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BOOK X. e

INTRODUCTORY NOTE.

The discovery of the doctrine of incommensurables is attributed to
Pythagoras. Thus Proclus says (Comm. on Eucl. 1. p. 65, 19) that Pythagoras
“discovered the theory of irrationals'”; and, again, the scholium on the begin-
ning of Book x., also attributed to Proclus, states that the Pythagoreans were
the first to address themselves to the investigation of commensurability, having
discovered it by means of their observation of numbers. They discovered,
the scholium continues, that not all magnitudes have a common measure.
“ They called all magnitudes measurable by the same measure commensurable,
but those which are not subject to the same measure incommensurable,
and again such of these as are measured by some other common measure
commensurable with one another, and such as are not, incommensurable with
the others. And thus by assuming their measures they referred everything to
different commensurabilities, but, though they were different, even so (they
proved that) not all magnitudes are commensurable with any. (They showed
that) all magnitudes can be rational (pnre) and all irrational (dAoya) in a
relative sense (ds mpds 7t); hence the commensurable and the incommensurable
would be for them natural (kinds) (¢doe), while the rational and irrational
would rest on assumption or convention (@éoe).” The scholium quotes further
the legend according to which “ the first of the Pythagoreans who made public
the investigation of these matters perished in a shipwreck,” conjecturing that
the authors of this story “ perhaps spoke allegorically, hinting that everything
irrational and formless is properly concealed, and, if any soul should rashly
invade this region of life and lay it open, it would be carried away into the
sea of becoming and be overwhelmed by its unresting currents.” There
would be a reason also for keeping the discovery of irrationals secret for the
time in the fact that it rendered unstable so much of the groundwork of
geometry as the Pythagoreans had based upon the imperfect theory of
proportions which applied only to numbers. We have already, after Tannery,
referred to the probability that the discovery of incommensurability must
have necessitated a great recasting of the whole fabric of elementary geometry,
pending the discovery of the general theory of proportion applicable to
incommensurable as well as to commensurable magnitudes.

It seems certain that it was with reference to the length of the diagonal of
a square or the hypotenuse of an isosceles right-angled triangle that Pythagoras
made his discovery. Plato (Zkeaefetus, 147 D) tells us that Theodorus of
Cyrene wrote about square roots (8vwvdpuets), proving that the square roots of

1 I have already noted (Vol. 1. p. 351) that G. Junge (Wann haben dic Griecken'das
Irrationale entdeckt?) disputes this, maintaining that it was the Pythagoreans, but not
P, oras, who made the discovery. Junge is obliged to alter the reading of the passage
of Proclus, on what seems to be quite insufhcient evidence; and in any case I doubt whether
the point is worth so much labouring.

H. E. 11l I
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YUy BOOK X

three square feet and five square feet are not commensurable with that of one
squarg fodt, and so on, selecting each such square root up to that of 17 square
feet, 4t which for some reason he stopped. No mention is here made of /2,
daubtless for the reason that its incommensurability had been proved before,
i.e. by Pythagoras. We know that Pythagoras invented a formula for finding
fight-angled triangles in rational numbers, and in connexion with this it was
_~.Hevitable that he should investigate the relations between sides and hypotenuse
: “+dni other right-angled triangles. He would naturally give special attention to
** the isosceles right-angled triangle ; he would try to measure the diagonal, he
... would arrive at successive approximations, in rational fractions, to the value
& of JJ2; he would find that successive efforts to obtain an exact expression for
it failed. It was however an enormous step to conclude that such exact
expression was smpossible, and it was this step which Pythagoras (or the
Pythagoreans) made. We now know that the formation of the side- and
diagonal-numbers explained by Theon of Smyrna and others was Pythagorean,
and also that the theorems of Eucl. 11. 9, 10 were used by the Pythagoreans
in direct connexion with this method of approximating to the value of ,/2.
The very method by which Euclid proves these propositions is itself an indica-
tion of their connexion with the investigation of ./2, since he uses a figure
made up of two isosceles right-angled triangles.

The actual method by which the Pythagoreans proved the incommensura-
bility of /2 with unity was no doubt that referred to by Aristotle (Anal. prior.
1.23, 418 26—7),a reductio ad absurdum by which it is proved that, if the diagonal
is commensurable with the side, it will follow that the same number is both
odd and even. The proof formerly appeared in the texts of Euclid as x. 117,
but it is undoubtedly an interpolation, and August and Heiberg accordingly
relegate it to an Appendix. It is in substance as follows.

Suppose AC, the diagonal of a square, to be commen- A )
surable with 4.3, its side. Let a : 8 be their ratio expressed
in the smallest numbers.

Then a > B and therefore necessarily > 1.

2

Now AC': AB'=a': B,
and, since AC?*=24B, [Eucl. 1. 47]
a?= 23 [J]

Therefore a? is even, and therefore a is even.
Since a : B is in its lowest terms, it follows that 8 must be odd.

Put a=2y;
therefore ’ 47 =28,
or B =2y
so that 8% and therefore 8, must be even.

But B8 was also odd :

which is impossible.

This proof only enables us to prove the incommensurability of the
diagonal of a square with its side, or of /2 with unity. In order to prove
the incommensurability of the sides of squares, one of which has #4ree times
the area of another, an entirely different procedure is necessary ; and we find
in fact that, even a century after Pythagoras’ time, it was still necessary to use
scparate proofs (as the passage of the Zheaetetus shows that Theodorus did)
to establish the incommensurability with unity of /3, /5, ... up to ./17.
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This fact indicates clearly that the general theorem in Eucl. X. g that sguares
whick have not to one another the ratio of a square number to a square number
have their sides incommensurable in length was not arrived at all at once, but
was, in the manner of the time, developed out of the separate consideration
of special cases (Hankel, p. 103).

The proposition x. 9 of Euclid is definitely ascribed by the scholiast to
Theaetetus. Theaetetus was a pupil of Theodorus, and it would seem clear
that the theorem was not known to Theodorus. Moreover the Platonic
passage itself (Z%eact. 147D sqq.) represents the young Theaetetus as striving
after a general conception of what we call a surd. “The idea occurred to
me, seeing that square roots (Suvdpers) appeared to be unlimited in multitude,
to try to arrive at one collective term by which we could designate all these
square roots. ... I divided number in general into two classes. The number
which can be expressed as equal multiplied by equal ({oov izdxis) I likened
to a square in form, and I called it square and equilateral....The intermediate
number, such as three, five, and any number which cannot be expressed as
equal multiplied by equal, but is either less times more or more times less, so
that it is always contained by a greater and less side, I likened to an oblong
figure and called an oblong number. ... Such straight lines then as square the
equilateral and plane number I defined as length (u7xos), and such as square
the oblong sguare roofs (dvvapess), as not being commensurable with the
others in length but only in the plane areas to which their squares are
equal.”

There is further evidence of the contributions of Theaetetus to the theory
of incommensurables in a commentary on Eucl. X. discovered, in an Arabic
translation, by Woepcke (Mémoires présentés @ I Académie des Sciences, xiv.,
1856, pp. 658—720). It is certain that this commentary is of Greek origin.
Woepcke conjectures that it was by Vettius Valens, an astronomer, apparently
of Antioch, and a contemporary of Claudius Ptolemy (2nd cent. A.D.).
Heiberg, with greater probability, thinks that we have here a fragment of the
commentary of Pappus (EZwklid-studien, pp. 169—71), and this is rendered
practically certain by Suter (Dse Mathematiker und Astronomen der Araber
und ithre Werke, pp. 49 and 211). This commentary states that the theory
of irrational magnitudes “ had its origin in the school of Pythagoras. It was
considerably developed by Theaetetus the Athenian, who gave proof, in this
part of mathematics, as in others, of ability which has been justly admired.
He was one of the most happily endowed of men, and gave himself up, with a
fine enthusiasm, to the investigation of the truths contained in these sciences,
as Plato bears witness for him in the work which he called after his name. As
for the exact distinctions of the above-named magnitudes and the rigorous
demonstrations of the propositions to which this theory gives rise, I believe
that they were chiefly established by this mathematician; and, later, the
great Apollonius, whose genius touched the highest point of excellence in
mathematics, added to these discoveries a number of remarkable theories
after many efforts and much labour.

“For Theaetetus had distinguished square roots [pusssances must be the
Swdpess of the Platonic passage] commensurable in length from those which
are incommensurable, and had divided the well-known species of irrational
lines after the different means, assigning the medial to geometry, the dinomial
to arithmetic, and the apofome to harmony, as is stated by Eudemus the
Peripatetic.

« As for Euclid, he set himself to give rigorous rules, which he established,

I—2
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relative to commensurability and incommensurability in general ; he made
precise the definitions and the distinctions between rational and irrational
magnitudes, he set out a great number of orders of irrational magnitudes, and
finally he clearly showed their whole extent.”

The allusion in the last words must be apparently to x. 115, where it is
proved that from the medial/ straight line an unlimited number of other
irrationals can be derived all different from it and from one another.

The connexion between the medial straight line and the geometric mean
is obvious, because it is in fact the mean proportional between two rational
straight lines *“commensurable in square only.” Since } (x +y) is the arithmetic
mean between x, y, the reference to it of the binomial can be understood.
The connexion between the apotome and the harmonic mean is explained by
some propositions in the second book of the Arabic commentary. The
harmonic mean between x, y is % , and propositions of which Woepcke
quotes the enunciations prove that, if a rational or a medial area has for one
of its sides a dinomial straight line, the other side will be an apofome of corre-
sponding order (these propositions are generalised from Eucl. X. 111—4); the

. 2y 2xy
fact is that iy B (x=y).

One other predecessor of Euclid appears to have written on irrationals,
though we know no more of the work than its title as handed down by
Diogenes Laertius’. According to this tradition, Democritus wrote wepi
aAdywv ypappov xai vactav 8, two Books on irrational straight lines and
solids (apparently). Hultsch (Neue Jakrbiicher fiir Philologie und Pidagogik,
1881, pp. 578—9) conjectures that the true reading may be wepi dAdywy
ypappdv xAaordv, “on irrational broken lines.” Hultsch seems to have
in mind straight lines divided into two parts one of which is rational
and the other irrational (“Aus einer Art von Umkehr des Pythagoreischen
Lehrsatzes iiber das rechtwinklige Dreieck gieng zunichst mit Leichtigkeit
hervor, dass man eine Linie construiren konne, welche als irrational zu
bezeichnen ist, aber durch Brechung sich darstellen lisst als die Summe
einer rationalen und einer irrationalen Linie”). But I doubt the use of xAaoros
in the sense of breaking one straight line into parts; it should properly mean
a bent line, i.e. two straight lines forming an angle or broken short off at their
point of meeting. It is also to be observed that vasrov is quoted as a
Democritean word (opposite to xevay) in a fragment of Aristotle (202). I see
therefore no reason for questioning the correctness of the title of Democritus’
book as above quoted.

I will here quote a valuable remark of Zeuthen’s relating to the classifi-
cation of irrationals. He says (Geschichte der Mathematik im Altertum und
Mittelalter, p. 56) “Since such roots of equations of the second degree as are
incommensurable with the given magnitudes cannot be expressed by means
of the latter and of numbers, it is conceivable that the Greeks, in exact
investigations, introduced no approximate values but worked on with the
magnitudes they had found, which were represented by straight lines obtained
by the construction corresponding to the solution of the equation. That is
exactly the same thing which happens when we do not evaluate roots but content
ourselves with expressing them by radical signs and other algebraical symbols.
But, inasmuch as one straight line looks like another, the Greeks did not get

! Diog. Laert. IX. 47, p. 239 (ed. Cobet).
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the same clear view of what they denoted (i.e. by simple inspection) as our
system of symbols assures to us. For this reason it was necessary to under-
take a classification of the irrational magnitudes which had been arrived at by
successive solution of equations of the second degree.” To much the same
effect Tannery wrote in 1882 (De la solution géométrique des problémes du
second degré avant Euclide in Mémoires de la Société des sciences physiques et
naturelles de Bordeaux, 2° Série, 1v. pp. 395—416). Accordingly Book x.
formed a repository of results to which could be referred problems which
depended on the solution of certain types of equations, quadratic and biquad-
ratic but reducible to quadratics.
Consider the quadratic equations
x*tzax.p+f.p'=0,

where p is a rational straight line, and a, B are coefficients. Our quadratic
equations in algebra leave out the p; but I put it in, because it has always to
be remembered that Euclid’s x is a straight /ine, not an algebraical quantity,
and is therefore to be found in terms of, or in relation to, a certain assumed
rational straight line, and also because with Euclid p may be not only of the

. m
form a, where @ represents @ units of length, but also of the form Pl

which represents a length “commensurable in square only” with the unit of
length, or /4 where A4 represents a number (not square) of units of area.
The use therefore of p in our equations makes it unnecessary to multiply
different cases according to the relation of p to the unit of length, and has the
further advantage that, e.g., the expression p + ,/4.p is just as general as the
expression ,/&.p+ ./A.p, since p covers the form ,/£.p, both expressions
covering a length either commensurable in length, or “commensurable in
square only,” with the unit of length.
Now the positive roots of the quadratic equations

x*+2ax.p+B.p*'=0

can only have the following forms )

x=p(a+ ~/"‘fﬂ—)r x'=p(a— va'-B) }

H=p(WP+B+a), x/=p(Wa?+B-a) |

The negative roots do not come in, since x must be a straight line. The

omission however to bring in negative roots constitutes no loss of generality,
since the Greeks would write the equation leading to negative roots in another
form so as to make them positive, i.e. they would change the sign of x in the
equation.

Now the positive roots x;, ¥y, x,, x, may be classified according to the
character of the coefficents a, 8 and their relation to one another.

I. Suppose that a, 8 do not contain any surds, i.e. are either integers or
of the form m/n, where m, n are integers.
Now in the expressions for x,, x," it may be that

2
(1) B is of the form %a’.

Euclid expresses this by saying that the square on ap exceeds the square

on p~a®— B by the square on a straight line commensurable in length with ap.
In this case x, is, in Euclid’s terminology, a firs? binomial straight line,

and x,’ a first apolome.
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2

(2) In general, 8 not being of the form %a’,

x, is a _fourth binomial,

x,' a fourth apotome.
Next, in the expressions for x,, x;" it may be that

3
(1) B is equal to % (a? + B), where m, n are integers, i.e. B is of the form
m’ 3
ﬂ’ — m’ [

Euclid expresses this by saying that the square on p/a®+ B exceeds the
+ square on ap by the square on a straight line commensurable in length with

pNa*+B. o
In this case x, is, in Euclid’s terminology, a second binomial,

x, a second apoltome.

(2) In general, B8 not being of the form ”—;’ita—m,a’,
x, 1s a fifth binomial,
x, a fifth apotome.

II. Now suppose that a is of the form J 1:—, where m, n are integers, and

let us denote it by J/A.
Then in this case
K =p(JA+VA=B), x'=p(JA-~A=B),
x=p (VA + B+ JA), 2 =p (WA+ B — JN).
Thus x,, x," are of the same form as x,, x,.
If JA- B in x,, x,"is not surd but of the form m/n, and if J)TB in x5, &,

is not surd but of the form m/n, the roots are comprised among the forms
already shown, the first, second, fourth and fifth binomials and apotomes.

If VA= Bin x,, x, is surd, then

3
(1) we may have B of the form :—‘, A, and in this case

x, is a third binomial straight line,
x,' a third apotome;

m’
n
x, is a séxth binomial straight line,
%, a sixth apotome.

) Wi_th the expressions for x,, x,’ the distinction between the third and sixth
binomials and apotomes is of course the distinction between the cases

3
(1) in which 8= % (A + B), or B is of the form A,

and (2) in which B is not of this form. _
. If we take the square root of the product of p and each of the six
binomials and six apotomes just classified, ie.

(et Va'—p), p*(Va’+ B ta),

(2) in geheral, B not being of the form — A,

m?

w3 —m?
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in the six different forms that each may take, we find six new irrationals with
a positive sign separating the two terms, and six corresponding irrationals with
a negative sign. These are of course roots of the equations
x'+ 2ax?.p'+ B.p*=0.
These irrationals really come before the others in Euclid’s order (x. 36—
41 for the positive sign and x. 73—78 for the negative sign). As we shall
see in due course, the straight lines actually found by Euclid are

1. p+ J%. p, the binomial (7 éx dvo dvopdrwr)
and the apotome (dworopy),

which are the positive roots of the biquadratic (reducible to a quadratic)
H—2(1+R)p*. 2+ (1-A)p'=

2. Bp + Blp, the first bimedial (éx 8o péowy mpurn)
and the first apotome of a medial (péons dworopy wpurry),
which are the positive roots of
-2,k (1+R)p*. 2+ A(1-A)p'=

3 o4 % p, the second bimedial (éx dvo péowy Sevrépa)

and the second apotome of a medial (péoms dworopy) devrépa),
which are the positive roots of the equation

BN ey B
x‘z—‘\/—k— a2 p =0.

* V2 \/I*J1+k' ~/2J ~/1+k'

the mayjor (irrational straight line) (uei{wv)
and the minor (irrational straight line) (éAdooev),
which are the positive roots of the equation

H-2pt. 2t

k’ 4
L
—— ) jm—
5- J2(I+P)JJI+E+k+m:£;3 \/]-{.k’—k,

the “side” of a rational plus a medial (area) (pyrov xai péoov 8uva;u'vq)

and the “side” of a medial minus a rational area (in the Greek 1 perd pyrov
péoor 10 GAov wowoboa),

which are the positive roots of the equation
x—

_ 2 g
~/1+k’p .x’+(‘+k,),p =0,

o

Mo/ \/
W2 J 1+ Pt J 1+ 42
the “side” of the sum of two med:al areas (1 dbo péoa vaa;u'm)

and the ‘side” of a medial minus a medial area (in the Greek 5 pera péoov
péoov 16 GAov mowdoa),

which are the positive roots of the equation

A
-— 3 =
2JX.x’g+Al+k’p o.
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The above facts and formulae admit of being stated in a great variety of
ways according to the notation and the particular letters used. Consequently
the summaries which have been given of Eucl. x. by various writers differ
much in appearance while expressing the same thing in substance. The first
summary 1n algebraical form (and a very elaborate one) seems to have been
that of Cossali (Origine, trasporto in Italia, primi progressi in essa dell
Algebra, Vol. 1. pp. 242—65) who takes credit accordingly (p. 265). In
1794 Meier Hirsch published at Berlin an Algebraischer Commentar diber das
sehente Buch der Elemente des Euklides which gives the confents in algebraicgl
form but fails to give any indication of Euclid’s methods, using modern forms
of proof only. In 1834 Poselger wrote a paper, Ueber das sehnte Buch der
Elemente des Euklides, in which he pointed out the defects of Hirsch’s repro-
duction and gave a summary of his own, which however, though nearer to
Euclid’s form, is difficult to follow in consequence of an elaborate system of
abbreviations, and is open to the objection that it is not algebraical enough
to enable the character of Euclid’s irrationals to be seen at a glance. Other
summaries will be found (1) in Nesselmann, Diec Algebra der Griechen,
pp. 165—84; (2) in Loria, /7 periodo aureo della geometria greca, Modena,
1895, pp. 40—9; (3) in Christensen’s article “Ueber Gleichungen vierten
Grades im zehnten Buch der Elemente Euklids” in the Zeitschrift fiir Math. u.
Physik (Historisch-literarische Abtheilung), xxx1v. (1889), pp. 201—17. The
only summary in Engllsh that I know is that in the Penny Cyclopaedia, under
“Irrational quantity,” by De Morgan, who yielded to none in his admiration of
Book x. “Euclid investigates,” says De Morgan, “every possible variety of lines
which can be represented by ./(J/a + \/6), @ and 5 representing two commen-
surable lines....This book has a completeness which none of the others (not
even the fifth) can boast of : and we could almost suspect that Euclid, having
arranged his materials in his own mind, and having completely elaborated
the 1oth Book, wrote the preceding books after it and did not live to revise
them thoroughly.”

Much attention was given to Book x. by the early algebraists. Thus
Leonardo of Pisa (fl. about 1205 A.p.) wrote in the 14th section of his Liber
Abaci on the theory of irrationalities (de fractatu binomiorum et recisorum),
without however (except in treating of irrational trinomials and cubic irra-
tionalities) adding much to the substance of Book X.; and, in investigating
the equation

£*+ 2x% + 10X = 20,

propounded by Johannes of Palermo, he proved that none of the irrationals
in Eucl. x. would satisfy it (Hanke] PP- 344—6, Cantor, 11,, p. 43). Luca
Paciuolo (about 1445—1514 A.D.) in his algebra based himself largely, as he
himself expressly says, on Euclid x. (Cantor, 11, P. 293). Michael Stifel
(1486 or 1487 to 1567) wrote on irrational numbers in the second Book of
his Arithmetica integra, which Book may be regarded, says Cantor (11,, p. 402),
as an elucidation of Eucl. x. The works of Cardano (1501—76) abound in
speculations regarding the irrationals of Euclid, as may be seen by reference to
Cossali (Vol. 11, especially pp. 268—78 and 382—gg); the character of
the various odd and even powers of the binomials and apotomes is therein
investigated, and Cardano considers in detail of what particular forms of
equations, quadratic, cubic, and biquadratic, each class of Euclidean irrationals
can be roots. Simon Stevin (1548—1620) wrote a Zraité des incommensurables
grandeurs en lagquelle est sommairement déclaré le contenu du Dixiesme Livre
d Euclide (Oeuvres mathématiques, Leyde, 1634, pp. 2195qq.); he speaks thus



INTRODUCTORY NOTE 9

of the book: *“La difficulté du dixiesme Livre d’Euclide est & plusieurs
devenue en horreur, voire jusque a l'appeler la croix des mathématiciens,
matiére trop dure 4 digérer, et en la quelle n’apergoivent aucune utilité,” a
passage quoted by Loria (// periodo aurco della geometria greca, p. 41).

It will naturally be asked, what use did the Greek geometers actually
make of the theory of irrationals developed at such length in Book x.? The
answer is that Euclid himself, in Book x111., makes considerable use of the
second portion of Book x. dealing with the irrationals affected with a negative
sign, the apofomes etc. One object of Book xii1. is to investigate the relation
of the sides of a pentagon inscribed in a circle and of an icosahedron and
dodecahedron inscribed in a sphere to the diameter of the circle or sphere
respectively, supposed rational. The connexion with the regular pentagon of
a straight line cut in extreme and mean ratio is well known, and Euclid first
proves (X111. 6) that, if a rational straight line is so divided, the parts are the
irrationals called apofomes, the lesser part being a first apotome. Then, on
the assumption that the diameters of a circle and sphere respectively are
rational, he proves (x111. 11) that the side of the inscribed regular pentagon is
the irrational straight line called minor, as is also the side of the inscribed
icosahedron (xi11. 16), while the side of the inscribed dodecahedron is the
irrational called an apofome (x111. 17).

Of course the investigation in Book x. would not have been complete if
it had dealt only with the irrationals affected with a negative sign. Those
affected with the positive sign, the dinomials etc., had also to be discussed,
and we find both portions of Book x., with its nomenclature, made use of by
Pappus in two propositions, of which it may be of interest to give the enun-
ciations here.

If, says Pappus (1v. p. 178), 4.8 be the rational diameter of a semicircle, and
if A8 be produced to C so that BC is equal to the radius, if CD be a tangent,

D

A F B o}

if £ be the middle point of the arc 8D, and if CE be joined, then CE is the
irrational straight line called minor. As a matter of fact, if p is the radius,

CE = (5 - 2./3) and CE=J@ _ \/Sﬁ
2

If, again (p. 182), CD be equal to the radius of a semicircle supposed
B

F

A H C )

rational, and if the tangent DB be drawn and the angle 403 be bisected by
DF meeting the circumference in , then DF is the excess by which the
binomial exceeds the straight line which produces with a rational area a medial
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whole (see Eucl. x. 77). (In the figure DX is the binomsal and KF the other
irrational straight line.) As a matter of fact, if p be the radius,

KD=p.J'3/: l,andKF=p.J~/3——l=p.(,\/‘/3+“/2-—~/‘/3—;£).

Proclus tells us that Euclid left out, as alien to a selection of elements, the
discussion of the more complicated irrationals, “the unordered irrationals which
Apollonius worked out more fully” (Proclus, p. 74, 23), while the scholiast -
to Book x. remarks that Euclid does not deal with all rationals and irrationals
but only the simplest kinds by the combination of which an infinite number
of irrationals are obtained, of which Apollonius also gave some. The author
of the commentary on Book X. found by Woepcke in an Arabic translation,
and above alluded to, also says that ‘“it was Apollonius who, beside the
ordered irrational magnitudes, showed the existence of the unordered and by
accurate methods set forth a great number of them.” It can only be vaguely
gathered, from such hints as the commentator proceeds to give, what the
character of the extension of the subject given by Apollonius may have been.
See note at end of Book.

DEFINITIONS.

1. Those magnitudes are said to be commensurable
which are measured by the same measure, and those incom-
mensurable which cannot have any common measure.

2. Straight lines are commensurable in square when
the squares on them are measured by the same area, and
incommensurable in square when the squares on them
cannot possibly have any area as a common measure.

3. With these hypotheses, it is proved that there exist
straight lines infinite in multitude which are commensurable
and incommensurable respectively, some in length only, and
others in square also, with an assigned straight line. Let
then the assigned straight line be called rational, and those
straight lines which are commensurable with it, whether in
length and in square or in square only, rational, but those
which are incommensurable with it irrational.

4- And let the square on the assigned straight line be
called rational and those areas which are commensurable
with it rational, but those which are incommensurable with
it irrational, and the straight lines which produce them
irrational, that is, in case the areas are squares, the sides
themselves, but in case they are any other rectilineal figures,
the straight lines on which are described squares equal to
them.
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DEFINITION 1.

Svpperpa peyétny Aéyerar 1& 16 adrg pérpy perpovpeva, dovpperpa 8¢, dv
pndév évléxerar xowov pérpov yevéolar.

DEFINITION 2.

Edfeiar dvvdper avpperpol eow, otav 1a dn° adrdv Terpdywra 1@ adrg xwply
perpijtas, dovpperpor 8, drav Tols dx’ abrdv Terpaywvois undéy dvdéxmrar xwpiov
xowdv pérpov yevéobar.

Commensurable in square is in the Greek Swdper ovpperpos. In earlier
translations (e.g. Williamson’s) durauer has been translated “in power,” but,
as the particular power represented by duvaps in Greek geometry is sguare,
I have thought it best to use the latter word throughout. It will be observed
that Euclid’s expression commensurable in square only (used in Def. 3 and
constantly) corresponds to what Plato makes Theaetetus call a sgware root
(8vaps) in the sense of a surd. If a is any straight line, a and a,/m, or
aJm and a,/n (where m, n are integers or arithmetical fractions in their
lowest terms, proper or improper, but not square) are commensurable in square
only. Of course (as explained in the Porism to X. 10) all straight lines
commensurable in length (pixet), in Euclid’s phrase, are commensurable iz
square also ; but not all straight lines which are commensurable in sguare are
commensurable sn Jength as well. On the other hand, straight lines sncom-
mensurable in square are necessarily incommensurable in Jength also; but not
all straight lines which are incommensurable in /ength are incommensurable
in square. In fact, straight lines which are commensurable in square only are
incommensurable iz lengtk, but obviously not incommensurable in square.

DEFINITION 3.

Tovrev vwoxup.cvmv Suxvv'm(, o'n 4] 1rpor¢0¢w~g wﬂag. mrapxomrw ebletar
wAjfe d dwepor (ru[l.'l.(‘rpoc Te Kal va.p.:rpon ai ;uv ke povov, ai de Kai Suva.p.u.
xakewom oty 7 pev wpo‘r¢0¢wa. ebleia p prrrq, xal m TaVTy TUppMETPOL €iTE pIIKEL Kai
Suvdper eire Suvdpe povov pyrai, ai 8¢ TavTy dovpperpor dAoyor kakeloGwoav.

The first sentence of the definition is decidedly elliptical. It should,
strictly speaking, assert that *“with a given straight line there are an infinite
number of straight lines which are (1) commensurable either (2) in square
only or (4) in square and in length also, and (2) incommensurable, either
(@) in length only or (%) in length and in square also.”

The relativity of the terms rationa/ and srrational is well brought out in
this definition. We may set out any straight line and call it rational, and it
is then with reference to this assumed rational straight line that others are
called rational or irrational.

We should carefully note that the signification of ratfona/in Euclid is wider
than in our terminology. With him, not only is a straight line commensurable 7z
length with a rational straight line rational, but a straight line is rational which
is commensurable with a rational straight line ¢n sguare only. That is, if p is a

rational straight line, not only is 2P rational, where m, # are integers and
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- . m ..
m|n in its lowest terms is not square, but J 5P rational also. We should

in this case call \/ %‘ . p irrational. It would appear that Euclid’s termino-

logy bhere differed as much from that of his predecessors as it does from
ours. We are familiar with the phrase appyros dwdperpos Tijs mepmwados by
which Plato (evidently after the Pythagoreans) describes the diagonal of a
square on a straight line containing 5 units of length. This “inexpressible

diameter of five (squared)” means /5o, in contrast to the gnry) Sudperpos, the
“expressible diameter” of the same square, by which is meant the approxi-

—_— m
mation «/ so—1, or 7. Thus for Euclid’s predecessors nP would

apparently not have been rational but dppyros, “inexpressible,” i.e. irrational.

I shall throughout my notes on this Book denote a rational straight line in
Euclid’s sense by p, and by p and o when two different rational straight lines are
required. Wherever then I use p or o, it must be remembered that p, ¢ may
have either of the forms a, /4. a, where a represents a units of length, a being
either an integer or of the form m/n, where m, n are both integers, and 4 is an
integer or of the form m/n (where both m, n are integers) but not square. In
other words, p, o may have either of the forms @ or /A4, where 4 represents
A units of area and A4 is integral or of the form m/n, where m, n are both
integers. It has been the habit of writers to give @ and ,/a as the alternative
forms of p, but I shall always use /4 for the second in order to keep the
dimensions right, because it must be borne in mind throughout that p is an
irrational straight line.

As Euclid extends the sxgmﬁcatlon of rational (pyros, literally expressible),
so he limits the scope of the term dAoyos (literally having no ratio) as applied
to straight lines. That this limitation was started by himself may perhaps be
inferred from the form of words “/¢ straight lines incommensurable with it
be called irrational.” Irrational straight lines then are with Euclid straight lines
commensurable nesther in length nor in square with the assumed rational
straight line. /4. a where % is not square is not irrational ; Y4. a is irrational,
and so (as we shall see later on) is (\/£+ \/A) a.

DEFINITION 4.

Kai 7o ;uv amd ‘n)q wpofcoaoqs ebleias rerpdywvov prrrov, xal TG TOUTQ
o'uy.p,cfpa pm'a, Ta 8( ‘rolmn a(ruy.y.ﬂ'pa a:\oya. xdtwow, mu ai Suvapeva avra.

dAoyou, € pév Terpaywva €y, alrai ai wAevpal, €l 8¢ Erepd Twa fvypappa, ai
{oa airois rerpdywva dvaypdovoa.

As applied to areas, the terms rational and irrational have, on the other
hand, the same sense with Euclid as we should attach to them. According
to Euclid, if p is a rational straight line in Ais sense, p? is rafiona/ and any
area commensurable with it, i.e. of the form 4p* (where £ is an integer, or of
the form m/n, where m, n are integers), is rational ; but any area of the form
Jk.p* is irrational. Euclid's rational area thus contains A wunits of area,
where 4 is an integer or of the form m/n, where m, n are integers ; and his
irrational area is of the form /2. A. His irrational area is then connected
with his irrational sfrafght line by making the latter the square root of the
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former. This would give us for the irrational straight line Y. \/A, which of
course includes /4. a.

ai Swaperar abdrd are the straight lines the squares on which are equal to
the areas, in accordance with the regular meaning of 8dvacfac It is scarcely
possible, in a book written in geometrical language, to translate Swauévy as
the sguare root (of an area) and Svvacfar as fo be the square root (of an area),
although I can use the term “square root” when in my notes I am using an
algebraical expression to represent an area ; I shall therefore hereafter use the
word “side” for Swapéry and “to be the side of” for Svvacfar, so that
“side” will in such expressions be a short way of expressing the “side of
a square equal to (an area).” In this particular passage it is not quite practi-
cable to use the words “side of ” or “ straight line the square on which is equal
to,” for these expressions occur just afterwards for two alternatives which the
word dwauém covers. I have therefore exceptionally translated *the straight
lines which produce them ” (i.e. if squares are described upon them as sides).

ai ioa avrols Terpdywva civa:yp«fcbowm, literally “ the (straight lines) which
describe squares equal to them”: a peculiar use of the active of dvaypddew,
the meaning being of course “the straight lines on which are descrsbed the
squares ” which are equal to the rectilineal figures.



BOOK X. PROPOSITIONS.

ProprosiTION 1.

Two unequal magnitudes being set out, if from the greater
there be subtracted a magnitude greater than its half, and from
that which is left a magnitude greater than its half, and if
this process be repeated comtinually, there will be left some
magnitude which will be less than the lesser magnitude set out.

Let AB, C be two unequal magnitudes of which 428 is

the greater: . .
I say that, if from 425 there be A—+— B
subtracted a magnitude greater D - . E

than its half, and from that which

is left a magnitude greater than its half, and if this process be
repeated continually, there will be left some magnitude which
will be less than the magnitude C.

For C if multiplied will sometime be greater than A425.
[cf. v. Def. 4]

Let it be multiplied, and let D£ be a multiple of C, and
greater than 45 ;
let DE be divided into the parts DF, FG, GE equal to C,
from AZ let there be subtracted B/ greater than its half,
and, from AH, HK greater than its half,
and let this process be repeated continually until the divisions
in A are equal in multitude with the divisions in DE.

Let, then, AKX, KH, HB be divisions which are equal in
multitude with DF, FG, GE.

Now, since DE is greater than A5,
a:ld from DE there has been subtracted £G less than its
half,
and, from 4B, BH greater than its half,
therefore the remainder G D is greater than the remainder /7 A4.
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And, since G D is greater than /A4,

and there has been subtracted, from GO, the half GF,

and, from A A4, HK greater than its half,

therefore the remainder D F'is greater than the remainder 4 X.
But DF is equal to C;

therefore C is also greater than 4K

Therefore 4K is less than C.
Therefore there is left of the magnitude 4.8 the magnitude
AK which is less than the lesser magnitude set out, namely C.
Q. E. D.

And the theorem can be similarly proved even if the parts
subtracted be halves.

This proposition will be remembered because it is the lemma required in
Euclid’s proof of xi11. 2 to the effect that circles are to one another as the
squares on their diameters. Some writers appear to be under the impression
that x11. 2 and the other propositions in Book xi1. in which the method of
exhaustion is used are the only places where Euclid makes use of x. 1; and it
is commonly remarked that X. 1 might just as well have been deferred till the
beginning of Book x11. Even Cantor (Gesch. d. Math. 15, p. 269) remarks
that “ Euclid draws no inference from it [X. 1], not even that which we should
more than anything else expect, namely that, if two magnitudes are incom-
mensurable, we can always form a magnitude commensurable with the first
which shall differ from the second magnitude by as little as we please.” But,
so far from making no use of x. 1 before x11. 2, Euclid actually uses it in the
very next proposition, X. 2. This being so, as the next note will show, it
follows that, since X. 2 gives the criterion for the incommensurability of two
magnitudes (a very necessary preliminary to the study of incommensurables),
X. 1 comes exactly where it should be.

Euclid uses X. 1 to prove not only xi1. 2 but x11. 5 (that pyramids with the
same height and triangular bases are to one another as their bases), by means
of which he proves (x11. 7 and Por.) that any pyramid is a third part of the
prism which has the same base and equal height, and x11. 10 (that any cone
is a third part of the cylinder which has the same base and equal height),
besides other similar propositions. Now x11. 7 Por. and x11. 10 are theorems
specifically attributed to Eudoxus by Archimedes (On the Sphere and Cylinder,
Preface), who says in another place (Quadrature of the Parabola, Preface) that
the first of the two, and the theorem that circles are to one another as the
squares on their diameters, were proved by means of a certain lemma which
he states as follows: “Of unequal lines, unequal surfaces, or unequal solids,
the greater exceeds the less by such a magnitude as is capable, if added
[continually] to itself, of exceeding any magnitude of those which are
comparable with one another,” i.e. of magnitudes of the same kind as the
original magnitudes. Archimedes also says (/oc. cit.) that the second of
the two theorems which he attributes to Eudoxus (Eucl. xi1. 10) was
proved by means of ‘‘a lemma similar to the aforesaid.” The lemma
stated thus by Archimedes is decidedly different from X. 1, which, however,
Archimedes himself uses several times, while he refers to the use of it



16 BOOK X [x. 1

in xX11. 2 (On the Sphere and Cylinder, 1. 6). As I have before suggested
(The Works of Archimedes, p. xlviii), the apparent difficulty caused by the
mention of #70 lemmas in connexion with the theorem of Eucl. x11. 2 may be
explained by reference to the proof of x. 1. Euclid there takes the lesser
magnitude and says that it is possible, by multiplying it, to make it some time
exceed the greater, and this statement he clearly bases on the 4th definition of
Book v., to the effect that “magnitudes are said to bear a ratio to one another
which can, if multiplied, exceed one another.” Since then the smaller
magnitude in x. 1 may be regarded as the difference between some two
unequal magnitudes, it is clear that the lemma stated by Archimedes is in
substance used to prove the lemma in x. 1, which appears to play so much
larger a part in the investigations of quadrature and cubature which have come
down to us.

Besides being employed in Eucl. X. 1, the “ Axiom of Archimedes” appears
in Aristotle, who also practically quotes the result of x. 1 itself. Thus he
says, Physics viil. 10, 266 b 2, ““ By continually adding to a finite (magnitude)
I shall exceed any definite (magnitude), and similarly by continually subtract-
ing from it I shall arrive at something less than it,” and 7. n1. 7, 207 b 10
“For bisections of a magnitude are endless.” It is thus somewhat misleading
to use the term *Archimedes’ Axiom” for the “lemma” quoted by him,
since he makes no claim to be the discoverer of it, and it was obviously much
earlier.

Stolz (quoted by G. Vitali in Questions riguardants la geometria elementare,
PP- 91—2) showed how to prove the so-called Axiom or Postulate of Archimedes
by means of the Postulate of Dedekind, thus. Suppose the two magnitudes
to be straight lines. It is required to prove that, given two straight lines, there
always exists a multiple of the smaller whick is greater than the other.

Let the straight lines be so placed that they have a common extremity and
the smaller lies along the other on the same side of the common extremity.

If AC be the greater and 4.8 the smaller, we have to prove that there
exists an integral number # such that . A8 > AC.

Suppose that this is not true but that there are some points, like B, not
coincident with the extremity A4, and such that, 7 being any integer however
great, n. AB < AC; and we have to prove that this assumption leads to an
absurdity.

A X Y 8 (>

The points of 4C may be regarded as distributed into two “parts,” namely
(1) points A for which there exists no integer # such that n. 44> AC,

(2) points X for which an integer # does exist such that n. AKX > AC.

This division into parts satisfies the conditions for the application of
Dedekind’s Postulate, and therefore there exists a point A such that the
points of AM belong to the first part and those of MC to the second part.

Take now a point ¥ on MC such that Y < AM. The middle point (X)
of AY will fall between 4 and A and will therefore belong to the first part ;
but, since there exists an integer n» such that n. 4Y > AC, it follows that
2n. AX > AC: which is contrary to the hypothesis.



x. 2] PROPOSITIONS 1, 2 17

ProrosiTION 2.

If, when the less of two unequal magnitudes is continually
subtracted in turn from the greater, that whick is left never
measures the ome before it, the magnitudes will be incom-
mensurable. :

For, there being two unequal magnitudes 48, CD, and
AB being the less, when the less is continually subtracted
in turn from the greater, let that which is left over never
measure the one before it;

I say that the magnitudes 48, CD are incommensurable.
E A—2 B

%

For, if they are commensurable, some magnitude will
measure them.
Let a magnitude measure them, if possible, and let it be £;

let AB, measuring 7D, leave CF less than itself,
let CF measuring BG, leave AG less than itself,

and let this process be repeated continually, until there is left
some magnitude which is less than £.

Suppose this done, and let there be left 4G less than £.
Then, since £ measures A8, :

while A8 measures DF,

therefore £ will also measure F~D. .
But it measures the whole CD also;

therefore it will also measure the remainder CF.
But CF measures BG ;

therefore £ also measures BG.
But it measures the whole 423 also;

therefore it will also measure the remainder A4 G, the greater
the less:
which is impossible.

Therefore no magnitude will measure the magnitudes A4 5,
CD;
therefore the magnitudes 45, CD are incommensurable,

[x. Def. 1]
Therefore etc.
H, E. IIL. 2
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This proposition states the test for incommensurable magnitudes, founded
on the usual operation for finding the greatest common measure. The sign
of the incommensurability of two magnitudes is that this operation never
comes to an end, while the successive remainders become smaller and smaller
until they are less than any assigned magnitude.

Observe that Euclid says “let this process be repeated continually until
there is left some magnitude which is less than £.” Here he evidently
assumes that the process wi// some time produce a remainder less than any
assigned magnitude £. Now this is by no means selfevident, and yet
Heiberg (though so careful to supply references) and Lorenz do not refer to
the basis of the assumption, which is in reality x. 1, as Billingsley and
Williamson were shrewd enough to see. The fact is that, if we set off a
smaller magnitude once or oftener along a greater which it does not exactly
measure, until the remainder is less than the smaller magnitude, we take away
from the greater more than its kalf. Thus, in the figure, D is more than the
half of CD, and BG more than the half of 4B. If we continued the process,
AG marked off along CF as many times as possible would cut off more than
its half ; next, more than half 4G would be cut off, and so on. Hence along
CD, AB alternately the process would cut off more than half, then more than
half the remainder and so on, so that on 4ot/ lines we should ultimately
arrive at a remainder less than any assigned length.

The method of finding the greatest common measure exhibited in this
proposition and the next is of course again the same as that which we use and
which may be shown thus:

b)a(s
Y.

c)b(qg
gc
d)c(r
rd
¢

The proof too is the same as ours, taking just the same form, as shown in the
notes to the similar propositions vii. 1, 2 above. In the present case the
hypothesis is that the process never stops, and it is required to prove that a, &
cannot in that case have any common measure, as /. For suppose that £ is a
common measure, and suppose the process to be continued until the remainder
¢, say, is less than /.

Then, since f measures a, 4, it measures a — g4, or ¢.

Since f measures &, ¢, it measures 4 — ¢g¢, or 4; and, since f measures ¢, d,
it measures ¢ — 7d, or ¢: which is impossible, since ¢ < f. :

Euclid assumes as axiomatic that, if / measures 4, 4, it measures ma + nb.

In practice, of course, it is often unnecessary to carry the process far in
order to see that it will never stop, and consequently that the magnitudes are
incommensurable. A good instance is pointed out by Allman (Greek Geometry
JSrom Thales to Euclid, pp. 42, 137—8). Euclid proves in xu1. 5 that, if 458
be cut in extreme and mean ratio at C, and if
DA equal to AC be added, then DB isalso cut D A ¢ B8
in extreme and mean ratio at 4. This is indeed ) '
obvious from the proof of 11. 11. It follows conversely that, if BD is cut into
extreme and mean ratio at 4, and 4C, equal to the lesser segment 4.0, be
subtracted from the greater 4B, 4B is similarly divided at C. We can then
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mark off from 4 C a portion equal to CB, and 4C will then be similarly divided,
and so on. Now the greater segment in a line thus divided is greater than
half the line, but it follows from xii1. 3 that it is less than twice the lesser
segment, i.e. the lesser segment can never be marked off more than once from
the greater. Our process of marking off the lesser segment from the greater
continually is thus exactly that of finding the greatest common measure. If,
therefore, the segments were commensurable, the process would stop. But it
clearly does not ; therefore the segments are incommensurable.

Allman expresses the opinion that it was rather in connexion with the line
cut in extreme and mean ratio than with reference to the diagonal and side
of a square that Pythagoras discovered incommensurable magnitudes. But
the evidence seems to put it beyond doubt that the Pythagoreans did discover
the incommensurability of ,/2 and devoted much attention to this particular
case. The view of Allman does not therefore commend itself to me, though
it is likely enough that the Pythagoreans were aware of the incommensura-
bility of the segments of a line cut in extreme and mean ratio. At all events
the Pythagoreans could hardly have carried their investigations into the in-
commensurability of the segments of this line very far, since Theaetetus is
said to have made the first classification of irrationals, and to him is also,
with reasonable probability, attributed the substance of the first part of Eucl.
XIIL., in the sixth proposition of which occurs the proof that the segments of a
rational straight line cut into extreme and mean ratio are apofomes.

Again, the incommensurability of ,/2 can be proved by a method
practically equivalent to that of X. 2, and without carrying the process very
far. This method is given in Chrystal’s Zexs-

book of Algebra (1. p. 270). Let d, a be the B a A

diagonal and side respectively of a square

ABCD. Mark off 4F along AC equal to a.

Draw FE at right angles to 4C meeting BC

in E. IS

It is easily proved that SN d
BE = EF= FC, o & £
CF=AC-AB=d-a.......... (1) | 7
CE=CB-CF=a-(d-a) &
=2a—-d......... (2)

Suppose, if possible, that 4, @ are commensurable. If 4, a are both
commensurably expressible in terms of any finite unit, each must be an
integral multiple of a certain finite unit.

But from (1) it follows that C# and from (2) it follows that CE, is an
integral multiple of the same unit.

And CF, CE are the side and diagonal of a square CFEG, the side of
which is lss than half the side of the original square. 1f a,, d, are the side and
diagonal of this square,

a=d-a }
dy=2a-d)°
Similarly we can form a square with side @; and diagonal 4; which are less

than half q,, 4, respectively, and a,, 4, must be integral multiples of the same
unit, where

ay=d, - a,
dy=2a,—d,;
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and this process may be continued indefinitely until (x. 1) we have a square
as small as we please, the side and diagonal of which are integral multiples of
a finite unit: which is absurd.

Therefore a, d are incommensurable.

It will be observed that this method is the opposite of that shown in the
Pythagorean series of side- and diagonal-numbers, the squares being
successively smaller instead of larger.

ProrosITION 3.

Given two commensurable magnitudes, to find their greatest
common measure.

Let the two given commensurable magnitudes be 45, CD
of which 428 is the less;
thus it is required to find the greatest common measure of
AB, CD.

Now the magnitude 425 either measures CD or it does

not.

If then it measures it—and it measures itself also—AZB is
a common measure of A8, CD.

And it is manifest that it is also the greatest ;
for a greater magnitude than the magnitude 48 will not
measure AB5.

8 a-f 8

C E D

Next, let A8 not measure CD.

Then, if the less be continually subtracted in turn from
the greater, that which is left over will sometime measure
the one before it, because A58, CD are not incommensurable;

[cf. x. 2
let AB, measuring £D, leave E£C less than itself, :

let £C, measuring FB, leave AF less than itself,
and let AF measure CE.
Since, then, AF measures CE,
while CE measures 5,
therefore 4F will also measure ~5.
But it measures itself also ;
therefore 4 F will also measure the whole 45.
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But A8 measures DE ;
therefore A F will also measure £D.
But it measures CZ also ;
therefore it also measures the whole CD.
Therefore AF is a common measure of A8, CD.

I say next that it is also the greatest.

For, if not, there will be some magnitude greater than 4/
which will measure A8, CD.

Let it be G.

Since then G measures 4B,

while 4.8 measures £D,
therefore G will also measure £D.
But it measures the whole CD also ;
therefore G will also measure the remainder CE.
But CE£ measures FB;
therefore G will also measure F~5.
But it measures the whole 453 also,
and it will therefore measure the remainder 47, the greater
the less:
which is impossible.
Therefore no magnitude greater than AF will measure
AB, CD;
therefore AF is the greatest common measure of 48, CD.
Therefore the greatest common measure of the two given
commensurable magnitudes 45, CD has been found.
Q. E. D.

Porism. From this it is manifest that, if a magnitude
measure two magnitudes, it will also measure their greatest
common measure.

This proposition for two commensurable magnitudes is, mutatis mutandss,
exactly the same as vi1. 2 for numbers. We have the process
b)a(p

»

)b(q
il
d)e(r

rd

where ¢ is equal to 77 and therefore there is no remainder.
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It is then proved that 4 is a common measure of a, 4; and next, by a
reductio ad absurdum, that it is the greafest common measure, since any
common measure must measure @, and no magnitude greater than d can
measure d. The reductio ad absurdum is of course one of form only.

The Porism corresponds exactly to the Porism to vilL. 2.

The process of finding the greatest common measure is probably given in
this Book, not only for the sake of completeness, but because in X. 5 a
common measure of two magnitudes 4, B is assumed and used, and therefore
it is important to show that such a measure can be jfound if not already
known.

PROPOSITION 4.

Given three commensurable magnitudes, to find their greatest
common measure.

Let A, B, C be the three given commensurable magnitudes;
thus it is required to find the greatest
common measure of 4, B, C. A—
Let the greatest common measure B————
of the two magnitudes 4, B be taken, ¢—
and let it be D ; [x. 3] D
then D either measures C, or does
not measure it.
First, let it measure it.
Since then D measures C,
while it also measures A4, B,
therefore D is a common measure of 4, B, C.
And it is manifest that it is also the greatest ;
for a greater magnitude than the magnitude 2 does not
measure A4, B.

Next, let D not measure C.
I say first that C, D are commensurable.
For, since A, B, C are commensurable,

some magnitude will measure them,
and this will of course measure 4, B also;

so that it will also measure the greatest common measure of
A, B, name]y D. [x. 3, Por.]

But it also measures C;
so that the said magnitude will measure C, D;
therefore C, D are commensurable.
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Now let their greatest common measure be taken, and let
it be £. [x. 3]
Since then £ measures D,
while D measures 4, 5,
therefore £ will also measure 4, B.
But it measures C also;
therefore £ measures A4, B, C;
therefore £ is a common measure of 4, B, C.

I say next that it is also the greatest.
For, if possnble, let there be some magnitude / greater than
E, and let it measure 4, B, C.

Now, since # measures 4, B, C,
it will also measure 4, B,

and will measure the greatest common measure of 4, 5.
[x. 3, Por.]
But the greatest common measure of 4, Bis D;

therefore /" measures D.
But it measures C also;
therefore / measures C, D ;
therefore 7 will also measure the greatest common measure
of C, D. [x. 3, Por.]
But that is £';
therefore 7 will measure £, the greater the less :
which is impossible.
Therefore no magnitude greater than the magnitude £
will measure 4, B, C;

therefore £ is the greatest common measure of 4, B, C if D
do not measure C,

and, if it measure it, 2 is itself the greatest common measure.

Therefore the greatest common measure of the three given
commensurable magnitudes has been found.

PorisM. From this it is manifest that, if a magnitude
measure three magnitudes, it will also measure their greatest
common measure.

Similarly too, with more magnitudes, the greatest common
measure can be found, and the porism can be extended.

Q. E. D.
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This proposition again corresponds exactly to vii. 3 for numbers. As
there Euclid thinks it necessary to prove that, a, 4, ¢ not being prime to one
another, 4 and ¢ are also not prime to one another, so here he thinks it
necessary to prove that d, ¢ are commensurable, as they must be since any
common measure of a, 4/ must be a measure of their greatest common
measure 4 (X. 3, Por.).

The argument in the proof that ¢, the greatest common measure of 4, ¢, is
the greatest common measure of a, 4, ¢, is the same as that in vii. 3 and X. 3.

The Porism contains the extension of the process to the case of four
or more magnitudes, corresponding to Heron’s remark with regard to the
similar extension of viI. 3 to the case of four or more mumbers.

ProrosITION 5.

Commensurable magnitudes have to ome another the ratio
whick a number has to a number.

Let 4, B be commensurable magnitudes ;

I say that 4 has to B the ratio which a number has to a
number. :

For, since 4, B are commensurable, some magnitude will
measure them,
Let it measure them, and let it be C,

A B c
D

And, as many times as C measures 4, so many units let
there be in D;

ztl)gd, as many times as C measures B, so many units let there
in £,

Since then C measures 4 according to the units in D,
while the unit also measures D according to the units in it,

thet:efore the unit measures the number D the same number
of times as the magnitude C measures A4 ;

therefore, as Cis to A4, so is the unit to D ; [vir. Def. 20]
therefore, inversely, as A4 is to C, so is D to the unit.
[cf. v. 7, Por.]

Again, since C measures B according to the units in £,
while the unit also measures £ according to the units in it,
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therefore the unit measures £ the same number of times as C
measures 5 ;

therefore, as C is to B, so is the unit to £.
But it was also proved that,
as A is to C, so is D to the unit ;
therefore, ex aeguals,
as A is to B, so is the number D to £. [v. 22]

Therefore the commensurable magnitudes 4, B have to
one another the ratio which the number D has to the number £.
Q. E. D.

The argument is as follows. If a, 4 be commensurable magnitudes, they
have some common measure ¢, and

a = me,
b = ne,
where m, n are integers.
It follows that CLB=T M euininniniineiniiiinininnnen wee(1),
or, inversely, a:c=m:1;
and also that c:b=1:m,
so that, ex aequali, a:b=m:n.

It will be observed that, in stating the proportion (1), Euclid is merely
expressing the fact that @ is the same multiple of ¢ that m is of 1. In other
words, he rests the statement on the definition of proportion in viL Def. zo.
This, however, is applicable only to four numbers, and ¢, a are not numbers but
magnitudes. Hence the statement of the proportion is not legitimate unless
it is proved that it is true in the sense of v. Def. § with regard to magnitudes
in general, the numbers 1, m being magnitudes. Similarly with regard to the
other proportions in the proposition.

There is, therefore, a hiatus. Euclid ought to have proved that magnitudes
which are proportional in the sense of vi1. Def. 20 are also proportional in the
sense of v. Def. 5, or that the proportion of numbers is included in the
proportion of magnitudes as a particular case. Simson has proved this in his
Proposition C inserted in Book v. (see Vol. 11. pp. 126—8). The portion of
that proposition which is required here is the proof that,

if a=mb
c=md } !
then a:b=c:d, in the sense of v. Def. 5.
Take any equimultiples pa, ¢ of a, ¢ and any equimultiples ¢3, ¢d of , d.
Now pa=pmb }
pc=pmd)’

But, according as pmb > = < gb, pmd > = < ¢d.
. Therefore, according as ga > =< ¢b, pa>=< gd.

And pa, pc are any equimultiples of a, ¢, and ¢4, ¢d any equimultiples
of 4, d.

Therefore a:b=c:d. [v. Def. 5.]
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ProrosiTiON 6.

If two magnitudes have to one another the ratio whick a
number has to a number, the magnitudes will be commensurable.

For let the two magnitudes 4, /3 have to one another the
ratio which the number D has to the number £ ;

s | say that the magnitudes 4, B are commensurable.
A 8 C

[
E F
For let 4 be divided into as many equal parts as there
arc units in D,
and let C be equal to one of them ;
and let 7/ be made up of as many magnitudes equal to C as
10 there are units in £.
Since then there are in 4 as many magnitudes equal to C
as there are units in D,
whatever part the unit is of D, the same part is C of A also;
therefore, as C is to A4, so is the unit to D. [vi1. Def. 20)
18 But the unit measures the number D ;
therefore C also measures 4.
And since, as C is to A, so is the unit to D,
therefore, inversely, as A is to C, so is the number D to the
unit. [cf. v. 7, Por.]
o  Again, since there are in F as many magnitudes equal
to C as there are units in £,
therefore, as C is to F, so is the unit to £. [vi1. Def. 20]
But it was also proved that, .
as 4 isto C, so is D to the unit;

as therefore, ex aegnall, as A is to F, sois D to E. [v. 22)
But, as Disto £, sois A to B;
therefore also, as A is to B, so is it to F also. [v. 11]

;herefore A has the same ratio to each of the magnitudes
B F;
» therefore A is equal to £. [v. 9]
But € measures F';
therefore it measures A also.
Further it measures A also;
therefore C measures A, 5.
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35 Therefore 4 is commensurable with B.
Therefore etc.

PorisM. From this it is manifest that, if there be two
numbers, as D, £, and a straight line, as 4, it is possible to
make a straight line [#]such that the given straight line is to

4o it as the number D is to the number £.-

And, if a mean proportional be also taken between 4, F,
as B,

as A is to £, so will the square on A be to the square on 5,
that is, as the first is to the third, so is the figure on the first

45 to that which is similar and similarly described on the second.
[vi. 19, Por.]
But, as 4 is to £, so is the number D to the number £;

therefore it has been contrived that, as the number D is to
the number £, so also is the figure on the straight line 4 to
the figure on the straight line 5. Q. E. D.

15. But the unit measures the number D; therefore C also measures A.
These words are redundant, though they are apparently found in all the Mss.

The same link to connect the proportion of numbers with the proportion
of magnitudes as was necessary in the last proposition is necessary here. This
being premised, the argument is as follows.

Suppose a:b=m:n,
where m, n are (integral) numbers.

Divide a into » parts, each equal to ¢, say,

so that a = mc¢.
Now take 4 such that d=nc
Therefore we have aic=m:1,
and c:d=1:n,
so that, ex aeguali, a:d=m:n
= a : , by hypothesis.

Therefore 4 =d = ne,
so that ¢ measures 4 » times, and @, 4 are commensurable.
The Porism is often used in the later propositions. It follows (1) that, if
a be a given straight line, and m, » any numbers, a straight line x can be
found such that
a:x=m:n.
(2) We can find a straight line y such that
a*:y*=m:n.
For we have only to take y, a mean proportional between a and x, as
reviously found, in which case , y, x are in continued proportion and
Fv. Def. 9]
a:y=a:x
=m:.n.
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ProrosiTION 7.

Incommensurable magnitudes have not to one another the
ratio whick a number has to a number.

Let 4, B be incommensurable magnitudes ;
I say that A has not to B the ratio which a number has to a
number.

For, if A has to B the ratio which a number has to a
number, 4 will be commensurable with 5. [x. 6]

But it is not ;
therefore 4 has not to B the ratio which a
number has to a number.

Therefore etc.

>

ProrosiTION 8.

If two magnitudes have not to one another the ratio whick
a number has to a number, the magnitudes will be incom-
mensurable. '

For let the two magnitudes A4, B not have to one another
the ratio which a number has to a number ;
I say that the magnitudes 4, B are incom-
mensurable.

For, if they are commensurable, 4 will have to B the
ratio which a number has to a number. [x. 5]

But it has not;
therefore the magnitudes 4, B are incommensurable.

Therefore etc.

A
8

ProrosiTION 9.

The squares on straight lines commensurable in length have
to one another the ratio whick a square number has to a square
number; and squarves whick have to one another the ratio
whick a square number has to a square number will also have
their sides commensurable in length. But the squares on
straight lines incommensurable in length have mot to one
another the ratio which a square number has to a square
number ; and squares whick have not lo one another the ratio
which a square number kas to a square number will not kave
their sides commensurable in length either.
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For let 4, B be commensurable in length ;

I say that the square on 4 A 8
has to the square on A3 the G
ratio which a square number o
has to a square number. I

For, since 4 is commensurable in length with 5,
therefore 4 has to B the ratio which a number has to a
number. [x. 5]

Let it have to it the ratio which C has to D.

Since then, as 4 is to B, sois Cto D,
while the ratio of the square on A to the square on B is
duplicate of the ratio of 4 to B,
for similar figures are in the duplicate ratio of their corre-
sponding sides; [v1. 20, Por.]
and the ratio of the square on C to the square on D is duplicate
of the ratio of C to D,

for between two square numbers there is one mean proportional
number, and the square number has to the square number the
ratio duplicate of that which the side has to the side ; [vi. 11]

therefore also, as the square on A is to the square on B, so
is the square on C to the square on D.

Next, as the square on A is to the square on 7, so let
the square on C.be to the square on D ;

I say that A4 is commensurable in length with 5.

For since, as the square on A is to the square on B, so is
the square on C to the square on D,

while the ratio of the square on A4 to the square on B is
duplicate of the ratio of 4 to 5,

and the ratio of the square on C to the square on D is duplicate
of the ratio of C to D,
therefore also, as 4 is to B, so is C to D.

Therefore A4 has to B the ratio which the number C has
to the number D ;

therefore A4 is commensurable in length with 5. [x. 6]

Next, let 4 be incommensurable in length with B ;

I say that the square on 4 has not to the square on 3 the
ratio which a square number has to a square number.

For, if the square on A has to the square on B the ratio
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which a square number has to a square number, 4 will be
commensurable with 5.
But it is not ;

therefore the square on 4 has not to the square on 5 the
ratio which a square number has to a square number.

Again, let the square on 4 not have to the square on 5
the ratio which a square number has to a square number ;

I say that 4 is incommensurable in length with 5.

For, if A is commensurable with B, the square on 4 will
have to the square on B the ratio which a square number has
to a square number.

But it has not;

therefore A4 is not commensurable in length with B.
Therefore etc.

PorismM. And it is manifest from what has been proved
that straight lines commensurable in length are always com-
mensurable in square also, but those commensurable in square
are not always commensurable in length also.

[Lemma. It has been proved in the arithmetical books
that similar plane numbers have to one another the ratio
which a square number has to a square number, [vii 26]

and that, if two numbers have to one another the ratio which
a square number has to a square number, they are similar
plane numbers. [Converse of vi11. 26)

And it is manifest from these propositions that numbers
which are not similar plane numbers, that is, those which
have not their sides proportional, have not to one another
the ratio which a square number has to a square number.

For, if they have, they will be similar plane numbers:
which is contrary to the hypothesis.

Therefore numbers which are not similar plane numbers
have not to one another the ratio which a square number has
to a square number.]

A scholium to this proposition (Schol. x. No. 62) says categorically that
the theorem proved in it was the discovery of Theaetetus.

If a, & be straight lines, and

a:b=m:n,
where m, n are numbers,
then a:b=m
and conversely.



X. 9, 10] PROPOSITIONS o9, 10 31

This inference, which looks so easy when thus symbolically expressed, was
by no means so easy for Euclid owing to the fact that a, 4 are straight lines,
and m, n numbers. He has to pass from a : 4 to a* : 4* by means of vi. 20, Por.
through the duplicate ratio; the square on a is to the square on 4 in the
duplicate ratio of the corresponding sides a, 5. On the other hand, m, »
being numbers, it is vii. 11 which has to be used to show that m®: »® is the
ratio duplicate of m : n.

Then, in order to establish his result, Euclid assumes that, &f fwo ratios are
egual, the ratios whick are thesr duplicates are also equal. This is nowhere
proved in Euclid, but it is an easy inference from v. 22, as shown in my note
on VI. 22,

The converse has to be established in the same careful way, and Euclid
assumes that ratios the duplicates of which are equal are themselves equal.
This is much more troublesome to prove than the converse; for proofs I refer
to the same note on vi. 22.

The second part of the theorem, deduced by reductio ad absurdum from
the first, requires no remark.

In the Greek text there is an addition to the Porism which Heiberg
brackets as superfluous and not in Euclid’s manner. It consists (1) of a sort
of proof, or rather explanation, of the Porism and (2) of a statement and
explanation to the effect that straight lines incommensurable in length are
not necessarily incommensurable in square also, and that straight lines
incommensurable in square are, on the other hand, always incommensurable
in length also.

The Lemma gives expressions for two numbers which have to one another
the ratio of a square number to a square number. Similar plane numbers
are of the form pm . pn and gm . gn, or mnp® and mng®, the ratio of which is
of course the ratio of g* to ¢°.

The converse theorem that, if two numbers have to one another the ratio
of a square number to a square number, the numbers are similar plane
numbers is not, as a matter of fact, proved in the arithmetical Books. It is
the converse of viii. 26 and is used in 1X. 10. Heron gave it (see note on
viIL. 27 above).

Heiberg however gives strong reason for supposing the Lemma to be an
interpolation. It has reference to the next proposition, X. 10, and, as we shall
see, there are so many objections to X. 10 that it can hardly be accepted as
genuine. Moreover there is no reason why, in the Lemma itself, numbers
which are nof similar plane numbers should be brought in as they are.

[ProrosITION 10.

To find two straight lines incommensurable, the one in
length only, and the other in square also, with an assigned
straight line.

Let 4 be the assigned straight line ;

thus it is required to find two straight lines incommensurable,
the one in length only, and the other in square also, with 4.

Let two numbers B, C be set out which have not to one
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another the ratio which a square number has to a square
number, that is, which are not similar plane

numbers ; A
and let it be contrived that, o
as B is to C, so is the square on A4 to E
the square on D c
—for we have learnt how to do this—
[x. 6, Por.]
therefore the square on 4 is commensurable with the square
.on D, [x. 6]

And, since B has not to C the ratio which a square number
has to a square number,

therefore neither has the square on A4 to the square on D the
ratio which a square number has to a square number ;

therefore A4 is incommensurable in length with D. [x. 9]
Let £ be taken a mean proportional between 4, D ;

therefore, as A is to D, so is the square on A4 to the square
on £, [v. Def. 9]

But A4 is incommensurable in length with D;

therefore the square on A is also incommensurable with the
square on £ ; [x. 11]
therefore A is incommensurable in square with £.

Therefore two straight lines D, £ have been found in-
commensurable, D in length only, and £ in square and of
course in length also, with the assigned straight line 4.]

It would appear as though this proposition was intended to supply a
justification for the statement in x. Def. 3 that if s proved that there are an
infinite number of straight lines (2) incommensurable in length only, or
commensurable in square only, and () incommensurable in square, with any
given straight line.

But in truth the proposition could well be dispensed with; and the
positive objections to its genuineness are considerable.

In the first place, it depends on the following proposition, X. 11 ; for the
last step concludes that, since

a@:y'=a:ux,
and a, x are incommensurable in length, therefore a% y* are incommensurable.
But Euclid never commits the irregularity of proving a theorem by means of
a later one. Gregory sought to get over the difficulty by putting x. 10 after
X. 11; but of course, if the order were so inverted, the Lemma would still be
in the wrong place.

Further, the expression éuafouev ydp, “for we have learnt (how to do this),”
is not in Euclid’s manner and betrays the hand of a learner (though the same
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expression is found in the Sectlo Canonis of Euclid, where the reference is
to the Elements).

Lastly the manuscript P has the number 10, in the first hand, at the top
of X. 11, from which it may perhaps be concluded that x. 10 had at first no
number. .

It seems best therefore to reject as spurious both the Lemma and x. 1o.

The argument of X. 10 is simple. If @ be a given straight line and m, »
numbers which have not to one another the ratio of square to square, take x
such that :

a’:x*=m:n, [x. 6, Por.]
whence a4, x are incommensurable in length. [x. 9]
Then take y a mean proportional between a, x, whence
a’:yl=a:x [v. Def. 9]
[= m : Jn],

and x is incommensurable in length only, while y is incommensurable in
square as well as in length, with a.

PRoOPOSITION 11.

If four magnitudes be proportional, and the first be com-
mensurable with the second, the third will also be commensurable
with the fourth ; and, if the first be incommensurable with the
second, the thivd will also be incommensurable with the fourth.

Let A, B, C, D be four magnitudes in proportion, so
that, as 4 is to B, so is C
to D, A B8
and let 4 be commensurable C——7Mm— D
with B ;

I say that C will also be commensurable with D.

For, since A is commensurable with 5,
therefore 4 has to A the ratio which a number has to a
number. [x. 5]

And, as A isto B, sois Cto D;
therefore C also has to D the ratio which a number has to a
number ;
therefore C is commensurable with D, [x. 6]

Next, let 4 be incommensurable with 7 ;
I say that C will also be incommensurable with D.

For, since A is incommensurable with 3,
therefore A has not to B the ratio which a number has to a
number. [x. 7]

H. E. 1L 3



34 BOOK X [x. 11, 12

And, as A is to B, sois C to D ;

therefore neither has C to D the ratio which a number has to
a number ;

therefore C is incommensurable with D. [x. 8]
Therefore etc.

I shall henceforth, for the sake of brevity, use symbols for the terms
“commensurable (with)” and “incommensurable (with)” according to the
varieties described in X. Defl. 1—4. The symbols are taken from Lorenz
and seem convenient.

Commensurable and commensurable with, in relation to areas, and com-
mensurable in length and commensurable in length with, in relation to straight
lines, will be denoted by ~.

Commensurable in square only or commensurable in square only with (terms
applicable only to straight lines) will be denoted by ~.

Incommensurable (with), of areas, and incommensurable (with), of straight
lines will be denoted by .

Incommensurable in square (with) (a term applicable to straight lines only)
will be denoted by .

Suppose a, b, ¢, 4 to be four magnitudes such that

a:b=c:d.
Then (1), if @ ~ 4, a:b=m:n, where m, n are integers, [x. 5]

whence c:d=m: n,
and therefore cn~d. [x. 6]
(2) Ifacvsd, a:b+m:n, [x. 7]

so that c:d+m:n,
whence cvd. [x. 8]

ProrosiTION 12.

Magnitudes commensurable with the same magnitude are
commensurable with one another also.

For let each of the magnitudes 4, B be commensurable
with C;
I say that A is also commensurable with 5.

A c ;]

—F —K
G —_—

For, since A is commensurable with C,

therefore 4 has to C the ratio which a number has to a
number. [x. 5]



X. 12] PROPOSITIONS 11, 12 35

Let it have the ratio which D has to £.
Again, since C is commensurable with B,

therefore C has to B the ratio which a number has to a
number. [x. 5]

Let it have the ratio which # has to G.

And, given any number of ratips we please, namely the
ratio which D has to £ and that which # has to G,

let the numbers /A, K, L be taken continuously in the given
ratios ; [cf. vinL. 4]

so that, as D isto £, sois H to K,
and, as Fisto G, sois K to L.
Since, then, as A isto C, so is D to E,
while, as D is to £, so is H to KX,
therefore also, as 4 is to C, so is A to K. [v. 11]
Again, since, as C is to B, so is F to G,
while, as Fisto G, sois K to L,

therefore also, as Cis to B, so is K to L. [v. 11]
But also, as A isto C, sois A to K;
therefore, ex aequali, as A is to B, sois A to L. [v. 22]

Therefore 4 has to B the ratio which a number has to a
number ;

therefore A4 is commensurable with 5. [x. 6]

Therefore etc.
Q. E. D.

We have merely to go through the process of compounding two ratios in
numbers.

Suppose a, b each ~c.
Therefore a:c=m:n, say, [x. 5]
c:b=p:gq, say.
Now m:n=mp: np,
and pig=np: ng
Therefore a:c=mp: np,
c:b=np: ng,
whence, ex aequali, a:b=mp: nq,
so that anb. [x. 6]
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ProrosiTiON 13.

If two magnitudes be commensurable, and the one of them
be incommensurable with any magnitude, the rvemaining one
will also be incommensurable with the same.

Let A4, B be two commensurable magnitudes, and let one
of them, A, be incommensurable with

any other magnitude C; ) A
I say that the remaining one, B, will ¢
also be incommensurable with C. B8

For, if B is commensurable with C,
while A4 is also commensurable with 5,
A is also commensurable with C. [x. 12]
But it is also incommensurable with it :
which is impossible.
Therefore 2 is not commensurable with C;
therefore it is incommensurable with it.
Therefore etc.

LEMMA.

Given two unequal straight lines, to find by what square the
square on the greater is greater than the square on the less.

Let 4B, C be the given two unequal straight lines, and
let A8 be the greater of them ;

thus it is required to find by what D
square the square on 45 is greater
than the square on C.

c
Let the semicircle ADZB be de- A B
scribed on A58,
and let 4D be fitted into it equal to C; [wv. 1]

let DB be joined.
It is then manifest that the angle AD2A is right, [ 31]

and that the square on A28 is greater than the square on
AD, that is, C, by the square on D2B5. [r 47]

Similarly also, if two straight lines be given, the straight
line the square on which is equal to the sum of the squares
on them is found in this manner.
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Let AD, DB be the given two straight lines, and let it be
required to find the straight line the square on which is equal
to the sum of the squares on them.

Let them be placed so as to contain a right angle, that
formed by 4D, DB ;
and let 423 be joined.

It is again manifest that the straight line the square on
which is equal to the sum of the squares on 4D, DB is AB.
[ 47]

Q. E. D.

__The lemma gives an obvious method of finding a straight line (¢) equal to
a* =8, where a, b are given straight lines of which a is the greater.

ProrosiTION 14.

If four straight lines be proportional, and the square on
the first be greater than the square on the second by the square
on a straight line commensurable with the first, the square on
the thivd will also be greater than the square on the fourth by

5 the squave on a straight line commensurable with the third.

And, of the square on the first be greater than the square
on the second by the square on a straight line incommensurable
with the first, the square on the third will also be greater than
the square on the fourth by the square on a straight line in-

10 commensurable with the third.

Let 4, B, C, D be four straight lines in proportion, so
that,as 4 isto B, sois C to D ;

and let the square on A4 be greater than |
the square on A by the square on £, and

15 let the square on C be greater than the
square on D by the square on F;

I say that, if 4 is commensurable with Z|
C is also commensurable with 7,

and, if A is incommensurable with £, C is
20 also incommensurable with 7.

For since, as 4 is to B,so is C to D,

therefore also, as the square on A4 is to the square on 7, so is
the square on C to the square on D. [vr. 22]

But the squares on £, B are equal to the square on 4,
25 and the squares on [, £ are equal to the square on C.
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Therefore, as the squares on £, B are to the square on
B, so are the squares on D, F to the square on D ;

therefore, separando, as the square on £ is to the square on
B, so is the square on F to the square on J; [v. 17]

30 therefore also, as £ is to B, sois /7 to D ; [v1. 22]
therefore, inversely, as B is to £, so is D to F.
But, as 4 is to B, so alsois C to D ;
therefore, ex aequali, as A is to £, so is C to F. [v. 22]

Therefore, if 4 is commensurable with £, C is also com-
35 mensurable with 7|

and, if 4 is incommensurable with £, C is also incommen-
surable with #. [x. 11]

Therefore etc.

3, 5, 8, 10. Euclid speaks of the square on the first (third) being irca!er than the square
on the second (fourth) by the square on a straight line commensurable (incommensurable)
““ with #tself (éavrp),” and similarly in all like phrases throughout the Book. For clearness’
sake I substitute ** the first,” * the third,” or whatever it may be, for ‘“itself ” in these cases.

Suppose a, 4, ¢, 4 to be straight lines such that
a:b=c:d ....c... i (1).
It follows [vi. 22] that @:P=cd e, (2).
In order to prove that, convertendo,
a:(@-0)=c:(*-ad%

Euclid has to use a somewhat roundabout method owing to the absence of a
convertendo proposition in his Book v. (which omission Simson supplied by
his Prop. E).

It follows from (2) that

(@-8)+ 8} B ={(@-d) +d% : &,

whence, separando, (@*- &) : = (r2—d°) : d?, [v. 17]
and, inversely, B:(a-8)=da*:(*-d?.
From this and (2), ex aeguali,
a':(a'— ) =c*: (c-d?). [v. 22]
Hence a:Na=F=c: N [vi. 22]
According therefore as @~ or v Va'— &,
crorudEa- A, [x. 11]

If @ ~ Ja*— 4, we may put Ja’—bf:ka, where £ is of the form m/n
and m, n are integers. And if ~a?-/4*=#ka, it follows in this case that

Net —di=ke.
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ProrposiTION 15.

If two commensurable magnitudes be added together, the
whole will also be commensurable with eack of them,; and, if
the whole be commensurable with one of them, the original
magnitudes will also be commensurable.

For let the two commensurable magnitudes 45, BC be
added together ; 8
I say that the whole AC is also A - c
commensurable with each of the

magnitudes A8, BC. °

For, since A5, BC are commensurable, some magnitude
will measure them.

Let it measure them, and let it be D.

Since then D measures A5, BC, it will also measure the
whole AC.

But it measures 4B, BC also;
therefore 2 measures A8, BC, AC;

therefore 4C is commensurable with each of the magnitudes
AB, BC. [x. Def. 1]

Next, let AC be commensurable with A5 ;
I say that A8, BC are also commensurable.

For, since AC, AB are commensurable, some magnitude
will measure them.

Let it measure them, and let it be D.

Since then D measures CA, AZB, it will also measure the
remainder BC.

But it measures A5 also;

therefore D will measure AB, BC;
therefore A8, BC are commensurable. [x. Def. 1]
Therefore etc.

(1) If a, b be any two commensurable magnitudes, they are of the form
mc, nc, where ¢ is a common measure of a, 4 and m, #» some integers.

It follows that a+b=(m+n)c;
therefore (a + 4), being measured by ¢, is commensurable with both a and 4.

(2) If a +4 is commensurable with either @ or 4, say a, we may put
a + b= mc, a=nc, where ¢ is a common measure of (e +4), a, and m, » are
integers.

Subtracting, we have b= (m—n)e,
whence 4 ~ a.
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ProrosiTION 16.

If two incommensurable magnitudes be added together, the
whole will also be incommensurable with each of them ; and, if
the whole be incommensurable with one of them, the original
magnitudes will also be incommensurable.

For let the two incommensurable magnitudes 45, BC be
added together ;

I say that the whole AC is also incommensurable A
with each of the magnitudes 48, BC.

For, if CA, AB are not incommensurable, some

magnitude will measure them.
Let it measure them, if possible, and let it be D. st
Since then D measures CA, AB,

therefore it will also measure the remainder BC.

But it measures AR also; c
therefore D measures AB, BC.

Therefore AB, BC are commensurable ;
but they were also, by hypothesis, incommensurable : *
which is impossible.

Therefore no magnitude will measure CA, A8 ;
therefore CA, A B are incommensurable. [x. Def. 1]

Similarly we can prove that 4C, CB are also incom-

mensurable.
Therefore AC is incommensurable with each of the magni-

tudes A5, BC.

Next, let 4C be incommensurable with one of the magni-

tudes A8, BC.
First, let it be incommensurable with 45 ;

I say that 42, BC are also incommensurable.

For, if they are commensurable, some magnitude will
measure them.

Let it measure them, and let it be D.

Since then D measures A8, BC,
therefore it will also measure the whole 4AC.

But it measures A28 also ;

therefore D measures CA, AB.
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Therefore CA, AB are commensurable ;
but they were also, by hypothesis, incommensurable :
which is impossible.
Therefore no magnitude will measure 45, BC;
therefore AB, BC are incommensurable. [x. Def. 1]
Therefore etc.
LEMMA,
If to any straight line there be applied a parallelogram
deficient by a square figure, the applied parallelogram is equal

Lo the rectangle contained by the segments of the straight line
vesulting from the application.

For let there be applied to the straight line 42 the
parallelogram 40D deficient by the

square figure DB ; 2
I say that 4D is equal to the rectangle
contained by 4C, CA. K S

This is indeed at once manifest ;
for, since DA is a square,
DC is equal to CB;
aglg AD is the rectangle AC, CD, that is, the rectangle 4C,

Therefore etc.

If a be the given straight line, and x the side of the square by which the
applied rectangle is to be deficient, the rectangle is equal to ax — 2%, which is
of course equal to x(a—=x). The rectangle may be written xy, where
x+y=a. Given the area x(a - x), or xy (where x+y=a), two different
applications will give rectangles equal to this area, the sides of the defect
being x or @ - x (x or y) respectively; but the second mode of expression
shows that the rectangles do not differ in form but only in position.

ProrosiTION 17.

If there be two unequal straight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the square on the less and deficient by a square figure, and tf
it divide it into parts whick ave commensurable in length, then

s the square on the greater will be greater than the square on
the less by the square on a stvaight line commensurable with
the greater.

And, tf the square on the greater be greater than the square
on the less by the square on a straight line commensurable with
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10 the greater, and if there be applicd to the greater a parallelogram
equal to the fourth part of the square on the less and deficient
by a square figure, 1t will divide it into parts whick are com-
mensurable in length.

Let A, BC be two unequal straight lines, of which BC is

15 the greater, 4

and let there be applied to BC a parallel- A

ogram equal to the fourth part of the

square on the less, A4, that is, equal to -7

the square on the half of 4, and deficient | '
2o by a square figure. Let this be the &+ é 6 ©

rectangle BD, DC, [cf. L.emma)

and let BD be commensurable in length with DC;

I say that the square on BC is greater than the square on 4
by the square on a straight line commensurable with BC.
25 For let BC be bisected at the point £,
and let £/ be made equal to DE.
Therefore the remainder DC is equal to BF.
And, since the straight line BC has been cut into equal
parts at £, and into unequal parts at D,
30 therefore the rectangle contained by 2D, DC, together with
the square on £, is equal to the square on £C; (1. 5]
And the same is true of their quadruples ;
therefore four times the rectangle 8D, DC, together with
four times the square on DE, is equal to four times the square
sson £C.
But the square on A4 is equal to four times the rectangle
BD, DC;
and the square on DF is equal to four times the square on
DE, for DF is double of DE.
49  And the square on BC is equal to four times the square
on EC, for again BC is double of CE.
Therefore the squares on A, DF are equal to the square
on BC,
so that the square on BC is greater than the square on 4 by
a5 the square on DF.
It is to be proved that BC is also commensurable with DF.
Since BD is commensurable in length with DC,

therefore BC is also commensurable in length with CD. [x.15]
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But CD is commensurable in length with CD, BF, for
so CD is equal to BF. [x. 6]

Therefore BC is also commensurable in length with BF,
CD, [x. 12]

so that BC is also commensurable in length with the remainder
FD; [x. 15]

ss therefore the square on BC is greater than the square on A4
by the square on a straight line commensurable with BC.

Next, let the square on BC be greater than the square on
A by the square on a straight line commensurable with ZC,

let a parallelogram be applied to BC equal to the fourth part
6o of the square on A4 and deficient by a square figure, and let
it be the rectangle 2D, DC.
It is to be proved that B0 is commensurable in length
with DC.
With the same construction, we can prove similarly that
65 the square on BC is greater than the square on A4 by the
square on FD.
But the square on AZC is greater than the square on A
by the square on a straight line commensurable with BC.
Therefore BC is commensurable in length with /D,
70 so that BC is also commensurable in length with the remainder,
the sum of BF, DC. [x. 15]
But the sum of BF, DC is commensurable with DC, [x. 6]
so that Z2C is also commensurable in length with CD; [x. 12]
and therefore, sgparando, BD is commensurable in length
75 with DC. [x. 15]
Therefore etc.

45-  After saying literally that *“the square on BC is greater than the square on A by the
square on DF,” Euclid adds the equivalent expression with vraras in its technical sense,
% BT dpa 7is A ueifor Stwarar 7 AZ. As this is untranslatable in English except by a
paraphrase in practically the same words as have preceded, I have not attempted to
reproduce it.

This proposition gives the condition that the roots of the equation in x,
b!
ax—f:ﬁ(:‘ 4'" say),
are commensurable with a, or that x is expressible in terms of a and integral

numbers, i.e. is of the form ga. No better proof can be found for the fact

that Euclid and the Greeks used their solutions of quadratic equations for
numerical problems. On no other assumption could an claborate discussion
of the conditions of incommensurability of the roots with given lengths or



44 BOOK X [x. 17

with a given number of units of length be explained. 1In a purely geometrical
solution the distinction between commensurable and incommensurable roots
has no point, because each can equally easily be represented by straight lines.
On the other hand, on the assumption that the numerical solution of quadratic
equations was an important part of the system of the Greek geometers,
the distinction between the cases where the roots are commensurable and
incommensurable respectively with a given length or unit becomes of great
importance. Since the Greeks had no means of expressing what we call an
irrational number, the case of an equation with incommensurable roots could
only be represented by them geometrically ; and the geometrical representations
had to serve instead of what we can express by formulae involving surds.

Euclid proves in this proposition and the next that, x being determined
from the equation

x, (a - x) are commensurable in length when v/a*—-#, a are so, and incom-
mensurable in length when ~/a® — &, a are incommensurable ; and conversely.

Observe the similarity of his proof to our algebraical method of solving
the equation. a being represented in the figure by BC, and x by CD,

EF:ED:S—x

and x(a-x)+ (g - )a =2 , by Eucl. 11. s.
If we multiply throughout by 4,

4x(a—x)+4(g—xy=aﬂ

whence, by (1), P+ (a—2x)=a?,
or a’— §=(a—2x)},
and Nt = F _a- 2z,

We have to prove in this proposition
(1) that, if &, (@ — x) are commensurable in length, so are a, Va: - &,
(2) that, if @, Ja* - /* are commensurable in length, so are x, (2 — x).

(1) To prove that a, @ — 2x are commensurable in length Euclid employs
several successive steps, thus.

Since (a — x) ~ x, an~x. [x. 15]
But x ~2x. [x. 6]
Therefore an2x [x. 12]
~ (a - 2x). [x. 15]
That is, an~ o - &
(2) Since a ~ Na'— &, an~a-zx,
whence an~ 2x. [x. 15]
But 2x ~nx; [x. 6]
therefore an~ x, [x. 12]

and hence (@-x)~=x. [x. 15]



X. 17, 18] PROPOSITIONS 17, 18 45

It is often more convenient to use the symmetrical form of equation in
this and similar cases, viz.

:ry—f
4 .
X+y=a

The result with this mode of expression is that
(1) if x ~y, then a ~ J/a?— #*; and
(2) if an \/d’;ﬁ’, then x ~ y.

The truth of the proposition is even easier to see in this case, since
(x=y)=(a*-#)

ProposiTiON 18.

Lf there be two unequal stvaight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the square on the less and deficient by a square figure, and
if ot divide it into parts which are incommensurable, the square
on the greater will be greater than the squarve on the less by
the square on a straight line incommensurable with the greater.

And, if the square on'the greater be greater than the square
on the less by the square on a straight line incommensurable
with the greater, and if theve be applied to the greater a
parallelogram equal to the fourth part of the square on the

less and deficient by a square figure, it divides it into parts
which are incommensurable.

Let A4, BC be two unequal straight lines, of which BC is
the greater, :
and to BC let there be applied a parallelogram equal  ®
to the fourth part of the square on the less, 4, and _|
deficient by a square figure. Let this be the rect- ©
angle BD, DC, [cf. Lemma before x. 17] gl A
and let 2D be incommensurable in length with DC;

I say that the square on BC is greater than the ©
square on A by the square on a straight line incom-
mensurable with ZC.

C

For, with the same construction as before, we can prove
similarly that the square on BC is greater than the square on
A by the square on FD.

It is to be proved that BC is incommensurable in length
with DF.
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Since BD is incommensurable in length with DC,

therefore BC is also incommensurable in length with CD.
[x. 16]

But DC is commensurable with the sum of BF, DC; [x. 6]
therefore BC is also incommensurable with the sum of BFZ,

DC; [x. 13]
so that BC is also incommensurable in length with the remainder
FD. [x. 16]

And the square on BC is greater than the square on 4
by the square on FD;
therefore the square on BC is greater than the square on A4
by the square on a straight line incommensurable with BC.

Again, let the square on BC be greater than the square on
A by the square on a straight line incommensurable with BC,
and let there be applied to BC a parallelogram equal to the
fourth part of the square on 4 and deficient by a square figure.
Let this be the rectangle 5D, DC.

It is to be proved that BD is incommensurable in length
with DC.

For, with the same construction, we can prove similarly
that the square on ZC is greater than the square on 4 by
the square on F2.

But the square on BC is greater than the square on A4 by
the square on a straight line incommensurable with ZC;

therefore BC is incommensurable in length with /D,
so that BC is also commensurable with the remainder, the

sum of BF, DC. [x. 16]
But the sum of BF, DC is commensurable in length with
DC; [x. 6]

therefore BC is also incommensurable in length with DC,

[x. 13]
so that, s¢parando, BD is also incommensurable in length with
DC. [x. 16]

Therefore etc.

With the same notation as before, we have to prove in this proposition that
(1) if (a - x), x are incommensurable in length, so are 4, Ja* — 5, and
(2) if a, ¥a*— 8 are incommensurable in length, so are (a - x), x.
Or, with the equations 5
Xy = Z } ,
x+y=a
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(1) if x vy, then a v J&® = #, and
(2) if a v Ja* =7, then x © y.

The steps are exactly the same as shown under (1) and (2) of the last
note, with o instead of ~, except only in the lines “x ~ 2x” and “2x ~ x”
which are unaltered, while, in the references, x. 13, 16 take the place of x.
12, 15 respectively.

[LeEMMA.

Since it has been proved that straight lines commen-
surable in length are always commensurable in square also,
while those commensurable in square are not always com-
mensurable in length also, but can of course be either
commensurable or incommensurable in length, it is manifest
that, if any straight line be commensurable in length with a
given rational straight line, it is called rational and commen-
surable with the other not only in length but in square also,
since straight lines commensurable in length are always
commensurable in square also.

But, if any straight line be commensurable in square with
a given rational straight line, then, if it is also commensurable
in length with it, it is called in this case also rational and
commensurable with it both in length and in square; but, if
again any straight line, being commensurable in square with a
given rational straight line, be incommensurable in length
with it, it is called in this case also rational but commensurable
in square only. ]

ProrosiTION 19.

The rectangle contained by rational straight lines commen-
surable in length is rational.

For let the rectangle 4AC be contained by the rational
straight lines A8, BC commensurable in

length ; (1)
I say that AC is rational.
For on 4B let the square A0 be de- ©
scribed ;
therefore 4D is rational. [x. Def. 4] ‘
And, since AB is commensurable in A B8

length with BC,
while 4B is equal to BD,
therefore B0 is commensurable in length with BC.
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And, as BD is to BC, sois DA to AC. [vi. 1]
Therefore DA is commensurable with 4C. [x. 11]
But DA is rational ;

therefore AC is also rational. : [x. Def. 4]

Therefore etc.

There is a difﬁculty in the text of the enunciation of this proposition
The Greek runs 7o v1ro prrov paxe o'uy.y.crpmv xatd TWa TGOV wpoftpn;uvwv
Tporwv evbadv mepiexopevoy opooyww.ov pyrov éorw, where the rectangle is
said to be contained by ‘rational straight lines commensurable in length 7»
any of the aforesaid ways.” Now straight lines can only be commensurable
in length in one way, the degrees of commensurability being commensurability
in length and commensurability in square only. But a straight line may be
rational/ in two ways in relation to a grven rational straight line, since it may
be either commensurable 7 length, or commensurable in square only, with the
latter. Hence Billingsley takes xard Twa rév mpoepypévov Tpemrwy with pyrav,
translating “straight lines commensurable in length and rational in any of the
aforesaid ways,” and this agrees with the expression in the next proposition
‘“a straight line once more rational in any of the aforesaid ways”; but the
order of words in the Greck seems to be fatal to this way of translating
the passage.

The best solution of the difficulty seems to be to reject the words “in
any of the aforesaid ways” altogether. They have rcference to the Lemma
which immediately precedes and which is itself open to the gravest suspicion.
It is very prolix, and cannot be called necessary; it appears moreover in
connexion with an addition clearly spurious and therefore relegated by
Heiberg to the Appendix. The addition does not even pretend to be<Euclid’s,
for it begins with the words “for /e calls rational straight lines those....”
Hence we should no doubt relegate the I.emma itself to the Appendix.
August does so and leaves out the suspected words in the enunciation, as I
have done.

Exactly the same arguments apply to the L.emma added (without the
heading “ Lemma”) to X. 23 and the same words “in any of the aforesaid
ways ” used with “medial straight lines commensurable in length” in the
enunciation of X. 24. The said Lemma must stand or fall with that now in
question, since it refers to it in terms: “And in the same way as was explained
in the case of rationals....”

Hence I have bracketed the Lemma added to x. 23 and left out the
objectionable words in the enunciation of x. 24.

If p be one of the given rational straight lines (rational of course in the
sense of X. Def. 3), the other can be denoted by 4p, where £ is, as usual, of
the form m/n (where m, n are integers). Thus the rectangle is 4p% which is
obviously rational since it is commensurable with p%.  [x. Def. 4.]

A rational rectangle may have any of the forms ad, 4q*, 24 or A4, where
a, b are commensurable with the unit of length, and 4 with the unit of area.

Since Euclid is not able to use 4p as a symbol for a straight line
commensurable in length with p, he has to put his proof in a form corre-
sponding to

P’ kp*=p: kp,
whence, p, £p being commensurable, p?, 4p* are so also. [x. 11]
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ProrposiTION 20.

If a rational area be applied to a rational straight line, it
produces as breadth a straight line vational and commensurable
in length with the straight line to which it is applied.

For let the rational area 4C be applied to A5, a straight
line once more rational in any of the aforesaid
ways, producing BC as breadth ;

I say that BC is rational and commensurable in
length with B4.

For on A2 let the square 4D be described ; 8 A

therefore 4D is rational. [x. Def. 4]
But AC is also rational ;

therefore DA is commensurable with 4C.

And, as DA is to AC, so is DB to BC. c

VI. I
Therefore DA is also commensurable with 2C; [x. 11]

and DB is equal to B4 ;
therefore A28 is also commensurable with BC.
But AZA is rational ;

therefore BC is also rational and commensurable in length
with 4 8.

Therefore etc.

The converse of the last. If p is a rational straight line, any rational area
is of the form £p® If this be “applied” to p, the breadth is #4p commensurable
in length with p and therefore rational. We should reach the same result if
we applied the area to anot/ker rational straight line . The breadth is then

2 2
Wk

m
=— k.o or £, say.
o o n » Sy

ProrosiTION 21.

The rectangle contained by rational strvaight lines commen-
surable in square only ts irrational, and the side of the square
equal lo it is irrational. Let the latter be called medial.

For let the rectangle 4C be contained by the rational
straight lines A4 B, BC commensurable in square only ;

H. E. IIL. 4
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I say that AC is irrational, and the side of the square equal
to it is irrational ;

and let the latter be called medial. D
For on AR let the square 4D be described ;
therefore 4D is rational. [x. Def. 4] 8 A

And, since A7 is incommensurable in length
with BC,

for by hypothesis they are commensurable in ¢

square only,

while A8 is equal to BD,

therefore DA is also incommensurable in length with BC.
And, as DB is to BC, sois AD to AC; [vi. 1]

therefore DA is incommensurable with 4C. [x. 11]
But DA is rational ;

therefore AC is irrational,

so that the side of the square equal to 4C is also irrational.
[x. Def. 4]

And let the latter be called medial.
Q. E. D.

A medial straight line, now defined for the first time, is so called because
-it is a mean proportional between two rational straight lines commensurable
in square only. Such straight lines can be denoted by p, p /& A medial

straight line is therefore of the form /p* /£ or #p.  Euclid’s proof that this is
irrational is equivalent to the following. Take p, p/# commensurable in
square only, so that they are incommensurable in length. -

Now pipJk=p': PR,
whence [x. 11] p*s/£ is incommensurable with p? and therefore irrational
[x. Def. 4], so that J/p>\/# is also irrational [#d.).

A medial straight line may evidently take either of the forms /a./B or
Y4B, where of course B is not of the form 44.

LEMMA.

If there be two straight lines, then, as the first is to the
second, so is the square on the first
to the rectangle contained by the
two straight lines.

Let FE, EG be two straight
lines.

I say that, as /£ is to £G, so is the square on F£ to
the rectangle FE, EG.

G

D



X. 21, 22] PROPOSITIONS 21, 22 51

For on FE let the square DF be described,
and let GD be completed.

Since then, as FE is to £G, so is FD to DG, [vi. 1]
and FD is the square on FZ,
and DG the rectangle DE, EG, that is, the rectangle FE, EG,
therefore, as /£ is to £G, so is the square on FE to the
rectangle FE, EG. ' :

Similarly also, as the rectangle GE, EF is to the square
on £F, that is, as GDis to FD, so is GE to EF.

Q. E. D.

If a, 5 be two straight lines,
a:b=a*:ab.

ProrosiTION 22.

The square on a medial straight line, if applied to a
rational straight line, produces as breadth a straight line
rational and incommensurable in length with that to whick it
is applied.

Let A4 be medial and CA rational,

and let a rectangular area B0 equal to the square on 4 be
applied to BC, producing CD as
breadth ;
I say that CD is rational and incom-
mensurable in length with CB. a
For,since A is medial, the square
on it is equal to a rectangular area
contained by rational straight lines
commensurable in square only.
X. 21
Let the square on it be eqfla] to GF.
But the square on it is also equal to 8D ;

therefore B0 is equal to GF.
But it is also equiangular with it;
and in equal and equiangular parallelograms the sides about
the equal angles are reciprocally proportional ; [v1. 14]
therefore, proportionally, as BC is to £G, so is EF to CD.
Therefore also, as the square on BC is to the square on
EG, so is the square on £/ to the square on CD. [v. 22]

4—2

G DO E F
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But the square on CAB is commensurable with the square
on £G, for each of these straight lines is rational ;

therefore the square on £F is also commensurable with the

square on COD. [x. 11]
But the square on £F is rational ;
therefore the square on CD is also rational ; [x. Def. 4]

therefore CD is rational.

And, since £F is incommensurable in length with £G,
for they are commensurable in square only,
and, as £F'is to £G, so is the square on £F to the rectangle

FE, EG, [Lemma]
therefore the square.on EF is incommensurable with the
rectangle FE, EG. [x. 11]

But the square on CD is commensurable with the square
on EF, for the straight lines are rational in square ;

and the rectangle DC, CB is commensurable with the rect-
angle FE, EG, for they are equal to the square on A4 ;

therefore the square on CD is also incommensurable with the

rectangle DC, CAB. [x. 13]
But, as the square on CD is to the rectangle DC, CB, so
is DC to CB; [Lemma)

therefore DC is incommensurable in length with CB.  [x. 11]

Therefore CD is rational and incommensurable in length
with CA.
Q. E. D.

Our algebraical notation makes the result of this proposition almost self-
evndent We have seen that the square of a medial straight line is of the form
J&.p*. 1If we “apply” this area to another rational straight line o, the

2

breadth is “- '-B .

~/ o

straight line, which we may express, lf we please, in the form /#'. o, is Clearly
commensurable with ¢ in square only, and therefore rational but incom-
mensurable in length with o.

Euclid’s proof, necessarily longer, is in two parts.

Suppose that the rectangle /2. p*=0. x.

Then (1) oc:p=.Jk.p:x, [vi. 14])
whence o’ p?=Ap*: a2t [v1. 22]

But o® ~ p?% and therefore 4p* ~ a2 [x. 11]

m . }
This is equal to = Jk.= i) where m, n are integers. The latter
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And #p? is rational ;

therefore x*, and therefore x, is rational. [x. Def. 4]
(2) Since JJ&.p ~p, JE.pvp.
But [Lemma] JE.pip=ko: Jk.p,

whence ko' v JE . P2 [x. 11]
But /4. p* = ox, and £p* ~ 2* (from above) ;

therefore oox; [x. 13]

and, since 2:0x =x:0, [Lemma)

X v o

ProrosiTiON 23.

A straight line commensurable with a medial straight line
s medial,
Let A be medial, and let 2 be commensurable with 4 ;

[ say that A2 is also medial.
For let a rational straight line CD

. A ;]

be set out,
and to CD let the rectangular area CE c
equal to the square on A4 be applied,
producing £D as breadth ;
therefore £ is rational and incommen-
surable in length with CD. [x. 22]

And let the rectangular area CF E D ¥

equal to the square on A be applied to
CD,. producing DF as breadth.
Since then 4 is commensurable with B,

the square on A is also commensurable with the square on 5.
But £C is equal to the square on 4,
and CF is equal to the square on 5; .
therefore £C is commensurable with CZ.
And, as £Cisto CF,sois ED to DF; [vt. 1]
therefore £ is commensurable in length with DF.  [x. 11]
But £D is rational and incommensurable in length with
DC;
therefore DF is also rational [x. Def. 3] and incommensurable
in length with DC. [x. 13]

Therefore CD, DF are rational and commensurable in
square only.
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But the straight line the square on which is equal to the
rectangle contained by rational straight lines commensurable
in square only is medial ; [x. 21]

therefore the side of the square equal to the rectangle CD,
DF is medial.

And B is the side of the square equal to the rectangle
CD, DF;
therefore B is medial.

PorisM. From this it is manifest that an area commen-
surable with a medial area is medial.

[And in the same way as was explained in the case of
rationals [Lemma following x. 18] it follows, as regards medials,
that a straight line commensurable in length with a medial
straight line is called medial and commensurable with it not
only in length but in square also, since, in general, straight
lines commensurable in length are always commensurable in
square also.

But, if any straight line be commensurable in square with
a medial straight line, then, if it is also commensurable in
length with it, the straight lines are called, in this case too,
medial and commensurable in length and in square, but, if in
square only, they are called medial straight lines commen-
surable in square only.]

As explained in the bracketed passage following this proposition, a straight
line commensurable with a medial straight line in sguare only, as well as a
straight line commensurable with it in length, is medial.

Algebraical notation shows this easily.

If k*p be the given straight line, )«k*p is a straight line commensurable

in length with it and J/A. k*p a straight line commensurable with it in square
only.

But Ap and ,/A.p are both rational [x. Def. 3] and therefore can be
expressed by p’, and we thus arrive at kip', which is clearly medial.

Euclid’s proof amounts to the following.

Apply both the areas ,/4.p* and A%/4.p* (or A Jk.p?) to a rational
straight line o.

2 2 2:
The breadths Jk.s_— and A* /4 .% (or AJE. %) are in the ratio of the

areas ,/£.p* and A%/&.p* (or AJ4.p?) themselves and are therefore com-
mensurable.

2
Now [x. 22] /4 .% is rational but incommensurable with a.

2 2:
Therefore A*/%. :—; (or AV %) is so also;
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whence the area A, /%.p* (or AJ£. p?) is contained by two rational straight

lines commensurable in square only, so that )«k*p (or ,,/)\.k*p) is a medial
straight line.

It is in the Porism that we have the first mention of a medial area. It is
the area which is equal to the square on a medial straight line, an area, there-

fore, of the form kip’, which is, as a matter of fact, arrived at, though not
named, before the medial straight line itself (x. 21).

The Porism states that M’}p’ is a medial area, which is indeed obvious.

ProrosiTION 24.

The rectangle contained by medial straight lines commen-
surable in length is medial.

For let the rectangle 4C be contained by the medial
straight lines 48, BC which are commensurable
in length ; o
I say that AC is medial.

For on A2 let the square 4D be described ;
therefore A0 is medial.

And, since A8 is commensurable in length

with BC,
while 428 is equal to BD, o

therefore DB is also commensurable in length
with BC;

>
o

so that DA is also commensurable with AC. [vi. 1, x. 11]
But DA is medial ;
therefore 4AC is also medial. [x. 23, Por.]
Q. E. D.

There is the same difficulty in the text of this enunciation as in that of
X. 19. The Greek says “medial straight lines commensurable in length in
any of the aforesaid ways” ; but straight lines can only be commensurable in
length in one way, though they can be medial in two ways, as explained in the
addition to the preceding proposition, i.e. they can be either commensurable
in length or commensurable in square only with a grven medial straight line.
For the same reason as that explained in the note on X. 19 I have omitted
“in any of the aforesaid ways ” in the enunciation and bracketed the addition
. to X. 23 to which it refers.

Hp and M'*p are medial straight lines commensurable in length. The

rectangle contained by them is Mip?, which may be written 2% and is there-
fore clearly medial.

Euclid’s proof proceeds thus. Let x, Ax be the two medial straight lines
commensurable in length.

Therefore Bix. Ax=x:\x.
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But x ~ Ax, so that 2>~ x. Ax. [x. 11]
Now x* is medial [x. 21];
therefore x . Ax is also medial. [x. 23, Por.]

We may of course write two medial straight lines commensurable i_n__le_ngth
in the forms . mk*p, nktp; and these may either be ma. /B, nJ/aJB, or
m¥ AB, n¥4B.

PRroPOSITION 25,

The rectdng/e contained by medial straight lines commen-
surable in square only is either vational or medial.

For let the rectangle 4C be contained by the medial
straight lines 48, BC which are

commensurable in square only ; A F a
I say that AC is either rational
or medial.
For on AB, BC let the ; 5 c -
squares 4D, BE be described ;
therefore each of the squares o &
AD, BE is medial. k N
Let a rational straight line L

FG be set out,

to /G let there be applied the rectangular parallelogram GA
equal to 4D, producing FH as breadth,

to /M let there be applied the rectangular parallelogram #X
equal to A C, producing /7K as breadth,

and further to X'V let there be similarly applied V'L equal to
BE, producing KL as breadth ;

therefore 7/, HK, KL are in a straight line.
Since then each of the squares 4D, BE is medial,
and 4D is equal to GH, and BE to NL,
therefore each of the rectangles G/, NL is also medial.
And they are applied to the rational straight line /G ;

therefore each of the straight lines /4, KL is rational and
incommensurable in length with #G. [x. 22]

And, since 4D is commensurable with BE,
therefore GH is also commensurable with VL.

And, as GH isto NL, sois FH to KL ; (vt 1)
therefore //7 is commensurable in length with KZ.  [x 11]
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Therefore #H, KL are rational straight lines commen-
surable in length ;

therefore the rectangle /4, KL is rational. [x. 19]
And, since DB is equal to BA, and OB to BC,
therefore, as DA is to BC, so is AB to BO.
~ But, as DB is to BC, sois DA to AC, [vi. 1]
and, as AB is to BO, sois AC to CO; [¢d.]
therefore, as DA is to AC, sois AC to CO.
But AD is equal to GH, AC to MK and CO to NL;
therefore, as GH is to MK, so is MK to NL ;
therefore also, as #H is to HK, so is HK to KL ; [vi.1,v. 11]
therefore the rectangle #/, KL is equal to the square on /K.
VI. 1
But the rectangle /A, KL is rational ; . 27)
therefore the square on /K is also rational.
Therefore ZK is rational.
And, if it is commensurable in length with /G,
HN is rational ; [x. 19]
but, if it is incommensurable in length with #G,

KH, HM are rational straight lines commensurable in square
only, and therefore /N is medial. [x. 21]

Therefore AN is either rational or medial.
But AN is equal to AC;

therefore AC is either rational or medial.
Therefore etc.

Two medial straight lines commensurable in square only are of the form
kip, JA k*p

The rectangle contained by them is .\/A.kip’. Now this is in general
medial ; but, if /A = £ /4, the rectangle is 2%'p% which is rational.

Euclid’s argument is as follows. Let us, for convenience, put x for k*p, so

that the medial straight lines are x, J/A . x.
Form the areas 2%, x. \/A. x, Aa?,

and let these be respectively equal to ow, ov, ow, where o is a rational
straight line.
Since 2% Ax? are medial areas,
SO are o, auw,
whence #, w are respectively rational and ~ o.
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But 2% A Axd

so that ou ~ ow,

or TR (x).
Therefore, », w being both rational, w is rational .. .................. (2)-
Now 2 A= /A At At

or ou oV =0v: 0w,

so that “u:9=v:w,

and vw =10
Hence, by (2), 2%, and therefore 9, is rational ........................... (3)-

Now (a) if.7 ~ o, ov or \/A. 2? is rational;
(B) if v v @, so that v ~ o, av or /A . x? is medial.

ProposITION 26.

A medial area does not exceed a medial area by a rational
area.

For, if possible, let the medial area 48 exceed the medial
area AC by the rational area

DB, A E F E
and let a rational straight line

EF be set out; "

to £F let there be applied the T« a
rectangular parallelogram F/ 8

equal to 4B, producing £/ as H
breadth,

and let the rectangle /~G equal to 4C be subtracted ;
therefore the remainder B0 is equal to the remainder K'A.
But D2ZA is rational ;
therefore K/ is also rational.
Since, then, each of the rectangles 45, AC is medial,
and A28 is equal to £/, and AC to FG,
therefore each of the rectangles #/, FG is also medial.
And they are applied to the rational straight line £F;

therefore each of the straight lines /£, EG is rational and
incommensurable in length with £F. [x. 22]

And, since [ D2 is rational and is equal to K/,
therefore] K/ is [also] rational ;
and it is applied to the rational straight line £F;
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therefore G/ is rational and commensurable in length with
EF. [x. 20]

But £G is also rational, and is incommensurable in length
with £F;
therefore £G is incommensurable in length with GA. [x. 13]

And, as £G is to GH, so is the square on £G to the
rectangle £G, GH ;

therefore the square on £G is incommensurable with the
rectangle £G, GH. [x. 11]

But the squares on £G, GH are commensurable with the
square on £G, for both are rational ;

and twice the rectangle £G, GH is commensurable with the

rectangle £G, GH, for it is double of it ; [x. 6]
therefore the squares on £G, GH are incommensurable with
twice the rectangle £G, GH ; [x. 13]

therefore also the sum of the squares on £G, GH and twice
the rectangle £G, GH, that is, the square on £H [iL 4), is

incommensurable with the squares on £G, GH. [x. 16]
But the squares on £G, GH are rational ;
therefore the square on £/ is irrational. [x. Def. 4]

Therefore £H is irrational.
But it is also rational :
which' is impossible.
Therefore etc.
Q. E. D.

“ Apply ” the two given miedial areas to one and the same rational straight

line p. They can then be written in the form p. # , P A’}p.

The difference is then (,/2— \/A) p*; and the proposition asserts that this
cannot be rational, i.e. (,/£— /A) cannot be equal to #. Cf. the proposition
corresponding to this in algebraical text-books.

To make Euclid’s proof clear we will put x for k*p and y for K&p.
Suppose p(x-y)=ps

and, if possible, let pz be rational, so that £ must be rational and ~ p ...(1).
Since px, py are medial,

x and y are respectively rationaland v p ............... (2).
From (1) and (2), Yoz
Now y:z=3ys

so that y oy
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But - y+22~5
and 2yz ~ ys.
Therefore . y+22 o 2ys,
whence (y+2)P v (P+29,
or x?o (P +32%).

And (3 + 29 is rational ;

therefore % and consequently x, is irrational.
But, by (2), x is rational :

which is impossible.
Therefore pz is not rational.

ProrosiTION 27.
7o find medial straight lines commensurable in square only
which contain a rational rectangle.

Let two rational straight lines 4, B commensurable in
square only be set out ;

let C be taken a mean proportional between

A, B, [v. 13] ?
and let it be contrived that, 6
as Aisto B,sois Cto D. [v112] A 8

Then, since 4, B are rational and com-
mensurable in square only,
the rectangle A, B, that is, the square on C
[vr. 17], is medial. [x. 21]

Therefore C is medial. [x. 21]

And since, as A is to B, sois C to D,

and A, B are commensurable in square only,

therefore C, D are also commensurable in square only. [x. 11]
And C is medial ;

therefore D is also medial. [x. 23, addition]
Therefore C, D are medial and commensurable in square

only.
I say that they also contain a rational rectangle.
For since, as 4 is to B, sois C to D,

therefore, alternately, as 4 is to C, so is B to D. [v. 16]
But, as 4 isto C, sois Cto B;

therefore also, as Cis to B, so is B to D ;

therefore the rectangle C, D is equal to the square on 5.
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But the square on 2B is rational ;
therefore the rectangle C, D is also rational.
Therefore medial straight lines commensurable in square
only have been found which contain a rational rectangle.
Q E. D.

Euclid takes two rational straight lines commensurable in square only, say
P Ao,

Find the mean proportional, i.e. 27

Take x such that piMp=Bpix i (1).

This gives x = o,
and the lines required are B, A,

For (a) #p is medial.

And (B), by (1), since p ~ i,

# p~— I3 P
whence [addition to X. 23], since Hp is medial,
kip is also medial.
The medial straight lines thus found may take either of the forms
(1) VaJB, 88 or (2) ~NAB, \/Bj—ﬁ

a

ProrosiTioN 28.

70 find medial straight lines commensurable in square only
whick contain a medial rectangle.

Let the rational straight lines 4, B, C commensurable in
square only be set out;

let D be taken a mean proportional between 4, B, [v1. 13]
and let it be contrived that,

as Bisto C,sois D to E. [v1. 12]
A
— D
c E

Since A, B are rational straight lines commensurable in
square only,
therefore the rectangle 4, B, that is, the square on D [vi. 17],
is medial. ’ [x. 21]
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Therefore D is medial. [x. 21]
And since B, C are commensurable in square only,

and, as Bisto C,sois D to £,

" therefore [, E are also commensurable in square only. [x. 11]
But D is medial ; '

therefore £ is also medial. [x. 23, addition]

Therefore D, £ are medial straight lines commensurable
in square only.

I say next that they also contain a medial rectangle.

For since, as Bis to C, sois D to £,

therefore, alternately, as B is to D, so is C to £. [v. 16]
But,as Bisto D, sois Dto A4 ;

therefore also, as D is to 4, so is C to £;

therefore the rectangle A4, C is equal to the rectangle D, £.

VL. 16

But the rectangle A, C is medial ; [[x. 21:]|

therefore the rectangle D, £ is also medial.

Therefore medial straight lines commensurable in square
only have been found which contain a medial rectangle.
Q. E. D.

Euclid takes three straight lines comimensurable in square only, i.e. of the
form p, Ao, A , and proceeds as follows.

Take the mean proportional to p, k*p, i.e. k*p.
Then take x such that

k*p:)\%:k*p:x .............................. (1),
so that x = Abp/&t.
k*p, Xip/k* are the required medial straight lines.
For k*p is medial.
Now, by (1), since k*p ~ N X

p X

whence x is also medial [x. 23, addition], while ~ &%p,

Next, by (1), )@p ix= k‘p : k*p
= k* PP
whence x. k*p =al ?, which is medial.

The strlaight lines 4tp, A"p/k* of course take different forms according as
the original straight lines are of the forms (1) a, J/B, \/C, (2) J4, /B, J/C,
(3) ¥4, 8, J/C, and (4) /4, JB, <. T
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E.g. in case (1) they are Ja,/B, \/JB’

in case (z) they are V425, %4,
and so on.
LEMMA 1.

To find two square numbers suck that their sum is also
square.

Let two numbers 45, BC be set out, and let them be
either both even or both odd.

Then since, whether an even A& D ¢ B
‘number is subtracted from an
even number, or an odd number from an odd number, the
remainder is even, . [1x. 24, 26]
therefore the remainder AC is even.

Let AC be bisected at D.

Let 4B, BC also be either similar plane numbers, or
square numbers, which are themselves also similar plane
numbers.

Now the product of 48, BC together with the square on
CD is equal to the square on BD. (1. 6]

And the product of 4B, BC is square, inasmuch as it
was proved that, if two similar plane numbers by multiplying
one another make some number, the product is square. [ix. 1]

Therefore two square numbers, the product of 458, BC,
and the square on CJ), have been found which, when added
together, make the square on BD.

And it is manifest that two square numbers, the square
on BD and the square on CJ, have again been found such
that their difference, the product of AB, BC, is a square,
whenever A8, BC are similar plane numbers.

But when they are not similar plane numbers, two square
numbers, the square on BD and the square on 2DC, have been
found such that their difference, the product of AB, BC, is
not square.

Q E.D.

Euclid’s method of forming right-angled triangles in integral numbers,
already alluded to in the note on 1. 47, is as follows.

Take two similar plane numbers, e.g. mnp?®, mng®, whick are either both even
or both odd, so that their difference is divisible by 2.
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Now the product of the two numbers, or m*#’6’¢, is square, [x. 1]

and, by 1. 6,
mnp® . mng® + (’ﬂ'p’_"_ mng’\* - (M)z,

2

so that the numbers mnpg, } (mnp? — mng*) satisfy the condition that the sum
of their squares is also a square number.

It is also clear that } (mnp®+ mng®), mnpg are numbers such that the
difference of their squares is also square.

LEMMA 2.

To find two square numbers suck that theirr sum is not
square. '

For let the product of 48, BC, as we said, be square,
and CA even,
and let CA4 be bisected by D.

Y .. E .
A G HD F [ 8
It is then manifest that the square product of 45, BC

together with the square on CD is equal to the square on BD.
[See Lemma 1]

Let the unit DE be subtracted ;
therefore the product of 48, BC together with the square on
CE is less than the square on BD.

I say then that the square product of 428, BC together
with the square on CE£ will not be square.

For, if it is square, it is either equal to the square on BE,
or less than the square on ABZ, but cannot any more be
greater, lest the unit be divided.

First, if possible, let the product of 425, BC together
with the square on CZ£ be equal to the square on BE,
and let GA4 be double of the unit DE.

Since then the whole AC is double of the whole CD,
and in them AG is double of DE,
therefore the remainder G'C is also double of the remainder £C;
therefore G'C is bisected by £.

Therefore the product of G5, BC together with the square
on CE is equal to the square on BE. (1. 6]

But the product of 4.8, BC together with the square on
CE is also, by hypothesis, equal to the square on BE;
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therefore the product of GB, BC together with the square on
CE is equal to the product of 4B, BC together with the
square on CE.

And, if the common square on CZ£ be subtracted,
it follows that 43 is equal to GB:
which is absurd.

Therefore the product of 428, BC together with the square
on CE is not equal to the square on BE.

I say next that neither is it less than the square on BE.

For, if possible, let it be equal to the square on BF,
and let /A4 be double of DF.

Now it will again follow that /ZC is double of CF';
so that CH has also been bisected at 7,
and for this reason the product of 75, BC together with the
square on FC is equal to the square on BF. [1. 6]

But, by hypothesis, the product of 45, BC together with
the square on CZ is also equal to the square on BF.

Thus the product of /B, BC together with the square
on CF will also be equal to the product of 48, BC together
with the square on CE£':
which is absurd.

Therefore the product of 48, BC together with the square
on CE is not less than the square on BE.

And it was proved that neither is it equal to the square
on BE.

Therefore the product of 48, BC together with the square
on CE is not square.

Q. E. D.

We can, of course, write the identity in the note on Lemma 1 above (p. 64)
in the simpler form

.t (2550) o (2520

where, as before, mp®, mg® are both odd or both even.
Now, says Euclid,

- 3
mp® . mqg® + (mp—’;—’f—?—’ - x) is not a square number.

This is proved by reductio ad absurdum.
H. E. IIL 5
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_ 3
The number is clearly less than mp®. mg* + (Q’Z_M') , i.e. less than

(mp’ + mq’ :
If then the number is square, its side must be greater than, equal to, or
less than ( mprmy l) the number next less than a :M

But (1) the side cannot be > (M— x) without being equal to
mﬁ’+ mq*

, since they are consecutive numbers.
(2) (mp2 = 2) mg* + mp— mq" 1)2 = ('ﬁf%’f - 1)’. [11. 6]

2 _ 2
If then mp* . mg* + (’fipz—mq - 1) is also equal to (_”_‘_}”_IL"_?’ - l) ,
we must have (mp? — 2) mg* = mp? . mg*,

or mp — 2 = mp?:
which is impossible.

G) It mp.omp+ (’L’I”_—ﬁ’ e (’i}ﬂ’_ Y,
(mp’+mg r)’.

suppose it equal to

But [11. 6] (mp*— 27) mg* + ("’” mg’ r)' - (M_ r)’.
Therefore .
(mf—zr)M+(M—r)’ mp’ mq’+( mp—mg’_ 1)’:

which is impossible.
Hence all three hypotheses are false, and the sum of the squares

2 _
mp? . mg® and (m)_zfﬂ’_ 1)’ is not square.

ProrosiTiON 29.

To find two rational straight lines commensurable in square
only and suck that the square on the greater is greater than
the square on the less by the square on a straight line commen-
surable in length with the greater.

For let there be set out any rational straight line 425,
and two square numbers CD, DE such that their difference
CE is not square ; [Lemma 1]

let there be described on 428 the semicircle A F2B,
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.

and let it be contrived that,
as DC is to CE, so is the square on BA to the square
on AF. [x. 6, Por.]

Let 7B be joined. F
Since, as the square on B4 is to
the square on AF, so is DC to CE,

therefore the square on BA has to

the square on AF the ratio which the 2 8

number DC has to the number C£; 5 & B

therefore the square on BA4 is com-

mensurable with the square on AF. [x. 6]
But the square on A2 is rational ; [x. Def. 4]

therefore the square on A F'is also rational ; (id.)

therefore AF is also rational.

And, since DC has not to CE the ratio which a square
number has to a square number,
neither has the square on B4 to the square on 4AF the ratio
which a square number has to a square number ;
therefore 4B is incommensurable in length with AF. [x. 9]

Therefore BA, AF are rational straight lines commen-
surable in square only.

And since, as DC is to CE, so is the square on BA4 to
the square on AF,
therefore, convertendo, as CD is to DE, so is the square on
AB to the square on BF. [v. 19, Por,, n1. 31, 1. 47]

But CD has to DE the ratio which a square number has
to a square number ;
therefore also the square on 428 has to the square on BF
the ratio which a square number has to a square number ;
therefore 4B is commensurable in length with BF. [x. 9]

And the square on A5 is equal to the squares on AF, FB;
therefore the square on A2 is greater than the square on A/
by the square on BF commensurable with 45.

Therefore there have been found two rational straight
lines BA, AF commensurable in square only and such t%at
the square on the greater 428 is greater than the square on
the less 4 by the square on BF commensurable in length
with 45.

Q. E. D.

5—2
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Take a rational straight line p and two numbers m? 7 such that (m® — 7?)
is not a square.
Take a straight line x such that

mim—nt=p (1),
mt—n?

whence xt= s
and x=pVN1 -4, wherek:.;'.

Then p, pa/1 — 4 are the straight lines required.

It follows from (1) that 2~
and x is rational, but x v p

By (1), convertendo, m®:n®=p?: p? - 23,

so that v/p* —a® ~ p, and in fact = 4p.
According as p is of the form a or ,/4, the straight lines are (1) a, Va* — 8
or (2) /4, NA-#A.

ProrosiTioN 30.

7o find two rational straight lines commensurable in square
only and suck that the square on the grealer is greater than
the square on the less by the squarve on a straight line incom-
mensurable in length with the greater.

Let there be set out a rational straight line 425,
and two square numbers CE, ED
such that their sum CD is not

square ; [Lemma 2] 2

let there be described on A8 the

semicircle 4AFB,

let it be contrived that,

as DC is to CE, so is the square A 8
on BA to the square on AF, I )

[x. 6, Por.]
and let /B be joined.

Then, in a similar manner to the preceding, we can prove
that BA, AF are rational straight lines commensurable in
square only.

And since, as DC is to CE, so is the square on BA to
the square on AF,
therefore, convertendo, as CD is to DE, so is the square on
AR to the square on BF. [v. 19, Por., 111 31, 1. 47)

But CD has not to DE the ratio which a square number
has to a square number ;
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therefore neither has the square on 423 to the square on BF
the ratio which a square number has to a square number ;

therefore 43 is incommensurable in length with BF.  [x. 9]

And the square on A2 is greater than the square on AF
by the square on 7B incommensurable with 425.

Therefore AB, AF are rational straight lines commen-
surable in square only, and the square on 4B is greater than

the square on A4/ by the square on /B incommensurable in
length with A425.

Q. E. D.
In this case we take 2 7* such that 7?+ #? is not square.
Find x such that m+ n?m? = p?: &Y,
3
whence X2 = ';,%? o,
p n
or X = , where 2= —.
i+ m

Then p, J1P+_k§ satisfy the condition.

The proof is after the manner of the proof of the preceding proposition
and need not be repeated.
According as p is of the form a or ,/4, the straight lines take the
> o

form (1) e, \/a’—l—ﬁ—z,, that is, a, ¥a® — B, or (2) /4, ¥4 - B and
J4, Ja-F.

ProrosiTiON 31.

To find two medial straight lines commensurable in square
only, containing a rational rectangle, and suck that the square
on the greater is greater than the square on the less by the
square on a straight line commensurable in length with the
grealer.

Let there be set out two rational straight lines 4, B
commensurable in square only and such that the
square on A, being the greater, is greater than
the square on B the less by the square on a
straight line commensurable in length with 4.

[x. 29]
And let the square on C be equal to the

rectangle 4, 5. .
Now the rectangle 4, B is medial ; [x. 21]

therefore the square on C is also medial ;
therefore C is also medial. [x. 21]
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Let the rectangle C, D be equal to the square on 5.
Now the square on B is rational ;
therefore the rectangle C, D is also rational.
And since, as A4 is to B, so is the rectangle 4, B to the
square on B,
while the square on C is equal to the rectangle 4, B,
and the rectangle C, D is equal to the square on 5,
tC}}erefore, as A is to B, so is the square on C to the rectangle
, D.
But, as the square on C is to the rectangle C, D, so is C
to D;
therefore also, as 4 is to B, so is C to D.
But A4 is commensurable with B in square only ;
therefore C is also commensurable with D in square only. [x. 11]
And C is medial ;
therefore D is also medial. [x. 23, addition]
And since, as A4 is to B, so is C to D,
and the square on A is greater than the square on B by the
square on a straight line commensurable with A4,
therefore also the square on C is greater than the square on
D by the square on a straight line commensurable with C.
[x. 14]
Therefore two medial straight lines C, D, commensurable
in square only and containing a rational rectangle, have been
found, and the square on C is greater than the square on D

by the square on a straight line commensurable in length
with C.

Similarly also it can be proved that the square on C
exceeds the square on D by the square on a straight line
incommensurable with C, when the square on A4 is greater
than the square on B by the square on a straight line incom-
mensurable with A. [x. 30]

I. Take the rational straight lines commensurable in square only found
in x. 29, i.e. p, pV1 = 2.
Take the mean proportional p (1 — k’)* and x such that
p(1-FP oV T R=pV1-2:

Then p (1 -#} x0rp (1- 21 (1- k’)g are straight lines satisfying the
given conditions. .
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For (a) p*V1 -4 is a medial area, and therefore p (1 -k’)* is a medial
straight line ........ccoooiiiiiiiiii (1);

and x.p(1- k’)* = p?(1 — &%) and is therefore a rational area.

B) pyp(1- k’)*, p¥1 - A, x are straight lines in continued proportion, by
construction.
Therefore p:pVI—k’:p(x-—k’)*:x ........................ (2).

(This Euclid has to prove in a somewhat roundabout way by means of the
lemma after x. 21 to the effect that a : 6 = ab : 4*)

From (2) it follows [x. 11] that x ~ p (1 -k’)* ; whence, since p (1 - k’)* is
medial, x or p (1 — k’)’ is medial also.
(y) From (2), since p, p¥/1 — 42 satisfy the remaining condition of the

problem, p (1 -k’)i, p(1 —k’)* do so also [x. 14)
According as p is of the form a or /4, the straight lines take the forms

J—— -
(I) s/a‘\/a’—b’, m’
Y v T oY A -4

or (2) \/A (A —k’A), :/Z__(—_Z:—_—_%.

II. To find medial straight lines commensurable in square only contain-
ing a rational rectangle, and such that the square on one exceeds the square
on the other by the square on a straight line incommensurable with the former,
we simply begin with the rational straight lines having the corresponding

property [x. 30}, viz. p, -‘\/—_f:;_; , and we arrive at the straight lines
1+

P_ . P

+ (+m)i

According as p is of the form a or /4, these (if we use the same
transformation as at the end of the note on x. 30) may take any of the forms

Vadi—F, _2=8

) wWE-B s
A- B

JAd-5)
A-5

Ta@-)

or (2) N4 (4-B),

or ¥4(4-5),

ProposiTION 32.

7o find two medial straight lines commensurable in square
only, containing a medial rectangle, and suck that the square
on the greater is greater than the squarve on the less by the
square on a straight line commensurable with the greater.
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Let there be set out three rational straight lines A4, B, C
commensurable in square only, and such that the square on 4
is greater than the square on C by the square on a straight
line commensurable with 4, ' [x. 29]

and let the square on D be equal to the rectangle 4, 5.

A

D
8

E
C

Therefore the square on 0 is medial ;
therefore 2 is also medial. [x. 21]

Let the rectangle D, £ be equal to the rectangle B, C.
Then since, as the rectangle 4, B is to the rectangle B, C,
sois A to C,

while the square on D is equal to the rectangle 4, 5,

and the rectangle D, £ is equal to the rectangle B, C,

%etzfore, as A4 is to C, so is the square on D to the rectangle
But, as the square on D is to the rectangle D, £, so is D

to £ ;

therefore also, as 4 is to C, so is D to E.
But A4 is commensurable with C in square only ;

therefore D is also commensurable with £ in square only. [x.11]
But D is medial ;

therefore £ is also medial. [x. 23, addition]
And, since, as A isto C,sois D to E,

while the square on A is greater than the square on C by
the square on a straight line commensurable with A4,

therefore also the square on D will be greater than the square
on £ by the square on a straight line commensurable with D.

[x. 14]
I say next that the rectangle D, £ is also medial.

For, since the rectangle B, C is equal to the rectangle D, £,
while the rectangle B, C is medial, [x. 21]
therefore the rectangle D, £ is also medial.

Therefore two medial straight lines D, £, commensurable
in square only, and containing a medial rectangle, have been
found such that the square on the greater is greater than the
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square on the less by the square on a straight line commen-
surable with the greater.

Similarly again it can be proved that the square on D
is greater than the square on £ by the square on a straight
line incommensurable with 2, when the square on A is
greater than the square on C by the square on a straight line

incommensurable with 4. [x. 30]
I. Euclid takes three straight lines of the form p, p JA, p¥1-43,
takes the mean proportional pk* between the first two ...............oeell (1),
and then finds x such that
A oA oW TR (2),

whence x=pAt V1 -4,
and the straight lines pA}, pA? /T — 2 satisfy the given conditions.

Now (a) p)«i is medial.

(B) We have, from (1) and (2),

' p:p\/l—k’:p)&*:x ........................... (3)

whence x ~ p)\* ; and x is therefore medial and ~ pk*.

() x.pM=p M. pN1-A.

But the latter is medial ; [x. 21]
therefore x. pAd, or pAt. pA¥ V1= 2, is medial.

Lastly (8) p, p ~/1 — # have the remaining property in the enunciation ;
therefore pAf, pAt VT2 have it also. [x. 14]

(Euclid has not the assistance of symbols to prove the proportion (3) above.
He therefore uses the lemmas @b :bc=a:c and d?:de=d: ¢ to deduce from
the relations

ab=d?
and d:b:::e}
that a:c=d:e)

The straight lines pad, pki\/ 1— 4 may take any of the following forms
according as the straight lines first taken are

(I) a, ~/B’ \/;"—‘a: (2) ~/A’ \/Bv JA—k’A’ (3) '\/‘4) 5, N/A_PA'

VB(@—-2

(1) JaJB, 7%-5—);
NB(A-#A4
(2) V4B, _(TA_B—);
__ bNA-P4

(8) VEJA, —ag



74 BOOK X [x. 32, Lemma

II. If the other conditions are the same, but the square on the first
medial straight line is to exceed the square on the second by the square on a
straight line incommensurable with the first, we begin with the three straight

lines p, p /A, P ., and the medial straight lines are
Vi+#

prd
Nk
The possible forms are even more various in this case owing to the more

various forms that the original lines may take, e.g.
(1) a JB, Na*=C;
(2) JA4, 4, NA -
(3) \/A) b’ v A - E;
(4) V4, JB, JA-7;
(s) 'JA: I\/B’ \/A -C;

the medial straight lines corresponding to these being

pA,

(1) vaJB, —J‘%’;
(2) V&J4, é://;:i/;}
(3) ~&JA4, Q#TTTC?
(4) V4B, i@%ﬂ;
(s) Y4B, ‘-’%%9.
LeEMMA.

~ Let ABC be a right-angled triangle having the angle 4
right, and let the perpendicular 4D be

drawn; A

I say that the rectangle CB, BD is

equal to the square on BA,

the rectangle BC, CD equal to the # c
square on CA,

the rectangle 8D, DC equal to the square on AD,

and, further, the rectangle BC, AD equal to the rectangle
BA, AC.
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And first that the rectangle CB, BD is equal to the square
on BA4.

For, since in a right-angled triangle 4D has been drawn
from the right angle perpendicular to the base,
therefore the triangles ABD, ADC are similar both to the
whole 4 BC and to one another. [v1. 8]

And since the triangle 4 BC is similar to the triangle 43D,
therefore, as CBis to BA, so is BA to BD; [v1. 4]
therefore the rectangle CB, BD is equal to the square on 45.

[vi 17]

For the same reason the rectangle BC, CD is also equal

to the square on AC.

And since, if in a right-angled triangle a perpendicular
be drawn from the right angle to the base, the perpendicular
so drawn is a mean proportional between the segments of the
base, [v1. 8, Por.]
therefore, as BD is to DA, sois AD to DC;

therefore the rectangle 8D, DC is equal to the square on AD.

fve. 17]
I say that the rectangle BC, 4D is also equal to the rect-
angle BA, AC. _
For since, as we said, ABC is similar to ABD,
therefore, as BC is to CA, so is BA to AD. [v1. 4]
Therefore the rectangle BC, AD is equal to the rectangle
BA, AC. [v. 16]
Q. E. D.

ProrosiTioN 33.

To find two straight lines incommensurable in square whickh
make the sum of the squares on them rational but the rectangle
contained by them medial.

Let there be set out two rational straight lines 45, BC
commensurable in square only
and such that the square on the
greater A4 B is greater than the F
square on the less BC by the
square on a straight line in- ,
commensurable with 423, A : Es o0 ¢
[x. 3°]




76 BOOK X [x. 33

let BC be bisected at D,

let there be applied to A8 a paralle.logram equal to the square
on either of the straight lines 2D, DC and deficient by a
square figure, and let it be the rectangle AE, EB; [v1. 28]

let the semicircle 4FB be described on A B,
let £F be drawn at right angles to A5,
and let AF, FB be joined.

Then, since AB, BC are unequal straight lines,

and the square on 4B is greater than the square on BC by
the square on a straight line incommensurable with 425,

while there has been applied to 425 a parallelogram equal to
the fourth part of the square on BC, that is, to the square on
half of it, and deficient by a square figure, making the rect-
angle AE, EB,

therefore A F is incommensurable with £25. [x. 18]

And, as AE is to £B, so is the rectangle B4, AE to the
rectangle A5, BE,

while the rectangle BA, AE is equal to the square on 4 F,
and the rectangle 48, BE to the square on BF;

therefore the square on AF is incommensurable with the
square on FB;

therefore 4 F, FB are incommensurable in square.
And, since AR is rational,
therefore the square on A2 is also rational ;

so that the sum of the squares on AF, FB is also rational.
(1 47]
And since, again, the rectangle AE, £B is equal to the
square on EF,

and, by hypothesis, the rectangle 4£, £B is also equal to the
square on B0,

therefore FE is équal to BD;
therefore BC is double of FE,

so that the rectangle 4.8, BC is also commensurable with the
rectangle A B, EF.

But the rectangle A5, BC is medial ; [x. 21]
therefore the rectangle 48, £F is also medial. [x. 23, Por.]
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But the rectangle 45, EF is equal to the rectangle A,
FB; [l.emma)

therefore the rectangle AF, FAB is also medial.

But it was also proved that the sum of the squares on these
straight lines is rational.

Therefore two straight lines A/, FB incommensurable
in square have been found which make the sum of the
squares on them rational, but the rectangle contained by them
medial.

Q E. D.

Euclid takes the straight lines found in x. 30, viz. p, 7—"_:? .
I+

He then solves geometrically the equations

x+y=p
,_ p’ b eereerresiiciiiiiiiine (l)
VIR }
If x, y are the values found, he takes », v such that
w=px
2= py } ................................. (2),
and u, v are straight lines satisfying the conditions of the problem.
Solving algebraically, we get (if x > y)
2221+ =), y=8(1- =)
2 Jiv#/’ 2 Ji+ &/
A
whence . =L \/ +
‘ V2 l LI SR (3)-

0P \/ -k
NE i+
Euclid’s proof that these straight lines fulfil the requirements is as follows.

(a) The constants in the equations (1) satisfy the conditions of x. 18;

therefore x vy
But x:y=4:9
Therefore ut o P,

and u, v are thus incommensurable in square.

(B) #*+v*=p* which is rational.

=P
(7) By (l)’ “/’;:—y_z ~/I +k,'
By (2)’ W=p.\/;—_y
PS

T
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2
But —*
N1+ B

therefore »v is medial.

is a medial area,

Since p, may have any of the three forms

P
N
(l) a, 'Va"'Bv (2) N/A’ \/A—"B) (3) JA» \/A.-——b’,

u, v may have any of the forms

o P, [T

ProrosiTiON 34.

To find two straight lines incommensurable in square whick
make the sum of the squares on them medial but the rectangle
contained by them rational.

Let there be set out two medial straight lines 45, BC,
commensurable in square only, such that the rectangle which
they contain is rational, and the square on A2 is greater than
the square on BC by the square on a straight line incom-
mensurable with 45 ; ' [x. 31, ad fin.]

A F B8 E [

let the semicircle ADAB be described on A28,
let BC be bisected at £,

let there be applied to 42 a parallelogram equal to the square

on BE and deficient by a square figure, namely the rectangle

AF, FB; [v1. 28]

therefore 4/ is incommensurable in length with #B. [x. 18]
Let /D be drawn from £ at right angles to A5,

and let AD, DB be joined.
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Since A F is incommensurable in length with 23,
therefore the rectangle B4, 4 F is also incommensurable with
the rectangle A8, BF. [x. 11]

But the rectangle B4, AF is equal to the square on 4D,
and the rectangle 48, BF to the square on DB ;
therefore the square on 40 is also incommensurable with the
square.on D2B.

And, since the square on A2 is medial,
therefore the sum of the squares on 4D, DA is also medial.

(1. 31, 1. 47]
And, since BC is double of DF,
therefore the rectangle 4.8, BC is also double of the rectangle

AB, FD.
But the rectangle 4.5, BC is rational ;

therefore the rectangle A8, FD is also rational. [x. 6]
But the rectangle AB, FD is equal to the rectangle 4D,
DB; [Lemma]

’
so that the rectangle 4D, DB is also rational.

Therefore two straight lines A0, DB incommensurable
in square have been found which make the sum of the squares
on them medial, but the rectangle contained by them rational.

Q E.D.

In this case we take [x. 31, 2nd part] the medial straight lines

P P
(+at +p)t

Solve the equations

x+y=—"F

(1 +

r=_"r__

e )

and », v are straight lines satisfying the given conditions.
Euclid’s proof is similar to the preceding.

(a) From (1) it follows [x. 18] that

X vy,
whence 7 RVE /A
and », v are thus incommensurable in square.
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3
(B) u’+v’=~/%’,whichisamedialarea.
1

(1) uy = d . A
T M
1 P c . .
= -. —=;, which is a rational area.
2 1+4

Therefore »v is rational.
To find the actual form of », v, we have, by solving the equations (1)
(if x>y),

x=—2-F (W12 +2),
z(1+ 2(1+ )
=;(l+—kz>2(~/l+k’—k);
and hence u= NAF +AB2+ A
Jz(1+
0=J;(I_J~/1+k’ k.

Bearing in mind the forms which may take (see note

(1+ k’)i (1 + k')*
on X. 31), we shall find that », ¥ may have any of the forms

- J(a+JBZJd—B \/(;ﬁBzJT_

’ )

(2) \/(JA+~/1:)~/A—B’ \/(JA—Jf)JA—B;
3) \/(JA+&Z~/A—6” \/(JA-&Z,JA__&S.

ProrosiTION 35.

7o find two straight lines incommensurable in square whick
make the sum of the squares on them medial and the rectangle
contained by them medial and moreover incommensurable witk
the sum of the squares on them.

Let there be set out two medial straight lines 458, BC
commensurable in square only, containing a medial rectangle,
and such that the square on 425 is greater than the square on
BC by the square on a straight line incommensurable with

B; [x. 32, ad fin.]
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let the semicircle 4.DB be described on A8,
and let the rest of the construction be as above.

D

A —F® E ¢
Then, since 4 is incommensurable in length with 725,
[x. 18]
AD is also incommensurable in square with D2A. [x. 11]
And, since the square on 47 is medial,

therefore the sum of the squares on 4D, DB is also medial. |
[ 31, 1. 47]
And, since the rectangle AF, FB is equal to the square

on each of the straight lines BE, DF,

therefore BE is equal to DF’;
therefore BC is double of 7D,

so that the rectangle 48, BC is also double of the rectangle
AB, FD.

But the rectangle 48, BC is médial;
therefore the rectangle 45, FD is also medial. [x. 32, Por.]
And it is equal to the rectangle AD, DB ;

[Lemma after x. 32]
therefore the rectangle 4D, DB is also medial.
And, since A8 is incommensurable in length with BC,
while CB is commensurable with BE,
therefore A8 is also incommensurable in length with BE,
[x. 13]

so that the square on 42 is also incommensurable with the
rectangle 45, BE. [x. 11]

But the squares on 4D, DB are equal to the square on
AB, [r 47]

and the rectangle 4B, FD, that is, the rectangle 4D, DB, is
equal to the rectangle 48, BE;

therefore the sum of the squares on 4D, DB is incommen-
surable with the rectangle 4D, DBA.

H. E III. 6
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Therefore two straight lines 4D, DB incommensurable
in square have _been found which make the sum of the squares
on them medial and the rectangle contained by them medial
and moreover incommensurable with the sum of the squares

on them.
Q. E. D.

Take the medial straight lines found in x. 32 (2nd part), viz.
[SURRS LN oy )

Solve the equations

x+y= pat
_ PR e (1),
e 4(1+A)
and then put W= p;\* .x (2)
= pA* 4
where x, y are the ascertained values of x, y.
Then », v are straight lines satisfying the given conditions.
Euclid proves this as follows.
(a) From (1) it follows [x. 18] that x v y.
Therefore [T RVE /A
and U 0.
8) #* + o8 =p* /A, which is a medial area .................. (3)-
() uv=pt. Vzy
_1 A c o .
= Vi P which is a medial area ............ (4);
therefore »v is medial.
;
8 VL i
©) A %
? VA
h I, WA,
whence P Ny
That is, by (3) and (4),
(ll’ + 1/') v #Y.

The actual values are found thus. Solving the equations (1), we have

x=’£(l + —k —
2 NIEY N

$
LS S
’=3 (I N1+ 2/’
t] — %
whence =&\/ _L_
n u VT I+ ="

S
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According as,p is of the form a or ,/4, we have a variety of forms for
u, v, arrived at by using the same transformations as in the notes on X. 30
and X. 32 (second part), e.g.

o S, fEE,
 JUEAOLIE [0 E,

WA+ N8B W4-9NB.
@ |JeLravE JA9JE,
and the expressions in (2), (3) with 4 in place of ,/B.

ProrosiTiON 36.

If two rational straight lines commensurable in square
only be added together, the whole is irrvational; and let it be
called binomial.

For let two rational straight lines 45, BC commen-
ssurable in square only be added
together ;

I say that the whole AC is ir- A & ¢
rational.
For, since A8 is incommensurable in length with BC—
10 for they are commensurable in square only—
and, as AB is to BC, so is the rectangle A58, BC to the
square on BC,
therefore the rectangle 43, BC is incommensurable with the
square on BC. [x. 11]
15 But twice the rectangle 4B, BC is commensurable with
the rectangle 425, BC [x. 6], and the squares on 45, BC are
commensurable with the square on BC—for 4B, BC are
rational straight lines commensurable in square only— [x. 15]
therefore twice the rectangle 45, BC is incommensurable
20 with the squares on 425, BC. [x. 13]
And, componendo, twice the rectangle AB, BC together
with the squares on 4B, BC, that is, the square on AC [u. 4],
is incommensurable with the sum of the squares on 458, BC.

[x. 16]
But the sum of the squares on A8, BC is rational ;

25 therefore the square on A C is irrational,
so that AC is also irrational. [x. Def. 4]
And let it be called binomial. Q. E. D.

6—2
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Here begins the first hexad of propositions relating to compound irrational
straight lines. The six compound irrational straight lines are formed by
adding two parts, as the corresponding six in Props. 73—78 are formed by
subtraction. The relation between the six irrational straight lines in this and
the next five propositions with those described in Definitions 11. and the
Props. 48—53 following thereon (the first, second, third, fourth, fifth and
sixth binomials) will be seen when we come to Props. 54—59 ; but it may be
stated here that the six compound irrationals in Props. 36—41 can be found
by means of the equivalent of extracting the square root of the compound
irrationals in Xx. 48—s3 (the process being, strictly speaking, the finding of the
sides of the squares equal to the rectangles contained by the latter irrationals
respectively and a rational straight line as the other side), and it is therefore
the further removed compound irrational, so to speak, which is treated first.

In reproducing the proofs of the propositions, I shall for the sake of
simplicity call the two parts of the compound irrational straight line x, 3,
explaining at the outset the forms which x, y really have in each case ; x will
always be supposed to be the greater segment.

In this proposition x, y are of the form p, \/4. p, and (x +y) is proved to
be irrational thus.

x ~y, so that x v ».

Now x:y=x":xy,

so that : x* o xy.
But 2* ~ (2* +?), and xy ~ 2ay;

therefore (= + 3% v 2xy,

and hence (=* + 9 + 2xy) v (2 + 7).

But (x? + 37) is rational ;
therefore (x + )%, and therefore (x + ), is irrational.

This irrational straight line, p + \/4. p, is called a &inomsa/ straight line.
This and the corresponding apgotome (p— /k.p) found in x. 73 are the
positive roots of the equation

—2(1+4)p*. 2+ (1-4)p2p'=0.

ProrosiTioN 37.

If two medial straight lines commensurable in square only
and containing a rational rectangle be added together, the
whole is irvational; and let it be called a first bimedial
straight line.

For let two medial straight lines 48, BC commensurable
in square only and containing
a rational rectangle be added 4 ) c
together ; '
I say that the whole AC is irrational.

For, since A8 is incommensurable in length with BC,

therefore the squares on 428, BC are also incommensurable
with twice the rectangle 4B, BC; [cf. x. 36, 1. g—z0)
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and, componendpo, the squares on AB, BC together with twice
the rectangle 425, BC, that is, the square on AC [ 4), is
incommensurable with the rectangle 425, BC. [x. 16]

But the rectangle 48, BC is rational, for, by hypothesis,
AB, BC are straight lines containing a rational rectangle ;
therefore the square on 4C is irrational ;

therefore AC is irrational. [x. Def. 4]
And let it be called a first bimedial straight line.
Q. E. D,

Here x, y have the forms k*p, k?p respectively, as found in x. 27.
Exactly as in the last case we prove that
22+ v 2xp,
whence (x+)* v 2xy.
But xy is rational ;
therefore (x + y)?, and consequently (x + y), is frrational.

The irrational straight line Bo+ k*p is called a first bimedial straight line.

This and the corresponding first apofome of a medial (k*p - k!p) found in
X. 74 are the positive roots of the equation

-2, k(1+R)p. B+k(1—R)p'=0.

ProrosiTION 38.

If two medial straight lines commensurable in squarve only
and containing a medial rectangle be added together, the whole
is trrational,; and let it be called a second bimedial straight
line.

s For let two medial straight lines 458, BC commensurable
in square only and containing
a medial rectangle be added A B o
together ; N H a
I say that AC is irrational.

1o For let a rational straight
line DE be set out, and let the

parallelogram DF equal to the g F

square on A4 C be applied to DE,

producing DG as breadth. (1. 44]
15 Then, since the square on A4C is equal to the squares on

AB, BC and twice the rectangle A5, BC, (1. 4]

let £/, equal to the squares on 4258, BC, be applied to DE;
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therefore the remainder A F is equal to twice the rectangle
AB, BC.

»  And, since each of the straight lines 458, BC is medial,
therefore the squares on A28, BC are also medial.

But, by hypothesis, twice the rectangle A8, BC is also
medial.

And £H is equal to the squares on 4B, BC,
25 while /A is equal to twice the rectangle A8, BC;
therefore each of the rectangles £/, A F is medial.
And they are applied to the rational straight line DE';

therefore each of the straight lines DA, HG is rational and
incommensurable in length with DE. [x. 22]

3  Since then A28 is incommensurable in length with BC,

and, as A8 is to BC, so is the square on A5 to the rectangle
AB, BC,

therefore the square on 428 is incommensurable with the rect-

angle AB, BC. [x. 11]

35 But the sum of the squares on 4258, BC is commensurable
with the square on 425, [x. 15]
and twice the rectangle 48, BC is commensurable with the

- rectangle A8, BC. [x. 6]
Therefore the sum of the squares on 4B, BC is incom-

4 mensurable with twice the rectangle 458, BC. [x. 13]

But £H is equal to the squares on 45, BC,
and /A F is equal to twice the rectangle 45, BC.
Therefore £H is incommensurable with /A7,

so that D/ is also incommensurable in length with ZG.
[vi 1, x. 11]

45 Therefore DH, HG are rational straight lines commen-
surable in square only ;

so that DG is irrational. [x. 36]
But DE is rational ;

and the rectangle contained by an irrational and a rational
so straight line is irrational ; [cf. x. 20]

therefore the area DF is irrational,
and the side of the square equal to it is irrational.  [x. Def. 4]
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But AC is the side of the square equal to DF;
therefore AC is irrational.

55 And let it be called a second bimedial straight line.
Q E. D.

After proving (1. 21) that eack of the squares on 4B, BC is medial, Euclid
states (IL 24, 26) that £, which is equal to the sum of the squares, is a
medial area, but does not explain why. It is because, by hypothesis, the
squares on 4B, BC are commensurable, so that the sum of the squares is
commensurable with either [x. 15] and is therefore a medial area [x. 23, Por.}

In this case [x. 28, note] x, y are of the forms kip, Aip/k* respectively.
Apply each of the areas (x*+5*) and 2ay to a rational straight line o, ie.
suppose
2+ =ou,
2%y = ov.
Now it follows from the hypothesis, x. 15 and X. 23, Por. that (2* + %) is
a medial area ; and so is 2xy, by hypothesis ;
therefore ou, ov are medial areas.

" Therefore each of the straight lines «, v is rationaland v & ..:..... (1).
Again xvy;
therefore 22 o xp.
But Brnxt+y and xy ~ 2xy;
therefore x4y o 2xy,
or oK% v 00,
whence B OV e ieieeaenenecaeniaes (2).

Therefore, by (1), (2), », v are rational and ~-.

It follows, by x. 36, that (¥ + v) is irrational.

Therefore (» + v) o is an irrational area [this can be deduced from x. 20
by reductio ad absurdum),

whence (x + »)%, and consequently (x + y), is irrational.

3
The irrational straight line 4%p + %’ is called a second bimedial straight

line.
This and the corresponding second apotome of a medial (k*p— ‘i/; p)

found in x. 75 are the positive roots of the equation
A+ (A—Ay

—_ e 3
x‘kap.x’d- %

pt=o.

ProrosiTION 39.

If two straight limes incommensurable in square whick
make the sum of the squares on them rational, but the rectangle
contained by them medial, be added together, the whole straight
line is irrational : and let it be called major.
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For let two straight lines A58, BC incommensurable in
square, and fulfilling the given con-
ditions [x. 33), be added together ; A 3 c
I say that AC is irrational.
For, since the rectangle 45, BC is medial,
twice the rectangle 45, BC is also medial.  [x. 6 and 23, Por.]
But the sum of the squares on 4258, BC is rational ;
therefore twice the rectangle 45, BC is incommensurable
with the sum of the squares on 48, BC,
so that the squares on 45, BC together with twice the rect-
angle A B, BC, that is, the square on AC, is also incommen-

surable with the sum of the squares on 45, BC; [x. 16]
therefore the square on AC is irrational,
so that AC is also irrational. [x Def. 4]

And let it be called major.
Q. E. D.

Here x, y are of the form found in x. 33, viz.

P /\/ T+ .L P \/ I - _k—
NE Ji+ B 2 i+ &
By hypothesis, the rectangle xy is medial ;
therefore 2xy is medial.
Also (x* + 7 is a rational area.
Therefore x1+ 2 o 2xy,
whence (x+y) v (2 +3),
so that (x + y)? and therefore (x + ), is irrational.

. . . k k
The irrational straight line L,\/l + ——+—P-\/r - == i
8 N2 Niv® W2 Y
called a major (irrational) straight line.
This and the corresponding minor irrational found in x. 76 are the
positive roots of the equation

A
—2p? ¢ =
xt— 2p .x’+l+!,p o.

ProrosITiON 40.

If two straight lines incommensurable in square which
make the sum of the squares on them medial, but the rectangle
contained by them rational, be added together, the whole straight
line 1s irrational ; and let it be called the side of a rational
plus a medial area.
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For let two straight lines 48, BC incommensurable in
square, and fulfilling the given con-
ditions [x. 34], be added together ; A B o
I say that 4C is irrational. '
For, since the sum of the squares on 4B, BC is medial,
while twice the rectangle A58, BC is rational,
therefore the sum of the squares on 48, BC is incommen-
surable with twice the rectangle A8, BC;
so that the square on AC is also incommensurable with twice
the rectangle 45, BC. [x. 16]
But twice the rectangle 4B, BC is rational ;
therefore the square on AC is irrational.
Therefore AC is irrational. [x. Def. 4]
And let it be called the side of a rational plus a
medial area.

Q. E. D.
Here x, y have [x. 34] the forms

,—-—z(i-:k’)J\/l+k’+k, Jz i+k’ NNy )

In this case (x* + 3?) is a medial, and 2xy a rational, area ; thus
a2+ o 2xp.
Therefore (x+y)? o 2xy,
whence, since 2xy is rational,
(x + )% and consequently (x + y), is irrational.
The irrational straight line

J—EU_+k’3JJI+P+k+Jz iR JJ1+k’ &

is called (for an obvious reason) the “side” of a ratwnal Plus a medial (area).

This and the corresponding irrational with a minus sign found in x. 77
are the positive roots of the equation
2 2

kz ¢
x‘——ﬁp .x’+m—),p =0

ProrosITION 41.

If two straight lines incommensurable in square whick
make the sum of the squares on them medial, and the rectangle
contained by them medial and also incommensurable with the
sum of the squares on them, be added together, the whole straight
line s irrational ; and let it be called the side of the sum
of two medial areas.
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For let two straight lines 48, BC incommensurable in
square and satisfying the given conditions
[x. 35] be added together;

I say that AC is irrational.

Let a rational straight line D£ be set out,
and let there be applied to D £ the rectangle
DF equal to the squares on A8, BC, and a
the rectangle G /7 equal to twice the rectangle

K H

m

AB, BC;
therefore the whole DA is equal to the square
on AC. (1. 4]

Now, since the sum of the squares on
AB, BC is medial,
and is equal to DF,
therefore DF is also medial.

And it is applied to the rational straight line DE ;

therefore DG is rational and incommensurable in length with
DE. [x. 22]
For the same reason GK is also rational and incommen-
surable in length with GF; that is, DE.
And, since the squares on 48, BC are incommensurable
with twice the rectangle A8, BC,

DF is incommensurable with GH ; .

so that DG is also incommensurable with GX. [vt. 1, x. 11]
And they are rational ;

therefore DG, GK are rational straight lines commensurable

in square only ;

therefore DK is irrational and what is called binomial. [x. 36]
But DE is rational ;

therefore DA is irrational, and the side of the square which

is equal to it is irrational. [x. Def. 4]
But AC is the side of the square equal to ZD;

therefore AC is irrational.
And let it be called the side of the sum of two medial

areas.

D E

A8 o

Q. E. D.
In this case x, y are of the form -
et

% ot )T
:/;\/l * Ji+ 2 72 \/I—J1+k"
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By hypothesis, (2* + %) and 2xy are medial areas, and

B+PPU2XY e, (1).
‘ Apply’ these areas respectively to a rational straight line o, and suppose
B o } .............................. (2).
xy = oy
Since then ox and ov are both medial areas, , v are rational and both
2 8 A Seetessceeresesscessesasssecssssesestsonas (3).
Now, by (1) and (2),
ou v ov,
so that uvo.

By this and (3), », v are rational and ~.

Therefore [X. 36] (# + v) is irrational.

Hence o (» + v) is irrational [deduction from x. 20].
Thus (x + »)*, and therefore (x + y), is irrational.
The irrational straight line

pki \/ & pki 3
— I+ ey
NES Ji+B  J2 i+ 2
is called (again for an obvious reason) the “side” of the sum of two medials
(medial areas). ) )
This and the corresponding irrational with a minus sign found in x. 78
are the positive roots of the equation

=2 JA. atp+ A

B
1+l ="

LEMMA.

And that the aforesaid irrational straight lines are divided
only in one way into the straight lines of which they are the
sum and which produce the types in question, we will now
prove after premising the following lemma.

Let the straight line 458 be set out, let the whole be cut
into unequal parts at each of
the points C, D,
and let 4 Cbe supposed greater
than DB ;

I say that the squares on 4C, CB are greater than the squares
on AD, DB.

For let AB be bisected at £.
Then, since AC is greater than D25,
let DC be subtracted from each ;

therefore the remainder 4D is greater than the remainder C5.
But AE is equal to £B;

therefore DE is less than £C;

A o E © B
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therefore the points C, D are not equidistant from the point
of bisection.

And, since the rectangle 4C, CB together with the square

on £C is equal to the square on £5, (1. 5]
and, further, the rectangle 4.0, DB together with the square
on DE is equal to the square on £25, [id.]

therefore the rectangle 4C, CB together with the square on
EC is equal to the rectangle 4D, DB together with the
square on DE.

And of these the square on DE is less than the square
on EC;

therefore the remainder, the rectangle AC, CB, is also less
than the rectangle 4D, DB,
so that twice the rectangle 4AC, CB is also less than twice
the rectangle 4D, DB.
Therefore also the remainder, the sum of the squares on
AC, CB, is greater than the sum of the squares on 4D, DB.
Q. E. D.

3. and which produce the types in question. The Greek is rowovedv & wpoxeluera
37, and I have taken eldn to mean ‘‘types (of irrational straight lines),” though the expression
might perhaps mean * satisfying the conditions in question.”

This proves that, if x + y=w + 9, and if », v are more nearly equal than
%, y (i.e. if the straight line is divided in the second case nearer to the point

of bisection), then
(2 +5°)> W+ ).
It is first proved by means of 11. § that
2xy < 2uv,
whence, since (x +y)? = (» + v)%, the required result follows.

ProposITION 42.

A binomial straight line is divided into its terms at one
point only.

Let AB be a binomial straight line divided into its terms
at C; _

therefore AC, CB are rational 4 58 B
straight lines commensurable in
square only. [x. 36]

I say that 4B is not divided at another point into two
rational straight lines commensurable in square only.
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For, if possible, let it be divided at D also, so that 4D,
DB are also rational straight lines commensurable in square
only. '

It is then manifest that 4C is not the same with D2A.

For, if possible, let it be so.

Then 4D will also be the same as CB,

and, as AC is to CAB, so will BD be to DA;

thus A28 will be divided at D also in the same way as by the
division at C:

which is contrary to the hypothesis.

Therefore AC is not the same with D2B.

For this reason also the points C, D are not equidistant
from the point of bisection.

Therefore that by which the squares on AC, CAB differ
from the squares on 4D, DB is also that by which twice
the rectangle 40, DA differs from twice the rectangle
AC, CB,
because both the squares on 4C, CB together with twice the
rectangle AC, CB, and the squares on A0, DB together
with twice the rectangle 40, DB, are equal to the square
on AB. ~ [ 4]

But the squares on AC, CAB differ from the squares on
AD, DB by a rational area,

for both are rational ;

therefore twice the rectangle 4D, DB also differs from twice
the rectangle 4C, CB by a rational area, though they are
medial [x. 21]:

which is absurd, for a medial area does not exceed a medial

by a rational area. [x. 26]
Therefore a binomial straight line is not divided at different

points ;

therefore it is divided at one point only.

Q. E. D.
This proposition proves the equivalent of the well-known theorem in
surds that,
if a+ Jb=x+ [y,
then a=x, b=y,
and if Na+ Jb=Jx + [y,

then a=x, b=y (ora=y, b=x).
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The proposition states that a dinomial straight line cannot be split up into
terms (évopara) in two ways. For, if possible, let
x+y=x"+y,
where x, y, and also x', y', are the ferms of a binomial straight line, ', y'
being different from x, y (or y, x).

One pair is necessarily more nearly equal than the other. Let x', 5’ be
more nearly equal than x, y.

Then (2 +3°) — (2 + y?) = 22y’ — 22y.
\ I:ow by hypothesis (x*+3?), (2" + ") are rational areas, being of the form
P+ Aot;
but 2x'y’, 2xy are medial areas, being of the form /%. p*;
therefore the difference of two medial areas is rational :
which is impossible. [x. 26]
Therefore &/, ' cannot be different from x, y (or y, x).

ProrosITION 43.

A first bimedial straight line is divided at one point only.

Let A8 be a first bimedial straight line divided at C, so
that 4C, CB are medial straight
lines commensurable in square
only and containing a rational
rectangle ; [x. 37]

I say that 428 is not so divided at another point.

For, if possible, let it be divided at 2 also, so that 4D,
DB are also medial straight lines commensurable in square
only and containing a rational rectangle,

Since, then, that by which twice the rectangle 4D, DB
differs from twice the rectangle 4C, CAB is that by which the
squares on A C, CA differ from the squares on 4D, DB,

while twice the rectangle 40D, DB differs from twice the
rectangle 4C, CB by a rational area—for both are rational—

therefore the squares on AC, C2A also differ from the squares
on AD, DB by a rational area, though they are medial :

which is absurd. [x. 26)

Therefore a first bimedial straight line is not divided into
its terms at different points;

therefore it is so divided at one point only.

D ¢ B
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In this case, with the same hypothesis, viz. that
x+y=x"+y,

and x', ' are more nearly equal than x, y,
we have as before (x2+ %) — (22 + 3% = 25"y’ — 229.

But, from the given properties of x, y, and &', ¥/, it follows that 2xy, 2xy
are rational, and (x*+y%), (x*+ ') medial, areas.

Therefore the difference between two medial areas is rational :
which is impossible. [x. 26]

PRrorosITION 44.

A second bimedial straight line is divided at one point only.

Let 4B be a second bimedial straight line divided at C,
so that AC, CB are medial straight lines commensurable in
square only and containing a medial rectangle ; [x. 38]

it is then manifest that C is not at the point of bisection,
because the segments are not commensurable in length.

I say that A2 is not so divided at another point.

A D 6 B
E M H N
F L <] K

For, if possible, let it be divided at D also, so that AC is

, not the same with D25, but AC is supposed greater ;

it is then clear that the squares on AD, DB are also, as we

proved above [Lemma), less than the squares on AC, CB ;

and suppose that 4D, DB are medial straight lines commen-

surable in square only and containing a medial rectangle.
Now let a rational straight line £ be set out,

let there be applied to £/ the rectangular paralle]ogram EK

equal to the square on A5,

and let £G equal to the squares on 4C, CB be subtracted ;

therefore the remainder /K is equal to twice the rectangle

AC, CB. (1. 4]
Again, let there be subtracted £LZ, equal to the squares

on AD, DB, which were proved less than the squares on
AC, CB [Lemma];
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therefore the remainder #/X is also equal to twice the rect-
angle AD, DB.

Now, since the squares on 4C, CAB are medial,
therefore £G is medial. }

And it is applied to the rational straight line £F;
therefore £/ is rational and incommensurable in length with
EF. [x. 22]

For the same reason :

HN is also rational and incommensurable in length with £F.

And, since AC, CB are medial straight lines commen-
surable in square only,
therefore 4C is incommensurable in length with CA.

But, as AC is to (B, so is the square on AC to the rect-
angle AC, CB;
therefore the square on 4AC is incommensurable with the rect-
angle AC, CB. [x. 11]

But the squares on AC, CB are commensurable with the
square on AC; for AC, CB are commensurable in squa{e. ]

- X. 1§

And twice the rectangle AC, CB is commensurable with

the rectangle AC, CB. [x. 6]
Therefore the squares on 4C, CAB are also incommen-
surable with twice the rectangle AC, CAB. [x. 13)

But £G is equal to the squares on AC, CB,
and AKX is equal to twice the rectangle AC, C5;
therefore £G is incommensurable with /KX,
so that £/ is also incommensurable in length with AN,

VL I, X. IT

And they are rational ; [ ]
therefore £/, HN are rational straight lines commensurable
in square only.

But, if two rgtional straight lines commensurable in square
only be added together, the whole is the irrational which is
called binomial. [x. 36]

Therefore £N is a binomial straight line divided at /.

In the same way EM, MN wi]% also be proved to be
rational straight lines commensurable in square only ;
and £N will be a binomial straight line divided at different
points, /7 and M.
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And EH is not the same with MV,

For the squares on 4C, CAB are greater than the squares
on AD, DB.

But the squares on AD, DB are greater than twice the
rectangle AD, DB ;

therefore also the squares on AC, CB, that is, £G, are much
greater than twice the rectangle 4D, DB, that is, MK,

so that £/ is also greater than MNV.

Therefore £H is not the same with M. 0 E D

As the irrationality of the second bimedial straight line [x. 38] is proved by
means of the irrationality of the binomial straight line [x. 36}, so the present
theorem is reduced to that of X. 42.

Suppose, if possible, that the second bimedial straight line can be divided
into its terms as such in two ways, i.e. that

x+y=x"+y,

where %', y' are nearer equality than x, y.

Apply x* +5?, 2xy to a rational straight line o, i.e. let

%% + 3% = ou,
2xy =o0v.

Then, as in x. 38, the areas 2+ )% 2xy are medial, so that ox, ov are
medial ;
therefore », v are both rational and v & .....e.covviiiiiiiiiiiiiiiiiinieae (1)

Again, by hypothesis, x, y are medial straight lines commensurable in
square only ;

therefore xoy.
Hence x% v xy.
And 2*~ (x*+5%), while xy ~ 2xy;
therefore (x* + %) v 2xy,
or oU v ov,
and hence BOV i, (2).

Therefore, by (1) and (2), #, v are rational straight lines commensurable
in square only;

therefore » + v is a binomial straight line.
Similarly, if 2" +y? =04’ and 2x'y' =07/,
#' + 7 will be proved to be a binomial straight line.

And, since (x +y)*=(x"+5')’, and therefore (¥ + v) = (' + '), it follows that
a binomial straight line is divided as such in two ways:
which is impossible. [x. 42]

Therefore x +y, the given second bimedial straight line, can only be so
divided in one way.

In order to prove that  + v, #’ + ¥/ represent a different division of the
same straight line, Euclid assumes that x*+3*> 2xy. This is of course an
easy inference from 11. 7; but the assumption of it here renders it probable
that the Lemma after x. 59 is interpolated.

H. E. IIL 7
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ProposiTION 45.

A major straight line is divided at one and the same point
only.

Let AB be a major straight line divided at C, so that

AC, CB are incommensurable in b o

square and make the sum of the £ ——3
squares on AC, CAB rational, but the
rectangle 4C, CB medial ; [x. 39]

I say that 45 is not so divided at another point.

For, if possible, let it be divided at D also, so that 4D,
DB are also incommensurable in square and make the sum
of the squares on 4D, DB rational, but the rectangle con-
tained by them medial.

Then, since that by which the squares on 4C, CB differ
from the squares on 4D, DB is also that by which twice the
rectangle 4.0, DB differs from twice the rectangle AC, CB,

while the squares on AC, CB exceed the squares on AD,
DB by a rational area—for both are rational—

therefore twice the rectangle 4D, DB also exceeds twice the
rectangle AC, CB by a rational area, though they are medial :

which is impossible. [x. 26]
Therefore a major straight line is not divided at different

points ;

therefore it is only divided at one and the same point.

Q. E. D.

If possible, let the major irrational straight line be divided into terms in
two ways, viz. as (¥ +y) and (x' +y’), where x', ' are supposed to be nearer
equality than x, y.

We have then, as in X. 42, 43,

(x? + %) — (22 +y7) = 2x"y' — 2.

But, by hypothesis, (x?+3?), (x®+y?) are both raffonal, so that their
difference is rational.

Also, by hypothesis, 2x'y’, 2xy are both media/ areas ;
therefore the difference of two medial areas is a rational area :
which is impossible. [x. 26]

Therefore etc.
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ProrposiTiON 46.

The side of a rational plus a medial area is divided at one
point only.

Let AB be the S|de of a rational plus a medial area
divided at C, so that AC, CB are

incommensurable in square and make A § ¢ 8
the sum of the squares on AC, CB
medial, but twice the rectangle 4AC, C2B rational ;  [x. 40]

"I say that 428 is not so divided at another point.

For, if possible, let it be divided at D also, so that 4D,
DB are also incommensurable in square and make the sum
of the squares on 4D, DB medial, but twice the rectangle
AD, DB rational.

Since then that by which twice the rectangle 4C, CB
differs from twice the rectangle 4D, DB is also that by
which the squares on 40, DB differ from the squares on
AC, CB,
while twice the rectangle 4C, CB exceeds twice the rectangle
AD, DB by a rational area,
therefore the squares on 4D, DB also exceed the squares
on AC, CB by a rational area, though they are medial :
which is impossible. [x. 26]

Therefore the side of a rational plus a medial area is not
divided at different points ;
therefore it is divided at one point only.

Q E.D.

Here, as before, if we use the same notation,

(' +%) — (&7 +7) = 22y = 2,
and the areas on the left side are, by hypothesis, both medial, while the areas
on the right side are both rational.
Thus the result of x. 26 is contradicted, as before.
Therefore etc.

ProrosiTION 47.
The side of the sum of two medial aveas is divided at one
point only.
Let AZB be divided at C, so that AC, CB are incommen-
surable in square and make the sum of the squares on 4C,

7—2
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CB medial, and the rectangle AC, CB medial and also in-
commensurable with the sum of the squares on them;

I say that A2 is not divided at another point so as to fulfil
the given conditions.

M H

A E N
D
G

F ) K
8 .

For, if possible, let it be divided at [, so that again AC
is of course not the same as B0, but AC is supposed greater;

let a rational straight line £/ be set out,

and let there be applied to £F the rectangle £G equal to the
squares on AC, CB,

and the rectangle /K equal to twice the rectangle AC, CB;
therefore the whole £X is equal to the square on AB. [u.4]

Again, let £, equal to the squares on 40, DB, be applied
to EF;

therefore the remainder, twice the rectangle 4D, DB, is equal
to the remainder /K.

And since, by hypothesis, the sum of the squares on 4C,
CAB is medial,

therefore £G is also medial.
And it is applied to the rational straight line £F;

therefore A E is rational and incommensurable in length with
EF. [x. 22]
For the same reason

HWN is also rational and incommensurable in length with £,

And, since the sum of the squares on AC, CB is incom-
mensurable with twice the rectangle 4C, CB,

therefore £G is also incommensurable with G/,
so that £/ is also incommensurable with ZA.  [v. 1, x. 11]
And they are rational ;
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therefore £/, NV are rational straight lines commeﬁsurable
in square only ;

therefore £V is a binomial straight line divided at A. [vc 36]

Similarly we can prove that it is also divided at /7. .
And E£HA is not the same with /N ; AR
therefore a binomial has been divided at different points : '
which is absurd. [x. 42]

Therefore a side of the sum of two medial areas is not
divided at different points;

therefore it is divided at one point only.

Using the same notation as in the note on X. 44, we suppose that, if
possible,
x+y=x"+y,

x~‘+y’=¢m} and x"+e"‘l‘=w,'} )
2xy=0v 2x’y' = ov
Then, since x* +?%, 2xy are medial areas, and o rational,
u, v are both rational and v & ...cceeeeenniiill, (1).
Also, by hypothesis, x4y v 2xy,
whence RV R (2).
Therefore, by (1) and (2), , v are rational and ~.
Hence « + v is a éinomial straight line. [x. 36]
Similarly #' + ¢/ is a binomial straight line.
But u+v=u'+7;
therefore a binomial straight line is divided into terms in two ways:
which is impossible. [x. 42]
Therefore etc.

and we put

DEFINITIONS II.

1. Given a rational straight line and a binomial, divided
into its terms, such that the square on the greater term is
greater than the square on the lesser by the square on a
straight line commensurable in length with the greater, then,
if the greater term be commensurable in length with the
rational straight line set out, let the whole be called a first
binomial straight line; :

2. but if the lesser term be commensurable in length
with the rational straight line set out, let the whole be called
a second binomial;
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3.%.-and if neither of the terms be commensurable in length
witlf:the rational straight line set out, let the whole be called
a third binomial.
“.%4. Again, if the square on the greater term be greater
.’-than the square on the lesser by the square on a straight line
‘..incommensurable in length with the greater, then, if the
greater term be commensurable in length with the rational

straight line set out, let the whole be called a fourth

binomial ;
5. if the lesser, a fifth binomial ;
6. and if neither, a sixth binomial.

ProposiTiON 48.

7o find the first binomial straight line.

Let two numbers AC, CB be set out such that the sum
of them AB has to BC the ratio
which a square number has to a
square number, but has not to C4
the ratio which a square number
has to a square number ; A c 8

[Lemma 1 after x. 28]

let any rational straight line D be set out, and let £F be
commensurable in length with D.
Therefore E£F is also rational.
Let it be contrived that,
as the number B4 is to AC, so is the square on £F to the
square on £G. [x. 6, Por.]
But A8 has to AC the ratio which a number has to a
number ;
therefore the square on £/ also has to the square on FG
the ratio which a number has to a number,
so that the square on £F is commensurable with the square
on FG. [x. 6]
And E£F is rational ;
therefore /G is also rational.
And, since BA4 has not to AC the ratio which a square
number has to a square number,

D H




x. 48] DEFINITIONS II.,, PROPOSITION 48 103

neither, therefore, has the square on £ to the square on FG

the ratio which a square number has to a square number ;

therefore £F is incommensurable in length with 7G.  [x. 9]
Therefore £F, FG are rational straight lines commen-

surable in square only;

therefore £G is binomial. [x. 36]

I say that it is also a first binomial straight line.
For since, as the number B4 is to AC, so is the square
on E£F to the square on /G,
while BA4 is greater than AC,
therefore the square on £F is also greater than the square
on FG.
Let then the squares on /G, H be equal to the square on
EF.
Now since, as BA4 is to AC, so is the square on £F to the
square on FG,
therefore, convertendo,
as AB is to BC, so is the square on £/ to the square on 4.
[v. 19, Por.]
But A28 has to BC the ratio which a square number has
to a square number ;
therefore the square on £/ also has to the square on A the
ratio which a square number has to a square number.
Therefore £F is commensurable in length with Z; [x. 9]
therefore the square on £F is greater than the square on FG
by the square on a straight line commensurable with £F.
And EF, FG are rational, and £/ is commensurable in
length with D.
Therefore £F is a first binomial straight line.

Q. E. D.

Let %p be a straight line commensurable in length with p, a given rational
straight line.

The two numbers taken may be written p (m® — #%), pn*, where (m*~ %) is
not a square.

Take x such that

M p(m —n)=Rp i Xt coiies e, (1),
/g3 g2

whence . x=kp X2 %

Then Ap+x, or kp+ kp Jmi - , is a first binomial straight line ...... (2).
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To prove this we have, from (1),
&~ Bpl,

and x is rational, but x v 4p;
that is, x is rational and ~ Zp,
so that &p + x is a binomial straight line.

Also, #%p? being greater than x%, suppose &% — ="

Then, from (1), pmt i pnt =Rp? : y
whence y is rational and ~ Zp.

Therefore &p + x is a first binomial straight line [x. Deff. 1. 1].

This binomial straight line may be written thus,

: ko+ hp N1 = AL

When we come to Xx. 85, we shall find that the corresponding straight line

with a negative sign is the firs? apotome,
ko —kp N1 =N

Consider now the equation of which these two" expressions are the roots.

The equation is
x*—2kp. x + N&p*=o.

In other words, the first binomial and the first apotome correspond to the

roots of the equation
x*— 2ax + Na’ =,

where a = &p.

ProrosiTION 49.
To find the second binomzial straight line.

Let two numbers AC, CB be set out such that the sum
of them AAB has to BC the ratio which
a square number has to a square number,

but has not to AC the ratio which a * €
square number has to a square number ; D H
let a rational straight line D be set out, Ft

and let £F be commensurable in length

with D; e

therefore £F is rational. G

Let it be contrived then that, )
as the number CA is to A5, so also is the square on £F to

the square on FG; [x. 6, Por.]
therefore the square on £/ is commensurable with the square
on FG. [x 6]

Therefore FG is also rational.
Now, since the number CA4 has not to 48 the ratio which
a square number has to a square number, neither has the
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square on £F to the square on /G the ratio which a square
number has to a square number.
Therefore £F is incommensurable in length with G ;

[x. 9]
therefore £F, FG are rational straight lines commensurable
in square only ;
therefore £G is binomial. [x. 36]

It is next to be proved that it is also a second binomial
straight line.

For since, inversely, as the number BA is to AC, so is
the square on GF to the square on FE,

while BA4 is greater than AC,

therefore the square on GF is greater than the square on FE.
Let the squares on £F, A be equal to the square on GF;

therefore, convertendo, as AB is to BC, so is the square on

FG to the square on A. [v. 19, Por.]
But 428 has to BC the ratio which a square number has

to a square number ;

therefore the square on FG also has to the square on /A the

ratio which a square number has to a square number.
Therefore #G is commensurable in length with /A; [x. 9]

so that the square on FG is greater than the square on FE

by the square on a straight line commensurable with #G.

And FG, FE are rational straight lines commensurable
in square only, and £F, the lesser term, is commensurable in
length with the rational straight line D set out.

Therefore £G is a second binomial straight line.

Q. E. D.

Taking a rational straight line £Zp commensurable in length with p, and
selecting numbers of the same form as before, viz. p (m* — »%), pn*, we put

p(m—nd) i pm* =R 1 & i, (1),
m
=Akp ———
so that x P\/m’—n’
1
=kp I.T——x;, SAY  ceceeccciiiiitisensaionenes (2)-

Just as before, x is rational and ~ Zp,
whence &p + x is a binomial straight line.
By (1), . x> Bpl.
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Let xt— Bp? =33,
whence, from (1), i pnt =2 : R,
and y is therefore rational and ~ x.

The greater term of the binomial straight line is x and the lesser 4p, and

4
Nt i = + &p

satisfies the definition of the second binomial straight line.

The corresponding second apotome [x. 86] is

p

—_——— k o
Ji-N P

The equation of which the two expressions are the roots is

2kp A? .
x’ JI—A’-x‘*‘i—'—-—A’k’P—O,
or %% — 2ax + Aa’ =0,
kp

NFES T

where a=

ProrosiTION 50.

To find the third binomial straight line.

Let two numbers AC, CB be set out such that the sum
of them A28 has to BC the ratio which a square number has
to a square number, but has not to 4C the ratio which a square
number has to a square number.

K A c B

E
F— g H

Let any other number D, not square, be set out also, and
let it not have to either of the numbers 84, AC the ratio
which a square number has to a square number. '

Let any rational straight line £ be set out,

and let it be contrived that, as D is to 4B, so is the square

on £ to the square on /G ; [x. 6, Por.]
therefore the square on £ is commensurable with the square
on FG. [x. 6]

And £ is rational ;
therefore G is also rational.
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And, since D has not to 4B the ratio which a square
number has to a square number,
neither has the square on £ to the square on FG the ratio
which a square number has to a square number ;
therefore £ is incommensurable in length with ~G. [x. 9]

Next let it be contrived that, as the number BA4 is to AC,

so is the square on FG to the square on GH ; [x. 6, Por.]
therefore the square on G is commensurable with the square
on GH. [x. 6]

But ~G is rational ;
therefore G A is also rational.
And, since BA has not to AC the ratio which a square
number has to a square number,
neither has the square on #G to the square on ZG the ratio
which a square number has to a square number ;
therefore G is incommensurable in length with GA. [x. 9]
Therefore /G, GH are rational straight lines commen-
surable in square only ;
therefore /#/ is binomial. [x 36]

I say next that it is also a third binomial straight line.
For since, as D is to AB, so is the square on £ to the
square on FG,
and, as BA4 is to AC, so is the square on G to the square
on GH,
therefore, ex aegualt, as D is to AC, so is the square on £ to
the square on GA. [v. 22]
But D has not to AC the ratio which a square number
has to a square number;
therefore neither has the square on £ to the square on GH
the ratio which a square number has to a square number ;
therefore £ is incommensurable in length with GA. [x. 9]
And since, as BA is to AC, so is the square on FG to
the square on GH,
therefore the square on FG is greater than the square on GA.
Let then the squares on G/, K be equal to the square
on FG;
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therefore, convertendo, as AB is to BC, so is the square on FG
to the square on X. [v. 19, Por.]

But A28 has to BC the ratio which a square number has
to a square number ;

therefore the square on FG also has to the square on X the
ratio which a square number has to a square number ;
therefore /G is commensurable in length with X. [x. 9]

Therefore the square on /G is greater than the square on
GH by the square on a straight line commensurable with #G.

And FG,-GH are rational straight lines commensurable
in square only, and neither of them is commensurable in length
with £.

Therefore /#H is a third binomial straight line.

Q E. D.

Let p be a rational straight line.

Take the numbers ¢ (m? — »?), gn?,
and let p be a third number which is not a square and which has not to ¢gm?
or ¢ (m®— n%) the ratio of square to square.

Take x such that Digm=p" X" i (1).
Thus xisrationaland v p ..ooeeiiiiiiiiiiiiiiil, (2).
Next suppose that  gm?:g(m*—nY)=x*:5" ... e (3)-
It follows that y is rational and ~~ X .......ccocviuiiiiinns il (4)-

Thus (x +y) is a sinomial straight line.
Again, from (1) and (3), ex aequali,

2:qgmM—m)=p": 9 (5)
whence PUP e (6).
Suppose that x—yr=2

Then, from (3), convertendo,
gm i gnt=x*: 3,
whence gNx.
Thus NE—p Az,
and x, y are both v p;

therefore x + y is a third binomial straight line.
/

Now, from (1), x=p-m7-;?.
Nt =n.
and, by (), y=p. —JP—W
Thus the third binomsal is

\/g.p(m“/m;,

which we may write in the form

mJk.p+mJk.pN1T— AL
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The corresponding tksrd apotome [x. 87] is
mk.p—m Jk.pNT=A.
The two expressions are accordingly the roots of the equation
x? —2m Jk . px + N'mhp* = o,
or 2*— 2ax + Ma'=o,
where a=m.Jk.p.
See also note on x. 53 (ad fin.).

ProrosiTION 5I.

To find the fourth binomial straight line.

Let two numbers AC, CB be set out such that A58
neither has to BC, nor yet to AC, the ratio
which a square number has to a square number.

Let a rational straight line D be set out, A €

and let £F be commensurable in length with D; o
therefore £F is also rational.
Let it be contrived that, as the number B4 ©

is to AC, so is the square on EF to the square T
on FG; [x. 6, Por.] B u
therefore the square on £/ is commensurable

with the square on FG ; [x. 6] a

therefore /G is also rational.

Now, since BA4 has not to AC the ratio which a square
number has to a square number,

neither has the square on £F to the square on G the ratio
which a square.number has to a square number ;

therefore £F is incommensurable in length with #G.  [x. g]

Therefore £F, FG are rational straight lines commen-
surable in square only ;

so that £G is binomial.

I say next that it is also a fourth binomial straight line.
For since, as BA is to AC, so is the square on £F to the
square on FG,
therefore the square on EF is greater than the square on FG.

Let then the squares on /G, / be equal to the square
on EF;
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therefore, convertendo, as the number A8 is to BC, so is the
square on £F to the square on /. [v. 19, Por.]
But A28 has not to BC the ratio which a square number
has to a square number;
therefore neither has the square on £F to the square on /A
the ratio which a square number has to a square number.
Therefore £F is incommensurable in length with /& ;[x. 9]
therefore the square on £/ is greater than the square on G/
by the square on a straight line incommensurable with £

And EF, FG are rational straight lines commensurable in
square only, and £F is commensurable in length with D.
Therefore £G is a fourth binomial straight line.

Q. E. D.

Take numbers m, n such that (m + n) has not to either m or » the ratio of
square to square.

Take x such that (m+n) :m=~p*: 22,
whence x=kp~/ i -
m+n
__k
Ji+d’ y.

Then 4p + x, or Ap + JTk—pTX , is a fourth binomial straight line.

For v/#p'—a* is incommensurable in length with #p, and #p is com-
mensurable in length with p.
The corresponding fourth apotome [x. 88] is

kp
kp— .
Ny
The equation of which the two expressions are the roots is

A 3
x’—zkp.x+mk’p =0,

A,
T+A% "2
where a=4p.

or x?—2ax +

ProrosiTiON 52.

To find the fifth binomial straight line.

Let two numbers AC, CB be set out such that 48 has
not to either of them the ratio which a square number has
to a square number ;

let any rational straight line D be set out,
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and let £/ be commensurable with D ;
therefore £F is rational.
Let it be contrived that, as CA is to AB, so is the
square on £F to the square on FG. [x 6, Por.]
But CA has not to A8 the ratio which a 4
square number has to a square number;
therefore neither has the square on £F to the
square on FG the ratio which a square number FT
has to a square number.

Therefore E£F, FG are rational straight g
lines commensurable in square only ; [x. 9] lu Q

therefore £G is binomial. [x. 36]

I say next that it is also a fifth binomial straight line.
For since, as CA is to AB, so is the square on E£F to
the square on FG,

inversely, as BA is to AC, so is the square on G to the
square on FE ;

therefore the square on G F is greater than the square on FE.

Let then the squares on £/, // be equal to the square
on GF;

therefore, convertendo, as the number 4B is to BC, so is the
square on G/ to the square on /. [v. 19, Por.]

But 428 has not to BC the ratio which a square number
has to a square number ;

therefore neither has the square on G to the square on A
the ratio which a square number has to a square number.

Therefore /G is incommensurable in length with /; [x. 9]

so that the square on #G is greater than the square on FE
by the square on a straight line incommensurable with ~G.

And GF, FE are rational straight lines commensurable
in square only, and the lesser term £/ is commensurable in
length with the rational straight line D set out.

Therefore £G is a fifth binomial straight line.

Q. E. D.
If m, n be numbers of the kind taken in the last proposition, take x such

that
m:(m+n)=~p: x>
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In this case x=kp\/"%‘
=kax + A, say,
and x> £p.

Then #p N1 + A + 4p is a fifth binomial straight line.

For N = &', or JA . 4p, is incommensurable in length with Zp NI
orx;

and 4p, but not £p #/1 + A, is commensurable in length with p.
The corresponding fifth apotome [x. 89] is
ko N1+ A —kp.

The equation of which the fifth binomial and the fifth apotome are the
roots is
A —2kpNT+A. x4 M =0,

or a'—2ax + a’=o,
I+A
where a=kpA1+A

ProrosiTION 53.

To find the sixth binomzial straight line.

Let two numbers AC, CB be set out such that 48 has
not to either of them the ratio which a
square number has to a square number ; A F
and let there also be another number D D €
which is not square and which has not to
either of the numbers B4, AC the ratio ¢

which a square number has to a square la
number. 8 K

Let any rational straight line £ be set
out, H
and let it be contrived that, as D is to A5,
so is the square on £ to the square on /G ; [x. 6, Por.]
therefore the square on £ is commensurable with the square
on FG., [x. 6]

And £ is rational ;
therefore FG is also rational.

Now, since D has not to A8 the ratio which a square
number has to a square number,
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neither has the square on £ to the square on G the ratio
~which a square number has to a square number ;
therefore £ is incommensurable in length with £G. [x- 9]
Again, let it be contrived that, as B4 is to AC, so is the
square on /G to the square on GA. [x. 6, Por.]
Therefore the square on /G is commensurable with the
square on /HG. [x. 6]
Therefore the square on G is rational ;
therefore /G is rational.
And, since BA4 has not to AC the ratio which a square
number has to a square number,
neither has the square on #G to the square on G/ the ratio
which a square number has to a square number ;
therefore /G is incommensurable in length with GAZ.  [x. 9]
Therefore G, GH are rational straight lines commen-
surable in square only ;
therefore '/ is binomial. [x. 36]

It is next to be proved that it is also a sixth binomial
straight line.
For since, as D is to AB, so is the square on £ to the
square on £G,
and also, as B4 is to AC, so is the square on ~G to the
square on G/,
therefore, ex aequalz, as D is to AC, so is the square on £
to the square on G/A. [v. 22]
But D has not to AC the ratio which a square number
has to a square number ;
therefore neither has the square on £ to the square on GA
the ratio which a square number has to a square number ;
therefore £ is incommensurable in length with GA. [x. 9]
But it was also proved incommensurable with #G ;
therefore each of the straight lines /G, G/H is incommen-
surable in length with £.
And, since, as BA4 is to AC, so is the square on /G to
the square on G/,
therefore the square on FG is greater than the square on GA.
Let then the squares on G/, K be equal to the square
on FG;

H. E. 1L 8
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therefore, convertendo, as AB is to BC, so is the square on FG
to the square on X. [v. 19, Por.]

But A B has not to BC the ratio which a square number
has to a square number ;

so that neither has the square on /G to the square on X the
ratio which a square number has to a square number.

Therefore FG is incommensurable in length with X7; [x. 9]

therefore the square on FG is greater than the square on G//
by the square on a straight line incommensurable with #G.

And FG, GH are rational straight lines commensurable in
square only, and neither of them is commensurable in length
with the rational straight line £ set out.

Therefore FH is a sixth binomial straight line.

Q. E. D.

Take numbers m, n such that (m + n) has not to either of the numbers
m, n the ratio of square to square ; take also a third number p, which is not
square, and which has not to either of the numbers (m + n), m the ratio of
square to square.

Let pi(m+n)=p*: 2 i (1)
and (m+n):m=a2:9 . i (2).

Then shall (x + y) be a sixth binomial straight line.

For, by (1), x is rational and v p.
By (2), since x is rational,

y is rational and v x.

Hence x, y are rational and commensurable in square only, so that (x +y)
is a binomial straight line. ,

Again, ex aeguali, from (1) and (2),

whence y v p.

Thus x, y are both incommensurable in length with p.
Lastly, from (2), convertendo,

(m+n):n=x:(x*-3%,
so that V3 — 3 U 2.

Therefore (x + y) is a sixth binomial straight line.
Now, from (1) and (3),

m+n
x=p.n) 5" = ok, say,
m
y=e-a/ 3 = pa/A, say,
and the séxtk dinomsal straight line may be written
JE.p+ A p.
The corresponding sixth apotome is X. 9o]
VE.-p—JA.p;
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and the equation of which the two expressions are the roots is
x— 2, Jk.px+(R—Q)p*=0,

A

or 2 - 2ex + al=o,

where a = ,/Z. p.

Tannery remarks (“De la solution géométrique des problémes du second
degré avant Euclide” in Mémoires de la Société des sciences physigues et naturelles
de Bordeaux, 2¢ Série, T. 1v.) that Euclid admits as binomials and apotomes
the #Asrd and sixth binomials and apotomes which are the square roots of first
binomials and apotomes respectively. Hence the third and sixth binomials
and apotomes are the positive roots of diguadratic equations of the same form
as the quadratics which give as roots the first and fourth binomials and
apotomes. But this remark seems to be of no value because (as was pointed
out a hundred years ago by Cossali, 11. p. 260) the squares of a// the six
binomials and apotomes (including the first and fourth) give frs¢ binomials
and apotomes respectively. Hence we may equally well regard them all as
roots of biquadratics reducible to quadratics, or generally as roots of equations

of the form
P 42a. 2" +g=0;

and nothing is gained by raising the degree of the equations in this way.
It is, of course, easy to see that the most general form of binomial and

apotome, viz.
p-NEtp. A
give first binomials and apotomes when squared.

For the square is p {(£+A)p+2 ~/ZA.p}; and the expression within the
bracket is a first binomial or apotome, because

(1) &+A>2J2
(2) V(£+A)P—4&A=k— ), which is ~ (£+]),
(3) (A+X)p~p.

LEMMA.

Let there be two squares 45, BC, and let them be placed
so that DB is in a straight line with BE;

therefore /B is also in a straight line with G ¢
BG.
Let the parallelogram A4 C be completed; © Bl e

I say that 4C is a square, that DG is a
mean proportional between 4258, BC, and
further that DC is a mean proportional A F H
between AC, CB.

For, since DA is equal to BF, and BE to BG,
therefore the whole DZ is equal to the whole ~G.

But DE is equal to each of the straight lines 44, KC,
and FG is equal to each of the straight lines AKX, AC; [1. 34]

8—2
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therefore each of the straight lines A/, KC is also equal to
each of the straight lines 4K, AC.

Therefore the parallelogram AC is equilateral.
And it is also rectangular ;

therefore AC is a square.
And since, as /B is to BG, so is DB to BE,
while, as FB is to BG, so is AB to DG,
and, as DA is to BE, so is DG to BC, [v1. 1]
therefore also, as A8 is to DG, so is DG to BC. [v. 11]

Therefore DG is a mean proportional between A5, BC.

I say next that DC is also a mean proportional between
AC, CB.

For since, as AD is to DK, so is KG to GC—
for they are equal respectively—
and, componendo, as AK is to KD, so is KC to CG, [v. 18]
while, as AK is to KD, sois AC to CD,
and, as KC is to CG, so is DC to CAB, [vi. 1]
therefore also, as AC is to DC, so is DC to BC. [v. 11]

Therefore DC is a mean proportional between AC, CA.
Being what it was proposed to prove.

It is here proved that
xixy=ay:5,
and (x+yy:i(x+y)y=(x+y)y: 5"
The first of the two results is proved in the course of x. 25 (lines 6—8 on
p- 57 above). This fact may, I think, suggest doubt as to the genuineness
of this Lemma.

PRroPOSITION 54.

If an area be contained by a rational straight line and the
Sirst binomial, the “side” of the area is the irrational straight
line whick is called binomial.

For let the area 4C be contained by the rational straight
line A8 and the first binomial 4D ;

I say that the ‘“side” of the area 4AC is the irrational straight
line which is called binomial. :

For, since AD is a first binomial straight line, let it be
divided into its terms at £,

and let A £ be the greater term.



X. 54] PROPOSITION 54 117

It is then manifest that A, £D are rational straight lines
commensurable in square only,

the square on A £ is greater than the square on £D by the
square on a straight line commensurable with 4 £,

and A £ is commensurable in length with the rational straight

line A B set out. [x. Deff. 1. 1]
Let £D be bisected at the point /.
A GE _F D R_Q
M N—1°
B HK L G©
s P

Then, since the square on A is greater than the square

on £D by the square on a straight line commensurable with
AE,

therefore, if there be applied to the greater 4 £ a parallelogram
equal to the fourth part of the square on the less, that is, to
the square on £F, and deficient by a square figure, it divides
it into commensurable parts. [x. 17]

Let then the rectangle 4G, GE equal to the square on
EF be applied to AE;

therefore 4G is commensurable in length with £G.

Let GH, EK, FL be drawn from G, £, F parallel to
either of the straight lines A5, CD;

let the square SV be constructed equal to the parallelogram
AH, and the square NQ equal to GX, [ 14]

and let them be placed so that #/V is in a straight line with
NO;
therefore RV is also in a straight line with V2.
And let the parallelogram SQ be completed ;
therefore SQ is a square. [Lemma]

Now, since the rectangle 4G, GE is equal to the square
on EF,

therefore, as AG is to EF, so is FE to EG; [vi. 17]
therefore also, as AH is to EL, sois EL to KG; [vi. 1]
therefore £L is a mean proportional between 4/, GK.

But A/ is equal to SA, and GK to NQ;
therefore £L is a mean proportional between SN, N Q.
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But MR is also a mean proportional between the same
SN, NQ; [Lemma]
therefore £L is equal to /R,
so that it is also equal to PO.

But AH, GK are also equal to SN, NQ;

therefore the whole 4C is equal to the whole SQ, that is, to
the square on MO ;

therefore MO is the ‘“side” of AC.

I say next that /O is binomial.
For, since AG is commensurable with G £,

therefore 4 £ is also commensurable with each of the straight
lines AG, GE. [x. 15]

But AE is also, by hypothesis, commensurable with 4.5 ;
therefore AG, GE are also commensurable with 45, [x. 12]

And AB is rational ;
therefore each of the straight lines 4G, GE is also rational ;
therefore each of the rectangles 4H, GK is rational, [x. 19]
and 4 A is commensurable with GX.

But AH is equal to S¥, and GK to NQ;

therefore SN, NQ, that is, the squares on MN, NO, are
rational and commensurable.

And, since AE is incommensurable in length with £D,

while AFE is commensurable with 4G, and DE is commen-
surable with £F,

therefore 4G is also incommensurable with £F, [x. 13]
so that 4/ is also incommensurable with £Z. [vi. 1, x. 11]
* But AH is equal to SN, and £L to MR ;
therefore S/ is also incommensurable with //R.
But, as SNV is to MR, so is PN to NR; [v1. 1]
therefore PV is incommensurable with VA, [x. 11]
But PN is equal to N, and NR to NO;
therefore MV is incommensurable with NVO.

And the square on MV is commensurable with the square
on NO,

and each is rational ;

therefore N, NO are rational straight lines commensurable
in square only.
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Therefore MO is binomial [x. 36] and the “side” of 4AC.
Q. E. D.

2. ‘‘side.” I use the word “side” in the sense explained in the note on X. Def. 4
(ap. 13 above), i.e. as short for “side of a square equal to.” The Greek is % 7d xwplor
Wﬂﬂ-"’].

A first binomial straight line being, as we have seen in x. 48, of the form
o+ ko TR,
the problem solved in this proposition is the equivalent of finding the square
root of this expression multiplied by p, or of
p (ko +Ap N1 - N3),
and of proving that the said square root represents a dinomial straight line
as defined in x. 36.

The geometrical method corresponds sufficiently closely to the algebraical
one which we should use.
First solve the equations

u+v==~hp )
w0 = W (1 — \Y) } ........................ (1)
Then, if «, v represent the straight lines so found, put
XV = pu } .
Pompp [ (2);

and the straight line (x + y) is the square root required.
The actual algebraical solution of (1) gives

u—v="~p.]},
so that u=3%kp(1 + ),
v=3%4p(1—A),
and therefore x=p\/§ (1 +1),

y=P\/§(I‘A)v
and x+y=p«/§(l+)‘)+p\/_§(l—h)-

This is clearly a dinomial straight line as defined in X. 36.

Since Euclid has to express his results by straight lines in his figure, and
has no symbols to make the result obvious by inspection, he is obliged to
prove (1) that (x + ) is the square root of p(%p+4p ~/1—A%), and (2) that
(x +) is a binomial straight line, in the following manner.

First, he proves, by means of the preceding Lemma, that

xy:fp’«/l-—/\’ .............................. 3);
therefore (x+y)=2"+y"+ 2xy
=p(u+7)+2xy

=kp* + kp* V1 =N, by (1) and (3),
so that x+y=p(kp + ko V1 - ).
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Secondly, it results from (1), [by x. 17], that
u~ v,
so that , v are both ~ (% +9), and therefore ~p ..........ccoceeeiiiiiins 4);
thus », 2 are rational,
whence px, pv are both rational, and
pu ~ pv.

Therefore a2 y? are rational and commensurable ........................ (s)-

Next, 2p v Ap V1 — A3,
and 4p ~ u, while £p VT —X* ~ }4p V1 —N;

therefore uv 3o N1 N
whence pu v 3 N1 =N,
or 2% v ay,
so that Xy
By this and (5), x, y are rational and ~, so that (x+y) is a binomial
straight line. [x. 36]

X. 91 will prove in like manner that a like theorem holds for apotomes,

viz. that
p\/f(x +A)=p A /é(x—l)=~/p(kp—kp V1-a).

Since the first binomial straight line and the jfirst apolome are the roots of
the equation

x—2kp . x+ A%’ =0,
this proposition and Xx. g1 give us the solution of the biquadratic equation
xt—2kp* . X + A%t = 0.

ProrosiTION §55.

If an area be contained by a rational strvaight line and the
second binomial, the * side” of the area is the irrational straight
line whick is called a first bimedial.

For let the area ABCD be contained by the rational
s straight line 48 and the second binomial 40D ;

I say that the “‘side” of the area A C is a first bimedial straight
line.

For, since 4D is a second binomial straight line, let it be
divided into its terms at £, so that A £ is the greater term ;

10 therefore AE, ED are rational straight lines commensyrable
in square only,

the square on AE is greater than the square on £D By the
square on a straight line commensurable with A,

and the lesser term £ is commensurable in length with 4 5.

[x. Deff. 11. 2]
15 Let £D be bisected at 7,
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and let there be applied to 4 Z the rectangle AG, GE equal
to the square on £/ and deficient by a square figure ;

therefore AG is commensurable in length with GE.  [x. 17]
Through G, £, Flet GH, EK, FL be drawn parallel to
0 AB, CD,
let the square SNV be constructed equal to the parallelogram
AH, and the square NQ equal to GX,

and let them be placed so that MV is in a straight line with
NO;

25 therefore RV is also in a straight line with V2.
R Q

B8 H K L C

] P

Let the square SQ be completed.

It is then manifest from what was proved before that /R
is a mean proportional between SN, NVQ and is equal to £L,
and that MO is the *‘side” of the area AC.

30 Itisnowto be proved that /70 is a first bimedial straight line.
Since AE is incommensurable in length with £D,
while £D is commensurable with 425,
therefore AE is incommensurable with 45. [x. 13]
And, since AG is commensurable with £G,
35 AE is also commensurable with each of the straight lines
AG, GE. [x. 15]
But A E is incommensurable in length with 45 ;
therefore AG, GE are also incommensurable with 48, [x. 13]

Therefore BA, AG and BA, GE are pairs of rational
4o straight lines commensurable in square only ;

so that each of the rectangles 4/, GK is medial. [x. 21]

Hence each of the squares SV, NQ is medial.
Therefore MN, NO are also medial.
And, since 4G is commensurable in length with GE,

45 A H is also commensurable with GX, [vi. 1, x. 11]
that is, SV is commensurable with NV Q,
that is, the square on MV with the square on NO.
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And, since AF is incommensurable in length with £D,
while A E is commensurable with 4G,
scand £D is commensurable with £F,
therefore 4G is incommensurable with £F; [x. 13]
so that 4/ is also incommensurable with' £,
that is, SV is incommensurable with /R,
that is, PNV with VR, [vi. 1, x. 11]
ss that is, MV is incommensurable in length with /VO.

But MN, NO were proved to be both medial and com-
mensurable in square ;

therefore MN, NO are medial straight lines commensurable
in square only.

60 I say next that they also contain a rational rectangle.
For, since DE is, by hypothesis, commensurable with each
of the straight lines 458, EF,

therefore £F is also commensurable with £X. [x. 12]
And each of them is rational ;
65 therefore £L, that is, MR is rational, ' [x. 19]

and MR is the rectangle M N, NO.

But, if two medial straight lines commensurable in square
only and containing a rational rectangle be added together, the
whole is irrational and is called a first bimedial straight line.

(x. 37]
70 Therefore MO is a first bimedial straight line.
Q E. D.

39 Therefore BA, AG and BA, GE are pairs of rational straight lines com-
mensurable in square only. The text has ‘‘Therefore B4, 4G, GE are rational straight
lines commensurable in square only,” which I have altered because it would naturally convey
the impression that any fwo of the three straight lines are commensurable in square only,
whereas 4G, GE are commensurable in length (l. 18), and it is only the other two pairs
which are commensurable in square only.

A second binomial straight line being [X. 49] of the form

the present proposition is equivalent to finding the sguare root of the expression

kp
—~—+k).
P(Jl_” P
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As in the last proposition, Euclid finds «, » from the equations

u+v= Ap
NS Y } .............................. (1),
uy = }%p?
then finds x, y from the equations
x% = pu
— :v } .................................... (2),

and then proves (a) that

x+y= \/ +kP)’

and (B) that (x + y) is a first bimedial straxght line [x. 37])

The steps in the proof are as follows.
For (a) reference to the corresponding part of the previous proposition
suffices.

(8) By (1) and x. 17,
un~vy,

therefore #, v are both ratlonal and ~ (#+9), and therefore v p [by (1)]...(3)-
Hence pu, pv, or x3, 3, are medial areas,

so that x, y are also medial .............. cooiiiiiiiiiiiin e (4).
But, since # ~ 7,

A ABAP (5)
Again (¥ +v), or ﬁ’, v 4p,
so that u v 3kp,
whence pu v 3Ap,
or x* v xy,
and ZUP e (6).

Thus [(4), (5), (6)] #, ¥ are medial and ~.

tly, xy = 34p’, which is rational.
Therefore (x + y) is a first bimedial straight line.
The actual straight lines obtained from (1) are

I+A

“=r =t
1I—A ’

v=3%- - _— A

1}«/1—)\’ P

1+A\} A (1—a\}
so that xX+y=p (I—)\ +p —(m)

The corresponding first apotome of a medial straight line found in x. 92
being the same thing with a msnus sign between the terms, the two expressions
are the roots of the biquadratic

2kp? A? .
m A+ 1_—Ai A P =0,

being the equation in x? corresponding to that in x in X. 49.
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ProposITION 56.

If an avea be contained by a rational straight line and the
third binomial, the “side” of the area is the irvational straight
line called a second bimedial.

For let the area ABCD be contained by the rational
straight line 48 and the third binomial 4D divided into its
terms at £, of which terms 4 £ is the greater;

I say that the “side” of the area 4 C is the irrational straight
line called a second bimedial.

For let the same construction be made as before.

R_Q
A GE F D
L m—1
B \

s P

Now, since AD is a third binomial straight line,

therefore AE, ED are rational straight lines commensurable
in square only,

the square on A £ is greater than the square on £D by the
square on a straight line commensurable with 4 £,

and neither of the terms A £, £D is commensurable in length
with 4 5. [x. Deff. 1. 3]

Then, in manner similar to the foregoing, we shall prove
that MO is the *‘side” of the area AC,

and MN, NO are medial straight. lines commensurable in
square only ;

so that MO is bimedial.

It is next to be proved that it is also a second bimedial
straight line.

Since DE is incommensurable in length with 425, that is,
with £K,

and DE is commensurable with £F,
therefore £F is incommensurable in length with £K.  [x. 13]
And they are rational ;
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therefore /£, EK are rational straight lines commensurable
in square only.
Therefore £L, that is, MR, is medial. [x. 21]
And it is contained by N, NO;
therefore the rectangle MV, NO is medial.
Therefore MO is a second bimedial straight line.  [x. 38]
Q. E. D.

This proposition in like manner is the equivalent of finding the square
root of the product of p and the tAkird binomial [x. 50), i.e. of the expression

p(Jk.p+ Jk.pJ1 =A%)

u+v=,[k.
uv:ikp’(l)l—A') } .......................... (I).

As before, put

"Next, », v being found, let
x? = pu,
»=pv;
then (x +y) is the square root required and is a second bimedial straight line.
[x. 38]
For, as in the last proposition, it is proved that (x +y) is the square root,
and x, y are medial and ~.

Again, xy = } JJ£.p* /1 - A%, which is medval.

Hence (x +y) is a second bimedial straight line.

By solving equations (1), we find
u=3(Jk.p+\ Jk.p),
v=3(Jk.p-\Jk.p)

and x+y:p\/“/7k(1+-k_)+p~/‘/7k(l—k).

The corresponding second apotome of a medial found in X. 93 is the same
thing with a minus sign between the terms, and the two are the roots (cf. note
on x. 50) of the biquadratic equation

2= 2 Jk. p%® + Nhpt=o.

ProrosiTiON §57.

If an area be contained by a rational strvaight line and the
Sourth binomial, the ‘' side” of the area is the irvational straight
line called major.

For let the area 4C be contained by the rational straight
line A8 and the fourth binomial 40 divided into its terms
at £, of which terms let 4£ be the greater;

I say that the “side” of the area AC is the irrational straight
line called major.
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For, since AD is a fourth binomial straight line,
therefore AE, ED are rational straight lines commensurable
in square only,
the square on A £ is greater than the square on £0 by the
square on a straight line incommensurable with 4 £,
and AE is commensurable in length with 48.  [x.Deff. 1. 4]

Let DE be bisected at £,
and let there be applied to 4 £ a parallelogram, the rectangle
AG, GE, equal to the square on £F;
therefore 4G is incommensurable in length with GE. [x. 18]

Let GH, EK, FL be drawn parallel to 425,
and let the rest of the construction be as before ;
it is then manifest that MO is the “side” of the area AC.

R_Q
A G E F D
M N (o]
HK L C
) P

It is next to be proved that MO is the irrational straight
line called major.

Since AG is incommensurable with £G,
AH is also incommensurable with GKX, that is, SNV with NV Q;

. [vi 1, x. 11]
therefore M N, NO are incommensurable in square.
And, since AE is commensurable with A5,
AK is rational ; [x. 19]

and it is equal to the squares on N, NO;

therefore the sum of the squares on MV, VO is also rational.
And, since DE is incommensurable in length with 425,

that is, with £X,

while DE is commensurable with £7F,

therefore £F is incommensurable in length with £X.  [x. 13]
Therefore £K, EF are rational straight lines commen-

surable in square only;

therefore L E, that is, MR, is medial. [x. 21]
And it is contained by MN, NO;

therefore the rectangle MV, NO is medial.
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And the [sum] of the squares on M/, NO is rational,
and MN, NO are incommensurable in square.

But, if two straith lines incommensurable in square and
making the sum of the squares on them rational, but the
rectangle contained by them medial, be added together, the

whole is irrational and is called major. [x. 39]
Therefore MO is the irrational straight line called major
and is the “‘side” of the area AC. Q. E. D.

The problem here is to find the square root of the expression [cf. X. 51]

Ap
kp + )
P ( P VT +X
The procedure is the same.
Find %, v from the equations

u+v=rkp
B e (1),
W= 1+A}
and, if 2 =pu
y,='m} .................................... (2),

(% +y) is the required square root.

To prove that (x +y) is the major irrational straight line Euclid argues
thus.

By x. 18, uv,
therefore - p v pv,
or E2RY) }",
so that LR PN (3)-
Now, since (#+ v) ~ p,
(# +v) p, or (x*+ %), is a rational area.................. (4)
Lastly, zy:}———fﬁ_, which is a medial area ........................ (s).
NFESN
Thus [(3), (4), (5)] (x +) is a major irrational straight line. [x. 39]

Actual solution gives

BAGVENE
(/i)
md  zaymp g2 (i 2 eV E (- /)

The corresponding square root found in X. 94 is the minmor irrational
straight line, the terms being separated by a minus sign, and the two straight
lines are the roots (cf. note on X. 51) of the biquadratic equation

A
2 4
x* ka .x’+—l JPP—O.
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ProrosiTION 58.

If an arvea be contained by a rational stvaight line and the
Jfth binomial, the “side” of the area is the irrational straight
line called the side of a rational plus a medial area.

For let the area 4C be contained by the rational straight
line A8 and the fifth binomial 4D divided into its terms at
E, so that AE is the greater term;

I say that the “side” of the area 4C is the irrational straight
line called the side of a rational plus a medial area.

For let the same construction be made as before shown;
it is then manifest that 70 is the “side” of the area AC.

A QE F D R_Q
M N—1°
HK L ¢
3 P

It is then to be proved that MO is the side of a rational
plus a medial area.

For, since AG is incommensurable with G £, [x. 18]
therefore A/ is also commensurable with Z £, [vi 1, x. 11]
that is, the square on M/ with the square on VO ;
therefore M N, NO are incommensurable in square.

And, since 4D is a fifth binomial straight line, and £D
the lesser segment,

therefore £ is commensurable in length with 425.
[x. Deff. 1. 5]

But A4 £ is incommensurable with £D ;
therefore A8 is also incommensurable in length with 4.
[x. 13]
Therefore AK, that is, the sum of the squares on MAN,

NO, is medial. [x. 21]
And, since DE is commensurable in length with 425, that

is, with £K,
while DE is commensurable with £7,
therefore £/ is also commensurable with £X. [x. 12]
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And E£KX is rational ;

therefore £L, that is, MR, that is, the rectangle MN, NO, is
also rational, [x. 19]
Therefore MN, NO are straight lines incommensurable
in square which make the sum of the squares on them medial,
but the rectangle contained by them rational.
Therefore MO is the side of a rational plus a medial area
[x. 40] and is the ‘“side” of the area AC.

Q. E. D.
We have here to find the square root, of the expression [cf. X. 52]
: plkp J1 + X+ Ap).
As usual, we put
u+v=hpJ1+A
wv =} A%t } ........................... (1).
Then, », v being found, we take
;;:: } ................................. (2),
and (x +y), so found, is our required square root.
Euclid’s proof of the class of (x + y) is as follows :
By x. 18, uvv;
therefore pU v pv,
so that 2y,
and X P eeieiiirnreeienteeeeraiaaaan (3)
Next u+vohp
v p
whence p(# +v), or (2*+3*), is a medial area .................. (4)-
Lastly, xy = }4p% which is a rational area ........... ...... (5)-
Hence [(3), (4), (5)] (x +y) is the side of a rational plus a media[l area:.I
X. 40

If we solve algebraically, we obtain

w="2 (JTTX+ ),
o= (TTR- 0,
and x+y=p \/f(,/x_+7\+~/)~)+p\/§(.h+)\—~/:\).

The corresponding “side ” found in X. 95 is a straight line which produces
with a rational area a medial whole, being of the form (x —y), where x, y
have the same values as above.

The two square roots are (cf. note on X. 52) the roots of the biquadratic
equation

= 2kp* J1+A. 2+ M =0,
H. E. 1L 9
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ProrosiTiON 59.

If an arvea be contained by a rational stvaight line and the
sixth binomial, the “side” of the avea is the irvational stvaight
line called the side of the sum of two medial areas.

For let the area ABCD be contained by the rational
straight line 45 and the sixth binomial 420, divided into its
terms at £, so that A £ is the greater term ;

I say that the “side” of AC is the side of the sum of two
medial areas.

Let the same construction be made as before shown.
A GE F D R Q

M; N o

S p

It is then manifest that M0 is the “side” of AC, and
that MV is incommensurable in square with NV O.

Now, since £A4 is incommensurable in length with 425,
therefore £4, AB are rational straight lines commensurable
in square only ;
therefore AKX, that is, the sum of the squares on MN, NO,

is medial. [x. 21]
Again, since £D is incommensurable in length with 425,
therefore ~£ is also incommensurable with £K; [x. 13]

therefore /£, EK are rational straight lines commensurable
in square only ;
therefore £L, that is, MR, that is, the rectangle MN, NO, is

medial. [x. 21]
And, since AE is incommensurable with £7,
AK is also incommensurable with £L. [vi. 1, x. 11]

But AKX is the sum of the squares on MN, NO,
and £L is the rectangle MN, NO;

therefore the sum of the squares on MN, NO is incommen-
surable with the rectangle MV, NO.

And each of them is medial, and N, NO are incom-
mensurable in square.
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Therefore MO is the side of the sum of two medial areas
[x. 41], and is the ““side” of AC.
Q. E. D.
Euclid here finds the square root of the expression [cf. X. 53]

p(NJE.p+ A p)

As usual, we solve the equations

u+v=,[k.
v = ;/AP’P } .............................. (1);
then, u, v being found, we put
x* = pu
P } ................................. (2),

and (x + y) is the square root required.

Euclid proves that (x + y) is the séde of (the sum of ) two medial areas, as
follows.
~As in the last two propositions, x, y are proved to be incommensurable
in square.

Now ,/£. p, p are commensurable in square only ;

therefore p(u +v), or (x* + %), is a medial area .................. (3)-
Next, xy =3 /A p% which is again a medial area ............... (4)
Lastly, NE.pv 3 a/Aop,

so that N/ 2V EVE ) W -F

that is, (B+Y) v ry i (5).

Hence [(3), (4), (5)] (x +) is the side of the sum of two medial areas.
Solving the equations algebraically, we have

“=£(Jk+ﬁtx)’
v=2(yk-JEN,
and a4y=pJE(JE+ VE=N)+pE(VE— JE-D).

The corresponding square root found in X. 96 is x —y, where x, y are the

same as here. ) )
The two square roots are (cf. note on X. 53) the roots of the biquadratic

equation

xt—2 Jh.px?+ (A= A)p*=0.

[LEMMA.

If a straight line be cut into unequal parts, the squares
on the unequal parts are greater
than twice the rectangle con-
tained by the unequal parts.

Let A28 be a straight line, and let it be cut into unequal
parts at C, and let AC be the greater ;

I say that the squares on AC, CB are greater than twice the
rectangle AC, CB.

4 2 ¢ ®

Yy—2
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For let AB be bisected at D.
Since then a straight line has been cut into equal parts
at D, and into unequal parts at C,

therefore the rectangle AC, CB together with the square on
CD is equal to the square on 4D, . [ 5]
so that the rectangle AC, CB is less than the square on AD;
therefore twice the rectangle 4C, CAB is less than double of
the square on 4D.

But the squares on AC, CA are double of the squares on
AD, DC; (1. 9]
therefore the squares on 4C, CB are greater than twice the
rectangle AC, CB.

Q. E. D.]

, We have already remarked (note on x. 44) that the Lemma here proving
that
2+ > 2xy

can hardly be genuine, since the result is used in Xx. 44.

ProrosiTiON 60.

The square on the binomial straight line applied to a
rational straight line produces as breadth the first binomial.

Let A28 be a binomial straight line divided into its terms
at C, so that AC is the greater term;
let a rational straight line DE be
set out,
and let DEFG equal to the square
on AB be applied to DE producing
DG as its breadth ; E e
I say that DG is a first binomial i ¢ B
straight line.

For let there be applied to DE the rectangle DA equal
to the square on AC, and KL equal to the square on 5C;
therefore the remainder, twice the rectangle 4C, CAB, is equal
to MF.

Let MG be bisected at AV, and let VO be drawn parallel
[to ML or GF].

Therefore each of the rectangles MO, NF is equal to
once the rectangle AC, CAB.

Now, since 4B is a binomial divided into its terms at C,

D K M N (¢}
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therefore AC, CB are rational straight lines commensurable
in square only ; [x. 36]
therefore the squares on AC, CAB are rational and commen-
surable with one another,

so that the sum of the squares on AC, CA is also rational.

. [x. 15]
And it is equal to DL ;
therefore DL is rational.
And it is applied to the rational straight line D£;

therefore DM is rational and commensurable in length with
DE. [x. 20]

Again, since AC, CB are rational straight lines commen-
surable in square only,
therefore twice the rectangle AC, CB, that is MF, is medial.

[x. 21]
And it is applied to the rational straight line /L ;

therefore MG is also rational and incommensurable in length
with ML, that is, DE. [x. 22]

But MDD is also rational and is commensurable in length
with DE ;
therefore DA/ is incommensurable in length with M#G. [x. 13]
And they are rational ;

therefore DM, MG are rational straight lines commensurable
in square only;

therefore DG is binomial. [x. 36]

It is next to be proved that it is also a first binomial
straight line.

Since the rectangle 4C, CB is a mean proportional between
the squares on AC, CB5, [cf. Lemma after x. 53]
therefore MO is also a mean proportional between DA, KL.

Therefore, as DH is to MO, so is MO to KL,

that is, as DK is to MN, so is MN to MK ; [vi. 1]
therefore the rectangle DK, KM is equal to the square
on MN. [vi. 17]

And, since the square on 4C is commensurable with the
square on CAB,

DH is also commensurable with X,
so that DX is also commensurable with A/, v 1, x. 11],
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And, since the squares on AC, CB are greater than twice

the rectangle 4C, CB5, [Lemma]
therefore DL is also greater than MF,
so that DM is also greater than MG. [vi. 1]

And the rectangle DK, KM is equal to the square on
MN, that is, to the fourth part of the square on MG,

and DK is commensurable with A //.

But, if there be two unequal straight lines, and to the greater
there be applied a parallelogram equal to the fourth part of
the square on the less and deficient by a square figure, and
if it divide it into commensurable parts, the square on the
greater is %reater than the square on the less by the square
on a straight line commensurable with the greater; [x. 17]

therefore the square on DA/ is greater than the square on
MG by the square on a straight line commensurable with DA/.

And DM, MG are rational,

and DM, which is the greater term, is commensurable in length
with the rational straight line DE set out.

Therefore DG is a first binomial straight line. [x. Deff. 1. 1]
Q E. D.

In the hexad of propositions beginning with this we have the solution of
the converse problem to that of X. 54—59. We find the sguares of the
irrational straight lines of X. 36—41 and prove that they are respectively equal
to the rectangles contained by a rational straight line and the frss, second,
third, fourth, fifth and sixth binomials.

In x. 6o we prove that, p + \/%. p being a binomial straight line [x. 36],

(p+ JE.p)
[
is a first binomial straight line, and we find it geometrically.
The procedure may be represented thus.
Take x, y, 2 such that
ox = Pay
oy = kp*
.23 =2 ,/k.p
p', %p® being of course the squares on the terms of the original binomial,
and 2z ,/A. p? twice the rectangle contained by them.

Then (x+y)+zz=(‘_’+_:/f'_")”

and we have to prove that (x + y) + 23 is a first binomial straight line of which
(x+), 23 are the terms and (x + y) the greater.

Euclid divides the proof into two parts, showing first that (x + y) + 23 is
some binomial, and secondly that it is the £7s# binomial.
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(a) p ~ J#.p, so that p*, &p® are rational and commensurable ;

therefore p?+ 4p% or o (x +y), is a rational area,

whence (x+y)isrationaland ~o ... (1).
Next, 2p . /4. p is a medial area,

so that o . 22 is a medial area,

whence 2z isrational but v o ... (2).
Hence [(1), (2)] (x +y), 25 are rational and commensurable in square

ONIY toviitiiiiies crrraer et e ee et et e e aan saeeaaas 3);

thus (x +y) + 22 is a binomial straight line. [x. 36]

8 PRk pr=JR. P A

so that oX : 03 =08 :0),

and x:8=8:Y,

or xy=8=}(28) e (4).

Now p? %p® are commensurable, so that ox, oy are commensurable, and
therefore

. AP ies v, (5).
And, since [Lemma] p* + £p* > 2 J/£. p%,
x+y> 23
.. . P + Apt
But (x +y) is given, being equal to T e (6).

Therefore [(4),-(5), (6), and x. 17] J(x +y)* - (22)* ~ (x + ).

And (x + ), 23 are rational and ~ [(3)},
while (x +) ~ o [(1)]

Hence (x +y) + 23 is a first binomial.

The actual value of (x +y) + 22 is, of course,

§(m+ka).

PROPOSITION 61.

The square on the first bimedial straight line applied to a
rational straight line produces as breadtk the second binomial.

Let A28 be a first bimedial straight line divided into its
medials at C, of which medials 4AC
is the greater;
let a rational straight line D £ be set
out,
and let there be applied to DE the
parallelogram D F equal to the square
on A B, producing DG as its breadth; E HL o0 F
I say that DG is a second binomial A ¢ 8
straight line.

For let the same construction as before be made.
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Then, since AR is a first bimedial divided at C,
therefore AC, CB are medial straight lines commensurable in

square only, and containing a rational rectangle, [(x 37]
so that the squares on AC, CAB are also medial. [x. 21]
Therefore DL is medial. [x. 15 and 23, Por.]

And it has been applied to the rational straight line DE;
therefore MD is rational and incommensurable in length
with DE. [x. 22]

Again, since twice the rectangle AC, CB is rational, MF is
also rational.

And it is applied to the rational straight line /7L ;
therefore MG is also rational and commensurable in length
with ML, that is, DE ; [x. 20]
therefore DM is incommensurable in length with #/G. [x. 13]

And they are rational ;
therefore DM, MG are rational straight lines commensurable
in square only ;
therefore DG is binomial. [x. 36]

It is next to be proved that it is also a second binomial
straight line.

or, since the squares on 4C, CB are greater than twice
the rectangle AC, CB,

therefore DL is also greater than MF,
so that DM is also greater than MG. [vi. 1]

And, since the square on 4C is commensurable with the
square on CA5,

DH is also commensurable with XL,

so that DK is also commensurable with KM, = [v. 1, x. 11]
And the rectangle DX, KM is equal to the square on MNV;

therefore the square on DA/ is greater than the square on

MG by the square on a straight line commensurable with DM/

[x. 17
And MG is commensurable in length with DE. .

Therefore DG is a second binomial straight line. [x. Deff. 1. z]

In this case we have to prove that, (k*p +k!p) being a first bimedial
straight line, as found in x. 37,

(#p + Aoy

is a second binomial straight line.
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The form of the proposition and the figure being similar to those of x. 6o,
I can somewhat abbreviate the reproduction of the proof.

Take x, y, z such that
ox = k*p’,
oy = k§P”
o.23=2kp%
Then shall (x + y) + 22 be a second binomial.
(a) #p, #p are medial straight lines commensurable in square only and
containing a rational rectangle. [x. 37]
The squares kip’, k}p’ are medial ;
thus the sum, or o (x + ), is medial. [x. 23, Por.]
Therefore (x + y) is rational and © o.
And o . 2z is rational ;

therefore 2zisrationaland Ao ................cooee (1)
Therefore (x + y), 2z are rational and ~ ..........cccoeeiviiniininnnnnnn. (2),
so that (x +y) + 22 is a binomial.
(B) As before, (x+y) > 22
Now, #3p, #%? being commensurable,
x A~y
And xy = 2%,
32 28
while x + y =/_§%kp.
Hence [x. 17] JE+P (23 A (X +)) oo, (3).

But 2z ~ g, by (1).
Therefore [(1), (2), (3)] (x +y) + 22 is a second binomial straight line.

Of course (¥ +y) + 25 = %’ {JE(1 + ) + 24},

ProrosITION 62.

The square on the second bimedial stvaight line applied to
a rational straight line produces as breadth the third binomial.

Let 45 be a second bimedial straight line divided into
its medials at C, so that AC is the
greater segment ; o KM N G
let DE be any rational straight line,
and to DE let there be applied the
parallelogram DF equal to the square
on AB and producing DG as its H L 0 1
breadth ;
I say that DG is a third binomial
straight line.

Let the same construction be made as before shown.
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Then, since A8 is a second bimedial divided at C,
therefore AC, CB are medial straight lines commensurable in
square only and containing a medial rectangle, [x. 38]
so that the sum of the squares on 4C, CAB is also medial.

[x. 15 and 23 Por.]

And it is equal to DL ;
therefore DL is also medial.

And it is applied to the rational straight line DE ;
therefore MD is also rational and incommensurable in length
with DE. [x. 22]

For the same reason,

MG is also rational and incommensurable in length with 7L,
that is, with DE';

therefore each of the straight lines DM, MG is rational and
incommensurable in length with DE.

And, since AC is incommensurable in length with C25,
and, as AC is to CB, so is the square on AC to the rectangle
AC, CB,
therefore the square on AC is also incommensurable with the

rectangle AC, CB. [x. 11]
Hence the sum of the squares on 4C, CB is incommen-
surable with twice the rectangle 4C, CB, [x. 12, 13]

that is, 2L is incommensurable with MF,

so that DM is also incommensurable with #G.  [v1. 1, x. 11]
And they are rational ;

therefore DG is binomial. : [x. 36)

Itis to be proved that it is also a third binomial straight line.
In manner similar to the foregoing we may conclude that
DM is greater than MG,
and that DX is commensurable with XA/.

And the rectangle DK, KM is equal to the square on
MN;
therefore the square on DA/ is greater than the square on
MG by the square on a straight line commensurable with
DM.

And neither of the straight lines DM, MG is commen-
surable in length with DE.

Therefore DG is a third binomial straight line. [x. Deff. 1. 3]

Q E. D.
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We have to prove that [cf. x. 38]

is a third binomial straight line.
Take x, y, z such that

(e) Now k*p, ! P are medial straight lines commensurable in square only

and containing a medsa/ rectangle. [x. 38]
The sum of the squares on them, or o (x +y), is medial
therefore (r+y)isrationaland v o .........ceeiennil (1).
And o . 23 being medial also,
2zisrationaland v o .....ooeiiiniiiia (2).
o Mo i M
Now kp.k* (kip)kgpk*
=ox: 03

whence ox v 03.

But (k*p)’ ~ {(k*p)’ (k* } ,or ox~o(x+y), and o3~0. 23;
therefore o(x+y)vo.a2s
or (X+P) v 28 i (3)
Hence [(1), (2), (3)] (x +y) + 25 is a binomial straight line............ (4).
(B) As before, (x +y) > 23,
and ' x Ny,
Also xy = 3%

Therefore [x. 17] ¥/(x +y)* —(23)* ~ (x +y).
And [(1), (2)] neither (x + y) nor 23 is ~ o.
Therefore (x + y) + 23 is a third binomial straight line.

Obviously (x+y) +28="= {k‘j; J)L}

ProrosITION 63.

The square on the major straight line applied to a rational
straight line produces as breadth the fourth binomial.

Let 4B be a major straight line divided at C, so that 4C
is greater than CB;
let DE be a rational straight line,
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and to DE let there be applied the parallelogram DF equal
to the square on 48 and producing DG as its breadth ;

I say that DG is a fourth binomial

straight line. D KM N a

Let the same construction be
made as before shown.

Then, since A8 is a major
straight line divided at C, L I
AC, CB are straight lines incom- ~ _
mensurable in squgre which make A ¢ s
the sum of the squares on them
rational, but the rectangle contained by them medial.  [x. 39]

Since then the sum of the squares on AC, CBA is rational,
therefore DL is rational ;

therefore DM is also rational and commensurable in length
with DE. . [x. 20]

Again, since twice the rectangle AC, CB, that is, MF, is
medial,
and it is applied to the rational straight line /7L,
therefore MG is also rational and incommensurable in length

with DE ; [x. 22]
therefore DA/ is also incommensurable in length with #/G.
[x 13]

Therefore DM, MG are rational straight lines commen-
surable in square only ;

therefore DG is binomial. [x. 36]

It is to be proved that it is also a fourth binomial straight line.
In manner similar to the foregoing we can prove that
DM is greater than MG,
and that the rectangle DK, KM is equal to the square on M.

Since then the square on AC is incommensurable with the
square on (2B, .
therefore DH is also incommensurable with XL,
so that DK is also incommensurable with KA/, [vi 1, x. 11]
But, if there be two unequal straight lines, and to the
greater there be applied a parallelogram equal to the fourth
part of the square on the less and deficient by a square
figure, and if it divide it into incommensurable parts, then the
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square on the greater will be greater than the square on the
less by the square on a straight line incommensurable in
length with the greater ; [x. 18]

therefore the square on DM is greater than the square on
MG by the square on a straight line incommensurable with

And DM, MG are rational straight lines commensurable
in square only,

and DM is commensurable with the rational straight line DE
set out.

Therefore DG is a fourth binomial straight line. [x. Deff. 1. 4]

Q. E. D.
We have to prove that [cf. X. 39]

Ha VoA V- A

is a fourth binomial straight line.
For brevity we must call this expression

;r (» + ).

ox = u?
oy =17 ’
o.28=2uV

wherein it has to be remembered [x. 39] that #, v are incommensurable in
square, (#* + 2*) is rational, and v 1s medial.

Take x, y, z such that

(a) (#*+9*), and therefore o (x + ), is rational ;

therefore (x+y)isrationaland ~ o ............ .oee... L (1).
2uv, and therefore o. 22, is medial ;

therefore 2gisrationaland v o ..., (2).
Thus (x + ), 22 are rational and ~ ..... e (3),

so that (x +y) + 2z is a binomial straight line.

(B) As before, X +y> 22,

and xy =123

Now, since #* v 7%,
gx v ay, or xvy.

Hence [x. 18] NE+y)P— (22 o (X 4) s veeeenn, (4)-
And (x +y) ~a, by (1).
Therefore [(3), (4)] (x +) + 28 is a fourth binomial straight line.

. P I
It is of course = {1 + ———} .
Ji+ B

(-4
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ProposiTION 64.

The square on the side of a rational plus a medial area
applied to a rational straight line produces as breadth the fifth
binomzal.

Let AB be the side of a rational plus a medial area,
divided into its straight lines at C,
so that AC is the greater; D KM N a
let a rational straight line D £ be set
out,
and let there be applied to DE the
parallelogram D F equal to the square
on AB, producing DG as its breadth; & K_iié_o'a f
I say that DG is a fifth binomial
straight line.

Let the same construction as before be made.

Since then 4B is the side of a rational plus a medial
area, divided at C,
therefore 4 C, CAB are straight lines incommensurable in square
which make the sum of the squares on them medial, but the
rectangle contained by them rational. [x. 40]

Since then the sum of the squares on AC, CAB is medial,
therefore DL is medial,
so that DM is rational and incommensurable in length with
DE. [x. 22]

Again, since twice the rectangle 4C, CB, that is MF, is
rational,
therefore MG is rational and commensurable with DE. [x. 20]

Therefore DM is incommensurable with 4G ; [x. 13]
therefore DM, MG are rational straight lines commensurable
in square only ;
therefore DG is binomial. [x. 36]

I say next that it is also a fifth binomial straight line.

For it can be proved similarly that the rectangle DX, KM
is equal to the square on M/,
and that DK is incommensurable in length with K/ ;
therefore the square on DA/ is greater than the square on #G

by the square on a straight line incommensurable with DJ/.
[x. 18]
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And DM, MG are commensurable in square only, and the
less, MG, is commensurable in length with DE.
Therefore DG is a fifth binomial.
Q. E. D.

To prove that [cf. x. 40]
1
{Jz—_(1+k’ ~/~/;+k=+1e+Jz_l__%,7 JirE -4

is a fifth binomial straight line.
For brevity denote it by (# + v)% and put
ox =1,
ay =17,
0. 23 = 2uv.

Remembering that [X. 40] #® v %, (#® + 7*) is medial, and 2uv is rational,
we proceed thus.

(a) o(x+y)is medial ;

therefore (x+y)isrational and v & ...covveniiiinennenn. (1)
Next, o . 22 is rational ;
therefore 2z is rational and A o.......ocoeeeeeieennnnn.. (2).
Thus (% +), 2z are rational and ~ ..................... (3)
so that (x + y) + 2z is a binomial straight line.
(B) As before, x+y> 23,
xy =9
and X vy,
Therefore [x. 18] VJE+)P =@ o (x+5) e, (4).

Hence [(2), (3), (4)] (x +y) + 22 is a fifth binomial straight line.

It is of course

? {ren
o Wi+ 1+4°

PROPOSITION 65.

The square on the side of the sum of two medial areas
applied to a rational straight line produces as breadth the
suxth binomaial.

Let AB be the snde of the sum of two medial areas,
divided at C,

let DE be a rational straight line,

and let there be applied to DE the parallelogram DF equal
to the square on 4B, producing DG as its breadth ;
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I say that DG is a sixth binomial straight line.

For let the same construction be made as before.
Then, since AB is the side of
the sum of two medial areas, divided
at C, 2

therefore 4C, CB are straight lines
incommensurable in square which
make the sum of the squares on
them medial, the rectangle contained € H L F
by them medial, and moreover the A ¢ 8
sum of the squares on them incom-

mensurable with the rectangle contained by them, [x. 41]

so that, in accordance with what was before proved, each of
the rectangles DL, MF is medial.

And they are applied to the rational straight line D £ ;

therefore each of the straight lines DM, MG is rational and
incommensurable in length with DE. [x. 22]

And, since the sum of the squares on 4C, CB is incom-
mensurable with twice the rectangle 4C, CB,

therefore DL is incommensurable with A/F.

Therefore DM is also incommensurable with /G ;
' [ve 1, x. 11]
therefore DM, MG are rational straight lines commensurable
in square only ;

therefore DG is binomial. [x. 36]

I say next that it is also a sixth binomial straight line.
Similarly again we can prove that the rectangle DX, KM
is equal to the square on M N,

and that DX is incommensurable in length with K47 ;

and, for the same reason, the square on DA/ is greater than
the square on MG by the square on a straight line incom-
mensurable in length with DM/,

And neither of the straight lines DM, MG is commen-
surable in length with the rational straight line DZ set out.
Therefore DG is a sixth binomial straight line.

Q. E. D.
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To prove that [cf. x. 41]

1 ;_:ltf k ;&% _ J ] 2
w{,Jz‘V T l+k’+~/2V ! ~/1+k’}

is a séxth binomial straight line.

Denote it by ; (% + v), and put

ox =1,
oy =7
T.22 = 2uU0.

Now, by x. 41, #* 7% (4 +9®) is medial, 2wz is medial, and
(#* + 2%) v 2uv.

(a) In this case o (x +y) is medial ;

therefore (x+y)isrational and v & ..c.covvenniiiiniinnnn. (1)
In like manner, 2z is rational and v & ....cciiniiiiiiiniann wee(2)
And, since o (x +y) v 0. 23,

(F+Y) v 22 ciiiiiiiiiiicniii, (3)-
Therefore (x + y) + 2z is a binomial straight line.
(B) As before, X +y> 23,
xy =2,
xoy;

therefore [x. 18] NE+yP (8o (X +9) oo, (4)-

Hence [(1), (2), (3), (4)] (x + ) + 23 is a séxth binomial straight line.
C P JA } )
It is obviously - {J)t + Tiad

ProrosiTioN 66.

A straight line commensurable in length with a binomial
straight line is itself also binomial and the same in ovder.

Let A8 be binomial, and let CD be commensurable in
length with 48 ;

A + B
C D

[ say that CD is binomial and the same in order with 425.
For, since AR is binomial,

let it be divided into its terms at £,

and let AE be the greater term ;

H. E. IIL 10
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therefore AL, EB are rational straight lines commensurable

in square only. [x. 36]
Let it be contrived that,

as AB isto CD, so is AE to CF; [vi. 12]

therefore also the remainder £2 is to the remainder FD as

AR is to CD. [v. 19]

But 4B is commensurable in length with CD ;
therefore A is also commensurable with CF, and £25 with
FD. [x. 11]
And AE, ERB are rational ;
therefore CF, FD are also rational.

And, as AE is to CF, so is EBR to FD. [v. 11]
Therefore, alternately, as A£ is to £B, so is CF to FD.
[v. 16]

But AE, EB are commensurable in square only ;
therefore CF, FD are also commensurable in square only.

[x. 1]

And they are rational ;
therefore CD is binomial. [x. 36]

I say next that it is the same in order with A25.

For the square on A £ is greater than the square on £5
either by the square on a straight line commensurable with
AE or by the square on a straight line incommensurable
with it.

If then the square on A £ is greater than the square on
E B by the square on a straight line commensurable with 4 £,

the square on CF will also be greater than the square on #D
by the square on a straight line commensurable with C/.

[x. 14]

And, if AE is commensurable with the rational straight
line set out, CF will also be commensurable with it, [x. 12]
and for this reason each of the straight lines 45, CD is a
first binomial, that is, the same in order. [x. Deff. 11. 1]
But, if £B is commensurable with the rational straight line

set out, /D is also commensurable with it, [x. 12]

and for this reason again CD will be the same in order with
AB,
for each of them will be a second binomial. [x. Deff. 1. 2]
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But, if neither of the straight lines A£, £B is commen-
surable with the rational straight line set out, neither of the
straight lines CF, D will be commensurable with it, [x. 13]
and each of the straight lines A5, CD is a third binomial.

[x. Deff. 1. 3]

But, if the square on AZ is greater than the square on
EB by the square on a straight line incommensurable with
AE,
the square on CF is also greater than the square on D by
the square on a straight line incommensurable with CF. [x. 14]

And, if AE is commensurable with the rational straight
line set out, CF is also commensurable with it,
and each of the straight lines 48, CD is a fourth binomial.

[x. Deff. 11. 4]

But, if £B8 is so commensurable, so is /D also,

and each of the straight lines 4.8, CD will be a fifth binomial.
[x. Deff. 11. 5]

But, if neither of the straight lines 4 £, £B is so com-
mensurable, neither of the straight lines C/, D is commen-
surable with the rational straight line set out,
and each of the straight lines 4 B, CD will be a sixth binomial.

[x. Deff. 11. 6]

Hence a straight line commensurable in length with a

binomial straight line is binomial and the same in order.
Q. E. D.

The proofs of this and the following propositions up to x. 70 inclusive are
easy and require no elucidation. They are equivalent to saying that, if in each

of the preceding irrational straight lines %’p is substituted for p, the resulting

irrational is of the same kind as that from which it is altered.

ProrosiTiON 67.
A straight line commensurable in length with a bimedial
straight line is itself also bimedial and the same in order.

Let A8 be bimedial, and let CD be commensurable in
length with A5 ;

[ say that CD is bimedial and the same A E 8
in order with 425. c F O

For, since AR is bimedial, A
let it be divided into its medials at £';

10—2



148 BOOK X [x. 67

therefore A£, EB are medial straight lines commensurable

in square only. [x. 37, 38]
And let it be contrived that,

as ABisto CD,sois AE to CF;

therefore also the remainder £2 is to the remainder D as
AR is to CD. [v. 19]

But A8 is commensurable in length with CD ;
therefore AE, EB are also commensurable with CF, FD

respectively. [x. 11]
But AE, EB are medial ;

therefore CF, FD are also medial. [x. 23]
And since, as AE is to £B, so is CF to FD, [v. 11]

and AE, EB are commensurable in square only,

CF, FD are also commensurable in square only. [x. 11]

But they were also proved medial ;
therefore CD is bimedial.

I say next that it is also the same in order with 45. -
For since, as AE is to £B, so is CF to FD,

therefore also, as the square on A£ is to the rectangle 4 £,
EB, so is the square on CF to the-rectangle CF, FD;

therefore, alternately,

as the square on AE is to the square on CF, so is the rect-
angle AE, EB to the rectangle CF, FD. [v. 16]

But the square on A £ is commensurable with the square
on CF;

therefore the rectangle AE, £B is also commensurable with
the rectangle CF, FD.

If therefore the rectangle A £, EB is rational,
the rectangle CF, FD is also rational,

[and for this reason CD is a first bimedial]; [x. 37]
but if medial, medial, [x. 23, Por.]
and each of the straight lines 48, CD is a second bimeElial. ]

X. 38

And for this reason CD will be the same in order with 4 5.
. Q. E. D.
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ProrosiTiON 68.

A straight line commensurable with a major straight
line is itself also major.

Let A B be major, and let CD be commensurable with 4 5;
I say that CD is major.

Let A8 be divided at £ ; A
therefore AE, EB are straight lines incommensur- c
able in square which make the sum of the squares ¢
on them rational, but the rectangle contained by
them medial. [x. 39] gl o

Let the same construction be made as before.

Then since, as AB is to CD, so is AE to CF, and EB
to /D,
therefore also, as A £ is to CF, so is £EB to FD. [v. 11]

But A8 is commensurable with CD;
therefore AE, EB are also commensurable with CF, FD
respectively. [x. 1]

And since, as AE is to CF, so is £B to FD,

alternately also,

F

as AE isto EB, sois CFto FD; [v. 16]
therefore also, componendo,

as AB isto BE, sois CD to DF; [v. 18]
therefore also, as the square on A5 is to the square on BE,
so is the square on CD to the square on DF. [v1. 20]

Similarly we can prove that, as the square on 475 is to
the square on A, so also is the square on CD to the square
on CF.

Therefore also, as the square on 428 is to the squares on
AE, EB, so is the square on CD to the squares on CF, FD;
therefore also, alternately,
as the square on A8 is to the square on CJD, so are the
squares on A £, EB to the squares on CF, FD. [v. 16]

But the square on 45 is commensurable with the square
on CD;

therefore the squares on AE, EB are also commensurable
with the squares on CF, FD.
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And the squares on AE, EB together are rational ;
therefore the squares on CF, FD together are rational.

Similarly also twice the rectangle 4£, £B is commen-
surable with twice the rectangle CF, FD.

And twice the rectangle A £, £B is medial ;

therefore twice the rectangle CF, FD is also medial.
[x. 23, Por.]

Therefore CF, FD are straight lines incommensurable in
square which make, at the same time, the sum of the squares
on them rational, but the rectangle contained by them medial;
therefore the whole CD is the irrational straight line called
major. [x. 39]

Therefare a straight line commensurable with the major

straight line is major.
Q. E. D.

ProprosITION 69.

A straight line commensurable with the side of a rational
plus a medral area s itself also the side of a rational plus a
medial area.

Let AB be the side of a rational plus a medial area,
and let CD be commensurable with 4253
it is to be proved that CD is also the side of a A
rational plus a medial area.

Let 42 be divided into its straight lines at £';
therefore AE, EB are straight lines incommensur-
able in square which make the sum of the squares €t
on them medial, but the rectangle contained by them
rational. [x.40) B

Let the same construction be made as before.

We can then prove similarly that
CF, FD are incommensurable in square,
and the sum of the squares on AZ£, £B is commensurable
with the sum of the squares on CF, FD,
and the rectangle AE, EB with the rectangle CF, FD
so that the sum of the squares on CF, FD is also medial, and
the rectangle CF, FD rational.

Therefore CD is the side of a rational plus a medial area.
Q. E. D.
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ProrosiTiON 70.

A straight line commensurable with the side of the sum
of two medial areas is the side of the sum of two medial areas.

Let AR be the side of the sum of two medial areas, and
CD commensurable with 458 ;

it is to be proved that CD is also the side of the A
sum of two medial areas. c

For, since AB is the side of the sum of two
medial areas, el

let it be divided into its straight lines at £ ;

therefore A£, EB are straight lines incommensur-
able in square which make the sum of the squares 8

on them medial, the rectangle contained by them

medial, and furthermore the sum of the squares on A £, £B
incommensurable with the rectangle A£, £B. ' [x. 41]

Let the same construction be made as before.
We can then prove similarly that
CF, FD are also incommensurable in square,

the sum of the squares on A£, £B is commensurable with
the sum of the squares on CF, FD,

and the rectangle 4 £, EB with the rectangle CF, FD;
so that the sum of the squares on CF, FD is also medial,
the rectangle CF, FD is medial,
and moreover the sum of the squares on CF, FD is incom-
mensurable with the rectangle CF, FD. ,
" Therefore CD is the side of the sum of two medial areas.
Q. E. D.

o

ProrposITION 71.

If a rational and a medial area be added together, four
irrational stvaight lines arise, namely a binomial or a first
bimedial or a major or a side of a rational plus a medial
area.

Let A2 be rational, and CD media] :

I say that the “side” of the area 4D is a binomial or a first
bimedial or a major or a side of a rational plus a medial
area.
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For AB is either greater or less than CD.

First, let it be greater;
let a rational straight line £ be set out,
let there be applied to £F the rectangle £G equal to AB,
producing £H as breadth,
and let A7, equal to DC, be applied to £F, producing /K
as breadth.

A c

8 D

Then, since 4B is rational and is equal to £G,
therefore £ is also rational. :
And it has been applied to £F, producing £/ as breadth;

therefore £/ is rational and commensurable in length with
EF. [x. 20]

Again, since CD is medial and is equal to 4/,
therefore /7 is also medial.

And it is applied to the rational straight line £F, pro-
ducing //K as breadth ;

therefore //K is rational and incommensurable in length
with EF. [x. 22]

And, since CD is medial,
while 4B is rational,
therefore A8 is incommensurable with CD,
so that £G is also incommensurable with A/,
But, as £G is to H/, so is EH to HK ; [vi. 1]

therefore £/ is also incommensurable in length with /X
[x 11
And both are rational ; :
therefore £/, HK are rational straight lines commensurable
in square only ;
therefore £X is a binomial straight line, divided at /7. [x. 36]
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And, since 425 is greater than CD,
while A8 is equal to £G and CD to H1,
therefore £G is also greater than /A7 ;
therefore £/ is also greater than /K.

The square, then, on £/ is greater than the square on
HK either by the square on a straight line commensurable
in length with £/ or by the square on a straight line in-
commensurable with it.

First, let the square on it be greater by the square on a
straight line commensurable with itself.

Now the greater straight line /£ is commensurable in
length with the rational straight line £F set out;
therefore £K is a first binomial. [x. Deff. 1. 1]

But £F is rational ;
and, if an area be contained by a rational straight line and the
first binomial, the side of the square equal to the area is
binomial. . [x. 54]

Therefore the “side” of £/ is binomial ;
so that the ‘‘side” of 4D is also binomial.

Next, let the square on £/ be greater than the square
on K by the square on a straight line incommensurable
with EH.

Now the greater straight line £/ is commensurable in
length with the rational straight line £F set out;
therefore £K is a fourth binomial. [x. Deff. 11. 4)

But £F is rational ;
and, if an area be contained by a rational straight line and the
fourth binomial, the “side” of the area is the irrational straight
line called major. [x. 57]

Therefore the “side” of the area £/ is major ;
so that the “side” of the area 4D is also major.

Next, let A8 be less than CD;
therefore £G is also less than A/,
so that £/ is also less than A K.

Now the square on /K is greater than the square on £/4
either by the square on a straight line commensurable with
HK or by the square on a straight line incommensurable
with it.
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First, let the square on it be greater by the square on a

strai\glht line commensurable in length with itself.
ow the lesser straight line £/ is commensurable in

length with the rational straight line £ set out;
therefore £K is a second binomial. [x. Deff. 11. 2]

But £F is rational ;
and, if an area be contained by a rational straight line and
the second binomial, the side of the square equal to it is a
first bimedial ; [x. 55]
therefore the ‘““side” of the area £/ is a first bimedial,
so that the “side” of 4D is also a first bimedial.

Next, let the square on /K be greater than the square
on HE by the square on a straight line incommensurable
with /K.

Now the lesser straight line £/ is commensurable with
the rational straight line £/ set out;
therefore £K is a fifth binomial. [x. Deff. 1. 5]

But £F is rational ;
and, if an area be contained by a rational straight line and the
fifth binomial, the side of the square equal to the area is a
side of a rational plus a medial area. [x. 58]

Therefore the “side” of the area £/ is a side of a rational
plus a medial area,
so that the “side” of the area 4D is also a side of a rational
plus a medial area.

Therefore etc. Q. E. D.

A rational area being of the form Zp% and a media/ area of the form
“JA. p% the problem is to classify

JE + A pt
according to the different possible relations between £, A.
Put ou=kp?,
ov=,/\.p%

Then, since the former rectangle is rational, the latter medial,
 is rational and ~ o,
v is rational and « o.
Also the rectangles are incommensurable ;
so that RVE /A
Hence «, v are rational and ~;
whence (¥ +v) is a bi.nomial straight line.
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The possibilities now are as follows :
L u>o
Then either
(1) V-2 ~uy,
or (2) JiE—viou,
while in both cases # ~ o.
In case (1) (¥ + v) is a _first binomial straight line,
and in case (2) (¥ +7) is a_fourth binomial straight line.
Thus / o (4 + v) is either (1) 2 dinomial straight line [x. 54] or (2) a major
irrational straight line [x. 57].

.

II. 9> u
Then either
(1) JP-sutn~y,
or (2) Jrr-woo,
while in both cases v v o, but u~o.
Hence, in case (1), (2 + ») is a second binomial straight line,
and, in case (2), (v + %) is a fifth binomial straight line.

Thus Vo (v + ) is either (1) a first bimedial straight line [x. 55], or (2) a
side of a rational plus a medial area [x. 58]

ProrosiTION 72.

If two medial arveas incommensurable with one another be
added together, the remaining two irrational straight lines
arise, namely either a second bimedial or a side of the sum of
two medial areas.

For let two medial areas A8, CD incommensurable with
one another be added together ;
I say that the ‘side” of the area AD is either a second
bimedial or a side of the sum of two medial areas.

A [¢]

H (¢]
B D K |

For AB is either greater or less than CD..
First, if it so chance, let 45 be greater than CD.
Let the rational straight line £/ be set out,

and to EF let there be applied the rectangle £G equal to
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AB and producing E/ as breadth, and the rectangle /77
equal to CD and producing /K as breadth.

Now, since each of the areas 458, CD is medial,
therefore each of the areas £G, H/ is also medial.

And they are applied to the rational straight lme FE,
producing £/, HK as breadth;
therefore each of the straight lines £/, AKX is rational and
incommensurable in length with £, [x. 22]

And, since A8 is incommensurable with CD,
and A2 is equal to £G, and CD to H/,
therefore £G is also incommensurable with ~7/.

But, as £G is to A7, so is EH to HK ; [vi. 1]
therefore £/ is incommensurable in length with 7K. [x. 11]

Therefore EH, HK are rational straight lines commen-
surable in square only ;.
therefore £K is binomial. [x. 36]

But the square on £/ is greater than the square on /X
either by the square on a straight line commensurable with
EH or by the square on a straight line incommensurable
with it.

First, let the square on it be greater by the square on a
straight line commensurable in length with itself.

Now neither of the straight lines £/, AKX is commen-
surable in length with the rational straight line £/ set out ;
therefore £K is a third binomial. [x. Deff. 1. 3]

But £F is rational ;

and, if an area be contained by a rational straight line and the
third binomial, the “side” of the area is a second bimedial ;

[x. 56]
therefore the “side” of £/, that is, of A D, is a second bimedial.

Next, let the square on £/ be greater than the square
on HK by the square on a straight line incommensurable in
length with £A4.

Now each of the straight lines £/, HK is incommen-
surable in length with £F; :

therefore £K is a sixth binomial. [x. Deff. 1. 6]
But, if an area be contained by a rational straight line and
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the sixth binomial, the “side” of the area is the side of the
sum of two medial areas; [x. 59]
so that the “side” of the area 4D is also the side of the
sum of two medial areas.

Therefore etc.
Q. E. D.

We have to classify, according to the different possible relations between

%, A, the straight line )
JJE. '+ JA. Y

where /£.p* and ,/A. p* are incommensurable.
Suppose that ou=,[k. p
ov=JA. ph
It is immaterial whether ./£.p? or J/A.p? is the greater. Suppose, e.g.,
that the former is.
Now, . p% JJA. p* being both medial areas, and o rational,

%, v are both rational and v o ...l (1).
Again, by hypothesis, ou v av,
or R /N (2).

Hence [(1), (2)] (# + 2) is a binomial straight line.
Next, V/a?=9? is either commensurable or incommensurable in length
with #.
(a) Suppose Vi@ =27 ~ u.
In this case (« + v) is a third binomial straight line,
and therefore, [x. 56]
Vo (4 +v) is a second bimedial straight line.

B If Ve—2 oy,
(# + ) is a sixth binomial straight line,
and therefore [x. 59]
Na (4 +v) is a side of the sum of two medial areas.

The binomial straight line and the irrational straight lines
after it are neither the same with the medial nor with one
another.

For the square on a medial, if applied to a rational straight
line, produces as breadth a straight line rational and incom-
mensurable in length with that to which it is applied. [x. 22]

But the square on the binomial, if applied to a rational
straight line, produces as breadth the first binomial. [x. 60]

he square on the first bimedial, if applied to a rational
straight line, produces as breadth the second binomial. [x. 61]
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The square on the second bimedial, if applied to a rational
straight line, produces as breadth the third binomial.  [x. 62]
he square on the major, if applied to a rational straight
line, produces as breadth the fourth binomial. [x. 63]
The square on the side of a rational plus a medial area, if
applied to a rational straight line, produces as breadth the fifth
binomial. ' [x. 64]
The square on the side of the sum of two medial areas, if
applied to a rational straight line, produces as breadth the
sixth binomial. [x. 65]
And the said breadths differ both from the first and from
one another : from the first because it is rational, and from
one another because they are not the same in order ;

so that the irrational straight lines themselves also differ from
one another.

The explanation after x. 72 is for the purpose of showing that all the
irrational straight lines treated hitherto are different from one another, viz. the
medial, the six irrational straight lines beginning with the binomial, and the
six consisting of the first, second, third, fourth, fifth and sixth binomials.

ProrosiTiON 73.

If from a rational straight line theve be sublvacted a
rational straight line commensurable with the whole in square
only, the remainder is irrational; and let it be called an
apotome.

For from the rational straight line 42 let the rational
straight line ZC, commensurable with
the whole in square only, be sub- A ¢ B
tracted ;

I say that the remainder AC is the irrational straight line
called apotome.

For, since AB is incommensurable in length with BC,
and, as A8 is to BC, so is the square on 4B to the rectangle
AB, BC,
therefore the square on 4B is incommensurable with the

rectangle 4B, BC. [x. 11]
But the squares on 48, BC are commensurable with the
square on 458, [x. 15]

and twice the rectangle A8, BC is commensurable with the
rectangle A8, BC. : _ [x. 6]
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And, inasmuch as the squares on A5, BC are equal to
twice the rectangle 45, BC together with the square on C4,

[11. 7]
therefore the squares on A8, BC are also incommensurable
with the remainder, the square on 4C. [x. 13, 16)

But the squares on 45, BC are rational ;
therefore AC is irrational. [x Def. 4]
And let it be called an apotome.
Q E. D.

Euclid now passes to the irrational straight lines which are the difference
and not, as before, the sum of two straight lines. 4pofome (“portion cut off )
accordingly takes the place of dinomial and the other terms follow mutatis
mutandis. The first hexad of propositions (73 to 78) exhibit the six irrational
straight lines which are really the result of extracting the sguare root of the six
irrationals in the later propositions 85 to go (or, strictly speaking, of finding
the sides of squares equal to the rectangles formed by each of those six
irrational straight lines respectively with a rational straight line). Thus, just
as in the corresponding propositions about the irrational straight lines formed
by addition, the further removed irrationals, so to speak, come first.

We shall denote the apotome etc. by (x — y), which is formed by subtracting
a certain lesser straight line y from a greater x. In X. 79 and later propositions
yis called by Euclid the annex (7 mpocappi{ovaa), being the straight line which,
when added to the apotome or other irrational formed by subtraction, makes
up the greater x.

The methods of proof are exactly the same as in the preceding propositions
about the irrational straight lines formed by addstion.

In this proposition x, y are rational straight lines commensurable in square
only, and we have to prove that (x — y), the apolome, is irrational.

X~y sothat x v y:

therefore, since x:y=2":xy,
2o xy.
But x* ~ (x* +)°), and ay ~ 2xy;
therefore X%+ y o 2xy,
whence (x=p) v (x*+5°).
But (2* +5?) is rational ;

therefore (x — y)?% and consequently (x - y), is irrational.

The apotome (x — y) is of the form p ~ /4. p, just as the binomial straight
line is of the form p + /4. p.

ProrosiTION 74.

If from a medial straight line there be subtracted a medial
straight line which is commensurable with the whole in square
only, and which conlains with the whole a rational rectangle,
the remainder is irrational. And let it be called a first
apotome of a medial straight line.
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For from the medial straight line A28 let there be sub-
tracted the medial straight line BC
which is commensurable with A8 in A ¢ B
square only and with 45 makes the
rectangle A5, BC rational ;

I say that the remainder AC is irrational; and let it be
called a first apotome of a medial straight line.

For, since AB, BC are medial,
the squares on 4B, BC are also medial.
But twice the rectangle 425, BC is rational ;

therefore the squares on A8, BC are incommensurable with
twice the rectangle A8, BC;

therefore twice the rectangle 458, BC is also incommensurable
with the remainder, the square on 4C, [cf. 1. 7]

since, if the whole is incommensurable with one of the magni-
tudes, the original magnitudes will also be incommensurable.

[x. 16]
But twice the rectangle 48, BC is rational ;
therefore the square on AC is irrational ;
therefore AC is irrational. [x. Def. 4]

And let it be called a first apotome of a medial straight
line.

The first apotome of a medial straight line is the difference between straight

lines of the form k*p, kip, which are medial straight lines commensurable in
square only and forming a rational rectangle.

By hypothesis, 2% y* are medial areas.
And, since xy is rational, (2?+)°) v xy
v 2%y,
whence ' (x—y)* v 2xy.
But 2xy is rational ;
therefore (x — y)? and consequently (x — y), is irrational.
This irrational, which is of the form (k*p ~k§p), is the first apolome of a

medial straight line ; the term corresponding of course to firs¢ bimedial, which
applies where the sign is positive.
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ProrosiTION 75.

If from a medial straight line there be subtracted a medial
straight line whick is commensurable with the whole in square
only, and whick contains with the whole a medial rectangle,
the remainder is trrational; and let it be called a second
apotome of a medial straight line.

For from the medial straight line 423 let there be sub-
tracted the medial straight line CB which is commensurable
with the whole 48 in square only and such that the rectangle
AB, BC, which it contains with the whole A4 B, is medial; [x. 28]

I say that the remainder A C is irrational; and let it be called
a second apotome of a medial straight line.

A ¢ 8

HE

For let a rational straight line D7 ke set out,

let DE equal to the squares on 45, BC be applied to D/,
producing DG as breadth,

and let D/ equal to twice the rectangle A8, BC be applied
to D7, producing DF as breadth ;

therefore the remainder /£ is equal to the square on 4AC.
(1. 7]
Now, since the squares on A5, BC are medial and
commensurable,

therefore DE is also medial. [x. 15 and 23, Por.]

And it is applied to the rational straight line 2/, producing
DG as breadth;

therefore DG is rational and incommensurable in length
with DJ/. [x. 22]

Again, since the rectangle A5, BC is medial,

therefore twice the rectangle 458, BC is also medial.
[x. 23, Por.]

H. E. IIL. 11
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And it is equal to DH ;
therefore DA is also medial.

And it has been applied to the rational straight line D7,
producing DF as breadth ;

therefore DF is rational and incommensurable in length
with D/ [x. 22]

And, since AB, BC are commensurable in square only,
therefore 4B is incommensurable in length with BC;
therefore the square on 42 is also incommensurable with the

rectangle A8, BC. [x. 11]

But the squares on 4B, BC are commensurable with the
square on A8, [x. 15]
and twice the rectangle 48, BC is commensurable with the
rectangle A8, BC; [x. 6]
therefore twice the rectangle 4 B, BC is incommensurable with
the squares on A5, BC. [x. 13)

But DE is equal to the squares on 45, BC,
and DH to twice the rectangle A8, BC;
therefore DE is incommensurable with DA,
But, as DE is to DH, sois GD to DF; [vi. 1]
therefore G D is incommensurable with DF. [x. 11]
And both are rational ;
therefore GO, DF are rational straight lines commensurable
in square only ;
therefore /G is an apotome. [x. 73]
But D/ is rational,
and the rectangle contained by a rational and an irrational
straight line is irrational, [deduction from x. zo]
and its “side” is irrational.
And AC is the “side” of FE ;
therefore AC is irrational.
And let it be called a second apotome of a medial
straight line.
Q. E. D.

We have here the difference between k*p, Jh.p/k*, two medial straight
lines commensurable in square only and containing a medial rectangle.
Apply each of the areas (2 +3?%), 2xy to a rational straight line o, i.e.
suppose that
x4+ y’ = O¥,

2xy = ov.
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Then ou, ov are medial areas,

so that », v are both rational and v o ...l (x).
Again, xvy;

therefore x* v xy,

and consequently x4+t o 2xy,

or o v o,

and B oD et eees (2).

Thus ((1), (2)] #, v are rational and ~;
therefore [x. 73] (¥ — v) is an apotome,
and, (¥ — v) being thus irrational,
(¥ —v)o is an irrational area.
Hence (x - y)*, and consequently (x — ), is irrational.

The irrational straight line kip ~ J:i.P is called a second apotome of a

medial straight line.

ProrosiTioN 76.

If from a straight line there be subtracted a straight line
which is incommensurable in square with the whole and which
with the whole makes the squares on them added together
rational, but the rectangle contained by them medial, the
remainder is irvational; and let it be called minor.

For from the straight line A5 let there be subtracted the
straight line BC which is incom-
mensurable in square with the whole A [ B
and fulfils the given conditions. [x. 33]

I say that the remainder 4C is the irrational straight line
called minor.

For, since the sum of the squares on 45, BC is rational,
while twice the rectangle 4B, BC is medial,

therefore the squares on A8, BC are incommensurable with
twice the rectangle A8, BC;

and, convertendo, the squares on A8, BC are incommensurable
with the remainder, the square on 4C. (1. 7, x. 16]
But the squares on 48, BC are rational ;
therefore the square on AC is irrational ;
therefore AC is irrational.
And let it be called minor.

Q. E. D.

11—2
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x, y are here of the form found in x. 33, viz.

p / % p ,\/ A
75 l+~/l+k” $ I_\/1+k’.
By hypothesis (2* + )?) is a rational, xy a medial, area.
Therefore (x*+5°) v 2xy,
whence (x=y) v (2* +5°).
Therefore (x— y)?% and consequently (x — y), is irrational.
The minor (irrational) straight line is thus of the form

-

[x. 76, 77

Observe the use of convertendo (dvaorpéparr) for the inference that, since
(x*+5%) v 23y, (x*+5°) v (x=y)". The use of the word corresponds exactly

to its use in proportions.

ProrosiTION 77.

If from a straight line there be subtracted a straight line
whick is incommensurable in square with the whole, and whick
with the whole makes the sum of the squaves on them medial,
but twice the rectangle contained by them rational, the remainder
is irrational: and let it be called that which produces with

a rational area a medial whole.

For from the straight line 42 let there be subtracted the
straight line BC which is incommensurable in square

with 428 and fulfils the given conditions ;

[x.34] A

I say that the remainder 4C is the irrational straight

line aforesaid.

For, since the sum of the squares on 4B, BC is

medial,
while twice the rectangle 4B, BC is rational,

therefore the squares on 48, BC are incommensurable 8

with twice the rectangle 45, BC;

therefore the remainder also, the square on AC, is incom-

mensurable with twice the rectangle 45, BC.

And twice the rectangle 4B, BC is rational ;
therefore the square on AC is irrational ;
therefore AC is irrational.

[11. 7, x. 16]

And let it be called that which produces with a

rational area a medial whole.

Q.

. D.
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Here x, y are of the form [cf. x. 34]

J_+k,)~/m+k -,__._2(;3 ~/—~_/l+k’ k.

By hypothesis, (x? + 3?) is a medial, xy a rational, area;
thus (*?+5°) v 2xy,
and therefore (x—=9) v 2xy,
whence (x — )% and consequently (x - y), is irrational.
The irrational straight line

. NNy Y- d J 1+A%—

N2 (1+4) v V2(1+& Jiv#

is called that whick produces with a rational area a medial whole or more
literally that which with a rational area makes the whole medial (q pera pyrod
pégov 76 GAov mowica). Here “produces” means “produces when a square
is described on it.” A clearer way of expressmg the meaning would be to call
this straight line the ‘““side” of a medial minus a rational area corresponding
to the “side” of a rational plus a medial area [X. 40).

ProrosiTiON 78.

If from a straight line there be subtracted a straight line
whickh is incommensurable in square with the whole and whick
with the whole makes the sum of the squares on them medial,
twice the rectangle contained by them medial, and further the
squares on them incommensurable with twice the rectangle
contained by them, the remainder is trrational; and let it be
called that which produces with a medial area a
medial whole.

For from the straight line 423 let there be subtracted the
straight line BC incommensurable in
square with 428 and fulfilling the p Fa
given conditions ; [x. 35]
I say that the remainder AC is the
irrational straight line called that
which produces with a medial
area a medial whole. ! HE
For let a rational straight line D7 A6 8
be set out,
to DI let there be applied DE equal to the squares on 45,
BC, producing DG as breadth,

and let DA equal to twice the rectangle 4B, BC be
subtracted.
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Therefore the remainder FE is equal to the square
on AC, [ 7)
so that AC is the “side” of FE.

Now, since the sum of the squares on 45, BC is medial
and is equal to DE,

therefore DE is medial.

And it is applied to the rational straight line D/, producing
DG as breadth ;

therefore DG is rational and incommensurable in length
with D7, [x. 22]

Again, since twice the rectangle 458, BC is medial and is
equal to DH,

therefore DA is medial.

And it is applied to the rational straight line D7, producing
DF as breadth ;

therefore DF is also rational and incommensurable in length
with D/. [x. 22]

And, since the squares on 45, BC are incommensurable
with twice the rectangle 45, BC,

therefore DE is also incommensurable with DA.
But, as DE is to DH, so also is DG to DF; [vr. 1]
therefore DG is incommensurable with DF. [x. 11]
And both are rational ;

therefore GD, DF are rational straight lines commensurable
in square only.

Therefore /G is an apotome. [x. 73]
And FH is rational ;

but the rectangle contained by a rational straight line and an
apotome is irrational, [deduction from x. 20]
and its “side” is irrational.

And AC is the “side” of FE ;
therefore AC is irrational.

And let it be called that which produces with a
medial area a medial whole.

Q. E. D.
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In this case x, y have respectively the forms [cf. x. 35]

Suppose that X+ Y =ou,
2ay = ov.
By hypothesis, the areas o, ov are medial ;
therefore u, z are both rational and v o .........cceeeeiiiiiiiiiiiiiiiininnn., (1).
Further ou v oy,
so that BOoU iviiiiien e (2).

Hence [(1), (2)] #, v are rational and ~,

so that (# —v) is the irrational straight line called agotome [x. 73]
Thus o (¥ - v) is an irrational area,

so that (x —y), and consequently (x —y), is irrational.
The irrational straight line

A I A
NE N -EENE i+ A

is called tkat which produces [i.e. when a square is described on it] with a
medial area a medial whole, more literally that whick with a medial area makes
the whole medial (7 pera pégov péoov 16 SAov wowodoa). A clearer phrase (to
us) would be the “side” of the difference between two medial areas, correspond-
ing to the “side” of (the sum of ) two medial areas [X. 41].

ProrosiTION 79.

To an apotome only ome rational stvaight line can be
annexed which ts commensurable with the whole in square only.

Let A8 be an apotome, and AC an annex to it ;
therefore AC, CB are rational
straight lines commensurable in
square only. [x. 73]

I say that no other rational
straight line can be annexed to 48 which is commensurable
with the whole in square only.

For, if possible, let BD be so annexed ;
therefore AD, DB are also rational straight lines commen-
surable in square only. [x. 73]

Now, since the excess of the squares on 4D, DB over
twice the rectangle 4D, DB is also the excess of the squares
on AC, CB over twice the rectangle AC, CB5,

for both exceed by the same, the square on A5, (1. 7]
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therefore, alternately, the excess of the squares on 4D, DB
over the squares on AC, CB is the excess of twice the rect-
angle AD, DB over twice the rectangle 4C, CB.

But the squares on 4D, DB exceed the squares on AC,
CAB by a rational area,

for both are rational ;

therefore twice the rectangle 4D, DA also exceeds twice the
rectangle AC, CAB by a rational area :

which is impossible,
for both are medial [x. 21], and a medial area does not exceed
a medial by a rational area. [x. 26]

Therefore no other rational straight line can be annexed
to A8 which is commensurable with the whole in square only.
Therefore only one rational straight line can be annexed
to an apotome which is commensurable with the whole in
square only.
Q E. D.

This proposition proves the equivalent of the well-known theorem of surds
that,

ifa— /b=x—,Jy,thena=x, b=y;
and, if \Ja — /b= \/x - [y, then a=x, b=y.
The method of proof corresponds to that of x. 42 for positive signs.

Suppose, if possible, that an ggofome can be expressed as (x —y) and also
as (x"—y’), where x, y are rational straight lines commensurable in square only,
and &, y" are so also.

Of x, x', let x be the greater.
Now, since x—y=x"-y,
2+ 32— (2457 = 22y — 22y
But (x* +37%), (" + y) are both rational, so that their difference is a
rational area.

Ji Or’n the other hand, 2xy, 2x'y’ are both medial areas, being of the form
-0
therefore the difference between two medial areas is rational :
which is impossible [x. 26).
Therefore etc.

ProrosiTion 8o.

To a first apotome of a medial straight line omly one
medial straight line can be annexed whick is commensurable
with the whole in square only and whick contains with the
whole a rational rectangle.
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For let A8 be a first apotome of a medial straight line,
and let BC be an annex to A5 ;
therefore AC, CB are medial A L ¢ 0
straight lines commensurable in
square only and such that the rectangle 4C, CB which they
contain is rational ; (x. 74]

I say that no other medial straight line can be annexed to
AB which is commensurable with the whole in square only
and which contains with the whole a rational area.

For, if possible, let DB also be so annexed ;

therefore 4D, DB are medial straight lines commensurable
in square only and such that the rectangle 4D, DB which
they contain is rational. [x. 74]

Now, since the excess of the squares on 4D, DB over
twice the rectangle A0, DB is also the excess of the squares
on AC, CB over twice the rectangle AC, CA5,

for they exceed by the same, the square on 45, [ 7]

therefore, alternately, the excess of the squares on 4D, DB
over the squares on AC, CB is also the excess of twice the
rectangle AD, DB over twice the rectangle AC, CB.

But twice the rectangle 4D, DB exceeds twice the rect-
angle AC, CB by a rational area,

far both are rational.

Therefore the squares on 4D, DA also exceed the squares
on AC, CB by a rational area :

which is impossible,

for both are medial [x. 15 and 23, Por.), and a medial area does

not exceed a medial by a rational area. [x. 26]
Therefore etc.

Q. E. D.

Suppose, if possible, that the same first agotome of a medial straight line

can be expressed in terms of the required character in two ways, so that
x—y=x'-y,

and suppose that x > x’.

In this case x?+ 3% (x + ) are both medial areas, and 2xy, 2x7y’ are both
rational areas ; :
and 22+ 32— (x4 = 23y — 227y,

Hence X. 26 is contradicted again ;
therefore etc.
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ProposiTION 81.

To a second apotome of a medial straight line only one
medial straight line can be annexed whick is commensurable
with the whole in square only and whick contains with the
whole a medial rectangle.

Let AB be a second apotome of a medial straight line
and BC an annex to A5 ;
therefore AC, CB are medial straight A 8
lines commensurable in square only and
such that the rectangle AC, CB which
they contain is medial. [x. 75]

I say that na other medial straight line
can be annexed to 428 which is commen-
surable with the whole in square only and
which contains with the whole a medial
rectangle.

For, if possible, let BD also be so
annexed ;
therefore 4D, DB are also medial straight
lines commensurable in square only and
such that the rectangle 4D, DB which
they contain is medial. [x. 75]

Let a rational straight line £ be set out,

let £G equal to the squares on 4C, CB be applied to £F,
producing £ as breadth,

and let G equal to twice the rectangle 4C, CB be sub-
tracted, producing /M as breadth ;

therefore the remainder £ is equal to the square on A5,

(1. 7]
so that A28 is the “side” of EL.

Again, let £/ equal to the squares on 4D, DB be applied
to £/, producing £/ as breadth.
But £L is also equal to the square on 45;

therefore the remainder /A7 is equal to twice the rectangle
AD, DB. (1. 7]

3]

T m lo

Now, since AC, CB are medial straight lines,
therefare the squares on AC, CB are also medial,
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And they are equal to £G ;
therefore £G is also medial. [x. 15 and 23, Por.]

And it is applied to the rational straight line £/, producing
EM as breadth ;

therefore £A/ is rational and incommensurable in length-
with EF. [x. 22]

Again, since the rectangle 4C, CB is medial,

twice the rectangle 4C, CB is also medial. [x. 23, Por.]
And it is equal to /G ;

therefore AZG is also medial.

And it is applied to the rational straight line £, producing
HM as breadth ;

therefore M/ is also rational and incommensurable in length
with £F. [x. 22]

And, since AC, CB are commensurable in square only,
therefore 4C is incommensurable in length with CA5.,

But, as 4C is to CB, so is the square on AC to the rect-
angle AC, CB;

therefore the square on 4C is incommensurable with the
rectangle AC, CB. [x. 11]

But the squares on AC, CB are commensurable with the
square on AC,

while twice the rectangle 4C, CB is commensurable with the '

rectangle AC, CB; [x. 6]
therefore the squares on AC, CB are incommensurable with
twice the rectangle AC, CAB. o [x13]

And £G is equal to the squares on 4C, CB,
while GH is equal to twice the rectangle AC, CB;
therefore £G is incommensurable with ZG.
But, as £G is to HG, so is EM to HM ; [ve. 1]
therefore £M is incommensurable in length with /A, [x. 11]
And both are rational ;

therefore £M, M H are rational étraight lines commensurable
in square only ;

therefore £/ is an apotome, and /M an annex to it. [x. 73]
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Similarly we can prove that Z is also an annex to it;

therefore to an apotome different strai%ht lines are annexed

which are commensurable with the wholes in square only :

which is impossible. [x. 79]
Therefore etc.

L

Q. E. D.

- As the irrationality of the second apotome of a medial straight line was
deduced [x. 75] from the irrationality of an apotome, so the present theorem
is reduced to x. 79.

Suppose, if possible, that (x-y), (x'-y') are the same second apotome of
a medial straight line ;

and let (say) x be greater than x’.
Apply (x*+5%), 2xy and also (x? + "), 2x"' to a rational straight line o,

i.e. put
- '3 e __ ’
XF+y=ou } and ¥ +{',—¢m' }
2%y = 0V 2x'y’ = o?/
Dealing with (x - y) first, we have:
(x*+)") is a medial area, and 2xy is also a medial area.

Therefore 4, v are both rationaland v o ... (1).
Also, since x ~ y, x vy,

so that 2o ay,

whence, as usual, 2+ v 2xy,

that is, ou v ov,

and therefore UOV i e (2).

Thus [(1) and (2)] , v are rational and ~,

so that (¥ — v) is an apotome.
Similarly («' — ¢) is proved to be the same apotome.
Hence this apotome is formed in two ways :

which contradicts x. 79.

Therefore the original hypothesis is false, and a second apotome of a
medial straight line is uniquely formed.

ProrosiTioN 82.

To a minor straight line only one straight line can be
annexed whick ts incommensurable in square with the whole
and which makes, with the whole, the sum of the squares on
them rational but twice the vectangle contained by them medial.

Let A8 be the minor straight line, and let BC be an
annex to AF;
therefore AC, CB are straight A 8 ¢ o
lines incommensurable in square
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which make the sum of the squares on them rational, but
twice the rectangle contained by them medial. [x. 76]
I say that no other straight line can be annexed to 45
fulfilling the same conditions.
For, if possible, let B0 be so annexed ;
therefore AD, DB are also straight lines incommensurable
in square which fulfil the aforesaid conditions. [x. 76]
Now, since the excess of the squares on 4D, DB over
the squares on AC, CB is also the excess of twice the rect-
angle AD, DB over twice the rectangle AC, C5,
while the squares on 4D, DB exceed the squares on AC,
CAB by a rational area,

for both are rational,

therefore twice the rectangle 4D, DB also exceeds twice
the rectangle 4C, CB by a rational area:

which is impossible, for both are medial. [x. 26]

Therefore to a minor straight line only one straight
line can be annexed which is incommensurable in square with
the whole and which makes the squares on them added
together rational, but twice the rectangle contained by them
medial.

Q. E. D.

Suppose, if possible, that, with the usual notation,
x—y=x-y;

and let x (say) be greater than .

In this case (x*+3?), (x™ + ™) are both rational areas,
and 2xy, 2x'y’ are both medial areas.

But, as before,  (x?+3%) — (27 +y") = 2xy — 2x7Y/,
so that the difference between two medial areas is rational :
which is impossible [x. 26].

Therefore etc.

ProrosiTiON 83.

To a straight line whick produces with a rational area a
medial whole only one straight line can be annexed whick is
incommensurable in squarve with the whole straight line and
whick with the whole straight line makes the sum of the squares
on them medial, but twice the rectangle contained by them
rational.
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Let AB be the straight line which produces with a rational
area a medial whole,
and let ZC be an annex to A5 ; A 8 c Do
therefore AC, CB are straight lines
incommensurable in square which fulfil the given conditions.
(x. 77]
I say that no other straight line can be annexed to A5
which fulfils the same conditions.
For, if possible, let BD be so annexed ;
therefore AD, DB are also straight lines incommensurable in
square which fulfil the given conditions. [x. 77]
Since then, as in the preceding cases,
the excess of the squares on 4D, DB over the squares on
AC, CB is also the excess of twice the rectangle AD, DB
over twice the rectangle 4C, C5,

while twice the rectangle 4D, DA exceeds twice the rectangle
AC, CB by a rational area,

for both are rational,

therefore the squares on 40D, DB also exceed the squares
on AC, CB by a rational area:

which is impossible, for both are medial. [x. 26]

Therefore no other straight line can be annexed to 453
which is incommensurable in square with the whole and which
with the whole fulfils the aforesaid conditions ;
therefore only one straight line can be so annexed.

Q. E. D.

Suppose, with the same notation, that
x—y=x'-y. (x>2)

Here, (x*+5%), (x*+3") being both medial areas, and 2xy, 2x'y’ both
rational areas,

while (5°43) = (574 = 229 — 22,
X. 26 is contradicted again. o
Therefore etc. :

ProrosiTION 84.

70 a straight line whick produces with a medial area a
medial whole only ome stvaight line can be annexed whickh is
incommensurable in square with the whole straight line and
which with the whole straight line makes the sum of the squares
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on them medial and twice the rectangle contained by them both
medial and also incommensurable with the sum of the squares
on them.

Let 4B be the straight line which produces with a medial
area a medial whole,

and AC an annex to it;
therefore AC, CB are straight lines incommensurable in square

which fulfil the aforesaid conditions. [x. 78]
A_ B ¢ D
EH M N
FL e}

I say that no other straight line can be annexed to 458
which fulfils the aforesaid conditions.

For, if possible, let BD be so annexed,
so that 4D, DB are also straight lines incommensurable in
square which make the squares on 4D, DB added together
medial, twice the rectangle 40, DB medial, and also the
squares on 4D, DB incommensurable with twice the rectangle
AD, DB. [x. 78]

Let a rational straight line £/ be set out,

let £G equal to the squares on AC, CB be applied ta EF,
producing £M as breadth,

and let /G equal to twice the rectangle AC, CB be applied
to £F, producing A M as breadth ;

therefore the remainder, the square on AZ [u. 7], is equal
to £L; .
therefore A8 is the “side” of £L.

Again, let £7 equal to the squares on 4D, DB be applied
to £F, producing £V as breadth.

But the square on 428 is also equal to £L ;
therefore the remainder, twice the rectangle 4D, DA [u. 7),
is equal to /7.
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Now, since the sum of the squares on AC, CB is medial
and is equal to £G,
therefore £G is also medial.

And it is applied to the rational straight line £/, pro-
ducing £M as breadth;
therefore £AM is rational and incommensurable in length
with £F. : [x. 22]

Again, since twice the rectangle 4C, CB is medial and is
equal to G,

therefore G is also medial.

And it is applied to the rational straight line £F; pro-
ducing A M as breadth;

therefore /A is rational and incommensurable in length
with £F, [x. 22]

And, since the squares on AC, CB are incommensurable
with twice the rectangle AC, CB,

EG is also incommensurable with /G ;
therefore £/ is also incommensurable in length with M/ A.

[vr 1, x. 11]
And both are rational ;

therefore £M, MH are rational straight lines commensurable
in square only ;

therefore £/ is an apotome, and /M an annex to it. [x. 73]

Similarly we can prove that £/ is again an apotome and
AN an annex to it.

Therefore to an apotome different rational straight lines
are annexed which are commensurable with the wholes in
square only:

which was proved impossible. [x. 79]

Therefore no other straight line can be so annexed to A5.

Therefore to 4B only one straight line can be annexed
which is incommensurable in square with the whole and which
with the whole makes the squares on them added together
medial, twice the rectangle contained by them medial, and
also the squares on them incommensurable with twice the
rectangle contained by them.

Q E. D.
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With the usual notation, suppose that

x—y=x"-y. (x> )
Let x’+y’=cu} x”+y"=ou’}
and ), .
2xy = ov 2xy = ot/

Consider (x—y) first ;
it follows, since (x? + »?), 2xy are both medial areas, that

%, v are both rational and v 0 .......eoeiiivuiiiniiiiieie i e (1).
But 2+ v 2xy,

that is, o% v oY,

and therefore T s (2).

Therefore [(1) and (2)] #, v are rational and ~;
hence (¥ —v) is an apotome.
Similarly (&' - ) is proved to be the same apotome.
Thus the same apotome is formed as such in two ways :
which is impossible [x. 79].
Therefore, etc.
DEFINITIONS III

1. Given a rational straight line and an apotome, if the
square on the whole be greater than the square on the annex
by the square on a straight line commensurable in length with
the whole, and the whole be commensurable in length with
the rational straight line set out, let the apatome be called a
first apotome,

2. But if the annex be commensurable in length with
the rational straight line set out, and the square on the whole
be greater than that on the annex by the square on a straight
line commensurable with the whole, let the apotome be called
a second apotome.

3. But if neither be commensurable in length with the
rational straight line set out, and the square on the whale be
greater than the square on the annex by the square on a
straight line commensurable with the whole, let the apotome
be called a third apotome.

4. Again, if the square on the whole be greater than
the square on the annex by the square on a straight line
incommensurable with the whole, then, if the whole Ee com-
mensurable in length with the rational straight line set out,
let the apotome be called a fourth apotome;

5. if the annex be so commensurable, a fifth ;
6. and, if neither, a sixth.

H. E. 1IL 12
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ProrosiTioN 85.

To find the first apotome.
Let a rational straight line 4 be set out,
and let BAG be commensurable in length with A ;
therefore BG is also rational.
B ¢ G

A
H

E F D

Let twa square numbers DE, EF be set out, and let their
difference /D not be square ;
therefore neither has £D to DF the ratio which a square
number has to a square number.

Let it be contrived that,
as £D is to DF, so is the square on BG to the square on GC;

[x. 6, Por.]
therefore the square on BG is commensurable with the square

on GC. [x. 6]
But the square on BG is rational ; _
therefore the square on GC is also rational ;
therefore G'C is also rational.
And, since £D has not to DF the ratio which a square
number has to a square number,
therefore neither has the square on BG to the square on GC
the ratio which a square number has to a square number ;
therefore BG is incommensurable in length with GC.  [x. 9]
And both are rational ;
therefore BG, GC are rational straight lines commensurable
in square only ;
therefore BC is an apotome. [x. 73]

I say next that it is also a first apotome.

For let the square on / be that by which the square on
BG is greater than the square on GC.

Now since, as £D is to FD, so is the square on BG to
the square on GC,
therefore also, convertendo, [v. 19, Por.]

as DE is to EF; so is the square on G B to the square on /.
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But DE has to £F the ratio which a square number has
to a square number,

for each is square ;

therefore the square on G 2B also has to the square on / the
ratio which a square number has to a square number ;

therefore BG is commensurable in length with /4. [x. 9]

And the square on BG is greater than the square on GC
by the square on /;

therefore the square on ZG is greater than the square on G(
by the square on a straight line commensurable in length
with BG.

And the whole BG is commensurable in length with the
rational straight line 4 set out.
Therefore BC is a first apotome. [x. Deff. 1. 1]
Therefore the first apotome BC has been found.
(Being) that which it was required to find.

Take %p commensurable in length with p, the given rational straight line.
Let m*, n* be square numbers such that (m* - ?) is not square.

Take x such that m i (m—n)=Rp i axt (1),
—
so that x=4kp S —
=kp N1=AY, say.

Then shall 2p —x, or 2p —4p /1 = X3, be a first apotome.

For (a) it follows from (1) that x is rational but incommensurable with Zp,
whence 4p, x are rational and ~,
so that (4p — x) is an apotome.
(B) If y* = A%*— x% then, by (1), convertendo,

mt = By,

whence y, that is, V/Z%* — 23, is commensurable in length with Zp.

And 4p~p;
therefore 4p — x is a first apotome.

As explained in the note to X. 48, the first apotome

ko—kp/1—X3
is one of the roots of the equation
a—2kp.x + N&%p'=o0.

12—2
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ProposiTioN 86.

To find the second apotome.

Let a rational straight line A4 be set out, and GC com-
mensurable in length with 4 ;
therefore GC is rational.

Let two square numbers DE, & ¢ G
EF be set out, and let their H
difference DF not be square.

Now let it be contrived that, £ t D
as FD is to DE, so is the square
on CG to the square on GAB. [x. 6, Por.]

Therefore the square on CG is commensurable with the
square on GA. [x. 6]

But the square on CG is rational ;
therefore the square on G 2B is also rational ;
therefore BG is rational.

And, since the square on GC has not to the square on GB
the ratio which a square number has to a square number,

CG is incommensurable in length with G25. [x. 9]

And both are rational ;
therefore CG, GB are rational straight lines commensurable
in square only ;
therefore BC is an apotome. (x. 73]

I say next that it is also a second apotome.
For let the square on /7 be that by which the square on
BG is greater than the square on GC.
Since then, as the square on BG is to the square on GC,
so is the number £D to the number DF,
therefore, convertendo,
as the square on BG is to the square on A, so is DE to EF.
v. 19, Por.
And each of the numbers DE , EF is square ; v 19 ]
therefore the square on BG has to the square on /7 the ratio
which a square number has to a square number ;
therefore BG is commensurable in length with /7. [x. 9]
And the square on BG is greater than the square on GC
by the square on /A ;

therefore the square on BG is greater than the square on GC
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by the square on a straight line commensurable in length

with BG.

And CG, the annex, is commensurable with the rational
straight line A4 set out.

Therefore BC is a second apotome. [x. Deff. 1. 2]
Therefore the second apotome BC has been found.
. Q E. D

Take, as before, £4p commensurable in length with p.
Let m* n* be again square numbers, but (- 7?) not square.
Take x such that (M =nd):m =R i x e, (1),

= A d
R T
=y

Ji=a’

whence

Thus x is greater than Zp.

Then x ~ 4p, or ~Tkp~—;-)t’ — kp, is a second apotome.
For (a), as before, x is rational and ~ Zp.
(B) If 2*~ Ap®=y?* we have, from (1),
mnt=x: )0
Thus y, or ¥a®— #%? is commensurable in length with x.
And 4p is ~ p.
Therefore x — £p is a second apotome.
As explained in the note on X. 49, the second apotome

Ap

-k
N1-A P
is the lesser root of the equation
2kp A2 .
f—m.x+ I—A'PP =o.

ProrposiTiON 87.
To find the third apotome.

Let a rational straight line A4 be set out,

let three numbers £, BC, CD be
set out which have not to one
another the ratio which a square F__H a
number has to a square number,

but let CB have to BD the ratio £
which a square number has to a e
square number. .

Let it be contrived that, as £ 8 © ¢

is to BC, so is the square on 4 to the square on FG,
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and, as BC is to CD, so is the square on FG to the square
on GH. [x. 6, Por.]

Since then, as £ is to BC, so is the square on A4 to the
square on FG,

therefore the square on A4 is commensurable with the square
on FG. [x. 6]

But the square on A is rational ;
therefore the square on FG is also rational ;
therefore G is rational.

And, since £ has not to BC the ratio which a square
number has to a square number,

therefore neither has the square on A4 to the square on FG
the ratio which a square number has to a square number ;

therefore A is incommensurable in length with #G: [x. 9]

Again, since, as BC is to CD, so is the square on G to
the square on G/,

therefore the square on /G is commensurable with the square
on GH. [x. 6]

But the square on /G is rational ;
therefore the square on G/ is also rational ;
therefore GH is rational.

And, since BC has not to CD the ratio which a square
number has to a square number,
therefore neither has the square on #G to the square on GA
the ratio which a square number has to a square number;
therefore /G is incommensurable in length with GA.  [x. 9]
And both are rational ; '

therefare /G, GH are rational straight lines commensurable
in square only ;

therefore /#/ is an apotome. [x. 73]

I say next that it is also a third apotome.
For since, as £ is to BC, so is the square on A4 to the
square on FG,

and, as BC is to CD, sa is the square on FG to the square
on HG,

therefore, ex aegualz, as E is to CD, so is the square on A4
to the square on ~ZG. [v. 22]
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But £ has not to CD the ratio which a square number
has to a square number ;
therefore neither has the square on 4 to the square on G/
the ratio which a square number has to a square number ;
therefore A is incommensurable in length with GA. [x. 9]
Therefore neither of the straight lines /G, GH is
commensurable in length with the rational straight line A4

set out.
Now let the square-on X be that by which the square on

FG is greater than the square on GA.
Since then, as BC is to CD, so is the square on /G to
the square on GH,
therefore, convertendo, as BC is to BD, so is the square on
FG to the square on X. [v. 19, Por.]
But BC has to BD the ratio which a square number has
to a square number ;
therefore the square on FG also has to the square on X the
ratio which a square number has to a square number.

Therefore G is commensurable in length with X, [x. 9]

and the square on FG is greater than the square on G/ by
the square on a straight line commensurable with ~G.

And neither of the straight lines /G, GH is commen-
surable in length with the rational straight line 4 set out ;

therefore 7/ is a third apotome. [x. Deff. m. 3]
Therefore the third apotome F/7 has been found.
Q. E. D.

Let p be a rational straight line.
Take numbers p, gm? g (m?— %) which have not to one another the ratio
of square to square.
. Now let x, y be such that

2gM=p"xY e (1)
and gm g (M —n) =22 P, (2).

Then shall (x - y) be a third apotome.
For (a), from (1),

xisrational but v p .ooiiiiiiiii e (3)

And, from (2), y is rational but v x.
Therefore x, y are rational and ~,

so that (x — y) is an apotome.
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(B) By (1), (2), ex acquali,
Pigm—n)=p:y,
whence y v p.

Thus, by this and (3), , yareboth v p ..coooiiiiiiiiiiiin (4)-
Lastly, let 5? = x* — 33 so that, from (2), convertendo,

gmd i gni=x: 2%,
therefore 2, OF AXT =32 A X ...evviiiiiiiiiiiiiie e (5).

Thus [(4) and (5)] (x—y) is a third apotome.
To find its form, we have, from (1) and (2),

Yy=p. m’:/;’-\/f’
so that x- =~/§ -
y },-P(m Nm - n).

This may be written in the form
mJk.p—mk.pN1 =A%
As explained in the note on X. 50, this is the lesser root of the equation
x—2m,[k.px + N'mikp*=o0. .

ProrosiTion 88.

To find the fourth apotome.

Let a rational straight line 4 be set out, and BG com-
mensurable in length with it ;

therefore BG is also rational.

A B ¢ d

H

) F E
Let two numbers DF, FE be set out such that the whole
DE has not to either of the numbers DF, EF the ratio

which a square number has to a square number.
Let it be contrived that, as DE is to £F, so is the square

on BG to the square on GC; [x. 6, Por.]
therefore the square on BG is commensurable with the square
on GC. [x. 6]

But the square on BG is rational ;
therefore the square on G'C is also rational ;
therefore G'C is rational.
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Now, since DE has not to EF the ratio which a square
number has to a square number,
therefore neither has the square on BG to the square on GC
the ratio which a square number has to a square number ;
therefore BG is incommensurable in length with GC. [x 9]
And both are rational ;
therefore BG, GC are rational straight lines commensurable
in square only ;
therefore BC is an apotome. [x. 73]

Now let the square on /A be that by which the square on
BG is greater than the square on GC.

Since then, as DE is to £F, so is the square on BG to
the square on GC,
therefore also, convertendo, as ED is to DF, so is the square
on GA to the square on /. [v. 19, Por.]

But £D has not to DF the ratio which a square number
has to a square number;

therefore neither has the square on G5 to the square on A
the ratio which a square number has to a square number ;

therefore BG is incommensurable in length with /. [x. 9]

And the square on BG is greater than the square on GC
by the square on /#;

therefore the square on BG is greater than the square on GC
by the square on a straight line incommensurable with BG.

And the whole BG is commensurable in length with the
rational straight line 4 set out.
Therefore BC is a fourth apotome. [x. Deff. 1. 4]
Therefore the fourth apotome has been found.
Q. E. D.
Beginning with p, 4p, as in X. 85, 86, we take numbers m, # such that

(m + n) has not to either of the numbers m, 7 the ratio of a square number to
a square number.

Take x such that (Mm+n):n=Fp*:x% e, (1),
whence x=Rp i
m+n
kp
= ——, say.
I+A y
Ap

Then shall (4p — x), or (kp - A> , be a fourth apotome.
I+ .
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For, by (1), x is rational and ~- Zp.
Also ~/Z%* - 2* is incommensurable with 4p, since
(m + 7n) : m=~p*: (Fp*- %),
and the ratio (m + ) : m is not that of a square number to a square number.
And 4p -~ p.
As explained in the note on X. 51, the fourth apotome

kp
ho— 2P
P NETDY
is the lesser root of the quadratic equation

x 3 _
x’—zkp.x+mk’p =0.

ProrosiTioN 89.

To find the fifth apotome.

Let a rational straight line A4 be set out,
and let CG be commensurable in length

with 4 ; B |0
therefore CG is rational.
Let two numbers DF, FE be set out c

such that DE again has not to either of the |A

numbers DF, FE the ratio which a square H

number has to a square number; a' TF

and let it be contrived that, as #£ is to £D,

so is the square on CG to the square on GB5. E
Therefore the square on GAB is also

rational ; [x. 6]

therefore BG is also rational.
Now since, as DE is to £F, so is the square on BG to
the square on GC,
while DE has not to £F the ratio which a square number
has to a square number,
therefore neither has the square on BG to the square on GC
the ratio which a square number has to a square number ;
therefore BG is incommensurable in length with GC.  [x. 9]
And both are rational ;
therefore BG, GC are rational straight lines commensurable
in square only ;
therefore BC is an apotome. [x. 73]
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I say next that it is also a fifth apotome.

For let the square on /A be that by which the square on
BG is greater than the square on GC.

Since then, as the square on BG is to the square on GC,
so is DE to EF,

therefore, convertendo, as ED is to DF, so is the square on
BG to the square on /. [v. 19, Por.]

But £D has not to DF the ratio which a square number
has to a square number ;

therefore neither has the square on BG to the square on A
the ratio which a square number has to a square number ;

therefore BG is incommensurable in length with /4. [x. 9]

And the square on BG is greater than the square on GC
by the square on /~;

therefore the square on GB is greater than the square on GC

by the square on a straight line incommensurable in length
with GB.

And the annex CG is commensurable in length with the
rational straight line A set out;

therefore BC is a fifth apotome. [x. Deff. 1. 5]
Therefore the fifth apotome BC has been found.
Q E. D.

Let p, 4p and the numbers m, 7 of the last proposition be taken.
Take x such that n:(m+n)=kp®:x (1).

In this case x > 4p, and x=kam;n

=kpN 1+, say.

Then shall (x — %p), or (%p+/1 + A — &p), be a fifth apotome.
For, by (1), x is rational and ~ Zp.
And since, by (1), (m +n) : m =2 : (x* - &%),

NaT= 26 is incommensurable with x.

Also &p ~ p.
As explained in the note on x. 52, the fiftA apotome

ko1 + X -%p
is the lesser root of the quadratic
22— 2kp 14+ A . x4+ ApP=0.
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ProrosIiTION goO.

To find the sixth apotome.

Let a rational straight line 4 be set out, and three
numbers £, BC, CD not having
to one another the ratio which A
a square number has to a square
number ;

and further let CA3 also not have
to BD the ratio which a square
number has to a square number, B0 c

Let it be contrived that, as
E is to BC, so is the square on A to the square on FG,

and, as BC is to CD, so is the square on FG to the square
on GH. [x. 6, Por.]

Now since, as £ is to BC, so is the square on A4 to the
square on FG,

therefore the square on A4 is commensurable with the square
on FG. [x. 6]

But the square on A is rational ;
therefore the square on G is also rational ;
therefore /G is also rational.

And, since £ has not to BC the ratio which a square
number has to a square number,

therefore neither has the square on A4 to the square on FG
the ratio which a square number has to a square number ;

therefore A4 is incommensurable in length with FG. [x. 9]

Again, since, as BC is to CD, so is the square on FG to
the square on GAH,

therefore the square on G is commensurable with the square
on GH. [x. 6]

But the square on FG is rational ;
therefore the square on G/ is also rational ;
therefore G/ is also rational.

And, since BC has not to CD the ratio which a square
number has to a square number,
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therefore neither has the square on #G to the square on GH
the ratio which a square number has to a square number ;

therefore FG is incommensurable in length with GA.  [x. 9]
- And both are rational ;

therefore #G, GH are rational straight lines commensurable
in square only ;

therefore 7~/ is an apotome. [x. 73]

I say next that it is also a sixth apotome. :
For since, as £ is to BC, so is the square on A to the
square on FG,
and, as BC is to CD, so is the square on /G to the square
on GH,

therefore, ex aegualz, as E is to CD, so is the square on 4 to
the square on GA. [v. 23]

But £ has not to CD the ratio which a square number
has to a square number;

therefore neither has the square on 4 to the square on GHA
the ratio which a square number has to a square number ;

therefore A4 is incommensurable in length with G/A';  [x. 9]

therefore neither of the straight lines G, GH is commen-
surable in length with the rational straight line 4.

Now let the square on X be that by which the square on
FG is greater than the square on G/A.

Since then, as BC is to CD, so is the square on FG to
the square on GH,

therefore, convertendo, as CB is to BD, so is the square on
FG to the square on X, [v. 19, Por.]

But CA has not to BD the ratio which a square number
has to a square number ;

therefore neither has the square on FG to the square on X

the ratio which a square number has to a square number ;

therefore /G is incommensurable in length with X [x. 9]
And the square on FG is greater than the square on GAH

by the square on X';

therefore the square on /G is greater than the square on GAH

by the square on a straight line incommensurable in length
with £G.
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And neither of the straight lines /G, G/ is commen-
surable with the rational straight line 4 set out.

Therefore FH is a sixth apotome. [x. Deff. m. 6]
Therefore the sixth apotome £/ has been found.
Q. E. D.

Let p be the given rational straight line.

Take numbers g, (m + n), n which have not to one another the ratio of a
square number to a square number, m, » being also chosen such that the
ratio (m + ) : m is not that of square to square.

Take x, y such that pi(men)y=p*:a® .. (1),
(m+n):n=2: . ..o (2).

Then shall (x - y) be a sixth apotome.
For, by (1), xisrational and v p ceeevvnnniniiiiii (3)
By (2), since x is rational,

yisrational and v & ..., (4).
Thus [(3), (4)] (x —y) is an apotome.
Again, ex acquali, pin=p':y,

whence y v p.

Thus x, y are both v p.
Lastly, convertendo from (2),

(m+n):m=x:(x*-y"), -
whence V2= © 2.
Therefore (x—y) is a séxth apotome.

From (1) and (2) we have
x=p [m+n
_.p ’
r= P\/ >
P )
so that the six?k apotome may be written

N
P ? P 2’

or, more simply, JE.p—JA.p.
As explained in the note on x. §3, the sixtk apofome is the lesser root of
the equation

x*—2,/k.px+(k—=A)p'=o0.

ProrosiTiON 91.
If an area be contained by a rational straight line and a
Jorst apolome, the “side” of the area is an apolome.

For let the area 4B be contained by the rational straight
line AC and the first apotome 4D ;

I say that the ‘‘side” of the area A5 is an apotome.
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For, since AD is a first apotome, let DG be its annex ;
therefore AG, GD are rational straight lines commensurable
in square only. [x. 73]

And the whole 4G is commensurable with the rational
straight line AC set out,

and the square on AG is greater than the square on GD
by the square on a straight line commensurable in length
with AG; [x. Deff. 1 1]

if therefore there be applied to AG a paréllelogram equal to
the fourth part of the square on DG and deficient by a square

figure, it divides it into commensurable parts. [x. 17]
A D E F @
3 H K
L N P
v
/7 \
s GH+—p
. w-’
R T M

Let DG be bisected at £,

let there be applied to 4G a parallelogram equal to the square
on £G and deficient by a square figure,

and let it be the rectangle AF, FG;
therefore AF is commensurable with #G.

And through the points £, F, G let EH, FI, GK be drawn
parallel to 4C.

Now, since A/ is commensurable in length with 7G,

therefore 4G is also commensurable in length with each of
the straight lines A%, FG. [x. 15]

But AG is commensurable with AC;

therefore each of the straight lines 4, 7G is commensurable
in length with AC. [x. 12]
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And AC is rational ;
therefore each of the straight lines AF, FG is also rational,
so that each of the rectangles 4/, FK is also rational. [x. 19]
Now, since DE is commensurable in length with £G,

therefore DG is also commensurable in length with each of

the straight lines DE, EG. [x. 15]
But DG is rational and incommensurable in length

with AC;

therefore each of the straight lines DE, £G is also rational

and incommensurable in length with AC; [x. 13]

therefore each of the rectangles DA, EK is medial.  [x. 21]

Now let the square LA be made equal to 47, and let
there be subtracted the square /O having a common angle
with it, the angle ZPM, and equal to FK;
therefore the squares LM, NO are about the same diameter.

[vi. 26]

Let PR be their diameter, and let the figure be drawn.

Since then the rectangle contained by 4AF, FG is equal to
the square on £G,

therefore, as AF is to £G, so is £G to FG. [vi. 17]
But, as AF is to EG, so is A7 to EK,
and, as £G is to FG, so is EK to KF; [vi. 1]

therefore £K is a mean proportional between A7, KF. [v. 11]

But MM is also a mean proportional between LM, NO,
as was before proved, [Lemma after x. 53]

and A/ is equal to the square LM, and KF to NO;
therefore MAN is also equal to £X.

But £K is equal to DA, and MN to LO;
therefore DK is equal to the gnomon UV W and NO.
But AK is also equal to the squares LM, NO;
therefore the remainder 48 is equal to S7.

But S7 is the square on LNV ;
therefore the square on LNV is equal to A5 ;
therefore LV is the “side” of 45.
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I say next that LV is an apotome.
For, since each of the rectangles 47, FKX is rational,

and they are equal to ZM, NO,

therefore each of the squares LA, NO, that is, the squares on
LP, PN respectively, is also rational ;

therefore each of the straight lines L2, PN is also rational.
Again, since D/ is medial and is equal to L0,
therefore ZO is also medial.
Since then ZO is medial,
while NV O is rational,
therefore L0 is incommensurable with NV O.
But, as LO is to NO, so is LP to PN ; [vi. 1]
therefore L2 is incommensurable in length with PNV, [x. 11]
And both are rational ;

therefore LZP, PN are rational straight lines commensurable
in square only ;

therefore ZV is an apotome. [x. 73]
And it is the “side” of the area A5 ;

therefore the “side” of the area 45 is an apotome,
Therefore etc.
This proposition corresponds to X. 54, and the problem solved in it is to

find and to classify the side of a square equal to the rectangle contained by a
JSirst apotome and p, or (algebraically) to find

Vo (#p = 2o JT-N).

First find , v from the equations

u+v==~4
o i’;'p’ (229 } ........................... (x).
If u, v represent the values so found, put
j:;: } .................................... (2),
and (x —y) shall be the square root required.
To prove this Euclid argues thus.
By (1), u:thp TN =}hpN1-N: 0,
whence pu : ykp* 1N =} Ap* NT=N: py,
or B kN1 N =Y VTN
But [Lemma after x. 53]
Fixy=xy:5,
so that 2y =3 NI =N i (3)-

H. E. 1L 13
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Therefore (x—yy=2+)y"-2xy
=p(u+v)-kp 1N
= kp* - kp? VoA

Thus (x - y) is equal to v/ p (4p - k;; I_—T—’)

It has next to be proved that (x —y) is an agofome.
From (1) it follows, by x. 17, that

unrv;
thus #, 9 are both commensurable with (¥ + 9) and therefore with p...... (4).
Hence «, v are both rational,
so that px, pv are rational areas ;
therefore, by (2), % »* are rational and commensurable .................. (5)
whence also x, y are rational straight lines ...............ccooiii (6).

Next, 4p »/1— A1 is rational and v p;
therefore 34p* N1 —A'is a medial area.

That is, by (3), xy is a medial area.
But [(5)] »* is a 7ational area ;

therefore xy v 3
or xwv)y.
But [(6)] «, y are both rational.
Therefore x, y are rational and ~ ;
so that (x—y) is an apotome.
To find the form of (x — y) algebraically, we have, by solving (1),
u=%kp (1+X),

v=43kp(1-A),
whence, from (2), x=p /-:(1 +2),
Jy=pP \/f(l =),
and xX-y=p f(l+)‘)—p\/§(l—)\).

As explained in the note on X. 54, (¥ —y) is the lesser positive root of the
biquadratic equation
xt—2kp?. 22+ N Bt =0,

ProrosiTION 92.

If an area be contained by a rational straight line and a
second apotome, the “side” of the area is a first apotome of a
medial straight line.

For let the area 43 be contained by the rational straight
line AC and the second apotome 4D ;
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I say that the “side” of the area 4B is a first apotome of a
medial straight line.

A D E F_a
c ) L K
L P
Ay

s W —1o
(e

R T ™M

For let DG be the annex to AD;
therefore AG, G D are rational straight lines commensurable
in square only, [x. 73]
and the annex DG is commensurable with the rational straight
line AC set out,
while the square on the whole 4G is greater than the square

on the annex G0 by the square on a straight line commen-
surable in length with 4G. [x. Deff. 1. 2]

Since then the square on 4G is greater than the square
on GD by the square on a straight line commensurable
with 4G,
therefore, if there be applied to AG a parallelogram equal to
the fourth part of the square on GD and deficient by a square
figure, it divides it into commensurable parts. [x. 17]

Let then DG be bisected at £,
let there be applied to 4G a parallelogram equal to the square
on £G and deficient by a square figure,
and let it be the rectangle AF, FG ;
therefore AF is commensurable in length with #G.

Therefore 4G is also commensurable in length with each
of the straight lines AF, £G. [x. 15]

But 4G is rational and incommensurable in length
with AC;

13—2
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therefore each of the straight lines AF, FG is also rational
and incommensurable in length with 4C; [x. 13]

therefore each of the rectangles 4/, FK is medial. [x. 21]
Again, since D E is commensurable with £G,

therefore DG is also commensurable with each of the straight
lines DE, EG. [x. 15]
But DG is commensurable in length with AC.
Therefore each of the rectangles DA, EK is rational.
[x. 19]
Let then the square ZA/ be constructed equal to A4/,
and let there be subtracted VO equal to /X and being about
the same angle with ZAZ, namely the angle LPAM ;
therefore the squares LA/, NO are about the same diameter.
[vi. 26]

Let PR be their diameter, and let the figure be drawn.

Since then 4/, FK are medial and are equal to the squares
on LP, PN,

the squares on L2, PN are also medial ;

therefore LP, PN are also medial straight lines commen-
surable in square only.

And, since the rectangle 45, FG is equal to the square
on EG,

therefore, as AFis to EG, so is EG to FG, [vi. 17]
while, as AF'is to £G, so is A to EK,
and, as £G is to FG, so is EK to FK ; [vi. 1]

therefore £K is a mean proportional between A7, FK. [v. 11]

But MV is also a mean proportional between the squares
LM, NO,

and A4/ is equal to LM, and FK to NO;
therefore M N is also equal to £K.
But DA is equal to £K, and LO equal to MN;

therefore the whole DK is equal to the gnomon UV W
and NO.

Since then the whole AKX is equal to LM, NO,

and, in these, DK is equal to the gnomon UV W and NO,
therefore the remainder A8 is equal to 7°S.
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But 7'S is the square on LV ;
therefore the square on LV is equal to the area A5 ;
therefore LV is the ‘“‘side” of the area 45.

I say that LNV is a first apotome of a medial straight line.
For, since £K is rational and is equal to LO,

therefore L0, that is, the rectangle L2, PN, is rational.

But VO was proved medial ;
therefore Z O is incommensurable with NV O.

But, as LO is to VO, so is LP to PN ; [ve. 1]
therefore LP, PN are incommensurable in length. [x. 11]

Therefore LP, PN are medial straight lines commen-
surable in square only which contain a rational rectangle ;

therefore LNV is a first apotome of a medial straight line.
(x. 74]
And it is the “side” of the area 45.
Therefore the ““side” of the area 428 is a first apotome

of a medial straight line.
Q E. D.

There is an evident flaw in the text in the place (Heiberg, p. 282,
1l. 17—2zo0: translation p. 196 above) where it is said that “since then 4/, FX
are medial and are equal to the squares on L2, PN, the squares on LP, PN
are also medial ; therefore LP, PN are also medial straight lines commensurable
in square only.” Itis not till the last lines of the proposition (Heiberg, p. 284,
1L 17, 18) that it is proved that LP, PN are incommensurable in length. What
should have been proved in the former passage is that the sguares on LFP, PN
are commensurable, so that LP, PN are commensurable in square (not
commensurable in square on/y). I have supplied the step in the note below :
“ Also 2%~ 3?, since ¥ ~2.” Theon seems to have observed the omission and
to have put “and commensurable with one another” after * medial” in the
passage quoted, though even this does not show w4y the squares on LP, PN
are commensurable. One ms. (V) also has “only” (uovov) erased after
“ commensurable in square.”

This proposition amounts to finding and classifying

Vo ()

The method is that of the last proposition. Euclid solves, first, the
equations

Ut V= ——
v
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Then, using the values of #, v so found, he puts

; : Z: } ................................ (2),

and (x — y) is the square root required.

That (x-y)= Q/ (J_-. —kp)

is proved in the same way as is the corresponding fact in x. g1.

From (1) u:dkp=134kp:v,
so that pu:  kp* =1 Ap: p.
But xixy=xy:y,
whence, by (2), XYy =FAp® o e (3)
Therefore (x=p)P=a+y2—
=p(u+v)-4p'

kp )
= —4p).
p (st
Next, we have to prove that (x —y) is a first apotome of a medial straight
line.
From (1) it follows, by X. 17, that

BAD it (4),
therefore #, v are both ~ (¥ + 2).

But [(1)] (¢ + 9) is rational and v p;

therefore u, v are both rational and v p .........ocvvviiii (5)-
Therefore pu, pv, or %%, y°, are both medial areas, and x, y are medial

straight iNes ..........oooiiiiiiiiiiiiii e e (6).
Also 2* ~ 32 since # A D [(4)].oovviiiiniiii (7)-
Now xy, or 3 4p* is a rational area ;

therefore xy vyl

and X vy

Hence [(6), (7), (3)] =, » are medial straight lines commensurable in square
only and containing a rational rectangle ;

therefore (x — y) is a first apotome of a medial straight line.
Algebraical solution of the equations gives

_ I+A
3 ,—A,
0=t 7=,
k +x_5 [ /11—t
and x-Jy=r -A) P z(1+)\>

As explained in the note on X. 55, this is the lesser positive root of the
equation

2 2
220 i X pgeo

x‘—\/l—A’ -\
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ProrosITION 93.

If an area be contained by a rational straight line and a
third apotome, the ‘‘side” of the area is a second apotome of a
medial straight line.

For let the area 4B be contained by the rational straight
line AC and the third apotome 4D ;
I say that the “side” of the area 45 is a second apotome of
a medial straight line.

For let DG be the annex to AD ;
therefore AG, GD are rational straight lines commensurable
in square only,
and neither of the straight lines 4G, GD is commensurable
in length with the rational straight line 4C set out,
while the square on the whole 4G is greater than the square
on the annex DG by the square on a straight line commen-

surable with 4AG. [x. Deff. 11 3]
A 0 E F G
c B H K
L o P
s £8A—o
w/
R M

Since then the square on AG is greater than the square

on GD by the square on a straight line commensurable
with 4G,

therefore, if there be applied to 4G a parallelogram equal to

the fourth part of the square on DG and deficient by a square

figure, it will divide it into commensurable parts. [x. 7]
Let then DG be bisected at £,

let there be applied to 4G a parallelogram equal to the

square on £G and deficient by a square figure,

and let it be the rectangle AF, FG.
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Let £H, FI, GK be drawn through the points £, F, G
parallel to AC.
Therefore AF, FG are commensurable ;

therefore A7 is also commensurable with FX. [v. 1, X. 11]
And, since AF, FG are commensurable in length,

therefore AG is also commensurable in length with each of
the straight lines AF, FG. [x. 15]

But AG is rational and incommensurable in length
with AC;

so that AF, FG are so also. [x. 13]
Therefore each of the rectangles 47, FK is medial. [x. 21]

Again, since DE is commensurable in length with £G,

therefore DG is also commensurable in length with each of
the straight lines DE, EG. [x. 15]

But GD is rational and incommensurable in length
with AC;

therefore each of the straight lines DE, EG is also rational
and incommensurable in length with AC; [x. 13]

therefore each of the rectangles DA, £EK is medial.  [x 21]
And, since AG, GD are commensurable in square only,
therefore 4G is incommensurable in length with GD.

But AG is commensurable in length with 4%, and DG
with £G;

therefore 4F is incommensurable in length with £G.  [x. 13]
But, as AF is to EG, sois Al to EK; [v. 1]
therefore A/ is incommensurable with £K. [x. 11]

Now let the square ZM be constructed equal to 47,

and let there be subtracted VO equal to 7K and being about
the same angle with ZM;

therefore LM, NO are about the same diameter. [vi. 26]

Let PR be their diameter, and let the figure be drawn.
Now, since the rectangle AF, FG is equal to the square
on £G,

therefore, as AF is to £G, so is £EG to FG. [vi. 17]
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But, as AF is to £EG, so is Al to EK,
and, as £G is to FG, so is EK to FK; [v1. 1]
therefore also, as A7 is to EK, sois £EK to FK ; [v. 11]
therefore £K is a mean proportional between A/, FK.

But M is also a mean proportional between the squares
LM, NO,
and A/ is equal to LM, and FK to NO;
therefore £X is also equal to MNV.

But MAN is equal to LO, and EX equal to DH ;
therefore the whole DX is also equal to the gnomon UV W
and NVO.

But AKX is also equal to ZM, NO;
therefore the remainder 4B is equal to S7, that is, to the
square on LNV ;
therefore LNV is the “side” of the area A 5.

| I say that LV is a second apotome of a medial straight
ine.

For,since A7, FK were proved medial, and are equal to the
squares on LP, PN,
therefore each of the squares on L2, PN is also medial ;
therefore each of the straight lines ZP, PN is medial.

And, since A7 is commensurable with /X, [vi 1, x. 11]
therefore the square on L2 is also commensurable with the
square on PN,

Again, since 4/ was proved incommensurable with £X,
therefore LA/ is also incommensurable with NV,
that is, the square on L2 with the rectangle LP, PN ;

so that L2 is also incommensurable in length with PV ;

[vi. 1, x. 11]
therefore LP, PN are medial straight lines commensurable in
square only.

I say next that they also contain a medial rectangle.

For, since £K was proved medial, and is equal to the
rectangle LP, PN,
therefore the rectangle L2, PNV is also medial,
so that LP, PN are medial straight lines commensurable in
square only which contain a medial rectangle.
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-

Therefore LNV is a second apotome of a medial straight
line; [x. 75]

and it is the “side” of the area A 5.

Therefore the “side” of the area 4B is a second apotome
of a medial straight line.

Q. E. D.
Here we are to find and classify the irrational straight line
\/p(,/k.p -Jk.pN1=X).
Following the same method, we put
u+v=lk.p } (1)
wv=Yhpt (1 —Af) [ e s .
Next, #, v being found, let
x*=pu
= z v } .................................... (2);

then (x—y) is the square root required and is a second apotome of a medial
straight line.
That (x—y) is the square root required and that x7 y* are medial areas, so
that x, y are medial straight lines, is proved exactly as in the last proposition.
The rectangle xy, being equal to § ./£.p* /1 = A3, is also medial.

Now, from (1), by x. 17, un~v,
whence U+vnu

But (u+9), or Jh.p, v }Jk.pNT XY
therefore uotJhk.pNI-N,
and consequently puvt JR.pPVI1-N,
or x? v xy,
whence X vy

And, since ¥ ~ v, pu ~ pv,
or x? A~ ga

Thus x, y are medial straight lines commensurable in square only.
And xy is a medial area.
Therefore (x — y) is a second apotome of a medial straight line.

- Its actual form is found by solving equations (1), (2);

thus u=3(JRk.p+A Jk.p),
v=4(JE-p=AJk.p),

and | x—}'=p,\/#(l+l).—p./-i—k(l—h).

As explained in the note on X. 56, this is the lesser positive root of the
equation
xt—2 Jk.p%x? + A%pt=o0.
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PROPOSITION 94.

If an area be contained by a rational straight line and a
Sourth apotome, the ‘‘side” of the area is minor.

For let the area 45 be contained by the rational straight
line AC and the fourth apotome 4D ;
I say that the “side” of the area 43 is minor.

For let DG be the annex to AD;
therefore AG, GD are rational straight lines commensurable
in square only,
AG is commensurable in length with the rational straight line
AC set out,

and the square on the whole 4G is greater than the square
on the annex DG by the square on a straight line incommen-

surable in length with 4G, [x. Deff. 111. 4]
A D E F @G
c 8 H K
L N P
1”— \v
s a1
w,,’

R T (4

Since then the square on 4G is greater than the square
on GD by the square on a straight line incommensurable
in length with 4G,
therefore, if there be applied to 4G a parallelogram equal to
the fourth part of the square on DG and deficient by a square
figure, it will divide it into incommensurable parts. [x. 18]

Let then DG be bisected at £,
let there be applied to 4G a parallelogram equal to the square
on £G and deficient by a square figure,
and let it be the rectangle AF, FG;

therefore 4F is incommensurable in length with FG.
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Let £H, FI, GK be drawn through £, F, G parallel to
AC, BD.

Since then 4G is rational and commensurable in length
with 4C,

therefore the whole 4K is rational. [x. 19]

Again, since DG is incommensurable in length with 4AC,
and both are rational,

therefore DK is medial. [x. 21]
Again, since AF is incommensurable in length with FG,

therefore A7 is also incommensurable with #X.  [vi. 1, x. 11]
Now let the square LM/ be constructed equal to A7,

and let there be subtracted VO equal to #X and about the
same angle, the angle LPAM.
Therefore the squares LM, NO are about the same
diameter. [v1. 26]
Let PR be their diameter, and let the figure be drawn.

Since then the rectangle AF, FG is equal to the square
on EG,
therefore, proportionally, as 4F is to £G, so is £G to FG.

VI. 1

But, as AFis to EG, so is A7 to EK, (vt 27]
and, as £G is to FG, so is EK to FK; [v1. 1]
therefore £K is a mean proportional between A7, FK. [v. 11]

But MV is also a mean proportional between the squares
LM, NO, '
and A/ is equal to LM, and FK to NO;
therefore £K is also equal to M/NV.

But DH is equal to £K, and LO is equal to ¥V ;
therefore the whole DK is equal to the gnomon UVW
and NO.

Since, then, the whole 4K is equal to the squares
LM, NO,
and, in these, DK is equal to the gnomon UV W and the
square VO,

therefore the remainder 425 is equal to S7, that is, to the
square on LNV ;

therefore LAV is the “side” of the area A 5.
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I say that LV is the irrational straight line called minor.

For, since AK is rational and is equal to the squares on
LP, PN,

therefore the sum of the squares on L2, PN is rational.
Again, since DK is medial,
and DK is equal to twice the rectangle L7, PN,
therefore twice the rectangle ZP, PN is medial.
And, since 4/ was proved incommensurable with 7K,

therefore the square on L2 is also incommensurable with the
square on PN.

Therefore LP, PN are straight lines incommensurable in
square whichgmake the sum of the squares on them rational,
but twice the rectangle contained by them medial.

Therefore LV is the irrational straight line called minor;

. - + o [x76]
and it is the “‘side” of the area A 5.
Therefore the ““side” of the area A3 is minor.
. Q. E. D.
We have here to find and classify the straight line
kp
kp— 2P,
Voo o
As usual, we find #, v from the equations
u+v=4Fp
o B b (1),
w=1 I+A } .
and then, giving #, v their values, we put
%= pu
P ().

Then (x —y) is the required square root.
This is proved in the same way as before, and, as before, it is proved that

kp?
SOV
Now, from (1), by x. 18, %vu;
therefore p% v pv,
or x? v}",

so that x, y are incommensurable in square.
And #* + ), or p (4 +v), is a rational area (kp*).

2
But 2xy = \/f':- 5’ which is a medial area.

Hence [x. 76] (x - ) is the irrational straight line called msnor.
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Algebraical solution gives

u=§kp(x+,\/t——{_—-;),
v=§kp(t —\/g
whence & -y = p:\/ ( 1+:\ )\/ ( I+A)'

As explained in the note on x. 57, this is the lesser positive root of the
equation

x = 2kp? . 27+

A 2,46
1+Akp =o

ProrosiTION 95. .

If an area be contained by a rational straight line and a
Jefth apotome, the “ side” of the area is a strawght line which
produces with a rational area a medial whole.

For let the area 4B be contained by the rational straight
line 4C and the fifth apotome 4D ;

I say that the “side” of the area A2 is a straight line which
produces with a rational area a medial whole.

For let DG be the annex to AD ;

therefore AG, GD are rational straight lines commensurable
in square only,

A D E F G

(o]
(=]
T
.

L P
Ay
” \\
s U a2
i
R T ™

the annex GD is commensurable in length with the rational
straight line 4C set out,

and the square on the whole 4G is greater than the square
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on the annex DG by the square on a straight line incommen-

surable with 4G. [x. Deff. 1. 5]
Therefore, if there be applied to 4G a parallelogram

equal to the fourth part of the square on DG and deficient

by a square figure, it will divide it into incommensurable

parts. [x. 18]
Let then DG be bisected at the point £,

let there be applied to 4G a parallelogram equal to the
square on £G and deficient by a square figure, and let it be
the rectangle AF, FG ;-

therefore 4F is incommensurable in length with FG.
Now, since AG is incommensurable in length with CA4,
and both are rational, )
therefore 4K is medial. [x. 21]
Again, since DG is rational and commensurable in length
with AC,
DK is rational. [x. 19]

Now let the square LM be constructed equal to 47, and
let the square VO equal to 7K and about the same angle, the
angle LPM, be subtracted ;

therefore the squares LM, NO are about the same diameter.
[v. 26]

Let PR be their diameter, and let the figure be drawn.
Similarly then we can prove that LV is the “side” of the
area AB.

I say that LNV is the straight line which produces with a
rational area a medial whole.

For, since AK was proved medial and is equal to the
squares on LA, PN,

therefore the sum of the squares on L2, PN is medial.

Again, since DK is rational and is equal to twice the
rectangle LP, PN,

the latter is itself also rational.
And, since A7 is incommensurable with FX,

therefore the square on L2 is also incommensurable with the
square on PN ;

therefore LP, PN are straight lines incommensurable in
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square which make the sum of the squares on them medial
but twice the rectangle contained by them rational.

Therefore the remainder LV is the irrational straight line
called that which produces with a rational area a medial
whole ; [x. 77]
and it is the “side ” of the area 4 5.

Therefore the “side” of the area 4B is-a straight line
which produces with a rational area a medial whole.

Q. E. D.
Here the problem is to find and classify
Voo N1+ A= kp).
As usual, we put
u+v=kp~/1+h} )
wp= JRg e )
and, %, v being found, we take
= pu } .............................. (2).
y=pv A

Then (x - y) so found is our required square root.
This fact is proved as before, and, as before, we see that

= }kp.
Now from (1), by x. 18, TRVE
whence pU v pv,
or 22 vy,

and x, y are incommensurable in square.

Next (x* +%) =p (¥ + v) = &p’ A1 + A, which is a medial area.

And 2xy = &p? 3 which is a rational area.

Hence (x —y) is the “side” of a medial, minus a rational, area. [X. 77]
Algebraical solution gives

u——(J:+A+JA),
1/=é£(~/xTA—,\/)\),

and therefore

x—y:p\/ (~/1+A+~/4\) p f(dl+)\—,\/)t),

which is, as explained in the note to X. 58, the lesser positive root of the
equation
-2k T 23+ M=o
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ProrosITION 96.

_ If an area be contained by a rational straight line and a
suxth apotome, the ““ side” of the area is a straight line which
produces with a medial area a medial whole.

For let the area 4B be contained by the rational straight
line AC and the sixth apotome 40D ;

I say that the “side” of the area A3 is a straight line which
produces with a medial area a medial whole.

A D E F @
c 8 H 1 K
N
L P
a’—“v
I, ‘\
s AP
wl
R T

For let DG be the annex to 4D ;

therefore AG, GD are rational straight lines commensurable
in square only,

neither of them is commensurable in length with the rational
straight line 4 C set out,

and the square on the whole AG is greater than the square
on the annex DG by the square on a straight line incommen-
surable in length with 4AG. [x. Deff. m. 6]

Since then the square on AG is greater than the square

on GD by the square on a straight line incommensurable in
length with 4G,

therefore, if there be applied to 4G a parallelogram equal to
the fourth part of the square on DG and deficient by a square
figure, it will divide it into incommensurable parts. [x. 18]

Let then DG be bisected at £,
let there be applied to 4G a parallelogram equal to the square

H. E. 1L 14
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on EG and deficient by a square figure, and let it be the
rectangle AF, FG,

therefore A F is incommensurable in length with #G.
But, as AF is to FG, so is A/ to FK;; [vi.1]
therefore A/ is incommensurable with /K. [x. 11]

And, since AG, AC are rational straight lines commensur-
able in square only,

AK is medial. [x. 21]

Again, since AC, DG are rational straight lines and
incommensurable in length,

DK is also medial. [x. 21]
Now, since AG, GD are commensurable in square only,
therefore 4G is incommensurable in length with GD.
But, as AG is to GD, sois AK to KD ; [v1. 1]
therefore 4K is incommensurable with XD. [x. 11]

Now let the square ZM be constructed equal to A7,

and let VO equal to FK, and about the same angle, be
subtracted ;

therefore the squares LM, NO are about the same diameter.
[vr. 26]

Let PR be their diameter, and let the figure be drawn.
Then in manner similar to the above we can prove that

LA is the “side” of the area AB.

I say that LAV is a straight line which produces with a
medial area a medial whole.

For, since AK was proved medial and is equal to the
squares on LP, PN,

therefore the sum of the squares on L2, PN is medial.

Again, since DK was proved medial and is equal to twice
the rectangle L2, PN,

twice the rectangle LP, PN is also medial.
And, since 4K was proved incommensurable with DX,

the squares on L2, PN are also incommensurable with twice
the rectangle LP, PN.

And, since A7 is incommensurable with X,

therefore the square on L2 is also incommensurable with the
square on PN ;
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therefore LP, PN are straight lines incommensurable in
square which make the sum of the squares on them medial,
twice the rectangle contained by them medial, and further the
squares on them incommensurable with twice the rectangle
contained by them.

Therefore LNV is the irrational straight line called that
which produces with a medial area a medial whole; [x. 78]

and it is the “side” of the area A5.

Therefore the “side” of the area is a straight line which
produces with a medial area a medial whole.

Q. E. D
We have to find and classify
Ne(Jk.p— /A p)..
Put, as usual,
u+v= |k.
wp = i/&o' P } .............................. (1),
and, #, v being thus found, let
xt = pu
Y =pv } .................................... (2)-
Then, as before, (x — y) is the square root required.
For, from (1), by x. 18, RVE
whence pu v pv,
or x* vy’,

and x, y are incommensurable in square.
Next, 22 +y* = p (# +v) = \/% . p% which is a media/ area.
Also 2xy = \/A. p* which is again a medial area.
Lastly, \/£.p, /A . p are by hypothesis ~, so that

JE.po A p,
whence JE.pt v AL P
or (x*+)%) v 2xp.

Thus (x - y) is the “side” of a medial, minus a medial, area [x. 78].
Algebraical solution gives

u =’-; (V& + NE=DX),
v=2 (Jk-VE=N),
whence x—y=pJi(Jk+NE=X) - pV}(JE—VE=NX).

This, as explained in the note on x. 59, is the lesser positive root of the
equation

b=z, Jh. o'+ (k= M) pt=o0.

14—2
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ProrosiTioN 97.

 The square on an apotome applied to a rational straight
line produces as breadth a first apolome.

Let 4B be an apotome, and CD rational,

and to CD let there be applied C£ equal to the square on
AP and producing CF as breadth ;

I say that CF is a first apotome.
A B -G

F N K ™M

0

D o H L

For let BG be the annex to A5 ;
therefore AG, GAB are rational straight lines commensurable
in square only. [x. 73]
To CD let there be applied CH equal to the square on
AG, and KL equal to the square on BG.
Therefore the whole CL is equal to the squareson 4G, GB,
and, in these, CZ is equal to the square on 4 5;
therefore the remainder /L is equal to twice the rectangle
AG, GB. [1r. 7]
Let 7 be bisected at the point WV,
and let VO be drawn through  parallel to CD;
therefore each of the rectangles 70, LN is equal to the
rectangle 4G, GB.
Now, since the squares on 4G, GAB are rational,
and DM is equal to the squares on AG, GB,
therefore DM is rational.
And it has been applied to the rational straight line CD,
producing CM as breadth ;
therefore CM is rational and commensurable in length with
CD. [x. 20]
Again, since twice the rectangle AG, GB is medial, and
FL is equal to twice the rectangle AG, G5B,
therefore /L is medial.
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And it is applied to the rational straight line CD, producing
FM as breadth;

therefore M/ is rational and incommensurable in length with
CcD. [x. 22]

And, since the squares on 4G, GAB are rational,
while twice the rectangle 4G, GB is medial,

therefore the squares on 4G, GB are incommensurable with
twice the rectangle 4G, GB.

And CL is equal to the squares on 4G, GAB,
and FL to twice the rectangle 4G, GB;
therefore DM is incommensurable with L.
But, as DM is to FL, sois CM to FM ; [v. 1]
therefore CM is incommensurable in length with . [x. 11]
And both are rational ;

therefore CM, MF are rational straight lines commensurable
in square only ;

therefore CF is an apotome. [x. 73]

I say next that it is also a first apotome.
For, since the rectangle 4G, GAB is a mean proportional
between the squares on 4G, G5,

and CH is equal to the square on 4G,
KL equal to the square on 5BG,
and VL equal to the rectangle AG, GB,
therefore /L is also a mean proportional between CH, KL ;
therefore, as CH is to VL, so is NL to KL.
But, as CH is to VL, sois CK to N M,
and, as VL is to K, so is NM to KM ; [v1. 1]

therefore the rectangle CK, KM is equal to the square on
NM [vu 17], that is, to the fourth part of the square on F//.

And, since the square on 4G is commensurable with the
square on G B,

CH is also commensurable with KL.
But, as CH is to KL, sois CK to KM ; [v1.1]
therefore CK is commensurable with X7. [x 11]
Since then CM, MF are two unequal straight lines,
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and to CM there has been applied the rectangle CK, KM
equal to the fourth part of the square on #A/ and deficient by
a square figure,

while CKX is commensurable with X7,

therefore the square on CA/ is greater than the square on MF
by the square on a straight line commensurable in length
with CM. [x. 17]
And CM is commensurable in length with the rational
straight line CD set out;
therefore CF is a first apotome. [x. Deff. m. 1]
Therefore etc.
Q. E. D.
Here begins the hexad of propositions solving the problems which are the
converse of those in the hexad just concluded. Props. 97 to 102 correspond

of course to Props. 60 to 65 relating to the binomials etc.
We have in x. 97 to prove that, (p — AJ#. p) being an apotome,

~/k ey

is a first apotome, and we have to ﬁnd it geometrically.

Euclid’s procedure may be represented thus.
Take x, y, 3 such that

ox =p?
0y=kp’ } .............................. (l)
o.25=2,/k.p’
— 3
Thus (x+y)—zz=(—p—“‘/’£'—e)—,

and we have to prove that (x4 y) — 22 is a_first apotome.

() Now p?+ &% or o (x +y), is rational ;

therefore (x + y) is rational and Ao ......occevviiiiiiiiiriiiiir e, (2).
And 2,/k. p? or o. 23, is medial :
therefore 2z is rational and v o.........coveviiniiiinieiiiiiii e (3)-

But, o (x +y) being rational, and o . 22 medial,
c(x+y)vo. 2z
whence (x+y) o 23
Therefore, since (x + ), 23 are both rational [(2), (3)],
(% +y), 2z are rational and A= .......cccceeuiiiiiiiiiieinieiee el (4).
Hence (x +y) — 23 is an apolome.
(B) Since /. p" is a mean proportional between p? 4p?
oz is a mean proportional between ox, ay [by (1)].
That is, ox : 08 =03 : gy,
or X:2=2:y,

and xy=13% or }(28)! .ceviiniiiiiiiiiin (5)-
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And, since p* ~ 4p?, ax ~ ay,
or E o R (6).
Hence [(s), (6)], by x. 17,
JE P (28 ~ (x4 ).
And [(4)] (x +y), 23 are rational and ~,
while [(2)] (x +y) ~ o;
therefore (x +y) — 2z is a first apotome.
The actual value of (x +y) - 22 is of course

A+ By =2 A,

ProrosiTION 98.

The square on a first apotome of a medial straight line
applied to a rational straight line produces as breadth a second
apolome.

Let A8 be a first apotome of a medial straight line and
CD a rational straight line,
and to CD let there be applied C£ equal to the square on
AB, producing CF as breadth ;

I say that CF' is a second apotome.

For let BG be the annex to A58

therefore 4G, GB are medial straight lines commensurable in

square only which contain a rational rectangle. [x. 74]
A B G
c F N K_M™
> E (¢ H L

To CD let there be applied C/H equal to the square on
AG, producing CK as breadth, and KL equal to the square
on GB, producing KM as breadth ;
therefore the whole CL is equal to the squares on 4G, GB;
therefore CL is also medial. [x. 15 and 23, Por.]

And it is applied to the rational straight line CD, pro-
ducing CM as breadth ;
therefore CM/ is rational and incommensurable in length with
CD. [x. 22]



216 BOOK X [x. 98

Now, since CL is equal to the squares on 4G, G5B,
and, in these, the square on 425 is equal to CE,
therefore the remainder, twice the rectangle 4G, GAB, is equal
to FL. [ 7]
But twice the rectangle 4G, GAB is rational ; .
therefore FL is rational.

And it is applied to the rational straight line /£, producing
FM as breadth ; '
therefore /M is also rational and commensurable in length
with CD. [x. 20]

Now, since the sum of the squares on 4G, G5, that is,
CL, is medial, while twice the rectangle 4G, GAB, that is, FL,
is rational,
therefore CL is incommensurable with L.

But, as CL is to FL, so is CM to FM ; [v1. 1]
therefore CA/ is incommensurable in length with FM. [x 11]

And both are rational ;
therefore CM, MF are rational straight lines commensurable
in square only ;
therefore CF is an apotome. [x. 73]

I say next that it is also a second apotome.
For let M be bisected at AV,

and let VO be drawn through AV parallel to CD ;

therefore each of the rectangles FO, VL is equal to the
rectangle 4G, GB.

Now, since the rectangle 4G, GB is a mean proportional
between the squares on 4G, GB,

and the square on 4G is equal to CH,
the rectangle 4G, GB to NL,
and the square on BG to KL,
therefore VL is also a mean proportional between CH, KL ;
therefore, as CH is to VL, so is NL to KL.
But, as CH is to NL, sois CK to NM,
and, as VL is to KL, so is NM to MK ; [vr. 1]
therefore, as CK is to NM, so is NM to KM ; [v. 11]

‘therefore the rectangle CX, KM is equal to the square on
NM [vi. 17], that is, to the fourth part of the square on F/M/.
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Since then CM, MF are two unequal straight lines, and
the rectangle CK, KM equal to the fourth part of the square
on MF and deficient by a square figure has been applied to
the greater, C///, and divides it into commensurable parts,
therefore the square on CA/ is greater than the square on MF
. by the square on a straight line commensurable in length with

[x. 17]

And the annex FA/ is commensurable in length with the

rational straight line CD set out;

therefore CF is a second apotome. [x. Deff. m1. 2]

Therefore etc.
Q. E. D.

In this case we have to find and classify
(#p ~ kip)’.
o

Take x, y, z such that
ox= kip’
ay=#p . e (1).
o.23=2kp?

(a) Now k*p’, kip’ are medial areas ;
therefore o (x + y) is medial,
whence (x +y) is rational and v & ....ceieeiiiiiiiiiiiii e, (2).
But 24p? and therefore o . 22, is rational,
whence 2z is rational and A o .......oiiii (3)
And, o (x + y) being medial, and ¢ . 2z rational,
o(x+y)vo.z2s
or (x+y) v 2z
Hence (x + y), 2z are rational straight lines commensurable in square only,
and therefore (x +y) — 23 is an apolome.
(B) We prove, as before, that
2y =34(22) i (4)
Also k*p’ ~ k’)p’, or ox ~ oy,
so that E 2N N (s5)
[This step is omitted in P, and Heiberg accordingly brackets it. The

result is, however, assumed.]
Therefore [(4), (5)}, by x. 17,

N(x+y) = (25) ~ (5 +)).
And 2z ~o.
Therefore (x + y) — 2z is a second apotome.

Obviously (x+y)—2z= %’ {JE (1 + k) — 24},
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ProrosiTION 99.

The square on a second apotome of a medial straight line
applied to a rational straight line produces as breadth a thivd
apotome.

Let A8 be a second apotome of a medial straight line,
and CD rational,

and to CD let there be applied CE equal to the square on
AB, producing CF as breadth ;

I say that CF is a third apotome.

For let BG be the annex to A5 ;

therefore 4G, GB are medial straight lines commensurable
in square only which contain a medial rectangle. [x. 75]

Let CH equal to the square on 4G be applied to CD,
producing CK as breadth,

and let AL equal to the square on BG be applied to KA,
producing KM as breadth ;

therefore the whole CL is equal to the squares on 4G, GB;
therefore CL is also medial. [x. 15 and 23, Por.]

And it is applied to the rational straight line CD, producing
CM as breadth ;

therefore CM/ is rational and incommensurable in length with
CD. [x. 22]

Now, since the whole CL is equal to the squares on 4G,
GBAB, and, in these, C£ is equal to the square on 45,

therefore the remainder L/ is equal to twice the rectangle
AG, GB. [ 7]

Let then ZA/ be bisected at the point 2V,
and let VO be drawn parallel to CD;

therefore each of the rectangles 7O, VL is equal to the rect-
angle AG, GB.
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But the rectangle 4G, GB is medial ;
therefore L is also medial.

And it is applied to the rational straight line £, producing
FM as breadth ;

therefore ~M is also rational and incommensurable in length
with CD. [x. 22]

And, since 4G, GB are commensurable in square only,
therefore 4G is incommensurable in length with GB;

therefore the square on 4G is also incommensurable with the
rectangle AG, GA. [vi. 1, x. 11]

But the squares on 4G, GB are commensurable with the
square on AG,

and twice the rectangle 4G, GB with the rectangle 4G, GB;

therefore the squares on 4G, GB are incommensurable with
twice the rectangle 4G, GA. [x. 13]

But CL is equal to the squares on 4G, G5B,
and FL is equal to twice the rectangle 4G, GB;
therefore CL is also incommensurable with FZ.
But, as CL is to FL, sois CM to FM ; [vi. 1]
therefore CA/ is incommensurable in length with FM7. [x. 11]
And both are rational ;

therefore CM, MF are rational straight lines commensurable
in square only ;

therefore CF is an apotome. [x. 73]

I say next that it is also a third apotome.
For, since the square on 4G is commensurable with the
square on G5,

therefore CH is also commensurable with XZ,
so that CKX is also commensurable with X7. [vi. 1, x. 11]

And, since the rectangle AG, GAB is a mean proportional
between the squares on AG, GB,

and CH is equal to the square on 4G,

KL equal to the square on G5,

and VL equal to the rectangle 4G, GB,

therefore VL is also a mean proportional between CH, KL ;

therefore, as CH is to N, so is NL to KL.
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But, as CH is to N, so is CK to N M,
and, as VL is to KL, so is NM to KM ; [v1. 1]
therefore, as CK is to MN, so is MN to KM ; [v. 11]

therefore the rectangle CKX, KM is equal to [the square on
MN, that is, to] the fourth part of the square on F//.

Since then CM, MF are two unequal straight lines, and
a parallelogram equal to the fourth part of the square on #/
and deficient by a square figure has been applied to C#, and
divides it into commensurable parts,
therefore the square on CAM/ is greater than the square on
MF by the square on a straight line commensurable with
CM. [x. 17]

And neither of the straight lines CM, MF is commensur-
able in length with the rational straight line CD set out;
therefore CF is a third apotome. [x. Deff. 1 3]

Therefore etc.

Q E. D.

We have to find and classify

:;(kip“‘\%,)z.,

ox = ,Jk.p

Take x, y, 3 such that

A 3
dy::/—k.p
o.22=2,/A.p}

() Then o (x +y) is a medial area,

whence (x +y) is rational and v & ...eceueeniiiiiiiniiiiii e (1).
Also o . 2z is medial,

whence 2z is rational and v @ .......coiiiiiiiiiiiiiiii e (2).

Again k*p v JA-p ,
whence NZ2Y VN

And ,Jk.p’h(,,/k.p’+:/l\zp’),
while JA.p 2 A p?;
therefore (Jk PP+ Jikp’) v 2,/A. P},

or o(x+y)vo. 2z
and () RV 7 (3)-
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Thus [(1), (2), (3)] (x +), 22 are rational and ~,
so that (x + y) — 22 is an apofome.

(B) ox ~ay, so that x ~ y.
And, as before, xy =} (22)%
Therefore [x. 17] Nx+y)y = (22 ~ (x +3).
And neither (x +y) nor 2z is ~ 0.
Therefore (x + y) — 22 is a third apotome.

It is of course equal to
2 (B+A
cEE -

ProrosITION 100.

The square on a minor strvaight line applied to a rational
straight line produces as breadth a fourth apotome.

Let A8 be a minor and CD a rational straight line, and
to the rational straight line CD let CE be applied equal to the
square on 428 and producing C/# as breadth ;

I say that C/F is a fourth apotome.

A 8 Q
(o] F N K M
D E o] H L

For let BG be the annex to AB;

therefore AG, GB are straight lines incommensurable in
square which make the sum of the squares on AG, GB
rational, but twice the rectangle 4G, GB medial. [x. 76]

To CD let there be applied C/ equal to the square on
AG and producing CK as breadth,

and AL equal to the square on BG, producing KM as breadth;
therefore the whole CL is equal to the squares on AG, GA.

And the sum of the squares on 4G, G B is rational ;
therefore CL is also rational.

And it is applied to the rational straight line CD, producing
CM as breadth;

therefore CM/ is also rational and commensurable in length
with CD. [x. 20]
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And, since the whole CL is equal to the squares on 4G,
GB, and, in these, C£ is equal to the square on 425,

therefore the remainder /L is equal to twice the rectangle
AG, GB. (1. 7]
Let then FA/ be bisected at the point &V,

and let VO be drawn through A parallel to either of the
straight lines CD, ML ;

therefore each of the rectangles 7O, VL is equal to the rect-
angle AG, GA.

And, since twice the rectangle 4G, GB is medial and is
equal to FL,
therefore FL is also medial.

And it is applied to the rational straight line #£, producing
FAM as breadth ; :
therefore M/ is rational and incommensurable in length with
CD. [x 22]

And, since the sum of the squares on AG, G2 is rational,
while twice the rectangle 4G, GB is medial,

the squares on 4G, GB are incommensurable with twice the
rectangle 4G, GB.

But CL is equal to the squares on 4G, G5B,
and FL equal to twice the rectangle 4G, GB;
therefore CL is incommensurable with #Z.
But, as CL is to FL, sois CM to MF; [v1. 1]
therefore CA/ is incommensurable in length with MF. [x. 11]
And both are rational ;
therefore CM, MF are rational straight lines commensurable
in square only ;
therefore CF is an apotome. [x. 73]

I say that it is also a fourth apotome.
For, since AG, GB are incommensurable in square,

therefore the square on AG is also incommensurable with the
square on GA. '

And CH is equal to the square on 4G,
and KL equal to the square on G5 ;
therefore C/ is incommensurable with K'L.
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But, as CH is to KL, so is CK to KM ; [v1. 1)
therefore CK is incommensurable in length with K47, [x. 11]

And, since the rectangle 4G, GB is a mean proportional
between the squares on AG, GB,

and the square on 4G is equal to CH,
the square on GB to KL,
and the rectangle AG, GB to NL,
therefore VL is a mean proportional between CH, KL ;
therefore, as CH is to VL, so is NL to KL.
But, as CH is to NL, sois CK to NM,
and, as VL is to KL, so is NM to KM ; [vi. 1]
therefore, as CK is to MN, so is MN to KM ; [v. 11]

therefore the rectangle CX, KM is equal to the square on
MN [vi. 17], that is, to the fourth part of the square on FM/.

Since then CM, MF are two unequal straight lines, and
the rectangle CKX, KM equal to the fourth part of the square
on MF and deficient by a square figure has been applied to
CM and divides it into incommensurable parts,

therefore the square on CM is greater than the square on
MF by the square on a straight line incommensurable with
CcM. [x. 18]

And the whole CA/ is commensurable in length with the
rational straight line CD set out ;

therefore CF is a fourth apotome. [x. Deff. u1. 4]
Therefore etc.
Q. E. D.
We have to find and classify
ST o Ay
c{Jz SRV Fery - VPR VAR oy |

We will call this, for brevity,

‘—1 (v - 9).

ox=u*
=0 1,

Take x, y, 2z such that

o.22=2uv

where it has to be remembered that #°, #* are incommensurable, (#* + #%) is
rational, and 2#v medial.
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It follows that o (x + y) is rational and o . 2z medial,

so that (x +y) is rational and A @........ccoiiiiiininiiiiiiiiiiin (1),
while 2z is rational and v o ..... coeciiiiiiii (2),
and o(x+y)vo. 2z

so that (T+y) o 22 i (3)-

Thus [(1), (2), (3)] (x +y), 22 are rational and ~,
so that (x +y)— 22 is an apotome.

Next, since TRV /8
ogX v 0),
or x o).
And it is proved, as usual, that
xy=21=} (22)%

Therefore [x. 18] NE+yP—(22) © (2 +3).
But (x+y) ~ o,
therefore x+y — 2z is a fourth apotome.

3
Its value is of course £ ( 1 - —l-—) .
4 Y S

-ProrosITION 101.

The square on the straight line whick produces with a
rational area a medial whole, if applied to a rational straight
line, produces as breadth a fifth apotome.

Let A8 be the straight line which produces with a
rational area a medial whole, and CD a rational straight line,
and to CD let CE be applied equal to the square on 45 and
producing CF as breadth ;

I say that CF is a fifth apotome.

A B G
(o] F N K M
D E ] H L

For let BG be the annex to A5 ;

therefore 4G, GB are straight lines incommensurable in
square which make the sum of the squares on them medial
but twice the rectangle contained by them rational. [x. 77]

To CD let there be applied C/ equal to the square on
AG, and KL equal to the square on G5 ;

therefore the whole CL is equal to the squares on 4G, GB.
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But the sum of the squares on 4G, GB together is
medial ;

therefore CL is medial.

And it is applied to the rational straight line CD, producing
CM as breadth;

therefore CM/ is rational and incommensurable with CD. [x. 22]
And, since the whole CZ is equal to the squares on 4G, G5,
and, in these, C£ is equal to the square on 45,

therefore the remainder <L is equal to twice the rectangle
AG, GB. (1. 7]

Let then F/ be bisected at 2V,

and through & let VO be drawn parallel to either of the
straight lines CD, ML ;

therefore each of the rectangles 7O, VL is equal to the rect-
angle 4G, GB.

And, since twice the rectangle 4G, GZA is rational and
equal to FLZ,

therefore F#Z is rational.

And it is applied to the rational straight line £/, producing
FM as breadth ;

therefore M/ is rational and commensurable in length with
CD. [x. 20]

Now, since CL is medial, and /L rational,
therefore CL is incommensurable with ~L.
But, as CL is to FL, so is CM to MF; [ve. 1]
therefore CA/ is incommensurable in length with 27F. [x. 11]
And both are rational ;

therefore CM, MF are rational straight lines commensurable
in square only ;

therefore CF is an apotome. [x. 73]

I say next that it is also a fifth apotome.

For we can prove similarly that the rectangle CX, KM
is equal to the square on N/, that is, to the fourth part of the
square on /M.

And, since the square on 4G is incommensurable with the
square on GA,

H. E. 111, 15
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while the square on 4G is equal to CH,
and the square on G5 to KL,
therefore CH is incommensurable with XZ.
But, as CH isto KL, so is CK to KM ; [v1. 1]
therefore CK is incommensurable in length with XA/, [x. 11]
Since then CM, MF are two unequal straight lines,

and a parallelogram equal to the fourth part of the square
on FM and deficient by a square figure has been applied to
CM, and divides it into incommensurable parts,
therefore the square on CAH/ is greater than the square on
MF by the square on a straight line incommensurable with
[x. 18]
And the annex F is commensurable with the rational
straight line CD set out;

therefore CF is a fifth apotome. [x. Deff. n. 5]
Q. E. D.
We have to find and classify
- I+ @+ k- J N+ B k}
{~/ 2(1+ A ! Vz(1+ %) (| + & '

Call this ; (# —v)% and take x, y, z such that
ox =u?
oy =7* } .

0. 23 =200

In this case »% 2? are incommensurable, (#* + 7°) is a medial area and 2uv
a rational area.
Since o (x + ) is medial and o . 22 rational,

(x +y) is rational and v o,
2z is rational and ~ o,
while (x+y) v 22
It follows that (x + y), 2z are rational and ~,
so that (x +y) — 22 is an apotome.

Again, as before, xy =2 =} (22)},
and, since #* v 7%, ox v gy,
or X v}y
Hence [x. 18] N(x+p)? = (22)* v (x +)).
And 2z ~ 0.

Therefore (x +y) — 23 is a _fifth apotome.
It is of course equal to

g’<_'____*_>
o \Ji+&2 1+#)
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ProrosiTION 102.

The square on the straight line whick produces with a
medial area a medial whole, if applied to a rational straight
line, produces as breadth a sixth apotome.

Let A7 be the straight line which produces with a medial
area a medial whole, and CD a rational straight line,

and to CD let CE be applied equal to the square on 45 and
producing C/ as breadth;

I say that CF is a sixth apotome.

A B G
c F N K_ M
D E (4] H L

For let BG be the annex to A5 ;

therefore 4G, GB are straight lines incommensurable in
square which make the sum of the squares on them medial,
twice the rectangle 4G, G B medial, and the squares on 4G,
G B incommensurable with twice the rectangle 4G, GB. [x. 78]

Now to CD let there be applied CH equal to the square
on AG and producing CK as breadth,

and AL equal to the square on BG;
therefore the whole CZ is equal to the squares on 4G, GB;
therefore CL is also medial.

And it is applied to the rational straight line CD, produc-
ing CA/ as breadth;

therefore CM is rational and incommensurable in length
with CD. [x. 22]

Since now CL is equal to the squares on AG, G5,
and, in these, CZ is equal to the square on 425,

therefore the remainder /L is equal to twice the rectangle
AG, GB. (1. 7]

And twice the rectangle AG, GB is medial ;
therefore /L is also medial.

15—2
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And it is applied to the rational straight line FE, pro-
ducing FM as breadth ;

therefore M/ is rational and incommensurable in length
with CD. [x. 22]

And, since the squares on AG, GB are incommensurable
with twice the rectangle 4G, G5B,

and CL is equal to the squares on 4G, G5,
and FL equal to twice the rectangle 4G, GB,
therefore CL is incommensurable with FL.
But, as CL is to FL, sois CM to MF; [v1. 1]
therefore CM is incommensurable in length with MF. [x. 11]

And both are rational.
Therefore CM, MF are rational straight lines commen-
surable in square only;

therefore CF is an apotome. [x. 73]

I say next that it is also a sixth apotome.
For, since FL is equal to twice the rectangle 4G, GB,
let /M be bisected at V,

and let VO be drawn through AV parallel to CD;

therefore each of the rectangles #O, N L is equal to the rect-
angle AG, GB.

And, since 4G, GB are incommensurable in square,

therefore the square on AG is incommensurable with the
square on GA.

But CH is equal to the square on AG,
and KL is equal to the square on G5
therefore CH is incommensurable with KZ.

But, as CH is to KL, so is CK to KM ; [vi. 1]
therefore CK is incommensurable with K7, [x. 11]

And, since the rectangle 4G, GB is a mean proportional
between the squares on 4G, GB,

and CH is equal to the square on 4G,

KL equal to the square on G5,

and VL equal to the rectangle AG, GB,

therefore VL is also a mean proportional between CH, KL ;
therefore, as CH is to VL, so is NL to KL.
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And for the same reason as before the square on CA/ is
greater than the square on MF by the square on a straight
line incommensurable with C//. [x. 18}

And neither of them is commensurable with the rational
straight line CD set out ;
therefore CF is a sixth apotome. [x. Deff. 1. 6]

Q. E. D.
We have to find and classify

1 * i 2

Call this 5- (# - v)% and put

ox=u’,
oy =773,
0. 22 =2u0.
Here #? 7* are incommensurable,
(#* +v*), 210 are both medial areas,
and (8 +7°) v 2uv.
Since o (2 + y), o . 22 are medial and incommensurable,
(x + ) is rational and v o,
2z is rational and v o,
and (x+y) v 22
Hence (x +y), 22 are rational and ~,
so that (x + y) — 22 is an apotome. .
Again, since #% 7% or ox, oy, are incommensurable,
X vy
And, as before, xy =38 =} (22)%
Therefore [x. 18] NE+y)y = (22 v (= +).
And neither (x +y) nor 2z is ~ 3;
therefore (x + y) — 22 is a sixth apotome.

’ I\
It is of course E( A—’*/— .
o v NIEY

ProrosiTION 103.

A straight line commensurable in length with an apotome
is an apotome and-the same in order.

Let AZ be an apotome,
and let CD be commensurable in A B_E
length with A58 ; N b ¢
I say that CD is also an apotome and '
the same in order with 425,
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For, since 4B is an apotome, let BE be the annex to it;
therefore AE, EB are rational straight lines commensurable

in square only. [x 73]

Let it be contrived that the ratio of B£ to DF is the same
as the ratio of AB to CD; [v 12]
therefore also, as one is to one, so are all to all ; [v. 12]

therefore also, as the whole A £ is to the whole CF, sois AB
to CD.

But 4B is commensurable in length with CD.
Therefore AE is also commensurable with C#, and BE
with DF. [x. 11]

And AE, EB are rational straight lines commensurable in
square only ;

therefore CF, FD are also rational straight lines commensur-
able in square only. [x. 13]

Now since, as AE is to CF, so is BE to DF,
alternately therefore, as AE is to £B, so is CF to FD. [v.16]

And the square on A4 £ is greater than the square on £5
either by the square on a straight line commensurable with
AE or by the square on a straight line incommensurable
with it.

If then the square on AE is greater than the square on
E B by the square on a straight line commensurable with 4 £,
the square on C/ will also be greater than the square on D
by the square on a straight line commensurable with CZ.

[x. 14]

And, if AE is commensurable in length with the rational

straight line set out,

CF is so also, [x. 12]
if BE, then DF also, [4d.]
and, if neither of the straight lines 4£, £25, then neither of
the straight lines CF, FD. [x. 13]

But, if the square on A £ is greater than the square on £3

by the square on a straight line incommensurable with 4 Z,
the square on C/ will also be greater than the square on #D
by the square on a straight line incommensurable with CF.
[x. 14]
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And, if AE is commensurable in length with the rational
straight line set out,

CF is so also,

if BE, then DF also, [x. 12]
and, if neither of the straight lines 4 £, £ B, then neither of
the straight lines CF, FD. [x. 13]

Therefore CD is an apotome and the same in order
with AB.

Q. E. D.

This and the following propositions to 107 inclusive (like the correspond-
ing theorems X. 66 to 70) are easy and require no elucidation. They are
equivalent to saying that, if in any of the preceding irrational straight lines

S Pis substituted for p, the resulting irrational is of the same kind and order

as that from which it is altered.

PRroPOSITION 104.

A straght line commensurable with an apotome of a
medial straight line is an apotome of a medial stvaight line
and the same in order.

Let A3 be an apotome of a medial straight line,
and let CD be commensurable in
length with 45 ; A B E
I say that CD is also an apotome ofa ¢ D F
medial straight line and the same in
order with 45.

For, since AB is an apotome of a medial straight line, let
EB be the annex to it.
Therefore AE, EB are medial straight lines commensur-

able in square only. [x. 74, 75]
Let it be contrived that, as A58 is to CD, so is BE to DF;

[vi 12]

therefore AFE is also commensurable with CF, and BE
with DF. [v. 12, x. 11]

But AE, EB are medial straight lines commensurable in
square only ;

therefore CF, FD are also medial straight lines [x. 23] com-
mensurable in square only ; [x. 3]

therefore CD is an apotome of a medial straight line. [x. 74, 75]
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I say next that it is also the same in order with 45,
Since, as AE is to £EB, sois CF to FD,

therefore also, as the square on 4 £ is to the rectangle AE,
EB, so is the square on CF to the rectangle CF, FD.

But the square on A £ is commensurable with the square
on CF;
therefore the rectangle A£, EB is also commensurable with

the rectangle CF, FD. [v. 16, x. 11]
Therefore, if the rectangle AE, £B is rational, the rect-
angle CF, FD will also be rational, [x. Def. 4]
and if the rectangle 4 £, £B is medial, the rectangle CF, FD
is also medial. "~ [x. 23, Por.]
Therefore CD is an apotome of a medial straight line and
the same in order with 4 5. [x. 74, 75]
"  QE.D.

ProrosiTION 105.
A straight line commensurable with a minor straight line
is minor.
Let A B be a minor straight line, and CD commensurable
with A5 ;
I say that CD is also minor.

Let the same construction be made
as before ;
then, since AE, EB are incommensur-
able in square, [x. 76]
therefore CF, FD are also incommensurable in square. [x. 13]
Now since, as AE is to £B, so is CF to FD, [v. 12, v. 16]
therefore also, as the square on AE is to the square on £25,
so is the square on CF to the square on FD. [v1. 22]
Therefore, componendo, as the squares on AE, EB are to
the square on £25, so are the squares on C/F, FD to the
square on FD. [v. 18]
But the square on BE is commensurable with the square
on DF;
therefore the sum of the squares on A £, £2B is also commen-
surable with the sum of the squares on CF, FD. [v. 16, x. 11]

But the sum of the squares on 4 £, £B is rational; [x. 76]

therefore the sum of the squares on CF, FD is also rational.
[x. Def. 4]




X. 105, 106] PROPOSITIONS 104—106 233

Again, since, as the square on A £ is to the rectangle AZ,
EB, so is the square on CF to the rectangle CF, FD,

while the square on AZ is commensurable with the square
on CF,

therefore the rectangle 4 £, EB is also commensurable with
the rectangle CF, FD.

But the rectangle A £, EAB is medial ; "[x. 76]
therefore the rectangle CF, FD'is also medial ; [x. 23, Por.]

therefore CF, FD are straight lines incommensurable in square
which make the sum of the squares on them rational, but the
rectangle contained by them medial.

Therefore CD is minor. [x. 76]
Q. E. D.

PRroposITION 106.

A straight line commensurable with that whick produces
with a rational area a medial whole is a straight line whick
produces with a rational area a medial whole.

Let AB be a straight line which produces with a rational
area a medial whole,

and CD commensurable with 45 ;

I say that CD is also a straight line
which produces with a rational area a
medial whole.

For let BE be the annex to A8 ;

therefore AE, EB are straight lines incommensurable in
square which make the sum of the squares on AE, EB
medial, but the rectangle contained by them rational.  [x. 77]

A B E

D F

Let the same construction be made.

Then we can prove, in manner similar to the foregoing,
that CF, FD are in the same ratio as A £, EB,
the sum of the squares on A£, £B is commensurable with
the sum of the squares on CF, D,
and the fectang]e AE, EB with the rectangle CF, FD;
so that CF, FD are also straight lines incommensurable in

square which make the sum of the squares on CF, /D medial,
but the rectangle contained by them rational.
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Therefore CD is a straight line which produces with a
rational area a medial whole. - [x. 77]
Q. E. D.

ProrosiTION 107.

A straight line commensurable with that whick produces
with a medial area a medial whole is itself also a straight line
whick produces with a medial area a medial whole.

Let AB be a straight line which produces with a medial
area a medial whole,

and let CD be commensurable with 45;

I say that CD is also a straight line
which produces with a medial area a
medial whole.

For let BE be the annex to A5,
and let the same construction be made ;

therefore AE, EB are straight lines incommensurable in
square which make the sum of the squares on them medial,
the rectangle contained by them medial, and further the sum
of the squares on them incommensurable with the rectangle
contained by them. ) [x. 78]

A B E
C D F

Now, as was proved, AE, EB are commensurable with
CF, FD,

the sum of the squares on AE, EB with the sum of the
squares on CF, FD,

and the rectangle AE, EB with the rectangle CF, FD;

therefore CF, FD are also straight lines incommensurable in
square which make the sum of the squares on them medial,
the rectangle contained by them medial, and further the sum
of the squares on them incommensurable with the rectangle
contained by them.

Therefore CD is a straight line which produces with a
medial area a medial whole. [x. 78]
Q. E. D.
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ProrosITION 108.

If from a rational area a medial area be subtracted, the
“side” of the remaining arvea becomes onme of two irrational
straight lines, either an apotome or a minor straight line.

For from the rational area BC let the medial area BD be
subtracted ; :

I say that the “side” of the A E B
remainder £C becomes one
of two irrational straight lines,
either an apotome or a minor
straight line.

For let a rational straight c 0
line /G be set out, L a
to /G let there be applied the
rectangular parallelogram GA K ;
equal to BC,

and let GKX equal to DB be subtracted ;
therefore the remainder £C is equal to LA.
Since then AC is rational, and B0 medial,
while BC is equal to GH, and BD to GK,
therefore G/ is rational, and GKX medial.
And they are applied to the rational straight line FG;
therefore /A is rational and commensurable in length with

FG, [x. 20]
while X is rational and incommensurable in length with #G;
[x. 22]

therefore //{ is incommensurable in length with FX. [x. 13]
Therefore FH, FK are rational straight lines commen-
surable in square only ;
therefore A/ is an apotome [x. 73], and K F the annex to it.
Now the square on A/ is greater than the square on FK
by the square on a straight line either commensurable with
HF or not commensurable.
First, let the square on it be greater by the square on a
straight line commensurable with it.
Now the whole //F is commensurable in length with the
rational straight line /G set out;

therefore K/ is a first apotome. [x Deff. 1. 1]
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But the “side” of the rectangle contained by a rational
straight line and a first apotome is an apotome. [x. 91]
Therefore the ““ side” of L/, that is, of £C, is an apotome.
But, if the square on A F is greater than the square on
FK by the square on a straight line incommensurable

with AF,

while the whole F/ is commensurable in length with the
rational straight line 7G set out,

KH is a fourth apotome. [x. Deff. 111 4]

But the *“side” of the rectangle contained by a rational

straight line and a fourth apotome is minor. [x. 94]
Q E. D.

A rational area being of the form 4p? and a medial area of the form
A . p? the problem is to classify

NEpr— \JA. p?
according to the different possible relations between 4, A.
Suppose that ou = kp?,
ov=,/\.p

Since o is rational and ov medial,
 is rational and ~ o,
while v is rational and v o.
Therefore “¥vv;
thus #, v are rational and ~,
whence (# — 2) is an apotome.
The possibilities are now as follows.
(1) V@2 ~uy,
(2) VE—2 o
In both cases « ~ o,
so that (v — o) is either (1) a first apotomse,
or (2) a fourth apotome.
In case (1) o (u—v) is an apotome [x. 91],
but in case (2) Vo (# — v) is a minor irrational straight line [X. 94].

ProrosiTION 109.

If from a medial area a rational area be subtracted, there
arise two other irrational straight lines, either a first apotome
of a medial straight line or a straight line whick produces with
a ratiwnal area a medial whole.

For from the medial area BC let the rational area B0 be
subtracted.
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I say that the ““side” of the remainder £C becomes one
of two irrational straight lines, either a first apotome of a
medial straight line or a straight line which produces with a
rational area a medial whole.

F K H

G L

For let a rational straight line #G be set out,
and let the areas be similarly applied.

It follows then that 7~/ is rational and incommensurable
in length with #G,
while K'F is rational and commensurable in length with 7G;
therefore //, FK are rational straight lines commensurable
in square only ; [x. 13]
therefore K/ is an apotome, and /K the annex toit. [x. 73]

Now the square on //F is greater than the square on 7K
either by the square on a straight line commensurable with
HF or by the square on a straight line incommensurable
with it.

If then the square on //F is greater than the square on
FK by the square on a straight line commensurable with A F,
while the annex K is commensurable in length with the
rational straight line /G set out,

KH is a second apotome. [x. Deff. 1. 2]

But /G is rational ;
so that the “side” of LA, that is, of £C, is a first apotome of
a medial straight line. [x. 92]

But, if the square on A F is greater than the square on
FK by the square on a straight line incommensurable with 7,

while the annex #K is commensurable in length with the
rational straight line /G set out,

KH is a fifth apotome ; [x. Deff. 11 5]
so that the “side” of £C is a straight line which produces
with a rational area a medial whole. [x. 95]

Q. E. D.
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In this case we have to classify
VIE P =M
Suppose that ou= /k.p,
ov = Apt
Thus, o% being medial and ov rational,
% is rational and v o,
while v is rational and ~ o.
Thus, as before, %, v are rational and ~,
so that (¥ — 7) is an apotome.

Now either
(1) V=P ny,

or (2) Ne-vPuy
while in both cases » is commensurable with o.
‘Therefore (# — ) is either (1) a second apotome,
or (2) a fifth apotome,

and hence in case (1) ~o (¥ — v) is the first apolome of a medial straight line,

: [x. 92]
and in case (2) Vo (¥ - v) is the “side” of a medial, minus a rational, area.
[x. 95]

ProprosITION 110.

If from a medial area there be subtracted a medial area
incommensurable with the whole, the two remaining irrational
straight lines artse, either a second apotome of a medial straight
line or a straight line whick produces with a medial area a
medzal whole.

For, as in the foregoing figures, let there be subtracted
from the medial area BC the medial area B/ incommensur-
able with the whole ;

F_KH

a L

I say that the “side” of £C is one of two irrational straight
lines, either a second apotome of a medial straight line or a
straight line which produces with a medial area a medial whole.
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For, since each of the rectangles BC, BD is medial,

and ABC is incommensurable with BD,

it follows that each of the straight lines F/A, FK will be
rational and incommensurable in length with ~G. [x. 22]

And, since BC is incommensurable with B0,
that is, GH with GK,
HF is also incommensurable with FX; [vi. 1, x. 11]

therefore F/H, FK are rational straight lines commensurable
in square only ;

therefore K/ is an apotome. [x. 73]

If then the square on ~/ is greater than the square on
FK by the square on a straight line commensurable with /# /A,

while neither of the straight lines 7/, FK is commensurable
in length with the rational straight line /G set out,

K H is a third apotome. [x. Deff. 11 3]
But KL is rational,

and the rectangle contained by a rational straight line and a
third apotome is irrational,

and the “side” of it is irrational, and is called a second
apotome of a medial straight line ; - [x 93]
so that the “side” of LA, that is, of £C, is a second apotome
of a medial straight line.

But, if the square on F/ is greater than the square on
FK by the square on a straight line incommensurable with #/,

while neither of the straight lines /£, FK is commensurable

in length with #G,

K H is a sixth apotome. [x. Deff. u1 6]
But the “side” of the rectangle contained by a rational

straight line and a sixth apotome is a straight line which

produces with a medial area a medial whole. [x. 96]
Therefore the ‘“side” of LA, that is, of £C, is a straight

line which produces with a medial area a medial whole.

Q. E. D.
We have to classify NN/ BN WY
where /£ . p? is incommensurable with \/A. p
Put ou=Jk.p,

ar=,/\.pt
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Then « is rational and v o,
v is rational and o o,
and TRVE /)
Therefore », v are rational and ~,
so that (¥ — ) is an apotome.
Now either
(1) V-1~
or (2) A\/ I_l—: -y u,
while in both cases both # and v are v o.
In case (1) (¥ —7) is a third apotome,
and in case (2) (% - 9) is a sixth apotome,

so that ~/o (4 — v) is either (1) a second apolome of a medial straight line [x. 93],
or (2) a “side” of the difference between two medial areas [x. 96f

PRrorosITION 111.
The apotome ts not the same with the binomial straight line.

Let AZB be an apotome ;

I say that A28 is not the same with the
binomial straight line.

For, if possible, let it be so; D G E F
let a rational straight line DC be set out,
and to CD let there be applied the

rectangle CE equal to the square on
AR and producing DE as breadth.

Then, since A8 is an apotome,
DE is a first apotome. [x. 97]
Let £F be the annex to it;

therefore DF, FE are rational straight
lines commensurable in square only,

the square on DF is greater than the square on /£ by the
square on a straight line commensurable with DF;|

and DF is commensurable in length with the rational straight

line DC set out. [x. Deff. ur. 1]
Again, since 4B is binomial,
therefore DZE is a first binomial straight line. [x. 60]

Let it be divided into its terms at G,
and let DG be the greater term ;

therefore DG, GE are rational straight lines commensurable
in square only,
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the square on DG is greater than the square on G£ by the
square on a straight line commensurable with DG, and the
greater term DG is commensurable in length with the rational
straight line DC set out. [x. Deff. 11. 1]

Therefore DF is also commensurable in length with [DG ],
X. 12

therefore the remainder GF is also commensurable in length
with DF. [x. 15]

But DF is incommensurable in length with £F;
therefore /G is also incommensurable in length with £ [x. 13]

Therefore GF, FE are rational straight lines commensur-
able in square only ;
therefore £G is an apotome. [x. 73]

But it is also rational :
which is impossible.

Therefore the apotome is not the same with the binomial
straight line.

Q. E. D.

This proposition proves the equivalent of the fact that
% + /y cannot be equal to ,/x' - /¥, and
x + ,/y cannot be equal to x' - ,/y".

We should prove these results by squaring the respective expressions; and
Euclid’s procedure corresponds to this exactly.
He has to prove that
p+ Jk.p cannot be equal to p'—,/A.p.
For, if possible, let this be so.
Take the straight lines Mf"’)’ s - ‘-‘LXJ ” H

these must be equal, and therefore

[ p?
;(1+k+z¢k)=;(x+k—z¢k) ......... veeen(I)
p2 p’2
Now ;(1 + &), . (1 +A) are rational and ~;
] 2 2
[ d ~P
therefore {; (1+A) - P (1+ k)} p (1+X)
LI
v ;. 2 J .

And, since both sides are rational, it follows that
B L) -2
{a (r+d) . (1+4) ol JA is an apotome.

H. E. 1L 16
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2
But, by (1), this expression is equal to p; . 2 \J4, which is rational.

Hence an apotome, which is frrational, is also rational
which is impossible.

This proposition is the connecting link which enables Euclid to prove that
a/l the compound irrationals with positive signs above discussed are different
from a// the corresponding compound irrationals with negative signs, while the
two sets are all different from one another and from the medial straight line.
The recapitulation following makes this clear.

The apotome and the irrational stvaight lines following it
are neither the same with the medial straight line nor with one
another.

For the square on a medial straight line, if applied to a
rational straight line, produces as breadth a straight line
rational and incommensurable in length with that to which it

is applied, [x. 22}
while the square on an apotome, if applied to a rational
straight line, produces as breadth a first apotome, [x. 97]

the square on a first apotome of a medial straight line, if
applied to a rational straight line, produces as breadth a
second apotome, [x. 98]
the square on a second apotome of a medial straight line, if
applied to a rational straight line, produces as breadth a third
apotome, [x. 99]
the square on a minor straight line, if applied to a rational
straight line, produces as breadth a fourth apotome,  [x. ro0]

the square on the straight line which produces with a rational
area a medial whole, if applied to a rational straight line,
produces as breadth a fifth apotome, [x. 101]
and the square on the straight line which produces with a
medial area a medial whole, if applied to a rational straight
line, produces as breadth a sixth apotome. [x. 102]

Since then the said breadths differ from the first and from
one another, from the first because it is rational, and from one
another since they are not the same in order,

it is clear that the irrational straight lines themselves also
differ from one another.

And, since the apotome has been proved not to be the
same as the binomial straight line, [x. 111]

but, if applied to a rational straight line, the straight lines
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following the apotome produce, as breadths, each according
to its own order, apotomes, and those following the binomial
straight line themselves also, according to their order, produce
the binomials as breadths,

therefore those following the apotome are different, and those
following the binomial straight line are different, so that there
are, in order, thirteen irrational straight lines in all,

Medial,

Binomial,

First bimedial,

Second bimedial,

Major,

“Side” of a rational plus a medial area,

“Side ” of the sum of two medial areas,

Apotome,

First apotome of a medial straight line,

Second apotome of a medial straight line,

Minor,

Producing with a rational area a medial whole,

Producing with a medial area a medial whole.

PROPOSITION 112.

The squave om a rational straight line applied to the
binomeal straight line produces as breadth an apotome the
terms of which are commensurable with the terms of the bi-
nomial and moreover in the same vatio; and further the
apolome so arising will have the same order as the binomial
straight line.

Let A4 be a rational straight line,
let BC be a binomial, and let DC be its greater term ;
let the rectangle BC, £F be equal to the square on 4 ;
A

B D (o] G

K E F H
I say that £/ is an apotome the terms of which are commen-

surable with CD, DA, and in the same ratio, and further £F
will have the same order as BC.

16—2
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For again let the rectangle BD, G be equal to the square
on A.

Since then the rectangle BC, £F is equal to the rectangle
BD, G,

therefore, as CB is to BD, so is G to EF. [v1. 16]
But CB is greater than BD ;
therefore G is also greater than £F. [v. 16, v. 14]

Let £H be equal to G;
therefore, as CB is to BD, so is HE to EF;
therefore, separando, as CD is to BD, so is HF to FE. [v. 17]

Let it be contrived that, as AF is to FE, so is FK
to KE ;

therefore also the whole AZK is to the whole K/ as FK
is to KE ;

for, as one of the antecedents is to one of the consequents, so

are all the antecedents to all the consequents. [v. 12]
But, as #K is to KE, so is CD to DB ; [v. 11]
therefore also, as /K is to K/, sois CD to DB. [éd.]
But the square on CD is commensurable with the square

on DAB; [x. 36]

" therefore the square on /K is also commensurable with the
square on KF. [V 22, x. 11]

And, as the square on /X is to the square on A'F, so is
HK to KE, since the three straight lines KX, KF, KE are
proportional. [v. Def. 9]

Therefore /K is commensurable in length with A'Z,

so that /E is also commensurable in length with £X. [x. 15]

Now, since the square on A4 is equal to the rectangle
EH, BD,

while the square on A is rational,
therefore the rectangle £/, BD is also rational.
And it is applied to the rational straight line 8D ;

therefore £/ is rational and commensurable in length
with BD; [x. 20]

so that £K, being commensurable with it, is also rational and
commensurable in length with BD.
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Since, then, as CD is to DB, so is FK to KE,

while CD, DB are straight lines commensurable in square
only,

therefore FKX, KE are also commensurable in square only.

[x. 11]
But K is rational ;

therefore /K is also rational.

Therefore /K, KE are rational straight lines commen-
surable in square only;

therefore £/ is an apotome. [x. 73]

Now the square on CD is greater than the square on DB
either by the square on a straight line commensurable with
C% or by the square on a straight line incommensurable
with 1t

[f then the square on CD is greater than the square on
DB by the square on a straight line commensurable with CD,
the square on FXK is also greater than the square on K£ by
the square on a straight line commensurable with FX. [x. 14]

And, if CD is commensurable in length with the rational
straight line set out,

so also is FK; [x. 11, 12]
if BD is so commensurable,
so also is K£'; [x. 12]

but, if neither of the straight lines CD, DB is so commensur-
able,

neither of the straight lines /X, K£ is so.

But, if the square on CD is greater than the square on
DB by the square on a straight line incommensurable
with CD,

the square on FK is also greater than the square on K'£ by
the square on a straight line incommensurable with #KX. [x. 14]

And, if CD is commensurable with the rational straight
line set out,

so also is FK;
if BD is so commensurable,
so also is K £ ;
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‘but, if neither of the straight lines CD, DB is so commensur-
able,

neither of the straight lines 7K, K£ is so;

so that 7£ is an apotome, the terms of which /KX, KE are
commensurable with the terms CD, DB of the binomial

straight line and in the same ratio, and it has the same order
as BC.
Q. E. D.

Heiberg considers that this proposition and the succeeding ones are inter-
polated, though the interpolation must have taken place before Theon’s time.
His argument is that X. 112—115 are nowhere used, but that x. 111 rounds
off the complete discussion of the 13 irrationals (as indicated in the recapitu-
lation), thereby giving what was necessary for use in connexion with the
investigation of the five regular solids. For besides x. 73 (used in x111. 6, 11)
X. 94 and 97 are used in Xx111. 11, 6 respectively; and Euclid could not have
stopped at Xx. 97 without leaving the discussion of irrationals imperfect, for
X. 98—102 are closely connected with X. 97,and X. 103—111 add, as it were,
the coping-stone to the whole doctrine. On the other hand, Xx. 112—115 are
not connected with the rest of the treatise on the 13 irrationals and are not
used in the stereometric books. They are rather the germ of a new study and
a more abstruse investigation of irrationals #n themselves. Prop. 115 in
particular extends the number of the different kinds of irrationals. As
however X. 112—115 are old and serviceable theorems, Heiberg thinks that,
thougb Euclid did not give them, they may have been taken from Apollonius.

I will only point out what seems to me open to doubt in the above, namely
that x. 112—114 (excluding 115) are not connected with the rest of the
exposition of the 13 irrationals. It seems to me that they ar¢ so connected.
X. 111 has shown us that a binomial straight line cannot also be an apotome.
But X. 112—114 show us Aow either of them can be used to rationalise the other,
thus giving what is surely an important relation between them.

X. 112 is the equivalent of rationalising the denominators of the fractions
a I

JATJB et JB’
by multiplying numerator and denominator by /4 — /B and a— ./B
respectively.

2

Euclid proves that pT‘:—/z‘p =Ap -,/ .Ap (£ <1),and his method enables
us to see that A = o?/(p*® — 4p%).

The proof is a remarkable instance of the dexterity of the Greeks in using
geometry as the equivalent of our algebra. Like so many proofs in Archimedes
and Apollonius, it leaves us completely in the dark as to how it was evolved.
That the Greeks must have had some analytical method which suggested the
steps of such proofs seems certain ; but what it was must remain apparently
an insoluble mystery.

I will reproduce by means of algebraical symbols the exact course of
Euclid’s proof.

He has to prove that T is an apotome related in a certain way to
P
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the binomial straight line p + \/#.p. If # be the straight line required,
(# +w) —w is shown to be an apotome of the kind described, where w is
determined in the following manner.

We have (p+ Jk.p)u=0d= Jk.p. x, say,
whence x> u. } .................. (1).
Let X=u+0.
Then (p+Jk.p): Jk.p=(u+0):u,
and hence PiNR.P=V U i (2).
Let w be taken such that
V:U=(U+W) :W.eroeievinininninininianinannn, (3)-
Thus Viu=(u+0+w): (U+W) ccooeriiniiniinnnn., (4)
and therefore p:Jk.p=(u+v+w): (4+w).

From the last proportion,
(#+v+w) ~ (u+w),

and, from the two preceding, (# + 7¢) is a mean proportional between
(# + v+ w), w, so that

(#+v+w): (u+w)i=w+v+w):w.

Therefore (#+v+w)~w,
whence (#+7) ~w.
Now J%.p (4 +v)=d* which is rational ;
therefore (2 + ) is rational and ~ /£.p;
hence w is also rational and ~ \/2.p ........oieilll (5)-

Next, by (2), (3), since p, \/%. p are ~—,

(¥ +w) ~ w,
and v is rational ;

therefore (# + w) is rational,
and (# + w), w are rational and ~.
Hence (u + w) — w is an apotome.
Now either (1) o=k ~p,
or (1) N =% v p.
In case (I) N+ wy—u? ~ (u+w), [(2), (3) and x. 14]
and in case (II) Nu+wy -t o (s +w). [id.]
Then, since [(5)] w~ Jk.p,
by x. 11 and (2), (3), (B+W) AP i (6).

[This step is omitted in Euclid, but the result is assumed.]

If therefore p ~ 0, (¥ +w) ~ o;
it Jk.pro, wno; [(s)]
and, if neither p nor /4. p is ~ o, neither (% + w) nor w will be ~¢.

Thus the order of the apotome (¥ +w)— w is the same as that of the

binomial straight line p + ,/£. p; while [(2), (3)] the terms are proportional
and [(s), (6)] commensurable respectively.
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We find (# + w), w algebraically thus.

o?

B N A,
y (1), “c L TR
u+w  p
and, by (2), (3), R
u. \Jk.p
h > 0= — —
whence ¢ o=k p
c’ . Jk.p P
T -kt
a.p
Thus u+w= /k p—l'p
Therefore (#+70)—w=0". —k-p .
P -k

ProposITION 113.

The square on a rational straight line, if applicd to an
apotome, produces as breadth the binomial straight.line the
terms of which are commensurable with the lerms of the
apolome and in the same ratio,; and further the binomuial
so arising has the same ovder as the apotome.

Let A4 be a rational straight line and B0 an apotome,
and let the rectangle 8D, KH be equal to
the square on A, so that the square on the c
rational straight line 4 when applied to the |
apotome B0 produces A/{ as breadth ; Al |
I say that A/ is a binomial straight line the DL IE
terms of which are commensurable with the iF
terms of B0 and in the same ratio: and
further A’/A has the same order as BD. H

For let DC be the annex to BD ; 8'
therefore BC, CD are rational straight lines commensurable
in square only. [x 73

Let the rectangle BC, G be also equal to the square on A.

But the square on A is rational :
therefore the rectangle BC, G is also rational.

And it has been applied to the rational straight line BC:

therefore G is rational and commensurable in length with 2C.
X. 20]

K

fa
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Since now the rectangle BC, G is equal to the rectangle
BD, KH,

therefore, proportionally, as CB is to BD, so is KH to G.

[v1. 16]
But BC is greater than BD;
therefore K/ is also greater than G. [v. 16, v. 14]
Let KE be made equal to G;
therefore A'E is commensurable in length with BC.
And since, as CAB is to BD, so is HK to KE,

therefore, convertendo, as BC is to CD, so is KH to HE.
[v. 19, Por.]

Let it be contrived that, as KA is to HE, so is HF
to FE;
therefore also the remainder K'F is to FH as KH is to HE,
that is, as BC is to CD. [v. 19]
But BC, CD are commensurable in square only ;
therefore K'F, FH are also commensurable in square only.

X. 11X

And since, as KH is to HE, so is KF to FH, L x2l
while, as K+ is to HE, so is HF to FE,

therefore also, as K F'is to FH, so is HF to FE, [v. 11]

so that also, as the first is to the third, so is the square on the

first to the square on the second ; [v. Def. g]

therefore also, as K/ is to £, so is the square on K to the
square on FH.

But the square on K/ is commensurable with the square
on FH,

for KF, FH are commensurable in square ;

therefore K'F is also commensurable in length with FE, [x. 11]

so that K/ is also commensurable in length with XZ. [x. 15]
"But A'F is rational and commensurable in length with BC;

therefore K/ is also rational and commensurable in length

with BC. [x. 12]
And, since, as BCis to CD, so is KF to FH,
alternately, as BC is to KF, so is DC to FH. [v. 16]

But BC is commensurable with X F;
therefore /#/ is also commensurable in length with CD. [x. 11]
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But BC, CD are rational straight lines commensurable in
square only ;

therefore K'F/, FH are also rational straight lines [x. Def. 3]
commensurable in square only ;

therefore K/ is binomial. [x. 36]

If now the square on BC is greater than the square on CD
by the square on a straight line commensurable with BC,

the square on A7 will also be greater than the square on F//
by the square on a straight line commensurable with A7 [x. 14]

And, if BC is commensurable in length with the rational
straight line set out,

so also is KF';

if CD is commensurable in length with the rational straight
line set out,

so also is FH,
but, if neither of the straight lines BC, CD,
then neither of the straight lines K, FH.

But, if the square on BC is greater than the square on CD
by the square on a straight line incommensurable with BC,

the square on K/ is also greater than the square on /4 by
the square on a straight line incommensurable with A#. [x. 14]

And, if BC is commensurable with the rational straight
line set out,

so also is KF';

if CD is so commensurable,

so also is FH ;

but, if neither of the straight lines 2C, CD,
then neither of the straight lines K7, FH.

Therefore K/ is a binomial straight line, the terms of
which KF, FH are commensurable with the terms BC, CD of
the apotome and in the same ratio,

and further X/ has the same order as BD.
Q. E. D.

This proposition, which is companion to the preceding, gives us the equiva-
lent of the rationalisation of the denominator of

c? P

m or G—NJB.
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Euclid (or the writer) proves that

(7’
mﬁ‘ﬂ”&/&-p, (k<1)
and his method enables us to see that A = o?/(p* - £p?).
2
Let — T —u;
p—NE.p

and it is proved that # is the binomial straight line (¥ — w) + w, where w is
determined as shown below.

u(p— k. p)=0'=pa, say,

whence pilp=NE.p)=u:x ccoiiiiii, (1),
so that x < .

Let then xX=u-0

Since (#—v)p =07 a rational area,

(#—v) is rational and ~p.........oceiiiieniinll (2).

And [(1)] pip—Nk.p)=u:(u-2),
so that, convertendo, p:Jk.p=u:v.

Suppose that u:v=w:(v-w), g
so that [v. 19] (#-w):w=u:v=w:(v-w).

Thus, w being a mean proportional between ( — w), (v - w),
(#—w): = (u—-w):(v—w).

But (u—w):wr=u:0*
=P AP i (3),
so that (v — w)* ~ u?.
Therefore (v-w) ~ (v-w)
~u-w)-(v-w)
~(u-2).
Therefore [(2)] (#—1) is rational and ~p ....eeeniiniinnnn. (4)
And, since p:k.p=(u—w): w,
w is rational and ~ \JA.p ....oceiiiiininnnn. (5).
Hence [(4), (5)] (¥ —w), w are rational and ~,
so that (#—w)+w is a binomial straight line.
Now either (I) Np*=%p? ~ p,
or (In N =kp* v p.
In case (I) V(= w) =uf ~ (u - w),
and in case (II) Vu-w) -u? o (u-w). [(3) and x. 14]
And, if p ~ o, (#-w)~o; [(a)]
if JJk.p~o, wn~o; (5]

while, if neither p nor ,/4.p is ~ o, neither (¥ - ) nor = is ~ o.

Hence (¥—w) + w is a binomial straight line of the same order as the
apotome p — /4. p, its terms are proportional to those of the apotome [(3)],
and commensurable with them respectively [(4), (5)]-
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To find (# — w), w algebraically we have

%

From the latter w=-—N_

Thus u_w=w_L=,,f,_‘.°_

Therefore (#-w) +w=0q. p+Jk.p .

PropPosITION 114.

If an area be contained by an apotome and the binomial
straight line the terms of whick ave commensurable with the
terms of the apotome and in the same ratio, the * side” of the
area is rational.

For let an area, the rectangle 43, CD, be contained by
the apotome 4 3 and the binomial
straight line CD,

and let CE be the greater term of
the latter; C E L
let the terms CE, ED of the
binomial straight line be commen-
surable with the terms AF, FB of

the apotome and in the same ratio; K L ™
and let the “side” of the rectangle
AB, CD be G;

I say that G is rational.
For let a rational straight line /7 be set out,

and to CD let there be applied a rectangle equal to the square
on /A and producing KL as breadth,
Therefore KL is an apotome.
Let its terms be XM, ML commensurable with the terms
CE, ED of the binomial straight line and in the same ratio.
[x. 112]
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But CE, ED are also commensurable with 4, FB and in
the same ratio;

therefore, as AF'is to FB, so is KM to ML.

Therefore, alternately, as AF'is to KM, so is BF to LM ;
therefore also the remainder A8 is to the remainder XL as

AFis to KM. [v- 19]

But A F is commensurable with K47 ; [x. 12]
therefore 4B is also commensurable with K'Z. [x. 11]

And, as 4B is to KL, so is the rectangle CD, AB to the
rectangle CD, KL ; [vr 1]
therefore the rectangle CD, AB is also commensurable with
the rectangle CD, KL. [x. 11]

But the rectangle CD, KL is equal to the square on /4 ;

therefore the rectangle C0, 4B is commensurable with the
square on /.

But the square on G is equal to the rectangle CD, AB;

therefore the square on G is commensurable with the square
on A.

But the square on / is rational ;
therefore the square on G is also rational ;
therefore G is rational.

And it is the “side” of the rectangle CD, 45.
Therefore etc.

Porism. And it is made manifest to us by this also that
it is possible for a rational area to be contained by irrational
straight lines.

-Q. E. D.

This theorem is equivalent to the proof of the fact that
JA=IB R JATEYB) - VXA~ B),
and J(@a~JB)(Aa+\ . /B)=+/\(a*~ B).
The result of the theorem X. 112 is used for the purpose thus.
We have to prove that

Np = JE.p) (Ao + X Jk. p)

is rational.
By x. 112 we have, if o is a rational straight line,

0’ ’ ’
Xﬁm:AP—A N/ 2% TN (1).
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Now p:Xp=.Jk.p:N Jk.p=(p—Jk.p): Np-X Jk.p),
so that (p=nJE.p)~ (Np—X J&.p).
Multiplying each by (Ap + A \J£. p), we have
(p— J&-p) Ao+ X JE.p) ~ (Ap+ A Jk.p) (Np— X' J. p)

~a? by (1).
That is, (p—AJR.p)(Ap+ A J&.p) is a rational area,
and therefore Ni(p=J&.p) (Ap + X JE. p) is rational.

ProposITION 115.

From a medial straight line theve arise irrational strvaight
lines infinite in number, and none of them is the same as any
of the preceding.

Let A be a medial straight line ;

I say that from A4 there arise
irrational straight lines infinite in
number, and none of them is the
same as any of the preceding.

Let a rational straight line 5
be set out,
and let the square on C be equal
to the rectangle B, 4 ;
therefore C is irrational ; [x. Def. 4]
for that which is contained by an irrational and a rational
straight line is irrational. [deduction from x. z0]

And it is not the same with any of the preceding ;
for the square on none of the preceding, if applied to a rational
straight line produces as breadth a medial straight line.

Again, let the square on D be equal to the rectangle 5, C;
therefore the square on J) is irrational. [deduction from x. 20]

Therefore D is irrational ; [x. Def. 4]
and it is not the same with any of the preceding, for the
square on none of the preceding, if applied to a rational
straight line, produces C as breadth.

Similarly, if this arrangement proceeds ad infinitum, it
is manifest that from the medial straight line there arise
irrational straight lines infinite in number, and none is the
same with any of the preceding.

o 0 w >»

Q. E. D.
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Heiberg is clearly right in holding that this proposition, at all events, is
alien to the general scope of Book X, and is therefore probably an interpola-
tion, made however before Theon’s time. It is of the same character as a
scholium at the end of the Book, which is (along with the interpolated proposi-
tion proving, in two ways, the incommensurability of the diagonal of a square
with its side) relegated by August as well as Heiberg to an Appendix.

The proposition amounts to this.

The straight line k*p being medial, if ¢ be a rational straight line, ¥ k*pcr
is a new irrational straight line. So is the mean proportional between this
and another rational straight line o', and so on indefinitely.

ANCIENT EXTENSIONS OF THE THEORY OF Book X.

From the hints given by the author of the commentary found in Arabic
by Woepcke (cf. pp. 3—4 above) it would seem probable that Apollonius’
extensions of the theory of irrationals took two directions: (1) generalising
the media/ straight line of Euclid, and (2) forming compound irrationals by the
addition and subtraction of more than two terms of the sort composing the
binomials, apotomes, etc. The commentator writes (Woepcke’s article, pp. 694
sqq.) :
“It is also necessary that we should know that, not only when we join
together two straight lines rational and commensurable in square do we obtain
the binomial straight line, but three or four lines produce in an analogous
manner the same thing. In the first case, we obtain the trinomial straight
line, since the whole line is irrational ; and in the second case we obtain the
quadrinomial, and so on ad infinitum. The proof of the (irrationality of the)
line composed of three lines rational and commensurable in square is exactly
the same as the proof relating to the combination of two lines.

‘“ But we must start afresh and remark that not only can we take one sole
medial line between two lines commensurable in square, but we can take three
or four of them and so on ad infinitum, since we can take, between any two
given straight lines, as many lines as we wish in continued proportion.

“ Likewise, in the lines formed by addition not only can we construct the
binomial straight line, but we can also construct the trinomial, as well as the
first and second trimedial ; and, further, the line composed of three straight
lines incommensurable in square and such that the one of them gives with
each of the two others a sum of squares (which is) rational, while the rectangle
contained by the two lines is medial, so that there results a major (irrational)
composed of three lines.

“And, in an analogous manner, we obtain the straight line which is the
‘side’ of a rational plus a medial area, composed of three straight lines, and,
likewise, that which is the ‘side’ of (the sum of) two medials.”

The generalisation of the mcdial is apparently after the following manner.
Let x, » be two straight lines rational and commensurable in square only and
suppose that 7z means are interposed, so that

XX =X I X=Xy i Xy = e = Ky P Xy = Xy 1 e

We easily derive herefrom z = (i)r,

x
x x\"+!
3-G)
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and hence X =%,
"=y, a™,
so that (Fp. XY= (p.a™),
and therefore xMHL= qRoTH] T
it
or xr=(xﬂ—"+l.},f)ﬂ+l’

which is the generalised medial.

We now pass to the trinomial etc., with the commentator’s further remarks
about them.

(1) T%e trinomial. * Suppose three rational straight lines commensurable in
square only. The line composed of two of these lines, that is, the bipomial
straight line, is irrational, and, in consequence, the area contained by this line
and the remaining line is irrational, and, likewise, the double of the area
contained by these two lines will be irrational. Thus the square on the
whole line composed of three lines is irrational and consequently the line is
irrational, and it is called a trinomial straight line.”

It is easy to see that this “proof” is not conclusive as stated. Nor does
Woepcke seem to show how the proposition can be proved on Euclidean
lines. But I think it would be somewhat as follows.

Suppose x, y, 2 to be rational and ~.

Then a?, 3*, 2* are rational, and 2ys, 2zx, 2xy are all medial.

First, (2ys + 23x + 2xy) cannot be rational. .

For suppose this sum equal to a rational area, say o

Since 2y3 + 22X + 2xy = 0°,

28X + 2Xy = 0* — 23,
or the sum of two medial areas incommensurable with one another is equal to
the difference between a rational area and a medial area.

But the “side ” of the sum of the two medial areas must [X. 72] be one of
two irrationals with a positive sign; and the “side ” of the difference between a
rational area and a medial area must [X. 108] be one of two irrationals with a
negative sign.

And the first “side” cannot be the same as the second [x. 1171 and ex-
planation following].

Therefore 22x + 2xy + 0% — 2y3,
and 2yz + 22x + 2xy is consequently ¢rrational.
Therefore (22 +32+2%) v (2y2 + 22x + 2xy),
whence (x+y+2lo(x*+y*+ 27,

so that (x + y + 5)% and therefore also (x +y + 2), is irrational.

The commentator goes on:

‘“ And, if we have four lines commensurable in square, as we have said, the
procedure will be exactly the same ; and we shall treat the succeeding lines in
an analogous manner.”

Without speculating further as to how the extension was made to the
quadrinomsal etc., we may suppose with Woepcke that Apollonius probably
investigated the multinomial

ptafa.p+ Jh.pt . p+...
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(2) The first trimedial straight line.

The commentator here says: “Suppose we have three medial lines com-
mensurable in square [only], one of which contains with each of the two others
a rational rectangle; then the straight line composed of the two lines is
irrational and is called the first bimedial ; the remaining line is medial, and
the area contained by these two lines is irrational. Consequently the square
on the whole line is irrational.”

To begin with, the conditions here given are incompatible. If x, y, z be
medial straight lines such that xy, xz are both rational,

yig=xy:x5=m:n,

and y, z are commensurable in length and not in square only.

Hence it seems that we must, with Woepcke, understand *three medial
straight lines such that one fs commensurable with each of the other two in
square only and makes with it a rational rectangle.”

If x, y, z be the three medial straight lines,

(X + 2+ 2%) ~ 23
so that (x? + y? + 2% is medial.
Also we have 2xy, 2xz both rational and 2yz medial.
Now (2% + 32 + 2°) + 2y2 + 2xy + 2x2 cannot be rational, for, if it were, the

sum of two medial areas, (x*+y*+ 2%), 2y2, would be rational: which is im-
possible. [Cf. x. 72.]

Hence (x+y+2) is irrational.

(3) The second trimedial straight line.

Suppose x, y, z to be medial straight lines commensurable in square only
and containing with each other medial rectangles.

Then (x?+%+2%) ~ 2% and is medial.

Also 2yz, 22x, 2xy are all medial areas.

To prove the irrationality in this case I presume that the method would
be like that of x. 38 about the second bimedial.
Suppose o to be a rational straight line and let -

@@+ +2%) =0t
29z =ou
23x = o0
2%y = ow
Here, since, e.g., xX3:xy=v:w,
or 3:y=v:w,
and similarly x:iz=w:u,
u, v, w are commensurable in square only.
Also, since *+y+7%) ~a?
) ¢)

¢ is incommensurable with .

H. E. IIL 17
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Similarly ¢ is incommensurable with #, v.
But ?, u, v, w are all rational and ~ o.
Therefore (¢ + # + v+ w) is a quadrinomial and therefore irrational.
Therefore o (¢ + # + v+ w), or (x +y+ 3)?, is irrational,
whence (x +y + 3) is irrational.

(4) The major made up of three straight lines.

The commentator describes this as “the line composed of three straight
lines incommensurable in square and such that one of them gives with each
of the other two a sum of squares (which is) rational, while the rectangle
contained by the two lines is medial.”

If x, y, 5 are the three straight lines, this would indicate

(x* + »*) rational,
(#* + 5°) rational,
2ys medial.

Woepcke points out (pp. 696—8, note) the difficulties connected with this
supposition or the supposition of

(2* + y*) rational,
(#? + 2%) rational,
2xy (or 2x3) medial,
and concludes that what is meant is the supposition

(%* + »*) rational
xy medial }
xz medial

(though the text is against this).

The assumption of (2?+y*) and (x*+ 5') being concurrently rational is
certainly further removed from Euclid, for x. 33 only enables us to find one
patr of lines having the property, as x, y.

But we will not pursue these speculations further.

As regards further irrationals formed by swbtraction the commentator
writes as follows. -

‘ Again, it is not necessary that, in the irrational straight lines formed by
means of subtraction, we should confine ourselves to making one subtraction
only, so as to obtain the apotome, or the first apotome of the medial, or the
second apotome of the medial, or the minor, or the straight line which
produces with a rational area a medial whole, or that which produces with a
medial area a medial whole ; but we shall be able here to make two or three
or four subtractions.

“When we do that, we show in manner analogous to the foregoing that
the lines which remain are irrational and that each of them is one of the lines
formed by subtraction. That is to say that, if from a rational line we cut off
another rational line commensurable with the whole line in square, we obtain,
for remainder, an apotome; and, if we subtract from this line (which is)
cut off and ratlonal—that which Euchd calls the annex (wpooappofovoa)—
another rational line which is commensurable with it in square, we obtain, as
the remainder, an apotome ; likewise, if we cut off from the rational line cut
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off from this line (i.e. the annex of the apotome last arrived at) another line
which is commensurable with it in square, the remainder is an apotome. The
same thing occurs in the subtraction of the other lines.”

As Woepcke remarks, the idea is the formation of the successive apotomes
Na— b, Jb— e Je— \/d, etc. We should naturally have expected to see
the writer form and discuss the following expressions

(‘\/a_ ‘\/b)_ ‘\/‘)
{(Ja— Jb) = \Je} - \Jd, etc.

17—2



BOOK XI.

DEFINITIONS.
1. A solid is that which has length, breadth, and depth.
2. An extremity of a solid is a surface.

3. A straight line is at right angles to a plane,
when it makes right angles with all the straight lines which
meet it and are in the plane.

4. A plane is at right angles to a plane when the
straight lines drawn, in one of the planes, at right angles to
the common section of the planes are at right angles to the
remaining plane. '

5. The inclination of a straight line to a plane
is, assuming a perpendicular drawn from the extremity of
the straight line which is elevated above the plane to the
plane, and a straight line joined from the point thus arising
to the extremity of the straight line which is in the plane,
the angle contained by the straight line so drawn and the
straight line standing up.

6. The inclination of a plane to a plane is the acute
angle contained by the straight lines drawn at right angles
to the common section at the same point, one in each of the
planes.

7. A plane is said to be similarly inclined to a plane
as another is to another when the said angles of the inclina-
tions are equal to one another.

8. Parallel planes are those which do not meet.
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9. Similar solid figures are those contained by similar
planes equal in multitude.

1o. Equal and similar solid figures are those con-
tained by similar planes equal in multitude and in magnitude.

11. A solid angle is the inclination constituted by more
than two lines which meet one another and are not in the
same surface, towards all the lines.

Otherwise : A solid angle is that which is contained by
more than two plane angles which are not in the same plane
and are constructed to one point.

12. A pyramid is a solid figure, contained by planes,
which is constructed from one plane to one point.

13. A prism is a solid figure contained by planes two
of which, namely those which are opposite, are equal, similar
and parallel, while the rest are parallelograms.

14. When, the diameter of a semicircle remaining fixed,
the semicircle is carried round and restored again to the same
position from which it began to be moved, the figure so
comprehended is a sphere.

15. The axis of the sphere is the straight line which
remains fixed and about which the semicircle is turned.

16. The centre of the sphere is the same as that
of the semicircle,

17. A diameter of the sphere is any straight line
drawn through the centre and terminated in both directions
by the surface of the sphere.

18.  When, one side of those about the right angle in a
right-angled triangle remaining fixed, the triangle is carried
round and restored again to the same position from which it
began to be moved, the figure so comprehended is a cone.

And, if the straight line which remains fixed be equal to
the remaining side about the right angle which is carried
round, the cone will be right-angled; if less, obtuse-angled;
and if greater, acute-angled.

19. The axis of the cone is the straight line which
remains fixed and about which the triangle is turned.
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20. And the base is the circle described by the straight
line which is carried round.

21.  When, one side of those about the right angle in a
rectangular parallelogram remaining fixed, the parallelogram
is carried round and restored again to the same position from
which it began to be moved, the figure so comprehended is a
cylinder.

22. The axis of the cylinder is the straight line which
remains fixed and about which the parallelogram is turned.

23. And the bases are the circles described by the two
sides opposite to one another which are carried round.

24. Similar cones and cylinders are those in which
the axes and the diameters of the bases are proportional.

25. A cube is a solid figure contained by six equal
squares.

26. An octahedron is a solid figure contained by eight
equal and equilateral triangles.

27. An icosahedron is a solid figure contained by
twenty equal and equilateral triangles.

28. A dodecahedron is a solid figure contained by
twelve equal, equilateral, and equiangular pentagons.

DEFINITION 1.

Srepecy éoTe TO pijkos xai wAdros xai Bdflos Exov.

This definition was evidently traditional, as may be inferred from a number
of passages in Plato and Aristotle. Thus Plato speaks (SopAsss, 235 D) of
making an imitation of a model (wapdderypa) “in length and breadth and
depth” and (Zaws, 817 E) of “the art of measuring length, surface and depth”
as one of three pabyuara. Depth, the third dimension, is used alone as a
description of “body ” by Aristotle, the term being regarded as connoting the
other two dimensions ; thus (Mefaph. 10202 13, 11) “length is a line, breadth a
surface, and depth body” ; “that which is continuous in one direction is length,
in two directions breadth, and in three depth.” Similarly Plato (R¢p. 528 B, D),
when reconsidering his classification of astronomy as next to (plane) geometry:
“although the science dealing with the additional dimension of depth 1s next in
order, yet, owing to the fact that it is studied absurdly, I passed it over and
put next to geometry astronomy, the motion of (bodies having) depth.” In
Aristotle (Zvpics V1. 5, 142 b 24) we find “the definition of body, that which
has three dimensions (Swaoraces)” ; elsewhere he speaks of it as *that which
has all the dimensions” (De caelo 1. 1, 268 b 6), “that which has dimension
every way ” (10 xdrry Sudoracw éxov, Melaph. 1066 b 32)etc. In the Phvsics
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(1v. 1, 208 b 135qq.) he speaks of the “ dimensions” as six, dividing each of
the three into two opposites, * up and down, before and behind, right and left,”
though of course, as he explains, these terms are relative.

Heron, as might be expected, combines the two forms of the definition.
“A solid body is that which has length, breadth, and depth: or that which
" possesses the three dimensions.” (Def. 13.)

Similarly Theon of Smyrna (p. 111, 19, ed. Hiller): “that which is extended
(8waorardv) and divisible in three directions is solid, having length, breadth
and depth.”

DEFINITION 2.

Srepeov & wépas émpdvea.

In like manner Aristotle says (Mefaph. 1066 b 23) that the notion (Ayos)
of body is “that which is bounded by surfaces” (éxurédois in this case) and
(Metaph. 1060 b 15) *“surfaces (¢émpdvear) are divisions of bodies.”

So Heron (Def. 13): “Every solid is bounded (w¢parovrar) by surfaces, and
is produced when a surface is moved from a forward position in a backward
direction.”

DEFINITION 3.

Evfcia mpos éximedov Spbhj dorw, Srav xpos xdoas tas drrouévas abrjs cbfelas
xai oboas & 1§ émwédy dpfas wouj ywvias.

This definition and the next are given almost word for word by Heron
(Def. 115).

That a stralght line can be so related to a plane as described in Def. 3 is
established in x1. 4. The fact has been made the basis of a definition of a
Plane which is attributed by Crelle to Fourier, and is as follows. ‘A plane is
formed by the totality of all the straight lines which, passing through one and
the same point of a straight line in space, stand perpendlcular to it.” Stated
in this form, the definition is open to the objection that the conception of a
right angle, involving the measurement of angles, presupposes a plane, inasmuch
as the measurement of angles depends ultimately upon the superposition of two
planes and their coincidence throughout when two lines in one coincide with
two lines in the other respectively. Cf. my note on 1. Def. 7, Vol. 1. pp. 173—s.

DEFINITION 4.

*Enixedov xpos éximedov 8p0dv laTw, Gtav ai ) xowij) Toup Tdv émuwéduwy mwpos
dpbas dydpevar elfeiar & évi Tav dmwéduv ¢ Aourg émmédy wpos dpbas dow.

Both this definition and Def. 6 use the common section of two planes,
though it is not till X1 3 that this common section is proved to be a straight
line. The definition however, just like Def. 3, is legitimate, because the object
is to explain the meaning of terms, not to prove anything.

The definition of perpendicular planes is made by Legendre a particular
case of Def. 6, the limiting case, namely, where the angle representing the
“inclination of a plane to a plane” is a right angle.

DEFINITION 5.

Eibelas -rpoe énimedov xMois la'ﬂv, drav &mwo Tod ,uﬂwpou 'npm'oc rqe

edelas im 70 érimedov xdleros dxfy, xai 6.1ro T0V -ytvoy.fvov o-q;umv éri 1o &v 7@

Jmﬂ&g wépas Tijs edfelas edfeia émdevxy, 1 Tepiexopdvn yuvia Ixo m dx0cions
xal Tijs épeaTaos.
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In other words, the inclination of a straight line to a plane is the angle
between the straight line and its projection on the plane. This angle is of
course less than the angle between the straight line and any other straight line
in the plane through the intersection of the straight line and plane; and the
fact is sometimes made the subject of a proposition in modern text-books. It
is easily proved by means of the propositions Xx1. 4, 1. 19 and 18.

DEFINITION 6.

"Emurédov wpos émimedov xhios éoriv 1) meprexopdry déeia ywvia Swo Tov wpos
opbas ) xowjj Topf) dyopévey wpds TG abrd ayuely &v éxarépy TV Erurédwy.

When two planes meet in a straight line, they form what is called in
modern text-books a dikedral angle, which is defined as the opening or angular
gpening between the two planes. This drkedral angle is an ““angle ” altogether
different in kind from a plane angle, as again it is different from a solid angle
as defined by Euclid (i.e. a trihedral, tetrahedral, etc. angle). Adopting for
the moment Apollonius’ conception of an angle as the “bringing together of a
surface or solid towards one point under a broken line or surface” (Proclus,
p. 123, 16), we may regard a dihedral angle as the bringing together of the
broken surface formed by two intersecting planes not to a gosn# but to a straight
/ine, namely the intersection of the planes. Legendre, in a proposition on the
subject, applied provisionally the term corner to describe the dihedral angle
between two planes; and this would be a better word, I think, than opening
to use in the definition.

The distinct species of ‘“angle” which we call dihedral is, however,
measured by a certain plane angle, namely that which Euclid describes in the
present definition and calls the inclination of a plane to a plane, and which in
some modern text-books is called the plane angle of the dikedral angie.

It is necessary to show that this plane angle is a proper measure of the
dihedral angle, and accordingly Legendre has a proposition to this effect. In
order to prove it, it is necessary to show that, given two planes meeting in a
straight line,

(1) the plane angle in question is the same at all points of the straight line
forming the common section ;

(2) if the dihedral angle between two planes increases or diminishes in a
certain ratio, the plane angle in question will increase or diminish in the same
ratio.

(1) If MAN, MAP be two planes intersecting in M4, and if AN, AP
be drawn in the planes respectively and at right angles to
MA, the angle VAP is the inclination of the plane to the
plane or the plane angle of the dihedral angle. M LY

Let MC, MB be also drawn in the respective planes ‘
at right angles to /4.

Then since, in the plane MAN, MC and AN are
drawn at right angles to the same straight line /4,

MC, AN are parallel.

For the same reason, M5B, AP are parallel. A N
Therefore [X1. 10] the angle BMC is equal to the
angle PAN.

And M may be any point on MA4. Therefore the
plane angle described in the definition is the same at all
points of 4M.
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(2) In the plane VAP draw the arc NVDP of any circle with centre 4,
and draw the radius 4.D.
Now the planes VAP, CAMB, being both at right angles to the straight

line M A, are parallel ; [x1 14]
therefore the intersections 4D, ME of these planes with the plane MAD are
parallel, [x1. 16]
and consequently the angles BME, PAD are equal. [x1. 10]

If now the plane angle V4D were equal to the plane angle DAP, the
dihedral angle VAMD would be equal to the dihedral angle DAMP;
for, if the angle’PA.D were applied to the angle DAN, AM remaining the
same, the corresponding dihedral angles would coincide.

Successive applications of this result show that, if the angles V4D, DAP
each contain a certain angle a certain number of times, the dihedral angles
NAMD, DAMP will contain the corresponding dihedral angle the same
number of times respectively.

Hence, where the angles NAD, DAP are commensurable, the dihedral
angles corresponding to them are in the same ratio.

Legendre then extends the proof to the case where the plane angles are
incommensurable by reference to an exactly similar extension in his proposition
corresponding to Euclid vI. 1, for which see the note on that proposition.

Modern text-books make the extension by an appeal to Zimits.

DEFINITION 7.

"Ewimedov mpos émimedov dpoiws xexAiohar Aéyerar al Erepov mpos érepov, Srav
ai elpypévar Tév kAivewy yoviat icar dAAAas dow.

DEFINITION 8.
MapdAAyAa ériredd éore Ta dodpmrruTa
Heron has the same definition of parallel planes (Def. 115). The Greek

word which is translated “which do not meet” is dovumrwra, the term which
has been adopted for the asymptotes of a curve.

DEFINITION 9.

L] \ L4 ’r 3 A\ e\ ¢ ’ 9 /! ’ » \
(o) |LOL0. TTEPEQ. CTXNATA €0TL TA VIO ONOLWYV (1".1!’(8“»’ TEPLEXOLEVA LOWY TO
wAnlos.

DEFINITION I0.

"Ioa 8¢ Kkai opowd oTeped oxjpard éoTi T& Ymd Spolwy émimédwv wepiexdpeva
lowv 1¢ wAjfe kai T¢ peyéle

These definitions, the second of which practically only substitutes the
words “equal and similar ” for the word “similar” in the first, have been the
mark of much criticism.

Simson holds that the equality of solid figures is a thing which ought to be
proved, by the method of superposition, or otherwise, and hence that Def. 10
is not a definition but a #4eorem which ought not to have been placed among
the definitions. Secondly, he gives an example to show that the definition or
theorem is not universally true. He takes a pyramid and then erects on the
base, on opposite sides of it, two equal pyramids smaller than the first. The
addition and subtraction of these pyramids respectively from the first give two
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solid figures which satisfy the definition but are clearly not equal (the smaller
having a re-entrant angle); whence it also appears that two unequal solid
angles may be contained by the same number of equal plane angles.

Maintaining then that Def. 10 is an interpolation by “an unskilful hand,”
Simson transfers to a place before Def. g the definition of a solid angle, and
then defines similar solid figures as follows :

Similar solid figures are suck as have all their solid angles equal, eack o cach,
and which are contasned by the same number of similar planes.

endre has an invaluable discussion of the whole subject of these
definitions (Note X11., pp. 323—336, of the 14th edition of his Eldments de
Géométrie). He remarks in the first place that, as Simson said, Def. 10 is not
properly a definition, but a theorem which it is necessary to prove; for it is
not evident that two solids are equal for the sole reason that they have an
equal number of equal faces, and, if true, the fact should be proved by super-
position or otherwise. The fault of Def. 10 is also common to Def. 9. For,
if Def. 10 is not proved, one might suppose that there exist two unequal and
dissimilar solids with equal faces; but, in that case, according to Definition g,
a solid having faces similar to those of the two first would be similar to both
of them, i.e. to two solids of different form: a conclusion implying a con-
tradiction or at least not according with the natural meaning of the word
‘““similar.”

What then is to be said in defence of the two definitions as given by
Euclid? It is to be observed that the figures which Euclid actually proves
equal or similar by reference to Deff. 9, 10 are such that their solid angles do
not consist of more than #4rec plane angles ; and he proves sufficiently clearly
that, if three plane angles forming one solid angle be respectively equal to
three plane angles forming another solid angle, the two solid angles are equal.
If now two polyhedra have their faces equal respectively, the corresponding
solid angles will be made up of the same number of plane angles, and the
plane angles forming each solid angle in one polyhedron will be respectively
equal to the plane angles forming the corresponding solid angle in the other.
Therefore, if the plane angles in each solid angle are not more than three in
number, the corresponding solid angles will be equal. But if the correspond-
ing faces are equal, and the corresponding solid angles equal, the solids must
be equal; for they can be superposed, or at least they will be symmetrical
with one another. Hence the statement of Deff. 9, 10 is true and admissible
at all events in the case of figures with trihedral angles, which is the only case
taken by Euclid.

Again, the example given by Simson to prove the incorrectness of Def. 10
introduces a solid with a re-entrant angle. But it is more than probable that
Euclid deliberately intended to exclude such solids and to take cognizance of
convex polyhedra only ; hence Simson’s example is not conclusive against the
definition.

Legendre observes that Simson’s own definition, though true, has the
disadvantage that it contains a number of superfluous conditions. To get
over the difficulties, Legendre himself divides the definition of similar solids
into two, the first of which defines similar #riangular pyramids only, and the
second (which defines similar polyhedra in general) is based on the first.

Two triangular pyramids are similar when they have pairs of faces respectsvely
similar, similarly placed and equally inclined to one another.

Then, having formed a triangle with the vertices of three angles taken on
the same face or base of a polyhedron, we may imagine the vertices of the
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different solid angles of the polyhedron situated outside of the plane of this
base to be the vertices of as many triangular pyramids which have the triangle
for common base, and each of these pyramids will determine the position of
one solid angle of the polyhedron. This being so,

Two polykedra are similar when they have similar bases, and the vertices of
thetr corresponding solid angles outside the bases are determined by triangular
pyramids similar each to each.

As a matter of fact, Cauchy proved that two corvex solid figures are equal
if they are contained by equal plane figures similarly arranged. Legendre
gives a proof which, he says, is nearly the same as Cauchy’s, depending on two
lemmas which lead to the theorem that, Grven a convex polykhedron in whick all
the solid angles are made up of more than three plane angles, it is impossible to
vary the inclinations of the planes of this solid so as to produce a second polyhe-
dron formed by the same planes arranged in the same manner as in the given
polykedron. The convex polyhedron in which all the solid angles are made up
of more than three plane angles is obtained by cutting off from any given
polyhedron all the triangular pyramids forming trihedral angles (if one and the
same edge is common to fwo trihedral angles, only one of these angles is
suppressed in the first operation). This is legitimate because trihedral angles
are invariable from their nature.

Hence it would appear that Heron’s definition of equal solid figures, which
adds “ similarly situated ” to Euclid’s * similar ” is correct, if it be understood to
apply to cwnvex polyhedra only: Egual solid figures are those which are
contasned by equal and similarly situated planes, equal in number and magnitude :
where, however, the words “equal and ” before *similarly situated ” might be
dispensed with.

Heron (Def. 118) defines similar solid figures as those which are contained
by planes similar and similarly situated. If understood of convex polyhedra,
there would not appear to be any objection to this, in view of the truth of
Cauchy’s proposition about equal solid figures.

DEFINITION 11.

Sreped ywvia éoriv 7] o wAedvay 1) Sbo ypappdy drropévey dAATAwY Kal py
év 1) avr]) emupaveia obody wpds wdoars Tals ypapuals kAiis. "AAws: oTepea
yovia éotiv 7 Umd mAedvwy 1) Svo yondy émmwéduv mepiexopévy pi) oledv &v T
alrd émmwédy wpos &vi ompely owisTapévov.

Heiberg conjectures that the first of these two definitions, which is not in
Euclid’s manner, was perhaps taken by him from some earlier Elements.

The phraseology of the second definition is exactly that of Plato when he
is speaking of solid angles in the Z¥maeus (p. 55). Thus he speaks (1) of four
equilateral triangles so put together (fuvioraueva) that each set of three plane
angles makes one solid angle, (2) of eight equilateral triangles put together so
that each set of four plane angles makes one solid angle, and (3) of six squares
making eight solid angles, each composed of three plane right angles.

As we know, Apollonius defined an angle as the “bringing together of a
surface or solid to one point under a broken line or surface.” Heron (Def. 24)
even omits the word “ broken ” and says that 4 solid angle is in general (kowds)
the bringing together of a surface whick has its concavily in one and the same
direction to one point. 1t is clear from an allusion in Proclus (p. 123, 1—6) to .
the half of a cone cut off by a triangle through the axis, and from a scholium to
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this definition, that there was controversy as to the correctness of describing as a
solid angle the “angle ” enclosed by fewer than three surfaces (including curved
surfaces). Thus the scholiast says that Euclid’s definition of a solid angle as
made up of three or more plane angles is deficient because it does not e.g. cover
the case of the angle of a  fourth part of a sphere,” which is contained by more
than two surfaces, though not all plane. But he declines to admit that the
half-cone forms a solid angle at the vertex, for in that case the vertex of the
cone would itself be an angle, and a solid angle would then be formed both
by two surfaces and by one surface: “which is not true.” Heron on the
other hand (Def. 24) distinctly speaks of solid angles which are not contained
by plane rectilineal angles, ““e.g. the angles of cones.” The conception of the
latter “angles ” as the Zimst of solid angles with an infinite number of infinitely
small constituent plane angles does not appear in the Greek geometers so far
as I know.

In modern text-books a polyhedral angle is usually spoken of as formed
(or bounded) by three or more planes meeting at a point, or it is the angular
opening between suck planes at the point where they meet.

DEFINITION 12.

Hupapis éore oxijpa oTepedy emmédots mwepLexopevov dmo évos émurédov mpos évi
onpelyp ovvesTus.

This definition is by no means too clear, nor is the slightly amplified
definition added to it by Heron (Def. 100). A pyramid is the figure brought
logether lo ome point, by putting together triangles, from a triangular, quadri-
lateral or polygonal, that is, any rectilineal, base.

As we might expect, there is great variety in the definitions given in
modern text-books. Legendre says a gyramid is the solid formed when several
triangular planes start from one point and are lerminated at the different sides
of one polygonal plane.

Mr H. M. Taylor and Smith and Bryant call it a polykedron all but one of
whose faces meet in a point.

Mehler reverses Legendre’s form and gives the content of Euclid’s in
clearer language. “An n-sided pyramid is bounded by an n-sided polygon as base
and n triangles whick connect sts sides with one and the same point outside it.”

Rausenberger points out that a pyramid is the figure cut off from a solid
angle formed of any number of plane angles by a plane which intersects the
solid angle. .

DEFINITION 13.

Hpiopa éori oxipa oTepedv émurédois weptexdpevor, wv 8vo ra dwevavriov ioa
Te kai opoud ot kai TapdAAnha, & 8¢ Aourd mapaAAnAdypappa.

Mr H. M. Taylor, followed by Smith and Bryant, defines a prism as a
polykedron all but two of the faces of which are parallel to one strasght line.

Mebhler calls an #-sided prism a dody contained between two paralle! planes
and enclosed by n other planes with parallel lines of intersection.

Heron’s definition of a prism is much wider (Def. 105). Prisms are those
Jigures which are connected (ovvamrovra) from a rectilinal base to a rectilineal
area by rectilineal collocation (kat' €lbiypappov aivfeaw). By this Heron must
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apparently mean any convex solid formed by connecting the sides and angles
of two polygons in different planes, and
each having any number of sides, by
straight lines forming triangular faces
(where of course two adjacent triangles
may be in one plane and so form one
quadrilateral face) in the manner shown
in the annexed figure, where 4BCD,
EFG represent the base and its
opposite.

Heron goes on to explain that, if
the face opposite to the base reduces to
a straight line, and a solid is formed by
connecting the base to its extremities by
straight lines, as in the other case, the
resulting figure is neither a pyramid nor
a prism.

Further, he defines parallelogrammic (in the body of the definition paralle/-
sided) prisms as being those prisms which have six faces and have their
opposite planes parallel.

DEFINITION 14.

S¢atpd éotw, orav ukvkAiov pevovons Tis Suapérpov wepievexfiv 7o
NpixixAiov els 76 adrd wdAw droxaractalby, slev fpéaro dpépealar, 76 wepnplhiy
oxijpa.

The scholiast observes that this definition is not properly a definition of a
sphere but a description of the mode of generating it. But it will be seen, in
the last propositions of Book x111., why Euclid put the definition in this form.
It is because it is this particular view of a sphere which he uses to prove that
the vertices of the regular solids which he wishes to ¢ comprehend ” in certain
spheres do lie on the surfaces of those spheres. He proves in fact that the
said vertices lie on semicircles described on certain diameters of the spheres. For
the real definition the scholiast refers to Theodosius’ Spacrica. But of course
the proper definition was given much earlier. In Aristotle the characteristic
of a sphere is that its extremily is equally distant from its centre (16 loov dméxew
700 péoov 10 Eoxarov, De caclo 11. 14, 297 a 24). Heron (Def. 77) uses the
same form as that in which Euclid defines the circle: A sphere is a-solid
Sigure bounded by one surface, such that all the straight lines falling on it from
one point of those which lie within the figure are equal to one another. So the
usual definition in the text-books: A4 sphere is a closed surface Suck that all
Doinits of it are equidistant from a fixed point within it.

DEFINITION 15.
"Atwv 8¢ s opalpas éotiv ) pévovaa eddeia, mwepl v T YuikixAiov oTpéderal.

That any diameter of a sphere may be called an axis is made clear by
Heron (Def. 79). The diameter of the sphere is called an axss, and is any
straight line drawn through the centre and bounded in both directions by the
sphere, immovable, about whick the sphere is moved and turned. Cf. Euclid’s
Def. 17.
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DEFINITION 16.
Kévrpov 8¢ Tijs opaipas éori 70 adrd, & xai 108 fuixvkAiov.

Heron, Def. 78.  The middie ( point) of the sphere is called sts centre ; and
this same point is also the centre of the hemisphere.

DEFINITION 17.

Auduerpos 8¢ Tijs odaipas éoriv edfeld Tis id TOD xévTpov Typér Kai mepa-
Tovpery &P, éxdrepa Ta pépy Ywd Tis émpaveias mis odaipas.

DEFINITION 18.

Kdvos dorw, Srav opboyuviov Tpiydvov pevobays puds whevpds Tdv mwepl Ty
oplyy yuviay mepievexfiv 16 Tplywvov dls 1 avrd wdAw dwoxarasrady, bev fpéato
Pépeatar, T wepAnpliv oxipa. xdv piv 1 pévovoa eleia lom ) ) Aowry [)
wepl Ty opbiv weprpepopéry, opfoyuvios orar 6 kivos, av 8¢ édrrwy, duSAv-
yowos, &v 8¢ pellwv, ofvywwios. i

This definition, or rather description of the genesis, of a (right) cone is
interesting on account of the second sentence distinguishing between right-
angled, obtuse-angled and acute-angled cones. This distinction is quite
unnecessary for Euclid’s purpose and is not used by him in Book xi1.; it is no
doubt a relic of the method, still in use in Euclid’s time, by which the earlier
Greek geometers produced conic sections, namely, by cutting right cones only
by sections always perpendicular to an edge. With this system the parabola
was a section of a right-angled cone, the hyperbola a section of an obtuse-angled
cone, and the ellipse a section of an acute-angled cone. The conic sections were
so called by Archimedes, and generally until Apollonius, who was the first to
give the complete theory of their generation by means of sections not perpen-
dicular to an edge, and from cones which are in general oblfgue circular cones.
Thus Apollonius begins his Conics with the more scientific definition of a cone.
If, he says, a straight line infinite in length, and passing always through a fixed
point, be made to move round the circumference of a circle which is not in the
same plane with the point, so as to pass successively through every point of
that circumference, the moving straight line will trace out the surface of a dowble
cone, or two similar cones lying in opposite directions and meeting in the fixed
point, which is the apex of each cone. The circle about which the straight line
moves is called the dase of the cone lying between the said circle and the fixed
point, and the axiss is defined as the straight line drawn from the fixed point,
or the apex, to the centre of the circle forming the base. Apollonius goes on
to say that the cone is a scalene or obligue cone except in the particular case
where the axis is perpendicular to the base. In this latter case it is a right
cone.

Archimedes called the right cone an fsosceles cone. This fact, coupled
with the appearance in his treatise On Conoids and Spheroids (7, 8, 9) of
sections of acute-angled comes (ellipses) as sections of conical surfaces which are
proved to be oblique circular cones by finding their circular sections, makes it
sufficiently clear that Archimedes, if he had defined a cone, would have
defined it in the same way as Apollonius does.
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BOOK XI. PROPOSITIONS.

PROPOSITION 1.

A part of a straight line cannot be in the plane of reference
and a part in a plane more elevated.

For, if possible, let a part A8 of the straight line 4ABC
be in the plane of reference, and a part
BC in a plane more elevated.

There will then be in the plane of
reference some straight line continuous
with 4B in a straight line.

Let it be BD ;
therefore 48 is a common segment of the
two straight lines A8C, ABD:
which is impossible, inasmuch as, if we
describe a circle with centre B and distance
A B, the diameters will cut off unequal circumferences of the
circle.

Therefore a part of a straight line cannot be in the plane
of reference, and a part in a plane more elevated.

Q. E. D.

C

1. the plane of reference, 76 iwoxelueror éxiredor, the plane laid down or assumed.
2. more elevated, uerewporépey.

There is no doubt that the proofs of the first three propositions are
unsatisfactory owing to the fact that Euclid is not able to make any use of his
definition of a plane for the purpose of these proofs, and they really depend
upon truths which can only be assumed as axiomatic. The definition of a plane
as that surface which lies evenly with the straight lines on itself, whatever its
_exact meaning may be, is nowhere appealed to as a criterion to show whether
a particular surface is or is not a plane. If the meaning of it is what I conjec-
ture in the note on Book 1., Def. 7 (Vol. 1. p. 171), if, namely, it only tries to
express without an appeal to sight what Plato meant by the “middle covering
the extremities ” (i.e. apparently, in the case of a plane, the fact that a plane
looked at edgewise takes the form of a straight line), then it is perhaps
possible to connect the definition with a method of generating a plane which
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has commended itself to many writers as giving a better definition. Thus, if
we conceive a straight line in space and a point outside it placed so that, in
Plato’s words, the line “covers” the point as we look at them, the line will
also “cover” every straight line which passes through the given point and
some one point on the given straight line. Hence, if a straight line passing
always through a fixed point moves in such a way as to pass successively
through every point of a given straight line which does not contain the given
point, the moving straight line describes a surface which satisfies the Euclidean
definition of a plane as I have interpreted it. But if we adopt the definition
of a plane as the surface described by a strasght line whick, passing through a
grven point, turns about it in such a way as always lo intersect a given straight
line not passing through the given point, this definition, though it would help us
to prove Eucl. x1. 2, does not give us the fundamental properties of a plane;
some postulate is necessary in addition. The same is true even if we take a
definition which gives more than is required to determine a plane, the defini-
tion known as Simson’s, though it is at least as early as the time of Theon of
Smyrna, who says (p. 112, 5) that a plane is a surface such that, if a straight line
meet it in two points, the straight line lies wholly in it (6An air@ épappolerar).
This is also called the axiom of the plane. (For some attempts to prove this on
the basis of other definitions of a plane see my note on the definition of a plane
surface, 1. Def. 7.) If this definition or axiom be assumed, Prop. 1 becomes
evident, for, as Legendre says, “ In accordance with the definition of the plane,
when a straight line has two points common with a plane, it lies wholly in the
plane.”

Euclid practically assumes the axiom when he says in this proposition
“there will be in the plane of reference some straight line continuous with
AB.” Clavius tries, unsuccessfully, to deduce this from Euclid’s own
definition of a plane; and he seems to admit his
failure, because he proceeds to try another tack. p
Draw, he says, in the plane DE, the straight line
CG at right angles to 4C, and, again in the plane
DE, CF at right angles to CG [1. 11). Then 4C,
CF make right angles with CG in the same plane ;
therefore (1. 14) ACF is a straight line. But this
does not really help, because Euclid assumes tacitly,
in Book 1. as well as Book xI., that a straight line joining two points in a
plane lies wholly in that plane.

A curious point in Euclid’s proof is the reason given why two straight lines
cannot have a common segment. The argument is precisely that of the
“ proof ” of the same thing given by Proclus on 1. 1 (see note on Book I
Post. 2, Vol. 1. p. 197) and is of course inconclusive. The fact that two
straight lines cannot have a common segment must be taken to be involved
in the definition of, and the postulates relating to, the straight line; and the
“proof ” given here can hardly, I should say, be Euclid’s, though the interpo-
lation, if it be such, must have been made very early.

The proof assumes too that a circle can be described so as to cut 84, BC
and BD, or, in other words, it assumes that 4.0, BC are in one plane; that
is, Prop. 1 as we have it really assumes the result of Prop. 2. There is there-
fore ground for Simson’s alteration of the proof (after the point where 8D has
been taken in the given plane in a straight line with 4.8) to the following :

‘“ Let any plane pass through the straight line 4D and be turned about it
until it pass through the point C.

H. E. 1L 18
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And, because the points B, C are in this plane, the straight line BC is
in it [Simson’s def.]

Therefore there are two straight lines ABC ABD in the same plane that
have a common segment 45 :
which is impossible.”

Simson, of course, justifies the last inference by reference to his Corollary
to 1. 11, which, however, as we have seen, is not a valid proof of the assump-
tion, which is really implied in 1. Post. 2.

An alternative reading, perhaps due to Theon, says, after the words
“which is impossible ” in the Greek text, “for a straight line does not meet a
straight line in more points than one; otherwise the straight lines will
coincide.” Simson (who however does not seem to have had the second
clause beginning “otherwise ” in the text which he used) attacks this alterna-
tive reading in a rather confused note chiefly directed against a criticism by
Thomas Simpson, without (as it seems to me) sufficient reason. It contains
surely a legitimate argument. The supposed straight lines ABC, ABD meet
in more than two points, namely in all the points between 4 and B. But two
straight lines cannot have two points common without coinciding altogether ;
therefore 4.8C must coincide with 48D,

ProrosiTiON 2.

If two straight lines cut one another, they arve in one plane,
and every triangle is in one plane.

For let the two straight lines 45, CD cut one another at
the point £;

I say that 48, CD are in one plane,
and every triangle is in one plane.

For let points /#, G be taken at
random on £C, EB,
let CB, FG be joined,
and let A, GK be drawn across ;

I say first that the triangle £CAB is
in one plane.

For, if part of the triangle £C5,
either //7/C or GBK, is in the plane of reference, and the rest
in another,

a part also of one of the straight lines £C, £8 will be in the
plane of reference, and a part in another.

But, if the part ZCBG of the triangle £CB be in the
plane of reference, and the rest in another,

a part also of both the straight lines £C, £8 will be in the
plane of reference and a part in another :
which was proved absurd. [xr. 1]
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Therefore the triangle £CB is in one plane.
But, in whatever plane the triangle £C2B is, in that plane
also is each of the straight lines £C, EB,

and, in whatever plane each of the straight lines £C, £2B is,
in that plane are A5, CD also. [xr 1]

Therefore the straight lines 48, CD are in one plane,

and every triangle is in one plane.
Q. E. D.

It must be admitted that the *proof” of this proposition is not of any
value. For one thing, Euclid only takes certain triangles and a certain
quadrilateral respectively forming part of the original triangle, and argues
about thesc. But, for anything we are supposed to know, there may be some
part of the triangle bounded (let us say) by some curve which is not in the
same plane with the triangle.

We may agree with Simson that it would be preferable to enunciate the
proposition as follows.

Two straight lines which intersect are in one plane, and three straight lines
which intersect two and two are in one plane.

Adopting Smith and Bryant’s figure in preference to Simson’s, we suppose
three straight lines PQ, RS, XY to intersect '
two and two in 4, B, C. R

Then Simson’s proof (adopted by Legen-
dre also) proceeds thus.

Let any plane pass through the straight
line PQ, and let this plane be turned about
PQ (produced indefinitely) as axis until it
passes through the point C. X

Then, since the points A4, C are in this 8 C Y
plane, the straight line 4C (and therefore
the straight line RS produced indefinitely) 5

lies wholly in the plane. [Simson’s def.]

For the same reason, since the points B, C are in the plane, the straight
line X ¥ lies wholly in the plane. .

Hence all three straight lines PQ, RS, XY (and of course any pair of
them) lie in one plane.

But it has still to be proved that there is on/y one plane passing through
the three straight lines.

This may be done, as in Mr Taylor’s Euclid, thus.

Suppose, if possible, that there are #wo different planes through 4, B, C.

The straight lines BC, CA, AB then lie wholly in each of the two planes.

Now any straight line in one of the two planes must intersect at least two
of the straight lines (produced if necessary) ;

let it intersect two of them in X, Z.

Then, since X, L are also in the second plane, the line XZ lies wholly in
that plane.

Hence every straight line in either of the planes lies wholly in the other
also; and therefore the planes are coincident throughout their whole surface.

18—2
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It follows from the above that
A plane is determined (i.e. uniquely defermined) by any of the following data:
(1) by three straight lines mceting one another two and two,
(2) by three points not in a straight line,
(3) by two strasght lines meeting one another,
(4) by a straight line and a point without it.

ProrosiTION 3.

If two planes cut one another, their common section is a
straight line.

For let the two planes 458, BC cut one another,
and let the line DA be their common

section ; .

I say that the line D2B is a straight line. B/I
For, if not, from D to B let the straight e

line DEB be joined in the plane 425, and

in the plane BC the straight line DF25. ) A

Then the two straight lines DEB, DFB
will have the same extremities, and will ¢
clearly enclose an area:

which is absurd.

Therefore DEB, DFB are not straight lines.

Similarly we can prove that neither will there be any
other straight line joined from D to B except 2/ the common
section of the planes A8, BC.

Therefore etc.

Q. E. D.

I think Simson is right in objecting to the words after “ which is absurd,”
to the effect that DEB, DFB are not straight lines, and that neither can there
be any other straight line joined from D to B except DB, as being unncces-
sary. It is right to conclude at once from the absurdity that 5D cannot but
be a straight line.

Legendre makes his proof depend on Prop. 2. *For, if, among the points
common to the two planes, three should be found which are not in a straight
line, the two planes in question, each passing through three points, would only
amount to one and the same plane.” [This of course assumes that three
points determine one and on/y one plane, which, strictly speaking, involves
more than Prop. 2 itself, as shown in the last note.]

A favourite proposition in modern text-books is the following. The proof
seems to be due to von Staudt (Killing, Grundlagen der Geometrie, Vol. 11.

p- 43)
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If two planes meet in a point, they meet in a straight line.

Let ABC, ADE be two given planes meeting
at 4.

Take any points B, C lying on the plane 4 BC,
and not on the plane 4ADE but on the same side
of it.

Join AB, AC, and produce B4 to F.

Join CF.

Then, since B, F are on opposite sides of the
plane ADE,

C, F are also on opposite sides of it.

Therefore CF must meet the plane 4DE in
some point, say G.

Then, since 4, G are both in each of the planes 48C, ADE, the straight
line 4G is in both planes. [Simson’s def.]

This is also the place to insert the proposition that, 7f three planes intersect
two and two, their lines of intersection either meet in a point or are paralle! two
and two.

Let there be three planes intersecting in the straight lines 458, CD, EF.

. 8 A
o) ‘wlj::::_\ . ! B
) i

E

Now A B, EF are in a plane ; therefore they either meet in a point or are
parallel.
(1) Let them meet in O.

Then O, being a point in 4B, lies in the plane 4D, and, being also a
point in £ lies also in the plane £D.

Therefore O, being common to the planes 4D, DE, must lie on CD, the
line of their intersection ;
i.e. CD, if produced, passes through O.
(2) Let 4B, EF not meet, but let them be parallel.

Then CD cannot meet A5 ; for, if it did, it must necessarily meet £F,
by the first case. )

Therefore CD, AB, being in one plane, are parallel.

Similarly CD, EF are parallel.

PRrorosITION 4.

If a strawght line be set up at right angles to two straight
lines whick cul one another, at therr common point of section,
it will also be at right angles to the plane through them.
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For let a straight line £F be set up at right angles to the
two straight lines 45, CD, which

cut one another at the point £, r
from £ ; P /I\

I say that £F is also at right

angles to the plane through A5, é%%c
CD. :
: For let AE, EB, CE, ED be 0.

cut off equal to one another,

and let any straight line GE/A be drawn across through £,
at random ;

let 4D, CB be joined,

and further let FA4, FG, FD, FC, FH, FB be joined from
the point # taken at random <on £F>.

Now, since the two straight lines AZ, £D are equal to
the two straight lines CE, £5, and contain equal angles, [1. 15]

therefore the base 4D is equal to the base (5,
and the triangle 4 £D will be equal to the triangle C£5; 1. 4]
so that the angle DA E is also equal to the angle £8C.

But the angle A£G is also equal to the angle BEH ;[1. 15]

therefore AGE, BEH are two triangles which have two
angles equal to two angles respectively, and one side equal

to one side, namely that adjacent to the equal angles, that
is to say, AE to EB; )

therefore they will also have the remaining sides equal to the
remaining sides. [1. 26]

Therefore GE is equal to £/, and AG to BA.
And, since AE is equal to £5,

while /£ is common and at right angles,

therefore the base 74 is equal to the base /5. [r 4]
For the same reason

FC is also equal to FD.
And, since AD is equal to CB,

and /A4 is also equal to F25,

the two sides 74, AD are equal to the two sides 7B, BC

respectively ;

and the base /D was proved equal to the base #C;

therefore the angle £ 4D is also equal to the angle #BC. [1. 8]
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And since, again, 4G was proved equal to B/,
and further /4 also equal to F25,
the two sides 74, AG are equal to the two sides /B, BH.
And the angle #AG was proved equal to the angle FBH;
therefore the base /G is equal to the base F/A. [1. 4]

Now since, again, G£ was proved equal to £/,
and £F is common,
the two sides GE, EF are equal to the two sides /£, EF;
and the base ~G is equal to the base F /4 ;
therefore the angle GEF is equal to the angle H/EF.  [18]
Therefore each of the angles GEF, HEF is right.

Therefore FE is at right angles to G/A drawn at random
through £.

Similarly we can prove that ~£ will also make right
angles with all the straight lines which meet it and are in the
plane of reference.

But a straight line is at right angles to a plane when it
makes right angles with all the straight lines which meet it
and are in that same plane; [x1. Def. 3]
therefore FE is at right angles to the plane of reference.

But the plane of reference is the plane through the straight
lines 4B, CD.

Therefore FE is at right angles to the plane through
AB, CD.

Therefore etc.

: Q E. D.

The steps to be successively proved in order to establish this proposition
by Euclid’s method are

(1) triangles A£D, BEC equal in all respects, [by 1. 4]
(2) triangles AEG, BEH equal in all respects, [by 1. 26]
so that 4G is equal to BH, and GE to EH,

(3) triangles AEF, BEF equal in all respects, [r 4]

so that 4F is equal to BF,
(4) likewise triangles CEF, DEF,
. so that CF'is equal to DF,

(5) triangles #4.D, FBC equal in all respects, [r. 8]
so that the angles FAG, FBH are equal,
(6) triangles #4G, FBH equal in all respects, [by (2), (3), (5) and 1. 4]

so that #G is equal to FH,
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(7) triangles FEG, FEH equal in all respects, [by (2), (6) and 1. 8]
so that the angles FEG, FEH are equal,
and therefore FE is at right angles to GA.

In consequence of the length of the above proof others have been
suggested, and the proof which now finds most general acceptance is that of

Cauchy, which is as follows.
Let 4B be perpendicular to two straight lines BC, BD in the plane A/N

at their point of intersection 5.

In the plane MV draw BE, any straight line A
through 5.

Join CD, and let CD meet BE in E.

Produce A8 to £ so that BF is equal to 45.

Join AC, AE, AD, CF, EF, DF.

Since BC is perpendicular to 4F at its
middle point B,
AC is equal to CZ.

8 Z
‘
N f
.
€
?
;
i
N
Hl;

Similarly 4D is equal to DF. c& g
Since in the triangles 4CD, FCD the two \W
sides AC, CD are respectively equal to the two 4
sides #C, CD, and the third sides 4D, FD are
also equal,
the angles 4CD, FCD are equal., [r. 8]

The triangles ACE, FCE thus have two sides and the included angle
equal, whence

EA is equal to EF. (1. 4]
The triangles ABE, FBE have now all their sides equal respectively ;
therefore the angles ABE, FBE are equal, (1. 8]

and 4B is perpendicular to BE.
And BE is in any straight line through B in the plane MNV.

Legendre’s proof is not so easy, but it is interesting. We are first required
to draw through any point £ within the angle
CBD a straight line CD bisected at £. B D
To do this we draw £X parallel to DB
meeting BC in X and then mark off XC equal K
to BK. . £
CE is then joined and produced to D;and
CD is the straight line required.
Now, joining AC, AE, AD in the figure
above, we have, since CD is bisected at £,
(1) in the triangle ACD,
AC*+ ADP=24AF* + 2ED?,
and also (2) in the triangle BCD,
BC*+ BD?=2BE* + 2ED?,

Subtracting, and remembering that the triangles 4B8C, 48D are right-
angled, so that

AC*- BC*= AP,
and AD*— BD?= 453,
we have 24AB*=24FE*— 2BE*,
or AE'=AB'+ BE?
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whence [1. 48] the angle 4BE is a right angle, and 4B is perpendicular
to BE.

It follows of course from this proposition that the perpendicular 45 is the
shortest distance from A to the plane MN.

And it can readily be proved that,

If from a point without a plane oblique straight lines be drawn to the planc,
(1) those meeting the plane at equal distances from the foot of the perpendicular
are equal, and
(2) of two straight lines meeting the plane at unequal distances from the foot of
the perpendicular, the more remote is the greater.

Lastly, it is easily seen that

From a point outside a plane only one perpendicular can be drawn to that
plane.

For, if possible, let there be two perpendiculars. Then a plane can be
drawn through them, and this will cut the original plane in a straight line.

This straight line and the two perpendiculars will form a plane triangle
which has two right angles: which is impossible.

ProrosITION 5.

If a straight line be set up at right angles to three straight
lines whick meet one another, at their common point of section,
the three straight lines are in one plane.

For let a straight line 4.8 be set up at right angles to the
three straight lines BC, BD, BE, at
their point of meeting at 7 ;

I say that BC, BD, BE are in one plane.

For suppose they are not, but, if F
possible, let BD, BE be in the plane of

A c

reference and BC in one more elevated ; 8 A o

let the plane through 4B, BC be €
produced ;

it will thus make, as common section in the plane of reference,
a straight line. [x1. 3]

Let it make BF.
Therefore the three straight lines . A8, BC, BF are in one
plane, namely that drawn through 425, BC.

Now, since A28 is at right angles to each of the straight
lines BD, BE,

therefore A8 is also at right angles to the plane through
BD, BE. [x1. 4]
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But the plane through BD, BE is the plane of reference ;
therefore A B is at right angles to the plane of reference.

Thus A B will also make right angles with all the straight
lines which meet it and are in the plane of reference.
. [x1. Def. 3]
But BF which is in the plane of reference meets it ;

therefore the angle ABF is right.

But, by hypothesis, the angle 4BC is also right ;
therefore the angle ABF is equal to the angle 4BC.

And they are in one plane:
which is impossible.

Therefore the straight line BC is not in a more elevated
plane ;
tlllerefore the three straight lines BC, BD, BE are in one
plane.

Therefore, if a straight line be set up at right angles to
three straight lines, at their point of meeting, the three straight
lines are in one plane. Q. E. D.

It follows that, if a right angle be turned about one of the straight lines
containing il the other will describe a plane.

At any point in a straight line it is possible to draw only osnie plane which
is at right angles to the straight line.

One such plane can be found by taking any two planes through the given
straight line, drawing perpendiculars to the straight
line in the respective planes, e.g. B0, CO in the
planes 40B, AOC, each perpendicular to 40,
and then drawing a plane (B0C) through the
perpendiculars.

If there were another plane through O per-
pendicular to 40, it must meet the plane through
AO and some perpendicular to it as OC in a
straight line OC’ different from OC.

Then, by x1. 4, AOC" is a right angle, and in
the same plane with the right angle AOC : which is impossible.

Next, one plane and only one can be drawn through a point oulside a straight
line at right angles to that line.

Let P be the given point, 458 the given straight
line.

In the plane through P and 4B, draw PO per-
pendicular to 43, and through O draw another straight
line OQ at right angles to 458.

Then the plane through OFP, OQ is perpendicular
to AB.

If there were another plane through P perpendicular
to AB, either
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(1) it would intersect 48 at O but not pass through OQ, or
(2) it would intersect 4B at a point different from O.
In either case, an absurdity would result.

ProrposiTiON 6.

If two straight lines be at right angles to the same plane,
the straight lines will be parallel.

For let the two straight lines 48, CD be at right angles
to the plane of reference ; '
I say that A28 is parallel to CD.

A
For let them meet the plane of °‘
reference at the points B, D,
D

let the straight line 8D be joined,
let DE be drawn, in the plane of 8
reference, at right angles to BD, £

let DE be made equal to A5,
and let BE, AE, AD be joined.

Now, since A5 is at right angles to the plane of reference,
it will also make right angles with all the straight lines which
meet it and are in the plane of reference. [x1. Def. 3]

But each of the straight lines B0, BE is in the plane of
reference and meets A5 ;

therefore each of the angles 48D, ABE is right.
For the same reason
each of the angles CDB, CDE is also right.

And, since A8 is equal to DE,
and BD is common,
the two sides 48, BD are equal to the two sides £D, DB ;
and they include right angles;
therefore the base 4D is equal to the base BE. (1. 4]

And, since A8 is equal to DE,
while 4D is also equal to BE,
the two sides A8, BE are equal to the two sides £D, DA ;
and AE is their common base ;
therefore the angle ABE is equal to the angle £DA. [ 8]
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But the angle 4BE is right;
therefore the angle £DA is also right ;
therefore £D is at right angles to DA.
But it is also at right angles to each of the straight lines
BD, DC;
therefore £D is set up at right angles to the three straight
lines BD, DA, DC at their point of meeting ;
therefore the three straight lines BD, DA, DC are in one
plane. [xt 5]
: But, in whatever plane DB, DA are, in that plane is 458
also,
for every triangle is in one plane ; [x1. 2]
therefore the straight lines 458, BD, DC are in one plane.
And each of the angles ABD, BDC is nght
therefore A 2B is parallel to CD. [1. 28]
Therefore etc. Q. E. D.

If anyone wishes to convince himself of the real necessity for some
general agreement as to the order in which propositions in elementary
geometry should be taken, let him contemplate the hopeless result of too
much independence on the part of editors in the matter of this proposition
and its converse, XI. 8.

Legendre adopts a different, and elegant, method of proof ; but he applies
it to X1 8, which he gives first, and then deduces x1. 6 from it by reductio ad
absurdum. Dr Mehler uses Legendre’s method of proof but applies it to
XI. 6, and then gives x1. 8 as a deduction from it. Lardner follows Legendre.
Holgate, the editor of a recent American book, gives Euclid’s proof of x1. 6
and deduces X1. 8 by reductio ad absurdum. His countrymen, Schultze and
Sevenoak, give x1. 8 first, but put it after, and deduce it from, Eucl. xI. 10;
they then give X1 6, practically as a deduction from Xx1. 8 by reductio ad
absurdum, after a proposition corresponding to Eucl. Xx1. 11 and 12, and a
corollary to the effect that through a given point one and only one perpen-
dicular can be drawn to a given plane.

We will now give the proof of xI1. 6 by Legendre’s method (adopted by
Smith and Bryant as well as by Mehler).

Let 4B, CD be both perpendicular to the A
same plane MV,

Join BD.

Now, since BD meets AB, CD, both of
which are perpendicular to the plane /N in M
which BD is, B
the angles 48D, CDB are right angles.

AB, CD will therefore be parallel provided
that they are in the same plane.

Through D draw EDF, in the plane MN,
at right angles to B0, and make ED equal to DF.
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Join BE, BF, AE, AD, AF.
Then the triangles BDE, BDF are equal in all respects (by I. 4), so that
BE is equal to BF.

It follows, since the angles A BE, A BF are right, that the triangles 4 BE,
ABPF are cqual in all respects, and

AE is equal to AF.

[Mchler now argues elegantly thus. If CE, CF be also joined, it is clear
that .
CE is equal to CF.

Hence each of the four points A4, B, C, D is equidistant from the two
points £, £

Therefore the points A, B, C, D are in one plane, so that AB, CD are
parallel.

If, however, we do not use the locus of points equidistant from two fixed
points, we proceed as follows.]

The triangles A£D, AFD have their sides equal respectively ;

hence [1. 8] the angles ADE, ADF are equal,
so that £D is at right angles to 4.D.
Thus £D is at right angles to BD, AD, CD;
therefore CD is in the plane through 4.0, BD. [xr 5]
But 4B is in that same plane; [x1. 2]
therefore A8, CD are in the same plane.
And the angles 4BD, CDB are right ;
therefore 4B, CD are parallel.

ProrosiTION 7.

If two straight lines be parallel and points be taken at
random on eack of them, the straight line joining the points is
in the same plane with the parallel straight lines.

Let AB, CD be two parallel straight lines,
and let points £, F be taken at random
on them respectively ; E
I say that the straight line joining the
points £, F is in the same plane with
the parallel straight lines.

For suppose it is not, but, if possible, € F D
let it be in a more elevated plane as
EGF,
and let a plane be drawn through £GF’;
it will then make, as section in the plane of reference, a
straight line. [x1 3]
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Let it make it, as £F;

therefore the two straight lines £GF, EF will enclose an
area:

which is impossible.

Therefore the straight line joined from £ to F is not in a
plane more elevated ;

therefore the straight line joined from £ to # is in the plane
through the parallel straight lines 458, CD.

Therefore etc.
Q. E. D.

It is true that this proposition, in the form in which Euclid enunciates it,
is hardly necessary if the plane is defined as a surface such that, if any two
points be taken in it, the straight line joining them lies wholly in the surface.
But Euclid did not give this definition ; and, moreover, Prop. 2 would be
usefully supplemented by a proposition which should prove that fwo paralle/
straight lines determine a plane (i.e. one plane and one only) which also
contains all the straight lines which join a point on one of the parallels to a point
on the other. That there cannot be fwo planes through a pair of parallels
would be proved in the same way as we prove that two or three intersecting
straight lines cannot be in two different planes, inasmuch as each transversal
lying in one of the two supposed planes through the parallels would lie wholly
in the other also, so that the two supposed planes must coincide throughout
(cf. note on Prop. z above).

But, whatever be the value of the proposition as it is, Simson seems to
have spoilt it completely. He leaves out the construction of a plane through
LGF, which, as Euclid says, must cut the plane containing the parallels in
a straight lme and, instead, he says, “In the plane 4B8CD in which the
parallels are draw the straight line £HF from £ to 7’ Now, although we
can easily draw a straight line from £ to £ to claim that we can draw it i#
the plane in whick the parallels are is surely to assume the very result which is
to be proved. All that we could properly say is that the straight line joining
E to F is in some plane which contains the parallels; we do not know that
there is no more than one such plane, or that the parallels determine a plane
uniguely, without some such argument as that which Euclid gives.

Nor can I subscribe to the remarks in Simson’s note on the proposition.
He says (1) “This proposition has been put into this book by some unskilful
edltor, as is evident from this, that straight lines which are drawn from one
point to another in a plane are, in the preceding books, supposed to be in that
plane ; and if they were not, some demonstrations in which one straight line
1s supposed to meet another would not be conclusive. For instance, in
Prop. 30, Book 1, the straight line GKX would not meet £, if GK were not in
the plane in which are the parallels 4.8, CD, and in which, by hypothesis, the
straight line £F'is.” But the subject-matter of Book 1. and Book X1. is quite
different ; in Book 1. everything is in one plane, and when Euclid, in defining
parallels, says they are straight lines in the same plane etc., he only does so
because he must, in order to exclude non-intersecting straight lines which are
not parallel. Thus in 1. 30 there is nothing wrong in assuming that therc may
be three parallels in one plane, and that the straight line GHX cuts all three.



XL 7, 8] PROPOSITIONS 7, 8 287

But in Book XI. it becomes a question whether there can be more than one
plane through parallel straight lines.

Simson goes on to say (z) * Besides, this 7th Proposition is demonstrated
by the preceding 3rd ; in which the very same thing which is proposed to be
demonstrated in the 7th is twice assumed, viz., that the straight line drawn
from one point to another in a plane is in that plane.” But there is nothing
in Prop. 3 about a plane in which two parallel straight lines are ; therefore
there is no assumption of the result of Prop. 7. What is assumed is that,
given two points in @ plane, they can be joined by a straight line in the plane:
a legitimate assumption.

Lastly, says Simson, “And the same thing is assumed in the preceding
6th Prop. in which the straight line which joins the points B, D that are in
the plane to which 48 and CD are at right angles is supposed to be in that
plane.” Here again there is no question of a plane in whick two parallels are ;
so that the criticism here, as with reference to Prop. 3, appears to rest on a
misapprehension.

ProrosiTION 8.

If two straight lines be parallel, and one of them be at
right angles to any plane, the remaining one will also be at
right angles to the same plane.

Let AB, CD be two parallel straight lines,
and let one of them, 425, be at right

angles to the plane of reference ; A ¢
I say that the remaining one, CD, will

also be at right angles to the same

plane. \
For let AB, CD meet the plane of

reference at the points 5B, D,

and let BD be joined ;
therefore A8, CD, BD are in one plane. [xt 7]

Let DE be drawn, in the plane of reference, at right angles
to BD,

let DE be made equal to 425,
and let BE, AE, AD be joined.

Now, since 4B is at right angles to the plane of reference,
therefore A8 is also at right angles to all the straight lines
which meet it and are in the plane of reference ; [x1. Def. 3]

therefore each of the angles 48D, ABE is right.

And, since the straight line Z0 has fallen on the parallels
AB, CD,
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therefore the angles 48D, CDB are equal to two right
angles. (1. 29]

But the angle ABD is right;
therefore the angle CDZ is also right ;
therefore CD is at right angles to BD.

And, since 4B is equal to DE,
and BD is common,
the two sides A8, BD are equal to the two sides £D, DB ;
and the angle ABD is equal to the angle £DB,
for each is right ;
therefore the base 4D is equal to the base BE.

And, since 4B is equal to DE,
and BE to AD,

the two sides 4B, BE are equal to the two sides £D, DA
respectively,

and AE is their common base ;

therefore the angle ABE is equal to the angle £DA.
But the angle ABE is right ;

therefore the angle £DA is also right;

therefore £ is at right angles to 4D.

But it is also at right angles to DA ;
therefore £D is also at right angles to the plane through
BD, DA. [x1. 4]

Therefore £D -will also make right angles with all the
straight lines which meet it and are in the plane through
BD, DA.

But DC is in the plane through BD, DA, inasmuch as
AB, BD are in the plane through 8D, DA, [x1. 2]
and DC is also in the plane in which A8, BD are.

Therefore £D is at right angles to DC,
so that CD is also at right angles to DE.

But CD is also at right angles to BD.
Therefore CD is set up at right angles to the two straight

lines DE, DB which cut one another, from the point of section
at D ;
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so that CD is also at right angles to the plane through
DE, DB. [x1. 4]

But the plane through DE, DB is the plane of reference;
therefore CD is at right angles to the plane of reference.

Therefore etc.
Q. E. D.

Simson objects to the words which explain why DC is in the plane through
BD, DA, viz. “inasmuch as 48, BD are in the plane through BD, DA, and
DC is also in the plane in which 48, BD are,” as being too roundabout.
He concludes that they are corrupt or interpolated, and that we ought only to
have the words “ because all three are in the plane in which are the parallels
AB, CD” (by Prop. 7 preceding). But I think Euclid’s words can be
defended. Prop. 7 says nothing of a plane determined by #wo transversals as
BD, DA are. Hence it is natural to say that DC is in the same plane in
which 48, BD are [Prop. 7], and 4B, BD are in the same plane as BD,
DA [Prop. 2], so that DC is 1n the plane through BD, DA.

Legendre’s alternative proof is split by him into two propositions.

(1) Let AB be a perpendicular to the plane MN and EF a line situated in that
plane ; if from B, the foot of the perpendicular, BD be drawn perpendicular to
EF, and AD be joined, I say that AD will be perpendicular to EF.

(2) If AB is perpendicular to the plane MN, every straight line CD parallel to
AB will be perpendicular to the same plane.

To prove both propositions together we suppose CD given, join BD,
and draw EF perpendicular to BD in the
plane MMN. -

C
(1) As before, we make DE equal to DF and ﬁ\
join BE, BF, AE, AF.
Then, since the angles BDE, BDF are M N
right, and DE, DF equal, B 7"‘
BE is equal to BF. [r 4] D
N

And, since 4B is perpendicular to the
plane,

the angles 4BE, ABF are both right.
Therefore, in the triangles ABE, ABF,
AE is equal to AF. [1. 4]

Lastly, in the triangles ADE, ADF, since AE is equal to 4F, and DE
to DF, while AD is common,

the angle 4DE is equal to the angle 4DF, [1. 8]
so that 4D is perpendicular to £F.

(2) ZED being thus perpendicular to DA, and also (by .construction)
perpendicular to DB,

ED is perpendicular to the plane 4DB. [x1. 4]
But CD, being parallel to 4.5, is in the plane 4BD;
therefore £D is perpendicular to CD. [x1. Def. 3]

H. E. 1L 19
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Also, since 4B, CD are parallel, '
and ABD is a right angle,
CDB is also a right angle.

Thus CD is perpendicular to both DE and DB, and therefore to the
plane MV through DE, DB.

ProrosITION 9.

Straight lines whick are parallel to the same straight line
and are not in the same plane with it are also parallel to one
another.

For let each of the straight lines 48, CD be parallel to
EF, not being in the same plane

with it ; v B H A
I say that A2 is parallel to CD. /

For let a point G be taken at ¢ Q E
random on EF, \
and from it let there be drawn 6 K c

GH, in the plane through EF,
AB, at right angles to £F, and GX in the plane through
FE, CD again at right angles to £F.

: Now, since £F is at right angles to each of the straight
lines GH, GK,

therefore £F is also at right angles to the plane through
GH, GK. [x1. 4]
And EF is parallel to A5 ;

therefore 4B is also at right angles to the plane through
HG, GK. [x1 8]

For the same reason
CD is also at right angles to the plane through ZG, GK;

therefore each of the straight lines 48, CD is at right angles
to the plane through Z/G, GK.

But, if two straight lines be at right angles to the same
plane, the straight lines are parallel ; [x1. 6]
therefore A B is parallel to CD.

Q. E. D.
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ProrosiTION 10.

If two straight lines meeting one another be parallel to
two straight lines meeting one another not in the same plane,
they will contain equal angles.

For let the two straight lines 48, BC meeting one
another be parallel to the two straight lines D£E, EF meeting
one another, not in the same plane;

I say that the angle 4BC is equal to the angle DEF.

For let BA4, BC, ED, EF be cut off equal to one another,
and let 4D, CF, BE, AC, DF be joined.

Now, since BA4 is equal and parallel to £D,

therefore 4D is also equal and parallel to BE. [r 33]
For the same reason

CFis also equal and parallel to BE£.

Therefore each of the straight lines 4D, CF is equal and
parallel to BE.

But straight lines which are parallel to the same straight
line and are not in the same plane with it are parallel to one
another ; [x1. o]

therefore AD is parallel and equal to CF.
And AC, DF join them ;
therefore A C is also equal and parallel to DF. (1 33]
Now, since the two sides A8, BC are equal to the two
sides DE, EF,
and the base AC is equal to the base DF,
therefore the angle A BC is equal to the angle DEF. [1. 8]
Therefore etc. .
Q. E. D.

19—2
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The result of this proposition does not appear to be quoted in Euclid until
x1. 3; but Euclid no doubt inserted it here advisedly, because it has the
effect of incidentally proving that the “inclination of two planes to one
another,” as defined in x1. Def. 6, is one and the same angle at whatever
point of the common section the plane angle measuring it is drawn.

ProrosiTiON 11.

From a given elevated point to draw a straight line perpen-
dicular to a given plane.

Let 4 be the given elevated point, and the plane of
reference the given plane; '
thus it is required to draw from the
point A4 a straight line perpendicular to A
the plane of reference. I\
H
o3
B

Let any straight line BC be drawn,

at random, in the plane of reference, EE
and let 4.0 be drawn from the point 4
perpendicular to BC. [r. 12] G

If then 4D is also perpendicular to
the plane of reference, that which was
enjoined will have been done.

But, if not, let DE be drawn from the point D at right

angles to BC and in the plane of reference, (r 1]
let AF be drawn from A4 perpendicular to DE, [1 12]
and let G/ be drawn through the point /& parallel to BC.

r 31]

Now, since BC is at right angles to each of the straight
lines DA, DE,

therefore BC is also at right angles to the plane through
ED, DA, [x1. 4]
And GH is parallel to it ;

but, if two straight lines be parallel, and one of them be at
right angles to any plane, the remaining one will also be at
right angles to the same plane ; [x1. 8]

therefore GH is also at right angles to the plane through
ED, DA.
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Therefore G/ is also at right angles to all the straight
lines which meet it and are in the plane through £D, DA.
[x1. Def. 3]
But AF meets it and is in the plane through £D, DA ;
therefore G/ is at right angles to /A4,
so that /4 is also at right angles to G/A.
"~ But AFis also at right angles to DE ;

therefore AF" is at right angles to each of the straight lines
GH, DE.

But, if a straiiht line be set up at right angles to two
straight lines which cut one another, at the point of section,
it will also be at right angles to the plane through them ; [xu. 4]

therefore 74 is at right angles to the plane through £D, GH.
But the plane through £D, GH is the plane of reference;
therefore AF is at right angles to the plane of reference.

Therefore from the given elevated point A the straight
line AF has been drawn perpendicular to the plane of
reference.

Q. E. F.

The text-books differ in the form which they give to this proposition rather
than in substance. They commonly assume the construction of a plane
through the point 4 at right angles to any straight line BC in the given plane
(the construction being effected in the manner shown at the end of the note
on x1. 5 above). The advantage of this method is that it enables a
perpendicular to be drawn from a point fn the plane also, by the same
construction. (Where the letters for the two figures differ, those referring to
the second figure are put in brackets.)

A F_ H a
3
'1 e \ o N 'l \ N
/’a L /,'C 4 '..,L\ py c
F W (Ve A S
/ A / &

M M

We can include the construction of the plane through 4 perpendicular to
BC, and make the whole into one proposition, thus.

BC being any straight line in the given plane M, draw 4D perpendicu-
lar to BC.

In any plane passing through BC but not through 4 draw DE at right
angles to BC. '

Through DA, DE draw a plane; this will intersect the given plane NV
in a straight line, as #D (4.D).

In the plane 4G draw 4/ perpendicular to #G (A4D).

Then AH is the perpendicular required. -
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In the plane MV, through A in the first figure and A4 in the second, draw
KL parallel to BC.

Now, since BC is perpendicular to both D4 and DE, BC is perpendicular
to the plane 4G. [x1 4]

Therefore XZ, being parallel to BC, is also perpendicular to the plane
AG [x1. 8}, and therefore to A which meets it and is in that plane.

Therefore 44 is perpendicular to both #D (4.D) and KL at their point
of intersection.

Therefore AH is perpendicular to the plane M.

Thus we have solved the problem in x1. 12 as well as that in x1. 11; and
this direct method of drawing a perpendicular to a plane from a point 7» it is
obviously preferable to Euclid’s method by which the construction of a
perpendicular to a plane from a point wifhout it is assumed, and a line is
merely drawn from a point in the plane parallel to the perpendicular obtained
in x1. 11.

ProrosITION 12.
To set up a straight line at right angles to a given plane
Jrom a given point in it.
Let the plane of reference be the given plane,
and A the point in it ;

thus it is required to set up from the point
A a straight line at right angles to the
plane of reference.

Let any elevated point B be conceived,

from B let BC be drawn perpendicular to
the plane of reference, [x1. 11] A

and through the point 4 let 4D be drawn
parallel to BC. _ [r 31]

O—

Then, since AD, CB are two parallel straight lines,
while one of them, BC, is at right angles to the plane of
reference, o

therefore the remaining one, 4D, is also at right angles to
the plane of reference. [x1. 8]

Therefore A.D has been set up at right angles to the given
plane from the point A4 in it.
Q E. F.
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PRroPOSITION 13.

From the same point two straight lines cannot be set up at
right angles to the same plane on the same side.

For, if possible, from the same point A let the two straight
lines AB, AC be set up at right
angles to the plane of reference and on 8
the same side, '

/C

and let a plane be drawn through B4,
AC; D

it will then make, as section through A4 A
in the plane of reference, a straight linej
[x1 3

Let it make DAE ;
therefore the straight lines 48, AC, DAE are in one plane.

And, since CA is at right angles to the plane of reference,
it will also make right angles with all the straight lines which
meet it and are in the plane of reference. [x1 Def. 3]

But DAE meets it and is in the plane of reference;

therefore the angle CAE is right.

For the same reason

the angle BAE is also right;

therefore the angle CA £ is equal to the angle BAE.
And they are in one plane:

which is impossible.

Therefore etc.
Q. E. D,

Simson added words to this as follows :

“ Also, from a point above a plane there can be but one perpendicular to -
that plane; for, if there could be two, they would be parallel to one another
[x1. 6], which is absurd.”

Euclid does not give this result, but we have already had it in the note
above to XI. 4 (ad fin.).



296 BOOK XI [x1. 14

ProrosiTION 14.

Planes to whick the same straight line is at right angles
will be parallel.

For let any straight line 42 be at right angles to each of
the planes CD, EF;

I say that the planes are
parallel.

For, if not, they will meet
when produced.
Let them meet;

. E
they will then make, as .
common section, a straight line. [xr. 3]

Let them make G/ ;
let a point X be taken at random on G/,
and let AKX, BK be joined.
Now, since 428 is at right angles to the plane £F,

therefore 4B is also at right angles to BK which is a straight
line in the plane £ produced ; [x1. Def. 3]

therefore the angle 48K is right.

For the same reason
the angle B4 K is also right.

Thus, in the triangle ABK, the two angles ABK, BAK
are equal to two right angles :

which is impossible. : [r. 17]
Therefore the planes CD, EF will not meet when

produced ;

therefore the planes CD, EF are parallel. [xL Def. 8]
Therefore planes to which the same straight line is at right

angles are parallel.
Q. E. D.
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ProrosrTION 15.

If two straight lines meeting one another be parallel to two
straight lines meeting one another, not being in the same plane,
the planes through them are parallel.

For let the two straight lines 458, BC meeting one another
be parallel to the two straight lines

DE, EF meeting one another, not 8
being in the same plane;
I say that the planes produced / A/‘\c/

through A B, BC and DE, EF will
not meet one another.

For let BG be drawn from the £
point B perpendicular to the plane
through DE, EF [xu 11], and let it &G
H kK F

meet the plane at the point G ;

through G let GAH be drawn

parallel to £D, and GK parallel to EF. [1 31]
Now, since BG is at right angles to the plane through

DE, EF,

therefore it will also make right angles with all the straight

lines which meet it and are in the plane through DE, EF.
[x1. Def. 3]

But each of the straight lines G/, GK meets it and is in
the plane through DE, EF;
therefore each of the angles BGH, BGK is right.

And, since B4 is parallel to GH, [x1. 9]
therefore the angles GBA, BGH are equal to two right angles.

. [x. 29]
But the angle BGH is right;
therefore the angle GBA is also right ;
therefore G2 is at right angles to BA.

For the same reason
G B is also at right angles to BC.

Since then the straight line GB is set up at right angles
to the two straight lines 24, BC which cut one another,
therefore GAB is also at right angles to the plane through
BA, BC. _ [x1. 4]
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But planes to which the same straight line is at right
angles are parallel ; [x1 14]

therefore the plane through 4B, BC is parallel to the plane
through DE, EF.

Therefore, if two straight lines meeting one another be
parallel to two straight lines meeting one another, not in the
same plane, the planes through them are parallel.

Q. E. D.

This result is arrived at in the American text-books already quoted by
starting from the relation between a plane and a straight line parallel to it.
The series of propositions is worth giving. A straight line and a plane being
parallel if they do not meet however far they may be produced, we have the
following propositions.

1. Any plane containing one, and only one, of two parallel straight lines is
parallel to the other.

For suppose A8, CD to be parallel and CD to lie in the plane MN.

Then 4B, CD determine a plane intersecting MV in the straight line CD.

Thus, if AB meets MM, it must meet
it at some point in CD.

But this is impossible, since 4B is
parallel to CD.

Therefore 4.8 will not meet the plane
MN, and is therefore parallel to it.

[This ﬁroposition and the proof are in

Legendre.

The following theorems follow as corollaries.

2.  Through a given straight line a plane can be drawn parallel to any other
given straight line; and, if the lines are not parallel, only one suck plane can be
drawn.

We have simply to draw through any point on the first line a straight line
parallel to the second line and then pass a plane through these two intersecting
lines. ‘This plane is then, by the above proposition, parallel to the second
given straight line.

3. Through a given point a plane can be drawn parallel to any two straight
lines in space; and, sf the latter are not parallel, only one suck plane can be
drawn.

Here we draw through the point straight lines parallel respectively to the
given straight lines and then draw a plane through the lines so drawn.

Next we have the partial converse of the first proposition above.

4 If a straight line is parallel to a plane, it is also parallel to the inler-
section of any plane through it with the given plane. B

Let AB be parallel to the plane M/, and let
any plane through 4.8 intersect MV in CD.

Now 458 and CD cannot meet, because, if A
they did, 48 would meet the plane M.

And 4B, CD are in one plane.

Therefore 4.8, CD are parallel. c

From this follows as a corollary :

N
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5. If eack of two intersecting straight lines is parallel to a given plane,

the plane containing them is parallel to the given B
plane. 4
NLet AB, AC be parallel to the plane A c
’i‘hen, if the plane 4BC were to meet the N
plane M, the intersection would be parallel
both to A8 and to AC: which is impossible.

Lastly, we have Euclid’s proposition. ™M

6. If two straight lines forming an angle are respectively parallel to two
other straight lines forming an angle, the plane of
the first angle is parallel to the plane of the second.

Let ABC, DEF be the angles formed by E
straight lines parallel to one another respectively.

Then, since 4B is parallel to DE,

the plane of DEF is parallel to 48 [(1) above].
Similarly the plane of DEF is parallel to
BC -

Hence the plane of DEF is parallel to the
plane of 4BC [(5)}

Legendre arrives at the result by yet another method. He first proves
Eucl. x1. 16 to the effect that, if f2wo parallel planes are cut by a third, the lines
of intersection are parallel, and then deduces from this that, if fwo parallel
straight lines are terminated by two parallel planes, the straight lines are equal
in length.

(The latter inference is obvious because the plane through the parallels
cuts the parallel planes in parallel lines, which
therefore, with the given parallel lines, form a
parallelogram.)

Legendre is now in a position to prove
Euclid’s proposition XI. 15.

If ABC, DEF be the angles, make 4B
equal to DE, and BC equal to £F, and join
CA, FD, BE, CF, AD.

Then, as in Eucl. x1. 10, the triangles D
ABC, DEF are equal in all respects ; £
and 4D, BE, CF are all equal. F

It is now proved that the planes are
parallel by reductio ad absurdum from the
last preceding result. For, if the plane 4BC
is not parallel to the plane DEF; let the plane drawn through B parallel to the
plane DEF meet CF, AD in H, G respectively.

Then, by the last result BE, HF, GD will all be equal.

But BE, CF, AD are all equal :

which is impossible.
Therefore etc.
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ProrosiTION 16.
If two parallel planes be cut by any plane, their common
sections are parallel.

For let the two parallel planes 4B, CD be cut by the
plane £FGH,
and let £F, GH be their common sections ;
I say that £/F is parallel to GA.

G

¢
For, if not, EF, GH will, when produced, meet either in
the direction of &, Hor of E, G.
Let them be produced, as in the direction of 7, A, and
let them, first, meet at X.

Now, since £FK is in the plane A5,
therefore all the points on £FK are also in the plane 45.

[x1 1]
But X is one of the points on the straight line £FK ;

therefore X is in the plane 45.
For the same reason
K is also in the plane CD;
therefore the planes 458, CD will meet when produced.
But they do not meet, because they are, by hypothesis,
parallel ;

therefore the straight lines £/, GH will not meet when
produced in the direction of £, /.

Similarly we can prove that neither will the straight lines
EF, GH meet when produced in the direction of £, G.

But straight lines which do not meet in either direction
are parallel. [1. Def. 23]

Therefore £F is parallel to GH.

Therefore etc. Q. E. D.
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Simson points out that, in here quoting 1. Def. 23, Euclid should have
said “ But straight lines in one plane which do not meet in either direction are
parallel.”

From this proposition is deduced the converse of XI. 14.

If a straight line is perpendicular lo one of two parallel planes, it is
perpendicular to the other also.

For suppose that M, PQ are two parallel planes, and that 4.8 is perpen-
dicular to MNV.

Through 4 B draw any plane, and let it intersect
the planes MV, PQ in AC, BD respectivel N

Therefore 4C, BD are parallel [’;u 16]

But 4Cis perpendicular to 48;
therefore 4.8 is also perpendicular to B.D.

That is, 4B is perpendicular to any line in £Q
passing through B ; P
therefore 4.8 is perpendicular to PQ.

It follows as a corollary that

Through a given point one plane, and only one, can be drawn parallel fo a
given plane.

In the above figure let 4 be the given point and PQ the given plane.

Draw A4 B perpendicular to PQ.

Through 4 draw a plane MV at right angles to 45 (see note on XI. §
above).

Then MNV is parallel to PQ. [x1 14

If there could pass through 4 a second plane parallel to PQ, 4.8 woul
also be perpendicular to it.

That is, 458 would be perpendicular to two different planes through A4 :
which is impossible (see the same note).

Also it is readily proved that,

If two planes are parallel to a third plane, they are parallel to one another.

ProrosiTION 17%.

If two straight lines be cut by parallel planes, they will be
cut in the same ratios.

For let the two straight
lines A8, CD be cut by the
parallel planes GH, KL, MN
at the points 4, £, B and C,
F D;

I say that, as the straight line
AE is to EB so is CF to FD.

For let AC, BD, AD be
joined,
let AD meet the plane KL
at the point O,
and let £0, OF be joined.
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Now, since the two parallel planes KZ, MN are cut by
the plane £B8DO,

their common sections £0, BD are parallel. [x1. 16]

For the same reason, since the two parallel planes G/,
KL are cut by the plane 40FC,

their common sections 4C, OF are parallel. [4.]

And, since the straight line £0 has been drawn parallel to
BD, one of the sides of the triangle 48D,

therefore, proportionally, as A£ is to £B, so is AO to OD.
. [vi. 2]
Again, since the straight line OF has been drawn parallel

to AC, one of the sides of the triangle 4DC,
proportionally, as 40 is to OD, so is CF to FD. [éd.]

But it was also proved that, as 40 is to 0D, so is AE
to ER;
therefore also, as AE is to £B, so is CF to FD. [v. 11]

Therefore etc.
Q. E. D.

ProrosiTiON 18.

If a straight line be at right angles to any plane, all the
Planes through it will also be at right angles to the same plane.

For let any straight line 48 be at right angles to the
plane of reference;

I say that all the planes through

AR are also at right angles to the —aa
plane of reference.

For let the plane DE be drawn 7
through 425, c — 4
let C£ be the common section of /
the plane DE and the plane of
reference,

let a point /" be taken at random on CE,

and from F let G be drawn in the plane DE at right
angles to CE. [r 11]

Now, since 428 is at right angles to the plane of reference,
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AB is also at right angles to all the straight lines which meet
it and are in the plane of reference ; [x1. Def. 3]

so that it is also at right angles to C£';

therefore the angle ABF is right.
But the angle GF8 is also right ;

therefore A8 is parallel to FG. (1. 28]
But A3 is at right angles to the plane of reference ;

therefore /G is also at right angles to the plane of reference.

: [x1. 8]

Now a plane is at right angles to a plane, when the

straight lines drawn, in one of the planes, at right angles to

the common section of the planes are at right angles to the

remaining plane. [x1. Def. 4]

And FG, drawn in one of the planes DE at right angles

to CE, the common section of the planes, was proved to be
at right angles to the plane of reference ;

therefore the plane DE is at right angles to the plane of
reference.

Similarly also it can be proved that all the planes through
AB are at right angles to the plane of reference.
Therefore etc.

Q. E. D.

Starting as Euclid does from the definition of perpendicular planes as
planes such that all straight lines drawn in one of the planes at right angles to
the common section are at right angles to the other plane, it is necessary for
him to show that, if # be any point in CE, and FG be drawn in the plane
DE at right angles to CE, FG will be perpendicular to the plane to which
AB is perpendicular.

It is perhaps more scientific to make the definition, as Legendre makes it,
a particular case of the definition of the fnclination of planes. Perpendicular
planes would thus be planes such that the angle which (when it is acute)
Euclid calls the inclination of a plane to a plane is a right angle. When to this
is added the fact incidentally proved in x1. 10 that the “inclination of a plane to
a plane” is the same at whatever point in their common section it is drawn, it
is sufficient to prove the perpendicularity of two planes if one straight line
drawn, in one of them, perpendicular to their common section is perpendicular
to the other.

If this point of view is taken, Props. 18, 19 are much simplified (cf.
Legendre, H. M. Taylor, Smith and Bryant, Rausenberger, Schultze and
Sevenoak, Holgate). The alternative proof is as follows.

Let AB be perpendicular to the plane A/, and CE any plane through
A B, meeting the plane MV in the straight line CD.

In the plane MV draw BF at right angles to CD.
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Then ABFis the angle which Euclid calls (in the case where it is acute)
the “inclination of the plane to the plane.”

m

But, since 48 is perpendicular to the plane M4, it is perpendicular to
BFin it

Therefore the angle 4B F is a right angle ;
whence the plane CE is perpendicular to the plane M.

PRroPOSITION 19.

If two planes whick cut one another be at right angles to
any plane, their common section will also be at right angles to
the same plane.

For let the two planes 45, BC be at right angles to the
plane of reference,
and let BD be their common section ;

I say that BD is at right angles to the 8
plane of reference.

For suppose it is not, and from the
point D let DE be drawn in the plane
- AR at right angles to the straight line
AD, and DF in the plane BC at right
angles to CD.

Now, since the plane 4B is at right
angles to the plane of reference,
and DE has been drawn in the plane A5 at right angles to
AD, their common section,

therefore DE is at right angles to the plane of reference.
[x1. Def. 4]
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Similarly we can prove that
DF is also at right angles to the plane of reference.

Therefore from the same point D two straight lines have
been set up at right angles to the plane of reference on the
same side :

which is impossible. [x1. 13]

Therefore no straight line except the common section DA
of the planes 4B, BC can be set up from the point D at right
angles to the plane of reference.

Therefore etc.

Q E. D.

Legendre, followed by other writers already quoted, uses a preliminary
proposition equivalent to Euclid’s definition of planes at right angles to one
another.

If two planes are perpendicular to one another, a straight line drawn in one
of them perpendicular to their common section will be perpendicular to the other.

Let the perpendicular planes CE, M\ (figure of last note) intersect in
CD, and let AB be drawn in CE perpendicular to CD.

In the plane MV draw BF at right angles to CD.

Then, since the planes are perpendicular, the angle 4.BF (their inclination)
is a right angle.

Therefore 4.8 is perpendicular to both CD and BF, and therefore to the
plane MV,

We are now in a position to prove X1. 19, viz. If fwo planes be perpendicular
to a third, their inlersection §s also perpen-
dicular to that third plane. A

Let each of the two planes 4C, 4D
intersecting in 4.8 be perpendicular to the

plane M N. ’/]\l N
Let AC, AD intersect MN in BC, BD 8
respectively. b
In the plane N draw BE at right c
F E
M

angles to BC and BF at right angles to
BD.

Now, since the planes 4C, MV are at
right angles, and BE is drawn in the latter perpendicular to BC, BE is
perpendicular to the plane AC.

Hence 4B is perpendicular to BE. [x1. 4]

Similarly 45 is perpendicular to BF.

Therefore AB is perpendicular to the plane through BE, BF, i.e. to the
plane MN.

An useful problem is that of drawing a common perpendicular to two
straight lines not in one plane, and in connexion with this the following
proposition may be given.

H. E. IIL. 20
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Given a plane and a straight line not perpendicular to it, one plane, and only
one, can be drawn through the straight line perpen-
dicular to the plane. A\
Let AB be the given straight line, /N the
given plane. 8
From any point C in 4B draw CD perpen- N
dicular to the plane MN.
Through 48 and CD draw a plane 4E.
Then the plane AZ is perpendicular to the o
plane MN. [x1. 18]
If any other plane could be drawn through ™
A B perpendicular to M, the intersection A8 of E
the two planes perpendicular to MV would itself .
be perpendicular to MV : [x1 19]
which contradicts the hypothesis. )

7o draw a common perpendicular to two straight lines not tn the same plane.

Let AB, CD be the given straight lines. ' )

Through CD draw the plane M parallel to 4B (Prop. 2 in note
to XI. 15).

Through 4B draw the plane 4F perpendicular to the plane MV (see the
last preceding proposition).

A H K. B

[

’
/ ;
I/’ -"
4
/ (o]
>

E G i P F
N -a
D

M

Let the planes 4%, MN intersect in £, and let £F meet CD in G.

From G, in the plane 4 F, draw G/ at right angles to £, meeting 48 in H.

GH is then the required perpendicular.

For AB is parallel to £F (Prop. 4 in note to XI. 15); therefore GH,
being perpendicular to £Z, is also perpendicular to 45.

But, the plane 4 being perpendicular to the plane MV, and GH being
perpendicular to £Z, their intersection,

G H is perpendicular to the plane /4, and therefore to CD.

Therefore G A is perpendicular to both 48 and CD.

Only one common perpendicular can be drawn to two straight lines not in
one plane.

For, if possible, let XZ also be perpendicular to both 48 and CD.

Let the plane through XZ, 4B meet the plane ¥V in LQ.

Then AB is parallel to ZQ (Prop. 4 in note to XI. 15), so that XZ, being
perpendicular to 45, is also perpendicular to ZQ.

Therefore KL is perpendicular to both CZ and ZQ, and consequently to
the plane MNV.

But, if X2 be drawn in the plane AF perpendicular to £F, KP is also
perpendicular to the plane AZNV.
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Thus there are two perpendiculars from the point X to the plane MV :
. which is impossible.

Rausenberger’s construction for the same problem is more elegant. Draw,
he says, through each straight line a plane parallel

to the other. Then draw through each straight line
a plane perpendicular to the plane through the / /
A

other. The two planes last drawn will intersect
in a straight line, and this straight line is the
common perpendicular required.

The form of the construction best suited for c
examination purposes, because the nfost self-
contained, is doubtless that given by Smith and
Bryant.
Let AB, CD be the two given straight lines.
Through any point £ in CD draw £F parallel to 45.
From any point G in A8 draw GH perpendicular to the plane C'DF
meeting the plane in A.
Through A in the plane CDF draw 8
HK parallel to FE or 4B, to cut CD
in K.
Then, since 4B, HK are parallel,
AGHK is a planc. L

Complete the parallelogram GHKL. F
Now, since LK, GH are parallel, and H
GH is perpendicular to the plane CDF,

LK is perpendicular to the plane € K E [o)
CDF. -~

Therefore LK is perpendicular to CD and KA, and therefore to 4.8 which
is parallel to X'AH.

G

ProrosiTION 20.

If a solid angle be contained by three plane angles, any two,
taken together in any manner, are greater than the remaining
one.

For let the solid angle at 4 be contained by the three
plane angles BAC, CAD, DAB;
I say that any two of the angles
BAC, CAD, DAB, taken to-
gether in any manner, are greater
than the remaining one.

If now the angles BAC, CAD,
DARB are equal to one another,
it is manifest that any two are greater than the remaining one.

But, if not, let BAC be greater,

and on the straight line 4.3, and at the point A4 on it, let the

E C

20—2
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angle BAE be constructed, in the plane through B4, 4AC,
equal to the angle DAZB;

let AE be made equal to 4D,

and let BEC, drawn across through the point £, cut the
straight lines AB, AC at the points 5, C;

let DB, DC be joined.

Now, since DA is equal to AE,
and A28 is common,
two sides are equal to two sides;
and the angle D AR is equal to the angle BAE;
therefore the base D2 is equal to the base BE. [1 4]

And, since the two sides BD, DC are greater than BC,

[1. 20]
and of these DB was proved equal to BE,
therefore the remainder DC is greater than the remainder £C.

Now, since DA is equal to AE,
and A4 C is common,
and the base DC is greater than the base £C,
therefore the angle DAC is greater than the angle £4C.
[1. 25]

But the angle VA28 was also proved equal to the angle
BAE;

therefore the angles DAB, DAC are greater than the angle
BAC.

Similarly we can prove that the remaining angles also,
taken together two and two, are greater than the remaining
one. .

Therefore etc.
Q. E. D.

After excluding the obvious case in which all three angles are equal,
Euclid goes on to say “If not, let the angle BAC be greater,” without adding
greater than what. Heiberg is clearly right in saying that he means greater
than BAD, i.e. greater than one of the adjacent angles. This is proved by
the words at the end “Similarly we can prove,” etc. Euclid thus excludes
as obvious the case where one of the three angles is not greater than either of
the other two, but proves the remaining cases. This is scientific, but he might
further have excluded as obvious the case in which one angle is greater than
one of the others but equal to or less than the remaining one.
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Simson remarks that the angle B4C may happen to be egual to one of
the other two and writes accordingly *If they {all three angles] are not [equal),
let BAC be that angle which is not less than either of the other two, and is
greater than one of them DA4B.” He then proves, in the same way as Euclid
does, that the angles DAB, DAC are greater than the angle BA4C, adding
finally : ““But BAC is not less than either of the angles DAB, DAC; there-
fore BAC, with either of them, is greater than the other.”

It would be better, as indicated by Legendre and Rausenberger, to begin
by saying that, “If one of the three angles is either equal to or less than either
of the other two, it is evident that the sum of those two is greater than the
first. It is therefore only necessary to prove, for the case in whick one angle is
greater than eack of the others, that the sum of the two latter is greater than
the former.

Accordingly let BAC be greater than each of the other angles.” We then
proceed as in Euclid.

ProrosiTION 21.

Any solid angle is contained by plane angles less than four
right angles.

Let the angle at A be a solid angle contained by the plane
angles BAC, CAD, DAB;

I say that the angles BAC, CAD,
DAR are less than four right angles.

For let points B, C, D be taken
at random on the straight lines 425,
AC, AD respectively,

and let BC, CD, DB be joined. 8

Now, since the solid angle at B is contained by the three
plane angles CBA, ABD, CBD,

any two are greater than the remaining one; [x1. 20]

therefore the angles CBA, ABD are greater than the angle
CBD.

For the same reason
the angles BCA, ACD are also greater than the angle ZCD,
and the angles CDA, ADRB are greater than the angle CDB ;

therefore the six angles CBA, ABD, BCA, ACD, CDA,
ADB are greater than the three angles CBD, BCD, CDB.

But the three angles CBD, BDC, BCD are equal to two
right angles ; [ 32]
therefore the six angles CBA, ABD, BCA, ACD, CDA,
ADRB are greater than two right angles.
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And, since the three angles of each of the triangles ABC,
ACD, ADB are equal to two right angles,

therefore the nine angles of the three triangles, the angles
CBA, ACB, BAC, ACD, CDA, CAD, ADB, DBA, BAD
are equal to six right angles ;

and of them the six angles ABC, BCA, ACD, CDA, ADB,
DBA are greater than two right angles ;

therefore the remaining three angles B4AC, CAD, DARB
containing the solid angle are less than four right angles.

Therefore etc.
Q. E. D.

It will be observed that, although Euclid enunciates this proposition for
any solid angle, he only proves it for the particular case of a #77kedral angle.
This is in accordance with his manner of proving one case and leaving the
others to the reader. The omission of the convex polyhedral angle here
corresponds to the omission, after 1. 32, of the proposition about the interior
angles of a convex polygon given by Proclus and in most books. The proof
of the present proposition for any convex polyhedral angle can of course be
arranged so as not to assume the proposition that the interior angles of a
convex polygon together with four right angles are equal to twice as many
right angles as the figure has sides.

Let there be any convex polyhedral angle with 7 as vertex, and let it be
cut by any plane meeting its faces in, say, the
polygon ABCDE. ‘

Take O any point within the polygon, and
in its plane, and join 04, OB, OC, OD, OFE.

Then all the angles of the triangles with
vertex O are equal to twice as many right angles

as the polygon has sides ; [1. 32] o
therefore the interior angles of the polygon to-

gether with all the angles round O are equal to A

twice as many right angles as the polygon has 5

sides. [¢

Also the sum of the angles of the triangles
VAB, VBC, etc., with vertex V are equal to twice as many right angles as the
polygon has sides ;
and all the said angles are equal to the sum of (1) the plane angles at V
forming the polyhedral angle and (2) the base angles of the triangles with
vertex V.

This latter sum is therefore equal to the sum of (3) all the angles
round O and (4) all the interior angles of the polygon.

Now, by Euclid’s proposition, of the three angles forming the solid angle at
A, the angles VAE, VAB are together greater than the angle £45.

Similarly, at B, the angles VB4, VBC are together greater than the angle
ABC.

And so on.

Therefore, by addition, the base angles of the triangles with vertex V
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(2) above] are together greater than the sum of the angles of the polygon
(4) above].

Hence, by way of compensation, the sum of the plane angles at ¥ [(1)
above] is less than the sum of the angles round O [(3) above).

But the latter sum is equal to four right angles; therefore the plane angles
forming the polyhedral angle are together less than four right angles.

The proposition is only true of convex polyhedral angles, i.e. those in
which the plane of any face cannot, if produced, ever cut the solid angle.

There are certain propositions relating to equal (and symmetrical) trihe-
dral angles which are necessary to the consideration of the polyhedra dealt
with by Euclid, all of which (as before remarked) have trihedral angles only.

1. Two trikedral angles are equal if two face angles and the included
dihedral angle of the one are respectively equal to two face angles and the included
dihedral angle of the other, the equal parts being arranged in the same order.

2.  Two trikedral angles are equal if two dihedral angles and the sncluded
Jace angle of the one are respectively equal to two dikedral angles and the sncluded
JSace angle of the other, all equal parts being arranged in the same order.

These propositions are proved immediately by superposition.

3. Two trikedral angles are equal if the three face angles of the one are
respectively equal to the three face angles of the other, and all are arranged in the
same order.

Let V—ABC and V'—A'B’'C’ be two trihedral angles such that the angle

AVB is equal to the angle 4’ V' B, the angle BVC to the angle B'V’'C’, and
the angle CVA to the angle C' V'A4’.

We first prove that corresponding pasrs of face angles include equal dikedral
- angles.

E.g, the dibedral angle formed by the plane angles CVA, AVB is equal
to that formed by the plane angles C'V'4’, 4'V'B'.

Take points 4, B, C on VA, VB, VC and points 4’, B, C' on V'4’,
V'B', V'C, such that VA, VB, VC, V'A’', V'B', V'C are all equal.

Join BC, CA, AB, B'C', C'A', A'B'.

Take any point .D on 4V, and measure 4'D’ along A’V equal to 4D.

From D draw DE in the plane AVB, and DF in the plane CV4,
perpendicular to A V. Then DE, DF will meet 4B, AC respectively, the
angles VAB, VAC, the base angles of two isosceles triangles, being less than
right angles.

Join EF.

Draw the triangle /Z’'F’ in the same way.
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Now, by means of the hypothesis and construction, it appears that the
triangles VA B, V'A’'B’ are equal in all respects.

So are the triangles VAC, V'4'C’, and the triangles VBC, V'B'C’.

Thus BC, CA, AB are respectively equal to B'C’, C'4', A'F, and the
triangles ABC, A'B'C’ are equal in all respects.

Now, in the triangles ADE, A'D'E’,
the angles ADE, DAE are equal to the angles A'D'E’, D' A'E’ respectively,
and 4D is equal to 4’0", )

Therefore the triangles ADE, A'D'E’ are equal in all respects.

Similarly the triangles 4DF, A'D'F are equal in all respects.

Thus, in the triangles AEF, A'E'F’,
EA, AF are respectively equal to £'4’, A'F’,
and the angle £A4F is equal to the angle £'4'F’ (from above) ;
therefore the triangles AEF, A'E'F’ are equal in all respects.

Lastly, in the triangles DEF, D'E'F, the three sides are respectively
equal to the three sides;

therefore the triangles are equal in all respects.
Therefore the angles £DF, E'D'F’ are equal.

But these angles are the measures of the dihedral angles formed by the
planes CVA, AVB and by the planes C’'V'A4’', A'V'B’ respectively.
Therefore these dihedral angles are equal.

Similarly for the other two dihedral angles.
Hence the trihedral angles coincide if one is applied to the other;

that is, they are equal.

To understand what is implied by ‘taken in the same order” we may
suppose ourselves to be placed at the vertices, and to take the faces in clock-
wise direction, or the reverse, for dot/ angles.

If the face angles and dihedral angles are faken in reverse directions, i.e.
in clockwise direction in one and in counterclockwise direction in the other,
then, if the other conditions in the above three propositions are fulfilled, the
trihedral angles are not equal but symmetrical.

If the faces of a trihedral angle be produced beyond the vertex, they form
another trihedral angle. It is easily seen that these wvertical trikedral angles
are symmetrical.

ProPOSITION 22.

If there be three plane angles of whick two, taken together
in any manner, are greater than the remaining one, and they
are contained by equal straight lines, it s possible to construct
a triangle out of the straight lines joining the extremities of
the equal straight lines.

Let there be three plane angles ABC, DEF, GHK, of
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which two, taken together in any manner, are greater than
the remaining one, namely

the angles ABC, DEF greater than the angle GHX,
the angles DEF, GHK greater than the angle 4A5C,

and, further, the angles GHK, ABC greater than the angle
DEF;

let the straight lines AB, BC, DE, EF, GH, HK be equal,
and let AC, DF, GK be joined ;

I say that it is possible to construct a triangle out of straight
lines equal to AC, DF, GK, that is, that any two of the
straight lines AC, DF, GK are greater than the remaining
one.

H

A e b F G K

Now, if the angles ABC, DEF, GHK are equal to one
another, it is manifest that, 4C, DF, GK being equal also,

it is possible to construct a triangle out of straight lines equal
to AC, DF, GK.

But, if not, let them be unequal,

and on the straight line /7K, and at the point /£ on it, let
the angle A//L be constructed equal

to the angle ABC; H

let /L be made equal to one of the

straight lines 4B, BC, DE, EF, GH, L
HK,

and let K'Z, GL be joined.

Now, since the two sides 48, BC ©
are equal to the two sides KA, HL,

and the angle at & is equal to the angle XA L,
therefore the base 4 C is equal to the base XKL. (1 4]

And, since the angles ABC, GHK are greater than the
angle DEF,
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while the angle ABC is equal to the angle KA L,
therefore the angle GHL is greater than the angle DEF.

And, since the two sides GH, HL are equal to the two
sides DE, EF,

and the angle GAL is greater than the angle DEF,
therefore the base GL is greater than the base DF. [1 24]

But GK, KL are greater than GL.
Therefore GK, KL are much greater than DF.

But XKL is equal to AC;

therefore 4C, GK are greater than the remaining straight
line DF.

Similarly we can prove that
AC, DF are greater than GX,
and further DF, GK are greater than AC.

Therefore it is possible to construct a triangle out of
straight lines equal to AC, DF, GK.
Q. E. D.

The Greek text gives an alternative proof, which is relegated by Heiberg
to the Appendix. Simson selected the alternative proof in preference to that
given above ; he objected however to words near the beginning, “If not, let
the angles at the points B, £, A be unequal and that at B greater than either
of the angles at £, A,” and altered the words so as to take account of the
possibility that the angle at B might be equal to one of the other two.

As will be seen, Euclid takes no account of the relative magnitude of the
angles except as regards the case when all three are equal. Having proved
that oze base is less than the sum of the two others, he says that “similarly
we can prove” the same thing for the other two bases.

If a distinction is to be made according to the relative magnitude of the
three angles, we may say, as in the corresponding place in X1. 21, that, if one
of the three angles is either equal to or less than efther of the other two, the
bases subtending those two angles must obviously be together greater than the
base subtending the first. Thus it is only necessary to prove, for the case in
which one angle is greafer than either of the others, that the sum of the bases
subtending those others is greater than that subtending the first. This is
practically the course taken in the interpolated alternative proof.

ProrosiTiON 23.

To construct a solid angle out of three plane angles two of
whick, laken logether in any manner, are grealer than the
remaining one: thus the three angles must be less than four
right angles.
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Let the angles 4BC, DEF, GHK be the three given
plane angles, and let two of these, taken together in any
manner, be greater than the remaining one, while, further,
the three are less than four right angles;

thus it is required to construct a solid angle out of angles
equal to the angles 4BC, DEF, GHK.

JANJANVAN

Let AB, BC, DE, EF, GH, HK be cut off equal to one
another, .

and let AC, DF, GK be joined ;

it is therefore possible to construct a triangle out of straight
lines equal to AC, DF, GK. [xu 22]

Let LMN be so constructed that
AC is equal to LM, DF to MN, and

M
further GK to NL, \A
let the circle Z M N be described about [ =\
the triangle LMN,

let its centre be taken, and let it be O;
let LO, MO, NO be joined ;

I say that 45 is greater than LO.

For, if not, AB is either equal to LO, or less.
First, let it be equal.
Then, since A8 is equal to LO,

while 48 is equal to BC, and OL to OM,

the two sides 4B, BC are equal to the two sides LO, OM

respectively ;

and, by hypothesis, the base AC is equal to the base LM ;

therefore the angle 4BC is equal to the angle LZOM. |1 8]
For the same reason

the angle DEF is also equal to the angle /ON,

and further the angle GAK to the angle NOL ;
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therefore the three angles ABC, DEF, GHK are equal to
the three angles ZOM, MON, NOL.

But the three angles LOM, MON, NOL are equal to
four right angles ;

therefore the angles 48C, DEF, GHK are equal to four
right angles.

But they are also, by hypothesis, less than four right angles:
which is absurd.

Therefore A8 is not equal to LO.
I say next that neither is 425 less than LO.
For, if possible, let it be so,
and let OP be made equal to A5, and OQ equal to BC,
and let PQ be joined.
Then, since 4B is equal to BC,
OP is also equal to 0Q,
so that the remainder L2 is equal to Q.

Therefore LM is parallel to PQ, ' [vi. 2]
and LZMO is equiangular with PQO ; (1. 29]
therefore, as OL is to LM, so is OP to PQ; [v1. 4]

and alternately, as LO is to OP, so is LM to PQ. [v. 16]
But LO is greater than OF;
therefore LA/ is also greater than PQ.
But LM was made equal to 4C;
therefore 4C is also greater than PQ.
Since, then, the two sides 4B, BC are equal to the two
sides PO, 0Q,
and the base 4C is greater than the base PQ,
therefore the angle ABC is greater than the angle POQ[ ]
L. 2§

Similarly we can prove that
the angle DEF is also greater than the angle #/ON,
and the angle GHK greater than the angle NVOL.

Therefore the three angles ABC, DEF, GHK are greater
than the three angles LOM, MON, NOL.

But, by hypothesis, the angles 48C, DEF, GHK are
less than four right angles;
therefore the angles LOM, MON, NOL are much less than
four right angles.
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But they are also equal to four right angles:
which is absurd.

Therefore A8 is not less than LO.
And it was proved that neither is it equal ;

therefore A28 is greater than LO.

Let then OR be set up from the point O at right angles
to the plane of the circle LMN, [x1. 12]

and let the square on OR be equal to that area by which
the square on A28 is greater than the square on LO; [Lemma]

let RL, RM, RN be joined.

Then, since RO is at right angles to the plane of the circle
LMN,

therefore RO is also at right angles to each of the straight
lines LO, MO, NO.

And, since LO is equal to OM,
while OR is common and at right angles,
therefore the base RLZ is equal to the base RM. [r 4]

For the same reason
RN is also equal to each of the straight lines RL, RM ;

therefore the three straight lines L, RM, RN are equal to
one another.

Next, since by hypothesis the square on OR is equal to
that area by which the square on AZB is greater than the
square on LO,

therefore the square on 48 is equal to the squares on LO, OR.

But the square on LR is equal to the squares on LO, OR,
for the angle LOR is right ; (1 47]
therefore the square on 4B is equal to the square on RL ;
therefore 4B is equal to RL.

But each of the straight lines BC, DE, EF, GH, HK is
equal to A5,

while each of the straight lines RM, RN is equal to RL ;

therefore each of the straight lines 48, BC, DE, EF, GH,
HK is equal to each of the straight lines RL, RM, RN.
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And, since the two sides LR, RM are equal to the two
sides AB, BC,
and the base LM is by hypothesis equal to the base 4C,
therefore the angle LRA/ is equal to the angle ABC. |1 8]

For the same reason
the angle RN is also equal to the angle DEF,
and the angle LR N to the angle GHK.

Therefore, out of the three plane angles LRM, MRN,
LRN, which are equal to the three given angles ABC, DEF,
GHK, the solid angle at R has been constructed, which is
contained by the angles ZRM, MRN, LRN.

Q. E. F.

LEMMA.

But how it is possible to take the square on O& equal to
that area by which the square on 428 is
greater than the square on L0, we can show c

as follows.
Let the straight lines A8, LO be
set out,

and let 428 be the greater ; A 8
let the semicircle A BC be described on A5,
and into the semicircle ABC let AC be fitted equal to the
straight line L O, not being greater than the diameter 45 [wv. 1]
let CB be joined.

Since then the angle ACA is an angle in the semicircle
ACB,

therefore the angle ACRA is right. [ 31]
Therefore the square on' AZ is equal to the squares on
AC, CB. [r. 47]

Hence the square on AZB is greater than the square on
AC by the square on CB.

But AC is equal to LO.

Therefore the square on 425 is greater than the square on
L O by the square on CAB.

If then we cut off OR equal to BC, the square on 48 will
be greater than the square on LZO by the square on OR.

Q E. F.

The whole difficulty in this proposition is the proof of a fact which makes
the construction possidle, viz. the fact that, if LM N be a triangle with sides
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respectively equal to the bases of the isosceles triangles which have the
given angles as vertical angles and the equal sides all of the same length, then
one of these equal sides, as 4B, is greater than the radius ZO of the circle
circumscribing the triangle ZMN.

Assuming that 4B is greater than L0, we have only to draw from O a
perpendicular OR to the plane of the triangle LMV, to make OR of such a
length that the sum of the squares on LZO, OR is equal to the square on 4B,
and to join KL, RM, RN. (The manner of finding OR such that the square
on it is equal to the difference between the squares on 48 and LO is shown
in the Lemma at the end of the text of the proposition. We have already
had the same construction in the Lemma after X. 13.)

Then clearly RL, RM, RN are equal to 4B and to one another [I. 4
and 1. 47]

There]fore the triangles LRM, MRN, NRL have their three sides
respectively equal to those of the triangles ABC, DEF, GHK respectively.

Hence their vertical angles are equal to the three given angles respectively;
and the required solid angle is constructed.

We return now to the proposition to be proved as a preliminary to the
construction, viz. that, in the figures, 4B is greater than ZO.

It will be observed that Euclid, as his manner is, proves it for one case
only, that, namely, in which O, the centre of the circle circumscribing the
triangle LZMN, falls within the triangle, leaving the other cases for the reader
to prove. As usual, however, the two other cases are found in the Greek text,
after the formal conclusion of the proposition, as above, ending with the words
dwep éde movjaar. This position for the proofs itself suggests that they are not
Euclid’s but are interpolated ; and this is rendered certain by the fact that
words distinguishing three cases at the point where the centre O of the
circumscribing circle is found, “It [the centre] will then be either within the
triangle LM or on one of its sides or without. First let it be within,” are
found in the Mss. B and V only and are manifestly interpolated. Nevertheless
the additional two cases must have been inserted very early, as they are found
in all the best mss.

In order to give a clear view of the proof of all three cases as given in the
text, we will reproduce all three (Euclid’s as well as the others) with abbrevia-
tions to make them catch the eye better.

In all three cases the proof is by reductio ad absurdum, and it is proved
first that 48 cannot be egual to LO, and secondly that 48 cannot be /ess
than LO.

Case I.

(1) Suppose, if possible, that 48 = LO.

Then AB, BC are respectively equal to LO, OM ;
and AC = LM (by construction).

Therefore LABC=L LOM.

Similarly L. DEF=0L MON,

Lt GHK =0 NOL.
Adding, we have
LtABC + L DEF+. GHK= LOM+ L. MON + . NOL
= four right angles :
which contradicts the hypothesis.
Therefore 48+ LO.
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(2) Suppose that 4B < LO.

Make OF, OQ (measured along OL, OM) each equal to 4B.

Thus, OZ, OM being equal also, it follows that

PQis || to LM.

Hence LM . PQ=LO: OP;
and, since LO > OP,
LM, ie. AC, > PQ.

Thus, in As POQ, ABC, two sides are equal to two sides, and base
AC > base PQ;

therefore LABC>.L POQ, ie rLOM.
Similarly L DEF> . MON,
LGHK>.L NOL,

and it follows by addition that
) L ABC + . DEF+ L GHK > (four right angles):
which again contradicts the hypothesis.

Case II.
(‘1) Suppose, if possible, that 48 = LO. L

Then (4B + BC), or (DE + EF)=MO + OL
“or TN
=DF: M N
which contradicts the hypothesis.
(2) The supposition that 48 < LO is even more v
impossible ; for in this case it would result that

DE + EF < DF.

Case III.

(1) Suppose, if possible, that 48 = LO.

Then, in the triangles ABC, LOM, two sides AB, BC are respectively
equal to two sides 2O, OM, and the bases
AC, LM are equal ;
therefore LABC=.LOM.

Similarly  GHK = NOL.

Therefore, by addition,

L MON=LABC+. GHK
: > . DEF (by hypothesis).

But, in the triangles DEF, MON, which

are equal in all respects,
L MON= . DEF.

But it was proved that « MON > DEF:

which is impossible.

(2) Suppose, if possible, that 48 < LO.
Along OZ, OM measure OP, OQ each equal to 45,
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Then LM, PQ are parallel, and
LM : PQ=LO: OF,
whence, since LZO > OP,
LM, or AC, > PQ.
Thus, in the triangles 48C, POQ,
LABC> L POQ, i.e. L LOM.
Similarly, by taking OR along O/ equal to 4B, we prove that
L GHK > . LON.
Now, at O, make . POS equal to L ABC, and L POT equal to
L GHK.
Make OS, OT each equal to OP, and join S7, SP, TP.
Then, in the equal triangles 4B8C, POS,

AC = PS,
so that LM = PS.
Similarly LN = PT.

Therefore in the triangles MLN, SPT, since . MLN > . SPT [this is
assumed, but should have been explained],
MN > ST,
or DF> ST.
Lastly, in As DEF, SOT, which have two sides equal to two sides, since
DF: ST,
L DEF>.LSOT
>¢ ABC + L GHK (by construction) :
which contradicts the hypothesis.
Simson gives rather different proofs for all three cases; but the essence of
tl;em1 can be put, I think, a little more shortly than in his text, as well as more
clearly.

Case I. (O within ALMN.)
(1) Let 4B be, if possible, equal to LO.

Then the As ABC, DEF, GHK must be identically equal to the As
LOM, MON, NOL respectively.

Therefore the vertical angles at O in the
latter triangles are equal respectively to the angles
at B, E, H.

The latter are therefore together equal to four

right angles :
which is impossible.
(2) If AB be less than LO, construct on the
bases ZM, MN, NL triangles with vertices
P, Q, R and identically equal to the As ABC,
DEF, GHK respectively.

H. E. IIL 21
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Then P, Q, R will fall within the respective angles at O, since PL = PM
and < L0, and similarly in the other cases.

Thus [1. 21] the angles at 2, Q, R are respectively greater than the angles
at O in which they lie.

Therefore the sum of the angles at P, Q, R, i.e. the sum of the angles at
B, E, H, is greater than four right angles:

which again contradicts the hypothesis.

Case II. (O lying on MN.)

In this case, whether (1) 48 = LO, or (2) AB < LO, a triangle cannot
be formed with MV as base and each of the other sides equal to 4B. In other
words, the triangle DEF either reduces,to a straight line or is impossible.

H
8
/\ E /\
£ cAc *®
L

Case III. (O lying outside the A LZMN.)
(1) Suppose, if possible, that 48 = LO.

Then the triangles LOM, MON, NOL are identically equal to the
triangles ABC, DEF, GHK. ’

Since LLOM+ L LON=r MON,
tABC+L GHK =L DEF:
which contradicts the hypothesis.

(2) Suppose that AB < OL.

Draw, as before, on LM, MN, NL as bases triangles with vertices 2, Q, R
and identically equal to the As 4BC, DEF, GHK.

Next, at &V on the straight line VR, make . RNS equal to the angle
PLM, cut off NS equal to LM and join RS, LS.

Then A VRS is identically equal to A LPM or & ABC.

Now (2LNR +L RNS)<(LNLO + . OLM),
that is, L LNS < L NLM.

Thus, in As LNS, NLM, two sides are equal to two sides, and the included
angle in the former is less than the included angle in the other.

Therefore LS <MN.
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Hence, in the triangles #/QN, LRS, two sides are equal to two sides, and
MN> LS.

Therefore LMQN>rL LRS
>(LLRN+L SRN)
>(LLRN+ L LPM).

That is, LDEF>(LGHK+LABC):

which is impossible.
8
E
A [ D F

ProposITION 24.

1f a solid be contained by parallel planes, the opposite planes.
in it are equal and parallelogrammic.

For let the solid CDH G be contained by the parallel planes
AC, GF, AH, DF, BF, AE;
I say that the opposite planes B H
in it are equal and parallelo-
grammic. o
For, since the two parallel AT\ \
planes BG, CE are cut by the c
plane 4C,
their common sections are ) E
parallel. [x1 16]

21—2
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Therefore AR is parallel to DC.

Again, since the two parallel planes BF, AE are cut by
the plane 4C,
their common sections are parallel. [x1 16]
Therefore BC is parallel to AD.
But A8 was also proved parallel to DC;
therefore AC is a parallelogram.

Similarly we can prove that each of the planes DF, FG,
GB, BF, AE is a parallelogram.

Let AH, DF be joined.

Then, since A8 is parallel to DC, and BH to CF,
the two straight lines 48, BH which meet one another are
parallel to the two stralght lines DC, CF which meet one
another, not in the same plane ;
therefore they will contain equal angles ; [xl. 10]
therefore the angle A B/ is equal to the angle DCF.

And, since the two sides 4B, BH are equal to the two
sides DC, CF, [r. 34]
and the angle 4B/ is equal to the angle DCF,
therefore the base 4/ is equal to the base DF,
and the triangle A8/ is equal to the triangle DCF. (1 4]

And the parallelogram ZG is double of the triangle 4 8H,
and the parallelogram C£ double of the triangle DCF; [1. 34]

therefore the parallelogram BG is equal to the parallelo-
gram CE.

Similarly we can prove that
AC is also equal to GF,
and AE to BF.

Therefore etc.
Q. E. D.

As Heiberg says, this proposition is carelessly enunciated. Euclid means
a solid contained by six planes and not more, the planes are parallel #wo and
two, and the opposite faces are equal in the sense of identically equal, or, as
Simson puts it, equal and similar. The similarily is necessary in order to
enable the equality of the parallelepipeds in the next proposition to be inferred
from the roth definition of Book x1. Hence a better enunciation would be:

If a solid be contained by six planes parallel two and two, the opposite faces
respectively are equal and similar parallelograms.

The proof is simple and requires no elucidation.
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ProrosiTION 25.

If a parallelepipedal solid be cut by a plane whick is
Dparallel to the opposite planes, then, as the base is to the base, so
will the solid be to the solid.

" For let the parallelepipedal solid ABCD be cut by the
plane G which is parallel to the opposite planes R4, DH ;

I say that, as the base 4 EFV is to the base £HCF, so is the
solid ABFU to the solid £GCD.

X Q R u D Y T

AV W

LA A AL
YV Y

let any number of straight lines whatever, 4 X, KL, be made
equal to AE,

and any number whatever, AM, MN, equal to £H ;

and let the parallelograms ZP, KV, HW, MS and the solids
LQ, KR, DM, MT be completed.

Then, since the straight lines LK, KA, AE are equal to
one another,

the parallelograms L P, KV, A F are also equal to one another,
KO, KB, AG are equal to one another,

and further LX, KQ, AR are equal to one another, for they
are opposite. [x1. 24]

L K A E H N

For the same reason
the parallelograms £C, A W, MS are also equal to one another,
HG, HI, IN are equal to one another,
and further DA, MY, NT are equal to one another.

Therefore in the solids LQ, KR, AU three planes are
equal to three planes.
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But the three planes are equal to the three opposite ;

therefore the three solids LQ, KR, AU are equal to one
another.

For the same reason
the three solids £D, DM, MT are also equal to one another.

Therefore, whatever multiple the base LZF is of the base
AF, the same multiple also is the solid Z U of the solid A U.

For the same reason,

whatever multiple the base NV is of the base #/, the same
multiple also is the solid VU of the solid A U.

And, if the base L F is equal to the base V£, the solid LU
is also equal to the solid NU;

if the base L/F exceeds the base NF, the solid LU also
exceeds the solid NU;

and, if one falls short, the other falls short.

Therefore, there being four magnitudes, the two bases
AF, FH, and the two solids AU, UH,

equimultiples have been taken of the base 4/ and the solid
AU, namely the base Z/ and the solid Z U,

and equimultiples of the base Z7F and the solid Z U, namely
the base V" and the solid N U,

and it has been proved that, if the base L F exceeds the base
FN, the solid L U also exceeds the solid N U,

if the bases are equal, the solids are equal,
and if the base falls short, the solid falls short.

Therefore, as the base A7 is to the base F/, so is the
solid 4 U to the solid UA. [v. Def. 5]

Q. E. D.

It is to be observed that, as the word parallelogrammic was used in Book 1.
without any definition of its meaning, so wapaAAyAeriwedos, parallelepipedal, is
here used without explanation. While it means simply “with parallel planes,”
i.e. “faces,” the term is appropriated to the particular solid which has six
plane faces parallel two and two. The proper translation of orepeov
wapaA\yAeniredov is parallelepipedal solid, not solid parallelepiped, as it is
usually translated. Still less is the solid a parallelopiped, as the word is not
uncommonly written.

The opposite faces in each set of parallelepipedal solids in this proposition
are not only equal but equal and similar. Euclid infers that the solids in each
set are equal from Def. 10; but, as we have seen in the note on Deff. g, 10,
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though it is true, where no solid angle in the figures is contained by more
than three plane angles, that two solid figures are equal and similar which are
contained by the same number of equal and similar faces, similarly arranged,
the fact should have been proved. To do this, we have only to prove the
proposition, given above in the note on xI. 21, that fwo trikedral angles are
equal tf the three face angles of the one are respectively equal to the three face
angles tn the other, and all are arranged in the same order, and then to prove
equality by applying one figure to the other as is done by Simson in his
proposition C.

Application will also, of course, establish what is assumed by Euclid of
the solids formed by the multiples of the original solids, namely that, if

LF?Z NF, the solid LU 7 the solid NU.

ProrosiTION 26.

On a given straight line, and at a given point on it, to
construct a solid angle equal to a given solid angle.

Let 4B be the given straight line, 4 the given point on
it, and the angle at D, contained by the angles £DC(, EDF,
FDC, the given solid angle ;

thusiit is required to construct on the straight line 45, and at
the point A on it, a solid angle equal to the solid angle at D.

H

For let a point # be taken at random on DFZ,

let /G be drawn from F perpendicular to the plane through
ED, DC, and let it meet the plane at G, [x1. 11]

let DG be joined,

let there be constructed on the straight line 45 and at the
point 4 on it the angle AL equal to the angle £DC, and
the angle BA K equal to the angle £DG, [ 23]

let AK be made equal to DG,
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let KA be set up from the point K at right angles to the
plane through BA, AL, [x1 12]

let KA be made equal to GZ,
and let /A be joined ;

I say that the solid angle at A4, contained by the angles BAL,
BAH; HAL is equal to the solid angle at D contained by
the angles £DC, EDF, FDC.

For let A8, DE be cut off equal to one another,
and let #B, KB, FE, GE be joined.

Then, since FG is at right angles to the plane of reference,
it will also make right angles with all the straight lines which
meet it and are in the plane of reference ; [x1. Def. 3]

therefore each of the angles #GD, FGE is right.
For the same reason

each of the angles ZKA, HKRZ is also right.

And, since the two sides K4, A8 are equal to the two
sides GD, DE respectively,

and they contain equal angles,

therefore the base X8 is equal to the base GE. (1 4]
But K/ is also equal to GF,

and they contain right angles;

therefore /B is also equal to FE. [ 4]

Again, since the two sides AKX, K/ are equal to the two
sides DG, GF, '

and they contain right angles,
therefore the base 4/ is equal to the base FD. [r. 4]
But 427 is also equal to DE;

therefore the two sides ZA4, AB are equal to the two sides
DF, DE.

And the base A5 is equal to the base F£;
therefore the angle BA/ is equal to the angle EDF.  [u 8]

For the same reason
the angle /7AL is also equal to the angle FDC.

And the angle BAL is also equal to the angle £DC.
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Therefore on the straight line 4.3, and at the point 4 on
it, a solid angle has been constructed equal to the given solid
angle at D.

Q E.F.

This proposition again assumes the equality of two trihedral angles which
have the three plane angles of the one respectively equal to the three plane
angles of the other taken in the same order.

ProrosiTION 27.

On a given straight line to describe a parallelepipedal solid
similar and similarly situated to a given parallelepipedal solid.

Let AB be the given straight line and CD the given
parallelepipedal solid ;
thus it is required to describe on the given straight line 48
a parallelepipedal solid similar and similarly situated to the
given parallelepipedal solid CD.

i ’
— =

For on the straight line 42 and at the point 4 on it let
the solid angle, contained by the angles BAH, HAK, KAB,
be constructed equal to the solid angle at C, so that the angle
BAH is equal to the angle £CF, the angle BAK equal to
the angle £CG, and the angle KA/ to the angle GCF';

and let it be contrived that,
as £Cis to CG, so is BA to AK,

and, as GCis to CF,sois KA to AH. [vi. 12]
Therefore also, ex aegual,
as ECisto CF,sois BA to AH. [v. 22]

Let the parallelogram /B and the solid AL be completed.

Now since, as £C is to CG, so is BA to AK,

and the sides about the equal angles £CG, BAK are thus
proportional,
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therefore the parallelogram GZ is similar to the parallelo-
gram KB.

For the same reason
the parallelogram K/7 is also similar to the parallelogram G 7,
and further FE to HB;
therefore three parallelograms of the solid CD are similar to
three parallelograms of the solid AL.

But the former three are both equal and similar to the
three opposite parallelograms,
and the latter three are both equal and similar to the three
opposite parallelograms ;
therefore the whole solid CD is similar to the whole solid A L.

[x1. Def. 9]

Therefore on the given straight line 43 there has been
described 4L similar and similarly situated to the given
parallelepipedal solid CD.

Q. E. F.

ProrosiTioN 28.

If a parallelepipedal solid be cut by a plane through the
diagonals of the opposite planes, the solid will be bisected by the
Dplane.

For let the parallelepipedal solid A5 be cut by the plane
CDEF through the diagonals CF, DE of

opposite planes; 8 F
I say that the solid 45 will be bisected by
the plane CDEF. H

For, since the triangle CGF is equal A
to the triangle CF25, [ 34]
and ADE to DEH, A

while the parallelogram CA is also equal

to the parallelogram £, for they are opposite,

and GE to CH,

therefore the prism contained by the two triangles CGZ,
ADE and the three parallelograms G £, AC, CE is also equal
to the prism contained by the two triangles C#B, DEH and
the three parallelograms CH, BE, CE;
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for they are contained by planes equal both in multitude and

in magnitude. [x1. Def. 10]
Hence the whole solid 42 is bisected by the plane CDEF.
Q. E. D.

Simson properly observes that it ought to be proved that the diagonals of
two opposite faces are in one plane, before we speak of drawing a plane
through them. Clavius supplied the proof, which is of course simple enough.

Since £F, CD are both parallel to 4G or BH, they are parallel to one
another.

Consequently a plane can be drawn through CD, EF and the diagonals
DE, CF are in that plane [x1. 7]. Moreover CD, EF are equal as well as
parallel ; so that C#, DE are also equal and parallel.

Simson does not, however, seem to have noticed a more serious difficulty.
The two prisms are shown by Euclid to be contained by equal faces—the faces
are in fact equal and similar—and Euclid then infers at once that the prisms
are equal. But they are not equal in the only sense in which we have, at
present, a right to speak of solids being equal, namely in the sense that they
can be applied, the one to the other. They cannot be so applied because the
faces, though equal respectively, are not similarly arranged ; consequently the
prisms are symmetrical, and it ought to be proved that they are, though not
equal and similar, equal in content, or eyuivalent, as Legendre has it. :

Legendre addressed himself to proving that the two prisms are equivalent,
and his method has been adopted, though his
name is not mentioned, by Schultze and Seven-
oak and by Holgate. Certain preliminary pro-
positions are necessary.

1. The sections of a prism made by parallel
Dlanes culting all the lateral edges are equal
polygons.

Suppose a prism MV cut by parallel planes
which make sections ABCDE, A'B'CDE'.

NowAB,BC, CD, ... arerespectively parallel
to A'B, BC', C'D,.... XI. 16]

Therefore the angles 4BC, BCD, ... are
equal to the angles 4'B8'C’, B'C'D), ... respec-

tively. ¥x1. 10]
Also AB, BC, CD, ... are respectively equal
to A'F, BC', C'D,.... [1 34]

Thus the polygons ABCDE, A'B'C'D'E’ are equilateral and equiangular
to one another. .

2. Two prisms are equal when they have a solid angle in eack contained by
three faces equal eack to eack and similarly arranged.

Let the faces ABCDE, AG, AL be equal and similarly placed to the
faces ABCDE, AG, AL.
Since the three plane angles at 4, A4’ are equal respectively and are
similarly placed, the trihedral angle at 4 is equal to the trihedral angle at 4'.
[(3) in note to x1. 21]
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Place the trihedral angle at 4 on that at 4",

Then the face ABCDE coincides with the face 4A’B'C' D' E’, the face AG
with the face 4’'G’, and the face 4L with the face 4'Z’.

The point C falls on C’ and D on D'

‘

OF---femmeee YR
N

P O I,

A B A '

Since the lateral edges of a prism are parallel, CH will fall an C'A’, and
DKon DK'.

And the points %, G, L coincide respectively with #/*, G', L', so that

the planes GX, G'K’ coincide.

Hence A, X coincide with A’, KX’ respectively.

Thus the prisms coincide throughout and are equal.

In the same way we can prove that two fruncated prisms with three faces
forming a solid angle related to one another as in the above pgoposition are
identically equal.

In particular,

Cor. Two right prisms having equal bases and equal heights are equal.

3. An obligue prism is equivalent to a right prism whose base is a right
section of the obligue prism and whose
height is equal to a lateral edge of the
obligue prism.

Suppose G'L to be a right section of
the oblique prism 42, and let GZ’ be
a right prism on GZ as base and with
height equal to a lateral edge of 4.0

Now the lateral edges of GLZ' are
equal to the lateral edges of 4D'.

Therefore AG=A'G', BH=BH',
CK=CK, etc.

Thus the faces AH, BK, CL are
equal respectively to the faces A'H’,

K, C'L.

Therefore [by the proposition
above]

(truncated prism 4 Z) = (truncated

prism 4'L’).

Subtracting each from the whole solid 4Z’, we see that

the prisms 420, GL' are equivalent.
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Now suppose the parallelepiped of Euclid’s proposition to be cut by the
plane through 4G, DF.

Let XZM N be a right section of the parallelepiped
cutting the edges 4D, BC, GF, HE.

Then KLZMN is a parallelogram; and, if the
diagonal XM/ be drawn,

AKLM =0 MNK.

Now the prism of which the As 4BG, DCF are
the bases is equal to the right prism on AKZM as
base and of height 4.D.

Similarly the prism of which the As AGH, DFE
are the bases is equal to the right prism on A MNK

as base and with height 4D. [(3) above]
And the right prisms on As KZM, MNK as bases and of equal height
AD are equal. [(2), Cor. above]

Consequently the two prisms into which the parallelepiped 1s divided are
equivalent.

ProrosITION 29.

Parallelepipedal solids whick are on the same base and of
the same height, and in whick the extremities of the sides which
stand up are on the same straight lines, are equal to one
another.

Let CM, CN be parallelepipedal solids on the same base
AB and of the same height,

and let the extremities of their | H K

sides which stand up, namely F\ RG M\\ JXN

AG, AF, LM, LN, CD, CE,
BH,BK,be on the same straight
lines FNV, DK ;

A

I say that the solid CA/ is equal
to the solid CV.

For, since each of the figures
CH, CK is a parallelogram, CB
is equal to each of the straight lines DA, EK ; (1. 34]

hence DH is also equal to £K.
Let £/ be subtracted from each ;
therefore the remainder DE is equal to the remainder 7K.

Hence the triangle DCE is also equal to the triangle
HBK, (1. 8 4]

and the parallelogram DG to the parallelogram ZAN. [1 36]

L



334 BOOK XI [x1. 29, 30

For the same reason
the triangle 4FG is also equal to the triangle A/LN.

But the parallelogram CF'is equal to the parallelogram B/,
and CG to BN, for they are opposite ;
therefore the prism contained by the two triangles AFG, DCE
and the three parallelograms 40D, DG, CG is equal to the
prism contained by the two triangles MLN, A/BK and the
three parallelograms BM, HN, BN.

Let there be added to each the solid of which the
parallelogram A2 is the base and GEHM its opposite ;
therefore the whole parallelepipedal solid CA/ is equal to the
whole parallelepipedal solid CA.

Therefore etc.
Q. E. D.

As usual, Euclid takes one case only and leaves the reader to prove for
himself the two other possible cases shown in the subjoined figures. Euclid’s
proof holds with a very slight change in each case. With the first figure, the

o] HE K D H E K
N AN
2 M

A L

only difference is that the prism of which the As GAL, ECB are the bases
takes the place of “the solid of which the parallelogram 48 is the base and
GEHM its opposite” ; while with the second figure we have to subtract the
prisms which are proved equal successively from the solid of which the
parallelogram 425 is the base and FDKMN its opposite.

Simson, as usual, suspects mutilation by *some unskilful editor,” but gives
a curious reason why the case in which the two parallelograms opposite to
AB have a side common ought not to have been omitted, namely that this
case “is immediately deduced from the preceding 28th Prop. which seems for
this purpose to have been premised to the 2gth.” But, apart from the fact that
Euclid’s Prop. 28 does nof prove the theorem which it enunciates (as we have
seen), that theorem is not in the least necessary for the proof of this case of
Prop. 29, as Euclid’s proof applies to it perfectly well.

ProrposiTION 30.

Parallelepipedal solids whick are on the same base and of
the same height, and in whick the extremities of the sides whick
stand up are not on the same straight lines, are equal to one
another.
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Let CM, CN be parallelepipedal solids on the same base
AB and of the same height,

and let the extremitiesof their
sides which stand up, namely
AF, AG, LM,LN, CD, CE,
BH, BK, not be on the same
straight lines ;

I say that the solid CM is
equal to the solid CNV.

For let NK, DH be pro-
duced and meet one another
at R,

and further let #M, GE be
produced to 2, Q;

let A0, LP, CQ, BR be joined.

Then the solid CM, of which the parallelogram 4ACBL is
the base, and FDHM its opposite, is equal to the solid C2,
of which the parallelogram ACABL is the base, and OQRP its
opposite ;
for they are on the same base 4 CBL and of the same height,
and the extremities of their sides which stand up, namely 4 #,
AO, LM, LP, CD, CQ, BH, BR, are on the same straight
lines 7P, DR. [xr. 29]

But the solid C2, of which the parallelogram ACBL is
the base, and OQRP its opposite, is equal to the solid CN,
of which the parallelogram ACBL is the base and GEKN its
opposite ;
for they are again on the same base ACBL and of the same
height, and the extremities of their sides which stand up,
namely AG, A0, CE, CQ, LN, LP, BK, BR, are on the
same straight lines GQ, NVR.

Hence the solid CA/ is also equal to the solid CA.

Therefore etc.

Q E. D.
This proposition completes the proof of the theorem that
Two parallelepipeds on the same base and of the same height are equivalent.
Legendre deduced the useful theorem that

Every parallelepiped can be changed into an equivalent rectangular parallele-
piped having the same height and an equivalent base.

For suppose we have a parallelepiped on the base ABCD with £FGH for
the opposite face.
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Draw A7, BK, CL, DM perpendicular to the plane through £ZFGH and
all equal to the height of the parallelepiped 4G. Then, on joining /X, KZ,
LM, M1, we have a parallelepiped equivalent to the original one and having
its lateral faces 4K, BL, CM, DI rectangles.

If ABCD is not a rectangle, draw 40, DN in the plane 4C perpendicu-
lar to BC, and /P, MQ in the plane /L perpendicular to XZ.

Joining OP, NQ, we have a rectangular parallelepiped on 4OND as base
which is equivalent to the parallelepiped with 4BCD as base and JKXLM as
opposite face, since we may regard these parallelepipeds as being on the same
base ADMI and of the same height (40). '

That is, a rectangular parallelepiped has been constructed which is
equivalent to the given parallelepiped and has (1) the same height, (2) an
equivalent base.

The American text-books which I have quoted adopt a somewhat different
construction shown in the subjoined figure.

The edges 4B, DC, EF, HG of the original parallelepiped are produced
and cut at right angles by two parallel planes at a distance apart 4'53’ equal
to 45.

Thus a parallelepiped is formed in which all the faces are rectangles except
AH, BG.
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Next produce 2/ 4', C'B', G'F', H'E' and cut them perpendicularly by two
parallel planes at a distance apart B”C” equal to B'C".

The points of section determine a recfangular parallelepiped.

The equivalence of the three parallelepipeds is proved, not by Eucl. x1.
29, 30, but by the proposition about a right section of a prism given above in
the note to x1. 28 (3 in that note).

ProposiTION 3I.

Parallelepipedal solids whick ave on equal bases and of the -
same height are equal to one another. '

Let the parallelepipedal solids 4 £, CF, of the same height,
be on equal bases A5, CD.
I say that the solid A is equal to the solid C#.

Q F |

] |

avalVanv

X
H
N
W
First, let the sides which stand up, ZXK, BE, AG, LM,
PQ, DF, CO, RS, be at right angles to the bases 458, CD;

let the straight line R7 be produced in a straight line
with CR;

on the straight line &7, and at the point & on it, let the
angle 7R U be constructed equal to the angle ALB, [i 23]
let R7" be made equal to AL, and RU equal to LB,

and let the base 2/ and the solid X U be completed.

Now, since the two sides 7R, RU are equal to the two
sides AL, LB,

and they contain equal angles,

therefore the parallelogram R W is equal and similar to the
parallelogram AL.

Since again AL is equal to R7, and LM to RS,
and they contain right angles,

H. E. IIL. 22
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therefore the parallelogram RX is equal and similar to the
parallelogram 4 M.

For the same reason
LE is also equal and similar to SU;

therefore three parallelograms of the solid AZ£ are equal and
similar to three parallelograms of the solid X U.

But the former three are equal and similar to the three
opposite, and the latter three to the three opposite;  [x1. 24]

therefore the whole parallelepipedal solid A£ is equal to the
whole parallelepipedal solid X U. [x1. Def. 10]

Let DR, WU beé drawn through and meet one another
at ¥,

let @7% be drawn through 7 parallel to DY,
let 2D be produced to a, )
and let the solids Y'.X, R/ be completed.

Then the solid X ¥, of which the parallelogram RX is the
base and Y its opposite, is equal to the solid XU of which
the parallelogram RX is the base and UV its opposite,

for they are on the same base X and of the same height, and
the extremities of their sides which stand up, namely R Y, RU,
76, TW, Se, Sd, X¢, XV, are on the same straight lines
YW, eV. [x1. 29]

But the solid XU is equal to AE ;
therefore the solid XV is also equal to the solid 4£.

And, since the parallelogram RUWT is equal to the
parallelogram Y7,

for they are on the same base 7 and in the same parallels
RT, YW, 1 35]
while RUWT is equal to CD, since it is also equal to 425,
therefore the parallelogram ¥'7 is also equal to CD.
But D7 is another parallelogram;
therefore, as the base CD isto D7, sois Y7 to D7. [v.17]
And, since the parallelepipedal solid C/ has been cut by
the plane £ which is parallel to opposite planes,
as the base’CD is to the base D7, so is the solid CF to the
solid R/. [x1. 25]
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For the same reason,

since the parallelepipedal solid ¥/ has been cut by the plane
RX which is parallel to opposite planes,

as the base Y7 is to the base 7D, so is the solid Y X to the
solid R/. [xt. 25]

But, as the base CD isto D7, sois YT to DT ;

therefore also, as the solid CF is to the solid R/, so is the
solid Y'.X to R/. [v. 11]

Therefore each of the solids CF, ¥X has to R/ the same
ratio ;
therefore the solid CF is equal to the solid VX. [v. 9]
But VX was proved equal to A£;
therefore AE is also equal to CF.

Next, let the sides standing up, 4G, HK, BE, LM, CN,
PQ, DF, RS, not be at right angles to the bases A8, CD;

I say again that the solid 4 £ is equal to the solid CZ

G K Q F

NSl Wk

L 8 c R

m
2

For from the points X, £, G, M, Q, F, N, Slet KO, ET,
GU MV, QW, FX, NY, S/ be drawn perpendicular to the
plane of reference, and let them meet the plane at the points
O, UV, WX,Y,/1
and let O7, OU, UV, TV, WX, WY, YI, /X be joined.

Then the solid X'V is equal to the solid Q/,
for they are on the equal bases KM, Q.S and of the same
height, and their sides which stand up are at right angles to

their bases. [First part of this Prop.]
But the solid KV is equal to the solid AE,
and Q7 to CF;

for they are on the same base and of the same height, while
the extremities of their sides which stand up are not on the
same straight lines. [x1. 30]

22—2
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Therefore the solid A £ is also equal to the solid CZ.

Therefore etc.
Q. E. D.

It is interesting to observe that, in the figure of this proposition, the bases
are represented as lying “in the plane of the paper,” as it were, and the third
dimension as ‘“standing up” from that plane. The figure is that of the
manuscript P slightly corrected as regards the solid 4£.

Nothing could well be more ingenious than the proof of this proposition,
which recalls the brilliant proposition 1. 44 and the proofs of vI. 14 and 23.

As the proof occupies considerable space in the text, it will no doubt be
well to give a summary.

I. First, suppose that the edges terminating at the angular points of the
bases are perpendicular to the bases.

AB, CD being the bases, Euclid constructs a solid identically equal to
AE (he might simply have moved AE itself), placing it so that &S is the edge
corresponding to K (RS=HK because the heights are equal), and the face
RX corresponding to A is in the plane of CS.

The faces CD, R W are in one plane because both are perpendicular to
RS. Thus DR, WU meet, if produced, in ¥ say.

Complete the parallelograms Y7, D7 and the solids YX, F7.

Then (solid ¥YX) = (solid UX),
because they are on the same base S7"and of the same height. [x1 29]

Also, C7, YT being parallelepipeds cut by planes K%, RX parallel to pairs
of opposite faces respectively,
(solid CF) : (solid R/)=[7 CD :[7 DT, [x1. 25]
and (solid ¥X) : (solid R/)=7 YT:[J DT.
But [1. 35] OoYr=ogur
=[JAB
. =[3J CD, by hypothesis.
Therefore (solid CF) = (solid YX)
=(solid UX)
= (solid 4E).
II. If the edges terminating at the base are 7o# perpendicular to it, turn
each solid into an equivalent one on the same base with edges perpendicular
to it (by drawing four perpendiculars from the angular points of the base to

the plane of the opposite face). (x1. 29, 30 prove the equivalence.)
Then the equivalent solids are equal, by Part 1.; so that the original solids

are also equal.

Simson observes that Euclid has made no mention of the case in which
the bases of the two solids are egusangular, and he prefixes this case to Part 1.
in the text. This is surely unnecessary, as Part 1. covers it well enough : the
only difference in the figure is that W would coincide with Y5 and 4V
with e.

Simson further remarks that in the demonstration of Part 11. it is not
proved that the new solids constructed in the manner described are parallele-
pipeds. The proof is, however, so simple that it scarcely needed insertion
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into the text. He is correct in his remark that the words “while the
extremities of their sides which stand up are not on the same straight lines”
just before the end of the proposition would be better absent, since they may
be “on the same straight lines.”

ProrposiTION 32.

Parallelepipedal solids whick are of the same height are to
one another as their bases.
Let AB, CD be parallelepipedal solids of the same height;

I say that the parallelepipedal solids 4B, CD are to one
another as their bases, that is, that, as the base A£ is to the
base CF, so is the solid 428 to the solid CD.

=i

For let #H equal to AE be applied to FG, [r. 45)
and on /A as base, and with the same height as that of CD,
let the parallelepipedal solid GKX be completed.

Then the solid 42 is equal to the solid GKX;
for they are on equal bases A, FH and of the same heighti

[x1 31

And, since the parallelepipedal solid CX is cut by the plane
DG which is parallel to opposite planes,
therefore, as the base CF is to the base FH, so is the solid
CD to the solid DAH. [x1. 25]

But the base 7/ is equal to the base AZ,
and the solid GK to the solid A5;

therefore also, as the base A is to the base CF, so is the
solid A A8 to the solid CD.

Therefore etc.
Q. E. D.

As Clavius observed, Euclid should have said, in applying the parallelo-
gram FH to FG, that it should be applied “in the angle FGH equal to the
angle LCG.” Simson is however, I think, hypercritical when he states as
regards the completion of the solid GX that it ought to be said, ‘“ complete
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the solid of which the base is FH, and one of its insisting straight lines is FD.”
Surely, when we have two faces DG, FH meeting in an edge, to say ‘“complete
the solid” is quite sufficient, though the words “on FA as base” might
perhaps as well be left out. The same “completion” of a parallelepipedal
solid occurs in x1. 31 and 33.

ProrosiTION 33.
Similar parallelepipedal solids are to one another in the
triplicate ratio of their corresponding sides.
Let AB, CD be similar parallelepipedal solids,
and let A be the side corresponding to CF;

I say that the solid 423 has to the solid CD the ratio triplicate
of that which 4 £ has to CF.

£\ A A
g

VWA

L

For let £K, EL, EM be produced in a straight line with
AE, GE, HE,

let £X be made equal to CF, EL equal to N, and further
EM equal to FR,

and let the parallelogram KL and the solid X7 be completed.

Now, since the two sides KZ, EL are equal to the two
sides CF, FN, :
while the angle KEL is also equal to the angle CFWN,
inasmuch as the angle A£G is also equal to the angle CFN
because of the similarity of the solids 45, CD,
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therefore the parallelogram KL is equal < and similar> to the
parallelogram CV.

For the same reason
the parallelogram KM/ is also equal and similar to CR,
and further £P to DF;

therefore three parallelograms of the solid A7 are equal and
similar to three parallelograms of the solid CD.

But the former three parallelograms are equal and similar
to their opposites, and the latter three to their opposites; [x1. 24]

therefore the whole solid X2 is equal and similar to the whole
solid CD. _ [x1. Def. 10]

Let the parallelogram G X be completed,

and on the parallelograms GK, KL as bases, and with the
same height as that of 4B, let the solids £0, LQ be
completed.

Then since, owing to the similarity of the solids 4.5, CD,
as AE is to CF, so is EG to FN, and EH to FR,
while CF is equal to £K, FN to EL, and FR to EM,
therefore, as AE is to EK, so is GE to EL, and HE to EM.

But, as AE is to £K, so is AG to the parallelogram GX,
as GEisto EL,sois GK to KL,
and, as AE isto EM, sois QF to KM ; [ve 1]
therefore also, as the parallelogram 4G is to GK so is GK
to KL, and QF to KM.

But, as AG is to GK, so is the solid 4B to the solid £0,
as GK is to KL, so is the solid OF to the solid O,
and, as OQF is to KM, so is the solid QL to the solid K7 ;

[x1. 32]
therefore also, as the solid A8 is to £0, so is £O to QL, and
QL to KP.

But, if four magnitudes be continuously proportional, the
first has to the fourth the ratio triplicate of that which it has
to the second ; [v. Def. 10]
therefore the solid A8 has to K7 the ratio triplicate of that
which A28 has to £0.

But, as A8 is to EO, so is the parallelogram 4G to GX,
and the straight line A£ to £K [vi. 1];
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hence the solid A3 has also to K2 the ratio triplicate of that
which A £ has to EX.

But the solid X7 is equal to the solid CD,
and the straight line £K to CF;

therefore the solid 473 has also to the solid CD the ratio
triplicate of ghat which the corresponding side of it, AZ, has
to the corresponding side CF.

Therefore etc.
Q. E. D.

PorisM., From this it is manifest that, if four straight
lines be < continuously > proportional, as the first is to the
fourth, so will a parallelepipedal solid on the first be to the
similar and similarly described parallelepipedal solid on the
second, inasmuch as the first has to the fourth the ratio
triplicate of that which it has to the second.

The proof may be summarised as follows.
The three edges AE, GE, HE of the parallelepiped 4.8 which meet at
ZE, the vertex corresponding to & in the other parallelepiped, are produced,
and lengths £X, KL, EM are marked off equal respectively to the edges CZ
FN, FR of CD.
The parallelograms and solids are then completed as shown in the figure.
Euclid first shows that the solid CD and the new solid PX are equal and
similar according to the criterion in x1. Def. 10, viz. that they are contained
by the same number of equal and similar planes. (They are arranged in the
same order, and it would be easy to prove equality by proving the equality of
a pair of solid angles and then applying one solid to the other.)
We have now, by hypothesis,
 AE:CF=EG:FN=EH: FR:
that is, AE : EX=FEG:EL=EFEH:EM
But AE  EX - [JAG :OGK, [vi 1]
EG: EL=0GK:CC KL,
EH:EM=C HK :O K.
Again, by X1 25 or 32,
T AG:T GK = (solid 4F) : (solid £0),
T GK : = KL = (sohid £0) : (solid QL).
T HK . KM = (solid QL) : (solid A7)
Therefore
(solid A8 : (solid £0) = (solid £0): (solid QL) = (solid QL) : (salid KA,
or the solid 4A is to the solid AP (that is, CD) in the ratio trplicate of that
which the sohd 44 has to the solid £0, ie. the ratio triplicate of that which
AE has o AR (or CFL
Heiberg doubts whether the Portsm appended to this propesion s
genune,
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Simson adds, as Prop. D, a useful theorem which we should have expected
to find here, on the analogy of vi. 23 following VI. 19, 20, viz. that Solid
parallelepipeds contained by parallelograms equiangular to one another, each to
each, that is, of which the solid angles are equal, each to each, have to one another
the ratio compounded of the ratios of their sides.

The proof follows the method of the proposition xI1. 33, and we can use
the same figure. In order to obtain one ratio between lines to represent the
ratio compounded of the fatios of the sides, after the manner of vi. 23, we
take any straight line a, and then determine three other straight lines 5, ¢, 4,
such that

AE : CF=a: ¢,
EG:FN=b:.q,
EH: FR=c.d,
whence a : & represents the ratio compounded of the ratios of the sides.
We obtain, in the same manner as above,

(solid 4B): (solid £EO)=(TAG :[J GK=AE: EK=AE:CF

=a:b,
(solid £0) : (solid QL)=(T7 GK :[J KL =GE:EL=GE:FN

=b:q
(solid QZ): (solid KP)=(J HK:(O KM=EH:EM=EH: FR

=c:d,

whence, by composition [v. 22],
(solid 4B) : (solid KP)=a:d,
or (solid 4B): (solid CD) =a:d.

ProrosiTION 34. :

In equal parallelepipedal solids the bases are reciprocally
proportional to the heights,; and those parallelepipedal solids in
which the bases ave rveciprocally proporvtional to the heights are
equal. .

Let AB, CD be equal parallelepipedal solids ;

I say that in the parallelepipedal solids 48, CD the bases are
reciprocally proportional to the heights,

that is, as the base £/ is to the base NVQ, so is the height
of the solid CD to the height of the solid 4.25.

First, let the sides which stand up, namely AG, EF, LB,
HK, CM, NO, PD, QR, be at right angles to their bases ;

I say that, as the base £/ is to the base NQ, so is CM
to AG.

If now the base £4 is equal to the base NQ,
while the solid 428 is also equal to the solid CD,
CM will also be equal to 4AG.
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For parallelepipedal solids of the same height are to
one another as the bases; [x1. 32)

and, as the base £/H is to NQ, so will CM be to AG,

and it is manifest that in the parallelepipedal solids 4B, CD
the bases are reciprocally proportional to the heights.

Next, let the base £/7 not be equal‘to the base NV Q,
but let £/ be greater.
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Now the solid 4B is equal to the solid CD;
therefore CA/ is also greater than AG.
Let then C7 be made equal to 4G,

and let the parallelepipedal solid ’C be completed on NVQ as
base and with C7 as height.

Now, since the solid 42 is equal to the solid CD,
.and CV is outside them,
while equals have to the same the same ratio, [v. 7]

therefore, as the solid A28 is to the solid CV, so is the solid
CD to the solid CV.

But, as the solid A48 is to the solid CV, so is the base
EH to the base NQ,

for the solids A8, CV are of equal height; [x1 32]

and, as the solid CD is to the solid CV, so is the base MQ to
the base 7°Q [x1. 25] and CM to C7 [v1. 1];

therefore also, as the base £/ is to the base NQ, so is MC
to C7.

But C7 is equal to AG;

therefore also, as the base £/ is to the base NQ, sois MC
to AG.
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Therefore in the parallelepipedal solids 4B, CD the bases
are reciprocally proportional to the heights.

Again, in the parallelepipedal solids 425, CD let the bases

be reciprocally proportional to the heights, that is, as the base
EH is to the base N, so let the height of the solid CD be
to the height of the solid 45 ;

I say that the solid 4423 is equal to the solid CD.

Let the sides which stand up be again at right angles to
the bases.
Now, if the base £/ is equal to the base NQ,

and, as the base £/ is to the base /VQ, so is the height of
the solid CD to the height of the solid A5,

therefore the height of the solid CD is also equal to the
height of the solid 45.

But parallelepipedal solids on equal bases and of the same
height are equal to one another ; [xr 31]

therefore the solid 428 is equal to the solid CD.
Next, let the base £/ not be equal to the base NQ,
but let £/ be greater ;

therefore the height of the solid CD is also greater than the
height of the solid A5,

that is, CA/ is greater than 4G.
Let C7 be again made equal to AG,

and let the solid C'/” be similarly completed.

Since, as the base £A is to the base NQ, so is MC
to AG,
while AG is equal to C7,
thercgfore, as the base £/ is to the base NQ, so is CM
to C7.

But, as the base £/ is to the base NVQ, so is the solid
AR to the solid CV,

for the solids 4B, CV are of equal height; [x1. 32]
and, as CM is to C7, so is the base M Q to the base Q7 [v1. 1]
and the solid CD to the solid C/V. [x1. 25)

Therefore also, as the solid A28 is to the solid CV, so is.
the solid CD to the solid CV;

therefore each of the solids 48, CD has to CV the same

ratio.
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Therefore the solid 4B is equal to the solid CD.  [v. 9]

Now let the sides which stand up, FE, BL, GA, HK,
ON, DP, MC, RQ, not be at right angles to their bases ;
let perpendiculars be drawn from the points 7, G, B, X, O,
.M, D, R to the planes through £/, NQ, and let them meet
theplanesat S, 7, U, V, W, X, ¥, a,
and let the solids 77, Oa be completed ;

I say that, in this case too, if the solids 4B, CD are equal,
the bases are reciprocally proportional to the heights, that is,
as the base £/ is to the base NQ, so is the height of the
solid CD to the height of the solid 425.

R
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Since the solid 48 is equal to the solid CD,
while A 2B is equal to B7,
for they are on the same base /KX and of the same height;

[x1. 29, 30]
and the solid CD is equal to DX,
for they are again on the same base RO and of the same
height ; (7]
therefore the solid 27 is also equal to the solid DX.

Therefore, as the base FKX is to the base OR, so is the
height of the solid DX to the height of the solid B7.

[Part 1.]
~ But the base FX is equal to the base £/,
and the base OR to the base NQ ;

therefore, as the base £/ is to the base NV Q, so is the height
of the solid DX to the height of the solid B7.
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But the solids DX, BT and the solids DC, BA have the
same heights respectively ;

therefore, as the base £/ is to the base NVQ, so is the height
of the solid DC to the height of the solid 425.

Therefore in the parallelepipedal solids 45, CD the bases
are reciprocally proportional to the heights.

Again, in the parallelepipedal solids 45, CD let the bases
be réciprocally proportional to the heights,

that is, as the base £/ is to the base NV, so let the height
of the solid CD be to the height of the solid A5 ;

I say that the solid 428 is equal to the solid CD.
For, with the same construction,

since, as the base £/ is to the base VQ, so is the height of
the solid CD to the height of the solid 425,

while the base £/ is equal to the base FXK,
and NVQ to OR,

therefore, as the base #K is to the base OR, so is the height
of the solid CD to the height of the solid 45.

But the solids A8, CD and B7, DX have the same
heights respectively ;

therefore, as the base /X is to the base OR, so is the height
of the solid DX to the height of the solid B7.

Therefore in the parallelepipedal solids 27, DX the bases
are reciprocally proportional to the heights ;

therefore the solid B7 is equal to the solid DX. [Part 1.]
But B7 is equal to B4,

for they are on the same base #K and of the same height ;

[x1. 29, 30]

and the solid DX is equal to the solid DC. (id.]
Therefore the solid A8 is also equal to the solid CD.
Q E. D.

In this proposition Euclid makes two assumptions which require notice,
(1) that, if two parallelepipeds are equal, and have equal bases, their heights
are equal, and (2) that, if the bases of two equal parallelepipeds are unequal,
that which has the lesser base has the greater height. In justification of the
former statement Euclid says, according to what Heiberg holds to be the
genuine reading, “for parallelepipedal solids of the same height are to one
another as their bases” [x1. 32]. This apparently struck some very early
editor as not being sufficient, and he added the explanation appearing in
Simson’s text, “ For if, the bases £H, /NQ being equal, the heights 4G, CM
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were not equal, neither would the solid 458 be equal to CD. But it is by
hypothesis equal. Therefore the height CA7 is not unequal to the height 4G ;
therefore it is equal.” Then, it being perceived that there ought not to be two
explanations, the genuine one was erased from the inferior Mss. While the
interpolated explanation does not take us very far, the truth of the statement
may be deduced with perhaps greater ease from xI1. 31 than from x1 32
quoted by Euclid. For, assuming one height greater than the other, while the
bases are equal, we have only to cut from the higher solid so much as will
make its height equal to that of the other. Then this gas# of the higher solid
is equal to the whole of the other solid which is by hypothesis equal to the
higher solid itself. That is, the whole is equal to its part : which is impossible.

The genuine text contains no explanation of the second assumption that,
if the base £H be greater than the base /Q, while the solids are equal, the
height CMf is greater than the height 4G ; for the added words “ for, if not,
neither again will the solids 4B, CD be equal; but they are equal by
hypothesis ” are no doubt interpolated. In this case the truth of the assump-
tion is easily deduced from x1. 32 by reductio ad absurdum. 1f the height CM
were egual to the height 4G, the solid 4.8 would be to the solid CD as the
base £H is to the base VQ, i.e. as a greater to a less, so that the solids would
not be equal, as they are by hypothesis. Again, if the height CAf were /Zess
than the height 4G, we could increase the height of CD till it was equal to
that of 4.5, and it would then appear that 45 is greater than the heightened
solid and a fortiori greater than CD: which contradicts the hypothesis.

Clavius rather ingeniously puts the first assumption the other way, saying
that, if the heights are equal in the equal parallelepipeds, the bases must be
equal. This follows dérectly from x1. 32, which proves that the parallelepipeds
are to one another as their bases; though Clavius deduces it indirectly from
XL 31. The advantage of Clavius’ alternative is that it makes the second
assumption unnecessary. He merely says, if the Aeights be not equal, let CM
be the greater, and then proceeds with Euclid’s construction.

It is also to be observed that, when Euclid comes to the corresponding
proposition for cones and cylinders [xi1. 15}, he begins by supposing the
heights equal, inferring by xi1. 11 (corresponding to XI. 32) that, the solids
being equal, the bases are also equal, and then proceeds to the case where the
heights are unequal without making any preliminary inference about the
bases. The analogy then of xi1. 15, and the fact that he quotes x1. 32 here
(which directly proves that, if the solids are equal, and also their heights, their
bases are also equal), make Clavius’ form the more convenient to adopt.

The two assumptions being proved as above, the proposition can be put
shortly as follows.

I. Suppose the edges terminating at the corners of the base to be pger-
pendicular to it.

Then (a), if the base £ be equal to the base NQ, the parallelepipeds
being also equal, the heights must be equal (converse of xI. 31), so that the
bases are reciprocally proportional to the heights, the ratio of the bases and
the ratio of the heights being both ratios of equality.

(6) If the base £H be greater than the base VQ, and consequently (by
deduction from X1 32) the height CAf greater than the height 4G, cut off
CT from CAM equal to 4G, and draw the plane 7'/ through 7' parallel to the
base /VQ, making the parallelepiped CV, with CT (= 4G) for its height.

Then, since the solids 4B, C/) are equal,

(solid 4B): (solid CV') = (solid CD): (solid C¥). [v. 7]
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But (solid AB): (solid CV)= HE :(J NQ, [x1. 32]
and (solid CD): (solid CV)=OMQ:[OTQ [x1. 25]
=CM:CT. [vi 1]
Therefore OHE:(ONQ=CM:CT
=CM: AG.

Conversely (a), if the bases £H, VQ be equal and reciprocally proportional
to the heights, the heights must be equal.

Consequently (solid 4B) = (solid CD). [x1 31]
(6) If the bases £H, NQ be unequal, if, e.g. (7 EH > [T NQ,
then, since OEH:[ONQ=CM: AG,
CM> AG.
Make the same construction as before.
Then O EH:[J NQ=(solid 4B):(solid CV), [xt. 32]
and CM:AG=CM:CT
=OMQ:[07TQ [vr. 1]
= (solid CD): (solid CV). [x1. 25]
Therefore
(solid 4.B) : (solid C¥)=(solid CD): (solid CV),
whence (solid 4.8) = solid CD. [v. 9]

II. Suppose that the edges terminating at the corners of the bases are 7ot
perpendicular to it.

Drop perpendiculars on the bases from the corners of the faces opposite
to the bases.

We thus have two parallelepipeds equal to 4B, CD respectively, since
they are on the same bases #X, RO and of the same height respectively.

[x1. 29, 30]
If then (1) the solid 4B is equal to the solid CD,

(solid BT) = (solid DX),
and, by the first part of this proposition,
OKF:[JOR=MX:GT,

or OHE:ONQ=MX:GT.
(2) If OHE:[ONQ=MX:GT,
then [OKF:[0O0OR=MX:GT,

so that, by the first half of the proposition, the solids 87, DX are equal, and
consequently

(solid AB) = (solid CD).

The text of the second part of the proposition four times contains, after
the words “of the same height,” the words “in which the sides which stand
up are not on the same straight lines.” As Simson observed, they are inept,
as the extremities of the edges may or may not be “on the same straight
lines”; cf. the similar words incorrectly inserted at the end of X1 3I.

Words purporting to quote the result of the first part of the proposition
are also twice inserted; but they are rejected as unnecessary and as containing
an absurd expression—*(solids) in which #4e Aeights are at right angles to their
bases,” as if the Aezghts could be otherwise than perpendicular to the bases.
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ProrosiTION 35.

If there be two equal plane angles, and on their vertices
therve be set up elevated straight lines containing equal angles
with the original straight lines respectively, if on the elevated
straight lines points be taken at random and perpendiculars be
drawn from them to the planes in whick the original angles
are, and if from the points so arising in the planes straight
lines be joined to the vertices of the original angles, they will
contain, with the elevated straight lines, equal angles.

Let the angles BAC, EDF be two equal rectilineal angles,
and from the points A4, D let the elevated straight lines 4G,
DM be set up containing, with the original straight lines,
equal angles respectively, namely, the angle MDE to the
angle GA B and the angle M/ DF to the angle GAC,
let points G, M be taken at random on AG, DM,
let GL, MN be drawn from the points G, M perpendicular to
the planes through BA, AC and £D, DF, and let them meet
the planes at Z, W,
and let LA, ND be joined ;

I say that the angle GAL is equal to the angle MDN.

Let AH be made equal to DM,
and let /K be drawn through the point / parallel to GL.
But GL is perpendicular to the plane through B4, AC;

therefore /K is also perpendicular to the plane through
BA, AC. [x1. 8]

From the points X, NV let KC, NF, KB, NE be drawn
perpendicular to the straight lines AC, DF, AB, DE,

and let /C, CB, MF, FE be joined.
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Since the square on /74 is equal to the squares on AKX,
KA,
and the squares on KC, CA are equal to the square on KA,

[ 47]
therefore the square on A4 is also equal to the squares on
HK, KC, CA.

But the square on AC is equal to the squares on
HK, KC; [r. 47]
therefore the square on /A is equal to the squares on
HC, CA.

Therefore the angle //CA is right. [1. 48]

For the same reason
the angle DFM is also right.

Therefore the angle ACH is equal to the angle DFM.

But the angle //A4C is also equal to the angle MDF.

Therefore MDF, HAC are two triangles which have two
angles equal to two angles respectively, and one side equal to

one side, namely, that subtending one of the equal angles,
that is, /A4 equal to MD ;

therefore they will also have the remaining sides equal to the
remaining sides respectively. [r. 26]

Therefore AC is equal to DF.

Similarly we can prove that 42 is also equal to DE.
Since then AC is equal to DF, and AB to DE,

the two sides CA, A B are equal to the two sides /D, DE.
But the angle CA B is also equal to the angle FD/;

therefore the base BC is equal to the base £, the triangle to
the triangle, and the remaining angles to the remaining
angles ; (1 4]
therefore the angle 4CAB is equal to the angle DFE.

But the right angle 4CK is also equal to the right angle
DFN ;

therefore the remammg angle BCK is also equal to the
remaining angle £FN.

For the same reason
the angle CBK is also equal to the angle FEN.

H. E. IIL. 23
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Therefore BCK, EFN are two triangles which have two
angles equal to two angles respectively, and one side equal to

one side, namely, that adjacent to the equal angles, that is,
BC equal to £F;

therefore they will also have the remaining sides equal to the
remaining sides. [1. 26)

Therefore CK is equal to FNV.
But AC is also equal to DF;

therefore the two sides AC, CK are equal to the two sides
DF, FN ;
and they contain right angles.

Therefore the base AKX is equal to the base DN. (1. 4]

And, since AH is equal to DM,
the square on A/ is also equal to the square on D/,

But the squares on 4K, K/ are equal to the square
on AH,

for the angle AKH is right ; . [r 47]

and the squares on DN, NM are equal to the square
on DM,

for the angle DNM is right; [r. 47]
therefore the squares on AKX, K/ are equal to the squares
on DN, NM ;
and of these the square on AKX is equal to the square on DNV;
therefore the remaining square on K/ is equal to the square
on NV ;
therefore ZK is equal to M/ NV.
And, since the two sides /A4, AK are equal to the two
sides MD, DN respectively,
and the base ZK was proved equal to the base /N,
therefore the angle ZAK is €qual to the angle MDN. [u 8]
Therefore etc.

PorisM. From this it is manifest that, if there be two
equal plane angles, and if there be set up on them elevated
straight lines which are equal and contain equal angles with
the original straight lines respectively, the perpendiculars
drawn from their extremities to the planes in which are
the original angles are equal to one another.

Q. E. D.
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This proposition is required for the next, where it is necessary to know
that, if in two equiangular parallelepipeds equal angles, one in each, be
contained by three plane angles respectively, one of which is an angle of the
parallelogram forming the dase in one parallelepiped, while its equal is likewise
in the dase of the other, and the edges in which the two remaining angles
forming the solid angles meet are egual/, the parallelepipeds are of the same
height.

Bearing in mind the definition of #ke inclination of a straight line to a
plane, we might enunciate the proposition more shortly thus.

If there be two trikedral angles identically equal to one another, corresponding
edges in each are equally inclined to the planes through the other two edges
respectively.

The proof, which is necessarily somewhat long, may be summarised thus.

It is requiréd to prove that the angles GAZL, M DN in the figure are equal,
G, M being any points on AG, DM, and GLZ, MN perpendicular to the
planes BAC, EDZF respectively.

If AH is made equal to DA, and HK is drawn in the plane GAZ parallel
to G,

HK is also perpendicular to the plane BA4C. [x1. 8]

Draw KB, KC perpendicular to 4B, AC respectively and NE, NF
perpendicular to DE, DF respectively, and complete the figures.

Now (1) HA*= HK* + KA4*
=HK*+ KC*+ CA* |. [1. 47]
=HC* + CA®
Therefore ¢ HCA = a right angle.
Similarly L MFD = a right angle,
(2) &os HAC, MDF have therefore two angles equal and one side.
Therefore AHAC = AMDEF, and AC= DF. [1. 26]

(3) Similarly AHAB =AMDE, and AB = DE.
(4) Hence As ABC, DEF are equal in all respects, so that BC = EF,
and L ABC =, DEF,
: L ACB=. DFE.
(5) Therefore the complements of these angles are equal,
i.e. L KBC=0r NEF,
and L KCB =L NFE.

(6) The &as KBC, NEF have two angles equal and one side, and are
therefore equal in all respects, so that

KB = NE,
KC=NF.
(7) The right-angled triangles X4 C, NDF are equal in all respects, since
AC=DF|[(2) above], KC= NF.
Consequently AK=DN.
(8) In As HAK, MDN,
HK*+ KA*= HA*
= MD? by hypothesis,
= MN*+ NDA.-

23—2
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Subtracting the equals K4 NI?,
we have HK*= MN?,
or HK = MN. :
(9) &s HAK, MDN are now equal in all respects, by 1. 8 and 1. 4, and
therefore

LHAK = MDN.
The Porism is merely a statement of the result arrived at in (8).

Legendre uses, practically, the construction and argument of this propo-
sition to prove the theorem given under (3) of the note on xI. 21 above that
In two equal trikedral angles, corresponding pairs of face angles include equal
dihedral angles. This fact is readily deduced from the above proposition.

Since [(1)] AC, KC are both perpendicular to 4C, and MF, NF both
perpendicular to DF, the angles HCK, MFN are the measures of the
dihedral angles between the planes HAC, BAC, and MDF, EDF respec-

tively. [xr. Def. 6]
By (6), - KC=NF,
and, by (8), HK=MN,
while the angles K C, MNF, both being right, are equal.
Consequently the As HCK, MFN are equal in all respects, [r. 4]
so that L HCK =2 MFN.

Simson substituted a different proof of (1) in the above summary, as
follows.

Since HK is perpendicular to the plane BAC, the plane HABXK, passin
through AKX, is also perpendicular to the plane BAC. [x1. 18

And 4B, being drawn in the plane BA4C perpendicular to BX, the
common section of the planes ABK, BAC, is perpendicular to the plane
HBK [x1. Def. 4], and is therefore perpendicular to every straight line
meeting it in that plane [x1. Def. 3].

Hence the angle 4B/ is a right angle.

I think Euclid’s proof much preferable to this with its references to
definitions which are more of the nature of theorems.

ProrosiTiON 36.

If three straight lines be proportional, the parallelepipedal
solid formed out of the three is equal to the parallelepipedal

solid on the mean which is equilateral, but equiangular with
the aforesaid solid.

Let 4, B, C be three straight lines in proportion, so that,
as Aisto B,sois Bto C;
I say that the solid formed out of A4, B, C is equal to the
solid on A which is equilateral, but equiangular with the
aforesaid solid.

Let there be set out the solid angle at £ contained by the
angles DEG, GEF, FED,



XI. 36] PROPOSITIONS 35, 36 357

let each of the straight lines DE, GE, £F be made equal to
B, and let the parallelepipedal solid £&” be completed,

let LA be made equal to A,
and on the straight line LA/, and at the point Z on it, let there

be constructed a solid angle equal to the solid angle at £,
namely that contained by NLO, OLM, MLN ;

let £ O be made equal to B, and LN equal to C.

A /)
/ O/V °
N

Now, since, as 4 is to B, so is B to C,
while A4 is equal to LM, B to each of the straight lines L0,
ED, and Cto LN,
therefore, as LM is to EF, sois DE to LN.

Thus the sides about the equal angles NLM, DEF are
reciprocally proportional ;
therefore the parallelogram MV is equal to the parallelogram
DF. [vi. 14]

And, since the angles DEF, NLM are two plane recti-
lineal angles, and on them the elevated straight lines L0, EG
are set up which are equal to one another and contain equal
angles with the original straight lines respectively,
therefore the perpendiculars drawn from the points G, O to
the planes through NZ, LM and DE, EF are equal to one
another; [x1. 35, Por.]

hence the solids LA, EK are of the same height.

But parallelepipedal solids on equal bases and of the same
height are equal to one another ; : [x1 31]
therefore the solid AZL is equal to the solid £X.

And LA is the solid formed out of 4, B, C, and E£EK the
solid on B ;
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therefore the parallelepipedal solid formed out of A4, B, Cis
equal to the solid on B which is equilateral, but equiangular
with the aforesaid solid.

Q. E. D.

The edges of the parallelepiped AL being respectively equal to 4, B, C,
and those of the equiangular parallelepiped K£ being all equal to B, we
regard MV (not containing the edge OL equal to B) as the base of the first
parallelepiped, and consequently 7D, equiangular to M, as the base of XE.

Then the solids have the same height. [x1. 35, Por.]

Hence (solid HL): (solid KE)=[J MN: (7 FD. [x1. 32]

But, since 4, B, C are in continued proportion,

A:B=28:C(,

or LM :EF=DE:LN.

Thus the sides of the equiangular [7s MN, FD are reciprocally pro-
portional, whence

O MN=[7 FD, [vi. 14]

and therefore (solid HL) = (solid KE).

ProrosiTION 37.

If four straight lines be proportional, the parvallelepipedal
solids on them whick arve similar and similarly described will
also be proportional ; and, if the parallelepipedal solids on them
whick are similar and similarly described be proportional, the
straight lines will themselves also be proportional.

Let A5, CD, EF, GH be four straight lines in proportion,
so that, as AR isto CD, sois EFto GH ;

and let there be described on 4B, CD, EF, GH the similar
and similarly situated parallelepipedal solids K4, LC, ME,
NG ;

I say that, as K4 is to LC, so is ME to NG.

8 c o} E
For, since the parallelepipedal solid K4 is similar to LC,

therefore A'A4 has to LC the ratio triplicate of that which 45
has to CD. . [x1. 33]
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For the same reason

ME also has to NG the ratio triplicate of that which £/ has
to GH. (@]
And, as ABisto CD, so is EF to GH.
Therefore also, as AK is to LC, so is ME to NG.

Next, as the solid AKX is to the solid ZC, so let the solid
ME be to the solid NG ;

[ say that, as the straight line A8 is to CD, so is £/ to GH.
For since, again, KA has to LC the ratio triplicate of that

which A2 has to CD, [xr. 33]
and ME also has to NG the ratio triplicate of that which £F
has to GH, [id.]

and, as KA is to LC, so is ME to NG,
therefore also, as A8 is to CD, so is £EF to GH.

Therefore etc. Q. E. D.

In this proposition it is assumed that, if two ratios be equal, the ratio
triplicate of one is equal to the ratio triplicate of the other and, conversely,
that, if ratios which are the triplicate of two other ratios are equal, those other
ratios are themselves equal.

To avoid the necessity for these assumptions Simson adopts the alternative
proof found in the ms. which Heiberg calls b, and also adopted by Clavius,
who, however, gives Euclid’s proof as well, attributing it to Theon. The
alternative proof proceeds after the manner of vi. 22, thus.

Make 4B, CD, O, P continuous proportionals, and also £F, GH, Q, R.

N
)
\ \ N
A B c D E F G H
Q R

o P
I. Then, since N
AB:CD=EF: GH,
we have, ex acquali,
AB:P=EF:R. [v. 22]
But (solid AK):(solid CL)=AB: P,
T

[x1 33and Por.] 8
and (solid £M):(solid GN)=EF: R.
Therefore
(solid 4KX): (solid CZ) = (solid £M): (solid GV).
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II. If the solids are proportional, take S7 such that
AB:CD=EF: ST,

and on S7 describe the parallelepiped SV similar and similarly situated to
either of the parallelepipeds £/, GN.

Then, by the first part,

(solid 4K): (solid CL) = (solid £M/) : (solid SV),
whence it follows that
(solid GNV) = (solid SV).

But these solids are similar and similarly situated ;
therefore their faces are similar and equal ; [x1. Def. 10]
therefore the corresponding sides GA, ST are equal.

For this inference cf. note on vi. 22. The equality of GA, S7 may
readily be proved by application of the two parallelepipeds to one another,
since, being similar, they are equiangular.]

Hence AB:CD=EF:GH.

The text of the Mss. has here a proposition which is as badly placed as it
is unnecessary. Jf a plane be at right angles to a plane,and from any one of the
points in one of the planes a perpendicular be drawn to the other plane, the
perpendicular so drawn will fall on the common section of the planes. 1t is of
the nature of a lemma to xI1. 17, where : .

" alone the fact is made use of. Heiberg ¢

observes that it is omitted in b and that the E

copyist of P knew other texts which did not 0
contain it. From these facts it is fairly con- A GNF

cluded that the proposition was interpolated. - B8

The truth of it is of course immediately
obvious by reductio ad absurdum. Let the plane CAD be perpendicular to
the plane .45, and let a perpendicular be drawn to the latter from any point
E in the former.

If it does not fall on A.D, the common section, let it meet the plane 4.8
in .

Draw FG in AB perpendicular to 4.0, and join £G.

Then FG is perpendicular to the plane CAD [x1. Def. 4], and therefore
to GE [x1 Def. 3]. Therefore £ EGF is right.

Also, since £F is perpendicular to A5,
the angle £FG is right.

That is, the triangle £GF has two right angles :
which is impossible.

ProrosiTion 38.

If the sides of the opposite planes of a cube be bisected, and
Pplanes be carried through the points of section, the common
section of the planes and the diameter of the cube bisect one
another.

For let the sides of the opposite planes CF, 4H of the
cube AF be bisected at the points X, L, M, N, O, Q, P, R,
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and through the points of section let the planes AV, OR be
carried ;

let US be the common section of the planeS, and DG the
diameter of the cube AF.

I say that U7 is equal to 7S, and D7 to 7G.

For let DU, UE, BS, SG be joined.
Then, since DO is parallel to PE,

the alternate angles DOU, UPE are equal to one another.

L 2
And, since DO is equal to PE, and OU to UP, [' g
and they contain equal angles,
therefore the base DU is equal to the base UE,
the triangle DOU is equal to the triangle PUE,
and the remaining angles are equal to the remaining angles;

(1. 4]
therefore the angle OUD is equal to the angle PUE. :

D K F

For this reason DUE is a straight line. [1 14]
For the same reason, BSG is also a straight line,
and BS is equal to SG.

Now, since CA is equal and parallel to D25,
while CA is also equal and parallel to £G,
therefore DA is also equal and parallel to £G. [x1. 9]



362 BOOK XI [x1 38

And the straight lines DE, BG join their extremities ;

therefore DE is parallel to BG. [r. 33]
Therefore the angle £D T is equal to the angle BG T,

for they are alternate ; [1. 29]

and the angle D7°U is equal to the angle G7'S. [1. 15]

Therefore D7U, GTS are two triangles which have two
angles equal to two angles, and one side equal to one side,
namely that subtending one of the equal angles, that is, DU
equal to GS,

for they are the halves of DE, BG;

therefore they will also have the remaining sides equal to the
remaining sides. [1. 26]

Therefore DT is equal to 7G, and U7 to 7S.

Therefore etc.
Q. E. D.

Euclid enunciates this proposition of a cuée only, though it is true of any
parallelepiped, no doubt because its truth for a cube is all that was wanted for
the only proposition where it is needed, viz. xmn. 17.

Simson remarks that it should be proved that the straight lines bisecting
the corresponding opposite sides of opposite planes are in one plane. This is,
however, clear because e.g. since DK, CL are equal and parallel, XZ is equal
and parallel to CD. And, since XZ, AB are both parallel 