point to be the centre. We cannot however assume
that the point found by the construction is the centre, because that is the
thing to be proved. Nothing is therefore left to us but to assume that some
other point is the centre and then to prove that, whatever other point is
taken, an absurdity results; whence we can infer that the point found is
the centre.

The Porism to n1. 1 is inserted, as usual, parenthetically before the words
omep Be woujoay, which of course refer to the problem itself.

ProrosiTiON 2.

If on the civcumference of a circle two points be taken at
random, the straight line joining the points will fall within
the circle.

Let ABC be a circle, and let two points 4, B be taken
at random on its circumference ;

I say that the straight line joined from
A to B will fall within the circle.

For suppose it does not, but, if
possible, let it fall outside, as A£ZB ;
let the centre of the circle 48C be
taken [ 1], and let it be D; let DA,
DB be joined, and let DFE be drawn
through.
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Then, since DA is equal to DB,
the angle DAE is also equal to the angle DBE. [ 5]
And, since one side 4 EB of the triangle DAE is produced,
the angle DER is greater than the angle DAE. [1. 16]
But the angle DAE is equal to the angle DBE;
therefore the angle DER is greater than the angle DBE.
And the greater angle is subtended by the greater side; [1. 19]
therefore DB is greater than DE.
But DB is equal to DF;
therefore DF is greater than DE,
the less than the greater: which is impossible.

Therefore the straight line joined from A4 to B will not
fall outside the circle.

Similarly we can prove that neither will it fall on the
circumference itself ;

therefore it will fall within.

Therefore etc.
Q. E. D.

The reductio ad absurdum form of proof is not really necessary in this case,
and it has the additional disadvantage that it requires the destruction of two
hypotheses, namely that the chord is (1) outside, (2) on
the circle. To prove the proposition directly, we have
only to show that, if £ be any point on the straight line
AB between A and B, DE is less than the radius of the
circle. This may be done by the method shown above,
under 1. 24, for proving what is assumed in that
proposition, namely that, in the figure of the proposition, \
Ffalls below £G if DE is not greater than DF. The N
assumption amounts to the following proposition, which
De Morgan would make to precede 1. 24: ‘Every
straight line drawn from the vertex of a triangle to the base is less than
the greater of the two sides, or than either if they be equal.” The case
here is that in which the two sides are equal ; and, since the angle DAB is
equal to the angle DBA, while the exterior angle DEA is greater than the
interior and opposite angle DBA, it follows that the angle DEA is greater
than the angle DAE, whence DE must be less than D4 or DB.

Camerer points out that we may add to this proposition the further
statement that all points on 4B produced in either direction are outside the
circle. This follows from the proposition (also proved by means of the
theorems that the exterior angle of a triangle is greater than either of the
interior and opposite angles and that the greater angle is subtended by
the greater side) which De Morgan proposes to introduce after 1. 21, namely,

“The perpendicular is the shortest straight line that can be drawn from a
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given point to a given straight line, and of others that which is nearer to the
perpendicular is less than the more remote, and the converse ; also not more
than two equal straight lines can be drawn from the point to the line, one on
each side of the perpendicular.”

The fact that not more than two equal straight lines can be drawn from a
given point to a given straight line not passing through it is proved by Proclus
on 1. 16 (see the note to that proposition) and can alternatively be proved by
means of 1. 7, as shown above in the note on 1. 12. It follows that

A straight line cannot cut a circle in more than two points :

a proposition which De Morgan would introduce here after 111. 2. The proof
given does not apply to a straight line passing through the centre ; but that
such a line only cuts the circle in two points is self-evident.

ProrosITION 3.

If in a circle a straight line through the centre bisect a
straight line not through the centre, it also culs it at right
angles ; and if it cut it al right angles, it also bisects it.

Let ABC be a circle, and in it let a straight line CD
s through the centre bisect a straight line
AR not through the centre at the point c
F;
I say that it also cuts it at right angles.
For let the centre of the circle A8C £
10 be taken, and let it be £; let £4, EB
be joined. A
Then, since AF is equal to 75,
and FE is common, D
two sides are equal to two sides;
15 and the base £A4 is equal to the base £5;
therefore the angle 4FE is equal to the angle BFE. [1.8]
But, when a straight line set up on a straight line makes
the adjacent angles equal to one another, each of the equal
angles is right ; [1. Def. 10]
20 therefore each of the angles 4FE, BFE is right.
Therefore CD, which is through the centre, and bisects
AB which is not through the centre, also cuts it at right
angles.
Again, let CD cut 42 at right angles ;

25 | say that it also bisects it, that is, that AF is equal to F5.
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For, with the same construction,
since £4 is equal to £5,
the angle £A4F is also equal to the angle £BF. [1 5]
But the right angle 4FZ is equal to the right angle BFE,
o therefore £AF, EBF are two triangles having two angles
equal to two angles and one side equal to one side, namely
EF, which is common to them, and subtends one of the equal
angles;
therefore they will also have the remaining sides equal to
35 the remaining sides; [1. 26]
therefore AF is equal to FB.
Therefore etc.
Q. E. D.

26. with the same construction, 7dv atrdy xaracxevacfévrwr.

This proposition asserts the two partial converses (cf. note on 1. 6) of the
Porism to 111. 1. De Morgan would place it next to 111 1.

ProrosiTION 4.

If in a circle two straight lines cut one another whick are
not through the centre, they do not bisect one another.

Let ABCD be a circle, and in it let the two straight lines
AC, BD, which are not through the
centre, cut one another at £;

I say that they do not bisect one

another. D
For, if possible, let them bisect one F

another, so that 4 is equal to £C, A \ A

and BE to ED; \iu

let the centre of the circle ABCD be ~

taken [ 1), and let it be 7'; let FE be 8

joined.

Then, since a straight line #£ through the centre bisects
a straight line 4C not through the centre,

it also cuts it at right angles ; - [ 3)
therefore the angle #£A is right. ‘
Again, since a straight line ~£ bisects a straight line 8D,
it also cuts it at right angles; [ 3]
therefore the angle ~£2B is right.
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But the angle #£A4 was also proved right;
therefore the angle FE£A is equal to the angle FEB,
the less to the greater: which is impossible.
Therefore AC, BD do not bisect one another.
Therefore etc.
Q. E. D.

PROPOSITION 5.

If two civcles cut one another, they will not have the same
centre.

For let the circles ABC, CDG cut one another at the
points B, C;

1 say that they will not have the same
centre.

For, if possible, let it be £; let £C
be joined, and let £FG be drawn
through at random.

Then, since the point £ is the
centre of the circle ABC,

EC is equal to EF. [1. Def. 15]

Again, since the point £ is the centre of the circle COG,

EC is equal to £G.
But £C was proved equal to £F also;
therefore £F is also equal to EG, the less to the
greater : which is impossible.

Therefore the point £ is not the centre of the circles
ABC, CDG.
Therefore etc.

Q. E. D,

The propositions 111. §, 6 could be combined in one. It makes no
difference whether the circles cut, or meet without cutting, so long as they do
not coincide altogether; in either case they cannot have the same centre.
The two cases are covered by the enunciation : Jf the crcumferences of two
circles meet at a point they cannot have the same centre. On the other hand, If
two circles have the same centre and one point in thesy crcumferences common,
they must coincide altogether.
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PropoSITION 6.

If two civcles touck one another, they will not have the
same centre.

For let the two circles ABC, CDE touch one another
at the point C;

I say that they will not have the
same centre.

For, if possible, let it be F; let
FC be joined, and let F£B be drawn
through at random.

Then, since the point / is the
centre of the circle ABC,

FC is equal to FB.

Again, since the point # is the
centre of the circle CDE,

FC is equal to FE.
But /C was proved equal to 5B ;

therefore /£ is also equal to /5, the less to the greater:
which is impossible.

Therefore /' is not the centre of the circles A8C, CDE.

Therefore etc.
Q. E. D.

The English editions enunciate this proposition of circles touching
internally, but the word (évrds) is a mere interpolation, which was no doubt
made because Euclid’s figure showed only the case of infernal contact. The
fact is that, in his usual manner, he chose for demonstration the more difficult
case, and left the other case (that of exfernal contact) to the intelligence of
the reader. It is indeed sufficiently self-evident that circles touching externally
cannot have the same centre; but Euclid’s proof can really be used for this
case too. -

Camerer remarks that the proof of 111. 6 seems to assume tacitly that the
points £ and B cannot coincide, or that circles which touch internally at C
cannot meet in any other point, whereas this fact is not proved by Euclid till
nn 13. But no such general assumption is necessary here; it is only
necessary that one line drawn from the assumed common centre should meet
the circles in different points; and the very notion of internal contact requires
that, before one circle meefs the other on its inner side, it must have passed
through points withsn the latter circle.
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ProrosiTION 7.

If on the diameter of a civcle a point be taken whick is not
the centre of the circle, and from the point straight lines fall
upon the circle, that will be greatest on whick the centre is, the
remainder of the same diameter will be least, and of the rest

sthe nearer to the straight line through the centre is always
greater than the move remote, and only two equal straight
ltnes will fall from the point on the circle, ome on eack side
of the least straight line.

Let ABCD be a circle, and let 4D be a diameter of it ;

ioon AD let a point F be taken which is not the centre of the
circle, let £ be the centre of the circle,
and from £ let straight lines /B, FC, FG fall upon the circle
ABCD;
I say that /A is greatest, /D is least, and of the rest FAB is
15 greater than /#C, and /#C than FG.

For let BE, CE, GE be joined.

Then, since in any triangle two
sides are greater than the remaining
one, [1. 20]

20 EB, EF are greater than BF.
But A F is equal to BE;
therefore 4 /' is greater than B/
Again, since B/ is equal to CZ,

and /£ is common,

25 the two sides 2/, £/ are equal to the two sides CE, E£F.
But the angle B/ / is also greater than the angle CEF;

therefore the base B/ is greater than the base CF. [r. 24]
For the same reason
CF is also greater than £G.
30 Again, since GF, FE are greater than £G,
and £G is equal to /2D,
GF, FE are greater than £D.
Let £/ be subtracted from each;
therefore the remainder G/ is greater than the remainder

35 FD.

Therefore FA is greatest, /D is least, and /A is greater
than #C, and /C than /G.
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I say also that from the point / only two equal straight
lines will fall on the circle ABCD, one on each side of the
40 least FD.
For on the straight line £F, and at the point £ on it, let
the angle /£ H be constructed equal to the angle GE/# 1. 23],
and let /~/ be joined.
Then, since G£ is equal to £H,

45 and £F is common,
the two sides GE, EF are equal to the two sides 7 E, EF;
and the angle GEF is equal to the angle A EF;
therefore the base /~G is equal to the base F/.  [1 4]

I say again that another straight line equal to #G will not
so fall on the circle from the point /.

For, if possible, let #X so fall.

Then, since FK is equal to /G, and FH to FG,

FK is also equal to F/,

. the nearer to the straight line through the centre being
ss thus equal to the more remote : which is impossible.

Therefore another straight line equal to GF will not fall
from the point / upon the circle ;

therefore only one straight line will so fall.
Therefore etc.
Q. E. D.

4. of the same diameter. I have inserted these words for clearness’ sake. The text
has simply é\axlorn 8¢ § Ao, *“ and the remaining (straight line) least.”

7. 39. one on each side. The word “ one " is not in the Greek, but is necessary to
give the force of ég’ éxdrepa Tijs éNaxlorys, literally *“ on both sides,” or *“ on each of the two
sides, of the least.”

De Morgan points out that there is an unproved assumption in this
demonstration. We draw straight lines from F, as FB, FC, such that the
angle DFB is greater than the angle DFC and then assume, with respect to
the straight lines drawn from the centre E to B, C, that
the angle DEB is greater than the angle DEC. This
is most easily proved, I think, by means of the converse
of part of the theorem about the lengths of different
straight lines drawn to a given straight line from an
external point which was mentioned above in the note
on 1L 2. This converse would be to the effect that, /f
two unequal straight lines be drawn from a point to a
given straight line whick are not perpendicular to the
straight line, the greater of the two is the further from the perpendicular from the
point to the given straight line. This can either be proved from its converse by
reductio ad absurdum, or established directly by means of 1. 47. Thus, in the
accompanying figure, B must cut £C in some point A, since the angle BFE
is less than the angle CFE.

Therefore £M is less than £C, and therefore than £B.
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Hence the point B in which #B meets the circle is further from the foot

of the perpendicular from £ on #B than M is;
therefore the angle BEF is greater than the angle CEFR

Another way of enunciating the first part of the proposition is that of
Mr H. M. Taylor, viz. *“Of all straight lines drawn to a circle from an internal
point not the centre, the one which passes through the centre is the greatest,
and the one which when produced passes through the centre is the least; and
of any two others the one which sublends the greater angle at the centre is the
greater.” The substitution of the angle subtended at the centre as the criterion
no doubt has the effect of avoiding the necessity of dealing with the unproved
assumption in Euclid’s proof referred to above, and the similar substitution in
the enunciation of the first part of 111. 8 has the effect of avoiding the necessity
for dealing with like unproved assumptions in Euclid’s proof, as well as the
complication caused by the distinction in Euclid’s enunciation between lines
falling from an external point on the convex circumference and on the concave
circumference of a circle respectively, terms which are not defined but taken as
understood.

Mr Nixon (£uclid Revised) similarly substitutes as the criterion the angle
subtended at the centre, but gives as his reason that the words *nearer” and
“more remote” in Euclid’s enunciation are scarcely clear enough without
some definition of the sense in which they are used, Smith and Bryant make
the substitution in 111. 8, but follow Euclid in 1. 7.

On the whole, I think that Euclid’s plan of taking straight lines drawn from
the point which is not the centre direct to the circumference and making
greater or less angles af tkat point with the straight line containing it and the
centre is the more instructive and useful of the two, since it is such lines
drawn in any manner to the circle from the point which are immediately useful
in the proofs of later propositions or in resolving difficulties connected with
those proofs.

Heron again (an-Nairizi, ed. Curtze, pp. 114—5) has a note on this
proposition which is curious. He first of all says that Euclid proves that lines
nearer the centre are greater than those more remote from it. This is a
different view of the question from that taken in Euclid’s proposition as we
have it, in which the lines are not nearer to and more remote from the centre
but from the line through the centre. Euclid takes lines inclined to the latter
line at a greater or less angle ; Heron introduces distance from the centre in
the sense of Deff. 4, 5, i.e. in the sense of 2ke length of the perpendicular drawn
to the line from the centre, which Euclid does not use till 111. 14, 15. Heron
then observes that in Euclid’s proposition the lines compared are all drawn on
one side of the line through the centre, and sets himself to prove the same
truth of lines on ogpposite sides which are more or less distant from the centre.
The new point of view necessitates a quite different line of proof, anticipating
the methods of later propositions.

The first case taken by Heron is that of two straight lines such that the
perpendiculars from the centre on them fall on the lines themselves and not

in either case on the line produced.
Let 4 be the given point, D the centre, and let ,
AE be nearer the centre than A% so that the £
perpendicular DG on AE is less than the perpen- C
dicular DA on AF. %
Then sqgs. on DG, GE =sqs. on DH, HF,
and  sgs. on DG, GA =sqgs. on DH, HA.

But sq. on DG <sq. on DAH. ’
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Therefore sq. on GE > sq. on HF,
and sq. on G4 >sq. on HA,
whence GE > HF,

GA> HA.

Therefore, by addition, 4£ > AF.

The other case taken by Heron is that where
one perpendicular falls on the line produced, as in
the annexed figure. In this case we prove in like
manner that GE > HF,

and GA > AH.

Thus 4E is greater than the sum of ¥, AH,
whence, a fortiori, AE is greater than the difference
of HF, AH, ie. than AF.

Heron does not give the third possible case, that, namely, where dotA
perpendiculars fall on the lines produced, The fact
is that, in this case, the foregoing method breaks
down. Though 4Z be nearer to the centre than
AF in the sense that DG is less than DH,

AE is not greater but /ess than AF.

Moreover this cannot be proved by the same
method as before.

For, while we can prove that

GE > HF,
GA > AH,
we cannot make any inference as to the comparative length of 4Z, AF.

To judge by Heron’s corresponding note to . 8, he would, to prove this
case, practically prove 111. 35 first, i.e. prove that, if £4 be produced to X
and F4 to L,

rect. FA, AL = rect. £EA4, AK,
from which he would infer that, since 4X > 4L by the first case,
AE < AF.

An excellent moral can, I think, be drawn from the note of Heron.
Having the appearance of supplementing, or giving an alternative for, Euclid’s
proposition, it cannot be said to do more than confuse the subject. Nor was
it necessary to find a new proof for the case where the two lines which are
compared are on ggposite sides of the diameter, since Euclid shows that for each
line from the point to the circumference on one side of the diameter there is
another of the same length equally inclined to it on the other side.

ProrosiTiON 8.

If a point be taken oulside a circle and from the point
straight lines be drawn through to the circle, one of whick
is through the centre and the others are drawn at random,
then, of the straight lines whick fall on the concave circum-
Jerence, that through the centre is greatest, while of the rest

H. E. 1L 2
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the nearer to that through the centre is always greater than
the more remote, but, of the straight lines falling on the convex
circumference, that between the point and the diameter is least,
while of the rest the nearer to the least is always less than the
more remote, and only two equal straight lines will fall on the
civcle from the point, one on eack side of the least.

Let ABC be a circle, and let a point D be taken outside
ABC; let there be drawn through
from it straight lines DA, DE, DF,
DC, and let DA be through the centre;

I say that, of the straight lines falling

on the concave circumference AEFC,

the straight line DA through the centre

is greatest,

while DE is greater than DF and DF
than DC; c
but, of the straight lines falling on the |
convex circumference HLKG, the
straight line DG between the point

and the diameter AG is least; and

the nearer to the least DG is always

less than the more remote, namely DK
than DL, and DL than DH.

For let the centre of the circle .43C be taken [mw 1], and
let it be M ; let ME, MF, MC, MK, ML, MH be joined.

Then, since AM is equal to £M,
let MDD be added to each;

therefore 4D is equal to £M, MD.

But £EM, MD are greater than £D; [1. 20]

therefore A0 is also greater than £D.

Again, since ME is equal to MF,

and MDD is common,
therefore £M, MD are equal to F M, MD;

and the angle £MD is greater than the angle FMD ;

therefore the base £ is greater than the base 7D.
.2

Similarly we can prove that #D is greater than CD ;[ !
therefore DA is greatest, while DE is greater than DF,
and DF than DC.
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Next, since MK, KD are greater than MD, [1. 20]
and MG is equal to MK,

therefore the remainder KD is greater than the remainder
GD,

so that GD is less than KD.

And, since on M D, one of the sides of the triangle M LD,
two straight lines /K, KD were constructed meeting within
the triangle,
therefore MK, KD are less than ML, LD ; [ 21]
and MK is equal to ML ;

therefore the remainder DX is less than the remainder
DL.

Similarly we can prove that DL is also less than DA ;
therefore DG is least, while DK is less than DL, and

DL than DH.

I say also that only two equal straight lines will fall from
the point D on the circle, one on each side of the least DG.

On the straight line #/D, and at the point 47 on it,
let the angle DMB be constructed equal to the angle KM D,
and let DB be joined.

Then, since MK is equal to M5B,
and MD is common,

the two sides KM, MD are equal to the two sides BN,
MD respectively ;

and the angle KMD is equal to the angle BMD ;
therefore the base DK is equal to the base DB. [1 4]

I say that no other straight line equal to the straight line
DK will fall on the circle from the point D. »

For, if possible, let a straight line so fall, and let it be DNV.

Then, since DK is equal to DN,
while DX is equal to D5,
DB is also equal to DN,
that is, the nearer to the least DG equal to the more remote:
which was proved impossible.

Therefore no more than two equal straight lines will fall
on the circle ABC from the point D, one on each side ot
DG the least.

Therefore etc. Q. E. D.

2—2



20 BOOK 1II [ 8

As De Morgan points out, there are here two assumptions similar to
that tacitly made in the proof of 11 7, namely that
KX falls within the triangle DZM and E outside D
the triangle DFM. These facts can be proved ¥
in the same way as the assumption in 11 7. Let F 7] 7
DE meet FM in YV and LM in Z Then, as
before, MZ is less than ML and therefore than
MK. Therefore K lies further than Z from E
the foot of the perpendicular from M on DE.

Similarly £ lies further than ¥ from the foot of the
same perpendicular.

Heron deals with lines on opposite sides of the g
diameter through the external point in a manner similar to that adopted in
his previous note.

For the case where E, 7 are the second points in
which 4E, AF meet the circle the method answers
well enough.

If AE is nearer the centre D than AF is,

sgs. on DG, GE =sqs. on DH, HF

and sgs. on DG, GA =sqs. on DH, HA,
whence, since DG < DH,
it follows that GE > HF,

and AG> AH,

so that, by addition, AE > AF,

But, if X, L be the points in which 4E, AF first
meet the c1rcle, the method fails, and Heron is reduced to proving, in the first
instance, the property usually deduced from 111. 36. He argues thus:

AKD being an obtuse angle,
sq. on AD =sum of sqs. on 4K, KD and twice rect. 4K, KG. [1. 12]
ALD is also an obtuse angle, and it follows that
sum of sgs. on 4K, KD and twice rect. AKX, KG is equal to
sum of sqs. on AL, LD and twice rect. AL, LH.
Therefore, the squares on XD, LD being equal,
sq. on 4K and twice rect. 4K, KG =sq. on AL and twice rect. 4L, LH,
or sq. on AKX and rect. 4K, KE =sq. on AL and rect. AL, LF,

ie. rect. AK, AE =vect. AL, AF,
But, by the first part, AE > AF.
Therefore AK < AL.

nt 7, 8 deal with the lengths of the several lines drawn to the circum-
ference of a circle (1) from a point within it, (2) from a point outside it; but a
similar proposition is true of straight lines drawn from a point on the
circumference itself: If any point be taken on the circumference of a circle,
then, of all the straight lines whick can be drawn from it to the circumference, the
greatest is that in which the centre is ; of any others that whick is nearer to the
straight line which passes through the centre is greater than one more remote ;
and from the same point there can be drawn to the circumference two straight
lines, and only two, which are equal to one another, one on cack side of the
greatest line.
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The converses of 1. 7, 8 and of the proposition just given are also true
and can easily be proved by reductio ad absurdum. They could be employed
to throw light on such questions as that of internal contact, and the relative
position of the centres of circles so touching. This is clear when part of the
converses is stated : thus (1) if from any point in the plane of a circle a
number of straight lines be drawn to the circumference of the circle, and one
of these is greater than any other, the centre of the circle must lie on that one,
(2) if one of them is less than any other, then, (@) if the point is within the
circle, the centre is on the minimum straight line produced deyond the point,
(4) if the point is outside the circle, the centre is on the minimum straight line
produced beyond the point in whick it meets the circle.

ProrosITION g.

If a point be taken within a civcle, and more than two
equal straight lines fall from the point on the civcle, the point
taken is the centrve of the circle.

Let ABC be a circle and D a point within it, and from
D let more than two equal straight
lines, namely DA, DB, DC, fall on L
the circle ABC;

I say that the point D is the centre y
of the circle ABC.
For let AB, BC be joined and K 18

bisected at the points £, /, and let
ED, FD be joined and drawn through
to the points G, K, H, L. A
Then, since AE is equal to £5,
and £D is common,
the two sides 4 E, ED are equal to the two sides BE, ED;
and the base DA is equal to the base DB ;

therefore the angle A £D is equal to the angle BED.

[r. 8]
Therefore each of the angles AED, BED is right;
[1. Def. 10]

therefore GK cuts A8 into two equal parts and at right
angles.

And since, if in a circle a straight line cut a straight line
into two equal parts and at right angles, the centre of the
circle is on the cutting straight line, [u1. 1, Por.]

the centre of the circle is on GX.
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For the same reason
the centre of the circle ABC is also on AL.

And the straight lines GKX, AL have no other point
common but the point D ;

therefore the point D is the centre of the circle A 8C.
Therefore etc. Q. E. D.

The result of this proposition is quoted by Aristotle, Meteorologica m. 3,
373 a 13—16 (cf. note on 1. 8).

1L g is, as De Morgan remarks, a Jogical/ equivalent of part of 1. 7,
where it is proved that every non-central point is nof a point from which three
equal straight lines can be drawn to the circle. Thus 111. 7 says that every
not-A is not-B, and 11. ¢ states the equivalent fact that every B is 4.
Mr H. M. Taylor does in effect make a Jogica/ inference of the theorem that,
If from a point three equal straight lines can be drawn 1o a circle, that point is
the centre, by making it a corollary to his proposition which includes the part of
11. 7 referred to. Euclid does not allow himself these logical inferences, as we
shall have occasion to observe elsewhere also.

Of the two proofs of this proposition given in earlier texts of Euclid,
August and Heiberg regard that translated above as genuine, relegating the
other, which Simson gave alone, to a place in an Appendix. Camerer remarks
that the genuine proof should also have contemplated the case in which one
or other of the straight lines 4.8, BC passes through D. This would however
have been a departure from Euclid’s manner of taking the most obscure case
for proof and leaving others to the reader.

The other proof, that selected by Simson, is as follows :

“For let a point D be taken within the circle 48C, and from D let more
than two equal straight lines, namely 4.0, DB, DC,
fall on the circle ABC;

I say that the point D so taken is the centre of the Q
circle ABC.

For suppose it is not; but, if possible, let it be G
E, and let DE be joined and carried through to the v v
points 7, G. ‘

Therefore /G is a diameter of the circle 4BC. \

Since, then, on the diameter #G of the circle B
ABC a point has been taken which is not the centre
of the circle, namely D,

DG is greatest, and DC is greater than DB, and DB than DA.

But the latter are also equal : which is impossible.

Therefore £ is not the centre of the circle.
Similarly we can prove that neither is any other point except D ;
therefore the point D is the centre of the circle 4BC.
Q. E. D.”

On this Todhunter correctly points out that the point £ might be

supposed to fall witkin the angle A.DC. 1t cannot then be shown that DC

is greater than D25 and DB than DA, but only that either DC or DA is less
than DB ; this however is sufficient for establishing the proposition.
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ProrosITION 10.

A circle does not cut a cirvcle at more points than two.

For, if possible, let the circle 4BC cut the circle DEF
at more points than two, namely
B G, F, H;

let BH, BG be joined and
bisected at the points X, L,
and from X, L let KXC, LM be
drawn at right angles to B4,
BG and carried through to the
points A, E.

Then, since in the circle
ABC a straight line AC cuts a
straight line B/ into two equal
parts and at right angles,

the centre of the circle 4A8C is on AC. [u1. 1, Por.]

Again, since in the same circle ABC a straight line NO
cuts a straight line BG into two equal parts and at right
angles,

the centre of the circle A BC is on NO.

But it was also proved to be on AC, and the straight
lines AC, NO meet at no point except at P;

therefore the point 2 is the centre of the circle ABC.

Similarly we can prove that P is also the centre of the
circle DEF;

therefore the two circles 4ABC, DEF which cut one
another have the same centre 2: which is impossible. [u 5]

Therefore etc. Q. E. D.

1. The word circle (xéx\os) is here e fployed in the unusual sense of the circumference
(repepépera) of a circle. Cf. note on 1. De

There is nothing in the demonstration of this proposition which assumes
that the circles cu# one another; it proves that two circles cannot meef at more
than two points, whether they cut or meet without cutting, i.e. fouck one
another.

Here again, of two demonstrations given in the earlier texts, Simson chose
the second, which August and Heiberg relegate to an Appendix, and which is
as follows :

“ For again let the circle 4BC cut the circle DEF at more points than
two, namely B, G, H, F;
let the centre X of the circle 4BC be taken, and let XB, KG, KF be
joined.
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Since then a point X has been taken within the circle DEF,

and from X more than two straight lines, namely
KB, KF, KG, have fallen on the circle DEF, A

the point X is the centre of the circle DEF. [11. 9] B
But X is also the centre of the circle 4BC. €
Therefore two circles cutting one another have

the same centre X: which is impossible. [111. 5] ( 0
Therefore a circle does not cut a circle at more

points than two.

Q. E. D.”

This demonstration is claimed by Heron (see an-Nairizi, ed. Curtze,
pp. 120—1). It is incomplete because it assumes that the point X which is
taken as the centre of the circle ABC is within the circle DEF. It can
however be completed by means of 111. 8 and the corresponding proposition
with reference to a point oz the circumference of a circle which was enunciated
in the note on 111. 8. For (1) if the point X is on the circumference of the
circle DEF, we obtain a contradiction of the latter proposition which asserts
that only fwo equal straight lines can be drawn from X to the circumference
of the circle DEF; (2) if the point X is outside the circle DEF, we obtain a
contradiction of the corresponding part of 111. 8.

Euclid’s proof contains an unproved assumption, namely that the lines
bisecting BG, BH at right angles wi// meet in a point 2. For a discussion
of this assumption see note on 1v. §.

ProposiTION 11.

If two circles touck one another internally, and their centres
be taken, the straight line joining their cemtres, if it be also
produced, will fall on the point of contact of the civcles.

For let the two circles ABC, ADE touch one another
internally at the point A4, and let
the centre F of the circle 4BC, and H

—

the centre G of ADE, be taken;

I say that the straight line joined q
from G to F and produced will fall \
on A.

For suppose it does not, but,

if possible, let it fall as FGH, and

let AF, AG be joined.
Then, since AG, GF are greater

than #4A4, that is, than FH, I
let /G be subtracted from each;

therefore the remainder 4G is greater than the remainder

GH.
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But 4G is equal to GD;
therefore GD is also greater than GH,
the less than the greater: which is impossible.

Therefore the straight line joined from £ to G will not
fall outside ;

therefore it will fall at 4 on the point of contact.

Therefore etc.
Q. E. D.

3. the straight line joining their centres, literally ‘‘the straight line joined to their
centres " (7 éwl 78 xévrpa abrdv éxitevyrvuéry edbeia).
3. point of contact is here swagy, and in the enunciation of the next proposition

Again August and Heiberg give in an Appendix the additional or
alternative proof, which however shows little or no variation from the genuine
proof and can therefore well be dispensed with.

The genuine proof is beset with difficulties in consequence of what it
tacitly assumes in the figure, on the ground, probably, of its being obvious to
the eye. Camerer has set out these difficulties in a most careful note, the
heads of which may be given as follows :

He observes, first, that the straight line joining the centres, when produced,
must necessarily (though this is not stated by Euclid) be produced én tie
direction of the centre of the circle whick fouches the other internally. (For
brevity, I shall call this circle the “inner circle,” though I shall imply nothing
by that term except that it is the circle which touches the other on the inner
side of the latter, and therefore that, in accordance with the definition of
fouching, points on it in the immediate neighbourhood of the point of contact
are necessarily witkin the circle which it touches.) Camerer then proceeds by
the following steps.

1. The two circles, touching at the given point, cannot fnfersect at any
point. For, since points on the “inner” in the immediate neighbourhood of
the point of contact are within the ‘““outer” circle, the inner circle, if it
intersects the other anywhere, must pass outside it and then return. This is
only possible (a) if it passes out at one point and returns at another point, or
() 1f it passes out and returns through one and the same point. () is impossible
because it would require two circles to have #4re¢ common points ; (4) would
require that the inner circle should have a node at the point where it passes
outside the other, and this is proved to be impossible by drawing any radius
cutting both loops.

2. Since the circles cannot intersect, one must be enfirely within the
other.

3. Therefore the outer circle must be greater than the inner, and the
radius of the outer greater than that of the inner. ‘

4. Now, if F be the centre of the greater and G of the inner circle, and
if FG produced beyond G does not pass through A, the given point of
contact, then there are three possible hypotheses.

(@) 4 may lie on GF produced beyond £.
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(6) A may lie outside the line /G altogeth;ar, in which case /G produced
beyond G must, in consequence of result 2 above, either

(i) meet the circles in a point common to both, or

(ii) meet the circles in two points, of which that which is on the inner
circle is nearer to G than the other is.

(a) is then proved to be impossible by means of the fact that the radius of the
inner circle is less than the radius of the outer.
(8) (ii) is Euclid’s case ; and his proof holds equally of () (i), the hypothesis,
namely, that D and A in the figure coincide.

Thus all alternative hypotheses are successively shown to be impossible,
and the proposition is completely established.

I think, however, that this procedure may be somewhat shortened in the
following manner.

In order to make Euclid’s proof absolutely conclusive we have only (1) to
take care to produce G beyond G, the centre of the “inner” circle, and then
(3) to prove that the point in which /G so produced meets the “inner” circle
is not further from G than is the point in which it meets the other circle.
Euclid’s proof is equally valid whether the first point is nearer to G than the
second or the first point and the second coincide.

If FG produced beyond G does not pass through A4, there are two

X D
2y,
X
\,

. conceivable hypotheses: (a) 4 may lie on G ¥ produced beyond £, or (4) 4
may be outside #G produced either way. In either case, if FG produced
meets the ‘““inner” circle in D and the other in A, and if GD is greater than
GH, then the “inner” circle must cut the “outer” circle at some point
between 4 and D, say X.

But, if two circles have a common point X lying on one side of the line of
centres, they must have another corresponding point on the other side of the
line of centres. This is clear from 1L 7, 8; for the point is determined by
drawing from F and G, on the opposite side to that where X is, straight
lines £Y, GY making with FD angles equal to the angles DFX, DGX
respectively.

Hence the two circles will have at least three points common: which is
impossible.

Therefore GD cannot be greater than GH; accordingly G2 must be
either equal to, or less than, GH, and Euclid’s proof is valid.

The particular hypothesis in which #G is supposed to be in the same
straight line with 4 but G is on the side of #away from 4 is easily disposed
of, and would in any case have been left to the reader by Euclid.

For GD is either equal to or less than GA. .

Therefore GD is less than FH, and therefore less than FA4.

But GD is equal to G4, and therefore greater than FA: which is
impossible.
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Subject to the same preliminary investigation as that required by Euclid’s
proof, the proposition can also be proved directly from 1. 7.

For, by m1. 7, GH is the shortest straight line that can be drawn from G
to the circle with centre F;

therefore G A is less than G4,
and therefore less than G0 : which is absurd.

This proposition is the crucial one as regards circles which touch internally;
and, when it is once established, the relative position of the circles can be
completely elucidated by means of itand the propositions which have preceded
it. Thus, in the annexed figure, if 7 be the centre
of the outer circle and G the centre of the inner,
and if any radius #Q of the outer circle meet the

two circles in Q, P respectively, it follows, from

ut. 7, mn 8, or the corresponding theorem with

reference to a point oz the circumference, that 4 ¢ ¥ A
is the maximum straight line from # to the circum- ‘@
ference of the inner circle, #P is less than FA, Q

and FP diminishes in length as #Q moves round

from FA until FP reaches its minimum length

FB. Hence the circles do not meet at any other

point than 4, and the distance PQ cut off between them on any radius #Q
of the outer circle becomes greater and greater as #Q moves round from #4
to FC and is a maximum when #Q coincides with #C, after which it
diminishes again on the other side of #C.

The same consideration gives the partial converse of n1. r1 which forms
the 6th lemma of Pappus to the first book of the Zactiones of Apollonius
(Pappus, viL. p. 826). This is to the effect that, if AB, AC are in one straight
Jine, and on one side of A, the circles described on AB, AC as diameters touch
(internally at the point A). Pappus concludes this from the fact that the
circles have a common tangent at A4 ; but the truth of it is clear from the fact
that #P diminishes as #Q moves away from F4 on either side ; whence the
circles meet at 4 but do not cut one another.

Pappus’ 5th lemma (viI. p. 824) is another partial converse, namely that,
8¥0en two circles touching internally at A, and a line ABC drawn from A cutting
both, then, if the centre of the ouler circle lies on ABC, so does the centre of the
énner. Pappus himself proves this, by means of the common tangent to the
circles at 4, in two ways. (1) The tangent is at right angles to 4AC and
therefore to 4.8 : therefore the centre of the inner circle lies on 48. (2) By
IIL 32, the angles in the alternate segments of both circles are right angles, so
that 4BC is a diameter of both.

[ProPoOSITION 12.

If two circles touch one another externally, the straight
line joining their cemtves will pass through the point of
conlact.

For let the two circles ABC, ADE touch one another
s externally at the point 4, and let the centre 7~ of ABC, and
the centre G of ADE, be taken ;
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I say that the straight line joined from # to G will pass
through the point of contact at A.

For suppose it does not,
10 but, if possible, let it pass as
FCDG, and let AF, AG be
joined.
Then, since the point F is
the centre of the circle ABC,
15 FA is equal to FC.
Again, since the point G is
the centre of the circle ADE,
GA is equal to GD.
But /4 was also proved equal to FC;
20 therefore 74, AG are equal to FC, GD,
so that the whole /G is greater than FA4, AG;
but it is also less [1. z0]: which is impossible.

Therefore the straight line joined from # to G will not
fail to pass through the point of contact at A ;

25 therefore it will pass through it.
Therefore etc. Q E. D.]

23. will not fail to pass. The Greek has the double negauve, otk dpa 9)...e00¢ka...
otk é\eboerar, literally * the straight line... will not not-pass..

Heron says on 11 11: “Euclid in proposition 11 has supposed the two
circles to touch internally, made his proposition deal with this case and proved
what was sought in it. But I will show how it is to be proved if the contact is
external” He then gives substantially the proof and figure of 1. rz2. It
seems clear that neither Heron nor an-Nairizi had m. 12 in this place.

Campanus and the Arabic edition of Nasiraddin at-Tsi have nothing more
of 11. 12 than the following addition to 11 r1. “In the case of external
contact the two lines ac and ¢4 will be greater than aé, whence ad and ¢ will
be greater than the whole a#, which is false.” (The points g, 5, ¢, 4, ¢ cor-
respond respectively to G, F C, D, 4 in the above figure.) It is most
probable that Theon or some other editor added Heron’s proof in his edition
and made Prop. 12 out of it (an-Nairizi, ed. Curtze, pp. 121—2). An-Nairizi
and Campanus, conformably with what has been said, number Prop. 13 of
Heiberg’s text Prop. 12, and so on through the Book.

What was said in the note on the last proposition applies, mufatis mutandss,
to this. Camerer proceeds in the same manner as before ; and we may use
the same alternative argument in this case also.

Euclid’s proof is valid provided only that, if #G, joining the assumed
centres, meets the circle with centre #in C and the other circle in D, C is
not within the circle 4 DE and D is not within the circle 4BC. (The proof
is equally valid whether C, D coincide or the successive points are, as drawn
in the figure, in the order %, C, D, G.) Now, if C is within the circle A DE



nL 12 PROPOSITION 12 29

and D within the circle 4BC, the circles must have cut between 4 and C
and between 4 and D. Hence, as before, they must also have another
corresponding point common on the other side of CD. That is, the circles
must have #4rec common points : which is impossible.
Hence Euclid’s proof is valid if #, 4, G form a triangle, and the only
hypothesis which has still to be dlsproved is the
hypothesis which he would in any case have left to
the reader, namely that 4 does not lie on /G but
on FG produced in either direction. In this case, as
before, either C, D must coincide or C is nearer
Fthan Dis. Then the radius #C must be equal
to FA4: which is impossible, since #C cannot be
greater than /0, and must therefore be /ss than
FA.
Given the same preliminaries, 111. 12 can be proved by means of 1. 8.
Again, when the proposition 111. 12 is once proved, 111. 8 helps us to prove
at once that the circles lie entirely outside each other and have no other
common point than the point of contact.

Among Pappus’ lemmas to Apollonius’ Zactiones are the two partial
converses of this proposition corresponding to those given in the last note.
Lemma 4 (vi1. p. 824) is to the effect that, zf AB, AC de in one straight line, B
and C being on opposite sides of A, the circles draw/z on AB, AC as diameters
touch externally at A. Lemma 3 (vu. p. 822) states that, 1_'{ two cirdes touckh
externally at A and BAC is drawn through A cutting bothk circles and containing
the centre of one, BAC will also contain the centre of the other. The proofs, as
before, use the common tangent at 4. ’

Mr H. M. Taylor gets over the difficulties involved by m. x1, 12 in a
manner which is most ingenious but not Euclidean. He first proves that, ¢f #wo
circles meet al a point not in the same straight line witk their centres, the circles
inlersect at that point ; this is very easily established by means of 1. 7, 8 and
the third similar theorem. Then he glves as a corollary the statement that, ¢
two crcles touch, the point of contact is in the same straight line with their
centres. It is not explained how this is inferred from the substantive
proposition ; it seems, however, to be a /gical inference simply. By the
proposition, every 4 (circles meeting at a point not in the same straight line
with the centre) is B (circles which intersect); therefore every not-B is not-A4,
i.e. circles which do not intersect do not meet at a point not in the same
straight line with the centres. Now non-intersecting circles may either meet
(i.e. touch) or not meet. In the former case they must meet oz the line of
centres : for, if they met at a point not in that line, they would intersect. But
such a purely Jogical inference is foreign to Euclid’s manner. As De Morgan
says, “Euclid may have been ignorant of the identity of ‘Every X is ¥’ and
¢ Every not- Y is not-X,’ for anything that appears in his writings; he makes
the one follow from the other by a new proof each time” (quoted in Keynes’
Formal Logic, p. 81).

There is no difficulty in proving, by means of 1. zo, Mr Taylor’s next
proposition that, &f two circles meet at a point which lies in the same straight
Zine as their centres and is between the centres, the circles touck at that point, and
each circle lies without the other. But the similar proof, by means of 1. 20, of
the corresponding theorem for internal contact seems to be open to the same
objection as Euclid’s proof of 11. 11 in that it assumes without proof that the
circle which has its centre nearest to the point of meeting is the “inner”
circle. Lastly, in order to prove that, if fwo circles have a point of contact, they
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do not meet at any other point, Mr Taylor uses the questionable corollary.
Therefore in any case his alternative procedure does not seem preferable to
Euclid’s.

The alternative to Eucl. 111. 11—13 which finds most favour in modern
continental text-books (e.g. Legendre, Baltzer, Henrici and Treutlein,
Veronese, Ingrami, Enriques and Amaldi) connects the number, position and
nature of the coincidences between points on two circles with the relation in
which the distance between their centres stands to the length of their radii.
Enriques and Amaldi, whose treatment of the different cases is typical, give
the following propositions (Veronese gives them in the converse form).

1. If the distance between the centres of two circles is greater than the sum
of the radii, the two circles have no point common and are external to one
another.

Let O, O be the centres of the circles (which we will call “the circles
O, 0'”), », 7 their radii respectively.

Since then OO’ > » + ¥, a fortiori OO > r, and O is therefore exterior to
the circle O.

Next, the circumference of the circle O intersects OO in a point 4, and
since 00 >r+7, A0 >7, and 4 is
external to the circle O'.

But 0’4 is less than any straight
line, as O'B, drawn to the circum-
ference of the circle O [ 8]; hence
all points, as B, on the circumference
of the circle O are external to the circle

0.

Lastly, if C be any point internal
to the circle O, the sum of OC, O'C is
greater than 0’0, and a fortiori greater than » + »'.

But OC is less than 7: therefore O'C is greater than #, or C is external
to O.

Similarly we prove that any point on or within the circumference of the
circle O is external to the circle O.

2. If the distance between the centres of two unequal circles is less than the
difference of the radit, the two circumferences have no common point and the lesser
circle §s entively within the greater.

Let O, O be the centres of the two circles, 7, » their radii respectively

r<7).
( Sir)lce 00 < ¥ — 7, a fortiori OO <7, so that O is
internal to the circle O’

If 4, A’ be the points in which the straight line
O O intersects respectively the circumferences of the A @
'TA

circles O, O,
00 is less than 0’4’ — 04,

sothat OO + OA, or O'A4, is less than 0’4,
and therefore A4 is internal to the circle O.
But, of all the straight lines from O’ to the circumference of the circle O,
O’ A passing through the centre O is the greatest [111. 7];
whence all the points of the circumference of O are internal to the circle O'.
A similar argument to the preceding will show that all points within the
circle O are internal to the circle O
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3. If the distance between the centres of two circles is equal to the sum of the
radii, the two circumferences have one point common and one only, and that point
is on the line of centres. Each circle is external to the other.

Let O, O be the centres, 7, » the radii of the circles, so that OO is equal
tor+7r.

Thus OO is greater than 7, so that O’
is external to the circle O, and the circum-
ference of the circle O cuts OO in a
point 4.

And, since OO’ is equal to »+#, and
OA to 7, it follows that 0’4 is equal to 7,
so that 4 belongs also to the circumference
of the circle 0.

The proof that all other points on, and
all points within, the circumference of the circle O are external to the circle O’
follows the similar proof of prop. 1 above. And similarly all points (except 4)
on, ando all points within, the circumference of the circle O are external to the
circle

The two circles, having one common point only, #ouck at that point, which
lies, as shown, on the line of centres. And, since the circles are external to
one another, they touch externally.

4 If the distance between the centres of two unequal circles is equal to the
difference between the radii, the two circumferences have one point and one only in
common, and that point lies on the line of centres. The lesser circle is within the
other.

The proof is that of prop. 2 above, mutatis mutandss.

The circles here touch internally at the point on the line of centres.

If the distance between the centres of two circles is less than the sum, and
grealer than the difference, of the radii, the two circumferences have two common
points symmelrically situated with respect to the line of centres but not lying on
that line.

Let O, O be the centres of the two circles, 7, 7" their radii, # being the
greater, so that

Y¥—r<00 <r+7.

It follows that in any case OO’ + 7> 7, so that, if OM be taken on O 0
produced equal to 7 (so that A is on the circumference of the circle o), M
external to the circle O'.

We have to use the same Postulate as in Eucl. 1. 1 that

An arc of a circle whick has one extremily within ami the other without a
given crcle has one point common with the
latter and only one ; from which it follows,
if we consider two such arcs making a
complete circumference, that, if a drcum-
Serence of a circle passes through one point
internal to, and one point external to a M
&iven dircle, it cuts the latter circle in fwo
points.

We have then to prove that the circle O, 8
besides having one point Af of its circum-
ference external to the circle O, has one other point of its circumference (Z)
internal to the latter circle.

A
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Three cases have to be distinguished according as OO is greater than, equal
to, or less than, the radius 7 of the lesser circle.
(1) OO >r. (See the preceding figure.)
Measure OLZ along OO’ equal to 7, so that
L lies on the circumference of the circle O.
Then, since OO0 <7+ #, O'L will be less
than 7, so that Z is within the circle O'.
(2) 00 =vr.
In this case the circumference of the circle
O passes through O, or L coincides with O'.
(3) 00 <.
If we measure OZ along OO equal to 7, the point Z will lie on the
circumference of the circle O.
Then OL=7r- 00, A
so that 'L < r, and a fortiori O'L <7', so that L
lies within the circle O ,
Thus, in all three cases, since the circumference ™M
of O passes through one point (4/) external to, and
one point (Z) internal to, the circle O, the two
circumferences intersect in two points 4, B [Post.]
And 4, B cannot lie on the line of centres 00, 8
since this straight line intersects the circle O in
L, M only, and of these points one is inside, the other outside, the circle O'.
Since 4B is a common chord of both cxrcles, the straight line bisecting it
at right angles passes through both centres, i.e. is identical with 00
And again by means of 111. 7, 8 we prove that all points except 4, B on
the arc AL 2B lie within the circle O, and all points except 4, B on the arc
AMB outside that circle ; and so on.

ProrosiTION 13.

A circle does not touck a circle at more points than one,
whether it touck it internally or externally.

For, if possible, let the circle 4BDC touch the circle
EBFD, first internally, at more
s points than one, namely D, 5.
Let the centre G of the circle
ABDC, and the centre A of
EBFD, be taken.
Therefore the straight line
10 joined from G to A will fall on
B, D. (. 11]
Let it so fall, as BGHD.
Then, since the point G is
the centre of the circle ABCD,

15 BG is equal to GD;
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therefore BG is greater than AD ;
therefore B/ is much greater than A D.

Again, since the point A is the centre of the circle
EBFD,
20 BH is equal to D ;

but it was also proved much greater than it: which is
impossible.

Therefore a circle does not touch a circle internally at
more points than one.

25 I say further that neither does it so touch it externally.
For, if possible, let the circle ACK touch the circle
ABDC at more points than one, namely A4, C,

and let 4C be joined.

Then, since on the circumference of each of the circles

30 ABDC, ACK two points A, C have been taken at random,
the straight line joining the points will fall within each
circle ; (1. 2]

but it fell within the circle 4ABCD and outside ACK
(1. Def. 3]: which is absurd.

35 Therefore a circle does not touch a circle externally at
more points than one.
And it was proved that neither does it so touch it
internally.
Therefore etc. Q. E. D.

3, 7» 14, 27, 30, 33. ABDC. Euclid writes 48CD (here and in the next proposition),
notwithstanding the order in which the points are placed in the figure.

25, 37. does it so touch it. It is necessary to supply these words which the Greek
(87¢ o032 éxtés and ¥ri o03¢ évrbs) leaves to be understood.

The difficulties which have been felt in regard to the proofs of this
proposition need not trouble us now, because they have already been disposed
of in the discussion of the more crucial propositions 111. 11, 12,

Euclid’s proof of the first part of the proposition differs from Simson’s ;
and we will deal with Euclid’s first. On this Camerer remarks that it is
assumed that the supposed second point of contact lies on the line of centres
produced beyond the centre of the ““outer” circle, whereas all that is proved in
111 11 is that the line of centres produced beyond the centre of the * inner” circle
passes through a point of contact. But, by the same argument as that given
on 1. 11, we show that the circles cannot have a point of contact, or even
any common point, outside the line of centres, because, if there were such a
point, there would be a corresponding common point on the other side of the
line, and the circles would have #4re¢ common points. Hence the only
hypothesis left is that the second point of contact may be oz the line of
centres but in the direction of the centre of the “oufer” circle ; and Euclid’s
proof disposes of this hypothesis.

H. E IL 3
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Heron (in an-Nairizi, ed. Curtze, pp. 122—4), curiously enough, does not
question Euclid’s assumption that the line of centres passes through both
points of contact (if double contact is possible) ; but he devotes some space to
proving that the centre of the “outer” circle must lie within the “inner” circle, a
fact which he represents Euclid as asserting (*“sicut dixit Euclides "), though
there is no such assertion in our text. The proof of the fact is of course easy.
If the line of centres passes through do#4 points of contact, and the centre of
the “outer” circle lies either on or outside the *‘inner” circle, the line of
centres must cut the “inner” circle in #4ree points in all: which is impossible,
as Heron shows by the lemma, which he places here (and proves by 1. 16),
that a straight line cannot cut the circumference of a circle in more points
than two.

Simson’s proof is as follows (there is no real need for giving two figures as
he does).

“If it be possible, let the circle £BF touch the circle 48C in more
points than one, and first on the inside, in the
points B, D; join BD, and draw GH bisecting
BD at right angles.

Therefore, because the points B, D are in the
circumference of each of the circles, the straight
line BD falls within each of them: And their G
centres are in the straight line G/ which bisects
BD at right angles :

Therefore GH passes through the point of
contact [111. 11]; but it does not pass through it,
because the points B, D are without the straight line GA: which is absurd.

Therefore one circle cannot touch another on the inside in more points
than one.”

On this Camerer remarks that, unless 111. 11 be more completely elucidated
than it is by Euclid’s demonstration, which Simson has, it 1s not sufficiently
clear that, besides the point of contact in which G A meets the circles, they
cannot have another point of contact either (1) on GA or (2) outside it.
Here again the latter supposition (2) is rendered impossible because in that
case there would be a third common point on the opposite side of GA ; and
the former supposition (1) is that which Euclid’s proof destroys.

Simson retains Euclid’s proof of the second part of the proposition, though
his own proof of the first part would apply to the second part also if a
reference to 111. 12 were substituted for the reference to 111. 11. Euclid might
also have proved the second part by the same method as that which he
employs for the first part.

[»)

ProrosiTioN 14.

In a civcle equal straight lines arve equally distant from
the centre, and those whick are equally distant from the centre
are equal to one another.

Let ABDC be a circle, and let 45, CD be equal straight
lines in it;

I say that A5, CD are equally distant from the centre.
For let the centre of the circle ABDC be taken [m. 1),
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and let it be £; from £ let EF, EG be drawn perpendicular
to AB, CD, and let AE, EC be joined.

Then, since a straight line £ through o
the centre cuts a straight line 45 not through
the centre at right angles, it also bisects it. 8

(. 3]
Therefore AF is equal to FB; \‘“
therefore A5 is double of AF. C

For the same reason
CD is also double of CG;
and 4B is equal to CD ;
therefore AF is also equal to CG.
And, since A E is equal to £C,
the square on A £ is also equal to the square on £C.
But the squares on AF, £ F are equal to the square on AE,
for the angle at F is right ;
and the squares on £G, GC are equal to the square on £C,
for the angle at G is right ; [1 47]
therefore the squares on AF, FE are equal to the
squares on CG, GE,

of which the square on 4F is equal to the square on CG,
for AF is equal to CG ;

therefore the square on £ which remains is equal to
the square on £G,

therefore £F is equal to £G.

But in a circle straight lines are said to be equally distant
from the centre when the perpendiculars drawn to them from
the centre are equal ; [11. Def. 4]

therefore A8, CD are equally distant from the centre.
Next, let the straight lines 458, CD be equally distant
from the centre; that is, let £ be equal to £G.
I say that 45 is also equal to CD.

For, with the same construction, we can prove, similarly,
that A 2B is double of AF, and CD of CG.

And, since AE is equal to CE,
the square on 4 £ is equal to the square on CE.
But the squares on £/F, FA are equal to the square on AE,
and the squares on £G, GC equal to the square on CE. [1 47]

3—2
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Therefore the squares on EF, FA are equal to the
squares on £G, GC,

of which the square on EF is equal to the square on £G,
for EF is equal to £G;

therefore the square on 4/ which remains is equal to the
square on CG ;

therefore A F is equal to CG.
And AB is double of 4F, and CD double of CG;
therefore A28 is equal to CD.

Therefore etc.
Q. E. D.

Heron (an-Nairizi, pp. 125—7) has an elaborate addition to this proposition
in which he proves, first by reductio ad absurdum, and then directly, that the
centre of the circle falls between the two chords.

ProrosiTION 135.

Of straight lines in a circle the diameter is grealest,
and of the rest the nearer lo the centre is always greater than
the more remote.

Let ABCD be a circle, let AD be its diameter and £
the centre; and let AC be nearer to the
diameter A0, and /G more remote ;

I say that 4D is greatest and BC
greater than FG.

For from the centre £ let £H, EK
be drawn perpendicular to BC, FG.

Then, since BC is nearer to the
centre and /G more remote, £K is
greater than £/, (1. Def. 5]

Let £L be made equal to £H,
through L let LM be drawn at right
angles to £K and carried through to A, and let ME, EN,
FE, EG be joined.

Then, since £/ is equal to £L,

BC is also equal to M/NV. [11. 14]
Again, since AL is equal to £M, and £D to EN,
AD is equal to ME, EN.
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But ME, EN are greater than MN, [r 20]
and MN is equal to BC;
therefore 4D is greater than BC.

And, since the two sides ME, EN are equal to the two
sides FE, EG,

and the angle MEN greater than the angle FEG,
therefore the base MV is greater than the base FG.  [1 24]

But MN was proved equal to 5C.
Therefore the diameter 4D is greatest and BC greater
than FG.
Therefore etc.
Q E. D.

1. Of straight lines. The Greek leaves these words to be understood.

It will be observed that Euclid’s proof differs from that given in our text-
books (which is Simson’s) in that Euclid introduces another line M, which
is drawn so as to be equal to BC but at right angles to £X and therefore
parallel to #G. Simson dispenses with #//V and bases his proof on a similar
proof by Theodosius (SpAaerica 1. 6). He proves that the sum of the squares
on EH, HB is equal to the sum of the squares on £X, KF; whence he
infers that, since the square on £/ is less than the square on £X, the square
on BH is greater than the square on K. It may be that Euclid would have
regarded this as too complicated an inference to make without explanation or
without an increase in the number of his axioms. But, on the other hand,
Euclid himself assumes that the angle subtended at the centre by MV is
greater than the angle subtended by G, or, in other words, that 44, /V both
fall outside the triangle FEG. This is a similar assumption to that made in
11 7, 8, as already noticed; and its truth is obvious because £/, EN, being
radii of the circle, are greater than the distances from £ to the points in which
MN cuts EF, EG, and therefore the latter points are nearer than M, Vare to
L, the foot of the perpendicular from £ to MN.

Simson adds the converse of the proposition, proving it in the same way
as he proves the proposition itself.

ProrosiTioN 16.

The straight line drawn at right angles to the diameter
of a circle from ils extremity will fall outside the circle, and
tnto the space between the straight line and the circumference
another straight line cannot be interposed ; further the angle
of the semicircle is greater, and the remaining angle less, than
any acute rectilineal angle.

Let ABC be a circle about D as centre and A8 as
diameter;
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I say that the straight line drawn from A4 at right angles
to A8 from its extremity will fall
outside the circle. B

For suppose it does not, but,
if possible, let it fall within as CA4,
and let DC be joined.

Since DA is equal to DC,

the angle DAC is also equal to F P\
the angle ACD. [t 5]

But the angle DAC is right;
therefore the angle ACD is also right:
thus, in the triangle ACD, the two angles DAC, ACD are
equal to two right angles ;: which is impossible. [t 17]
Therefore the straight line drawn from the point 4 at
right angles to A will not fall within the circle.
Similarly we can prove that neither will it fall on the
circumference ; _
therefore it will fall outside.
Let it fall as AE;

I say next that into the space between the straight line 4 £
and the circumference C//A another straight line cannot be
interposed.

For, if possible, let another straight line be so interposed,
as /A, and let DG be drawn from the point D perpendicular
to FA.

Then, since the angle AGD is right,

and the angle DAG is less than a right angle,

AD is greater than DG. [1. 19]
But DA is equal to DH ;

therefore DA is greater than DG, the less than the
greater : which is impossible.

Therefore another straight line cannot be mterposed into
the space between the straight line and the circumference.

I say further that the angle of the semicircle contained by
the straight line 4 and the circumference C// A4 is greater
than any acute rectilineal angle,

and the remaining angle contained by the circumference CH A4
and the straight line 4 £ is less than any acute rectilineal angle.

For, if there is any rectilineal angle greater than the
angle contained by the straight line 4 and the circumference
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CHA, and any rectilineal angle less than the angle contained
by the circumference CH A and the straight line A £, then
into the space between the circumference and the straight line
AE a straight line will be interposed such as will make an
angle contained by straight lines which is greater than the
angle contained by the straight line B4 and t%e circumference
CHA, and another angle contained by straight lines which
is less than the angle contained by the circumference CHA
and the straight line A£.
But such a straight line cannot be interposed ;

therefore there will not be any acute angle contained by
straight lines which is greater than the angle contained by
the straight line BA4 and the circumference CH A, nor yet
any acute angle contained by straight lines which is less than
the angle contained by the circumference C/Z7A4 and the
straight line A£.—

PorisM. From this it is manifest that the straith line
drawn at right angles to the diameter of a circle from its

xtremi ircle.
extremity touches the circle Q. E. D.

4- cannot be interposed, literally * will not fall in between (o0 wapeureseiras).

This proposition is historically interesting because of the controversies to
which the last part of it gave rise from the 13th to the 17th centuries.
History was here repeating itself, for it is certain that, in ancient Greece, both
before and after Euclid’s time, there had been a great deal of the same sort
of contention about the nature of the ‘“angle of a semicircle” and the
“remaining angle” between the circumference of the semicircle and the
tangent at its extremity. As we have seen (note on 1. Def. 8), the latter angle
had a recognised nhame, xeparoeidiys ywvia, kornm-like or cornicular angle;
though this term does not appear in Euclid, it is often used by Proclus,
evidently as a term well understood. While it is from Proclus that we get the
best idea of the ancient controversies on this subject, we may, I think, infer
their prevalence in Euclid’s time from this solitary appearance of the two
“angles” in the Elements. Along with the definition of the angle of a
segment, it seems to show that, although these angles are only mentioned to
be dropped again immediately, and are of no use in elementary geometry, or
even at all, Euclid thought that an allusion to them would be expected of
him ; it is as if he merely meant to guard himself against appearing to ignore
a subject which the geometers of his time regarded with interest. If this
conjecture is right, the mention of these angles would correspond to the
insertion of definitions of which he makes no use, e.g. those of a rhombus and
a rhomboid.

Proclus has no hesitation in speaking of the “angle of a semicircle” and
the “horn-like angle” as true angles. Thus he says that “angles are contained
by a straight line and a circumference in two ways; for they are either
contained by a straight line and a convex circumference, like that of the semi-
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circle, or by a straight line and a concave circumference, like the xeparoe 7s”
(p- 127, 11—14). “There are mixed lines, as spirals, and angles, as the angle
of a semicircle and the xeparoedis” (p. 104, 16—18). The difficulty which
the ancients felt arose from the very fact which Euclid embodies in this
proposition.  Since an angle can be divided by a line, it would seem to be a
magnitude; “but if it is a magnitude, and all homogeneous magnitudes which
are finite have a ratio to one another, then all homogeneous angles, or rather
all those on surfaces, will have a ratio to one another, so that the cornicular
will also have a ratio to the rectilineal. But things which have a ratio to one
another can, if multiplied, exceed one another. Therefore the cormicular
angle will also sometime exceed the rectilineal ; which is impossible, for it is
proved that the former is less than any rectilineal angle” (Proclus, p. 121,
24—122, 6). The nature of contact between straight lines and circles was
also involved in the question, and that this was the subject of controversy
before Euclid’s time is clear from the title of a work attributed to Democritus
(fl. 420—400 B.C.) mepi Biagpopijs yvupovos i mept Yavoiws xikAov xai odaipys,
On a difference in a gnomon or on contact of a circle and a sphere. There is,
however, another reading of the first words of this title as given by Diogenes
Laertius (1x. 47), namely wepi Siacpopijs yvupys, On a difference of opinion, etc.
May it not be that neither reading is correct, but that the words should be
mept Sapopijs ywvins ¥ wepl Yavawos xikAov xal apaipys, On a difference in an
angle or on contact with a crcle and a sphere? There would, of course,
hardly be any “angle” in connexion with the sphere ; but I do not think that
this constitutes any difficulty, because the sphere might easily be tacked on as
a kindred subject to the circle. A curiously similar collocation of words
appears in a passage of Proclus, though this may be an accident. He says
(p- 50, 4) wds 8 ywvidv Stadopias Aéyoper xai avbjoeas abrav ... and then, In
the next line but one, wds 8¢ ras dpas 7av kvxkAwv § 7év elfedv, ““In what
sense do we speak of differences of angles and of increases of them ... and in
what sense of the comfacts (or meetings) of circles or of straight lines?”
I cannot help thinking that this subject of cornicular angles would have had
a fascination for Democritus as being akin to the question of infinitesimals,
and very much of the same character as the other question which Plutarch
(On Common Notions, XxxX1X. 3) says that he raised, namely that of the
relation between the base of a cone and a section of it by a plane parallel to
the base and apparently, to judge by the context, infinitely near to it: ‘if
a cone were cut by a plane parallel to its base, what must we think of the
surfaces of the sections, that they are equal or unequal? For, if they are
unequal, they will make the cone irregular, as having many indentations like
steps, and unevennesses ; but, if they are equal, the sections will be equal,
and the cone will appear to have the property of the cylinder, as being made
up of equal and not unequal circles, which is the height of absurdity.”

The contributions by Democritus to such investigations are further attested
by a passage in a new fragment of Archimedes (see Heiberg, Efne neue
Archimedes- Handschrift in Hermes XL11. 1907, pp. 235—303), which says
(loc. cit., pp. 245, 246) that, though Eudoxus was the first to discover the
scientific proof of the propositions (attributed to him) that the cone and the
pyramid are one-third of the cylinder and prism respectively which have .
the same base and height, they were first sfated, without proof, by Democritus.

A full history of the later controversies about the cornicular ‘‘ angle ”
cannot be given here; more on the subject will be found in Camerer's
Euclid (Excursus 1v. on 11. 16) or in Cantor's Geschichte der Mathematik,
Vol. 11. (see Contingenzwinkel in the index). But the following short note
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about the attitude of certain well-known mathematicians to the question will
perhaps not be out of place. Johannes Campanus, who edited Euclid in
the 13th century, inferred from 11. 16 that there was a flaw in the principle
that ke transition from the less to the greater, or vice versd, takes place through
all intermediate quantities and therefore through the equal. 1f a diameter of a
circle, he says, be moved about its extremity until it takes the position of the
tangent to that circle, then, as long as it cuts the circle, it makes an acute
angle /zss than the ‘“‘angle of a semicircle”; but the moment it ceases to cut,
it makes a right angle greafer than the same “angle of a semicircle.” The
rectilineal angle is never, during the transition, egua/ to the “angle of a semi-
circle.” There is therefore an apparent inconsistency with x. 1, and Campanus
could only observe (as he does on that proposition), in explanation of the
paradox, that “these are not angles in the same sense (univoce), for the
curved and the straight are not things of the same kind without qualification
(simpliciter).” The argument assumes, of course, that the right angle s
greater than the “angle of a semicircle.”

Very similar is the statement of the paradox by Cardano (1501—1576)
who observed that a guantity may continually increase without limit, and
another diminish without limit ; and yet the first, however increased, may be less
than the second, however diminished. The first quantity is of course the angle
of contact, as he calls it, which may be “increased” indefinitely by drawing
smaller and smaller circles touching the same straight line at the same point,
but will always be less than any acute rectilineal angle however small.

We next come to the French geometer, Peletier (Peletarius), who edited the
Elements in 1557, and whose views on this subject seem to mark a great advance.
Peletier’s opinions and arguments are most easily accessible in the account of
them given by Clavius (Christoph Schliissel, 1537—1612) in the 1607 edition
of his Euclid. The violence of the controversy between the two will be
understood from the fact that the arguments and counter-arguments (which
sometimes run into other matters than the particular question at issue) cover,
in that book, 26 pages of small print. Peletier held that the “angle of
contact” was not an angle at all, that the “contact of two circles,” i.e. the
‘“angle” between the circumferences of two circles touching one another
internally or externally, is not a guantity, and that the ‘“contact of a straight
line with a circle” is not a guantity either; that angles contained by a
diameter and a circumference whether inside or outside the circle are right
angles and equal to rectilineal right angles, and that angles contained by a
diameter and the circumference in a// circles are egual. The proof which
Peletier gave of the latter proposition in a letter to Cardano is sufficiently
ingenious. If a greater and a less semicircle be placed with their diameters
terminating at a common point and lying in a straight line, then (1) the angle
of the larger obviously cannot be /ess than the angle of the smaller. Neither
(2) can the former be greater than the latter; for, if it were, we could obtain
another angle of a semicircle greater still by drawing a still larger semicircle,
and so on, until we should ultimately have an ang/e of a semicircle greater than
a right angle : which is impossible. Hence the angles of semicircles must all
be egual, and the differences between them noZAing. Having satisfied himself
that all angies of contact are not-angles, not-quantities, and therefore nothings,
Peletier holds the difficulty about x. 1 to be at an end. He adds the
interesting remark that the essence of an angle is in cufting, not contact, and
that a tangent is not inclined to the circle at the point of contact but is, as it
were, immerséd in it at that point, just as much as if the circle did not diverge
from it on either side.
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The reply of Clavius need not detain us. He argues, evidently appealing
to the eye, that the angle of contact can be divided by the arc of a circle
greater than the given one, that the angles of two semicircles of different sizes
cannot be equal, since they do not coincide if they are applied to one another,
that there is nothing to prevent angles of contact from being guantities, it being
only necessary, in view of X. 1, to admit that they are not of the same kind as
rectilineal angles ; lastly that, if the angle of contact had been a nothing,
Euclid would not have given himself so much trouble to prove that it is less
than any acute angle. (The word is desudasset, which is certainly an
exaggeration as applied to what is little more than an obiter dictum in 111. 16.)

Vieta (1540—1603) ranged himself on the side of Peletier, maintaining
that the angle of contact is no angle ; only he uses a new method of proof.
The circle, he says, may be regarded as a plane figure with an infinite number
of sides and angles; but a straight line touching a straight line, however short
it may be, will coincide with that straight line and will not make an angle.
Never before, says Cantor (11,, p. 540), had it been so plainly declared what
exactly was to be understood by contact.

Galileo Galilei (1564—1642) seems to have held the same view as Vieta
and to have supported it by a very similar argument derived from the com-
p‘a:.irison of the circle and an inscribed polygon with an infinite number of
sides.

The last writer on the question who must be mentioned is John Wallis
(1616—1703). He published in 1656 a paper entitled De angulo contactus et
semicirculs tractatus in which he also maintained that the so-called angle was
not a true angle, and was not a guantity. Vincent Leotaud (1595—1672)
took up the cudgels for Clavius in his Cyclomathia which appeared in 1663.
This brought a reply from Wallis in a letter to Leotaud dated 17 February,
1667, but not apparently published till it appeared in A defense of the treatise
of the angle of contact which, with a separate title-page, and date 1684, was
included in the English edition of his Algebra dated 1685. The essence of
Wallis’ position may be put as follows. According to Euclid’s definition, a
plane angle is an inc/ination of-two lines; therefore two lines forming an angle
must #ncline to one another, and, if two lines meet without being snclined to
one another at the point of meeting (which is the case when a circumference
is touched by a straight line), the lines do not form an angl. The ‘““angle of
contact ” is therefore no angle, because a? the point of contact the straight line
is not inclined to the circle but lies on it dxAwds, or is coincident with it.
Again, as a point is not a line but a deginning of a line, and a line is not a
surface but a deginning of a surface, so an angle is not the distance between
two lines, but their initial tendency towards separation: Amgwlus (seu gradus
divaricationis) Distantia non est sed Inceptivus distantiae. How far lines, which
at their point of meeting do not form an angle, separate from one another as
they pass on depends on the degree of curvature (gradus curvitatis), and it is
the latter which has to be compared in the case of two lines so meeting. The
arc of a smaller circle is more curved as having as much curvature in a lesser
length, and is therefore curved in a greater degree. Thus what Clavius called
angulus contactus becomes with Wallis gradus curvitatis, the use of which
expression shows that curvature and curvature can be compared according to
one and the same standard. A straight line has the least possible curvature ;
but of the “angle” made by it with a curve which it touches we cannot say that
it is greater or less than the ‘“angle ” which a second curve touching the same
straight line at the same point makes with the first curve; for in both cases
there is no true angle at all (cf. Cantor 111,, p. 24).
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The words usually given as a part of the corollary “and that a straight line
touches a circle at one point only, since in fact the straight line meeting it in
two points was proved to fall within it” are omitted by Heiberg as being an
undoubted addition of Theon’s. It was Simson who added the further remark
that “it is evident that there can be but one straight line which touches the
circle at the same point.”

ProrosiTiON 17.

From a given point to draw a straight line touching a
Liven circle.

Let A4 be the given point, and BCD the given circle ;
thus it is required to draw from the point A a straight line
touching the circle BCD.

For let the centre £ of the circle
be taken; [ 1]

let AE be joined, and with centre £
and distance £A let the circle AFG
be described ;

from D let DF be drawn at right
angles to £4,

and let £F, AB be joined ;

I say that 4B has been drawn from
the point A4 touching the circle BCD.

For, since £ is the centre of the circles BCD, AFG,
EA is equal to £F, and £D to EB;
therefore the two sides A£, EB are equal to the two sides -
FE, ED; .
and they contain a common angle, the angle at £;
therefore the base DF is equal to the base 425,
and the triangle DEF is equal to the triangle BEA,
and the remaining angles to the remaining angles; [1. 4]
therefore the angle £DF is equal to the angle £B8A.
But the angle £DF is right ;
therefore the angle £8A4 is also right.
Now £2Z is a radius;

and the straight line drawn at right angles to the diameter
of a circle, from its extremity, touches the circle; [ 16, Por.]
therefore 4B touches the circle BCD.
Therefore from the given point 4 the straight line 458
has been drawn touching the circle ZCD. Q E. F.
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The construction shows, of course, that two straight lines can be drawn
from a given external point to touch a given circle ; and it is equally obvious
that these two straight lines are equal in length and equally inclined to the
straight line joining the external point to the centre of the given circle.
These facts are given by Heron (an-Nairizi, p. 130).

It is true that Euclid leaves out the case where the given point lies on the
circumference of the circle, doubtless because the construction is so directly
indicated by 111. 16, Por. as to be scarcely worth a separate statement.

An easier solution is of course possible as soon as we know (111. 31) that
the angle in a semicircle is a right angle; for we have only to describe a
circle on 4E as diameter, and this circle cuts the given circle in the two points
of contact.

ProposiTioN 18.

If a straight line touck a circle, and a straight line be
Jotned from the centre to the point of contact, the straight line
s0 joined will be perpendicular to the tangent.

For let a straight line DE touch the circle 4BC at the
point C, let the centre £ of the
circle ABC be taken, and let FC
be joined from #to C;

I say that #C is perpendicular to
DE.

For, if not, let G be drawn
from F perpendicular to DE.

Then, since the angle FGC is
right,

the angle #CG is acute;[1 17]

and the greater angle is subtended
by the greater side ; [1 19]

therefore F#C is greater than FG.
But #C is equal to FB;
therefore /B is also greater than FG,
the less than the greater: which is impossible.
Therefore /G is not perpendicular to DE.

Similarly we can prove that neither is any other straight
line except FC;

therefore #C is perpendicular to DE.

Therefore etc.
Q. E. D.
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3. the tangent, ¥ épaxTouérn.

Just as m. 3 contains two partial converses of the Porism to 111 1, so
the present proposition and the next give two partial converses of the
corollary to 111. 16. We may show their relation thus: suppose three things,
(1) a tangent at a point of a circle, (2) a straight line drawn from the centre to
the point of contact, (3) right angles made at the point of contact [with (1) or
(2) as the case may be]. Then the corollary to 111. 16 asserts that (2) and (3)
together give (1), 111. 18 that (1) and (2) give (3), and 11 19 that (1) and (3)
give (2), i.e. that the straight line drawn from the point of contact at right
angles to the tangent passes through the centre.

ProvosiTiON 10,

If a straight line touck a circle, and from the point of
contact a straight line be drawn al right angles to the tangent,
the centre of the civcle will be on the straight line so drawn.

For let a straight line DE touch the circle 4B8C at the
point C, and from C let CA be
drawn at right angles to DE;

I say that the centre of the circle T
is on AC.
For suppose it is not, but, if 8
possible, let # be the centre, F
and let CF be joined.
Since a straight line D £ touches
the circle ABC,
and FC has been joined from the © c E

centre to the point of contact,

FC is perpendicular to DE ; (1. 18]
therefore the angle FCE is right.
But the angle 4CE is also right ;
therefore the angle #CE£ is equal to the angle 4ACE,
the less to the greater : which is impossible,
Therefore F is not the centre of the circle ABC.

Similarly we can prove that neither is any other point
except a point on AC.
Therefore etc.

Q. E. D.

We may also regard 111. 19 as a partial converse of 1. 18. Thus suppose
(1) a straight line through the centre, (2) a straight line through the point of
contact, and suppose (3) to mean perpendicular to the tangent; then 1. 18
asserts that (1) and (2) combined produce (3), and 11. 19 that (2) and (3)
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produce (1); while again we may enunciate a second partial converse of 111. 18,
corresponding to the statement that (1) and (3) produce (2), to the effect that
a straight line drawn through the centre perpendicular to the tangent passes
through the point of contact.

We may add at this point, or even after the Porism to 1. 16, the theorem
that fwo circles whick touck one another internally or externally have a common
langent at their point of contact. For the line joining their centres, produced
if necessary, passes through their point of contact, and a straight line drawn
through that point at right angles to the line of centres is a tangent to both
circles.

ProrosiTiON 20.

In a civcle the angle at the centre is double of the angle
at the circumference, when the angles have the same circum-
Serence as base.

Let ABC be a circle, let the angle BEC be an angle
-sat its centre, and the angle BAC an
angle at the circumference, and let
them have the same circumference 5C
as base;
I say that the angle ZEC is double of
10 the angle BAC.
For let AE be joined and drawn
through to #.
Then, since £4 is equal to £8,
the angle £4 B is also equal to the
15 angle £BA ; [t 5]
therefore the angles £48, EBA are double of the angle
EAB. :
But the angle BEF is equal to the angles £AB, EBA ;
[r. 32]
therefore the angle BEF is also double of the angle
20 EAB.
For the same reason
the angle F£C is also double of the angle £A4C.

Therefore the whole angle BZEC is double of the whole
angle BAC.
25 Again let another straight line be inflected, and let there
be another angle BDC; let DE be joined and produced
to G.
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Similarly then we can prove that the angle GEC is
double of the angle £DC,

3o of which the angle GEZB is double of the angle £DZB ;

therefore the angle BEC which remains is double of the
angle BDC.

Therefore etc. Q. E. D.

25. let another straight line be inflected, xex\dg6w 39 wdr\ww (without edfeta). The
verb x\dw (to break zp' ) was the regular technical term for drawing from a point a (broken)
straight line which first meets another straight line or curve and is then dent back from it
to another point, or (in other words) for drawing straight lines from two points meeting at a
point on a curve or another straight line. xexAdsfas is one of the geometrical terms the
definition of which must according to Aristotle be assumed (Anal. Post. 1. 10, 76 b g).

The e:uly editors, Tartaglia, Commandinus, Peletarius, Clavius and others,
gave the extension of this proposition to the case where the segment is less
than a semicircle, and where accordingly the “angle” corresponding to
Euclid’s “angle at the centre” is greater than two right angles. The
convenience of the extension is obvious, and the proof of it is the same as the
first part of Euclid’s proof. By means of the extension 111. 21 is demonstrated
without making two cases; 11 22 will follow immediately from the fact that
the sum of the ‘“angles at the centre” for two segments making up a whole
circle is equal to four right angles; also 1r. 31 follows immediately from the
extended proposition.

But all the editors referred to were forestalled in this matter by Heron, as
we now learn from the commentary of an-Nairizi (ed. Curtze, p. 131 sqq.).
Heron gives the extension of Euclid’s proposition which, he says, it had been
left for him to make, but which is necessary in order that the caviller may not
be able to say that the next proposition (about the equality of the angles
in any segment) is not established generally, i.e. in the case of a segment less
than a semicircle as well as in the case of a segment greater than a semicircle,
inasmuch as 11 20, as given by Euclid, only enables us to prove it in the
latter case. Heron’s enunciation is important as showing how he describes
what we should now call an “angle” greater than two right angles. (The
language of Gherard’s translation is, in other respects, a little obscure; but
the meaning is made clear by what follows.)

““The angle,” Heron says, *which is at the centre of any circle is double
of the angle which is at the circumference of it when one arc is the base of both
angles; and the remaining angles which are at the centre, and fill up the four
right angles, are double of the angle at the circumference of the arc which is
subtended by the [original] angle which is at the centre.”

Thus the “angle greater than two right angles” is for Heron the sum of *
certain “angles” in the Euclidean sense of angles less than two right angles.
The particular method of splitting up which Heron adopts will be seen from
his proof, which is in substance as follows.

Let CDB be an angle at the centre, CAB that at the circumference.

Produce BD, CD to F, G;

take any point £ on B(C, and join BE, EC, ED.

Then any angle in the segment BAC is half of the angle BDC; and
the sum of the angles BDG, GDF, FDC is double of any angle in the
segment BEC. :
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Proof. Since CD is equal to £D,
the angles DCE, DEC are equal.

Therefore the exterior angle GDE is equal to
twice the angle DEC.
Similarly the exterior angle FDE is equal to
twice the angle DEB.
By addition, the angles GDE, FDE are double
of the angle BEC.

But

the angle BDC is equal to the angle FDG,

therefore ZAe sum of the angles BDG, GDF, FDC
£s double of the angle BEC.

And Euclid has proved the first part of the
proposition, namely that the angle BDC is double
of the angle BA4C.

Now, says Heron, BAC is any angle in the segment BAC, and therefore
any angle in the segment BAC is half of the angle BDC.

Therefore all the angles in the segment B4 C are equal.

Again, BEC is any angle in the segment BEC and is equal to Aalf the
sum of the angles BDG, GDF, FDC.

Therefore all the angles in the segment BEC are equal.

Hence 111. 21 is proved generally.

Lastly, says Heron,
since the sum of the angles BDG, GDF, FDC is double of the angle BEC,
and the angle BDC is double of the angle BAC,

therefore, by addition, the sum of four right angles is double of the sum of
the angles BAC, BEC.

Hence the angles B4C, BEC are together equal to two right angles, and
1. 22 is proved.

The above notes of Heron show conclusively, if proof were wanted, that
Euclid had no idea of m1. 20 applying in ferms (either as a matter of
enunciation or proof) to the case where the angle at the circumference, or the
angle in the segment, is obfuse. He would not have recognised the *angle”
greater than two right angles or the so-called “straight angle” as being an
angle at all. This is indeed clear from his definition of an angle as the
inclination x.v.&, and from the language used by other later Greek mathe-
maticians where there would be an opportunity for introducing the extension.
Thus Proclus’ notion of a “four-sided triangle” (cf. the note above on the
definition of a triangle) shows that he did not count a re-entrant angle as an
, angle, and Zenodorus’ application to the same figure of the word “hollow-
angled ” shows that in that case it was the exterior angle only which he would
have called an angle. Further it would have been inconvenient to have
introduced at the beginning of the Elements an “angle” equal to or greater
than two right angles, because other definitions, e.g. that of a right angk,
would have needed a qualification. If an “angle” might be equal to two
right angles, one straight line in a straight line with another would have
satisfied Euclid’s definition of a right angle. This is noticed by Dodgson
(p. 160), but it is practically brought out by Proclus on 1. 13. “For he did
not merely say that ‘any straight line standing on a straight line either makes
two right angles or angles equal to two right angles’ but ‘if i# make angles.
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If it stand on the straight line at its extremity and make one angle, is it
possible for this to be equal to two right angles? It is of course impossible ;
Jor every rectilineal angle is less than two right angles, as every solid angle is
less than four right angles (p. 292, 13—20).” [It is true that it has been
generally held that the meaning of “angle” is tacitly extended in vi. 33, but
there is no real ground for this view. See the note on the proposition.

It will be observed that, following his usual habit, Euclid omits the
demonstration of the case which some editors, e.g. Clavius, have thought it
necessary to give separately, the case namely where one of the lines forming
the angle in the segment passes through the centre. Euclid’s proof gives so
obviously the means of proving this that it is properly left out.

Todhunter observes, what Clavius had also remarked, that there are two
assumptions in the proof of 111. 20, namely that, if 4 is double of B and C
double of D, then the sum, or difference, of 4 and C is equal to double the
sum, or difference, of B and D respectively, the assumptions being particular
cases of v. 1 and v. 5. But of course it is easy to satisfy ourselves of the
correctness of the assumption without any recourse to Book v.

ProrosiTiON 21.

In a circle the angles in the same segment are equal to one
anotker.

Let ABCD be a circle, and let the angles 34D, BED
be angles in the same segment BAED;
I say that the angles 84D, BED are
equal to one another.
For let the centre of the circle
ABCD be taken, and let it be F; let
BF, FD be joined.
Now, since the angle BFD is at
the centre, 8 D
and the angle BAD at the circum- c
ference,

and they have the same circumference BCD as base,
therefore the angle BFD is double of the angle BAD. [m. 20]
For the same reason

the angle BFD is also double of the angle BED ;
therefore the angle BALD is equal to the angle BED.
Therefore etc.
Q E. D.

Under the restriction that the “angle at the centre” used in 1. 20 must
be less than two right angles, Euclid’s proof of this proposition only applies
to the case of a segment greater than a semicircle, and the case of a segment

_equal to or less than a semicircle has to be considered separately. The
simplest proof, of many, seems to be that of Simson.

H. E. 1. 4
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*But, if the segment BAE.D be not greater than a semicircle, let BAD,
BED be angles in it: these also are equal to one
another. E

. A
Draw AF to the centre, and produce it to C, and <=
join CE. A~ A\

Therefore the segment BADC is greater than a
semicircle, and the angles in it B4 C, BEC are equal,
by the first case.
For the same reason, because CBED is greater
than a semicircle,
the angles CAD, CED are equal.
Therefore the whole angle BA4.D is equal to the whole angle BED.”

We can prove, by means of reductio ad absurdum, the important converse
of this proposition, namely that, if there be any two triangles on the same base
and on the same side of it, and with equal vertical angles, the circle passing
through the extremities of the base and the vertex of one triangle will pass
through the vertex of the other triangle also. That a circle can be thus
described about a triangle is clear from Euclid’s construction in 1. 9, which
shows how to draw a circle passing through any three points, though it is
in 1v. 5 only that we have the problem stated. Now,
suppose a circle BAC drawn through the angular 0
points of a triangle BAC, and let BDC be another A
triangle with the same base BC and on the same side
of it, and having its vertical angle D equal to the
angle 4. Then shall the circle pass through D.

For, if it does not, it must pass through some point
E on BD or on BD produced. If then £C be g
joined, the angle BEC is equal to the angle BAC,
by m1. 21, and therefore equal to the angle BDC.

Therefore an exterior angle of a triangle is equal to
the interior and opposite angle : which is impossible, by 1. 16.

Therefore D lies on the circle BA4C.

Similarly for any other triangle on the base BC and with vertical angle
equal to 4. ‘Thus, & any number of triangles be constructed on the same base
and on the same side of it, with equal vertical angles, the vertices will all lie on
the crcumference of a segment of .a circle.

A useful theorem derivable from 111. 21 is given by Serenus (De sectione
coni, Props. 52, 53).
If ADB be any segment of a circle, and C be such a point on the
circumference that 4C is equal to CB, and if
there be described with C as centre and radius
CA or CB the circle AHB, then, ADB being
any other angle in the segment 4CA5, and BD
being produced to meet the outer segment in
E, the sum of 4D, DB is equal to BE.
If BC be produced to meet the outer
segment in #, and #4 be joined,

CA, CB, CF are by hypothesis equal.
Therefore the angle #4C is equal to the

angle AFC.
Also, by 11 21, the angles ACB, ADRB are equal ;
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therefore their supplements, the angles 4CF, ADE, are equal.

Further, by 111. 21, the angles 4 £B, AFB are equal.

Hence in the triangles 4CF, ADE two angles are respectively equal ;

therefore the third angles £4.D, FAC are equal.

But the angle FAC is equal to the angle 4FC, and therefore equal to the
angle AED.

Therefore the angles AED, EAD are equal, or the tnangle DEA is
1sosceles,

and 4D is equal to DE.
Addmg BD to both, we see that
BE is equal to the sum of 4D and DA.
Now, BF being a diameter of the circle of which the outer segment is

a part,
BPF is greater than BE ;
therefore AC, CB are together greater than 4D, DB.

And, generally, of all triangles on the same base and on the same side of it
which have equal vertical angles, the isosceles triangle is that which has the
grealest perimeler, and of the others that has the lesser perimeter which is
Surther from being isosceles.

The theorem of Serenus gives us the means of solving the following
problem given in Todhunter’s Euclid, p. 324.

To find a point in the circumference of a given segment of a circle such that
the straight lines whick join the point to the extremities of the straight line on
which the segment stands may be together equal to a given straight line (the
length of which is of course subject to limits).

Let ACB in the above figure be the given segment. Find, by bisecting
AB at right angles, a point C on it such that 4C is equal to CB.

Then with centre C and radius CA4 or CB describe the segment of a
circle AHB on the same side of AB.

Lastly, with 4 or B as centre and radius equal to the given straight line
describe a circle. This circle will, if the given straight line be greater than
AB and less than twice 4C, meet the outer segment in two points, and if we
join those points to the centre of the circle last drawn (whether 4 or B), the
joining straight lines will cut the inner segment in points satisfying the given
condition. If the given straight line be egua/ to twice 4C, C is of course
the required point. If the given straight line be greater than twice A4 C, there
is no possible solution.

| ProrosITION 22,
The opposite angles of quadrilaterals in circles are equal
to two right angles.
Let ABCD be a circle, and let ABCD be a quadrilateral
in it;
I say that the opposite angles are equal to two right angles.

Let AC, BD be joined.
Then, since in any triangle the three angles are equal to
two right angles, (1. 32]

&—2
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the three angles CAB, ABC, BCA of the triangle 4BC
are equal to two right angles.

But the angle CAZB is equal to the
angle BDC, for they are in the same
segment BADC; (1. 21]
and the angle ACB is equal to the angle
ADB, for they are in the same segment
ADCB;
therefore the whole angle 4.DC is equal
to the angles BAC, ACH.

Let the angle 48C be added to each;
therefore the angles ABC, BAC, ACB are equal to the
angles ABC, ADC.

But the angles 4BC, BAC, ACB are equal to two right
angles;
therefore the angles 48C, ADC are also equal to two right
angles.

Similarly we can prove that the angles BAD, DCB are
also equal to two right angles.

Therefore etc.

Q. E. D.

As Todhunter remarks, the converse of this proposition is true and very
important : if fwo opposite angles of a quadrilateral be together equal to two
right angles, a civcle may be civcumscribed about the guadrilateral. We can, by
the method of 11 g, or by 1v. 5, circumscribe a circle about the triangle
ABC; and we can then prove, by reductio ad absurdum, that the circle
passes through the fourth angular point D.

ProrosiTION 23.
On the same straight line there cannot be constructed two
similar and unequal segments of circles on the same side.

For, if possible, on the same straight line 425 let two
similar and unequal segments of circles
ACB, ADB be constructed on the same

side ; 2
let ACD be drawn through, and let C5, @

DB be joined. A B

Then, since the segment ACRB is
similar to the segment ADBA,



111 23, 24] PROPOSITIONS 22—24 53

and similar segments of circles are those which admit equal

angles, (11 Def. 11]
the angle ACB is equal to the angle 4D2B, the exterior
to the interior : which is impossible. (1. 16]

Therefore etc.
Q. E. D.

1. cannot be constructed, of susradioeras, the same phrase as in 1. 7.

Clavius and the other early editors point out that, while the words “on
the same side” in the enunciation are necessary for Euclid’s proof, it is
equally true that neither can there be two similar and unequal segments on
appostte sides of the same straight line ; this is at once made clear by causing
one of the segments to revolve round the base till it is on the same side with
the other.

Simson observes with reason that, while Euclid in the following proposition,
L. 24, thinks it necessary to dlspose of the hypothesis that, if two similar
segments on equal bases are applied to one another with the bases coincident,
the segments cannot cut in any other point than the extremities of the base
(since otherwlse two circles would cut one another in more pomts than two),
this remark is an equally necessary preliminary to m. 23, in order that we
may be justified in drawing the segments as being one inside the other.
Simson accordingly begins his proof of 111. 23 thus:

‘“ Then, because the circle 4CB cuts the circle 4DB in the two points
A, B, they cannot cut one another in any other point :

One of the segments must therefore fall within the other.
Let ACB fall within 405 and draw the straight line 4CD, etc.”

Simson has also substituted “not coinciding with one another” for
“unequal” in Euclid’s enunciation.

Then in 11. 24 Simson leaves out the words referring to the hypothesis
that the segment 4 £ B when applied to the other CFD may be * otherwise
placed as CGD”; in fact, after stating that 48 must coincide with CD, he
merely adds words quoting the result of ni1. 23: “Therefore, the straight line
A B coinciding with CD, the segment 4£8 must coincide with the segment
CFD, and is therefore equal to it.”

ProposITION 24.

Stmzlar segments of circles on equal straight lines are equal
2o one another.

For let AEB, CFD be similar segments of circles on
equal straight lines 48, CD;
5 I say that the segment A£ZB is equal to the segment CFD.

For, if the segment A£B be applied to CFD, and if the
point A be placed on C and the straight line 458 on CD,
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the point B will also coincide with the point D), because
AB is equal to CD;
10 and, A28 coinciding with CD,

the segment A £ B will also coincide with CFD.

E F G

SN N

A B C D

For, if the straight line 4B coincide with CD but the
segment 4 EB do not coincide with CFD,

it will either fall within it, or outside it ;

15 or it will fall awry, as CGD, and a circle cuts a circle at more
points than two : which is impossible. (1. 10]

Therefore, if the straight line A3 be applied to CD, the
segment A E£B will not fail to coincide with CFD also;

therefore it will coincide with it and will be equal to it.

20 Therefore etc.
Q. E. D.

15. fall awry, wapa\\dfe:, the same word as used in the like case in 1. 8. The word
implies that the :splied figure will partly fall short of, and partly overlap, the figure to
which it is applied. :

Compare the note on the last proposition. I have put a semicolon instead
of the comma which the Greek text has after “outside it,” in order the better
to indicate that the inference “and a circle cuts a circle in more points than
two ” only refers to the third hypothesis that the applied segment is “otherwise
placed (wapadAdfe) as CGD.” Thé first two hypotheses are disposed of by
a facit reference to the preceding proposition 111. 23.

ProrosiTION 25.
Given a segment 'qf a circle, to describe the complete circle
of which it is a segment.
Let ABC be the given segment of a circle ;

thus it is required to describe the complete circle belonging
to the segment 4ABC, that is, of which it is a segment.

For let AC be bisected at D, let DB be drawn from the
point D at right angles to 4C, and let 4.8 be joined ;
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the angle ABD is then greater than, equal to, or less
than the angle BAD.

First let it be greater;

and on the straight line B4, and at the point 4 on it, let
the angle BAE be constructed equal to
the angle ABD; let DB be drawn through A

to £, and let £C be joined.
Then, since the angle ABE is equal to A

the angle BAE, : B E
the straight line £25 is also equal to ‘

EA. [1 6]

And, since AD is equal to DC, ©

and DE is common,
the two sides 4D, DE are equal to the two sides CD, DE
respectively ;
:;v._mli_l the angle 4DE is equal to the angle CDE, for each is
right ;
therefore the base 4 £ is equal to the base CE.
But 4 £ was proved equal to BE;
therefore BE is also equal to CE ;
therefore the three straight lines A£, EB, EC are equal to
one another.

Therefore the circle drawn with centre £ and distance
one of the straight lines 4 £, £B, EC will also pass through
the remaining points and will have been completed. (11 9]

Therefore, given a segment of a circle, the complete circle
has been described.

And it is manifest that the segment 4BC is less than a
semicircle, because the centre £ happens to be outside it.

Similarly, even if the angle 48D be equal to the angle
BAD, :

AD being equal to each of the two BD, DC,

the three straight lines DA, DB, DC will
be equal to one another, B8 D

D will be the centre of the completed circle,
and ABC will clearly be a semicircle. C

A
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But, if the angle 48D be less than the angle B4 D,

and if we construct, on the straight line B4
and at the point 4 en it, an angle equal to A
the angle 4BD, the centre will fall on DB
within the segment 4ABC, and the segment

ABC will clearly be greater than a semi- 8 °
circle. )
Therefore, given a segment of a circle, ¢

the complete circle has been described. .
Q E. F.

1. to describe the complete circle, xposavaypdyas rov xvxhov, literally ““to describe
the circle on 0 42.’

It will be remembered that Simson takes first the case in which the angles
ABD, BAD are equal to one another, and then takes the other two cases
together, telling us to “produce BD, if necessary.” This is a little shorter
than Euclid’s procedure, though Euclid does not repeat the proof of the first
case in giving the third, but only refers to it as equally applicable.

Campanus, Peletarius and others give the solution of this problem in
which we take two chords not parallel and bisect each at right angles by
straight lines, which must meet in the centre, since each contains the centre
and they only intersect in one point. Clavius, Billingsley, Barrow and others
give the rather simpler solution in which the two chords have one extremity
common (cf. Euclid’s proofs of 111. 9, 10). This method De Morgan favours,
and (as noted on nn 1 above) would make i1 1, this proposition, and
1v. 5 all corollaries of the theorem that ‘the line which bisects a chord
perpendicularly must contain the centre.” Mr H. M. Taylor practically
adopts this order and method, though he finds the centre of a circle by
means of any two non-parallel chords; but he finds tke centre of the circle of
whick a given arc is a part (his proposition corresponding to mnr 25) by
bisecting at right angles first the base and then the chord joining one extremity
of the base to the point in which the line bisecting the base at right angles
meets the circumference of the segment. Under De Morgan’s alternative the
relation between Euclid 111. 1 and the Porism to it would be reversed, and
Euclid’s notion of a Porism or corollary would have to be considerably
extended.

If the problem is solved after the manner of 1v. s, it is still desirable to
state, as Euclid does, after proving 4£, £B, EC to be all equal, that “the
circle drawn with centre £ and distance one of the straight lines 4£, £B5,
EC will also pass through the remaining points of the segment” [111. 9], in
order to show that part of the circle described actually coincides with the
given segment. This is not so clear if the centre is determined as the
intersection of the straight lines bisecting at right angles chords which join
pairs of four different points.

ProrosiTION 26.

In equal circles equal angles stand on equal circumferences,
whether they stand at the centres or at the circumferences.
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Let ABC, DEF be equal circles,.and in them let there
be equal angles, namely at the centres the angles BGC,
EHF, and at the circumferences the angles BAC, EDF;

I say that the circumference BKC is equal to the circum-
ference ELF.

For let BC, EF be joined.
Now, since the circles ABC, DEF are equal,
the radii are equal.
Thus the two straight lines BG, GC are equal to the
two straight lines £H, HF;
- and the angle at G is equal to the angle at 4 ;
therefore the base BC is equal to the base £F. [r 4]
And, since the angle at 4 is equal to the angle at D,
the segment BAC is similar to the segment EDF;
[111. Def. 11]
and they are upon equal straight lines.
But similar segments of circles on equal straight lines are
equal to one another ; (1. 24]
therefore the segment BAC is equal to £DF.
But the whole circle 4BC is also equal to the whole circle
DEF;
therefore the circumference BKC which remains is equal to
the circumference £LF.
Therefore etc. Q. E. D.

As in 111 21, if Euclid’s proof is to cover all cases, it requires us to take
cognisance of ‘“angles at the ecentre ” which are equal to or greater than two
right angles. Otherwise we must deal separately with the cases where the
angle at the circumference is equal to or greater than a right angle. The
case of an obfuse angle at the circumference can of course be reduced by
means of III. 22 to the case of an acute angle at the circumference ; and, in
case the angle at the circumference is right, it is readily proved, by drawing
the radii to the vertex of the angle and to the other extremities of the lines
containing it, that the latter two radii are in a straight line, whence they make
equal bases in the two circles as in Euclid’s proof.
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Lardner has another way of dealing with the right angle or obtuse angle
at the circumference. In either case, he says, “bisect them, and the halves
of them are equal, and it can be proved, as above, that the arcs upon which
these halves stand are equal, whence it follows that the arcs on which the
given angles stand are equal.”

ProrosiTION 27.

In equal cirvcles angles standing on equal civcumferences
are equal lo one another, whether they stand at the centres or
at the circumferences.

For in equal circles ABC, DEF, on equal circumferences
BC, EF; let the angles BGC, EHF stand at the centres G,
H, and the angles BAC, EDF at the circumferences ;

I say that the angle BGC is equal to the angle £HF,
and the angle BAC is equal to the angle EDF.

For, if the angle BGC is unequal to the angle EAF,
one of them is greater.

Let the angle BGC be greater ; and on the straight line 3G,
and at the point G on it, let the angle BGK be constructed

equal to the angle EAF. [1. 23]
Now equal angles stand on equal circumferences, when
they are at the centres ; (1. 26]

therefore the circumference BK is equal to the circum-
ference EF.

But £F is equal to BC;

therefore BK is also equal to BC, the less to the
greater : which is impossible.

Therefore the angle BGC is not unequal to the angle
EHF;

therefore it is equal to it.
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And the angle at A is half of the angle BGC,
and the angle at D half of the angle £HF; (1. 20]
therefore the angle at A is also equal to the angle at D.

Therefore etc.
Q. E. D.

This proposition is the converse of the preceding one, and the remarks
about the method of treating the different cases apply here also.

ProrosiTioN 28.

In equal circles equal straight lines cut off equal civcum-

Serences, the greater equal to the greater and the less lo the
less.

Let ABC, DEF be equal circles, and in the circles let
AB, DE be equal straight lines cutting off ACB, DFE as
greater circumferences and 4GB, DHE as lesser;

I say that the greater circumference ACAB is equal to the

greater circumference DFE, and the less circumference AGS
to DHE.

G

For let the centres X, L of the circles be taken, and let
AK, KB, DL, LE be joined.
Now, since the circles are equal,
the radii are also equal ;

therefore the two sides AKX, KB are equal to the two
sides DL, LE ;

and the base 4B is equal to the base DE;
therefore the angle 4 KB is equal to the angle DLE.

[1 8]
But equal angles stand on equal circumferences, when
- they are at the centres ; [11. 26]

therefore the circumference AG2 is equal to DHE.
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And the whole circle AB8C is also equal to the whole
circle DEF;
therefore the circumference 4CB which remains is also equal
to the circumference DFE which remains.

Therefore etc.

Q. E. D.

Euclid’s proof does not in terms cover the particular case in which the
chord in one circle passes through its centre; but indeed this was scarcely
worth giving, as the proof can easily be supplied. Since the chord in one
circle passes through its centre, the chord in the second circle must also be a
diameter of that circle, for equal circles are those which have equal diameters,
and all other chords in any circle are less than its diameter [111. 15]; hence

the segments cut off in each circle are semicircles, and these must be equal
because the circles are equal.

ProrosiTION 29.

In equal civcles equal circumferences are sublended by equal
straight lines.

Let ABC, DEF be equal circles, and in them let equal
circumferences BGC, EHF be cut off; and let the straight
lines BC, EF be joined ;

I say that BC is equal to £F.

For let the centres of the circles be taken, and let them
be K, L ; let BK, KC, EL, LF be joined.
Now, since the circumference BGC is equal to the
circumference EHF,
the angle BK'C is also equal to the angle £LF. [u1 27]
And, since the circles ABC, DEF are equal,
the radii are also equal ;
therefore the two sides BK, KC are equal to the two sides
EL, LF; and they contain equal angles ;
therefore the base BC is equal to the base £/.  [1 4]

Therefore etc.
Q. E. D.
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The particular case of this converse of 111. 28 in which the given arcs are
arcs of semicircles is even easier than the corresponding case of 111 28 itself.

The propositions 111. 26—29 are of course equally true if the same circle
is taken instead of fwe egual circles.

ProrosiTIiON 30.
7o bisect a given circumference.

Let ADB be the given circumference ;
thus it is required to bisect the circumference ADB.
Let AB be joined and bisected at

C; from the point C let CD be drawn ]
at right angles to the straight line 45, :
and %et AD, DB be joined.
Then, since AC is equal to CB, A C 8

and CD is common,
the two sides AC, CD are equal to the two sides BC, CD;

and the angle ACD is equal to the angle BCD, for each is
right ;

therefore the base 4D is equal to the base DB. [1 4]

But equal straight lines cut off equal circumferences, the
greater equal to the greater, and the less to the less; [in. 28]

and each of the circumferences AD, DB is less than a
semicircle ;

therefore the circumference 4D is equal to the circum-
ference DA.

Therefore the given circumference has been bisected at
the point D.

Q. E. F.

ProrosiTION 3I.

In a circle the angle in the semicircle is right, that in a
greater segment less than a right angle, and that in a less
segment grealer than a right angle; and further the angle of
the greater segment is greater than a right angle, and the angle
of the less segment less than a right angle.
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Let ABCD be a circle, let BC be its diameter, and £ its
centre, and let BA, AC, AD, DC
be joined ;
I say that the angle BAC in the 0
semicircle BAC is right,
the angle A BC in the segment A BC
greater than the semicircle is less
than a right angle,
and the angle 40C in the segment
ADC less than the semicircle is
greater than a right angle.
Let AL be joined, and let BA
be carried through to .
Then, since BE is equal to £4,
the angle 4 BE is also equal to the angle BAE. [ 5]
Again, since CE is equal to £4,
the angle ACE is also equal to the angle CA £. [r 5]
Therefore the whole angle BAC is equal to the two angles
ABC, ACB.
But the angle #AC exterior to the triangle 4ABC is also

equal to the two angles ABC, ACB; [r. 32]
therefore the angle BAC is also equal to the angle FAC;
therefore each is right ; ' (1. Def. 10]

therefore the angle BAC in the semicircle BAC is right.

Next, since in the triangle 4BC the two angles ABC,
BAC are less than two right angles, [r 17]
and the angle BA4C is a right angle,

the angle 4BC is less than a right angle ;

and it is the angle in the segment 4BC greater than the
semicircle.

Next, since ABCD is a quadrilateral in a circle,
and the opposite angles of quadrilaterals in circles are equal
to two right angles, (1. 22]
while the angle 4BC is less than a right angle,
therefore the angle 4DC which remains is greater than a
right angle ;
zmdl it is the angle in the segment ADC less than the semi-
circle.
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I say further that the angle of the greater segment, namely
that contained by the circumference ABC and the straight
line AC, is greater than a right angle ;
and the angle of the less segment, namely that contained by
the circumference A DC and the straight line AC, is less than
a right angle.

This is at once manifest.

For, since the angle contained by the straight lines 24, AC
is right,

the angle contained by the circumference 45C and the
straight line AC is greater than a right angle.

Again, since the angle contained by the straight lines
AC, AF is right,

the angle contained by the straight line CA4 and the
circumference 4DC is less than a right angle.

Therefore etc. _ Q. E. D.

As already stated, this proposition is immediately deducible from 111. 20 if
that theorem is extended so as to include the case where the segment is equal
to or less than a semicircle, and where consequently the ¢ angle at the centre”
is equal to two right angles or greater than two right angles respectively.

There are indications in Aristotle that the proof of the first part of the
theorem in use before Euclid’s time proceeded on different lines. Two
passages of Aristotle refer to the proposition that the angle in a semicircle
is a right angle. The first passage is Anal. Post. 11. 11, 94 a 28: “Why is
the angle in a semicircle a right angle? Or what makes it a right angle?
(rivos dvros opbhj;) Suppose A to be a right angle, B half of two right
angles, C the angle in a semicircle. Then B is the cause of 4, the right
angle, being an attribute of C, the angle in the semicircle. For B is equal to
A, and Cto B; for C is half of two right angles. Therefore it is in virtue of
B being half of two right angles that 4 is an attribute of C; and the latter
means the fact that the angle in a semicircle is right.” Now this passage
by itself would be consistent with a proof like Euclid’s or the alternative
interpolated proof next to be mentioned. But the second passage throws a
different light on the subject. This is Metaph. 1051 a 26 : “Why is the angle
in a semicircle a right angle invariably (xafoAov)? Because, if there be three
straight lines, two forming the base, and the third set up at right angles at its
middle point, the fact is obvious by simple inspection to any one who knows
the property referred to” (éxeivo is the property that the angles of a triangle
are together equal to two right angles, mentioned two
lines before). That is to say, the angle a¢ the middle
point of the circumference of the semicircle was taken
and proved, by means of the two isosceles right-angled
triangles, to be the sum of two angles each equal to A 3
one-fourth of the sum of the angles of the large triangle
in the figure, or of two right angles; and the proof
must have been completed by means of the theorem of 1. 21 (that angles

aa
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in the same segment are equal), which Euclid’s more general proof does
not need.

In the Greek texts before that of August there is an alternative proof
that the angle BAC (in a semicircle) is right. August and Heiberg relegate
it to an Appendix.

“Since the angle 4£C is double of the angle BAE (for it is equal to the
two interior and opposite angles), while the angle 4ZB8 is also double of the
angle £A4C,

the angles 4£B, AEC are double of the angle BAC.

But the angles 4 EB, AEC are equal to two right angles ;

therefore the angle B4 C is right.”

Lardner gives a slightly different proof of the second part of the theorem.
If ABC be a segment greater than a semicircle,

draw the diameter 4.0, and join CD, CA.
Then, in the triangle 4CD, the angle ACD is right

(being the angle in a semicircle) ;

therefore the angle ADC is acute.

But the angle 4.DC is equal to the angle 48C in
the same segment;
therefore the angle ABC is acute.

Euclid’s references in this proposition to the angle of a segment greater
or less than a semicircle respectively seem, like the part of 111. 16 relating to
the angle of a semicircle, to be a survival of ancient controversies and not to
be put in deliberately as being an essential part of elementary geometry. Cf.
the notes on 111. Def. 7 and 1. 16.

The corollary ordinarily attached to this proposition is omitted by Heiberg
as an interpolation of date later than Theon. It is to this effect: “ From
this it is manifest that, if one angle of a triangle be equal to the other two,
the first angle is right because the exterior angle to it is also equal to the
same angles, and if the adjacent angles be equal, they are right.” No doubt
the corollary is rightly suspected, because there is no necessity for it here, and
the words omep e deifar come before it, not after it, as is usual with Euclid.
But, on the other hand, as the fact stated does appear in the proof of n. 31,
the Porism would be a Porism after the usual type, and I do not quite follow
Heiberg's argument that, “if Euclid had wished to add it, he ought to have
placed it after 1. 32.”

It has already been mentioned above (p. 44) that this proposition supplies
us with an alternative construction for the problem in 11. 17 of drawing the
two tangents to a circle from an external point.

Two theorems of some historical interest which follow directly from 111. 31
may be mentioned.

The first is a lemma of Pappus on * the B
24th problem ” of the second Book of Apol- i
lonius’ lost treatise on vevoes (Pappus Vil E
p- 812) and is to this effect. If a circle, as
DEF, pass through D, the centre of a circle
ABC, and if through F, the other point in
which the line of centres meets the circle A D cC F
DEF, any straight line be drawn (and produced
if necessary) meeting the circle DEF in E and the circle ABC in B, G,
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then £ is the middle point of BAG, For, if DE be joined, the angle DEF
(in a semicircle) is a right angle [111, 31]; and DE, being at right angles to
the chord BG of the circle 48C, also bisects it [n1. 3].

The second is a proposition in the Liber Assumptorum, attributed (no
doubt erroneously as regards much of it) to Archimedes, which has reached
us through the Arabic (Archimedes, ed. Heiberg, 11. pp. 439—440).

If two chords AB, CD in a circle intersect at right angles in a point O,
Z)en the sum of the squares o AO, BO, CO, DO is equal fo the square on the

iameter.

For draw the diameter CE, and join AC, CB, AD, BE.

o

Then the angle C4O is equal to the angle CEB. (This follows, in the
first figure, from 111. 21 and, in the second, from 1. 13 and m1. 22.) Also the
angle COA, being right, is equal to the angle CBE which, being the angle in a
semicircle, is also right [11. 31].

Therefore the triangles 40C, £BC have two angles equal respectively ;
whence the third angles ACO, ECB are equal. (In the second figure the
angle ACO is, by 1. 13 and 111. 22, equal to the angle 48D, and therefore
the angles 48D, ECB are equal.) ’

Therefore, in both figures, the arcs 4D, BE, and consequently the chords
AD, BE subtended by them, are equal. 111. 26, 29]

Now the squares on 40, DO are equal to the square on 4D [1. 47], that
is, to the square on BE.

And the squares on CO, BO are equal to the square on BC.

Therefore, by addition, the squares on 40, BO, CO, DO are equal to the
squares on £B5, B(, i.e. to the square on CE. [r. 47]

ProrosiTiON 32.

If a straight line touck a circle, and from the point of
contact there be drawn acrvoss, in the circle, a straight line
cutting the circle, the angles whick it makes with the tangent
will be equal to the angles in the alternate segments of the
circle.

For let a straight line £F touch the circle 4BCD at
the point B, and from the point B let there be drawn across,
in the circle ABCD, a straight line BD cutting it;

I say that the angles which 2D makes with the tangent £/
will be equal to the angles in the alternate segments of the

H. E II S
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circle, that is, that the angle 78D is equal to the angle
constructed in the segment BAD, and the angle £BD is
equal to the angle constructed in the
segment DCB. A
For let B4 be drawn from B at °
right angles to £F,
let a point C be taken at random on
the circumference BD,
and let AD, DC, CB be joined.
Then, since a straight line EF
touches the circle ABCD at B, E B
and BA has been drawn from the point
of contact at right angles to the tangent,
the centre of the circle ABCD is on BA. (1. 19]
Therefore B4 is a diameter of the circle ABCD ;

~ therefore the angle ADA, being an angle in a semicircle,

is right. [ 31]
Therefore the remaining angles BAD, ABD are equal to
one right angle. [ 32]

But the angle 4ABF is also right;
therefore the angle ABF is equal to the angles BAD, ABD.
Let the angle 48D be subtracted from each ;
therefore the angle DB F which remains is equal to the angle
BAD in the alternate segment of the circle.
Next, since ABCD is a quadrilateral in a circle,
its opposite angles are equal to two right angles. [ 22]
But the angles DBF, DBE are also equal to two right
angles ;

therefore the angles DBF DBE are equal to the angles
BAD, BCD,

of which the angle BA4D was proved equal to the angle
DBF;

therefore the angle DBE which remains is equal to the
angle DCB in the alternate segment DCB of the circle.

Therefore etc. Q. E. D.

The converse of this theorem is true, namely that, 7f a straight line
drawn through one extremity of a chord of a cirdle -make with that chord

angles equal respectively to the angles in the alternate segments of the arde,
the straight line so drawn touches the circle.
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" This can, as Camerer and Todhunter remark, be proved indirectly ; or we
may prove it, with Clavius, directly. Let B.D be the given chord, and let £F
be drawn through B so that it makes with BD angles equal to the angles in
the alternate segments of the circle respectively,

Let BA be the diameter through B, and let C be any point on the
%rgumé%:ence of the segment DCB which does not contain 4, Join 4D,

y 2

Then, since, by hypothesis, the angle #BD is equal to the angle BAD,
let the angle 48D be added to both;

therefore the angle 4B F is equal to the angles 48D, BAD.
But the angle BDA, being the angle in a semicircle, is a right angle ;

therefore the remaining angles 48D, BAD in the triangle 48D are
equal to a right angle.

Therefore the angle 4B Fis right ;
hence, since B4 is the diameter through B,
EF touches the circle at B. [rm. 16, Por.]

Pappus assumes in, one place (Iv. p. 196) the consequence of this
proposition that, If fwo circles touck, any straight line drawn through the point
of contact and terminaled by both circles cuts off segments in each which are
respectively- similar. "Pappus also shows how to prove this (vii. p. 826) by
drawing the common tangent at the point of contact and using this proposition,
1L 32.

PROPOSITION 33.

On a given straight line to describe a segment of a circle
admitting an angle equal to a given rectilineal angle.

Let AB be the given straight line, and the angle at C the
given rectilineal angle ; :
thus it is required to describe o
on the given straight line
ABa segment1 ofa c:"t]'cle a}(‘i- g
mitting an angle equal to the
angle gt C s ——lc

The angle at C is then B
acute, or right, or obtuse.

First let it be acute,
and, as in_the first figure, on
the straight line 45, and at the point A, let the angle B4.D
be constructed equal to the angle at C;

. ‘therefore the angle BAD is also acute.
" Let AE be drawn at right angles to DA, let AB be

5—2

A

E
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bisected at Z, let FG be drawn from the point F at right
angles to A5, and let GAB be joined.

Then, since AF is equal to FB,
and /G is common,
the two sides A F, FG are equal to the two sides BF, FG ;
and the angle AFG is equal to the angle BFG ;
therefore the base 4G is equal to the base BG. [ 4]

Therefore the circle described with centre G and distance
GA will pass through B also.
Let it be drawn, and let it be ABE ;

let £2 be joined.

Now, since 4D is drawn from A, the extremity of the
diameter A E, at right angles to AE,

therefore 4D touches the circle ABE. [11. 16, Por.]
Since then a straight line 4D touches the circle ABE,

and from the point of contact at 4 a straight line A28 is
drawn across in the circle ABE, :

the angle DARB is equal to the angle A £ B in the alternate
segment of the circle. [m. 32]

But the angle D A2 is equal to the angle at C;
therefore the angle at Cis also equal to the angle A£B.

Therefore on the given straight line 45 the segment
AEB of a circle has been described admitting the angle A £8
equal to the given angle, the angle at C.

Next let the angle at C be right ;

o A
C E F
8

and let it be again required to describe on 48 a segment
of a circle admitting an angle equal to the right angle at C.

Let the angle BZAD be constructed equal to the right
angle at C, as is the case in the second figure ;
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let AB be bisected at F, and with centre F# and distance
either /4 or F2A let the circle AEB be described.

Therefore the straight line 4D touches the circle ABE,
because the angle at A is right. [11. 16, Por.]
And the angle BA4.D is equal to the angle in the segment
AEB, for the latter too is itself a right angle, being an
angle in a semicircle. [nr 31)
But the angle BAD is also equal to the angle at C.
Therefore the angle 4 £2B is also equal to the angle at C.
Therefore again the segment A£B of a circle has been
described on 4B admitting an angle equal to the angle at C.

Next, let the angle at C be obtuse; -

A D
H
\c__ a
B
E

and on the straight line 45, and at the point A4, let the
angle BAD be constructed equal to it, as is the case in the
third figure ;
let AE be drawn at right angles to 4D, let AB be again
bisected at #, let #G be drawn at right angles to 45, and
let GB be joined.
Then, since AF is again equal to 725,
and #G is common,
the two sides AF, FG are equal to the two sides BF, FG;
and the angle AFG is equal to the angle BFG;
therefore the base 4G is equal to the base BG.  [1 4]
Therefore the circle described with centre G and distance
GA will pass through B also ; let it so pass, as 4AEB.
Now, since 4D is drawn at right angles to the diameter
AE from its extremity,
AD touches the circle AEB. [u1. 16, Por.]
AAnd AB has been drawn across from the point of contact
at 4
therefore the angle A D is equal to the angle constructed
in the alternate segment 4 A B of the circle. (1. 32]
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But the angle 84D is equal to the angle at C.

Therefore the angle in the segment 4/ B is also equal to
the angle at C.

Therefore on the given straight line 45 the segment
AHB of a circle has been described admlttmg an angle equal
to the angle at C.

QE.F.

Simson remarks truly that the first and third cases, those namely in which
the given angle is acute and obtuse respectively, have exactly the same
construction ‘and demonstration, so that there is no advantage in repeating
them. Accordingly he deals with the cases as one, merely drawing two
different figures. It is also true, as Simson says, that the. demonstration of
the second case in which the given angle is a right angle “is done in a round-
about way,” whereas, as Clavius showed, the problem can be more easily
solved by merely bisecting 458 and describing a semicircle on it. A glance
at Euclid’s figure and proof will however show a more curious fact, namely
that he does not, in the proof of the second case, use the angle in the
alternate segment, as he does in the other two cases. He might have done so
after proving that A.D touches the circle ; this would only have required his
point £ to be placed on the side of 48 opposnte to D. Instead of this, he
uses 1L 31, and proves that the angle AEB is equal to the angle C, because
the former is an angle in a semicircle, and is therefore a right angle as C is.

The difference of procedure is no doubt owing to the fact that he has not,
in 11 32, distinguished the case in which the cutting and touching straight
lines are at right angles, i.e. in which the two alternate segments are semicircles.
To prove this case would also have required 111. 31, so that nothing would
have been gained by stating it separately in 11 32 and then quoting the
result as part of 111. 32, instead of referring directly to mr. 3r. :

It is assumed in Euclid’s proof of the first and third cases that' 4£ and
FG will meet; but of course there is no difficulty in satisfying ourselves
of this, o

ProrosiTiON 34.

From a given circle to cut off a segment admzltmg an angle
equal to a given rectilineal angle.

Let ABC be the given circle, and the angle at D the
given rectilineal angle ;
thus it is required to cut off from the circle 4BC a segment
admitting an angle equal to the given rectilineal angle, the
angle at D,

Let £F be drawn touching ABC at the point 5, and on
the straight line 73, and at t %e point B on it, let the angle
£BC be constructed equal to the angle at D. [r. 23]

Then, since a straight line £F touches the circle 45C,
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and BC has been drawn across from the point of contact
at B, . -
the angle #BC is equal to the angle constructed in the alternate
segment BAC. [1i1. 32]
c

" e

E A

But the angle #BC is equal to the angle at D ;

therefore the angle in the segment BAC is equal to the
angle at D. ,
Therefore from the given circle ABC the segment BAC
has been cut off admitting an angle equal to the given recti-
lineal angle, the angle at D. v
Q E. F.
An alternative construction here would be to make an ‘“angle at the

centre” (in the extended sense, if necessary) double of the given angle ; and,
. if the given angle is right, it is only necessary to draw a diameter of the circle.

ProrosiTION 35.

If in a circle two straight lines cut one another, the
rectangle contained by the segments of the one is equal to the
rectangle contained by the segments of the other.

For in the circle ABCD let the two straight lines 4C,
BD cut one another at the point £;

I say that the rectangle contained by A,
EC is equal to the rectangle contained by A
DE, EB.

If now AC, BD are through the centre,
so that £ is the centre of the circle ABCD,

it is manifest that, 4E, £EC, DE, EB
being equal,

the rectangle contained by 4E, EC is also equal to the
rectangle contained by DE, EB.
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Next let AC, DB not be through the centre ;
let the centre of 4BCD be taken, and
let it be F;
from F let FG, FH be drawn perpen-
dicular to the straight lines AC, DB,
and let 7B, FC, FE be joined.

Then, since a straight line GF
through the centre cuts a straight line
AC not through the centre at right
angles,

it also bisects it ; [m. 3]
therefore 4G is equal to GC.

Since, then, the straight line 4C has been cut into equal
parts at G and into unequal parts at £,
the rectangle contained by 4 £, EC together with the square
on £G is equal to the square on GC; (. 5]

Let the square on GF be added ;
therefore the rectangle AZ, EC together with the squares
on GE, GF is equal to the squares on CG, GF.

But the square on FE is equal to the squares on £G, GF,
and the square on FC is equal to the squares on CG, GF;

[ 47]
therefore the rectangle AE, EC together with the square

on FE is equal to the square on FC.

And FC is equal to FB;
therefore the rectangle A E, EC together with the square on
EF is equal to the square on F5.

For the same reason, also,
the rectangle DE, EB together with the square on FE is
equal to the square on FB5.

But the rectangle AE, EC together with the square on
FE was also proved equal to the square on 75 ;
therefore the rectangle A, EC together with the square on
FE is equal to the rectangle DE, EB together with the
square on FE.

Let the square on F£ be subtracted from each ;
therefore the rectangle contained by A, £C which remains
is equal to the rectangle contained by DE, EB.

Therefore etc.

Q E. D.
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In addition to the two cases in Euclid’s text, Simson (following Campanus)
gives two intermediate cases, namely (1) that in which one chord passes through
the centre and bisects the other which does not pass through the centre at right
angles, and (2) that in which one passes through the centre and cuts the other
which does not pass through the centre but not at right angles. Simson then
reduces Euclid’s second case, the most general one, to the second of the two
intermediate cases by drawing the diameter through Z. His note is as
follows : ‘“As the 25th and 33rd propositions are divided into more cases,
so this 35th is divided into fewer cases than are necessary. Nor can it be
supposed that Euclid omitted them because they are easy; as he has given
the case which by far is the easiest of them all, viz. that in which both the
straight lines pass through the centre: And in the following proposition he
separately demonstrates the case in which the straight line passes through the
centre, and that in which it does not pass through the centre: So that it
seems Theon, or some other, has thought them too long to insert: But cases
that require different demonstrations should not be left out in the Elements,
as was before taken notice of: These cases are in the translation from the
Arabic and are now put into the text.” Notwithstanding the ingenuity of the
argument based on the separate mention by Euclid of the simplest case of
all, I think the conclusion that Euclid himself gave four cases is unsafe ; in
fact, in giving the simplest and most difficult cases only, he seems to be
following quite consistently his habit of avoiding #o0 great multiplicity of cases,
while not ignoring their existence.

The deduction from the next proposition (111. 36) which Simson, following
Clavius and others, gives as a corollary to it, namely that, Jf from any point
without a circle there be drawn two straight lines cutting it, the rectangles
contained by the whole lines and the parts of them without the circle are equal to
one anothker, can of course be combined with 111. 35 in one enunciation.

As remarked by Todhunter, a large portion of the proofs of 1. 35, 36
amounts to proving the proposition, Jf any point be taken on the base, or the
base produced, of an ssosceles triangle, the rectangle contained by the segments of
the base (i.e. the respective distances of the ends of the base from the point) is
equal to the difference between the square on the straight line joining the point to
the vertex and the square on one of the equal sides of the triangle. This is of
course an immediate consequence of 1. 47 combined with 11. 5 or 11 6.

The converse of 111. 35 and Simson’s corollary to 111. 36 may be stated
thus. Jf two straight lines AB, CD, produced if necessary, intersect at O, and if
the rectangle AO, OB be equal to the rectangle CO, OD, the circumference of a
crcle will pass through the four points A, B, C, D. The proof is indirect.
We describe a circle through three of the points, as 4, B, C (by the method
used in Euclid’s proofs of 1. g, 10), and then we prove, by the aid of 11, 35
and the corollary to 1. 36, that the circle cannot but pass through D also.

ProrosiTiON 36.

If a point be taken oulside a civcle and from it there fall
on the circle two straight lines, and if one of them cut the
circle and the other touck it, the rectangle contained by the
whole of the straight line whick culs the circle and the straight
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line intercepled on it outside between the point and the convex
circumference will be equal o the square on the langent.

For let a point D be taken outside the circle A8C,
and from D let the two straight lines DCA,

DB fall on the circle ABC; let DCA cut A
the circle ABC and let BD touch it;

I say that the rectangle contained by 4D,
DC is equal to the square on DB5.

Then DCA is either through the centre
or not through the centre.

First let it be through the centre, and
let 7 be the centre of the circle 45C;
let 7B be joined ;

therefore the angle FBD is right. [11. 18]

And, since AC has been bisected at #, and CD is added
to it,
the rectangle 4D, DC together with the square on FC is
equal to the square on FD. (1. 6]

But FC is equal to FB;
therefore the rectangle AD DC together with the square on
FB is equal to the square on FD.

And the squares on /B, BD are equal to the square on
FD; (1. 47)
therefore the rectangle 4.0, DC together with the square on

FB is equal to the squares on 7B, BD.
' Let the square on /B be subtracted from each ;
therefore the rectangle 40, DC which remains is equal to
the square on the tangent D25.

Again, let DCA not be through the centre of the circle
ABC;
let the centre £ be taken, and from £
let £F be drawn perpendicular to 4C;
let £B, EC, ED be joined.

Then the angle £B8D is right. A

[11. 18]

And, since a straight line £F © 6
through the centre cuts a straight line
AC not through the centre at right angles,

it also bisects it; [ 3]
therefore AF is equal to FC.
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" Now, since the straight line 4C has been blsected at the
pomt F; and-CD is added to it, - Vo
the rectangle contained by 4D, DC together wnth the square
on FC is equal to the square on FD. - A{u6]

‘Let the square on /£ be added to each;

therefore the rectangle 40, DC together with the squares
on CK, FE is equal to the 5quares on D, FE. :

But the square on £C is equal to the squares on CF FE
for the angle £FC is right; o [n 411
and the square on £D is equal to the squares on DF FE;
therefore the rectangle 4D, DC together with the squa,re on
EC is equal to the square on £D.

And EC is equal to EB; v ‘ '
therefore the fectangle 4D, DC together wrth the square on
EB is equal to the square on £D..

.But the squares on EB, BD are equal to thc square on
ED for the angle’ £BD is right; = . : [r.47)
therefore'the rectangle 4D, DC together wrth the square on
EB is equal to the squares on £B, BD. D

.Liet the square on £ be subtracted from each;

therefore the rectangle 4D, DC whlch remains is equai to
the square on DBA. , :

¢ ‘Therefore etc.: _ : . QE.D.

Cf. note on the preceding proposition. Observe that, wheréas it would
be natural with us to prove first that, if 4 is an external point, and two
straight lines' 4 £58, AFC. cut the circle in £, B and # C respectively, the
rectangle BA, AE is equal to-the rectangle CA AF, and thence that, the
tangent from A being a straight line like AEB in its limiting position when
E and B coincde, either rectangle is equal to the square on the tangent
(cf. Mr H. M. Taylor, p--253), Euclid and the Greek geometers generally did
not allow themselves to infer the truth. of a proposition in a /imiting case
directly from the general case including it, but preferred a separate proof of
the limiting case (cf. Apollonius of Perga, p. 40, x39—14o) This accounts for
the form of nr. 36. -

ProrosiTiON 37.

If a point be taken outside a civcle and from the. pomt
there fall on the circle two straight lines, tf ‘one of them cut
the circle, and the other fall on it, and if further the rect-
angle conta.mea' by the whole of the straight line which. uls
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the circle and the straight line intercepled onm it oulside
between the point and the convex circumference be equal to
the square on the straight line whick falls on the circle, the
straight line whick falls on it will touch the circle.

For let a point D be taken outside the circle 4BC;
from D let the two straight lines
DCA, DB fall on the circle ACB; -
let DCA cut the circle and DB
fall on it; and let the rectangle 4D,
DC be equal to the square on DB5. F

I say that DB touches the circle
ABC. 8 A

For let DE be drawn touching
ABC; let the centre of the circle ABC be taken, and let it
be F'; let FE, FB, FD be joined. .

Thus the angle FED is right. (1. 18]

Now, since DE touches the circle AB8C, and DCA cuts it,
the rectangle 4.0, DC is equal to the square on DE. [m. 36]

But the rectangle 4D, DC was also equal to the square
on DB ;
therefore the square on DE is equal to the square on D5 ;

therefore DE is equal to DB.

And FE is equal to FB;
therefore the two sides DE, EF are equal to the two sides
DB, BF;
and FD is the common base of the triangles;

therefore the angle DEF is equal to the angle DBF.

[r. 8]
But the angle DEF is right ;
therefore the angle DBF is also right.
And FB produced is a diameter;

and the straight line drawn at right angles to the diameter
of a circle, from its extremity, touches the circle; [ 16, Por.]
therefore DB touches the circle.
Similarly this can be proved to be the case even if the
centre be on AC.
Therefore etc. Q. E. D.

D E

De Morgan observes that there is here the same defect as in 1. 48, i.e. an
apparent avoidance of indirect demonstration by drawing the tangent DE on
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the opposite side of DF from DB. The case is similar to the apparently
direct proof which Campanus gave. He drew the straight line from D
passing through the centre, and then (without drawing a second tangent)
proved by the aid of 11. 6 that the square on DF is equal to the sum of the
squares on DB, BF; whence (by 1. 48) the angle DBF is a right angle.
But this proof uses 1. 48, the very proposition to which De Morgan’s original
remark relates. :
The undisguised indirect proof is easy. If DB does not touch the circle,
it must cut it if produced, and it follows that the square on DB must be
equal to the rectangle contained by DB and a longer line: which is absurd.
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BOOK 1V.
DEFINITIONS.

1. A rectilineal figure is said to be inscribed in a
rectilineal figure when the respective angles of the
inscribed figure lie on the respective sides of that in which
it is inscribed.

2. Similarly a figure is said to be circumscribed about
a figure when the respective sides of the circumscribed
figure pass through the respective angles of that about which
it is circumscribed.

3. A rectilineal figure is said to be inscribed in a
circle when each angle of the inscribed figure lies on the
circumference of the circle. :

4. A rectilineal figure is said to be circumscribed
about a circle, when each side of the circumscribed figure
touches the circumference of the circle.

5. Similarly a circle is said to be inscribed in a figure
when the circumference of the circle touches each side of the
figure in which it is inscribed.

6. A circle is said to be circumscribed about a figure
when the circumference of the circle passes through each
angle of the figure about which it is circumscribed. *

7. A straight line is said to be fitted into a circle when
its extremities are on the circumference of the circle.

DEFINITIONS 1—7.
I append, as usual, the Greek text of the definitions.

I. Exmw. evaypamLov els crxqp.a cuﬂvypap.p.ov éyypa¢¢00m chﬂu, orrav
éxdory TdV 1’0!) éyypadopévov oxiipatos ywniy éxdorys whevpds rod, es &

dyypdperas, drryrac
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2. Sxjpa 8¢ 6 opoiws wepl cxmm. wcpcypaderm Mytmt, grav éxdory whevpd
1o wepiypadopévov dxdarys ywvias Tob, Tepi & weprypadperar, drmyrac,

3. 3Zxijpe wﬂtypamwv els xixhov dyypdpeatia A(ycrat, orav ixdoTy ywrie
Tov éyypadopévov dxTyrar mjs Tob KUkAov wepipepelias.

4. 3xipa 8 elGvypappor -ﬂpt xvxAov ﬂptypmﬁwo“ M'ycﬂu, orav éxdary
xhevpa Tov wepiypadouévov fwmmc Tijs Tov KUKkAov wepipepelas.

5. Kuxlos 8& eis oxijpa op.om éyypipeaba Acymu, otav 1) Tob KUKAov
xepipipaa ékdorys whevpds Tob, els & éyypaderay, drryrac

6. Kmu\oc & 1rqu crxr”m. rcpcypa¢¢09a¢ Aéyerar, Srav 1) Tob KUkAov Teprdépera
éxdarys ywvias Tob, wepl & weptypdgperar, drryrac.

7. Edbeia as xuxhov évappcleabar Aéyerar, drav Td -xcpafa avrijs éml Ts
wepupepeins ﬁ Tob KUKMoV,

In the ﬁ:st two deﬁnmons an Enghsh translatlon, if it is to be clear, must
depart slightly from the exact words used in the Greek, where “each side” of-
one figure is said to pass through “each angle” of another, or “each angle”.
(l e angular point) of one lies on “each side” of another (édory wAevpd,
éixdory ywria).

It is also necessary, in the five definitions 1, 2, 3, 5 and 6, to translate
the same Greek word amfau in three different ways. It was observed on
11 Def. 2 that the usual meaning of dwrecfac in Euclid is to mees, in contra-
distinction to £¢am-¢a9m, which means to fouck. Exceptionally, as in Def. s,
drresfa has the meaning of /auck. But two new meanings of the word appeat,
the first being to Jie on, as in Deff. 1 and 3, the second to pass througk, as in
Deff. 2 and 6; ‘“each angle” lies on (a=xrerar) a side or on a circle, and
“each side,” or a citcle, passes through (d=rerar) an angle or “each angle.”
The first meaning of Jying on is exemplified in the phrase of Pappus agl/mu 1’0
aopeiov Oége deBopdvys edleias, “ will lie on a straight line given in position ”;
the meaning of passing through seems to be much rarer (I have not seen it in
Archimedes or Pappus), but, as pointed out on i Def. % Aristotle uses the
compound {gaxreabar in this sense.

Simson proposed to read épdaryrac in the case (Def, 5) where dmryTar
means fouckes. He made the like suggestion as regards the Gree_k text of 1.
11, 12, 13, 18, 19; in the first four of these cases there seems to be Ms.
authority. for the compound verb, and in the fifth Heiberg adopts Simson'’s.
correction. , .
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*

ProrosITION 1.

Into a given circle to fit a straight line equal to a given
straight line whick is not greater than the diameter of the
circle.

Let ABC be the given circle, and D the glven straight
line not greater than the diameter
of the circle ; [\

thus it is required to fit into the
circle ABC a straight line equal
to the straight line D.

Let a diameter BC of the
circle ABC be drawn.

Then, if BC is equal to D,
that which was enjoined will have
been done ; for BC has been fitted into the circle 4BC equal
to the straight line D.

But, if BC is greater than D,

let CE be made equal to D, and with centre C and distance
CE let the circle £AF be described ;

let CA4 be joined.
Then, since the point C is the centre of the circle £AF,
CA is equal to CE.
But C£ is equal to D ;
therefore D is also equal to CA.

Therefore into the given circle ABC there has been fitted
CA equal to the given straight line D.

Q. E. F.
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Of this problem as it stands there are of course an infinite number of
solutions ; and, if a particular point be chosen as one extremity of the chord
to be “ fitted in,” there are two solutions. More difficult cases of *fitting
into” a circle a chord of given length are arrived at by adding some further
condition, e.g. (1) that the chord is to be parallel to a given straight line, or
(2) that the chord, produced if necessary, shall pass through a given point.
The former problem is solved by Pappus (111. p. 132) ; instead of drawing the-
chord as a tangent to a circle concentric with the given circle and having as
radius a straight line the square on which is equal to the difference between
the squares on the radius of the given circle and on half the given length, he
merely draws the diameter of the circle which is parallel to the given direction,
measures from the centre along it in each direction a length equal to half the
given length, and then draws, on one side of the diameter, perpendiculars to it
through the two points so determined.

The second problem of drawing a chord of given length, being less than
the diameter of the circle, and passing through a given point, is more
important as havmg been one of the problems discussed by Apollonius in his
work entitled vejoess, now lost. Pappus states the problem thus (vi1. p. 670):
“A circle being given in position, to fit into it a straight line given in
magnitude and verging (vevovgay) towards a given (point).” To do this we
have only to place any chord AKX in the given
circle (with centre O) equal to the given length, - ° K
take Z the middle point of it, with O as centre and
OL as radius describe a circle, and lastly through
the given point C draw a tangent to this circle
meeting the given circle in 4, B. 4B is then one H
of fwo chords which can be drawn satisfying the
given conditions, if C is outside the inner circle; if A
C is on the inner circle, there is one solution only ;
and, if C is within the inner circle, there is no
solutlon Thus, if C is within the outer (given)
circle, besides the condition that the given length must not be greater than the
diameter of the circle, there is another necessary condition of the possibility.
of a solution, viz. that the given length must not be /ss than double of the
straight line the square on whxch is equal to the difference between the squares
(1) on the radius of the given circle and (2) on the distance between its
centre and the given point.

PROPOSITION 2.

In a given circle to inscribe a triangle equiangular wztk a
grven triangle.

Let 4ABC be the given circle, and DEF the gwen
trlangle,

thus it is required to inscribe in the circle ABC a ti‘iangle
equiangular with the triangle DEF.

Let GH be drawn touching the circle 4 BC at A [u1. 16,Por.];

H. E. II. 6
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on the straight line 4/, and at the point 4 on it, let the
angle 7 AC be constructed equal to the angle DEF,

and on the straight line 4G, and at the point A4 on it, let
the angle GA B be constructed equal to the angle DFE;

[1. 23]
let BC be joined.

Then, since a straight line 4/ touches the circle 458C,

and from the point of contact at 4 the straight line 4C is
drawn across in the circle,

therefore the angle ZAC is equal to the angle 458C in the
alternate segment of the circle. [m1. 32]

But the angle ZAC is equal to the angle DEF;
therefore the angle ABC is also equal to the angle DEF.
For the same reason
the angle ACR is also equal to the angle DFE ;
therefore the remaining angle BAC is also equal to the

remaining angle E£DF. [1. 32)
Therefore in the given circle there has been inscribed a
triangle equiangular with the given triangle. =~ Q. E. F.

Here again, since any point on the circle may be taken as an angular
point of the triangle, there are an infinite number of solutions. Even when a
particular point has been chosen to form one angular point, the required
triangle may be constructed in six ways. For any one of the three angles
may be placed at the point; and, whichever is placed there, the positions of
the two others relatively to it may be interchanged. The sides of the triangle
will, in all the different solutions, be of the same length respectively; only
their relative positions will be different.

This problem can of course be reduced (as it was by Borelli) to 111. 34,
namely the problem of cutting off from a given circle a segment containing an
angle equal to a given angle. It can also be solved by the alternative method
applicable to 111. 34 of drawing “angles at the centre” equal to double the
angles of the given triangle respectively; and by this method we can easily
solve this problem, or 1. 34, with the further condition that one side of the
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required triangle, or the base of the required segment, respectively, shall be
parallel to a given straight line. :

As a particular case, we can, by the method of this proposition, describe
an eguilaleral triangle in any circle after we have first constructed any
equilateral triangle by the aid of 1. 1. The possibility of this is assumed in
Iv. 16. It is of course equivalent to dividing the circumference of a circle
into three equal parts. As De Morgan says, the idea of dividing a revolution
into equal parts should be kept prominent in considering Book 1v.; this
aspect of the construction of regular polygons is obvious enough, and the
reason why the division of the circle into Z4ree equal parts is not given by
Euclid is that it happens to be as easy to divide the circle into three parts
which are in the ratio of the angles of any triangle as to divide it into three
equal parts.

ProrosITION 3.

About a given circle to circumscribe a triangle equiangular
with a given triangle.
Let ABC be the given circle, and DEF -the given
triangle ;
s thus it is required to circumscribe about the circle ABC a
triangle equiangular with the triangle DEF.

m H
F D
A
8
K E
(]
L c N

Let £F be produced in both directions to the points
G’ H’
let the centre KX of the circle ABC be taken [ 1], and let
10 the straight line KB be drawn across at random;
on the straight line X5, and at the point X on it, let the
angle BKA be constructed equal to the angle DEG,

and the angle BKC equal to the angle DFH ; [1 23]
and through the points 4, B, C let LAM, MBN, NCL be
15 drawn touching the circle ABC. [11. 16, Por.]

Now, since LM, MN, NL touch the circle ABC at the
points 4, B, C, :
and KA, KB, KC have been joined from the centre X to
the points 4, B, C,

6—2
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20 therefore the angles at the points 4, B, C are right.  [u 18]

And, since the four angles of the quadrilateral AMBK
are equal to four right angles, inasmuch as AMBK is in fact
divisible into two triangles,

and the angles KAM, KBM are right,

25 therefore the remaining angles 4 KB, AMB are equal to two
right angles.

But the angles DEG, DEF are also equal to two right
angles ; [ 13]
therefore the angles AKB, AMB are equal to the angles

30 DEG, DEF,
of which the angle AKX is equal to the angle DEG;

therefore the angle 4MB which remains is equal to the
angle D EF which remains.

Similarly it can be proved that the angle LNB is also
35 equal to the angle DFE;

therefore the remaining angle MLN is equal to the
angle EDF. 1. 32]
Therefore the triangle LM/ is equiangular with the
triangle DEF; and it has been circumscribed about the
socircle ABC.

Therefore about a given circle there has been circum-
scribed a triangle equiangular with the given triangle.
: Q. E. F.

10. at random, literally * as it may chance,” ds &rvxer. The same expression is used
in I11. 1 and commonly.
22. is in fact divisible, xal diatpeiray, literally * is actually divided.”

The remarks as to the number of ways in which Prop. 2 can be. solved
apply here also.

Euclid leaves us to satisfy ourselves that the three tangents w#/ meet and
form a triangle. This follows easily from the fact that each of the angles
AKB, BKC, CKA4 is less than two right angles. The first two are so by
construction, being the supplements of two angles of the given triangle re-
spectively, and, since all three angles round. X are together equal to four
right angles, it follows that the third, the angle 4XC, is equal to the sum
of the two angles £, F of the triangle, i.e. to the supplement of the angle D,
and is therefore less than two right angles.

Peletarius and Borelh gave an alternative SOlI.lthﬂ, first mscnbmg a triangle
equiangular to the given triangle, by 1v. 2, and then drawing tangents to the
circle parallel to the sides of the inscribed triangle respectively. This method
will of course give two solutions, since two tangents can be drawn parallel to
each of the sides of the inscribed triangle.

If the three pairs of parallel tangents be drawn and produced far enough,
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they will form eight triangles, two of which are the triangles circumscribed to
the circle in the manner required in the proposition. The other six triangles
are so related to the circle that the circle touches two of the sides in each
produced, i.e. the circle is an escrébed circle to each of the six triangles.

PRroposITION 4.

In a given triangle to inscribe a circle.

Let 4BC be the given triangle ;
thus it is required to inscribe a circle in the triangle 4BC.

Let the angles 4BC, ACB
5 be bisected by the straight lines A
BD, CD [1 g}, and let these meet

one another at the point D ; € A .
from D let DE, DF, DG be ‘ '

drawn perpendicular tothestraight
10 lines AB, BC, CA.
Now, since the angle ABD &8 F (o]

is equal to the angle CBD,
and the right angle BED is also equal to the right angle
BFD,
1s EBD, FBD are two triangles having two angles equal to two
angles and one side equal to one side, namely that subtending
one of the equal angles, which is B0 common to the
triangles ;
therefore they will also have the remaining sides equal to
20 the remaining sides ; [« 26]
therefore DE is equal to DF.
For the same reason

DG is also equal to DF.

Therefore the three straight lines DE, DF, DG are equal
25 to one another ; _

therefore the circle described with centre 2 and distance
one of the straight lines DE, DF, DG will pass also
through the remaining points, and will touch the straight
lines 4B, BC, CA, because the angles at the points £, F, G

o are right. :
For, if it cuts them, the straight line drawn at right angles
to the diameter of the circle from its extremity will be found
to fall within the circle: which was proved absurd;  [u1 16]
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therefore the circle described with centre 2 and distance
ssone of the straight lines DE, DF, DG will not cut the
straight lines 48, BC, CA ;

therefore it will touch them, and will be the circle inscribed
in the triangle ABC. [1v. Det. 5]

Let it be inscribed, as FGE.
s  Therefore in the given triangle ABC the circle £FG has
been inscribed.
Q E. F.

16, 34. and distance one of the (straight lines D)E, (D)F, (D)G. The words
and letters here shown in brackets are put in to fill out the rather careless language of the
Greek. Here and in several other places in Book 1v. Euclid says literally *and with distance
one of the (points) £, 7, G" (xal dcacrhuar: ént 7dv E, Z, H) and the like. In one case (1v.13)
he actually has ** with distance one of the points G, H, K, L, M" (daoripar: évl 7év H, O,
K, A, M onpelwr). Heiberg notes‘ Graecam locutionem satis miram et negligentem,” but,
in view of its frequent occurrence in good Mss., does not venture to correct it.

Euclid does not think it necessary to prove that BD, CD will meet ; this
is indeed obvious, for the angles DBC, DCB are together half of the angles
ABC, ACB, which themselves are together less than two right angles, and
therefore the two bisectors of the angles B, C must meet, by Post. 5.

It follows from the proof of this proposition that, if the bisectors of two
angles B, C of a triangle meet in D, the line joining D to A also bisects the
third angle 4, or the bisectors of the three angles of a triangle meet in
a point.

It will be observed that Euclid uses the sndirect form of proof when
showing that the circle touches the three sides of the triangle. Simson proves
it directly, and points out that Euclid does the same in 11 17, 33 and 37,
whereas in 1v. 8 and 13 as well as here he uses the rndirect form. The
difference is unimportant, being one of form and not of substance; the
indirect proof refers back to 111 16, whereas the direct refers back to the
Porism to that proposition.

We may state this problem in the more general form: 7o describe a circle
touching three given straight lines which do not all meet in one point, and of
which not more than two are parallel.

In the case (1) where two of the straight lines are parallel and the third
cuts them, two pairs of interior angles are formed, one on each side of the
third straight line. If we bisect each of the interior angles on one side, the
bisectors will meet in a point, and this point will be the centre of a circle
which can be drawn touching each of the three straight lines, its radius being
the perpendicular from the point on any one of the three. Since the a/fernate
angles are equal, two equal circles can be drawn in this manner satisfying the
given condition.

In the case (2) where the three straight lines form a triangle, suppose each
straight line produced indefinitely. Then each straight line will make two
pairs of interior angles with the other two, one pair forming two angles of the
triangle, and the other pair being their supplements. By bisecting each angle
of either pair we obtain, in the manner of the proposition, two circles
satisfying the conditions, one of them being the inscribed circle of the triangle
and the other being a circle escribed to it, 1.e. touching one side and the other



1v. 4] PROPOSITION 4 87

two sides produced. Next, taking the pairs of interior angles formed by a
second side with the other two produced indefinitely, we get two circles
satisfying the conditions, one of which is the same inscribed circle that we had
before, while the other is a second escribed circle. Similarly with the third side.
Hence we have the inscribed circle, and three escribed circles (one oppaosite
each angle of the triangle), i.e. four circles in all, satisfying the conditions of
the problem.

It may perhaps not be inappropriate to give at this point Heron’s elegant
proof of the formula for the area of a triangle in terms of the sides, which we
usually write thus :

A=Js(s—a)(s—8)(s-¢),

although it requires the theory of proportions and uses some ungeometrical
expressions, e.g. the product of two areas and the ““side” of such a product,
where of course the areas are so many square units of length. The proof is
given in the Metrica, 1. 8, and in the Dioptra, 30 (Heron, Vol. 111, Teubner,
1903, pp- 20—24 and pp. 280—4, or Heron, ed. Hultsch, pp. 235—7).
Suppose the sides of the triangle 4BC to be given in length.
Inscribe the circle DEF, and let G be its centre.

A

Join 4G, BG, CG, DG, EG, FG.

Then BC.EG=2.A BGC,
CA.FG=2.0ACG,
AB.DG=2.0 ABG.

Therefore, by addition,

p. EG=2.0ABC,
where 2 is the perimeter.
Produce CB to H, so that BH = AD.
Then, since AD=AF, DB = BE, FC= CE,
CH=1}p.
Hence CH.EG=AA4BC.



88 BOOK 1V [v. 4, 5
But CH.EG is the “side” of the product CH?*.EG? that is

JCH EGY;

therefore (A ABC)Y= CH'. EG*.

Draw GL at right angles to CG, and BL at right angles to CB, meeting
at L. Join CL. : .

Then, since each of the angles CGZ, CBL is right, CGBL is a quadri-
lateral in a circle.

Therefore the angles CGB, CLB are equal to two right angles.

Now the angles CGB, AG D are equal to two right angles, since 4G, BG,
CG bisect the angles at G, and the angles CGB, AGD are equal to the
angles AGC, DG B, while the sum of all four is equal to four right angles.

Therefore the angles 4G.D, CLB are equal.

So are the right angles A.DG, CBL.

Therefore the triangles 4GD, CLAB are similar.

Hence - BC:BL=AD: DG

- R ‘ = BH: EG,

and, alternately, CB:BH=BL:EG

4 = BK:KE,

whence, componendo, CH: HB = BE : EK.
It follows that CH?*:CH.HB = BE.EC:CE.EK

=BE.EC:EG*
Therefore

(A ABCY= CH*. EG*=CH.HB.CE. EB
=3 (32 - BC)(}p-4B)(}¢-40).

ProrosiTiON 5.

About a given triangle to civcumscribe a circle.

Let 4BC be the given triangle ;
thus it is required to circumscribe a circle about the given

triangle 4ABC.
A
LKA,

N\

Let the straight lines 48, AC be bisected at the points
D, E [1. 10, and from the points D, E let DF, EF be drawn
at right angles to 48, AC;
they will then meet within the triangle ABC, or on the
straight line BC, or outside BC.
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" First let them meet within at 7, and let 7B, FC, I'A be
joined.

Then, since AD is equal to DB,
and DF is common and at right angles, '
therefore the base A F is equal to the base 75. (1 4]

Similarly we can prove that

CF is also equal to AF;

so that /2B is also equal to /C;

therefore the three straight lines 74, FB, FC are equal
to one another.

Therefore the circle described with centre /" and distance
one of the straight lines 74, /B, FC will pass also through
the remaining points, and the cnrcle will have been circum-
scribed about the triangle 4BC.

Let it be circumscribed, as ABC.

Next, let DF, EF meet on the straight line BC at F,
as is the case in the second figure ; and let 4 F be joined.

Then, similarly, we shall prove that the point F is the
centre of the circle circumscribed about the triangle ABC.

Again, let DF, EF meet outside the triangle 48C at £,
as is the case in the third figure, and let A/, BF, CF be

joined.
- Then again, since 4D is equal to D25,

and DF is common and at right angles,
therefore the base A4 F is equal to the base BF. [r 4]

Similarly we can prove that
CF is also equal to AF;
so that BF is also equal to 7C;

- therefore the circle described with centre / and distance one

of the straight lines 74, FB, FC will pass also through
the remaining points, and will have been circumscribed about
the triangle 4ABC.
Therefore about the given triangle a circle has been
circumscribed.
Q E. F.

And it is manifest that, when the centre of the circle falls
within the triangle, the angle BAC, being in a segment
greater than the semicircle, is less than a right angle ;
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when the centre falls on the straight line BC, the angle BAC,
being in a semicircle, is right;

and when the centre of the circle falls outside the triangle,
the angle BA4C, being in a segment less than the semicircle,
is greater than a right angle. [ur. 31]

Simson points out that Euclid does not prove that DF, EF will meet, and
he inserts in the text the following argument to supply the omission.

“DF, EF produced meet one another. For, if they do not meet, they
are parallel, wherefore 4B, AC, which are at right angles to them, are
parallel [or, he should have added, in a straight line]: which is absurd.”

This assumes, of course, that straight lines which are at right angles to two
parallels are themselves parallel ; but this is an obvious deduction from 1. 28.

On the assumption that DF, EF will meet Todhunter has this note: “It
has been proposed to show this in the following way: join DE; then the
angles £DF and DEF are together less than the angles 4 DF and A EF, that
is, they are together less than two right angles ; and therefore DF and EF
will meet, by Axiom 12z [Post. 5]. This assumes that ADE and 4ED are
acule angles ; it may, however, be easily shown that DE is parallel to BC, so
that the triangle 4.DE is equiangular to the triangle 4BC; and we must
therefore select the two sides 458 and 4C such that 48C and 4CB may be
acute angles.” '

This is, however, unsatisfactory. Euclid makes no such selection in 111. g
and 111 10, where the same assumption is tacitly made ; and it is unnecessary,
because it is easy to_prove that the straight lines DF, EF meet in a// cases,
by considering the different possibilities separately and drawing a separate
figure for each case.

Simson thinks that Euclid’s demonstration had been spoiled by some
unskilful hand both because of the omission to prove that the perpendicular
bisectors meet, and because ‘ without any reason he divides the proposition
into three cases, whereas one and the same construction and demonstration
serves for them all, as Campanus has observed.” However, up to the usual
words Swep et woujoar there seems to be no doubt about the text. Heiberg
suggests that Euclid gave separately the case where # falls on BC because, in
that case, only 4F needs to be drawn and not BF, CF as well.

The addition, though given in Simson and the text-books as a “corollary,”
has no heading wdpiopa in the best Mss. ; it is an explanation like that which
is contained in the penultimate paragraph of 111. 25.

The Greek text has a further addition, which is rejected by Heiberg as not
genuine, “So that, further, when the given angle happens to be less than a
right angle, DF, EF will fall within the triangle, when it is right, on BC, and,
when it is greater than a right angle, outside BC: (being) what it was required
to do.” Simson had already observed that the text here is vitiated “ where
mention is made of a given angle, though there neither is, nor can be, any-
thing in the proposition relating to a given angle.”
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ProrosiTiON 6.

In a given circle to inscribe a square.

Let ABCD be the given circle ;
thus it is required to inscribe a square in the circle ABCD.
Let two diameters AC, BD of the
circle ABCD be drawn at right angles A
to one another, and let 48, BC, CD, -
DA be joined.
Then, since BE is equal to £D, for
E is the centre, 8 o

and £4 is common and at right angles,

therefore the base A8 is equal to the
base AD. [r 4] c

For the same reason

each of the straight lines BC, CD is also equal to each of
the straight lines AB, AD;

therefore the quadrilateral ABCD is equilateral.
I say next that it is also right-angled.

For, since the straight line 2D is a diameter of the circle
ABCD, "

therefore BAD is a semicircle ;
therefore the angle BAD is right. (1. 31)
For the same reason
each of the angles 45C, BCD, CDA is also right ;
therefore the quadrilateral ABCD is right-angled.
But it was also proved equilateral ;
therefore it is a square ; [1. Def. 22]
and it has been inscribed in the circle A BCD.

Therefore in the given circle the square 4BCD has been
inscribed.

Q. E. F.

Euclid here proceeds to consider problems corresponding to those in
Props. 2—5 with reference to figures of four or more sides, but with the
difference that, whereas he dealt with triangles of any form, he confines
himself henceforth to regular figures. It bhappened to be as easy to divide a
circle into #4ree parts which are in the ratio of the angles, or of the supplements
of the angles, of a triangle as into three egua/ parts. But, when it is required to
inscribe in a circle a figure equiangular to a given guadrilateral, this can only be
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done provided that the quadrilateral has either pair of opposite angles equal
to two right angles. Moreover, in this case, the problem may be solved in the
same way as that of 1v. 2, i.e. by simply inscribing a triangle equiangular to one
of the triangles into which the quadrilateral is divided by either diagonal, and
then drawing on the side corresponding to the diagonal as base another
triangle equiangular to the other triangle contained in the quadrilateral. But
this i1s not the only solution ; ; there are an infinite
number of other solutions in which the inscribed
quadrilateral will, unlike that found by this particular
method, not be of the same form as the given quadri-
lateral. For suppose 4BCD to be the quadrilateral
inscribed in the circle by the method of 1v. 2. Take
any point B’ on AB, join AB', and then make the
angle DAL’ (measured towards 4C) equal to the
angle BAB'. Join B'C, CD. Then AB'CD is also
equiangular to the given quadrilateral, but not of the
same form. Hence the problem is indeterminate in the case of the general
quadrilateral. It is equally so if the given quadrilateral is a rectangle ; and it
is determinate only when the given quadrilateral is a sguare.

ProrosiTION 7.

About a given circle to civcumscribe a square.

Let ABCD be the given circle ;
thus it is required to circumscribe a square about the circle
ABCD.

Let two diameters AC, BD of the
circle ABCD be drawn at right angles @ A F
to one another, and through the points

A, B, C, D let FG, GH, HK, KF be
drawn touching the circle ABCD.
[11. 16, Por.]
Then, since FG touches the circle
ABCD,

and £A4 has been joined from the centre
E to the point of contact at A4,

therefore the angles at A4 are right. (1. 18]
For the same reason
the angles at the points B, C, D are also right.
Now, since the angle AEZB is right,
and the angle £BG is also right,
therefore G/7 is parallel to AC. [ 28]

/‘L\
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For the same reason
AC is also parallel to /K, ‘
so that GH is also parallel to FX. [1. 30]
Similarly we can prove that
each of the straight lines GF, /K is parallel to BED.
Therefore GK, GC, AK, FB, BK are parallelograms ;
therefore GF is equal to ZK, and GH to FK. [r 34]
And, since AC is equal to BD, :
and AC is also equal to each of the straight lines GH, FK,
while BD is equal to each of the straight lines GF, HK,

[ 34]
therefore the quadrilateral FGHK is equilateral.

I say next that it is also right-angled.
For, since GBEA is a parallelogram,
and the angle A£2Z is right,
therefore the angle AGRB is also right. (1 34]
Similarly we can prove that
the angles at /7, K, F are also nght.
Therefore FGHXK is right-angled.
‘But it was also proved equnlateral
therefore it is a square; .
and it has been circumscribed about the circle ABCD..

Therefore about the given circle a square has beeri
circumscribed.

QEl- K

It is just as easy to describe about a gwen circle a polygon, equxa.ngula: to
any given polygon as it is to describe a square about a given circle. We have
only to use the mcthod of 1v. 3, i.e. to take any radius of the circle, to
measure round the centre successive-angles in one and the same direction
equal to the supplements of the successive angles of the given polygon and,
lastly, to draw tangents to the circle at the extremities of the several radii sa
determined ; but again the polygon would in general not be of the same form
as the given one ; it would only be so if the given polygon happened to be
such that a circle could be inscribed in it. To take the case of a guadrilateral
. only: it is easy to prove that, if a quadrilateral be described about a circle,
the sum of one pair of opposite sides must be equal to the sum of the other
pair. It may be proved, conversely, that, if a quadrilateral has the sums of the
pairs of opposite sides equal, a circle can be inscribed in it. If then a given
quadrilateral has the sums of the pairs of opposite sides equal, a quadrilateral
can be descnbed about any given circle not only equiangular with it but
havmg the same forrs or, in the words of Book V1., similar to it.
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ProrosiTiON 8.

In a given square to tnscribe a circle.

Let ABCD be the given square ;
thus it is required to inscribe a circle in the given square
ABCD.

Let the straight lines 4D, AB be £ ?
bisected at the points £, F respectivel{ /

[r. x0},
through £ let £A be drawn parallel ¢ Q K
to. either 48 or CD, and through
F let FK be drawn parallel to either
AD or BC; [r 31]
therefore each of the figures AKX, KB, g H ¢
AH, HD, AG, GC, BG, GD is a parallelogram,
and their opposite sides are evidently equal. [r 34]

Now, since 4D is equal to A5,
and AE is half of 4D, and 4 F half of A5,

therefore AE is equal to AF,
so that the opposite sides are also equal ;
therefore /G is equal to GE£.

Similarly we can prove that each of the straight lines G/7,
GK is equal to each of the straight lines FG, G£';

therefore the four straight lines GE, GF, G, GK are
equal to one another.

Therefore the circle described with centre G and distance
one of the straight lines GE, GF, GH, GK will pass also
through the remaining points.

And it will touch the straight lines 4B, BC, CD, DA,
because the angles at £, 7, H, K are right.

For, if the circle cuts A8, BC, CD, DA, the straight
line drawn at right angles to the diameter of the circle from
its extremity will fall within the circle: which was proved
absurd ; [u1. 16]
therefore the circle described with centre G and distance
one of the straight lines GE, GF, GH, GK will not cut
the straight lines A8, BC, CD, DA.

Therefore it will touch them, and will have been inscribed
in the square 4ABCD.

Therefore in the given square a circle has been inscribed.

Q E. F.
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As was remarked in the last note, a circle can be inscribed in any
gquadrilateral which has the sum of one pair of opposite sides equal to the sum
of the other pair. In particular, it follows that a circle can be inscribed in a
square or a rhombus, but not in a rectangle or a rhomboid.

ProrosiTION 9.

About a given square to circumscribe a circle.
Let ABCD be the given square ;

thus it is required to circumscribe a circle about the square
ABCD.

For let AC, BD be joined, and let them A
cut one another at £.

Then, since DA is equal to 45,
and AC is common, . 8 D
therefore the two sides DA, AC are equal
to the two sides BA, AC;
and the base DC is equal to the base BC; ¢

therefore the angle DAC is equal to
the angle BAC. [x. 8]

Therefore the angle DA 2B is bisected by AC.

Similarly we can prove that each of the angles ABC,
BCD, CDA is bisected by the straight lines AC, DB.

Now, since the angle D A2 is equal to the angle 4BC,
and the angle £4 2B is half the angle DA B, : '
and the angle £84 half the angle ABC,
therefore the angle £A42B is also equal to the angle £84 ;
so that the side £A4 is also equal to £25. [ 6]

Similarly we can prove that each of the straight lines
EA, EB is equal to each of the straight lines £C, £D.

Therefore the four straight lines £A4, £B, EC, ED are
equal to one another.

Therefore the circle described with centre £ and distance
one of the straight lines £A4, £B, EC, ED will pass also
through the remaining points ;
and it will have been circumscribed about the square 4ABCD.

Let it be circumscribed, as ABCD.

Therefore about the given square a circle has been
circumscribed.

Q E. F.
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PROPOSITION 10.

7o construct an isosceles triangle having eack of the angles
at the base double of the remaining one.

Let any straight line 4.8 be set out, and let it be cut at
the point C so that the rectangle
contained by 4B, BC is equal to
the square on C4; (1. 11]

with centre 4 and distance A5 let
the circle BDE be described,

and let there be fitted in the circle
BDE the straight line BD equal to
the straight line 4C which is not
gréater than the diameter of the
circle BDE. [iv. 1]

Let AD, DC be joined, and let
the circle ACD be circumscribed about the triangle 4ACD.

[v. 5]
Then, since the rectangle 45, BC is equal to the square

on AC, :
and AC is equal to 5D, | '
therefore the rectangle 4B, BC is equal to the square on BD.

And, since a point B has been taken outside the circle
ACD,
and from 2B the two straight lines B4, BD have fallen on
the circle ACD, and one of them cuts it, while the other falls
on it, .
and the rectangle 4B, BC is equal to the square on BD,
" therefore BD touches the circle ACD. - [ 37]
~ Since, then, BD touches it, and DC is drawn across
from the point of contact at D, '
therefore the angle BDC is equal to the angle DAC in the
alternate segment of the circle. (1. 32]
Since, then, the angle BDC is equal to the angle DAC,
let the angle CDA be added to each;

therefore the whole angle DA is equal to the two angles
CDA, DAC.
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But the exterior angle BCD is equal to the angles CDA,
DAC; [r. 32]

therefore the angle DA is also equal to the angle BZCD.

But the angle DA is equal to the angle CBD, since the
side 4D is also equal to A5 ; [r 5]

so that the angle DB A is also equal to the angle BCD.

Therefore the three angles BDA, DBA, BCD are equal
to one another.

And, since the angle DBC is equal to the angle BCD,
the side BD is also equal to the side DC. [1. 6]
But BD is by hypothesis equal to CA4 ;
therefore CA is also equal to CD,
so that the angle CDA is also equal to the angle DAC;

(1 5]
therefore the angles CDA, DAC are double of the angle DAC.

But the angle BCD is equal to the angles CDA, DAC;
therefore the angle BCD is also double of the angle CAD.

But the angle BCD is equal to each of the angles DA,
DBA;

therefore each of the angles DA, DBA is also double of
the angle DAB.

Therefore the isosceles triangle A4 .éD has been constructed

having each of the angles at the base DB double of the
remaining one.

Q. E. F.

There is every reason to conclude that the connexion of the triangle
constructed in this proposition with the regular pentagon, and the construction
of the triangle itself, were the discovery of the Pythagoreans. In the first
place the Scholium 1v. No. 2 (Heiberg, Vol. v. p. 273) says “ this Book is the
discovery of the Pythagoreans.” Secondly, the summary in Proclus (p. 65, 20)
says that Pythagoras discovered ‘“the construction of the cosmic figures,”
by which must be understood the five regular solids. This is confirmed by
the fragment of Philolaus (Boeckh, p. 160 sqq.) which speaks of the *five
bodies in the sphere,” and by the statement of Iamblichus (Vit. Pyth. c. 18,
s. 88) that Hippasus, a Pythagorean, was said to have been drowned for the
impiety of claiming the credit of inscribing in a sphere the figure made of the
twelve pentagons, whereas the whole was HIS discovery (éxeivov Tob dvdpds) ;
“for it is thus they speak of Pythagoras, and they do not call him by his
name.” Cantor has (15, pp. 176 sqq.) collected notices which help us to form
an idea how the discovery of the Euclidean construction for a regular
pentagon may have been arrived at by the Pythagoreans.

Plato puts into the mouth of Timaeus a description of the formation from

H. E 1L 7
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right-angled triangles of the figures which are the faces of the first four regular
solids. The face of the cube is the square which is formed from isosceles
right-angled triangles by placing four of these triangles contiguously so that
the four right angles are in contact at the centre. The
equilateral triangle, however, which is the form of the faces of
the tetrahedron, the octahedron and the icosahedron, cannot
be constructed from isosceles right-angled triangles, but is
constructed from a particular scalene right-angled triangle
which Timaeus (54 A, B) regards as the most beautiful of all
scalene right-angled triangles, namely that in which the square on one of the
sides about the right angle is three times the square on the other. This is, of
course, the triangle forming half of an equilateral triangle bisected by the
perpendicular from one angular point on the opposite side. The Platonic
Timaeus does not construct his equilateral triangle from two such triangles
but from six, by placing the latter contiguously round a

point so that the hypotenuses and the smaller of the sides

about the right angles respectively adjoin, and all of them

meet at the common centre, as shown in the figure

(Zimacus, 54 D, E.). The probability that this exposition

was Pythagorean is confirmed by the independent testimony

of Proclus (pp. 304—5), who attributes to the Pythagoreans

the theorem that six equilateral triangles, or three hexagons, or four squares,
placed contiguously with one angular point of each at a common point, will
just fill up the four right angles round that point, and that no other regular
polygons in any numbers have this property.

How then would it be proposed to split up into triangles, or to make up
out of triangles, the face of the remaining solid, the dodecahedron? It would
easily be seen that the pentagon could not be constructed by means of the
two right-angled triangles which were used for constructing the square and the
equilateral triangle respectively. But attempts would naturally be made to
split up the pentagon into elementary triangles, and traces of such attempts
are actually forthcoming. Plutarch has in two passages spoken of the division
of the faces of the dodecahedron into triangles, remarking in one place
(Quaest. Platon. v. 1) that each of the twelve faces is made up of 30 elemen-

tary scalene triangles, so that, taken together, they give 360 such triangles,
and in another (De defectu oraculorum, c. 33) that the elementary triangle of
the dodecahedron must be different from that of the tetrahedron, octahedron
and icosahedron. Another writer of the 2nd cent., Alcinous, has, in his
iatroduction to the study of Plato (De doctrina Platonis, c. 11), spoken
similarly of the 360 elements which are produced when every one of the
pentagons is divided into § isosceles triangles, and each of the latter into
6 scalene triangles. Now, if we proceed to draw lines in a pentagon separating
it into this number of small triangles as shown in the above figure, the figure
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which stands out most prominently in the mass of lines is the ‘star-pentagon,”
as drawn separately, which then (if the consecutive corners be joined) suggests
the drawing, as part of a pentagon, of a triangle of a definite character. Now
we are expressly told by Lucian and the scholiast to the Clowds of Aristophanes
(see Bretschneider, pp. 85—86) that the triple interwoven triangle, the penta-
gram (v6 TpiwAovv Tpiywvov, 76 8 dAAMjAwy, T wevrdypappov), was used by the
Pythagoreans as a symbol of recognition between the members of the same
school (oupBoAy wpds Tods duoddéovs éxpavro), and was called by them Health.
There seems to be therefore no room for doubt that the construction of a
pentagon by means of an isosceles triangle having each of its base angles
double of the vertical angle was due to the Pythagoreans.

The construction of this triangle depends upon 11 11, or the problem of
dividing a straight line so that the rectangle contained by the whole and one
of the parts is equal to the square on the other part. This problem of course
appears again in Eucl. vi. 30 as the problem of cutting a given straight line in
extreme and mean ratio, i.e. the problem of the golden section, which is no
doubt “the section” referred to in the passage of the summary given by
Proclus (p. 67, 6) which says that Eudoxus “greatly added to the number
of the theorems which Plato originated regarding the section.” This idea that
Plato began the study of the *“golden section” as a subject in itself is not in
the least inconsistent with the supposition that the problem of Eucl. 11. 11 was
solved by the Pythagoreans. The very fact that Euclid places it among other
propositions which are clearly Pythagorean in origin is significant, as is also
the fact that its solution is effected by ‘““applying to a straight line a rectangle
equal to a given square and exceeding by a square,” while Proclus says plainly
(p- 419, 15) that, according to Eudemus, “the application of areas, their -
exceeding and their falling short, are ancient and discoveries of the Muse of
the Pythagoreans.”

We may suppose the construction of 1v. 10 to have been arrived at by
analysis somewhat as follows (‘'odhunter’s Euclid, p. 325). -

Suppose the problem solved, i.e. let 48D be an isosceles triangle having
each of its base angles double of the vertical angle.

Bisect the angle 4D B by the straight line DC meeting 48 in C. [1. 9]

Therefore the angle BDC is equal to the angle B4 ; and the angle
CDA is also equal to the angle BAD,

so that DC is equal to CA4.
Again, since, in the triangles BCD, BDA,
the angle BDC is equal to the angle BAD,
and the angle B is common,

the third angle BCD is equal to the third angle B804, and therefore to
the angle DBC.

Therefore DC is equal to DB.

Now, if a circle be described about the triangle 4CD [1v. 5], since the
angle BDC is equal to the angle in the segment CA.D,

B.D must touch the circle [by the converse of 111. 32 easily proved from it
by reductio ad absurdum).

Hence [111. 36] the square on BD and therefore the square on CD, or
AC, is equal to the rectangle 458, BC.

Thus the problem is reduced to that of cutting 458 at C so that the
rectangle 4B, BC is equal to the square on AC. [ 1]

7—2
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When this is done, we have only to draw a circle with centre 4 and radius
AB and place in it a chord B.D equal in length to 4C. v. 1]

Since each of the angles 48D, ADB is double of the angle BAD, the
latter is equal to one-fifth of the sum of all three, i.e. is one-fifth of two right
angles, or two-fifths of a right angle, and each of the base angles is four-fifths
of a right angle.

If we bisect the angle BA4.D, we obtain an angle equal to one-fifth of a
right angle, so that the proposition enables us /o divide a right angle into five
equal parts. .

It will be observed that BD is the side of a regular decagon inscribed in
the larger circle.

Proclus, as remarked above (Vol. 1. p. 130), gives Iv. 10 as an instance in
which two of the six formal divisions of a proposition, the se/fing-out and the
“definition,” are left out, and explains that they are unnecessary because
there is no dafum in the enunciation. This is however no more than formally
true, because Euclid does begin his proposition by se#fing out “any straight
line 48, and he constructs an isosceles triangle having 4B for one of its
equal sides, i.e. he does practically imply a datum in the enunciation, and a
corresponding setting-out and * definition” in the proposition itself.

-PROPOSITION 1IT.

In a given circle to inscribe an equilateral and equiangular
- penlagon.

Let ABCDE be the given circle ;

thus it is required to inscribe in the circle 4BCDE an equi-
lateral and equiangular pentagon.

Let the isosceles triangle FGH

A F

be set out having each of the angles .
at G, A double of the angle at 7'; 8 (3 A

[1v. 10]
let there be inscribed in the circle G
ABCDE the triangle ACD equi- c 0
angular with the triangle #GH, so ,
that the angle CAD is equal to the angle at / and the angles
at G, H respectively equal to the angles ACD, CDA ; [w. 2]
therefore each of the angles 4CD, CDA is also double of the
angle CAD.

Now let the angles ACD, CDA be bisected respectively
by the straight lines CE, DB [1. 9], and let AB, BC, DE, EA
be joined.

Then, since each of the angles 4CD, CDA is double of
the angle CAD,

and they have been bisected by the straight lines CE, DB,
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therefore the five angles DAC, ACE, ECD, CDB' BDA
are equal to one another. T

But equal angles stand on equal circumferences ; {:m 26]

therefore the five circumferences 48, BC, CD, DE, EA are
equal to one another.

".
.

But equal circumferences are subtended by equal stralght’ :

lines; (. 29] ..

therefore the five straight lines 48, BC, CD, DE, EA are .

equal to one another ; .
therefore the pentagon ABCDE is equilateral.

I say next that it is also equiangular.

For, since the circumference 428 is equal to the circum-
ference DE, let BCD be added to each;

therefore the whole circumference AB8CD is equal to the
whole circumference £DCAB.

And the angle A£D stands on the circumference ABCD,
and the angle BAE on the circumference £ZDCHB ;

therefore the angle A4 E is also equal to the angle A£D.

(111 27]
For the same reason

each of the angles ABC, BCD, CDE is also equal to each
of the angles BAE, AED;

therefore the pentagon ABCDE is equiangular.
But it was also proved equilateral ;

therefore in the given circle an equilateral and equi-
angular pentagon has been inscribed.

Q. E. F.

De Morgan remarks that ‘“the method of 1v. 11 is not so natural as
making a direct use of the angle obtained in the last.” On the other hand,
if we look at the figure and notice that it shows the whole of the pentagram-
star except one line (that connecting B and £), I think we shall conclude
that the method is nearer to that used by the Pythagoreans, and therefore of
much more historical interest.

Another method would of course be to use 1v. 10 to describe a decagon in
the circle, and then to join any vertex to the next alternate one, the latter to
the next alternate one, and so on.
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Mr H:. M Taylor gives “a complete geometrical construction for in-
scribing .a, regular decagon or pentagon in a given circle,” as follows.

« Fmtf O the centre.

Drg,w- two diameters 40C, BOD at right
angles, to one another.

.-.Bisect 0D in E.

*. Draw 4 £ and cut off £F equal to OF.
‘.7*.Place round the circle ten chords equal
'eo AF.

"+ These chords will be the sides of a regular
*«..  decagon. Draw the chords joining five alternate
. _vertices of the decagon ; they will be the sides

of a regular pentagon.”

. The construction is of course only a com-
bination of those in 1. 11 and 1v. 1; and the
proof would have to follow that in 1v, 10.

.
.'. ..
o e,
[

PRroPOSITION 12.

About a given civcle lo circumscribe an equilateral and
equiangular pentagon.

Let ABCDE be the given circle ;
thus it is required to circumscribe an equilateral and equi-

angular pentagon about the circle
ABCDE.

Let A4, B, C, D, E be conceived to
be the angular points of the inscribed

pentagon, so that the circumferences
AB, BC, CD, DE, EA are equal ;

[av. 11]
through 4, B, C, D, E let GH, HK,
KL, LM, MG be drawn touchmg the
circle ; (1. 16, Por.]

let the centre F of the circle ABCDE be taken [m. 1], and
let FB, FK, FC, FL, FD be joined.

Then,since the straight line XL touches the circle ABCDE
at G,

and FC has been joined from the centre / to the point of
contact at C,

therefore /C is perpendicular to KL ; (1. 18]
therefore each of the angles at C is right.

For the same reason

the angles at the points B, D are also right.
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And, since the angle #CK is right,

therefore the square on FK is equal to the squares on 7C, CK.
For the same reason [ 47]
the square on 7K is also equal to the squares on 7B, BK ;

so that the squares on FC, CK are equal to the squares
on FB, BK,

of which the square on #C is equal to the square on 75 ;

therefore the square on CKX which remains is equal to the
square on BK.

Therefore BK is equal to CK.
And, since FB is equal to FC,
and #K common,

the two sides BF, FK are equal to the two sides CF, FK;
and the base AKX equal to the base CK ;

therefore the angle BFK is equal to the angle KX7C, [ 8]
and the angle BKF to the angle FKXC.
Therefore the angle BFC is double of the angle X7C,
and the angle BKC of the angle FKC.
For the same reason
the angle CFD is also double of the angle CFL,
and the angle DLC of the angle FLC.
Now, since the circumference BC is equal to CD,
the angle BFC is also equal to the angle CFD. [m. 27]
And the angle BFC is double of the angle KXFC, and the
angle DFC of the angle LFC;
therefore the angle K7C is also equal to the angle LZFC.
But the angle FCK is also equal to the angle FCL ;

therefore FKC, FLC are two triangles having two angles
equal to two angles and one side equal to one side, namely
FC which is common to them ;

therefore they will also have the remaining sides equal to the
remaining sides, and the remaining angle to the remaining
angle ; [1. 26]
therefore the straight line XC is equal to CL,
and the angle FKXC to the angle FLC.
And, since KC is equal to CL,
therefore KL is double of XC.
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For the same reason it can be proved that
HK is also double of BX.

And BK is equal to KC;

therefore /K is also equal to K'L.

Similarly each of the straight lines /G, GM, ML can
also be proved equal to each of the straight lines 7K, KL ;

therefore the pentagon GAKL M is equilateral.

I say next that it is also equiangular.

For, since the angle X is equal to the angle FLC,
and the angle /KL was proved double of the angle FXC,

and the angle K’Z M double of the angle FLC,

therefore the angle /KL is also equal to the angle XL M.

Similarly each of the angles KA G, HGM, GML can also
be proved equal to each of the angles ZKL, KLM ;
therefore the five angles GHK, HKL, KLM, LMG, MGH
are equal to one another.

Therefore the Fentagon GHKLM is equiangular.

And it was also proved equilateral; and it has been
circumscribed about the circle 4BCDE.

Q E. F.

De Morgan remarks that 1v. 12, 13, 14 supply the place of the following :
Having given a regular polygon of any number of sides inscribed in a circle, to
describe the same about the circle; and, having given the polygon, lo inscribe and
circumseribe a circle.  For the method can be applied generally, as indeed
Euclid practically says in the Porism to 1v. 15 about the regular hexagon and
in the remark appended to 1v. 16 about the regular fifteen-angled figure.

The conclusion of this proposition, * therefore about the given circle an
equilateral and equiangular pentagon has been circumscribed,” is omitted in
the mss.

ProposITION 13.

In a given pentagon, whick is equilateral and equiangular,
to inscribe a circle.

Let ABCDE be the given equilateral and equiangular
pentagon ; :

thus it is required to inscribe a circle in the pentagon
ABCDE.

For let the angles BCD, CDE be bisected by the
straight lines CF, DF respectively; and from the point £ at
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which the straight lines CF, DF meet one another, let the
straight lines B, FA, FE be joined.
hen, since BC is equal to CD,
and CF common,
the two sides BC, CF are equal to the
two sides DC, CF;
and the angle BCF is equal to the
angle DCF;
therefore the base BF is equal
to the base DF,
and the triangle BCF is equal to the
triangle DCF,
and the remaining angles will be equal to the remaining angles,
namely those which the equal sides subtend. [1 4]
Therefore the angle CBF is equal to the angle CDF.
And, since the angle CDE is double of the angle CDF,
and the angle CDE is equal to the angle 45C,
while the angle CDF is equal to the angle CBF;
therefore the angle CBA is also double of the angle CBF;
therefore the angle ABF is equal to the angle FBC;
therefore the angle 4BC has been bisected by the straight
line BF.
Similarly it can be proved that
the angles BA E, AED have also been bisected by the straight
lines /A4, FE respectively.
Now let FG, FH, FK, FL, FM be drawn from the point
F perpendicular to the straight lines 48, BC, CD, DE, EA.
Then, since the angle ZZ/CF'is equal to the angle K'CF,
and the right angle #/C is also equal to the angle FXC,
FHC, FKC are two triangles having two angles equal to two
angles and one side equal to one side, namely #C which is
common to them and subtends one of the equal angles;
therefore they will also have the remaining sides equal to the
remaining sides; [1. 26]
;l;;efore the perpendicular /~/ is equal to the perpendicular
Similarly it can be proved that
each of the straight lines L, FM, FG is also equal to each
of the straight lines 7/, FK;
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therefore the five straight lines FG, FH, FK, FL, FM are
equal to one another.

Therefore the circle described with centre- / and distance
one of the straight lines FG, FH, FK, FL, FM will pass
also through the remaining points;

and it will touch the straight lines A58, BC, CD, DE, EA,
because the angles at the points G, A, X, L, M are right.

For, if it does not touch them, but cuts them,

it will result that the straight line drawn at right angles to
the diameter of the circle from its extremity falls within the
circle : which was proved absurd. (1. 16]

Therefore the circle described with centre 7~ and distance
one of the straight lines FG, FH, FK, FL, FM will not
cut the straight lines 45, BC, CD, DE, EA;

therefore it will touch them.

Let it be described, as GHKL M.
Therefore in the given pentagon, which is equilateral and
equiangular, a circle has been inscribed.

Q. E. F.

ProprosITION 14.

About a given pentagon, whick is equilateral and equi-
angular, to circumscribe a circle.

Let ABCDE be the given pentagon, which is equilateral
and equiangular }

thus it is required to circumscribe a circle
about the pentagon 4 BCDE.

Let the angles BCD, CDE be bisected
by the straight lines CF, DF respectively,
and from the point /, at which the straight
lines meet, let the straight lines 7B, /A4,
FE be joined to the points B, 4, E.

Then in manner similar to the pre-
ceding it can be proved that the angles
CBA, BAE, AED have also been bisected by the straight
lines 7B, FA, FE respectively.
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Now, since the angle BCD is equal to the angle CDE,
and the angle FCD is half of the angle BCD,
and the angle CDF half of the angle CDE,
therefore the angle #CD is also equal to the angle CDF,

so that the side #C is also equal to the side FD. [1. 6]

Similarly it can be proved that
each of the straight lines FB, 4, FE is also equal to each
of the straight lines #C, FD;
therefore the five straight lines. 74, FB, FC, FD, FE are
equal to one another.

Therefore the circle described with centre / and distance
one of the straight lines 74, FB, FC, FD, FE will pass
also through the remaining points, and will have been
circumscribed.

Let it be circumscribed, and let it be ABCDE.

Therefore about the given pentagon, which is equilateral
and equiangular, a circle has been circumscribed.

Q E. F.

ProposITION 15.

In a given circle lo inscribe an equilateral and equiangular
hexagon.

Let ABCDEF be the given circle ;
thus it is required to inscribe an equilateral and equiangular
hexagon in the circle A BCDEF.

Let the diameter 4D of the circle
ABCDEF be drawn;
let the centre G of the circle be taken, and
with centre 0D and distance DG let the
circle £GCH be described ;
let £G, CG be joined and carried through
to the points B, F,
and let A8, BC, CD, DE, EF, FA be
joined.

I say that the hexagon ABCDEF is
equilateral and equiangular.

For,since the point G is the centre of the circle ABCDEF,

GE is equal to GD.
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Again, since the point D is the centre of the circle GCH,
DE is equal to DG.
But G £ was proved equal to GD ;
therefore G£ is also equal to £D;
therefore the triangle £G D is equilateral ;

and therefore its three angles £GD, GDE, DEG are equal
to one another, inasmuch as, in isosceles triangles, the angles

at the base are equal to one another. [ 5]
And the three angles of the triangle are equal to two
right angles; [ 32]

therefore the angle £GD is one-third of two right angles.

Similarly, the angle DGC can also be proved to be one-
third of two right angles.

And, since the straight line CG standing on £58 makes
the adjacent angles £GC, CGAB equal to two right angles,

therefore the remaining angle CG2A is also one-third of two
right angles.

Therefore the angles £GD, DGC, CGB are equal to one
another ;

so that the an§les vertical to them, the angles BGA, AGF,
FGE are equal [x. 15)

Therefore the six angles £GD, DGC, CGB, BGA, AGF,
FGE are equal to one another.

But equal angles stand on equal circumferences; [u1 26]
therefore the six circumferences A8, BC, CD, DE, EF, FA
are equal to one another.

And equal circumferences are subtended by equal straight
lines; [111. 29]

therefore the six straight lines are equal to one another;
therefore the hexagon ABCDEF is equilateral.
I say next that it is also equiangular.

For, since the circumference #4 is equal to the circum-
ference £D,

let the circumference ABCD be added to each ;

therefore the whole FABCD is equal to the whole
EDCBA ;



Iv. 15] PROPOSITION 15 109

and the angle FED stands on the circumference F4BCD,
and the angle 4AFZ on the circumference £EDCBA ;

therefore the angle AFE is equal to the angle DEF.
[1m. 27]
Similarly it can be proved that the remaining angles of
the hexagon ABCDEF are also severally equal to each of
the angles AFE, FED ;

therefore the hexagon ABCDEF is equiangular.
But it was also proved equilateral ;
and it has been inscribed in the circle ABCDEF.

Therefore in the given circle an equilateral and equiangular
hexagon has been inscribed.
Q E. F.

Porism. From this it is manifest that the side of the
hexagon is equal to the radius of the circle. '

And, in like manner as in the case of the pentagon, if
through the points of division on the circle we draw
tangents to the circle, there will be circumscribed about the
circle an equilateral and equiangular hexagon in conformity
with what was explained in the case of the pentagon.

And further by means similar to those explained in the
case of the pentagon we can both inscribe a circle in a given
hexagon and circumscribe one about it.

Q E. F.

Heiberg, I think with good reason, considers the Porism to this proposition
to be referred to in the instance which Proclus (p. 304, 2) gives of a porism
following a problem. As the text of Proclus stands, “the (porism) found
in the second Book (10 8¢ év ¢ Sevrépy BiBAiw xeinevov) is a porism to a
problem ”; but this is not true of the only porism that we find in the second
Book, namely the porism to 1. 4. Hence Heiberg thinks that for ¢
devrépy BiBAiw should be read ¢ & BiBAiy, i.e. the fourth Book. Moreover
Proclus speaks of #4¢ porism in the particular Book, from which we gather
that there was only one porism in Book 1v. as he knew it, and therefore that
he did not regard as a porism the addition to 1v. 5. Cf. note on that
proposition.

It appears that Theon substituted for the first words of the Porism to
1v. 15 “And in like manner as in the case of the pentagon” (ouoiws 8
Tois émi 7oV mevraywvov) the simple word “and” or “also” (xal), apparently
thinking that the words had the same meaning as the similar words lower
down. This is however not the case, the meaning being that “if, as in the
case of the pentagon, we draw tangents, we can prove, also as was done in
the case of the pentagon, that the figure so formed is a circumscribed regular
hexagon.”
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ProrosiTION 16.

In a given circle to inscribe a fifteen-angled figure whick
shall be both equilateral and equiangular.

Let ABCD be the given circle ;
thus it is required to inscribe in the circle ABCD a fifteen-
angled figure which shall be
both equilateral and equi- A
angular.

In the circle ABCD let
there be inscribed a side AC
of the equilateral triangle
inscribed in it, and a side A58
of an equilateral pentagon ;
therefore, of the equal seg- E
ments of which there are
fifteen in the circle ABCD, c o
there will be five in the cir- \ ]
cumference 4ABC which is ~~—~
one-third of the circle, and
there will be three in the cir-
cumference A8 which is one-fifth of the circle ;

therefore in the remainder BC there will be two of the
equal segments.

Let BC be bisected at £; [11. 30)
therefore each of the circumferences BE, EC is a fifteenth
of the circle ABCD.

If therefore we join BE, EC and fit into the circle ABCD
straight lines equal to them and in contiguity, a fifteen-angled
figure which is both equilateral and equiangular will have been
inscribed in it.

Q. E. F.

And, in like manner as in the case of the pentagon, if
through the points of division on the circle we draw
tangents to the circle, there will be circumscribed about the
circ%e a fifteen-angled figure which is equilateral and equi-
angular.

And further, by proofs similar to those in the case of the
pentagon, we can both inscribe a circle in the given fifteen-
angled figure and circumscribe one about it.

Q E. F.
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Here, as in n1 1o, we have the term “circle” used by Euclid in its
exceptional sense of the circumference of a circle, instead of the “ plane figure
contained by one line” of 1. Def. 15. Cf. the note on that definition (Vol. 1.
pp- 184—s5).

Proclus (p. 269) refers to this proposition in illustration of his statement
that Euclid gave proofs of a number of propositions with an eye to their use
in astronomy. ““With regard to the last proposition in the fourth Book in
which he inscribes the side of the fifteen-angled figure in a circle, for what
object does anyone assert that he propounds it except for the reference of this
problem to astronomy? For, when we have inscribed the fifteen-angled figure
In the circle through the poles, we have the distance from the poles both of
the equator and the zodiac, since they are distant from one another by the
side of the fifteen-angled figure.” This agrees with what we know from other
sources, namely that up to the time of Eratosthenes (araa 275—194 B.C.) 24°
was generally accepted as the correct measurement of the obliquity of the
ecliptic. This measurement, and the construction of the fifteen-angled figure,
were probably due to the Pythagoreans, though it would appear that the
former was not known to Oenopides of Chios (fl. circa 460 B.C.), as we learn
from Theon of Smyrna (pp. 198—9, ed. Hiller), who gives Dercyllides as his
authority, that Eudemus (fl. circa 320 B.C.) stated in his dorpoloyiac that,
while Oenopides discovered certain things, and Thales, Anaximander and
Anaximenes others, it was the rest (ol Aoirol) who added other discoveries
to these and, among them, that “ the axes of the fixed stars and of the planets
respectively are distant from one another by the side of a ﬁfteen-angled ﬁgure
Eratosthenes evaluated the angle to 3irds of 180°, ie. about 23° 51" 20",
which measurement was apparently not lmproved upon in antiquity (cf. Ptolemy,
Syntaxis, ed. Heiberg, p. 68).

Euclid has now shown how to’describe regular polygons with 3, 4, 5, 6
and 15 sides. Now, when any regular polygon is given, we can construct a
regular polygon with twice the number of sides by first describing a circle
about the given polygon and then bisecting all the smaller arcs subtended by
the sides. Applying this process any number of times, we see that we can by
Euclid’s methods construct regular polygons with 3.z% 4.2% 5.2% 15.2" sides,
where 7 is zero or any positive integer.



BOOK V.

INTRODUCTORY NOTE.

The anonymous author of a scholium to Book v. (Euclid, ed. Heiberg,
Vol. v. p. 280), who is perhaps Proclus, tells us that “ some say” this Book,
containing the general theory of proportion which is equally applicable to
geometry, arithmetic, music, and all mathematical science, “is the discovery
of Eudoxus, the teacher of Plato.” Not that there had been no theory of
proportion developed before his time ; on the contrary, it is certain that the
Pythagoreans had worked out such a theory with regard to numbers, by which
must be understood commensurable and even whole numbers (a number
being a “multitude made up of units,” as defined in Eucl. vir). Thus we
are told that the Pythagoreans distinguished three sorts of means, the
arithmetic, the geometric and the harmonic mean, the geometric mean
being called proportion (dvahoyia) par excellence; and further Iamblichus
speaks of the “most perfect proportion consisting of four terms and specially
called karmonic,” in other words, the proportion

which was said to be a discovery of the Babylonians and to have been first
introduced into Greece by Pythagoras (Iamblichus, Comm. on Nicomachus,
p. 118). Now the principle of similitude is one which is presupposed by all
the arts of design from their very beginnings ; it was certainly known to the
Egyptians, and it must certainly have been thoroughly familiar to Pythagoras
and his school. This consideration, together with the evidence of the
employment by him of the geometric proportion, makes it indubitable that the
Pythagoreans used the theory of proportion, in the form in which it was
known to them, i.e. as applicable to commensurables only, in their geometry.
But the discovery, also due to Pythagoras, of the incommensurable would
of course be seen to render the proofs which depended on the theory of
proportion as then understood inconclusive; as Tannery observes (Za
Géométrie grecque, p. 98), *“the discovery of incommensurability must have
caused a veritable logical scandal in geometry and, in order to avoid it, they
were obliged to restrict as far as possible the use of the principle of similitude,
pending the discovery of a means of establishing it on the basis of a theory of
proportion independent of commensurability.” The glory of the latter dis-
covery belongs then most probably to Eudoxus. Certain it is that the complete
theory was already familiar to Aristotle, as we shall see later.
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It seems probable, as indicated by Tannery (loc. cit.), that the theory
of proportions and the principle of similitude took, in the earliest Greek
geometry, an earlier place than they do in Euclid, but that, in consequence
of the discovery of the incommensurable, the treatment of the subject was
fundamentally remodelled in the period between Pythagoras and Eudoxus.
An indication of this is afforded by the clever device used in Euclid 1. 44
for applying to a given straight line a parallelogram equal to a given triangle ;
the equality of the “complements” in a parallelogram is there used for doing
what 1s practically finding a fourth proportional to three given straight lines.
Thus Euclid was no doubt following for the subject-matter of Books 1.—Iv.
what had become the traditional method, and this is probably one of the
reasons why proportions and similitude are postponed till as late as Books
V., VL

“ It is a remarkable fact that the theory of proportions is twice treated in
Euclid, in Book v. with reference to magnitudes in general, and in Book vi1.
with reference to the particular case of numbers. The latter exposition
referring only to commensurables may be taken to represent fairly the theory
of proportions at the stage which it had reached before the great extension of
it made by Eudoxus. The differences between the definitions etc. in Books v.
and vir. will appear as we go on; but the question naturally arises, why did
Euclid not save himself so much repetition and treat numbers merely as a
particular case of magnitude, referring back to the corresponding more
general propositions of Book v. instead of proving the same propositions
over again for numbers? It could not have escaped him that numbers
fall under the conception of magnitude. Aristotle had plainly indicated
that magnitudes may be numbers when he observed (d4mal. post. 1. 7,
75 b 4) that you cannot adapt the arithmetical method of proof to the
properties of magnitudes if the magnitudes are not numbers. Further
Aristotle had remarked (4nal. post. 1. 5, 74 a 17) that the proposition that
the terms of a proportion can be taken alternately was at one time proved
separately for numbers, lines, solids and times, though it was possible to prove
it for all by one demonstration; but, because there was no.common name
comprehending them all, namely numbers, lengths, times and solids, and their
character was different, they were taken separately. Now however, he adds,
the proposition is proved generally. Yet Euclid says nothing to connect
the two theories of proportion even when he comes in x. § to a proportion
two terms of which are magnitudes and two are numbers (*Commensurable
magnitudes have to one another the ratio which a number has to a number”).
The probable explanation of the phenomenon is that Euclid simply followed
tradition and gave the two theories as he found them. This would square
with the remark in Pappus (vI1. p. 678) as to Euclid’s fairness to others and
his readiness to give them credit for their work.

DEFINITIONS.

1. A magnitude is a part of a magnitude, the less of
the greater, when it measures the greater.

2. The greater is a multiple of the less when it is
measured by the less.

H. E. II. 8
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3. Aratio is a sort of relation in respect of size between
two magnitudes of the same kind.

4. Magnitudes are said to have a ratio to one another
which are capable, when multiplied, of exceeding one another.

5. Magnitudes are said to be in the same ratio, the
first to the second and the third to the fourth, when, if any
equimultiples whatever be taken of the first and third, and
any equimultiples whatever of the second and fourth, the
former equimultiples alike exceed, are alike equal to, or alike
fall short of, the latter equimultiples respectively taken in
corresponding order.

6. Let magnitudes which have the same ratio be called
proportional.

7. When, of the equimultiples, the multiple of the first
magnitude exceeds thie multiple of the second, but the multiple
of the third does not exceed the multiple of the fourth, then
the first is said to have a greater ratio to the second than
the third has to the fourth.

8. A proportion in three terms is the least possible.

9. When three magnitudes are proportional, the first is
said to have to the third the duplicate ratio of that which
it has to the second.

10. When four magnitudes are < continuously > propor-
tional, the first is said to have to the fourth the triplicate
ratio of that which it has to the second, and so on con-
tinually, whatever be the proportion.

11. The term corresponding magnitudes is used of
antecedents in relation to antecedents, and of consequents in
relation to consequents.

12. Alternate ratio means taking the antecedent in
relation to the antecedent and the consequent in relation to
the consequent.

13. Inverse ratio means taking the consequent as
antecedent in relation to the antecedent as consequent.
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14. Composition of a ratio means taking the ante-
cedent together with the consequent as one in relation to
the consequent by itself.

15. Separation of a ratio means taking the excess
by which the antecedent exceeds the consequent in relation
to the consequent by itself.

16. Conversion of a ratio means taking the ante-
cedent in relation to the excess by which the antecedent
exceeds the consequent.

17. A ratio ex aequali arises when, there being several
magnitudes and another set equal to them in multitude which
taken two and two are in the same proportion, as the first is
to the last among the first magnitudes, so is the first to the
last among the second magnitudes ;

Or, in other words, it means taking the extreme terms
by virtue of the removal of the intermediate terms.

18. A perturbed proportion arises when, there being
three magnitudes and another set equal to them in multitude,
as antecedent is to consequent among the first magnitudes,
so is antecedent to consequent among the second magnitudes,
while, as the consequent is to a third among the first
magnitudes, so is a third to the antecedent among the second
magnitudes.

DEFINITION 1.

Mépos éari péyefos peyéfovs 18 dagoov Toi peilovos, Srav xataperpy T
pedov.

The word part (uépos) is here used in the restricted sense of a submultiple
or an aliguot part as distinct from the more general sense in which it is used
in the Common Notion (5) which says that “the whole is greater than the
part.” It is used in the same restricted sense in vi1. Def. 3, which is the same
definition as this with “number” (dpfuds) substituted for ‘“magnitude.”
vir. Def. 4, keeping up the restriction, says that, when a number does not
measure another number, it is parss (in the plural), not a parf of it. Thus,
1, 2, or 3, is @ part of 6, but 4 is not a part of 6 but parts. The same
distinction between the restricted and the more general sense of the word
part appears in Aristotle, Metaph. 1023 b 12: “In one sense a part is
that into which quantity (¢ woodv) can anyhow be divided ; for that which is
taken away from quantity, gud quantity, is always called a ‘part’ of it, as
e.g. two is said to be in a sense a part of three. But in another sense a
‘part’ is only what measures (rd xaraperpoivra) such quantities. Thus two
is in one sense said to be a part of three, in the other not.”

8—2
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DEFINITION 2.

MoAlawAdotoy 8& 10 ueilov Tob &Adrroves, drav xaramerpijrat vwo Tov
é\drrovos.

DEFINITION 3.

Adyos dori 8o peyeldv opoyeviv 3 xard mmAidTyra woud oxéos.

The best explanation of the definitions of razi and proportion that I have
seen is that of De Morgan, which will be found in the articles under those
titles in the Penny Cyclopaedia, Vol. x1x. (1841); and in the following notes
I shall draw largely from these articles. Very valuable also are the notes on
the definitions of Book v. given by Hankel (fragment on Euclid published as
an appendix to his work Zur Geschickle der Mathematik in Alerthum und
Mittelalter, 1874).

There has been controversy as to what is the proper translation of the
word mpAwdmys in the definition. oxéois xara mpAicdryra has generally been
translated “relation in respect of gwantity.” Upon this De Morgan remarks
that it makes nonsense of the definition; “for magnitude has hardly a
different meaning from quantity, and a relation of magnitudes with respect to
quantity may give a clear idea to those who want a word to convey a notion
of architecture with respect to building or of battles with respect to fighting,
and to no others.” The true interpretation De Morgan, following Wallis and
Gregory, takes to be guantuplicity, referring to the number of times one
magnitude is contained in the other. For, he says, we cannot describe
magnitude in language without quantuplicitative reference to other magni-
tude; hence he supposes that the definition simply conveys the fact that the
mode of expressing quantity in terms of quantity 1s entirely based upon the
notion of quantuplicity or that relation of which we take cognizance when we
find how many times one is contained in the other. While all the rest of
De Morgan’s observations on the definition are admirable, it seems to me
that on this question of the proper translation of anAwdrys he is in error. He
supports his view mainly by reference (1) to the definition of a compounded
ratio usually given as the sth definition of Book vi., which speaks of the
mAworyres of two ratios being multiplied together, and (2) to the comments
of Eutocius and a scholiast on this definition. Eutocius .says namely
(Archimedes, ed. Heiberg, 111. p. 140) that “the term myAwdrys is evidently
used of the number from which the given ratio is called, as (among others)
Nicomachus says in his first book on music and Heron in his commentary
on the Introduction to Arithmetic.” But it now appears certain that this
definition is an interpolation ; it is never used, it is not found in Campanus,
and Peyrard’s Ms. only has it in the margin. At the same time it is clear
that, if the definition is admitted at all, any commentator would be obliged to
explain it in the way that Eutocius does, whether the explanation was consistent
with the proper meaning of mAwdrys or not. Hence we must look elsewhere
for the meaning of myAikes and mAworys. If we do this, I think we shall find
no case in which the words have the sense attributed to them by De Morgan.
The real meaning of wyAixos is how great. It is so used by Aristotle, e.g. in
Eth. Nic. v. 10, 1134 b 11, where he speaks of a man’s child being as it were
a part of him so long as he is of a certain age ({ws dv §j mAikov). Again
Nicomachus, to whom Eutocius appeals, himself (1. 2, 5, p. 5, ed. Hoche)
distinguishes my\ikos as referring to magnitude, while mwooos refers to multitude.
So does Iamblichus in his commentary on Nicomachus (p. 8, 3—35); besides
which Iamblichus distinguishes mAixov as the subject of geometry, being con-
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#finuous, and moodv as the subject of arithmetic, being discrete, and speaks of a
point being the origin of apAixov as a unit is of woodv, and so on. Similarly,
Ptolemy (Synfaxis, ed. Heiberg, p. 31) speaks of the size (mpAwdrys) of the
chords in a circle (wepi mijs TpAwdryros T@v & 76 kikAy ebfeawv). Consequently
I think we can only translate mAworgs in the definition as size. This
corresponds to Hankel’s translation of it as ‘“Grosse,” though he uses this
same word for a concrete *magnitude” as well; size seems to me to give
the proper distinction between myAworys and péyefos, as size is the attribute,
and a magnitude (in its ordinary mathematical sense) is the thing which
possesses the attribute of size.

The view that “relation in respect of size” is meant by the words in the
text is also confirmed, I think, by a later remark of De Morgan himself,
namely that a synonym for the word rafio may be found in the more in-
telligible term reative magnitude. In fact oxéots in the definition corresponds
to relative and myA\udrys to magnitude. (By magnitude De Morgan here
means the attribute and not the thing possessing it.)

Of the definition as a whole Simson and Hankel express the opinion that
it is an interpolation. Hankel points to the fact that it is unnecessary and
moreover so vague as to be of no practical use, while the very use of the
expression xard wmpMuoryra seems to him suspicious, since the only other
place in which the word myAworys occurs in Euclid is the sth definition of
Book vi., which is admittedly not genuine. Yet the definition of ratio appears
in all the Mss., the only variation being that some add the words mpés dAAnAa,
“to one another,” which are rejected by Heiberg as an interpolation of
Theon ; and on the whole there seems to be no sufficient ground for regarding
it as other than genuine. The true explanation of its presence would appear
to be substantially that given by Barrow (ZLectiones Cantabrig., London, 1684,
Lect. 111. of 1666), namely that Euclid inserted it for completeness’ sake, more
for ornament than for use, intending to give the learner a general notion of
ratio by means of a metaphysical, rather than a mathematical definition ; “for
metaphysical it is and not, properly speaking, mathematical, since nothing
depends on it or is deduced from it by mathematicians, nor, as I think, can
anything be deduced.” This is confirmed by the fact that there is no
definition of Adyes in Book viI., and it could equally have been dispensed
with here. Similarly De Morgan observes that Euclid never attempts this
vague sort of definition except when, dealing with a well-known term of
common life, he wishes to bring it into geometry with something like an
expressed meaning which may aid the conception of the thing, though it does
not furnish a perfect criterion. Thus we may compare the definition with
that of a straight line, where Euclid merely calls the reader’s attention to the
well-known term ebfeia ypapps), tries how far he can present the conception
which accompanies it in other words, and trusts for the correct use of the
term to the axioms (or postulates) which the universal conception of a straight
line makes self-evident.

We have now to trace as clearly as possible the development of the
conception of Adyos, raffo, or relative magnitude. In its primitive sense
Adyos was only used of a ratio between commensurables, i.e. a ratio which
could be expressed, and the manner of expressing it is indicated in the
proposition, Eucl. x. 5, which proves that commensurable magnitudes have to
one another the ratio whick a number has to a number. That this was the
primitive meaning of Adyos is proved by the use of the term dAoyos for the
incommensurable, which means irratsonal in the sense of not having a ratio
to something taken as rational (prds).
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Euclid himself shows us how we are to set about finding the ratio, or
relative magnitude, of two commensurable magnitudes. He gives, in x. 3,
practically our ordinary method of finding the greatest common measure.
If A, B be two magnitudes of which B is the less, we cut off from 4 a part
equal to B, from the remainder a part equal to B, and so on, until we leave a
remainder less than B, say R,. We measure off &, from B in the same way
until a remainder R, is left which is less than £,. We repeat the process
with R,, R,, and so on, until we find a remainder which is contained in the
preceding remainder a certain number of times exactly. If account is taken
of the number of times each magnitude is contained (with something over,
except at the last) in that upon which it is measured, we can calculate how
many times the last remainder is contained in 4 and how many times the
last remainder is contained in B ; and we can thus express the ratio of 4 to
B as the ratio of one number to another.

But it may happen that the two magnitudes have no common measure,
i.e. are incommensurable, in which case the process described would never
come to an end and the means of expression would fail ; the magnitudes
would then Aave 7o ratio in the primitive sense. But the word Adyos, ratio,
acquires in Euclid, Book v., a wider sense covering the relative magnitude of
incommensurables as well as commensurables; as stated in Euclid’s 4th
definition, “magnitudes are said to have a ra#io to one another which can,
when multiplied, exceed one another,” and finite incommensurables have this
property as much as commensurables. De Morgan explains the manner of
transition from the narrower to the wider signification of ra#io as follows.
“Since the relative magnitude of two quantities is always shown by the
quantuplicitative mode of expression, when that is possible, and since pro-
portional quantities (pairs which have the same relative magnitude) are pairs
which have the same mode (if possible) of expression by means of each other ;
in all such cases sameness of relative magnitude leads to sameness of mode of
expression ; or proportion is sameness of ratios (in the primitive sense). But
sameness of relative magnitude may exist where quantuplicitative expression
is impossible ; thus the diagonal of a larger square is the same compared with
its side as the diagonal of a smaller square compared with ##s side. It is an
easy transition to speak of sameness of ratio even in this case; that is, to use
the term ratio in the sense of relative magnitude, that word having originally
only a reference to the mode of expressing relative magnitude, in cases which
allow of a particular mode of expression. The word srrational (éAoyos) does
not make any corresponding change but continues to have its primitive
meaning, namely, incapable of quantuplicitative expression.”

It remains to consider how we are to describe the relative magnitude of
two incommensurables of the same kind. That they have a definite relation
is certain. Suppose, for precision, that .S is the side of a square, D its
diagonal ; then, if S is given, any alteration in D or any error in D would
make the figure cease to be a square. At the same time, a person altogether
ignorant of the relative magnitude of D and S might say that drawing two
straight lines of length S so as to form a right angle and joining the ends by
a straight line, the length of which would accordingly be D, does not help
him to realise the relative magnitude, but that he would like to know how
many diagonals make an exact number of sides. We should have to reply
that no number of diagonals whatever makes an exact number of sides; but
that he may mention any fraction of the side, a hundredth, a thousandth or
a millionth, and that we will then express the diagonal with an error not so
great as that fraction. We then tell him that 1,000,000 diagonals exceed
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1,414,213 sides but fall short of 1,414,214 sides ; consequently the diagonal
lies between 1°414213 and 1°414214 times the sxde, and these differ only by
one-millionth of the side, so that the error in the diagonal is less still. To
enable him to continue the process further, we show him how to perform the
arithmetical operation of approximating to the value of /2. This gives the
means of carrying the approximation to any degree of accuracy that may be
desired. In the power, then, of carrying approximations of this kind as far as
we please lies that of expressing the ratio, so far as expression is possible, and
of comparing the ratio with others as accurately as if expression had been
possible.

Euclid was of course aware of this, as were probably others before him ;
though the actual approximations to the values of ratios of incommensurables
of which we find record in the works of the great Greek geometers are very
few. The history of such approximations up to Archimedes is, so far as
material was available, sketched in Z%he Works of Archimedes (pp. Ixxvii and
following) ; and it is sufficient here to note the facts (1) that Plato, and even
the Pythagoreans, were familiar with } as an approximation to /2, (2) that
the method of finding any number of successwe approximations by the system
of side- and diagonal/numbers described by Theon of Smyrna was also
Pythagorean (cf. the note above on Euclid, 11. g, 10), (3) that Archimedes,
without a word of preliminary explanation, gives out that

1361> ~/3>*06

gives approximate values for the square roots of several large numbers, and
proves that the ratio of the cxrcumference of a circle to its diameter is less
than 37 but greater than 333, (4) that the first approach to the rapidity with
which the decimal system enables us to approximate to the value of surds
was furnished by the method of sexagesimal fractions, which was almost as
convenient to work with as the method of decimals, and which appears fully
developed in Ptolemy’s ovvrafis. A number consisting of a whole number
and any fraction was under this system represented as so many units, so
many of the fractions which we should denote by %, so many of those which
we should write (%)% (s%) and so on. Theon of Alexandria shows us how
to extract the square root of 4500 in this sexagesimal system, and, to show
how eﬂ'ective it was, it is only necessary to mention that Ptolemy gives
16003 g g, + 6——, as an approximation to /3, which approximation is equivalent
to 1°7320509 in the ordinary decimal notation and is therefore correct to
6 places.

pBetween Def. 3 and Def. 4 two manuscnpts and Campa.nus insert * Pro-
portion is the sameness of ratios” (dvaloyia 8¢ 7 Tév Adywr radrorys), and even
the best Ms. has it in the margin. It would be altogether out of place, since
it is not till Def. 5 that it is explained what sameness of ratios is. The words
are an interpolation later than Theon (Heiberg, Vol. v. pp. xxxv, lxxxix),
and are no doubt taken from arithmetical works (cf. Nicomachus and Theon
of Smyrna). 1t is true that Aristotle says similarly, “Proportion is equality
of ratios” (Eth. Nic. v. 6, 1131 a 31), and he appears to be quoting from
the Pythagoreans; but the reference is to mumbers.

Slmllarly two MSS. (inferior) insert after Def. 7 “Proportion is the similarity

(6poorys) of ratios.” Here too we have a mere interpolation.
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DEFINITION 4.

Adyov &ew wpds dMpha peyéfn Aéyerar, & Sivarar mollamlecwlopea
Aoy Smepéyew.

This definition supplements the last one. De Morgan says that it amounts
to saying that the magnitudes are of the same species. But this can hardly
be all; the definition seems rather to be meant, on the one hand, to exclude
the relation of a finite magnitude to a magnitude of the same kind which is
either infinitely great or infinitely small, and, even more, to emphasise the
fact that the term ra#fo, as defined in the preceding definition, and about to
be used throughout the book, includes the relation between any two #ncom-
mensurable as well as between any two commensurable finite magnitudes of
the same kind. Hence, while De Morgan seems to regard the extension of
the meaning of »atio to include the relative magnitude of incommensurables
as, so to speak, taking place between Def. 3 and Def. s, the 4th definition
appears to show that it is ratio in its extended sense that is being defined in
Def. 3.

DEFINITION 5.

'Ev 1¢ alrd Ay peyéln Aéyerar elvar mparov wpds Sevrepov xal Tpirov wpos
Téraprov, drav Td Tob wpurov Kai Tpirov lodkis woldawAdowa TGy Tov Sevrépov
xal terdprov lodxis moldawhaciwv xaf oémoovotv moAlamlacuaoudv éxdrepov
éxarépov ¥ dpa tmepéyy % dpa loa ¥ dua IAelry Apdpbéra xardAAnia.

In my translation of this definition I have compromised between an
attempted literal translation and the more expanded version of Simson. The
difficulty in the way of an exactly literal translation is due to the fact that the
words (xaf® &mowovotv moAhamhaowopdv) signifying that the equimultiples i
eack case are any equimultiples whatever occur only once in the Greek, though
they apply bot% to ta...lodkis moAAawAdota in the nominative and 7dv...lodxis
woMarlaciov in the genitive. I have preferred “alike” to * simultaneously”
as a translation of dpa because *“simultaneously ” might suggest that time was
of the essence of the matter, whereas what is meant is that any particular
comparison made between the equimultiples must be made between #ze same
equimultiples of the two pairs respectively, not that they need to be compared
al the same time.

Aristotle has an allusion to a definition of ‘“the same ratio” in Zvpics
viL 3, 158 b 2g9: ““In mathematics too some things appear to be not easy to
prove (ypdpeofar) for want of a definition, e.g. that the parallel to the side
which cuts a plane [a parallelogram] divides the straight line [the other side]
and the area similarly. But, when the definition is expressed, the said property
is immediately manifest ; for the areas and the straight lines kave the same
dvravaipeots, and this is the definition of ‘the same ratio.”” Upon this
passage Alexander says similarly, “This is the definition of proportionals
which the ancients used: magnitudes are proportional to one another whick
have (or show) the same dvBvdaipears, and Aristotle has called the latter
dvravaipeois.” Heiberg (Mathematisches su Avristoteles, p. 22) thinks that
Aristotle is alluding to the fact that the proposition referred to could not be
rigorously proved so long as the Pythagorean definition applicable to com-
mensurable magnitudes only was adhered to, and is quoting the definition
belonging to the complete theory of Eudoxus; whence, in view of the positive
statement of Aristotle that the definition quoted /s the definition of “the same
ratio,” it would appear that the Euclidean definition (which Heiberg describes
as a careful and exact paraphrase of avravaipesis) is Euclid’s own. I do not
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feel able to subscribe to this view, which seems to me to involve very grave
difficulties. The Euclidean definition is regularly appealed to in Book v. as
the criterion of magnitudes being in proportion, and the use of it would appear
to constitute the whole essence of the new general theory of proportion; if then
this theory is due to Eudoxus, it seems impossible to believe that the definition
was not also due to him. Certainly the definition given by Aristotle would
be no substitute for it; dvBvdaipeais and dvravaipesis are words almost as
vague and “ metaphysical ” (as Barrow would say) as the words used to define
ratio, and it is difficult to see how any mathematical facts could be deduced
from such a definition. Consider for a moment the etymology of the words.
Ypaipecis or dvalpesis means “removal,” “taking away ” or ‘‘ destruction ” of
a thing; and the prefix dvri indicates that the “taking away” from one
magnitude answers fo, corresponds with, alternates with, the ‘“taking away”
from the other. So far therefore as the etymology goes, the word seems
rather to suggest the “taking away ” of corresponding fractions, and therefore
to suit the old imperfect theory of proportion rather than the new one. Thus
Waitz (ad /oc.) paraphrases the definition as meaning that “as many parts as
are taken from one magnitude, so many are at the same time taken from the
other as well.” A possible explanation would seem to be that, though
Eudoxus had formulated the new definition, the old one was still current in
the text-books of Aristotle’s time, and was taken by him as being a good
enough illustration of what he wished to bring out in the passage of the
Topics referred to.

From the revival of learning in Europe onwards the Euclidean definition
of proportion was the subject of much criticism. Campanus had failed to
understand it, had in fact misinterpreted it altogether, and he may have
misled others such as Ramus (1515—72), always a violently hostile critic of
Euclid. Among the objectors to it was no less a person than Galileo. For
particulars of the controversies on the subject down to Thomas Simpson
(Elem. of Geometry, Lond. 1800) the reader is referred to the Excursus at the
end of the second volume of Camerer’s Euclid (1825). For us it is interesting
to note that the unsoundness of the usual criticisms of the definition was
never better exposed than by Barrow. Some of the objections, he pointed out
(Lect. Cantabr.v11.of 1666), are due to misconception on the part of their authors
as to the nature of a definition. Thus Euclid is required by these objectors
(e.g. Tacquet) to do the impossible and to show that what is predicated in the
definition is true of the thing defined, as if any one should be required to
show that the name “circle” was applicable to those figures alone which
have their radii all equal! As we are entitled to assign to such figures and
such figures only the name of “circle,” so Euclid is entitled (* quamvis non
temere nec imprudenter at certis de causis iustis illis et idoneis ”) to describe
a certain property which four magnitudes may have, and to call magnitudes
possessing that property magnitudes *‘in the same ratio.” Others had argued
from the occurrence of the other definition of proportion in vir. Def. 20 that
Euclid was dissatisfied with the present one ; Barrow pointed out that, on the
contrary, it was the fact that vir. Def. 20 was not adequate to cover the case
of incommensurables which made Euclid adopt the present definition here.
Lastly, he maintains, against those who descant on the ‘‘obscurity” of v.
Def. 5, that the supposed obscurity is due, partly no doubt to the inherent
difficulty of the subject of incommensurables, but also to faulty translators,
and most of all to lack of effort in the learner to grasp thoroughly the meaning
of words which, in themselves, are as clearly expressed as they could be.

To come now to the merits of the case, the best defence and explanation
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of the definition that I have seen is that given by De Morgan. He first
translates it, observes that it applies equally to commensurable or incom-
mensurable quantities because no attempt is made to measure one by an
aliquot part of another, and then proceeds thus.

“The two questions which must be asked, and satisfactorily answered,
previously to its [the definition’s] reception, are as follows:

1. What right had Euclid, or any one else, to expect that the preceding
most prolix and unwieldy statement should be received by the beginner as
the definition of a relation the perception of which is one of the most common
acts of his mind, since it is performed on every occasion where similarity or
dissimilarity of figure is looked for or presents itself?

2. If the preceding question should be clearly answered, how can the
definition of proportion ever be used ; or how is it possible to compare every
o?eB of the infinite number of multlples of A with every one of the multiples
of B?

To the first question we reply that not only is the test proposed by
Euclid tolerably simple, when more closely examined, but that it is, or might
be made to appear, an easy and natural consequence of those fundamental
perceptions with which it may at first seem difficult to compare it.”

To elucidate this De Morgan gives the following illustration.

Suppose there is a straight colonnade composed of equidistant columns
(which we will understand to mean the vertical lines forming the axes of the
columns respectively), the first of which is at a distance from a bounding wall
equal to the distance between consecutive columns. In front of the colonnade
let there be a straight row of equidistant railings (regarded as meaning their
axes), the first being at a distance from the bounding wall equal to the
distance between consecutive railings. Let the columns be numbered from
the wall, and also the railings. We suppose of course that the column distance
(say, C) and the railing distance (say, &) are different and that they may bear
to each other any ratio, commensurable or incommensurable ; i.e. that there
need not go any exact number of railings to any exact number of columns.

J

If the construction be supposed carried on to any extent, a spectator can,
by mere inspection, and without measurement, compare C with R to any
degree of accuracy. For example, since the roth railing falls between the 4th
and sth columns, 10X is greater than 4C and less than 5C, and therefore &
lies between y4ths of C and ygths of C. To get a more accurate notion, the
ten-thousandth railing may be taken ; suppose it falls between the 4674th and
4675th columns. Therefore xo,oooR lies between 4674 C and 4675C, or R lies
between %ol and %5 of C. There is no limit to the degree of accuracy
thus obtainable ; and the ratio of R to C is determined when the order of
distribution of the railings among the columns is assigned ad infinitum ; or, in
other words, when the position of any given railing can be found, as to the
numbers of the columns between which it lies. Any alteration, however
small, in the place of the first railing must at last affect the order of
distribution. Suppose e.g. that the first railing is moved from the wall by one
part in a thousand of the distance between the columns; then the second
railing is pushed forward by {%%C, the third by %G, and so on, so that
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the railings after the thousandth are pushed forward by more than C; i.e. the
order with respect to the columns is disarranged.

Now let it be proposed to make a model of the preceding construction in
which ¢ shall be the column distance and 7 the railing distance. It needs no
definition of proportion, nor anything more than the conception which we
have of that term prior to definition (and with which we must show the agree-
ment of any definition that we may adopt), to assure us that C must be to R
in the same proportion as ¢ to 7 if the model be truly formed. Nor is it
drawing too largely on that conception of proportion to assert that the
distribution of the railings among the columns in the model must be every-
where the same as in the original ; for example, that the model would be ou#
of proportion if its 37th railing fell between the 18th and 19th columns, while
the 37th railing of the original fell between the 17th and 18th columns. Thus
the dependence of Euclid’s definition upon common notions is settled; for the
obvious relation between the construction and its model which has just been
described contains the collection of conditions, the fulfilment of which,
according to Euclid, constitutes proportion. According to Euclid, whenever
mC exceeds, equals, or falls short of #R, then mc must exceed, equal, or fall
short of n7; and, by the most obvious property of the constructions, according
as the mth column comes after, opposite to, or before the nth railing in the
original, the mth column must come after, opposite to, or before the sth
railing in the correct model.

Thus the test proposed by Euclid is necessary. It is also sufficient. For
admitting that, to a given original with a given column-distance in the model,
there is one correct model railing distance (which must therefore be that
which distributes the railings among the columns as in the original), we have
seen that any other railing distance, however slightly different, would at last
give a different distribution; that is, the correct distance, and the correct
distance only, satisfies all the conditions required by Euclid’s definition.

The use of the word distribution having been well learnt, says De Morgan,
the following way of stating the definition will be found easier than that of
Euclid. “Four magnitudes, 4 and B of one kind, and C and D of the same
or another kind, are proportional when all the multiples of 4 can be
distributed among the multiples of B in the same intervals as the correspond-
ing multiples of C among those of D.” Or, whatever numbers m, » may be,
if mA lies between 2.8 and (n + 1)B, mC lies between #.D and (n + 1)D.

It is important to note that, if the test be always satisfied from and after
any given multiples of 4 and C, it must be satisfied before those multiples. For
instance, let the test be always satisfied from and after 1004 and 100C; and
let 54 and 5C be instances for examination. Take any multiple of 5 which
will exceed 100, say 50 times five ; and let it be found on examination that
2504 lies between 67858 and 6798 ; then 250C lies between 678D and
679.0. Divide by 50, and it follows that 54 lies between 13388 and 13335,
and a fortiori between 138 and 1458. Similarly, 5C lies between 133§D and
13330, and therefore between 13D and 14D. Or 54 lies in the same
interval among the multiples of B in which 5C lies among the multiples of D.
And so for any multiple of 4, C less than 1004, 100C.

There remains the second question relating to the infinite character of the
definition ; four magnitudes 4, B, C, .D are not to be called proportional
until it is shown that every multiple of A4 falls in the same intervals among
the multiples of B in which the same multiple of C is found among the
multiples of D. Suppose that the distribution of the railings among the
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columns should be found to agree in the model and the original as far as
the millionth railing. This proves only that the railing distance of the model
does not err by the millionth part of the corresponding column distance. We
can thus fix limits to the disproportion, if any, and we may make those limits
as small as we please, by carrying on the method of observation; but we
cannot odserve an infinite number of cases and so enable ourselves to affirm
proportion absolutely. Mathematical methods however enable us to avoid
the difficulty. We can take any multiples whatever and work with them as if
they were particular multiples. De Morgan gives, as an instance to show that
the definition of proportion can in practice be used, notwithstanding its
iéxﬁnlite character, the following proof of a proposition to the same effect as
ucl. vI. 2.

B¢
b
: i
1 :
B : :
% | | i
i i i i

(¢ aA az A, a3 A, ai As

“Let OAB be a triangle to one side 4.8 of which a4 is drawn parallel, and
on OOA produced set off 44,, 4,4, etc. equal to 04, and aa,, a.a, etc. equal
to Oa.

Through every one of the points so obtained draw parallels to 4.5,
meeting OB produced in 4, B, etc. :

Then it is easily proved that 85,, 5, etc. are severally equal to 08, and
BB,, B,B, etc. to OB.

Consequently a distribution of the multiples of 04 among the multiples
of Ou is made on one line, and of OB among those of O/ on the other.

The examination of this distribution in all its extent (which is impossible,
and hence the apparent difficulty of using the definitiony is rendered
unnecessary by the known property of parallel lines. For, since 4 lies
between a, and a,, B; must lie between 4; and &, ; for, if not, the line 4,5,
would cut either a,4, or a5,.

Hence, without inquiring where 4,, does fall, we know that, if it fall
between a, and a,,,, B, must fall between &, and &,,,; or, if m. OA4 fall in
magnitude between n.0Oa and (7+1)Oa, then m. OB must fall between
n.0b and (n+1)08.”

Max Simon remarks (Euclid und die sechs planimetrischen Biicker, p. 110),
after Zeuthen, that Euclid’s definition of equal ratios is word for word the
same as Weierstrass’ definition of equal numbers. So far from agreeing in
the usual view that the Greeks saw in the irrational no numder, Simon thinks
it is clear from Eucl. v. that they possessed a notion of number in all its
generality as clearly defined as, nay almost identical with, Weierstrass’ con-
ception of it.

Certain it is that there is an exact correspondence, almost coincidence,
between Euclid’s definition of equal ratios and the modern theory of irrationals
due to Dedekind. Premising the ordinal arrangement of natural numbers in
ascending order, then enlarging the sphere of numbers by including
(1) negative numbers as well as positive, (2) fractions, as a/f, where a, & may
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be any natural numbers, provided that 4 is not zero, and arranging the
fractions ordinally among the other numbers according to the definition :

let _ab_ be <=> 2‘ according as ad is <=> &,
Dedekind arrives at the following definition of an irrational number.

An irrational number a is defined whenever a law is stated which will
assign every given rational number to one and only one of two classes 4 and
B such that (1) every number in 4 precedes every number in B, and (2) there
is no last number in 4 and no first number inez; the definition of e being
that it is the one number which lies between all numbers in 4 and all
numbers in B.

Now let x/y and x'[y’ be equal ratios in Euclid’s sense.

Then = will divide all rational numbers into two groups 4 and B ;
o ”» ” ” A’ and B

Let ‘-2 be any rational number in 4, so that

a X
- -,

by
This means that ay < éx.
But Euclid’s definition asserts that in that case ay’ < éx’ also.
a «
Hence also 3 }7;
therefore every member of group A is also a member of group 4'.
Similarly every member of group B is a member of group 5.

For, if % belong to B,
- a
37y’

iy

which means that ay > éx.
But in that case, by Euclid’s definition, ay’ > 42’ ;

J

a_«x
Z > ?.

Thus, in other words, 4 and B are coextensive with 4' and B’
respectively ;

therefore also

therefore ; =';7, according to Dedekind, as well as according to Euclid.

If x[y, [y’ happen to be rational,
then one of the groups, say 4, includes x/y,
and one of the groups, say 4', includes x'/y’.
a

In this case 3

might cofncide with ;;

that is

which means that ay =bx.
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Therefore, by Euclid’s definition, ay’ =%’ ;
a x
5y

Thus the groups are again coextensive.

In a word, Euclid’s definition divides all ra.tlonal numbers into two
coextensive classes, and therefore defines equal ratios in a manner exactly
corresponding to Dedekind’s theory.

Alternatives for Eucl. V. Def. s.

Saccheri records in his Ewuclides 0b omni naevo vindicatus that a distinguished
geometer of his acquaintance proposed to substitute for Euclid’s the following
definition :

“A first magnitude has to a second the same ratio that a third has to a
fourth when the first contains the aliquot parts of the second, according to any
number [i.e. with any denominator] whatever, the same number of times as
the number of times the third contains the same aliquot parts of the fourth”;
on which Saccheri remarks that he sees no advantage in this definition, which
presupposes the notion of dsvision, over that of Euclid which uses multiplication
and the notions of greater, equal, and less.

This definition was, however, practically adopted by Faifofer (Elements di
geometria, 3 ed., 1882) in the following form :

“Four magnitudes taken in a certain order form a proportion when, by
measuring the first and the third respectively. by any equi-submultiples
whatever of the second and of the fourth, equal quotients are obtained.”

Ingrami (Elements di geometria, 1904) takes multiples of the first and third
instead of submultiples of the second and fourth :

“Given four magnitudes in predetermined order, the first two homogeneous
with one another, and hkew:se also the last two, the magnitudes are said to
form a proportion (or to be in proportion) when any multiple of the first
contains the second the same number of times that the equimultiple of the
third contains the fourth.”

Veronese’s definition (Elementi di geometria, Pt. 11., 1905) is like that of
galfofer ; Enriques and Amaldi (Elementi di geometria, 1905) adhere to

uclid’s,

so that

Proportionals of VII. Def. 20 a particular case.

It has already been observed that Euclid has nowhere proved (though the
fact cannot have escaped him) that the proportion of numbers is included in
the proportion of magnitudes as a special case. This is proved by Simson as
being necessary to the sth and 6th propositions of Book x. Simson’s proof is
contained in his propositions C and D inserted in the text of Book v. and in
the notes thereon. Proposition C and the note on it prove that, f four
magnitudes are proportionals according to vi1. Def. 20, they are also proportionals
according to v. Def. 5. Prop. D and the note prove the partial converse,
namely that, if four magnitudes are proportionals according to the 5th definition
of Book v., and if the first be any multiple, or any part, or parts, of the second,
the third is the same multiple, part, or parts, of the fourth. The proofs use
certain results obtained in Book v.

Prop. C is as follows :

If the first be the same multiple of the second, or the same part of it, that the
third is of the fourth, the first is to the second as the third to the fourth.
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Let the first 4 be the same multiple of B the second that C the third is of
the fourth D ;
4isto Bas Cisto D.

A E
B—— G
C F
D—— H

Take of 4, C any equimultiples whatever £, F; and of B, D any
equimultiples whatever G, H.

Then, because 4 is the same multiple of B that C is of D,
and £ is the same multiple of 4 that Fis of C,
" E is the same multiple of B that Fis of D. [v- 3]
Therefore E, F are the same multiples of B, D.
But G, A are equimultiples of B, D;

therefore, if £ be a greater multiple of B than G is, #'is a greater multiple of
D than H'is of D;

that is, if £ be greater than G, F'is greater than /.
In like manner,
if £ be equal to G, or less, Fis equal to A, or less than it,
But £, F are equimultiples, any whatever, of 4, C;
and G, A any equimultiples whatever of B, .D.
Therefore A is to B as C is to D. [v. Def. 5]

Next, let the first 4 be the same par? of the second B that the third C is
of the fourth D :

Aisto Bas Cis to D. A—
For B is the same multiple of 4 that D is of C; 8
wherefore, by the preceding case, c—
Bistodas Disto C; o

and, inversely, A is to B as C is to D.

[For this last inference Simson refers to his Proposmon B. That
proposition is very simply proved by taking any equunultlples E, Fof B,D
and any equimultiples G, & of 4, C and then arguing as follows :

Since 4 is to B as Cis to D,

G, H are simultaneously greater than, equal to, or less than E, F
respectively ; so that

E, F are simultancously less than, equal to, or greater than G, H
respectively,

and therefore [Def. 5] Bisto 4 as Disto C.]

We have now only to add to Prop. C the case where 4B contains the

same parts of CD that EF does of GH :
in this case likewise 48 is to CD as EFto GH.

Let CK be a part of CD, and GZ the same part of GH ; let AB be the

same multiple of CX that £Fis of G L.
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Therefore, by Prop. C,
ABisto CKas EFto GL.

m

Ao 8 E
c ; D G T H

And CD, GH are equimultiples of CK, GZ, the second and fourth.

Therefore 4B is to CD as EF to GH [Simson’s Cor. to v. 4, which
however is the particular case of v. 4 in which the “equimultiples” of one
pair are the pair itself, i.e. the pair multiplied by unity].

To prove the partial converse we begin with Prop. D.

If the first be to the second as the third to the fourth, and if the first be a
multiple or part of the second, the third is the same multiple or the same part of
the fourth.

Let A beto Bas Cisto D;
and, first, let 4 be a multiple of B ;

C is the same multiple of D.

Take £ equal to A4, and whatever multiple 4 or £ is of 5, make & the
same multiple of D.

Then, because A4 is to B as Cis to D,
and of B the second and D the fourth equimultiples have been taken £
and £,

Aisto Eas Cisto F. [v. 4, Cor.]
But 4 is equal to £;
therefore C is equal to 7.
[In support of this inference Simson cites his Prop. A, which however we
can directly deduce from v. Def. 5 by taking any, but zke same, equimultiples
of all four magnitudes. ]

A C
8 )
E F

Now F'is the same multiple of D that 4 is of B;
therefore C is the same multiple of D that A4 is of B.
Next, let the first 4 be a part of the second 5 ;
C the third is the same part of the fourth .D.

Because A is to B as Cis to D,

inversely, Bisto 4 as Dis to C. [Prop. B]
But 4 is a part of B; therefore B is a multiple of 4;

and, by the preceding case, D is the same multiple of C,

that is, C is the same part of D that 4 is of B.

We have, again, only to add to Prop. D the case where 4B contains any
parts of CD, and ABisto CD as EFto GH;
then shall £F contain the same parts of GX that 4.8 does of CD.
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For let CK be a part of CD, and GLZ the same part of GH; and let 4B
be a multiple of CX.

E F shall be the same multiple of GZ.

Take M the same multiple of G L that 48 is of CK;

therefore ABisto CK as Misto GL. [Prop. C]
A— B E F
K o G L H M
And CD, GH are equimultiples of CK, GL;
therefore ABisto CDas Mis to GH.
But, by hypothesis, ABisto CDas EFisto GH;
therefore M is equal to EF, [v. 9]

and consequently £F is the same multiple of GLZ that 4B is of CK.

DEFINITION 6.

Ta 8¢ Tov abrdv Ixovra Adyov peyély dvdloyov kakelobo.

"AvdAoyor, though usually written in one word, is equivalent to dva Adyo, in
proportion. It comes however in Greek mathematics to be used practically as
an indeclinable adjective, as here; cf. ai réooapes edfeiar dvdroyov éoovrar,
‘““the four straight lines will be proportional,” rpiywva Tas wAevpas dviloyov
éxovra, ‘“‘triangles having their sides proportional.” Sometimes it is used
adverbially: dvd\oyov dpa éoriv ws ] BA mpos mjv AT, ovres 4 HA mpds mjv AZ,
‘““proportionally therefore, as B4 is to AC, so is GD to DF”; so too, ap-
parently, in the expression 7 péon dvaloyov (ebfeta), “ the mean proportional.”
I do not follow the objection of Max Simon (Euclid, p. 110) to “proportional”
as a translation of dvdhoyov. “We ask,” he says, “in vain, what is proportional
to what? We say e.g. that weight is proportional to price because double, treble
etc. weight corresponds to double, treble etc. price. But here the meaning must
be ‘standing in a relation of proportion.”” Yet he admits that the Latin word
proportionalis is an adequate expression. He translates by “in proportion ”
in the text of this definition. But I do not see that *in proportion ” is better
than “proportional.” The fact is that both expressions are elliptical when
used of four magnitudes “in proportion”; but there is surely no harm in
using either when the meaning is so well understood.

The use of the word xaAeiofw, * /et magnitudes having the same ratio se
called proportional,” seems to indicate that this definition is Euclid’s own.

DEFINITION 7.

"Oray 8¢ 1dv iodxis wolarAaciov 76 puiv Tod mpurov moAhamAdaiov Swepéxy
T0b Tod devrépov moAAamhagiov, 76 8¢ Tov Tpirov WoAAamwAdoiov pi) Umepéxy TOU
70V rerdprov moAAawAaciov, Tdére 70 wpiTov wpds 1O Selrepov peilova Adyov éxewv
Aéyerar, mep TO TpiTOV MPdS TO TéTapTOV.

As De Morgan observes, the practical test of disproportion is simpler than
that of proportion. For, whereas no examination of individual cases, however

H. E. IL 9
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extensive, will enable an observer of the construction and its model (the
illustration by means of columns and railings described above) to affirm
proportion or deny disproportion, and all it enables us to do is to fix limits
(as small as we please) to the disproportion (if any), a single instance may
enable us to deny proportion or affirm disproportion, and also to state which
way the disproportion lies. Let the 1gth railing in the original fall beyond
the 11th column, while the 1gth railing of the (so-called) model does not
come up to the 11th column. It follows from this one instance that the
railing distance of the model is too small relatively to the column distance, or
that the column distance is too great relatively to the railing distance. That
is, the ratio of # to ¢ is less than that of R to C, or the ratio of ¢ to 7 is greater
than that of C to A.

Saccheri (9. ¢it.) remarks (as Commandinus had done) that the ratio of
the first magnitude to the second will also be greater than that of the third to
the fourth if, while the multiple of the first is egwa/ to the multiple of the
second, the multiple of the third is /ess than that of the fourth: a case not
mentioned in Euclid’s definition. Saccheri speaks of this case being included
in Clavius’ interpretation of the definition. I have, however, failed to find a
reference to the case in Clavius, though he adds, as a sort of corollary, in his
note on the definition, that if, on the other hand, the multiple of the first is
Jess than the multiple of the second, while the multiple of the third is nof Jess
than that of the fourth, the ratio of the first to the second is Zss than that of
the third to the fourth.

Euclid presumably left out the second possible criterion for a greater ratio,
and the definition of a less ratio, because he was anxious to reduce the
definitions to the minimum necessary for his purpose, and to leave the rest to
be inferred as soon as the development of the propositions of Book v. enabled
this to be done without difficulty.

Saccheri tried to reduce the second possible criterion for a greater ratio to
that given by Euclid in his definition without recourse to anything coming
later in the Book, but, in order to do this, he has to use “multiples” produced
by multipliers which are not integral numbers, but integral numbers p/us proper
fractions, so that Euclid’s Def. 7 becomes inapplicable.

De Morgan notes that “proof should be given that the same pair of
magnitudes can never offer both tests [i.e. the test in the definition for a
greater ratio and the corresponding test for a less ratio, with “less” substituted
for “greater” in the definition] to another pair; that is, the test of greater
ratio from one set of multiples, and that of less ratio from another.” In other
words, if m, n, p, ¢ are integers and 4, B, C, D four magnitudes, none of the
pairs of equations

(1) mA>nB, mC=or<nD,
(2) mA=nB, mC<nD
can be satisfied simultaneously with any one of the pairs of equations

(3) 24=4¢B, pC>¢D,
(4) pA<gB, pC>or=¢D.
There is no difficulty in proving this w1th the help of two simple
assumptions which are indeed obvious.
We need only take in illustration one of the numerous cases. Suppose, if
possible, that the following pairs of equations are simultaneously true :
(1) mA>nB, mC<nD
and (2) pA<gB, pC>gD.
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Multiply (1) by ¢ and (2) by .

(We need here to assume that, where r.X, r ¥ are any equimultiples of any
magnitudes X, ¥,

, accordingas X >=< ¥, 7X>=<r¥.
This is contained in Simson’s Axioms 1 and 3.)
We have then the pairs of equations
mgA >ngB, mgC <nqD,
npA <ngB, npC>ngD.
From the second equations in each pair it follows that
mgC < npC.

(We now need to assume that, if X, sX are any multiples of X, and
rY, sY the same multiples of ¥, then,
according as 7rX >=<sX, r¥V>=<s¥.
Simson uses this same assumption in his proof of v. 18.)

Therefore mgA <npA.
But it follows from the first equations in each pair that
mgA > npA :

which is impossible.
Nor can Euclid’s criterion for a greater ratio coexist with that for equal
ratios.

DEFINITION 8.
"Avadoyia 8¢ é&v Tpuwriv Spos Eaxiomy oriv.

This is the reading of Heiberg and Camerer (who follow Peyrard’s ms.)
and is that translated above. The other reading has éaxioroiss, which can
only be translated ‘‘consists in three terms af /east.” Hankel regards the defi-
nition as a later interpolation, because it is superfluous, and because the word
6pos for a ferm in a proportion is nowhere else used by Euclid, though it is
common in later writers such as Nicomachus and Theon of Smyrna. The
genuineness of the definition is however supported by the fact that Aristotle
not only uses dpos in this sense (£2A. Nic. v. 6, 7, 1131 b 5, 9), but has a similar
remark (#¢d. 1131 a 31) that a “proportion is in four terms at least.” The
difference from Euclid is only formal; for Aristotle proceeds: “The discrete
(Swpnpém) (proportion) is clearly in four (terms), but so also is the continuous
(ovvexs). For it uses one as two and mentions it twice, e.g. (in stating) that,
as a 1s to 8, 50 also is B to y; thus B is mentioned twice, so that, if 8 be twice
put down, the proportionals are four.” The distinction between discrefe and
continuous seems to have been Pythagorean (cf. Nicomachus, 11 21, §5; 23,
2, 3; where however cumuuén is used instead of owexis); Euclid does not
use the words Suppyuérm and ourvexjs in this connexion.

So far as they go, the first words of the next definition (g), “When three
magnitudes are proportionals,” which seemingly refer to Def. 8, also support
the view that the latter is, at least in substance, genuine.

9—2
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‘DEFINITIONS 9, IO.

9. "Orav 8 tpla peyifn dvdloyov §), 16 mparov mpds & Tpirov Siwhaciova
Adyov ixew Aéyerar fmep wpds 1o Sedrepov.

10. "Orav 8 tésoapa peyéfy dvdloyov g, 10 mpatov mwpos TO TéTaprov
rpurhagiova Adyov Ixew Aéyerar fmep mpds 10 devrepov, kai dei ééfjs Spolws, ais
dv 3 dvaloyia vrdpxy.

Here, and in connexion with the definitions of duplicate, triplicate, etc.
ratios, would be the place to expect a definition of ‘“compound ratio.” None
such is however forthcoming, and the only *definition” of it that we find is
that forming vi. Def. 5, which is an interpolation made, perhaps, even before
Theon’s time. According to the interpolated definition, “ A ratio is said to
be compounded of ratios when the sizes (mpAwdmres) of the ratios multiplied
together make some (? ratio).” But the multiplication of the sizes (or
magnitudes) of two ratios of incommensurable, and even of commensurable,
magnitudes is an operation unknown to the classical Greek geometers.
Eutocius (Archimedes, ed. Heiberg, n1. p. 140) is driven to explain the
definition by making =pAwdrys mean the number from which the given ratio
is called, or, in other words, the number which multiplied into the consequent
of the ratio gives the antecedent. But he is only able to work out his idea with
reference to ratios between numbers, or between commensurable magnitudes ;
and indeed the definition is quite out of place in Euclid’s theory of
proportion.

There is then only one statement in Euclid’s text as we have it indicating
what is meant by compound ratio; this is in vI. 23, where he says abruptly
“But the ratio of K to M is compounded of the ratio of K to Z and that of
L to M. Simson accordingly gives a definition (A of Book v.) of compound
ratio directly suggested by the statement in v1. 23 just quoted.

“ When there are any number of magnitudes of the same kind, the first
is said to have to the last of them the ratio compounded of the ratio which
the first has to the second, and of the ratio which the second has to the third,
and of the ratio which the third has to the fourth, and so on unto the last
magnitude.

For example, if 4, B, C, D be four magnitudes of the same kind, the
first A4 is said to have to the last D the ratio compounded of the ratio of
A to B, and of the ratio of B to C, and of the ratio of C to D ; or the ratio
%f A to D is said to be compounded of the ratios of 4 to B, B to C, and

to D.

And if A4 has to B the same ratio which £ has to #; and B to C the
same ratio that G has to A; and C to D the same that X has to Z; then,
by this definition, A is said to have to D the ratio compounded of ratios
which are the same with the ratios of £ to #, G to 4, and K to L: and the
same thing is to be understood when it is more briefly expressed, by saying,
4]% has to D the ratio compounded of the ratios of £ to #, G to A, and

to L.

In like manner, the same things being supposed, if A/ has to N the
same ratio which 4 has to D; then, for shortness’ sake, A/ is said to have to
AV the ratio compounded of the ratios of £ to #, G to H, and K to L.”

De Morgan has some admirable remarks on compound ratio, which
not only give a very clear view of what is meant by it but at the same time
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supply a plausible explanation of the or4gin of the term. “Treat ratio,” says
De Morgan, ‘“as an engine of operation. Let that of 4 to B suggest the
power of altering any magnitude 1n that ratio.” (It is true that it is not yet
proved that, B being any magnitude, and 2 and Q two magnitudes of the
same kind, there does exist a magnitude 4 which is to B in the same ratio
as Pto Q. It is not till vi. 12 that this is proved, by construction, in the
particular case where the three magnitudes are straight lines. The proof in the
Greek text of v. 18 which assumes the truth of the more general proposition
is, by reason of that assumption, open to objection ; see the note on that
proposition.) Now “every alteration of a magnitude is alteration in some
ratio, two or more successive alterations are jointly equivalent to but one, and
the ratio of the initial magnitude to the terminal one is as properly said to be
the compound ratio of alteration as 13 to be the compound addend in lieu of
8 and 5, or 28 the compound multiple for 7 and 4. Composition is used
here, as elsewhere, for the process of detecting one single alteration which
produces the joint effect of two or more. The composition of the ratios of
Pto R, Rto S, Tto U, is performed by assuming A, altering it in the first
ratio into B, altering B in the second ratio into C, and C in the third ratio
into D. The joint effect turns 4 into D, and the ratio of 4 to D is the
compounded ratio.”

Another word for compounded ratio is ovwnupévos (ovvdrrw) which is
common in Archimedes and later writers.

It is clear that duplicate ratio, triplicate ratio etc. defined in v. Defl. 9
and 10 are merely particular cases of compound ratio, being in fact the
ratios compounded of two, three etc. egual ratios. The use which the Greek
geometers made of compounded, duplicate, triplicate ratios etc. is well
illustrated by the discovery of Hippocrates that the problem of the duplication
of the cube (or, more generally, the construction of a cube which shall be to
a given cube in any given ratio) reduces to that of finding “two mean
proportionals in continued proportion.” This amounted to seeing that, if
x, y are two mean proportionals in continued proportion between any two
lines a, 4, in other words, if ais to x as x to y, and x is to y as Y to b, then a
cybe with side @ is to a cube with side x as @ is to 4; and this is equlvalent
to saying that @ has to 4 the triplicate ratio of a to x.

Euclid is careful to use the forms durAagiwv, TpirAagioy, etc. to express what
we translate as duplicate, triplicate etc. ratios; the Greek mathematicians,
however, commonly used durAdotos Adyos, “ double ratio,” rpiwAdocos Adyos,
“triple ratio” etc. in the sense of the ratios of z to 1, 3 to 1 etc. The effort,
if such it was, to keep the one form for the one signification and the other for
the other was only partially successful, as there are several instances of the
contrary use, e.g. in Archimedes, Nicomachus and Pappus. '

The expression for having the ratio which is “duplicate (tnphcate) of that
which it has to the second” is curious—3&irAagiova (Tptrhaciova) Adyov éxeww
7mwep wpos 10 debrepov—ijmep being used as if SurAagiova or Tpurlaciova were a
sort of comparative, in the same way as it is used after pelfova or é\dooova.
Another way of expressing the same thing is to say Adyos Surhacivwy (rpiwhacivr)
ro?, 8v &e... the ratio “duplicate of that (ratio) which...” The explanation
of both construcnons would seem to be that SurMmos or Surlaciwv is, as
Hultsch translates it in his edition of Pappus (cf. p. §9, 17), duplo maior,
where the ablative duplo implies not a difference but a proportion.

The four magnitudes in Def. 10 must of course be in continued proportion
(xara 70 gwvexés). The Greek text as it stands does not state this.
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DEFINITION I1.

Op,o)«oya peyédny Aéyerar Ta pév yodpeva Tois tyovuévors Ta 8& éxopeva Tois
émopévoss.

It is difficult to express the meaning of the Greek in as few words. A
translation more literal, but conveying less, would be, “ Antecedents are called
corresponding magnitudes to antecedents, and consequents to consequents.”

I have preferred to translate éudAoyos by * corresponding” rather than by
‘“homologous.” I do not agree with Max Simon when he says (Euclid, p. 111)
that the technical term ‘“homologous” is not the adjective 6udAoyos, and does
not mean “corresponding,” “agreeing,” but “like in respect of the proportion”
(“‘dhnlich in Bezug auf das Verhiltniss”). The definition seems to me to be
for the purpose of appropnatmg to a technical use precisely the ordinary
adjective 6,wo\o-yos “agreemg or “corresponding.”

Antecedents, yyoipeva, are literally “leading (terms),” and consequents,
émdpeva, “ following (terms).”

DEFINITION 12.

'FvaMaf Adyos dati Afjus Tod rjyovpévov mpos TO fyovpevoy kal Tov émopévov
wpos 10 émdpevor.

We now come to a number of expressions for the transformation of ratios

or proportions. The first is évaAAd{, alfernately, which would be better
described with reference to a proportion of four terms than with reference to
a ratio. But probably Euclid defined all the terms in Deff. 12—16 with
reference to ratfos because to define them with reference to proportions would
look like assuming what ought to be proved, namely the legitimacy of the
various transformations of proportions (cf. v. 16, 7 Por., 18, 17, 19 Por.). The
word édvaAd¢ is of course a common term which has no exclusive reference to
mathematics. But this same use of it with reference to proportxons already
occurs in Aristotle: Anal. post. 1. 5, 74 a 18, xai 16 dvdloyov ore &
‘““and that a proportion (is true) alternately, or alternando.” Used with M-yos,
as here, the adverb &aAXd¢ has the sense of an adjective, “alternate” ; we
have already had it similarly used of “alternate angles” (ai évaAAaf ywriar) in
the theory of parallels.

DEFINITION 13.
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