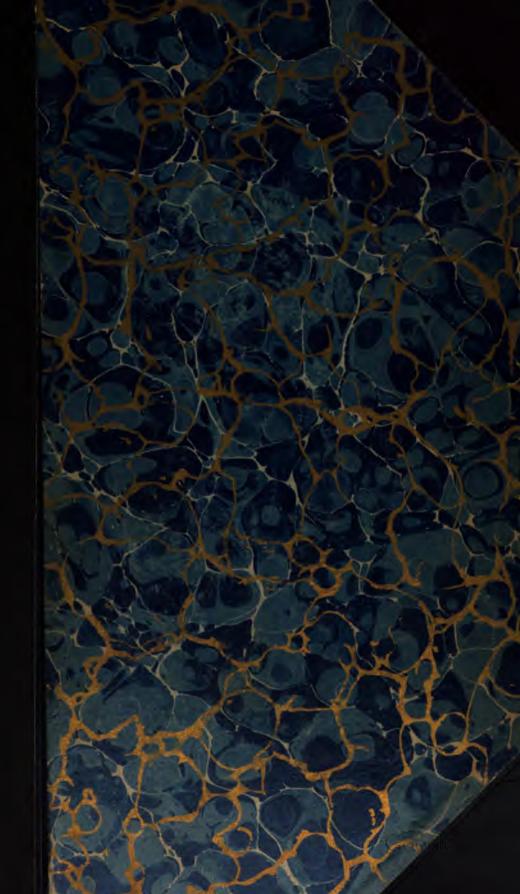


This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

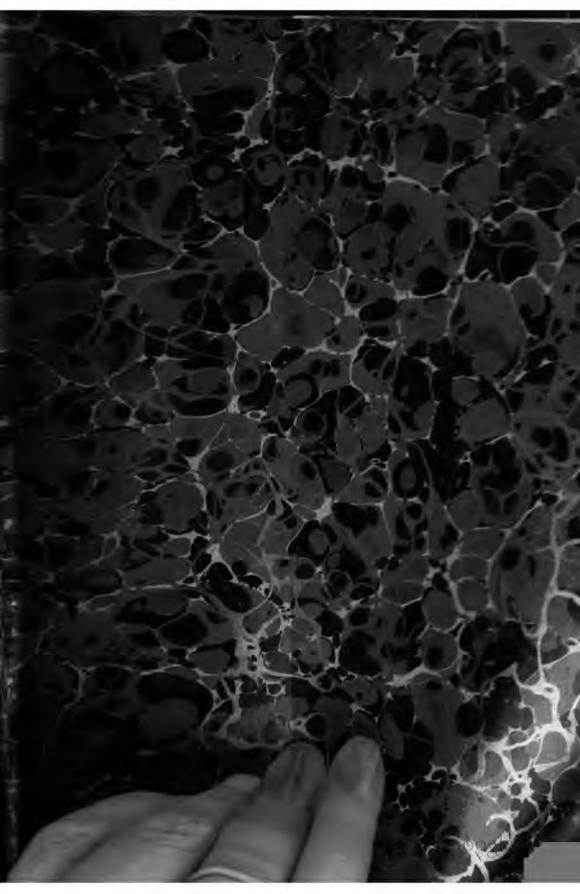

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + *Refrain from automated querying* Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/



From the library of CAPTAIN THOMAS J. J. SEE

Presented to Stanford by bis son

nanzed by Google

•

.

.

.

.

•

- ·

Digitized by Google

•

.

.

JOANNIS KEPLERI

ASTRONOMI

OPERA OMNIA.

VOLUMEN TERTIUM.

, .

. .

Digitized by Google

T. J. J. SEE MARE HILAND, CALLE

JOANNIS KEPLERI

ASTRONOMI

OPERA OMNIA.

EDIDIT

Dr. CH. FRISCH.

VOLUMEN III.

FRANKOFURTI A M. BT ERLANGAR

HEYDER & ZIMMER.

MDCCCLX.

Digitized by Google

520.4 K38 V.3

TYPIS J. KREUZERI STUTTGARTIAE.

ASTRONOMIA NOVA

SEU

DE MOTU STELLAE MARTIS.

Kepleri Opera III.

Digitized by Google

1

Digitized by Google

PROOEMIUM

Quae in hoc opere Kepleri, quod exhibet studiorum septennalium pro-" fundissimorum documenta, continentur, ipse proponit auctor cum in praefatione sna, tum in indice quem praemisit locupletissimo. Fundamenta in eo jecit astronomiae vere "novae," legislatorem se praebuit per omnes sequentes aetates ingenio suo astronomis praelucentem. Nemo unquam, qui penetralia hujus scientiae ingressurus est, non perlustrabit hoc immortale opas, testimonium sagacitatis et industriae humana majoris. Quodcunque adimus opus posteriorum astronomorum, nullum deprehendimus, in quo praetermissa sit mentio inventionum, quas prodit Keplerus in "Commentariis Martis" ipsiusque procedendi rationis. Omnes in illis consentiunt landandis, neque vero omnes aeque ponderant hanc ipsam rationem et conditionem temporum rerumque, quae Keplero in perficiendo hoc opere impedimento fuerunt. Quidam, parum cognoscentes viri ingenium, forte etiam minus imbuti ipsius scriptis, inventiones Kepleri quasi fortunae tribuunt. Alii, quamquam cognoscent excellentem ingenii bonitatem eamque haud parvi habent, tamen minus quam par est respicient literarum studia, quibus initio seculi XVII. astronomus inniti potuit. In mathematicis, ut saepius jam dictum est, cognitio et scientia parum excedebant ea, quae Euclides, Archimedes, Apollonius suppeditabant, compendia; quae sub finem ejus seculi cuicunque matheseos generi sebsidio fuerunt, omnia tum deerant, ne logarithmos quidem eo quo opus suum confecit tempere Keplerus suum in usum vertere potnit. Quare omnia, quae in illo hand pauca per scientiam, mathematicam absolvenda erant, revocanda erant ad geometriam et trigonometriam elementarem, ita ut vix bis terve Keplerus ansus fuerit adhibere calculum algebraicum acquationesque. Observationes astronomicae, quamvis a Tychene quantum tum fieri potuit excultae, longe tamen abfuerunt ab eo gradu perfectionis, quem hic ipse scopus exigebat, quem in Commentariis de moto Martis spectabat Keplerus. Tubus opticus nondum inventus crat, mechanica instrumentorum astronomicorum perfectio longe abfuit ab ea, quae in minimis, in quibus versabatur Keplerus inquirens motum stellae Martis, omnino necessaria fuit. Quare comparatione tantum difficillima et taediosissima, et via plerumque plane nova et intacta explendum erat, quod defciebat singulis observationibus. Denique minime negligenda sunt ea, quae de astronomicis hypothesibus illis temporibus constant. Copernici hypothesis viam quidem aperuit ad verum cognoscendum, et ipse Keplerus qua potuit veneratione prosequebatur, merita Copernici in emendandis priorum

erroribus, at unus fere tum temporis agnoscebat illius hypothesin; Tycho ipse tantum abfuit, ut transiret in castra Copernici, ut nova constituta hypothesi rem implicatiorem reddiderit; Maestlinus et alii plerique, cum quibus per literas egit Keplerus aut qui publici juris fecerunt opera astronomica, variis moti causis verebantur plane et plene transire in partes Copernici. Quare non tantum abjicienda et corrigenda erant, quae in Copernico falsa cognoscebantur, sed etiam Ptolemaei placita, aequalibus ex parte acceptissima, certe familiarissima, evertenda. Theoria epicyclica et eccentrica impugnanda erat, bellum denunciandum omnibus fere in astronomia tritis et stabilitis opinionibus. Quam pugnam iniit Keplerus imperterrito animo solus, non adjutus immo impeditus ab amicis, et vicit novam constituens astronomiam, quae ut diximus ratio et norma est astronomis posteriorum seculorum.

Quae in contrariam partem attulerunt astronomiae prioris asseclae, luchlentissime apparent e literis Davidis Fabricii ad Keplerum scriptis dum opus suum excolebat, quas desumtas e Manuscriptis Petropolitanis praefationi nostrae subjunximus. Quae alia impedimenta obstiterint sequentes exhibent paginae.

Plerisque eorum Kepleri operum, quae continent volumina priora nostrae editionis, argumentum quam brevișsime praemisimus. Quam si in sequentibus eadem ferme ratione qua in Optica exhibuimus, excusabunt nos, quas diximus, cansae non minus, quam res ipsa, quae paucis verbis explicari nequit. Quam ob rem statuimus, ordine procedere chronologico, adhibitis iis, quae continent scripta a Keplero relicta non typis impressa et Hanschii epistolarum collectio, ut quantum fieri potuit speciem et formam adumbremus studiorum, quae Keplerus ad perficiendum hoc opus insumsit, et rerum, quae prodierunt ex his studiis.

Kepleram edito suo "Mysterio Cosmographico" anno 1597 innotuisse Tychoni diximus Vol. I. p. 43; statuerat, ut cum Tychone conveniret, Wittebergam proficisci (initio anni 1599), sed cum ab Herwarto comperisset, Tychonem proximo tempore Pragam iturum, mutato consilio Graetii restitit, donec (9. Dec. 99) ab ipso Tychone per literas invitatus est ut ipsum Pragae conveniret. Libentissime huic invitationi morem gerens Pragam profectus (6. Jan. 1600.) indeque Tychonem, qui in arce Benathica domicillium suum posuerat, secutus est, ubi ipsi Tycho "omnia quae optavit ultro detulit." Deprehendit Tychonem ejusque domesticum Longomontanum in observatione oppositionis Martis cum Sole, et restituenda theoria hujus planetae (Comp. Cap. VII.) adjunxitque, quamquam hospes Tychonis, operam suam in enucleandis implicitis Martis motibus ("anno 1600. a Februario in Majum; profeci autem tantum, ut eccentri inaequalitatem mediocriter salvarem"). Junio Graetium rediit, initio Septembris pactione facta cum Tychone ad ipsum Pragam reversus est 30. Sept. 1600. Paulo autem post. quam munus suum apud Tychonem susceperat aegrotavit, et febri correptus quartana et tussi periculosa parum profecit in iis quae ipsi Tycho mandaverat, donec coelo salubriore Graetii quaesito (Aprili - Sept.) Septembri demum anni 1601. convaluit. Brevi post (24. Oct.) Tychone mortuo, tradita ipsi observationum Tychonis collectione, mandatum est Keplero, ut conficeret ea, quae Tycho imperfecta reliquerat, Tabulas et quae alia digua viderentur ut publici juris fierent. Quae dum suscipit (editus est anno 1602. Tychonis Progymnasmatum tomus I, "pridie Cal. Augusti") astrologicisque inservit disquisitionibus, quas Imperator Rudolphus ipsi mandaverat, iterum adiit Martem, quae dubia ipsi occurrerant in theoria hujus planetae a Tychome et Longomontano instituta, inquirens atque immutare conatus, quantum inter alias occupationes fieri potuit.

Propius antem Keplerum jam eo tempore, quo apud Tychonem versabatur, ad rem ipsam accessisse, patet e literis ad Maginum Cal. Jun. 1601. datis, quum valetudinis et rerum domesticarum causa Graetium reversus esset, quamquam calculum nondum sibi convenientem deprehenderat, 'quam ob rem Maginum adiit, ut se in illo adornando sublevaret (vide infra). Proponit Magino methodum suam, quam exhibet fere eandem in Commentariorum Capite 16, et quaerit "an et hic me demonstratione juvare possis?" Fundamenta novae condendae astronomiae Magino haec proponit : 1) Planetarum motus referendi sunt, non ut hactenus creditum est ad medium, sed ad verum Solis locum. 2) Inaequalitates inferiorum planetarum prodeunt e motu Terrae. 3) Inclinationes planetariarum orbitarum constantissimae sunt. 4) Omnium 7 planetarum theoriarum forma est eadem, quilibet circulum decurrit suum inaequali celeritate. 5) Datis tribus acronychiis observatioaibus deprehendi potest distantia Solis et Terrae et inde distantia planetae ejnsque orbis. 6) Datis quatuor sitibus planetae acronychiis determinari potest aphelii ejus locus.

Quae omnia nondum numeris probata sed probabilia tantum et naturae rationibusque physicis consentanea in literis illis ad Maginum datis eam forte eb causam Graetio ex urbe exhibet, ne Tycho, "nimis rerum suarum parcus et custos suspicione plenus" sinistri quid argueret, si apud ipsum Pragae ad aemulam Bononiensem scripsisset, adque Maginum scripsit, quia a Tychone (quem in literis ad Maestlinum et ex parte etiam ad Maginum ad verum depinxit) ea quae quaerebat, minime se consecuturum esse haud ignorabat. Sed Maginus quoque Kepleri exspectationem destituit; plane, quasi nihil a Keplero accepisset, obmutuit, donec anno demum 1610, postquam Commentaria Martis impressa fuerant, rem movens parvi momenti adiit Keplerum per literas. Quae in praefatione ad "Supplementum Ephemeridum" dixit, excusans diutarnum suum silentium, infra legentur; hic dubii quidem, nisi fallimur, hanc insuper silentii dicimus fuisse causam, quod forte Maginus mentem Kepleri non penitus perceperit, nec habuerit quid responderet, quam eandem causam silentii sui fuisse Maestlinus ingenue profitetur ("Fateri cogor, tu nonnunquam sublimiora, quam quibus ingenium et eruditio mea satisfacere valent, quaerebas"). Ad hunc enim sub finem anni 1601. (20. Dec.) eadem fere, quae ad Maginum, scripserat, contendens, "theoriam se exstruxisse Martis, ut sensus subtilitatem facile adaequaturus sit calculus" (vide infra).

Initio anni 1602, occupatus in edendo Tychonis opere et emendandis Lunae observationibus indeque deductis tabulis Tychonis, Martem quidem observavit Keplerus (vid. Cap. XV.), parum autem in theoria profecit, quamquam in literis ad Longomontanum datis (1605) huic narrat, coepisse se anno 1602. observare et ad Martem rediisse ac invenisse, viam ejus * esse non perfectum eccentricum, sed ovalem.

Ex iisdem literis apparet, Keplerum ab anno 1602. usque ad initium anni 1604. "parum respexisse ad Martem," cum, praesertim anno 1603, Opticam adornaret, quam absolutam "obtulit Caesari" initio anni 1604, typisque exscribendam curavit aestate hujus anni. Ceterum apparet e sequentibus

Davidis Fabricii et Kepleri epistolis mutuis. Keplerum interjecto onome tempore, quantum ipsi licuit per alias occupationes, inceptum minime plane rejecisse, sed semper animo tennisse propositum eum finem, ut in melius mutaret astronomiam. In literis d. 18. Jul. 1602. (dependitis) eadem movisse videtur Keplerus, quae legentur in literis ad Maestlinum et Maginum datis, eaque pharibus explicat in sequentibus (d. d. 1. Oct. et 2. Dec. 1602). Posterioris epistolae conclusio "parum mihi otii est, dum adorno partem astronomiae opticam" confirmat ea quae diximus, Keplerum tum temporis in Martis theoriam nondum toto animo et stadio omni incubuisse, quamquam ex aliis praeter illas ad Fabricium datis literis constantia viri elacet in perficiendo semel suscepto negotio. Eadem testantur literae Kepleri ad Herwartum datae anno 1602, in quitues refert Keplerus, "per biennium" se theoriam Martis inquisivisse, et satis bene rem successisse. Anne 1603. (5. Jul.) addit : "in theoria Martis cetera sunt expedita, verba adhuc desunt," dum die 4. Julii Fabricie scripserat, motuum Martis inaequalitatem salvari posse per suam hypothesin, sed deesse sibi ad calculum geometricae generationis viae ovalis scientiam ejusque sectionis in data ratione. In literis ad J. Papium (tum temporis medicum Oneldiae, postea medicinae professorem Regiomontii) c. initium anni 1603, item in literis ad J. Conr. Gerhardum (medicam Donauverdae) Jan. 1604. datis, pluribus de Marte disseruisse videtar Keplerus, quarum prioribus lectis P. Virdungus ipsum per literas adiit, adhortans, "ut elaboret, quo colophonem perfectioni astronomiae necessarium imponi tandem videamus." Sic Gerhardus : "quod de restauratione astronomiae scribis, vehementer placuit, et rogo ut pergas, inchoatum opus ad perfectionem deducere suam, despectis ex alto ceteris, si qui vel ab aula vel a genere praedecessoris tibi obicem ponere nituntur. Nemo magnus sine invidia factus est unquam." Keplerus in responsione ad Virdungum data e. initium a. 1604. eandem movisse videtur querelam de impedimentis, quae studiis suis objiciantur, cum ille eam respiciens rescriberet: "zederyeveoux astronomiae avidissime exspecto; qua in parte te plurimerum desideniis satisfacturum haud vane spere, optans, ut difficultates, quibes es circumseptus, removeantur et tuorum laborum honestissima, quae debet, ratio Simultates tibi cum haeredibus Tychonis intercedere, invitas habeatur. intelligo, quas jam sopitas et exstinctas cuperem." Quae "simultates" cum hand param difficultatis Keplero moverint in perficiendo opero suo, de his infra pluribus dicendum erit.

Die 4. Septembris 1603. literas dedit Keplerus ad Anglum Edmundam Brutium, intime ingenium ipsius venerantem (comp. Vol. II. p. 568), in quibus de studiis suis Martialibus scripsisse videtur. Respondit Brutias (d. 5. Nov.) hunc in modum: Multas habeo in astronomia dubitationes, in quibus to unious me certior(cm) facias. Nam ego opinor, mundos case infinitos (Keplerus in margine: hoc pracambolum obstitit mihi, quo minus essem attentus ad sequentia). Unosquisque tamen mundus est finitus, sicur planetarum, in cujus medio est centrum Solis; et quemadmodum Tellus, sic neque Sol quiescit, volvitur namque velocissime in suo loco circa axem suum. Quem motum sequantar reliqui planetae, in quorum numero Tellurem existimo; sed est tardior unusquisque quo ab eo distat longius. Stellae etiam sic moventur ut Sol, sed non illius vi sicut planetae circumagunter, quoniam unaquaeque earum Sol est in non minori mundo hoc nostro planetarum. (K. Haec quidem semper tenui, sed modum non semper.) Elemen-

Digitized by Google

taram mandum mobis proprium et particularem non puto, nam aör est et inter ipen corpora, quae stellas vocamus, per consequens et ignis et aqua et terra. Tevram antem quam calcannas nestris pedibus, nec rotundam nec globosam esse credo, sed ad ovalem figuram propias accedere. (K. Non plane contemnendum.) Nec Solis nec stellarum lumen ex materia, sed potius ex eorum motu procedere et dimanare judico, planetae vero a Sole sunm lamen assumunt, quia tardins moventur et propriis motibus impediunter. Keplerus: Quid potins mirer? Stuporemne meum, qui patefecta mihi naturae penetralia his literis, cum illas accepissem, introspicere contemsi adeoque oblivione sepekivi, ut ne pastea quidem, cum clavem candem ad haec penetralia quaererem et invenissem, literarum harum fuerim recordatus; an potins mirer vim veritatis, quae duobus sese non una via aperuit; an naturae ingenium, quae, qued Brutie dedit occulto instinctu a priori, mihi methodo et numeris et oculis eruendum concessit? His literis apparet compendium quoddam meae physicae coelestis in Marte proditae.

Hanc annotationem adscripsit Keplerns ad Brutii literas d. 5. Apr. 1610, enque nos movit, ut illas hic adderemns; Kepleri quidem literae desunt, ad quas Brutius his respondit, neque elucet ex hac responsione, quid Leplerus scripserit; tamen relectis aliis literis, quas illo tempore amicis scripsit, parum dubii erit, in his quoque Keplerum de studiis enis disservisee et talla tetigisse, quae mentem Brutii in respondendo ad similia pertraxerint. Ceterum praemissa confirmant, quae diximus, Keplerum per annum 1603. alis districtam negotiis parum quidem profeciese in condendis Martis Commentariis, neque vero plane intectum rejecisse opus quod meditabatur, quoquoversum intentum ad monita amicorum, respicientemque auxilia ad promovusdum inceptum.

Propins ad rem accessit anno 1604, quamquam etiam tum ipsum detinebant multae aliae occupationes. Initio hujus anni absolvendo operi de Optica incumbebat, per menses Majum, Junium et Jalium aegrotabat, ab isitie Octobris usque ad finem anni multum temperis consumebat in observanda describendaque "Stella Nova" in Serpentario, quae tum effelsit. In Iteris ad Longomontanum datis, quae infra sequentur, de studiis suis illo tempore plura refert. In opere ipso (Cap. XI et XV) refert observationes in Marte, quae Commentaria spectabant, a mense Februarie in Aprilem habitas, quibus numerum complevit observationum locorum Martis in oppositione, quarum maximam partem e Tychonis desumsit manuscriptis, et quas adhibait al condendam stabiliendamque novam suum hypothesin.

Die 7. Feb. 1604. Keplerns, dubia et quaestiones Fabricii ponderans sique cas respondens, bace de disquisitionibus suis profert: omnes demonstratimes, ait, se ad Ptolemaei, Copernici et Tychonis hypotheses adaptaturum, cum Tychone jam "conventam esse"; deinde: ex observationibus acropychiis talem esse constituendam hypothésin, e que locus planetae eliciatur etiam tum, cum non in oppositione fusrit. Figuram orbitae prodire hueusque evalem. Rationem, qua propius ad scopum attingat, nondum a se esse inventam, quamvis pulo post quaerenti Fabricio "ellipoidem suum" explicans et causam cur "hactenus expetendum esse putaverit" addit: limitationem aliquam se nunc vilere. Deinde problema affert idem, quod exhibet in Cap. XL. Commentariorum, addens: Die quibus in numeris et eris mihi magnus Apollonius.

In literis d. 14. Dec. 1604. ad Maestlinum datis, de "laboribus" me in Commentariis lognitar et in fine addit, "cam de valeindine angar, consilium cepi, opus apud academiam deponere," quod consilium ita quidem persequebatur, ut in literis ad senatum Tubingensem scriptis quaereret, num ipsi liceret, Commentaria Martis apud senatum deponere? (Comp. Vol. II. p. 34.) Restituta autem valetudine rem non ulterius urgebat. In literis (d. 18. Dec.) ad Fabricium item recenset labores suos in eruendis erroribus, qui hypothesi suae obstabant, formam fatetur orbitae planetae hucusque ab ipso assumtam ovalem, falsam esse, ergo mutandam esse illam formam, ita ut "via Martis perfecta fiat ellipsis." Ceterum addit, nondum se illam accuratius inquisivisse, inserturum vero Commentariis ("in quibus totus nunc sum") falsam suam hypothesin, ut alii videant, quantum ipsi facesserit negotii.

Anno 1605. refert Keplerus Longomontano, causam se itineris ovalis Martis nondum plane pleneque demonstrare posse, comprehendisse vero es quae explorata habeat capitibus 51. Certum esse ex Sole propagari vim, quae planetas rapiat; similia Hegulontio, mense Maji 1605, addens: Commentaria Martis edi non posse, nisi Caesar sumtus praebuerit. Mense Martio nunciat Maestlino, processisse se in Commentariis ad Cap. 52; causam celeritatis inaequalis planetarum esse vim Soli (circa axem convoluto) st planetis inditam magneticam vel quasi; dein are arum lege proposita addi: capita erunt 60 ant 70.

Per annum 1605. opus prope ad finem perductum esse videtur; ellipticam viam post multa vana experimenta et taediosum calculum deprehendit Keplerus "circa Paschatis tempus". Caput 57. de magneticis virtutibus conscriptum est aestate hujus anni (comp. literas ad Fabriciam d. d. 11. Os.)

In literis ad amanuensem suum C. Odontium (Non. Aug. 1605.) scribt: Commentaria mea eo loco sunt, ut primum atque Tengnaglius concesserit vel Caesar jusserit pecunia suppeditata, dum imprimantur limari et apsolvi possint.

His non alienum a re putamus interponere pauca de iis, ques adhibuit Keplerus ad calculos et describenda Commentaria. Caspar Odontius per annum 1605. apud Keplerum versabatur, eumque in calculis adjuvit et sicut ipse affirmat "describendo operi de motu Martis operan locavit" (v. p. 14). Initio anni 1606. a Keplero discessisse videtur, orts forte dissidiis inter ipsos, cum in literis Kepleri ad Sam, Hafenrefferum (comp. Vol. II. pag. 835.) legamus: Spero a Maestlino meo suppetias. Nam "truicum nodosum", quo utebar concessu Noribergensium, remisi academiae sue Altorfinae. Jam in eo sum, ut typis dem Comm. de Marte; quantus labr sit futurus, jam ex vilioribus opusculis judicare possim. Itaque ingenicso et industrio adjutore, qui nec descriptionem nonnullorum, nec figurarum deineationem, nec calculum omnivarium nec correcturam detrectet, opus habo, et qui delectetur comprehensione demonstrationum, quod est unicum delage nazor. Malo meo fato fit, ut legati Wirtembergici Dresdae sint tam du: jam diu enim obtinuissem a Principe alumnum, qui sumtibus Princivis mecum esset.

Haec Keplerus, qui item Maestlinum adiit, ut voti sui compos fieret (vide infra). In Odontii locum successit Victorinus Eichlerus, pastoris Gorlicensis filius (comp. vol. II. 831.), qui descriptis Commentariis (postquam, ut scribit pater Keplero, "describendo opus illud mathematicum, Atalantzeis laboribus tuis elaboratum, absolverit") "ob scabiem, quae in febrim degeneravit, ne foedissime scabiei malo familiam vestram inficiat" a patre domini arcessitus est aestate 1607. — Quos praeter hos duos et forte M. Seiffardum (comp. II. 804.) tum temporis Keplerus ad calculos suos adhibuerit, non constat. Benj. Ursinum anno demum 1609. cum Keplero convenisse, diximus vol. II. p. 572.

Absolutum opus nunciat Keplerus Herwarto d. 13. Jan. 1606, addit vero Nonis Junii: quam diu mihi stimulus non accedit per publicationem, opus cauda carebit; deinde Fabricio (d. 1. Aug. 1607.): Commentaria ut edam laboro diligenter. Impedire minatur Tengnaglius; denique Brenggero (4. Oct.): Versor in adornatione Comm. de motibus Martis. Exemplarium distractione mihi est a Caesare interdictum. Quaerenti Brenggero, quid haec verba significent, respondit Keplerus (Apr. 1608.) opus publice venale non fore.

His quae ex epistolis privatis desumta sunt de tempore quo ad finem perduxit Keplerus opus suum, addimus testimonium publicum, quod Carolus Oberleitner ex tabulis Viennensibus publicis desumtum primum publici juris fecit (Acta Academiae Viennensis a. 1857). Die 29. Dec. 1606. haec dedit Imperator Rudolphus "An den edlen Helmharten Jörger zu Tollet und Keppach, Freiherrn auf Kreussbach, Erblandthofmaister in Oesterreich ob der Enss, Hoffkammer-Praesidenten und Obristen Profantmaister":

Rudolff der Ander von Gottes gnaden, Erwelter Römischer Kayser, zu allen zeitten Mehrer dess Reichs.

Edler lieber getreuer, Uns hatt noch für zwey Jahren unser Mathematicus und getreuer lieber Johan Keppler ein Astronomisch Werk, genantt Commentaria de Motibus Stellae Martis allerunterthänigst praesentirt, Welchs wir gnedigst ersehen, und es also beschaffen zu sein befinden, dass es zu publicirn der mühe wohl werth.

Derwegen, Und dieweil wir, zur erweitterung unserer und unserer hochgeehrten Vorfahren am Hauss Oesterreich angewohnten lieb, zur befürderung der Astronomiae nitt gern ehegedachts Buch, darinnen soviel herrliche gehaimnus der Natur begriffen, ersizen lassen wollten, Alss haben Wir ehegemelten Keppler ufferlegt, dasselb in druekh bringen zu lassen, Idoch das Er one Unser vorwissen und bewilligung nymanden kain Exemplar davon gebe, und so dann ein verlag hiezue von nötten, Alss seindt Ihme Keppler Vierhundert Gulden In unseren Namen zu liffern bewilligt. Bevehlen wir demnach gnedigst, du wollest die anordnung thuen, das mehrbesagten unseren Mathematico solche Vierhundert gulden unverzüglich zugestellt werden, das geraicht Uns zur sonderen gefallen, Es ist auch also Unser endtlicher willen und mainung, Und wir bleiben dir mit Kays. gnaden wohl gewogen, Geben auff unseren Schloss zu Brandteiss den Neun und Zwanzigisten Monatstag Decembris Anno Sechzehenhundert und Sechsten, Unserer Reiche, dess Römischen im Zwai und dreissigsten, dess Hungarischen im Fünff und dreissigsten und dess Behemischen.

Rudolff m/p.

Ad mandatum Sacae Caesae Majestatis proprium An. Hannewaldt m/p.

Hos ab Imperatore Keplero attributos 400 florenos exsolutos esse, neque vero ob defectum salarii constituti satisfecisse ad typum, ex his apparet Kepleri literis (d. d. 25. Aug. 1608.), quibus adiit "Der Röm. Kay. auch zu Vngarn vnd Böheim Königl. Mt. Herrn Hoffkammer Präsidenten vnd Räthe."

Wolgeborne Edle und Gestrenge Gnädige Herren.

E. E. G. G. Werden sich Wissen zu erinnern, das Ir Kay. Mt. mir vor einem Jahr Vnd drüber, ein buch, vmb Wölliches verfertigung Willen mir anfenglich mein bestallung gemacht, in druekh zu bringen Allergst. anbefohlen, vnd mir darzue eine summa gelts durch die Hoffkammer raichen lassen. Demnach aber Ire Mt. ferners von mir vnderthänigist berichtet worden, das mein Truekher, mit Wöllichem Ich contrahirt, nach empfangenem Exemplar Stökhe vnd gelt, ein so lange Zeitt verzogen, vnd zu Frankhfort andern geschöfften abwarte, Haben Die mir Allergst. erlaubet, eine raise dahin zu thuen, vnd sollichen Truekh ainest zu end zubringen.

Weiln nun E. E. G. G. Hochvernünftig zuerachten, das Ich eine solliche ferne raise ohne Zehrpfenning, vnd versorgung meiner Hinterlassenden Hauswürtschafft, nit verpringen khönde; zumahl Ich dise Zaitt vber, als die sach sich verzogen, in abgang der Hoffzallung das obvermelte von Irer K. Mt. mir auff druckhung dises buchs verwilligte gelt, anderst vnd auff Haussnotdurfften zu guttem Thail verwendet, Alss gelangt an E. E. G. G. mein gehorsame bitt, die Wollen mir zu gehorsamister Höchstschuldigster effectuirung Irer Kay. Mt. Allergst. Willens vnd entlicher verfertigung des Werkhs wölliches verhoffentlich Irer K. Mt. zu einem rhuem gedeyen würt, eine Jahrsbesoldung auss dem Hoffzalampt anschaffen, vnd ohne auffzug (zu gewinnung der Zeitt) zustellen lassen.

E. E. G. mich zu gnädiger gewährung gehorsamlich befehlend E. E. G. G.

vnderthänig vnd gehorsamer

Johan Keppler

·Irer Kay. Mt. Mathematicus.

His adscriptum est: Herrn Hofzalmaister vmb seinen bericht was man dem Kepler an seiner besoldung im Zalambt hinderstellig ist.

Ex Con. Cam. Aul. 25. Aug. 1608.

Polz m/p.

Johann Keppler Irer May. Mathematicus ist seiner monatlichen 41²/_s fl. Besoldung bis zu End May verschinnen 1602 Jars bezalt. Bestierte Ime derowegen mit End Augusti nechsthin an der Zeit 75 Monat in gelt 3125 fl. Rhein. Weilen Er aber zu underschiedlichmals 1929 fl. 40 Kr. hieran empfangen, verbleibt auff abzug noch 1195 fl. Rh. 20 Kr.

Item so haben Ir May. Ime Keppler laut verschlossenen Bevelch vmb seiner gehorsamen Dienst und von gnaden wegen 500 fl. aussem Hoffzalambt raichen zu lassen allergnädigist bewilligt.

	1195 fl.	20 Kr.
	500 fl.	
Summa	1695 fl.	20 Kr.
Hoffzahlambt den 10.	September	1608.

E praemissis elucet, opus absolutum fuisse jam circa finem anni 1605, quamquam non dubitandum, tempus inter hunc terminum et eum, quo typis impressum est, non plane sine fructu elapsum faisse. Hoc tamen notamus, ex aliis Kepleri operibus, quae manuscripta inspeximus ex parte non ad finem perducta, apparere, Kepleri rationem scribendi hanc fuisse, ut perparam in literis suis mutaverit, et ea, quae mente sua prius conceperat, integro, ut sic dicamus, filo chartis mandaverit. Concludendum ex his,

Digitized by Google

Processium.

abaolatis capitibus prioribas 52 (Martio 1605) et maxima ex parte immatatis relictis, addidisae Keplerum his capita 53-58 mense Majo, reliqua, forte usque ad cap. 60 sub finem anni 1605; pars denique ultima (cap. 64-70) per annum 1606. inter alias occupationes eam accepisse videtur formam, quam retinuit typis execulpta. Ceterum e literis ad Herwartum datis (Jan. 1603), quas exhibet annotatio 4, apparet, jam illo tempore de capitibus 58 et 68 cogitasse Keplerum. Ad typographum Lipsiam transmissum est opus pure descriptum mense Septembri anni 1607, typi lignei Frankofurtum mense Angusto, et typis denique exscribi coeptum sub finem anni 1608.

Dedicatio Kepleri scripta est d. 4. Apr. 1609. et typus finitus circa julium vel Augustam mensem. Quaerenti denique Harrioto de "commentationibus astronomicis" respondit Keplerus d. 1. Sept.: Commentaria de Marte, titulo Astronomiaè novae autosologytov seu Physicae Coelestis, prostant jam Frankofurti. Exemplaria non habeo. —

Cansae, quibus motus Keplerus tum demum opus suum publici juris fecerit, et per bisanium amplius absolutum detinuerit, non tantum quaerendae sunt in sumtibus deficientibus, quos a Caesare aegre extorsisee se saepius dioit. Parum dubium quin, sicut in edendis Opticis, librarius quidam mis sumtibus typum operis curaset, cam Kapleri neusen jam ante edita Commentaris haud parvi passim facereat, et Keplerum minime laterent angustiae aenarii aulici. Maxima pars culpae huc usque dilati typi alibi quaerenda est, in "dissidiis" quae inter ipsum et haeredes Tychonis ("Tychonicos") orta sunt. — Tychone mortuo Keplerus mandatum accepit a Caesare, ut ea quae ipsi viderentur ex manuscriptis Tychonis publici juris faciat (Comp. Vol. I, p. 191). Paulo postquam susceperat hoc mandatum, incepisse videntur simultates inter edita Tychonis Pregymnasmata, quod apparet ex, his Kepleri ad Herwartum (d. 12. Nov. 1602) datis verbis: Miraberis de mendis in textu (Progymn.); verum est, ant ego nimium curiosus haeredibus visus fui in alieno aut haeredes nimis negligentes fuere, ut ideo me ad typos corrigendos non adhibmerint, et privato consilio opera 'studiosi Joh. Erikson quaedam mutaverint. Sed nec ipsi considerati fuere, dum praecipitantur omnia, nec me arbitrum invitis et offensis, imo et juridicas actiones nuinantibus ingerere debui. (Comp. cum his ea, quae Keplerus Longomontano scripsit p. 35.)

In prioribus literis (c. Aug. 1602; deperditis) querelas de Tychonicis et praesertim Tychonis genero Tengnagelie ad Herwartum detulisse videtor, qui in responsione (d. d. 24. Sept.) hace scribit: Dass D. Tengnagel den pretium in pracesenti pecunia zuvor haben will, ist ihm vielleicht sit zu «ardenken. Sed de re ipsa quid fiet? Ich trag Sorg, es werde nach lang über langem Verzug alles mit einander liegen bleiben, und der Herr, quod doleo, darüber auch mit leiden und ma so viel waniger fruchtbarliche expedition erlangen. Ich finde, dass es zwischen den Erben und dem Herrn allein um Misstrauen und aemulationem zu thun, was der Hauptsache (aditioni Observ. Tychonic.) und beiden zu Nachtheil gereicht. Ad quae rescripsit (d. 7. Oct.) Keplerus : Francisci Tengnaglii propositum equidem justum esse fateor; si tamen in prioribus literis mentionem ejus paulo alienorem feci, quod nescio, id de hisce temporibus intellectum volo, quibus non omnia expedient, quae jure fient. Simultates aluerunt, privatim tamen; nescio, an cuiquam in aula innotuerit nos dissidere, praeter unum D. Pistorium. Quod etsi factum fuerit, non tamen puto otium esse ceteris de hisce leviculis cogitare. Nec diutius offensionem protraxi, quam ipsi injuriam. Tandem prorupit in apertum causa simultatum. Tengnaglius se ingerit in maturationem Tabularum Rodolphaearum; ita forsitan habent res ipsius hoc Westphaliae statu, ut opus sit his praesidiis. Ego, qui haeredibus Tychonis propter parentem jure faveo, impedire sane non possum nec opto; veruntamen gravor praejudíciis. Excusaturus suum propositum seu velaturus veram ejus causam — inopiam — fingit ad aulicos, sibi curae esse honorem parentis seu soceri, metuere ut praeclare capta studia contra ipsius propositum perficiantur, scire, quid is fieri voluerit. Haec speciem habent, quia

ege et olim et jam, vivo et conscio Tychone, Copernici sequor hypotheses. Itaque aut diversum ab eo quod sentio in philosophia defendendum, aut a Tengnaglio discedendum erit, quantum prospicio. Atque illud nunquam feci nec porro admittam; hoc ita faciam, ut dissidere, non odisse dicas: utrum idem et ille sit facturus nescio. Tomos observationum impressos ipsemet percaperem; quam vero spem tibi de Tengnaglii voluntate faciam, nescio. Mihi certum est, etsi imprimantur haud facile repertum iri, qui ex illis tabulas conficiat, nisi extreme impudens et famae negligens; nam semper illi aqua haerebit quicunque laborem susceperit. Utrum idem et Tengnaglius sit persuasus, nescio.

Causam hic habes dilatae editionis Tabularum Rudolphinarum per haud exiguum temporis spatium (prodiisse anno demum 1627. constat), quamquam haud parum fecere aliae multae difficultates, de quibus alio loco agendum erit. Tengnaglium vero minime parem fuisse huic negotio, elucet ex Kepleri verbis, quibus respondit Herwarti quaestioni: ich wolt auch nit unterlassen, quondam Tychonis Brahei haeredes dessen (edendarum tabularum Lunarium) zu avisiren, wann ich wüsste, wie solches geschehen sollte: denn ich, wer sie eigentlich seyen, nit weiss. (E literis d. d. 6. Jun. 1603.) Quod haeredes attinet Tychonicos, rescripsit Keplerus (d. 5. Jul.), unus est instar omnium Franciscus Gansneb Tengnagl, nobili genere Westphalus et in praesens Caesareae Majestati minister aulicus; mathematicus enim non vult audire. Nihil honoris hac mentione M. Tuae impono.

Similia deprehendimus in literis Kepleri et Fabricii mutuis. Fabricius retulit (Martio 1602) Keplero, quanto gandio ipsum affecerint "Tychonici" Eriksen et Tengnagelius se visitantes referentesque "jucunda" de Kepleri statu (comp. Vol. II, p. 432) additque his laudes usitatas Kepleri, modum fere excedentes. Quibus mutus Keplerus dubia de sinceritate amici rescripsisse videtur, ad quae Fabricius sic respondit (1/11. Aug 1602): Scribis, me forte instigatum fuisse a D. Tengnagelio ad te laudandum. Absit hoc a me D. Keplere, nec quisquam tale tibi de me persuadeat relim, me esse talem, qui in ullius gratiam vel odium aliquem vel laudandum vel vituperaridum suscipere vellem. Esset illud hominis non insulsi solum, sed insulaissimi. Quae tibi tribui et etiamnunc tribuo, illud merito fit et jure optimo; res ipsa probat. Ostendunt id libri tui editi, pleni eruditionis abstrusae &c. Testor sane, Tengnageflum tunc temporis optimo in te fuisse animo, et quidem tali modo, ut proxime scripsi. Qui vero factum fuerit, ut illa animarum amicissima a tui amore destituta fuerit, ego sane odorari non possum, nec ex praesentibus Tengnagelii, literis ad me vel minimum cognoscere possum, animum ipsius alienatum esse. Sunt haud dubie in isto viro heroici animi motus subitanei in utramque partem, et ingenii divinitas quaedam in ipso est. Spero itaque, illas simultates subito exortas dissipatum iri.

Ad haec Keplerus sic respondit (1. Oct. 1602): Offensiones cum Tengnagelio. quod scribis, tempus et mea uti spero integritas et candor dispulerunt. Nubeculas tamen semper aliquas.exhalat locus lacunosus - reliqua inquam familia. De genesi tamen ejus haec scripsi serio: Saturnus elevatus in \mathcal{S} Martis infelicitatem affert et duritiem animi; Q in o h suspiciones. Sed quia etiam σ in sextili 4, ita ut sit Δ 5, 4, plane uti scribis divinum notat ingenium, quod natum sit magna in artibus movere, si infelicitas ex 5 non obstaret. Occasio contentionum ex malis familiae moribus et suspicacitate, et mea vicissim impotentia et insultandi libidine. 'His superveniens Tengnagelius argumenta sane non levia invenit, male de me suspicandi. Possidebam observationes, negaveram me ea possessione cessurum haeredibus: eram in spe salarii: ipsi vicissim ex aula nihil accipiebant. Sed illud peccavit Franciscus, quod post omnem satisfactionem non acquievit, sed me terroribus illatis ad levicula aliqua, quae mihi restabant praestanda, nunquam prius monitum ex abrupto adigere contendit, perinde ac si vile mancipium fuissem.

Jam Keplerus, per aliquot annos rem intactam relinquens demum anno 1604. redit ad has simultates, Fabricio quaerenti "de statu Tychonicorum" d. 7. Febr. haec respondens:

Procemium,

De statu Tychonicorum constare mihi non potest, quia me Tengnaglius summovet. Canis in praesepi nec foenum ipse comedit nec aliis indulget. Accipit quotannis mille. Hic vellet, me meis inventis ipsius salarium tueri. Volui, si quartam partem de suis mille mihi transmitteret, communi ipsius et meo nomine cum omnibus meis coram Caesare comparere. Sed quia his mille solus frui vult, ego quoque non possum pro his mille spondere et cogor privatim meum salarium defendere; quod et feci traditis Optica, Ephemeride Martis et transformatione tabularum Lunarium Calendis Januarii. Hoc ille videns praetextum quaerit, me Tychonis placita convellere, nolle se me armare observationibus. (In margine: Quid tu Fabrici? Lunaria Tychonis negant Solem umbrae Terrenae metatorem, nullam concedunt dimensionem Solis, Lunae et Terrae distantiarum et proportionis corporum. Hoc correcturus ego peto observationes, ut correctio a Tychonicis ipsis proficiscatur et per Tychonicas observationes. Hoc est Tychonis placita convellere.) At verior causa, cupit me impediri, ut tempus habeat aliquid elaborandi; profitetur enim se sperare profectum, sed hoc valde inconstanter, subinde enim interjicit, hanc non esse suam professionem.

Ego sancta fide tibi juro, me nibil in ipsum aut ipsius salarium tentare. Hoc solum ago, ut observationes habere possim quas cupio, deinde ut me commemoratione veritatis defendam contra disseminatas criminationes, sicubi mihi indicantur. Acceperunt de 20000 partem quintam; de reliquo in spe sunt. Tycho uxorem duxit genere nobilem, fortuna tenuem. —

Quae si comparaveris cum iis, quae Longomontanus ad Keplerum et Keplerus ad Hegulontium (Vol. I. p. 369) scripserunt, plane constabit, haeredes Tychonis curam anxisse et sollicitos habuisse, Keplerum patris observationum thesaurum suos in usus vertere velle neglectis ipsorum commodis. Deinde cum Keplero a Caesare mandatum fuerit, ut conficiat Tabulas, quas Tycho promiserat, et parum hoc negotium succederet, eas ob causas quas supra ipsius Kepleri proposuinus verbis, stimulasse ipsum videntur cum haeredes tum aulae quidam ministri, ut, promissis staret, quibus intempestivis monitoribus motus, cum insuper institueretar studiorum succum inspector (comp. annot. 3), nominavit Martem suum quasi plane insistentem Tychonis observationibus hypothesibusque, tacite vero propriam viam sibi reservans. Qua promissione facta fautores Kepleri in aula, Barwitius, Wackherius, Pistorius aliique, non tantum Imperatorem Rudolphum jam ipsum Keplero faventem, sed etiam "Tychonicos" eorumque nomine Tengnagilium eo adegerunt, ut ille sumtus, hi consensum tandem ad imprimendum opus in se reciperent. Consensum vero hunc non plane sine exceptione datum fuisse, patet e Tengnagelii praefatione, quam eo loco reliquimus, quo eam Keplerus operi suo adjunxit.

Quod attinet typum et formam, qua prodierunt Commentaria, pares erant liberalitati Caesareae. Typus clarus et satis magnus, charta admodum bona, forma major (in folio), paginae numero 337. Pleraque quae inspeximus exemplaria non exhibent nomen typographi neque locum, ubi typis exscriptus est liber; in uno tantum, meliori instructa charta, quod nobis praesto est, exstat in fine signum typographi Vögelini Lipsiensis, quod describit Kaestnerus in Hist. Math. Vol. IV, 238 addens: unten steht mit einer Hand aus dem Anfange des 17. Jahrhunderts geschrieben: Buchdruckers Zeichen, steht es haim, ob ers hieher drucken oder ausslassen soll, wie anch seinen Nahmen vornen her und den Ort Heidelberg. Haee verba et ea, quae Keplerus scripsit Brenggero (vide infra p. 31) unica habemus, quae Heidelbergam significant locum, quo opus typis exscriptum sit.

Si quis quaerat, quale fuerit judicium aequalium de opere Kepleri, longe diversa est ad hanc quaestionem responsio ab ea, quae de aliis Kepleri scriptis ferenda est. Summa et scopus libri longe excedebat illorum captum, et solus fere Maginus publice illum laudare et suum in usum vertere conatus est; Maestlinus senescens obmutuit, imbecilitatem suam consedens, Fabricius nimium temporis in astrologicis consumebat somnüs, Copernico parum tribuebat, forte etiam aegre tulit Kepleri liberum de ipsius studiis in planetarum motibus judicium, quo factum est, ut publice non eadem alacritate rem aggrederetur, qua privatim cum Keplero de eadem egerat. Alii Tychonis, alii Ptolemaei hypothesibus addicti Keplerum Copernici addictissimum defensorem minus gratum habuerunt. Alii denique opus ipsum nunquam conspearunt, e quorum numero unicum dicimus Odontium, qui, dum illud elucubrabat Keplerus, per annum adfuit illudque ex parte quidem descripsit, Odontiam, polithac professorem mathessos in academia Altorfina, qui dum munere hoc fungebatur, anno 1623. haec dedit Keplero: anni sunt 18, ex quo tempore ego Pragae degens Nob. Tuae operam meam locavi in perficiendis supputationibus, motum, ni fallor, Martis concernentibus. Si quam partem ad elucubrationem operis illius contuli, quod post abitum meam paulo post publicae luci concessum audivi, est quod mihi gaudeam jusque superesse putem, ab autore illius exemplar petendi dono mihi oblatum. Librum quidem illum antehac emere animus fuit, verum praesentium temporum injuria vetat, quo minus tolerabili aliquo pretio emtum habere queam. Alio tempore dabitur forte illius procurandi occasio. — Keplerus ipse in "Epitome Astr. Cop." haec dicit: Undecimus est annus, ex quo Commentaria mea de motibus stellae Martis edidi. Qui liber, cum in pauca multiplicatus esset exemplaria, doctrinamque de causis coelestium inter spineta numerorum et refiqui apparatus astronomici velut abscondisset, cum et pretio libri tenuiores absterrerentur, visum est amicis, recte me et ex officio facturum, si Epitomen conscriberem &c.

Literae denique ab Hanschio collectae testantur hanc Kepleri sententiam, cum in malla earum propius ad rem accedatur.

Manuscriptorum Petropolitanorum volumen XIV. foliis plus quam 1000 studia refert Kepleri ad Martis motus indagandos. Opus ipsum saepius occasionem dabit, ex hac collectione quaedam excerpendi. Jam praemissis addimus es, quibus exorditar illud volumen. Prima facies affert epistolae Kepleri fragmentum, ad theologiae quendam professorem, si en literis R (everendissime) D (omine) P (ater) haec concludere licet. Sequentia folia conspectum eorum praebent, quae mente Keplerus agitabat conscripturus opus suum.

Epistola haec est:

S. P. D.

Obsecro majorem in modum, ut R. D. P. ea, quae hic insunt philosophica cum metaphysicis, ut illa docentur usitate in scholis vestris, conferat et me moneat sicubi impingo.

Mente carere possunt coelestia: de mente igitur disputo tantum in eum finem, si fortasse facultates magneticae et facultates animales non sufficere alicui videantur.

Facultatem magneticam pono in Sole, qua sic agit in corpora planetarum, ut agit magnes in ferrum: hoc tamen discrimine, quod magnes ferrum magis magisque attrahit per egressam virtutis suae corporalis immateriatam speciem: Sol planetas per eandem (ut sic dicam) manum non attrahit ulterius, sed retinere secumque circumducere nititur.

In planetis pono facultates, magneticis similiores. Habent enim binos polos, quorum altero fugiunt a Sole, altero appetunt Solem; hinc eccentricitas.

Nec una hujusmodi facultas sufficit planetae. Oportet et alteram addere pro latitudinibus: ubi valde haereo, an et quomodo sedibus distinguantur in uno et eodem planetae corpore. Haec facultas est illi magneticae similis, qua magnes ad polum dirigitur.

Cuilibet facultati magneticae adjungo facultatem animalem, convertendi corpus suum circa axem corporis, nulla repugnantia supposita, aequabilissima contentione virium. Haec derogat magneticae, illamque vincit.

Cum autem repugnet illa alias fortius, alias imbecillius, hinc mihi nascitur suspicio mentis, quae dictet, quid spectans animalis facultas recte pugnet: quia imaequaliter ei repugnatur.

Mentem, seu rationem dico non ratiocinantem, discurrentem (unde puto oriri numerandi facultatem), sed instinctam in creatione, qualis in plantis, in utero &c. Saepe quis commode sentit, at incommode aut inusitate, et sic obscare loquitur. Contra saepe quis novas sententias usitatis et consuetis vocibus efferens, non exprimit aut non imprimit lectoribus animi sui sensa.

Ego si possem via incedere media, non negligerem, itaque cupio juvari — (nil sequitur).

Procemium.

Folio sequente haec deprehendimus:

- Axiomata physica de motibus stellarum.
- b. Consentaneum, astra circumagi aut vi motrice aut nutu. Ex 3. et 11.
- 2. Coeli solidi nulli sunt.
- 3. Astrorum oxyous nulla. Ex 2.
- 4. Aura aetheria ponitur undique aequabilis.
- 5. Ubi est avrionadic, illis circumagendis nutus non sufficit. Ex 7.
- 6. Ubi est intentio et remissio continua vi naturali consentanea, nutus solitarius non est verisimilis. Ex 10.
- Vis naturalis mensuratur primario druonades ponderum, aut vi motrice contraria, dr9e22es.
- 8. Vim motricem necesse est niti corpore cen fonte.
- 9. Vis metrix opus habet propagatione a fonte, sew effluxu.
- 10. Huic effluxui naturalis est intentio et remissio per elongationem.
- 11. Antispasis aequalis in quiete consistit, inaequalis in motu. Ex 7.
- 12. In motu spectatur, praeter vim et mobile, etiam temporis ad spatium proportio.
- 13. Item in motu consideranda est et amplitudinis mobilis proportio ad medii densitatem.

Fons. Vis affluens — pondus, seu arrionasic. Medium — — Amplitudo terminorum.

Spatium — — Tempus.

- 14. Cum de uno planeta agitur, nulla est consideratio medii et temporis. Ex 4. et 15.
- 15. Corpora planetarum sunt undique aequabilia, sc. rotunda.
- 16. Nutus signis opus habet, quibus dirigatur.
- 17. Ubi nulla continua signa, nullus continuus motas per nutum. Ex 16.
- 18. Ponatur, quod observata testantur, angulos anomaliae coaeq. esse in eversa prop. distantiarum, vel directa discorum.
- 19. Epicycli arcus esse in proportione diametrorum.
- 20. Librationem contingere in epicycli diametro.
- 21. Epicyclus non movetar vi eadem, qua eccentricus. Ex 20, et 12 et 10.
- 22. Ubi nulla antispasis et nulla medii densitas, tralatio potest esse in momento per nutum.
- 23. Motus a spatio dependet.
- 24. Quaelibet vis naturalis habet definitivam celeritatem.
- 25. Effluxus imitatur celeritatem fontis.
- 26. Ubi nulla aatispasis vel medii densitas, mobile imitabitur celeritatem fontis.
- 27. Intentio et remissio effuxas non est sine vel antispasi vel densitate medii.
- 28. Planetarum corpora habent vel antispasin vel proportionem amplitădinis ad densitatem medii. Ex 27. et 18. 19.
- 29. Punctum mobile tollit considerationem omnis densitatis medii.
- 30. Antispasis non est, misi in corpore. Ex 31.
- 31. Que majus corpus, hec majus pondus.
- 32, Punctum tollit considerationem vis motricis. Ex 30. 31. 7. 5.
- 33. Puncii tralatio nulla est, nisi per nutum. Ex 32. 29.
- 34. Planetae aguntur vi naturali in eccentricis. Ex 28. 18.
- 35. Epicyclus non incitatur selo nutu. Ex 17. 19. 6.
- 36. Epicyclus incitatur vi. Ex 5 et 28. 12. 20.
- 37. Epicycli vis incitatur a vi Solis. Ex 36. 21. 19.
- 38. Epicyclo vis alias est alia. Ex 37. 10.
- 39. Sol convolviter in zodiaci longum.
- Sol non attrahit planetam in descendente semicirculo, pellit in ascendente, ut magnes.
- 41. Magnes non pellit ferrum, sed semper in situ unit, at non omni parte pollet hac vi.

- 42. Epicyclus agitur mixta vi propria et nutu.
- 43. Vis naturalis continua est.
- 44. Epicycli motus non est ex nuda vi naturali. Ex 43. et 20.

Praeparatio ad Commentaria in Theoriam Martis.

- 1. Brevis excusatio, cur veritas historiae minutatim consectanda.
- 2. Occasio adventus mei in Bohemiam et suscipiendi hunc laborem.
- Tabulae Solis Tychonicae, cum distantiis Solaribus ex Progymnasmatibus.
 Tabulae oppositionum mediarum ♂ et ⊙.
- 5. Tabulae d inde exstructae.
- 6. Quae in aliis locis occurrunt conceptiones de J. Ut exemplum in genesi Rudolphi. Relatio in Mechanicis, in libro Epistolarum ad Landgravium; in epistolis ad Maginum, quia is prior mentionem injecerat in epistola ad me. Item ex libro de cometa a. 77, quod pendeant omnes orbes a medio motu O.
- 7. Examinatio reductionum ex certis observationibus ad momenta oppositionum.
- 8. Examinatio motuum mediorum d et O, competentium annotatis temporibus oppositionum mediarum of et O.
- 9. Examinatio prosthaphaereseon, seu locorum verorum eccentricorum d'tis.
- 10. Demonstratio, quibus angulis usi sint in reductione ad eclipticam.
- uti debuerint, et quanta hinc existat differentia. 11 53 12. Physica demonstratio, quod reducenda sit haec tabula ad veras β \odot et d
- ex meo Mysterio.
- 13. Causae, cur in computandis locis eccentricis Tycho a vero non recesserit longius, h. e. acquipollentia hypothesium.
- 14. Demonstratio, quod intolerabiliter peccetur in prosthaphaeresibus orbis- annui, si altera oppositio pro altera, vera pro media vel contra arripiatur.
- 15. Reductio tabulae ad veras oppositiones.
- 16. Ex datis Tychonicis circa oppositiones medias inventio aphelii et eccentricitatis ad suppositionem verarum oppositionum. Quod fit crassa Minerva. Idem ex datis Ptolemaicis, et motus aphelii hinc.
- 17. Ex 4 oppositionibus dzooruzeous inventio aphelii et eccentricitatis via laboriosa et difficili, indeque computatio aliorum etiam locorum in tabula. Hic compendium pro aequationibus Ptolemaicis, et aequipollentia hypotheseos Copernicanae et Ptolemaicae.
- 18. Demonstratio per observationes, h. e. per investigationem proportionis orbium in aphelio et perihelio, quod inventa N. 17. eccentricitas veritati non sit consona, sed tantum faciat ad moderandas acquationes. (Addetur suffragium Tychonis circa latitudines. In hac demonstratione assumi debet Terra in longitudine media sui circuli: et prodibit ecc. media aequantis eccentricitatis.)
- 19. Ut autem et Terra ubivis accipi possit, et simul speculatio circa acquantem tanto rectius procedat, suspensa consideratione stellae d, redeundum ad examinationem distantiarum ④ et 古. Primum alleganda Tychonis animadversio, qui aliquando novum circellum, aliquando ampliationem orbis annui suspicatus fuit, et in tabulis d' peculiares numeros adhibuit. Nos id ex vitiose omisso aequante Terrae prodire dicemus.
- 20. Idem Ptolemaeo in theoria Q et \check{Q} accidisse probabimus.
- 21. Rem ex ipsis Tychonis observationibus propius probabimus, ubi primo emnium catalogus et dispositio observationum 3 in Tychone, unde necessitas harum observationum luculentissime probabitur.
- Primum ergo propositum crasse ex binis observationibus aequali commutatione 22. evincemus, ubi et methodus inveniendi haec momenta.
- 23. Idem ex observatione acronychia collata cum aliquot observationibus parallacticis, ubi dimensio simul habebitur, quod sc. acquans hic quoque duplum habeat eccentrici.

Procemium.

- 24. Ex hoc fundamento habemus correctas distantias \odot $\stackrel{*}{>}$ ad gradus singulos, cum acquatione eccentri, sinul et artificium construendi ista faciliter ad gradus coacquatos anomaliae eccentri.
- 25. Demonstrabimus, usi hypothesi Ptolemaica, quod prosthaphaereses Tychonis nuspiam ultra unum scrupulum turbentur.
- 26. Ad ulteriorem probationem eccentricitatis dimidiae in Sole, et simul ne aequationi d'in hoc negotio subtili credere cogamur, quam supra nro. 18. suspectam redeideramus, aliquot aliis exemplis idem probare aggrediemur. Ubi, quia observationibus cum latitudine nobis opus est, dupliciter illas cavere docebimus, vel per correctionem anguli, vel per conum scalenum et correctionem in fine distantiae inventae.
- 27. Ergo adhibitis distantiis Solaribus jam constitutis, vice versa probabimus parallaxes observatas in eodem eccentrici loco, addito, quantum fuisset erratum, si vel tota eccentricitas Solis, vel pars notabiliter major fuisset accepta.
- 28. Alio exemplo, quasi per regulam falsi, aut demonstrative ut in \mathcal{O} , rursum eliciemus eccentricitatem Terrae.
- 29. Hinc jam ex consideratione duorum exemplorum concordium in d et Q et assertione Ptolemaica de ceteris planetis ingrediemur speculationem physicam acquantis, demonstrantes, ita esse motus, ut sunt distantiae.
- 30. Tentabimus imperfecta demonstratione compendium tradere investigandi.
- 31. Idem hoc experientia iterum refutabimus et computatione locorum in tabula d. An autem hoc rejectitium consentiat cum axiomate: "ita motus, ut distantiae," ex distantiis 45 in d collectis, facile probabitur.
- 32. Quia vero aphelium & hactenus suspectum est, consulemus aliquot observationes circa aphelium, cum aliquot circa perihelium, et tam diu operabimur, donec & invenerimus in dimidio tempore restitutionis cadere in loca opposita, ea linea indubie erit linea augium. Inde apogaea et perigaea distantia et eccentricitas confirmabitur.
- 33. Idem praestabimus circa longitudinem mediam in ö, nam in M desunt observationes, ubi et in quarta temporis, ex acquatione, et in loco quadrato ex tempore, de acquatione maxima judicium feremus, indeque de eccentricitate utraque, consultis etiam, quas inveneramus, distantiis tribus. Plus autem acuto angulo tribuetur in inquisitione loci, minus acuto in distantia.

In marg.: Hoc capite nihil forte aliud, quam ut probemus, distantias intermedias non esse in circulo, et quae consulantur in anomalia coaequata, utiles esse in anom. eccentri.

- 34. Hinc exstruemus distantias \mathcal{J} ad gradus coaequatos cum aequatione eccentri, ut in \bigcirc , et quia simul innotuit proportio orbium, conjiciemus eas in numeros distantiis Terrae respondentes.
- 35. Acquationes vero acquantis seu physicas ita moderabimur, uti opus esse viderimus, vel ex distantiis operantes, vel ex triangulo, et conjiciemus in tempora, una cum Solaribus.

In marg. Hic ratio reddenda, quare physica cum experientia non consentiat, et quatenus consentiat, et quomodo ex physica vere computare possimus, quomodoque ex vicaria veram eliciamus.

- 36. Quod latitudines attinet, ostendemus, quo pacto nodos invenerit Tycho.
- 37. Correctionem nonnullam addemus ejus demonstrationis.
- 38. Nostro modo nodos ambos ex observationibus inveniemus, una cum motu nodorum ex Ptolemaeo.
- 39. Vel ex latitudine borea et austrina maxima, vel ex ortu et occasu & heliaco inquiremus inclinationem planorum.
- 40. Diameter nodorum per Solem transit.
- 41. Inclinatio est aralarros.
- 42. Inclinationum tabula.

Kepleri Opera. III.

2

In Commentaria de zeotu Martis

Capita quaedam de novo recoquenda ad numerum.

- Cap. 32. Virtutem, quae planetam movet in circulum, residere in corpore, <u>quod</u> est apud centrum illius circuli, et quomodo moveat. Ubi comparatur luci et magneti, et assumitur et quasi proponitur, in Sole esse; et quomodo comparata sit; denique de filamentis Solis et ejus ratione.
- Cap. 33. Virtutem motricem attenuari cum discessu a fonte, demonstratio geometrica.
- Cap. 34. Consideratio metaphysica virtutis ex Sole. De statera, vecte. Cognatio earum cum luce. Emissa species immateriata. Superficies est. Impediri potest.
- Cap. 35. Virtus Lunam movens, qui comparata sit. Ubi Tycho refutatur.
- Cap. 36. Planetas viam ire ecceptricam vi insita, et motus eorum componi ex 2 causis, ubi de flumine.
- Cap. 37. Qua forma et quibus mediis moveant virtutes planetis insitae. Ubi affectant epicyclium, sunt geometriae capaces: Solis intuitu describunt epicyclum.
- Cap. 38. An virtus ipsis planetis insita non minus sit aequabilis, quam communis illa in Sole.
- Cap. 39. An virtus ipsis planetis insita conferat in longitudinem zodiaci, et de mutatione latitudinis fixarum, translatione nodorum. Ubi responsio ad obj. cap. 34 et cur omnes in unam plagam, et natura zodiaci.

Alia disposítio.

- Сар. 33.
- 33. 2. Omnes planetae apogaei et perigaei intendunt et remittunt motum. Causa aut in planeta, aut in virtute loci; si in hoc, ergo stipatior in apogaeo, ergo fons in centro communi. Hic exemplum staterae et vectis.
 - 3. Et cum recte aphelia pro apogaea fuit substituta, fons igitur in Sole. Suadet et ipsa rerum natura, ut Cap. puto 2. dictum. Tertio idem suadet et exemplum lucis; hoc breviter.
- Cap. 32. 1. Demonstratio, motus diurnos visos esse in dupla proportione distantiae apogacae et perigacae, veras vero portiones eccentrici in simpla.
 - 4. Cum tantundem sit in amplo, quantum in angusto, comparatur igitur luci, et species est immateriata, et rectis egreditur, et superficies est seu corpus.
 - 5. Cum moveat in gyrum, ipsa igitur abit in gyrum. Et cum rectis egrediatur, nec possit separari, Sol igitur et ipse abit in gyrum: comparatur magneti, et cum non omnes rapiat aequaliter, celerior igitur omnibus. Exemplum) et 5.
 - 6. Cum undique moveat in gyrum, nuspiam aliter, Solis igitur filamenta. magnetica circularia sunt.
 - 6. 8. Objectio de dupla proportione disci, et responsio.
 - 7. De virtute Lunam movente interjectio, et Tychonicae hypotheseos comparatio.
 - 9. Cum sit virtus () simplex, concurrunt igitur causae 2 ad motum planetarum.
 - 10. Et cum () tantum in concentrico, ipse igitur planets eccentricitatem praestat.
 - 11. De acquipollentia physica varia, ubi an epicyclum vel librationena obtineat : concluditur pro libratione.
 - 12. Cum accedat, vim obtinet movendi suum corpus.
 - 13. Cum inaequaliter vim exserat, lege libratoria, id non ab animatione ex Sole, ergo vis est propria et absoluta. Exemplum de lumine stellarum.

Cap. 34.

Cap. 36.

Cap. 35. 7

Procemium.

- 14. Quibus remigiis vim hanc exserat, ubi exemplum de flumine. Et quomodo remi directione nauta posset scribere eccentricum.
- Talis remi directio tempore inaequali et librat et dimidiat, ex antecipato. Nam possem dicere, accidere hoc inaequaliter, ergo ut in remo.
- 16. Cum igitur vi extranea atatur ad corpus transvectantum, in suum corpus nil potest, nisi conversionem, exemple remi.
- 17. Cum losi cognitionem non habeat, restituatur tamen com concentrico, tributum igitur ipsi primitus acquabile quippiam virtutis et dimensum, cujus contentione nititut.
- 18. Ex 11. aliqua assumuntur, et demonstratur, quid inde sequi pecessé sit, ut varietas apparent, simul ut fundamenta jaciantur sequuturo imutili labori. Nam posito, radios eosdem, idem centrum epicycli, planeta lege epicyclica movebitur in longum.
- 19. Etiam in latum posset ita moveri, sed judieium differtur ad inferiora. De quantitate Eccentricitatis. Nam corpus of parvum est, of magnum. Vicissim eccentricitas of magna, of parva. Causa igitur in corperis levitate, sed tamea considerandum, an etiam restitutiones takes, nempe of velocior, quam pro spatio et fertitudine.

Haec sequenter per folia plura quam 900 conamina diversimoda, emendandi d' motes per calculum, in quibus maxima ex parte Keplerus tentat loca d' a Tychone observata acronychia in circulum redigere.

Foliis 823-832 (a Keplero signatis numeris 519-528) haeo deprehendimus, circa assum 1665. conscripta.

Quae in theoria Martis restent exploranda.

Duo sunt, quae theoriam Martis reddunt intricatam, sphaera Solis et sphaera ipsa Martis. Sphaera Solis non quidem in eo praecipue, quod hactenus exemplo antecessorum dispositio orbium Martis relata fuit ad medium locum Solis. Nam hoc jam praeventum est, et non debemus videri neglexisse eccentricitatem Solis, si planetam ad locum medium Solis referimus. Hoc enim ipsum includit inaequalem Martis a Sole distantiam in toto ambitu orbitae Solaris. Ac etsi aliguid infertur diversitatis hoc nomine, quae in acquatione eccentri ad 5', in parallaxi vero ad 42' et amplius excurrit, id tamen accidit propter ipsum d orbem, ob hanc osusam aliter ordinandum, ut postea dicemus. Sed hoc nomine venit alique ex orbe 🗿 in d'diversitas, quod eccentrici () non est tanta eccentricitas, quanta aequantis Solaris est eccentricitas. Id ego deprehendi hoc modo. Quaesivi aliquot articulos temporum, in quibus o praecise esset in loco eccentrici, ut ita mihi non opus esset cognitione dispositionis orbium d. Cum ergo per tres hujusmodi observationes trium parallaxium orbis annui tanquam per tria puncta processissem ad inquisitionem circuli, prodiit eccentrici Solaris eccentricitas circiter dimidia eccentricitatis a M. D. Tychone assumtae. Ut ita vel acquans Ptolemaicus vel circellus Copernicanus non minus in Sole sit statuendus, quam in ceteris planetis. Prodiit etiam apogaeum 🕥, linea a Terra per eccentrici centrum trajecta, circiter 30º II, quod parum abest a 6º .

Verum tamen cum rem hanc non per unam tantum trigam parallaxeon annuarum, ad idem eccentrici \mathcal{J} punctum relatarum, sed per alteram atque tertiam explorarem, prodiit aliqua diversitas, et videbatur haec eccentricitas aliquanto, minor, apogacum vero jam in 28° II, jam in 8° \mathfrak{S} cadebat, seu

2 *

19

vitio et praecipitantia calculi, seu quacunque alia ratione. Cum' igitur etiam per se ipsum suspectum sit, assumere quantitatem aequantis praecise dimidiam eccentricitatis totius, erit igitur ante omnia hoc ipsum majori praecisione tentandum, quam hactenus a me factum est.

Hoc fundamentum erit omnium quae porro in Marte tentari possunt. Ubi de quantitate convenerit, construatur postea tabula ad singulos gradus ab apogaeo Solis, exhibens distantiam Solis a Terra. Simul etiam revideantur aequationes eccentri Solaris, quae circa 45° ab apogaeo mutabuntur (si dimidia sit eccentricitas nova antiquae) unius scrupuli quantitate circiter.

Jam quod ipsum Martis eccentricum attinet, in eo primum aequationes non bene habent, (in marg. Haec demum die paschatis) ideoque vitiosa est proportio circellorum. Nam axporvyiai observationes habent hoc vitii, quod reductio locorum eclipticorum ad orbitam o facta est per latitudinem maximam boream et austrinam, quae debuisset fieri tantum per angulum inclinationis eccentrici. Hoc pacto 10' alicubi sunt addita, ubi non ultra unum fuisset addendum. Itaque exsurgit ex comparatione dextri et sinistri semicirculi differentia circiter 20'. Quodsi de novo struantur prosthaphaereses, apogaeum quidem aut eodem loco manebit, aut parum admodum mutabitur, at variabitur proportio circellorum, forsan et ipsa aequantis eccentricitas nonnihil emendabitar, sic ut maximae aequationes fiant paulo majores aut minores. Manebit apogaeum ideo, quia nodi sunt fere in longitudinibus mediis, et vere aequaliter a nodis aequalia per reductionem ad orbitam sunt addita. Mutabitur aequatio maxima propterea, quia per reductionem jam dictam Mars utrinque et ad apogaeum et ad perigaeum propius fuit admotus, quam re vera erat. Conditio vero circelli hoc affert, ut si removeat Martem ab apogaeo in utramque partem, propius eum ad perigaeum admoveat aut contra: sicque alterutro loco contrarium ei, quod debet, praestabitur, si solam proportionem circellorum mutemus. Itaque omnino et ipsam eccentricitatis quantitatem in subsidium advocare debebimus. Proderit autem, hanc acquationum tabulam dupliciter restituere primum relata Martis eccentricitate ad medium locum Solis. Hoc modo constitutae aequationes calculo usitato servient nobisque prodesse poterunt ulteriora tentantibus; différent tamen nihilominus a veris, in locis aliquibus circiter 5', propter causam post dicendam. Deinde etiam hoc modo erit construenda tabula aequationum, ut omnes primum oppositiones Martis et Solis reducamus ad verum locum oppositum Solis, deinde per angulum inclinationis maximae (si haec scrupulositas necessaria videbitur) verus locus oppositus Solis erit reducendus ad orbitam Martis, qua reductione nuspiam ultra 1' 20" mutabitur locus Martis. Hoc pacto si struantur ex 10 observationibus acronychiis novae aequationes, cadet ipsarum aphelium (loco apogaei hanc vocem jam substituo) in 6° m circiter, eritque eccentricitas aequantis a Sole paulo

Fig. 1.

minor, quam a medio loco Solis. Licet id etiam experiri per triangulum ABC, ubi A est medius locus Solis, B Sol, C centrum aequalitatis Martis (more Ptolem.), AB eccentricitas Solis tota, ut hactenus illa fuit usurpata. AC eccentricitas maxima Martis hactenus credita. Erit ergo CB eccentricitas a Sole. BAC angulus circiter $47 \frac{1}{2}$, quantum est inter $6^{\circ} \odot$ et $24^{\circ} \Omega$. Atque ut hinc commode ad id transeam, cujus jam bis feci mentionem: sciendum, quod si ad Solem ipsum referantor eccentricitates, id aliter fieri non possit, quam modo jam depicto, trajecta

Procemium.

stil lines ex B corpore Solis per C centrum acquantis antiquum, vel non maltum mutatum. At si hoc fiat, tunc utique centrum viae planetariae, quam planeta ipse suo corpore decurrit, non poterit amplius esse in D, puncto lineae AC apogaeae, sed cadet necessario in F, punctum lineae CB apheliae. Quo pacto orbis Martis ad dextram loco suo movebitur. Etsi igitar utroque modo, vel si D, vel si F sit centrum eccentrici, semper iidem anguli aequalibus temporibus ad C constituentur: tamen cum & tantum duobus locis circa D et circa F currens, aequaliter utroque modo ab A vel B removeatur, ceteris vero locis omnibus, alias per D centrum, alias per F distantias faciat, hinc oritur aliqua parallaxis. Nam linea DF cadit circa 2º 😔, ibique et in loco opposito ostendit maximam distantiam orbitarum Martis. Sed si ad utrumque locum d, et in una et in altera orbita existentis, linea ex A ducatur, eae duae lineae nondum maximum angulum facient, quia ibi acquationes non sunt maximae. In longitudine vero media vel prope, cum sit adhuc magna orbitarum & distantia, fit angulus dictus variatae aequationis eccentri circiter 5'. In parallaxi vero annua 42' vel 45' hinc conflari poterunt.

Erit itaque explorandum, an parallaxes annuae locis ex hac speculatione emergentibus tantam variationem possint ferre? Quod etsi nondum ipse exploravi, tamen quin fiat nequaquam dubito. Nam hoc evidentissime ex latitudinibns acronychiis latiori modo consideratis apparuit, distantias Martis a Sole (retuleram enim diametrum nodorum ad ipsum corpus Solis, non ad medium locum Solis, quod etiam experiendum erit, an esse possit) maximas fieri circa 2 aut 6 m, non circa 24 Ω . Idque pulchre cum triangulo supra posito consentit.

Sic constitutis tabulis, primo distantiarum Solis a Terra, post zequationum eccentri, poterimus postea accedere ad investigationem proportionis annui orbis ad orbem Martis, quod etsi nondum certissime constat, tamen non longe aberit ab hac ratione, ut sit semidiameter & 151580, qualium semidiameter Terrae 100000; eccentricitas vero simplex 14160 circiter; sed cum hanc constituerem, nondum de Solis aequante sclvi.

Porro in modo investigandi notabile aliquid altero paschatis die animadverti, quod per triangulum ABC explicabo.

C (Fig. 1) Sol ipse, B Terra, A Mars. Dabitur igitur ex antea requisitis CB ad singulos apogaei gradus, BCA est angulus commutationis, qui per verum locum Solis constituatur, BAC angulus parallaxeos. Sed A et C anguli sic sunt constituendi: fingamus, circulum magnum transire per locum Solis oppositum et per corpus Martis. In illius circuli plano est triangulum BAC. Rectius id explicavero per duo alia triangula.

Sit D verus locus Solis. DE ecliptica, DF orbita Martis, EF arcus circuli magni per polos eclipticae transeuntis, dimetiens inclinationem plani Martii ejus loci. D Datur ergo EF ad omnem a nodis distantiam. Datur etiam F locus o per distantiam a nodo coaequatam. Facile igitar invenitur beneficio anguli E recti locus E in eclip-

tica. Ergo ED commutatio usitata (nisi quod D est verus locus Solis). Denique igitur ex FE, ED quaere FD, veram anguli commutationis dimensionem, anguli scil. BCA (Fig. 1).

Eodem modo sit jam E locus eclipticus, ad quem visus locus J reducitur. F sit visus locus J. D verus oppositus (). Datur ergo ED

Fig. 2.

ex subtractione visi loci a loco causa eccentrici; datur etiam FE latitudo visa, et FED rectus. Hinc quaeratur FD, vera dimensio anguli parallaxeos BAC (fig. 1). Hoc nisi caveatur, multum infertur, praesertim ubi angulas commutationis est valde parvus, ubi latitudo se immiscet notabiliter.

Qualis mea opinio futura sit de Theoria Martis.

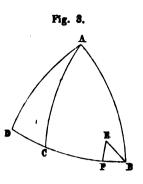
Calculatie quidem erit satis intricata, sed hypotheses simplices. Martis a vero loco O eccentricitas tota erit circiter 18583; qualium radius orbis 100000, de qua debebitur apogaeae et perigaeae 10670 circiter. Aphelium cadet in 28° 31⁴/₂ \Re circiter. Et additur 58" lóngitudini mediae Tychonicae.

Per hanc suppositionem in 8 certioribus *ancorregione* sitibus nuspiam altra 6' aberratur. At verus ille locus O, unde pendet haec eccentricitas \eth , non tantum distat a Terra in revolutione annua, quantum fert eccentricitas maxima. Minuitur enim illa in apogaeo et perigaeo circiter dimidia parte, fitque sphaerae \eth centrum (O in O versante) propinquins, in \oiint remotins a Terra. Quod latitudinem attinet, illa etiam a Sole pendet. Habebit enim planum sphaerae \Huge{O} constantem et non libratam inclinationem ad planum sphaerae O, circiter 1° 54' 36", et transibit diameter nodorum per ipsum corpfs O: fientque non mediae sed verae oppositiones \Huge{O} et O, indices locorum, abi sunt nodi. Estque ideo semicirculus borealis major semielrculo justo, circiter 2°.

'Hypothesibus jam certo constitutis, ratio calculi talis erit. Colligentur medii motus J. Subtrahetur aphelium cum anomalia, ex tabala prosthaphaeresium excerpetur acquatio eccentri addenda vel subtrahenda motui medio.-at habeatur verus motus in eccentrico.

Secondo quaeretur distantia ejus vera (causa eccentrici) a node, et per hanc et angulum inclinationis maximae capietur vel ex simuum doctrina vel ex tabula peculiari inclinatio plani ab ecliptica competens illi loco eccentrici, in quo reperitur Mars. Simul etiam vel per distantiam a nodo et angulum jam inventum, vel per illam et angulum inclinationis maximae, vel denique per utrumque angulum determinabitur arcus eclipticae interceptus inter nodum et circulam latitudinis per corpus Martis transcuntem, qui arcus à distantia d' a nodo nuspiam differet plus 1' 12".

Tertio ad susceptum tempus quaeretur locus Solis verus (de commutatione enun nondum fixas habeo cogitationes) una com justa ejus distantia a Terra, in proportione qualium eccentricus σ est 10000, idque ratione habita aequantis O.


Cum hujus loci (•) oppositum comparaveris ad locum \mathcal{J} causa eccentrici, quemadmodum ille praecepto secundo ad eclipticam est reductus, emerget angulus, quem commutationis angulum simplicem appellabimus. Per hunc et angulum inclinationis supra praecepto secundo inventum, tanquam per duo latera circa rectum in triangulo sphaerico quaeretur et angulus arcui inclinationis oppositus in futuram usum, et basis recto subtensa, quae basis prodet quantitatem anguli commutationis coaequati, qui comprehenditur inter lineam per Terram et Solem, interque lineam per Solem et Martem productam. Habemus duo latera cum incluso angulo (sc. \mathfrak{I} (•), (•) \mathfrak{I} cum \mathfrak{I} (•) \mathfrak{I} ; linea \mathfrak{I} (•) est in plano eclipticae, (•) \mathfrak{I} in plano Martis, \mathfrak{I} intersepit utrumque planum); quaeritur quarto angulus (\mathfrak{I} (5), cujus comple-

Procemium.

mentum prodet distantiam of ab opposito loco () in circulo magno per utrumque corpus transcente. Quinto per hanc distantiam modo inventam tanquam per basin et per angulum, qui sapra arcui inclinationis oppositus dicebatar, quaeretur in triangulo sphaerico latus utramque eirca rectam. Sit BAC sphaericum rectangulum. B oppositas verus (), CBA angulus arcui inchinationis oppositus, AB distantia d visa ab opposito (•) vero. Est BCA rectus.

Quare dabuntur latera CA, latitudo J visa, et AB, distantia J visa ab opposito Solis vero. Sieque calculus erit absolutus.

His praemissis addimus ea, quae Keplerus cum amicis egit de opere suo, cum nondum

re incepto, tum ex parte tantum perfecto, tum denique absoluto. Keplerum inde ab anno 1597. multa per literas egisse cum Herwarto ab Hohen-barg apparet inspectis vel. L et II. Priores utriusque literas partim loca quaedam veterum ad chronologiam pertinentia, partim Tychonem, partim Kepleri opera et res privatas attinent. Jam vere anno 1539. cum Harmoniam tam Martis theoriam adiisse Keplerum e sequentibus patebit.

Keplerus Herwarto nunciat, "adornasse se prima lineamenta Harmonices Mundi" (d. 14. Dec. 1599), qua relatione accepta ille respondit : Die Libellos, so ihr Eurem jüngsten Schreiben nach ausgehen zu lassen willens, verhoff ich in kurzem zu sehen. Und da ich Euch in etwas willfehrigkeit erweisen kann, habt. Ir mich dazu willig und bereit.

Den Herrn bitt ich freund- und dienstlich, er wolle unbeschwert annum a Ch. VI. et VII. examiniren, ob nit darinen ein darphi arphi arphi quoad longitudinem et latitudinem su beänden, quae in meridiano urbis Romae paulo ante Solis ortum inciderit. Begere solche Mühewaltung hinwiderumb zu beschulden.

Ich wolt des Herrn judicium über die Simonis Marii jüngst ausgangene Tabulas Novas Directionum (Comp. Vol. I, p. 367) gern vernehmen ; ich halte dafür, er habe mentem et inventionem Pielenaei et Veterum, distribuendi duodecim coeli domicilia et constituenderam aspectumm, wall assequirt.

End bleib Ime angenemen Freund und Dienstlichen willen zu erweisen geneigt.

Datum München d. 18. Merz 1600.

DEs Herrn dienstwilliger

Hans Georg Herwart von Hohenburg Fürstl. Durchi. · In Bayrn geheimer Rath, Pfleger su Schwaben und der Landschafft in Bayrn Cantzler. Haec subscribo, quia conditionem meam mutavi, et me supremo Cancellariatu exoneravi.

Ad have respondit Keplerus d. 12. Jul. 1600. (comp. Vol. I, p. 71 et Vol. II, p. 815): Meam de Harmonia Mundi dissertationem jam pridem ad umbilicam perduzissem, nisi Tychonis astronomia ita totum me sibi possedisset, ut pene insaniverim; quamvis mecum deliberem quid jam porro hac in re sit faciendum. Etenim inter potissimas causas invisendi Tychonis fuit et haee, ut verieres eccentricitatum proportiones ex ipso discerem, quibus et Mysterium meum et jam dictam Harmoniam examinarem. Non debent enim hae a priori speculationes in manifestam impingere experientiam, sed cum hacconciliari. Verum Tycho copiam earum mihi non fecit, nisi quantum obiter et aliuel agens, inter coenandum, jam de apogaeo hujus, jam de illius nodis meminit.

Sed cam videret, esse mihi ingenium audax, rectissime fortasse mecam agere se existimabat, indultis ad meam lubitum observationibus ipsis unius

23

planetae. Martis scilicet. In hoc tempus trivi nec de aliorum planetarum observationibus fui sollicitus : sperabam quotidie exitum in theoria Martis: post alias quoque habuissem. At cum tempus elaberetur, spes tamen reditus mei in Bohemiam securum me reddidit. Igitur Mars, quantum ego quidem ex observationibus Tychonis hausi, jam incipiebat argute satis modulari tertiam duram, quam illi assignavi. Confirma vit idem et Mysterium meum duobus locis mirifice. Cum enim illic ego retulissem eccentricitates planetarum omnium ad ipsum corpus Solis, valde mihi a Tychone metuebam, ne is referret ut Copernicus ad medium locum Solis. Atqui Mars constanter respuebat ullum aliud punctum, praeter ipsum centrum corporis Solaris. Tycho laetabatur meis his ausis: nam idem ait et sibi jam din agitatum, sed libenter declinaturum intricatam rationem calculi, eoque cupere videre et aliorum meditationes. Deinde, cum ego sub finem Mysterii mei monuissem de aequante 💽, quem dolebam unico Soli vel Terrae negatum: jam o apertissime et hoc testatus est, inesse in () rationem aequantis. Et hoc est, quod Tycho quasi sub aenigmatis involucro (ut interdum solet) ad me perscripserat de variabili quantitate orbis annui, qui in 5 efficiat differentiam 1° 40' (L. 44.). An igitur exspectem, dum Tycho suas edat theorias planetarum, ambigo. Sed tamen, si praeoccupare visum fuerit, adhuc unum mihi deest, quod a M. T. petam, copia sc. Harmonices sive Musices Ptolemaei. Lustravi catalogum bibliothecae Viennensis, in qua librum exstare manuscriptum Spachius affirmat in catalogo philosophorum. Non reperi quaesitum. Scripsi ad Dasypodium. Habere se respondit, nihilque praeterea. At nisi ego sperassem, illum possidere hunc librum, non scripsissem nec petiissem copiam. Ursus Pragae affirmaverat, puto ex Gesneri bibliotheca, impressum esse alicubi, puto Parisiis; et Otho, auctor ille Palatini operis, qui jam Pragae haeret, esse et sibi exemplar opinabatur. Ita nasu ducor. Quodsi Ptolemaei opusculum nancisci nequeo, at Glareani Commentarium super hanc disciplinam, quod impressum est in folii forma, Ptolemaicae rationis fortasse mentionem faciet,

Quod petis, ut examinem annum sextum et septimum ante Ch., an faerit aliqua conjunctio Q et \breve{Q} : differendum est in occasionem proximam. Jam enim occupatus sum in eclipsi O. Sed quantum ligna metallo, tantum nostra Tychonis cedit industria subtilitati.

Marii tabulas directionum vidi Benathkae a te missas, sed $\pi \alpha q eq q \omega c$ ut cetera omnia praeter Tychonica. Certum est, aliam a Ptolemaica rationem esse Regiomontani. Sed vix melior esse potest Ptolemaica Regiomontani methodo. Nec dubito, quantum ex superficiaria lectione mihi haeret in memoria, Ptolemaeum Mario recte intellectum. Videris autem occulte monere, aspectuum variam esse rationem ideoque non esse adeo geometricum certum et constans negotium de aspectibus, uti quidem ego mihi persuadeam. Si hoc vis, respondeo, nihil esse cur in dubium vocentur meae rationes. Nam illorum aspectuum longe alia ratio est, nec de iis mihi sermo erit in meis Harmonicis.

Ceterum quae ad me missurus distulisti incertus de meo reditu, illa videre aveo: tunc ergo si M. T. videbitur, remittam Clavii Astrolabium. Ceteros libellos puto integros ad te redisse. Jamque ad omnes articulos literarum tuarum respondi. Itaque vale vir Magnifice et mei amantissime,

et si consilium tibi salëtare incidit, id cito ad me perscribes, si mea studia hac occupatione digna censueris.

Deo M. T. et me commendo.

Datae Graetii 12. Jul. anno 1600.

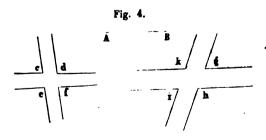
Nob. et Magn. Tuae

Studiosissimus

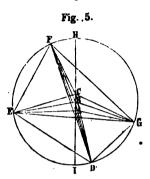
M. Jo. Kepler

Styrium Ordinum Math.

(Inser. Dem Edlen und Hochgelehrten Herrn Hans Georg Herwarten von Hohenburg, er Bechten Doctori, Fürstl. Durchl. in Bairn geheimen Rath, Pflegern zu Schwaben u. d. Landtschaft in Bairn Canslern. Meinem Grossgünstigen Herrn. München.)


Postscripta.

Mitto ad te, h. e. ad emporium quoddam doctrinarum perfrequens et apud quod literati variarum nationum sese internoscere incipiunt, mitto, inquam, problema geometricum, quod ad Vietam transmittes, si astronomiae consultum cupis. Nam quicunque hoc demonstraverit, is mea quidem opinione praeclarissime de subtiliori et exquisita astronomia merebitur.


Jubet enim ex quatuor acronychiis planetae situbus in zodiaco et temporis intervallis elicere et veram longitudinem mediam (iis enim, quae ab auctoribus sunt tradita, fidere non possumus), et locum apogaei et eccentricitatem et proportionem eccentricitatis aequantis ad eccentricitatem viae planetariae: hoc est omnia, quae quis desideret scire, praeter parallaxes orbis annui.

Hactenus quidem eo sum usus, sed indemonstrato. Itaque ad finem (unici exempli) non perveni (in margine: Perveni quidem, sed inutile fuit, falsum enim erat unum ex assumtis. Sed scio perveniri posse) quatuor jam mensibus. Nam duplici fictione utendum est, seu ut ita dicam quadrata: rectissime vero aregraça aleatoria, ut Vietae verbo utar, quo usus est in demonstratione problematis Copernicani, de tribus hujusmodi angoraguage observationibus. Quae quidem Vietae demonstratio spem mihi injecit, posse hanc meam etiam quaestionem ab ipso solvi. Si priori mihi demonstratio occurrerit, ea et ipsum impertiar. Hactenus quidem eam frustra quaesivi, credo quod minus in hoc genere sum exercitatus. Hoc tamen certum habeo, proponi casum unicum et certum, non vagum. Cum quae nota sunt, omnia rationem habeant angulorum, existimavi diu, cossa utendum ad investigationem residuorum angulorum, quibus emergentibus statim patet ad linearum proportiones aditus. Loco problematis sit ipsa indenos

spicnitatis causa. Sint due puncta seu linea AB ad arbitrium, sintque anguli propositi quaterni c, d, f, e, facientes summam 4 rectorum. Sint et alii quaterni eandem summam facientes, sc. g, h, i, k, (inmargine: Oportet autem certum existere, angulos hinc et illinc sic esse

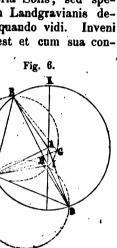
comparatos, ut casus possibilis sit. Hoc quidem assumimus et experimento constat. Demonstretur igitur, quae angulorum propositorum proportio reddat. casum impossibilem.) Oportet jam regionem circa B dividere in 4 angulos, aequales datis c, d, f, e, et regionem circa A in 4 aequales datis g, h, i, k, sic quidem, ut sectiones quaternae linearum ex B et ex A concurrentium incidant in circumferentiam ejus circuli, cujus BA utrinque continuata diameter, est. Hic cylindros et conos et quicquid est suppellectilis geometricae expedi, Apolloni Gallice. Nam facit instituta restaurationis astronomicae angußsua, ut iis, quae jam demonstrasti, parum frui possimus ad majora adspirantes. Modus quo ego sum usus in opere (quia hic problema illustrabit) hic

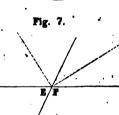
fuit. Esto circulus propositarum sectionum DEFG. Haec est via ipsius planetae ejusque quatnor in illa stationes. Centrum ejus sit B, diameter per puncta duo proposita (quae jam sint C, A. A centrum unde computatur eccentricitas, sc. ipse Sol, C centrum aequalitatis) transiens HI. Connectantur CD, CE, CF, CG, sic AD, AE, AF, AG. Item BD, BE, BF, BG; tum etiam DE, EF, FG, GD; denique GE. Dantur ergo DCE, ECF, FCG, GCD ex intervallis temporum inter observationes. Dantur etiam DAE, EAF, FAG, GAD ex distantiis locorum zodiaci. Tertio, quia D, E, F, G sunt in circulo, ideo quadrilateri

DEFG bini oppositi, ut EFG, EDG, faciunt summam 2 rectorum, et EFG eircumferentialis est dimidius centralis EBG, et BE, BG aequales sunt. Quarto postulatur, ut CBE, EBA faciant summam 2 rectorum. Haec ergo sunt principia demonstrationis petitae, praetereaque nulla. Cetera omnia quaeruntur. Ego itaque sic egi. Primum, ut in regula falsi solemus ponere id quod quaeritur, sic ego posui locum apogaei H certum. Hoc posito sequentur angali HAD, HAE, HAF, HAG, et complementa ad semicirculum IAD, IAE, IAF, IAG. Secundo posui quasi certam longitudinem mediam sive anomaliam eccentri, hoc est HCD, HCE, HCF, HCG, cum complementis ICD, ICE, ICF, ICG. In triangulis igitar quatuor super communi basi AC. ouae sunt ADC, AEC, AFC, AGC dantur anguli omnes, et basis AC permittitur arbitrio nostro: quaesivi ergo proportiones basis AC ad lineas AD. AE, AF, AG. Rursum ergo in quataor triangulis ad communem verticem A, quae sunt DAE, EAF, FAG, GAD, dantur bina latera jam inventa cum comptehenso ad A: quaesivi ergo in singalis angulum unum ad basin. scilicet ADG, ADE, AFG, AFE. Hi quatnor, quia sunt partes absumentes duos in quadrilatero circuli oppositos, additi et mutuo debent facere summan 2 rectorum. At si hoc non fiebat, fuit mihi repetenda operatio, retenta positione longitudinis mediae et mutato apogaeo : retentis sc. inclinationibus HC ad concurrentes in C, sed mutatis inclinationibus HA ad concurrentes. Idone faciendum fuit non bis tantum (nam regula falsi aut cossa non quadrant huc) sed saepissime, donec anguli dicti facerent summam quaesitam. Tunc ergo pergens quaesivi in GAE ex datis GA, AE et GAE (GAD. DAE faciunt GAE) angulum AEG et GE basin communem trianguloram GFE, GBE. In triangulo igitur GBE' datur GE, et GBE est duplus ad GFE, qui notus est in partibus GFA, AFE. Et quia aequecrurium, datar et angulus ad basin BEG. Antea vero dabatur AEG, datur ergo differentia angulorum AEG, BEG, scilicet BEA. Jam in BEA, quia nescio an B ceciderit in lineam CA, ut necesse est (in constructione quidem id fieri

jussimus, ut et alia indemonstrata) ideo sic ago. Ex BE, EA notis et BEA comprehenso quaero BAE, qui si aequat HAE, factum est quod oportuit: sin minus, jam ad caput revertimur, et ipsam etiam longitudinem mediam mutamus, et ad unamquamque talem mutationem apogaeum toties est mutandum, dum duo oppositi in trapezio aequentur 2 rectis. Hoc est quod dixi, quadrata fictione utendum fuisse.

Opus Vietae de aequationibus apud Tychonem vidi a te missum, sed vidi tantum. Itaque nisi me fallit negligens ejus inspectio, hoc idem demonstrat, ex tribus locis in zodiaco et intervallis temporum geometrice quaerere locum apogaei et eccentricitatem simplicem sine aequante, et longitudinem mediam. Hac demonstratione usus est Tycho in theoria Solis, sed specialis illa est. Praesupponit enim duo aequinoctia. In Landgravianis demonstrationibus puto generaliorem fuisse, quas hic aliquando vidi. Inveni his diebus et ego aliquam, quam Vieta cognoscere potest et cum sua con-


ferre, si sunt ejusdem generis. Problema hoc: snper contiguas bases duorum isosceleon, unum habentium verticem, describere alia duo scalena ad unum verticem imperatos angulos habentia. Circulus esto BCD, repraesentans viam planetae seu eccentricum regularem super suo centro A, in eo tres planetae stationes B, C, D. Connexae igitur BA, CA, DA, item BC, CD, constituunt duo isoscele ad unum A verticem, quorum bases BC, CD: quae propter datos angulos ad A habent certam proportionem ad CA radium circuli. Super has igitur bases struantur duo triangula, quorum verticales aequentur propositis E, F


(Fig. 7). Igitur anguli E crus alterum producatur, angulus exterior bisecetur, eique aequalis statuatur ad B, C (Fig. 6) versus A et claudatur aequecrurium BGC (aequales enim sunt qui ad basin BC), hocque circulo comprehendatur. Similiter anguli F (Fig. 7) crus producatur, angulus exterior bisecetur, eique aequales statuantur ad C, D versus A clausumque aequecrurium CHD circulo circumscribatur. Secabunt sese circuli BGC, CHD duebus locis.

Esto altera sectio I. Connectantur IB, IC, ID. Dico: BIC, CID esse imperata triangula, scilicet IA esse eccentricitatem quaesitam et AIB distantiam apogaei ab IB, KAB vero anomaliam eccentri, quae pendet a longitudine media et apogaeo. Cum enim GBC, GCB sint aequales, et uterque dimidius exterioris apud propositum E, joncti ergo aequales sunt illi. Sed trianguli tres anguli sunt 2 recti, et E cum exteriori sunt etiam 2 recti, ergo ablatis aequalibus E et G erunt aequales. Sed BGC, BIC sunt in eodem segmento, aequales igitur. Ergo BIC est aequalis imperato E. Eodem modo demonstratur CID aequalis imperato F, ergo ad unum I verticem super BC, CD bases sunt imperata triangula.

Ut supra.

M. J. Kepler.

Ad haec problemata Herwartus non respondit, forte etiam petenti Keplero, ut Vieta consuleretur, non satisfecit. In responsione, quam ex parte proposuimus Vol. I, p. 73, haec legimus: Ptolemaei libros Harmoniae und dabei Aristoxeni Harmoniam hab ich auf selbs fleissig Nachsuchen gefunden. Hat solches der Bibliothecarius, weil es versezt gewesen, nit finden können. Hab mich in Wahrheit selber erfreut, dass ich Euch jest vermeltes Büechl zuschicken konnte, und solches um so viel mehr, weil ich verhoff, Ir werdet darauf nunmehr zu eurem jezt unter Handen habenden Werk vorfahren mögen.

Ich vermuthe, Es werde der Herr Brahe Euch die observationes Martis sub conditione silentii anvertrauet haben; da nuhn dem also, begehre ich davon durchaus nichts zu wissen. Auf den Fall es aber nit wäre, were mir damit vorders wol gedient, da ich breviter sed dilucide theoriam Martis wissen könnte.

Sonst werdet Ir noch gedenken und von Braheo selbst vernommen haben, wie Braheus ad rectificationem veri loci Lunae ein circellum annuae variationis (in dem deliquio Lunae, so sie zu Wittenberg drucken lassen) introducirt, cujus initium statuitur Sole versante in principio Cancri, ita ut in priori semicirculo hujus circelli verus locus Lunae promoveatur in consequentia, et in posteriori retrotrahatur in praecedentia. Nun verstehe ich aber von Ime, das er diese variationem annuam praesertim circa perigaeum und apogaeum Lunae in Zweifel siehe, idque propter eclipses duas vel tres, praecipue propter eclipsem Wittebergae ultimo die Januarii observatam, cujus initium nonnihil calculum suum antevertit.

Da ist mir eingefallen, ob vielleicht die acquatio oder acquans Solis, so Eurem Schreiben nach die Theoria Martis zu erkennen gibt, hierzu dienstlich, und vielleicht obengedeutte variationem anguam aufheben oder verändern möchte.

Bleibe dem Herrn angenemen freundl. und dienstwillen zu erweisen geneigt &c.

München in Eil, atque adeo in ipso discessu, cum altero pede jam currum conscendisse mihi videar. 25. Juli 1600.

In Optica (Vol. II, p. 76) retulimus quaedam Herwarti verba de studiis Kepleri, quae huc pertinent. Scripsisse diximus "Keplerum ad Herwartum (literae desant; scriptae videntur mense Sept. 1602) de illis, adque has literas respondisse Herwartum d. 24. Sept. Ut ea, quae sequentur, melius comprehendant lectores, ex his literis pauca repetendá sunt. Haec igitur Herwartus: Wie es der Herr meint, er getraue sich, die verschienen Kometen mediante hypothesi Copernicana zu defendiren, non intelligo. Ich verstehe es aber dahin, dass Er dafür halte, durch dieser Kometen observation werde man nit erswingen können, dass dieselben supra orbem Lunae vel Solis existiren. Sed quis, quaese, exinde redundabit fructus? Per se et propter se profecto exiguus; quoad alia, fortasse aditus ad majora. Ungefähr das Gleiche fallt mir zu Gemüth über dasjenige, so mir der Herr de Theoria Martis andeutet. Dann auf den Fall, hierdurch ratione cursus Solis gründlicheres erfunden werden oder sich bereits ersugnet, ist es aller Mühe wohl werth.

Sin autem, censet Herwartus, res aliter se haberet, Keplerum nimio et frustranco labore sine notabili profectu detentum fore et denique se in ambages implicaturum, e quibus perquam difficile se explicaturus sit. Nam continuandas esse observationes, quod mortuo Tychone dubium sit, priorum observationibus parum esse fidendum, et restitutionem seu potius inventionem apparentis motus quinque planetarum non unius esse actatis, nedum unius hominis.

Quibus Keplerus respondit (d. 7. Oct. 1602.) hunc in modum: Cometarum qua de causa mentionem fecerim, excidit. Sententia tamen haec est: si quis Copernici sequatur hypotheses, illum hoc defendere posse, cometas nihil esse aliud quam trajectiones aethereas, moveri scilicet in linea recta pene aequaliter, ac tantum abesse ut confiniantur sublunares, quin potins jam non tantum per parallaxes diametri Terrae, sed etiam ex ipsis observationibus crassiori modo acceptis in aetherem reponantur et quaquayersum impeta capto ruant. Hinc tu ipse judica, qualis sit materia coelestis, si ubique cometas transmittit, et aliquando ibi est cometa, ubi Terra, Luna, vel Martis &c. stella paulo ante fuit. - Ita hic nihil a Tychone differo, nisi quod cometis circulos adimo, per quos ipsis Tycho pene divinitatem conciliavit. Magnitudo Tua videtur me dehortari a cura planetarum, nisi omnis cura in motu Solis poneretur. Id in cometarum negotio salutare consilium existimo, at planetarum cursuum dignitatem tantam esse puto, ut vel ob illos solos labor sit suscipiendus. Ac ego sane hoc non ago, ut quaeram motum Solis simplicem per planetas corrigere; frustraneus is

habor est. Et tamen per blennium Theoriae Martis insudavi, nec poenitet: obtinui enim hoc, ut possim computare locum Martis, quantum omnes ejus observationes testantur, tam praecise, quam Tycho locum Solis compotare potest (omnia ad haec nostra tempora). Praeterea agnovi veram naturam (motuum), quod magnifacio et jucundissime contemplor. Denique Solem in theoria Martis tanguam in specula sum contemplatus, guid et quantum is efficiat in omnibus planetis; ex Marte vero exemplum cepi tractandorum ceterorum. De praesentibus itaque temporibus per omnes astronomiae partes optima quaeque spero, quae vero de praeteritis et futuris mones, vera me quoque existimare puto te scire. At non ideo omnis, cura deponenda, si summam praecisionem assequi nequimus. Incertitudo observationum veterum non tanta est, ut plane nihil illis tribui possit, quin petius, uti antiqui nostras motuum apparitiones praedixerunt latiori quodam modo nec ommino falsi sunt, ita nihil est quod nos teneat sollicitos, in futurum nos tanto propius collimaturos, quanto exquisitius ad tempora praesentia computare didicerimus. Distinguit M: T. inter luminaria et planetas. et illud unum spectare videtur, ut a planetis ceteris animum meum ad Solis et Lunae motus transferat. Video ex parte consilii hujus rationem. Sol et Luna chronologiae serviunt, ceteri quinque astrologiae, quam damnas. At etsi tecum omnino damnem illam (damno autem tantum in ea, quantum Picus), tamen opera Dei digna sunt consideratione. Et non omnino nihil ad chronologiam et anni rationem faciunt planetae ceteri. Ego enim, ex quo rationem aequationum physicam ex theoria Martis didici, simul didici rationem necessariam, qua annus, non tropicus tantum, sed ipse sidereus necessario variabilis efficitur, et unus alio longior, aucta eccentricitate Solis, ceteris vero omnibus manentibus. Itaque, si constaret aliunde, auctiorem olim fuisse eccentricitatem, necessitate summa inferrem, longiorem fuisse annum, itaque, ut ita dicam, essentialiter non accidentialiter h. e. vere Sol ad punctum mere fixum tardius reverteretur, et non tantum ad punctum ab illo fugiens, magis quam hodie.

Quibus addit Keplerus causam, cur non adeat restitutionem theoriarum Solis et Lunae, nondam constituta in planetis majore certitudine, quam exhibuimus Vol. II, p. 77. Ex Herwarti responsione (d. d. 20. Oct. 1602) haec desumainus: dass ich den Herrn ab invertigatione motuum reliquorum planetarum abmahanen wollte, absit, und weil ich diesfalls vernehme, dass Er in constituenda quantitate anni Solaris laborirt, weiss ich nit, ob der Herr den errorem in calculo obserrirt, so Tycho in Progymuasmatis einkommen lassen. Quae ad haec responderit (d. 12. Nov. 1602) Keplerus legantur loco citato, e quibus apparet, Commentaria ("seu quod aliud futurum est nomen") proxime se perfecturum sperasse; quibus addit: Cum me his carceribus (edendis Optica et Comment. Martis) adstrinxerim ipse, intelligis sane, quidquid extra has metas erit positum (spectat his verbis quaestiones Herwarti chronologicas) jam non amplius a me in Magn. Tuae gratiam suscipi posse, donec opera illa, Deo favente, absolvantur, quamquam utrinque in via regia sum ad hoc ipsum, quod peragendum. De Optice constat, de Theoria Martis jubeo bene te sperare. Nam et in illa generalia quaedam, nempe magna partis astronomiae physicae portio tractatur, ubi sterno viam ad veram Lunae aequationem, ut nihil dicam de longitudine anni, quae ex causa physica cum eccentricitate variatur necessario, item quod verissimam Solis eccentricitatem demonstro illo ipso in opere.

Herwartus (d. 18. Febr. 1603) haec respondit: Von dem Werk, so der Herr ratione theoriae Martis unter Handen, hab ich anderwärts etwas Andeutung gethan und dasselbe zu sehen dadurch grosses Verlangen gemacht, wie es sich dann einmal mit Nutz et cum profectu wohl wird sehen lassen, und Ihme dem Herrn einen solchen Namen machen, dass man nunmehr von Ihme dasjenig zu gewarten, so man von weyland Tycho Brahe verhofft gehabt. Will demnach den Herrn Ihme selbsten zu verhofftem Besten dahin trewlich vermahnt haben, dass Er diess Werkh unausgesetzt an Tags Liecht bringen welle.

Keplerus (mense Maj. 1603) de stadiis suis haec refert Herwarto: Causa silentii mei fuerunt Tabulae Lunares.¹) Ante 6 septimanas ad colophonem illas deduxeram et spem conceperam, transmitti posse statim. At me suspicio erroris de novo in laborem conjecit et descriptor deerat, itaque differendae fuerunt et postponendae domesticis negotiis. Suaseras tu quidem, ut totis viribus in theoriam Martis incumberem, at jam antea, tuis exhortationibus suscepto stimulo, manum in tabulis admoveram, praesertim cum ad doctrinam eclipsium facere videretur, in qua versor. Itaque satius putavi ut pergerem, quamvis praeter opinionem hoc tantum fecit morarum; semper enim fit, ut labores in primo aditu contemnamus.

Jam per aliquot annos in literis ad Herwartum datis Keplerus Martem praetermittit vel verbo tantum illum tangit. Anno 1805 vero optis suun quasi maxima ex parte absolatum nunciat Herwarto, quacque tum retakit, ea leguntur cum Herwarti respensione Vol. II, p. 83 s. Deinde d. 13. Jan. 1606, praemissis inquisitionibus chronologicis, his ad Martem redit: Theoria Martis exspectat aliquem, qui sumtas in opus conferat. D. Pistorius in spem me erexit, nuncupata Caesari summa 800, qua opus habeam. Quae spes utinam mihi non damnosa et temporis jactura fiat. Quodsi etiam pecunia in promtu sit, prius mihi Tengnaglii consensus erit impetrandus, cui obstrictus sum. Ad Hipparchum igitur meum sum propensior. In Saturno puto jam prope peractam rem. In Jove parva difficultas. Epicyclus Q (mihi eccentricus) moderatam habet eccentricitatem. In & aliquid tentare cogito: eo succedente jam Ephemerida in sequentem annum animo concepi, Deo vires et otium largiente. Laboravi in Hespero nonnihil ex quo redii (e Styria. comp. Vol. I, p. 655.), sic et in Luna, ubi novas cudi tabulas, ut Luna ceteris fiat similis. Ex iis jam est facta Ephemeris opera studiosi. Saturni et Veneris tabulas prosthaphaereseon orbis annui generales inchoavi ante discessum, intereaque dum absum per studiosum pene perfeci. In Lunae motibus ad causas physicas referendis multum sudo. Etenim Luna dissimilis Marti in eo, quod duas habet inaequalitates reales, Mars unam solum realem, reliquam opticam ex orbe annuo. Sed tamen et hic magis nuper in una hora profeci, quam 5 praecedentibus annis. Exspecto tamen, ut consentientia sibi mutuo deprehendam.

Habes abunde satis verborum. Vale Vir Nob. et Magn. meque porro quoque Tua benevolentia complectere.

In responsione (d. 16. Maj. 1606) Herwartus gratias agens pro disquisitione chronologica addit: Von Herrn Pistorio hab ich gern vernommen, dass der Herr Theoriam Martis gefertigt und in Druck geben wird. Darauf gewart ich mit Verlangen.

Keplerus sic respondit (Non. Jun. 1606.): Commentaria de restitutione tabul'arum et investigationibus motuum Martis jam sesquianno apud me desident. Coepi agere cum Caesare, quia jam non est occasio faciendorum sumtuum, ut mihi permitteret veniam, quaerendi alium operis patronum; neque tamen scio, ad quem potissimum sit eundum. Quam din mihi stimulus non accedit per publicationem, opus cauda carebit, quae est in hac pecude pinguissimum.

Deinde, eidem Herwarto respondens de "annotationibus" Praetorii in Tychonis Lunaria (vide finem hujus voluminis) addit Keplerus: quod attinet notas ad Lunaria, sequar consilium M. Tuae, ubi anno sequenti ad Hipparchi curam Deo dante prius transivero, si modo mihi per editionem Commentariorum de motibus Martis licuerit. Nam etsi Vögelinus artem intelligit, nescio tamen an non iter mihi nihilominus Heidelbergam sit faciendum, quod vel bibliothecae causa alias facerem.

Tum ad alla transions, in fine literarum ad priora redit, his illa illustrane: Supering ceepi scribere de Comm. Martis tanquam ad scientem. Pars pecuniae, quam a Caesare accepi per manus D. Welseri factorum, transmissa est ad Vogelinum. quod nullum scirem typographum magis idoneum; commendatus caippe mihi fuit ab artis intelligentibus. Figurae excusae sunt Pragae et missae Frankofurtum mense Augusto; exemplar mense Septembri Lipsiam. Exspecto formam typi ad delibrandum. Pars vero reliqua pecuniae cum multis aliis a me consumta est, cum non fiant justae solutiones aulicae. Itaque jam dudum venter meus famelicus respicit instar canis ad dominum, a quo semel jam fuit pastus. Equidem si D. Welserus pateretur se rursum exorari ad mille aut sesquimille solutionem (tantum emm eoque amplius mihi debetur), quantum inde mihi securitatis accederet, quantum temporis retinerem, totum id impenderem vel in Porphyrium (Harmoniam), vel in geographiam melius fortasse, quam si quaestorum mensas sectatus, aeraria diutissime pulsans, denique nihilominus eandem summam extorquerem. Nam Caesaris mora nullam partem pensionis deterit, mihi vero tempus consumit. (E literis "quas initio Novembris sum exorsus, vix hodie, 24. Nov. 1607. finio.")

(2) Nerral quas anno Novembris sum exorus, vix none, 24. Nov. 1007. nno. 7 Pecuniae, quas expectabat Keplerus, autumno anni 1608. nondum fuerant solutes, cum Herwarto, qui d. 13. Sept. 1608. scripsit: ich vermein, ich könne unschwer musttmassen, was es ratione Serenissimi für eine Gestalt und Gelegenheit. Ich bitt den Herrn, er wolle sein Reis nach Frankfurt bald fürnehmen, et in flu (nit allererst in reditu) mich alle besuchen, such die Sachen dahin einrichten, damit er ein Zeit lang wo möglich oder doch so lang es seiner guten Gelegenheit seyn wird, bei mir allhie verbleiben und sich anfhalten möge; — cum his Herwarti responderit: Literas tuas, Nob. et Magn. Vir, 13. Sept. scriptas proh dolor tertio Octobris etiamnum Pragae haerens accepi. Viatico inhio hactenus frustra: nec sine eo ire queo. Remissus quidem sum cum trecentis ad Welserum: at nisi ille prius consensisse testetur, hac spe Praga pedem non moveo; quod, scio, ipse quoque probabis (18. Oct. 1608).

Hase sunt, quae in codicibus Petropol. et Monachiensibus deprehendimus ad Martem pertinentia inter literas Kepleri et Herwarti mutuas. Jam ad allos transimus, qui com Keplero de edendo suo opere per literas collocuti sunt.

Keplerus d. 4. Oct. 1607. hace Brenggero refert: Clar. et Doct. Vir. Accepi literas tuas (comp. Vol. II, p. 53 et 586.) ante octiduum: ad quas quo minus respondeam, excusationem do occupationes meas, qui versor in adornatione Commentariorum de motibus stellae Martis, operosissimarum speculationum plenissima. Trado enim una philosophiam seu physicam coelestem pro theologia coelesti seu metaphysica Aristotelis. Utinam prius tu relegere meque monere possis quam edantur. Excudentur apud Voegelium Heidelbergae. Exemplarium distractione mihi est a Caesare interdictum. In qua physica simul novam arithmeticam doceo, computandi non ex circulis, sed ex facultatibus naturalibus et magneticis. Arcesso quidem et circulos, sed ad calculum, quatenus circulis explicatur ratio staterae, vectis et ponderum, et in parte tantum; de reliquo arcesso plana seu areas, quas describit planeta suo ambitu, ut in areis inveniam fortitudinem et debilitationem virium in motum collatarum. --Sed quorsum abripior! Non me Mars jussit scribere, sed aliud: "Est Deus in nobis, agitante calescimus illo." Nam tuae literae vaticinia sunt &c. (v. Vol. II. p. 60). Brenggerus respondit: Cl. et Doct. Vir, Amice colende. Redditae sunt mihi literae tuae, ex quibus intellexi, Te in Commentariorum de motu Martis adornatione eccupari, quo nomine te excusas, quod literis meis non respondeas. Ego vero non tantana excusationem Tuam lubens accipio, sed etiam hortor et rogo, ne quid ab opere jam coepto avertere te patiaris, antequam ad finem illud perduxeris. Quod vero addis, te simul physicam coelestem et novam arithmeticam seu computandi modum, non ex circulis, sed ex izcuitatibus rationalibus et magneticis tradere, valde laetor, etsi, ut libere fatear, istius arithmeticae rationem vel saltem imaginari mihi non possim, nedum intelligere. Verum facis ta, ut hic inter spem atque metum haeream, quando scribis, Caesarem exemplarium distractione tibi interdixiase : quid ita ? an ut ille tecum solus fruatur thesauro a te invento ? namquid nobis ceteris eum invidetis ? Absit ! Consolabor ego me spe, quod illud interdictum non sit futurum diuturnum, sed paulo post relaxandum vel prorsus abolendum.... Plura nune non addam, ne tibi sim impedimente, cum potius optem te adjurare, et conatus tuos, si qua ratione possem, promevere. Vale diu et feliciter. Kaufbürnae 30. Oct. 1607.

Keplerus his respondit (30. Nov.): Cl. Vir. Non sic mentionem feci interdicti Caesaris de distractione exemplarium Martis meique voti, ut tu prius ouam imprimerentur illa legeres, quasi ils impressis legere non possis, sed ut post tuam recognitionem emendatiora prodeant. Nihil enim dubito, te multa moturum, qua es ingenii dexteritate, ad quae respondens ego clariorem textum sim facturus. Misi typos ligneos Frankofurtum Augusto mense, exemplar Septembri Lipsiam. De circulorum ejectione ex calculo ludere me dices, ubi rem perceperis. Ex calculo non ejicio sed e coelo; id est orbes solidos nego, nego etiam esse planetis mentes circulum aliquem affectantes: contra affirmo, cieri planetas virtutibus magneticis. Jam scis ipse, omnem naturam participare de circulo; et ego sinubus arcuum plurimum utor, sunt enim mensura celeritatis, sunt et mensura accumulatae librationis. Cupis tu me juvare; cupio ego tua opera uti; impedimur intervallo 20 milliarium, quantum puto inter Kaufheuram et Heidelbergam interesse. Explicare mea vota non audeo, tuam tamen censuram ante excusionem operis aliquo sumtu redimerem. Nam quam in tuo stylo mirificam perspicaitatem exosculor, ea mihi et naturali vitio et materiae insolentia saepe deerit.

Hine transit Keplerus ad harmonicos aspectus et ad Opticam aliaque, quas epistoláe partes proposuimus Vol. II, p. 53, 589, 829, sicut etiam Brenggeri responsionem d. nonis Martii 1608, cujus exordium tantum et conclusio huc referenda sunt. Eaque haec habent: Vir Clarissime, Amice carissime. Facis tu, quo plus de Commentariis Motus Martis ad me scribis, ut tanto majori desiderio ardeam illos inspiciendi, quos proximis nundinis prodituros spero. Quod Kauffburnam ab Heidelberga 20 milliaribus tantum separas, erras; nam itinere distant 30 mill. haud minore.... Concludens scribit Brenggerus: Ista nunc sufficiant, suppeditabunt nobis Commentarii de motu Martis novam conferendi materiam, quos ex nundinis Francofurtensibus jam instantibus mihi afferri curabo.

Keplerus respondit: credo sane verum esse, quod scribis, teneri te desiderio Comm. de motibus Martis. Jam bis enim scripseram, publice venales non fore: tu tamen ut solent amantes spe contra spem sustentaris, te illos Frankofurto comparaturum. Utinam ex eo quo feriatos dies egerunt praela Voegelini, domine Junoni operante, tu Commentaria habuisses; sic enim lucidiores prodituros fuisse puto.

Quibus monitis Brenggerus nondum contentus typographum adiit ("typographus quaerenti mihi referri jussit, Caesarem omnia exemplaria ad se tracturum"), et quia ille ipsi non sathfecit, Keplerum rogat "ut viam sibi monstret, qua exemplum unum possit adipisci." Num desiderio Brenggeri satisfactum fuerit, nescimus, cum hinc inde nulla amplius exstet epistola neque Kepleri neque Brenggeri.

Ch. Severino Longomontano, qui infensus in Keplerum ob studia sua astronomica, Tychonicis minus quam illi placuit respondentia, invectus erat, ³ sic respondit Keplerus: Quas ad me pridie nonas Majas dedisti literas, Christiane doctissime, postridie Cal. Jan. hujus anni opera Joestelii accepi. Principium durum fecisti, finem mitiorem. Sed bene habet, quod cujus rei causa adeo me militariter salutasti, in ea pridem pacem fecimus Tengnaglius et ego. Sic hodie procul dubio naves Anglorum et Lusitanorum, sese mutuo offendentes in Indiis, globorum ejaculationibus sese eminus excipiunt, paulo post, induciis ad colloquia factis, pacem inter Reges esse discent. Itaque pacifice tibi respon-

debo, ut pacem esse intelligas: cavendum tamen, ne veritatem adulatorio animo prodere videar. Ex iis, quae Tengnaglius ad te scripsit, etiamnum nimiam tibi videri ais meam industriam circa refutationem recentis Tychonianae hypotheseos in Luna. Quid Tengnaglius scripserit non constat neo labet excutere: quidquid tu scripseris condonatum esto. Tu vero soias, me nullam talem instituisse refutationem. Aliud est transformare, aliud refutare....

Ab accusandi et refutandi curiositate me revocas. Pareo nec puto, me justam causam dedisse, sed illis magnis causis, quas allegas, non erat epus. Amice abs te accipio omnem admonitionem. Ut mea incepta perficiam, tibi tua relinquam, justa est postulatio. Attamen ita ab invicem nexi sunt omnes planetae, ita multum valet similitudo argumentationis ab uno planeta in ceteris, ut veniam omnino mereatur haec curiositas. Quin imo gratias mereri videor et ex parte a te sum meritus, ut tuae literae testantur, quod te admonere volui et Benaticae et ex Styria per literas. Non jam est quaestio, necessariane fuerit admonitio an supervacanea; sufficit, animum fuisse laudabilem. Vicissim quae tu me admonuisti, ubi tu me aberrantem in viam reduxisti, grato animo agnovi; potes id porro quoque, potuit et Fabricius ex Ostfrisia. Nec diversum de me sentias, quod tibi succensui ovales curas carpenti: non enim tibi de contradictione succensui, sed de injuria, quod ista ad alium scripseris ad me non instituendum sed deformandum (Longomontanus: in ovalibus te non amplius ludere, ut ex iis hypotheses motuum coelectium tibi soli conficias, audio. Ego certe non tam ovales quam ipsa era plarimi facio.) Commune opus curamus, nec, ut alius est bipennis faber, alius plaustri, sic nos totis operis divisi sumus. Subinde usu venit, ut duo patres familias communem parietem curent, divisis nihilo minus domuum juribus ceteris. Venisses sane Pragam, ita te de meo instituto edocuissem, ut praeter lubitum pacatus discessisses. At si infestus et iracundus me invasiases, hoc sane a me obtinuisses, ut coram arbitris disputationem tecum non recusaturus fuissem. Quod ad te din non scripsi, tribuas incommoditati locorum et simultati, quae tunc erat me inter et Tengnaglium, unde factum, ut cum ad te scriberet (si modo scripsit), mihi occasiones non indicaret. Quod vero Janus Hamburgensis pro literis excusationem attulit (Longomontanas: de te autem ob tuarum diuturnam et insuetam ad me intermissionem, imo per Janum Hamb. excusationem suspicari magis magisque coepi, douec scheda Hamburgo nuper ad me missa cam meram non purgatione ulla, sed incivili ac falsa criminatione compensasti), prudentiae ejus, aut, si atrocius dicendum, curiositati tribuas; qui cum suspicaretur, me scripsisse talia, quae sint laesura. Tengnaglium, literas meas maluit supprimere. Certo scias, me illi commendasse literas seu mittendas sen perferendas. Schedam mean appellas incivilem et falsam criminationem. Nego. Sed si iracundam dixeris, fatebor et ut hoc mihi condones rogo, pro eo quod et ad idem erga te studium paratus sum. Incivilem et falsam tuam criminationem increpui civiliter, quia, cum possem uti retorsione, malui te privatim prius admonere. Apparet quidem id, quod ais, te dum ista scriberes, epistolio meo fuisse destitutum. Nam non opinor, te in illo legisse, quod vehementer mihi applaudam de transformatione hypothesi Tychoniana Lunae....

Suspicaris (neque enim memini me in literis ad te quippiam hujus commemorasse), me ad divinas meas proportiones aliquid emendasse. Nihil hujus feci. Ad causam quidem physicam aequationum eccentri, cujus inge-

Kepleri Opera. III.

3

pium ego in Sole et Marte exploratissimum habeo, fateor me accommodasse hypothesin Lunae quadamtenus, quantum ejus fieri potuit salvo effecta Tychonianae hypothesis; sed tu de proportionibus divinis loqueris, innuens meum Mysterium Cosmographicum. Atque hoc ipsum en laudas, nisi me occulte forte notas ut πολυπραγμονα, qui physicam in astronomia tractem. Vos Tychoniani astronomi physicam, jure spoliatam soliditate orbium, per injuriam destituitis in maxima incredibilitate et perplexitate volatus planetarum versantem. Cur non ego iterum illam juvem, formas physicas motuum per liquidum mare inquirens? Fateor tibl Christiane, me ex hoc quinquennio dimidiam minimum partem ejus temporis, quod mihi a sollicitationibus aulicis residuum fuit, physicis contemplationibus motuum Martis transegisse. Verum ita implexas puto scientias, ut neutra sine altera perfecta esse possit. Sed video, te hic non magnopere adversari. (Longomontanus : Ex hiase [ovalibus v. s.] igitar, et practeres, si quid motricis virtutis et proportionis divinae certum in singulis inveneris, quod to mehercule divinitati in hac professione proximum faciet, id ad circulares motiones — quod facere quisquis potest — ita tandem revoces velim, ut phaenomena ipsa coeli nullam tuam vim nullam violentiam sentiant. Secus enim ex prioribus haud procedens neque musicam Platonicam, qua anima mundi viget, attingens, nos incertos in suspicionibus, tenebris ac erroribus adhuc es relicturus.)...

Quod vero prosthaphaeresium tabulas attinet, scito, me totum hunc annum, que parte a morbo et a curis fui vacuus, in unius o prosthaphaeresibus eccentri versari, nec pudet dicere, me scopum nondum attigisse. Hypothesin habeo, jam ante 4 annos constructam, quae mihi planetam in eccentrico debitis locis sistit scrupulosissime. Sed non placet mihi, quia non est physica, sed vere id quod dicitur, hypothesis. Itaque hic vere tu mihi dixisti, non esse omnium planetarum rationem eandem. Nam etsi de Luna nihil affirmo, si physice examinaretur ex professo, quod hactenus non feci ex quo a te absum, hoc tamén tibi fateor, me in Marte viam longe aliam ire, quam in transformatione Lunarium institi. Jam et illudis mihi exemplo Rhetici (Lengomentanus: meministi, mi amice Keplere, Benaticae olim operan inter nos faisse divisam, sc. ut tu Martem, ego antem Lunam sub arbitrio magni Tychonis curarem; an nunc forte tua in eo aut diffidentia aut desperatio [ignosce nihil hactenus inibi abs te praestitum intelligenti] casui D. Rhetici, modo vera de eo narrent, simillima, causa tibi ad Lunam usque resurgendi esset?); ridebo tecum. Te sane tua Luna, me quandoque spectatore, misere exagitavit, quandoque et me, scio. Me, si Mars meus male habet, decet te commiseratione tangi eadem passum. Sed tamen temporis tibi rationem reddam, quia id petere videris. Anno 1600. Februario in Majum primum potissimam partem sperando et imaginando consumsi. Scis enim, me intra octiduum sub pignoris periculo voluisse arcana emnia absolvere. Profeci autem tantum, ut eccentri inaequalitatem mediocriter salvarem (nisi quod una fundamentalium observationum 20' vitiose fuit assumta) et minuendam esse Solis eccentricitatem callerem. A Junio in Octobrem sum peregrinatas et familiam transtali. Ab Octobri 1600. in Augustum 1601. quartana me tenuit. Interim scripsi contra Ursum, jubente Tychone, et alia ipsius studia pro ipsius arbitrio et meis viribus adjuvi. Speculatus sum indignante Tychone in Venere, Mercurio, Luna; in illis utiliter, in Luna plane fustra; speculatus sum et in Marte, correxi inaequalitatem primam, correcta vitiosa fundamentali observatione; etiamque ab Aprili in finem Augusti peregrinatum abii in Styriam, relicta Pragae uxore. A Septembri in Julium 1602. dedi operam liberis et fabricatus sum pulcherrimam filiolam. A Septembri, inquam, coepi laboriosissime inquirere proportionem secundae eccentricitatis Solis, in quo labore Tycho mortuus

est. Mensis nobis eo curando dum aegrotaret, et sepeliendo mortno consentas. Inde usque ad ferias Natalitias relegi Progymnasmata, scripsi indicem, concepi notas, quarum aliquae (ut rem indignissimam obiter addam) tantuminodo privatae monitionis causa scriptae, postmodum per simultates sostras, me non amplius consulto, fuerunt ita raditer et cruditer, ut erant a me conceptae, citra omnem necessitatem impressae, consilio, ut ajunt, ne haberem ego, quo calumniarer. Ubi etiam praeceptum in computanda Lunae longitudine ex mea prava correctione (de qua eram seorsim deliberaturus extra feminarum strepitum: cui rei notam ad marginem posueram, ut amplius super eo conferrem cum haeredibus) me non amplius consulto fuit perversum: ut plane habeas tu vel Müllerus potius, qùod mihi seu magis simultatibus nostris succenseatis.

Sed regradiendum ad initia anni 1602; ibi tu noli rationem temporis exigere. Crede mihi, quod duos integros menses stando consumserim in equestri palatio. Nam mortuo Tychone 24. Oct. (1601.) Barwitius 26. Oct. mihi ultro salarium Caesareum annunciavit; id ut confirmaretur petendum erat, donec tandem 9. Martii primam accepi pecuniam. Paulo post migravi Emauntem, horae unius itinere cursitans quotidie in aulam. Ibi tum coepi observare et ad Martem redire, invenique, viam ejus esse non perfectum eccentricum, sed ovalem. Supervenit autem Tengnaglius et invenit lites me inter et Tychonianos (qua in re curiositatem tibi meam libenter fateor, ut alim quoque in literis), et me quarundam observationum non oratum custodem, quas ipsi quidem citra ullam controversiam tradidi; sed adventus ipsius meum salarium quassare videbatur. Itaque novae ortae sollicitationes et denique res eo rediit, ut juberer nominare studia seu opera, quae susciperem perficienda pro salario meo. Factum id est 1602. Septembri.') Nuncupavi Astronomiae partem Opticam ad sequentia Natalitia, et Commentaria de motibus Martis ad sequens Pascha. Seposito igitur Marte sumsi Optica, et cum jam de excusione agerem, tum demum coepi de novo concinnare opus, neque tantum a Sept. 1602. in Natalitia 1602, sed in altera Natalitia 1603, iis incumbere. Iis perfectis occupatus fui pene hoc toto anno 1604. operis typographicis, itaque toto 1603. vix parum respexi ad Martem, condidi tamen Ephemerida d et tradidi cum Opticis, etiamque illam nostram Pandoram, transformationem dice Lunariam, interjeci mensibus Martio, Aprili et duobus aliis in plenaria adornatione et descriptione consumtis. Ab initio anni 1604. redii ad Martem et Commentaria scripsi; simul tabulas prosthaphaereseon orbis annui generales et cuicunque restitutioni & aptas, simul tabulas prosthaph. ex hypothesi physica, ubi, credas mihi, quadragies minimum usu venit, ut per 181 vices eadem operatio traduceretur. Nam rei subtilitas non est passa, per denos aut senos gradus saltare. Simul autem et operam liberis dedi, genuique filiolum Fridericum: simul et bimestri tempore segrotavi et una uxor; simul nova stella exorta occupationes peperit; simul migravi in nimis longinquas aedes, et mille alia negotia domestica et in Styriam scriptiones tibi comperta non sunt, anlica ex Tengnaglio discas peto. Credo, quod dimidium temporis eripiant. Jam quid sit effectum vide. Ovale iter d per auram aetheream est constans. Causa ovalitatis titubat. Ego hactenne causam attuli talem, ex qua sequitur, ingressum d a circulo esse 1300 de 152500, quem ubi coepi illustrare, non invenio majorem 800 vel 900. Comprehendi tamen 51 capitibus omnia quae explorata habeo. Si moriar, scio haec omnia utilissima futura ulterius progressuro. Summa haec: Mars

Digitized by Google

3 •

se ipeo libratur in diametro epicycli; rapitur a virtute ex Sele in mundum sparsa; utraque motio est inaequalis; libratio intenditur et remittitur non tantam lege duorum circulorum, ut in Copernico, sed illi ipsi circuli intendantur et remittuntur ad mensuram crescentis et decrescentis diametri Solis; quanto major apparentia disci Solaris in perihelio quam in aphelio, tanto major illic diurnus quam hic, vel eversa proportione, tanto diutius moratur planeta in uno gradu anomaliae coaequatae in aphelio, quam in perihelio. Raptus vero mensura est copia luminis ex Sole in planetam in qualibet distantia allapsi, nempe quantitas disci corporis Solaris. Quomodo ad mille parietes impingens hanc solam viam ire coactus sum, capitibus illis 51 descriptum.

Hoc simpliciter certum, ex Sole propagari vim, quae planetas rapit; cetera sic quidem dubia, ut tamen identidem simile anippiam aliud post aliud ad scopum me propius adducat. Habes de meo profectu. Ceterum Commentaria haec fortasse nemo nisi apud me viderit. Habes et rationem temporis prolixam. Quid vero tu jam agis, postquam me cum meo Marte delusisti? Nempe catalogum recenses eorum, quae in Luna Tycho et tu praestiteritis, et postea subjungis, me haec omnia aequiparare sterquilineo Augiae. Bona verba. Quin tu potius exspectasti reditum tuum Hafniam, ut inspectis literis meis cerneres, an tale quippiam. contineant. Adhaesit memoriae tuae Augiae vox. Ne quid quaeso per calumniam, quae solet plerumque occupari circa invidiosa. Atoue ut videas, me tenere memoria, cui rei mihi Augia servierit, quamvis id tu ex praesentibus tibi literis meis rectius percipere potes, scito, me non dehonestasse astronomiam convicio, quam maximi jure facio, sed usum esse similitudine eaque minime in iis, quae tu vel Tycho praestitistis, elevandis, quod mihi aut ira caecatus aut malitia corruptus cum insigni injuria tribuis, sed in comparatione hypothesium antiquarum cum meo itinere ovali. Tu meum qvale iter dehonestasti, ego tibi centuplo absurdiores spiras antiquorum (quos etiamnum Tycho imitatus est, non nova fingendo, sed vetera relinquendo) opposui. Si succenses, a me non posse tolli iter ovale, quanto magis succensere debes spiras, quas sustuli. Quasi peccaverim in ovali relicta, cum ceteri antiqui non peccent tibi in tot spiris. Hoc est multari ob unum carrum fimeti relictum, cum reliquam Augiam expurgaveris; tuo sensu, qui repudias meam ovalem ceu unum carrum fimeti, cum toleres spiras, quae totum stabulum sunt, siquidem mea ovalis sit mus carros. — Sed piget, in manifestissima calumnia diluenda immorari..... Pro Deum! Nondumne satis probasti mihi, te mea epistola caruisse? Audes iterum in itinera ovalia insultare, cum scias, apud Ptolemaeum et Tychonem esse spiralia. Annon tibi descripsi in scheda modum? Annon dixi, in ipso etiam Copernico esse ovales, easque studio a Tychene traductas in suas hypotheses? Annon dixi, ovalem meam ex duobus prin-cipiis regularissimis composi? Jubes me omnia ad circulares motiones revocare; nondum igitur intelligis, quales ovales fabricem. Revoca ta tua et Ptolemaica et Copernicana ad circulos. Praestitisti? Praestiti et ego. Nolito putare, me mentibus divinissimis tribuere destinationem ovi, imo appetunt circulos, sed per accidens exorbitant, ut Ptolemaeo planetae appetant epicyclicos et eccentricos motas, sed per accidens in spiras aguntar. Ratio est plane eadem. Qui meas ovales carpit, carpat et confusionem aspectnum in Calendario seu Ephemeride. Mones, sic physicas causas quaeram, ne interim coelum a me vim patiatur. Ego, mi Christiane, si 8'

in dubio ponere voluissem, potui totius hujus anni 1604. labore ter maximo supersedere. Itaque scias, diligentissime me operam dare, ut cum observationibus stem ad unguem. Nisi hoc agerem, non tot jam modos acquationum eccentri physicarum, ad 20 fere, attentassem. Tu itaque differ judicium, donec fundamenta mea coram videas.

Denique vale et quam primum rescribe, ut, quo animo sis lectis bisce, videam.

Quae reliques sunt harum (non adscripto tempore, quo datas sunt) literarum, quas sesseriptas exhibet Cod. Viennensis, leguntar in praefatione ad "Tabulas Lunares." Quae Keplerns in modo praemissis de vi Solis planetas rapiente Longomontano scripsit.

panlo post (Majo 1605.) ad vim Solis "magneticam" transfert, Hegulentio Anglo (Heydono) de opere suo bhec dans: Commentaria Martis edi non possunt, nisi ego assensam, Caesar sumtus praebuerit. Quae tu ex iis exspectas, correctissima loca stellae Martis, ea parum ego curo prae aliis, quae hic attentavi et divina gratia assecutus sum. Duae sunt, ut nosti, planetarum inaequalitates, altera ex Sole communis omnibus, altera cuique propria. Illam ego sic investigavi, ut sperem, omnibus quatuor residuis satisfacturam. Hanc pertinacissimis laboribus tantisper tractavi, ut denique sese naturae legibus accommodet, itaque, quod hanc attinet, de astronomia sine hypothesibus constituta gloriari possim. Quo nomine gratulor vestrae genti de inventa per Gailielmum Gilbert philosophia magnetica.*) Nam ea plane mihi et in planeta Marte inventa est. Nam quid est, quod planetas circa Solem rapit (consentiunt enim Tycho et Copernicus in eo), quid enim nisi effluvium Solis magneticum? Quid vero est, quod planetas facit a Sole eccentricos, quod cogat ipsos ad Solem accedere, ab eo recedere? Nempe effluvium ex ipsis planetarum corporibus magneticum et directio axis.

Atque haec omnia ratiocinia in Marte sic sunt comparata, ut aut falsa esse necesse sit, aut omnibus planetis quoad qualitatem communia. Quo nomine clavem astronomiae penitioris in Opticis jure promisisse videor.

Operi Magini inscripto: Supplementum Ephemeridum ac tabularum secundorum mobilium. Frankof. a. M. 1615, additae sunt literae quaedam Kepleti ad Maginum, quarum posteriores in annot. N. 80 sequente exhibuinus. Priores autom enrum hic inserendae sunt, cum proxime pertineant ad ea, quae Keplerus de iisdem egit rebus cum Herwarto et Fabricio. Maginus in epistela dedicatoria ad Agesilaum Marescottum hace praemitit: In his Martis tabulis ao calculo sequetas sum terminos hypothesium Kepleri. Praeterea, ut Tibi in hoc quoque obsequerer, publicari eruditissimam Kepleri epistolam illam, quam ad me anno 1601. conscripsit, cum Tycho adhuc viveret, siquidam illa ipsa ad intelligentiam insignis illius operis de motu Martis multum hacis afferret. Fateor autem ingente, me ad illam tune ut par erat non respondisse, cum surationes orbium communicare vellet; et hanc meam suspicionem auxit, quod nullum postea acceptrim ab ipso Tychone responsum &c.

Hace igitar dedit Keplerus Magino: Si mutua hominum notitia penderet a solo congressu et intuitu vultus, longiori forsan exordio mihi opus esset pluribusque ambagibus, quibus in tuam ignoti familiaritatem ego, Germanus homo, qui nunquam Italiam vidi, pervenire contenderem. Te mihi literae, coelestes artes, famaque celebris ita notum reddiderunt, ut summa praeditum humanitate erga exteros merito credam; eaque fretus fiducia tuas aedes, non ante denuntiatione facta, da veniam, recta injussus ingredior, per literas tecum, praestantissime Magine, de communibus studiis collocuturus. Mathematicas disciplinas procerum Styriae stipendiis adjutus inde a 94. anno avide

colui; 95. libellum edidi, cui titulus est Mysterium Cosmographicum, Si tibi exemplar Paduam transmissum est, id ita ut volui factam est.) Cum per literas Phoenicem nostrum Tychonem Braheum compellassem, uti suum ille super eo libello judieium proderet, ad respondendum inveni promtissimum, adeo ut me ad sese suaque studia visenda invitaret. Haesit en tempore in Cimbria; paulo post ut in Bohemiam venit iter suscepi, vidi, probavi, admiratus sum, concupivi, haesi denique: et jussu Caesaris, quod Tychoni credo promotori, familiam eo transtuli. Cur ita facerem, movit me potissimum, guod, guam jam diu meditor Harmonicen Mundi, perficere, nisi restaurata per Tychonem astronomia aut comparatis ejus observationibus non possum. Quid? hoc mali dicam esse in arte nostra, quae omnis justitiae fideique norma est et origo, quod in eam fraudes irruperunt, quibus decepti retinentur viri summi, quo minus ut par erat quidquid profecere in commune conferant, in publicum edant, petentibus communicent. Premit Tycho pleraque: planetarum theorias restauratas, eccentricitates, proportiones orbium ad examinanda mea harmonica quaesivi: Solis ille fixarumque canones, quaeque in Luna, et quod potissimum expetivi, in Marte jam olim perfecit, ea profert, cum correctiora sit editurus. Observationes quidem lectissimas porrigit, non tamen aliter, quam intra suos parietes. Labora, inquit, tu quoque; credo, quod Copernicanae hypotheseos defensorem allus ipse sententiae spectare constituit. Ego Tychonis observationibus potitus jam annum integrum Copernici hypotheses examino in Marte praecipue. Interim tu ad Tychonem scripsisti non semel; literas tuas partim legi, partim audivi recenseri. Admiranda tu quoque commemoras, simulque premere illa et ipse profiteris. O rem indignam, adeo perdita esse tempora, ut viris doctis quoque in metu sit versandum! Quamvis tu quidem non obscuram spem feceris, communicaturum te tua cum illo, qui sua vicissim tecum communicet. Id ego postquam ex literis tuis intellexi, mirifice in tui amorem exarsi, idque tanto magis, quanto illa, quae in secreto habere dixisti, meos labores astronomiae forte non inutiles adjutura sunt. Ac etsi quidem ea, quae a Tychone habeo, vicissim tecum communicare non possum nisi ipso consentiente (fidem namque super hac re illi dedi), spero tamen, te fore mihi aequum, si ex eorum, quae proprio Marte adinveni, liberahi communicatione candorem mean perspexeris; non quod iis te multum adjutum irt sperare possim (sum enim meae mihi tenuitatis conscius), sed ut animum ut dixi meum videas. Nam et hoc accedit, quod tanto rectius me juvare poteris, ubi videris, quibus in rebus verser. Si de mes fide dubitas. habes hic chirographum meum, quo bona fide promitto, me quicquid hujus mihi communicaveris in secreto habitarum, non pro meo venditaturum. nulli hominum quisquis ille sit communicaturum : sine dolo malo, sincere, si secus faxim, vir inhonestus habear.

Quae autem ego deprehendere potui, haec fere sunt.

In libello meo Cosmographico peculiare caput est, cum tabula a Maestlino computata, in qua hypotheses Copernici sic censui corrigendas, ut planetarum eccentricitates summaeque apsides ab ipso veri loci Solis centro deriventur, non a medio loco Solis. (Prodr. Cap. XV.; Vol. I. p. 153. Cemp. Comment. Cap. V.) Id certissime ita habere deprehendi, Martis certissimis observationibus ad demonstrationum calculum revocatis. Alio ejus libri capite (Cap. XXII. Vol. I. p. 181.) monui de theoria Solis, quod ea non ut planetae ceteri ab artificibus aequantem sit adepta, sed sola simplici constet

eccentricitate, idque in suspicionem traxi falsitatis. At ex theoria Mastin id hiculentissime probari potest, Solem (vel in Copernico Terram), cum est in apogaeo, non ita alte ascendere, uti maxima ejus aequatio per suppositienem simplicis eccentricitatis requirit, sed deficere partem ejus circiter tertiam, per positionem aequantis salvandam. Aequationes tamen ubi maxime different, in anomalia 135°, scrupplo uno cum sexta parte different, nihil ultra.

Eodem in capite moneo de peculiari inacqualitate revolutionum Veneris et Mercurii, quod Copernicus ait centra eccentrorum revolvi in parvo circello, fierique centrum eccentrici Veneris, cum in apogaso vel perigeee est. centro orbis annui propius, cum in locis intermediis est, remotins, et occentricitatem majorema: contra Mercurii in apogaeo et opposito loco eccentricitatem esse majorem, in quadrantibus minorem. Has, inquam, novas insegualitates non obscure in dubium vocavi. Id autem quale sit et unde hae insequalitates inferioribas inesse videantar, hoc ipso tempore deprehendo, que Praga absum in Styria haereditatis cansa (comp. Vol. I, p. 653.), nisi quod libris destitutus numeros applicaré nequeo. Tu vero si schema feceris ad imitationem Copernici, et apogaea Solis, Veneris et Mercurii ordinaveris, simulque dnos pro Terra circulos duxeris, alterum pro via Terrae hactenne eredita, alterum ex Soli propiore centro pro via Terrae verissima, cui prior ille loco acquantis Ptolemaici inservist (nam universalem theoriarum sive circulorum planetariorum ordinationem facio ad imitationem Copernici circa Solem immobilem, particulariter vero theorias singulas more Ptolemaico. cum acquipolléant hypotheses, administro, solo epicyclo excepto, qui tollitur a mobilitate Terrae); haec, inquam, si ita disposueris, facile tibi apparebit. has existimatas inacqualitates inferiorum nihil alind esse, quam parallaxin ex motu, vel accessu et recessu Terrae ad orbem Veneris hactenus non satis cognite resultantem. Nam quia apogaca Solis et Veneris conjuncta fere sunt ideoque Terra a Sole longissime remota, cum putetur tam longe remota, quantum postulat Solis acquatio maxima in eccentricitate simplici, sit vero in rei veritate propior Soli, prepior etiam erit orbi Venezis Soli circumposito: itaque Venerei orbis centrum ad Terram accessiage et in opposito Terrae situ ab ca recessisse putabitur. Ita quod inest globo Terrae (vel Soli, qui Veneris orbem gestat secondum Tychonem), id orbi Veneris inesse petatur; contrarium accidit Mercurio, nam ejus apogaeum perigaeo Solis propius est, quam apogaco. Parco verbis, cum vel hactenus verborum nimium coram sagaeiesimo homine fecerim. Cum igitur hoc ita habeat circa inferiores, in magna dubitatione sam, an verum sit de Mercurio, quod geminum perigaeum habeat circa trientes. Si schema quale dixi feceris, apparebit demonstratio, qua g in primo triente ab apogaeo majorem digrassionem. facere deprehenditur, quam in perigaeo, in altero vero triente minorem. Forte in ille altero non fit conspicuus aut non exstant forsan in Ptolemaeo alterins trientis observationes; quae facile perquires, ego jam libris careo. Memini tamen, Ptolemaeum in g ex duabus observationibus longe distantium annorum unam anni intermedii effinxisse, qua commode uteretur.) Itaque mihi parum metuo a Ptolemaeo in hoc negotio. Adde, quod magnum aliquid infert inclinatio plani Mercurialis ad planum eclipticae, quam in forma hypothesium Copernici inveni majorem Lunari, sc. 7º 45' c., quamvis latitade visa nunquam tanta fiat. Itaque si 45° a nodo in alterum trientem ab apogaco incidit, 16' alterator punctum eclipticae respondens a puncto orbis Merourialis, lineis ex Sole eductis, quae differentiae aliquid inferre et

illam pareavar de gemino stellae perigaco causis aliis concurrentibus adjuvare potest. Simile his est et procul dubio ex eadem causa manans, quod Ptolemacus ejusque hic imitator in alia hypothesi Copernicus (Lib. VI) inclinationes planorum in planetis libratione aliqua, quae sit revolutioni Solis $dxaloyo_{0}$, instabiles reddunt. Id mihi semper alienum a natura visum, etsi quidem latitudinum in meo libello non feci mentionem, at deprehendi in Marte inclinationem plani constantissimam, quoties in eundem locum eccentrici recurrit, quorumcunque Terra recesserit. Idem in Venere et Mercurio circa nodos eorum exploratum habeo.

Haec si Magine solertissime faeris unico mentis intuitu complexus, mecum equidem statues, omnium 7 theoriarum, quod motus siderum reales attinet, formam esse plane eandem exerque simplicissimem; quilibet eaim in una revolutione constantissimum exactissimumque circulum decurrit, tardius supra, velocius infra h. e. prope Solem, idque non per phantasiam sed re vera. Nam Tycho etiam in Luna acquantem adhibuit. Ex qua concinnitate et simplicitate h. e. perfectione motuum coelestium 'quantum Copernico roboris accedat, facile perspicis. Nam etsi Tycho Copernicum quam proxime imitatur et repraesentat retenta Terra in medio immobili, illud tamen cavere non potest, quin vias, per quas planetae in liquidissimo aethere, quod ipsi facile credo, gyrantur, in spirzs inaequaliter semperque aliter contorqueat. At non ideo facilior fiet calculus. Jmo quanto captu planior haec astronomiae forma, tanto computatu laboriosior, inventu intricatior.

Quod ad inventionem attinet, periculum in Marte feci; unde demonstrationum initium facerem non habui, erant omnia incerta. Quodsi quis fortunam periclitari et praesupponere aliqua ceu'certa velit, eaque suppositione identidem variata quasi per regulam falsi paulatim ad veras dimensiones contendere, illi in tanto numero quaerendorum non facile apparet, qua in parte lateat error; processus vero singuli ab initio suppositionis usque ad finem pene infinitae longitudinis. Itaque divino me beneficio Magine praestantissime afficeres, si me doceres via faciliori inquirere compositas eccentri sequationes. Rem quidem eo perduxi, ut mini non plus duabus multiplicationibus opus sit. At dum nimia cupiditate feror in inquisitionem verissimarum proportionum, tabulas aequationum nullas condo, quibus in operando sublever: cum non ita magnus sane labor sit, 360 multiplicationes pro 180° perficere; labor, inquam, non ita magnus, si semel susciperetur. At toties novam condere tabulam, quoties assumta symmetria falsa deprehenditar, id vero permolestam et praestabilius, tao mystico numero uti ad eas solas acquationes eliciendas, quibus pro re nata opus est.)

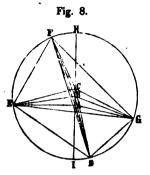
Cum itaque diu laborassem variaque demonstrationum adminicula effinxissem, tandem in haec duo problemata incidi, quae ad rem maxime facere puto: quorum alterum plus certitudinis, alterum plus ingenii habere videtur,

Detur angulus motas medii planetae itemque Solis circa puncta aequantum ad temporis quodlibet spatium determinatum. Detur et locus Solis verus ad momentum quodlibet, cum quo datur et apogaeum et eccentricitatis compositae ad orbem proportio. Nesciatur vero longitudo simplex planetae (nam et circa hanc corrigendam artifices occupantur), nesciatur locus apogaei (potius aqquloo) planetae, nesciatur proportio orbium Terrae (seu Solis) et planetae, nesciatur proportio eccentricitatis planetae ad orbem suum, nesciatur proportio partium hujus eccentricitatis, nesciatur etiam in theoria Solis (vel Terrae) proportio partium eccentricitatis compositae. Dentur jam tres pla-

setze cheervate observationes, et singulis binae aliae observationes adjungantar sic comparatae, ut planeta post integras revolutiones (quae inter data sunt) semper sit iterum in eodem loco sui eccentriei, linea ex centro Selis educta. Ex novem sic comparatis observationibus planetae datisque ceteris sint inquirenda omnia, quae nesciri dixi: 1) in qualibet observationum triga scitur locus sub fixis causa longitudinis, in quem cadit linea ex centro corparis Solaris per planetae corpus educta. Nam in vera oppositione cum Sole locus ille patet oculis, in binis vero sociis beneficio periodi cognitae sciumas, planetam eodem esse reversum, ubi fuit in cheervano situ. Cum ergo tres sint trigae, ter ergo scitur locus planetae sub fixis.

2) Cum planeta et Terra non faciant ullam unquam omnimodam anouaraoraora, fit ut planeta ter eodem in loco sui eccentrici versante, Terra contra tria distincta loca possidest. Itaque cum detur locus Solis seu Terrae oppositus ad omnes tres vices, dantur etiam anguli commutationis veri et tales, quales ex angulis commutationis simplicis per utriusque et planetae et Terrae aequationes corrigentes exstrueremus, si jam haberemus tabulas.

3) Ex his habebitur per solutionem unius trianguli (Sol, Terra, Planeta) distantia Solis et Terrae, eaque bis. Nam Terra inter verum Solis et planetae locum versante, nulla fit longitudinis parallaxis seu commutatio. Itaque per aliud huic implexum problema, cum sciatur locus apogaei Terrae, seibitur etiam angulus anomaliae ad utramque distantiam Solis et Terrae. Ex duorum itaque locorum a suscepto puncto distantiis et utriusque a loco spegaei remotione inquiritur quantitas orbis Terresi seu magni in ea mensura, in qua praesupposuimus cognitam esse planetae a Sole distantiam uno leco eccentrici sui; inquiritur indidem etiam distantia suscepti puncti (quod est centrum viae Terrae) a centro Solis. Hoc uti fit in una triga observationum, ita fit etiam in altera et tertia. Sed in altera planeta est alio loco sui eccentri, in tertia est tertio loco sui eccentri habetque inaequales a Sole distantias, quas semper initio demonstrationis ponimus esse 100000. Est itaque necesse, ut quantitas orbis Terrae alia atque alia prodeat, proportione tamen eccentricitatis viae Terrae ad semidiametrum semper eadem prodeunte, quae admodum certa probatio erit. At cum certum sit, manere radium orbis Terrae circa centrum viae Terrae in eadem quantitate, suscipiemus jam hunc in quantitate 100000 et proportionaliter constituemus planetae in tribus locis distantias. Ita tres planetae inaequales a Sele distantias habebimus. Quemadmodum ergo facillima ratione geometres ex tribus punctis circulum describit, ita arithmeticus laboriosa via per octo (nescio an sedecim) operationes simplices ex tribus radiis inaequalis longitadinis ab uno puncto exeantibus rimatur quantitatem semidiametri viae planetariae in proportione, qualium est semidiameter orbis Terrae 100000; simul et distantiam centri a puncto illo uno (quod est centrum Solis) rimatur et inclinationem lineae per utrumque centrum trajectae ad radios dictos. Habita eccentricitate viae Terrae et planetae simplici, eccentricitas composita seu acquantis in Terra ante nota est, in planeta inquiritur ex angulis metas simplicis ad spatia temporum intermedia cum jam inventa eccentricitate viae comparatio. Quemadmodum et cognito loco apogaei (seu aphelii) planetae cognoscitur et longitudo simplex ejusdem correcta ad quodlibet tempus.


Alterum problema difficillime sine schemate explicatur; ego vero jam et instrumentis careo. Versatur in latitudinibus áxporvyuug. Praecognita hace sunt: primo tres latitudines planetae accurate observatae, cum est in vera oppositione cum Sole; cum quibus innotescunt etiam loca longitudinis angulique interjecti. Deinde opus est ut sciamus loca nodorum; ea vero simplici observatione patescunt: nam cum planeta est in ecliptica, nulla parallaxis (nisi ea, quam habet communem cum luminaribus) illum alibi facit apparere, quam in ecliptica. Quorsum vero cadat linea ex Sole per planetam ejecta, ex mediocri et inartificiali acquationum et aphelii praecognitione mediocriter etiam praesciri potest. Tertio opus est nobis scientia inclinationis maximae planorum, quam sic investigamus: cum abest planeta aequaliter a Terra et a Sole, eadem est inclinatio ejus et latitudo visa. At circa exortas vespertinos et occultationes matutinas, potius circa quadraturas, cum angulus verae commutationis planetae acquatur angulo vel distantise circulari Solis et planetae, sunt etiam acquales rectilineae distantiae dictae. Tunc ergo planetae latitudo observetur et constituatur ex mediocri prascognitione theoricae planetae, quo loco impingat linea ex Sole per planetam iens, factaque comparatione visae latitudinis (quae est etiam vera inclinatio) ad distantiam a nodo, in triangulo sphaerico inquiratur inclinatio maxima limitum. Tunc ergo scibitur inclinatio planetae ad quemcunque situm anoreyeor, videtur vero latitudo; comparetur ergo visa latitudo cum calculata inclinatione et fingatur interea planeta acqualissime circa Solem ire, fiet hot pacto, ut prodeant tres distantise Terrae a Sole. Ex his tribus eliciatur quantitas orbis, aphelium et eccentricitas viae, ut supra. Erit hoc pacte eccentricitas planetas cum eccentricitate Terrae in communem eccentricitatem confusa, et utriusque aphelium in idem aphelium commune loco intermedie confusum. Et mirabile dictu, in hac majoris circuli eccentricitatis in minoris eccentricitatem infusione, quod prodit, circulus manet. Demonstrationem, nescio quomodo fiat, ut animo videam, verbis elogui nondum potuerim. Cogita ipse. Mechanice quoque certam fidem feci. Ex hac confusione, jam adminiculante cognitione apogaei Solis, extricanda est utriusque aideris eccentricitas viae, quod totum negotium problematis aliquot explicai, sed jam chartis meis destituor. Pulcherrima est speculatio: sed latitudinnm anguli parvi, error observationis valde sensibilis, itaque probationis loco est, non inquisitionis.

Quae autem dixi de mediocri praecognitione theoriae planetae, sic intelligantur, quod sicut in theoria Solis (vel Terrae) ita propemodum .in omnibus planetis acquationes eccentri sciri possunt (solas namque has peto ut praecognoscantur), etsi verissima proportio partium eccentricitatis ignoretur. Nam error ex vitiesa proportione hac prodiens in Sole quidem non est major 1' 10" cum est maximus in anom. 135°. Et hic quidem error tantus est, quando, quae ex duabus partibus aequalibus composita est eccentricitas, cam cum prioribus astronomis ut simplicem imaginamur. At si compositam et nos faciamus ex partibus genuinis, faciamus item ex partibus non genuinis, acquationes utrinque exstructae multo adhuc minus different. dummodo summa partium eadem utrinque maneat: adeo quidem, ut in Marte, cujus est acquatio maxima, si a 92 usque in 120 varietur eccentricitas viae (in ea dimensione, ut est radius 1000), acquationes non turbentur plus 3'. Verym at et hoc addam, ipsas acquationes eccentri sine praecognitione longitudinis mediae in hunc modum investigo problemate, quod necessitatem infert et tamen neque per geometricas demonstrationes neque per latius patentem cossam explicari a me hactenus potnit. Laboravi tanguam per

ngulam falsi idque in incertitudine non simplici sed quadrata. An et hic me demonstratione problematis juvare possis?

Sint 4 loca planetae observata in sitibus anoorvyous veris, cum vero

loco Solis, quae sint D, E, F, G, et ait A centrum emporis Solaris, B centrum eirculi illius, in cujus circumferentia consistant 4 illa puncta, C sit centrum sequantis. Ad 4 ergo tempora scientur anguli eirca C, inter bina et bina tempora explorata quantitate motus medii, quod fieri potest, etsi ignoretur praecisissima longitudo media ad momentum quodlibet. Sciuntur autem et anguli circa A Solem ex ipsis observationibus. Assumatur vero AC linea in numero ad operandum facili, ut si sit 100000. Nescitur jam proportio AC ad AB, BC; nescitur proportio AC vel AB, BC ad AD, AE, AF, AG, vel ad BD radium vel ad CD; nescitur proportio

AD ad BD vel CD; tantummodo scitur, quod BD, BE, BF, BG sint acquales. Pono itaque primo tanquam in regula falsi, inclinationem AC ad CD, CE, CF, CG esse mihi notam; pono iterum ejusdem AC inclinationem ad AD, AE, AF, AG mihi esse notam; ita illic ponitur longitudo media, hie aphelium tanquam cognita.

Ex his positis dantur in triangulis ADC, AEC, AFC, AGC anguli cum latere AC, dantur ergo AD, AE, AF, AG, et cum sciantur GAD, DAE, EAF, FAG, in his ergo triangulis ex binis lateribus et angulo comprehenso dantar GD, DE, EF, FG cum angulis ADG, ADE, AED, AEF, AFE, AFG, AGF, AGD. Item in FAD dantar FA, AD et comprehensus FAD (compenitur namque ex FAE et EAD), quare et FD datur cum angulis AFD, ADF. Colligo summara EFA, AFG, sic et EDA, ADG, ut sciam quantitatem angulorum oppositorum EFG, EDG; qui si faciant summam 180°, certum est, puncts D, E, F, G per assumtas duas positiones manere in circulo. Sin excedit vel deficit summa oppositorum semicirculum, reditur ad capat ut in regula falsi, et retenta positione prima inclinationis AC ad CD, CE, CF, CG, variatur positio inclinationis CA ad AD, AE, AF, AG. Tunc ex excessu vel defectu utroque pervenitur ad cognitionem ejus aphelii vel inclinationis CA ad AD, quae quatuor puncta in circulum cogit. Quo facto jam etiam probandum est, an et prima positio longitudinis mediae recte habeat in hunc modum : cam sciatur ADG, ADF, scibitur et FDG; cumque sint jam 4 puncts in circulo, erit FBG duplus ad FDG. Jam ergo datur issocles FBG cognita basi et angulis, facile erge cognoscitur ro oxadog FB vel BG. Prins antem sciebatur AFG, jam scitur BFG, scitur ergo et BFA. la hoc ergo triangulo cum antes sciretur AF, jam FB cum comprehenso, scibitar et BA eccentricitas viae, et BAF inclinatio BA ad AF; quae si eadem est quae CA ad AF, erunt ergo BA et CA coincidentes, et prima lengitadinis mediae positio recte habet. Sin discrepant, tota operatio a prima origine quantaquanta est repeti debet, variata etiam prima positione, et ad illam per processum "falsi" certificata secunda; postea per eundem "falsi" processum comparata utraque primae positionis variatione ad elicien**dam** versm positionem.

Summa itaque haec est: quando D, E, F, G sunt in circulo, recte habet aphelium, quando vero B centrum ejus circuli est in linea AC loco intermedio, recte habet et longitudo medià; cum antem jam habeatur proportio linearum ad AC, quam suscepimus esse 100000, facile eam in alios numeros transponemus, ut BF sit 100000. Quodsi ergo 4 observationes in parte scrupuli recte haberent, essemus vel sic certi de porportione FB ad BA, nec opus esset tanto apparatu, quantum supra descripsi. Sed quia intra 3 scrupula certi non sumus de observatione, praesertim quando deductione opus est a die proximo, quando serenitas observationes admittit, ad diem verae cum Sole oppositionis, ideo in incerto relinquimur (ut supra dictum) in Marte quidem a 9200 in 12000 et ulterius, quae incertitudo in parallaxibus orbis annui intolerabilis est. Aequationes tamen hac via prope verum addiscimus.

Hactenus exposui, quibus in rebus a te Magine sollertissime adiuvari possint inventiones has circa theorias planetarum Copernicanas. Nunc alterum caput de difficultate calculi aggrediar, consilium tuum expetiturus, quomodo censeas constituendas tabulas, quam formam calculi amplectendam. Copernicus uti potnit anomalia commutationis, quia centrum, circa quod numeratur anomalia, putavit esse centrum viae Terrae. Quid jam nobis proderit canon anomaliae commutationis, cum bis acquanda sit, nempe per totius acquationis et planetae et Terrae partem eam, quae constituitur ab eccentricitate viae? Oportet enim angulum anomaliae ad nullum aliud punctum stare, quam centrum Solis. Nulla hic acquipollentia hypothesium nos juvat. Dimidio grada in Marte erramus primum atque centrum Solis deseruerimus. At si stet angulus hie ad Solem, semper est alia atque alia distantia Solis et Terrae. quare etiam alia atque alia parallaxis annua, etiamsi planeta habeat unam et eandem anomaliam eccentri. Nam aphelia in tabulis perpetuis oportet considerari ut distantiam mutuam variantia successu seculorum. Ac etai semper eadem maneat apheliorum distantia, tamen parallaxes erunt condendae non ad quadrantem, non ad semicirculum, sed ad integrum circulum, ubi si accedant etiam scrupula proportionalia, ut necesse esset, nescio an evitaturi simus omnem errorem. His omnibus accedit implexio mutua parallaxeon anaui orbis in longum et latum, qui scrupulus me diutissime torsit caeca Nam cum prope oppositiones planetae cum Sole venitar, haec molestia. implexio non parvi est momenti semperque me impedivit, quo minus justam siderum a Sole distantiam investigare potuerim. Hic si etiam canone uti velimus aequandi propter latitudinem angulum commutationis, nescio an difficilior et taediosior sit futurus calculus tabularum, quam calculus triangulorum. In hac ergo difficultate de forma calculi ea .cogito, quae est naturae conformis; quam quia sine tua ope vir potero adipisci, itidem exponam. Colligetur ex tabulis planetae simplex longitudo et aphehium, et subtracto hoc ab illa per anomaliam eccentri relictam excerpetur aequatio eccentri, qua corrigetur longitudo, ut fiat eccentri longitudo aequata; excerpetur et distantia planetae a Sole per eandem simplicem anomaliam, servanda in futurum usum. Hic labor erit in inferioribus plane idem; nam eccentrus eorum is dicetur circulus, quem in rei veritate describunt circa Quodsi carerent planetae parallaxi annua, jam inventa essent Solem. omnium planetarum ipsiusque Terrae loca in suis orbitis. Ergo pro 5 planetarum parallaxibus annui orbis jam secundo ad eundem modum quaeretur locus Terrae (vel Solis oppositus) cum distantia Solis et Terrae servanda. Tertio locus orbitae planetae comparabitar cum proximo planetae nodo (nodi motu simplici etiam ex tabulis collecto) et per distantiam a nodo et maxi-

man limitis inclinationem quaeretur ex parte canonis rectanguli sphaerici, cajus latus a 0° ad 90° per singulos gradus, frons a $0^{\circ}0'$ ad $10^{\circ}0'$ per singula minuta procedit, excerpetur, inquam, ex hoc canone arcus eclipticae respondens arcui orbitae et inclinatio ejus loci, quem obtinet planeta.

Quarto, locus eclipticae inventus comparabitar cum loco opposito Solis vero. Differentia erit angulus anomaliae commutationis, qui quamvis re per utramque acquationem sit correctus, simplex tamen adhuc nobis dicetar, cum etiamnum acquandus sit, maxime circa oppositiones cum Sele. Hic angulus et inclinatio loci planetae in eccentrico quaeretur in illo canone et per haec duo excerpetur angulus.

Quinto, tabulis nullis juvari poterimus quin per utramque et planetae et Terrae a Sole distantiam et angulum anomaliae commutationis aequatum ister dicta latera comprehensum per 2 multiplicationes quaeramus angulum commutationis seu parallaxeos compositae seu confusae.

Sexto, haec parallaxis et prius servatus angulus in area canonis juxta se matuo ostendent arcum elongationis planetae in ecliptica a Solis loco apposito et latitudinem.

Hic qua in re rem juvare possis exponam. Cum non sit cujuslibet, condere tabulas, tu vero excellas et abundes compendiis, canonis hujus partem planetis necessariam tibi condendam relinquo; nam ita quidem persassus sum, quidquid D. Tycho sit editurus, fore ut haec Copernicana hypothesis propter intellectionis facilitatem juxta mansura sit, quam quidem in tabalas redigere dum vixero non desistam: tu vero jam pridem obtulisti tuam D. Tychoni operam in condendis tabulis. Ac sane si ex restitutione Lenari, quam apud Tychonem vidi, de planetis ceteris judicandum est, non millins usus erit etiam apud Tychonem haec pars canonis. Nam quas habet Luna inaequalitates extra conjunctiones et oppositiones, omnes Tycho a vera conjunctione et oppositione regulares facit; ut jam non dicam de ingenti asu canonis rectanguli sphaerici in omni doctrina triangulorum sphaericorum, si frons ad 90° continuetur.) Prolixus admodum fui; cessabo igitur. Ubi baec grata tibi fuisse intellexero, plura monebo. Tu vero Magine celeberrine haec eo animo suscine, quo ego scripsi. Sum artis astronomiae cupidissimus et temperare mihi non possum, quin artificibus consilia mea commanicem, ut illorum admonitionibus subinde in hac divina arte proficiam. Peto majorem in modum, uti quam primum rescribas; nec est necesse ut ex abrupto ad singula respondeas, saltem indicationem facito, ubi has receperis. In Styria quidem non cogito ultra tres ad summum hebdomadas manere; itaque praestiterit, ut quae responsurus es Pragam Bohemorum mitteres ad Ill. D. Coraducium, Vicecancellarium Imperii, quem et has artes amare scio et me amare persuasus sum. Si tamen aliqua te incommoditas impedit (quamquam ecce, quid te impedit ad D. Tychonem scribere, cujus literis si quid ad me pertinens adjunxeris, id me semper uti spero apad D. Tychonem reperiet) Pragam scribere, mitte Graecium in Styriam ad Nuncium Apostolicum, is si Abbati Admontensi commendaverit epistolas, facile mihi reddentur.

Dum concludere volo, incidit, quod pene primo loco scribere volui. Theoria Lunae multum Tychoni difficultatis movet. Mihi videtur auspicanda a parallaxibus, quae contingunt ob sensibilem distantiam centri et superficiei globi Terreni. At parallaxium doctrina latitudinibus Lunae confusa est. Opus igitur esset praecognitione latitudinum. Utrumque ab utroque

pendet; cogitavi igitur, quomodo parallaxis sine cognitione latitudinis observando investigari posset. Modi duo inciderant. Alter, si eodem die Lune semel alta semel humilior extra tamen terminum refractionum observaretur quando est circa limites, ubi intra duas horas parum mutatur latitude. Expedit autem id etiam in principio Cancri fieri, ubi parum etiam mutatur declinatio. Verum quando Luna eodem die post meridianam altitudinem ft sensibiliter humilior, acquirit parallaxin in longitudinem, praecognoscendam cum ea inquiratar. Alter modus, ut distinctis temporibus observetur Luna, cum est in gradu nonagesimo, in limite eodem, in eadem remotione a Sole, semel altior semel humilior. At hae tres conditiones raro concurrunt; adde quod singulis scrupulis in hac altitudinis observatione committitur error unius semidiametri Terrae, quarum in eccentricitate viae Lunae paucae continentur. Itaque tertio huc confugio ut te orem, observes Lunam quoties potes in nonagesimo gradu et observationes una cum exactissima Bononiensis poli altitudine nobiscum in Germania communices. Curabo ego, ut nostras observationes tu vicissim habeas. Ita fiet, ut Luna interdum simul utroque in loco observetur sicque ejus in variis anomaliae locis altitudines innotescant. Nam Bohemia et Italiae bona pars in eodem meridiano sunt.

Vale, praestantissime vir meque tibi commendatum habe.

Graecii Styriae Cal. Jun. 1601.

Excell. Tuae

officiosissimus Jo. Keplerus, Mathematicus.

Keplerum eum praeceptore suo M. Maestlino de "Martialibus" suis stadiis pet literas egisse quis dubitabit perlectis literis, quas, dum Keplerus editionem Prodromi meditabatur, mutuo dederant acceperantque. Keplerus consueverat Maestlinum de omnibus fere certiorem facere, quae bona vel mala ipsi acciderant, quae nova in literis aut ipse invenerat aut ab aliis inventa acceperat, non respiciens Maestlini in resoribendo segnitiam. Sic retulte praeceptori ea, quae in Opticis profecerat (Vol. II, p. 12), quaeque de Stella Nova notanda ab aliis acceperat aut ipse observationibus, calculis et ratiocinatione deprehenderat (Vol. II, p. 582. 754), quamquam ab initio anni 1600. ad annum 1605. nihil responsi a Maestlino accepit; atque sic etiam, quum ad Tychonem Graetio Pragam transmigrasset, refert illi ea, quae ipse apud Tychonem agat, quaeque in studiis Tychonicis relata digaiora deprehenderit, neo non ea quae. Martis observationes aggressus, emendanda in usitatis astronomorum rationibus rata habeat.

Prior epistolarum Keplerianarum huc pertinens Martem ipsum quidem nondum attinet, sed satis luculentum praebet specimen studiorum Tychonis ejusque discipulorum, quam ob rem illam exhibendam censemus hic integram.

S. P. D.

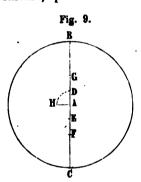
Nihil hac vice fuit dicendum, Praeceptor amantissime, quan ut responderes proximis meis literis et R. D. D. Hafenrefferum et D. D. Zieglerum ad scribendum hortareris, mitterenturque literae Stuccardiam ad D. D. Eagel, hardum, vel potius Leobergam ad meam matrem. Consolatione enim egeo, qui quartana etiamnum laboro et insuper periculosa tussi, non sine suspicione hectices, hoc est ipsius vitae cum periculo; jam et uxor aegrotat; jam nondum quarto penitus praeterito mense centum thaleros Pragae expendi; adde viaticum, parum certe mihi superest. Multa Tycho promittit, quae si essent ita in ipsius potestate, nemo esset me contentior. Itaque nisi haec mea festinatio et paschalis temporis destinatio mortis circa id tempus ingruentis omen est, migrandum erit omnino ad pascha. Ad vos me rapit amor patriae, quaecunque sit ejus futura fortuna. Rebus pereuntibus jam semel interfui, impavido sum animo.

Hec inquam unum fuit dicendum. Sed quia jam sumta pagina est, impleatur. Tycho suarum observationum parcus est admodum. Mihi tamen earum copia quotidiana: modo descriptioni sufficerem. Electione igitur opus. Tu scribe, quae potissimum notanda et excerpenda tibi videantur. Hoc unum hane Pragensem moram solatur.

Lunaris hypothesis, quam assumserunt, puto brevi lucem videbit. Ea exiguo aberrat. Fundamenta, hoc est observationes, non sunt pro institata subtilitate in hoc sidere. Nam assumunt eclipses Lunares; si quis adstaret observatori, qui medium eclipseos dioeret, probarem. Sed medium colligunt ex initio et fine, nec eo semper ita conspicuo. Coepisse cernitur, non incipere, et desiisse, non desinere. Ante et post semiquadrante horae de initio et fine dubitatur. In ceteris Lunae observationibus proposuere sibi orientalem vel occidentalem limbum, superiorem vel inferiorem limbum, et addunt vel subtrahunt visam semidiametrum. At eodem momento per diversos observatores ad instrumenta diversa collocatos 31, 32, 33, 34, 35, 36, 37 serupulorum diameter pronunciata fuit pro constitutione oculorum. Humentibus enim oculis major apparet. Itaque in observationibus Lunae 2 vel 3 scrupulorum frequens, error est. Et tamen ita pertinax est Tycho, ut hypothesi suae aegre tantulum errorem condonare velit.

Mira vero haec habet illa hypothesis: primo in veris conjunctionibus et oppositionibus simplicissima utantar acquatione (quam in Luna perinde ex 2 circellis conficiunt, ut Copernicas in 3 superioribus, hoc est ut Ptolemaeus per positionem puncti eccentrici et puncti acquantis: quae ratio in physicis fundatur). Circellos vero variationis alterius incipiunt a veris illis conjunctionibus et oppositionibus, quo fit, ut inaequalis fiat circellorum illorum motas. Id autem ut dolet Tycho, ita ego lactor. Adhuc enim vinco in eo, in quo aliquando ad me Gratium scribens modum me ponere jussisti harum speculationum, ne omnia fiant incerta (I. 213). Contendebam autem, ratione physica acquationes in quadraturis augeri.

Secundo, quocunque se vertant, commodius nil inveniunt, quam ut emittatur altera causa aequationis temporis, retineatur sola illa, quam Asc. rectae suppeditant. Statuunt itaque aestate 360° 57', hieme 361° 3' aequali tempore 24 horarum volvi. Id nihil aliud est dicere, quam aut primum mobile inaequaliter incedere, quod maximum monstrum est statuere, aut primum motum volutione Terrae fieri, quae celeriter volvatur hieme, tarde aestate. Hoc modo institutus calculus ad omnes observationes pulchre respondet, ut raro 4' aut 5' aberratio contingat.


Circellum unum inducunt propter 45° distantiae) a \mathcal{S} , \mathcal{S} ante et retro. Nam ibi deprehendunt anomaliam talem, ut etsi) sit in apogaeo vel perigaeo, nihilominus acque atque alias longius justo a \mathcal{S} , \mathcal{S} distet. Lunam itaque nullius excentrici respectu deprehendunt celerem in \mathcal{S} , \mathcal{S} , tardam in \Box . Hoc iteram physicas meas rationes confirmat. Vigor nempe inest lineae diametrali.

Motus illi venit ex Sole, sed mediate per Terram, quam circumcurrit; sic fons virtutis motricis, qui in aliis planetis est punctum, in Luna est linea.

Alteram circellum describunt ita, ut transeat per centrum Terrae, dicuatque centrum concentrici Lunae, qui 2 epicyclos (ad modum unius ex 3 superioribus) vehit, percurrere illum bis in mense, vero in antecedentia.

Intricatus et mirabilis efficitur motus, difficilis vero calculus. Diu multumque laboravi transformare illum per acquipollentiam. Tandem vidi

modum, qui nescio an ad unguem jussa facturus sit; certe in vicinia octo locorum in d, 8, 0, 0, 11 11 11 11 facit. Is talis est: Luna, ut quilibet ex planetis, naturae consilio movetur in longum, latum, profundum. Nec sunt plures dimensiones. Motum in longum infert Sol planetis, ipsi de suo nihil addunt, nisi quatenus in diversis circuitionibus a natura siti sant. Motum in latum planeta ipse conficit, Sol huc nihil confert. Motum in profundum inter se partiuntur, planeta ascensu vel descensu, Sol accelerando vel tardando ultra ascensus vel descensus mensuram. Itaque centrum eccentrici ponitur a planeta, centrum acquantis a Sole. Suntque in quolibet planeta quatuor: medius longitudinis, inclinatio latitudinis, centram eccentrici. centrum acquantis. Luna prae ceteris hoc habet, ut cam coelo suo moveatur, quaeque in aliis sunt simplicia, sint in hac duplicia. Duplicem n. habet fontem motricis virtutis, Solem per se, Terram per accidens, et ut dixi supra, ejus fons virtutis est linea. Respicit igitar non tantam Terram, quam circumeat, sed etiam Solem. Omnia itaque sua quatuor habet duplicia. Primum, motus medius in linea diametrali velox est, tardior quo longius) distat a diametrali linea. Hanc variationem per aequantem debemus salvare, quia a Sole seu a fonte virtutis simpliciter manat, Luna ipsa nihil

confert. A Terra, BC concentricus), BAC linea diametralis. Cum ergo) est in B, sit punctum aequantis in E, contra cum est) in C, sit aequantis punctum in D. Quantitas AC ad DA ut 100000 ad 2400 fere. Nam in 45° aequatio maxima est 40' circiter. Sinus autem digressionis vel distantiae) a linea BC multiplicatus in DA rejectis 5 figuris prodit locum puncti aequantis.

Secundo: latitudo maxima in oppositionibus et conjunctionibus statuitur ex observationibus 4° 58¹/₂'; in quadraturis vero ex eodem observationum fundamento inveniunt maximam latitudinem 5° 17⁴/₂'. Hoc totum ab inclinationis eccen-

trici variatione, hoc est ab ipsa Lunae divagatione, qua se ad nutam Solis componit, provenire, manente centro concentrisi conjuncto cum centro Terrae, multis rationibus constat. Non potest enim fieri per appropinquationem latitudinis ad Terram, nec per revolutionem centri eccentrici circa Terram. Utroque enim modo proveniret inaequalitas aliqua in longitudine, quae non est commensurabilis ad observatorias inaequalitates. Itaque per omnes modos eunti mihi apparuit, cum nulla inaequalitatum ceterarum in unam hypothesin confundi posse, sed esse separatam penitus.

Tertio: eccentricitas Lunae augetur et minuitur per ipsam Lunam, quemadmodum omnis eccentricitas accidit per ascensum et descensum ipsius planetae. Sit F Terra, A centrum eccentrici, B principium anomaliae, ejus sc. apogaeum, C perigaeum. AF eccentricitas media, in d, ϑ . Dum autem Luna currit ab ϑ in \Box , libratio centri eccentrici fit per AE, contra dum) it a \Box in ϑ vel d, libratio fit per AD. Sit \Im in ϑ cum Sole, erit centrum eccentrici in E, Luna egrediente in \Box , erit in A, sed Luna veniente in C, erit centrum eccentrici in D. Dimensionem nondum possum addere. Non est tamen tanta, ut totum aequationis maximae in quadraturis excessum absorbeat, nec enim ultra 18' debet inferre. Hoc modo fit ovalis figura

٨

viae Lunae, cum linea apogaei competit in lineam diametralem. At cum hae lineae crucem faciunt, circularis penitus est via Lunae.

Quarto: aequans gemino modo variatur. Cum enim aequans sit nil aliud, quam geometrica mensura physicae inaequalitatis in motu, quae inde est, quod sidus prope fontem virtutis motricis veniens celeriter incitatur, tarde cum discedit: convenit itaque, ut Luna simul et centro eccentrici in linea diametrali existente, hujusmodi acceleratio et tardatio vel nulla sit vel exigua; itaque punctum aequantis vel coincidat cum centro eccentrici vel illi sit proximum. Nam linea diametralis est fons virtutis omni sui parte. Cum vero digreditur) a d, centro eccentrici manente in linea, multum decedat necesse est celeritati, cum celerrima fuerit) in linea diametrali. Itaque alte ascendet aequans, facietque maximam aequationem. Jam si crucem faciant linea apogaei et diametralis, sitque) in , necesse est tardissimam esse, et altissimum aequantis punctum, tanto vero velociorem in altera , com est in perigaeo. Et tamen prima inaequalitas intercurrens efficit, ut) apogaea in \mathcal{A}, \mathcal{S} adhuc velocior sit, quam perigaea in \Box . Manente vero modo dicta cruce, cum) in 8, d'incidit, quia a fonte virtutis vehementius incitatur, necesse est contemperationem fieri et punctum sequantis ad mediocritatem descendere. Sit F Terra, E centrum eccentrici, A acquans pro maxima acquatione 8, 8, D pro maxima acquatione 🗋. Ergo centro eccentrici versante in 8, d, fit libratio in DE; illo in D versante, libratio fit in AG. Media ergo acquantis distantia augetur, ut sit in 8, d FA, in 🗌 FD. Prima ergo variatio est pro motu centri eccentrici a d vel 8 in D, cui respondet libratio centri circelli libratorii ex A in D, ut . quantum interest inter lineas, tantum ab H in D numeretur ejusque sinus faciat additionem ad FA. Secunda libratio sic instituitur, ut quando D est in \mathcal{A} , \mathcal{B} , sit hoc punctum proximum puncto eccentrici, quantum potest per amplitudinem circelli; at cum est) in , sit hoc punctum remotissimum. Hoc modo conficitur illa varietas, quam jam modo physicis rationibus dixi consentaneam. Sed haec omnia indigent ulteriori lima. Maxima quadraturarum aequatio est illis 7º 28'.

Morbus me obscurum fecit, antea plus satis hoc obscuritatis dono praeditum. Mihi ipsi non satisfacio. Sed existimo te videre, plus difficultatis esse in una Luna (ut quidem apad Tychonem hoc sidus se noscendum praebuit) quam in omnibus planetis. Ego per hunc meum morbum nihil aliud, quam quod contra Ursum scribo (jam fato suo functum superiori aestate), ubi nil tango, nisi quae attinent scientiam: potissima cura est de antiquitate et de veterum sententiis explicandis. Itaque vix est mathematicus tractatus futurus, sed tantum philologicus. Si qua tibi videbuntur, ea subministrato, lubenter enim admonebor, praesertim in problematibus ejus ad disceptandum propositis (v. Vol. I, p. 215 ss.). Aegre et ego fero, te uque adeo tacere, nec cum Tychone per literas conferre. Consultissimum sane faceres, si quantum posses studeres, observationes ei suas extorquere. Nam mira hominem fortuna exagitat. Semper perdito similis, utcunque tamen eluctatur, absurdo eventu, și media ad perniciem potius comparata respicias. Mitteres nonnulla ex tuis observationibus, credo, ut est in magna morum varietate humanissimus tamen, mitteret ad te si qua et tu postulares. Nam etsi omnia mihi patent: obliganda tamen prius fides fuit ad celationem: quam ego quidem pollicitus sum praestiturum, quantum philosophum decet. Sin metuis ut tuas literas publicet, per me age.

Kopleri Opera, 111.

4

Vale, et oro te rescribe, ut recreationem habeam ex lectione. 8. Feb. 1601. Pragae.

H. T. Gratiss. Discipulus

M. J. Keplerus.

Propins Martis theoriam attingant has Kepleri literas: S. P. D.

··· Clarissime vir, Praeceptor honorande. Quod tanto tempore taces, id me omnino credere jubet, te causam tacendi confinxisse, quam ultimis tuis literis mihi exprobrasti (v. Vol. II, p. 13). Ego rebus meis in alium statum transeuntibus non desistam, quoad vocem tibi expressero. Nam mihi certe non alio tempore magis tua opera et institutione opus fuit. Tychenem inaudisti mortuum. Caesar curam instrumentorum et imperfectorum Tychonis studiorum mihi imponere decrevit, salarium mihi denunciavit, petere jussit aliquam summam. Usus ego consiliis aliorum, quod meam quidem personam attinet, summam arbitrio Caesaris commisi, quod vero perfectionem operum Tychonis, quorum potissimo vivus Tabularum Rodolphaearum nomen feoit, dimidiam Tychonis summam sc. 1500 florenes annuos petii, pollicitus, si Caesar totos 3000 Tychonicos det, me bene collocaturum adscitis collegis et calculatoribus et exquisitis doctorum consiliis. Responsum quodnam futurun sit, tempus patefaciet. Ego plenus spe. sum. Nam si mihi de potiori Deus prospexit, de materia sc. exercendi ingenii, utique et de sumtibus prospiciet. Adeoque si Deo curae est astronomia, quod credere pium est, jam ego spero, me in ea aliquid praestiturum, cum videam, quam fataliter me Tychoni Deus adjunxerit nec gravissimis incommodis ab eo divelli passus sit. Tycho quae praestitit, ante annum 97. praestitit, ab eo tempore res ejus in pejus ruere, ipse curis immanibus distineri, puerascere. Patria inconsiderate deserta ipsum afflixit : aula haeo plane perdidit. Non erat enim is, qui cum, quoquam vivere sine gravissimis offensionibus posset, nedum cum tantae amplitudinis viris, sui sibi consciis, regum et principum arbitris, Tychonicum opus omnium praestantissimum sunt observationes, totidem justi libri, quot annis huic labori praesuit. Dein Progymnasmata (in eo stellae fixae, motus Solis et Lunae ad nostra tempora) meram spirant ambrosiam. Spero proditurum instantibus nundinis. Nam id strenue operam do, indicem facio. Quae Lunam attinent, opera potissimum cujusdam Christiani Severini Longimontani Dani his ultimis annis confecta sunt, clavum tenente Tychone. Haec non repraesentant cam divinitatem, quae est in Solis theoria.' De Cometis librum alium scripturus erat, de planetis omnibus doctissime et diligentissime commentatus est: sed fere more Ptolemaico mutatis mutandis, ut et Copernicus fecit. Videas, quomodo Deus dispenset sua dona, nec omnia possimus omnes. Tycho, quod Hipparchus, fecit, a fundamentis aedificii est, laborem exantlavit maximum. Non omnia possumus omnes. Desiderat Hipparchus ille Ptolemaeum, qui 'reliquos 5 planetas superexstruat. Dum vixit haec praestiti. Theoriam Martis exstruxi, ut sensus subtilitatem facile adaequaturus sit calculus. Causa, cur incertioris motus creditus sit, non est illi péculiaris, sed communis omnibus planetis, in ipso vero evidentissima. Primum linea apsiduma orbem ejus hactenus non secuit medium, trajiciebatur enim per centrum aequantis et centrum putativi orbis magni: At vera trajicitur per centrum acquantis et Solem ipsum. Ita centrum eccentrici (quem jam imagineris, more Ptolemaico) inter punctum acquantis et Solem est, cum putaretar

inter acquantis punctum et centrum orbis annui, in linea alia. Deinde anomaliam commutationis efficit non circulus circa putativum centrum orbis magni, sed humilior. Nam id centrum aequantis Terreni punctum est, centrum vero Soli propinquius. Tertio de libratione planorum et variabili . isclinatione comperi nihil esse. Ita simplicissima fit theoria Martis, constans unico circulo in periodos singulas. Theoria Solis vel Terrae ipsi plane fit similis, constat enim et ipsa aequante. In utroque demonstratio et numerorum necessitas cogit, ut dimidietur eccentricitas composita, quod Ptolemaeus fecit, etsi quis ita procedat, ac si incerta esset proportio partium; nam Tycho in Marte longe aliam circellorum proportionem statuerat. Haec autem dimidiatio aequationibus Solis a Tychone usurpatis nuspiam ultra unius scrupuli differentiam infert, in aequationibus vero maximis circa aequinoctia plane nihil. Ita manet tota restitutio Solis Tychonica, tantummodo ascensus et descensus Solis minuuntur, et per consequens diametri Solis apparentis et umbrae diametri variatio fit minor, quod in eclipses redundat, exiguo, ut puto, vel damno vel lucro. His consideratis in duobus planetis supervenit speculatio invenitque causam aequantis esse mere physicam, patentem tamen dimensionibus geometricis. Nam ut distantia quaelibet ad aliam, ita mora planetae in puncto illius distantiae ad moram puncti alterius distantiae.

Cumque in duobus planetis res ultro successerit, sine ulla gratia vel respectu (ut ex foro petam loquendi formas) ex meris observationibus, mediantibus demonstrationibus: jam spe devoravi planetas ceteros venturos ad easdem leges: ipsum adeo Mercurium. Nam quod Venerem attinet, ille circellus, quo centrum eccentrici variatur, manifestissime cadit per positionem aequantis in Sole. Nam et dimensio congruit, dum Ptolemaeus ejus circelli semidiametron facit 208: at Solis eccentricitatem idem ponit 416, duplum illius. Mercurii vero leges illius circelli contrariae videbantur, propterea quia ejus apogaeum Solis perigaeo appropinquat magis, Veneris vero apogaeum Solis apogaeo.

Sed ut hi inferiores ad normam superiorum quadrent, opus est mutatione nomenclaturae, cum ipsi numeri et forma motuum mutetur. Etenim qui dicebatur apud Ptolemaeum eccentricus illorum, is est et manet ut in Copernico orbis annuus communis omnibus: qui vero Ptolemaeo epicyclus; jam dicetur eccentricus. Nam re vera illi orbes, qui hos duos circa Solem vehunt, ex Sole eccentrici sunt et causa eadem physica participant, ut quanto magis sunt eccentrici, tanto fiant tardiores in aphelio suo. Quae res cum in Venere exigua sit, parum ejus commutationes turbat; in Mercurio vero haec epicycli seu jam eccentrici velocitas et tarditas tantum potest, ut dum aequalis in eo motus ponitur, triangulo suas apsidas disponere putetur. Haec nondum omnia observationibus probata sunt, sed exemplis eorum, quae jam sunt constituta, spes optimae quaerendorum suggeruntur. Jam enim hoc in utroque patuit ex observationibus, inclinationes retinere easdem iisdem eccentrici (epicycli antiqui) sui partibus, abicanque Terra sit. Adeoque jam de fraeno et ephippio cogito, cum nondum de equo sim certus. Formam inquam calculi meditor. Anomalia simplici non egeo, cum illa nihil sit nisi tempus: primum ergo cum tempore proxime minori quam est propositum ex senis tabulis sena loca apogaeorum seu apheliorum excerpentur. Inde in aliis senis tabulis (de Luna enim alia res est) cum tempore proxime minori quam est meum residuum A #

excerpam anomaliam coaequatam in gradibus integris, adiiciendam loco apogaei, cum distantia sideris a Sole paulo breviore quam est vera, demissa scilicet perpendiculari ex sidere, cum habet latitudinem, in planum eclipticae: onae onidem perpendicularis itidem excerpenda erit cum distantia a nodo Hoc pacto locum sideris proprium minimo negotio per 3 ex suis tabulis. dimensiones habebimus, cui supervenientes parallaxes orbis annui nonnullis tabulis universaliter excerpi posse spero; sed ita erunt extricandae: comparabitur locus Solis seu Terrae cum loco sideris anaoallanto pro habendo commutationis angulo, circa quem duo latera sunt distantiae Terrae et sideris a Sole. Per solutionem igitur trianguli hujus (per prosthaphaeresin, si placet, cum eam Jöstelius facillimam reddiderit (comp. Vol. II, p. 439) et inventionem anguli ad Terram habetur parallaxis longitudinis, per inventionem vero distantiae sideris a Terra, quod est latus tertium, ejusque cum sinn inclinationis supra excerpto comparationem latitudo parallactica habe-Cumque distantia Solis et Terrae non detur semper in partibus iisbitur. dem (omnia n. ad verum Solis locum necessario redigenda sunt, observationibus testibus), duae erunt ergo multiplicationes pro angulo, una pro latere, una pro comparatione ejus cum sinu inclinationis. Ita quatuor erunt multiplicationes pro cujuslibet planetae loco. Non potest itaque carere tabula sinuum calculus iste. Est alius modus ex triangulis sphaericis, traiecto plano tertio. ut eclipticam secet in Terra, orbitam planetae in ipso. Haec tabulam primi mobilis Regiomontani (ad laborem minuendum) usone ad 10° per singula minuta extensam desiderat, qua reductio ad eclipticam et latitudo expeditur, sed nibilominus angulus ex lateribus rectilineis et comprehenso quaerendus est; itaque dubito, compendiosiorne sit futurus. Utinam quidem tertins aliquis daretur, qui et universalis esset possetque adhiberi ad omnem apheliorum Terrae et sideris distantiam. Nam ego sane non video, quomodo instituendum negotiam, ut scrupula proportionalia retineamus. Primo enim, si sidus est in linea apsidum Terrae, anomalia quidem commutationis in utroque semicirculo aequalis est, ut si sidus sit alibi (ut σ apogaeus in Ω , cum (•) sit in \mathfrak{S}), jam alter semicirculus commutationis in latus vergit. Et ne labore huic rei subvenire possimus, efficit aphelium Terrae alio motu promotum, quam aphelia planetarum, ut vel appropinquet vel recedat et qualemcunque formam scrupulorum proportionalium turbet. Potest tamen ad unum seculum ratio iniri, posita eadem apogaeorum distantia: quod aliis considerandum et efficiendum relinquo. Mihi videtur vel ingeniosis vel servilibus et praeceptis alligatis ingeniis idem labor, sive quatuor multiplicationes simplices jubeantur facere, sive toties imo pluries logistice multiplicare scrupula in excessum (ut de prosthaphaeresium compendio, in quo nondum exercitatus sum, nihil dicam), ut ita non magnopere desiderare debeamus scrupula proportionalia. Et me Christe, si bene perpendas, compendio negliguntur, Perpendamus. Primo per 4, 5 vel 6 series est colligenda anomalia commutationis: hujus loco jam loca Terrae et sideris pro re nata subtrahuntur a se mutuo. Deinde commutatio aequanda; hoc jam praestitum. Tertio cum anomalia eccentri excerpenda scrupula et logistice operandum pro parte proportionali; quarto cum commutatione excerpenda commutatio, et quinto excessus cum gemina operatione logistica pro parte proportionali, sexto per operationem logisticam pars de excessu scrupulis congruens inquirenda, tum addendum aut subtrahendum, ut jam nihil dicam de pluribus operationibus et cautelis ad latitudines constituendas. Pro his

de Commentariis de motu stellae Martis.

omnibus in triangulo ABC, ubi A Sol, B Terra, C sidus, BAC angulus per subtractionem inventus, AB, AC distantiae per tempora ex tabulis suis excerptae; primum ego dicerem, si AC fit 100000, quid AB? Postea anguli BAC sinum DC et sinum complementi DA excerperem aque eo BA immutatam subtraherem. Postea dicerem: si BD fit 100000 quid DC? et quaererem in tangentibus pro angulo prosthaphaereseos DBC, quae sunt duae operationes. Pro latitudine secantem hujus DBC anguli excerperem, et si 100000 fit DB, secans hic fieret BC pro tertia operatione. Jamque cum BC habeatur in partibus, qualium CA 100000, et sinus inclinationis C ex

tabula itidem in iis partibus excerpatur, qualium omnis C ab A distantia est 100000, quarto loco dicerem, si BC fit 100000, quid sinus C? is in tangentibus latitudinem exhiberet. At si secantes fugimus, operemur sane per summam et differentiam BA, AC et tangentem dimidii residui anguli, ut quodque levissimum factu erit.

Haec de astronomiae statu te Praeceptor honorande certiorem reddere volui, uti facile vides ideo, ut sententia tua mihi praeluceres, quod non frustra facies, uti de Caesare spero. De Luna jam olim scripsi et de sequinoctiorum praecessione quaeque illis cohaerent. Si tamen post curam Tychonis ultimam etiam Luna curanda, velim in principiis ipsis esse instructior. In Tychonis observationibus raros invenio corporales congressus. Illis autem si non plus, acque certe multum tribuo ac observationibus per distantias in uno scrupulo habitis: quae crebrae sunt in Tychone, ubi Lunam semper in nonagesimo aut meridiano habere potuit, tempusque una patet. Sed etsi non ita propter parallaxes at propter Lunae diametrum visibilem utiles sunt congressus corporales, praecipue cum D parte obscura stellam tegit aut cum mane tota cernitur. Nam diffundi lumen ejus pro oculorum habitudine certissimum est. Tycho si vera diceret de \mathfrak{I} diametro in \mathfrak{I} nulla unquam fuisset eclipsis Solis totalis. At hoc tam celebratum in historiis, ut potius ego de circulo lucente dubitem, an non fuerit aër aliquis Lunaris seu fimbria ipsius Lunae lucida. Obsecro, si plura habes hujus. modi circulorum residuorum exempla quam unicum Clavii, ut id scribas-Consentit emnis antiquitas, majorem) diametrum Solari. Tycho anno 1600. diametrum D minorem Solari prodidit, ego majorem, tu quoque. Quidui fiat in oculo, quod in foramine demonstravi, ut lucida amplientur, tenebrosa constringantur? Nam et in oculo foramen est. De Sole nihil dubito, dimensus enim sum circino. Sed theoria Martis testatur, non altius Solem scandere, quam ejus diameter fiat 29' 30" et 30' 30", si medium assumas Tu si variationem uno scrupulo majorem invenisti, scribe. Atque 30' 0''. etiam congressus corporales, et quantam observaveris diametrum D cum mane tota cernitur: idque quo tempore aut anomalia; adde verissimam altitudinem poli Tubingensis ex circumpolaribus, cum solstitia fallant, ut Tyche demonstravit. In Lunae hypothesi perquam dubius sum, cum enim in Terra et Marte constet, dimidiae aequationis maximae sinum esse planetae eccentricitatem, credo idem et de Luna. Sed causam physicam nescio quomodo applicem. Tres sunt modi: duo, ubi Lunae manet semper perfectissimus in qualibet revolutione circulus (nisi quatenus ob progressum apogaei [hoc nomine jam anomaliam et epicyclum] accipe] unus ex alio nectitur), quod plausibile est; alter, ubi motus eius vere ovalis fit. Prior

53

Fig. 10.

duplex. Cum n.) in \mathcal{S} , \mathcal{J} habeat acquationem maximum 4° 58 $\frac{1}{2}$, dimidü sinus 4336 esset eccentricitas. Et jam in 8, d, ut distantiae sic tempora in gradibus aequalibus eccentri confecta, at in 🗌 ut distantiae ad invicem, dupla esset proportio temporum. Nam eccentricitatis aequatio esset semper 2° 30', aequantis in 8, d etiam 2° 30'. At in 🗆 alia 2° 30', sc. 5°, et tota 7º 30'. Consentiunt parallaxes, quas Christianus in D non potnit aliter invenire, quam 54-59 semid. Terrae exhibentes, quamvis eas coegerit ad hypothesin suam accomodans feceritque 52-61 in . Sed scis, in tot implexu causarum quam facile scrupulum unum ex una causa transferamus in aliam, cum singula singulas semidiametros faciant. Cogitavi ergo de aequatione quadraturarum, an illa sit dimidianda, et sint. D in 🗌 versante, ut distantiae sic tempora, at in oppositione ut distantiae; proportionis hujus ²/₃ inesse motibus. Iterúm maneret circulus sed in majori eccentricitate. Tertio quid si utraque aequatio dimidianda et eccentricitas vere crescat in]? Nam de octantibus res est certissima, crescere hanc retardationem, ut crescunt sinus digressionis Lunae a diametro Solis per Terram eunte. Quodsi metiaris, invenies hic quoque fere superiorem mensuram, divisa tota periodo Lunae seu tempore ejus in 360. Si Luna semper curreret in virtute diametri, tempora 350 conficeret. Itaque hinc 45' excrescunt in octantes. (In quadrantes 2º 30', sed nihil variant hic locum).) Estque causa mere physica. Considera quaeso quidnam ex superioribus et an aliud quippiam sit magis consentaneum.

De obliquitate eclipticae res est mira. Tycho bodie invenit 23º 31' 30". Idem invenit ante annos 100 ex Regiomontano, Waltero, Wernero, bene applicatis observationibus. Idem ante annos 200 quidam Doctor Syndel hic Pragae, observavit alt. mer. Solis in aequinoctio et solstitio aestivo; ex quibus prodit (subducto calculo loci Solis ex Tychone) A. P. 50° 4' 20"; eclipticae obliquitas 23° 31' 32", utrumque hodiedum ita invenitur. Idem Prophacius Judaeus invenit ante annos 300. Paulo plus prodidit Albategnius ante annos 700. Et credemus, Ptolemaeum observasse 23° 51' 20"? Tycho dubitavit. Scribe quid sentias. Denique quas et quot eclipses vel inveneris in veteribus vel computaveris, ne actum semper agatur. Catalogum modo desidero, scio laboriosum esse describere calculum. Ego si vicissim H. T. in quacunque re gratificari potero, libenter faciam. Et spero fore hic nonnulla, quae desideres inspicere et cognoscere. Obsecro antem per nostras artes, ne ita plane obmutescas. Ego si scripsi, me publicaturum tuas epistolas (quod meminisse nondum possum) certe poenitet, fidem do, id non futurum.

Vale diu, Praeceptor Clarissime et quod me etiamnum ames, literis scriptis testare. Saluto omnes praeceptores meos et mitto exemplaria orationis funebris, ubi meum carmen est. Errata sunt aliqua, ut multos miles pro multus. Et in nomine meo ex incuria M. est omissum, ne id putetis studio et contemtim factum.⁹)

10/20. Dec. anno 1601. Pragae.

Excell. Tuae

Gratiss. Discipulus

M. Jo. Kepler.

Proximae, quae has subsecutae sunt, Kepleri literae datae sunt d. 20. Jan. 1604. (comp. Vol. II, p. 14) et cum Maestlinus non responderet, his iterum adiit Keplerus segniorem ad respondendum praeceptorem :

S. P. D.

Cam perpetuo tuo, Maestline praeceptor optime, silentio meam scribendi diligentiam toties jam expugnaveris: accidit mihi tamen, quod in bello desperantibus, ut tanto magis scripturiam, quanto minus proficio; et in victoriae parte ponam, salutem omnem desperare. Tu si lectis meis Opticis, quorum exemplar (una cum aliis quatuor per bibliopolam Cellium apud Te depositis, quae rogo ut Besoldo doctori petenti tradas) Tibi Francofarto dono misi, si lecta conceptione mea de nova stella, quam jam accipis, non permoveris ad scribendum: at saltem ob S. C^{am} Mt^{am}, cui grata sunt hujusmodi scripta, quaeque Ipsi varia conquisivi, aliquid scribas. Provocat ad te Roeslinus, cujus scriptum jam accepit S. C. Mt^{am}: communis haec mathematicorum est materia, quam non attingere desertionis crimen repraesentat.

In Commentariis de Motibus Martis si meos labores cerneres. opinor id diceres quod res est quodque etiam de Opticis dicere te non dubito, me scilicet non raro nodum in scirpo quaerere. Cur ergo non mecum communicas per literas? Saepe mihi non cogitanti inepta multa obveniunt, quae per literas ventilata facile agnoscerem. Omnis meus labor in hoc est, ut jam porro ex genuinis causis tam aequationes eccentri justas quam distantias exstruam. Profeci autem per Dei gratiam eousque, ut non plus aberrem in uno quam in altero certusque sim, utrumque ab eadem hypothesi proficisci, ac proinde non posse esse vana, quae de virtutibus motricibus disputo. Cumque toties jam triumphaverim de Marte, hoc tames etiamnum in causa manet: si eccentrici ratio distribuitur inter concentricum et epicyclum, scis, centrum epicyclí insequalis motus fieri in concentriço, id est concentricum super alieno centro aequaliter ire : quia etiam eccentrus movetar super alieno centro. Quodsi ergo motas et concentrici et epicycli simul intenduntur, simul remittuntur (id est si linea ex centro aconalitatis concentríci per centrum epicycli educta monstrat apogaeum verum epicycli), tunc in effectu manet orbita planetae, quam corpore transit, perfectus circulus eccentricus. At observationes testantur, in longitudinibus mediis utrinque planetam ad latera ingredi circiter 900 partibus de 152500. Et ipsae rationes physicae suadent, epicycli motum super proprio centro plane aequabilem dicere, id est, lineam veri apogaei epicycli agere per centra concentrici et epicycli. At si hoc facias, planeta deflectet ab orbita circulari per 1300, debuit secundum observata tantum per 900. Quin etiam ati in longitudinibus mediis et vorsus perigaeum nimius est hic ingressus ad latera, ita versus apogaeum non satis magnus esse videtur. Unde videtur sequi, ipsum epicyclum non omnino aequabilem esse: neque tamen in motas inaequalitate cum concentrico convenire, sed exiguo velociorem fieri, planeta tam circa apogaeum epicyclicum versante, quam circa perigaeum epicyclicum (id est, lineam veri apogaei epicyclici paulo sub centro concentrici esse in apogaeo, supra illud in perigaeo): idem Tycho Lunae tribuit. et sit velox ceteris paribus, tam in σ quam in ϑ .

Tabularum rationem jam inivi. Habeo Martis tabulas, ex quibus uno die ephemerida conficit diligens aliquis, eamque ad dies denos unius anni. Nec finnt inutiles novis correctionibus, praeter unam distantiarum: ceterae aunt generales. Parallactica, quae in Opticis est, una salvat omnes latitudines, sine ulla computatione, per nudissimam excerptionem. Puto me aliquid consecutum; et cum interdum de valetudine angar, consilium cepi, opus, quod edere vetor, apud academiam deponere. (Comp. Vol. II, p. 34.) Refertum est ereberrimis et lectissimis Tychonis observationibus. Si levissima spes esset de Tengnaglio, quod aliquid sit profecturas, nil opus esse putarem meo consilio Tychonicis observatis. At crede mihi, non abs re metuo, ne quo pacto desertae pereant. Quaeso quid tibi animi, si Tychonis loco esses et ista cerneres, an etiam succenseres mihi, hoc ansuro quod agito? De eclipsibus scripsi ante menses multos, ut et de stella Cygni. Sed nolo te agere, tange unum horum quatuor verbis, quibus totidem annorum culpam silentii elues. Vale meque ama. Pragae 14. Dec. 1604.

Excell. Tuae

Gratiss. Discipulus J. Kheppler. (sic!)

Quae Maestlinus ad tres praemissas literas responderis (d. 28. Jan. 1605) maxima ex parte exhibuinus Vol. II. p. 15, 582, 754. reservata conclusione illarum literarum hunc in locum. Gratalor, inquit, vehementer et gandeo, Martis motum hacusque a te constrictum teque ipsum prope debellasse. Verum quae scribis, fateor me non omnino assequi posse, capite enim carere videntur. Unde colligo, te antes quoque de codem ad me scriptisse, et numerorum illorum, quorum hic meministi, originem adeoque fundamenta mihi indicasse. Verum quoniam illud scriptum mihi non redditum est, ideo hace quae eis annectantur aegre percipio. In coteris tuum consilium probo. Sed hisoe vale optime. Deus te cuma tais elementer conservet, ut quod agis feliciter peragere possis.

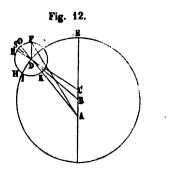
Actum Tubingae &c.

Quibus respondit Keplerus exsultans gaudio quod silentium Maestlini quinquennale provocationibus suis assiduis tandem ruperit, brevi post acceptas Maestlini literas (5. Martii). Exordium hujas responsionis proposuimus Vol. II. L. c. Quibus praemissis pergit Keplerus :

De Martis motu scribam clarius. Invenio in theoria Terrae esse aequantem et ejus eccentricitatem 3600: eccentrici vero 1800 plane bisectione repugnante, ut in Marte et apud Ptolemaeum in omnibus tribus superioribus. In Q et Z hoc ipsum arguitar per circellum centri epicycli librantem vel circumagentem, et causa pulchra apparet, cur in contrarias Venerius eat Mercurtali: in Venere est dimensio exactissima. Nam eccentricitas \odot 417, circelli Q semid. 208. Hypothesis Martis verissima haee est: eccentricitas 9300 circiter, aequantis vero 18600, aphelium in 29° Q, nodus in 16⁴/₉° M. Deprehendo certissime, ordinari eccentricum circa verum corpus \odot , non circa punctum medii loci Solis Copernicanum. Id ex observationibus plurimis probo Cap. 51. Proportio orbium 152500 circiter, ubi prius habebam 152650, cum a paucioribus observationibus starem. Distantiae a Sole non ut in circulo perfecto, sed ut in ovali, cujus haec tandem post infinitos labores descriptio in-

Fig. 11.

venta est, ut commutato eccentrico in concentr-epicyclum sit A Sol, AB radius, BD 9300, AE pariter, et E centrum aequalitatis puncti B circa A, et D circa B, idque fere (accommodo enim me hic ad antiquas hypotheses cum detrimento certitudinis), ut, inquam, his sic instructis sumamus pro distantia CA distantiam BA. Quanto igitur brevior est BA quam CA, tanto spatio orbita planetae deficit circa longitudines medias a circulari. Itaque hoc tandem falsum inventum est, planetam in epicyclo circumagi, quod tam diu pertinacissime tuebar, sed semper repugnantibus observatis. Non igitur circumagitur in epicyclo, sed libratur in ejus diametro: quod nisi statuatur, 15' et amplius discrepabunt parallaxes orbis annui ab observatis. Sed neque E est praecise punctum aequalitatis, pec-



catur enim in longitudine eccentri 45° et 135°, in acquatione eccentri circiter 8' ultro citroque. Unde intelligitur, naturalem hypothesin non esse. Elicientur autem acquationes eccentri veriores per aliam aliquam hypothesin, cajus eccentricitas acquantis 18564, eccentrici 11332. Sed nec haec vera est, quia distantias efficit vitiosas. Potes tamen ex hac acquationes eccentri, ex illa distantias computare: Longitudini mediae in his addo 4' plus quam Tycho; igitur in mericite sequente completi anni 1592. est 7° 5° 55' 16" a vero acquinoctio.

Hoc jam opus, hic labor fuit, reducere duas falsas hypotheses in unam veram, ubi verti me in mille formas, quarum aliquas forte in superioribus. perscripsi. Nec aliter fieri potnit, nisi naturalibus causis investigatis, quae sunt hujusmodi : Solis corpus est circulariter magneticum et convertitur in suo spatio, transferens orbem virtutis suae, quae non est attractoria sed promotoria. Planetarum corpora contra se ipsis apta sunt ad quiescendum, in quocunque mundi loco collocantur. Itaque ut a Sole moveantur, contentione opus est, inde fit ut remoti a Sole lentius incitentur, propinqui velocius, quod est, eccentricum super centro aequalitatis moveri aequaliter. Jam quilibet globus planetarum rursum statuendus est magneticus vel quasi (similitudinem enim volo, non pertinaciter rem ipsam) et quidem linea virtutis est recta, duos habens polos, alterum fugientem a Sole, alterum sequentem. Hic axis vi animali tenditur in partes mundi easdem fere. Raptus igitur planeta a Sole jam fugiente polo obvertitur Soli, jam sequente: ita fit accessos et recessos ille libratorius; nec alium hujus rei modum confingere potui. Nam et fugiens et appropinquans facit hoc ad modulum anguli, quem linea ex Sole per centrum corporis efficit cum axe, idque ceteris paribus. Atque hoc est, quod prius in geometrica hypothesi dixi, testari observationes, planetam librari, hoc est circa apsidas epicycli tardum, in mediis locis velocem in hac sua libratione fieri; cum tamen in raptu circa Solem semel tantum fiat tardissimus in aphelio, semel velocissimus in perihelio. Interim vero librationis semidiameter superior longiori tempore perficitur, quam aequalis semidiameter inferior; quia virtus magnetica ipsius etiam planetae remissius agit, cum longe distat a Sole; plane ut solent magnetes. Atque hoc est id, quod prius in geometrica hypothesi dixi, epicyclum (in cujus diametro fingitur fieri libratio) moveri circa centrum suum inaequaliter, eadem scilicet inaequalitate, qua ipsum centrum circa Solem, observationibus id testantibus.

At non erat satis, imaginatione constituere veram hypothesin, quin etiam ad calculos vocari debuit. O immanem et perplexissimum laborem!

Vici tamen per Dei gratiam, et puto, te mihi concessurum sufficere, ut ex tribus anomaliis DCE, DBE, DAE quacunque, modo aliqua data, reliquae investigari possint. Nam semel constracta tabala aequationum eccentri, postea rursum prorsumque est utilis. Sit ergo data DBE anomalia eccentri 90°. Et fiat ut sinus totus ad sinum anguli sic eccentricitas tota ad quartum, qui erit in hoc casu aequalis eccentricitati toti sc. 9300. Itaque de distantia d a (•) maxima 109300 aufero hanc portionem inventam 9300, restat 100000. Pro eo igitur,

quod in anomalia ecceptri DBE debuit DB esse 100000, si perfectus circulus fuisset, jam DA est 100000. Datur igitur DA, AB et DBA, quaeritur pars aequationis optica BDA, et sic habetur anomalia coaequata DAE, respondens anomaliae eccentri 90, sc. DBE: restat inquirenda DCE anomalia media. Com autem anomalia media metiatur tempos seu moras, quas planeta in arcu eccentri DE conficit, et sint morae ut distantiae, in plano vero DAE insint omnes distantiae (quod peculiariter in meis Commentariis demonstratur), inquirenda est igitur planities DAE. Ea facile habetur. Posito enim. eccentricum esse perfectum circulum, datur sector DBE; restat planities DAB trianguli aequatorii. Datur vero ejus basis BA et altitudo, nempe sinus anguli DBE, cum ergo aequealta sint ut bases et aequebasia ut altitudines, dabitur proportio cuiuscunque plani DAB ad planum erectum. cujus angulus DBA rectus est. Quare semel cognito valore plani maximi DBA, (ubi sic dico: planum circuli ex Adriano Romano vel alio aliquo valet 360° in prima et secunda resoluta: quid valet planum trianguli?) cognoscentur et plana reliqua, quae ostendunt alteram partem aequationis physicam, ut sic tota planities DAE sive anomalia media aut ejus mensura Ptolemaica DCE angulus habeatur. Duo hic objicias, primo, posito circulum esse perfectum, planum circuli non metietur vel comprehendet distantias ex A, quod verum esse demonstro peculiariter. Deinde ponitur, quod est falsum, scilicet orbitam esse circulum, quae verissime est ovalis. Respondeo, harum objectionum altera alteram perimit. Nam primo ob hoc ipsum, quis ovalis est orbita hujus quidem formae, distantiae ejus ab A in planum redactae tantum efficiunt, quantum lineae totidem ex centro in perfectam circumferentiam ejectae, quod rursum peculiariter demonstro. Deinde demonstro, perinde esse sive quis ovalem secet sive circulum, semper enim eandem esse inter partes proportionem, dummodo ovali, quae minor est circulo, nomen demus aequale circulo, sc, 360°.

Saepius jam usu venit, ut triumpharem ante victoriam, quod deprehendi, ubi ad plures observationes veni. Nunc tamen si quae tentaverim, quae excesserint, quae defecerint, quomodo haec novissima ratio in mediocritate illorum versetur, perpendo, spero denique debellatum esse. Non est autem praetereundum et hoc: quando ventum erit ad triangulum, ex quo habetur parallaxis orbis annui, ubi \odot \circlearrowright linea veri motus Solis et distantia Solis a

Fig. 13.

Terra, (•) σ linea veri motús Martis in eccentrico seu longitudinis coaequatae, et (•) σ distantia Martis a Sole, tunc peccabitur uno et altero minuto in parallaxibus orbis vel angulo $\sigma \sigma$ (•), propterea quod planum $\sigma \sigma$ (•) inclinatur ad planum eclipticae σE (•): quaerentes igitur locum σ eclipticum ut in ephemeridibus, debemus pro (•) σ uti linea (•) E, quae brevior est quam (•) σ , nam σE (•) rectus, (•) σ secans, ubi (•) E totus. Sciendus igitur angulus E (•) σ inclinationis loci eccentrici. Demonstravi antem, angulum planorum inclinationis maximae esse invariabilem, circiter 1° 50'. Haec igitur de Marte. Capita erunt ad 60 vel 70. Scripta sunt jam 52. Reliqua nihil aut parum habitura sunt computationis, sed explicatione

et demonstrationibus geometricis constant. Spero universos reliquos planetas non tantum requisituros laboris. Ideo Clavem Astronomiae appello, ob inquisitum orbem annuum et rationes aequationum. Si haberes otium et delectareris, posses me juvare confectis hac methodo

tabulis acquatiesum eccentri et distantiarum a Sole, accommodatis ad proximos centenarios ultro citroque et aptis Saturno et Jovi, ut in ħ Prutenicae faciunt acquationem eccentri maximam 6° 30' 30", cujus dimidii 3° 15' 15" sinus 5678 est eccentricitas. Sed quia hic ejus eccentricitas computatur non a centro Solis, sed a puncto, quod ħ apogaeo est propius per 3600 in dimensione radii orbis Terrae 100000, hoc est per 360 in dimensione radii orbis ħ 100000 (quia is fere decuplus ad radium orbis Terrae), ideo aufero 360 ab eccentricitate Prutenica, et 5318 remanet. Cupio igitur tabulam acquationum mea methodo constructam ad has eccentricitates : 5200, 5300, 5400.

Sic in 24 Protenicae faciunt aequationem eccentrici maximam 5º 14' 0". cujus dimidium 2° 37' 0", ejusque sinus 4565 : parum hic mutabitur sive ex Sole sive ex alio lineae apsidum puncto computetur, quia aphelium 24 est in initio 🛥. Cupio ergo tabulam aequationum eccentri ad singulos gradus anomaliae mediae et ad eccentricitates hasce: 4400, 4500, 4600, vel potius 4300, 4500, 4700, ut postea verissimam proportionaliter investigare possim per omnes gradus anomaliae. Ego nunquam adhuc probavi, utrum excessus hujusmodi acquationum majoris super minorem constanter sese habituri sint ad invicem in proportione sinuum, alias negotium esset facile. Imo vero non est hoc sperandum, nam per eccentricitatem 1800 perinde est qualicunque utare methodo, quarum ad viginti tentavi. Aequationes enim non variantur ad 30". At in eccentricitate 9300 acquationes variarum formaram multis scrupulis differunt. Non igitur ut Solaris aequatio 90° ad Martiam 90°, sic Solaris 45° ad Martiam ejusdem gradus. (Verum quidem de parte aequationis physica. Nam ut sinus omnium graduum sunt ad invicem, ita et planities triangulorum DAB (Fig. 12) sive magnae sive At in altera parte aequationis non item. Nam ibi prolongationes parvae. et decurtationes AD sunt quidem in proportione eorundem sinnum DBE ex hypothesi, et multiplicata BA in 90 sinus exeunt itidem proportionalia. Sed baec deinde divisa in 180 lineas DA, amittunt illam proportionem (quare etiam arcus exhibent non hujus proportionis), sed est eorum proportio composita ex proportione sinuum et proportione distantiarum AD inversa. Quo minus ergo AD variantur ut in parva eccentricitate, hoc minus et illa.) Nam si uno scrupplo aberraret mihi ignoranti haec ratio, id magnum esset incommodum. Itaque ad quamlibet eccentricitatem seorsim computatio instituenda. Sed tamen potest prius fieri periculum in gradibus 90, 45, 135; nam verum et hoc est : multum distant 1800 et 9300, itaque nil mirum, sensibiliter mutari proportiones acquationum; at 4300 et 4500 et 4700 sunt invicem propinquae. In summa, beaveris me missa tabula ad 5400 et 4400, ubi singuli gradus eccentri methodo praescripta examinati fuerint. Tituli hi:

In Saturno: Eccentricitas 5400.

Anomalia media. Gr. Min. Sec.	Anom. eccentri. Gradus integri.	Anom. coaequata. Gr. Min. Sec.
In Jove : Eccentricitas	4400 .	
Anomalia med.	eccentri	- coaequata.

Spero, quidquid laboris hoc erit, compensari posse. In Q et \forall puto illos, quos epicyclos adhuc appellat Copernicus, statuendos eccentricos, quod jam ex parte probatum habeo ex observatis, ut et constantism inclinationis orbitarum et ipsum angulum inclinationis maximae mediocriter. Nam in Q est circiter 4°, in \heartsuit plane ad 8°. Nam quod minor ejas latitudo maxima, est ob parallaxin. Omnino levissimum est redditum negotium latitudinis, quod nudissima excerptione ex tabula parallactica meae Optices perficitur.

Sed tandem vale. 5. Martii 1605.

Hon. Tuae gratiss. discipulus

J. Kepler.

Maestlinus iterum obmutuit, certe nulla neque in Hanschio neque inter manuscripta ejus exstat responsio, et proximae, quae occurrunt Kepleri literae (d. d. 31. Martii 1606) testantar, ad hoc tempus non respondisse Maestlinum. Spem fecisti, inquit, vir clarissime, praeceptor honorande, te frequentius hoc epistolarum iter triturum. Id maxime optavi emissa epistola ecliptica (Epistola ad rerum coelestium amatores de Solis deliquio, quod anno 1605. mense Oct. contigit. Pragae 1605). Cumque hic meis sumtibus adsit tabellarius, is non sine literis discedere jussus est. Rogo itaque jam facias, quod in publica epistola rogo, neque nuncium differas.

Reliqua quae insunt his literis ad familiam Kepleri pertinent (petit a Maestlino, ut sententiam suam dicat de Tubingensi quodam, qui "ambire dicitur sororem Margaretham"), alio loco inserenda. Maestlino etiamtum silente, paulo post Keplerus haec prioribus addit :

S. P. D.

Literas te meas accepisse, Praeceptor honorande, certus sum. Responderunt enim ceteri, qui literas una tecum acceperunt. Excusationem silentii scio hanc habes, quod ingratam et periculosam dices materiam responsi futuram fuisse. Age, te libero hac molestia: forsan enim jam porro necesse non est. At illud peto, ut respondeas de eclipsi Solis, et si vis de aliis quae olim petebam. Aut sume materiam ex Opticis meis. Crede mihi, non ero insidiosus, metuis tu semper ne exagiteris, quasi sycophanta sim. Inter bonos bene agier. In epistolis non requiritur dxelabaa mathematica, cujus tu virtutis auctoritatem praefers omnibus gratiis, et usque ad ingratum mihi silentium propugnas. Aut si te quid offendit in meis Opticis, eam sume scribendi materiam.

Jam agam tecum negotium privatum. 5, 4, 5 absoluti sunt, restant Luna ter jam variata tabulis, ut sit electio et ut labor Sisyphius duo. ille liberetur. Moles mihi tabularum incumbit uni, salarium impeditum est. Nuper tamen vinculo ordinantiae sum ad aulam adstrictus, rebus pereuntibus et navi scopulis imminente, omnibus ad enatandum discinctis. In hac collavie indigeo studiosis. Rogo H. T. at privatim et si fieri potest clam agat cum aliquibus stipendiariis, quos idoneos fore putas et agilibus ingeniis praeditos; nil refert, etsi nihil aut parum in mathesi profecerint; solam desidero cupiditatem discendi. Si de tali mihi constet ejusque, manum viderem, adirem per literas aulam Principis Wirtembergici, rogans, ut eum iis sumtibus, qui in ipsum impenduntur Tubingae, apud me vivere pateretur. Insolens, sed promissionem habeo a magno quodam consiliario. Sed cupio prius de certà quadam persona ejusque qualitatibus esse certus, quam res Spero ea te humanitate esse, ut ad hoc saltem punctum palam fiat. 10. Junii 1606. censeas respondendum. Vale.

H. T. Gratiss. Discipulus

J. Keppler.

Hinc inde usque ad annum 1610. nulla occurrit epistola Kepleri et Maestlini, et quaedam Kepleri deperditae esse videntur; anno quem diximus 1610. excusat se Maestlinus ob "prolixam dilationem epistolarum" neque vero in his neque sequentibus literis ullam facit Martis theoriae mentionem, quam forte, ut ipse supra de literis Kepleri testatur, etiam typis exscriptam minus intellexit.

Davides Fabricius (comp. I, 304) quamquam astrologiae summo studio addictus et superstitionis plenus eausque ob rem Keplero plurimam negotii facessens innumeris dubiis et quaestionibus, versatissimus erat in observandis sideribus et indefesso studio, non tantum astrolojam sed etiam astronomiam excolendi et in melius vertendi. Quam ob rem Keplerus, magni habens viri industriam et in observando habilitatem, quae ipsum praesertim ob oculorum hebetudirem déficiebat, non tantum libenter accepit ea, quae Fabricius de coelo nunciabat, sed ab eo etam atque etiam requirebat, quae nova in coelo observasset. Cui desiderio Fabricius atisfecit otio abundanti usus, quod testantur literae haud parvi numeri et ex parte quidem satis magnae, quas exhibet Vol. X. Manuscriptorum Petropolitanorum. 10) - Quarum literarum' magna pars agit de Marte ejusque motibus et theoria, et quum illae responsonesque Kepleri scriptae sint inter annos 1602. et 1609, perspicue exhibent rationem procedendi Kepleri in "Commentariis Martis" et lumen afferunt ad historiam inventionum Kepleri astronomicarum, quas exhibet hoc opus. Nisi ipse Keplerus in praefatione ad haec Commentaria et Cap. VII. affirmaret, se ad Martis motus inquirendos perductum esse primo tempore quo ad Tychonem Pragam transiisset (anno 1600), Tychonicis in Marte observando occupatis ("si alium planetam tractasset, in eundem et ego incidissem"), idemque testarentur literae ad Maginum et Maestlinum praemissae, suspicio non esset absona, Keplerum a Fabricio ejusque quaestionibus motum Martis theoriam emendandam succepisse.

Fabricius d. 13/23. Mart. 1602. (comp. Vol. II, p. 431) haec dedit Keplero: Vide mi suavissime Keplere, ut exspectationi D. Tychonis, ut commendationi horum Uranicorum hospitum Francisci (Tengnagelii) et Joannis (Eriksen), ac denique spei nostrae de te dadum magno amore conceptae satisfacere annitaris et inceptum cursum pro virili continues, relaturus inde haud dubio immortalem gloriam. Adjuvato, quaeso, Herculeos Nob. D. Francisci constus, promove commune bonum et Uraniam exulem armis Tychonianis in avitum regnum redacito. Ego quoque pro Urania fraternitate peto, ut tuas cogitationes de Uranicis rebus mecum saepius per literas communicare non dedigneris.

Ego quidem nunc primum ex meis observatis aggressus sum Martis motum, ut ipsemet perspicere possim, qua in re lateat scrupulus, an ex diversis acronychiis una et eadem eccentricitas per calculum prodeat. an ad medium vel verum motum Solis Mars cursum dirigat, et quae denique causa sit, quod latitudines acronychiae Martis non sint in eodem circulo ? Retalit mihi D. Joh. Erichsen, te ex 3 diversis locis vel parallaxibus Martis ad unum et idem punctum eccentrici relatis inquirere annui orbis magnitudinem et insinuantem orbis imaequalitatem. Quomodo vero ea inquisitio per calculum instituatur, nec ipse mihi declarare nec ego conjicere potui. Ad proportionem enim instituendam praeter tria loca visa Martis 3 acronychia loca et tria media requiruntur. Quare rogo, ut modum istum exemplo uno saltem declares.

Cognovi ex eodem, te Solem propiorem Terris constituere. Verum quomodo hoc conveniat eclipsibus et parallaxibus Solis observatis, non video. Videtur mihi, quod inaequalitas illa minuans annui orbis Martis non causetur ex viciniori Solis ad Terram distantia. Tota ratio hypothesium Solis et observationes circa 45° ab apogaeo reclamant. Sed forte nos tuam mentem non sat assecuti sumus. Cupio idcirco latiorem explicationem causarum. Ego ex meis observatis cognovi, Solem centrum orbis eccentrici Martis nequaquam esse posse.

Ex Domino Tychone (Tengnaglio?) intellexi, te motus planetarum non ad apogaea eorum, sed ad aphelia Solis referre. Verum prosthaphaereses acronychiae locis apogaeorum propins consentiunt quam locis apheliorum, et puto omnino, motus non ad veras sed ad medias oppositiones Solis et planetarum referendos esse. Crescit quidem latitudo Martis in nonnulis locis etiam post mediam oppositionem, at in omnibus locis ilud nequaquam fit aut feri potest. Circa apogaeum et perigaeum Solis solummodo fieri posse deprehendi, eo quod distantiae Solia a Terra circa ea loca parum discrepent vel varient in diebus say vel octo.

distantiae Solis a Terra circa ea loca parum discrepent vel varient in diebus sex vel octo. — In literis die 28. Apr. (8. Maji) datis haec deprehendimus : In eccentricitatibus Martis eruendis jurta modum Copernici plurimum sudavi et valde turbatus sum, quod locus veri apogaei (qui ex acronychio anni 1585 facile constat) supputatae eccentricitati et contra non respondeat, sed ad 2 aut 3 gradus aberret. Tandem cognovi, hoc ex prosthaphaeresibus observatis simpliciter assumtis nunquam fieri posse, eo quod diversa ex diversis acronychiis prodeat eccentricitas, quod me hactenus latuit. Dii boni, quam egregie veteres astronomi et Copernicus quoque falsi sunt, qui ex tribus acronychiis simpliciter assumtis eccentricitates et apogaea inquisivere. Miror quoque, quód D. Tycho b. m. eccentricitatem Martis assumserit 20160, cum ea nec maximae nec minimae eccentricitati respondeat et proinde omnibus et aequo non satisfaciat acronychiis, aut meo judicio etiam respondere viz possit, quod tibi discutiendum relinquo, quia tu in hisce exercitationibus diutius versatus es. Ego nunc quasi primum incipio manum admovere aratro, utpote qui hactenus solis observationibus et fabricandis Uranicis instrumentis operam dederim. Cupio nunc abs te, ni excellentissime Keplere, in quibusdam doceri. Tu mihi D. Tychonis loco in posterum quaeso sis, et Cynosurae instar mihi in vasto hoc astronomicorum exercitiorum mari constituto et dubiorum procellis interdum egregie vexato et a veri itineris tramite dejecto, praeluceas. Quantus nempe sis, non solum Prodromus tuus ostendit, sed etiam D. D. Franciscus et Johannes mihi crebro aperuerunt.

Quo usque in motuum correctione progressus sis et quam feliciter, scire cupio. Vide tamen ne Mars tibi sit Mors; nimio enim studio saepe nobismet ipsis mortem conciliamus. — Ars — Mars — Mors. — Ars persequitur Martem, Mars vero Mortem causare solet rursum. — Ultimo quaero, an deprehendas Martis motum magis aphelio quam apogaeo respondere vel cui? Extemporaneum stilum eumque rusticum et impolitum boni consule. De verbis ego sollicitus nunquam, amo res: —

Eodem quo haec scripsit Fabricius die alias addidit literas, hac praemissa excusatione: Quid, quaeso, de tanta literarum mole deque tot quaestionibus et propositis dubits dices? Certe si de tua humanitate dubitarem, te iis offensum iri existimarem. Tantum vero nunc abest, ut hanc meam familiarem compellationem te male habiturum putem, ut honori tuo cessurum et maxime credam, ut qui singularem de summa ingenii tui Uranici (cui nihil sane deeat) felicitate et solertia opinionem dudum acceperim. Accipe igitur sereno animo, quae nunc tertio in mentem subito venerunt.

Postquam perplexum et laboriosum illud inquirendarum eccentricitatum opus aggressus sum, expertus sum, rem multo aliter se habere quam hactenus crediderim. Ego ex omnibus acronychiis unam et eandem eccentricitatem prodituram mihi persuaseram. Sed Dii boni, quae varietas, quae inaequalitas! Ex acronychiis prope apogaeum utrinque longe major eccentricitate datur quam in oppositis locis; inde constat, aliam quandam inaequalitatem ab eccentricitate Solari sese insinuare prosthaphaeresibus acronychiis. Quare nunc has quoque quaestiones, quae postmodum inciderunt, tibi discutiendas propono.

1) Cum ex singulis acronychiis singularis quaedam eccentricitas prodeat, circa apogaeum major, circa perigaeum Martis minor, quaeritur nunc, quae illarum omnium sit eligenda et juxta quam proportio circellorum sit constituenda ? Sane nec minima nec maxima nec media eccentricitas omnibus acronychiis satisfacere potest.

2) Quaeritur, cum Tycho eccentricitatem 20160 in Marte acceperit, quo jure ant quibus rationibus id factum sit, cum nec summa nec infima, sed media eccentricitas et nec sic (ut reliquis quinque) acronychiis prosthaphaeresibus omnibus ex toto respondeat. Fieri igitur non posse puto, ut proportio circellorum juxta hanc eccentricitatem assumtam facta $dx \rho t \theta \omega c$ prosthaphaeresibus omnibus acronychiis respondeat vel respondere possit, nec verà quoque distantia Martis a Sole poterit dari. Eadem quoque ratio haud dubio erit in eccentricitatibus ex veris oppositionibus Solis et Martis inquisitis respectu aphelii. Quid hic faciemus in tanta varietate? Quae eccentricitas erit authentica, juxta quam erit proportio instituenda? Inprimis miror, qui eccentricitas Martis a Tychone assumta tam veritati proximas prosthaphaereses aoronychias praebere possit, cum non vera sit eccentricitas. Quaeso hanc quaestionem mihi dextre explices. Tu Thesei loco mihi sis, alias non facile me extricavero. Restaurationem integram tibi reservo, cum mei humeri ferre non possunt, nec otii nec rei familiaris ratio permitit.

3) Quaeritur, an motas apogaeorum trium superiorum certa ratione vel respecta ad motum Solis fiant, vel respectu motus periodici cujusque vel quomodo?

4) Quaeritur, quomodo, data distantia planetae a stellis ejusque altitudine, refractio separari debeat commodissime ?

5) Quaeritur, an ratio redigendi eccentricitatem totam in duos circellos sit melior et verior quam illa, quae in linea apogaei ex dupla eccentricitate aequantis et eccentrici inquirit prosthaphaeresin puncti dati? —

Jam transgressus ad astrologica aliaque, sic concludit Fabricius :

Multa, multa sunt, de quibus tecum in posteram discurrere volo, nunc pluribus te onerare nolo, ne nimium importunus sim. Rescribe, si Uraniam promotam vis, si Calliopen ejus sororem amas, si me quoque ut spero diligis mutuo. Ego exspectans exspectabo tuas literas. Vale &c. Raptim, ut in mentem venerunt.

Cur in Tabulis Lansbergi 3 cyphrae semper commate distinguantur?

His autem Fabricius non contentus quaestionibus alias haud paucas superaddit separatis conscriptas scidulis, quas inscripsit : "Quaestiones variae cum astronomicae tum astrologicae, quarum brevem resolutionem desideranter a M. Keplero expetit Davides Fabricius aorgoopiloc."

Die 1/11. Augusti gratias maximas agens pro responsione Kepleri (desunt hae Kepleri literae, datae d. 18. Jul.) eumque laudibus cumulans, haec prioribus addit F.; Quod ex

trinis acronychiis diversa predeat eccentricitas, tuo judicio video confirmari. Cognovi illad son solum ex simplici illo triangulo prosthaphaereseos, sed etiam ipsa methodo inquisitionis Copermicence. Causa vero discrepantine abs te adducta verisimilis videtur, licet non sat intelligam, quomodo tu ex quaternis acronychiis per regulam falsi semper eandem inquirerepossis, praesertim cum ipsa hypothesis non consentiat nec praebeat veras distantias Martis a Sole vel veras parallaxes. Quare. plurimum rogo ut in 4 acronychiis tuam methodum inquirendi vlemonstres. Modum "quadratae regulae falsi" non intelligo. Mihi nulli arithmetici libelli ad manus sunt, ex quibus illam discere possim. Quod omnia in Marte vel ad verum motum Solis referat non ad medium, vel ad aphelium non vero ad apogaeum, miror. Adducis, esse differentiam 6' inter utramque hypothesin quoad acronychia. At ego in hypothen Tychonis non invenio tantum errorem, qui δ' faciat, sed saltem 1' vel 1', ad summum. Nam ex constituta eccentricitate media Tychonis exque utriusque eccentricitatis propertione calculus talis emitur, qui quam proxime acronychii observationibus omnibus respondet; circa solstitialia loca Solis parva deviatie est, non quidem propter erroneam redustionem, at putas, in 26° x⁴ (alias enim ut in principio 📀 major differentia incideret), sed potius mee judicio propter paulo minorem eccentricitatem mediam et eccentrici proportionem nonnihil variatam; mediam eccentricitatem inveni 20050, eccentrici ecc. est 16250.

Hoc modo constituta hypothesi omnia acronychia in ipso minuto fere conveniuat. Quare tibi 6' differentia ex aliis cansis esse videtur et quod alia reductione utaris quam visa. Etsi Tycho in eo falli videtur, quod per maximum angulum latitudinis visae in medias latitudines visas inquirit, cum in eodem eirculo parallactice non sint. tamen non omnino fallitur, cum per visam latitudinem unamquamque per se reductionem instituat. Nam cum planeta non in verse sed in visae latitudinis circulo versétur, quid prohibebit, illum non per veram sed visam latitudinem reducere? Certe non facile mihi hoc quisquam persuadebit, nisi aliis argumentis usus fuerit, quae observationum certitudine comprobata fuerint.

Quod de 3 parallaxibus anquis Martis in eodem loco eccentrici constituti dimidiam secentricitatem Solis minorem invenis, probare nen possum. Non enim temere discedere debemus a bene constituta hypothesi Solis per Tychonem. Si ex Martis parallaxi differentem eccentricitatem Solis inquirere voluerimus, certé non ex proprio sed alieno agro haec addutentricitatem Solis martis. Nam illa varietas annui orbis forte alias causas habet. Ex Sole poins bene constituto et reformato procedendum ad restitutionem Martis, non e contra; ex certis de incertis judicatur, non e contra. Facile Tycho scrupulosus astrorum observator per sua magna instrumenta deprehendisset ex altitudine meridiana circa 15° Ω et \Im , si eccentricitas Solis dimidio minor fuisset. Quomodo enim illud minutum non observaret, qui dena seconda ut plurimum observavit.

Dimidia quoque eccentricitas medium motum Solis variaret. Nam anni quantitatem aliam daret, quam Tycho ex sua eccentricitate concludit. Variatio n. eccentricitatis maxime variat anni quantitatem:

Quod non sensibilem in eclipsibus quoque differentiam inducat dimidia eccentricitas Solis, vix persuaderi possum. Proportio Terrae ad Lunam et semidiametrum umbrae fit non in miliaribus, sed integris diametris vel semidiametris fit, n. Lunae distantia a Terra ex parallaxibus sat cognita. Ergo ex non satis cognita proportione illarum (ut vis) non excusatur differentia illa, quae ratione hujus dimidiae eccentricitais in eclipsibus incidere posset. Vide igitar mi Keplere, quo deducaris ista praepostera restitutione Solis ex Martis parallaxi.

Tacco punc, quod dimidia illa eccentricitas Solis etiamsi vera esset non possit omnem incidentem in orbe annuo varietatem excusare, sed multo major requiritur differentia, quae vel integram Solis ecceptricitatem superet. Videbis hoc, in observatione Martis, quando Sol fuerit in locis solstitualibus, et Mars tunc existat c. 90° medii motus a Solis loco medio. Inquire, et verum videbis. — In priori oblitus sum. Cum proportio eccentricitatis utriusque a prieri quasi necessaria statuatur, nec illa constituta ex tribus observationibus, nec etiam. ex quatuer acronychiis observationibus vera eccentricitate indagari possit, quaeritur, quomodo tu ex'4 acronychiis non considerata illa proportione eccentricitatem habere possis ?

Scribis, Tychonicos circellos, quibus utramque eccentricitatem excusat, unico tantam minuto differre a punctis eccentricitatum, quibus tu cum Ptolemaeo utaris. Cuperem abs te cognoscere causam et rationem contrarii motus circellorum Tychonicorum.

Problemata tua astronomica es tabulas Rudolphinas ad editionem primo tempore para, ut es alia tua inventa, ut tandem orbem diutina exspectatione restitutionis Uraniae fessum tu primus reficias. Tychoniani in tuis ipsius inventis nihil tibi praescribere possuna. Tychoni et Tibi astronomiae restitutionem reservandam puto. Ego in astrologiae triumpho adornando toto hoc anno occupatus fui.

Qued latitudinem Martis etiam 1 1/2 mensibus ante vel post oppositionem Martis et

Solis majorem esse asseris, magnopere miror. Quae de parallaxibus adducis, vix tantam differentiam excusabunt, cum non sit multo major yuam in Sole.

Quaeritur, an centrum eccentrici Martis re vera fixum sit in Sole vel diversum ab eo locum habeat? Tycho primum vult. Quomodo tu existimas, Martem imaginarium quoddam punctum mota medio respicere, si ad medium motum ille referretur? Certe Sol non est imaginarium punctum et tamen illius motus ut verus ita medius consideratur? Si centrum eccentrici planetarum non est in Sole, tunc latitudines mutabuntur accessu vel recessu eclipticae ad illorum periodos fixas et uno loco perennes.

Quaeritar, cur duplex in planetis eccentrious et quae causa, quod una simplici eccentricitate motus apsidum excusari non possit? &c. Vale, Vige et Flore Excell. D. Keplere &c. Debantur Resterhaviae in Or. Frisia d. 1. Aug. 1602.

(Inscriptio : Dem Erbaren und Hochgelarten Herrn M. J. Keplero, Kais. Maj. bestellten Mathematico. Meinem vilgunstigen Herrn und Freunde. Zu Prag. In des Herrn v. Lichtensteins Hauss auf dem Retzin zu erkunden oder gewiss in der alten Stadt in der Zeltergasse zum gulden Hirschen. Mit Fleiss zu bestellen.)

Responsio Kepleri, prima earum quas exhibent manuscripta, data est d. 1. Oct. 1602. (Comp. Vol. I, p. 306.) Sic exorditar Kepleras:

S. P. D.

Quisquis ille sit, cui literas commendasti, doctissime Fabrici, negligenter illas curavit. Audieram ex haeredibus Braheanis, jam pridem fasciculum literarum ad me spectantium in suas aedes delatum, sed repudiatum a se, quod nescirent, conclusas esse et aliquas ad se missas: tabellarium vero negasse tam longum iter literarum causa ingredi (nam in extrema fere parte novae urbis habito), fore ut qui literas quaerat ultro ad se veniat. Quaesivi illas per 3 septimanas, ignarus unde essent. Tandem fortuito mihi ignotus homo occurrit et utrum Kepleri mihi nomen sit percontatus, ad aedes me Archiepiscopi ablegat, ubi latuere. — Exordiris a nimio meo amore, quo nomine tibi gratias ago. Et cum plurima in literis sequantur, in quibus a me dissentire dicis, nescio quomodo te disputantem cum laudante conciliem aliter, nisi quod conflictu fulgorem veritatis elicere te posse speres. Quare hoc age mi Fabrici, disputes in posterum, non perores. Nam illa ratione nobis ipsi profuerimus, hac nocueris mihi. Non enim fovendus est amor sui, sed omni externa et interna vi pessumdandus.

De patriae tuae statu hic inaudivimus (II, 751.). Deus meliora meo Fabricio! Malum omen pestis simul et rebellio; metuo graviora. Te tamen tua professio apud hunc hostem non minus uti spero tutabitur, quam apud principem. Deus vero te tuosque ab infreni militum gregariorum licentia clementer tueatur.

Jam Keplerus "offensiones cum Tengnaglio" adit, quas supra (p. 12.) diximus, deinde. interpositis disquisitionibus astrologicis (I, 306.) pergit : Miraris, ex 4 acronychiis prodire eandem semper commensurationem, et eam tamen falsam nec in parallaxibus aptam. Causam dicam: statim post apogaeum maxima est differentia ad aequationes ipsas in utraque hypothesi. Aequatio vero ipsa parva, nedum differentiata (?). Proxime vero ante longitudinem mediam vicissim aequatio magna quidem, sed insensibilis in utraque hypothesi differentia. Circa 45° tantummodo variantur aequationes per variatas hypotheses a simplici usque ad rationem 2 aequalium parallaxium et aequantis. Itaque succurrendum illis in 45°; nam per usurpationem simplicis prosthaphaereseos nimis illic magnae evadunt aequationes. Demisso centro eccentrici e loco priori, qui maneat centrum acquantis, funt illae majores paulatim. Tantum enim potest id centrum demitti, donec assequamur justum modulum aequationum ex quacunque prosthaphaeresi. Hunc circa 45°, ubi variatio maxima, talem eligemus, ut omnes hypotheses conveniant in longitudine media utque planetae justum locum expresserimus. Quare si deviabit adhuc, deviatio circa

23^{\circ} anomaliae accidet et circa 68^{\circ}, partibus sedecibus. At in tantillo matio plane insensibilem deviationem esse, necesse est; nec enim de unins minuti differentia ante et post apogacom in Marte contendam. Haec ergo causa est, cur falsa hypothesi vicem verae supplere queamus. De ipsa via investigationis existimabam te ex schematis explicatione certiorem redditum. Artificium non est quod ex arithmeticis disci possit, sed labor immanis. Quadratam falsam dico regulam (comp. p. 43.), quia si ter operandum in simplici regula falsi, hic novies fere operabimur: si illic quater, hic sedecies. Datur mihi tota diameter, pono semper eam esse 10000 vel 20000 prout placuerit; dantar anguli cum circa centrum acquantis tum circa centrum mundi seu Solem. Illi dantur ex differentiis temporum, quibus distant quaternae observationes; hi ex differentiis locorum in quibus Mars est visus. Oportet observare has leges (nam in regula falsi tractantur exempla semper secondum aliquas leges), ut tueamur 4 loca in uno esse circulo, quamvis boc non veritas sed hypothesis nostra exigit; et simul ut centrum eccentrici tali proportioni sufficiat. Primo pono longitudinem aliquam mediam, pono item apogaeum aliquod. Ita statim initio facio 2 positiones, sed examino illas seorsim. Positis his duobus statim sequitur quantitas radiorum in triangulis super eccentricitate mea. Et tunc habetur quadrilaterum; examino ejus oppositos angulos, an valeant 2 rectos; si non, muto apogaeum et ab initio rem repeto manente interim longitudine media. Id toties facio, donec quadrilaterum sit in circulo. Ex 2 vicibus si recte sim operatus (nam longa est operatio) statim apparet, an radii terminus cadat extra lineam apogaei positam; si hoc, muto ergo longitudinem mediam utcunque et ad quamcunque mutationem repeto omnia illa, quae superius ab initio hactenus sunt dicta semperque curo, ut quadrilaterum sit in circulo. Tandem ergo, ubi jam per 2 longitudines medias semper 4 loca in circulo repererim, apparet, quid amplins de longitudine media sit faciendum, ut centrum penitus cadat inter 2 reliona.

Haec tibi sint instructionis loco; in fine addam exemplum. Jam ad alia. Non putas mihi sufficere causas, cur pro medio Solis loco verum, pro apogaeo — aphelium comminiscar. Audi: illa 6' sunt argumentum parvae in effectu differentiae hypothesium, quod visiones quidem acronychias attinet; et indicium, quod re vera aliquid differant, non vero sunt mihi causa novationis primaria. Prima mihi causa hoc andendi speculatio mea, de qua vide tabulam Maestlini in Mysterio meo. Jam haec est ausi confirmatio, quod, cum differant hypotheses per 6', mea verarum oppositionum hypothesis tantum son erret, imo nuspiam ultra 1 1/2 vel 2'. Tertia et evidens causa seu potius confirmatio, quod meae ab aphelio non ab apogaeo deductae distantiae (in vera hypothesi) parallaxibus annuis satisfaciant. At utriusque hypotheseos distantiae multum ab invicem differunt. Jam tu mihi conaris illa 6' differentiae eripere; 'te minus invenire a Tychoniana hypothesi discedere obser-Nego te hoc invenisse. Nego hypothesin Tychonis intra 1 1/2' vationes. consentire. Nam primo fateris, in tempore horam et amplius aliquid deesse. At in una hora appropinquant sibi haec sidera per $3\frac{1}{2}$. Deinde concedis, falsam esse reductionem ad eclipticam, per quam 16' addidere, cum vix 1' debuissent. Ergo alia sunt loca visa, quae Tychonis hypothesi quadrant; baec ergo visis tam prope non quadrat. Tu sic argumentaris: cum planeta non in verae sed visae latitudinis circulo versetur, reducendus est non per veram sed visam latitudinem. Falsum antecedens; nec tamen id ad con-

Kepieri Opera, III.

5

sequens multum facit. Quo in loco planetam videmus, ex eo in eclipticam recta ducitur, determinans locum ejus eclipticum; haec est reductio visi loci ad eclipticam. Jam quia planeta nec- in suo loco ecliptico nec vero videtur. sed loco intermedio (visus enim locus parallaxi orbis annuae in latum est implicatus etiamnum sub ipsam acronychiam visionem), rursum ergo eadem illa ad eclipticam recta, quae secat orbitam planetae, locum illi determinat in sua orbita. Angulus rectus ab ecliptica et arcu latitudinis subtenditar arcu orbitae Martis a nodo ad hunc locum, est ergo iste arcus longior quam a nodo ad punctum eclipticae. Certe nuspiam Mars nisi in orbita sua versatur, minime in latitudine visibili, nec attinet ad proprios ejus motus, quam viam nobis videatur sub fixis describere. Nam sub fixis nec est intermixtus illis nec tortuosam viam describit nec regreditur, quae omnia videre nos putamus. Videris tandem provocare ad observationes rejecto judicio rationum. At injonum est postulatum. Quid? Nihilne in astronomia sequamur nisi quod observationes monstrarunt? Quae ergo subtilitas observandi docuit acquationem temporum idque veteres? de Tychonica non loquor. Haec ipea anoque reductio unde primum orta? Ab observatione an a ratione? Pute a ratione. Ego doceo rationem, veram esse non doceo, quam eodem cum veteribus jure sequor; observationes per reductionem accommodo, ne pro veris vitiosas adhibeam. Qua ego ceu clave astronomiae reperta unice gloriari possum, eccentricitate Solis dimidiata, id negas te probare posse. Non tamen, ais, abs me constitutis discedendum. Non facio temere, auctore Tychone facio seu conscio. Nihil eorum tollo, quae ex hypothesi Tychonica sequentur, et Ch. Severini (Logomontanus) vivo Tychone in Lunaribus hec meum recepit et imitatus est. Tycho 3600 dixit hypotheseos gratia, non quod hoc jam sacrosanctum nobis esse debeat, ut sunt observationes. In alienum me agrum invadere arguis, Quaero ergo, quem agrum Copernicus invaserit, dum Solem penitus jubet quiescere? Numquid planetarum parallaxes? Eodem jure ego in casa plane eodem utor. Nam quomodo ex Solaribus observationibus ista deducerentur, quae, etsi concedas esse, ex iis derivari non possunt? Adeo me destitutum exemplis putas? Quid ergo in astronomia est, apogaeum Solis per eclipses probare? Aut quis' id fecit? Male agatur cum astronomis, si circa quodlibet sidus in proprium agrum tanquam in ordinem fuerint redacti.

Ais, variationem illam annuam forte alias haberé causas; ito ergo et 5 epicyclos infer in planetas, quibus centra librentur. Id quidem in Venere et Mercurio Ptolemaeus Copernicusque coacti sunt ob hanc causam ignoratam facere, in Saturno et Jove negligentes ob insensibilitatem; in Marte cum facere neglexissent, inobservabile sidus dixerunt. Verum tu usitata uteris sophistica (scio qua mente et credo praefationi tuae ac spero, te voculas aliquas hujusmodi non aegre laturum); exempli causa, si dicat aliquis, phasium Lunae causam motum ejus esse circa Terram, sophista dixerit, forte aliam esse cansam phasium.

Ex incertis putas judicari de certis. An igitur quidquam in astronomia rectius observationibus seu Solis seu Martis? Ex his enim judice. Sed forte hoc incertum quod statuo, Martem post integram periodum in eadenn semper altitudine a Terra et eodem loco sub fixis esse, linea ex Sole per illum ejecta? Num tu Copernicum aut Ptolemaeum sequaris, ut potius libres centrum eccentrici Martis motu non Marti sed Soli respondente? Ita jann non hoc tantum referet considerare, quo loco sui orbis d sit; nisi enim

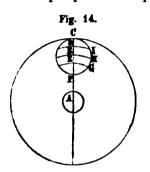
etiam () sit pristino loco; \mathcal{J} in suo reali loco non reperietur. Ego vero ex te ipso quaero, utrum ex his sit certins? Hinc stat auctoritas, sed palpitat in tenebris, illinc ratio physica. Quid enim post Copernici inventionem commune amplius orbi \mathcal{J} cum orbe \mathcal{J} ? Cur alter alteri leges preescribat? Fateor me initio sola probabilitate et calculi ratione fretum ausum esse, hoc controversum supponere tanquam in regula falsi. Exacta vero operatione jam hoc axioma dico ab observationibus esse confirmatissimum. Nam Copernicus cum suis librationibus per 2° aberrat, ego non per 2'.

Tycho, ais, illud 1' in 15° \otimes , 15° Q deprehendisset suis instrumentis. Videris in Tychonis observationibus dum hic fuisti non satis versatus. Nuspiam propius quam intra 36' (?) instrumenta consenserunt. Si uno usus est, dubitari de tantillo potuit, quia alterum id non confirmavit quod observatum est. Ad haec vidisses in observationibus, quoties cum loco Solis observationes contulerit. Non novum est $1-2'_{12}'$ differentiae superesse; solebat in observationibus $\pi \rho o \sigma \partial \alpha \rho a \rho \sigma \sigma \sigma$ quando hypotheses exstruxit; nam de minimis non curat praetor. In aequinoctiis fateor rem ad 16' adduxit, sed magnus et taediosissimus labor prohibuit, quo minus in aliis observationibus idem minus necessarium faoeret. Quoad praxin, ubi ex trinis et trinis observationibus hypothesin exstruxit, semper aliqua in apogaeo et eccentricitate discrepant minuta, quin imo posteriori tempore $\frac{1}{3}$ apogaeo addit, quod multum sane est in hoc negotio.

Vereris ne varietur medius motus. Falleris; nisi apogaeo variato nihil variatur.

Metnis pro anno. Falleris; mutatio haec talis non est, quae maximam aequationem, cujusmodi hodie est in aequinoctiis, mutet. Manente ergo vero loco Solis in eccentrico suo circa aequinoctia, non mutatur annus. Erras in eo quod putas, me simpliciter dimidiare. Nam quia 3600 subtendunt 2° 3' aequationis maximae, 1800 subtendunt 1° 1¹/₂'. At non vides, me residua 1800 aequantis eccentricitati tribuere, cujus in efficienda aequatione maxima partes sunt aequales. Ut igitur 3600 simplicem ego divisi in 1800 et 1800, centro eccentrici medio loco constituto, sic 2° 3' simplicem divido in 1° 1¹/₂' et 1° 1¹/₂'; illam ab eccentricitate eccentrici, hanc ab aequante dico venire.

Nec metuere desinis eclipsibus. Computa igitur quasdam (secundum meam methodum) et diameter Lunae 30" forte variatur. Quid? Ego tibi hanc leviculam formidolositatem penitus suffocabo. Quid tu putas umbram jacere? Terram an aërem? Si aër, cur ergo semidiametris Terrae utimur? Necesse enim est nos hic falli. Si Terra, ergo radius Solis refractus umbram jacit. Nam Sol occidens, cum per 34' summo margine infra est, adhuc cernitur, ergo per 34' attollitur, et radius exiens in purum aetherem aliis 34' refringitur, sic ut propter refractiones plus de Terra illustret quam Reinholdus in Theoricis computavit. Et oculus in mucrone umbrae constitutus videbit simul margines Solis et Terrae, quos remota refractione non videret simul, sed Solem longe post Terram latentem, minorem ad visum ipsa Terra. Sed de hoc negotio Deo volente in futuris nundinis Astronomiae parte Optica.


Nec sufficere putas Martis inaequalitatibus vel integram Solis eccentricitatem nedum dimidiam; quiesce, dimidia sufficit. Unde tibi haec notitia, qui nescis quam alte descendat Mars a Sole in aphelio? Hoc ipsum est quod supra dixi, alium medius Solis locus orbem Marti tribuit, alius est

5 *

per verum. Dissident hi duo causa evagationis a centro; haec ergo causa aequanti Solis accedit. Ego partem bujus erroris per reductionem ad verum locum Solis, partem per aequantem Solis expedivi. In aeternam vero causam nescires, frustra ad quadraturas et solstitialia puncta respiciens. Nam in Θ , hinc jam bene colligo, contrariam evenit et observatio cum Copernico convenit. —

Ego in methodo mea supra descripta 4 acronychiarum non praesuppono bisectionem eccentricitatis; illa operatione quaero hypothesin tantum vicariam. Nam cuniculos ex observationibus in ipsam veram hypothesin agere plane despero. Oportet omnino vicariam interponere, postea ex vicaria veram aestimare.

De aequipollentia hypothesium ita est, ut scripsi; limitatio tamen aliqua addenda est, quae te fugere videtur. — Accipe hic schema theorize Martis et Solis, et mecum speculare, quomodo quaelibet imperata aequatio seorsim computanda sit, quam rationem ego nondum nisi ex vicaria hypothesi calleo. Puto autem semel tabulam aequationis construendam, eaque postmodum utendum; possum autem ex vera tabulam ordine construere, ubi semper posterior aequatio praesupponit priorem, asque ad apogaeum.

A Sol, AB radius orbis Martis, BC verissima eccentricitas. Quodsi Sol non raperet Martem, Mars a C per I, H, G in F circellum describeret, cujus eccentricitas 9165, qualium AB 100000. Ac etiamnum describit illum ratione lineae AC et centri A, sed inaequaliter motus per ambitum. Is motus \bigcirc consistit in nitendo contra virtutem Solis. Nam in principio et temporis restitutione seu anomaliae nititur directe retro, in quarto anomaliae paulo post in H positus directe vehitur ad \bigcirc ; in dimidio positus in F, porro nititur. Habet igitur hic nisus respectum tantum ad virtutem \bigcirc . Et

est acqualis, quia temporibus acqualibus arcus acquales, circa centrum B inacqualiter motum conficit. Quando dico, planetam respicere virtntem () innitendo, explico causam physicam motus planetae; quando dico, respicere centrum B, explico modum nostrae intellectionis. Non enim puto, planetam ad aliquod imaginarium centrum respicere, ut nos, quibus est charta et papyrus ad manus. Solem concedo respicere planetam in quantitate circelli tenenda, quia (), fons virtutis, alio et alio angulo cernitur et a planeta imaginatione concipitur; puto enim has intelligentias ita materialiter dispositas, ut quae nos oculis cernimus, illae alia impressione concipiant : propterea esse et ordinem fixarum non propter numerorum observationem sed et propter ipsorum imaginationem ad dirigenda itinera et nodos transponendos, quos puto olim in hodiernum poli eclipticae sub fixis locum venturos si mundus consisteret. Sed infra dicam specalationem simpliciorem eodem recedentem.

Jam leges motus puncti B explicabo. Imaginare itaque, sicut est AF ad AE, AB, AD, AC, sic esse moram σ in 1° vel 1' circuitus circa \odot , quando est in F, ad moram in G, H, I, C. Nam virtus \odot circularis quidem est, et si planeta non descenderet ex C, raperetur perfecto circulo per C descripto. Ita si in I maneret, raperetur circulo per DI descripto, sed breviori tempore rediret eodem, quia virtus in angustioribus circulis stipatior est et densior ideoque et in effectu fortior, quam in laxioribus et

superioribus. Itaque Martis in C tardus est motus circa (), in H mediogris, in F velox. Interim tamen aequalis manet motus circa B centrum. Hoc modo fit illa, quam superioribus literis innui, figura ovalis. Nam citius in H venit facitque distantiam AH, quam circa 💽 in locum a B quadratum : breviores itaque ad latera seu in longitudinibus mediis fiunt distantiae, quam ratio perfecti circuli eccentrici exigit, et differentia versus perigaeum major est, quam versus apogaeum: quae justa definitio figurae ovalis est. Porro, quae ratio est motus J, eadem accelerationis puncti B causa nostrae intelligentiae. Si vis scire, in quo gradu celeritatis sit o, quaere per anomaliam simplicem ejus a 🕥 distantiam. At si vis locum scire, oportet scire, quantum accumulatae omnes ab apogaeo distantiae in üs temporibus, in quae singulae inciderunt, in motu effecerint. At cum infinitae sint distantiae, quia infinita F, G, H, I, C puncta, et illae non sequaliter sparsae per circuitum circa (), confertiores enim quae longiores, quia ibi & tardus, sparsieres quae breviores, hic vides difficultatem computandi loci eccentrici ex hypothesi vera et physica.

Modus tamen iste est: divido circuitum in 360° et fingo planetam moveri aequaliter quamdiu in uno est. Ita ordine ab apogaeo omnium graduum morae computatae dant cujusque anomaliam. Idem intellige per omnia (in depicto schemate Terrae). Haec ergo omnis hypothesis \mathcal{J} . Proportio orbis \mathcal{J} ad orbem $\mathcal{J} = 100000 : 152518$, circelli \mathcal{J} semidiameter 180, \mathcal{J} in 6° \mathfrak{S} , \mathcal{J} in 29° \mathfrak{Q} . Nodi \mathcal{J} in 16° 20′ \mathcal{J} , \mathfrak{M} .

Jam dicam, quid mihi inter scribendum incidit et quomodo physicam hanc rationem, salvis omnibus quae nobis prostant efficienda, concinniorem imaginemur. Nam videtur durum, planetam eniti e virtute (), quod est naturalis facultatis, et interim in nitendo remittere, intendere, pro ratione exigentiae circuli, acqualibus temporibus acqualia spatia describendi, quod est animalis facultatis. Concinnius esset ut omnem facultatem naturalem Soli transscriberes, cui maximam partem transscribimus; planetae vero tantum intellectualem quampiam facultatem tribueremus, cui non viribus sed solo nutu opus esset. Item in priori modo obscurior videtur ratio virtutis e (•) egredientis, optamus dilucidiorem. Utrumque spere me efficere posse per modum qui sequitur. Via planetae per se in circulo magno est: nam parallaxes nihil ad ipsum; demus ergo ut inclinata sit ad imaginariam quandam eclipticam, a qua digrediatur utrinque per 5º 15', quanta est aequatio circelli 9165. Moveatur planeta in circello, ad illam imaginariam orbitam mediam erecto ad angulos rectos, sic ut proprius planetae motus transversus sit ad motum adventitium ex Sole. Hoc modo ascendet et descendet hinc inde in suo circello, nihil ipse nocens vel expediens promotione sus circa (). Antea vero dimidiam aequationem circellus iste confecerat. Nec jam nitetur contra motum (), quia is est non sursum vel deorsum, non ad polos, sed tantum in orbem. Planeta vero ibit et supra versus polum eclipticae descendens ad (•) et infra versus alterum polum iterum ascendens. Conficiat gradus aequales aequalibus temporibus, metiatur descensum et ascensum suum specie O occurente; nam infra sub majori angulo occurrit. Diametrum vero ad latera metiatur respectu fixarum. Haec omnia sine viribus facere potest solo intellectu et nutu, quia globi coelestes versus Solem graves non sunt. Hic etiam simul pulcherrime mihi nascitur promotio nodorum, quod antea nulla concinna hypothesi poteram. De quo alias. Jam quomodo conficiatur tota acquatio dicam. Non quia Soli totam transcribo, modo vero prius

explicato tantum dimidiam potest; metues forsan ut tota illi transscribi possit. Scito ergo, ratione optima posse.

Nam in prioribus imaginatus sum lineam circularem et fontem virtutis in illam effluentis punctum mathematicum : in his dixi consistere mensuram graduum motricis virtutis ex O egredientis. At virtus jam concinnius fingitur non ex solo centro O, sed ex toto corpore egredi. Hoc posito dupla efficitur proportio virtutum ad proportionem distantiarum. Nam sit jam planissime (quod prius tantum in parte usurpaveram) eadem ratio lucis et virtutis ex O egredientis; quaeritur, si quis duplo propius ad O veniret, quanta sit apparitura O diameter? Fere dupla, prius sub $\angle \delta \gamma e$, jam sub $\angle \delta \beta e$ (Fig. Cap. 36). At quia O non est diameter sed circulus, ergo cum dupla sit proportio figurarum ad proportionem diametrorum, fuerit igitur Solis area visibilis quadrupla prioris.

Hic est modulus increscentis ab appropinquatione lucis, sit itidem Sol ergo duplam aequationem ejus conficiet, quae posset esse a virtutis. 9165 circello, et composita via d circa 💿 plane ut prius manebit ovalia. Exspecto, qui tibi placeat haec speculatio. Mihi ego in ea egregie placeo et tibi gratias ago, quod me ad scribendum instigasti. Tentavi quidem saepe antea, sed impedimento mihi fuit circellus eccentricitatis, quem putavi nonnisi in longum moveri posse. Considera an gradum fecerim ad astronomiam physicam sine hypothesibus sc. fictitiis constituendam? Virtus in • certa est; ascensus et descensus planetarum itidem certus est ex sola specie apparente majore et minore. Multum enim interest inter 8 J. (•) in Q, et & ejusdem in mm. Haec ergo non sunt hypotheses (seu, ut Ramus appellat, figmenta), sed veritas ipsa, ut stellae ipsae. Ego vero praeter eam nihil suppond. Ex his ergo hypothesibus tu ipse, qui otio ad astrologiam tantopere abundas, computa loca Martis mihi proposita, sed hoc discrimine, distantias of (•) ex eccentricitate 9165 computa per anomaliam mediam; nam tibi necessariae sunt ad parallaxes annuas indagandas.

Loca vero eccentrica computa ex hypothesi vicaria hac (additum est schema sine explicatione, simile schemati Cap. XXVII.):

Anno 1600 Januario aphelium σ in 29° 0' 35" Ω ; motus annuus 1' 7"; eccentricitas eccentri 11613, aequantis 6944, ut tota sit 18557; inclinatio planorum maxima 1° 50' 45"; ea constans est. Nodi anno 1600 completo in 16° 20' \Im , \mathfrak{M} ; limites in locis quadratis, in 16° 20' Ω , \mathfrak{m} .

Adjuro te per delicias tuas Uranias, ut tecum habeasista, nec me Tychonicis prodas litemque mihi seras. (Nil sequitur.)

Fabricius die 4/14. Nov. 1602. ob "migrationem in urbem natalem Esenam" (comp. Vol. I, p. 312) praemissas Kepleri literas nondum acceperat ejusque silentium diuturnum aegre ferebat.

Martem aggressus haec profert : Expeto ut mihi ostendas rationem calculandae eccentricitatis Martis ex quatuor acronychiis per quadratam regulam falsi, ut majorem tuis laboribus fidem habeam ; quamvis valde dubitem, fieri vix posse, ut una et eadem eccentricitaé ex diversis acronychiis tali processu prodeat.

Quodque scribis, latitudinem Martis ante et post conjunctionem, etiam per sesquimensem saepe majorem esse, quam in ipsa oppositione Solis, id videtur omnino meis observationibus repugnare. Per 5 aut 6 dies quidem differentia interdum observatur, sed id ex aliis causis venit et quidem circa solstitialia puncta tantum. Vide igitur ne nimium tuis speculationibus tribuas et Marti vim facias novis tuis hypothesibus. Ad medium motum Solis omnia esse referenda non dubito, cum Sol centrum trium superiorum sit, etsi non negem, ad apparenterm motum Solis etiam reduci posse.

Solis eccentricitas nequaquam duplex est, ut tu yis, sed simplex, nam dimidia eccentricitas differentiam, quae in Marte est, minime excusare potest, quacunque ratione rem com-

stimas. Rectius feceris, si Soli sua eccentricitas simplex permanserit, ne in motu ejus accuratissime a Tychone explorato luxatio violenta commistatur et alia ratione Martis motus salvetar per circellum. —

Tandem accepta Kepleri responsione Fabricius (d. 8/18. Nov. 1602; comp. I, p. 312), respiciens verba, quibus Keplerus concludit, dicit: Non est quod vereris, vel illa vel alia Tychonianis aut aliis propalatum iri. In negotio reductionis ad eclipticam mihi plane satisfecisti. Miror, Tychonem tale quid non cogitasse. Verum est, Martem nec in viso nec per illum reducto circulo versari, sed in alio tertio. Ex falso igitur verum dari non potest. Quae ad probationem bipartitae eccentricitatis Solaris adducis, meas objectiones potissima parte diunut. Gaudeo, me vano metu ex variatione hypotheseos Solaris orto liberatum esse.

Judicium meum de tuis cogitationibus motricem virtutem Martis spectantibus jam aperire 2011 possum propter penuriam temporis. Nam heri tuae literae mihi traditae sunt.

In epistola d. d. 8/18. Dec. (Vol. II, p. 95) nondum accepta Kapleri epistola sequente propius ad rem accedit Fabricius, dicens:

Tu motum Martis ex duplici hypothesi, una vicaria altera vera inquirere laboras, quod argumento est, hypothesin hanc non esse per omnia veram vel saltem mancam esse. Ex vicaria prosthaphaereses Martis, ex vera distantias inquiris. Si vicaria vera, tunc utrumque daretur simul, si autem "vera" per omnia esset vera, non indigeres vicaria. Laborandum ergo maxime erit, ut talis aliqua hypothesis excogitetur, quae quam proxime in omnibus ipsi coelo respondeat, quod mihi non difficile adeo sane videtur, si imaginationem tuam de duplici Solis eccentricitate abjeceris. Haec, crede mihi, si recte judico unica et verissima causa est, quod duplicem etiam hypothesin Martis constituere necesse habeas. In Solis hypothesi centrum eccentrici supra Terram omnino esse oportet, sive quoad veterem suppositionem, sive recens a te excogitatam. At ad salvandos motus Martis dimidia illa eccentricitas Solis, quam tu a Terra sursum ponis, deorsum petus vel sub Terra imaginari debet. Hinc fit ut tuae distantiae veritati nequaquam respondeant, quia propter considerationem dimidiae eccentricitatis supra Terram distantiae nimium a Terra (quae sub centro eccentrici Solis est) removembar et contra.

Haec velim te diligenter considerare et imaginationem in Sole abjicere. Quaeso hunc objectum nodum ense veritatis mihi solvas; at noli judicium praecipitare, ne sero poenitentia tibi eveniat. Bono haec animo in veritatis patrocinium scribo, quia post priores literas disgentius omnia consideravi. Tu Martem Soli nimis arcto vinculo alligas. — Secundo abs te quaero, quaenam sit verissima causa duplicis in Marte et superioribus ceteris et inferioribus geoque eccentricitatis. Hanc inquirere non utile solum est, sed ad demonstrationem maxime necessarium. Si causa vera cognita fuerit, maximum lumen mathesi inferetur. Ego omnino existimo, Solis eccentricitatem sese immiscere eccentricitati Martis, ut et reliquis, quae implicatio eccentricitatem quoque implicatam reddit. At si a Sole duplicis eccentricitatis causa aliqua erit, tune ab apogaeo Solis una illarum eccentricitatum duplicium incipere debet, major vero eccentricitas ab apogaeo Martis. (Keplerus in margine : quod responsurus eram objectionibus de Marte, ipse urget seque implicat). Sic illa eccentricitas, quae a Sole causaretur, a vero suo principio quoque inciperet, ut alteri eccentricitati sese recte immisceret. At hoc non videtur fieri, quam juxta Copernicum motas circelli utriusque ab apogaco planetae incipiat. Quomodo igitur vera esse poterit haec ratio, quae diversis causis anum et idem principium tribuit, cum potius singuli motus ad singulas suas causas essent. referendi et adaptandi, videlicet minoris eccentri Martis variatio ad apogaeum Solis, cum in illius linea haec eccentricitas consideretur ; majoris vero eccentri variatio ad apogaeum Martis. (Keplerus: non same est.) Si hoc non concedes, certe Sol non erit sua eccentricitate causa duplicis eccentricitatis Martis.

Tertio, latitudinem Martis non vis considerari in apparenti circulo, sed proprio, in quo latitudo se proportionaliter habet, in alio non item. At jaxta tua ratiocinia via Martis est ovalis, non circularis; quid igitur prohibet, ne et latitudines se non habeant proportionaliter, sed via ejus sit tortuosa vel ad ovalem quodammodo formam inclinet? Concludo igitur, in apparenti circulo latitudinis reductiones esse instituendas et hypothesi adaptandas; et proinde quoque Tychoniana hypothesis non erit male instituta juxta reductionem loci viai. Quod vero tibi videatus ila (quoad prosthaphaereses) nonnullam differentiam ingerere, illud potius eccentricitati non exactissime constitutae ejusque proportioni non omnino accuratee adscribendum existimo.

Quarto, scribis de acquipollentia hypothesium Copernici et Ptolemaei, quoad prosthaphacreses, quod num verum sit non video. Nam mutandam esse eccentricitatem ipsam nontibil et numeros utriusque quoque eccentricitatis. Ergo ratio non erit eadem. Mea quaestio fait et etiamnam est, an retenta eadem eccentricitate totali ejusque proportione simili, acquipollentia sequatur ? vel una et eadem prosthaphaeresis Martis detur vel non, quae differentiae sit causa ?

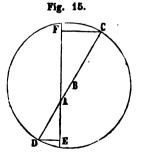
Quinto, causam miraculosae et vix credibilis apparentiae in latitudine Martis sesquimense ante oppositionem acronychiam saspius expetii, nam longe hoc a veritate et ipsis observationibus recedere omnino puto.

Sexto, schema quoque et rationem calculi expeto, quomodo ex tribus parallaxibus Martis ad idem eccentrici punctum factis semidiameter orbis annui inquiratur, et si vis, exempla talium trium observationum mihi communica; nam ego non habeo talia exempla. Facies gratum, si mihi communicaveris.

In literis proxime sequentibus (d. d. 30. Jan. v. st. 1603) accepta Kepleri responsione haec scribit Fabricius: video tuam hypothesin bono fundamento niti, nisi quod moveat te duplici uti hypothesi, cum ex una illud fieri oportebat. Quare de ea ut videas moneo. Ego gaudeo, Tychonem talem successorem consecutum esse, qui cum fructu et decore inceptam restitutionem complere possit. Quaeso ut mittas nudam hypothesin Martis cum dimensione circulorum justa. Sic ego incipiam illam ad observationes meas accommodare. (Reliqua vide Vol. I, p. 323)

Interim advenerunt Kepleri literae responsoriae ad priores Fabricii quaestiones, datae d. 2. Dec. 1602. (comp. Vol. I. p. 312 ss., Vol. II, p. 95, 413, 752), in quibus haec leguntur:

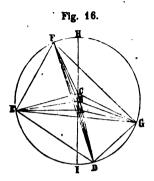
De anomali incremento Martis latitudinum bis terve in diversis epistolis replicasti. Mones me, ne nimium speculationibus meis tribuam. At ego, ut verum fatear, ejus rei causam cum speculationibus meis nondum ex professo contuli, nisi quod scio, ubicunque latitudinem computem, semper ex mea hypothesi observatum locum in latum etiam reddi. Habeo itaque hoc ex Tychonis observationibus, qui a. 1593 mense Jul. et Aug. quasi miraculi loco annotat, latitudinem 14 diebus ante 8 quadrante gradus fuisse majorem. Ego postea deprehendi, id mirum aut novum aut rarum non esse, nam in X 45 diebus ante & fuit minimus excessus. Idem deprehensum est pauciori dierum numero et in 3º m oppositione facta. Tu putas, id in @ tantum fieri propterea, quod 💿 in apogaeo parum mutet distantiam a Terra. Suspicio est, nulla legitima conjectura, quam numeris probasses. Quid o latitudinibus cum apogaeo •? An tu putas, si • maneat in aequali distantia a Terra, d etiam in aequali distantia a 🕥 manere, itaque manere parallaxes orbis annui in latum? Quae enim causa facit diametrum & apparere majorem, appropinquatio Terrae, eadem causa facit et latitudinem apparere majorem. Nec tamen sequitur, si Terra appropinquet, hanc in incremento esse, si discedat, in decremento: possunt enim sinus inclinationum Martis verarum et particularium majoribus increscere proportionibus, quam distantiae Martis et Terrae decrescunt et contra. Quare hoc phaenomenon non contigit in limitibus: tunc enim oppositio et latitude maxima proxime coincidunt; non in nodis, tunc enim proportiones diurnorum sinuum inclinationis particularis non vinci possunt ob suam magnitudinem a distantiis d a Terra, et si maxime vincerentur, insensibile esset. Fit ergo medio loco inter nodos et limites: maxime in ズ, ズ ob vicinitatem utriusque itineris ♂ et 六.


Sequitur quaestio, qua coelum Terrae misces te meque confundens et rem ipsam involvens, ut in his tenebris vix luculam eamque maligne perspiciam. Quaeris an centrum eccentrici σ re vera fixum sit in \odot ? Minime, alias non esset eccentricus sed concentricus \odot . Et Tycho non eccentrici (quem nullum agnoscit), sed concentrici inunxhoqoqov centrum in Sole ponit fixum, at non in vero loco \odot , sed in medio loco ejus, h. e. non in ipsissimo \odot sed prope ipsum. Nosti enim hanc esse priorem quaestionem, cum adhuc planetarum eccentricitates cujusque proprias a communi centro separamus, omnino ut ante omnia quaeramus, Terrane an Sol sit in medio vel quasi, in centro vel quasi trium superiorum. Ptolemaeus Terram ait, Coper-

nicus et Tycho Solem. Quaeritur amplius, Martís motiones ad verumpe Solis motum an ad medium sint referendae, quod perinde est ac si quaererem, linea apsidum eccentri Martis per mediumne locum Solis an per ipsum eorporis Solaris centrum transeat? Hic Copernicus et Tycho imitatione Ptolemaei stant a medio loco Solis, ego a vero loco. Invento centro vel quasicentro communi trium superiorum, h. e. puncto in quo omnes lineae eccentricitatum trium superiorum concurrunt, jam is, qui eccentricum seguitur, sane eo ipso centrum orbis extra hoc medium dicit; qui concentricum cum epicyclo. centrum hoc ipso in hoc communi puncto, quod mihi centrum corporis Solaris, est, collocat. Jam vide quomodo ego dixerim, Martem imaginarium punctum respicere, si ad medium motum () referatur, id est si anguli anomaliae eccentri coaequatae stant ad punctum, quod est non ipse O, sed tale, quod monstrat medius () motus, quod interdum praecedit Solem, interdum sequitur, nunc supra, nunc infra Solem est; tum illi anguli stant ad punctum imaginarium. Ut intelligas, quid ego dicam imaginarium, crasse tecum loquar. Si anguli anomaliae coaequatae stant ad punctum medii motus Solis, vereor ut id punctum, si non sit ipse Sol, non sit pår ferendae ingenti moli sphaerae Martis in Tychonis hypothesibus; vel, ut etiam in Copernico crasse loquar, vereor ut Mars id punctum, si non sit ipse Sol, ex oculis amittat. Tale enim punctum est quasi communis paxillus vel axis, a quo tres rotae seu sphaerae Saturni, Jovis et Martis circumportantur in Tychone. Fieri potest, ut his verbis aliud quoddam innuere voluerim, sed polo multis conjecturis te confundere; mitto ista, si te impediunt. Non possum tamen praeterire verba tua: "Sol non est imaginarium punctum, et tamen eius motus ut verus ita et medius consideratur." (v.s. p. 64.) Haec sunt verba se ipsum confundentis. Audi Fabrici: cum dico Solis motum medium, dico motum alicujus puncti, quod ante pone, supra infra Solem est. Imaginamur enim, eccentricum Solis moveri, ut centra ejus et mundi coeant; quem igitur situm et motum Sol in illo imaginario sphaerae situ et motu esset habiturus, cum dicimus locum et motum medium Solis, non quod ipsum Sol unquam conficiat.

Aliam jam affers objectionem: vereri te, si centra planetariorum orbium sint extra Solem, ut accessu et recessu eclipticae latitudines varientur. Nescio, quid velis. Quem dicis accessum et recessum eclipticae, in pro-fundum an in latum? Ego nihil video, quod latitudinibus officiat. Forte tibi hoc suboluit quod apponam, quamvis mea opinione extra oleas. Sit A Sol,

CD linea in plano eclipticae EF, B centrum eccentrici extra Sole. Hoc posito C apogaeum longius ab FE ecliptica digreditur, quam D. Hoc quidem vere ita fit, at non ideo anguli mutantur, sed manent iidem FAC et EAD. -


Nullus planeta vere duplicem habet eccentricitatem, nisi forte Luna in oppositione et quadratura, sed unam simplicem realem. Quam vero aequantis eccentricitatem dicimus, non est ista in planeta ipsa, sed nobis mensurandi causa ea fictione opus est. Planeta vero inaequalitatem illam conficit intuens in tale aliquod punctum eccentricum, unde diversae distantiae a Sole, fonte virtutis moventis.

secundum quas etiam in diversa incitatione est et sic longiores moras nectit

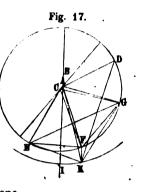
in arcubus viae suae acqualibus. Quare Sol longius vere (non apparenter) in apogaeo moratur quam in perigaeo; ad elongationem igitur virtutis concurrit physica et optica causa tarditatis motus. —

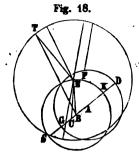
Haec sequentur responsiones Kepleri ad quaestiones Fabricii diversissimas, quas locis supra citatis inseruimus. In fine epistolae redit Keplerus ad Martem, his Fabricio (ut prius Magino) rationem suam procedendi explicans, quam secutus est Cap. XVI. et XLII. Comment. Martis: Jam ponam, quae duo toties a me petis.

Sit A Sol, B centrum eccentrici Martis, C centrum aequantis, AG, AF, AE, AD quatuor loca Martis in quatuor oppositionibus cum Sole veris. Ex quibus dantur anguli ad A. Anguli vero ad C dantur ex mutua tractatione quatuor anomaliarum verarum simplicium, temporibus respondentium, etsi falsus sit hisce seculis motus anomaliae, modo vere constet, ut constat quidem, restitutio integra quam proxime. His datis primum pone aliquam anomaliam pro vera, et sit illa vera, quam dant usitatae tabulae; ponuntur ergo anguli HCF, HCG, HCD, HCE. Secundo pone aliquod apogaeum seu potius aphelium;

ponatur id primo, quod dant omnes tabulae. In triangulis igitur F, G, D. E super communi AC stantibus dantur omnes anguli; assume AC in quacunque mensura, puta 100000, et computa latera AF, AE, AD, AG in proportione AC. Habes triangula DAE, DAG, GAF, FAE, in singulis duo latera cum comprehenso; quaere ergo et angulos ad bases. Quando ergo composueris AFG, AFE, item ADE, ADG, debent hi duo oppositi D et F in quadrilatero in circulo aequari 2 rectis. Si non aequantur, mutanda est positio posterior apogaei, retenta positione priori anomaliae, idque faciendum toties, donec bini oppositi in quadrilatero aequantur duobus rectis; et tunc scio, quod positio apogaei (posita hac anomalia media) vera sit. Nulla arte scitur, sitne progrediendum an regrediendum apogaeo, oportet periculum facere. Semel autem animadverso quid proficiatur in aequandis duobus oppositis quadrilateri cum 2 rectis, si progrediamur vel regrediamur, et quantum etiam, jam nobis sunt oculi aperti ad proportionaliter semper propius accedendum. Quando ergo F, D duo recti sunt, h. e. quando per motionem et variationem apogaei D, E, F, G acumina angulorum in circulo fuerint recte, jam accedendum erit ad probandam priorem positionem anomaliae simplicis, verane fuerit an falsa, in hunc modum : in \triangle GFE dantur latera cum comprehenso F, quaere basin GE cum angulis adjacentibus; et cum scis, quod GBE sit duplus ad GFE, quia in centro, ergo dantur in GBE, ex latere et angulis crus GB vel BE aequalia in proportione AC, quod serva. Rursum in \triangle GAE ex GAF et FAE junctis datur angulus GAE, et latera AE, AG dabantur; modo et GE dabatur, poterisque quaerere propter consensum ex GA, AE. Dantur hinc et AGE, et prius BGE, junctim ergo BGA (potest esse casus, ut subtrahendi sint 11). Ergo in △BGA dantur BG, GA, ∠BGA, quaeritur BA, et GAB. Ponebatur autem et verificabatur prius GAC, GAH ex apogaeo, est n. anomalia coaequata hujus loci. Si ergo EAH et EAB aequales, verificata est positio prima quoque; et sic porro. Sin minus, o improbum laborem, tunc oportet novam facere positionem &c. — Ubi per secundam positionem iterum ad finem est ventum.

tune aestimatione facta, quantum BAE, CAE in utraque positione different. poterimus propius accedere. Semper iteranda operatio, quia non admodum proportionaliter causae cum effectionibus incedunt ob multiplicem mixtionem, Ita tandem et anomaliam simplicem, i. e. motum simplicem, et apogaeum per "quasi"-regulam, non vere regulam et merito quadrate falsam, quia 2 positiones probandae, expiscabimur. Tunc nobis licebit accipere EB totum sinum et ex eo AB, BC, AC tantas, quantum fert proportio inventa. --


Ad alterum, quod petis. Sit A Sol, C centrum viae Terrae, B centrum viae Martis, K ipse Mars, ter eodem loco post integras revolutiones, E. F. G Terra in primo, secundo, tertio loco, ad quae loca Solis vera EA, FA, GA, loca Martis visa EK, FK, GK, vel AEK, AFK, AGK remotiones visi loci Martis a vero loco Solis. Sit autem AK locus Martis ex Sole cognitus sub zodiaco quocunque modo (ut si sint 4 sociae Martis observationes post 4 revolutiones Martis integras et Mars semel in oppositione vera cum Sole, tunc datur AK ad omnes 4 vices). Scitur itaque KAE, KAF, KAG; anguli ergo omnes horum triangulorum cum AK communi latere sunt cogniti. Sit AK mensura quaecunque, dabitur EA, FA, GA in illa proportione.


Satis jam nobis Mars profuit; cetera in ipso orbe Solis vel Terrae. Dantur anguli EAF, EAG (FAG) ex locis Solis, ergo et bases EF, FG. EG et basiales EFA, EGA, FGA, quare differentia EGF. Sed ECF est duplus, quia C centrum, G in circumferentia, ergo in ECF isoscele dantur anguli et basis EF, quare et CF crus et EFC basialis; prius autem dabatur et EFA basialis et FA, ergo differentia CFA cum cruribus CF et FA. In triangulo igitur hoc datur CA eccentricitas in proportione FC, et FCA. distantia apogaei ante locum Solis.

Si ex FC fit 100000, quid ex FA basi? et ex CA eccentricitate? Utere lectissimis et circumspectissimis observationibus, et confide, quod intra 1700 et 1900 debeat prodire eccentricitas, aut tu male es operatus.

Jam vale. Nam mihi jam, crede, parum otii est, dum adorno Partem Astronomiae Opticam et feriae incidunt. Deus te tuosque tueatur.

Fabricius quamquam in prioribus literis (30. Jan.) agnoverat, "Kepleri hypothesin bone fundamento niti" &c. et in posterioribus (d. d. 1/11. Feb. 1603) his verbis alloquitar Kepleram : "Literae tuae mihi sunt idem, quod olim Graecis Apollinis oracula," tamen in his ipus literis ad priores Kepleri respiciens haec dubius affert : Hypothesin tuam novam in Marte secogitatam prioribus literis ut imperfectam taxavi ; jam constituis "veram" et "vioariam". Sed mi Domine, cur non unam quae omnibus satisfaciat constituis? (Keplerus in margine ; Jam est una constituta). Hoc artis opus esset et veritatem illius demonstraret. Quae quaeso causa est in ista hypothesi, quod in parallaxibus enucleandis 2240 partes auferre ab eccentricitate cogaris ? Ego inde puto evenire, quod in Solis vero motu centrum eccentrici figas idque supra Terram et sic lineae distantiarum Martis a Sole a Terra longins provehantar, quam re vera debent ; igitur postea auferre te oportet, ut eo propius Mars Terrae admoventur. Égo proprium orbem annuum Marti fabrico, cujus centrum sit infra Terram ad dimidiam eccentricitatis Solaris distantiam, et facio in eo motum centri parallelum motus medii Solis lineas. Sic inter centrum tui orbis annui et mei intercedunt 3600 partes in orbe Solari ant 2240 respects orbis Martis. (Keplerus: per multiplicationem facile est viam transformare.) Hace tibi bona et Uranica fide communicare volui. Hic (Fig. 18) duos diversos orbes vides : DFG orbis Solis taus, A centrum ejus, distans a Terra 1800 ut vis ; KES orbis annus meus, B centrum infra Terram ad dimidiam eccentrici Solaris magnitudinem. Centrum

eccentrici Martis in E puncto, BE parallela motus medii Solia. Distantia A et B centrorum utriusque orbis acquat eccentricitatem Solis integram.

Nota: Semidiameter minoris circelli acquat distantiam centrorum utriusque orbis; Solis quidem (absque acquante) et mei 1^{1}_{2} eccentricitatis Solis. Hinc etiam indagari poterit causa utriusque eccentricitatis in Marte idque melius quam in tua.

Cum igitur in parallaxibus tu ad centrum A totam parallaxin inquiras, quae ad C, deinde ad B inquiri debebant, hinc fit, ut quanto centrum eccentrici Martis in Sele altius a Terra profertur quam debeat, videlicet ad quantitatem AB (ratione hypothesis), tantum oportet te rursum detrahere ab eccentricitate, vel quod idem est a distantia Martis a Terra, ut verum parallaxeos angulum consequaris.

Hic tibi ostendo veram causam tuae subtractionis, quam tu ex tua hypothesi commode defendere non poteris, et sic vides, centrum eccentrici in alio orbe vehi et frustra aequantem Soli tribuis. Si mea Uranica scripta apud me fuissent, omnia fusius declarassem. Hanc hypothesin multis nocturnis et diurnis cogitationibus effinxi et puto veritati responsuram. Constitueram eam hic ruditer effictaln calculo comprobare, verum incidentes belli motus impediverunt; attamen valde placet, cum non vicaria hypothesi opus habeat, ut tua.

Commensurationem a me in hac constitutam quantum in memoria teneo adscribo: Eccentricitatem Martis simplicem accepi 20050, semidiametrum majoris circelli 16260, minoris 3790; distantia centri orbis a Terra ad ¹/₂ eccentricitatis Solis constituta. Anomaliam Martis aequabis per angulum CEB, per cognita latera CB, quod dimidiae Solis eccentricitati aequale et BE radium et angulum ECB. Quaeso examines et calculo comprobes. Ego reductione Tychoniana ad tempus hoc usus sum et etiamnum utor, quare in hac hypothesi idem tu facias necesse est. Exacte omnia nondum ut dixi (ob illatum his regionibus bellum) constitui. (Keplerus: Ego vero non praeconcipio integram hypothesin quam postea comprobem; plurima pono principii loco, inde sequor observationes.) Sic tu aperte vides, Martem non verum sed medium Solis motum eccentrici sui centro aemulari. Exspecto tua fulnina imperterrito animo. Mihi placeo in mea, ut tu in tua. Miraberis imaginarium illud punctum vel centrum eccentrici tantum posse quam Sol in tua potest. Non dico quod tuus calculus in Marte a vero declinet, nondum enim hace comprobavi, et dico, hypothesin tuam imperfectam esse, cum ex una motus mensurare non valeas, nec subtractionis 2240 partium ab eccentricitate Martis rationem demonstrabilem reddere poesis. Potest etiam hace mea ad verum motum accommodari, sed nondum tentavi. Quaeso mihi tuum judicium censuramque libere et ingenue patefacias.

Has sequebantur literae Fabricii d. d. 10/20. Februarii, in quibus Martem intactum relinquit, sicut etiam in literis d. d. 14/24. Martii. In literis vero d. d. 7/17. Maji 1603. haec legimus:

Miror et valde miror, praestantissime D. Keplere, te tanto temporis spatio nihil literaram ad me dedisse, cum tamen ternas ant etiam plures interim diversis temporibus acriptas a me acceperis, quas tibi a Cancellario Ostfrisico D. Thoma Francio, tni amantissimo, probe traditas fuisse nihil addubito. Si vero redditae non essent, ab ipso vel ejus secretario repetere eas poteris. Dedi quoque alias D. Andreae, Domini Minquiti secretario.

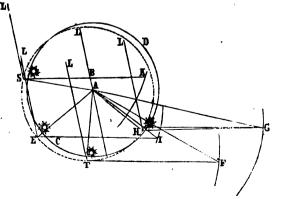
Contenta priorum literarum non repeto, cum multa sint, addo tantum pro more et amore Uranico nonnulla.

In enucleatione lateris, quod in orbe annuo parallaxibus subtenditur, tu diversos modos in literis videris indicare, quorum tamen nullus (si modo sententiam tuam recte percepi) veritati respondere deprehenditur: vel ex loco Solis vero et dimidiae eccentricitatis Solis latere et semidiametro orbis; vel 2) ad mediam anomaliam addis dimidiam aequationem, et nescio quibus lineis eam applices; 3) dicis, eodem modo investigari. illud latus, quo distantia Martis vera investigatur. Jam non intelligo, quomodo haec consentiant, et cum tu Copernicanam hypothesin in Sole retineas et omnia invertas, eo minus omnia apte cognoscere potai. Faceres igitur meo judicio rectius et utilius, si ad systema Tychonis vel motum Solis omnia constitueres et unum eumque exactam mihi modum (quem sequendum putares) ostendenes. Qua de causa te hisce rogatum volo, si vacat; sin minus, nolo te gravare $\pi aqeeqyws$.

Quae de hypothesi a me constituta ante annum vel 1⁴/₃ tibi proxime significavi, etai nondum exacte comprobata, quomodo tibi placeant scire cupio; ego certe mihi placeo in ea. Tu retinendo orbem Solis ad salvandos motus Martis in labyrinthos incidis et varia imaginari cogeris, jam addendo jam subtrahendo vel hoc vel illo modo angulos transformando. Vers hypothesis ils non indiget, hoc certas sum, nec ulla in contrarium argumenta valebant, al veritatis rationem habere velimus.

Jam Fabricius quaestiones affert de rebus astrologicis meteorologicisque, brevi post antem (d. 18/28. Jun. 1603) ad Martem redit, praemissis et solebat querelis ob Kepleri sientium. Keplerus ad priores literas (d. d. 18. Nov. 18. Dec. 1602, 9. 11. et 20. Feb. 1603) simul respondit in longieri illa epistola (paginarum in folio 26), data 4. Jul. 1603, quam diximus et ex parte excerpsimus Vol. I, p. 324 et Vol. II, p. 95. 414. 433. 752.

Quae ad Martem pertinent, haec sunt :


Ad ea, quae scripsisti 8. (18.) Nov. primo. In sola latitudine Martis haeres. At interea scripsi de ea sufficienter ex fide observationum Tychonis.

Ad eas quas scripsisti 8. (18.) Dec.: Placuerat bisectio eccentricitatis Solis, nunc eam accusas perversae hypotheseos Martis. Movet te hypothesis non sibi sufficiens, sed adsciscens quasi in auxilium alteram succenturiatam, quae falsa sit. Audi Fabrici, sola vera sibi sufficit, sed tu et ego ejus nimium operosa dictata nequimus exsegui. Summa haec est : Mars circulari lege Soli appropinquat, aequales epicycli arcus conficiens temporibus aequalibus. Ad singula vero momenta sui accessus ad Solem mutat modulum suae celeritatis. Nam in apogaeo tarde (circa proprium eccentri centrum) volvitur. Et tamen ad singula momenta distantiae suae a Sole monstrat certum suae celeritatis modulum. Collectione igitur omnium distantiarum, quae sunt infinitae, habetur virtutis effusae certo tempore . summa, igitur et emensi circa centrum eccentrici (adeoque et circa Solem) itineris. Ito tu jam et vel infinita ejus viae puncta, vel arcus in minutissima sectos, puta in dena scrupula, computa: invenies idem, quod ego invenio ex hypothesi vicaria, vix dimidio scrupulo deficiente. Égo vero citius ero expeditus: tibi ab apogaeo incipiendum et per minima erit eundum, quare immanem laborem hauseris. Ad compendiosam vero solummodo calculationem genuinae hypotheseos et cujuslibet loci eccentrici seorsim sine diductione per minima usque in apogaeum aliquid mihi deest: scientia geometricae generationis viae ovalis seu facialis (µeremoneedovo), ejusque plani sectionis in data ratione. Si figura esset perfecta ellipsis, jam Archimedes et Apollonius satisfecissent.

Ego primum meam bisectionem genuinis et propriis principiis demonstrabo; sic ipsam facile hac criminatione corruptae sphaerae Martis sum liberaturus; adeoque in tuam gratiam transformavi hic omnia in formam Tychonianam sic, ut pomposa Tychonica sedem occuparet mediam, Copernicus ad lateris angulum se receperit.¹³) Principii loco pono, Martis motui

vero in eccentrico nullam aliam inferri variationem, quam apud Tychonem annuam a Sole circumlationem, apud Copernicum plane nullam. Id non tantum ab omnibus omnino astronomis est receptum, sed et rationi consentaneum. Ergo post integras anomalias Martis, quae certo dantur in tempore ex confessione omnium, erunt anguli AHG, ATF &c. ae-

Fig. 19.

quales, et lineae HG, TF &c. aequales, ubicunque Sol sive Terra in suo orbe consitat longe vel prope. Sunt autem HL, TL &c. omnes parallelae, quia apogaeum insensibiliter interea procedit. Neque tantam GH, FT &c. lineae aquales erunt, sed etiam si ex Martis locis in medium Solis locum lineae ducerentur; quod addo, ne tibi suspicionem moveat, quamvis haec mentio meo instituto non sit necessaria. Tertio ex calculo Tychonis dantur vera loca linearum AH, AT &c. sub fixis, quare et anguli HAT, TAE &c. vel in Copernico $\partial \alpha \eta$, $\eta \alpha s$ &c. (fig. ad Cap. XXIV.). Quarto ex observatione dantur certissima loca linearum AG, AF &c. sub fixis ad omnia loca Solis. Quinto ∂ , η , e, ζ vel H, T, E, S praesupposita sunt esse sensibiliter in uno circulo. Quare his plane assumtis, non pluribus non paucioribus, necessitate triangulari datur proportio omnium AH, AT &c. ad HG, TF &c. Id etiam tentavi ductis rectis ex σ in locum Solis medium, secundum eccentricitatem 3600. Nam inventus est ille medius Sol inaequaliter distare a Terra ideogue non vere esse medius Sol.

Porro ex datis longitudinibus AH. AT &c. sic ordinatarum plane necessario sequitur certa aliqua eccentricitas eaque 1800 proxime, plane ut et ratio naturalis suadet. Hic te, Fabrici, virum praesta et non illa Christmanniana argumentandi forma me oppugnes (comp. Vol. II, pag. 431), cum principia videas ob oculos, quibus dissolutis ruet quod superaedificavi, stantibus stabit contra omnes Martiae hypotheseos furores. Nam ut jam pergam, stantibus his stabilitur una locus lineae HG sub fixis (quamvis hic etiam ex observatione haberi possit, si altera ex his 4 observationibus sit anorunos, ubi Mars exuitur parallaxi et spectatur in suo vero loco eccentrico. in quo etiam est post integras revolutiones, ubicunque tum Sol sit), stabilitur etiam proportio GH ad quamcunque ex $A(\alpha)$ ad radium ejus circuli, in quo sunt omnes H, T, E, S vel omnes θ , η , s, ζ . Consimili plane methodo invenitur eadem distantia o (), si o sit circa apogaeum, et si sit circa perigaeum et si circa longitudines medias. Comparatione igitur facta invenitur EO eccentricitas et HG longior, quam ut vel in hoc vel in altero semicirculo stare possit. Unde discitur, Martis motum esse figuram ovalem, quod rursum physicis rationibus apprime consentaneum est. Quare si motus intenditur cum appropinquatione d et (), statim sequitur, ut hactenus quidem geometria fuit exculta, o locum eccentricum computari non posse compen-Quaeritur ergo punctum circa B, circa quod quamvis imaginarium diose. calculus compendiose procedat. Id autem quaerere necesse non est. Jam enim inventum est, cum acronychiarum observationum calculus per quaternas observationes institueretur.

Quid hic, quaeso, duplex Solis eccentricitas? Age paciscere mecum, utere Tychonica antiqua hypothesi acronychiarum, quae omnibus locis ad 7' circiter satisfacit dissimulato hoc errorculo. Postea utere hac forma demonstrationis, et sit tibi H locus Solis medius et HAT vel $\partial \alpha \eta$ anguli ex mediis motibus Solis prodeant, invenies nihilominus AH, AT &c. inaequales et eccentricitatem 1800, cum illas aequales, hanc nullam esse decuerit. Invenies E \odot eccentricitatem eccentrici longe aliam (saepius et in vario σ situ, in apogaeo, perigaeo, longitudinibus mediis ex B oppositis, iterata tota pragmatia) quam habiturus es in hypothesi acronychiarum, invenies duas σ a B distantias in mediis longitudinibus oppositis, breviores quam est HG(?). At quia omnia ad medium motum Solis reduxisti, invenies longiores in altero semicirculo, quamvis aequaliter ab apogaeo distent. Et alia

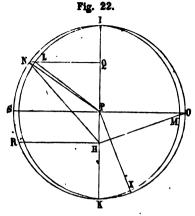
multa anomala contingent. Occurrendum est etiam sic tuae suspicioni: si causa ancipitis hypotheseos (quam tamen jam explicavi) esset in eccentricitate Solis, certe apogaeo o et 💿 48º distanti: impossibile igitur esset. ut mihi idem in uno semicirculo prodiret, qui continet apogaeum (), quod in altero, qui perigacum () habet. Atque ecce, in sequentibus tu te ipse arripis tibiqué objicis ipsi, utramque inaequalitatem ab eccentricitate et () et d a suo incipere principio et confundi (v. s. p. 71), quamvis tu in alia materia usurpas. Nempe per apogaeum (•) speras acquantem Martis tollere, frustra hoc ipso argumento, quod aequans ex nudis acronychiis exstruitur, ubi () plane nihil facit, sed est, ac si d ex ipso centro mundi spectaretur. Mi Fabrici: gratiam quidem meretur toum veritatis studium et sollioitado. Ceterum haec res non agitur conjecturis et suspicionibus talibus. In aeternum nihil certi nancisceremur, nisi aliqua certa et firma praemitteremus. At tu putas, quod ego prius mihi fingam aliquam concinnam hypothesin, in ea exornanda mihi ipsi applaudam, postea demum illam ad observationes examinem. At longe falleris. Verum est, ubi hypothesis observationibus exstructa et confirmata est, postea mirifice gestio, si in ea naturae aliquam concinnitatem inveniam. At nunquam antea plane concludo. Ego sesquianno prius mihi de bisectione eccentricitatis somnia physica finxi, quam plane concluserim. Nam pro 1800 semper 2300 prodibant. At errores erant in observationibus male deductis ad eclipticam, quas tanto post tempore demum deprehendi. lis sublatis celerrime 1800 prodiere, et ex omnibus pragmatiis, quarum nos minus sex, quasdam senis instructus revolutionibus pertractavi. Tunc sane mirificus apud me ortus est consensus, concurrentibus confertim et cum impetu mentis hinc observationum, inde physices ratiocinationibus.


Nam ut tua quaestionum vestigia continuo sermone sequar: Fig. 20. scito (et puto me jam saepins inculcasse), aequantis causam esse quoixwrarm: non tamen ejus aequantis, quo nobis ad compendia calculi est utendum. Nam is per suam ipsius causam, qua locis eccentricis satisfacere demonstratur, arguitur falsitatis circa dispensationem distantiarum et viae planetae. Requirant acronychiae eccentricitatem AB, aequantem BC, Edocebo ego ex causa physica sine parallaxium auxilio (quamvis hae me primum docuerint) ex AB, BC inquirere quantitatem DE verae eccentricitatis, quae est dimidium de DF paulo breviore quam AC. Haec DE vera eccentricitas dabit ם veras distantias et viam d veram atque etiam loca d vera, sed laboriosissime.

De latitudinibus Martis satis inquiete. Prius placueram. Si via longitudinis, inquis, est ovalis, poterit et via latitudinis esse tortuosa, quare reductio Tychonis vera, tua vero, Keplere, opinio impingit in malam eccentricitatis ordinationem. O praedatorem! quam egregie mihi fugiendo negotium exhibes, nullam munitionem obsidens, nunquam aperto Marte congrediens. Quid opus suspicione? Ovalem ego figuram primum ex observationibus demonstravi, postea naturali speculatione roboravi, sic ut ex duobus aequalissimis principiis unum tertium inaequale prodiret. Tu si tale quid praestiteris cum tua tortuosa latitudinis via, viceris, et ego inutiliter Tychonica taxaverim. At qui possis, cum haec tortuosa via latitudinis sequatur ex mea hypothesi longitudinis, quae nondum est eversa, ne quidem obsessa? Nam tu quidem contra eam solita pila jacularis, suspiciones inutiles principium petentes. Id proba, male habere meam eccentricitatis ordinationem, destructis iis, quibus videas superaedificatam.

De acquipollentia hypotheseon sentio plagam in digito pedis minimo. Fateor, minimum aliquid mutandum est in dimensionibus, ut acquans Ptolemaicus et epicyclium Copernicanum paria faciant. Neque sic tamen plane acquipollebunt, si quis infra secunda scrupula posset descendere. Causam quaeres in Copernico, ubi de trium superiorum inacqualitate in genere agit.

De miraculosa, ut ais, Martis latitudine identidem tibi repeto, nihil me ex mea bypothesi dixisse, adeoque ne quidem tentasse, sed ex ipsissimis observationibus cum esset Mars in X. —


Revocas me (in literis d. 1/11. Febr.) ad theoriam Martis. Sapra multa. Sequar te tamen. Causam petis probabilem, cur, postquam constitui acronychia eccentrici loca per certam eccentricitatem, ab ea postea in quaerendis parallaxibus aliquid demam? Respondeo : vitium omne ne sic quidem abest, cum aucta utar eccentricitate, nec plane loca ad unguem reddi possunt, si libet angesodoyeer: sed esset utendum justa eccentricitate, sed per operationem plani ellipoidis seu metopoidis. At per vicariam et auctam eccentricitatem compendiosius et intra sensus aubtilitatem descenditur. Aequipollent enim secundum magis et minus variae hypotheses. Primum, si utaris immanissima eccentricitate, nihilominus in apogaco et perigaco loca sequentur, dummodo apogaci locus et revolutionis tempus verum habeatur. Reliqua loca omnia vitiose prodibunt. Deinde per eccentricitatem totalem quatuor loca in apogaeo, perigaeo, intermediis constitues vere, deerit aliquid locis ceteris omnibus: sic tamen ut nihil impediti fuerint veteres hoc exiguo defectu in Lunae motibus investigandis. In 3 adhuc major eccentricitas Solis magnum in octantibus facit errorem.

Nam si BA tanta eccentricitas, quantam requirit BDA angulus aequationis maximae, tunc si BG, BD sint radii et GBC simplex anomalia, cadit AC nimis in consequentia, etiamsi AG, AD officium faciant. Ut ergo et AC plus in antecedentia secundum requisitum observationum inveniatur, oportet ducere AF et tamen manere GBC anomaliam simplicem seu mensuram aequalitatis; ergo sit sectio in F, quare FB minor quam CB, sit ergo aliqua aequalis CB vel DB radio, sit FE, sic ut FE, ED jam sint aequales. Itaque octo locis in ordinem redactis patet, qualiscunque hypothesis vera sit, haec tamen hypothesis una officium facit, etsi nonnihil reclamarent adhuc, quae

inter GF et quae inter FD, si major esset eccentricitas. At ut in Sole locus C, referens quatuor loca ex simplici BA eccentricitate, nonnisi $1^{4}/_{2}$ reclamat, ita jam in Marte sedecim loca intermedia minus reclamant: quamvis nec prius Solis, nec jam Martis hypothesis vera sit. Sit jam . (Fig. 22) INKO perfectns circulus Martis et HP vera eccentricitas. Et quia ex causis physicis HI est longior quam PI, tardus igitur est planeta in I motu circa Solem; aequabilis vero est motus in epicyclo, quo accessum ad Solem conficit (quia ille ex Sole alienus et hic proprius est, ille a vi per spatium extensa magis magisque attenuata, hic nutui similior nullam capiens intensionem causa spatii, quia in ipso planeta semper), praecurrit

igitar his epicyclicus Solarem in I. At si, ubi motus circa Solem tardus, ibi et tardus esset motus in epicyclo ad Solem, tunc INK perfectus circulus describeretur: jam, quia celerius descendit ad Solem. tardins circumit, ideo ingreditur ad latus Let hoc semper, usque in K tunc iterum coincidit. Atque ego omnino persuadeor, hinc nasci motum apogaei, nondum tamen consideravi. 'Exerceare, quaeso, mecum in dubium eventum. Esto ut 3 tam magnam capiat temporis periodum pro epicyclio suo aequabiliter conficiendo, quam magnum erat futurum tempus restitutionis circa (), si totum circulum perfectum permeasset. Jam vero, quia

hoc non fit, non enim INKO viam permeat, sed ILKM, et vere planum metitur tempus, ideo citius circa Solem vertitur & quam epicyclum absolvat, citins quam si in INKO circumisset. Quo enim propior Soli hoc celerior, propior autem in universum in ILKM. Ergo sic o capiens in I et K principiis periodi conjecturam celeritatis ex HI, HK, quasi totus circulus tit futurus, tardius venit ad initium et sic apogaeum promovetur. Atque baec causa esto, cur omnia planetarum apogaea in consequentia moveantur. Ecce quam feliciter pugnaverim; credis tu, me vicisse? Sane triumphum canerem, nisi me moveret proportio. Nam in d et g eccentricitas est maxima, celerrime igitur aliqua particula periodi conficeretur ab apogaeo, Solis apogaeum tardissimum esset. Id falsum. Ducentis fere annis absolveretur periodus apogaei 3, quia ILKNIOKM est fere centesima pars de INKO. Maneat igitur haec lis sub judice. Sed ad rem. Cum igitur ut planum ILKM sic tempora periodica (quia omnes distantiae sunt in plano circuli) accumulentur in I, K, apogaeo et perigaeo, et diminuantur in longitudinibus mediis, quare si totum tempus periodicum dividamus per planum circuli, prodibit valor lineae, quae minor est quam PI, major quam PL. Prinsquam hoc pertexam, oportet aliquid interponere. Prins enim a vicaria hypothesi in perfectum circulum & motumque physicum, inde a perfecto circulo in veram deficientem a circulo orbitam es traducendus. Igitur quia BA (Fig. 21) nimis est magna eccentricitas, quam ut a parallaxibus annuis tolerari possit (in hoc enim nodo haerentes Tychonianos inveni anno 1600. Februario. Processerat negotium usque ad parallaxes annuas et etiam ad latitudinem acronychiam visibilem. Haec duo non poterant conciliari a Christiano Severini), et quia Ptolemaeus invenit, dimidium ipsius BA tolerari in parallaxibus annuis, ideo conclusi ego de eo, quod jam pridem agitaveram animo, ex plano anomaliam simplicem esse desumendam. Sit enim anomalia simplex IHO (Fig. 22) et eccentricitas PH sit dimidium de BA (Fig. 21) et sit jam IPO rectus. Sicut ergo IPO est quarta pars plani, ita quarta pars anomaliae (h. e. 90°) ablata ab anomalia majori IHO, relinquit planum trianguli PHO, cujus angulus HPO et PO latus dantur. Prodit ergo PH, quare et POH. Est autem POH aequationis pars una seu optica, imminutio sc. anguli IPO, ut sit IHO. Contra planum IPO est aequationis pars altera seu physica, excessus sc. temporis seu anomaliae simplicis IHO Koplari Opera, III.

quia addis, te sperare satisfacturam observationibus, et cogitationibus effinxisse: non faciam, inutilis labor. Es etiam irritandus. Ego vero non ut tu praeconcipio integram hypothesin, quam postea probem bona spe. Nam fallet nos aeternum spes haec. Pauca pono principiorum loco, inde sequor observationes.

Ad ultimas 7. (17.) Maj. 1603.

De computanda distantia Solis et Terrae quereris, te confundi tribus modis, unum optare. At ego ne confunderem, tertio loco te ad similitudinem quaerendae distantiae Solis et Martis ablegavi. Ipse vero primus modus, si minuta sectemur, habet hanc ipsam similem operationem et verissimus est. Secundus vero compendiosus quidem et in sensum nihil peccat, distrahit tamen Solem in operatione a similitudine ceterorum.

Igitur hoc habe praeceptum: cognito vero loco Solis si cupis ejus a Terra distantiam cognoscere, primum vide, quantum ab apogaeo distet; deinde adde huic distantiae ab apogaeo dimidiam aequationem ejus loci; tertio dic: ut sinus hujus auctae distantiae ab apogaeo ad totum, sic sinus illius verae distantiae ab apogaeo ad distantiam Solis et Terrae. In Marte puto propemodum idem locum habiturum, tu ipse periculum facias. Sin autem nimia eccentricitas non fert hoc compendium, mane ergo in proprio modo Marti adscripto.

Fabricius, non exspectans Kepleri responsa, die 18/28. Junii haec dedit Keplero: Juxta tuam hypothesin exempla aliquot c_{1} calculavi, sed veritatis scopum non attigerunt, quod speraveram fore. Video nondum sufficere tuam hypothesin observationibus. Ego ex variis exemplis cognovi, motum quendam annuum commensurabilem Solari inesse Marti. Acronychia respondent hypothesi, at in locis extra acronychia non item. Non sufficit, aliam ponere eccentricitatem pro distantiis in circulo Martis, sed oportei etiam motum commutationis Martis annuum considerare, in quo omnis diversitas latet, non in ipso orbe aut orbis Martis dimensione, sed orbe annuo. Miror igitar, te in exemplis hoc non animadvertisse. Vide exemplum: anno 1587. 9. Jan. h. m. erstat Tychoni c_{1} in 2° 47' \simeq ; 1602. 18. Junii h. 10. p. m. c_{1} juxta meam exactam observationem in 27° 43' m. Tua hypothesis dat 28° 12' m, si recte memini. Sic etiam in aliis quae adhibui exemplis.

Quare ut diligentius tuam hypothesin consideres moneo, et motum commutationis exactine et penitius examines. Haec sane cum per calculum vera adinvenerim, libere tibi scribere non sum veritus.

Miror, Copernicum, Regiomontanum, Ptolemaeum et alios ex observatione aliqua semidiametri orbis annui proportionem ad orbem Martis inquirere voluisse, non aliter ac si in ceteris ita quoque esset, cum tamen ex universis exemplis longe alia detur semidiameter orbis, idque juxta quam virtute distantiarum (de acronychiis nunc loquor, ne distantiarum mutatio in aliis locis nobis hic quicquam obliciat), si distantiam acronychiam sumseris, angulum parallaxeos et angulum commutationis verae vel distantiam \mathcal{J} a linea coaequata medii motus (biduo ante vel post $\mathcal{J} \mathcal{J}$ et \odot), et sic a posteriori inquisiveris semidiametrum, ex his per proportionem anguli ad distantiam \mathcal{J} a \mathcal{J} datur semidiameter minima in perigaeo d' et maxima in apogaeo, propterea quod hie longior illic brevior distantia sit. Quaare, quomodo Copernicus adhibitae distantiae d' adminiculo veram proportionem orbium adinvenire potuerit ? Cur semidiametrum orbis semel inventam ubique retinuerit, cum hoc nequaquam fiat re vera? Examina tu omnia acronychia loca, vel pottus quae biduo ante vel post & veras contingunt, ergo vera semidiameter semidiameter vera non erit, nisi quae ex media distantia of 10000 datur in mediis locis, et retineri tamen in hypothesi nec potest nec debes; hinc quoque puto multum diversitatis accidere. Tu quidem semidiametrum orbis variam constituis juxta dimidiam eccentricitatem Solis 1800; sed parum hoc est ad excusandam illam diversitatem, de qua ego nunc scribo, cum ea tanta sit, quanta est tota eccentricitas Martis. Quaeso mihi hunc nodum latius explices, nam me mire perturbavit. Ego in calculando nunc plura invenio, quam unquam putassem. Quaeso mihi ad omnia semel reseribas et de tuis hypothesibus ulterius advehas, praesertim quod ad semidiametrum orbis annui attinet, idque per exemplum.

His ex parte satis perplexis verbis addit Fabricius in schedula perexigua : "P. S. Quaeritur an inquisitio eccentricitatis non possit perfici per dimidios arcus et sinus in semicirculo,

qued Copernicus per subteness in toto circulo facit? Qued si fieri potest, quaeritur quemedo? nam ego magnam differentiam utriusque calculi invenio; quare unicum exemplum saltem declarando proponas. 2) Quaeritur, quemedo Tycho verum apogacum venatus fuerit, qued ego ex 3 acronychiis consequer? 3) & mediae in abace acronychie Tychoniano in tempore non se recte omnes habent."

His literis statim Fabricius sexto post die (4. Jul. 1603) alias subjunxit, quarum summa haec est: Gavisns sum magnopere, quod per te restitutus nobis esset Mars, sed gaudium meum post in majorem tristitiam conversum fuit, cum per experimenta varia cognescerem, observationes tuis hypothesibus non respondere.

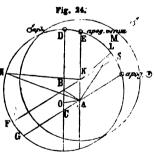
Deinde repetents exempla annorum 1587 et 1602 pergit : Cum tua hypothesis apud me in dubium venisset, ego inquisivi in illius fundamenta per observationes certas et cognovi metem d'adeo implicitum et varium, ut paene desperaverim de motuum restauratione per illum conficienda.

Tu duplici correctione inaequalitati σ consulere vis: 1) correctione distantiarum a Sole 2) orbis annui. Ego omnino puto, distantias retinendas esse (cum in prosthaph. acronychiarum optime respondeant) et posins de cause inaequalitatis orbis annui cogitandum esse. Tu vero ut erbem \odot loce epicycli σ habeas, ex una correctione duplicem facere cogeris et tamen d'aon satisfacis. Quare ut omisso orbe annuo \odot proprium σ fabrices suadeo et res ipsa jubet, cum coelo non satisfaciat. Nam hanc solam esse causam duplicis tuae hypotheseos constituendae video, quod σ orbi annuo alligare vis; facis idcirco dimidiam eccentricitatem \odot , ut σ sie consulas, sed frastra. Nam dimidia illa eccentricitas Solaris non satisfacit ad maequalitatem orbis excusandam nec mutilatio ille distantiarum a Sole. Quare ut retentis distantiis cogites primum de varietate epicycli vel orbis moneo. Inaequalitas a te constituta sine varietatem non excusat.

In margine addit Fabricius: quae de orbis inacqualitate, non ab apogaco () sed d' incipienda scripseram (delevit dimidium corum, quae in priori folio scripserat), falsa postea cognovi et paulo post (v. infra) clarius designavi.

Invenio maximam differentiam semidiametri orbis (retentis ubique distantiis eccentrici ex calcalo provenientibus) in apogaeo (); per acronychium o' illic existentis datur 6300, in anno 87. 8. Jan. 2° 47' —: Contra Marte in ipso hoc suo apogaeo existente datur epicychi semidiameter 6587 (anno 97.); in perigaeo Solis existente Marte anno 91. datur semidiameter 5700 circiter... Differentia semidiametri in apogaeo Solis et ipsius perigaeo ad 2° fere attingta. Causam hujus inaequalitatis veram ut dicas rogo. Debebat certe unus epicyclus omnibus distantiis adhibitis ubique convenire, sed non facit.

Etiam hoc tibi proponere placuit, quod in exercitationibus meis Martialibus cognovi, ex eccentricitate Martis et angulo inter 🕞 et 👌 apogaea interjecto quidquam provenire,

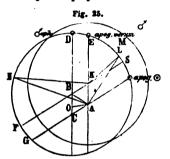

quod ulteriori specialationi inservire possit. Sit CB eccentricitas \mathcal{J} 11613, angulus BCA 53° 30' c.; ut ergo angulus A ad BC sic angulus C ad AB et B ad AC: 6907, quod fere convenit cum altera tua eccentricitate \mathcal{J} . Videtur igitur, Solem esse causam duplicis eccentricitatis \mathcal{J} vel impliciti ejus motus.

Deinde dicis, eccentricitatem distantiarum verarum esse 9165; at ex angulo inter duo apogaea \odot et \eth per eccentricitatem \circlearrowright 11613 datur 9500 (BA). Vide lgitur mi Keplere, quid haec tuae speculationi afferant, ut veras causas hypothesis tuae et ejus constituendae veram rationem tandem cognoscas. Certe si hac ratione quidquam a Sole et hoc angulo proveniret in Martis motu, tunc dubium non esset, mutato hoc angulo variari etiam aequantis eccentricitatem et distantiarum tuarum

eccentricitatem. Quodsi quoque aphelii d' lineam per punctum A (ac si illic Terra esset, non in C, ut hactenus opinati sunt) duxeris, videbis etiam normam motus et simul abditas canaas quorundam. At judico, epicyclum assumendum esse abjecto orbe Solis, et melius omnium ratio dati poterit.

. Miror cur non accommodes tuam restitutionem ad modum Tychonis vel Ptolemaei potius, gnod ut facias rogo; sic plures habebis tuae sententiae astipulatores aliquando.

Vide mi suavissime Keplere, haec candide, amice et libere tibi aperio, ut juvem tuos Herculeos labores, quos jam ipse per integrum mensem magno volumine consoripto expertus sum et eo magis miror. Ego in mille formis observationes accommodavi, sed per omnia mille consensere. Video cumium primo acronychia (3), ejus epicyclos val semidiametros



ita constituendos ex illis, ut exacte conveniant, et inde causa inaequalitatis indaganda in erbe annuo. Pest ad examinationem \Box et \triangle progrediendum, ut orbis inaequalitas magis apparent.

Quid de his sentias velim libere dicas, exspecto judicium. Ut tuam duplicem hypothesin ad unam redigus res fpss postulat, alias illa duplicitas arguit defectum aut infirmitatem tuarum hypothesium. Si vera est, oportet partes omnes toti et totum partibus convenire.

Proponitur tibi quaestio, Keplere doctissime: cur ex prosthaphaeresibus apogaeo ntrinque propioribus datur simplex vel tota eccentricitas d' major, et quidem in apogaeo maxima, contra in prosthaphaeresibus perigaeo O propioribus minor eccentricitas ? Differentia utriusque 1890, quales radius habet 100000. Majorem enim inveni ex distantia ab apogaeo O Tychoniano et prosthaphaeresi in apogaeo 20964, minorem 19074; media inde 20020. Si una et eadem semper manet et est eccentricitas d', unde haec diversitas ? Etsi tu ad implicitum motum utriusque eccentricitatis me remittas, nihil tamen efficies; varietas manet. Per priora etiam hoc adstipulatur ex apogaei O linea aliquid simpliciter motui d' variando. Licet illud in orbe O vix, quemadmodum putem, sed quod eccentricus d' ad dextram vel sinistram a linea apogaei O propior sit O.

Quaero quoque a te, abinam Tycho maximam semidiametrum orbis in d' invenerit ?

Quodsi CB fuerit 11631 (13), tune CA remotio Terrae a centro eccentrici C erit 6907, ut antea dizi, et tanto propior erit Terra semicyclio dextro et contra. Si vero CB tota eccentricitas fuerit 1855, tune OC fere, aequabitur aequantis eccentricitati, et tanto Terra prepior est apogaeo vero E, quam C est D et ideo forte d' duplicem eccentricitatem facit et in apogaeo remetus a Terra non ad integram eccentricitatem, sed ad 11613 tantum, demta toti aequationi parte aliqua, videlicet CO.

Haec praemissa et quae sequentur Fabricii verba quid valeant, aegre ob viri literas supra modum deformes assecuti sumus (comp. responsionem Kepleri et annot. 13). Quae ex reliquis encleare potuinus, haec sunt: Cogita tu ulterius de his. Et cum in prosthaphaeresi astronomi subsumant KL ut, radium, ideo etiam AK eccentricitas

latus datur quasi minus quam debet; sic cum KN major quam 1000 sit et tamen assumatur in prosthaphaeresibus constituendis ut radius, ideo ex minori linea etiam minus latus estentricorpm obtruditur angulo prosthaphaereseos.

Cum quoque motus acqualis merito ex B considerari deberet, nunc vero propter Terram in A, valor B veniet quodammodo ad K, ideo motus mixtus fit.

Hinc Fabricius ad alia transit (comp. I, 342). Brevi post (11/21. Aug.) monet Keplerum, ut cautus procedat in suis ipsius novis hypothesibus : "Uranicus ardor deferbuit multum, praesertim quod oleum Keplerianum nullum amplius lampadi nostrae suppeditetur. Audio, te Commentarium in Martis hypothesin adornare. Quaeso diligenter omnia tecum consideres. Videtur major motui d inesse anomalia, quam quis suspicari possit. Ego juxta tuas hypotheses aliquot d loca indagavi, sed minime coelo consentiunt, etsi propius quidem, quam ceterorum calculus.

Inaequalitas latitudinum acronychiarum tibi nova haud dubie consilia suggeret de longitudinis anomaliae causis et locis. Si serio animum applicueris, videbis me recte admonuisse. Anomalia magnitudinis epicyclorum vel annui orbis d et inaequalitas latitudinum acronychiarum anne sint conciliatae, tu videris. Qui causam diversitatis annui, orbis vere intellexerit et explicaverit, is longitudinis anomaliam non ignorabit.

Duplicem hypothesin of tu constituis, quod arguit imbecillitatem hypotheseos tuae. Si ratio vera motus of tibi perspecta fuerit, ad unam redigere poteris, imo debes." Denique d. 22. Dec. 1603. vet. st. scribit: video nunc, in multis me nimium a scopo aberrasse et meis imaginationibus nullo fundamento nitentibus deceptum fuisse. Si iisdem quibus tu fundamentis usus fuissem, jam dudum in tua castra transiissem. Sed defectus necessariarum observationum in causa fuit.

Habeo enim 2 saltem ad unum eccentrici 3 punctum observationes, quae praecisae, tertiam vero intra 12 dies obtinebo. Sic per 3 parallaxes 3 ad eundem locum eccentrici jurta tuum modum inquiram bisectionem illam tuam (tuam inquam) in 3. Quod vero rationem inquisitionis attinet, ante annum tale schema misisti (comp. p. 75). Dicis, AK quocunque modo cognoscendam esse sub zodiaco, fieri autem commode hoc posse, si acrenychia observatio fuerit. Concedo.

In ultimis literis (v. p. 84) imuis, Martis a Sole distantiam vel potius locum seb fixis AK, non ut praesuppositam, sed ex ceteris observationibus etiam inveniri posse. Quod

quamedo in hoo schemate fiat velim ostendas. Cupio quoque scire, ad quid cognitio trianguli FGE (Fig. 17) prosit, cum illius quoque singularem delineationem et mentionem, facias ? enfas tamen nullus necessarius usus hic videtur esse. Nam cognito angulo EKA, differentia se coaequati simplicis motus σ et apparentis ejusdem, sic angulo KEA, quem constituit differentia oppositi Θ loci, veri et apparentis σ , dabitur etiam EAK tertius et in proportione assunta AK dantur reliqua latera, maxime AE et in reliquis FA, GA, quorum cognitio

Postea ad orbem \odot procedis. Dantur anguli EFA, FGA, EGA, quare differentia EGF. Dicis in \triangle ECF angulum ECF duplum esse, sic nempe reliqui EFC et FEC in circumferentia manent prout acqualis motus postulat. At idem non meministi in \triangle EFA, ut sc. EAF duplicetur, quo ceteri EFA et FEA haberi possint. Quaeritur an non eodem modo, quo EFC invenisti, etiam EFA et FEA inquirantur. Cupio de his tuam resolutionem.

Non etiam video causam, cur 3 et 4 parallaxes adhibeas, cum ex una acronychia et alia ad idem punctum centri bisectio haberi posse videatur, ut ex AK et EK. Edoceas me iziar etiam in his mentem, causam et rationem taam. Futo, te singularia in his habere. Ubi plenam tuam de his resolutionem accepero, ego ex meis observationibus tribus (quarum una est acronychia) veritatem tuae bisectionis inquiram; quam si invenero, omnibus modis illam depraedicandam suscipiam tibique gloriam inventorins novae gratulabor. — Sed heus, praestantiasime Keplere, sunt adhuc quidam scrupuli removendi. Si bisectio in \odot vera est, tunc latera parallaxium annuarum Martis in orbe annuo Solis inquirenda sunt non ut in circulari, sed ovali figura. At latera illa juxta tuam hypothesin inquiruntur in circulo CKH non in ovali CIH (Fig. 23); num veritati observationum sic respondere dices? Et bisectio non erit vera, nam illa fundatur super motu ovali. vel ex eo oritur vel eum praesupponit, cum in \bigcirc motus sit evalis, ut tu vis, et hinc bisectio illa eccentricitatis pro distantiis \bigcirc veris calculandis oriatur; sic quoque contra, posita bisectio ei n \bigcirc , pro distantiis illius a Terra, ovalis quoque motus praesupponendus erit.

Hoc primum est, quod me dubium reddit. Secundum, quod in quibusdam exemplis juxta tuam of hypothesin calculatis, differentiam ad 20—30' adinvenerim. Videris tu quidem insuere, deesse tibi quaedam in ellipoide calculanda, sed non puto illa tantam differentiam facere posse.

Sunt in Hollandia excellentissimi artifices in geometricis, quales vix alibi tanto numero inveniri puto. Si possum tuo instituto et arduis conatibus mea opella aliquid adjumenti afferre, videbis me strenuam operam apud illos positurum. Quare mentem tuam clare explica et in diagrammate ostende significanter. Ego inter duos menses procurabo tibi ex Hollandia illorum responsa.

Die 26. Dec. 1603 v. st. (comp. Vol. I, p. 341. 345) scripait Fabricius : Cum eccentricitatis duplicis constituendae causa sit in Marte motus ovalis hactenus ignorata ratio, quam ta estendisti ex ovali, et in Sole duplicem quoque tu constituas eodem modo, sequetur Solem etiam ovaliter moveri, non circulariter, et propterea latera parallaxium annuarum \mathcal{J} in annuo orbe \odot non quasi in circulo sed in ovali figura etiam inquiri deberent, sicut distantiae \mathcal{J} in this hypothesibus nunc inquiruntur; at tu distantias illas \odot a \mathcal{J} ratione dimidiae eccentricitatis Solaris in circulo inquiris simplicitor, quod etiam ovali ratione fieri deberet ut in \mathcal{J} . Hinc forte (quod potissimum nunc tibi bona intentione suggerere volui) esse poterit illa differentia, quae adhuc latere videtur in tuis hypothesibus a coelo.

Praemissis Fabricii literis Keplerus respondit d. 7. Febr. 1604. (Comp. I. p. 342. ss. II. p. 97.) hunc in modum: Plurimum miror tibi nondum lectas (literas mense Augusto [Julio] 1603 scriptas). Ex eo tempore quinque aliae abs te mihi literae sunt redditae, quas scripsisti 18. 24. Junii (p. 84. 85.), 11. Aug. (p. 86.), 25. (22.) 26. Decembris.

In prima epistola lacessis Martem meum tuis de orbe annuo speculationibus et miraris, inaequalitatem orbis annui a me non animadversam. Respondeo: orbis annui, qui est orbis vel Solis vel Terrae, plane hanc ipsam inaequalitatem ex Martis observationibus deprehendi, quam artifices illi adscribunt, cum de motu Solis agunt, hoc demto quod eccentricitatem biseco. Praeter hanc, si qua in orbe annuo esset inaequalitas, ea atique a me fuisset animadversa. At quia satisfacio observationibus, nullam igitur superesse concludo.

Negas tu quidem, me satisfacere observationibus; producis 1587. 9. Jan.

Ego mi Fabrici huic ipsi omnino vicinissimam inter fundamenta adhibui (1587. 5. Mart. vid. Cap. XV.). Prodigiosum vero errorem, si soboles matrem non agnoscat. Itaque vide, ut calculo probe fueris defunctus; omnino enim ad ea revolvitur hypothesis mea per calculum, unde fuit exstructa.

Producis et tuam 18. Jun. 1602. h. 10: \Im in 27° 43' TP, ais meam hypothesin dare 28° 12', alibi 28° 6' (in literis d. d. 4. Julii.). Computavi, invenio \Im in 26° 45¹/₂' TP, lat. 0° 21' s. si bene computavi. Ergo tu deducendo observationem ad eclipticam integro gradu alicubi per oscitantiam auctus es, unde et latitudo vitiosa prodiit. Probo ex annis 85. et 89, quando \Im in consimilibus locis semper minus habuit in coelo et observationibus Tychonis quam in Magino. Hoc loco ergo non poterit plus habere; haberet autem, si tua observatio rite haberet. Vide ne gradum unum in instrumento numerando praeterieris. Scribe mihi observationem ipsam. Alterum enim argumentum duco ex latitudine. Mars causa eccentrici est in 7° 44' TP, ejus nodus in 16° 15' TP, ergo inclinatio circiter 18'; compertum enim habeo, quoties in nodum incidit, videri in ecliptica ubicunque Terra versetur. At cum sit pene in \Box \odot , parum differet inclinatio a latitudine. Falsum igitur, latitudinem esse 1° 15'.

Quaeris (p. 84.) cur Copernicus et alii inquirant proportionem orbium semel, quae tamen mutetur in omnibus locis? Respondeo: positis quae ponunt, recte faciunt. Sic autem procedunt. Primo inquirunt eccentricitatis Martis proportionem ad orbem, quem assumunt 100000. Deinde ponunt eccentricum et orbem annuum esse perfectos circulos. His habitis habetar ad quodvis momentum distantia centri orbis annui a Terra in proportione, qualium mediocris est 100000. Per hanc igitur certi loci distantiam eliciunt proportionem orbis annui ad iHam distantiam et sic etiam ad mediocrem 100000. Manet igitur haec proportio orbis annui ad 100000, at non manet proportio orbis annui ad quamcunque hujusmodi distantiam.

Ad alteras 24. Junii. Putas (p. 85.), te errare in inquirenda distantia. Solis et Terrae. Parum id est, quidquid est. Quamvis non sis erraturus, si ex praescripto agas, quemcunque modum sequaris.

Argumentaris, cum distantiae \mathcal{J} a () usitatae respondeant acronychiis sitibus, omnino esse retinendas. Non sequitur; nihil enim faciunt ad acronychios distantiae, etsi duplas sumseris, nisi forte ad latitudines, ex quibus quidem non satis accurate cognosci possunt. Jubes, ut Marti satisfiat, proprium Martis orbem condere; imo ne non satisfieret Marti, aliquis omnino in apogaeo et eccentricitate similis Soli fuit adhibendus et idem (si Tychoni credimus, parallaxes Martis jactanti) plane aequalis Solari; ergo omnino ipsissimus Solis. Ita putas ex eo, quod alligem Martem Terrae vel Soli, gemina mihi opus esse hypothesi. Imo hoc a me habet \mathcal{J} , ut jam non sit alligatus Terrae, quod, nisi sic alligarem (si haec alligatio est), ne triplici quidem aut quadruplici hypothesi ipsi fatisfacerem.

Quod tu semidiametrum orbis annui invenis jam 6587, jam 6300, jam 5700 (p. 85.), causa omnino potissima, quia ponis, quamcunque distantiam σ a \odot esse 100000. Debes antem ita ponere, ut illam per calculum invenis, in perigaeo minorem, in apogaeo majorem. Aut forte hoc tibi cavere videris sed ex falsa hypothesi, quam dxgorvyua monstrant non bisecantes eccentricitatem totam puncti aequantis, sed facientes eccentricitatem eccentrici 13000, cum deberent 9200 c. Ubi nota, Copernicum non eandem viam insistere cum Ptolemaeo. Ptolemaeus primum crasso modo, supposita simplici eccentricitatis hypothesi, quaerit eccentricitatem invenitque quintam semidiametri partem. Jam non expeditis omnibus circa eccentricum, statim accedit orbem annuum seu epicyclum in apogaeo et perigaeo eccentriciconstitutam, ubi param in longum aberratur, invenitque simplicem eccentricitatem prius crasse constitutam non posse ab epicyclo tolerari, nisi ex parte praecise dimidia. Jam igitur rursum aggreditur ordinationem eccentrici, et quasi per falsi regulam iteratis operationibus in una qualibet prosthaphaeresi constituenda sudat, donec eam sat praecisam esse putet. Aliter Copernicus et vitiose, hoc est minus docte quam Ptolemaeus. Credit enim acronychiis solis ron consulto epicyclo, putans se in hoc Ptolemaeum corrigere, et suspectam habens ejus relationem sine demonstrationibus observationum.

Puto te in altera assignatarum causarum peccasse, dum exstruis semídiametrum annui orbis. Accedit tamen et haec certa erroris causa: si Marte in certo loco eccentrici (existente), puta in long. media, bis exstruis orbern annuum. Sole non in eodem sui orbis loco versante, invenies hic quoque aliam atque aliam semidiametrum, quia re vera epicyclus Martis est eccentricus, h. e. nihil aliud quam ipse Solis orbis cum dimidiata eccentri-Propterea ego ex tribus hujusmodi diversis semidiametris orbis citate. annui quaero eccentricitatem ejus et apogaeum, et invenio hoc idem cum Terreno, illam dimidiatam Solis. Quod tu in triangulo rectangulo inter centra, cujus alter angulus distantia apogaeorum, invenis vicinum aliquem namerum meo numero, id plane accidentarium est nec quidquam movet. Nam si divellerentur apogaea longius, variaretur hic tuus numerus, manente mee ex acronychiis deducto, quod quidem ipse olfecisti. Miror tamen propinquitatem (9165, 9500), sed scio connexionem nullam esse. Triangulo hoc usus ego sum in Mysterio ejusque tabella majore aliqua. Ab eodem etiam incepi anno 1600 Martios meos labores, ut videbis in Commentariis. Dabitur opera Kabrici jamque cum Tychone conventum est, ut omnes

Dabitur opera Kabrici jamque cum Tychone conventum est, ut omnes demonstrationes in tribus hypothesium formis expediantur. (v. s. p. 85.)

Censes acronychion hypothesin prius exacte constituendam, tam quoad loca longitudinis quam quoad distantias; inde progrediendum ad varia loca orbis annui eaque inquirenda; et quaeris quid de hac tua methodo sentiam?

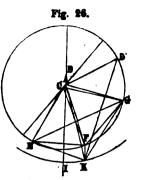
Omnino ab acronychiis incipiendum ob simplicitatem, quia loca statim ex observatione patent. Ergo invenienda bypothesis ex iis, quae locum eccentricum monstret ad quodcunque tempus, etiam cum non est ibi acronychia oppositio. De distantiis vero acronychiis non reddimur admodum certi, nisi nonnihil ex latitudinibus, ubi tamen praesupponuntur multa. Oportet ergo distantias venari ex parallaxibus. At si simplíciter procedas per unam parallaxin et locum eccentricum, duo praesupponis: 1) locum hypotheseos valere etiam cum non sit oppositio acronychia, quod tamen initio nescitar; 2) praesupponis distantiam 💿 et 👌 seu semidiametrum epicycli, planetam vehentis, perpetuo esse eandem, quod falsum est. Itaque ego primo omniam ex trinis parallaxibus & eodem eccentrici loco quaero eccentricitatem orbis annui, tunc postea possum adhibere justas distantias, si opus esset. Non amplius vero opus est. Eadem enim opera elicio et proportionem orbis annui ad illam distantiam 5 et 💽: quodsi quartam et quintam et plures adeciscam parallaxes ad eundem eccentrici locum, tanto magis fio certior, eundem eccentrici locum et eandem ejus distantiam a 🕥 valere, ubicunque Sol sit, et sic se ipso stare eccentricum 3, nec ullam subire inacqualitatem

a () vel ejus apogaco pendentem. Quin etiam, ubi jam certus sum de occentricitate (), possum jam, si maxime acronychiis carerem, eccentrica loca investigare quotcunque opus est ex binis acronychiis.

Sed pergo in eccentrici distantiis; ubi multas distantias per totum eccentrici ambitum investigavero, facile patet et ubi sit apogaeum et quanta eccentricitas et an via ovalis. Tunc igitur hypothesis invenienda est, quae omnes hasce distantias repraesentet. Hanc hypothesin, quod recte tu mones, oportet sic esse comparatam, ut constet, posse per eandem etiam loca eccentrica reddi. At non est summe necessarium et calculari. Multa eminus adspicimus, ad quae ob defectum mediorum non pertingimus. Ego tamen plarimum laboro, ut calculo loca eccentrica, id est tabulam aequationum eccentri ex distantiarum hypothesi condam. Despero quidem singula seorsim eruere, ut aliis hypothesibus fieri potest. Omnia vero ordine ab apogaei gradu spero me olim exstructurum.

Cur ex prosthaphaeresi \mathcal{J} apogaeo Solis propiori detur simplex eccentricitas major, quaeris (v. s. p. 86.). Ego vero dubito de hoc tuo pronunciato. Hoc scio, si tanquam in simplici triangulo utaris prosthaphaeresi \mathcal{J} longitudinis mediae, majorem invenies eccentricitatem quasi simplicem, quam si utaris prosthaphaeresibus apogaeo (non O sed) \mathcal{J} vicinioribus. Jam vero, cum in \mathcal{J} et Π sit longitudo \mathcal{J} media, O apogaeum in O, accidit ut haec sit O vicina. Cur autem minor et major hoc pacto evadat eccentricitas, causa est, quia falsum praesupponimus, simplicem et geometricam eccentricitatem, quae tamen ex dimidia parte est physica aequantis. Id uberius in proximis literis explicui.

Ex apogaei () linea nihil in \mathcal{O} eccentricum redundat, si ad () ipsum referas. Sed si ad punctum seu locum medium (): omnino redundat aliquid, at id non magnum quod loca attinet, majus quod distantias. Idque ego inter causas habui, cur theoriam hanc ordinarem ad verum () centrum. Praeterea redundat etiam aliquid ex apogaeo () in ipsum orbem annuum, ut jam saepius dictum, quod diversum est a jam modo dicto.


De Martialibus Tychonis quomodo processerit nihil scio, solum hypothesin et observationes acronychias habeo.

Schema ponis et in eo varias speculationes, quas me considerare jubes. Literas non possum internoscere, nec quid velis scio.¹³) Nec opus est, cum nil habeam quod dubitem. Summa tamen eo redit, quasdam inaequalitatea ex apogaeo () in eccentricum 3 venire, quod jam expeditum dedi.

Ad tertias 11. Aug. (v. p. 86.). Nihil me movet àvoµalux latitudinam \mathcal{S} , ut novam in eccentricum anomaliam introducam. Etenim ex simplicissima inclinatione \mathcal{S} , additis parallaxibus antea requisitis, sequitur haec omnis anomalia. Ecce enim hoc ipso anno 27. Febr. vel 8. Mart, octiduo ante et post erit maxima latitudo sept. 2° 45'; 27. Sept. vel 7. Oot. maxima austrina 1° 36': quod plane non quadrat cum \mathcal{S} vel \mathcal{S} cum O nec cum transitu \mathcal{S} per apogaeum et perigaeum eccentri nec cum transitu per limites, miscentur omnia.

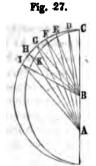
Ad quartas 22. Dec. In schemate a te primum scripto quaeris, quomodo AK ex observationibus innotescat? Respondeo, ex binis parallaxibus annuis, et praesupposita eccentricitate () distantiisque () et Terrae. Sint AE, AF distantiae () et Terrae. EAF angulus inter loca Terrae. Ergo ex lateribus et angulo dantur anguli AEF, AFE et EF latus. Sed KEA, KFA sunt anguli inter loca visa () et J, aufer FEA et EFA, restant KEF, KFE, quare et residuus EKF, et ut (sin.) EKF ad EF sic (sin.) KEF ad KF. Jam in KFA datur KFA ex observatione et KF, FA latera, quare KAF angulus et KA distantia σ (\odot). Scitur autem AF sub fixis, quare et AK.

Quaeris et de utilitate EGF: quia sine hocnon possum invenire () eccentricitatem, quia anguli A non stant in centro, sed duplus EGF stabit in centro, hujus igitur centri distantia ab A est quaerenda. Nam centri eccentrici () positio non datur ulla alia ratione.

De ECF et EAF quaeris. ECF est duplus EGF circumferentialis, quia ECF in centro. Et quia EC, CF crura aequalia, ex subtractione ECF a duobus rectis et residui bisectione habetur E vel F. Non sic in EAF, quia EA, AF non sunt aequalia crura, residuum igitur non potest aequaliter bisecari. Haec sunt nota ex levi cognitione triangulorum doctrinae.

Tres parallaxes (v. quessionem Fabricii p. 87.) adhibeo pro inquisitione eccentricitatis, et quidem tres extra situm acronychium, ut ex tribus punctis circulus habeatur, cujus est eccentricitas quaerenda. (Quarta est probationis loco et ob majorem certitudinem.) Tria puncta ponunt centrum, duo non ponunt certum.

Si situm acronychium somam et unam parallaxin, datur quidem inde distantia () a Terra, sed in uno tantum loco. Nam acronychius nullam dat distantiam () et 5, quia nulla parallaxis longitudinis. Si duas parallaxes sumas, dantur quidem duae distantiae et per distantias eccentricitas (), sed per suppositionem loci apogaei () praecedentem; quando vero tria sumuntur loca, apogaeum una demonstratur.


Omnium quae hactenus ex quo scribimus objecisti, artificiesissimum et ingeniosissimum est de ovali figura orbis Solis. Quod igitur calculum attinet, praecepta sane sic sunt comparata, ut ovalem eliciant. Sed quod attinet extructionem hypotheseos, fateor me praesupposuisse circulum, at nihit sensibiliter peccavi, quia insensibilis fit hic ingressus ad latera ob parvam eccentricitatem (•). Eccentricitas est fere loco medio proportionalis inter radium et latitudinem lunulae circa ovalem. Si 100000 dat 1800, quid 1800? veniunt $32^2/_5$ de 100000, vix quater millesima particula. Sit jam distantia σ (•) brevissima 138540; haec secans est anguli 43° 47' 45". Ut antem 100000 ad 138540 sic 100032 $^2/_5$ ad 138585, accrescunt 45, quae paulo plus 1' subtendunt et quidem tunc solum, cum et (•) in longitudine media eccentri et σ in perigaeo et prosthaphaeresis est maxima. At plus 1' erratur in observationibus.

In ovali compendia multa habeo, quae prope verum veniunt ad 8' et 6'; quae penitus scopum attingeret ratio a me nondum est inventa. Utor interea vicaria....

Bisectio escentricitatis o sic habetur: primo vicaria hypothesis estendit acquationem maximam, acquantisque, hoc est totam eccentricitatem proxime. Postea ubi AK superiori methodo et in aphelio et in perihelio fuerit inquisita, jungitur utraque et dimidium summae comparatur cum elementis; hinc existit vera eccentricitas inveniturque minor panlo quam dimidia prioris. Utrumque postea demonstratur necessario fieri, si quidem distantiae J () metiantur tempora, et illae quidem ex hac posteriore eccentricitate exstruantur.

Petis ut ellipoides meum declarem. Imo declarabo id, cujus causa putavi hactenus expetendum esse ellipoides (cum nunc limitationem aliquam videam).

Scribe perfectum circulum eccentricitate 9165 de 100000. Ergo (Eucl. III, 7) quodvis punctum semicirculi distabit aliter a suscepto loco eccentro: jam adscribe ellipoides his legibus, ut quae est proportio cujusque distantiae ad mediocrem, haec sit jam proportio mediocris arcus ad arcum ellipoidis respondentem distantiae, ubi fingitur planum circuli infinitis

lineis divisum; eas putavi in ipso plano inesse frustra. Siquidem ex B centro ducerentur lineae ad aequales gradus, imo ad infinita puncta aequaliter distantia in circumferentia, tunc quae est proportio omnium ad summam BC, BD, BE, BF, BG, BH, BI, eadem esset plani circuli ad planum IFCB. At non sic, si ab iisdem circumferentiae punctis lineas in A ducas. Summa n. harum linearum est major quam summa priorum, non obstante quod apogaea perigaeam compensare videtur, propterea et proportio totius ad partes turbatur.

Jam primo desidero nominationem et definitionem et geometricam descriptionem plani, quod sic sit ad planum circuli, sicut est summa infinitarum ex A ad summam

infinitarum ex B in easdem acqualiter remotas circuli circumferentias vel puncta. Vel detur saltem planum acquale excessui summae distantiarum ab A super summam distantiarum a B. Deinde si ut summa IAC linearum ad summam IBC linearum ex iisdem punctis circumferentiae, sic sit CI arcus circuli ad CK aroum ellipoidis, ut KA, IA sint acquales (quae hex est describendi et incurvandi arcus hucusque per minima, quod addo, pe ejus curvitas non definita putetur), si, inquam, hoc ita sit, quaeritur angulus KAC. Dic quibus in numeris et eris miki magnus Apollonius. Immortales habebo gratias Belgis tuis, ubi me sublevaverint (v. p. 87).

Inter scribendum incidit, quod nunquam antehac: sicut est planum quaésitum ad planum circuli, sic esse circumferentiam circuli totam ad circumferentiam ellipoidis. Itaque apparet necessitas quaesiti plani, quod non est ita difficile inventu; hoc enim habito arcus ellipoidis dabuntur. Erit autem alter et forte difficilior labor, inveniendi mensuram angulorum ad A (vel etiam ad B), quos arcus ellipoides subtendit. Erunt enim anguli anomaliae coaequatae, quia A Sol. Tu jam sta promissis et responsum intra 2 menses procura, ut scribis.

Diminutio verae eccentricitatis infra dimidium eccentricitatis aequantis in singulis quidem planetis variat, sed nihilominus in uno aliquo constans est et perpetus.

Ad quintas d. d. 26. Decembris. Ad uberiorem declarationem problematis et ut appareat, quale planum quaeram. Centro B (Fig. 28) scribatur circulus CE divisus in partes quotcunque aequales. Sint semicirculi divisi puncta C, G, H, E in quadrante superiore, D, U, V, F in inferiore: et partes sint pari numero, ut bina puncta sint ex B centro opposita. Ejiciantur per B rectae in puncta, et in harum aliqua sumatur punctum A eccentricum et connectatur cum punctis circumferentiae. Igitur CB, BD et CA, AD

jenctim acquales. At in cannibus aliis HB, VB summa minor quam HA, AV, sic GU minor quam GA, AU, sic FE minor, quam FA, EA.

Jam circulus extendator in planum eique lineae ad rectos constituantur, distantiae quaelibet suo loco, et capita connectantor lineis. Erit quae per BBB (Fig. 29), una recta, sed quae per AAA conchoidi similis. Spatium vero comprehensum sub CDC' et BB duplum erit ad aream circuli, quia ducta transversa a B in C' constituit triangulum Archimedeum aequale circulo. Ergo consentaneum (forsan

et demonstrari potest) etiam spatium sub CDC' et AAA' conchoide esse duplum ad quaesisam nostram aream. Vides autem, majus esse hoc spatium illo, quia in punctis E et O intermediis EA longior est quam EB, et OA' quam OB.

Atque haec descriptio sane tam est geometrica, quam illa Archimedis. Etsi vero contentus sum Archimedea epharmosi in linea CDC', non tamen contentus sum hac delineatione lineae AAA', quia praecipitur, ut per minima eam, quae sunt infinita, et quia proportio spatii ad prius hoc pacto ignoratur. Cupio at geometra aliquis me doceat comparationem planorum: deinde ut sciam, quota pars hujus incogniti plani superinsistat quotaecunque parti lineae CDC'.

An ergo (dic geometra) planum hoc circa cylindrum aptatum, ut capita CA, C'A' coëant, lineam conchoidea ordinat in circumferentiam ellipticam? minime. Sed relinquo geometrae refutandum.

Invento quod hic petitur, simul inveniuntur arcus ellipeidis. Nam ut planum AC' ad planum BC', sic circumferentia circuli CC' ad circumferentiam ellipoidis. Quae etsi brevier est quam 360° circuli, nihilominus tamen 4rectos subtendit, non minus quam circumferentia circuli: eo quod et propior fit centro per partes, quam circum-

ferentia circuli. Haec autem appropinquatio ad centrum rursum quaeritur, quomodo geometrice investigari possit, ut angulus ad susceptum punctum habeatur.

Itaque distantias d a () per tempora accumulatas numerat planum a me expeditum, distantise hae iter planetae in ellipoides (non numerant, sed) constituunt, iter vero hoc cum distantiis constituit angulum anomaliae coaequatae, respondentem tempori ab apogaeo elapso. Erravi, igitur hactenus existimans, numerari distantias seu in summam colligi a plano ellipoidis, quod planeta describit. Minime alicubi enim moratur ibique multas accumulat distantias. (Comp. Cap. XL.)

Declarationem observationum Braheanearum (comp. Hist. Coel. ad tempora adscripta) gubus unus est Keplerus, ad finem hujus epistolae reservavimus, quam codex Petropolitanus exhibet folio eo, quo Keplerus adit literas Fabricii d. d. 11. Aug. (supra p. 90), praemissa es epistolae parte ("de Tychonicis") quam praemisimus p. 13.

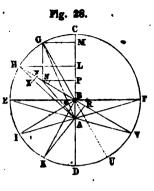


Fig. 29.

Adscribam hic, pergit Keplerus, quadrigam observationum a me adhibitarum, ut fidere possis. Quibus subjungo quadrigam a me nondum in usum-traductarum, ut tuo calculo adjuver in tentandis pluribus observationibus. Anno 1585. 7. Maj. h. 11. 20' distabat a Spica 52º 13' 40". declin. 14º 22' 30".

1587. 27. Mart. h. 9. 45' cum d elevaretur 41º 30', dist. a corde Q 24º 28', ab Arcturo 39º 53'. Declin. 7º 18' 40".

mane h. 5. 15' cum & elevaretur 19º 36', dist. inter & et 1589. 12. Feb. Spicam 21° 7' 40", ab Ophiuchi sin. genu 26° 11'. Declin. 13º 33'.

1590. 19. Dec. h. 7. 15'. Inter Spicam et & 15° 0' 30", inter Lancem bor. et & 13° 3' 30". Decl. 11° 18' 30", alt. & 22°.

Ex adversariis meis fol. 335 est sylloge observationum omnium, quibus indita nomina a diei in una revolutione periodica numero post primam omnium, quae in Tychone reperitur.

In revolutione	2.	dies' 483		an	1581		18.	Martii.
		486						"
"	3.	, .482		"	1583		2.	Febr.
		, 486					6.	
	4.	483	_		1584		21.	Dec.
	5.	483			1586		8.	Nov.
		, 486	_				10.	
n	11.	485			1598			
	12.	484	_		1600			
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, 486		 n		-	12.	"

Anno 1584. 21. Dec. 1586, 22, Oct.

Careo primis 1581 et secundis 1583 et 1586, nisi 22. Oct. et 1. Dec. ante et post. h. 14. in 1º 15' 17" mp, lat. 3º 31' 84".

mane h. 6. inter d'et cor Q per sextantem 6° 9' vel 10' in consequentia. Declin. 13° 0' 40" bor.

1. Dec.

mane h. 7. 30' distantia acquatoria inter 5 et cor Q 25° 12' 15". Declin. 6° 2' 15" bor.

Careo 1598, 23, Feb.

1600. 20. Jan.

st. n. nocte praecedente, cum cervix of culminaret, of in -12º 15' 25" Q, lat. 4º 23' 43".

Nocte, quae praecessit 22. Jan. 5 in 11° 24' 30" Q, sed in Asc. Recta erat 6' dubietas. Lat. 4º 30' 4" bor.

(In margine: Heus tu cribrum hic ne esto, memor pactorum !. Comp. p. 70.)

Fabricius contra consustudinem ad has Kepleri literas die demum 27. Oct. v. st. respondit, responsionem Kepleri exspectans ad priores literas, plane oblitus, nullas exspectandas esse (comp. Vol. II, p. 597) cum ipsi prius respondendum fuisset ad Kepleri literas. Praemissis querelis ob Kepleri silentium jam usitatis quae, refert observationes stellae,

tum temporis in Serpentario effulsit indeque transit ad Martem his verbis :

Venio ad hypothesin tuam Martis, quam ex' aliquot observationibus examinavi, et deprehendo, cam in quibusdam locis enormiter aberrare. Anno 1595. 17. Dec. st. vet. h. 9. vesp. observavi Martem ab Aldebaran 23° 40'; altit. merid. erat 53° 20', deolin. 16° 58'; hine datur locus ejus in 11º 34' 🗟, lat. bor. 1º 42'; juxta tuam hypothesin vero datur 11º 21' 8.

Mitto brevem calculi designationem. Motus medius 2º 2º 6' 28", aphelium 4º 28° 56', anomalia 9º 3º 10', prosthaphaeresis 10° 28' 30", motus 3' acquatus 12° 35' II. Simpler distantia \odot et of 100922, reducta 1539242, locus \odot verus 5° 44' $\widetilde{\sigma}$; distantia inter locum verum) et correctum of 23° 9', distantia Solis et Terrae 98200; hine datur of in 11º 20¹/2' 8. Non puto me in calculo errasse,

Duo itaque puto in tua hypothesi esse, quae his causam praebeant: 1) quod exacte dimidiam eccentricitatem Solis ponas, cum ad 3-4' minor esse debeat medietas inter centrum erbis annui et Terram (ita n. riunc hypothesin intelligo, non juxta Copernicum), quam tu statuis. 2) Distantiae non eo modo accrescunt vel decrescunt ut tu vis, sed longe aliter; nam distantiae omnes longiores esse debent, et circa medias longitudines differentia illa addenda distantiis tuis maxima erit ad 9' circiter, et cum in hoc exemplo duae istae causae

concurrant, hise fit ut differentia tabularum a coclo ad 18' excrescat. Quare scito, distantias tuas vel tuo modo collectai ab aphelio usque sensim augeri (ratione semicirculi punctati, " Fig. 30.) In aliis locis saepe fit, ut cum semidiameter orbis annui aliquid addat angulo parallaxis, illud distantia tua minor justo recompenset et sic error ille non adeo evidens fiat.

Sic quoque exemplum meum ad annum 1602. 18. Jun. vesp. in ipso solstitio, quam observationem antes misi (p. 84). Datur locus ejus ex hisce in 28° 51' 10 cum lat. 0° 26' bor.; differt a tabalis tuis 5', sic distantize ad 7 vel 8' essent addenda. Contra vero semidiameter orbis annui 3' major, (a Terra sc. usque ad Solem supputando), quam tu ponis distantiam Solis et Terrae, rursum aufert 3 illa minuta, ita ut differentia 5' maneat.

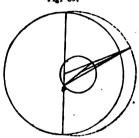
Quare admonitum te volo, ut juxta longitudines medias plura exempla adhibeas; praesertim in tali positu d et O, ut in schemate vides. Hoe exemplum et observationem hanc ideo elegi, quod cum Cancellarii loco of quain proxime conveniret, tam ad positum ⊙ quam d, et ut ex observato loco conjicerem utcunque, an loco d'in genesi Cancellarii a te supputato fidendum esset. Haud igitar ovalis erit hypothesis, ut hactenus existimasti.

Ego in Marte plurimum hactenus sudavi, etiam antequam tu tuam hypothesin mihi mitteres ; at in multis mea opinio me decepit. Tibi igitur lubens subscribo et tuas inventiones absque ulla adulatione me venerari scito. Ubi voles, facile perficies quae desiderantur in d et reliquis. Tu enim natus es ad restitutionem illam perficiendam, meo judicio alter non erit, qui tibi palmam illam praeripiet.

• In latitudine calculanda juxta tuum modum etiam aliquid desiderari puto; in exemplo 18. Jun. 1660. tu 0° 21' lat. facis; ego juxta modum Copernici latitudinem invenio 0° 26', quod etiam coelo respondet. Observatio 19. Dec. 90. in 5 facta nequaquam veritati congruit. Falsae sunt distan-

tiae, nam altitudo (si meridiana fuerit) non dat eam declinationem.

Locum of in triga tua (v. s.) ad 23. Feb. 98. desideras. En ejus locum ad 2. Feb. et 1. Mart. (stilo vet.): 2. Feb. vesp. alt. mer. of 62° 58' in elevations nostra 53° 38'. Distat a cornu bor. o per 8°, a capite mer. II 23° 12'.


1. Mart. vesp. (1° ? in med. coeli) distabat ζ ab aust. capite Π 16° 25', a bor. 14° 50', a Jove 23° 5'.

2. Mart. alt. merid. J 62º 30', dist. a cap. aust. II 16º 5'. Ex his locum ad 23. Feb. facile colliges.

1600. 12. Jan. v. st. h. 11. p. m. σ a Regulo 13° 46'; a cervice Ω 13° 32'; a Procyone 28° 55', a mer. cap. $\prod 23^{\circ} 17'_{3}$; alt. mer. 58° 12'. Ex his datar σ in 11° Ω , lat. bor. 4º 29' 15".

Keplerus semper paratus agnoscere ea, quae in aliis laudanda deprehendit quaeque vera eme cognovit, sic rescripsit (d. 18. Dec. 1604.): Cum toties jam meum Martem frustra lacessiveris, tandem ungues immisisti in ulcera mea et me Christe annuos pene thesauros meos exhausisti, usus et meis argumentis et mea erroris animadversione, denique iisdem causis erroris, iisdem remediis indicatis. Vel tandem porrigo tibi palmam. Dicet Matthias (Seiffardus), quanto me gaudio affeceris eadem mecum animadvertens; jam pridem enim hæc mea querela apud ipsum fuit. Deprehendi, dum id ago, quod tu sero praecipis, scilicet dum plures observationes in longitudinibus mediis adhibeo. Nam ex quo convalui (Junio enim et Julio decubui cum uxore, illa ephemera, ego erratica et bilosa febri) hoc unum egi, ut totos annos 89, 91, 93, 95 tentarem. Igitur alicubi 15' a vero absum. Praesertim per illam ipsam observationem 1595. plurimum temporis consumsi, existimans falsam. Ac initio culpam rejeci ut tu in eccentricitatem) et jam aequationibus etiam ipsis 🕥 imminebam, quia certissima ratio est, praecise bisecandam eccentricitatem. Sed dum procedo in Commentariis, invenio in bisectione nullum esse dubium. At contra non tantum parallaxes annuae vitiosas arguunt mediarum longitudinum distantias J a 💽, sed etiam aequationes physicae. Inveni enifi modum sat laboriosum, et differunt a vero in octantibus circiter

3'--4' hac illuc. Juvantar antem prolongatis distantiis in mediis lengitudinibus. Sic iĝitar est, mi Fabrici. Negativa circuli validissimis quidem nititar argumentis et ovalitas (frustra te concludente contra hanc), sed affirmativa harum distantiarum ex ratiocinatione mea nude dependet. Tu vitiose: Kepleriana ovalitas nimium curtat, ergo nulla plane ovalitas ponatur. Ego aeque vitiose: Ovalitas est aliqua, ergo haec erit, quam aequabilitas motus epicycli monstrat. In dimensione orbis annui 100000 circuli perfectio prolongat circ. 800 aut 900 nimis. Ovalitas mea cartat 400 circiter nimis. Veritas est in medio, propior tamen ovalitati meae. Neque tamen infra longitudines medias prolongandae, sed etiam supra etiamnum magis decurtandae sunt differentiae, quam mea fert ovalis: omnino quasi via Martis esset perfecta ellipsis. Sed nihildum circa hanc exploravi. Hoc verisimilius, epicyclum et in aphelio et in perihelio accelerari. Ita omnes planetae cum) in hanc societatem Variationis Tychonicae venient.

Resipuisti, video, cum tua observatione anni 1602, quam cum mea hypothesi jam intra 5' concilias; atque hoc dixeram. Totus nunc in Commentariis sum, ut vix otium habeam scribendi. Veni jam plane usque ad hunc scopulum prioribus expeditis. In ipsa quadratione ovalitatis meae (insero enim eam, ut alii videant, quantae molis fuerit) importunus quidam hospes per arcanos aditus sese in meas aedes intulit meque perturbavit 3. Dec. st. n. die Q mane quadrante ante 12. Bohemici horologii, nemine Fridericus Keplerus. Ante meum decubitum adjutus a studioso meo scripsi tabulas Martis. Compendium tale, ut intra unum diem scribere possim ephemerida longitudinis 3 in unum annum, per denos dies proportionaliter agendo, nisi circa stationes. (Tabulae semper manent, quomodocunque mutata tabella distantiarum.) Periclitavimus et physicam hypothesin. O immanissimum laborem, de quo tamen parum ego degustavi; ne de morbo Sed tamen vide ne vaticineris, dum me cum hoc labore vitam suspiceris. finiturum existimas.

De la titudine parum hactenus fui sollicitus, quod illam facile sequi, facile inflecti videam. Compendium tamen te non celabo. In triangulo inter \odot \bigcirc \bigcirc vel quemcunque planetam ingredere parallacticam nostram (Vol. II. p. 434.) a margine cum angulis \odot , \bigcirc et in iis lineis elige aream, quae inclinationem plani e regione anguli \odot exhibeat, statim eadem columna exhibet e regione anguli \bigcirc veram latitudinem. Si non invenitur tota inclinatio, quaeratur per partes utcunque disseparatas, prodit enim et latitudo per partes totuplas. Potest autem et inclinatio ipsa ex parallactica sumi, quaesita maxima inclinatione in capite vel fronte, distantia a nodo in margine.

Exempli causa sit inclinatio quaerenda ad distantiam a nodo 40° . Maxima δ inclin. est 1° 40′ 45″. At parallactica non excedit 66′. Ergo distribuo maximam inclinationem sic:

E regione 40°	dat 65	•			• ·	1.	41'	47"				
-	45.	•			•	1.	28.	55.	Haec	in	area	parallactica.
		45''		4	•	1.		28 .	55‴			
Summa	1º 50	45''	Incli	in. n	18x.	10	11'	11"	Incl	in.	,loci.	

Sit jam angulus ad O 1°, angulus ad O 3°. Ingredior ergo a margine 1°, sc. cum angulo ad O, in ea linea perquiro omnes columnas, donec aliqua mihi placeat; placet autem col. 57, quia in ea e regione mei 1° invenio 1° 0'; apices ipsis ego affingo ex mea inclinatione maxima, in

qua est etiam 1º. Igitur in eadem columna ascendo in lineam anguli ad δ sc. 3; ibi invenio 2° 59'. Jam quia non tantum habeo gradum unum in proposita mea inclinatione, sed etiam 11' 11", rursum ingredior per lineam anguli ad) 1° et quaero 11' aut certitudinis causa quadruplum aut quintuplum. Quaeram 55', quae invenio in columna 52: quae e regione anguli ad 53° ostendit 2° 43', cujus pars quinta est 33'. Ergo haec est forma collectionis:

			11'							Vel	sic :	1°	1	30		
1.	1.	0.	11.	11.	•							· 1 .	0' 11.	2.	59'	
3.	2.	59 .	33'	33"	Summa	30	32′	33''	latitudo	ver	A .		11.		3 3'	33"
														30		33".

Nil sequitur. Quae his Keplerus praemisit, leguntur Vol. II, p. 97. 439. 597. 753. Ad haec respondit Fabricius d. 4/14. Jan. 1605 : Quod in hypothesibus tuis Martis errorem in observationibus circa longitudines medias mecum deprehenderis, valde gavisus sum. Mire me exercuit observatio illa anni 95, quae aimilis est constitutioni 👌 in genesi Magn. nostri Cancellarii, tuae eruditionis Uranicae summi amatoris et admiratoris. Bisectionem exactam in Sole non facile credere possum. Video enim, ex nonnihil mutata dimidia Solis eccentricitate distantias 👌 a 🕥 observationibus analogice juxta Solis motum in annuo orbe prichre convenire, ita ut distantiae utracque et ratione eccentrici et orbis 📀 se mutuo vel adjuvent vel tollant, prout observatio requirit. Tu nescio quo alio motu adinvento 👌 succurere vis, quod ut commode fiat, procura. Exspecto tua Commentaria Martis desiderantissime et cro Deum O. M., ut sufficientes tibi vires largiatur, ne incepto operi et suscepto oneri secombas. Faxit Deus, ut "hactenus invictum felici sidere Martem" debelles. Et si maxime te moverit de solo, inferet te tuumque nomen vel invitus polo. Macte igitur virtute Vir! inceptum cum Marte bellum continuato et Uraniam exulantem ad avita regna feliciter deducito!

Concludit epistolam F. his verbis : Tempus et initium febris tuse scire cupio, et si que alia hoc biennio passus es accidentia. Vale, et mihi diligenter responde, sic me etiam magis excitabis et alacriorem reddes. Literas tuas per Eberh. Schele, Ducis Luneburgensis aped vos legatum transmittes vel per alium tabellarium, quem ex ipsius judicio cognosces. Adscribe, quo in statu sint res Uranicae ; quando editurus sis Commentaria Martis ; judicium taum de meo tractatu transmisso (de stella pova. Vid. Vol. II, p. 599 s.). Tengnagelium none ut respondeat, item Ericksen. Vale, Vale iterum, Vale mathematicorum decus. Vige et flore flos Uraniae. Saepius

scribe ac rescribe. Saluta tuos et omnes Uranicos, D. Matthiam Sifridum.

Dabam Ostelae die $d \notin Q$ ad vesp. 1605.

Tuae praestantiae

studiosiss. D. Fabricius.

(Inscriptio: Dem Erbaren und wolgelarten M. J. K. &c. zu Prage, in der Nienstadt, bei der Kirche Emans zu erfragen, durch Herrn Peter de Vischer oder Eberhardt Schele an ihn su bestellen.)

His addit Fabricius biduo post: De tuis hypothesibus nuper scripsi sententiam. Consuztiunt illae coelo in omnibus fere locis, nisi quod circa medias eccentrici longitudines observationes ad 13' devient, et necesse est distantias veras longiores esse, quam juxta tum modum dantur.

Eccentricitas quoque dimidia Solis, quam statuis, aliquanto major sumi debere videtur ad 3' c. in linea apogaei Solis.

Observatio Tychonis in 5 anno 90. d. 18. Dec. (p. 94) veritati non videtur respondere; ex distantiis ad Spicam et Lancem bor. datur locus of 4º 35' m cum lat. bor. 0º 31'. Quia vero Lanx austr. eandem fere latitudinem habet, igitur si simplex distantia of observata anferatur a loco Lancis anstr., 15' differentia incidet. Ergo sudandum erit, quae observationes adhibeantur ad corrigendos motus. Studiosorum observantium (Tychonis) non minima saepe fuit vel in ils negligentia vel inscitia.

In apologia Miverii (v. Vol. II, p. 415) scribitur, Lansbergium magno quadrante ebtinnisse declinationem maximam 23° 28' 15"; differt a Tychonis c. 3'. Cuperem scire, quomodo tanta varietas incidere possit ? Nam etsi Tycho refractionem majorem ponat quam ille et alii, cum tamen ex locis refractis declinationem non hauserit, miror, inter illos artifces tantum discrimen esse, et quid tribuas Tychonianae declinationi maximae scire cupio. Forte nec in Sole est tanta parallaxis, ut vulgo statuitur, quae et difficilis observatu est,

Kepleri Opera III.

cam in eclipsibus tum alias. Forte haec, aliquante major sumta, declinationem normihil etiam majorem justo facit. Neque tamen ego pro me dico, cum mea instrumenta non accurata sint et sic aliorum oculis me videre oporteat. Curabo tamen brevi quadrantem 4 pedum accuratissimum mihi fieri ad \odot observationes, cum videam, tantam esse in \odot omnium simplicissimo flifferentiam.

Quae has secutae sunt literae (d. 10/20. Feb. 1605) nihil fere aliud quam astrologica continent (comp. Vol. I, p. 352.). Ad Martem vero redit Fabricius in literis d. d. 2/12. Apr., his more consueto incipiens querelis: Adeone ille tuus Uranicus ardor et amor deferbuit, ut tot meis literis ne unis quidem tanto tempore respondere dignari volneris ? Scito, te non tam literarum cumulum in hoc silentio Uranico colligere, quam laborem in respondendo augere. Cave igitur tibi ? Sed dices, differ, habent parvae commoda magna morne. Accipio et quiesco; Mars et Ars, de quibus in Commentariis promissis exquisite tractas, te facile mihi excusatum reddunt, tantum abest ut suspectum faciant. Perge ergo deliciis tuis Uranicis et Martialibus frui, ita tamen ut eorum aliquando nos (quod summe desideramus) compotes reddas et exspectationem meam non omnino in respondendo frustreris. Accepisti sine dubio proximas meas literas lotsgieres in nundinis Frankofurtensibus ad D. Legatum Vischerum transmissas. Habes illic quod respondeas.

De Marte jam ante saepe egi tecum, nunc idem facere cogor, adee Mars semper adversatur nostris conatibus.

Ptolemacus et Copernicus praesupposito libramento illo in $\sigma' \odot$ statuunt ex observationibus, at puto, latitudinem $\sigma' 5$, 6 vel 7' ad summum; at tua hypothesis ultra gradum ad minimum in conjunctionibus concedit. Magna sane et enormis differentia; miror valde. Non dubium est Ptolemaeum ex observationibus, in rectiori illa sphaera et elariori ocelo habitis, latitudines illas hausisse et si tanta quam tu concedis esset latitudo $\sigma' circa \sigma' \sigma'$. certe vel absque omni instrumento cognovisset. Deinde video in tua hypothesi circa media loca longitudinis convenire latitudines, video proportiones linearum correspondere latitudinibus, quod in Ptolemaeo et Copernico non fit, ubi incommensurabilia illa omnia sunt ratione linearum inter se, quod mihi quoque non minus observandum videtur. Haereo igitur, quia circa $\sigma' \odot$ sufficientes observationes non habeo; non dubito te habere, quare me fac certiore de hac enormitate inter te et Ptolemaeum et quomodo Ptolemaeum vel escusare vel refutare velis.

Locus Martis in genesi D. Cancellarii a te supputatus mire me exercuit. Tu $1^{\circ} 58' \bigtriangledown$ invenisti, ego $2^{\circ} 21'$. Non dubium est te per festinationem in calculo errasse, quod palam faciet observatio mea anni 95, 7. Dec. h. 7. p. m., quae locum \eth in coelo dat $10^{\circ} 35' \circlearrowright$; hic tua hypothesis 7' minus dat et ad hoc tempus praescriptum anom. 91° 52', sicut et in Cancellarii genesi, idque exacte. Ergo utrobique necesse est aequalem differentiam esse.

Distantia O et \bigcirc a me inventa 153178, distantia O et \bigcirc 982170. Dimidiam eccentricitatem O nunc probo et confirmo, at distantias \bigcirc omnino prolongare oportet ad latera ad 12' usque, et quidem ab aphelio ad mediam longitudinem proportionaliter; sic omnes observationes egregie conveniumt tuae hypothesi. Quomodo hoc ovalitati tuae conveniat, tu videris. Tu si abicunque eccentricitatis rationem et modum et causas naturales ostenderis, facile nos in tuam pertrahes sententiam. Distantiae taae ad dimidiam eccentricitatem \bigcirc constitute uon respondent prosthaphaeresis constaret, constare quoque tunc veras distantias, nam ex eodem fonte provenire non est dubium, et antequam haec duo non fuerint ita conciliata, ut plane respondeant, non puto nos veram \bigcirc hypothesin habituros. Verum n. vero consonat. Tu prosthaphaeresin et ejus lineas proportionesque sie adapta, ut distantiae inde provenientes sint verae et observationibus respondeant, et ex duabus hypothesibus unam fac, ne adulteratum conjugium constitutatur inter vicariam et veram.

Haec ex amore verae artis profero, non sugillando tuam hypothesin, quam propter inventionem magnifacio plurimum, cum videam, eam respondere sic satis bene observationibus, undecunque etiam illa diversitas distantiarum sit. Non despero te causam et modum invenire posse, si modo ingenium intendere velis.

Causam quoque scire desidero, cur in hypothesi 5 semidiametrum eccentrici 5 ad orbis Solis proportionem reducere potius volueris, quam contra, uti Copernicus et alii faciunt, qui in partibus eccentrici pluribus orbis annui semidiametrum inquirunt?

Obsecro, ut mihi compendia tua communices, quorum mentionem facis, quomodo Ephemeris d'institui debeat ad denos dies. — His immiscet Fabricius plurima alia, quae omnimoda spectant, et in postscripto demum ad Martem reversus haec profert:

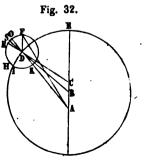
Ad tempos Cancellarii : FBC anomalia media 91° 52', BCA angulus 5° 15'. Si hic angulus subtrahatur ab angulo 91° 52', manet angulus BAC 86° 37'. Ergo ut BAC ad BC radium sic ABC ad AC distantiam O et O reduct. 15270320. At minor haec distantia ali modo accepta, quam obs. 95. 7. Dec. h. 7. p. m. ostendit.

Quaaritur isaque, an in tali dispesitione \mathcal{J} , cum videlicet anguli sibi mutuo occurrunt, usitato more angulus BCA ab anomalia (ut solet) sit auferendus pro distantia \mathcal{J} a ohabenda, vel qua ratione id rectissime fiat?

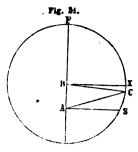
Ego puto distantias veras d in quadrangulo hoc BXAS, qued distantia centri eccentrici a Sole in hoc negotio constituitur, usitato modo non esse inquirendas, cum anguli BAC et ABC sibi mutuo occurrant.

Tuam itaque cénsuram de tua hypothesi cognoscere cepio in hec casu. Expedita alias res est, ubi anomalia misor 90° vel major 95° 15′. Adhibeas observationem loci d'anni 95. 7. Dec. h. 7. in 10° 35′ d' et videbis, quam nen respondeat distantia usitato modo accepta. —

An meas literas omnes hoc anno acceperis scire cupio, puto nempe me ad minimum 4 minimum 4.


Ad hase Keplerus rescribit in literis per aestatem anni 1605. conscriptis, finitis d. 11. Oct. ad 40 paginas in folio excrescentibus, omnia quae Fabricius dubia protulerat penderans, ad omnimodas quaestiones respondens (v. Vol. I, p. 346 ss. et Vol. II, p. 97 ss. 600. et seq. annot. 21).

Haec de opere suo notatu digniora proponit Keplerus :


Quae hactenus in meo Marte profecerim accipies. Cum viderem distantias ex perfecto circulo eccentrico exstructas pene tantum peccare in excessu (tam quoad se ipsas et earum effectum in prosthaphaeresibus orbis annui, quam quoad aequationes eccentri), quantum ellipsis mea (quae perparum ab evali differt), quam tibi in numeris perscripsi, peccabat in defectu, rectissime faissem argumentatus in hunc modum: circulus et ellipsis sunt ex eodem figurarum genere et peccant acqualiter in diversa, ergo veritas consistit in medio, et figuras ellipticas mediat nonnisi ellipsis. Itaque omnino Martis via est ellipsis, resecta lunula dimidiae latitudinis pristinae ellipseos. Erat antem lata lunula 858 de 100000, ergo debuit esse lata 429, quae est justa curtatio distantiarum in longitudinibus mediis ex perfecto circulo exstructarum. Hic, inquam, veritas ipsa est. At vide, quomodo ego interea rarsum hallucinatus et in novum laborem conjectus fuerim; imo vide, quam misere trepidem super inventa veritate, secundum illud : "qui nunquam dubitat, nunquam certus est de re aliqua." Ellipsis illa pristina cum curtatione 858 habuit causam naturalem hanc, ut dicatur: centrum epicycli tarde incedere quando planeta versatur in apogaeo epicycli, velociter infra; epicyclum vero ipsum acqualibus temporibus incedere acqualiter. Hoc erat mediocriter con-Jam vero, si ellipsis esset cum curtatione 429, carebam sentaneum naturae. causa naturali. Nam absurdum erat, centrum epicycli incedere inaequaliter, circumferentiam epicycli nec aequaliter nec inaequalitate ipsius centri, sed inaequalitate peculiari, quae esset dimidia saltem inaequalitatis centri.

Loquor enim jam tecum non ex meis Commentariis, h. e. rationibus naturalibus, sed ex Ptolemaeo et antiqua astronomia, ut me capias.

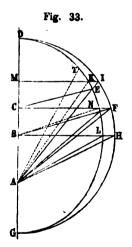
Sit A Sol, AE linea apsidum, AD 100000, AC 9264 et C punctum aequalitatis motus ipsius D centri epicycli. Itaque si CDR linea determinaret etiam apogaeum verum epicycli, tupc ex itinere planetae fieret perfectus circulus. Nam ducta DF parallela ipsi AC, RDO aequat ADC et ODF aequat DAE, et RDF aequat DCE anomaliam mediam, quia sunt aequalis restitutionis epicyclus et concentricus, hic vero plane

7•

100

aequalis motus invicem, qui in se est inaequalis. Tunc juncta F, A lineam faciunt tam longam, quam si ex C eccentricus perfectus describatur radio AE, transibit enim per F.

Atque haec hypothesis falsa est, quod anno 1602. rescivi. Sin autem manente C puncto aequalitatis ipsius D linea ADO fieret linea apsidum verarum epicycli et O vera apsis epicycli, sic ut ipsi DCE anomaliae mediae constitueretur aequalis ODF, et DF inclinaretur ad AC, quod est perinde ac si dicam, epicyclum aequalibus temporibus moveri aequaliter circa suum centrum: tunc haec esset quam proxime hypothesis, qua sum usus per annum 1603 in a. 1604, quam et tu tenes. Et haberet mediocrem causam naturalem. At deprehendo ex primae excesso, secundae defectu, CA 9264 esse mediandam vel bisecandam in B, ut ducta BDS sit apsis epicycli vera, itaque C adhuc centrum aequalitatis D. Sed jam SDF est aequalis DCE anomaliae mediae: et DF minus inclinatur ad AC quam prius. Atque ex hac hypothesi jam quam proxime vera distantia exstruitur F ab A, sic et FAE quam proxime vera coaequata. Dico quam proxime, nunquam enim ita vere, ut cum ea physicae acquationis computatio instituatur. Porro hacc hypothesis mihi (ut in delineatione meae ratiocinationis ut constitui pergam) non satisfecit, quod punctum B causa naturali carebat. Nam punctum C habet causam naturalem, quod sc. AC et DF acquantur, et quod tantundem est ac si dicam, ut distantiae sunt sic esse moras in aequalibus arcubus eccentri. E contra vero alia res me ad causam naturalem invitabat, haec nempe, quod vidi succurrentem secantem aequationis epicycli maximae: AF scilicet ille esset (ad angulum 5º 18') 100429, itaque FA longior est quam DA particulis 429. Et quia FA distantia sequitur ex usurpatione perfecti eccentrici, et 429 supra inventa est curtatio justa hujusmodi distantiarum pro hypothesi vera, ergo si pro FA sumamus DA, habemus justas distantias in longitudinibus mediis. Statim arripui hanc pro naturali hypothesin: planetam non versari in epicycli circumferentia RHI, sed in diametro KDO librari; jamque distantias et totam acquationum tabulam exstruxi inde.

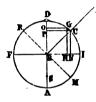

At miser: his ipsis Paschalibus feriis demum experior re ipsa, quod, si consideratus fuissem, meminisse poteram, jam antea demonstratum esse in Commentariis meis, hujusmodi iter planetae compositum non esse ellipticum, quod superior mea argumentatio evicit, sed in octantibus ab ellipsi versus circuli perfectionem exire in buccas. Vitiosa igitur fuit argumentatio: libratio in diametro epicycli aequat ellipsin in longitudinibus mediis et in apsidibus, ergo undiquaque illam acquat. Falsum; atque hinc est, quod rursum ut in antiqua falsa hypothesi nec distantiae officium fecerunt nec aequationes eccentri. O fructuosam societatem rei utriusque, quae nunquam non me dirigit in tot perplexitatibus! Jam igitur hoc habeo, Fabrici: viam planetae verissimam esse ellipsin (quam Durerus itidem ovalem dixit) aut certe insensibili aliquo ab ellipsi differentem. Computavi inde aequationes eccentri in sitibus acronychiis, officium faciunt ad unguem, de distantiis quominus idem dicam fecit earum inquirendarum methodus paulo laxior, quae semper me circa 100 particulas in dubio relinquit, etiam cum optimae sunt observationes; nosti enim, optimas observationes uno minuto peccare At unum minutum variat distantiam immaniter, si planeta prope posse.) aut oppositus) fuerit. Hoc tamen certum habeas, quam proxime verum venire. — Itaque totam hypothesin tibi delineabo. Data anomalia media (per notum tibi locum aphelii, cui 5' adimes jam, et notum motum

medium, qui manet) quaeritur anomalia eccentri vel indirecte vel per tabulan. Per tabulam sic: aequationem maximam ex area trianguli aequatorii, quae est 5° 18' 30" resolve in secunda et dispertire hanc summam per omnes gradus anomaliae eccentri, rursumque in gradus redige; et appone ad illos suos gradus anomaliae eccentri et juxta 90° anomaliae eccentri erit 5° 18' 30". Ergo per 95° 18' 30" anomaliae mediae excerpitur 90, anomaliae eccentri. Indirecte eadem anomalia eccentri sic excerpitur: cum ante semicirculum semper sit minor anomalia media, post major, conjectura praeconcipe, quanto sit minor; ut, si anomalia media mihi daretur 48° 46', vellem conjicere anomaliam eccentri esse 45°; sinus hic in summam secundorum 5° 18' 30" multiplicatus et per 100000 divisus debet mihi relinquere 3° 46' si bene conjeci, ut 45° et 3° 46' efficiat datam mediam anomaliam. Habita anomalia eccentri, ut 45°, multiplica ejus sinum 70711 in 430, curtationem, prodit 303, quam aufer a sinu 70711, manet 70408. Sume deinde sin. compl. anomaliae eccentri, ei adde eccentricitatem 9264 in superiore eccentrici semicirculo, sc. a 270 in 90, aufer in inferiori a 95 1/2 in 264 2/2, vel ab eccentricitate aufer sinum compl., si is minor fuerit. Tunc: ut FD ad AD — (angulo FDA assumto recto) — sinum illum curtatum (haec summa vel residuum), sic totus ad tangentem, quae offeret angulum anomaliae coaequatae. Is erit vel ipsa anomalia coaequata vel excessus coaequatae supra semicirculum vel alterutrius horum complementum ad semicirculum. pre re nata. Hujus vero anguli excerpe secantem: et fiat ut sin. tot. ad illam summam vel residuum, sic hic secans ad genuinam distantiam d a (). (Stultus ego; non vidi, me hoc modo exstruere easdem distantias cum libratoriis.)

Nota.

Fundamentum hoc in ellipsi et circulo, ut diameter circuli ad breviorem

diametrum ellipseos, sic FC ad NC per totum semicirculum, sic etiam FD arcus ad ND arcum; itaque etsi DNG brevior est quam DFG, si tamen relinquatur ipsi DNG appellatio 180°, tunc et parti DN relinquitar appellatio ea, quam vere habet DF. Ergo anom. eccentri hic est DN, at non angulus DBN. quod me hoc Paschatis tempore et inde a Natalitiis fefellerat. Amplius, ut FC ad NC sic area. DFA ad aream DNA. Igitur etsi area DFG major est quam 1800000 (quod probo peculiariter), tamen si areae DNG detur idem nomen quod areae DFG, retinebunt et partes DNA, DFA eadem nomina, licet DNB, DFB et ANB (?), AFB area metiens partem aequationis physicam. Igitur si circulus proferendus esset, tunc DF vel DBF esset anomalia eccentri, et area DFA esset anomalia media. Sed jam in ellipsi non DBN, sed DN est anomalia eccentri, et DNA area est anomalia media, et an-



gulus DAN est anomalia coaequata, et AN vera distantia.

Denique utere orbium proportione ea, quae est 100000 ad 152500. Si autem omnibus locis prodesse hoc videris, poteris uti 152400 vel 152600 In $\not\leftarrow$ 2 vel 3' deesse puto et huic et antiquis hypothesibus, forte propter falsam assumtionem in $\not\leftarrow$. Nam o habuit anno 93. in ∂o magnam latitudinem. Sed non video, quomodo corrigere possim, ut nullum detrimentum inferatur locis reliquis. Et tamen possunt haec 3' in $\partial \sigma \circ \circ$ efficere ad apparentiam 10—11'. Sed et aliud est quod desidero in hac hypothesi: nempe quod ad insaniam usque contendens causam naturalem confingere non possum, cur σ , cui tanta cum probabilitate libratio in diametro tribuebatur (res enim nobis ad virtutes magneticas pulchre admodum recidebat), potius velit ire ellipain vel ei proximam viam. Fortasse tamen puto, virtutes magneticas non omnino respicere sinus, sed aliud aliquid.

Omnino sapit magneticam vim eccentricitas, ut est in Commentariis meis: ut si globus & haberet axem magneticum uno polo () appetentem, altero fugientem, ecque axe porrigeretur in longitudines medias, tunc quam diu versatur in descendente semicirculo, maxime in longitudine media, porrigit polum appetentem versus (), itaque semper ad () accedit, sed maxime in longitudine media, nihil in apsidibus. Et tunc in ascendente semicirculo aequaliter fugit a (). Fortassis itaque (liceat enim mihi, jucundissime Fabrici, dum tecum loquor exerceri, dum exerceor proficere) alia aliqua lex est, qua magnes aliquis fugit et sequitur, quam sinus. Posito

enim, quod DFA sit corpus 3 rotundum et DA axis magneticus: ego hactenus posui, quod Marte sic collocato, x ut Solem habeat in linea BC, sc. in K, ea sit proportio celeritatis ejus in accedendo ad celeritatem in recedendo, cum habet Solem in D, quae est proportio sinus (versus) IN ad sin. IB. 'Et in hac positione inventa est IN nimis parva, imo fere justa pro particula librationis, pro mensura; quid si ergo potins sic sit haec quoque vera celeritatis, ut NC ad BD aut alia aliqua? Nam si etiam in-

haereamus huic hypothesi magneticae, rationibus quibusdam cogemur alium aliquem modum quaerere. Primum, si) et poli magnetici D, A sunt in eodem plano eccentrici, non debemus suspisione quadam turbari, quasi alind dicendum sit de solido corporis planetarum globo, allud de circulo ejus maximo. Nam posito quod posuimus, globus totus potestate divisus intelligitur in infinitos circulos parallelos, a maximo utrinque ad minimos, qui omnes aequaliter versus 💽 erunt dispositi, itaque proportio manebit eadem multiplicatis terminis. Sit ergo FDIA circulus quilibet in corpore planetae parallelus eccentrico, et sit FDI semicirculus appetens, FAI fugiens, Sole in BI versante fit aequilibrium, quia de semicirculo, qui Soli obvertitur, sc. DIA, dimidium DI est appetens, dimidium IA fugiens; Sole vero in BK versante, semicirculus RCM consideratur, in quo RI sunt partes appetentes, IM fugientes. Pone IG acqualem IM, igitur IG annihilabitur ab IM. Relinquitur RG considerandum pro mensura appetentis facultatis. Ubi MI complementum est ad IC discessum planetae ab apogaeo et IG similiter: ergo GR arcus est duplus ad IC discessum ab apogaeo. Quodsi partes appetentes acque multae semper appeterent acqualiter quocunque angalo DBK, GBK &c., tunc omnino discessus ab apogaeo metiretur appetentiam et aequalibus temporibus aequalis esset distantiarum d' a) imminutio. Sed consideranda etiam fortitudo anguli. Nam Sole in BI versante, etsi nihil operarentur AI fugientes, non tamen DI appeterent, quia anguli DBI nulla fortitudo h. e. quia Soli non obvertuntur DI partes respectu lineae saae virtutis BD, BI. Sed hic haereo in prodenda anguli mensura causa fortitudinis. Nam forte anguli DBC complementum CI metitur hanc? Non puto. Nam quando DBI incipit minuì, tunc plus illi prodest ad appetentiae fortitudinem modulus aliquis imminutionis, quam cum pene totus absumitur. Num igitur IN metitur fortitudinem omnino DBC? At huic id quod jam dixi repugnat melto magis (in margine: falsum hoc).

Tu hic mihi scrupalum moves de observatione d'anno 90. 18. Dec., dicis locum ejus computatum a Lance bor. et Spica differre a loco, qui exit ex usurpatione Lancis austr. At ego nullam distantiam d'prodidi a Lance austr. (vide p. 94.)

Acquiesco in declinatione eclipticae a Tychone prodita citra controversiam, nec mihi Lansbergius ullum scrupulum movet hactenus quidem. Nec enim verisimile, quemouam hic Tychone diligentiorem esse posse. Nec ille suam obliquitatem inculcat, ut eam Tychonicae anteferat, sed ut collatione instituta veritas per has etiam tenues discrepantias confirmetur in iis. nbi discrepantia est nulla. Ita quidem est, dubitare quandoque soleo, an Tychonis calculus undiquaque verum locum) prodat. Causa mihi hujus dubii desamitar e re praesenti, quoties observationes in o habitae non coire volunt ad communem circulum orbis Terrae prodendum. At certi quid statmere ant temere hic a Tychone desciscere grave mihi est. De Solis parallaxi quidem paulo magis dubito, ut invenis in Opticis meis. At etsi unus scrupulus decedat, parum in obliquitate eclipticae peccatur, cum non multo major sit parallaxis Solis in Y quam in @. Esto enim parallaxis • tantum 2' quam Tycho dicit 3'; ergo in alt. 35° erunt 50" diminuenda. in alt. 58° circ. 20". Ergo obliquitas eclipticae circa 30" minor. et longitado aestatie alia et eccentricitas (); sed omnino perquam tenuia erunt.

Te quidem o Fabrici. aequam est dolere, quod aliorum oculis videndam tibi est, et anniti ut tuis videas. Mihi ego meisque debilibus oculis de hoc alienorum oculorum beneficio gaudeo.

Redeo ad d post aliquot septimanarum interpositionem. Sit nobis eadem figura corporis planetarii proposita, quae supra. Dixi supra, perinde cone sive planeta consideretur ut globus sive ut planum circuli; jam etiam hoc dico, perinde esse sive ut planum circuli consideretur sive ut linea. Nam certum est ex Gilberto et per se etiam sine ejus auctoritate, virtntem magneticam porrigi in rectum. Quare ut globus fingitur constare ex infinitis circularibus planis eccentrico parallelis, quorum omnium eadem est ratio, ita circuli planum propter hanc virtutis rectitudinem ex infinitis constat rectis, quarum rursum omnium eadem est ratio. Ergo planetae corpus ita considerari potest ut quaelibet recta, cum nulla aliam impediat, ut supra falso confinxi. Sit ergo AD (Fig. 34) axis magneticus fugiens in A. appropinquans in D, repraesentans unam ex infinitis rectis virtuosis corporis Martii, Sit autem B punctum medium inter AD, Sole in BI; dictum, appropinquationem vel fugam fieri nullam, causa est quia A et D sunt in opere acquali. Ergo hoc est quasi acquipondium. Vide mea Optica Cap. I. Sit jam Sol in BCK, et centro B spatio BD circulus DC delineatur, et ex C, sectione circuli cam linea (), perpendicularis in DA ducatur. Si igitur CB sit trutina et AB, BD brachia librae, erit ut DP ad PA sic fortitudo anguli DBC ad fortitudinem ABC. Itaque fuga hic tanta est quanta DP,

appenentia muia pinna 12. Anter 21 12 manieu pu 22. que al 12. sego 22 est no montos appenentas et 12. manera appenenties augus pullo. La 12. SP = 20. 32 rel (N. Legn anna Appendicia Maneras 20 aprento 72 per pies destar manufactor accimut.

Rase ant lemonstratio geometries as orranges. Araper & principa tastes telle indepent. Annua incata inter ette same ingenannis ai normal. Set una esperencia di ellipse per esperancia incom - 11 seine refregener er vitt ibestigent den per sins verste figrennen ab sporters, so, total per (N sea per N. step principles matters manage and ratar. Summun auten 101 CN persendiemanen N in effette. Kano man a pracipis fri 10 suners tenenus perpendicuaren FL Yenge Residua at. the the sur handles a speciale. The same magnetices persendicularter manit incar ex Sue, set sur sun ili untar (a potent). Leurit eta tenta nenes sue sagnetes versue a spece constinue an 146600 intel me north a notice after. Non a mere Commentation relicta fun ince stierto : si nametar per directumen anis in ensige anne stance traits magnetics constituties musicut. Term there At Terras ana a sina directa est, mi parturur a 6 m C. capa directione accedit asstat et ineme. Circa muse sicul religione perpes distin vievier. Errs magnenne Terrae esses imm in U' V u' == Ar imperienditur ragum et quidem jam m inis Sids in G. alim vere m E. .. At man superiousn and responders pote mi fact re commente similitadine notona similem demonstrari, 100 plane rem ennien. Har jam en-PETERDA MARACUT. AUNDAIL INCAN IN ADS DITACI ADDALL COMPANY, CLED Terme mognenn in 01 7 ense statile. Un um pars expectantis soluta est. De altera parte respondente su: in acquacitot maxima circa 0º 7. 0º 🚄 henn Sics Tymeneum alle, værisel si vel spogneum a 0º 6 m 5% Z referator. In Z et & peccari quidem 11', sed Linn ervrem en decinatione na conse depresentar in 45" (er cajus becanatoinis ideervatione enstruenda est meoria Silla, 7' quidem errari in loco Sida, si apogracum 5%." transpersatare, and ille 7' admitti posse, si decunanto ejus loci 2 erroris in obserrunde admittat. Graedai Tyeno dient, se deconatornes vindecause ab errore non tantum 2', sei plane ',': erzo it negare potero, es quoi perallaris forte in minimie precet att ote plas ecepticae. Ot iciam insi suns obserwatieges etian in keg. media. Nam anno 1588. 3. Marti eclipsis ir 23" # ostendit fixes 7' promotiores quam Tyrie: et hir plane facit cam Landgravio. Aut dicam fortasse, centrum Suis vel Terrae in revolutione annus non manere exquisitissime in codem riano et sub codem circulo maximo, ut nec Lona in menstrua? De d noedum its screpsiese cogitav. an eins latitudo onnino constantissimam arguat inclinationem. Quid si anten haet causa, eur ego post 5 jam annes ausdem tamen impetrare prosi, et operationes mea methodo institutae sibi ipsis consentances exhiberent distantias 3 a 3? Nam inter assumta est locus 3 ut certinuine ergnitus. Sed quid de veteribas, qui apogacam in 54,º II possere? Illi iz tar ja keis 🧿 circa apogaeum dicendi sant errasse 49°. Nulla mihi relizio hoe dicere, com asi faerint observatione solstitii imperceptibili.

Sed prinsquam triumphum canam, cogitandum de physica canea, qui feri possit, ut apogacum conficiatur axe magnetico, manente in directa linea ex 5? Quidnam est, quod simul fiat, ut ei causam transscribamus? Toura

in γ volvitur circa axem a septentrione per regionem \odot in austrum, contra in \simeq . Ergone haec causa recessus, illa causa accessus ad \odot ? Item in γ et \simeq dies acquanter noctibus in toto globo, in \odot , z partes globi carent luce. An igitar haec causa accessus? (in margine: NB. refer in Commentaria.)

Sed missa in praesens hac inquisitione redeamus ad schema corporis Martii. Duo dixi: 1) sinum versum IN metiri portiunculam librationis. testante hoc experientia observationum. 2) Sinum rectum CN, vigore demonstrationis in Opticis positae, metiri fortitudinem accessus vel librationis. Haec duo putavi hactenus esse contraria, at videtar quod non. Nam alia est mensura fortitudinis librationis, alia mensura jam confectae particulae libratoriae. Illic IF repraesentat librationem totam, IN partem competentem anomaliae eccentri per IC signatae. Hic DB repraesentat fortitudinem maximam. CN fortitudinem in anguli CBI momento. At ut DB non significat omnes fortitudines junctim, its nec CN fortitudines omnes per totum arcam anomaliae CI. At si colligas summam sinuum 90, quae est 578943140. haec est mensura fortitudinum, quarum quidem effectus communis est librationis dimidium vel BI. Ita ergo etiam si colligas summam sinuum ad omnes gradus in CI, haec metietur portiunculam confectae librationis, quae si tantam prodet lineam, quanta est NI versus sinus, a quo stat experientia, tunc conciliavimus experientiam cum demonstratione librae. Videamus. Sit IC primum 30°. Summa sinuum 30 primorum est 79259831; 578.....: 100000 = 792; 13691. At sinus versus 30° est 13397. differentia perexigua. Sit secundo IC 60°, erit sin. vers. IN 50000, sed summa sinuum 60 est 290801743, paulo plus dimidio de 578...., quod est 289471570. (Comp. Cap. LVII.)

Rem igitur intra sensus propinquitatem adduximus optimis rationibus. Concludamus igitur, corpus planetae sic esse considerandum, ac si esset magneticum, quod accedat vel fugiat lege staterae, et diametrum virtuosam . porrigi in longitudines medias. Illam vero objectionem de Telluris axe in apsidum lineam inconstanter tamen porrecto superis discutiendam selinquemus. Addam autem et hoc geometricum. In principio, cum sinus sunt parvi paramque de libratione decerpant, versus sinus est dimidio minor summala librationis ex summis sinuum collectae, ut summa sinuum 90:578... dat 100000; quid sin 1°-1745? Sequitur 30. Contra sinus versus 1° est 15, dimidium. Ex quo disco, quod alibi jam habui exploratum, non opus esse ut summas sinuum colligam et deinde per regulam de tri operer, tantummodo danda est opera, ut aliquo artificio nanciscar quadrata rectorum sinuum. Nam eorum eadem est proportio, quae summarum harum. At, inquis, quomodo nanciscar quadrata rectorum? Hoc te docebo ex Byrgianis fontibus derivato rivulo. Sinus versus alicujus arcus est dimidium quadrati de subtensa complementi 5 ultimis rejectis. Sit arcus 60°, sin. 86603, sin. vers. 13397, compl. 30°, dimidium 15°, sin. 25882, duplum 51764 est chorda arcus 30°; quadra, reperies 26794 duplum sc. ipsius 13397. (Comp. ann 86.)

Ego, mi Fabrici, non literas ad te scribo sed commentaria. Ex quo ceasavi scribere, tantum temporis est elapsum, ut jam vix ipse sensum capiam scriptorum nisi accurate relegam. Non lubet ergo nec pertexam; nam verum est quod ais (literis 3. Apr. datis, quas hodie 4. Junii accepi), cumulatur mihi respondendi labor, non minuitur, dam aliae atque aliae tuae literae superveniunt, quibus hodie acceptis ad tenorem respondendi redii. Scias, distantias libratorias ad unguem satisfacere nobis. Probavi per stationes ab anno 82. in 95. Proportio tamen eccentricitatis et orbium fait alia paulo. Eccentricitas se. 9300 circiter. Et apogaese distantiae ad medium radium orbis Terreni proportio quae 2 ad 3, non dimidio centenario de 100000 plus vel minus.

Hic confundam tuas literas ultimas primis. Quaeris (p. 98.), cur Soli tribuam distantiam 100000? Quia hoc peculiare est huic hypothesi, ut tota theoria Solis adhibeatur ad omnes planetas et sic etiam ad Venerem et Mercurium. Nam in Venere circellum libratorium scias nihil esse aliud, quam hoc ipsum, quod distantia a Terra medii puncti, repraesentantis Solem, non manet eadem. Convenit dimensio. Nam eccentricitas Solis credebatur Ptolemaeo 4170; semidiameter circelli illius est 2080. Bisecat igitur eccentricitatem Solis, et ego utens distantiis Solis a Terra variabilibus (in mea correctione) vel distantiis Terrae a puncto repraesentante medium locum Solis variabilibus (in correcta Copernicana forma), non indigeo illo circello, qui hoc quoque nomine incredibilis, quod ad alienum orbem, Terrae seilicet, esset convertibilis. Habes unam causam, cur distantia Solis et Terrae sit 100000. Altera: quia pulchrum, veras omnium siderom distantias earumque proportionem ad invicem erui citra regulam de tri ex tabulis. Si nempe qualium c_{3} a 100000 talium c_{3} 24 est 400000, esset tunc c_{3} a 5 900000.

In Cancellarii genesi (p. 98.) errorem non pertinaciter negaverim neque tamen fateri possum; quia vero ais, anno 95. d. 7. h. 7. p. m. fuisse similem positum et quia casus tibi circa longitudines medias eruendi distantias videtur aliquid difficultatis habere, age declarabo tibi superius et jam correctissimum praeceptum in hoc exemplo, tu ex eo de antiqua mea forma judicabis:

1594. — 7• 28• 25' 39"	Solis locus. 25° 11' 16" 🖈
Nov. — 5. 25. 2. 23.	3. 50.
D. 6. — — 3. 8. 40.	25. 7. 26.
H. 17. — — 22. 17.	30. 39.
. Add. 3. 55.	10. 18.
1. 27. 2. 54. 4. 28. 59. 14. (Anom. eccentri) 91. 56. 20.	2. 33. 25. 50. 51

Quia sumus circa medias longitudines, conjicio aream trianguli aequatorii continere 5° 19' 10". Esset igitur complementum anomaliae eccentri 86° 37' 10". Videamus an bene conjecerim. Sin. 86° 37' 10" est 99826, area maximi trianguli 5° 19' 43" (per eccentricitatem sc. 9300), hoc est 319' vel 19183", quae in sinum 99826 multiplicata dant 19150, quae sunt 5° 19' 10" plane ut conjeceram. Sed, inquis, hoc non est geometricum et quis semper tam felix conjector esse potest? Vera objectio, sed mihi sufficiat, tabulam geometrice ad datas anomalias eccentri posse construere, quod jam pridem feci et unde depromsi hanc tam felicem conjecturam. Ex eadem possem tibi statim dicere, complementum anomaliae coaequatae esse 81° 18' 50" et distantiam 100548. Sed exemplum pertexendum est citra tabulas. Igitur quia complementum anomaliae eccentri est 86° 37' 10", dimidia libratio superior pene est absoluta, restant 3° 22' 50".

(60° 42' 46' + 36' 24' + 81° 19' 4''; [-+14'']=81° 18' 50''; sin.3° 22' 50' = 5878 [>9860]=54?.)

Hic invenio 547 addenda ad radium et sic habeo distan-Fig. 35. tiam justam. Dantur jam in ADC 3 latera, utere quibuslibet pro angulo A inveniendo. In praecepto jussi inquirere DC, estque sinus 99826 diminutus particula de 432 respondente sinui. Eaque DC et DA jussi uti et postea inquirere AC ex AD, DC; sed non est opus, ut video, inquirere DC, sufficit nobis AC et AD, cum AC simplicius detur. Igitur AB + BD = AD (9300 + 5878 = 15178)Prodit DCA = 8° 40′ 56″ (sin. DCA = $\frac{15178}{100548}$). . Ergo A = 81° 19' 4". Eccentricus locus 7° 40' 10" Π. Utentes igitur proportione 152500 invenimus : 100547 132. 44. 20 49. 19 7. 40. 10 **∏** 50273 20. 53 25. 50. 51 🖍 2. 0. 32 2514 1. 39. 3 1. 38. 38 161. 49. 19. 153334 vel 153233 21875 . 0 134. 44. 16 25. 50. 51 🖍 98225/ 21600 J 10. 35. 7 8. 45. 0 · 20. 53.

Ecce repraesentatum locum ad unguem. Quomodo simul computes latitudinem, epistola ante hanc proxima perscripsi, potest etiam sic: multiplica inclinationem loci in 2° 0' 32", prodit latitudo.

Dixi tibi simul compendiosum meum calculum (v. p. 98.); is constat tabulis 1) Solis, 2) loci eccentrici et distantiae Martis, 3) tabula indicis valde prolixa, sed jam confecta, 4) tabula anguli. Ex tertia cum 153200 a fronte et 98200 a margine ingressus invenio indicem, qui post correctionem rationalem facillimam evadit 21875. Ex quarto cum indice 21600 a margine et 161° angulo ad Solem ingressus invenio angulum 132° 44' 20", et differentias pro indice 45', pro angulo 2° 0' 32", quae eadem ut jam dixi est etiam utilis pro latitudine. Fuit haec laboriosissima sc. ante annum confecta. Cogito sic pro omnibus planetis facere si vixero. Possum enim construere sine observationibus, semper utiles ut sinus; si exemplum esset, mitterem.

Simul autem vides, vel jam tandem perfectum esse illud exoptatissimum conjugium et eliminatam adulteram illam vicariam. Omnia facta sunt quae petiisti : causae sunt datae utrinsque eccentricitatis, astronomiam habes sine hypothesibus. Videtar quidem adhuc haec esse hypothesis, dum dico Martis eccentricum esse perfectam ellipsin. At prius hoc ex causis physicis conclusum est, non est igitur hypothesis in meis Commentariis; est vero in calculo, sed vera suppositio veri itineris planetarii, dantis distantias et aequationes. — Cum videas latitudines Martis cum meo calculo convenire (p. 98.) quotquot sunt observatae, debuisti omnino credere et illas convenire, quae non sunt observatae. At retrahit te Ptolemaei auctoritas, qui a me immaniter differt; nunquam in conjunctionibus ultra 7' latitudinem concedens, cum ego ultra 1º procedam. Quid igitur ego? Quid nisi ut moneam, incogitantis esse haec objicere. Quis enim unquam vidit 3 in conjunctione ()? Certe vix a 60° distantia solitus est Tycho observationes inchoare; nam in conjunctione () valde parvus est J. Itaque nulla Ptolemacum observatio manuduxit. Quae igitur ex sua opinione, sua hypothesi dixisti, men opinione men hypothesi destruuntur.

Haec Keplerus. Fabricius respondit d. 11. (21.) Jan. 1606, quaerens: cum in J. 4 aut 5 ex acronychiis longo temporum intervallo (10 aut plurium annorum) disjunctis, aphelli locus quaeratur, quaestio est, cui observationi acronychiae in praxi institutae aphelium responders? Certum n. est, unum et idem aphellium omnibus 3 aut 4 observationibus acronychiis respondere non posse propter motam aphelli interea factum. Tu redigis 4 observationes in circulum et sic inquiris cetera. Existimo igitur, nec verum aphelium nec veram eccentricitatem "sic dari posse, quia unum ex altero dependet &c.

His addit Fabricius rationem "post multas cogitationes" constitutam, qua motus centri eccentrici d'explicetur, subjungit vero statim cautionem: "ex festinatione male schema depinzi" correctionemque explicationis suae. "Tu exactius hoc perpende et forte ansa tibi erit ad majora. Ego haec ob animi motus tristis clarius et fusius tractare nequeo." (Comp. Vol. II, p. 105.)

Deinde addit : Quando Hipparchus tuus et quando Martis Commentarius prodibit ?

Nuper veram rationem mihi ostendere voluisti, quomodo angulus pro vera distantia Oa O cognoscenda circa 5-6° post mediam longitudinem O utrinque inquirendus esset. At adeo obscurus et varias in illis, ut nihil perceperim. Ostendetur mihi simplex ratio inquirendi istum angulum a 90° distantiae ab aphelio usque ad 96° idque utrinque a media longitudine versus perihelium. Tu conjectura nuper inquirebas istum angulum, at rationem a priori non dedisti. Certe ego invenio illic aliquid differentiae in observationibus, si angulus ille a 90° fin 96° distantiae ab aphelio more solito quo cetera inquiratur; causam tamen discrepantiae non video. In ceteris omnia optime observationibus congrunt. --

Ad haec Keplerus non respondit, et Fabricius alias minime parce usus verbis jam ipse obmutuit neque per annum 1606. Keplerum iterum adiit. Consuetudinem vero literas dandi recepit initio anni 1607. eamque per annum 1608. eadem qua prius ratione tenebat; Keplerus in Martis Commentariis occupatus duas tantum remisit literas responsorias, ad alias Fabricii quaestiones minus quam antea respiciens, Martem firmiter tenens; memor forte illius: "decendor discimus" et "se exercendi gratia" Fabricio ea quae emendanda in astronomia, quae stabilienda in ipsius hypothesibus videbantur, sincere retulit.

Literae hae Kepleri datae sunt d. 1. Ang. 1607. et 10. Nov. 1608, easque, ut plenius perspiciatur id quod voluit Keplerus, non ut priores uno tenore proponendas ceusuimus, sed junctis Kepleri et Fabricii literis, quaestionibus vel objectionibus Fabricii singulis adjecimus responsionem Kepleri.

Fabricius (20. Jan. v. st. 1607): Per ovalitatem vel ellipsin tuam tollis circularitatem et aequalitatem motuum, quod mihi inprimis penitius consideranti absurdum videtur. Coelum ut rotundum est ita circulares et maxime circa suum centrum regulares et aequales motus habet. Corpora coelestia sunt perfecte rotunda, ut ex Sole et Luna liquet. Ergo non dubium est, omnes omnium motus per circulum perfectum, non ellipsin fieri, item aequaliter moveri super suis centris. At cum in ellipsi tua centrum non ubique aequaliter distet a circumferentia, certe motus aequalis maxime erit super suo proprio centro inaequalis. Quodai igitur retento circulo perfecto ellipsin per altum circellum excusare posses, commodius esset.

Keplerus, praemissis quibusdam de observationibus Fabricii (Vol. II, 603.) pergit: Sed stella sepulta ad Martem mihi redeundum et cum Fabricio pugnandum. Ovali figura putas tolli aequalitatem motuum : equidem. At et spirales figurae tibi eandem tollunt, et Ptolemaicus aequans tollit. Etsi vero Copernicus reducere nititur aequalitatem motuum, non illam tamen reducit, quae spectatur in composito itinere planetae. In eo enim planeta incedit inaequaliter et praeterea exorbitat a circulo, quod fatetur ipse Copernicus. At principia, inquis, quibus motus ille efficitur, circuli nimirum, habent seorsim aequales motus. Fateor; sed non motus, qui phaenomenis congruum. aliquid efficiant. Praeterea et mihi principia, quibus planetae motus efficitur, manent constantia. Differentia solum in eo, quod tibi sunt circuli, mihi virtutes corporatae. De cetero constans est mihi rotatio corporis Solaris eaque aequabilissima; constans circulatio speciei Solis immateriatae et magneticae; constans impressio hujus speciei seu virtutis motricis in planetam certo intervallo distantem; constans et circularissima licet tardissima conversio axis corporis planetae, unde progressus apogaeorum; constans virtus magnetica adunandi separandive corpora Solis et planetae in singulis angulis inclinationis axis planetae

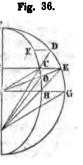
ad linearm ex Sole. Quod autem planeta transit de gradu virtutis in alium, id fit egregia ratione ex jam positis principiis. Quid tu responderes philosopho, qui negaret, te ex rerum natura loqui dicentem: in toto ambitu planetae nihil esse nisi in uno ejus puncto? Numquid dices, hoc nil derogare perfectioni coelestis ambitus; planetam enim non posse esse in toto ambitu simul, sed cogi intra unius quasi puncti angustias, et tamen successive venire in alia omnia puncta? Idem ego dico: si in omnibus gradibus virtutis ex Sole consisterent planetae ibique manerent singuli, Sol experiretur eodem tenore omnes gradus virtutis suae in illos idque invariate; at quia planetae non possunt esse simul in omnibus gradibus virtutis ex Sole, succedunt tempore ex una in aliam, ut omnes impleant.

Quod ais, non dubium, quin omnes motus fiant per circulum perfectum, si de compositis (i. e. realibus) loqueris, falsum. Fiunt enim Copernico, ut dixi, per orbitam ad latera circuli excedentem, Ptolemaeo et Braheo insuper per spiras. Sin autem loqueris de componentibus, de fictis igitur L e. de nullis loqueris. Nihil enim in coelo circumit praeter ipsum corpus planetae, nullus orbis, nullus epicyclus, quod Braheanae astronomiae initiatus ignorare non potes. Hoc ergo posito fundamento, nihil moveri praeter planetarum corpora, si jam quaeratur, qualis fiat linea corpore circumeunte? respondeo tibi ego non ex hypothesi suscepta, sed ex scientia demonstrationibus geometricis undiquaque munitissima, iter corporis fieri ovale, fere ut apud Copernicum, qui praeter corpus planetae etjam epicyclos et orbes movet. Quodsi darentur orbes solidi, possem utique et ipse facillime ovalem lineam repraesentare per concentricum et duos epicyclos, quorum semidiametri junctae acquent eccentricitatem eccentrici, sitque minoris diameter acqualis latitudini lunulae, qua differt ellipsis a circulo. Tribuerem enim epicyclo (majori) motum contrarium motui concentrici et aequalem ei in tempore restitatorio, epicyclo (minori) celeritatem duplam in partes easdem cum majori, et ponerem planetam simul in apogaeo utriusque epicycli, simul etiam et in perigaeo et in puncto (minoris) epicycli, quod est a centro majoris remotissimum; ad latera vero concentrici esset in perigaeo (majoris) epicycli.

Ecce tibi supellectilem Copernicanam levissima mutatione transpositam; ecquid placet? Mihi minime. Primum enim orbes nulli sunt; quid igitur juvat mentiri causas motus planetae ovalis? Deinde omnes hi tres, concentricus cum duobus epicyclis, fingerentur aequaliter jam tardi jam veloces, essetque mensura morarum in quolibet arcu distantia planetae a centro concentrici. At quae causa esset, cur concentricus motum haberet inaequalem? cur epicycli? et quae connexio hujus mensurae cum mensurato? Et est tamen haec mensura adeo propria hujus tarditatis, ut nullum centrum aequantis ne quidem libratile circulariter juxta se ferat aut pro se substituere possit, Ergo ut causa pateat connexionis inter mensurans et mensuratum, oportet mittere fictos circulos et ipsas amplecti distantias, quomodoque ex iis elliptica via ratione naturali efficiatur, perpendere.

Fabricius: Non sufficit salvare posse motus, sed etiam tales hypotheses constituere, quae principiis naturalibus minime dissentiunt.

Keplerus: Mírifico consensu amplector hoc tuum dogma; et ea mihi causa fuit multi laboris in Commentariis Martis. Te vero quod attinet, admonitum volo, ut cum Osiandro transigas; qui praefationem scripsit in opus Copernici non apposito nomine (Comp. Vol. I. p. 245 et faciem avenam tituli bujus libel), transigas etiam cum Christiano Severini (Longomontano) qui putant,


sufficere ut hypotheses satisfaciant observatis, non obstante quod sint falsae.

Fabricius: Dato FE statuis planetam in C et coaequatam anomaliam CBT. Sic quidem prosthaphaereseos partem conficis, at non integram prosthaphaeresin inde dare potes. Adhibes secundo eccentricitatem pro altera prosthaphaeresis parte. At quae ratio sit, non video. Si CBT est anomalia coaequata et in C planeta fuerit, tunc BEA tota esse deberet prosthaphaeresis istius loci; sed non est, nec BC vera distantia. EB est minor vera distantia, multo magis BC minor est. Si vero BD distantia vera erit, cur ad punctum C (ac ai ibi planeta esset) coacquationem anomaliae constituis ?

Keplerus: Quae subjicis absurda, quae sequantur ex schemate hypotheseos a me proposito, non egent refutatione; ipsa enim diligenti meditatione patescent per Ellipsis est naturalis hypothesis; circulus ellipsin se. amplexus est tantummodo numerationis causa. Nam ellipsis per se geometrice nequit aliter in certas partes dividi,

nisi per circulum et communes ordinatim applicatas, quae dicuntur in cir-Verbi gratia, si dixeris 10º de circumferentia elliptica, absurde culo sinus. loqueris, nam ellipsis non est longa 360° circuli; at si dividatur in 360, nescietur longitudo, nescientur puncta arcum 10 determinantia. At si dixeris arcum de circumferentia elliptica respondentem 10 primis circuli gradibus ab aphelio, jam scio quid dixeris. Nam a termino 10° circuli E sinum rectum seu perpendicularem ET demitto in lineam apsidum FB, quae resecabit mihi illum arcum ellipsis FC, quem hac vice mihi dixisti. Hi ergo 10° circuli FE, seu multo magis proprie hic arcus ellipseos FC, respondens his 10° circuli, dicuntur anomalia eccentri, et CB distantia puncti terminantis hunc arcum ellipseos est vera distantia planetae a Sole; quippe ipsum corpus planetae in ellipsi hac circumit. Jam quid opus est, te ex B in E, ex A in E ducere plures lineas et BC continuare? Si ego id feci, feci ad explicandos meos conatus. Ad computandum porro non est opus; sufficit, ut dato puncto C quaeramus, quanta visio CBF, quae est anomalia coaequata, et quanta vicissim mora seu tempus, quo planeta in FC versatur (est autem anomalia media), requiratur; est autem ejus mensura area CBF quam proxime, verior EBF area, mirabili quadam ratione, quam in Commentariis explico; nimis enim est longa. Et ne rursum tibi scrupulos moveam quaerens anomaliam mediam in circulo, reliquas anomalias in ellipsi, scito quod area non per se metiatur tempus, sed quatenus complectitur summam distantiarum omnium punctorum C, F a B Sole. Jam vero evenit, ut area EBF perfectius metiatur hanc CF punctorum omnium distantiam, quam ipsa area CBF. Rursum igitur arcesso EBF, numerandi causa et numerandae quidem rei, quae est in ellipsi CF, quae via propria est planetae.

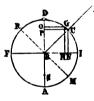
Tu hic jam miraris, me non computare simul utramque partem aequationis? Ohe! Num fit id in Ptolemaeo? Minime. Nam et ipse gemina operatione unamquamque aequationis partem constituit, nisi quod operatione jam ab ipso peracta simul et semel jam utramque ex tabulis excerpimus, quod idem etiam apud me fit. Neque sane opus est, scrupulose in schemate declarare utramque partem aequationis per se. Sufficiat hoc: Anomaliam eccentri FC vel FE esse quantitate mediam inter proprie dictam mediam et inter coaequatam. esseque harum quodammodo ferruminationem. Quodsi planetae iter esset circulus, posset distincte citra confusionem explicari utraque pars aequationis in hunc modum: area EBF est anomalia

media; area \triangle EAB est excessas anom. mediae supra anom. eccentri, EAF ergo pars aequationis una seu physica. Si ergo planetae iter esset circulus EF, tunc trianguli ejusdem angulus AEB esset defectus anom. coaequatae EBF ab eadem anom. eccentri EAF et sic pars aequationis altera seu optica. Itaque ejusdem trianguli aequatorii a rea quidem esset pars physica, angulus vero pars optica aequationis. Atque sic haberescausam duarum operationum, duae enim causae sunt aequationis. Jam vide quid turbet ellipsis, imo quid proficiat. Manente enim prima parte aequationis physica ob causas supra dictas, jam pars optica, ob ingressum planetae ad latera, variatur quantitate anguli CBE.

Haec si diligenter consideraveris penitusque animo comprehenderis, cansas calculi mei non miraberis amplius, sed scies, quid quavis operatione agas; computans enim aream EBF (h. e. aream BAE, nam EAF per se patet), computas summam distantiarum arcus CF et sic una tempus morae in CF. Hoc enim sic vult natura, ut quo longius planeta distet hoc diutius moretur. Computans vero angulum, non EBF sed CBF, redigis planetam in propriam et ovalem orbitam, ut justam habeat distantiam non EA sed CA; utrinque igitur supponis iter idem planetae FC non FE.

Fabricius: Si ellipsis tua veram hypothesin conformat, ex illa quoque dabis rationem, quomodo ex 3 acronychiis eccentricitas et apogaeum inquirendum, vel ostendes causam ex tua ellipsi, cur illa exquiri ex tribus non possint. Si motus undiquaque ellipsi respondent, tune reciproce catendere debes tanquam a priori, quemedo ex 3 acronychiis motus constituai possint, ut certe fieri posse ac debere omnino mini persuadeo, et quam diu illa constituare non potes, tam diu ratio et hypothesis verorum motuum latet, nec ellipsis aut alia fictitia forma satisfacit animo, utut etiam motus coelo consonos praebeat. — Quare suda mi Keplere in eo, ut ex 6 acronychiis statim et tanquam a priori eccentricitatem et apogaeum constituere possis, et ellipsin tuam facile abjicies et in excessu potius circuli latere veritatem invenies.

Keplerus: Quae sequitur objectio est expiscatio non objectio. Quid? ta mè ita avarum putas, ut arte circumveniendum existimes ad prodenda arcana, quomodo ex 3 acronyohiis hypothesis habeatur? Minime! Jam tentavi in Mercurio hanc artem, cujus est ellipsis evidentissima. Sed didici, dregnar omnium esse parabilissimam; sine ea conjectus fui in cossicos numeros molestissimos. Sic perpende, si daretur una observatio in ipsissimo aphelio, tunc statim altera addita observatio proderet hypothesin.


Tribus ergo datis observationibus h. e. trium coaequatarum differentiis, compara tempora interjecta. Ubi majus tempus interest, per priorem observationem statue aphelium et pertexe hypothesin per alteram observationem. Tunc ad tempus tertiae observationis computa locum pro tertia observatione idque ex hypothesi per 2 observationes inventa. Si igitur calculus observationem exprimit, peractum est negotium. Sin autem observationem calculus praecedit vel sequitur, tunc intelligis, aphelium falso susceptum, igitur pro qualitate excessus vel defectus primam observationem deduc ab aphelio et novo suscepto aphelio per primam et secundam, novam constitue hypothesin; id toties repete donec pro tertia observatione calculus congruat. Aregna est, at casus omnino coactus et unicus est. 'Aregna est etiam in illa methodo ex 4 observatis. Tu mihi nescio quid suspicionis de excessu circuli insinuas. Frustra! Nimis confirmatus sum de inventa per ellipsin veritate. Et quid argutaris de excessu? Omnis ellipsis ut deficit a circulo majoris diametri, sic excedit circulum minoris diametri. Copernicana excedens est ellipsis.

Fabricius : Si ellipsis tua geometrica esset, et distantia a Sole responderet loco, ad

In \not 2 vel 3' deesse puto et huic et antiquis hypothesibus, forte propter falsam assumtionem in \not . Nam σ habuit anno 93. in ϑ () magnam latitudinem. Sed non video, quomodo corrigere possim, ut nullum detrimentum inferatur locis reliquis. Et tamen possunt haec 3' in $\vartheta \sigma \sigma$ () efficere ad apparentiam 10—11'. Sed et aliud est quod desidero in hac hypothesi: nempe quod ad insaniam usque contendens causam naturalem confingere non possum, cur σ , cui tanta cum probabilitate libratio in diametro tribuebatur (res enim nobis ad virtutes magneticas pulchre admodum recidebat), potius velit ire ellipain vel ei proximam viam. Fortasse tamen puto, virtutes magneticas non omnino respicere sinus, sed aliud aliquid.

Omnino sapit magneticam vim eccentricitas, ut est in Commentariis meis: ut si globus & haberet axem magneticum uno polo () appetentem, altero fugientem, eoque axe porrigeretur in longitudines medias, tunc quam diu versatur in descendente semicirculo, maxime in longitudine media, porrigit polum appetentem versus (), itaque semper ad () accedit, sed maxime in longitudine media, nihil in apsidibus. Et tunc in ascendente semicirculo aequaliter fugit a (). Fortassis itaque (liceat enim mihi, jucundissime Fabrici, dum tecum loquor exerceri, dum exerceor proficere) alia aliqua lex est, qua magnes aliquis fugit et sequitur, quam sinus. Posito

enim, quod DFA sit corpus 3 rotundum et DA axis magneticus: ego hactenus posui, quod Marte sic collocato, x ut Solem habeat in linea BC, sc. in K, ea sit proportio celeritatis ejus in accedendo ad celeritatem in recedendo, cum habet Solem in D, quae est proportio sinus (versus) IN ad sin. IB. Et in hac positione inventa est IN nimis parva, imo fere justa pro particula librationis, pro mensura; quid si ergo potius sic sit haec quoque vera celeritatis, ut NC ad BD aut alia aliqua? Nam si etiam in-

haereamus huic hypothesi magneticae, rationibus quibusdam cogemur alium aliquem modum quaerere. Primum, si 💿 et poli magnetici D, A sunt in eodem plano eccentrici, non debemus suspioione quadam turbari, quasi alind dicendum sit de solido corporis planetarum globo, allud de circule ejas maximo. Nam posito quod posuimus, globus totus potestate divisus intelligitur in infinitos circulos parallelos, a maximo utrinque ad minimos, qui omnes aequaliter versus () erunt dispositi, itaque proportio manebit eadem multiplicatis terminis. Sit ergo FDIA circulus quilibet in corpore planetae parallelus eccentrico, et sit FDI semicirculus appetens, FAI fugiens, Sole in BI versante fit aequilibrium, quia de semicirculo, qui Soli obvertitur, sc. DIA, dimidium DI est appetens, dimidium IA fogiens; Sole vero in BK versante, semicirculus RCM consideratur, in quo RI sunt partes appetentes, IM fugientes. Pone IG acqualem IM, igitar IG annihilabitar ab IM. Relinquitur RG considerandum pro mensura appetentis facultatis. Ubi MI complementum est ad IC discessum planetae ab apogaeo et IG similiter: ergo GR arcus est duplus ad IC discessum ab apogaeo. Quodsi partes appetentes acque multae semper appeterent acqualiter quocunque angulo DBK, GBK &c., tunc omnino discessus ab apogaeo metiretur appetentiam et acqualibus temporibus acqualis esset distantiarum d a 💿 imminutio. Sed consideranda etiam fortitudo anguli. Nam Sole in BI versante, etsi nihil operarentur AI fugientes, non tamen DI appeterent, quia anguli DBI

milia fortitudo h. e. quia Soli non obvertuntar DI partes respectu lineae saae virtutis BD, BI. Sed hic haereo in prodenda anguli mensura causa fortitudinis. Nam forte anguli DBC complementum CI metitur hanc? Non puto. Nam quando DBI incipit minuì, tunc plus illi prodest ad appetentiae fortitudinem modulus aliquis imminutionis, quam cum pene totus absumitur. Num igitur IN metitur fortitudinem omnino DBC? At huic id quod jam dixi repagnat melto magis (in margine: falsum hoc).

Tu hic mihi scrupalum moves de observatione d'anno 90. 18. Dec., dicis locum ejus computatum a Lance bor. et Spica differre a loco, qui exit ex usurpatione Lancis austr. At ego nullam distantiam d'prodidi a Lance austr. (vide p. 94.)

Acquiesco in declinatione eclipticae a Tychone prodita citra controversian, nec mihi Lansbergias allum scrupulum movet hactenus quidem. Nec enim verisimile, quemquam hic Tychone diligentiorem esse posse. Nec ille suam obliquitatem inculcat, ut eam Tychonicae anteferat, sed ut collatione instituta veritas per has etiam tenues discrepantias confirmetur in iis, ubi discrepantia est nulla. Ita quidem est, dubitare quandoque soleo, an Tychonis calculus undiquaque verum locum) prodat. Causa mihi hujus dubii desumitur e re praesenti, quoties observationes in d habitae non coire volunt ad communem circulum orbis Terrae prodendum. At certi quid statuere aut temere hic a Tychone desciscere grave mihi est. De Solis parallaxi quidem paulo magis dubito, ut invenis in Opticis meis. At etsi unus scrupulus decedat, parum in obliquitate eclipticae peccatur, cum non multo major sit parallaxis Solis in Y quam in @. Esto enim parallaxis • tantum 2' quam Tycho dicit 3'; ergo in alt. 35° erunt 50" diminnenda. in alt. 58° circ. 20". Ergo obliquitas eclipticae circa 30" minor. Inde et longitado aestatis alia et occentricitas (•); sed omnino perquam tennia erant.

Te quidem o Fabrici. aequum est dolere, quod aliorum oculis videndum tibi est, et anniti ut tuis videas. Mihi ego meisque debilibus oculis de hoc alienorum oculorum beneficio gaudeo.

Redee ad d post alignot septimanarum interpositionem. Sit nobis eadem figura corporis planetarii proposita, quae supra. Dixi supra, perinde esse sive planeta consideretur ut globus sive ut planum circuli; jam etiam hoc dico, perinde esse sive ut planum circuli consideretur sive ut linea. Nam certum est ex Gilberto et per se etiam sine ejus auctoritate, virtutem magneticam porrigi in rectum. Quare ut globus fingitur constare ex infinitis circularibus planis eccentrico parallelis, quorum omnium eadem est ratio, ita circali planum propter hanc virtutis rectitudinem ex infinitis constat rectis. quarum rursum omnium eadem est ratio. Ergo planetae corpus ita considerari potest ut quaelibet recta, cum nulla aliam impediat, ut supra falso confinxi. Sit ergo AD (Fig. 34) axis magneticus fugiens in A. appropingnans in D. repraesentane unam ex infinitis rectis virtuosis corporis Martii. Sit autem B punctum medium inter AD, Sole in BI; dictum, sppropinquationem vel fugam fieri nullam, causa est quia A et D sunt in epere aequali. Ergo hoc est quasi aequipondium. Vide mea Optica Cap. I. Sit jam Sol in BCK, et centro B spatio BD circulus DC delineatur, et ex C, sectione circuli cum linea (), perpendicularis in DA ducatur. Si igitur CB sit trutina et AB, BD brachia librae, erit ut DP ad PA sic fortitudo anguli DBC ad fortitudinem ABC. Itaque fuga hic tanta est quanta DP.

appetentia tanta quanta AP. Aufer ab AP acqualem ipsi DP, quae sit AS, ergo SP est hic modulus appetentiae et AD mensura appetentiae angulo nullo. Et AD : SP = BD : BP vel CN. Ergo sinus digressionis planetae ab apogaeo vel perigaeo metitur celeritatem accedendi.

Haec est demonstratio geometrica et certissima. Itaque si principia nostra bene haberent, omnino libratio fieret lege sinuum digressionis ab Sed quia experientia et ellipsis per experientiam certissime staapogaeo. bilita refragatur et vult librationem fieri per sinus versos digressionis ab apogaeo, sc. non per CN sed per NI, ergo principia nostra necesse est variari. Sumsimus autem pro CN perpendicularem NI in effectu. Ergo etiam in principiis pro AD sumere debemus perpendicularem FI. Nempe dicendum est, non tunc esse planetam in apsidibus, cum axis magneticus perpendiculariter incidit lineae ex Sole, sed tunc cum illi unitur (si potest). Qnod etsi primo intuita cum magnetica virtute in specie conciliare non possum, tamen me mirum in modum afficit. Nam in meis Commentariis relicta fuit haec objectio: si planetae per directionem axis in easdem mundi plagas virtute magnetica eccentricitates conficiunt, Terra idem faciet. At Terrae axis is solus directus est, qui porrigitur a @ in Z, cujus directione accidit aestas et hiems. Circa hunc totum reliquum corpus dietim volvitur. Ergo apogaeum Terrae esset fixum in 0° γ , 0° \simeq . At deprehenditar vagum et quidem jam in Y, 🗠 (quia Solis in G), olim vero in II, x. Ad hanc objectionem nihil respondere potui nisi hoc; rei cognatae similitudine modum similem demonstrari, non plane rem eandem. Hic jam experientia testatur, apsidum lineam in axis directi lineam competere. ergo Terrae apogaeum in 0° \mathcal{Z} esse stabile. Ubi una pars objectionis soluta est. De altera parte respondebo sic: in aequatione maxima circa 0° γ , 0° 🗠 locum Solis Tychonicum nihil variari, si vel apogaeum a 0° Z in 51/, ° Z referatur. In Z et @ peccari quidem 11', sed illum errorem ex declinatione non posse deprehendi; in 45° (ex cujus declinationis observatione exstruenda est theoria Solis) 7' quidem errari in loco Solis, si apogaeum 5 1/2 ° transponatur, sed illa 7' admitti posse, si declinatio ejus loci 2' erroris in observando admittat. Quodsi Tycho dicat, se declinationes vindicasse ab errore non tantum 2', sed plane $\frac{1}{6}$ ': ergo id negare potero, eo quod parallaxis forte in minimis peccet aut obliquitas eclipticae. Objiciam ipsi suas observationes etiam in long. media. Nam anno 1588. 3. Martii eclipsis ir 23° H ostendit fixas 7' promotiores quam Tycho: et hic plane facit cum Landgravio. Aut dicam fortasse, centrum Solis vel Terrae in revolutione annua non manere exquisitissime in eodem plano et sub eodem circulo maximo, ut nec Luna in menstrua? De & nondum ita scrupulose cogitavi, an ejus latitudo omnino constantissimam arguat inclinationem. Quid ai autem haec causa, cur ego post 5 jam annes nondum tamen impetrare potui, ut operationes mea methodo institutae sibi ipsis consentaneas exhiberent distantias d a .? Nam inter assumta est locus () ut certissime Sed quid de veteribus, qui apogaeum in 5¹/2⁰ II posuere? Illi cognitus. igitur in locis 🛈 circa apogaeum dicendi sunt errasse 49'. Nulla mihi religio hoc dicere, cum usi fuerint observatione solstitii imperceptibili.

Sed priusquam triumphum canam, cogitandum de physica causa, qui fieri possit, ut apogaeum conficiatur axe magnetico, manente in directa linea ex •? Quidnam est, quod simul flat, ut ei causam transscribamus? Terra in γ volvitur circa axem a septentrione per regionem \odot in austrum, contra in \simeq . Ergone haec causa recessus, illa causa accessus ad \odot ? Item in γ et \simeq dies acquantur noctibus in toto globo, in \odot , z partes globi carent luce. An igitur haec causa accessus? (in margine: NB. refer in Commentaria.)

Sed missa in praesens hac inquisitione redeamns ad schema corporis Martii. Duo dixi: 1) sinum versum IN metiri portiunculam librationis. testante hoc experientia observationum. 2) Sinum rectum CN, vigore demonstrationis in Opticis positae, metiri fortitudinem accessus vel librationis. Haec duo putavi hactenus esse contraria, at videtur quod non. Nam alia est mensura fortitudinis librationis, alia mensura jam confectae particulae libratoriae. Illic IF repræsentat librationem totam. IN partem competentem anomaliae eccentri per IC signatae. Hic DB repraesentat fortitudinem maximam, CN fortitudinem in anguli CBI momento. At ut DB non significat omnes fortitudines junctim, ita nec CN fortitudines omnes per totum arcum anomaliae CI. At si colligas summam sinuum 90, quae est 578943140, haec est mensura fortitudinum, quarum quidem effectus communis est librationis dimidium vel BI. Ita ergo etiam si colligas summam sinuum ad omnes gradus in CI, haec metietur portiunculam confectae librationis, quae si tantam prodet lineam, quanta est NI versus sinus, a quo stat experientia, tunc conciliavimus experientiam cum demonstratione librae. Videamus, Sit IC primum 30°. Summa sinuum 30 primorum est 79259831; 578.....; 100000 = 792....; 13691. At sinus versus 30° est 13397, differentia perexigua. Sit secundo IC 60°, erit sin. vers. IN 50000, sed summa sinuum 60 est 290801743, paulo plus dimidio de 578...., quod est 289471570. (Comp. Cap. LVII.)

Rem igitur intra sensus propinquitatem adduximus optimis rationibus, Concludamus igitur, corpus planetae sie esse considerandum, ac si esset magneticum, quod accedat vel fugiat lege staterae, et diametrum virtuosam . porrigi in longitudines medias. Illam vero objectionem de Telluris axe in apsidum lineam inconstanter tamen porrecto superis discutiendam relinquemus. Addam autem et hoc geometricum. In principio, cum sinus sunt parvi paramque de libratione decerpunt, versus sinus est dimidio minor summula hbrationis ex summis sinuum collectae, ut summa sinuum 90:578 ... dat 100000. quid sin 1°-1745? Sequitur 30. Contra sinus versus 1° est 15. dimidium. Ex quo disco, quod alibi jam habui exploratum, non opus esse ut summas sinuum colligam et deinde per regulam de tri operer, tantummodo danda est opera, ut aliquo artificio nanciscar quadrata rectorum sinuum. Nam eorum eadem est proportio, quae summarum harum. At, inquis, quomodo nanciscar quadrata rectorum? Hoc te docebo ex Byrgianis fontibus derivato rivulo. Sinus versus alicujus arcus est dimidium quadrati de subtensa complementi 5 ultimis rejectis. Šit arcus 60°, sin. 86603, sin. vers. 13397, compl. 30°, dimidium 15°, sin. 25882, duplum 51764 est chorda arcus 30°; quadra, reperies 26794 duplum sc. ipsius 13397. (Comp. ann 86.)

Ego, mi Fabrici, non literas ad te scribo sed commentaria. Ex quo cessavi scribere, tantum temporis est elapsum, ut jam vix ipse sensum capiam scriptorum nisi accurate relegam. Non lubet ergo nec pertexam; nam verum est quod ais (literis 3. Apr. datis, quas hodie 4. Junii accepi), camulatur mibi respondendi labor, non minuitur, dum aliae atque aliae tuae literae superveniunt, quibus hodie acceptis ad tenorem respondendi redii. Scias, distantias libratorias ad unguem satisfacere nobis. Probavi per stationes ab anno 82. in 95. Proportio tamen eccentricitatis et orbium fuit alia paulo. Eccentricitas sc. 9300 circiter. Et apogaeae distantiae ad medium radium orbis Terreni proportio quae 2 ad 3, non dimidio centenario de 100000 plus vel minus.

Hic confundam tuas literas ultimas primis. Quaeris (p. 98.), cur Soli tribuam distantiam 100000? Quia hoc peculiare est huic hypothesi, ut tota theoria Solis adhibeatur ad omnes planetas et sic etiam ad Venerem et Mercurium. Nam in Venere circellum libratorium scias nihil esse aliud, quam hoc ipsum, quod distantia a Terra medii puncti, repraesentantis Solem, non manet eadem. Convenit dimensio. Nam eccentricitas Solis credebatur Ptolemaeo 4170; semidiameter circelli illius est 2080. Bisecat igitur eccentricitatem Solis, et ego utens distantiis Solis a Terra variabilibus (in mea correctione) vel distantis Terrae a puncto repraesentante medium locum Solis variabilibus (in correcta Copernicana forma), non indigeo illo circello, qui hoc quoque nomine incredibilis, quod ad alienum orbem, Terrae seifficet, esset convertibilis. Habes unam causam, cur distantia Solis et Terrae sit 100000. Altera: quia pulchrum, veras omnium siderum distantias earamque proportionem ad invicem erui citra regulam de tri ex tabulis. Si nempe qualium \mathfrak{F} a O 100000 talium O a \mathfrak{Y} est 400000, esset tunc O a \mathfrak{H} 900000.

In Cancellarii genesi (p. 98.) errorem non pertinaciter negaverim neque tamen fateri possum; quia vero ais, anno 95. d. 7. h. 7. p. m. fuisse similem positum et quia casus tibi circa longitudines medias eruendi distantias videtur aliquid difficultatis habere, age declarabo tibi superius et jam correctissimum praeceptum in hoc exemplo, tu ex eo de antiqua mea forma judicabis:

1594. — 7• 28• 25' 39"	Solis locus. 25° 11' 16" 🖈
Nov. — 5. 25. 2. 23.	3. 50.
D. 6. — — 3. 8. 40.	25. 7. 26.
H. 17. — — 22. 17.	30. 39.
Add. 3. 55.	10. 18.
1. 27. 2. 54.	2. 33.
4. 28. 59. 14.	25. 50. 51. ♂.
(Anom. eccentri) 91. 56. 20.	Dist. ⊙ ♂ 98225.

Quia sumus circa medias longitudines, conjicio aream trianguli aequatorii continere 5° 19' 10". Esset igitur complementum anomaliae eccentri 86° 37' 10". Videamus an bene conjecerim. Sin. 86° 37' 10" est 99826, area maximi trianguli 5° 19' 43" (per eccentricitatem sc. 9300), hoc est 319' vel 19183", quae in sinum 99826 multiplicata daut 19150, quae sunt 5° 19' 10" plane ut conjeceram. Sed, inquis, hoc non est geometricum et quis semper tam felix conjector esse potest? Vera objectio, sed mihi sufficiat, tabulam geometrice ad datas anomalias eccentri posse construere, quod jam pridem feci et unde depromsi hanc tam felicem conjecturam. Ex eadem possem tibi statim dicere, complementum anomaliae coaequatae esse 81° 18' 50" et distantiam 100548. Sed exemplum pertexendum est citra tabulas. Igitur quia complementum anomaliae eccentri est 86° 37' 10", dimidia libratio superior pene est absoluta, restant 3° 22' 50".

(80° 42' 49"+86' 24"=81° 19' 4"; [-14"]=81° 18' 50"; sin. 3° 22' 59'=5878 [>980]=547.)

Hic invenio 547 addenda ad radium et sic habeo distan-. Fig. 35. tiam justam. Dantur jam in ADC 3 latera, utere quibuslibet pro angulo A inveniendo. In praecepto jusai inquirere DC, estque sinus 99826 diminutus particula de 432 respondente sinui. Eaque DC et DA jussi uti et postea inquirere AC ex. AD, DC; sed non est opus, ut video, inquirere DC, sufficit nobis AC et AD, cum AC simplicius detur. Igitur AB + BD = AD (9300 + 5878 = 15178)Prodit DCA = 8° 40' 56" (sin. DCA = $\frac{15178}{100548}$) Ergo A = 81[•] 19' 4". Eccentricus locus 7° 40' 10" Π. Utentes igitur proportione 152500 invenimus: 100547 132. 44. 20 49. 19 7. 40. 10 TT 50273 20. 53 2. 0: 32 25. 50. 51 🖍 2514 1. 39. 3 1. 38. 38 161. 49. 19. 153334 vel 153233 21875 . () 134. 44. 16 25. 50. 51 🖈 98225/ 21600 J 10. 35. 7 8. **45.** 0 · 20. 53.

Ecce repræsentatum locum ad unguem. Quomodo simul computes latitudinem, epistola ante hanc proxima perscripsi, potest etiam sic : multiplica inclinationem loci in 2° 0' 32", prodit latitudo.

Dixi tibi simul compendiosum meum calculum (v. p. 98.); is constat tabulis 1) Solis, 2) loci eccentrici et distantiae Martis, 3) tabula indicis valde prolixa, sed jam confecta, 4) tabula anguli. Ex tertia cum 153200 a fronte et 98200 a margine ingressus invenio indicem, qui post correctionem rationalem facillimam evadit 21875. Ex quarto cum indice 21600 a margine et 161° angulo ad Solem ingressus invenio angulum 132° 44′ 20″, et differentias pro indice 45′, pro angulo 2° 0′ 32″, quae eadem ut jam dixi est etiam utilis pro latitudine. Fuit haec laboriosissima sc. ante annum confecta. Cogito sic pro omnibus planetis facere si vixero. Possum enim construere sine observationibus, semper utiles ut sinus; si exemplum esset, mitterem.

Simul autem vides, vel jam tandem perfectum esse illud exoptatissimum conjugium et eliminatam adulteram illam vicariam. Omnia facta sunt quae petiisti : causae sunt datae utrinsque eccentricitatis, astronomiam habes sine hypothesibus. Videtur quidem adhuc haec esse hypothesis, dum dico Martis eccentricum esse perfectam ellipsin. At prius hoc ex causis physicis conclusum est, non est igitur hypothesis in meis Commentariis; est vero in calculo, sed vera suppositio veri itineris planetarii, dantis distantias et acquationes. — Cum videas latitudines Martis cum meo calculo convenire (p. 98.) quotquot sunt observatae, debuisti omnino credere et illas convenire, quae non sunt observatae. At retrahit te Ptolemaei auctoritas, qui a me immaniter differt, nunquam in conjunctionibus ultra 7' latitudinem concedens, cum ego ultra 1º procedam. Quid igitur ego? Quid nisi ut moneam, incogitantis esse haec objicere. Quis enim unquam vidit d in conjunctione ? Certe vix a 60° distantia solitus est Tycho observationes inchoare; nam in conjunctione 💿 valde parvus est J. Itaque nulla Ptolemacum observatio manuduxit. Quae igitur ex sua opinione, sua hypothesi dixisti, mea opinione mea hypothesi destruuntur.

Haec Keplerus. Fabricius respondit d. 11. (21.) Jan. 1606, quaerens: cum in 5, 24 aut 5 ex acronychiis longo temporum intervallo (10 aut plurium annorum) disjunctis, aphelii locus quaeratur, quaestio est, cui observationi acronychiae in praxi institutae aphelium respondent ? Certum n. est, unum et idem aphelium omnibus 3 aut 4 observationibus acronychiis respondere non posse propter motam aphelii interea factum. Tu redigis 4 observationes in circulum et sic inquiris cetera. Existimo igitur, nec verum aphelium nec veram eccentricitatem sic dari posse, quia unum ex altero dependet &c.

His addit Fabricius rationem "post multas cogitationes" constitutam, qua motus centri eccentrici d'explicatur, subjungit vero statim cautionem: "ex festinatione male schema depinzi" correctionemque explicationis suae. "Tu exactius hoc perpende et farte ansa tibi erit ad majora. Ego haec eb animi motus tristis clarius et fusius tractare nequeo." (Comp. Vol. II, p. 105.)

Deinde addit : Quando Hipparchus tuus et quando Martis Commentarius prodibit ?

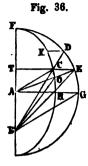
Nuper veram rationem mihi ostendere voluisti, quomodo angulus pro vera distantia \odot a \bigcirc cognoscenda circa 5-6° post mediam longitudinem \bigcirc utrinque inquirendus esset. At adeo obscurus et varins in illis, ut nihil perceperim. Ostendetur mihi simplex ratio inquirendi istum angulum a 90° distantiae ab aphelio usque ad 96° idque utrinque a media longitudine versus perihelinm. Tu conjectura nuper inquirebas istum angulum, at rationem a priori non dedisti. Certe ego invenio illic aliquid differentiae in observationibus, si angulus ille a 90° in 96° distantiae ab aphelio more solito quo cetara inquiratur; causam tamen discrepantiae non video. In ceteris omnia optime observationibus congruunt. —

Ad haec Keplerus non respondit, et Fabricius alias minime parce usus verbis jam ipse obmutuit neque per annum 1606. Keplerum iterum adiit. Consuetudinem vero literas dandi recepit initio anni 1607. eamque per annum 1608. eadem qua prius ratione tenebat; Keplerus in Martis Commentariis occupatus duas tantum remisit literas responsorias, ad alias Fabricii quaestiones minus quam antea respiciens, Martem firmiter tenens; memor forte illius: "decendor discimus" et "se excreendi gratia" Fabricio ea quae emendanda in astronomia, quae stabilienda in ipsius hypothesibus videbantur, sincere retulit.

Literae hae Kepleri datae sunt d. 1. Aug. 1607. et 10. Nov. 1608, easque, ut plenius perspiciatur id quod voluit Keplerus, non ut priores uno tenore proponendas ceasuimus, sed junctis Kepleri et Fabricii literis, quaestionibus vel objectionibus Fabricii singulis adjecimus responsionem Kepleri.

Fabricius (20. Jan. v. st. 1607): Per ovalitatem vel ellipsin tuam tollis circularitatem et acqualitatem motuum, quod mihi inprimis penitius consideranti absurdum videtur. Coelum ut rotundum est ita circulares et maxime circa suum centrum regulares et acquales motus habet. Corpora coelestia sunt perfecte rotunda, ut ex Sole et Luna liquet. Ergo non dubium est, omnes omnium motus per circulum perfectam, non ellipsin fieri, item acqualiter moveri super suis centris. At cum in ellipsi tua centrum non ubique acqualiter distet a circumferentia, certe motus acqualis maxime erit super suo proprio centro inacqualis. Quodai igitar retento circulo perfecto ellipsin per altum circellum excusare posses, commodius esset.

Keplerus, praemissis quibusdam de observationibus Fabricii (Vol. II, 903.) pergit: Sed stella sepulta ad Martem mibi redeundum et cum Fabricio pugnandum. Ovali figura putas tolli acqualitatem motuum : equidem. At et spirales figurae tibi eandem tollunt, et Ptolemaicus aequans tollit. Etsi vero Copernicus reducere nititur aequalitatem motuum, non illam tamen reducit, quae spectatur in composito itinere planetae. In eo enim planeta incedit inaequaliter et praeterea exorbitat a circulo, quod fatetur ipse Copernicus. At principia, inquis, quibus motus ille efficitur, circuli nimirum, habent seorsim aequales motus. Fateor; sed non motus, qui phaenomenis congruum. aliquid efficiant. Praeterea et mihi principia, quibus planetae motus efficitur, manent constantia. Differentia solum in eo, quod tibi sunt circuli, mihi virtutes corporatae. De cetero constans est mihi rotatio corporis Solaris eaque aequabilissima; constans circulatio speciei Solis immateriatae et magneticae; constans impressio hujus speciei seu virtutis motricis in planetam certo intervallo distantem; constans et circularissima licet tardissima conversio axis corporis planetae, unde progressus apogaeorum; constans virtus magnetica adunandi separandive corpora Solis et planetae in singulis angulis inclinationis axis planetae


ad lineam ex Sole. Quod autem planeta transit de gradu virtutis in alium, id fit egregia ratione ex jam positis principiis. Quid tu responderes philosopho, qui negaret, te ex rerum natura loqui dicentem: in toto ambitu planetae nihil esse nisi in uno ejus puncto? Numquid dices, hoc nil derogare perfectioni coelestis ambitus; planetam enim non posse esse in toto ambitu simul, sed cogi intra unius quasi puncti angustias, et tamen successive venire in alia omnia puncta? Idem ego dico: si in omnibus gradibus virtatis ex Sole consisterent planetae ibique manerent singuli, Sol experiretur eodem tenore omnes gradus virtutis suae in illos idque invariate; at quia planetae non possunt esse simul in omnibus gradibus virtutis ex Sole, succedunt tempore ex una in aliam, ut omnes impleant.

Quod ais, non dubium, quin omnes motus fiant per circulum perfectum, si de compositis (i. e. realibus) loqueris, falsum. Fjunt enim Copernico, ut dixi, per orbitam ad latera circuli excedentem, Ptolemaeo et Braheo insuper per spiras. Sin autem loqueris de componentibus, de fictis igitur h. e. de nullis loqueris. Nihil enim in coelo circumit praeter ipsum corpus planetae, nullus orbis, nullus epicyclus, quod Braheanae astronomiae initiatus ignorare non potes. Hoc ergo posito fundamento, nihil moveri praeter planetarum corpora, si jam quaeratur, qualis fiat linea corpore circumeunte? respondeo tibi ego non ex hypothesi suscepta, sed ex scientia demonstrationibus geometricis undiquaque munitissima, iter corporis fieri ovale, fere ut apud Copernicum, qui praeter corpus planetae etiam epicyclos et orbes movet. Quodsi darentur orbes solidi, possem utique et ipse facillime ovalem lineam repraesentare per concentricum et duos epicyclos, quorum semidiametri junctae aequent eccentricitatem eccentrici, sitque minoris diameter aequalis latitudini lunulae, qua differt ellipsis a circulo. Tribuerem enim epicyclo (majori) motum contrarium motui concentrici et aequalem ei in tempore restitatorio, epicyclo (minori) celeritatem duplam in partes easdem cum majori, et ponerem planetam simul in apogaeo utriusque epicycli, simul etiam et in perigaeo et in puncto (minoris) epicycli, quod est a centro majoris remotissimum; ad latera vero concentrici esset in perigaeo (majoris) epicycli.

Ecce tibi supellectilem Copernicanam levissima mutatione transpositam; ecquid placet? Mihi minime. Primum enim orbes nulli sunt; quid igitur juvat mentiri causas motus planetae ovalis? Deinde omnes hi tres, concentricus cum duobus epicyclis, fingerentur aequaliter jam tardi jam veloces, essetque mensura morarum in quolibet arcu distantia planetae a centro concentrici. At quae causa esset, cur concentricus motum haberet inaequalem? cur epicycli? et quae connexio hujus mensurae cum mensurato? Et est tamen haec mensura adeo propria hujus tarditatis, ut nullum centrum aequantis ne quidem libratile circulariter juxta se ferat aut pro se substituere possit, Ergo ut causa pateat connexionis inter mensurans et mensuratum, oportet mittere fictos circulos et ipsas amplecti distantias, quomodoque ex iis elliptica via ratione naturali efficiatur, perpendere.

Fabricius: Non sufficit salvare posse motus, sed etiam tales hypotheses constituere, quae principiis naturalibus minime dissentiant.

Keplerus: Mírifico consensu amplector hoc tuum dogma; et ea mihi causa fuit multi laboris in Commentariis Martis. Te vero quod attinet, admonitum volo, ut cum Osiandro transigas; qui praefationem scripsit in opus Copernici non apposito nomine (Comp. Vol. I. p. 245 et faciem evenam tituli hujas libri), transigas etiam cum Christiano Severini (Longomontano) qui putant, saficere at hypotheses satisfaciant observatis, non obstante quod sint falsae.

Fabricius: Dato FE statuis planetam in C et coaequatam anomaliam CBT. Sic quidem prosthaphaereseos partem conficis, at non integram prosthaphaeresin inde dare potes. Adhibes secundo eccentricitatem pro altera prosthaphaeresis parte. At quae ratio sit, non video. Si CBT est anomalia coaequata et in C planeta fuerit, tunc BEA tota esse deberet prosthaphaeresis istius loci; sed non est, nec BC vera distantia. EB est minor vera distantia, multo magis BC minor est. Si vero BD distantia vera erit, cur ad punctum C (ac si ibi planeta esset) coaequationem anomaliae constituis ?

Keplerus: Quae subjicis absurda, quae sequantur ex schemate hypotheseos a me proposito, non egent refutatione; ipsa enim diligenti meditatione patescent per se. Ellipsis est naturalis hypothesis; circulus ellipsia amplexus est tantummodo numerationis causa. Nam ellipsis per se geometrice nequit aliter in certas partes dividi,

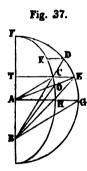
nisi per circulum et communes ordinatim applicatas, quae dicuntur in cir-Verbi gratia, si dixeris 10º de circumferentia elliptica, absurde culo sinus. loqueris, nam ellipsis non est longa 360° circuli; at si dividatur in 360, nescietur longitudo, nescientur puncta arcum 10 determinantia. At si dixeris arcum de circumferentia elliptica respondentem 10 primis circuli gradibus ab aphelio, jam scio quid dixeris. Nam a termino 10° circuli E sinum rectum seu perpendicularem ET demitto in lineam apsidum FB, quae resecabit mihi illum arcum ellipsis FC, quem hac vice mihi dixisti. Hi ergo 10° circuli FE, seu multo magis proprie hic arcus ellipseos FC, respondens his 10° circuli, dicuntur anomalia eccentri, et CB distantia puncti terminantis hunc arcum ellipseos est vera distantia planetae a Sole; quippe ipsum corpus planetae in ellipsi hac circumit. Jam quid opus est, te ex B in E, ex A in E ducere plures lineas et BC continuare? Si ego id feci, feci ad explicandos meos conatus. Ad computandum porro non est opus; sufficit ut dato puncto C quaeramus, quanta visio CBF, quae est anomalia coaequata, et quanta vicissim mora seu tempus, quo planeta in FC versatur (est autem anomalia media), requiratur; est autem ejus mensura area CBF quam proxime, verior EBF area, mirabili quadam ratione, quam in Commentariis explico; nimis enim est longa. Et ne rursum tibi scrupulos moveam quaerens anomaliam mediam in circulo, reliquas anomalias in ellipsi, scito quod area non per se metiatur tempus, sed quatenus complectitur summam distantiarum omnium punctorum C. F a B Sole. Jam vero evenit, ut area EBF perfectius metiatur hanc CF punctorum omnium distantiam, quam ipsa area CBF. Rursum igitur arcesso EBF, numerandi causa et numerandae quidem rei, quae est in ellipsi CF, quae via propria est planetae.

Tu hic jam miraris, me non computare simul utramque partem aequationis? Ohe! Num fit id in Ptolemaeo? Minime. Nam et ipse gemina operatione unamquamque aequationis partem constituit, nisi quod operatione jam ab ipso peracta simul et semel jam utramque ex tabulis excerpimus, quod idem etiam apud me fit. Neque sane opus est, scrupulose in schemate declarare utramque partem aequationis per se. Sufficiat hoc: Anomaliam eccentri FC vel FE esse quantitate mediam inter proprie dictam mediam et inter coaequatam, esseque harum quodammodo ferruminationem. Quodsi planetae iter esset circulus, posset distincte citra confusionem explicari utraque pars aequationis in hunc modum: area EBF est anomalia

media; area \triangle EAB est excessas anom. mediae supra anom. eccentri, EAF ergo pars aequationis una seu physica. Si ergo planetae iter esset circulus EF, tunc trianguli ejusdem angulus AEB esset defectus anom. coaequatae EBF ab eadem anom. eccentri EAF et sic pars aequationis altera seu optica. Itaque ejusdem trianguli aequatorii a rea quidem esset pars physica, angulus vero pars optica aequationis. Atque sic haberes causam duarum operationum, duae enim causae sunt aequationis. Jam vide quid turbet ellipsis, imo quid proficiat. Manente enim prima parte aequationis physica ob causas supra dictas, jam pars optica, ob ingressum planetae ad latera, variatur quantitate anguli CBE.

Haec si diligenter consideraveris penitusque animo comprehenderis, cansas calculi mei non miraberis amplius, sed scies, quid quavis operatione agas; computans enim aream EBF (h. e. aream BAE, nam EAF per se patet), computas summam distantiarum arcus CF et sic una tempus morae in CF. Hoc enim sic vult natura, ut quo longius planeta distet hoc diutius moretur. Computans vero angulum, non EBF sed CBF, redigis planetam in propriam et ovalem orbitam, ut justam habeat distantiam non EA sed CA; utrinque igitur supponis iter idem planetae FC non FE.

Fabricius: Si ellipsis tua veram hypothesin conformat, ex illa quoque dabis rationem, quomodo ex 3 acronychiis eccentricitas et apogaeum inquirendum, vel ostendos causam ex tua ellipsi, cur illa exquiri ex tribus non possint. Si motus undiquaque ellipsi respondent, tune reciprece comendere debes tanquam a priori, quemodo ex 3 acronychiis motus constituais possint, ut certe fieri posse ac debere omnino mihi persuadeo, et quam diu illa constituere non potes, tam diu ratio et hypothesis verorum motuum latet, nec ellipsis aut alia fictitia forma satisfacit animo, utut etiam motus coelo consonos praebeat. — Quare suda mi Keplere in eo, ut ex 6 acronychiis statim et tanquam a priori eccentricitatem et apogaeum constituere possis, et ellipsin tuam facile abjicies et in excessu potius circuli latere veritatem inventes.


Keplerus: Quae sequitur objectio est expiscatio non objectio. Quid? ta me ita avarum putas, ut arte circumveniendum existimes ad prodenda arcana, quomodo ex 3 acronyohiis hypothesis habeatur? Minime! Jam tentavi in Mercurio hanc artem, cujus est ellipsis evidentissima. Sed didici, arcyrar omnium esse parabilissimam; sine ea conjectus fui in cossicos numeros molestissimos. Sic perpende, si daretur una observatio in ipsissimo aphelio, tunc statim altera addita observatio proderet hypothesin.

Tribus ergo datis observationibus h. e. trium coaequatarum differentiis, compara tempora interjecta. Ubi majus tempus interest, per priorem observationem statue aphelium et pertexe hypothesin per alteram observationem. Tunc ad tempus tertiae observationis computa locum pro tertia observatione idque ex hypothesi per 2 observationes inventa. Si igitur calculus observationem exprimit, peractum est negotium. Sin autem observationem calculus praecedit vel sequitur, tunc intelligis, aphelium falso susceptum, igitur pro qualitate excessus vel defectus primam observationem deduc ab aphelio et novo suscepto aphelio per primam et secundam, novam constitue hypothesin; id toties repete donec pro tertia observatione calculus congruat. Arerria est, at casus omnino coactus et unicus est. 'Arerria est etiam in illa methodo ex 4 observatis. Tu mihi nescio quid suspicionis de excessu circuli insinuas. Frustra! Nimis confirmatus sum de inventa per ellipsin veritate. Et quid argutaris de excessu? Omnis ellipsis ut deficit a circulo majoris diametri, sic excedit circulum minoris diametri. Copernicana excedens est ellipsis.

Fabricius : Si ellipsis tua geometrica esset, et distantia a Sole responderet loco, ad

quem conequatam anomaliam constituis, et unam et integram prosthaphaeresin per eccentricitatem semel tantum adhibitam tua hypothesis exhiberet, certe verisimilis esset. At distantiam veram non praebet geometrica dimensio.

Keplerus: Non perpendis, Ptolemaeum duplicasse pro acquatione computanda eccentricitatem illam, quam insinuabant distantiae, seu quod idem est, eccentricitatem per aequationes inventam bisecuisse pro distantiis computandis: nam a centro eccentrici distantiae, a centro aequantis, cujus est duplex eccentricitas prioris, aequationes pendent. Igitur, antequam me arguas, Ptolemaeum idem facientem argue. Ego simplicem bis adhibeo, ille duplicatam semel (duabus tamen, ut prins dictum, operationibus); res eodem redit. Deinde perpende causam. Natura me inbet eccentricitatem bis adhibere; nam primo eccentricitas facit planetas a Sole longiores et sic maturaliter tardiores, quia sunt in virtute remissiori; deinde eadem eccentricitas facit etiam arcus optice breviores fieri. Non itaque necesse est ut, quod postulas, geometrica mera (h. e. ut mentem tuam rectissime exprimam, optica mera) sit hypothesis acquationum, exhibens totam acquationem in angulo trianguli aequatorii stante ad circumferentiam vel circuli vel ellipsis. Si enim nihil nisi opticum, h. e. ut tu hic ais geometricum, ingrederetur calculum meum, excluderetur igitur physica retardatio seu Ptolemaeo eccentricitas aequantis; etsi non ideo geometricum non est, quod physicum Etenim illam retardationem physicam, quae fit per elongationem plaest. netae a Sole, spero requerormoraros adhibere. Vel ex ipsa mentione plani patet haec geometria. Itaque o Fabrici, etsi bis adhibeo eccentricitatem, tamen hypothesis mea est geometrica ut quaequam alia.

Fabricins: In eo labora, ut si planeta in E.circulo constitutas sit, BEA totam prosthaphaeresin istins loci exhibeat et EB distantiam veram simul. At illud non fieri potest per dimidiam eccentricitatem AB adhibitam. Quare si in ellipsi taa.planeta constituendus vel in O vel in C, tunc videamus, ut AOB vel ACB totam istins loci (in quo planeta ponitur esse) exhibeat, et OB vel CB sit distantia vera. Hoc si fiet, geometrica erit. At in tua ellipsi, posito planeta in C, tuno BA tota aequatio non est, nec BC distantia, ut deberet. Si vero planetam re vera ponis in alio loco, quam in C, cur quaeso ad C punctum coaequationem inquiris ?

Keplerus: Haec arguunt, te involvere te ipsom. Tribuis mihi, quod alio loco aequationis angulum computem, alio C planetam collocem, ut si CBA sit coaequata anomalia, non sit tamen CB distantia justa, nec C planeta. Injuria mihi fit. Imo C est planeta, CB distantia

justa, ABC coaequata. Te vero hoc impedit, quod ACB aequationem non constituam et tamen ABC coaequatam dicam. Assuevisti enim huic rationi, quae valet, cum planetae iter sit circulus. At perpende causam cur hic fieri hoc non possit, nullo quidem damno. Nam si BCA dicerem opticam aequationem, CAF esset anomalia eccentri; at non est, quia FC est illa, et FE est ejus nomen vel nuncupatio, ut supra dictum. FC vero non mensuratur ab augulo FAC, quia est circumferentia non circuli, sed ellipsis. Misso igitur angulo BCA, computamus angulum ABC per CT et TB, vel per CB et BT; utraque enim datur ad positionem ipsius FC h. e. FE. Ex quibus intelligis et errorem tuum circa meam mentem et ejusdem causam.

Fabricius: Physicae multiplicationis causam non ostendis nec veram rationem.

Keplerus: Sed nec porro dicere amplius poteris, te ignorare causam physicae multiplicationis. Dum enim multiplico eccentricitatis dimidium (vel pro ea valorem maximi trianguli in secunda redactum) in sinus anomaliae eccentri: constituo excessum areae supra anomaliam eccentri: et quia area metitur distantias omnes, distantiae moras seu tempus, igitur multiplicatione physica tempus colligo debitum huic anomaliae eccentri.

Pabrioius: Admiratus sum aliquoties, mi Keplere, ingenii tui subtilitatem summam; at euperem subtilitatem inventionum non adversari principiis naturalibus. Subtilis est Copernici hypotheseos inventio, at quam absurda sit, diffiteri non poteris. Ego omnino puto, veritati magis propinquum esse, quo quid simplicius fuerit, et veritas ipsa per se simplex.

Keplerus: Subtilitatem meam praedicandam putas, si non repugnaret naturae. Ego, mi Fabrici, damno omnem subtilitatem vel repugnantem naturae vel non necessariam. Dum vero mihi Copernicanam subtilitatem exempli loco ponis ob oculos, inepte facis, cum scias, quod tu damnes in Copernico me mirifice approbare. Cur igitur me hujus absurditatis vocas testem? Nimis vero late philosopharis de simplicitate veritatis. Est natura simplex, est et multiplex. Nec aestimanda est haec ejus simplicitas ex nostra opinione, sed ex se ipsa. Et vero mirum, si simpliciores quis attulerit hypotheses quam ego constitui, in quibus planeta primum facultate animali directum tenet axem magneticum et successu seculorum nonnihil inclinat, deinde idem planeta virtute corporali magnetica ad Solem accedit pro fortitudine anguli inclinationis axis ad Solem, tertio Sol planetam rapit in orbem pro modulo accessus ejus. Haec est genuina simplicitas, in ipsis spectata principiis. Ex his tam paucis si jam multa sequentur, acquationis pars physica, optica, distantia, iter ellipticum, tunc ideo ob hos multiplices eventus negabis, principia esse simplicia? Oblitus es igitur Platonici illius: είς έν και πολλα?

F a bricius: Existimo, nunquam nos ad verarum hypothesium inventionem perventuros, nisi causae motuum penitius perspiciantur, et cur dimidia tantum eccentricitas adhibeatur is distantiis, cum prosthaphaereses tamen aliam dent. Talem mihi da hypothesin mi Keplere, 1) quae prime intuitu primeque et uno calculo, non invariata hypothesi, ex eccentricitate totali veras exhibeat prosthaphaereses et simul veras distantias. 2) Ut ex illa ostendere possis emplicis eccentricitatis causam et rationem. 3) Quomodo ex eadem per 3 acronychia eccentricitas et apogaeum verum inquiri possit; et id ita, ut ubique circularitas et aequalitas motuum astronomice et geometrice retineatur. In his inquirendis per 4 annos laboravi et etiamnum laboro et lapidem astronomorum, ut sic dicam, inquiro.

Keplerus: Mirum vero, quales mihi scribas leges condendae hypotheseos ex tuo cerebro non ex coelo deductas. Directis verbis ea mihi imperas, quae totidem ego capitibus in Commentariis refutavi. Miseret itaque me tui laboris, qui tot jam annos $\dot{\alpha} \partial max \alpha$ tentas et in genere actum agis. Inventas enim veras motuum causas, quatenus ab homine comprehendi possunt, constantissime assero.

Fabricius: Secantem in Marte adhibes pro ellipsi; at quae causa sit scire cupio.

Keplerus: De causa, cur secans aequationis opticae prodat ellipsis latitudinem, quaerenti respondeo ex Commentariis (Cap. LX.) sic: quando anomalia eccentri est 90° et anomalia coaequata minor illa aequatione optica totali, puta 84° 41', tunc observationes testantur, distantiam esse mediocrem, sc. 100000. At si iter planetae esset perfectus circulus, distantia tum esset secans anguli aequationis opticae 100432. Sit FAG (Fig. 37) 90°, BGA 5⁴/₃° circ., erit BG secans, quia AG radius et BA tangens. Ille secans est 100432. Testantur vero observata, in hoc situ BH aequari ipsi AF vel AG, ut sic planeta non sit in G, sed in H. Ergo excessus BG secantis super BH, hoc est super AG, est latitudo lunulae resecandae a circulo, sc. fere HG. Habes ergo causam rei. Cur vero planeta in anomalia eccentri 90°, h. e. dimidia totius, conficiat

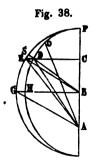
Kepleri Opera, III.

8

distantiam 100000, causam conjeci hanc, quod libretar in diametro quasi epicycli ad Solem extensa, et in superiori quadrante libretur tarde, quia longe abest a Sole, quo pacto efficitur, ut acqualiter absolvatur arcus eccentri et arcus fictitii illius epicycli, quorum sinus versi valent libra-Ulterius demonstratum habeo, si planeta pro fortitudine anguli tionem. inclinationis axis ad Solem celerius vel tardius accedat ad Solem. librationem effici quasi in diametro epicycli. Ergo conclusi pro fortitudine anr gulorum, ex tempore, h. e. ex data anomalia media non statim dari coaequatam, sed contra potius ex data anomalia eccentri dari et mediam et coaequatam, id, inquam, ne mireris : nondum enim docuerunt geometrae, datum semicirculi planum in data ratione per datum diametri punctum secare, nec puto poterunt, eo, quod cum lineae sectionum sint rectae, planum tamen ex dimidio curva comprehendatur.

Fabricius: Tu indirecte procedis, triplicem constituendo anomaliam; cur ex simplici statim coaequatam exhibes? Tu ex incerto et quasi falso supposito verum inquiris; cur non potius ex vero verum, id est, ut coaequatae suae simplici anomaliae, tempori tuo, respondeat statim et re vera conveniat? Concedo, ex tuis hypothesibus veros motus dant posse, at naturales illas esse vix credo, cum circularitatem et motus acqualitatem tollas ellipsis tua.

Keplerus: Quaeris etiam de causa aequipollentiae inter vicariam et physicam, h. e. verissimam hypothesin. Non neglexi illam in commentariis, sed peculiare caput feci, quod quia prolixum mitto describere. Sufficiat tibi scire, quod inventa sit. (Quae jam sequentur de o parallaxi, legantur annot. 38.)


Fabricius: Si cum Copernico consentis, proba inaequalitatem latitudinum maximarum in planetis, vel si eam ostendere non potes, cum Tychone circumductionem illorum in orbe Solis crede.

Keplerus: De maxima 3 latitudine quaeris, an mutata sit. Ergo te commonefacio, hodie esse illam in 4º 34' Q. Tu jam in Ptolemaeo quaere, quanta olim fuerit. Invenies illam aliter hodie habere, perinde ut stellae fixae septentrionales in $\mathfrak{G}, \mathfrak{Q}$. Ergo relaxa imperia tua, ut Copernico deserto ad Braheum desciscam.

Fabricius: Quando prodibit Martis Commentarius?

Keplerus: Commentarios ut edam laboro diligenter. Videtur Tengnaglius concessurus, si permittam ipsi quorundam emendationem, quod mihi grave est.

Fabricius (in schedula adjecta) : Cum mihi nimium festinandum esset, multa con-

fuse sunt scripta. Quaedam tamen denuo colligo. Cum Mars non sit in E nec in S nec in D, sed O puncto, ostende mihi quaeso geometrice, quomodo ex puncto D verus locus O scitur. Ratiocinationem nolo, sed linearem demonstrationem. Data anomalia simplici, coaequatam quaeris per intercedentem mediam, ut FE data simplici, DF erit media et sic DAC coaequata ; idque geometrice colligis. Quod vero post per valorem 🛆 BGA multiplicatum in EC sinum colligas alteram prosthaphaeresin pro simplici anomalia inquirenda, illud intelligere non possum. Tu eccentricitatem semel adhibuisti, et nunc denuo illius angulum adhibes et in sinus nondum curtatos multiplicas. Quae illius multiplicationis causa et ratio sit, velim ostendas. Tu ad punctum D statuis coaequatam, cum tamen illic d' non sit, nec etiam AD vera distantia.

Keplerus: Ex adjecta scheda video, tibi tenebras offundi per illa, quae ego lucis causa addideram. Et quia

schemata mutas, mutabo et ego, ut per tua tecum loquar. Ego tibi scripsi, si quis vellet FE vel FD ponere mensuram temporis seu anomaliae mediae, tunc futurum illi planetam in O (p. 100); cujus puncti inveniendi methodus nulla

can ait, ideoque etiam cavendum, ne in FE numeremus tempus, sane et hoc esset contrarium verissimis motnum causis. Ergo quando planeta est in O, tunc ego ex D verum ejus locum nequaquam investigo; itaque non necessarium petis, ut hoc te doceam. Rursum tu dicis, FE simplicem (volvisti dicere "mediam", quam Graeci δμαλοκινησιν vocant, simplex enim motas in Pratenicis ille dicitur, qui est a prima γ , cui ablatus est praecessionis motus), dicis igitur FE mediam et ad eam accommodas FD recte, sed hanc tu mediam dicis, puta quantitate, et putas esse hanc, quam ego dico eccentri, cujus DAF coaequata. In his confunderis. Repetam enim, quod ex superioribus ipse potuisses. Data anomalia eccentri elliptici FD. cuins nomen est in FE arcu circuli, erit area EAF mensura anomaliae me-diae et angulus DAF erit coaequata. Datum ergo tempus, redactum in anomaliam mediam, quaerendum est in area perfecti circuli : quod quia geometrice nequit, tabulariter igitur faciendum. Nam tabulae facile construuntur ad singulos gradus anomaliae eccentri FE (vel FD). Ergo dato tempore seu anomalia media, si tabulae factae non sunt, conjiciendum est de arcu FE, cujus sinus EC multiplicatus in valorem trianguli maximi BGA abjectis ultimis ostendit valorem 🛆 BEA, quo excedit planum FAE sectorem FBE. Igitur, quia sector FBE et arcus FE exprimuntar in hac pragmatia numeris iisdem, additur ergo hic inventus valor trianguli BEA ad FE arcum (hoc est ad sectorem FBE), ut habeatur area FAE, quae si aequat datam (per tempus) anomaliam coaequatam, tunc bene conjecimus FE eccentri anomaliam. Igitur inventa eccentri anomalia FD vel ejus nomine FE, jam duabus viis pervenitur ad finem, vel per ED, quae habetur multiplicato EC in latitudinem lunulae 432, vel melius per DA, quae habetur maltiplicato CB sinu complementi EF in BA eccentricitatem, et quod prodit (abjectis 5 ultimis) addito ad radium. Illo modo per DC, CA notas, hoc, modo per DA, AC notas quaeritur coaequata DAC.

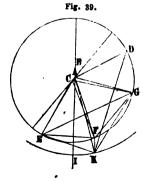
Quaeris hic, cur aream GBA in EC multiplicem et non in DC? Dixi supra causam. Nam et BAG terminatur ad circuli non ad ellipsis circumferentiam. Nam area ellipsis non metitur distantiarum summam in arcu ellipsis, ut nec area circuli metitur summam distantiarum in arcu circuli. At bona quadam fortuna geometrica fit, ut area circuli metiatur summam distantiarum in arcu ellipsis. Cujus rei contemplatio profecto mira et jucandissima est. Habes ergo causam triplicationis, tria enim quaeruntur : 1) physica retardatio, 2) distantia planetae a Sole (vel D ab FA et per hanc illa), 3) optica imminutio arcus. Tria haec sic suppeditat natura. Nam et Sol rotat planetam et planeta adnatat ad Solem et anguli alii sunt ad centrum eccentrici, alii ad Solem. Verte te in omnes formas, ex tribus unum non efficies. Etiam Ptolemaeus plures operationes postulat. Miraris rursum ut in literis, coaequatam statui ad punctum D, planeta ibi non versante, sed in O. Nego: ibi coaequata terminatur ubi est planeta. Nam in O (Fig. 32) planetam posui per fictionem, non calculum explicans sed aliud quippiam. Itaque DA est distantia, non OA, siquidem DAF sit coaequata.

Fabricius: Ex calculo colligis quidem tandem veram prosthaphaeresin et distantiam, idque ratiocinatione potius, quam geometrice; debebas enim in figura geometrice hoc quod intendis per lineas et triangula ostendere. Agitur hic non de valore areae, sed de distantiis et lineis geometricis vel opticis.

Keplerus: Irasceris valori areae, cum agatur de lineis, caeco quidem impetu. Nam et area geometricum quid est. Quod vero astronomi hactenus

8 *

nullas areas adhibuerunt, factum est ex ignorantia causarum physicarum, quas in lucem jam protuli. In omni novatione imperiti irascuntur.


Fabricius: Necesse est, ut \mathcal{J} non sit in D sed in O puncto, si prosthaphaeresis et distantiae convenire debent. At tu geometrice ex praesuppositis ostende per triangula, quomodo sit in O, vel ostende, quomodo DO inquiratur, et quomodo AO veram distantiam det, et OAF verissima anomalia sit. Hoc velim mihi ostendas et satisfacias tandem curiositati meae.

Keplerus: Rursum me urges, ut geometrice definiam punctum O, arcum DO, lineam AO, angulum OAF. Non est necesse nec possibile, ut dixi, habet enim FO arcus ellipseos suum nomen aliud quam FE: itaque non debent ista ex FE exstrui.

Fabricius: Cur non ex centro eccentrici mediam aut simplicem anomaliam constituis et inde ex puncto S statim O punctum verum loci σ in sua ellipsi demonstras et tandem ex ee puncto ostense verissimam et coaequatam anomaliam geometrice et astronomice exhibes ?

Keplerus: Jubes ex centro eccentrici constituam mediam anomaliam, sc. ut SBF sit media. Iniquum postulatum; sic enim et Ptolemaeo imperabis, ut faciat motum eccentrici aequalem non circa aequantis sed circa proprium centrum. Sed forte hic te non intelligo, mediam quantitate intelligentem, quam ego dico eccentri. Tunc hoc quaeris, cur non BDS sed potius BE faciat anomaliam eccentri, et cur, quae facit anomaliam eccentri, ea non ostendat sectione sui cum elliptica locum planetae? Respondeo'ut supra, FE se ipsa non est anomalia eccentri, cum planeta in FD currat, sed est FE solummodo nomen ipsius FD: et fit ejus nomen non per EB sed per EC, cujus rationes non ex astronomia sed ex conicis petendae. Nihil interest astronomi, quale nomen cuilibet puncto ellipsis dem, dummodo illius angulum et omnes distantias metiar. Si metiar per circulum, facile fert astronomus, dum fatear, circulum hunc non ex astronomia sed ex conicis desuntum.

Fabricius: (die Paschae v. st. 1607.): S. P. Non puto tibi molestum fore, praestantissime mathematicorum nostri seculi princeps, ét amice plurimum honorande, si saepins ad te scribam, licet meo studio tuos Atlanticos labores parum juvare aut sublevare possim. Puto tamen nihilominus, ejusmodi scriptiones mutuas suum habere fructum, quod saepe ad alia nunquam antea cogitata occasionem praebeant vel viam sternant. Eam ob causam Tuam Praestantiam quoque reverenter rogatam volo. ne meae importunitati crebrae succenseas, ad quam Uranicus ille impetus me impellit; et fateor certe ingenue, nisi tu mihl in multis quasi Ariadnes filum et Cynosura fuisses, jam dudum propter nonnulla dubia in salebris haerere coactus fuissem, immo jam plane abjecissem operosum hoc studium. At țua ut fidelissimi et ingenui praeceptoris institutione adjutus, majori quoque studio complexus sum hance nostram Uraniam. Spero quoque, te minime deinceps commissurum, ut ea sic hisce in locis collabatur. Per hiemem tuam hypothesin ex meis observationibus examinavi. Deus boue! quam valde exhilaratus sum, cum veritatem calculi tantam viderem et motus ex tua hypothesi erutos coelo exactissime convenire et ipse cognoscerem. Mitto meas quasdam obser-

vationes circa apogaeum et perigaeum, item circa medias longitudines. Sola ratio explorandi eccentricitatem orbis annui per 3 parallaxes ad unum eccentrici locum defuit, non quod communicata antea a te mihi non esset, sed quod in ipsa pragmatia difficultates antes non consideratas aut speratas deprehenderim. Concise quidem et sine exempto abs te tradita erant (p. 90).

Collatio enim arcus ad centrum C dupli et anguli alterius ad A eccentri difficultatem injecit. Ego ex meis observationibus tria loca \mathcal{J} apparentia ad unum eccentrici punctum accepi et feci KA 1000, et in ea proportione latera AE, AF, AG inquisivi, et post per AE, AF cum comprehenso inquisivi EFA, item FEA. Ad eundem modum per AR, AG cum FAG quaesivi AFG et AGF; sic tertio quaesivi AGE AEG. Post FEA et GEA a se invicem subtraxi et remansit GEF, cajus arcum FG ad C duplum accepi, et post complementum ad 180° in 2 secui, ut essent CFG et CGF acquales. Cam igitur \angle FGC conferrem cum FGA, non invenire potui talem differentiam AGC, quae totam, nedum dimidiam eccentricitatem Solis exhibered, sed multo majorem. Quaeritur igitur, qua ratione collatio arcus dupli et anguli ad \triangle constituti fieri debeat; an simpliciter fiat vel an forte anguli isti duo acquales adhuc aliter transformandi per reductionem aliquam? Secundo quaeritur, an non idem sit, sive in praxi FG arcus vel FE alter (respective tamen ad suos angulos relativos) adhibeatur?

Rogo plurimum et amanter, ut praxin illam ultimam a differentia duorum angulorum ad finem exemplariter mihi proponere digneris.

Cupio quoque scire, cur tria latera EF, FG, EG inquirere jubeas, cum tamen absque illorum cognitione anguli omnes ad A haberi possint?

Mitto tres observationes meas ad unum eccentrici punctum a me constitutas. Si placet, poteris has calculo subducere; sin minus, si tantum trium locorum Solis apparentium tres a Terra distantias computatas et per eas rationem operandi totam simpliciter tantum proponeres, plurimum me juvabis et ad comprobandam etiam hypothesis tuae veritatem.

Keplerus (pergens in literis d. 1. Aug. 1607): Absolutis iis, quae prioribus literis contra Martem moveras, jam et illa subjungam, quae die Paschae datis literis infersisti. Dicis, te mittere ad me Martis observationes a te adhibitas tres, ut inquireres eccentricitatem Telluris seu Solis. Non inveni illas. Methodus, ut illam recensuisti, bona est: itaque vel in assumtis vel in calculo errorem oportet accidisse. Confide igitur methodo et schema fac idoneum ad quod identidem respicias. Recte vero censes, nihil esse commune huic methodo cum usitata quaerendi eccentricitatem. Nam in illa dantur anguli ad centra utraque, hic dantur anguli ad unum centrum et distantiae ab eodem. Etsi nec illa antiqua carere possumus. Nam nostra methodo invenitur centrum eccentrici tantum, illa centrum aequantis: quod apad me degenerat in valorem areae.

Fabricius: Ad rationem tuam ex 4 acronychiis inquirendi aphelium et eccentricitatem quod attinet, videtur ea mihi difficilis et operosissima, quo etiam facile quis abstineri potest a calculo isto operosq (quem recte immanem laborem vocas). Cogisavi ego per hiemem, an non alia commodiori ratione hoc effici possit; item cogitavi jam antea per aliquot annos, quae causa sit, quod ex tribus acronychiis non detur aphelium et eccentricitas vera. Puto me tandem veram causam et veram facillimam rationem ista inquirendi adinvenisse vel rationem viam sat patentem aperuisse.

Cum in circulo omnis illa acronychiorum operatio et calculatio fiat, nunquam hoc simpliciter sic fieri potest; ratio, est quod acronychia non sint in circulo vel in ejusdem circuli circumferentia re⁴ vera fiant, sed juxta tuam hypothesin intra, vel juxta meam sententiam extra circulum. Ostendam vero id juxta meam rationem, quae mihi melius perspecta et magis ad probandum quod intendo commoda.

Jam proponit Fabricius "rationem" hanc, addito schemate satis complicito, quod posthac emendatius transmisit. Summa, pergit, haec est: 15' secantis d' in causa sunt, quod simpliciter ex 3 acronychiis aphelium non detur verum. Nam acronychia non sunt in uno et eodem circulo, sed evagantur utrinque extra eccentricum fixum et verum. Si igitur verum aphelium habere cupimus, tunc d' loca reducenda sunt per haec 15' ad circulum, et post pro consequendo arcu tertio medii motus agendum, non allter ac si tria illa loca essent in circulo, cum re vera non sint, at per reductionem circulo sint adaptata.

.... Nullo modo dubito, mi Keplere, in his 15' mysterium illud hactenus latens inesse; ostendants hoc distantiae circa medium longiores, quam in linea aphelli. Quare ut ui n tua hypothesi (rel ego in excessu circuli) per ellipsin et defectum circuli ratione 15' loca acronychia inquiris, ita contraria ratione ab acronychiis retrocedendum erit ad hypothesin et ejus constitutionem. Adhibe alia quoque exempla ad ostensam rationem traducta et videbis, quam proxime respondere. Certe in excessu et pro eccentricitate differentia exigua, at aphelium paulo plus variat.

An igitar ultima correctio ex praedicta causa sit vel ex motu variati interim aphelii vel praecessione coeli, quod primus arcus sit plus augendus vel minuendus, nondum certam scire possum.

Tu putas 👌 ad latera ingredi circulum, ego potius egredi puto......

Nisi ego, mi Keplere, multis officii mei quotidianis melestiis, domesticis curis et aliis impedirer, plus efficerem in his per adhibitum correctum calculum; sed `multa obstant. Quare absque impedimento non semper possum, quod maxime curo. Cogita, suda, labera mi Keplere, ut aperta via progrediaris et omnia penitius speculeris, sive in tua hypothesi sive per excessum potius circuli, ut rationem inde veram et facillimam eruaa, inquirendi. Nam tuus modus adeo laboriosus et taediosus, ut primo intuitu absterreat dc.

Keplerus: Miram tuam audaciam! Tune me provoces confingendis hypothesibus? Cum ego planetam a circulo dicam ingredi, tu paria faciens dicis egrédi. Obviant igitur invicem meus et tuus Mars in angustiis portarum, vide uter fortior. Non fert meus hunc aemulum.

Sic quoque Alexandri pugnacem imitata phalanga

Simia fert humeris Martia tela suis,

Tela: sed avulsos curva Jovis arbore ramos,

Quos magno boreas impete stravit humi,

Aut longa annorum series putredine: bello

Omnibus ut possint non tamen apta geri.

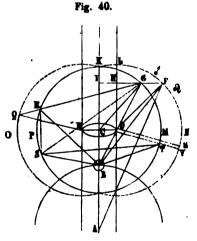
Ego mi Fabrici non ingenii volubiKtate, non poetica aut pictoria fingendi licentia sum inductus, ut dicerem, ingredi Martem ad latera, sed observationum Braheanarum filum demonstrationesque secutus invictas. Tu licet fingas, quod tibi animi libido dictet et fatigeris ad mortem usque, ingenium perdens, hoc scio, te frustra fatigari et actum agere, cum potius animum et ingenii vim ad certa transfers, et quia cupiditas tua ingeniique volubilitas destituitur ab invicta fortitudine insistendi coeptis et a prudentia in deligendis laboribus; aggredere igitur Ephemerides ex tabulis jam factis, ut opera tibi non ita misere pereat, quin potius adspiret ad aliquod bonum publicum. Sed et illud non recte habet, cujus causa introducis istam evagationem. Causa enim, cur ex 3 acronychiis non possit aliquid certi concludi, est haec sola, quod liberam relinquimus sectionem eccentricitatis aequantis. At si imperetur certa, h. e. bisectio, jain omnino aliqua formatur hypothesis a 3 acronychiis, necessitate geometrica, sive jam circulum ponas sive ellipsin sive quamcunque figuram itineris planetarii. Tu vero videris confundi inter haec duo: nihil concludere et falsum concludere. Posita bisectione et posito circulo, tres acronychiae non concludent aihil, non concludent incertam vel vagam hypothesin, sed unam certam. At quia falsa fuit positio circuli, falsam etiam concludunt hypothesin. Falsitatis vero causa non est sola illa, quam tu infers 15' parallaxis seu prosthaphaeresis acquationum eccentri, sed mutata linearum longitudo ad latera. Nam quod attinet latitudinem lunulae, efficit haec quidem aliquid in prosthaphaeresi aequationum, sed non efficit maximum, ubi maxima est latitudo lunulae. In anomalia coaequata 0°, 90°, 180°, 270°, 360° evanescit ista prosthaphaeresis et planeta spectatur ex Sole (vel quasi) codem loco, sive in circulo currat sive in ellipsi. At in anomalia coaequata 45°, 135°, 225°, 315° est maxima, neque tamen 15', sed nisi fallor 8'. Ac ne haec quidem simpliciter, sed tantummodo tunc, cum planeta ex circulo ad ellipsis circumferentiam ingreditur in sinu recto anomaliae eccentri. Si vero ponatur ingredi in radio veniente ex centro eccentrici, tunc plane nihil sensibile mutatur in aequatione; itaque omnis cansa falsitatis hypotheseos, quae nascitur, in sola abbreviatione linearum tunc consistit. Denique video, te 15' et latitudinem lunulae accipere pro eodem. Latitudo lunulae, quae ab eccentrico Telluris seu Solis est resecata (indice secante arcus 1º 1' 13" dimidiae aequationis Solis) est 15, verius 16, qualium radius 100000. Atque hae sane 16 particulae cum sinu recto anomaliae eccentri accrescunt in longitudines medias. At lunula a Martis eccentrico circulo resecanda habet lati-

tudisem. 432, multo majorem: Sed nec illud capio, cur vel illam vel hanc dicas 15'? Nisi forte, quia haec lunulae latitudo efficit nobis, si distantias ex perfecto sumantes circulo, errorem alicubi 15' in observationibus extra situm acronychium. At quid haec 15' ad aequationes eccentri, cum sint aequationes orbis? Tot nominibus cum peccet tua speculatio e trivio arrepta, noli a me limam petere. Immo securim affero radicitus illam excisurus et igne aboliturus. Miseret me tui itineris, qui tantis laboribus, ut ais, huc usque tandem, id est ut interpretor eo pervenisti, ubi esses si interea dormivisses. Sed et consilia suppeditas quid agendum, ut ista tua perficiantur. Stulte consulis, docuit me Alexander nodum solvere Gordium. Itaque consulo ego tibi ne actum agas. Dico tibi, si centom superessent planetae, dummodo tales ejus observationes haberemus quales in Marte, meis inventis ad eorum hypotheses perveniri posse, siquidem illi naturam horum 7 planetarum imitarentur.

Verum ex defaecato animo (puto te a somno expergefactum, nam htera paulo variat), agnoscis tuos ipse labyrinthos et quaeris ex me, numquid ab anomalia coaequata, quae datur dato aphelio, perveniri possit ad tempus seu anomaliam mediam data eccentricitate. Omnino docui in Commentariis cap. LX. Via est geometrica, etsi longa, cum contra via a media seu tempore ad coaequatam sit $dysouperopyo_{\mathcal{S}}$ per regulam fictionum. Miserum me, si 60 capitibus perscriptis nunc demum te monente de genuina causa utriusque eccentricitatis esset cogitandum.

Fabricius: Adjungo exemplum trium acronychiorum recte constitutorum. (Vide infra in Kepleri responsione.)

1600 et 1604: $\heartsuit Q$ arcus medius 87° 18' 42"; at ratione V' 14', ratione F 6' fere, summam 20' addo arcui medii mootus VF ($\heartsuit Q$), et fit in circulo TG 87° 38'/₂', angulus apparens primus 81° 7', complementum ad 180° est 98° 53' videlicet SBG (pse Fabricius antea correverat errorem in schemate commissum, dicens: "punctum Terras medium vicinius centro"), duplum 197° 46', subtensa 1976008 SG. Huic duplo adjungo GSB correctum medium 87° 38'/₂' summa 285° 24' 30", et sic tertius angulus SGB 74° 35' 30", subtensa 1811731 SB.


De secundo triangule: RBS, qui est apparens 28° 52', duplum 57° 44'; subtensa SR 965546. Adjungo 2 correctos medios TG 87° 38'/₂' et GR 82° 2' (nam ratione F 6' et ratione Q tertii acronychii 18', summan 19' subtraxi a medio tabularum motu 82° 21'), et fit summa medii motus 169° 40'/₂'; et angulus RSB et sic tertius SRB fit 132° 35'/₂', subtensa SB 1831205.

Cum igitur SB bis habeatur in diversa mensura, igitur SB secundi trianguli reduxi ad rationens subtensarum primi trianguli SGB &c.

Keplerus: Jam conferam tuas tres cum meis in Commentariis.

Th 1595. 30. Oct. h. 23. 55' in 17° 31. \heartsuit Ego - 31. Oct. h. 0. 39' in 17. 31. 40. \heartsuit 1600. 18. Jan. , 13. 46' - 8° 38. \heartsuit - - - 14. 2' , 8. 38. 0. \heartsuit 1604. 28. Mart. , 16. 35' - 18° 39'/₂ - - - - 16. 23' , 18. 37'/₂ - - -

Ut vero jam tu ex tribus his exstruas hypothesin supposita ellipsi, parum mea refert. Lude ad satietatem. Meam sententiam supra dixi. Tem-

pus inter 1600 et 1604 est majns in proportione, ergo statuerem aphelinm in postrema observatione in \simeq , aut si praescirem, magnam esse eccentricitatem Martis, viderem vero parum differre proportiones temporum ad arcus coaequatos, hinc facile intelligerem, aphelium esse circa mediam in 9° &; posito ergo aphelio in 8° 38' &, jam conjicerem unam eccentricitatem, ex ea mediante tempore exstruerem pro 1604 aequationem, minuendo vel augendo eam quoad responderet observationi. Ubi nota, posito aphelio in ipsa acronychia 8° 38' &, poni motum medium ibidem, unde is mediante tempore derivatur in 1604. Sic constituta eccentricitate per 2 observationes, jam etiam computarem pro tertia anno 1595. Certum autem est, locum computatum casurum ultra observationem ob vitium aphelii. Hoc animadverso aphelium tantisper promoverem primo magnis saltibus, usque in alteram observationem 18° \cong ; postquam res in contrarium caderet, inciperem comparare proportionalitate utens, donec ad rem veniretur.

Sed objicias, clarum quidem quid velim, ubi confertur aphelium in ipsam observationem; quid vero, si extra? Tunc enim nescitur motus medias. Quid aliud nisi ut dicam sic: posito aphelio in $9^{\circ} \, \Omega$, aequatio metus medii in $19^{\circ} \cong$ fit tanta; quare posito aphelio in $19^{\circ} \cong$, aequatio fit nulla. Dum igitur aphelium a $9^{\circ} \, \Omega$ in $19^{\circ} \cong$ transponitur, motus medius tanto augetur, quanta fuit initio aequatio in $19^{\circ} \cong$. Ergo proportionaliter (nam proxime aphelium aequationes fere proportionantur partibus anomaliae mediae) transpositio minor minus augmentum postulat motus medii. Sed hac $\dot{\alpha}\mu\eta\chi\alpha\eta\varphi$ non est opus, ut jam videbis.

Fabricius: Tu duo, quae semper conjuncta sunt, separata facis et assumis pro lubitu aphelium; item medium motum, et haec duo separatim exploras, et ubi sigillatim tuae probae respondent, conjungis. Ego vero haec volo, ut cum aphelium et eccentricitas semper in certa proportione respondeant, uno dato et illo per suam probam explorato, supersedere possimus de alterius veritate inquirenda. Quaero idcirco, an dato aphelio vero cum eccentricitate vera veraque anomalia directa ratione ad anomaliam mediam medique motus constitutionem perveniri possit et quomodo?

Keplerus: An dato aphelio, eccentricitate et coaequata anomalia detur medius motus, dixi supra, repetam hic. Data eccentricitate datur latitude maxima lunulae: hac data, datur maximus angulus aequationis opticae, igitur anomalia coaequata illi respondens et una angulus aequatiunculae, quam causatur latitudo lunulae. Dato hoc angulo ad unam coaequatam, datur idem ad omnes coaequatas, et sic etiam ille, qui respondet nostrae coaequatae. Nam crescit et decrescit, ut rectangula quadrantis. Rectangulum quadrantis fit multiplicato sinu arcus in sinum complementi. Aequatiuncula haec in semicirculo descendente addita ad coaequatam constituit talem angulum, qualis fuisset, si planeta mansisset in circulo. Ex hoc igitur angulo, eccentricitate et radio (quia jam in circulo sumus) invenitur angulus anomaliae eccentri, cujus sinus multiplicatus in secunda scrupula valoris maximi trianguli ostendit, quanto anomalia media superet anomaliam eccentri. Valor maximi trianguli habetur sic, si dicatur: ut area circuli diminuta 5 cyphris (est autem 314159) ad secunda omnia totius circuli, sic dimidia eccentricitas ad valorem areae maximi trianguli aequatorii.

Hoc tenens jam vide, quomodo ex duabus observationibus et posito aphelio inveniatur simul et eccentricitas et motus medius. Nimirum per aliam dregnur: oportet enim ponere aliquam eccentricitatem et cum ea in utraque observatione, methodo jam scripta, inquirere anomaliam medism, conjunctis anomaliis mediis, si tempus prodit majus debito, erit major debito eccentricitas. Posita igitar minori eccentricitate et iisdem praestitis facile per proportionalitatem venitar ad hypothesin, duabas observationibus et posito aphelio satisfacientem.

Fabricius: Quaeritur, an dato excessu super semicirculo, subtensa dimidii excessus vel sinus rectus accipiatur ad constituendum aphelium?

Keplerus: Quaeris aliquid, quod non percipio, ad doctrinam puto triangulorum pertinens, de excessu super semicirculum. Non possum tibi dicere plura quam haec: duorum semicirculi arcuam, qui juncti semicirculum faciunt, sinum esse eundem non nomine tantum, sed in effectu calculi etiam.

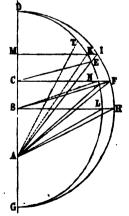
Fabricius: Credo te in acronychiorum calculo uti simplici motu medio tabularum, non composito, vel qui praecessionem acquinoctii implicitam habeat.

Keplerus: In hypothesi acronychiorum parum interest, unde fiat initium numerandi, a fixis an ab acquinoctio, modo, si ab acquinoctio, motus praecessionis interjecto tempori competens suis locis ab angulis auferatur, quod ego praestiti diligenter.

Fabricius: Hic ostendam etiam, vero aphelio dato circulum verum non dari &c.

Keplerus: Arguis, aphelio posito et 4 acronychiis, non dari verum circulum. De re ipsa tibi assentior, nam in commentariis ostendi, non omnes 4 observationes perfecte in circulum cogi posse. At de quantitate nego. Vix 3' coactione in circulum eripiuntur observatis. Tuam demonstrationem non lubet excutere, nimis multa peccat et taediosa est eo, quod frustranea re peracta. (Fabricius sententiam suam pluribus defendens addit: "deficiet aliquid aat abandabit ad 10, 20, 30 aut 40 minuta et plura paneioraque.")

Fabrieius: Cupio abs te cognoscere, cur in tua "genesi" secans eccentricitatis dimidiae 15' tantum accipiatur pro defectu circuli, non plus ant minus? Forte, qued propter eccentricitatem linea ex Terra ad circulum producta tanto sit minor quam radius circuli, cum tamen, ratione motus, acquales esse debeant.


Keplerus: Risi te, qui in mea "Genesi" invenis secantem; abscissores quidem praedicant astrologi, sed ii mihi non placent. Tu vero ex astrologo et astronomo confusus, cum "Hypothesi" velles dicere, "Genesi" dixisti ex abundantia cordis. Rem habes supra, secans est longior radio. Planeta in anomalia eccentri 90° distat radio, punctum vero circuli in anomalia eccentri 90° distat secante a Sole. Ergo planeta excessu secantis discedit a circulo.

Fabricius: Vellem ut simpliciorem tnam hypothesin facias. Geometrica est, sed emperem etiam esse opticam. Tu acquantes eliminas; alia ratione geometrica illius vicem supplere conaris, videlicet per valorem vel aream trianguli;

supplere conaris, videncet per valorem vel aream triangul; multiplicas dimidiam eccentricitatem cum radio et sic quadratum vel aream quadratam constituis CBFH et in eadem proportione etiam ad singulos anomaliae sinus aream trianguli constituis. At quid rei illi areae est cum hoc sinu? Requiritur angulus opticus prosthaphaerescos secundae, non valor areae geometricae. Per se vera illa sunt, at ratio non apparet applicationis. Sit I medius locus et MAK cosequata anomalia, jam debebas mon per valorem trianguli, sed per opticum angulum (utpote KAT) ostendere, Martem in T constitutum per duplicem illam aequationem ad K et T puncta optice convenire observationibus. Si LH 15' secantem subtraxeris (in 90° anomalia) a radio, relinquit sin. 84° 41', et sic LH quasi vi quadam illam alteram prosthaphaeresin hic salvat, ita ut ALB unam prosthaphaereseos partem exhibest, HAL alteram &c.

Plurimum rogo, ut causam geometricae illius operationis octendas, cum optica ratio nulla suffragetur; item cur bis eccentricitatem adhibeaa, semel quidem recte juxta centrum, et semel apud singulos sinus? Cogita de tali ratione, ut dato loco medio, exempli loco I consimilem illi des in tua ovali situm, sive in K sive in T, et post ostendas optice angulum IAK vel IAT totam prosthaphaeresin constituere, et AK vel AT veram distan-

tiam dare. Ego puts, te alteram prosthaphaeresis partem, ut et distantiam potius ratiocinatione geometrica colligere, non vero astronomice et optice hoc ostendere posse, in schemate its esse aut fieri oportere. Implicatio quoque indirecta triam diversarem anomaliaram ut difficultatem maximam calculo injicit, its suspicionem movet, hypothesin naturalem non esse. Addam, quae inter scribendum mihi commodiora visa sunt ad intellectum tuae hypothesis. Triplicem tuam anomaliam sic intelligo: Constituis simplicem mediam in circulo E (Fig. 37), cui in ovali respondet C, ad hoc igitur punctum coaequatam constituis (EAC). Si vero producatar illa linea ab ovalis puncto ad circulum D, et illi loco congruentem rursus in ovali quaesieris K, erit punctum retardationis d', et sic ibi altera aequatio erit. At ostendendum, ad illud punctum retardationis geometricae of CAK re vera constituere alteram acquationis partem et AK distantiam veram. At distantia debet fieri per dimidiam eccentricitatem ad medium in ovali C non ad K ; majer igitur erit distantia in K quam in C. At poteris angulum CAK facere non opticum sed geometricum, vel habentem valorem istius anguli, et sic K punctum propius accedet ad C. At, mi Keplere, per valorem trianguli istum secundum acquationis angulum non oportet excusare, sed per opticum angulum, sient in prima acquatione ad C fiebat.

Sic omnia ex uno fundamento procedunt. Sed forte istas tuas subtilitates non satis, quod magis opinor, percipio &c.

Keplerus: Recoquis ea posterioribus hisce literis, quae et in prioribus, sed dilucidius; movet te triplex aequatio. Verum sunt duae tantum, tertia liberat nos ab opinione circuli, cum vere \mathcal{S} dat in ellipsi. Vis opticam aequationem, cum sit et causa physica inaequalitatum, quam salvo per aream trianguli: vide supra. Latitudinem lunulae facis 15, quae est 432: vide supra; cum sint particulae radii, tu facis minuta circuli: vide supra. Tribuis huic ingressui 15' in anomalia 90°, cum ibi effectus ejus in aequationibus eccentri evanescat: vide supra. Nec potes concoquere, quod pro valore trianguli aequatorii, cujus latus unum est eccentricitas, ego dimidiam eccentricitatem multiplico in sinum anomaliae eccentri, hoc est iu altitudinem trianguli aequatorii, immemor principiorum geometriae, quod triangulum rectangulum sit dimidium de parallelogrammo rectangulo ejusdem altitudinis, et quod triangula aequibasia sint ut altitudines.

Anomaliam mediam, quae per tempus habetar, perperam numeras in eccentrico circulo, in quo deberes numerare anomaliam eccentri, nec petes assuescere, ut numeres in area, quae subest illi arcui: vide supra.

Cum ubique crepes, totam hypothesin debere esse opticam, tandem suspicaris, naturalem non esse, sed ortam ex ratiocinatione h. e. ex phantasia mea, eo quod tres sint anomaliae. Immo, nisi tres sint, naturalem defendere non potero. Nam media a me dicta est numerus moraram; en naturam! mora est in rerum natura. Eccentri anomalia est arcus itineris; en naturam! si quidem est in coelo locus, per quem planeta transit. Coaequata est angulus visionis ex Sole (vel quasi), en naturam! visio, opsis, optica causa est res in natura. Certissimum est, omnia tria concarrere ad inaequalitatem planetae. Tu vero ne nunc quidem, cum tres habes anomalias, satis habes. Oportet ut tibi quartam insuper nominem.

Nam ego duos illos arcus, ellipticum et circularem, qui ab uno sina rescinduntur, pro una anomalia eccentri habeo, hoc discrimine, ut arcua ellipseos sit illa vera et naturalis anomalia, dans et coaequatam per imminutionem sui, et opticam; arcus vero circuli sit nihil nisi geometricum elliptici arcus nomen, mensurandi arcus et areae ellipticae causa inductum. Tu vero perpetuo obliviscens anomaliam mediam seu temporariam quaerendam esse in area ellipseos, hoc, inquam, obliviscens ex arcu circuli eccentrici facis mihi mediam anomaliam, cum sit haec anomalia eccentri, vere quidem media, sed quantitate inter reliquas duas, at non sensu antique

astronomorum, qui voce media expresserunt Graecorum $\delta\mu\alpha\lambda\eta$. Ego, mi Fabrici, si astronomiam de novo traderem, sic ut mihi non esset opus loqui cum antiquis, uterer vocibus aliis. Dicerem moram, arcum, angulum, circulum; arcus elliptici nomen, morae mensuram, circuli aream.

Fabrieius in literis d. 13. (23.) Apr. 1607. redit ad quaestienes priores de "tribus parallaxibus Martis ad eccentricitatem orbis annui inquirendam," deinde pluribus refert dubias de observationibus Tychonianis, refractionum vim in locis Veneris et Solis a Keplero demonstratam cupiens, quaestionibus omnimodis mere consueto repetitis sic concludit : Vale et rescribe quam citissime. De statu Teugnagili et Ericksen valde sollicitus sum. Haec raptim et carptim scripta, plura et solidiora de tuis hypothesibus et earum examine a me facto in literis prioribus habebis.

Ad haec cum Keplerus non statim responderet, die 1. (11.) Junii 1607. Fabricius illum adiit hunc in modum: Praestantissime et candidissime Vir, amice colendissime. Jam tot ad te misi toto vertente anno literus, ut numerus exciderit. Cum igitur nihil reciperem, coepi dudum desperare, non quidem de tua amice benevolentia, sed de fortuna minus prospera. Venit sunc ad me D. Cancellarius, communis studiorum nostrorum patronus, et nunciat, si quid Pragam scribere velim, pararem. Quare me denuo accingo ad seribendas literas idque tumultuario stylo, ne mora D. Cancellario per me injiciatur. — Jam immixtis quibusdam de Kepleri libro de stella nova (v. Vol. II. p. 602.) sic pergit:

Bogo ut ad omnes meas literas tandem aliquando plane respondeas, praecipue vero per exemplum sive verum sive fetum vel assuntum ostendas, quomodo per tres parallazes datas annui orbis quantitas et eccentricitas inquiratur. Perscriptisti mihi ante triennium rationem, verum admedum obscure et intricate. Ego nunc per hiemem tuam hypothesia Martis examinans etiam tentavi illam partem, sod non successit. Causam scire non potui de,

Cupio scire, cur dimidiae, eccentricitatis d' secans pro lunula accipiatur vel pro defectu viae d', non major aut minor? Si verissimam causam dabis, multa dubia mihi auferes. Si in 5 et 4 eadem ratio magnitudinis socantis pro eccentricitatis dimidiae proportione, mecesse est ejus rei communem este aliquam causam. Forte semidiameter circuli ex proprio essire et ex Sole (ad Tychonis enim hypothesin accommode omnia) ad circulum productas paralleliter facit illam motus differentiam; at tamen quomodo fiat non video &c.

Maxime quoque in prioribus mentionem feci, ut cogitares, cur ex 3 acronychils observationibus verum aphelium et vera escentricitas non detur? Causam ego invenio latese in 15' illis lunulae 5; si enim illa pro distantia 5 ab aphelio debito auferantur ab arcu medio tabularum duabus observationibus intercepto, vel ei addantur, tunc datur aphelium verum et illi semper connexa vera eccentricitas. Si enim in hac praxi unum scitur, tunc et alterum scietur.

Ego puto, me talem hypothesin d' arcogitasse (desiderantur saltem quaedam plenius examinanda per 3 parallaxes ad unum locum), quae sua facilitate nulli sit cossura. Salvatar quidem calculus per tuam, at implicatio et obscuritas et difficultas ipsarum hypothesium taarum clare (ut pace tua dicam et suo tempore plenius videbis) ostendit, illas nondum genuinas esse. Nihil in mea nova hypothesi desiderabis, quam quod unicam librationem admiserim super centro (), nutante huc illue aphelii lines per mobilem d' eccentricum perducta, ut altera pars acquationis compleatur. Respondent tamen omnia ad amussim cum prima hypothesi tua.

Keplerus in literis inceptis pergens, respondit: His paulatim conscriptis supervenerunt aliae tuae epistolae, prior 1. Junii, altera 13. Aprilis data et inclusa literis Ritterhusii (I, p. 344). Petis quae supra; non vacat novam subire operationem, mitto descriptum ex Commentariis. Secantis officium in arguenda latitudine lunulae habes supra, tua igitur causa, ingeniosa quidem inventa, at per se falsa est. Tuus eccentricus mobilis plane contrarium facit meae ellipsis; move illum in contrarium et creabis perfectam ellipsin, ut ego quoque initio harum literarum per aliam aequipollentiam creavi ellipsin. At nota, ut ille tuus libratorius circellus respondeat anomaliae eccentri, quae celeris est in perihelio, taçda in aphelio, — ecce quaestionem non solutam, sed translatam. Tu vero exclamas, invenisse te causam rei, cur excessus secantis definiat latitudinem lunulae, nimirum quia eccentricus moveatur ad latus in diametro circelli, cujus semidiameter sit aequalis excessui secantis. O te ridicule deceptum ! Quaeritur enim adhuc, quae sit causa motus illius ad latus, id est quaeritur causa quantitatis illius motus, cur praecise radius

aequet excessum secantis? Ego quaestionem non transtuli, sed causam indicavi et ellipsis et mensurae. Mars habet vim magneticam, quae pro ratione inclinationis axis magnetici ad Solem accedit et ab eo recedit; fortitudo accessus ratione physica mensuratur a sinu anguli inclinationis. Ex hac fortitudinis variatione resultat ultro regularis libratio Martis quasi in diametro epicycli (libratio, inquam, ad unguem talis, qualis est si epicyclus in concentrico statuatur inaequalis motus, Mars vero non in ejus circumferentia, sed in ejus diametro esse ponatur). Ex libratione porro resultat ultro via elliptica et quantitas resectae lunulae. Si enim in anomalia eccentri 90° absolvitur dimidia libratio, cum nondum tunc sit dimidia axis ad Solem inclinatio (ut nimirum supra libratio sit tardior quam infra. sicut est et ipsa anomalia eccentri), ergo in illa anomalia eccentri 90° planeta distat radio, quia absolvit semidiametrum librationis; at si in circumferenția mansisset epicycli, distitisset secante aequationis opticae. Appropinquat igitur, ubi maxime, excessu secantis supra radium. Haec omnia geometricissime cohaerent, ut videbis olim Deo volente.

Fabrioius: Ubi rationem meas hypothesis integrae plene consideraveris; videbis facilitatem, consonantiam et certitudinem, et admiraberis. Hoc vere tibi affirmare possum; quaeso saltem, ut rationem per 3 parallaxes ordine procedendi a primo ad ultinum mihi perserifas, ut \bigcirc orbem cum \bigcirc eccentrico per meas observationes pressime conferre pessim; post integram meam hypothesin cum demonstratione et excemplis habebis. Scito me diuturnia cogitationibus ingenii vires plane prostravise; putavi enim non committendum, ut hypotheses tanta difficultate laborent. In eo laboravi semper, ut moturum causas veras inquirerem, quare et laboremus uterque, ut ex 3 acronychiis inquiramus, quod ta ex 4 facis. Habemus rem in manibus, modo ingenii tai subtilitate viam ostensam excedere aliquantulum veltă. Quodsi maxime tuae hypothesi inhaerere volueris, tamen si meam tuis Commentariis adjamgere volueris, in gratiam astrophilorum non detreotabo, modo ită tuis rebus visum fuerit; nibil ego quaero, quam artis veritatem multorumque utilitatem. Haec sunt, quae de mea hypothesi et 3 acronychiis calculo nunc fusius tibi deolarare volui. Pergo sunc ad alia.

Keplerus: Quod tu jam quasi causis inventis ad somnia tua relaberis, de causis, cur 3 acronychia non concludant hypothesin, habes responsionem supra. Tu postquam diu fatigatus fuisti, tandem invenisti àποριαν calculi, et tamen suades, ut hanc viam eam, qua opus non habeo.' Ego enim via laboriosa quidem, attamen perspicua et insidiis carente, ad locum veni: te vero plura docere non possum, quam ipse teneo.

Qnomodo meam lunulam transtuleris, dixisti, in circelli sc. transversi diametrum, qua centrum eccentrici libretur ex 111 versus 🞖 et vicissim; one tamen hac correctione indiget, ut σ in \mathfrak{M} versante centrum in \mathfrak{R} secesserit et contra. Quodsi etiam indicaveris, quomodo salves aream trianguli aequatorii, et modum tuum aequipollentem videro areolae meae, tunc faciam anod petis et tuam hypothesin meis Commentariis adjungam: Nam negotium tuum pertinet saltem ad opticae acquationis partem; de physica parte (seu de acquatione, quam causatur punctum acquatorium Ptolemaei, secundus epicyclus Tychonis et Copernici) nihil adhuc abs te est allatum, nec afferri potest, quod aequipolleat areolae meae. Si negligere velim 8', jam ego ipse haberem punctum aequantis Ptolemaicum. Sic in longitudine media, manente eccentricitate hac, puto circiter 3' minui maximam aequationem, ubi 2 epicyclis Copernico-Tychonicis utimur, quae 3' ante vel post oppo-sitionem cum Sole possunt excrescere ad 10' vel 11'; sin antem deteramus haec 3', tunc augenda erit eccentricitas, ita vitiabuntur distantiae apheliae et periheliae, ut tolerari non possint a prosthaphaeresi orbis annui. Adde anod in longitudinibus mediis contingit per duplicem epicyclum excursus a

circulari orbita valde magnus, qui tolerari non potest in prosthaphaeresibus orbis annui. Patet. Nam circulus ipse tolerari non potest, sed pro eo ellipsis, multo igitur minus excursus iste; exspecto igitur, quomodo salves physicam acquationis partem.

Fabrieius: Quaeritur an in calculo 4 acronychiorum Martis adhibendus motus simplex acquinoctiorum vel compositus?

Keplerus: Pro re nața inquam. Nam certe habenda est praecessionis ratio; sed quomodo? Relinquitur arbitrio operantis. Soleo ego angulos inter 2 acronychias augere praecessione temporis interlapsi. Schema docebit, ubi minuendum.

Fabricius: Quando Commentarium Martis editurus sis scire cupio.

Keplerus: Diligenter hoc ago ut edam Commentaria Martis. Impedire minatur Tengnaglius, et tamen inter spem metumque relinquit dubium. Haec occupatio causa est, cur gravatim scribam. Et his literis quidem nihil tetigi, quod non attineat Martem. Persecutus autem sum omnia, nisi quod restat, ut de latitudine dicam. Inveni latitudinem maximam in aphelio 4° 35' c., in perihelio 7° 0' c., cum inclinatio utrinque sit 1° 51'.

De reliquis quaestionibus alias. Unum tamen non possum non addere de quo quaeris. (St &, scribit Fabricius, juxta elongationem in Aprili et Majo proximo observasti, communica, nam tum nolens per aliquot dies abfui.) Die 18. (28.) Maji Mercurius nobis hic Pragae visus est in disco Solis &c. (Comp. vol. II, p. 106.) Respondebo ad reliqua successive. De Marte vero vix quidquam amplius. Nam in Commentariis expoliendis laborem respondendi impendam.

Vale et observationes Saturni, Jovis et Mercurii mitte. Ego remissior fieri incipio, cur enim, morientibus instrumentis, supervivat mea observandi diligentia? (Comp. Vol. II, p. 760.)

1. Augusti, cum Martio incepissem intereaque peregrinatus essem in Lusatia, anno 1607.

Hon. Tuae

amicus Uranicus

J. Keplerus.

Literae Kepleri, quae has subsecutae sunt, anno integro post (d. 10. Nov. 1608.) scriptae enedemque ultimae sunt, quas Keplerus Fabricio dedit. Causam intermissi hinc inde commercii literarum nullam quidem deprehendimus in literis Fabricii, quas exhibet Vol. X. Mss. Petropol., neque in illa Kepleri epistola; ipse autem Keplerus refert illam in Ephemeridibus (anni 1617. Vide Vol II, p. 109.), cui si suspicionem addiderimus perscrutantibus nobis Fabricii literas obortam, in causa fuisse videtur taedium enucleandi ejus intricatam manum et perlegendi innumeras, saepius levissimas quaestiones adque eas respondendi, forte etiam postalatum Fabricii, ut hypothesin suam de Martis motibus subjungeret Commentariis, cur Keplerus abruperit literarum dandarum assiduitatem.

Ceterum ex his ipsis ultimis literis elucet. Fabricium jam demum, instructum praecedentibus Kepleri monitis, mentem ipsius percepisse, et ex parte quidem codem quo Keplerus pregressum esse tramite. Pergimus cadem qua supra ratione, Fabricii quaestionibus interposentes Kepleri responsa.

Fabricius (d. 27. Febr. v. st. 1608. comp. Vol. II. p. 106. 603.): Calculis astronomicis in tantam cerebri debilitatem prolapsus sum, ut ab eo tempore abstinnerim ab operosis calculationibus.

In \mathfrak{h} prosthaphaeresi puto te errorem commisisse reponendo aphelium in 25° 15' \swarrow . Ego ex meit observationibus, Decembri calculo subductis, in 26° reponendum existimo. Acronychiarum observationum exempla aliquot a me examinata intra 3 et 4' tuo aphelio non convensiont. Quare posito aphelio 26° \swarrow ad anni 91. initium, et 4' longitudini tuae additis videbis, quam proxime in dimidio scrupulo convenire. Eccentricitas mibi 5420.

Keplerus (Exordium harum literarum vide Vol. II, p. 98. 107.): Mars cum formis et pecunia jam annum integrum haeret Heidelbergae. Hipparchus jam

Literas Kepleri alierumque mutuas

demum incipit ex novo meo incubita et fota rursum incalescere; sed lentissime progredior.

Narras periculum valetudinis ex computationibus contractum. Post festum venio, medicinam tamen suadeo. Abstineas a constituenda hypothesi Martis, jam enim est constituta. Ego tantum insumsi laboris, quantum sufficit vel decem mortibus, et pervici per Dei gratiam pervenique eo, ut contentas esse possim meis inventis et quietus. Antequam acquiescerem inventis, quiescere omnino non potui; ex praesenti igitur quiete argumentare de meis inventis.

Ex iis, quae scribis de Saturno, colligo, quae tibi causae sint, cur Saturni observata non mittas nec Jovis. Cupis aliquid et ipse praestare, in qua operis parte non vis habere aemulum. Mihi hoc non est cordi : si non tantum tibi mitto quantum postulas, in causa est, quod fugio laborem describendi et conquirendi. Pati possum, ut edas aliqua de Marte vel ante mea Commentaria vel post. Quicquam etiam, si brevibus possum, de tuis inventionibus addam meis Commentariis. Interim tuis ipsius observationibus es iniquus, quarum curam nemini permittis nisi tibi ipsi. Quid si non omnia possumus omnes ! Quid si mihi Deus hoc dedit, ut melius uti possim tuis observatis quam tu ipse? ergo, si ego cessem et tu perperam utaris, frustra tu observasti.

> Cum tu habeas in Saturno eccentricitatem 5420, ego 5700, mirum non est, nos etiam in aphelio differre. Tu enim procul dubio exstruis hypothesin ex centro Terrae, seu in forma Copernici ex centro orbis magni, ego vero ex ipso Sole vel in Ptolemaica hypothesi ex centro orbis Solis.

Sit B Sol, A centrum orbis Terrae, C centrum orbis Saturni. Mihi BC cadit in 25° 15' ♂, tibi AC in 26° ♂; haec probe consentiunt. Sed hoc miror, cum mihi BC sit 5700, cur tibi longior AC sit brevior, sc. 5420? Ego mihi videor

recte operatus et peto observata.

Fabricius: Unitum est, quod omnino tibi scribendum putavi et quod me maxime perplexum reddidit, hoc: in Marte posita tua eccentricitate 926500, et lumala pro secantis ratione constituta 46200, ita ut lumala juxta meam hypothesin extra circulum sit non vero intra, ut in tua ellipsi fit, volo ad 95° distantiae mediae ab aphelio inquirere primam acquationem. Datur per tabulam foecundam (tangentium) angulus acquationis maximus 5° 17' 30''c. Ubi vero eodem modo ad 96° quaesiveria, prodit acquatio 5° 19'7'', diff. 1/s', cum tamen circa maximae acquationis locum vix paucis secundis in uno aut altero gradu anomaliae mutetur: Ubi vero ante et post maximae acquationis angulum quaesiveris acquationes, non magis vel minus crescunt aut decrescunt acquationes proximae, quam re vera debent et vix in aliquot secundis mutantur. Res sane valde mira, nec causam indagare potul, licet plurimum laboraverim &c. Quaeritur, quae sit causa tam subitae et sensibilis variationis in acquationilus proximis, cum tamen ante et post illum 95° crescant et decrescant proportionaliter, nee ulla anomalia ahimadvertatr ?

Keplerus: Quod in Marte mirum celebras, videre videor quale sit. Latitudo lunulae est lineola recta ad lineam apsidum. Illa si in perigaeo esset tota, maximum causaretur angulum. At in longitudime media coaequata causatur angulum nullum, quia continuata incidit in ipsum centrum Solis (Ptolemaeo Telluris), et sic per optica principia apparet sub ratione puncti. At anomaliae coaequatae 90° respondet media 100° 43' circiter, ergo in anomalia media 90° lineola haec nondum subtendit nibil, sed causatur angulum $1^{1}/_{2}$ c. Hoc mirum non est. Nam paulo supra mediam 90° causatur angulum majorem et in anomalia 45° causatur maximum. De quo invesies pulchram demonstrationem in meis Commentariis de 5 (Cap. LX.)

Fig. 42.

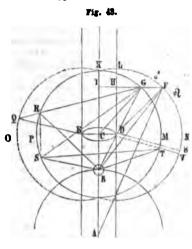
n

C

D

Fabrisius: Si hoc meo modo in excessu circuli (per additionem partium hundae ad sinum anomaliae) per rectangulum vel foecundam tabulam acquationis primae angulum vel anomaliam primo coacquatam inquisiveris et post per hunc acquatum angulum anomaliae secundam acquationem investigaveris, habebis totam prosthaphaeresin verissimam. Ut meam hypothesin, quam tua veriorem judico, plenius perspicias, en schema. — Hoc schema additamque explicationem omittenda censemus, cum quia ipse adscripsit Fabricius: "ex celeritate et incogitantia Martem pro libratione aphelii male collocavi", deinde correcto bis schemate priori, addit: "schema misus commode formatum", et alteri: "nimia fastinatio facit, ut commede totam hypothesin in uno schemate non depinxerim"; tum quia Fabricius non contentes tribus his irritis constibus quartum quin etiam quintum ad idem redit, unde infra es desumsimus, quae ad rem pertinent.

Jam non respisiens male defineatas figuras exclamat Fabricius : quam jucunde, quam certo, quam facile, quam congruenter hace inter se et coelo consentiant, pluribus non demonstrabo. Tu fac periculum et Fabricii vigilias multis annis in hac re exantlatas admimberis. ' (Haec verba sequitur seconda earum, quas diximus, correctionum, integrum consumens falium.) Deinde pergit : Vide, mi eruditissime Keplere. nunc utriusque hypotheses, confer illes, et judica, utra ait facilier, ad probandum et persuadendum convenientior. Hoc scio, sullam usquam faciliorem in superioribus datam esse aut dari posse, et ad talem hypothesis erdinationem ego trium superiorum tabulas supputare incepi. Per eam ostensurus sum verissiman rationem, cur ex 3 acronychiis observationibus verum aphelium et eccentricitas hactenus dari non potuerit. Ege scie, scio inquam, per hanc meam hypothesin hoc fieri posse et in 6-8 horis totum illud negotium absolvi posse, quod tu per 4 acronychia viz 6-8 diebus in uno planeta perficies. Si tibi probabitur, ut non dubito, si examinaveris in praecipuis lecis per observationes, et tuis Commentariis in fine adjungere volueris, rescribe, tunc ego emnia diligentissime et accuratissime cum veris demonstrationibus et exemplis, item calculandi ratione et aliis adumbrabe. Noli mi Keplere amplins somnia vocare haec mea inventa, ne graveris examinare quaese; si non veritatem cum pari facilitate et jucunditate inveneris, tanc densum acue stylum, tunc imperiosius perstringe. Ego antea quiescere non potui aut veini, quam hanc invenerim bypothesin et veras causas multorum hactenus latentium mystenorma plene et plane indagaverim, quod jam Dei beneficio post millenas curas, innumeras calculationes, vigilias operosas per 6 annorum spatium tandem inveni.


Tu noli librationem accusare. Quare mi Keplere non haec tam est naturae conveniens, quam mirificae tuae speculationes eirca tuam hypothesin? Etsi maxime tua hypothesis salvet metne, operandi tamen ratio per tuas hypotheses tam est perplexa et operosa, ut vel primo insteitu aliquem deterrere possit. Quodsi minus tibi probabitur vel etiam maxime, nolo tamen ut aliis eam communices, sed sub Uranica fide tecum sint omnia, sicut tua apud me hactenus tanquam in abditis Uraniae ut palladium Trojae latuere et ut mysteria reconduntur. Quate enim sic magnis laboribus a nobis inquiruntur, non debent aliis fucis ante tempus obtrudi. Filio meo sollicite tua inquirenti ¹⁴) nolui literas tuas perlegendas dare eandem ob causam, ne vel incogitantia juvenili aliis in academiis propalarentur, antequam tu quidquam de iis publicasses.

Quare examina meam hypothesin et judicium tuum candide (ut soles alias et in aliis) perscribe, et si quid contra objicere poteris objice, quid probes aut improbes significato; ego primo quoque tempore tuas literas et responsum ad quaestiones reliquas omnes exspecto; noli, quaeso, me diutius detinere. Ego nunc agrariis curis valedicere constitui, locavi aliis agros, ut tanto liberius astronomicis in posterum invigilare possim. —

Huic apologiae tertiam addit Fabricius correctionem ("nimia festinatio" &c.) iterum per integrum folium, qua nondum accuratius perspecta. Keplerus ad praemissa respondit hunc in modum :

Ad tua vero haec inventa de Marte, quae Pythagorico affectu commendas meque invitas ad ea admiranda, quid dicam non habeo. Ridebo? At meliora meritus es egregio studio et cupiditate inculpata. Magni vero faciam? At minus hoc erit candidum facinus. Hoc solum tibi dico, aut te coincidere in effectu cum operatione mea aut aberraturum longissime ab observatis. Quid? Tu parum referre putas ad orbis annui aequationes, prolongentur distantiae Martis a Sole circa medias longitudines an decurtentur? Aut ubi ego decurto, tu malis prolongare? O te miserum! Quam parum memor es eorum, quae olim ipse expertus inque literis ad me prolixe datis testatus es. Non sufficit transigere cum acronychiis, oportet et reliqua in conspectu habere. Jam vero Keplerus, inspecta correctione, abrampit stilum, de novo Fabricii hypothesin consideranis. Antequam antem hanc Kepleri inquisitionem proponamus, afferenda est ipsa illa Fabricii correctio, quam spectat Keplerus in Commentariorum Cap. LV, dicens: D. Fabricius hypothesin meam Cap. XLV, quam ipsi pro vera communicaveram, erroris hujus nimis curtarum distantiarum in long. mediis coarguere potuit &c.

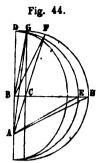
Haec igitur Fabricius, tertio ut diximus rem suam proponens in iisdem literis: Nimia festinatio facit, ut commode totam hypothesin meam in uno schemate antea non depinxerim. Hic ulterius explico: Pro lunulae partibus motus centri fit semper versus δ locum, at aphelii libratio super \odot fit in contrariam partem anomaliarum mediarum. Sie tota mea hypothesis constat duobus librationibus. MN est maxima distantia eccentrici

utriusque, quando J in N, et OP est lunula illa vel excessus circuli in d 463000 circiter, ratione dimidiae eccentricitatis a Sole BC. Lunula causatur a mota centri mobilis eccentrici a centre eccentrici fixi ad latera utringue in diametro per librationem. Ut enim ED totus ad CD (semi-) diametrum (cui MN acqualis), ita distantia medii motus of ab aphelio ad distantiam centri eccentrici a centro fixo vel ad partes lunulas. Et scito, centrum mobilis eccentrici semper in diametro ferri versus cam partem circuli, ubi d' constituitur. In exemplo sit media anomalia tabularum ICG, cui respondet in hypothesi HDF; sinus illius est HF, cui adde CD vel lH distantiam centrorum vel motum centri lateralem, et sic fit kinus IF, et sic datur rectangulum (triangulum) IBF ad Solem, ad quem semper media anomalia of reducitur, nam dimidia eccentricitas CB hic additur sinui complementi anomaliae IC. Inquire igitur per tabulam foecundam angulum IBF, et fit acquata anomalia, et differentia utriusque anguli est prima prosthaphaeresis. Per hanc sic datam

anomaliam acquatam inquire secundam prosthaphaeresin per librationem aphelii KB firi spper centro Solis ad latus, idque sic, ut tota anomalia acquata 90° (nam jurta acquatae anomaliae angulum ad Solem haec libratio aphelii fit) ad dimidiae eccentricitatis quantitatem, sic data acquata anomalia ad sinum rectum secundae prosthaphaereseos. Junge prosthaphaereses et habes totam addendam vel subtrahendam.

Habes nunc omnia, mi Keplere, consona coelo, nisi quod eccentricitas CB ad 1⁴/₉^o mutanda sit vel minor fiat, quando a 95° aequatae anomaliae versus perigaeum eccentrici aequationes inquiruntur, nt sit 921000 pro aequationibus inferioribus, at 9265 manet semper pro superioribus eccentri aequationibus.

Quaero ex te causam variandae post 95° anomaliae, vel minuendae eccentricitatis. Secundo quaero, cur mutatio in 96° statim post maximum aequationis primae angulum tam subita et sensibilis fiat?


Keplerus: Sed hem ! quis mihi novus rumor ex area ipsa eccentrici Martis, intra quam perscripsisti correctionem tuae sententiae totis literis erroneae; quae causa fuit, cur nollem illam ponderare hactenus. Nam schemata de errore testabantur maximo primo intuitu. Si σ est ad sinistram aphelii, centrum eccentrici est ad dextram. Ehem! Hoc volui. Vere igitar abbreviantur distantiae σ et \odot ad latera. Atque hoc est illud, quod ego dico. In reali convenimus; in hypothesi, qua perveniamus ad hoc reale, tu librationes adhibes eccentricorum, ego causas physicas, quae ad numeros tamen sint applicabiles. Quid ? annon superioribus literis anni 1607 ostendi, posae me salvare hanc decurtationem per epicyclum parvum in eccentrico? Tua vero hypothesis quid aliud est, quam epicycli illius mei transfusio in libratilem eccentricum?

Haec ego dum rumino tuamque sententiam relego, invenio te una

libratione duo efficere, abbreviare distantias et partem acquationis physicam salvare : et (me Atlas !) valde miror convenientiam, etsi non puto, acqualia penitas futura, quae ex tua hypothesi excunt et quae ex mea. Cur vero sine calculo aliquid tribuam hypothesi tuae, dicam. Constat mihi ex mea hypothesi, CB latitudinem lunulae maximam sic esse ad

BA, ut BA est ad BD (BE). Rectangula (triangula) igitur ex AB, BC et ex DB (BE), BA sunt similia, angulus igitur BAC tantus, quantus BEA. At BEA est quam proxime pars aequationis physica, ergo et BAC. Utrum autem plane coincidant, facile est aestimare. Primum si tu utaris angulis BFC, BAC, tunc haec pars aequationis, quam ego epticam appello, exactissime convenit cum mea, si modo libratio BC restituatur cum anomalia DE, non cum GH. Nam via ipsa genaina & per DøF, H signa plane ovalis, A elliptica, evadit, non minus quam si uterer circello duplicis restitutionis, ut soripsi priori anno. Nosti enim aequipellentiam hypothesiam. Itaque via & ovalis est potius

phaenomenon (sed demonstrationibus enucleatum) quam hypothesis. Ad illam salvandam tu hic affers librationem eccentrici, ego causas physicas, et aliter circellam. Laborem uterque eundem in computando subit.⁴ Ptolemaiçis vero discipulis tu minuis laborem percipiendi te per circellum (tecum et ego per circellum). At iis, qui ad physicas causas rerum coelestium sunt intenti, ego satisfacio, causas seu librationis tuae seu circelli mei ostendens. (Sehema in mazuscripto deest. Secuti Kepleri verba et Fabricii delineationes nes illad, quantum potnimus, restitujuus.)

Superest igitur pars acquationis physica a me dicta, quam tu per angulum BAC metiris, ego per aream trianguli, rursum physicas causas affectans. Videamus, an etiam hic coincidamus. Mea igitur acquatio proportionatur sinibus anomaliae eccentri estque infra et supra E acqualibus intervallis et ipsa acqualis. Proportionantur vero etiam tibi librationes BC sinibus ejusdem anomaliae eccentri; sic enim tuam corrigo hypothesin. Itaque si tn per proportionem AB ad BC exstrueres anomaliae eccentri acquationem, quam ego dico physicam, tunc ad unguem paria mecum faceres. At non exstruis per hanc ipsam proportionem, sed prius per illam excerpis arcus. Differs ergo a me. Nam arcus excerpti non manent in proportione linearum, nisi in planetis ceteris, quorum est parva eccentricitas. Quodsi proportio maneret arcuum, quae est tangentium, tunc nihil tibi noceret, maximum angulum BAC differre a mea acquatione physica, posses enim BC nonnihil mutare, quod quidem et jam facis, usurpaos pro mea 420 vel 432, tuam 436.

Videamus vero, quanta sit differentia inter arcuum et tangentium proportiones. Esto maxima aequatio physica 5° 43', ut tangens sit 10000. Igitur pars decima tangentis 1000 dat arcum 34⁴/₂', decima vero pars de 5° 43' est 34⁹/₁₀'. Bona aequipollentia in hac parte. Sumantur vero et dimidia, nam ibi differentia videtur maxima futura. Igitur 5000 dat arcum 2° 52'. Dimidium vero de 5° 43' est 2° 51⁴/₂'. Vicisti Fabrici hoc stadium et gloriari potes, te tua hypothesi libratoria ad sensum paria facere cum mea physica. Itaque jam desino ridere tuum paeana, desino desperare de hypothesibus, quibus causae physicae exprimantur; desino negare mechanico Caesaris Byrgio, impossibile esse ut motum d', qui causis physicis adminiteoleri Oren. III.

stratur, ipse circulis exprimat. Tua enim haec libratio mechanicis opportanissima est, cum una fidelia duo parietes dealbet. Quid igitur? Num deseram infinita mea commenta super causis physicis, naturam coelorum a mei trianguli area ad tuas librationes traducam, affirmans, tuam hypothesin esse genninam et rationalem propterea, quod simplex, meam fictam et a natura alienam, propterea quod area trianguli metitur tempora, angulus vero acquationem opticam? Non faciam, non enim hoc esset philosophari. Gratulor mihi potius, tuam hanc librationem hactenus delituisse, quoad de causis physicis res explorata est. Nam fateor ingenue, si tu praevenisses hac taa forma libratoria meam physicam, vidissemque ejus consensum cum observatis, me nunquam in causas motuum incasurum fuisse. Nam quis quaeso, versans animo librationes easque videns consentire observatis, quis, inquam, aliud suscipiat indagandum, quam causam hujus librationis, quasi verissime accideret? Quis non hinc sibi adamantinos eccentricos DE et GH axesque fortissimos AD et AG persuadeat? Quis putet, ista omnia effici posse forma diversissima virtutibus magneticis? Itaque complector animo ingentem dolorem, qui mihi fuisset oriturus super miserrimo labore, inquirendi causas rerum, quae non sunt in rerum natura, sed videntur esse, librationum nimirum eccentrici ejusque diametri fixae in corpore Solis, ac si quis clavum in parietem impactum crebris ad latera contorsionibus et retorsionibus niteretur evellere. At eheu! non vacat indulgere doloris imaginationi, qui praeventus et declinatus jam est : verus me dolor corripit super impendentibus, pro eo quo tibi gratulandum erat. Natam ais tibi filiam ex geometria matre? Vidi: pulchra est, at meretrix pessima futura est, abductura quam plurimis meis filiabus ex matre physica susceptis maritos suos. Traducet tua hypothesis ad se lectores et philosophos, dabit effugia hostibus physicae coelestis, patronis inscitiae, architectis solidorum orbium, mechanicis crassis, quibus se redimant e vinculis demonstrationum mearum physicarum, inque libertatem Deos fabricandi sese recipient. Redibitur ad intelligentias, duaeque collocabuntur ad duos circulos circa centrum B, quibus efficiatur isthaec libratio.

Neque tamen sine molestia illam adolescere patiar. Primum fateberis, te, postquam audivisti de via Martis ovali, coepisse cogitare de librationibus. Et ante aliquot quidem annos hanc Martiae viae contractionem ad latera nimiam a me constitutam coarguisti ex observationibus. Itaque excessum cum deprehenderis, rem ipsam tanto certius complexas es animo. Postea quam emendavi ego istos ingressus ad latera simulque genuinas causas inveni, tu versans meam hypothesin rursum prorsumque et cum observationibus comparans, testatus es, illam consentire: solam causarum incredibilitatem aegre tulisti, circulosque desiderasti pro areis, ut forma Ptolemaica hypothesium persisteret incolumis, quoad ejus fieri posset. Ex hypothesi igitur mea tuam efformasti; centro enim eccentrici B ad latus detorto per librationem BC. ut repraesentaretur contractio itineris planetarii DFH, quod varie fieri potest, deinde per hoc centrum C et per corpus Solis A ejecta linea apsidum AC, sub conspectum venit angulus BAC, idoneus alteri parti acquationis, quam sciebas me per trianguli aream salvare cupiebasque aliter salvatam. Haec itaque series inventionis testetur de rerum natura. Mihi, ut dixi, impossibile futurum erat, ex tua meam educere, tibi facile, ex mea tuam efformare, cum illo affectu meam tractares, quo de dixi. Ex observatis vero ipsis, non praceunte mea hypothesi, nescio an tibi proclive futurum fuerit, in them

incidere, etiam si plenis faucibus Ptolemaicam formam spirasses anhelus. Me igitar nuda duxit natura, nullis instructa vestibus hypothesium; tu ex aliquibus ejus membris, quae tibi a me monstrata minus laudabilia videbantur, oecasionem cepisti, peregrinam illi vestem induendi, quo minus agnosceretur sincere, quin potius lectores inter membra et vestem hanc tuam (ut olim Americani inter equum et insessorem) non distinguerent, corpus dicerent, quod Fabriciana vestis est: dehique ut novo ornatu placeret delicatis nuditatem fastidientibus: immo vero ut pro natura, generosissima puella, substitueretur spuria tua meretricio ornatu et moribus ad voluptatem comparatis, non ad ingenuitatem, h. e. Fabricio interprete: ut arti consuleretur, non alienatis philosophis. Sic igitur ipsa inventionis series arguit, peregrinam esse tuam hypothesin, non naturalem.

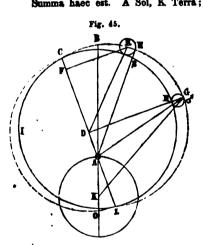
Deinde, quod in mea physica hypothesi vehementer abhormeras, non dari directum progressum ab anomalia media quacunque ad veram competentem, sed interponi anomaliam eccentri quantitate intermediam, a qua caperetur initium, id tu in hac tua non effugis, nisi cum majori damno inconstantis eccentricitatis. Tu enim si librationem BC, h. e. aequationis partem priorem accommodas ad anomaliam mediam GH, nunquam exprimes meam hypothesin et cogeris ab observationibus, ut fateris, variare eccentricitatem AB *àyesquescoproce*. Itaque hactenus emendavi tibi tuam hypothesin, ut perficeretur libratio BC ad anomaliam ED, quam ego appello eccentri. Hoc vero si fueris passus, eodem in luto mecum haerebis non quidem pudendo, nisi ex tua opinione, qui in me cupiebas emendatum.

Tertio: neque de simplicitate, qua maxime gloriari putas, tibi concedit Tu ejusdem trianguli CBA angulo BAC quaeris partem aequationis mea. physicam, latere vero BC constituis BH ad partem opticam BHA investigandam, una libratione (quae tamen duobus circulis administretur) duo efficiens, et coarctationem ad latera et moram in superioribus. Ego, tibi par, unius trianguli AHB area partem physicam, angulo AHB partem opticam aequationis inquiro, una naturali libratione planetae in linea recta a corpore Solis A, per spatium aequale ipsi AB efficiens duo illa eadem, quae tu libratione centri non naturali. Ubi mihi ad meam librationem non est opus circulis, ut tibi: sufficit enim vis magnetica ipsius corporis Martii eaque bruta, cum tu opus habeas duabus intelligentiis ad tuam librationem administrandam. Quarto: labor vero tibi major incumbit quam mihi. Primum enim ut BD ad sinum EBD, sic maxima distantia BC ad modulum justum angulo EBD (?) convenientem. Deinde ut AB ad BC sic totus ad tangentem, quo tangente est excerpendus angulus BAC. Mihi manet prima operatio, at pro secunda idem sinus (non jam etiam tangens) anguli EBD (?) multiplicator (abi nulla divisio ut tibi) in aream maximi trianguli, proditque statim id, quod tu per tangentem demum excerpere necesse habes, discurrens per tabulam tangentium. Reliquus labor circa angulum AHB est utrique communis.

Haec itaque de tua vicaria (verum nomen) hypothesi dicere volui. Tu procacitatem et hilaritatem meam in scribendo boni consule. Vides, me laudem illi tribuere veritatis circa effectum, tibi vero ingenii: et inprimis laetari super fortuna tuarum speculationum tibique gratulari. Nec, si veris illam coloribus depinxi, propterea premere illam te volo: quin potius, nisi jam impedis, partem ex illa faciam Commentariorum meorum, ut petiisti: idque in gratiam eorum, qui privati captus causa aut propter mechanicas effictiones Ptolemaicam formam amant. Fateor quippe, tuam hanc ordina-

9 '

tionem captus facilitate longo intervallo post se relinquere Ptelemaices acquantes et cos tamen nondum sufficientes observatis exprimendis, cum tua acquipolleat meae physicae adeoque observatis coelestibus. Si hace ego odoratus fuissem ante 9 menses, lubenter scripsissem de iis. At nunc accusa tne schemata erronea de meo silentio: ex ipsis enim visis et de texta judicavi, qui intricatissima manu perscribitur a te.


. Vale. 10. Nov. 1608."

Ultimae hae sunt ut diximus literae Kepleri ad Fabricium. Quae sequentur paneae Fabricii ad Keplerum haec exhibent hoc loco notanda.

Die 2/12. Oct. 1608. scripsit Fabricius, praemissis consuetis querelis ob Kepleri diuturnum silentium : non puto te male habiturum objectiones meas. Meam hypothesin non commendavi propter certitudinem majorem, sed quod intellectu esset 'faciliar. Facilitatem optatam per suppositam ellipsin dari non posse video; at forte in Commentariis ea solidius et inculen demonstrasti. Noli igitur amplius cunctari. Jubes me abjicere phantasias meas de moter Martis et calculare potius Ephemerides ad communem utilitatem. At tu vides et scis, quam difficile sit sine compendiis ex hypothesibus calculare. Solutionem triangularem anguli parallaxis orbis et latitudinis semper timui.

Videbis observationes huic consentire. Si adjunzeris libelio Mitto hypothesin Martis. tno, gratissimum erit. Tibi copia sit vel mutandi textum vel corrigendi vel meliori forma disponendi, prout videbitur, saltem ut ipsa hypothesis salva maneat, cum scio, veram esse et coelo exactissime respondere.

Eam ut diximus quintam formam (sextam eandem fere misit cum literis d. 12/22, Mart. 1609) hypotheseos suae in mundum descriptam, quasi ad prelnm paratam, inscripsit: Hypothesis Martis nova a D. Fabricio inventa; eamque concludit his verbis: Vale lector et feliciter ac utiliter laboriosis nostris inventis fruere.

Summa haec est. A Sol, K Terra; CL linea aphelii mobilis libratur utrinque a fixa aphelii linea BO ad angulum CAB, qui dimidine eccentricitati DA respondet. Quande of in aphelio vel apogaco est, lineae CL et BO ceincidunt; quando vero d' anomaliam veram 90° attigerit. habet maximam librationem, dimidiae eccentricitati respondentem ; in perihelio lineae iterum uniunter. Circellus RE ideo addendus fuit, quod observaiones ostendunt, semidiametrum eccentrici circa longitudines medias utrinque radio majorem esse ad 15' sinum 430 (436). In hujus circelli circumferentia d' semper in consequentia movetur ad motum duplicates anomalias medias, ita nt linea a perigaco circelli ad d' corpus producta semper addatur sinui anomaliae mediae.

Commensuratio : AD = 925200, RE = 21800 (21500). Apogaeum & anne 1600 in 29° 7' Ω. motus medius ad meridiem 1. Jan. 25° 27' 49" @ (Embdae). Semid. eccentrici of 15250000.

Ratio calculi instituendi : Locus apogaci a media longitudine auferatur, ut habeatur anomalia media, cujus sinus, ut et complementi sinus est

exscribendus ; illi addatur pars proportionalis circelli (ut sin. tot. ad 43000 sic anom. mediae sinus ad quaesitum). Habetur hoc modo rectangulum ex sinu anomaliae aucto et ejus complementi sinu constitutum, quod solvendum est. Nam ut sinus compl. anomaliae (cui tamen prius eccentricitas est addita vel subtracta) ad radium, sic sinus anomaliae auctus ad avgulum suum, qui cum angulo anomaliae mediae collatus dat priorem partem prosthaphaeresis.

Pro altera parte : ut totus radius ad 925200, sic anom. prior acquata ad alteran partem, quae semper priori prosthaphaeresi adjungenda est.

Pro distantia 🕥 et 👌 sic agendum : ut angulus anomaliae per primam prosthaphaeresin aequatae ad sinum auctum anom. mediae, sic sin. tot. ad distantiam. Ut semid. orbis of 10090000 ad 152500, sic dist. simplex () et of ad distantiam in proportione orbis (). Per dimidiam eccentr. () inquire quoque Solis distantiam, et sic cum his 2 lateribus et angulo inter acquatum locum δ et δ \odot intercepto inquire parallaxis angulum, et datar visus locus o, qui post per angulum inclinationis o juxta distantiam a nodo ad eclipticam reducendus est.

Fabricius literis datis d. 12/22. Martii 1609 respondit ad praemissas Kepleri, "mitissime" ferens ejus objurgationes. In annali, inquit, otio tuo saepe miratus sum sesquiannale tum silentium. Accusas h in coelo, d in solo. Res mira ! Arte hactenus debellasti Martem, nunc a Marte artem debellari et vinci pateris ? Recte facis, qui recollectis viribus et redintegratis copiis te vindicare studes, et bellum non solum-Marti sed toti coelo inferre et regnum avitam Hipparcho redimere niteris. Fac, virum te praestes et Herculis clava obvios quosque scopulos et scrupalos, cuneos et nodos disjicias et dispellas et aditum nobis ad sacratissimum Uranise palatium virtute tua perficias. In te animi totius Europae et omnium astronomorum ocali diriguntur, tu instar omnium es.

Vellem sane me aliquid in commune adferre posse, quod vero quam sit parum, et sentio et liberater agnosco. Videris mihi nescio quam invidi et minus liberalis animi notam innuere velle, quazi micas observationes tibi communicare nolim, quibus tamen te melius uti posse scribis. Fateor et conçedo ultimum, at primum egregie nego. Egone te in nonnullis aemulum men ferrem aut quidquam celarem, quem in omnibus ut pracceptorem veneror, ut Apollinem form in rebus dubiis consulo, cujus opera et consilio hactenus proficie ? Nihil est in meis observationibus, qued non tibi libentissime impertiam.

Quod meam hypothesin attinet, mirum quam me tua festivitate recreaveris et judicio teo confirmaveris. Candorem tuum amo et laudo, et ut tu innuis, ex tuis primum profeci et de transmutatione cogitavi, cum tua mihi intricata semper visa fuerit.

Jam proposita iterum hypothesi sua addit Fabricius : Si igitur eam, prout illam hic delineavi, invariatam tuis Commentariis in fine, veritatis tui calculi confirmandae gratia, addere vaheris, rem gratissimam feceris ; sin minus, tibi soli serva, donec ipse occasionem publicandi alignando invenero. —

Hanc occasionem Fabricius non invenit; intacta conservavit Keplerus haoc folia, quae post varios casus cum reliquis Kepleri manuscriptis tandem Petropolin migraverunt; unde ad nos pervenerunt liberalissime concessa ad hanc editionem.

Quam hypothesin quum Keplerus adjungere noluerit operi suo, eo tempore, quo has altimas accepit, jam typis excuso, mentionem tamen honorificam fecit amici sui "Uranici" Capite LV. Commentariorum.

. • • 、 ••• , • • . •

.

.

Digitized by Google

.

ASTRONOMIA NOVA

ΑΙΤΙΟΛΟΓΗΤΟΣ,

SEU

PHYSICA COELESTIS

tradita commentariis

DE MOTIBUS STELLAE MARTIS.

Ex observationibus G. V.

TYCHONIS BRAHE.

Jușsu et sumtibus

RUDOLPHI II.

ROMANORUM IMPERATORIS &c. &c.

Plurium annorum pertinaci studio elaborata Pragae

A Sae Cae Mus Mathematico

JOANNE KEPLERO.

Cum ejusdem Cae Mtis privilegio speciali.

Anno aerae Dionysianae CIO IO C IX.

P. Ramus Scholarum Mathematicarum lib. II. pag. 50.

Commentum igitar hypothesium absurdum est: sed tamen commentum in Eudoro, Aristotele, Callippo simplicius, qui veras hypotheses arbitrati sunt: imo tanquam Deos eixecreer orbium sunt venerati. At in posteris fabula est longe absurdissima, naturalium rerum veritatem per falsas causas demonstrare. Quapropter logica primum, deinde mathematica, arithmeticae et geometriae elementa ad amplissimae artia puritatem et dignitateum constituendam adjumenti plurimum conferent. Atque utinam Copernicus in istam Astrelogiaei sine hypothesibus constituendae cogitationem potins incubaisset. Longe snim facilius se fuisset, astrologiam astrorum suorum veritati respondentem describere, quam gigantei cujusdam laboris instar Terram movere, ut ad Terrae motum quietas stellas specularemur. Quin potius e tot nobilibus Germaniae scholis exoriare philosophus, idem et mathematicus aliquis, qui positam in medio sempiternae landis palmam assequare. Ac si quis caducae utilitatis fructus tantae virtutis praemio proponi possit, regiam Lutetiae professionem praemium conformatae absque hypothesibus astrologiae tib spondebo; sponsionem hanc equidem lubentissime vel nostrae professionis cessione praestabo.

Auctor Ramo.

Commodum, Rame, vadimonium hoc deseruisti, vita digressus et professione: quam si tu nunc retineres, mihi quidem illam ego jure meo vindicarem; quod hoc Opere, vel ipsa tua logica judice, pervincam. Tu modo subsidia rogans amplissimae scientiae a legica et mathematica, ne quaeso excluseris adjumenta physica, quibus illa carere nequaquam potest. Et ni fallor facilem te das: quippe qui conformatori tuo praeter mathemata etiam philosophiam circumjicis. Eadem igitur facilitate philosophiam ipse etiam andi, rem vulgo absurdissimam, non giganteo conata, sed optimis rationibus defendentem: quod cum agit, nihil novum agit, nihil insolens, sed officio fungitur ob quod inventa est.

Fabula est absurdissima, fateor, naturalia per falsas demonstrare causas: sed fabala haec non est in Copernico: quippe qui veras et ipse arbituatus est hypotheses suas, non minus quam illi tui veteres suas: neque tantum est arbitratus, sed et demonstrat veras; testem do hoc Opus.

Vin' tu vero scire fabalae hujus, cui tantopere irasceris, architectum ? Andreas Osiander annotatus est in meo exemplari, manu Hieronymi Schreiber Noribergensis. Hic igitur Andreas cum editioni Copernici pracesset, praefationem illam, quam tu dicis absurdissimam, ipse (quantum ex ejus literis ad Copernicum colligi potest) censuit prudentischmam, posuit in frontispicio libri, Copernico ipso aut jam mortuo aut certe ignaro. Non igitur $\mu u \partial oloyet$ Copernicus, sed serio $\pi a \rho a \delta o \delta o loyet$, hoc est $\rho t logo o \rho t$, quod tu in astronomo desiderabas.¹⁰)

D. RUDOLPHO II.

ROMANORUM IMPERATORI SEMPER AUGUSTO. GERMANIAE, HUNGARIAE, BOHEMIAE &c. REGI. ARCHIDUCI AUSTRIAE &c.

Augustissime Imperator.

Quod Sao Cao Miis Vao, totiusque adee Domus Austriacae serenissimo Nomini foelix faustumque sit, imperiis Miis Vao tandem aliquando publice spectandam exhibeo Captivum nobilissimum, jam pridem auspiciis Miis Vao bello difficili et laborioso a me acquisitum. Neque enim vereor, at captivi nomen aversetur, qui jam olim est solitus, depositis clypeo paulisper et armis sese ipsum vincendam vinciendumque praebere lubentem et ladentem, queties custodia, carcer aut vincula placuerunt.

Hujns vero spectaculi non major poterit esse celebritas, quam si panegyricum captivo praestantissimo scribam, publicaque voce pronunciem.

Etsi hunc in campum ingressuro splendor occurrit admirabilis, avertitque et perstringit oculos, ad tenue noctis lumen umbrasque scholasticas adsuefactos.

Itaque relinquo scripteribas historiarum explicandam hospitis nostri magnitudinem, re bellica comparatam.

Dicant illi sane, hunc esse, per quem omnes exercitus vincant, omnes belli duces triumphent, omnes Reges imperent; sine cujus ope neme unquam quenquam captivum cum, laude abduxerit. Hunc jam meo Marte captum spectando suos illi oculos exsatient.

Dicant Romanae magnitudinis admiratores, hunc esse satorem Regum Romuli et Remi, conservatorem urbis, protectorem Quiritium, statorem Imperii: quo propitio Romani militarem disciplinam invenerint, auxerint, perfecerint, orbemque Terrarum subjugaverint. Hunc igitur circumscriptum domnique Austriacae foelici omine nunc acquisitum gratulentur.

Ego me hinc ad alia recipio, quae sunt viribus meis accommodatiora. Neque tamen in ea professionis meae parte pedem figam, in qua mihi simultas intercedit cum commilitonibus.

Illi same gaudium aliud licet gaudeant: constrictum vinculis calculi, qui totice ipsorum manus et oculos effugiens irrita solitus est reddere vaticinia maximi momenti: quippe de bello, de victoria, de imperio, de dignitate militari, de magisterio, de lusu, de ipsa denique vita abscindenda vel proroganda. Illi M⁴¹ Vae gratulentur de domino geniturae in potestatem redacto, imo vero conciliato; quippe illis testibus Mars Scorpioni dominatur, qui cor ceeli habet; in Capricorno exaltatur, qui oritur; in Canore,

in quem Luna ingressa est, ludere solet astragalis lusum trigonicum; in Leone, quo Sol utitur hospitio, familiariter notus est; Ille denique et Arietis est dominus, cui subesse creditur Germania, planeque concurrens cum S^a C^a M^{te} V^a habet imperium.

Hanc igitur triumphi partem illi licet occupent, nullam ipsis tam festo die rixandi causam exhibebo: transeat haec licentia inter jocos militares. Ipse ad astronomiam vertar, curruque triumphali invectus, reliquam captivi nostri gloriam, mihi peculiariter notam, omnesque adeo belli gesti confectique rationes explicabo.

Neque enim sine honore nobis est habendus, quem aeternus mundi hujus Architectus communisque siderum hominumque Pater Jova in prima corporum aspectabilium locavit acie; ut perenni curriculo per regiones aethereas Creatoris sui militaret gloriae: hominumque mentes alto sopitas veterno criminosa ignaviae ignorantiaeque exprobratione suscitaret, excursionibus suis exerceret, inque coelum ad Conditoris sui landes investigandas irritando pertraheret.

Hic est ille potentissimus inventionum humanarum Domitor: qui omnibas astronomorum irrisis expeditionibus, elisis machinis, profigatis copiis hostilibus, secretum imperii sui cunctis retro seculis custoditum possederat secarus cursusque suos exercuerat liberrimus et incircumsoriptas: ut praecipuam querelam instituerit mystes ille naturae, Latinorum celeberrimus C. Plinius: Martis inobservabile sidus esse.

Fama est, Georgium Joachimum Rheticum, patrum memoria non incelebrem Copernici discipulum, et qui restaurationem astronomiae primum ausus concupiscere, mox non spernendis observationibus et inventionibus affectaverat, dum in motu Martis haeret mirabundus, neque se explicat, ad. Genii sui familiaris oraculum confugisse, seu ejus eruditionem (si diis placet) exploraturus, sive veritatis impotenti desiderio, atque hic exasperatam immitem patronum, importuni sciscitatoris alternis capillitio arrepti caput ad imminens laquear adflixisse, iterumque dimissi corpus in pavimentum proturbasse, addito responso: hunc esse motum Martis. Fama mahum, quo non aliud nocentius bonae famae; tam enim ficti pravique tenax est, quam nuncia veri. Non est tamen incredibile, Rheticam ipsum, non succedentibus, speculationibus, conturbato spiritu consurrexisse furibundum, caputque allisisse ad parietem. Quid mirum enim, si eadem acciderunt Rhetico, Martis provocatori, quae olim C. Octavio Augusto Caesari, cum dnce Quintilio Varo quinque legiones perdidisset, ab hoste Arminie, Martis nostri Germanici pullo, circumventas.

Atqui, ut in ceteris imperiis, sic hic quoque nulla re magis inaixa sustentabatur hostis nostri potentia, quam persuasione et trepidatione valgi hominum: quam contemnere semper ego viam ad victoriam esse putavi. Quippe cum essem in hoc naturae theatro mediocriter versatus: illud me usu magistro didicisse persuadebar, non multum distare, ut hominem ab homine, sic neque stellam a stella, hostem ab hoste: quare non facile recipiendam sermonem, qui de gentis ejusdem individuo uno temere aliquid insolitum sparsisset.

Imprimis vero laudanda hic est Tychonis Brahe, ducis in hac anilitia summi diligentia; qui Friderici II. et Christiani Daniae Regum, tandemque et Sae Cae Mus Vae anspiciis, pene continuis viginti annorum noctibus, amnés nobis hostis bajus consuetadines exploravit, omnem militime rationem observavit, empia consilia detexit librisque moriens perscripta reliquit.

Quibus ego libris instructus ut in hanc curam Braheo successi, primum metnere desii, quem jam mediocriter cognoveram: deinde astatis diligenter temporum articulis, quibus ille ad pristina loca ceu ad cubilia sua ventitare soleret, Braheanas eo machinas, subtilibus instructas dioptris, velut ad certum scopum direxi, omnemque locum indagine cinxi, curribus magnae matris Telluris in gyrum circumactis.

Non tamea sine sudore successit negotium: dum frequenter ibi desunt machinae, ubi potissimus earum usus erat, aut dum viis lutosis, magno temporis, magno sumtuum impendio, transvectantur ab imperitis aurigis, aut dum ejaculatus quarundam, mihi nondum exploratus, in diversa, quam putaveram, loca tendit. Saepe splendor Solis aut Lunae, saepe coelum nubilum directoris oculis imposuit, saepius objectus aëris vapidi globum elisum a recto tramite deflexit, nec raro parietes, obliquissime objecti, irritos ictus exceperunt quantumvis crebros. Accessit hostis in excursionibus industria, in insidiis vigilantia, nobis plerumque dormientibus; in repugnando denique pertinacia, qui expugnato aut prodito castello une sese recepit ad alind: nec eadem omnium castellorum ratio expugnandi, nec iter ab uno ad cetera expeditum, sed aut fluminibus interceptum, aut sentibus impeditum, ut plurimum vero incognitum: quae singula suis locis in hoc commentario perscripta sunt.

Interim in meis castris quod cladis, quod calamitatis genus non saeviit? Clarissimi Ducis jactara, seditio, pestis, morbi, domestica negotia bona malaque, utraque tempori extrahendo comparata: novus et improvisus et terribilis a tergo hostis, ut retuli in libro de Nova Stella; alio tempore Draco decumanus, longissima cauda, vomens ignes meaque castra infestans; militum perfugia et penuria; tyronum imperitia: et caput omnium, extrema commeatuum angustia.

Tandem hostis, ubi me persistere vidit in proposito, se vero nuspiam in regni sui circuita tutum aut securum, animum ad pacis consilia traduxit, missaque natura parente victoriae mihi confessionem obtulit; libertatemque pactus inter arbitraria vincula, brevi post arithmetica et geometria stipantibus, in mea castra magna cum alacritate transivit.

Non destitit tamen, ex quo deditione facta domi nostrae aequis amicitiae legibus conversatur, occultis illusionibus, quippe quietis insuetus, nobis ultro nescio quos belli metus incutere : si forte perterrefacti ridendi copiam ipsi faceremus. At ut nos animo forti vidit, nobiscum habitare serio consentit hostilitatisque deposita simulatione fidem suam nobis approbavit.

Unum hoc Mtem Vam rogat, ut quia magnas in regionibus aethereis clientelas habet (est quippe pater ipsi Jupiter, avus Saturnus, Venus soror eademque amica et jam olim praecipuum vinculorum lenimentum, Mercurius frater fidusque caduceator) eorumque ipse et ipsius illi desiderio tenentur propter morum similitudinem : velletque et illos secum inter homines conversari honorisque, quo afficitur ipse, fieri una participes : Mtas Va quamprimum illos sibi reddat, expeditionis hujus reliquiis, quae se jam dedito nihil habent porro periculi, strenue confectis. Quam ad rem Mti Vae operam non inutilem (quippe exercitatus in pugnacissimo, gnarusque locorum) nec minus quam antea fidelem promtus offero: hoc uniçe orans atque obsecrans (quando hanc vocem, perinde ut orationem reliquam, crebra cum militibus, centurio-

Epistola dedicatoria.

nibus ducibusque per hos novem annos in has aula conversatio mini suppeditavit) Ca Mtas Va aerarii praefectis imperet, ut de nervis belli cogitent, novamque mini pecuniam ad militem conscribendum suppeditent. Quae ego sic ero, ut quae et a Mto Va jam ante comprobata sciam, et ad Dei gloriam, Augustique Mts Vao Nominis immortalitatem pertinere putem: Cui pridem omnem meam operam devovi Eique me jam subjectissime commendo.

IV. Cal. Apr. anno aerae Dionysianae MDCIX.

Sae Cae Mtis Vae

Subjectissimus Mathematicus

Joannes Koppterne.

EPIGRAMMATA

IN HAEC COMMENTARIA DE MOTIBUS MARTIS.

URANIE AD KEPLERUM.

Desine Kepleride o, Martem contendere contra: Submittit nulli Mars, nisi se ipse sibí.

Frustra igitur vinclis illum submittere tentas: Qui liber saeclis exstitit imumeris.

Sic Musa. At contra ad Musam sic ille : Quid ergo ? Anne oblita tibi Palladis historia ?

Horrificum Pallas potuit prosternere saxo

Gradivum : verum si modo Homere canis : Quidni igitur quoque nunc, magna assistrice Minerva,

Sub juga quantumvis Mars truculentus eat? Adspice quem dedimus Rudolphino omine librum,

Gradivum dices nunc quoque dura pati.

ALIUD.

Retibus implicuit Martem Liparcius olim : Irat in amplexus cum, Cytherea, tuos.

Nunc iterum capitur vinclis Gradivus iisdem :

Nec Venus in culpa est: culpa Minerva tua est. Quippe Minerva dedit Tychoni hacc retia, Tycho

Keplerio: fic Martis cruribus inseruit.

Res mira : artifices magni Vulcanus et alter : Hunc tamen atque illum Keplerius superat.

Durarant pauco Vulcania tempore vincla.

At contra acternum hace Kepleriana manent. Saxirupius fecit Pragae an. 1609.

LIUD.

Coelos Keplerius Terrarum oppugnat alumnus: De scalis noli quaerere; Terra volat.

J. Seussius f. Dreedae.

PARAENETICUM

THYCHONIS BRAHE

Summi Astronomi, ad Astronomiae Cultores,

SUFFIXUM RESTITUTIONI STELLARUM FIXARUM, Progymnassmatum Tomo I. Pagina 295. 16)

Et jam strata via est, multis prius invia saeclis, Magno equidem et vigili tandem exantilata labore, Scandere inaccessi liceat qua culmina coeli, Et superas penetrare domos, habitacula Divum : Seu lubeat fixas, vario seu tramite motas Designare faces cursumque situmque probare Sidereum, summi ut constent miracula Jovae.

Ergo agite o juvenes, quibus est vigor acris et altus Ingenii geniique favor, quibus inclyta ab ortu Uranie Dium coeli inspiravit amorem. Et dedit aethereis Terram et Terrestria quaeque Posthabuisse bonis: qui non temeraria vulgi Judicia, aut tetricas voces curatis inertum; Obscuris talpas mittentes degere in antris, Perpetuo ut coecae maneant, velut esse cupiscunt: Huc spirate alacres; populo huc post terga relicto Tendite; nec mentem, quae pars est enthea coeli Hoc patrio private bono; studium atque laborem Huc ferte unanimes ; fesso ut succurrere Regi Alfonso liceat, pondus non viribus acquis Qui modo vicini tulerat successor Atlantis; Auxilium simul ut promtum Copernicus ingens Sentiat ; Herculeo ne, dum se inferre labori Aggreditur fidens, oneri succumbat iniquo : Sicque poli, Atlantis cassi Alcidaeque columnis, Ingentem, jam jam nutantes, ferre ruinam Cogantur Terramque simul statione moventes, *) Barbariae hospitium (crassa ignorantia coeli Quam pariet) cunctosque homines pecudesque ferasque Turbantes casu ancipiti coecisque tenebris, Antiquoque chao miscentes atria mundi. Hoc prohibete nefas pronoque occurrite damno, Et mecum excelsum validis conscendite Olympum Viribus, ut fissas mature occludere rimas, Et stabilire novis coeli laquearia transtris, Jamque prius liceat, quam machina tota fatiscat.

Ecquis adest igitur, putchram hine meruisse coronam Obryso, gemmis, ebore et rutilante pyropo Conspicuam firmamque magis saeclisque perennem Qui volet atque animis animum sociare supernis? Ecquis Terricolas inter, quos' continet orbis Innumeros dabitur, cui tam sublimia cordi? Ecquis et auctorem mundi, per condita vasto Tot miranda polo spectacla, agnoscere gestit? Sicne omnes pariter tanta ad quaesita siletis? Quid mussare juvat? Manus est adhibenda labori, Ut tandem abstrusi pateant mysteria coeli. Si quos ambitio, lucrum, ignorantia, luxus, Tam celsis retrahunt ausis et ad infima trudunt: Saltem aliis parcant nec commoda summa retardent.

Ipse Ego, si facili aspirent mihi numina vultu, Et superare alto dederint obstacula quaevis Constantique animo, velut hactenus, omnibus ultro Annitar nervis, magni penetralia coeli Pandere terrigenis tectosque aperire recessus.

Tu modo mirifici sapiens Fundator Olympi Annue et adfer opem, tua facta stupenda notanti.

^{*)} Subintellige Poli ruentes. Hie enim imperfectionem Astronomiae incusat, et ignorantiam ejus; non vero Hypotheses Copernici, Terram mobilem facientes.

Respondet auctor Operis.

O fulgens genere et celsis natalibus heros, Cui certa ante alios animi coelestis origo Et praestare dedit factis et tendere cantu Hortatuque novam morientibus addere vitam: Quid trepidum optatis et tanta incendia dudum Nutricantem animum flammis ventoque fatigas? Nam quamvis tanta orsa, meas superantia vires, Non alios poscunt, quam fert tua Musa, magistros, Ingeniumque animo minus ingenioque lacertos Nascendi mihi lege dedit natura: Sorortum Nona tamen Dium coeli inspiravit amorem.

Dirus amor quid non mortalia pectora cogit? llle mihi ingenium, validos dedit ille lacertos, Spe non aequa animans. Sed enim Juzonis iniquae Scindimur haud aequo studia in contraria vultu Tuque et Ego: Tibi virtutis dedit illa colendae Materiem; mihi dura negat: redit astus codem; Aethereis arcere locis furtoque Promethei Extimulánte, sacros custodire arctius ignes. Ergo opibus te larga gravat, fulgore metalli Perstringens oculos, ut sint ad lumina segnes Coelica, purpureisque optent se jungere pompis, Quas sequitur blandus popularis sibilus aurae; Infandumque minetur fors contemta dolorem.

Macte animo forti victor Divaeque hominumque Affectusque tui: qui quae rationis ocello Affectanda probas, ausu constante secutus, A patre transmissos potuisti spernere census. Desine ad hanc privam socios accersere laudem, Verbaque fluminibus inscribere: Non bene, virtus Gazaque conveniunt; distant immane polusque Terraque, et alterius levis est respectus in uno.

Meque adeo aspernata immensum invidit honorem Diva potens; brevibusque ingentia vota coarctans Limitibus, nihil indulsit, quod spernere possem Musis postpositum, aut astrorum opponere curae: Vicissentque odia atque ausis ingentibus obstent, Ingeniumque potens superas volitare per arces Invida humi premeret Rhamnusia: me nisi primo In bivio vitae, coelorum arcana canendi Praevenisset amor, tua per vestigia gressum.

Ergo animo lustrans tritos erronibus orbes, Immanesque minas et hiantibus intervallis Moenia nec positis mundi ruitura columnis; Dum causas nox atra premit securaque veri Pruteno indormit sapientum turba magistro: Aggredior fidens oneri succedere tanto, Et stabilire novis coeli laquearia transtris; Materiem Samius famosam, quinque figuras, Euclides normam, mentem dedit inclyta Pallas; Uranie ingeminans non uno interprete plausus Accinuit celebrem, successu laeta, triumphym. Miratus Brahace ausus dulcemque laborem, Concepto quamvis nolles decedere sensu, Multa super Terris dubitans, super aethere multa: Me tamen in numerum placuit transferre tuorum, Mi noctes aperire tuas inventaque longi . Temporis; et claram coeptis affulgere lucem.

Vixissesque utinam, nec tanto digna paratu Praemia, tam meritos rapuisset Parca triumphos: Non allos visu et subtilibus instrumentis Pandere sese orbes, magni penetralia coeli Expertus, quam quos firmant mea transtra, fuisses.

Nunc quando properum Divae rapuere magistrum; Festivosque dies ornataque gaudia turbat Subductus, quem debuerant hilarare, patronus: Quid faciam? nisi Te veneratus imagine mentis Artifici in vitam, o Heros manifeste, reducam. Astabis Magnus stellata in veste Sacerdos. Hic ubi coeruleo surgunt altaria templo, Auctori constructa Deo; sex ordine flexus Circumeunt, totidem rapida vertigine lychni: In medio focus aeternaeque incendia lucis.

Accedo supplex meaque haec molimina docto Scripta libro, rerum suavissima thura parenti Arboribus sudata tuis collectaque cura Te patiente mea, manibus tibi trado levatis: Eja adole purus; sequor en, magnoque vocatu Jungo preces castas: sapiena fundator Olympi Annuat almus opem, sua facta stupenda notanti.

Ejusdem Elegia scripta in Philothesio juxta mamm et Symbolum Brahei,

Suspiciendo despicio. 17)

Da Generose locum neu dedignere sequentem : Quioquid sum, tua sunt munera, quioquid ere.

Hactenus O curas hominum miratus inanes,

In Te uno satyram ludere cesso meam. Curarum requies tua sunt monumenta mearum:

Umbra fui sine te; te patre corpus ero.

Terra mihi aërios nectat licet astrica gyros; Terra eadem centri stet tibi fixa loco:

Antiquis equidem refero haec accepta Magistris: Nec de me, vivo displicuere tibi.

Non tamen invalidus rutilos Mavortis ad ignes Haeo, nisi per noctes, lumina sisto, tuas. *)

Non nisi suspiciens regeres Tu rite dioparam, Telluris cursus inde ego despicerom;

Metirerque citos gressus jugaque obvia Capro, Et quota pars centrum det tibi Phoebe viae :

Ut parili gressu Solem fugiatque petatque,

Gyretur raptu non tamen erro pari;

Sed fontem versus vires acquirat eundo,

Longius abscedens langueat inque vicem:

^{*)} Ac si operis hujus Cap. 51. in schemate ad literam K, stellam Martis, depictan esset oculus.

Unde globos septem septenae ex ordine mentes, Octavusque animus de patre Sole, vehunt:

Innumerabilibusque vacat natura volutis, Et percunt novies, de grege, quinque Dei.

Falle Tycho denis rationem, falle minutis:

Quae, nisi Tu, numeret nemo; ea cuncta ruent.

O curas hominum, o quantum est in rebus inane ! Quondam non alia si itur ad astra via.

Ejusdem epigramma de studiis Tychonis Brahei.

Fixarum Tycho descripsit Solisque meatus; Lunae curriculum junxit, et occubuit.

Luciferas Phaethon dolet ascendisse quadrigas; Nil nocuit sollers haec tibi cura Tycho: Aeternum Endymion Trivia obdormivit amata;

Aeternum Triviae te quoque sopit Amor.

Lectori S.

Pluribus te alloqui decreveram (Lector), nisi et occupationum politicurum moles, quibus hisce diebus plus solito distineor et praeproperus Kepleri nostri, hoc ipso momento Francofurtum ituri, discessus vix hanc quantulamcunque mihi scribendi reliquisset occasionem. Itaque tribus duntaxat verbis te monendum censui, ne te moveat Kepleri in aliquibus, potissimum vero physicis argumentationibus a Braheo dissentientis libertas, Tabularum Rudolphearum Operi nequicquam incommodans, et omnibus inde ab orbe condito Philosophis familiaris. Ceterum ex Opere ipso rescisces, ipsum in fundo Brahei, id est super ipsius restitutione fixarum et Solis aedificasse, materiamque omnem (observationes nimirum) Brahei opera fuisse congestam. Interim hoc insigni Kepleri Opere inter hos rebellionum et bellorum subude repullulantium tumultus, dum res literaria Reip. compatitur, tanquam Tabularum et post illas Observationum tardius hoc nomine in lucem prodeuntium Prodromo fruere; et alacriores in posterum operis tantopere desiderati progressus, et tempora foeliciora a Deo Optimo Max. nobiscum precare.

> Franciscus Gansneb Tengnagel in Campp. Sao Cao Mtis Consiliarius. ¹⁸)

Kepleri Opera III.

Digitized by Google

Introductio in hoc opus.

Durissima est hodie conditio scribendi libros mathematicos, praecipue astronomicos. Nisi enim servaveris genuinam subtilitatem propositionum, instructionum, demonstrationum, conclusionum, liber non erit mathematicus; sin autem servaveris, lectio efficitur morosissima, praesertim in Latina lingua, quae caret articulis et illa gratia, quam habet Graeca, cum per signa literaria loquitur. Adeoque hodie perquam pauci sunt lectores idonei: ceteri in commune respuunt. Quotusquisque mathematicorum est, qui tolerat haborem perlegendi Apollonii Pergaei Conica? Est tamen illa materia ex eo rerum genere, quod longe facilius exprimitur figuris et lineis quam astronomica.

Ipse ego, qui mathematicus audio, hoc meum opus relegens fatisco viribus cerebri, dum ex figuris ad mentem revoco sensus demonstrationum, quos a mente in figuras et textum ipse ego primitus induxeram. Dum igitur medeor obscuritati materiae insertis circumlocutionibus, jam mihi contrario vitio videor in re mathematica loquax.

Et habet ipsa etiam prolixitas phrasium suam obscuritatem non minorem quam concisa brevitas. Haec mentis oculos effugit, illa distrahit: eget haec luce, illa splendoris copia laborat: hic non movetur visus, illic plane excoecatur.

Ex eo consilium cepi, quadam luculenta introductione in hoc opus juvare captum lectoris, quoad ejus fieri possit.

Illam vero geminam esse volui. Primo namque Tabulam exhibeo Synopticam capitum libri omnium, cujus hanc utilitatem futuram existimo, ut quia materia est remota a notitia multorum terminique in ea varii, variae molitiones, magna invicem similitudine, magna cognatione vel generis vel partium : termini igitur omnes, molitiones omnes juxta invicem positae unoque conspectu comprehensae, collatione mutua sese invicem detegant. Verbi causa : Disputo de causis naturalibus, quae ignoratae coegerunt veteres, ut circulum aequantem seu punctum aequatorium ponerent. Id autem facio duobus locis, partibus scilicet tertia et quarta. Lector versans in hac lectione parte tertia putare posset me jam agere negotium inaequalitatis primae, quae inest singulorum planetarum motibus seorsim. Atqui haec conditio valet demum parte quarta. Tertia vero parte, ut synopsis indicat, de illo aequante disputo, qui sub nomine inaequalitatis secundae communiter omnium planetarum motus variat et primario in ipsa Solis theoria regnat. Huic igitur rei discernendae serviet synoptica tabula.

Verum enim vero ne synopsis quidem omnes ex acquo juvat. Erunt enim, quibus haec tabula (quam ego pro filo exhibeo ad remeandum ex operis labyrintho) nodo Gordio intricatior videbitur. In eorum igitur gratiam multa hic in fronte collocari debent acervatim, quae partim per opus dispersa non ita facile in transcursu animadvertentur. Detegam autem in gratiam potissimum eorum, qui p h ysicam profitentur quique mihi, imo vero Copernico adeoque vetustati ultimae irascuntur ob fundamenta scientiarum concussa motu Telluris, detegam, inquam, fdeliter instituta praecipuorum capitum, quae ad hoc negotium faciunt, et sistam ob oculos omnia demonstrationum principia, quibus conclusiones meae tantopere ipsis inimicae innituntur.

Hoc enim ubi viderint fideliter praestitum, optionem postea liberam habebunt, vel perlegendi et percipiendi demonstrationes ipsas labore maximo, vel mihi professione mathematico super adhibita sincera et geometrica methodo credendi: ipsi vero, quod suarum erit partium, ad haec sic ob oculos collocata demonstrationum principia conversi, illa excutient, certi, nisi iis eversis non ruituram demonstrationem superaedificatam. Idem faciam etiam tunc, ubi more physicorum necessariis admiscuero probabilia, exque iis sic mixtis probabilem exstruxero conclusionem. Nam quia hoc in apere physicam coelestem astronomiae permiscui, nemo mirari debet, cosjecturas etiam nonnullas adhiberi. Haec enim physicae, haec medicinae, haec omnium scientiarum natura est, quae praeter oculorum certissimas indicationes alia etiam adhibent axiomata.

Sic igitur habeat lector, duas esse astronomorum sectas: alteram coryphaeo Ptolemaeo et ut plurimum allegatione veterum insignem; alteram recentioribus tributam, licet sit antiquissima: quarum illa errantium stellarum singulas separatim tractat causasque motuum singulis in suis ipsarum orbibus assignat, haeo planetas inter se comparat, quaeque in eorum motibus deprehenduntur communia, ex eadem communi causa deducit. Atque haec secta rursum subdividitur. Causam enim, quae planetas efficit videri stationarios retrogradosque, Copernicus cum antiquissimo Aristarcho transcribit translationi Telluris domicilii nostri, quibus et ego subscribo: Tycho vero Braheus causam illam transcribit Soli, in cujus vioinia ait connexos esse ceu nodo quodam (non sane corporeo, sed quantitativo tamen) omnium quinque planetarum eccentricos circulos; atque huno veluti nodum una cum Šolari corpore circa Terram immobilem circumire.

Tribus hisce opinionibus de mundo singulis quidem adhaerent alia nonnulla singularia, quibus et ipsis hae sectae distinguuntur: sed illa singulatim particularia facillima ratione sic emendari et mutari possunt, ut ipsae tres capitales opiniones (quoad astronomiam seu coelestes apparentias) in effectu ad unguem acquipollennt et paria faciant.

Meum jam institutum in hoc opere potissimum quidem est, astronomicam doctrinam (praccipue de Martis motu) in omnibus tribus formis emendare; sic quidem, ut quae ex tabulis computamus, ea coelestibus apparentiis respondeant, quod hactesus non satis certo fieri potuit. Quippe stella Martis anno Christi 1608. mense Angusto paulo minus 4° superat illum locum, quem prodit calculus Prutenicus. Anno 1593. mense Augusto et Septembri sunt gradus paulo minus 5 in hoc errore: qui jam in novo meo calculo penitus est sublatus.

Interim vero dum hoc praesto et feliciter assequor, excurro etiam in metaphysicam Aristotelis, seu potius physicam coelestem et causas motuum naturales inquiro: ex qua consideratione tandem non obscura nascuntur argumenta, quibus sola Copernici de mundo opinio (pauculis mutatis) vera, reliquae duae falsae convincuntur dto.

Omnia vero omnibus ita connexa, implexa et permixta sunt, ut tentatis mulțis viis partim a veteribus tritis, partim ad eorum imitationem et exemplum structis, quibus ad emendatam calculi astronomici rationem pervenirem, nulla alia successerit, quam quae ipsissimis causis motuum physicis, quas hoc opere stabilio, insistit.

Ad physicas vero causas motuum indagandas primus gradus fuit, ut demonstrarem, concursum illum eccentricorum non alio loco (prope Solem) contingere, quam in ipsissimo centro corporis Solaris, contra quam Copernicus et Braheus crediderant.

Haec mea correctio si in Ptolemaicam opinionem introducatur, jubebit Ptolomaeum investigare motum non centri epicycli, circa quod epicyclus incedit acqualiter, sed puncti alicujus, quod in proportione diametri tantum abest a centro illo,

10 *

in quem Luna ingressa est, ludere solet astragalis lusum trigonicum; in Leone, quo Sol utitur hospitio, familiariter notus est; Ille denique et Arietis est dominus, cui subesse creditur Germania, planeque concurrens cum Sa Ca Mee Va habet imperium.

Hanc igitur triumphi partem illi licet occupent, nullam ipsis tam festo die rixandi causam exhibebo: transeat haec licentia inter jocos militares. Ipse ad astronomiam vertar, curruque triumphali invectus, reliquam captivi nostri gloriam, mihi peculiariter notam, omnesque adeo belli gesti confectique rationes explicabo.

Neque enim sine honore nobis est habendus, quem aeternus mundi hujus Architectus communisque siderum hominumque Pater Jova in prima corporum aspectabilium locavit acie; ut perenni curriculo per regiones aethereas Creatoris sui militaret gloriae: hominumque mentes alto sopitas veterno criminosa ignaviae ignorantiaeque exprobratione suscitaret, excursionibus suis exerceret, inque coelum ad Conditoris sui laudes investigandas irritando pertraheret.

Hic est ille potentissimus inventionum humanarum Domitor: qui omnibas astronomorum irrisis expeditionibus, elisis machinis, profigatis copiis hostilibus, secretum imperii sui cunctis retro seculis custoditum possederat securus cursusque suos exercuerat liberrimus et incircumscriptus: ut praecipuam querelam instituerit mystes ille naturae, Latinorum celeberrimus C. Plinius: Martis inobservabile sidus esse.

Fama est, Georgium Joachimum Rheticum, patrum memoria non incelebrem Copernici discipulum, et qui restaurationem astronomiae primum ausus concupiscere, mox non spernendis observationibus et inventionibus affectavarat, dum in motu Martis haeret mirabundus, neque se explicat, ad Genii sui familiaris oraculum confugisse, seu ejus eruditionem (si diis placet) exploraturus, sive veritatis impotenti desiderio, atque hic exasperatam immitem patronum, importuni sciscitatoris alternis capillitio arrepti coput ad imminens laquear adflixisse, iterumque dimissi corpus in pavimentum proturbasse, addito responso: hunc esse motum Martis. Fama malum, ono non alind nocentius bonae famae; tam enim ficti pravique tenax est, quam nuncia veri. Non est tamen incredibile, Rheticum ipsum, non succedentibus, speculationibus, conturbato spiritu consurrexisse furibundum, caputque allisisse ad parietem. Quid mirum enim, si eadem acciderant Rhetico, Martis provocatori, quae olim C. Octavio Augusto Caesari, cum duce Quintilio Varo quinque legiones perdidisset, ab hoste Arminio, Martis nostri Germanici pullo, circumventas.

Atqui, ut in ceteris imperiis, sic hic quoque nulla re magis innixa sustentabatur hostis nostri potentia, quam persuasione et trepidatione valgi hominum: quam contemnare semper ego viam ad victoriam esse putavi. Quippe cum essem in hoc naturae theatro mediocriter versatas: illud me usu magistro didicisse persuadebar, non multum distare, ut hominem ab hemine, sic neque stellam a stella, hostem ab hoste: quare non facile recipiendum sermonem, qui de gentis ejusdem individuo uno temere aliquid insolitum sparsisset.

Imprimis vero laudanda hic est Tychonis Brahe, ducis in hac militia summi diligentia; qui Friderici II. et Christiani Daniae Regum, tandemque et Sao Cao Mus Vao auspiciis, pene continuis viginti annorum noctibus, emnes nobis hostis hajus consuetadines exploravit, omnem militime

rationem observavit, emnia consilia detexit librisque moriens perscripta reliquit.

Qnibus ego libris instructus ut in hanc curam Braheo successi, primum metnere desii, quem jam mediocriter cognoveram: deinde astatis diligenter temporum articulis, quibus ille ad pristina loca ceu ad cabilia sua ventitare soleret, Braheanas eo machinas, subtilibus instructus dioptris, velut ad certum scopum direxi, omnemque locum indagine cinxi, curribus magnae matris Telluris in gyrum circumactis.

Non tamen sine sudore successit negotium: dum frequenter ibi desunt machinae, ubi potissimus earum usus erat, aut dum viis lutosis, magno temporis, magno sumtuum impendio, transvectantur ab imperitis aurigis, aut dum ejaculatus quarundam, mihi nondum exploratus, in diversa, quam putaveram, loca tendit. Saepe splendor Solis aut Lunae, saepe coelum nubilum directoris oculis imposuit, saepius objectus aëris vapidi globum elisum a recto tramite deflexit, nec raro parietes, obliquissime objecti, irritos ictus exceperunt quantumvis crebros. Accessit hostis in excursionibus iadustria, in insidiis vigilantia, nobis plerumque dormientibus; in repugnando denique pertinacia, qui expugnato aut prodito castello une sese recepit ad alind: nec eadem omnium castellorum ratio expugnandi, nec iter ab uno ad cetera expeditum, sed aut fluminibus interceptum, aut sentibus impeditum, ut plurimum vero incognitum: quae singula suis locis in hoc commentario perscripta sunt.

Interim in meis castris quod cladis, quod calamitatis genus non saeviit? Clarissimi Ducis jactura, seditio, pestis, morbi, domestica negotia bona malaque, utraque tempori extrahendo comparata: novus et improvisus et terribilis a tergo hostis, ut retuli in libro de Nova Stella; alio tempore Draco decumanus, longissima cauda, vomens ignes meaque castra infestans; militum perfugia et penuria; tyronum imperitia: et caput omnium, extrema commeatuum angustia.

Tandem hostis, ubi me persistere vidit in proposito, se vero nuspiam in regni sui circuitu tutum aut securum, animum ad pacis consilia traduxit, missaque natura parente victoriae mihi confessionem obtulit; libertatemque pactus inter arbitraria vincula, brevi post arithmetica et geometria stipantibus, in mea castra magna cum alacritate transivit.

Non destitit tamen, ex quo deditione facta domi nostrae aequis amicitiae legibus conversatur, occultis illusionibus, quippe quietis insuetus, nobis ultro nescio quos belli metus incutere : si forte perterrefacti ridendi copiam ipsi faceremus. At ut nos animo forti vidit, nobiscum habitare serio consentit hostilitatisque deposita simulatione fidem suam nobis approbavit.

Unum hoc Mtem Vam rogat, ut quia magnas in regionibus aethereis clientelas habet (est quippe pater ipsi Jupiter, avus Saturnus, Venus soror eademque amica et jam olim praecipuum vinculorum lenimentum, Mercurine frater fidusque caduceator) eorumque ipse et ipsius illi desiderio tenentur propter morum similitudinem : velletque et illos secum inter homines conversari honorisque, quo afficitur ipse, fieri una participes: Mtas Va quamprimum illos sibi reddat, expeditionis hujus reliquiis, quae se jam dedito nihil habent porro periculi, strenue confectis. Quam ad rem Mt Vae operam non inutilem (quippe exercitatus in pugnacissimo, gnarusque locorum) nec minus quam antea fidelem promtus offero: hoc unice orans atque obsecrans (quando hanc vocem, perinde ut orationem reliquam, crebra cum militibus, centurio-

Epistola dedicatoria.

nibus ducibusque per hos novem anos in hao aula conversatio mfhi suppeditavit) Ca M^{tas} Va aerarii praefectis imperet, ut de nervis belli cogitent, novamque mihi pecuniam ad militem conscribendum suppeditent. Quae ego sic oro, ut quae et a M^{to} Va jam aute comprobata sciam, et ad Dei gloriam, Augustique M^{tis} Vac Nominis immortalitatem pertinere putem: Cui pridem omnem meam operam devovi Eique me jam subjectissime commendo.

IV. Cal. Apr. anno aerae Dionysianae MDCIX.

Sae Cae Mtis Vae

Subjectissimus Mathematicus

Joannes Kopplerus.

EPIGRAMMATA

IN HAEC COMMENTARIA DE MOTIBUS MARTIS.

URANIE AD KEPLERUM.

Desine Kepleride o, Martem contendere contra : Submittit nulli Mars, nisi se ipse sibí.

Frustra igitur vinclis illum submittere tentas: Qui liber saeclis exstitit innumeris.

Sic Musa. At contra ad Musam sic ille: Quid ergo? Anne oblita tibi Palladis historia?

Horrificum Pallas potuit prosternere saxo

Gradivum: verum si modo Homere canis:

Quidni igitur quoque nunc, magna assistrice Minerva, Sub juga qu'antumvis Mars truculentus eat?

Adspice quem dedimus Rudolphino omine librum, Gradivum dices nunc quoque dura pati.

ALIUD.

Retibus implicuit Martem Lipareius olim: Iret in amplexus cum, Cytherea, tuos.

Nunc iterum capitur vinclis Gradivus iisdem:

Nec Venus in culpa est: culpa Minerva tua est. Quippe Minerva dedit Tychoni haes retia , Tycho

Keplerio: hic Martis cruribus inseruit.

Bes mira : artifices magni Vulcanus et alter : Hunc tamen atque illum Keplerius superat.

Durarant panco Vulcania tempore vincla.

At contra acternum hace Kepleriana manent. Saxirupius fecit Pragae an. 1609.

ALIUD.

Coelos Keplerius Terrarum oppugnat alumnus: De scalis noli quaerere; Terra volat.

J. Soussius f. Dreedae.

PARAENETICUM

THYCHONIS BRAHE

Summi Astronomi, ad Astronomiae Cultores,

SUFFIXUM RESTITUTIONI STELLARUM FIXARUM,

Progymnamatum Tomo I. Pagina 295. 16)

Et jam strata via est, multis prius invia saeclis, Magno equidem et vigili tandem exantlata labore, Scandere inaccessi liceat qua culmina coeli, Et superas penetrare domos, habitacula Divum: Seu lubeat fixas, vario seu tramite motas Designare faces cursumque situmque probare Sidereum, summi ut constent miracula Jovae.

Ergo agite o juvenes, quibus est vigor acris et altus Ingenii geniique favor, quibus inclyta ab ortu Uranie Dium coeli inspiravit amorem, Et dedit aethereis Terram et Terrestria quaeque Posthabuisse bonis: qui non temeraria vulgi Judicia, aut tetricas voces curatis inertum; Obscuris talpas mittentes degere in antris, Perpetuo ut coecae maneant, velut esse cupiscunt: Huc spirate alacres; populo huc post terga relicto Tendite; nec mentem, quae pars est enthea coeli, Hoc patrio private bono; studium atque laborem Huc ferte unanimes; fesso ut succurrere Regi Alfonso liceat, pondus non viribus aequis Qui modo vicini tulerat successor Atlantis; Auxilium simul ut promtum Copernicus ingens Sentiat; Herculeo ne, dum se inferre labori Aggreditur fidens, oneri succumbat iniquo: Sicque poli, Atlantis cassi Alcidaeque columnis, Ingentem, jam jam nutantes, ferre ruinam Cogantur Terramque simul statione moventes, *) Barbariae hospitium (crassa ignorantia coeli Quam pariet) cunctosque homines pecudesque ferasque Turbantes casu ancipiti coecisque tenebris, Antiquoque chao miscentes atria mundi, Hoc prohibete nefas pronoque occurrite damno, Et mecum excelsum validis conscendite Olympum Viribus, ut fissas mature occludere rimas, Et stabilire novis coeli laquearia transtris, Jamque prius liceat, quam machina tota fatiscat.

Ecquis adest igitur, pulchram hino meruisse coronam Obryso, gemmis, ebore et rutilante pyropo Conspicuam firmamque magis saeclisque perennem Qui volet atque animis animum sociare supernis ? Ecquis Terricolas inter, quos' continet orbis Innumeros dabitur, cui tam sublimia cordi ? Ecquis et auctorem mundi, per condita vasto Tot miranda polo spectacla, agnoscere gestit ? Sicne omnes pariter tanta ad quaesita siletis ? Quid mussare juvat ? Manus est adhibenda labori, Ut tandem abstrusi pateant mysteria coeli. Si quos ambitio, lucrum, ignorantia, luxus, Tam celsis retrahunt ausis et ad infima trudunt : Saltem aliis parcant nec commoda summa retardent.

Ipse Ego, si facili aspirent mihi numina vultu, Et superare alto dederint obstacula quaevis Constantique animo, velut hactenus, omnibus ultro Annitar nervis, magni penetralia coeli Pandere terrigenis tectosque aperire recessus.

Tu modo mirifici sapiens Fundator Olympi Annue et adfer opem, tua facta stupenda notanti.

^{*)} Subintellige Poli ruentes. Hic enim imperfectionem Astronomiae incusat, et ignorantiam ejus; non vero Hypotheses Copernici, Terram mobilem facientes.

Respondet auctor Operis.

O fulgens genere et celsis natalibus heros, Cui certa ante alios animi coelestis origo Et praestare dedit factis et tendere cantu Hortatuque novam morientibus addere vitam: Quid trepidum optatis et tanta incendia dudum Nutricantem animum flammis ventoque fatigas? Nam quamvis tanta orsa, meas superantia vires, Non alios poscunt, quam fert tua Musa, magistros, Ingeniumque animo minus ingenioque lacertos Nascendi mihi lege dedit natura: Sororum Nona tamen Dium coeli inspiravit amorem.

Dirus amor quid non mortalia pectora cogit? Ille mihi ingenium, validos dedit ille lacertos, Spe non aequa animans. Sed enim Junonis iniquae Scindimur haud aequo studia in contraria vultu Tuque et Ego: Tibi virtutis dedit illa colendae Materiem; mihi dura negat: redit astus eodem; Aethereis arcere locis furtoque Promethei Extimulante, saeros custodire arctius ignes. Ergo opibus te larga gravat, fulgore metalli Perstringens oculos, ut sint ad lumina segnes Coelica, purpureisque optent se jungere pompis, Quas sequitur blandus popularis sibilus aurae; Infandumque minetur fors contemta dolorem.

Macte animo forti victor Divaeque hominumque Affectasque tui: qui quae rationis ocello Affectanda probas, ausu constante secutus, A patre transmissos potuisti spernere census. Desine ad hanc privam socios accersere laudem, Verbaque fluminibus inscribere: Non bene, virtus Gazaque conveniunt; distant immane polusque Terraque, et alterius levis est respectus in uno.

Meque adeo aspernata immensum invidit honorem Diva potens; brevibusque ingentia vota coarctans Limitibus, nihil indulsit, quod spernere possem Musis postpositum, aut astrorum opponere curae: Vicissentque odia atque ausis ingentibus obstent, Ingeniumque potens superas volitare per arces Invida humi premeret Rhamnusia: me nisi primo In bivio vitae, coelorum arcana canendi Praevenisset amor, tua per vestigia gressum.

Ergo animo lustrans tritos erronibus orbes, Immanesque minas et hiantibus intervallis Moenia nec positis mundi ruitura columnis; Dum causas nox atra premit securaque veri Pruteno indormit sapientum turba magistro: Aggredior fidens oneri succedere tanto, Et stabilire novis coeli laquearia transtris; Materiem Samius famosam, quinque figuras, Euclides normam, mentem dedit inclyta Pallas; Uranie ingeminans non uno interprete plausus Accinuit celebrem, successu laeta, triumphum. Miratus Brahace ausus dulcemque laborem, Concepto quamvis nolles decedere sensu, Multa super Terris dubitans, super aethere multa: Me tamen in numerum placuit transferre tuorum, Mi noctes aperire tuas inventaque longi Temporis; et claram coeptis affulgere lucem.

Vixissesque utinam, nec tanto digna paratu Praemia, tam meritos rapuisset Parca triumphos: Non allos visu et subtilibus instrumentis Pandere sese orbes, magni penetralia coeli Expertus, quam quos firmant mea transtra, fuisses.

Nunc quando properum Divae rapuere magistrum; Festivosque dies ornataque gaudia turbat Subductus, quem debuerant hilarare, patronus: Quid faciam? nisi Te veneratus imagine mentis Artifici in vitam, o Heros manifeste, reducam. Astabis Magnus stellata in veste Sacerdos. Hic ubi coeruleo surgunt altaria templo, Auctori constructa Deo; sex ordine flexus Circumeunt, totidem rapida vertigine lychni: In medio focus acternacque incendia lucis.

Accedo supplex meaque haec molimina docto Scripta libro, rerum anavissima thura parenti Arboribus sudata tuis collectaque cura Te patiente mea, manibus tibi trado levatis: Eja adole purus; sequor en, magnoque vocatu Jungo preces castas: sapiena fundator Olympi Annuat almus opem, sua facta stupenda notánti.

Ejusdem Elegia scripta in Philothesio juxta manum et Symbolum Brahei,

Suspiciendo despicio. 17)

Da Generose locum neu dedignere sequentem : Quicquid sum, tua sunt munera, quicquid ere. Hactenus O curas hominum miratus inanes,

In Te uno satyram ludere cesso meam.

Curarum requies tua sunt monumenta mearum: Umbra fui sine te; te patre corpus ero.

Terra mihi aërios nectat licet astrica gyros;

Terra eadem centri stet tibi fixa loco: Antiquis equidem refero haec accepta Magistris:

Nec de me, vivo displicuere tibi.

Non tamen invalidus rutilos Mavortis ad ignes Haec, nisi per noctes, lumina sisto, tuas.*)

Non nisi suspiciens regeres Tu rite dioptram, Telluris cursus inde ego despicerem;

Metirerque citos gressus jugaque obvia Capro, Et quota pars centrum det tibi Phoebe viae :

Ut parili gressu Solem fugiatque petatque,

Gyretur raptu non tamen erro pari;

Sed fontem versus vires acquirat eundo,

Longius abscedens langueat inque vicem:

*) Ac si operis hujus Cap. 51. in schemase ad literam K, stellam Martis, depictus esset oculus.

Unde globos septem septenae ex ordine mentes, Octavusque animus de patre Sole, vehunt: Innumerabilibusque vacat natura volutis.

Et percunt novies, de grege, quinque Dei.

Falle Tycho denis rationem, falle minutis :

Quae, nisi Tu, numeret nemo; ea cuncta ruent.

O curas hominum, o quantum est in rebus inane ! Quondam non alia si itur ad astra via.

Ejusdem epigramma de studiis Tychonis Brahei.

Fixarum Tycho descripsit Solisque meatus; Lunae curriculum junxit, et occubuit.

Luciferaa Phaethon dolet ascendisse quadrigas; Nil nocuit sollers haec tibi cura Tycho: Aeternum Endymion Trivia obdormivit amata;

Aeternum Triviae te quoque sopit Amor.

Lectori S.

Pluribus te alloqui decreveram (Lector), nisi et occupationum politicarum moles, quibus hisce diebus plus solito distineor et praeproperus Kepleri nostri, hoc ipso momento Francofurtum ituri, discessus vix hanc quantulamcunque mihi scribendi reliquisset occasionem. Itaque tribus duntaxat verbis te monendum censui, ne te moveat Kepleri in aliquibus, potissimum vero physicis argumentationibus a Braheo dissentientis libertas, Tabularum Rudolphearum Operi nequicquam incommodans, et omnibus inde ab orbe condito Philosophis familiaris. Ceterum ex Opere ipso rescisces, ipsum in fundo Brahei, id est super ipsius restitutione fixarum et Solis aedificasse, materiamque omnem (observationes nimirum) Brahei opera fuisse congestam. Interim hoc insigni Kepleri Opere inter hos rebellionum et bellorum subinde repullulantium tumultus, dum res literaria Reip. compatitur, tanquam Tabularum et post illas Observationum tardius hoc nomine in lucem prodeuntium Prodromo fruere; et alacriores in posterum operis tantopere desiderati progressus, et tempora foeliciora a Deo Optimo Max. nobiscum precare.

> Franciscus Gansneb Tengnagel in Campp. See Cae Müs Consiliarius. ¹⁸)

Kepleri Opera III.

Digitized by Google

Introductio in hoc opus.

Durissima est hodie conditio scribendi libros mathematicos, praecipue astronomicos. Nisi enim servaveris genuinam subtilitatem propositionum, instructionum, demonstrationum, conclusionum, liber non erit mathematicus; sin autem servaveris, lectio efficitur morosissima, praesertim in Latina lingua, quae caret articulis et illa gratia, quam habet Graeca, cum per signa literaria loquitur. Adeoque hodie perquam pauci sunt lectores idonei: ceteri in commune respuunt. Quotusquisque mathematicorum est, qui tolerat haborem perlegendi Apollonii Pergaei Conica? Est tamen illa materia ex eo rerum genere, quod longe facilius exprimitur figuris et lineis quam astronomica.

Ipse ego, qui mathematicus audio, hoc meum opus relegens fatisco viribus cerebri, dum ex figuris ad mentem revoco sensus demonstrationum, quos a mente in figuras et textum ipse ego primitus induxeram. Dum igitur medeor obscuritati materiae insertis circumlocutionibus, jam mihi contrario vitio videor in re mathematica loquax.

Et habet ipsa etiam prolixitas phrasium suam obscuritatem non minorem quam concisa brevitas. Haec mentis oculos effugit, illa distrahit: eget haec luce, illa splendoris copia laborat: hic non movetur visus, illic plane exceecatur.

Ex eo consilium cepi, quadam luculenta introductione in hoc opus juvare captum lectoris, quoad ejus fieri possit.

Illam vero geminam esse volui. Primo namque Tabulam exhibeo Synopticam capitum libri omnium, cujus hanc utilitatem futuram existimo, ut quia materia est remota a notitia multorum terminique in ea varii, variae molifiones, magna invicem similitudine, magna cognatione vel generis vel partium : termini igitur omnes, molitiones omnes juxta invicem positae unoque conspectu comprehensae, collatione mutua sese invicem detegant. Verbi causa : Disputo de causis naturalibus, quae ignoratae coegerunt veteres, ut circulum aequantem seu punctum aequatorium ponerent. Id autem facio duobus locis, partibus scilicet tertia et quarta. Lector versans in hac lectione parte tertia putare posset me jam agere negotium inaequalitatis primae, quae inest singulorum planetarum motibus seorsim. Atqui haec conditio valet demum parte quarta. Tertia vero parte, ut synopsis indicat, de illo aequante disputo, qui sub nomine inaequalitatis secundae communiter omnium planetarum motus variat et primario in ipsa Solis theoria regnat. Huic igitur rei discernendae serviet synoptica tabula.

Verum enim vero ne synopsis quidem omnes ex aequo juvat. Erunt enim, quibus haec tabula (quam ego pro filo exhibeo ad remeandum ex operis labyrintho) nodo Gordio intricatior videbitur. In eorum igitur gratiam multa hic in fronte collocari debent acervatim, quae partim per opus dispersa non ita facile in transcursu animadvertentur. Detegam autem in gratiam potissimum eorum, qui p hysicam profitentur quique mihi, imo vero Copernico adeoque vetustati ultimae

Introductio.

irascuntur ob fundamenta scientiarum concussa mota Telluris, detegam, inquam, fideliter instituta praecipuorum capitum, quae ad hoc negotium faciunt, et sistam ob oculos omnia demonstrationum principia, quibus conclusiones meae tantopere ipais inimicae insituntur.

Hoc enim ubi viderint fideliter praestitum, optionem postea liberam habebunt, vel perlegendi et percipiendi demonstrationes ipsas labore maximo, vel mihi professione mathematico super adhibita sincera et geometrica methodo credendi: ipsi vero, quod suarum erit partium, ad haec sic ob oculos collocata demonstrationum principia conversi, illa excutient, certi, nisi iis eversis non ruituram demonstrationem superaedificatam. Idem faciam etiam tunc, ubi more physicorum necessariis admiscuero probabilia, exque iis sic mixtis probabilem exstruxero conclusionem. Nam quia hoc in apere physicam coelestem astronomiae permiscui, nemo mirari debet, conjecturas etiam nonnullas adhiberi. Haec enim physicae, haec medicinae, haec omnium scientiarum natura est, quae praeter oculorum certissimas indicationes alia etiam adhibent axiomata.

Sic igitur habeat lector, duas esse astronomorum sectas: alteram coryphaeo Ptolemaeo et ut plurimum allegatione veterum insignem; altoram recentioribus tributam, licet sit antiquissima: quarum illa errantium stellarum singulas separatim tractat causasque motuum singulis in suis ipsarum orbibus assignat, haec planetas inter se comparat, quaeque in eorum motibus deprehenduntur communia, ex eadem communi causa deducit. Atque haec secta rursum subdividitur. Causam enim, quae planetas efficit videri stationarios retrogradosque, Copernicus cum antiquissimo Aristarcho transcribit translationi Telluris domicilii nostri, quibus et ego subscribo: Tycho vero Braheus causam illam transcribit Soli, in cujus vicinia ait connexos esse ceu nodo quodam (non sane corporeo, sed quantitativo tamen) omnium quinque planetarum eccentricos circulos; atque hunc veluti nodum una cum Šolari corpore circa Terram immobilem circumire.

Tribus hisce opinionibus de mundo singulis quidem adhaerent alia noanulla singularia, quibus et ipsis hae sectae distinguuntur: sed illa singulatim particularia facillima ratione sic emendari et mutari possunt, ut ipsae tres capitales opiniones (quoad astronomiam seu coelestes apparentias) in effectu ad unguem acquipolleant et paria faciant.

Meum jam institutum in hoc opere potissimum quidem est, astronomicam doctrinam (praecipue de Martis motu) in omnibus tribus formis emendare; sic quidem, ut quae ex tabulis computamus, ea coelestibus apparentiis respondeant, quod hactenus non satis certo fieri potuit. Quippe stella Martis anno Christi 1608. mense Angusto paulo minus 4° superat illum locum, quem prodit calculus Prutenicus. Anno 1593. mense Augusto et Septembri sunt gradus paulo minus 5 in hoc errore: qui jam in novo meo calculo penitus est sublatus.

Interim vero dum hoc praesto et feliciter assequor, excurro etiam in metaphysicam Aristotelis, seu potius physicam coelestem et causas motuum naturales inquiro: ex qua consideratione tandem non obscura nascuntur argumenta, quibus sola Copernici de mundo opinio (pauculis mutatis) vera, reliquae duae falsae convincentur &c.

Omnia vero omnibus ita connexa, implexa et permixta sunt, ut tentatis mulțis viis partim a veteribus tritis, partim ad corum imitationem et exemplum structis, quibus ad emendatam calculi astronomici rationem pervenirem, nulla alia successerit, quam quae ipsissimis causis motuum physicis, quas hoc opere stabilio, insistit.

Ad physicas vero cansas motuum indagandas primus gradus fuit, ut demonstrarem, concursum illum eccentricorum non alio loco (prope Solem) contingere, quam in ipsissimo centro corporis Solaris, contra quam Copernicus et Braheus crediderant.

Haec mea correctio si in Ptolemaicam opinionem introducatur, jubebit Ptolemacum investigare motum non centri epicycli, circa quod epicyclus incedit acqualiter, sed puncti alicujus, quod in proportione diametri tantum abest a centro illo,

147

10 *

quantum Ptolemaeo centrum orbis Solaris abest a Terra, et in linea quidem eadem aut parallelis.

Objici vero mihi potuit a Braheanis, me temerarium esse novatorem: se enim, cum veterum receptae opinioni insisterent et concursum eccentricorum non in Sole, sed proxime Solem statuerent, tamen calculum inde exstruxisse, qui coelo respondeat. Et in trajectione numerorum Braheanorum in formam Ptolemaicam dicere mihi potuit Ptolemaeus, sibi, dum observata teneat exprimatque, reputari non alium eccentricum quam illum, qui describatur a centro epicyeli, circa quod epicyclus incedit aequaliter. Itaque debere me etiam atque etiam videre quid agam: ne novo usus ratione id non praestem, quod ab illis jam sit praestitum in ratione veteri.

Huic igitur objectioni ut occurreretur, demonstratum est in prim.a operis parte, per hanc novam rationem eadem plane fieri seu praestari posse, quae per illorum veterum rationem sunt praestita.

Secunda vero operis parte rem ipsam sum aggressus, et non minus, imo multo rectius expressi per meam rationem loca Martis in apparenti Solis oppositione, quam illi expresserant per veterem rationem loca Martis in media Solis oppositione.

Interim tota parte secunda (quantum ad geometricas demonstrationes ex observationibus) in suspenso reliqui, uter rectius faciat, Illi an Ego; quando quidem observationes nonnullas (quippe regulam nostris machinationibus praefixam) utrique assequebamur, physicis vero causis consentaneam esse meam rationem, dissentaneam illorum veterem, partim ostendi parte prima, praecipue capite VI.

At demum parte quarta operis Capite LII. per alias quasdam observationes non minus infallibiles, quam priores erant, quasque illorum vetus ratio nequibat assequi, mea assequebatur pulcherrime, demonstravi solidissime, Martis eccentricum sic situm esse, ut ipsum Solaris corporis centrum in lineam apsidum ejus incidat, non vero aliquod punctum prope; itaque eccentricos omnes in ipso Sole concurrere.

Ut vero hoc non tantum quoad longitudinem obtineat, sed etiam quoad latitudinem: ideo parte quinta demonstravi eandem rem etiam ex observatis latitudinibus Capite LXVII.

Non potuerunt ista maturius in opere demonstrari, quia ingreditur in demonstrationes has astronomicas cognitio exacta causarum inaequalitatis secundae in motu planetarum: in qua similiter detegendum prius erat parte tertia novum aliquid, antecessoribus incognitum &c.

Etenim demonstravi parte tertia: sive vetus jam dicta ratio valeat, quae medio Solis motu, sive mea nova, quae apparenti utitur; utrinque tamen secundae inacqualitati, quae communiter omnes planetas attinet, permixtum esse aliquid de inacqualitatis primae causis. Itaque Ptolemaeo demonstravi, epicyelos suos non habere illa puncta pro centris, circa quae motus eorum sunt aequabiles. Sio Copernico demonstravi, circulum, in quo Tellus circa Solem movetur, non habere id punctum pro centro, circa quod ejus motus regularis est et aequabilis. Sic Tychon i Braheo demonstravi, circulum, in quo circumit concursus seu nodus eccentricorum supradictus, non habere id punctum pro centro, circa quod ejus motus regularis est et aequabilis. Nam si concedam Braheo, ut differat concursus eccentricorum a centro Solis, necesse esse ut dicat, circuitum concursus illius, qui quantitate et tempore plane aequat circuitum Solis, eccentricum esse et vergere in Capricorum, cum Solis circuitus eccentricus vergat in Cancrum; idem vero accidere epicyolis Ptolemaei;

Sin autem concursum seu nodum eccentricorum conferam in ipsum contrum corporis Solaris, tunc circuitum hunc utriusque et nodi dicti et Solis communem eccentricum quidem esse a Terra et in Cancrum vergere, sed dimidio solum eccentricitatis ejus, quam obtinet punctum, circa quod Solis motus regularis et aequabilis est;

Et in Copernico Terrae eccentricum vergere quidem in Capricornum, sed dimidio saltem ejus eccentricitatis, qua in eundem Capricornum distet punctum, circa quod aequabilis est motus Terrae;

Introductio.

Sic in Ptolemaeo in illis diametris epicyclorum, quae a Capricorno in Cancrum extenduntur, tria esse puncta aequalibus intervallis extrema bina a mediis singulis distantia, a se mutuo vero intervallis tantis, in proportione ad diametros, quanta est Solis eccentricitas tota, collatione facta ad sui circuitus diametrum: ex his tribus punctis, quae sunt loco media, illa esse epicyclorum suorum centra, quae vero hinc versus Cancrum sint, esse puncta, circa quae motus epicyclorum sint aequabiles; denique quae hinc versus Capricornum sint, illa esse, quorum eccentricos (ab iis descriptos) indagamus, si pro medio Solis motu apparentem sequimur, quasi illis in punctis epicycli ad eccentricum affixi sint, ut ita in cajusque planetae epicyclo sit absolute tota Theoria Solis cum omnibus ejus motuum et orbium proprietatibus:

Hisce sic demonstratis infallibili methodo, jam et prior gradus ad causas physicas confirmatus est et novus ad eas, gradus exstructus, in Copernici et Brahei opinione clarissime, in Ptolemaica obscurius et probabiliter saltem.

Nam sive Terra moveatur sive Sol, demonstratum certe est, id corpus quod movetur moveri inaequabili ratione; tarde scilicet, cum longius abest a quiescente: velociter, cum ad quiescens proxime accessit.

Jam statim igitur apparet discrimen opinionum trium in physica: per conjecturas quidem, sed nihil cedentes certitudine conjecturis medicorum de usu partium ast quibuscunque aliis physicis.

Primus quidem Ptolemaeu's exploditur. Quis enim credat, totidem esse theorias Solis (ad unguem similes inter se, imo vero et acquales) quot planetas? cum videat, Braheo ad eadem munia sufficere unicam theoriam Solis: axioma quippe in physica receptissimum est, naturam paucissimis uti quam possibile est.

Copernicum vero Braheo*) potiorem esse in physica coelesti, multis probatur.

Primum Braheus theorias illas Solis quinque e planetarum theoriis sustulit quidem et ad centra eccentricorum deduxit, occultavit, in unam conflavit: rem ipsam vero, quae per illas theorias efficiebatur, reliquit in mundo. Planeta enim quilibet praeter eum motum, qui est ei proprius, Braheo non minus quam Ptolemaeo movetur etiamnum re vera motu Solis, miscens utrosque in unum, ex qua mixtura spirae efficiuntur; quod inde fit, quia orbes nullos esse solidos demonstravit Braheus solidissime: Copernicus vero planetas quinque motu hoc extraneo penitus exuit, causa deceptionis ex visus conditionibus educta. Adhuc igitur apud Braheum frustra multiplicantur motus, ut prius apud Ptolemaeum.

Secundo, si orbes nulli sunt, valde dura fiet conditio intelligentiarum et animarum motricum; dum ad tam multa respicere jubentur, ut planetam duobus permixtis motibus invehant. Ad minimum enim simul et semel cogentur respicere ad utriusque motus principia, centra, periodos. At si Terra movetur, pleraque effici pesse demonstro facultatibus non ^eanimalibus sed corporeis, magneticis nimirum. Sed haec communiora sunt. Sequuntur alia, quae proprie nascuntur ex demonstrationibus, quibus jam insistimus.

Si enim Tellus movetur, demonstratum est, cam leges celeritatis et tarditatis sume accipere ex modulo accessus sui ad Solem et recessus ab eodem. Atqui et reliquis planetis idem evenit, ut ex hoc accessu a Sole incitentur vel inhibeantur. Demonstratio harum rerum est geometrica hactenus.

Ex hac certissima demonstratione jam per conjecturam physicam colligitur, fontem motus planetarum quinque in ipso Sole esse. Valde igitur versimile est, ibi esse fontem motus Telluris, ubi est fons motus reliquorum quinque planetarum: scilicet itidem in Sole. Terram igitur moveri versimile est, quippe apparente versimili causa ejus motus.

E contrario, Solem consistere loco suo in mundi centro, cum per alia tum

7 Cujus honestissimam et gratissimam fieri mentionem et recordationem aequissimum est ; cum totum hoc aedificium super ejus fundo exstruam, materiam ab ipso omnem mutuatus.

Epistola dedicatoria.

nibus ducibusque per hos novem annos in hao aula conversatio mfhi suppeditavit) Ca Mtas Va aerarii praefectis imperet, ut de nervis belli cogitent, novamque mihi pecuniam ad militem conscribendum suppeditent. Quae ego sic oro, ut quae et a Mte Va jam ante comprobata sciam, et ad Dei gloriam, Aagustique Mtis Vac Nominis immortalitatem pertinere putem: Cui pridem omnem meam operam devovi Eique me jam subjectissime commendo.

IV. Cal. Apr. anno aerae Dionysianae MDCIX.

Sae Cae Mtis Vae

Subjectissimus Mathematicus

Joannes Keppierus.

EPIGRAMMATA

IN HAEC COMMENTARIA DE MOTIBUS MARTIS.

URANIE AD KEPLERUM.

Desine Kepleride o, Martem contendere contra : Submittit nulli Mars, nisi se ipse sibí.

Frustra igitur vinclis illum submittere tentas: Qui liber saeclis exstitit imumeris.

Sic Musa. At contra ad Musam sic ille: Quid ergo? Anne oblita tibi Palladis historia?

Horrificum Pallas potuit prosternere saxo Gradivum: verum si modo Homere canis:

Quidni igitur quoque nunc, magna assistrice Minerva, Sub juga quantumvis Mars truculentus eat?

Adspice quem dedimus Rudolphino omine librum, Gradivum dices nunc quoque dura pati.

ALIUD.

Retibus implicuit Martem Lipareius olim : Iret in amplexus cum, Cytherea, tuos.

Nunc iterum capitur vinclis Gradivus iisdem: Nec Venus in culpa est: culpa Minerva tua est.

Quippe Minerva dedit Tychoni hace retia . Tycho

Keplerio : hic Martis cruribus inseruit.

Res mira: artifices magni Vulcanus et alter: Hunc tamen atque illum Keplerius superat.

Durarant panco Vulcania tempore vincla.

At contra acternum hace Kepleriana manent. Saxirupius fecit Pragae an. 1609.

LIUD.

Coelos Keplerius Terrarum oppugnat alumnus: De scalis noli quaerere ; Terra volat.

J. Seussius f. Dreedae.

PARAENETICUM

THYCHONIS BRAHE

Summi Astronomi, ad Astronomiae Cultores,

SUFFIXUM RESTITUTIONI STELLARUM FIXARUM, Progymnamnatum Tomo I. Pagina 295. 16)

Et jam strata via est, multis prius invia saeclis, Magno equidem et vigili tandem exantlata labore, Scandere inaccessi liceat qua culmina coeli, Et superas penetrare domos, habitacula Divum: Seu lubeat fixas, vario seu tramite motas Designare faces cursumque situmque probare Sidereum, summi ut constent miracula Jovae.

Ergo agite o juvenes, quibus est vigor acris et altas Ingenii geniique favor, quibus inclyta ab ortu Uranie Dium coeli inspiravit amorem, Et dedit aethereis Terram et Terrestria quaeque Posthabuisse bonis: qui non temeraria vulgi Judicia, aut tetricas voces curatis inertum; Obscuris talpas mittentes degere in antris, Perpetuo ut coecae maneant, velut esse cupiscunt: Huc spirate alacres; populo huc post terga relicto Tendite; nec mentem, quae pars est enthea coel Hoc patrio private bono; studium atque laborem Huc ferte unanimes ; fesso ut succurrere Regi Alfonso liceat, pondus non viribus aequis Qui modo vicini tulerat successor Atlantis; Auxilium simul ut promtum Copernicus ingens Sentiat ; Herculeo ne, dum se inferre labori Aggreditur fidens, oneri succumbat iniquo: Sicque poli, Atlantis cassi Alcidaeque columnis, Ingentem, jam jam nutantes, ferre ruinam Cogantur Terramque simul statione moventes, *) Barbariae hospitium (crassa ignorantia coeli Quam pariet) cunctosque homines pecudesque ferasque Turbantes casu ancipiti coecisque tenebris, Antiquoque chao miscentes atria mundi. Hoc prohibete nefas pronoque occurrite damno, Et mecum excelsum validis conscendite Olympum Viribus, ut fissas mature occludere rimas, Et stabilire novis coeli laquearia transtris, Jamque prius liceat, quam machina tota fatiscat.

Ecquis adest igitur, putchram hino meruisse coronam Obryso, gemmis, ebore et rutilante pyropo Conspicuam firmanque magis saeclisque perennem Qui volet atque animis animum sociare supernis? Ecquis Terricolas inter, quos' continet orbis Innumeros dabitur, cui tam sublimia cordi? Ecquis et auctorem mundi, per condita vasto Tot miranda polo spectaela, agnoscere gestit? Sicne omnes pariter tanta ad quaesita siletis? Quid mussare juvat? Manus est adhibenda labori, Ut tandem abstrusi pateant mysteria coeli. Si quos ambitio, lucrum, ignorantia, luxus, Tam celsis retrahunt ausis et ad infima trudunt: Saltem aliis parcant nec commoda summa retardent.

Ipse Ego, si facili aspirent mihi numina vultu, Et superare alto dederint obstacula quaevis Constantique animo, velut hactenus, omnibus ultro Annitar nervis, magni penetralia coeli Pandere terrigenis tectosque aperire recessus.

Tu modo mirifici sapiens Fundator Olympi Annue et adfer opem, tua facta stupenda notanti.

Digitized by Google

^{*)} Subintellige Poli ruentes. Hic enim imperfectionem Astronomiae incusat, et ignorantiam ejus; non vero Hypotheses Copernici, Terram mebilem facientes.

Respondet auctor Operis.

O fulgens genere et celsis natalibus heros, Cui certa ante alios animi coelestis origo Et praestare dedit factis et tendere cantu Hortatuque novam morientibus addere vitam: Quid trepidum optatis et tanta incendia dudum Nutricantem animum flammis ventoque fatigas? Nam quamvis tanta orsa, meas superantia vires, Non alios posount, quam fert tua Musa, magistros, Ingeniumque animo minus ingenioque lacertos Nascendi mihi lege dedit natura: Sororum Nona tamen Dium coeli inspiravit amorem.

Dirus amor quid non mortalia pectora cogit? Ille mihi ingenium, validos dedit ille lacertos, Spe non aequa animans. Sed enim Junonis iniquae Scindimur haud aequo studia in contraria vultu Tuque et Ego: Tibi virtutis dedit illa colendae Materiem; mihi dura negat: redit astus eodem; Aethereis arcere locis furtoque Promethei Extimulante, sacros custodire arctius ignes. Ergo opibus te larga gravat, fulgore metalli Perstringens oculos, ut sint ad lumina segnes Coelica, purpureisque optent se jungere pompis, Quas sequitur blandus popularis sibilus aurae; Infandumque minetur fors contemta dolorem.

Macte animo forti victor Divaeque hominumque Affectasque tui: qui quae rationis ocello Affectanda probas, ausu constante secutus, A patre transmissos potuisti spernere census. Desine ad hanc privam socios accersere laudem, Verbaque fluminibus inscribere: Non bene, virtus Gazaque conveniunt; distant immane polusque Terraque, et alterius levis est respectus in uno.

Meque adeo aspernata immensum invidit honorem Diva potens; brevibusque ingentia vota coarctans Limitibus, nihil indulsit, quod spernere possem Musis postpositum, aut astrorum opponere curae: Vicissentque odia atque ausis ingentibus obstent, Ingeniumque potens superas volitare per arces Invida humi premeret Rhamnusia: me nisi primo In bivio vitae, coelorum arcana canendi Praevenisset amor, tua per vestigia gressum.

Ergo animo lustrans tritos erronibus orbes, Immanesque minas et hiantibus intervallis Moenia nec positis mundi ruitura columnis; Dum causas nox atra premit securaque veri Pruteno indormit sapientum turba magistro: Aggredior fidens oneri succedere tanto, Et stabilire novis coeli laquearia transtris; Materiem Samius famosam, quinque figuras, Euclides normam, mentem dedit inclyta Pallas; Uranie ingeminans non uno interprete plausus Accinuit celebrem, successu laeta, triumphym. Miratus Brahace ausus dulcemque laborem, Concepto quamvis nolles decedere sensu, Multa super Terris dubitans, super aethere multa: Me tamen in numerum placuit transferre tuorum, Mi noctes aperire tuas inventaque longi Temporis; et claram coeptis affulgere lucem.

Vixissesque utinam, nec tanto digna paratu Praemia, tam meritos rapuisset Parca triumphos: Non allos visu et subtilibus instrumentis Pandere sese orbes, magni penetralia coeli Expertus, quam quos firmant mea transtra, fuisses.

Nunc quando properum Divae rapuere magistrum; Festivosque dies ornataque gaudia turbat Subductus, quem debuerant hilarare, patronus: Quid faciam? nisi Te veneratus imagiae mentis Artifici in vitam, o Heros manifeste, reducam. Astabis Magnus stellata in veste Sacerdos. Hic ubi coeruleo surgunt altaria templo, Auctori constructa Deo; sex ordine flexus Circumeunt, totidem rapida vertigine lychni: In medio focus aeternaeque incendia lucis.

Accedo supplex meaque hace molimina docto Scripta libro, rerum suavissima thura parenti Arboribus sudata tuis collectaque cura Te patiente mea, manibus tibi trado levatis: Eja adole purus; sequor en, magnoque vocatu Jungo preces castas: sapiena fundator Olympi Annuat almus opem, sua facta stupenda notánti.

Ejusdem Elegia scripta in Philothesio juxta manum et Symbolum Brahei,

Suspiciendo despicio. 17)

Da Generose locum neu dedignere sequentem : Quicquid sum, tua sunt munera, quicquid ere. Hactenus O curas hominum miratus inanes,

In Te uno satyram ludere cesso meam.

Curarum requies tua sunt monumenta mearum: Umbra fui sine te; te patre corpus ero.

Terra mihi aërios nectat licet astrica gyros;

Terra eadem centri stet tibi fixa loco: Antiquis equidem refero haec accepta Magistris: Nec de me, vivo displicuere tibi.

Non tamen invalidus rutilos Mavortis ad ignes Haec, nisi per noctes, lumina sisto, tuas.*)

Non nisi suspiciens regeres Tu rite dioptram, Telluris cursus inde ego despicerem;

Mettirerque citos gressus jugaque obvia Capro, Et quota pars centrum det tibi Phoebe viae :

Ut parili gressu Solem fugiatque petatque,

Gyretur raptu non tamen erro pari;

Sed fontem versus vires acquirat eundo,

Longius abscedens langueat inque vicem:

*) Ac si operis hujus Cap. 51. in schemate ad literam K, stellam Martis, depictes easet oculus.

Digitized by Google

Unde globos septem septense ex ordine mentes, Octavusque animus de patre Sole, vehunt:

Innumerabilibusque vacat natura volutis,

Et percunt novies, de grege, quinque Dei. Falle Tycho denis rationem, falle minutis:

Quae, nisi Tu, numeret nemo; ea cuncta ruent.

O curas hominum, o quantum est in rebus inane ! Quondam non alia si itur ad astra via.

Ejusdem epigramma de studiis Tychonis Brahei.

Fixarum Tycho descripsit Solisque meatus; Lunae curriculum junxit, et occubuit. Luciferas Phaethon dolet ascendisse quadrigas; Nil nocuit sollers haec tibi cura Tycho: Aeternum Endymion Trivia obdormivit amata; Aeternum Triviae te quoque sopit Amor.

Lectori S.

Pluribus te alloqui decreveram (Lector), nisi et occupationum politicarum moles, quibus hisce diebus plus solito distineor et praeproperus Kepleri nostri, hoc ipso momento Francofurtum ituri, discessus vix hanc quantulamcunque mihi scribendi reliquisset occasionem. Itaque tribus duntaxat verbis te monendum censui, ne te moveat Kepleri in aliquibus, potissimum vero physicis argumentationibus a Braheo dissentientis libertas, Tabularum Rudolphearum Operi nequicquam incommodans, et omnibus inde ab orbe condito Philosophis familiaris. Ceterum ex Opere ipso rescisces, ipsum in fundo Brahei, id est super ipsins restitutione fixarum et Solis aedificasse, materiamque omnem (observationes nimirum) Brahei opera fuisse congestam. Interim hoc insigni Kepleri Opere inter hos rebellionum et bellorum subinde repullulantium tumultus, dum res literaria Reip. compatitur, tanquam Tabularum et post illas Observationum tardius hoc nomine in lucem prodeuntium Prodromo fruere; et alacriores in posterum operis tantopere desiderati progressus, et tempora foeliciora a Deo Optimo Max. nobiscum precare.

> Franciscus Ganeneb Tengnagel in Campp. Sao Cao Mtis Consiliarius. ¹⁸)

Kepleri Opera III.

Digitized by Google

10

Introductio in hoc opus.

Durissima est hodie conditio scribendi libros mathematicos, praecipue astronomicos. Nisi enim servaveris genuinam subtilitatem propositionum, instructionum, demonstrationum, conclusionum, liber non erit mathematicus; sin autem servaveris, lectio efficitur morosissima, praesertim in Latina lingua, quae caret articulis et illa gratia, quam habet Graeca, cum per signa literaria loquitur. Adeoque hodie perquam pauci sunt lectores idonei: ceteri in commune respuunt. Quotusquisque mathematicorum est, qui tolerat haborem perlegendi Apollonii Pergaei Conica? Est tamen illa materia ex eo rerum genere, quod longe facilius exprimitur figuris et lineis quam astronomica.

Ipse ego, qui mathematicus audio, hoc meum opus relegens fatisco viribus cerebri, dum ex figuris ad mentem revoco sensus demonstrationum, quos a mente in figuras et textum ipse ego primitus induxeram. Dum igitur medeor obscuritati materiae insertis circumlocutionibus, jam mihi contrario vitio videor in re mathematica loquax.

Et habet ipsa etiam prolixitas phrasium suam obscuritatem non minorem quam concisa brevitas. Haec mentis oculos effugit, illa distrahit: eget haec luce, illa splendoris copia laborat: hic non movetur visus, illic plane exceecatur.

Ex eo consilium cepi, quadam luculenta introductione in hoc opus juvare captum lectoris, quoad ejus fieri possit.

Illam vero geminam esse volui. Primo namque Tabulam exhibeo Synopticam capitum libri omnium, cujus banc utilitatem futuram existimo, ut quia materia est remota a notitia multorum terminique in ea varii, variae molitiones, magna invicem similitudine, magna cognatione vel generis vel partium : termini igitur omnes, molitiones omnes juxta invicem positae unoque conspectu comprehensme, collatione mutua sese invicem detegant. Verbi causa : Disputo de causis naturalibus, quae ignoratae coegerunt veteres, ut circulum aequantem seu punctum aequatorium ponerent. Id autem facio duobus locis, partibus scilicet tertia et quarta. Lector versans in hac lectione parte tertia putare posset me jam agere negotium inaequalitatis primae, quae inest singulorum planetarum motibus seorsim. Atqui haec conditio valet demum parte quarta. Tertia vero parte, ut synopsis indicat, de illo aequante disputo, qui sub nomine inaequalitatis secundae communiter omnium planetarum motus variat et primario in ipsa Solis theoria regnat. Huic igitur rei discernendae serviet synoptica tabula.

Verum enim vero ne synopsis quidem omnes ex aequo juvat. Erunt enim, quibus haec tabula (quam ego pro filo exhibeo ad remeandum ex operis labyrintho) nodo Gordio intricatior videbitur. In eorum igitur gratiam multa hic in fronte collocari debent acervatim, quae partim per opus dispersa non ita facile in transcursu animadvertentur. Detegam autem in gratiam potissimum eorum, qui physicam profitentur quique mihi, imo vero Copernico adeoque vetustati ultimae irascuntar ob fundamenta scientiarum concussa motu Telluris, detegam, inquam, fideliter instituta praecipuorum capitum, quae ad hoc negotium faciunt, et sistam ob oculos omnia demonstrationum principia, quibus conclusiones meae tantopere ipsis inimicae instituntur.

Hoc enim ubi viderint fideliter praestitum, optionem postea liberam habebunt, vel perlegendi et percipiendi demonstrationes ipsas labore maximo, vel mihi professione mathematico super adhibita sincera et geometrica methodo credendi: ipsi vero, quod suarum erit partium, ad haec sic ob oculos collocata demonstrationum principia conversi, illa excutient, certi, nisi iis eversis non ruituram demonstrationem superaedificatam. Idem faciam etiam tunc, ubi more physicorum necessariis admiscuero probabilia, exque iis sic mixtis probabilem exstruxero conclusionem. Nam quia hoc in epere physicam coelestem astronomiae permiscui, nemo mirari debet, conjecturas etiam nonnullas adhiberi. Haec enim physicae, haec medicinae, haec omnium scientiarum natura est, quae praeter oculorum certissimas indicationes alia etiam adhibent axiomata.

Sic igitur habeat lector, duas esse astronomorum sectas: alteram coryphaeo Ptolemaeo et ut plurimum allegatione veterum insignem; alteram recentioribus tributam, licet sit antiquissima: quarum illa errantium stellarum singulas separatim tractat causasque motuum singulis in suis ipsarum orbibus assignat, haeo planetas inter se comparat, quaeque in eorum motibus deprehenduntur communia, ex eadem communi causa deducit. Atque haec secta rursum subdividitur. Causam enim, quae planetas efficit videri stationarios retrogradosque, Copernicus cum antiquissimo Aristarcho transcribit translationi Telluris domicilii nostri, quibus et ego subscribo: Tycho vero Braheus causam illam transcribit Soli, in cujus vicinia ait connexos esse ceu nodo quodam (non sane corporeo, sed quantitativo tamen) omnium quinque planetarum eccentricos circulos; atque huno veluti nodum una cum Šolari corpore circa Terram immobilem circumire.

Tribus hisce opinionibus de mundo singulis quidem adhaerent alia nonnulla singularia, quibus et ipsis hae sectae distinguuntur: sed illa singulatim particularia facillima ratione sic emendari et mutari possunt, ut ipsae tres capitales opiniones (quoad astronomiam seu coelestes apparentias) in effectu ad unguem acquipolleant et paria faciant.

Meum jam institutum in hoc opere potissimum quidem est, astronomicam doctrinam (praecipue de Martis motu) in omnibus tribus formis emendare; sic quidem, ut quae ex tabulis computamus, ea coelestibus apparentiis respondeant, quod hactenus non satis certo fieri potuit. Quippe stella Martis anno Christi 1608. mense Angusto paulo minus 4° superat illum locum, quem prodit calculus Prutenicus. Anno 1593. mense Augusto et Septembri sunt gradus paulo minus 5 in hoc errore: qui jam in novo meo calculo penitus est sublatus.

Interim vero dum hoc praesto et feliciter assequor, excurro etiam in metaphysicam Aristotelis, seu potius physicam coelestem et causas motuum naturales inquiro: ex qua consideratione tandem non obscura nascuntur argumenta, quibus sela Copernici de mundo opinio (pauculis mutatis) vera, reliquae duae falsae convincuntur de.

Omnia vero omnibus ita connexa, implexa et permixta sunt, ut tentatis mulțis viis partim a veteribus tritis, partim ad eorum imitationem et exemplum structis, quibus ad emendatam calculi astronomici rationem pervenirem, nulla alia successerit, quam quae ipsissimis causis motuum physicis, quas hoc opere stabilio, insistit.

Ad physicas vero causas motuum indagandas primus gradus fuit, ut demonstrarem, concursum illum eccentricorum non alio loco (prope Solem) contingere, quam in ipsissimo centro corporis Solaris, contra quam Copernicus et Braheus crediderant.

Haec mea correctio si in Ptolemaicam opinionem introducatur, jubebit Ptolemaeum investigare motum non centri epicycli, circa quod epicyclus incedit acqualiter, sed puncti alicujus, quod in proportione diametri tantum abest a centro illo, quantum Ptolemaeo contrum orbis Solaris abest a Terra, et in linea quidem eadem aut parallelis.

Objici vero mihi potuit a Braheanis, me temerarium esse novatorem: se enim, cum veterum receptae opinioni insisterent et concursum eccentricorum non in Sole, sed proxime Solem statuerent, tamen calculum inde exstruxisse, qui coelo respondeat. Et in trajectione numerorum Braheanorum in formam Ptolemaicam dicere mihi potuit Ptolemaeus, sibi, dum observata teneat exprimatque, reputari non alium eccentricum quam illum, qui describatur a centro epicycli, circa quod epicyclus incedit aequaliter. Itaque debere me etiam atque etiam videre quid agam: ne novo usus ratione id non praestem, quod ab illis jam sit praestitum in ratione veteri.

Huic igitur objectioni ut occurreretur, demonstratum est in prim, a operis parte, per hanc novam rationem eadem plane fieri seu praestari posse, quae per illorum veterum rationem sunt praestita.

Secunda vero operis parte rem ipsam sum aggressus, et non minus, imo multo rectius expressi per meam rationem loca Martis in apparenti Solis oppositione, quam illi expresserant per veterem rationem loca Martis in media Solis oppositione.

Interim tota parte secunda (quantum ad geometricas demonstrationes ex observationibus) in suspenso reliqui, uter rectius faciat, Illi an Ego; quando quidem observationes nonnullas (quippe regulam nostris machinationibus praefixam) utrique assequebamur, physicis vero causis consentaneam esse meam rationem, dissentaneam illorum veterem, partim ostendi parte prima, praecipue capite VI.

At demum parte quarta operis Capite LII. per alias quasdam observationes non minus infallibiles, quam priores erant, quasque illorum vetus ratio nequibat assequi, mea assequebatur pulcherrime, demonstravi solidissime, Martis eccentricum sic situm esse, ut ipsum Solaris corporis centrum in lineam apsidum ejus incidat, non vero aliquod punctum prope; itaque eccentricos omnes in ipso Sole concurrere.

Ut vero hoc non tantum quoad longitudinem obtineat, sed etiam quoad latitudinem: ideo parte quinta demonstravi eandem rem etiam ex observatis latitudinibus Capite LXVII.

Non potuerunt ista maturius in opere demonstrari, quia ingreditur in demonstrationes has astronomicas cognitio exacta causarum inaequalitatis secundae in motu planetarum: in qua similiter detegendum prius erat parte tertia novum aliquid, antecessoribus incognitum &c.

Etenim demonstravi parte tertia: sive vetus jam dicta ratio valeat, quae medio Solis motu, sive mea nova, quae apparenti utitur; utrinque tamen secundae innequalitati, quae communiter omnes planetas attinet, permixtum esse aliquid de innequalitatis primae causis. Itaque Ptolemaeo demonstravi, epicyelos suos non habere illa puncta pro centris, circa quae motus eorum sunt aequabiles. Sio Copernico demonstravi, circulum, in quo Tellus circa Solem moretur, non habere id punctum pro centro, circa quod ejus motus regularis est et aequabilis. Sic Tychon i Braheo demonstravi, circulum, in quo circumit concursus seu nodus eccentricorum supradictus, non habere id punctum pro centro, circa quod ejus motus regularis est et aequabilis. Nam si concedam Braheo, ut differat concursus eccentricorum a centro Solis, necesse esse ut dicat, circuitum concursus illius, qui quantitate et tempore plane aequat circuitum Solis, eccentricum esse et vergere in Capricorum, cum Solis circuitus eccentricus vergat in Cancrum; idem vero accidere epicyolis Ptolemaei;

Sin autem concursum seu nodum eccentricorum conferam in ipsum contrum corporis Solaris, tunc circuitum hunc utriusque et nodi dicti et Solis communem eccentricum quidem esse a Terra et in Cancrum vergere, sed dimidio solum eccentricitatis ejus, quam obtinet punctum, circa quod Solis motus regularis et aequabilis est;

Et in Copernico Terrae eccentricum vergere quidem in Capricornum, sed dimidio saltem ejus eccentricitatis, qua in eundem Capricornum distet punctum, circa quod aequabilis est motus Terrae:

Introductio.

Sic in Ptolemaeo in illis diametris epicyclorum, quae a Capricorno in Cancrum extenduntur, tria esse puncta aequalibus intervallis extrema bina a mediis singulis distantia, a se mutuo vero intervallis tantis, in proportione ad diametros, quanta est Solis eccentricitas tota, collatione facta ad sui circuitus diametrum: ex his tribus punctis, quae sunt loco media, illa esse epicyclorum suorum centra, quae vero hinc versus Cancrum sint, esse puncta, circa quae motus epicyclorum sint aequabiles; denique quae hinc versus Capricornum sint, illa esse, quorum eccentricos (ab iis descriptos) indagamus, si pro medio Solis motu apparentem sequimur, quasi illis in punctis epicycli ad eccentricum affixi sint, ut ita in cujusque planetae epicyclo sit absolute tota Theoria Solis cum omnibus ejus motuum et orbium proprietatibus:

Hisce sic demonstratis infallibili methodo, jam et prior gradus ad causas physicas confirmatus est et novus ad eas gradus exstructus, in Copernici et Brahei opinione clarissime, in Ptolemaica obscurius et probabiliter saltem.

Nam sive Terra moveatur sive Sol, demonstratum certe est, id corpus quod movetur moveri inaequabili ratione; tarde scilicet, cum longius abest a quiescente: velociter, cum ad quiescens proxime accessit.

Jam statim igitur apparet discrimen opinionum trium in physica: per conjecturas quidem, sed nihil cedentes certitudine conjecturis medicorum de usu partium ast quibuscunque aliis physicis.

Primus quidem Ptolemaeu's exploditur. Quis enim credat, totidem esse theorias Solis (ad unguem, similes inter se, imo vero et acquales) quot planetas? cum videat, Braheo ad eadem munia sufficere unicam theoriam Solis: axioma quippe in physica receptissimum est, naturam paucissimis uti quam possibile est.

Copernicum vero Braheo*) potiorem esse in physica coelesti, multis probatur.

Primum Braheus theorias illas Solis quinque e planetarum theoriis sustulit quidem et ad centra eccentricorum deduxit, occultavit, in unam conflavit: rem ipsam vero, quae per illas theorias efficiebatur, reliquit in mundo. Planeta enim quilibet praeter eum motum, qui est ei proprius, Braheo non minus quam Ptolemaeo movetur etiamnum re vera motu Solis, miscens utrosque in unum, ex qua mixtura spirae efficiuntur; quod inde fit, quia orbes nullos esse solidos demonstravit Braheus solidissime: Copernicus vero planetas quinque motu hoc extraneo penitus exuit, causa deceptionis ex visus conditionibus educta. Adhuc igitur apud Braheum frustra multiplicantur motus, ut prius apud Ptolemaeum.

Secundo, si orbes nulli sunt, valde dura fiet conditio intelligentiarum et animarum motricum; dum ad tam multa respicere jubentur, ut planetam duobus permixtis motibus invehant. Ad minimum enim simul et semel cogentur respicere ad utriusque motus principia, centra, periodos. At si Terra movetur, pleraque effici posse demonstro facultatibus non enimalibus sed corporeis, magneticis nimirum. Sed haec communiora sunt. Sequentur alia, quae proprie nascuntur ex demonstrationibus, quibus jam insistimus.

Si enim Tellus movetur, demonstratum est, eam leges celeritatis et tarditatis suae accipere ex modulo accessus sui ad Solem et recessus ab eodem. Atqui et reliquis planetis idem evenit, ut ex hoc accessu a Sole incitentur vel inhibeantur. Demonstratio harum rerum est geometrica hactenus.

Ex hac certissima demonstratione jam per conjecturam physicam colligitur, fontem motus planetarum quinque in ipso Sole esse. Valde igitur versimile est, ihi esse fontem motus Telluris, ubi est fons motus reliquorum quinque planetarum: scilicet itidem in Sole. Terram igitur moveri versimile est, quippe apparente verisimili causa ejus motus.

E contrario, Solem consistere loco suo in mundi centro, cum per alia tum

9) Cujus honestissimam et gratissimam fieri mentionem et recordationem aequissimum est ; cum totum hoc aedificium super ejus fundo exstruam, materiam ab ipso omnem mutuatus. Episcopus Arabiae et Taprobanae utique vicinae, non vero 500 milliaribus germanicis (imo vero per anfractus illi aetati usitatos amplius mille) in orientem remotae. Quae vero hodie Taprobane putatur Sumatra insula, eam existimo olim fuisse Chersonnesum auream isthmo Indiae conjunctam ad urbem Malaccam. Nam Chersonnesus, quam hodie credimus aurea, non multo magis Chersonnesus dici posse videtur, quam Italia.²⁰)

Quae quamvis erant alius loci, sic uno contextu explicare volui, ut majorem aestui marino et per hunc virtuti Lunae tractoriae fidem facerem.

Sequitur enim, si virtus tractoria Lunae porrigitur in Terras usque, multo magis virtutem tractoriam Telluris porrigi in Lunam et longe altius, ac proinde nihil eorum, quod ex terrena materia quomodocunque constat, inque altum subvehitur, complexum hunc fortissimum virtutis tractoriae unquam effugere.

Leve vero nihil est absolute, quod corporea materia constat, sed comparate levius est, quod rarius est sive natura sua, sive ex accidente calore. Rarum vero dico non illud tantum, quod porosum est et in multas cavitates dehiscit, sed in genere, quod sub eadem loci amplitudine, quam occupat gravius aliquod, minorem quantitatem materiae corporeae concludit.

Levium definitionem sequitur et motus. Non enim est existimandum, illa fugere ad superficiem usque mundi, dum feruntur sursum, aut non attrahi a Terra: minus enim attrahuntur quam gravia, et sic expelluntur a gravibus, quo facto quiescunt retinenturque a Terra loco suo.

Etsi vero virtus tractoria Terrae, ut dictum, porrigitur longissime sursum, tamen si lapis aliquis tanto intervallo abesset, quod fieret ad diametrum Telluris sensibile, verum est, Terra mota lapidem talem non plane secuturum, sed suas resistendi vires permixturum cum viribus Terrae tractoriis, atque ita se explicaturum nonnihil a raptu illo Telluris: non secus atque motus violentus projectilia nonnihil a raptu Telluris explicat, ut vel praecurrant, projecta versus orientem, vel destituantur, si in occidentem projiciantur: atque ita locum suum, a quo projecta sunt, vi compulsa deserant: neque raptus Terrae hanc violentiam in solidum impedire possit, quam diu violentus motus in suo vigore est.²¹)

Sed quia nullum projectile centies millesiman diametri Terrae partem a superficie Terrae separatur, ipsaeque adeo nubes atque fumi, quae minimum terrestris materiae obtinent, non millesima semidiametri parte evolant in altum: nibil igitur potest nubium, fumorum et eorum, quae perpendiculariter in altum projiciuntur resistentia et naturalis ad quietem inclinatio, nihil inquam potest ad impediendum hunc sui raptum; utpote ad quem haec resistentia in nulla proportione est. Itaque quod perpendiculariter sursum est projectum, recidet in locum suum, nihil impeditum motu Telluris, ut quae subduci non potest, sed una rapit in aëre volantia, vi magnetica sibi non minus concatenata, quam si corpora illa contingeret.

Hisce propositionibus mente comprehensis et diligenter trutinatis, non tantum evanescit absurditas et falso imaginata impossibilitas physica motus Terrae, sed etiam patebit, quid ad objecta physica quomodocunque informata sit respondendum.

Etsi Copernico magis placet, Terram et terrena omnia, licet avulsa a Terra, una et eadem anima motrice informari, quae Terram, corpus suum, rotans rotet etiam una particulas istas a corpore suo avulsas: ut sic per motus violentos vis fast huic animae per omnes particulas diffusae, quemadmodum ego dico, vim fieri facultati corporeae (quam gravitatem dicimus seu magneticam) itidem per motus violentos.

Sufficit tamen pro solutis a Terra facultas ista corporea; abundat illa animalis.

Quod vero a celeritate motus hujus multi sibi terracque nascentibus extrema metuunt, causam nullam habent. Vide de hac re Cap. XV. et XVI. libri mei de Stella Serpentarii fol. 82. et 84. (II, p. 672 s.)

Ibidem etiam invenies plenis velis navigatum per immensitatem orbis mundani, quae Copernico solet objici ut prodigiosa: demonstratur enim, bene proportionatam esse: contra vero improportionatam et prodigiosam celeritatem coeli futuram, si Terra jubeatur suo loco et situ stare plane immobilis.

Sunt autem multo plures illorum, qui pietate moventur, quo minus adsentiantur Copernico, metuentes ne Spiritui Sancto in Scripturis loquenti mendacium impingatur, si Terram moveri, Solem stare dixerimus.

Illi vero hoc perpendant: cum oculorum sensu plurima et potissima addiscamus, impossibile nobis esse, ut sermonem nostrum ab hoc oculorum sensu abstrahamus. liaque plurima quotidie incidunt, ubi cum oculorum sensu loquimur, etsi certo scimus, rem ipsam aliter habere. Exemplum est in illo versu Virgilii: "provehimur portu, terraeque urbesque recedunt." Sic cum ex angustiis vallis alicujus emergimus, magnum sese campum nobis aperire dicimus. Sic Christus Petro: Duc in altum; quasi mare sit altius litoribus. Sic enim apparet oculis, et optici causas demonstrant hujus fallaciae. Christus vero sermone utitur receptissimo, qui tamen ex hac oculorum fallacia est ortus. Sic ortum et occasum siderum, hoc est ascensum et descensum fingimus: cum eodem tempore Solem alii dicant descendere, quo nos dicimus illum ascendere. Vide Optices Astronomiae Cap. X. fol. 327. (II, 335.) Sic etiamnum planetas stare dicunt Ptolemaici, quando per aliquot continuos dies apud easdem fixas haerere videntur; etsi putent, ipsos tunc re vera moveri deorsum in linea. recta vel sursum a Terris. Sic solstitium dicit omnis scriptorum natio: etsi negant vere stare Solem. Sic nunquam quisquam adeo deditus erit Copernico, quin Solem dioturus sit ingredi Cancrum vel Leonem, etsi innuere vult, Terram ingredi Capricornum vel Aquarium. Et cetera similiter.

Jam vero et sacrae literae de rebus vulgaribus (in quibus illorum institutum non est homines instruere) loquuntur cum hominibus humano more, ut ab hominibus percipiantur; utuntur iis, quae sunt apud homines in confesso, ad insinuanda alia sublimiora et divina.

Quid mirum igitur, si Scriptura quoque cum sensibus loquatur humanis tunc, cum rerum veritas a sensibus discrepat seu scientibus hominibus seu ignaris. Quis enim nescit poëticam esse allusionem Psalmo XIX, ubi, dum sub imagine Solis cursus Evangelii adeoque et Christi Domini in hunc mundum nostri causa suscepta peregrinatio decantatur, Sol ex horizontis tabernaculo dicitur emergere, ut sponsus de thalamo suo; alacris, ut gigas, ad currendam viam. Quod imitatur Virgilius: "Tithono croceum linquens aurora cubile." Prior quippe poësis apud Hebraeos fuit.

Non exire Solem ex horizonte tanquam e tabernaculo (etsi sic oculis appareat), sciebat Psaltes: moveri vero Solem existimabat, propterea quia oculis ita apparet. Et tamen utrumque dicit, quia utrumque oculis ita videtur. Neque falsum hic vel illic dicere censeri debet: est enim et oculorum comprehensioni sus veritas, idonea sceretiori Psaltis instituto cursuique Evangelii adeoque filii Dei adumbrando. Josua etiam valles addit, contra quas Sol et Luna moveantur; scilicet quia ipsi ad Jordanem hoc ita apparebat. Et tamen uterque suo intento potitur: Davides Dei magnificentia patefacta (et cum eo Siracides), quae effecit, ut haec sic oculis repraesentarentur, vel etiam mysico sensu per haec visibilia expresso: Josua vero, ut Sol die integro retimeretur sibi in coeli medio respectu sensus oculorum suorum; cum aliis homimibus eodem temporis apatio sub Terra moraretur.

Sed incogitantes respiciunt ad solam verborum contrarietatem, Sol stetit, id est Terra stetit; non perpendentes, quod haec contrarietas tantum intra limites optices et astronomiae nascatur, neo ideo se extrorsum in usum hominum efferat: nec videre volunt, hoc unicum in votis habuisse Josuam, ne mentes ipsi Solem eriperent: quod votum verbis explicuit sensu oculorum conformibus; cum importanum admodum fuisset, eo tempore de astronomia deque visus erroribas cogitare. Si quis enim monuisset, Solem non vere contra vallem Ajalon moveri, sed ad sensum tantum; an non exclamasset Josua, se petere ut dies ipsi producatur quacunque id ratione fiat? Eodem igitur modo, si quis ipsi litem movisset de Solis perenni quiete Terraeque mota. Facile autem Deus ex Josuae verbis, quid is vellet, intellexit praestititque inhibito motu Terrae; ut illi stare videretur Sol. Petitionis enim Josuae summa huc redibat, ut hoc sic sibi videri posset, quicquid interim esset: quippe hoc videri vanum et irritum non fuit, sed conjunctum cum effectu optato.

Sed vide Caput X. Astronomiae partis Opticae; invenies rationes, cur adeo omnibus hominibus Sol moveri videatur, non vero Terra: scilicet cum Sol parvus appareat, Terra vero magna; neque Solis motus comprehendatur visu ob tarditatem apparentem, sed ratiocinatione solum, ob mutatam post tempus aliquod propinquitatem ad montes. Impossibile igitur est, ut ratio non prius monita sibi aliud imaginetur, quam Tellurem cum imposito coeli fornice esse quasi magnam domum, in qua immobili Sol tam parva specie, instar volucris in aëre vagantis, ab una plaga in aliam transeat. Quae adeo imaginatio hominum omnium primam lineam dedit in sacra pagina. Initio, inquit Moses, creavit Deus Coelum et Terram; quia scilicet hae duae partes potiores occurrunt oculorum sensui. Quasi diceret Moses homini: Totam hoc aedificium mundanum, quod vides, lucidum supra; nigrum latissimeque porrectum infra, cui insistis et quo tegeris, creavit Deus.

Alibi quaeritur ex homine, num pervestigare noverit altitudinem coeli sursum et profunditatem terrae deorsum: quia scilicet vulgo hominum videtur utrumque aeque infinitis excurrere spatiis. Neque tamen exstitit, qui sanus audiret, et astronomorum diligentiam seu in ostendenda Telluris contemtissima exilitate ad coelum comparatae, seu in pervestigandis astronomicis intervallis, per haec verba circumscriberet, cum non loquantur de ratiocinatoria dimensione, sed de reali, quae humano corpori terris affixo aëremque liberum haurienti penitus est impossibilis. Lege totum Jobi caput XXXVIII. et compara cum iis, quae in astronomice inque physica disputantur.

Si quis allegat ex Psalmo XXIV. Terram super fumina praeparatam, ut novum aliquod philosophema stabiliat absurdum auditu, Tellurem innatare fuminibus; nonne hoc illi recte dioeretur, missum faciat Spiritum saactum neque in scholas physicas cum ludibrio pertrahat; nihil enim aliud ibi loci insuere velle Psalten, nisi quod homines antea sciant et quotidie experiantur, Terras (post separationem aquarum in altum sublatas) interfluere ingentia fumina, circumfluere maria. Nimirum eandem esse locutionem alibi, cum sese super fumina Babylonis Israelitae sedisse canunt, id est juxta fumina vel ad ripas Euphratis et Tigris.

Si hoc libenter quis recipit, cur non et illud recipiat, ut in aliis lobis, quae motui Telluris opponi solent, codem modo oculos a physica ad institutum scripturae convertamus?

Generatio praeterit (sit Ecclesiastes) et generatio advenit, Terra autem in aeternum stat. Quasi Salomon hic disputet cum astronomis, ac non potius hemines suae mutabilitatis admonent? cum Terra, domicilium humani generis, semper maneat eadem, Solis motus perpetuo in se redeat, ventus in circulum agatur redeatque eodem, flumina a fontibus in mare effluant, a mari in fontes redeant: demique homines his percentibus nascantur alii semperque eadem sit fabula vitae > nihil sub Sole novum.

Nullum audis dogma physicum. NouSecue est moralis rei, quae per se patet et observatur omnium oculis, sed parum perpenditur. Eam igitur Salomon inculcat. Quis enim nescit, Terram semper candem esse? quis non videt, Solem quotidie ab ortu resurgere, flumina perenniter decurrere in mare, ventorum statas redire vicissitudines, homines alios aliis succedere? Quis vero perpendit, candem agi perpetao vitae fabulam mutatis personis, nec quicquam in rebus humanis novum esse? Itaque Salomon commemoratione corum, quae vident omnes, admonet ejus, quod a plerisque perperam negligitur.

Psalmo vero CIV. putant omnino disputationem contineri physicam, quando de rebus physicis totus est. Atque ibi Deus dicitur fundasse Terram super stabilitatem suam; illamque non inclinatum iri in seculum seculi. Atqui longissime abest Psaltes a speculatione causarum physicarum. Totus enim acquiescit in magnitudine Dei, qui fecit hace omnia, hymnumque pangit Deo conditori, in quo mundum, ut is apparet oculis, percurrit ordine. Quod si bene perpeadas, common-

Introductio.

tarius est super Hexacmeron Geneseos. Nam ut in illo tres primi dies dati supe separationi regionum, primus lucis a tenebris exterioribus, secundus aquarum ab aquis interpositu expansi, tertius terrarum a maribus, ubi terra vestitur plantis et stirpibus: tres vero posteriores dies regionum sic distinctarum impletioni, quartus coeli, quintus marium et aëris, sextus terrarum: sic in hoc psalmo sunt distinctae et sex dierum operibus analogae partes totidem. Nam versu secundo lucem, creatararum primam primaeque diei opus Creatori circumdat pro vestimento. Secunda pars incipit versu tertio agitque de aquis super coelestibus, extensione coell et de meteoris, quae videtur Psaltes accensere aquis superioribus, scilicet de nubibus, ventis, presteribus, fulguribus. Tertia pars incipit a versu sexto celebratque Terram ut fundamentum rerum, quas hic considerat. Omnia quippe ad Terram . eamque inhabitantia animalia refert; scilicet quia oculorum judicio duae primariae sunt partes mundi. Coelum et Terra. Hic igitur considerat. Terram tot jam seculis non subsidere, non fatiscere, non ruere : cum tamen nemini compertum sit, super quid illa sit fundata. Non vult docere quod ignorent homines, sed ad mentem revocare, quod ipsi negligunt, magnitudinem scilicet et potentiam Dei in creatione tantae molis, tam firmae et stabilis. Si astronomus doceat, Terram per sidera ferri, is non evertit, quae hic dicit Psaltes, nec convellit hominum experientiam. Verum enim nihilaminus est, non ruere Terras. Dei architecti opus, ut solent ruere nostra aedificia vetustate et carie consumta, non inclinari ad latera, non turbari sedes animantium, consistere montes et litora, immota contra impetus ventorum et fuctuum, ut erant ab initio. Subjungit autem Psaltes pulcherrimam hypotyposin separationis undarum a continentibus, exornatque eam adjectione fontium et utilitatum, quas exhibent fontes et petrae volucribus et quadrupedibus. Nec praeterit exornationem superficiei Telluris a Mose commemoratam inter opera diei tertiae; sed cam a causa sua repetit altius, ab humectatione puta coelesti: et exornat commemoratione utilitatum, quae redeunt ab illa exornatione ad victum et hilaritatem hominis et bestiarum habitacula.

Quarta pars incipit versu 20, celebrans quartae diei opus, Solem et Lunam, sed praecipue utilitatem, quae ex distinctione temporum redeunt ad animantia et hominem, quae ipsi jam est subjecta materia: ut clare appareat, ipsum hie non agere astronomum. Non enim omisisset mentionem quinque planetarum, quorum motu nihil est admirabilius, nihil pulchrius, nihil quod de Conditoris sapientia testetur evidentius apud eos qui capiunt. Quinta pars est versu 26. de quintae diel opere, impletque maria piscibus et exornat navigationibus. Sexta obscurius annectitur a versu 28. agitque de Terrarum incolis animalibus, sexto die creatis. Et denique in genere subdit bonitatem Dei sustentantis omnia et creantis neva. Omnia igitur, quae de mundo dixerat, ad animantia refert: nihil, quod non sit in confesso, commemorat: scilicet quia animus ipsi est extollere neta, non inquirere incognita, invitare vero homines ad consideranda beneficia, quae ad ipsos redeant ex his singulorum dierum operibus.

Atque ego lectorem meum quoque obtestor, ut non oblitus bonitatis divinae in homines collatae, ad quam considerandam ipsum Psaltes petissimum invitat, ubi a temple reversus in scholam astronomicam fuerit ingressus, mesum etiam landet et celebret sapientiam et magnitudinem Creatoris, quam ego ipsi aperio ex formae mundanae penitieri explicatione, causarum inquisitione, visus errorum detectione; et sic non tantum in Telluris firmitudine et stabilitate salutem universae naturae viventium, ut Dei munus exosculetur, sed etiam in 'ejusdem motu tam recondito, tam admirabili, Creatoris agnoscat sapientiam.

Qui vero hebetior est, quam ut astronomicam scientiam capere possit, vel infirmior, quam ut inoffensa pietate Copernico credat: ei suadeo, ut missa schola astronomica, damnatis etiam si placet philosophorum quibuscanque placitis, suas res agat et ab hac peregrinatione mundana desistens, domum ad agellum suum excolendum se recipiat, oculisque, quibus selis videt, in hoc adspectabile coelum sublatis, toto pectore in gratiarum actionem et laudes Dei Conditoris effundatur: certus, se non minorem Deo cultum praestare, quam astronomum, cui Deus hoc dedit, ut mentis oculo perspicacius videat, quaeque invenit, super iis Deum suum et ipse celebrare possit et velit.

Quo nomine mediocriter, non parum sane, doctis commendata esse debet opinio Brahei de forma mundi: quippe quae mediam quodammodo viam incedens ex una parte astronomos, quoad ejus fieri potest, inutili tot epicyclorum supellectile liberat, cansas motuum, ignoratas Ptolemaco, cum Copernico amplectitur; physicis speculationibus aliquem locum dat, Sole in centrum systematis planetarii recepto; ex altera vero parte vulgo literatorum servit, motumque Telluris, adeo creditu difficilem, eliminat: licet per eam theoriae planetarum in astronomicis speculationibus et demonstrationibus multis intricentur difficultatibus nec parum turbetur physica coelestis.

Atque haec de sacrarum literarum auctoritate. Ad placita vero Sanctorum de his naturalibus uno verbo respondeo: in theologia quidem auctoritatum, in philosophia vero rationum esse momenta ponderanda. Sanctus igitur Lactantius, qui Terram negavit esse rotundam: sanctus Augustinus, qui rotunditate concessa negavit tamen antipodas; sanctum Officium hodiernorum, qui exilitate Terrae concessa negant tamen ejus motum. At magis mihi sancta veritas, qui Terram et rotundam et antipodibus circumhabitatam et contemtissimae parvitatis esse et denique per sidera ferri, salvo doctorum ecclesiae respectu, ex philosophia demonstro.

Sed satis de hypotheseos Copernicanae veritate. Revertendum enim ad institutum, a quo feceram initium hujus introductionis. Coepi dicere, me tetam astronomiam non hypothesibus fictitiis, sed physicis causis hoc opere tradere: ad hoc vero fastigium me contendisse duobus gradibus; altero, quod deprehenderam, in corpore Solis concurrere planetarum eccentricos, reliquo, quod in theoria Telluris intellexerim inesse circulum acquantem ejusque eccentricitatem bisecandam. Igitur hic sit tertius gradus, quod comparatione instituta partis secundae cum quarta certissime demonstratum fuit, etiam Martialis acquantis eccentricitatem bisecandam praecise, quod Braheus diu et Copernicus dubium effecerunt. Quare inductione facta ab omnibus planetis parte tertia ex anticipato demonstratum est, quandoquidem solidi orbes, ut Braheus ex trajectionibus cometarum demonstravit, nulli sunt, Solis igitur corpus esse fontem virtutis, quae planetas omnes circumagit. Modum etiam definivi argumentis talem, ut Sol manens quidem suo loco, rotetur tamen ceu in torno, emittat vero ex sese in mundi amplitudinem speciem immateriatam corporis sui, analogam speciei immateriatae lucis suae ; quae species ad retationem corporis Solaris rotetur ipsa quoque instar rapidissimi vorticis per totam mundi amplitudinem; transferatque una secum in gyrum corpora planetarum intenso vel remissò raptu, prout densior vel rarior ipsa effluxus lege fuerit.

Expedita communi hac virtute, qua omnes planetae suo quisque circulo circa Solem invehuntur; consectarium erat meis argumentationibus, ut singulis planetis singuli tribuerentur motores, in ipsis planetarum globis insidentes: quippe solidos orbes jam ex sententia Brahei rejeci. Atque hoc ipsum quoque parte tertia egi.

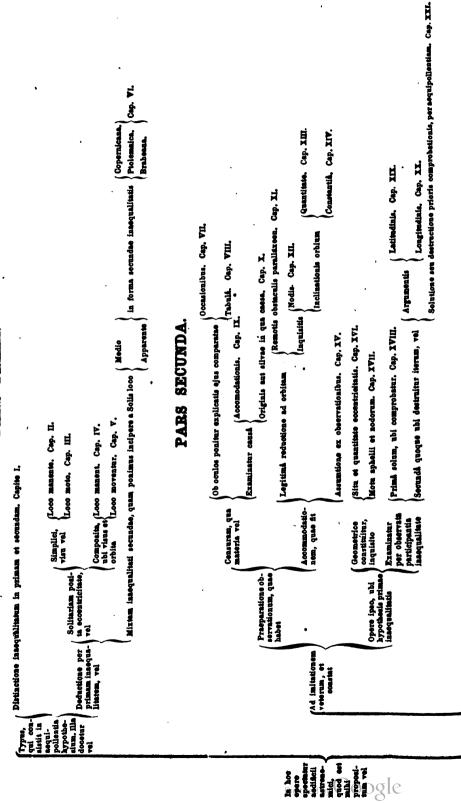
Hac argumentandi via constituti motores isti incredibile dictu quantum mihi laboris exhibuerint parte quarta, dum distantias planetae a Sole, dum aequationes eccentri prodere jussi, vitiosas produnt et ab observationibus dissentiunt: non quod falso fuerint introducti, sed quia circulorum quasi pistrinis illos alligaveram, fascinatus opinione vulgari: quibus illi compedibus nexi opus suum facere non poterant.

Nec finis fuit fatigationis meae prius quam quartum ad hypotheses physicas struxi gradum: laboriosissimis demonstrationibus observationumque plurimarum tractationibus deprehenso, iter planetae in coelo non esse circulum, sed viam ovalem, perfecte ellipticam.

Accessit geometria docuitque, iter tale effici, si propriis planetarum motoribus laborem hunc assignemus, librandi corpus suum in linea recta versus Solem extensa. Neque hoc solum, sed et acquationes eccentrici justae et observationibus consentancae efficiebantur per talem librationem.

Digitized by Google

Introductio.


Denique igitur aedificio fastigium hoc fuit impositum et demonstratum geometrice, librationem hujusmodi effici solere a magnetica corporea facultate. Itaque motores hi planetarum proprii probabilissime ostensi sunt nihil aliud esse, quam affectiones ipsorum planetariorum corporum tales, qualis est in magnete poli appetens ferrumque rapiens: ut ita tota ratio motuum coelestium facultatibus mere corporeis, hoc est magneticis, administretur, excepta sola turbinatione corporis Solaris in suo spatio permanentis, cui vitali facultate opus esse videtur. Nam parte quinta demonstratum, nostras jam introductas hypotheses physicas etiam latitudinibus satisfacere. Datum tamen fuit aliquid partibus III. et IV. etiam menti, ut motor planetae proprius cum animali facultate movendi sui globi conjungat rationem, si quis objectionibus nonnullis extraneis ad speciem validis territus, naturae corporum difidere velit: modo talis aliquis hoc recipiat, mentem illam uti apparenti diametro Solis pro mensura librationis, sensumque habere angulorum, quos exquirunt astronomi.

Tantum igitur in gratiam physicorum dictum esto: cetera invenient astronomi et geometrae suo quaelibet ordine ex sequentibus singulorum capitum argumentis, quae paulo prolixiora esse volui, cum ut essent loco indicis, tum ut lector passim haerens in obscuritate sive materiae seu styli, secundum Tabulam synopticam ab his etiam argumentis aliquam lucem petat rationemque ordinis et cohaerentiam rerum in idem caput congestarum, si minus fortassis in ipso contextu sit conspicua, percipiat evidentius inter argumenta in paragraphos suos secta. Quare lector boni consulat, rogo.

Digitized by Google

SYNOPSIS TOTHUS OPERIN.

PARS PRIMA.

Another in the state of th	PARS GUARTA. Createris, ini. Extruitur. Ce, XLI. Residence at the state of	PARS QUINTA. Proper se ipean, ul er. Scorsin singulae (Prima: cylus (Menavratio Geometrica (Principli sen loci Nodorum. Gap. LXI., Prosentium tantum (Proper se ipean, ult er. Scorsim singulae (Prima: cylus (Causeo Physicae. Cap. LXIII), et aluplet, eque vel (A confirmation of the contrast a fattudo in conjunctione et appositione eum Sole. Cap. LXV. Ettan preservice a Taoriae (Promine, quod ejus fandamentum faitudo in conjunctione et appositione eum Sole. Cap. LXV. Tata an alia tanta con alia tanta con alia (Prima, Simul of eclipticae (contrast a fandamentum et alua (Cap. LXV). Motas medius nodorum, fantanentum faitutis, seu parallascon examen. Cap. LXVI. Motas medius nodorum, simul aphelii et eccentrici. Cap. LXVI. Motas medius nodorum, simul aphelii et eccentrici. Cap. LXVI.
	Can Character Can Can Can Can Can prace pra	Pressentium aaatum et uimpise, seque val Etiam preseriorum, et alita cumatika baaralika Quasrikar enim in inasqualitate
Formats Securats Securats Sun vero Enn vero Pruciparo Pr	Ex pro- prima prima prima prima prima an- prima an- prima an- contri-	Latitudiais, Pri cujus conai- deratio est Eti respecta tean- noi porum

Strate R. Tak

1

FALSE TRUTTA.

1

ARGUMENTA SINGULORUM CAPITUM.

Cum alia sit methodus, quam natura rei docet, alia, quam cognitio nostra requirit; utraque artificialis: neutram a me lector sinceram exspectare debet. Mihi enim scopus non hic praecipuus est, explicare motus coelorum, quod fit in libellis sphaericis et planetarum theoriis: neque tantum docere lectorem et perducere a primis et per se notis ad ultima; quam viam Ptolemaeus ut plurimum observavit: sed accedit tertium aliquid, commune mihi cum oratoribus, ut quia nova multa trado, id coactus fecisse manifestus sim, itaque demeream et retineam assensum lectoris et amoliar suspicionem de studio novandi.

Nil igitar mirum, si methodis superioribus admisceam tertiam oratoribus familiarem, hoc est historicam mearum inventionum: ubi non de hoe solo agitar, quo pacto lector in cognitionem tradendorum perdacatur via compendiosissima, sed de hoe potissimum, quibus Ego anctor seu argumentis seu ambagibus seu fortuitis etiam occasionibus primitus eodem devenerim. Quodsi Christophoro Columbo, si Magellano, si Lusitanis non tantum ignoscimus errores suos narrantibus, quibus ille Americam, iste oceanum Sinensem, hi Africae periplum aperuerant; sed ne vellemus quidem omissos, quippe ingenti lectionis jucunditate oaritari : nec igitur mihi vitio vertetur, quod idem eodem lectoris studio per hoc opus sum secutus. Nam etsi Argonanticorum illorum laborum nequaquam legendo reddimur participes, mearum vero inventionum difficultates et spinae ipsam etiam lectionem infestant : at communis haec fortuna est omnium librorum mathematicorum, existentque nihilominus, ut sumus homines, quorum alios alia delectant, qui superatis perceptionis difficultatibus hac integra inventionum serie simul ob oculos posita ingenti voluptate perfundantur. Hac igitur methodo concinnatum esse opus universum jam patebit ex argumentis singulorum capitam.

Dedi autem operam, ut quoties textus aliquam demonstrationem geometricam delineationemve aut praeparationem expediret, litera cursoria (ut appellant officinae) exscriberetur. Id si non undiquaque obtinet, vel materiae tribues, quae geometricis miscet physica, vel typothetis, qui mea signa non undiquaque perceperunt.

Cap. L. Explicat, qua ratione astronomi deprehenderint, differre motum primum a secundis seu planetarum propriis; qua item ratione fuerint inventae in proprio planetae motu duae inaequalitates, prima et secunda dictae.

Occasio hujus capitis totinsque a deo primae partis haec est, quod cum primum ad Braheum venissem, deprehenderem ipsum cum Ptolemaeo et Copernico secundam planetae inaequalitatem censere a Solis motu medio. Mihi vero quatuor annis ante propter rationes physicas videbatur incipienda a Solis motu apparente, ut habes in Mysterio Cosmographico. Orta igitur inter nos disceptatione Braheus opposuit, se cum esset usus Solis medio salvasse observata omnia primae inaequalitatis; reposui ego: nihil hoc impedire quo minus Ego usus apparente Solis motu salvem eadem observata primae inaequalitatis: itaque in secunda inaequalitate cernendum, uter rectius faciat. Quod igitur Ego respondi, demonstrandum fuit parte prima operis.

Cap. II. Igitur cum esset propositum negotium perplexum de hypothesium asquipollentia: ejus ego initium feci a prima et simplicissima, quando concentricus cum epicyclo permutatur in eccentricum.

Ne vero jejuna esset geometria, disputavi super causis et physicis et rationalibus seu mentalibus, quibus utramque hypothesium acquipollentiam administrari motusque perfici consentaneum sit : idque aliter, si concedantur orbes solidi, aliter etiam, si negentur. Quippe Braheus ex trajectionibus comstarum demonstravit, nullos esse orbes solidos.

C a p. III. Stante hoc eccentrico simplici, seu qui asquipollet concentrico cum unico epicyclo, docetur, quid mutetur seu ad sensum oculorum seu in causis motuum naturalibus,

Digitized by Google

si medius Solis motus cum apparenti permutetar, hoc est si visus, imo potius si fons virtutia imaginatione transponatur in alium locum.

Cap. IV. 1) Absoluto eccentrico simplici transitur ad eccentricum cum acquante; hec est cum eccentricitate duplici, quem Ptolemacus quinque planetarum inacqualitati primas assignaverat. 2) Posita igitur soliditate orbium, demonstratur ejuz absurditas; negats vero, cencinnitas et probabilitas physica. 3) Ostenditur deinde, quomodo Copernicus hunc eccentricium cum acquante transmutaverit in concentricum cum duobus epicyclis. 4) Hace Gopernici hypothesis positis orbibus solidis physice mediocriter habare, negatis vero absurda esse estenditur. 5) Sed et hoc probatur, deficere illam a geometrica pulchritudine in itinere planetae. 6) Nee per omnha acquipollere eccentrico Ptolemaico: parvo quidem discrimine in prima inacqualitate, majori vero in secunda. 7) Ibidem et demonstratis methodi computandi compandiose acquationem ex utraque forma hypotheseos. 8) Modus obliterandi differentiam inter utramque hypothesin. 9) Denique hujus Copernicanae hypotheseos alia forma per concentrepicyclum.

Cap. V. Hoe caput V. sic se habet ad IV. ut III ad II. Negotium enim magis serium agitur: 1) de iis, quae mutantur in hypothesi, si visus seu fons vistutis usurpations Selis apparentis motus pro medio de pristino loco transponatur in alium: idque in forma Co-, pernicanae hypotheseos, quae cap. 1V. fuit pestrema. 2) Quae item in cansis moturim physicis en endem hypothesi mutentur. 3) Transpositio hasc delineatur et instruitur in forma. primae inaequalitatis Ptolemaica. 4) Demonstratur, duabus admissis lineis apsidum, altera antiqua, altera ex transpositione orta et sic mutata forma hypotheseos, sequuturas duorum generum datas apparitiones: manente eodem itinere planetae in coelo. 5) Constituta vero una linea apsidum esque trajecta per antiquum centrum eccentrici, demonstratur, neque sequi necessarias apparitiones pristinas, licet manente itinere, neque plane retineri formam candem hypotheseos. 6) Denique nova linea apsidum transcunte per centrum acquantis et retenta forma hypotheseos, demonstratur transponi iter in coelo. 7) Locus circuli et quantitas demonstratur geometrice, maximae differentiae sea aberrationis apparitionum a propositis per hanc transpositionem causatae. 8) Demonstratur, omnia ista, locum habere, si manente visu transponatur aequali spatio centrum aequantis in plagam oppositam. 9) Omnia dicta de eccentrico cum acquante, qui Ptolemaco placuit, applicantur concentrico cum duobus epicyclis Copernico-Braheano, quippe per caput IV. aequipollenti.

Cap. VL Hic jam cap. V. demonstrata, praceipue numero 6. 7. 8. quodammodo traducuntar in usum. Et hactenus quidem de iis hypothesibus agebatur, quae primae sérviunt inaequalitati, diversae apud diversos. Jam porro adjunguntur et illae, quae secundae inaequalitati sunt tributae, quaeque ut capitales (prae iis, de quibus haetenus) a suis auctoribus Ptolemaeo, Copernico, Tychone Brahe denominantar. Usitate quippe Copernicanam hypothesin neminantes subintelligimus secundae inaequalitatis. 1) Has igitur initio comparo. 2) In Copernicana estendo, quemodo primas inasqualitatis hypothesis fuerit accersita a Solis motu medio, quomodoque consurgat eccentricitas ex puncto Solis vicario. 3) Physice argumentor, id non recte fieri, sed debere eccentricitatem computari ab ipso centro corporis Solis. 4) Si inaequalitatem secundam a Solis apparente motu censeamus fieri, quod hic volunt rationes physicae. 5) Demonstratur hoc pacto, parum variari loca longitudinis in prima inaequalitate, multum vero differre distantias corporis planetae a corpore Solis. 6) Geometrice demonstratur locus in orbe magno Telluris, in quo visui constituto maxima distantiarum differentia maximum etiam errorem objiciat. 7) Quantitas erroris arithmeticis operationibus colligitar excutrere posse ad 1º 20' c. 8) In Ptolemaica hypothesi ostendo, quomodo primae inaequalitatis hypothesis fuerit accersita a Solis motu medio. 9) Generaliter ex physica seu metaphynica contemplatione multa disputantar tam contra medium Solis motum, quam contra ipsam hanc hypothesin. 10) In specie vero objiciuntur indidem aliqua Solis motui medio peculiariter. 11) Si inaequalitatem secundam a Solis apparente motu censeamus, satisfieri objectionibus physicis. 12) Situs, quantitas et forma novae hypotheseos demonstratur transpesitione puncti acquatorii. 13) Discrepantia apparitionum primae inacqualitatis locusque in epicyclo, in quo contingit maximus error apparitionum secundae inaequalitatis, et quantitas hujus erroris applicantur ex superioribus. 14) In Braheana hypothesi ostendo, quomodo primae inaequalitatis hypothesis fuerit accessita a Solis motu medio, ideoque centrum concentrici Martii affixum orbi Solis, non in centro corporis Solis, sed juxta. 15) Contra Braheanam hypothesin pauca in genere, contra hanc vero affixionis formam specialiter plura ex physica disputo, contendent affixionem, ut ad captum loquar, in ipso centro corporis Solis fieri debere. 16) Situs, quantitas et forma novae hypotheseos per transpositionem puncti affixionis declaratur, et applicantur ex superioribus loca tam eccentrici quam orbis magni eccentrisum (seu concentricum cum epicyclis) gestantis, in quibus erros contingit maximus.

Atque hactenus porrigitur pars prima.

Kepleri Opera. IH.

11

РАRS П.

C a p. VII. Particularius explico occasiones et quibus in theorism Martis inciderim et quae me permeverint, apparentem Solis motum sequi primamque partem jam absolutam hoc modo praemittere. Summam habes ad argumentum capitis I.

C a p. VIII. Exhibet hypothesin primae inacqualitatis Martis, ut ca est a Brahee constituta, eamque in tabula, quae habet fundamenta, scilicet observationes acronychias, et effectum, computatos scilicet locos juxta observatos consentiret examen co directum, ut appareret an hacc hypothesis usque adeo scrupulose consentiret observatis.

Cap. IX. Agit de emendata assumtione observatorum locorum. 1) Ostenditur necessitas, pro loco planetae in suo proprio circulo constituendi locum ei respondentem in ecliptica. 2) Refutatur acqualitas, quam tabula 'sequitur, arcuum a nodo ad locum planetae visum locumque eclipticum pertingentium. 3) Refutatur et illa acqualitas, si alter arcus non in locum visum sed in locum verum orbitae terminetur. 4) Refutatur et modus reducendi per visae latitudinis angulum, et astruitur modus reducendi per angulum inclinationis planorum.

Cap. X. Pertinet eodem, examinatque suscepta loca tabulae, an a vicinis observationibus correcte es tuto ad oppositum Solis medii fuerint deducta, addunturque es de aliis subtilitatibus admonitiunculae, praesertim de parallaxi. Et hactenus examen tabulae.

Cap. XI. Meam ergo accommodationem ad Solis apparentem incepturus a reductione et deductione legitima, ut ne quid in ea peccem, prius inquire parallaxes Martis diurnas. 1) Narro, quid de iis Braheus senserit. 2) Probe ex Brahei observatis per motas horarios et diurnos, insensibiles pene esse et minores quam putamus esse Solares. 3) Per ludum applico et meas observationes eodem spectantes: quibus peculiarem explico methodum inquireadi parallaxin diurnam per latitudinem stationariam.

Cap. XII. 1) Investigandi nodos Martis modus Brahei particularis ex observatione vicina et censura. 2) Modus alius, qui praesupponit cognitas aequationes eccentri ex Prutenicis, Ptolemaeo aut Braheo. Quibus simul demonstratur, nodum descendentem, qui inquiritur quatuor observationibus, et ascendentem, qui duabus, esse in oppositae eclipticae locis.

Cap. XIII. 1) Inclinationis planorum paulo intricatiorem esse rationem ostenditur per omnes tres formas hypothesium. 2) Modus unus, praesupponens acquationes eccentri cognitas, quando Mars vespertino occubitu vel exortu matutino per inacqualitatem primam in himitibus fuerit: tunc enim visa latitudo acquat veram inclinationem limitum ad eclipticam. 3) Ostenditur, in quanto arcu elongationis a Sole id verum sit, idque tam in Copernicana quam in Ptolemaica hypothesi: et perficitur aliquot observationibus circa utrumque limitum. 4) Secundus modus nihil desiderans nisi selectas et raras observationes, in quibus Sol sit in modis, Mars in quadrato Solis: et hic per aliquot observationes perficitur. 5) Ampliatur, ut Mars ceteris manentibus alio loco possit esse, quam in quadrato Solis, et sic alia quam liquitis, certa tamen, colligatur certi loci inclinatio. 6) Applicatur hie modus et Ptolemaicae hypothesi, quae habet aliquam difficultatem. 7) Tertius modus per observatas in Solis opposito latitudines incedit, adjungens praecognitam proportionem orbium; traductur autem per omnes trees hypothesium formas.

Cap. XIV. Ex demonstratis capitis XIII. porro refutatur opinio veterum, quasi plana eccentrorum sint libratilia. Demonstratur enim, inclinationens, intra quidem unius vel alterius seculi terminos, esse constantem.

Cap. XV. Ex observationibus vicinis arithmetice inquiruntur loca, quae possedit Mars sub articulos oppositionum cum Solis motu apparenti, eaque corriguntur per cautiones hactenus tractatas; denique exhibetur eorum tabula pro fundamento novae operationis.

Cap. XVI. Ad imitationem igitur veterum dissimulatis causis physicis ponitur, iter planetae esse circulum; poniturque intra ejus complexum esse punctum aliquod, circa quod aequalibus planeta temporibus aequales absolvat angulos; interque illud et centrum Solis versari centrum circuli planetarii, distantia incognita. His positis et assumtis quatuor observationibus acronychiis cum locis sub zodiaco et intervallis temporariis, inquiritur methodo laboriosissima situs utriusque centri sub zodiaco, distantia a centro Solis et proportio utriusque eccentricitatis, cum ad se mutuo tum ad radium circuli.

C a p. XVII. Comparatione locorum aphelii et nodorum, quae fuere tempore Ptolemaei, cum nostri temporis inventis, colligitur motus illorum, necessarius sequenti capiti.

Cap. XVIII. Tandem igitur ostenditur ex hac sie inventa hypothesi, quae apparenti motui Solis innititur, salvari omnem observatum longitudinis motum circa Solis oppositum, idque multo, certius quam prius, cum hypothesis Braheana inniteretur medio Solis motui.

Cap. XIX. 1) Etsi hactenus officium fecit hypothesis inventa in motu longitudinis circa Solis oppositum, demonstratur, eam tamen officium non facere in motu latitudinis circa Solis oppositum. 2) Demonstratur antem, neque Braheanam officium hic facere, idque utrumque in forma Copernicana. 3) Idem in forma hypothesium Ptolemaica et Braheana. 4) Ostenditur, errorem circa latitudines in eo esse, quod non fuerit bisecta eccentricitas. 5) At si bisecetur eccentricitas, tunc hypotheses aberrare in fongitudinis motu. Ex **quibas causa patent**, quae me impulerit ut desertis veteribus diligentius super his rebus inquirerem.

Cap. XX. 1) Ut priori capite per motum latitudinis circa Solis oppositum, sic nunc per motum longitudinis extra oppositum Solis erroris convincitur, haec mea hypothesis. 2) Sic et Braheana, medio Solis motui inniza. 3) Demonstratio applicatur etiam formae motuum Ptolemaicae et Braheanae. 4) Digitus intenditur ad fontes errorum et ad correctionis modum. 5) Protheorema interjicitur, quales lineae in plano eclipticae sint substituendae lineis distantiae, planetae a Sole in plano eccentrici planetae, quando planeta habuerit aliquam latitudinem.

Cap. XXI. Causae ex geometria petuntur efficientes, ut falsa hypothesis verum prodat: et ostenditur, quatenus id fieri possit.

Atque his finis partis secundae, in qua veteres sum imitatus.

PARS III.

Cap. XXII. Mea igitar methodo usus, totum negotium de novo incipio non a prima sed a secunda inaequalitate. Et 1) explicantur occasiones, quibus inciderim in suspiciones de aequante circulo in theoria Solis regnante. 2) Demonstro in tribus hypothesium formis: posito aequante (quod mihi placebat), videri orbem magnum (seu Ptolemaco epicyclos) augeri et minui, quod Braheus asserebat. 3) Traditur methodus observationes idoneas inquirendi, ex quibus aequans iste probetur. 4) Demonstratur res ipsa ex duabus selectis observationibas et supposita restitutione Braheana, quae medio Solis motui innititur.

Cap. XXIII. Inventis superiori capite duorum in zodiaco locorum distantiis Solis a Terra et adjuncto loco apogaei Solis seu aphelii Terrae, demonstratione geometrica inquintur et eccentricitas circuli Solis vel Terrae, qui perfectus praesupponitur esse.

ritur et eccentricitas circuli Solis vel Terrae, qui perfectus praesupponitur esse. Cap. XXIV. Demonstratur idem qued cap. XXII. sed observationibus quatuor magis promiscue oblatis, quae tamen Martem habent in eodem eccentricí loco: partem scilicet aliquam de Solis vel Terrae eccentricitate dandam aequanti circulo: idque etiam in tribus formis hypothesium inter se comparatis: atque etiam supposita restitutione Braheana motuum Martis, quae medio Solis motui innititur.

Cap. XXV. Inventis igitar superiori capite trium et trium in zodiaco locorum distantiis Solis a Terra, demonstratione geometrica, quae nihil praeterea supponit nisi iter perfecte circulare, inquiritur non tantum eccentricitas circuli Solis vel Terrae ut cap. XXIII. sed etiam ipsius apogaei Solis vel contrarii aphelli Terrae locus, idem fere, qui a Braheo est inventas ex observationibus Solis propriis, cum hic sint observationes tantummedo Martis.

Cap. XXVI. Observationes hae quatuor cap. IV. medio metu Solis ad verum, a restitutione Braheana ad meam transferuntur; et colligitar idem inde quod cap. XXV. Et proponitur demonstratio in omnibus tribus hypothesium formis.

Cap. XXVII. Audaciori etiam methodo nullam plane praesuppono Martis restitutionem, et assumtis aliis Martis observationibus, non minus quatuor sic comparatis ut supra, demonstro non tantum eccentricitatem Solis seu Terrae et aphelium simul ut hacteuus, et proportionem orbium hoc eccentrici loco, sed etiam ipsum Martis locum eccentricum sub fixis, qui prius praesupponebatur ex restitutione cognitus.

Cap. XXVIII. Eadem fere demonstrationis forma, sed assumta Solis vel Terrae eccentricitate et aphelio toties jam comprobatis, adjunctis vero compluribus observationibus, pata hie quinque, sic comparatis inter se ut hactenus; ostenditur, semper unum et eundem prodire locum Martis eccentricum, fere ut cap. XXVII. Memineris autem, in omnibus praecedentibus partis III. capitibus praesupponi viam Terrae perfectum circulum, ut est quidem ad sensum. Nam propter parvam eccentricitatem ellipsis ipsi parum demere potest.

Cap. XXIX. Ponitur eccentrious perfecte circularis et eccentricitas cognita ejusque dupla eccentricitas puncti aequatorii. Tunc geometrice ex his positis inquiruntur distantiae, primo apogaea et perigaea, secundo distantiae in anomalia coaequata 90°, tertio distantiae reliquae. Ibidem demonstratur et compendium, una operatione quatuor distantias inquirendi. Amplius demonstratur punctum circuli, quod semidiametro circuli distat a centro Solis. Denique demonstratur punctum aliud circuli, in quo una pars aequationis fit omnium maxima.

11*

Cap. XXX. Distantiae Solis et Terrae in tabula exponuntur modusque docetur exerpendi, qui etsi ostenditur excedere limites principiorum et circuitari sideris ovalem efficit ideoque provocat juste ad sequentia capita XXXI. XL. XLIV. LV, ubi scrupulus hic tollitur: non tamen sentibiliter abire docetur ab iis, quae hactenus erant demonstrata.

Cap. XXXI. Metuebat Braheus ne bisecta Solis eccentricitate suas ipsi acquationes Solis turbarem. Hic ergo metus tollitur demonstrato, seu per integram eccentricitatem seu per bisectam seu per duplicationem ejus quod a dimidia eccentricitate exstruitar, semper eandem in Sole prodire acquationem. Alius igitur scrupulus est cap. XXX. alius hic cap. XXXI. Ibi metuebatur distantiis, hic metuitur acquationibus Braheanis; ibi cansa metus est figura itineris, hic eccentricitatis ratio: illic anticipata fuit consideratio, hic propria hujus loci.

Cap. XXXII. Primum fit inductio, omnes omnino planetas uti acquante circulo sen bisectione. eccentricitatis puncti acquatorii.

Super hoc principium geometrica demonstratione exstruitur universale hoc: moras planetae in aequalibus arcubus eccentri proportionari cum discessu planetae a puncto, unde consurgit eccentricitas. Arrigite aures physici, hic enim deliberatio suscipitur de impressione in vestram provinciam facienda.

Cap. XXXIII. Jam enim ex conclusione demonstrationis praemissae et adjunctis akiia axiomatibus mere physicis et confessis evincitur, distantias planetae a contro unde computatur eccentricitas esse causas dispensatrices morarum planetae in aequalibus eccentrici arcubus. Secundo docetur, causas has dispensatrices morarum residere in distantiarum termino altero, qui distantiis omnibus est communis: scilicet in centro systematis planetarii. Tertio assumitur ad haec sic demonstrata, partim ex Part e Prima, ut probabilier demonstratum, partim ex Quarta et Quinta Partibus, ut necessario et geometrice demonstratum; partim etiam hoc ipso loco et parte Secunda probabile efficitur, ipsum corpus Solis esse in centro systematis planetarii. Quarto hinc jam consentaneum efficitur, virtutem motricem seu morarum dispensatricem esse in corpore Solis. Accedunt argumenta physica.

Tunc obiter infertur et hoc, Solem in centro mundi quiescere, Terram circa centrum mundi moveri. Hic animadvertat physicus, speculationes has physicas inniti motui Telluris, sed aliunde deduci et valere tam in Brahei quam in Copernici sententia. Quin potius e contrario his ipsis speculationibus jam motus Telluris et quies Solis inaedificantur.

Quinto demonstratur, virtutem motricem plane ut lucem recipere quantitates, extenuarique in majori ambitu, condensari in minori. Sexto hinc demonstratur, id quod movet planetas de loco in locum, esse speciem immateriatam ejus virtutis, quae in corpore Solis est, similem speciei immateriatae lucis.

Cap. XXXIV. Pertexitar speculatio physica demonstraturque ex praemissis, speciem illam virtutis, quae vehit planetas, per mundi amplitudinem circumire instar fluminis sea vorticis, celerius quam planetas. Secundo hine demonstratur, et corpus Solis circa axem suum converti: ubi probabiliter periodicum tempus hujus conversionis inquiritur simulque disputatur, quid Terram quidque Lunam moveat. Tertio corpus Solis probatur esse quasi magneticum. Et ostenditur exemplo Telluris, esse magnetas in coelo.

Cap. XXXV. Objectio solvitur, an motus siderum, si ex Sele est, impediatar interpositu corporum, ut lux: unaque multa ex capite superiori illustrantur: quomodo scilicet virtus motrix et lux cognatae sint et altera alterius comes.

Cap. XXXVI. Solvantur aliae objectiones. Prima quidem geometrice instruitur, argumentans a puncto corporis Solis ad lineam, ab hac ad superficiem ejus planam secundum apparentiam et sic etiam ad sphaericam, ut evincat, lucem spargi alia proportione densitatis, quam ut aequiparati possit virtuti motrici. Sed respondetur ex principils opticis, principium argumentationis non posse esse punctum vel lineam, sed superficiem ipsam. Deinde negatur, considerandas quantitates apparentes disci Solis in effectu physico; quod potuisset pluribus declarari. Nam ne signum quidem esse potest hujus effectus physici, cum alia utatur proportione, etsi infra fiat signum rei alterius. Et sic asseritur luci modus sparsionis plane commensuratus motuum planetariorum dispensationibus.

Altera objectio pugnat in contrarium, lucem ineptam ad motus societatem, ut quae etiam ad polos spargatur; solvitur autem ex principiis susceptis, hoc est physicis, plane geometrice, ut ex solutione pateat causa naturalis zodiaci et cur planetae zodiacum nunquam deserant.

Cap. XXXVII. Quaeruntur ex positis principiis physicis occasiones ejus inaequalitatis in Luna, quam Braheus Variationem appellavit, quae Lunam novam et plenam velociorem reddit quam alias. Ubi removentur duae falsae super hac re opiniones. Deinde indidem quaeruntur occasiones, quibus aequatio Lunae in quadraturis major fiat quam in con-

junctione et oppositione cum Sole. Accedunt alia ad explicationem ejus peculiaris virtutis, qua Luna movetur, pertinentia.

Cap. XXXVIII. Praeter communem ex Sole vim motricem, planetas singulos singulis aliis causis motricibus dispensare motus suos, probatur duobus argumentis: uno ducto a motu longitudinis, altero a motu latitudinis. Cap. XXXIX. Initio praemittuntur axiomata sex physica, necessaria ad inquisitionem

virtutis, quae singulis planetis est'attributa peculiariter. Regnant autem una toto hoc capite duae hae praeconceptae opiniones: prima, planetae ambitum ordinari in perfecto circulo; secunda, iter hoc ejus dispensari a mente. Disputatur igitur, quomodo mens ista ex itinere planetae circulum possit efficere. Et primo demonstratur id fieri posse, si propria planetae virtus perfecto epicyclo moliatur corpus suum invehere, interimque rapiatur corpus etiam a virtnte Solari. Huic modo quinque opponuntur absurda physica. Secundo demonstratur, id fieri posse, si planeta observet certum punctum extra Solem, a quo aequaliter distet in omni suo circuitu circa Solem. Verum et haec certi puncti incorporei observatio refutatur tribus absurdis. Tertio demonstratur, fieri posse perfectum circulum, si virtus planetae propria Ebraret planetam in diametro epicycli versus. Solem porrecta, lege vero praescripta tanquam a circumferentiae epicycli decursu. At simul ostenditur, non posse describi justas librationes a planeta, si versetur is in epicycli diametro, sed nec respondere illas arcubus eccentri confectis nec tempori nec anomaliae coaequatae: posito quidem quod ex composito itinere pla-netae fieri debeat perfectus circulus. Quarto negatur etiam hoc, vim plauetae propriam mente quodamniodo concipere imaginarium eccentricum vel epicyclum exque ejus praescripto distantias ad perfecte circularem ambitum requisitas ordinare. Quantisper igitur ambitum planetae putamus esse perfecte circularem, manet in dubio ad quam normam mens planetae propria librationes has sui corporis expendat. Sic ventilata norma librationis hujus, progredior etiam ad medium, quo comprehendere mens planetae possit hanc normam et librationem ab illa praefinitam. Sive enim dicyclus pro norma sit sive ejus diameter sive eccentrici centrum; omnia ista ut inepta comprehensu rejecta sunt indigentque medio commensurato ad comprehendendum apto, per quod comprehendantur a mente. Ubi astruitur, mentem planetae respicere ad crescentem et decrescentem Solis diametrum eaque uti pro argumento distantiae sui corporis a Sole idque verisimilitudine ducta a latitudinibus. Respondetur etiam ad objectà de Solis exilitate et de sensuum in planetis defectu. Neque tamen omnino drarteleztor esse sententiam de gubernatione mentis, in fine movetur. Denique et difficultas aperitur circa corporis planetarii locomotionem a vi insita animali. Et sic multis undique difficultatibus objectis illud unice agitur, ut opinio, quae hactenus erat praeconcepta, de itinere planetae perfecte circulari (partim etiam de gubernatrice librationis hujus mente) in dubium vocaretur rationibus physicis: paulo post penitus convellenda geometricis cap. XLIV.

Cap. XL. 1) Methodus quomodo pars acquationis physica, seu mora planetae in aliquo arcu eccentrici inveniatur ex distantiis punctorum ejus arcus a Sole. 2) Ibi est geometrica demonstratio, quomodo infinitorum arcus punctorum distantiae a Sole quam proxime issint in area, quae est inter arcum et lineas, quae Solem ad terminos arcus connectunt. Et quomodo unum triangulum inter Solem, centrum eccentrici et finem arcus, exhibeat utrainque partem acquationis; angulo ad finem arcus opticam; area physicam. 3) Demonstratio, in Sole acquales esse ad sensum partes acquationis, opticam et physicam. 4) Praemittitur demonstratio, triangula aequibasia esse in proportione altitudinum 5) Per hoc theorema demonstratur, aream trianguli acquatorii crescere cum sinu anomaliae eccentri : unde compendium existit computandi hanc aream. Simul ostenditur experimento numerorum, non differre sensibili aliquo partes acquationis: id primo in 90° deinde in 45°. 6) Exceptio sequitur minutula demonstrans, aream paulo minus habere, quam omnium graduum eccentri distantias : et paulo plus quam omnium graduum anomaliae coaequatae distantias. 7) Geometrica deinestio quadrilateri conchoidis, quod acquiparatur distantiis omnium graduum eccentri a Sole. Ubi provocantur geometrae ad hoc spatium quadrandum. 8) Spatium inter duas conchoides demonstratur non esse ejusdem latitudinis in locis a medio aequedistantibus. De hoe plura cap. XLIII.

PARS IV.

Cap. XLI. Posito, iter planetae perfectum esse circulum, et assumtis trium eccentrici locorum distantiis Martis a corpore Solis certissime demonstratis parte tertia, geometrica demonstratione elicitur locus apogaei falsus, eccentricitas falsa et proportio falsa.

Cap. XLII. Nova ratione inquiruntur duorum eccentrici locorum distantiae aphelio vicinae observationibus quinque; perihelio, tribus. Deinde per dimidiationem periodici temporis et zodiaci circuli certissime inquiritar locus aphelii, et deprehenditur idem qui parte secunda et prima. Ex eo corrigitur longitudo media Martis. Comparatione vero utriusque distantiae elicitur vera eccentricitas et proportio orbium Martis et Terrae. Eccentricitate eccentrici certissime (licet non omnino subtilissime) constituta ex Solis observationibus, simul patescit, dimidiam esse de eccentricitate aequantis alibi inventa. Itaque etiam in Marte valere speculationes praemissas a cap. XXXII.

valere speculationes praemissas a cap. XXXII. Cap. XLIII. Ponitur fundamenti loco quod hactenus erat demonstratum cap. XLII: eccentricitates esse inter se in proportione dupla. Ponitur secundo, orbitam planetae ordinari in circulo perfecto. Ponitur tertio, quod cap. XXXIII. erat demonstratum, moras planetae in aequalibus orbitae arcubus esse in proportione distantiarum illorum arcuum a Sole. His positis aequationes eliciuntur vitiosae, dissentientes ab experientia. Tunc fit admonitio, ubi non lateat illa falsitas. Huic rei necessaria est mensuratio spatii inter duas conchoides capitis XL, quae cum habeat nonnullam ατεχνιαν, geometrae provocantur.

Sic igitur constat, falsae conclusionis omnino praemissarum aliquam esse falsam.

Cap. XLIV. Duobus argumentis demonstratur, orbitam planetae non esse circulum sed ovalem figuram.

In primo praesupponuntur demonstrata capitis XLI. XLII. Alias quippe distantias efficit perfectus circulus, cujus diameter erat cap. XLII. inventa, alias et quidem breviores ad latera requirunt observationes cap. XLI. repetitae. Sed ovalis figura admittit tales. Orbita igitur est ovalis.

In secundo argumento praesupponuntur eadem quae cap. XLIII. Moras de quibus experientia testatur, non admittit circularis figura, admittit vero ovalis. Orbita igitur planetae ovalis est.

Cap. XLV. In sequentibus lector ignoscet meae credulitati, dum omnes'ex meo ingenio aestimo. Quippe mihi non multo minus admirandae videntur occasiones, quibus homines in cognitionem rerum coelestium deveniunt, quam ipsa natura rerum coelestium. Occasiones igitur has diligenter explico: non dubium quin cum aliquo lectoris taedio. Sed tamen jucundior est victoria, quae parta erat cum periculo, et nitidior ex nubibus Sol exit. Attende igitur lector ad pericula nostrae militiae; contemplare nubes nigredine horrendas; contemplare inquam, nam post has nubes certo Sol veritatis latet et brevi emerget. Explicantur igitur occasiones, quae me invitartnt ut ponerem denuo falsum, planetam vi insita moliri epicyclum perfectum ejusque partes aequales temporibus scribere aequalibus: eundem vero planetam rapi a vi extranea Solis aequalibus temporibus inaequaliter, ut Mactenus. Hinc igitur demonstratur, orbitam seu iter ex utraque causa conformatum evadere in figuram ovalem.

Cap. XLVI. 1) Primum haec physica hypothesis, quae epicyclo propria est, permutatur in eccentricum. 2) Tunc docetur una ratio describendi lineam motus planetae ex hac sententia. 3) Recensentur quatuor $\dot{\alpha}\mu\eta\chi\alpha\nu_{i}\alpha_{i}$, quae circa hunc modum occurrunt. Ubi ostenditur, non esse idem medium inter terminorum summas, quod est inter ipsos terminos. 4) Proponitur secundus modus describendi hanc lineam et ostenditur hujus quoque modi $\dot{\alpha}\mu\eta\chi\alpha\nu_{i}\alpha_{i}$. Uterque modus utilis est interim operationibus per numeros. 5) Proponitur tertius modus describendi orbitam planetae conjunctione duarum hypothesium. 6) Rejicitur quartus modus, quem quis tradere possit. 7) Demonstratur, lineam sic creatam vere esse oralem, non ellipticam.

C a p. XLVII. 1) Posito vero, lineam itineris planetae perfecte esse ellipticam, demonstratur, aream ellipsis minorem esse quam aream circuli areola epicycli seu circuli ab eccentricitate eccentrici descripti fere. 2) Inquiritur area illius circuli et sic etiam plani oriformis. 3) Ostenditur, necessariam esse etiam geometricam sectionem illius areae oviformis in data ratione: ubi provocantur geometrae. 4) Meniscus, quo differt ovalis area a circulo, in rectum extenditur geometrice quantum potest. 5) Geometris proponitur contemplandum, an sic extensus duplus sit ad verum meniscum. 6) Cum non sit in promtu ratio dividendi ellipsin vel ovalem per se solitariam, demonstratur, ellipsin beneficio circuli commode dividi posse. 7) Posita igitur ellipsi et circulo divisa, ostenditur modus computandi et distantiam et aequationem. 8) Aequatio computata ad anomaliam 90°: ubi area in numeris quadrati diametralis exprimitur. 9) Modus ex ratione physicae aequationis corrigendi eccentricitatem. 10) Aequatio computata ad octantes anomaliae, ubi area trianguli aequatorii exprimitur numeris secunda scrupula significantibus. 11) His etiam falsis aequationibus deprehensis non minus quam prius cap. XLIII. circumspectantur causae erroris.

Cap. XLVIII. Omnia incommoda capitis XLVI. seu imperfectiones geometriae eliminare sum conatus confugiendo ab areis ad ooidis circumferentiae sectiones numerales.

1) Docetur, quomodo hac via ex distantiis, quae inveniuntur ad aequales temporis particulas, geometrice inquiratur correspondens portio viae ovalis ex capitis XXXIII. demonstratis et supposita cognitione totius ovalis longitudinis. 2) $\Lambda regrace,$ quae pro duabus distantiis initii et finis alicujus arcus unicam distantiam puncti medii usurpat, ratio redditur geometrica. 3) $\Lambda regrae alia,$ quae tamen via geometrica incedit, demonstratur terminorum, in quos deinust pertiones evalis, appropinquatio ad centrum eccentrici et sis asgelus ad id centrum, quem subtendit portio ovalis; denique ex hoc is etiam angulus, quem eadem portio ovalis subtendit ad centrum Solis. 4) Aregues alia inquirendae longitudinis viae ovalis, sed quae geometricas tamen speculationes alias comitatur. Dantar enim duo circuli, eorumque duo media, alterum arithmeticum, alterum geometricum, quorum illo major circulus efficitar, hoc minor. Duobus igitur argumentis ellipsis probatur acqualis medio arithmetico, altero communiori a contractu extremorum, altero geometrico plane, quo demonstratur ellipsis certo superare minas medium, igitur acquare majus medium probabile. 5) Processus unus inquirendi acquationee, qui negligit, quae numero 3. et 4. sunt dicta: perinde ac si ut in summa sic et in partibus se mutuo compensent. 6) Demonstratur geometrice, non esse in partibus acquales amplificationem visivam ex appropinquatione num. 3. et contrariam decurtationem ellipticorum arcuum num. 4. 7) Processus recensetur genuinus hujus capitis demonstratis omnibas consentaneus: et acquationes hinc inventae aduc erroris arguuntur.

Cap. XLIX. 1) Methodus superior ostenditur principium petere et contra id peccare, quod erat insi propositum. 2) Missis igitur non tantum areis capitis XLVI. XLVII, sed etiam ovalibus circumferentiis capitis XLVIII, ad causas reditur, quibus ovalis efficitur. Et quia hactenus epicyclus in eccentricum erat transpositus, ubi confundebatur virtus planetae propria cum virtute ex Sole, resumitur igitur epicyclus cum concentrico et applicantur causae physicae ex cap. XLV. ut fundamentum inquirendi acquationes hac via recte habeat. 3) Methodus ipsa constructarum acquationum recensetur et acquationes ejusdem erroris argunutur ab experientia, qui supra fui cap. XLVII. 4) Dilunntur igitur suspiciones erroris in calculo, quae supra cap. XLVII. nascebantur, et concluditur, peecare hypothesin ipsam cap. XLV.

Cap. L. Habet conatas sex, per distantias ipaas inquirendi acquationem, id est moram planetae in certo arcu eccentrici, usurpatas priusquam scirem in plano inesse summam distantiarum. Etenim moras ex distantiis esse desumendas certissimum est ex cap. XXXIII. At cam tree sint anomaliae: una, quae temporis est mensura; secunda, quae arcus eccentrici; tertia, quae anguli, quem subtendit ille arcus ad Solem: omnium trium anomaliarum partibus 360 acqualibus singulis aingulas dedi distantias. Hoc itaque nomine triplex est facta consideratio distantiarum. Sic cum ex eodem cap. XXXIII. pateat, iter planetae diurnum in aphelio ad diurnum perihelii, apparens ex centro quasi Solis, esse in proportione dupla conversa ejus, quae est inter distantias planetae a Sole apheliam et periheliam: quadravi igitur omnes distantias et divisi per mediocrem 100000, ut quod prodit id comparatum ad mediocrem 100000 repraesentaret illam rationem duplam, quae regnat inter diurnos apparentes ex centro Solis. Tribus igitur distantiarum generibus totidem genera tertiarum proportionalium accesserunt; quibus perquisitis speravi nihil a me praetermissum iri, quod ad effectum causarum naturalium (quae per distantias docent inquirere locum planetae eccentricum) pertineret: ut ita sex fierent modi.

In primo et secundo, qui habet distantias anomaliae eccentri seu secundae, occurrit aliquid geometricum consideratione dignum. Summa enim 360 linearum tertiarum acquavit summam 360 radiorum seu primarum linearum. Id proponitur geometris demonstrandum.

summam 360 radiorum seu primarum linearum. Id proponitur geometris demonstrandum. Prasteres modorum horum sex comparatio haec est. Nam duo (quartus et quintus) rem ducunt in absurdum et duplicant errores asquationum. Quatuor vero reliqui coincidunt cam modis capitum praecedentium, ex quibus duo (secundus et tertius) pouunt iter planetae esse circulum, duo vero (primus et sextus) transferunt distantias et orale iter praestant ex sententia capitis XLV. Et quantum illi excessu tantum hi peccant defectu habentque veritatem in medio.

Cap. LI. Deprehenso, acquationes viticeas fieri per ovalem capitis XLV, jam etiam explorator, an eadem et circa distantias peccet.

Igitur hoc capite assumuntur primo observationes, secundo distantiae Solis a Terra, quales sunt certiasime demonstratae parte tertia; practeres nihil ponitur seu inter demonstrationis principia assumitur. Ex his igitur demonstrantur distantiae Martis a Sole in plurimis locis eccentrici per totum ambitum : et quidem in locis ita selectis, ut singula ex singulis semicirculis ascendente et descendente acqualiter removeantur a loco aphelii supra men ana via invento. Unde comprobatur aphelium et simul exploratur fides hypotheseos vicariae.

Cap. LII. Ex demonstratis capitis prioris demonstratur porro, partes acqualiter ab invento aphelio remotas, distantes acqualiter a Sole, distare inacqualiter a quocunque alio puncto extra lineam per Solem et aphelium: ergo lineam apsidum Martis per ipsum corpus Solis transire, cum eccentricus Martis ab omnibus aliis lineis absurde scilicet in duo inacquala dividatur segmenta. Additur praecoccupatio, si quis illum eccentricum super aliud punctum vellet acdificare, sic ut ab alia is linea, quam quae per Solem transit, in duo acqualia secaretur, ipsum refutatum iri ab observationibus. Eoliem modo demonstratur, cum Sol sit in eccentrici ovalis diametre longiore, punctum igitur Solis vicarinm, super quo Copernicus exstruit eccentricum, esse extra illam longiorem diametrum. At verisimile nequaquam esse, ut eccentrici ovalis alia sit linea apsidum, quam longior ovalis diameter: igitur lineam apaidum non praeter Solem transire: et sic omnium planetarum lineas apsidum in ipso centro Solis concurrere, non in puncto aliquo medii loci Solis.

Cap. LIII. Peculiaris methodus inquirendi distantias Martis a Sole prope oppositionem ejus cum Sole: et simul demonstratio puncti orbis magni, ex quo error in distantia commissus apparet omnium maximus. Ubi praesupponitur differentia locorum eccentricorum duorum et distantiarum utriusque a Sole mediocriter cognita. Qua ratione simul ut prius Cap. LI. exploratur fides hypotheseos vicariae.

Cap. LIV. Collectione eorum quae passim sunt demonstrata, magna cautione constituitur et attemperatur proportio eccentricitatis et orbium.

Cap. LV. Tandem reditur in viam, unde capite XLV. deflexeramus. Inductione enim omnium demonstratur, uti circulus capite XLIV. ad latera nimis erat laxus, sic ovalem capitis XLV. esse nimis angustam. Argumenta duo sunt. Alterum a distantiis ductam: ubi comparantur observatae et cap. LI. LIII. productae cum distantiis ex hypothesi computatis, ex proportione orbium capitis LIV. et forma motuum capitam XLV. XLVI. XLIX. Et ostenditur, observatas esse longiores. Alterum argumentum sumitur ab aequationibus. Nam aequationes ex circulo computatae cap. XLII. peccabant in partem unam; quae vero ovali cap. XLV. computabantur per cap. XLVI. XLVII. XLIX. L. tantundem peccabant in partem alteram:

Cap. LVI. Hinc jam demonstratur, distantias non ex circumferentia epicycli desumendas, sive zequabiliter in eo planeta incedat, ut cap. XLV, sive proportionem retineat motus eccentrici, ut cap. XLI, sed sumendas esse ex epicycli diametro. Praemissae eaedem sunt quae in priori.

Cap. LVII. Cum rationes physicas capitis XLV. necesse sit aliquid falsi habere admixtum propter effectum falsum: jam patefacto genuino effectu instaurantur illae rationes physicae et continuatur speculatio capitis XXXIX.

1) Primo ostenditur, librationem in diametre epicycli (quae reddit distantias observatis consentaneas) tenere leges naturales corporum. 2) Cum libratio sit translatio de loco in Iogum, ostendituf, hanc translationem corporis planetae fieri et perfici a Sole, non minus quam parte III. circumlationem: sic tamen ut hujus librationis habenae sint penes planetam ipsum. Id declaratur duobus exemplis, altero remorum imperfecto, altero perfectiori magnetis. 3) In applicatione magnetici exempli duae statuuntur utrinque et in magnete et in planeta facultates: altera directionis, altera appetentiae. Magnes dirigitur versus polum, ferrum vero appetit, Ita globus planetae dirigitur in fixas, appetit vero Solem. Directionis igitur opus, a qua pendet motus et locas aphelii, initio in dubio relinquo, sitne mentis an naturae. Appetentiae opus, a qua pendet eccentricitas, naturae transscribo et ostendo crassiori Minerva. mensuram librationis observando deprehensae consentaneam esse causae physicae per partes. 4) Postea acouratius ista tractans initio facto a directionis opere, et concesso, quod ei deroget aliquid declinatio ex appetentia Solis orta : sicut magnes in polum directus declinat tamen nonnibil ob ferrum et montes a latere vicinos; demonstro, posse naturali corporeaque facultate, etiam sine mentis ministerio, salvari locum et tardissimam translationem aphelii in consequentia. 5) Appetentiae vero mensuram demonstro tenere rationem staterae : et specialius, sinum rectum anomaliae coaequatae metiri fortitudinem appetentiae quolibet puncto temporis. 6) Circa librationem vero peractam quolibet tempore attende lector quid demonstrem. Ex cap. LVI. patet ejus mensura: nempe sinus versus anomaliae non coaequatae sed eccentri. Ea mensusa observationibus innititur. Hic igitur in id elaborandum mihi fuit, ut ex dicta mensura fortitudinis quelibet loco (erat autem sinus rectus anomaliae coaequatae) demonstrarem etiam hanc mensuram lineae librando confectae, scilicet sinum versum anomaliae eccentri. Ut hec obtineretur ostendendum fuit, quadrante diviso in aliquet partes aequales sinum versum alicujus arcus insensibili minorem habere proportionem ad sinum versum totius quadrantis, quam habet summa sinuum in arcu ad summam sinuum in quadrante: 7) Hic, quo minus cohaeraret haec praemissa cum illa conclusione, duo obstare videbantur. Primum quod anomalia eccentri, librationis mensuram exhibens, in superiori semicirculo major erat pluresque sinus exhibebat anomalia coaequata, fortitudinis exhibente mensuram. . Responsum autem est, id recte fieri, eo quod in illa coaequata planeta etiam plus temporis consumat, quare et plus virium effundat. 8) Alterum obstaculum; sinus coacquatae, breviores case sinubus cacentri in superiore sc. semicircalo. Ostensum igitar est, ipsum etiam sinum versum nonnibil deficere a summa sinuum arcus sui et'sic asquipollere summae breviorum simuum. 9) Quae objici possunt exemplo magnetis partim dilumnur,

Argumenta Capitum.

partim occasionem praebent, natura in dubium adducta, ad mentem transcundi, ut appapat, an et que pacto mens eccentricitatem librando queat efficere. 10) Itaque positis quae sunt cap. LVL certissime demonstrata, versum sinum anomaliae eccentri metiri Fbrationem, demonstratur jam sinum versum anomaliae coaequatae metiri incrementum apparentis diametri Solis, hoc est non tantum incipere augeri apparentem Solis diametrum, cum inci sit sinus versus anomaliae coaequatae, et maximam fieri cum hic est maximus, sed etiam liam existere inter extremas, cum sinus versus anomaliae conequatae est semidiameter, anomaliae eccentri sinu verso tunc majore existente. 11) Contra hoc sinu verso anomaliae eccentri existaute semidiametro, demonstratur, diametrum apparentem Solis adhus minorem esse, quoniam est media inter extremas. 12) Ut ostendatur, mensuram hanc esse convenientem et comprehensibilem mensuram menti planetze, primum instituitur collatio inter anomaliam eccentri et anomaliam cosegnatam, et negatur angulum anomaliae eccentri, si pro mensura oblatus fuisset, a menta planotae comprehendi potuisse. 13) At anomaliae coaequatae angulum, cujus sinus versus proportionatur augmentó diametri Solis, comprehendi a mente planetae, probabile efficitur. 14) Cum antem non hic angulus, sed ejus sinus versus metiatur incrementum diametri Solis. rationibas et amppositis physicis exemplisque rerum naturalium ostenditur, probabile esse, mentem planetae comprehendere posse sinum (id est physice fortitudinem) anguli hujus, 15) Insituisur comparatio duorum modorum hactenus traditorum, quibus motus planetariorum corperum proprii, hoc est librationes perficiantur : quorum alteri natura, reliquo mens erat pracpesita : et concluditur denique pro patura, repudiata mente. 16) Inter argumenta hujus rei praccipuum est incertitudo geometrica, admissa in hac forma motus per ministerium mentis : que explicatur. 17) Ostenditur, ex es incertitudine existere posse occasionem progressus apbeliorum. Sed quis supra (cap. XXXV.) alia causa progressus apheliorum insinusta fuit, ideo hie fit comparatio utriusque et estenditur, solum interpositum, si efficacia ipsi relinquatur aliqua, progressum apheliorum non cansari, neque si natura neque si mens moveat. 18) Itaque limitantur positiones physicae, ne aliud aliquid noceat interpositio. 19) Ut astem hinc esse pessit progressus aphelii, ostenditar, associandum esse interpositui illud peculiare mentis opns, quod num. 17. ut absurdum rejiciebatur. Quo ut liberemur, coacluditar pro ca sententia, quae num. 4. naturae transscripsit motum aphelii.

Cap. LVIII. 1) Investa vere ratione librationis planetae ostenditur, quomodo ca stante penit effici orbita planetae (composita ex utroque motu, circumlationis scilicet et libratiqnis) etfam forma buccosa; et quomodo per verisimilem errorem in hanc buccosam inciderim. 2) Illa orbita erroris arguitar per acquationes, veris distantiis existentibus; contra quam hactenus, quando semper in distantiis et in acquationibus simul errabatur. 3) Ostendo, quomode quasi aliud, agens et revocata ellipsi escorem ignarus correxerim. 4) Buccosam mifici orbitam ex hypothesi erronea mihi usitats, demonstratur. 5) At quia erbita elliptica acquationes justas exhibebat, igitur librationem in orbitam buccosam deformatam in dubium venisse ostenditar.

Cap. LIX. 1) Ellipseos geometria propositionibus 10, quibus 2) demonstratur, propositione 11. non mittus quam in buccosa, cap. LVIII. introdueta et falsitatis convicta, etiam in ellipsi perfecta inesse distantias librationibus constitutas et observationibus innizas. Itaque cum ellipsis et distantias praestet et acquationes, orbitam igitur planetae esse ellipticam. 3) Indidem demonstratur prop. XII. aream ellipsis esse perfectissimam mensuram distantiarum ellipsis arcum inacqualium circuli acqualibus respondentium. 4) Solutione objectionia de arcubus ellipseos inacqualibus ostenditur prop. XIII. ellipsin hane principiis physicis partie tertiae examusism concordare: 5) Arcus ellipseos terminandos per ordinatim applicatas graduum circuli demonstratur prop. XIV, de initio et de fine quadrantis duabus perfectis demonstrationibus; de progressu vero intermedio imperfectius, per lydeily tamen satis luceleutam: ubi provocantur geometrae. 6) Hisee conclusis, praesertim iis, quae num 3. dicta sunt, et adhibitis, quae sunt num. 1, demonstratur eo amplius prop. XV. aream ipsius etiage circuli esse perfectissimam mensuram distantiarum, quae arcubus ellipseos inacqualibus (per erdinatim applicatas acqualium arcuum circuli constitutis), assignantar, attestante et operatione numerorum: quo utroque modo et observationibus satisfit.

Cap. LX. 1) Ex demonstratis cap. LIX. methodus constituitur acquationum. 2) Demenstratio praecepti, quomodo ex data anomalia eccentri eliciatur anomalia media et anomalia coacquata. 3) Data coacquata et eccentricitate quomodo eliciatur anomalia eccentri, modus unus, qui innititur speculationi pulcherrimae et plane geometricae super lineolis ingressus planetae a circumferentia circuli ad lineam speidum, habetque quinque problemata et perficieur per rectangula quadrantis. 4) Alia methodus hujus problematis per regulas analyticas. 5) Data anomalia media sere tempore invensendi anomaliam eccentri et anomaliam coacquatam methodus erzgvoç quasi pes falsi regulam: et qansa cur methodus geometrica tradí non possit.

PARS V.

Cap. LXI. Hypothesi longitudinis inventa, jam accuratius inquiritur ex observationibus locus uterque nodorum.

Cap. LXII. 1) Distantiis inventis accuratins jam inquiritur inclinatio planorum ex observatione acronychia; idque in utroque semicirconlo. 2) Demonstratur proportio visae latitudinis ad inclinationem cujusque loci conversa distantiarum Solis et Telluris a planeta. 3) Tabella visarum latitudinum in opposito Solis, cum computatis ex nostra hypothesi comparatarum.

Cap. LXIII. 1) Traditur physica causa excursus in latitudinom. 2) Demonstratur geometrice, ex hoc excursu circumiri planum. 3) Disputatur, naturae corporese an mentis opus sit, et pro natura potius concluditur. 4) Disputatur, idem an alius ab axe, qui eccentricitatem causatur, sit axis latitudinum: et ostenditur, cujus formae corpus esse necesse sit, si sola ejus natura omnia facit. 5) Positis orbibus solidis traditur hypothesis latitudinis plana et expedita.

Cap. LXIV. Latitudinum doctrina tradita accuratius examinatar parallaxis diurna, et duobus argumentis, altero per locum nodorum, altero per inclinationem planorum, pene insensibilis esse convincitur.

Cap. LXV. 1) Quantitas maximarum latitudinum, tam in oppositionibus quam in conjunctionibus determinatur, concesso motuum omnium per omnes Eeliypie, justoque seculorum spatio. 2) Eadem quantitas ad nostrum seculum determinatur.

Cap. LXVI. 1) Quantitas maximarum latitudinum extra sysygias investigatur et loca determinantur. 2) Traditur causa paradoxi circa latitudinem in opposito Solis. 3) Accurata methodus computandi latitudinem extra situm acronychium.

Cap. LXVII. Demonstratur idem quod cap. LXX, eccentricitates consurgere ex ipso centro Solis, non ex puncto Solis vicario: idque duobus argumentis, priori a locis nodorum, altero ab inclinatione planorum.

Cap. LXVIII. 1) Theoria mutatae fixarum latitudinis, proposita per causas physicas et eclipticam mediam seu potius circulum regium (ut viam regiam dicimus) introductans. 2) Ostenditur, boreum limitem eclipticae esse in Arietis gradu $5\frac{1}{2}$, itaque probabile effieitur, mediam illam seu constantem viam transire per loca apsidum planetarum. 3) Adstruitur media ecliptica sen potius circulus regius ex mutatione obliquitatis eclipticae vulgaris seu verae: ubi in margine est theoria praecessionis acquinoctiorum, per axis et polorum Terrae translationem annuam cylindricam et inclinationem tardissimam, quae conum declimet. 4) Hine evincitur, inclinationem planorum Martis et eclipticae non permanere omnibus secultis esadera. 5) Ex collatione observationum Ptelemaicarum cum postris obsectrins idem colligitur.

Cap. LXIX. 1) Quid veteres observaverint circa Martem scriptumque reliquerint. 2) De inaequalitate praecessionis aequinoctiorum, pro et contra. 3) De instili sphaerarum numero ascundum recentieres. 4) An Solis ecoentricitas elim major fuerit? sive de lengitueine aestatis hiemisque seculo Ptelemaei. 5) Apogacum Solis ad tempora Hipparchi incertum esse; et usitatus illi modus investigandi. 6) Loca fixarum ad tempora Ptelemaei esse incerta nonabil, et modus investigandi. 7) Quid ex errore in locis fixarum redundet in theoriam Martis. 8) Ex tribus Ptelemaei acronychiis observationilus ad modernas aequationess accommodatis exstruitur correctio motuum ad tempora Ptelemaei, idque vicibus octo, prout aliud atque aliud ex praecognitis Ptelemaei bactenus ventilatis fuerit immutatum. 9) Ut igitar cum hac incertitudine transigerstur, estenditur, quod neglectu refractionis et vitio eccentricitatis Solis se mutuo tollentibus maneant ea loca fixis, quae Ptelemaeus ipsis assignavit in zediaco: 10) Hoc fundamento constituitur epocha motus medii Martis ad tempora Ptelemaei et Christi. 11) Additur et epocha motus medii Selis a fixis temporibus Ptelemaei et Christi.

Cap. LXX. Examinatur ad tempora antiqua proportio orbium Martis et Solis, latitado Martis et eccentricitas Selis, per duas antiquas et infidas observationes.

IN NOMINE DOMINI.

COMMENTARIORUM

DE MOTIBUS STELLAE MARTIS

PARS PRIMA.

DE COMPARATIONE HYPOTHESIUM.

Caput I.

De differentia motus primi et secundorum sive propriorum, et in propriis inaequalitatis primas et secundae.

Planetarum motus orbiculares esse perennitas testatur. Id ab experientia mutuata ratio statim praesumit, gyros ipsorum perfectos esse circulos; nam ex figuris circulus, ex corporibus coelum, censentur perfectissima. Ubi vero diligenter attendentes experientia diversum docere videtur, quod planetae a circuli simplici semita exorbitent, plurima existit admiratio, quae tandem in causas inquirendas bomines impulit.

Hinc adeo nata est inter homines astronomia, cujus scopus esse putatur docere causas, cur stellarum motus irregulares in Terris appareant, cum sint ordinatissimi in coelo, et investigare, quibusnam circulis stellae cieantur, ut horum beneficio loca et apparitiones illarum ad quaevis tempora praedici possint.

Cum nondum constaret de discrimine inter motum primum et secundos, homines intuiti Solem, Lunam et stellas notarunt, itinera ipsorum diarna aequiparari quam proxime circulis ad sensom, sic tamen ut alter ex altero necteretur in fili glomerati modum, circulosque ut plurimum minores in sphaera, rarissime maximos esse (ut jam ABCE, FMNG, secantes AB aequatorem in C, N) partem eorum in austro, partem in borea. *) Viderant etiam, distingui stellas celeritate in hoc diurno et apparenti motu: fixas omnium esse celerrimas; quia pridie alicui planetarum junctae [ut H ipsi A et

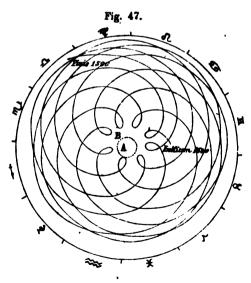
Fig. 46.

•) Motus primus est totius coeli et omnium in eo stellarum ab ortu per méridiem in occasum et ab occasu per imum coeli in ortum, tempore 24 horarum; in schemate praesenti ABCD. Motus secundi sunt singulorum planetarum ab occasu versus ortum, ab A in E, ab F in G, temporibus longioribus. Circulus maximus sphaerae est, qui acqualiter distat ab utreque suerum polorum. Minores, qui sunt alteri polorum propiores; ut HLK polo Q propior est quam polo R. Hanc primam astronomiae adumbrationem, quae nulla causae explicatione, sola vero et tardissima oculorum experientia constat, et quae nec schematibus nec numeris explicari inque futura tempora depromi potest, cum perpetuo a se ipsa dissideat, adeo ut nulla spira alteri temporis mora aequetur, nulla ejusdem quantitatis flexu in vicinam transeat, hanc inquam aliqui tamen hodie, conculcato bis mille annorum labore, diligentia, eruditione, scientia, restituere conantur, vulgo admirationem sui, non irrito apud imperitos conatu, ingerentes; quos peritiores vel ineptire vel si philosophi audire volunt, ut Patricius ille, cum ratione insanire jure merito censent.

Successit enim astronomis ut intelligerent, duos confundi motus simplices, primum et secundos, communem et proprios, ex qua confusione necessario sequatur illa conglomeratorum motuum connexa series: itaque separato communi illo et extrinsecus advenienti raptu diurno, jam porro non fixas velocissimas, Lunam tardissimam, sed contraria ratione, hanc velocem se ipsa et motu proprio FG, illas plane vel tardissimas vel immotas esse: cumque planeta quispiam, ut G Luna, a Sole E vel a fixis I est únolemenos, eum in consequentia^{*}) ferri per FG celerius, quam Solem per AE vel fixas per HI; at si $\pi \varrho onyou \mu e o \varsigma$ appareat inter fixas, motu retrogrado incedere: ut si Sol A cum fixa H ex iisdem pridie carceribus AH emissus, per BCDE pervenisset usque in P, fixa vero per HLK usque in I, Sol unius' diei spatio per intervallum AP retrocessisset.

Magnus hic in astronomia profectus fuit ad discendam motuum simplicitatem. Pro infinitis enim spiris, semper nova ex fine prioris E vel G nexa, relinquebantur singuli pene circuli FG et AE et únus communis motus, seu omnium planetarum totiusque adeo mundi in plagam motibus propriis contrariam, seu secundum Aristarchum stante mundo, globi Telluris T circa axem QR in plagam eandem cum propriis motibus.

Separato jam primo et diurno motu et perpensis tantum iis motibus, qui collatione dierum aliquot deprehenduntur et singulis planetis seorsim insunt, jam in his ipsis multo major apparuit confusio quam prius, cum adhuc motus diurnus et communis ipsis esset implicitus. Etsi enim haec



^{*)} In consequentia est secundum signorum seriem ab Ariete in Tauram de. quae series tendit ab occasu per meridiem in orientalem plagam et inde versus imum coeli rursum ad occidentem : ab F in G, ab A in E.

residua confusio etiam prius erat, minus tamen observabatur, minus oculos incurrebat, propterea quod motus diurnus valde celer esset, atque sic haec jam residua confusio, tunc in minutas partes dissecta, per plurimos dies plurimasque spiras diurnas spargebatur. Jam vero sublata illa minuta sectione et distributione propriorum stellae motuum in dies tam multos. sublato nempe motu diurno, toti motus stellarum proprii, quanti fuerunt, totaque plurium confusio manifestius enituit. Primum enim apparuit, tres superiores Saturnum, Jovem et Martem motus suos ad Solis propinquitatem attemperare; nam si Sol ad ipsos accedebat, directi incedebant et solito velociores; ubi Sol ad signa planetis opposita veniebat, ipsi viam jam emensam cancrino gressu relegebant; intermediis temporibus stationarii ' fiebant, atque hoc perpetuo, in quibuscunque zodiaci signis planetae deprehenderentur. Simul autem ad oculum patuit, planetas grandes videri cum retrocedebant, minutos quando directi et veloces Solis adventum exspectabant. Ex quo facile patescebat, ipsos Sole propinquante in altum attolli et a Terris recedere, eodem in contraria signa discedente, rursum ad Terras descendere. Denique observatum est, haec jam dicta spectacula retrocessunm luminisque ampliati per signa zodiaci transponi ordine, qui ab occidentis plaga per meridianam in orientalem tenderet; ut quod jam in Piscibus contigerat, mox similiter fieret in Ariete, post in Tauro et sic consequenter.

Haec omnia si quis fasciculo uno componat simulque credat, Solem re vera moveri annuo spatio per zodiacum, quod credidere Ptolemaeus et Tycho Braheus, tunc necesse est concedere, trium superiorum planetarum circuitus per spatium aethereum, sicuti sunt compositi ex pluribus motibus, esse re vera spirales; non ut prius fili glomerati modo, spiris juxta invicem ardinatis, sed verius in figura panis quadragesimalis in hunc fere medum.

Haec est accurata delineatio motuum stellae Martis, quos per auram aetheream ille decurrit ab anno 1580 usque ad annum 1596, si verum est, Terram stare, quod Ptolemaeus et Braheus volunt. Eos motus ulterius continuare perplexum erat futurum : nam connexio infinita est, nunquam in se ipsam recurrens. Et nota, quod cum tanta requiratur vastitas orbis Martii, in angustissimo postea circello circa A Terram ejusque spatiolo B includi sphaeras Solis, Veneris, Mercurii, Lunae, ignis, aeris, aquae, terrae: atque de hoc ipso spatiolo uni Veneri cedere portiunculam potissimam, nimirum multo majorem in proportione, quam Marti hic cessit de toto hujus schematis spatio. Similes autem spiras cogimur etiam quatuor reliquis adscribere, et Veneri

quidem multo perplexiores, si Terra stat. Spirarum istarum causas, ordinem, constantiam et regularitatem explicat Ptolemaeus et Braheus; ille, epicyclis singulis in eccentricis planetarum singulorum vircumductis, qui motum Solis imitarentar; hic, eccentricis ennibus in orbe uno Solis circumductis. Spiras tamen ipsas in coele re ipsa uterque relinquit. Copernicus uno motu annuo Telluri attributo planetas omnes spiris hisce perplexissimis omnino spoliat, planetas singulos in singulas nudissimas orbitas quam proxime circulares inducens, quam unam et eandem orbitam Mars jam dicto temporis spatio toties percurrit, quot hic vides corollas intortas versus centrum, una plus, puta novies, dum interim Tellus suum circulum recurrit sedecies.

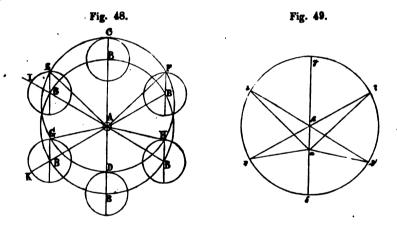
Rursum autem animadversum est, hos uniuscujusque planetae spirarum articulos in diversis zodiaci signis esse inaequales; ut alicubi planeta per longiorem arcum zodiaci retrocederet, alicubi per breviorem, jam longiore, jam breviore temporis spatio: nec idem perpetuo retrogradi planetae luminis incrementum: quodsi tempora et loca inter medios retrocessuum articules computarentur, neque tempora temporibus neque arcus arcubus erant aequales, neque quaeque tempora suis arcubus eadem proportione respondebant: erat tamen unicuique planetae certum signum zodiaci, a quo signo psque ad oppositum per utrumque semicirculum omnia ista successive augebantur.

Ex quibus observationibus intellectum est, duas inaequalitates apud unumquemque planetam in unum confundi, quarum prior cum reditu planetae ad idem zodiaci signum, altera cum reditu Solis ad planetam restitueretur. Harum itaque inaequalitatum causae et mensurae investigari aliter non poterant, nisi separarentur confusae inaequalitates singulaeque seorsim inspicerentar. Censuerunt igitur, ab inaequalitate prima incipiendum, quod esset constantior et expeditior; ut cujus exemplum in Solis motu videbapt, qui alteri inaequalitati non erat obnoxius.") Ut igitur ab hac prima inaequalitate secundam separarent, aliter non potuere, quam si considerarent planetas iis noctibus, quarum in principiis oriuntur occidente Sole; quos angorres appellabant. Nam quia praesentia et conjunctio Solis ipsos praeter morem accelerat, oppositio Solis etiam in contrarium ducit; certe ante et post hos articulos multum e suis locis, quos erant repraesentaturi per primam inaequalitatem, emoventur. In articulis ergo ipsis conjunctionis et oppositionis cum Sole illa ipsa sua loca transeunt. In conjunctione vero Solis cum cerni nequeant, relinquitur sola oppositio cum Sole idonea huic rei.

Cum autem alius sit medius motus Solis, alius apparens,**) eo quod Sol etiam sit obnoxius inaequalitati primae, igitur quaeritur, quisnam horum exuat planetas inaequalitate secunda, et utrum planetae sint inspiciendi in oppositione cum apparenti an cum medio loco Solis. Ptolemaeus medium motum elegit; quod discrimen, si quod sit inter usurpationem medii vel apparentis motus Solis, observationibus censeret deprehendi non posse, fieret vero forma calculi et demonstrationum expedita usurpato motu Solis medio. Ptolemaeum Copernicus et Tycho in suis transsumtionibus sunt secuti. Ego, ut habes in Mysterio meo Cosmographico cap. XV, (Vel. I, p. 153 s.) apparentem locum et ipsum Solis corpus pro meta statuo: idque demonstrationibus, operis parte quarta et quinta sequentibus, evincam.

Prius tamen hac parte prima demonstrabo, quod is, qui pro medio

^{*)} Sol habet unam solam inaequalitatem respectu temporis, intra quod illa absolvitur. Nam quod causas inaequalitatis hujus attinet, illae duae concurrunt tam in Sole quam in reliquis planetis, ut infra dicetur.


^{**)} Apparens Solis locus est is, quem Sol per inaequalitatem suam occupare cornitur. Medius est is, quem occuparet, si inaequalitate sua carstet.

apparentem Solis motum adhibet, omnino aliam planetae orbitam in aethere statuat, quamcunque ex celebrioribus opinionibus de mundo sequatúr. Quae demonstratio cum aequipollentiae hypothesium innitatur, ab hac incipiemus.

Caput II.

De prima et simplici aequipollentia eccentrici et concentrepioycli, et earum causis physicis.

Ac initio hic amplector illam a Ptolemeao lib. III. et Copernico lib. III. cap. XV. demonstratam aequipollentiam hypothesium, quae pro prima inaequalitate salvanda sunt susceptae; ubi eccentricus paria facit cum epicyclo in concentrico: siquidem linea apsidum in eccentro et linea per centrum epicycli et planetam in concentrico perpetuo maneant paralleli; et hic semidiameter epicycli aequet illic eccentricitatem; semidiametri vero illic eccentri et hic concentrici sint aequales; moveaturque illic planeta in eccentro aequabiliter, sic ut aequalibus temporibus aequales arcus conficiat.

Sit primo A locus oculi et centrum concentrici BB, in quo epicyclus BC, BE: sintque arcus inter bina B, seu anguli BAB, aequales: et planeta primo in C, deinde in E, G: lineaeque BE, BG parallelae ipsi BC. Sit deinde β centrum eccentrici $\gamma \zeta$; et $\beta \gamma$, βs aequent AB: sitque a punctum, in quo oculus, et βa (eccentricitas) aequalis ipsis BC, BE semidiametris eisque parallelos: et arcus γs , $\gamma \zeta$, hoc est anguli $\gamma \delta s$, $\gamma \beta \zeta$ aequales et inter se et prioribus BAB. Dico, distantias AC, ay aequales esse: sic AE, as; AG, $\alpha \eta$; AD, $\alpha \delta$; AH, $\alpha \theta$; AF, $\alpha \zeta$; itemque angulos EAC, say aequales: et planetam, quamvis aequabilis motus, utrinque tamen visum iri tardum ex A, α , cum est in C, γ ; velocem, cum est in D, δ . Hoc, inquam, Ptolemaeus demonstravit lib. III. Nec verbis opus est. Schema loquitur geometrae. Ceteri Ptolemaeum adeant.

Quod physicam horum schematum explicationem attinet, plus alterum ab altero differt. Quod ut manifestum fiat, paulo altius est repetendum, et anter quidem explicandum ex Purbachio secundum Aristotelis principia, aliter etiam ex Tychone.

Ptolemaeus nudos nobis hosce circulos descripsit, quales geometria observatis applicata indicat. Purbachius modum constituit, quo decurrerentur, secutus Aristotelem, qui hoc idem in Eudoxi et Calippi geometricas apprositiones, quibus astronomiam tradiderant, attentavit, ⁷³) Cum enim auctores illi orbes 25 adhiberent ad demonstrandam omnem planetarum inaequalitatem. Aristoteles, solidis orbibus coelum refertum credens, alios 24 revolventes consuit interponendos; ut scilicet inferior quisque orbis eo raptu, quem propter contiguitatem superficierum erat a superiore passurus, hiberaretur. Igitur, cum in universum orbes 49 (sive secundum Calippum 53 aut 55) accumulasset, singulis singulos motores addidit; quorum quilibet orbi sue et omnibus inferioribus, quos ille esset complexas, motam aequabilissimum in orbe superiore orbem suum proxime ambeunte, tanquam in loco quodam, praestaret, et a quo et plagae, in quam motus ferri debebat, et celeritatis, qua esset orbis ad suum principium restituendus, constans ratio procederet. Ac cum placuisset illi philosopho, motum aeternum esse, motores quoque acternos statuit: qui cum infinito tempore moveant, infinitatis vero nullum materiatum capax esse sciret, immateriatos quoque et principia separata, quare immobilia esse voluit. Ac cum ex motus aeternitate mundum exstruxisset aeternum, essetque haec duratio essentiae, totius mundi bonitas et perfectio, opposita interitui, qui malus esset; principiis illis perfectionem summam tribuit, ejusque intellectionem et ex intellectu bono voluntatem id prosequendi, ne bonum non bene faceret; quo pacto mentes separatas, denique deos nobis introduxit, motus coelorum perennis administros. Addiderunt et animam motricem, orbibus arctius alligatam eosque informantem, ut mens tantum adstaret: vel quod movens et mobile convenire in aliquo necesse videretur, vel quod potentia ratione spatii trajiciendi non infinita esset, uti neque motus ullus infinitus est, sed dimenso tempore per dimensum spatium. Hanc itaque potentiam movendi transscripserunt animae, eoque nomine tantisper materiatam esse passi sunt, ut in coelorum orbibus inhaereret.

Atque haec mentis et animae copulatio sane perquam consentanea est particularibus astronomorum animadversionibus: quamvis philosophorum argumentatio potius metaphysica sit. Nam ut in homine alia est facultas movens, alia movente facultate utens, voluntas, secundum indicia sensuum, qui et instrumentis a facultate movente differant et fabricae praestantia, quae in sensuum organis est admirabilior quam in facultatis motricis vehiculis: ita, si hos ipsos orbes Aristotelicos ad contemplandum proponamus, duo nobis occurrent: vis motrix orbi rotando sufficiens, ex cujus vigore et constanti fortitudine tempus revolutorium oritur, et plaga, in quam eundum : quarum illa animali facultati rectius transscribitur, haec vero naturae Nam etsi quidem per hanc soliditatem orbium intelligenti aut memori. omnibus omnino motibus seu apparentiis coelestibus ita prospectum est, ut providentiae praesidum motoriorum relinguatur nihil, omnis vero varietas motnum ex dispositione et pluralitate orbium proficiscatur, nec quicquam alind requiratur, quam ut animae motrices accipiant et retineant suum vigorem, et a primo creationis initio in plagam quaelibet suam incitentur et quasi e carceribus in spatia dimittantur: tamen considerandum est, hoc ipsum mentis illius supremae opus esse, planetam quemlibet in plagam suam,

Digitized by Google

quasi in certam et peculiarem provinciam, immittere: quod munus Aristoteles, qui de initio mundi nihil scivit aut credidit, ipsis motuum auctoribus necessario transscripsit. Et sectatores Aristotelis, quin et Scaliger professione Christianus, aperte disputant, hunc motum orbium esse voluntarium et principium voluntatis illis esse intellectionem et desiderium.³

Ut igitur ad Purbachium redeamus, cum eo alii quidam, praecipue libellorum sphaericorum scriptores, primum schema sic explicant, ut imaginentur sibi unum orbem solidum concentricum crassitudine epicycli totius, et in eo epicyclum, in epicyclo planetam. His igitur duobus orbibus tribuerunt duas animas motrices (si considerationem physicam pertexant) eadem utramque proportione virtutis, ut eodem tempore periodos suas in plagas tamen contrarias absolvant.

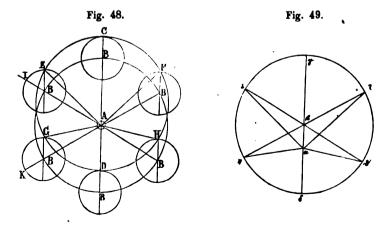
Alterum schema requirit duos deferentes (adhuc quidem immobiles, dum in hac motuum simplicitate manemus, mente removentes progressum apogaeorum), et unum orbem, crassitudine corporis planetarii, in eoque orbe animam, quae aequabili contentione illum circumagat in plagam eam, in quam a principio impulsa est. Concessa igitur hac soliditate orbium et reliquis assumtis, manebunt in primo schemate BC, BE, paralleli; in altero orbis γs circa β centrum ibit: etsi motores nec illic ad AC, nec hic ad β respiciant; diriguntur enim materiali necessitate seu dispositione et contiguitate orbium.

At quia Tycho Brahe certissimis argumentis soliditatem orbium destruxit, quae hactenus animabus illis motricibus (caecis etiam) pro baculo servire poterat ad vim debitam inveniendam; et proinde planetae in puro aethere perinde atque aves in aëre cursus suos conficiunt; aliter nobis igitur de his schematibus erit philosophandum.

Sit autem inter initia positum, vim omnem, qua motus hujusmodi administrantur, ipsius planetae corpus inhabitare nec extra id quaerendam.

Cum igitur planeta insita vi in puro aethere perfectum circulum conficere debeat, in primo schemate epicyclum, in secundo eccentricum, manifestum est, duo motoris hujus fore munia; alterum, ut facultate polleat transvectandi corporis, alterum, ut scientia praeditus sit inveniendi circularem limitem per illam puram auram aetheream nullis hujusmodi regionibus distinctam: quod mentis opus est. Nihil mihi dicas, ipsam motricem facultatem, simplicis et brutae animae sobolem, aptam natam esse ad circularem motionem, plane uti lapidis natura sit per rectam lineam descendere; nego enim, ullum motum perennem non rectum a Deo conditum esse praesidio mentali destitutum. Et intra quidem corpus humanum omnes musculi principiis moventur rectilineorum motuum: nempe aut in sese recedendo turgent, aut discessu capitum extenuantur; illic, ut membrum ad musculum accedat, 'hic, ut recedat: quod idem et in circularibus musculis suo modo locum habet, qui meatibus custodes appositi, ubi filamentis circularibus extensi fuerint, laxant meatum, constringunt vero iisdem in angustioris circuli figuram recurrentibus. Nullum adeo membrum est, quod aequabiliter et expedite gyretur. Flexus vero capitis, pedum, brachiorum et linguae quibusdam artificiis mechanicis per multos rectos musculos huc illuc transpositos vel attensos expressi sunt. Qua ratione efficitur, ut facultas motrix, natura sua in rectum tendens, membrum illud contorqueat in gyrum. Sic aquae machinamentis quibusdam in sublime aguntur, non quod natura corporis, quod motum infert, in sublime tendat, sed quia dispositione canalium ef-

Kepleri Opera, III.


12

ficitur, ut pondere majore deorsum tendente aqua necessario sursum cedat. Quodsi etiam perfecte circularis motus esset quorundam membrorum, at ii non sunt perpetui, nec mirum de eo esset, cum mens animali facultati praesideat in humano corpore; at certe, si via ulla fuisset facultatem aliquam motricem sic instruendi, ut corpus aliquod gyrare possit, non fuisset in humano corpore neglecta.

Porro ut mens aliqua viam monstret circularem citra metam vel centri vel corporis alicujus, quod pro accessu vel recessu majore vel minore angulo appareat, id fieri nequaquam potest. Circulus enim iisdem et definitur et perficitur, aequalitate scilicet distantiae a medio et quantumcunque motrices hasce facultates extollas, circulus tamen ne Deo quidem aliud est quam quod jam dictum. Docent quidem geometrae, datis tribus in circumferentia punctis continuare circulum: sed hoc ipso praesupponitur aliqua pars circumferentiae (utpote per trina puncta iens) jam confecta. Quis ergo planetae hoc initium ostendet, ex quo reliquum iter conformet? Itaque fieri aliter non potest, quin planetae motor ex Avicennae²⁴) sententia vel centrum orbis sui suamque ab eo distantiam sibi imaginetur, vel alia quadam proprietate circuli praestanda ad efformationem ipsius circuli adjuvetur.

Jam igitur aliter nobis informabitur hypothesis physica horum duorum schematum. Nam in posteriori, quod simplicius est, siquidem verum est quod posuimus, motorem, qui planetam per iter $\gamma \in \delta$ circumagit, in ipso planeta inesse, necesse itaque fuerit, in planetae motorem cadere quandam animadversionem apparentis magnitudinis ipsius corporis in α , ex γ , ϵ , η , δ , inspecti (vel quasi inspecti) proptereaque planetam niti, ut et aequaliter incedat (quod praestant integrae et non impeditae motrisis animae vires) et omnes distantias $\alpha\gamma$, αs , $\alpha\eta$, $\alpha \delta$ ita ordine repraesentet, ut illae ex eccentrico $\beta\gamma$ sequuntur lege geometrica; quem ad finem scire etiam debet, quanto $\alpha\gamma$ longior sit quam $\alpha \delta$, hoc est quanta sit eccentricitas viae, quam confecturus est, a corpore in α circa quod iturus est. Quo pacto hic motor planetae in multis simul occupabitur. Si hoc quis fugit, igitur necesse est ut dicat, planetam ad β punctum, quod omni corpore aut nota reali vacat, respicere et aequales ab eo distantias tueri.

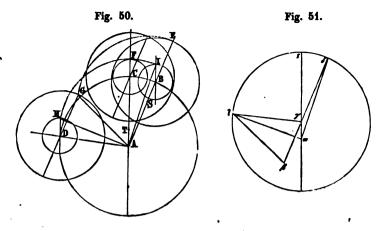
Prius vero 'schema physice sic explicatur, ut concipiatur virtus aliqua

178

Digitized by Google

motrix, quae se ipsa sine corpore in B concentrico aequali virium contentione circumeat circa corpus in A, aequalesque ab eo tueatur distantias; altera virtus sit in ipso C corpore planetae, quae virtutem incorpoream in B animadvertere suamque ad eam propinquitatem aestimare et tueri, denique et eam circumire aequabiliter possit. Rursum itaque haec virtus in pluribus occupabitur. Sed et per se incredibile, virtutem aliquam immateriatam residere in non corpore, moveri in loco et tempore, nec tamen habere subjectum, se ipsam inquam movere de loco in locum. Atque ego horum absurdorum assumtione hoc ago, ut tandem obtineam, non posse fieri ut omnis motuum causa vel in corpore planetae vel alias in orbe ejus inhabitet, viamque struam ad formas motuum alias faciliores persuadendas.

Haec explicavi $\dot{\upsilon}\pi\sigma\theta\sigma\sigma\mu\omega_S$, si nempe astronomia de schematibus his testetur, quod iter planetae sit talis perfectus circulus eccentricus; quae si quid aliud invenerit, speculationes quoque physicae mutabuntur.


In hac igitur hypothesium aequipollentia non tantum apparentes anguli ad A, α , sed ipsa etiam verissima planetarum itinera per auram aetheream manent eadem utrinque. Qualem enim et quantum arcum planeta conficit ex C in E circa angulum CAE, talem et tantum conficit etiam ex γ in s circa aequalem $\gamma \alpha s$ angulum.

Caput III.

De aequipollentia et conspiratione diversarum visionum et diversarum quantitate hypothesium ad efformandum unum et idem planetae iter.

Sequitur ut ostendam, quomodo idem hic planetae motus, in se manens aequalis, aliam tamen atque aliam speciem prae se ferre possit, et quomodo hic ambae formae aequipolleant.

Centris A et y (Fig. 50. 51), intervallis vero AC, ye aequalibus, scribantur circuli CD, e , quibus agantur CA, ey per centra parallelae ad invicem: atque ad has inclinentur ductae per centra aliae, AB, $\gamma\delta$, itempue AD, $\gamma\zeta$ itidem parallelae. Scribatur etiam ex B epicyclus intervallo BE, itidemque ex D intervallo aequali DG, et collocetur planeta in E et G, ut DG et AB sint parallelae. Eidem intervallo BE aequale constituatur in linca $\delta \gamma$, quod sit $\gamma \beta$, in partes ipsi δ contrarias: et connectatur G cum A, ζ cum β. Acquipollebunt igitur hypotheses per praemissum caput: et oculo in A et $\hat{\beta}$ constituto, aequales erunt EAG, $\delta\beta\zeta$; aequales etiam EA, δβ, item GA, ζβ; denique arcus EG et δζ aequales. Scribatur jam es B, C, D epicyclus minor, intervallo BI, CF, DH: et continuetur AC in F: sintque paralleli CF, BI, DH: et collocetur sidus in I, F, H. Rursum igitur per cap. II. circulus IFH aequalis erit circulo 8ζ. Arcum igitur IF extende ex puncto 8, ut terminetur in s; et ab s per y duc sy, ut sy sit parallelos ipsi CA: et intervallo CF aequale constituatur in linea er, quod sit ya, in partes ipsi e contrarias: et connectatur I et H cum A, sic 8 et ζ cum a. Rursum igitur acquipollebunt hypotheses per pracmissum caput: et oculo in A et a constituto, aequales erunt FAH, saL 12 *

sic FAI, sad; aequales etiam FA, sa; sic HA, fa et IA, da; denique arcus FH et sf aequales et similes, ut et FI et sd, ex constructione.

Manente itaque via sideris eadem, oculo vero translato ex β in α , diversae sequentur apparentiae idque iisdem temporum momentis. Nam δ , ζ loca eadem diversimode inspiciuntur ex β et ex α . Vicissim manente oculo in A, et quantitate viae sideris EG, IH, situ vero ejus mutato, rursum sidus apparebit locis diversis, etsi eodem itineris loco consistat; quia totum iter translatum est. Cum ergo planeta, sive ex α inspiciatur, sive ex β , utrinque eodem momento in δ sit vel in ζ , et vero hypotheses aequipolleant, quare et I, E, loca diversorum epicyclorum eodem momento a planeta possideri dicendum est, itemque et G, H. Hoc tantummodo discriminis est, quod in primo schemate, oculo manente, iter planetae per variationem epicycli situ suo emovetur: in secundo vero schemate itineri planetae situs quoque idem manet, oculi vero situs tantundem mutatur in plagam contrariam. Potest tamen, si necesse est, et illic iter et hic oculus manere, transposito quod jam manet, per demonstrata superioris capitis.

Usus hujus demonstrationis sequetur infra: nimirum, si prima inaequalitas superiorum planetarum salvari posset per capitis secundi hypothesin simplicem, tunc nulla oriretur difficultas, sive quis banc inaequalitatem examinaret in media sive in apparenti oppositione cum Sole; nam iter maneret re vera idem, et planeta esset utrinque in iisdem punctis itineris ad quodvis momentum, tantummodo situs hujus itineris per spatium eccentricitatis Solis mutaretur in primo schemate: in secundo etiam (situ manente) punctum, unde computatur eccentricitas, tantundem transponeretur.

In physica consideratione manent superiora, mutantur tantum quantitates in intentione virtutum motricium.

Digitized by Google

180

Caput IV.

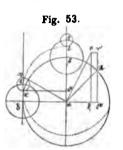
De aequipollentia imperfecta inter duplicem epicyclum in concentrico vel eccentrepicyclum et inter aequantem in eccentrico.

Sic igitur res haberet, si locus esset hypothesi simplici capitis tertii in salvanda superiorum planetarum inaequalitate prima. Verum Ptolemaeus ad planetarum primam, et simplicem inaequalitatem demonstrandam operosiori utitur hypothesi. Centro B scribatur eccentricus DE, cuius eccentricitas Fig. 52.

Centro B scribatur eccentricus DE, cujus eccentricitas sit BA, ut A sit locus oculi. Acta linea per BA ostendet in D apogaeum, in F perigaeum. In hac linea supra B spatium aliud BC extendatur aequals ipsi BA. Erit C punctum aequantis, punctum nempe, apud quod planeta aequalibus temporibus conficit aequales angulos, quamvis circulum non circa C sed circa B ordinet.

Copernicus hanc hypothesin (cap. 4. lib. V. ut et cap. 7. lib. IV.) inter cetera hoc quoque nomine notat,

quod peccet in principia physica, statuens motus coelorum inaequales. Eligatur enim E punctum in circulo, quem planeta corpore peragrat, connectaturque cum C, B, A: et sit jam DCE rectus, ut et ECF. Cum ergo sint anguli hi aequales, constituti nempe aequalibus temporibus, et DCE exterior aequet CBE, CEB interiores: ergo parte CEB ablata residuns CBE vel DBE minor erit quam DCE; itaque FBE major quam DCE vel FCE. Sed DE arcus metitur DBE angulum, et EF arcús angulum EBF; minor ergo DE quam EF; et transit planeta per eos aequalibus temporibus. Ergo idem orbis solidus (quos opinatur Copernicus) in quo haeret planeta, tardus est, cum planeta orbe vectus incedit ex D in E; velox, cum it ex E in F. Totus ergo orbis solidus jam velox, jam tardus est. Quod Copernicus ut absurdum rejicit.


Quodsi virtus movens praesideret orbi solido undiquaque aequabili, non vero nudo planetae, merito haec ut absurda et ego rejicerem. At quia solidi orbes nulli sunt, vide nunc concinnitatem physicam hujus hypotheseos, si paucissima mutentur, de quibus infra. Etenim statuit haec hypothesis (quamvis ignaro Ptolemaeo) duas virtutes motrices, quibus planeta quilibet vehatur. Harum alteram ponit in A corpore (quod in reformatione astronomiae ipsissimus Sol erit) eamque ait niti, ut planetam circumagat circa se, sed gradus habere infinitos pro infinitis punctis distantiae ab A: ut, sicut est AD longissima, AF brevissima, sic planeta quoque sit in D tardissimus, in F velocissimus: et in universum, ut AD ad AE sic tarditas apud D ad tarditatem apud E, ut infra prolixe demonstrabitur parte tertia. Alteram virtutem motricem tribuit hypothesis ista planetae ipsi, cui sufficit, ut vel fortitudine angulorum vel intuitu crescentis et decrescentis diametri Solis suos accessus vel recessus a Sole moderetur faciatque differentiam mediae distantiae a longissima et brevissima aequalem ipsi AB. Itaque punctum C aequantis nihil aliud est quam compendium geometricum computandi aequationes ex hypothesi plane physica. Quodsi tamen via planetae sit perfectus circulus, uti quidem Ptolemaeo placuit, oportet planetam insuper et sensum aliquem habere ejus celeritatis et tarditatis, qua ipse provehitur ab altera externa virtute, ut ad hujus praescripta etiam suos ac-

181

cessus et recessus sic moderetur, ut iter ipsum DE fiat circulus. Oportet igitur ei intellectum et affectationem circuli inesse et discrepare propòrtionem tarditatis et celeritatis propriae a virtutis extraneae gradibus. At si astronomiae demonstrationes observationibus nixae testentur, viam planetae non esse omnino circularem, contra quam haec habet hypothesis, tum etiam physica haec consideratio aliter instituetur liberabiturque virtus planetae his tam operosis requisitis.

Sed revertor ad Copernicum. Is absurditatem. jam supra ex sua sententia explicatam fugiens pro acquante alterum substituit epicyclum in hunç modum. Centro a intervallo $\alpha\beta$, quod sit acquale ipsi BD (Fig. 52) scri-

batur concentricus $\beta \delta$, ut visus in a sit, et ipsi BD parallelos $\alpha\beta$ continuata utrinque, statuaturque $\beta\alpha\delta$ angulus aequalis ipsi DCE. Bisecetur vero BC in I: et centris β , δ , intervallis $\beta\gamma$, $\delta\zeta$, quae sint aequalia ipsi AI, scribatur primus seu major epicyclus: sitque $\delta\zeta$ parallelos ipsi $\alpha\beta$. Denique centris γ , ζ , intervallis vero γs , $\zeta\eta$, quae sint aequalia ipsi IC, describatur secundus epicyclus, cujus motus sit in consequentia duplus ad motum primi; et motus primi epicycli in antecedentia aequalis sit motui eccentrici: proptereaque, cum est γ in linea $\alpha\beta$, sit

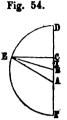
planeta in e, prozimo puncto ipsi β. At cum βað rectus, planeta sit in η puncto remotissimo a δ, centro majoris epicycli. Et hanc Copernici particularem hypothesin Tycho Brahe in particularibus religiose sequitur.

Haec hypothesis physice considerata, si solidos orbes concedas, utcunque quidem habet: sin tollas orbes solidos, quod Braheus merito facit, pene impossibile quid dicit. Praeterquam enim, quod tres mentes agitatrices uni planetae adjungit, confundentur etiam alterae ab alterius motu et appulsu ad corpus in α ; nam ut quaelibet ad suum centrum (nullo corpore determinatum et praeterea etiam mobile) respiciat, id ne cogitatione quidem repraesentari potest. Praeterea dum Copernicus Ptolemaeum aequabilitate motuum superare nititur, ab eo vicissim perfectione itineris planetarii superatur. Ptolemaeo enim planeta perfectum circulum corpore suo per auram aetheream designat. Copernicus vero lib. V. cap. 4. fatetur, sibi viam planetae non esse circularem, sed excurrere ad latera²⁵): quod in hac figura facile demonstratur.

Nam si ex e loco planetae in apogaeo intervallum $\alpha\beta$ orbis semidiametri extendes in ϑ , et ex ϑ ipsi $\alpha\vartheta$ parallelum agas $\vartheta\varkappa$, circulus ex ex ϑ descriptos transibit quidem per e et ejus locum oppositum in perigaeo: at cum tangat rectam $\vartheta\eta$ in solo x et planeta transeat per η , non manet ergo in circulo ex, sed hanc semitam egreditur. Hanc exorbitationem itineris planetarii a perfectione circuli Ptolemaeus Copernico jure objecerit: ego non objicio. Nam infra demonstrabitur parte quarta, physicis duabus virtutibus potestate simplicibus ad movendum planetam concurrentibus necessario effici, ut planeta a circulo parumper deflectat, non excurrendo quidem, ut in hac hypothesi Copernicana, sed contrariam in plagam ad centrum sc. ingrediendo.

Quodsi insuper Copernicus etiam illam suam libertatem constituendi proportiones epicyclorum retineat, fieri potest ut torthosa planetae via evadat, altior ante et post apogaeum, quam in ipso apogaeo depressior

apte et post perigaeum quam in ipso perigaeo, quod Tychoni, quatenus hic Copernicum est imitatus, in Lunaribus evenit.


Sed ne quidem simpliciter aequipollere binas has hypothesium formas demonstrabo numeris.

Et Ptolemaica quidem forma compendiosias quam ab ipso Ptolemaeo computari potest in hunc modum. Primum in triangulo CBE datur ECB vel DCE anomalia media*), datur etiam CB latus seu eccentricitas aequantis et BE radius orbis. Ut ergo radius orbis ad sinum ECB sic CB ad sinum CEB: et cum ECD aequet interiores et oppositos CEB et CBE junctos, ergo CEB ex DCE rejecto, relinquetur CBE. In triangulo ergo EBA angulus ad B datur cum lateribus circa ipsum; est enim BA eccentricitas eccentrici, EB vero est Secundum legem igitur hujus triangulorum formae datur radius orbis.

angulus BEA; prius vero dabatur CEB, tota ergo CEA aequatio dabitur. Utemur antem numeris Martis motui familiaribus. Quamvis enim Ptolemaeus CB et BA fecit acquales: Copernicus tamen hac lege solntus alias etiam proportiones adsciscit, quod et Tycho Brahe imitari instituit. Sit CB 7560, BA 12600, qualium BE 100000: et sit primo DCE 45°, cujus sinus 70711. Ut ergo 100000 ad 70711 sic 7560 ad 5346 sinum arcus 3° 4' 52", scilicet CEB. Aufer a 45°, restat CBE 41° 55' 8", cujus dimidium 20° 57' 34", quem arcum tangit 38304. Et cum sit EB 100000. BA vero 12600, differentia 87400, multiplicata in radium et divisa in summam 112600 prodit 77620: quod multiplica in superiorem tangentem 38304; quod hic prodit, scilicet 29732, id tangit arcum 16° 33' 30". Hic ablatus a superiore dimidio ipsius CBE relinguit 4° 24' 4", nempe angulum BEA. Totus ergo CEA est 7º 28' 56" in forma guidem Ptolemaica.²⁶) In Copernicana, quamvis ordinaria ratio quaerendae aeguationis ex Tychonis tabulis Lunaribus tomo I. Progymnasmatum et ex Copernico ipso patet, utar tamen jam extra ordinem ratione alia, quae accommodata est anomaliae 45°. Sit $\beta \alpha \lambda$ (Fig. 53) 45° et λr vel $\beta \gamma$ 16380, γs vel ro sit 3780 et or rectus, duplus scilicet ad $\beta \alpha \lambda$; r vero sit ipsi $\beta \alpha$ parallelos: et continuentur $\nu \lambda$ et $\delta \alpha$ donec concurrant in μ ; et ex o ipsi vµ parallelos descendat of. Ergo laµ est 45°, quare aµ aeque atque $\mu\lambda$ est 70711. Adde $\lambda \tau$ 16380, erit $\mu \tau$ vel of 87091. Et quia γs , τo et $\xi\mu$ aequales, subtrahe $\xi\mu$ ab $a\mu$: restat at 66931. Ut ergo of ad za, sie sinus totus ad 76852, tangentem aog vel oaß, qui prodit 37° 32' 37", qui differt ab arcu 45° per 7° 27' 23". Differentia ergo Copernicanae aequationis a Ptolemaica hoc loco 1' 33" sane perexiqua. ¹¹

Rursum in Ptolemaica sit DCE (Fig. 54) 90°; ergo cum sit ECB rectus et EB 100000, erit BC sinus anguli CEB, qui fit 4º 20' 8". Quare EBC 85° 39' 52", quare EC 99713. Ut ergo EC ad CA sic radius ad 20218 tangentem CEA. Hinc aequatio CEA est 11° 25' 48". At in

*) Anomalia media est tempus lapsum, ex quo planeta in apogaeo fuit, artificialiter denominatum. Totum enim tempus, quo planeta ab apogaeo in apogaeum revertitur, instar circuli in gradus 360 dividitur. Anomalia vera est arcus zodiaci inter locum apogaei et apparentem (ex centro zodiaci) locum stellae. Aequatio est differentia utriusque anomaliae.

183

forma Copernicana tota $\eta\delta$, quae acquat CA, fit tangens, quia $\eta\delta\alpha$ rectus et $\delta\alpha$ radius. Ergo $\eta\alpha\delta$ est 11° 23' 53". Differentia 1' 55".

Ita vides, quod aequationem eccentrici*) attinet, minimum aliquid deesse, quo minus hypothesium formae aequipolleant.

Discrepant tamen in distantiis planetae a visu in α , proptereaque et in prosthaphaeresibus annuis. Nam in forma Ptolemaica, ut sinus anguli AEC ad AC, ita sinus totus ad AE, quae fit 101766, quando DCE est 90. At in Copernicana $\eta\alpha$ secans est anguli $\eta\alpha\delta$, scilicet 102012. Differentia 246 particulae, quae in prosthaphaeresi orbis annui paulo majus quid efficere possunt, ut infra parte quarta patebit. Possumus et illam minutulam aequationum differentiam obliterare, si, quam Braheus eccentricitatem Martis in forma Copernicana invenit 20160, eam in forma Ptolemaica statuamus 20103. Distantiae vero formae Copernicanae Ptolemaicis non possunt aequari, nisi aequatio 43 minutis varietur. In quadam aequipollentia tentata in hypothesi tabularum Lunarium Tychonis duos illos epicyclos Copernicanos in talem eccentricum Ptolemaicám cum aequatorio puncto transposui: nihilominus tamen et epicyclum addidi propter aliam et peculiarem Lunae inaequalitatem.

Denique cum per cap. II. in hac forma Copernicana major epicyclus cum suo concentrico perfectissima aequipollentia possit transponi in eccentricum, cujus eccentricitas sit aequalis semidiametro epicycli majoris, superaddito ergo epicyclo minore ipsi huic eccentro Copernicano nascetur eccentrepicyclus, paria faciens ad unguem cum duplici epicyclo in concentrico, nec plus hoc ipso. ab eccentrico Ptolemaico cum aequante discrepans.

Caput V.

Quaternus haec quoque dispositio orbium, aequante vel secundo epicyclo usa, re ipsa manens una et eadem (vel proxime una et eadem), diversa uno et eodem momento spectacula exhibere possit, prout planetae vel in media vel in apparente oppositione cum Sole observentur.

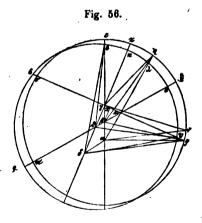
Fit duobus modis: uno, in quo aequipollent forma Ptolemaica et Copernicana: altero, qui peculiaris est formae Copernicanae, quem ut alieniorem a nostro instituto prius expediemus; manet enim et propius apud sese quam reliquus.

Centro γ spatio $\gamma \delta$ scribatur eccentricus, in quo $\alpha \gamma$ sit primo loco linea apsidum et α visus: continuetur haec in ϵ ; sitque $\gamma \alpha$ quantitas eccentricitatis vel radii epicycli Copernicani majoris: nam de aequipollentia utriusque dictum est in fine cap. IV. Ergo centro ϵ spatio $\epsilon \eta$ scribatur epicyclus minor; et cum est centrum hujus in ϵ , sit planeta in η , incidens in lineam $\epsilon \gamma$, sic ut $\epsilon \delta$ eccentricum percurrat non stella, sed centrum epicycli stellam ferentis. Per caput igitur IV. expressa hic est forma Copernicana. Cui per caput III. constituemus aliam in veritate seu in indicatione ipsissimi

^{•)} Acquatio eccentrici est in prima inacqualitate. Acquatio orbis est in secunda inacqualitate. Item prosthaphaeresis annua,

itineris planetarii aequipollentem, diversae tamen apparentiae; idque praestabimus translatione visus ex α . Possemus idem per finem capitis III., etiam manente visu in a et translato eccentrico, lineisque parallelis manentibus, ut ita eccentrici quantitate manente situs solummodo varietur. Quod autem jam instituimus, sic per-Suscepto loco visus extra priorem lineam ficiemus. apsidum, qui sit β , ut $\beta\gamma$ sit quantitas alia ab $\alpha\gamma$, novae scilicet eccentricitatis vel novae semidiametri epicycli majoris, agemus per $\beta\gamma$ novam lineam apsidum $\beta\delta$; et in δ scribemus epicyclum priori aequalem. Quamvis vero centrum epicycli hic sit in δ apside, non tamen ponemus jam planetam in puncto ipsi y proximo ut prius, sed considerato angulo eyo, duplum ei statuemus angulum θδy versus e, et planetam in θ locabimus, quando epi-

cyclus est in δ apside; sic enim collocaretur planeta, etiamsi visus in α et epicyclus in δ esset. Hoc itaque pacto ad unguem eadem veritas manet compositi itineris planetarii, apparentia vero mutatur: quando enim inclinantur lineae visoriae, ut hic $\beta \vartheta$, $\alpha \vartheta$ vel $\beta \eta$, $\alpha \eta$, tunc etiam in diversa loca sub fixis incidunt.


Objicias, etiam cum visoriae lineae parallelae sunt, in diversa loca sub fixis incidere; non igitur opus esse ad hoc, ut ad se mutuo inclinentur. Respondeo: verum quidem hoc est; sed tunc interceptum spatium fixarum inter utramque lineam penes visum non est sensibile, nisi distantia parallelorum sit ad semidiametrum fixarum sensibilis.

In consideratione physica, praeter ea, quae cap. IIL dicta, hoc quoque ad impetrandam hanc itineris identitatem in variata apparentia erit statuendum, mentem, cui minor epicyclus est commissus, ad aliud punctum ambitus respicere, quam mentem majoris epicycli: restituitur enim epicyclus major vel eccentricitas in secunda positione ad lineam $\beta \delta$, minor vero ad lineam $\alpha \epsilon$, non per visum transcantem, quia visus in secunda positione in β ponitur, cum in prima positione (visu in α constituto) uterque epicyclus ad eandem αe restitueretur. Non itaque simpliciter eadem forma hypotheseos physice manet, ut idem iter planetae obtineatur. Quodsi etiam in secunda positione idem imitatus fueris restituendo utrumque epicyclum ad eandem lineam apsidum $\beta\delta$, ergo manente eodem eccentrico utrinque, eodem etiam epicyclio, situs planetae in epicyclio erit alius atque alius uno et eodem momento; itaque expressa eadem forma hypotheseos Ptolemaicae ad unguem in secunda positione, iter ipsum planetae variabitur. Hinc ergo inferetur infra, quando quidem prima planetarum inaequalitas omnino salvanda sit per compositam hypothesin cap. IV, igitar non posse fieri, at prima inaequalitas expendatur aeque in media ac in apparenti oppositione planetarum cum Sole: nisi simul vel ipsa orbita planetae situ suo emoveatur (differenter a circulis theoriae Solis) vel mutetur forma Ptolemaica capitis IV.

Atque hac forma transpositionis Maestlinus est usus, cum in meo Mysterio Cosmographico tabulam illam capitis XV. conficeret. Copernicus enim, dum Ptolemaica in suam generalem hypothesium formam traducit, fingit visum constitutum esse in puncto aliquo proxime Solem pene immobili, quod tota Solaris orbis eccentricitate distet a centro ipsissimi corporis Solaris. Ego vero, dum Copernicum ad meam ejus libri materiam accommodo, opus habui diversa fictione. Visus enim ab illo puncto in ipsissimum centrum corporis Solis per imaginationem transferendus fuit, atque inde (scilicet ex corpore Solis) computandi fuerunt abscessus corporum planetariorum, in eodem quidem itinere, quod Copernici suppositiones efformabant, sed (ut jam patuit) non plane idem iter causa particularium temporum effectum est mihi per hanc translationem lineae apsidum, differentia tamen perexigua et in illo quidem libello plane nullius momenti; ibi enim de solo situ itineris agebatur, qui hoc pacto mansit.

Ceterum in sequentibus ad vitandam confusionem eccentrico hoc Copernicano (quem non stella, sed centrum epicycli describat) non amplius utar. Differt enim ab ipsissimo itinere planetae, quod altins fit in perigaeo, humilius in apogaeo. At voce eccentrici porro utemur tantummodo in designando ipsissimo itinere planetae, vel puncti in cujus mota prima inaequalitas inest, quo pacto tantummodo Ptolemaicum eccentricum (vel proxime talem) par est nos imaginari. Ostensum enim est capite quarto, discrepaturum nostrum calculum aequationis (Ptolemaicae formae innixum) a Copernicano tantummodo duobus scrupulis, ubi maxime. Tum autem et facilior est modus computandi in forma Ptolemaica primae inaequalitatis quam in Copernicana. Denique haec Ptolemaica forma primae inaequalitatis (ut dictum) ipsi rerum naturae et sequentibus nostris speculationibus parte tertia et quarta est accommodatior. Propter aequipollentiam vero, si cui lubet, poterit is semper tunc quoque Copernicanum eccentrepicyclum, huc usque hoc capite quinto usurpatum, subintelligere.

Accedo jam ad priorem instituendae propositae aequipollentiae rationem, particularibus auctorum hypothesibus communem; quod in Ptolemaica forma prius demonstrabo.

Centro β scribatur eccentricus Ptolemaicus $\iota \zeta \eta$; sitque linea apsidum $\iota \beta$, visus in α , punctum aequatorium γ .

Dum autem dico, visum in α esse, intelligo vel per fictionem vel vere; physice loquendo non tam visus in α collocandus est, quam ipsa virtus, quae circuitum circa se conciliat planetae tardum, velocem, pro ratione propinquitatis ad α ut supra dictum. Connectatur aliquod circumferentiae punctum extra apsidum lineam (puta η) cum γ , β , α ; esto ut per hanc hypothesin anguli $\iota\alpha\eta$ per totum circuitum tanti proxime computari possint, quanti observantur ex α , et post certa tempora, quae metiatur angulus $\eta\gamma\iota$ aequa-

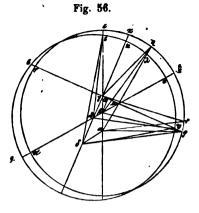
liter. Ostendetur autem postea parte secunda, quomodo per observationes astronomicas deprehendatur, quantus angulus $\eta \alpha \iota$ cuilibet $\eta \gamma \iota$ debeatur. Rursum sit visus seu virtus movens in puncto extra lineam $\iota \alpha$, quod sit δ , deturque nobis, quod etiam in δ per astronomicas observationes certis temporibus certi anguli visorii sint deprehensi, hoc est quantum quolibet tempore planeta sub fizis promoveri videatur ex δ inspectus: detur etiam hoc, quad hae in δ apparitiones quadrent in hypothesin conformem priori,

tantum quantitate eccentricitatis mutata. Cum autem certum sit, uno et eodem tempore planetam in coelo unum et idem iter conficere, non vero aliud observanti ex ϑ , aliud ex α : certum igitur et hoc est, non posse planetam observatori utrique (et qui in α et qui in ϑ) videri aequalis motus eodem tempore. Sit enim portio veri itineris planetarii $\imath\eta$, atque illud conficiat planeta certo tempore, puta diebus 20: cum igitur α sit propius $\imath\eta$ quam ϑ , major igitur apparebit $\imath\eta$ in α , quam in ϑ , per demonstrata optica, ergo iisdem 20 diebus planeta plus videbitur promotus ei qui in α , quam ei qui in ϑ . Ac cum quilibet planeta perpetuo certum et eundem tueatur numerum dierum, quibus restituitur ad idem fixarum punctum, tarditatem contraria celeritate compensari oportet. Cum ergo planeta in portione $\imath\eta$ videatur tardior ei qui in ϑ , in alia igitur portione eidem qui in ϑ videbitur velocior, quam ei qui in α . Ipse tamen planeta verissime non potest nisi uno in loco suae orbitae tardissimus esse.

His ita praeparatis quaeritur, an unum et idem verum in coelo iter planetae (quod praesupponitur) utrasque apparitiones repraesentare possit et ei qui in δ et ei qui in α , utrique suas et tales, quales Ptolemaicae calculi formae utringue concedunt et admittunt.

Quodsi planeta in omnibus orbitae partibus aequalis celeritatis esset, responderetur per caput tertium, quod sic. Sed quia planeta in uno eccentrici loco tardissimus est vera et reali mora, in opposito velocissimus, ideo respondendum, quod non plane. Causa haec est, quod duae retardationes permiscentur; altera realis et physica in uno eccentrici toco; altera optica et apparens, in loco non jam uno, sed illo, qui a quolibet suscepto visus situ remotissimus est. Quando ergo visus α in lineam per β centrum eccentrici et y centrum aequantis ductam incidit, in parte lineae stans opposita illi, quae habet y centrum aequantis, tunc utraque tarditas, in idem punctum fixarum versus , vergit. Quando vero discedit visus ex hac linea at in δ , tunc ejecta recta ex δ per β centrum circuli ostendit tarditatis opticae locum η , cum vera et physica in ι sit. Atque harum inaequalitatum seu retardationum altera alteram diluit, accumulanturque in locum intermedium inter , η , ut si ex δ per γ linea ejiceretur in punctum ζ . Itaque si quis tali calculo uteretur, in quo $\delta\beta$ esset apsidum eccentrici linea, $\beta\gamma$ vero linea eccentricitatis aequantis, tunc quidem manente planetae vero itinere $\cdot \eta$ repraesentaretor aliud in δ quam in α : nam ei qui in δ , planeta tardissimus esset in ζ , ei qui in α , tardissimus in ι . At non tale quippiam in 8 repraesentaretur, quod per hypothesin priori conformem supra postulavimus repraesentari debere. Differunt enim hypothesium formae eo, quod illic β medium est in $\alpha\gamma$ (quod et physica ratio postulat, si in α sit virtus movens) hic vero β centrum eccentrici non esset medium inter δ , γ nec linea eccentricitatis aequantis (ut illic) per visum δ transiret: quae si etiam transiret per 8, ut 87, non tamen secaret eccentricum in duo aequalia, quia non in centro β , nec pateretur planetam in locis oppositis hinc videri tardissimum, inde velocissimum.

Cum ergo constet, manente plane eodem itinere planetae in coelo, non posse plane eandem permanere formam hypotheseos, quaeritur amplius: si instituatur eadem forma hypotheseos in δ , quantum mutetur iter planetae a priori et quantum haec nova institutio hypotheseos ex δ variatura sis priores apparentias in α . Primo, si collocetur centrum aequantis ex y in lineam $\delta\beta$, et ipsi $\beta\gamma$ acqualis fiat $\beta\mu$, plane situs itineris planetarii manet. sed planeta non in i sed in η fit tardissimus, tarditate physica. Mutatur igitur in itinere planetae quod mutari non potest, quia physica tarditas non ut optica ad observatorum visionem sequitur. Etsi vero 20 diebus planeta idem $i\eta$ iter conficeret, quod in α majus, in δ minus apparet: tamen si partes hujus temporis consideres, vehementer turbabitur ratio applicationis earum ad partes hujus itineris, multoque magis in partibus aliis, quae non sunt interjectae inter lineas $i\eta$. Inprimis mutabitur visui in α sua aequationum quantitas notabiliter, si ei qui est in δ hoc eripueris, planetam non in ι tardissimum esse, hoc est si punctum aequantis ex γ in μ transtaleris. Ducta enim recta per $\gamma\mu$ in circumferentiae punctum r. et connexis a, r. erit sola haec aequatio anu aequalis priori any; supra r vero aequationes ex μ erunt minores, infra τ majores: ut in η angulus $\mu\eta\alpha$ multo est minor quam $\gamma \eta \alpha$. Tum autem neque factum sic est, quod institueramus; nondum scilicet prior forma hypotheseos plane constituta est. Non enim ut $\alpha\beta$ ad $\beta \gamma$ sic $\delta \beta$ ad $\beta \mu$: nam $\beta \mu$ aequalis est ipsi $\beta \gamma$, at $\delta \beta$ major gnam $\alpha \beta$. Sin autem facias ut $\alpha\beta$ ad $\beta\gamma$ sic $\delta\beta$ ad $\beta\mu$, major fiet $\beta\mu$ quam $\beta\gamma$. Unde sequitur, multo magis vitiatum iri visui in α suam aequationem, et quidem etiam maximam, propter auctam scilicet eccentricitatem. Non tantum igitur alio loco planeta futurus est tardissimus quam prius, sed etiam alia et quidem majore tarditatis verae mensura. Apparet itaque, aequipollentiam nobis expetitam institui non posse trajecta linea apsidum ex δ per β centrum eccentrici; cumque simul patuerit, quanti intersit, ut idem y punctum aequantis retineatur, omnino igitur aut hac perrumpendum aut puspiam.

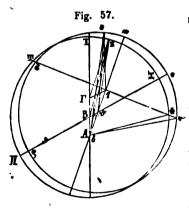

Quid ergo futurum est, si ex δ nova linea apsidum per γ antiquum aequantis punctum trajiciatur et nova hypothesis antíquae conformetur? scilicet si centrum eccentrici ex β in lineam $\delta\gamma$ transponatur, fiatque ut $\alpha\beta$ ad $\beta\gamma$ sic $\delta\theta$ ad $\theta\gamma$, et sit θ centrum eccentrici? Nimirum hoc futurum est, ut non plane idem planetae iter in coelo maneat. Scribatur enim ex θ eccentricus priori aequalis exl et per θ , β recta continuatur in circumferentias, hinc in ξ , o, et illinc in ρ , π . Quanta igitur est $\theta\beta$, tanta est et $o\xi$ et $\rho\pi$; et tanto propior fit planeta in o ipsi β tantoque remotior in ρ , quam si priorem eccentricum decurrisset. Sed et in alia plaga planeta fit tardissimus; prius enim in ι , jam in κ est apsis. Atque ex hac contemperatione efficitur, ut priori visui in α constituto relinquantur quam proxime suae visiones: quod quidem hic solum quaeritur. Id autem jam numeris probabimus Martis motui familiaribus, etsi paulo alios Braheus prodidit, quod nihil nos impediet, qui hic tantum $\pi\rho o \gamma \nu \mu \pi \zeta \rho \mu e \alpha$.

Assumantur ista in $\delta\gamma\alpha$. Sit $\delta\alpha$ 3584 eccentricitatis Solis quantitas, qualium $\delta\gamma$ eccentricitas Martis 30138: et angulus $\alpha\delta\gamma$ 47° 59' 16" differentia apogaeorum Solis et Martis. Ex tribus igitur datis et $\gamma\alpha$ dabitur, nova scilicet Martis eccentricitas, eritque 27971, et angulus $\delta\gamma\alpha$ 5° 27' 47". Quodsi $\delta\gamma$ apogaeum prius Martis reponatur in 23° 32' 16" Ω , a γ novum Martis apogaeum cadet in 29° 0' 3" Ω .²⁵)

Sit vero $\beta \xi$ 100000 et ay talium 18034, quae prius erat 27971, qualium δy 30138. Erit ergo in hac dimensione δy 19763. Utraque vero signis ϑ , β dividatur in proportione tali, ut $\vartheta \vartheta$ ad $\vartheta \gamma$, item $\alpha \beta$ ad $\beta \gamma$ sint ut 1260 ad 756. Erit $\vartheta \vartheta$ 12352, $\vartheta \gamma$ 7411; et $\alpha \beta$ 11271, $\beta \gamma$ 6763: ut ita et super ϑ et super a construatur hypothesis primae inaequalitatis Ptolemaica. Tunc in dimensione priori qualium $\vartheta \alpha$ est 3584,

θβ vel of erit 1344; sed qualium βξ 100000, talium θβ vel of erit 880.²⁹) Haec adserventur.

Ut principium calculi inveniamus, quo investigetur, quantum visui in δ mutentur suae apparentiae per transpositionem eccentrici ex $\varrho \partial o$ in $\pi \beta \xi$, sic est agendum. Quia γ est commune centrum, in cujus circulo notentur tempora, notet ergo $\gamma \epsilon$: momentum in utraque hypothesi idem. Planeta igitur, si eccentricum ϵo decurrat, erit tunc in ϵ cum aequatione $\delta \epsilon \gamma$: sin eccentricum $\epsilon \xi$ decurrat, erit in ϵ cum aequatione nulla, coincidentibus lineis $\alpha \epsilon$ apparentis et $\gamma \epsilon$ medii motus. Rursum


post certum aliquod tempus, cujus sit mensura 17 vel eyx (cui ad verticem constituitur $\delta\gamma\alpha$, qui jam inventus est 5° 27' 47") sit momentum aliquod commune per yx designatum. Erit igitur tunc planeta per eccentricum so in x carens aequatione: per $i\xi$ vero in ζ cum aequatione $\gamma \zeta \alpha$. Ita semper planeta utrinque est in linea ex γ ejecta, ejusque puncto, in quo secat alterutrum eccentricum. Quodsi oculus esset in y, nulla fieret apparentiarum diversitas, sive planeta in x esset sive in ζ . Sed quia visus in hoc schemate ponitur ab artificibus in δ , a me in α , quaeritur ergo, quo loco circumferentiae distantia eccentrorum in hac linea ex y ejecta sit visui in 8 maxime sensibilis? Ut illa fiat sensibilis, concurrunt tria: primum ut distantia se ipsa sit magna, quo pacto circa of et $\rho\pi$ est maxima; deinde ut quam fieri potest recte objiciatur visui in δ , quo modo in ζ , x et opposito loco evanescit per principia optica; in locis igitur intermediis infra § et supra- ϱ apparet maxima; tertio ut sit propinqua ipsi δ , qua ratione supra ρ fit propior quam infra ξ , eo quod centrum alterius eccentrici β ad dextras partes ipsius & declinet. Quodsi angulum rectum constituamus ad lineae $\gamma\delta$ punctum γ , perpendiculari ex γ in circumferentias ejecta, quam proxime ad locum venerimus, ubi maxima est haec apparentia. Transeat per y perpendicularis ipsi dy, quae sit $\sigma \varphi$, secans eccentricum ϑ in σ , v, reliquum in τ , φ ; et perpendicularis demittatur $\beta \gamma$. Momento igitur $\gamma \sigma$ planeta erit in σ et τ , et momento y φ in v et φ . Quaerenda est inprimis quantitas v φ . Connectatur ϑ cum v et β cum φ ; igitur in ϑ vy datur Ov 100000, quia o est centrum eccentrici v; et oy est 7411 et oyu rectus: quare yv 99725. Idem in ßyg agendum. Sed prius debet 🗬notescere by. Id patebit ex triangulo byy, in quo by est parallelos tpsi ϑ_{γ} , et rectus ad χ , et $\gamma \beta \chi$ aegualis ipsi $\vartheta \gamma \beta$, scilicet 5° 27' 47" et $\beta \gamma$ 6763. Hinc latera inveniuntur $\gamma \chi$ 644, $\beta \chi$ 6732. Ergo in $\beta \chi \varphi$ rectangulo, cum sit $\beta \phi$ 100000, eo quo β centrum eccentrici ϕ et $\chi \beta$ 6732, erit 19 99773. Cui adde 17 644, prodit quantitas 79 100417. Erat vero yv 99725. Ergo vo quaesita est 692. 30)

Connexis jam v, φ cum δ loco visus, quantitas v $\delta \varphi$ anguli sic invenitur: supra fuit $\delta \gamma$ 19763 dimensionis proximae: et angulus ad γ est rectus. Ut ergo $\delta \gamma$ ad $\gamma \varphi$ et γv , ita sinus totus ad tangentes angulorum $\gamma \delta \varphi$, $\gamma \delta v$. Prodeunt autem 78° 51′ 54′′ || 78° 47′ 30′′. Itaque diffe-

rentia horum angulorum 4' 24", angulus scilicet $v \delta \varphi$. Multo minor crit $\sigma \delta \tau$, quia $\sigma \tau$ minor quam $v \varphi$, utpote sectioni eccentrorum propior.

Vides igitur, quam propinque relinquatur visui in δ sua apparentia, etsi novum iter planetae in coelo per translationem visus et mutationem hypotheseos supponatur. Et tamen relinquitur adhuc in potestate artificis, ut motum medium et proportionem eccentricitatum cum inter se tum ad radium orbis nonnihil variet, siquidem id ipsi futurum sit utile, ad obliterandam hanc qualemcunque 5' discrepantiam. Ita haec aequipollentia potissimum refertur ad inaequalitatem primam, nimirum ad ea, quae in δ apparent prope centrum eccentrici. At in secunda inaequalitate seu in prosthaphaeresibus orbis annui multum refert (ut et supra dictum in alia aequipollentia), utrum plaseta in $\xi\pi$ circumeatan in o_{ℓ} . Et supra quidem (p. 134) 246 particulas (differentiam inter Ptolemaicam et Copernicanam hypothesin) contemnere non poteramus; multo minus hic jam 880 vel in alia dimensione 1344 praeteriverimus. Id autem quantum diversitatis pariat in viso loco Martis, sequenti capite videbimus.

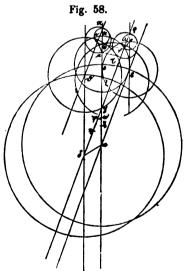
Transposuimus hactenus visum ex δ in α . Demonstretur jam, quod eadem fere sequantur visu manente, transposito vero puncto aequantis, ut appareat, idem hoc capite fieri posse in eccentrice, qui habet aequantem, quod supra in fine capitis tertii fieri potuit in eccentrico simplici. Illio enim, seu visus seu centrum eccentrici transponerentur, contingebant eadem : hic similiter, seu visus seu centrum aequantis transponantur, contingunt fere eadem. Est autem necessarium, demonstrationem hanc huic varietati accommodare propter magnam opinionum dissimilitudinem, quas sequentur artifices in demonstranda secunda planetarum inaequalitate, quae nobis jam sequenti capite facessent negotium.

Coeant α , δ puncta (Fig. 56) in unum, ut visus maneat loco eodem: maneantque δ , ϑ , γ signa, aboleatur vero linea prioris schematis $\gamma \beta \alpha$, sed ejus loco ex puncto δ vel A (Fig. 57) eidem parallelos exeat $AB\Gamma$; sintque portiones AB, $A\Gamma$, prioribus $\alpha\beta$, $\alpha\gamma$ aequales: erit igitur $\Gamma\gamma$ translatio puncti γ aequatorii, aequalis priori $\alpha\delta$ translationi visus. Rursum igitur ex B et ϑ scribentur duo eccentrici seu itinera planetae per auram aetheream, cum quibus omnia in circuitu signa transponentur, eruntque dimensiones linearum plane eaedem. Sola haec est differentia, quod bina binorum eccentricorum puncta, in quibus planeta eodem

momento ponendus est, jam non amplius per unam lineam, sed per parallelos ex Γ , γ , duobus acquantium punctis, in suum quamque eccentricum ojectam, determinantur. Verbi gratia quando eccentricus ϑx habet planetam in x, tunc eccentricus BI habebit eundem in Z, ubi ϑx et BZ sunt paralleli; et quando ille planetam habet in s, hic eum habebit in I, ubi rursum ϑs et BI sunt paralleli: cetera patent ex schemate oftra demonstrationem.

Igitur si non liceat visum transferre (non licet autem per eos, qui Terram faciunt centrum mundi, ut sequenti capite dicetur) et planeta fuerit observatus in aliquot zodiaci locis semper oppositus medio loco Solis, et

artifex ex iis locis et temporibus interlapsis constituerit hypothesin talem. in qua d sit visus, do eccentricitas eccentrici dx. et dy eccentricitas aequantis. et a apogaeum; Keplerus vero superveniens observata loca et tempora mutet (nimirum ipse observet articulos et puncta, quibus planeta non medio sed apparenti loco Solis fuit oppositus) exque his locis et temporibus ipse aliam invenerit hypothesin, in qua visus in δ vel A relinquatur, eccentricitas autem prodeat AB eccentrici novi BI, et novi aequantis Γ eccentricitas $A\Gamma$, et apogaeum novum I: quaeritur jam, si prior artifex pristino suo puncto acquatorio y adjungat novum eccentricum BI, an multo alia aequatio locusque planetae sub fixis per calculum sit proditurus, quam ipse prius ex suo eccentrico minvenerat: intellige quoad primam inaequalitatem; de secunda enim inaequalitate et quid quantumque hac ratione in illa mutetur, hic sermo non est. Respondetur ex hac aequipollentia transpositionum, quod perexigua discrepantia futura sit, eaque maxima circa puncta v, Φ , non major 5', plane ut prius visu transposito : nisi quod jam v Φ linea propior est visui o quam terminus v: itaque angulus Oov, qui prius erat 4' 24", jam est 4' 43". Contrarium in o, T accidit.


Demonstratum est igitur in eccentrico Ptolemaico, quid turbarum oriatur, si quis oppositionibus planetae cum apparente loco Solis usus, seu visum seu orbem transponat novumque eccentricum exstruat.

Ut eadem aequipollentia in forma Copernicana seu Tychonica, quae duobus epicyclis utitur, repetitis verbis demonstretur, non opus esse censeo. Tantum ex doctrina in fine cap. III. docebo, et hunc planetis convenientem eccentricum cum aequante ejusque in alias quantitates aliosque situs oculi transformationem delineare per binos illos epicyclos Copernicanos, ut oculus scilicet transferatur, iter vero planetae per auram aetheream (quantum per hoc quintum caput fieri potest) invariatum maneat, quod monui capite illo III. itidem fieri posse.

Constituatur triangulum dya priori aequale, et lineae lineis paralleli; agatar vero per a, ab parallelos ipsi by. et per 8, 80 parallelos ipsi ay, et centris δ, α duo scribantur concentrici acquales prioribus eccentris 89, a 8; continuetur oy in () et ay in sx, et sint $\delta \zeta$, as semidiametri (ut prius) et lineae apsidum, quia per idem y transcunt. Secontur autom by et ay in y, **ξ in proportione** qua prius: et ηγ, ξγ bisecentur in y, w. Tum spatio &y. centris O, & scribantur epicycli 1, 1, et ipsi ζλ sit parallelos θι. Centris vero ς λ intervallo ψγ, scribantur epicyclia per π, μ, ρ, τ.

Rursum spatio αω centris ε, β scribantur epicycli x, o: et ipsi εx sit parallelos βο. Centris vero x, o inter-

vallo $\omega\gamma$ scribantur epicyclia per $\pi\nu$, $\varrho\gamma$; et fiant $\vartheta\iota\mu$, $\beta\varrho\gamma$ dupli ad $\vartheta\gamma\alpha$; sitque planeta in epicyclio $\times\pi$ proxime s in ν , in epicyclio $\lambda\varrho$ proxime ζ in ν . Igitur per hypothesin ex ϑ incidit planeta in $\forall\mu$, per hypo-

thesin vero ex a, incidit in τv ; ubi vides, quod puncta μ , v, item τ , τ parum differant, illa ex δ haec ex a inspecta, quando planeta circa apsidas versatur. At versus longitudines medias haec puncta tantum a se invicem dissidebunt, quantum in priori schemate v et Φ dissident, eruntque omnia quam proxime aequalia et demonstrationes omnino eaedem. Continuatis enim ϑ_{i} , ε_{x} ad concursum π , et $\zeta\lambda$, $\beta \circ$ ad concursum in ϱ , erunt $\vartheta \pi \varepsilon$, $\zeta \varrho \beta$, triangula aequalia ubique triangulo $\vartheta \tau \alpha$, et latera lateribus parallela.

At quia demonstrationes hae per se satis erunt perplexae neque consultum, ut coacervatione epicyclorum et epicycliorum Copernicanorum seu Braheanorum magis involvantur, ideo in sequentibus et hanc formam Copernicanam seu Tychonicam primae inaequalitati tributam valere jubebimus : nam ipsa secundae inaequalitatis ratio hypothesium trigemina ubique futura abunde satis nobis exhibebit negotiorum. Quicquid autem per Ptolemaicum aequantem cum eccentrico demonstraverimus, jam statim postulo ut pro demonstratis in hoc quoque Copernicano seu Braheano concentrico cum duobus epicyclis vel- eccentrepicyclo accipiatur: nam perexigua inventa est differentia supra cap. IV.

Caput VI.

De aequipollentia hypothesium Ptolemaei, Copernici et Brahei, quibus inaequalitatem planetarum secundam demonstrurunt, et quid singulae a se ipsis differant, quando ad apparentem et quando ad medium Solis motum accommodantur.

Dictum est hactenus de hypothesibus primae planetarum inaequalitatis, quae absolvitur, quoties planeta ad idem signum zodiaci redit. Nunc transimus ad alteram inaequalitatem, quae non in constanti aliquo et uno signo zodiaci, sed in conjunctione vel oppositione Solis cum planeta absolvitur. Hanc igitur vehementer mirati sunt homines: causamque alius aliam attulit, qua fieret, ut planeta junctus Soli redderetur velox, directus, altus et parvus, at e regione Solis retrogradus, humilis et magnus, intermediis temporibus stationarius et mediocris.

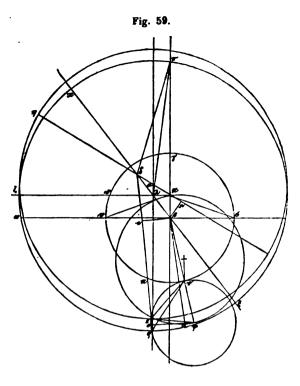
Latini auctores vim inesse censuere Solis aspectibus et radiis, qua planetae ceteri in rei veritate attraherentur: quorum sententia numeris nequit demonstrari, quare non est astronomica: sed nec verisimilis, inventis veris causis: et manifeste falsa, cum Saturnus incipiat retrocedere in quadrato Solis vel ultra, Jupiter in trino, Mars in biquintili vel ante sesquadrum, inconstanti intervallo omnes.

Ptolemaeus dixit, loco certo circuli planetarii, qui sufficit primae inaequalitati, fixum esse non planetam ipsum, sed centrum epicycli planetam in sua circumferentia fixum vehentis, qui vicissim vehatur a circulo illo planetae capitali : formam motus hanc esse, ut si centrum epicycli sit cum Sole, planeta quoque sit in epicycli summo moveaturque cum Sole versus ' plagam eandem, Sole a centro hujus epicycli recedente (velocior enim est illo); planetam simul descendere in epicyclo : cum autem motus epicycli sit velocior circa suum centrum quam motus centri circa Terram, hinc fieri,

e**

ut cum planeta partes epicycli inferiores peragrat, centro epicycli versante in opposito Solis, compositione motuum re vera sit retrogradus. Ita Ptolemaeus sententiam suam numeris et geometriae accomodavit, admirationem non sustulit. Adhac enim cansa quaeritur, quae omnes planetarum epicyclos Soli connectat, ut ii semper in congressu centri sui cum Sole periodum suam absolvant.

Copernicus cum antiquissimis Pythagoreis et Aristarcho, cumque iisdem una ego negamus hanc secundam inaequalitatem in ipso planetae motu proprio inesse, sed videri tantum, accidere vero annua gyratione Telluris circa Solem immobilem. Itaque, quemadmodum cap I. motus diurnus a motibus planetarum propriis fuit separatus, sic jam secunda planetarum inaequalitas itidem a prima separatur a Copernico et quidem eodem modo. Nam primum motum alii artifices adventitium quidem in planetis agnoscunt, sed tamen credunt, illum re vera planetis inesse et inferri sic, ut eodem et planetae vehantur. Copernicus neque inesse per se neque inferri concedit extrinsecus, sed affingi tantum illis per fallaciam visus: dum enim Terra volvatur super axe suo ab occasu in ortum, visui nostro videri mundum reliquum volvi ab ortu in occasum. Eodem, inquam, modo Copernicus asserit, planetas non re vera fieri stationarios et retrogrados, sed videri: Terra enim alio insuper et eo annuo motu in circulo amplissimo (quem orbem magnum appellat) translata, eos, qui Terram credunt quiescere, putare planetas et Solem in contrarium transferri, et Sole inter Terram et planetam posito, componi in visione motus Terrae et planetae, unde videatur planeta velox, Terra vero inter Solem et planetam posita, videri relinqui planetam et sic retrocedere, eo quod Terra velocior sit planeta.


Tycho Brahe simile quid habet cum Latinis, non Solem quidem attrahere planetas per aspectum, sed planetas adulari Soli: niti enim, ut illum (quamvis euntem) in medio fere suarum circuitionum retineant, ipsos vero genuinam viam circa Solem (quasi esset immobilis) ordinare. Qua ratione quilibet planeta in aura aetherea praeter viam propriam ipsam etiam Solis viam conficit, efficiturque ex motu utroque compositus ad unguem idem qui apud Ptolemaeum (spiralis nempe), ut cap. I. dictum. Et astronomice Ptolemaeus epicyclos in eccentricis statuit, Braheus eccentricos in epicyclo uno, qui est ipse Solis orbis.

Ego in sequentibus demonstrationibus omnes tres auctorum formas conjungam. Nam et Tycho, me hoc quandoque suadente, id se ultro vel me tacente facturum fuisse respondit (fecissetque si supervixisset), et moriens a me, quem in Copernici sententia esse sciebat, petiit, uti in sua hypothesi omnia demonstrarem.³¹)

Porro trium harum formarum perfectissimam aequipollentiam geometricam et jam statim et per totum librum, aliud licet agentes, demonstrabimus. In praesens persequendum est institutum et demonstrandum, omnino magnum aliquid in secunda inaequalitate peccari, si pro apparenti motu Solis medius susceptus fuerit, cum quo planeta in principio hujus secundae inaequalitatis opponatur.

Incipiam a Copernicana sententia. Centro β scribatur eccentricus Terrae γv , qualem Copernicus Ptolemaeo fidens est imaginatus, ut in eo sit $\gamma\beta$ linea apsidum, x locus Solis immobilis et β punctum aequalitatis motus Telluris. Ducatur per β ipsi $\beta\gamma$ perpendicularis $v\beta\sigma$, secans circumferentiam in punctis v, σ ; et connectantur v, σ cum x.

Copernicus igitur, Ptolemaicos numeros in suam formam hypotheseos Kepleri Opera. III. 13

tralaturus, planetarum eccentricitates computavit non a x Sole, sed a 8 centro aestimato aequalitatis cursus Terrae. Eductis enim lineis ex 8. utpote $\beta\gamma$, $\beta\nu$, $\beta\sigma$, quoties planeta et Terra in has incidunt, planeta supponebatur exuisse secundam inaequalitatem, quae ei accidebat ratione motus Terrae, ut si Terra in v versante planeta inveniretur in linea Bu producta.

Porro hac ratione Copernicus visum per fictionem in puncto β collocavit. Dummodo namque planeta sit in linea βv , nihil interest ad designandum ejus locum sub fixis, sive ex σ adspiciatur sive ex β . Eadem de lineis $\beta \gamma$, $\beta \sigma$

et infinitis aliis in β concurrentibus vere dici possunt. Ergo punctum β est concursus linearum visoriarum omnium et sic commune punctum fictum visionum omnium: re vera autem visio, hoc est Tellus domicilium nostrum in circuli oyu aliis atque aliis punctis invenitur diversis temporibus. Cum igitur existimasset Copernicus, liberari planetam inaequalitate secunda quoties Terra et planeta invenirentur in una aliqua linea ex β exeunte, planetae loca visa sub fixis ad ea momenta oppositionum planetae cum medio loco Solis instrumentis mathematicis indagavit. Invento enim loco planetae in aliqua noctium circa oppositionem planetae cum Sole, si tunc medius Solis locus per calculum fuit inventus in puncto praecise opposito, is fuit articulus temporis: sin ea nocte adhuc distarent nonnihil, collatione duarum vel plurium noctium motuumque Martis et Terrae diurnorum intercedentium venatus est hunc ipsum articulum temporis et punctum seu locum, quem teneret eo articulo planeta. Ubi hoc factum toties et in tot locis zodiaci, quot sibi putavit esse necesaria (ut si factum fuisset in $\beta\gamma$, $\beta\nu$, $\beta\sigma$), jam per haec inventa planetae loca $\beta\gamma$, $\beta\nu$, $\beta\sigma$ sub fixis seu in zodiaco coepit artifex investigare inaequalitatis primae hypothesin, quanta nimirum esset eccentricitas planetarii circuli a suscepto puncto β et in quas zodiaci partes vergeret apogaeum, comparatis his angulis, quos loca deprehensa conformarent in β centro visus cum temporibus intercedentibus. Methodum autem hujus negotii infra suo loco patefaciam.

Esto jam confecta pragmatia et prodeat linea apsidum eccentri $\beta \delta$, eccentricitas puncti aequatorii $\beta \delta$, centrum eccentrici in hac linea ejusque

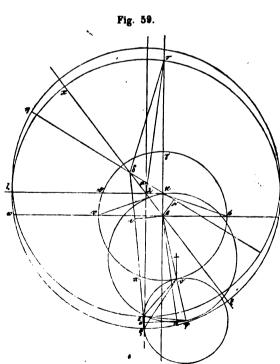
puncto λ ; et respondeat haec hypothesis omnibus locis observatis sub articulos oppositionis planetae cum medio loco Solis.

Quid igitur est, Keplere, quod hic desideres in Copernico? Anne observationibus seu astronomorum experimentis negas hanc hypothesin per omnia respondere? Id quidem jam non agitur. Neque ego, cum hunc laborem auspicarer, ab observationibus in diversam sententiam sum adductus. Sed hoc est quod desideravi: Continuetur $\beta\delta$ ut secet eccentricum in χ , ξ ; et circa χ sumatur punctum eccentrici, quod sit τ , connectaturque cum δ , λ . Cum ergo 1 r metiatur angulum 12, angulus vero 28 r major sit angulo 1λτ quantitate δτλ, et sit δ punctum acqualitatis temporariae; ergo tempus per 282 designatum est majus respectu totius periodi temporis per 4 rectos signati, quam arcus 12 respectu circumferentiae totius: tardus igitur planeta vere (non jam per visus phantasiam) per arcum 17, velox in opposito arcu, et in y tardissimus, in 5 velocissimus. Neque tamen in y longissime recedit a x Sole, neque in § proximus fit ipsi x. At omnibus rationibus ipsaque adeo hypotheseos hujus, quam circa β punctum refello, testificatione consentaneum efficitur, hanc realem retardationem planetae oriri ex discessu a corpore Solis, accelerationem ex appropinquatione ad Solem ipsum in x situm. Contra ne cogitatione quidem comprehendi potest, inesse vim in puncto β (quod caret corpore) potius, quam in x omnino proximo (in quo Sol, cor mundi), quae vis planetam pro ratione abscessus et recessus sui tarde vel velociter circumagat. Ac etsi quis jam non concedat retardationes et accelerationes hujusmodi ex intimo eccentricorum complexu physice oriri, statuat igitur has affectiones motus esse naturaliter penes ipsas facultates motrices in corpore planetae residentes, rursum eandem verisimilitudinem obtinebimus. Nam quae causa sit, cur mentes illae praeterito puncto x (quod geometricam habet affinitatem ad motum, corpore enim vestitum est non exiguae magnitudinis) ad β punctum respicerent, quatuor solummodo semidiametris (vel secundum auctores, diametris) corporis Solaris ab ipso Sole remotum et corpore vacans nullaque re nisi unica imaginatione subnixum? Adde quod Copernicus lib. V. cap. 16. ipse agnoscit, Solem in x plane fixum esse ideoque eccentricitatem x8 constantem, cum β punctum, quod pro centro habet orbis annui, seculorum successu luxatum esse perhibeat itaque $\beta\delta$ breviorem factam. Quo pacto β aut hodie non est amplius in centro mundi, aut olim non fuit ibi. At consentaneum est, vel originem motus ex centro mundi esse vel mentes motrices ad centrum mundi respicere, non igitur ad β sed ad x, quod Copernicus fixum perhibet; id quod centro mundi competit. His adductus verisimilitudinibus conclusi, lineam apsidum, quae pro inaequalitate prima planetae efficienda usurpatur, non debere per β sed per ipsissimum * transire. Tunc autem id obtinebimus, cum loca planetae sub fixis ea adhibennus, quae planeta possidet in articulo oppositionis sui et apparentis loci Solis. Et quidem cum puncta x, β cum y Terra in eadem sunt linea ipseque planeta una in eandem coincidit, ut si sit in τ , tunc eodem momento planeta et medio et apparenti Solis loco opponitur manetque ei locus, sive per $\beta \tau$ sive per $\star \tau$ inter fixas excurrentem designetur, vereque exutus est inaequalitate secunda, sive ab apparente sive a medio motu Terrae pendeat. At cum Terra ad sui eccentrici latus seu longitudines medias venit, differentia satis magna intervenit. Iverit enim Terra a y in v (Sol nempe e regione a perigaeo et Capricorno in Arietem) et inveniatur linea 13 *

medii motus Solis $v\beta$ in Ariete, linea vero visionis planetae in Libra praecise illi opposita, nempe v ∞ . Cum igitur vx sit ultra v β magis in consequentia, apparens igitur Solis locus est ultra planetae oppositum; et cum v sit Terra, visus domicilium, et ω planeta, et uterque descendant versus ξ. velocius tamen v Terra; linea ergo vo posteriori tempore adbuc magis inclinatur ad lineam vx visibilis loci Solis: antecessit igitur apparens oppositio mediam. Tempore igitur, quod antecedit momentum signatum per βv , quod sit $\beta \vartheta$, planeta in lineam ex x per ϑ eductam incidet, nempe in ζ . Et tunc $\partial \zeta$ linea visionis planetae (quod inexercitatior aliquis diligenter notet) plus in consequentia vergit sub fixis, quam vo temporis posterioris: quia etsi & praecedit lineam vo in antecedentia, tamen perinde est ac si O, v et omnia omnino puncta per Terrae circulum unum punctum et centrum sphaerae fixarum essent: ouare non distantia terminorum &, v, sed inclinatio linearum & vo efficit, ut lineae in diversa zodiaci loca incidant, eodem ad sensum coincisurae, si paralleli fuissent. Inclinari autem & versus ω patet inde, quod idem tempus supponitur, quo planeta ex ζ in ω et Terra ex ϑ in v movetur. Terra vero velocior est planeta. Majus igitur spatium θυ Terra conficit, quam est ζω spatium planetae.

Sed esse planetam antecedenti tempore plus in consequentia, facilius etiam doceri potest, cum sub oppositionem sit retrogradus, quod omnibus constat. Apparet itaque, quid in hac reductione a medio ad apparentem Solis motum in locis inaequalitate secunda exutis immutetur.

Nam in τ et opposito loco pristina loca manent in ζ vel ω : additur loco viso, quia θζ (ut dictum est) magis in consequentia vergit quam vo: adimitur tempori interlapso, quia $\partial \zeta$ est visio tempore prior quam vo. In opposito loco fit contrarium, tempori scilicet additur, loco adimitur. Atoue ita loca haec planetae a pristinis multum dissident. Quare et in operatione de novo instituta effectus prodeunt multo alii. Nempe cum visum fictione in x Solem transtulerimus (eo quod planetam in τ et ζ positum inspexeramus, Terra in lineis $x\tau$ et $x\zeta$ versante, scilicet in punctis γ et ϑ), eccentricitas igitur jam a x consurget. At supra capite V. ostensum est, visu ex β in x translato et ex x per δ punctum aequalitatis pristinum linea ejecta, per hanc novam hypothesin novum quidem eccentricum strui, sed qui visui in β quam proxime suas visiones omnes imperturbatas relinquat. Igitur connexis ∂, κ et linea divisa in μ , sic ut $\partial\lambda$ sit ad $\partial\mu$ ut $\partial\beta$ ad $\partial\kappa$, et ex μ designato novo eccentrico ηs , qui priori $\xi \gamma$ sit aequalis, acta etiam per x, δ nova linea apsidum, consurget hypothesis nova, cujus apsis in η . Prius autem γ abusive apogaeum dixeramus, eo quod in linea $\chi\beta$ Copernicanum centrum β in locum Terrae Ptolemaicum successerat. Jam igitur η propria notione (cum in Copernicana hypothesi sumus) aphelium eique oppositum punctum perihelium dicemus, eo quod Sol x longissime ab η recedat.


Dictum est, quid physice differant hae geminae opiniones, mea et auctorum. Ostensum etiam est, quomodo in forma Copernicana utraque geometrice delineetur. Tertio et illud inculcatum, astronomice in articulis conjunctionum et oppositionum nihil illos differre quod admodum magni sit faciendum. Sequitur ut, quod supra cap. V. inexplicatum mansit, demonstrem, omnino magnam aliquam differentiam intercedere inter utramque hypothesin, si ex iis extra situm acronychion planetae locum computare jubearis.

Ducta igitur per λ , μ centra eccentricorum linea parallelos ipsi βx , et

continuata, ut secet utrumque eccentricum in duobus punctis infra et supra, constituet infra maximam intercapedinem e o aequalem ipsi $\lambda \mu$. Sed quia non lineae ex λ sed lineae ex δ designant certa et eadem momenta temporis, quibus hic opus habemus, ducatur igitur $\delta \rho$, secans eccentricos in ϵ , ρ , ut uno et eodem momento planeta hic in e, illic in o certo incidat. Terra igitur in linea $\delta \rho$ versante, scilicet in π , planeta sive in e sive in ρ consistat, utrinque eodem in loco zodiaci videbitur: nam linea so ratione optica instar puncti apparet : at Terra ad hujus lineae latera utrinque excedente, quantitas lineae so apparet major atque major, quia ex obliquo. Quaeritur punctum orbis Telluris, ex quo visoriae per e et per o incedentes omnium maxime discedant maximumque angulum ad visum constituant errorque sit maximus, si planeta in ρ ponatur, quando debuit poni in s. Primum is angulus major erit infra in e quam supra circa r, quia orbis Terrae ex β descriptus visum propius ad $\epsilon \rho$ quam ad τ admovet. Deinde cum $\delta \rho$ sit ultra $\tau \beta$, ergo $\epsilon \rho$ obliquius inspicitur ex partibus sinistris quam ex dextris. Minor igitur apparebit illic quam hic, etiam in aequali distantia Telluris a $\delta \rho$ linea. Ergo punctum nostrum quaerendum est in partibus dextris. Dico, eo maximum subtendere visionis angulum visu constituto in eo puncto, ubi circulus Terrae a circulo per so ducto tangitur. Sit enim talis circulus per s ρ descriptus, qui circulum v σ in partibus versus σ tangat: tactus fiat in puncto v et ab e, o lineae exeant cum in contactum v, tum in plura alia puncta circuli vo ante et post contactum. Cum igitur circalus circulum in uno solo puncto tangat, ergo omnium angulorum crura ex e, ρ exemptia et in punctis circuli $v\sigma$ concurrentia secabuntur a circulo

per eo, praeterquam ea, in r contactum quae circulorum terminantur. Quae autem crura ex e. e secantur a circulo ee ante suum concursum, ea si in alterutro punctorum sectionis coirent, majori angulo coirent (Eucl. I. 21): et sunt omnes anguli in circumferentia super e e segmento constituti aequales (Eucl. IIL, 21), ergo qui ad " (contactum) major est ceteris omnibus. q, e. d. Ut igitur quantitatem in familiaribus numeris investigemus, opus nobis est cognitione ipsius ep et perpendicularis ex β in 80.

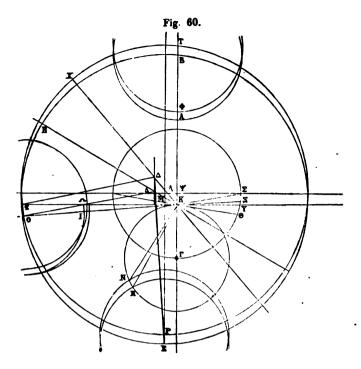
Utramque discemus ex resolutione triangulorum δλρ, δμ s. Nam in δλρ supra (p. 188) as-

servarimus 82 7411, qualium 20 100000 et 028 47° 59' 16". Hinc prodit ρδλ 44° 59' 10" et δρ 105123. Ergo in εδμ, cum sit εδλ 44° 59' 10" et λδμ prius fuerit 5° 27' 47", totus igitur εδμ est 50° 26' 57" et δμ fuit supra 6763 qualium µe 100000. Igitur in e8µ datis tribus et reliqua dantur, nempe e ux 53° 26' 17" et per hunc de 104170. Prius vero de erat 105123; relinguitur ergo e 953. Supra $\lambda \mu$ fuit 880, cui aequalis esset ep, si signa e, p essent in linea μp : sed quia hic e est in linea bp inclinata ad µo, nihil igitur mireris, longiorem esse so quam µl. Demissa -jam ex β perpendiculari in $\delta \varrho$, quae sit $\beta \iota$, in triangulo $\delta \beta \iota$ rectus est ad i et boi est 44° 59' 10" et bo supra fuit 19763; ergo quaesita perpendicularis & 13971 et & 13978, guare i 91145. Oportet et guantitatem radii by conjicere in eosdem numeros: supra enim, cum, quae nostrae β_{x} hic respondet, assumeretur particularum 3584, β_{y} fuit praesupposita 100000. Jam vero $\lambda \rho$ 100000 praesupponitur, et est $\lambda \rho$ ad By supra assumta ut 61 ad 40 fere, unde cetera exstructa sunt: ergo ut 61 ad 40 sic 100000 ad 65656 $\frac{1}{2}$ legitimam quantitatem βv . ¹²) Tangat igitur circulus per eq transiens circulum by in puncto r; et eq per medium secta in o perpendicularis ipsi ip insistat wo; et continuetur β, donec in ψ secet oψ; erit ψ centrum circuli. Est enim centrum circuli in linea per centrum alterius tangentis circuli et contactus punctum transcunté (Eucl. III, 11), quare in $\beta \psi$ linea. Rursum (Eucl. III, 3) centrum circuli est in perpendiculari bisecante subtensam e g, quae sectionis puncta e, o connectit : ergo in linea oy, quare in puncto y communi utrique lineae. Connectatur εψ et ex β ipsi ιρ parallelus exeat $\beta \alpha$, secans of in α . Igitur $\beta \alpha$ acqualis est lineae 10, et αo acquais lineae BL. Sed BL jam inventa est 13971, 10 vero cognoscitur ex 10, 10. Fuit enim 10 supra 91145, et e 0 953, sed o p est dimidium de e p, ergo op est 476 $\frac{1}{2}$: ablato ergo op ab 10, relinquitur 10 vel $\beta \alpha$ 90668. Cum autem sit a rectus, ergo by poterit utramque ba, ay. Est vero composita By ex Br nota (scilicet 65656) et ry. Ipsa vero ry, hoc est sy, (cum sit o rectus) potest notam so 476 1/2 et ou compositam ex o a nota et a w ignota sed prius etiam commemorata. Oportet igitur o w tam longam facere, ut si potentias vo et os jungas, latus ev vel vr nos sil longius, quam ut potentia compositae ex $\beta r, r\psi$, diminuta potentia ipsius $\beta \alpha$, relinquat potentiam ipsius $\psi \alpha$ tantae, ut composita cum α o acquet primo assumtam yo. Assumo yo unitatem figuratam; ejus guadratum erit quoque figuratum. Appone quadratum ipsius so 227052; erit quadratum we vel wo compositum ex his duobus. Est vero quadratum \$ 4310747477; quod si quadrato y addideris et rectangula compleas, constituetur quadratum totius $\psi \beta$. Est autem quodlibet illorum rectangulorum radix de 4310747475 3 + 978763835536363. Atque sic habetur hoc quadratum by semel. Cum autem ao sit 13971, erit wa figurata unitas, diminuta per 13971. Ejus quadratum 13 — 27942 B + 195188841. Cui adde quadratum ipsius βa 8220686224, ut constituatur guadratum $\beta \psi$ secundo 1 3 — 27942 B + 8415875065. Prius erat 13 + 4310974527 et amplius radicis de 43107474753 + 978763835536363 duplum. Aufer utrinque unum censum et 4310974529, relinguetur illic - 27942 B + 4104900538, hic radicis de 4310747475 3 + 978763835536363 duplum, quae aequalia sunt. Simplo ergo radicis illic est acquale - 13971 B + 2052450269. Ac cum hoc sit illius

J

radici aequale, hujus ergo quadratum illi ipsi erit aequale. Est autem hujus quadratum + 195188841 3 - 57349565416398 B + 4212552106718172361.

Abjice utrinque 195188841 § et 978763835536363, et adde utrinque 57349565416398 §. Stabunt utrinque aegualia; illinc 4115558634 § + 57349565416398 §; hinc vero 4211573342882635998. Et in minimis numeris 1 § + 13934 § aeguant 1023329690. Peracta aeguatione prodit oy unitatis figuratae valor 25772.³³)


Cognita semidiametro circuli jam facile habentur anguli. Nam a ψo aufer oa 13971, restabit ψa 11801. Et βa est 90668 $\frac{1}{2}$, et $\beta a \psi$ rectus, ergo $a\beta\psi$ 7° 30' 10". Sed $a\beta$ vel $\varrho\delta$ supra per 3° 0' 6" annuebat ad $\varrho\lambda$ vel βx , quae in $5\frac{1}{2}$ ° \oplus incidit, ergo ϱ : vel $a\beta$ in $8\frac{1}{2}$ ° \oplus . Ergo $\psi\beta$ in 16° \oplus . Sole ergo (assumtis his numeris) perambulante 16° \oplus , planeta vero medio et aequabili motu in $8\frac{1}{2}$ ° Ξ , at apparenti circa 27° m versante, s ϱ apparet maxima. Quodsi planeta sit ultra $8\frac{1}{2}$ ° Ξ , ultra scilicet ϱs , etsi tunc ϱs minuetur, apparentia tamen augeri poterit in puncto ultra * ob appropinquationem orbium. Quantitas jam statim habetur. Cum enim o ψ sit inventa 25772 et o ϱ 476 $\frac{1}{2}$, erit o ψs 1° 3' 32". Ei vero aequalis est $\varrho * s$, quem hactenus investigavimus (Eucl. III, 20): nimirum guia totus $\varrho \psi s$ ad centrum duplus est ipsius $\varrho * s$ ad circumferentiam, et vero o ψs dimidius est ipsius $\varrho \psi s$. Quodsi $\beta\delta$, $x\delta$ bisecentur, et $\lambda \mu$ dimidium ipsius βx assumeretur (quo de infra), tum ϱs et consequenter ejus angulus ad * quarta parte posset major fieri. Ita vides tandem, quantum mea haec traductio hypotheseos a medio ad apparentem motum Solis in parallaxibus orbis annui turbet.

Aperta igitur est nobis janua per observationes quoque statuendi de vo, quod a priori et a consideratione causarum motricium deduxeram; scilicet lineam apsidum planetae, quae sola bisecat iter planetae in duos semicirculos aequales vigore et quantitate, hanc inquam lineam non praeter Solem (ut artificibus placet), sed per ipsum centrum corporis Solis transire. Hoc autem in successu operis demonstrabo ex observationibus parte quarta et quinta.

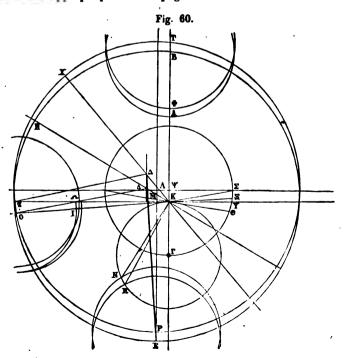
Jam eadem quantum fieri potest et in Ptolemaica hypothesi deduram.

Centro Ψ (Fig. 60) scribatur eccentricus Solis Γ , in quo $\Psi\Gamma$ sit linea apidum et Terra immobilis in lineae $\Psi\Gamma$ puncto K, versus Γ , et Ψ punctum aesimatum aequalitatis motus Solis: erigantur ex Ψ , K perpendiculares $\Psi\Sigma$ KT; et connectatur Σ cum K; sitque K Σ linea apparentis motus Sols, KT linea aequalis motus Solis.

Ptolemaeus igitur planetarum cursus expendit non in lineis $K\Sigma$, sed in lneis KT, eductis ex K parallelis ipsis $\Psi\Sigma$ per corpus Solis euntibus. Quotes enim planeta in has KT incidit e regione Solis, supponebatur exuise secundam inaequalitatem, quae ei accidebat (secundum opinionem Ptolenaei) ratione epicycli, et tunc instrumentis explorabatur locus planetae, in qu sub fixis apparebat, supponebaturque, centrum epicycli tunc inveniri in ealem linea. Id factum aliquoties et in diversis zodiaci locis : esto in lineis $K\Gamma$, KT et oppositis. Ex tribus igitur hujusmodi locis planetae (seu centri epicycli, qui secundae inaequalitati servit apud Ptolemaeum) coepi artifex investigare inaequalitatis primae hypothesin, comparatis his angula, quos loca deprehensa conformarent in K centro Terrae et visus,

cum temporibus intercedentibus. Methodus hujus negotii in Ptolemaeo invenitur lib. IX.

Esto jam confecta pragmatia et prodeat linea apsidum eccentr $K\Lambda\Delta X$, Δ punctum aequatorium, centrum eccentrici in hac linea et punct Λ , et eccentricus XZ, et respondeat haec hypothesis omnibus locis obser vatis sub articulos oppositionis planetae cum Solis loco medio.


Hic quae Copernico objeci de concinnitate motus physici, non plaze et in Ptolemaeum quadrant. Nam centrum quidem epicycli, qui secunde servit inaequalitati, hic aeque ac prius ipse planeta transfertur tarde, cleriter, pro suo ad K Terram accessu vel recessu in circulo XZ: inese autem in K Terra (ut prius apud Copernicum in Sole, corde murdi) vim motricem, quae centra hujusmodi epicyclorum circumagitet, bsurdum et monstrosum est statuere. Alia vero via impugnari ex phyica potest haec hypothesis. Est enim huic formae quodammodo propria oliditas orbium, qua (per Tychonis Brahe observationes cometarum) destricta, haec per sese quodammodo cadere videtur hypothesis; statueretur nim vis motrix in centro epicycli (in non corpore sed puncto mathematico residere et agitare se ipsam de loco in locum transeundo, idque aequaibus temporibus inaequaliter; simul vero et secum attraheret planetam adpropinquitatem diametri epicycli illumque simul circa sese gyraret aequlibus temporibus aequaliter. Haec tanta varietas in unam motricem mntem cadere non potest, nisi Deus sit, suffragante Aristotele lib. I. Metashysicorum cap. 8, cui placet, singulis motibus aequalissimis et simpliaisime circularibus singulas praesidere mentes: praeterea, qui virtus aliqua sdebit in non corpore, effluet ex non corpore in planetam ? Quodsi etiar di-

vidas munia, et motricum intelligentiam unam in centro epicycli colloces. alteram in corpore planetae, ea quae in centro Terram (corpus nempe) respiciet et circumibit Terram in circulum inaequaliter, quae vero in puncto circumferentiae (nempe in corpore planetae) circumibit centrum incorporeum Quaeretur igitur ut supra, quibus illa adminiculis id inet id aequaliter. corporeum punctum circumveniat. Non enim per geometricam imaginationem. ut quod geometricam sui imaginationem non admittit; nec punctum mobile in non corpore vel imaginando subsistere potest; et nos homines hujusmodi puncta imaginantes adminiculis utimur tabellarum vel papyri, quae tractamus manibus vel meminimus nos olim tractasse. At neque per physicam effluxionem virtutis (quae in centro epicycli) usque ad circumferentiam et corpus planetae. Jam enim sustulimus hunc virtutis effluxum, divisis muniis compositi motus inter binas mentes. Quin etiam in prima et eccentrica motione dubitatur, an virtus aliqua naturalis, ad motum inferendum comparata, possit in puncto aliquo subsistere, quod omni proprio corpore careat? multo magis an hujusmodi incorporea virtus se ipsam circa Terram circumagitare et de loco in locum transire possit? et multo maxime an motum alii per effluxum ex se ipsa communicare seu inferre possit, nalli innixa corpori ceu nido? Nam quae sublimia de essentia, motu, loco, operationibus beatorum angelorum et separatarum mentium mihi opponere aliqui volent, impertinentia sunt. Disputamus enim de rebus naturalibus dignitatis longe inferioris, de virtutibus nullo arbitrio ad variandam actionem suam usis, de mentibus minime sane separatis, cum sint conjunctae et alligatae corporibus coelestibus vehendis. Atque haec in genere Ptolemaeo objici possunt.

Sed aliquid etiam Ptolemaeo dicatur, ob quod in specie a suo motu medio Solis discedere et apparentem nobiscum amplecti velit. Etenim si virtus movens planetam (seu una, seu gemina) ad Solem respicit, ita ut planetam imo loco epicycli statuat (epicyclum hic intellige Ptolemaicum, secundae inaequalitati inservientem), quoties centrum epicycli e regione Solis stat, quaero ut supra, cur potius ad punctum imaginarium T (quod Solem ipsum per Σ notatum jam praecedit, jam sequitur, jam supra, jam infra stat) quam ad ipsum Solis corpus respiciat? aut quomodo virtus illa motum ipsius T circa K Terram percipere omnino possit, cum in Ψ corpus non sit? et an non sit verisimilius, epicyclum ad lineas $K\Sigma$ apparentis loči Solis, quando hae per centrum epicycli transeunt, restitui? Videamus igitur, quid in eccentrico immutetur per apparentis motus Solis usurpationem. Rursum igitur (ut prius) cam Γ Sol et Ψ centrum eccentrici Solis cum K Terra in eadem est linea, sic ut $\Psi\Gamma$ apparentis et $K\Gamma$ medii motus Solis coincidant, tunc T centro epicycli manet hic locus, sive per KT sive per ΨT sub fixis designetur, vereque planeta est in linea KT seu ΨT et imo loco epicycli Φ , quia hic et ipsi Ψ et ipsi K proximus est : proptereaque planeta vere exutus est inaequalitate secunda. At cum Sol ad sui eccentrici latus seu longitudines medias venit, differentia satis magna intervenit. Iverit enim Sol a Γ in Σ et inveniatur linea medii motus Solis KT in Ariete, et linea visionis planetae $K\Omega$ in Libra praecise illi opposita, ut sit $TK\Omega$ linea una. Quia ergo Ptolemaeus statuit, planetam Ω in hac visione $K\Omega$ exuisse secundam inaequalitatem, ponit igitur Z centrum epicycli in K Ω linea. Cum autem $K\Sigma$ superaverit KT, apparens igitur locus Solis est ultra oppositionem cum planeta. Neque $K\Omega$ in posteriore tempore descendit, ut opponatur ipsi $K\Sigma$, sed ascendit versus $K\Phi$, quia partes imae

epicycli Ω sunt retrogradae et celeriores ipso Z centro, et ibi planèta, utpote in oppositione cum Sole. Antecessit igitur hic apparens oppositio mediam. Tempore igitar, quod momentum per KT signatum antecedit (sit autem $K\Theta$) cum Sol videtur in linea $K\Xi$, planeta in ejus opposito videbitur, puta in I per KI, quae est una recta cum KE: et quia jam ponitur in hac vera oppositione exuere inaequalitatem secundam, ideo et centrum . epicycli in hac linea EK videbitur, puta in O; et quia planeta est retrogradus, ergo tempore $K\Theta$ priore quam KT planeta est in KI linea posteriore quam K Ω . Sed KI et K Ω sunt partes linearum KO et KZ; igitar et KO est magis in consequentia quam KZ. Apparet itaque, quid in hac reductione a medio ad apparentem Solis motum in linea centri epicycli mutetur. Nam in T et opposito puncto pristinae lineae motus centri epicycli manent: in Z promovetur haec linea et in ea centrum epicycli, adimitur vero tempori interlapso: in opposito loco fit contrarium, tempori scilicet additur, linea motus centri epicycli retrahitur in antecedentia. Atque ita hae centri epicycli lineae a pristinis multum dissident. Quare etiam. cum ex his aliquot locis visis centri epicycli (nempe ex locis visis planetae, post quem supponimus latere in eadem linea visoria centrum epicycli) nova et repetita operatione causas et mensuram inaequalitatis primae investigamus, effectus operationis a priori multum differt. Nempe cum in semicirculo, in quo est apogaeum, tempus fuerit imminutum, ut ita planeta fiat celerior, prodibit igitur eccentricitas aequantis minor. Et cum in ejus semicirculi quadrante majore BZ, qui habet apogaeum, aequaliter fuerit diminutum tempus quemadmodum in parte minore reliqua, multo igitur celerior in proportione planeta redditus est in illa reliqua parte semicirculi. Perigaeum igitur ad illam appropinquavit et apogaeum a X versus Z descendit.

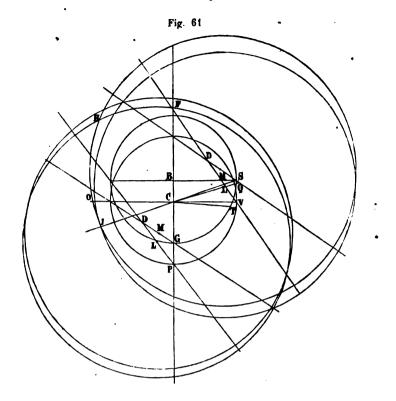
Quantitas autem novae hypotheseos sic patebit. Quia tum demum planeta Ω incidere ponitur in lineam ductam ex Z centro-epicycli per K Terram, cum haec KZ est una continua cum $K\Sigma$, apparentis loci Solis, ergo $K\Sigma$ et quae ex Z per corpus planetae ducitur incedunt perpetuo paralleli. Ac cum jam acceperimus a Ptolemaeo, quo tempore linea medii motus Solis fuit KT per Ω ducta, planetam visum esse in linea K Ω , negemus autem ei Z centrum epicycli simul esse in KR, ducatur ergo (ex nostra positione) $K\Sigma$ parallelos ex Ω loco planetae, quae sit ΩO : centrum epicycli a nobis ponitur hoc momento in linea ΩO vel aliqua huic parallelo et proxima, prout Ω (signum planetae) in linea KZ propior vel remotior ab ipso K fuerit. Sit ipsi ΩZ ex quocunque puncto lineae KZ (quod jam sit Ω) aequalis ΩO ; et ex O ducatur aliqua in ZK parallelos ipsi $K\Psi$, quae sit OZ. Cum ergo ZOO sit aequalis ipsi $K\Sigma\Psi$, et $K\Sigma$ insensibiliter longior ipsa $\Psi \Sigma$ vel ΩO , eo quod $K \Psi \Sigma$ rectus, et angulus ad Σ non major sit 2° 3' (unde qualium $\Psi\Sigma$ 100000 talium $K\Sigma$ 100064) igitur et OZinsensibiliter minor est ipsa $K\Psi$. Connectantur Z, Δ , et ipsi Z Δ parallelos agatur ad O. Cum ergo idem sit momentum temporis, quo centrum epicycli Ptolemaeo ponitar in Z, Mihi in O (quod in theoria Solis per ΨT communiter designatur); idque momentum in theoria Martis notetur per $Z\Delta$ in hypothesi priori, quia Δ est punctum aequalitatis, notabitur id in nova per ei parallelon: novum igitur punctum aequalitatis, circa quod numerantur tempora, erit in hac parallelo ex O.

Et quia centro epicycli (secundum Ptolemaeum) in altera parte lineae medii motus Solis KT versante eadem contingunt (quae omitto ad longum deducere) rursumque aliqua parallelos ducitur lineae Ptolemaicae medii motus centri epicycli, ubi ergo novae duae paralleli concurrunt, in id punctum ex Δ demissa (quae sit $\Delta \Delta$) erit parallelos ipsi ZO vel ΨK et aequalis ipsi ZO et quam proxime aequalis ipsi ΨK , et novum Δ erit commune punctum aequalitatis in nova hypothesi.

At supra cap. V. in fine ostensum est, si per \varDelta ipsi $K\Psi$ parallelos ducatur $\Delta \Delta$, et $K\Psi$ sit aequalis ipsi $\Delta \Delta$, et connectatur novum Δ cum K seceturque nova $K\Delta$ in M ea proportione, qua prior $K\Delta$ secabatur in Λ . per hanc novam hypothesin novum quidem eccentricum strui, hoc est situ differentem a priori, sed qui etiam in priori hypothesi adhibitus visui in K suas visiones omnes fere imperturbatas relinquat. Descripto igitur ex M novo eccentrico, qui sit aequalis priori, et continuata utrinque KM, erit H novum apogaeum, centrum epicycli in B, O punctis novi eccentrici, planeta in A propior, in I remotior quam prius. At vero in locis aequalitate secunda involutis (siquidem planetae tribuatur epicyclus aequalis eccentrico Solis, quod necesse est ut faciamus, siquidem vim eorum, quae Copernicus et Tycho Brahe invenere, plane velimus in formam Ptolemaicam transfundere) omnino priores visiones per novum hunc eccentricum in illarum hypothesin illatum turbantur vehementer: non quidem ideo, quia punctum aequalitatis / non manet idem, sed ideo, quia circa loca apsidum Solis centra eccentricorum Ptolemaici et nostri intervallo AM distant: quam distantiam etiam centrorum adeoque et locorum corporis planetarii distantia aequalis sequitur. Haec porro discrepantia non est maxima, centro epicycli . versante circa longitudines medias Solis. Dictum enim est, illis in locis pene eundem esse locum centro epicycli in utroque eccentrico, quamvis parallelis ex 11 distantibus. Est ergo circa apsides Solis maxima et major

circa perigaeum in Capricorno, continuata linea MA, ut secet eccentricos in P, E. Nam quanta est MA, tanta est et PE. Sed quia non designatur momentum idem per hanc unam lineam MA, cum non M, A, sed Δ sit punctum aequalitatis, ergo versus PE veniant paralleli ex ΔA , quae signabunt momentum idem: sintque ΔP , ΔE et ex P, E epicycli scribantur N, Π .

Quaeritur, ubi maxima appareat haec discrepantia ratione circumferentiae epicycli? Et certum, quod non in partibus epicycli ipsi K Terrae proximis, quia essent ipsi K ad plagam eandem: nec in summis, quia nimis essent remotae: ergo in proximis partibus perigaeo epicycli: ergo Sole et cum hoc planeta non plane in perigaeo suo versante sed proxime, et in summa (ut breviter dicam) in punctis iis N, Π eodem temporis momento convenientibus, per quae et K minimus circellus traducitur. Est autem ejus circelli centrum in linea per K ducta, quae continuata sursum et concurrens cum linea P_{Δ} itidem continuata angulum $7\frac{1}{2}$ ° comprehendit.


Demonstrationem ex superioribus huc accommodet, qui non acquiescit; numeri quidem iidem mament, nisi quod apud Ptolemaeum $M \land$ major est, quam superius in numeris usurpatis $\mu\lambda$ (Fig. 59); quare et differentia visionis major, scilicet NKII.

Prius nempe erat ut $\delta\beta$ ad $\delta\lambda$ minorem quam est dimidia $\delta\beta$, sic βx ad $\lambda\mu$. Ptolemaeo vero esset, ut $K\Delta$ tota ad $K\Lambda$ dimidiam, sic $\Delta\Delta$ aequalis ipsi βx ad $M\Lambda$.

Denique eadem et in Tychonica hypothesi deducam. (Etsi apud Braheum orbis Martis secat orbem Solis; quia tamen generalia tracto in hac prima parte, et quae omnibus planetis conveniunt, malui hic excludere hanc intersectionem, multum enim obscuritatis in schemate fuerat paritura.) Centro B (Fig. 61) scribatur eccentricus Solis GS, ut in eo BG sit linea apsidum, C locus Terrae immobilis et B punctum aequalitatis ex sententia auctorum: nam in progressu ostendetur, punctum aequalitatis et centrum eccentrici in theoria Solis non esse idem. Erigantur ex B, C perpendiculares BS, CV: et connectatur S cum C, ut sit CV linea medii et CS apparentis motus Solis.

Etsi igitur Tycho Brahe nondum plane concluserat, utrum planetas ad lineas CV, an vero ad CS referret, in prima tamen conceptione lineas CV habuit, uti quidem tomo L Progymnasmatum fol. 477. et tom. II. fol. 188. declaratum reliquit: quam eandem viam ipsa quoque Ptolemaei et Copernici vestigia ipsi monstrarunt. Hanc a Tychone calcatam viam, si ad mentem Ptolemaei pergamus, dicere oportet, quoties planeta in lineas CV medii motus Solis incidit e regione Solis, toties illum exuere inaequalitatem secundam, quae ei accidit ex Brahei sententia, ob motionem centri eccentrici circa Terram eodem tempore cum Sole.

Nam ipsum quidem commune punctum, cujus respectu omnes planetae motum dicuntur habere eccentricum et in quo totum systema planetarium affixum esse concipitur orbitae Solis, hoc, inquam, punctum semper versatur in linea medii motus Solis, intervallo aequali ipsi BS a C Terra distans, et concentricum V describens aequalem eccentrico GS. Haec enim fuit Tychonis Brahe sententia: nisi quod solidos orbes ille negavit. Itaque quae de affixione totius systematis planetarii ad orbem Solis diximus, ad captum diximus eorum, qui orbes solidos credunt. Continuetur VC, et sit planeta in hac linea ultra C. Collocabit igitur Braheus in hoc casu punctum affixionis systematis planetarii in V. Visio igitur planetae fit


per lineam VC. Ac etsi visus in C Terra est, perinde tamen est, ac si esset in V puncto, unde dependet prima inaequalitas. Capiatur igitur instrumentis locus planetae sub fixis, quoties in lineae CV puncto aliquo e regione V ultra C fuerit visus (esto in lineis CV, CG et oppositis) ut fuerit centrum systematis planetarii in circulo VP, Sol in S et G, corpus planetae e regione in O, F; etsi in theoria Martis eccentricus planetae ad eccentricum Solis in minori proportione est, adeo ut eccentricus Martis et puncta O, F fiant ipsi C Terrae propiora quam S Sol: quae una inter causas fuit, cur Braheus orbium soliditatem negaret. Ex pluribus igitur locis hujusmodi et omnino ex totidem, quot haberi potuere, Tycho Brahe solitus est investigare inaequalitatis primae hypothesin, seposita amplitudine orbis VP, eaque pro unico puncto aestimata, quasi VP centrum systematis planetarii, seu punctum affixionis, interim quievisset. Ita comparationem instituit temporis interlapsi et angulorum, quos VO et PF ex uno puncto eductae (coincidentibus V, P), conformarant, qui quidem sunt iidem cum angulis OCF vel VCP.

Esto jam confecta pragmatia et prodeat linea apsidum eccentrici VLD vel PLD, D punctum aequatorium et L centrum eccentrici in hac linea, et eccentricus HO et FH, et respondeat haec hypothesis omnibus locis planetae observatis sub articulos oppositionis planetae cum Solis loco medio.

Mitto in praesens diligentius excutere, utrum haec hypothesis in genere physicis principiis sit consentanea, in qua Sol Terram circumit mente sua

motrice ad eam respiciens seseque (ut qui orbe careat) inaequaliter incitans pro accessu suo vel recessu a Terra (nisi Terram Sole praestantiorem facere et huic vim Solis motricem transscribere velis), idem vero Sol (ut in Copernico) vim motricem emittit ad omnes planetas, eos circa sese rotans eo gradu celeritatis, quo sunt illi gradu propinquitatis ad Solem; planetae interim nituntur suos ad Solem accessus et recessus in parvo epicyclo conficere simulque Solem (quacunque is circa Terram concedit) iisdem vestigiis insequi extra ordinem, atque ita quilibet planeta (maxime Sol) ad plura simul respicit, ipsique planetarum trajectus per auram aetheream vere (ut apud Ptolemaeum) spirales efficiuntur, qualiter capite I. depicti sunt : haec, inquam, an sint consentanea per occasionem alibi expendemus. Jam ponatur vera haec forma hypotheseos in generalibus. Quaeritor, utrum porro in specie sit consentaneum, planetas insequi ipsum Solis corpus S, G, an vero punctum V, P, corpore vacuum, quatuor semidiametris Solis (non plus) a centro Solis distans, quod jam supra Solem sit jam infra, jam ante jam pone : et amplius utrum magis consentaneum, vim, quae planetas in orbem circa Solem circumagit, in ipso corpore Solis S, G, an in tali aliquo puncto V, P corpore vacuo nidulari; breviter: si axis systematis planetarii (ut notionem vocis crasse a plaustro deducam), quo ceu clavo orbes planetarum orbi Solis annexi sunt, si hic, inquam, est proxime Solem, cur non in ipso Sole? Si axis hic seu punctum affixionis circumit Terram et proxime Solem et eodem plane tempore, cur propriam viam describit? cur non plane idem cum Sole iter observat? Omnino itaque concludo, siquidem vera sit universaliter Tychonis Brahe sententia de systemate mundano, sic esse accipiendam, ut centrum systematis planetarum non in V, P, sed in S, G in ipsissimo Solis itinere versetur, denique in ipso Sole insit, atque ad primam seu eccentri inaequalitatem a secunda liberandam sit utendum oppositionibus planetae cum apparenti loco Solis, non cum medio. Quam rationem ipse Braheus postremis temporibus non gravatim est amplexus. Videamus igitur, quid in eccentrico immutetur. Rursum igitur (ut prius) cum Sol est in linea BC, ut in G, et planeta in F oppositus puncto P, erit F planeta Soli ipsi G oppositus: itaque idem planetae locus apparebit sub fixis per lineam GF, sive ea sit continua cum linea CP sive cum linea CG, quia utrague una factae sunt linea. Utrague igitur ratione planeta vere exutus est inaequalitate secunda. At cum Sol ad sui eccentrici latus seu longitudines medias venit, differentia satis magna intervenit. Ivérit enim a G in S et inveniatur linea medii motus Solis CV in Ariete et linea visionis planetae CO in Libra praecise illi opposita, ut sit VCO una linea. Cum igitur CS superaverit CV, apparens igitur locus Solis est ultra oppositionem cum planeta. Cumque per hanc meam mutationem centrum systematis planetarii sit non in V sed in S, planeta in CO spectato, connexis igitur S, O signis, erit C Terra extra lineam SO, quare visio planetae per CO lineam adhuc implicata inaequalitati secundae. Neque CO in posteriore tempore verget in consequentia, ut opponatur ipsi CS, sed ascendet versus CF, quia motus Solis et una centri systematis planetarii omniumque ejus partium (itaque et ipsius 0 planetae et L centri eccentrici) est a linea CO versus F sursum et multo celerior, quam motus eccentrici vel planetae in O circa L, a puncto H versus inferiora: itaque O motu non eccentrici proprio sed extraneo retrahitur nonnihil in antecedentia, ut quidem per se constat, planetas in oppositione cum Sole esse

206

retrogrados. Tempore igitur, quod momentum per CV signatum antecedit (sit autem CT), cum Sol videtur in linea CQ, planeta in ejus apparentis loci opposito, puta in I, videbitur, et quia jam ponitur, in hoc casu exuere inaequalitatem secundam, ideo QCI erit linea una, hoc est, punctum a quo consurgit eccentricitas erit in linea CQ. Quia igitur CI visio planetae retrogradi prior tempore est ultra CO visionem posteriorem, ideoque magis in antecedentia vergentem, erit igitur et CQ ultra CV et Q novum centrum systematis ultra V vetus. Et cum ex OV sit facta IQ, plus distans in consequentia angulo OCI, linea vero apsidum VD vel PD (a qua motus incipit) maneat in omni circuitu sibi ipsi parallelos, apparet igitur, minori temporis intervallo statui planetam ulterius venisse circa centrum Q systematis, quam antea sub majori temporis intervallo circa V centrum systematis.

Apparet itaque, quid in hac reductione a medio ad apparentem Solis motum in motu apparenti eccentrico immutetur. Naun in G et opposito puncto versante centro systematis, linea motus eccentici apparentis manet, in Q promovetur, in opposito retrahitur, cum illic tempus minuatur, hic augeatur. Atque ita hae lineae a pristinis multum dissident. Quare etiam, cum ex his aliquot locis visis planetae (e quorum regione supponimus inveniri centrum systematis, nempe in ipso Sole) nova et repetita operatione causas et mensuram inaequalitatis primae investigamus, effectus operationis a priori multo differt.

Nam quia punctum affixionis ex circulo VP, in quo Braheus ipsum

oircumduxit, jam in circulum GS transponimus, nimirum in ipsum corpus Solis, quod semper in linea, quae ipsi CB parallelos est, spatio CB supra Braheanum punctum pristinum stat, scilicet supra V, P, in S, G: ut igitur D puncto aequalitatis manente (iisdem scilicet momentis per CV signatis) et planeta in O et punctum afficionis in S esse possit, oportet per punctum D et S vel G novam lineam apsidum trajicere. Quare ex demonstratis capitis V. (quae supra in explicatione formae Copernicanae allegaveramus) ducta DS vel DG, et divisa in ea proportione, in qua DP vel DV per L est divisa, ut sit punctum divisionis M, et centro hoc puncto M, intervallo vero quo prius, scribatur novus eccentricus: ille non tantum reddet observationes has posteriores, ex quibus erat exstructus, sed immissus in priorem hypothesin, salvaturus est etiam observationes prius adhibitas intra praecisionem quinque scrupulorum.

Quae vero computationes instituentur extra situm acronychium et per priorem et per novum hunc eccentricum, alicubi (nempe circa perigaeum Solis) plus uno gradu dissidere poterunt, si numeros familiares et stellae Martis appropriatos per Braheum proditos sequamur.

Demonstrationem non est opus repetere. Delineatio facillima est in schemate Copernicano (Fig. 59), si ex τ Terra parallelon ipsi βx erigas, inque ea intervallo βx centrum eccentrici Solis meteris supra τ , et hoc centro eccentricum Solis Braheanum traducas per x et deleas eccentricum Terrae Copernicanum.

Exposita igitur hac hypothesium diversitate earumque in primis inaequalitatibus aequipollentia, in secundis discrepantia, primam operis partem concludamus, quae (si quid video) totius operis est difficillima ob labyrinthos opinionum pene inextricabiles et vocum aequivocationes perpetuas aut circumscriptiones taediosissimas. Quae autem me necessitas impulerit, ut hanc doctrinam praemitterem, jam statim capite VII. patebit. Hebetior aliquis totam differre potest, donec quae sunt faciliora apprehenderit.

PARS SECUNDA.

DE PRIMA MARTIS STELLAE INAEQUALITATE AD IMITATIONEM VETERUM.

Caput VII.

Qua occasione in theoriam Martis inciderim.

Verum est, divinam vocem, quae discere jubeat homines astronomiam, in mundo ipso expressam, non verbis aut syllabis, sed re ipsa et commensuratione humani intellectus sensuumque cum serie corporum et affectionum coelestium. Sed tamen- etiam fatum quodpiam occulte homines alios ad alias artes impellit certosque reddit, sese, ut pars sunt creati operis, ita et in parte divinae providentiae esse.

Cum primum per aetatem philosophiae dulcedinem cognoscere potui, universam illam ingenti cupiditate sum complexus, nihil admodum de astronomia in speciem sollicitus. Aderat quidem ingenium; nec difficulter geometrica et astronomica, quae scholarum ordo suppeditabat, capiebam, figuris subnixus et numeris et proportionibus. Sed erant illa necessaria studia, nihil quod inclinationem potissimam ad astronomiam argueret. Cumque sumtibus Ducis Wirtembergici sustentarer, viderem vero commilitones meos. quos princeps interpellatus in exteras nationes mittebat, tergiversari varie amore patriae, durior ego mature admodum mecum concluseram, quocunque destinarer promtissime sequi. Prima se obtalit functio astronomica, ad quam tamen obeundam (vere dicam) extrusus sum auctoritate praeceptorum; non longinquitate loci territus, quem metum in aliis damnaveram (ut jam dixi), sed inopinato et contemto functionis genere et tenuitate eruditionis in hac philosophiae parte. Hanc igitur adii instructior ab ingenio quam a scientia, multum protestatus, me jure meo ad aliud vitae genus, quod splendidius videbatur, nequaquam cedere. Quinam fuerint primo biennio successus borum studiorum, ex Mysterio meo Cosmographico apparet. Quos praeterea mihi stimulos Maestlinus praeceptor meus adhibuerit ad reliquam astronomiam amplectendam, leges in eodem libello et epistola ejus viri, quae est Narrationi Rhetici praefixa. (Comp. Vol. I, p. 25.) Inventum illud omnino maximi feci, multoque majoris, quod viderem, et Maestlino idem tantopere probari. Neque tantum ille me exstimulavit intempestiva lectoribus promissione facta universi mei (ut ajebat) operis uranici, quantum ipse ardebam, ex restitutione astronomiae inquirere, an inventum illnd meum omnem observationum subtilitatem pateretur. Jam enim demonstratum erat in ipso libro, consistere hoc intra subtilitatem vulgatae astronomiae.

Ex eo itaque tempore serio de observationibus comparandis cogitare Repleri Opera. III. 14

coepi. Cumque anno 1597 ad Tychonem Brahe scripsissem (I, 42), rogans ut suam de meo libello sententiam diceret, ipseque respondens inter cetera suarum etiam observationum meminisset, ingenti me cupiditate earum videndarum inflammavit. At vero Tycho Brahe, ipse quoque magna pars fati mei, ex eo non destitit me ultro hortari ut ad se venirem. Cumque me longinquitas loci esset absterritura, divinae rursum dispositioni adscribo, quod in Bohemiam is venit. Eo igitur veni sub initium anni 1600, spe planetarum correctas eccentricitates addiscendi. Cum autem primo octiduo didicissem, ipsum adhibere cum Ptolemaeo et Copernico medium motum Solis, esset vero apparens motus meo libello accommodatior (quod ex ipso libro patet), ab auctore impetravi, ut mihi liceret observationibus meo modo uti. Erat tum ejus domestico Christiano Severini³⁴) sub manibus theoria Martis, quam tempus ipsi dabat in manus, eo quod versarentur in observatione acronychii situs seu oppositionis Martis cum Sole in $9^{\circ} \Omega$. Si Christianus alium planetam tractasset, in eundem et ego incidissem.

Rursus ergo divina dispositione accidisse puto, quod eodem tempore ego advenerim, quo tempore Marti ille erat intentus, ex cujus motibus omnino necesse est nos in cognitionem astronomiae arcanorum venire aut ea perpetuo nescire. Recudebatur tabula mediarum oppositionum ab anno 1580, erat excogitata hypothesis, quae eas omnes repraesentare perhibebatur intra duorum scrupulorum propinquitatem in longitudine, cujus nameros vel paulo differentes capite V. usurpavi. Apogaeum initio anni 1585 ponebatur in 23º 45' &, eccentricitas maxima, quae ex semidiametro utriusque circelli componitur, erat 20160, qualium semidiameter epicycli majoris esset 16380. Igitur in forma primae inaequalitatis Ptolemaica eccentricitas aequatorii puncti erat 20160 vel eo paulo minus. Ex hac hypothesi exstructa erat et tabula aequationum eccentri ad gradus singulos et correcti motus medii, additione facta ad Prutenicarum motum medium unius scrupuli et dodrantis. Et diducti erant hi motus medii, apogaei, itemque et nodi per annos 400, perinde ut in Solaribus et Lunaribus motibus tomo I. Progymnasmatum factum est. In sola latitudine sub acronychios situs itemque et in parallaxibus orbis annui Christianus haerebat. Aderat quidem hypothesis et tabella pro latitudinibus; sed non eruebatur inde latitudo observata. Quae res ipsi in Lunares motus incubituro impedimento erat. Cum igitar suspicarer id quod res erat, hypothesin non bene habere, accinxi me ipse ad opus secundum praeconceptas et in Mysterio meo Cosmographico expressas opiniones. Plurima sub initium erat inter nos concertatio, an posset alia institui ratio hypotheseos, quae tot loca planetae eccentrica ad unguem exprimeret? et an falsa esse posset illa, quae id hactenus per omnem zodiaci ambitum praestitisset?

Ostendi igitur ex iis, quae prima parte praemissa sunt, posse esse. falsum eccentricum et tamen observationibus intra 5' et propius respondere, dummodo verum sit punctum aequatorium. Quod vero parallaxes orbis annui attineret et latitudines, eam palmam adhuc in medio sitam nec dum obtentam ab illorum hypothesi: reliquum igitur esse, ut inquiratur, an non alicubi per 5' illi cum suo calculo ab observationibus dissideant.

Coepi igitur explorare operationis ipsorum certitudinem. Ex eo quinam fuerint in hoc labore successus, taediosum et inutile est repetere. Persequar autem ex hoc quadriennali labore illa tantum, quae ad cognitionem nostrae methodi pertinebant.

Caput VIII.

Tabula Tyckonis Brahe observatarum et computatarum oppositionum Martis cum linea medii motus Solis, cjusque examen.

Igitur tabula, de qua supra, fuit ista.

Planetae & motus in suo eccentrico e certis observationibus acronychiis per annos 20 (ab 1580 usque 1600) sedulo per nostra instrumenta habitis respectu variarum dispositionum, uti in subjecta tabula patet, accurata restitutio.

ø	Tempus aequale d	uale.	ъ	ř.	Long. obs. resp. circuli d	Long. obs. ssp. circuli (দুর্ দুর্		Latitudo vera obs.	obe.		Го Б	Long. obs. sp. ediptics	Long. obs. resp. eclipticae		Differentia	ntia	Sin	.lqr	Lon	Simpl. Long. đ		Apog.	*0 10	4-	Pr	Praeceshio quin. nostr	Praeceshio aequin. nostra.		Supput.	4
	Anni Mens. D. H.		H	×			:			:	İ	•	-	:	•	=		-	•	-	:	•	•	.	:	°	-	:		·	1
	Nov. 1	17.	9.4	9	6.5	50.1	10 I	F H	1. 40.	0	m	60	46. 10	10	4	9	+	ø	27.	29.	46	ต่	25.	21.	\$	27.	58.	50		6. 50.	9
	Dec.	60	28. 12. 16		16. 5	51. 3	30 ©	8	4 . 6.		0 B	16.	46.	10	ò	20	+	~	11.	34.	34. 56		25.	22.	17	28.	0	. 38	16.	. 51.	. 26
	Jan. 3	31. 19.	19. (35_2	21.	9. 50	20	3	4. 32.	. 10	æ	21.	10.	26		36	I	ຕໍ	22.	37.	37. 46	<u>ന്</u>	25.	22.	55	28.	3	. 25	21.		. 41
	Mart.	7. 1	7. 17. 22		25.	ъ. •	10 1	3	3. 38.	. 12	æ	25.	10.	20	<u>م</u>	10	1	. 20	Э	27.	46		25.	23.	32	28.	4	. 10	25.		4. 50
	Apr. 1	2	15. 13. 34	34	3. 5	54. 3	35 M		1. 8.	. 45	8	ຕໍ	58.	10	ઝ	35	1	ۍ ۳	16.	53.	~		25.	24.	10	28.	<u>ö</u> .	. 55		. 54.	. 33
	, E	°°	16. 25		26.	;;		мх ^ж	3. 59.	•	M	26.	32.	0	10.	20	+	œ	۲.	47.	. 30		25.	24.	48	28.	2.	. 47	26.	9	. 23
	Aug. 2	*	24. 2. 13-	_	12. 3	35.	¥ 0	-	6. 3.		W O	12.	43.	45	ø	45	I	10.	10.	53.	2		25.	25.	26	28.	.	. 40	12.	. 34.	. 36
	Oct. 2	29. 2	21. 2	22	17. 5	56.	0 10	σ	0.5	5. 15	8	17.	56.	15	ರ	12	+		ø	26.	47		26.	27.	35	28.	11.	. 27	17.	. 57.	. 14
	Dec. 1	13. 13.		35	%	34.	0	6	3. 33.	•	8	ઝં	28.	•	.9	•	+	;	24.	55.	47	ૡં	25.	29.	ò	28.	13.	. 20	ы. С	. 32.	. 20
	Jan. 1	19.	19. 9. 40	4 0	ŝ	18. 4	- 1		4. 30.	. 50	B	œ	18.	•		45	1			6.46.	16		25.	30.	8	\$8	15.	<u>د</u>	ø	. 19.	. 57

*) P. notat observationem Patavinam a Magino habitam cum Gellio Sasceride Brahei discipulo. N. observationem nostram (id est Brahei) Uraniburgi habitam.³⁴)

Emendatio medii motus; long. \mathcal{J} inventa est ad initium anni 1585 abundare a numeris calculi Prutenici sesquialtero saltem minuto, vel ad summum 1^{*}/₄', quod rectius per omnia consentire videtur. Defecit autem tunc apogaei ejusdem situs ab ipso calculo eodem tempore 5° 2', utrisque ad primam stellam Υ more Copernicano comparatis. Hinc colligitur juxta nostram ab illa stella aequinoctii verni in antecedentia remotionem, quae erat tunc 28° 2¹/₂', fuisse apogaeum \mathcal{J} in 23° 25' \mathcal{Q} . Primo hic exposito in parte 23° 20' \mathcal{Q} , ultimo in 23° 45' \mathcal{Q} .

Inventa quoque eccentricitas maxima, quae ab utriusque circelli semidiametro componitur part. 20160, qualium semidiameter epicycli majoris, sive distantia centrorum a Copernico usurpata 16380; quae tamen utraque tam ab ipso quam a Ptolemaeo dissentit. Cautum, ubi fuit opus, de refractione parallaxis adhibita Solaris.

Examen mediorum motuum Solis instituemus ad expressa momenta temporis aequalis, quot tabula profitetur. Est autem ille locus medius, in cujus opposito tabula \eth stellam inventam dicit respecta eclipticae.

					Med	lius I	OCUS	0	stells	locus ne in ptica	Diff	ereni	ia.	х <i>л</i>
Anno		Mens.	h.		B.	0	1	"		"		"		Vides hic medium
1580	17	Nov.	9.	40	8.	6.	48 .	32	46.	10	2.	22	-	locum Solis ab op-
1582	28	Dec.	12.	16	9.	16.	50.	58	46.	10	4.	48	_	positione visi loci Martis ecliptici ab-
1585	31	Jan.	19.	35	10.	21.	10.	13	10.	26	0.	13	+	esse interdum 13 ¹ / ₂ ', quod est fere triplum
1587	7	Mart.	17.	22	11.	25.	5.	57	10.	20	4.	23	+	ejus, quod per trans-
1589	15	Apr.	13.	34	1.	· 3.	53.	32	58.	10	•	38	•	lationem hypothe- seos peccari potuit.
1591	8	Jun.	16.	25	2.	26.	45.	24	32.	0	13.	24		Quare non constrin-
1593	24	Aug.	2.	13	5.	12.	34.	36	43.	45	9.	9		gebat me ipsorum hypotheseos certi-
1595	29	Oct.	21.	22	7.	17.	5 6 .	17	56.	15	0.	2		tudo, ne aliam quae- rerem.
. 1597	13	Dec.	13.	35	9.	2.	2 8.	51	28.	0	0.	51		
1600	19	Jan.	9.	40	10.	8.	18.	43	18.	0	0.	43	_	

Sed consilio admisere hanc discrepantiam: quod inde apparet, quia cum nodi sint circa 17° \bigotimes , \mathfrak{M} , limites circa 17° \bigotimes , \mathfrak{m} , ut infra dicetur, additiones et subtractiones sunt factae potissimum in 17° \odot , 25° \mathfrak{m} , 4° \mathfrak{m} , 27° \swarrow , 13° \bigstar , locis intermediis: nullae in 21° \bigotimes , 18° \mathfrak{M} , nodis et limite. Ergo causa ipsis fuit, quod existimarent, planetam non exui inaequalitate secunda, nisi Sol tantum a nodo discessisset, quantum planeta in sua orbita. Neque tamen constans fuit hoc consilium. Nam in 3° \odot maxima debuit esse variatio secundum hanc eorum mentem, quia \odot est vicinissimus 45°, ubi solet esse maxima haec variatio. At in 17° \odot 5' subtraxere, in 3° \odot tantum 1'. Cujus rei causa jam alia tabella sequitur, comparans loca (ad orbitam Martis reducta) cum locis \odot mediis ad haec momenta.

212

Medii loci Selis squpula,	Scrupula visi loci Martis in órbita.	Differentia.	
	• ••	• "	
48. 32	50. 10	1.38 +	
50. 58	51. 30	0. 32 +	
10. 13	9.50	0.23 —	1
5. 57	5. 10	0.47 —	
53. 32	· 54. 35	1. 3 +	1
45. 24	42 . 0	3. 24 —	1
34. 36	35. 0	0. 24 +	
56. 17	56. 5	0. 12 —	
28. 51	34. 0	5.9+	
18. 43	18. 45	0. 2 +	

Quare ne sic quidem omnem confecerunt differentiam.

Porro de hoc ipsorum consilio disputabimus paulo post. Jam etiam medium motum \mathcal{J} examinabimus: cujus gratia vide sequentem tabellam.

Scrupula prima et secunda motus

	medii.		
Computavi ex Brahei tabulis.	Profitentur.	Differentia.	
		1 11 •	
29. 9	29. 46	0. 37 +	
35. 26	34. 56	0.30 —	
37. 4	37. 46	0.42 +	1
27. 16	27. 46	0. 30 +	1
52. 33	53. 7	0.34 +	9
46. 45	47. 30	0.45 +	
53. 18	53. 50	0. 32 +	1
26. 5	26. 47	0.42 +	
54. 48	55. 47	0.59 +	.
45. 39	46. 16	0. 37 +	

Parum igitur in longitudine media desidero: nam quod ubique fere dimidium scrupulum abundat, fieri potest propterea, quod ego ex recentissima tabula motus medios computavi, in qua forte aliquid est immutatum certo consilio.

Sequitur	tabula	locorum	eccentri-
-		Martis.	•

Computavi ez Braheanis.	Profitentur.	Differentia.
1 11	1 11	1 11 .
49. 37	50. 40	1. 3 +
52. 59	51. 26	1. 33 -
9. 47	9. 41	0.6 -
4. 49	4. 50	0.1+
54. 46	54. 33	0.13 —
34. 45	40. 23	5. 38 +
33. 59	34. 36	0.37 +
57. 37	57. 14	0. 23 -
31. 48	32. 20	0. 82 +
45. 39	46. 16	0. 87 +

Tolerabiliter omnia loca praeter 27° ×. Nam accumulatur hic ex diversis causis aliqua summula. Primum locus Solis est v 26° 45′ 24″ II. Jam computatus locus orbitae Martis 26° 34′ 43″ ×. Et sunt illi adimenda 10′ 20″ ex tábulae sententia, ut reducatur ad eclipticam. Ergo locus eclipticus computatus esset 26° 24′ 13″ ×, differentia ab opposito Solis 21′ 11″.

213

Caput IX.

De reductione loci ecliptici ad circulum Martis.

Sed tempus est, ut de hac reductione ad eclipticam vel orbitam planetae, quae fandamenti loco est, accurate disputemus.

Primum hoc nobis refert haec tabula ex observationibus: latitudinem boream consurgere ab 18° \forall , in quo fuit 5', inde maximam visam in 21° Q: post decrevisse et in 3° m fuisse adhuc quidem 1 1/2°, sed statim in 27° x esse meridianam et valde magnam 4°; majorem etiam in 13° ¥. Ex quo colligitur crassiori Minerva, nodum ascendentem esse paulo ante 18° 8, descendentem multo post 3° M. Ergo circa 17° 8 et 17° M erunt nodi, circa 17° Q et an limites. Itaque cum planum eccentrici Martis sit inclinatum ad planum eclipticae, accidet idem fere quod in ascensionibus rectis partium eclipticae, ut arcubus visis circuli unius non iidem arcus visi de circulo altero respondeant, nisi qui a nodis incepti in limites desinunt. Dico autem arcus visos, quia hic oportet animo segregare eccentricitatem planetae, et perinde agere, ac si iter Martis aeque in orbe fixarum esset ac ecliptica, illamque vere secaret. Et quidem cum quaeritur, quis sit locus planetae eclipticus, astronomi sic eum definiunt, esse nempe punctum eclipticae, in quo circulus latitudinis (ad eclipticam rectus) per locum corporis planetae sub fixis transiens eclipticam secet. (Loco ecliptico opponitur locus orbitae, seu locus ratione orbitae consideratus.)

Patet igitur per demonstrata Theodosii de Sphaera ³⁶), nisi hic circulus per utriusque circuli (eclipticae et itineris planetarii) polos transeat, semper sectionibus suis inaequales arcus a communi circulorum sectione numeratos intercepturum. Et cum sit is circulus latitudinis ad eclipticam rectus, ergo si non per polos orbitae planetariae transit, erit ad orbitam obliquus. Semper igitur major arcus est inter locum planetae in sua orbita et nodum propiorem, quam inter locum ejus eclipticum et eundem nodum. Cum igitur planetas observamus, non prius nobis persuademus certa eorum loca definiisse, nisi ad eclipticam eos retulerimus; indicantes, in quo eclipticae puncto inveniatur circulus latitudinis per corpus planetae transiens. Est igitur locus eclipticus ob nostram memoriam et captum. Contra cum planetam in sua hypothesi computamus, versamur non in ecliptica, sed in ipso planetae itinere, quod est ad eclipticam inclinatum. Ut igitur observatus locus cum computato possit comparari, oportet aut prolongare arcum, qui est inter eclipticum locum et propiorem nodum, aut decurtare arcum, qui est inter corpus planetae et eundem nodum, ut ex illo fiat locus orbitae, ex hoc locus eclipticus. Id autem fit vel addendo vel minuendo, prout nodus locum planetae vel antecesserit vel secutus fuerit.

Hanc curam Ptolemaeus circa planetas non censuitesse necessariam: Copernicus in Luna non neglexit: Tycho Brahe subtilitatis cansa diligenter est amplexus.

Ceterum in hac jam adhibita reductione duo habeo quae desiderem, quorum utrumque eodem elencho et schemate coarguo.

Sit A (Fig. 62) locus nodi sub fixis, AB arcus eclipticae: eique statuatur aequalis arcus AC et sub C videatur planeta. Ducatur etiam ex C arcus perpendicularis in eclipticam, qui sit CE.

Primum igitur veteres putarunt, cum E sit locus eclipticus et C locus

orbitae ipsius I planetae, tunc esse planetam in opposito Solis, cum is est in E, planeta in C spectato. At tabulae conditores putarunt, ut supra dictum est, planetam non esse accurate in Solis opposito, nisi ipsi AC (visibili distantiae planetae a nodo) aequetur arcus AB, elongatio oppositi Solis loci ab eodem nodo.

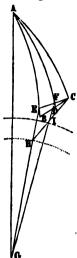

Atqui res secus habet. Spectatur quidem tunc planeta accurate in Solis opposito, at non est: et commoditas, quam ex oppositione planetae cum Sole quaerimus, plus vitiatur per aequalitatem AC et AB, quam ipsi sperabant eam emendatum iri. Cur enim observantur planetae in Solis opposito? Nimirum ideo, ut careant tunc inaequalitate secunda longitudinis. Atqui opposito Solis in B et planeta in C versante idque inter nodos et limites, planeta plus involvitur inaequalitate secunda longitudinis, quam si oppositus Solis esset in E, manente planeta in C. Sit enim G Sol centrum systematis planetarii, in quo omnes orbeseclipticam secant, idque vel in Copernicana vel Braheana forma: et connectatur G cum A et E punctis eclipticae; et in linea EG sit Terra, scilicet in puncto H. Connec-

Fig. 62.

tatur H cum C: et ex puncto H spectetur G Sol in opposito ipsius E, planeta vero ex eodem H spectetur in C loco suo sub fixis in linea HC. Est igitur in hac visione planeta certo in linea HC. Est vero multo inferior fixis. Sit in lineae HC puncto I: et ex G per I ducatur recta, quae incidet in arcum CE: totum enim planum CEHG est sub arcu EC. Sit locus incidentiae F, et ex A per F in BC ducatur tertius arcus AF, secans BC in D. Manifestum est, planum eccentrici planetae ex H in C visi non ordinari sub AC, sed sub AF; et Solis opposito in E versante, planetam futurum vere sub F, illo vero in B collocato, hunc futurum sub D, siquidem utrinque appareat sub C. Est vero AD brevior quam crura isoscelis BAC. Ergo B oppositus Solis plus ab A removetur quam D locus, sub quo planeta est momento ab ipsis usurpato. Sol igitur vere ultra oppositum veri loci planetae stat. At hoc est contra ipsorum propositum.

At neque si orbita planetae sub AC esset, propterea ipsi AC aequalis esset sumenda AB. Nec enim, quia orbita haec vere est sub AD, propterea ipsi AD aequalis sumi debet AB. Nam quia planeta ideo in Solis opposito observatur, ut exuat inaequalitatem secundam longitudinis, longitudo autem censenda in ipsa genuina planetae orbita vel ei superstante AD; certe nisi oppositus Solis cadat in arcum ad ipsam orbitam rectum per locum planetae ductum, hoc est nisi ADB sit rectus, non erit B oppositus Solis junctus ipsi D secundum longitudinem. At vero si ADB rectus, tunc AB est longior quam AD, non igitur aequalis. Plane itaque convellitur illa aequalitas arcum AC et AB in tabula affectata.

Quanquam quod effectum attinet, subtiliores sunt hae differentiae, quam ut discerni possit. Itaque neque ego refugio, quin oppositus Solis in E sit, AEF recto, quare AFE acuto existente, quamvis jam demonstratum sit, potius AFE rectum esse debere. Sed contra novam subtilitatis affectationem subtilibus etiam rationibus fuit agendum. Sequitur nunc etiam damnum ex hac subtilitate ortum. Fig. 62.

Secundo igitur hoc desidero, quod in tabella reducendi rationem non bonam secuti sunt. Nam dato E loco Martis ecliptico et EC latitudine visa, computarunt ipsius AC longitudinem et posuerunt, tunc planetam in orbita sua quantitate AC a nodo removeri. Atqui orbita planetae (cujus primam inaequalitatem investigamus) non est sub AC sed sub AD, ut jam ostensum. Nihil igitur attinet arcus AC ad inaequalitatem primam, sed adulterat veras planetae elongationes ab A. Etenim visa latitudo est EHC, vera autem puncti F latitudo, seu inclinatio lineae GF ad eclipticam, est EGF. Itaque etsi secunda inaequalitas longitudinis absorbetur in oppositione cum Sole, latitudinis tamen inaequalitas secunda tunc est fere maxima et mensura ejus est HIG angulus. Quemadmodum igitur tota latitudo EC efficit, ut AC longior sit quam AE arcu EB: ita et pars hujus latitudinis visae FC vel HIG, quae est ex inaequalitate secunda, efficit, ut eadem AC longior sit quam AF: longior igitur justo. Atque hoc peccatum contemni non potest; excurrit enim ad 9'.

Potuit error vel ex eo deprehendi, quod angulus BAC, quem tribuerunt inclinationi planorum eclipticae et orbitae Martis, non manet constans. Id enim ex resolutione patet, si quantam 58 additionem tabula exprimit, tanto auctum ponas arcum AC exque eo et EC computes EAC angulum. Prodeunt enim anguli ut in 4. 58 adjecta tabella: ex qua apparet, in semicirculo boreali ipsos fere 0 posuisse angulum maximae latitudinis borealis 4º 33', in australi 4. 33 austrinae 6º 26'. Igitur planum eccentrici in subtensa nodos con-:5. 29 nectente, quae per Solem vel Terram transit, esset quodammodo infractum, quia minus inclinaretur pars superior quam inferior. Quin 6. 20 imo totum iter seu planum eccentrici planetae esset flexuosum, qualis 6. 26 est ipsa via per visas Martis latitudines sub fixis descripta, quae 4. 30 circulus non est.

Haec autem omnia simplicitati motuum coelestium sunt adversa;
 quod experientia multis exemplis docebit.

Vera igitur ratio reducendi ad orbitam est haec, ut cognito ex observationibus E loco planetae in ecliptica quaeratur angulus EGF inclinationis ejus loci, methodo quae infra sequetur: tunc quia E rectus, ex AE et EF, mensura anguli EGF, per doctrinam triangulorum quaeratur AF vel pro EF adhibeatur EAF angulus perpetuus. Cumque ex argumentis iis, quae inferius explicabo, appareat, angulum EAF in stella Martis esse non majorem 1° 50' circiter, reductio quoque circa 45° a nodo omnium maxima non superat 1', pro quo tamen tabula alicubi 8' et 10' jubet addere. Quare ob hanc quoque causam peccare potest hypothesis ad 7' et 9', eo quod observationes, quae erant fundamenti loco, per hanc reductionem nonnihil damni sunt passae. Quare multo minus quam antea impediebar ab inquisitione novae hypotheseos.

Caput X.

Consideratio ipsarum observationum, ex quibus venatus est Tycho Brahe momenta oppositionum cum medio Solis.

Non praetereundum erat in tam subtili inquisititione, quin ipsa fundamenta penitus inspicerem. Et copiam mihi fecerat Braheus utendi suis observationibus. Sic igitur inveni.

I. Anno 1580 d. 12. Novembris hora 10. minut. 50. reponebant σ in 8° 36' 50" II, sine mentione variationum horizontalium, quo nomine parallaxes diurnas et refractiones in sequentibus intellectas volo. Haec igitur observatio est longinqua et solitaria. Reducta fuit ad articulum oppositionis, usurpatione motus diurni ex Prutenicis. Nam in Maestlino die 12. in meridie σ ponitur in 8° 20' II, die 17. rursum in meridie in 6° 25' II. Ergo motus 5 integrarum dierum esset 1° 55'. In Stadio ³⁷) 1° 52'. Itaque die 17. hora consimili 10. 50' Mars debuit videri vel in 6° 41' 50" II vel in 6° 44' 50": hora 9. 40' (quem Tycho ponit articulum observationis) per 1' 4" promotius, nempe vel in 6° 42' 54" vel in 6° 45' 54". Ponunt 6° 46' 10" II. Vides hanc oppositionem (quod scrupulositatem attinet) esse panlo incertiorem, quod utatur diurno non observato sed aliunde mutuato, qui ipse apud diversos auctores per hos 5 dies tribus scrupulis a se ipso dissidet.

II. Anno 1582 d. 28. Dec. h. $11\frac{1}{2}$ reponebant \mathcal{J} in $16^{\circ} 47^{\prime} \odot$ ex observatione. Sequitur 46' postea momentum oppositionis a Tychone assignatum, quibus planeta non integrum scrupulum retrocedit. Ponit igitur Tycho 16° 46' 10" \odot . Hic adjectu schedae affectabatur correctio per refractionem 2', quam puto fuisse rudimentum nascentis tunc opinionis de refractionibus. Secutus antem est locum observatum illibate; quare non considerabat planetam quasi qui locum permutet: nec opus erat, utpote in \mathfrak{S} extra refractiones et in medio coeli, ubi in \mathfrak{S} longitudinis parallaxis nulla est.

III. Anno 1585 d. 31. Jan. h. 12. reponitur \mathcal{J} in 21° 18' 11" \mathcal{Q} et motus diarnus observationum collatione fuit 24' 15". Sequitur momentum oppositionis h. 19. 35' per horas 7. 35', quibus diarnus competit 7' 41" in antecedentia. Ergo momento destinato fuerit in 21° 10' 30" \mathcal{Q} , quod et assumtum est. Nulla parallaxeos mentio. De refractione non erat necessarium, quia \mathcal{J} altus et in medio cogli. Itaque monitiunculam de refractione in tabula (jure) neglectam invenio.

IV. Anno 1587 ad 7. Martii h. 19. 10' deduxerunt locum σ ex observationibus, quod fuerit 25° 10' 20'' mp. Hunc retinuerunt in tabula: tempus mutaverant in h. 17. 22'. Differentia h. 1. 48' per diurnum 24' totidem (nempe 1' 48') efficit scrupula, non plus. Debuisset igitur 25° 8' 32'' mp: quod et propius accedit ad oppositum Solis. Differentia nullius fere momenti.

V. Anno 1589 ad 15. Apr. h. 12. 5' magna diligentia constituerunt locum 3 3° 58' 21" m et correxerant per parallaxin longitudinis, ut esset 3° 57' 11". Supersunt horae 1. 30' ad momentum oppositionis assignatum, quae per diurnum 22' retroagunt planetam per 1' 22", ut sit in 3° 55' 49". Assumsere 3° 58' 10". Illud propius est medio motui Solis.

VI. Anno 1591 d. 6. Jun. h. 12. 20' ponitur J in 27° 15' X. Super-

sunt ad momentum assignatum d. 2. h. 4. 5'. Et diebus 4 inventus fuit promoveri per 1° 12' 47". Competunt igitur diebus 2 h. 4. 5': 39' 29". Itaque ad momentum \mathcal{J} in 26° 35' 31" \mathcal{J} . Variationibus horizontalibus in longum non est opus, quia \mathcal{J} in M. C. et initio \mathcal{J} . Tabula 26° 32' \mathcal{J} habet.

VII. Anno 1593 d. 24. Aug. h. 10. 30' referunt \mathcal{J} in 12° 38' \mathcal{H} cum diurno 16' 45" observato, idque circa nonagesimum, ubi parallaxis longitudinis nulla. Praecesserat momentum oppositionis assignatum, horis 8. 17' (erat enim h. 2. 13'), quibus competit motus 5' 48" in consequentia. Itaque in 12° 43' 48" \mathcal{H} cadit planeta. Et tabula 12° 43' 45" habet.

VIII. Anno 1595 d. 30. Oct. h. 8. 20' invenerunt \mathcal{J} in 17° 48' \mathcal{J} cum diurno 22' 54". Praecessit momentum assignatum horis 11. 48', quibus debetur motus \mathcal{J} 2' 7" in consequentia, ut fuerit in 17° 59' 7" \mathcal{J} . Sed projectus erat in orientem ob parallaxin. Itaque illi forsan ex alia meridiana observatione ponunt in tabula 17° 56' 15" \mathcal{J} .

IX. Anno 1597 d. 10. Dec. h. 8. 30' semel \circ reponunt in 3° 30' \odot , iterum in 4° 1' \odot : quorum medium est 3° 45'/₂' \odot . Secutum est momentum oppositionis post dies 3. h. 5. 5', quibus ex Magino competunt 1° 15' in antecedentia. Ergo fuisset \circ in 2° 30'/₂' \odot , qui in 2° 28" \odot reponitur in tabula. Causa observationis crassae per radium, ex tempore patet. Excesserat Tycho ex insula relictis instrumentis praeter radium: neque tamen negligere omnino volebat hanc oppositionem. Utinam vero mansisset hactenus. Eximia enim erat hujus oppositionis opportunitas (nec intra hominis aetatem adeo saepe recurrens) ad parallaxes Martis probandas.

-	X.	Anno	1600 d.	13/23.	Jan. h.	11.	50' era	at ascens	io recta J	
				icido ped					23' 39''	
			ex' c	orde $\hat{\Omega}$				134.	27. 37.	
			ex P	olluce				134.	23. 18.	
Hor	a 12	. 17'	— ex 3	. alae 11	P .			134.	29. 48.	
Med	lium	ex aeq	uo et bo	no	•••		• •	. 134.	24. 33.	
									at ad IT-	

Hinc σ in 10° 38′ 46″ Ω idque h. 11. 40′ tempore aequato et ad Uraniburgicum meridianum reducto. Die vero $\frac{24. \text{ Jan.}}{3. \text{ Febr.}}$ eadem hora in 6° 18′ Ω collocabatur. Hinc diurnus prodibat 23′ 44″ et ad d. 19/29. Jan. h. 9. 40′ locus in 8° 18′ 45″ Ω , uti et posuerunt.

Porro hanc discrepantiam ascensionum rectarum posui ideo, ut ostenderem, etiam in ipsa observatione aliquot minutorum incertitudinem inesse, nisi ubique summa diligentia adhibeatur nullis destituta commoditatibus. Venerant tunc instrumenta (nec ea maxima) in Bohemiam; necdum satis erant bene collocata et praeterea affecta ab itinere. Sed tamen usu venit saepius etiam in observationibus insulanis, ut ascensiones rectae a duabus stellis deductae discrepent 3'. De quo cum consulerem Christianum (Longomontanum), an observationum seu visus imbecillitate accidere credere deberem, respondit: non insolens hoc esse.

Denique hoc quoque hic est monendum, profiteri Tychonem in tabula, se parallaxibus Solaribus usum in corrigendis locis Martis. At jam statim patebit, lubricum et imperceptibile esse negotium parallaxeon Martis. Parum tamen hoc efficit ad locorum hujus tabulae certitudinem, quia d fere semper in medio coelo potest observari vacuus longitudinis parallaxi.

Caput XI.

De parallaxibus diurnis stellae Martis.

Initium novi mei laboris et restitutionis motuum inde ubi jam cessavi. Nam ex parte prima patet, assumenda quidem loca \mathcal{S} sub oppositionum cum O verarum articulos, sed tamen sic non omnen exui inaequalitatem secundam, sed opus esse ut arcus in ecliptica numeratus reducatur ad orbitam planetae. At orbita planetae prius est investiganda per inclinationem planowum et per nodorum cognitionem. Rursum inclinatio et nodi nequeunt sine parallaxi diurna cognosci siquidem haec sit grandiuscula. A parallaxi igitur incipiendum, cujus inquirendae modos duos ponam.

Prior modus (usitatus et ceteris) examinabitur in observationibus Braheanis.

Anno igitur 1582 cum \mathcal{S} opponeretur O in O, incredibilem inveni diligentiam in observando, cum titulo Tychonis manuscripto pro inquirendis parallaxibus Martis, sed ex qua aut plane nullam aut perexiguam elicueris Martis parallaxin. Taceo quod (more solito) stellam \mathcal{S} compararunt ad stellas eclipticae vicinas et plerumque longe distantes. Cum igitur comparatione matutinae et vespertinae observationis soleat inquiri parallaxis stellae mobilis (\mathcal{S} enim O oppositus incedit motu retrogrado), hinc factum, ut fere ab aliis stellis mane, aliis vesperi \mathcal{S} fuerit observatus. Cujus enim fixae mane copia fuit (altioris quippe quam est \mathcal{S}) ea, si sit eclipticae vicina, vesperi (\mathcal{S} jam in plaga occidentali versante) aut occidit aut ob refractionem inepta est in hoc subtili negotio. Alia igitur substituenda fuit. At si stellae fixae aliae aliis permutentur, semper minor fides est negotio, quam si eadem retineatur.

Cum autem Braheus passim viris doctis affirmaverit, ex hujus anni observatis inventam esse parallaxin & notabiliter majorem Solari, ego ut operationem seu calculum hunc penitius inspicere possem, totum librum diligentissime perlustravi. Et inveni quidem titulum, qui rationem profiteretur inquirendi parallaxin o ex illius anni observationibus. Sed en rem inopinatam. Locum d observando inventom accommodarunt ad schema Copernicanum, operosissime et diligentissime delineatum. In eo schemate immanem sumserunt laborem, omnia triangula, quae causa duplicis epicycli in concentrico nascebantur, solvendi numeris prolixissimis, tandemque hic erat fnis calculi, ut pronunciarent, parallaxin Martis vere fieri majorem Solari. Aliud igitur Braheus proposuerat, aliud ministri calculi sunt exsecuti. Ille volebat, ut ex matutinis et vespertinis observationibus inter se comparatis inquirerent parallaxin Martis: hi vero inquisiverunt, quantam parallaxin faceret schema Copernicanum. An igitur ex hac sola suorum ministrorum fide Braheus de parallaxibus pronunciaverit, incompertum est mihi. **)

Nos ipsa observata (quantum ad negotium nostrum attinet) consulamus : Anno 1582 nocte inter 23. et 24. Nov. distantiae a fixis eaedem manserunt diversis horis. Hic igitur stationis terminus fuit. Sequentis bidui motus fuit 11' et 15'.

Nocte diei 26. Dec. transiit inter secundam et septimam II distans (per radium) a capite inferioris Geminorum seu a secunda 2° 25' vel 2° 26', sed a septima 1° 6' vel 1° 7', ut latitudo fuerit 4° 9' circiter. Hora igitur 8. 28' distabat ab oculo \Im 44° 41', cujus latitudo 5° 31' aust., longitudo 4° 12'/₂' II anno 1600. Hinc \Im longitudo quasi anno 1600. 17° 53'/_s' o, hoc est completo 1582. 17° 38' o; altitudo 40° 50', extra refractionem igitur.

Vicissim h. 7. 15⁴ matutina diei 27. Dec. distabat a corde Q 36° 43', cujus latitudo 0° 26'/₂', hinc ejus longitudo 1582 completo 17° 28'/₃' \otimes , altitudo 14° 4', in refractione igitur. Ab hora ergo 8. 28'/₂ vespertina in horam 19. 15' per horas 10. 46'/₂' visus est retrocedere per 9'/₃'.

Pro diurno, notata die 29. h. 7. 47' distantia d a pede Erichthonii australi 29° 38 1/2'. Die vero 30. h. 8. 8' distantia ab eodem fuit 29° 13 1/2'. Igitur horis 24. 21' mutata est per 25'. Atque hic diurnus mansit etiam die 27. Horis ergo 10. 46¹/2' debebantur 11¹/2': at vidimus tantum 9²/3'. Haec expendamus. Parallaxis vesperi praecedente surgentem Martem orientaliorem (quia retrogradus) projicit in ortum, mane cadentem et occidentaliorem projicit in occasum. Sicut igitur parallaxis Lunae diurnae motum retardat ad visum: sic vicissim eadem parallaxis & motum retrogradum accelerat. Si ergo sentitur parallaxis, per motum retrogradum nimis auctum sentitur. At hic diminutus est motus. Nulla igitur parallaxis. Vicissim vero contraria parallaxi refractio sentitur. Est autem refractio altitudinis 13°: 4' ex tabella fixarum, 8' ex tabella Solis (Prog. I, p. 79 et 280), cujus minima pars cedit longitudini, quia Cancer valde oblique descendit. Trium igitur ad summum minutorum contigit refractio longitudinis, quae ad 9²/s⁴ addita constituunt 12²/₃ motum horarum 10²/₄ refractione liberum, qui si parallaxi etiam caruisset, debuit esse 11 1/2'. Ergo excessus 1 1/3 est parallaxis longitudinis utriusque observationis : quod est plane minimum infidum et contemtum quippiam.

Die 16. Jan. anni 1583 vesperi hora 7. 30' \mathcal{S} distabat a lucido pedis Erichthonii 23° 29', altitudo 51°. Sequente mane hora 5. a corde Q 43° 58', in altitudine 15°. Et \mathcal{S} per regulam apparebat exquisite cum utraque stella in eadem recta. Itaque cum motus \mathcal{S} versetur in hac linea, notavit Braheus, dari hinc parallaxin longitudinis adhibito diurno \mathcal{S} . Hic vero sic habetur. Die 16. Jan. h. 10⁴/₂ distabat a lucida pedis Erichthonii 23° 27'. Die 17. Jan. h. 10⁴/₅ ab eodem 23° 12⁴/₂'. Diurnus ergo esset 14⁴/₂'. Ut igitur Braheo monenti pareamus, constituenda nobis est distantia pedis Erichthonii et cordis Leonis, quae invenitur 67° 21'. Hinc ablata distantia \mathcal{S} a lucida pedis Erichthonii 23° 29', relinquit \mathcal{S} a corde Leonis 43° 52' vesperi h. 7⁴/₂, quae mane hora 5. fuit 43° 58' per 6' auctior. Horae intersunt 9⁴/₂, quibus de diurno debentur 5⁵/₈'. Hic ergo aggregatum utriusque parallaxeos non plus 0⁴/₈, nisi quod ei tantum accedit, quanta est \mathcal{S} refractio longitudinis in altitudine 15°. Hoc vero valde parum est; nam Cancer et Leo obliquissime descendunt, et \mathcal{S} latitudo magna borealis effecit, ut \mathcal{S} et cor Ω fere essent in eadem altitudine.

Die 17. Jan. vesperi h. 5. 20' σ a pede Erichthonii 23° 16'. Sequentis diei 18. mane h. 3. distantia haec fuit 23° 9', vesperi h. 5. 5' fuit 23° 1⁴/₂'. Itaque motus horarum 23. 45' est 14⁴/₂', horarum vero 9. 40' est 7', debuit esse 6'. Retinemus pro parallaxi longitudinis non plus 1'. Refractio nihil turbat: nam utrinque σ altitudo fuit circiter 30°.

Sic a septima II h. 7. 34' distabat 7° 51'. Hora matutina 4. 52' distabat ab eadem 7° 59'. Horis igitur 9. 18' minuta 8; uno minuto sumus instructiores quam antea. De hac stella (in axilla II) sic scripsit

۱

Braheus. "Nota, propterea distantiam 3 ab hac stella accipio, quia cursus ejus quasi ab ea procedit, ut mane et vesperi distantia collata parallaxin 3 ostendat." Quod transscribere volui, ut lector certum habeat, Braheo consilium non defuisse.

18. Jan. vesperi h. 8. 52' inter σ et cor Q 44° 22'. Mane hora 4³/₄ eadem distantia 44° 27⁴/₅'. Motus ergo horarum 7. 53': 5⁴/₅'. Sequente 19. Jan. h. 7. 3' fuit haec distantia 44° 32⁴/₂'. Horarum igitur 22. 11' motus est 10⁴/₂'. Et horis 8 debentur minus quam 4'. Lucramur pro parallaxi circiter 1⁴/₂'.

Sed age, computemus ad diem 17. Jan. quantum debuerit esse augmentum motus horarii, ex parallaxi majori quam Solaris usitate creditur. Quia enim putamus, parallaxin Solis esse 3', habeat Mars 4'.

Anno 1583 d. 17. Jan. h.	. 5.	20′	h. 15.	0′	
Loous 💿 · · · · · · ·	70	22'	70	31'	***
Ejus ascensio recta				56.	
Adde horaria tempora	79.	0.	225.	0.	•
Ascensio recta medii coeli			174.	56.	
Gradus medii coeli	0.	56. V	24.	29.	11p ⁻
Declinatio	11.	50. [–]		12.	
Ascensio obliqua ortus			264.	56.	
Gradus oriens	1 9.	41. 2	26.	0.	11)
Nonagesimus ab ortu					ຂັ
Inter grad. med. coeli et nonag.	18.	45.	28.	29.	
Inter grad. med. coeli et vertic.	44.	5.	53.	43.	Ergo
Inter verticem et nonages	40.	40.	47.	41.	hoc est
Altitudo nonagesimi	49.	20.	42.	19.	
Respondet parallas. long. horíz.		2. 36	4	2.	58"
Et quia d' circa				0.	Q, ergo
Inter 8 et nonagesimum		19.			
Respondet longitudinis parallaxis		2. 0"	in ortum,	2.	8" parall. in occasum.

Sequitur motum & horarium 4' debuisse videri majorem illo, qui ex diurno proportionaliter sequitur. Quod cum observationes repudient, non est igitur & parallaxis tanta.

Similes exstant observationes anno 1585, 1595 et passim, ex quibus parallaxis invenitur perexigua, saepe nulla. Nonnunquam et in contrarium rem recidisse manu Brahei annotatum fuit. Hic igitur primus modus esto parallaxeos sinquirendae.

Jam alterum modum pulchritudinis causa addam, in quo Braheanis observationibus uti non possum. Meis igitur dum utor, exhibebo tibi spectaculum ridiculum, et docebo exemplo, ad quid Braheo opus fuerit tanta diligentia, instrumentorum subtilitate, ministris et reliquo apparatu. Duo mihi sunt instrumenta, quibus utor ex liberalitate G. D. Joh. Friderici Hoffmanni L. B., sextans ferreus et quadrans azimuthalis orichalcinus; iste duum semis, ille trium et semis pedum diametro, in singula scrupula uterque distinctus. (Comp. Vol. II, p. 760.)

Igitur hoc ipso tempore 1604, quo de parallaxibus cogito (Solis magis an & haud queo dicere; nam postulat Hipparchus meus suis etiam eclipsibus Lunae a & subsidium), commodissima se obtulit occasio observandi, si sub alio climate fuisset, Marsque altius paulo incessisset. Mars namque simul in longum et latum immotus haesit cinga 19/29. Febr. anni hujus 1604, idque in \cong , quare ab exortu \mathcal{J} usque in ipsum O exortum continuo decrescit angulus horizontis cum ecliptica. Itaque secundum cap. IX. Astronomiae Opticae parallaxis, si qua est latitudinis, continue crescit. Ex incremento vero per parallacticae columnas, e regione initialis et finalis anguli eclipticae cum horizonte quaesito, cognoscitur in fronte columnae parallaxis tota horizontalis.

Sequitur series mearum observationum.

Nocte inter dies Jovis et Veneris, qui fuere ${}^{17}_{127}$ Febr. interea dum Corvus coelum mediat, erat inter $\circ d$ et Spicam 9° 44', inter eundem et Lancem boream 17° 41'; inter $\circ d$ et Arcturum 29° 13'. Ut autem probaretur sextans, mensi sumus etiam, quod est inter Arcturum et Spicam 32° 57', quod tamen debuit esse 33° 1' 45", ut patet, si calculus consulatur adhibitis seu ascensionibus rectis et declinationibus seu longitudinibus et latitudinibus, quas assignavit Tycho sideribus hisce libro -I. Progymnasmatum. Ergo distantiae meae minores justo fuere per 4 ${}^{3}_{16}$ ', quibus correxi \circ a fixis distantias, ut fuerit a Spica 9° 48' 45", a Lance 17° 45' 45", ab Arcturo 29° 17' 45".

Sumsi autem et altitudinem & meridianam per quadrantem 32° 4' et Spicae 30° 50', quae cum habeat declinationem 9° 2', relinquitur & 7° 48' declinatio. Ostendebat autem altitudo Spicae, non sat bene habere meum perpendiculum, nam altitudo aquatoris est in meo loco 39° 54', itaque meridiana Spicae 30° 52', & 32° 6'. Ex declinatione igitur & et distantia a fixa prodiit ejus asc. recta: a Spica . 305° 57' 36"

a Spica . 305 57 36 a Lance . 306. 3. 17. Differentia . 0. 5. 41. Medium ergo 306. 0. 26.

Nam certus non sum, annon regula mea, ferrea et ponderosa cam sit, impetu ruens solutis trochleis et impingens (quod factam aliquoties) pinacidia loco moverit, quae sunt-luxatilia et exemtilia. Sed ex hac ascensione recta primum ex tabula Tychonis ascensionum rectarum excerpitur cooriens in sphaera recta 28° 1' 0" \leq , cujus declinatio ex alia ejus auctoris tabula est 10° 48' 30", σ vero 7° 48". Ergo abest ab ecliptica via obliqua in circulo declinationis per 3° 0' 30". Angulus vero quem circulus declinationis facit cum ecliptica, ex peculiari tabula est 68° 59', ejusque complementum 21° 1'. Et in mea parallactica sub titulo 60' invenio e regione 68° 59': 56' 1"; sub 30" vero invenio 28". At quia ego in hac distantia σ ab ecliptica (quam appello basin latitudinis) habeo ter 60; ergo quod excerpsi sub 60 per 3 multiplico; prodit mihi latitudo 2° 48' 31". *) Idem labor e regione 21° 1' ostendit mihi, quid loco coorienti sit adimendum, nempe 1° 5' 4". Itaque σ locus erit 26° 56' \simeq , quantum etiam ex calculo, cujus hoc opere fundamenta sum traditurus, elicio intra unum minutum.

Ad probandam vero latitudinem \mathcal{J} consului et distantiam ab Arcturo, adhibita stellae longitudine et latitudine ex Tychone et loco longitudinis \mathcal{J} jam invento: atque is reponebat mihi \mathcal{J} in latitudinem 2° 47' 48". Prius 2° 48' 31".

Die 19/29. Febr. transposueramus pinacidium coepimusque observare σ surgentem. Annotatae sunt antem ejus ab Arcturo distantiae hae: 29° 22'/₂', 24', 20', 22'. Puto nos abundare uno denario minutorum: nam flante vento tantummodo carbone ardente lumen ad divisiones fecera-

mus, ut illae nosci possent. Et tunc altitudo σ erat 11°. Post culminavit dorsum Ω in alt. 62° 37′, correcto perpendiculo. Ostendebatur igitur altitudo aequatoris 39° 55″Justa proxime. Eo articulo altitudo σ erat 23°. Repetebamus igitur distantiam priorem, quae prodebatur 29° 14′, 19′, 13′, 18′, ergo procul dubio prius erat 12′/₂, 14, 10, 12.

Refractio enim Martem horizonti vicinum primum attollebat versus Arcturum, post demittebat, Marte altitudinem aliquam acquirente. Sed ut tanta esset uno momento varietas in observando, frigus et penetrantissimi venti efficiebant. Nudis enim manibus ferrum tractari, claudi trochlea nequibat, tectis non secure firmabatur regella, quo ad minutum notaretur. Vindemiatrix altitudinem ostendebat in meridiano 53° 5' paulo auctiorem justo, sed Spica 30° 54' intra unum minutum justam. Martis culminantis altitudo 32° 6' ut ante biduum, et Arcturi 61° 13' justa. Hinc distantia Martis et Arcturi colligebatur 29° 18'/₅' per calculum. Cum igitur hoc tempore Mars stationarius fuerit secundum longitudinem, consentiente Prutenico et meo calculq, nihil igitar ratione divagationis in ecliptica potnit mutari in altitudine meridiana. Quare cum penitus eadem manserit (nam de uno scrupolo relinquit nos in dubio instrumentum meum) altitudo meridiana, neque latitudinis ulla interea accidit mutatio.

Die 22. Febr. vel 3. Martii probavimus sextantem, uti eo superius eramus usi, invenimusque inter Canem minorem et superiorem humerum Orionis 26° 2', quam ostendit calculus 26° 2' 15". Sic inter eundem Canem minorem et Palilicium inventi 46° $22^{1/2}$, quam Tycho in epistolis indicat esse 46° 22'. Ergo cum culminaret quinta Leonis, firmata regula instrumenti super 29° 17', minus distabant Arcturus et \mathcal{J} , at super 29° 13'/2' jam plus distabant, denique in 29° 15' culpari nihil poterat. Secuta insperata nubila per totum coelum. Rediit tamen mane 4. Martii serenitas, et cum jam culminasset Antares, posita regula super 29° 19' cernebantur stellae utrinque aequaliter, videbatur tamen addendum aliquid: sed per 29° 20' jam nimium erat additum. Perfecta observatione Saturnus antecedebat meridianum minus quam Jupiter Saturnum.

Nocte quae sequebatur 29. Febr. vel 10. Martii, luxato interea instrumento, fuit haec distantia primum inter 29°9' et 29°10' semihora prius quam cor Hydrae culminaret. Rursum explorantibus apparebat inter 29° 12' et 29° 13'; quod jam altior esset et liber a refractionibus. Nam peracta hac observatione habebat altitudinem 19 %. At paulo post (nescio an luxato pinacidio) non potuit tolerari tanta: videbatur enim 29° 9⁴/₂'. Cauda & quasi dimidio gradu aberat a medio coeli. Tunc altitudo of 24 %. Canda & culminans intra minutum justam habuit altitudinem 56° 44'. Cum de distantia d et spicae tertia pars transisset meridianum, primo videbatur nobis 29° 9¹/₂', non admodum bene applicato cylindro, qui erat praelongus. Ergo paulo post non potuit hoc tolerari, sed videbatur requiri 29° $10^{1}/_{4}$, quasi paulo minus. Visus est autem J ab utraque cylindri parte. Tunc inter 3 et spicam 9° 26' et minus quam 9° 27'. Culminabat 3 in alti-tudine 30° 19'/2'. Tunc inter 3 et Lancem boream 18° 25'. Pro sextantis exploratione capiebatur, quod est inter spicam et lancem 27° 39', debuit autem esse 27° 34'. Sic inter spicam et boream frontis m 39° 32 1/2', debuit esse 39° 261/2'. Itaque 5' abundavit sextans. Id autem et calculus loci & testatur. Nisi enim distantias & a fixis quinis minutis minuas, ascensio recta per spicam et lancem 10' discrepabit: at subtractis (ita ut

examen jubet), exactissime coincidet eritque 205° 27' 10", declinatio 7° $35\frac{1}{2}$ quare locus 26° 18' 48" \rightleftharpoons ; latitudo 2° 47' 20". Vides manifeste latitudinem eandem, cum interim planeta 38' retrocesserit longitudinis. Quodsi per hunc inventum locum \eth inquiras ejus ab Arcturo distantiam, prodibit 29° 9¹/₆' et in vitioso instrumento 29° 14'. Cum jam cor Scorpii culminasset, distantia nostra (sed jam luxato et mox restituto instrumento) fuit 29° 13¹/₂'. Rursum igitur sextantem probavimus, qui inter polarem et caudam Cygni exhibuit 44° 45': sed debuit esse 44° 39¹/₂'. Ergo pristina instrumenti conditio. Cum jam \mathfrak{h} uno gradu superasset meridianum, non tolerari potuit 29° 13¹/₂'; plus tamen erat quam 29° 12¹/₃', proxime 29° 13'.

Haec igitur observationum series, ex quibus amens sim, si rem subtilissimam exstruere nitar. Itaque non argumenta sed exempla exhibeo alii diligentiori et feliciori. Spero etiam lectores nausea incertarum harum tanto magis expetituros Tychonicas certissimas. Sed ad rem.

Primus et secundus dies tantum ad probandam stationem motus latitudinis concurrunt. Utrinque \mathcal{S} ab Arcturo distitit 29° 18', utrinque altus in meridie 32° 7' vel 6'. Me vero exercuere illi dies ad sequentes rectius obeundos, si necessaria instrumenta fuissent.

At 3. Martii, cum os Leonis culminaret, distantia fuit 29° 15', cum cor Scorpii, 29º 19' plus. Ergo interlapso tempore mutata est distantia per 4 1/4' circiter. Et cum Arcturus et & eandem pene longitudinem obtineant, arguit igitur haec distantiae mutatio parallaxeos latitudinis variationem. Non ignore, 29° 19' parum abesse a 29° 18' et hanc ex analogia diei antecedentis debere esse distantiam hora etiam consimili, utpote stante Marte. Scio etiam, cum est os Leonis in med. coeli, Martem esse altum 12 1/2 °, obnoxium adhuc refractionibus. De hoc tamen dicemus postea. Nunc ista sane dissimulentur, ne exemplum nobis turbetur. Ergo cam fuerit altitudo nonagesimi 57¹/_a⁰ (circiter) culminante ore Leonis, ultimo vero 28¹/_a, postquam culminasset cor Scorpii, quaeram in parallactica, in qua columna a distantia a vertice $32^{2}/_{3}^{0}$ in distantiam $69^{2}/_{3}$ mutatur area per $4^{4}/_{4}^{0}$. Invenio autem id fieri sub columna, cujus est frons 9'. Esset igitur o parallaxis maxima 9'. Et cum distantia d et Terrae hoc die fuerit ad distantiam J et) ut 28 ad 60 (quod ex cognitione anticipata hypothesium Tychonis et Copernici crassiori Minerva habetur), erit igitur permutata ratio parallaxeon, et Solis parallaxis maxima circiter 4' 24", quae ponitur 3' 0".

Nunc autem perpendamus, quod σ in altitudine $12\frac{1}{2}^{\circ}$ fuerit in refractione, si fixarum refractionis tabula Huennae constructa Pragae valeat: ea fuit in hac altitudine 4' 20", dé quibus 2' 18" debentur latitudini, quibus σ Arcturo factus est propior. At si Solis refractiones Marti quoque adhibeamus (quod saepius apparet), illa in hac altitudine est 8' 45", duplo major: quare et latitudinis parallaxis duplo major, et 4' 36". Hoc modo omnis varietas, quam prae se tulit observatio duobus his diversis momentis, esset a sola refractione. Illo modo relinqueretur parallaxi latitudinis 2', quantum variatur parallaxis sub columna, cujus frons 5', ut Soli hoc pacto obveniant tantum 2' 25" maximae parallaxeos. Ita refractio nobis tertiam quoque diem suspectam reddidit et dubiam, denique plane inutilem. Scio, cum Arcturus et σ distent 9°, quae est latitudinis Arcturi supra latitudinem σ pars tertia, fieri tunc, ut non omnis latitudinis refractio detrahatur distantiae

a Marte, et ut parallaxis plus variet Martis latitudinem, quam hanc ab Arcturo distantiam. Id autem ut perexiguum in majori metu dissimulandum duxi. Observet qui subtilioribus instructus est.

Jam in quarta die nihil aliud videtur agi, quam destrui omnis parallaxis σ . Distantia in meridiano debuit esse $29^{\circ} 9^{1}/_{2}$ instrumento correcto, ergo vitioso $29^{\circ} 14'$. At inventa $29^{\circ} 13^{1}/_{2}$ ultimo, cum major esse debuit parallaxis latitudinis (si qua esset) et per hanc major ab Arcturo distantia. Ab eo igitur tempore, quo σ ad altitudinem venit 19° , inventa est $29^{\circ} 12^{1}/_{2}$, unico scrupulo auctior in fine: quae admodum exigua esset parallaxis. Et quae haec ratio? Cum esset altus 9° (culminante Hydra) distantia fuit $29^{\circ} 9'$, vitioso instrumento, et tamen in refractione, post in alt. 25° et prope M. C. rursum $29^{\circ} 9'$, idque bis diversis momentis. An nihil hic refractio potuit initio, ut constans ideo manserit arcus? An potius dicendum, me (cum mihi viderer diligentissimus) errasse observando? praesertim ob cylindri longitudinem.

Ex his tamen qualibuscunque observationibus certum efficitur, parallaxes latitudinis certo non fuisse majores 4', quantum instrumenti incertitudo occupat: credibilius, valde exiguas esse. Infra capite LXIV. habebis hujus rei plura argumenta.

Esse vero parallaxes Martis majores parallaxibus Solis, hypotheseos Tychonicae et Copernicanae ratio arguit, ex qua facile Martis parallaxes computari possent, si de Solis parallaxi certi essemus. An igitur incerta est ratio, Solis altitudinem et parallaxes ex eclipsibus indagare? Omnino, quod quantitatem, paulo incertior, quod rem ipsam attinet, certissima. Non est Sol vicinior 230 semidiametris Terrae, non tamen infinitis semidiametris abest. At inter 700 et 2000 semidiametros (quarum summarum illa in Mysterio meo Cosmographico, haec in observationibus eclipsium pro metis citimis et ultimis offeruntur) nondum videtur certus aliquis numerus demonstratus (Cemp. II. 778), nt in Hipparcho meo probabo.

Caput XII.

Investigatio nodorum Martis.

Igitur, etsi non desunt adminicula investigandi planetarum primam inaequalitatem per observationes, etiam cum sunt impliciti inaequalitati secundae: sequar tamen hac secunda parte auctorum vestigia et observationes ingorogyoog fidei faciendae causa, cum ipsorum placitis aliqua contraria proftear, se quis me post dameta propriae methodi latitare clamitet.

Et cum jam patuerit, nihil in parallaxibus Martis diurnis a Tychone esurpatis desiderari posse, quod sit alicajus momenti, paulatim accedam ad reductionem locorum visorum Martis ad Solis apparentem locum oppositum.

Principio nobis est opus cognitione nodorum. Hos Tycho Brahe sic solitus est investigare.

Fig. 63.

Igitur in CEA rectangulo (vel CBA isoscele: diferentia enim nullius est momenti in hoc negotio) ex latere CE et angulo EAC inquisivit longitudinem EA, distantiae looi ecliptici a nodo. Haec operatio nihil peccat, quia EC parva est et propinqua nodo. Demonstrationis vero ànoscu commendat aliam. Dictum enim est cap. IX, angulum EAC non esse constantem: unde per diversas diversarum oppositionum latitudines diversa etiam loca pro nodo exibunt. Neque enim EAC tam est magnus, quam magna latitudo maxima visa, quia AC inflexus est arcus: neque etiam AC, sed interior aliqua (puta AF) via est planetae, qualis ex centro Solis videretur: quare neque necessario A nodus erit, in hac quidem operatione.

Aliter igitur ego nodos investigavi, idque ex ipsis observationibus ad diem quo in nodo essent. Quae methodus, etsi jam quibusdam praeconceptis indiget et infra accuratius tractabitur parte quinta, tamen vel ob consensum solum praelibanda est. Praesupponebam autem, cum planeta vere motuque eccentrico est in nodo, nulla dispositione. Terrae vel Solis fieri posse, ut appareat extra nodum.

Nam in hypothesi Copernicana hoc per se naturae rerum est consentaneum, ut motrix facultas stellae alicujus non sit alligata ad observandam stellam alienam (in quarum numero Tellus est) sed circuitus sui proprias habeat leges. In hypothesi Ptolemaica hoc esset perinde ac si diceres, epicyclum non respicere ad lineam ex Sole per centrum suum venientem, sed ad certa loca sub fixis, sub quibus planetam in plano eclipticae constituat. In Tychonica eadem de eccentrico dicentur.

Quod igitur praesupposui, id verum inveni per has observationes.

I. Anno 1590 d. 4. Martii hora vesp. 7. 10' fuit declinatio σ 9° 26' sept., ascensio recta 22° 35' 10". Hinc prodit locus 24° 22' 56" γ , latitudo meridiana 3' 12": parallaxi et refractione contraria et paria proxime facientibus ideoque neglectis.

II. Anno 1592 d. 23. Jan. vesperi hora 10. 15' fuit σ in 11°34'30" γ , latitudo 0° 2' merid., altitudo σ 25°, ergo refractio (ex fixarum tabula Tychonis) nulla: parallaxis quanta proxime Solis, quia distant sextili σ et \odot et igitur a Terra aequaliter fere absunt, cedit autem pene omnis in latum. Ergo circiter 2' attollendus est σ in septentrionem, ut liberetur a parallaxi, sicque incidet in eclipticam. Nam 6. Febr. jam circiter 7' in boreali latitudine fuere.

III. Anno 1593 d. 10. Dec. vesperi J fuit in nodo ascendente observatus. Nam post correctionem variationum horizontalium retinebat non plus 0° 0' 45" borealis latitudinis.

IV. Anno 1595 d. 27. Oct. h. 12. 20' latitudo o vera post remotam parallaxin fuit 0° 2' 20" merid. Die 28. itidem remota parallaxi fuit latitudo 0° 0' 25" sept. Intermedio ergo tempore *) in nodo evehente fuit.

Numera jam dies 687 revolutionis d'eccentricae a meridie 28. Oct. retro, incidet terminus illorum in 10. Dec. anno 93, cum nocte praecedenti

^{*)} Sufficit ista crassa argumentatio praesenti instituto. Infra cap. LXI. et. LXVII. diligentius omnibus expensis, invenitur in nodo fuisse die 29. hora 15.

fuisset 5 proxime nodum observatus. Rursum alios 687 retro numera, qui desinent in 23. Jan. 1592, cum in ipso nodo fuit observatus. Si tertio idem feceris, incides in 7. Martii anni 1590, cum die antecedente quarto habuisset aliquam latitudinem meridianam, quam intra quatriduum reliquum confecit, ut circa 7. in nodum incideret.

Ex quo intelligitur: nihil referre, ubi Terra sit, vel sub fixis vel respectu ad Martem: nihil referre in Ptolemaica, ubi Sol sit respectu centri epicycli Martis et Martis in epicyclo: nihil in Tychonica, ubi centrum eccentrici seu Sol versetur respectu lineae ex Marte per Terram, ut in planum ecliptici & incidat: esse enim semper eandem diametrum nodorum in Copernico et Ptolemaeo, seu semper sibi parallelon in Tychone: nisi quod successu seculorum nodi parumper transportantur; qui motus intra hos 6 annos non sentiebatur.

Sed age et alterum oppositum nodum quaeramus.

I. Anno 1595 d. 4. Jan. mane, cum \mathcal{J} observaretur hora 7. 10' in altitudine 8° a Spica 19 et Corde 11, visa fuit ejus latitudo in 0° 3' 46" b. ipse in 13° 36' 40" \mathcal{J} . Parallaxis est parva, quia \mathcal{J} cum O, distans plus a Terra quam Sol, amplius duplo. Refractio contra est magna: ex tabula fixarum 6' 45", ex tabula Solis 11 $\frac{1}{4}$, quae omnis fere abit in latum propter humilitatem nonagesimi. Itaque \mathcal{J} vere in austro aliquot scrupulis (circiter 2 aut 3' aut etiam plus) per refractiones Solis adhibitas.

II. Anno 1589 d. 15. Apr. noctu, & latitudo visa borealis fuit 1º 7', vehementer aucta parallaxi orbis annui ob appropinquationem Martis et Terrae. Post dies 21 latitudo decrevit ad exilitatem 6²/₆ ' bor. Etsi igitur 6. Maji paulo lentius decrescit, sidere a Tellure abeunte : tamen parum errabimus, si proportionaliter agamus, ut sicut 60' diminutionis sunt ad 6¹/_a' residua, sic 21 dies faciamus ad numerum dierum, post quos in eclipticam Mars incidit: nam regula ostendit dies 21/1, ut 9. Maji fuerit in nodo. Numeratis inde ter 687 diebus porro, incidemus in mane 30. Dec. anni 1594, quo die 5 in nodo fuisse oportet, indeque per 5 dies usque in 4. Jan. mane delapsum esse in meridiem. Et quidem ex observatione ejus ad dictum 4. Jan. aliquot ei scrupulorum latitudinem meridianam dedimus. Saepius hoc eccentrici loco non est observatus. Satis est, teneri a nobis illam observationem anni 1595, ne a nobis dissentiat : de anno vero 1589 nibil est quod dubitemus. Neque te moveat, quod anno 1589 diebus 21/s dedimus motum latitudinis 6²/s', anno vero 1595 circa 4. Jan. diebus 5 non tot damus. Nam ut in hoc opere apparebit, latitudo per orbis annui parallaxes plurimum in conjunctione cum Sole (ut 1595) attenuatur, in oppositione (ut 1589) augetur. Convenit igitur, minorem videri anno 1595 motam diurnum latitudinis, majorem anno 1589.

Quomodo jam habentur loca utriusque nodi sub fixis? Nimirum si ex tabulis σ (quas ideo praesupponimus) crassa Minerva eliciatur utrinque medius motus Martis. Id sive per Prutenicas sive per Tychonicas, adhibita aequinoctii vera praecessione, praestiteris, invenies anno 1594 d. 30. Dec. mane medium locum σ in 27° 14¹/₂ ' M, anno 1595 d. 28. Oct. mane in 5° 31' \heartsuit . Itaque apparet, diametrum nodorum non transire per centrum aequalitatis motus, sed longe infra. Plus enim est a 5° 31' \bigotimes in 27° 14¹/₂ ' M, quam ab hoc in illum. Sin autem Tychonicis aequationibus fueris usus, addendum erit hic 11° 17', illic subtrahendum 11° 30', ut prodeat illic

15 *

16° 48' \boxtimes , hic 15° 44'/₂' \mathfrak{m} , loca \Im eccentrica coaequata. Nodi (ut vides) fere ex centro systematis planetarii sunt oppositi in 16'/₃° \boxtimes , \mathfrak{m} circiter, quod Ptolemaeus Terram, Copernicus et Tycho Brahe punctum proxime Solem dixerunt.

Quantum autem mutaturi simus in his locis nodorum, ubi transposita theoria Solis a medio ad apparentem motum Solis aequationes mutabuntur, infra parte quinta patebit.

Caput XIII.

Investigatio inclinationis planorum eclipticae et orbitae Martis.

Nodis et limitibus superiori capite ex sententia Brahei et mea quam proxime inventis, jam etiam inquirendum est, quantum vere inclinetur planum orbitae Martis ad planum eclipticae. *) Id ab ipsis observationibus deducere non ita promtum est. Nam angulus inclinationis hujus constituitur apud centrum systematis planetarii, quod Copernico et Tychoni Sol est.

At visus in Solem nunquam inducitur, ut ex eo haec inclinatio sub fixis videri et mensurari possit. Ex alio vero loco (angulo etiam alio) spectabitur maxima digressio limitis ab ecliptica. In Ptolemaica forma videri possit expeditior ratio, sed non est. Nam demonstrabitur, planum epicycli manere perpetuo parallelon plano eclipticae. Pone ergo centrum plani epicycli in limite alterutro, sit planeta in eadem linea longitudinis ex centro visus per centrum epicycli: vel erit remotior a visu quam centrum epicycli, et sic distantia ejus ab ecliptica minor apparebit quam distantia centri epicycli ab eadem ecliptica; vel erit propior, visui et sic major apparebit eo quod quaerimus.

In hac difficultate solatur nos hoc unicum, quod id, cujus causa inclinationem inter principia quaerimus, non est tale, ut summam subtilitatem desideret. Licebit igitur nobis uti modis iis, qui de inclinationis quantitate testimonium eminus perhibent: quorum tres ponemus.

Apparet antem ex jam dictis, tunc nos rectissime adjutum iri, si observationem nanciscamur Martis ad tale momentum, ubi Mars aequaliter et a Terra et a Sole absistens linea ex Sole per se ducta in 16° vel 17° Qvel \implies (loca limitum) referatur: in forma Ptolemaica, ubi, centro epicycli in 16°, 17° Q vel \implies versante, Mars aequaliter cum centro epicycli a Terra absit. In solo Mercurio hoc problema locum non habebit.

Sit B (Fig. 64) Sol, A Terra: constituatur super AB isosceles ACB, et sit planetae locus C, punctum eclipticae plani: erectaque perpendiculari CE in orbitam \mathcal{J} , corpus \mathcal{J} in E sit. Aequaliter igitur apparebit EC et ex B Sole et ex A Terra: per se patet.

*) Inclinatio et latitudo differenter intelligantur.

Inclinatio de angulo ad Solem vel centrum systematis planetarii, quem Copernico faciunt lineae in corpus 5 et locum ejus eclipticum ejectae. Latitudo sit angulus, quo quaelibet inclinatio ex Terra spectatur.

In Ptolemaco inclinatio est angulus rectarum ex Terra per centrum epicycli et per locum ejus in ecliptica ejectarum. Latitudo est angulus, quem faciunt rectae ex centro Terrae, altera per corpus planetae, altera per locum, qui ei in ecliptica respondet, ejecta.

Ut autem sciatur, qua in dispositione σ aequaliter absit a \odot et σ , nota quod, quando lineae ex C σ et A σ in B \odot cadentes faciunt rectum angulum CBA, tunc CB brevior est quam CA. Itaque oportet BA locum oppositum \odot et BC locum σ eccentricum minus distare 90°, ut CAB, CBA aequentur. Ergo BC in 17° Ω vergente, \odot oportet esse ultra 17° \aleph et ante 17° \mathfrak{M} . Contra si BC sit in 17° \mathfrak{m} ; \odot debet esse ultra 17° \mathfrak{M} et ante 17° \aleph , quibus circumscriptionibus nobis designantur matutini exortus vel vespertinae occultationes, sextiles vel quintiles σ et \odot .

Fig. 64.

In forma Ptolemaica si C Terra sit, A centrum epicycli, B Mars, CAB non poterit esse rectus, ut CA, CB fiant aequales. Itaque anomaliam commutationis oportet esse majorem 90° vel minorem 270°.

Si etiam praecisius paulo cupis agere, assume ex Copernico vel anticipata Tychonica restitutione proportionem orbium \mathcal{J} et \mathcal{J} [in Copernico], \mathcal{J} et \odot [in Tychone], eccentrici et epicycli [in Ptolemaeo] crassa Minerva ut 1525 ad 1000, et eam in 16, 17° Ω ut 5 ad 3, in 16, 17° \ldots ut 11 ad 8.

Cum orgo triangulum ACB sit isosceles, et AC, CB orura asqualia, AB voro 1000 qualium BC ducta in 17° Q est 1666²/₈: qualium orgo (densissa CD perpendiculari) AD dimidia de AB est 1000, erit AC 3333⁴/₈, quae inter secantes quaesita refert CAD vel CBD angulos 72° 33'. Sic in 16, 17° cm, qualium AB 1000, est AC 1375, et qualium AD 1000, est AC 2750, exhibens in tabula secantium angulum 68° 40'.

Versante ergo BC in 16, 17° Ω vel circa, oportet AC visum locum δ et AB visum O distare $72'/_2^\circ$: vel illa BC in 16, 17° \oiint versante, has $68^2/_8^\circ$ digredi oportet. Et quia duorum (CAB, CBA) in 17° Ω summa est 145°, erit ACB 35° in 17° Ω . Quare per lineam AC δ vel in 22° \oiint (Sole per AB in 5° \checkmark) vel in 12° \bigoplus (Sole in 30° Υ versante) spectari oportet. Ita in 17° \nRightarrow , quia summa (CAB, CBA) est 137'/₈°, erit ACB 42²/₈°. Quare Martem per AC vel in 24'/₈° \checkmark (Sole per AB in 16° \nRightarrow) vel in 0° Υ (Sole in 9° Π versante) spectari oportet. ⁴°)

Primum fieri proxime potuit mense Nov. anno 1586 vel 1588. Alterum Aprili anno 1581, 1583, 1596, 1598. Tertium Sept. vel Oct. 1587, 1589. Quartum Majo vel Junio 1580, 1582, 1595, 1597. Ad ultimum casum observationes idoneae desunt, eo quod Mars in γ brevium ascensionum (\odot in II noctes claras efficiente) observari vix possit aut omnino videri.

Anno igitur 1588 d. 10. Nov. mane h. $6\frac{1}{2}$ visus est planeta σ in 25° 31′ \mathfrak{P} cum lat. 1° 36′ 45″ bor., \odot in 21° \mathfrak{M} (28°). Ergo quia \odot tantummodo 62′/2° distat a σ , cum debeat distare per 72°, ut triangulum (quod requirit problema) fiat acquicrurum: Mars igitur adhuc longius a Terra abest quam a Sole. Itaque minor apparebat latitudo ejus loci, quam erat vera inclinatio. Sequenti 5. Dec. mane h. 6. σ visus est in 9° 19'/₆' \simeq cum latitudine 1° 53'/₂' bor., Sole in 23° \times . Ergo quia Sol distat a Marte per 73'/₂°, digressio puncti orbitae (quod tunc Mars occupabat) paulo minor fuit quam 1° 53'/₂', debuit n. interesse 72°. Nunc cum intersit plus, minor evasit distantia σ et σ , quam σ et \odot : major igitur apparentia inclinationis, ejus quidem puncti de plano eclipticae. At quia tamen 5. Dec. planeta motu eccentrico jam aliquot gradibus superaverat limitem, veras suas ab ecliptica digressiones iterum minuens, majores igitur fuerunt in

١

ipso limite. Quare tollentibus se mutuo causis, maxima planorum inclinatio erit circiter 1º 50'.

Ita anno 1586 d. 22. Oct. mane h. 6. sub auroram inter σ et cor Ω interfuit 6° 9' in consequentia. Declinatio σ ab acquatore erat 13° 0' 40" bor. Hinc invenitur ejus visa longitudo 0° 7' m, latitudo 1° 36' 6" bor.

Sol haerebat in 8° m, distans 68° a Marte: debuit plus distare. Longior itaque linea inter Martem et Terram, quam inter Martem et Solem. Minor itaque visa latitudo digressione planetae vera ab ecliptica, et quidem longe ante limitem. Die vero 2. Nov. mane h. $4^{2}/_{3}$. (\odot versante in $19^{2}/_{6}^{\circ}$ m) \eth visus est in $5^{\circ} 52'$ m, cum latitudine 1° 47' bor. Distat Sol a Marte per $73^{1}/_{2}^{\circ}$ pene justo modulo. Sed \eth antecedit limitem boreum aliquot gradibus, circiter $16^{\circ} 17'$. Igitur justa fere hujus loci latitudo apparuit. Sed ea in ipso limite major arguitur quam 1° 47', scilicet $1^{\circ} 50'$ circiter. Sequenti 1. Dec. mane h. $7^{4}/_{2}$. distantia aequatoria inter cor \Re et \eth fuit $25^{\circ} 12^{4}/_{4}'$, cum declinatione \circlearrowright $6^{\circ} 2^{4}/_{4}'$. Hinc invenitur longitudo $20^{\circ} 4' 30''$ m, latitudo $2^{\circ} 16' 30''$, Sol in $18^{\circ} \times$, distans 88° a Marte; debuit tantum $72^{4}/_{2}^{\circ}$. Quare minor est facta linea inter Martem et Terram, quam inter Martem et Solem: et digressio ex appropinquatione major apparuit quam erat re vera. Minor igitur ejus puncti digressio ab ecliptica quam $2^{\circ} 16^{4}/_{2}'$, et multo quidem minor: at non ita multo major quam 1° 47'. Hic igitur quantitas inclinationis maximae 1° 50' confirmatur eminus.

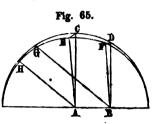
Vice versa anno 1583 d. 22. Aprilis hora noctis $9\frac{1}{4}$. observatum, inter Martem et Canem interesse 20° 58′, inter hunc et cor Q 22° 47′/₂′. Hinc invenitur locus 3 in 1° 17′ Q cum latitudine 1° 50²/₈′ bor. Sol erat in 11° 3, distans a Marte 80°, debuit 72′/₂°. Propior igitur justo est 3. Est igitur digressione vera ejus ab ecliptica major visa latitudo. Sed 3 amplius 21° est ultra limitem boreum. Itaque in ipso limite rursum major fiet ejus digressio ab ecliptica. Rursum itaque tollentibus se mutuo contrariis causis, inclinatio maxima est 1° 50′.

Sic anno 1596 d. 9. Martii vesperi h. 8. visus fuit in 15° 49' II, cum latitudine 1° 49²/₃' bor. Sol in 30° +, distans a loco Martis 76°: debuit minus paulo distare, itaque paulo minor vera Martis ab ecliptica digressio, quam latitudo visa. At neque maxima haec digressio fuit, cum nondum fuerit σ in limite intra 25° circiter. Rursum itaque stabilitur eminus maxima limitis digressio 1° 50' circiter.

Jam in limite altero 17° ccc, etsi rariores sunt observationes, est tamen in promtu una: anno 1589 d. 15. Sept. vesperi h. $7\frac{1}{4}$. visus est σ in 16° $47\frac{1}{5}$, r, cum latitudine meridiana 1° $41\frac{3}{5}$. At correctione adhibita ob refractionem luminis, quam erat passus in hac humilitate, erat locus 16° $45\frac{3}{5}$, r, cum latitudine 1° $52\frac{1}{5}$, meridiana. Sol erat in 2° com distans $74\frac{1}{5}$ a Marte: debuit tantum $68\frac{3}{5}$. Ergo visa latitudo paulo major est digressione puncti ejus ab ecliptica. Illud tamen non omnium remotissimum est, cum aliquammultis gradibus sit ante limitem. Itaque hic quoque se mutuo causae tollunt. Sequenti 1. Nov. h. $6\frac{1}{6}$. visus est in 20° $59\frac{1}{6}$, σ , cum latitudine 1° 36' meridiana, Sole in 19° M. Cum igitur jam non amplius 62° a Marte distet, debuerit vero $68\frac{2}{5}$, minor igitur est visa latitudo, quam vera ab ecliptica digressio: at simul et minor digressio hujus puncti quam limitis, quia punctum hoc est ultra limitem.

230 3

Ergo multo major est inclinatio maxima quam 1º 36' et omnino proxime tanta, quanta die 15. Sept. visa latitudo, scilicet 1º 50' circiter.


Expedivi modum nnum, in quo praesupponitur mediocriter nota orbium proportio: quem observationes citra calculum sequebantur, satis promte inclinationem maximam planorum indicantes.

Nunc alium subjiciam, cui selectioribus et rarioribus observationibus opus est: quae si habeantur, jam sine ulla praeconceptione proportionis orbium quaesitum nobis proditur, nullo etiam calculi labore implicitum.

Cum duo plana se mutuo secant, quaecunque binae lineae ad idem punctum lineae sectionis in utroque plano ducuntur, rectae ad sectionis lineam, unum et eundem semper angulum concludunt.

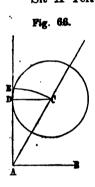
Sit planum eclipticae ACDB, orbitae Martis planum AEFB, linea

mutuae sectionis AB, et Sol in A, Terra in B: et ex A et B ipsi AB ad rectos statuantur in ecliptico plano AC, BD, in orbita Martis AE, BF. Sit planeta in F. Erit limitis E inclinatio (EAC) aequalis apparenti latitudini planetae in F scilicet FBD. Vide igitur, sicubi linea BA, id est Sole in 16, 17° & vel 16, 17° M versante, accidat perfecta quadratura \odot et δ : ubi inter lineam BA ex

Terra per Solem (quae hoc casu itidem et linea sectionis planorum est) et lineam BF ex Terra per Martem eductas 90° seu quadrans intersit: quanta ibi erit visa latitudo 3 FBD, tanta erit et inclinatio planorum maxima EAC, quamvis ibi loci in F 3 non tantum ab ecliptica digrediatur quantum in E.

Primus talis dies occurrit 22. Aprilis anno 1583, quem etiam jam modo usurpaveram. Sol in 11° \bigotimes , 5 vel 6° infra nodum. Terra igitur supra lineam sectionis versus Martem. Quo nomine major justo fiet latitudinis apparentia, quia e propinquiore loco. At contra, cum non intersint 90° Solem inter et Martem, hoc nomine rursum minor justo erit haec apparitio latitudinis. Si ponas, contrarias has exorbitationes se inutuo tollere, inclinatio planorum igitur proxime aequabit visam latitudinem. Visa latitudo fuit 1° 50²/₃⁴. Proxime igitur tanta planorum inclinatio.

Anno 1584 d. 30. Oct. selecta erat occasio. Sed nulla observatio exstat. Die vero 12. Nov. sequente nocte h. $1\frac{1}{2}$, Sole jam 14 vel 15° delapso infra diametrum sectionis, Terra vero tantundem sublata (Copernico), vel diametro sectionis tantundem in Terram demissa (Tychoni), visus fuit σ in 23° 14′ Ω , latitudine 2° 12 $\frac{1}{5}$ ′ bor., \odot in 1° χ versante. Hic parumper de angulo minutum, ob inclinationem lineae visionis σ ad lineam sectionis : plurimum vero is auctus ex appropinquatione ad Terram. Minor ergo multo inclinatio quam 2° 12′, scilicet 1° 50′.


Anno 1585 d. 26. Apr. h. 9. 42' visus fuit σ in 21° 26' Q, latitudo 1° 49³/₄' borea. Erat \odot in 16° \heartsuit proxime ipsum nodum, linea visionis σ paulo inclinata, cum σ sit ultra 16° Ω . Ergo angulus inclinationis maximae planorum paulo admodum major quam 1° 49³/₄' scilicet 1° 50', aut paulo quid amplius.

Sic circa alterum limitem anno 1591 d. 16. Oct. h. $6\frac{1}{2}$. vespertina visus est 3 in $1^{\circ}27\frac{1}{3}$ cum latitudine $2^{\circ}10\frac{5}{6}$ meridiana decrescente (nam praecedente 10. Oct. fuit latitudo $2^{\circ}18\frac{1}{3}$ et 2. Oct. $2^{\circ}38\frac{1}{3}$).

Sol in 21/2° m supra nodum. Terra ergo infra nodum versus Martem. Itaque ex appropinquatione major fuit visa latitudo quam inclinatio plani ecliptici. Post dies 14 Sole in nodum competente, si iterum 28' decrevisset (quantum imminuta est praecedentibus) 14 diebus, restarent 1º 45'. At non manet proportio eadem imminutionis, Terra discedente a sidere vel hoc Semper enim in remotioribus minor est imminutio. Nihil igitur a Terra. hinc contra inclinationem maximam 1º 50' depromi potest: quin potius ea eminus confirmatur.

Demonstratio latius extendi potest. Sit (Fig. 65) BA linea ex Terra per corpus Solis ducts in locum nodi 17° m vel Z: et spectetur planeta quocunque zodiaci loco. Latitudo igitur, quam habere videtur, metitur inclinationem puncti de plano, tantum vere distantis a limite, quantum J abesse videtur a limite. Spectetur J in BG. Duc ei parallelon AH. Quanta igitur apparet latitudo in G ex B, tanta est inclinatio puncti H. Et BG, AH vergunt in gradum eundem sub fixis, quia paralleli. Ut in observatione 1585 d. 26. Apr., quia (•) in 16° \heartsuit et \eth in 21° 26' \heartsuit visus est, cum lat. 1° 49⁴/₄, ergo inclinatio in 21° 26' \heartsuit motu eccentrico est 1° 49⁴/₄. Ac cum 21° 26' \heartsuit absit a limite 5°, et sinus 85° parte $\frac{1}{250}$ minor sit sinu toto, erit et hic maxima inclinatio parte $\frac{1}{250}$ sui major, scilicet $1^{\circ} 50^{1/2}$ circiter.

In Ptolemaica hypothesi demonstratio hujus rei sic procedit.

Sit A Terra, AB linea per Solem et ejus oppositum in 17° 🗙 vel m. AD linea visionis Martis, D J, BAD rectus. Erit ergo AD in 17° Q vel Et quia D J, quae ergo ex D exit parallelos ipsi BA (quia motus Martis in epicyclo motum Solis in suo orbe sequitur) per C centrum epicycli transibit. Sit in AD, E punctum, et ipsi AC aequalis AE. Itaque quia AC non erit in 17° Q vel, non etiam tantum ab ecliptica distabit, quantum E limes boreus: nec igitur D tantum distabit ab ecliptica, quantum E. quia CD et omnia epicycli puncta aequaliter distant ab ecliptica, cum planum epicycli ad hypothesium aequipollentiam efficiendam perpetuo ponatur parallelum plano eclipticae. At quanto D vel C minus ab ecliptica distat quam E, tanto propius est D ipsi A quam E, at ita distantia

D tanto major, et utraque eodem angulo ex A spectentur. Nam ut distantia C ab ecliptica ad distantiam E ab eadem, sic sinus arcus CB (hoc est AD) ad sinum totum AE ex doctrina sphaerica inclinatorum circulorum, eo quod ECB circulus inclinatus sit super AB. At C et D distant aequaliter, ut jam dictum. Ergo ut distantia D (vel perpendicularis ex D in eclipticam demissa) ad perpendicularem ex E: sic AD ad AE, Triangula igitur ADD et AEE similia erunt (cum sint rectangula in D, E, punctis' eclipticae, et laterum proportionalium), sed et concurrentia lateribus (AD, AE) in plano eclipticae ab eodem (A) puncto descriptis et in idem longitudinis punctum in 17° Q vel m vergentibus. Ergo et AD, AE lineae in orbita concurrent: hoc est, linea ex A & per D & educta in hoc situ incidet in E locum centri epicychi, quando id est in limite. Et sic idem erit angulus et inclinationis maximae limitis et visae latitudinis Martis in hoc situ.

Tertius modus calculo et praeconcepta orbium proportione indiget: quem tantummodo delibabimus propter consensum: nam accurata et genuina ejus tractatio reservator in partem quintam et caput LXIII, nec hic est necessaria.

In tabula oppositionum Tychonis fuit latitudo visa in 21° 16' Ω : 4º 32 1/2'. Sit A Sol, B Terra, C Mars in eccentrico. Ergo linea AE per B Terram inter fixas excurrens incidet in eclipticam, AC in orbitam Martis. Et cum & sit in 21° & proxime limitem, angulus Fig. 67. EAC proxime orit maximus. Quem sic investigo. Sit BA 1000, AC 1664, et EBC 4º 32¹/₄. Ut ergo AC ad sin. EBC sic BA ad sin. BCA 2º 43' 27" qui ablatus ab EBC, relinquit angulum BAC guaresitum 1º 48' 43", qui in ipso limite esset hino circiter 1º 49', et nonnihil variatur, si proportio BA ad AC variatur, de quo infra. Hoc modo ex quacunque acronychia observatione, cuius latitudo grandiuscula sit, inquiritur primum inclinatio illius puncti orbitae, post inclinatio maxima, consideratione distantiae a nodo vel limite. Ut anno 1593 d. 24. Aug. latitudo visa sub oppositionem cum () proditur 6° 7' meridiana, σ in $12^{1/2}$ H. Sit igitur BA. 1000, AC 1389 ex anticipato. Ut igitur CA ad simum CBE sio BA ad simum BCA 4° 21' 10", qui ablatus a CBE relinquit BAC l quaesitum 1° 42′ 10″. 1) Abest vero locus iste 26° circiter a limite. 64° a nodo. Ut igitur sinus 64° ad hanc digressionem ab ecliptica

1º 42' sic sinus totus ad maximam planorum inclinationem, quae prodit 1º 53', ubi de superfluis tribus scrupulis non est ut simus solliciti : prodeunt enim ex suscepta proportione, de qua infra parte quarta.

In forma Ptolemaica erit A Terra, C centrum epicycli Martis, D punctum imum epicycli, eo quod Mars in oppositione Solis versetur.

Et quia EA Solis linea in ecliptica est, planum vero epicycli ponitur parallelum plano eclipticae, erit CD parallelos ipsi EA. Ergo BAC et ACD aequales, inclinatio scilicet eccentrici et epicycli. Sed et aequalis est CD ipsi BA ob plenariam hypothesium aequipollentiam, vel certe, ut in Copernico AB ad AC, sic epicycli Ptolemaici semidiameter DC ad CA lineam ex Terra in centrum epicycli. Ergo et CDA, CBA aequales, et EBC, BAD aequales, latitudo scilicet apparens.

Caput XIV.

Plana eccentricorum sunt àradarra.

Imposuit Ptolemaeo hypotheseos suae perplexitas, ut monstra multa congesserit in doctrinam latitudinum. Cum enim perpenderet, planum epicycli in omnes partes torqueri, neque statim videret per illas hypotheseos suae nebulas, epicycli planum eclipticae plano parallelon esse, triplicem confinxit latitudinem, et ut contraria contrariis fulcirentur,*) omnino luxavit e parallelo situ suum epicyclum; nec ex fide observationum, quas non ita crebras habuit, nec ex mensura earum ubi habuit (quia certitudini diffisus) mediocritates elegit, extrema in errore ponens.

•) Vide Epitomen Astronomicam Maestlini in explicatione theorine superiorum fel, ultimo. ⁴) Hinc videas, nullam omnino in usitato calculo (puta in Magini Ephemeridibus) contingere conjunctionem Martis et Solis, quae non sit (uti dicunt) per corpus. Quod si verum sit, frustra natura temperamentam latitudinum confinxerit, ne corporalibus conjunctionibus crebro contingentibus nimiae essent exagitationes sublunarium virtutum.

Copernicus, divitiarum suarum ipse ignarus, Ptolemaeum sibi exprimendum omnino sumsit, non rerum naturam, ad quam tamen omnium proxime accesserat. Qua de re lege Rheticum in "Narratione." Gavisus enim, suis appropinquationibus Telluris ad sidera latitudinum species augeri, non tamen ausus est, residua latitudinum augmenta Ptolemaica (quae haec appropinquatio Telluris non assequeretur) rejicere, sed (ut et illa exprimeret) librationes planorum eccentricorum confinxit, quibus inclinationis angulus (Ptolemaeo constans et fixus) variaretur, atque is (quod monstri simile sit) nen ad leges motuum eccentrici proprii, sed Telluris orbis plane alieni. Vide Copernicum libr. VI. cap. 1.

Cum hac impertinenti diversorum orbium colligatione causa motus (incredulitate mea armatus) semper pugnavi, nondum etiam visis observationibus Tychonis. Quo impensius mihi gratulor, observationes mecum stare, ut in multis aliis praeconceptis opinionibus.

Sed ne quis ob hoc ipsum mihi fidem deroget, quod observationes cum praejudicio tractem, en jam solidissime demonstravi, librationes inclinationum eccentri nullas esse. Tribus enim modis investigandae inclinationis maximae propositis, in primo Sol erat circa sextiles et quintiles Martis, hoc est tam propinquus conjunctioni Martis, quam prope Mars videri et observari expedite potest; in secundo erat in quadrato Mars; in tertio plane in opposito ejus. At in omnibus tribus locis Sole versante, σ in eodem eccentrici sui loco consistens, unam et eandem inclinationem limitis (1° 50' circiter) in boream, et in opposito loco tantundem in austrum prodebat. Sic capite XII. Marte motu eccentrico in nodis versante apparuit, quocunque loco sui orbis Sol constitisset (seu proximus Marti seu ab eo remotus) nullam unquam visam esse Martis latitudinem. Et infra parte quinta pluribus probabitur, constantem esse declinationem cuique loco orbitae Martis ab ecliptica.

Itaque hoc firmissime concludamus, inclinationem planorum eccentricorum ad eclipticam (cur enim non in genere concludam, quod ut uni soli planetae insit, causam nullam habet? quamvis idem et in Venere et Mercurio ex observationibus demonstratum habeam) plane nihil variari. Et qui Ptolemaeum sequitur, is hinc discat, planum epicycli parallelon esse ad planum eclipticae perpetuo. Nam id in limitibus centro versante jam demonstratum est: in nodis vero versante centro, epicyclum plane in eclipticam omnibus partibus competere supra cap. XII. probatum est.

Jam quis mihi fontem porriget lacrimarum, quibus ex merito suo deplorem miserabilem A p i a n i industriam, qui in suo O pere Caesareo⁴) Ptolemaei fidem secutus tot bonas horas impendit, tot ingeniosissimas meditationes perdidit, ut spiris et corollis et helicibus et volutis et universo illo intricatissimorum flexuum labyrintho figmenta hominum exprimeret, quae natura rerum pro suis plane non agnoscit? Sed ostendit nobis vir ille, se divinis ingenii perspicacissimi dotibus facile naturae parem esse potuisse: de cetero animum oblectavit suum praestigiis hisce (in quibus naturam ipsam provocaverat) fortissime superatis et in schemata conjectis, palmamque inde famae perennis est adeptus, quicquid operibus ipsis fortuna ista detrimenti attalerit. De automatopoeoram vero usrorsgruq quid dicemus, qui sexcentas, imo milleducentas fabricant rotulas, ut de latitudinibus (hoc est de figmentis humanis) in operibus suis expressis triumphare pretiumque eorum intendere possent?

Caput XV.

Reductio locorum visorum in noctium extremis ad apparentis motus Solis lineam.

Hac peracta inquisitione et demonstratis locis nodorum, inclinatione planorum ejusque constantia (quae erant ad futuram reductionem nocessaria), jam definiemus, quae loca orbitae suae planeta possederit; oum ei Sol ipse e diametro opponeretur. Omitti potnerunt annus 1580 et 1597 in argumentando, quod testimonium nullum idoneum perhibeant deficiente observationum certitudine.

I. Posito tamen, quod anno 1580 d. 12. Nov. h. 10. 50' J visus sit in 8° 37' II, et 5 dierum motus fuerit 1° 55': cum itaque Sol haeserit tempore dicto in 0° 45' 36" x, et motus ejus ad dies 5 sit 5° 5', summa utriusque motus fiet 7° 0'. Distat vero () a 3 7° 51' 24". E quibus 7° integri conficientur diebus 5 seu horis 120. In eadem igitur proportione residuum 51' 24" conficietur horis 14. 41'. Itaque articulus oppositionis fuit die 18. Nov. h. 1. 31' **). Locus in 6° 28' II in ecliptica. Abest autem hic a 16¹/₃° \bigotimes 20°. Cupio scire, quanto fiat longior arcus orbitae a nodo usque ad arcum latitudinis per 6° 28' II continuatus. Igitur ex Philippi Landsbergii Triangulorum doctrina 45) (quem virum honoris et gratitudinis cansa nomino, qui optimas et aptissimas secures ad substructiones astronomicas in .copia et e propinquo et vili temporis pretio mihi suppeditavit; quae citra illum e longinquo-et cum ineptis manubriis magno cum operarum impedimento petendae fuissent) tangens lateris 20° multiplicatus in secantem anguli 1° 50' inclinationis, abjectis 5 ultimis, excrescit tantum $18^{4}/_{2}$ particulis, quibus circiter 35" respondent. Mars igitur, stans e regione 6° 28' II, promotior est in sua orbita per 35". Ponendus itaque in 6° 28' 35" II. correctioncula sane non necessaria. Latitudo 1º 40' bor.

II. Anno 1582 d. 28. Dec. hora noctis sequentis 11. 30' visus est \eth in 16° 47' \textcircledightarrow , cum esset \textcircledightarrow locus verus 17° 13' 45" \Im . Transierat igitur articulus oppositionis. Fuit autem motus Solis diurnus 61' 18", Martis 24'; summa 85' 18". Et distabant hoc momento sidera per 26' 45". Ut igitur 1° 25' 18" ad 24 horas, sic 26' 45" ad horas 7. 32'. Quae subducta ab horis 11. 30' relinquant articulum verae oppositionis die 28. Dec. hora 3. 58' post meridiem. Locus 16° 54' 32" \textcircledightarrow in ecliptica et per reductionem (quae 50" impetrat) in 16° 55'/₂' \textcircledightarrow . Latitudo 4° 6' borea ex fide tabulae Braheanae oppositionum. Nam inter observationes differentes invenio latitudines: nocte post d. 26. Dec. 4° 6' vel 4° 2': nocte vero post 29. Dec. 4° 8' vel 4° 6'/₂'.

III. Anno 1585 d. 31. Jan. h. 12. 0', visus fuit J in 21° 18' 11" Q. (a) in 22° 21' 31" Transierat itaque oppositio vera. Distantia 1° 3' 20" Fuit motus Solis diurnus 61' 16", Martis 24' 15", summa 85' 31". Ut autem 1° 25' 31" ad horas 24, sic 1° 3' 20" ad horas 17. 46', quibus de motu Martis respondent 18' proxime. Itaque tempus 30. Jan. h. 19. 14'. Locus Martis in ecliptica 21° 36' 10" Q. Pro reductione minimum aliquid subtrahitur, quia Mars jam est ultra limitem. Itaque extensio arcus orbitae a nodo sequente vergit in antecedentia. Verum quia tantum 4 aut 5° abest Mars a nodo, plane insensibilis efficitur subtractio. Latitudo ex fide tabulae Tychonicae 4° 32' 10" bor. Nam observatio die 31. Jan. h. 12. dedit 4° 31'; Residuum Tychonici addidere ob parallaxin diurnam.

IV. Anno 1587 nocte quae sequebatur quartum Martii hora 1. 16' post mediam noctem inventus est locus Martis ex corde Q et spica m 26° 26' 17" m, cum lat. visa 3° 38' 16" bor. Quia vero Mars attollebatur 37 1/, ° supra horizontem, parallaxis diurna consideranda venit, adimitque longitudini parum aliquid, ut hoc nomine planeta sit in 26° 26' 19 cum latitudine paulo majore. Nam quia Sol pene duplo ejus distat a Terra, quod Mars ab ea distat, pene itaque duplo major erit Martis parallaxis quam Solis, et posita Solis 3', Martis fiet 5' circiter. Oriente autem 9° A distat nonagesimus a mertice 55°, e quorum regione sub titulo 5' in parallactica nostra exhibetur latitudinis parallaxis 4' (Comp. annot. 39 et 48.) Itaque latitudo ex centro Terrae visa fuisset 3º 42' 22" borea. Id infra parte V. serviet nobis ad parallaxes Martis accuratius examinandas, abi et de justissima inclinatione et de certissima hujus loci distantia Martis a Terra constiterit. Verus Solis locus in 23° 59' 11" . Sequebatur igitar oppositio vera. Distabant sidera per 2° 26' 49". Diurnus () 59' 35", d 24': summa 1° 23' 35". Ut haec ad 24 horas, sic 2° 26' 49" ad d. 1 h. 18. 7'. quibus de motu Martis competant 42' 7" Itaque tempus verae oppositionis 6. Martii h. 7. 23'. Locus of 25° 43' 53'' m in ecliptica. Subtrahenda vero sunt 55" pro reductione ad orbitam. Fuit igitur in orbita 25° 43' m. Latitudo decrescebat. Erat igitur paulo minor quam 3º 38' b. vel 3º 42' per parallaxin correcta.

V. Anno 1589, d. 15. Aprilis hora noctis sequentis 12. 5' inventus est planeta in 3° 58' 20" m cum latitudine 1° 4' 20" bor. decrescente. Fuit altitudo Martis 22¹/s⁰, ubi refractio ex fixis nulla, ex Solis tabella 3¹/₂. Parallaxis vero duplo circiter major solari, nempe in horizonte 6'. Oriebatur vero 24° x. Ergo nonagesimi a vertice distantia est 64°, exhibens latitudinis parallaxin diurnam 5' 24", quae an tanta fuerit, infra ex accurata latitudinum consideratione apparebit. Nam latitudo tunc prodiret borealis liberata parallaxi diurna (si nullam sit passa refractionem) 1º 9' 45" bor. Et quia altitudo nonagesimi 26°, ideo longitudinis in horizonte parallaxis est 2' 38". Distat vero Mars a nonagesimo 40°, a 4 m in 24 mp numerando, qui sub titulis 2' 38" exhibent justam longitudinis 1' 42", quibus Mars in consequentia projectior est, quam si ex centro Terrae fuisset inspectus, idque posito, quod nullam sit refractionem passus. At mihi probabilins est, easdem cum Sole (majores nempe quam sunt fixarum) refractiones anbisse, eo quod oppositio 🕥 et o cieat aërem, fixae vero observentur aëre defaecatissimo. Sed tamen sit sane refractio nulla et reponatur nobis d in 3° 57' m. () erat eo momento in 5° 36' 20" . Jam ergo superaverat Mars Solis oppositum 1º 39' 20." Diurnus Martis, ut patet ex collatione diei 13. Apr., est 22' 8": Solis 58' 10", summa 1° 20' 18". Ut haec ad horas 24, sic 1º 39' 20" ad diem 1. h. 5. 42'. Ergo articulus oppo-

sitionis fuit die 14. Apr. h. 6. 23' p. m. Locus in 4° 24' 30" \mathfrak{m} vel paulo ulterius, si refractio contigerit aut parallaxis diurna prius nimium magna sit assumta. Pro reductione ad orbitam insensibile quippiam esset adimendum, cum vix 12° absit a nodo, circiter 24", quae sunt nullius momenti: essetque σ in 4° 24' \mathfrak{m} cum latitudine 3' auctiore quam prius. Etenim latitudo inde ab octavo Martii decrescebat, neque maxima fuit in oppositione.

VI. Anno 1591 nocte quae sequitar 6. Janii h. 12. 20' inventas est \Im in 27° 14' 42" \checkmark cum latitudine 3° 55⁴/₂ mer.: ubi de refractione quidem (quae magna fuit, cum Mars in meridie non majorem 6° altitudinem haberet) cautum ex tabula refractionis fixarum : parallaxeos vero nulla facta mentio. At \Im jam distat a Terra dimidio distantiae Solaris. Quare parallaxis horizontis ultra 6' (posito quod Solis sit 3'), quam tamen omitto, partim quia refractio ex tabula Solis (quae ut dixi probabilior est) suppeditatur per 4'/₂' auctior quam ea, quam hic Braheus usurpavit, quibus parallaxis pene tollitur: partim quia Mars in meridiano et prope punctum brumale nullam habuit longitudinis parallaxin. De latitudine tamen videndum infra parte quinta, annon aliquot scrupulis minor fuerit, parallaxi scilicet planetam nimis in austrum projiciente.

Fuit Sol in 24° 58' 10" II. Differentia inter sidera 2° 16' 10". Diurnus \odot 57' 8", σ (dierum 4) 1° 12' 24", quia 10. Junii h. 11. 50' fuit in 26° 2' 18" \prec , unius ergo diei, 18' 12". Summa diurnorum 1° 15' 20". Respondent dies 1 h. 19. 24', quae ad diem 6 h. 12. 20' additae (quia sequitur oppositio) monstrant d. 8. h. 7. 43'. Locus σ in 26° 41' 48" \checkmark : cui adduntur 52" pro reductione ad orbitam, ut sit quamproxime 26° 43' \checkmark . Latitudo 6' major quam 6. Junii, quia ex observationum fide hic crescit latitudo usque ad diem ab oppositione quadragesimam, et inter 6. quidem et 10. Junii 13' fere. Igitur neglecta parallaxi et salva quantitate refractionis esset 4° 1¹/₂.

VII. Anno 1593 d. 24. Augusti h. 10. 30' inventus est locus Martis eclipticus in $12^{\circ} 38' \not + \text{cum}$ latitudine $6^{\circ} 5' 30''$ austr. Altitudo tanta, at variationes horizontales se mutuo conficerent. Sequente 29. Augusti h. 10. 20' visus σ in 11° 15' 24" $\not + \text{cum}$ lat. 5° 52' 15" aust. Decrescebat enim vehementer. Nam ante 10. Aug. maxima fuit, 14 diebus ante oppositionem. Motus 5 dierum 1° 22' 36" et diei unius 16' 31". Locus \odot d. 24. Aug. h. $10^{1}/_{2}$, 11° 2' 31" mp. Distant sidera 1° 35' 30". Diurnus \odot 58' 20": summa diurnorum 1° 14' 51", quibus requiritur ad oppositionem dies 1. h. 6. 57', ut fuerit illa 26. Aug. mane hora 5. 27'. Locus σ 12° 16' $\not +$. Latitudo 6° 2' merid. proxime, siquidem vere variationes horizontales se mutuo confecerint.

VIII. Anno 1595 d. 30. Oct. h. 8. 20' inventus est planeta in 17° 47' 15" \bigotimes non longe a nonagesimo, ut de parallaxi securi simus, quamvis et de illa cautum sit. Latitudo 0° 5' 10" bor. Locus (\bigcirc 16° 50' 30" M. Distant sidera 56' 45". Diurnus \bigcirc 1°0' 35": 3 22' 54", ut collatione circumstantium observationum apparet; summa diurnorum 1° 23' 29". Quibus si dividatur distantia siderum, prodeunt 40' 47" diei vel horae 16. 19'. Itaque vera oppositio d. 31. Oct. h. 0. 39' post meridiem. Locus 3 17° 31' 40" \bigotimes , qui reductione non indiget ad orbitam, cum pene in ipso nodo versetur. Latitudo circiter 0° 8' bor. Sed analogia praecedentium et sequentium dierum docet lat. 5' bor. circiter, IX. Anno 1597 die 10. Dec. h. 8. 30' sit sane (uti supra p. 218) locus 3° $45^{\circ}/_{2}$ \odot : locus \odot in 29° 4' 53" \checkmark . Distantia siderum 4° 46' 27". Diurnus \odot 61' 20", 3° 23' 40" (nam anno 1580 in II fuit diurnus 23', anno 1582 in 17° \odot fuit 24'), summa ergo diurnorum 1° 25' 0". Quibus elementis ostenditur, sequi tempus verae oppositionis post dies 3. h. 7. 14', d. 14. Dec. mane h. 3. 44' Locus 3° 2° 27'/₅' \odot $^{\circ}$). Reductio ad orbitam (ridicula sane hoc loco, cum observatio ipsa aliquot scrupulorum incertitudinem habeat) requirit 52" circiter addenda; itaque correctus locus 2° 28' \odot . Latitudo ex fide tabulae 3° 33' bor.

Ejusdem noctis (quae sequitar diem 10. Dec.) h. $12^{4}/_{6}$, invenit Fabricius in Ostfrisia locum σ in 3° $40^{4}/_{6}' \odot$ cum latitudine 3° 23' b. Qua observatione in longum quidem res pene eodem recidit. Nam horarum 3. 40' motus est $3^{4}/_{2}'$: ut ita et per Braheanam observationem h. $12^{4}/_{6} \sigma$ in 3° $42' \odot$ esse potnerit, 2' ultra Fabricianum locum.

X. Anno 1600 d. 13/23. Jan. h. 11. 40' tempore Uraniburgo accommodato visus est planeta in 10° 38' 46" Q. Locus $\bigcirc 3^{\circ}26' 30" \ddagger$ Distant sidera 7° 12' 16". Diurnus o ad dies aliquot sequentes est 1° 1' 3": $\bigcirc 23'$ 44", summa 1° 24' 47". Sequebatur ergo oppositio post dies 5 horas 2. 22", nempe 19/29. Jan. mane hora 2. 2' antelucana. \bigcirc in 8° 38' Q. Reductione non est opus, cum sit proxime limitem. Latitudo ex fide tabulae 4° 30' 50" bor.

XI. Anno 1602 d. 18/28. Febr. vesperi h. 10. 30' instrumentis Tychonicis (adjuvante studioso Matthia Seiffardo a Tychone relicto) accepi distantiam Martis a media caudae Ursae majoris 52° 22'. Cumque distantia inter Cor Q et Procyonem fuerit 37° 22' 20", quae debuit esse 37° 19' 50", hinc intellectum, abundare sextantem 2'/₂'. Correcta ergo Martis a cauda Ursae distantia 52° 19'/₂'. Et cum latitudo fixae sit 56° 22', ergo subtractione facta relinquitur 4° 2'/₂', siquidem Mars praecise fuisset in eadém longitudine cum fixa. Sed quia interfuit differentia 3'/₆° (ut ex sequentibus observationibus apparet), correctiuncula est adhibenda.

Sit enim AB in parallelo eclipticae proximo 4°43'30", B Mars, Fig. 68. C firm at BC 52° 10' 20''. Divise scentte BC por scentter

Fig. 68. C fixa, et BC 52° 19' 30". Diviso secante BC per secantem AB ($a^{regrues}$ ratio est reddita in libro de stella Serpentarii. Vol. II. p. 653) prodit secans CA 52° 14', qui ablatus a 56° 22' (latitudine fixae) relinquit 4° 8' boream visam latitudinem Martis. *) Eodem tempore invenimus inter σ et cor Q 19° 23' (correcte 19° 20'/₂'), inter σ et claram alae \mathfrak{P} 21° 20' (correcte 21° 17'/₂'). Ex quibus duabus distantiis (mediantibus latitudinibus stellarum et Martis) inventa est longitudo σ in 13° 19' 6" \mathfrak{P} consentientibus vicibus.

Aliter h. 12. 40' inventa est altitudo meridiana Martis duobus quadrantibus 50° 19', qualium cauda Q 56° 45'. Ex declinationibus igitur et ascensionibus rectis fixarum et distantiis nostris exstruitur locus σ 13° 19' 30'' m. Lat. 4° 7' 55'' idque modo Tychonico, cui modum alium adjunxi, consensus ostendendi causa, et ut appareret, quamvis demonstratio non exquisitissima sit, posse tamen alicubi compendia vel calculi vel captus nostri adhiberi: nam minus operae est in priori modo quam verborum. Oriebatur 5° m Pragae. Itaque distabat nonagesimus a vertice circiter 32 1/2°. Et quia Mars amplius dimidio ejus, quo Sol abest a Terra, abfuit, parallaxis igitur circiter 5' e regione: $32^{1/2}$ ° (in parallactica nostra)

exhibet latitudinis parallaxin 2' 41": ut fuerit latitudo sept. quanta ex centro Terrae spectaretur 4° 10³/₃'. Et quia altitudo nonagesimi 57⁴/₂°, longitudinis igitur in horizonte parallaxis 4' 13". Sed quia Mars a nonagesimo abest 38°, respondet hujus loci parallaxis longitudinis 2' 36", qua liberatus Mars reponeretur in 13° 18' m proxime. Locus Solis eo momento fuit 10° 16' 42" \not . Distantia siderum 3° 1' 18"⁴⁸). Diurnus \odot 1° 0' 4": \Im 24' 5". Nam in 21° \Im anno 1585 erat 24' 18", in 26° m anno 1587 erat 24', summa diurnorum 1° 24' 9". Sequebatur igitur vera oppositio post dies 2 horas 3. 43', scilicet d. $\frac{21. \text{ Febr.}}{3. \text{ Mart.}}$ h. 2. 13' antelucana, \Im in 12° 27' \Im , latitudine paulo minore quam prius: decrescebat enim latitudo: igitur circiter 4° 10' aut 4° 7'/₃', neglecta parallaxi.

Sed quia observationes a morte Tychonis rariores a nobis sunt habitae, nec continuatis diebus, lubet securitatis causa consulere etiam illas observationes, quas David Fabricius in Frisia Orientali, sedulus astronomiae cultor, mecum communicavit.

Die 16. Febr. stilo veteri h. 5. matutina cepit distantias planetae a canda Leonis ob latitudinem, a collo Leonis et vice versa a clara australis alae m ob comprobandam gemino argumento ejus longitudinem. Possim uti argumentatione Tychonis, qua uti solebat tomo primo Progymnasmatum, quando declinatio planetae (ut hic) defuit. Sed quia modus ille diffunditur in operationes, malo brevitatis causa agere ut prius in meis observationibus. Nam nihil subest periculi.

Primum ala \mathfrak{P} ad tempus nostrum est in 4° 36' 30" \simeq cum borea, latitudine 2° 50'. Ab ea invenit Fabricius distare \mathfrak{F} in antecedentia 20° 18'. Ergo reponitur Mars proxime in 14° 18' 30" \mathfrak{P} , quod praesciendum est crassa Minerva: paulo post corrigetur haec longitudo. Est vero cauda \mathfrak{Q} in 16° 4' \mathfrak{P} cum boreali Iat. 12° 18', et \mathfrak{F} a cauda inventus est distare per 8° 17'. Quaeritur distantia ejus paralleli a cauda, cum sit longitudinis differentia 1° 45'. Diviso secante 8° 17' per secantem 1° 45', prodit secans 8° 6' arcus quaesiti. *) Qui a 12° 18' boreali fixae latitudine ablatus relinquit Martis borealem latitudinem 4° 12'. Hanc jam pro certa assumo et cum fixarum latitudinibus comparo secundum leges triangulares: invenio longitudinem Martis ex ala Virginis 14° 19' \mathfrak{P} : ex collo \mathfrak{Q} 14° 23' 36" \mathfrak{P} : quorum medium est 14° 21' 18" \mathfrak{P} : ut sextans distantias justo auctiores prodiderit, unde et latitudo prodiret 4° 14' borealis.

Nocte quae sequitor 23. Febr. h. 12. observavit Martem a 5 fixis, a canda Leonis et Arcturo pro latitudine, a spica Virginis sequente pro longitudine vice una, a collo et corde Leonis antecedentibus vice versa. Mechanice seu conjectando praevideo \mathcal{S} incidere in $11^{1}/_{4}^{\circ}$ m, et inventus est distare a cauda \mathcal{Q} 9° 24'. Hinc latitudo ejus prodit 4° 6'. Et jam per hanc et fixarum latitudines additis distantiis, a Regulo 17° 26', collo \mathcal{Q} 17° 51', Spica 37° 28', Arcturo 44° 15': prodit locus Martis, ex Regulo 11° 21' 23" m, ex collo \mathcal{Q} 11° 20' 52", ex Spica 11° 17' 40" m. Rursum (ut vides) distantise peccant excessu. Nam a corde et collo truditur Mars minus in consequentia, a Spica et Arcturo in antecedentia, et magis ab Arcturo, quia is magnam habet latitudinem septentrionalem. Medium (neglecto Arcturo) 11° 19' 20" m est quam proxime verum. Et latitudo quoque auctior, scilicet 4° 7' 40" bor. Igitur a 15. Febr. h. 17. ad 23. Febr. h. 12. per dies 7. h. 19. motus est Mars 3° 0'. Horis 187: 180'. Una hora propemodum 1'. Si etiam hoc perpendas, die 16. Febr. parallaxin (si qua est) ademisse, die 23. Febr. nonnihil addidisse longitudini.

Et quia sequitar ultima observatio tempus oppositionis a me inventam diebus 2 h. 21. 47', adde igitar motum huic tempori respondentem 1° 7', prodibit locus 12° 26' m. Consensus itaque pulcherrimus est nec major esse potest, quod soli simus uterque nec iis instructi commoditatibus, quibus Tycho Brahe. Latitudo etiam die 16. erat 4° 12', die 23. 4° 7²/₉'. Consentaneum igitar, ut intermedio die 21. esset 4° 9' et per parallaxeos detractionem paulo major. Scilicet et ego ponebam paulo minorem quam 4° 10²/₉' hoc est 4° 10'.

XII. Denique anno 1604, cum jam scriptam Ephemerida exhibuissem, in qua planeta nocte inter 29. et 30. Mart. 8. et 9. Aprilis reponeretur in lineam ex Arcturo in Spicam, id guidem manifeste apparuit. Nam vespere 8. Aprilis propendebat in ortum, 9. Aprilis jam in occasum. Tunc sextante Hofmanni inveni (coadjutore meo Joanne Schulero) inter Arcturum et Spicam 33° 4', debuit esse 33° 1 1/2'. Ergo abundabant 2 1/2': statim inter Arcturum et 3 29° 43 1/2': ergo correcte 29° 41'. Cumque sit Arcturi latitudo 31° 21/2' borealis, relinquebatur latitudini σ 2° 21 $\frac{1}{2}$. Tunc inter cor Ω et σ 54° 8 $\frac{1}{2}$, et statim inter cor Q et Spicam tantundem : debuit autem 54° 2'. Abundassent itaque $6\frac{1}{2}$; prius tantum $2\frac{1}{2}$. Haec ambiguitas 4' unde esset, discerni non potuit impedimentis objectis, ut pergere observando non potuerimus. Sit autem (ut prius) excessus $2\frac{1}{2}$, quare distantia inter δ et cor 2 54° 6' et peccatum circa Spicam, forte quod pro Spica Mars resumtus, erant enim propinqui invicem. Prodit hinc latitudo Martis 2º 21 1/2, longitudo 18° 25' 🕰. Hora habetur ex eo, quod culminabat dorsum Leonis, cujus ascensio recta 163° 13' tempore observationis. Solis vero in meridie locus 18° 56' 24" Y, cujus ascensio recta 17° 27' 55". Hinc differentia ascensionum 145° 45', quae resolvitur in horas 9. 43'. Oriebatur 22'/, • m. ergo nonagesimi distantia a vertice 39°, distantia Martis et Terrae paulo major dimidia Solis et Terrae. Parallaxis erge 51/2' circiter, et latitudinis 3' 28". Ergo libera latitudo 2º 25', quae an recte liberata sit, infra considerabimus. Et quia altitudo nonagesimi 51° et Martis a nonagesimo distantia 56°, ergo longitudinis parallaxis 3' 32". Esset itaque Mars in 18° 21 1/2' = Locus Solis ad momentum nostrum 19° 20' 8" γ. Distantia siderum 58⁴/₂[']. Solis diurnus 58' 38", Martis 22' 36". Nam anno 1587 in m est 24', anno 1589 in 4° m est 22' 8"; summa diurnorum 1° 21' 14". Quibus elementis conficitur, oppositionem veram praecessisse horis 17. 20', nempe die 29. Mart. h. 4. 23' matutina. Locus of 18° 37' 50" ==. 8. Apr. Pro reductione ad orbitam subtrahe 39" circiter, ut sit locus Martis in 18° 37' 10" = ... Latitudo exigno major quam 2° 25', sed neglecta parallaxi est 2º 22' borealis.

Atque haec 12 loca eccentrica Martis (exuta scilicet, quosd longitadinem, omni inaequalitate secunda) omni possibili diligentia constituta sunt. Si quid me in tam spinoso labore fugit etiamnum (fugerat autem aliquando per 18 mensium spatium, me falso fundamento, falso inquam, applicatae observationi inniti et in vanum tam din laborare), id equidem nulla ratione possum animadvertere.

240

Exponam itaque loca omnia in sequenti tabella, additis longitudinibus mediis ex Tychone (potui vel ex Prutenicis vel ex peculiari computo, qualem Ptolemaeus praemisit suis demonstrationibus: sed nihil opus. Nam si correctione indigebit motus medins, postmodum eam inveniet. In praesentia nobis serviet nihilominus ad interstitia temporum metienda sine errore sensibili).

	S4	ylo vi	stori		Longitudo	Latitudo	Long. media				
	Anni	D .	Mens.	h. /	0 / // 8.	0 /	8. 0 / //				
L	1580	18	Nov.	1. 31	6. 28. 35 ∏	1. 40 b.	1. 25. 49. 31				
II.	1582	28	Dec.	3. 58	16. 55. 30 🜚	.4. 6 b.	3. 9. 24. 55				
ш	1585	30	Jan.	19 . 14	21. 36. 10 Q	4. 32¼ b.	4. 20. 8. 19				
IV.	1587	6	Mart.	7. 23	25. 43. O mp	3. 41 b.	6. 0. 47. 40				
₹.	1589	14	Apr.	6. 23	4.23.0 m	1. 12ª/4 b.	7. 14. 18. 26				
VI.	15 91	8	Jun.	7. 43	26. 43. 0 🖈	4. 0 m.	9. 5. 49. 55				
VII.	1593	25	Ang.	17. 27	12. 16. 0)(6. 2 m.	11. 9. 55. 4				
VIII.	1595	81	Opt.	0. 39´	17. 31. 40 S	0.8b.	1. 7. 14. 9				
IX.	1597	13	Dec.	15. 44	2.28.0 Đ	3. 33 ь.	2. 23. 11. 56				
X.	1600	18	Jan.	14. 2	8.38.0 Q	4. 30% b.	4. 4. 35. 50				
XL.	1602	20	Feb.	14. 18	12.27.011p	4. 10 b.	5. 14. 59. 37				
XIL.	1604	28	Mart.	16. 23	18. 37. 10 🖂	2. 26 b.	6. 27. 0. 12				

Caput XVI.

Methodus inquirendi hypothesin pro inaequalitate prima salvanda.

P tolemaeus libro IX. Operis Magni capite 4. primam inaequalitatem planetarum aggressurus praemittit superficiariam quandam declarationem suppositionum, quibus velit uti, cujus summa haec est: cernimus planetam in oppositis semicirculis inaequaliter immorari. Ut a 2²/_s ^o ⊕ per Q in 26³/_a X minus est semicirculo; a 26° X per ∞ in ⊕ plus semicirculo, et tamen inventus est planeta diutius commorari in illo quam in hoc, cum ex aequalitatis lege contrarium oportuerit, nam a media longitudine 2^a 23° 18' in 9^a 5° 44' sunt 6^a 12° 26' plus semicirculo, hoc est plus quam dimidium temporis periodici planetae: ita a 12° 16' \neq per Q in 12° 27' 🗰 est propemodum semicirculus plus 11'; subtracta vero longitukepteri opera. III.

dine media illius loci (11° 9° 55') ab hujus longitudine (5° 14° 59'), deprehenditur interesse 6° 5° 5', plus nempe dimidio; per 5° 5' planeta igitur a 70° per \iff in \mathcal{H} tanto brevius commoratur. Quodsi loca vicina singulatim expendas et arcus interjectos cum temporibus seu arcubus mediae longitudinis compares, deprehendes planetam in certo et uno loco sub zodiaco tardissimum, in opposito velocissimum, in interjectis (pro ratione propinquitatis ad alterutrum) paulatim cursum intendere vel remittere.

Haec argunt primo motum planetae (quamvis inaequalis appareat) circulationibus tamen administrari, quarum haec est successoria moderatio atque in idem reditio. Nam si planeta rectis lineis angulos conformantibus incederet (ut si latera quinquanguli perambularet, in quibus cogitationibus olim fui), pro ratione linearum aliquando subita fieret commutatio motus celerioris in tardiorem evidenti discrimine, idque non uno sed pluribus zodiaci locis contingeret pro laterum multitudine. Cum autem tanta inaequalitas, post remotam inaequalitatem quae ex Sole pendet, etiamnum restet in motu planetae: ergo simplicis circulì positione (oujus in centro visus constituatur) vel administrari vel demonstrari non poterit. Potest autem per compositionem plurium circulorum vel quasi (ut Ptolemaeus libro III. praemisit), idque duobus modis quam simplicissime: vel eccentrici circuli vel concentrepicycli usurpatione.

Elegit itaque Ptolemaens eccentricum pro prima inaequalitate, distinctionis et captus juvandi causa, eo quod epicyclus secundae inaequalitati esset necessarius. Deinde hoc generale dictum ruminans negat nudum eccentricum planetis sufficere. Nam postquam crebro expenderit, quid fieri consentaneum sit, circumeuntibus unâ epicyclo pro secunda et eccentrico pro prima inaequalitate salvanda, collatis observationibus apparnisse, quod epicycli centrum multo propius accedat ad Terram in apogaeo, longius fugiat in perigaeo, quam simplex eccentricus ille, qui primam inaequalitatem praestat, patiatur: hinc continuo sermone delabitur ad mensuram hujus appropinquationis refertque, se deprehendisse, quod centrum ejus eccentrici, qui epicycli centrum fert, sit praecise medio loco inter centrum visus seu Terrae et centrum aequalitatis seu eccentrici inaequalitatem primam salvantis. Nec ulla demonstratione allata hoc tamen principio nititur in tribus superioribus.

Copernicus (ut saepe alias) hic quoque magistrum religiose sequitur accommodata sua forma ad hanc quoque mensuram. (Vide de hoc marginem ad caput XIX.)

Id vero non immerito mirati sunt astronomi et (ex ore Maestlini) ego quoque, ut vides in Mysterio Cosmographico cap. XXII fol. 79 (Vol. I, 183). Ceterum quod illo loco citati libelli putavi, Ptolemaeum caeca conjectura usum ad hoc statuendum, id secus habet. Potuit enim demonstratione optima ex observatione idonea id evincere, ut infra demonstrato; tantum hoc in artifice desideres, quod observationes illas cum demonstratione ad posteros non transmisit.

Cum itaque tunc quidem existimarem, hoc µeya λιαν αίτημα esse, viderem etiam a Copernico non obscure addubitari, dum de mutata Martis eccentricitate disputat, numeris ejus ab hac dimidiatione discrepantibus: cogitavi de methodo, quae me ad proportionem utriusque eccentricitatis

Pars Secunda. Caput XVI.

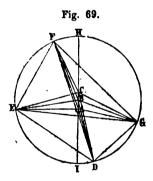
(quia, ut dizi, non erat certum, duplam esse) cognoscendam perduceret. Cumque Ptolemaeus tribus àncorry cos observationibus et hac praeconcepta opinione de proportione eccentricitatum evinceret et apogaei locum et correctionem longitudinis mediae, denique et quantitatem eccentricitatum: vidi ego, si problema hoc enervaretur (surrepto axiomate de proportione eccentricitatum), vagum futurum et casus non unius, itaque quarta insuper observatione àncorry ov vicissim firmandum. Hac igitur arte instructus anno 1600 ad Tychonem veni laetusque didici, ab ipso quoque investigatam non assumtam hanc proportionem, ut numeri ejus indicant. Facit enim eccentrici (Copernicani, cujus definitio est initio cap. V. hujus libri) centrum distare a visu 13680 particulis, quarum aliis 3780 punctum aequalitatis ab hoe vicissim distet, quod esset in forma Ptolemaica, ac si distantiam centrorum visus et eccentrici faceret 9900, reliquam inter centrum eccentrici et punctum aequalitatis 7560.

Potai quidem et ipse uti dimidiatione pro certa, idque meliori jure quam Ptolemaeus, quia in Mysterio meo cap. XXII. causam ejus dimidiationis physicam attuleram; verum ob id ipsum ad Tychonem veneram, ut ex ejus observationibus in mea placita libello dicto promulgata certius inquirere possem: quod quidem feci sine praejudicio et etiamnum facio. Quodsi supervixero, quoad astronomia suam paritatem et perfectionem nanciscatur, ut in causa (quam in illo libello ad ejus tribunal devolvi) pronunciari possit, polliceor lectori, me libellum illum retractaturum et confirmatis, quae vera deprehendi, reliqua quae secus habent fideliter detecturum. (Comp. Vol. I, p. 102.)

Sed ad rem. Centro B (Fig. 69) scribatar eccentricus FG: in eo per B diameter apsidum HI, per aliquot annos quasi immutabilis. Hoc si periculum erroris haberet, non deessent nobis media hoc quoque cavendi. In hac infra B sit A visus, supra B sit C centrum illud, apud quod anguli spatiis temporum proportionantur, cum circa A (ut paulo supra dictum) non propor-Sint autem F, G, D, E observationes quatuor per ambitum tionentur. circuli dispositae, sic quidem ut planeta, exutus inaequalitate secunda, sic appareat, quasi visus in A fuisset. Nam apud Ptolemaeum quidem A vere locus est visus seu centrum Terrae, apud Tychonem vero et Copernicum visus est in linea FA, GA, DA, EA, et A Sol est. Supra vero dietum est, utraque ratione planetam inaequalitate secunda perinde exui. Connectantur autem puncta omnia cum omnibus : et sit AF in 25° 43' 11, AG in 26° 43' x, AD in 12° 16' H, AE in 17° 312/4' H. (Comp. tab. p. 241.) Hinc dantur quatuor anguli circa A, nempe FAG 91° 0', GAD 75° 33', DAE 65° 15¹/₁, EAF 128° 11 1/3'. Qui sunt corrigendi nonnihil ob praecessionem aequinoctiorum. Sub fixis enim planeta non tam longe promotus est in E ultima observatione, quam indicatur per hos numeros. Quare FAE panlo est major, reliqui tanto minores. Eodem modo ex subtractione longitudinum habentur et anguli circa C.

Propositio. Oportet jam angulos FAH et FCH tantos assumere, ut iis positis et puncta F, G, D, E stent in uno circulo, et B centrum illius circuli sit inter C, A puncta in linea CA.

Solutio non est geometrica, siquidem algebra geometrica non est: sed fit per duplicem falsam positionem.⁵⁰) Nam et algebra hic nos deserit, quia nomina artis rectis communicata per rectas non derivantur in angulos,


16 *

nisi fortasse quis universam doctrinam sinuum in unam hanc operationem conjicere velit.

At vide quid facere jussi simus. Nam si angulum FAH assumserimus, cum linea AF habeat locum certum sub fixis, alterum quoque crus AH assumetur habere locum certum sub fixis. Esto vero AH linea apogaei, Copernicana et Tychonica notione linea aphelii. Ergo jubemur assumere et ponere, quod erat quaerendum. Nam ut hoc aphelium addisceremus, hanc viam coepimus ingredi. Eodem modo cum AH (id est CH) locum sub fixis per hanc nostram positionem fuerit adepta transeatque per C centrum aequantis circuli (ideoque etiam per initium, a quo partes ejus incipiunt numerari, utpote ab apside, quae concipiatur supra H), et jubeamur assumere angulum FCH, ergo et CF linea nanciscetur locum in aequantis circumferentia. Atqui haec est longitudo media, quae loco viso planetae in F respondet, et hujus longitudinis mediae notitiam quaerebamus. Assumimus igitur praeter apogaeum et aliud quoque ex iis quae quaerebantur.

Verum enimvero non est insolens neque geometris neque arithmeticis neque dialecticis, uti argumenti forma ad impossibile ducentis, ut, si videant, ex assumtis sequi aliquid absurdi, ea tanquam falsa rejiciant, idque tantisper, quoad amputatis hoc pacto excessibus et defectibus ipsa veritas (quae penes mathematicas disciplinas in medio utrorumque latitat) detegatur. Id autem fit in praesentia in hunc modum.

Capiat linea CA nomen et sit ita data. Quia igitur assumitur FCH

et FAH et per consequens etiam reliquarum linearum inclinationes ad HCA, et AC est commune latus quatuer triangulorum (OFA, CGA, CDA, CEA) quorum sunt dati anguli: igitur in mensura ipsius AC dabuntur quatuor lineas AF, AG, AD, AE. Et quia in novis quatuor triangulis FAG, GAD, DAE, EAF latera joun sunt data cum angulis ad A inter bina latera, non igitur ignorabuntur singuli ex singulis triangulis anguli ad bases, nompe AFG, ADG, ADE, AFE. Sed AFG et AFE sunt partes anguli GFE. In quadrangulo vero DEFG (siguidem est insoriptum circulo, quod est hie inter

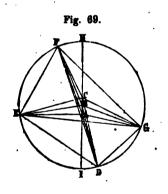
bypotheses) convenit, binos oppositos angulos (ut GFE, GDE) simul asquare summas duorum rectorum. Junctis igitur quos jam invenimus quatuor angulis, si summa differat ab hao duorum rectorum mensura, pronunciabimus assumta falsa esse: sive in alterutro assumtorum falsitas insit sive in utroque.

Retento igitur altero FCH etiamnum, mutato vero reliquo FAH, redibitur ad caput et donno inquiretur summa quatuor angulorum. Quae si longius a duobus rectis recesserit quam summa prior, argumento est mutationem ipsius FAH perperam esse susceptam. Contrarium igitur illi faciendum. Ut si forsitan addidisses, jam minuas: vel contra. Sin autem propius ad justam mensuram accessisti, in via te esse intelliges. Et tunc comparatione facta ejus defectus, qui fuit in principio, ad eum qui jam restat, eadem in proportione perges augendo vel minuendo angulum FAH.

At non ideo certum est, secundam istam correctionem tuis quatuor

angulis justam statim mensuram conciliaturam. Non enim circularium augmentorum eadem est proportio quae rectorum. Repetendus tibi labor erit iterum atque iterum, dum tua summa quaesitorum angulorum sit 180° vel proxime tanta: minima enim tuto negliges.

Ubi hoc fueris consecutus, ut anguli F, D (ideoque et residui G, E) vere stent in eadem circumferentia, jam porro et alterum eorum quae sequi convenit explorandum est, utrum videlicet B centrum illius circuli stet inter C, A in sadem linea. Nam de hoc supra dictum, quod Ptolemaeus id omnino assumserit, et rationes physicae requirant, ut ibi sit tardissimus motus, ubi sidus ab A Sole distat longissime, ut in II: quod non aliter fieri potest, quam si A, B, C sint in eadem linea. Ut hoo inquiratur, jungantur (GAD, DAE) noti, ut angulus GAE noscatur, et in GAE ex hoc angulo et lateribus (GA, AE) quaeratur latus GE. In triangulo igitur GFE angulus GFE stat ad circumferentiam, ergo GBE angulus ad centrum duplus est ejus. Prius autem GFE investigatus fuit per partes GFA, AFE. Rursum igitur in triangulo GBE acquicruro datur GBE angulus et GE latus. Quare non ignorabuntur anguli ad basin et GB radius circuli in proportione AC eccentricitatis initio assumtae. Et quia jam habetur BG et BGE, prius vero habebatur AG et AGE. subtracto igitur AGE a BGE (vel vicissim, si usu veniat) relinquetur AGB. In triangulo igitur AGB dantur AG et BG et interjectus angulus AGB. (Quaeratur angulus BAG.) Qui si discrepat a CAG primum assumto, argumento est, ipsum B, contra quam fieri par erat, cadere extra lineam CA. Rursum igitur falsa pronunciabimus assumta FCH et FAH. At quia retento FCH, mutato vero FAH, in aliud etiam absurdum impingitur, scilicet quod D, E, F, G loca non quadrant in circulum (uti jam supra hoc usu venerat, antequam ipsum FAH tantae quantitatis ultimo constitueramus): patet igitur, etiam FCH esse mutandum. Mutetur igitur, hoc est alia assumatur quantitas ipsius FCH pro lubitu, et retenta ea, per quatuor, quinque vel sex vices varietur FAH tantisper, donec rursum quatuor anguli ad F, D juncti faciant duos rectos: et tunc per triangula GAE, GFE, GBE, BGA contendatur ad secundam inquisitionem ipsius BAG, comparatione ejus facta cum CAG jam ultimo constituto. Ubi rursum videbis, an longius a vero recesseris an vero ad propinquitatem veneris, et seçundum qualitates excessuum vel defectuum proportionesque additionum subinde ad caput redibis, donec BAG tantum deprehenderis quantum CAG vel HAG in illa vice assumseras. Eo ubi perveneris, tunc denique in triangulo BGA dabis ipsi BG nomen rotundum (contum millium) et in eadem proportione (mediantibus angulis) quaeres et BA eccentricitatem eccentrici et CA eccentricitatem aequantie: unde subtracta BA relinquit CB. Tunc et de apogaei loco et de correctione motus medii (quae in ultima operatione supposueras) pronunciabis quod bene habeant, quantum quidem hanc formam hypotheseos attinet.


Si te hujus laboriosae methodi pertaesum fuerit, jure mei te misereat, qui eam ad minimum septuagies ivi cum plurima temporis jactura, et mirari desines hunc quintum jam annum abire ex quo Martem aggressus sum, quamvis annus 1603. pene totus Opticis inquisitionibus fuit traductus.

Existent acuti geometrae Vietae similes, qui magnum aliquid esse putabunt, demonstrare hujus methodi aregran. Id enim et Ptolemaeo et

De Motibus Stellae Martis

Copernico et Regiomontano objectum in hoc negotio a Vieta.⁵) Eant igitur et schema geometrice ipsi solvant et erunt mihi magni Apollines. Mihi sufficit ad quatuor vel quinque conclusiones ex uno argumento (in quo quatuor observationes et duae hypotheses insunt) exstruendas, id est ad viam e labyrintho remeandam, pro lumine geometrico filum *arsgrov* (quo tamen ad exitum dirigaris) ostendisse. Si difficilis captu est methodus, multo difficilior investigatu res est sine methodo.

Sequitar nunc exemplum praeceptionis hujus in propositis 4 observationibus. Reducuntur autem omnes loci causa praecessionis ad primam observationem: ubi longitudo visa in 25°43' p, longitudo media 6°0°47'40", motas annuus fixarum est 51", ut Braheus demonstravit in Progymasmatis. Ergo ab anno 1587. d. 6. Martii in annum 1591. d. 8. Junii sunt 4 anni, 3 menses, quibus respondet de motu praecessionis 3' 37". Ergo ponendus nobis est visus locus anno 1591. in 26° 39' 23" \neq , longitudo media 9° 5° 40' 18". Sic ab anno 1587. d. 6. Martii in annum 1593. d. 25. Augusti sunt anni 6, menses 5¹/₂, quibus competit motus praecessionis 5' 30". Ponendus itaque Mars in 12° 10' 30" \neq , longitudo media 11° 9° 49' 34". Denique ab anno 1587. d. 6. Martii in ann. 1595. d. 31. Oct. sunt anni 8, menses 8 fere, quibus respondet motas 7' 18". Itaque reponendus Mars in 17° 24' 22" \forall , et longitudo media 1° 7° 6' 51". *²) Ponemus autem primo apogacum vel aphelium anno 1587. in 28° 44' 0" Q. Secundo ponemus longitudines medias per 3' 16" augendas, ut sint longitudines mediae 6° 0° 50' 56", 9° 5° 43' 34", 11° 9° 52' 50", 1° 7° 10' 7".

Et quia CH est	28°44′0″&
et CF ·	0.50.56 🕰
Erit FCH	32. 6. 56.
Sic quia CH est	28. 44. 0 Q
et CD	9. 49. 34.)(
Erit HCD Compl.	11. 5. 34.
Sic quia CH est	28. 44. 0 Q
et CG	5. 40. 18 Z
Erit HCG	126. 56. 18.
Compl.	53. 3. 42.
Sio quia CH est	28. 44. 0 Q
et CE	7, 6. 51 8
Erit HCE	111. 37. 9.
Compl.	68. 22. 51.

Pro angulis aequationum.

CF 0° 50′ 56″	CG 5º 43' 34" ठ	CD 9° 52' 50")	CE 7º 10' 7" 8
AF 25. 43. 0 mp	AG 26. 39. 23 🖈	AD 12. 10. 30)	AE 17. 24. 22 8
CFA 5. 7.56.	CGA 9. 4.11.	CDA 2. 17. 40.	CEA 10. 14. 15.

Pro lineis ex A.

Capiat AC nomen 10000. Ut igitur anguli acquationum ad AC sic anguli C ad lineas ex A. Dividendi sunt igitur sinus angulorum C in 10000 multiplicati per sinus angulorum acquationum.

Sin. FCH 53163 Sin. CFA 8945	AF Sin. GCH Sin. CGA		G Sin. DCH Sin. CDA		D Sin. ECH Sin. CEA		AE
44725	5	78820 50	0 1	16016 4	•	88865	5
84380		11080		3224		41010	
80505	9	11035 70	0	3203 8	0	35546	2
3875		45 3		208		5464	
3578	4			200 5	i i	5383	30
297			-	82	!	131	7
268	8′.						
29	3						

										ins a									
AF AG	25º 26.	43 39	. 23	" "	AG AD	26º 12.	39′ 10.	23'' 30	′∡` ¥	AD AE	12º 17.	10' 24.	30'' 22	′¥ 8	AE AF	17º 25.	24' 43.	22" 0	່ວ ໜຸ
FAG Comple-					GAD	75.	31.	7.		DAE	65.	13.	52.		EAF	128.	18.	38.	
ad somi- circulum	89.	3	. 37.			104	. 28	8. 59).	1	14.	46.	8.			51.	41.	22.	

Pro angulis ad F, D.

Anguli AFG, AFE, ADG, ADE, sunt propemodum dimidia de complementis angulorum A ad semicirculum: minores tamen qui ad F, eo qued lineae AG 50703, AE 52307 breviores sunt inventae quam AF 59433: et majores qui ad D, eo quod dictae lineae AG et AE sunt longiores quam AD 48052. Ac cum illi quatuor circa A aequent quatuor rectos, igitur et eorum complementa ad semicirculum junctim aequabunt quatuor rectos: quia quatuor semicirculi sunt octo recti. Dimidium ergo de summa complementorum sunt duo recti, quantos optamus fieri GFE, GDE junctim. Quantum ergo, qui ad F, deficiunt a dimidiis suorum complementorum, tantundem oportet eos, qui ad D, excedere sua complementa. At tangentes differentiae angulorum ad bases in hoc genere triangulorum habentur, si laterum differentias dividas per summas laterum et quotientem in tangentes dimidiorum complementorum multiplices. Ergo si binae differentiae angulorum ad F aequent summam ad D, angulus F cum angulo D aequabit duos rectos.

FAG	GAD	DAE	EAF
Dimidia 44° 31' 48"	52º 14' 27''	57° 23' 4''	25° 50′ 41″
Tangentes 98373	129093	156271	48438
AF 59433	AG 50703	AD 48052	AE 52307
AG 50703	AD 48052	AE 52307	AF 59433
Differentias 8730	2651	4255	, 7126
Summas 110136	98755	100359	111740
Diferent. F 4º 27' 30''	D·1º 59' 4" 3. 47. 10	D 3º 47' 10"	F 1º 47' 59" 4. 27. 30
Summa duorum	ad D 5. 46. 14.	Summa duorum d	F 6. 15. 29. 4

Ergo hine apparet, F et D summam esse minorem duobus rectis, quia minuenda differentia superat addendam.

Quantitas defectus est 29' 15". Scio vero ex multiplici reiteratione kujus laboris, additione 3' 20" ad aphelium summas coire. Id probabo.

Manebunt igitur anguli acquationum cum suis sinubus, ut et tangentes complementorum dimidiatorum angulorum ad A.

ad 23. Febr. h. 12. per dies 7. h. 19. motus est Mars 3° 0'. Horis 187: 180'. Una hora propemodum 1'. Si etiam hoc perpendas, die 16. Febr. parallaxin (si qua est) ademisse, die 23. Febr. nonnihil addidisse longitudini.

Et quia sequitur ultima observatio tempus oppositionis a me inventum diebus 2 h. 21. 47', adde igitur motum huic tempori respondentem 1° 7', prodibit locus 12° 26' m. Consensus itaque pulcherrimus est nec major esse potest, quod soli simus uterque nec iis instructi commoditatibus, quibus Tycho Brahe. Latitudo etiam die 16. erat 4° 12', die 23. 4° 7²/₅'. Consentaneum igitur, ut intermedio die 21. esset 4° 9' et per parallaxeos detractionem paulo major. Scilicet et ego ponebam paulo minorem quam 4° 10²/₅' hoc est 4° 10'.

XII. Denique anno 1604, cum jam scriptam Ephemerida exhibuissem, in qua planeta nocte inter 29. et 30. Mart. 8. et 9. Aprilis reponeretur in lineam ex Arcturo in Spicam, id quidem manifeste apparuit. Nam vespere 8. Aprilis propendebat in ortum, 9. Aprilis jam in occasum. Tunc sextante Hofmanni inveni (coadjutore meo Joanne Schulero) inter Arcturum et Spicam 33° 4', debuit esse 33° 11/2'. Ergo abundabant 21/2': statim inter Arcturum et 8 29° 431/2': ergo correcte 29° 41'. Cumque sit Arcturi latitudo 31° 21/2' borealis, relinquebatur latitudini σ 2° 21 1/, 4. Tunc inter cor Ω et σ 54° 81/24, et statim inter cor Q et Spicam tantundem : debuit autem 54° 2'. Abundassent itaque $6\frac{1}{2}$; prius tantum $2\frac{1}{2}$. Haec ambiguitas 4' unde esset, discerni non potuit impedimentis objectis, ut pergere observando non potuerimus. Sit autem (ut prius) excessus $2^{i}/_{2}$, quare distantia inter σ et cor 2 54° 6' et peccatum circa Spicam, forte quod pro Spica Mars resumtus, erant enim propinqui invicem. Prodit hinc latitudo Martis 2º 21 1/2', longitudo 18º 25' 🕰. Hora habetur ex eo, quod culminabat dorsum Leonis, cujus ascensio recta 163º 13' tempore observationis. Solis vero in meridie locus 18° 56' 24" Y, cujus ascensio recta 17° 27' 55". Hinc differentia ascensionum 145° 45', quae resolvitur in horas 9. 43'. Oriebatur 221/2° m. ergo nonagesimi distantia a vertice 39°, distantia Martis et Terrae paulo major dimidia Solis et Terrae. Parallaxis ergo 51/2' circiter, et latitudinis 3' 28". Ergo libera latitudo 2º 25', quae an recte liberata sit, infra considerabimus. Et quia altitudo nonagesimi 51º et Martis a nonagesimo distantia 56°, ergo longitudinis parallaxis 3' 32". Esset itaque Mars in 18° 21 $\frac{1}{2}$ \cong . Locus Solis ad momentum nostrum 19° 20' 8" γ . Distantia siderum 58⁴/₂[']. Solis diurnus 58['] 38^{''}, Martis 22['] 36^{''}. Nam anno 1587 in m est 24', anno 1589 in 4° m est 22' 8"; summa diurnorum 1° 21' 14". Quibus elementis conficitur, oppositionem veram praecessisse 29. Mart. h. 4. 23' matutina. Locus & 18° 37' 50" ~. Pro reductione ad orbitam subtrahe 39" circiter, ut sit locus Martis in 18º 37' 10" 🕰. Latitudo exiguo major quam 2º 25', sed neglecta parallaxi est 2º 22' borealis.

Atque haec 12 loca eccentrica Martis (exuta scilicet, quosd longitadinem, omni inaequalitate secunda) omni possibili diligentia constituta sunt. Si quid me in tam spinoso labore fugit etiamnum (fugerat autem aliquando per 18 mensium spatium, me falso fundamento, falso inquam, applicatae observationi inniti et in vanum tam diu laborare), id equidem nulla ratione possum animadvertere.

Exponent itaque loca omnia in sequenti tabella, additis longitadinibus mediis ex Tychone (potui vel ex Prutenicis vel ex peculiari computo, qualem Ptolemaeus praemisit suis demonstrationibus: sed nihil opus. Nam si correctione indigebit motus medius, postmodum eam inveniet. In praesentia nobis serviet nihilominus ad interstitia temporum metienda sine errore sensibili).

	54	ylo m	steri		Longitudo	Latitudo	Long. media				
	Anni	D.	Mens.	h. /	• / // B.	0 /	g. 0 / //				
L	1580	18	Nov.	1. 81	6. 28. 35 II	1. 40 b.	1. 25. 49. 31				
П.	1582	28	Dec.	3. 58	16. 55. 30 😨	4.6b.	3. 9. 24. 55				
П.	1585	30	Jan.	19. 14	21. 36. 10 Q	4. 32¼ b.	4. 20. 8. 19				
IV.	1587	6	Mart.	7. 23	25. 43. O TP	3. 41 b.	6. 0. 47. 40				
v .	1589	14	Apr.	6. 23	4.23.0 M	1. 12ª/4 b.	7. 14. 18. 26				
VI.	1591	8	Jun.	7. 43	26. 43. 0 🖈	4.0m.	9. 5. 43. 55				
VII.	1593	25	Ang.	17. 27	12. 16. 0)(6. 2 m.	11. 9. 55. 4				
VIII.	1595	81	Opt.	0. 39	17. 31. 40 g	0. 8 Ъ.	1. 7. 14. 9				
DX.	1597	13	Dec.	15. 44	2, 28. 0 👳	3. 33 ь.	2. 23. 11. 56				
X.	1600	18	Jan.	14. 2	8.38.0Q	4. 30 ⁵ /е Ъ.	4. 4. 35. 50				
XI.	1602	20	Feb.	14. 18	12. 27. 0 mp	4. 10 b.	5. 14. 59. 37				
XII.	1604	28	Mart.	16. 23	18. 37. 10 🖂	2. 26 b.	6. 27. 0. 12				

Caput XVI.

Methodus inquirendi hypothesin pro inaequalitate prima salvanda.

P to lemaeus libro IX. Operis Magni capite 4. primam inaequalitatem planetarum aggressurus praemittit superficiariam quandam declarationem suppositionum, quibus velit uti, cujus summa haec est: cernimus planetam in oppositis semicirculis inaequaliter immorari. Ut a $2^{2}/_{s}^{\circ} \oplus \text{per } Q$ in $26^{3}/_{s} \swarrow minus$ est semicirculo; a $26^{\circ} \swarrow^{2}$ per ∞ in \oplus plus semicirculo, et tamen inventus est planeta diutius commorari in illo quam in hoc, cum ex aequalitatis lege contrarium oportuerit, nam a media longitudine 2° 23° 18' in 9° 5° 44' sunt 6° 12° 26' plus semicirculo, hoc est plus quam dimidium temporis periodici planetae: ita a 12° 16' \oiint per Q in 12° 27' m est propemodam semicirculus plus 11'; subtracta vero longitukepieri opera, III. dine media illius loci (11° 9° 55') ab hujus longitudine (5° 14° 59'), deprehenditur interesse 6° 5° 5', plus nempe dimidio; per 5° 5' planeta igitur a 110 per \implies in \neq tanto brevius commoratur. Quodsi loca vicina singulatim expendas et arcus interjectos cum temporibus seu arcubus mediae longitudinis compares, deprehendes planetam in certo et uno loco sub zodiaco tardissimum, in opposito velocissimum, in interjectis (pro ratione propinquitatis ad alterutrum) paulatim cursum intendere vel remittere.

Haec argunt primo motum planetae (quamvis inaequalis appareat) circulationibus tamen administrari, quarum haec est successoria moderatio atque in idem reditio. Nam si planeta rectis lineis angulos conformantibus incederet (ut si latera quinquanguli perambularet, in quibus cogitationibus olim fui), pro ratione linearum aliquando subita fieret commutatio motus celerioris in tardiorem evidenti discrimine, idque non uno sed pluribus zodiaci locis contingeret pro laterum multitudine. Cum autem tanta inaequalitas, post remotam inaequalitatem quae ex Sole pendet, etiamnum restet in motu planetae: ergo simplicis circulì positione (cujus in centro visus constituatur) vel administrari vel demonstrari non poterit. Potest autem per compositionem plurium circulorum vel quasi (ut Ptolemaeus libro III. praemisit), idque duobus modis quam simplicissime: vel eccentrici circuli vel concentrepicycli usurpatione.

Elegit itaque Ptolemaens eccentricum pro prima inaequalitate, distinctionis et captus juvandi cansa, eo quod epicyclus secundae inaequalitati esset necessarius. Deinde hoc generale dictum ruminans negat nudum eccentricum planetis sufficere. Nam postquam crebro expenderit, quid fieri consentaneum sit, circumeuntibus unâ epicyclo pro secunda et eccentrico pro prima inaequalitate salvanda, collatis observationibus apparnisse, quod epicycli centrum multo propius accedat ad Terram in apogaeo, longius fugiat in perigaeo, quam simplex eccentricus ille, qui primam inaequalitatem praestat, patiatur: hinc continuo sermone delabitur ad mensuram hujus appropinquationis refertque, se deprehendisse, quod centrum ejus eccentrici, qui epicycli centrum fert, sit praecise medio loco inter centrum visus seu Terrae et centrum aequalitatis seu eccentrici inaequalitatem primam salvantis. Nec ulla demonstratione allata hoc tamen principio nititur in tribus superioribus.

Copernicus (ut saepe alias) hic quoque magistrum religiose sequitur accommodata sua forma ad hanc quoque mensuram. (Vide de hoc marginem ad caput XIX.)

Id vero non immerito mirati sunt astronomi et (ex ore Maestlini) ego quoque, ut vides in Mysterio Cosmographico cap. XXII fol. 79 (Vol. I, 183). Ceterum quod illo loco citati libelli putavi, Ptolemaeum caeca conjectura usum ad hoc statuendum, id secus habet. Potuit enim demonstratione optima ex observatione idonea id evincere, ut infra demonstrato; tantum hoc in artifice desideres, quod observationes illas cum demonstratione ad posteros non transmisit.

Cum itaque tunc quidem existimarem, hoc µeya λιαν αίτημα esse, viderem etiam a Copernico non obscure addubitari, dum de mutata Martis eccentricitate disputat, numeris ejus ab hac dimidiatione discrepantibus: cogitavi de methodo, quae me ad proportionem utriusque eccentricitatis

Pars Secunda. Caput XVI.

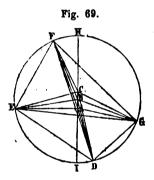
(quia, ut dixi, non erat certum, duplam esse) cognoscendam perduceret. Cumque Ptolemaeus tribus *àngorquos* observationibus et hac praeconcepta opinione de proportione eccentricitatum evinceret et apogaei locum et correctionem longitudinis mediae, denique et quantitatem eccentricitatum: vidi ego, si problema hoc enervaretur (surrepto axiomate de proportione eccentricitatum), vagum futurum et casus non unius, itaque quarta insuper observatione *àngorque* vicissim firmandum. Hac igitur arte instructus anno 1600 ad Tychonem veni laetusque didici, ab ipso quoque investigatam non assumtam hanc proportionem, ut numeri ejus indicant. Facit enim eccentrici (Copernicani, cujus definitio est initio cap. V. hujus libri) centrum distare a visu 13680 particulis, quarum aliis 3780 punctum aequalitatis ab hoe vicissim distet, quod esset in forma Ptolemaica, ac si distantiam centrorum visus et eccentrici faceret 9900, reliquam inter centrum eccentrici et punctum aequalitatis 7560.

Potoi quidem et ipse uti dimidiatione pro certa, idque meliori jure quam Ptolemaeus, quia in Mysterio meo cap. XXII. causam ejus dimidiationis physicam attuleram; verum ob id ipsum ad Tychonem veneram, ut ex ejus observationibus in mea placita libello dicto promulgata certius inquirere possem: quod quidem feci sine praejudicio et etiamnum facio. Quodsi supervixero, quoad astronomia suam paritatem et perfectionem nanciscatur, ut in causa (quam in illo libello ad ejus tribunal devolvi) pronunciari possit, polliceor lectori, me libellum illum retractaturum et confirmatis, quae vera deprehendi, reliqua quae secus habent fideliter detecturum. (Comp. Vel. I, p. 102.)

Sed ad rem. Centro B (Fig. 69) scribatar eccentricus FG: in eo per B diameter apsidum HI, per aliquot annos quasi immutabilis. Hoc si periculum erroris haberet, non deessent nobis media hoc quoque cavendi. In hac infra B sit A visus, supra B sit C centrum illud, apud quod anguli spatiis temporum proportionantur, cum circa A (ut paulo supra dictum) non propor-Sint autem F, G, D, E observationes quatuor per ambitum tionentur. circuli dispositae, sic quidem ut planeta, exutus inaequalitate secunda, sic appareat, quasi visus in A fuisset. Nam apud Ptolemaeum quidem A vere locus est visus seu centrum Terrae, apud Tychonem vero et Copernicum visus est in linea FA, GA, DA, EA, et A Sol est. Supra vero dietum est, utraque ratione planetam inaequalitate secunda perinde exui. Connectantur autem puncta omnia cum omnibus : et sit AF in 25° 43' m, AG in 26° 43' x, AD in 12° 16' H, AE in 17° 312/3' V. (Comp. tab. p. 241.) Hinc dantur quatnor anguli circa A, nempe FAG 91° 0', GAD 75° 33', DAE 65° 15³/₄, EAF 128° 11 1/4. Qui sunt corrigendi nonnihil ob praecessionem aequinoctiorum. Sub fixis enim planeta non tam longe promotus est in E ultima observatione, quam indicatur per hos numeros. Quare FAE paulo est major, reliqui tanto minores. Eodem modo ex subtractione longitudinum habentur et anguli circa C.

Propositio. Oportet jam angulos FAH et FCH tantos assumere, ut ils positis et puncta F, G, D, E stent in uno circulo, et B centrum illins circuli sit inter C, A puncta in linea CA.

Solutio non est geometrica, siquidem algebra geometrica non est: sed fit per duplicem falsam positionem.⁵⁰) Nam et algebra hic nos deserit, quia nomina artis rectis communicata per rectas non derivantur in angulos,


16 *

nisi fortasse quis universam doctrinam sinuum in unam hanc operationem conjicere velit.

At vide quid facere jussi simus. Nam si angulum FAH assumserimas, cum linea AF habeat locum certum sub fixis, alterum quoque crus AH assumetur habere locum certum sub fixis. Esto vero AH linea apogaei, Copernicana et Tychonica notione linea aphelii. Ergo jubemur assumere et ponere, quod erat quaerendum. Nam ut hoc aphelium addisceremus, hanc viam coepimus ingredi. Eodem modo cum AH (id est CH) locum sub fixis per hanc nostram positionem fuerit adepta transeatque per C centrum aequantis circuli (ideoque etiam per initium, a quo partes ejus incipiunt numerari, utpote ab apside, quae concipiatur supra H), et jubeanur assumere angulum FCH, ergo et CF linea nanciscetur locum in aequantis circumferentia. Atqui haec est longitudo media, quae loco viso planetae in F respondet, et hujus longitudinis mediae notitiam quaerebamus. Assuminus igitur praeter apogaeum et aliud quoque ex iis quae quaerebantur.

Verum enimvero non est insolens neque geometris neque arithmeticis neque dialecticis, uti argumenti forma ad impossibile ducentis, ut, si videant, ex assumtis sequi aliquid absurdi, ea tanquam falsa rejiciant, idque tantisper, quoad amputatis hoc pacto excessibus et defectibus ipsa veritas (quae penes mathematicas disciplinas in medio utrorumque latitat) detegatur. Id autem fit in praesentia in hunc modum.

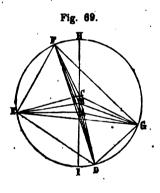
Capiat linea CA nomen et sit ita data. Quia igitur assumitur FCH

et FAH et per consequene etiam reliquarum linearum inclinationes ad HCA, et AC est commune latus quatuor triangulorum (CFA, CGA, CDA, CEA) quorum sunt dati anguli: igitur in mensura ipsius AC dabuntur quatuor lineae AF, AG, AD, AE. Et quia in novie quatuor triangulis FAG, GAD, DAE, EAF latera jam sunt data cum angulis ad A inter bina latera, non igitur ignorabuntur singuli ex singulis triangulis anguli ad bases, nompe AFG, ADG, ADE, AFE. Sed AFG et AFE sunt partes anguli GFE. In quadrangulo voro DEFG (siquidem est insoriptum circulo, quod est hie inter

bypotheses) convenit, binos oppositos angulos (ut GFE, GDE) simul acquare summan duorum rectorum. Junctis igitur quos jam invenimus quatuor angulis, si summa differat ab hao duorum rectorum mensura, pronunciabimus assumta falsa esse: sive in alterutro assumtorum falsitas insit sive in utroque.

Retento igitur altero FCH etiamnum, mutato vero reliquo FAH, redibitur ad caput et donno inquiretur summa quatuor angulorum. Quae si longius a duobus rectis recesserit quam summa prior, argumento est mutationem ipsius FAH perperam esse susceptam. Contrarium igitur illi faciendum. Ut si forsitan addidisses, jam minuas: vel contra. Sin autem propius ad justam mensuram accessisti, in via te esse intelliges. Et tunc comparatione facta ejus defectus, qui fuit in principio, ad eum qui jam restat, eadem in proportione perges augendo vel minuendo angulum FAH.

At non ideo certum est, secundam istam correctionem tuis quatuor


angulis justam statim mensuram conciliaturam. Non enim circularium augmentorum eadem est proportio quae rectorum. Repetendus tibi labor erit iterum atque iterum, dum tua summa quaesitorum angulorum sit 180° vel proxime tanta: minima enim tuto negliges.

Ubi hoc fueris consecutus, ut anguli F, D (ideoque et residui G, E) vere stent in eadem circumferentia, jam porro et alterum eorum quae sequi convenit explorandum est, utrum videlicet B centrum illius circuli stet inter C, A in sadem linea. Nam de hoc supra dictum, quod Ptolemaeus id omnino assumserit, et rationes physicae requirant, ut ibi sit tardissimus motus, ubi sidus ab A Sole distat longissime, ut in H: quod non aliter fieri potest, quam si A, B, C sint in eadem linea. Ut hoo inquiratur, jungantur (GAD, DAE) noti, ut angulus GAE noscatur, et in GAE ex hoc angulo et lateribus (GA, AE) quaeratur latus GE. In triangulo igitur GFE angulus GFE stat ad circumferentiam, ergo GBE angulus ad centrum duplus est erus. Prius autem GFE investigatus fuit per partes GFA, AFE. Rursum igitur in triangulo GBE aequicruro datur GBE angulus et GE latus. Quare non ignorabuntur anguli ad basin et GB radius circuli in proportione AC eccentricitatis initio assumtae. Et quia jam habetur BG et BGE, prius vero habebatur AG et AGE. subtracto igitur AGE a BGE (vel vicissim, si usu veniat) relinquetur AGB. In triangulo igitur AGB dantur AG et BG et interjectus angulus AGB. (Quaeratur angulus BAG.) Qui si discrepat a CAG primum assumto, argumento est, ipsum B, contra quam fieri par erat, cadere extra lineam CA. Rursum igitur falsa promunciabimus assumta FCH et FAH. At quia retento FCH, mutato vero FAH, in aliud etiam absurdum impingitur, scilicet quod D, E, F, G loca non quadrant in circulum (uti jam supra hoc usu venerat, antequam ipsum FAH 'tantae quantitatis ultimo constitueramus): patet igitur, etiam FCH esse mutandum. Mutetur igitur, hoc est alia assumatur quantitas ipsius FCH pro lubitu, et retenta ea, per quatuor, quinque vel sex vices varietur FAH tantisper, donec rursum quatuor anguli ad F, D juncti faciant duos rectos: et tunc per triangula GAE, GFE, GBE, BGA contendatur ad secundam inquisitionem ipsius BAG, comparatione ejus facta cum CAG jam ultimo constituto. Ubi rursum videbis, an longius a vero recesseris an vero ad propinquitatem veneris, et seçundum qualitates excessuum vel defectuum proportionesque additionum subinde ad caput redibis, donec BAG tantum deprehenderis quantum CAG vel HAG in illa vice assumeeras. Eo ubi perveneris, tunc denique in triangulo BGA dabis ipsi BG nomen rotundum (centum millium) et in eadem proportione (mediantibus angulis) quaeres et BA eccentricitatem eccentrici et CA eccentricitatem aequantis; unde subtracta BA relinquit CB. Tunc et de apogaei loco et de correctione motus medii (quae in ultima operatione supposueras) pronunciabis quod bene habeant, quantum guidem hanc formam hypotheseos attinet.

Si te hujus laboriosae methodi pertaesum fuerit, jure mei te misereat, qui eam ad minimum septuagies ivi cum plurima temporis jactura, et mirari desines hunc quintum jam annum abire ex quo Martem aggressus sum, quamvis annus 1603. pene totus Opticis inquisitionibus fuit traductus.

Existent acuti geometrae Vietae similes, qui magnum aliquid esse putabunt, demonstrare hujus methodi *dregmar*. Id enim et Ptolemaeo et Copernico et Regiomontano objectum in hoc negotio a Vieta.⁵) Eant igitur et schema geometrice ipsi solvant et erunt mihi magni Apollines. Mihi sufficit ad quatuor vel quinque conclusiones ex uno argumento (in quo quatuor observationes et duae hypotheses insunt) exstruendas, id est ad viam e labyrintho remeandam, pro lumine geometrico filum aregres (quo tamen ad exitum dirigaris) ostendisse. Si difficilis capta est methodus, multo difficilior investigatu res est sine methodo.

Sequitur nunc exemplum praeceptionis hujus in propositis 4 observationibus. Reducuntur autem omnes loci causa praecessionis ad primam observationem : ubi longitudo visa in 25°43' m, longitudo media 6 0°47'40", motus annuus fixarum est 51", ut Braheus demonstravit in Progymnasmatis. Ergo ab anno 1587. d. 6. Martii in annum 1591. d. 8. Junii sunt 4 anni, 3 menses, quibus respondet de motu praecessionis 3' 37". Ergo ponendus nobis est visus locus anno 1591. in 26º 39' 23" , longitudo media 9º 5º 40' 18". Sic ab anno 1587. d. 6. Martii in annum 1593. d. 25. Augusti sunt anni 6, menses 5¹/₂, quibus competit motus praecessionis 5' 30". Ponendus itaque Mars in 12º 10' 30" H, longitudo media 11º 9º 49' 34". Denique ab anno 1587. d. 6. Martii in ann. 1595. d. 31. Oct. sunt anni 8, menses 8 fere, quibus respondet motas 7' 18". Itaque reponendus Mars in 17° 24' 22" 8, et longitudo media 1' 7° 6' 51". ") Ponemus autem primo apogaeum vel aphelium anno 1587. in 28º 44' 0" Q. Secundo ponemus longitudines medias per 3' 16" augendas, ut sint longitudines mediae 6º 0º 50' 56", 9º 5º 43' 34", 11º 9º 52' 50". 1º 7º 10' 7".

Et quia CH est	28°44′0″♀
et CF	0.50.56 ∽
Erit FCH	32. 6. 56.
Sic quia CH est	28. 44. 0 g
et CD	9. 49. 34.)(
Erit HCD	168. 54. 26.
Compl.	11. 5. 34.
Sic gritia CH est	28: 44. 0 Q
et CG	5. 40. 18 Z
Erit HCG	126. 56. 18.
Compl.	53. 3. 42.
Sio quia CH est	28. 44. 0 Q
et CE	7, 6. 51 8
Erit HCE Compl.	111. 37. 9. 68. 22. 51.

Pro angulis aequationum.

CF 0° 50' 56"	CG 5º 43' 34" Z	CD 9° 52' 50" X	CE 7º 10' 7" 8
	AG 26. 39. 23 🖈	AD 12. 10. 30 X	AE 17. 24. 22 8
CFA 5. 7.56.	CGA 9. 4.11.	CDA 2. 17. 40.	CEA 10. 14. 15.

Pro lineis ex A.

Capiat AC nomen 10000. Ut igitur anguli acquationum ad AC sic anguli C ad lineas ex A. Dividendi sunt igitur sinus angulorum C in 10000 multiplicati per sinus angulorum acquationum.

Sin. FCH 53163 Sin. CFA 8945		n. GCH n. CGA	79928 15764	ÅG	Sin. DCH Sin. CDA.	19240 4004	AD	Sin. ECH Sin. CEA	92966 17773	AE
44725	5		78820	50		16016	4		88865	5
84380			11080			3224		-	41010	
80505	9		11035	70		3203	80		35546	2
3875			45	3		208			5464	
3578	4					20 0	5	_	5383	30
- 297						8	2	-	131	7
268	8									·••)
29	3									

						•					lis a									
AF AG	259	• 4 3	3′	0'	' mp	∆ G	26 °	39'	23''	*	AD	12º	10'	30'	' X	AE	Í 17º	24'	2 2''	່ຮ່
AG	26.	39).	23	X	AD	12.	10.	30	Ж	AE	17.	24.	22	Я	AF	25.	43.	0	πp
FAG Comple-	90.	56). :	23.	•	GAD	75.	31,	7.		DAE	65,	13.	52.		EAF	128.	18.	38.	
id somi- tirenhem	89.	. 3	3. 1	37.			104	. 28	3. 59		1	14.	46.	8.			51.	41.	22.	

Pro angulis ad F, D.

F C B a d

Anguli AFG, AFE, ADG, ADE, sunt propenodum dimidia de complementis angulorum A ad semicirculum: minores tamen qui ad F, eo quod lineae AG 50703, AE 52307 breviores sunt inventae quam AF 59433: et majores qui ad D, eo quod dictae lineae AG et AE sunt longiores quam AD 48052. Ac cum illi quatuor circa A aequent quatuor rectos, igitur et eorum complementa ad semicirculum junctim aequabunt quatuor rectos: quia quatuor semicirculi sunt octo recti. Dimidium ergo de summa complementorum sunt duo recti, quantos optamus fieri GFE, GDE junctim. Quantum ergo, qui ad F, deficiunt a dimidiis suorum complementorum, tantundem oportet eos, qui ad D, excedere sua complementa. At tangentes differentiae angulorum ad bases in hoc genere triangulorum habentur, si laterum differentias dividas per summas laterum et quotientem in tangentes dimidiorum complementorum multiplices. Ergo si binae differentiae angulorum ad F aequent summam ad D, angulus F cum angulo D aequabit duos rectos.

FAG	GAD	DAE	EAF
Dimidia 44° 31′ 48″	52º 14' 27''	57º 23' 4"	25° 50′ 41″
Tangentes 98373	129093	156271	48438
AF 59433	AG 50703	AD 48052	AE 52307
AG 50703	AD 48052	AE 52307	AF 59433
Diferentias 8730	2651	4255	, 7126
Summae 110136	987 5 5	100359	111740
Diferent. F 4º 27' 30''	D·1º 59' 4" 3. 47. 10	D 3º 47' 10"	F 1º 47' 59" 4. 27. 30
Summa duorum a	d D 5. 46. 14.	Summa duorum a	d F 6. 15. 29. **)

Summa duorum ad D 5. 46. 14. Summa duorum ad F 6. 15. 29.**) Ergo hine apparet, F et D summam esse minorem duobus rectis, quia minuenda differentia superat addendam.

Quantitas defectus est 29' 15". Scio vero ex multiplici reiteratione hujus laboris, additione 3' 20" ad aphelium summas coire. Id probabo.

Manebunt igitur anguli acquationum cum suis sinubus, ut et tangentes complementorum dimidiatorum angulorum ad A.

Sed E	ICF	320	3' 36",	GCI	530 7	r' 2'',	DCI	110	2' 14",	ECI 68	3• 19'	31″
(CFA	5.	7. 56,	CGA	9. 4	i. 11,	CDA	2. 1	7. 40,	CEA 10). 14.	15.
Ergo	AF	59	9341,	A	G 507	40,	A	D 478	315,	AE	5228	l
	▲G	50	0740,	A	D 478	15,	1	LE 522	281,	AF	59341	l .
Tg. a	ngul.	44 °	31' 48"		52º 1	1' 27"		57° 2	3′ 4″	- 2	5° 50'	41″
						93				— '		-
Eline	$\mathbf{F} =$	4 °	23' 41"	; D_=	= 2º 11	l' 37";	D =	= 3° 59	9′ 10″;	$\mathbf{F} = 1$	° 45'	18"
				•				2. 11	1. 37	4	I. 23 .	41
					Su	mma a	d D =	= 6º 10	y 47";	ad $\mathbf{F} = 6$	· 8'	59""

Hic summae different non plus 1' 48". Itaque jam nimium promovimus apogaeum, atque id per 12" alia est retrahendum. Sed de tantula differentia cura est non necessaria. Componemus illam ex aequo et bono, ut in methodo nostra ulterius progredi possimus. Prius enim, cum peccaremus defectu per 29' 15", summa differentiarum ad F et D fuit 12º 1' 44". Jam ubi excessu 1' 48" peccavimus, summa haec facta est 12º 19' 46". Cum itaque 31' fuerint in summa differentiarum 18', ergo 1%, faciunt propemodum 1', ut justissima summa evadat 12° 18' 44'', cujus dimidium 6° 9' 22" est summa vel ad F vel ad D. 5)

Pro triangulis GFE, GBE.

In FAG dimidium compl. fuit 44° 31′ 48″, in FAE 25° 50′ 41″; summa 70° 22' 29". Hinc aufer summan differentiarum 6° 9' 22", restat GFE 64° 13' 7"; duplum orgo orit in GBE 128° 26' 14", cujus compl. 51° 33' 46", diunidium 25° 46' 53".

Et quia GAD = 75° 31′ 7″ et DAE = 65. 13. 52

GAE = 140° 44' 59", compl. 39° 15' 1". Ergo

Erat etiam primo GA = 50703; et AE = 52302

secundo .	50/40;	52281
Differentia .	37	21
· Ergo jam	50739	52282.

Quaeritur igitur GE en GA, AE lateribus et GAE angulo.

Angulue AGE = 19° 55' 51".

Ut sinus AGE ad AE, sic sinus GAE ad GE.

GE = 97041.

Ergo in GBE: ut GBE ad GE sic BGE ad BE; BE = 53860.

Et quia fuit AGE = 19° 55' 51"

Jam vero BGE = 25. 46. 53 Erit BGA = 5° 51′ 2″; compl. 174° 8′ 58″, dim. 87° 4′ 29″.

 $BG = 53860, AG = 50739, ergo BAG = 117^{\circ} 21' 37''.$

Ultima vice promovimus aphelium adhuc per 3'8". Ergo quia AH 28° 47'8" Q. et AG 26° 39' 23" X, fuit HAG vel CAG 117° 52' 15". •)

Ergo B parumper egreditur lineam CA versus G : quia CAG major est guam BAG scrupulis 30' 38". Hoc autem habeo ex multiplici experientia. quod per additionem dimidii scrupuli ad longitudinem mediam B inducatur in lineam CA. Simul autem, ut quadrangulum stet in circulo, promovendum est aphelium per 2'. Id lubet explorare simulque ecoentricitatem demonstrare. Our igitur addantur ad CF et socios 30", ad CH vero 2', minuetur HOF per 1' 30".

Igitur HCF 32º 2' 6", GCI 53º 8' 32", DCI 11º 0' 44", ECI 68º 18' 1". Anguli vero acquationum per 30" augentur et minuantur. Igitur

CFA 5° 8' 26", CGA	9• 4′ 32″,	CDA 2º 17' 10",	CEA 10º 13' 46"; hinc
			AE 52322; et
F 4• 18' 36", D	2• 9' 52",	D 3º 57' 24",	F 1º 42' 41''
	3. 57. 24		4. 18. 36.
Summa una	6° 7′ 16″;	Summa	altera 6° 1' 17" ")
See minutis abund	amere mune to	Numbur retractions a	nholii nor 38" ut ania

fuit in 28° 49' 8" Q, jam erit in 28° 48' 30" Q.

Ρ	r	0	b	0.

HCF 32° 2′ 44″,	GCI 53º 7' 54",	DCI 11º 1' 22", EC	CI 68º 17' 23"; hinc
AF 59219,	AG 50769,	AD 47931,	AE 52317
A G 50769,	AD 47931,	AE 52317,	AF 59219
AF + AG = 109988; AG			
$\mathbf{AF} - \mathbf{AG} = 8450 \ \mathbf{AG}$	$-\Delta D = 2838 \Delta I$	$\mathbf{E} - \mathbf{A}\mathbf{D} = 4386 \ .$	$\mathbf{AF} - \mathbf{AE} = 6902$
Quotions 7683 –	2875	4375	6188
Prius 7662 -	— . — 2927	4426	6168
Diff. 21 -	52	51	<u> </u>
98373	129093	156271	48438
Tang. augm. 21	67	80	10
Are. augm. 41"	2' 14''	21.391	19"
-	2. 39		41
	Prius 6º 7' 16"		Prius 6º 1' 17"
	Jam 6. 2. 23	Ecce asqualitatem.	Jam 6. 2. 17. •••

Rurrum itaque quadrongulo in circulum incluso quaeratur, an B sit in linea CA. Et a summa 70° 22' 29" supra constituta aufer jam inventam differentiam 6° 2' 20", remanet GFE = 64° 20' 9"; dupli compl. 51° 19' 42", dimidium BGE = 25° 39' 51". Ultimo fuit GA 50769, AE 52317; compl. GAE 39° 15' 1", dimid. 19° 37' 30"; AGE 19° 55' 54". Hinc GE = 97103.

BGE - AGE = BGA = 5° 43' 57"; dimid. compl. 87° 8' 1'/₃"; BG = 53866, GA = 50769; hine tangens $\frac{4}{3}$ (GAB - GBA) = 59114. GAB - GBA = 30° 35' 22" 87. 8. 1 BAG = 117° 43' 23" Compl. 62° 16' 37" °') Aphelium 28° 48' 30" Q AG 26. 39. 23 × CAG = 117° 50' 53". Adhue B per 7' 20" egreditur lineam CA: versus G.

Unde intelligimus, quia prius additione 30" ad motum medium et 82" ad aphelium promovimus per 23' 18", nos reliqua 7' 20" consumturos additione 9" ad motum medium et 25" ad aphelium. Tota igitur additio ad Tychonis longitudinem est 3' 55". Et aphelium ponitur in 28° 48' 55" Q. ") In tam parvo autem errore nihil incommodi accipit, qui in CAG triangulo ex angulis et lateribus cognitis inquirit BA, quasi B sit praecise in linea CA.

Sinus BGA = 9988, sinus BAG = 88520, orgo BA est 11283, justium BG 100000. Ut voro 53866 (BG) ad 100000, sic 100000 ad AC; orgo AC = 18564 et BC = 7281, qualium BG 100000.¹⁰

Sed ut omnie error encludatur, agamus proportonialiter. Prime fuit

BG 53860,	AG 50739,	BGA 5º 51' 2", BAG	7 62° 38′ 23″ ;
Jam: 53866	50769	5. 43. 57	62. 16. 37
Differentia 6	30	7. 5	21.46 Amplius tertia parts
pergendum 2	11	2. 25	8.
BG corr. 53868	$\frac{100000}{53868} =$	18564; sin. 5° 41' sin. 62° 8' igitur eccentricitas tot eccentrici ver	$\begin{array}{l} + 5^{\circ} 41' 32'' = 67^{\circ} 50' 9''). \\ \frac{32''}{37''} = .11332. \\ \frac{18564}{11332} \\ \frac{5}{11} 7232. \\ \end{array}$

In forma Copernicana et Tychonica esset diameter parvi epicycli 3616, majoris 14948. Vel secundum ea, quae in fine capitis quarti dicta sunt, pro sinu tangens sumatur in hunc modum:

Investigetur aequatio maxima ad gradum nonagesimum. Sit HCG 90°; erit BC sinus anguli BGC 4° 8′ 51″, et GBC 85° 51′ 9″, et GC 99738. At in forma Copernicana C stante ad centrum concentrici, erit GC 100000. Ut igitur CGA angulus aequationis maneat, idem Tychoni et Copernico in eadem proportione augendus est: $\frac{1856400000}{99738} = 18613$, Copernico-Tychonica eccentricitas composita. Et haec in tangentibus exhibet 10° 32′ 38″ communem aequationis angulum ad gradum anomaliae 90. Ergo minoris epicycli diameter correcta 3628, majoris 14988.

Confer ista omnia cum cap. V, ubi restitutionem Tychonicam a medio ad apparentem Solis motum transposni, et vide quam sit exiguum discrimen.

Atque hac methodo ex quatnor *incorregions* of locis hypothesis primae inaequalitatis est investigata. In qua hoc cum Ptolemaeo posui: loca omnia planetae per coelum disposita ordinari in circuli unius circumferentia: item iis locis physicam retardationem esse maximam, ubi planeta longissime a centro Terrae (secundum Ptolemaeum) vel Solis (secundum Tychonem et Copernicum) digreditar: et fixum esse punctum, ad quod mensura hujus retardationis expenditur. Cetera omnia demonstravi; siquidem forma demonstrandi est, ad impossibile ducere. Utrum autem haec a me inter demonstrandum assumta vere ita habeant an secus, id in sequentibus patebit.

Jam etiam reliqua loca octo ad hanc hypothesin consensus causa examinabo. Sed ut examen sit universale et legitimum, immiscebo etiam apogaei motum. Hunc igitur prius investigabo.

. 18

Caput XVII.

Apogaei et nodorum motus superficiaria inquisitio.

Tam certa erit haec inquisitio, quam sunt observationes (imo vero traditiones Ptolemaicae) certae. Absque hoc artifice fuisset, minus adhuc hodie nobis constaret de his tardissimis motibus. Adec praeter illum nemo inventus est, ex quo literas excoluere nationes, qui hic nos juvaret.

Ponimas hic quae apud Ptolemaeum inveniuntur non undiquaque certissima. Primo, fixas fuisse praecise in iis zodiaci locis, in quibus a Ptolemaeo collocantur. (Ptol. VII.) Secundo, veram fuisse Solis eccen-

tricitatem, quam Ptolemasons prodidit 4153, qualium semidiameter orbis est 100000. (Ptol. III, 4.) Tertio, apogaeum Solis haesisse in $5^{1}/{_{2}^{\circ}} \prod$ (ibidem). Quarto, apogaeum 3 (motu ejus ad medium Solis motum accommodato) inventum in $25^{1}/{_{2}^{\circ}}$ \odot . (Ptol. X, 7.) Quinto, eccentricitatem 3 fuisse 20000, qualium semidiameter 100000 (ibidem). Sexto, proportionem epicycli (Ptolemaeo) vel orbis annui (Tychoni et Copernico) ad orbem Martis fuisse ut 100000 ad 151900. Quare qualium semidiameter orbis Solis vel orbis magni est 100000, talium erit eccentricitas Martis 30380. (Ptol. X, 8.) 65)

Agemus ut capite V. Sit A punctum, ex quo descriptus est orbis magnue, C punctum acquatorium Martis, B centrum orbis Fig. 70. Solis. Et quia AB est in 51/2° II, AC vero in 251/2° @, ergo CAB est 50°. Et AB ponitur 4153, AC vero earundem partium 30380. Datis igitut duobus lateribus et angulo comprehenso, habetur angulus CBA 123° 27'. Et quia BA vergit in 5¹/₂° X, verget igitur BC (subtracto angulo 123° 27') Ъ in 2° 3' & circiter, idque tempore Ptolemaei. Simul CB eccentricitas acquantis post transpositionem ad verum motum Solis fuit 18353. Supra hanc inveni ex transpositione Tychonicae hypotheseos 18342 : uno mutato, quod pro quantitate orbis Martii 151386 veriorem usurpavi 152500. Sed haec Tabella motus apheliorum obiter. Jam ad rem.

et nodorum.

De motu apheliorum.

Quia circa tempora Ptolemaei praecessio acquinoctiorum exorbitabat, ante et post nulla plane suspicio talis est residua. Separabo hanc et locum augis expendam ad fixa sidera. Fuit autem cor Leonis illa aetate in 2° 30' Q. Ergo praecessit aux Martis seu aphelium hanc stellam 27' anno Christi 140. circiter. Nostra aetate invenit Tycho Brahe sidus hoc anno Christi 1587. in 24° 5' Ω , cum aphelium processit in 28° 49' Ω, distans a corde Leonis per 4° 44' in consequentia; quibus si superiora 27' jungas, summa (5° 11') est motus annorum 1447 intermedioram ab anno Christi 140 in 1587. Motus igitar annuus est propemodum 13": motus annorum 30: 6' 29". Quibus si rursum addideris motum fixarum seu praecessionis Tychonicum, qui quam proxime aequabilis est et temporibus omnibus (solo excluso Ptolemaico) idem, nempe pro annis 30: 25' 30", conficies summam 31' 59": annuum ergb motum aphelii Martis ab aequinoctio hoc tempore 1' 4".

Digitized by Google

20. 18

	•	Limes & Nodi
Anni	1 11	• "
1	1. 4	0. 40
2	2.8	1. 21
3	3. 12	2. 1
4	4. 16	2. 42
5	5. 20	3. 22
6	6. 24	4. 3
7	7. 28	4. 43
8	8. 32	5. 24
9	9. 36	<u>6. 4</u>
10	10. 40	6. 45
11	11. 44	7. 25
12	12. 47	8.6
13	13. 51	8. 46
14	14.55 15.59	9. 27 10. 7
15		
16 17	17. 3 18. 7	10. 48 11. 28
18	19, 11	11. 28
19	20, 15	12. 49
19	20. 15	12.49
21	22. 23	13. 50
22	23. 27	14. 50
23	24. 31	15. 31
24	25. 35	16. 11
25	26. 39	16. 52
26	27. 43	17. 32
27	28. 47	18. 12
28	29. 51	18. 53
29	80. 55	19. 88

80 81. 59

_	Aphelium	Limes & Nodi
Mens.	Securd.	Secund.
1	5	3
1 2 3	11	7
3	16	10
4	21	18
5	27	17
6	32	20
7	37	23
8	43	27
9	48	30
10	54	38
11	59	37
12	1' 4	40

De motu nodorum.

Cognationis causa hoc quoque jam expediemus, quamvis non ita necessarium. Et quia Ptolemaeus (XIII, 1) limitem boreum Martis ait esse *meu va redevrava vov Kaquerov*, *nau ogedor meu vo ànorporavor*, fuerit ergo in 29° \mathfrak{S} , scilicet 3⁴/₂° ante cor \mathfrak{Q} . Quamvis Ptolemaeus (III, 6) ob facilitatem calculi reponat limitem boreum in ipsissimum apogaei locum, scilicet in 25⁴/₂° \mathfrak{S} . At hodie est in 16° 20' \mathfrak{Q} circiter, pempe 7° 45' ante cor \mathfrak{Q} . Subtractis 3° 30', deprehenditur limes boreus et consequenter, nodi per 4° 15' retrocessisse a corde \mathfrak{Q} , quod quidem consentaneum est et Lunae motio-

nibus, cujus itidem apogaeum sub fixis progreditur, nodi retrocedunt. Annuus igitur motus in antecedentia est 10" 34"": annorum 30. est 5' 17". Quae aufer a motu praecessionis 25' 30", relinquuntur 20' 13". Et totidem scrupulis Martis nodi hodiernis 30 annis ab aequinoctiali puncto moventur itidem in consequentia.

Caput XVIII.

Examen duodecim locorum acronychiorum per inventam hypothesin.

Utar autem ea calculi forma, quam supra cap. IV. explicavi, quod sit compendiosior. Certum autem est, in Copernicana seu Tychonica forma non sesquiscrupulum (imo minus aliquid) vel lucratum vel perditum iri, ut ibidem monui.

•	Amo	1580	Anno 1582	Anno 1585	Anno 1587
	8 0	1 11	• • • •		s o / //
Apholium anno 1587 Movetur annis intermediis	28.	48. 55 Q 6. 42	4. 28. 48. 55 4. 28	4. 28. 48. 55 2. 14	4. 28. 48. 55 0
		42. 13 49. 31 3. 55	4. 28. 44. 27 3. 9. 24. 55 3. 55	4. 28. 46. 41 4. 20. 8. 19 3. 55	4. 28. 48. 55 6. 0. 47. 40 3. 55
Corrocta long. modia	1. 25.	53. 26	3. 9. 28. 50	4. 20. 12. 14	6. 0. 51. 35
Ergo angulus C (Fig. 60) . Sinus Eccontricitas acquantis	91	11. 13 9880 7282	49. 15. 37 75767 7232	8. 34. 27 14909 7232	32. 2.40 53058 7232
		5088 8509 579 58	50624 3616 506 43 5	07232 2893 651 6	36160 2169 36 6
Pars asquationis	4.	223 8.33 19.46	5479 3. 8.26	1078 0. 37. 4	3837 2. 11. 57
Angulus B	44.	40. 14 20. 7 7706	46. 7. 11 23. 3. 36 42572	7. 57. 23 3. 58. 42 6955	29. 50. 43 14. 55. 21 26650
Quotions qui prodit es divisions diferentias laterum in summan	. 7	9643	79643	79643	79643
	58	5787 5750 5575 48	318572 15929 3982 557 16	47786 7168 398 40	159286 47786 4779 396
Tangons		3160 53. 22 20. 7	33906 18. 43. 47 23. 8. 36	5539 3. 10. 13 3. 58. 42	21225 11. 59. 0 14. 55. 21
An gulus ad A Apholium	82.	13. 29 42. 13	41. 47. 23 148. 44. 27	7. 8. 55 148. 46. 41	26. 54. 21 148. 48. 55
Locus Marsis in Debet		28. 44 II 28. 35	16. 57. 4 - 16. 55, 30	21. 37. 46 Q 21. 36. 10	25. 43. 161 25. 43. 0
Diferentia		0. 9	1.34	1. 36	0. 16

253

				`
· · · ·	Anno 1589	Anno 1591	Anno 1593	Anno 1595
	8 0 / //		s 0 i 11	8 0 / //
Aphelium anno 1587	4. 28, 48, 55	4, 28, 48, 55	4. 28. 48. 55	4. 28. 48. 55
Movetur annis intermediis	2, 15	4. 32	6. 48	9.14
Aphel. anno supra scripto	4. 28. 51. 10	4. 28. 53. 27	4, 28, 55, 43	4. 28. 58. 9
Longitudo media	7. 14. 18. 26	9. 5. 43. 55	11. 9.55. 4	1, 7.14. 9
Adde	3. 55	3, 55	3. 55	3, 55
Correcta long. media	7. 14. 22. 21	9. 5. 47. 50	11. 9. 58. 59	1. 7. 18. 4
Ergo angulus C (Fig. 69) .	75. 31. 11	126. 54. 23	11. 3.16	111.40.5
Sinus	96823	79961	19174	92934
Eccentricitas aequantis 🐋	7232	7232	7232	7232
· · · · · · · · · · · · · · · · · · ·	65968	50624	07282	65086
	4339	6509	6509	1446
•	578	651	072	651
	-14	48	51	22
	2	1	3	3
	• 7002	5783	1387	6721
Pars acquationis	4. 0. 55	3. 18. 55	0. 47. 42	3. 51. 14
Angulus B	71. 30, 16	123. 35. 28	11.50.58	107. 48. 51
Dimidium	35. 45. 8	61. 47. 44	168. 9. 2	53. 54. 26
Tangens	72002	186464	963600	137171
Quotions	79643	79643	79643	79643
	557501	796430	7167870	796430
	15929	637144	477858	238929
	16	47786	25893	55750
		8186	4779	796
		478		557
		32		8
Ta ngene .	57344	148506	767440	109247
	29. 49. 54	56. 2.40	.82. 34. 30	47.31.49
	35, 45. 8	61. 47. 44	84. 4.31	53. 54. 26
Angulus ad A	65. 35 . 2	117. 50. 24	166.39.1	101.26.15
Apholium	148. 51. 10	148. 53. 27	148. 55. 43	148.58.9
Loc us Martis in	4. 28. 12 M	26. 43. 51 🖍		17. 31. 54 2
Debet	4. 24. 0	26.43.0	12.16. 0	17.31.40
Differentia	2. 12	0, 51	0.42	0.14

Vides igitur studiose lector, hypothesin hanc methodo superiori investigatam non tantum fundamenta sua quatuor vicissim per calculum restituere, sed etiam reliquas omnes observationes intra duo scrupula tenere; quam quidem magnitudinem semper stella haec in acronychio situ amplitudine corporis occupat et excedit. Quo argumento cognoscitur, si quis superiorem methodum repetat assumtis aliis atque aliis observationum quadrigis, semper eandem eccentricitatem, eandem ejus sectionem, idem aphelium motumque medium quam proxime proditurum. Pronuncio igitur, situs acronychios hoc calculo tam certos exhiberi, quam certae possunt esse observationes per sextantes Tychonicos, quae (ut praedixi) ob grandiusculam corporis Martii diametrum, ob refractiones et parallaxes nondum certissime cognitas, in nonnulla (certe 2') ambiguitate versantur.

Denique vides, nihil obfuisse transpositionem acronychiarum visionum a medio ad apparentem Solis motam, quo minus certitudinem calculi Tychonici, quae mihi medium Solis motam deserturo pro argumento opponebatur (comp. p. 71), non tantam imitarer, sed etiam superarem.

Pars Secunda. O	aput XVIII.
-----------------	-------------

	Anno 1597	Anno 1600	Anno 1002	Anno 1604.
•••••••••••••••••••••••••••••••••••		8 0 / //		8 0 / //
Apholium anno 1587	4. 28. 48. 55	4. 28. 48. 55	4. 28. 48. 55	4. 28. 48. 55
Movetur annis intermediis	11. 30	13. 43	15.56	18. 11
Aphel. anno supra soripto	4. 29. 0. 25	4. 29. 2. 38	4. 29. 4. 51	4. 29. 7. 6
Longitudo media	2. 23. 11. 56	4.4. 35.50	5. 14. 59. 37	6. 27. 0. 12
Adde	8. 55	3. 55	3. 55	8.55
Correcta long. modia	2. 23. 15. 51	4. 4. 89. 45	5. 15. 3. 32	6. 27. 4. 7
Ergo angulus C	65. 44. 34	24. 22. 58	15. 58. 41	57.57. 1
Sinus	91171	41280	27528	84759
Ecomtricitas asquantis	7232	7232	· 7232	7232
• · · · · · · · · · · · · · · · · · · ·	65088	28928	14464	57856
	0723	0723	5062	2893
	072	145	362	. 506
	51	58	14	36
	1		6	64,
	6593	· 2985	1991	6130
Pars acquationis	3. 46. 50	1. 42. 40	1. 8. 26	3. 30. 52
Angulus B	61. 57. 44	22. 40. 13	14. 50, 15	54. 26. 9
Dimidium	30. 58. 5 2	11.20.6	7.25.8	27. 13. 5
Tangens	60045	20046	13021	51433
Quotiens	79643	79643	79643	79643
	477858	159286	79643	398215
	00318	319	23893	7964
	40	48	159	3186
•			8	239
	,	1	{	24
Tangens	47822	15965	10370	409628
	25. 33. 30	9. 4. 14	5. 55. 14	22. 16. 32
•	30. 58. 52	11. 20. 6	7, 25, 8	27.18.5
Angulus ad A	56. 32. 22	20. 24. 20	13. 20. 22	49. 29. 37
Apholium	149. 0. 25	149. 2.38	149. 4.51	149. 7. 6
Loène Martis in	2. 28. 3 @		12. 25. 1370	18. 36. 43=
Debet	2. 28. 0	8. 38. 0	12. 27. 0	18. 37. 19
Diferentia	0. ' 3	0, 18	1.47	0. 27 **)
		L	L	

Caput XIX.

Per latitudines acronychias redargutio hujus hypotheseos ex ouctorum sententia constitutae et comprobatae per omnia loca àxoorvzua.

Fieri quis posse putaret? Haec hypothesis observationibus angorvators tam prope consentiens falsa tamen est, sive observationes ad mediam Solis locum, sive ad apparentem examinentur. Ptolemaeus id nobis indicavit, dum bisecandam esse docet aequatorii puncti eccentricitatem per centrum eccentrici planetam ferentis. Nam hic a Tychone Brahe et a me eccentricitas aequatorii puncti non fuit bisecta. Copernico *) quidem

^{*)} In Saturno et Jove simpliciter bisecuit, hoc est forma Copernicana quadrantem epicyclii semidiametro tribuit: in Marte vero, cum epicyclio tribuisset quadrantem eccentricitatis Ptolemaicae, nostra vero aetate totam Ptolemaicam minorem esse factam contenderet, reliquit tamen epicyclio quantitatem pristinam. Itaque centrum eccentrici (ut cum Ptolemaeo loquamur) 40 particulis propius admovit centro orbis annui quam centro aequantis circuli. Lib. V, cap. 16. Vide etiam gap. XVI. hujus libri.

religio non fuit, id alicubi negligere, nam observationibus usus est omnino paucissimis, ratus fortasse, neque Ptolemacum usum esse pluribus, quam in Magno Opere referuntur. Tycho Brahe hic haesit. Copernicum enim imitatus proportionem eccentricitatum constituit hanc, quam requirerent observationes acronychiae; quam cum redarguerent non solum latitudines *angorranoi* (nam his accidit etiamnum aliqua augmentatio ex inaequalitate secunda orta), sed etiam et multo quidem maxime observationes aliarum cum Sole configurationum inaequalitate secunda affectae: hic ille substitit et ad Lunaria conversus est, cum ego superveni.

Methodus autem, qua et absolveretur universa theoria Martis facile, si quae praemissa sunt rite haberent, et qua non rite habere demonstratur, haec est.

Primum per latitudines in situ anoorvy. Exponatur in forma Copernicana linea DE in plano eccentrici Martis: in qua sit A Sol, D limes boreus, E limes austrinus vel proximus illi punctus : et per A trajiciatur recta HL, competens in planum eccentrici orbis Terrae. Concipiantur autem AH et AD in uno plano circuli latitudinis : sic AL, AE: et sit Terra anno 1585 in linea AH, scilicet in B, anno vero 1593 sit in lineae AL puncto C. Quia ergo AB et AD vergunt in 21° ℓ, ubi A Sol ex B apparet in 21°, vice versa vero E et C in 12º ¥, ubi A Sol ex C Terra in 12° m apparet, est vero apogaeo Solis vicinior 12° m quam 21° .:::: brevior igitur est BA quam AC. Excerpam autem has lineas ex folio 98. tomi I. Progymn. Tychonis Brahe, et ponam illas bene habere, quamvis infra (methodo nos eo deducente) paulo alias esse demonstraturus sim. Ibi igitur exhibetur BA 97500, AC 101400. Fiet autem in secutura correctione BA paulo longior et AC paulo brevior, non tamen aequales. Jam quia supra (cap. XIII.) duobus a praesenti negotio diversis modis BAD angulus in limite circa $16^{\circ} \Re$ fuit inventus $1^{\circ} 50'$ circiter, orgo hio 4 aut 5° a limite 1° 491/2'. Sed HBD visa latitudo anno 1585 fuit 4° 32' 10". Hinc datis angulis HBD et BAD, datur etiam

eorum differentia BDA 2º 42' 40". Ut vero sinus BDA ad BA notam, sic sinus DBA ad DA. Quodsi BA assumitur 97500, prodit DA 163000. Sin illa est 100000, DA erit 167200. ⁸⁷)

Sio cum sint C et E anno 1593 in \mathcal{H} , distetque \mathcal{J} per 26° a limite, 64° a nodo: ut igitur sinus totus ad sinum inclinationis maximae 1° 50′, sic sinus 64° ad sinum CAE inclinationis hujus loci. Est igitur CAE 1° 39′. Sed latitudo visa LCE fuit 6° 3′, ergo angulus AEO est 4° 24′. Rursum igitur, ut sinus AEC ad AC notam, sic sinus ACE ad AE. Quodsi AC assumitur 101400, prodit AE 139300 fere. Sin illa est 100000, haec prodit 137380 fére. Cum autem 21° \mathcal{D} absit ab aphelio circiter 8°, linea AD in ipso aphelio circiter 150 particulis longior erit (quod cuilibet distantias ex inventa hypothesi computanti et in hos numeros transfundenti patebit), nempe vel 163150 vel 167350. Et cum 12° \mathcal{H} absit a perihelio circiter 13°, AE in ipso perihelio circiter 300 particulis brevior erit, nempe aut 139000 aut 137080. Ita habetur longitudo linearum AD et AE in ipsis apsidibus, quando sunt partes

ejusdom rectae DE. Jungantur igitur DA 163150 vol 167350 et AE 139000 vol 137080 Tota igitur DE 302150 vol 304430 Dimidia DK 151075 vol 152215 Ergo AK eccentricitas 12075 vol 15135.

Transfundantur hi numeri in pristinos, ubi radius eccentrici fuit 100000. Ut igitur 151075 ad 100000 sic 12075 ad 8000, vel ut 152215 ad 100000 sic 15135 ad 9943. 46)

Eccentricitas igitur eccentrici verissime (indicibus latitudinibus acronychiis) versatur inter 8000 et 9943, qualium radius orbis eccentrici est 100000. At hypothesis nostra ex observationibus acronychiis longitudinum exstructa prodebat eccentricitatem eccentrici 11332, diversam longe ab eo, quod est inter 8000 et 9943 loco fere medio. Ergo falsum oportet esse aliquid eorum, quod assumeeramus. Assumtum autem erat, orbitam, qua planeta transiret, esse perfectum circulum: esse in linea apsidum punctum aliquod unicum, in certo et constante intervallo a centro eccentrici, circa quod punctum aequalibus temporibus Mars aequales angulos conficiat. Horum igitur alterutrum aut forte utrumque falsum est. Nam observationes usurpatae falsae non sunt.

Valet autem eadem demonstratio etiam contra hypothesin illam, quam constituunt observationes ad oppositum medii motus Solis reductae: quia latitudines tempore inter utrumque articulum intermedio manent proxime eaedem. Quare iis eccentricitas eccentrici ostenditur 9943, quae tamen supra (cap. V.) ex restitutione Braheana assumta fuit 12600, vel in aequante Ptolemaico 12352, qualium tota aequatorii puncti eccentricitas 20160 vel 19763.

Pro schematis nostri transformatione ad formam Ptolemaicam sit DE linea apsidum, A Terra, D, E centrum epicycli in summa et ima apside: et ex D atque E punctis educantur versus A Tellurem rectae paralleli ad BC planum eclipticae: in quibus sumantur DF, EG radii epicycli aequales ipsis BA, AC: et planeta in F et G. Erit igitur FDA inclinatio aequalis inclinationi BAD, et linea visionis AF cum pristina BD parallelos. Quare et DAF et HBD visa latitudo eadem. Idem de triangulis ACE et EGA congruís dicendum. Itaque demonstratio et quantitates hinearum correspondentium eaedem.

Occurret lectori dubitatio, quare epicycli Martii semidiametrum faciam inaequalem sibi ipsi, nempe DF longiori BA, et EG breviori CA aequalem. Respondeo ex parte prima, fieri hoc propter transpositionem observationum ab oppositione cum medio Solis ad oppositionem cum apparente Solis. Quodsi maneamus apud medium motum Solis (pugnat enim praesens argumentatio etiam tunc), manebunt DF et EG aequales hucusque saltem. Sed vide de hoc partem primam cap. VI.

Pro forma Braheana, relicto alterutro triangulo, puta DBA, ut sit B Terra immobilis, A Sol anno 1585, continuetur AB, ut BH sit ipsi AC aequalis: sitque H Sol anno 1593 in 12° m: et ipsi AE fiat aequalis et parallelos HI in partes easdem, ut sit Mars perigaeus in I, apogaeus in D; ecliptica HBA; inclinatio BHI, BAD: latitudo perigaea IBA, apogaea DBH. Rursum igitur summa DA et HI prodibit eadem, cujus DK dimidium et KA eccentricitas. Sola differentia haec, quod Ptolemaeo

Kepleri Opera. III.

planum epicycli, Tychoni planum eccentrici transponitar a septentrione in austrum et contra, manens sibi ipsi parallelon: in Copernico manet utrumque eodem situ.

Interim et hoc nota. Compositam eccentricitatem inveneram capite XVI. 18564, cujus dimidium 9282 est inter 8000 et 9943 loco fere intermedio. At dacuerat nos et Ptolemaeus. (ut supra dictum), dimidium ejus, quod ex acronychiis sitibus inveniretur, dandum esse eccentricitati eccentrici. Non igitur nihil fuit quod ipsum permoverat: nec temere nobis est repudianda haec bisectio, cum de ea testentur latitudines observatae.

At contra si bisecemus inventam 18564, loca quidem circa longitudines medias eccentri acronychia sat praecise repraesentabimus, at non acque loca circa octantes et versus apsidas.

Exempli causa sit anni 1593 oppositio. Anomalia simplex capits praecedents fuit 6° 11° 3' 16". Multiplico simum 11° 3' 16", seilicet 19174 in 9282: prius erat in 7232 multiplicandus: prodit sinus 1780 arcus 1° 1' 12", seu partis acquationis, qui additus ad 11° 3' 16" efficit semiaequatam anomaliam 6° 12° 4' 28", cujus complementum 167° 55' 32": dimidium 83° 57' 46". Cujus tangens 945500 circiter in 90718 distantiam periheliam multiplicatus et per 109282 apheliam vicissim divisus producit tangentem 784880. Cujus arcus 82° 44' 20" ablatus a priori 83° 57' 46", relinquit 1° 13' 26" acquationis partem alteram. Quae addita ad anomaliam semiaequatam et haco ed aphelium, refert planetam in 12° 13' 37" \neq : ubi differt a priori hypothesi tribus scrupulis et fit ab observatione habita remotior. Debuit enim esse 12° 16' \neq .

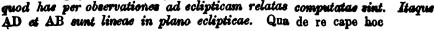
Id luculentius apparet in 17° \odot anno 1582. Nam adhibita bisectione cadit Mars in $17^{\circ} 4^{3}/_{*}$ \odot , differtque hic calculus a nostro $7^{2}/_{*}$ circa 45° ab aphelio, ab observatione vero 9'.

Atque ex hac tam parva differentia octo minutorum patet causa, cur Ptolemaeus, cum bisectione opus habuerit, acquieverit puncto aequatorio stabili. Nam si aequantis eccentricitas, quantam indubie poscunt aequationes maximae circa longitudines medias, bisecetur, vides omnium maximum errorem ab observatione contingere 8', idque in Marte, cujus est eccentricitas maxima; minorem igitur in ceteris. (In prosthaphaeresibus tamen orbis annui alicubi ista 8' erroris excrescunt usque ad 30'.) Ptolemaeus vero profitetur, se infra 10', seu sextam partem gradus observando non descendere. Superat igitur observationum incertitudo seu (ut ajunt) latitudo hujus calculí Ptolemaici errorem.

Nobis cum divina benignitas Tychonem Brahe observatorem diligentissimum concesserit, cujus ex observatis error hujus calculi Ptolemaici 8' in Marte arguitur; aequum est, ut grata mente hoc Dei beneficium et agnoscamus et excolamus. In id nempe elaboremus, ut genuinam formam motuum coelestium (his argumentis fallacium suppositionum deprehensarum suffulti) tandem indagemus. Quam viam in sequentibus ipse pro meo modulo aliis praeibo. Nam si contemnenda censuissem 8' longitudinis, jam satis correxissem (bisecta scilicet eccentricitate) hypothesin cap. XVI. inventam. Nunc quia contemni non potuerunt, solà igitur haec 8' viam praeiverunt ad totam astronomiam reformandam, suntque materia magnae parti hujus operis facta.

Caput XX.

Ejusdem hypotheseos redargutio per observationes extre situm aoronychium.


Nunc ad alterum argumentum accedam, quo falsa demonstratur capite XVII. inventa eccentrici eccentricitas (non obstante, quod veres exhibet longitudinis motus): nempe ex observationibus aliarum cum Sole configurationum extra oppositiones, quoties planeta in apsidibus eccentrici versans observatus fuit.

Anno 1600. d. 5/15. Martii circa mediam noctem visus est Mars in 29° 12¹/₂' \odot cum latitudine 3° 23' bor. Fuit ejus longitudo media per nestram additionem correcta 4° 29° 14' 58", aphelium vero in 4° 29° 2' 45". Igitar anomalia 12' 13", quae requirit aequationem 2' subtrahendam per hypothesin locorum eccentricorum supra constitutam. Igitar locus Martis eccentricus in 29° 13' Ω : Solis locus in 25° 45' 51" \rightarrow .

In schemate sit A Sol, B Mars, C Terra. Erit igitur ex subtractione CB $(29^{\circ} 12\frac{1}{2}, {\circ} \odot)$ ab AB $(29^{\circ} 13' \, \Omega)$ angulus CBA 30° 0' 30": ex subtractione vero CA $(25^{\circ} 45' 51'')$ a CB $(29^{\circ} 12' 30'' \odot)$ erit BCA 123° 26' 39". Ut autem sin. CBA ad CA, sic sin. BCA ad BA. Est autem CA distantia Solis a Terra ex Tychonis tabula 99302 (quae etsi vitiosa, tamen veritas hanc inter et 100000 consistit, ut infra cap. XXX. audiemus). Ergo AB inter 165680 et 166846.

In perihelio sumatur observatio, quae est habita anno 1593. d. 30. Julii sequentis noctis hora 1. 45'. Inventus est Mars in 17° 39' 30'' \div cum latitudine 6°6'/s' austr. Longitudo media Martis 10° 26° 16' 38'', aphelium 4° 28° 55' 43''. Abest igitur Mars a perihelio 2° 39' 5'', quibus per hypothesin supra inventam competant 32' aequationis subtrahenda, ut sit locus eccentricus Martis 10° 25° 44' 30'', locus Solis apparens in 17° 3' 0'' Ω .

In schemate continuetur BA in D: et sit AD in 25° 44' 30", ED vero in 17° 39' 30" H. Ergo EDA 21° 55' 0". Et quia ED 17° 39' 30" H, et EA 17° 3' Q, ergo AED 149° 23' 30". Ut autem sin EDA ad EA, sic sin AED ad AD. Est autem EA distantia Solis a Terra ex Tychonis tabula 102689, vitiosa quidem, sed tamen certo major quam 100000. Ergo AD est inter 140080 et 136409. Sed cum stella Martis 2²/₂° distet a perihelio, brevior erit AD in ipso perihelio circiter-15, itaque inter 140065 et 136394. Utraeque vero cum apogaeae tum perigaeae sunt augendae, eo

17 *

'Fig. 72.

Protheorema, saepius infra usurpandum.

Observationibus stellae Martis ad eclipticam relatis, et per eas lineis in plano eclipticae investigatis, ostendere longitudinem linearum, quae iis e regione in plano orbitae propriae respondeant.

Exponatur BAD (Fig. 72) linea in plano sclipticae, et per A, quae Solem seu centrum mundi denotat, ducatur recta LAM in plano orbitae. ut stella sit in L et M. Sit autem Terra in C, et triangulum CAB pars plani eclipticae, ad quod planum trianguli LBA intelligatur rectum: et connectantur puncta C, L, B: continuenturque lineae ad superficiem sphaerae fixarum, AB in β , AL in λ , AC in x; sintque $\times\beta$ arcus eclipticae, Bl arous circuli latitudinis, xl arcus transversus. Igitur observatio loci stellae sub fixis refertur ad eclipticam, traducto arou circuli latitudinis ad eclipticam xß recto per locum stellae visum : et triangulum CLB est pars de plano illius circuli. Sed et \b ponitur circulus latitudinis ad eclipticam x & rectus. Duorum igitur circulorum ad eandem eclipticam rectorum plana (CLB et LBA) sese mutuo secant per lineam LB. Quare (Eucl. XI, 19) sectionis linea LB perpendicularis erit ad planum eclipticae CBA ejusque lineam BA, hos est LBA erit rectus. Inventa igitur longitudine BA in ecliptica et cognito angulo LAB, non poterit ignorari longitudo LA quaesita: quod erat faciendum.

In praesenti igitur negotio, cum inclinatio, seu angulus LAB sit 1° 48' hoc loco, ergo LA est in praesenti dimensione longior per 82 particulas quam BA, et AM per 72 longior quam AD.

Correctae igitur	apogaeae	fient	165762 • vel	166928 AL	
Perigaeae	• • •	•••	140137 vel	136466 AM	
					1

Summae .	•	•	•		305899 vel	303394 I	M
Dimidia .		•			152950 vel	151697 I	Œ`
Eccentricita	s	•	•	•	12812 vel	15371 E	(A 69

Transpositis his numeris, ut ex KL vel KM fiat 100000, eccentricitas eccentrici est inter 8377 et 10106. At nostra hypothesis postulabat 11332, quae utramque illarum superat. Ergo falsum postulabat.

Nec te moveat, quod altera 10106, quae exstructa est ex usurpatione ipsarum AC et AE aequalium, propiuscule ad 11332 accedit. Nam cum hic observationes ad Solis apparentia loca expenderim, eccentricitatem ex ipso centro corporis Solaris exstruxerim: non erunt igitur AC, AE aequales; quare eccentricitas haec multo minor quam 10106, et omnino esset 8377, si distantiae Solis a Terra 99302 et 102689 rite haberent, quas adhibere pro 100000 et 100000 demonstrationis hujus necessitas cogit. At quia infra hae Tychonicae distantiae corrigentur et ad radii mediocritatem propius adducentur, ideo eccentricitas hic quaesita inter hos terminos 8377 et 10106 certo consistit, nempe appropinguat medio totalis eccentricitatis 18564 prius inventae, scilicet 9282.

Ut eadem demonstratio etiam in Ptolemaica secundae inaequalitatis hypothesi procedat, age ut priori capite. Duc ipsis CB, CA, ED, EA majoris schematis parallelos AI, BI, AF, DF: et finge Terram in A, centrum epicycli (versus punctum circa quod epicyclus rotatur, distans a centro epicycli tota eccentricitate Solis) in D, B: Solem in H, G: ut AH sit aequalis et parallelos ipsi EA, et AG ipsi CA: ut sit anomaliae commutationis coaequatae angulus HAD, GAB: Mars vero pro B vel L

in I, et pro D vel M in F: cruntque ipsis BI et DF (lineis motus planetae in epicyolo) paralleli lineae AG, AH (motus Solis). Cetera per se patent.

Pro forma et hypothesi Tychonica secundae inaequalitatis maneat A Torra, H, G, Sol: et ipsis AD, AB paralleli et aequales agantur HF, GI, ut sit Mars itorum in F et I. Erunt igitur et lineae visionis AF, AI eaedom quae Ptolemasa, et paralleli lineis visionis ED, CB majoris schematis. Quare in easdem a Sole partes vergent, et summa linearum HF, GI asquabit priorem BD; eritque propter parallelas lineas demonstratio plane eadem quae ab initio capitis.

Eandem vero demonstrationem vitiose constitutae eccentricitatis eccentrici (ut priori capite) etiam restitutioni Braheanae, quae nititur medio motu Solis, accommodabo, ne quis existimet, hanc dissonantiam ideo evenire, quod observationes a medio ad apparentem Solis motum perperam transposnerim.

Anno 1600 d. 5. Martii fuit ex sententia Tychonis longitudo media $3 4^{\circ} 29^{\circ} 11' 3''$: apogaeum in 23° 41' Ω . Ergo anomalia simplex 5° 30': quae requirit ex ejus sententia aequationem subtrahendam 1° 7' 11'', ut sit locus Martis eccentricus 4° 28° 3' 52'', Solis vero motus medius 23° 44' 31'' \times : In schemate superiori sit A punctum medii motus Solis, distans a centro Solis tota eccentricitate Solis. Angulus igitur CBA 28° 51' 22'' et BCA 125° 28' 0''. Atque hic demonstratio cogit, tam AE quam AC assumere aequales, scilicet 100000, manentibus quae a veteribus et Tychone posita sunt, quae infra parte tertia ventilabuntur: ubi ostendetur, paulo minorem esse distantiam Terrae a puncto medii loci Solis, hoc est epicyclum Ptolemaicum vel annuum orbem Copernico-Tychonicum non ordinari aequaliter circa id punctum, circa quod aequales anguli conficiuntur temporibus aequalibus. Sed jam insistamus fundamentis positis: et sit CA 100000, erit igitur AB 168760.

In perigaeo anno 1593. d. 30. Julii, cum fuerit longitudo Martis ex Brahei sententia 10° 26° 12′ 43″, apogaeum 23° 34′ Ω , ergo anomalia simplex 182° 38′ 43″, quae requirit aequationem 35′ 52″ addondam. Itaque locus Martis eccentricus 10° 26° 48′ 35″: locus Solis medius 18° 24′ 31″. Ergo in schemate erit EDA 20° 50′ 55″ et AED 158° 45′ 0″. Sit iterum EA 100000, quamris infra (ut jam dictum) paulo major est futura. Ergo AD 137300. Quam minues per 15, ut in ipsum perigaeum competat: sitque 137285. Alteram vero augebis circiter 100, ut in apogaeum ipsissimum competat: eritque 168860. Utramque vero augebimus (ut prius) ob planorum inclinationem, additis in apogaeo 82, in perigaeo 72: eruntque absolutae

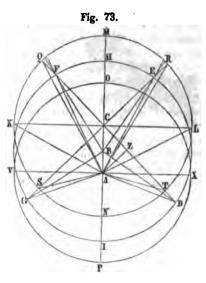
AB AD	168942 137357
BD	306299
BK	153150
K A	15709

KA 15792, eccentricitas ex puncto medii motus Solis seu (in forma Ptolemaica) in linea apsidum per centrum epicycli ducta.

At qualium BK est 100000 talium KA est 10312. Requirebat vero restitutio Tychonica ex acronychiis concinnata et capite VIII. exhibita majorem quantitatem ipsius BK, scilicet 12352.

phicissima et aequabilissima eligere, ideo quaeremus circulum, qui circa suum centrum moveatur aequaliter, qui nobis efficiat quod est propositum. Constitutis igitur partibus in AK, AL acqualibus ab A inceptis, scilicet AK, AL, connectantur puncta K, L recta secante MP in C: et centro C spatio CK scribatur circulus eccentricus MN, cujus motus sit circa centrum regularis. Repraesentabit haec hypothesis planetam debito loco, in lineis quatuor AM, AN, AK, AL. At non hacc hypothesis sola, sed multae aliae hoc possent facere, quia generale hoc habent et verissimum quidem, ut punctum aequalitatis motus sit in linea, quae loca planetae in lineas AK; AL incidentis connectat, ejusque eo puncto, quo secat haec linea MP. Cumque ex praemissis absorpserit haec hypothesis errorem omnium maximum hypotheseos prioris OP, nempe KAV, LAX circa quartas temporis, nec novum errorem committat (cum circa AM, AP priori aequipolleat): quare si haec hypothesis adhuc peccat, id multo minus erit peccatum quam KAV. Et quia in CM, CN, CK, CL officium fecit, peccatum (si quod superest) recedet in quatuor loca inter jam dicta intermedia fietque circa octavas partes temporum, cum in C sit temporis mensura. Bisectis igitur MCK, KCN angulis, ducantur per C duae novae lineae, secantes circumferentiam in Q, T, R, S: erit circa haec puncta error maximus, si quis est. Referet autem haec hypothesis planetam circa octavas temporum in lineas AQ, AR, AS, AT. Sit jam (ut in Marte), ut non debeat planeta post octavas temporis restitutorii apparere in lineis AQ, AR, AS, AT: sed illic in lineis AF, AE superioribus, hic in AG, AD humilioribus. Ergo si prius error KAV fuit 10 1/2°, jam error QAF vix erit pancorum scrupulorum. Deprehenditur autem in Marte QAF vel RAE 9' circiter, sed SAG vel TAD circiter 28'.

Tertio igitur et haec hypothesis corrigatur; quod ut varie (et nominatim per librationem puncti C in linea CA) fieri potest, ita nulla religione impedimur, punctum aequalitatis C fixum retinere in distantia CA ob angulum KAV, et planetae viam etiamnum retinere circularem. Quae tria ex arbitrio suscepta, non demonstratione evicta, cogent nos eccentrici centrum ex C puncto aequalitatis motus deprimere in B, ut sit HI pro MN, et corpus planetae ex Q, R, S, T discedat, manens tamen in lineis CQ, CR, CS, CT (quia apud C manet dimensio temporis), veniatque in signa F, E, G, D et fiant QF, ER, SG, TD tantae, ut QAF, EAR fiant 9', et SAG, TAD 28'. Hoc facto absorptus erit et ille error in octavis temporum, et hypothesis octo locis justissimam exhibebit longitudinem. Quare iterum si quis restat error, is erit in sedecimis temporum, locis intermediis. At quia tertius hic eccentricus HI tam primo acquipollet in locis AM, AP, quam secundo in locis insuper AK, AL: nullum igitur novum ingerit errorem. Et quia secundi error erat maximus in octavis temporum, qui jam est absorptus, restabit igitur in sedecimis de veteri errore error multo minor. Qnodei proportione utamur, ut, quia primi eccentrici error fuit 101/2°, secundi error 9' vel 28', nempe illius septuagesima et vicesima quinta pars, jam iterum totuplos faciamus secundos errores tertiorum : plane intra sensuum defectum negotium coegerimus etiam circa sedecimas temporis.


Ita vel jam patet, quatenus et quomodo verum sequatar ex falsis principiis: nempe id, quod in hisce falsum, speciale est et abesse potest; quod vero necessitatem affert veritati, sub generali ratione verum omnino et ipsum est. Denique ut falsa haec principia tantummodo sunt apta certis

locis per totum circulum: ita neque verum citra illos ipsos locos omnimode sequitur, nisi quatenus accidit huic negotio, ut a sensuum subtilitate differentia aestimari amplius non possit.

Atque haec eadem hebetudo sensuum tegit etiam hunc errorculum, qui in octavis temporum superest. Superesse autem sic demonstro.

Nam si ex B rursum scribatur perfectus eccontricus, ut sint aeguales BD, BE, BF, BG; fecerimusque BC tantam, ut QAF angulus imperatus existat : non equidem aeque arbitrio nostro relinquitur, quantum exhibere velimus angulum SAG. Fiet enim omnino necessarius. Veniat ex A perpendicularis in QT, quae sit AZ. Sit auten AC (ut supra) 18564 gualium CQ 100000. Et quia ACZ 45°, fiet AZ vel ZC (utraque harum partium) 13127. Ergo ZQ 113127 et AQZ 6° 37' 5", et QAZ 83° 22' 55", cupus tangens 864092. Sumatur autem FAZ 9' minor; erit ejus tangens FZ 844900. Sed qualium AZ est 13127, erit ZF 110910. Quare QF 2217. Est autem major QF quam TD, quod sic demonstro. QT est diameter cir-

culi, acqualis ergo est ipsis FB, BD semidiametris junctis. Sed BF, BD simul sumtae sunt majores quam FD, ergo et QT major quam FD; communis auferatur FT, major igitur residua QF quam TD. Et tamen nos ex abundanti patiemur acqualem esse. Subtrahatur CZ 13127 a CT, ut ZT relinquatur 86873. Igitur ex AZ, ZT noscitur ATZ estque 8°35'33". Igitur ZAT 81° 24' 27". Et quia ZT 86873, addam ei acqualem ipsi QF, ac si esset TD, scilicet 2217. Fiet ZD 89090. Sed qualium AZ est 100000, fiet ZD tangens anguli ZAD 686291. Itaque hic angulus 81° 42'. 35". Sed ZAT fuit 81° 24' 27". Ergo TAD vel SAG minor est quam 18' 8" differentia, eo quod TD sit minor quam 2217.

Ecce hic necessarium angulum TAD, qui debuit esse $27 \frac{1}{5}$. Itaque si QAF pro 9' facias 12', fiet TAD 24'. Atque utrinque planeta 3' fiet altior justo. Aequatio ergo nimis videbitur magna: quare eccentricitas nimis magna. Minuetur igitur parumper, ut in lineis AK, AL planeta circiter $1 \frac{1}{2}$ ' fiat depressior, atque in D, E, F, G totidem (scilicet $1 \frac{1}{2}$) altior.

Ita per hanc contemperationem variarum causarum fit, ut errore altero alterum compensante calculus intra sensuum subtilitatem adducatur, deprehendique non possit specialis hypotheseos falsitas. Itaque gloriari non possit haec vafra meretricula de veritate (pudicissima puella) in suum lupanar pertracta. Honesta quaedam femina meretricem praeeuntem arcte sequebatur ob viarum angustiam et turbam hominum: quam stulti et lippi logicarum argutiarum professores, qui frontem ingenuam a perfricata nequeunt discernere, censuere meretricis esse pedissequam.

Atque haec procul dubio causa est, cur cap. XVIII. in \mathfrak{S} , \mathfrak{N} , \mathfrak{m} et passim alibi adhuc unum et alterum scrupulum desit. Sed neque error deprehendi

facile possit, cum observationes usurpatae non incidant in apsidas et quartas octavasque temporum.

Conclusio secundae partis.

Hactenus itaque traducta fuit hypothesis primae inaequalitati serviens (in qua Braheo cum Copernico convenit; utrique vero nonnihil in forma a Ptolemaeo dissentiunt) a medio motu Solis, quem omnes tres auctores adhibuerunt ad apparentem motum Solis. Deinde ostensum est, sive apparentem motum Solis et hypothesin cap. XVL inventam sequamur, sive medium motum Solis et hypothesin cap. VIII. ex restitutione Brahei propositam, utrinque sequi falsas distantias planetae a centro seu Solis (Copernico et Braheo) seu mundi (Ptolemaeo). Itaque quae prius aedificaveramus ex observatis Braheanis, posterius ex aliis ejusdem observatis rursum destruximus: quod necessario nobis contigit, probabilia nonnulla sed re vera falsa (imitatione priorum artificum) secutis.

Tantum quidem operae datum est imitationi huic priorum artificum, qua secundam hanc Commentariorum partem concludo.

COMMENTARIORUM

DE MOTIBUS STELLAE MARTIS

PARS TERTIA.

INVESTIGATIO SECUNDAE INAEQUALITATIS, ID EST MOTUUM SOLIS VEL TELLURIS.

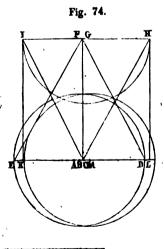
SEU CLAVIS ASTRONOMIAE PENITIORIS.

UBI MULTA DE CAUSIS MOTUUM PHYSICIS.

Caput XXII.

Epicyclum seu orbem annuum non aequaliter circa punctum aequalitatis motus situm.

In hunc igitur modum antecessores nostri primum inaequalitatem primam mensi sunt. Postea calculo constituto, qui locum planetae eccentricum repraesentaret ad quodvis momentum, conversi sunt ad inaequalitatem secundam (quae a Sole pendet) explorandam, comparantes locum visum sea spparentem cam loco eo, quem eccentricus et sola prima inaequalitas planetae assignarent. Cum autem mihi hanc eandem semitam eunti anceps bivium apparuerit superiori capite XIX. et XX; et observationes (fidissimi duces) cam ebservationibus pugnare sint deprehensae: cogitandum fuit de tota ratione itineris aliter instituenda, methodo quae sequitur.


Primum hac parte tertia aggrediar secundam inaequalitatem et in illa per observationes indubias demonstrabo vel confirmabo vel refutabo, quae hacusque in principiis posui, dubio tamen assensu: nam hac veluti clave inventa reliqua patebunt. Postea parte quarta ad inaequalitatem primam accedam.

In Mysterio Cosmographico cap. XXII. cum physicam causam acquantis Ptolemaici vel secundi epicycli Copernico-Tychonici redderem, mihi ipsi objeci in fine capitis: quod, si causa a me allata genuina esset, omnino per omnes planetas valere debuerit. Cum autem Tellus, ana ex sideribas (Copernico), vel Sol (reliquis), acquante hoc hactenus non indiguerit, speculationem illam incertam esse volui, quoad astronomis amplius hqueret.. Suspicionem tamen concepi, fore et huic theoriae suum acquantem. Postquam in Tychonis notitiam veni, suspicio haec in me confirmata fuit. Nam Brahems in literis anno 1598 ad me in Styriam missis haec verba ponit: "Orbis annuas juxta Copernicum, vel epicyclus secundum Ptolemaeum non videtur ejusdem comper magnitudinis, quoad ipsum eccentricum collatione facta; sed alterationem adducit in omnibus tribus superioribus sensibilem, adeo ut angulus differentiae in Marte ad 1° 45' (40') excrescat." (Comp. Vol. I, p. 44.)

Idem eodem tempore in appendice ad Mechanica seu narratione de suis studiis perstrinxit. Nec multo alia verba tomo I. Epistolarum fol. 209.⁷⁰) ubi existimat, causa eccentricitatis Solaris immisoeri quandam inaequalitatem etiam eccentrici aequationibus et sitibus acronychiis; quod parte prima refutatum quidem est, non redundare in situs acronychios, vel certe minimum aliquid; at videtur per correctionem quandam de quadrangulationibus Martis cum Sole intelligi debere.

Jam tum, cum orbem annuum audirem augeri minuique, dictabat mihi genius, id phantasma oriri ex eo, quod orbis annuus Copernici vel epicyclus Ptolemaei non aequaliter a centro illo distet, circa quod aequalibus temporibus aequales conficere ponitur angulos. Nam quae causa physica, augeri et minui circuitum centri systematis planetarii*) (Tychonici) vel circuitum Terrae (Copernico) vel epicyclum sidus gestantem (Ptolemaeo)? quae haec, inquam, in astronomia sine exemplo novitas, sine versimilitudine absurditas? Quin potius credi par erat, alibi Solem (Copernico) vel centrum systematis planetarii (Tychonici) vel corpus planetae (Ptolemaeo) a suscepto aequalitatis puncto (quiescente apud Copernicum et Tychonem, circumeunte in eccentrici circumferentia apud Ptolemaeum) longius distare, alibi brevius: atque id procul dubio in linea apsidum. Atque huic rei commodam occasionem videbatur suppeditare mea illa ex Mysterio meo Cosmographico derivata suspicio, si nempe in theoriam Solis (vel theoriam, ut ita dicam, epicycli Ptolemaici) aequans introduceretur.

Esto ut incipiat inaequalitas secunda a linea medii motus Solis, ut hactenus placuit artificibus (ne quis meam novationem, qui apparenti Solis motu utor, in hoc negotio suspectam habeat), et consurgat in schemate praesenti eccentricitas planetae apud Copernicum non a centro Solis A,

sed a C puncto, circa quod regularis esse ponitur Terrae motus. Id vero punctum C sit non orbis Terreni DE, sed tantum aequalitatis centrum, longius ab A Sole distans, quam B centrum orbis Terreni ED. Dico, his concessis, observationes tales exhibitum iri, ex quibus quis suspicari possit; orbem annuum DE augeri minuique. Erigatur ex C perpendicularis ipsi DE, quae sit CF, et sit Martis stella bis in F, et cum Terra est in D et cum in E, et connectatur F cum punctis D, E. Quia ergo C est punctum aequalis motas Terrae in DE, erit FCD, FCE anomalia commutationis et (ut ponimus) acqualis utrinque. Quodsi igitur aequales essent CD, CE (nt hactenus putabatur), tunc et DFC et EFC anguli seu parallaxes orbis essent utrinque,

*) Centrum systematis planetarii est communis sectio linearum, quae per singulorum planetarum apsides traducuntur. Atque id punctum est vel proxime corpus Solis, ut Braheo initio placuit, vel in ipso centro Solis, ut ego corrigo.

apad utramque anomaliam commutationis, acquales. At quia CE major quam CD, major etiam apparebit angulus CFE angulo CFD. Propterea ille, qui non attendit, hanc amplificationem contingere tantum in E vel vicinis locis, et contrariam diminutionem in D loco contrario tantum, censebit totum orbem annuum interdum fieri ampliorem, mensura CE, interdum angustiorem, mensura CD: propterea quod talis aliquis cum hactenus usitata astronomia praesupponit, C punctum acqualis motus esse idem et centrum circuli DE.

· In forma Ptolemaica sit Terra in C: lineae medii motus Solis CK, CL, pro eo quod prius Copernico fuerant DC et EC: et sit centrum, circa quod motus epicyclicus regularis est, in F: et ipsi ED aequalis et. parallelos III, ut ducta CI sit parallelos ipsi DF et CH ipsi EF. Translata enim E Terra sen visu in C centrum mundi, at Ptolemaeo placet, transfertur et F Mars in H, sic propter translatum D in C, transfertur F in I. Ptolemaeus ergo existimans, F punctum, circa quod epicycli IH motus aequalis est, esse etiam centrum epicycli IH, omnino FI et FH ponit aequales: proptereaque in anomalia coaequata utraque tam HFC quam IFC, hoc est (secundum hoc schema) tam 90° quam 270°, unam et eandem statuit aequationem epicycli, nempé aequales angulos HCF et ICF. Quodsi observatio testetur, majorem esse HCF quam ICF, tum centrum epicycli non erit in F puncto aequalis motus, sed in G versus H: et posito quod F nihilominus centrum epicycli esse putetur, omnino epicyclus auctus essevidebitur in anomalia 90° circa H, minutus in 270° circa I, Marte motu eccentrico (hoc est linea CF) in eodem loco fixarum versante utrinque,

In forma Tychonica maneat C Terra, DE circulus Solis, centro B. sed aequalitatis centro A: sintque lineae, quibus planeta videtur (scilicet CI et CH) eaedem, quae in Ptolemaeo. Igitur ex H et I descendant ipsi FC paralleli HL, IK: ut K et L sint centrum systematis planetarii, cujus circuitus centrum sit M versus perigaeum Solis, ut quanto B verum centrum circuitus Solis praeter opinionem descendit infra' A putativum centrum ejusdem circuitus Solis, tanto et M. centrum circuitus KL (in quo circuitu punctum invenitur, a quo consurgit Martis eccentricitas) descendat sub C: sintque aequales AC et BM. Erit linea coaequati motus in eccentrico (scilicet KI, LH) post integras planetae restitutiones sibi parallelos. Existimans igitur Tycho, C Terrain esse in medio circuitus KL, deferentis eocentricos planetarum, angulos CIK, CHL faciet aequales, quando CLH, CKI commutationis anguli sunt acquales. Qui si deprehendantur inacquales; et CHL major, erit et CL major quam CK: et KL orbis deferens centrum systematis videbitur in L crescere, in K imminui; eo quod non creditur, M centrum orbis, qui defert systemata planetarum, esse extra C Terram, cirea cujus centrum motus illius orbis est aequalis.

Nam ad detegendam veram causam hujus diversitatis, nempe ad liberandam suspicione eccentricitatem Solis, multum confert, quod hoc pacto *)

*) Nota mihi hoc anoosooxnov. Si vera est generalis Ptolemaica vel Braheana hypothesis de mundi systemate, et si simul medio motu Solis utamur; tunc illi epicyclus, huic circulus, deferens systemata planetaria, fit eccentricus, cujus apogaeum vergit in partes apogaeo Solis praecise contrarias: eccentricitas vero ejus, ut infra sequetur, praecise aequat eccentricitatem Solis veram seu dimidium hactenus creditae.

ibi brevis fit CK distantia centri systèmatis a Terra, ubi longa fit CE distantia Solis a Terra, et contra, illa CL longa, ubi haec CD brevis.

Causa conversarum in hunc modum apsidum haec est. Terra enim Copernico perambulat contrarias partes Soli Tychonico et epicyclo Ptolemaico: et vero DC, CE, distantiae Terrae a Sole, Solis a Terra, et Martis H vel I a centro F aequalitatis epicycli, subtendunt angulos per omnes tres formas ejusdem quantitatis: ergo et distantiae Solis et Terrae Copernicanae in contrarias plagas transferentur a Braheo et Ptolemaeo, nimirum CE in CL vel FH, et CD in CK vel FI.

Ut igitur hanc speculationem observationibus vel confirmarem vel convellerem, hanc viam insistebam. Cum apogaeum Solis sit in 5 1/2 ° 😔, quaesivi, an exstaret observatio, cum d'ratione primae inaequalitatis esset bis in 51/2° == vel Υ : • vero altrobique in 5¹/₂ • •, deinde in 5¹/₂ * \mathcal{Z} . Atqui hoc non est possibile, ut fiat intra tam breve (20 vel 30 annorum) spatium. Motas enim periodici Martis et Solis sunt incommensurabiles, nec unquam simul in suas quartas vel opposita incidunt post peractos alterutrius circuitus integros, eorumque dimidia et quartas. Oportuit igitur eligere, quod fuit quaesito proximum, et multos constituere dies per hos 20 annos, quibus planeta est observatus, in quibus anomalia commutationis coaequatae esset 90° vel 270° vel proxime tanta, Marte in 6° Y vel 🗠 (vel circa) versante. Postmodum illos dies omnes oportuit in catalogum observationum Martis immittere, ut viderem, an etiam iis momentis fuisset observatus. Quod, nisi frequentissime fuisset Mars observatus a diligentissimo Tychone Brahe, tam exquisita fuit haec electio, ut voti compos fieri non potuissem. Cum antem Tycho posuisset apogaeum \mathcal{J} in $23\frac{1}{3}^{\circ} \Omega$, requireretur vero locus Martis per aequationem eccentri correctus $5\frac{1}{3}^{\circ} \mathcal{L}$: ergo anomalia coaequata requirebatur 42°. Et cum ex ipsius tabula coaequatae 42° responderet acquatio 8° 15% : ergo requirebatur anomalia media eccentri 50° 16': per quam ostendebantur mihi duodecim articuli temporum per annos viginti a 1579 in 1600.

An autem ex his temporibus alicui esset anomalia coaequata commutationis semel 90°, iterum 270°, vel quanto illa major minorve, tanto haec minor majorve, sic artificiose fuit indagatum. Una Martis revolutio dies habet 687, duae Solis habent 730 $\frac{1}{2}$; differentia dierum 43 $\frac{1}{2}$, quibus de motu medio Solis respondent 42° 54′ 23″. Tanto igitur variatur anomalia commutationis ad finem cujuslibet revolutionis Martis. Quando igitur intra unum biennium quaeruntur duae commutationis anomaliae aequales invicem, Marte eodem utrinque eccentrici loco versante, oportet ut ille uterque commutationis angulus sit 21° 27′. Intra 4 annos requiritur 42° 54′: intra sex annos 64° 22′: intra octo annos 85° 49′. Et nos postulabamus, si fieri potuisset 90°. Ergo binas nostras observationes quaerere oportebat distantes annis octo. Talis vero observationum biga non reperiebatur in catalogo habitarum observationum.

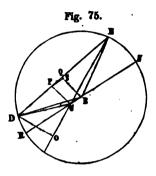
Conversus igitar sum ad distantiam sex annorum invenique tandem, quod anno 1585. d. 18. Maji et anno 1591. d. 22. Jan. exstarent observationes idoneae. Nam correspondebant anno 1585. d. 30. Maji h. 5. et 1591. d. 20. Jan. h. 0. Utrinque Martis longitudo media fuit 6° 22° 43', aequatio Tychonica 9° 14' 52" auferenda. Ergo d'ratione eccentrici in 13° 28' 16" \leq . Commutatio coaequata anno 1585 erat 8° 4° 23' 30", qua arguebatar more Ptolemaico, planetam esse ultra perigaeum epicycli 64° 23' 30".

Sic commutatio coaequata anno 1591 erat 3º 25° 36' 30", qua arguebatur, planetam esse ante perigaeum epicycli 64° 23' 30". Aequalis igitur utrinque commutationis angulus in schemate 74. FCD et FCE vel CFI, CFH. Erat autem anno 1585 Sol in 18° II, 18° ante apogaeum, anno 1591 in 9° \pm , 33° ultra perigaeum: quae inaequalitas caveri non potuit.

Jam ad observationes: anno 1585. d. 18. Maji h. $10\frac{1}{2}$ noctis visus est \Im in 0° 50' 45" m, cum lat. 1° 19' 30" borea. Maginus refert illum in 1° 5' m, abundat igitur 14' 15". Ergo cum die 30. vesperi hora 5. referat illum in 6° 48' m, rursum auferemus, quod ante dies undecim peccabatur, retinebitque 6° 34' m, ubi paacula scrupula ponemus in errore, quod longa sit deductio per dies 12, nec diurnus idem vere sit, qui hic ex Magino adhibetur; ut 18. Aprilis praecedente h. 10. inventus est \Im in 17° 37¹/₂' \Im , quem Maginus ponit in 18° 0' \Im , differentia 22¹/₂', quae differentia usque ad 18. Maji per dies 33 imminuta fuit ad modulum 14¹/₄'. Si ergo agamus proportionaliter, ut quia de differentia per 33 dies evanuerant 8', in eadem ratione per dies sequentes 12 evanescent 3', differentia igitur die 30. Maji erit 11¹/₄. Quare Mars correctius in 6° 37' m.

Sic anno 1591. d. 22. Jan. mane h. 7 distabat 3 a Spica 10 34° 32′ 45″ cam declinatione 17° 25′ austrina, in altitudine 16°. Ergo post cautas variationes horizontales declinatio 17° 30′. Hinc ascensio recta 230° 23′ 12″, longitudo 22° 33′ m, latitudo 1° 0′ 30″ borea. Distat vero tempus a nostro 1 die 19 horis, et diurnus ex Magino est 33′. Ergo tempori interjecto debentur 59′. Relinquitur ergo locus Martis ad 20. Jan. h. 0 (quod momentum priori respondere dixeramus) 21° 34′ m.

Et quia ex Tychonis restitutione CF est DF vero vel CI anno 1585	. 6.	37 110
Ergo DFC vel FCI erit	. 36°	51'.
Sic quia rursum CF est anno 1591. EF vero vel CH	. 13° . 21.	28′ ⊷*) 34 m
Ergo EFC vel FCH erit	. 38°	5 ¹ / ₂ ['] .


Ecce magnam differentiam prosthaphaereseon orbis annui, cum tamen anomalia commutationis utrinque eandem polliceatur. Causam indicat nobis hypothesis Copernicana. Terra in D et E putabatur aequaliter distare a C puncto aequalis motus: invenitur vero distare inaequaliter, ut centrum ejus circuitus sit in B versus A Solem. Per aequipollentiam igitar epicyclus HI in forma Ptolemaica non aequaliter circumjectus est puncto F, cujus viam eccentricam nobis acronychiae observationes describebant, et circa quod motus epicycli regularis est. Et vergit G centrum epicycli ad E in partes perigaei Solaris. In Tychonica similiter KL deferens systemata planetaria non aequabiliter ambit C Terram, circa quam motus illius orbis regularis est, sed vergit M centrum ejus circuitus in partes perigaei Solis.

*) Praecessio temporis intermedii non efficit 5'. Hic igitur est neglecta.

Caput XXIII.

Cognitis duabus distantiis Solis a Terra et locis sub zodiaco et apogaeo Solis, inquirere eccentricitatem viae Solis (vel Terrae Copernico).

Hinc nobis non est difficile et mensuram tentare lineae BC (Fig. 74). Sit enim FC 100000, et quia DFC est 36° 51', et FCD 64° 23' 30": ergo residuus FDC est 78° 45' 30". Et ut sinus hujus angeli ad FC 100000, sic sinus DFC ad DC 61148. Eodem modo, quia EFC 38° 5',' minus, et FCE 64° 23' 30": erit FEC 77° 31' 0" plus. Ergo EC 63186 minus. Exponatur orbis Terrae NED (Fig. 75), in eo CBN lines

apsidum, et N perihelium, R aphelium, B centrum, C punctum aequalitatis motus, E, D, loca duarum observationum, quae connectantur cum C et cum B. Est igitur EC et CD in iisdem numeris cognita, et notus angulus ECD, nempe 128° 47' 19". Continuetur EC et in ean ex D perpendicularis descendat DO, ut et in DE duae perpendiculares ex C, B, quae sint CP, BQ. Est igitur DCO 51°12'41" et CDO 38° 47' 19". Quare qualium DC 61148, erit DO 47660 et CO 38305; quae apposita ad CE efficit EO 101491. Ex datis autem DO, OE circa rectum, habetur DEO

25° 9' 20". Quare DE 112125, cujus dimidium est DQ, scilicet 56062 1/1, quia DB, BE acquales. Et quia DEC fuit 25° 9' 20", erit EDC vel PDC 26° 3' 21". Quare qualium DC 61148, talium CP fiet 26858, et PD 54932: quae aufer a QD, relinquitur PQ 1130 $\frac{1}{2}$. Hinc jam ex cognita inclinatione linearum ED et NC facile habetur longitudo CB. Nam quia CR est linea aphelii in 5° 30' Σ ; CD vero 17° 52' \mathcal{X} , quia Sol in 17° 52' II: orit DCR 17° 38'; sed EDC fuit 26° 3' 21" **er** a o facta subtractione, relinguitur dictarum linearum inclinatio 8º 25' 21". Agatur ex P ipsi CB parallelos PS, quae aequabit CB, et CP aequabit BS. In triangulo igitur PQS rectangulo, ut sinus totus ad tangentem et secantem anguli QPS 8° 25' 21", sic PQ cognita ad QS 167, et SP 1143, quae est CB. Et quia aequales PC et SB, scilioet 26858: appone igitur QS, prodibit QB 27025. In rectangulo igitur DQB datis lateribus oirca rectum, dabitur et DB 62237. Ergo proportio DB ad BC (radii ad eccontricitatem quaesitam) est eadem quae 62237 ad 1143. Ut autem 62237 ad 100000, sic 1143 ad 1837. Haec tandem est eccentricitae quaesita. 11) Fieret autem minor, si praecessionem aequinoctiorum curaremus, quia tunc CE minor.

Ex his itaque duabus observationibus et assumto vero loco aphelii Solis exstruitur distantia puncti nostri aequatorii C vel F (quod centrum putabamus) a vero centro orbitae B vel C vel M, (Fig. 74) scilicet 1837, qualium radius ejus orbitae est 100000. Tycho Brahe vero eccentricitatem Solis, hoc est distantiam C puncti aequatorii ab A centro corporis Solaris (in Copernico) vel distantiam A puncti aequatorii motus Solaris a C centro Terrae (in Tychonico-Ptolemaica suppositione) invenit 3584, cajus dimidium 1792 parum admodum ab 1837 dissidet. Consentaneum igitur

est, dimidiationem eccentricitatis in theoria Solis valere, quae prius etiam capite XIX. et XX. in eccentrico Martis valuerat. Nam observationes a me adhibitae non sunt adeo scrupulosae (propter longas deductiones et usurpationem diurni controversi), ut de 45 particulis centies millesimis certi quid definire possint: ut taceam praecessionem temporis intermedii, neglectam in motu eccentrico Martis et Solis.

Quae hic de circuita Telluris demonstrata sunt, simili plane ratione et de epicyclo Ptolemaico et de Tychonico deferente systematis demonstrari possunt; tantummodo ut in schemate apsides in contrarias partes convertantar. Supposui autem hic et apogaeum Solis a Tychone loco justo constitutum et orbitam Solis (seu Terrae), quam corpore peragrat, ordinari in circulo. De quo etsi analogia ad planetas ceteros diversum testabitur infra cap. XLIV, exilitas tamen deflexus plane nihil nostrae demonstrationi incommodat.

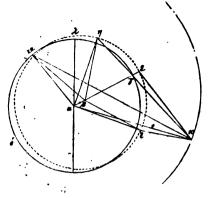
Caput XXIV.

Evidentior probatio, epicyclum seu orbem annuum esse a puncto aegualitatis eccentricum.

Haec igitur initia fuerunt hujus inquisitionis, timida illa et tam multis cantionibus operosa, ut aequalis haberetur ex utroque latere anomalia commutationis.

Jam postquam semel hujus rei periculum fecimus, audacia subvecti porro liberiores esse in hoc campo incipiemus. Nam conquiram tria vel quotcunque loca visa Martis, planeta semper eodem eccentrici loco versante : et ex iis lege triangulorum inquiram totidem punctorum epicycli vel orbis annui distantias a puncto aequalitatis motus. Ac cum ex tribus punctis circulus describatur, ex trinis igitur hujusmodi observationibus situm circuli ejusque augium, quod prius ex praesupposito usurpaveram, et eccentricitatem a puncto aequalitatis inquiram. Quodsi quarta observatio accedet, ea erit loco probationis.

Primum tempus esto anno 1590. d. 5. Martii vesperi h. 7. 10', eo quod tunc Mars latitudine pene caruit, ne quis impertinenti suspicione ob hujus implicationem in percipienda demonstratione impediatur. Respondent momenta haec, quibus Mars ad idem fixarum punctum redit: A. 1592. d. 21. Jan. h. 6. 41'; a. 1593. d. 8. Dec. h. 6. 12'; a. 1595. d. 26. Oct. h. 5. 44'. Estque longitudo Martis primo tempore ex Tychonis restitutione 1° 4° 38' 50'': sequentibus temporibus toties per 1' 36'' auctior. Hic enim est motus praecessionis congruens tempori periodico unius restitutionis Martis. Cumque Tycho apogaeum ponat in $23\frac{1}{2}$ ° Ω , aequatio ejus erit 11° 14' 55'': propterea longitudo coaequata anno 1590. 1° 15° 53' 45''.


Eodem vero tempore et commutatio seu differentia medii motus Solis a medio Martis colligitur 10° 18° 19' 56": coaequata seu differentia inter medium Solis et Martis coaequatum eccentricum 10° 7° 5' 1".

Primum haec in forma Copernicana ut simpliciori ad sensum proponemus,

Sit a (Fig. 76) punctum acqualitatis circuitus Terrae, qui putetur esse Kepieri Opera. III. 18

circulus $\delta\gamma$ ex α descriptas: et sit Sol in partes β , ut $\alpha\beta$ linea apogaei Solis vergat in $5\frac{1}{3}^{\circ} \odot$: quamvis hunc gradum cap. XXV. libere inquisitari sumus quasi incognitum. Et sit Terra anno 1590. in $\alpha\vartheta$, a. 1592. in $\alpha\eta$, a. 1593. in $\alpha\vartheta$, a. 1595. in $\alpha\zeta$. Et anguli $\vartheta\alpha\eta$, $\eta\alpha\varepsilon$, $\varepsilon\alpha\zeta$ acquales, quia α est punctum acqualitatis et periodica Martis tempora praesupponentur acqualia. Sitque planeta his quatuor vicibus in x, ejusque linea apsidum $\alpha\lambda$. Est ergo angulus $\vartheta\alpha\pi$ secundum indicium anomaliae commutationis coacquatae 127° 5′ 1″.

Quod visum locum Martis attinet, is die 4. antecedente hora simili fuit 24° 22′ Υ , diurnus ejus diei esset 44. Ergo ad nostrum tempus visus fuit in 25° 6′ Υ , qui est situs lineae ϑx . Sed ax tendit in 15° 53′ 45″ \boxtimes . Ergo $\vartheta x a$ est 20° 47′ 45″. Residuus igitur $a \vartheta x$ ad duos rectos est 32° 7′ 14″. Ut igitur sinus $a \vartheta x$ ad ax, quam dicemus esse partium 100000, sic sinus $\vartheta x a$ d a quaesitum. Est ergo ϑa 66774.

Quodsi reliquae $\eta \alpha$, $\epsilon \alpha$, $\zeta \alpha$ ejusdem prodibunt longitudinis, falsum erit quod suspicor: at si diversae, omnino vicero.

Secundo igitur, anno 1592. ad nostrum momentum est longitudo coaequata 1° 15° 55' 23": commutatio coaequata 8° 24° 10' 34", hoo est nax angulus est 84° 10' 34". Visus est die 23. Jan. h. 7. 15' in 11° 34'/₂' Υ correctione per parallaxin adhibita. Et est motus bidui ejus 1° 25'. Ergo die 21. h. 7. 15' in 10° 9'/₂' Υ est visus. Residua scrupula horae abjiciant dimidium minutum. Ergo angulus nxa est 35° 46' 23" et anx 60° 3' 3" et an 67467, jam longior quam a ϑ , same guia Sol versus perigaeum descendit, et Terra ex ϑ in n transposita est; circa quas partes Solem invenit ultra β , in appropinguanti puncto.

Tertio, anno 1593. ad nostrum momentum est longitudo 1·15°56'56" coaequata, commutatio coaequata 7·11°16'16", hoc est sax 41°16'16". Observatus est die 10. Decembris h. 7. 20' in 4°45' γ, cauta parallaxi. Motus bidui ejus est 1°8'. Ergo 8. Dec. h. 7. 20' visus in 3°37' γ: hora vero nostra 6. 12' in 3°35'/2' γ. Hinc sna 42°21'30", et xsa 96°22' 14", et as 67794 rursum longior; nam et propior perigaeo Solis.

Quarto, anno 1595. ad nostrum momentum est longitudo coaequata 1º 15º 58' 30", commutatio 5º 28º 21' 55", hoc est angulus xaf est 1º 38' 5".

Observatus est die 27. Oct. h. 12. 20' in $18^{\circ} 52' 15'' \\times diumnus est 23'. Itaque die 26. h. 12. 20' est in <math>19^{\circ} 15' 15'' \\times complementum 5^{\circ} 1' 10'' et a \\circle 67478. ^2) Sed periculosa est haec ultima operatio ob parvos angulos trianguli, in quibus, si scrupulus unus et alter in observando vel in computando loco Martis eccentrico ex Tychonis hypothesi peccatur, proportio angulorum facile mutatur ad sensum. Sed jam omnes quatuor lineas oculis subjiciam.$

Solis medio loco in 22° 59′ × |α∂|66774

10. 6 = αη 67467 27. 13 × αε 67794 14. 20 m αζ 67478.

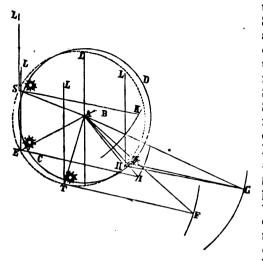
Est ergo longissima $\alpha \epsilon$, quae et proxima perigaeo Solis; brevissima $\alpha \theta$, quae etiam remotissima a perigaeo Solis; et fere aequales $\alpha \zeta$ et $\alpha \eta$, quia etiam pene aequaliter absunt a perigaeo.

Etsi vero $\alpha \zeta$ longior est paulo quam $\alpha \eta$, quae propior perigaeo: id tamen exilitati angulorum in ζ tribuendum est, per quam facile tam parvum aliquid peccatur. Ergo circulus $\delta \gamma$, qui descriptus est a Copernico ex α puncto aequalitatis motus Terrae, non est iter Terrae: sed est alius quispiam circulus $\partial \eta e \zeta$, in quo Terra versatur; cujus centrum vergit in easdem partes, in quibus Sol est, scilicet in β .

In forma Ptolemaica sit Tellus in A, Solis sphaera ΞOIT , K centrum epicycli putativum, id

and epicych putativin, in nempe, circa quod epicyclus ipse putativus $\Delta \Gamma$, aequalis theoriae Solis (quod ad omnimodam aequipollentiam inter hypothèses Copernici et Brahei est necessarium factu, etsi ad praesentem demonstrationem nihil refert, in quacunque proportione sint orbis Solis et épicyclus planetae; dummodo aequales habeant restitutiones). Sitque AA linea apsidumMartis.

Sint AK, AA, paralleli prioribus α_{X} , $\alpha\lambda$ (Fig. 76) in Copernicana forma. Educantur ex A centro Terrae lineae A Θ , AH, AE, AZ paralleli prioribus $\alpha\vartheta$, $\alpha\eta$, $\alpha\varepsilon$, $\alpha\zeta$ et aequales; ut sit Mars anno 1590. in Θ , 1592. in H, 1593. in E, 1595. in Z: et simul medius Solis motus iis temporibus ordine sit AT, Al, AO, AZ, ut sint K Θ et AT paralleli, et sic reliquae, prout notum est de Ptolemaica hypothesi. Connexis igitur Θ , H, E, Z cum K, demonstrabitur (ut prius) iisdem plane numeris, lineis et angulis, has lineas praeter opinionem esse inaequales, ac propterea Martem non in circulo $\Gamma\Delta$ versari, cujus sit centrum in K puncto 'aequalitatis motus, sed in ZEH Θ circulo, cujus centrum a K versus B vergat, propemodum in linea KB, quae sit parallelos lineae ex A Terra per perigaeum Solis ductae.


Vergit igitur apogaeum epicycli in perigaeum Solis. Et quia epicyclus propter omnimodam aequipollentiam, ut jam dictum, ponendus est aequalis circuitui Solis, et ZK parallelos ipsi ΞA , et EK ipsi OA, et HK ipsi IA, et ΘK ipsi TA: igitur etiam ipsas ΞA , OA, IA, TA inaequales esse verisimile est, et punctum medii loci Solis (Braheana notione centrum epicycli Solis) per circuitum a puncto aequalitatis distare inaequaliter. Quod obiter interjeci: nihil n. facit ad praesentem demonstrationem, nisi quod eam extendit amplius.

In forma Tychonica sit A (Fig. 78) Terra, et ex ea scribatur Solis concentricus CD, qui putetur esse deferens systema planetarum, cum sit A punctum aequalitatis motus concentrici Solis. Erit itaque Sol ipse in alio

18 *

Fig. 77.

Fig. 78.

eccentrico circulo. Sit eius centrum ab A versus partes B. Sit autem AL regula lineae apsidum Martis, ut linea apsidum circulatione et transpositione sui eccentrici semper maneat parallelos ipsi AL. Sint autem lineae medii motus Solis ad nostra quatuor momenta AH, AT, AE, AS: et ex A ejiciantur lineae visionum Martis, prout supra descriptae sunt, in hunc vel illum zodiaci gradum vergere. Et ouia ponitur Mars omnibus quatuor vicibus eodem loco eccentrici: quare distantiae ejus a punctis medii loci Solis aequales erunt omnes et paralleli. Sint GH, FT, IE, KS omnes aequales.

et anguli LHG, LTF, LEI, LSK acquales priori AAK (Fig. 77.) vel $\lambda \alpha x$ (Fig. 76), sic ut Mars ad nostra momenta sit in G, F, I, K. Et ut obiter moneam, haec quatuor puncta G, F, I, K facient in rei veritate arcum plane acqualem et acqualiter situm cum priori arcu ΘHEZ in forma Ptolemaica: quia nulla amplius est differentia, quam quod Ptolemacus epicyclum theoriae Solis acqualem in eccentrico circumfert, Tycho eccentricum in theoria Solis, seu in acquali circulo ipsi epicyclo Ptolemaico.

Rursum igitur manentibus iisdem angulis et numeris demonstrabitur, quod lineæ AH, AT, AE, AS praeter opinionem sint inaequales. Itaque punctum illud eccentrici, unde consurgit Martis et omnium planetarum eccentricitas (quod jam ponitur in linea medii motus Solis secundum mentem artificum priorum), non circumit in illo circulo DC, circa cujus centrum A aequales facit angulos aequalibus temporibus; sed in circulo HTES, cujus centrum a B centro eccentrici Solis vergit in partes contrarias, ut hactenus crassa Minerva ex ipsis lineis apparuit.

Caput XXV.

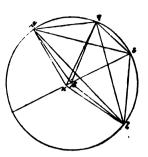
Ex tribus distantiis Solis a centro mundi, cognitis locis sub zodiaco, inquirere apogaeum et eccentricitatem Solis vel Terrae.

Quantitatem autem eccentricitatis et situm apogaei probabo jam porro in unico circulo omnibus tribus formis apto. Facile enim apparet, rationes esse tantummodo oppositas: ut in forma Copernicana linea longissima vergit in Geminos, in reliquis formis vergit in Sagittarium: propterea quod Copernicus visum versus centrum dirigit, reliqui a centro. Quare etiam Copernicus trans centrum in partes zodiaci easdem visum dirigit cum ceteris.

Exponatur circulus $\partial \eta e \zeta$ (Fig. 79) centro β , in quo a suscepto puncto a

sint datae lineae $\alpha \vartheta$, $\alpha \eta$, αe , $\alpha \zeta$ ut prius; et anguli insuper sinca α dati; est enim quilibet eorum 42° 52′ 47″. Quaeritur et quantitas[®] $\alpha \beta$, et casus ejus lineae inter fixas, seu respectu ceterarum linearum. Sumantur ϑ , η , e et connectantur invicem. Nam tria puncta sufficient ad hoc investigandum.

Primum in triangulo $\partial \alpha \eta$ dantur latera et angulus comprehensus, quaeritur $\partial \eta$ ostenditurque lege triangulari 49169 in priori dimensione laterum $\alpha \partial$ et $\alpha \eta$.


Secundo, in triangulo $\alpha \epsilon \eta$ quaeritur angulus $\alpha \epsilon \eta$, inveniturque 68° 12' 26".

Tertio, in triangulo 8 as quaeritur angulus as d, inveniturque 46° 39' 10". qui ablatus ab aen relinquit 21º 33' 16". Estque hic angulus Gen ad circumferentiam. Duplum igitur ejus 43° 6' 32" erit $\theta\beta\eta$ angulus ad centrum, quia β ponitur esse circuli centrum. In $\vartheta \beta \eta$ igitur isoscele anguli dantur cum latere $\vartheta\eta$ prius invento, quaeritur $\vartheta\beta$ amplitudo radii circuli inveniturque 66923. Et quia $\beta \partial \eta$ est 68° 26' 44": prius vero, cum $\partial \eta$ quaereretur, fuit $\alpha \partial \eta$ 69° 18' 46": ergo $\beta \partial \alpha$ est 0° 52' 2". Igitur in triangulo $\beta \partial \alpha$ ex lateribus et comprehenso quaeritur $\partial \alpha \beta$ et $\alpha \beta$. Invenitur autem augulus $\vartheta \alpha \beta$ 97° 50' 30", ut vergat $\alpha \beta$ in 15° 8' 30" II: quia αθ vergit in 22° 59' m. Tycho vero ponit apogaeum Solis in 51/2° . Vides igitur hac ipsa liberrima inquisitione ad veritatem Tychonicam nos accedere intra 20°. Invenitur autem $\alpha\beta$ 1023. Quodsi $\partial\beta$ accipiat dimensionem 100000, $\alpha\beta$ fiet 1530. ⁷³) Eccentricitas vero tota Solis est 3592. dimidium 1796 vel 1800. Hic igitur paulo minus dimidio eccentricitatis Solaris eccentricitati circuli nostri vindicatur. Sed memineris, observationes circa minima peccare aliquid posse, et usurpatam ex Tychone longitudinem mediam aequationemque controversam. Quod facile patebit, si eandem operationem et per $\vartheta\eta\zeta$ et per $\eta s\zeta$ et per $\vartheta s\zeta$ fueris exsecutus. Nam tot vicibus prodit $\alpha\beta$ paulo alia quantitate, caditque in locum sub fixis ultra citraque 5 1/2 ° Z, G.

Infra igitur majorem circa hoc adhibebimus diligentiam. Nam saepius luculenta demonstratione dimidium eccentricitatis . Solaris invenietur et apogaeum proxime Tychonicum.

Demonstratum est igitur in forma Copernicana, centrum circuitus Terrae esse medio loco inter corpus Solis et punctum aequalitatis illius circuitus, hoc est Terram in sua orbita inaequaliter incedere; tardam fieri, ubi longe a Sole recedit, velocem, ubi appropinquat, quod est physicis rationibus et analogiae planetarum ceterorum consentaneum. Eodem modo demonstratum est in Ptolemaica forma, epicyclum a puncto, circa quod ejus motus aequalis est, esse eccentricum, et eccentricitatem dimidiam de eccentricitate Solari vulgariter inventa et in partes contrarias. Denique in forma Tychonica demonstratum est, punctum, a quo consurgunt eccentricitates planetarum, non moveri in concentrico Solis, sed a Terra, circa quam regulariter et aequabiliter volvitur, inaequaliter per ambitum abesse: et versus perigaeum quidem Solis longius distare, versus apogaeum brevius; iterum dimidia eccentricitate Solis. Cum itaque hic epicyclus Ptolemaicus et hic deferens Braheanus tantam habeat analogiam cum theoria Solis, veri-

simile est, majorem etiam habere: hoc est, Solis quoque eccentricitas vera tantum dimidia erit ejus, quae computatur ex aequatione maxima; seu quod idem est, Sol utetur aequante, cujus eccentricitas est dupla ad eccentricitatem eccentrici.

Fateor, argumentationem hanc de forma Ptolemaica et Tychonica paulo imbecilliorem esse, quoad cum auctoribus motu Solis medio utimur. Fiet itaque illustrior, ubi jam rationibus iis permotus, quas supra cap. VI. recensui, motum planetae ad Solis apparentem motum expendero.

Caput XXVI.

Demonstratio ex iisdem observationibus, epicyclum a puncto affixionis seu axe, et orbem annuum (et sic etiam viam Terrae circa Solem, vel Solis circa Terram) a centro corporis Solaris vel Terrae esse eccentricum, dimidio saltem ejus, quod Tycho Brahe per aequationes motus Solis invenit.

Repetemus autem ipsas observationes diligenter: Anno 1590. d. 4. Martii h. 7. 10' inventus est diligenti observatione et calculo in 24° 22' 56" γ , cum lat. 0° 3' 20" mer. Ea hora occidit 8° γ . Itaqué σ humilis admodum. Quare per refractionem sublevabatur in consequentia, ut consentaneum sit, sine refractione appariturum fuisse in 24° 20' γ . Parallaxis vero ejus nonnisi exigua esse potest, praecipue in longum: nam Mars Soli vicinus ideoque a Terrae centro longissime recessit.

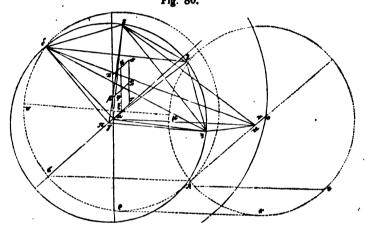
Anno 1592. d. 23. Jan. h. 7. 20' ex unius saltem stellae remotione a Marte sine alterius testimonio repertus est σ in 11° 32' 44" γ , cum lat. 0° 1' 36" merid. Itaque per varietates horizontales nihil mutabimus, suspicantes tamen unius vel alterius scrupuli incertitudinem.

Anno 1593. d. 7. Dec. h. 8. 0' inventus est σ in 3° 6' 50" γ sine periculo variationum horizontalium, cum lat. 7' 9" mer. Ascensio recta tamen a tribus stellis exstructa discrepabat 4': et sumtum pro vero, quod fuit medium inter extrema.

Anno 1595. d. 25. Oct. h. 8. 10' observata est planetae distantia a tribus fixis, et unanimi consensu inventus est planeta in 19° 39' 25" \Im , cum lat. 0° 12' 41" mer.

Reducemus autem tria se	que	otia te	empora	ad p	rimum.	Quare	(
loco eccentrici fuit Mars anno	•	1590	d. 4.	Mart.	h. 7.	10'	
eodem redibit sub fixis annis	•	1592	20.	Jan.	6.	45	
		1593	7.	Dec.	6.	15	
·		1595	2 5.	Oct.	5.	45.	

Motus tridui et 35' unius horae anno 1592. est apud Maginum 2°9'4". Ergo visus est $_{\bigcirc}$ ad nostrum tempus in 9° 23' 40" Υ . Anno 1593. motus h. 1. 45' ex diurno 33' est 2' 25". Itaque ad nostrum tempus locus Martis prodit 3° 4' 25" Υ . Sic anno 1595. motus horarum 2. 25' ex diurno 22' 11" est 2' 14". Ergo ad nostrum tempus locus Martis prodit 19° 41' 39" \bigotimes .



quo

	Sequitu	r erge	o tabel	la loc	orum	
	Martis e	x observ	atione ;	Solis ex	calculo	Tychonis.
1590			r İ		0' 25 [.]	
1592	9.	24 7	ŕ	10.	17. 8	
1593	3.	41/, j	r	25.	53. 24	X.
1595	19.	42 8	5	11.	41. 34	m.
			-			

Jam quia propositum nobis est explorare, quantum Terra ab ipso centro Solis distiterit, prius oportebit nos uti hypothesi ex oppositionibus cum Solis apparenti loco, supra cap. XVI. exstructa, ad investigandum situm lineae, quae ex centro Solis per corpus Martis in zodiacum educitur. Invenitur autem illa linea anno 1595. d. 25. Oct. h. 5. 45' in 14° 19' 52" \bigotimes . Ergo temporibus tribus reliquis toties per 1' 36" est loco anteriori: nempe anno 1593. in 14° 18' 16" \bigotimes : anno 1592. in 14° 16' 40" \bigotimes : anno 1590. in 14° 15' 4" \bigotimes .

> Fiat schema primum in forma Copernici. Fig. 80.

Et sit a Solis centrum : β centrum eccentrici Martis per o traducti: γ centrum aequalitatis motui eccentrico Martis : γ centrum eccentrici Terrae: δ , ε , ζ , η quatuor loca Terrae, opposita locis Solis apparentibus: ϑ locus Martis in eccentrico suo. Connectantur puncta omnia cum omnibus.

Igitur in 8a9 triangulo quia 8a est . et 89		
Angulus orgo αδθ Et quia δθ est et αθ Ergo angulus δθα Asoumatur αθ 100000, q por doctrinam triangulo	30. 19. 35 24. 20. 0 γ 14. 15. 4 8 19. 55. 4 magnitur a 8, quae	Ergo αεθ
In triangulo ζαθ	25° 53′ 24″ × 3. 4. 30 γ 82. 48. 54 3. 4. 30 γ 14. 18. 16 δ	Donique in triangulo η 3 a quia η a 11° 41′ 34′′ m et η 3 . . . 19. 42. 0 8 Ergo a η 3 complem. . 8. 0. 26 Et quia η 3 . . .
Prodit igitur (a	66429.	Prodis igitur η α

Tentabimus, quanta ex hisce distantiis exstruatur eccentricitas. Nam si Solis theoria caret aequante, eccentricitas hujus circuli prodibit 3600 proxime, propterea quia usi sumus veris seu apparentibus locis Solis, quorum aequalitatis punctum tanto spatio (nempe 3600) a centro mundi distare necesse est, ut Braheus ex observationibus Solaribus probavit. Sin autem minor prodibit eccentricitas et quam proxime dimidia Braheanae, vicimus et evicimus, aequalitatis illud punctum, quod Braheus invenit, non esse centrum. eccentrici Solis.

Vides autem (ut obiter admoneam) primo intuitu, $\alpha \zeta$ esse brevissimam, utpote circa perigaeum Solis: post $\alpha \epsilon$ longiorem, utpote in $\pi\pi$, 34° a perigaeo: tum $\alpha \eta$, utpote 54° a perigaeo: denique longissimam $\alpha \delta$, quia 80° abest a perigaeo. Ac cum $\alpha \zeta$ sit pene in perigaeo, erit igitur exiguo longior brevissima. Sic cum $\alpha \delta$ sit prope longitudinem mediam, erit paulo minor mediocri distantia. Quare eccentricitas prodibit paulo major quam 1038, quae differentia est inter $\delta \alpha$ et $\zeta \alpha$. Et si $\delta \alpha$ suscipiat dimensionem 100000, tunc 1038 valebit 1539: et tanta fere, nempe exiguo major, evadet eccentricitas. Id autem multo propius est dimidiae Tychonicae 1800, quam integrae 3600.

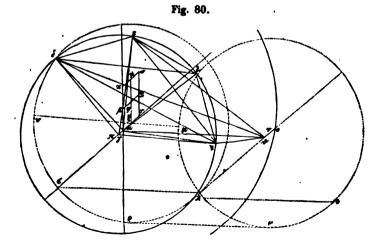
Eadem de apogaeo Solis dicenda. Nam quia $\zeta \alpha$ est brevissima, ergo perigaeum est circa 25° 53' \swarrow . Et quia sa brevior quam $\eta \alpha$, igitur perigaeum est propius apud 10° 17' \simeq quam apud 11° 42' \mathfrak{m} . Medium autem est 25° 57' \swarrow . Ergo perigaeum est ultra 25° 57' \checkmark , ante 10° 17' \simeq , scilicet in \mathfrak{Z} .

Haec in solatium sequuturi laboris praelibare volui. Jam enim via geometrica locum apogaei et eccentricitatem investigabo. Et quia tria puncta ponunt circulum, utar initio punctis δ , ζ , η .

Igitur argumentor ut supra cap. XXV. Cum puncta δ , ζ , η ponantur in eadem circumferentia, cujus γ centrum, erit igitur angulus $\delta \eta \zeta$ dimidium de angulo $\delta \gamma \zeta$, hujusque mensura arcus $\delta \zeta$. Quare proportio dabitur $\delta \zeta$ ad $\delta \gamma$ radium et ad $\gamma \alpha$ eccentricitatem, cum $\delta \alpha \gamma$ angulo: quia $\alpha \gamma$ in apsidas dirigitur. Ad cognitionem vero anguli $\delta \eta \zeta$ et lineae $\delta \zeta$ opus nobis est solutione trium triangulorum.

Primum	in	δαζ,	quia	αð	in	24°	0	r:	25"	¥	

et a ζ	25. 53. 24 🗶		
Quare Sal	88. 7. 1	Hine et ex að	67467
Adde 3' 12" ob praecess.	88. 10. 13	et αζ	66429
Duo residui 8, 5	91. 49. 47	invenitur angulus a 85	45° 27' 22"
Dimidium	45. 54. 54	ojusque sinus	
Ejus tangons		En quo et latore a l'invenitur d	
Secundo in Say, quia ad	24° 0' 25")(
et an	11. 41. 34 1		
Quare San		• •	
Adde ob pracessionem	4. 48		
-	132. 23. 39		
Duo residui δ, η	47. 36. 21	Hine et ex að	
Dimidium	23. 48. 11	et an	67220
Tangens		invenitur angulus and	23° 51′ 0″.
Tertio in Can, quia al .	25° 53' 24" 🖍		
et an .	11. 41. 34 m		
Ergo Lan .		Hinc et ex $\alpha \zeta \cdot \cdot \cdot \cdot \cdot$	
Ob praecessionem adde	1. 36	et an	
	44. 13. 26	invonitur ang	670 3' 12".
		•	
Duo residui ζ, η Dimidium	27 KQ 47 dam		
	VI. VO. 17, Kan	gens review	



Quia orgo . and	23° 51′ 0′′	Εt quia αδζ	45° 27' 22"
et an 5	67. 3.12	et y 8 ζ	46. 47. 48
orgo 845	43. 12. 12	ergo γδα	1. 20. 26
Quars 8 y ζ	86. 24. 24	Residui duo y, a	178. 39. 34
Residui duo 8, ζ	93. 35. 36	Dimidium	89. 19. 47
Dimidium . y85	46. 47. 48	Tangens	8540000
Cujus sinus	72893	Sumatur y 8 esse partium.	100000
Hine st per 8 & invenitur 8 y	68141	orit carun partiun ad .	
		Hine invenitur δγα	68. 26. 7
		ut sit a y in	
		Sinus vero day	
		et simus y da	2340
		ostendunt ay eccentricitatem	2516.15)

Atqui prins dictum, eccentricitatem ex δ et ζ prodire paulo majorem quam 1539, posito quod ζ sit proximum perigaeo. Cum autem hic (pro ζ in collegium ascito η) prodeat eccentricitas longe major, innuitur igitur (quanquam per errorem), esse aliquam in perigaeo, quae sit ipsa $\alpha\zeta$ adhuc brevior. Propterea ut haec in perigaeo brevior esse posset quam $\alpha\zeta$, perigaeum in 16° \mathcal{J} transpositum, hoc est longius ab $\alpha\zeta$ per hanc argumentationem remotum est.

At quia praescimus, Solis perigaeum non esse in 16° \mathcal{J} sed in 6° \mathcal{J} , oportet ut sit causa errorculi in η puncto, et linea $\alpha\eta$ nimis longa; ex qua factum, ut circulus $\delta \epsilon\eta$ prodiret nimis amplus, et $\delta\gamma$ radius ejus nimis longus, propterea $\gamma\alpha$ nimis longa, et γ recta a linea $\delta\eta$ discederet, oblique autem a puncto ζ : itaque jam $\gamma\alpha$ linea vergat nimis in consequentia. Manentibus itaque $\delta\zeta$, ponatur $\alpha\eta$ abbreviari: tunc γ centrum ad lineam $\delta\eta$ recta accedet, et sic $\delta\gamma$ fiet brevior. Et quia γ accedit ad $\delta\eta$ perpendiculariter, discedit igitur a $\gamma\alpha$ praesente oblique. Quare recta ex α per novum positum ipsius γ ejecta, inclinabitur in anteriora versus δ .

Vides igitur, per abbreviationem ipsins $\alpha\eta$ nos utrinque juvari. Abbreviator autem $\alpha\eta$ levissima mutatiuncula, propter angulorum parvitatem: nempe si planeta dicatur visus esse loco paulo priori per lineam ex ϑ infra η demissam. Ut si sit visus locus \Im 19° 40' \Im , et complementum $\alpha\eta\vartheta$ 7° 58' 26", et $\eta\vartheta\alpha$ 5° 20' 8"; erit $\alpha\eta$ 67030. Mutantur igitur secundum et tertium triangula, et fit $\alpha\eta\vartheta$ 23° 53' 6", et $\alpha\eta\zeta$ 67° 15' 32".

281

Quare 8n (43° 22' 26" et 8y (86° 44' 52". Residui 93° 15' 8" dimidium yor 46° 37' 34", et yoa 1° 10' 12"; hinc oy 67892. Et qualium haec est 100000, talium erit að 99416 et dya 73°24' 39". Itaque perigaeum in 10° 36' Z, et eccentricitae adhuc 2100 circiter.

Sicut igitur cum accessione ad verum perigaeum decrevit eccentricitas: ita ubi plane ad justum perigaeum accesserimus, plane etiam ad dimidiationem eccentricitatis accedemus. Sed juvat tamen et hoc inquirere, quantum proficiamus mutatione lineae $\alpha \vartheta$, nempe unius scrupuli additione ad locum Martis eccentricum computatum, manente visione anni 1595 (hoc est puncti η) immutabili. Promota igitur $\alpha \vartheta$, si manerent hae ipsae lineae visionum $\eta \vartheta$, $\zeta \vartheta$ et reliquae, fieret ut $\alpha \vartheta$ secaretur ab $\eta \vartheta$ loco superiori quam est ϑ : vicissim a $\zeta \vartheta$ et sociis secaretur loco inferiori quam est ϑ . Ita $\alpha \vartheta$ non retineret eandem longitudinem. At quia ponimus, Martem esse omnibus quatuor vicibus in eodem loco eccentrici, erit etiam omnibus quatuor vicibus ipsius $\alpha \vartheta$ eadem longitudo. Quare, ut idem sit punctum sectionis O et tamen liueae visionis in pristina vergant loca zodiaci, oportebit ipsi $\eta \partial$ parallelum ducere paulo inferiorem, qua minuatur $\alpha \eta$: vicissim ipsi $\zeta \partial$ exteriorem et parallelum, qua augeatur $\alpha \zeta$: et sic reliquae. Igitur totus labor est repetendus a principio. Erit enim 88a 19°56'4", e8a 34°53'40", ζθα 41° 14' 46", ηθα 5° 21' 8". Quare δα 67522, εα 66660, ζα 66251, na 66963. Hinc ad 45° 26' 37", and 23° 54' 30", and 67° 20' 48". Et on 43° 26' 18" et or 86° 52' 36", rot 46° 33' 42" et yoa 1° 7′ 5″: alius angulus ex aliis principiis. Divisa vero a (per sinum abl, quotiente multiplicato in sinum dal, prodit of 93252. Quo rursum diviso in sinum $\delta \gamma \zeta$ et quotiente multiplicato per sinum $\delta \zeta \gamma$, prodibit 8y 67823. Hinc angulus 8ya 76°.37' 30" et perigaeum in 7° 23' Z, eccentricitae vero 1880 circiter, ut plane futura sit 1800, si perigaeum in $5'/_2$ ° \mathcal{J} referatur, idque per utriusque causae commixtionem.

Nam si jam saltem dimidium scrupulum adimas visioni anno 1595, scopum tenebimus. Unum autem scrupulum in aequationibus eccentri per hypothesin capitis XVI. inventis abesse facile potest.

Quia vero facile per annum 1595 peccatur, hoc jam misso operemur per tria reliqua 8, e, 5, puncta, manente ultima correctione loci eccentrici, ubi nova fiunt triangula $\delta \alpha e$, $e \alpha \zeta$.

Nam quia αδ 24° 0' 25")(st αε 10. 17. 8 ccc	ot a e : . 66660
Angulus orgo dat 43. 43. 17 Ob pracess. asquin. adds 1. 36	inventur
43. 44. 53	ergo εδζ 21. 45. 58 et εγζ 43. 31. 56
Sic quia aε 10. 17. 8 et aζ	<i>et</i> αζ66251
Angulus orgo εαζ 44. 23. 44 Aequin. praecessio 1. 36	invonitur αζε 68° 0' 34" Adde ad αδζ 45. 26. 37 angulum δαζ 88. 10. 13
	• 133. 36. 50 Erit αζδ 46. 23. 10 Erga εζδ 21. 37. 24
ergo sinu yog per simm dy, et quo-	et εγδ 43. 14. 48 Proinde δγζ 86. 48. 44
Hing et ex y 8 invenitur 8 y a 75° 8' 40":	Manet vero

quam prozime ut prius : eccentrioitas

¥.

paulo plus 2000 attenuanda (ut prius) usque ad 1800, si porigasum referatur in $5^{1}/_{5}^{\circ}$, ζ , quod fit por prolongationom ipsius a ε . Prolongatur autem a ε , si dicamus, planetam visum esse sorupulo uno atque altoro ante 9° 24' γ : tunc onim es β puncto, por cetoras observationum lineas constituto, duceretur aliqua exterior ipsa $\beta \varepsilon$ versus $\beta \zeta$.

Si vero quis hanc libertatem mutandi minima in datis suspectam habet, existimans, eadem libertate mutandi ea, quae nobis in observationibus non placent, etiam totalem Tychonis eccentricitatem tandem obtineri posse : hujusmodi igitur aliquis periculum faciat, et ubi suas mutationes cum nostris comparaverit, judicium ferat, utra mutatio intra sensuum defectum consistat : quin etiam id caveat, ne fiducia unius hujuscemodi processus elatus, in ceteris postea sese tanto turpiorem det, diversissimis Solis apogaeis inventis.

Égo certe omnia mea praejudicia et affectationes hic in aperto posui, ut magis metuam, ne importunus, quam ne parum fidus lectori videar.

Porro et hoc obiter dicendum in futurum usum, si $\gamma\delta$ fiat 100000, proditurum $\alpha \vartheta$ 147443, et majorem etiam, ubi, quae adhuc desiderantur, recte habuerint.

Denique ne sim multus, si $\alpha \vartheta$ sit 147700, et eccentricus locus Martis anno 1595. in 14° 21' 7" \Im , et eccentricitas Terrae 1800, et iter Terrae ovale, ut dicetur capite XXX. et XLIV: prodibunt visiones

	24°	21'	13″	γ	Deb.	24.	20	
	9.	23.	20	Ý		9.	24	
Concludo hac vice, $\alpha \vartheta$ esse circiter 147750.	3.	2.	30	Ŷ		3.	4 ¹ /2	
	19.	42.	40	B		19.	42	

Et sic demonstratum est, $\alpha\gamma$ esse circiter 1800, cum debuerit esse 3600, si Tychonis inventa formae Copernicanae et apparentibus Solis motibus accommodentur. Itaque π punctum aequalitatis motus Terrae in linea $\alpha\pi$ quaerendum, ut $\gamma\pi$, $\gamma\alpha$, sint aequales. Mota enim Terra circa π aequaliter, hoc est, $\delta\pi e$, $e\pi\zeta$, $\zeta\pi\eta$ existentibus aequalibus, stabunt observata Tychon is circa Solem, eritque $\pi\alpha$ 3600: distante vero Terra in punctis δ , e, ζ , η a puncto γ aequaliter, stabunt etiam observata in Marte.

In forma Ptolemaica duplex esse potest delineatio. Primum enim Terra. succedat in locum α corporis Solaris: et tunc ex α ejectae lineae visionum, paralleli ipsis 80, 00, 50, 70: sic ut 8, e, 5, 7 loca Terrae Copernicana concedant in unum locum Terrae Ptolemaicum: Martis vero stella, quae apud Copernicum in uno & constiterat, jam circa & in quatuor loca μ , λ , μ circumponatur. Cujus circuli descriptio haec: per θ ducatur sursum parallelos ipsi ya et aequalis, 8, et centro , spatio ye scribatur circulus «x A µ. Itaque in eccentrico, quem prius planeta corpore peragraverat apud Copernicum, jam circumit &, quod punctum affixio-Sic epicyclo circumlato r centrum circumagetur nis dicere possumus. circa ϑ , ut jam sit intra $\vartheta \alpha$, jam extra: sed ϑr semper sibi ipsi et lineae ay parallelos: et epicyclus neque circa o, ubi affigitur, neque circa o centrum aequaliter movebitur, sed circa o superius, ut do sit dupla ad dr; quia sic et Terra circa z aequaliter movebatur, non circa y centrum orbis, nec circa Solem in α .

Haec sic in epicyclum Ptolemaicum redundare recte demonstrantur, at ex epicyclo in theoriam Solis sequentur non nisi per verisimilitudinem ex Ptolemaicis placitis concinnatam. Etenim his ita habentibus, ipsi $\alpha \pi$ aequalis constituatur $\alpha \tau$, in ejusdem lineae partes oppositas; ut τ sit centrum aequalitatis motus Solis, quod artifices crediderunt esse centrum orbitae Solis. Ergo θτο linea semper parallelos erit lineae apogâti Solis ατ. Quodsi parallaxes diurnas Martis in ea proportione ad parallaxes Solis, in qua sunt a Tychone proditae, retinendas arbitraris, erit $i \pi \lambda \mu$ etiam aequalis theoriae Solis: propterea et 90 aequalis eccentricitati puncti r, circa quod Sol movetur aequaliter. Sed et in partes easdem movetur $i \times \lambda \mu$, in quas ipse Sol in suo circulo secundum Ptolemaeum: et iisdem temporibus, iisdem vel respondentibus in locis uterque reperiuntur. Sol in suo eccentrico et planeta in suo epicyclo; sic ut lineae ex 7 per Solem et ex o per planetam perpetuo sint paralleli, docente itidem Ptolemaeo. Ceteris ergo omnibus consentientibus, cur non et hoc consentiat? ut, quia uxlu non circa v centrum, sed circa o punctum superius aequaliter movetur, quod hoc loco demonstratum est transpositu eccentrici terrestris in epicyclum, in quo pro a puncto nacti sumus ϑ , pro γ , r, et pro π , o, sic etiam in Sole ipso haec sint divisa, ita ut ar eccentricitas, quae ex Solaribus observationibus invenitur, bisecanda sit in §, et sit § centrum eccentrici Solis 2000? nam tali processu Ptolemaeus utitur, ut appareat, si apparentibus Solis locis usus esset, omnino etiam eadem eccentricitate usurum fuisse in epicyclo planetae, quam in Sole deprehenderat. Testantibus igitur observationibus de duplici epicycli Ptolemaici eccentricitate (quia propter linearum parallelitatem, ut dictum, eadem triangula manent, quae erant in forma Copernicana), jubet nos Ptolemaei genius, etiam Solis eccentricitatem bisecare, ut sic lineae $\lambda_{i}, \rho_{x}, \sigma_{\lambda}, \nu_{\mu}$ paralleli maneant.

Hac itaque ratione etiam Ptolemaeo persuadebitur, $\alpha \tau$ eccentricitatem motus Solis a Tychone inventam bisecandam esse in ξ , ut Solis orbitae centrum sit in ξ , aequalitas motus in τ .

Haec igitur argumentatio in forma Ptolemaica (uti modo dici coeptum) non est firmior, quam compages ipsa mundi Ptolemaica. Nam qui hoc Ptolemaeo credit, in tribus superioribus inesse totidem theorias epicyclorum, ad amussim aequalium theoriae Solis, in quantitate et qualitate cum linearum tum motuum omnino omnium, idem unam hanc dissonantiam non admittet, sed ex epicyclo lubens in theoriam Solis, tanquam a speculari imagine in ipsam faciem, derivabit hanc quoque bisectionem.

Tandem vero, ubi hypothesium comparatio instituta fuerit apparueritque, quatuor (imo sex, ut alibi dicetur) theorias Solis ex una theoria Terrae, tanquam plures imagines ab una facie substantiali, descendere posse: Sol ipse veritatis clarissimus omnem hunc apparatum Ptolemaicum ceu butyrum colliquabit, et Ptolemaei asseclas partim in Copernici, partim in Brahei castra dissipabit.

Quaerat hic aliquis, cum epicyclus Ptolemaicus tria habeat puncta notabilia, \ast centrum, ϑ punctum quod diximus affixionis, et o punctum circa quod motus ejus aequalis est; dictum vero sit, lineam ϑ o manere ipsi a τ parallelum per omnem circuitum: quales ergo circuitus describantur a reliquis duobus punctis \ast et o? Ad hoc declarandum ducantur ex ξ et τ ipsi $\alpha\beta$, item ex β , χ ipsi $\alpha\tau$ paralleli, eousque donec se mutuo secuerint: et linearum ex ξ et β sectio sit φ , ex ξ et χ sit ψ , ex τ et β sit ς , ex τ et χ sit ω . Quemadmodum igitur punctum ϑ decurrit in eccentrico, qui descriptus ex β regulariter movetur circa χ , sic \ast decurrit in eccentrico, qui descriptus similiter aequali, qui descriptus ex ς regulariter movetur circa ω . Omnium vero trium horum eccentricorum idem sub zodiaco est

apogaeum, eo quod lineae $\alpha \chi$, $\xi \psi$, $\tau \omega$ paralleli sunt. At de nullo proprie usurpari potest vox apogaei praeterquam de primo, puncti ϑ , quia ejus linea apsidum $\alpha \beta \chi$ per ipsam Terram ducitur, quae in α posita fuit, non vero in ξ vel τ .

Verum quidem est, ex α Terra ejici posse per centra duorum reliquorum eccentricorum φ et c rectas, quae dicantur lineae apogaei proprie; quae in antecedentia cadent apogaei $\alpha \chi$; puta $\alpha \varphi$ in 24° Ω , αc in 19° Ω circiter. At tunc hae lineae non transibunt per cujusque eccentrici punctum aequalitatis proprium. Itaque si quis ex Ptolemaei sectatoribus non vult epicyclum affigere eccentrico in puncto ϑ , sed mavult eum alligare in centro \ast , is cogetur uti duabus lineis apsidum, altera $\alpha \varphi$ eccentrici, reliqua $\alpha \psi$ aequantis, et eccentricitatibus $\alpha \varphi$ et $\alpha \psi$; quod quam sit intricatum et incommodum (de absurditate enim sat dictum est capite VI.), judicet hujusmodi aliquis.

Idem erit, si quis velit figere epicyclum eccentrico in puncto o, circa quod epicyclus aequaliter volvitur. Nam tunc eccentricus, deferens punctam o, habebit duo apogaea et eccentricitates; alterum centri in linea α_c , alteram puncti aequalitatis in linea α_{∞} . Restat igitur vel epicyclum in ϑ figere, vel eccentricorum, qui puncta r et o deferunt, apogaea improprie sumere, et eccentricitates computare a punctis ξ, τ , non ab α , Terrae indice.

Atque hactenus prima delineatio fuit in forma Ptolemaica. Altera potest institui sic, ut loca Terrae Copernicana δ , e, ζ , η , concedant non in α , sed in γ , sic ut in hoc schemate non α , sed γ denotet Terram mundi centrum: ubi epicyclus etiam, et ipsius punctorum ϑ , τ , o tres eccentrici situ suo emovebuntur spatiolo $\alpha\gamma$, eritque mera aequipollentia, quam supersedeo ulterius explicare, ne nimium lector confundatur; nam haec quidem mentio tantum fit propter sciolos aut curiosos.

In forma Tychonica nulla nova delineatione opus est. Brevissima indicatio sufficit. Ponitur punctum affixionis eccentrici quatuor sitibus diversis in λ , ρ , σ , ν , ut planeta sit in ι , x, λ , μ , et paralleli $\iota\lambda$, x ρ , $\lambda\sigma$, $\mu\nu$, et &a. Tycho igitur cum dixisset, centrum circuli Martii, quem ipse facit deferre duplicem epicyclum, circumire in concentrico Solis aequaliter circa α , idque in Ptolemaei gratiam, fuit una cum Ptolemaeo et Copernico a me permotus parte prima cap. VI, ut illud seu concentrici centrum seu eccentrici punctum affixionis potius in ipsissimo centro corporis Solaris quaereret; idque rationibus physicis et ostensa possibilitate geometrica, quibus accessit cap. XXII. et XXIII. validum argumentum: quod nisi hoc fiat, etsi observationes ad medium Solis motum referantur, epicyclus Ptolemaicus et deferens Braheanus fiant eccentrici in plagas eccentricitati Solis praecise contrarias. Fortiora autem et ex propriis Brahei observationibus deducta argumenta deserendi concentrici Solis pollicitus sum, et in sequentibus cap. LII, LXVII. producam. Atqui jam est probatum hoc capite XXVI, hoc centrum concentrici Martis (seu punctum, a quo surgit eccentricitas Martis) non inveniri in eccentrico aequali, ex r puncto aequalitatis Solis descripto, quod Braheus cum auctoribus putaverat, sed in eccentrico ex §, quod est medio loco inter α et τ . Ergo si centrum concentrici σ circumit cum Sole, circumit vero in eccentrico ex § descripto, Sol igitur ipse circumibit in eccentrico ex § descripto. At motus ejus est regularis circa r. Eccentricitas igitur Solis $\alpha \tau$ bisecanda est in §. Non est enim verisimile, centro concentrici Martis et Solis pariter circumeuntibus, pariter in apo-

De Motibus Stellae Martis

gaeum incidentibus, pariter apogaeum transponentibus, pariter tardis vel velocibus, pares ambitus describentibus, fieri posse, ut circuli eorum diversas a Terra egressiones in plagam eandem faciant.

Atque hactenus hanc demonstrationis formam in tribus hypothesibus proposuisse sufficiat. In posterum, quoties eadem demonstatione opus fuerit, utar solius Copernici ut simpliciori forma, ne nimium prolixus sim. Jam autem vidit lector industrius, quomodo quodcunque horum schematum in formam vel Ptolemaicam vel Copernicanam per lineas parallelos transformari possit.

Caput XXVII.

Ex aliis quatuor observationibus stellae Martis extra situm acronychium, in eodem tamen eccentrici loco, demonstrare eccentricitatem orbis Terrae cum ejus aphelio, et proportionem orbium ejus loci, una cum loco Martis eccentrico sub zodiaco.

Hactenus fere usi sumus aphelio Martis, una cum correctione motus medii et hypothesi acquationum supra inventa: quae si unicum scrupulum in definienda longitudine planetae sub zodiaco peccent, ut fieri facile potest, multum nobis in hoc negotio incommodant. Itaque jam hic nihil assumemus omnino, nisi periodicum tempus Martis, in quo nullum potest esse dublum, et loca Solis sub zodiaco ex calculo Tychonis. Eccentricum quidem locum ponemus, ut in demonstratione ad impossibile ducente fieri solet: sed eum ipsum repetita positione demonstrabimus.

Observationes hae sunt.

۸.	1585.	7.	Maji		h.	11.	26'	in	25°	ð5'	Ω	Lat.	10	33'	Ь.
	•	12.	Maji		h.	10.	8	in	28.	34,	Ω	Lat.	1.	24 1/3	b.
۸.	1587.	27.	Martii							211/	1ÌD	Lat.	2.	551/2	Ь.
			Aprilis		h.	9.	30	in	17.	11	mp	Lat.	2.	43%	ь.
Δ.	1589.	12.	Febr.	mane	h.	5.	13	in	8.	48	m	Lat.	2.	9	ь.
A.	1590.	28.	Dec.	mane	h.	7.	8	in	8.					14	
▲.	1591.	5.	Jan.	mane	h.	6.	50	in	12.	44º/5	ากั่	Lat.	1.	231/4	ь.

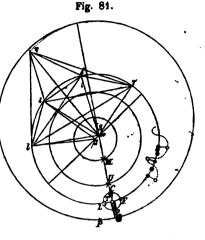
Cum anno 1589 unicus tantummodo dies sit, qui ad ceteros applicari possit, ante et post diu nihil observatum: cetera tempora ad hoc reducantur: eritque catalogus eorum, una cum apparentibus locis Solis et Martis et cum loco eccentrico. Martis, iste:

	Tempus	mane	Sol	Mars	per positionem primam.
1587. 1589.	28. Mart. 12. Febr.	h. 5. 42 h. 5. 13	28° 55 ³ / ₄ ' δ 16. 50 ³ / ₆ γ 3. 41 ³ / ₃)(19. 6 ⁴ / ₆ δ	8. 48 ¹ / ₄ 11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Fiat schema ut prius (Fig. 81), in quo α Sol, β centrum eccentrici Terrae, ζ , δ , ϵ , γ quatuor loca Terrae, η locus Martis in suo eccentrico: et connectantur puncta omnia cum omnibus. Ex datis igitar

. Ott in cocontrios

	Eruni ang	uli cogniti		Hin	e dantur			
αζη	<i>Erwnt ang</i> 87° 58′ 45″	αηζ 38° 2	7' 32''	αζ	62227 ¹ / ₂			
αεη	151. 21. 36	αηε 17.1	1. 38	αε	61675	Methodo	capitis	praec
αδη	114. 53. 25	αηδ 33. 2	3. 1	αδ	60658	dentis X	XVL ")	
	69. 19. 38							


Jam quia super ζe arcu stant duo anguli ad circumferentiam circuli, scilicet ζδe, ζre, oportet hos aequales esse (Eucl. III, 21), et ut aequales evadant, tantisper an super a sub zodiaco ante retroque motanda est. Et quia in hac prima positione ipsi an locus sub zodiaco datus est, ergo probetur, an ζδe, ζre possint aequales esse: tunc constabit, positionem ipsius an recte habere.

Quatuor igitur

triangulorum ζαδ, δαε, εαγ, ζαγ, totidem anguli

quaeruntur,

nempe . . ζδα, εδα, εγα, ζγα, ut habeantur . εδζ, εγζ

Atqui in quolibet horum triangulorum dantur anguli ad a per loca Solis ex Tychone et correctionem per praecessionem aequinoctiorum. Latera vero illum angulum comprehendentia jam modo sunt inventa. Ergo et anguli dabuntur.

Estque 5 a 8 85° 17' 17'' e a 8 43. 10. 20	Et inve- Eda	48° 8′ 59″ 69. 37. 0	Hine E 85 210 28' 1")	difforunt
εαγ 87.46.48 ζαγ 129.53.45	nitur eya	46. 47. 36	Hinc & y 5 21. 19. 6 J P	or 9'. ")

Cum ergo non penitus prodierjnt aequales hi anguli, secunda positione asus sum, promota $\alpha\eta$ sub fixis per 2', et inveni $e\delta\zeta$ 21° 40' 9", $e\gamma\zeta$ 21° 22' 14", differentes 18', quod est duplum prioris discordantiae: unde intellectum, non promovendam, sed retroagendam $\alpha\eta$ in antecedentia.

Tertio igitur posito Martis eccentrico anno 1585. in 5° 20' 2" \cong prodiit $e\delta\zeta$ 21° 15' 54", $e\gamma\zeta$ 21° 13' 54". Differentia adhuc '2', quam tuto neglexèrimus. Proportione tamen usi intelligimus, anticipandum hoc loco Martis eccentricum per 2'/₂', uti prius capite XXII. in opposito semicirculo per 1' fuit promotas: quorum utrumque fit per auctionem eccentricitatis et nonnullam retractionem aphelii.

Jam pergamus ad inquisitionem reliquorum. Et quia uterque angulorum quaesitorum decrevit, decrescent igitur amplius per retractionem ipsius an. Sit ergo uterque 21° 13' et $\zeta\beta e$ 42° 26' duplus ad centrum. Quare $\zeta e\beta$ 68° 47'. In $\zeta \alpha e$ triangulo est angulus $\zeta \alpha e$ 42° 6' 57" et latera dantur ex nova correctione, ut sit $\alpha \zeta$ 62177, αe 61525 circitor. Hinc $\zeta e \alpha$ datur 69° 43' 31" et ζe 44518. Eadem vero ζe ex angulo $\zeta\beta e$ (cujus ζe subtensa) est 72379, qualium $e\beta$ 100000. Ergo qualium $e\beta$ 100000, talium $\alpha \eta$ est 162818, et ideo αe 100174. Subtracto vero $\zeta e \beta$ $\alpha \zeta e \alpha$, relinquitur $\beta e \alpha$ 0° 56' 31" et $\beta a e$ 83° 30'. Quare aphelium in 10° 19' ζ , eccentricitas vero $\alpha\beta$ 1653.

Rursum admodum propinque dimidium ipsius 3600 attigimus; quod procul dubio plene assequemur, ubi et ipsissimum apogaeum attigerimus.

Sciendum tamen est, si ponamus, viam Terrae non esse plane circulam, sed angustiorem ad latera, prodire hic $\alpha\eta$ paulo minorem quam 163100. Et tunc 1¹/₂ ablatis a loco eccentrici, et usurpata eccentricitate Terrae 1800, et aphelio 5¹/₂ $^{\circ}$ $_{\mathcal{S}}$, prodeunt hae visiones:

Consentit haec positio etiam meis observatis anno 1604. d. 29. Febr. vel 10. Martii; quem diem sequente nocte culminantem Martem inveni meis instrumentis in 26° $18\frac{4}{5}$ \simeq , et his assumtis calculus ipsum refert in 26° $17\frac{1}{2}$ \simeq . Fuit autem h. $8\frac{2}{3}$ paucis horis ante observationem rursum in eodem loco eccentrici.

Ceterum, quia hic Mars obtinet latitudinem, igitur $\alpha \eta$ modo inventa est distantia η puncti in plano eclipticae a centro Solis, in quod punctum perpendicularis ex corpore Martis demittitur, ut supra monitum capite XX. Vera autem ipsius corporis planetae a centro Solis distantia paulo fiet longior per 37 particulas.

Caput XXVIII.

Assumtis non tantum locis Solis sub zodiaco, sed etiam distantiis Solis a Terra, per eccentricitatem 1800 exstructis, per aliquammultas observationes Martis in eodem loco eccentrici versantis videre, an unanimi consensu eadem distantia Martis a Sole, idemque locus ejus eccentricus ubique eliciatur; quo argumento comprobatum erit, eccentricitatem Solis 1800 justam esse et recte assumtam.

Ne mirere lector, quod jam tertia yice eccentricum locum Martis non praesuppono, ut is ex hypothesi acronychiarum observationum supra inventa exstruitur. Nam dixi, hypothesin illam esse vicariam tantum, non naturalem; itaque tantam ejus esse fidem, quantum ab observationibus cogitur, et posse locis inter observationes intermediis nonnihil exorbitare. Praeterea expedit nobis, varias habere demonstrationum methodos ad manus, quibus distantias Martis z Sole undique per totum circulum tuto exploremus. Et hic quoque nova forma sequitur.

Observationes hae sunt.

Anno 1583.	22. April.	h. 9 ³ / ₂	fait in	1* 17'	Ω	Lat. 1º 50 ³ /1' b.
Anno 1585.	9. Mart.	h. 91/	in	11. 49 1/10	Ŕ	Lat. 3. 291/10 b.
						Lat. 3. 24 ¹ / ₆ b.
	12. Mart.	h. 5	in	11. 45%	Ŕ	Lat. 3. 21 ³ / ₂ b.
Anno 1587.	26, Jan.	h. 5 ·	'mane in	4. 41 ³ /	4	Lat. 3. 26 b.
	28. Jan.	h. 5	mane in	4. 41	Ľ	Lat. 3. 27 b.
Anno 1588.	5. Dec.	h. 61/2	mane in	9. 23	2	Lat. 1. 44 % b.
						Lat. 1, 54 b.
Anno 1590.	31. Oct.	h. 61/	mane in	2. 57 1	<u> </u>	Lat. 1. 15 ¹ / ₂ b.

Accommodatis reliquarum observationum temporibus, ut restituant Martem in eum locum eccentrici, qui fuit tempore ultimo, prodeunt nobis haec momenta, quibus adscripta loca Solis requisita, et distantiae Solis et Terrae ex hypothesi hactenus stabilita computatae. Sunt autem eae ipsae, ob quas probandas hunc laborem suscipimus. Porro artificium computandi hasce distantias paulo post sequetur cap. XXX.

						•				_							et Terrae.
1583.	23. Apr.	h .	81/10	8.	m.;	ð	' in	1°	291/,'	Ω	Θ	in	12°	10	-3"	8	101049
	10. Mart.																99770
1587.	26. Jan.	h.	7%					4.	41 %	Ň			16.	5.	55	<u>.</u>	98613
	13. Dec.																
1590.	31. Oct.	h .	64	39		39		2.	571/2	4			17.	28.	33	m	98770

Quod observationum deductionem attinet ex diebus observationum ad nostra momenta, primo tempore diurnus ex Magino fuit transsumtus, cum in spatio paucarum horarum non sit periculum erroris. Cetera tempora observationibus ante et post sunt munita. Tempore tamen penultimo inspexi etiam seriem diurnorum in Magino: nam versus 15. Dec. diurnus fuit 30', circa 5. Dec. 32'. Ultimo tempore etsi Mars in altitudine 23° refractionibus est obnoxius, ita ut facile 2' in latitudine desiderari possint (nam Tycho contendit, refractiones fixarum, planetis etiam adhibendas, desinere quidem in hac altitudine, Solares vero altius pertingere esseque in hac altitudine circiter 4', quae distinctio ventilata et conquassata est in Astronomia mea Optica fol. 137 (214) et amplius etiam redderetur dubia, si quid esset in parallaxibus Solis mutandum): tamen haec refractio parum nocet longitudini Martis.

Sit α corpus Solis, $\alpha\beta$ eccentricitas orbis Terrae 1800, et linea augium in $5^{1}/_{2}^{\circ}$ \odot , loca Terrae ζ , ε , δ , γ , ϑ , et corpus planetae quinquies in η , eodem loco eccentrici, utpote post integras Martis periodos. Et connectantur puncta omnia. Lubet inquirere $\alpha \eta$, ejusque locum sub zodiaco, hoc est angulum $\eta \alpha \vartheta$, $\eta \alpha \gamma$, vel aliquem alium Id faciemus ex binis Terrae locis ad α . in hanc modum. Sint primum e, d. Et in triangulo e a 8 datis lateribus, e a 99770, að 98613 et angulo sað, quaerantur reliqua, anguli scilicet 8, e, et latus 8 e. 29° 41' 4" +

	16.	Ð.	05 333					
	43.	35.	9	•				
Praeces	nio	1.	36 ·					
88	8 43.	36.	45	-				
Prodount a d e 69º	11.41,	" ae	870 2	1' 35"	et de	73	700.	
His invest	tio atie (ad t r	ionnulum	EN 8 a.	neend	itur.		
Cum onim sit Ea 2	9º 41'	4"	χ	ða	160	5'	55"	
ot en 1	1. 48.	20	ହି	δα δη	4.	41.	45	5
Erit aen 13				αδη				· · ·
Sed jam fuit ard 6				αδε				
Ergo residuus ned 6	4. 45.	41	_	ηδε	62.	22.	29	

Horum residuum ad duos rectos end 52°, 51' 49" (50')

Datis orgo angulis ε , η , δ , et uno latore $\varepsilon\delta$, dabitur et latus $\varepsilon\eta = 81915$. Demique et triangulum nea solvatur, in quo dantur jam en 81915, ea 99770 et ut prius 132° 7' 16". Ergo ean 21° 26' 32" et an quassita 166208.

Kepleri Opera III.

19

Fig. 82.

Distantiae Solis

289

De Motibus Stellae Martis

Ean 21º 26' 32"

Sed at anno 1585 est in 29° 41′ 4″ m

Ergo an anno 1585 est in 8. 14. 32 mp.

Quodsi reliquae tres observationes ad 5, 7, 9 hunc sunder locum et longitudinem ipsius an passas fuerint, erimus de iis confirmatissimi.

Quomadmodum igitur hactonus por E, d, sic jam operabinur per L, y, quaerontes eandom an.

Pro 5, y angulis et linea 5y: a5 101049, ay 98203; 12º 10' 3" 🖯 4 44 53

																1.		03	/O	
															1	30.	25.	10		
													Prac		0		4.	48		
·													•	•	1	30.	29.	58		
	•				Pro	dil	α	γŠ	25°	7' (19", o	ιζy	24°	22'	13"	st	67 1	80933	3.	
	•										Et ja	m i	inζy	η.						
Juia	est	ζ	η			•			10	291	′/₅′ Š	RI	y ๆ	130	35'	40	· 🗠			
	et	Š	α	•	•	•	•	•	12.	10.	/.	8	γα	1.	44.	53	ð	_		
Ergo	η	50	CK	,	•		•	•	79.	19.	27	7	ηγα	78.	9.	13		_		
Sed	Ŷ	ζ,	α	۰.	•	•			24.	22.	13		ζγα	25.	7.	49		-		
Ergo	η	51	Y				•		54.	57.	14	- -	ηγς	53.	1.	24	et ho		rosiduum	
d d	408		ecto	08	y T	١Ç			72°	-11	22".				·				-	
			Id	m	et	iam	h	ino	elici	tur :	ast C	7) Ù	۰.	•			1° 29	"	ନ	
											et y	ŋ in		••	• •	13	3. 35	. 40	द्वाय	
			Et	81	sbta	rac	la j	pro	16C838	ione	tempo	ris	inter	medi	i in	13	3. 30	. 52	~	

Ergo y n 5 72. 1. 22.

· Datis igitur angulis trianguli ζηγ et latere ζγ, quaeritur latus ζη; prodit 151960. Donique in triangulo 75a dantur latora et angulus comprehensus:

ζη 151960, ζα 101049 ηζα 79° 19', 27"

Prodit ζaη	63° 58′
Sed est a 5 in .	12. 10. 3" 🖔 anno 83
Ergo an in	8. 11. 31 anno 83
Praecessio	1. 36
Quod esset in .	8.13.8 anno 85
Prius in	8. 14. 32 anno 85
Differentia	1. 24.
an prodit	166179
Prius	
Differentia	29.

Apparet itaque, nos per duas alias observationes in ζ et γ codem venire intra sonsus subtilitatem. Nam sesquiscrupuli error in observando, aut deducendo loco observato ad diem non observatum, committi potest.

Sed videamus etiam testimonium loci & quinti, hoc est observationis in 9. Scimus 9 a esse in 17º 28' 33" M et 9 a ponimus 98770.

Et 3η in . . . 2. 57. 20 🚔 observata est, orgo angulus α3η 44° 31' 13". Huic angulo quo longiorom αη subtondoro, hoc longius ipsam a y in conseguentia promovebo et contra.

Sit igitur an 166208, ut initio est inventa.

Ut igitur an ad adn, sie ad and.	Prodit αηθ
	Ergo αη in 8. 19. 52 m anno 90 Praecessio 4. 48
Itaque per tenuissimam curtationem ipsius ay cadet ay plane eodem cum	Quod fuit primo. 8. 14. 32
primis duabus observationibus. 18)	Differentia 0' 32''

Itaque hinc apparet, distantias $\alpha \zeta$, $\alpha \epsilon$, $\alpha \delta$, $\alpha \gamma$, $\alpha \vartheta$, et proinde eccentricitatem $\dot{\alpha}\beta$ a nobis recte susceptam et positam. Impossibile est enim, aliis susceptis distantiis hisce (ut tamen etiam in circulum quam proxime quadrent, et in suis debitis locis sub zodiaco fuerint) ex omnibus quinque observationibus unam et eandem dari $\alpha\eta$ ejusque locum sub zodiaco. Cre-

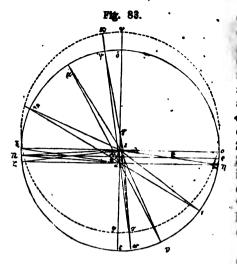
a

demus autem de longitudine ipsius $\alpha \eta$ potissimum observationibus ζ, γ, ϑ , nam etiam in vulgari ratione mensurandi distantias rerum in Terra, quo longius distiterint a se mutuo stationes, hoc certius habetur signi remotio. In loco vero sub zodiaco credemus potius observatis in s, ϑ , quia si quis est errorculus in longitudine $\alpha \eta$, is visui in s, ϑ admodum oblique objicitur nec angulum evidenter mutat.

Nec illud obliviscendum, ipsam $\alpha \eta$ intra spatium annorum 7, ab anno scilicet 1583 in 1590, nikil prolongari sensibiliter ob aphelii progressum tardissimum.

Summa. Anno 1590 d. 31. Oct. h. 6⁴/₄ mane Mars motu eccentrico fait in 8° 19' 20" m, cum reponatur per hypothesin ex acronychiis constitutam in 8° 19' 29" m. Distantia ejus 166180, quae prolonganda est ob latitudinem, ut fiat ex ea ipsius corporis Martis a centro Solis distantia 166228 circiter.

Caput XXIX.


Methodus exstruendi distantias Solis et Terrae ex cognitione eccentricitatis.

Satis opinor confirmatum est, distantias Solis et Terrae exstruendas ex dimidiatione eccentricitatis a Tychone repertåe, quod etiam ex diametri Solis aestiva et hiberna observatione erebro confirmatur, ut in Optica Astronomiae parte ostendi capite XI. Sed et Mysterio Cosmographico mirifice confirmatur, cap. XV. ? fol. 53 (L 157) in laterculo, ubi prosthaphaereses Martis, Veneris, Mercurii interpositu Lunaris orbis deficiebant, omissione ejus excedebant. Jam igitur retento orbe Lunae, bisecta vero eccentricitate Solis, quam proxime justae provenient.

Atque idem porre saepius multoque clarissime confirmabitur, ubi usurpatione harum distantiarum ex bisectione prodeuntium (ut jam proximo capite coeptum) viderimus phaenomena sequi. Quare ut hae distantiae ad futuros usus nobis in promtu sint, docebo, quomodo facile computari possint, geometrica demonstratione usus.

In linea $\alpha\delta$ (Fig. 83) sit α corpus Solis (vel Terrae Tychoni, vel centrum affixionis épicycli Ptolemaeo): β centrum $\zeta\delta\eta$ eccentrici Terrae (vel Solis et orbis annui Tychoni, vel epicycli Ptolemaeo): et continuata $\alpha\beta$ secet eccentricum in δ , ϵ , sic ut δ sit aphelium vel apogaeum, ϵ perihelium seu perigaeum: et fiat ipsi $\alpha\beta$ aequalis $\beta\gamma$, sitque γ centrum motus seu aequalitatis, apud quod Terra (in Ptolemaeo centrum epicycli, in Tychone Sol et punctum affixionis eccentricorum omnium) aequalibus temporibus aequales angulos constituit. Sitque $\alpha\gamma$ ex observatis Tychonis et Landgravii 3600: $\alpha\beta$ vero secundum meam mutationem hactenus demonstratam sit 1800. Agatur autem per α ipsi $\delta\epsilon$ perpendicularis $\zeta\eta$, secans circulum in ζ , η ; per idem vero α ducatur recta $\delta\epsilon$, quomodocunque inclinata, secans circumferentiam in ϑ , ϵ ; et connectantur quatuor puncta ϑ , ϵ , ζ , η cum centro β . Sit autem et hoc initio positum, etsi Terra (Sol vel planeta) aequaliter movetur circa γ ideoque inaequaliter circa β , tamen manere illam in circuli ex β descripti circumferentia. Per aequipollentiam autem capite II.

19*

demonstratam (quod ad vitandam confusionem Ptolemaicae hypothesi generali non applicabo) hoc idem est ac si dicas : Terram (vel Solem) moveri inaequaliter in Suoxertpent $x \Rightarrow x \lambda \varphi$, centro α , epicycli semidiametro aequali ipsi $\alpha\beta$; et arcus concentrici a centro epicycli descriptos similes esse ercubus epicycli a Terra (vel Sole) descriptis, ut et Terra (vel Sol) et centrum epicycli moveantur inaequaliter aequalibus temporibus. et sic simul fiant tardi, simul iterum veloces. Physicam autem hujas hypotheseos explicationem paulo differam.

Nunc his positis ad distantiarum opus accedam. Et quia $\beta\delta$ 100000,

et $\beta \alpha$ 1800, et $\alpha \beta \delta$ recta, per additionem igitur utriusque habetur $\alpha \delta$ distantia ophelia: et quia etiam $\beta \epsilon$ 100000, subtracta igitur $\alpha \beta$, restat $\alpha \epsilon$ perihelia.

Et quia $\beta \alpha \zeta$ rectus et $\zeta \beta$ 100000, hoc est sinus totus, ergo $\alpha \beta$ est sinus anguli $\alpha \zeta \beta$, igitur $\alpha \zeta \beta$ est 1° 1' 53" nempe pars aequationis Solis vel Terrae optica. Nam aequatio quidem maxima mediarum longitudinum, quae ex parte optica et physica componitur, eccentricitatem totam 3600 (seu 3592) pro sinu habet: ita ut Sol vel Terra ex δ in ζ veniens, duos quidem dies adjecerit quartae parti temports periodici, sed tamén unius solius diei iter supra quartam partem totius circuitus confecerit, atque ita hoc spatio, vel quadrante temporis periodici, ex debilitatione physica unum diem diutius debito insumserit.

Sed ad distantiam $\alpha \zeta$. In triangulo igitur $\zeta \alpha \beta$ rectangulo, altero acutorum dato, alter $\zeta \beta \alpha$ erit residuum ad quantitatem unius recti, nempe 88° 58' 7". Et propterea $\alpha \zeta$ erit sinus hujus anguli, scilicet 99984: et tanta etiam est $\alpha \eta$ opposita.

Pro intermediis distantiis duorum oppositorum graduum anomaliae coaequatae inveniendis inspiciatur ϑ , transiens per corpus α , unde computatur eccentricitas. Nam $\vartheta \alpha \vartheta$ et $\vartheta \alpha$, sunt anomaliae coaequatae et oppositae, utpote α interposito in eadem recta. Cadat autem ex β perpendicularis in ϑ , quae sit βx , ita ut sint aequales ϑx , x. In triangulo igitur $\beta x \alpha$ rectangulo datur basis $\beta \alpha$, et angulus $x \alpha \beta$ ex numero graduum integrorum anomaliae coaequatae suscepto, et $x \beta \alpha$ complementum ejus ad quadrantem: non erunt igitur incognita latera $x \alpha$, $x \beta$. Est autem $x \beta$ sinus anguli $x \vartheta \beta$ vel $x_i \beta$, quo dato noscetur etiam $\vartheta \beta x$ vel $i\beta x$ complementum illius ad quadrantem, ejusque sinus, nempe linea ϑx vel x_i . Apposita igitur $x \alpha$ ad $x \vartheta$, habetur $\alpha \vartheta$; eadem ablata a ix, habetur αi , illa distantia ad anomaliam coaequatam $\vartheta \alpha \vartheta$, haec ad coaequatam $\vartheta \alpha i$, quae habet sibi aequalem etiam in priori semicirculo; sic ut illa tantum distet ab aphelio in semicirculo $\vartheta \vartheta$, quantum haec in semicirculo $\vartheta \eta$.

Jam per α agatur recta μ , secans circulum in μ , , et faciens angulum $\mu \alpha \delta$ acqualem angulo $\kappa \beta \alpha$, et ex β in μ , descendat perpendicularis $\beta \lambda$,

bisecans $\mu \tau$ in λ ; et connectantar μ , $\frac{1}{2}$ cum β . Cum ergo $\kappa \alpha \beta$ sit graduum integrorum angulus, erit et residuns $\kappa \beta \alpha$, eique aequalis $\mu \alpha \delta$ integrorum graduum, et in triangulis $\beta \kappa \alpha$, $\beta \lambda \alpha$ similibus aequale erit latus $\kappa \alpha$ lateri $\lambda \beta$, et $\kappa \beta$ ipsi $\lambda \alpha$. Est autem $\lambda \beta$ sinus anguli $\lambda \mu \beta$, $\lambda \tau \beta$; et ipsius $\lambda \mu \beta$ complementum est $\lambda \beta \mu$, $\lambda \beta \tau$; ejusque sinus linea $\lambda \mu$, $\lambda \tau$; et ipsarum $\alpha \mu$, $\alpha \tau$ differentia $\lambda \alpha$. Atqui quantitates $\lambda \alpha$, $\lambda \beta$ jam inventae sunt in triangulo $\alpha \beta \kappa$. Ergo unius trianguli ope quatuor inveniri possunt distantiae aequalibus angulis ad α , remota a linea apsidum ejusque perpendiculari $\zeta \eta$ per α ducta: est enim $\mu \alpha \zeta$ aequalis ipsi $\theta \alpha \partial$ et $\tau \alpha \eta$ ipsi $\epsilon \alpha s$. Est itaque longissima distantia in δ , brevissima in e, mediocris vero et aequalits ipsi $\beta \zeta$, non in $\zeta \eta$; sed neque in linea per β , ipsi $\zeta \alpha$ parallelo, quae sit ξo . Nam $\alpha \zeta$ minor est quam $\beta \zeta$, eo quod minori $\zeta \beta \alpha$ subtendatur quam est $\zeta \alpha \beta$, utpote rectus; et $\alpha \xi$ ducta longior est quam $\beta \xi$, eo quod majori $\xi \beta \alpha$ (utpote recto) subtendatur, $\xi \beta$ vero minori $\xi \alpha \beta$.

Ut autem distantiae mediae locus geometrice designetur, bisecetur $\alpha\beta$ signo σ , perque hoc perpendicularis ipsi $\alpha\beta$ agatur $\pi\rho$, secans circulum in π, ρ . Dico haec esse signa aequaliter ab α et a β distantia. Connectatur enim alterum signorum $\pi \cdot \operatorname{cum} \alpha$ et cum β , erunt $\pi\alpha, \pi\beta$ aequalibus (utpote rectis) angulis $\pi\sigma\alpha, \pi\sigma\beta$ subtensae, et $\alpha\sigma, \sigma\beta$ aequales, et $\pi\sigma$ communis. Ergo $\pi\alpha, \pi\beta$ aequales. Et sic Reinholdo usurpata demonstratio de tota $\alpha\gamma$ et ejus medio puncto β , vera manet de puncto σ et dimidia $\alpha\beta$.

Possit ightar aliquis cogitare, cum in π distantia $\alpha \pi$ fiat aequalis ipsi $\beta \pi$ semidiametro, angulum etiam $\beta \pi \alpha$ majorem esse ipso $\beta \zeta \alpha$, et sic maximam aequationem in π contingere: argumento usus, quod recta $\beta \alpha$ ipsi π frectins objiciatur quam ipsi ζ . Atqui verum non est, quod erat propositum. Nam quanto obliquius $\beta \alpha$ respicit ζ , tanto longius vicissim distat π quam ζ , cum $\pi \sigma$ sit longior quam $\zeta \alpha$, major enim $\pi \beta \sigma$ quam $\zeta \beta \alpha$, cui $\zeta \alpha$ subtenditur.

Demonstravit igitur recte Ptolemaeus et ex eo Reinholdus in Theoricis, maximam acquationem (eccentri quidem solitariam seu opticam) contingere Eam tamen demonstrationem in forma alia faciliori hic proponam. in ζ. Sit signum qualecunque supra ζ , utpote ϑ , et qualecunque infra η vel ζ . utpôte :, et connectantur cum α ; et ex β perpendiculares cadant in $\partial \alpha$ vel : α continuatam, quae sint βx . Quia igitur aequales sunt $\partial \alpha \zeta$ et $\beta x \alpha$ utpote recti, et $\kappa\beta\alpha$, $\kappa\alpha\beta$ juncti acquales uni recto, eodem igitur $\delta\alpha\partial$ vel $\beta \alpha x$ ab aequalibus ablato, relinquentur $\partial \alpha \zeta$, $x \beta \alpha$ aequales. Et primum atque supra punctum ζ ducitur aliqua per α , ut jam $\partial \alpha$, seu proximum sit ϑ ipsi ζ seu remotum, simul etiam a $\beta \alpha$ declinat illius perpendicularis βx . Major autem est $\beta \alpha$ quam ulla perpendicularium βx , cum $\beta \alpha$ subtendatur $\beta x \alpha$ recto, βx vero acuto $\beta \alpha x$ et minori. Cum autem $\beta \zeta$, $\beta \vartheta$, β , sint sequales, et $\beta \alpha \zeta$, $\beta \star \theta$, $\beta \star \iota$ recti; quadrant igitur in eundem semicirculum, cuins diameter est aequalis ipsis $\beta \zeta$, $\beta \vartheta$, $\beta \iota$. Itaque $\beta \alpha$ (ut longior) majorem circumferentiam hujuscemodi alicujus semicirculi subtendit quam β x ant quaecunque perpendicularium; et proinde major erit ejus angulus $\beta \zeta \alpha$ quam $\beta \partial x$ aut cujuscunque puncti alterius supra ζ , utpote π vel ξ . angulus prosthaphaereseos. Quod erat demonstrandum.

Quae hoc capite de computandis distantiis Solis et Terrae sunt dicta, valebunt etiam in Marte, quantisper erit in suppositis, planetarum orbitas ease circulos perfectos. Quo falso deprehenso, alia methodus tradetur eas computandi.

Caput XXX.

Tabula distantiae Solis a Terra ejusque usus.

In hunc modum exstructas distantias Solis tanquam ad integros gradus anomaliae coaequatae totius semicirculi (nam quae in altero semicirculo sunt, aequaliter ab apogaeo distantes cum his, aequales quoque sunt his) conjecimus hic in tabellam, cujus columnae tres sunt. In prima, quam diximus anomaliam mediam, sunt anguli $\delta\beta\mu$, $\delta\beta\phi$, $\delta\beta\xi$, $\delta\beta\epsilon$, $\delta\beta\tau$, compositi ex $\delta\alpha\mu$, $\delta\alpha\phi$, $\delta\alpha\xi$, $\delta\alpha\epsilon$, $\delta\alpha\tau$ integrorum graduum angulis, et ex eorum aequationibus opticis seu eccentri, puta $\beta\mu\alpha$, $\beta\delta\alpha$, $\beta\xi\alpha$, $\beta\epsilon\alpha$, $\beta\tau\alpha$. In secunda distantiae ipsae $\alpha\mu$, $\alpha\phi$, $\alpha\xi$, $\alpha\epsilon$, $\alpha\tau$ collocantur e regione. In tertia sub titulo anomaliae coaequatae collocantur anguli hic non depicti, sed quorum originis ratio partim jam statim, partim capitious XXXI. XL. detegetur. Existunt autem per subtractionem aequationum opticarum $\alpha\mu\beta$ etc. a $\delta\alpha\mu$ etc. Itaque ipsis $\delta\alpha\mu$ angulis integrorum graduum nullam dedimus columnam, quia sunt medium arithmeticum inter columnarum lateralium angulos et sic se ipsis facile intelliguntur, nec usui sunt, ut audiemus.

Ingressus ergo cum anomalia media vel coaequata, prout usus feret, utralibet in sua propria columna quaesita, vel cum alterutrius complemento ad integrum circulum, ubi semicirculum ipsa excesserit, invenies distantiam Solis a Terra quaesitam, in partibus qualium radius orbis est 400000 et eccentricitas 1800.

Verum est, quod hoc pacto (dum distantiam $\alpha \zeta$ anguli $\delta \alpha \zeta$ tribuimus angulo, qui tanto est minor ipso $\delta \alpha \zeta$, quanto $\delta \alpha \zeta$ minor est quam $\delta \beta \zeta$ affingitur circuitui Terrae (vel Solis) circa α via non plane circularis sed ovalis. Nam quia (exempli gratia) distantia $\alpha \zeta$ exstructa est per angulum $\delta \alpha \zeta$ 90° integrorum, et positum fuit in operatione, hunc $\delta \alpha \zeta$ esse anomaliam coaequatam, jam vero juberis distantias excerpere per angulos anomaliae, quae in nostra tabula coaequata dicitur, diminutos prosthaphaeresi $\beta \alpha \zeta$, ideoque accidit, ut per 90 non excerpas 99984, cum tamen prius per 90 exstruxeris 99984 : nam hic jam e regione 99984 invenis coaequatam 88° 58' 7", quae non est tua: proposita est namque tibi 90°, quae inferius quaesita exhibet 99953, cum ex lege circuli $\alpha \zeta$ vel $\alpha \eta$ debuerit esse 99984. Itaque omnes distantiae minuuntur ad latera, maxime circa ζ , η , nihil in 8, s. Quo pacto plane ovalis pro circulari via substituitur. Idem tibi eveniet, si per anomaliam mediam tibi aliunde oblatam fueris ingressus. Nam anomalia media notavit supra, cum schema describeretur, angulos apud y. Jam autem ingrederis per angulos apud β , minores illis ad γ prosthaphaeresi optica. Et 91° 1' 53" anomaliae mediae exhibet tibi 99984. Supra vero tantus erat $\delta\beta\zeta$, neque tamen ibi erat anomalia media, nam illa fuerat $\delta\gamma\zeta$ adhuc major: itaque 91° 1' 53" anomalia illa media construxerat illic longiorem distantiam, quam ejusdem hic magnitudinis anomalia media 91° 1' 53" hic exhibet. Totum, inquam, hoc verum est. Sed nibil est, cur te impediri patiaris. Etenim, quia de unius gradus differentia agitur, vides distantias intra unum gradum non plus 31 particulis de centum millibus variari: itaque nihil sensibile erraretur, etsi hoc praepostere fieret. Causam autem hujus rei, analogia ceterorum planetarum etiam in theoriam Solis deducendam, infra cap. XLIV. et seq. invenies. Non itaque praepostere, sed rectissime hoc fit, quod qualitatem attinet figurae quam planeta describit suppositae.

Quod vero quantitatem attinet, excedit medicina modum. Nam anomalia coaequata 88° 58' 7", cui media respondet 91° 1' 53", non debuit exhibere 99984, sed 100000, quod est medium inter schematis et inter tabulae distantias. Causa hujus affirmati differenda est in cap. LV. et sequentia.

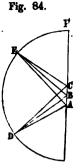
Dictum autem jam est, nos nihil sensibile aberraturos, si 31 particulis aberremus; multo minus igitur nocebit nobis ad sensum, si solum dimidio, nempe particulis 16 erremus. Itaque interim hunc errorculum tuto admittimus, ut nos ad captum ejus, qui hucusque legendo provectus est, accommodemus, neque praesupponere videamur, quod erat demonstrandum.

Anomalia mędia.	Distantia.	Anomalia coaequata	Anomalia media.	Distantia.	Anomalia coaequata.
0° 0′ 0′′	101800	0° 0' 0''	45° 43' 45"	101265	44° 16' 15"
1. 1. 5	101800	0. 58. 55	46. 44. 30	101242	45. 15. 30
2. 2. 10	101799	1. 57. 50	47. 45. 15	101219	46. 14. 45
3, 3, 14	101797	2. 56. 46	48. 45. 59	101195	47. 14. 1
4. 4. 8	101795	3. 55. 42	49. 46. 42	101172	48. 13. 18
5. 5. 23	101703	4. 54. 37	50. 47. 24	101147	49. 12. 36
6. 6. 27	101790	5. 53. 33	51.48.5	101123	50. 11. 55
7. 7. 31	101786	6. 52, 29	52. 48. 46	101098	51. 11. 14
8. 8. 36	101782	7. 51. 24	53. 49. 25	101073	52. 10. 35
9. 9. 40	101777	8. 50. 20	54. 50. 3	101047	53. 9. 56
10. 10. 44	101772	9. 49. 16	55. 50. 41	101022	54. 9. 19
11. 11. 48	101766	10. 48. 12	56. 51. 18	100995	55. 8. 42
12. 12. 52	101760	11. 47. 8	57 51. 54	100969	56. 8. 6
13. 13. 55	101753	12. 46, 5	58. 52. 29	100942	57. 7. 31
14. 14. 58	101746	13. 45. 2	59. 53. 3	100925	58. 6. 57
15. 16. 1	101738	14. 43. 59	60. 53. 35	100688	59. 6 . 25
16. 17. 3	101729	15. 42. 57	61. 54. 7	100860	60 . 5 . 53
17. 18. 6	101720	16. 41. 54	62. 54. 38	100832	61. 5. 22
18. 19. 8	101710	17. 40. 52	63. 55. 8	100804	62. 4. 52
19. 20. 9	101700	18. 39, 51	64. 55. 37	100776	63. 4. 23
20. 21. 10	101689	19. 38. 50	65. 56. 5	100747	64. 3. 55
21. 22. 11	101678	20. 37. 49	66. 56. 32	100719	. 65. 3. 28
22. 23. 11	101666	21. 36. 49	67. 56. 58	100690	·66. 3. 2
23. 24. 11	101654	22. 35. 49	68.457. 22	100660	67. 2. 38
24. 25. 10	101642	23. 3 4. 50	69. 57. 46	100631	68. 2. 14 69. 1. 51
25, 26, 9	101628	24. 33. 51	70. 58. 9	100601	
26. 27, 8	101615	2 5. 32. 5 2	71. 58. 30	100571	
27. 28, 6	101600	26. 31. 54	72. 58. 51	100542	71. 1. 9 72. 0. 49
28. 29. 3	101586	27. 30. 57	73. 59. 11	100511	73. 0. 31
29. 30. 0	101570	28.30,0	1	1 100101	74. 0. 14
30. 30. 56	101555	29. 29. 4	75. 59. 46	100451	74. 59. 58
31. 31. 52	101539	30, 28, 8	77. 0. 2	100420	75. 59. 42
32. 32. 47	101522	31. 27. 13	78. 0. 18	100389 100359	76. 59. 42 76. 59. 28
33. 33. 42	101505	32. 26. 1 8	79. 0. 37		77. 59. 15
.34. 34. 36	101487	33. 25. 24	80. 0. 45	100328	78. 59. 3
35. 35. 29	101469	34. 24. 31	81. 0. 57	100297 100266	79. 58. 53
36. 36. 22	101451	35. 23. 43	82. 1. 7	100200	80. 58. 44
37. 37. 14	101432	36. 22. 46	83. 1. 16		81. 58. 36
3 8. 38. 6	101412	37. 21. 54	84. 1. 25	100203 100172	82. 58. 28
39. 3 8. 57	101392	38. 21. 3	85. 1. 32	100172	83. 58. 22
40. 39. 47	101372	39. 20. 13	86. 1. 38	100141	84. 58. 17
41. 40. 36	101351	40. 19. 24	87. 1. 43	100108	85. 58. 14
42. 41. 24	101330	41. 18. 36	88. 1. 46	100047	86. 58. 11
43. 42. 12	101308	42. 17. 48	89. 1. 49	100015	87. 58. 9
44, 42, 59	101287	43. 17. 1	90. 1. 51	1 100010 1	01. 00. V

Anomalia media.	Distantia.	Anomalia coaequata.	Anomalia media.	Distantia.	Anomalia coaequata.
91° 1' 53"	99984	88º 58' 7"	136° 42' 59"	98698	135º 17' 1"
92. 1. 51	99952	89. 58. 9	137. 42, 12	98676	136, 17, 48
93. 1. 49	99921	90. 58. 11 [•]	138. 41. 24	98655	137. 18. 36
94. 1. 46	99890	91. 58. 14	139. 40. 36	98634 ·	138. 19. 24
95. 1. 43	99 858	92. 58. 17	140. 39. 47	98614	139. 20. 24
96. 1. 38	99827	93. 58. 22	141. 38. 57	98595	140, 21, 3
97. 1. 32	99796	94. 58. 28	142. 38. 6	98575	141. 21. 54
98. 1. 25	99765	95, 58, 35	143. 37. 14	98557	142. 22. 46
99. 1. 1 6	99734	96. 58. 44	144. 36. 22	98538	143. 23. 38
100. 1. 7	99703	97. 58. 53	145, 35, 30	98520	144. 24. 30
1 01. 0 . 57	99672	98.59.3	146. 34. 36	98503	145. 25. 24
10 2. 0. 4 5	99641	99. 59. 15	147. 33. 42	98486	146. 26. 18
103. 0. 31	99610	100. 59. 29	148. 32. 47	98469	147. 27. 13
1 04 . 0. 18	99580	101. 59. 42	149. 31. 52	98453	148. 28. 8
105. 0. 2	99549	102. 59. 58	150. 30. 56	98437	149. 29. 4
105. 59. 46	99519	104. 0. 14	151. 30. 0	98422	150. 30: 0
106. 59. 29	99489	105. 0. 31	152. 29. 3	98407	151. 30. 57
107. 59. 11	99459	106. 1. 29	153. 28. 6	98393	152. 31. 54
108. 58. 51	99429	107. 1. 9	154. 27. 8	98379	153. 32. 52
109. 58. 31	99399	108. 1. 29	155. 26. 9	98366	154. 33. 51
110. 58. 9	99370	109. 1. 51	156. 25. 10	98353	155. 34. 50
111. 57. 46	99341	110. 2. 14	157. 24. 11	98341	156. 35. 49
112. 57. 23	99312	111. 2. 37	158. 23. 11	98329	157. 36. 49
113. 56. 18	99283	112. 3. 2	159. 22. 11	98317	158. 37. 49
114. 56. 32	99254	113. 3. 25	160. 21. 10	98307	159. 38. 50
115. 56. 5	99226	114. 3. 55	161. 20. 9	98296	160. 39. 51 161. 40. 52
116. 55. 37	99198	115. 4. 23	162. 19. 8 163. 18. 6	98286	
117. 55. 8	99170	116. 4. 52	100. 10. 0	98277	162. 41. 54
118. 54. 38	99142	117. 5. 22		98268	163. 42 . 57 164. 43 . 59
119. 54. 7	99115	118. 5. 53		98260	164. 45. 55 165. 45. 2
120. 53. 35	99088	119. 6. 25	166. 14. 58 167. 13. 55	98252	166. 46. 5
121. 53. 3	99061	120. 6. 57 121. 7. 31	167. 13. 55 168. 12. 52	98245 98239	167. 47. 8
122. 52. 29	99035	121. 7. 31 122. 8. 6	169. 11. 48	98239	168. 48. 12
123. 51. 54	00000	122. 0. 0	170. 10. 44	98227	169. 49. 16
124. 51. 18	98982	123. 8. 42 124. 9. 19	171. 9. 40	98222	170. 50. 20
125. 50. 41	98957	124. 9. 19	172. 8. 36	98217	171. 51. 24
126. 50. 4	98931	126. 10. 35	173. 7. 31	98213	171. 51. 24
127. 49. 25	98906	127. 11. 14	174. 6. 27	98210	173. 53. 33
128. 48. 46	98882	127. 11. 14	175. 5. 23	98207	173. 53. 55
129. 48. 5	98857	128. 11. 55	176. 4. 18	98204	175. 55. 42
130. 47. 25	98833 98810	130. 13. 18	177. 3. 14	98202	176. 56. 48
131. 46. 42	98787	130. 13. 18	178. 2.10	98201	177. 57. 50
132. 45. 59	98764	131. 14. 1	179. 1. 5	98200	178. 58. 55
133. 45. 15	98741	133, 15, 29	180. 0. 0	98200	180. 0. 0
134. 44. 31		134. 16. 15	100. 0. 0	00000	100. 0. 0
135. 43. 45	98719	104.10.10	Щ		

Caput XXXI.

Per bisectionem eccentricitatis Solis non turbari sensibiliter aequationes Solis a Tychone expositas: et de quatuor modis eas computandi.


Sed ne qua nobis obstet suspicio ad sequentia pergentibus, in usitata et Ptolemaica forma primae*) inaequalitatis explorabimus, an aliqua in Sole diversitas aequationum contingat bisecta jam eccentricitate.

٩

^{*)} In sequentibus capitibus orietur confusio apud lectorem incautum; motus Solis (Braheo) vel Terrae (Copernico) vel epicycli (Ptolemaeo), qui planetis ceteris causa est inaequalitatis secundae, ipse etiam participat inaequalitate prima.

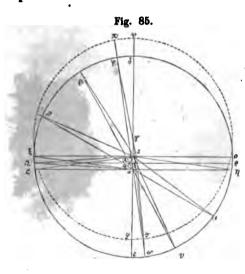
Sit primum integra eccentricitas 3600 in AF linea apsidum, et propterea CE, CD radii orbis: et sit FAE anomalia 45° et FAD 135°. Perspicuum autem est, quantacunque sit discrepantia, fore circa haec anomaliae loca maximam. Nam in longitudinibus mediis plane eaedem proveniunt aequationes, cum 3600 tam in sinubus quam in tangentibus quaesita eundem arcum exhibeat. Ut ergo CE radius ad anguli CAE vel CAD sinum, sic CA eccentricitas ad CEA vel CDA aequationem, quae est utrinque 1°27'31". Atque hoc primo modo computavit Ptolemaeus aequationes Solis, et ex Ptolemaeo Copernicus, ex iis Braheus; quilibet usus eccentricitate AC tanta, quantam inveniebat ex suis observationibus.

Sequitur jam' secundus modus computandi easdem aequationes, quo Ptolemazeus est usus in planetis ceteris, et quo utendum est mihi, qui hac parte tertia demonstravi, centrum eccentrici non esse in C puncto aequalitatis motus, sed in B loco inter A cantrum mundi et C aequalitatis punctum intermedio.

Bisecetur igitur CA in B, et sit EB, BD radius orbis, eritque eadem methodo pars aequationis BEA, BDA 0° 43' 46", qui additus ad EAB, DAB, constituet EBC 45° 43' 46, DBC 135° 43' 46". Quare ex lateribus et comprehenso prodit BEC 43' 38", BDC 43' 42", et sic totus CEA. 1° 27' 24", CDA 1° 27' 28" ad unguem idem cum priori. Itaque in Progymnasmatum Tychonis Brahei appendice pag. 821, ubi calculi thriusque differentia proditur $1^{1}/_{6}'$ lege $0^{1}/_{6}'^{79}$). Atque haec secundum doctrinam cap. IV. ex hypothesis vicariae forma.

Cumque videas, quam pene sint aequales aequationis partes in hac Ptolemaica hypothèseos particularis, forma (pars enim optica fuit 43' 46", pars physica in E 43' 38", in D 43' 42): hinc tibi causa patet, cur praecedenti capite in constructione tabulae nihil aliud quam prosthaphaeresin tuplicaverim pro tota prosthaphaeresi constituenda, qui tertius modus est computandi prosthaphaereses Solis. Nam in apogaeo et perigaeo utraque pars aequationis evanescit: in mediis longitudinibus iterum aequales sunt partes, ut jam modo dictum. Ergo cum in loois octo per totam circulum dispositis plane coincidant tres hae rationes computandi aequationes, ubique ad sensum incident. Hoc praestat eccentricitatis exilitas: quae si major esset, locum sane ista non haberent per omnia.

Nunc ad quartum etiam modum aequationis, non per fictam hypothesin, sed ex ipsa rerum natura computandae, me praeparabo capitibus octo, ut quadragesimo tandem modus hic quartus sequi possit.


Caput XXXII.

Virtutem, quae planetam movet in circulum, attenuari cum discessu a fonte.

Dixi supra, Ptolemaeum observationibus edoctum bisecuisse trium superiorum eccentricitates, idque Copernicum imitatum; idem etiam suadere Tychonis observationes in Marte, quod capitibus XIX, XX. apparuit

multoque certius apparebit infra cap. XLII. Porro et Tycho hoc in Luna est imitatus quam proxime. Jam et in theoria Solis (Tychoni) vel Terrae (Copernico) idem est demonstratum. De Venere vero et Mercurio quin idem credamus nihil impedit. Imo jam demonstratum habeo, hinc ortam esse opinionem, horum planetarum centra eccentrici in annuo circello circumire. Omnes ergo planetae hoc habent. Cum ergo in Mysterio meo Cosmographico, ante annos octo (plures jam sunt) publicato, litem hanc de causa aequantis Ptolemaici hoc solo nomine distulerim, quod ex astronomia vulgari dici non posset, an etiam Sol vel Terra puncto aequatorio et ejus ecceptricitas bisectione utatur: equidem jam decet rem esse liquidam. postquam sincerioris astronomiae testimonio confirmatum habemus, omnino in theoria Solis vel Terrae acquantem inesse. Hoc inquam jam demonstrato, decet causam aequantis Ptolemaici a me assignatam in Mysterio Cosmographico pro justa et legitima haberi, cum sit universalis et communis omnibus planetis. Illam igitur hac operis parte declarabo amplius. Et quia declaratio erit generalis, utar voce planetae. Lector autem in hoc et sequentibus aliquot capitibus semper in specie Terram Copernici vel Solem Tychonis intelligat.

Primum sciat, in omni hypothesi Ptolemaica hac forma instructa, quantacunque eccentricitas fuerit, celeritatem in perihelio et tarditatem in aphelio proportionari quam proxime lineis ex centro mundi eductis in planetam.

In schemate, in quo α centrum mundi fuit, et β centrum eccentrici δs , et γ punctum acquantis, scribatur centro γ distantia $\beta \delta$ circulus aequans $w \phi$; et per α centrum mundi, unde computatur eccentricitas (est autem in praesenti negotio Sol Copernico, Terra ceteris) agatur recta ww. secans eccentricum in ψ et ω , ut planeta sit in ψ et ω , arcubus eccentrici dy et so confectis, illic ab aphelio seu apogaeo, hic a perihelio 'seu perigaeo : qui arcus ex α ponuntur apparere aequales, quia recta ww facit wad et was ad verticem aequales. Cum autem $\delta \psi$, eo arcus ponantur esse minimi, utpote in ipsis ô, e apsidibus, a rectis igitur lineis nihil differunt ad sen-

sum. Itaque perinde ac si $\delta \alpha \psi$, $\epsilon \alpha \omega$ essent triangula rectilinea, et δ , ϵ anguli recti et α communis vertex, erit ut $\delta \alpha$ ad $\epsilon \alpha$ sic $\delta \psi$ arcus ad $\epsilon \omega$ arcum. Sed longior est $\alpha \delta$ quam $\alpha \epsilon$; longior igitur etiam arous $\delta \psi$ quam $\epsilon \omega$. Hi arcus (re vera inaequales) apparent ex α aequales. Quaeritur jam, quanto tempore moretur planeta in utroque arcu ex doctrina et hypothesi Ptolemaei, quando is aequantem adhibet? Igitur ex γ centro per signa ψ , ω rectae ducantur, secantes aequantem in χ , ϵ . Dicet igitur Ptolemaeus: cum integer circulus aequantis $\nu \phi$ denotat tempus periodicum planetae, tunc $\nu \chi$ esse mensuram temporis quod planeta consumit in arcu eccentrici $\psi \delta$, et $\omega \epsilon$ esse mensuram temporis, quod planeta consumit in arcu eccentrici $\epsilon \omega$.

Atqui ego dico, $v\chi$ sic delineatum arcum temporis, ut voluit Ptolemaeus, esse quam proxime ad $\delta\psi$ arcum itineris, ut est $\alpha\delta$ distantia arcus $\delta\psi$ a centro mundi, ad $\delta\beta$ distantiam mediocrem punctorum π , ϱ ab α , et similiter arcum temporis $\varphi\tau$ esse ad arcum itineris $s\omega$ quam proxime, ut est αs distantia arcus $s\omega$ a centro mundi α ad $s\beta$ distantiam a centro mundi mediocrem, quae potest contingere in π , ϱ signis. Est enim ut prius, ut $\gamma\nu$ ad $\gamma\delta$ sic $v\chi$ ad $\delta\psi$; et ut $\gamma\varphi$ ad γs sic $\varphi\tau$ ad $s\omega$; sed $\gamma\nu$ est ad $\gamma\delta$ fere ut $\beta\delta$ (vel $\gamma\nu$) ad $\alpha\delta$: patet inde quia $\beta\delta$ est medium arithmeticum inter $\gamma\delta$ et $\alpha\delta$. Ptolemaeus enim facit $\alpha\beta$, $\beta\gamma$ aequales. Medium autem arithmeticum inter terminos, inter quos parva est proportio, insensibili aliquo majus est medio geometrico. Verbi gratia inter 10 et 12 medium arithmeticum est 11: medium geometricum est $10^{19}/_{20}$ fere: nbi minus una vicesima unius particulae inter utrumque medium interest. Et tamen hi numeri sant familiares theoriae Martis, qui habet eccentricitatem omnium maximam apud Ptolemaeum.

Cum igitur proportio γv ad $\gamma \delta$ sit insensibili major proportione $\alpha \delta$ ad $\delta \beta$, erit et proportio χv ad $\psi \delta$ insensibili major quam proportio $\alpha \delta$ ad $\delta \beta$. Similiter ut γs ad $\gamma \phi$ sic $s \omega$ ad $\phi \tau$. Sed γs ad $\gamma \phi$ est fere ut $s \beta$ ad αs : nimirum proportio illa insensibili aliquo minor est ista. Ergo et proportio $s \omega$ ad $\phi \tau$ insensibili aliquo minor est proportione $s \beta$ ad αs .

Jam permutemus. Est enim proportio $\alpha \delta$ ad $\delta \beta$ insensibili minor proportione $\delta\beta$ vel βs ad $s\alpha$, eo quod $\beta\delta$ vel βs est medium arithmeticum inter ad et as, ut prius. Probatum autem fuit, proportionem vy ad dw esse majorem proportione $\alpha\delta$ ad $\delta\beta$, ex duabus minori: et proportionem eo ad $o \tau$ minorem esse proportione e β ad αs , ex duabus majori: ut quanto ex duabus $\alpha \delta$ ad $\delta \beta$, et $\epsilon \beta$ ad $\alpha \epsilon$, illa minor et haec major, tanto ex duabus v_{1} ad $\delta \psi$ et so ad $\varphi \tau$, illa major, haec minor. Itaque etiam illius insensibilis differentiae fit aliqua compensatio, ut multo propius vero sit. proportionem $v_{\mathcal{I}}$ ad $\delta \psi$ ad unguem esse acqualem proportioni so ad $\sigma \tau$. Acqualibus igitur sumtis arcubus ou et au, qui hactenus fuerunt inaequales. erit uterque $\delta \psi$ vel so medium proportionale inter $v \chi$, moram in aphelio et or, moram in perihelio, et proportio igitur vy ad or (aequalibus existentibus δw et s ω) dupla erit proportionis $\alpha \delta$ ad $\delta \beta$ vel β s ad s α , illius minoris, hujus majoris, insensibili aliquo. Ac cum etiam proportio $\alpha \delta$ ad $\alpha \epsilon$ dupla sit alterutrius harum (componitur enim ex utrisque, pene aequalibus existentibus, exemto medio arithmetico $\delta\beta$ vel β s), ergo aequalibus existentibus arcubus eccentri $\delta\psi$ et so, proportio morae v_{χ} ad moram $\varphi \tau$ acqualis erit proportioni $\alpha \delta$ ad $\alpha \epsilon$; et clarius: quanto longior est $\alpha \delta$ quam $\alpha \epsilon$, tanto diutius moratur planeta in certo aliquo arcu eccentri apud 8, quam in aequali arcu eccentri apud *e. Atque hoc sequitur ex ordinatione formae (intellige particularis et inacqualitati primae servientis) Ptolemaicae ejusque puncto aequatorio, certa et legitima demonstratione, quantum ad loca apogaeo et perigaeo vicina attinet. ceteris tenuissima apparet diversitas, eaque quanto evidentior in demonstratione, tanto minor in effectu: quia verbi gratia proportio $\alpha \mu$ ad αr minor est, et $\alpha \theta$ ad α i multo minor, quam $\alpha \delta$ ad α i omnium maxima maximique effectus.

Caput XXXIII.

Virtutem, quae planetas movet, residere in corpore Solis.

Cum ergo demonstratum sit capite superiori, moras planetae in aequalibus partibus circuli eccentrici (sive in aequalibus spatiis aurae aethereae) esse in proportione ea, in qua sunt ad invicem eorundem spatiorum abscessus a puncto, unde computatur eccentricitas; seu simplicius: quo longius abest planeta a puncto illo, quod pro centro mundi assumitur, hoc debilius illum incitari circa illud punctum: necessarium est igitur, ut causa hujus debilitationis insit aut in ipso planetae corpore eique insita vi motrice, aut in ipso suscepto mundi centro.

Est siquidem usitatissimum axioma per universam philosophiam naturalem: eorum, quae simul et eodem modo fiunt et easdem ubique dimensiones accipiunt, alterum alterius causam aut utrumque ejusdem causae effectum esse; ut hic intentio et remissio motus cum accessu et recessu a centro mundi in proportione perpetuo coincidit. Quare vel debilitatio ista erit causa discessionis sideris a centro mundi, vel discessio debilitationis, vel utriusque erit aliqua causa communis. At neque opinari quisquam potest, tertium aliquid concurrere, quod duobus hisce communis causa sit; et in sequentibus capitibus patebit, non esse nobis necesse tale quippiam confingere, cum sufficiant duo ista sibi ipsis.

Porro neque est naturae consentaneum, fortitudinem vel debilitatem in motu longitudinis esse causam distantiae a centro. Distantia enim a centro prior est cogitatione et natura quam motus in longum. Equidem motus in longum nunquam est citra distantiam a centro, cum requirat spatium, in quo conficiatur: distantia vero a centro citra motum fingi potest. Ergo distantia erit causa vigoris in motu, et major minorque distantia majoris minorisque morae. Et cum distantia sit ex relatorum genere, cujus esse recidit in terminos, relationis vero per sese (citra terminorum respectum) nequeat esse ulla efficientia: sequitur igitur, quod dictum est, in alterutro terminorum haerere causam variantis vigoris in motu.

Corpus vero planetae se ipso neque gravius discessu neque levius appropinquando efficitur. Animalem quoque vim, quae motum sideri inferat, sedentem in mobili planetae corpore, toties intendi et remitti citra fatigationem et senium, id forsan erit absurdum dictu. Adde, quod intelligi nequit, quomodo vis haec animalis corpus suum per spatia mundi transvectet, cum nulli sint orbes solidi, ut Tycho Brahe demonstravit: sed neque alarum auft pedum adminicula adsint rotundo corpori, quorum motatione anima hoc suom corpus per auram aetheream, ceu aves per aërem, nisu quodam et contranisu illius aurae transportet.

Relinquitur igitur, ut causa hujus debilitationis et intensionis resideat in termino altero, scilicet in ipso suscepto mundi centro, a quo distantiae computantur.

Quodsi itaque elongatio centri mundi a corpore planetae praestat planetae tarditatem, appropinquatio velocitatem; fons itaque virtutis motricis in illo suscepto mundi centro insit necesse est. Hoc enim posito et modus causae. patebit. Intelligimus enim hinc, quod planetae pene ratione staterae seu vectis moveantur. Nam si planeta, quo longior a centro, hoc difficilius (utique tardius) a centri virtute movetur: equidem perinde est ac si dicerem,

pondus quo longius exeat ab hypomochlio, hoc reddi ponderosius; non se ipso sed propter virtutem brachii sustentantis in hac distantia. Utrinque namque, et hic in statera seu vecte et illic in motu planetarum, haec debilitas sequitur proportionem distantiarum.

Quodnam autem corpus in centro sit, nullumne, ut apud Copernicum, quando computat, et apud Tychonem ex parte; an Terra, ut apud Ptolemaeum et Tychonem ex parte; an denique Sol ipse, quod mihi, quod et Copernico, dum speculatur, placet: id parte prima rationibus physicis coepi discutere. Ibi enim in principiorum numero posui, quod jam cap. XXXII. »x professo et geometrice demonstratum est: planetam moveri debiliter, cum iscedit a puncto, unde ejus computatur eccentricitas.

Ex hoc principio argumentatus sum probabiliter. Solem potius in illo uncto et centro mundi esse, vel Ptolemaeo Terram, quam aliud aliquod unctum corpore vacuum. Liceat ergo etiam hoc capite, demonstrato jam nostro principio, idem argumentum probabile repetere. Deinde memineris, me demonstrasse parte secunda, phaenomena sub noctium extrema pulchre sequi, si oppositiones Martis cum apparenti Solis in consilium adhibeamus: quo facto simul eccentricitatem et distantias ex ipso corporis Solaris centro exstruimus; ut ita rursum Sol ipse in centrum mundi (Copernico) vel saltem in centrum systematis planetarii (Tychoni) veniat. Sed horum duorum argumentorum alterum nititur probabilitate physica, alterum procedit a posse ad esse. Itaque tertio in caput LII. distuli, ob captus difficultatem, demonstrare ex observatis, quod fieri aliter non possit, quin planetam Martem ad apparentia Solis loca referamus, et diametrum apsidum, quae bisecat eccentricum, talem admittere velimus, quae nullo pacto a parallaxibus orbis annui toleretur. Legat hac de re, si quis moram fert impatientius, caput LII; eoque lecto sic tandem hic legendo progrediatur. Nihil enim ibi assumitur nisi merae observationes. Similem demonstrationem invenies parte quinta ex latitudinum rationibus.

Sole igitur in centrum systematis competente, fons virtutis motricis ex jam demonstratis in Solem competet, cum et ipse in centro mundi jam modo repertus sit. Sane si hoc ipsum, quod jam a posteriori (ex observationibus) per longiusculam deductionem demonstravi, si hoc, inquam, a priori (ex dignitate et praestantia Solis) demonstrandum suscepissem, at idem sit fons vitae mundi (quae vita in motu siderum spectatur), qui est et lucis, quo totius machinae constat ornatus, qui itidem et caloris, quo omnia vegetantn; puto me aequis auribus audiri meruisse. Videat autem ipse Tycho Braheus, seu quis est qui illius generalem hypothesin secundae inaequalitatis sequi malit, qua veri specie hanc physicam concinnitatem ex potissima parte receptam (nam et ipsi per usurpationem loci apparentis Solis Sol recidit in centrum systematis planetarii) parte una iterum a sua hypothesi repellat.

Etenim ex dictis apparet, alterum omnino sequi: aut ut virtus in Sole residens, quae planetas omnes movet, eadem et Terram moveat: aut ut Sol, illique per vim suam motricem concatenati planetae, a virtute aliqua, quae in Tellure sedeat, circa Terram vehantur.

Nam realitatem orbium Tycho ipse destruxit; vicissim ego aequantem in Solis seu Terrae theoria esse invicte demonstravi hac parte tertia: ex quo sequitur, ipsius quoque Solis, si movetur, intendi et remitti motum, prout propior vel remotior a Terra fuerit, et sic Solem a Terra moveri sequeretur. Sin autem Terra movetur, a Sole et ipsa quoque movebitur, et id celerius vel tardius, prout ei propior aut ab eo remotior fuerit: manente in corpore Solis virtute perpetuo constante. Itaque inter duo jam proposita medium nollum est.

Ego in Copernico acquiesco, et Tellurem unam ex planetis esse patior. Ac etsi de Luna idem potest objici Copernico, quod de quinque planetis ego objeci Tychoni, quod scilicet absurdum videatur, Lunam a Tellure moveri, praetereaque illi concatenari et copulari, sic ut secundario et ipsa circa Solem a Sole rapiatur: malo tamen unam Lunam, Telluri cognatam, dispositione corporis (ut in Opticis demonstravi) movendam permittere virtuti in Terra sedenti, extensae vero versus Solem, ut paulo post dicetur capite XXXVII, quam eidem Terrae etiam Solis eique copulatorum omnium planetarum motus transscribere.

Sed pergamus in contemplatione hujus in Sole residentis motricis virtutis, et jam porro videamus arctissimam ejus cum luce cognationem. Nam quia figurarum regularium similium adeoque et circulorum perimetri sunt ad invicem, uti earum semidiametri; ergo ut $\alpha\delta$ ad αs (Fig. 85), sic ambitus circuli per δ ex α descriptus ad ambitum circuli per s ex eodem α scripti. Ut autem $\alpha\delta$ ad αs , sic fortitudo virtutis in s ad fortitudinem virtutis in δ conversim per demonstrata capitis XXXII. Ergo ut circulus δ ad circulum s angustiorem, ita virtus s ad virtutem δ conversim: hoc est, quanto sparsior virtus, tanto imbecillior: et contra quanto collectior, tanto fortior. Hinc intelligimus, tantundem virtutis esse in universo ambitu circuli per δ , quantum in ambitu angustioris circuli per s; quod in Optica Astronomiae parte capite primo plane in eundem modum et de luce demonstratum est, Ergo undiquaque conspirant omnibus attributis lux et virtus motrix ex Sole.

Et quamvis haec Solis lux virtus ipsa movens esse nequeat, videant tamen alii, utrum sese habeat lux instar instrumenti aut vehiculi fortasse cujusdam, quo virtus movens utatur.

Contradicere quidem haec videntur: primum lux opacis impeditur; quare si lucem virtus movens haberet pro vehiculo, tenebras insequeretur quies mobilium: rursum lux rectis effluit orbiculariter, virtus movens rectis quidem, sed circulariter, hoc est in unam tantum plagam mundi ab occasu in ortum nititur, non contra, onon ad polos etc. Sed respondere fortasse poterimus ad has objectiones proxime sequentibus capitibus.

Denique cum tantundem virtutis sit in amplo et remotiori circulo, quantum in angustiori et propinquo, nihil igitur periit de hac virtute in itinere ex fonte suo, nihil inter fontem et mobile dispersum est. Effluxus igitur, quemadmodum et lucis, immateriatus est; non qualis odorum cum diminutione substantiae, non qualis caloris ab aestuante fornace, et si quid est simile, quibus media implentur. Relinquitur igitur, ut quemadmodum lux omnia terrena illustrans species est immateriata ignis illius, qui est in corpore Solis: ita virtus haec, planetarum corpora complexa et vehens, sit species immateriata ejus virtutis, quae in ipso Sole residet, inaestimabilis vigoris, adeoque actus primus omnis motus mundani. Cum ergo species haec virtutis plane ut species lucis (de quo in Astronomiae parte Optica cap. I.) non possit considerari ut per spatium intermedium dispersa, fontem inter et corpus mobile, sed ut collecta in mobili, quantum de ambitu a mobili occupatur: non erit igitur virtus haec (seu species) aliquod eorpus

geometricum, sed veluti superficies quaedam, plane ut lux: ut hoc universale sit, species rerum immateriate descendentium descensu ipso non extendi per corporis dimensiones, quamvis a corpore (ut haec a corpore Solis) oriantur: hoc sane ex lege ipsa defluxus, se ipso non terminati, sed tamen ut superficies rerum illustrandarum efficiunt, ut lux consideretur quasi quaedam superficies, quia recipiunt et terminant ejus defluxum: ita corpora rerum movendarum efficere videntur, ut virtus hacc motrix consideretur quasi quaddam corpus geometricum, quia corpulentia tota sua terminant seu recipiunt hunc speciei motricis defluxum: ut illa nuspiam in toto mundo esse aut subsistere possit, nisi in ipsis corporibus mobilium: nec sit, sed quasi fuerit in intermedio inter fontem et mobile, plane ut lux.

Atque hic simul objectioni alicui responderi potest. Dictum enim est in superioribus, virtutem hanc motricem extensam esse spatiis mundi, et alicubi sparsiorem, alicubi collectiorem, quas affectiones simul intensio et remissio motus planetarum sequatur. Jam vero dictum, virtutem hanc esse speciem immateriatam sui fontis, nec recipi uspiam nisi in subjecto mobili. ut in corpore planetae. Videntur autem pugnantia, materia carere et tamen dimensionibus geometricis subjacere, diffundi per mundi amplitudinem et tamen nuspiam esse nisi ubi est mobile. Respondetur autem sic: quamvisvirtus motrix non sit materiale quippiam, quia tamen materiae, hoc est corpori planetae vehendo, destinatur, non liberam esse a legibus geometricis, saltem ob hanc materialem actionem transvectionis. Nec opus est multis, Videmus enim motus istos perfici in loco et tempore, et emanare atque diffundi virtutem hanc a fonte per spatia mundi; quae sunt omnia res geometricae. Quin igitur et ceteris geometricis necessitatibus obnoxia sit haec virtus.

Ac ne nimium insolenter philosophari videar, proponam lectori exemplum lucis plane genuinum, cum in Solis corpore et ipsa niduletur indeque come huic virtuti motrici in totum mundum emicet. 'Quis quaeso dixerit. lucem esse materiale quippiam? Illa tamen operationes suas exercet ratione loci, et mutuum patitur, repercutitur et refringitur et quantitates induit; adeo ut densa vel rara esse, et pro superficie haberi possit, ibi ubi ab illustrabili aliquo recipitur. Nam ut in Opticis dictum, lux quoque, aeque atque haec virtus motrix, in spatio inter fontem et illustrabile intermedio, non est, etsi hoc transiit, sed ibi quasi fuit. Ac etsi lux ipsa sine tempore quidem effluat, virtus vero haec moveat in tempore: tamen si recte expendas, utriusque ratio est plane eadem. Lux, quae sua sunt, in momento praestat; qua materia concurrit, ipsa quoque tempore proficit. Illustrat superficies in momento, quia nihil hic materiam pati opus est, cum illustratio omnis ratione superficierum perficiatur vel quasi superficierum, non ratione corpulentiae quatenus corpulentia. Contra lux dealbat colores in , tempore; quia hic in materiam agit quatenus materia, eamque calfacit, expellens contrarium frigus in corporis materia fixum, non in superficie. Ita plane et haec virtus movens perpetuo et sine temporis intervallo illic ex Sole adest, ubi est idoneum mobile, quia nihil accipit a mobili ad hoc ut adsit. Movet autem in tempore, quia mobile materiatum est. Vel si videtur, comparationem in hunc modum institue: quod sicut se habet lux ad illustrationem, sic certum est sese habere virtutem ad motum. Lux omnia facit, quae fieri possunt ad summam illustrationem, neque tamen obtinet, ut color summe illustretur: nam color diversam suam speciem cum

lucis illustratione confundit et tertium quippiam efficit. Ita virtus movens in mora non est, quin planetae tanta celeritas existat, quantam ipsa habet: at non ideo tanta est planetae celeritas, repugnante vel intermedio, nempe aurae aethereae materia qualicunque, vel dispositione mobilis ipsius ad quietem (alii dicerent, pondere, me non simpliciter probante, ne quidem cum de Terra agitur); quarum rerum contemperatione cum motricis virtutis molitionibus efficitur periodicum planetae tempus.

Caput XXXIV.

Corpus Solis esse magneticum, et in suo spatio converti.

De illa itaque virtute diximus, quae corpora planetarum proxime attingit et trahit, quomodo comparata, quomodo luci cognata sit, et quid sit in suo esse metaphysico. Sequitur, ut indice hac definente specie (ceu archetypo, imagine) ipsam etiam penitiorem fontis naturam contemplemur. Videri namque possit, in corpore Solis latitare divinum quippiam et comparandum animae nostrae, ex quo effluat species ista planetas circumagens, uti ex anima jaculantis lapillos species motus in lapillis adhaerescit, qua provehuntur illi, etiam cum qui jaculatus est manum ab illis reduxit. Atqui sobrie progredientibus paulo aliae cogitationes suppeditabuntur. Nam quia virtus illa ex Sole ad planetas exporrecta in gyrum illos movet circa Solis corpus intransportabile, fieri id aut cogitatione comprehendi nullo alio modo potest, quam hoc, ut virtus eandem viam eat, quam alios planetas omnes abripit: quod et in ballistis et omnibus motibus violentis ex parte cernere est. Quo pacto Fracastorius alique ex relatu Aegyptiorum vetuatissimorum verisimilia haud dixerint, fore ut planetarum aliqui, orbitis palatim ultra polos mundi deflexis, viam postea eant ceteris et moderno ipsoram cursui contrariam. Quin potius illam in plagam feruntur corpora planetarum perpetuo, in quam virtus ista ex Sole emanans contendit.

Cum autem species haec immateriata sit, sine temporis mora ex corpore suo in hanc distantiam egressa, et luci per omnia reliqua similis, non tantum necesse est ex natura speciei, sed etiam per se probabile ob hafte cognationem cum duce, ut cum corporis sen fontis sui particulis et ipsa dividatur, et quam in plagam mundi vergit una aliqua particula corporis Solaris, in eandem plagam perpetuo vergat etiam particula speciei immateriatae, quae illi particulae corporis ab initio creationis respondebat. Nisi hoc esset, species non esset, nec rectis sed curvis lineis a corpore delaberetur. Specie ergo mota in gyrum, ut eo motu motum planetis inferat, corpus Solis seu fontem una moveri necesse est; non quidem de spatio in spatium mundi: dixi enim, me id corpus Solis cum Copernico in centro mundi relinquere : sed super suo centro seu axe immobilibus, partibus ejus de loco in locum (in eodem tamen spatio toto corpore manente) transeuntibus.

Ut vis argumenti a simili tanto sit evidentior, meminisse te velim lector, quod in Opticis sit demonstratum, visionem fieri per emanationem lucularum a superficiebus rei visae in oculum. Finge ergo oratorem aliquem in magno coetu hominum sese in orbem cingentium, faciem-suam seu una corpus convertere semel. Quibus ergo auditorum oculos suos offert obvios, illi et

oculos ejus vident; qui vero post illum stant, oculorum ejus aspectu tunc carent. At sese convertens circumfert oculos ad universos in orbem, omnes igitur successu brevissimi temporis ejus oculorum aspectu potiuntur. At potiuntur per accessum luculae seu speciei coloris ab oculis oratoris in oculos spectantium delapsae. Ergo circumferens oculos in angusto illo spatio, in quo caput ejus collocatum est, una circumfert luculae illius radios in amplissimo illo orbe, in quem spectatorum oculi circumcirca dispositi sunt. Nisi n. una circumiret lucula illa, spectatores ejus oculorum aspectus non fierent participes. Hic vides manifeste, speciem immateriatam lucis vel circumferri vel stare, una cum circumlata vel stante re sua, cujus est species.

Cum itaque species fontis, seu virtus planetas movens, gyretur circa centrum mundi, rem ipsam quoque, cujus est species, Solem nempe gyrari, hoc jam dicto exemplo non absurde concludo.

Quamvis et hoc argumento idem evincitur, quod motus localis et tempori subditus nequit competere in speciem immateriatam nudam, ut quae motus illati passionem recipere nequit, nisi simul, ut virtus haec materia ipsa caret, sic motus quoque receptus tempore careat. Cum ergo virtus ista movens circumire probata sit, neque tamen infinitae possit concedi celeritatis (infinitam enim tunc celeritatem etiam corporibus inditura videtur) et ideo in tempore aliquo circumest: se ipsa igitur hunc motum nequit perficere, sed ideo solum moveri illam necesse est, quia corpus ejus a quo dependet Atque eodem etiam argumento recte concludi videtur, non esse movetur. immateriatum quippiam intra corporis Solaris terminos, cujus conversione simul convertatur species ista ab illo immateriato descendens. Rursum enim immateriato cuipiam localis motus cum tempore non recte tribuitur. Relinquitur igitur, ut corpus ipsum Solis modo supra dicto gyretur, et polis suae conversionis (linea ex centro corporis per illos inter fixas educta) monstret polos zodiaci, circulo vero corporis sui maximo eclipticam, harumque rerum astronomicarum hoc pacto causa naturalis fiat.

Amplius cum videamus, nec singulos planetas in omni sua a Sole distantia, nec omnes in diversis suis distantiis aequali corripi celeritate; sed Saturnum annorum 30 moras nectere, Jovem annorum 12, Martem 23 mensium, Terram 12, Venerem sesquiocto, Mercurium 3; et tamen omnis orbis virtutis emanantis ex Sole (tam quo loco Mercurium amplectitur humillimum, quam quo loco.Saturnum altissimum) ex antedictis aequali cum corpore Solari vertigine et eodem tempore torqueatur (quo loco nihil absurdi statuitur, cum virtus emanans immateriata sit suaque natura infinitae celeritatis esse posset, si possibile esset, motum ipsi alicunde inferri; tanc enim nec pondere, quo caret, nec corporei medii occursu impediri posset): ex eo itaque patet, planetas inhabiles esse, ut assequantur celeritatem motricis virtutis. Saturnus enim inhabilior est quam Jupiter, quia tardius restituitur, cum orbis virtutis apud Saturni iter aeque celeriter restituatur ac orbis virtutis apud iter Jovis, et sic consequenter usque ad Mercurium, qui procul dubio ad exemplum superiorum etiam ipse tardior erit virtute, quae ipsum vehit. Necesse est igitur, ut planetariorum globorum natura sit materiata, ex adhaerente proprietate inde a rerum principio prona ad quietem seu ad privationem motus. Quarum rerum contentione cum nascatur pugna, superat igitur plus ille planeta, qui in virtute imbecilliore consistit eaque tardius movetur; minus ille, qui Soli propior.

Docet hinc anologia statuere, omnibus planetis, ipsi etiam Mercurio Kepleri Opera. III. 20 humillimo, inesse vim materialem sese explicandi nonnihil ex orbe virtutis Solaris. Unde evincitur, Solaris corporie gyrationem multo antevertere omnium planetarum periodica tempora; ideoque ad minimum citius quam trimestri spatio Solem semel in suo spatio gyrari.

Ac cum in meo Mysterio Cosmographico monuerim, eandem fere proportionem esse inter semidiametros corporis Solis et orbis Mercurii, quae est inter semidiametros corporis Terrae et orbis Lunae: hinc non absurde concluseris, sic esse periodum orbis Mercurii ad periodum corporis Solis, ut est periodus orbis Lunae ad periodum corporis Terrae. Ac cum semidiameter orbis Lunae sit sexagecuplus semidiametri corporis Terrae, periodus vero orbis Lunae (seu mensis) trigecuplus paulo minus periodi corporis Terrae (seu diei) et sic proportio amplitudinum dupla ad proportionem temporum periodicorum: si igitur etiam in Sole et Mercurio regnet proportio dupla, cum Solis corporis diameter sit sexagesima circiter diametri orbis Mercurii, erit tempus conversionis globi Solaris tricesima de diebus 88, quanta est conversio orbis Mercurii: adeo ut verisimile sit, Solem triduo circiter gyrari.⁸⁰

Sin autem mavis diurnum Soli tempus praescribere, ut diurna Telluris conversio vi quadam magnetica dispensetur a diurna globi Solaris conversione, haud equidem repugnaverim. Sane rapida ista gyratio ab eo corpore, in quo primus actus omnis motus inest, non aliena esse videtur.

Confirmatur autem haec opinio (de conversione corporis Solaris, quod illa sit causa motus planetis ceteris) hoc ipso exemplo Telluris et Lunae pulcherrime. Nam quia Lunae motus capitalis et menstruus, vi demonstrationum cap. XXXII. XXXIII. usurpatarum, omnino ex Tellure ceu fonte est (nam quod est hic Sol planetis ceteris, hoc est Terra Lunae in illa demonstratione). Considera igitur, quomodo Tellus nostra Lunae motum inferat: dum nempe Tellus haec nostra et cum ea species ejus immateriata vicies novies semis convolvitur circa suum axem, species haec emissa tantum potest in Lunam, ut illam interim semel in orbem agat, in plagam quidem eandem, in quam Tellus ipsa praeit.

Sed hoc interim mirum, centrum Lunae duplo longiorem lineam circa centrum Terrae emetiri quolibet tempore, quam aliquem locum in superficie Telluris aequatori circulo maximo subjacentem. Si enim aequalibus temporibus aequalia spatia emetirentur, Lunam sexagesimo die restitui oportuit, cum amplitudo ejus orbis sit sexagecupla ad Telluris globi amplitudinem.

Nimirum tanta vis est speciei immateriatae Telluris, Lunaris vero corporis procul dubio magna raritas et imbecillis repugnantia. Itaque ut admiratio tollatur perpende, quod his positis principiis omnino consequens esset, Lunam, si materiae vi plane nihil repugnaret motui a Terra extrinsecus illato, rapi cadem plane celeritate cum ipsa specie Telluris immateriata, hoc est cum ipsa Tellure et circumire spatio 24 horarum, quo et Terra circumit. Nam etsi magna est tenuitas illius speciei Telluris in distantia 60 semidiametrorum: unius tamen ad nihil eadem est proportio, quae sexaginta ad nihil. Itaque species Telluris immateriata vinceret totum assem, si nihil resisteret Luna.

Quodsi quis ex me quaerat, quale igitur corpus esse Solis putem, a quo haec species motrix descendit? eum in hunc modum ego jubeo progredi ulterius analogia duce, et suadeo, ut inspiciat exemplum paulo ante memorati magnetis accuratius, cujus virtus residet in universo corpore magnetis, cum ejusdem mole crescit, cum comminutione illius diminuitur et ipsa. Ita

in Sole virtus movens tanto videtur fortior, quod verisimile sit, corpus ejus esse totius mundi densissimum.

Et ut e magnete virtus attractiva ferri orbiculariter spargitur, ita ut certam obtineat orbem, intra quem constitutum ferram allicitar, fortius tamen, si ferrum propius intra complexum illius orbis veniat: ad eundem plane modum virtus planetas movens ex Sole propagatur in orbem, et partibus remotioribus illius orbis est imbecillior. Ut vero magnes non omni parte trahit, sed filamenta (ut ita dicam) seu fibras (motoriae virtutis sedem) rectas habet per longum extensas, ita ut ferri lingulam, si medio loco inter capita magnetis a latere consistat, non attrahat, sed tantummodo parallelon suis fibris dirigat: ita credibile est, in Sole non esse ullam vim planetarum attractoriam, ut in magnete (accederent enim ad Solem tantisper, donec cum ipso conjungerentur penitus), sed tantum directoriam, ideoque fibras habere circulares in eam plagam circumporrectas, quae monstratur a circulo zodiaco. Sole itaque sese vertente perenniter, convertitur et in orbem vis motrix seu definxus ille speciei a fibris Solis magneticis, per omnia planetarum diastemata diffusus, et convertitur eodem tempore cum Sole: non secus atque ad translationem magnetis ipsa quoque virtus magnetica transfertur et una ferrum ipsam vim magneticam insequens.

Perbellum equidem attigi exemplum magnetis et omnino rei conveniens, ac parum abest quin res ipsa dici possit. Nam quid ego de magnete, tanquam de exemplo? cum ipsa Tellus, Gulielmo Gilberto Anglo demonstrante, magnus quidam sit magnes, eademque eodem auctore, Copernici assertore, convolvatur in dies singulos, uti ego Solem volvi conjicio: et ob id ipsum, quia fibras habet magneticas, lineam motionis suae rectis angulis intersecantes, ideo illae fibrae variis circulis motioni parallelis polos Telluris circumsistant: ut jam jure optimo Lunam ab hac Terrae convolutione ejusdemque virtutis magneticae translatione rapi statuerim, triginta tamen vicibus tardiorem.

Scio, Terrae filamenta ejusdemque motus aequatorem signare, Lunae vero circuitus zodiaco sese familiarius applicare: qua de re in sequentibus cap. XXXVII. et parte V. Hoc uno excepto cetera conveniunt: Terra in intimo complexu est Lunaris periodi, ut Sol in ceterorum planetarum. Et ut planetae a Sole fiunt eccentrici, sic Luna a Terra: ut certum sit, a Lunae motore Terram ceu quandam cynosuram spectari, uti Sol spectatur a motoribus planetarum ceterorum propriis; de quibus capite XXXVIII. Itaque plausibile est, cum Terra Lunam cieat per speciem, sitque corpus magneticum, et Sol planetas cieat similiter per emissam speciem: Solem itaque similiter corpus esse magneticum.

Caput XXXV.

An ut luminis sic et motus ex Sole contingat privatio in planetis, ex ἀrτιφραξει.

Jam opportune resumam et objectiones capite XXXIII. allatas; ubi cognationi lucis et virtutis motricis opponebatur primo offuscatio siderum mutua, deinde dispar specierum utriusque emanatio.

20 *

Et primum quod attinet, consideratione dignum est, an sicut opacum alterum alteri lumen Solis intercipit, sic etiam mobilia se invicem in motu impediant, ubi easdem cum Sole lineas inciderint: ut ita lux plane sit vehiculum vel instrumentum virtutis motricis. Videri enim possit, ut hoc quantum fieri posset caveretur, inclinationes mutuas eccentricorum omnium, deviationesque ab ecliptica et transpositiones nodorum, adeoque et proportiones corporum umbrarumque in conum attenuationes a Deo adhibitas esse: cumque non plane evitari potuerit, quin sidera interdum in easdem cum Sole lineas inciderent, proclive est suspicari, inde tardissimos illos motus apogaeorum et nodorum (qui sunt quasi quaedam aberrationes epicyclorum a temporibus restitutoriis) originem suam traxisse.

Sed respondetur, primo non turbandam esse analogiam inter lucem et virtutem motricem, temere confusis proprietatibus. Lux opaco impeditur, corpore non impeditur, propter hoc ipsum, quia lux est, nec in corpus agit sed in superficiem vel quasi. Virtus in corpus agit sine opaci respectu: opaci igitur correlatum cum non sit, neque ab opaco impedietur. Quo nomine lucem a virtute movente pene separarem, nisi invenirem in natura exempla, quae lucis radiis etiam impeditis efficaciam tamen refinquunt ibi, quorsum pervenire prohibentur. Sed de lucis cum virtute motrice sociatione non praecipue hic satago.

Accipianus autem ad suspicionem hanc impeditorum motuum dilnendam exemplum alterum magnetis. Ejus virtus nihil impeditur objectu materiae (sane quia immateriata est) sed transit laminas argenteas, cupreas, aureas, vitreas, osseas, ligneas, trahitque ferrum post illas latitans nihilominus ac si nullae interessent laminae. Impeditur quidem interjectu magneticae tabellae, sed causa in promtu est; tabella cum ipso magnete paria facit. Superat igitur fortitudine remotiorem post se latitantem. Ac etsi etiam oferreae tabellae interjectu impeditur, tamen et haec est naturae magneticae et combibit virtutem magnetis illico, eaque quasi propria utitur.

Ut igitur negare possimus, motus siderum impediri centralibus duorum conjunctionibus, necesse est dicere, Solis naturam plus differre a naturis siderum ceterorum, quam differt natura magnetis a natura ferri: nec ut a magnete ferrum eandem subito virtutem combibit, sic a Sole planetas. Utrum autem aliquam qualemcunque combibant, differo in caput LVII. explicare.

Quod autem verisimilitudinem attinet causae motus apogaeorum, ea nihil probat de virtute hac communi Solari per arriquativ impedita. Potest enim motus apogaeorum aliam utpote animalem habere causam. Vide de hac re obscuram aliquam opinionem infra cap. LVII.

Adde quod si hinc oriretur apogaeorum motus, quod motus planetae circa Solem in artuppate speciei motricis ex Sole emanantis impediretur: retardaretur igitur motus longitudinis, aut progrediente motu latitudinis (quo pacto retrocederent apogaea) aut aeque retardato: ita consistent apogaea, cum observationes testentur, ipsa progredi.

Sed et hoc cap. LVII. dicetur, utrum salvo motu ex Sole impediantur motus siderum proprii ry arcupoafse.

Caput XXXVI.

Qua mensura virtus ex Sole motrix per mundi amplitudinem attenuetur.

Sequitur altera objectio paulo difficilior, orta ex eo, quod supra cap. XXXIII. loco secundo fuit oppositum cognationi lucis et virtutis motricis, sed quae cum nostra speciei immateriatae contemplatione pugnare videtur infensius, quaeque me diu fatigavit improvidum.

Demonstratum est cap. XXXII, planetarum motus intensionem et remissionem sequi proportionem distantiarum simplicem. At videtur virtus ex 5 Sole emanans intendi et remitti debere in proportione duplicata vel triplicata distantiarum seu linearum effluxus. Ergo intensio et remissio motus planetarum non erit ex attenuatione virtutis ex Sole emanantis. Probari videtur consequens in hunc modum, tam de luce quam de virtute movente: sed de luce sermones sunt clariores. Lector virtutem motricem subintelligat. Sit initio punctum aliquod α (Fig. 86.) de corpore Solis: id ergo sparget radios in orbem omnem: et per demonstrata in Opticis ut sese habet amplitudo sphaericae superficiei y amplioris, radios hosce per imaginationem terminantis, ad β angustiorem, sic se habebit densitas lucis in orbe β angustiore ad densitatem ejusdem in y ampliore.

Sit deinde circulus aliquis maximus de in corpore Solis lucidus. Fig. 86. Ejus ergo singula puncta, quorum sunt infinita, spargent hac ipsa proportione radios in singula hemisphaeria β et y. Ac ut se habet distantia ab hujusmodi linea circulari (quae eminus apparet recta) longior $\alpha \gamma$ ad breviorem $\alpha \beta$, conversim habet se apparentia diametri circuli in distantia breviori, seu $\partial \beta e$ angulus, ad apparentiam in distantia longiori, seu dys angulum. Cum ergo longior apparent haec diameter e propinquo β quam e longinquo γ in eadem proportione; densior autem etiam cujuslibet puncti radiatio e propinquo β quam e longinquo γ : in dupla igitur proportione ipsius $\alpha\beta$ ad $\alpha\gamma$ densior videtur futura radiatio circuli de propinquo β quam de longinquo y.

Sit tertio discus ipse apparens corporis Solis $\delta \alpha \epsilon$, et cum superficies similes (ut hic circulares disci apparentes) sint in dupla proportione diametrorum, diametri vero Solis apparentes in simpla proportione distantiarum $\alpha \gamma$, $\alpha \beta$ eversa: disci igitur circulares apparebunt in dupla proportione distantiarum $\alpha \gamma$, $\alpha \beta$. Cum antem radiatio circuli de in γ et β jam probata sit dupla uti proportione distantiarum $\alpha\beta$, $\alpha\gamma$, causa alius atque alius suae densitatis, videtur hinc radiatio disci, causa densitatis vel fortitudinis, tripla uti proportione distantiarum $\alpha \gamma$, $\alpha \beta$. Ut si distantiae essent $\alpha \gamma$ ut 2, $\alpha\beta$ at 1: essent radiationes puncti $\alpha\gamma$ at 1, $\alpha\beta$ at 2, causa densitatis lucis, et diametri circuli apparentes in γ , 1, in β , 2. Ergo radiationes δs diametri circuli in y, 1, in β , 4. Sed disci sunt in propor-

tione dupla diametrorum. Ergo disci apparentia in γ esset 1, in β esset 4: quasi dicas, discum $\partial \alpha s \propto \beta$ videri quadruplo plura puncta continere quam ex y, quorum punctorum quodlibet in β duplo densius lucet quam in y. Compositis igitar proportionibus radiationis totius disci das densitas in'y ad densitatem radiationis totius disci $\partial \alpha e$ in β esset ut 1 ad 8.

Nihil hic nos turbat, quod apparentem discum Solis computamus, cum

0

L

1

sit superficies hemisphaerica; nam aeque multiplicium esdem est ad se mutuo proportio. Sphaerica vero superficies ab Archimede demonstrata est quadrupla esse ad planum circuli maximi in sphaera scripti. Omnino itaque corpus duplo distans longius in γ quam in β , videtur octuplo obscurius lucere debuisse in γ quam in β , non tantummodo duplo. Etenim ex eo ipso videtur intendi debere claritas radiorum, quod corpora ex appropinquatione videntur amplificari, ut Venus in perigaeo epicycli evidentiorem corporibus umbram circumscribit quam in apogaeo. Eadem igitur, vi comparationis a nobis institutae inter lucem et vim motricem, videntur et de vi motrice concipi debere.

Ad hanc objectionem solide respondeo, in prima puncti positione falsum assumi. Nam etsi sic ego in Opticis quoque locutus sum, at cum opticis me locutum memineris, quorum puncta et lineae non sunt plane indivisibiles. Etenim quod punctum attinet, cum id nullam obtineat quantitatem, amplificentur vero radiationes cum quantitatibus corporum: sequitur, puncti radiationem per se nullam esse, quare nullius radiationis nulla etiam major vel minor densitas. Itaque usurpatio prima proportionis distantiarum $\alpha\beta$ ad $\alpha\gamma$ hoc pacto intercidit. Quin potius ob id ipsum dicimus, punctum aliquod fortius vel imbecillius lucere, quia illud punctum nobis majorem vel minorem quantitatem designat.

In secunda circuli et tertia disci positione duo falsa insunt. Primo quod circulus mathematicus, carens latitudine, fingitur lucere: cum is tam non luceat se ipso, quam non potest lucere punctum, ex cujus ductu circulus gigni intelligitur. Sane nihilo magis promoveris ad superficiem, assumta linea trium stadiorum quam trium pedum.

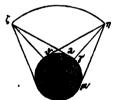
Secundo fingitur amplificatio optica diametri vel disci addere fortitudini radiorum, cum sit tantum deceptio visoriae facultatis et ex genere rationalium entium, quibus nulla est efficientia. Itaque idem re ipsa circulus $\delta \epsilon$. eadem superficies $\delta \alpha \epsilon$ (in negotio lucis), idem corpus $\delta \epsilon$ (in negotio virtutis) manens, sive ex y adspiciatur, sive ex β , idem etiam perpetuo praestabit et efficiet, et tantundem sparget virtutis vel lucis in orbem y laxiorem quantum in β angustiorem: nihil enim perit in itinere; pervenit species integra quam lubet remotissime, tantummodo sphaerarum extensionibus attenuatur, ut in punctis sphaerarum singulis, puta in γ et β , sit illic rarior, hic densior in proportione conversa distantiarum $\alpha\beta$ ad $\alpha\gamma$. Et haec sola causa est debilitationis, non evanescentia fontis δs , quae re vera non accidit, sed per visus deceptionem. Imo si hic liberet ex Euclidis Opticis argutari. minus lucis ad propinqua β venit quam ad remota, eo nomine, quod in β minor circulus terminat visum hemisphaericum lucentis δe quam in r. Itaque non tanta particula de Sole δe videri potest ex β quanta ex y. Sed hoc insensibile est plane et vix numeris immanibus expressile.

Ego sane postquam hic mihi ipsi respondi, rideo miseras meas trepidationes ex hac caligine ortas.

Sed revibrari potest objectio in partem contrariam, sic nempe. Si tantundem lucis est in ampla sphaera sparsim, quantum in angusta collectim, non erit tantundem virtutis utrobique, eo quod virtus consideratur non in sphaera orbiculariter, ut lux, sed in illo circulo in quo incedit planeta. Nam et filamenta magnetica Solis supra ponebantur in longum tantummodo porrigi, non etiam versus polos aut aliorsum.

Respondetur, causam lucis et virtutis motricis esse plane eandem, et

;


deceptionem inesse in ratiocinatione. Nam sicut in luce non effluent radii a solis punctis et circulis corporis ad respondentia sphaerae puncta et circulos; ut in γ non a solo α (quo pacto nulla posset adscribi luci densitas in sphaeris, cum in ipsa origine nullam haberet quantitatem, utpote a puncto descendens), sed effluent a toto lucentis hemisphaerio radii ad singula imaginatae sphaericae superficiei puncta; ut in y effluit radius tam ex 8 quam ex s: sic etiam in negotio virtutis idem hoc locum habet. Nam etsi filamenta corporis Solaris magnetica ordinantur secundum longitudinem zodiaci; etsi etiam unicus tantummodo circulus maximus corporis Solis subest zodiaco sive eclipticae, et quam proxime orbitae planetae; denique etsi alteri circelli minores (tandem sub polis in puncti angustiam attenuati) subordinantur respondentibus suis circulis in sphaera planetae: tamen ab omnibus Solaris corporis filamentis (ab uno hemisphaerio corporis stantibus) radii defluunt et confluunt tam ad puncta singula itineris alicujus planetae, quam ad ipsos polos polis corporis Solis imminentes; et planetae corpus vehitur ad modulum densitatis hujus integrae speciei, ex filamentis omnibus compositae.

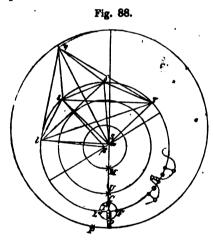
At non ideo sequitur, ut sicut Sol quaquaversum lucet aequaliter, sic etiam planeta, quod metuere possis, quaquaversum moveatur sine discrimine. Neque enim filamenta Solis magnetica movent solitarie considerata, sed quaterus Sol rapidissime conversus in suo spatio ipsa quoque filamenta, et cum iis speciem moventem ab iis dimanantem circumfert. Non igitur ibit planeta in adversum, quia Sol perpetuo volvitur in directum. Non ibit planeta ad polos (etsi in iis punctis etiam aliqua de corpore Solis species adsit): quia neque filamenta corporis Solaris versus polos extenduntur, neque Sol eam in plagam volvitur, sed in eam, quorsum ipsum filamenta sua invitant.

Quibus positis, tantum abest ut planatae versus polos rapiantur, ut potius unica zodiaci regio sit media inter polos, per quam omnes planetas, si a suis propriis motibus cessarent (de quibus infra cap. XXXVIII.) sine ulla deflexione in longitudinem ire sit necesse. Nam quae species hemisphaerii Solaris adsistit alicui puncto zodiaci, puta in praesenti schemate puncto ζ , tota est filamentorum semicircularium eodem

puncto ζ , tota est mamentorum semicircularium codem una tendentium; ut ex ϑ in γ , ex λ in μ etc. Ubi vero versus polos mundi concesseris, ut in η , tunc et altero polo corporis Solis γ , et filamentorum integris ζ circellis $\lambda \mu$, quae polum γ circumstant, sub aspectum $\eta \mu$ vindicatis, species componetur ex filamentis in contraria tendentibus: circulorum enim partes oppositae λ et μ in partes eunt contrarias. Minus igitur apta est species ista $\vartheta \eta \mu$ versus polos delapsa ad motum planetis inferendum.

Fig. 87.

311



Caput XXXVII.

Virtus Lunam movens quomodo comparata sit.

Et quia cap. XXXIV. obiter in motus Lunae mentionem incidi, lubet totum negotium delineare paulo clarius, ne scrupulus aliquis a Luna injectus lectorem in toto hoc tractatu torqueat, quo minus expedite mihi suum praebeat assensum: quin potius ut mirifice confirmetur evidentissima motus Lunaris contemplatione: denique ut astronomiae pars physica hoc libro sit integra. Nam etsi in theoriam Lunae paucula quaedam differenda sunt sen aliter tradenda seu particularius explicanda: illa tamen hinc orientur.

Animadvertit Tycho Braheus per diutinas et creberrimas observationes Lunae in omni situ cum Sole, quod in Luna praeter anomaliam epicycli et praeter illam anomaliam menstruam, quae etiam Ptolemaeo nota fuit, ipse etiam medius motus (respectu harum duarum inaequalitatum sic dictus) nondum sit plane medius, sed intendatur sub conjunctiones et oppositiones cum Sole, remittatur in quadratues; ut, etiamsi nullis turbaretur epicyclis, tamen Luna ipsa, etiam in concentrico Terram circumiens, inaequaliter circumiret.

Sit S corpus Solis, M orbis Mercurii, V Veneris, T Telluris, P Martis etc.: et moveantur omnes superius a dextris ad sinistras perpetim. Sit autem CLOF orbis Lunae, O Luna in oppositione, C in conjunctione, L, F in quadraturis: et maneat jam CLOF concentricus ex Terra in T descriptus, moveaturque in plagam OFCL. Quaeritur igitur, quae causa, cur Luna in C, O sit celerior circa T, quam in F, L, cum jam animo removerimus eccentricitatem et epicyclos? Hic exspectat lector (scio) ut dicam, ideo celeriorem esse in O, quia motus ejus eo loci sit in easdem partes cum omnium planetarum motu. At haec vera causa non est. Sic enim in C fieret, ut fit qui-

dem, Luna tardissima, motu composito; cum proprius ejus motus FCL nonnihil renitatur illi communi, ad sinistras partes. Sciendum enim, quod Luna in suo orbe ex C feratur minus ad partes dextras L, quam Terra ad sinistras in suo orbe: ideoque Luna, motu composito [ex proprio et ex Telluris communi, semper etiam ad dextras superius, Terra in δ versante, hic vero, Terra inferius in T versante, ad sinistras fertur; tarde tamen circa C, velociter circa O, cujusmodi motum spirales lineae hic delineatae proxime exprimunt.

Sed forsan aliud exspectas, ut dicam, provenire hoc phaenomenon ex eo, quod virtus motrix Solis in O sit remissior, in C incitatior? Multo minus hoc dixero. Sic enim efficiam, ut utrinque in O et C fiat tarda, in F, L velox, quod est contrarium quaesito. Nam si in O remisse promovetur, tarda igitur: et si in C fortius impeditur, quo minus ex C in L

contrarium tendat, rursum igitur tarde movebitur ex C in L. Nempe non recte fit, .ut Lunam Soli permittamus a Terra liberam. Aberraret enim denique a Terra, ut apogaea a locis suis aberrant. Quin potius tribuenda Telluri vis retentiva Lunae, ceu catena quaedam, quae esset, etsi Luna Terram plane non circumiret; et qua posita Luna cum Terra quasi in eadem navi fertur, nempe in eadem virtute Solis, jamque, quasi hoc motu ex Sole libera esset, privatim a Terra rotatur. Itaque celeritatis in O, C causam non aliam esse puto, quam eam, quod T Terra virtutem movendi Lunam ex S Sole hausit, eamque continuatione lineae TS conservat. Itaque S CTO merito diameter virtuosa appellari potest, cum hi duo fontes sint omnis motus, nempe T et S.

Hoc enim posito sequetur etiam illa inaequalitas menstrua Ptolemaeo nota. Nam si virtus in C, O fortior est quam in F, L, lapsa ex eodem fonte T: ergo si apogaeum in C, O versatur, majus damnum celeritatis est, quam si sit apogaeum in F, L. Majores ergo aequationes ex apogaeo O vel C redundant in F, L, quam ex apogaeo F vel L in C, O, conjunctiones et oppositiones.

Vides igitur, speculationes hasce physicas ita comparatas esse, ut etiam Lunae phaenomenis sufficere possint; neque incitari Lunam a Sole primario, ut Terram circumveniat, sed a virtate aliqua in Terra ipsa delitescente, indeque speciem sui immateriatam ad Lunae corpus ejaculante, fortiore tamen in linea, quae centra Solis (primarii fontis) et Terrae connectit. Quomodo vero diameter ista virtuosior evadat, difficile est explicare clarius. Nam neque Solis neque Terrae virtus emanans in Lunam tunc celerios est, cum Luna in hanc diametrum incidit. Aequabiles enim et perpetuo constantes esse horum corporum (quare et specierum) conversiones, summa ratio est. Relinquitur ergo solum hoc, quod dictum est, ut non quidem celerior, sed tamen robustior sit virtus ex Terra delapsa, in partibus lineae ST propioribus: eo quod originaliter per ipsam illam lineam ex Sole in Terram est derivata.

Esse autem Solem seu immediate seu per id, quod Telluri motum annuum conciliat, praecipuum directorem ejus motus, quem Tellus Lunae infert, id maxime demonstrat, quod circuitus Lunae sub zodiaco conficitur, ut et circuitus centri Telluris annuus, cum tamen motus Telluris diurnus, qui Lunae suum motum menstruum infert, sub aequatore incedat.

Caput XXXVIII.

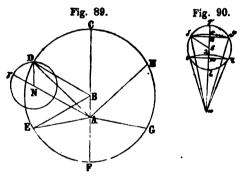
Planetas praeter communem Solis vim motricem praeditos esse vi insita: et motus eorum singulorum componi ex duabus causis.

Dixi de illius motus origine, qui planetas circa Solem, vel Lunam circa Terram rotat; hoc est de causis naturalibus illius circuli, qui in theoriis planetarum pro diversa auctorum intentione vel eccentricus vel concentricus appellatur. Jam etiam dicendum de naturali causa ipsius eccentricitatis, seu in particulari Copernici hypothesi, ipsius epicycli in concentrico. Nam virtus movens ex Sole hactenus aequabilis fuit, tantummodo per alias et alias circulorum amplitudines gradus diversos habens: ingenium vero ejus

tale, ut planeta, si in eadem a Sole remotione maneret, aequabilissime circumferretur, nullam sensurus intentionem, nullam remissionem motus Solaris. Quod autem inaequalitas aliqua in opere hujus virtutis est deprehensa, id accidit ex eo, quod planeta ex alia a Sole distantia in aliam fuit transpositus; quo pacto in alium atque alium gradum fortitudinis hujus ex Sole virtutis incidit. Quaeritur ergo, si orbes solidi nulli sunt, quod demonstravit Braheus, unde eveniat, ut planeta a Sole ascendat et descendat? num etiam hoc ex Sole? Est, inquam, quomodo ex Sole; est, quomodo non ex Sole.

Clamant rerum naturalium exempla et haec hactenus delibata coelestium cum his terrestribus cognatio, simplicis corporis quo communiores sunt operationes, hoc esse simpliciores; varietates vero, si quae sunt ejus (ut in motu planetarum diversa a Sole distantia seu eccentricitas), ab extraneis causis existere concurrentibus.

Sic in flumine simplex aquae proprietas est, ad centrum Terrae descendere. Quia vero iter ejus directum non est, declinat illac, qua depressum invenit alvenm; stagnat, ubi in soli aequabilitatem incidit; rapitur cum strepitu, qua libramentis incitatur pronioribus; est ubi rotetur in gurgites. si perniciori lapsu in procurrentes scopulos impegerit. Ubi aqua ipsa vi insita nihil nisi descensum molitur ad Terrae centrum simplici proprietate, simplex opus; declinatio vero et stagnatio et aestus et vortices et omnis varietas a causis assignatis seu extraneis et adventitiis oritur. Inprimis incunda et nostro negotio accommodatiora exhibentur spectacula in navigiorum impulsione. Si funis seu rudens super flumen transversus in sublimi pendeat ex utraque ripa nexus, et trochlea per rudentem discurrens alio fune cymbani in flumine versantem retineat, portitor vero cymbae gubernaculum seu remum decenti modo religaverit, cetera quietus: cymba vi simplici fluminis deorsum euntis ipsa transversim rapta, a ripa una in alteram transponitur, trochlea per funem sublimem decurrente. In latioribus vero fluminibus cymbas in gyros agunt, huc illuc trajiciunt, mille lusus exercent, nullo fundi aut litorum tactu, sed sola remi ope decursum fluminis unicum et simplicissimum in sua vota convertentes.


Ad eundem fere modum virtus ex Sole in mundum per speciem egressa rapidus quidam torrens est, qui planetas omnes adeoque totam forsan auram aetheream ab occasu in ortum rapit, se ipso non aptus corpora ad Solem adducere vel ab eo longius propellere; quod esset infinitae sollicitudinis opus. Necesse ergo est, ut planetae ipsi ceu quaedam cymbae peculiares virtutes motrices quasi quosdam vectores seu portitores habeant, quorum providentia non tantum accessus ad Solem et recessus a Sole, sed etiam (quod secundum argumentum esse queat) declinationes latitudinum administrant, et quasi ab una ripa in aliam, a septentrione inquam in austrum et contra, flumen hoc (se ipso solum eclipticae tractum sequens) trajfciunt. Certum enim est ex antedictis, virtutem, quae ex Sole, simplicem esse. Jam vero eccentrici planetarum non tantum declinant ab ecliptica, sed etiam in varias plagas eunt, sese mutuo et eclipticam intérsecantes. Igitur almee

Caput XXXIX.

Qua via et quibus mediis movere debeant virtutes planetis insitas, ut circularis planetae orbita, qualem vulgo credunt, per auram aetheream efficiatur.

Sint itaque nobis in demonstratis verissima ista axiomata: Primum, quod planetae corpus natura inclinatum sit ad quietem in omni loco, in quo solitarium ponitur: Secundo, quod ea virtute, quae ex Sole, de loco in locum secundum longitudinem zodiaci transponatur. Tertio, si non mutaretur distantia planetae a Sole, futurum ex hac transpositione iter circulare. Quarto, ejusdem planetae in duabus per vices distantiis a Sole toto ambitu permanentis, tempora periodica futura in dupla proportione distantiarum sive circulorum amplitudinis. Quinto, virtutem nudam et solitariam in ipso planetae corpore residentem non esse sufficientem transportando de loco in locum suo corpori, quod pedibus, alis et pinnis caret, quibus in aura aetherea nitatur. Sexto, et tamen accessus planetae ad Solem et ab eo recessus oriri ex virtute, quae est propria planetae. Haec omnia et naturae sunt consentanea se ipsis et demonstrata hactenus.

I. Jam in figuris geometricis exerceamur, ut apparent, ad quamlibet orbitam planetae repraesentandam quibus legibus opus sit. Esto.ut planetae orbita sit circulus, ut hactenus creditum, isque a Sole fonte virtutis eccen-

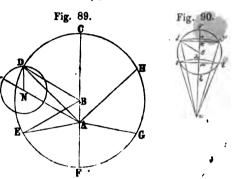
tricus. Sit ille eccentricus CD, centro B diastemate BC descriptus: in eo BC linea apsidum, et A Sol et BA eccentricitas. Dividatur eccentricus in partes quotcunque aequales, initio a linea apsidum facto in C: quarum termini connectantur cum A. Erunt igitur CA, DA, EA, FA, GA, HA terminorum partium aequalium distantiae a fonte virtutis. Jam centro β , diastemate β_7 , quod sit aequale ipsi AB, scri-

batur epicyclus $\gamma \vartheta$, divisus in totidem cum eccentrico partes invicem aequales, a γ initio facto: et linea $\gamma \beta$ continuetur, ut $\beta \alpha$ aequet BC: et punctum α connectatur cum terminis partium epicycli aequalium, lineis $\gamma \alpha$, $\vartheta \alpha$, $\varepsilon \alpha$, $\zeta \alpha$, $\gamma \alpha$, $\vartheta \alpha$; eruntque lineae hae aequales ordine distantiis ab A in eccentrico exstructis: id enim supra capite secundo demonstratum est. Centro igitur α diastemate $\vartheta \alpha$ scribatur arcus $\vartheta \iota \vartheta$, secans diametrum $\gamma \zeta$ in ι ; eodem vero centro α diastemate $\alpha \varepsilon$ scribatur arcus $\varepsilon \lambda \eta$, secans diametrum $\gamma \zeta$ in ι ; eodem λ , et connectantur termini partium aequaliter distantium a γ aphelio epicycli lineis $\vartheta \vartheta$, $\varepsilon \eta$, quae secent eandem diametrum in \varkappa , μ signis, sic ut $\alpha \vartheta$ vel $\alpha\iota$ sit longior quam $\alpha \varkappa$, et $\alpha \varepsilon$ vel $\alpha \lambda$ longior quam $\alpha \mu$. $\varepsilon^{\varepsilon}$

Quodsi possibile esset, planetam ire perfectum epicyclum vi insita, et simul orbitam ejus esse perfectum circulum, tunc similes arcus simul perfici cogitandi essent, cum in eccentrico tum in epicyclo. Itaque jam statim patesceret, quibus mediis, qua mensura efficeretur distantia α_i aequalis ipsi AD. Nam quia α_i , $\alpha \vartheta$ aequales, planeta ex γ in ϑ iens, distantiam $\alpha \partial$ necessario et sine speciali consilio efficeret justam et aequalem ipsi A D.

At praeterquam quod is cum axiomate quinto pugnare tidetur, qui idicit, planetam vi insita progredi de loco in locum ex y in ϑ , multa etiam alia absurda involvuntur. Ducatur enim ipsi BD parallelos AN, et sit AN aequalis ipsi BD, et centro N scribatur epicyclus, qui per D ibit. Cum igitur, existente CD perfecto circulo, iidem perficiantur anguli a planeta D'apud B centrum eccentrici et ab N centro epicycli apud centrum Solis A (per aequipollentiam demonstratam capite II.), diametro epicycli ND, qui planetam in D habet, manente ipsi AB parallelo respectu situs in mundo: ideo hic poneretur eadem celeritas N centri epicycli circa a Solem et D planetae circa B centrum epicycli, ita ut simul intenderentur isti motus et simul remitterentur: et quia intensio et remissio est a majori vel minori distantia corporis planetae a Sole, ideo centrum epicycli, manens in eadem distantia, fingeretur tarde vel celeriter moveri propter planetam distantem longius vel brevius a Sole.

Et quamvis virtus planetas vehens celerior est omnibus omnino planetis, ut ostensum cap. XXXIV, hic tamen esset nobis supponendus imaginatione unus virtutis ex Sole radius AN, ceu linea, in qua N centrum epicycli perpetuo maneret: quae linea cum ipso centro N interdum esset tarda, interdum volox; iterum contra ea, quae supra dicta, quod virtus in eadem distantia eandem perpetuo praestet celeritatem: planetam vero deberemus ponere sese evolventem ex hoc imaginario radio A N in partes contrarias temporibus aequalibus inaequaliter, prout ipse hic radius vel celer vel tardus fieret. (Hoc ultimum deefinatur infra cap. XLIX. ceteris absurdis manentibus.) Quo pacto geometricis quidem veterum suppositionibus propiores fieremus, sed a physicis speculationibus aberraremus quam longissime, ut ostensum cap. II. Neque sufficient cogitationes meae ad eruendum modum, quo ista contingere possent naturaliter.


Simplicius igitur cogitarentur ista, si inspiceremus ND diametrum epicycli sibi ipsi perpetuo parallelum manentem. Tunc igitur planeta hunc motum conficeret, imaginatione non epicycli sed centri eccentrici B, et tuendo sese in eadem perpetuo distantia ab illo centro. At sub principium operis cap. II. dictum est, absurdissimum esse, ut planeta (quamvis eum mente instruas) imaginetur sibi centrum et ab eo distantiam, in quo centro nullum peculiare corpus pro nota insit. Et quamvis dixeris, planetam respicere ad Solem A, et jam antea scire memoriter, quales ordine distantiae a Sole perfecti eccentrici contingere debeant: primum hoc remotius est et indiget mediis, quae effectum perfecti circularis itineris cum signo crescentis et decrescentis diametri Solis connectant, etiam in aliqua mente. Id autem medium non est aliud, nisi positio centri eccentrici B in certa a Sole distantia; quod jam modo dictum, a nuda mente fieri non posse.

Non nego, cogitari posse centrum, et circa id circulum. Sed hoc dico, si centrum cogitatione sola consistat, nullo tempore, nullo signo externo, non posse circa id ordinari realiter corporis alicujus mobilis iter perfecte circulare.

Praeterea si planeta suas justas distantias a Sole lege circuli ordinatas depromeret ex memoria, depromeret indidem etiam tanquam ex tabulis Prutenicis aut Alphonsinis aequales arcus eccentrici, decurrendos inaequalibus temporibus, et decurrendos vi extranea ex Sole; et sic praesciret memoriter id, quod extranea et bruta ex Sole virtus esset effectura. Quae omnia sunt absurda. Praesertim cum, Aristotele teste, infiniti nulla sit scientia; infinitum autem misceatur huic intensioni et remissioni.

Sed bene habet, quod ipsae etiam observationes perfectum circulum CD infra cap. XLIV. non sunt passurae: nec imbecilles istae (ut putantur) speculationes solitariae consistunt, tantoque minus calumniis sunt obnoxiae. Est itaque magis consentaneum, planetae ipsi nihil esse curae neque epicyclum neque eccentricum, sed opus, quod ipse perficit aut ad quod efficiendum concurrit, esse iter libratorium in diametro $\gamma \zeta$ ad α Solem tendente.

Quaeritur jam mensura, qua planeta justas quolibet tempore distantias metiatur? Nobis quidem mensura patet ex geometria et schemate. Quoties enim planeta a Solari virtute promotus est in 7 lineam DA, nos tunc inquirimus angulum CBD, eique aequalem facimus $\gamma\beta\delta$; et sic $\alpha\delta$ vel ei aequalem α : dicimus esse justam planetae in D versantis distantiam ab A. Sed hanc propositam mensuram hominibus jam eripui-

mus planetae, dum ipsum ex epicycli amplitudine intra diametri $\gamma \zeta$ angustias redegimus.

Equidem in hac inquisitione facilius dicitur quid non sit, quam quid sit. Nam quia planeta momentis iis, quibus a Sole fuit collocatus in lineas ex A per C, D, E, F, G, H ductas, ipse ponitur effecisse distantias ordine has: $\gamma \alpha$, $i\alpha$, $\lambda \alpha$, $\zeta \alpha$, $\lambda \alpha$, $i\alpha$. Quodsi igitur via planetae est perfectus circulus, tunc aequalibus partibus eccentrici CD, DE, EF respondent inaequales descensus planetae in diametro, nempe γ_i , $i\lambda$, $\lambda\zeta$, et quidem turbato ordine, sic ut non supremi sint minimi, imi maximi, sed ut medii sint maximi $i\lambda$, extremi γ_i , $\lambda\zeta$ minores, et summi γ_i paulo minores imis $\lambda\zeta$ respondentibus. Sunt enim aequales γ_x et $\mu\zeta$, et γ_i minor quam γ_x , $\lambda\zeta$ vero major quam $\mu\zeta$.

Atque haec eadem causa impedit, quo minus γ_i , $i\lambda$, $\lambda\zeta$ proportionentur vel temporibus confectorum aequalium arcuum CD; DE, EF, vel angulis ad Solem CAD, DAE, EAF. Tempus enim seu mora planetae in partibus eccentrici aequalibus, CD, DE, EF, a summo ad imum continue minuitur; anguli ad Solem continue augentur; librationes vero γ_i augentur in medio, ut $i\lambda$.

Igitur si iter planetae est perfectus circulus, mensura descensus planetae in diametro $\gamma \zeta$ neque tempus est, neque spatium eccentrici confectum, neque angulus ad Solem. Et has quidem mensuras etiam physicae speculationes repudiant.

Quidsi igitur hoc dicamus: etsi motus planetae in epicyclo non contingat, sic tamen dispensari hanc librationem, ut distantiae a Sole efficiantur similes iis, quae existant epicyclo vere decurso?

Primum tribuitur virtuti, quae planetae propria est, cognitio epicycli imaginarii ejusque effectuum in ordinandis distantiis a Sole: tribuitur et cognitio futurae celeritatis et tarditatis, quam causaturus sit motus com-

317

munis ex Sole; quia bác necessario ponitur eadem indensio et remissio imaginaria motus epicycli imaginarii, quae motus veri eccentrici; quae sunt incredibiliora quam priora, ubi motus corporis cum epicycli vel eccentrici cognitione conjunctus fuit. Itaque, quae ibi disputata sunt contra, hic intelligantur repetita; pene n. coincidunt sententiae.

Et tamen in penuria melioris sententiae in praesens nobis est acquiescendum in hac. Quae quo plura absurda involvit, hoc libentius infra cap. LII. physicus aliquis admittet, quod observationes testabuntur, iter planetae non esse circulum.

II. Dictum est hactenus de mensura, quae formam hujus librationis respicit: restat ut et mensuram hujus mensurae, scilicet quantitatis seu motus per locum inquiramus. Nec enim satis est, scire planetam, quantum absistere debeat a Sole: quin et hoc requiritur, ut sciat, quid faciens justo infervallo absistat.

Quem igitur ista suppositio itineris perfecte circularis eo adegit, ut mentem in planeta collocaret, quae huic librationi praesideret, is aliud dicere non poterit, quam hoc, respicere mentem planetae ad diametri Solis amplitudinem crescentem et decrescentem, et hoc usam signo intelligere, quantas a Sole effecerit quolibet tempore corporis sui distantias. Quia ut nautae non possunt intelligere ex ipso mari, quantum undarum spatium confecerint, eo quod iter illud nullis sit distinctum limitibus, sed vel ex diuturnitate navigationis, si ventus et unda constantes manserint, et navis nunquam quieverit, vef ex venti plaga et altitudinibus poli diversis, vel ex omnium horum aut-aliquorum saltem juncta consideratione; vel si diis placet, ex rotularum nonnullarum coagmentatione, pinnarum ope in undas demissarum, agitanda; cujusmodi instrumentum vani quidam mechanici profitentur, qui oceani fluctibus continentis quietem transscribunt: eundem plane ad modum planetae mens locum seu spatium versus Solem confectum metiri se ipsa non potest, cum pura intersit aura aetherea, nullis distincta signis; sed aut tempore utitur, et per tempus illud aequali contentione virium, quod jam est in superioribus negatum; aut machina corporea, quod est ridiculum (ponimus enim sidera rotunda exemplo Solis et Lunae : quin et verisimile est, universum campum aurae aethereae una ire cum planetis); aut denique signis aliquibus idoneis cum mutata planetae a Sole distantia variabilibus, coinsmodi praeter unicam Solis diametrum apparentem nullum aliud suppetit. *) Sic nos homines scimus, Solem a nobis abesse 229 suis diametris, quando ejus diameter habet 30', et 222 diametris, quando habet 31'.

Et sane, si certum esset, motum hunc in epicycli diametro proprium non posse perfici a virtute aliqua planetae matoriali et corporali sive magnetica, non etiam a nuda animali, sed gubernari a planetae mente, nihil absurdi statueretur. Quod enim Sol alias etiam observetur a planetis, testantur et latitudines. Cum enim planetae causa harum a media et regia via hujus virtutis ex Sole, ceu ab ipso torrente fluminis ad latera secedant, ut dictum capite XXXVIII, nisi Solem respicerent interim, accessusque et recessus in linea per centrum Solis tendente perficerent, tunc circulos describerent, qui ex Terra vel ex centro mundi apparerent minores, paralleli cum aliquo maximo. At describunt omnes planetae maximos circulos, qui

^{*)} Ita planetae fierent yeuµeroau, distantiam metientes sui a Sole per unam stationem, so, ex apparenti quantitate corporis Solis.

echipticam in locis ex Sole oppositis secant, quod supra cap. XII. XHI. XIV. de Marte ex observationibus est demonstratum. Ergo et diameter libratoria $\gamma\zeta$ versus Solem ipsum tendit, et latitudines Solem omnino respiciunt. Etsi hoc quoque de latitudine infra parte V. a mentis partibus ad naturae partes et magneticas facultates sum traducturus. Nec mihi hoc dixeris, oppido parvam esse hanc Solis diametrum ejusque variationem, ut pro regula esse non possit. Certum enim est, in nullo planetarum penitus evanescere. Cum enim in Terra sit 30', in Marte obtinebit 20, in Jove 7, in Saturno 3, at in Venere 40, in Mercurio plane 80, et usque ad 120. Neque de parvitate hujus corporis, sed de sensuum humanorum inepta crassitie querare, qui ad tam parva percipienda non sequentur.

Ecce hoc quantulumcunque corpus aptum tamen est, quod in superioribus demonstravi, ad movenda in circulum tam remota corpora. De illuminatione mundi a tamillo corpasculo sciunt omnes. Credibile est itaque, si qua facultate praediti sunt motores illi observandae hujus diametri, eam tanto esse argutiorem quam sunt oculi nostri, quanto opus ejus et perennis motio nostris turbulentis et confusis negotiis est constantior.

An ergo binos singulis planetis tribues oculos, Keplere? Nequaquam. Neque est necesse. Neque enim ut moveri possint, pedes ipsis atque alae sunt tribuendae. Orbes vero solidos Braheus jam eliminavit. Neque exhaueit nostra speculatio omnes naturae thesauros, ut per nostram Scientiam stet, quot sensus esse debeant. At etiam exempla nobis admirabilia sunt in promtu. Dic enim physice, quibus oculis astrorum loca in zodiaco speculentur facultates animales corporum sublunarium, ut harmonica dispositione (quem aspectum dicimus) inter ea deprehensa subsultent et in opus suum exardescant? An etiam oculis suis signavit mater mea loca siderum, ut sciret, se natam in configuratione Saturni, Jovis, Martis, Veneris, Mercurii, per sextiles et trinos; eoque iis potissimum diebus liberos suos, praesertim me primogenitum eniteretur, quibus quam plurimi eorundem aspectuum, praesertim Saturni et Jovis recurrerent, aut quam plurima loca pristina quadratis, oppositis, et ipsis corporibus possiderentur? Quae sane in omnibus exemplis deprehendi, quotquot ad hunc diem obtigerunt. Sed quid ego haec aeque absurda atque illa, noi illis, qui in natura sese diligentius exercuerunt, quam hodie usitatum est? (Comp. Vol. II, p. 646.)

Idem igitur ille, quem hic ponimus dicere, planetae iter esse perfectum circulum, hoc dicet, planetam affectare sua libratione, ut in qua proportione sunt lineae $\delta \alpha$, $s \alpha$, $\zeta \alpha$ vel aequales illis $\iota \alpha$, $\lambda \alpha$, $\zeta \alpha$ ad longissimam $\gamma \alpha$, in eadem fere (nam cap. LVII. erit proportio paulo alia.) proportione eversa videantur ipsi diametri Solis post aequales eccentrici arcus confectos; et hac diametrorum. Solis consideratione venire dictis temporum articulis ex γ in ι , λ , ζ propinquitates.

Sciendum tamen, non bene quadrare invicem augmentum diametri Solis et arcus epicycli; itaque memoriam huic menti motrici valde bonam esse oportet, ad aequalia augmenta diametri Solis accommodanti inaequales sinus versos arcuum epicycli: quo de infra cap. LVI, LVII.

III. Atque haec de signo confecti spatii dicta sunto. Restat, ut tertio et de animali facultate transvectandi corporis planetarii tribus verbis moneam: eum, qui dicat, vi insita transportari corpus planetae, nullo modo verisimilia dicere; hoc enim negavimus in principio. At neque Soli simpliciter transsoribi potest vis haec. Idem enim, qui planetam attrahit, vicissim ą

etiam repellerat: quod pugnat cum simplicitate Solaris corporis. Qui vero peculiari quadam ratione banc translationem in consensum mutuum corpori bolis et planetae refert, is totam bujus capitis materiam aliter informat: eoque nomine deputatum est infra huic rei peculiare caput LVII.

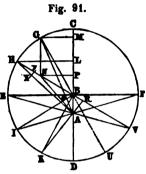
Vides lector considerate et ingeniose, quod haec opinio de perfecto circulo eccentrico itineris planetarii multa incredibilia in speculationibus physicis involvat; non quidem quod Solis diametrum menti planetariae pro signo ponit: faciet enim id forsitan ipsa etiam verissima sententia; sed quod incredibilia transscribat et menti et animae motrici.

At nos, qui vero propinqui sumus, jam porro speculationes istas, nondum licet undique perfectas, idoneas tamen motibus Solis, in numeros conjicere discemus. Proderit tandem ad exactiorem veri inventionem, quae reservatur in caput LVII, nos hic fuisse prius exercitatos.

Caput XL.

Methodus imperfecta, aequationes ex physica hypothesi computandi, quae tamen sufficit theoriae Solis vel Terrae.

Tam prolixa disputatione opus fuit, ut via strueretur ad naturalem aequationum formam, de qua parte quarta plura sum acturus. Nunc redeundrim ad aequationes eccentri Solis in specie, quae potissima est hujus partis tertiae materia, et cujus gratia praemissa sunt generalia illa.per capita 8 praecedentia.


Primus meus error fuit, viam planetae perfectum esse circulum, tanto nocentior temporis fur, quanto erat ab auctoritate omnium philosophorum instructior et metaphysicae in specie convenientior. Sit ergo via planetae perfectus eccentricus: nam insensile est in theoria Solis, quantum ei ovalis forma detrahit. Quae vero propter hanc deviationem sunt necessaria futura » in planetis ceteris, infra sequentur cap. LIX et LX. Cum ergo sint morae planetae in aequalibus eccentri partibus ad inficem in ea proportione, in qua sunt ipsae partium illarum distantiae, at puncta singula in toto semicirculo eccentrie distantiam mutent, non levem operam mihi sumsi, ut inquirerem, quomodo singularum distantiarum summae haberi possent. Nam nisi summam omnium, quae sunt tamen infinitae, habuerimus, non poterimus dicere, quanta sit cujusque mora: quare acquatio ignorabitur. Ut enim tota summa distantiarum est ad tempus totum periodicum, sic pars summae distantiarum quotalibet ad suum tempus. Igitur initio eccentrum secui in partes 360, quasi hae essent minimae particulae, et posui, quod intra unam hujusmodi partem distantia nihil mutetur. Distantias igitur ad initia partium seu gradnum methodo capitis XXIX. investigavi, easque in unam summam conjeci. Postea tempori revolutorio, quamvis definitum esset 365 diebus et 6 horis, aliud, et rotundum nomen posui, dixique illud valere gradus 360 seu integrum circulum, qui est apud astronomos anomalia media. Ut ergo summa distantiarum ad summam temporis, sic habere feci quamlibet distantiam ad suum tempus. Denique tempora per singulos gradus accumulavi, collatisque his temporibus, seu gradibus anomaliae mediae cum gradibus anomaliae eccentri, seu cum numero partium, ad quas usque quaerebatur distantia,

320

prodiit acquatio physica, cui fuit adjungenda optica capitis XXIX. methodo cum ipsis distantiis inventa, ut haberetur tota.

Atqui cum haec ratio sit mechanica et taediosa, nec posset ex ea cujuscunque gradus solitarii, ceteris sepositis, aequatio computari, circumspexi de aliis mediis. Cumque scirem, infinita esse pun**ces** eccentrici, et distantias earum infinitas, subiit, in plano eccentrici has distantias omnes inesse. Nam memineram, sic olim et Archimedem, cum circumferentiae proportionem ad diametrum quaereret, circulum in infinita triangula dissecuisse: nam haec vis occulta est ejus demonstrationis per impossibile ducentis. Quare pro eo, quod prins circumferentiam in 360 partes secabam, jam planum circuli eccentrici in totidem secui, lineis ex puncto, unde computatur eccentricitas, eductis.

Sit AB linea augium, A Sol (vel Terra Ptolemaeo); B centrum eccentrici CD, cujus semicirculus CD dividatur in partes aequales quotcunque CG, GH, HE, EI, IK, KD, et connectantur A, B puncta cum punctis divisionum. Erunt igitur AC longissima distantia, AD brevissima, ceterae ex ordine AG, AH, AE, AI, AK. Cum igitur triangula aequealta sint ut bases, et sectores sive triangula CBG, GBH et reliqua, insistentia partibus circumferentiae minimis ideoque a rectis non differentibus, omnia eandem habeant altitudinem, cruribus BC, BG, BH aequalibus: omnia igitur

erunt aequalia. Sed in area CDE insunt haec triangula omnia, et in semicircumferentia CED insunt arcus ceu bases omnes. Quare per compositionem, ut area CDE ad arcum CED; sic area CBG ad arcum CG; et permutatim, ut CED arcus ad CG, CH et singulos ordine, sic area CDE ad areas CBG, CBH et singulas ordine. Quare nihil peccatur, si pro arcubus areae in hunc modum tractentur, et pro angulis anomaliae eccentri CBG, CBH, areae CGB, CHB.

Porro, quemadmodum rectae ex B ad infinitas partes circumferentiae extensae omnes in area semicirculi CDE insunt, et rectae ex B ad infinitas partes arcus CH extensae, omnes in area CBH insunt: ita etiam rectae ex A ad easdem circumferentiae vel arcus partes infinitas idem faciunt. Cum denique ntraeque, et quae ex B et quae ex A, unum et eundem semicirculum CDE impleant, eae vero, quae ex A educuntur, sint distantiae ipsae, quarum summa quaeritur: hinc concludere mihi videbar, computata CAH vel OAE area, summam haberi infinitarum distantiarum in CH vel CE: non quod infinitum pertransiri possit, sed quod facultatis, qua pollent distantiae ad moras accumulandas, collectae mensuram in hac area inesse putarem, ut ita eam adipisci possimus per cognitionem areae, citra minimarum partium dinumerationem.

Quare ex superioribus: sicut se habet CDE area ad dimidium temporis restitutorii, quod dicatur nobis 180°, sic CAG, CAH areae ad morarum in CG et CH diuturnitatem. Itaque CGA area fiet mensura temporis seu anomaliae mediae, quae arcui eccentrici CG respondet, cum anomalia media tempus metiatur.

Prius autem pars CGB hujus areae CAG erat mensura anomaliae Kopleri Opera. III. 21 eccentri, cujus aequatio optica est angulus BGA. Ergo residua area, trianguli scilicet BGA, est excessus (hoc loco) anomaliae mediae supra anomaliam eccentri; et ejusdem trianguli angulus BGA est excessus anomaliae eccentri CBG supra coaequatam CAG. Ejusdem itaque trianguli cognitio utramque partem aequationis prodit, respondentem anomaliae coaequatae GAC.

Atque hinc etiam causa patet, cur supra capite XXX. XXXI. partes aequationis dixerim in theoria Solis quam proxime aequales. Nam quia quemlibet arcum eique superstantem angulum ad centrum (ut prius CG et CBG) metitur area sua, qui sector dicitur, ut area CBG, collocato ergo pede circini in G et diastemate GB arcus circumferentiae scribatur, secans GA in O. Igitur ut area GBC ad angulum GBC, sic area BGO ad angulum BGO. Sed angulus BGO est pars aequationis optica, itaque area GOB per duplicationem aequationis partis metietur partem opticam aequationis, cum in nostro calculo prius explicato ipsa area tota GBA sit propter partem aequationis physicam consulenda. Etsi igitur AGB, genuina mensura partis aequationis physicae, excedit OGB, oblatam mensuram partis opticae, spatiolo seu area OAB (et versus perigaeum hujusmodi aliquo spatiolo vicissim ab eo superatur): in parva tamen eccentricitate, cujusmodi est Solis vel Terrae, in qua versamur hac tertia parte, hoc non est sensibile. Nam quo propius lineam apsidum venitur, hoc exilius fit totum triangulum AGB, quare et particula ejus AOB, quantumvis crescente tunc ejus altitudine AO. In longitudinibus vero mediis BEA angulus cum sectore suo alicubi plane mensuratur ab area BEA, et excessus cum defectibus incipiunt permutari.

Itaque summa differentia, quae contingere potest, in octantes seu loca inter apsides et quadrantes intermedia accumulatur: quae quanta sit, jam patefiet. Cum enim in theoria Martis aliquamdiu eadem usus fuerim computandi forma per areas, non potuit haec differentia negligi propter magnam planetae eccentricitatem. Nec duplicatio partis aequationis opticae citra sensibilem errorem fuit. Quare exploranda fuit planities trianguli aequatorii. Potest id fieri variis mediis, sed compendiosissimum adscribam.

Notum est: aequealta triangula esse in proportione basium, dico et aequebasia esse in proportione altitudinum.

Sint AGB, AHB super eadem basi AB, continuata in C. Agatur ex G recta GN parallelos communi basi AB, secans HB in N, et connectatur N cum A, et ex trium triangulorum verticibus G, H, N agantur perpendiculares in basin GM, HL, NP, determinantes triangulorum altitudines. Cum ergo GN et MP sint paralleli, et GM, NP perpendiculares, erunt igitur GM, NP aequales. Sed GM est altitudo trianguli AGB, et NP est altitudo trianguli ANB. Triangula igitur ANB, AGB sunt acquealta; et quia simul super eadem basi AB, sunt igitur aegualia. Et cum ANB sit pars de AHB, et communis linea basium HB et communis vertex A, triangula igitur NAB, HAB sunt acquealta. Quare ut basis NB ad BH sic NAB ad HAB. Sed NAB et GAB probata sunt aegualia. Ergo ut NB ad BH sic GAB ad HAB. Ut vero BN ad BH sic NP ad HL, eo quod NBP et HBL similia triangula. Ergo etiam ut NP ad HL sic GAB ad HAB. Sed NP et GM acquales. Ergo ut GM ad HL, altitudo ad altitudinem, sic GAB area ad HAB aream. Quod erat demonstrandum.

Sit jam BÉ perpendicularis ad CD, et triangulum BEA rectangulum in B: erit BE altitudo et BA basis. Ducta ergo 900 (sc. dimidia basis BA, quae est in Sole 1800) in altitudinem BE, scilicet 100000, qui est circuli radius, creatur area trianguli BEA (Eucl. I, 41) sc. 90000000. At area circuli, cujus radius est 100000 (ex recentissima recognitione Adriani Romani solertissimi geometrae⁸) est 31415926536, ne unius quidem harum particularum errore. Et ut haec circuli area se habet ad 360° anomaliae mediae seu temporis, hoc est ad 21600' vel 1296000'': sic in eadem proportione area trianguli 90000000 se habet ad 3713'', hoc est 1° 1' 53''. Itaque area BEA valet 1° 1' 53''. Sed et angulus BEA capitibus XXIX. XXX. fuit 1° 1' 53''. Aeguationis igitur utraque pars aequalis est hoc loco, circa gradum scilicet 90.

In ceteris gradibus anomaliae eccentri sic agendum. Cum BEA sit 3713", ut ergo EB altitudo ejus ad HL vel GM altitudines ceterorum, hoe est sinus totus ad sinus HBC, GBC anomaliae eccentri: ita 3713" ad areas reliquorum triangulorum. Ita. multiplicabitur 3713" in sinus angulorum ad B, et abjectis quinque ultimis cyphris erunt residua sorupula secunda partis aequationis physicae, illi angulo ad B respondentia. Exempli causa sit HBC 45° 43' 46", quantus supra cap. XXXI. fuit. Sinus igitur 71605 in 3713" ductus abjectis 5 ultimis constituit 2659", hoc est 44' 19", quam partem aequationis supra in tabula assumsimus esse 43' 46" aequalem parti opticae. Itaque hic areola ABO ubi maxima, 33" non excedit.

Atque haec est quarta illa ratio acquationes eccentri computandi, qua de supra sub finem capitis XXXI. coepi dicere, quae naturam ipsam rerum et speculationes capitibus XXXII. XXXIII. praemissas proxime exprimit.

Sed tamen paralogismus inest in argumentatione mea, non magni quidem momenti, ortus inde, quod Archimedes circulum secuit quidem in infinita triangula, sed rectis angulis circumferentiate insistentia, ut quorum vertices in B circuli centro. At triangulorum cum A vertice in circumferentia insistentium ratio non est eadem, quia circumferentia a rectis ex A eductis ubique, praeterquam in C, D punctis oblique secatur. Et posses errorem experientia deprehendere, quod ipse quoque feci, assumtis omnibus distantiis AC, AG, AH ad singulos gradus integros anguli CBG, GBH (quae distantiae, etsi in tabula capite XXX. praemissa situ respondent singulis gradibus integris anguli ad A, itaque minutim sectis angulis ad B: [angulos minutim sectos dico, cum gradibus adhaerent minuta.] facile tamen cuilibet gradui integro anguli ad B sua distantia ab A proportionaliter attribui potest) iisque in unam summam conjectis. Nam conficitur summa major quam 36000000, cum tamen distantiae a B 360 efficiant summam non aliam, quam 36000000. Atqui si utraque summa eadem area circuli mensuraretur, debuerunt hae summae esse aequales.

Demonstratur antem in hunc modum error. Trajiciatur per B recta quaecunque praeter CD, secans circumferentiam, sitque EF: et connectantur puncta sectionum E, F cum A. Cum igitur A signum non comprehendatur linea EF, fiet EAF figura seu triangulum; quare EA, AF junctae longiores sunt quam EF. Sed area circuli continet summam omnium EF, ergo continet summam, quae minor sit quam omnes EA, AF, cum inter quaecunque puncta eccentrici opposita et A tale constituatur triangulum, praeterquam inter C, D et A, ubi pro triangulo fit linea recta.

21 *

Porro eadem ratione demonstratur, etiam (ut hoc obiter addam) distantias ab A, respondentes omnibus 360 gradibus integris anguli ad A (quae sunt in superiori capitis XXX. tabula), collectas in unam summam esse minores quam 36000000. Trajiciatur enim per A punctum recta quaecunque, praeter DC, quae sit EV, et connectantur E, V cum B. Erunt in triangulo EBV rectae EB, BV junctae longiores quam EA, AV duae distantiae oppositae. Sed EB, BV omnes 360 collectae faciunt 36000000, ergo EA, AV omnes 360 collectae facient minus quam 36000000.

Ut igitur repetam, quae jam sunt dicta, haec aequationum methodus compendiosissima quidem est, et naturalibus motuum causis hactenus explicatis innititur, sed et in theoria Solis vel Terrae scrupolosissime satisfacit observatis, sed tamen in duobus peccat: primo, quod ponit orbitam planetae esse perfectum circulum, quod verum non esse infra demonstrabitur cap. XLIV; (Posita elliptica orbita planetae nihil peccat haec methodus. Nota ergo illam.) secundo, quod plano utitur non exacte metiente distantias omnium punctorum a Sole: quarum tamen causarum altera alteram, quod miraculi loco sit, exactissime tollit, ut infra demonstrabitur capite LIX.

Et quia haec aetas praestantissimos habet geometras, qui interdum in rebus non ita manifésti usus desudant diutissime, appello omnes et singulos, ut hic me juvent in plano aliquo inquirendo, quod aequipolleat collectis universis distantiis. Geometrice quidem (late accepta voce) id ipse inveni: sed doceant me numerare, quod ego geometrice delineavi; imo doceant figuram inventam quadrare. Explicetur igitur semicircumferentia CED (Fig. 91)

in lineam rectam, et dividatur in partes totidem quot prius, punctis G, H, E, I, K: et ex punctis divisionum erigantur perpendiculares acquales radio CB: et claudatur paralfelogrammum. Erit id duplum ad triangulum Archimedeum, quo semicirculi aream is metitur. Quodsi ex sectoribus singulis in hunc modum singula feceris parallelogramma, tunc totum parallelogrammum divisum in partes acquipollebit toti areae semicirculi: ubique scilicet regnabit ratio dupla.

Extendantur autem in hunc eundem modum et distantiae CA, GA &c. et puncta A connectantur conchoide *) AAAA per singula puncta ducta (quoram sunt infinita potentia), figura AACD aequipollebit distantiis omnibus ex A. Nam similiter ex singulis lineis AG, AH factum est unum parallelogrammum quam proxime, nisi quod conchois ipsi CD parallelos non est, sed sic inclinata ad radios GA, HA, EA, ut in ipso etiam circulo inclinantur distantiae ad circumferentiam: ut ita nihil impediat, quod conchois AA longior est facta quam semicirculus CD. Est autem EA longior quam EB; quodsi sumerentur CA, GQ, HR, EB, IS, KL, DA, quantas determinant perpendiculares demissae ex A in distantias punctorum a B (ut si in schemate circulari in HB continuatam descenderet perpendicularis AR, determinans HR breviorem quam HA) tunc figura inter

*) Conchoidea dico non illam Nicostrati (Nicomedis), quae infinita est, sic illi dicta, quod similis conchae: sed illam, quae 'similis est conchoidi Nicostrati: ut rhomboides dicimus id quod est simile rhombo. (Comp. p. 93.)

conchoidea AQRBSLA et CD plane esset aequalis figurae CBBD. Nam conchois secaret BB in linea EA; et quia BA suprema et infima sunt aequales, et BQ aequalis ipsi LB, et BR ipsi SB &c.: ergq figurae BBRQA et BBALS essent congruae, quarum altera defectus, altera excessus est figurarum CBBE et EBBD aequalium: tota igitur figura inter AQRBSLA et CD toti inter BB et CD aequalis est. Itaque spatiolum inter duas conchoides AQRBSLA et AAAAAAA metitur excessum distantiarum ex A super distantias ex B, in ea quidem mensura, in qua parallelogrammum ponitur aequale omnibus distantiis ex B.

É

Et nota, quod spatium hoc non est ejusdem latitudinis in locis a linea EA aequaliter remotis, sed infra latius. Nam in schemate circulari continuetur HBR in V, ut AH, AV respondeant angulis HBE superiori et FBV inferiori aequalibus et aequaliter a mediis punctis E, F remotis. Et centro A diastemate AV per AH et BH arcus circuli ducatur XY. Si ergo AY connexueris, erit AYR plane congruum triangulo AVR: nam AV et AY et AX sunt aequales ex constructione, et longiores; sed et VR, RY sunt aequales et minores. Ex pancto vero H extra circumferentiam XY ductae sunt duae HX per centrum A et HY praeter centrum, ergo HY est longior quam HX; major ergo AV vel AX augetur breviori XH. et minor VR vel RY augetur longiori YH: et tamen tota RH manet brevior quam tota AH. Ergo differentia RH et AH minor est differentia RY et AX, hoc est differentia VR et VA. Itaque in conchoide SA major est, RA minor, etsi IE, EH aequales. Non ergo bisecatur ab EA spatium inter duas conchoides : videtur autem bisecari a BB, qued exploret geometra aliquis, et simul doceat quadrare spatium inter conchoides, ut numerationibus aptum fiat. Infra cap. XLIII. invenies aestimationem crassam hujus spatii.

Haec itaque de physicae aequationis computatione generaliter praemittere volui, ut, quamvis ea nondum a necessariis geometriae adminiculis satis est instructa, sed neque dum omnes inaequalitates planetarum patefactae (cum praesertim praesupposuerimus, viam Solis vel Terrae esse perfectum eccentricum, quod tamen infra de Marte negabitur cap. XLIV. et LIII.), non tamen nimium haec operatio a sua speculatione praemissa divideretur. Nam quod theoriam Solis attinet, in qua fuimus hactenus versati, nihil nobis incommodat neque conchoidis spatii neglectio, qua minus justo sumimus, neque perfecti eccentrici assumtio, qua ratione abundare videmur: in quantum jam judicari potest nondum omnibus explicatis. Imo haec hoc capite sub paralogismi nota rejecta, infra, cum ad verissimum modum aequationum venerimus, resumentur, eliminato illo ex hypothesi ista, quod paralogismo dedit occasionem.

Cum ergo causam et mensuram ina e qualitatis se cundae, quae planetas visui stationarios, directos et retrogrados exhibet, per certissimas observationes et demonstrationes ad unguem descripserim, ostenso, quod et ipsa haec secunda inaequalitas communicet de inaequalitate prima, et quod theoria Solis vel Terrae (Copernico) vel epicycli (Ptolemaeo) similis sit theoriae ceterorum planetarum, et causis physicis hujus inaequalitatis primae inventis adque calculum pro theoria Solis accommodatis: jure merito hic tertiam partem, quasi quoddam antemeridianum pensum, interposito prandio, finio: succinente mihi remissionum animi magistro:

Pars superat coepti, pars est exhausta laboris: Hic tenest nostras anchora jacta rates.

COMMENTARIORUM DE MOTIBUS STELLAE MARTIS PARS QUARTA.

: .

INVESTIGATIO VERAE MENSURAE PRIMAE INAEQUALITATIS

EX CAUSIS PHYSICIS ET PROPRIA SENTENTIA.

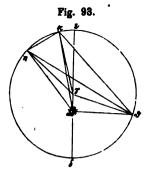
Quae tertia parte demonstrata sunt, ad omnes planetas pertinent: unde non injuria clavis astronomiae penitioris dici possunt. Quam tanto magis gandere debemus inventam, quanto certius est, nulla alia ratione investigari potuisse, praeterquam per stellae Martis observationes. Nam etsi quidem Ptolemaeus bisectionem hanc eccentricitatis. Solis in Venere quoque et Mercurio deprehendit; eoque nomine eccentros eccentrorum, seu quod idem est, gyrationes centri epicycli introduxit, quae demonstratio reservatur in proprios de his planetis tractatus: observationum tamen ipsarum conditio, et breves Veneris a Sole digressiones, quae non nisi humilem observari de nocte patiuntur, methodicae inquisitioni hujus rei plurimum impedimenti fuit allatura, si citra Martem stetisset. In Mercurio multo absurdius adhuc ista tentabantur: quod is rarissime a Solis radiis emergat, et longius Marte et Venere a Terra distet, cum hi citimi videntur. Fuisset itaque veritas nobis cum Ptolemaeo patentissimis indaganda campis, et per crassas umbras manibus quasi palpanda.

Quantum autem de prima inacqualitate, quae occasione eccentri accidit et cuique planetae propria est, huic communi, parte tertia inventae, secundae inacqualitati debeamus, jam exemplo stellae Martis declarabitar.

Caput XLI.

Apsidum et eccentricitatis et proportionis orbium inquisitio tentata, ex jam usurpatis observatis extra oppositionem cum Sole, cum falsa tamen conditione.

Supra parte secunda imitatione veterum ex observationibus acronychiis conatus sum invenire aphelium et eccentricitatem, unaque et distantias stellae Martis a Sole in toto circuitu. Et aequationes quidem eccentri fere aliis quoque observatis extra situm acronychium respondebant. Eccentricitas vero et, distantiae a Sole repudiabantur a parallaxibus annuis longitudinis et latitudinis. Itaque, ut distantiae stellae a centro Solis per omnem eccentrici ambitum inquiri possent, prius secunda inaequalitas (epicyclica Ptolemaeo, seu orbis annui Tychoni et Copernico) parte tertia expedienda fuit. Imo vero, si via planetae perfectus esset circulus, vel jam statim prima planetae inaequalitas, quae est ratione eccentrici, indagari posset. Nam supra capite XXV. methodum tradidimus, ex tribus distantiis trium circumferentiae punctorum ab aliquo puncto intra circumferentiam et angulis ad illud punctum inquirere situm et magnitudinem circuli respectu illius puncti, centrum et eccentricitatem cum apsidibus.


Jam capite XXVI. inventa est distantia Martis a centro Solis 147750 in 14° 21' 7" \bigotimes apud nodum, idque anno 1595. d. 25. Oct. Capite vero XXVII. rursum distantia Martis inventa est 163100 paulo minor in 5° 25' 20" \cong , et id anno 1590. d. 31. Dec. Et quia Mars 41° abest a nodo, multiplicato sinu 41° in sinum inclinationis maximae cap. XIII. inventae, prodit inclinatio loci 1° 12' 40". Cujus secans radium superat in centies millenis particulis per 22, quae sunt in dimensione nostra particulae 34. Itaque correcta distantia hujus loci esset 163134 paulo minor. Maneat 163100: secans vero hujus inclinationis in secantem 41° ductus, producit secantem arcus per 50" longioris; itaque auferenda 50" loco Martis, ut sit 5° 24' 30" \cong .

Tertio, capite XXVIII. distantia Martis inventa est 166180 in 8° 19' 20" m, anno 1590. d. 31. Oct., distans 68° a nodo; itaque inclinatio loci 1° 42' 40", cujus secans abundat particulis 45, quae sunt in nostra dimensione 75. Itaque correcta distantia 166255. Auferuntur 16" loco Martis pro reductione ad eclipticam. Haec tria loca per praecessionem aequinoctiorum ad eundem annum 1590 et mensem Octobrem reducta sic habent.

Apparet, aphelium esse 8° m propius, quam ceteris, quia ejus distantia est longior. Itaque secundum demonstrata capitis XXV. sit (Fig. 93) α centrum corporis Solaris, ex eo educantur $\alpha \vartheta$, $\alpha \eta$, αx in ea proportione, ut distantiae hic producuntur in numeris: et connectantur puncta omnia, et sit angulus $\alpha \alpha \vartheta$ 114° 2′ 12″ quantum est a 14° \forall in 8° m; sic $\alpha \alpha \eta$ sit 27° 5′ 17″, quantum est ab 8° m in 5° \cong , et $\eta \alpha \vartheta$ compositus ex utroque. Sol enim assumitur centrum zodiaci.

Oportet jam investigari circulum, qui per η , x, ϑ transit: sic ut η , x, ϑ sint tria loca planetae.

In forma Ptolemaica α erit Terra, centrum zodiaci : η , \varkappa , ϑ tria loca puncti affizionis epicycli. Cetera manent.

Igitur in triangulo $\eta \alpha \vartheta$, dată angulo cum cruribus, invenitur angulus $\alpha \vartheta \eta \ 20^{\circ} \ 26' \ 13''.$ Similiter in $\kappa \alpha \vartheta$ datur $\alpha \vartheta \kappa \ 35^{\circ} \ 10' \ 17''.$ Unde ablatus $\alpha \vartheta \eta$ relinquit $\eta \vartheta \kappa \ 14^{\circ} \ 44' \ 4''.$ Sit γ centrum quaesiti circuli. Ducatur $\alpha \eta$, et linea continustur in ϵ aphelium et ϑ perihelium: et connectantur η , κ cum γ . Cum igitur $\eta \vartheta \kappa$ stet ad circumferentiam et $\eta \gamma \kappa$ apud centrum super eodem arcu $\eta \kappa$, erit igitur $\eta \gamma \kappa$ duplus anguli $\eta \vartheta \kappa$, scilicet 29° 28' 8'', et qualium $\eta \gamma$ est 100000, erit $\kappa \eta \ 50868$, duplum scilicet sinus dimidii $\eta \gamma \kappa$. Jam in triangulo $\eta \alpha \kappa$, dato denuo angulo cum

orwribus, invenitur $x\eta a$ 78° 44′ 1″, et per hunc $x\eta$ 77187, qualium ηa 163100. Qualium ergo $x\eta$ prius erat 50868 et $\eta\gamma$ 100000, talium ηa fit 107486. Et quia $\eta\gamma x$ est 29° 28′ 8″, erit igitur $x\eta\gamma$ dimidium residui ad duos rectos, quia $\eta\gamma$, $x\gamma$ aeguales. Itaque $x\eta\gamma$ est 75° 15′ 56″. Hunc aufer a $x\eta a$, restat $\gamma\eta a$ (3° 28′ 5″). In triangulo igitur $\eta\eta a$ datur angulus cum cruribus. Quare innotescit $\eta a\gamma$ 38° 15′ 45″. Ac propterea (cum $a\eta$ sit in 5° 24′ 21″ =) erit linea apsidum $a\gamma$ in 27° 8′ 36″ Q. Per angulum vero $\eta a\gamma$ invenitur et $a\gamma$ eccentricitas 9768, qualium $\eta\gamma$ est 100000. Denique in dimensione qualium $a\eta$ est 163100, erit $\eta\gamma$ 151740. Erat autem earundem partium etiam semidiameter orbis annui 100000. Ergo proportio orbium esset ea, quae 100000 ad 151740.

Quae omnia quam sint vitiosa, ex eo colliges, quod, quotiescunque pro una vel pluribus usurpatarum distantiarum $\alpha \vartheta$, $\alpha \eta$, αx aliam adhibueris competentem alii loco eccentrici, et inventam aeque certa irrefutabilique argumentatione, toties omnia ista prodeunt aliter. Et sequenti capite invenietur certissime ea, quae est 100000 ad 152640 circiter. Eccentricitas 9264, qualium radius 100000. Aphelium vero anno 1590 d. 31. Oct. supra cap. XVI. inventum est in 28° 53' Ω quod capite sequenti confirmabitur intra 11'.

Caput XLII.

• Per aliquot observationes extra situm acronychium, Marte circa aphelium, itemque alias aliquot, Marte circa perihelium versante, inquirere certissitnum locum aphelii, correctionem motus medii, eccentricitatem.genuinam, et proportionem orbium.

Jam vidisti lector, de novo nobis incipiendum esse: cum tres Martis locos eccentricos totidemque a Sole distantias ad legem circuli revocatas, aphelium (supra non incertissime constitutum) negare cerneres; unde nobis suspicio orta, viam planetae non esse circulum. Quare ex tribus distantiis reliquae disci non poterunt. Itaque cujuslibet loci distantia ex suis propriis observationibus exstruenda; omnium maxime aphelia et perihelia, ex quarum comparatione de genuina eccentricitate discimus.

Sit α (Fig. 94) centrum mundi, $\alpha\beta$ linea apsidum, et centro β eccentricus $i\theta$, et i aphelium, θ perihelium. Ex capite XLL melineque ex

capite XVI. intelligimus, observationes, Marte circa : versante, proximus

I. Anno 1585. d. 17. Febr. hora 10. visus fuit planeta in $15^{\circ} 12 \frac{1}{2} \Omega_{\star}$ cum lat. borea 4° 16'.

II. Anno 1586. 27. Dec. mane h. 4. in $29^{\circ} 42^{2}/_{0}$ 'm, lat. $2^{\circ} 46^{\circ}/_{5}$ 'b. III. Et anno 1587. d. 1. Jan. mane h. 7. 8' in $1^{\circ} 4' 36'' \rightleftharpoons$, lat. $2^{\circ} 54'$ b. et 9. Jan. mane in $2^{\circ} 51^{1}/_{2}' \rightleftharpoons$, lat. $3^{\circ} 6'$ bor. IV. Anno 1588. d. 10. Nov. mane h. 6. 30' inter σ et Cor Ω $31^{\circ} 27'$.

IV. Anno 1588. d. 10. Nov. mane h. 6. 30' inter \mathcal{J} et Cor \mathcal{R} 31° 27'. Declinatio \mathcal{J} borea 3° 16'/₄'. Quare \mathcal{J} in 25° 31' m, lat. 1° 46' 43'' b., d. 5. Dec. mane h. 6. inter \mathcal{J} et cor \mathcal{R} 45° 17', declinatio austrina 2° 5ⁱ, ergo \mathcal{J} in 9° 19²/₅' \rightleftharpoons , lat. 1° 53'/₂' b. Non sunt autem has observationes confirmatas per fixas sequentes.

V. Anno 1590. d. 6. Oct. cujus diei mane h. 4. 45' observatus est \mathfrak{S} in altitudine 12'/₂° a cauda Leonis et corde Hydrae, cum declinatione sua: sed quod neutra fixarum a Marte in longitudinem recta porrigeretur, accidit ut ascensiones rectae utrinque et per declinationem exstructae, 6' discreparent: quod facile fieri potest, si minimum aliquid declinationi desit: cui quidem videntur non satis fisi, quod Martem a cauda \mathfrak{Q} mensi sunt, quae in eadem longitudine est, distantia omni in latum abeunte, ut scilicet de latitudine Martis hinc certius scirent, quam ex declinatione ⁶⁴). Sed retenta declinatione 6° 14' et distantia. a corde Hydrae 34° 33'/₂', fuerit ejus ascensio recta 168° 56'/₄'. Itaque locus 17° 16'/₆' \mathfrak{P} , lat. 1° 16'/₅ b. Fixarum tabella refractionis exhibet in hac altitudine 4'; Solis refractio majorem exhibet; et Virgo ardua surgit: itaque circiter 3' aut (per Solares refractiones) plusculis ultra in consequentia est projiciendus, unde per refractionem erat sublatus. Parallaxis exigua admodum fuit, parum igitur detraxit refractionibus. Fuerit in 17° 20' \mathfrak{P} .

VL Anno 1600. 5/15. Martii h. 8⁴/₂ post merid. in 29° 12⁴/₂' \mathfrak{D} . Lat. 3° 23' b. Et 6/16. Martii h. 8¹/₂ in 29° 18' \mathfrak{D} , lat. 3° 19³/₄ b.

Respondent autem tempora Martem in eundem eccentrici locum restituentia sic invicem :

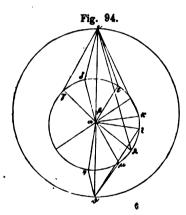
			÷			Et distantiis Solis
				Cum locis visis		a Terra ex
				Martis	Et Solis	cap. XXX.
1585.	17. Febr.	h. p. m.	10. 0	15° 12′ 30″ Ω	9° 22' 37'') 99170 (αδ)
1587.	5. Jan .		9. 31	2. 8. 30 🚔	25. 21. 16	δ 98300 (αε)
1588.	22. Nov.		9. 21/,			× 98355 (az)
	10. Oct.	* * *	8. 35	20. 13. 30 mp	26. 58. 46	- 99300 (m)
		, , , , , , , , , , , , , , , , , , , ,	6. 17 ¹ / ₃	29. 18. 30 🤨	26. 31. 36) 99667 (αγ)
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/3		20. 01. 00	

Reductionis observationum ad tempora debita ratio haec est. Cum anno 1587 diurni Martis sint in decremento, ut et in Magino et in observatione ipsa trium dierum apparet, usurpavi diurnos sic: 17. 16. 16. 16. 15. 15. 14. 14. 13. 13. 13. 12. 12.

Anno, 1588. d. 10. Nov. observatio minus habet meridiano Magini loco 39', d. 5. Dec. minus 33'. Et nostrum momentum est intermedium; ergo usurpabimus etiam intermediam differentiam 36'.

Anno 1590. deserta est observatio et per se male habita, ut apparuit, sed tamen diurnus in Magino per plures dies constans est 37'.

Jam ad rem: ac etsi multos hactenus modos docui vel inquirendi vel comprobandi loci eccentrici et distantiae, sequar tamen hic rursum alium, eo quod sit commodissimus. Sint autem loca Terrae δ , s, x, λ , y nempe **5**, γ ad sinistras, ε , \varkappa , λ ad dextras eccentrici loci partes. Et cum datae sint lineae $\alpha\delta$, $\alpha\varepsilon$, $\alpha\varkappa$, $\alpha\lambda$, $\alpha\gamma$, et anguli $\alpha\delta\iota$, $\alpha\varepsilon\iota$, $\alpha\varkappa\iota$, $\alpha\lambda\iota$, $\alpha\gamma\iota$, assumam tertium commune in omnibus triangulis, nempe latus $\alpha\iota$, unum nempe quaesitorum, et per hoc latus inquiram angulos ad ι , qui si lineam $\alpha\iota$ in eundem zodiaci locum statuent (nisi quatenus ob praecessionem aequinoctiorum is in sequentibus temporibus est promotior), ex eo intellecturus sum, assumtum $\alpha\iota$ bene habere.


Methodi ratio haec, quod ut as ad angulos 8, s, x, λ , γ , sic a8, as, ax, a λ , ay ad angulos s.

Horum sinus in distantias Solis et Terrae multiplicati et per assumtam distantiam α_1 166700 divisi, produnt sinus angulorum, qui additi ad visiones Martis in γ , δ , ablati visionibus in ϵ , x, λ , restituunt lineam α_1 in haec loca

Ŷ	ð	E	x 1
29° 28' 44" Q	29° 18′ 19″ 🎗	29° 19' 21" Q 29°	20′40″Ω 29°20′30″Ω
•	-	Debuit in	
29. 30. 51	29. 18. 0	29. 19. 36 29.	21. 12 29. 2 2. 48
		vel ín	•
29. 29. 51	29. 17. 0	29. 18. 36 29.	20. 12 29. 21. 48
37.	. 7	7.7 7	ninme man manta est

Nimirum non aliter diferre debuerunt loca quinque, quam quanta e**x** differentia praecessionis aequinoctiorum.

Vides autem ex schemate, si ceteris manentibus breviorem assumseris

, si ceteris manentious previorem assumseris α_i , venturam in γ , δ in consequentia, in e, κ , λ in antecedentia, non tamen ubique aequali spatio. At simul hoc feceris, nocueris in δ , κ , λ , profueris in γ , ϵ . Contrarium, si prolongaveris. At consonum est, errorculos hosce distributos haberi per omnia loca. Ergo nihil in distantia α_i mutandum, et planeta praescriptis temporibus est in locis ultimo recensitis.

Si lubet ad consensum explorandum uti methodo cap. XXVIII, connexis δ , ϵ punctis invenies $\delta \epsilon$ 74058, $\delta \epsilon \alpha$ 68° 36' 0", $\epsilon \delta \alpha$ 67° 21' 3", quare $\epsilon \delta \epsilon$ 88° 28' 50" et $\delta \epsilon \epsilon$ 44° 36' 46" et $\epsilon \epsilon \delta$ 46° 54' 24", quare $\epsilon \epsilon$ 101380 et $\epsilon \alpha \epsilon$ 33° 58' 33", quare $\alpha \epsilon$ anno

1587. in 29° 19' 49" Ω (nos jam elegimus 29° 18' 36" differentia scrupuli unins, ob retinendos etiam ceteros locos); denique α_i 166725, et locus x consentit. Ac cum 1666666²/_s sit radii 100000 sesquialtera, credibile est, hanc esse proportionem distantiae mediocris Terrae a Sole et longissimae Martis a Sole: sed nihil conjecturis tribuam in praesens.

Cum autem eccentrici planum hic inclinetur ad eclipticam angulo 1° 48', cujus secans 49 particulis abundat, quae valent 83 in dimensione nostra: verissima igitur distantia \mathcal{J} et O erit 166780, quantum quidem ex his observationibus colligendum: quas memineris longiuscule deductas nec in ipsis suis diebus optime comparatas.

Jam etiam ad perigaenm accedamus, ubi catalogus observationum et médiocris cognitio motus medii ostendunt proximas observationes has:

I. A. 1589. d. 1. Nov. h. 6¹/₆. vesperi fuit 3 in 20⁶ 59¹/₄′ S, cum lat. 1⁶ 36′ mer. II. A. 1591. d. 26. Sept. h. 7, 10′ in 18° 36′ S. Lat. 2° 49³/₆′ mer. III. A. 1593. d. 31. Julii mane h. 1³/₆. in 17° 39¹/₂′ H. Lat. 6° 6³/₆′ mer. et 11. Aug. mane h. 1³/₆. in 16° 7¹/₃′ H. Lat. 6° 18⁵/₆′ mer.

Respondent autem tempora in hunc modum:

			•							1	Dist. Solis et
						ರೆ		Θ			Terrae.
1589.	1. Nov.	h.	6º/a.	p.	m.	20° 591/4' Z	19•	13'	56"	m	98730
1591.	19. Sept.		5. 42'	:		14. 18 ¹ / ₂ Z	5.	47.	3	Ľ.	99946
	6. Aug.						23.	26.	13	Ω	101183

Anno 1591 oportet nos uti confidentia, diurnos eosdem esse cum diurnis Magini: nam observatio solitaria est. Ac cum in Magino moveatur diebus 7 per 4° 16', fuerit ergo Mars 19. Sept. h. 7⁴/₆ in 14° 20' \mathcal{Z} , et h. 6⁴/₆ in 14° 18⁴/₂ \mathcal{Z} . Circa stationem in 16. vel 17. Julii promotior fuit in calculo per 1° 16' circiter quam apud Maginum. Jam 26. Sept. adhuc per 0° 53' est promotior. Diebus itaque 70 deminuta est differentia circiter 23'. Si etiam proportionaliter argumentemur, grandior erit 19. Sept. haec differentia circiter 2'. Credemus igitur, Martem ad nostram horam esse in 14° 20' \mathcal{Z} .

Anno 1593. \mathcal{J} a statione abit. Et cum 30. Julii locus Martis media nocte sequente discrepet a meridiano Magini per 3° 25¹/₂', die vero 10. Augusti per 3° 59¹/₂', ita ut augeatur differentia, paulatim tamen minus atque minus: assumsi differentiam die 6. Augusti 3° 46, ut sit hora 1³/₄ mediae noctis sequentis in 16° 52' \mathcal{H} et diurnus 10'. Superatur nostrum tempus horis 8. 30', quibus debentur circiter 4' de retrogrado motu \mathcal{J} . Igitur nostro tempore fuit in 16° 56' \mathcal{H} . Certum est, nos (hoc quidem nomine) nihil ultra unum scrupulum ultro citrove aberrare.

Saepius in perigaeo non est observatus. Nam anno 1595. incidit ejus in perigaeum adventus in mediam aestatem, crepusculis in Dania pernoctantibus. Anno 1597 Tycho Brahe in itinere fuit. Prope Solem vero in hiemali semicirculo diu latet, ob celeritatem Solari non multo minorem.

Si	t in scl	remai	te lo	с ив	Marti	8 ec	centr	rcu8	θ;	loca	Ter	rae i	ς, μ	, 7
et sit	ζα 19° ζ 0 20.						18.			ηα ηθ				
	-													

Ergo	αζθ 61.	45.19	αμ Ο 98. 31. 27	αηθ 156. 30. 13
•			vel 32. 57.	·

Assumta igitur communi αθ in longitudine 138400, prodit ejus locus sic: Per ζ 29° 55′ 20″, μ 29° 53′ 6″, η 29° 59′ 10″ vel 54. 36.

At si apud ζ fuit 55' 20", debuit apud μ esse 56' 56", apud η 58' 32", tanta enim est praecessio aequinoctiorum. Apparet igitur ex schemate, lineam a ϑ per η nimis in consequentia abire; per μ , ζ respectu ipsius η nimis in antecedentia, quod fit ceteris manentibus, quia a ϑ nimis brevem assumsi. Itaque si uno centenario longiorem faciam, scilicet 138500, jam prodeunt haeo loca: ex ζ 29° 57' 10" ..., ex μ 29° 55' 36" vel 29° 57' 6" ..., ex η 29° 58' 17"

Jam itaque nimie propingua invicem facta sunt loca ipsius ad, et

plus hic peccatur in propinguitate quam illic in remotione. Quare verissima longitudo ipsius a d erit 138430 circiter.

Inclinatur hic planum (ut et prius loco opposito) 1° 48', et secans abundat supra radium particulis 49. Ut vero 100000 ad 138430, sic haec 49 ad 68. Ergo correcta longitudo radii est quam proxime 138500: ex his quidem observationibus longe deductis.

Ex his inquisitio apsidum.

Assumatur respectu omnium trium observationum locus lineae $\alpha \partial$ ango 1589. d. 1. Nov. h. 6¹/₀ post merid. in 29° 54' 53" ∞ , ut sit 1591. in 29° 56' 30", et anno 1593. in 29° 58' 6" ∞ . Vicaria hypothesis capitis XVI. exhibet illam primo tempore in 29° 52' 55" ∞ .

Prius autem assumsimus similiter α_i anno 1588. d. 22. Nov h. 9. $2'/_{3'}$ in 29° 20' 12" Ω .

Cum ergo ab anno 1588. d. 22. Nov. h. 9. $2^{1}/_{2}$ usque in annum 1589. d. 1. Nov. h. 6. 10' sint dies 344 minus h. 2. $52^{1}/_{2}$ ', integra vero revolutio ad eandem fixam habeat dies 687 minus h. 0. 28': apparet nostrum intervalum paucis horis exuere medietatem temporis restitutorii. Ecce Dies 343. h. 11. 46' dimidia periodus

343. " 21. 52 $\frac{1}{2}$ nostrum intervallum

Excessus " 10. 6¹/₂.

Et cum prioris temporis loco 29° 20' 12" Q usque ad locum quem tenuit σ tempore posteriori 29° 54' 53" m, sint 180° 34' 41", et subtracta praecessione 48", residui 180° 33' 53": quare si horis 10. 6⁴/₂" competerent in perigaeo de diurno Martis in eccentrico illa residua supra semicirculum 33' 53", tunc hinc intelligeretur, aphelium esse in 29° 20' 12" Q. Scimus autem diurnos Martis in eccentrico circa apogaeum et perigaeum, ex jam inventis distantiis et ex demonstratis capitis XXXII. Sunt enim diurni quam proxime in dupla proportione distantiarum. Nam in apogaeo dinrnus est circiter 26' 13", in perigaeo 38' 2", cum mediocritas diurni sit 31° 27". Perpende itaque, quod si Mars a puncto apogaei eundo dimidium temporis restitutorii insumat, fine hujus temporis omnino confectis 180° sit futurus in puncto perigaei. At si jam hoc spatium temporis auspicetur uno die postquam in apogaeo fuit, incipiet igitur cursum a 26' 13" ab apogaeo finietque in 180° 38' 2". Itaque dimidio temporis plus dimidio itineris curret per 11' 49". Contrarium, si die uno ante apogaeum inciperet.

Cum itaque etiam nostrum tempus arcum exhibuerit majorem, nostrum etiam aphelium promoveri oportet. Primum horas nostras dimidia parte ante aphelium, dimidia post parihelium referemus. Tunc inceperit planeta a 5' 16" ante aphelium, quod sic refertur in 294 25' 28" Ω , et venerit in 8' 1" post perihelium, quantitate itineris 13' 17" ultra 180°. At deprehensum est, iter fuisse 33' 53" supra 180°. Ergo per 20' 36" est adhuc celerior. Quia ergo, ut iter augeatur per 11' 49", requiritur dies nnus, sive promotio planetae ab aphelio per 26' 13", quantum ab aphelio promovebitur planeta donec augeatur iter per 20' 36" ?

Utri aphelii inquisitioni plus fidei tribuendum, incertum. Nam fieri facile potest, ut in positione et assumtione linearum α , $\alpha \Theta$ propter observationum incommoda peccaverimus 4', duobus binc, duobus inde, quantum quidem ex erroribus conspirantibus accumulari oportet, ut aphelium 2' alterari posset. Hic tamen par est, nos fidere operationi praesenti.'

Correctio motus medii.

Mutato loco aphelii mutatur et motus medius. Nam si quo tempore per superiorem aphelii inquisitionem \mathcal{J} existimatur incidere in aphelium, exutus aequatione, eodem tempore jam superavit aphelium minutis 2: habet igitur aequationem 4 minutorum subtractoriam Itaque medio motu superavit Alum pristinum locum medium per 4.

Eccentricitatis inquisitio.

Primum corrigantur distantiae prius inventae si opus est eo nomine, quod parumper ab apsidibus jam inventis distent; aphelia per 40', perihelia per 75'. Atqui nihil sensibile mutatur in tanta propinquitate ad apsidas. Ergo Aphelia . . 166780 scilicet α_i

Perihelia	138500	scilicet að	
Summa			
Dimidium .	152640	semidiameter	ıβ
Eccentricitas.	14140	αβ.	

Ut autem 152640 ad 100000, sic 14140 ad 9264 eccentricitatem. Dimidium autem eccentricitatis aequatoriae fuit 9282. Differentia 18, aullius plane momenti. Vides, quam praecise bisecanda sit in Marte eccentricitas aequatorii puncti, ad constituendam centrorum eccentrici et mundi distantiam. Atque hoc supra capite XXXII. pro fundamento usurpavi et in sequentia demonstrandum rejeci; id vero jam est praestitum.

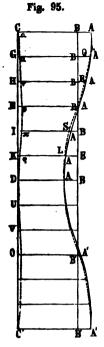
Caput XLIII.

De defectu aequationum, quae bisectione eccentricitatis et areis triangularibus exstruuntur, posita orbita planstae perfecte circulari.

His de bisectione eccentricitatis Martiae certissime demonstratis, quae parte tertia itidem et de theoria Solis evicimus, jam demum tempus esset, ut plena hujus rei fide muniti ad speculationes physicas capitis XXXII. et sequentium, utpote communes omnibus planetis futuras, accederemus: nisi certo consilio mihi visum esset illas praemittere, eo quod illic ratio aequationum ex causis physicis computandarum absolvenda fuit pro theoriae Solis vel Terrae omnimoda perfectione; et quod scirem, ubi illa condendarum aequationum methodus etiam theoriae Martis applicanda fuerit, multo difficiliores speculationes secuturas.

Etenim verissima orbium conformatione inventa, necesse est, indidem etiam acquationes eccentri sequi, quibus solis hactenus servivit hypothesis illa vicaria capite XVI. inquisita. Id ergo hac vice explorabimus.

Quare secondum demonstrata capitis XL, quae hic omnia et singula repetita intelligantur, sit orbita planetae ex opinione trita circulus; etsi jam cap. XLI. nos de eo jussit dubitare. Quare in anomalia eccentri 90° eccentricitas, capite XLII. inventa 9264, erit tangens, quae ostendet partem aequationis opticam 5° 17' 34". Et quia in anomalia eccentri 90° area trianguli est rectangula, ducto igitur radio in dimidium eccentricitatis, scilicet 4632, provenit area trianguli 463200000. Ut autem area circuli 31415926536 ad 360° sive 1296000", sic haec jam inventa area 463200000 ad 19108" seu 5° 18' 28" partem aequationis physicam. Itaque tota aequatio 10° 36' 2", nt ita anomaliae mediae 95° 18' 28" respondeat coaequata 84° 42' 26". At secundum methodum capitis XVIII. vicaria hypothesis, sat fida in longitudine, ostendit nobis, quod eidem anomaliae mediae 95° 18' 28" reapondere debeat coaequata 84° 42' 2".


Sumatur jam anomalia eccentri nostri 45° et 135°. Et ut totus ad sinus horum angulorum, ita area 19108" maximi trianguli aequatorii ad aream hujus loci 13512" sive 3º 45' 12", ut additione hujus partis acquationis physicae ad anomaliam eccentri constituantur anomaliae mediae 48° 45' 12" et 138° 45' 12". Datis vero cruribus angulorum datorum, prodeunt anguli anomaliae coaequatae his mediis anomaliis respondentes 41° 28' 54", 130° 59' 25" "). At per vicariam hypothesin, ut capite XVIII. operis, assumtis iisdem anomaliis simplicibus 48° 45' 12" et 138° 45' 12". prodeunt coaequatae illic 41° 20' 33", minus quam per aream trianguli, excessus 8' 21", hic 131° 7' 26", plus quam per aream trianguli, defectus 8'. Itaque cum certum sit, vicariae nostrae tantum errorem tribui non posse, necesse mihi fuit credere, hanc rationem aequandi etiamnum esse imperfectam. Et capite quidem XIX. cum bisectionem in Marte tentarem, et per immobile punctum acquantis more Ptolemaico acquationes computarem, inventa est differentia circa 45º anomaliam eccentri pene tanta, in Nam in superiori quadrante planeta appropinpartes tamen contrarias. quabat aphelio, in inferiori perihelio, plus quam par erat; hic in superiori quadrante discedit longius ab aphelio, in inferiori a perihelio, quam par est. Itaque supra ab aphelio est nimis velox, infra a perihelio itidem. Quare tardior justo erit in longitudinibus mediis.

Credo jam lectori incidisse, an forte errorum causa inde sit, quod capite XL. dictum est, vitium subesse huic operationi per areas, eo quod areae non aequipolleant distantiis, celeritatis et morarum moderatricibus. Atqui non hinc esse potest praesens error. Primum enim excessus summae distantiarum supra aream circuli parvus est, spatiolum nempe inter conchoides, parvum admodum: deinde area exhibet distantias omnes quidem justo breviores, maxime vero eas, quae sunt in longitudinibus mediis. Ergo. si quis error hinc manat, is in hoc est, quod non satis longas moras planetae facimus in longitudinibus mediis. At errores, quos jam deprehendimus, in contrarium abeunt : nimis enim longas moras fecimus planetae in longitudinibus mediis. Idem illi quoque potest objici, qui suspicionem inde concipere voluerit, quod, misso Copernici et Tychonis duplici epicyclo, qui orbitam planetae facit ovalem, nos Ptolemaicum perfectum circulum in praesens susceperimus. Nam dictum est in fine capitis quarti, illam Copernicanam orbitam non incurrere ad centrum, quod hic nobis esset usui, sed excurrere a centro particulis 246, quod hic potius augeret errorem, qui hoc jam sequimur, moras esse ut distantias.

Ut autem ad oculum pateat, parvum admodum effici spatium conchoidis cap. XL, perpendes quod secans anguli 5° 19' (maximae aequationis

opticae) est 100432, linea videlicet EA. Ex hoc igitar excessu 432, qui est lineola BA, pars lineae EA, propemodum discere poterimus accumulationem omnium horum excessuum; puta QA, RA, BA, SA, LA, in hunc modum: secans 89° ejusdemque tangens compositi tantundem faciunt, quantum sinus omnium graduum totius semicirculi, manu ducente nos Cardano in libris de Subtilitate, quo loco circuli proprietates explicat. Ejus rei demonstrationem profitetur Justus Byrgius.⁸⁶)

Ergo si excessus nostri omnes residui a maximo 432 essent ut sinus utrinque in semicirculo ad semidiametrum, tunc ut 100000 ad summam secantis et tangentis 89°, scilicet ad 11458869, sic esset 432 ad 49934, summam omnium excessuum ad singulos gradus semicirculi fere. Nam quanto distantiarum excessus in superiori quadrante sunt longiores his secantum excessibus, tanto in inferiore quadrante fere sunt breviores. Atqui nondum ita sunt excessus QA, RA, SA &c. ad invicem uti sinus aliquotorum graduum, sed fere utuntur sinuum proportione dupla. Ut sinus 90° est duplus sinus 30°. Jam aequatio optica 90° est 5° 19', ejusque sinus dimidium exhibet arcum itidem fere dimidium prioris, scilicet 2° 39' 15" pro aequatione optica anomaliae eccentri 30°, cujus secans est 100107. Et hic

107 excessus secantis supra sinum rectum est fere quarta pars prioris 432; cum sinus 30° esset dimidia pars de sinu 90°. Videat geometra aliquis, an thema sit demonstrabile. Mihi sufficit in praesens, minima, in quibus occupor, respondere. Igitur ad 432 accumulantur partes non proportionales sinubus, sed semper minores, et in 45° vel circiter tantummodo semisses; ante illum minus semissi; ita ut circa 30° sint tantum quadrantes, et denique insensibiles. Itaque (quod experientia testatur, sigillatim computatis omnibus distantiis et in unam summam conjectis), de summa 49934 retinemus tantum partem septimam et 7000 circiter. Et quia distantia una 100000 valet 60', summulae huic debebuntur non plus $4\frac{1}{5}$, de quibus tamen aliquid spargitur in omnem ambitum; ut hic errorculus circa 45° et 135°, ubi maximus, etiam in Marte insensibilis evadat. Quapropter alia nobis hujus dissonantiae occasio quaerenda erit.

Caput XLIV.

Viam planetae per auram aetheream non esse circulum, ne quidem respectu primae inagqualitatis solitariae, si etiam mente removeas Braheanas et Ptolemaicas spirarum implicationes ex inaequalitate secunda duobus his auctoribus resultantes.

Eccentricitate et proportione orbium certissime constitutis mirum astronomo videri possit, superesse adhuc aliud impedimentum, quo minus de astronomia triumphare liceat. Et me Christe biennium integrum triumphaveram.

Coterum comparatione corum, quae capitilus XLI, XLII, XLIII practodestibus constituta sunt, facile apparet, quid sobis adime desit. Differebant plurimum loca aphelii, eccentricitas et proportio orbium utrinque cunstituta. Net acquationes physicae computatae observatis (quas vicaria hypothesis repraesentat) conserticbant. Repetatur schema cap. XIL B quia in co qualium ye 100000, talium ye fuinet 14822; quare addite ay ad 79 vel 72, event at 160562, grane cap. XLII. inventa est 166780. Sic ablata ya a yo restaret ad, 136919, quae omnino fuit capite XLII. inventa 138500. Rursun quis cap. XLII. inventa est vera longitudo linearun 7e, 7a, as, as, si creo. quod cap. XLI. pooitum unurpatumque fuit, planetae via est circulus, non est dificile dictu, quanta core debeat az, az, ad. Nam quis at est anno 1590. Octob. in 28° 41' 40" 2 at z, z, d ut cap. XLI: erunt dati anguli zay, zay day, quare et acquatio optics any 0° 53' 13", any 3° 10' 24", a0y 5' 8' 47". Et ut sime horren angeloren ad verissinan eccentricitaten az 14140: sie sinus zza, 171; 07e ad ez, ez, e0.

Prodeunt igitur az At observando sunt inventae			
Diferentie	350	• 783	789 • *)

Quodsi quis hanc differentiam lutricae observandi fortunae tribuere velit: nae is vin demonstrationum hacterus usurpatarum non attenderit neque perceperit oportet, et nequissimam mihi frandem imputabit crassissime corruptarum Brahei observationum. Itaque ad observationes annorum sequentium provoco, quas tamen periti observatores instituant: nam si quid ex uno latere indulsi meo voto, id ex altero latere tanto majorem in errorem encrescet. Sed nihil his opus. Vobiscum mihi sermo est, periti rerum astronomicarum, qui sophistica effugia ceteris disciplinis creberrima in astronomia nulli patere scitis. Vos appello. Videtis in z defectum a circulo purvum; in η , ϑ ex utroque quidem latere magnum admodum, quantum per observandi incertitudinem (ob quam 200 fortassis aut summum 300 particulas capite quidem XLII. in dubio pono) excusare non possumus.

Quid ergo dicendum? Num hoc illud est, quod supra cap. VI. dictum, per translationem suppositionum a medio ad apparentem Solis motum alium constitui eccentricum, qui ad latus apogaei Solis excedat? Nequaquam. Nam quantum is hinc excedit, tantum inde appropinquat. Hic autem videtis utrinque planetam a circuli orbita ad centrum appropinquare: quod multae alian observationes partim secuturae cap. LI, LIII. attestantur.

Itaque plane hoc est: orbita planetae non est circulus, sed ingrediens ad latera utraque paulatim, iterumque ad circuli amplitudinem in perigaeo exiens: cujusmodi figuram itineris ovalem appellitant.

Atque hoc idem etiam ex capite praecedente XLIII. probatur. In eo positum fuit, planum perfecti eccentrici aequipollere quam proxime distantiis omnibus aequalium quotcunque partium circumferentiae illius eccentricae a fonte virtutis motricis; itaque partes plani metiri moras, quas planeta in partibus respondentis circumferentiae eccentricae trahat. Quodsi igitar planum illud, circa quod planeta limitem agit, non est perfectus circulus, sed diminutus a lateribus ab ea latitudine, quam habet in linea apsidum; et tamen hoc planum, orbita irregulari circumscriptum, adhuc metitur moras, quas planeta in toto ambita et in partibus ejus aequalibus facit; planum igitur diminutum metitur aequale tempus cum priore plano non diminuto. Partes igitur

plani diminuti aphelio et perihelio proximae metientur tempus majus, quia apud illas tenuis est diminutio; sed partes in longitudinibus mediis metientur minus tempus quam antea, quia in illis accidit potissima totius plani diminutio. Jam igitur, si utamur hoc diminuto plano ad moderandas aequationes, fiet planeta circa aphelium et perihelium tardior, quam in priori vitiosa aequationum forma, circa longitudines medias velocior, quia distantiae hic diminuuntur. Morae igitur hinc abstractae in aphelium et perihelium sursum deorsumque compensatione facta accumulabuntur, non secus ac si quis botellum ventricosum in medio comprimat, eaque compressione minutal infarctum e ventre magis in utrasque extremitates infra supraque manum eminentes exprimat et elidat.

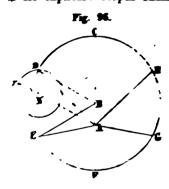
Atqui si contraria contrariis medentur, haec plane aptissima est medicina expurgandis vitiis, quibus supra cap. XLIII. physica nostra hypothesis laborare deprehendebatur. Velocior enim futurus est planeta in longitudinibus mediis, cum prius ibi deprehenderetur justo tardior, retardabiturque supra et infra circa apsidas, ubi prius pernicitate nimia nocebat aequationibus in octavas temporum redundantibus.

Hoc igitur alterum argumentum est, quo demonstratur, orbitam planetae verissime a circulo instituto deflectere et ad latera centrumque eccentrici ingredi. Ceterum hoc argumentum penes me non tanti fuit, ut ex eo de planetae exorbitatione cogitare possem. Diutissime enim in conciliandis hujus formae aequationibus cum desudassem, tandem absurditate mensurae deterritus totum negotium deserui, quoad distantiis de exorbitatione edoctus, eo modo, quo cap. XLI. factum, postea hoc etiam aequationum negotium resumsi.

Atque ex hoc quoque demonstratum, quod supra cap. XX. XXIII. promisi me facturum: orbitam planetae non esse circulum, sed figurae ovalis.

Caput XLV.

De causis naturalibus hujus deflexionis planetae a circulo: prima opinio examinata.


Cum primum in hunc modum certissimis Brahei observationibus edoctus essem, orbitam planetae non esse circularem exacte, sed deficere a lateribus, e vestigio et causam naturalem hujus deflexionis me scire sum arbitratus. Eram enim in materia cap. XXXIX. vehementer exercitus. Et admoneo lectorem, ut priusquam hic progrediatur, caput illud integram diligenter relegat. Cum enim illo capite causam eccentricitatis transscripsissem alicui virtuti, quae esset in corpore planetae, sequebatur, ut et hujus deflexionis ab eccentrico circulo causa eidem planetae corpori transscriberetur. Accidit antem mihi, quod proverbio jactant, canem festinum caecos parere catulos. Cum enim cap. XXXIX. laborassem vehementer in ea re, quod non possem satis probabilem dicere causam, cur ex orbita planetae perfectus fieret circulus (semper enim quaedam tribuenda erant absurda illi virtuti, quae sedem habet corpus planetae), jam deprehenso ex observationibus, orbitam planetae non esse

Kepleri Opera, III.

22

circularem perfecte, statim magne personasionis impeta har concessi, at creduren, quae cap. XXXIX. alsoria directantur ad fabricantium tirculum, er iis in probactiorem forman transmitatis justam et observatis consentantem planetae ortonam effectus iri. Quoisi parlo considerations hane vian incensissem, potrissem statim ad veritatem rei pervenire. At sum essem caecus prae constitate, nee ad omnia et singula membra cap. XXXIX. respirerem, inhaerems illi constationi, quae se primam offeretas, probatches mirum in modum os acquatchitatem motos sporytil, iz novos inviti labyrinthos, ex quibas capite hoe XLV, et sequentifos usine ad L. ciprtandum robis crit

Repetatur itaque schema cap. XXXIX. Deterior in Ele capite opinio fuit, planetam, ut perfectum circulum describat, vi insita muliri epicychum et sie explicare corpas sum a radio virtutis ex Scie: ut si radius virtutis

ex Sole sit AC, progrediaterque inaequali passe ex AC in A7, paneta vero initio sit in C, ex eo tempore vi insita sese explicet ex AC vel A7; ut quo tempore AC venit in A7, planeta ex C vel 7 veniat in D, et hoc faciat etiam inaequali passa, remissus vel incitatus eadem in proportione, in qua ipsa AC. Hoc enim pacto ND linea per centrum epicycli et planetam semper parallelos manet lineae AB. Dixi antem cap. XXXIX, absurdum mihi videri, planetam ex 7 in D inaequali passa sese explicare ex radio virtutis Solaris, et sic sese accommodare sua vi propria ad vim

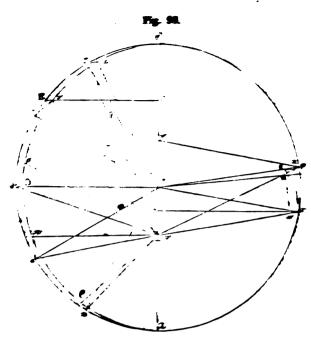
extraneam ex Sole, ejusque celeritatem et remissiones praescire. Esto igitur, ut hoe absurdum vitetur, eat sane AC inaequaliter, planeta vero ex y in D eat aequaliter. Videamus, an aliquid sequatur simile illis, quae capite antecedente ex observationibus probavimus,

Cum igitur centrum epicycli N ejusque aphelium a linea AC in Ay tardum fuerit ex C in 7, utpote circa eccentrici aphelium C, planeta igithr ex 7 in D ponatur non tardus, sed mota mediocri incessisse. Quare angulus y ND major erit angulo yAC, itaque ND non erit parallelos ipsi AB, sed inclinabitur versus AC. Itaque planeta D non manebit in eo circule, quem ex C coeperat describere, qui scilicet per CF transit, sed ingredietar a circumferentia D et parallelo ND versus CA. Atque hoc idem capite praecedente testabantur distantiae AD computatae ex observationibus, cas scilicet non pertingere usque ad circumferentiam circuli CF. Hec idem testabantor etiam acquationes physicae per accumulationem distantiarum AC, AD exstructae; scilicet planetam apud latera eccentrici debere fiuri velociorem; ejus nempe distantias a Sole minores postulari. Cum itaque conspiratio ista vim admirabilem afferret ad persuadendam, statim conclusi, hunc ingressum planetae ad latera ex eo contingere, quod virtus planetam movens et distantias ex lege circuli administrans praeveniat virtutem Solis: eo qued illa aequalibus temporibus aequales processus faceret, et sic planetam aequabiliter lege epicycli ad Solem demitteret; haec vero diversis sui gradibus per diversa diastemata exceptum planetam inaequaliter, et altum tardius promoveret; quo fieret, ut distantiae aequalium arcuum epicycli accumularentur versus C aphelium et F perihelium, et rarius sererentur circa medias longitudines, atque sic omnes a justa perihelii propinquitate retra-

herentur sursum, breviores in locum longiorum. Itaque confirmari coepit in me error iste, quem supra cap. XXXIX. feliciter refutare coeperam, planetariae virtutis proprium esse, planetae corpus in epicycli semita circumducere. Si diameter epicycli ND mansisset ipsi AB aequidistans, poteram exuisse hanc meam opinionem erroneam, poteramque, quod est verissimum, omnem promotionem in longitudinem zodiaci transscribere Soli, Fig. 97. solam planetae librationem in diametro $\gamma \zeta$ relinquere, ut in parte cap. XXXIX. Sed quia observationes testabantur, hanc diametrum epicycli inclinari in longitudinibus mediis, id admirabiliter me confirmavit in errore hoc de motu planetae in ipsa epicycli circumferentia, cujus motus esset regularis a linea ANy, ex A Sole per N centrum epicycli eunte. Cogita ipse lector, et vim argumenti persentisces : quia non putavi fieri ullo alio medio posse, ut planetae orbita redderetur ovalis. .

Haec itaque cum ita mihi incidissent, plane securus de quantitate hujus ingressus ad latera, nimirum de consensu numerorum, jam alterum de Marte triumphum egi. Neque mihi difficile videbatur, si quid adhuc inter numeros esset discordiae, id $\tau \phi \pi \rho o \sigma \partial \alpha \phi \alpha \phi e \sigma$ per minima circumcirca dissipare, ut redderetur insensibile.

Ac nos, bone lector, par est triumpho tam splendido dieculam unam (capita inquam sequentia quinque) indulgere, cohibitis interea novae rebellionis rumoribus, ne apparatus iste nobis citra voluptatem pereat. Si quid deinceps erit, suo tempore et ordine peragemus: jam quidem hilares, tunc autem gnavi et strenui.


Caput XLVI.

Quomodo describi possit linea motus planetas ex opinione capitis XLV, qualisque ea sit.

Capite superiori causa quidem dicta est, qua fieri possit, ut planeta a circulari orbita aberret: delineatio vero geometrica itineris nequit per illud schema expediri. Nam epicyclus inclinatur pro longitudine distantiarum: distantiarum autem multitudo et longitudo vicissim ex epicycli conversione pendet. Et quia summa distantiarum inest in plano eccentri, ut cap. XL: demonstratum, nequit igitur inveniri ea summa, nisi epicyclus hic in Est autem demonstratum cap. II. et repeeccentricum transmutetur. titum cap. XXXIX. et usurpatum cap. XL, quod si scribatur ex centro α concentricus semidiametro aequali ipsi $\beta \delta_{\lambda}$ inque eo epicyclus semidiametro $\alpha\beta$; scribatur deinde centro β eccentricus $\delta\lambda$ eccentricitate $\alpha\beta$; et postea dividantur circumferentiae, cum epicycli tum eccentrici $\delta \lambda$, in partes similes: quod distantiae punctorum divisionis cum epicycli tum eccentrici a suscepto puncto a fiant utrinque eadem longitudine. Hoc praemisso, cum cap. XL. per suppositionem eccentri facilem et planam tradiderimus demonstrationem methodumque computandi distantias : hic quoque distantias nos in eccentro speculari possumus, etsi ponimus, illas motu aequabili epicycli planetae

22 *

administrari. Que secto via mobis aperta esse videtar ad geometricam descriptionen itizens planetarii, mod ex hypothesi cap. XLJ. semitur. Dicamus igitar captus causa, pianetam per ambitam epicych tantas a Sole a digressiones facere, ac si in circumferentia perfecti eccentrici 82 (qui semicirculus esto, rectaleß! definitas) acqualibus temporibas acquales arcus describeret, puta ₹2, 2ζ ζ**8**, 82, 12, xλ; sic at anguli ad 6 sist acquales, et β punctum acqualitatis hoc ouidem loco, ubi quaeritur de distantiis. Connectan-

tur puncta divisionis cum α et β . Igitur semicirculus hic eccentricus est mere fictitius: tantum pro computanda summa aliqua distantiarum delineatur. Quodsi planeta tam in ϑ quam in λ acquali gradu virtutis ex Sole promoveretur, quemadmodum jam ipse quoque conversionem epicyclicam semper acquabiliter moliri ponitur, tunc vere partes hasce eccentri acquales, ex quibus distantias desamsimus, conficeret temporibus acqualibus, et distantiae temporum per signa divisionis notatorum essent hae ipsae $\alpha \delta$, αa , $\alpha \zeta$, $\alpha \vartheta$, αi , αx , $\alpha \lambda$, non tantum quantitate, sed etiam identitate situs: uno verbo, planetae iter esset $\delta \vartheta \lambda$ circulus.

Sed quia planeta ipse distantias quidem nominatas propter aequabilem conversionem epicycli repraesentat in quantitate, promovetur vero a Sole aequalibus temporibus inaequaliter, minus apud δ , plus apud λ , sic ut in tempore *) per $\delta\beta a$ signato et mensurato non absolvat spatium δa , nanciscatur tamen longitudinem distantiae αa , et in tempore (per $\lambda \beta a$ ipsi $a\beta\delta$ aequalem angulum mensurato) plus absolvat spatii quam $x\lambda$, nanciscatur tamen longitudinem distantiae αx , prius ergo habet planeta longitudinem distantiae αs quam in s vere promovetur, prius distantiae αx quam in xpromoveatur: et vicissim, quando in e, x promovetur, jam fuit distantia αs et αx , proque ea jam brevior aliqua erit. Planeta igitur in e, x et omnibus hujusmodi signis propior est puncto α quam signa circumfementiae s, x. Ingreditur igitur planeta ab instituta circuli $\delta\lambda$ amplitudine ad punctum α , centro β vicinum, nec unquam in circulum hunc incidit praeterquam in δ, λ punctis. Nam in opposito semicirculo ratio ingressus est eadem.

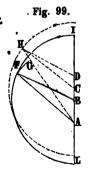
^{*)} Hoc loco, quando computamus nihil nisi distantiam $\epsilon\epsilon$, hoc est $\epsilon\mu$, angulus $\delta\beta\epsilon$ metitur tempus, cujus genuina et physica mensura est alias $\delta\epsilon\mu$ planíties, ut infra patebit.

Qnia igitur planum $\delta \alpha \varepsilon$, $\delta \alpha \zeta$ &c. habet in se summam distantiarum omnium punctorum in arcu epicycli, qui similis est ipsi arcui $\delta \varepsilon$ per cap. XL, et vero planeta acqualibus temporibus (quae jam per $\delta \varepsilon$, $\varepsilon \zeta$ mensurantur) inaequales arcus describit genuini sui itineris; breves quidem, quando ab α Sole longe abest, longas vero, quando ad Solem prope accedit, sic ut arcus itineris planetarli, qui decurruntur temporibus acqualibus, sint in proportione distantiarum conversa per cap. XXXII : igitur fere fit, ut quanto $\varepsilon \alpha \delta$ spatium excedit sectorem $\varepsilon \beta \delta$, cujus mensura est angulus $\varepsilon \beta \delta$ vel arcus $\varepsilon \delta$, tanto arcus $\varepsilon \delta$ (hoc loco mensura temporis) excedat arcum itineris confecti, qui sit $\mu \delta$.

Quodsi planum totum efferas numero 360, eodem nempe, quo circumferentiam circuli, quo et tempus periodicum, tunc numerus temporis seu δs (hoc loco) quam proxime est medium seu arithmeticum seu geometricum (parum enim differunt) inter numerum summae distantiarum seu spatium $\epsilon \alpha \delta$, et inter numerum itineris planetarii seu $\mu \delta$. Multiplex hic occurrit $\dot{\alpha}\mu\eta\chi\alpha n\alpha$. Primum, quod planum circuli non perfectissime aequivalet summae distantiarum, ut demonstratum est capite XL, etsi fine capitis XLIIL dictum est, parvum admodum esse defectum. (In tollendis incommodis versatur caput XLVIII.)

Secundo, quod proportio jam dicta non est exquisite geometrica. Nam etsi singulae distantiae sunt ad singulas mediocres in proportione conversa arcuum singulorum itineris planetarii ad arcus mediocres: summae tamen distantiarum aliquot ad summam totidem mediocrium proportio non manet eadem, quae est summae arcuum totidem ad summam mediocrium conversa. Ut in exemplo deprehendes: sint distantiae duae 12 et 11, mediocris 10, et tantus etiam sit arcus mediocris. Et sit ut distantia 12 ad distantiam mediocrem 10, sic mediocris arcus 10 ad distantiae 12 arcum 81/2. Sit etiam ut distantia 11 ad 10, sic 10 ad 9⁴/₁₁ arcum. Compone distantias 12 et 11 in unam symmam, quae erit 23: summa duarum mediocrium 20: summa arcuum duorum 17^{14}_{33} . Hic erat quidem 10 medium proportionale inter 12 et 8^{1}_{3} , sic inter 11 et 9^{1}_{14} : sed jam summa 20 non est medium proportionale inter 23 et 17^{14}_{33} , sed inter 23 et 1719/22, qui est major. Valet tamen haec ratio in medietate arithmetica. Verbi gratia, sit 10 medium arithmeticum inter 12 et 8: sic inter 11 et 9. Compone 12, 11, funt 23; compone et 8, 9, funt 17. Igitur 20 ruroum est medium arithmeticum inter 17, 23. Ac cum cap. XXXII. demonstratum sit, parvum esse discrimen inter medium arithmeticum et geometricum in hoc negotio, parum igitur etiam aberit, quin verum sit, quod hic negatur verum esse per omnia.

Tertio, etsi esset area $\epsilon\beta\delta$ praecise geometricum medium inter $\epsilon\alpha\delta$ et $\mu\beta\delta$, tamen constitui non posset geometrice. Triangulo enim $\alpha\epsilon\beta$ sector $\epsilon\beta\mu$ debet esse aequalis. At desideratur adhuc a geometris ratio, angulum datum in data proportione secandi.


Quarto, si nos superiora omnia nihil impediunt, nondum tamen idem est $\mu\beta\delta$ sector circuli et $\mu\beta\delta$ sector (ut ita dicam) plani ovalis*). Itaque etai definitos esset arcus $\mu\delta$ tanquam in circumferentia circuli, nihil tamen hinc sequeretar ad $\mu\delta$ tanquam arcum itineris planetae, qui non est circu-

^{*)} Sector est proprie pars plani circularis duabus rectis ex centro rescissus. Improprie igitur usurpatur de plano alio quam perfecte circulari.

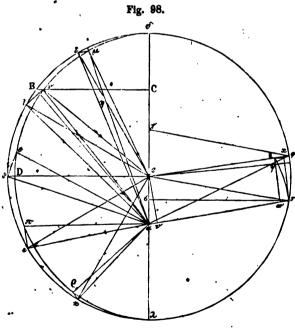
lus. Itaque etsi hoc subsidio est iis, qui numeris uti voluerint, quod sciunt $\epsilon\beta\delta$ esse medium inter $\epsilon\alpha\delta$ et $\mu\beta\delta$, nobis tamen, qui geometricam viam affectamus, hac non patet transitus.

Et quia in fictitio eccentrico $\partial \partial \lambda$ mensura Alia igitur tentabimus. temporis est $\delta \epsilon$, $\delta \zeta$ pro inquirendis distantiis $\alpha \epsilon$, $\alpha \zeta$; sectorum vero $\delta\beta_{\theta}$, $\delta\beta\zeta$ eadem est proportio mutua, quáe arcuum δ_{θ} , $\delta\zeta$; in vero autem itinere planetae planum inter arcus itineris et α Solem interjectum itidem est vere mensura temporis, quo planeta versatur in arcu superposito, per cap. XL: ergo ex α diametri puncto rectae ejiciantur concludentes spatia aequalia ipsis $\epsilon\beta\delta$, $\zeta\beta\delta$; ut $\epsilon\eta\mu$ spatium, quod decedit spatio $\epsilon\beta\delta$, sit aequale spatio $\eta \alpha \beta$, quod accedit eidem $\epsilon \beta \delta$; sint autem $\alpha \mu$, $\alpha \tau$. Et centro α diastemate αe , $\alpha \zeta$ arcus ducantur $e \mu$, ζr , secantes has lineas in μ , ν . An igitur puncta μ , ν , o, π &c. hoc modo ducta recte habeant, sic ut planeta temporibus δe , $\delta \zeta$, $\delta \vartheta$, $\delta \pi$ in illa veniat? Proxime quidem verum hoc est: sed tamen tria et hic desiderantur. Primum, ut supra, anod planum non exacte aequivalet summae distantiarum. Alterum, quod via geometrica nulla est, quae doceat, datum semicirculum ex dato diametri puncto per rectam lineam in data proportione secare. Tertium, quod nescitur, an cuilibet plano $\mu\alpha\delta$, $\pi\alpha\delta$ &c. tantum in proportione decedat propter deflexionem μ , r a circumferentia, quantum reliquis in sua proportione. Veruntamen et haec utilia erunt iis, qui numerorum adminiculo, contra morem geometriae, per minima ire voluerint. Cum igitur geometria nos destituat, ut tamen aliquam habeamus descriptionem lineae, quae nobis ex speculatione cap. XLV. nascitur, age, subsidium ab areyma petamus, accersita vicaria nostra cap. XVI, quae lineas $\alpha \mu$, $\alpha \nu$ &c., in quibus planeta existit, justis temporibus in justa zodiaci loca infert; et cum ea confundamus praesentem fictitium eccentricum $\delta \partial \lambda$, ex quo speculatio cap. XLV. justas longitudines linearum αe , $\alpha \zeta$, hoc est $\alpha \mu$, αr depromi persuasum habet.

Lubet quidem etiam alias lucis causa duas hypotheses inter sese comparare, in unum schema conflatas, utrasque quidem alicubi decipientes, sed singulas tamen ad singula vera (quantum hucusque sciri potuit) investiganda utiles: quo schemate multa hactenus dicta sub unum intuitam rediguntur.

Sit A centrum Terrae (vel Solis Copernico), AI linea apsidum, AD eccentricitas puncti aequantis. Etsi vero cap. XIX. negatum est, D punctum posse manere stabile, et AD eandem: id tamen de eo solum est intelligendum, si DA bisecetur. At si relinquatur nobis sectio DA libera, ut cap. XVI, tunc potest manere stabile hoc punctum. Secetur ergo AD in ea proportione, quae cap. XVI. inventa est. Sit sectio C, et AC 11332, CD 7232. Et centro C, diastemate CH 100000, soribatur eccentricus, punctis adumbratus, per H. Haec igitur erit hypothesis capitis XVI. Assumto enim angulo anomaliae mediae qualicunque noto, educatur ex D centro aequantis recta punctata ad circumferentiam, quae sit DH, com-

prehendens cum linea apsidum angulum imperatum, mensuram nempe temporis propositi.*) Et connectatur H punctum cum A. Erit igitur


*) Haec est in hypothesi vicaria cap. XVI. meqsura temporis propria; quia in ea D punctum acquantis ponitur ex sententia veterum.

angulus IAH anomalia coacquata, et ipsius AH locus verus sub zodiaco. et planeta certissime in linea AH sub tempus et anomaliam datam, per cap. XVI. XVIII. At distantia AH falsa erit, et planeta non in puncto H, quia sectio AD in C et eccentricus H ex C descriptus falsa sunt, per cap. XIX. XX. et XLII, ubi ostensum est, ipsam AD bisecandam in B, ut centro B verior eccentricus IL scribatur, non tamen is perfectus circulus. Delineetur jam et altera hypothesis. Et bisecetur AD in B, ut AB sit 9282 (vel secundum numeros cap. XLII. sit 9264) et centro B diastemate CH scribatur alius eccentricus IL, quem hoc capite appellavi quoque fictitium*), computandis justis distantiis descriptum. Est autem idem, qui in schemate 98. $\delta \delta \lambda$, centro β descriptus. Et transferatur anomalia media (quae prius nobis, mediante tempore, fuerat proposita) ex D in B, educta ex B recta BF, quae sit parallelos priori DH. Et connectatur F punctum sectionis novi eccentrici cum A. Per ea igitur, quae hoc cap. XLVI. dicta sunt, erit AF distantia (quam requirit hypothesis cap. XLV. planetae in F) a centro Solis in A. Sed angulus BAF falsue, et locus AF sub zodiaco falsus. Planeta enim ad susceptum tempus et anomaliam mediam non invenitur in AF. Prius autem vera planetae linea erat AH, et falsa longitudo AH. Centro igitur A diastemate AF scribatur arcus FG, secans AH in G. Erit igitur linea AG constituta duabus manifeste falsis hypothesibus, vera tamen in situ sub zodiaco et consona in longitudine hypothesi cap. XLV.

Sic igitur per vicariam hypothesin cap. XVI, quae consistit in punctis A, C, D et eccentrico H, supplevimus defectum geometriae, quae nobis requisitum ab hypothesi cap. XLV. situm lineae AG (in quam justa distantia AF est transferenda) ostendere non poter**at**.

Quaerat aliquis, an non possimus aeque in priori schemate ac in posteriori asciscere y punctum aequalitatis, et ex eo ipsis βe , $\beta \zeta$, $\beta \vartheta$, $\beta \iota$, βx parallelos agere $\gamma \mu$, $\gamma \tau$, γo , $\gamma \pi$, $\gamma \varrho$; et ducere arcus $\epsilon \mu$, $\zeta \tau$, ϑo , $\epsilon \pi$, $x \varrho$, secantes has paralle-

*) Quod verum est ratione figurae, cum iter planetae non sit circulus, ut hic erat fictum. At ratione situs et centri B non est fictitius, sed verus : quo nomine priori fictitio ex C descripto hic ex B descriptus opponitur.

jam cap. XLI. nos de eo jussit dubitare. Quare in anemalia eccentri 90° eccentricitas, capite XLII. inventa 9264, erit tangens, quae ostendet partem aequationis opticam 5° 17' 34". Et quia in anomalia eccentri 90° area trianguli est rectangula, ducto igitur radio in dimidium eccentricitatis, scilicet 4632, provenit area trianguli 463200000. Ut autem area circuli 31415926536 ad 360° sive 1296000", sic haec jam inventa area 463200000 ad 19108" seu 5° 18' 28" partem aequationis physicam. Itaque tota aequatio 10° 36' 2", ut ita anomaliae mediae 95° 18' 28" respondeat coaequata 84° 42' 26". At secundum methodum capitis XVIII. vicaria hypothesis, sat fida in longitudine, ostendit nobis, quod eidem anomaliae mediae 95° 18' 28" reapondere debeat coaequata 84° 42' 2".

Sumatur jam anomalia eccentri nostri 45° et 135°. Et ut totus ad sinus horum angulorum, ita area 19108" maximi trianguli aequatorii ad aream hujus loci 13512" sive 3° 45' 12", ut additione hujus partis acquationis physicae ad anomaliam eccentri constituantur anomaliae mediae 48° 45' 12" et 138° 45' 12". Datis vero cruribus angulorum datorum, prodeunt anguli anomaliae coaequatae his mediis anomaliis respondentes 41° 28' 54", 130° 59' 25" "). At per vicariam hypothesin, ut capite XVIII. operis, assumtis iisdem anomaliis simplicibus 48° 45' 12" et 138° 45' 12", prodeunt coaequatae illic 41° 20' 33", minus quam per aream trianguli, excessus 8' 21", hic 131° 7' 26", plus quam per aream trianguli, defectus 8'. Itaque cum certum sit, vicariae nostrae tantum errorem tribui non posse, necesse mihi fuit credere, hanc rationem aequandi etiamnum esse imperfectam. Et capite quidem XIX. cum bisectionem in Marte tentarem. et per immobile punctum acquantis more Ptolemaico acquationes computarem, inventa est differentia circa 45º anomaliam eccentri pene tanta, in partes tamen contrarias. Nam in superiori quadrante planeta appropinquabat aphelio, in inferiori perihelio, plus quam par erat; hic in superiori quadrante discedit longius ab aphelio, in inferiori a perihelio, quam par est. Itaque supra ab aphelio est nimis velox, infra a perihelio itidem. Quare tardior justo erit in longitudinibus mediis.

Credo jam lectori incidisse, an forte errorum causa inde sit, quod capite XL. dictum est, vitium subesse huic operationi per areas, eo quod areae non aequipolleant distantiis, celeritatis et morarum moderatricibus. Atqui non hinc esse potest praesens error. Primum enim excessus summae distantiarum supra aream circuli parvus est, spatiolum nempe inter conchoides, parvum admodum: deinde area exhibet distantias omnes quidem justo breviores, maxime vero eas, quae sunt in longitudinibus mediis. Ergo, si quis error hinc manat, is in hoc est, quod non satis longas moras planetae facimus in longitudinibus mediis. At errores, quos jam deprehendimus, in contrarium abeunt : nimis enim longas moras fecimus planetae in longitudinibus mediis. Idem illi quoque potest objici, qui suspicionem inde concipere voluerit, quod, misso Copernici et Tychonis duplici epicyclo, qui orbitam planetae facit ovalem, nos Ptolemaicum perfectum circulum in praesens susceperimus. Nam dictum est in fine capitis quarti, illam Copernicanam orbitam non incurrere ad centrum, quod hic nobis esset usui, sed excurrere a centro particulis 246, quod hic potius augeret errorem, qui hoc jam sequimur, moras esse ut distantias.

Ut autem ad oculum pateat, parvum admodum effici spatium conchoidis cap. XL, perpendes quod secans anguli 5° 19' (maximae aequationis

opticae) est 100432, linea videlicet EA. Ex hoc igitar excessu 432, qui est lineola BA, pars lineae EA, propemodum discere poterimus accumulationem omnium horum excessuum; puta QA, RA, BA, SA, LA, in hunc modum: secans 89° ejusdemque tangens compositi tantundem faciunt, quantum sinus omnium graduum totius semicirculi, manu ducente nos Cardano in libris de Subtilitate, quo loco circuli proprietates explicat. Ejus rei demonstrationem profitetur Justus Byrgius.⁸⁶)

Ergo si excessus nostri omnes residui a maximo 432 essent ut sinus utrinque in semicirculo ad semidiametrum, tunc ut 100000 ad summam secantis et tangentis 89°, scilicet ad 11458869, sic esset 432 ad 49934, summam omnium excessuum ad singulos gradus semicirculi fere. Nam quanto distantiarum excessus in superiori quadrante sunt longiores his secantum excessibus, tanto in inferiore quadrante fere sunt breviores. Atqui nondum ita sunt excessus QA, RA, SA &c. ad invicem uti sinus aliquotorum graduum, sed fere utuntur sinuum proportione dupla. Ut sinus 90° est duplus sinus 30°. Jam aequatio optica 90° est 5° 19', ejusque sinus dimidium exhibet arcum itidem fere dimidium prioris, scilicet 2° 39' 15" pro aequatione optica anomaliae eccentri 30°, cujus secans est 100107. Et hic

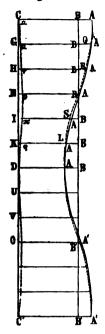


Fig. 95.

107 excessus secantis supra sinum rectum est fere quarta pars prioris 432; cum sinus 30° esset dimidia pars de sinu 90°. Videat geometra aliquis, an thema sit demonstrabile. Mihi sufficit in praesens, minima, in quibus occupor, respondere. Igitur ad 432 accumulantur partes non proportionales sinubus, sed semper minores, et in 45° vel circiter tantummodo semisses; ante illum minus semissi; ita ut circa 30° sint tantum quadrantes, et denique insensibiles. Itaque (quod experientia testatur, sigillatim computatis omnibus distantiis et in unam summam conjectis), de summa 49934 retimemus tantum partem septimam et 7000 circiter. Et quia distantia una 100000 valet 60', summulae huic debebuntur non plus $4\frac{1}{5}$, de quibus tamen aliquid spargitur in omnem ambitum; ut hic errorculus circa 45° et 135°, ubi maximus, etiam in Marte insensibilis evadat. Quapropter alia nobis hujus dissonantiae occasio guaerenda erit.

Caput XLIV.

Viam planetae per auram aetheream non esse circulum, ne quidem respectu primae inagqualitatis solitariae, si etiam mente removeas Braheanas et Ptolemaicas spirarum implicationes ex inaequalitate secunda duobus his auctoribus resultantes.

Eccentricitate et proportione orbium certissime constitutis mirum astronomo videri possit, superesse adhuc aliud impedimentum, quo minus de astronomia triumphare liceat. Et me Christe biennium integrum triumphaveram.

Ceterum comparatione eorum, quae capitibus XLI, XLII, XLIII pracedentibus constituta sunt, facile apparet, quid nobis adhuc desit. Differebant plarimum loca aphelii, eccentricitas et proportio orbium utrinque constituta. Nec acquationes physicae computatae observatis (quas vicaria hypothesis repraesentat) consentiebant. Repetatur schema cap. XLI. Et quia in eo qualium yn 100000, talium ya fuisset 14822; quare addita ay ad yn vel ye, esset as 166562, guas cap. XLII. inventa est 166780. Sic ablata ya a yo restaret ao, 136918, quae omnino fuit capite XLII. inventa 138500. Rursum quia cap. XLII. inventa est vera longitudo linearum ye, ya, ae, ad, si ergo, quod cap. XLI. positum usurpatumque fuit, planetae via est circulus, non est difficile dictu, quanta esse debeat ax, ay, ao. Nam quia at est anno 1590. Octob. in 28° 41' 40" Q et x, y, o ut cap. XLI: erunt dati anguli xay, yay day, quare et aequatio optica any 0° 53' 13", any 3° 10' 24", ady 5° 8' 47". Et ut sinus horum angulorum ad verissimam eccentricitatem ay 14140: sic sinus x7s, nye; Oya ad an, an, aO.

Prodeunt igitur ax At observando sunt inventae		αη 163883 163100	147750
Differentia	350	· 783	789 *7)

Quodsi quis hanc differentiam lubricae observandi fortunae tribuere velit: nae is vim demonstrationum hactenus usurpatarum non attenderit neque perceperit oportet, et nequissimam mihi fraudem imputabit crassissime corruptarum Brahei observationum. Itaque ad observationes annorum sequentium provoco, quas tamen periti observatores instituant: nam si quid ex uno latere indulsi meo voto, id ex altero latere tanto majorem in errorem excrescet. Sed nihil his opus. Vobiscum mihi sermo est, periti rerum astronomicarum, qui sophistica effugia ceteris disciplinis creberrima in astronomia nulli patere scitis. Vos appello. Videtis in \times defectum a circulo parvum; in η , ϑ ex utroque quidem latere magnum admodum, quantum per observandi incertitudinem (ob quam 200 fortassis aut summum 300 particulas capite quidem XLII. in dubio pono) excusare non possumus.

Quid ergo dicendum? Num hoc illud est, quod supra cap. VI. dictum, per translationem suppositionum a medio ad apparentem Solis motum alium constitui eccentricum, qui ad latus apogaei Solis excedat? Nequaquam. Nam quantum is hinc excedit, tantum inde appropinquat. Hic autem videtis atrinque planetam a circuli orbita ad centrum appropinquare: quod multae aliae observationes partim secuturae cap. LI, LIII. attestantur.

Itaque plane hoc est: orbita planetae non est circulus, sed ingrediens ad latera utraque paulatim, iterumque ad circuli amplitudinem in perigaeo exiens: cujusmodi figuram itineris ovalem appellitant.

Atque hoc idem etiam ex capite praecedente XLIII. probatur. In eo positum fuit, planum perfecti eccentrici aequipollere quam proxime distantiis omnibus aequalism quotcunque partium circumferentiae illius eccentricae a fonte virtutis motricis; itaque partes plani metiri moras, quas planeta in partibus respondentis circumferentiae eccentricae trahat. Quodsi igitar planum illud, circa quod planeta limitem agit, non est perfectus circulus, sed diminutus a lateribus ab ea latitudine, quam habet in linea apsidum; et tamen hoc planum, orbita irregulari circumscriptum, adhuc metitur moras, quas planeta in toto ambitu et in partibus ejus aequalibus facit; planum igitur diminutum metitur aequale tempus cum priore plano non diminuto. Partes igitar

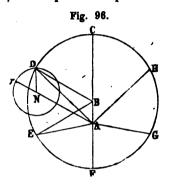
plani diminuti aphelio et perihelio proximae metientur tempus majus, quia apud illas tenuis est diminutio; sed partes in longitudinibus mediis metientur minus tempus quam antea, quia in illis accidit potissima totius plani diminutio. Jam igitur, si utamur hoc diminuto plano ad moderandas aequationes, fiet planeta circa aphelium et perihelium tardior, quam in priori vitiosa aequationum forma, circa longitudines medias velocior, quia distantiae hic diminuuntur. Morae igitur hinc abstractae in aphelium et perihelium sursum deorsumque compensatione facta accumulabuntur, non secus ac si quis botellum ventricosum in medio comprimat, eaque compressione minutal infarctum e ventre magis in utrasque extremitates infra supraque manum eminentes exprimat et elidat.

Atqui si contraria contrariis medentur, haec plane aptissima est medicina expurgandis vitiis, quibus supra cap. XLIII. physica nostra hypothesis laborare deprehendebatur. Velocior enim futurus est planeta in longitudinibus mediis, cum prius ibi deprehenderetur justo tardior, retardabiturque supra et infra circa apsidas, ubi prius pernicitate nimia nocebat aequationibus in octavas temporum redundantibus.

Hoc igitur alterum argumentum est, quo demonstratur, orbitam planetae verissime a circulo instituto deflectere et ad latera centrumque eccentrici ingredi. Ceterum hoc argumentum penes me non tanti fuit, ut ex eo de planetae exorbitatione cogitare possem. Diutissime enim in conciliandis hujus formae aequationibus cum desudassem, tandem absurditate mensurae deterritus totum negotium deserui, quoad distantiis de exorbitatione edoctus, eo modo, quo cap. XLI. factum, postea hoc etiam aequationum negotium resumsi.

Atque ex hoc quoque demonstratum, quod supra cap. XX. XXIII. promisi me facturum: orbitam planetae non esse circulum, sed figurae ovalis.

Caput XLV.


De sausie naturalibus hujue deflexionie planetae a circulo: prima opinio examinata.

Cum primum in hunc modum certissimis Brahei observationibus edoctus essem, orbitam planetae non esse circularem exacte, sed deficere a lateribus, e vestigio et causam naturalem hujus deflexionis me scire sum arbitratus. Erain enim in materia cap. XXXIX. vehementer exercitus. Et admoneo lectorem, ut prinsquam hic progrediatur, caput illud integrum diligenter relegat. Cum enim illo capite causam eccentricitatis transscripsissem alicui virtuti, quae esset in corpore planetae, sequebatur, ut et hujus deflexionis ab eccentrico circulo causa eidem planetae corpori transscriberetur. Accidit antem mihi, quod proverbio jactant, canem festinum caecos parere catulos. Cum enim cap. XXXIX. laborassem vehementer in ea re, quod non possem satis probabilem dicere causam, cur ex orbita planetae perfectus fieret circulus (semper enim quaedam tribuenda erant absurda illi virtuti, quae sedem habet corpus planetae), jam deprehenso ex observationibus, orbitam planetae non esse

Kepleri Opera, III.

circularem perfecte, statim magno persuasionis impetu huc concessi, ut crederem, quae cap. XXXIX. absurda dicebantur ad fabricandum circulum, ex iis in probabiliorem formam transmutatis justam et observatis consentaneam planetae orbitam effectum iri. Quodsi paulo consideratins hanc viam incessissem, potuissem statim ad veritatem rei pervenire. At cum essem caecus prae cupiditate, nec ad omnia et singula membra cap. XXXIX. respicerem, inhaerens illi cogitationi, quae se primam offerebat, probabilis mirum in modum ob aequabilitatem motus epicycli, in novos incidi labyrinthos, ex quibus capite hoc XLV. et sequentibus usque ad L. eluctandum nobis erit.

Repetatur itaque schema cap. XXXIX. Deterior in illo capite opinio fuit, planetam, ut perfectum circulum describat, vi insita moliri epicyclum et sic explicare corpus suum a radio virtutis ex Sole: ut si radius virtutis

ex Sole sit AC, progrediaturque inaequali passu ex AC in A γ , planeta vero initio sit in C, ex eo tempore vi insita sese explicet ex AC vel A γ ; ut quo tempore AC venit in A γ , planeta ex C vel γ veniat in D, et hoc faciat etiam inaequali passu, remissus vel incitatus eadem in proportione, in qua ipsa AC. Hoc enim pacto ND linea per centrum epicycli et planetam semper parallelos manet lineae AB. Dixi autem cap. XXXIX, absurdum mibi videri, planetam ex γ in D inaequali passu sese explicare ex radio virtutis Solaris, et sic sese accommodare sua vi propria ad vim

extraneam ex Sole, ejusque celeritatem et remissiones praescire. Esto igitur, ut hoc absurdum vitetur, eat sane AC inaequaliter, planeta vero ex γ in D eat aequaliter. Videamus, an aliquid sequatur simile illis, quae capite antecedente ex observationibus probavimus,

Cum igitur centrum epicycli N ejusque aphelium a linea AC in Ay tardum fuerit ex C in y, utpote circa eccentrici aphelium C, planeta igithr ex y in D ponatur non tardus, sed motu mediocri incessisse. Quare angulus y ND major erit angulo yAC, itaque ND non erit parallelos ipsi AB, sed inclinabitur versus AC. Itaque planeta D non manebit in eo circulo, quem ex C coeperat describere, qui scilicet per CF transit, sed ingredietur a circumferentia D et parallelo ND versus CA. Atque hoc idem capite praecedente testabantur distantiae AD computatae ex observationibus, eas scilicet non pertingere usque ad circumferentiam circuli CF. Hec idem testabantur etiam aequationes physicae per accumulationem distantiarum AC, AD exstructae; scilicet planetam apud latera eccentrici debere fieri velociorem; ejus nempe distantias a Sole minores postulari. Cum itaque conspiratio ista vim admirabilem afferret ad persuagendum, statim conclusi, hunc ingressum planetae ad latera ex eo contingere, quod virtus planetam movens et distantias ex lege circuli administrans praeveniat virtutem Solis; eo qued illa aequalibus temporibus aequales processus faceret, et sic planetam aequabiliter lege epicycli ad Solem demitteret; haec vero diversis sui gradibus per diversa diastemata exceptum planetam inaequaliter, et altum tardius promoveret; quo fieret, ut distantiae aequalium arcuum epicycli accumularentar versus C aphelium et F perihelium, et rarius sererentar circa medias longitudines, atque siç omnes a justa perihelii propinquitate retra-

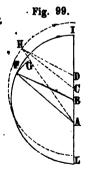
herentur sursum, breviores in locum longiorum. Itaque confirmari coepit in me error iste, quem supra cap. XXXIX. feliciter refutare coeperam, planetariae virtutis proprium esse, planetae corpus in epicycli semita circumducere. Si diameter epicycli ND mansisset ipsi AB aequidistans, poteram exuisse hanc meam opinionem erroneam, poteramque, quod est verissimum, omnem promotionem in longitudinem zodiaci transscribere Šoli, solam planetae librationem in diametro $\gamma \zeta$ relinquere, ut in parte cap. XXXIX. Sed quia observationes testabantur, hanc diametrum epicycli inclinari in longitudinibus mediis, id admirabiliter me confirmavit in errore hoc de motu planetae in ipsa epicycli circumferentia, cujus motus esset regularis a linea ANy, ex A Sole per N centrum epicycli eunte. Cogita ipse lector, et vim argumenti persentisces : quia non putavi fieri ullo alio medio posse, ut planetae orbita redderetur ovalis.

Haec itaque cum ita mihi incidissent, plane securus de quantitaté hujus ingressus ad latera, nimirum de consensu numerorum, jam alterum de Marte triumphum egi. Neque mihi difficile videbatur, si quid adhuc inter numeros esset discordiae, id rep $\pi \rho o \sigma \partial \alpha \phi \alpha \rho es r$ per minima circumcirca dissipare, ut redderetur insensibile.

Ac nos, bone lector, par est triumpho tam splendido dieculam unam (capita inquam sequentia quinque) indulgere, cohibitis interea novae rebellionis rumoribus, ne apparatus iste nobis citra voluptatem pereat. Si quid deinceps erit, suo tempore et ordine peragemus: jam quidem hilares, tunc autem gnavi et strenui.

Caput XLVI.

Quomodo describi possit linea motus planetas ex opinione capitis XLV, qualisque ea sit.


Capite superiori causa quidem dicta est, qua fieri possit, ut planeta a circulari orbita aberret: delineatio vero geometrica itineris nequit per illud schema expediri. Nam epicyclus inclinatur pro longitudine distantiarum: distantiarum autem multitudo et longitudo vicissim ex epicycli conversione pendet. Et quia summa distantiarum inest in plano eccentri, ut cap. XL: demonstratum, nequit igitur inveniri ea summa, nisi epicyclus hic in eccentricum transmutetur. Est autem demonstratum cap. II. et repetitum cap. XXXIX. et usurpatum cap. XL, quod si scribatur ex centro α concentricus semidiametro aequali ipsi $\beta \delta_{1}$ inque eo epicyclus semidiametro $\alpha\beta$; scribatur deinde centro β eccentricus $\delta\lambda$ eccentricitate $\alpha\beta$; et postea dividantur circumferentiae, cum epicycli tum eccentrici $\delta \lambda$, in partes similes: quod distantiae punctorum divisionis cum epicycli tum eccentrici a suscepto puncto a fiant utrinque eadem longitudine. Hoc praemisso, cum cap. XL. per suppositionem eccentri facilem et planam tradiderimus demonstrationem methodumque computandi distantias : hic quoque distantias nos in eccentro speculari possumus, etsi ponimus, illas motu aequabili epicycli planetae

22 *

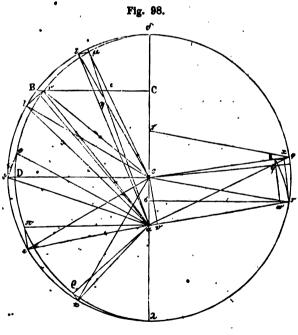
lus. Itaque etsi hoc subsidio est iis, qui numeris uti voluerint, quod sciunt $\epsilon\beta\delta$ esse medium inter $\epsilon\alpha\delta$ et $\mu\beta\delta$, nobis tamen, qui geometricam viam affectamus, hac non patet transitus.

Et quia in fictitio eccentrico $\partial \partial \lambda$ mensura Alia igitur tentabimus. temporis est δe , $\delta \zeta$ pro inquirendis distantiis αe , $\alpha \zeta$; sectorum vero $\delta\beta_{\theta}$, $\delta\beta\zeta$ eadem est proportio mutua, quáe arcuum δe , $\delta\zeta$; in vero autem itinere planetae planum inter arcus itineris et α Solem interiectum itidem est vere mensura temporis, quo planeta versatur in arcu superposito, per cap. XL: ergo ex α diametri puncto rectae ejiciantur concludentes spatia aequalia ipsis $\epsilon\beta\delta$, $\zeta\beta\delta$; ut $\epsilon\eta\mu$ spatium, quod decedit spatio $\epsilon\beta\delta$, sit aequale spatio $\eta \alpha \beta$, quod accedit eidem $s\beta \delta$; sint autem $\alpha \mu$, $\alpha \tau$. Et centro a diastemate as, a ζ arcus ducantur $e\mu$, ζr , secantes has lineas in μ , π . An igitur puncta μ , π , o, π &c. hoc modo ducta recte habeant. sic ut planeta temporibus δe , $\delta \zeta$, $\delta \vartheta$, δx in illa veniat? Proxime quidem verum hoc est: sed tamen tria et hic desiderantur. Primum, ut supra, quod planum non exacte aequivalet summae distantiarum. Alterum, quod via geometrica nulla est, quae doceat, datum semicirculum ex dato diametri puncto per rectam lineam in data proportione secare. Tertium, quod nescitur, an cuilibet plano $\mu\alpha\delta$, $\pi\alpha\delta$ &c. tautum in proportione decedat propter deflexionem μ , ν a circumferentia, quantum reliquis in sua proportione. Veruntamen et haec utilia erunt iis, qui numerorum adminiculo, contra morem geometriae, per minima ire voluerint. Cum igitur geometria nos destituat, ut tamen aliquam habeamus descriptionem lineae, quae nobis ex speculatione cap. XLV. nascitur, age, subsidium ab arerua petamus, accersita vicaria nostra cap. XVI, quae lineas aµ, ar &c., in quibus planeta existit, justis temporibus in justa zodiaci loca infert; et cum ea confundamus praesentem fictitium eccentricum $\delta \partial \lambda$, ex quo speculatio cap. XLV. justas longitudines linearum αs , $\alpha \zeta$, hoc est $\alpha \mu$, αr depromi persuasum habet.

Lubet quidem etiam alias lucis causa duas hypotheses inter sese comparare, in unum schema conflatas, utrasque quidem alicubi decipientes, sed singulas tamen ad singula vera (quantum hucusque sciri potuit) investiganda utiles: quo schemate multa hactenus dicta sub unum intuitum rediguntur.

Sit A centrum Terrae (vel Solis Copernico), AI linea apsidum, AD eccentricitas puncti aequantis. Etsi vero cap. XIX. negatum est, D punctum posse manere stabile, et AD eandem: id tamen de eo solum est intelligendum, si DA bisecetur. At si relinquatur nobis sectio DA libera, ut cap. XVI, tunc potest manere stabile hoç punctum. Secetur ergo AD in ea proportione, quae cap. XVI. inventa est. Sit sectio C, et AC 11332, CD 7232. Et centro C, diastemate CH 100000, soribatur eccentricus, punctis adumbratus, per H. Haec igitur erit hypothesis capitis XVI. Assumto enim angulo anomalias mediae qualicunque noto, educatur ex D centro aequantis recta punctata ad circumferentiam, quae sit DH, com-

prehendens cum linea apsidum angulum imperatum, mensuram nempe temporis propositi.*) Et connectatur H punctum cum A. Erit igitur


•) Haec est in hypothesi vicaria cap. XVI. mensura temporis propria; quis in ea D punctum acquantis ponitur ex sententia veterum.

angulus IAH anomalia coaccuata, et ipsius AH locus verus sub zodiaco. et planeta certissime in linea AH sub tempus et anomaliam datam, per cap. XVI. XVIII. At distantia AH falsa erit, et planeta non in puncto H, quia sectio AD in C et eccentricus H ex C descriptus falsa sunt, per cap. XIX. XX. et XLII, ubi ostensum est, ipsam AD bisecandam in B, ut centro B verior eccentricus IL scribatur, non tamen is perfectus circulus. Delineetur jam et altera hypothesis. Et bisecetur AD in B, ut AB sit 9282 (vel secundum numeros cap. XLII. sit 9264) et centro B diastemate CH scribatur alius eccentricus IL, quem hoc capite appellavi quoque fictitium*), computandis justis distantiis descriptum. Est autem idem, qui in schemate 98. 802, centro & descriptus. Et transferatur anomalia media (quae prius nobis, mediante tempore, fuerat proposita) ex D in B, educta ex B recta BF, quae sit parallelos priori DH. Et connectatur F punctum sectionis novi eccentrici cum A. Per ea igitur, quae hoc cap. XLVI. dicta sunt, erit AF distantia (quam requirit hypothesis cap. XLV. planetae in F) a centro Solis in A. Sed angulus BAF faleue, et locus AF sub zodiaco faleus. Planeta enim ad susceptum tempus et anomaliam mediam non invenitur in AF. Prius autem vera planetae linea erat AH, et falsa longitudo AH. Centro igitur A diastemate AF scribatur arcus FG, secans AH in G. Erit igitur linea AG constituta duabus manifeste falsis hypothesibus, vera tamen in situ sub zodiaco et consona in longitudine hypothesi cap. XLV.

Sic igitur per vicariam hypothesin cap. XVI, quae consistit in punctis A, C, D et eccentrico H, supplevimus defectum geometriae, quae nobis requisitum ab hypothesi cap. XLV. situm lineae AG (in quam justa distantia AF est transferenda) ostendere non poterat.

Quaerat aliquis, an non possimus aeque in priori schemate ac in posteriori asciscere y punctum aequalitatis, et ex eo ipsis βs , $\beta \zeta$, $\beta \vartheta$, $\beta \iota$, βx parallelos agere $\gamma \mu$, $\gamma \tau$, γo , $\gamma \pi$, $\gamma \varrho$; et ducere arcus $\epsilon \mu$, $\zeta \tau$, ϑo , $\epsilon \pi$, $\pi \varrho$, secantes has paralle-

*) Quod verum est ratione figurae, cum iter planetae non sit circulus, ut hic erat fictum. At ratione situs et centri B non est fictitius, sed verus : quo nomine priori fictitio ex C descripto hic ex B descriptus opponitur. los, et sectionum punctis intelligere determinata loca et situs distantiarum. Respondetur, quod non. Peccabimus enim hoc pacto nonnihil, distantias nimis alte sursum transferentes, ut facile apparet ex schemate posteriore. Semper enim in eo linea AH, veras distantias AF excipiens, est inferior linea DH, ex puncto aequatorio D parallela ipsi BF.

Quocunque dictorum modorum delineetar linea corpus planetae possidens, sequitur jam, viam hanc, punctis δ , μ , τ , o, π , ρ , λ signatam, vere esse ovalem non ellipticam, cui mechanici nomen ab ovo ex abusu collocant (Durerus). Ovum enim duobus turbinatum verticibus, altero tamen obtusiori, altero acutiori, et lateribus inclinatis cernitur. Talem figuram dico nos Nam quia planeta in λ celer est, in δ tardus, et minus celer creasse. illic quam hic tardus, eo quod longarum distantiarum semidiametrum excedentium plures sint quam brevium (nam usque ad 92²/₃^o longiores sunt; inde per 87¹/₂ ^o breviores, quod secundum doctrinam cap. XXIX. demonstrari potest); atque insuper illae plures longae in angustiorem eccentrici arcam translatione facta sursum stipatae, hae pauciores in ampliorem distractae. ita ut anomaliae mediae $92^{2}/_{3}^{0*}$, qua distantiae $92^{2}/_{3}^{0}$ conficiuntur, re-spondeat anomalia eccentri $87^{4}/_{3}^{0}$ circiter: residuum anomaliae mediae $87^{4}/_{3}^{0}$ cum totidem distantiis brevioribus radio disseminetur per angulum ad centrum eccentrici residuum 92²/₃^o. Longius itaque distant ab invicem breves distantiae circa perihelium, quam longae circa aphelium. Itaque, si eadem etiam esset proportio inter binas vicinas perihelias, tamen attenuaretur resegmentum circuli circa e, μ , δ partes magis, quam circa partes ρ , x, λ ; quia in δ breviori spatio breves in longiorum locum transponuntur quam in λ . At jam etiam ipsae distantiae aequalium partium epicycli perihelio propinquarum in majori sunt proportione ad invicem, quam distantiae partium aphelio propinquarum. Demonstratum enim est supra' cap. XL. conchoides spatium inferiori parte latius esse, quam superiori. Majoribus igitur intervallis per spatium brevius in mucronem attenuari conchoides necesse est infra, quam supra: et illa intervalla majora comparantur insuper ad breviores lineas: proportio igitur ampliatur atroque nomine. Tot causis concurrentibus apparet, resegmentum nostri circuli eccentrici infra multo esse latius, quam supra, in aequali ab apsidibus recessu. Quod cuilibet vel numeris exploratu facile est, vel mechanica delineatione, assumta evidenti aliqua eccentricitate. **)

Caput XLVII.

Quadratura tentata plani oviformis, quod peperit caput XLV, et quod describere satagebamus cap. XLVI: et per eam methodus aequationum.

Nihil profecimus, si non ex suscepta hypothesi et causis physicis cap. XLV, quas hic pro veris sequimur, justas exstruxerimus acquationes non minus quam distantias. Cum autem acquatio componatur ex parallaxi

- *) Valet tantum in opinione has errones capitis XLV, cai his feriamur.
- **) Figuram hujusmodi habent libelli sphaerici et commentaria Reinheldi in theorias Purbachii, in theoria Mercurii.

punctorum eccentrici et mora, quarum illam partem aequationis opticam, hanc physicam appellare soleo; moram vero, si quicquam aliud, planum certe circumscriptum itiname planetae compendiosissime (licet non perfectissime) metiatur: revolvimur igitur ad dimensionem eccentrici ooidis plani, cujus delineandi leges sunt praemissae. Nam etsi parum aliquid nobis deest, quo minus genuinam hanc temporis mensuram statuamus (illud nempe, quod ad ooidis circumferentiam magis etiam quam ad circularem inclines sunt lineae, quae partes circumferentiae illius cum fonte virtutis connectunt; adeoque etiam illae lineae, quae ex centro eccentrici ad easdem illas partes ooidis ducuntur; cum alias radii ex centro ad perfecti circuli circumferentiam omnino recti sint), unde sequitur, ut nec summa distantiarum exacte mensuretur a plano, nec arcus ooidis sint exacte proportionales distantiis: quae omnia patebunt ex relectione cap. XL. et XXXII; quam parvum tamen illud sit futurum, ex cap. XLIII. conjecturam capere licet.

Qnomodo autem planum hoc aliter metiri, ad planum circuli comparare, et in imperatas partes dividere possimus, nisi quadratum inveniamus aequale resegmento sive lunulae resectae? Hic igitur accersendus nobis e tragoedia ∂eo_{S} , imo vero $\lambda oyo_{S} \pi_{S}$, $\alpha \pi o \mu \eta \gamma \alpha \eta \gamma_{S}$, qui nos doceat machinari quadraturam ooidis aut limbi in schemate 98, seu lunulae $\partial o \lambda \partial$, cujus abscissione ex $\partial \lambda \partial$ circuli plano ogides $\partial o \lambda$ generetur. Ut igitur prius cap. XL. in conchoide spatio, sic nunc iterum in ooide (aut si forte mavis, metopoide) appello geometras eorumque opem imploro.

Si figura nostra esset perfecta ellipsis*), peractum esset ab Archimede negotium, qui libro de Sphaeroidibus prop. VI. VII. VIII. demonstrat, sic esse planum ellipsis ad planum circuli, communi majori diametro cum ellipsi utentis, ut est rectangulum diametrorum (seu figura sectionis) ad quadratum diametri circuli. Sit autem haec figura perfecta ellipsis: parum enim differt. Videamus quid inde sequatur. Dico igitur, lunulam δολθ a semicirculo resectam insensibili majorem futuram semicircello, cujus semidiameter est eccentricitas ipsa 9264 seu $\alpha\beta$. Bisecetur enim $\alpha\beta$ in σ (ut cap. XXIX.) et ex σ ipsi $\alpha\beta$ perpendicularis exeat $\sigma\tau$; et connectantur puncta α , β cum τ ; ipsi vero $\beta \tau$ parallelos incedat $\gamma \varphi$; et connectantur puncia β , φ et α , φ ; et centro α , diastemate $\alpha \tau$, scribatur arcus τψ, seeans a p in ψ, et β p in ξ. Cum ergo punctum τ sit aequaliter remotum ab α , β , sumus igitur (propriissime cum Arabibus loquendo) in longitudine media, hoc est in distantia mediocri planetae r a Sole a.**) Ac quia 19 est parallelos ipsi \$1, ergo per capitis praecedentis delineationem ipsum punctum ψ lineae $\alpha \phi$ est genuinus et verissimus locus translationis $\alpha \tau$ in $\alpha \psi$; itaque et ψ est punctum distantiae planetae mediooris. Quare particula lineae βψ, quae interest inter ψ et circumferentiam, metitur latitudinem lunulae circa longitudinem mediam; lineola vero Eo insensibili aliquo major est hac latitudine. Demittatur perpendicularis ex β in ar, quae sit βv . Dico $\xi \phi$, partem lineae $\beta \phi$, esse Juplam ipsius av. Connectantur enim r, o; et ex r in 80 veniat per-

^{•)} Ellipsis est figura ordinata, resultans ex sectione coni per axem. Alii dicunt circulum oblongum.

^{**)} Hodie abusive dicimus longitudinem mediam punctum circumferentiae, gnod habet longitudinem mediam, hoc est quod elongatur mediocritatis modulo a centro mundi.

pendicularis $\tau \chi$; sic ex ξ in a τ perpendicularis $\xi \infty$. Cum igitur in parallelos $\gamma \varphi$, $\beta \tau$ recta a γ incidat, aequales erunt $\beta \gamma \varphi$, $\alpha \beta \tau$. Aequalis autem et $\gamma \beta$ ipsi $\alpha \beta$ ex constructione; sed et $\beta \varphi$ ipsi $\alpha \tau$ aequalis, utraque enim eidem $\beta \tau$ aequalis est ex constructione. Triangulum igitur $\gamma \varphi \beta$ triangulo $\beta \tau \alpha$ congruit, quare $\gamma \varphi$ ipsi etiam $\beta \tau$ aequalis erit; sunt autem paralleli ex constructione, quare et $\beta \gamma$, $\tau \varphi$, quae parallelos aequales extremis connectunt ab eadem plaga, paralleli et aequales erunt. Sed $\beta \gamma$ aequalis est ipsi $\alpha \beta$, ergo aequales sunt et paralleli $\alpha \beta$, $\tau \varphi$. Igitur et $\beta \varphi$, $\alpha \tau$, erunt paralleli. Et quia anguli ad χ , ν recti, et basis $\tau \varphi$ basi $\beta \alpha$ aequalis, et angulus $\beta \alpha \tau$ vel $\beta \alpha \nu$ angulo $\tau \varphi \beta$ vel $\tau \varphi \chi$, erunt igitur aequales $\alpha \nu$, $\chi \varphi$; sic et perpendiculares $\beta \nu$, $\tau \chi$.

Rursum, quia acquales $\tau \chi$ et ξw paralleli inter parallelos, acquales autem et $\beta \tau$, $\alpha \xi$, et anguli ad χ , w recti: erunt igitur acqualia et reliqua triangulorum latera $\beta \chi$, αw ; acquales vero et $\beta \xi$, v w, paralleli inter parallelos βv , ξw . Acqualibus igitur $\beta \xi$, v w ablatis, residuae $\xi \chi$, αv erunt acquales. Prius autem et $\chi \varphi$, αv , erant acquales: et igitur $\xi \varphi$ est dupla ad αv .

His demonstratis, ad propositionem nostram veniemus propius. Et quià in $\varphi\beta$ diametrum circuli (quae continuata intelligatur usque ad alteram circumferentiam) recta ex puncto circumferentiae τ perpendiculariter incidit, scilicet $\tau\chi$: ut igitur $\varphi\chi$ ad $\chi\tau$, sic $\chi\tau$ ad residuum diametri. Rectangulum égitur sub $\varphi\chi$ et residua parte diametri est aequale quadrato $\tau\chi$. Et quia quadratum $\tau\varphi$, hoc est a β aequat quadrata $\tau\chi$, $\chi\varphi$, aequalibus igitur additis, rectangulum sub $\chi\varphi$ et integra diametro est. aequale quadrato $\alpha\beta$. Et quia $\varphi\xi$ dupla ad $\varphi\chi$, rectangulum igitur sub $\varphi\xi$ (quae insensibili longior latitudine lunulae $\psi\varphi$) et sub $\varphi\beta$ semidiametro aequat quadratum $\alpha\beta$. At quod sub $\xi\varphi$, $\varphi\varphi$, est differentia ejus, quod sub $\xi\beta$, $\beta\varphi$, et quadrati $\beta\varphi$, et lunulae sunt etiam differentia inter ellipsis et circuli plana. Et ut quod sub $\xi\beta$, $\beta\varphi$, ad quadratum - $\beta\varphi$, sic fere*) planum ellipsis ad planum circuli. Ergo etiam, ut quadratum $\beta\varphi$ ad rectangulum $\xi\varphi$, $\varphi\beta$, hoc est ad quadratum $\alpha\beta$, sic fere circuli planum ad planum duarum lunularum; et permutatim: ut quadratum $\beta\varphi$ ad planum circuli, sic quadratum $\alpha\beta$ ad planum lunularum fere.

Sed et ut quadratum $\beta \varphi$ ad planum circuli, cujus $\beta \varphi$ radius, ita quadratum $\alpha\beta$ ad planum circuli, cujus $\alpha\beta$ radius. Ergo planum circuli, cujus $\alpha\beta$ radius, insensibili superat utramque resectam lunulam, $\psi \varphi$; aequat quippe lunulas $\xi \varphi$ paulo latiores justo, quia $\xi \varphi$ insensibili est longior ipsa $\psi \varphi$, ut initio dictum. (Habet haec demonstratio suum usum etiam in verissima hypothesi physica.)⁵⁰

Concessis itaque quae posuimus, quod planum ellipsis a plano nostri ooidis insensibiliter differat, eo quod compensatio sit inter supernos excessus ooidis supra ellipsin et infernos defectus, his, inquam, concessis, quadravimus nostras menoides figuras, et sic etiam ooidea; sive proprie loquendo circulavimus. Nam circuli et quadrati proportionem docet Archimedes.

Jam haec ad usum sic transferemus. Quia planum ooidis minus est plano circuli plano circelli ab eccentricitate descripti, computetur igitur

^{*)} Fore inquam. Si enim $\beta \xi$ esset brevior semidiameter ellipsis, et $\xi \varphi$ excessus longioris: tunc plane eadem esset proportio inter plana circuli et ellipsis. At $\beta \xi$ non est omnino ipsissima brevior semidiameter.

planum circelli. Est autem planorum proportio dupla ad proportionem diametrorum. Et quia ut $\beta \varphi$ 100000 ad $\beta \alpha$ 9264, sic $\beta \alpha$ ad $\xi \varphi$ 858, dupla igitur et proportio inter Ba et Ea proportionis, quae est inter Ba et β a. Quare ut βφ 100000 ad ξφ 858, sic planum circuli 31415900000 ad planum circelli 269500000. Subtracto igitur plano circelli, restat planum ooidis 31146400000, acquivalens 360 acqualibus partibus temporis restitutorii. ⁸⁹)

Quae hactenus dicta, ea sunt quidem consona opinioni- cap. XLV. Veruntamen ad usum eorum non sufficit, sciri amplitudinem plani ooidis, quin etiam rationem calleamus necesse est, dividendi illius ex centro β vel puncto α in ratione data. Exempli gratia in schemate priori sumatur punctum ϑ , et spectetur planeta in linea $\alpha \vartheta$, recesserit tamen a circumferentia ϑ versus Solem α . Data igitur eccentricitate $\beta \alpha$ et angulo $\vartheta \alpha \beta$. et posito, quod planeta sit in circumferentiae puncto &, dabitur angulus $\partial \beta \delta$, quare et sector perfecti offculi, scilicet $\partial \delta \beta$ et area trianguli $\partial \beta \alpha$, hoc est tota area $\partial \delta \alpha$, quae (exceptis quae supra cap. XL.) debuisset esse mensura temporis quod elapsum est, quoad planeta ex 8 in 8 venit, si planeta perfectum circulum 89 ivisset. Sed quia ovalem interiorem descripsit, non complexus omnem perfecti circuli aream, equidem ut jam modo nobis opus fuit cognitione plani ooidis totius, "sic nunc etiam scitu nobis opus est, quanta portio de ooide lineis $\delta \alpha$, $\alpha \partial$ intercipiatur, hoc est planum partis lunulae 80 quanta sit portio de plano, quod utramque lunulam metitur, scilicet de plano circelli eccentricitatis. Hoc enim subtracto a portione circuli per lineas $\alpha \vartheta$, $\alpha \vartheta$ resecta, relinquetur portio coidis per easdem lineas $\alpha \partial$, $\alpha \delta$ resecta; et sic tandem totum oviforme ad partem suam $\partial \alpha \partial$ recte comparabitur pro addiscendo tempore seu mora planetae, quam facit inter lineas $\alpha \delta$, $\alpha \partial$. Ubi nunc iterum geometra ali-

quis, qui hoc nos docest? Repetatur schema, in quo est CD semicirculus in rectum extensus, partibus divisus aerualibus, et DE guadrans; et in linea EA ex E extendatur aliqua versus A, quae sic sit ad BA longissimam (in linea scilicet CA) at est illa BA ad BC. Sic et reliquae Gμ, Hr, Iπ, Kę constituantur in justa mantitate. habentes latitudinem lunulae quolibet loco, sic. ut G µ sit paulo brevior quam Ko, et Hr brevior quam In (quamvis acqualiter a C et D absint) secundum demonstrata cap. XLVI. Ita delineata et per partes in rectum explicata erit lunula, quatenus illa distantias abbreviat. Et quia totum spatium inter CD et AA duplum est ad aream semicirculi CD extensi, consideret geometra, an etiam spatiolum inter curvam CuronoD et rectam CED duplum sit futurum ad lumilam a circuli plano resectam.

Nihil videtur repugnare, quo minus hoc verum esse possit. Nam quando lunula vere est Iunula, tunc CD incurvatur, manens in eadem longitudine. Sed CuromoD, quae jam facta est longior quam CED, tunc quidem multo est brevior, itaque multo tunc minus complectitur lunulae area quam jam. Sed hoc quidem, o geometrae, non est demonstrare. Juvabitis itaque me. Et si verum Fig. 100.

Digitized by Google

hoc'esse constiterit, methodum deinde docebitis, qua non tantum totius areolae inter rectam CED et curvam CoD quantitas, quam hactenus aequalem dixi circello eccentricitatis (duae enim lunulae aequantur circello, et haec areola jam ponitor dupla ad unam lunulam), sed etiam quaelibet ejus pars, ad quamcunque datam longitudinem partium CG, CH cognoscatur et ad planum inter CD et BB comparetur.

Rursum autem, ut prius cap. XLVI, quia nobis per geometriam non patet liber exitus, paciscemur cum *àregni*a: et quid mirum? cum ipsa cap. XLV. nata opinio, quae nos in has difficultates conjecit, falsa sit.

Resumatur itaque schema 98. Quodsi planum $\delta o \lambda$, quod est ooides, perfecta esset ellipsis, descripta ellipsi $\delta o \lambda$ et plano circuli $\delta \partial \lambda$ super communi longiori diametro $\delta \lambda$, et planis utriusque figurae ex altero latere longioris diametri divisis per BC ordinatim applicatas (hoc est perpendiculares ad longiorem diametrum $\delta \lambda$), semper portiones ellipsis $v \delta C$ ad portiones circuli $B \delta C$ in eadem manerent proportione, quod demonstrant conici auctores, et Archimedes de Sphaeroidibus prop. V. usurpat. Tunc igitur ne quidem opus essel cognitione plani oviformis. Pro plano enim ellipsis planum circuli, et pro partibus ellipsis similes partes circuli adhiberemus.

Esto $\delta \circ \lambda$ ellipsis perfecta: parum enim ab ea differt; et ex aliquo punctorum ellipsis, puta , descendat perpendicularis in $\delta \lambda$, quae sit $\ast C$, et continuetur, donec secet circulum in B, et connectantur B, \ast oum e. Quia ergo, ut $\beta \varphi$ ad $\beta \xi$ sic CB ad C, ex suppositione perfectae ellipseos et prop. V. Sphaeroideon: et vero ut BC ad C, sic area BSC ad aream $\ast \delta C$: at etiam ut BC ad C, sic BaC area ad $\ast \alpha C$ aream: ut igitur $\beta \varphi$ ad $\beta \xi$ sic $\alpha B\delta$ area ad $\alpha \ast \delta$ aream. Quare proposito tempore discessus planetae ab ipso δ , fiat primo, ut tempus periodicum ad 4 rectos, sic propositum tempus ad angulum circa β , puta $\delta \beta \zeta$, et computetur distantia $\alpha \zeta$, cui aequalis est $\alpha \ast$.

Rursum fiat, ut dimidium tempus periodicum ad aream semicirculi $\delta \partial \lambda$ notam, sic tempus propositum (cujus mensuram jam modo dizismus esse aliam, $\delta \zeta$, cum distantia $\alpha \zeta$ computaretur), ad aream $\alpha B\delta$. Sic datur area. Inveniendus jam est angulus $B\beta\delta$ tantus, ut sinus ejus BC multiplicatus in dimidiam $\alpha\beta$, hoc est ut area trianguli $\alpha B\beta$ juncto sectori $B\beta\delta$ faciat summasn areas, jam prius ex tempore oblatam. Ubi · conjectatione et regula falsi opus est.*) Ubi $B\beta\delta$ angulum fueris assecutus, postea in triangulo $B\beta\alpha$ ex angulo β et lateribus notis $\alpha\beta$, βB , innotescet angulus $B\alpha\delta$. Et quia scitur proportio Br ad BC, quare etiam Bar scibitur; eoque subtracto restabit $r\alpha\delta$ justus angulus coaequatus ad susceptum tempus.

Exempli causa, sit ut prius cap. XLIII. anomalia media, hoc est ortificiosa seu astronomica numeratio temporis 95° 18' 28". Et quia 360° valet aream perfecti circuli 31415926536, valebunt igitur 95° 18' 28". aream 8317172671. Sit θaδ. Quodsi anomalia eccentri esset δθ 90°, quod conjectando suppono, sector ejus θβδ esset 7853981670, et anguli . 90° sinus θβ est 100000, qui ductus in dimidiam eccentricitatem aβ,

^{*)} Notetur hic modus acquandi. Eum enim ultimo tandem secuturi sumus; ubi constiterit, iter planetae esse perfectam ellipsin, dimidio tamen propiorem circulo. Sola distantia alia methodo quaerenda erit.

scilicet in 4632, dat 463200000 aream $\vartheta \beta \alpha$. Summa areas 8317181670, scilicet $\vartheta \alpha \delta$, quae admodum exiguo superat debitum.⁹⁰) Bene ergo conjecimus, $\delta \beta \vartheta$ angulum seu anomaliam eccentri esse 90°. Et quia sinus est 100000, resegmentum lunulae apud ϑ scilicet ϑD erit 858: quare brevior semidiameter D β erit 99142, quae sic se habet ad 100000, ut 9264 ad 9344, quae tangit 5° 20' 18" angulum $\alpha D\beta$, ut sit anomalia coaequata $D\alpha\delta$ 84° 39' 42", quam exhibet vicaria hypothesis 84° 42' 2", differentia 2' 20''.

Notandum autem obiter, quia eccentricitatis inquisitie cap. XLII. nititur distantiis apheliis et periheliis, et in his minimum aliquid errari potest, quod in eccentricitatis constitutione excrescit in decuplum; ideoque, si inveniretur tandem absolutissima ratio. aequandi per causas physicas, posset postmodum constitui verissima eccentricitas et per eam corrigi omnimode possent distantiae aphelii et perihelii. Ut quia hic nimis magna fit aequatio per 2' 20" (si modo et vicariae credimus de planetae longitudinis loco sub zodiaco, et omnia hic et cap. XLV. assumta vera ponimus), paria vero faciunt et optica et physica aequationis causa in longitudinibus mediis, ut hic: bisecto igitur errore, dimidium 1' 10" subtraheretur angulo ultimo invento 5° 20' 18", ut sit 5° 19' 8", quo ostenditur 9310 tangens; prius 9344; differentia 34 ablata a 9264 eccentricitate, relinqueret 9230 correctam eccentricitatem. Sed hanc nos jam non sequemur, quia assumta in minimis peccant. Sufficiat monuisse in futuros usus capitum proxime sequentium.

Exploremos vero etiam, quid in octavis temporum polliceatur haec forma acquationes computandi. Sit, ut cap. XLIII, anomalia media 48° 45' 12". Et quia perinde est, utra numerorum mensura areae exprimantur, retinebimus numerum areae circuli 360° et maximi trianguli 19108" (jam modo in alia numerandi ratione erat 463200000). Conjiciamus anomaliam eccentri, seu in schemate Bß8 esse 45°. Sinus ergo 70711 scilicet BC. Hic multiplicatus in maximum triangulum 19108", rejectis cyphris dat hujus loci triangulum Baß 13512" sive 3° 45' 12", quod additum sectori B\$8 45° dat 48° 45′ 12″ aream Bas, quantam et assumsimus anomaliam mediam. Bene ergo conjectmus angulum ad β . Jam ut radius by ad b5 99142, sic BC 70711 ad Cr 70104. Et quia BC **20711**, erit C β sinus complementi ejus anguli, nempe hoc loco etiam 70711, guare Ca 79975. Ut autem haec habet ad 100000, sic Cr ad tangentem quaesiti anguli 🕫 C 41° 14' 9". Vicaria hypothesis ostendit 44 ° 20'.33''.

Eadem facile explorantur in octava inferiore. Sit anomalia media 138° 45' 12", et idem nomen areae, cujus quaeritur angulus ad a. Inveniemus, quod sinus anguli ad β 135°, scilicet 70711, ex sectore et area trianguli hanc summam efficiat. Et quia sinus 70711 ut prius decurtatur ad constituendam ordinatim applicatam ellipseos, fitque 70104, haec jam est comparanda cum sinu complementi anguli 135°, scilicet cum 70711, non jam aucto eccentricitate a β ut prius, sed diminuto ea, scilicet cum 61447. Quae sicut se habet ad 100000, sic 70104 ad tangentem anguli quaesiti 48° 45' 55", vel complementum 131° 14' 5". Vicaria hypothesis ostendit 131° 7' 26". Confer haec cum cap. XLIII. et cum modis aliis per hanc tabellam. De Motibus Stellae Martis

Anomalíae me- diae communes.		eccentricitatis	et stabile punc-	liberam sectio-	Per suppositio- nem perfecti circuli, physica,	
	responde	ant coseq	uatae ar	nomaliae	diversae	1.000
48°45′12″′ 95.18.28 138.45.12		84.37.48	84. 41. 22 131. 15. 31	41°20' 33'' 84.42. 2 131. 7, 26	84. 42. 26	
	Cap. XX. et XXIX.	Cap. XXIX.	Cap. XIX.	Cap. XVI. et XXIX.	et XXIX. Notabia, veritat	Cap. XLVII. praesente.

Duarom igitur physicarum hypotheseon aequationes eccentri computandi illa exhibet aequationes veritati propiores, quae prius cap. XLV. et distantias veriores dederat, posterior nempe. Et quod mirum videri possit, levi augmentatione eccentricitatis aequipollet modo Ptolemaico, per stabile punctum aequatorium, bisecta eccentricitate.*)

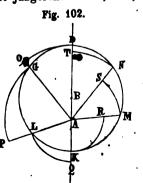
Et cum hanc Ptolemaicam supra coarguerimus erroris, necesse est et illam physicam, quae cum hac in effectu paria facit, adhuc a vero nonnihil deflectere. Tardus quippe fit planeta circa apsidas, et nimis velox circa longitudines medias. Quod primum est argumentum, quo probatur, aut vitiosam esse opinionem cap. XLV, aut eam vitiosa methodo in numeros esse conjectam. At quia neque planum circuli aequipollet collectis universis distantiis, neque ovalis figura, quam Mars ex opinione cap. XLV. describit, perfecta est ellipsis, ut usurpaveramus: quare a vero discrepandi causae adhuc quidem caecae sunt. Potest enim praeter has duas calculi etiamnum tertia, ipsius fundamenti seu opinionis cap. XLV. error concurrere. Nondum igitur ex lege opinionis cap. XLV. aequationes constituimus, nondum susceptae illic hypothesi satisfecimus, quia a geometria destituimur. Itaque nequimus adhuc illam erroris arguere. Hoc enim facturus calculus legem sibi ipsi indicit innocentiae.

Caput XLVIII.

Modus acquationes eccentri computandi per mensuram et sectionem numeralem ooidis circumferentiae Cap. XL. descriptae.

Cum itaque calculus superiori capite usurpatus tot nominibus a geometria destitueretur, itaque de culpa excessuum et defectuum, quas in illius capitis aequationibus eccentri deprehendimus, esset suspectus: tandem confugi ad numerationes arithmeticas, quibus conatus sum declinare incommoda illa, quae cap. XLVI. nobis iter planetae descripturis obstabant. Primo

^{*)} His indiciis certi reddimur, nos in via esse, quae tandem nos perducet ad naturales et verissimas acquationum adeoque motuum coelestium causas.


enim, quia planum non erat exquisita mensura summae distantiarum, misso igitur plano distantias ipsas computavi singularum circumferentiae partium aequaliter divisae. Secundo, quia proportio non manebat eadem, additis geometricarum aliquot proportionum terminis, igitur singulas singularum distantiarum proportiones ad suos arcus minimos consului seorsim. Tertio, quia summa aliquot distantiarum cap. XLVL non potuit constitui geometrice, constitui ego hic arithmetice, nihil enim impediebat. Quarto, hoc mihi facienti nullum erat negotium cum sectoribus sive circuli sive ovalis: itaque ne hoc quidem mihi obstare potuit, quod illi sectores inter se differrent. Atque ita nova molitione in id incubui, ut scirem vel tandem, an ex suscepta justarum distantiarum hypothesi (nimirum ex opinione cap. XLV.) sequerentur etiam aequationes per vicariam nobis manifestatae.

Rem ita sum aggressus. Centro B, diastemate BD, scribatur circulus DGR, in quo sit linea apsidum DR, et A fons virtutis, Example DC association (1997). Fig. 101.

seu centrum Solis. Sumatur in circulo DG punctum G, quod connectatur cum B et A, et sit initio GBD angulus mensura temporis computandae distantiae. Erit propterea GA distantia vera planetae ab A, quamvis planeta ex D in G usque non pervenerit. Nam haec ratio computandi seu demonstrandi distantias hactenus ex cap. XLV. in praesupposito est. Sit antem DG pars circuli exilis, ut 1º de 360°. Ac cum hujusmodi distantiae AG omnes ad omnium graduum DG terminos D et G hoc modo computari possint per demonstrata cap. XXIX, collegi igitur omnes 360 distantias AG longissima additione in unam summam. quae inventa est 36075562 (eccentricitate 9165)

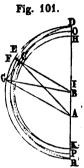
respondens integrae semitae ovali Martis. Jam centro A, diastemate AG, scribatur arcus versus D, qui sit GC. Et quia, quo longior distantia, hoc brevius iter planetae, data ergo distantia arcus circuli DG (qui arcus jam, dum GA distantiam computamus, nihil aliud metitur quam tempus), dabitur et longitudo itineris ovalis DC, quod planeta in suscepto tempore DG (seu anomalia simplici 1°) conficit. Nam ut longitudo totius ovalis circumferentiae ad summam distantiarum omnium, ita se habet distantia arcus DC (inventa per arcum DG) ad longitudinem sui arcus ovalis DC. Probatum enim est supra cap. XXXIII. et usurpatum cap. XLVI. (ubi hujus operationis jacta sunt fundamenta) arcuum confectorum ad distantias proportionem esse permutatam. Fuit autem haec cantio a me adhibita, ut jungerentur AD, AC,

scilicet terminorum C et D distantiae ab A, et medium summae usurparetur pro genuina distantia arcus totius DC. Dividatur enim circulus aliquis eccentricus DK, centro B descriptus, in, partes quotcunque in D, G, L, K, M, N, et a principiis partium, centro mundi A, ducantur arcus usque ad lineas ex A per fines arcuum ejectas, ut DO, GP, LQ, KR, MS, NT; erunt plana in sinistro semicirculo ADO, AGP, ALQ majora justo; plana in dextro ANT, AMS, AKR minora justo. In p minimis igitar alterum ab altero compensatur, ut TNA, ODA quam proxime aequant GDNA planum.

Sic igitur data longitudine DC prioris schematis, quae respondeat dato tempori DG et distantiae GA, hoc est CA, oportet jam etiam invenire angulum CAD anomaliae coaequatae. Connectatur C cum B, et continuetur AC in E, ubi secet circulum, BC vero in F sectionem. Non suffecit igitur scire longitudinem DC, oportuit etiam investigari angulum CBD. Nam quia CD brevior est quam FD, non metitur igitur CD angulam FBD, hoc est CBD. Et vicissim, etsi CD brevior est quam FD, tanta tamen ex B apparet, si fingas oculum in B, quanta FD metiens angulum CBD. Et quia (secundum demonstrata cap. XXXII.) verum est ad omnem sensuum subtilitatem, quod quanto a B remotior est FD quam CD, tanto et longior sit FD quam CD; quia etiam verum est, ad eandem sensuum hujusque negotii quantumvis acutissimam subtilitatem, quod CE et CF sint aequales (longior quidem in rei veritate est CE quam CF ex centro veniens per Eucl. III, 7): ergo posui primo, quod CD et FD sint aequales, et utraque sit mensura anguli CBD, hoc est FBD vel etiam EBD, quasi arcus EF insensibilis esset. Dabatur igitur angulus EBD ex cognitione CD. In triangulo igitur EBA ex angulo EBA et lateribus EB, BA quaesivi longitudinem AE, unde subtraxi AC vel AG ante computatam, relinquebaturque CE vel CF appropinquatio alterius termini de CD ad centrum B. Bisecto igitur CE (nam hoc ad sensum licet) nota fuit appropinquatio ipsius CD ad B, si acquabiliter omnibus punctis appropinquasset. Ex appropinquatione vero et parallaxis optica seu visibilis quantitas ipsins CD dabatur, hoc est angulus CBD jam correctus, qui prius assumebatur paulo minor, nullo in numeris nostris errore. Dato igitur jam correcto angulo CBD, hoc est, complemento ipsius CBA, et latere CA et eccentricitate BA, dabatur quaesita anomalia coaequata CAD.

Hoc pacto non poterat ulla acquatio seorsim constitui, praeter primam ad anomaliam mediam 1°. Reliquae omnes usque ad 180^{am} praesupponebant semper acquationem, quae proxime antecederet, cognitam. Non puto quemquam fore, cui haec legenti taedium ex ipsa lectione non obrepat. Atqui vel hinc judicet lector, quantum molestiarum hauserimus (ego et calculator meus) qui hanc methodum per 180° anomalias ter absolvimus, toties scilicet mutata eccentricitate.

At nondum principium hujus calculi expeditum est. Dixi enim, praesupponi cognitam longitudinem ovalis totius. Unde igitur haec cognoscitur? Ego quidem, qui semel in hanc inartificialem numerandi rationem descenderam, non subterfugi illam inartificialiter praesupponere, totoque negotio. absoluto videre, an in 180^a operatione mihi plus exiret, quam apparentia graduum 180, an vero minus. Nam si plane 180^o exivisset, bonam intelligebam assumtionem ipsins longitudinis ovalis; sin autem minus, minorem justo; sin plus, majorem.


Sed tamen non destituimur manuductione quadam geometrica ad bene. conjiciendum de ovalis longitudine. Sit enim ut BD ad BA, sic BA ad DH, quae a D versus B extendatur. Ergo quia (cap. XLVI.) quod sub latitudine lunulae et semidiametro circuli, fere aequale est quadrato eccentricitatis: quare (Eucl. VI, 17) eccentricitas est medium proportionale inter latitudinem lunulae et semidiametrum. At hic idem fit ex delineationis lege. Ergo DH est latitudo lunulae. Sumatur etiam dimidium de HD, et extendatur a B versus D, sitque BI: et centro I, diastemate ID, circulus DK scribatur, tangens eccentricum in D. Scribatur autem et centro B, diaste-

Digitized by Google

mate BH, circulus HK, tangens priorem in K. Manifestum est, circulum HK minorem esse quam DK, et circulum DGR majorem esse quam DK. Et quia circulares circumferentiae sunt ad invicem ut earum semidiametri: ut igitur BD ad DI et BH, sic circulus major DG ad minores DK et KH. Sed DI est medium arithmeticum inter DB et HB, quia BI est dimidium ipsius HD. Ergo etiam eirculus DK, tangens minorem et majorem ex eodem B centro descriptos, est medium arithmeticum inter illos circulos, quos tangit. Quodsi via ovalis continuetur, ex supposito tanget et ipsa majorem circulum in aphelio D et perihelio R, minorem vero HK in longitudinibus mediis, ut ita sit major minori HK, minor majori circulo DR. Consentaneum igitur est, non longe abesse ovalem circumferentiam a longitudine circularis circumferentiae DK.

Paulo tamen majorem credere facit haec demonstratio, Sumatur medium

proportionale inter BH et BD, quod sit BO, et centro B, spatio BO scribatur OP circulus. Itaque per V. Sphaeroideon Archimedis planities hujus circuli OP erit aequalis planitiei ellipseos, cujus est longior semidiameter BD, brevior BH. At quia figurarum isoperimetron capacissima est circulus, conversim igitur (per communem notitiam) aeque capacium figurarum brevissima perimetros erit circuli. Cum ergo ellipsis, quae habet semidiametros DB, BH, et circulus OP propositi sint aeque capaces ex jam allegatis, circunferentia ellipseos erit longior, quam circumferentia circuli OP. Est autem BO insensibili minor quam ID, eo quod BO inter eosdem terminos ponitur esse geometricum medium. ID medium arithmeticum. Per doctrinam enim

quinti Euclidis, quia BO est medium proportionale inter HB, BD, ut igitur HB ad BD, minor ad majorem, sic HO excessus mediae ad OD defectum. Itaque cum HB sit minor quam BD, erit et HO minor quam OD. At BI est aequalis dimidiae HD, major igitur est BI quam HO, minor quam OD. Ad communem ergo minimi circuli HK semidiametrum HB apponuntur inaequalia, nempe minus dimidio ipsius DH in BO, et dimidium ipsius DH in DI; ergo major DI quam BO. Major igitur DK circulus quam OP. Id tamen insensibiliter, cum DH minor sit quam centesima ipsius DB. Itaque positis his circulis ex abundanti aequalibus, et posito, quod ovalis sit perfecta ellipsis: erit ovalis circumferentia paulo longior quam circulus DK, certe longior quam circulus OP. Et quia supra cap. XLVII. DH fuit 858, qualium DB 100000, dimidium igitur de DH, 429, auferatur a DB, 100000, restabit 99571. Ut igitur 100000 ad 99571, sic erit quam proxime circumferentia circuli ad circumferentiam ovalis quaesitam. Et quia circuli circumferentia habet 360°, vel 21600' vel 1296000", decedet particula, quae habet 5560" vel 92' 40": et semicircumferentiae ovalis adimenda erunt 46' 20", aut etiam minus, si ovalis circulum DK, loco mensurae consideratam, superet. Omnino quidem ego non per demonstrationem, sed per calculum laboriosissimum et pertinacissimum inveni defectum semicirculi ovalis 45' 45": ut qualium semicirculus perfectus est 180°, talium ovalis esset 179° 14' 15".

Et quia decurtațio haec ovalis circumferentiae necessario aequalis est contrariae amplificationi opticae (videtur enim haec ovalis, licet brevior, sub amplitudine tamen 2 rectorum sive 180° praecise, et tam longa esse genteri opera. III. 23 censetur), hinc non injuria dubitare possit lector, an etiam in hoc processu opus sit primum totam ovalem decurtare, postea per partes iterum optice augere? Nam ex schemate videtur apparere, abbreviationem ibi fere maximam contingere, ubi et appropinquatio maxima ad B centrum et vicissim.

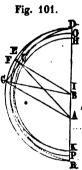
Quodsi pariter incederent hae variationes, methodus nobis ista nasceretur computandi aequationes:

Anomalia media primum esset GBD, unde computaretur distantia GA, quae addita ad AD distantiam termini alterius antecedentis de GD (qui semper est 1°) et summa dimidiata, constitueret arcus CD distantiam aequabilem (omnium scilicet ejus punctorum): et tunc diceremus, ut est longitudo semicirculi ad summam distantiarum omnium in semicirculo, sic esse hanc distantiam arcus GD ad longitudinem FD, hoc est ad apparentiam ex B ipsius CD. Jam ex FD, tanquam ex mensura anguli CBD et ex AC, AB quaereremus CAD coaequatam anomaliam breviore via quam prius.

At sciat lector, has duas varietates non ambulare pari passu. Nam amplificatio optica, quae oritur ex appropinquatione itineris DC ad centrum B. potissima accidit circa longitudines medias; nulla fere in aphelio et perihelio: at contra, decurtatio viae ovalis, quae oritur ex ingressu planetae ad centrum, circumcirca pene aequalis est. Cum enim duae distantiae oppositae in longitudinibus mediis eccentri aequent duas junctas prope lineam apsidum, alteram aphelio vicinam, alteram perihelio: arcus vero circumferentiae ovalis sint in permutata distantiarum proportione : quare et duo arcus hujusmodi in longitudinibus mediis, duobus arcubus, alteri prope aphelium alteri prope perihelium, aequales erunt. Si ipsi arcus ovalis viae aequales, ipsa etiam diminutio horum arcuum omnibus quatuor locis erit fere aequalis. Experimento res est comprobata. Si namque defectus semicirculi ovalis est 45' 15", erit defectus partis centesimae-octagesimae de ovali circa aphelium circiter 14". At amplificatio ex appropinquatione ovalis non acquat unum secundum circa aphelium. Itaque quod allegatam ocularem schematis aestimationem attinet, non est simpliciter ita, ut prius haec objectio dicebat, ut decurtatio ovalis et ejus amplificatio optica se mutuo compensent. Esset quidem ita, si omnes arcus viae ovalis objicerentur centro B directe. At hoc fit tantum in longitudinibus mediis. Versus apsidas vero hi arcus terminis suis inaequaliter appropinquant. Quare non fiunt tanto majores per appropinquationem et apparentiam, quanto sunt facti breviores per decurtationem.

Itaque hanc methodum secutus acquationes Martis ad omnes gradus eccentri exstruxi, idque ter. Nam primo eccentricitatem non satis magnam assumseram, 9165, existimans, me hanc sic per planorum tractationes certissimam fecisse. Deinde etiam plus quam 180° in regula posueram, cum minus ponere debuissem. Itaque cum hic ultima operatio plus quam 180° ostenderet, quod absurdum, secundo assumsi semiovalem 179° 14' 15". Prodibat igitur ad anomaliam mediam 45° - coaequata. 38° 5' 33" cum vicaria cap. XVI. diceret hanc 38. 4.54 39 Differentia

ventatis index vicana	•	•	•	•		-	13.		•
Ad anomaliam 90° — coaequata Veritatis index vicaria									,


Digitized by Google

Pars Quarta. Caput XLVIII.

Ad anomaliam 135° coa Verax vicaria					•	•	:	126.	51.	9
				Di	ffer	enti	i		8.	52

Atque hinc intellexi, praesertim ex anomalia 90°, eccentricitatem 9165 parvam esse nimis. Quam correxi secundum methodum capite praecedente obiter traditam: ut quia in longitudinibus mediis plus indigemus per 3' 50" in aequatione maxima, dimidium igitur 1' 55" datur parti opticae, residuum physicae. Ac cum 9165 subtendat 5° 15' 30", tu sume 5° 17' 25", qui monstrat 9227. Itaque nova eccentricitate 9230 (quae parum abest a 9264, quam cap. XLII. inveni, nec multo longius a 9282, quod est dimidium eccentricitatis aequantis cap. XVI.) universum hunc laborem reiteravi.

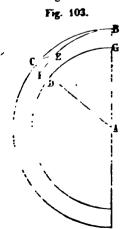
Nam primo distantiae GA vel CA fuerunt exstructae 'ad singulos gradus integros anomaliae distantiariae coaequatae GAD. Post traductae ad mediae anomaliae distantiariae gradus integros GD vel GBD. Tertio binae proximae fuerunt conjunctae ut GA, AD. Quarto iis divisoribus divisa est 180^{iae} summa 358° 28' 30", longitudo scilicet viae ovalis. Quinto sigillatim invicem fuerunt additi arcus singuli viae ovalis. Sexto ex priori frustranea operatione mutuatae fuerunt amplificationes opticae, quod viderem illas jam bis computatas parum admodum discrepare. Itaque et hae sigillatim sunt additae ad superiorum summam. Septimo summae arcuum auctae summis amplificationum opticarum. Octavo ex hoc sic invento angulo CBD ad centrum eccen-

Digitized by Google .

trici B et ex distantia CA seu latere opposito et eccentricitate AB ceu latere tertio, inquisivi angulos 180° aequationis opticae ACB, unde totae aequationes et anomaliae coaequatae prodierunt. Prodiit autem ad anomaliam

mediam	coaequata	quae in vicaria	Differentia
45°	38° 2′ 24″	38° 4′ 54″	2 ′ 30′′
90	79. 26. 49	79. 27. 41	0. 52 [.]
135	126. 56. 25	126. 52. 0	4. 25.

Itaque eccentricitas etiamnum potest augeri, et planeta superius ab aphelio exiguo fit tardior justo, versus perihelium itidem; quare circa longitudines medias velocior justo, ut et prius cap. XLVII. Nimium igitur distantiarum videtur conferri circa apsidas; non satis multas aut non satis longas circa medias longitudines. Sed hujus rei consideratio suo loco sequitur.


Cum igitur viderem, semper tanto propius accedi ad aequationes veras hypothesi vicaria cap. XVI. proditas, quanto dexterius et quanto convenientins ad calculi rationes moderandas advocantur causae physicae, cap. XLV. introductae: multum mihi ipsi sum gratulatus et in opinione cap. XLV. confirmatus. Contra cum pigeret dregnas multiplicis, qua cum hoc capite sum luctatus: non quievi, quin certiorem et expeditiorem aliquam viam insisterem, simulque suspicari coepi, ne sic quidem omnino effectum esse calculo, quod opinio cap. XLV. jusserat.

Capita XLIX.

Elenchus prioris methodi corputionem, et methodus concission, innins principits, vium content a contentia capita XLV, componentitum.

Et infen entsam erepnes hijts fam abselmte method videas, perpence volue fundaments untitur. Pontur, planeta in ererult moven aegtaliter, a Sole rapionalegnaliter pro ratione distantiarum. Ex his decbis monis principlis nasioner via ovalis. At neurit has methodo seini, quanta port's de via eval enlyne davo t-mperi respondeat, etsi sciatur distantia fints pertieris, cisi ab mito solatar lengitube totins svalis. Nequit antem seiri ling tudo evalis, nisi ex modulo ingressus planetae a circumferentia clottifi ad latera. Sed neute midulus huins ingresses ante goschur, quam noscatur, quanta portio de via evali sut procupipe date tempore mafniation. Hie vides peti principium: et in operatione nostra prins assumseramis (1) quaerer atur. schittet lingitufinem cvalis. Neque bie vitiom saltem est intellectionis nostrae, sed ab ipso primaevo ordinatore planetariorum cursuoti alietissimumi qua'em evenerierter anticipationem in ceteris ejus speritus bactenus non invenimus. Itaque ant alia est inennia ratio, spinicrem capitis XLV. ad calculus vocandi, ant, si boc feri negat, apinio ipsa, utpate de bas principii petitione suspecta, vac.

Impliatio robis blue est nata, quod ovalem compositam viam, mensura acquatili temporis usi, in partes securinus inacquales; et sic hujus ovalle compositae partes inacquales, sed distantiarum compensatione rursum acquatas, moris planetae acqualitus circumeirea admensi sumus. Atqui in praesoppositis hatebanus, alteram saltem virtutem, eam quae ex Sole, intenti pro distantiarum ratitue, virtutem planetae propriam minime: jam ble in opere utramque vim quidammido obnoxiam facimus huie proportioni distantiarum, quia utriusque commune opus, ovalem, planetae damus, ad modulum distantiarum percurrendam. Etsi igitur propinque admodum ad veritatem accessimus in effectu hujus methodi, nihil tamen habemus, quo gloriemur, expressam esse ea opinionem cap. XLV, si a ratione destituimur. Beetias igitur videbamur acturi, si missa via ovali composita ejusque plani

qua iratura, caritam XLVI. XLVII. XLVIII. materia. ad it sa ovalis viae principia, cap. XLV. assumta, calculum converteremus. Relegatur caput XLV, et centro A corpore Solis, diastemate AD, circulus DG centri epicycli scribatur; et alius centro A, diastemate AB, circulus arhelii, in quo sit AGB linea apsidum; et planeta, quando est agricos, sit in B. Sit autem tempus aliquod elapsum ab eo, quo planeta fuit in B, cujus mensura sit CDE angulus in epicyclo, ut B, aphelio epicycli, in C translato, et G centro epicycli in D, planeta in epicyclo a C in E iverit. Ergo ad cognoscendum DAB angulum, sub CDE tempus, perpende, planetam a B in E pervenisse duabus virtutibus; altera, quae ipsum fecit Soli propiorem, quae simul etiam eduxit eum e linea AC vel AD, in qua prius fuerat, cum AC esset in AB; altera, quae ipsum

Digitized by Google

cum epicyclo promovit, ut centrum epicycli D esset in AC linea, cum prius in AB esset. Illa vero virtus, quae centrum epicycli circumagit, tempore per 360° signato movet per 360° seu quatuor rectos circa A, propter distantiarum 360 summam. Ergo data summa aliquot distantiarum ex CDE tempore ut hactenus, dabitur etiam angulus DAB. Quam enim impressionem facit Sol in corpus planetae per mediantes distantias AB, AE, eandem ponitur etiam facere impressionem in centrum epicycli GD: propterea quod planeta, si se ipse non extricasset interea versus B ex radio virtuoso AB vel AC, sed tantum descendisset ad Solem, tunc adhuc esset in AC ejusque puncto F, in qua linea et ipsum D centrum epicycli inest.*) Extricavit autem sese lege epicyclica et diastemate DE, angulo CDE (hoc enim vult opinio cap. XLV, cui hic operamur). Ergo ipse sibi fictione quadam centrum epicycli in D reponit. Diximus enim cap. XXXIX, quomodo imaginandum sit, virtutem seu fictitios radios virtuosos AB, AC &c. servire planetae pro loco. Jam etsi non plane eadem est proportio BE arcuum viae ovalis ad totam ovalem, quae est arcuum GD respondentium perfecti circuli ad totum circulum, sed neque ut BC ad totum ambitum circuli BC, sic arcus ovalis BF ad totam ovalem. At nihil hoc debet nos impedire, quia BE vel etiam BF componitur ex duabus virtutibus; et quia, si quid in proportione turbatur, id facit planeta (secundum hanc cap. XLV. opinionem) suo descensu proprio in circumferentia epicycli. Si enim mansisset planeta supremo loco epicycli, et perpessus esset eandem vin motus ex Sole per AB, AE adumbratam, puta inaequabilem (quod quidem fieri simul non potest: nam manente eadem distantia planetae a Sole, manet idem vigor motus ex Sole), tanc scripsisset perfectum arcum circuli majoris BC, cujus eadem est proportio ad totum BC, quae GD arcus ad totum GD.

Scio equidem, si planeta in angustiori ambitu, centri scilicet epicycli DG, supponatur, longe fore celeriorem. At non ideo et centro epicycli assignandus est motus celerior. Nam centrum epicycli moveri supponitur non propter se, cum id non sit corpus, sed propter planetam. Itaque posito, quod planeta suum corpus ipse transportet ex radiis Solis lege epicyclica, et radiis quibusdam virtuosis ex Sole pro loco utatur (quae cap. XXXIX. rejecta quidem sunt, sed cap. XLV. resumta et nonnihil mutata, hic vero retinentur ad explicandos conatus meos), sana postea est ratio calculi, quicunque sequatur ejus effectus. Existit enim et hic ovalis non minus quam prius, eo quod DE et AB non manent paralleli. Quanto enim superant distantiae AB, AE longae mediocres AG, AD, tanto brevior est factus arcus DG seu angulus DAG angulo CDE mensura temporis. Itaque DE ad B annuit, E igitur a circumferentia circuli ad BA ingreditur. Nam per cap. II, si DE parallelos ipsi AB mansisset, tunc E in ipsa circumferentia esset.

Nascitur ergo methodus ista. Distantiae quaeruntur ad omnes integros gradus anomaliae mediae. Methodum supra habes cap. XXXIX, qua et superioribus cap. XLVII et XLVIII. sum usus. Primum enim inveniuntur di-

^{•)} Haec sub certa conditione sunt vera, si nempe radii virtuosi ex Sole sint planetae pro loco seu instar currus, in quo planeta vehatur, quod hic ponimus: per se stutem verum non est. Vide de hoc cap. XXXIX. modum primum. Nam inter quinque absurda illic rejecta hic tantum unum, nempe ultimum, omittimus, reliqua quatuor retinemus.

stantiae graduum non integrorum anomaliae mediae, vel CE. Postea proportionaliter referuntur ad gradus integros ipsius CE. Cujus ambagis si te piget et si delectat labor longior per directam viam, denique si omnia in uno schemate cupis cernere ob oculos, sic ages.

Tempus seu nomen artificiale temporis, quod est astronomis anomalia media, numera in epicyclo CE ab ejus aphelio C contra seriem signorum. Datur igitur angulus ADE vel complementum CDE

in aliquot gradibus integris anomalias mediae. Datur et AD radius 100000 et DE radius epicycli 9264. Quare dabitur et DAE pars aequationis et AE distantia: quorum utrumque refer in catalogum, adscripta sua anomalia media CE, in futuros usus. Hoc pacto colligantur omnes distantiae AE et addantur : invenieturque summa circiter 36075562. Haec enim summa inventa est ex aliqua eccentricitate parum admodum differente a nostra praesenti. quae est 9264. Hujus pars trecentesima sexagesima valet 100210, et pars totupla de quatuor rectis est gradus unus. Ut igitur distantiae omnes ordine ad distantiam 100210, sic hujus distantiae 100210 arcus (60') ad arcus ceteris distantiis competentes: quia proportio conversa est, ut cap. XXIX. XLVII. XLVIII. saepius monitum. Multiplicatis igitur

60' vel 3600' in 100210, et facto centies octuagies diviso per omnes semicirculi distantias, imo per dimidium summas binarum contiguarum distantiarum (per cautionem cap. XLVIII.), prodeunt anguli DAG centri epicycli. Incipe igitur a 2 minimis angulis DAG, eos addendo, et summae adjice tertium; iterum adde summae trium praecedentium et quartum; ita semper, quoad omnes 180 accumulaveris: atque si ultima summa praecise efficit 180°, id argumento tibi erit, te ubique recte operatum esse, nuspiam a praescripto aberrasse. Atque hae tibi summae seu anguli DAG rursum scribantur in catalogo, cum adjunctis in margine suis anomaliis mediis, ut in promtu sint. Cum igitur computanda est aequatio aligua integra, seu anomalia coaeguata ad susceptam anomaliam mediam, primum cum anomalia media CDE in epicyclo numerata ex catalogo posteriore summae angulorum excerpes angulum DAG vel CAB. Cum eadem vero anomalia media ex priori catalogo excerpes etiam CAE partem aequationis. Atque has subtracta ab angulo DAB, relinquitur coaequata anomalia EAB. In altero semicirculo quid variandum sit, notum est.

Sit anomalia media 45°,	cu	ju s	d is	tai	rtia	rum	. 81	m	na	da	t D	AG	41°	26'	50"
Eadem anomalia datur	C,	A.E	pa	r8	aeq	nat	tion	118	•	•	•	•	3.	30.	17
E rgo coaequata EAB			•		•					•		•	37.	56 .	43
Dixerat nostra vicaria															
								1)if	ere	ntia	<u></u>		8'	

Differentia

Hoc pacto a	1		
anomalias medias	collegimus coaequatas	At in veriori vicaria	Differentia
45°	37• 56' 4 3 "	38° 5'	8 🖳
90	79. 26. 35	79. 27	0
120 ·	110. 28. 8	110. 181/2	91/2 +
150	114. 16. 49	114. 8	9″ +

Digitized by Google

Planeta circa apsidas fit tardior justo, circa medias longitudines velocior justo.

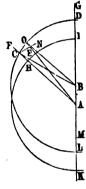
Dices, proficere nos in pejus, cum cap. XLVIII. propius veritatem venerimus cum effectu. Atqui o bone, si de effectu sollicitus essen, poteram toto hoc labore supersedere, contentus hypothesi vicaria. Scito itaque, quod hi errores via nobis futuri sint ad veritatem. Interim hoc certum nobis esto, nos tandem aliquando physicas causas, quae nobis sunt in supposito cap. XLV, citra errorem omnem ad calculos vocasse. Simul autem confirmatur et superior cap. XLVII. calculus, cui iste aequipollet: certumque est, quae illic ut $\dot{\alpha}_{350}\mu_{37}\rho_{77\alpha}$ suspecta habuimus, nihil nobis sensibile incommodasse. Itaque, si quid superest discrepantiae harum aequalitatum a veritate, id non methodo numerandi tribuendum, sed opinioni cap. XLV, unde fluunt hi numeri: non quod statim opinio ipsa tota falsa sit, sed quod nimium fuerimus praecipites, qui non exspectata observationum decisione plenaria, statim atque intelleximus, iter planetae ovale esse, certam ovalis quantitatem (propter solam causarum physicarum concinnitatem et gratiosam illam aequabilitatem motus epicyclici, falso tamen creditam) arripuimus.

Quomodo autem verissima denique sententia sit ad calculos revocanda, et cum hisce capitibus conformanda quam proxime, suo loco dicetur (cap. LVI. LVIII. LIX. LX). Jam pertexam explicationem reliquorum meorum conatuum.

Caput L.

De aliis sex modis acquationes eccentrici exstruendi tentatis.

Ex hac tritura quantulum frumenti acervum collegimus? At vide nunc etiam ingentem siliquarum cumulum. Debuerunt ista referri sub principium cap. XLVIII, eo quod, antequam arcus viae ovalis investigarem, ista tractaverim. Sed lubuit secernere lucis causa. Quin etiam utilia aliqua grana inventori sumus.


Primi et secundi modi processus fuit iste.

Primo eccentricitate 9165, quae est paulo minor justo, quaesivi omnes distantias secundum doctrinam cap. XXIX, quae respondebant gradibus integris anomaliae, inter mediam et vere coaequatam medio loco versantis: quam etsi interdum coaequatam appello, conditionem tamen addo, quod sit tantum distantiis destinata: itaque distantiariam*) appello. In schemate altero cap. XLVI. (99.) est angulus FAB; in schemate sequenti CAD. Secundo quaesivi tertias proportionales lineas, quae sic essent quaelibet ad suam distantiam, ut haec distantia ad radium 100000. Tertio et quarto addidi lineas inventas sigillatim, fuitque summa distantiarum 35924252, minus quam 36000000; causam habes capite XL. Summa vero proportionalium inventa est 36000000, quod mirum me habet. Et quia delectat, cupio ut hoc ita necesse esse geometra quispiam demonstret. Centris A, B scri-

*) Etsi quantitatem obtinet mediam inter reliquas, cave tamen mediam appelles. Media enim proprie est nomen temporis. bantur duo circuli aequales IH et DC, et connectantur centra A, B, producaturque AB, donec secet circulum ex A in I, K, circulum ex B in **D**, L.*) Tunc circulus ex A dividatur in partes aequales quotcunque, puts in 360, initio facto ab I. Et ex A per puncta divisionum, I, H, K et reliqua rectae ducantur AI, AH, AK et reliquae, secantes circulum ex B, in D, C, L punctis. Tunc fiat ut AI ad AD, sic AD ad AG; sic ut AH ad AC, sic AC ad AF; denique ut AK ad AL, sic AL ad AM: et sic de omnibus reliquis. Demonstret, inquam, geometra, ultimas 360 junctas, puta AG, AF, AM aequales esse primis 360 junctis, puta AI, AH, AK.

Itaque primo modo per summas distantiarum aliud institueram (licet erronee et impertinenter, colligere sc. arcus CD vel angulos CBD, cum tamen ii darentur initio), aliud praestiti, rursum errans. Nam collegi non arcus, non angulos, non itinera, sed moras in arcubus inaequalibus itineris planetae, quasi essent aequales; et in regula proportionum dixi: ut summa mediarum AD, AE, AL, scilicet 35924252 ad moram 360°, ita quaelibet summa distantiarum ad moram suam, in spatio, quod distantias has com-

Fig. 104.

plectebatur. Sit A Sol, B centrum eccentrici CD, BC semidiameter. Connectantur B, A cum C. Hic distantiae CA fuerunt accommodatae ad gradus integros anguli CAD, et propterea ad arcus inaequales circuli CD, quod me fefellerat. Sit ioitur CAD 45°. Datur ex CB. BA angulus CBD 48° 42' 59". Itaque, si nulla esset causa physica aequationis et CBD mensura temporis seu anomalia media, tunc ei responderet haec ipsa CAD vere coaequata. Sed quia planeta in CD tardior est, ob longam ab A distantiam, et quia distantiae sunt hujus morae mensurae: collegi igitur ad anomaliam CAD 45° distantias 45 ad initia arcuum sive longiores; summa erat 4869307 : collegi etiam 45 breviores seu ad fines arcunn subtracta longissima AD 109165 a summa 46 distantiarum sc. 4975577, restabant 4866412, et guod erat inter utramque summam intermedium, sc. 4867852, id redegi in gradus,

qualium 35924252 valent 360°, vel qualium 99790 valent 1°. Prodiit hoc pacto 48° 46' 51". Atque hoc debuit esse tempus, respondens angulo CAD. Sed et arcus CD vel angulus CBD inventus erat proxime tantus, scilicet 48° 42' 51", quod absurdum et contra hypothesin, quae vult, planetam esse tardiorem in CD. Statim igitur causa hujus absurdi patuit; quod nempe ad sciendam moram in CD decuisset distantias consulere, respondentes aequalibus arcubus ipsius CD, cum hae jam usurpatae distantiae respondeant inaequalibus ipsius CD, et tanto majoribus, quanto sunt ipsae distantiae longiores per cap. XXXII. Itaque nimis paucae numero erant hae distantiae. Sed tamen, ut non frustra hunc laborem perderem, excessum numeri morae hujus supra CAD anguli numerum subtraxi a CAD, ut restaret EAD 41° 13' 9", et AC, AE aequales essent: ubi ponebatur, tempore CBD conficere planetam circa centrum eccentrici B

^{*)} Cum alias tres sint anomaliae, quarum 1. dicitur media, 2. eccentri, 3. coaequata: nos in hoc schemate et hoc particulariter conatu ad confusionem vitandam intelligamus, primam in arcu CD, vel angulo CBD, secundam in angulo CAD, vel arcu ED, tertiam in angulo EAD.

.

angulum EBD acqualem ipsi CAD: et ideo ad ejus eccentrici ED arcus acquales colligi tot distantias ab A, quot nos hic invenimus in gradibus acqualibus ipsius CAD; ut quantum earum esset dispersum per CD inacquales et hoc loco magnas partes, in hoc nostro calculo, tantum intelligatur congestum intra angustias ED, et partes ejus acquales. Hic ergo CBD angulus esset anomalia media distantiaria^{*}), dans angulum CAD, pro quaerendis distantiis CA, ex quibus distantiis angulus CAE, retardatio et translatio physica ipsius CA in EA, elicitur.

Haec ratio etsi non multum discrepare potest a priori cap. XLIX : illud tamen indemonstratum assumit, CAD et EBD esse aequales, ac propterea CA et EB parallelos, quod supra cap. XLVI. per schema alterum est refutatum. At vide nunc et propinquitatem hujus operationis in effectu. Nam

ad anomaliam mediam	inveniebatur coaequata	quae est in vicaria	Differentia	
48° 42′ 59″	41° 13′ 9″	41° 21′ 0″	8'	Paulo distat ab illa
95. 15. 31	84. 44. 18	84. 39. 18	5 +	cap. XLIX. et dua-
138. 42. 59	131. 20. 24	131. 4. 7	. 16 +	bus cap. XLIII.

Arguebatur eccentricitas parvitatis, ut quidem vere est major, scilicet non 9165 sed 9264. Et fiebat planeta nimis tardus circa apsidas, velox nimis circa medias longitudines. Sed misso hoc primo modo, quem fortuito arripueramus ex animadversione erroris initio commissi, convertamur ad praxin modi secundi, natam ex ejusdem erroris animadversione. Cum enim distantiae per CAD sparsae acquarent fere sectorem CBD numeris, et rem in absurdum deducerent (planum enim CAD, metiens distantias proxime, majus utique est plano sectoris CBD; itaque et distantias CD majores [in numero suo] esse oportuit sectore CBD), tunc succurrit, an igitur ipsarum AC, AD proportionales AF, AG justas exprimerent moras planetae in CD, ut ita CAD maneret anomalia vere coaequata?*) At contra, si hoc, ergo AC distantia manebit suo loco, quo loco et computata est. Erit igitur orbita perfectus circulus quod cap. XLIV. est refutatum. Distantiae igitur, in longitudines medias longiores justo incidentes, facient planetam justo tardiorem ibi; quare in apsidibus velociorem. En autem effectum operationis, ipsum hoc testantem. Nam

ad anomaliam coacquatam	sequebatur media	At in vicaria	Differentia	, ·
45°	52° 39′ 40″	52° 53′	$ \begin{array}{c} 13' \\ 5 \\ 2 + \end{array} $	Pene coincidit cum
90	100. 29. 12	100. 34¹/₃		physica perfecti
135	142. 10. 47	142. 9		circuli cap. XLIII.

Primum eccentricitas arguitur parvitatis, quia aequatio maxima prodit 10° 29¹/_s', quae in vicaria est 10° 34¹/₂'. Deinde planeta tempore 52° 39²/_s' invenitur tantum itineris ab apside confecisse, quantum in vicaria tempore longiore 52° 53'. Quodsi emendetur eccentricitas, fient omnes coaequatae hujus anomaliae auctiores; quare etiam infra planeta tempore 37° 44'

^{*)} Mediam dico, non a quantitate inter tres, sed a motu acquabili et medio temporis, quod hic mensurat: quatenus quidem distantiae quaeruntur.

^{*)} In secundo conatu anomalia tertia est CAD, secunda CD vel CBD, prima summa linearum AG, AF paucarum, cujus mensura ponitur esse planum CAD, fere ut cap. XLIII.

(quod est complementam ad 142° 16 emembran, per antian eccentricita- • ten) tantandem sinteris ansolvet, quartum in vicaria tempere longiste 37° 51', quod est complemontum ad 142° 5', schoet strungse conficiet 45°, complementum nempe ad 135°.

Interim parum abest, quiz inter falsa hypothesis verum nicos effectum prodati: inferentia miringue post correctionem non mayire quam 6° et 7°. Itaque vides, non esse filentum effectuit. Et notatis rarsum, quod et cap. XLVII, veritatem inter bis into modus (quorum hie perfectum circutum, ine oralem ex opinite cap. XLV, descripti) esse bico medio: unde vel jam us et supra cap. XLVII, oinfigere potes, finalias cimitiae tantammodo latitutinis ejus, quae sequitar ex opinitee cap. XLV, a perfecto circulo resectandas.

Modus tertius et quartus.

Cum staque nec bace cum ratione staret methodas, et in illa altera didicissem, exquirendas distantias respondentes integris gradites CBD anguli seu acqualitas articus eccentri CD: accessi et ad illas.

Quinto igitar (adaumero tibi tantum illas operationes, quae singulae 150 vieibus perdidantar) distantias prius inventas ab anomaliis mediis scrapulariis*) seu inaequalibus CBD, ad anomalias medias aequales seu integrorum graduum reduxi proportionaliter. Sed jam non amplius, ut prins modo primo, CBD mansit anomalia; sed facta est per hanc distantiarum reductionem anomalia eccentri: ut et modo secundo.

Sexto iisdem distantiis ut prize quaesivi suas proportionales, quae scilicet sie se haberent ad distantias, ut distantiae ad radium 100000. Sed non erat necesse. Volui tamen in eventum cmnem esse instructus.

Septimo et octavo rursum addidi singulas, tam distantias AD, AC, quam earum proportionales AG, AF, prodibatque summa distantiarum ipsarum 36075562. Causam habes cap. XL, cur plus prodierit quam 36000000. Proportionalium vero summa prodiit 36384621.

Jam igitur in schemate priore demonstrative quidem progrediemur, per coaequatam CAD elicientes anomaliam eccentri CBD, per hanc vero anomaliam eccentri CBD distantiarum summam in CD arcu inventarum; et per hanc summam distantiarum addiscemus moram in arcu CD, seu anomaliam mediam:⁴⁴) vel conversa ratione commoditatis causa, si angulo CBD integrorum graduum (ut 45[°]) quaeratur CAB et excerpantur 45 distantiae justae; haec, inquam, demonstrative quidem funt, at rursum, ut prius modo secundo, hoc pacto CAD fit anomalia vere aequata: quare CA manet suo loco et DC orbita erit perfectus circulus; quod cum falsum sit, ut ostensum cap. XLIV, necesse est ergo, distantias in longitudinibus mediis hic usurpari nimis longas, moras itaque fieri prolixiores justo et in apsidibas breviores.

Et omnino quam proxime aequipollebit modus iste priori per proportionales. Quantum enim illic proportionales totidem, quot erant di-

•) Anomaliam dico scrupulariam, quae non integrorum graduum numero exprimitur, sed adjuncta habet scrupula.

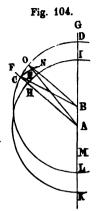
362

^{**)} In tertio constu rursum est, ut in secundo. CAD est anomalia tertia, CBD vel CD secunda, et AD, AC lineae confertiores, seu planum metiens earum summam, scilicet planum CAD, est anomalia prima, quae dici solet media.

stantiae, longiores erant quam ipsae distantiae, tanto fere jam plures distantias collegimus quam ante. Vide autem et effectum hujus calculi securitatis causa. Nam

	proditur coae-	In vicaria vero	Differentia	· ·
simplicem	quata		-	1
48• 38' 31" 95. 13. 58 138. 45. 41	41• 31' 0" 84. 45. 50 131. 1. 52	41° 17′ 6″ 84. 37. 45 131. 7. 13	14' + 8 + 5 -	Pene coincidit cum praecedente.

Eccentricitas rursum justo minor arguitur. De cetero errores iidem qui in proxime praecedenti. Nam quod signa excessuum signis defectuum permutantur, fit quia hic differentia ostendit errores anomaliae coaequatae, illic anomaliae mediae. Atque hic est modus tertius.


Proportionalium AG, AF pro distantiis AD, AC substitutione, qui quartus est modus, facturi sumus pro duabus tres partes aequationis. Nam planum CAD metitur distantiarum CA, DA summam. Longe igitur minus est quam FA, GA linearum summa. Ac etsi medicinam afferamus similem illius, quae primo modo fuit adhibita: tamen duplicaturi sumus errores.*) Cum enim ipsae distantiae tolerari nequeant, ob nimiam suam in medio longitudinem, minus erunt tolerabiles proportionales, utpote longiores. Et si libet illas probare effectu calcub, invenies, anomaliae mediae 53° 23′ 56″ respondere coaequatam 46° 0′, quae in vicaria proditur tantum 45° 27′ circiter, differentia 33′, plane absurda.

Modus quintus et sextus.

Cum igitur quatuor his modis nihil effecissem, tunc cum anomalia media et distantiis illi assignatis (operatione quinta) transivi in tabulam hypotheseos vicariae cap. XVI, et anomaliae vere coaequatae. Resumator schema 99. Tunc quia distantiae AF in gradus integros anomaliae mediae IBF vel IDH competentes competebant etiam in gradus et minutias anomaliae coaequatae IAH, quae in tabula dicta respondebat ipsi mediae anomaliae IDH; igitur nono reduxi has distantias a coaequatis anomaliis scrupulariis hypotheseos vicariae cap. XVI, nempe ab ipsis HAI inaequalibus ad coaequatae HAI gradus singulos absolutos, hoc est partes aequales. Decimo iisdem sic constitutis distantiis quaesivi proportionales, ut in operatione secunda et sexta. Undecimo et duodecimo addidi singulas in suis classibus fuitque summa distantiarum 35770014, summa proportionalium 35692048. Cum enim jam brevium distantiarum plures sint quam longarum (quia per hanc translationem distantiarum longas omnes sursum traximus et paucas effecimus, constituentes arcus IG viae ovalis supra apud aphelium magnos, et sic tribuentes singulis gradibus anomaliae non FAB ut in primo modo, sed HAB, hoc est vere coaequatae, singulas distantias, quorum graduum in superiori semicirculo non sunt plures quam in inferiore): hinc adeo fit, nt non tantum 360 distantiarum summa minor evadat quam 360 semidiametrorum, sed etiam proportionalium summa minor evadat, quam erat summa ipsarum distantiarum.

^{*)} In quarto conatu si ei medicina afferretur, fieret monstrum, CBD anomalia tertia: planum CAD anomalia secunda. Summa vero FA, GA linearum confertiorum, anomalia prima.

Quod igitur attinet quintum modum et distantiarum ipsarum summas, ratio rursum reclamat methodo aequationum huic innixae. Repetatur schema hujus capitis proprium, et revocentur in memoriam, quae dicta sunt de modo

primo. In illo enim CAD anomalia distantiaria coaequata dividebatur in gradus aequales, ex quo fiebat, ut CD secaretur in partes inaequales et magnas, et haberet distantias paucas, unde accidentaria quadam medicina erroris arrepta, ex summa distantiarum in CD collegimus, distantiis illis competere breviorem arcum ED, ut AC in AE transferretur, et sic ED in partes aequales sectus et quolibet gradu sui una distantia instructus haberi posset. Hic vero non ex, summa distantiarum in CD inventarum, sed ex commixtione hypotheseos vicariae cum hypothesi distantiarum capite XLVI. instituta, jam facta et perfecta est translatio ipsius AC in AE, et anomaliae mediae*) (quam ad CA vel EA distantiam inveniendam in CD arcu numeravimus) tributus est arcus ED; sic tamen, ut BE et AC non sint jam praecise paralleli ut modo primo. Hoc, inquam, jam factum per

commixtionem hypotheseon, nihil opus est rursum fieri per operationem, ut modo primo. Sed hoc solum quaeritur, an distantiae AC, AE paucae, hoc quinto modo collectae in unam summam, efficiant eandem aequationem physice, quam commixtis duabus hypothesibus sortitae sunt-artificialiter?

Ubi perpende, quomodo se habeant distantiae hac ultima vice accommodatae. Angulus igitur EAD, cujus terminus E distat a Sole distantia AC, hic angulus in aequales gradus hac ultima vice divisus est et cuilibet tributa una distantia. Qua ratione jam ED arcus ovalis viae, superstans illi angulo EAD, abit in partes inaequales et nimis paucas nanciscitur distantias. Itaque ex summa distantiarum in EAD nequit haberi anomalia media jam praeconcepta ex hypothesi vicaria.

Quemadmodum vero supra modo primo, cum CD nancisceretur justo pauciores distantias, diviso angulo CAD in gradus aequales, pro CD substituimus ED idoneum arcum illis distantiis, ita hoc quinto modo, **) cum ED nanciscatur justo pauciores distantias, diviso angulo EAD in gradus aequales, si rursum inartificialem medicinam luberet accipere, pro ED substitueremus ND, cui competant illae distantiae. Sit pro quaerenda distantia CA media anomalia CBD 48° 44'. Dato angulo B et CB, BA, datur CA 105784 et CAB 45°. Illam vero AC jubet vicaria hypothesis transferre in AE. Et nos jam ED, quam indicat vicaria esse 41° 22', dividimus in gradus aequales, perque illas collegimus non plures quam 41 distantias et partem de 42. Illae vero in summam conjectae conficient anomaliam mediam minime sane aequalem primo susceptae DC, sed aliam DO, quae distantiam AO exhibet transferendam in AN. Am-

^{*)} Nota quo respectu hic media. Vide margines superiores. ----

⁶⁰) In hoc quinto modo est quidem anomalia tertia EAD, et ejus anomalia media (prima ordine) CD vel CBD, atque eadem etiam distantiaria ipsius CA vel EA distantiae. Sed planum EAD metitur aliquam summam distantiarum EA, DA, alienam ab hac coaequata EAD, competentem scilicet temporis mensuram ipsi DN arcui, et DAN coaequatae. Rursum ergo monstrum.

phora coepit institui, currente rota cur urceus exit? Hoc enim quaerebatur, an omnes distantiae, quae sunt in gradibus aequalibus ED, conjectae in summam ostenderent anomaliam mediam DC. At operatio respondit mihi de ND et agomalia DO.

Denique ad modum sextum *) et proportionales convertamur, quae sunt aptae ad demonstrationem cap. XXXII. Etenim arcuum, qui ex centro Solis apparent aequales, quantitates verae in orbita sunt in proportione distantiarum: ut quanto AE longior, tanto et ED. At vere aequalium in orbita arcuum morae sunt itidem in proportione distantiarum. Quanto enim ED longius distat ab A, tanto et diutius versatur planeta in arcu ED. Morae igitur, quas nectit planeta in illis arcubus, qui ex centro Solis apparent aequales, sunt in dupla proportione distantiarum. At sic etiam AF ad AH radium in dupla est proportione ipsius AC vel AE distantiae ad AH mediocrem. Itaque morarum, quas nectit planeta in gradibus anguli EAD aequalibus, mensurae sunt lineae AG, AF proportionales competentes ejusdem EAD anguli anomaliae vere coaequatae gradibus integris seu partibus aequalibus.

Probentur ergo sic proportionales distantiarum ad aequales gradus coaequatae anomaliae, ut supra hoc capite probatae sunt aliae etiam distantiae. Ut quia 35692048, summa distantiarum omnium 360 ad omnes 360 partes anguli ad Solem aequales, valet moram 360°, quid valet summa justa et correcta ad quoslibet gradus anomaliae coaequatae ?

Hoc pacto invenitur:

ad anomalias coaequatas	mediae ano- maliae	quas vicaria prodit	Differentia	
41° 81 91 131	48° 24′ 3″ 91. 30. 39 101. 28. 10 138. 28. 5	48° 19' 2" 91. 34. 8 101. 34. 7 138. 39. 28	5' + 3', - 6 - 11 - 6	Coincidit cum illis capitis XLIX.

Arguitur iterum eccentricitas minor justo : qua emendata, differentia supra ad 41° erit circiter 8' +, infra circiter 7'/2' -, ut hic quoque apud apsidas planeta non satis velox fiat, itaque plus justo distantiarum sit circa apsidas; minus igitur justo in longitudinibus mediis. Sed propinque admodum ad verum accedit, et cum methodo cap. XLIX. plane coincidit. Nam si bene perpendas, idem hic actum quod cap. XLIX. Illic partem aequationis opticam seorsim computavimus, partem physicam itidem seorsim : hic vero utramque computamus junctim. Illic fictitios radios virtuosos introduxeramus, ut possemus epicyclo suum etiam opus adscribere extricandi sese ex illis fictitiis radiis (nulli enim in rei veritate radii in tanta tarditate circumeunt, in qua incedit centrum epicycli planetarii, ut cap. XXXIX. dictum). Et tamen omnem vim physicam circumferendi planetae, quod effectum attinet, Soli reliquimus, ut epicyclus tantummodo moderaretur distantias: hic eadem virtute Solis sumus usi ad translationem physicam; distantias vero itidem ex epicyclo computavimus ejusque partes aequales temporibus dedimus hoc est anomaliae mediae gradibus aequalibus, ut vult aequalibus,

^{*)} Hic modus sextus levissima correctione eorum, quae opinio cap. XLV. adhuc peccat, adhiberi potest etiam in verissima hypothesi physica, estque succinctus et dilucidus.

opinio cap. XLV, etsi tandem sumsimus distantias totidem in qualibet parte temporis, quot sunt gradus anomaliae coaequatae, illae tamen derivatae sunt ex distantiis anomaliae, mediae, suntage longitudine eaedem. *) Et tanto commodior est haec forma, quod alteram persuasionem de motu planetae epicyclico hic possemus deponere, et uno gradu ad veritatem causae physicae propius accedere, relinquentes epicyclico nil nisi librationem in diametro, sed quae etiamnum vitiosa est, ut vel ex aequationibus his apparuit. Nam ut paulo ante ad modum secundum fuit adnotatum, haec praeoccupatio motus epicyclici nimia est, distantias exhibens nimis breves in longitudinibus mediis; ex quo fit, ut planeta ibi loci modum excedat velocitatis, et in apsidibus a modo deficiat. Sed sufficit nos caleulo exprimere opinionem cap. XLV. Quare etiamsi quis objiciat hic ex cap. XXXII, non posse constantem esse hanc proportionem diurnorum, eo quod partes eccentri, vicinae apsidibus, directe objiciantur Soli, intermediae ex obliquo, ut ita aliter appareant, quam si directe objicerentur, hoc. inquam, si quis objiciat, respondebo sic, ut cap. XLIX. respondi: hanc intermediarum partium obliquitatem addi a planeta de suo efficique per descensum: non igitur imputandum causae motrici ex Sole nec eo turbari illam.

Habes igitur studiose lector ex tanto numero capitum et methodorum methodos aequandi cum opinione cap. XLV. consentientes tantum duas: alteram hypothesi physica cum epicyclo commixta in longitudinem ordinato, eamque cap. XLIX; alteram hoc capite ejusque modo sexto, pro hypothesi physica sinceriori; ubi epicyclus nihil nisi descensum ad Solem praestat; aut si quis illum vellet in latitudinem ordinare, rectum ad planum eclipticae. Et harum utraque diversis viis consentit in unum effectum. Quo tutius illis fidere poteris in examinanda opinione capitis XLV.

Et hactenus inani fiducia inventarum verarum causarum physicarum de Marte denuo triumphatum esto. Nunc me nescio quis rumor ad novos tumultus novosque labores excitat.

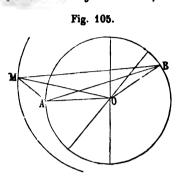
Caput LI.

Explorantur et comparantur distantiae Martis a Sole in aequali utriusque semicirculi distantia ab aphelio: simul etiam exploratur fides hypotheseos vicariae.

Dum in hunc modum de Martis motibus triumpho, eique ut plane devicto tabularum carceres et aequationum eccentri compedes necto, diversis nunciatur locis, futilem victoriam et bellum tota mole recrudescere. Nam domi quidem hostis, ut captivus contemtus, rupit omnia aequationum vincula carceresque tabularum effregit. Nulla enim methodus ex praescripto opinionis cap. XLV. administrata geometrice, vicariam hypothesin capitis XVI. (quae veras habet aequationes ex falsa causa manantes) propinquitate nu-

•) In hoc sexto modo anomalia tertia est EAD, secunda ED, prima vero est summa linearum AG, AF, ubi AF vel AC in AE translata intelligatur. Nihilominus in computanda distantia AE, hoc est AC (ex qua fluit AF) DC vel DBC est etiam prima. Ut ita hic bis pingatur, quia duo investigantur, tempus et distantia.

Digitized by Google


merorum potuit aemulari. Foris vero speculatores per totum eccentri circuitum dispositi, distantiae inquam genuinae, profligarunt meas causarum physicarum ex cap. XLV. accersitas copias, earumque jugum excusserunt, resumta libertate. Jamque parum abfuit, quin hostis fugitivus sese cum rebellibus suis conjungeret meque in desperationem adigeret: nisi raptim nova rationum physicarum subsidia, fusis et palantibus veteribus, submisissem; et qua sese captivus proripuisset, omni diligentia edoctus, vestigiis ipsis nulla mora interposita inhaesissem. Utramque rem, ut gesta est ordine, narrabo sequentibus aliquot capitibus.

Atque ut de primo dicam initio, prius plurium eccentri locorum distantias inquiram, quo sit plenior fides rei. Sit igitur nobis animus explorare distantias circa anomaliam mediam 90° et 270°.

Anno 1589. d. 6. Maji h. $11^{1/3}$ 3 observatus fuit (in anomalia media 87) in 27° 7¹/₃' $\xrightarrow{\sim}$, cum lat. 0° 6²/₃' bor., quo tempore colligitur locus O. verus 25° 48²/₅' &, ejusque distantia a Terra 101361, longitudo media Martis 7º 26° 0' 36", ac propterea locus eccentricus 15° 32' 13" M. Sed hypothesis nostra vicaria cap. XVI. non assequebatur verum seu observatum Martis locum in situ acronychio intra 21/24, ut ita in hoc subtili negotio non liceat fidere computationi anomaliae coaequatae. Quare methodo cap. XXVII, XXVIII, vel XLII. adjungam aliam observationem, liberiore tamen methodo. Verum ut supra quoque cap. XII. monui, non saepius bis hoc loco est. observatus. Duabus igitur observationibus oportet nos esse contentos. Associatur enim huic jam positae altera ex anno 1594 d. 28. Dec. cujus diei mane h. 7 1/2 colligitur longitudo media 3 7' 26° 13' 39", paucis minutis priorem superans. Tunc itaque Mars in altitudine 8º vel 9º observatus est a Spica Virginis 50° 34' distare. Cum igitur steterit proxime eclipticam, in rectangulo igitur inter Spicam, ejus locum eclipticum et Martem, datur basis 50° 34', et latus inter Spicam et eclipticam 1° 59', nempe latitudo Spicae. Ergo latus reliquum est 50° 32' 18". Quare cum fuerit Spica in 18º 11' ==, & inciderit in 8º 43' 18" Z, qui locus declinat ab aequatore 21° 50' 20".

Inventus autem est \mathcal{J} declinare 21° 41'. Ergo prae se tulit aliquantulam septentrionalem latitudinem, scilicet 9' 20". Habuit autem et sequenti 4. Jan. 1595 adhuc borealem latitudinem 3'. Quo confirmatur nostra observatio. Etsi vero assumseris hanc justam latitudinem Martis, non alterabitur ejus locus eclipticus sensibiliter; ut tuto pronuncies ejus locum 8° 43' \mathcal{A} . Et quia fuit Mars prope Solem, valde igitur altus a Terra, et in parallaxi multo minori quam Sol, quam negligemus. At non itidem et refractionem possumus negligere: quam jam removebo. Fuit enim locus \odot 16° 47' 10" \mathcal{J} , distantia a Terra 98232, cujus A. R. 288° 12', quare oriebatur 306° 37' aequatoris, et cum eo 29° \mathcal{A} , cujus angulus inter eclipticam et horizontem 26°, complementum 64°. Et quia refractio altitudinis ex tabella fixarum refractionis exhibetur 6' 30", ex Solaribus 11' in altitudine sideris 8'/2°, latitudini igitur debentur 5' 51", vel 9' 53". Latitudo illic 3' 29" sept: hic 0' 33" aust. Et refractio longitudinis 2' 39" vel 4' 34".

Sequar autem ex duobus hisce refractionum modulis illum, qui per latitudines comprobatur, in hunc modum. In priore observatione fuit latitudo $6^2/_{s}$ borealis visa. Et quia Mars Terrae propinquus, et angulus ad (\odot 10° 17', ad Terram 28° 41', haec igitur latitudo requirit inclinationem 2' 30". Erit igitur et in posteriore nostra observatione inclinatio 2' 30" pauloque minor, quod 8' simus nodo propiores. Assumta vero inclinatione 2' 30", cum hic angulus ad \odot sit 61°, ad Terram 38°, necesse est sequi latitudinem 1' 50" sept. circiter; indice nostra tabula parallactica. Sed usurpatione refractionis fixarum latitudo nobis relinquebatur 3' 29" sept.: Solaris vero usurpatione redigebamur per 0' 33" in austrum. Itaque hinc justo plus fuit in nostra refractione suscepta, inde minus. Intermedia itaque refractio justa fuerit, scilicet 3' 36". Scilicet Mars nobis reponetur in 8° 46⁴/₈' x². Sit O Sol, B, A puncta

in 8° 46⁴/₈. A Sit O Sol, B, A puncta orbitae Telluris, A locus Terrae in priori observatione, B in posteriore, M Mars. Connectantur lineae. Et quamvis Mars non praecise redierit in eundem locum, in utroque tamen situ repraesentetur a linea OM. Est igitur AMO 28° 41' 14" et AO 101365. Assumatur MO distantia Martis a Sole (quae hic quaeritur) quasi cognita, sitque 154200. Cadet igitur OM in 15° 31' 3" M. Quodsi OM in priori observatione est 154200 assumta, in posteriori debet assumi brevior. Unus quidem gradus hoc eccentrici loce

mutat distantiam 240 particulis, qualicunque forma distantias exstruendi utaris. Ergo cum hic differant longitudines mediae 13', et subtracto modulo praecessionis tantum 8; pars proportionalis de 240 est 32. Quare in secunda observatione assumsimus OM 154168. Sed et OBM scitar, scilicet 38° 0' 40'', et OB est 98232. Ergo datur OMB 23° 6' 11", quare OM secundæ vice in 15° 40' 9" m, differens a priori loco eccentrico per 9'. °') Debuit differre paulo amplius. Nam anomaliae mediae differebant per 8' 3", quibus in eccentri coaequata anomalia hoc loco respondent 7' 49". His adde praecessionem aequinoctiorum intermediam 4' 48", accumulantur igitur 12' 37", debuit igitur in 15° 43' 40" m cadere. Paulo igitur aliae sunt nobis suscipiendae distantiae OM, et quidem sic alterandae, ut $2^{2}/_{s}$ circiter plus ab invicem discedant lineae ab OM repraesentatae. Terra enim in A versante debet OM in antecedentia moveri; et in consequentia, Terra in B. Id autem fit, si OM auxeris: ut primo loco sit 154400, secunda vice 154368. Tunc enim cadit OM primum in 15° 29' 34" m, secundo in 15° 42' 18" m.

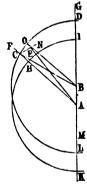
Est autem anomalia media primo tempore 87° 9' 24", sequenti -87° 16' 30". Atque haec in longitudine media priore.

Pro longitudine media altera serviet nobis observatio anui 1595. mense Decembri, bene munita consensu aliquot dierum continuatorum; et ibi loci etiam vicaria hypothesis ad unguem repraesentavit locum Martis acronychium Octobri praecedente. Adjungemus consensus causa et Octobrem anni 1597. Reliquis annis observatus non est hoc eccentri loco. Nam cadit locus eccentricus in 10° II, itaque Mars hoc loco versans anno 1580. Nov. fuit observatus ultimo. Anno 1582 in Octobrem incidit ejus in hunc locum adventus, cum nondum ferveret observandi studium; anno 1584 in Septembrem, 1586 in Julium, 1588 in Junium, 1590 in Aprilem, 1592 in Martium, quibus temporibus, Soli vicinus ob brevitatem et claritatem noctium in Dania, neglectus fuit, cum stellis fixis, Lunae planetisque reli-

quis, quoties opportunitas aliqua fuit, essent intenti. Anni vero 1593 fine et 1594 injtio, cum esset in quadrato Solis, observatio non ultra hunc aspectum est continuata, quia ad hanc quadraturam praecipue solent respicere astronomi. Ergo anni 1595. d. 17. Dec. vesperi h. 7. 6' visus est planeta in 11° 31' 27" 8, cum lat. 1° 40' 44" bor. Locus Solis fuit 5° 39' 3" 5. Distantia ejus a Terra 98200. Colligitur autem longitudo media Martis 2º 2º 4' 22". Et quia aphelium 4º 28º 58' 10", ideo distantia loci ab aphelio retro 86° 53' 48". Prius pene erat eadem porro, nempe 87° 9' 24". Ergo haec duo loca pene absunt aequaliter ab aphelio. Respondet autem huic anomaliae simplici ex vicaria nostra hypothesi anomalia coaequata 76° 25' 48", quae ablata a loco aphelii relinquit 12° 32' 22" II, locum Martis ecceptricum. Sit A (Fig. 105) Terra, O Sol, M Mars. Datur AO 98200. Et quia OM in 12° 32' 22" II, AM vero in 11° 31' 27" &, ergo AMO 31° 0' 55". Et quia AO in 5° 39' 3" Z, sed AM in 11° 31' 27" 🗟, ergo complementum OAM 54° 7' 36". Hinc, quia ut sinus AMO ad AO, sic sinus OAM ad OM, prodit OM 154432. Et quia locus hic 15' est apogaeo propior, quam ille anno 1589: et hoc, eccentri loco 1º efficit 240 particulas: itaque 60 particulae pro 15' adimendae sunt, quia distantiae ab aphelio in locis remotioribus sunt breviores, ut ita prodeat 154372. Vicissim, quia nodus est circa 16° 20' &, locus eccentricus in 12° 32' II, distat igitur a nodo 26° 12' ét inclinatio maxima planorum est 1º 50'. Ergo inclinatio hujus loci est 48' 32", cujus secans superat radium particulis 10, quae sunt in nostra dimensione 15¹/,. Itaque distantia ipsius puncti in orbita Martis a Sole est 154387. Prius autem in hac ipsa distantia ab aphelio inveniebatur distare a Sole 154400 proxime. Ergo ad unguem aequales sunt horum punctorum eccentrici distantiae a Sole. Nam quae in posteriori desiderantur 13 particulae, sunt impraestabiles. Gaudebo, si intra 100 particularum incertitudinem ubique consistere potero.

Jam et annum 1597 adjungam non tam ad confirmanda priora, quas sunt per sese certissima, quam ut lectori occasionem praebeam, observationes Tychonis cum aliorum observationibus comparandi; quo medio tandem intelligat, quanto nos beneficio vir ille affecerit. Exstant quidem ejusdem auctoris observata ad ultimos dies Octobris anni 1597, sed radio capta in loco peregrino, nec ad calculum revocata per ipsum auctorem, qui noverat distantias radio exceptas tabella quadam parallaxeos oculi adhibita corrigere, ut in Progymeasmatis monuit. Cum itaque diversissimae eodem momento distantiae sint adscriptae (forte quod correctae juxta observatas sunt positae), mittendae sunt. Observavi autem ego eodem momento absens in Styria, idque mirabile dictu Tychonis Brahei oculis, ad litus maris Balthici versantis. Observationis series ista. Risum teneatis amici.

Anno 1597 die Saturni 8. Nov. vel 29. Oct. mane Mars nondum erat in linea ex duodecima II in quartam. Die sequenti jam erat egressus illam, vicinior nonae quam duodecimae, et in linea ex 11. in 9, item in linea ex 1. in 5. praecise aut paulo admodum orientalior. Et quinta fuit media inter primam et Martem.


Ex hisce locus Martis elici potest, assumtis certissimis stellarum locis ex catalogo Tychonis Brahei, quos meos oculos jam profitebar. Sed quia nona non est relata in catalogum Brahei (nam pro ea loco nono est alia, distans a Ptolemaica ultra 3°, et minor omnibus), ideo latitudinem Martis 24

Kepleri Opera, III.

bantur duo circuli acquales IH et DC, et connectantur centra A, B, producaturque AB, donec secet circulum ex A in I, K, circulum ex B in D, L.*) Tunc circulus ex A dividatur in partes acquales quotcunque, puta in 360, initio facto ab I. Et ex A per puncta divisionum, I, H, K et reliqua rectae ducantur AI, AH, AK et reliquae, secantes circulum ex B, in D, C, L punctis. Tunc fiat ut AI ad AD, sic AD ad AG; sic ut AH ad AC, sic AC ad AF; denique ut AK ad AL, sic AL ad AM: et sic de omnibus reliquis. Demonstret, inquam, geometra, ultimas 360 junctas, puta AG, AF, AM acquales esse primis 360 junctis, puta AI, AH, AK.

Itaque primo modo per summas distantiarum aliud institueram (licet erronee et impertinenter, colligere sc. arcus CD vel angulos CBD, cum tamen ii darentur initio), aliud praestiti, rursum errans. Nam collegi non arcus, non angulos, non itinera, sed moras in arcubus inaequalibus itineris planetae, quasi essent aequales; et in regula proportionum dixi: ut summa mediarum AD, AE, AL, scilicet 35924252 ad moram 360°, ita quaelibet summa distantiarum ad moram suam, in spatio, quod distantias has com-

Fig. 104.

plectebatur. Sit A Sol, B centrum eccentrici CD, BC semidiameter. Connectantur B, A cum C. Hic distantiae CA fuerunt accommodatae ad gradus integros anguli CAD, et propterea ad arcus inaequales circuli CD, quod me fefellerat. Sit igitur CAD 45°. Datur ex CB, BA angulus CBD 48° 42' 59". Itaque, si nulla esset causa physica aequationis et CBD mensura temporis seu anomalia media, tunc ei responderet haec ipsa CAD vere coaequata. Sed quia planeta in CD tardior est, ob longam ab A distantiam, et quia distantiae sunt hujus moras mensurae: collegi igitur ad anomaliam CAD 45° distantias 45 ad initia arcuum sive longiores; summa erat 4869307: collegi etiam 45 breviores seu ad fines arcuum subtracta longissima AD 109165 a summa 46 distantiarum sc. 4975577, restabant 4866412, et guod erat inter utramque summam intermedium, sc. 4867852, id redegi in gradus,

qualium 35924252 valent 360°, vel qualium 99790 valent 1°. Prodiit hoc pacto 48° 46' 51". Atque hoc debuit esse tempus, respondens angulo CAD. Sed et arcus CD vel angulus CBD inventus erat proxime tantus, scilicet 48° 42' 51", quod absurdum et contra hypothesin, quae vult, planetam esse tardiorem in CD. Statim igitur causa hujus absurdi patuit; quod nempe ad sciendam moram in CD decuisset distantias consulere, respondentes aequalibus arcubus ipsius CD, cum hae jam usurpatae distantiae respondeant inaequalibus ipsius CD, et tanto majoribus, quanto sunt ipsae distantiae longiores per cap. XXXII. Itaque nimis paucae numero erant hae distantiae. Sed tamen, ut non frustra hunc laborem perderem, excessum numeri morae hujus supra CAD anguli numerum subtraxi a CAD, ut restaret EAD 41° 13' 9", et AC, AE aequales essent: ubi ponebatur, tempore CBD conficere planetam circa centrum eccentrici B

^{*)} Cum alias tres sint anomaliae, quarum 1. dicitur media, 2. eccentri, 3. coaequata: nos in hoc schemate et hoc particulariter conatu ad confusionem vitandam intelligamus, primam in arcu CD, vel angulo CBD, secundam in angulo CAD, vel arcu ED, tertiam in angulo EAD.

angulum EBD acqualem ipsi CAD: et ideo ad ejus eccentrici ED arcus acquales colligi tot distantias ab A, quot nos hic invenimus in gradibus acqualibus ipsius CAD; ut quantum earum esset dispersum per CD inaequales et hoc loco magnas partes, in hoc nostro calculo, tantum intelligatur congestum intra angustias ED, et partes ejus acquales. Hic ergo CBD angulus esset anomalia media distantiaria^{*}), dans angulum CAD, pro quaerendis distantiis CA, ex quibus distantiis angulus CAE, retardatio et translatio physica ipsius CA in EA, elicitur.

Haec ratio etsi non multum discrepare potest a priori cap. XLIX : illud tamen indemonstratum assumit, CAD et EBD esse aequales, ac propterea CA et EB parallelos, quod supra cap. XLVI. per schema alterum est refutatum. At vide nunc et propinquitatem hujus operationis in effectu. Nam

ad anomaliam mediam	inveniebatur coaequata	quae est in vicaria	Differentia	
48° 42' 59"	41° 13′ 9″	41° 21′ 0″	8'	Paulo distat ab illa
95. 15. 31	84. 44. 18	84. 39. 18	5 +	cap. XLIX. et dua-
138. 42. 59	131. 20. 24	131. 4. 7	. 16 +	bus cap. XLIII.

Arguebatur eccentricitas parvitatis, ut quidem vere est major, scilicet non 9165 sed 9264. Et fiebat planeta nimis tardus circa apsidas, velox nimis circa medias longitudines. Sed misso hoc primo modo, quem fortuito arripueramus ex animadversione erroris initio commissi, convertamur ad praxin modi secundi, natam ex ejusdem erroris animadversione. Cum enim distantiae per CAD sparsae aequarent fere sectorem CBD numeris, et rem in absurdum deducerent (planum enim CAD, metiens distautias proxime, majus utique est plano sectoris CBD; itaque et distantias CD majores [in numero suo] esse oportuit sectore CBD), tunc succurrit, an igitur ipsarum AC, AD proportionales AF, AG justas exprimerent moras planetae in CD, ut ita CAD maneret anomalia vere coaequata?*) At contra, si hoc, ergo AC distantia manebit suo loco, quo loco et computata est. Erit igitur orbita perfectus circulus quod cap. XLIV. est refutatum. Distantiae igitur, in longitudines medias longiores justo incidentes, facient planetam justo tardiorem ibi; quare in apsidibus velociorem. En autem effectum operationis, ipsum hoc testantem. Nam

ad anomaliam coacquatam	sequebatur media	At in vicaria	Differentia	
45°	52° 39′ 40″	52° 53′	$ \begin{array}{c} 13' \\ 5 \\ 2 + \end{array} $	Pene coincidit cum
90	100. 29. 12	100. 34½		physica perfecti
135	142. 10. 47	142. 9		circuli cap. XLIII.

Primum eccentricitas arguitar parvitatis, quia aequatio maxima prodit 10° 29'/s', quae in vicaria est 10° $34^{1/2}$ '. Deinde planeta tempore 52° $39^{2/s}$ ' invenitar tantam itineris ab apside confecisse, quantum in vicaria tempore longiore 52° 53'. Quodsi emendetar eccentricitas, fient omnes coaequatae hujus anomaliae auctiores; quare etiam infra planeta tempore 37° 44'

^{•)} Mediam dico, non a quantitate inter tres, sed a motu aequabili et medio temporis, quod hic mensurat: quatenus quidem distantiae quaeruntur.

^{**)} In secundo conatu anomalia tertia est CAD, secunda CD vel CBD, prima summa linearum AG, AF paucarum, cujus mensura ponitur esse planum CAD, fere ut cap. XLIII.

(quod est complementum ad 142° 16' emendatam, per auctam eccentricita- • tem) tantundem itineris absolvet, quantum in vicaria tempore longiore 37° 51', quod est complementum ad 142° 9', scilicet utrinque conficiet 45°, complementum nempe ad 135°.

Interim parum abest, quin haec falsa hypothesis verum nobis effectum prodat : differentia utrinque post correctionem non majore quam 8' et 7'. Itaque vides, non esse fidendum effectui. Et notabis rursum, quod et cap. XLVII, veritatem inter hos duos modos (quorum hic perfectum circulum, ille ovalem ex opinione cap. XLV. describit) esse loco medio: unde vel jam ut et supra cap. XLVII. colligere potes, lunulas dimidiae tantummodo latitudinis ejus, quae sequitur ex opinione cap. XLV, a perfecto circulo resecandas.

Modus tertius et quartus.

Cum itaque nec haec cum ratione staret methodus, et in illa altera didicissem, exquirendas distantias respondentes integris gradibus CBD anguli seu aequalibus arcubus eccentri CD: accessi et ad illas.

Quinto igitur (adnumero tibi tantum illas operationes, quae singulae 180 vicibus perficiuntur) distantias prius inventas ab anomaliis mediis scrupulariis*) seu inaequalibus CBD, ad anomalias medias aequales seu integrorum graduum reduxi proportionaliter. Sed jam non amplius, ut prius modo primo, CBD mansit anomalia; sed facta est per hanc distantiarum reductionem anomalia eccentri: ut et modo secundo.

Sexto iisdem distantiis ut prius quaesivi suas proportionales, quae scilicet sic se haberent ad distantias, ut distantiae ad radium 100000. Sed non erat necesse. Volui tamen in eventum omnem esse instructus.

Septimo et octavo rursum addidi singulas, tam distantias AD, AC, quam earum proportionales AG, AF, prodibatque summa distantiarum ipsarum 36075562. Causam habes cap. XL, cur plus prodierit quam 36000000. Proportionalium vero summa prodiit 36384621.

Jam igitur in schemate priore demonstrative quidem progrediemur, per coaequatam CAD elicientes anomaliam eccentri CBD, per hanc vero anomaliam eccentri CBD distantiarum summam in CD arcu inventarum; et per hanc summam distantiarum addiscemus moram in arcu CD, seu anomaliam mediam:**) vel conversa ratione commoditatis causa, si angulo CBD integrorum graduum (ut 45°) quaeratur CAB et excerpantur 45 distantiae justae; haec, inquam, demonstrative quidem fiunt, at rursum, ut prius modo secundo, hoc pacto CAD fit anomalia vere aequata: quare CA manet suo loco et DC orbita erit perfectus circulus; quod cum falsum sit, ut ostensum cap. XLIV, necesse est ergo, distantias in longitudinibus mediis hic usurpari nimis longas, moras itaque fieri prolixiores justo et in apsidibus breviores.

Et omnino quam proxime aequipollebit modus iste priori per proportionales. Quantum enim illic proportionales totidem, quot erant di-

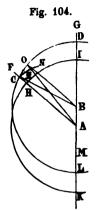
*) Anomaliam dico sorupulariam, quae non integrorum graduum numero exprimitur, sed adjuncta habet scrupula.

^{*)} In tertio constu rursum est, ut in secundo. CAD est anomalia tertia, CBD vel CD secunda, et AD, AC lineae confertiores, seu planum metiens earum summam, scilicet planum CAD, est anomalia prima, quae dici solet media.

stantiae, longiores erant quam ipsae distantiae, tanto fere jam plures distantias collegimus quam ante. Vide antem et effectum hujus calculi securitatis causa. Nam

ad anomaliam	proditur coae-	In vicaria vero	Differentia	•
simplicem	quata			1
48° 38' 31" 95. 13. 58 138. 45. 41	41° 31′ 0″ 84. 45. 50 131. 1. 52	41º 17' 6" 84. 37. 45 131. 7. 13	$ \begin{array}{r} 14' + \\ 8 + \\ 5 - \\ \end{array} $	Pene coincidit cum praecedente.

Eccentricitas rursum justo minor arguitur. De cetero errores iidem qui in proxime praecedenti. Nam quod signa excessuum signis defectuum permutantur, fit quia hic differentia ostendit errores anomaliae coaequatae, illic anomaliae mediae. Atque hic est modus tertius.


Proportionalium AG, AF pro distantiis AD, AC substitutione, qui quartus est modus, facturi sumus pro duabus tres partes aequationis. Nam planum CAD metitur distantiarum CA, DA summam. Longe igitur minus est quam FA, GA linearum summa. Ac etsi medicinam afferamus similem illius, quae primo modo fuit adhibita: tamen duplicaturi sumus errores.*) Cum enim ipsae distantiae tolerari nequeant, ob nimiam suam in medio longitudinem, minus erunt tolerabiles proportionales, utpote longiores. Et si libet illas probare effectu calcub, invenies, anomaliae mediae 53° 23' 56" respondere coaequatam 46° 0', quae in vicaria proditur tantum 45° 27' circiter, differentia 33', plane absurda.

Modus quintus et sextus.

Cum igitur quatuor his modis nihil effecissem, tunc cum anomalia media et distantiis illi assignatis (operatione quinta) transivi in tabulam hypotheseos vicariae cap. XVI, et anomaliae vere coaequatae. Resumatur schema 99. Tunc quia distantiae AF in gradus integros anomaliae mediae IBF vel IDH competentes competebant etiam in gradus et minutias anomaliae coaequatae IAH, quae in tabula dicta respondebat ipsi mediae anomaliae IDH; igitur nono reduxi has distantias a coaequatis anomaliis scrupulariis hypotheseos vicariae cap. XVI, nempe ab ipsis HAI inaequalibus ad coaequatae HAI gradus singulos absolutos, hoc est partes aequales. Decimo iisdem sic constitutis distantiis quaesivi proportionales, ut in operatione secunda et sexta. Undecimo et duodecimo addidi singulas in suis classibus fuitque summa distantiarum 35770014, summa proportionalium 35692048. Cum enim jam brevium distantiarum plures sint quam longarum (quia per hanc translationem distantiarum longas omnes sursum traximus et paucas effecimus, constituentes arcus IG viae ovalis supra apud aphelium magnos, et sic tribuentes singulis gradibus anomaliae non FAB ut in primo modo, sed HAB, hoc est vere coaequatae, singulas distantias, quorum graduum in superiori semicirculo non sunt plures quam in inferiore): hinc adeo fit, nt non tantum 360 distantiarum summa minor evadat quam 360 semidiametrorum, sed etiam proportionalium summa minor evadat, quam erat summa ipsarum distantiarum.

^{*)} In quarto conatu si ei medicina afferretur, fieret monstrum, CBD anomalia tertia: planum CAD anomalia secunda. Summa vero FA, GA linearum confertiorum, anomalia prima.

Quod igitur attinet quintum modum et distantiarum ipsarum summas, ratio rursum reclamat methodo aequationum huic innixae. Repetatur schema hujus capitis proprium, et revocentur in memoriam, quae dicta sunt de modo

primo. In illo enim CAD anomalia distantiaria coaequata dividebatur in gradus aequales, ex quo fiebat, ut CD secaretur in partes inaequales et magnas, et haberet distantias paucas, unde accidentaria quadam medicina erroris arrepta, ex summa distantiarum in CD collegimus, distantiis illis competere breviorem arcum ED, ut AC in AE transferretur, et sic ED in partes aequales sectus et qublibet gradu sui una distantia instructus haberi posset. Hic vero non ex summa distantiarum in CD inventarum, sed ex commixtione hypotheseos vicariae cum hypothesi distantiarum capite XLVI. instituta, jam facta et perfecta est translatio ipsius AC in AE, et anomaliae mediae*) (quam ad CA vel EA distantiam inveniendam in CD arcu numeravimus) tributus est arcus ED; sic tamen, ut BE et AC non sint jam praecise paralleli ut modo primo. Hoc, inquam, jam factum per

commixtionem hypotheseon, nihil opus est rursum fieri per operationem, ut modo primo. Sed hoc solum quaeritur, an distantiae AC, AE paucae, hoc quinto modo collectae in unam summam, efficiant eandem aequationem physice, quam commixtis duabus hypothesibus sortitae sunt-artificialiter?

Ubi perpende, quomodo se habeant distantiae hac ultima vice accommodatae. Angulus igitur EAD, cujus terminus E distat a Sole distantia AC, hic angulus in aequales gradus hac ultima vice divisus est et cuilibet tributa una distantia. Qua ratione jam ED arcus ovalis viae, superstans illi angulo EAD, abit in partes inaequales et nimis paucas nanciscitur distantias. Itaque ex summa distantiarum in EAD nequit haberi anomalia media jam praeconcepta ex hypothesi vicaria.

Quemadmodum vero supra modo primo, cum CD nancisceretur justo pauciores distantias, diviso angulo CAD in gradus aequales, pro CD substituimus ED idoneum arcum illis distantiis, ita hoc quinto modo, *) cum ED nanciscatur justo pauciores distantias, diviso angulo EAD in gradus aequales, si rursum inartificialem medicinam luberet accipere, pro ED substitueremus ND, cui competant illae distantiae. Sit pro quaerenda distantia CA media anomalia CBD 48° 44'. Dato angulo B et CB, BA, datur CA 105784 et CAB 45°. Illam vero AC jubet vicaria hypothesis transferre in AE. Et nos jam ED, quam indicat vicaria esse 41° 22', dividimus in gradus aequales, perque illas collegimus non plures quam 41 distantias et partem de 42. Illae vero in summam conjectae conficient anomaliam mediam minime sane aequalem primo susceptae DC, sed aliam DO, quae distantiam AO exhibet transferendam in AN. Am-

^{*)} Nota quo respectu hic media. Vide margines superiores. ----

^{**)} In hoc quinto modo est quidem anomalia tertia EAD, et ejus anomalia media (prima ordine) CD vel CBD, atque eadem etiam distantiaria ipsius CA vel EA distantiae. Sed planum EAD metitur aliquam summam distantiarum EA, DA, alienam ab hac consequata EAD, competentem scilicet temporis mensuram ipsi DN arcui, et DAN consequatae. Rursum ergo monstrum.

phora coepit institui, currente rota cur urceus exit? Hoc enim quaerebatur, an omnes distantiae, quae sunt in gradibus aequalibus ED, conjectae in summam ostenderent anomaliam mediam DC. At operatio respondit mihi de ND et apomalia DO.

Denique ad modum sextum *) et proportionales convertamur, quae sunt aptae ad demonstrationem cap. XXXII. Etenim arcuum, qui ex centro Solis apparent aequales, quantitates verae in orbita sunt in proportione distantiarum: ut quanto AE longior, tanto et ED. At vere aequalium in orbita arcuum morae sunt itidem in proportione distantiarum. Quanto enim ED longius distat ab A, tanto et diutius versatur planeta in arcu ED. Morae igitur, quas nectit planeta in illis arcubus, qui ex centro Solis apparent aequales, sunt in dupla proportione distantiarum. At sic etiam AF ad AH radium in dupla est proportione ipsius AC vel AE distantiae ad AH mediocrem. Itaque morarum, quas nectit planeta in gradibus anguli EAD aequalibus, mensurae sunt lineae AG, AF proportionales competentes ejusdem EAD anguli anomaliae vere coaequatae gradibus integris seu partibus aequalibus.

Probentur ergo sic proportionales distantiarum ad aequales gradus coaequatae anomaliae, ut supra hoc capite probatae sunt aliae etiam distantiae. Ut quia 35692048, summa distantiarum omnium 360 ad omnes 360 partes anguli ad Solem aequales, valet moram 360°, quid valet summa justa et correcta ad quoslibet gradus anomaliae coaequatae?

ad anomalias coaequatas	mediae ano- maliae	quas vicaria prodit ·	Differentia.	
41º 81	48° 24′ 3″ 91. 30. 39	48° 19' 2" 91. 34. 8	$\frac{5'}{3'/_{3}} + .$	Coincidit cum illis
91 131	101. 28. 10 138. 28. 5	101. 34. 7 138. 39. 28	6 — 11 —	capitis XLIX.

Hoc pacto invenitur:

Arguitur iterum eccentricitas minor justo : qua emendata, differentia supra ad 41° erit circiter 8' +, infra circiter $7'/_2'$ -, ut hic quoque apud apsidas planeta non satis velox fiat, itaque plus justo distantiarum sit circa apsidas; minus igitur justo in longitudinibus mediis. Sed propinque admodum ad verum accedit, et cum methodo cap. XLIX. plane coincidit. Nam si bene perpendas, idem hic actum quod cap. XLIX. Illic partem aequationis opticam seorsim computavimus, partem physicam itidem seorsim : hic vero utramque computamus junctim. Illic fictitios radios virtuosos introduxeramus, ut possemus epicyclo suum etiam opus adscribere extricandi sese ex illis fictitiis radiis (nulli enim in rei veritate radii in tanta tarditate circumeunt, in qua incedit centrum epicycli planetarii, ut cap. XXXIX. dictum). Et tamen omnem vim physicam circumferendi planetae, quod effectum attinet, Soli reliquimus, ut epicyclus tantummodo moderaretur distantias: hic eadem virtute Solis sumus usi ad translationem physicam; distantias vero itidem ex epicyclo computavimus ejusque partes aequales temporibus dedimus hoc est anomaliae mediae gradibus aequalibus, ut vult aequalibus,

^{*)} Hic modus sextus levissima correctione eorum, quae opinio cap. XLV. adhuc peccat, adhiberi potest etiam in verissima hypothesi physica, estque succinctus et dilucidus.

opinio cap. XLV, etsi tandem sumsimus distantias totidem in qualibet parte temporis, quot sunt gradus anomaliae coaequatae, illae tamen derivatae sunt ex distantiis anomaliae, mediae, suntque longitudine eaedem. *) Et tanto commodior est haec forma, quod alteram persuasionem de motu planetae epicyclico hic possemus deponere, et uno grada ad veritatem causae physicae propius accedere, relinquentes epicyclico nil nisi librationem in diametro, sed quae etiamnum vitiosa est, ut vel ex aequationibus his apparuit. Nam ut paulo ante ad modum secundum fuit adnotatum, haec praeoccupatio motus epicyclici nimia est, distantias exhibens nimis breves in longitudinibus mediis; ex quo fit, ut planeta ibi loci modum excedat velocitatis, et in apsidibus a modo deficiat. Sed sufficit nos calculo exprimere opinionem cap. XLV. Quare etiamsi quis objiciat hic ex cap. XXXII, non posse constantem esse hanc proportionem diurnorum, eo quod partes eccentri, vicinae apsidibus, directe objiciantur Soli, intermediae ex obliquo, ut ita aliter appareant, quam si directe objicerentur, hoc, inquam, si quis objiciat, respondebo sic, ut cap. XLIX. respondi: hanc intermediarum partium obliquitatem addi a planeta de suo efficique per descensum: non igitur imputandum causae motrici ex Sole nec eo turbari illam.

Habes igitur studiose lector ex tanto numero capitum et methodorum methodos aequandi cum opinione cap. XLV. consentientes tantum duas: alteram hypothesi physica cum epicyclo commixta in longitudinem ordinato, eamque cap. XLIX; alteram hoc capite ejusque modo sexto, pro hypothesi physica sinceriori; ubi epicyclus nihil nisi descensum ad Solem praestat; aut si quis illum vellet in latitudinem ordinare, rectum ad planum eclipticae. Et harum utraque diversis viis consentit in unum effectum. Quo tutius illis fidere poteris in examinanda opinione capitis XLV.

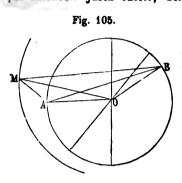
Et hactenus inani fiducia inventarum verarum causarum physicarum de Marte denuo triumphatum esto. Nunc me nescio quis rumor ad novos tumultus novosque labores excitat.

Caput LI.

Explorantur et comparantur distantiae Martis a Sole in aequali utriusque semicirculi distantia ab aphelio: simul etiam exploratur fides hypotheseos vicariae.

Dum in hunc modum de Martis motibus triumpho, eique ut plane devicto tabularum carceres et acquationum eccentri compedes necto, diversis nunciatur locis, futilem victoriam et bellum tota mole recrudescere. Nam domi quidem hostis, ut captivus contemtus, rupit omnia acquationum vincula carceresque tabularum effregit. Nulla enim methodus ex praescripto opinionis cap. XLV. administrata geometrice, vicariam hypothesin capitis XVI. (quae veras habet acquationes ex falsa causa manantes) propinquitate nu-

*) In hoc sexto modo anomalia tertia est EAD, secunda ED, prima vero est summa linearum AG, AF, ubi AF vel AC in AE translata intelligatur. Nibilominus in computanda distantia AE, hoc est AC (ex qua fluit AF) DC vel DBC est etiam prima. Ut ita hic bis pingatur, quia duo investigantur, tempus et distantia


merorum potuit aemulari. Foris vero speculatores per totum eccentri circuitum dispositi, distantiae inquam genuinae, profligarunt meas causarum physicarum ex cap. XLV. accersitas copias, earumque jugum excusserunt, resumta libertate. Jamque parum abfuit, quin hostis fugitivus sese cum rebellibus suis conjungeret meque in desperationem adigeret: nisi raptim nova rationum physicarum subsidia, fusis et palantibus veteribus, submisissem; et qua sese captivus proripuisset, omni diligentia edoctus, vestigiis ipsis nulla mora interposita inhaesissem. Utramque rem, ut gesta est ordine, narrabo sequentibus aliquot capitibus.

Atque ut de primo dicam initio, prius plurium eccentri locorum distantias inquiram, quo sit plenior fides rei. Sit igitur nobis animus explorare distantias circa anomaliam mediam 90° et 270°.

Anno 1589. d. 6. Maji h. $11\frac{1}{3}$ d observatus fuit (in anomalia media 87) in 27° $7\frac{1}{3}$, \simeq , cum lat. 0° $6\frac{2}{3}$, bor., quo tempore colligitur locus Overus 25° $48\frac{3}{3}$, O, ejusque distantia a Terra 101361, longitudo media Martis 7° 26° 0' 36", ac propterea locus eccentricus 15° 32' 13" m. Sed hypothesis nostra vicaria cap. XVI. non assequebatur verum seu observatum Martis locum in situ acronychio intra 21/34, ut ita in hoc subtili negotio non liceat fidere computationi anomaliae coaequatae. Quare methodo cap. XXVII, XXVIII, vel XLII, adjungam aliam observationem, liberiore tamen methodo. Verum ut supra quoque cap. XII. monui, non saepius bis hoc loco est. observatus. Duabus igitur observationibus oportet nos esse contentos. Associatur enim huic jam positae altera ex anno 1594 d. 28. Dec. cujus diei mane h. 7 1/2 colligitur longitudo media 3 7º 26º 13' 39", paucis minutis priorem superans. Tunc itaque Mars in altitudine 8º vel 9º observatus est a Spica Virginis 50° 34' distare. Cum igitur steterit proxime eclipticam, in rectangulo igitur inter Spicam, ejus locum eclipticum et Martem, datur basis 50° 34', et latus inter Spicam et eclipticam 1° 59', nempe latitudo Spicae. Ergo latus religuum est 50° 32' 18". Quare cum fuerit Spica in 18º 11' = d inciderit in 8º 43' 18" A, qui locus declinat ab acquatore 21° 50' 20".

Inventus autem est \mathcal{J} declinare 21° 41'. Ergo prae se tulit aliquantulam septentrionalem latitudinem, scilicet 9' 20". Habuit autem et sequenti 4. Jan. 1595 adhuc borealem latitudinem 3'. Quo confirmatur nostra observatio. Etsi vero assumseris hanc justam latitudinem Martis, non alterabitur ejus locus eclipticus sensibiliter; ut tuto pronuncies ejus locum 8° 43' \mathcal{A} . Et quia fuit Mars prope Solem, valde igitur altus a Terra, et in parallaxi multo minori quam Sol, quam negligemus. At non itidem et refractionem possumus negligere: quam jam removebo. Fuit enim locus \odot 16° 47' 10" \mathcal{J} , distantia a Terra 98232, cujus A. R. 288° 12', quare oriebatur 306° 37' aequatoris, et cum eo 29° \mathcal{A} , cujus angulus inter eclipticam et horizontem 26°, complementum 64°. Et quia refractio altitudinis ex tabella fixarum refractionis exhibetur 6' 30", ex Solaribus 11' in altitudine sideris 8'/2°, latitudini igitur debentur 5' 51", vel 9' 53". Latitudo illic 3' 29" sept: hic 0' 33" aust. Et refractio longitudinis 2' 39" vel 4' 34".

Sequar autem ex duobus hisce refractionum modulis illum, qui per latitudines comprobatur, in hunc modum. In priore observatione fuit latitudo $6\frac{2}{6}$ borealis visa. Et quia Mars Terrae propinquus, et angulus ad \odot 10° 17′, ad Terram 28° 41′, haec igitur latitudo requirit inclinationem 2' 30". Erit igitur et in posteriore nostra observatione inclinatio 2' 30" pauloque minor, quod 8' simus nodo propiores. Assumta vero inclinatione 2' 30", cum hic angulus ad \odot sit 61°, ad Terram 38°, necesse est sequi latitudinem 1' 50" sept. circiter; indice nostra tabula parallactica. Sed usurpatione refractionis fixarum latitudo nobis relinquebatur 3' 29" sept.: Solaris vero usurpatione redigebamur per 0' 33" in austrum. Itaque hinc justo plus fuit in nostra refractione suscepta, inde minus. Intermedia itaque refractio justa fuerit, scilicet 3' 36". Scilicet Mars nobis reponetur in 8° 46⁴/₃' x. Sit O Sol, B, A puncta

in 8° 46⁴/₈, ' A. Sit O Sol, B, A puncta orbitae Telluris, A locus Terrae in priori observatione, B in posteriore, M Mars. Connectantur lineae. Et quamvis Mars non praecise redierit in eundem locum, in utroque tamen situ repraesentetur a linea OM. Est igitur AMO 28° 41' 14" et AO 101365. Assumatur MO distantia Martis a Sole (quae hic quaeritur) quasi cognita, sitque 154200. Cadet igitur OM in 15° 31' 3" m. Quodsi OM in priori observatione est 154200 assumta, in posteriori debet assumi brevior. Unus quidem gradus hoc eccentrici loce

Unus quidem gradus hoc eccentrici loce mutat distantiam 240 particulis, qualicunque forma distantias exstruendi utaris. Ergo cum hic differant longitudines mediae 13', et subtracto modulo praecessionis tantum 8; pars proportionalis de 240 est 32. Quare in secunda observatione assumsimus OM 154168. Sed et OBM scitar, scilicet 38° 0' 40", et OB est 98232. Ergo datur OMB 23° 6' 11", quare OM secunda vice in 15° 40' 9" m, differens a priori loco eccentrico per 9'. ⁹¹) Debuit differre paulo amplius. Nam anomaliae mediae differebant per 8' 3", quibus in eccentri coaequata anomalia hoc loco respondent 7' 49". His adde praecessionem aequinoctiorum intermediam 4' 48", accumulantur igitur 12' 37", debuit igitur in 15° 43' 40" m cadere. Paulo igitur aliae sunt nobis suscipiendae distantiae OM, et quidem sic alterandae, ut $2^{2}/_{5}$ circiter plus ab invicem discedant lineae ab OM repraesentatae. Terra enim in A versante debet OM in antecedentia moveri; et in consequentia, Terra in B. Id autem fit, si OM auxeris: ut primo loco sit 154400, secunda vice 154368. Tunc enim cadit OM primum in 15° 29' 34" m, secundo in 15° 42' 18" m.

Est autem anomalia media primo tempore 87° 9' 24", sequenti -87° 16' 30". Atque haec in longitudine media priore.

Pro longitudine media altera serviet nobis observatio anui 1595. mense Decembri, bene munita consensu aliquot dierum continuatorum; et ibi loci etiam vicaria hypothesis ad unguem repraesentavit locum Martis acronychium Octobri praecedente. Adjungemus consensus causa et Octobrem anni 1597. Reliquis annis observatus non est hoc eccentri loco. Nam cadit locus eccentricus in 10° II, itaque Mars hoc loco versans anno 1580. Nov. fuit observatus ultimo. Anno 1582 in Octobrem incidit ejus in hunc locum adventus, cum nondum ferveret observandi studium; anno 1584 in Septembrem, 1586 in Julium, 1588 in Junium, 1590 in Aprilem. 1592 in Martiam, quibus temporibus, Soli vicinus ob brevitatem et claritatem noctium in Dania, neglectus fuit, cum stellis fixis, Lunae planetisque reli-

quis, quoties opportunitas aliqua fuit, essent intenti. Anni vero 1593 fine et 1594 injtio, cum esset in quadrato Solis, observatio non ultra hunc aspectum est continuata, quia ad hanc quadraturam praecipue solent respicere astronomi. Ergo anni 1595. d. 17. Dec. vesperi h. 7. 6' visus est planeta in 11° 31' 27" 8, cum lat. 1° 40' 44" bor. Locus Solis fuit 5° 39' 3" S. Distantia ejus a Terra 98200. Colligitur autem longitudo media Martis 2º 2º 4' 22". Et quia aphelium 4º 28º 58' 10", ideo distantia loci ab aphelio retro 86° 53' 48". Prius pene erat eadem porro, nempe 87° 9' 24". Ergo haec duo loca pene absunt aequaliter ab aphelio. Respondet autem huic anomaliae simplici ex vicaria nostra hypothesi anomalia coaequata 76° 25' 48", quae ablata a loco aphelii relinquit 12° 32' 22" II, locum Martis ecceptricum. Sit A (Fig. 105) Terre, O Sol, M Mars. Datur AO 98200. Et quia OM in 12° 32' 22" II, AM vero in 11° 31' 27" 8, ergo AMO 31° 0' 55". Et quia AO in 5° 39' 3" Z, sed AM in 11° 31' 27" 8, ergo complementum OAM 54° 7' 36". Hinc, quia ut sinus AMO ad AO, sic sinus OAM ad OM, prodit OM 154432. Et quia locus hic 15' est apogaeo propior, quam ille anno 1589: et hoc, eccentri loco 1º efficit 240 particulas: itaque 60 particulae pro 15' adimendae sunt, quia distantiae ab aphelio in locis remotioribus sunt breviores, ut ita prodeat 154372. Vicissim, quia nodus est circa 16º 20' 💥, locus eccentricus in 12º 32' II, distat igitur a nodo 26º 12' ét inclinatio maxima planorum est 1º 50'. Ergo inclinatio hujus loci est 48' 32", cujus secans superat radium particulis 10, quae sunt in nostra dimensione 15¹/₂. Itaque distantia ipsius puncti in orbita, Martis a Sole est 154387. Prius autem in hac ipsa distantia ab aphelio inveniebatur distare a Sole 154400 proxime. Ergo ad unguem aequales sunt horum punctorum eccentrici distantiae a Sole. Nam quae in posteriori desiderantur 13 particulae. sunt impraestabiles. Gaudebo, si intra 100 particularum incertitudinem abique consistere potero.

Jam et annum 1597 adjungam non tam ad confirmanda priora, quae sunt per sese certissima, quam ut lectori occasionem praebeam, observationes Tychonis cum aliorum observationibus comparandi; quo medio tandem intelligat, quanto nos beneficio vir ille affecerit. Exstant quidem ejusdem anctoris observata ad ultimos dies Octobris anni 1597, sed radio capta in loco peregrino, nec ad calculum revocata per ipsum auctorem, qui noverat distantias radio exceptas tabella quadam parallaxeos oculi adhibita corrigere, ut in Progymøasmatis monuit. Cum itaque diversissimae eodem momento distantiae sint adscriptae (forte quod correctae juxta observatas sunt positae), mittendae sunt. Observavi autem ego eodem momento absens in Styria, idque mirabile dictu Tychonis Brahei oculis, ad litus maris Balthici versantis. Observationis series ista. Risum teneatis amici.

Anno 1597 die Saturni 8. Nov. vel 29. Oct. mane Mars nondum erat. in linea ex duodecima II in quartam. Die sequenti jam erat egressus illam, vicinior nonae quam duodecimae, et in linea ex 11. in 9, item in linea ex 1. in 5. praecise aut paulo admodum orientalior. Et quinta fuit media inter primam et Martem.

Ex hisce locus Martis elici potest, assumtis certissimis stellarum locis ex catalogo Tychonis Brabei, quos meos oculos jam profitebar. Sed quia nona non est relata in catalogum Brahei (nam pro ea loco nono est alia, distans a Ptolemaica ultra 3°, et minor omnibus), ideo latitudinem Martis 24

Kepleri Opera, III.

advocabimus in consilium : sufficit enim nobis mediocris eius cognitio. Javenitur autem longitudo media Martis ad mane diei 29. Oct. h. 5. (probabilem, cum horam non adscripserim) 1º 29º 10' 43". Quare locus eccentrious in 9° 43' II, distans a nodo per 23° 20'. Inclinatio igitur. 43' 52". Sol vero in 15° 40' m, et Martis locus visus ex anticipato circiter 12 1/2° @. Quare latitudo 1° 36' 24". Computetur, quaenam sit longitudo puncti in linea ex duodecima in quartam, habentis latitudinem 1° 30⁴/₅ bor. Cum igitur sit quarta in 9° 54' \odot , lat. 7° 43' bor., duodecima in 12° 56' \odot , lat. 0° 13⁴/₅' austr., erit puncti nostri longi-tudo proportionaliter 12° 16' 17" \odot . Mars vero nondum hic fuit die 29. Oct., et die 30. jam transierat. Diurnus non fuit major 5', cujus dimidium 2¹/₂', ut die 30. mane fuerit in 12° 18¹/₂' \mathfrak{S} , et quidem anno 1600 completo; sed ut anno 1597 in 12° 16' \mathfrak{S} . Tria minuta erroris in latitudine vix unum queunt efficere in longitudine. Quare sat certus est locus. Si etiam per primam et quintam explores, in ea linea punctum, cujus latitudo sit 1° 301/2', cadit in 12° 9' @. Et Mars erat orientalior, hoc est magis in consequentia, 'scilicet in 12° 16' proxime and paulo ante, intermedius etiam. Quare latitudo comprobatur a nobis computata : debet enim et ipsa proxime esse intermedia, et est quidem. Nam inter 1° 30¹/₂' Martiam et quintae 5° 42¹/₂' interest 4° 12', inter hanc et primae 10° 2' interest 4° 20' media.

Sit igitur Mars in 12° 16' O. Anno 1597. d. 30. Oct. mane h. 5. invenitur locus Solis 16° 38' M. Distantia 98820. Longitudo media 1° 29? 42' 10". Aphelium 4° 28° 57' 10". Anomaliae mediae complementum 89° 15': coaequatae 78° 43' 23", locus eccentricus 10° 13' 47" II. Quare hinc elicitur distantia 153753. At quia per 2° 6' profundius absumus ab aphelio' quam prius, addemus bis 240, particularum summam, uni gradui debitam; 240 + 240 et decimam partem 24. Item et alias 15 particulas, ut pro linea in plano eclipticae efficiatur linea in plano orbitae Martis. Prodit 154272, prius 154400, differentia 128.

Quodsi 3' adimas loco Martis, et fuerit in 12° 13' \otimes , quod stante nostra observatione fieri potest, praesertim si et hora alia fuerit, jam conciliata erit haec differentia.

Secundo idem probabo in partibus aphelio propioribus. Anno 1589 d. 5. Apr. h. 11. 33' visus est σ in 7° 31' 10" m, lat. 1° 28' 13" bor. meridiano proximus, itaque in nulla variatione horizontali. Colligitur longitudo media 7° 9° 46' 8", et est aphelium in 4° 28° 61' 8". Ergo anomalia media 70° 55' 0", cui respondet per vicariam anomalia coaequata 61° 17' 35". Itaque locus eccentricus in 0° 8' 43" m. Locus Solis 25° 52' 43" γ . Distantia ejus a Terra 100560. Angulus ad Terram 11° 38' 27", ad planetam 7° 22' 27", ergo distantia Martis a Sole 158090. Rursus autem, ne sic fidamus loco eccentrico propter errorem 2 vel 3' c., guem vicaria committit hoc eccentrici loco, adsciscemus sociam ex anno 1591 d. 19. Feb. cum mane h. 5¹/₂ σ videretur distare ab australi Lance 28° 11' (quae eo anno fuit in 9° 23¹/₂' fn;) cum lat. bor. 0° 26'. Itaque σ cadit in 7° 24¹/₂' x circiter. Cum autem is locus eccentricus declinet ab aequatore per 21° 39' 10", Martis declinatio visa est 20° 50' 30". Itaque latitudo 48' 40". Unde corrigitur longitudo, quae fit 7° 34¹/₉' x. Est vero longitudo media 7° 8° 21' 47", cui respondet coaequata 59° 57' 38" et locus eccentricus 28° 51' xx. Ergo angulus ad planetam 38° 43' 20",

Digitized by Google

Locus Solis 10° 14' 25" \times , ergo angulus ad Terram 87° 20' 0", et distantia Solis a Terra 99210. Quare hic prodit distantia $\sigma a \odot 158428$, longior quam prius, quia hic etiam propiores sumus aphelio per 1° 26' 30". Debentur autem de distantia uni gradui particulae circiter 220 hoc loco eccentri, toti differentiae graduum particulae 317: sic ut hic locus, si ad consimilem anomaliam cum superiori referatur, habeat distantiam 158111 admodum praecise. Unde arguitur, junctas has binas observationes methodoque in superioribus tradita tractatas locum eccentricum ostensuras plane eundem cum nostra vicaria, cum tamen ob vicinitatem 17° \mathfrak{M} in periculo versemur erroris unius atque alterius scrupuli. Adde, quod in posteriori harum distantia ab Aquila prodatur 54° 12', quod cum ceteris observationis circumstantiis intra 12' non consentit, itaque haec observatio non sit plane certissima. Addendum autem etiam exiguum aliquid ob latitudinem.

In longitudine simili alterius semicirculi occurrit apta observatio anno 1582. d. 12. Nov. mane h. $6\frac{1}{4}$, cum esset locus $\odot 29^{\circ} 35' 17''$ m, distantia 98503, longitudo media $\sigma 2^{\circ} 15^{\circ} 10' 20''$, aphelium $4^{\circ} 28^{\circ} 44' 20''$. Quare complementum anomaliae mediae 73° 34' et coaequatae 63° 45' 18''. Quare locus eccentricus 24° 59' 2'' II. Tunc, inquam, observatus est planeta in 26° 35' 30'' \odot , ut fuerit angulus visionis seu ad Terram 57° 0' 13'', ad planetam vero 31° 36' 28''. Quibus elementis conficitur, distitisse planetam a Sole 157631. Et quia prius anomalia fuit 70° 55', jam 73° 34', humiliores igitur sumus per 2° 39', quibus in proportione prius indicata debentur particulae 586. Itaque ex analogia hujus observationis competit in consimilem anomaliam cum superiori 158217, ubi rursum ob latitudinem pene tantundem aut paulo plus est addendum quam prius. Differentia 127 circiter, quae excusatur incertitudine observationum priorum. Est enim perexigua et in nostro negotio contemnenda, ubi de 1800 aut 3600 aut ampliori aliquo disputamus.

Sed ascendamus adhuc superius versus aphelium, et exploremus etiam illa loca, ubi ex demonstratis cap. VI. luxatio eccentrici per medii motus Solis cum vero permutationem omnium contingere potest evidentissima; nempe in apogaeo Solis et Cancri dodecatemorio.

Anno 1596. d. 9. Martii vesperi h. 7. 40', cum esset locus Solis 29° 34' 24' H, distantia a Terra 99764, longitudo media J 3' 15° 35' 0", aphelium 4º 28º 58' 31", anomaliae mediae complementum ad circulum integrum 43° 23' 31", coaequatae 36° 40' 2", locus eccentricus ex vicaria 22º 18' 29" @: visus est planeta in 15º 49' 12" II. Lat. 1º 47' 40" bor. Fuit igitur angulus ad Terram 76° 17' 48", ad planetam 36° 29' 17". Ergo distantia J a () 162994, seu verius puncti in plano eclipticae, quod corpori Martis perpendiculariter subest. Sed et huic securitatis causa adjungatur observatio alia. Fuit autem Mars praecise eodem in loco sub fixis anno 1584. d. 25. Nov. h. 10. 20', cum esset 💿 in 14° 0' 3" 🖈 distans a Terra 98318; anomalia media nihil sensibiliter differens a priori, quia aphelii motus est paulo admodum velocior motu fixarum. Ergo locus eccentricus idem, si praecessionem 9' 45" subtrahas, scilicet 22° 8' 44" @. Visus autem fuit planeta die 11. Nov. h. 13. 26' in 23° 14' 5" Q, cum lat. 2º 12' 24" bor: sequenti 20. Nov. h. 18. 30' astronomice, apparuit in 26° 0′ 30″ 2. Itaque diebus 8 horis 5 promotus est per 2° 46′ 25″, in Magino per 2º 48'. Cum ergo nostrum tempus aliis 4 diebus et h. 15. 49' sequatur, quibus ex Magino motus 1º 28' competit, addemus 24 *

nos 1° 27' ad analogiam priorum. Itaque Mars videri potnit in 27° 27' 30" Q proxime. Quare angulus ad Terram 73° 27' 27", ad planetam 35° 18' 46". Quare hic distantia Martis a Sole 163051, excedens priorem particulis 57, quae levissima mutatione loci eccentrici absorbentur, ut quidem vicaria hic non est usque ad 1' fidelis. Sed et in applicatione observationis peccari levissimum aliquid facile potnit.

Pro longitudine consimili in semicirculo altero resumemus observata cap. XXVII, ubi exstruxi distantiam paulo minorem quam 163100 ex prosthaphaeresi observationum, ex puris observationibus vero 162818, similiter at prius in plano eclipticae. Est autem in uno temporum illo loco allegatorum, scilicet anno 1589. d. 11. Feb. mane h. 5. 13' longitudo media 6^a 12° 38' 44", aphelium 4^a 28° 50' 57", anomalia media igitur 43° 47' 48", humilior quam prior nostra per 24', quibus illo eccentrici loco competunt 64 particulae circiter. Itaque distantia, quae in anomalia 43° 48' fuit minor quam 163137, ex hac analogia in anomalia 43° 24' rursum augebitur, ut sit quam proxime 163100 in hoc semicirculo, in priori erat 163051 vel 162996, rursum impraestabili propinquitate.

Notandum autem, quod cap. XXVII, quod hic allego, observationes coegerunt adimere loco eccentrici ex vicaria nostra computato 1' 30" in $5\frac{1}{2}^{\circ} \rightleftharpoons$, idque per observationes annorum 1585, 1587, 1589, 1590. Secundo idem testabatur supra cap. XVIII. observatio acronychia anni 1589 in 5° m, adimenda scilicet esse vicariae nostrae $2\frac{1}{4}$. Et anno 1591 in $26^{\circ} \swarrow$ adhuc adimendum erat unum. Tertio, hoc ipso capite circa 16° m voluerunt observationes annorum 1589 et 1594, adimi loco eccentrico ex vicaria nostra computata scrupula $3\frac{1}{4}$. Itaque hoc sic constans est circa longitudinem mediam hujus semicirculi.

Similiter et proxime aphelium resumemus observata cap. XXVIII, ubi in anomalia media 11º 37' inventa est distantia (sine correctione ob latitudinem) 166180 vel 166228. Hoc in semicirculo descendente. At in consimili anomalia semicirculi ascendentis fuit circa sequentia tempora.

Anno 1585. d. 24. Jan. h. 9. cum esset locus Solis 15° 9' 5" \implies , distantia ejus a Terra 98590; longitudo media σ 4° 16° 50' 10", aphelium 4° 28° 46' 41"; anomaliae mediae residuum ad circulum complendum 11° 56' 31", quare locus eccentricus ex vicaria 18° 49' 0" Q: vieus est planeta in 24° 9' 30" Q, latitudine 4° 31' 0" bor. Fuit igitur angulus ad Terram 9° 0' 25", ad planetam 5° 20' 30". Ergo distantia Martis a Sole 165792. Sed si vicariae hypothesi hic adimas 1' 30", quod supra cap. XVIII. in computatione oppositionis acronychiae apparuit necesse esse, angulus ad planetam fiet 5° 19', et distantia Martis a Sole 166580. Usque adeo facile hic mutatur distantia, ob Martis et Terrae propinquitatem. Adhibebimus igitur securitatis causa loca alia.

Anno 1586. d. 16. Dec. mane h. $6\frac{1}{2}$, cum esset Sol in 4° 16' 51" \mathcal{S} , distans a Terra 98200; longitudo media \mathcal{S} 4° 18° 39! 9", residuum anomaliae mediae 10° 9' 41"; locus eccentricus ex vicaria 20° 20' 30" \mathcal{Q} : inventa est declinatio Martis 3° 54', ascensio recta ex Arcturo et Spica 177° 27'; quare longitudo 26° 6' 24" \mathfrak{m} , latitudo 2° 35'; hinc angulus ad Terram 81° 49' 33", ad planetam 35° 45' 54", et distantia 166311, sed subtractione 1' 30" de loco eccentrico 166208. Et minor in priore distantia ab aphelio 11° 37' circiter 70 particulis, itaque vel 166241 vel 166138.

Anno 1588. d. 6. Nov. mane h. 6. 50', cum esset locus Solis 24° 3' 43" 11 , distans a Terra 98630; Martis longitudo media 4º 20º 47' 35"; residuum anomaliae 8º 2' 51"; locus eccentricus ex vicaria 22° 7' 48" Q: visus est & in 23° 16' m, lat. 1° 37'. Quare angulus ad Solem 60° 47' 43", ad planetam 31° 8' 12". Et distantia igitur planetae a Sole 166511, sed per subtractionem 1' 30" de loco vicariae, 166396, et ex hac analogia in majori distantia ab aphelio, scilicet 11° 37', diminutior circiter 110, quare vel 166401 vel 166286, ubi discrepamus a priore per 150; et, si stante correctione loci eccentrici medium harum assumserimus, 166230: ut parum aliquid in observando peccatum esse dicamus, in partes contrarias utriusque observationis annorum 1586 et 1588, a distantia semicirculi descendentis, differemus parum. Poterit hoc ipsum quoque discrimen aboleri per retractionem nonnullam aphelii, de qua postea. Itaque etiam proxime aphelium, quantum sensus judicare potest, easdem invenimus distantias a Sole, in eadem utriusque semicirculi habitudine ad aphelium.

Sunt quidem omnes tres observationes factae Marte orientali; nulla Marte occidentali: deficiunt enim observata reliqua. Itaque tutius fortasse stabimus a distantia semicirculi descendentis.

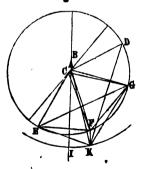
Tertio sit idem quod supra nobis explorandum infra longitudines medias, versus perihelium.

Anno 1591 nocte post diem 13. Maji h. 1. 40' post mediam noctem, cum esset) in 2º 8' 43" II, distans a Terra 101487; Martis vero longitudo media 8º 22º 18' 4"; anomalia 113º 24' 4"; coaequata 103º 15' 48"; quare locus eccentricus ex vicaria 12º 9' 48" x (vel per analogiam vicini 26° \swarrow jam modo memorati, 12° 8³/₄′ \checkmark): visus est Mars in 2° 24¹/₂′ \mathcal{Z} , latitudine 2° 15′, merid., angulus igitur ad Terram 30° 15′ 44″, ad planetam vero vel 20° 14' 39" vel 20° 15' 42". Quare distantia Martis (vel puncti echipticae) a Sole 147802 vel verius 147683, ubi vides unius scrupuli errore in loco eccentrico perire nobis 120 particulas nostrae dimensionis, in tanta Martis et Terrae propinquitate, tantaque vicinitate oppositi Solis loci. Itaque minima hic non sunt persequenda. Porro bene munita est haec observatio, circumstantibus aliis frequentium dierum, usque in diem oppositionis cum Sole. Cum autem distet 12º 10' 🖈 a nodo 26⁴/₂ circiter partes : igitur hujus loci secans inclinationis superat radium particulis 11 circiter, quae sunt in nostra dimensione circiter 15 aut 16. ut ita ipsius Martis a Sole distantia hic fiat quam proxime 147820 vel 147700.

Pro consimili distantia ab aphelio, semicirculi alterius, resumemus observata cap. XXVI, ubi exstruxi distantiam \mathcal{J} a O circiter 147443 vel 147700 vel 147750. Est autem in 'uno temporum illic notatorum, scilicet anno 1590. d. 4. Martii h. 7⁴/₈, longitudo \mathcal{J} 1° 4° 11′. 20″. Quare anomaliae complementum ad circulum 114° 41′. Itaque hic humiliores sumus ab aphelio quam prius 1§ 17′. 'Et. 1° competunt 230 particulae hoc eccentrici loco. Ergo distantia 113° 24′ in semicirculo ascendente esset (ex analogia cap. XXVI. observationum) 147743 vel 148000 vel 148050. Inventus vero hic in descendente 147820 vel 147700. Differentia circiter 350 vel 180 particularum,- vel nullius; paulo incertiuscula. Nam etiam pejuscule habent observationes, Marte in perigaeo versante, ob humilitatem zodiaci et alia multa. Et vides cap. XXVI, illic veram distantiam dubio assensu fluctuare inter 147443 et 147750, differentia 300 particularum, quae sunt in praesenti negotio non magni momenti, Marte tam humili et Soli seu centro mundi vicino.

Sed et hic profundius versus perihelium descendamus, et rem eandem exploremus 22° circiter ante et post perihelium.

Anno 1589. d. 3. Dec. h. 5. 39', cum esset locus (•) 21° 44' 56" \checkmark , distaretque is a Terra 98248, et longitudo media Martis 11° 16° 27' 53", anomaliae complementum 162° 24' 11", et locus eccentricus coaequatus 20° 4' 32" \bigstar : visus est Mars in 15° 25' 33" \implies , lat. 1° 11' 47" mer. Sed quia supra cap. XLII. inventa est vicaria nostra nonnihil peccare circa perihelium: adsciscemus igitur loca alia, quotcunque nancisci poterimus, atque ex iis methodo capitis XLII. quaeremus simul distantiam Martis a Sole, simul etiam locum eccentricum veriorem.


Anno igitar 1591. d. 16. Oct. h. 6. 28', cum esset \odot in 2° 39' 15" H, distans a Terra 99142, longitudo media \Im 11° 13° 53' 57", anomaliae complementum 165° 0' 9", locus eccentricus ex vicaria 16° 59' 14" χ : visus est in 1° 27' 18" \ddagger , lat. 2° 10' 52" merid.

Sic anno 1593. d. 8. Sept. h. 10. 38', cum esset \odot in 25° 41' 0" \mathfrak{P} , distans a Terra 100266, longitudo \mathfrak{F} media 11° 17° 10' 17", anomaliae complementum 161° 45' 28", et locus eccentricus ex vicaria 20° 53' 54" \mathfrak{H} : inventus est planeta in 8° 53' 51" \mathfrak{H} , lat. 5° 14' 30" merid.

Denique anno 1595. d. 22. Julii mane h. 2. 40', cum esset O in 7° 59' 52" O, distans a Terra 101487, longitudo media O 11° 14° 9' 5", et anomalia 164° 48' 55", quare per vicariam nostram locus eccentricus 17° 16' 36" \oiint{O} : inventus est visibilis locus \Huge{O} ex lectissimis observationibas in 4° 11' 10" \Huge{O} , lat. 2° 30' merid. Bis igitur habemus Martem loco opportunissimo, scilicet in quadrato Solis, cum et loca Terrae et Martis quadrato distent.

Itaque secundum methodum cap. XLII. loca sideris in eccentrico pro-

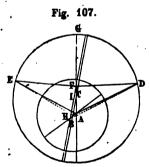
banda sumam; et ponam initio distantiam Martis primo tempore fuisse 139212. Quare sequentes fuerunt 139033, 139258, 139045. In tanta enim propinquitate anomaliarum facile scitur connexio, ut hactenus. Sit A Sol: D, G, F, E loca Terrae annis 1589, 1591, 1593, 1595, K locus Martis quater idem (etsi in observationibus non sit plane idem). Connectantur puncta. Dantur AD, AG, AF, AE quoad situm et longitudines. Et suscipitur longitudo AK quater. Sunt autem et DK, GK, FK, EK lineae visoriae notae situ suo. Ergo dantur ADK, AGK, AFK, AEK. Per oppositionem igitur laterum cum angulis dantur et DKA, GKA, FKA, EKA, quare situs ipsins KA quater.

			1	den were donner.
	BDK 15°		. 162º 24	11" 139212
GA 2. 39. 15 11 99142	2 GK 1. 3	27. 18	165. 0.	9 28 AK: 139033 139258
FA 25. 41. 0. 10 100266		52 K4 V AT	omalia:	AK: 420059
		53. 51)(^ 1	. 101, 40,	20 1 138200
EA 7. 59. 52 📿 101487	7 EK . 4. 1	11. 10 8	164. 48.	55 139045
	•	•	I Omena AT	
			Quare AK	Vicaria
ADK 53º 40'.57"	DK	(A 34° 39' 28'	20° 5′ 16″ ¥	20 4' 32'' +
ADK 53º 40'.57"		A 34º 39' 28"	20° 5' 16" 💥	20° 4′ 32″)(
AOT 99 49 3	AV.	(A 34° 39' 23'' (A 45. 28. 27	20° 5′ 16″)(16. 55. 45)(20 [♀] 4′ 32″)(16. 59. 14)(
AGK 88. 49 3	Prodit GK	A 45. 28. 27	20° 5′ 16″)(16. 55. 45)(20 53 55 ¥	20 ⁹ 4' 32")(16. 59. 14)(20 58 54)
AGK 88. 49. 3 Compl. AFK 16. 47. 9	Prodit GK	A 45. 28. 27 A 12. 0. 4	20° 5′ 16″)(16. 55. 45)(20. 53. 55)(20 ⁹ 4' 32")(16. 59. 14)(20. 58. 54)(
AGK 88. 49 3	Prodit GK	A 45. 28. 27	20° 5′ 16″ \div 16. 55. 45 \div 20. 53. 55 \div 17. 26. 40 \div	20 [№] 4' 32")(16. 59. 14)(20. 58. 54)(17. 16. 86)(*)

Cum igitur hic primus et tertins locus admodum prope concentiant, putabit inconsideratior aliquis, standum ab illis, ceteros utcunque conciliandos, quod ipse quoque diu admodum tentavi. Sed cum conciliari non possent secundus et quartus, esset vero magna vis harum observationum, propteres quod in quadrato Solis utriusque visus sit planeta, et in quadrilatero AEKG omnia prope latera angulique aequales sint, ideo sic transegi. Vides ex vicaria, distare debere AK secundae observationis ab AK quartae. 17' 22". At per hanc assumtionem longitudinis AK distant per 30' 55", nimium igitur per 13' 33". Cumque omnes anguli quadrilateri sint propemodum aequales, bipartitus sum excessum hunc, et 6' 46" addidi ad angulos EKA, GKA. Nam in E observatione linea AK nimium processerat. in G non satis processerat. Retractis ergo AK versus E, G, et EK, GK manentibus (ponimus enim observationes esse certissimas) omnino anguli apud K augebuntur. Jam igitur datis angulis GKA 45°35' 13" et EKA 46° 51' 16", et manentibus angulis G, E et lineis GA, EA, prodiit AK 138765, 138787, differens 258 particulis a nostra assumtione. Totidem igitur si demamus et de reliquis duabus AK, ut sint 138954, 139000, prodenat anguli DKA 34° 43' 47" et AK 20° 9' 40"; FKA vero 12° 1' 24" et AK 20° 55' 15". Sed quia prius in G addidi 6' 46", et in E tantundem subtraxi; reposui ergo locos eccentricos in G 17º 2' 31" +, E 17º 19' 54" X, augens locum vicariae per 3' 17". Tantundem ergo de-Apad F 20° 57' 11" 💥 Hic vero inveni 20. 9. 40 20. 55. 15 Differentia 1. 51 plus.

1. 56 minus.

Itaque et reliquos duos locos sat propinque adduxi. Nam peocatis suis ultro citroque veritatem stant, quod facit ad securitatem. Et duorum scrupulorum errorem his locis ob zodiaci humilitatem et variationes horizontales observationi tribuere nihil est insolens.


In descendentis semicirculi consimili anomalia non suppetunt plures una observationes, sed quae satis sit certa. Anno enim 1593 nocte quae sequebatur 29. Junii h. 1. 30' post med. noctem, cum O esset in 17° 25' 42" O, distans a Terra 101760, longitudo O 10° 10° 1' 29", anomalia 161° 5' 29", et ideo O locus 6° 10' 5" $\Huge{\Box}$: visus est in 13° 37' 22" \oiint , lat. 4° 37' merid. Hinc complementum anguli ad Terram fuit 56° 11' 46", ad planetam seu parallaxis orbis annui 37° 27' 23". Unde prodit distantia O a O 139036. Supra vero, in anomalia 161° 45' 28", ubi distat Oab aphelio 40' longius quam hic, inventa et constituta est distantia 139000. Et haec 40' hoc eccentrici loco efficiunt particulas 52. Igitur hic quoque ex analogia nostrae anomaliae evaderet in anomalia 161° 45'/₃' distantia 138984 admirabili et certe suspecto consensu. Nam omnia adeo certa et exquisita esse vix possunt. Utrinque autem nonnihil augendae sunt distantiae ob inclinationem maximam hoc loco eccentrici.

Ex hac igitur longissima inductione per plurima loca eccentrici apparet, distantias Martis a Sole illas invicem aequales esse, quarum puncta orbitae aequaliter remota sunt ab aphelio, quod cap. XVI. et XLII. investigavimus: quod est evidens argumentum, aphelium illud recte habere (Eucl. III, 7). Comprobantur una et distantiae Solis a Terra, quae supra cap. XXIX. exstructae, hic jam varie usurpatae officium faciunt, nec ulla magna discrepantia pumerorum exstitit, quae de illarum vitio testari posset. Quae igitur ex hujus capitis observationibus exque inventis per eas distantiis in conformationem itineris planetarii redundant, quorum causa illas produximus hoc capite, ea differemus in caput LV. exponere. Prius enim isequenti cap. LII. ex his aliud aliquid demonstrandum, et cap. LIII. plures adhuc observationes in testimonium adducendae sunt.

Caput LII.

Demonstratio per observationes capitis LI, eccentricum planetae non circa centrum epicycli Solis, seu punctum medii loci Solis, sed circa ipsissimum corpus Solis ordinari: et lineam apsidum non per illud, sed per hoc transire.

Opportune accidit, ut distantiae cap. LI. inventae nos etiam de eo edoceant, quod cap. VI. XXVI. et XXXIII. promissum consilio huc usque distuli. Nam si recte ego eccentricum Martis super ipsum corpus Solis exstruxi, necesse est, vere etiam planetam in partibus, quae sunt circa 29° Q, longissime a Sole abesse: quae vero in utroque semicirculo hunc 29° Q aequalibus sequentur intervallis, aequaliter abesse a Sole, inaequaliter a puncto Solis vicario, quod Braheo est centrum epicycli Solis; minus scilicet, quae in semicirculo descendente. Quo obtento sequetur ultro, partes circa 24° Q non abesse longissime neque a corpore Solis idemque centro mundi Copernicano, quod est Braheo centrum epicycli Solis idemque centrum affixionis systematis planetarii, et partes a 24° Q in utroque semicirculo aequali arcu discedentes distare et a Sole et ab ejus puncto illo vicario inaequaliter. Exponatur enim centrum Solis A, linea apsidum Martis

AC, eccentricitas AC, et ED eccentricus, centro C; sitque F punctum supra AC aequatorium punctum, G aphelium, GFE, GFD aequales; et connectantur EA, DA, quae erant aequales, ut jam est demonstratum. Ejiciatur autem per A linea AB in $\overline{5}$; et ab A versus $\overline{5}$ extendatur AB, quantitate 1800, qualium AC 14140 fuit cap. XLII, et AE, AD 154400; et centrum B sit orbis Terrae. Quia ergo AB vergit in 5⁴/₂ ° \mathfrak{S} , AE in 15¹/₂ ° \mathfrak{M} , angulus igitar EAB est circiter 50° et acutus, EBA obtusus; quare longior EA quam EB. Pariter cum BA vergat in 5¹/₂ ° $\overline{5}$, sed AD in 12¹/₂ ° Π , ergo BAD est 157°, et

ABD acutus admodum; quare brevior AD, vel ei aequalis AE, quam BD. Multo igitur brevior BE quam BD; idque plane sensibiliter. Nam qui possumus contemnere AB 1800 et eo amplius, cum ne 200 quidem erroris observationes tolerare possint? Quare partes eccentri semicirculorum oppositorum aequaliter a G distantes, puta E, D, a nullo punctorum extra centrum aequaliter absunt, praeterquam a punctis in linea CA per corpus Solis transeunte.

Sed inquias, connexis B, C, et linea continuata, fit nova apsis, qua linea secat circulum: atque illi apsidi punctum D propius est quam E: nil

igitur mirum, et longiorem BD esse? Respondeo: qualescunque lineae ejiciantur, semper manent AE, AD, quia sunt ex observationibus demonstratae in triplici forma hypothesium: et ad demonstrationem hanc, quod controverti possit, assumtum plane nihil. Manentibus igitur AE, AD, ejiciatur sane BC, ut oppositum mihi est: illa tamen BC, ut demonstravi cap. VI. nequaquam gignit hypothesin aptam observatis anopropose; sed pro BC oportet, ut salvemus acronychias, ejicere per F ipsi CB parallelon FH, per F. H centra acqualitatis Martis et Solis. Hoc autem facto, una centrum eccentrici ex C in I transfertur, et plus quam semicirculus vergit versus E, minus versus D: nec relinquuntur AE, AD, sed prolongatur AE, abbreviatur AD: quibus lineis mutatis nunquam salvabuntur observationes extrasitum acronychium : quia hae testantur de acqualitate linearum AE, AD. Nec opus esse puto computatione. Si quis tamen hoc labore delectatur (quamvis nefas est astronomum numeris aliquid tentare, cujus fundamenta non prius vidit in geometria, quae jam laboris hujus fundamenta nobis evertit), is habet exemplum supra cap. XXIV, ubi distantias Telluris ab H, puncto aequalitatis motos Telluris, et distantiam Martis ab eodem H puncto in eadem operatione simul, iisdem observationibus computavi, quibus postea cap. XXVI. distantias ejusdem Telluris et Martis computavi ab A centro Solis. Methodi enim, qua sum usus, ingenium hoc est, ut doceat, quocunque puncto in plano circuli Telluris assumto, quod habeat descriptum et determinatum situm ad corpus Solis, tam in longitudine zodiaci, quam in remotione a Sole, per aliquot observationes docere et Telluris et Martis ab illo suscepto puncto distantiam; citra etiam cognitionem anomaliae eccentri coaequatae ad id punctum accommodatae: qua quidem ego cap. XXVI. tantummodo compendii causa usus sum.

Sed alia insuper ratione argumentari licet. Demonstratum est supra cap. XLIV, orbitam planetae non esse circulum, sed ovalem, ut cujus diameter, quae apsidum dicitur, sit longissima. Jam cap. LI. demonstratur, partes a G puncto aphelii remotas aequaliter ingredi etiam aequaliter ad latera. Ovalis ergo genuinus situs est circa lineam AC, non igitur circa lineam FH. Et qui varias Martis distantias computaverit a puncto H methodo jam commendata, deprehendet is magnam distantiarum irregularitatem, quae nullo pacto poterit includi neque circulo neque probabili alicui figurae, circa FH ordinatae.

Rursum itaque fidem cap. VI. et passim hoc opere oppigneratam citra ullam principii petitionem liberavi, et docui, eccentricum Martis non posse nisi ad Solem referri ipsum: ac proinde non solam rationem, sed ipsa etiam observata pro me stare, dum observationes Martis a medio motu Solis abductas ad ipsum apparentem Solis motum expendi.

Caput LIII.

Alia methodus explorandi distantias Martis a Sole per abiquot continuas. observationes ante et post situm acronychium: ubi simul etiam explorantur loca eccentrica.

Quia hic novas hypotheses condimus, inquirentes scilicet naturalem causam acquationum eccentri, decet omnia nobis esse quam exploratissima,

ne fundamentis neglectis ruinosum superstruatur aedificium. Itaque juvat eandem rem, verissimas scilicet Martis a Sole distantias pluribus methodis explorare. Sit α Sol, β locus Terrae ante oppositionem β cum (•), et $\alpha\beta\delta$

angulus visionis, seu elongatio arcuata δ a Sole. Sit similiter γ locus Terrae post oppositionem, et $\alpha\gamma\delta$ angulus visionis: sic ut primo tempore sit planeta in linea $\beta\delta$, altero in linea $\gamma\delta$, et conficiat vere viam $\partial\eta$. Dato itaque tempore duarum observationum, dabitur et angulus $\partial\alpha\eta$ sat praecise quocunque loco eccentrici, ex hypothesi vicaria. Quodsi bina tempora non longe ab invicem distiterint, aut si planeta versetur circa apsidas vel longitudines medias, mediocriter etiam cognoscetur differentia longitudinis linearum $\alpha\vartheta$, $\alpha\eta$. Imo vero tantum jam habemus in praecognitis, ut nulla hic difficultas relinquatur. Quodsi itaque ad angulos $\vartheta\beta\alpha$, $\eta\gamma\alpha$, ex

observatione datos, et $\beta \alpha$, $\gamma \alpha$ cognitas ex parte tertia, assumserimus $\partial \alpha$ et propterea $\eta \alpha$, patet, si haec assumtio longior justo faerit, ut $\varkappa \alpha$, $\iota \alpha$, tunc angulum $\iota \alpha \varkappa$ minorem justo proditurum; sin brevior justo færit, ut $\zeta \alpha$, $\varepsilon \alpha$, angulum $\varepsilon \alpha \zeta$ proditurum justo majorem. Itaque tales erunt distantiae assumendae, quae justum nobis constituant angulum motus eccentrici.

Eodem modo prodetur hic etiam error, si quis forte superest, in loco eccentrico. Esto enim, ut $\vartheta \alpha$, $\eta \alpha$ teneant justa loca; deinde transferatur $\vartheta \alpha$ in consequentia, per errorem, angulo $\vartheta \alpha \delta$; et $\eta \alpha$ similiter in consequentia, angulo aequali $\eta \alpha \epsilon$; vides, quod pro $\alpha \vartheta$ futura est $\alpha \delta$ admodum longa, et pro $\alpha \eta$ successura est $\alpha \epsilon$ valde brevis, contra quam ex hypothesi praecognoscitur. Oportet autem non omnino minimum esse angulum $\gamma \alpha \beta$, ne error observationis vel minimus, in contrarias partes coeli vergens, (quod fieri potest) magnum aliquid importet. Hac itaque methodo nobis est eundum per annos 1582 in \mathfrak{S} , 1585 in \mathfrak{Q} , 1587 in \mathfrak{M} , 1589 in \mathfrak{M} , 1591 in \mathfrak{A} , 1593 in \mathfrak{H} , 1595 in \mathfrak{S} . Nam ubique observationes sufficientes ad manus sunt.

Quodsi lubet demonstrative investigare, quanam elongatione Telluris a linea per Solem et planetam omnium evidentissime sentiatur, si quid est in distantia Martis a Sole peccatum, consulatur cap. VI. Nam ex eo definietur nobis angulus ad Solem tantus, ut ejus sinus proportio ad radium

aequet fere proportionem excessus distantiae Martis a Sole super complementi anguli sinum ad ipsam hanc distantiam. Sit enim a Sol. I planeta, v§ orbis Terrae. Ex I erigatur recta $\theta \mu$ perpendicularis ad $\theta \alpha$; et in $\theta \mu$ sumantur centra aliquot, ex quibus circuli per θ describantur, donec eorum unus aliquis tangat orbem Telluris in v. Erit v punctum, ubi defectus ipsius $\alpha \theta$ in θ apparet evidentissime, hoc ubi maximum angulum subtendit. Ducatu et v ipsi $\mu \theta$ parallelos vo, secans $\alpha \theta$ in o. Dico, ut est o θ ad $\theta \alpha$, sic esse ov ad va. Nam ut μ , hoc est $\theta \mu$ ad $\mu \alpha$, sic est ov ad va. Sed $\nu \mu$ est ad $\mu \alpha$, ut o θ et fere § θ , ad $\theta \alpha$. Ergo §c. Sit $\alpha \theta$ 161000, erit § θ 61000 fere. Et

ut 161 ad 61, sic 100000 ad 37887. Qui sinus ostendit angulum rað 22° 15', et majorem, si pro fð sumas jam oð.

Itaque donec anomalia commutationis varietur $22 \frac{1}{4}^{\circ}$, multi dies, pene scilicet 45 abeunt, post quos vel ante quos $\alpha \vartheta$ longe est alia. In aphelio igitur hic angulus commutationis est 28° circiter, in perihelio $18\frac{1}{6}^{\circ}$ circiter.

His limitibus evidentissimi erroris, si quis oritur ex vitiosa distantia Martis a Sole, inventis, jam facile nobis est, idoneas seligere observationes, ubi copiosae in promtu sunt.

Incipiemus ab oppositione anni 1582, ex quo anno seligemus observationes istas.

Anno 1582 d. 24. Nov. mane h. 4.	26.	Dec. b.	8. 80'.	30. Dec	L b. 8. 10	26	Anno 1583 Jan. h. 6. 15'.
Visus in . 26° 38' 30"	αβ	Dec. h. 17° 40' 4. 7. 15. 4. 982 49. 39. 16. 7. 16. 6. 1630	30" & 0 b. 12 Z 226 10 23 @	16° 4. 19. αγ 47. 17. αη 17.	0' 30'' 8. 0 b 8. 31 2 98252 51. 35 57. 32 6	ay	8° 20' 30" ⊕ 2. 52. 12 b. 16. 33. 20 98624 34. 8. 15 0. 9. 40 ♀ 0. 9. 30 ♀
Per latitudinem . 158960		163			158907		164196.

Different duae mediae per 4240. Et quidem brevior est posterior $\alpha \eta$, cum debuerit esse longior per 336. Summa igitur utriusque 322054. Unde aufero 336 iterumque addo. Constitutorum dimidia sunt 160859, nimirum $\alpha \theta$, et 161363, scilicet $\alpha \eta$. Eritque $\alpha \theta$ in 16° 5' \mathfrak{S} , et $\alpha \eta$ in 17° 55' \mathfrak{S} . Itaque hic vicaria amitteret 1¹/₂'.

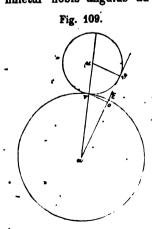
Ipsae vero distantiae ob angulum istum tam parvum sunt infidae. Name si angulus ϑ varietur uno minuto vitio observandi, quod facile contingit, mille particulis in qualibet distantia aberrabimus. Sumantur igitur duae remotiores, quae inveniuntur differre per 5236. At praecognoscimus, debere differre circiter 5570. Itaque operatione peracta ut prius, prodeunt veriores $\vartheta \alpha$ 158792 et $\alpha \eta$ 164364: ut sit $\alpha \vartheta$ in 0° 41' 0" \mathfrak{S} , $\alpha \eta$ in 0° 8' 30" \mathcal{Q} . Et fit certum, per 4 dierum observationes hoc loco adimendum esse locis eccentricis, ex vicaria nostra depromtis, circiter 1⁴/₂. Confirmantur etiam mediocriter distantiae prius inventae, cis et ultra oppositionem, quae prodierunt mensura media inter has; nisi quod analogia indicat, paulo longiores esse debere. Patet autem simul, si angulus $\vartheta \vartheta \eta$ uno minuto vitiatus sit, vitiari utramque distantiam particulis circiter 50, non plus. In distantiis igitur his vix centesima pars peccari potest incertitudinis prioris.

Quodsi qua suscepta longitudo distantiarum satisfacit observatis horum 4 dierum, ea dierum interjectorum observata itidem exprimet : nempe 25-27. Nov., 3. 17. 27-29. Dec. a. 1582, 16-19. 21. 22. Jan. 1583.

Transeamus ad oppositionem anni 1585. Dum enim ejus anni die 31. Jan. esset oppositio O et C, observatus est planeta creberzime per duos menses praecedentes totidemque sequentes. Inde sumemus has 4 observationes.

Anno 1584	Anno 1585	
d. 21. Dec. h. 14.	-24. Jan. h. 9. 4. Febr. h. 6. 40'. 12. Mart. h. 10. 30	۲.
d visus in 1º 18' 30" 11	p 24° 7' 80" Q 19° 47' 30" Q 11° 46' 0" Q	2
Latitudo 8. 31. b.	4. 31. b. 4. 28. b. 3, 22. b.	

ne fundamentis neglectis ruinosum superstruatur aedificium. Itaque juvat eandem rem, verissimas scilicet Martis a Sole distantias pluribus methodis explorare. Sit α Sol, β locus Terrae ante oppositionem β cum (\bullet) , et $\alpha\beta\delta$



angulus visionis, seu elongatio arcuata δ a Sole. Sit similiter γ locus Terrae post oppositionem, et $\alpha\gamma\delta$ angulus visionis: sic ut primo tempore sit planeta in linea $\beta\delta$, altero in linea $\gamma\delta$, et conficiat vere viam $\partial\eta$. Dato itaque tempore duarum observationum, dabitur et angulus $\partial\alpha\eta$ sat praecise quocunque loco eccentrici, ex hypothesi vicaria. Quodsi bina tempora non longe ab invicem distiterint, aut si planeta versetur circa apsidas vel longitudines medias, mediocritar etiam cognoscetur differentia longitudinis linearum $\alpha\vartheta$, $\alpha\eta$. Imo vero tantum jam habemus in praecognitis, ut nulla hic difficultas relinquatur. Quodsi itaque ad angulos $\vartheta\beta\alpha$, $\eta\gamma\alpha$, ex

observatione datos, et $\beta \alpha$, $\gamma \alpha$ cognitas ex parte tertia, assumserimus $\partial \alpha$ et propterea $\eta \alpha$, patet, si haec assumtio longior justo fuerit, ut $\varkappa \alpha$, $\iota \alpha$, tunc angulum $\iota \alpha \varkappa$ minorem justo proditurum; sin brevior justo fuerit, ut $\zeta \alpha$, $\epsilon \alpha$, angulum $\epsilon \alpha \zeta$ proditurum justo majorem. Itaque tales erunt distantiae assumendae, quae justum nobis constituant angulum motus eccentrici.

Eodem modo prodetur hic etiam error, si quis forte superest, in loco eccentrico. Esto enim, ut $\vartheta \alpha$, $\eta \alpha$ teneant justa loca; deinde transferatur $\vartheta \alpha$ in consequentia, per errorem, angulo $\vartheta \alpha \delta$; et $\eta \alpha$ similiter in consequentia, angulo aequali $\eta \alpha s$; vides, quod pro $\alpha \vartheta$ futura est $\alpha \vartheta$ admodum longa, et pro $\alpha \eta$ successura est αs valde brevis, contra quam ex hypothesi praecognoscitur. Oportet autem non omnino minimum esse angulum $\gamma \alpha \beta$, ne error observationis vel minimus, in contrarias partes coeli vergens, (quod fieri potest) magnum aliquid importet. Hac itaque methodo nobis est eundum per annos 1582 in \odot , 1585 in Ω , 1587 in \mathfrak{P} , 1589 in \mathfrak{N} , 1591 in χ^2 , 1593 in \mathfrak{H} , 1595 in \mathfrak{H} . Nam ubique observationes sufficientes ad manus sunt.

Quodsi lubet demonstrative investigare, quanam elongatione Telluris a linea per Solem et planetam omnium evidentissime sentiatur, si quid est in distantia Martis a Sole peccatum, consulatur cap. VI. Nam ex eo definietur nobis angulus ad Solem tantas, ut ejus sinus proportio ad radium

aequet fere proportionem excessus distantiae Martis a Sole super complementi anguli sinum ad ipsam hane distantiam. Sit enim a Sol, d planeta, v\$ orbis Terrae. Ex d erigatur recta $\partial \mu$ perpendicularis ad ∂a ; et in $\partial \mu$ sumantur centra aliquot, ex quibus circuli per d describantur, donec corum unus aliquis tangat orbem Telluris in r. Erit v punctum, ubi defectus ipsius a d in d apparet evidentissime, hoc e ubi maximum angulum subtendit. Ducatu et v ipsi $\mu \partial$ parallelos vo, secans a d in o. Dico, ut est o d ad ∂a , sic esse ov ad va. Nam ut μ , hoc est $\partial \mu$ ad μa , sic est ov ad va. Sed $\nu \mu$ est ad μa , ut o d et fere $\xi \partial$, ad ∂a . Ergo §c. Sit a d 161000, erit $\xi \partial$ 61000 fere. Et

ut 161 ad 61, sic 100000 ad 37887. Qui sinus ostendit angulum va d 22° 15′, et majorem, si pro §d sumas jam od.

Itaque donec anomalia commutationis varietur $22 \frac{1}{4}^{\circ}$, multi dies, pene scilicet 45 abeunt, post quos vel ante quos $\alpha \vartheta$ longe est alia. In aphelio igitur hic angulus commutationis est 28° circiter, in perihelio 18⁴/₉° circiter.

His limitibus evidentissimi erroris, si quis oritur ex vitiosa distantia Martis a Sole, inventis, jam facile nobis est, idoneas seligere observationes, ubi copiosae in promtu sunt.

Incipiemus ab oppositione anni 1582, ex quo anno seligemus observationes istas.

Anno 1582 d. 24. Nov. mane h. 4.	26.	Dec. h. 8.	80.30.	. Dec. h. 8.		Anno 1583 an. h. 6. 15'.
Visa latitudo 2. 49. 10 h	5.	17° 40' 30 4. 7. 0 15. 4. 12 98226	b .	16° 0' 30'' 4. 8. 0 19. 8. 31 98252	b.	8° 20' 30'' @ 2. 52. 12 b. 6. 33. 20 98624
	9	49. 39. 10 16. 7. 10 16. 6. 23 163082 163147	Ο Ο αη αη	47. 51. 35 17. 57. 32 17. 56. 45 158842 158907	0	4. 8. 15 0. 9. 40 Q 0. 9. 30 Q 164116 ⁽¹⁾ 164196.

Differunt duae mediae per 4240. Et quidem brevior est posterior $\alpha \eta$, cum debuerit esse longior per 336. Summa igitur utriusque 322054. Unde anfero 336 iterumque addo. Constitutorum dimidia sunt 160859, nimirum $\alpha \theta$, et 161363, scilicet $\alpha \eta$. Eritque $\alpha \theta$ in 16° 5′ Θ , et $\alpha \eta$ in 17° 55′ Θ . Itaque hic vicaria amitteret 1¹/₂′.

Ipsae vero distantiae ob angulum istum tam parvum sunt infidae. Nam si angulus ϑ varietur uno minuto vitio observandi, quod facile contingit, mille particulis in qualibet distantia aberrabimus. Sumantur igitur duae romotiores, quae inveniuntur differre per 5236. At praecognoscimus, debere differre circiter 5570. Itaque operatione peracta ut prius, prodeunt veriores $\vartheta \alpha$ 158792 et $\alpha \eta$ 164364: ut sit $\alpha \vartheta$ in 0° 41' 0" \mathfrak{S} , $\alpha \eta$ in 0° 8' 30" \mathfrak{Q} . Et fit certum, per 4 dierum observationes hoc loco adimendum esse locis eccentricis, ex vicaria nostra depromtis, circiter 1 $\frac{1}{2}$. Confirmantur etiam mediocriter distantiae prius inventae, cis et ultra oppositionem, quae prodierunt mensura media inter has; nisi quod analogia indicat, paulo longiores esse debere. Patet autem simul, si angulus $\vartheta \vartheta \eta$ uno minuto vitiatus sit, vitiari utramque distantiam particulis circiter 50, non plus. In distantiis igitur his vix centesima pars peccari potest incertitudinis prioris.

Quodsi qua suscepta longitudo distantiarum satisfacit observatis horum 4 dierum, ea dierum interjectorum observata itidem exprimet : nempe 25-27. Nov., 3. 17. 27-29. Dec. a. 1582, 16-19. 21. 22. Jan. 1583.

Transeamus ad oppositionem anni 1585. Dum enim ejus anni die 31. Jan. esset oppositio () et &, observatus est planeta creberrine per duos menses praecedentes totidemque sequentes. Inde sumemus has 4 observationes.

Anno 1584	Anno 1585	1
d. 21. Dec. h. 14.	24. Jan. h. 9.	4. Febr. h. 6. 40'. 12. Mart. h. 10. 30'.
J visus in 1º 13' 30" mp Latitudo 8. 31. b.	24° 7′ 80″ Q 4. 31. b.	19° 47' 30" Q 11° 46' 0" Q 4. 28. b. 3, 22. b.

Anno 1584	Anno 1585		
d. 21. Dec. h. 14.	24. Jan. h. 9.	4. Febr. h. 6. 40.	12. Mart. h.10. 30'.
Sol in 10. 43. 5 5	15. 9. 5 🗯	26. 10. 31 333	2. 16. 42 Y
Distabat a Terra . 98210 Anomalia media d 29. 46. 53	98595 12. 4. 21 18. 49. 0 Q	98840 6. 21. 31 23. 34. 47 Ω	99850 12. 47. 15 9. 23. 28 110
Locus eccentricus 3. 54. 34 Ω In ecliptica . 3. 53. 56 Ω Hine α3 165101	18. 49. 0 Q 18. 49. 3 Q 166290	23. 35. 0 Q et an 166182	9. 24. 7 11 166131
Per latitudinem . 165184	166378	166260	166206

Fig. 108.

Fig. 109.

Differunt duae mediae per 118. Debuerunt differre per 187 in contrarium: sic ut $\alpha \vartheta$ esset 166226 et $\alpha \eta$ 166412. Ergo $\alpha \vartheta$ cadit in 18° \mathfrak{G} 47" \mathfrak{Q} , et $\alpha \eta$ in 23° 34' 48" \mathfrak{Q} . Itaque tam contemta mutatione loci eccentrici confirmatur hoc loco vicaria. Sed intelligimus hinc, quod unius minuti error in observatione hoc loco utramque distantiam 100 particulis circiter sit vitiaturus. Consultis itaque remotioribus, invenitur earnm differentia 1022. Debuit esse ex praecognitione mediocri hypotheseos major differentia, scilicet 1275. Nimirum 4° \mathfrak{Q} vicinus est 18° \mathfrak{G} , ubi prius aliquid fuit auferendum loco eocentrico vicariae. Quodsi ademeris 1' in 4° \mathfrak{R}

jam 100 particulis breviorem efficies $\alpha \vartheta$; et si 2¹/₂', efficies 164934 circiter, nimirum tam brevem, ut et $\alpha \eta$ retinere possit hanc longitudinem 166206, et prius anno 1583, ultima observatio, quae longitudinem exhibuit 164364, conciliari cum ista possit. Debebant enim differre per 488, indice hypothesi distantiarum, satis ad hoc certa et praecognita, cum per 570 differant. Potest autem illa mutatio eccentrici loci 2⁴/₂' ex dimidio transferri in observationes. Nam si harum alterutra aberravit 1', poterit id efficere 50 particulas erroris in utraque distantia.

Taediosum esset, eandem methodum totidem verbis repetere per omnes oppositionum annos. Itaque in tabella sequenti posui observationes ipsas quas consului; et adjunxi, quid computa-

tione prodierit. Hypotheses calculi sunt hae: locus \odot sumtus est ex Braheo. Distantiae \odot et Terrae ex cap. XXX. Aphelium σ anno 1600. completo in 29° 0²/₈ · Q. Motus medius eodem tempore 10° 7° 14' 34". Eccentricitas et proportio orbium ut cap. LIV. Quibus adjunxi distantias σ a \odot quasi praecognitas. Itaque si per has distantias aequamus observationes propositas, erunt distantiae hae justae: quas erat mihi hoc capite propositum indagare,

Pars Quarta. Caput LIII.

.

,

Differentia Latitudo	1, 30, + 2, 49, ber. 3. 49 + 4, 7 5. 50 + 4, 8 2. 33 - 2, 52 2. 52	+ + 8: 81 - 9: 22 - 3: 2	+	2. 4 1. 10 0. 4 0. 7	25 aunt. 55 8 45	46 7 52 17	42 6 17 bor.
	54445 83 83 83 83 83 83 83 83 83 83 83 83 83	∞i≠i≠ini. +		•.	45 8 8 55	128.7	0406
	2223 2223	+111		87770			
Differentia	80, 80, 830,	••••			Ni 19 4	ත්ත්ත්	
Differe			111+	+++		1111	11+1
Ā	ا تفضيع ا	28 32 *	30 0 ⁵ 9 0	43 40 57 57	24 15 39 39	31 36 19 16	29 29 59
	- 03 83 64	よううえ	000 -	~~~~	40,410	NONO	-000
B	ଚଚ୍ଚ୍ଚ	F 7444	{[₽₽₽	₽₽₽`{[NQKXKXKX	****	αααα
E e	30 3 0, 30,	00330	20 15 20	20 20 20 20	0 38 0 0	45 15 10 10	0 3 4 2
do a	20.0 \$0.	13. 47. 48.	42. 25. 48.	16. 43. 7.	20. 15. 10.	45. 14. 50.	4 0. 1 8. 7
Locus observatus	26. 16. 18.	1. 24. 19.	26. 26. 15.	27.9 4 . 27.9	27. 26. 21.	7.11.7.	26. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
computatua	***	≣ ශශශ	{ ===	eee}[12xxxx	****	αααα
ap at	20 20 57	34 58 52 31	50 41 50	1202	21 21 21 21	241 33	2998 T
	14 0 1 6 0	4 3. 4 3.	49. 54. 49. 56.	4 4 8 8 8°	5 - 2 · 4	4 4 7 6 7 6 7 6 7 6	30.02 °C
Locus	26° 17. 8.	1. 24. 19.	28. 15. 15.	2. 4 6. 72	27. 23. 21.	12.24	26. 16. 11.
ä	ଚ ଚ ଚ ଙ୍	ನೆನಡ <u>್</u> ಕ್	₽₽₽ {[{[≡≡≡	5x5x5x42.	⁸ ≭≭≻	⊨ αα⊰
eccentrious ecliptica	11″ 18 32 24	38 2 1	5556	36 1 6 1 6	33 4 8 8 3 8 4 8 8 8 8 8 8 8 8 8 8	30 22 38 30 22 38	58 33 33 38 40
ocentriot ecliption	\$ 2, 56, 7, 6,	51. 47. 33. 23.	44. 35. 35.	30.4.4.55	29.28.2	15. 37. 19.	64 20 85 ev
• •0	0 5 7 0	9. 23. 29. 99 18. 99	10 ,24,8		27.25 FS	00040	22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0	21 43	20002	232	58 5 70	8181	83 82 87	3905
ở a ⊙ distantia	158852 162104 162443 162443 164421	164907 166210 166400 166400 166170	166232 164737 164382 164382 161027	161000 157141 156900 154326	147891 144981 144588 142808	138376 138463 138682 140697	143222 147890 147890 148773 154539
	5000	8083	- 220	0000	2884	8238	0
© a Terra distantia	98345 98226 98252 98624	98207 98595 98830 98830	98611 99595 99780 101010	99736 99736 100810 100866 101366	101467 101769 101789 101789	101498 100761 100562 99500	99990 98851 98694 98694
03			-			1	
0	rx hQhQ !!	12888≻	¦¦≭≭∞	ααακ		⋳ ⋳ <u>⋹</u>	\{ EE rq
Loeus	838 F	1603	4 850	* 3888	4 7 5 1 5 1	26 11 15 15	8 8 8 8
н	19.00	0.48.4	28.29	80° 80° 80° 80° 80° 80° 80° 80° 80° 80° 80° 80° 80°	5, 20 17 10	8.6.1.05	3 3 3 4 5 5 5 6
	çőőç	ခဲ့ခ်ခံ	3820	20 2 5 2 5	2500	0000	\$000 ¥
	ත් හූ හූ න	4 000	9 1 3 .	12 12 14 16 14 16 14	4510	4400	6 6 6 6
3	A * * *	FFF	* * * * * 	* * * * *			RRFE
Tempus	LOUN POOL	Mart. Mart	Jan. Mart. Mart.	Mart. April. April. Maji	Sa an	Julii Aug Oct	Dec. Sept
	28.23 29.23	244	X4 05	<u>ૡ</u> ૡ ૡ ૡ	81 0 0 83	2020	7. 7. 8. 8. 18. 9. 19.
	1 582 . 1583.	1584. 1585.	1587.	1589.	1591.	1593.	1595.

•

-,

•

Distantiae igitur, methodo capitis hujus inquisitae ex observatis hic positis, prodibunt hae ipsae. Loca vero apparentia, quando Mars motu eccentrico in Cancro versatur, prodibunt circiter 4' anteriora, in x^{*} et \mathcal{F} per totidem promotiora. Neque veniunt hi errorculi ex distantiis vitiosis : non enim essent in contrariis plagis ejusdem, sed contrariae qualitatis. Existimo, illos conciliari posse mutatione apogaei \odot per 1°, quod per observata Brahei facile licet. Nihil tamen definio in praesens. Reservatur enim et hujus apogaei et totius hypotheseos correctio in opus Tabularum⁹⁴).

Caput LIV.

Accuratius examen proportionis orbium.

Capite XLII. constituimus sane proportionem orbium ex observationibus extra situm acronychium, sed iis non undique ad $\pi\lambda\eta\rho\rho\rho\rho\rho\mu\alpha\sigma$ nostram sibi mutuo consentientibus. Atque etiam per se, si vel exactissimae dentur observationes, negotium hoc ipsum ad 100 particularum certitudinem adduci nequit. Agendum igitur suffragiis et votorum numero. Ac cum cap. XXVIII. in anomalia media 11° 37', hoc est post correctionem cap. LIII. praecedentis in anomalia 11° 52', inventa sit distantia puncti ecliptici, in quod perpendicularis a corpore Martis descendit, 166180 vel 166208; cumque locus hic absit a limite boreo 23°, inclinatio erit 1° 43' circiter; excessus secantis 45 particulae, quae sunt in nostra dimensione 70 circiter. Martis igitur a Sole distantia 166250 vel 166278.

Jam comparabinus etiam observata cap. LI, ut consensu mediocri fulciamur. Anno 1586 in anomaliae mediae residuo 10° 9' 41", hoc est post correctionem 9° 54' 41", invenimus 166311, sed subtractione facta 1 $\frac{4}{2}$ de loco, quem vicaria exhibuit, invenimus 166208. Duobus igitur gradibus minus 3' inferius, demendae circiter 95, sic ut sint 166113. Rursum addendae 80 ob latitudinem, ut sint 166193. Sic anno 1588, cum esset residuum anomaliae 8° 2' 51", hoc est correcte 7° 47' 51", per subtractionem 1 $\frac{4}{2}$ a loco ex vicaria hypothesi, invenimus distantiam 166396. Itaque 4° et 4' inferius erit brevior circiter 102, scilicet 166294, et propter latitudinem 166284, prius 166193 ex anno 1586, quorum medium 166238. In descendente vero, ex 5 observationibus inveneramus 166250 vel 166278. Quamvis igitur insensibile sit discrimen, sumamus tamen mediam 166260; ita ut plus fidamus descendenti semicirculo ut ab observationibus confirmatiori.

Sit igitur hoc certum, in anomalia media 11° 52' distantiam esse 166260. Quare si quantumlibet crasso modo praeconcipias hypothesin, quae paulo post confirmanda est, sequitur, qualium radius est 100000, talium particularum non ultra 164 posse accrescere distantiae apheliae, minus etiam, si utaris..hypothesi perfecti circuli. Illae vero particulae, per praeconceptam proportionem orbium, ut illa cap. XLII. est constituta, redactae, efficient circiter 250; et hae additae ad 166260 efficient 166510. Supra vero cap. XLII. invenimus ex infirmioribus observationibus 166780, differentia 270 particularum.

Agemus sic etiam cum distantía perihelia, quae cap. XLII. fuit inventa 138500, ex observationibus non sat firmis.

Jam cap. LI. ad anomaliae residuum 161° $45'_{12}'$, hoc est post correctionem 161° $30'_{12}'$, invenimus distantiam citra correctionem latitudinis 139000 vel 138984. Sit autem 139000 in 21° \mathcal{H} . Qui locus cum 35° absit a limite, ideoque inclinatio 1° $31'_{12}'$, erit excessus secantis $35'_{12}$, quae valent 49 in nostra dimensione. Itaque distantia vera Martis a Sole 139049. At si radius est 100000, distantia perihelia est 575 particulis brevior, quam illa in anomalia 161 $'_{12}$ °, quae faciunt in nostra dimensione 876 particulas, minus, si perfecto circulo utereris. Atque hae sublatae ab 139049, relinquunt pro perihelia distantia 138173. Differentia 327 ab 138500 cap. XLII. inventa.

Secundum hanc igitur methodum invenitur

Aphelia	166510
Perihelia .	138173
Diameter .	304683
Semidiameter	152342
Eccentricitas	14169
44400 0. 00	~ 4

Qualium autem 152342 fit 100000, talium 14169 fit 9301.

Sed tamen quia observata nostra, praesertim in perigaeo, tantam differentiam non ferunt; et quia fieri potest, ut vicaria, utpote falsa, aliquid etiam vitii admittat in eccentricitatem: priusquam certo concludatur, omnia vota colligantur. Apheliam itaque distantiam hic inventam, puta 166510, aptemus ad eccentricitatem cap. XLII, quae fuit 9265. Ut igitur 109265 ad 90735, sic 166510 ad 138274, ubi radius est quam proxime 152400. Docuit vero etiam multiplex experientia, verissimam eccentricitatem et quae physicis aequationibus sit convenientissima, esse inter 9230 et 9300, hoc est, hanc ipsam cap. XLII, scilicet 9265. Ut igitur neque nimium deseramus periheliam inventam hoc capite, scilicet 138173, neque nimium fidamus apheliae 166510, concludamus, apheliam verissimam esse 166465, periheliam 138234, nbi radius 152350.

Caput LV.

Demonstratur ex observationibus capitum LI. LIII. et proportione orbium capitis LIV, peccare hypothesis capite XLV. arreptam, et distantias in mediis longitudinibus justo breviores efficere.

Id quidem capite LI. coepi dicere. Sed quia observationes plures et magis idoneae per cap. LIII. fuerunt instruendae ad dicendum testimonium, ex quibus simul etiam cap. LII. aliud aliquid inferebatur: ideo differenda fuit hucusque plena rei demonstratio.

Nihil opus est verbis. Ad anomalias medias exemplorum omnium, quotquot occurrunt per cap. LI. et LIII, computentur distantiae ex hypothesi capitis XLV. et proportione orbium capitis LIV, methodo illa, qua usus sum inde a XLVI. capite usque ad cap. L: atque illae comparentur ad distantias cap. LI. et LIII, inventas ex observationibus infallibilibus: apparebitque, quo magis ab apsidibus descenderimus, deficere computatas distantias ab observatis distantiis, ita ut contmarium ejus fiat, quod supra cap. XLIV. deprehendimus. Ibi enim distantiae ex lege circuli computates

longiores erant in mediis longitudinibus, quam observatae: hic distantiae, quas hypothesis illa efficit, quae ovalem planetae orbitam efficit, breviores Ergo patet, viam planetae neque circulum esse, neque tantum a finnt. circulo ingredi ad latera, quantum ovalis illa, ex cap. XLV. opinione orta et cap. XLVI. descripta, ingreditur, sed media incedere via. Et vicissim. usurpatis distantiis cap. XLV, si computaveris loca visa Martis, praesertim illa, quae cap. LIII. eminus oppositionem circumstant, cadet tibi ante oppositionem planeta nimis in consequentia, post oppositionem nimis in antecedentia. Atque id anno 1589 et 1591 in descendente semicirculo, et anno 1582, 1595 in ascendente, est evidentissimum. Nam ibi loci peccat ovalis ista cap. XLV. 660 particulis in defectu. ut circulus perfectus totidem peccat in excessu: quae possunt in apparentia efficere 20' et amplius. Itaque et David Fabricius ex suis observatis hypothesin meam capitis XLV. quam ipsi pro vera communicaveram, erroris hujus, nimis curtarum distantiarum in mediis longitudinibus, coarguere potuit, eo ipso tempore scriptis literis, quo ego in inquirenda vera hypothesi, repetita cura, laboravi. Adeo parum abfuit, quin ille me in deprehendenda veritate praeverteret. (Comp. p. 95). Cumque perfectus circulus tantundem peccet in contrarium, hinc argumentamur recte, veritatem esse in utriusque medio.

Atque idem etiam capitibus XLIX. L. testabantur aequationes ex causis physicis computatae; lunulam nempe, quae a perfecto semicirculo resecatur, debere saltem dimidiam habere latitudinem ejus, quam opinio cap. XLV. resecat. Itaque nihil nos impedit, quin rem certissime demonstratam esse dicamus: opinionem scilicet cap. XLV, dum excessui perfecti circuli medetur, in contrarium defectum incidere. Itaque causae physicae cap. XLV. in fumos abeunt.

Caput LVI.

Demonstratio ex observationibus ante positis, distantias Martis a Sole desumendas esse quasi ex diametro epicycli.

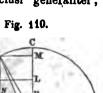
Inventa est supra cap. XLVI. latitudo lunulae, quam peperit nobis opinio cap. XLV, docuitque resecandam a semicirculo; haec, inquam, inventa est partium 858, qualium circuli semidiameter est 100000. Cum igitur duobus argumentis, quae cap. XLIX. L. et LV. praemisi, non obscure colligerem, lunulae illius latitudinem dimidiam tantum assumendam, scilicet 429, correctius 432, et in dimensione, qualium semidiameter Martis est 152350, fere 660: coepi de causis et modo cogitare, quibus tantae latitudinis lunula rescinderetur.

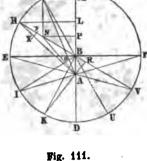
Qua in cogitatione dum versor anxie, dum reputo cap. XLV. plane nihil dictum esse, itaque futilem fuisse meum de Marte triumphum, forte fortuito incido in secantem anguli 5,º 18', quae est mensura aequationis opticae maximae. Quem cum viderem esse 100429, hic quasi e somno expergefactus, et novam lucem intuitus, sic coepi ratiocinari. In longitudinibus mediis aequationis pars optica fit maxima. In longitudinibus mediis lunula seu curtatio distantiarum est maxima, estque tanta, quantus est excessus secantis aequationis opticae maximae 100429 supra radium 100000.

Digitized by Google

.

Ergo si pro secante usurpetur radius in longitudine media, efficitur id. quod suadent observationes. Et in schemate cap. XL. conclusi generaliter, si pro HA usurpes HR, pro VA vero VR, et pro EA substituas EB et sic in omnibus, fiet idem in locis ceteris eccentrici, quod hic factum in longitudinibus mediis. Et per acquipollentiam in schemate parvo cap. XXXIX. pro lineis $\alpha\delta$ vel α : sumetur αn , pro αs vel $\alpha \lambda$ sumetur $\alpha \mu$.


Rursum itaque lector percurrat caput XXXIX. Inveniet ibi, jam antea ex naturalibus causis disputatum esse, quod hic observationes ultro testantur, consentaneum scilicet videri, planetam in diametro quasi epicycli, quae perpetuo ad Solem tendat, librationem aliquam perficere. Inveniet etiam, nihil magis cum hac sententia pugnasse quam hoc, quod tanc, cum sumeremus repraesentandum perfectum circulum, coacti sumus librationis partes γ_i et $\lambda \zeta$, summas imis (quae aequalibus eccentrici arcubus respondent) facere inaequales, et breves summas, longas imas. Jam igitur, negato circulari planetae itinere et usurpatis x α , $\mu\alpha$ pro $\delta\alpha$, $e\alpha$, hoc est pro $i\alpha$, $\lambda\alpha$ ut dictum est, sequitur ultro, partes librationis illas, puta γx , $\mu \zeta$ esse aequales. Ita quod cap. XXXIX. diu nos torserat, jam cedit nobis in argumentum deprehensae veritatis.


De eo vero, quod partes mediae $\times \mu$ adhuc sant majores extremis $\gamma \pi$, $\mu \zeta$, dicetur sequenti cap. LVII, quod sit naturae consentaneum, contra quam cap. XXXIX. intelligere poteramus. Sed et illa difficultas, quae cap. XXXIX. oriebatur, si diametri Solis augmentum planetae pro signo accessus et recessus poneretur, jam penitus evanescit, ut apparebit capite LVII. Igitur de anomalia eccentri 90° facile mihi fuit praedicto modo deprehendere, pro EA distantia perfecti circuli sumendam esse EB, respondentem coaequatae EAB. Quod vero unius exemple anomaliae generaliter conclusi de omnibus, id ex una nondum sequebatur, sed opus erat crebris observationibns stabiliri.

Jam igitur intelligis, quorsum praecipue nobis servire jubeantur observata capitum LL LIII, nimirum ad testimonium hic dicendum.

Quare age ad anomalias coaequatas illis capitibus expositas, scilicet ad angulos CAG, CAH et ceteros, computentur anomaliae eccentrici CBG, CBH. Nec opus est, ut scrupulos consecteris, aut metuas ab imperfectione aequationum eccentrici, quae restant adhuc cap. XIX. XXIX. XLIII. XLVII—L. Utere quacunque ex his methodis, praesertim cap. XLIII, non errabis in aequationibus ultra 8'. Constitutis angulis inquire lineas, HR respondentem angulo coaequatae HAC, et RV respondentem coaequatae VAC et sic ceteras: et transfer illas in dimensionem orbium cap. LIV, invenies, ut sequitur in tabula.

Kepleri Opera, III.

oup.	ш.	1. Alt 1. Alt 1.
In descendente semicirculo.	In ascendente semicirculo.	Computata ex libratione.
166180 166208	166401 166296	166228
162994 163051	163100	163160
158091 158111	158217	158074
154400 *	154278	154338
147820 147700	147743 148000 148050	147918
139000	138984	139093

Ex observationibus cap. LI.

In observationibus cap. LIII. non opus est idem praestari. Quas enim adhibui distantias Martis a Sole ad computanda loca Martis apparentia, illas prius bac ipsa librationis methodo inquisivi. Cumque per illas observationes repraesentatae sint. erunt igitur justae. Vides igitur per omnem eccentrici ambitum observationibus creberrimis et certissimis confirmari distantias diametrales. cap. XXXIX. a priori inventas.

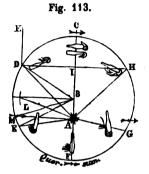
Caput LVII.

Quibus naturae principiis efficiatur, ut planeta libretur quasi in diametro epicycli.

Apparet igitur ex certissimis observationibus, quod via planetae in aura aetherea non sit circulus, sed figurae ovalis, et quod libretur in diametro parvi circelli, hoc modo; si post aequales arcus eccentri planeta pro di-

Fig. 112.

stantiis circumferentialibus $\gamma \alpha$, $\delta \alpha$, $\epsilon \alpha$, $\zeta \alpha$, hoc est $\gamma \alpha$, $\iota \alpha$, $\lambda \alpha$, $\zeta \alpha$, quibus circuli perfectio innititur, distantias diametrales ya, xa, $\mu\alpha$, $\zeta\alpha$ conficiat; ubi ad oculum patet, de eccentrici perfectione rescindi semicirculi tantae latitudinis lunulam, quanta est quolibet loco differentia distantiarum diversarum, posta ικ, λμ. Hoc jam obtento, non rationibus a priori, sed observationibus, uti jam dixi, jam speculationes physicae procedent rectius quam hactenus. Etenim libratio haec sese accommodat ad spatium in eccentrico confectum; non quidem rationabili seu mentali aliquo modo, ut mens planetae aequales arcus eccentrici imperfecti CD, DE, EF adnumeret aequalibus partibus librationis yx, $*\mu$, $\mu\zeta$, sunt enim hae inaequales; sed modo naturali, qui nititur non aequalitate angulorum DBC, EBD, FBE, sed fortitudine anguli DBC, EBC, FBC, perpetuo crescentis; quae fortitudo fere sequitur sinum geometris dictum: ubi ascensus continua imminutione sensim in descensum mutatur, probabilius, quam si


Digitized by Google

386

subito planeta proram convertere diceretur; quod quidem diximus cap. XXXIX. etiam experimentis observationum repugnare clarissime. Cum igitur mensura librationis hujus digitum admodum naturalem intendat, causa quoque naturalis erit; nempe non mens planetae, sed naturalis aut forte corporalis aliqua facultas.

Ac cum sit nobis cap. XXXIX. ex optimis rationibus in praesuppositis, non posse planetam transitionem facere de loco in locum, nuda contentione virium insitarum, nisi adjuventur aut informentur illae a vi extranea: cogitandum igitur, si quo pacto ipsi etiam virtuti Solari transscribamus hanc librationem ex parte. Id molientes ad remos nostros jam supra cap. XXXIX. introductos relegabimur. Sit enim flumen aliquod circulare

CDEFGH, in eo sit nauta, qui remum duplo temporis periodici planetae semel convertat vi insita et aequabilissima, sic ut in C remi linea ad lineam ex Sole sit recta, alternis reditionibus nunc proram, nunc puppim in consequentia dirigens; in F vero sit linea remi pars lineae ex Sole, in locis ceteris sint inclinationum intermedia. Flumen igitur in D, E super remum influens deprimet navem versus A, a C parum admodum, quia parum et inclinator illa; sic et in F, quia in hoc articulo flumen in remum directe impingit: in D, E vero fortius, quia hic remus multum ad hunc accessum dispositus est

inclinatione sua. Contrarium evenit in semicirculo ascendente. Flumen enim sub remum illatum in G, H expellet illum a Sole. Simul et hoc erit, ut ceteris paribus in C lentior.sit impulsus quam in F, eo quod flumen nostrum in C est debile, in F forte. Atque id etiam ad votum nostrum, quia libratio nostra eccentri aequalia spatia sequebatur, quorum in superioribus planeta versatur diutius quam in inferioribus.

Exemplum hoc solam rei possibilitatem docet. Se ipso enim est alienius : quia restitutiones remi et fluminis non eodem sed duplo tempore perficit; et quia facies planetarum ex Terra adspicientibus videntur mutari debere; Lunae vero facies, ut quae cum planetis in eo motu participat, de quo hic disputamus, non mutatur circuitu menstruo, sed ad Terram, unde computatur ejus eccentricitas, perpetuo convertitur. Adde, quod cum vis fluminis sit materialis (aqua enim ibi agit pondere et impetu materiato), vis Solis immateriata. Aliter igitur cum planetis comparatum esse oportet, nec remo, instrumento corporali, indigebunt ad vim ponderum (ut quibus caret Solis illa species motrix) excipiendam. Sane neque corporali remo dignamur sidera, quantisper illa statuimus rotunda. Sed nascitur ex hac ipsa refutatione exemplum aliud, quod fortassis erit accommodatius. Quale flumen, talis remus. Flumen est species immateriata virtutis in Sole magneticae. Quin igitur et remus de magnete quippiam habeat? Quid si ergo corpora planetarum omnia sunt ingentes quidam rotundi magnetes? De Terra (uno ex planetis, Copernico) non est dubium. Probavit id Guilelmus Gilbertus.

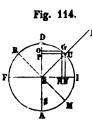
Sed describenda haec virtus pressins; nempe ut duos habeat polos planetae globus, quorum altero Solem persequetur, altero a Sole fugiet. Sit antem axis hujusmodi nobis depictus lingula magnetica, ejusque mucro

25 *

petat Solem; retineatur autem contra suam magneticam naturam Solis appetentem in tralatione globi perpetuo sibi ipsi parallelos: nisi quatenus successu seculorum ab aliis ad alias fixas nutum suum transfert et aphelii progressum hoc modo causatur: quorum utrumque nihilominus mentis opus esse posse fateor, ut quae ad hunc motum ab animali facultate sat est instructa, cum sit motus non totius corporis de loco in locum (qui motus supra cap. XXXIX. causae motrici planetis insitae recte ademtus fuit), sed partium circa centrum totius quasi quiescentis. Ecce iterum in globo Telluris directionis hujusmodi axis exemplum ex Copernico. Nam dum axis Telluris annuo centri circumactu sibi ipsi suisque sitibus omnibus manet propemodum aequidistans, aestas et hiems efficitur: quatenus vero longissima secula illum inclinant, fixae progredi putantur, aequinoctia retrocedere.

Quid igitur dubitamus, attribuere planetis omnibus ad salvandam eccentricitatis phantasiam, quod uni illorum (Telluri scilicet) ex phantasia praecessionis aequinoctiorum Solisque surgentis et cadentis annuo circumactu animadversum est inesse? Ubi quemadmodum deceptus est Copernicus, existimans, peculiari principio opus esse, quod Terram annuatim a septentrione in austrum et vicissim libret, sic ut aestas et hiems eveniat, et cujus molitione circumitioni commensurata resultet aequalitas reditus anni tropici et siderii (quatenus fere aequales sunt); cum tamen unica constanti directione axis Telluris, super quo fit diurnus motus, illa omnia obtineantur nihilque extraneis causis opus sit, nisi ad unicam tardissimam praecessionem aequinoctiorum: ita hic quoque nullo consilio opus erit motoribus planetae, ut ejus corpus simul circa Solem vehatur manens in situ parallelo simulque librationem absolvat. Alterum enim ab altero naturaliter pendebit. Tantummodo de progressu apheliorum tardissimo cogitandum restat.

Etenim lingula in C versante et in F, nulla causa est, cur planeta accedat vel recedat, cum capita Soli objiciat aequalibus intervallis, conversurus utique mucronem ad Solem, si sineretur ab illa vi, quae ejus directum et parallelum tenet axem. Planeta a puncto C abeunte, sensim cuspis Soli appropinquat, cauda abit; sensim igitur incipit globus ad Solem adnavigare. Post F sensim cauda appropinquat, caput abit a Sole. Sensim igitur et totus globus naturali odio fugit a Sole. E regione antem ipsius A, cum longitudo axis directe in Solem porrigitur, illic accessus, hic fuga est fortissima. Id vero supra postulabant nostra praesupposita ex observationibus derivata, ubi ex γx , $x \mu$, $\mu \zeta$ partibus librationis, quae respondent aequalibus arcubus eccentri, mediae partes x, μ erant longissimae, exiles versus y, ζ . Sed et illud consentit, quod observationes volunt γx , $\mu \zeta$ aequales, cum tamen arcus ipsorum $\gamma \delta$, $\epsilon \zeta$, vel potius in eccentrico CD, EF aequales inaequalibus conficiantur temporibus et CD longiori; sic ut yx librationis pars tardius absolvatur quam $\mu \zeta$ ipsi aequalis. Nam sic et magnetes ex intervallo majori lentius ad se mutuo accedunt, celerius et citatius a breviori.


Imo vero ipsam etiam vim, quae retinet axem magneticum in situ parallelo, derogans directioni axis in Solem, ab occupatione mentis, cui illam paulo ante permiseramus, ad naturae munia traducere possumus. Nam etsi obstare videtur, quod natura uno et eodem modo agat, haec vero vis retentrix videatur aliis temporibus aliter contendere, utpote annutu axis ad Solem, cui impediendo comparata est, in longitudinibus mediis evanescente, in aphelio vero et perihelio fortissimo existente: at quid vetat, vim hanc

retentionis esse multis partibus fortiorem quam annutum axis ad Solem, atque ita illam ab adversario tam imbecilli vel nihil vel parum admodum fatigari? Exemplum rursum capiamus ex magnete. In eo manifestissime permixtae sunt duae virtutes, altera directionis ad polum, altera ferri appetens. Itaque si lingula seu acus nautica dirigatur versus polum, accedat vero ferrum a latere, acus a polo declinat parumper et ad ferrum inclinat, atque ita nonnihil indulget familiaritati ferri, sic tamen, ut plurimum polo tribuat. Hinc adeo fieri putat Gilbertus, ut lingula a polo ad praecipuae magnitudinis continentes declinet, atque ita causa declinationis hujus insit in Terrarum tractibus, prout a dextris vel a sinistris altiores, majores et virtute pollentiores in propinquo sint.

Adeoque eadem opera et aequabilem utrique facultati naturali operationem permittere possumus, et contemperatione utriusque non obscuram neque mehercule vanam ostendere causam translationis apheliorum. Esto enim, ut haec vis dirigendi axis in Solem deroget nonnihil virtuti retentrici pro modulo suae ad illam proportionis. In semicirculo igitur aphelii, ut in C (Fig. 113), mucro versus H annuet parumper, hoc est in antecedentia, cauda vero abnuet a Sole, vincens parumper vim retentricem. Itaque aphelium fiet retrogradum. At in semicirculo perihelii, ut in F, annuet idem mucro versus G, hoc est in consequentia, rusum vincens vim retentricem in contrarium. Tunc igitur aphelium fiet directum et velox. Quia vero brevior est AF quam AC, et Sol propior ipsi F quam ipsi C, ideo et vis conversionis axis magnetici ad Solem fortior in F quam in C. Plus igitur derogabitur retentrici in F quam in C. Non tantum igitur compensat nutus perihelius in consequentia nutum aphelium in antecedentia, sed etiam superat eum. Atque ita causa patet, cur apsides progrediantur, non retrocedant. Itaque aphelium a nobis inventum valebit tantum in anomalia coaequata 90° et 270°, quando axis virtuosus in Solem ipsum porrigitur, qui est justus ejus situs, eritque motus aphelii spiralis, ut infra cap. LXVIII. etiam de motu praecessionis acquinoctiorum ob causam aliam existentis patebit. Directio igitur axis magnetici in situm parallelum, seu vis, illius custos, non respiciet fixas has vel illas, sed tantum situm sui corporis, ut is est quolibet tempore. Et re simpliciter perpensa, quia directio haec quieti similior est quam motui, in materia inque corporis dispositione potiori jure quaeritur, quam in aliqua mente.

Age vero, arctioribus vestigiis persequamur hanc similitudinem librationis planetariae cum motu magnetis, idque demonstratione pulcherrima geometrica: ut appareat, magnetes talem habere motum, qualem in planeta deprehendimus. Sit DFA (Fig. 114) vel magnes rotundus vel ipsum corpus Martis: DA linea, secundum quam porrigitur virtus magnetica: D polus Solis appetens, A polus a Sole fugiens. Primum notabis, idem esse in hac speculatione, sive consideremus integrum globum corporis magnetici, sive unam solam ejus lineam physicam virtutis ipsi DA parallelon.

Cum enim virtus haec magnetica sit corporalis et cum corpore dividua, ut probavit Gilbertus Anglus, B. Porta⁹⁸) et alii; certe quia globus constat ex infinitis quasi lineis physicis ipsi DA parallelis, quarum virtus in rectum et unam mundi plagam extenditur, de singulis seorsim idem erit judicium circa qualitatem motus, quod est de universis conjunctim et vicisim. Sit ergo loco totius corporis omniumque ejus filamentorum medius axis DA ad speculandum propositus. Bisecetur DA in B et ipsi DA per-

pendicularis agatur FBI. Igitur planeta sie collocato, ut BI in centrum tendat Solis, appropinquatio nulla erit. Anguli enim DBI, ABI sunt aequales, quare et aeque fortes, ille ad appropinquandum, hic ad fugiendum. Hoc igitur est quasi aequipondium in mechanicis. Itaque B centrum Martis hoc pacto in apside versatur, puta in aphelio, remotissimum a Sole. Sumatur jam arcus aliquis IC, mensurans angulum anomaliae coaequatae, et educatur BC et producatur in K. Colhectur autem planeta sie ut BC

et producatur in K. Collocetur autem planeta sic, ut BC in Solem tendat, qui sub K intelligitur. Quaeritur primo mensura fortitudinis accessus planetae. Accessus enim fit, quia D polus appetens inclinatur ad K Solem angulo DBK; A vero fugiens abnuit angulo ABK. Cum igitur sit naturalis ista anguli fortitudo, erit in ratione staterae. At ducta ex C in DA perpendiculari, quae sit CP, erit inter DP, PA ratio staterae. Libra enim ex trutina KB suspensa, et manentibus brachiis, angulo DBK, erit pondus brachii BD ad pondus brachii BA, ut DP ad PA; adeo ut si brachia ex CP suspenderentur in P, et pondus BA accommodaretur ipsi PD, pondus vero brachii BD ipsi PA, tunc DA cum CP pendula trutina facerent rectos angulos. Vide Optica mea, et non facile movearis incuriosis experimentationibus. Ut igitur DP ad PA, sic fortitudo anguli ABC ad fortitudinem anguli DBC. Fugae igitur vim metitur hic DP, appetentiae vim PA. Aufer a PA acqualem ipsi DP, quae sit AS. Ergo SP est mensura virtutis appetentis solitariae, impedimento fugae ablato: idque in proportione, qualium AD metitur vim maximam solitariam; sed qualium dimidia DB metitur vim maximam, talium et ipsius PS dimidia, scilicet PB, hoc est sinus CN anomaliae coaequatae CBI, metitur vim accessus nudam hoc situ planetae ad Solem. Igitur sinus anomaliae coaequatae est mensura fortitudinis accessus planetae ad Solem illo loco. Atque haec incrementorum virtutis mensura est.

Spatii libratorii per haec continua virtutis incrementa confecti mensura longe est alia: ostendunt enim observata, si ipsi IC anomaliae coaequatae respondeat sua anomalia eccentri GI, quod III sinus versus arcus GI sit mensura librationis peractae. Id si etiam ex ipsa prius indicata mensura celeritatis CN deduci potest, tunc conciliaverimus experientiam cum demonstratione librae. Cum enim cujusque arcus sinus sit mensura fortitudinis illius anguli, summa sinuum erit fere mensura summae fortitudinum seu impressionum per omnes partes aequales circuli : quarum omnium communis effectus est tota libratio peracta. Atqui summa sinuum IG arcus (sint enim jam aequales IC et IG anomaliae, alias diversae, ad vitandam confusionem) ad summam sinuum quadrantis est fere ut IH versus sinus illius arcus IG ad IB versum sinum quadrantis. Dixi fere. Nam in principio, cum sinus versus et parvus est et parva habet incrementa, dimidio minus exhibet, quam summa sinuum. Ecce. Capiat guadrans partes 90°. Summa 90 sinuum est 5789431. Jam olim enim addidi omnes ordine. Summa sinuum in arcu 1º, hoc est sinus primus est 1745, et ut illa summa ad hunc, sic 100000 ad 30. Contra sinus versus quadrantis est 100000, sinus versus 1º est 15, quod est dimidium de 30.

Hoc *àyemueropro* et peccanti principio lector nihil deterreatur. Nam priusquam sensibilis fit portio librationis, jam insensibili differunt utriusque modi effectus. Nam summa sinuum 15, quae est 208166, ostendit 3594.

3407

At sinus versus 15° ostendit $\frac{3407}{100000}$, quod admodum paulo minus est illo. Sic summa sinuum 30, quae est 792598, ostendit per regulam proportionum partem librationis 13691 de 100000. At sinus versus 30° ostendit 13397. Et summa sinuum 60, quae est 2908017, ostendit paulo plus 50000, cum sinus versus 60° sit 50000. **)

Cum ergo demonstratum sit, magnete aliquo sic accommodato, ut ponimus accommodata esse in coelo corpora planetarum ad Solem, librationem corporis magnetici futuram talem, quam metiatur sinus versus causa confecti spatii, testentur vero observationes, corpus planetae librari in eadem mensura sinus versi anomaliae eccentri: valde igitur consentaneum est. planetarum corpora esse magnetica, sic ad Solem disposita, ut diximus,

Ostendendum nunc est, non esse valde male factum, quod arcus IC et IG pro iisdem sumsi. *) Quando dico, IC arcum in corpore planetae esse mensuram anomaliae coaequatae, tunc loquor proprie, et tunc CN est genuina meusura fortitudinis illius, quae competit planetae, cum Solem in linea BK habet. Quando vero dico, IG esse mensuram anomaliae eccentri, quae respondeat anomaliae IC, loquor improprie, abusus circulo corporis planetae ad repraesentandum eccentrum. Cum antem in descendenti semicirculo eccentri major arcus anomaliae eccentri minori coaequatae respondeat, IG scilicet ipsi IC, plures omnino sinus colligimus in IG quam in IC: et hoc jure. Cum enim sinus metiatur fortitudinem, et fortitudo agat pro rato temporis et pro rato propinquitatis ad Solem (de prope enim fortiores sunt magnetes), hoc est, ut brevis sim, pro rato IG arcus, omnino totidem sinus sunt in IC constituendi, quot in IG inveniuntur. **) Tantummodo in hoc peccamus, quod illos multos sinus justo longiores sumimus, ut GH est longior quam CN. At hic excessus primum est per se exiguus et insensibilis. Nam in principio quadrantis parum differunt arcus IC et IG, et sinus parvi sunt: in fine quadrantis, cum est acquatio eccentri CG maxima, parum sinus differunt. Deinde hic error nobis ex voto est. Semper enim paulo plus dant summae sinuum quam sinus versi; quibus ab experientia commendatis hic jam studemus accommodare et conciliare rationes libriles et magneticas. ***) Ergo hic praesens noster error, longes sinus pro brevibus accumulans, cavetur, si pro summis rectorum utimur simplicibus sinubus versis; cum summae sinuum non ad unguem paria faciant cum sinubus versis, sed eos excedant effectu librationis.

Rem igitur intra sensus propinquitatem adduximus optimis rationibus. Concludamus, corpus planetae, instar magnetis, accedere et fugere lege staterae in imaginaria diametro epicycli in Solem tendente, et diametrum corporis virtuosam et realem DA in longitudines medias porrigi, nempe BD hoc tempore in 29° \heartsuit , BA in 29° \mathfrak{m} , aphelium enim est in 29° \mathfrak{R} .

*) Summa: eandem esse proportionem inter sinus versos anomaliarum eccentri. quae est inter summas sinuum rectorum anomaliarum coaequatarum, respondentium illis anomaliis eccentri, valde praecise.

*) Quanto planeta tardior in quolibet areu, tanto minores partes anomaliae coaequatae faciendae, ut earum collecti sinus justa mensura esse possint virtutis per illam anomaliam coaequatam effusae.

***) Defectum proportionis, quam posuimus esse inter sinum versum et summam sinnum rectorum, compensatur a contrario errore, dum sinus rectos nimis longos colligimus anomaliae eccentri pro coaequatae..

Hoc pacto accessus ille libratorius citra mentis operam a vi magnetica, insita quidem et solitaria, perficitur, sed cujus tamen definitio a forinseco corpore Solis dependet. Definitur enim vis Solis appetens vel ab eo fugiens. Ac etsi vis haec inter magnetes, quae illos conjungit, debet esse mutua, ego vero supra cap. XXXIX. de Sole negavi vim planetarum attractricem: intelligebatur tamen tantummodo mere attractrix, ut ex usurpato argumento patet. Hic autem ponitur simul attractrix, simul alio situ repultrix. Vel etiam hoc ponatur, ut Sol instar ferri nondum imbuti tantummodo petatur, non vicissim petat: cum ipsius filamenta supra fuerint circularia, planetarum vero hic ponantur recta.

Sufficit mihi ex hoc exemplo magnetis demonstrasse possibilitatem rei in genere. Ceterum de re ipsa in specie ambigo. Nam quod Tellurem attinet, certum est, axem ejus, cujus aequabili et aequidistanti directione anni tempora efficiuntur in punctis cardinalibus, ineptum esse ad hanc librationem et ad aphelium, cum Solis apogaeum vel Terrae aphelium hodie pene coincidat cum punctis solstitialibus, non vero cum aequinoctialibus, anod nobis esset opportunum; nec manserit in eadem remotione a punctis Quodsi hic axis non est idoneus, nullus in toto Telluris corcardinalibus. pore idoneus esse videtur, cum nullus ejus tractus sit, qui quiescat in eodem situ, toto globi corpore circa priorem illum axem diurna et irrequieta gyratione circumvoluto. At vero, si nulla plane materialis et magnetica facultas absolvere potest munia illa planetis privatim commissa, ob defectum mediorum, idoneae scilicet diametri corporis, sibi ipsi in circumlatione perpetuo aequidistantis, qui defectus jam in uno planetarum, in globo scilicet Telluris apparuit: accersatur ergo mens,*) quae ut cap. XXXIX. dictum, ex contemplatione diametri Solis crescentis in cognitionem veniat distantiarum, quas conficit; et praesideat facultati seu animali seu naturali sic accommodandi sui globi in situ parallelo, ut debito modo a Solari virtute impellatur et respectu Solis libretur (mens enim nuda et facultate inferioris gradus destituta eo ipso non posset quicquam in corpus) simulque consilio utatur ad librationis tempora restitutioni periodicae non plane aequanda et sic ad transferendas apsidas. Quarum rerum verisimilitudines supra cap. XXXIX. sunt explicatae.

Restat, ut quia ex observationibus jam tenemus leges et quantitatem hujus librationis, qua diametri Solis aspectus variatur, quas cap. XXXIX. adhuc ignoraveramus, jam videamus, an illae leges tales sint, ut verisimile sit, eas innotescere planetae. Leges librationis erant istae, ut anomaliae eccentri sinus versus metiretur partem librationis confectam. Dico ergo initio: dato et concesso illo, de quo testantur observationes, planetam scilicet post aequales arcus eccentri inveniri in siguis γ , \varkappa , μ , ζ (Fig. 111) non vero in signis γ , ι , λ , ζ , tunc diametri Solis incrementum exhibere legitimam mensuram sinus versi anomaliae coaequatae, non minus atque scimus, anomaliae eccentri sinus versos esse mensuram librationis.**)

*) Vereor dicere rationali, ne discursus rationis subintelligatur.

**) Mensurat anomaliae { eccentri } sinu

n } sinus versus tae } Librationem Planetae. Augmentum diametri Solis, ut ea apparitura fuit spectatori in corpore planetae supposito et vicissim.

Qnia ergo planetae mens, siquidem ei aliqua adjuncta est, spatia, quae libratione trajecit, non aliter percipit, nisi argumento auctae diametri Solis, ut cap. XXXIX. dictum, oportebit ei innôtescere sinum versum anomaliae coaequatae, ut ad ejus praescriptum diametrum Solis augeat accedendo.

Demonstratio hujus rei haec est. Sit enim planeta post aequales arcus imperfecti eccentri CD, DE, EF, in y, $\mathbf{x}, \boldsymbol{\mu}, \boldsymbol{\zeta}$; et connectantur puncta D, H, secante DH diametrum CF in I. Quia ergo rectae 8x8, eun secant spicyclum in similes arcus cum eccentrico ex constructione, erit ut CF ad CI, sic y ad yx, altera sectio alterius mensura.

His ita habentibus dico etiam secuturum. ut eadem mensura accumulentur incrementa diametri Solis in a, ex y, x, µ, ζ inspecti, qua mensura crescit sinus versus anomaliae coaequatae. Id in solidum demonstrare hic importanum esset. Intelligi vero facile poterit, in solidum ita habere, si media et extrema simul

contingere demonstremus. Igitur in C anomalia coaequata est nihil, sinus versus nihil, et Sol ex y inspectus apparet minimus, ita ut incrementi ejus portio sit itidem nihil. Sic in F anomalia coaequata est 180°, sinus versus acqualis integrae diametro 200000 et Sol ex & inspectus apparet maximus, ita ut incrementum ejus totum accesserit.

Pro anomalia igitur coaequata 90° origatur ex A perpendicularis AM ipsi CF, et connectatur MB. Educatur etiam ex a tangens

epicyclum in r et punctum r contactus cum β centro connec- Fig. 116. tatur. Cum ergo a v ß sit rectus (Eucl. III, 18) et MAB rectus ex constructione, et β , BA aequales ex constructione, ut et $\beta \alpha$, BM: triangula igitur sunt aequalia et congruentia: quare $r\beta \alpha$, ABM aequales. Ex r in $\gamma \zeta$ perpendicularis cadat ro. Quare cum voß sit rectus, acquatur igitur ipsi MAB, et vßo aequabatur ipei MBA, triangula igitur sunt similia ; et ut 🕫 ad β o sic \hat{MB} ad BA et vicissim. Cumque acquentur $\ast\beta$, $\beta\gamma$, $\beta\zeta$ et MB, BC, BF; sunt igitur $\ast\beta$, β o junctae, hoc est γ o ad

of sicut MB, BA junctae, hoc est CA ad AF. Cum igitur CA sit sinus versus anomaliae eccentri CBM, et ponatur metiri partem librationis respondentem, erit yo illa pars. Ergo in hac anomalia eccentri CBM 🛃 coaequata CAM 90° planeta erit in o. Sed anomaliae coaequatae 90°, scilicet CAM sinus versus est dimidium totius diametri, scil. 100000. Dico etiam diametri Solie in A, a quantitatem visibilem ex o fore medio loco inter quantitatem visi ex 7 et ex 5, sic ut dimidium augmenti accesserit, planeta in o versante infra β . Sit enim diameter corporis Solis a ξ : anguli visionis \$ζα, ξοα, ξγα, connexo signo \$ cum signis ζ, ο, γ. Et quia sunt acquales AF, (a, sic AC, ay; et ut CA ad AF sic yo ad of: ergo ut ya ad al sic yo ad ol. Sed insensibiliter differunt y a ya et. ζξ a ζa. Ergo ut γξ ad ζξ ad sensum sic γo ad oζ. In triangulo igitur 15% angulus & divisus est linea &o sic, ut basis 1% secaretur in proportione laterum 75, 5. Ergo (Eucl. VI, 3. conv.) angulus 755 linea zo in duo aequalia sectus est; et yzo dimidium est ipsius yz, totius augmenti diametri Solis. Quod erat demonstrandum. Certum est

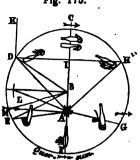
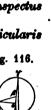



Fig. 115.

393.

De Motibus Stellae Martis

itaque de extremis et medio, quod hoc pacto, si librationis diameter dividitur a planeta in proportione sinuum versorum anomaliae eccentri, diameter • Solis augeatur in proportione sinuum versorum anomaliae coaequatae.

Id majoris evidentiae causa etiam hinc ex parte patet. Erigatur recta BL (Fig. 115) ex B ipsi CF ad perpendiculum: et centro A, diastemate gequali ipsi BC scribatur arcus, secans BL in L: et connessatur AL. Cum ergo sit anomalia eccentri CBL 90°, erit sinus versus CB 100000, dimidium totius diametri; quare et libratio $\gamma\beta$ (Fig. 116) dimidium totius $\gamma \zeta$, et proinde distantia erit $\beta \alpha$. Ei vero aequalis est ex constructione AL, quare planeta erit in L. Et quia ipsi BC vel BM acqualis est AL. • et BA commune latus et LBA rectus, ut et MAB: triangula igitur BMA, ALB congruent. Itaque ipsi AM acqualis est BL. Sed AM acquatur ipsi av ut supra, ergo et BL. Sed av, scilicet praetensa recto aov, longior est quam ao, subtensa acuto avo, ergo et BL longior est quam a o, et AL longior est quam BL, multo igitur longior AL quam ao. Minor ergo videtur Sol in distantia AL, quam in distantia ao. Distantia vero ao jam modo videbatur medius inter maximum et minimum: quare in distantia AL apparet Sol minor medio. In L igitur, etsi dimidium de semicirculo eccentrici est absolutum, tamen minus dimidio incrementi accessit diametro Solis. Sane quia et anomalia coaequata LAC minor est dimidia 90°. Atque hoc illud est, quod cap. XXXIX. nos torserat, ut praecedenti cap. LVI. dictum. Si enim orbita planetae perfectus fuisset circulus, augmentum diametri Solis mensurasset augmenta sinuum versorum anomaliae eccentri; cujus observatio alienjor est a mente planetae, quam observatio coaequatae, ut jam andiemus. Vide igitur a contrariis, quam commode ista mensura planetae tribuatur quamque plausibiliter.

Si librationis ipsius mensuram a mente comprehendendam poneremus anomaliae eccentri sinum versum, quem observationes commendant, tunc destitueretur mens planetae ab hoc medio diametri Solis varia-• bilis: quia se non accommodat ad sinus versos anomaliae hujus eccentri. Planetae enim iter non est circulus. Et mens planetae intelligeret librationis partes seu spatia conficienda se ipsis sine signo: quod pridem inter absurda retulimus; intelligeret et anomaliam eccentri, quae est angulus inter duas rectas ex centro eccentri ejectas, alteram per punctum aphelii, alteram per centrum planetarii globi; in schemate est DBC (vel ejecta ex D parallela ipsi BC linea DK, tunc KDB est ejusdem anomaliae eccentri comple-. num). Si ergo mens percipit angulum KDB, necesse est ut percipiat trina puncta K, D, B. De puncto D non est dubium, quia hoc est centrum sui globi. De K non multo dubito. Nam BC et DK ob infinitam fixarum distantiam tandem coincidunt in eundem fixarum locum: et fixae sunt corpora realia. Itaque nihil est absurdi, planetae mentem sensu quodam occulto in conspectu habere fixam illam, quae quovis tempore prae-- bet aphelio hospitium.*) De solo B negatur, ejus sensum competers in mentem planetae, quia B nullo corpore vestitur. Praetereaque et causa sublata, cur B inspiceretur, effectus quoque tollitur. At B inspici debet, si circulus CD est conficiendus. Orbitae vero planetarum non sunt circulares perfecte, quod cap. XLII. ex observationibus probatum est. Ergo

 *) Et tamen ne hoc quidem dogmate opus fuit in modo naturali paulo superius.

neque collimant planetae ad B. Et sic ipsum B quasi centrum posterius est ipso itinere CD. Si vero inspiceretar a planeta, prius esset ipso itinere.

His itaque de causis nego sinum versum anomaliae eccentri mensuram subministrare planetae librationis suae, non quod haec mensura non sit, sed quia, etsi sit, a planetae tamen mente non respicitur. At si augendam et minuendam Solis diametrum planetae ponimus pre medio seu adminiculo, pen quod ad justas et se ipsis imperceptibiles distantias ipse librationibus suis pervenit, huicque diametro Solis variandae ex demonstratione proxime expedita regulam demus et mensuram a planetae mente percipiendam anomaliam eccentri coaequatam, in schemate DAC vel potins KDA: jam igitur stamus rectius. Nam utraque signa sunt perceptibilia: ex parte librationis, crescens et decrescens magnitudo diametri Solis; ex parte mensurae seu anguli, tria puncta corporibus vestita. Nam in A ipse Sol est, in D planeta, in K fixa, index aphelii.

Fortassis itaque dicendum erit, (quod quidem et jam supra cap. XXXIX, posito casu, quod naturae vires non sufficiant motibus coelestibus administrandis, sumus amplexi) planetae tributum esse sensum lucis fixarum Solisque, cujus radiationum concursu apud centrum planetarii corporis angulum hunc anomaliae coaequatae aestimet.

Una sola difficultas est expedienda: quam ob rem non hic ipse angulus fiat mensura operi planetario, quod est hic augere diametrum Solis accessu ad Solem, sed pro angulo ejus sinus versus?*) Et quibus mediis planeta sinum anomaliae coaequatae percipiat? Utrum ipse quoque more hominum ratiocinando in geometricis proficiat? cum tamen nullam hactenus munus motus coelestes administrandi in planetae mentem competierit, quod non instinctu divino, inde a primaevo rerum conditu huc usque pertingente, citra ratiocinationem ullam obiri posset.

Repetendum itaque ex paulo supradictis, quod sinus anomaliae coaequatae sit index fortitudinis angulorum KDA, de quibus Aristoteles in Mechanicis, et hoc eodem capite paulo supra. Nam duo brachia commissa angulo obtuso facilius diriguntur, quam angulo recto, idque in proportione sinuum. Et vicissim duo brachia angulo acuto coagmentata facilius in unam rectam coguntur capitibus conjunctis, quam si angulo recto coagmentarentur. Repete demonstrationem ipsam ex paulo praemissis.

Itaque uno modo, si constet, planetam habere sensum fortitudinis angulorum, nihil erit absurdi si dicamus (nostro hominum conceptu), innotescere illi sinus angulorum. At cur ille sentisceret naturalem fortitudinem angulorum? Nimirum ad naturalia revolvimur principia. Sint enim ut prius tractus certi corporis planetarii, quibus insit vis magnetica directionis in lineam, quae tendit in Solem. Sit autem jam non, ut prius, naturae corporis, sed animali facultati, seu quae regit corpus planetae intrinsece, hoc tributum, ut, dum a Sole rapitur, axem illum magneticum ad easdem per-

^{•)} Planetae mens, siquidem intenta est ad anomaliae coaequatae angulum, non aestimat ejus magnitudinem, sed sinum. — Quemadmodum paulo ante sinus rectus anomaliae eccentri (vel ei respondentis coaequatae) fuit index fortitudinis librationis, sinus vero versus anomaliae eccentri fuit index confectae librationis, ita hic sinus ipsius anomaliae coaequatae est index celeritatis, qua crescit Solis diameter, sinus vero versus anomaliae coaequatae est index augmenti jam comparati per omnes celeritates antecedentes.

petuo fixas dirigat: nisi quatenus successu seculorum eum parum inclinat. Orietur itaque pugna facultatis animalis cum facultate magnetica, et victoria animalis: non aliter atque cap. XXXIV. dixeramus, corpora planetarum naturaliter quietem appetere, sed moveri a vi extranea Solis. Vel cape accommodatius exemplum. Brachii humani naturale pondus deorsum vergit ad Terrae centrum; animalis vero facultas hoc praestat vexillifero, ut illud supra caput extendat et in gyrum agat: ubi vincit animalis facultas naturale pondus, vinceretque perpetuo, nisi corpus vexilliferi cum omnibus facultatibus mortale conditum esset.

His itaque positis planetae mens ex lucta facultatis animalis, ad reti-.nendum axem magneticum comparatae, cum magnetica virtute directionis in .Solem, intelligere et percipere poterit fortitudinem angulorum. Et hic modus confirmari videtur etiam per exemplum Lunae, quam certum est in diametrali linea Solis et Terrae fortius incitari, ob hanc ipsam forsitan angulorum fortitudinem.

Tandem igitur summa haec erit: planeta constitutus in aphelio nihil ad Solem nititur, sed provehitur pro ratione distantiae AC (Fig. 115); ad hanc promotionem sequitur angulus KDA; ad anguli hujus proportionem fogtitudinis ipse planeta Solis diametrum auget accedendo ad Solem, accessu minuit distantiam, ut sit AD; minuta distantia celerius provehitur, celerius igitur mutatur KDA angulus, celerius igitur planeta (ceteris paribus) auget Solis diametrum. Ita efficitur perennis circulatio, non per intervalla, qualia nos in nostris cogitationibus et calculo statuimus, insensibilia errata non considerantes, sed plane continua.

Dixi haec hactenus cum conditione, si libratio, qua de testantur observationes, nequeat perfici a virtute aliqua magnetica planetarum corporibus insita, et si omnino necesse fuerit, nos ad mentem confugere. Ceterum si comparare libeat illam naturalem et hanc mentalem motionem: illa quidem per se stat, nihil indigens; haec vero mentalis, quomodocunque illam animali facultate movendi corporis instruas, testimonium illi magneticae perhibere ejusque subsidia accersere videtur. Primum enim mens ipsa nihil potest in corpus. Oportet igitur menti adjungere facultatem exsequendi sua munia in corpore planetae librando. Facultas illa aut animalis erit, aut naturalis et magnetica. Animalis esse non potest: nequit enim facultas animalis transportare corpus suum de loco in locum (ut requiritur in hac libratione) sine potestate alterius corporis adminiculantis. Erit igitur magnetica facultas, hoc est naturalis consensus inter corpora planetae et Solis. Itaque mens naturam et magnetes in subsidium vocat.

Deinde mens haec ad dimidium decursum regulae suae seu anomaliae coaequatae, dum dimidium perficit operis sui, quod consistit in augenda vel minuenda diametro Solis, supra quidem γo (Fig. 116) librationis partem absolvit majorem, infra vero $o\zeta$ minorem. Neque γo , $o\zeta$ respondent partibus temporis. Nam plus morae consumitur in γo , quam ejus supra $o\zeta$ excessus requirebat. Neque continue augentur partes a ζ versus γ , sed apud γ , κ (Fig. 111) sunt minores, ut et apud μ , ζ . At mentis opera solent esse constantia. Propterea nobis fuit opus, illam instruere facultate animali atque magnetica, et pugnam utriusque comminisci, qua mens admoneretur de officio suo, de quo nec temporis nec spatiorum confectorum aequalitate admoneri potuit. Itaque rursum menti subsidium a natura petivimus. Contra hae modificationes omnes insunt re vera operi virtutis magneticae extraneae

Solis eique conjunctae magneticae, insitae ipsi planetae, ut supra explicatum. Si ergo per sese officium faciunt virtutes magneticae, quid opus illis est mentis directorio? Ac etsi de magnetica vi, ipsis corporibus planetariis insita, incerti mansimus contemplatione axis Telluris, qui diversus est a linea apsidum Solis: at haec difficultas utrinque communis est. Nam et mente posita tamen coacti sumus admittere talem axem, qualem in Tellure desideramus, quo mediante mens apprehendat fortitudinem anguli seu ejus sinum versum. Contra vehementer urget nos verisimilitudo, ut librationem hanc planetarum, quae citra controversiam leges naturae sequitur, naturae adscribamus in solidum, quomodocunque ea insit corporibus planetarum. Adeoque et ipsam hanc comprehensionem sensitivam Solis et fixarum, quam molliter ego accipio mentique planetae indulgeo, nescio an sufficienter lectori philosopho comprobaverim.

Accedit et hoc, quod in ipsis etiam modis, quos menti praescripsimus, omnium, qui possunt esse, probatissimos, implicari videtar quaedam incertitudo geometrica; quae nescio an non a Deo ipso repudietar, qui hactenus semper demonstrativa via progressus esse deprehenditar. Nam si planeta, prout ad Solem partim insita vi appropinquaverit, in alium et alium gradum virtatis ex Sole adventitiae venit (ut quidem venit), et si diversi gradus reciproce ipsius etiam planetae vim appropinquandi intendunt, dum angulum augent, qui regula ponitar appropinquationis seu auctionis diametri Solts: nisus planetae proprius denique sibi ipsi fiet ex parte mensura, et in intentione planetae simul prius et posterius; cum sit per partes inaequalis et ob hoc ipsum mensura indiguerit. Quo pacto non demonstrative, sed quasi per regulam falsi dabitar exploratio temperandarum virium utriusque virtatis, ut eodem tempore sese expediant eodem corporis circumactu.

Nisi forte quis ex hac ipsa mensura dyscoustons progressum apheliorum occasionem invenire suspicari velit. Sed nos supra cap. XXXV. in suspenso reliquimus, an non hoc genus motuum ab alia causa, scilicet ab drugoafse, possit existere; ut, sicut ferrea tabella vim magnetis lingulae ferreae intercipit, sic planetarum corpora sibi mutuo etiam suas virtutes magneticas proprias, quibus ad Solem annuunt, intercipiant. Nam ne cum Solari virtute hoc fieret, ne inquam Solaris virtus, communis omnibus, interciperetur uni interjectu alterius, distinximus inter essentiam corporis Solaris et planetariorum. Cum igitur non distinxerimus inter corpora ipsorum planetarum, videtur hoc in causa relinqui. Neque sane expediri potuit, nisi deprehensa verissima dispositione magnetici corporis planetae, qua libratio administretur.

Sed ut ratiocinationis sit exemplum: sit dispositio magnetica planetae, qualem paulo ante cum introduxissemus, postea de Tellure negavimus. In ea non habet locum impedimentum ab $\dot{\alpha}$ respondes. Nam quia virtutis magneticae effectus fuit, ad Solem tendere et a Sole fugere, interimque directas tenere fibras sedis magneticae; si ergo alius planeta, Solem inter et planetam interveniens, impedit hanc adnavigationem ad Solem vel fugam, non impedito communi motu ex Sole: minus igitur justo adnavigabit vel fugiet, et sic mutabitur circuitus amplitudo cum periodico tempore successu seculorum iterumque corrigetur contrariis eclipsationibus; at non transferetur aphelium ex hac quidem $\dot{\alpha}$ respondes. Igitur causa motus apheliorum a nobis prius allata adhuc sola regnat, sine socia vel aemula. At neque si mens librationi modo dicto praesideat, quicquam nocebit $\dot{\alpha}$ respondes. Uteretur enim mens pro regula, ut dictum est, augentae Solis diametri angulo anomaliae coaequatae; et ejus sensu exiguum ad tempus privata, quippe tecto Sole, posset, si diis placet, compensare quod neglexisset, Sole rursum emergente et anomaliam coaequatam reducente in conspectum. Dominatur enim mens, si qua est, animali facultati, eaque alias etiam inaequaliter utitur pro re nata. Cur non igitur et hic ea extra ordinem uteretur ad tollendam hanc discrepantiam mensurae (anomaliae coaequatae) et mensurati (diametri Solis), quae per Solis eclipsin irrepserat? Quid quod etiam alii hujusmodi sunt tardi motus, ut aequissectiorum praecessio, orta ex axis Telluris directione ad alias atque alias fixas, non ad Solem? ubi nihil efficere potest Solaris luminis aversio, cum nec ejusdem praesentia illam efficiat.

Itaque ut àrraqea 5cor magneticarum effugiamus incommoda etiam in propriis planetarum librationibus, non minus quam cap. XXXV. in communi raptu ex Sole, dicendum est, similia quidem esse posse planetarum worpora causa magneticae dispositionis, sed aut longius ab invicem remota, quam ut orbes virtutum planetarum coeant mutuo, aut fortiorem virtutem ex Sole emanantem (non minus illam, quae proprias planetarum virtutes in actum elicit, quam illam, quae illos in orbem rapit), quam ut objectu imbecillioris corpusculi impediri omnino possit, sed transire, ut lux per globum aqueum transit; aut tantae exilitatis esse corpora planetarum, ut nihil efficient; nec Solem unquam ulli planetarum, qui a Sole movetur, ab alio planeta in solidum intercipi, quemadmodum Telluri Sol a Luna nunquam in solidum intercipitur. Nam etsi Lunae quidem totus Sol aliquot horis tegi potest, at Luna non libratur versus Solem, sed versus Terram, cujus aspectu ipsa privari nunquam potest, cum Lunam inter et Tellurem corpus nullum intersit.

Quodsi tamen alicui videtur plausibile, transpositum apogaeorum esse momentaneum, et ex hac causa eclipsati Solis oriri: dicat is, si placet, ne libratio sub eclipsin interrupta (dum planeta interim a Sole translatus est in alium angulum aliamque ejus fortitudinem) eclipsi finita subitum celeritatis intervallum admittat, ideo compensari hunc anguli saltum a planeta -ipso, inclinatione axis tali facta ad Solem post eclipsin, qualis erat in principio eclipsis. Sic enim obtinebitur transpositus apheliorum, sed saltuatim factus, et durans plurimis annis eodem loco sub fixis, donec alia contingat planetae offuscatio. Illa vero prior causa transpositionis apheliorum, · orta ex aberratione librationis a circuitu sub fixis, propter dysourceptor alterius ab altero nexum, magis esset pro aequabili apogaeorum transpositione. Denique neutra harum causarum valente, habeat mens animali instructa facultate, quae pracest constanti directioni axis magnetici, hoc etiam munus, inclinandi ejus successu seculorum. At nec ulla harum causarum nec adeo mente in universum stante acquiescamus in natura: quae cum alia omnia expedita dedit, tum etiam motus apheliorum luculentam occasionem ostendit.

Caput LVIII.

Quomodo stante libratione, capite LVI. demonstrata et inventa, possit tamen error admitti in praepostera librationis applicatione, qua iter planetae buccosum efficiatur.

Malo me Galatea petit, lasciva puella, Et fugit ad salices, et se cupit ante videri.

Profecto verum har de natura cano are Vergilii. Quo propius enim ad illam venitur, hoc petulantiores ludos facit, hoc pluribus anfractibus sese ipsa comprehensuro jam jamque tenenti surripit: nec tamen invitare cessat ad se comprehendendam, quasi delectetur meis erroribus.

Quod toto hoc opere spectavi, ut physicam invenirem hypothesin, quae non tantum distantias efficeret observatis consentaneas, sed etiam aequationes itidem probas, quas hactenus ex vicaria capitis XVI. coacti sumus mutuari: idem per hanc etiam verissimam hypothesin tentans falsa methodo,

rursum de rerum summa trepidare coepi. In linea apsidum centris A, B scribantur aequales circuli GD, HK. Sitque AB eccentricitas circuli GD. Sit autem anomalia eccentri, seu numerus graduum ejus, arcus GD vel HK, per aequipollentiam cap. III. Centro igitur K, diastemate KD, guod ipsi AB sit acquale, scribatur LDF epicyclus, qui secabit circulum GD in D per aequipollentiam cap. III. Ducatur AK et continuetur donec secet epicyclum in L, ut sit LD arcus similis anomaliae eccentri GD vel HK. Et connectatur B cum D. Ex puncto pero D demittantur perpendiculares in GA, LA, quae sint DC, DE. Quare per hactenus cap. LVL demonstrata, AE citra controversiam erit justa distantia ad hanc anomaliam eccentri, de qua quaeritur, quantum temporis in ea sit con-

sumtum. Cumque ejus arcus sinus versus GC, sive post multiplicationem LE ablata a GA prodiderit distantiam AE justam: ex his indiciis persnadebar, terminum ipsing AE alterum quaerendum esse non in DC linea, quod verissimum tamen erat, sed in DB lineae puncto I: ut si centro A, diastemate AE, ducerem arcum EIF, qui secet DB in I. Esset igitur AI secundum hanc persuasionem justa distantia situ et longitudine; et IAG anomalia vere coaequata. Manifestum est autem, quod EIF arcus secet DC lineam loco superiori, scilicet in F, itaque anguli IAG et FAG differant quantitate IAF. Erravi igitur, usurpata linea AI pro AF. Errorem . primam experientia deprehendi. Nam cum explorassem quantitatem areae : DAG tam per distantias omnes, quam per areolam DAB, postea huic areas DAG in tempus conversae accommodassem angulum IAG non FAG: tunc in superiori semicirculi parte collegi per $5\frac{1}{2}$ plus, in inferiori per 4' minus, quam dabat vicaria satis certa. Itaque dissentientibus aequationibus a vero, coepi rursum accusare verissimas has distantias AE et librationem planetae LE de crimine, cujus falsa mea methodus, quae I pro F spectabat, erat rea. Quid multis? Ipsa veritas et rerum natura repudiata et exulare jussa per posticum se furtim rursum recepit intro et sub habitu alieno a me recepta fuit. Missis inquam librationibus diametri LE, coepi revocare

R R S

Fig. 117.

ellipses, omnino existimans, me sic longe diversissimam a librationibus sequi hypothesin, cum plane coincidant, ut capite sequente demonstrabitur: nisi quod, quae peccaveram prins in methodo, hac ratione fuerunt emendata, et F pro I, ita ut debuit, usurpatum. Argumentatio mea talis fuit, qualis cap. XLIX. L. et LVI. Circulus cap. XLIII. peccat excessu, ellipsis cap. XLV. peccat defectu. Et sunt excessus ille et hic defectus aequales. Inter circulum vero et ellipsin nihil mediat, nisi ellipsis alia. Ergo ellipsis est planetae iter; et lunula a semicirculo resecta habet dimidiam prioris latitudinem, scilicet 429.

Quodsi iter planetae esset ellipsis, satis patuit, non posse I pro F usurpari : quia, si hoc fit, iter planetae buccosum efficitur. Sint enim angulis GBD, HAK acquales infra QBP, SAR: et centro R scribatur rursum epicyclus PT priori aequalis: et ex P, sectione epicycli cum eccentrico, perpendiculares in BQ, AR cadant PV, PM: et connectatur P cum B, et centro A, diastemate AM, arcus scribatur MN, secans PV , in O, PB in N. Est igitur analogum superioribus, ut si pro F usurpsmus I, jam pro O usurpemus N, putemusque AN, ut est justa distantia longitudine, sic et situ justam esse. Atqui puncta I, N et similia efficiunt iter planetae buccosum. Nam aequales sunt arcus GD et QP, et BD, BP ex communi centro ejectae secant resectam hunulam. Atqui DI et PN, latitudines lunulae, versus centrum extensae, sunt inacouales, et minor DI, major PN. Cum enim ED et MP sint aeguales, et EDI, MPN recti, El vero circulus major, utpote longiore radio AE, et MN circulus minor, utpote breviore radio AM: omnino major erit PN, minor DI. Exilior est igitur resecta lunula superius apud D, latior inferius apud P. At in ellipsi lunula haec aequalis est latitudinis in punctis aequaliter a G et Q apsidibus remotis. Patet igitur, viam buccosam esse; non igitur ellipsin, ac cum ellipsis praebeat justas aequationes, hanc igitur buccosam jure injustas praebere. Nec erat opus, aequationes ex ellipsi de novo Sciebam ultro facturas officium. De distantiis tantummodo computare. sollicitus eram, ne forte ex ellipsi desumtae negotium mihi facesserent. At quamvis hoc accideret, paratum erat mihi latibulum, incertitudo 200 particularum in distantiis. Itaque ne hic quidem valde haesi. Multo vero maximus erat scrupulus, quod pene usque ad insaniam considerans et circumspiciens invenire non poteram, cur planeta, cui tanta cum probabilitate, tanto consensu observatarum distantiarum, libratio LE in diametro LK tribuebatur, potius ire vellet ellipticam viam, aequationibus indicibus. O me ridiculum! perinde quasi libratio in diametro non possit esse via ad ellipsin. Itaque non parvo mihi constitit ista notitia, juxta librationem consistere ellipsin, ut sequenti capite patescet : ubi simul etiam demonstrabitur, nullam planetae relinqui figuram orbitae praeterquam perfecte ellipticam; conspirantibus rationibus a principiis physicis derivatis cum experientia observationum et hypotheseos vicariae hoc capite allegata. 97)

Caput LIX.

Demonstratio, quod orbita Martis, librati in diametro epicycli, fiat perfecta ellipsis: et quod area circuli metiatur summam distantiarum ellipticae circumferentiae punctorum.

Protheoremata.

I. Si intra circulum describatur ellipsis, tangens verticibus circulum in punctis oppositis, et per centrum et puncta contactuum ducatur diameter, deinde a punctis aliis circumferentiae circuli ducantur perpendiculares in hanc diametrum: eae omnes a circumferentia ellipseos secabuntur in eandem proportionem.

Ex libro I. Apollonii Conicorum pag. 21. demonstrat Commandinus in commentario super V. Sphaeroideon Archimedis.

Sit enim circulus AEC, in eo ellipsis ABC tangens circulum in A, C, et ducatur diameter per A, C puncta contactuum et per H centrum. Deinde ex punctis circumferentiae K, E descendant perpendiculares KL, EH, sectae in M, B a circumferentia ellipseos. Erit ut BH ad HE sic ML ad LK, et sic omnes aliae perpendiculares.

II. Area ellipsis sic inscriptae circulo ad ream circuli habet proportionem eandem, quam dictae lineae.

Ut enim BH ad HE, sic area ellipseos ABC ad aream circuli AEC. Est quinta Sphaeroideon Archimedis.

III. Si a certo puncto diametri educantur lineae in sectiones ejusdem perpendicularis cum circuli et ellipseos circumferentia, spatia ab iis rescissa rursum erunt in proportione sectae perpendicularis.

Sit N punctum diametri, et KML perpendicularis; connectantur signa K, M cum N. Dico, ut ML ad LK seu (per I.) ut BH ad HE semidiameter brevior ad longiorem, sic esse aream AMN ad AKN. Est enim AML area ad AKL aream ut ML ad LK, per assumta Archinedis ad pr. V. Sphaeroideon, quae Commandinus in commentariis ad hane propositionem literis C, D demonstrat. Triangulorum vero rectangulorum NLM, NLK altitudo NL est eadem, et bases LM, LK; igitur et MLN ad KLN est ut ML ad LK. Per compositionem igitur tota area AMN ad totam AKN est ut ML ad LK. Quod erat demonstrandum.

IV. Circulo per hujusmodi perpendiculares quotcunque in aequales arcus diviso, ellipsis in arcus inaequales dividitur; et qui sunt apud vertices, maxima utuntur proportione; qui locis mediis, minima.

Nam circa vertices arcuum proportio proxima est proportioni sectarum perpendicularium, quibus sese proxime accommodant secundum longitudinem, minor tamen. Circa locos medios proxime fiunt aequales; minor tamen arcus ellipticus, quia minus curvatus quam circularis. Per se patet.

V. Tota elliptica circumferentia est proxime medium arithmeticum inter circulum diametri longioris et circulum diametri brevioris.

Kepleri Opera, III.

Fig. 118.

26

401

Probatum enim est supra cap. XLVIII, longiorem esse circumferentia ca, cujus diameter est medium proportionale inter diametros ellipseos, ut cujus circuli area (Arch. Sphaer. VII.) aequat aream ellipseos. Sed et medium arithmeticum est longius medio proportionali. Proxime ergo aequalia sunt ista.

VI. Quadratorum proportionaliter divisorum gnomones sunt ad invicem ut quadrata.

Sint duo quadrata PL et SH. Horum latera KL, EH divisa sint proportionaliter in punctis M, B. Scribantur gnomones KOQ et CRE. Ergo quia ML ad LK sic est ut BH ad HE; erit etiam OL ad LP ut RH ad HS. Sed gnomones sunt quadratorum differentiae. Ergo etiam ut LP ad suum gnomonem, sic HS ad suum: et permutatim, ut PL ad HS sic gnomon KOQ ad gnomonem CRE.

VII. Si a termino semidiametri brevioris in circumferentia ellipsis extendatur linea aequalis semidiametro longiori, sic ut terminetur in ipsa semidiametro longiore: quae inter punctum hoc et inter centrum interjacet, potest gnomonem, quem quadratum semidiametri longioris circumponit quadrato semidiametri brevioris.

A brevioris semidiametri HB termino B extendatur recta BN, aegualis semidiametro longiori AH. Dico HN posse gnomonem ERC, hoc est, esse medium proportionale inter EB et residuum diametri circuli. Demonstratum est supra eq. XLVI. Sed hic facilius et expeditius demonstratur in puro casu. Gnomon enim est differentia quadratorum BH et HE vel HA, per VI. horum. Sed et potentia ipsius HN est differentia quadratorum BH et BN, hoc est HE sive AH (Eucl. I, 46). Ergo aequale est quadratum HN gnomoni ERC. Quod erat demonstrandum.

VIII. Si circulus dividatur in quotcunque seu infinitas partes, et puncta divisionum connectantur cum puncto aliquo praeter centrum, intra complexum circuli, connectantur item cum centro: summa earum, quae ex centro, minor erit summa earum, quae ex alio puncto.

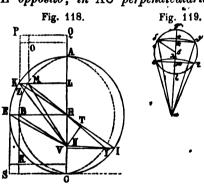
Et binae lineae, proximae lineae apsidum, ductae in opposita ex puncto eccentrico, proxime erunt aequales duabus ex centro in opposita ductis; binae vero in locis intermediis multo majores erunt iis, quae ex centro educuntur eodem.

Demonstratum est cap. XL. Itaque excessus iste non crescit aequaliter cum numero linearum, multo minus cum sinubus. Horum enim differentiae in fine evanescunt; excessuum vero dictorum differentiae in fine sunt maximae. Ac cum grea circuli KNA crescat aequaliter, parte quidem KHA cum numero linearum, ex constructione, parte vero KNH cum sinubus arcuum, ad quos sunt lineae, in HN multiplicatis, per cap. XL: area igitur circuli non est apta ad mensuram summae distantiarum suae circumferentiae.

IX. Si autem pro lineis ex puncto eccentrico sumantur lineae illae, quae determinantur a perpendicularibus ex illo puncto in eas quae per centrum eunt demissis; hoc est, si sumantur distantiae diametrales pro circumferentialibus, ut cap. XXXIX. et LVII. denominatae sunt: tunc summa aequat summam earum, quae ex centro ducuntur.

Eligatur enim quodcunque punctum circumferentiae circuli, quod jam sit K, et ex K per H recta ducatur in partem circumferentiae oppositam I, ex N vero cadat perpendicularis in KI, quae sit NT. Tunc KH, HI

junctae aequant KT, TI junctas. Et aliqua summa copularum KH, ĤI aequat aequalem summam copularum KT, TI. Cum autem summa linearum AN, KN, quotquot inveniuntur in AK ad partes ejus aequales, crescat partim cum numero linearum HA, IIK, partim cum sinubus in IIN multiplicatis, crescit igitur aequaliter cum area KNA, per praemissam. Igitur area circuli et partes KNA metiuntur summas distantiarum diametralium.


X. Distantiarum ex puncto eccentrico ellipsis in aequales arcus ellipsis eductarum non minus quam circuli in protheoremate VIII. ratio est contraria rationi mutuae arcuum circuli et ellipsis, protheoremate IV. explicatae. Nam binae ex puncto eccentrico in contraria eductae excedunt binas ex centro in contraria eductas in minima proportione, et plane nihil circa apsidas: at in longitudinibus mediis excedunt illas maxima proportione.

Apparet cap. XL. Rursum igitur, ut protheoremate VIII, area ellipsis non est apta ad mensuram summae distantiarum aequalium arcuum suae ellipticae circumferentiae.

XI. His sic praemissis jam demonstrationem expediam. Si in ellipsi, perpendicularibus ab aequalibus circuli arcubus demissis divisa, ut supra protheoremate IV. connectantur puncta divisionum circuli et ellipsis cum puncto, quod inventum est protheoremate VII: dico, eas, quae ducuntur in circuli circumferentiam, esse circumferentiales; quae vero in ellipsis circumferentiam, esse diametrales: quae constituuntur ad aequalem graduum ab apside epicycli numerum.

Ex I puncto, ipsi K ex centro H opposito, in AC perpendicularis

cadat IV, secans ellipticam circumferentiam in Y. Et ex puncto N, protheoremate VII. invento, ducantur in K, M, et in I, Y sectiones, ab eadem utrinque perpendiculari factas, lineae NK, NM, sic NI, NY. Repetatur etiam schema cap. XXXIX. et LVII. sitque semidiameter epicycli $\beta\gamma$ aequalis eccentricitati HN: et $\gamma\delta$ arcus, a γ apside inceptus, sit similis ipsi AK ab apside incepto: et a β aequet semidiametrum HA. Dico NK esse circumferentialem a δ

(demonstratum est cap. II.) et NM esse diametralem ax.

Primum KN potest KL et LN; sic MN potest ML et LN. Sit LP potentia ipsius LK, et LO potentia ipsius LM. Ablata igitur potentia LN et potentia LM, hoc est quadrato LO, utrinque communibus, relinquitur gnomon KOQ, quo excedit potentia KN potentiam seu quadratum ipsius MN. Jam ut KL ad EH, sic KM ad EB, per primum horum. Ergo etiam ut KQ, potentia ipsius KL, ad EC, potentiam ipsius EH, sic gnomon KOQ ad gnomonem ERC, per VI. horum. Atqui ut hic in circulo eccentrico KL, sinus arcus AK, ad EH vel AH, sinum totum, sic etiam in epicyclo, perpendicularis δx (ex δ puncto arcus $\gamma \delta$, qui est ipsi AK similis, in diametrum apsidum $\langle \gamma \rangle$ est ad semidiametrum epicycli $\beta \gamma$. Quare etiam ut gnomon KOQ ad gnomonem ERC, sic quadratum δx ad quadratum $\beta \gamma$. Sed ipsi $\beta \gamma$ aequalis est HN, et potentia HN 26* dequat gnomonem ERC, per VII. Ergo et potentia $\beta\gamma$ aequat gnomonem ERC: ac proinde potentia δx , perpendicularis ex modo dicto epicycli puncto, aequabit gnomonem KOQ. Sed illius perpendicularis δx potentia est excessus ipsius $\delta \alpha$ circumferentialis super x α diametralem, ergo et gnomon KOQ, aequalis illi, est excessus quadrati $\delta \alpha$ super quadratum x α . Sed KN est aequalis ipsi $\delta \alpha$. Ergo KN excedit ipsam x α gnomone KOQ. Eodem vero gnomone excedit et quadratum MN. Ergo MN et x α diametrales sunt aequales. Quod erat demonstrandum. Similiter et de NY demonstrabitur, quod aequet ipsam $\alpha \mu$, siquidem $\zeta \eta$ similis sit ipsi CI. Et sic de omnibus.⁹⁵)

XII. Porro indidem etiam hoc patet, quod area circuli, et totaliter et per partes singulas, sit mensura genuina summae linearum, quibus distant arcus elliptici itineris planetarii a centro Solis.

Nam per IX. horum, si totius circuli area aequiparatur diametralibus distantiis omnibus omnium arcuum susceptae divisionis: partes areae illius ut KNA, terminatae ad N punctum, unde consurgit eccentricitas, aequiparantur illis distantiis diametralibus, quae competunt arcui KA aream illam complexo. Per XI. vero hic praemissam diametrales distantiae KT, TI, hoc est x a µ a per cap. XL, sunt eaedem cum distantiis MN, NY, punctorum ellipsis M, Y. Ergo ut area circuli ad summam distantiarum ellipsis, sic pars areae circuli KNA, terminata ad Solis centrum N, unde consurgit eccentricitas, ad summam illarum ellipsis distantiarum, quae competunt arcui elliptico AM, totidem graduum, quot habet arcus circuli AK aream complexus.

XIII. Oritur vero hic dubitatio: Si area AKN aequivalet distantiis omnibus ab N arcus elliptici AM punctorum totidem, quot ponimus inesse AK: quinam ergo sit ille arcus ellipticus, hoc est ubi terminetur? Nam videtur ille non terminari debere per lineam KL perpendicularem. Causa haec est, quia hoc pacto per IV. horum elliptici arcus inaequales respondent æequalibus circuli; itaque minores arcus sunt circa A, C vertices, majores circa B. Atqui videtur necesse esse, ut aequales orbitae ellipticae arcus sumantur, siquidem moras planetae in illis aestimare et comparare velimus. Et nominatim, quia certum est, finem hujus arcus debere distare ab N longitudine MN, igitur ut cap. LVIII. centro N, spatio NM, arcus MZ ductus, ostendit alicubi punctum, terminans illum arcum ellipsis, et videtur id punctum futurum non M, sed Z, quo secat arcus lineam KH, ut sit arcus ille orbitae AZ.

Respondetur, omnino arcum ellipseos, cujus moras metitur area AKN, debere in partes inaequales dividi, et minores esse eas, quae sunt vicinae apsidibus.

Esto enim, ut ipsum planetae iter ABC dividatur in arcus aequales. Quia igitur planeta in arcu A tanto versatur longius quam in C, quanto NA longior est quam NC; utraque vero NA et NC aequant junctae diametrum ellipsis longiorem, et HB est semidiameter ellipsis brevior: brevior etiam erit⁹⁹) mora planetae in arcu ad B et opposito arcu junctim, quam in arcubus aequalibus A et C junctim. Ut ergo mora circa A et C fiat brevior, circa B et oppositum longior, et sic semper binorum oppositorum arcuum junctae morae fiant aequales: oportet arcus apud A et C fieri minores, apud B et oppositum majores. Id autem fit per KML perpendiculares, ut patet ex ipsa objectione.

Sed hac solutione id tantum obtinuimus, ut certum esset, circa A, C breviculos arcus esse debere. Utrum autem hi ipsi arcus, per KML perpendiculares determinati, sint justissimi illi arcus, nondum constat. Jam autem patebit in hunc modum.

XIV. Si quis ellipsin AMC in arcus quotcunque aequales divideret, iisque singulis suas ab N distantias assignaret, pro summis vero distantiarum in AM, AB, ABC usurparet areas AMN, ABN, ABCNA: ei per X. protheorema accideret error idem, qui supra cap. XL. accidit, cum hoc ipsum tentaremus in circulo perfecto, quod hic tentari ponitur in ellipsi: ut scilicet duae MN, NY, duorum punctorum Y, M ex centro H oppositorum, censerentur pro MHY breviori.

Si vero idem ille divideret ellipsin AMC in arcus totidem inaequales, contra quam protheoremate X, hac lege, ut diviso primum circulo AKC in arcus aequales, postea a singulorum arcuum terminis ducerentur in AC perpendiculares KL, secantes ellipsin AM etiam in arcus, atque pro horum arcuum distantiis ab N usurparetur area elliptica: tunc errori commisso medicina afferetur et compensatio perfectissima.

Id probabo de initiis quadrantum A et C; de finibus eorum B; et progressu intermedio.

In principiis quadrantum A, C, si usurpentur duae lineae NA, NC pro linea AHC, error nullus est; in fine vero, si pro BN, hoc est pro EH, usurpem BH, error seu defectus contingit maximus, quantitate BE: per X. protheorema. Et per VII. protheorema hujus capitis, ut HE ad EB, sic debita longitudo ad errorem, qui hoc loco committitur. Si ergo tota summa omnium distantiarum accepit mensuram, peccantem in defectu, aream scilicet ellipseos: tunc distributo defectu in distantias singulas, per vim operationis seu computationis nostrae, fiet, ut NA; NC nimis breves accipiantur respectu hujus mensurae omnium, quae nobis mentitur, omnes lineas aequaliter in defectu peceare; cum tamen NA, NC non peccent. Justum quidem modulum in summam hanc contulerunt: at summae distributione vicissim facta non justum receperunt, quia summam aliae lineae circa B defraudaverunt.

Vide nunc, quomodo huic errori eadem in proportione medeamur.

Nam per IV. protheorema hujus capitis arcus minimi AK, AM circa apsidas A vel C sunt in proportione ipsius KL ad LM, hoc est ipsius EH ad HB; qua eadem in proportione peccabant prius in defectu lineae rectae circa B. Et vicissim circa B arcus minimi circuli et ellipsis, puta KE et MB aequantur; quemadmodum prius lineae rectae AN, NC junctae aequabantur lineae ABC. Itaque ut prius in negotio rectarum, sic jam in negotio arcuum, cogituta media et aeguabili arcuum mensura, erit illius respectu parvus arcus apud A vel C apsidas, longus apud B medias longitudines. Atque sic, ubi nimis breves distantiae respectu suae vitiosae summae, in peccante area ellipsis propositae, ibi parvi arcus respectu suae mediocritatis, ut in A, C, et ubi nimis longae distantiae, ibi nimis longi arcus, ut in B. Itaque quanto minus morae nobis in calculo accumulatur per breviculam distantiam circa apsidas, tanto plures distantiae adhibentur tali arcui, utpote in parvas partes secto, et cuilibet tali parti distantia sua assignata; et vicissim quanto plus morae per sngulas distantias nobis in calculo supra debitum accumulatur circa longitudines medias B, dum partem defectus, qui huic loco inest, transscripsimus

apsidibus A, C innocentibus: tanto pauciores calculus colligit distantias, utpote a magnis arcus partibus emendicatas. Illic in A, C, quod singulae non possunt distantiae, ob brevitatem in calculo, id crebritate praestant, nt justas moras accumulent: hic, quod longitudine, quam in calculo sunt nactae, peccarent, id latius et laxius dispersis rursum eripitur.

Dixi de initio et fine, quod eadem proportione, quae est EH ad HB, incipiant differre et arcus circuli ab ellipticis in A et C, et distantiae justae, ab iis, quas area ellipsis colligit, in B et opposito, eadem etiam proportione desinant differre, nimirum proportione aequalitatis, arcus quidem in B. E. distantiae vero in A, C.

Dicendum nunc est idem etiam de progressu intermedio.

Etenim lineae NA, NC a parvis initiis per celeria incrementa superant aliquo notabili lineas AHC; et vicissim, ubi maxime superant, ut BN ipsam IIB, ibi incrementa sensim emoriuntur : in medio sunt maxima, circa anomaliam eccentrici 45°. Patet id quadamtenus ex aequationis angulo et secantibus. Quantum enim secans anguli aeguationis opticae differt a sinu toto, tantundem fere differt BN a BH, oppositis angulis acquationum se mutuo ad hanc proportionem adjuvantibus. Atqui incrementa secantum aequationis opticue circa 45° sunt fere maxima; initio et fine quadrantis tarda. Vide de his finem cap. XLIII. Atque eadem in proportione progrediuntur etiam incrementa arcuum ellipticorum perpendicularibus KL distinctorum. Nam in principiis A, C arcus AK, semper ab A inceptus, ad incrementum suum est, ut LK ad KM. Sed ipse arcus totus parvus, igitur parvum et incrementum. In fine, circa B, proportio AE ad AB fere ad aequalitatem redigitur, etsi magnus est arcus AB, utpote vicinus quadranti: ut ita rursum parvum sit incrementum. In medio igitur circa 45° evidentissimum est incrementum arcuum.

Patet igitur, etiam in progressu aequales esse rationes, quantum subtili consideratione licet inquirere.

Demonstratio ut certissima ita *àregroc* est et *àreoµereproc*, quantum quidem attinet hanc partem, de progressu intermediorum augmentorum. Cuperem, ut cetera, sic hanc quoque particulam geometrice et *àrregroc* expediri; sic ut etiam Apolloniis satisfiat. Interim dum alius quispiam hanc invenerit et adornaverit, oportet nos hac esse contentos.

XV. Sed pertexamus demonstrationem, arcum ellipseos, cujus moras metitum area AKN, debere terminari in LK, ut sit AM.

Hactenus enim versamur in hac fictione, si quis tantum abundaret otio, ut aream ellipseos vellet computare, futurum esse, ut area ellipseos AMN usus loco distantiarum ipsius AM totidem, quot sunt in AK arcus aequales, non sit a scopo aberraturus. Haec sit nobis instar propositionis majoris hactenus demonstratae.

Minorem jam subjungam ex protheoremate III, in quo ostensum est, uti area AKC se habet ad aream AMC, sic etiam esse aream AKN ad aream AMN. Concluditur igitar, cum aequemultiplicium proportio sit eadem, ipsam etiam aream circuli AKN metiri summam distantiarum diametralium (ut KT, TI) seu ellipticarum ipsius AM totidem, quot insunt partes in AK. Unde patet, recte partibus ellipseos circa A, C confertiores tribui distantias, totidem nempe, quot constituuntur in ea sectiones per perpendiculares KL, ab aequalibus arcubus ipsius AK venientes.

Ne quis de veritate rei dubitet, diffisus subtilitati et perplexitati argu-

mentationis, res ipsa prius innotuit per experientiam in hunc modum. Constitui ad singulos gradus anomaliae eccentri pro distantiis ab N lineas KT, TI diametrales. Singulas etiam ordine ad summam priorum adjeci. Collectis omnibus summa fuit 36000000, ut par est. Comparatis igitur singulis summis cum totali, ut (in regula proportionum) summa 36000000 sic esset ad 360° (nomen artificiale temporis totius restitutorii) ut summae singulae ad suas significatas moras: praecisissime prodiit idem, in secundis etiam scrupulis, quod prodibat, si dimidiam eccentricitatem in sinum anomaliae eccentri multiplicassem, et cum area circuli, quae valeret itidem 360° (nomen artificiale temporis restitutorii), comparassem. Deinde, cum essem in ea opinione, justam distantiam NM applicandam esse lineae KH, ut esset ZN, itaque anomaliam coaequatam ZNA inquisivissem, attribuens eam anomaliae mediae AKN: manifeste dissenserunt aequationes a mea hypothesi vicaria cap. XVI. eratque circa 45° coaequatae excessus a vero, per experientiam observationum invento, $5\frac{1}{2}$ defectus; circa 135° circiter 4'. At AM sic applicata, ut in KL terminaretur, tunc MNA coaequata applicata mediae anomaliae AKN, exquisitissime cum vicaria, hoc est cum observationibus consensit. Cum igitur constaret de re ipsa, postea impulsus sum ad inquirendam ex principiis semel susceptis ipsam etiam causam rei, quam hoc capite, quam potuit fieri artificiosissime et clarissime, lectori detexi. Quod, nisi causae physicae, initio a me susceptae loco principiorum, probae essent, nunquam in tanta subtilitate inquisitionis consistere potuissent.

Si quis putat, obscuritatem hujus disputationis ex mei ingenii perplexitate oriri: ei ego culpam hanc hactenus fatebor, quod haec intacta relinquere noluerim, quantumvis obscurissima nec valde necessaria ad astrologiae exercitium, quem unicum finem plerique statuunt hujus philosophiae coelestis. Ceterum quod materiam attinet, rogo hujusmodi aliquem, ut Apollonii Conicalegat. Videbit, esse quasdam materias, quae nulla ingenii felicitate ita tradi possint, ut cursoria lectione comprehendantur. Meditatione opus est et creberrima ruminatione dictorum.

Caput LX.

Methodus, ex hac physica, hoc est genuina et verissima hypothesi exstruendi utramque partem aequationis et distantias genuinas; quorum utrumque simul per vicariam fieri hactenus non potuit: argumentum falsae hypotheseos.

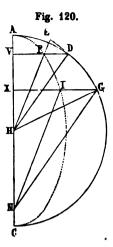
Qnia capitibus LVI. LVIII. LIX. planeta in diametro, versus Solem extensa, ponitur ad Solem accedere et ab eo recedere, et per hoc facere orbitam ellipticam; in singulis vero punctis orbitae tantas facere moras, quanta est distantia illius puncti a Sole: opportunissimum nobis accidit compendiam cap. LIX. praemissi, ad summam aliquot morarum subito colligendam. Ostensum enim est, demissa ex circulo perpendiculari in diametrum longiorem ellipsis in circulo descriptae (sit in priori schemate KL demissa in AC), sic ut secet ellipsin in M, et posito Sole in N, summam omninm distantiarum a Sole N punctorum in arcu AM inesse in area AKN.

Posito igitur arcu ellipseos AM, qui denominationem habet ab arcu

circuli AK, datur area AHK, sector arcus AK, a quo arcu et mensuratur sector iste in ea mensura, in qua tota circuli area est 360°. Et onia datur arcus AK, datur et sinus KL. Ut vero KL ad EH sinum totum. sic HKN area ad HEN aream, ut demonstratum cap. XL. Cum igitur detur HN eccentricitas, dimidium ejus in HE doctum describet aream HEN. cujus valor semel statim initio inquiritur, ut sciatur, si tota area circuli valeat tempus 360°, quid haec valeat areola. Semel itaque cognita area HEN, facillimum est inquirere per regulam proportionum aream HKN. Ut enim EH ad KL, sic NEH ad NKH aream, sive ejus valorem in gradibus, minutis et secundis; quae addita ad valorem KHA constituunt KNA mensuram temporis, quod planeta conficit in AM. 100) Haec igitur est una pars acquationis, quam dice (a) physicam, sc. area AKN; etsi tabulas sic adorno, ut acquationis mentione non sit opus, nec separata columna sit; quae partem aequationis (b) opticam, id est, angulum NKH exhibet. Mihi magis familiares eront termini anomaliae mediae, anomaliae eccentri, anomaliae coaequatae. (c) Anomalia media est tempus artificiose denominatum ejusque mensura area AKN. (d) Anomalia eccentri est iter planetae ab apogaeo, arcus sc. AM ellipseos, ejusque denominator. arcus AK. (e) Anomalia coaequata est apparentia arcus AK quasi ex N. scilicet angulus ANK (v. s. pag. 122).

Igitur angulus anomaliae coaequatae sic habetur. Dato arcu AK. datur sinus complementi LH. Ut autem totus ad LH, sic tota eccentricitas ad portionem addendam ad 100000 (vel infra 90° subtrahendam). ul habeatur genuina distantia Martis a Sole, scilicet NM. In triangulo igitur MLN angulus ad L rectus est, et MN data, et LN guoque data. Componitur enim ex LH sinu complementi AK distantiae ab apoaeo seu anomaliae eccentri, et ex HN eccentricitate. Infra 90° pro summa LH. HN sumenda est earum differentia, et pro complemento anomaliae eccentri, excessus ejus. Non latebit igitur angulus LNM anomaliae coaequatae. 101) Hic facile quivis colligit, quid in altero semicirculo sit mutandum. Vicissim, data eccentricitate et coaequata, dator anomalia eccentri : paulo quidem laboriosius, sive demonstrative procedamus sive per analysin. Demonstrative hac methodo investigari potest, scilicet per mensuram anguli, quo angulo KM, ingressus planetae a K quolibet puncto circuli, quasi ex centro Solis N spectatur. Constat ea methodus ex aliquot protheorematibus.

I. Lineolae ingressus planetae ad diametrum apsidum crescunt in proportione sinuum anomaliae eccentri.


Ut enim EH ad KL, sic EB ad KM. Receptum est cap. LIX. et demonstratum in Conicis.

II. Connexis terminis lineolae unius cum centro, et posito, quod lineola maneat eadem quantitate apud omnia puncta eccentri, tangens anguli ad centrum decrescit fere in proportione sinuum complementi anomaliae eccentri.

Sit (Fig. 120) DF lineola pars DV sinus recti anomaliae eccentri AD. Connectantur termini D, F cum H, et HF continuetur, et tangat recta ED circulum in D, secans HF in E. Cum ergo DVH sit rectus, erit VDH complementum ipsius VHD anomaliae eccentri ad rectum. Ac cum et EDH sit rectus, erit HED minor quam rectus quantitate EHD, quae pene nullius est momenti, cum ubi maxima non superet 8'. Ac eadem de

causa VFH, hoc est EFD major est quam FDH complementum anomaliae eccentri, sed quantitate FHD nullius momenti. Cumque FED sit paulo acutior recto, erit et arcus ipsi FED circumscriptus paulo longior semicirculo: ac ideo ED ad DF, ut sinus anguli, qui paulo superat complementum ano- I maliae eccentri, ad sinum, qui paulo, imo nihil fere, minor est toto sinu. Manente igitur FD per totum quadrantem in hac longitudine, ED quam proxime proportionatur sinubus complementi anomaliae eccentri. Nam manente longitudine FD, et termino D in A stante, angulus FDH est rectus, ideoque et FHD maximus, et tunc DFH omnium acutissimus est, itaque arcus super FD omnium longissimus. Ex eo, cum descensu ipsius FD ab A, decrescit arcus FED, crescit angulus FED, donec in 90° FD fit pars lineae DH: quare HF in HD com-

petit, et ED evanescit: atque ibi (per analogiam) arcus super FD aequat semicirculum, estque omnium minimus.

III. Connexis terminis lineolae ingressus planetae ad diametrum apsidum, quanta obvenit cuilibet anomaliae eccentri, tangentes angulorum ad centrum (et sic in minimis ipsi etiam anguli) crescunt fere in proportione composita ex proportione sinuum et proportione sinuum complementi anomaliae eccentri, hoc est in proportione rectangulorum quadrantis, quae existunt, multiplicatis sinubus angulorum in sinus complementorum, sic ut rectangulum maximum ad 45° se habeat ad angulum maximum ejusdem anomaliae eccentri 45°, ut rectangula cetera ad angulos ceterarum anomaliarum eccentri.

Nam ad angulos hos, ut EHD, duo concurrunt: ipsa longitudo ingressus a nulla ad maximam, et apparentia cujusque a nulla ad maximam. At (per I.) ingressus crescunt in proportione sinuum: et (per II.) angulorum tangentes quo spectantur hi ingressus, quasi ex centro eccentrici, decrescunt in proportione sinuum complementi. Illo nomine fit, ut angulus sit nullus in A; quando sinus nullus; hoc nomine angulus est nullus in anomalia eccentrici 90°, quando sinus complementi nullus: ac proinde rectangulum utrinque evanuit. At in anomalia 45° fere FD jam evasit major dimidia, quia sinus 70711 est major dimidio 50000 sinus totius: angulus vero ejus EHD adhuc est major dimidio, quia sinus complementi adhuc major dimidio, scilicet et ipse 70711. Itaque rectangulum quadrantis fit omnium maximum et simul quadratum, aequans dimidium de quadrato radii sc. 50000400000.

IV. Angulus ingressus planetae a circumferentia circuli ad diametrum apsidum idem est in anomalia eccentri, apud centrum eccentrici, et in anomalia coaequata circulari totidem graduum, apud centrum Solis.

Constituatur ipsi anomaliae eccentri AHD coaequata*) aequalis ANG ad circumferentiam circuli G; hoc est ducatur ipsi HD parallelos NG, et ex G perpendicularis GX veniat in AC, in qua sit GI ingressus

^{•)} Anomalia haec dicitur coaequata circularis, quia non est vere coaequata; esset antem, si orbita planetae esset circulus.

planetae justus, et I cum N connectatur. Quia ergo ut VD ad DF, sic XG ad GI (per 1.); ut vero VD ad DH, sio XG ad GN, propter similitudinem triangulorum: ut igitur FD ad DH, sic IG ad GN, et sunt aequales FDH et IGN. Aequales igitur etiam FHD et ING. Et H est centrum eccentrici, N vero centrum Solis. Angulus igitur §c. q. e. d.

V. Anguli, quo coaequata fictitia, quae circulo nititur, differt a coaequata vera, quae ellipsi innititur, mensura genuina et verissima est rectangulum sub sinu anomaliae coaequatae fictitiae et sinu complementi anomaliae coaequatae verae.

In schemate eodem, multiplicato sinu anguli AHD in sinum anguli VFH, proditura erat genuina mensura anguli FHD per III. At per IV. angulorum VHD et XNG aequalium sinus est idem, itemque et VFH, XIN sinus idem. Ergo multiplicato sinu anguli XNG, anomalias coaeguatae fictitiae, in sinum anguli XIN complementi ipsius XNI, qui est coaequata vera, prodit mensura genuina anguli FHD; hoc est per IV. anguli ING, differentiae inter XNG et XNI.

Corollarium. Quia parva est differentia ING, et nuspiam major 8', multo adhuc minor in effectu futura est differentia inter rectangula per XIN et per XGN sinum constituta.

Hinc praxis fiet ista. Dato angulo anomaliae coaequatae verae, multiplicetur ejus sinus in sinum complementi. Facti duplum, abjectis 5 ultimis, multiplicetur in maximum ingressus angulum ad anomaliam 45°. Prodibit angulus ingressus ad datam anomaliam. Qui additus ad coaequatam veram XNI, dat fictitiam XNG. Per quem angulum et latera NH, HG nota invenitur AHG anomalia eccentri, et HGN valor trianguli, ut hactenus.

Maximum vero angulum ad anomaliam 45° inquirere non est difficile. Sit VHD 45°. Ergo ut totus sinus ad 70711, sic 429 vel correctius 432 maximus ingressus, videlicet maxima latitudo lunulae, ad FD 315. Cumque jam in 45° sint aequales HV, VD; aufer FD 315 ab VD 70711, remanet VF, 70396, quae cum HV dat angulum VHF 44° 52' 19", qui differt a 45° 0' 0" tantum per 7' 41". Atque hic est maximus angulus ING. ¹⁰²)

Sequitur alter modus per analysin, cujus haec fundamenta sunt. In schemate 118. dato angulo MNL, datur proportio linearum MN, NL: et scio, quod MN et LN sint compositae ex partibus notae et permutatae proportionis. Nam in MN inest sinus totus, notus; in LN inest HN, eccentricitas nota. Residuum de MN ad residuum de LN, hoc est ad LH, eam habet proportionem, quam habet eccentricitas HN ad sinum totum. (Vide, si mavis, etiam schema 117.) Ergo sit MN 100000 + 1 B, LN ex angulo MNL 30° sit $\frac{860300000 \dagger 86603}{100000}$ B; et NH 9265 vel $\frac{926500000}{100000}$, ut sit HL 7733800000 † 86603 Ut vero HN 9265 ad 1 B, sic 100000 R. ad LH. Igitur HL secunda vice est 100000 B, id est 1079320 B; prius 7755800000 † 98605 B. Ablatis denominatoribus, et quae possunt utrinque 100000 uequaliter auferri, restant 992717 B acquales numero 7733800000. Itaque una radix valet 7744, estque MN 107744. Et quia ut HN ad hanc radicem, sic totus ad LH, erit igitur LH 83583, sinus ipsius KE 56° 42' complementi anomaliae eccentri AK 33° 46'. 103) Qua inventa, jam ut paulo prius invenitur et area AKN, mensura temporis seu anomalia

media. In schemate 117 sunt ista clarissima. Sit GQ eccentricus, AB eccentricitas, GD vel LD anomalia eccentri, FAC coaequata, FA vel EA distantia. Ut igitur AK ad AB, sic BC ad KE: et in CAO coaequata, ut AR ad AB, sic BV ad RM. Igitur EK vel RM ponitur esse una radix. Cetera ut supra.

At data anomalia media, nulla geometrica methodus est, perveniendi ad coaequatam, videlicet ad anomaliam eccentri. Nam anomalia media est composita ex duabus areae partibus, sectore et triangulo: quorum ille quidem numeratur ab arcu eccentri, hoc ab ejus arcus sinu, in valorem trianguli maximi multiplicato resectis ultimis. At proportiones inter arcus et eorum sinus infinitae sunt numero. Itaque summa utriusque proposita, dici non potest, quantus sit arcus, quantus ejus sinus respondens huic summae, nisi prius exploremus, dato arcu quanta evadat area: hoc est nisi tabulas construxeris et ex iis postea opereris.

Haec est mea sententia. Quae quo minus habere videbitur geometricae pulchritudinis, hoc magis adhortor geometras, uti mihi solvant hoc problema:

Data area partis semicirculi, datoque puncto diametri, invenire arcum et angulum ad illud punctum, cujus anguli cruribus et quo arcu data area comprehenditur. Vel: Aream semicirculi ex quocunque puncto diametri in data ratione secare.

Mihi sufficit credere, solvi a priori non posse, propter arcus et sinus succorrestar. Erranti mihi quicunque viam monstraverit, is erit mihi magnus Apollonius. ¹⁰⁴)

COMMENTARIORUM

DE MOTIBUS STELLAE MARTIS

PARS QUINTA.

DE LATITUDINE.

Caput LXI.

Examen loci nodorum.

Proportione orbium Martis et Terrae, eccentricitate utriusque, et figura itinerum in superioribus certissime inventis, jam facile est nobis illa, quae supra cap. XI. XII. XIII. XIV. crassiori Minerva indagavimus, hic perficere.

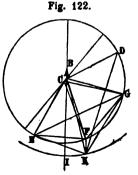
Incipiamus a nodis. Anno 1593. d. 10. Dec., vesperi h. 7. O' visus fuit Mars in 4° 44' γ , cum lat. 0° 1' 15" mer., sine consideratione parallaxis; altitudo vero 35 $\frac{1}{2}$ °, immunis ab refractionibus. Post dies 687 integrae revolutionis Martis, die 28. Oct. anni 1595. h. 11. 30' post mer. inventus est Mars in altitudine 51° in 18° 35' \bigotimes , cum lat. 4 $\frac{1}{2}$ meridiana, sine parallaxis consideratione. Et rursum 687 diebus ante, sc. 1592. d. 23. Jan. vesperi h. 10. habuit rursum latitudinem meridianam 2', altus 25°. Denique subtractis aliis 687 diebus, ut perveniamus in 7. Martii anni 1590, Mars die 4. Martii h. 7. in alt. 14° visus est habere latitudinem 3' 20" merid., quae major erat apparitura, nisi Mars in hac humilitate refracte nimisque alte apparuisset. Nam refractio hujus altitudinis est $3\frac{1}{2}$ ', de quibus circiter 2' cedunt latitudini, ut fuerit visa mer. lat. 5'. Cum autem triduo anticipemus diem correspondentem ceteris, hoc quidem spatio temporis accessu ad nodum per $1\frac{1}{2}$ °, deteruntur 3' de inclinatione, sed quae in latitudinem conversa paulo quid minus efficiunt, ut ita restent die 7. Martii $2\frac{1}{2}$ ' latitudinis et forte minus aliquid, si refractio minor fuerit; nec enim constantissima est ejus quantitas.

Esto latitudo anno 1590. 1', anno 1592. $1'/_2'$, anno 1593. $2'/_2'$, anno 1595. ad h. 11: $4'/_2'$, ut hinc inde unius minuti peccatum fateamur in partes contrarias. Ostendetur hisce latitudinibus nobis inclinatio $1'/_2'$, quae poscunt sibi circiter 40' distantiae a nodo. Haec solummodo consensus cansa. Sed accuratius efficiemus quod volumus, per annum 1595. Nam cum 28. Oct. h. 12. fuisset lat. $4'/_2'$ merid., sequenti 3. Nov. hora eadem post dies 6, fuit latitudo 19' 45'' bor. Igitur diebus 6 mutata est latitudo per 24', dietim igitur per 4'. Cumque 28. Oct. h. 12. fuerit eccentricus locus 16° 8'/₃' \heartsuit , et 4'/₂' residua latitudinis conficiantur die uno et octava parte, post quod tempus accedunt Marti 37': erit igitur nodus in 16° 45²/₃' \heartsuit , anno 1595. Novembris initio.

Circa nodum alterum non ita crebrae fuerunt observationes. Sustinebit igitur solus annus 1589. fidem hujus operationis. Cum enim anno 1589. d. 6. Maji Mars habuerit boream latitudinem $6^{2}/_{s}$, confecit illa, ex analogia motus latitudinis ad dies praecedentes, diebus $2^{1}/_{s}$, Maji 8. hora 20: quando invenitur locus ejus eccentricus 16° 42' m, qui esset anno 1595. 16° 47' m, nodi descendentis, cum prius invenerimus ascendentem in 16° 45 $^{2}/_{s}$ ' \bigotimes . Nodi igitur anno 1595 completo sunt in 16° 46 $^{1}/_{s}$ ' \bigotimes m.

Caput LXII.

Examen inclinationis planorum.


Anno 1593. d. 25. Aug. h. 17. 27', visus est Mars Soli oppositus in 12° 16' $\underbrace{+}$. Die 23. fuit latitudo 6° 7' 30". Die 24. fuit 6° 5' 30". Die 29. fuit 5° 52' 15". Igitur diebus 5 decrevit latitudo per 13' 15". Sed die uno ante opositionem per 2'. Ad hanc igitur analogiam, si die et hora oppositionis ponatur latitudo 6° 2' 30" non dimidii scrupuli error erit.

Observatae sunt hae latitudines in altitudine Martis 22°, quae Fig. 121. jam liberare consetur fixas a refractione. Cum ergo fuerit anomalia coaequata 166° 36', distantia Martis et Solis fuit 138556, Terrae et Solis 100666. Hinc si A Sol, B Terra, C Mars, et AB 100666, AC 138556, et EBC 6° 2' 30": arguitur BAC declinatio orbitae ab ecliptica hoc loco 1° 39' 22". Ac cum sit nodus in 16° 43' \heartsuit , hinc aufero 12° 16' \oiint , restat arcus 64° 27'. Et ut sinus istius ad hanc inclinationem 1° 39' 22", sic sinus totus ad 1° 50' 8" inclinationem limitis austrini. ¹⁰⁸)

Sed quia locus paulo longius abest a limite, ut omnis suspicandi ansa praecidatur, age consulantur observationes extra situm acronychium, ubi Mars propior est limiti. Qua opera una tradam etiam demonstrationem proportionis, quae est inter inclinationem et

visam latitudinem, universalius. Anno 1593. d. 21. Julii h. 14. astronomice, visus est planeta in 17° 45³/₄' \not , cum lat. mer. 5° 46¹/₄'. Ad hanc vero horam invenitur locus eccentricus Martis 20° 1¹/₂', Solis vero locus 8° 26' Ω .

In schemate praesenti sit EA in 8° 26' Q, KA in 20° 1⁴/₂ · . Erit EAK commutationis verae angulus 11° 35⁴/₂ · . Sit etiam EK in 17° 45⁴/₄ · H. Dico, ut est sinus AEK ad sinum EAK, sic esse sinum inclinationis ipsius K ad sinum latitudinis ejus visae. Intelligatur enim inclinatio ipsius K linea recta ex corpore planetae perpendiculariter in eclipticam demisea.

Erit igitur ut distantia EK ad distantiam AK, sic sinus apparentiae ipsius lineae K ex A, ad sinum apparentiae ejusdem ex E. At ut sinus EAK ad sinum AEK, sic distantia EK ad distantiam AK. Ergo ut sinus EAK ad sinum AEK, sic sinus apparentiae lineae K ex A ad sinum apparentiae ejusdem ex E.

Minor nota est ex doctrina triangulorum, et nominatim ex N. 14. libri III. Triangulorum Landspergii. Major indiget probatione. Sit

Fig. 123. V P F F F F L ergo recta VO, ex cujus duobus punctis P et M erigantur duas perpendiculares et aequales PQ et ML, et connectantur Q et L termini cum puncto lineae VO, quod sit O. Centro vero O, spatio OL, scribatur arcus, secans QO in N, et ex N demittatur perpendicularis NR in VO. Erit igitur ut PQ ad QO, sic RN ad NO. Sed ipsi PQ aequalis est ML. Ut igitur ML ad QO, sic RN ad LO. Est vero ML sinus anguli LOM, quo spectatur quantitas PQ vel LM de propinquo, ut sit LO, quae est distantia brevior termini L, sinus totus; QO vero est distantia longior quantitatis ML vel PQ, termini scilicet Q. Et RN est sinus anguli NOR, quo spectatur LM vel PQ remotior, ut sit rursum NO, hoc est LO sinus totus. Ut ergo sinus apparentiae de propinquo ad distantiam longiorem, sic sinus apparentiae de longinquo ad

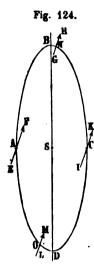
distantiam breviorem. Et permutatim atque conversim, ut distantia brevior ad longiorem, sic sinus apparentiae de longinquo ad sinum apparentiae de propinquo. Et in praesenti negotio, adeoque universaliter, ut distantia Martis a Terra ad distantiam ejusdem a Sole, sic sinus latitudinis ad sinum inclinationis planorum. Et vicissim, ut distantia a Sole ad distantiam a Terra, sic inclinatio ad latitudinem. Q. e. d.

Haec cum sint certa, et cum linea per K signata (Fig. 122) apparuerit ex E 5° 46 $\frac{1}{4}$, facta multiplicatione hujus sinus per sinum EAK, et facti divisione per sinum AEK, prodit sinus 3188, cujus arcus est 1° 49' 37"; atque haec est inclinatio ipsius puncti K, quanta appareret ex A. Cum autem sit Mars in 20° 1 $\frac{1}{2}$ $\frac{1}{200}$, nodus in 16° 43' \bigcirc , et sic elongatio Martis a nodo 86° 46': ut igitur sinus hujus elongationis ad totum, sic sinus 1° 49' 37" ad sinum inclinationis maximae 3200. Igitur haec rursum ut prius prodit 1° 50' 8" in austrum.

Pro inclinatione boreali. Anno 1585. d. 31. Jan. sequente media nocte in altitudine Martis 53° fuit decrescens jam latitudo Martis 4° 31' bor. Fuit autem oppositio vera ante horas 16. 46' in 21° $36'_{16}'$ Q. Tunc consentaneum est fuisse latitudinem 4° 31' 10". Cum igitur complementum anomaliae coaequatae Martis fuerit 7° 6' 23", fuit ergo ejus distantia a Sole 166334, Solis a Terra distantia 98724. Rursum igitur in schemate 121 si AC 166334, AB 98723, et EBC 4° 31' 10": prodit BCA 2° 40' 50". Qui ablatus ab EBC relinquit BAC 1° 50' 20". At quia 5° absumus a limite, limitis igitur inclinatio circiter 25" major erit, scilicet 1° 50' 45". Prius austrina inclinatio erat 1° 50' 8"; differentia 37", nullius momenti. Medium horum est 1° 50' 25", inclinatio justissima, quanta etiam supra cap. XIII. variis modis et operationibus inventa fuit, quos hic repetitos volo.

Hac jam inclinatione limitum usus, si computem latitudines Martis sub situm ejus in opposito Solis, invenio sic:

	Anno	Distantia Martis.	Distantia Solis.	Inclinatio.	Visa latitudo.	Nostra tabula cap. XV.
1	1580	152976	98223	0º 37' 42"	1° 45 1/, ' bor.	1º 40'
2	1582	162255	98233	1. 36. 6	4. 3 ¹ / ₂	4. 6 vel 4º 3'
3	1585	166335	98724	1. 50. 3	4. 30 ¹ / ₂	4. 31 ¹ / ₆
4	1587	164635	99641	1. 25. 42	3. 37 "	3. 37 vel 3. 41
5	1589	157045	100860	0. 23. 20	1. 5 ¹ / ₂	1. 7 ¹ / ₂ vel 1. 12 ³ / ₄
6	1591	144774	101777	1. 11. 9	3. 59 ¹ /6 aust.	4. 1 ¹ / ₃ vel 3. 56
7	1593	138556	100666	1. 39. 40	6. 3 ² /4 "	6. 2 ¹ / ₂ vel 5. 58
8	1595	148817	98756	0. 1. 39	0. 5 ¹ / ₈ bor.	0. 8 circiter
9	1597	159200	98203	1. 19. 17	3. 20 "	3. 33
10	1600	165406	98478	1. 49. 24	4. 301/4	4. 31
11	1602	166004	99205	1. 39. 35	4. 73/	4. 8 vel 4. 10
12	1604	160705	100359	0. 52. 9	2. 183/5	2. 21 ¹ / ₁ ' vel 2. 26.

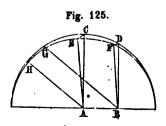

In prima defuit observatio ad diem, ut vidisti cap. XV. In secunda trium scrupulorum incertitudo erat in observando, quia interdum usi sunt altitudine poli 34° 7', quae fuit 34° 51/2'. Tertia est nobis fundamenti loco. Quarta ad unguem consentit, si parallaxin negligas, per quam observata latitudo perperam corrigitur, ut sit 3º 41', ut vidisti cap. XV. In quinta desunt nobis 2 scrupula, quae potius abundant in observatione ob refractionem, quia Mars non fuit altior $22\frac{1}{2}^{\circ}$, ut habes cap. XV. In sexta agnoscas aliquantulum defectum 2' c. Sed refractionis quantitati non est tanta fides. Quid si namque illa 2' fuerit auctior? Septima rursum fuit nobis fundamenti loco. Octava procul dubio vitiosam habuit declinationem, quia tunc hora 8. Mars in meridiano non fuit. Armillae vero, quibus observatur declinatio extra meridianum, facilius fallunt quam quadrantes. Docet autem analogia circumstantium dierum, ut est cap. XV, latitudinem fuisse 0° 5' b. quantam computavimus. Nona observatio non est fide digna. Fabricianam tamen latitudinem 3º 23' (v. s. p. 238) calculus ad diem 10. Dec. accurate examinatus fere assequitur. Dat enim 3º 21 2/3 ' b. Decima proxime calculum venit. Undecima exclusa refractione ad unguem respondet. Duodecima vix 2' major est calculo, credo, quia in instrumentis meis tantum est vitii. Nam in quadrante sescubitali meo 2' non facile discernuntor. Satis igitur praecise tenemus acronychias latitudines per omnem circuli ambitum per hanc inclinationem 1º 50' 30". Examen vero reliquarum latitudinum in observationibus extra situm acronychium, quae crebrae inveniuntur hoc libro, relinquo diligentioribus.

Caput LXIII.

Hypothesis physica latitudinis.

Dictum est cap. LVII, si diameter corporis seu globi Martii ponatur magneticam vim obtinere, et porrigi in longitudines medias atque in illo situ teneri sibi ipsi parallelos in omni ambitu, absolutam esse hypothesin physicam eccentricitatis. Haec suppositio tanto est verisimilior, quod nunc

etiam latitudinis ratio plane consimili speculatione expeditur: si nempe supponatur aliqua diameter latitudinis in corpore seu globo Martis, quae porrigatur in locum limitum sub fixis, et in hoc situ maneat sibi ipsi parallelos per omnem ambitum. Hujus virtutis ad illam proportio haec est, quae est in magnetibus nostris directionis ad polum ad vim ferri attractricem. Illa quippe Solem appetit vel fugit: haec fixarum illa loca, sub quibus limites latitudinum conficiuntur, non appetit adnavigando vel fugit (quemadmodum nec magnes ad poli regionem adnatat, etsi liber natat) sed tantum versus illa, ut magnes versus polum, dirigitur. Hanc vero directionem sequitur excursus planetae e plano eclipticae ad latus utrumque, versus quod axis hic inclinationis, parte quae in motu corporis praecedit, dirigitur. Sit CBAD ecliptica, A, C nodi, B, D limites. Axis latitudinum in corpore



planetae GNH, EAF, LOM, ICK. Cum igitur ponamus. hunc axem sibi ipsi aequidistare per omnem ambitum. fiet igitur, ut corpore a nodo ascendente C in limitem boreum B translato, axis hic corporis IK, qui initio et in nodo C quasi tangebat circulum circuitionis per CNAO imaginatum, denique in limitibus N, O eundem ad angulos rectos secet, versus centrum mundi S, hoc est versus Solem porrectus, et qui hactenus ob declinationem nonnullam ab itinere regio CBA prolectaverat corpus planetae, ut eodem, nempe in plagam N excurreret, quorsum praecedentem partem K verterat; jam in limitibus, inclinatus ad planum quidem eclipticae CBS mansit (diximus enim. in omni situ manere sibi ipsi aequidistantem: semel itaque inclinatus ad planum eclipticae semper inclinabitur), sed ab itinere ipso regio, hoc est a circumferentia illius plani CBAD, ipse in GH constitutus non amplius declinat, neque enim in adversum A, neque retro in C nuit; sed tantummodo ad latus seu ad pelum abnuit, quorsum iter illi non est. Igitur planeta ultra B promoto, jam altera axis

pars G, quae in meridiem vergit, praecedit, istoque pacto planetam a boreali inclinatione maxima N per nodum descendentem A ad inclinationem maximam austrinam O perducit.

Atque hic inclinationis axis quidam quasi remus est: quia quod nantae remis praestant, ut ab una ripa in alteram trajiciant, hoc planeta consequitur per hunc inclinationis axem, trajiciens a borea in austrum, et vicissim, flumine, hoc est specie immateriata Solis, per viam rectam CBAD incedente.

Quod geometricam dimensionem attinet, nihil est opus verbis. Recta sibi parallelos tractu rectilineo traducta motu suo creat planum. Hic axis ipse est recta, et qua vergit ille (vergere autem tractum praesupponit

rectum), hac et traducitur. Describit igitur planum, quod si continuetur, secat sphaeram fixarum in forma circuli magni, in schemate FEGH: quia secat eclipticae planum DC in centro mundi seu Solis A. Ut de eo tanto confirmatior sis, perpende, sectiones seu nodos, ut in schemate vides, esse in locis ex centro Solis A oppositis experientia teste: vide

cap. LXII. Itaque cum planum sit, quod circumitur ab orbita Martis, ejus inclinatio ad planum eclipticae regularis erit. Scriptis enim duobus circulis aequalibus, altero DC in plano eclipticae, altero FE in plano orbitae Martis, ex communi centro A Solis, hoc est in una et eadem sphaera fixarum Soli concentrica, erit ut sinus BD arcus inter sectionem circulorum et quodifiet punctum circuli Martii, puta D, ad sinum totum, sic sinus inclinationis DF puncti F ad sinum CE, inclinationis maximae E limitis. Ordinari vero eadem mensura declinationes omnium circuitus punctorum a plano eclipticae, supra cap. XIII. probatum est observationum ingeniosa tractatione. Itaque nulla potest afferri instantia nostrae hypothesi.

Porro duae quaestiones difficiles expediendae sunt. Altera de conditione hujus declinationis axis, altera de axe ipso. Quaeritur enim, naturalis sit haec axis inclinatio an rationalis, naturae corporeae opus an angeli? Quaeritur secundo, an idem numero sit axis inclinationis cum axe magnetico, Solis appetente? et si diversi, quomodo in eodem corpore planetae globoso? Estque altera alteri implexa quaestio.

Naturalem pene credidissem, ob similitudinem ejus virtutis, quae in magnete naturalis et ipsa est : nisi accessisset et transpositio nodorum succedanea, quae omnino videtur opus esse rationis, si non discurrentis at certe instinctae. Nam aequidistantem situm manere minus est mirum et propius naturae, quam prius in negotio eccentricitatis. Illic enim ab axe virtuoso Solem peti diximus, hic locum sub fixis longissime distantibus. Illic vi hujus magneticae virtutis axis, circumlato corpore, convertendus fuisset nec sibi ipsi mansurus aequidistans, nisi retineretur a vi directionis fortiori aut a vi animali, seu nuda seu rationis quomodocunque capaci; hic vi nostrae virtutis directoriae ipsius, nulla necessitate virtutis animalis aut ratiocinantis, sequitur ista aequidistantia axis. Nisi forte quis et hoc menti tribuet, quod diameter ista latitudines efficiens, planeta in limitibus collo-cato, directe in centrum Solis tendit, atque hoc pacto ex orbita planetae circulus magnus efficitur, et nodi in loca ex Sole opposita rediguntur. Quo argumento supra quoque cap. XXXIX. planetae asserui respectum Solis. Atqui non omnis respectus Solis arguit rationem comitantem. Illud sane verum, eum, qui primum ordinavit motus coelestes, hunc axem sic direxisse, ut Solem (in dicto situ) respiceret; et proinde consilio summaque ratione usum esse. At iste respectus Solis retineri jam porro potest citra mentem, sola constantia magneticae facultatis. Quieti enim similior est quam motui; materialis igitur, non mentalis. Sola igitur variatio hujus inclinationis, quam dicimus translationem nodorum successu seculorum, adhuc in causa manet, evincens vim motricem plus quam naturalem seu corpoream seu quales sunt virtutes magneticae. Et tamen utramque potius censuerim conjungendam, quam solam rationalem ponendam. Pareat vis magnetica; praesit ratio illam gubernans, ut prins etiam cap. LVIL de virtute Solis appetente diximus.

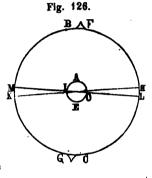
Hac quaestione sic expedita sequitur altera. Nam si virtus ista directoria est ex magneticis, corporeis, naturalibus: subjectum ejus erit corpus. An igitur fieri possit, ut eadem illa diameter, Solis appetens vel ab eo fugiens, inclinatione sui ad eclipticam etiam administret hanc declinationem planetae ab ecliptica? Si nodi jungerentur apsidibus, limites longitudinibus mediis, omnino eadem esset diameter et eccentricitatis et latitudinis administra. Dictum enim cap. LVIII, diametrum, quae eccentricitatem

Kepleri Opera. III.

27

causatur, porrigi in longitudines medias: dictum vero jam, diametrum, quae latitudinem causatur, porrigi in himites. Igitur si limites jungerentur mediis longitudinibus, utraque diameter odem porrigeretur; itaque loco convenirent, nihilque prohiberet quin tune et eaedem esse possent *). At non conveniunt nodi seu sectiones eclipticae verae in apsidas. In Marte limes boreus 12° est ante aphelium; in Jove praecise coincidunt limes boreus et aphelium; in Saturno 24° nodus sequitur aphelium; in Luna brevitate circuitionum omnia omnibus permutantur. Nodus enim nunc in apogaeo est, nunc in longitudine media, nunc in perihelio. Cum igitur tempore et loco differant hae duae virtutes, sequitur, ut una non sint.

In uno tamen et eodem corpore planetario residere utramque ceu in toto, nihil impedit nisi motus seu convolutio globi. Itaque si planetae moventur ut Luna, quae non convolvitur sed eandem nobis undequaque ostendit faciem, nihil impedit asserere, intextas esse mutuo virtutes utrasque, ut subtegmina sunt intexta staminibus. Tunc enim toto corpore planetae situm eundem vespectu fixarum retinente, cum circa Solem vehitur, omnes omnino tractus in eo rectilinei, e quorum numero sunt duae istae diametri, situm retinebunt eundem ad fixas. Sin autem de Telluris globo agitur, qui, praeterquam quod circumfertur annuo spatio, etiam circumvolvitur in dies singulos, tum in magna dubitatione non minus quam supra cap. LVIL relinquimur. Nam si corpus convolvitur, unica sola diameter virtuosa, quae est parallelos axi motus convolutorii, manet constans et sibi ipsi aequidistans. Quodsi maxime aliam insuper priori intertextam dicas, quae latitudines causetur, alterius speciei virtutem: illa easdem plagas observabit cum axe volutionis; utpote circa quem illa conum circumscribit, cujus plagas singulas peragrat; itaque jam ad dextras jam ad sinistras nuens, corpus tandem in mediam plagam inducit, quam spectat axis conversionis.


Igitur si globus volvitur, tunc hujus virtutis declinatoriae subjectum aut non est corpus, sed spiritale quippiam, aut non est idem corpus. Si spiritale quippiam, quomodo plagas tuetur mundi, rem corpoream? et quomodo motus hanc speciem (declinationem a via regia) infert corpori? An fortasse facilius inclinatur corpus et e via excedit regia (translationis suae causam interim habens extraneam, ex Sole), quam de loco in hocum vi proprii motoris transfertur? Sin malumus subjectum corporale, nascetur nobis mechanicum quippiam, cujusmodi sunt lucernae quaedam sphaericae, quae projectae et convolutae non tamen effundunt oleum. Intus enius inclusa est ampulla, quae ventricoso pondere deorsum tracta et sic retenta non sequitar motam convolutam sphaerae se circumdantis. An igitar et in hoc Telluris globo sit interior aliquis globus, ad quem diurnus Telluris exterioris motus non penetret, sed qui fortissima inclinatione ad certa fixarum loca retineatur, quo minus exterius corpus revolutum sequatur? Nam attinere hanc quaestionem et Terram, cap. LXVIII. audiemus : ubi et hoe videbimus, an, proposita sex planetis ecliptica aliqua media, fieri possit,

^{*)} Aliud est diameter quae eccentricitatem causatur, aliud diameter libratoria. Illa reale quippiam est, haec imaginaria, ad imaginandum illius effectum. Illa ubicunque consistat porrigitur in perpendiculum lineae apsidum seu in locum longitudinum mediarum sub fixis; haec, ut cap. XXXIX. dictum, semper in ipsum corpus Solis porrigitur.

Para Quinta. Caput LXIII.

quod paulo ante requirebamus, ut nodi singulorum competant in suas apsidas; an potius credendum, posse esse modos aliquos coelestium motionum, qui licet et ipsi corporales sint magneticorum instar, a nemine tamen in Terris comprehendi possint ob defectum exemplorum? quemadmodum, si nobis defuisset magnetis exemplum, ut olim quidem incognitum erat, plurima de causis coelestium motuum ignoraturi fuissemus. Qui orbes tuentur solidos, ii facile omnia expediunt, secundum ea, quae cap. XIII. dicta sunt. Plano enim eccentrici Martis FE (Fig. 125) ad planum eclipticae DC tribuent inclinationem non libratilem, sed certam et constantem super diametro sectionis BA, per centrum mundi A ducta (Braheus per centrum Solis); quam dicent successu seculorum circa centrum illud A sub ecliptica DC converti.

Ac cum duorum circulorum maximorum in schemate praesenti ML et KH poli F, G et B, C tantundem distent, quanta est declinatio eorum maxima MK, LH: ergo poli Martis B, C circa polos eclipticae F, G describent circellos spatio FB, GC, 1° 50' 25", sub quibus dicent polos sphaerae Martiae B, C circumire in antecedentia, motus ea quantitate, quae supra cap. XVI. est expressa infraque cap. LXIX. corrigetur.

Caput LXIV.

Examen parallaxium Martis per latitudines.

Est igitur cap. LXI. inventus uterque nodus in locis praecise oppositis, mirabili consensu et qui omnem parallaxin excludat. Esto enim, ut sit Martis parallaxis saltem 2' et 1', cum utrinque in opposito Solis fuerit propior Terrae quam Sol, et distiterit prima vice anno 1595 a vertice circiter 38°; secunda vice anno 1589 circiter 66°. Igitur anno 1589 cum existimaretur in nodo, fuisset adhuc fere 2' in septentrione; ergo adhuc uno gradu fuisset ante nodum. Nodus igitur esset non 16° 46' M', dié 17° 46' M. Contra anno 1595 habuerit 1' parallaxeos. Ergo quo des existimabatur esse in nodo ascendente, jam vere habuisset latitudinem 1'; quare jam ultra nodum 30' circ. Nodus igitur ascendens esset non in 16° 46' \bigotimes , sed in 16° 16' \bigotimes . En nodum descendentem in 17^{*}/₄° M, ascendentem in 16^{*}/₄° \bigotimes , si vel minima parallaxi utaris. Concludamus igitur cum cap. XI., parallaxin Martis diurnam esse plane insensibilem, siquidem vera sit observatio utraque latitudinis intra 2'.

Non dissimile argumentum parallaxeos nullius nascetur nobis etiam ex cap. LXII. praemissa investigatione verissimae planorum inclinationis, nisi quid refractio turbabit. Esto enim, ut Mars habuerit parallaxin anno 1593 in altitudine 22° saltem 2′, anno vero 1585 in altitudine 53° minuti unius. Minor ergo esset visa latitudo austrina, minor igitur et inclinatio quam borea. At jam ante paulo minor apparet vel sine parallaxi, quantum observationis vitiolo aut refractioni nonnulli in altitudine 28° tribui potest. Ergo parallaxi adhibita observatio de majore errore incusaretur: et vicis-

27 •

sim observatione stante perimitur parallaxis: siquidem verum est, orbitam Martis ordinari in perfecto plano, quod planum eclipticae secet in ipso centro Solis.

Sed multo certius idem evincitur ex latitudinibus observatis in reliquis sitibus acronychiis, iis praesertim, quas observationis conditio aut refractio dubias non reddidit. Hoc cap. XV. dici coeptum hucusque perfici non potuit. Anno enim 1587, cum Mars distaret a vertice 55°, si parallaxin habuisset 4', latitudo ex 3° 37' fuisset effecta 3° 41'. At cap. LXII. nihil ultra 3º 37' inventum fuit. Anno vero 1589, in distantia nonagesimi a vertice 64°; si Martis parallaxis ex Solis parallaxi horizontali 3' fuisset 51/,', tunc borea latitudo pro observata 1º 7' fuisset 1º 121/2', liberata parallaxi. At nos computavimus nihil supra 1º 5 1/3 '; etsi vitiolum 2' observationi obvenire potuit: ut si Mars in altitudine 22º adhuc refractionem passus per 2' altius justo in borea apparuisset, quemadmodum et cap. LXII. et cap. XV. dictum. Anno vero 1602 cum usurpata parallaxi inveniretur observata latitudo 4º 10', neglecta 4º 71/2': nos compatavimus 4º 72/5', praecise admodum. Sic anno 1604 non assecuti sumus penitus quantitatem latitudinis · borealis observatae. Igitur multo minus esse queremur eam, abstractione parallaxeos auctam.

Hisce tribus modis incertitudinem parallaxeos Martis evicimus, insensibilitatem antem omnimodam non omnino demonstravimus, eludente nos refractionis negotio et interdum observationibus intra 2' vel 3' non descendentibus. Itaque si quis Marti parallaxin latitudinis maximam 2' vel $2'/_2'$ tribuere velit, eum observata haec Braheana non magnopere coarguent. Accommodabitur enim et inclinatio, fietque 1° 51' 0".

Caput LXV.

Inquisitio latitudinis maximas utriusque plagae, tan in conjunctione quam in oppositione cum Sole.

Inclinatione constituta facile est et maximam latitudinem definire, idque gemina via. Nam aut quaeritur maxima omnium seculorum, aut quanta hoc'seculo fieri possit. Etsi parum differunt hodie utraeque, cum limites sint medii inter apsidas Martis et Solis seu Telluris, nec illi ultra 54° ab invicem distent, nec sit Solis seu Telluris insignis eccentricitas. Esto tamen, ut olim : conjungantur apsides Martis et Solis, et una limites lati-. tudinum Martis, et retineat ecliptica situm suum inter fixas. Cum igitar in schemate 121 maxima Martis distantia AC sit 166465, minima Solis AB 98200, et BAC 1° $50^{4}/_{2}$: hinc computatur borea latitudo maxima in oppositione cum Sole 4° 29' 10", quae in conjunctione cum Sole, quando Sol a Terra distat 101800, attenuatur ad 1º 8' 34". Sed austrina latitudo ex distantia Martis 138234, Solis 101800 computatur in oppositione 6° 58' 24", paulo minor 7°, quae in conjunctions cum Sole, quando Sol distat 98200, ad 1° 4' 36" extenuator. Sin autem contraria ratione jungatur apogaeum Solis perihelio Martis, prodit maxima borea latitudo in oppositione 4° 44' 12", in conjunctione 1° 9' 32", austrina in oppositione 6º 20' 50", in conjunctione 1° 3' 32".

Et haec ita habereni, si olim apeides et limites conjungerentur; quod an futurum sit ante occasum totius machinae, incertum. Certe Ptolemaeus apsidibus et nodis aequales motus tribuit; quod si esset, nunquam fieret ista conjunctio. Ac etsi hodie diversis motibus uti videntur, non sunt tamen veterum observata adeo certa, nec est differentia horum motuum ne in hodierna quidem astronomia adeo magna, ut certissime concludere possimus, quot annorum myriadibus distent hujusmodi conjunctiones apsidum et limitum.

Ad nostrum igitur aevum revertamur, quod nos inter et Ptolemaeum extenditur. Atqui hic geometricas determinationes quaerentem multiplex aungama excipit.

Primum apsides Solis et Martis non sunt conjunctae, deinde orbitae planetarum non sunt perfecti circuli. Itaque etsi trajiciamus novam lineam apsidum per centra circulorum Martis et Telluris, in schemate per B, C: poterit tamen fieri, ut alibi quam in hac linea contingat maxima propin-

quatio siderum. Denique etsi constet de loco maximae appropinquationis, locus limitis borei et austrini est alius. Ut limes est in 16° 50' Ω , at recta BC per centra circulorum ejecta porrigitur in 24¹/₂° Ω et ∞ circiter; eodem nempe, quo Braheo porrigitur linea HF suarum apsidum, cui haec nostra BC parallelos incedit, quippe bisecta utraque eccentricitate, AF in C et AH in I.

Jamque eram electurus medium inter 17° Ω et 25° Ω , scilicet 21° Ω : sed me retinuit annus 1585, quo anno in 21° 36' Ω observata fuit

latitudo non plane maxima. Cum enim in nocte quae sequitur diem 30. Jan. esset oppositio, die 24. antecedenti observata est latitudo 4° 31', hactenus crescens; die vero 31. Jan. 16 horis post oppositionem rursum fuit visa latitudo 4° 31', apparet igitur, quod die 24., si fuisset oppositio illo in loco eccentrici, major spectata fuisset latitudo quam 4° 31' duabus de causis: primum quia sidus Terrae propius esset, quam extra situm acronychium, deinde quia remotior Mars ab apogaeo fuisset et humilior.

Contingat igitur maxima latitudo circa $19^{\circ} \Omega$, ∞ , ubi fuit Mars die 24. Jan. Cum igitur sit anomaliae coaequatae complementum 10° : erit distantia Martis 166200, Solis 98670. Itaque latitudo maxima borea circiter 4° 31³/₄. Quae in conjunctione Solis, cum is distat per 101280, apparet 1° 8′ 30″. Pro austrina maxima latitudine exhibet nobis anomalia Martis coaequata 170° distantiam 138420 circiter: et Sol in 19° Ω distat 101280. Hinc colligitur maxima latitudo austrina 6° 52′ 20″ proxime; quae in conjunctione apparet 2° 4′ 20″.

Caput LXVI.

Non semper in opposito Solis contingere maximos excursus ad latera. De latitudine vero maxima, quae contingere potest in unaqualibet

Fig. 127. G E F F F F D D

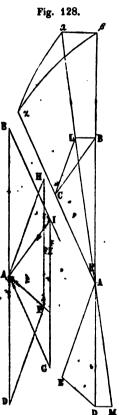
periodo Martis, multo perplexius est negotiam, Certa loca ejus geometrice definire: et involvit magnum illud paradoxum, quod inter observationes anni 1593 Tychonis Brahe mann his verbis inculcatum reperi:

Consideratione dignum est, quod Mars circa decimam dem Augusti habuerit maximam latitudinem austrinam, et postea decreverit; ita ut die 24. in oppositione quasi quarta parte gradus propior eclipticae redditus sit, quod tamen canones, etiam correcto latitudinis maximae loco, in 18° Aquarif nequaquam exhibent, quomodocunque assumatur illic maxima latitudo: cujus rei causa studiose inquirenda venit.

Postea cum ad ipsum in Bohemiam venissem et saepius de latitudinum ratione quaesivissem, illeque mihi, nodos in locis esse oppositis et sectionem transire per punctum medii loci Solis seu per centrum epicycli ejus (de quibus sequenti cap. LXVIL) aliaque multa recensuisset : hac mentione commonefactus de hac negotio hac inquit, est mirabile, latitudines fleri maximas ante vel post oppositiones cum Sole : cujus rei mentio facta est etiam supra capite XV.

Causam quidem rei continet vera hypothesis latitudinis hac parte quinta stabilita: terminos vero maximarum latitudinum haud facilius geometrice quam Apollonius Pergaeus inquisivit terminos stationum. inquisiveris. Quemadmodum enim in hoc negotio stationum nota quaedam potest describi. qua noscatur locus stationum (est autem ista, quando linea visionis Martis, Terra eunte, parallelos manet sibi ipsi); ex nota vero sine multiplici calculo locus stationis a priori demonstrari nequit, ob confusionem multarum causarum: sic etiam res habet in latitudine quavis vice maxima. Nam tunc quidem est latitudo maxima, quando distantia Martis a Terra crescit vel decrescit eadem proportione, qua crescunt vel decrescunt lineae inclinationum Martis: et augetur latitudo, quando proportio distantiae plus decrescit, quam proportio linearum inclinationis, aut quando illa decrescente Vicissim minuitur latitudo, vel quando plus crescit haec contra crescit. distantia Martis a Terra quam lineae inclinationis, in sua quaelibet proportione, vel quando distantia crescente illae minuutur. Haec autem promiscue funt jam in oppositione, jam ante jam post; prout oppositio vel in limitem inciderit, vel ante aut post limitem. Haec ita sequi ex hypothesi hujus operis, probant meae Ephemerides. Anno 1604. circa 25. Feb. vel 6. Martii fuit maxima latitudo borea, cum integro mense sequeretur oppositio. Vicissim 27. Sept. vel 7. Oct. fuit maxima latitudo austrina, cum Mars inter ouintilem et sextilem Solis versaretur. Rursum fine anni 1605 fuit maxima latitudo borea, Sole a quintili ad quadratum Martis eunte. Et vicissim anno 1606. Julii fine maxima fuit latitudo austrina, Sole in trino Martis Anno vero 1607 maxima borea latitudo contingit parte post versante. conjunctionem Martis cum Sole.

Causa, cur haec in veteri astronomia mira videantur, potissima in bec est, quod Ptolemaeus ceterique hunc imitati motus intricatissimos inclinationum, deviationum, reflexionum confinxerunt. Cum enim haereret Ptolemaeus in epicycli imaginatione, primum atque vidit, in oppositione cum Sole, quando planeta videtur, exire illum in plagam unam: statim conjecturae indulsit, asserens, in conjunctione cum Sole, quando non videtur, exire in plagam alteram; aut in universum contrarium ejus facere, quod vidit illum in oppositione facere: scilicet ut aliqua esset compensatio et restitutionis aequalitas cohaerentiaque cum Sole. Hoc vero non est observando verum

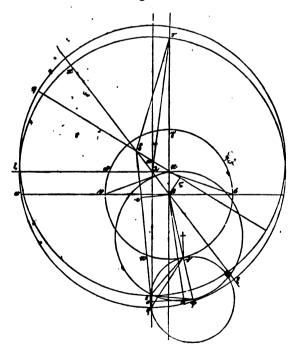

invenire, sed falsa concepta imaginatione observationes confingere; etsi condonandum est illi, qui paucas habuit observationes. Vide de hoc et cap. XIV.

Sed age videamus, an calculus noster reddat latitudinem diei 10. Aug. observatam, Nam de 21. Julii et 25. Aug. ejus anni jam certi sumus. Quibus emin observationibus calculus nititur, easdem et praesentat. Igitur d. 10. Aug. h. 13. 45' computatur eccentricus Martis locus in ecliptica 2° 41' 18" \neq ; Sol 27° 37' 49" &; angulus ad Solem 5° 3' 29"; angulus ad Terram 18° 25'; et Mars ex calculo in 16° 3' \neq , cum observatus sit in 16° 7' \neq ; et quia 2° 40' 48" \neq , locus orbitae, distat a 16° 43' \bigotimes per 74° 2': inclinatio igitur erit 1° 46' 10". Ex hac et duobus dictis

angulis methodo cap. LXII. tradita invenitur latitudo visa 6º 21', 14", duobus minutis etiam plus quam habet observatio. Sed ne nobis insidietur anguli exiguitas, utamur (quod vult methodus supra tradita) distantiis veris Martis a Terra et a Sole, sen eorum loco veris angulis. In schemate vides differre CB, BA a CL, LA. Et nostra methodus non dixerat ut CB ad BA, sed ut CL ad LA, sic esse sinum anguli LAB ad sinum anguli LCB. Sit locus eclipticus 2° 41' 18" Hartis sub λ puncto B stantis; χ locus Soli oppositus 27° 37′ 49″ \pm . Ergo $\chi\beta$ 5° 3′ 29″, $\beta\lambda$ 1° 46′ 10″. Hinc et ex My recto datur yλ vel CAL 5° 21' 36", cui respondet vera distantia L Martis ab A Sole. In triangulo igitar CAL ex lateribus CA 101077 et AL 138261. et ex angulo jam invento quaeratur LCA, qui invenitur 160° 33'. Complementum ejus est 19° 27', cui respondet vera distantia L Martis a C Terra.

Jam igitur per hos angulos operationis invenio LCB visam latitudinem 6° 19' 10", quam proxime A eandem cam observata. ¹⁰⁰)

Praestat igitur hypothesis, hoc opere constituta, hoc ipsum, cujus causam Braheus diligenter inquirendam monuerat, quodque antiqua astronomia tanto apparatu praestare non potest. Praestat, inquam, hoc ipsa sua simplicitate, dum plano eccentriei datur inclinatio seu obliquitas constans, eaque varie augetur vel minuitur; non vere, sed ratione optica, prout visus noster ad illam, aut in Brahao et Ptolemaeo D illa ad visum nostrum, appropinquaverit vel ab ea recessarit.



Caput LXVII.

Demonstratur ex locis nodorum et inclinatione planorum Martis et eclipticae, consurgere eccentricitatem Martis non ex puncto medii loci Solis (seu Braheo, ex centro epicycli Solis) sed et ipso centro Solis.

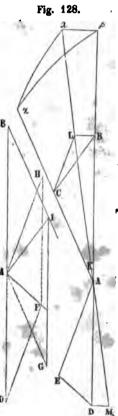
Ultima primis respondent. Disputavi cap. VI. physice, negatis orbibus solidis, non posse eccentricitates planetarum ab alio puncto, quam ab ipso centro Solis consurgere. Demonstrationem rei geometricam ex observationibus deductam distuli partim in cap. XXII. XXIII. 'et LII, quibus locis me satisfecisse puto vel oculatissimis; partim vero jam expediam. Primum per loca nodorum. Demonstratum est cap. LXI, exstructa Martis eccentricitate ex ipso centro Solis, sive, quod idem est, observationibus acronychiis ex oppositione planetae cum loco Solis apparenti desumtis, nodos cadere in partes ex centro Solis oppositas praecise admodum, id est diametrum apsidum et diametrum sectionis planorum eclipticae et Martis concurrere, seu secare se mutuo in centro eodem, unde eccentricitas computatur, in centro Solis scilicet. Quaeritur, si pro Solis motu apparenté utamur m e dio motu, num et hinc nodi futuri sint in locis, unde computatur eccentricitas, oppositis? Minime vero. Repetatur schema Copermi-

Fig. 129.

canum cap. VI. In eo sit jam zð linea limitum, in 16¹/4° & et === (non vero, ut cap. VI. linea apsidum in 29° Ω). Ergo ipsi x8 perpendicularis ex x erit diameter nodorum. Atmi si pro apparenti Solis utamur medio, tunc pro n nobis offertur B, unde computatur eccentricitas. Igitur ex β`ipsi x 8 perpendicularis, quae sit $\beta \varsigma$, cadet in loca ex β praecise opposita, at non cadet in loca nodorum; quia prior perpondicularis per x cadit in loca nodorum, quae superior est ipsa 🍂 spatio xc. Lubet inquirere, quanti futuri sint anguli ad sircumferentiam eccentrici. connexo puncto a cum sectione ipsius β_{ς} et eccen-

trici circumferentiae. Cum igitur sit $\varsigma *$ in 16° 45' Q ex supposito, et $\beta *$ in 5° 45' \odot circiter: erit $\beta * \varsigma$ angulus 41°; cumque sit $\beta \varsigma *$ rectus, erit $* \beta \varsigma$ 49°. Et cum $* \beta$ sit eccentricitas Solis 3600, gualium orbis

Terrae vel Solis est 100000: ut igitur sinus totus anguli ς ad $\beta \times 3600$, ita sinus anguli β ad $\varkappa \varsigma$ 2717. In eadem vero dimensione, gualium semidiameter orbis Telluris est 100000, semidiameter orbis Martii ex exp. LIV. est 152350. Qualium igitur semidiameter orbis Martii est film00, erit $\varkappa \varsigma$ 1790, ostendens in sinubus angulum 1° 1' 33".


Totidem ergo gradibus et scrupulis debuisset nodus evehens esse loco anteriore, deprimens posteriore, si male a me factum esset, quod pro β puncto Ptolemaico, Copernicano, Braheano, elegi x centrum Solis. Vicissim observationibus ad medium Solis motum expensis et sic assumto puncto β , si male hoc fit et si x eligendum esset, oportet nodum evehentem ex β inveniri loco posteriori, deprimentem priori, sic ut semicirculus septentrionalis arcu 2° 3' 6" curtatus sit.

Videamus, an hoc ita accidat.. Capite igitur XII. crasse expensis observationibus, Mars anno 1595. die 28. Oct. putabater in nodo fuisse. Tunc inventus est locus eccentricus ex Braheanis aequationibus, quae nituntur puncto β , in 16° 48′ \bigotimes . Sic 1589. die 9. Mari mane ponebamus Martem in nodo altero descendente fuisse; tunc computavimus ex iisdem Braheanis aequationibus locum Martis eccentricum 15° 44′/₂′ m. Fit igitur, quod dictum fieri debere. Uno gradu et 3′/₂′ minus est in semicirculo boreali. Quodsi accuratius, ut cap. LXI, inspiciantur observata, Mars d. 1. h. 15. serius in nodum ascendentem in-

mars d. 1. n. 15. serius in nodum ascendentem mcidit. Itaque ad locum eccentricum accedunt 50' circiter, ut sic cadat planeta in 17° 38' \bigotimes eccentrico motu. Igitur curtatio superioris semicirculi est 1° 53'/₂', quam proxime aequalis computatas 2° 3'. Stat igitur omnino punctum *, repudiatur β . Nam cur diameter sectionis planorum non secabit diametrum apsidum in centro, unde surgit eccentricitas, sicut supra? Quae hujus rei causa esset?

Eadem demonstrantur etiam per inclinationem 4 planorum cap. LXII. demonstratam, et per schema 130. Inventa ibi est inclinatio, hoc est angulus LAB, quo borei limitis digressio ab ecliptica ex A Sole spectatur 1° 50' 45". Angulus vero MAD, quo limitis austrini digressio ab ecliptica spectatur ex A Sole, inventus est illi proxime aequalis, scilicet 1º 50' 8". Ex quo concludebatur, cum angulf ad A supra et infra sint aequales, et linea per A in B, D loca limitum ecliptica educta, sit una linea (quia in uno plano eclipticae), igitur et lineam alteram, ex A in 👔 L, M limites ipsos ejectam, esse lineam unam, et sic, quod sub Martis orbita comprehenditur, esse unum planum. At si non in x prioris schematis (quod est A in posteriori) sed in $\beta \varsigma$ (hoc est infra A posterioris) ésset communits sectio planorum : connexis L, M limitibus cum aliquo puncto lineae BD infra A, esset angulus, quo spectatur ex illo puncto LB, minor, angulus, quo MD spectatur, major, duobus circiter minutis.

Verum est, si nobis libertas relinquatur statuendi

parallaxin pro lubitu magnam, facile dilui hujus capitis argumentationes. At certum est ex documentis pluribus, non posse admitti parallaxin tam magnam, ut plane enervetur haec demonstratio. Cumque thema hujus capitis firmissime sit demonstratum cap. LII, possem convertere vela, sic ut non demonstraretur hoc thema ex negata parallaxi, sed ex positione hujus thematis, quod propriam habet cap. LIL demonstrationem, negaretur parallaxis, ut cap. LXIV.

. Utrum facias, perinde est. Utrumque enim thema habet alias etiam demonstrationes. Mihi haec via primum occurrit et placuit, ut consensum rerum ostenderem.

Caput LXVIII.

An inclinationes planorum Martis et eclipticae eaedem sint hoc nostro et Ptolemaei seculo. Ubi de eclipticae latitudinibus deque inaequali nodorum circuitione.

Dictum est cap. XIV, in unaqualibet periodo Martis obliquitatem seu inclinationem plani Martii ad planum eclipticae manere fixam. Oritur vero dubitatio, an omnibus seculis eadem sit et fixa haec obliquitas. Causa dubitationis haec est.

Demonstravit Braheus tomo primo Progymnasmatum fol. 233, stellarum fixarum latitudines hodie esse alias, quam tempore Ptolemaei: hoc discrimine, quod stellze boreales circa solstitium aestivum auxerint latitudines, australes eas diminuerint: et vicissim circa solstitium hibernum boreales stellae diminuerint, australes auxerint latitudines: ab his terminis quo magis versus aequinoctialia puncta itur, hoc minorem accidisse latitudinis variationem adeoque proxime ipsa puncta aequinoctialia plane nullam. Hanc nostri temporis experientiam ad nostra principia cap. LXIII. constituta sic accommodabimus.

Sphaeram fixarum immenso intervallo supra planetas elevari constat: itaque eandem et liberam esse convenit ab iis motibus, qui planetis insunt. Id quidem Copernicus simpliciter ponit, fixas omni plane motu de loco in locum esse liberas et sic vere fixas iisdem perpetuo locis. Cum autem ecliptica 🍂 circulus in sphaera fixarum maximus, sub quo Sol nobis ex Terra perpetuo apparet, quemque is annuatim percurrere videtur : sive Soli sive Terrae competat motus iste, utrinque uni ex planetis competit: # ita fixae non ipsae in se habeant eclipticae causam, sed tantum propter motum mumm sive Solis sive Terrae circa centrum mundi. Ac cum inveniatur ccliption sedes suas sub fixis mutasse; non ighur fixae ab ecliptica, sed haec a fixis recessit. Causam translationis hujus exhibent procul dabio principia nostra, cap. LXIII. siquidem sana sunt. Cum enim Sol gyratiene rapidissima intra suum spatium, quod Copernico centrum anundi est, planetas cieat per speciem emissam, erunt hujus gyrationis certi poli. In schemate 126. sit corpus Solis IO, poli conversionis A, E, quibus in sphaera fixarum supereminent puncta F, G. Circulus igitar maximus corporis Solaris convoluti IO ordinabitur sub aliquo circulo maximo fixarum, qui sit ML. Qui cum sit procul dubio unus et idem sub fixis, polis F, G constantibus,

sic exigente dignitate ejus corporis, quod motum primo ceteris infert: planetae tamen inveniumur diversos et ad se mutuo inclinatos obire circulos, iis naturae principiis, quad sunt explicata cap. LXIII. Procul dubio igitur diversi planetarum omnium circuli respiciunt hunc circulum regium ML a conversione corporis Solaris circa suum axem AE descriptum: et ad hunc quilibet tuebitur inclinationem constantis quantitatis, translatitiam tamen, quia experimur nodos transferri. Cum igitur et ecliptica sit unus ex planetariis circulis, quippe Solis vel Terrae, consentaneum est, et hanc habere quandam inclinationem ad circulum regium ML, a circulo maximo corporis Solaris IO inter fixas descriptum. Quid enim causae sit, cur ceteri planetae alius alio declinet, sola ecliptica, Solari vel Terrestri itineri superstans, praecise cum hoc circulo regio ML coincidat?

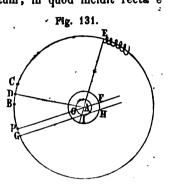
Sit ergo concessum hoc, eclipticam proprie sic dictam inclinari ad regium illum circulum Solarem, eaque repraesentetur nobis per circulum KH inter fixas delineatum, sintque ejus poli B, C. His obtentis, facile occasionem invenimus, qua mutentur fixarum latitudines; quippe quae, ipsa vocis ratione, ab ipsa vera ecliptica computantur, non ab illo circulo regio Solari hactenus caeco. Nam eclipticae vere et proprie sic dictae (quod tantum sub illa linea contingant eclipses, sub qua Sol incedit) intersectiones seu nodi communes cum illo circulo ML, quem mediam eclipticam dicere possemus, transferentur non minus, quam nodi ceterorum planetarum: obliquitate tamen maxima MK vel LH, quam metitur distantia polorum FB, GC, constante et fixa manente, ut et in ceteris planetis. Nimirum, si centris F, G spatiis FB, GC constantibus, circelli scribantur, in quibus polos eclipticae B, C circumire ponamus: tunc omnino et circulus KH sedes pristinas in sphaera fixarum FMG deseret facietque successu seculorum, ut ubi olim limitem boreum egit, prope easdem fixas tandem limitem austrinum collocet. In brevi vero seculorum numero sic erit. Limites K, H, non longe a fixis suis progressi, insensibili aliquo variabunt earum latitudines. Nodi vero sequali itinere progressi a suis fixis evidentius suarum fixarum mutabunt latitudines: quia sinus inclinationum in fine quadrantis circa limitem insensibili, in principio vero circa nodos valde sensibili differentia increscunt. Hinc quia circa aequinoctia nulla sentitur mutatio latitudinum fixarum, circa vero solstitia satis notabilis, colligimus recte, limites latitudinum. eclipticae esse circa aequinoctia, nodos circa bolstitia. Erunt igitur puncta K, H signa aequinoctiis propinqua. Similiter colligitur et hoc: cum eclipticae verae pars borealis fugiat a borea, quippe crescentibus latitadinibus borealibus in Geminis et Cancro, boreum igitur limitem eclipticae ant in Libra esse, progredientibus nodis, aut in Ariete, retrocedentibus iisdem, quod est verisimilius. Nam et Lunae nodi retrocedunt, annis 19 zodiacum absolventes; cum apogaeum progrediatur, annis $8^{4}/_{2}$ eundem absolvens. Cumque apogaeum Solis seu perihelium Terrae sit in 51/2 0 2, quare per cap. LVII. diameter virtuosa, eccentricitatem causans, porrigitur in Solis corpus, Terra in $5\frac{1}{2}^{\circ}$ γ versante. At per cap. LXIII. etiam diameter illa virtuosa, quae latitudinem causatur, porrigitur in Solis corpus, Terra in limite versante, qui est per hoc cap. LXVIII. in Ariete. Ergo per idem cap. LXIII. utraque virtus potest effici ab eadem corporis Telluris diametro. Hinc licet ratiocinari probabiliter, in 51/2° @ et 5 coincidere circulum hunc caecum seu eclipticam mediam cum vera nobis nota.

Quodsi omnium planetarum aphelia ordinarentur in uno circulo maximo,

possemus dicere, illum ipsum esse, quem hic quaerimus: quippe tunc de omnibus planetis verum esse posset, nodos (ut hic in Telluris circuitibus) competere in apsidas: itaque utramque varienatem, et eccentricitatis in altum et obliquitatis in latum, ab eadem diametro virtuosa effici; quo pacto magnis difficultatibus, quae nobis cap. LXIII. relictae sunt, liberaremur. Et quidem apogaea Solis, Martis, Jovis, Saturni consentiunt mediocriter. Omnium enim trium superiorum aphelia sunt in eodem semicirculo et simul in eadem plaga septentrionis. Itaque in Libra esset verae eclipticae limes austrinus, et boreus in Ariete, quod congruit superioribus.

Sed differenda est plenaria hujus rei consideratio, usque dum omnium planetarum motus ad veram et nobis cognitam eclipticam examinati fuerint.

Porro huic opinioni de latente aliquo regio circulo, ex Sole inter fixas propagato, testimonium praebet ipsa etiam vulgo usitata obliquitas eclipticae, quae ab aequatore computatur: quam rectius diceremas latitudinem aequatoris ab ecliptica. Est autem aequator circulus maximus corporis Telluris, medius inter polos conversionis diurnae Telluris circa axem suum. Et tribuitur idem aequatoris seu aequinoctialis nomen étiam illi tractui sphaerae fixarum, qui quolibet seculo aequatori Terrestri superstat. Idem polorum nomen punctis fixarum iis, quae polis Telluris quovis seculo superstant. Hic igitur axis et circulus maximus inclinatus est ad eclipticam aliis seculis aliter. Quanto enim hodie major est borea latitudo fixarum in Cancro, australis in Capricorno, tanto minor est bodie latitudo aequatoris ab ecliptica quam olim, quia in Cancro et Capricorno obliquitas haec est maxima. Olim quidem erat 23° $51^{1}/_{2}$: hodie est 23° $31^{1}/_{2}$, differentia 20°, quanta est et mutatio latitudinis fixarum.


Est antem consentaneum, circulum acquatorium cum axe suo et polis perpetuo aequali et fixo spatio declinaturum fuisse a polis eclipticae hujus HK, si ecliptica vera praecipuus esset circulus mundi. Quia vero ecliptica mutata, hujus etiam axis (et unâ aequatoris, cujus est iste axis) inclinatio ad eclipticam variata est, ut quantum ecliptica a fixis in Cancro recessit, tantum ad acquatorem accesserit; igitur acquator ad alium aliquem circulum videtur tueri inclinationem constantem. Magnam igitur cansam, magnam dignitatem hujus caeci circuli esse oportet. Itaque omnibus verisimilitadinibus consurgit nobis circulus aliquis regius LOM medius inter planetarum circulos, ad quem omnes planetae et hic etiam Mars tueatur inclinationem constantem. Nec-debet nos turbare Lunae exemplum, cujus est ad eclipticam, nop vero ad alium aliquem circulum maximum, et olim et hodie, transposita ecliptica, constans inclinatio 5º. Inter Lunam enim et planetas ceteros ingens est discrimen. Ceteri orbes centrum mundi ambeunt: Lunae orbis solus (ut crasse loguar) est extra centrum et transportatur de loco in locum. Illi communiter Solem circumeunt, Luna Tellurem. Illorum eccentricitates totaeque theoriae longitudinis et latitudinis a Sole consurgunt. Lunae a Tellure mobili. Illos Sol in circulum rapit, Lunam Tellus. Quid mirum igitur, si Luna latitudinum suarum limites ad eclipticam luxatilem HK, sub qua Telluris est circulus, constantes tuetur, ceteris planetis hic ad alium alienem circulum invariabilem, ut LOIM, respicientibus? Itaque nihil nos Luna debet impedire, quo minus hoc credamus.

Hoc igitur recepto, Martis orbitam constanter inclinari ad circulum aliquem sub iisdem semper fixis constantem, ut LOIM, sequitur, eandem Martis orbitam aliis seculis aliter inclinari ad eclipticam HK, ut quae ali-

quibus sui partibus fixas pristinas deserit et ad alias transit. Hoc tamen sit sequitur, si recipiamus, nodos Martis et nodos Telluris, hoc est sectiones esas faciunt hae orbitae cum illo circulo caeco LOIM, non iisdem semper intervallis in coelo circumferri, sed alios aliis esse celeriores. Hujus rei genuinum exemplum jam positum est. Dum enim aequator constantem tuetur inclinationem ad caecum hunc circulum LOIM, ecliptica HK interim translata : depique mutabilis est deprehensa aequatoris ab ecliptica declinatio.

Sit A polus eclipticae mediae, seu punctum, in quod incidit recta e centro Solis per polum corporis Solaris ducta. Scribatur centro A, spatio AB 23º 42', vel non multo alio, circulus minor, et sint B, C loca poli mundi borealis, sive puncta, in quae incidit linea ex centro corporis Telluris per polum motus diurni ejusdem Telluris ducta, B tempore Ptolemaei, C tempore nostro. Quodsi retrocedunt etiam eclipticae nodi, necesse est limitem borenm statui circa fixas in confinio Arietis et Piscium. Nam fixarum borealium in Geminis et Cancro crevit latitudo. at prius dictam. Sumatar D punctem inter B, C intermedium, ostendens locum poli aequa-

toris tempore intermedio, et connectantur A, D. Circulus igitar AD continuatus transibit per solstitium temperis intermedii. Ducatur ei ex A ad rectos AE, qui continuatus transibit per aequinoctium vernum temporis intermedii. Ergo prope lineam AE fuerit polus circuli, sub quo orbita circuitusque Telluris ordinabatur olim. Et quia in Ariete limes boreus, producatur igitur EA in partes A, et juxta illam productam eligatur punctum I infra. Polus igitur eclipticae Ptolemaicae fuerit in I. Centro A. spatio AI, scribatur circellus, in quo sumatur aliud punctum O, propius ipsi C, quam est I ipsi B. Sitque O eclipticae hodiernae polus, distans a C 23° 31¹/₂', cum I polus eclipticae Ptolemaicae distet a B 23° 51¹/₂'. Erit haec theoria mutatae obliquitatis eclipticae et latitudinis fixarum; nisi quod de dimensione nobis non constat ipsius circelli OI. Nam illa quantitas 20' obliquitatis eclipticae mutatae varie effici potest.*) Et quia O est polus eclipticae hodiernae, et OC in principium Cancri vergit: sit ergo CP pars octava circuli, et P medium Leonis, ubi hodie est limes Martis boreus. Continuetur PO ultra O, eique' ducatur per I proxime parallelos

^{*)} Polus Terrae non plane sub toso BCE circello incedit, sed sub spiris aput E depictis, singuis annis unim talem spiram, et opposito polo oppositam consimilem describens, aliamque ox alia nectens, ex quo nexu est progressus aequinoctigrum et solstitiorum. Est autem quaelibet harum spirarum tanta, quantus Copernico orbis magnus, ceteris orbis Solis, hoc est proportio hujus spirae ad. superficiem fixarum sphaerae insensibilis est. Itaque pro mera linea BCE haberi possunt. Notandum autem pro imaginatione recta hujus motus, quod axis aequatoris Terrestris continuatus utrinque ad fixas annis singulis describat cylindrum ea amplitudine, qua est una ex his spiris, qui corpus Solis habet in sui medio. At idem axis Telluris successu seculorum describit conos duos, verticibus in Sole aequalibus, imo vero confusis inde a circuitu Telluris circa Solem; quippe utriusque coni vertice in alterius corpus abdito, propter concursum omnium cylindrorum, basi vero BCE. Ita ex multis cylindris conus componitur.

GI, paulo tamen vergens in consequentia (quia olim limes Martis sub fixis erat paulo promotior quam hodie), et continuetur ultra I, et ex A circellus scribatur, secans PO in F, et GI in H. Sit autem circellus tantus, ut major sit OF quam IH. Et ponatur polus circuli, sub quo Martis circuitus ordinatur, hodie in F, olim in H. Erit hodierna obliquitas, seu inclinatio plani Martii ad eclipticam OF major, Ptolemaica IH minor; et tamen Martiae orbitae polus H, F circa A constanti intervallo AH, AF ivisset ex H in F. Cumque polus orbitae Martiae satis magno arou ab H in F iverit, seu in consequentia seu in antecedentia: quia tamen una ivit polus eclipticae ab I in O circa idem punctum A, videretur polus Martis proxime quievisse, quia IH et OF fere paralleli.

Magnam quippe inaequalitatem motus nodorum consequi necesse est, si hoc verum est, polos singulorum planetarum polum aliquem communem tempore non eodem circumire. Nam et ipsius praecessionis aequinoctiorum hinc aliqua mescitar anomalia, cujus negotium huic plane simile est. Dixi quid sit consentaneum principiis hoc opere constitutis, et quibus hypothesibus possit hoc praestari, ut inclinationes planorum aliis seculis sint aliae. Videamus nunc observata Ptolemaei. Cum enim Martis latitudo borea sit cum corde Leonis, fixa boreali; austrina cum stellis Capricorni australibus: consentaneum est, idem accidisse latitudinibus maximis Martis, quod stellis illis, ut utraque creverit, quia illorum latitudines creverunt, nempe boreales circa solstitium aestivum, australes circa hibernum. Ptolemaeus igitur martimam Martis borealem latitudinem observatam ait 4° 20', quae hodie est 4º 32'. Confirmat igitur hic nostram opinionem, quia latitudinem maximam 12' minorem exhibet hodierna, nodis in eadem cum hodierna proxime distantia ab aphelio permanentibus. At contra latitudinem austrinam facit 7° proxime, cum et hodie tanta esse possit, scilicet 6° 521/3'. Igitur per ejus observationes in suspenso relinquimur. Nam quod haec 12' attinet in latitudine boreali, sciendum, ejus instrumenti partes minimas valere 10' et plerunque ab ipso unius hujusmodi quantitatem in errore poni. Et inter Graecas notas, quae 20' et quae 40' significant, exiguum et lubricum est dicrimen, saepe neglectum ab interpretibus; etsi Arabs hic vertit 20'.

Nihil praeterea exstat in Ptolemaeo, quod nos manu ducere possit ad juditandum de statu antiquo harum rerum. Nam observatio capite sequente LXIX. examinata erroris arguitur. Dum igitur destituamur idoneis observationibus antiquitatis, cogit nos ipsa rei conditio, hanc de motu nodorum disputationem, ut multa alia, relinquere posteritati; siquidem Deo placuerit justam humano generi spatium temporis in hoc mundo indulgere ad residua ista perdiscenda ¹⁰⁷).

Caput LXIX.

Consideratio trium Ptolemaicarum observationum: et correctio motus medii motusque aphelii et nodorum.

'Ex antiquitate omni observationes stellae Martis non plures quinque ex consignatis supersunt; et una antiquissima ab Aristotele conseripta, qui Martem a Lunae dimidiatae parte obscura tegi vidit. At nec annus nec

hora diei gedita. Inveni tamen longissima inductione per annos 50 ab anno 15. ad finem vitae Aristotelis, non potuisse esse alio die, quam in vespera diei 4. Aprilis anno ante Christi vulgarem epocham 357, cum Aristoteles 21 annorum andiret Eudoxum, ut ex Diogene Laërtio constat. Secundam observationem a Chaldaeis habitam Ptolemaeus nobis conservavit, quae facta est anno ante Christum 272 d. 18. Jan. mane, cum Mars borealem in fronte Scorpii occultavit. Rursum hic nulla horae certitudo addita. Reliquas quatuor Ptolemaeus ipse habuit, dimensus astrolabio sidus Martis ad fixas; recenset tamen solum locum sub zodiaco, sub ipsum articulum oppositionis cum medio motu Solis.

Ex observationibus tam paucis rerum maximarum argumenta capienda sunt: aut si non possunt, imperfecta relinquenda astronomia. Primum enim per quatuor observationes Ptolemaicas epocha motus medii ad fixas relati Ptolemaei tempori competens inquirenda, et ex ejus cum hodiernis collatione ipse motus medius est limitandus. Deinde per observationem Chaldaicam videtur inquiri posse, an vere eccentricitas Solis olim major fuerit quam hodie. Denique et per hanc et per Aristotelicam, si tempus sciretur, de Martis latitudine ad illa tempora periculum fieri posset.

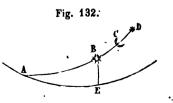
Quam vero viam insistemus per Deum immortalem! cam nibil pene habeamus a Ptolemaeo, quod non jure prius in controversiam vocare possimus, quam ad justam subtilitatem nobis utile fiat.

I. Primum ad exposita tempora prodit motum Solis medium ex calculo, qui nititur observatione aequinoctiorum et solstitiorum. Principium Arietis Sol detegit, non digito ad locum intenso, sed caeca conjectatione temporis. Nam id dicimus esse principium Arietis, quod Sol tenuit, quando visus est dies noctibus acquare. Quid si Ptolemaeus in tempore aberrasset? Conjecturis non caremus. Primum enim non prodit modum observationis. Opto ut observaverit altitudines meridianas, ex quibus inductione facta momentum ingressus Solis in boreale hemisphaerium citra errorem habetur. At quid si ipse observaverit in armillis Alexandrinis, ubi ei potuit nocere refractio, cujus manifesta indicia ipse prodit, dum ait, in illis armillis observatum esse eodem die bis acquinoctium? Ipse vitio instrumenti transscribit; ego vitium ex refractione ortum suspicor. Esto tamen; observaverit per meridianas altitudines. Alia suspicio se summa vi invito ingerit, quod aequinoctiorum momenta a Ptolemaeo prodita intra sesquidiem non consentiunt analogiae praeteritarum Hipparchi et sequentium Albategnii et Brahei observationum, quae omnes in unam aequalitatem conspirant; sola Ptolemaica aequinoctia exorbitant. Quae res multis per-plexissimis de coelo opinionibus occasionem dedit, motusque trepidationis et librationis peperit: qui omnes evertuntur, deprehenso, quod consecutae Ptolemaeum observationes cum vetustissima Hipparchi ad aequalitatem constanter consentiunt. Tuetur se tamen ipse Ptolemaeus consociatione vernalium aequinoctiorum cum autumnalibus. Nam si instrumenti vitio factum esset, ut postridie verum pronunciaserit aequinoctium, cum pridie fuisset; autumnale pridie pronunciatum fuisset, cum postridie competeret. **Tta** crepto biduo ex longitudine aestatis, magna fuisset secuta mutatio eccentricitatis Solis, quam tamen relinquit per sus observata, quanta ab Hipparcho fuerat inventa. Itaque nibil restat, quam ut fidem Ptolemasi secuti credamus juste observatum tempus, quo Sol stetit in Arietis-initio.

II. Facto principio, et obliquitate eclipticae per observationem inventa,

nihil est negotii, per quotidianas Solis declinationes pronunciare de vera ejus elongatione a puncto, quod Sol tempore dicto aequinoctii tenuit, quodcunque illud aut in quacunque sphaera statuatur. Nam alii alias huic negotio sphaeras deputarunt, cum post octavam et nonam a Ptolemae o constitutas sphaeras alii decimam, recentissimi undecimam et duodecimam vanissimis speculationibus constituerint; quam *molumequaruoovere* Braheus vehementer increpuit. At quid in earom locum substituere cogitarit, mihi *aunquam* dixit nec scriptum reliquit ullibi. Copernicus quidem (ut vulgus judicat) scite et festive, (ut ego) sapienter fecit, qui oculis a coelo deductis quaesivit id punctum in ipso globo Telleris, cui in fixarum sphaera punctum quolibet seculo certum supereminet, ut cap. LXVIII. dictum. Sed bujus loci non est prolixius ista discutere.

III. Sequitur demonstratio aequationis, quae nititur Solis ingressibus observatis in principia cardinalium signorum. Aequatione enim ab apparenti loco Solis subtracta vel addita, constituitur medius Solis motus ab illo puncto, quod Sol aequinoctij tempore obtinere visus est. Rursum hic de aequationis quantitate major est dubitatio, quam prius de aequinoctio vel principio zodiaci. Nam hodie illa aequatio minor apparet 20' quam quantam Hipparchus demonstrasse sibi visus est Ptolemaeusque retinuit. Nec est causa satis justa, cur dicamus, hodie aliam esse orbium proportionem quam olim. Affirmatum enim maximi momenti eget firmissimo testimonio, quo caremus. Nec enim observata illa tam possunt esse accurata, praesertim circa ingressum in @ et Z. Quodsi substituamus Ptolemaeo aequationes hodiernas, non mutabimus ejus observationes tanto, quod observando se comprehendere Ptolemaeus ipse fateatur, et quo majus aliquid' noceri potui Ptolemaicis observationibus ab ipso refractionum negotio. Nam possumus diem observati aequinoctii Ptolemaici certam fateri, horas interim aliquot illius diei in incerto ponere: ubi vernalium et autumnalium aequinoctiorum societas sese non ita defendit contra parvum hunc errorem, de quo agimus, ut prius contra illum magnum. Sane fuisse aequationes aevo Ptolemaei aequales nostris, arguit constantia modernorum. Nam fere idem est, quod hodie Braheus, et quod Albategnius quodque Arzachel ante aliquot secula invenerunt. 108) Cum igitur suspicio sit, vitiosam esse Solis aequationem, qua Ptolemaeus utitur, ex vitiosis apparentibus locis Solis deductam, nec ad medii nec ad apparentis Solis oppositum Mars a Ptolemaeo citra erroris aleam deductus est. Consolatio tamen haec est, quod nobis apparenti Solis loco opus est, cujus comprehensio praecedit.


Possumus autem incedere via gemina: aut ut Ptolemaeo credamus de aequinoctiis, aut ut ex modernis aequationibus correctionem Ptolemaicis hanc adhibeamus, ut vernum aequinoctium tribus horis fuerit serius, autumnale totidem maturius, quam est a Ptolemaeo annotatum; itaque utrinque in declinatione Solis fuerit erratum 8'. Sane instrumenta Ptolemaei subtiliora non fuere, quam quorum minimae particulae 10' valebant. Et collocat Hipparchus unam hujusmodi particularum in dubio. Qua de causa et tempora, quibus moratur Sol in quadrantibus zodiaci, non praecisius expressa fuere, quam quadrantibus dierum. Et haec de vera aestatis hiemisque longitudine.

IV. Quid vero nunc dicemus de ingressu Solis in Cancrom et Capricornum, unde apogaeum et ipsa aequationne dispositio dependent quam facile unus diei quadrans petuit vernali decedere zodiaci quadranți, accedere

automnali? cum ingressus Solis in Cancrum insensibilis plane sit. Neque sane persuaderi possum, Ilipparchum et Ptolemaeum in ipsum hujus ingressus momentum respexisse, neglectis punctis intermediis. Credo facilius, sedulos fuisse per totam aestatem in notandis Solis declinationibus, semperque duas aequales, ex utroque latere solstitii, comparasse invicem, et tempus inter aequalium declinationum momenta intermedium pro vero ingressu Solis in Cancrum sumsisse, quo pacto, si vicinis solstitio locis comparatio fuit instituta, parum quidem erroris, tantum tamen committi potuit, quantus est unius diei quadrans, in quo abeunt 15' de motu Solis. Igitur etsi certissima essent aequinoctia, potest tamen circa solstitia in partes alternas deesse vel abundare in loco Solis quarta pars gradus, et apogaeum tunc 8° anterius vel posterius incidere. Hactenus de motu Solis.

V. Jam quod Martis ipsius observationes 'attinet, etsi demus, astrolabio certissime collimasse Ptolemaeum ad fixas: tamen adhuc non constat certius de loco Martis in zodiaco (ut in quo prius et locum Solis consideravimus) quam de ipsarum fixarum locis: et si commisit Ptolemaeus errorem in assignando fixae gradu elongationis a puneto aequinoctii, idem error committetur in pronunciando Martis loco. Atqui ne fixarum quidem elongatio a Sole (et sic a puncto Arietis, a quo scitur Solis elongatio per declinationem) caret suspicione erroris. Ecce enim et modum inquirendi et argumentum erroris. Anno II. Antonini inquisivit illam Ptolemaeus per Lunam dichotomon. Lunae enim a Sole, cordis Leonis a Luna elongationem cepit Data igitur Solis elongatione a puncto aequinoctii, datur et astrolabio. fixae ab eodem elongatio*). Jam in dimetienda elongatione Lunae a Sole error videtur commissus dimidii gradus. Nam Sole occidente fuit capta. mensura. Sol vero occidens per refractionem videtur altior justo, dimidio circiter gradu. Minor ergo justo apparet elongatio Lunae, et sic etiam cordis Leonis a Sole aque aequinoctio. Videtur igitur addendus locis fixarum tempore Ptolemaei dimidius gradus. Ergo quando Ptolemaeus putavit Martem (cum fixis observando connexum) esse in opposito medii loci Solis, jam vere fuisset dimidio gradu ultra hunc oppositum. Cum igitur a Ptolemaeo quatuor observata loca Martis commemorentur ista: 21° 0' II, 28° 50' Ω , 2° 34' \varkappa , 1° 36" \varkappa , nobis assumenda essent ista: 21° 30' II, 29° 20' Ω , 3º 4' 🖈 2º 6' 🖈. Atqui contra hanc audaciam Ptolemaeus se munit affirmans, se saepius unam et eandem rem, fixarum sc. elongationem a Luna, Lunae a Sole, et sic fixarum a Sole et ab aequinoctio inquisivisse distantiam, inventamque esse perpetuo eandem. Igitur etsi unam solam prodit observationem, demonstrandae methodi causa : tamen credi potest, plures observationes respexisse, tam oriente quam occidente Sole vel Luna, et denique id secutus esse, quod vidit inter multas operationes, diversa loca prodentes, intermedium.

*) A punctum aequinoctii caecum; B Sol, C Luna, D fixa, visibilia; BE declinatio Solis. AB habetur per observationem ipsius BE tempore meridiano commodissime, BC habetur per instrumenta de die, CD per instrumenta et de nocte. Compositis igitur AB, BC, CD, tandem habetur AD elongatio fixae ab A, caeco prius puncto, quod jam tandem patescit, postquam ad

D fixam est alligatum. Postca planetae observando ad fixas alligantur, et sic seitur eorum elongatio ab A principio zodiaci.

Kepleri Opera. III.

28

Etsi vero haec disputatio de 30' nihil attinere videtur motum Martis medium, siguidem his 4 vicibus Mars a fixis observatus ad illas referri possit neglecto puncto aequinoctii, incertae distantiae: qua methodo ego superius cap. XVII. inquisivi aphelii locum ad Ptolemaei tempera: tamen adhuc eo nomine tenemur, quod Martis loca visa ad oppositum apparentis loci Solis reducenda sunt: quod opus nunquam recte procedit, nisi remotio cum Martis tum Solis a communi puncto aequinoctii praesciatur; quia non aliter nisi per haec quasi elementa discitur justae elongationis Martis a Sole arcus. Quodsi ad momentum, quo vera putatur fuisse siderum oppositio, planeta videatur ultra vera Solis loca 30': planeta igitur involutus est inaequalitate secunda, nondum idoneus ad inquirendam primam insequalitatem. At in apogaeo haec 30' prosthaphaereseos orbis occupant magnum arcum eccentrici, cui major adhuc portio de tempore seu motu . medio respondet. In perigaeo fit contrarium. Occupat enim ista prosthaphaeresis parvum arcum eccentrici, cui minor adhuc portio de motu medio com-Qui ergo dicit, Martem his 4 vicibus visum esse 30' in zodiaco . petit. ulterius, idem dicit, Martis motum medium ab aequinoctii puncto fuisse in apogaeo multis, in perigaeo paucis serupulis anteriorem. Ac cum minor sit arcus eccentrici arcu hoc vitiosae visionis, qui fuit 30', non igitur Mars in eccentrico eousque ne sub fixis quidem pervenerat, quousque pervenisse sub illis videbatur: quantitate illa, qua differt arcus eccentrici ab hoc arcu visionis 30'. Qui arcus cum magnus sit in aphelio, et parum differat ab arcu visionis 30', contra in perigaeo: denique igitur sequetur, in aphelio parum, in perihelio plus esse Martis motui medio a fixis adimendum, si recipiamus, fixas 30' promotiores esse in zodiaco. Ita non tantum motus medius fit minor (etsi multo minori quantitate, quam sunt haec 30', visionis vitium), sed etiam ipsa trium acronychiarum, quibus Ptolemaeus est usus, luxatur dispositio; unde aliud aphelium aliamque eccentricitatem prodire necesse est. Etsi hoc posterius nobis nihil facesset negotii. Contemnemus enim, etiamsi majus aliquid, vel sine suspicione erroris fixarum, insinuarent observationes: cum certum sit, non ferre illas tantam subtilitatem, quantam ferunt Braheanae. Itaque usurpabimus formam aequationum ex observatis Braheanis inventam, quasi maneant omnibus seculis eaedem.

Tria igitur bivia cum nobis occurrerint, de Solis eccentricitate, de loco apogaei Solis, de loco fixarum et Martis in zodiaco: octo existent constitutiones motus medii et aphelfi ad illa observationum momenta, etiamsi neglecto zodiaco tantum a fixis computemus.

Prima inquisitio retineat omnia Ptolemaica circa Solem et fixas.

Cum igitur loca motus Solis medií fuerint 21° 0' x^3 , 28° 50' m_{π} , 2° 34' II, et Solis apogaeum 5° 30'' II; apparentia Solis loca fuerent 21° 40' x^3 , 1° 13' \neq , 2° 41' II, ultra oppositum omnia tria. Praecedit igitur vera oppositio. Et cum diurnus in 21° II (hodie \mathfrak{D}) sit circiter 23', Solis 61', summa 1° 24': illa igitur 41' requirent horas 8, quando Mars visus fuit in 21° 8' II, oppositus loco Solis apparenti. Sic in 29° \mathfrak{Q} (hodie \mathfrak{P}) diurnus Martis solet esse 24', diurnus Solis 59', summa 1° 23'. Ergo 2° 23' differentia postulat diem 1, horas 17. 21', quando Mars visus est in 29° 31' \mathfrak{Q} . Denique in 3° II (hodie \mathfrak{D}) diurnus Martis

est 23', Solis 57', summa 1° 20', quibus indicatur, 7' deberi horas 2. 6', quando Mars visus in 2° 36' \swarrow .

Tempora igitur correct	Loca		
Adriani XV. Tybi, XXVI.		21º 8' II	
Adriani XIX. Pharmuthi IV.		29. 31. 2	
Antonini II, Epiphi XH.	н 7.54.	2. 36. 🖈	
	Horae 10. 39'		-
Anni Aegyptii 4. dies 97.	. 16. 15.	93. 5, 109)	

Respondet antem intervallo primo motus medius a fixis ultra integras periodos 80° 57' 14", secundo 96° 16' 24". Illic vero apparens motus Martis fuit ultra integras periodos 68° 21' 20", ablata praecessione temporis intermedii, quanta fuit illo seculo. Hic vero fuit 93° 2' 20".

Jam igitur adhibeatur hypothesis hactenus investigata et constituta ex recentissimis observationibus, et quaeratur, quo loco anomaliae respondeant mediis motibus tantis apparentes in eccentrico tanti, quantos jam dixi. Periclitatis aliquot casibus deprehenditur: si tempore ultimo ponatur aphelium Martis in 0° 41' Ω , et reliquis temporibus ob praecessionem aequinoctiorum paulo anterius, primo vero tempore anomalia media 46° 37', secundo 34° 21', tertio 130° 37'/₂', et sic longitudo ab aequinoctio tempore medio 5° 4° 59' 20'': tunc stellam Martis referri per hypothesin aequationum modernam primo in 21° 7' II, secundo in 29° Ω , tertio in 2° 37'/₂ \varkappa , fortuita praecisione. Non sunt enim fundamenta talia, ex quibus tanta praecisio sperari possit. Quodsi Ptolemaeus plures sui temporis oppositiones annotasset, procul dubio majorem experiremur difficultatem. Cum tribus enim solis facile transigitur. Compara hoc aphelium cum capite XVII.

Secundo, manente aequatione et apogaeo Solis Ptolemaico, fixis addantur 30'.

Paulo quid alind prodibit. Nam quia Mars dimidio gradu ultra oppositum Solis est, sequetur igitur correcta oppositio. Aggregata diurnorum fuerant 1° 24', 1° 23', 1° 20'. Igitur pro 30' residuis quam proxime eadem prodeunt tempora, ter addenda, horae sc. 8. 40' c.: quibus respondent 8'/₂' de motu Martis apparenti, auferenda de illis 30'. Residua 21'/₂' addentur ad loca planetae, ut sit in 21° 29'/₂' II, 29° 52'/₂' \mathcal{Q} , 2° 57'/₂' \mathcal{A} . Manebunt intervalla cum temporis, tum locorum zodiaci quam proxime eadem. Quare eadem etiam erit distributio anomaliae mediae inter has observationes, quae jam modo fuit inventa. Tantummodo aphelium transponetur totidem minutis, ut sit ultimo in 1° 2'/₂' \mathcal{Q} . Inter fixas igitur 8'/₁' retrahendum. Et motus medius ab aequinoctio auctior erit priori 21'/₂' sed h. 8. 40' posterius. Competunt autem horis his 11' 24'' motus medii. Igitur eodem tempore supposito motus medius ab aequinoctio tantummodo 10' erit auctior quam prius. Sed loca fixarum 30' remotiora sunt ab aequinoctio. Ergo motus medius Martis a fixis 20' processit minus quam antea.

Tertio, apogaeo Solis transposito per 11º vel 12º, manente . fixarum longitudine et aequatione.

Tunc primo tempore Sol erit per 20' loco priori: medio tempore nihil fere mutabitur: ultimo per 21' erit loco posteriori ob Solis aequationes alias. Ergo prima oppositio sequetur horis 4. et Mars erit totidem minutis

28 *

hen anterberbt ultima prime konfrit borie 4%, com Mare unidem minutie hon posterolet.

	Esse: Isti	U M	h 4	r Lu	a ?!• 4' ∏
•	Fischer Longe		-	-	244
	Liter Land 1				5 27
	Aerrota 14	5 are 911	£ 12	0.1.	93- 9

Primm temporis intervallum factum est minus; itaque et motus medias illi per 5' 15" minor respondet, ut sit 80' 53'. Secundum temporis intervallum rursum effectum est minus, quare et motus medius illi respondit minor per 5' 40", seilecet 96' 10' 49". Quin igitur utrique anomaliae mediae minori respondet major motus apparens quam prius, et supposta eadem anomalia utrinque, motus apparens major est circiter 9'; apparet igitur descendendum ab aphelio. Attamen primum intervallum non mutatur, nisi magno descensu facto, secundum autem descensu per 36' facto. Itaque si indulgeremus inquisitioni, et non propositam haberennes hypothesin mod-rnam, gigneretur omaino nobis alia hypothesis aliaque eccentricitas. Et vicissim si certissimae essent hae tres observationes Ptolemaei, argum-ntum inde nasceretur, apogaeum Solis ab ipso recte constitutum.

Ademtis autem 36' ab aphelio Martis, ut sit ultimo tempore in 0° 3' ;, et sic accommodato motu ejus medio, ut sit anomalia temporis medii 34" 58"/a', longitudo ab acquinoctio 5" 5" 0" 50", prodit observatio:

 Frima
 21^{+} 7^{+} Π 21^{+} 4^{+} Π 3^{-} <t

Rursum satis accorata propinquitate. Nec enim sperare possumus, tam certas fuisse observationes. Igitar sive recte habeat Solis apogacum sive secus, certus est medias ab acquinoctio intra $1 \frac{1}{2}$.

Quarto, eadem mutabuntur in casus secundi computatis locis, et constituenda longitudine media, transpositis scilicet apogace et fixis.

Ch HATS.

Quinto, manente apogaco Solis et longitudine fixarum Ptolemaica, usurpatur eccentricitas Solis hodierna.

Manentibus igitur primo et ultimo loco Solis quam proxime, mutabitur apparens locus Solis mediae observationis 20'. Nam illic cadunt circa apsidas Solis, ubi sequatio parva est; hie circa longitudinem mediam, nbi aequatio ab eccentricitate causata est maxima. Ac cum adjectoria sit in m aequatio: ereptis 20' ab aequatione retroagetur Sol totidem minutis: eritque non in 29' 31' ==, sed in 29' 11' ==. Seguitar igitar correcta et verissima oppositio horis 4. Tunc planeta erit in 29° 27' S. Intervallom temporis prius ejusque motus medius augetur, minuitur motus apparens posterius temporis intervallum minuitur augeturque apparens motus. Rur? sum igitur haec adhibita correctio, evidentius quam prior vocat nos ad mutationem hypotheseos; nisi optimo consilio in verba et numeros hypotheseos hujus seculi jurassemus. Nam ut circa apogaeum majori tempore minus promoveatur planeta, circa perigaeum in minori tempore plus, fieri aliter non potest, quam auctione eccentricitatis. Quodsi retinerentur omnia, ut casu primo, prodiret quidem primo et ultimo tempore rursum, quod tunc, sc. 21° 7' II et 2" 37'/2' x, at loco medio prodiret 29° 36'/2' Q, cum

13

debuisset 29° 27' \Re , differentia 9'/2'. Ut haec obliteretur, manere debet aphelium fere, sed motus medius debet omittere 3'/2'; tunc prodibit

 Primo
 21°
 4'
 II
 Primo
 21°
 7'
 II
 Primo
 Sexto, eadem continget mutatio casus secundi, si eccentricitatem Solis et longitudinem fixarum simul mutaverimus.

Septimo, sin autem et eccentricitatem Solis et apogaeum simul mutemus, conjunctis casibus tertio et quinto, erunt

	luuuamen	100 1310.		
Tybi . XX Pharmuthi Epiphi . 2	IV. , 19. KII. , 3.	39. 37.	29. 27. Ω 2. 40. ∡	
 Internalia d.	68. h. 10. 97. " 8.	39'	68º 23'	

Manet igitur intervallum primum, ut casu primo; mutatur ultimum permultum. Et quia minori tempore plus itineris peractum, descendendum igitur versus perigaeum profundius. Horis quidem 8 de motu medio respondent 10' 30", quibus adde excessum itineris 8. Ita colliguntur $18'_{l_2}'$, quae conficiemus, si aphelium per 1° 12' retroegerimus, ut sit ultimo tempore in 29° 29' \mathfrak{G} , et anomalia media 31° 45'. Motus igitur medius 11° 4' \swarrow , qui primo casu fuit 11° $18'_{l_2}'$. Hinc computamus:

Primo Secundo	21°	31/1	II)	(210	4′]	I
Secundo	29.	261/2.	8	Debuit	29.	29. 5	2
Tertio		41	(ټړ			40.	

Denique omnibus tribus, quae ex Ptolemaeo sumseramus mutatis, componetur effectus ex casibus septimo et secundo.

Apparet igitur, epocham motus medii ab aequinoctio et fixis non mutari multum, neque eccentricitate Solis neque apogaeo neque utroque simul mutato: sed tunc tantum, quando fixarum loca mutantur. Nam casus tertius addit 1' 30", quintus aufert 3' 30", septimus aufert 4' 30". Solum secundus casus aufert a motu medio ab aequinoctio 10', a fixis 20'. Hinc igitur duplex constituitur epocha motus ad Ptolemaei tempora.

Quid si vero ex casu secundo et quinto comminiscamur aliquid idoneum, quo simpliciter tueamur longitudinem fixarum Ptolemaicam, neque nobis sit opus, duplicem suspicari hanc epocham motus medii Martis? Nam Ptolemaeus diserte affirmat, se in illa sua observatione distantiam Lunae a Sole invenisse 92° 8', quantam etiam computaverit ex sua hypothesi motuum Lunae. Vera dixerit Ptolemaeus, satis dexter fuerit in observando; plane tantam deprehenderit hanc distantiam in instrumento suo, quantam voluit ejus hypothesis motuum Lunae, quae circa quadraturas non fefellit. Hinc ego sic argumentor. Si Sol fuisset in 3° 5' \mathcal{H} , quorsum illum Ptolemaeus reposuit per suam eccentricitatem, non potuisset Luna videri ab illo abesse justum et computatum ex hypothesi modulum 92° 8': eo quod Sol occidens refracte ad visum pervenit, et altior justo (itaque 30' plus in consequentia) esse apparet, quam est. Quia vero a Luna ad Solem observatus est arcus 92° 8', isque in rei v ritate ob refractionem fuit 92° 38': ergo Sol verissime non fuit in 3° 3' \mathcal{H} , sed in 2° 33' \mathcal{H} . Id autem consentaneum est casui quinto, ubi diximus, adjectoriam aequationem maximam Ptolemaei (quae competit in 5° \neq) usurpatione eccentricitatis hodiernae fieri 20' minorem, itaque Solem pro $3^{\circ} 3' \neq$ in $2^{\circ} 43' \neq$. Itaque posita refractionis universalitate per omnia loca et tempora, quo de in Opticis dictum, et stante hac observatione, argumentum nobis nascitur diminutioris eccentricitatis Solia, quam putabatur a Ptolemaeo.

Neque te moveat, quod refractionem dixi 30', hanc vero diminutionem tantum 20'. Nam si bene perpendas, cum culminaverit 30° \bigotimes , occidit igitur tunc 1° + Alexandriae, et sic Sol in 3° + habuit 2°, fortassis et plurium altitudinem; minorem igitur refractionem 30'; nec omnis refractio simpliciter in longum porrigebatur. Itaque quam proxime pares quantitate fuerunt hae duae causae se mutuo conficientes. Etsi verbo dignam non putabit hanc 10' differentiam, si quis in abaco fixarum Ptolemaico est versatus. Verbi gratia : inter cor Leonis et spicam Virginis Ptolemaeus prodit intervallum 54° 10', quod est non majus 53° 59' in ipso coelo.

Sequamur igitur quorsum nos vota rationesque ducunt, et sit, ut in casu primo, anno 2. Antonini, die 12. Epiphi, hora 8. Alexandriae in Aegypto, motus medius Martis ab aequinoctio 11° 18' 30" \swarrow . Tempus congruit anno Christi vulgari 139. d. 27. Maji. Differentia meridianorum inter Huennam et Alexandriam est horarum 2 fere ex recentissimis tabulis geographicis. Huennae igitur anno Christi 139. die 27. Maji h. 6. fuit medius motus 8° 11° 18' 30". Sed eo anno cor Leonis habuit longitudinem 2° 30' Ω , hoc est 4° 2° 30' 0". Ergo Martis motus medius abfuit a corde Leonis 4° 8° 48' 30". Sed anno 1599. die 27. Maji h. 6. fuit motus medius Martis 0° 0° 47' 30" ab aequinoctio, cor vero Leonis ab eodem abfuit demonstrante Braheo 4° 24° 15' 45". Ergo Mars abfuit a corde Ω 7° 6° 31' 45".

Алпо 139. 1599.	d. 27. Maji d. 27. Maji	h. 6. h. 6.			· · 4• · · 7.	8º 6.	48' 3 31.	30" · 15
Intervallum	1460. Juliani,	1461.	Aegyptii	Prutenicae		28.		56

Annis singulis auferendum est unum fere secundum. Igitur in meridie 1. Januarii anni primi Christi Huennae elongatur motu medio per 5° 8° 52' 45" a corde Leonis.

Et haec de motu medio Martis a fixis.

Motus aphelii paulo alius prodibit, quam supra cap. XVII. Nam quia anno Christi 139. d. 27. Maji fuit in 0° 41' Ω , cor vero Leonis in 2° 30' Ω : antecessit igitur illud 1° 49', hodie vero anno 1599. d. 27. Maji in 28° 58' 50'' Ω , quando cor Leonis in 24° 15' 45'' Ω .

Sequitur ergo aphelium hodie . 4º 43' 5"

Praecedebat vero Ptolemaeo . . 1. 49. 0

Intervallo annorum 1460. Julian. 6. 32. 5 progressus; et fit annus paulo major 16". Radix Christi igitur ad 1. Januarii meridiem habet aphelium hoc ante cor Ω 2° 27'.

De motu medio Solis a fixis, obiter in futuros usus.

Cum anno Christi 139. d. 9. Pharmuthi, hoc est 23. Februarii, occidente Sole h. 5. 30', Huennae h. 3. 30' fuerit apparens Solis 3° 3' χ computatus, medius igitur 0° 43' χ ; inventa vero fuit longitudo cordis

2° 30' Q: Solis igitur medius praecedebat cor Leonis 5° 1° 47' 0". Sed anno 1599. d. 23. Februarii h. 3. 30' Huennae fuit medius Solis 12° 47' 41" \mathcal{H} , cor Leonis 24° 15' 30" Q; Solis igitur medius praecedebat cor Q 5° 11° 27' 49". Annis 1460 Aegyptiis desunt 9° 40' 49". Colliginus in tot annis per 2' 42" minus quam ex Prutenicis, eritque epocha in radice Christi 1. Januarii in meridie 5° 7° 14' 36" a corde Leonis. Similiter progressus apogaei Solis invenitur 8° 23' et in radice Christi 1° 27° 48' 0" ante cor Leonis.

Caput LXX.

Duarum reliquarum Ptolemaei observationum consideratio, pro exploranda latitudine et orbium proportione tempore Ptolemaei.

Verum est, quod non semel monui, Ptolemaeum longe plures adhibuisse observationes, quam quae relatae sunt in ipsius opus. Ecce enim, ad tradendam doctrinam investigandae proportionis orbium utitur observatione unica, eaque intra triduum vicina ipsi oppositioni. Dictum autem est cap. LIII, observationes tam vicinas immane quippiam peccare, si vel unum scrupalum errent. Sequamur tamen ipsius vestigia, et hypothesi jam constituta casusque primi fundamentis inaedificata, computemus et hunc quartum locum.

		h. 8. — h. 9.	Anomalia .	130° 37′ 30′
	dies 3.	h. 1.	Motus medius	1. 35. 39
Coaequata Aphelium	123° 43′ 34″ 120. 41. 0		Anomalia	132. 13. 9
Locus eccentri	4° 24' 34" 🗶		Distantia 143	660.

Locus Solis verus die 12. fuit 2° 36' II. Adde motum tridui et horae circa apogaeum ex hodierna experientia 2° 53' 40", ut sit 5° 29' 40" II, et usurpetur hodierna apogaea distantia 101800. Differunt igitur oppositus Solis et eccentricus Martis per 1° 5' 6". Qui arcus apparet esse 3° 43' 14", ut sit Mars visus in 1° 46' 26" \checkmark . Sin autem utamur eccentricitate Solis Ptolemaica, motus Solis tridui erit 1' minor, et Sol in 5° 28' 40" II. Itaque differentia 1° 4' 6", quae apparebit (per distantiam Solis et Terrae 102100 Ptolemaicam) 3° 45' 45". Igitur planeta cadet in 1° 43' \checkmark . Dixit autem Ptolemaeus, visum esse in 1° 36' \checkmark . Plus igitur justo colligimus per 7' vel 10'. At pars minima instrumenti Ptolemaici, quam semper in errore ponere cogitur, valet 10'. Et nota, si in loco eccentrico erravimus 2', jam 7' errabimus in viso loco. Referatur enim Mars ratione eccentrici in 4° 22' \checkmark : jam videbitur in 1° 36' \checkmark . Supra die 12. Epiphi abundaverat etiam 1⁴/₂'. Igitur haec consentiunt.

Et quia in tanta oppositionis propinquitate nihil notabile efficit diversa eccentricitas: age consulamus etiam observationem antiquiorem. Inter mane 18. Jan. anni ante Christum 272 currentis, et meridiem 1. Jan. anno 1. Christi, anni sunt Aegyptii 272, dies 51 et horae aliquot. Cum enim Alexandriae Sol in 25° Z oriatur h. 7, observatio Martis matutini facta fuerit una hora ante, nimirum aurora surgente, hora igitur sexta, quae est Huennae hora quarta, a qua ad meridiem sunt horae 8. Per hoc intervallum temporis ex fundamentis superioribus invenitur medius motus Solis superasse cor Leonis 5^o 25^o 32^o 50^o cum anomalia 234^o 54^o 34^o, aequationem habens ex Ptolemaeo 2^o 0^o 30^o, ex Braheo 1^o 42^o 54^o adjectitiam: distantia Solis a Terra illic 98790, hic 98976. Medius vero motus Martis tunc superavit cor Leonis 2^o 6^o 7^o 12^o. Cum autem aphelium 3^o 48^o 20^o sit ante cor, erit anomalia Martis 69^o 47^o 32^o, coaequata 60^o 15^o 27^o, distantia 158320.

Hinc gemina via perveniemus ad finem calculi. Primo per eccentri-• citatem et aequationem Ptolemaicam. Tunc longitudo Solis a corde Leonis est 5º 27º 33' 20", differens a longitudine Martis eccentrica 1º 26º 35' 7" per 4º 0º 58' 13", qua distantia arcuali et distantiis Terrae et Martis a Sole ostenditur apparens elongatio a Sole 82° 43' 46", igitur et apparens elongatio Martis a corde Leonis 3º 4º 49' 34". At secundo per Braheanam eccentricitatem et acquationes, si eadem et tunc fuisse ponantur, Solis locus apparens per 17' 36" erit anterior. seu 5º 27º 15' 44", quare et angulus commutationis est 4º 0º 40' 37", per quem et distantiam Solis a Terra nostram, quasi et tunc eadem fuerit, ostenditur apparens elongatio Martis a corde Leonis 3º 4º 51' 28". Differentia inter utrumque calculum perexigua et nullius momenti. An igitur Mars videbatur quasi appositus seu adaptatus boreali fronti Scorpii? ut sonat observationis descriptum. Videamus. Ptolemaeo est cor Leonis in 2º 30' &, borealis clara frontis Scorpii in 6º 20' M, elongata per 3º 3º 50' 0"; Braheo cor Leonis in 24º 17' Q, frons Scorpii in 27° 36' m, elongatio 3° 3° 20' 0". Elongatio vero Martis jam est computata 3° 4° 51' 28". Differentia est sesquigradus.

Ptolemaeus huic observationi confisus, quod ex iis, quibus inniti posset, antiquissima esset, constituit procul dubio proportionem illam orbium, quam adhuc invenimus in ejus numeris, et quantam requirere videbatur haec observatio. Nam in motu medio ad hoc tempus computato non ultra 20' a me dissidet. Hesiduum igitur est ex proportione orbium. Nam quod simulat, se hanc proportionem investigare per observationem triduo distantem ab oppositione, fecit, ut videretur diversa diversis evincere observatis. Quia igitur haec antiqua reservanda fuit inquirendis motibus mediis: illam igitur inquirendae proportioni orbium substituit, jam pridem per hanc inventae. Nam absurde tentari proportionem orbium per observationem tam vicinam oppositioni, quam fuit illa, qua Ptolemaeus se hanc proportionem demonstrasse simulat, id jam est dictum.

Ne quis igitur miretur, nos differre sesquigradu ab observatione, quam ex antiquitate Ptolemaeus arcessivit: quin potius inspiciat ejus proportionem orbium, valde diversam ab ea, quam hodiernae probant observationes, et perpendat, ut ille hanc observationem tueretur, ita vitiasse suorum orbium proportionem.

Quod ipsam observationem attinet, cujus haec verba sunt: έφος ό τον 'Αρεως έδοπει προστεθεικεται το βορειω μετωπω του σπορπιου, existimo, errorem esse commissum a Ptolemaeo, qui primam Scorpii intellexit, cum observator quintam innueret. Id ex ipsis verbis probatur. Nam frons Scorpii sex stellas claras habet. Ex his insignes tres, tertiae vel potins secundae magnitudinis: reliquae tres quartae, vel potins, me aestimatore, tertiae sunt magnitudinis, quarum una altior est tribus claris et septentrionalior. Jam

si observator claram frontis, quam Braheus recte secundae magnitudinis pronunciat, quamque Ptolemaeus subintellexit, borealem frontem nuncupavit, numquid ambigue locutus est, dum pro clarissima borealium simpliciter borealem dixit, quae borealissima non fuit? Multo igitur tutius ego borealissimam, quae quinta numero est, ab observatore dictam subsumsero. Deinde consentit mea computata longitudo Martis cum hac, non cum clara frontis, et hoc manente hypothesi, quam hodiernae genuerunt observationes Braheanae. Nam Braheus illam borealissimam reponit in 29° 3¹/₃' M. Aufer cor Leonis in 24° 17' Ω , restabit illi elongatio a corde 94° 46¹/₂'. Noster calculus vero Martem refert in elongationem acorde Leonis 94° 49¹/₂' vel 94° 51¹/₂'. Differentia 3' vel 5', non major.

Non diffiteor, negotium mihi exhibitum esse a latitudine, dum expendo verba: idones npooredesxeras, quasi diceret : Videbatur ita prope accessisse, nt duae pro una quasi stella haberi possent, ut viderentur se mutuo tangere. Etsi Arabs vertit cooperuisse, quasi scripsisset Graecus iningooredeinerai, itaque in Opticis fol. 321 usus sum voce "superpositum." Germani propriissime brangeset. Ex hoc ratiocinabar ita: sive subtercurrerit centraliter, sive oram ejus boream austrinamve raserit, non potuisse ab ipsa distare in latitudine magna aliqua portione; minus namque incertas esse latitudines quam longitudines, quia constantior et simplicior est earum ratio, ut hoc libro demonstratum est. Jam scimus, nodum retrocedere a fixis spatio anni Cynici per 4° 15', ut probatum cap. XVII. Ptolemaeo fuit existimatus limes boreus antecedere $3^{4}/_{2}^{0}$ cor Leonis. Nobis per intermedios 1310 annos unum gradum retrocesserit; ut tempore observationis fuerit $2^{1/2}$ ante cor Leonis. Ergo nodus $87^{1/2}$ ° post cor Leonis. Sed Mars per 56° 35' est post cor Leonis, ergo abest 31° a nodo, inclinationem faciens $57'_{2'}$, quae per parallaxin orbis efficitur 1° 7' justa latitudo. Jam. vero constat ex Braheo, latitudinem clarae frontis esse 1º 5', borealissimae vero frontis 1º 42'. Itaque latitudo videbatur me convincere de clara frontis, ut crederem, hanc a Marte tectam fuisse, non illam. Sed fortuita est ista conspiratio numerorum. Nam in latitudine borealissimae frontis consentiunt Braheus et Ptolemaeus,' eam pronunciantes: ille 1º 46', hic 1º 42'. In splendidae latitudine differunt. Ptolemaeus habet 1º 20', Braheus 1º 5'. Sed illa numerorum aequalitas est de errore; haec vero differentia consensus potius est. Stellarum enim in M X. Z m borealium latitudines hodie sunt minores quam olim, circiter 16' 20"; australium majores per tantundem; quippe ecliptica transposita, et declinationibus graduum eclipticae tantundem mutatis, ut Braheus demonstravit et nos cap. LXVIII. diximus. Itaque si verum est, ut est verissimum, hodie latitudinem clarae in fronte Scorpii esse 1º 5': igitar tempore Ptolemaei et Hipparchi fuit non minor 1º 20', potius major. Cum igitur Mars minorem obtinuerit latitudinem borealem, quam utravis dictarum stellarum, et sub utraque transiverit (certum enim est, si in nodo vel integro gradu abundemus, non ultra tria scrupula latitudinem in calculo vitiatam esse. Et jam supra cap. LXIV. ostensum est, incertissimum esse, an olim Marti quoque borea latitudo in signis australibus major fuerit): frustra itaque

in voce *mooreovennerou* fui argutus: nec aliter illa explicanda est, quam de appositione stellarum in eandem longitudinem; quo nomine illa, quam ego dico, nihil impediente latitudine majore, aeque esse potuit ac ista clara. Vide num possit hic esse sensus, quod cum in boreali parte frontis sint tres stellae in forma triangali, Mars spectatus sit in medie earum, et sic appositus fuerit boreali fronti Scorpii; factus nimirum fuerit una ex numero earum, quae sunt in boreali parte frontis Scorpii. Ad hanc enim interpretationem facit et hoc, quod non dixit observator boreali frontis sed boreali fronti, quod non sonat de una singulari stella, sed de parte constellationis integrae.

Nihil igitur juvant nos hae duae antiquae observationes ad aestimandam vel latitudinem vel orbium proportionem illius temporis. Itaque cum pihil nos impediant observationes contrariae, confirmet vero nos summa rei Verisimilitudo, concludamus, eandem esse et hodie proportionem orbium, quae fuit olim, latitudines vero maximas nonnihil hodie esse immutatas.

442

IN COMMENTARIA DE MOTIBUS MARTIS

NOTAE EDITORIS.

1) p. 30. Tabulas has eodem forte tempore adiit Keplerus, quo adjunxit Tychonis Progymnasmatum edito volumini primo (1602) folia, quae continent "Lunae motus restitutionem" inspersam inter paginas illius operis 112 et 113, signata numeris 01-028. Insunt illae tabulae manuscriptorum Petropol. Vol. II. inscriptae: Transformatio hypotheseos et tabularum Lunarium Tychonis Brahe, plane ad typum informatae, praemissa dedicatione ad Herwartum d. d. X. Cal. Majas 1603. Legentur ea, quae imprimenda ex hoe scripto visa sunt, sub finem hujus voluminis.

2) p. 32. Longomontanus, Tychoni supra modum addictus, Tengnageliique contra studia. Kepleri defensor non integer, Keplerum acerrime aggreditur in literis mense Majo 1604 datis, etsi exordium harum literarum talia non significat. Sic enim Longomontimus : Doctissime M. J. Keplere, amice veteri necessitudine conjunctus. Annus jam alter agitur, ex quo nobilissimus Fr. Tengnaglius, gener et successor incomparabilis astronomi D. Tychonis Brahe, Wiburgum ad me scribens inter alia tuam ut mihi videtur nimiam industriam circa refutationem recentis Tychonianae in Lunam hypothesis (veluti suis oculis vidisset) mihi retulit. Ego vero ejus literis responsurus nec in manes defuncti Tychonis nec etiam propriae conscientiae innocentiam tam me crudelem esse existimavi oportere, quin te ab hac superflua curiositate, quae in prioribus, biennio ante e Styria Pragam mihi missis, apparere coepit, ad tua ipsius incepta perficienda verbulo revocarem. Et certe, modo conditio mea tulistet, ita ex illius et mea simul opinione meritus fuisses, ut Pragam me denuo conferens palam de hac injuria tecum expostularem, in quam inexspectata inconsiderataque opera tua laborem pariter et amicitiam nostram resolveres. De te antem ... (v. s. p. 33). Huie equidem non retorsionem, sed modestam quae me decebit responsionem oppono, dum hic Rostochii amicorum causa maneo et epistolio tuo destituor, quod huc trajiciens Hafniae. imprudenter neglexi. Principio vero, mi Keplere, cur tibi tantopere applaudas ? Quod hypotheses Lunae transformasti, fundamentis Tychonianis ne in minimis quidem convulsis?... Quaedam emendasti ad divinas tuas proportiones scilicet; verum quae calculo astronomico per te promtiora existimas, ca certe vix menti incluti D. Tychonis respondebunt.... Dic, quaeso, quid te tabularum omnium presthaphaeresium tam foesundam fabricam docuit, ut tales tabulae ceteris similiter planetis essent communes ac sufficientes, latentibus adhuc te veris horum phaenomenis? Ignaris tu igitur persuade et intelligentibus desine amplius absurda narrare. Sed ulterius ad tuum Augiae stabulum pergamus. - Dein recensitis iis, quae ipse in Lunae theoria perfecerit, addit : hase tu mi Keplere ceteraque forte omnia, quae a Tychone inventa ac elaborata sunt, sterquilinio in Augiae stabulo olim sepuito acquare non vereris (Keplerus in margine : haec per luculentissimam injuriam mihi tribuit), tunnous ad ea expurganda rursum laborem ac carrum promittere, si te Herculem redivivum agnosceremus, At id certe nemo facit teque tanto viro praefert, nisi ejus omnibus purgatis cognoscat, te coelo et coelestibus apparentiis congruentiora substituisse. Nam hinc astronomo victoria spectanda, hinc triumphus. Id autem non metuo, quod ad praclaram censuram omnjum bonorum et intelligentium de defuncto Tychone haec sordida tua insolentia magis sordescat et sordida fiat. (K.: Debacchare in larvam a te concinnatam.)

Jam adit L. eclipses, semidiametros luminarium, refractionem, ubique Keplerum refp-

Etsi vero haec disputatio de 30' nihil attinere videtur motum Martis medium, siquidem his 4 vicibus Mars a fixis observatus ad illas referri possit neglecto puncto aequinoctii, incertae distantiae: qua methodo ego superius cap. XVII. inquisivi aphelii locum ad Ptolemaei tempera; tamen adhuc eo nomine tenemur, quod Martis loca visa ad oppositum apparentis loci Solis reducenda sunt: quod opus nunquam recte procedit, nisi remotio cum Martis tum Solis a communi puncto aequinoctii praesciatur; quia non aliter nisi per haec quasi elementa discitur justae elongationis Martis a Sole arcus. Quodsi ad momentum, quo vera putatur fuisse siderum oppositio, planeta videatur ultra vera Solis loca 30': planeta igitur involutus est inaequalitate secunda, nondem idoneus ad inquirendam primam inaequalitatem. At in apogaeo haec 30' prosthaphaereseos orbis occupant magnum arcum eccentrici, cui major adhuc portio de tempore seu motu . medio respondet. In perigaeo fit contrarium. Occupat enim ista prosthaphaeresis parvum arcum eccentrici, cui minor adhuc portio de motu medio com-. petit. Qui ergo dicit, Martem his 4 vicibus visum esse 30' in zodiaco ulterius, idem dicit, Martis motum medium ab aequinoctii puncto fuisse in apogaeo multis, in perigaeo paucis serupulis anteriorem. Ac cum minor sit arcus eccentrici arcu hoc vitiosae visionis, qui fuit 30', non igitur Mars in eccentrico eousque ne sub fixis quidem pervenerat, quousque pervenisse sub illis videbatur: quantitate illa, qua differt arcus eccentrici ab hoc arcu visionis 30'. Qui arcus cum magnus sit in aphelio, et param differat ab arcu visionis 30', contra in perigaeo: denique igitur sequetur, in aphelio parum, in perihelio plus esse Martis motui medio a fixis adimendum, si recipiamus, fixas 30' promotiores esse in zodiaco. Ita non tantum motus medius fit minor (etsi multo minori quantitate, quam sunt haec 30', visionis vitium), sed etiam ipsa trium acronychiarum, quibus Ptolemaeus est usus, luxatur dispositio; unde aliud aphelium aliamque eccentricitatem prodire necesse est. Etsi hoc posterius nobis nihil facesset negotii. Contemnemus enim, etiamsi majus aliquid, vel sine suspicione erroris fixarum, insinuarent observationes : cum certum sit, non ferre illas tantam subtilitatem, quantam ferunt Braheanae. Itaque usurpabimus formam aequationum ex observatis Braheanis inventam, quasi maneant omnibus seculis eaedem.

Tria igitur bivia cum nobis occurrerint, de Solis eccentricitate, de loco apogaei Solis, de loco fixarum et Martis in zodiaco: octo existent constitutiones motus medii et aphelfi ad illa observationum momenta, etiamsi neglecto zodiaco tantum a fixis computemus.

Prima inquisitio retineat omnia Ptolemaica circa Solem et fixas.

Cum igitur loca motus Solis medií fuerint 21° 0' \checkmark , 28° 50' \Longrightarrow , 2° 34' II, et Solis apogaeum 5° 30" II; apparentia Solis loca fuerunt 21° 40' \checkmark , 1° 13' \div , 2° 41' II, ultra oppositum omnia tria. Praecedit igitur vera oppositio. Et cum diurnus in 21° II (hodie O) sit circiter 23', Solis 61', summa 1° 24': illa igitur 41' requirent horas 8, quando Mars visus fuit in 21° 8' II, oppositus loco Solis apparenti. Sic in 29° \Re (hodie P) diurnus Martis solet esse 24', diurnus Solis 59', summa 1° 23'. Ergo 2° 23' differentia postulat diem 1, horas 17. 21', quando Mars visus est in 29° 31' \Im . Denique in 3° II (hodie O) diurnus Martis

est 23', Solis 57', summa 1° 20', quibus indicatur, 7' deberi horas 2. 6', quando Mars visus in 2° 36' ×.

Tempora igitur correc Adriani XV, Tybi, XXVI. Adriani XIX. Pharmuthi IV. Antonini II. Epiphi XH.	Hora 5. 0' , 15. 39.	21° 8' Π 29. 31. Ω	•
Intervalla (4. dies 68. Anni Aegyptii (4. dies 97.	Horae 10. 39' , 16. 15.	68º 23'	

Respondet autem intervallo primo motus medius a fixis ultra integras periodos 80° 57' 14", secundo 96° 16' 24". Illic vero apparens motus Martis fuit ultra integras periodos 68° 21' 20", ablata praecessione temporis intermedii, quanta fuit illo seculo. Hic vero fuit 93° 2' 20".

Jam igitur adhibeatur hypothesis hactenus investigata et constituta ex recentissimis observationibus, et quaeratur, quo loco anomaliae respondeant mediis motibus tantis apparentes in eccentrico tanti, quantos jam dixi. Periclitatis aliquot casibus deprehenditur: si tempore ultimo ponatur aphelium Martis in 0° 41' Ω , et reliquis temporibus ob praecessionem aequinoctiorum paulo anterius, primo vero tempore anomalia media 46° 37', secundo 34° 21', tertio 130° 37⁴/₂', et sic longitudo ab aequinoctio tempore medio 5° 4° 59' 20'': tunc stellam Martis referri per hypothesin aequationum modernam primo in 21° 7' II, secundo in 29° Ω , tertio in 2° 37'/₂ \prec , fortuita praecisione. Non sunt enim fundamenta talia, ex quibus tanta praecisio sperari possit. Quodsi Ptolemaeus plures sui temporis oppositiones annotasset, procul dubio majorem experiremur difficultatem. Cum tribus enim solis facile transigitur. Compara hoc aphelium cum capite XVII.

Secundo, manente acquatione et apogaco Solis Ptolemaico, fixis addantur 30'.

Paulo quid alind prodibit. Nam quia Mars dimidio gradu ultra oppositum Solis est, sequetur igitur correcta oppositio. Aggregata diurnorum fuerunt 1° 24', 1° 23', 1° 20'. Igitur pro 30' residuis quam proxime eadem prodeunt tempora, ter addenda, horae sc. 8. 40' c.: quibus respondent 8⁴/₂' de motu Martis apparenti, auferenda de illis 30'. Residua 21⁴/₂' addentur ad loca planetae, ut sit in 21° 29⁴/₂' II, 29° 52⁴/₂' Ω , 2° 57⁴/₂' \mathcal{A} . Manebunt intervalla cum temporis, tum locorum zodiaci quam proxime eadem. Quare eadem etiam erit distributio anomaliae mediae inter has observationes, quae jam modo fuit inventa. Tantummodo aphelium transponetur totidem minutis, ut sit ultimo in 1° 2¹/₂' Ω . Inter fixas igitur 8⁴/₄' retrahendum. Et motus medius ab aequinoctio auctior erit priori 21¹/₂' sed h. 8. 40' posterius. Competunt autem horis his 11' 24'' motus medii. Igitur eodem tempore supposito motus medius ab aequinoctio tantummodo 10' erit auctior quam prius. Sed loca fixarum 30' remotiora sunt ab aequinoctio. Ergo motus medius Martis a fixis 20' processit minus quam antea.

Tertio, apogaeo Solis transposito per 11º vel 12º, manente . fixarum longitudine et aequatione.

Tunc primo tempore Sol erit per 20' loco priori: medio tempore nihil fere mutabitur: ultimo per 21' erit loco posteriori ob Solis aequationes alias. Ergo prima oppositio sequetur horis 4. et Mars erit totidem minutis

28 *

loco anteriori; ultima prius incidit horis 4¹/₃, cum Mars totidem minutis loco posteriori. *

	Ecce : Tybi	XXVI.			Loca 21° 4' II
•	Pharmuthi	IV.	h. 15.	39.	, 29. 31. Ω
	Epiphi	XII.			
	Intervalla (4. dies 68.	h. 6.	39'	68° 27'
	Aegyptii	4. " 97.	h. 12.	0.	93. 9.

Primum temporis intervallum factum est minus; itaque et motus medius illi per 5' 15" minor respondet, ut sit 80° 53'. Secundum temporis intervallum rursum effectum est minus, quare et motus medius illi respondet minor per 5' 40", scilicet 96° 10' 48". Quia igitur utrique anomaliae mediae minori respondet major motus apparens quam prius, et supposita eadem anomalia utrinque, motus apparens major est circiter 9'; apparet igitur descendendum ab aphelio. Attamen primum intervallum non mutatur, nisi magno descensu facto, secundum autem descensu per 36' facto. Itaque si indulgeremus inquisitioni, et non propositam haberemus hypothesin modernam, gigneretur omnino nobis alia hypothesis aliaque eccentricitas. Et vicissim si certissimae essent hae tres observationes Ptolemaei, argumentum inde nasceretur, apogaeum Solis ab ipso recte constitutum.

Ademtis autem 36' ab aphelio Martis, ut sit ultimo tempore in 0° 3' Ω , et sic accommodato motu ejus medio, ut sit anomalia temporis medii 34° 581/2', longitudo ab aequinoctio 5° 5° 0' 50", prodit observatio:

 $\begin{array}{c|cccc} \text{Prima} & 21^{\circ} & 7' & \Pi \\ \text{Secunda} & 29, & 28, & \Im \\ \text{Tertia} & 2, & 37, & \swarrow \end{array} \right) \text{ debuit } \begin{pmatrix} 21^{\circ} & 4' & \Pi \\ 29, & 31, & \Im \\ 2, & 40, & \swarrow \end{pmatrix} \begin{pmatrix} 3 & + \\ 3 & - \\ 3 & - \end{pmatrix} \left(\text{ differentia.} \right)$

Rursum satis accurata propinquitate. Nec enim sperare possumus, tam certas fuisse observationes. Igitur sive recte habeat Solis apogaeum sive secus, certus est medins ab aequinoctio intra 1 1/2".

Quarto, eadem mutabuntur in casus secundi computatis locis, et constituenda longitudine media, transpositis scilicet apogaco et fixis.

Quinto, manente apogaeo Solis et longitudine fixarum Ptolemaica, usurpatur eccentricitas Solis hodierna.

Manentibus igitur primo et ultimo loco Solis quam proxime, mutabitur apparens locus Solis mediae observationis 20'. Nam illic cadunt circa apsie das Solis, ubi aequatio parva est; hic circa longitudinem mediam, ub aequatio ab eccentricitate causata est maxima. Ac cum adjectoria si in 2002 aequatio: ereptis 20' ab aequatione retroagetur Sol totidem minutis: eritque non in 29° 31' m, sed in 29° 11' m. Sequitur igitur correcta et verissima oppositio horis 4. Tunc planeta erit in 29° 27' Ω. Intervallum temporis prius ejusque motus medius augetur, minuitur motus apparens ; posterius temporis intervallum minuitur augeturque apparens motus. Ruf sum igitur haec adhibita correctio, evidentius quam prior vocat nos ad mutationem hypotheseos; nisi optimo consilio in verba et numeros hypotheseos hujus seculi jurassemus. Nam ut circa apogaeum majori tempore minus promoveatur planeta, circa perigaeum in minori tempore plus, fieri aliter non potest, quam auctione eccentricitatis. Quodsi retinerentur omnia, ut casu primo, prodiret quidem primo et ultimo tempore rursum, quod tunc, sc. 21° 7' II et 2° 37'/2' x, at loco medio prodiret 29° 36'/2' Q, cum

debuisset 29° 27' Ω , differentia 9'/2'. Ut haec obliteretur, manere debet aphelium fere, sed motus medius debet omittere 3'/2'; tunc prodibit

 $\begin{array}{c|cccc} \text{Primo} & 21^{\circ} & 4' & \Pi \\ \text{Secundo} & 29. & 33^{\circ} /_{3}. & \mathcal{Q} \\ \text{Tertio} & 2. & 38^{\circ} /_{3}. & \mathcal{A} \end{array} \end{array} \begin{array}{c} \text{Debuit} \begin{cases} 21^{\circ} & 7' & \Pi \\ 29. & 31. & \mathcal{Q} \\ 2. & 36. & \mathcal{A} \end{cases} \end{array} \end{array} \begin{array}{c} \text{Differentia} \begin{cases} -3 \\ + & 2^{\circ} /_{2} \\ + & 2^{\circ} /_{2} \end{cases}$

Sexto, eadem continget mutatio casus secundi, si eccentricitatem Solis et longitudinem fixarum simul mutaverimus.

Septimo, sin autem et eccentricitatem Solis et apogaeum simul mutemus, conjunctis casibus tertio et quinto, erunt

iunuamenta ista.	
Tybi . XXVL h. 9. 0' Loca 21° 4'	Π
Pharmuthi IV. , 19. 39. , 29. 27.	R
Epiphi . XII. " 3. 37. " 2. 40.	X
Intervalla d. 68. h. 10. 39' " 68° 23'	
97. 8. 0. 93. 13.	

Manet igitur intervallum primun, ut casu primo; mutatur ultimum permultum. Et quia minori tempore plus itineris peractum, descendendum igitur versus perigaeum profundius. Horis quidem 8 de motu medio respondent 10' 30", quibus adde excessum itineris 8. Ita colliguntur $18\frac{1}{2}$ ', quae conficiemus, si aphelium per 1° 12' retroegerimus, ut sit ultimo tempore in 29° 29' \mathfrak{S} , et anomalia media 31° 45'. Motus igitur medius 11° 4' \checkmark , qui primo casu fuit 11° $18\frac{1}{2}' \star^{7}$. Hinc computamus:

Primo Secundo	21°	31/2'	Π		210	4']	Π
Secundo	29.	261/2.	R	Debuit	29.	29.	2
Tertio	2.	41	X		2.	40. ,	ð.

Denique omnibus tribus, quae ex Ptolemaeo sumseramus mutatis, componetur effectus ex casibus septimo et secundo.

Apparet igitur, epocham motus medii ab aequinoctio et fixis non mutari multum, neque eccentricitate Solis neque apogaeo neque utroque simul mutato: sed tunc tantum, quando fixarum loca mutantur. Nam casus tertius addit 1' 30", quintus aufert 3' 30", septimus aufert 4' 30". Solum secundus casus aufert a motu medio ab aequinoctio 10', a fixis 20'. Hinc igitur duplex constituitur epocha motus ad Ptolemaei tempora.

Quid si vero ex casu secundo et quinto comminiscamur aliquid idoneum, quo simpliciter tueamur longitudinem fixarum Ptolemaicam, neque nobis sit opus, duplicem suspicari hanc epocham motus medii Martis? Nam Ptolemaeus diserte affirmat, se in illa sua observatione distantiam Lunae a Sole invenisse 92° 8', quantam etiam computaverit ex sua hypothesi motuum Lunae. Vera dixerit Ptolemaeus, satis dexter fuerit in observando; plane tantam deprehenderit hanc distantiam in instrumento suo, quantam voluit ejus hypothesis motuum Lunae, quae circa quadraturas non fefellit. Hinc ego sic argumentor. Si Sol fuisset in 3° 5' \mathcal{H} , quorsum illum Ptolemaeus reposuit per suam eccentricitatem, non potuisset Luna videri ab illo abesse justum et computatum ex hypothesi modulum 92° 8': eo quod Sol occidens refracte ad visum pervenit, et altior justo (itaque 30' plus in consequentia) esse apparet, quam est. Quia vero a Luna ad Solem observatus est arcus 92° 8', isque in rei v ritate ob refractionem fuit 92° 38': ergo Sol verissime non fuit in 3° 3' \mathcal{H} , sed in 2° 33' \mathcal{H} . Id autem consentaneum est casui quinto, ubi diximus, adjectoriam acquationem maximum Ptolemaei (quae competit in 5° \neq) usurpatione eccentricitatis hodiernae fieri 20' minorem, itaque Solem pro 3° 3' \neq in 2° 43' \neq . Itaque posita refractionis universalitate per omnia loca et tempora, quo de in Opticis dictum, et stante hac observatione, argumentum nobis mascitur diminutioris eccentricitatis Solin, quam putabatur a Ptolemaeo.

Neque te moveat, quod refractionem dixi 30', hanc vero diminutionem tantum 20'. Nam si bene perpendas, cum culminaverit 30° \bigotimes , occidit igitur tunc 1° \not Alexandriae, et sic Sol in 3° \not habuit 2°, fortassis et plurium altitudinem; minorem igitur refractionem 30'; nec omnis refractio simpliciter in longum porrigebatur. Itaque quam proxime pares quantitate fuerunt hae duae causae se mutuo conficientes. Etsi verbo dignam non putabit hanc 10' differentiam, si quis in abaco fixarum Ptolemaico est versatus. Verbi gratia : inter cor Leonis et spicam Virginis Ptolemaens prodit intervallum 54° 10', quod est non majus 53° 59' in ipso coelo.

Sequamur igitur quorsum nos vota rationesque ducmt, et sit, ut in casu primo, anno 2. Antonini, die 12. Epiphi, hora 8. Alexandriae in Aegypto, motus medius Martis ab aequinoctio 11° 18' 30" \checkmark . Tempus congruit anno Christi vulgari 139. d. 27. Maji. Differentia meridianorum inter Huennam et Alexandriam est horarum 2 fere ex recentissimis tabulis geographicis. Huennae igitur anno Christi 139. die 27. Maji h. 6. fuit medius motus 8° 11° 18' 30". Sed es and cor Leonis habuit longitudinem 2° 30' \wp , hoc est 4° 2° 30 °C. Ergo Martis motus medius abfuit a corde Leonis 4° 8° 48' 30". Sed anno 1599. die 27. Maji h. 6. fuit motus medius Martis 0° 0° 47' 30° ab aequinoctio, cor vero Leonis ab eodem abfuit demonstrante Braheo 4' 24° 15' 45". Ergo Mars abfuit a corde \wp 7° 6° 31' 45".

	d. 27. Maji d. 27. Maji						
Intervallum	1460. Juliani,	1461.	Aegyptii	Prutenicae		27. 43 28. 5	
					Differen	ntia 22	2. 41

Annis singulis auferendum est unum fere secundum. Igitur in meridie 1. Januarii anni primi Christi Huennae elongatur motu medio per 5^o 8^o 52' 45" a corde Leonis.

Et haec de motu medio Martis a fixis.

Motus aphelii paulo alius prodibit, quam supra cap. XVII. Nam quia anno Christi 139. d. 27. Maji fuit in 0° 41' Q, cor vero Leonis in 2° 30' Q: antecessit igitur illud 1° 49', hodie vero anno 1599. d. 27. Maji in 28° 58' 50'' Q, quando cor Leonis in 24° 15' 45'' Q.

Sequitur ergo aphelium hodie . 4° 43' 5"

Praecedebat vero Ptolemaeo . . 1. 49. 0

Intervallo annorum 1460. Julian. 6. 32. 5 progressus; et fit annus paulo major 16". Radix Christi igitur ad 1. Januarii meridiem habet aphelium hoc ante cor Ω 2° 27'.

De motu medio Solis a fixis, obiter in futuros usus.

Cum anno Christi 139. d. 9. Pharmuthi, hoc est 23. Februarii, occidente Sole h. 5. 30', Huennae h. 3. 30' fuerit apparens Solis 3° 3' ¥ computatus, medius igitur 0° 43' ¥; inventa vero fuit longitudo cordis

2° 30' Q: Solis igitur medius praecedebat cor Leonis 5° 1° 47' 0". Sed anno 1599. d. 23. Februarii h. 3. 30' Huennae fuit medius Solis 12° 47' 41" \mathcal{H} , cor Leonis 24° 15' 30" Q; Solis igitur medius praecedebat cor Q 5° 11° 27' 49". Annis 1460 Aegyptiis desunt 9° 40' 49". Colligimus in tot annis per 2' 42" minus quam ex Prutenicis, eritque epocha in radice Christi 1. Januarii in meridie 5° 7° 14' 36" a corde Leonis. Similiter progressus apogaei Solis invenitur 8° 23' et in radice Christi 1° 27° 48' 0" ante cor Leonis.

Caput LXX.

Duarum reliquarum Ptolemaei observationum consideratio, pro exploranda latitudine et orbium proportione tempore Ptolemaei.

Verum est, quod non semel monui, Ptolemaeum longe plures adhibuisse observationes, quam quae relatae sunt in ipsius opus. Ecce enim, ad tradendam doctrinam investigandae proportionis orbium utitur observatione unica, eaque intra triduum vicina ipsi oppositioni. Dictum autem est cap. LIII, observationes tam vicinas immane quippiam peccare, si vel unum scrupulum errent. Sequamur tamen ipsius vestigia, et hypothesi jam constituta casusque primi fundamentis inaedificata, computemus et hunc quartum locum.

		h. 8. — h. 9.	Anomalia .	130° 37′ 30′
	dies 3.	h. 1.	Motus medius	1. 35. 39
Coaequata Aphelium	123° 43′ 34 ″ 120. 41. 0		Anomalia.	132. 13. 9
Locus eccentri	4• 24' 34" 🗶	i.	Distantia 143	660.

Locus Solis verus die 12. fuit 2° 36' II. Adde motum tridui et horae circa apogaeum ex hodierna experientia 2° 53' 40", ut sit 5° 29' 40" II, et usurpetur hodierna apogaea distantia 101800. Differunt igitur oppositus Solis et eccentricus Martis per 1° 5' 6". Qui arcus apparet esse 3° 43' 14", ut sit Mars visus in 1° 46' 26" x^{3} . Sin autem utamur eccentricitate Solis Ptolemaica, motus Solis tridui erit 1' minor, et Sol in 5° 28' 40" II. Itaque differentia 1° 4' 6", quae apparebit (per distantiam Solis et Terrae 102100 Ptolemaicam) 3° 45' 45". Igitur planeta cadet in 1° 43' x^{3} . Dixit autem Ptolemaeus, visum esse in 1° 36' x^{3} . Plus igitur justo colligimus per 7' vel 10'. At pars minima instrumenti Ptolemaici, quam semper in errore ponere cogitur, valet 10'. Et nota, si in loco eccentrico erravimus 2', jam 7' errabimus in viso loco. Referatur enim Mars ratione eccentrici in 4° 22' x^{3} : jam videbitur in 1° 36' x^{3} . Supra die 12. Epiphi abundaverat etiam 1⁴/₂'. Igitur haec consentiunt.

Et quia in tanta oppositionis propinquitate nihil notabile efficit diversa eccentricitas: age consulamus etiam observationem antiquiorem. Inter mane 18. Jan. anni ante Christum 272 currentis, et meridiem 1. Jan. anno 1. Christi, anni sunt Aegyptii 272, dies 51 et horae aliquot. Cum enim Alexandriae Sol in 25° Z oriatur h. 7, observatio Martis matutini facta fuerit una hora ante, nimirum aurora surgente, hora igitur sexta, quae est Huennae hora quarta, a qua ad meridiem sunt horae 8. Per hoc intervallum temporis ex fundamentis superioribus invenitur medius motus Solis superasse cor Leonis 5^{s} 25° 32' 50'' cum anomalia 234° 54' 34'', aequationem habens ex Ptolemaeo 2° 0' 30'', ex Braheo 1° 42' 54'' adjectitiam: distantia Solis a Terra illic 98790, hic 98976. Medius vero motus Martis tunc superavit cor Leonis 2^{s} 6° 7' 12''. Cum autem aphelium 3° 48' 20'' sit ante cor, erit anomalia Martis 69° 47' 32'', coaequata 60° 15' 27'', distantia 158320.

Hinc gemina via perveniemus ad finem calculi. Primo per eccentricitatem et aequationem Ptolemaicam. Tunc longitudo Solis a corde Leonis est 5º 27º 33' 20", differens a longitudine Martis eccentrica 1º 26º 35' 7" per 4º 0º 58' 13", qua distantia arcuali et distantiis Terrae et Martis a Sole ostenditur apparens elongatio a Sole 82º 43' 46", igitur et apparens elongatio Martis a corde Leonis 3º 4º 49' 34". At secundo per Braheanam eccentricitatem et acquationes, si eadem et tunc fuisse ponantur, Solis locus apparens per 17' 36" erit anterior, sen 5^s 27^o 15' 44", quare et angulus commutationis est 4^s 0^o 40' 37", per quem et distantiam Solis a Terra nostram, quasi et tunc eadem fuerit, ostenditur apparens elongatio Martis a corde Leonis 3º 4º 51' 28". Differentia inter utrumque calculum perexigua et nullius momenti. An igitur Mars videbatur quasi appositus seu adaptatus boreali fronti Scorpii? ut sonat observationis descriptum. Videamus. Ptolemaeo est cor Leonis in 2º 30' 2, borealis clara frontis Scorpii in 6º 20' 11, elongata per 3º 3º 50' 0"; Braheo cor Leonis in 24º 17' Q, frons Scorpii in 27° 36' m, elongatio 3° 3° 20' 0". Elongatio vero Martis jam est computata 3° 4° 51' 28". Differentia est sesquigradus.

Ptolemaeus huic observationi confisus, quod ex iis, quibus inniti posset, antiquissima esset, constituit procul dubio proportionem illam orbium, quam adhuc invenimus in ejus numeris, et quantam requirere videbatur haec observatio. Nam in motu medio ad hoc tempus computato non ultra 20' a me dissidet. Residuum igitur est ex proportione orbium. Nam quod simulat, se hanc proportionem investigare per observationem triduo distantem ab oppositione, fecit, ut videretur diversa diversis evincere observatis. Quia igitur haec antiqua reservanda fuit inquirendis motibus mediis: illam igitur inquirendae proportioni orbium substituit, jam pridem per hanc inventae. Nam absurde tentari proportionem orbium per observationem tam vicinam oppositioni, quam fuit illa, qua Ptolemaeus se hanc proportionem demonstrasse simulat, id jam est dictum.

Ne quis igitur miretur, nos differre sesquigradu ab observatione, quam ex antiquitate Ptolemaeus arcessivit: quin potius inspiciat ejus proportionem orbium, valde diversam ab ea, quam hodiernae probant observationes, et perpendat, ut ille hanc observationem tueretur, ita vitiasse suorum orbium proportionem.

Quod ipsam observationem attinet, cujus haec verba sunt: žoog ó rov 'Aquog idonui nquorudeunara rop boquiq perunquirov, existimo, erroremesse commissum a Ptolemaeo, qui primam Scorpii intellexit, cum observator quintam innueret. Id ex ipsis verbis probatur. Nam frons Scorpii sex stellas claras habet. Ex his insignes tres, tertiae vel potins secundae magnitudinis: reliquae tres quartae, vel potius, me aestimatore, tertiae sunt magnitudinis, quarum una altior est tribus claris et septentrionalior. Jam

si observator claram frontis, quam Braheuş recte secundae magnitudinis pronunciat, quamque Ptolemaeus subintellexit, borealem frontem nuncupavit, numquid ambigue locutus est, dum pro clarissima borealium simpliciter borealem dixit, quae borealissima non fuit? Multo igitur tutins ego borealissimam, quae quinta numero est, ab observatore dictam subsumsero. Deinde consentit mea computata longitudo Martis cum hac, non cum clara frontis, et hoc manente hypothesi, quam hodiernae genuerunt observationes Braheanae. Nam Braheus illam borealissimam reponit in $29^{\circ} 3'_{12}$ ' M. Aufer cor Leonis in $24^{\circ} 17' \ \Omega$, restabit illi elongatio a corde $94^{\circ} 46'_{12}'$. Noster calculus vero Martem refert in elongationem a corde Leonis $94^{\circ} 49'_{12}'$ vel $94^{\circ} 51'_{12}'$. Differentia 3' vel 5', non major.

Non diffiteor, negotium mihi exhibitum esse a latitudine, dum expendo verba: idonei nooredeinerai, quasi diceret : Videbatur ita prope accessisse, ut duae pro una quasi stella haberi possent, ut viderentur se mutuo tangere. Etsi Arabs vertit cooperuisse, quasi scripsisset Graecus eningooredeixerai, itaque in Opticis fol. 321 usus sum voce "superpositum." Germani propriissime brangesets. Ex hoc ratiocinabar ita: sive subtercurrerit centraliter, sive oram ejus boream austrinamve raserit, non potuisse ab ipsa distare in latitudine magna aliqua portione; minus namque incertas esse latitudines quam longitudines, quia constantior et simplicior est earum ratio, ut hoc libro demonstratum est. Jam scimus, nodum retrocedere a fixis spatio anni Cynici per 4° 15', ut probatum cap. XVII. Ptolemaeo fuit existimatus limes boreus antecedere $3^{1}/_{2}^{\circ}$ cor Leonis. Nobis per intermedios 1310 annos unum gradum retrocesserit; ut tempore observationis fuerit $2\frac{1}{2}^{0}$ ante cor Leonis. Ergo nodus 87⁴/2º post cor Leonis. Sed Mars per 56° 35' est post cor Leonis, ergo abest 31° a nodo, inclinationem faciens 57 1/2', quae per parallaxin orbis efficitur 1º 7' justa latitudo. Jam. vero constat ex Braheo, latitudinem clarae frontis esse 1º 5', borealissimae vero frontis 1º 42'. Itaque latitudo videbatur me convincere de clara frontis, ut crederem, hanc a Marte tectam fuisse, non illam. Sed fortuita est ista conspiratio numerorum. Nam in latitudine borealissimae frontis consentiunt Braheus et Ptolemaeus,' eam pronunciantes: ille 1º 46', hic 1º 42'. In splendidae latitudine different. Ptolemaeus habet 1º 20', Braheus 1º 5'. Sed illa numerorum aequalitas est de errore; haec vero differentia consensus potius est. Stellarum enim in 11 X. Z m borealium latitudines hodie sunt minores quam olim, circiter 16' 20"; australium majores per tantundem; quippe ecliptica transposita, et declinationibus graduum eclipticae tantundem mutatis, ut Braheus demonstravit et nos cap. LXVIII. diximus. Itaque si verum est, ut est verissimum, hodie latitudinem clarae in fronte Scorpii esse 1º 5': igitur tempore Ptolemaei et Hipparchi fuit non minor 1º 20', potius major. Cum igitur Mars minorem obtinuerit latitudinem borealem, quam utravis dictarum stellarum, et sub utraque transiverit (certum enim est, si in nodo vel integro gradu abundemus, non ultra tria scrupula latitudinem in calculo vitiatam esse. Et jam supra cap. LXIV. ostensum est, incertissimum esse, an olim Marti quoque borea latitudo in signis australibus major fuerit): frustra itaque in voce *mooreovenera* fui argutus: nec aliter illa explicanda est, quam de appositione stellarum in eandem longitudinem; quo nomine illa, quam ego dico, nihil impediente latitudine majore, aeque esse potuit ac ista clara.

Vide num possit hic esse sensus, quod cum in boreali parte frontis

sint tres stellae in forma trianguli, Mars spectatus sit in medio earum, et sic appositus fuerit boreali fronti Scorpii; factus nimirum fuerit una ex numero earum, quae sunt in boreali parte frontis Scorpii. Ad hanc enim interpretationem facit et hoc, quod non dixit observator boreali frontis sed boreali fronti, quod non sonat de una singulari stella, sed de parte constellationis integrae.

Nihil igitur juvant nos hae duae antiquae observationes ad aestimandam vel latitudinem vel orbium proportionem illius temporis. Itaque cum gihil nos impediant observationes contrariae, confirmet vero nos summa rei verisimilitudo, concludamus, eandem esse et hodie proportionem orbium, quae fuit olim, latitudines vero maximas nonnihil hodie esse immutatas.

IN COMMENTARIA DE MOTIBUS MARTIS

NOTAE EDITORIS.

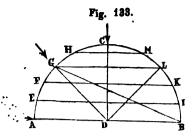
1) p. 30. Tabulas has eodem forte tempore adiit Keplerus, quo adjunxit Tychonis Progymnasmatum edito volumini primo (1602) folia, quae continent "Lunae motus restitutionem" inspersam inter paginas illius operis 112 et 113, signata numeris 01-028. Insunt illae tabulae manuscriptorum Petropol. Vol. H. inscriptae: Transformatic hypotheseos et tabularum Lunarium Tychonis Brahe, plane ad typum informatae, praemissa dedicatione ad Herwartum d. d. X. Cal. Majas 1603. Legentur ea, quae imprimenda ex boe scripto vias sunt, sub finem hujus voluminis.

2) p. 32. Longomontanus, Tychoni supra modum addictus, Tengnageliique contra studia Kepleri defensor non integer, Keplerum acerrime aggreditur in literis mense Majo 1604 datis, etsi exordium harum literarum talia non significat. Sic enim Longomontimus : Doctissime M. J. Keplere, amice veteri necessitudine conjunctus. Annus jam alter agitar, ex quo nobilissimus Fr. Tengnaglius, gener et successor incomparabilis astronomi D. Tychonis Brahe, Wiburgum ad me scribens inter alia tuam ut mihi videtur nimiam industriam circa refutationem recentis Tychonianae in Lunam hypothesis (veluti suis oculis vidisset) mihi retulit. Ego vero ejus literis responsurus nec in manes defuncti Tychonis nec etiam propriae conscientiae innocentiam tam me crudelem esse existimavi oportere, quin te ab hac superflua curiositate, quae in prioribus, biennio ante e Styria Pragam mihi missis, apparere coepit, ad tua ipsius incepta perficienda verbulo revocarem. Et certe, modo con-ditio mea tulistet, ita ex illius et mea simul opinione meritus fuisses, ut Pragam me denuo conferens palam de hac injuria tecum expostularem, in quam inexspectata inconsiderataque opera tua laborem pariter et amicitiam nostram resolveres. De te antem ... (v. s. p. 33). Huic equidem non retorsionem, sed modestam quae me decebit responsionem oppono, dum hic Rostochii amicorum causa maneo et epistolio tuo destituor, quod huc trajiciens Hafniae. impradenter neglexi. Principio vero, mi Keplere, cur tibi tantopere applaudas ? Quod hypo-. theses Lunae transformasti, fundamentis Tychonianis ne in minimis quidem convulsis?... Quaedam emendasti ad divinas tuas proportiones scilicet; verum quae calculo astronomico per te promtiora existimas, ca certe vix menti incluti D. Tychonis respondebunt.... Dic, quaeso, quid te tabularum omnium presthaphaeresium tam foecundam fabricam docuit, ut tales tabulae ceteris similiter planetis essent communes ac sufficientes, latentibus adhuc te veris horum phaenomenis? Ignaris tu igitur persuade et intelligentibus desine amplius absurda narrare. Sed ulterius ad tuum Augiae stabulum pergamus. — Dein recensitis ils, quae ipse in Lunae theoria perfecerit, addit : haee tu mi Keplere ceteraque forte omnia, quae a Tychone inventa ac elaborata sunt, sterquilinio in Augiae stabulo olim sepuito acquare non vereris (Keplerus in margine : haec per luculentissimam injuriam mihi tribuit), taumque ad ea expurganda rursum laborem ac carrum promittere, si te Herculem redivivum agnosceremus. At id certe nemo facit teque tanto viro praefert, nisi ejus omnibus purgatis cognoscat, te coelo et coelestidus apparentiis congruentiora substituisse. Nam hinc astronomo victoria spectanda, hinc triumphus. Id autem non metuo, quod ad praclaram censuram omnium bonorum et intelligentium de defancto Tychone haec sordida tua insolentia magis sordescat et sordida fiat. (K.: Debacchare in larvam a te concinnatam.)

Jam adit L. eclipses, semidiametros luminarium, refractionem, ubique Keplerum refu-

tare student, cujus sensum non percepit, et sie concludit : quare demonstrationlus, it te decet, in posterum agas peto, neque propter male affectation in stribendo ad me festinationem tuam es mentas tuae obscuritatem, es veritaits in tanta causa occultationem et simul forte mei contentium quaeras. Apoligus es reconsionibus minime opus erit : sed poins succero et anuco pectore, ad veritatem et justitiam, quarum visuatum D. Tycho dun vitit elservantasames semper fint, ausque directo.... Sed qua Laconsmus tuam prelivitate potais minia quam nuo Attico spiendire, quo mathemanicus semper carui, a me pusati video et simul epistolae modum excedi, finem hie facto, teque per ameritam nostram et mostrae professions zonouver rogo et hortor, ne tihe occusionem ulterius calumniandi et hac innocenti mea responsive armpias die.

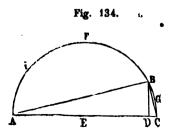
3) p. 35. Verta haec comparata com ils, quae de dissidiás inter Keplerum et Tychouis haeredes orus p. 12 s. draimus, his explicantur : Keplerus, Tychone mortuo, ejus in logum successit salario 500 florenorum (Tyche accepit 3000 anness" anness) pron saepius vero non soluto. Haeredes Tychonis stem ex aerario publico acceperunt hand enigum summam, majoremque efflagitabant. Aerarii tenuitas illerum precibus respondere non permisit, quare ad edenda patris opera confugerunt Kepierumque, ex parte quidem in hunc finen ab Imperatore constitutum, segnitatis accusarunt. Maturanda Tythomis operum editio Cassaris quoque considiaria visa est, ut milestos solicitatores ab aerano revocarent, et Tengnagelia, collegae, satisfacerent, qui rem parum perspiciens confectioneus tabularum hand multi laboris ducebat. Kepierus contra pro eruditione sua et ingenn acumine difficultatem rei primo adspectu cognoscens simulque Rudolphi inserviens deliciis excusabat moram, ahas, id quod res erat, occupationes memorans. Jam, Keplero forse non dissentience, constitutus est Joh. Pistorius studiorum ipsins quasi magister, quod ipse Keplerus refert, Odonno (d. 5. Ang. 1605) scuben: "D. Pistorium quod attinet, is eo loco mihi a Caesare constitutus est, ut temporis rationem ipsi debeam : quo nomine celare ipsum nihil possum de meae professionis studiis, seu publicum id sit, seu privatum." - Munus siti mandatum Pistorius (canonicus tum temporis Constantiae et Imperatoris Rudolphi sacerdos confessionis) dum Pragae versabatur respiciens Kepleri excusationes exegisse videtur, neque illud Praga relicta Fitburgum transgressus plane omisit, testitus his verbis, quae desumsimus ex epistola ad Keplerum data (14. Mart. 1607 Friburgo). "De mathematicis laboribus et D. Tuae et Domini a Tengnagel quid obsecto factum est hactenus? Ubi Commentarii in motum Martis? Ubi Ephemerides ? Ubi Tabulae Rudolphinae ? De quibus omnibus certior fieri cupio." - Ad has quaestiones respondit Keplerus: Tengnaglius ex Anglia ante 3 menses redit. Caesar mihi dedit 400 florenos in Comm. Martis. In eo jam labore sum. Exsculpuntur jam typi lignei. A Tengnaglio veniam publicandi opus nondum habeo, et Caesar inhibuit distractionem exemplarium ad suum arbitrium. Ephemeridum nulla in propinquo spes, quia Mars in meo cerebro manibusque tamultuatur. De Radolphinis tandem Tengnaglius videtur spem abjecisse : non ego, si vixero. Si me pactis nostris impediet aliquid evulgare Tengnaglius. excipiam: deceptum me esse, cum promisisset ipse intra 4 annos Rudolphinas edere ; huic ego promissioni, quae facta est Caesari, inimicus promisi exspectare donec prodeant illae Tabulae, post-, modum libertate philosophica mihi reservata. Jam nullas ille tabulas unquam scribet : irrita ergo pacta nostra, etsi conditionem de 4 annis non continent ; sufficit hos 4 annos Caesari nominatos. (E literis d. 12. Jun. 1607, quarum partem majorem libris chronologicis praemisimus.) Herwartus pluries cum Pistorio egit de Kepleri conditione illumque annis 1602 et 1603 accuratius inspexisse bujus studia testantur literae aliquot Herwarti ad Keplerum, in quibus adit quoque simultates cum Tychonicis. Illa certe spectant ea quae legimus in literis d. d. 24. Feb. 1603 : Tychonis instrumenta, wie mich bedunkt, in utramque aurem dormiunt. Ich hab cum D. Pistorio davon gesprochen, wann nit die ganze Disposition dem Herrn untergeben würt, halt ich für mein Theil nichts davon und wird ohne Zweifel der Effect den Expensis nit correspondieren und per consequens res ipta labascieren. - Item etiam haec : Als D. Pistorius hier durchgereist, hab ich nit unterlassen, gebürende officia und Erklärungen zu thun, so seiner Zeit nit ohne Frucht abgehen werden. (Comp. Vol. L p. 653.)


4) p. 37. Quae in Opticis Keplerus de Gilberti opere mirabundus affert, vide Vol. II, p. 221. — Haud ita multo post editum opus "De Magnete" Keplerum illud adinse, quis dubitet? Herwartus jam anno 1598 quasdam de magneticis moverat quaestienes, ad quas quae responderit Keplerus Vol. II, p. 812 leguntur. De Gilberti opere Herwartus (d. 21. Nov. 1602) haec dedit Keplero: Der Herr wird gelesen haben, was Gilbert de Magnete ausgehen lassen, dusgleichen nie geschen und gehört worden, obgleich er soviel zu

verstehen gibt, dass er in geometricis sonderbar nit versiert. Ich wollt des Herrn judicium, bevorab indem er motum Terrae daran zu erzwingen vermaint, gern vernemmen.

Quibus respondit Keplerus (d. 12. Jan. 1603): In magneticis, uti novit M. Tua, multus fui. Portae experimenta pleraque examinavi vel ad rationes vel ad periclitationem propriam, quantum informi lapide potui. Aliquos etiam ejus errores hoc pacto deprehendi, quos nominatim alicubi taxat et Gilbertus. Verum ita fuse, distincte, sufficienter tractavit hanc rem Gilbertus, ita undique nobilissimis experimentis se munivit, omnium contradicentium ora obstruxit, ut plane evanescant meae speculationes de tarda illa migratione poli motus diurni ex locis Terrae, quae. in creatione illi fuerint subjecta. Quam speculationem tanto libentius depono, quod invenio, hic Pragae ante 200 annos observatam altitudinem poli consentire quam proxime cum ea, quae est hodie. (Comp. Ep. ad Maestl. p. 54.) At poscebat analogia motus ab Antonio Maria (comp. Vol. II, p. 220) mihi monstrati, ut intra hoc tempus 10-12' variata fuerint.

Legam integrum opus ubi plus otii erit; jam maligne inhaerent memoriae, quae ante biennium in mea febri quartana ex eo animi gratia delibavi. Si qua mihi nascentur dubia, cum M. T. communicabo. In praesens ista: Variationis causae, quam affert (libro IV.), videtur obstare, quod montana regionum ad integrum globum nullam habent proportionem. In declinationibus (lib. V.) mihi expertu vel impossibilia vel sumtuosissima experimenta proponit, ubi fides est penes auctorem. At quia consentanca dicit et in ceteris fides ejus explorata est, nihit, est cur suspectum habeam; nam ex stilo apparet, virum gravem esse nec valgarium Italorum similem. Ad hace tot et tanta et tam controversa superaedificat, ut non injuria censeri debeat, declinaturum fuisse infamiam, quae ipsum secutora fuerit, si falsa alleget experimenta. Et passim taxat fabularum architectos, potuitque nemine suggerente illud cogitare, turpe esse doctori, cum culpa redarguit ipsum, Accedit peculiare argumentum, cur et in directionibus ipsi fidem habeam. Quantitatem declinationum proponit ille perplexis nescio quibus curvis lineis, ro or afferens, modumque metiendi qualemcunque, non dissimulans, se ro diori particularium dimensionum ignorare; quo minus suspectum est ipsum 10 on. Ego vero deprehendo cansam illarum dimensionum geometricam, quae propemodum idem praestat, quod ipsius avaitatoi curvae lineae : neo curo de discrepatiuncula minima ; nam sensus in hisce tenerrimis experimentis ac praesertim in tam parvis globulis non descendit ad minima. Causa quam dixi geometrica haec est : in globo magnetico dimidia pars porrigitur in septentriones, dimidia in austrum : et si ferramentum seu versorium sit in aequinoctiali globuli, dirigitur parallelos axi globuli, non inclinatur; si inde fuerit digressa, inclinatur. Itaque dimidius globus in causa versatur. Ceterum omnis declinatio in uno et codem circulo maximo per polos eunte numeratur, quod inde fit, quia declinatio omnis ad polos vergit. Etiamsi enim a pristino loco moveatur versorium ad ortum sub eodem parallelo et sub eadem distantia a polo, itaque accidat, ut cum prius sub meridiano, primi loci declinaverit, jam non sub illo, sed sub alio meridiano abnuens a vertice primi meridiani : tamen hoc non " venit in censum declinationis, quia meridiani infiniti sunt, nullus alio potior, ut ad illum solum ceterorum declinationes comparentur; polus vero est unicus, et ad illum comparantur declinationes omnium a polo distantiarum. Ex quibus conficitur, dimidium globi ad mensurandam declinationem non adhiberi corpulentia sua, quia neque declinatio in longum et latum, uti dixi, sed tantum in latum mensuranda praestat. Ubi si etiam ad longum respicias, declinatio potius nulla est in longum, eo ipso, quod dixi declinationem in meridiano, qui globum bisecat. Relinquitur ergo, si dimidium globi mensurat declinationes, non mensurat autem corpulentia, mensurabit igitur circulo maximo seu plano meridiani per centrum eunte, plano inquam bisecto, quia et globi dimidium tantum assumitur.


Sit ACB (Fig. 133) semicirculus globi magnetici seu telluriculae, AB in aequinoctiali, C polus, CD dimidium axis. A, E, F, G, H, C diversi positus versorii. Ducantur ex E, F, G, H paralleli ipsi AB. Cum ergo versorium in A est parallelum ipsi DA, nec inclinatur, quia totam quantitatem ACB plani habet ante se,

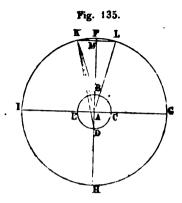
versus partes poli C ab acquatore AB. At que est in E, habet aream AEIB post se, quae jam operatur ad declinationem faciendam. Nam etsi quid possit ECI, et acquali spatio in globi australi parte impeditur et avselmera. Non sic AEIB, nam et id et ei acquale in australi parte globi est post versorium. Ita fit, ut in tantum crescat declinatio in A, E, F, G, H, C, quantam crescit spatium semicirculi, quod post se relinquit. Et quia declinatio ab A in C est 180°, ut

ergo area AEIB ad aream ACB, ita declinatio in E ad declinationem in C. Videmus, ait Gilbertus Lib. V. cap. 6, cum versorium fuerit in 45°, dirigi in aequatorem. Sit in G, linea directionis GB, quia B in aequatore. Cum ergo ait AG 45°, erit ABG 221/2°, igitur ab A in G per 1121/2° conversum est. Connectantur G, L cum D. Et quia LDG rectus est, erit area trianguli LDG pars quarta quadrati. Jam sector GDL est pars 1/4 circuli, ergo area 7853981634 ex Adriano Romano. Subtracto triangulo GLD a sectore GCLD, relinquitur segmentum GCL 2853981634. Est vero integer semicirculus 15707963268, est ergo GLBA area 12853981634. Videbo an eadem sit proportio hujus areae ad semicirculum, quae est inclinationis 1124, and 180°. 157 dat 180°, quid 1281, ... &c. ? Prodeunt 147º fere. Sed me fallit memoria. Sic agendum. Cum declinatio componatur ex transpositione versorii et deflexione virgulae ab ipsa perpendiculari versorii, transpositio quidem se ipsam metitur, ut linea, quae circulum in A tangit, 45°, quia G est in 45°. Inclinatio vero super hanc tangentem censenda venit, et est 90" ab A usque in C, quia lingula in C perpendicularis est tangenti, in A parallelos illi. Haec inquam pars proportionatur areae, itaque si tota area somicirculi facit inclinationem 90°, quid facit area GLBA in 45°? Sequitur 73 1/1. Supra vero invenimus 1121/2° et sublata inclinatione topica 45°, residua 674,°, differentia 6º, quam puto insensibilem in hoc negotio. Ceterum accessisse me propius ad rem ipsam existimo, totam comprehendisse non puto. Simile enim hic fere accidit, quod in dimensione refractionum et librae ; ubi cernimus quidem, subesse modum mensurandi ex genere quantitatum, quem tamen nemo ad hunc diem invenit, prope verum omnes accedunt. Nam dissimulandem non est: nudos sinus nobis propiorem mensurandi antionem monstrare. Quia enim in 45º sinus est 70711: ut sinus totus ad hunc sinting sic 90° ad 63 1/2°, quae inclinatio composita cum topica 45° facit 108²/a, debebat 112¹/. Hic tamen causam non magis explicare possim, cur sinus metirentur inclinationem, atque Gilbertus dicere potest, cur quadrantes sui metiantur illam. Non est incredibile, Gilbertum id pro vero assumsisse, quod proximum deprehendit; consentaneum enim videtur, ut loco medio inter polum et aequatorem declinet lingula ad aequatorem praecise, primum atque quis viderit illi alludere.

Paterisne, ut inter scribendum proficiam ? Omnino puto non irasceris. Itaque causam jam modo desperatam, cur sinus metiantur has inclinationes, puto explicame posse in hunc modum, quo.non ita pridem et librae mutamenta demonstanre videbar. Sit ABC circulus seu in superficie terriculae seu in ipsius orbe virtutis, in

quo B centrum lingulae convertendae. Et ai A polus austrinus, C boreus. Cum ergo declinatio sit ob hanc solam causam, ut fiat unitio similium, et in lingula pars altera sit similis polo C, altera polo A, fit ut versorio in F acquatore versante, A et C singuli partes sibi similes alliciant acquali virtute, unde fit, ut lingula in F sit parallelos AC, quia ab F perpendicularis demissa cadit in E centrum, dividens AC axem virtutis bifariam in E. At si in B, longius 'abest ab A quam a C, minus ergo

allicit A quam C, idque in prepertione es, qua dividitur AC, axis virtutis, perpendiculari BD. Denique si verserium sit in C, totus axis stat ab una parte, nihil ab altera parte. Cum ergo nihil absit a polo C, totaliter a C dirigitur et. unitur, nihil faciente polo A, quia nulla est proportio remotionis poli A a versorio in C ad plenarium contactum poli C. Ita causa patet, cur sinus distantiae ab aequatore, qui hic est BD, alludat ad mensuram. Simul etiam causa apparet, cur tam propinque coincidat uterque modus. Nam quia BD perpendicularis est, erit ergo ut CD ad BD sic BD ad DA, et cum sint triangula similia (aequealta) CDB et BDA, erit ut CD ad DA sic area CDB ad aream BDA. Jam parvo BCD parvum segmentum BCG accedit, et magno BAD magnum segmentum BFA, ut fere sit ADBF area ad CDBG, ut AD linea ad CD lineam. Prius autem per areas (earum dupla) operabar, his per lineas sum operatus. Cumque quantitas, quain prodit Gilbertus, loco medio versetur, rursum est credibile, coincidere illam cum alterutro horum modorum. Quod autem ad motum Telluris attinet, facile poteris cogitare, magnopere me probaturum, quae ille (lib. VI) ad Copernicanam rationem stabiliendam affert, cum Copernicanus et ipse sim. Velim tamen perpendas, josum probabilitatem saltem profiteri. Haec enim fere est ejus ratiocinasio : ferrum a magnete, magnes a Tellure movetur virtute aliqua quam proxime corporali, quia dimensiones accipit corporeas. Quidni ergo et Tellus ipsa moveri possit a virtute animali? Item, consentaneum est, id moveri quod naturalia habet motus circulamenta, non imaginaria. Terra habet polos naturales, axem naturalem, aequatorem naturalem et virtute naturali palpabili pollentem : et haec ad motum requiruntur. Ergo consentaneum est, Terram moveri, Jam de singulis Terrae motibus se dextre explicat. Si axis Terrae vergeret semper ad easdem fixas, credi possit, converti ad aliquid sibi simile, ut noster magnes ad septentriones vertitur sine anima, sola naturali unitionis facultate. Sed quia paulatim relinquit fixas respectus ille axis Terrae moliturque sibi viam circa polos eclipticae in circulo mineri, hinc apparet, non partes coeli dirigere axem Terrae, sed animam aliquam in ipsa Terra; alias semper eodem vergeret. Et hic respectus ejusdem puncti sub fixis continuus diem noctemque et per omnes anni partes (nisi quatenus tardissime nonnihil transponitur) dicitur a Copernico tertius motus Telluris, quem inclinationem appellat; superfluo nomine et quod rem ipsam occultet; ut nesciam an Copernicus ipse vim suae hypotheseos dextre intellexerit.


Ceterum diurnum Terrae motum omnibus machinis adstruit, de annuo suspendit sententiam : forte quia astronomus non est : alias, si bene novi ejus ingenium, mordicus fuisset arrepturus et hunc.

Praecessionem acquinoctiorum camque inacqualem et obliquitatis eclipticae variationem, uti par est, ab axe Terrae suspendit nec male componit omnem hanc varietatem in lineis tortuosis.

Ad cap. 2. lib. VI. addo confutandi studii causa, Regiomontanum in Torqueto prodere alt. poli Romae 42° 4', aliter 42° 8'. Exemplum Pragense contra Mariam prius attuli. Capite 6. lib. VI. ejusmodi verbis utitur, ut optem mihi alas, quibus in Angliam ad conferendum cum illo transporter. (Comp. Vol. II, p. 221.) Plane iisdem ego principiis omnes planetarum motus demonstrari posse puto. Dolet non mediocriter, non lectum illi esse meum libellum seu Mysterium Cosmographiem. Capitis 7. similia olim ad M. T. Graetio perscripsi. (Comp. vol. II, p. 812-sc.) Quae sequentur Cap. 8. 9. de possibilitate sunt intelligenda, non de necessitate. Capite ultimo ostendit, qualem viam describere debeat axis Terrae directio, in te efficiatur talis anomalia praecessionis et obliquitatis, qualem ponit Copernicus. At nec ipsius mec Copernici tam operosis speculationibus opus esse videtur, quod exercitandi gratia, quia his delectaris, ex iis, quae de anni magnitudine et cohaerentibus concepi, in has chartas referam : si forte per te alii celebres mathematici ad considerationem hujus rei excitentur.

Certum est, inesse motui Solis non minus quam ceterorum planetarum deflexionem in latum; qua de causa fit, ut fixarum latitudines hodie varientur, ut Tycho

et Rothmannus sufficienter demonstrarunt. Hic motus demonstratur et in hypothetes conjicitur ad hunc modum. Sit in sphaera fixarum A polus eclipticae imaginariae seu mediae : polus autem eclipticae verae moveatur in circello BCDE in ante-

cedentia, ut omnium planetarum nodi. Poli transpositionem sub fixis sequitur transpositio eclipticae verae, ut constat. Sit jam laxior circellus FGHI, centro A polo eclipticae, medio diastemate AF 23° 42' (quanta est declinatio mediocris) descriptus. Sub hoc circello aequalibus temporibus prorepat directio axis Telluris aequaliter itidem in antecedentia. Constat, quod hoc pacto salvetur praecessio aequinoctiorum aequalis (siquidem esset verae et.constantis eclipticae polus). Nam viam hanc esse circulum minorem patet inde, quod ab Hipparcho per Albategnium ad nos non est facta major variatio obliquitatis, cum tamen 24° de hoc circello promoti sint. Nam sit exempli gratia KFL 24°. Respondet arcus circuli magni KML 9° 36' circiter. Si quis ergo dixerit: viam

poli mundi seu axis Terrae esse non KFL in circulo minori, sed KML in circulo maximo, is AM declinationem multo facit minorem quam AK. In triangulo AKL sit latus unum AL 23° 52', AK sit 23° 32' et KL 9° 36'. Hinc angulus ALK 16º 56'. Et jam demissa perpendiculari AM, ex angulo MLA fiet 23º 13'. Tanta debuisset esse circa Alphonsi tempora declinatio eclipticae, si KL esset arcus circuli magni. Constat itaque, praecessionem acquinoctiorum fieri inflexione axis Telluris sub minori circulo KFL (quod quidem, ut obiter dicam, etiam motu coeli circa Terram fieri potest, si peculiaris huic motui orbis destinetur). Jam propius ad rem et compositionem utriusque circelli veniendum. Quia igitur constat, declinationem eclipticae verae tantum decrevisse, quantum latitudo stellarum, consentaneum videtur, utrumque esse ab eadem causa, sc. non a deflexione axis Terrae e sua via KFL, sed appropinquatione poli eclipticae verae in circello EBCD. Et jam quidem non ago de commensuratione motuum, tantummodo viam et primos quasi aditus rudiori Minerva tento. Sit igitur polus eclipticae tempore Hipparchi in D, nostro in B, declinatio illic DF 23° 52', hic BF 23° 32'. Quaeritur, an hoc pacto et fixarum motus et anni magnitudo (quae ab invicem dependent) reddantur inaequales? Omnino fient inaequales. Sit enim jam KF portio circelli, quem annuo motu conficit axis Terrae in praecedentia, seu fixae in consequentia, et connectatur K cum B et D. Triangulum igitur KBF majorem habet angulum B, quam KDF angulum D. Major igitur portio zodiaci ex B descripti subtendit angulum B, quam subtendit angulum D portio ex D descripti zodiaci. Velocior igitur in B est motus sub zodiaco aequinoctiorum in praecedentia, citius igitur Sol ad acquinoctium venit, et sic tropicus annus minor est. Tentabo dimensionem. Praecessio mediocris unius anni est ex Prutenicis 50" numerata in zodiaco seu etiam in circulo minori KL, estque angulus KAF. Sit KA 23º 42', AB 12' et KAB 50". Qualium ergo sinus KAM est 2424, talium sinus KBM fiet 2443, sinus KDM 2405 circiter. Hoc pacto, quoties annus est brevissimus, ut inter Ptolemaeum et Alphonsum, requiritur obliquitas minima. Sane nemo eam tunc dimensus est. Et vicissim ab Alphonso ad nos ut annus sic obliquitas debet permanere aequalis, quod et verum quam proxime deprehensum est. Sed exerciti gratia dicta haec sunto; scio non ita leviter expediri posse. (Comp. p. 429.) -

Hucusque Keplerus; exordium harum literarum exhibuimus vol. I, p. 653; reliqua leguntur vol. II, p. 78, 755, 790. Concludit Keplerus: Mitto et hoc rejectamentum studiorum meorum (Prognosticum a. 1602) indignum Magn. Tuae, sed mittendum. tamen, ne te tam sollicitum de, meis studiis quidquam eorum lateat. Vale Vir Magnifice, meque promovere perge. M. T. devinctissimus M. Jo. Keppler.

Herwartus in responsione sua primum adit Kepleri Prognosticum, deinde petitionem,

ut Gractiis pro Kepleri rebus hacreditariis intercedat, denique sententiam suam de Copernisi hypothesi affert.

Edler &c. Als ich Ime geschrieben, hab ich sein Schreiben und Beilag nit bei der Hand gehabt; wie ich dieselb nochmahlen ersihe, befind ich noch nit anderst, als dass Er in dem Prognostico (so ich gar gern gelesen, etlichen communiciert, und ob ich wohl, die Wahrheit zu melden, auf dergleichen wenig halte, hat es doch bishero stark zugetroffen, also dass ich es auch weiter communicirt) diese Wort setst: "Dann zu Essie Zeitten ist der erste König zu Babylon Nabonassar (von dem die astronomische Jahrzahl heerrüreret) gewest, dene man ingemein aber felschlich für dem Salmanassar König zu Assyrien helt. Gleichwoll hernach die Assyrische oder Babylonische Monarchia under Nabuchodonosor daraus entstanden." Wie der Herr dies verstehet, kann ich nit assequiren.

Zu Gretz weiss ich mich jezt keiner mir sonderbar Bekannten, die Im in seinen negotia privata nutzen könnten, zu erinnern, ausser dass mir der Herr Bernardin von Herberstein, L D. Stallmeister bekannt. Da ich dem Herrn durch diesen kann nutzlich erscheinen, hat er mich willig und geneigt.

Des Herrn Optica noch viel mehr aber theoriam Martis ist man mit grossem Verlangen erwartend.

Ich höre gern, dass Gilberti Buch de Magnete dem Herrn auch wohlgefälig. Mich gedunkt es unsweyvenlich sein, dass in hac re noch keiner so weit penetriert. Wie venig Ich gleich jest Weyll hab, kann ich doch nit umgehen, einen Punkten answegen, indem nemlich der Hérr meldet, "Gilbertus de annuo Terrae motu sententiam suspendit, forte quis astronomus non est." Nun gibt gleichwohl das Buch de Magnete, bevorab in den Figuren su erkennen, dass der author ein astronomus. So ist nit ohne, dass per suppositionem annui motus Terrae die reliqui planetae des grossen epicycli entledigt werden, daher annuus motus Terrae nit eine geringe verisimilitudinem hat. Ich kann aber nit befindet, wann man gleich annum motum circuli magni Soli adscribierte, so dass reliqui planetae ihre alte epicyclos behielten, dass diese hypothesis so gar absona et absurda. Es wäre denn, dass darwider weichen und Platz geben. Ich weiss mich keiner su erinnern. Wenn aber auch annus motus Tellnri eingeräumt wird, muss aus Copernici demonstratione geschlossen werden, quod totus ille globus, cujus peripheria maxima est motus ille annuus Terrae (seu cujus radina est immensissima illa distantia Solis et Terrae) tanto et quidem adeo enormissimo intervallo a stellis fixis distet, ut respectu stellarum fixarum totus inquam ille globus immensissimae magnitudinis sit instar puncti.

Haec profecto suppositio apud multes viros cordatos et astronomiae haud expertes multis parasangis excedit omnem verisimilitudinem et credibilitatem ; und vermeinen dieselben, es sey viel leichter zu glauben, 'quod reliquis planetis ex singulari sympathia, so sie cum Sole haben, die alten epicyclos zu adscribieren, als dass man eine solche hypothesin setze, so praeter et contra omnem verisimilitudinem militiere.

Ich hab gleichwoll gedacht, ob man praedictae demonstrationi Copernici per aliqualem motum Solis et reliquorum planetarum accessus et recessus, ultra eccentricitatem Solis admittendum, obvijeren und hiedurch diese incredibilem immensitatem distantiae Solis, Veneris, Mercurii, Lunae et Terrae a fixis entfliehen möchte. Ich kann es aber meinstheils auch nit befinden. Ich wollte des Herrn resolution hierüber gern vernemmen.

Tychonis Brahe instrumenta, wie mich bedunkt, in utramque aurem dormiunt. Ich hab cum D. Pistorio davon geredt, wann nit die ganz disposition dem Herrn untergeben würt, halt ich für mein Theil nichts davon, und wird ohne Zweifel der effect den expensis nit correspondieren und per consequens algemach res ipsa labascieren.

Damit &c. Datum München d. 24. Febr. 1603.

P. S. Procopius p. 227 juncta p. 253 de anno Christi 535 ita scribit : Prodigium hoc anno gravissimum visum. () sine radiis sicut), splendorem toto anno emittere et quodammodo ex magna parte deficere visus est.

Quaeritur, ob nit \hat{Q} , \check{Q} vel etiam σ tunc intra orbem \odot et Terram gewest und dieses hiedurch verursacht worden; weil Procopius damalen selbs gelebt und floriert, auch also de visu proprio deponirt?

E Kepleri responsione (d. mense Majo 1603) haec huc pertinent: In meis negotiis domesticis res ita habet. Haeredes uxoris meae diem divisioni dixerunt S. Georgii. Misi uxorem instructam, commendatam filiis Caesareis. Jam in eo res vertitur, ut ea commendatio si ab aliquo mihi favente suspiciatur, qui quioquid in meam gratiam facit, id his imputare velit. Cum itaque modernus Cancellarius ex Bavaria eq

Kepleri Opera, III.

÷

É.

29

descenderit, spero tantam inter Vos futuram notitiam, ut abs M. T. profecta commendatio utilis esse possit.

Quod hypotheses Copernici attinet, ita est ut scribis, ingens bolus devorandus est ; immensitas unius sphaerae fixarum. Solum hoc Tycho mihi solebat opponere. Negabat exempla similia in natura, ubi tam ingens et frustraneum vacuum, uti digitus instar montis ad reliquum corpus hominis. Ego contra proportionem ita requirerem : sicut diameter motoris (Solis) ad diametrum mobilium, ita haec ad diametrum loci in quo motus, sc. sphaerae fixarum. Cum enim parallaxis fixarum diversis anni temporibus existat non major 20", cum stellarum fixarum diametri sint ut plurimum 1 et 2', itaque evanescet haec parallaxis. Praeterea, si movetur inutile vacuum, moveatur etiammum ingens inter planetas, maxime inter Jovem et Martem, sincerissimum vero vacuum a Terra usque ad polos etiam Saturni. Tum de exemplis naturae disquisitum : proponebam immanes serpentes, ipse affirmavit, visam ab iis, qui Nordwagirium oceanum navigant, bestiam trecentas circiter ulnas longam; comparavi ego ad animalculum, quod ex putredine ortum cuniculas per cutem agit. Apparuit, proportionem intercedere majorem. Dein negavi comparationis concinnitatem quaerendam inter mobilia et quiescentia. Non peccat, qui hominem comparat cum elephante, sed si quis hominem comparet cum motibus stellarum, genera transcendit et ineptit. His de causis verisimilior est mihi moles, quam illa sympathia. Interim vero dicis: demonstrata geometrica nulla impedire quominus quilibet planeta propter suum eccentricum talem describat epicyclum (cum omnibus requisitis, eccentricitate, puncto aequantis, motu apogaei, inclinatione ad suum orbem), qualem ipse Sol, et eodem tempore in easdem partes : idque vel eadem quantitate manente in quolibet epicyclo, quae est in eccentrico Solis, ut retineantur parallaxes Martis Tychonicae, vel neglecta parallaxi, ut tantum capiat quilibet epicyclum hunc, ne fiat intersectio, et eccentricus ejus in eadem proportione augeatur. Illo modo plane id repraesentabitur, quod per Tychonis hypothesin, nisi quod Tycho compendiosius illos sex epicyclos in unum Solis eccentricum conflavit, et sic ipsis centris eccentricos juxta hunc communem motum adscripsit. Hoc altero modo fiet Ptolemaica hypothesis, et Martis epicyclus ingens, minor Jovis, minimus Saturni : nisi quod his ipsis epicyclis (insuper etiam Solaris eccentriculo) acqualis motus tribuatur, ut aliquali motu fixarum sphaera cum Terra cirquitati quod Ursus Apollonio mirabili audacia adscripsit. Tunc plane idem fit, qual de Tychonem, nisi quod, quae hic stant, apud Tychonem moventur (hoc quidem 🖬 et contra.

Instrumenta, quod scribis, dormiunt equidem: sc. haeredum est rational reddere. De expensis mihi plane nihil constat. Quiesco, et in meo salario ar quiesco &c. (vid. Vol. II, p. 78). Procopii locum de anno 535. intelligo de sicca exhalatione non magnae altitudinis, in quam Sol mane et vesperi paulatim mersus, rubicundissimus et initio bisectus apparet; siccitatis comes, ut anno 1599. Aprili et hujus anni Martio (sane toto Martio, quod obiter addo, unus quadratus Saturi, et Veneris tenuit): toto etiam Martio siccitas fuit — bene — sed illud erration Prognosticum, quod tempus pluvium dixi, cum siccae existerent exhalationes. displicebit eis, qui definita in coelo quaerunt. Mihi hoc satis est, qui nil invenio, in coelo nisi stimulum, in Terra vero materiam et ejus circuitum caecum. (Nil sequitar.)

5) p. 38. Vol. II. p. 568. exhibuimus literas Edmundi Brutii, d. 15. Aug. 1602. Florentia ad Keplerum datas, in quibus praeter ea, quae illic proposuimus, haec leguntur: Certum te facio, quod mea sors fuit. cum Magino concurrere in eodem curru a Patavio usque ad Bononiam, in cujus domo amice acceptus per diem noctemque mansi, quo temporis curriculo honorifice de te locuti sumus. Prodromum tuum ei ostendi dixique, te summopare admirari, eum nunquam tuis literis respondisse: ast ipse mihi juravit, se nunquam antes tuum Prodromum vidisse, sed ejus adventum quotidie diligenter exspectasse, mihique fideliter promisit, se suas ad te literas brevi mittere velle, teque non solum amare sed etiam pre

Causam, cur Maginus non responderit Keplero, ipsius Magini verbis exhibuimus in jertu, pag. 5. verum aliam diximus causam verisimilem.

6) p. 39. Locus quem hic spectat Keplerus, legitur in Ptol. Almagesto IX. cap. 10.

Observatio posterior ab ipso Ptolemaco facta est, ut refert, anno 886. a Nabonassaro; prior autem anno 484. Nabon.

7) p. 40. Numero hoc, quem dicit mysticum, in computandis planetarum aequationibus usus est Maginus. In "Supplemento Ephemeridum" (Can. XII.) novam, inquit, aequationum tabulam olim supputavi, cum multoties expertus fuerim, fallacem esse calculi formam per scrupula proportionalia et excessum priorum; itaque ordinavi pro singulis planetis particulares tabulas, in quibus ordine primo habentur aequationes centri, in secunda columna aequationes orbis seu argumenti maximae. In tertio ordine reposui numerum mysticum, qui ex orbium commensurationibus dictis ingeniose colligitar pro dato situ eccentrici, ut per illum, neglecta aequatione maxima, absolvere possimus planetarum calculum &c.

Keplerus quaerenti Petro Crügero (Dantiscano professori math.) haec dat: Magini numerum mysticum deprehendi fortuito, postquam ipse eodem sub alia forma diu admodum essem usus. Est nihil aliud, quam ex divisione differentiae laterum per summam corum quotiens in singulares et breves numeros translatus. Ut si sit $\odot \bigcirc 72500$, $\odot \div 101500$. Differentia 29000

Summa . 174000

Haec differentia 5 cyphris continuata si dividatur per summam, quotiens erit 166666⁴/₈, id est ⁴/₈ de 100000. Jam complementum anguli ∂ ⊙ Q bisectum dat tangentem, qui si multiplicetur in hunc quotientem, absectis 5 producit tangentem arcus addendi ad semissem complementi ∂ ⊙ Q, ut prodeat ⊙ Q ∂; subtrahendi, ut prodeat ⊙ ∂ Q. Si jam hunc quotientem 166667 liberet "mystice" appellare 1, tunc ubi quotiens prodit 333333, is esset appellandus 2; vel si, ubi prodit 100000, is appellatur 1, tunc ubi prodit 200000, is appellaretur 2, et sic noster praesens appellaretur ⁴/₈. (E literis d. Lincii anno 1624.)
8) p. 45. His plura addit Keplerus, consilium suum de condendo canone expli-

8) p. 45. His plura addit Keplerus, consilium suum de condendo canone explicans, et subjungit, si quis rem accuratius persequi velit, conderet librum foliorum (longa forma) 540 et in solidum ejiceret sinus, tangentes et secantes e doctrina sphaericorum triangulorum.

9) p. 54. Oratio haec (in mortem Tychonis) habita est a D. Jessenio. Adjunzit eam Gassendus "Vitae Tychonis Brahe" cum carmine Kepleri (Gass. Op. V, 426), qui subscripsit: "Joannes Keplerus moestus posuit."

10) p. 61. His jam dudum conscriptis, occurrit nobis liber inscriptus: Die Reformation der Sternkunde" von E. F. Apelt, Jenae 1852, in quo eadem, quae sequentes ethibent paginae, haud exiguo doctrinae apparatu praemisso, deprehendimus, collectionem scilicet literarum Kepleri et Fabricii mutuarum, desumtam e codice Petropolitano, quem non alii cuidam concreditum putabamus, recordantes multa negotia et interpellationes per longam manorum seriem, quibus demum mota academia Petropolitana desideriis nostris satisfecit. Quum autem editio nostra operum Kepleri omissis his literis non futura esset integra, illam ob causam institutam a nobis rationem operis non mutare decrevimus, praecipue cum Apeltus quasdam Kepleri et Fabricii literas vel plane omiserit vel non integras proposuerit, sed eodem que prius ordine procedere. E Fabricii literis haec tantum desumsimus, quae ad illustranda Kepleri responsa necessaria visa sunt, haec vero integra, quantum licuit per amanensis Kepleri non sojunantis, literas has a Keplero ipso fuisse conscriptas. Contrarium testantur non tantum menda innumera, quae Keplerus haud quaquam commissurus fuit, sed praecipue manus ipsa a Kepleri manu longe diversa.

11) p. 74. Schema Kepleri his literis additum hoc tantum differt a schemate 69, ut punctum A infra lineam EG cadat, quare anguli non subtrahendi sed addendi sunt, sicut scribit Fabricio. Loco deinde literae D ponit literam K, loco C — B et viceversa. Adaptavimus Kepleri literas iis, quas schema 69. exhibet.

12) p. 77. Spectat his forte Keplerus idem schema, quod posthac Martis Commentariis addidit (Cap. XXIV), ordine vero alio quam his innuit. Schema deest, quam ob rem nos verba Kepleri ad schema illud adaptavimus, quod facile fieri potuit, cum Keplerus vel potius imperitus amanuensis in manuscripto usus sit signis \odot , σ et T pro punctis in schemate per literas has signatis: $\odot = H$, T, E, S, $\sigma = G$, F, I, K; T per literam A, et ex parte quidem utatur verbis, quae cap. XXV. sub finem leguntur. Ceterum notandum, aegre quaedam a descriptore depravata quid valeant nos assecutos esse et quantum potuimus restituisse.

13) p. 90. Fabricii manus, ut alio loco diximus, adeo intricata et difficilis lectu, ut plurimum negotii exhibeat lectio aingularum ejus epistolarum. Literarum autem, quas his verbis, spectat Keplerus, deformitas omnem modum excedit, ut non mirum sit, non propins oum accessisse, praesertim cum schema, quod addidit Fabr., characteriòus et lineis adeo im-

89 *

plicitis et exilibus confertum sit, ut difficillime possit enucleari. Ceterum monemus, e sequentibus apparere, rem minime levem hic attigisse Fabricium, eamque ob causam nos verba ejus cum schemate (24) proposuisse p. 85, quantum fieri potuit.

14) p. 127. Filius hic Fabricii Joannes tum tempore literis operam dabat Wittebergae, unde adiit Keplerum per literas (d. d. 11. Mart. 1608), praedicans ejus inventa et quadamtenus patris verbis repugnans: "Vidi apud parentem veram tuam motus Martis delineationem; sed vix aliquid extorqueo, quamvis descriptam habuerim. cujus tamen non potuf fieri particeps. Hoc tamen vidi et ipsemet expertus sum, quod nihil pene a veris observationibus exorbitet, cujus rei periculum feci in observationibus 3 accuratioribus et ex officina Tychonis desumtis, cum in patria morarer. Scripsit parens ad me, quod Tua Praestantia libellum de motu Martis ovali editura sit brevi."

Jam vero, ut vere natum tali patre agnoscas, astrologica tantum spectans pergit: "Nescio, an motus ratio uma cum calculi processu addatur, quod equidem optarem maximopere, ut et in astrologicis daretur facilis via ad internoscendos errores directionum et aliarum rerum, quae omnia mutila et manca sunt sine vera planetarum restitutione. Non possum autem meum inventum reticere de vera tempestatum praedictione, cujus veram rationem et modum ad parentem transmisi. qui illius veritatem experientia comprobavit. Hic modus adee infallibilis est, ut si vel quaternae fierent uno die mutationes aëris, nunquam tamen in praedicendo quis aberret. Ventorum notitia et conversio eorum perpetua infallibiliter cognoscitur, adeo ut non satis Deo gratiarum agere queamus" &c.

Ad quae Keplerus "post d. 10. Nov. 1608" respondit literis, quas integras hic adjungimus, cum ex parte quidem eadem referant, quae Keplerus in superioribus egit.

S. P. D. Quas ad me dedisti literas 11. Mart. Fabrici doctissime, eae in turbulentissima tempora inciderunt. Furebat enim publice Mars, domi vero meae Venus; privignam enim elocabam et nuptiarum apparatu omnia perstrepebant. Noli itaque mirari, quod illarum sum oblitus. Abjeceram illas super fasciculum literarum, quas a tuo parente habeo creberrimas. Vix tandem ad me meaque studia reversus, cum etiam pater tuus pertinacissime instans rumperet tandem diuturnum silentium meum, tuae inter patrias mihi occurrerunt plane novae. Cum parente tuo hactenus egi ut cum aequali et tantum non cum discipulo. Qui postquam nunc prodit stipatus filio acerrimi ingenii nec parva etiam inventionis cujusdam nobilissimae gloria, merebitur in posterum majorem a me venerationem. Et cuperem eradicatos ex meis ad ipsum literis pueriles nimis jocos: jam enim censorem filium expavesco.

Commentaria mea de Marte, de quibus quaeris, jam ultra annum haerent apud typographum Heidelbergae cum formis ligneis et pecunia: mira sane fortuna laborum rerumque mearum! — Recte censes, eandem per omnes planetas esse formam hypothesium, variantibus quantitatibus. Itaque videre cupio tuas de Mercurii cogitationes multoque magis de Luna, quae sola quid peculiare habere hactenus creditur, nisi tu simplicem (ut refers) persuadeas. Rogo ut iis me impertias. Neminem enim hominum contemnendum duco nuper, postquam in literis patris tui diutissime neglectis etiamque contemtis ob schematum oculare vitium, ex insperato inveni hypothesin non parvi momenti: quae una omnes meas speculationes transfert in aliam formam, manente quidem ovali itinere tarditatis inaequalis.

De tempestatum praedictione exspecto inventum tuum, quod valde vereor ne plus habeat juvenilis fervoris quam veritatis: idque tanto magis, quanto tu specialiora ex eo te praedicere posse speras. Quod enim mihi super hoc negotio visum semper fuit, id jam multo maxime videtur, postquam idem ante 1800 annos et Gemino, in cujus lectionem nuper incidi, visum fuisse video. Itaque aut mihi tuis inventis praesta, ut aliter videatur, aut a me exspecta sanum consilium, quo inutili labore (quia impossibile) libereris. Nihil enim te celabo eorum, quae videbuntur cognito invento tuo.

Vale et si qua rescripseris cura, ut ad curiam ecclestiasticam Dresdam transmittantur.

His Kepleri adhortationibus motus Johannes abjecisse videtur "inventionem suam admirandam" (nulla certe exstat ejusdem responsio ad literas praemissas, neque nobis constat, num publici juris aliquid de his fecerit), et reversus ad patrem astronomicis studaisse observationibus, patre in his duce praestantissimo. Detecto tum temporis tubo optico, maculas Solares primus conspexit Johannes — anno 1611 — quas detectas Vol. II. p. 775 s. pluribus retulimus, Mortuum refert filium pater in Prognostico in annum 1618.

181 p. 136. In editione "Scholarum mathematicarum" quae nobis praesto est, curante Lazaro Schonero Frankofurti anno 1599 typis excusa, verba haec Rami deprehendimus pag. 47. Quae ut melius intelligantur baec addimus: Ramus in libro I. agit de "mathematicae primis inventoribus," unde "artis dignitas intelligatur." Cum vero mathematicae a multis objiciatur inutilitas et obscuritas, Ramus libro II. has opiniones ex animis hominum evellere studet et hunc in finem veterum philosophorum placita congerit. Utilitatem mathematicae in astronomicis (voce utitur astrologia") demonstraturus, quid, inquit, astrologia tota aliud est, quam arithmetica numeratio motuum coelestium, quam geometrica globorum coelestium figuratio et dimensio? Astronomiam, queritur, plurimis ess einvolutam et impeditam bypothesibus, a quibus per mathematicam liberari possit. "Inde ab Aristotelis aetate vel potius mente" astronomiam, non contentam observationibus, causas motuum &c. confinxisse. Eudoxum Gnidium hypotheses orbium revolventium reperisse, quas Aristoteles et Calippus emendaverint : quibus se opponentes Pythagoraeos epicyclos et eccentricos orbes induxisse. "Aetate nostra Copernicus, astrologus non antiquis solum comparandus sed in astrologia prorsus admirandus, tota antiquitate hypothesium rejecta hypotheses illas admirandas revocavit, quae astrologiam non ex astrorum sed ex Terrae motu demonstrarent. Veruntamen astrologi et veteres et novi centuriis tabularum ad hypotheses compositis astrologiam perinde oppresserunt. Enimvere satis constat, astrologiam veterem Babyloniorum, Aegyptiorum, Graecorum etiam ante Eudoxum sine hypothesibus fuisse, et ab ea coelestium corporum motus numeratos ac praedictas eclipses esse, ut objici non possit, hypotheses ideo necessitate ulla inventas esse." Commentum igitur &c. - Ultima Rami verba de cessione regiae professionis Keplerus jam pridem Maestlino jocans scripsit (comp. Vol. I, p. 34 s.).

De Osiandri praefatione ad Copernici opus dictum est Vol. I, p. 245 et 286.

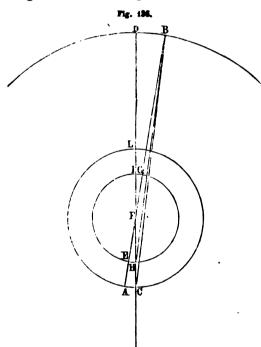
16) p. 141. Concludit hoc poemate Tycho primam partem libri sui de stella nova, praemittens: "Hic prioris partis hujus libri, in qua de restitutione Solaris unaque Lunae curriculi et affxarum stellarum accurata rectificatione affatim actum est, finem imponimus. Et sequenti exhortatorio ad artis hujus alumnos carmine, colophonis loco apposito, ad eam, quam de Nova Stella proposuimus pertractationem, jam tandem transibimus." Consuevit Tycho seriis suis speculationibus immiscere carmina, quae passim occurrunt in libris suis astronomicis, apud Gassendum et Weistritium (Vita Tychonis). 17) p. 144. In Tychonis opere inscripto: Astronomiae instauratae Progymnasmata

17) p. 144. In Tychonis opere inscripto: Astronomiae instauratae Progymnasmata (tom. II. Pragae 1603), in folio, quod exhibet inscriptionem, depicti sunt vir et puer, quibus adscripta sunt haec verba, "Suspiciendo Despicio." Item in poematibus Tychonis quibusdam eadem deprehendimus verba, et Kepleri inscriptio poematis sui testatur, pro symbolo illa fuisse Tychoni, sicut Persii "o curas hominum" &c. Keplero fuit pro symbolo. In collectione epistolarum, quam Tycho publici juris fecit, quaerit Rothmanus (p. 89) quid haec verba significent. "Ab altera, inquit, paginae parte inveni binas imagines, alteram astronomiae, alteram ejus artis, quam spagyricam appellas. Quas cum diligenter intuebar, animadverti ab utroque earum latere literas quasdam, circa astronomiam quidem "suspiciendo despicio" circa reliquam vero "despiciendo suspicio." Diu haec cum admiratione considerans cogitavi, hieroglyphica esse teque iis forte annuere, artem spagyricam continere totius naturae et mundi contemplationem et perinde ac astronomia suos habere planetas, ac quae natura agit per sidera coelestia, ea agere simili efficacia per sua sidera." &c.

Tycho respondit: hieroglyphica haec esse recte conjectasti. Nam non saltem utramque astronomiam coelestem illam superiorem et inferiorem terrestrem respiciunt, sed etiam ipsam diviniorem theologiam et totius ethices cognitionem. Prima vero fronte physicam rerum creatarum considerationem prae se fert, in qua superiora inferioribus ita connexa sunt, ut neutrum sine altero recte percipi queat. Nam ars ea, quam spagyricam vocamus, totius naturae pervestigationem continet et astronomiae cujusdam terrestris acercitationem exhibet. Id sunt septem planetae in coelo, quod sunt septem metalla in Terra, in homine ad utriusque ideam fabricato septem principalia membra. Sic duo principalia lumina in coelo, Sol et Luna, duobus praestantioribus metallis auro et argento, in homine cordi et cerebro aequiparantur. Duo benefici planetae, Jupiter et Venus, inter metalla stannum et cuprum sibi locum adsciscunt, in corporibus jecur et renes. Saturnus et Mars plumbo et ferro correspondent, in corporibus hominum duo minus necessaria et vilia membra sortiuntur, splenem et fel. Mercurius coelestis ut est sua natura indifferens et Proteo mutabilior, sic etiam mercurium terrestrem sive argentum vivum sibi analogum habet, quod mirabiles induit metamorphoses; in corpore autem microcosmico huic recte assimilatur pulmo &c.

Epitaphium Tychonis, inscriptum monumento in primario templo Pragensi erecto, idem spectat symbolum : "Jam dudum sursum, nunc primo specto deorsum,

Despiciens Mundum suspiciensque Deum."


18) p. 145. Diximus in praefatione, haeredes Tychonis interque hos praecipue Tengna-

gelium aegre talisse Kepleri conatus, propriam ad astronomiam viam ingrediendi, et malta ipsi obstacula injecisse, quo usinus observationes Tychonis suum verteret in usum. Epistola haec Tengnagelii ad lectorem, plane alias superflua, praemissa videtur a Keplero, ut illorum satisfaceret postulatis, qui alias "impedire minabantur" typum (v. s. p. 114. 125.). Quo tempore Tengnagelius haec conscriptorit, non plane constat; verba "inter hos turnultus" significant annum 1608, quo Archidux Matthias in Bohemiam contra fratrem Rudolphum Imperatorem minax ingressus est, et Tengnagelius, inserviens tum Leopoldo Archiepiscopo et Archiduci, res transigebat politicas. Comp. Vol. II, p. 811.

19) p. 151. De Lunae "virtute tractoria" Keplerus quaedam monet in literis ad Herwartum datis, respondens ad quaestionem hanc Herwarti: De hypothesi Lunari Tychonis kann Ich von niemand anderem als dem Herrn bessere resolution bekommen, also hab Ich sa Ihm tanquam lydium lapidem meine Zuflucht genommen.

Ferner bitt Ich Ine, mich zu berichten, ob kein author vorhanden, so de arte navigandi tractirt habe. Dann obwohl P. Nonius multa ingeniosa tradiert, so hat er doch diese artem nit ab elementis atque fundamentis anfangend methodice et perspicue beschrieben.

Ueberdiess ist mir ratione hypothesium zu Gemüth gangen, das meins Erachtens dieselben auf eim Weg, den ich nit anderwerts meines Gedenkens gelesen, also zu disponieren, dass dieselbens etwas glaubwürdiger und den apparentiis gleichförmiger werden. Darüber Ich gern des Herrn Meinung hören wollte.

Raptim zu melden, setzt Copernicus Solem in F fixum, Terram ab A in C moveri, und weil DFB und DCB für gleich erachtet und befunden wird, also schliest er daraus, dass die area ACL ob immensitatem distantiae insensibilis. (Spectat hic Herwartus Copernici operis librum III. cap. 15. ejusque priorem figuram, quam aliquantum immutavit neque vero literis suis addidit, ita ut Keplerus, ut infra patebit, aliquamdiu dubius haereret, quid responderet ad hanc quaestionem.) Pergit Herwartns : hierüber verstehe ich die Sachen dahin, dass allein der angulus differentiae inter DFB et DCB insensibilis seye, für eins. Zum andern gedunkt mich, es sollte der motus also angestellt werden, dass F seye centrum mundi, Sol in G, Terra in E, also dass der diameter GE die distantiam Solis a Terra mit sich bringe. Weil nun Terra ab E ad H movetur, ut interim dicamus, Solem eodem seu ejusdem quantitatis motu moveri ab G ad I et sic deinceps.

Dergestalt bliebe nit allein centrum mundi, sondern auch die distantiae planetarum, und wäre die Sachen noch viel glaublicher, weil allein die differentia inter angulum DFB et DHB insensibilis wäre.

Zu dem aber koennte es statthaben, dass circumvolutio Solis in se ipsum causam prasberet metui Terrae, qui diuque noctuque redintegraretur, und dass motus Solis circa centrum mundi causa saltem aliqualis wäre ipsius consimilis motus Terrae et motuum planetarum reliquorum praeter Lunam, pro ratione distantiarum et qualitatum. Nit zwar ex virtute magnetica, sed ex consimili et affini.

Bitte, der Herr wolle mir über diese speculation, so ich weiter zu extendiren nit weil habe, sein räthlich Ermessen eröffnen, und bleib Ime angeneme Dienstwilligkeit zu erweisen allezeit willig. Datum München d. 16. Jan. 1607.

Keplerus (in literis datis 2. Jan. 1607) hanc posteriorem quaestionem primo intactam relinquens, haec respondit ad priorem: S. P. Nobilis et Magn. Vir, fautor observandissime, Binas abs te accepi epistolas diversis temporibus Pragam, me absente, allatas. In altera, 3. Cal. Dec. (1606) scripta, de quaestione imperiali luculentam spem

focisti. Mearum igitur partium erit, occasiones bene collocandae hujus a Kaon. Tua mihi impetratae benevolentiae circumspicere. (Spectat his K. constitum Herwarti de salario suo impetrando). Altera epistola d. 16. hujus jam scripta. Praga mihi Brandisium est transmissa. Quo minus mirari debes turpem amanuensis rusticani manum. Misissem meam manum, nisl confuse admodum esset disposita responsio. - De arte navigandi sollicitus hactenus non fui, quippe latissimae continentis alumnus; ac ne Nonium quidem legi, qui quidem exstabat in bibliotheca Tychonis. Incidit tamen, prodiisse non ita pridem H. Grotii "Limenheuretica." De magnetis vero natura Gilbertus doctissime scripsit. De longitudinibus locorum beneficio magnetis in mediis undis addiscendis G. Nautonnier Sieur de Castelfranc en Languedoc splendidissimas proponit speculationes. At ne irrita consilia sint gubernaculum manu versantibus, valde vereor. Vocem enim, e continentis meditullio longissime profectam, palinuri medios inter fluctus oceani non facile percipiunt, ut ad eam sese componere possint. Vidi et Germanum aliquem, qui in folio regali, chartis mere nauticis nautico more exornato, descriptionem exhibuit omnium litorum maris Baltici et oceani Germanici, Aquitanici, Cantabrici, usque Gades. In eo fluxus et refluxus maris accurata continetur explicatio ceterorumque oceani motuum. Nomen auctoris excidit.

Aliquammulta de hac re in Fr. Patricio inveniuntur: quamvis is perperam Lunam (si bene memini) excludere conatur a consideratione causarum. Ex illo Germano auctore nata mihi est haec speculatio: a Luna maria sic attrahi, ut gravia omnia ipsaque maria attrahuntur a Terra. Terra quidem fortius attrahit, propterea maria non surgunt in aërem deserentia Terram, sed tantummodo feruntur Terrae incumbentia a lateribus omnibus versus torridam, ut ibi ejusque ea parte, guae Lunae subest perpendiculariter, co momento superficies oceani fiat altior. Hoc facto nudantur Europaea litora, quia ad latus posita. Luna abeunte, cum maria ob tarditatem et objectum litorum Americae sequi non possiut, suspensus tumor aquarum sidit sub torrida acquanturque superficies marium, teguntur et implentur iterum Europae litora. Implentur autem non ad acquilibrium cum oceano torridae. sed altius ob impetum ruentis undarum molis (wegen des Schwungs), ut in situla seu labro aqua semel mota, ubi impetum accepit diutissime reciprocat fluctus, paulatim minores, donec denique quiescat. Itaque Luna occidente, cum oceani moles impetu subvecta nostris incumbat litoribus, etsi jam nulla nova causa coelestis revocat aquas sub torridam: ipsae tamen se ipsis et suopte pendere, utpote ultra acquilibrium impetu subvectae recurrunt sub torridam ibique novum tumorem. apud nos vero litorum nuditatem absente Luna causantur, impetuque vanescente rursum recurrunt a fastigio illo implentque nostra litora, Luna interim oriente et novam attractionem horis 6, quibus in ascendendo versatur, causante. Jam vero litora nostra non omnia iisdem horis implentur, sed subinde serius illa, quae longius intra continentem sunt abdita et quo angustior est maribus aditus ad illa. Itaque Britanniae et Norwegiae contraria litora iisdem implentur horis. Ac cum alveus inter Gallias et Britannias sit angustus, oceanus vero circum Orcades latissimus, etsi longior hic circumductus, citius tamen hic sentitur aestus quam orientali parte alvei. Hinc etiam causa patet arenarum inter Belgium et Britannias, quicquid enim arenarum devehitur seu ex Germania et Galliis seu ex Britannia, id ibi accumulatur, ubi aestus sibi mutuo occurrunt, alter ab occidente altera septentrione.

Verum hoc non est catalogum scribere corum, qui de re nautica scripserunt. — Quales lineae quibus ventis navigentur, hodie abunde docent omnes globi, globorum fragmenta et chartae, maxime Hondii, qui sic adornat suas chartas, ut quae sunt in globo spirales lineae, ipse rectis perfectissime possit exprimere.

Edita est anno 1584 Antwerpiae Cosmographia Apiani cum Gemmae patris • et filii additionibus. Ibi plurima ad nauticam pertinentia: ut inventio quadrati nautici, ubi ex vento et altitudinibus poli duorum locorum habetur differentia longitudinis, item idem ex observatione Lunae. — Plura non memini, liber mihi furto surreptus est. Accommodabo et ego Deo volente "Parallacticam" meam (sc. tabulam guam

Opticis addidit Kepierus) ad eundem usum. — Quid Merlini Cosmographia nuper edita contineat, nomium perspexi. Jam in eo sum, ut librum illum mihi comparem.

Hne usque Keplerus. Reliqua, quae insunt huit epistolae, ad Harmoniam pertinent. Keplerus in praemissis literis, intactam quaestionem Herwarti de Copernicana hypothesi relinquens, ad eam rediit circa Aprilem mensem 1607, motus his Herwarti verbis: Was Ich de hypothesi Solis et Terrae Copernicana für mieh selbsten, wie es mir alind agenti su Gemüth gegangen, geschrieben, darauf habe ich keine Antwort, vielleicht darum, dass es keiner Antwort würdig. Ich wollt aber doch gern die confutation dessen vernehmen (ex epist. d. d. 6. Martii 1607).

Cum quaererem, scripsit Keplerus, qua ratione factum, ut quaestionem de motu Solis proximis literis praeteriverim, incidit, non fuisse ad manus Copernicum; ex quo cum schema, per quod mecum agis, diu anxie quaesivissem, denique incidit, vidisse me in Tuis literis prioribus adjectum schema Lunaribus quaestionibus, cujus usum tunc nullum videre potui. (Schema 136.) Atque ego in eadem scheda notas meas ad quaestiones Lunares perscripseram, itaque factum, ut et illud, nisi me fallit memoria, ab amanuensi inter Lunares nostras depingeretur. Jam respondebo, sed quia obscura est sententia, dicam aliqua, quae forte non pertinebunt ad rhombum.

Sic Tu: quia DFB = DCB, hinc colligit Copernicus, aream ACL esse insensibilem. Hic ego dico primo: si esset possibile, nos videre ex A Terra punctum B fixarum, cum quo F Sol videtur conjungi, sic ex C punctum D, tunc nihil ad rem faceret, sive sensibilis sive insensibilis esset area ACL. Numeraremus enim gradus a B in D, illi mensurarent mihi angulum DFB vel AFC, quia lineae CD, AB per centrum F transcunt.

Atqui, etsi propter Solis praesentiam non possumus videre punctum B vel D, nec si videremus agnosoeremus, cum non sint appositae notae numerorum, ut in nostris circulis mechanicis, tamen comprehendimus illa ipsa puncta seorsim et numeramus illa. Nam comparata Solis altitudo cum aequatoris altitudine ostendit declinationem punctorum eclipticae B, D, quae quovis in gradu est alia. Vides ergo primo, etsi Terra non sit in centro mundi F, quod tamen innotescat nobis angulus ad F et arcus DB eclipticae, nec opus sit ad hoc positione aequalitatis angulorum DFB, DCB. Itaque ex Solaribus observationibus non invenitur insensibilitas areae ACL. Invenitur autem diameter CL insensibilis ad fixas ex observatione distantiae stellarum fixarum, quae est perpetuo eadem, sive ex C sive ex L mensuretur. Nam si CL in sensibili proportione esset ad fixas, distantia DB minor ex C, major ex L appareret sensibiliter.

Jam demonstrata insensibilitate aliunde, ut dictum, recte progredimur eo, ut quia semidiameter CF insensibilis, etiam angulus FBC sit insensibilis, itaque DFB et DCB ad sensum acquales. Quorsum hacc utilia? Ad sciendam remotionem fixae in B a loco Solis in D ex C Terra inspectae, mediante Venere vel Luna. Nam si FC sensibilis esset, angulus DCB parvus appareret, et ut ipsi D certum in zodiaco locum definiamus, ipsum punctum B videretur ipsi D projus ex C quam ex F centro mundi. Hacc memoranda fuerunt, si forte circa ea impedieris. Pergis: "sic intelligo, solam differentiam DFB, DCB, hoc est FBC, insensibilem esse." Quasi diceres solum CF insensibilem, non vero insensibilem CL duplum. At si simplum insensibile, duplum nondum sensibile, sed fortasse centuplum aut millecuplum demum incipiet esse sensibile.

"Videtur sic institui posse hypothesis, ut Sol sit in G, centrum mundi in F, Terra in E." Primum hic Tu EG facis acqualem ipsi CL, ex quo apparet, Te metuere, si mutes distantias Solis a Terra, ne in observata Solaria peoces. Deinde ratio astronomiae Copernicanae haec est, ut indicet distantias planetarum ab F centro mundi, mediante distantia Terrae E ab codem F centro. Ergo si Terra jam saltem dimidio distet, non manebit amplius commensuratio distantiarum Terrae et reliquorum a Sole: non igitur manerent eacdem. Aut enim Solis a Terra distantia duplicaretur ant reliquae dimidiarentur.

Tertio, his concessie verum quidem est, mansuram reliquam rationem doctriase

Copernicanae, siquidem Sel in eodem concentrico cum Terra et in partibus ejusdem diametri oppositis volveretur. Nam etsi tunc centrum mundi F non esset vestitum aliquo corpore, tamen quodammodo fieret comprehensibile, eo nimirum, quod esset id punctum, in quo EG, HI lineae a Terra in Solem ductae se mutuo secarent. At quia Sol fit eccentricus, h. e. (ut accommodatius loquar Tuae speculationi) quia HI, EG non manent acquales (Sol enim ex appropinquatione sensibiliter major apparet), hinc vides, duos esse debere circulos, alterum in quo Sol volvitur, reliquum in quo Terra, ejusdem utrumque restitutionis.

Habes itaque jam sententiam correctam. Non ita absurdum videtur physicis, stare Solem ac moveri Terram. Sententia de circuitu Solis peccat in regulam: quae possunt fleri per pauciora, non debent fieri per plura. Possunt autem salvari phaenomena stante Sole. Sed nec circuitu opus est ad circuitum ceteris conciliandum, cum sola volutione id possit. Denique naturali motui magis est consentaneum, volutione Solis conciliari et inferri ceteris circuitionis necessitatem, dum emanatione virtutis, $\sigma \pi a \sigma e_i$ vel $i \lambda t e_i$ utatur ad circumvehendos ceteros. At quomodo circuitus Solis conciliet ceteris circuitum, id non ita facile est definire. Nam interdum Sol illis contarius curreret: quod non fit in volutione Solis et cum eo virtutis, quam in telligentiae et similitudinis causa dico magneticam, debui coelestem dicere. Illa enim virtus in omnibus planetis semper prolectat eodem, nunquam in contrarium.

Habes itaque quod petisti, examen propositae et prioribus literis praeteritae speculationis. —

Herwartus respondit (10. Oct. 1607): Ehrenvester, Hoch- und Wohlgelehrter, sonders lieber und guter Freund.

Dass Ich so lang nit geschrieben, ist daher erfolgt, dass mich das leidig Podagra ergriffen und an Hand und Füssen starckh heimgesucht. Daranf ich dann etliche Reisen verrichten müssen, darunter auch nach Augsburg.

Thue mich bedanken für des Herrn Antwort über die Bewegung der Sonne. -

Practor hace nil amplius exstat inter epistolas Herwarti ad Keplerum, quod hane

Kepleri literis prioribus (p. 455) haec addenda sunt. H. Grotius non ipse concinnavit quod dicit Keplerus opus; prodiit anno 1586 Simonis Stevini liber ejusdem argumenti, quem e lingua Belgica in latinam translatum edidit Grotius inscriptum: Aliµterevertua;postea (a. 1608), inscriptum: "De portuum investigandoram ratione" collectioni operum Stevini adjunxit Wil. Snellius et (a. 1634) Alb. Girard gallice edidit. (Inest Vol. II. lib. V: du trouve port, ou la maniere de trouver les havres.) — Petri Nonii disquisitio "de arte atque ratione navigandi" prodiit anno 1537 lingua Hisp. Lissabonae, postea a. 1573 Conimbricae, latine. (Bas. 1592.)

De Franzisco Patricio diximus Vol. I. passim; item de Hondio et Apiani Cosmographia, quam ipse Apianus primum edidit a. 1524; editionum ejusdem per Rein. Gemmam Frisium princeps est illa, quae prodiit anno 1529. In editione anni 1550 depictum est quadratum nauticum fol. 24. "Merlini" Cosmographia nulla exstat; dicit Keplerus sine dubio Cosmographiam Pauli Merulae, quae prodiit Amstelod. anno 1605.

Quem spectet Keplerus "Germanum" non constat; de Nautonnier vero haec notamus: Casaubonus ad Jo. Scaligerum scripsit: est Parisiis minister quidam e provincia Narhonnensi, Guiliehnus Nautonerius a Castello Franco, qui librum a se compositum editumque Regi ea lege obtulit, si praemium opera dignum vellet rependere. Liber inscribitur "Mecographie du Guide-Aimant" (Ven. 1603). Autor mirabilia promitti de inveniendis nova. arte locorum longitudinibus, non per eclipsium observationes, sed hujus inventi sui ope certaque notione magnetici, uti loquitur, poli et a mundi polo distantia. Coeli et nauticae rei periti in consilium adhibiti et autorem et inventionem $\mu_{ii} \varphi_{i} \varphi_{i} \gamma_{j}$ dilaudarunt; quam merito, Hollandi tui judicabunt.

Keplerus Nautonerium adiit transmittens "Epistolam de Solis deliquio Octobri 1605", ebservationes addit eclipsis Lunae 18. Nov. 1603 a se observatae petitque ut Nautonnier idem faciat, suas observationes remittens.

Deinde pergit: Jubes, declinationes magneticae lingulae a meridiano passim observare et ad te perscribere. Equidem id ego agam diligentissime perlecto tuo libro et instrumentorum ratione cognita. In praesens quid observaverim olim accipe. Alt pell 47⁶ 2' Grassii Styriae (quae urbs est ad Muram fluvium, qui 20 milliari-

bus Germ. infra Gractium Dravo se miscet. Ajunt Romanorum Valeriam. 4 infra Graetium milliaribus sepultam Attilae immanitate); hic igitur in plano horizontali onni diligentia meridiana descripta et superposita pyxide vulgari cum cuspide sat longa, divisoque circulo in 360°, certissime inveni cuspidem non declinare 8°. Cum autem metuerem, ne stilo adhaereret pulvicula, rem alia via sum aggressus. Jam describit Keplerus rationem suam procedendi plane eandem, quam Maestlino scripserat anno 1599 (Comp. II, p. 816), quae ipsi exhibuerit "angulum regulae cum meridiano minorem 6° idque non semel." Pragae, pergit, Bohemorum, quae vix 21/3° est occidentalior Graetio, instrumento utor ex orichalco, quod est quadrans azimuthalis. Eo collocato ut meridiem spectet exquisite, rectaque applicata regula cum instrumento seu pyxide magnetica, quae versatilis est super pede immobili, qui habet circuli sectiones incipientes a diametro, quae sit lineae applicationis et sic basi quadrantis parallelus, tam diu verso pyxidem super pede, donec cuspis cum subscripta linea, quae exit in indiculum, coincidat. Hoc facto inspicio, quem gradum notet indicu-lus. Quoties adhuc sic praestiti, semper inter 5° et 6° versor, quibus lingula declinat ad ortum. Plurimum same temporis ante 7 annos consumsi, ut ex Belgarum observatis declinationibus ostenderem, magnetem dirigi ad punctum, quod quotidie semel sub fixum eclipticae polum venit. Hoc obtento exclamaturus fui de argumento creationis notabili invento. Nam accommodavi et Antonii Mariae traditionem de polorum transpositione, quae exciderunt mihi hactenus. Itaque certo tibi persuadeas, me nulla opinione fuisse seductum inter observandum. Potius enim ad 23¹/3[•], quam ad minus aliquid, invitarunt me vota mea.

Interim commendo Tibi negotium meum eclipticum quam possum diligentissime. &c. (Pragae d. IV. Non. Febr. 1606.)

20) p. 152. Veteres geographiae scriptores non plane consentiunt hanc insulam describentes. Ptolemaeus, comment. Ant. Magino (Ven. 1596) libro VII. Cap. 4: Cory Indiae promontorio opponitar insula Taprobanes, quae olim Symondi insula dicebatar, nunc autem Salice. Parte II. p. 264 Maginus hacc affert: Zeilam insulam fuisse Taprobanam Ptolemaei Andreas Corsalus et Joann. Barrius cum plerisque aliis censent; Mercator vero, cui magis in hac re fidem praestamus, putat esse Ptolemaei Nanigerim. Deinde (pag. 265): Sumatram insulam antiquorum Taprobanam fuisse omnes pene auctores sentiunt, licet aliqui magnae eraditionis viri ipsam Auream fuisse Chersonesum putent.

R. Gemma (De principiis astronomiae et cosmogr. Antw. 1530, 1548): sequitur Taprobana insula totius mundi maxima, quae nunc Samotra dicitur. Ptolemaeus eam antea Simondi dictam fuisse tradit.

Similia deprehendimus in Apiani Cosmographia (in Gemmae editione 1545 p. 47^b). Cluverus contra inscribit insulam Ceylon "olim Taprobana", et in charta geographica addita "Jo, Honteri rudimentis geographicis" (Tiguri 1548), signata est peninsula (Zeilon forte repraesentans) inter ostia fluviorum Indi et Gangis voce Taprobana.

21) p. 152. D. Fabricius in epistola (d. d. 26. Jan. 1605) hane movit quaestionem, spectans locum Tychonis in epistolarum collectione (p. 189), ubi Tycho refert, quibus rationibus innixus ipse Rothmannum refutaverit Copernicum defendentem. Fabricii verba hase sunt: Qua ratione tu Copernico addictus argumentum Tychonis de explosione tormenti solvere vis ? Certe si versus ortum cartrana explodatur, fiet ut ob celeriorem motum Terrae emissus globus versus occasum potius locum quietis inveniat, tantum abest ut versus ortum proferatur. Herculeum certe est argumentum adversus motum Terrae diurnum, quo destructo cetera facile cadent.

Keplerus cum videret, ab aliis quoque magni fieri hoc Tychonis argumentum, refutandum illud censuit in opere suo, suppresso vero nomine Tychonis, ne ulterius offenderet illius haeredes. Fabricio autem haec respondit: De objectione Tychonis, quae tormento impugnat motum Terrae, rogas eadem, quae Cancellarius Bavariae nuperrime. Respondeo eadem. misceri motus, non impugnari aut aboleri alterum ab altero. Terra movetur ab occasu in ortum, sum ea omnis copia aöris circumfusi, omne grave, sive jacens sive pendens. Nam cur non et pendens quid impedit? Num gravitas f At ea tendit ad centrum Terrae, ad centrum faciei Telluris, quae lapidi est exposita, quod vi magnetica lapidem attrahit fortius quam si centum catenarum nervorum tensissimorum vinculis quaquaversum esset annexus Telluri. Num igitar impediet ipsum aër, qui est trajiciendus? At Terram et ipse sequitur, saltem in

hac propinquitate. Quid igitur impedit? Nihil tu potes ostendere. Ego quid impediat ostendam, sed simul et respondebo. Quodcunque materiatum corpus se ipso aptum natum est quiescens, quocunque loco reponitur. Nam quies ut tenebrae privatio quaedam est, non indigens creatione, sed creatis adhaerens, ut nullitas aligua: motus vicissim est positivum quippiam ut lux. Itaque si lapis loco movetur, id non facit ut materiatum quippiam, sed ut vel extrinsecus impulsus vel attractus vel intrinsecus facultate quadam praeditus ad aliquid respiciente. Hanc dicunt Aristotelici appetentem centri mundi. Nego, sic enim vere impediretur sequi Terrae motum. Probent, scio, futiles ipsorum probationes ab ignis natura contraria, quae est petitio principii. Nam ignis non petit coelum, sed fugit Terram. Non fugit centrum mundi, sed Terrae materiam fugit, ut cujus crassitie obruitur. Ergo aliter ego definio gravitatem, seu illam vim, quae intrinsece movet lapidem, vim magneticam coagmentantem similia, quae eadem numero est in magno et parvo corpore, et dividitur per moles corporum accipitque dimensiones easdem cum corpore. Itaque si lapis aliquis esset pone Terram positus in notabili aliqua proportione magnitudinis ad molem Telluris, et casus daretur, utrumque liberum esse ab omni alio motu: tunc ego dico futurum, ut non tantum lapis ad Terram eat, sed etiam Terra ad lapidem, dividantque spatium interjectum in eversa proportione ponderum,

sitque ut A ad B causa molis, sic BC ad CA, et C locus ubi jungentur, plane ea proportione, qua statera utitúr. Sed contrahe vela. Díxi, si a lapide removeas animo facultatem illam jungendi similia, remansuram in lapide meram impotentiam ad mutandum locum. Ut igitur illa expugnetur, vi et contentione

Fig. 187.

B

extranea opus est. Dum ergo fingimus lapidem in aëre pendentem, negamus ei vim conjungendi similia, hoc est gravitatem, et tamen eam vim Terrae in lapidem relinquimus. Esto hoc ita, quamvis re vera absurdum sit, tantummodo ut nobis casus constet. Habebit igitur pendulus iste lapis adhuc vim quiescendi in suo loco, ea repugnabit virtuti Telluris circumacturae. Ex pugna materialium et corporearum proprietatum fiet permixtio, ut quaelibet vincatur et vincat vim suam corporum proportione. Itaque hinc evincitur, quod dixi me indicaturum, impedimentum nempe, quo minus pendulus hujusmodi lapis perfectissime sequi possit circularitatem Telluris. Atque hoc impedimentum est verissimum. Quare jam destruamus casum nostrum fictitium et sint illae lineae a superficie Terrae in lapidem tendentes non tantum ut fulcra, sed vere id quod per naturam nobis indicatur, nempe instar nervorum tensissimorum, sic ut lapis iste sit in actu descensus ad superficiem et centrum Terrae: dico, propter hanc impotentiam ad motum omnino futurum, ut lapis hic in descensu nonnihil aberret a perpendiculo ex centro Terrae per superficiem in centrum lapidis ducto et sic Terra ab occasu in ortum eunte, lapidis perpendiculum paulatim in occidentales superficiei partes deveniet: nec Terram omnimode sequetur, sed ab es relinquetur. Habes causam, cur lapis non debeat sequi Terram, qualem tu ad tuae sententiae confirmationem non potuisti dicere. Audi nunc solutionem. Verum est, si lapis notabili intervallo a Terra distaret, fore ut hoc accidat. At nunc sunt 860 milliaria a centro ad superficiem, et vero nulla avis tam alte volat, ut dimidium unius milliaris absit a solo; sane quia in aethere non magis apta est volare, quam nos in aëre, quam lapis in aqua aptus est natare. Confessum est autem, aëris altitudinem non excedere dimidium milliaris. Et vidisti tu unquam lapidem vel globum tanta altitudine decidentem, quantum aves assequuntur volando? Ergo esto lapis jam quantumvis altissimus, qui bis millesima parte simidiametri. Telluris a superficie absit, atque is quota pars est corporis Telluris, ut ejus pertinacia quiescendi deroget virtuti Telluris ad movendum? Inito rationem calculi, tempus dinumera. Nempe in una hora de Tellure cunt 225 milliaria sub acquatore, sed sunt in aethere composito motu sub acquatore in media nocte millena milliaria trajicienda, et in uno secundo, quorum in hora sunt 3600, pars 10/18 vel 1/4 fere unius milliaris. Itaque quota pars est lapis de corpore Telluris, tanta particula de mille passibus decrit in qualibet verberatione pulsus (quae metitur unum secundum temporis), quo minus lapis recidat in perpendiculum, unde fuit perpendiculariter erection, hoc est quo minus Terra illum inter decidendum perfecte securi in circulum rapiat. Tu jam, macte audacia, lapidem aliquem, immo montem, cum Tellnre in libra appende, ut proportionem explores. Sit lapis in pedis semidiametro. Quinque pedes acquant passum et 5000 mille passus, et 20000 milliare, et 17200000 semidiametrum Terrae aequant. Jam corporum proportio est tripla diametrorum. Invenies in summa 22 figuras. Ergo tibi mille passus dividendi sic sunt, ut particulae et numerus expleant 22 figuras, cum mille passus solas 4 acquent; tres deterantur utrinque, ergo unus passus in tot particulas abibit, quot nonnisi 19 cyphris possunt efferri. Age jam et hujusmodi minutias collige, sic ut lapis tibi non per unum pulsus intervallum, sed si lubet per horam eundo redenndo in acre haereat, et vide quantam sis effecturus unius passus particulam, quae metiatur interstitia egressus et illapsus lapidis perpendicularis. Age, priusquam ad tormentum veniam, admirabilem tibi faciam hanc disputationem exemplo Lunae. Cum sit Lunse corpus terrestre, dico, si adimas utrique motum et vim animalem, coitura corpora. Ac cum sit Luna '/ae de Terra circiter, ergo si 41 dant 60 semidiametros distantiae siderum, 1 dabit 11/2. Itaque 11/2 semidiametris supra centrum Terrae versus Lunam est locus coitus siderum. Nunc utraque autem sua anima retinetur (h. e. gravitate) ne coeant, ut ego caput in sublimi teneo vi animali, quod citra eam a Terrae magnete in pavimentum pertraheretur. Quod autem ita sit apparet, quia, quae partes Cerrae non fortiter sunt annexae Terrae, Lunam sequentur, ut maria ad Lunam ex omnibus lateribus mundi sub perpendiculum Lunae contendunt, cum sint bene librata, ut magnes in aqua natans aut super acus cuspide, nec a vi Telluris multum impediantur. Accedunt igitur qua possunt sc. via circulari, ne Tellurem potiori vi trahentem deserant. Sed cum elusa maria celeritate Lunae praeveniantur, ipsa tenacitate sua et subtus asperitate fundi impediantur, quo minus celeriter sub Lunae perpendiculum contendant, nempe intra tropicos, ideo Luna abeunte a fastígio coeli relabuntur in antiquas sedes, et reditu suo nobis omnem oceanum Britanniis circumfusum duobus a Galliis et a Norwegia aestuariis implent, unde ex occursu utriusque inter Britannias et Belgium plurima arena (Bauf) accumulatur. Retinetur igitur Luna ab anima sua, ne coeat cum Terra, quamvis intra orbes virtutum tractricum constituantur. Sed cum Terra diurno motu circumagatar, et cum Terra una virtutis orbis ad Lunam extensus, sitque illic imbecillior quam apud Terram partibus 60, quia Luna a Terra tot semidiametris abest, ergo quam viam Luna ivisset prope Terram die uno, aequalem ibit viam (vel trahetur a Terra) diebus 60. Ivisset vero prope Terram de 5400 milliaribus partes 39 de 40, quia unam partem fuisset suffurata propterea, quia est pars 1/40 de Terra, si credimus astronomis. Ergo et in suo orbe uno die 5265 milliaria iret, si acqualis virtus illo usque perveniret. At jam quia virtus Terrae illo loco imbecillior et sparsior, igitur diebus 60 ibit 5265 milliaria circa Terram. Habet vero in ambitu suo sexagies 5400 milliaria, hoc est 324000 milliaria, quae divisa in 5265, iter dierum 60, ostendunt 61¹/2, et haec summa in 60 multiplicata ostendit dies 3680, quibus Terra Lunam circumactura est, annis nempe 10 circiter, siquidem constaret Luna ex materia densitatis ejusdem cum Terra et siquidem Luna solum hoc iter circa Terram incederet. Sed quia interim accedunt 10 itinera circa Solem, Lunae cum Terra communia, et incertum, qua densitate sit materia corporis Lunaris, perturbantur nobis ista ratiocinia. Hoc quidem apud me certum est: si Terra tantummodo gyraretur et Lunae corpus in nulla esset proportione densitatis vel magnitudinis ad Terram, fore ut, Tellure unaque ejus orbe Lunam contingente diurno motu circumeunte, Luna simpliciter sequatur, plane nullam partem decerpens: sed quia de partibus itineris 59 decerpit 57, cedit vero virtuti per partes tantum duas, sic ut post 291/2 revolutiones orbis virtuosi Telluris Luna semel restituatur: ergo ejus densitatis proportio ad illam fortitudinem orbis virtuosi est quae 2 ad 59, et sexagies major ad densitatem corporis Telluris, nempe densitas Lunae ad densitatem Terrae, quae 1 ad 1770; sed magnitudo Lunae ad magnitudinem Terrae, quae 1 ad 40, ergo subtracta hac proportione erit aequalium particularum Lunae et Terrae proportio ea, quae 1 ad 44, pene aequalis proportioni

magnitudinum: siquidem nihil hic nos turbat circulatio utriusqué sideris in aura aetherea circa Solem. (Quae sequentar Keplerus ipse in margine annotavit, cetera scripsit amanuensis): Hic videor hallucinari, ut in primis tentaminibus fieri solet. Nam videtur consideranda virtus Telluris tractoria seu circumactoria eadem, quae et prope Tellurem et e longinquo. Causa haec, quia omnis orbis virtutis hujus in Luna movenda vires suas intra unius diei spatium experitur. Et vero ut lux in opticis sic virtus ista hoc loco spargitur per spatia, sic ut tantundem virtutis sit in orbe magno sparsim quantum in angusto collectim. Digo ergo: die uno vel paulo plus ituram 5265 milliaria circa Terram. Itaque totum ambitum 324000 (vel paulo minus) milliarium conficeret diebus 61¹/₃ et totidem fere horis. (Nam Luna uno die et una fere hora sentit omnem orbem virtutis ex Terra, quia interim 12⁶ sint progressae). Nempe diebus 63 et non ut in textu annis 10, manentibus conditionibus quae in textu.

Ad verba: "sed magnitudo Lunae &c." adscripsit Keplerus: Eadem hic quoque corrigenda. Nam Lunae densitatis proportio ad totum orbem virtuosum est ejus ¹³/₃₆₀ vel ¹/₈₀ h. e. ad ipsam corporis Terrae densitatem est ut 2 ad 59. Non quae 1 ad 1770 sed ea, quae 2 ad 57 (de 59 detracta una tricesima) ut pag. priori in margine, hoc est quae 1 ad $28\frac{1}{3}$; et quia magnitudinum ratio est ea quae 1 ad 40 circiter, ergo subtracta hac proportione relinquitur proportio 1 ad ⁵/₆₀, hoc est 80: 57. Atque sic Lunaris materia paulo esset densior materia Terrestri, proportione ea, quae 80 ad 57, paulo majore quam 4: 3, ut si Terra esset argentea, Luna aurea. Posita vero acqualitate densitatis, tunc exstruitur magnitudinum proportio 1 ad 20¹/₃ et diametrorum ratio paulo major quam 1 ad 3, nempe ea, quae 1000 ad 3056. Et quia Luna in apogaeo habet semidiametrum 15', ergo abest a nobis 226 diametris Lunae, quae divisae in 3056 et multiplicatae in 1000 dant 74 fere, alt. Lunae a Terra in semidiametris Terrae. Ecce propinquitatem. Malo autem diversam densitatem statuere, quam astronomiae suas parallaxes reformare.

Jamne tu in margine sentis Fabrici? Sentio inquies. At ego te in textum redire jubeo. Non n. textus sed margo hallucinatur. Quare? Quia etsi unius diei spatio omnis orbis virtutis terrestris Lunam permeat, in singulis tamen momentis adsistit illi virtus haec tenuior in majori remotione. Quod ut verissimum, ita magno commodo meorum Martis Commentariorum statuitur. Nam idem plane juxta trahens causa densitatis tardius incitatur ubi remotior est. Estque plane eadem ratio. Quilibet orbis habet omnem virtutem, sed in partibus sparsiorem. Et quilibet dies habet omnem virtutem, sed in momento sparsiorem, quia tempus consistit in fluxu instantis.

Nunc tandem ad tormentum Tychonicum. Cum demonstratum sit, lapidem in perpendiculo cadentem non debere illam lineam egredi in casu, jam facile expeditur et globus tormenti (lapis in obliquum jactus; nubes vento impulsa; avis in aëre volans). Nempe illud verum est, quod statim initio coepi dicere, misceri motum utrumque, et eum qui a Tellure est in globo, et eum qui a tormento. Itaque et miscentur spatia. Nam respectu totius universi plane plus spatii conficitur eodem tempore, cum globum in ortum ejaculamur, quam cum in occasum; quia illic et Terra in ortum tendit, hic Tellus derogat motui in occasum, volvens globum in ortum. Imo vero plane nunquam ullus globus respectu totius universi in partem tendit contrariam viae Telluris, quia Tellus multo est celerior quam ullius globi jactus. Quod vero spatium in ipsa Telluris superficie attinet, cum quiescens lapis, quamvis in aëre pendens, demonstratus sit plane sequi debere Terram, omnino etiam eadem vis per idem Telluris spatium tam in ortum quam in occasum abripiet globum. Nam quacunque globum impellat, invenit eandem vim lapidis attractricem, eundem etiam effectum promotionis lapidis. Si autem supra casus lapidis in perpendiculo aberrasset sensibiliter a suo perpendiculo, sane etiam hoc fieret, ut brevius esset spatium jactus in occasum quam in ortum; non quidem ob causam a Tychone. allegatam, sed ob hanc ipsam, quam ego diligenter hic explicui. — Desumsimus haec e literis Kepleri d. d. 11. Oct. 1605, quarum partem majorem praemisimus p. 99 sa.

Fabricius redit ad hanc quaestionem aliquot annis post, plane oblitus haec priora. D. 12. Oct 1608 scribit: Copernicum hactenus parce legi, quod obscurus et concisus esset, et exemplar meum Basiliense (ed. anni 1566) mendosum esset. At nunc magis mihi incipit arridere et solus motus Terrae me prohibet quo minus ex toto manus ipsi nondum porrigam. Hoc verum, per hypothesin Copernici simplicissime et commodissime motus demonstrari posse. — Deinde addit: Quomodo tu argumentum Tychonis contra motum diurnum ex tormenti globo refutare vis ? Hoc totam Copernici hypothesin explodit. Inquire igitar tales hypotheses, quae connis absurditatis et implicitae contradictionis expertes sint, sic tibi et arti magis censules.

Aliud argumentum contra Copernicum: si Terra tali motu movetur, necesse est onnes in codem parallelo habitantes saepius unum habere ventum, nubilosum aut clarum coelum, cum hace loca diurna revolutione sub iisdem nubibus et ventorum flatu decurrant. At hoc minime fit. Ergo &c.

Keplerus haec (d. 10. Nov. 1608) respondit: Cupis tibi deelarari solutionem argumenti Tychonici contra motum Terrae. Non est ita horribile, ut illius machinae ictus. Plane coincidit cum illa objectione, cur globus sursum missus ad perpendiculum recidat in locum eundem, si Terra interim abit. Respondendum enim, non tantum Terram interim abire, sed una cum Terra etiam catenas illas magneticas infinitas et invisibiles, quibus lapis alligatus est ad partes Terrae subjectas et circumstantes undique, quibusque retrahitur proxima id est perpendiculari via ad Terram. Quemadmodum igitur hic vis infertur catenis illis a motu violento sursum, quo fit ut omnes illae aequaliter quasi extendantur, ita quoque vis infertur catenis occidentalibus, cum globus vi tormenti in orientem truditur, et vis infertur orientalibus, cum vapor globum protrudit in occidentem. Nihil nec impedit hic nec illic promovet motus universalis Telluris et catenarum omnium. Nam haec motus violentia, quae globum projicit, versatur intus in complexu catenarum omnium, quae tam sunt fortes, ut parum contra illas possit etiam ventus validissimus contrarius, nedum aura quieta et cum Tellure circumiens.

Si vero nullae tales essent catenae, remaneret sane lapis in aethere pendulus abeunte Terra, nec recideret ulla ratione. Facit ad hanc considerationem et hoc, quod nullus jactus, neque quoad lineae longitudinem sensibilis est ad Telluris diametrum, neque quoad motus pernicitatem Telluris catenarumque seu virtutis magneticae. Sic igitur cum habeat hoc negotium et animi mei sententia, noli a me petere, ut veritatem prodam ad comparandum vulgi favorem. Si consuli arti non potest nisi per fraudes, pereat sane: reviviscet nempe; nec procul oculis pono exempla seculorum superiorum, cum Aristarchus hanc doctrinam tradidit oppressusque est multitudine contra sentientium, qui doctrinae opinionem sibi apud vulgus comparaverant. Seculum erat crudissimum. Occubuit quidem tunc Sol iste veritatis delituitque pene duo millia annorum: at id non soli huic doctrinae accidit. Communis literarum calamitas per interitum primo Graeciae, post etiam Italiae, tanto magis pressit Aristarchum, quanto is erat absurdiora professus. At simul literae renatae sunt nobis in Germania, simul Aristarchus revixit, non quidem ex hac arida stipula nominis hujus, sed ex ipso immortali semine veritatis, quae Copernico sic aperuit mentis oculum, ut olim Aristarcho, utrique sine exemplo. Itaque consilium tuum sequar quidem sed emendatum. Arti consulam, sed non per commendationem diezvies perque captationem aurae popularis. Si nihil est tradendum nisi quod vulgo placet, cur astronomiam universam, cur geometriam tradimus, remotissimas a vulgi captu laudisque ideo egenas? Quin potius hoc agam, its Copernicum in emendatam astronomiam intexam penitus et implectam adeoque et in physicam, ut vel utrique simul percundum sit vel supervivendum. Quamquam, si locus est vaticinio, prius ingentem illam molem librorum polemicorum cum auctoribus, cum ingeniis criticis perituram existimo, quam Aristarchus et Copernicus deserantur.

Objectio tua a ventis plane ventorum naturam imitatur, nihil efficit nisi strepitum. Quidquid n. de ventis tute ipse judicas et ego judico: si Tellus per vapidum aërem moveretur, jure objiceres ventorum experientiam. At nunc vapor, 'materia ventorum, consistit intra complexum virtutis magneticae Telluris; cumque sit substantiae tenuis, uti non valde attrahitur ad Terram, sic facile transfertur

et abrinitur a qualicunque virtute magnetica Telluris. Nam vis magnetica fortissima quidem est ratione suae propriae sedis, nempe Telluris, corporis densissimi : illa tamen languescit in objectu materiae rarioris. Exemplo sit vis illa motus violenti auctor. Puer manu projiciens lapillum propellit illum quam longissime. Idem totis viribus connixus, ut pumicem ejusdem molis eodem projiciat, scopum nunquam assequetur. Sed ad vapores redeo. Illi igitur asportantur cum locis Terrarum sibi subjectis a virtute magnetica Telluris, et sic quiescunt incumbentes nisdem Terrarum locis, quantisper non a causis aliquibus impelluntur, quae causae ex eodem cum ipsis origine nascuntur. Impulsi vero ab iis causis, quae ventum faciunt, facillime a catenis illis magneticis avelluntur in plagam quamcunque, idque acquali spatio, si causa acqualis. Quippe in corum motu non consideratur longitudo tractus per aetherem, sed multitudo catenarum seu longitudo tractus Terrarum. Nam ad trajiciendum per aetherem non indigent sus opera, contentae virtute Telluris ceu navi. Adeoque genuinum est exemplum navis et vectorum in ea discursantium, nisi quod vectores navis non attrahit magnetica virtute, sed solo contactu rapit, cosdem vero Tellus adhuc attrahit per gravitatis virtutem, quam Tellus non communicat motu navis, vapores vero et projectilia non attrahit aether, itaque a sola sua navi (id est a Tellure) attrahuntur. Non itaque ut in navi ex motu navis contingunt corporum jactationes, dum abripiuntur corpora a locis iis Terrarum, ad quae tendunt, gravitatis momentis, non, inquam, sic etiam jactari necesse est corpora nostra, dum a Terra abripiuntur, neque n. tendunt ea ad ullam partem aetheris, sed ad solius Terrae subjectum planum per catenas magneticas attrahuntur: quo fit demonstratione geometrica, ut ad centrum tendant gravia; etsi non tendunt ad centrum tanquam ad rem geometricam, sed tanquam ad medium corporis rotundi. Nisi n. Terra rotunda esset, ad idem ejus commune punctum omnia gravia non tenderent.

Hic ta puto objicies, vapores non trahi a Terra, cum potius fugiant a Terra. Respondeo, in vapore, cum exit ex Terrae visceribus, inesse duas res, materiam et calorem, qui extenuat materiam. Cum igitur partes aliquae vaporis a calore extenuatae sint loco humili, iisdemque superfusa aura gelida crassior, fit igitur ut sicut vesica aëre suffiata exsultat ex undis, eadem in aëre constituta deorsum cadit, sic tenuis substantia vaporis sursum expellatur a circumfuso crasso aëre et graviori. Itaque supernatat rarus aut calidus vapor (seu quaecanque exhalatio) aëri, quantisper est tenuior. Ubi gelidus redditus condensatus fuerit, iterum decidit. Adeoque ne fumus quidem ulterius a Terris abit, quam urgeatur et expellatur a graviori aëre. Postquam n. aliquam attigit altitudinem, restitat ibi pendulus. Argumentum, ipsum ratione suae materiae adhuc peti et trahi a Terra, minus tamen quam subjectum aërem. Si non credis, vapores et fumos in altum tendere non ratione alia quam tenuitatis, adsta ad ignes succensos sub dio, claro die, ut sit e regione ignis paries aliquis seu murus cum coloribus, fenestris aliisque rebus, quae distinctionem faciunt. Ventus etiam perflet. Videbis fluxum quendam clare (si ventus interflet) non directe in altum tendentem, trans quem parietis partes tibi tremare videbuntur ob refractiones diversorum mediorum.

ventus internet;) non directe in attuin tendentem, trans quem pariets partes this tremere videbuntur ob refractiones diversorum mediorum. "22) p. 176. Propositio hace exstat in Ptol. Almag. III, 3. Georg. Purbachius eam explicat in "Theoricis novis planetarum," quas Erasm. Reinholdus Commentariis illustravit (Viteb. 1542), orbem assumens solidum, "epicyclum deferentem." Quae Aristoteles (De Coelo II, 13. Metaph. XII, 8.) de Eudozi et Calippi hypothesibus senserit, pluribus proposuit Keplerus in Apologia Tychonis contra R. Ursum (Vol. I, p. 249 ss.) 23) p. 177. Jul. Caesaris Scaligeri Exctericarum Exercitationum lib. XV. de Subtilitate ad Cardanum, Latet 1557 In Exercit CCCUX 8. lacima: officia intelligen.

23) p. 177. Jul. Caesaris Scaligeri Exotericarum Exercitationum lib. XV. de Sublitate ad Cardanum. Lotet. 1557. In Exercit. CCCLIX. 8. legimus: officia intelligentiarum tria sunt. Primum: assistere; alterum: mitti ad certa mysteria et ministeria; tertium: movere orbes. Primi orbis motrix intelligentia sola sui ipsins intellectione id praestat, intelligit enim, se a Deo creatam, ut molem coeli gyro agitet. Inferior intelligentia intelligendo primam vult orbem suum cum primi orbis motu simul versari &c.

Comp. Vol. I, p. 173 ss. 250 ss. Epitome Astr. Cop. IV. pars 2. Nro. 2.

24) p. 178. Avicenna (Abuhali Elhusein Ibn Abdalla) celeberrimus medicus et philosophus Bocharensis (c. finem sec. X.) librum conscripti "De Stellis fixis" quem Rabbi Juda Ben Joseph Toledanus ex Arabico in linguam Hispanicam vertit (c. 1250). Comp. Ch. Melanchthonis Orat. a J. Milichio recitatam. Witeb. 1550. (Jöch.)

Redit ad eundem Keplerus in Epit. Astr. Cop. IV. Part. II Nro. 2.

25) p. 182. Copernici verba haec sunt: Accidet, ut cum epicyclium in summa apside fuerit eccentri, et planeta in perigaeo epicyclii ex opposito, permutentur ad invicem in contrarias partes, cum uterque suum peregerit hemicychum. At in quadrantibus utrisque mediis utrumque apsidem suam mediam habebit. Ceterum annuens semper et abnuena. quae omnia ex ipsorum motuum consequentia facile intelliguatur. Hinc etiam demonstrabitar, quod sidus hoc mota composito non describit circulum perfectam, differentia insensibili. --Hic et paulo superius Keplerus affirmans, Copernicum solidos assumsisse orbes (comp. Vol. L p. 282), Tychonem secutus esse videtur, qui (Prog. I, p. 439) dicit : quodai juxta Coper nicanam motus annui Terrae assumtionem eam (stellam novam) in altissimam Saturai sphaeram reposuerimus, sitque haec solida atque realis, ut et Copernicus secundum dia receptam opinionem sensisse videtur &c. - Ceterum Copernicus ipse in opere suo nullibi realitatem sphaerarum aut expresse ponit aut expresse negat. 26) p. 183. Ut probemus Kepleri calculum, sic quaesita computamus:

- In \wedge ECB : sin. CEB = $\frac{\text{sin. ECB. CB.}}{\text{max}}$ Dantur CB = 0.0756, BE = 1, ECB = 135°. EB. quare sin. CEB = sin. 45° × 0,0756. 0,8785218 - 2 9,8494850 $\frac{8,7280068 - \angle CEB = 3^{\circ} 3' 52''}{\angle ECD = 45.}$ \$\alpha EBC = ECD - CEB = 41^{\circ} 56' 8'' 1/2 EBC == 20° 58' 4" Jam in \triangle EAB dantur EB,BA (0,126) et \angle EBA (comp. anguli EBC); quaeritur BEA. B $- \Delta B = 0,874$ lg. (EB $- \Delta B$) = 0,9415114 - 1 $\mathbf{EB} - \mathbf{AB} = \mathbf{0.874}$ $\begin{array}{c} EB + AB + 1,126 \\ y_{3} (A + E) = 20^{\circ} 58^{\circ} 4^{\prime \prime} \\ y_{4} (A - E) = 16. 33. 55^{\prime \prime} \end{array}$

/ BEA = 4º 24' 9" 3. 3. 52.

 $CEA = 7^{\circ} 28' 1''$ (Keplero prodeunt 7° 28' 56", quia falsum angulum CEB = $3^{\circ} 4' 52''$ ex tabulis excerpsit.)

27) p. 183. E constructione Fig. 53. patet, radium $\alpha\beta$ acqualem esse radio BD Fig. 54. et radium epicycli $\beta\gamma = AI$, sic $\gamma e = 1B$. Jam posita BD = 1, AB = 0.126, BC = 0.0756. erit BI vel $\gamma e (= 1/, BC) = 0.0378$ et AI vel $\beta\gamma = 0.1638$. His positis per se patet quan-titas lineae ar $\omega e = 0.70711 + 0.1638 = 0.87091$; item $\alpha \xi = 0.70711 - 0.0378 = 0.66931$.

Datis in \triangle of α ad ξ rectangulo lateribus $\alpha\xi$ et $o\xi$, prodit tg. $\alpha o\xi = \frac{\pi\xi}{o\xi}$; 0,8256273 - 1 $\angle \beta \alpha 0 = \angle \alpha 0 \xi = 37^{\circ} 32^{\circ} 35^{\circ} - 9,8859540$ 45.

9.4734199 = lg. tg. 1/2 (A-E).

Diff. — — 36", sive assumts K quantitate anguli CEA (not. 26) : 7° 28' 56" — 7° 27' 25" = 1' 31" differentia,

28) p. 188. Dantur in $\triangle \delta \gamma \alpha$, $\delta \alpha = 0.03584$ (eccentricitas \odot secundum Tychonem), $\delta y = 0.30138$, $\angle a\delta y = 47^{\circ} 59' 16''$ (apogaeum \odot in 5° 33' \odot , idem \eth in 23° 32' 16'' Q; differentia apogaeorum = 143° 32' 16'' - 95° 33' = 47° 59' 16''.)

$$\begin{array}{rcl} & \delta\gamma - \delta\alpha = 0.26554. & - & 0.4241300 - 1 \\ & \frac{1}{2} (\alpha + \gamma) = 66^{\circ} & 0' & 22''. & - & 10.3515415 \\ & \frac{\delta\gamma + \delta\alpha - & 0.33722. & - & 0.5279133 - 1 \\ \hline & \frac{1}{2} (\alpha - \gamma) = 60^{\circ} & 31' & 22''; & - & 10.2477582 \\ & \frac{1}{2} (\alpha + \gamma) = 66. & 0. & 22. \\ \hline & & \swarrow & \frac{\delta\gamma\alpha}{2} = & 5^{\circ} & 29' & (K. & 5^{\circ} & 27' & 47''). \\ \hline & & \text{Jam, cum vergat } & \delta\gamma & \text{in } & 23^{\circ} & 32' & 16'' & Q \\ & & \text{et ait } \swarrow & \delta\gamma\alpha & = & 5. & 29. \\ \hline \end{array}$$

29° 1' 16" Ω (K. 29° 0' 3"). ay cadet in Denique eccentricitatem sy prodit calculus trigonometricus = 0,2786 (K. 0,27971) indem

at supra datis. Sin autem assumserimus dy = 0.30242 et inde computaverimus angulum $dy\sigma$ et eccentricitatem, prodibit quantitas hujus anguli a Keplero prodita 5° 27' 47'', eccentricitas 0.27971,

29) p. 189. Assumta linea $\alpha \gamma = 0,18034$, proportionaliser prodit linea

$$\delta \gamma = \frac{0,18034 \cdot 0,30138}{0,27971} = 0,19432 \text{ (K. 0,19763)}$$

$$\alpha \beta = \frac{0,18034 \cdot 0,0126}{0,02016} = 0,11271$$

$$\beta \gamma = 0,18034 - 0,11271 = 0,06763$$

$$\delta \vartheta = \frac{0,19432 \cdot 0,0126}{0,02016} = 0,12145 \text{ (K. 0,12352)}$$

$$\delta \psi = 0,19432 - 0,12145 = 0,07287 \text{ (K. 0,07411)}$$

Numeri hi discrepantes a Keplerianis ut prius, prodeunt adhibito numero 0,30138; propius accedimus ad Kepleri numeros usurpantes pro 0,30138 numerum 0,30242, etsi sondum plane scopum attingunt, quantitatesque a Keplero hic proditae pro 0,30138 alium sumerum (0,30652) indicant.

Denique, cum sit $\Im\beta \ddagger \delta\alpha$, erit $\Im\beta = \frac{\delta\alpha \cdot \beta\gamma}{\alpha\gamma}$; $\beta\gamma$ "in dimensione $\delta\alpha$ " est 0,10489,

et hinc $3\beta = 0.01344$.

30) p. 189. Assumtis iisdem numeris, qui supra Keplero prodierunt, in $\triangle 3\gamma v$ ad γ rectangulo prodit $\gamma v = \sqrt{1 - 0.07411^3} = 0.99725$.

In $\triangle \beta \gamma \chi$, ad χ rectangulo, dantur $\beta \gamma = 0.06763$ et angulus $\gamma \beta \chi = 3\gamma \beta = 5^{\circ} 27' 47''$, quare $\gamma \chi = \sin \beta$. $\gamma \beta = 0.006438$

et $\beta \chi = \cos \beta$. $\beta \cdot \gamma \beta = 0.06732$.

Denique in $\triangle \beta \chi \varphi$ datis duobus lateribus ($\beta \varphi = 1$) prodit tertium

 $\chi \varphi = \sqrt{1 - \beta \chi^3} = 0.99773$ $\gamma \chi = 0.00644$ $\gamma \varphi = 1.00417$ $\gamma \upsilon = 0.99725$ $\upsilon \varphi = 0.00692,$

31) p. 193. Gassendus in "Tychonis Brahei Vita", ut ipsissima Tychonis verba haec refert : "Quaeso te, mi Joannes, ut quando, quod tu Soli pellicienti, ego ipsis planetis ultro affectantibus et quasi adulantibus tribuo, velis eadem omnia in mea demonstrare hypothesi, quae in Copernicana declarare tibi est cordi." (Gass. Opera V. p. 404.)

32) p. 198. Triangulum $\lambda\delta\mu$ figurae 59. idem est quod $\Im\gamma\beta$ figurae 56, ergo $\lambda\delta$ linea figurae 59. eadem, quae $\Im\gamma$ figurae 56, angulus $\varrho\lambda\beta$ (= $\delta\lambda\mu$) idem, qui $\beta\Im\gamma$ (= $\alpha\delta\gamma$); et $\lambda\delta\mu$ idem qui $\Im\gamma\beta$, $\delta\mu$ linea eadem quae $\beta\gamma$, $\lambda\mu$ eadem quae $\Im\beta$; sic $\beta\delta$ eadem quae $\delta\gamma$. Jam datis in $\triangle \ \varrho\delta\lambda$ lateribus $\delta\lambda = 0.07411$, $\varrho\lambda$ (radio) = 1, et angulo comprehenso $\varrho\lambda\delta$ (compl. anguli $\varrho\lambda\beta$), quaeruntur reliqua:

 $\begin{array}{c} \rho \lambda & \sigma & \lambda = 0.92589 & -0.9868594 & -1; \\ \rho \lambda & - d \lambda = 0.92589 & -0.9868594 & -1; \\ \gamma_{0}'(d + \rho) = 23^{\circ} 59' 38'' - 9.6484585 & -10 & d \lambda \rho = 132^{\circ} 0' 44'' - 9.8709900 - 10 \\ \rho \lambda + d \lambda = 1.07411 & -0.0310488 & d = 44.59. 5. - 9.8493691 - 10 \\ \hline \gamma_{0}'(d - \rho) = 20^{\circ} 59' 27'' - 9.5839691 - 10; & d \rho = 1.05105 & -0.0216209 \\ \hline \gamma_{1}'(d + \rho) = 23.59.38. \end{array}$

 $\frac{7.10 + 0.9 = 20.08.00}{20.00}$ $\frac{7.10 + 0.9 = 20.08.00}{11 \text{ triangulo}} = 20.08.00$ In triangulo $\delta\mu$ dantur latera $\delta\mu = 0.06763$, $\mu\epsilon = 0.2 = 1$, et $2 \epsilon \delta\mu = 0.024 + \lambda \delta\mu = 44^{\circ} 59' 5'' + 5^{\circ} 27' 47'' = 50^{\circ} 26' 52'';$ ergo sin. $\delta\epsilon\mu = \frac{\sin. \epsilon \delta\mu \cdot \delta\mu}{\epsilon\mu};$ log. sin. $\epsilon\delta\mu = 9.8870794 - 10$ $\frac{2}{\epsilon\delta\mu} = 50.26.52.$ $\frac{2}{\epsilon}\epsilon\mu = 50^{\circ} 26' 12''}{\delta\epsilon} = \frac{\mu\epsilon \cdot \sin \delta\mu\epsilon}{\sin \mu\delta\epsilon};$ log. sin. $\delta\mu\epsilon = 9.9048230$ $\delta\epsilon = \frac{\mu\epsilon \cdot \sin \delta\mu\epsilon}{\sin \mu\delta\epsilon};$ log. sin. $\mu\delta\epsilon = 9.8870794$ = 1.0417 - 0.0177436 $\frac{\delta\varrho = 1.05105}{\epsilon\varrho = 0.00935}$ Keplero prodit $\epsilon\varrho = 0.00953$, cum $\delta\varrho = 1.05123$ computaverit.

Kepleri Opera. III.

30

In $\triangle \beta \iota \vartheta$ ad ι rectangulo prodit $\beta \iota = \vartheta \beta$. sin. $\iota \vartheta \beta = 0,13971$ $\vartheta \iota = \vartheta \beta$. cos. $\iota \vartheta \beta = 0,13978$ $\iota \varrho = \vartheta \varrho - \vartheta \iota = 1,05105 - 0,13978$ = 0,91127 (K. 0,91145).

Jam $\triangle \beta x \delta$ fig. 59. respondet $\triangle \gamma \delta x$ fig. 56, quare $\beta x (= \delta x) = 0.03584$ ad radium $\beta v = 1$; et cum pag. 189. demonstratum sit, ad radium $\beta v = 1$ esse $\lambda \mu (\beta \beta) = 0.0088$ eandemque $\lambda \mu = 0.01344$ ad radium $\lambda \varrho = 1$, quare $\lambda \varrho : \beta v = 1344 : 880 = 61 : 40$ "fere"; hinc $\beta v = \frac{40}{61} = 0.65573$ (K. 0.65656), ad radium $\lambda \varrho = 1$.

33) p. 199. Ad deprehendendam quantitatem lineze ψo novam ingreditur viam Kepleros ipsique minus usitatam; calculo utitar algebraico, qui tam temporis minus excaltas fuit quam ratio geometrica.

Keplerum secuti rem explicavimus assumtis Kepleri numeris. Ex constructione patet, esse $\iota\beta = \alpha o$, $\iota o = \beta \alpha$; deinde quod ϵo in o bisecata est, erit $\iota o = \iota o - \frac{1}{2} \epsilon o$. ιo per superiora = 0.91145, $\epsilon o = 0.00953$, ergo $\iota o = 0.91145 - 0.004765$. $\iota o = \beta \alpha = 0.906685$; signetur $\beta \alpha$ litera d. Deinde $o \alpha = 0.13971$ (c)

$$\beta v = \beta v = 0,656565 (a)$$

 $o \epsilon = \frac{1}{2} \epsilon \varrho = 0,004765$ (b)

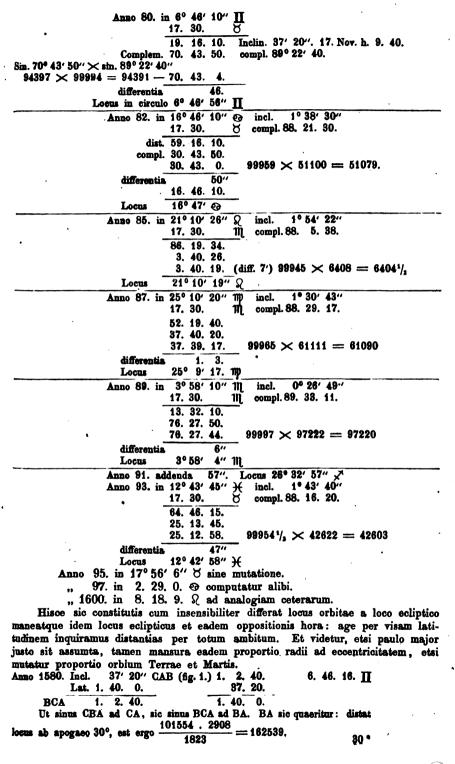
Signetur linea $\nu\psi = \epsilon\psi$ per literam x, erit $\beta\psi = a + x$, et quia $\triangle \beta\alpha\psi$ ad α rectangulum:

$$\begin{aligned} \alpha\psi &= V(a+x)^{3} - d^{3} = Va^{3} - d^{3} + 2ax + x^{3} \\ \text{Sic, quia} & \bigtriangleup \ \epsilon \phi\psi \ ad \ o \ rectangulum} \\ \epsilon\psi^{3} &= b^{3} + (c + \alpha\psi)^{3} \ h. \ e. \\ x^{3} &= b^{3} + (c + \sqrt{a^{2} - d^{2} + 2ax + x^{2}})^{3} \\ &= b^{3} + c^{3} + a^{2} - d^{3} + 2ax + x^{2} + 2c \sqrt{a^{2} - d^{2} + 2ax + x^{4}} \\ \frac{b^{3} - d^{3} + 2ax + x^{2} - d^{3} + 2ax + x^{2} + 2c \sqrt{a^{2} - d^{2} + 2ax + x^{4}} \\ = d^{3} - 2d^{3}b^{3} - 2d^{3}c^{3} - 2d^{3}a^{3} - 4d^{3}ax + b^{4} + 2b^{3}c^{3} + 2b^{3}a^{3} \\ &= d^{4} - 2d^{3}b^{3} - 2d^{3}c^{3} - 2d^{3}a^{3} - 4d^{3}ax + b^{4} + 2b^{3}c^{3} + 2b^{3}a^{3} \\ x^{2}(4c^{3} - 4a^{3}) + x(4ac^{2} + 4ad^{2} - 4ab^{2} - 4a^{3}) \\ &= a^{4} + 2a^{3}b^{3} - 2a^{2}c^{3} - 2a^{2}d^{3} + b^{4} + 2b^{3}c^{3} - 2b^{3}d^{3} + c^{4} + 2c^{3}d^{3} + d^{4} \\ x = \frac{a(a^{3} + b^{3} - c^{3} - d^{3}) + c V(a^{3} + b^{3} - c^{2} - a^{3})}{c^{2}(c^{3} - a^{2})} \\ x = \epsilon\psi = 0,2571 \\ \hline \end{aligned}$$

 $o\psi = \sqrt{\epsilon \psi^2 - o\epsilon^2} = 0.2570$ (K. 0.25772).

Haec computavimus more hodie usitato, quem ad Keplerianum haud difficile reduces observans, signis 3 et B significari voces "census et radix", quae eodem ab algebraistis illorum temporum sensu sumebantur, quem nunc exprimunt literae x² et x.

Jam inventa quantitate lineae o ψ prodit $\alpha \psi = o\psi - o\alpha = 0,11792$ (K. 0,11801) et datis in $\triangle \beta \alpha \psi$ ad α rectangulo lateribus $\beta \alpha$ et $\psi \alpha$, prodit tg. $\alpha \beta \psi = \frac{\alpha \psi}{\alpha \beta}$; hine $\alpha \beta \psi = 7^{\circ} 24' 56''$ (K. 30' 10''); deinde cum sit $\varrho \lambda \beta = 47^{\circ} 59' 16''$ et $\varrho \delta \lambda = 44^{\circ} 59' 10''$, erit $\delta \varrho \lambda = 3^{\circ} 0' 6''$, et quia $\varrho \lambda$ vergit in $5^{1}/_{3}^{\circ} \mathfrak{S}$, $\varrho \iota$ h. e. $\alpha \beta$ verget in $8^{1}/_{3}^{\circ} \mathfrak{S}$, quare $\psi \beta$ in 15° 55' (16°) \mathfrak{S} .


34) p. 210. Ch. Severini, cognomine Longomontanus, cujus literae ad Keplerum leguntur in praefatione et ann. 2, quemque alias saepius diximus, natus est Longomanti pago Danico anno 1562; ab anno 1588 usque ad annum 1600 apud Tychonem studiis incubuit astronomicis. Paulo ante mortem Tychonis in patriam rediit, Viborgiensis scholae munus suscipiens rectoris, hinc anno 1605. Havniam vocatus mathesin et astronomiam docuit in academia Havniensi; mortuus est anno 1647. Inclaruit scriptis mathematicis ac praecipue libro, qui plane insistit Tychonis hypothesibus, quem inscripsit: Astronomia Danica (Amstelod. 1622. 1630).

35) p. 211. De Sasceride vide Vol. I. p. 190. Observationes locorum Martis ab anno 1582-1600, excepto anno 1593, invenies in Tych. Historia Coelesti ad tempora singulis adscripta. Tabulam hanc immutatam imprimendam censuimus, quamquam in columna, quae inscribitur "Differentia" in minimis quaedam mutanda fuerunt. Ut autem prodeat quadamtenus ratio, qua usus est Keplerus opus suum primum aggreasus, e mss. Petrop. Vol. XIV, quod continet adversaria Commentariorum Martis, calculum desumsimus locorum, quee exhibent hae et sequentes tabulae, hunc:

Reducatur in tabella oppositionum Martis et Solis locus eclipticus per indinationis angulum ad circulum Martis.

Notae Editoris.

467

In Commentaria de motibus Martis

	· ·
Anno 1582. Incl. 1. 38. 30. Lat. 4. 6. 0. 2. 27. 30.	$\frac{50}{2}$ = 169455 16.46.10. @
Anno 85. Incl. 1. 54. 22. 101280 79 Lat. 4. 32. 10. 4589 4589 2. 37. 48. 4589 4589	$\frac{09}{2} = 174553$ 21. 10. 26. Q
Anno 87. Incl. 1. 30. 43. Lat. 3. 38. 12. 2. 7. 29. 100350 . 63 3708	$\frac{43}{1} = 171661$ 25. 10. 20. mp
Anno 89. Incl. 0. 26. 49. 99200 . 194 Lat. 1. 6. 45. 1161 0. 39. 56.	<mark>42</mark> = 165931 3. 58. 10. η
Anno 91. Incl. 1. 29. 5. Lat. 3. 59. 0. 2. 29. 55.	$\frac{47}{2} = 156518$ 26. 32. Or x^3
Anno 93. Incl. 1. 43. 40. 99340 105 Lat. 6. 3. 0. 7536 4. 19. 20. 7536	= 138939 12. 43. 45. /(
Anno 95. Inclin. periculose quaeritur, quia	prope nodum est. 17. 56. 15. 🗸
Anno 97. Incl. 1. 21. 0. 101790 . 61	92
Lat. 3. 33. 3839	$= 164179$ 2. 28. \odot
2. 12.	• د
Ao. 1600. Incl. 1. 53. 10. 101510 . 78 Lat. 4. 30. 50. 4584	$\frac{70}{2} = 174277$ 8. 18 Q
2. 37. 40.	
	ndo apogaeo
21 ¹ / ₆ Q 174553.	16 ³ / ₄ 😳 169455.
8 ² / ₂ Ω 174277.	21/1 20 164179.
25 ¹ / ₆ Ħ 171661.	6 ³ /₄ ∏ 162339.
4 m 165931. 26¹/₂ x² 156518.	12 ³ / ₄)(138939.
163/4 @	16 % @
25 1/6 mp	<u>4</u> 11
68° 25'	1071/4
dim. 34. 12	53 %
Inter 26° R et	10 ¹ / _o ^o m, sed propius illi, nempe circa 1° m.
2 ¹ / ₃ Ø. Hic medium est 3° M,	sed 21/2° @ est ab apogaeo remotius, quis
distantia brevior, 4° 11 est propius. 1	Ergo 3° m est ante apogaeum. Est igitur
apogaeum (aphelium dico) post 3° m, e	Ergo 3° m est ante apogaeum. Est igitur et tamen ante 11° m, sed 3° m est aphelio
valde propinquus. Puto id esse in 5°	m. Haec a superioribus paulum dissentiunt.
	ulae oppositionum Martis.
	rimo motus Solis.
Compl. medii. Martis mediu	s. Praecessio aequinoctii.
1579. 9. 20. 1. 8. 8. 7. 2. 2	28. Ad annum 1588 completum est praecessie
Oct. 10. 0. 37. 21. 5. 9. 50.	30. aequinoctii 28° 3′ 5″. Hinc ad 79.
d. 16. 15. 46. 13. 8. 23.	6. completum demuntar 4. 15.

d. 16. h. 9. m. 40. 8. 6. 48. 32. At ponitur longitudo Martis ob-	27. 59. 35.	demuntar 27. 27.	4. 58. 59.	50. 45. pro anni 80. 35. parte
bervata resp. eclipt. 6. 46. 10. Diff. 2. 22. Et orbitae, pt signt 6. 58. 10.	27. 29. 9. Long. simplex 27. 29. 46. 37.	Praec.	58.	50. 45.

.

468

Notae Editoris.

	Fait nodus in 1* 16° 46' 35" secundum numerationem tabulae Tychonis. 1. 16. 46. 35. 2. 6. 46. 10. 19. 59. 35. latus unum, 20. 3. 45. latus alterum seu basis. Basis posterior 27387, perpendic. posterius 36383 (38520) 27387. 36520 == 100376 == sec. 4° 57' 40" Ex tab. Tychonis. Apog. 4. 23. 19. 45. 1. 25. 28. 44. long. simpl. 9. 2. 8. 59. 11. 20. 36. 2. 6. 49. 37. Computatus. Profitetar 2. 6. 50. 40.				
1581. Nov. 27.	⊙ med.	J med.	Apog. J	Praecessio.	Nodus.
Locus obs. resp. eclipt Et orbitae ut ajunt.	L 8. 10. 40. 10	3. 9. 35. 48 2. 11, 35. 26 Ponitar 34. 56	$\begin{array}{c} 4.\ 23.\ 21.\ 1\\ 1.\ 6\\ \hline 4.\ 23.\ 22.\ 7\\ 3.\ 9.\ 35.\ 48\\ \hline 10.\ 16.\ 13.\ 41\\ \underline{8.\ 28}\\ \hline \hline \end{array}$	27. 58. 50 1. 42 50 28. 0. 22 28. 0. 38 ponitar	1. 16. 48. 3. 16. 51. 27 <u>26</u> 2. 0. 3. dist. a nodo. 60. 3. 0 basis. 59. 57. 43 latus. basis, tg. compl. lateris.
			7. 17. 11 3. 16. 52. 59 3. 16. 51. 26	comput. 17	3555. 57823 = 100355 sec. 4° 49' 20" ang. assumtus.
1584. d. 30.	10. 21. 10. 13 9. 21. 10. 26 21. 9. 50	4. 20. 40. 13 28. 3. 9 3. 22. 37. 4 3. 22. 37. 46	4. 23. 24. 24 4. 20. 40. 13 11. 27. 15. 49 10. 44 Prosth. 29. 24 4. 21, 9. 37 4. 21, 9. 41		$\begin{array}{c} 1.16, 50, 18\\ 4.21, 10, 26\\ \hline 3.4, 20, 8\\ 85, 39, 52\\ 85, 40, 28\\ \hline 70.75824 = 100244\\ 4^0 0' 15'' \end{array}$
1586. Feb.	11. 25. 5. 57 25. 10. 20 25. 5. 10	6. 1. 32. 12 28. 4. 56 5. 3. 27. 16 5. 3. 27. 46	4. 23. 26. 50 6. 1. 32. 12 1. 8. 5. 22 9. 0 5. 6. 27. 19 5. 25. 4. 49 5. 25. 4. 50	27. 58. 50 5. 57 9 28. 4. 56 28. 4. 10 1122	$ \begin{array}{r} 1.16.52.12\\ \underline{25.10.20}\\ 41.41.52\\ 41.47.2 \end{array} $ 81.89359 = 100315 4° 32' 30"
1588. Mart.	1. 3.53.32 1. 3.58.10 1. 3.54.35	7. 14. 59. 17 28. 6. 44 6. 16. 52. 33 6. 16. 53. 7	4. 23. 29, 10 7. 14. 59. 17 2. 21. 30. 7 3. 6 11. 4. 31 3. 54. 46 3. 54. 53	27. 58. 50 7. 39 15 28. 6 44 28. 5. 55 4031	$ \begin{array}{r} 1.16.54.5\\ 3.54.35\\ \hline 13.59.30\\ 13.55.55\\ 76.24917 = 100459\\ 5^{\circ}29^{\circ} \end{array} $
1590. Maj	2. 26. 45. 24 2. 26. 32. 0 2. 26. 42. 30	9. 5. 55. 19 28. 8. 34 8. 7. 46. 45 8. 7. 47. 30	4. 23. 31. 40 9. 5. 55. 19 4. 12. 23. 39 7. 46 9. 20. 36 8. 26. 34. 43 8. 26. 40. 23	27. 58. 50 9. 21 23 28. 8. 34 28. 7. 47 1208	$ \begin{array}{r} 16.56.0 \\ 26.32.0 \\ 39.36.0 \\ 10.20 \\ 39.46.20 \\ 79.83235 = 100614 \\ 6^{\circ} 20, \end{array} $

In Commentaria de motibus Martis

1592. Jul.	 med. 5. 12. 34. 36 5. 12. 43. 45 5. 12. 35. 0 	đ med. 11. 9. 3. 39 28. 10. 21 10. 10. 53. 18 10. 10. 53. 50	Apog. J 4. 23. 34. 7 11. 9. 3. 39 6. 15. 29. 32 3. 30. 20	Praecessio. 27. 58. 50 11. 3 28 28. 10. 21	Nodus. 16. 57. 50 8 12. 43. 45 64. 14. 5 8. 45
			11. 12. 33. 59	28. 9.40	64. 22. 50
			11. 12. 34. 36	20853	$4 \cdot 48267 = 100653$
					6° 26' 20''
1594.	7. 17. 56. 17	1. 6. 38 22	4, 23, 36, 2	27. 58. 50	•
Sept.	7. 17. 56. 15	28. 12. 17	1. 6. 38. 22	12.45	
	7.17.56.5	8, 26, 5	8. 13. 2. 20	42	
		8, 26, 47	1.58	28. 12. 17	
			11. 19. 13	11.20	
			1. 17. 57. 35		
			1. 17. 57. 14		
modo add i	tur. Nam nodus	1. 17. Ergo dist	tantia fere 1º. F	acta est ergo	additio per 14 ⁴ / ₃ cc.
1596. Nov.	9. 2. 28. 51 9. 2. 28. 0	2.23. 8.54	4. 23. 38. 56 2. 23. 8. 54	27. 58. 50 8. 30	17. 1.43 8
TION.	9.2.34. 0	28.14. 6		6.46	2.34. 0 @
	v. p. 03. V	1. 24. 54. 48	9. 29. 29. 58		45. 32. 17
		1. 24. 55. 47	9. 22. 54	28. 14. 6 28. 13. 20	45. 26. 17
			3. 2.31.48		7 . 98482 = 100291
			3. 2: 32. 20	. 10105	4° 22'
1599.	10. 8. 18. 43	4. 5. 1.32	4. 23. 41. 8	27. 58. 50 °	1. 17. 3. 34
d. 18.	10. 8.18. 0	28. 15. 53	4. 5. 1.32	17. 3	4. 8.34. 0
	10. 8. 18. 45	3. 6. 45. 39	11. 11. 20. 24	28. 15. 53	2. 21, 30, 26
		3. 6.46.16	10, 20	28.15.5	81. 30. 26
			3. 16. 10		81 . 29. 4 1
			4. 8. 17. 42	44055	.669693 = 100153
			4. 8. 19. 57	14850	$3^{\circ} 10^{\circ}$

assumtus, quia eadem etiam ad sequentia conducent.

1580. 12. Nov. h. 10. 50' in 8° 36' 15" II sine mentione refractionis vel 17. Nov. h. 9. 40. parallaxeos.

d. 4. h. 22. 50. differentia temporis.

In Stadio die 12. Nov. J in 8. 22. II

die 17. Nov. 3 in 6. 30. II

Motus 5 dierum 1. 52.

Distantia Solis ab apogaeo die 15. Nov. 154°. Ergo motus diurnus 61. 5, qui biduo ante et retro variatur tantum 2". Eum serva, utilem futurum in sequentibus. Jam medius \odot est assumendus. Ergo subtrahe 1° 52' ab 8° 36' 15" II, véniet 6° 44' 15" II ad horam 10. 50' diei 17. Tempus abundat h. 1. 10'. Motus Martis competens horis 1. 10' est 1' 8"

6. 44. 15.

Quibus rursum additis, prodit . . . 6. 45. 23. II, jam locus Martis verus ad horam praedefinitam in tabula. Illi quoque constituerunt 6º 46' 10" II. Forte propter parallaxin.

Anno 82. bis computatur & Martis cum O, primum ad horam 11 % diei 28. Dec., ubi deductus fuit locus of in 16° 47' . At dein in adjecta recentiori scheda corrigitur aliquid propter refractionem 2' in longitudine et ponitur σ in 16° 49' 32" h. 11. 39' 30". Distat h. 11. 39. 30.

4

et 12. 16. 0.

36. 30, quantulo tempore motus d'est vix dimidium minutum, per

ut its ad assumtum tempus 3 fuerit in 16° 47', correctius in 16° 49' 3. Et constituerunt illi 16. 46. 10. @. Anno 85. 31. Jan. h. 12. Mars in 21° 18′ 11″ Ω. Sed per refractionem. illic allegatam in 21° 20′ 11″ Ω. Ergo horis 7. 35′, cum diurno 24′ 15″ venit 7′ 41″. Locus ergo 5 21° 12′ 30″ vel 21° 10′ 30″ Ω. Et posuerunt 21° 10′ 26″. Apparet de 2" refractionis illos jam bis usurpatam opinionem postea rursum dimisisse. Anno 87. ad 7. Mart. h. 19. 10' deductus locus & 25° 10' 20" m. Tempus assumtum 17. 22. differ. 1. 48. Et totidem minuta sunt motus horarius. Ergo 25° 8' 32" 1. At ponitur 25° 10' 20". A. 89. 15. Apr. h. 12. 5. 3° 58' 21" 11 valde diligenter. Parallaxis vero long. 1. 10. subt., 3. 57. 11. Differentia horarum 1' 30". Minus scrupulorum est, nam diurnus est 22'. Ergo 3° 58' 30". Et assumsit 3° 58' 10". A. 91. dies 4 habent 1° 12' 47" motum die 6. h. 12. 20' in 27° 15' X. 16. 25. 8. 2. 4. 5. Ergo differentia dierum 2. h. 4. 5' habebit motum pro 2 diebus 36. 24. pro 4 h. 3. 4. 5 m. 4. 39. 32. Subtrahe: restabit 26° 35' 28" X. Ponunt 26° 32' 0". A. 93. 24. Aug. h. 10. 30. Mars in 12° 38' 0" H. diurn, 16' 41" 2. 13. Horarius 0. 5. 48. 8. 17. 12. 43. 48. Ponunt 12º 43' 45". A. 95. 30. Oct. h. 8. Mars in 17° 48' 8. Diurnus 22' 54". 21. 22. 29. 11. 7. 11. 38. Ergo 17. 59. 7. Ponunt 17° 56' 15". A. 97. 10. Dec. h. 8. 30. J in 3° 30' @. Diurnus 23 1/2. 13. 13. 35. 3. 5. 5. Scrupula totidem fere. Dies 3 habent in Magino 1. 10. 0. 5. 5. 1. 15. 5. subtr. ergo 2º 15' 0". Posuere 2º 28'. A. 1600. Vidi ipsam deductionem ex 13. Jan. h. 11. 40. cum fuit in 10. 39. Q. Inde per dies 11 assumtus est motus diurnus 23' 44" fere. A. 1593. die 10. Dec. fuit Mars observatus in nodo ascendenti. Nam post subtractionem latitudinis parallacticae restabant non plus 45" latitudinis borealis. Videndum, an nodi moveantur. Id sic haberi poterit, si ante et post integras revolutiones sub fixis consideremus ejus motus. Tempus est 1. 43. 8. 9 Rev. 1. 43. 3. Enocha mea 5. a. 77. 5. Jan.

Revol. 11. 27.	
11. 32 78. 23. Nov.	1. 20. 14. a. 90. 7. Mart.
22. 59 80. 10. Oct.	1. 31. 41 92. 23. Jan.
34. 26. — 82. 27. Aug.	1. 43. 8 93. 10. Dec.
45. 53. — 84. 15. Jul.	1. 54. 35 95. 28. Oct.
57, 20, - 86, 2. Jun.	2. 6. 2 97. 14. Sept.
1. 8. 47 88. 19. Apr.	2. 17. 29 99. 2. Aug.
1	

Anni prodeunt 4, ad quos sunt obss.: 90. 7. Mart., 92. 93. 95. Sed a. 90. non 7. sed 4. Mart. est observatio.

A. 1590. 4. Mart. h. 7. 10' circ. fuit declinatio Martis 9° 26'. sept. Ascensio recta 22° 35' 10''. Cooritur 24° 24' 12" Υ, cujus declinatio 9° 29' 27"

decl. J 9. 26.

Basis lat. 3. 27.

respondet 24° 22' 56" Υ , lat. 3. 12. Hine computavit Christianus ejus long. 24° 22³/₄ Υ , lat. 0° 3' 20". Dubitatur, sitne septentrionalis an meridiana. Est ergo locus assignatus eclipticae remotus ab aequatore 9. 29. Relinquitur itaque post subtractionem Martis latitudo meridiana. Et post additum excessum supra refractionem, lat. 0' 4" ³/₄ merid. Cum ergo a. 90. sit meridiana, a. 93. post integram revolutionem jam septentrionalis, nodi ergo retrocederent. Sed memineris, non esse duas integras revolutiones a 4. Martii in 10. Dec., sed a 7. Martii a. 90. in 10. Dec. a. 93. His tribus diebus haec latitudo potuit absumi, ut sic etiam die 7. Martii esset sept. Quid si die 7. plus esset sept. et 10. Dec. minus, progrederentur nodi.

A. 95. 27. Octob. h. 12. 20' latitudo Martis vera post cautam parallaxin fuit 0° 2' 20'' m. Die 28. Oct. itidem post cautam parallaxin vera latitudo fuit 0° 0' 25'' s. Hic vides intra eundem diem incidere transitum Martis per eclipticam. Confer hos dies cum Ptolemaei observatione, habita ratione veri loci Martis respectu eccentrici, et habebis motum nodorum.

Die 23. Jan. 92. vesperi h. $10^{1/4}$. fuit \mathcal{J} in 11° $34^{1/4}$, Υ , latit. 0° 2' merid. Altitudo Martis circiter 25°. Refractio nulla. Distabant Sol et Mars sextili, longüus igitur adhuc a Terra abfuit Mars quam Sol, minor igitur ejus parallaxis paulo. Est Solis in altit. 25°: 2' 38". Estque sectio verticalis et eclipticae pro recto, 120° circiter.. Itaque iterum latitudinis parallaxis paulo minor, forte 2' aut mínus. Ergo et hic \mathcal{J} in ecliptica.

Pro nodo altero h. 7¹/₆ matut. — A. 1595. die 4. Jan. cum Mars in altitudine 8° observaretur a Spica M et corde M, visa fuit ejus latitudo 0° 3' 45" b. Ibi longitudinis motus fere manet invariabilis, quia etiam cor M fuit humile. Sed portio pro latitudine, seu potius pro declinatione ad eruendam veram latitudinem est corrigenda per parallaxin quidem utrinque, per refractionem in lat. Major autem refractio, non igitur tam altus J. Major igitur decl. australis, quam visa, minus igitur sept., ergo aut in ecliptica Mars, aut australis. Haec radix esto:

6. 35. 1578. 30. Jan. 11. 27. 79. 18. Dec. 28. 29. 81. 4. Nov. 40. 56. 83. 22. Sept. 52. 23. 85. 9. Aug. 1. 3. 50. 87. 28. Jun.	
29. 29. 81. 4. Nov. 40. 56. 83. 22. Sept. 52. 23. 85. 9. Aug. 1. 3. 50. 87. 28. Jun. . Maj. lat. 0.6.40.b.) 40. 10.	Ex hac tabella apparet, Martem
1. 3. 50. 87. 28. Jun. . Maj. lat. 0. 6. 40. b.)	nunquam alias in colliptica fuisse observatum, nisi valde remote die 6. Maji a. 89. Veniet autem occasio
	observandi ad futurum 6. Sept. stilo novo. Erit igitur immorandum in
1. 15. 17. 89. 14. Maj. 6. Maj 1. 26. 44. 91, 1. Apr. 1. 38. 11. 93. 16. Febr.	ji. hoc nostro die 4. Jan. Mars fuit in 13. 36∛, x ⁴ .
1. 49. 38. 95. 4. Jan. 2. 1. 5. 96. 22. Nov. 2. 12. 32. 98. 9. Oct.	
2. 23. 59. 1600. 22. Aug. vel 6. 1602. 14. Juli.	•

 22° 27 1/2.
 Latitudo sine refractione

 Refract.
 6.45.
 1° 50' circiter m.

 22.34.15.
 Paral.
 2. quibus fit altior

ergo in ecliptica.

Per hanc declin, venit locus & 13. 39. 3. lat. 0º 1' 49" m. Computante Matthia.

Idem etiam hinc probatur. Cum angulus verticalis et eclipticae sit circiter 108°, nam nulla minor verticali erit latitudinis et refractionis parallaxis; forte pro quinta parte. Est autem Mars in vicinia Solis', minor itaque ejus parallaxis. Habet \odot in alt. 8° parallaxin 2. 52. Huic adime circiter sextam partem pro parallaxi σ , restat 2' 24". Et hace est verticalis parallaxis. Et huic adime partem quintam circiter, restabit 2' circiter parallaxis latitudinis. Itaque esset ejus lat. bor. 5' 45". Jam adime et refractioni partem quintam, restat 5' 24", quam ab illa subtrahe, restat 21" bor. Ergo hoc die fuit in nodo.

Vide, qualis sit ejus dispositio in eccentrico, ut appareat, ubi sit diameter nodorum. 1594 :

dies 3. 1. 34. 20.	4= 23° 35′ 8″ 8.	prior simpl. 3* 6° 24′ 52′′ anom. posterior 8. 12, 2. 56.
long. simpl. 8. 0. 0. 0. prosth. 11. 29. 2.	3. 6. 24. 52. 11. 29. 2.	5. 5. 38. 4. prior. coaeq. 2º 24º 55' 50''
7. 18. 31.	2. 24. 55. 50.	8. 23. 20. 2.
Sept. d. 27. 4. 23. 4. 17. 14. 9. 0.	50.	6. 1. 35. 48. 5. 28. 24. 12.
long. simpl. 1. 5. 38. 56. prosth. 11. 17. 6.	4. 23. 36. 0. 1. 5. 38. 56.	Differentia 1º 36', quam conficit Mars diebus tribus. At per tantum temporis
long. coaeq. 1. 16. 56. 2.	8. 12. 2. 56. 11. 17. 6.	errari per intricationes refractionum et parallaxium non potuit.
·	8. 23. 20. 2.	
	Investigatio lin	nitis borei.
3= 0*	47' 54''	A. 1595.
2. 24.	55 . 50.	Nodi 2• 24° 55′ 50″
11, 24.	7. 56.	4. 23. 35. 8.
ante apog. 5.	52. 4.	7. 18. 30. 58.
4. 23.	35. 34. Ω	8. 23. 20. 2.
limes 17.	43. 30. Q	4. 23. 36.
	•	1. 16. 56.

His addit Keplerus ulteriorem "speculationem", qua nititur, loca nodorum inquirendi. Paulo post vero abrumpit stilum addens: "nihili, male accommodatis observationibus," et hinc transit ad inquirendam σ eccentricitatem etc.

36) p. 214. Sphaericorum Theodosii libros tres edidit et scholiis illustravit Vogelinus Viennae 1529, Pena Par. 1557, et Ch. Clavius Romae anno 1586. (Clavii op. tom. L) De tempore, quo vixit Theodosius, refert Weidlerus (Hist. Astr. p. 146): Strabo, aevi Angustei scriptor, memorat Theodosium Bithynum mathematicum; quare ante aeram Christianam vixisse oportuit. Eapropter eruditi quidam viri (Riccioli, Dechales, Vossius), Theodosium Sphaericorum auctorem ad annum a. Ch. 50. retulerunt. Aliis recentior ejus aetas videtur, atque hi "Bithynium" a "Tripolite" distinguunt. Nituntur auctoritate Suidae, secundum quem Theodosius, qui Sphaerica scripsit, etiam in Theudae Κεφαλαια commentatus fuit. Theudas vero post Ch. n. vixit (sec. II. p. Ch.).

37) p. 217. Haec et sequentia Martis loca exhibet ex parte collectio observationum Tychonis, inscripta Historia Coelestis. Eadem anni 1580. Ma e stlini Ephemerides "ab anno 1577. ad annum 1590, supputatae ex Tab. Pratenicis, ad horizontem Tubingensem, cujus longitudo est 29° 45', latitudo vero 48° 24'." (Prodiere Tub. 1580) Deinde Ephemerides Jo. Stadii (Colon. 1584), de quo diximus vol. I. p. 363. Ejusdem Stadii opera concinnatae sunt "Tabulae Bergenses", quae prodierunt a. 1560. Coloniae, quas monet Ricciolus (Almag. praef.) coele non undiquaque congruere; idem judicium fert Tycho de Stadii Ephemeridibus. (Weidl. Hist. Astr. p. 371.) Dav. Origanus Ephemerides suas (ed. a. 1599) sic inscribit: Ephem. novae annorum 36, incipientes ab a. 1595, quo J. Stadii maxime errare incipiunt &c. et in praefatione haec affert: septimus hic annus agitur, quum has condere coepi Ephemerides, adductus ad hune laborem his inprimis rationibus, quod posteriores Stadii a calculo tabularum Prutenicarum, unde deductas esse ipse gloriatur, multum aberrare, et M. Maestlinum, mathematicum praestantissimum et prof. acad. Tub. solertissimum, alis procul dubio occupationibus distractum, Ephemeridas suas ulterius non extendere enimadverti. 38) p. 219. In Tychonis Progymn. I, p. 414 haec leguntur: Licet parallaxium mensuratio in tribus superioribus planetis vix locum inveniat, attamen adhibite exactissimo instrumento et has parallaxes experiri licebit, praesertim in Marte, quando acrenychins est, cujus ego parallaxes circa id temporis demensus sum; quare convenientiore loco, quid invenerim, manifestabo.

Item p. 661: nos in Marte acronychio alia quidem ratione id (sc. parallaxes superiorum planetarum) experiri et prout speramus satis certo assequi non intentatum reliquimus, ut alibi convenientius aperiemus.

Eadem quae hic, recoquit Keplerus in "Tychonis Hyperaspiste", nec non in literis ad Dav. Fabricium datis.

Fabricius in postscriptis ad epistolam d. 2/12. Apr. 1605 (v. s. p. 98) scriptam quaerit: In Mysterio Cosmographico ostendis ex proportione 5 corporum distantias et proportiones sphaerarum ad se invicem. Cupio scire, an omnia, praesertim Mars, Sol, Luna, quorum motus perfecte nunc constant, veritati et apparentiis congruant, ut futurum putas, si de vera eccentricitatis proportione de illis constet. Quodsi sic, esset miraculi loce, et recte dictum, omnia in numero et mensura consistere.

Keplerus respondit: An adhuc stet Mysterium meum, quaeris? Omnino mihi bisectio eccentricitatis Solis benignissime fecit in diastematibus omnium planetarum, et hoc procul dubio est, quod me torsit fol. 61, ut et 50—53. Mysterii (Vol. I, p. 165 et 153 s.), quod sc. in compensationem alterius partis eccentricitatis Solis, quae mihi ex antiqua persuasione accesserat, Lunam exterminare volui. Nam Luna addita plus justo habui, eliminata minus justo.

Diff. 8103.

Si ergo Terra a Sole distaret talium partium 1018, qualium Luna distat a Terra 81, tunc exquisitissime concordaret Mysterium. Dicamus sic: 81 sunt 60 (semi) diametri Terrae, quid 1018? — 754. Quia ergo certum est observatione, Lunam distare 60 ubi plurimum, Terra igitur secundum hanc analogiam distaret 754 semid. At ponitur distare 1200, sed periculosa et facile erranti methodo, quae nititur aestimatione digitorum eclipticorum. In eccentricitate Solis Ptolemaica est summa Terrae 1021; hoc subtrahe a 1099, restat 78: parum lucrum; est notatu dignum: si Terra distat 754 semid., tunc umbrae Terrae mucro desinit in corpore Martis, si mediocriter distat. —

Et quia in hanc mentionem incidi, consilii capiendi causa, rem magni momenti aperiam.

Tycho perscripsit (locis supra citatis et in Epist. astron. p. 42), se observasse parallaxes Martis majores Solaribus in ∂ Solis; perquisivi in observationibus, invenio insignem fallaciam contigisse. Tycho instituerat hoc facere; observationes huic negotio idoneae habitae ex ipsius mente. Ex iis observationibus ego parallaxin invenio nullam, minorem sc. quam ea, quae Soli tribuitur: adeo, 'ut si qua erat, ea se intra observandi incertitudinem abscondat. Nec invenio examinatas illas observationes parallaxeos eruendae causa; sed hujus loco invenio schema Copernicanum, numeros et assumta omnia ex Copernico, casum tamen ex observatione illa, et inde per solutionem triangulorum rectilineorum laboriosissimam computationem parallaxeos Martis, ubi tandem concluditur, majorem esse Solari; idque manu studiosi alicujus. Credo igitur, jussisse quidem Tychonem, quod erat ad rem; studiosos vero perperam intellexisse, et deinde factum retulisse quod imperaverat, in verbum vero quod erat suspicatus.

Tu igitur quid suades ? Quomodo haec propalanda lectori ? Certe in fraudem veritatis reticenda non sunt, ne Deum iratum habeamus.

Si ergo parallaxes of tam parvae, erunt et \odot minores, quod etiam eclipsium doctrina confirmabit, ubi ad Hipparchum meum Deo dante accessero; nam aegre 1' retineo inter Solis parallaxes. Alia igitur obliquitas eclipticae &c. Quo vero

altius Solem sustulero, hoc longius a meo Mysterio discessero. --- (Ex epistola Kepleri d. d. 11. Oct. 1605. Comp. p. 99.) Fabricius (d. 20/30. Jan. 1607): Statuis parallaxin Martis non tantam esse, quantam

Tycho putat; Solis multo minorem. Respondeo: non potuit per Tychonis instrumenta Solis parallaxis vera latere, et cum o medium fere 💿 orbem habet, quomodo minorem habeat?

Keplerus (1. Aug. 1607): De parallaxi o me non percepisti. Tycho Solis p**arallaxin nunquam est dimensus suis instrumentis, sed assumsit demonstratam ex** eclipsibus statuitque esse 3'. Hac parallaxi Solis majorem pronunciavit Martis per acronychia; sed ut deceptus sit a ministris calculi, scripsi ante annum. Nam si consulam observata Martis, quae Braheus ipse destinavit Martis parallaxibus inquirendis, invenio minorem parallaxin 3', minorem etiam 2'. Ex hoc ratiocinor ut tu, sed ἀναπαλεν; nimirum assumo veram ex Braheo vel Copernico proportionem orbium. Ergo si Martis parallaxis in opposito Solis est minor 2', Solis parallaxis non erit multo major 1'. Et vere quidem ex eclipsium doctrina nihil aliud quam hoc habetur: non esse nullam Solis parallaxin; item illud: non esse majorem 3 minutis. At inter 0' et 3' incerti relinquimur ab eclipsibus, ut olim probabo, Deo vitam dante, in Hipparcho.

Manuscr. Vol. XIV. haec habet ad "Inquisitionem parallaxeon J ex observationibus T. Brahei, quas habuit anno 1583. Januario," quaeque referenda sunt ad p. 220.

Die 16. Jan. h. 7. 30' 5 a lucida pedis Erichthonii 23° 29', bis vel ter, in alt. 51°. Die 17, h. inter 5. 15' et 5. 30' eadem dist. 23° 16' ter. Alt. 33° 31'. Stellae lat. est h. $7\frac{1}{3}$. - 23. 29. $5\frac{1}{3}$. - 23. 16 5. 20 b. Martis paulo minor. Hinc horarius habetur 35". Die 18. h. 5. 5' dist. 23. 1. 30 ter.

23. 16 Prius 5. 20

13. 24. 15. 14. 30 (: 24. 15') = 36" fere. 21. 50135" Ergo die 18. mane h. 3. 11 in alt. 3 29° fuit hase dist. 23. 9' quinquies. Prins 5. 20 , , 33. 20 . . 23. 16 10. 55 5. 20 " " 1. 49

horae 9. 51' dant - 7' sine parall. 12. 54 36 \times 9. 51' = 5. 55 (deb.). Ergo parall. hic potuit non plus 1' in longum.

Hora 5. 20 - 20° & est in nonagesimo, J ergo in 10° @ distat ad ortum 50°. Mane h. 3. 11' est 28° Q in nonag., J ergo distat ad occasum 48°. Alt. 20° & est 49 ex Copernico; alt. 28° Q - 55. Sit altitudinis parallaxis per falsi 60", erunt horizontales longitudinis 45" 17"" et 49" 9", et hinc partes pro distantiis nonag. 34" 28" et 36" 25". Summa 71"; debuimus efficere 65; ergo paulo nimium assumseramus.

In secunda positione sumantur 50"; prodeunt 29 et 301/2, summa 591/2. Jam tantum deficit, quantum prius abundabat. Igitur horizontalis est 55". Distat vero d

a Terra minus quam ⁽O), minor ergo ⁽O) parallaxis. Idem per Cor Ω; h. 7. 45 - 44. 6. 30; alt. ultra 35° 15. 30 - 44. 13 -— — c. 26. 7.45 6. 30 deb. 7. 45×36 -4. 39

1. 51 parallaxis. Et cum haec tempora ab illis multum distent, et brevior sit digressio J a nonag., jam igitur ipsi competet alt. parallaxis c. c. $2^{1/_{2}}$.

39) p. 222. Cum in hoc capite Keplerus saepius appellet "Tabulam Parallacticam". quam ipse addidit Opticae, nos vero omittendam censuimus (comp. vol. IL p. 434), respicientes ad ea, quae l. c. diximus, unum tantum Kepleri calculum repetimus, ut habeat lector, quo reliquos calculos ponderet.

Pagina 222. inquirens lat. J arcum prodit Keplerus circuli declinationis = 3° 0' 30" et angulum hujus circuli cum ecliptica = 68° 59'. Jam in triangulo sphaerico rectangulo dantur hypot. = 3° 0' 30" et alter angulus = 68° 59', quare sin. lat. = sin. 3° 0' 30" log. sin. 3° 0' $30^{\prime\prime} = 8,7200038$ × sin. 68° 59'

log. sin. 68° 59' = 9,9701032

Lat. d Ut tabula _paralizatica" uti possit, assumit Keplerus 1º 0' 30" pro 8º 0' 80" et deprebendit in illius columna, quae inscripta est 60 (= 1°) ad angulum in margine 68° quantitatem 55′ 38″; differentia inter hoc et aream ad marginalem 69° (56′ 1″) = 23″ dat $\frac{59 \cdot 23}{60}$ = 22,6; 55′ 38″ + 22,6″ = 36′ 0,6″. Haec quantitas triplicata (quia angulus 1° pao

 3° assumtus faerat) dat 2° 48' 1.8". Jam adhibitis reliquis 30" prodit tabula in columna, quae inscribitur 30, ad marginem 68 (additis scrupulis proportionalibus pro 59') 28,8", quae addita ad 2° 48' 1.8" exhibent lat. $3^{\circ} = 2^{\circ}$ 48' 30,6".

40) p. 229. 1) Posita distantia Martis C a Sole B = 5, eademque Terrae A a Sole B = 3, erit AB : CB = 3 : 5 = 1 : 1,6666 ...

Deinde assumta ΔD (= $\frac{1}{2} \Delta B$) = 1, erit ΔC (= CB) = 3,3333...

ergo cos.
$$CAD = \frac{1}{3,3333}$$
,

 $\frac{\angle CBD}{\angle CBD} = \frac{\angle CAD}{= 72^{\circ} 33'}.$ Hine assume $\angle CBD = 72'_{13}^{\circ}, \angle BCA = 180^{\circ} - 145^{\circ} = 35^{\circ}.$ Can autom linea CB vergat in 17° Q, linea CA verget in 4° 17° + 35° = 5° 22°, h. e. 22° H, sive in

CB = 2,75, ergo cos. CBD = $\frac{1}{2,75}$; \angle CBD = 68° 40', \angle BCA = $180^{\circ} - 137^{\circ}$ 20' = 42° 40'. Locus Solis B a C visus in 17° $\frac{100}{2}$, ergo locus Terrae A sive in 10° 17° + 42° 40' = 11° 29° 40' h. e. fere in 0° Υ , sive in 10° 17° - 42° 40' = 9° $4\frac{1}{2}^{\circ}$ h. e. in $4\frac{1}{2}^{\circ}$ $\tilde{\mathcal{L}}$, neque vero in $24\frac{1}{3}^{\circ}$ $\tilde{\mathcal{L}}$, quem locum obtinebis subtrahens 52° 40' pro 42° 40'. Locus Solis erit primo casu in 5° 22° + $72\frac{1}{2}^{\circ}$ = 5° $\tilde{\mathcal{L}}$ p. p.

secundo — —
$$3^{\circ} 12^{\circ} - 72^{\circ} = 30^{\circ} \gamma$$

$$\frac{1}{100} = -\frac{1}{100} = -\frac{1$$

sive assumto loco Martis eo, quem Keplerus exhibet, in $8^{\mu} 25^{\circ} - 69^{\circ} = 16^{\circ} 22^{\circ}$, 41) p. 233. Keplerus ponit $\angle CBE = 6^{\circ}$ 7', quem in tabella cap. VIII. posuerat

= 6° 3'. Adhibita posteriori hac quantitate prodit sin. BCA = $\frac{\sin 6^{\circ} 3'}{2}$;

$$\frac{\sum_{i=1}^{1,309} BCA = 4^{\circ} 21' 6'' (10'')}{\sum_{i=1}^{2} CBE = 6^{\circ} 3'}$$

$$\frac{\sum_{i=1}^{1,309} BAC = 1.41.54.}{\sum_{i=1}^{2} BCA = 4^{\circ} 23' 58''}$$

Assume antem $\angle CBE = 6^\circ$ 7'. prodit $\angle BCA = \overline{4^\circ}23'$ 58" $\angle CBE = 6$. 7.

Ergo, quamquam assumamus 7' pro sphalmate typographico, et ponamus pro 6" numerum rotundum 10", adhuc restat dubium, cum 6° 3' — 4° 21' 10" non sit acquale 1° 42' 10". Tollant hoc dubium Kepleri manuscripta, quae exhibent $\Delta C = 1384$. Hinc prodit BCA = 4° 24' 50", qui subtractus a 6° 7' relinquit BAC = 1° 42' 10".

42) p. 233. In editione Heidelb. 1582. pag. 361: "Cum diameter longitudinum mediarum et diameter mutuarum sectionum epicycli et eccentrici diametro sectionis eccentricorum et colipticae et sic etiam ipsi eclipticae quam proxime semper acquidistent, ideo pro una simplici latitudine haberi possunt, qua sc. planum epicycli, quod in nodis unitur eclipticae, inclinare faciat diametrum illam, quae lineae per utrumque limitem ductae parallela est, super diametrum lineae per nodos ductae parallelam.

In locis intermediis diameter nutans sursum respicit, sed inclinationem sustinens transversa ponitur. Hinc latitudines horum planetarum computantur tantum ad positus epicyclorum in limitibus, et postmodum per scrupula proportionalia ad alios situs eccentrici secundum distantias vel majores vel minores a limitibus vel ab ecliptica adaequantur."

De Rhaetici "Narratione", quam paulo post affert Keplerus, diximus Vol. I, p. 8. Keplerus spectat conclusionem Rhaetici, ubi, praemissa latitudinis planetarum descriptione, refert : "apud Copernicum nihil prius, nihil antiquius quicquam esse, quam vestigils Ptolemaei ut insistat" &c.

43) p. 234. Petrum Apianum (Bienewitz), nat. Leisnigi Misniae a. 1495, Ingolstadiae matheseos professorem ab a. 1524 († 1552) ejusque opus inscriptum: Astronomicum Caesareum (Ingolst. 1540) nec non "Cosmographiam" pluribus dicunt Weidlerus (Hist. Astr. p. 349) et Delambrus (Hist. de l'Astr. du moyen age p. 390). Weidlerus, Kepleri verba proponens, addit: "Haec quidem omnia (loca stellarum ope astrolabiorum et planetolabiorum orbiculariorum ad quodvis tempus sine calculo invenire, eclipses praedicere &c.) utat ingeniose excogitata nec minore solertia perfecta, et propterea laudem suam habeant;

tamen calculorum subtilitatem minime assequentur." De Globo Apiani refert Keplerus vol. L. p. 79, de illius horologio Chytraeus ib. p. 193. (Cosmographiam pluries editam fuisse a R. Gesnma diximus vol. II. p. 419.)

44) p. 235. "Distat 0 a $\textcircled{0}^{*}$ h. e. a puncto opposito Marti, quod est în $\textcircled{8}^{\circ} 37' \swarrow'$; Sole in $\textcircled{0}^{\circ} 45' 36'' \swarrow'$ existente, differentia locorum est $\textcircled{8}^{\circ} 37' - \textcircled{0}^{\circ} 45' 36'' = 7^{\circ} 51' 24''$. Motus diurnus compositus Martis et Solis = 1° 24', ergo 7° 51' 24'' configuratur in 7.86

$$\frac{1}{1.4} = 5,6142$$
 diebus = 5 d. 14^h 44

Observatio facta est Nov. 12. 10. 50

Articulus oppositionis die 18. 1. 34. Novembris.

Mars tam abest a puncto oppositionis per 4° 40′ 37″, quod dicit Keplerus "distantiam siderum"; deinde cum sit summa diurnorum = 85′, erit tempus verae oppositionis = $\frac{280,6167}{85}$ = 3,30137 d. = 3d 7^h 14.

Tempus observ. Dec. 10. 8. 30

Tempus oppos. Dec. 13. 15. 44, h. e. d. 14. Dec. mane hora 3. 44'. Diebus 3,3 movetur Mars per 1° 18' 6", ergo locus Martis 3° 45' 30" $\mathfrak{S} - 1^{\circ}$ 18' 6" = 2° 27' 24". (In tabella p. 241 : 2° 28'.) Assumta autem "distantia siderum" Kepleriana 4° 46' 27" prodiret quaesitum tempus = $\frac{286,45}{85}$ = 3,37 = 3d 8h 52' 48", omniaque reliqua mutanda essent. Quare numerus 4° 46' 27" sphalmati typographico tribuendus erit. — Ad praecedentem locum (Nro. VIII.) notamus, numeros "40' 47" diei" prodire calculo "sexagenario", de quo aliis locis diximus. Fractionibus usi decimalibus prodit quaesitum tempus = $\frac{56,75}{27.0507}$

de que anis locus aximus. Fractionibus usi décimalibus prodit quaesitum tempos = $\frac{1}{83,4867}$ = 0,67975 d. = 16h 19'.

47) p. 238. Assumit hic Keplerus, ut prius saepius loco citato compendii causa fecerat, triangulum ABC "proxime" rectangulum ad A, dum ponit arcum AB "proxime parallelum" eclipticae.

Keplero prodit AC = 52° 14', cum arcum AC non 4° 43' 30" sed = 3° 45' ($_{n}3^{3}$ /₄ differentia") assumserit, quo adhibito prodit quaesitum.

48) p. 239. Parallaxes sine ope "tabulae parallacticae" (vide s. ann. 39), sic computantur: sin. parallaxeos latitudinis = sin. 5' × sin. 32° 30' = sin. 2' 41". Haec 2' 41" addita ad 4° 7' 55", produnt lat. σ ex centro σ = 4° 10' 36". Sin. parall. longitudinis = sin. 5' × sin. 57° 30' = sin. 4' 13". Deinde, quia 5° Ω in nonagesimo et σ in 13° 10, distat σ a nonagesimo per 38°, ergo sin. parall. long. = sin. 4' 13" × sin. 38° = sin. 2' 36". 4' 13" - 2' 36" = 1' 37"

· Locus & in 13° 19' 36"
13° 18' — "proxime".
Locus Soli oppositus eo momento 10° 16' 42" 10
Locus & 13. 18. — 10
Distantia "siderum", h. e. & ab opp.
$$\odot = 3°$$
 1' 18"

49) p. 239. Iterum hic 🛆 ABC (Fig. 68) assumitur ad A rectangulum, ergo

$$\cos AC = \frac{\cos 8^{\circ} 17'}{\cos 1^{\circ} 45'};$$
$$AC = 8^{\circ} 6'.$$

Observationes, quas exhibet Keplerus, Fabricius ipsi transmiserat adjunctas literis d. d. 13/23. Martii 1602, addens: mitto observationes acronychii Martis hoc anno fideliter habitas; in 2 et 5 post mittam, ubi vestras accepero literas. Quomodo studia vestra in \mathcal{J} et aliis succedant, non intermittes quin saepe me certiorem de iis reddas. Quod maxime rogo, concludit pastor sollicitus, in Augustanae confessionis affectione constans vel hactenus cum tuis maneto. Deus in exilio tuo vobis praevidebit, utque tuam fidem magis emuscites, D. Hunnii libros interdum legito. Vale.

50) p. 243. Solutionem hanc dicit Keplerus in literis ad Fabricium datis "quadratam regulam falsi" eamque huic declarat. (Vide supra p. 75.) Quae de eodem problemate Herwarto et Magino scripserat, leguntur p. 25, 43.

51) p. 246. Franciscus Vieta (nat. a. 1540 Fontenaii in inferiore Pictonum provincia — Poitou — Ludovico XIII. a. consiliis; mortuus anno 1603.) celeber ob multifariam in mathematicis doctrinam, cujus partem praesertim analyticam excoluit et inter primos analysin algebraicam ad geometriam applicavit algebranque compendiosiorem reddidit inductis literarum signis in aequationibus. In libro inscripto: A pollo ni us Gallus seu exsuscitata Apollonii Pergaei $\pi \epsilon \rho i \ \hbar \alpha \alpha \rho \omega \nu$ geometria, ad Adr. Romanum (Par. 1600) "Appendicula II." (in editione Operum Vietae curante Fr. a Schooten, Lugd. Bat. 1646, fol. 343) haec dicit Vieta: Ptolemaeus ipse et Ptolemaei paraphrastes Copernicus cum ex tribus epochis mediis et totidem apparentibus exquirunt summarum absidum loca, geometras non se produnt, assumentes opus tanquam confectum, quod ideo resolvant infeliciter. Imo vero Copernicus $\dot{\alpha} \tau \epsilon \chi \nu \iota \alpha \nu$ non solum profitetur, sed docet Cap. 9. lib. III. Resolutionum. Jubet enim, non jam artis sed aleae magister, circulum tam diu revolvi, donee error, quem ex sua $\dot{\alpha} \gamma \epsilon \omega \mu \epsilon \tau \rho \sigma \iota \alpha$ nasci agnoscit, tandem si sors dederit compensetur. Sane infelici logista fuit infelicior geometra Copernicus; itaque omissa a Ptolemaeo omisit, commisit autem quamplurima.

Deinde "appendicula I." (fol. 339 dictae editionis): Dixi (in fine libelli inscripti: Fr. Vietae ad problema, quod proposuit Adrianus Romanus, responsum), quaedam esse problemata, quorum geometricam constructionem se nescire ait Regiomontanus, quamquam algebraice, ut loquitur, ea explicet. At algebra, quam tradidere veteres analystae, omnino geometrica est.

Quae dicit Keplerus de laboribus suis immanibus verissima deprehendet, qui impexerit Mas. Petrop. Vol. XIV. Inter multa alia quae hic Keplerus tentavit pro conciliandis observationibus cum calculo, memoriae causa sibi reservata, quaeque typis expressa certe 2 volumina nostrae editionis consumerent, eorum, quae ad hunc pertinent locum, delectionem quandam instituendam censemus. Folio ab initio 546. illius voluminis haec deprehendimus: Revisio pragmatiae, qua eccentricitas, aequatio, distantia centrorum et media longitudo investigantur (in praemissis foliis 66). Causa revisionis est haec: prima vice falsum assumseram. Errorem ipse commisi (in deductione loci \mathcal{J}). Altera vice putavi me fundamentales observationes optime constituisse; at animadverti errorem 4' in una, quem non ipse, sed computator longitudinum et latitudinum commiserat. (prius locus \mathcal{J} 25° 44' 31" MP, jam 25° 48' 24" MP; "computator" fuit discipulus Tychonis, cum Keplerus, desumens data ex observationibus Tychonis, loco quo errorem detarit adscripserit: mirum, hic 4' meam ab illorum computatione differre — et nota, hanc esse fundamentalem. — Deinde addit: falsa haec computatio, nam pars proportionalis est 43' 12", quare 25° 42" MP; veram \mathcal{G} det \odot 43' 30". — Haec his explicantur : paulo. supra prodit Keplerus diu 6. Mart. h. 8. 4', diff. d. 1 h. 18. 39'; hinc computate sunt falso 37' 18" pro 43' 12" motus \mathcal{G} ad interjectum tempus; 26° 25' 42" — 43' 12" = 25° 42' 30".)

Keplerus pergit: Unde procul dubio factum, quod assumta et limitata hypothesis discrepaverit a 4 reliquis non assumtis ad constructionem. Necesse igitur est, ut omnia 4 loca ex suis declinationibus et A. R. deducantur.

Initio facto ab a. 1587. sic concludit : haec deductio praeferenda est omnibus prioribus. Omnia bis repetii et ex ipsis observationibus deduxi. — Frustra, quod anno 1602. 15. Jun. apparuit. Nota ergo hunc errorem in sequentibus.

Secunda observatio supra diligenter fuit examinata et constitutum tempus

8. Jun. h. 7. 23', locus 💿 26° 42' 3" II; 👌 26° 43' 3" 🖈. Tertia ex computatione est deducta; longitudo bene habet. Tempus est 25. Aug. h. 16. 52', locus 12° 16' 0" H. Quarta ad 30. Oct. h. 8. 20', locus 17° 47' 15" 8.

Hinc rem de novo aggressus ponit aphelium 29° 0' 35" Q et longitudines : 6º 0° 50' 8", 9= 5° 43' 28", 11= 9° 54' 18", 1= 7° 14' 1"; et calculo absoluto, cum deprehenderet, angulos F et D non in circulum incidere, diminuit aphelium per 11'. Calculus ostendit, 18' aphelio adimenda esse, quo facto summa angulorum ad D non par prodit summae angulorom ad F; item additis 3' 44" (comp. fol. 247). "Ratio est, quia erravi, cum statuerem promovere apogaeum, id removi re ipsa." Iterum vero res non ex vote successit : "apparet, totam hanc repetitionem institutam esse perperam; addidissem potins meae pridem correctae longitudini.

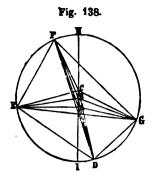
				106° 101.		
	 _	14		4.		
					6.	
				2.	17.	
 	 4 1		- 1 2			

Ergo si 3' 26" addita absumunt 2° 17', quid addendum, ut consumantur 4° 23' 12"? - Resp. 6' 36" addendum long. Tychonis. Apogaeum jam 28° 57' 19", prius 29. 11. 35, erit c. 29° 34'." Calculus'nondum ad soopum perducit, quare iterum iterum." que mutando aphelium frustra per 14 folia quaerit optatum, ut denique adscripserit : "Major jasto, nescio ubi error." Tum, "errorculo" (1') deprehenso rem de novo aggreditur, cum vero non succedat, "plane, inquit, contrarium est factum ejus, quod intenderam; oportet erge detrahere apogaeo 1' 58". Quod quum nondum sufficeret, addit 7", deinde 1' 40", denique 2' 30". Hine prodit differentia duorum angulorum ad D et duorum ad P = 4' 25". Nondum satisfacit quod positum est, quare repetito calculo, sic incipit: "sequitur ergo solennis repetitio eorum, quae sunt supra; utinam et ultima esse possit." Calculo per 7 folia producto adscribit : "manifeste apparet residua aliqua mendula. Ut autem hic errorculus tollatur, compara priorem eccentricitatem et aphelium cum moderna ... Prius plus justo colligebamus c. 8, hic minus justo e. 1¹/₂; si utamur parte proportionali, prodit apogaeum 29° 0' 35", addendum long. mediae 3' 39", eccentricitas tota 18557, eccentrici 11613. Haec ergo correctissima hypothesis, quam studiosus aliquis probet. Tunc prodibit 25° 44' 30" m.

Jam demum missa hae inquisitionis methodo aliam ingreditur viam, inquiens: "Dis-cutienda nobis est haec lis per caput 27." (28), et iterum consumtis irritis conatibus per 14 folia addit : haec subtilitas tota fuit frustranea, cum hypothesis ipsa plus aberrare possit, quam erramus, si aphelium ponamus in 29° Ω (in margine: Minime. Neque n. hypothesis errat, si bene instituatur). Illud in genere verum est, ex azooruziois longitudinibus eccentrici eccentricitatem elici non posse. Sed sunt consulendae parallaxes annuae, et quo plures talium distantiarum haberi possunt, hoc melius est. - Hinc transit ad alia nec redit in hoc volumine ad priorem inquisitionem.

52) p. 246. Numeri exhibentes "motum praecessionis" desumtae sunt e tabulae Cap. VIII. (p. 211) columna penultima sic : Praecessio aequinoctii

 1587. <u>—</u> 1591. <u>—</u>				••		~~	-		
-	3		 	30"	-			17"	(K .


Quibus numeris subtractis a longitudinibus J annorum 91, 93 et 95, quas exhibet tabula

Cap. XV, reductio ad annum 1587. absoluta est longitudinesque Martis mediae supputantur: 6° 0° 47' 40"; 9° 5° 40' 18"; 11° 9° 49' 34"; 1° 7° 6' 51". Jam Keplerus incipit calculum duo "ponens" 1) aphelium 3 esse in 28° 44' 2 2) longitudinibus his mediis addenda esse 3' 16". Quan additionem, quamquam perficit, nt accipiat angulos CFA, CGA &c., omittit in inquirendis angulis ad C, praeterquam in angulo FCH, ad reliquos angulos adhibens non auctas long. medias 9º 49' 34" H &c.

53) p. 247. In $\triangle \triangle$ CAF, CAG, CAD et CAE dantur CA = 1, anguli ad puncta F, G, D, E: 5° 7' 58"; 9° 4' 11"; 2° 17' 40"; 10° 14' 15"; et anguli ad punctum C; 32°.6' 56"; 11° 5' 34"; 53° 3' 42"; 68° 22' 51".

Quibus datis quaeruntur latera AF, AG, AD et AE.

18").

$$AF = \frac{\sin. 32^{\circ} 6' 56''}{\sin. 5^{\circ} 7' 56''}; \qquad AG = \frac{\sin. 53^{\circ} 3' 42''}{\sin. 9^{\circ} 4' 11''}; \\ = 5,9431 \qquad \qquad = 5,0704 \\ AD = \frac{\sin. 11^{\circ} 5' 34''}{\sin. 2^{\circ} 17' 40''}; \qquad AE = \frac{\sin. 68^{\circ} 22' 51''}{\sin. 10^{\circ} 14' 15''}; \\ = 4,8058 \qquad \qquad = 5,2308.$$

Lineae AE quantitatem in erratorum indice Keplerus prodit 52307, cum ipsi error calculi a nobis correcti eandem exhiberet 52302, pro quo numero, superveniente mendo typographico, quotientem 48052 appositum invenimus. Cum in sequenti calculo AE ubique == 52302 posita sit, corrigenda quaedam nobis fuere, quae comparata hac cum priori editione patebunt.

Ceterum omisimus, omnes calculi numeros, quos nimis late apposuit Keplerus, repetere in textu, satis ad rem percipiendam habentes, formulas quibus usus est et calculi summam addere ipsumque calculum per logarithmos in notis nostris illustrare, adhibentes numeros modo praemissi calculi, aliquantulum a Keplerianis differentes, quia Keplerus sinus suos nimis decurtavit.

54) p. 247. In triangulis FAG, GAD, DAE, EAF dantur duo latera cum angulo comprehenso, quaeruntur anguli reliqui, adhibitis quantitatibus linearum 5,9431, 5,0704, 4,8058, 5,2308, aliquantulum a Keplerianis differentibus.

1) In \triangle FAG.	2) In 🛆 ADG.
$\frac{1}{2}$ (G+F) = 44° 31' 48" - 9,9928746	$\frac{1}{2} (D+G) = 52^{\circ} 14' 27'' - 10,1109569$
AF - AG = 0.8727 - 0.9408650 - 1	AG - AD = 0,2646 - 0,225898 - 1
$\Delta F + \Delta G = 11,0135 - 1,0419254$	$\Delta G + \Delta D = 9,8762 - 0,9945899$
$\frac{1}{2} (G-F) = 4^{\circ} 27' 25'' - 8,8918142$	$^{1}/_{2}(D-G) = 1^{\circ}58'52'' - 8,5389568$
44. 31. 48	52. 14. 27
$\angle G = \overline{48.59.13}$	$\angle D = \overline{54, 13. 19}.$
7 F = 40. 4.23.	Z G = 50.15.35.
$\overline{3}$ In \wedge ADE.	4) In \triangle AFE.
	$\frac{1}{1}$ (E+F) = 25° 50' 41" - 9,6851881
	AF - AE = 0,7123 - 0,8526629 - 1
$\dot{AE} + AD = 10,0366 - 1,0015866$	AF + AE = 11,1739 - 1,0482048
$\frac{1}{2}(D-E) = 3^{\circ} 47' 9'' - 8,8206838$	$1/_{1}(E-F) = 1^{\circ}46' 6'' - 8,4896462$
57. 23. 4	25. 50. 41
$D = \overline{61. 10. 13}$	/ E = 27.36.47
$\sum E = 53.35.55.$	$\sum \mathbf{F} = 24.$ 4.35.
	lenli 1/ (E - F) - 1º 47' 59" Error in

Keplerus exhibet, iterum commisso errore calculi, $\frac{1}{2}$ (E — F) = 1° 47′ 59". Error in eo consistit, quod in ultima multiplicatione productum 3142 pro 3092 prodit (3 . 48438 ponit = 19534). Tangens autem 3092 exhibet in tabulis angulum 1° 46′ 15".

Secundum ea. quae Keplerus huic calculo praemisit, summae binarum differentiarum ad puncta D et F (Nro. 1 et 4; Nro. 2 et 3) aequales sint necesse est, si summa angulorum oppositorum aequat 2 R. Quod autem cum non contigerit (differentia ipsi prodit 29'15", nobis 27' 30", concludit, falsam esse "positionem", per quam addenda sint aphelio 3' 16", eamque mutat, ponendo 3' 20". Eadem ratione anguli ipsi, quos exhibet praecedens calculus, non ii sunt, ut figura DEFG circulo possit inscribi.

180. 27. 30 179. 32. 30.

55) p. 248. Hic quoque sicut antea, omittit Keplerus in 3 posterioribus 3' 16", quae addenda esse posuerat. Kepleri calculus hic est. Correctum aphelium in 28° 47' 20" Q

liam	in	28°	47'	201	<u>R</u>
CF	in	0.	50.		is
CG		5.	40.	18	T
CD		9.	49.	34	¥
CE		7.	6.	51	<i>х</i> Ж 8.

480

Notae Editoris.

Inde HCF = 6 0° 50′ 56″ - 4 28° 47′ 20″ = 32° 3′ 36″
HCG = 9. 5. 40. 18 - 4. 28. 47. 20 = 126. 52. 58
HCD = 11. 9. 49. 34 - " = 11. 2. 14
HCE = 0. 7. 6. 51 - " = 68. 19. 31
Jam, datis in
$$\triangle \triangle$$
 AFC, ACG, ACD et ACE latere AC = 1 et angulis, prodit
AF = $\frac{\sin 32^{\circ} 3' 36″}{\sin 5^{\circ} 7' 56″}$; AG = $\frac{\sin 53^{\circ} 7' 2″}{\sin 9^{\circ} 4' 11″}$;
= 5.9338 = 5.0741
AD = $\frac{\sin 11^{\circ} 2' 14″}{\sin 2^{\circ} 17' 40″}$; AE = $\frac{\sin 68^{\circ} 19' 31″}{\sin 10^{\circ} 14' 15″}$;

Denique, datis in $\triangle \triangle$ AFG, AGD, ADE et AEF duobus lateribus cum angulo comprehenso, reliquorum angulorum differentiae sic computantur:

2) In \triangle ADG
$\frac{1}{3}$ (D + G) = 52° 14′ 27″
$\mathbf{AG} - \mathbf{AD} = 0.2921$
$\Delta G + \Delta D = 9,8561$
$\frac{1}{2}$ (D - G) = 2° 11' 28"
4) In 🛆 AFE
$\frac{1}{1}$ (E + F) = 25° 50' 41"
$\Delta F - \Delta E = 0,7051$
$\mathbf{AF} + \mathbf{AE} = 11,1625$
$\frac{1}{2}$ (E - F) = 1° 45' 9"
$\frac{1}{1}$ (G - F) = 4. 23. 36
6. 8. 45
••

2' 3" (K. 1' 48"). Differentia inter numeros Kepleri et nostros hie ut prius prodit ob sinus ab ipso nimis curtatos. Sie in Nro. 1 tabulae exhibent 530807 sin. 32° 3' 36" = 0,530807, sin. 5° 7' 56" = 0,89454; ergo $AF = \frac{300000}{894540}$ = 5,9338. Keplerus vero assumit priorem sinum == 0,53081 et sic dividit: 53081 **∆**F 8945 44725 15 83560 80505 9 3055 2683 3 372 358 4 14 1/2 Haec sic sunt intelligenda : 248. Prior differentia summarum erat 29' 15" Eadem jam prodit 1. 48 Summa 31' (3") Prins fuerat 6° 15' 29" + 5° 46' 14" = 12° 1' 43" Jam 6, 10, 47 + 6, 8, 59 = 12, 19, 46 . 1 18' (3") Diff. = Ergo 31 : $18 = 1\frac{4}{5}$: $\frac{163}{155}$ sive $1\frac{7}{155} = 1^{\circ}\frac{2^{\circ}}{1}$ 12° 19' 46" — 1' 2" = 12° 18' 44" "justissima summa." 57) p. 248. In A GAE dantur latera AG (5,0739) et AE (5,2282) cum angulo comprehenso (GAD + DAE = 140° 44' 59''), quaeruntur / AGE et latus GE. $\frac{1}{6}$ (G + E) = 19° 37' 30" - 9,5521517 GE = 9.8012041 sin. 19º 55' 51" - 0,1880844-1 - 1,0129257 AE - AG = 0,15430,7183522 = 9,7039 (K. 9,7041). 9,5320085 AE + AG = 10,3021 $\frac{1}{6}$ (G - E) = 0° 18' 21" - 7,7273104 0.9869478 19. 37. 30

31

 $\begin{array}{c} 531 \text{ p} = 245 \text{ Durins int} \land \quad \text{(BE angulis GBE (128° 26° 14°)), BGE (25° 46° 53°) et} \\ \text{Interve GE (4,7013), produc BG } = BE = \frac{\text{min. } 25° 44° 53° \times 9,7039}{\text{min. } 128° 26° 14°}; \begin{array}{c} 9,4384279 \\ 0,9669463 \\ 9.80332224 \\ \hline 0,7314518 \end{array}$

Keplero proda BE = 5,3860 ob erreren calculi in multiplications commisture.

In A BGA darber for laters can angele comprehense, quaerier angeles BAG.

Keplers proderget 20° 17' 8" quia BE falsum habet. 87. 4. 29

Z BAG = 117. 21. 37 (vera quantitas = 117' 32' 2").

59) p. 249. In $\frac{7}{2}$ CFA, CGA, CDA, CEA datur anguli ad C: (\angle HCF = 32°. 2° 36° - 1' 30°, \angle GCI = 53° 7' 2° + 1' 30°, \angle DCI = 11° 2' 14″ - 1' 30°, \angle ECI = 66° 19' 31″ - 1' 30″): deinde \angle CFA = 3° 7' 56″ + 30″, \angle CGA = 9° 4' 11″ + 30″ (Keplerus 21″ addix); \angle CDA = 2° 17' 40″ - 30°, \angle CEA = 10° 14' 15″ - 30″. Deinde, cum AC = 1 assumts sit, computatur laters AF &c. sic: AF = $\frac{\sin 32° 2' 6″}{\sin 5° 8' 26″}$; 8,9523046 AG = $\frac{\sin 53° 8' 32″}{\sin 9° 4' 41″}$; 9,1900516

		0,0020010	346. 7 7 71	6,1906310
=	5,9201	0,7723292	= 5.0711	0,7051072
		F 00 1	W1	x

Assunts autom quantitate anguli CGA, quam Keplerus ponit (9° 4′ 32″), prodit AG == 5,0725, Keplero 5,0775, quia simum 9° 4′, neglectis 32″ adhibuit.

AD	<u> </u>	sia. 11° 0'	44"	9,2810750	$\Delta E = \frac{\sin 68^{\circ} 18^{\circ} 1^{\prime\prime}}{\sin 10^{\circ} 13^{\prime} 45^{\prime\prime}};$	9,9680784
лv		sin. 2º 17'	10 ^{~, *}	8,6008595	sin. 10° 13' 45"	9,2494082
	=	4,7987		0,6802155	= 5,2321	0,7186702

Dantar in triangulis AFG, AGD, ADE, AFE duo latera cam angelis comprehensis, unde computantur angulorum reliquorum differentiae. Kepleri numeris, parum a nostris differentibus, usi accipimus:

2) 🏚 🛆 AGD. 1) In 🛆 AFG. 1/1 (G + F) = 44° 31' 48" - 9,9928746 ¹/₁ (D+G) = 52° 14' 27" - 10,1109569 - 0,9256215-1 - 1,0412980 AG - AD = 0,2888 - 0,4605972 - 1 AG + AD = 9,8662 - 0,9941499 $\mathbf{AF} - \mathbf{AG} = 0.8426$ AP + AG = 10,9976¹/₁ (G - F) = 4[•] 18' 36" - 8,8771981 "(D-G)= 2º 9 52" - 8,5774942 3) In 🛆 ADE. 4) In AFE $\frac{1}{1}(D+E) = 57^{\circ} 23' 4'' - 10,1938815$ 1/1 (E+F) = 25° 50' 41" - 9,6851881 AE + AD = 10,0209 $\frac{1}{2}(D-E) = 3^{\circ} 57' 24'' - 8,8398684$ "(E - F) = 1º 42' 41" - 8,4753489. De reliquis compara nostram annotationem Nro. 54.

60) p. 249. In sriangulis CFA, CGA, CDA, CEA angenent vel minunntur anguli C per 38", ut fiant $\underline{/}$ -HCF = 32° 2′ 44", $\underline{/}$ GCA = 53" 7′ 54", $\underline{/}$ DCA = 11° 1′ 22" et $\underline{/}$ ACE = 68° 17′ 23" (quippe aphelium HC fuit in 28° 49′ 8′′ $\underline{2}$, jam, subtractis 38", in 28° 48′ 30" $\underline{2}$. Angulus HCF, qui antea correctus fuerat 32° 2′ 6″, jam fit 32° 2′ 44″ &c.)

Hince Ig. $\Delta F = \lg$. sin. 32° 2' 44" - \lg . sin. 5° 8' 26'' = 0.7724572; $\Delta F = 5.9218$ lg. $\Delta G = \lg$. sin. 536 7' $54'' - \lg$. sin. 9° 4' 32'' = 0.7051659; $\Delta G = 5.0718$ lg. $\Delta D = \lg$. sin. $11^{\circ} + 1' 22'' - \lg$. sin. $3^{\circ} 17'' 10'' = 0.6806267$; $\Delta D = 4.7932$

ig. $\Delta E = ig. \sin 68^{\circ} 17' 23'' - ig. \sin 10^{\circ} 13' 46'' = 0.7186270; \Delta E = 5.2315.$

Lineam AG Keplerus iteruta falsam habet, quia sicut antea sinum anguli 9° 4' pro sinu 9° 4' 32'' e tabula excerpsit.

Pergimus, neglecto hoc errore, numeris usi Kepleri.

 $\Delta F + \Delta G = 10.9988$; $\Delta G + \Delta D = 9.8700$; $\Delta E + \Delta D = 10.0248$; $\Delta F + \Delta E = 11.1536$ $\Delta F - \Delta G = 0.845$; $\Delta G - \Delta D = 0.2838$; $\Delta E - \Delta D = 0.4386$; $\Delta F - \Delta E = 0.6902$ Inde compendio usus, sic pergit Keplerus, quotientes formans practicisarum summarum

et differentiarum, eosque comparans cum prioribus :

1	7	Notae Editoris.							
3	0,845	-	0.07692			0.07000			1
	10,9988 0,2838		0,07683,	prius	1		шп.	100	
	9,87	20	0,02875	*	=	0,02927		52.	- 10
3	0,4386	=	0,04375		-	0,04426	-	51.	
5.	0,6902	2	0.06188	71.1	3	0.06168		00	
1	11,1536	-	0,00100		-	0,00108	n	20.	

Quibus differentiis per tangentes angulorum $\frac{1}{2}$ (G + F) &c. multiplicatis, prodeunt augmenta et decrementa tangentium angulorum $\frac{1}{2}$ (G - F) &c. = 0,00021; 0,00067; 0.0008; 0.0001, quibus respondent augmenta et decrementa arcuum prius inventorum (4° 18' 36", 2° 9' 52", 3° 57' 24" et 1° 42' 41") 41", 2' 14", 2' 39" et 19", ita ut jam evadant priores arcus: 4° 19' 17", 2° 7' 38", 3° 54' 45" et 1° 43'. Probationis causa calculum alia ratione absolvemus.

1) Lg. tg. $1/2$ (G + F) = 9,9928746	2) Ig. tg. $\frac{4}{12}$ (D + G) = 10,1109569
lg. (AF - AG) = 0,9268567 - 1	Ig. (AG - AD) = 0,4530124-1
lg. (AF + AG) = 1,0413455	Ig. (AG + AD) = 0,9943172
lg. tg. $\frac{1}{2}$ (G - F) = 8,8783858	lg. tg. $\frac{1}{z}$ (D - G) = 8,5696521
$\frac{1}{2}$ (G - F) = 4° 19' 19''	$\frac{1}{z}$ (D - G) = 2° 7' 34"
3) Ig. tg. $\frac{1}{12} (D + E) = 10,1938815$	4) lg. tg. $\frac{1}{2}$ (E + F) = 9,6851881
Ig. $(AE - AD) = 0,6420686 - 1$	lg. (AF - AE) = 0,8389750-1
Ig. $(AE + AD) = 1,0010757$	lg. (AF + AE) = 1,0474152
lg. tg. $\frac{1}{3}$ (D - E) = 8,8348744	lg. tg. $\frac{4}{l_{2}}$ (E - F) = 8,4767479
$\frac{1}{2}$ (D - E) = 3° 54′ 41″	$\frac{4}{l_{2}}$ (E - F) = 1° 43'
$\frac{4°}{19'}$ 19″ + 1° 43	= 6° 2' 19"
2° 7' 34" + 3° 54	

6" 61) p. 249. Fol. 247 dantur anguli FAG = 90° 56' 23" et FAE = 128° 18' 38", ergo $\frac{4}{2}$ (AGF + AFG) = 44°31′48″ $\frac{4}{2}$ (AEF + AFE) = 25.50.41

 $\frac{1}{2}(AGF + AFG + AEF + AFE) = \frac{1}{2}(AGF + AEF + EFG) = 70^{\circ}22(29'')$ Supra Keplerus invenit : $\frac{1}{2}(AGF - AFG + AEF - AFE) = \frac{1}{2}(AGF + AEF - EFG) = .6. 2.20$ Ergo EFG = 64° 20' 9' (medium arithmeticum inter 6º 2' 23" et 6º 2' 17").

∠EBG = 2 EFG = 128°40' 18"
et cum sit ∠ BGE = BEG, erit BGE = 90° - 64° 20' 9" = 25°39'51" Deinde datis in AGE lateribus GA (5,0769) et AE (5,2317) cum angulo comprehenso EAG (FAG + FAE + EAG = 360°; EAG = 360° - (90° 56' 23" + 128° 18' 38") = 140° 44' 59"), non latebit angulus AGE et latus GE.

 $\frac{1}{2}$ (G + E) = 19° 37' 30", AE + AG = 10,3086, AE - AG = 0,1548 lg. tg. 19° 37' 30" = 9,5521517

lg. 0,1548 = 0,1897710 - 1lg. 10,3086 = 1,0131996Ig. tg. $\frac{1}{2}$ (G - E) = 7,7287231; $\frac{1}{2}$ (G - E) = 18' 24", ergo + 0° 18' 24" = 19° 55' 54" AE . sin. GAE Ig. 5. AGE = 19" 37' 30" GE = AE, sin, GAE lg. 5,2317 = 0,7186428 lg. sin. 140° 44, 59" = 9,8012040 lg. sin. 19° 854 54" = 9,5326259 sin. AGE

ig. GE = 0,9872209GE = 9,7101.Jam cognito angulo AGE, cutn sit \angle BGA = BGE — AGE, et \angle BGE = 25° 39' 51", erit BGA => 25° 39' 51" — 19° 55' 54" = 5° 13' 57".

Denique in A BAG datis lateribus BG (5,3866; comp. annot. 58, ubi BG = 5,3860 Keplero prodiit), GA (5,0769) et angulo comprehenso BGA, computatur Z BAG: $\frac{1}{2}$ (A + B) = 87° 8' 1,5"; BG + GA = 10,4635, BG - GA = 0,3097

lg. tg. 87° 8' 1,5" = 11,3004461 lg. 0,3097 = 0,4909412-1 lg. 10,4635 = 1,0196770 lg. tg. $\frac{1}{2}$ (A - B) = 9,7717103 $\frac{1}{1} (A - B) = 30^{\circ} 35' 24''$ $\frac{1}{3}$ (A + B) = 87. 8. 1 / BAG = 117° 43' 25".

31 *

483

In Commentaria de motibus Martis

62) p. 249. Prius (p. 246) longitudines mediae (Tychonis) auctae sunt per 3' 16", deinde (p. 248) per 30", denique hoc loco per 9", summa = 3' 55".

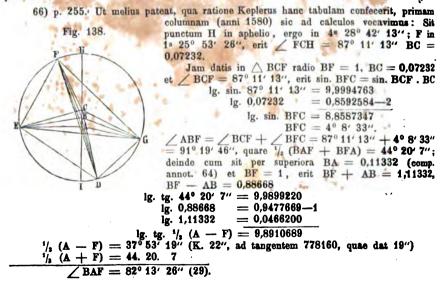
Aphelium initio fuit in 28° 44' Ω , cui addita sunt (p. 247) 3' 20", ut fuerit in 28° 47' 20"; cum autem calculus (p. 248) hanc quantitatem 12" majorem ostenderit, diminutum per haec 12" reponitur in 28° 47' 8". Continuatione calculi apparebat, "ut quadrangulum stet in circulo", promovendum esse aphelium per 2' (p. 248 in fine), ut ita sit in 28° 49' 8". Penultimus calculus (p. 249) ostendit, aphelium per 38" retrahendum esse, h. e. in 28° 48' 30". Ultimus denique calculus promovet aphelium per 25", ita ut jam inventus sit locus aphelii in 28° 48' 55" Ω .

63) p. 249. In △ BGA dantur anguli BGA (5° 43' 57") et BAG (117° 43' 23") et radius BG. lg. sin. 5° 43' 57" = 8,9994966

lg. sin. $117^{\circ} 43' 23'' = 9,9470446$ lg. BA = 0.0524520

$$BA = 0,0324320 - BA = 0,11283.$$

Initio hujus computationis (p. 246) assumta est linea AC = 1 (10000), indeque deducta BG = 5,3866 (5,3860 p. 248). Quam ut ad eandem cum radio BG reducat mensuram, hanc ponit proportionem Keplerus: 5,3866: 1 = 1: AC, $AC = \frac{1}{5,3866} = 0,18564$. Jam dantur: BG = 1, AC = 0,18564, AB = 0,11283, ergo BC = AC - AB = 0,07281.


64) p. 250. Cum circiter tertia parte prioris correctionis nunc latera BG, AG et anguli BGA et BAG mutati sint, tertias differentiarum partes addit vel subtrahit Keplerus horum laterum et angulorum, et redintegrato priore calculo invenit AC = 0.18564. BA = 0.11332.

Posterior autem numerus falsus est. Nam si Keplerum sequentes ponamus sin. 5° 41' 32" = 0,09919, sin. 62° 8' 37" = 0,88414, erit AB = $\frac{0,09919}{0,88414}$ = 0,11218. Numerus 0,11332 prodit commisso a Keplero errore calculi, cum ipsi primum residuum divisionis sit 11776 pro 10776. Correcto hoc errore prodit BC = 0,07346.

Delambrus (Hist. de l'Astr. mod. I, p. 410-417) totum hunc calculum (pag. 246 hucusque), repetiit correctis Kepleri erroribus (comp. annot. 53), ipsique prodeunt :

AC = 0,18570 $AB = 0,11387_1$ $BC = 0.07183_2$

65) p. 251. Numeros hos frustra quaeres in Ptolemaeo, cum is perpetuo numeros suos ad numerum 60 reduxerit. Levis ceterum calculus exhibet numeros hosce a Keplero proditos.

Notae Editoris.

Com sit H in 148° 42' 13"

$$\angle$$
 HAF =
 82. 13. 26 (29)

 erit longit. F
 66° 28' 47" (44)

 h. e. in
 6° 28' 47" II.

Haec Martis longitudo sicut etiam reliquae comparantur cum longitudinibus, quas exhibet tabula in fine Cap. XV. De Kepleri calculo hoe tantum notamus, multiplicationes peractas esse ratione ea, qua hodie utimur multiplicantes fractiones decimales methodo, quam dicunt, curtata.

. 67) p. 256. Numeri hi non plane iidem e Tychonis tabula computantur. Ad distantiam ab apogaeo 135° exhibet tabella, quae inscribitur: distantia Solis a Terra in partibus, gualium semidiameter eccentrici 100000, numerum 97498, et ad distantiam ab apogaeo 65° 101567. Cum antem apogaeum () anno 1585. sit in 3° 5° (28' 30''), anno 1593. in 3* 5° (34' 30") (Tycho L c. p. 57), Sol vero datis temporibus apparent in 21° 222 et in 3° 5° (3° 50°) (1ycno L c. p. 57), Sol vero datis temportous apparent in 21° 200°) et in 12° 70°, Solis distantiae ab apogaeo tum fuere 134° et 67° p. p. ergo pro 97498 numero, quem Tychonis tabula exhibet, ponit K. numerum rotundum 97500; sic de Tychonis numero 101567 pro 2° detrahendae fuissent particulae 114, Keplerus pro residuo ponit 104400. Datis jam in △ BDA latere BA = 97500, ∠ BDA = HBD - BAD = 4° 32′ 10″
- 1° 49′ 30″ = 2° 42′ 40″ et ∠ DBA = 175° 27′ 50″ (compl. visae latitudinis), erit 97500 ein 475° 27′ 50″

 $DA = \frac{97500 \cdot \sin. 175^{\circ} 27' \cdot 50''}{\sin. 2^{\circ} 42' \cdot 40''} = 163023, \text{ sive assumta } BA = 1, DA = \frac{163023}{97500}$ =1,672.

68) p. 257. Angulus AEC (Fig. 71) = \angle ECL - EAC = 6° 3' - 1° 39' = 4° 24' $\mathbf{AE} = \frac{\mathbf{AC} \cdot \mathbf{sin.} \quad \mathbf{ACE}}{\mathbf{sin.} \quad \mathbf{AEC}};$ lg. AC = 0,0060380lg. sin. ACE = 9,0228254 lg. sin. AEC = 8,8849031 lg. AE = 0,1439603AE =>-1,393 1,393 AC posits - 4

points = 1, ent
$$AE = \frac{1,014}{1,014} = 1,3738$$

Aphelium 3° anno 1585. in 4s 28° 46' 41", ergo 4s 28° 46' 41" — 4s 21° = 7° 46' 41" ("circiter" 8°), quibus competant in linea AD "circiter" 150 particulae. Sic anno 1593. perihelium 3° in 10s 28° 55' 43", ergo 11s 12° — 10s 28° 55' 43" = 13° 4' 17" (c. 13°), quibus competant in linea AE c. 300 particulae.

Jam, inventa longitudine lineae ED = 302150 vel 304430 eaque bisecta in K, prodit eccentricitas $AK = DA - \frac{1}{12075}$ DE = 12075 vel 15135, et inde, radio eccentrici DK = 1assumto, prodit $AK = \frac{12075}{151075}$ vel $= \frac{15135}{152215} = 0.07992$ (0.08) vel = 0.09943.

69) p. 260. Numerus hic 15371 falsus est, nam 166928 - 151697 = 15231. Assumta eccentricitate 15231, prodit, si posueris KL = 1, $\Delta K = \frac{10231}{151697} = 0,1004$; assumto vero Kepleri numero 15371, prodit $AK = \frac{15371}{151697} = 0.1013.$

'70) p. 268. In editione "Mechanicae" anni 1602 (Norib. apud Levinum Hulsium. Comp. Vol. I, p. 191) folio G. 3^b haec leguntur : circuitum illum annuum, quem Copernicus per motum Terrae in orbe magno, veteres secundum epicyclos excusarunt, variationi cuidam obnoxium esse perspeximus.

Literae "tomo L Epistelarum" datae sunt d. 8. Feb. 1591 ad Wilhelmum Hassiae Landgravium. In postscriptis haec addit Tycho: nolui omittere quo minus C. T. significarem, stellam Martis, quae alias plus ceteris planetis calculum astronomicum eludit, in postremo acronychio situ (d. 9. Jun.) circa perigaeum Solare quam protime accessisse ad calculum Copernicacum, ita ut hic vix $\frac{1}{6}$ aberrarit, cum tamen in numeris Alphonsinis circiter 41/2° abundaverint. Quod nihilominus in aliis oppositionibus Solis et Martis, quarum aliquot observavi, non accidit: et in Marte antea, cum pernox esset circa γ et 🖂 initia, in medio quasi loco inter apogaeum et perigaeum Solare consideravi, œum a Copernici calculo circ. 2-3º deflexisse, idque in partes contrarias, prout ferebat eccentricitatis Solaris ratio. Necdum etiam consistere potuit Alphonsina supputatio. Unde facile animadvertitar, adhuc aliam latere inaequalitatem, e Solari forte eccentricitate vel aliunde provenientem, quae sese apparenti planetae motui insinuet.

Hine concludit Tycho, suas hypotheses de mundo solas cum apparentiis concordare et neque Ptolemaicas neque Copernicaeas hic sibi constare. "Nam inacqualitatem hanc convenienter excusare nequeunt." ---

71) p. 272. Quantitates angulorum ad praemissam computationem pertinentium desumtae sunt e capite praecedente hunc in modum: Fig. 74. est \angle FCD (FCE) angulus commutationis = 64° 23′ 30″, DFC 36° 51′ (in Mscto 51′ 3″); \angle EFC = 38° 5′/₂′, ubi notandum, pro 21° 34′ 11 ponendum esse 21° 33′/₂′ 11. (In Mscto = 21° 33′ 41″). In \triangle FCD et FCE, cognitis duobus angulis, non latebunt reliqui, scilicet FDC = 78° 45′ 30″ (K. 21″) \angle FEC = 77° 31′. Quibus datis, et assumto latere FC = 1, prodit

sin. 36° 51'	9,7779501
$DC = \frac{1}{\sin . 78^{\circ} 45' 27''}$	9,991`5852
= 0,61146	0,7863649 — 1
0,61148 (K.) sin. 38° 5' 30''	9,7902298
$CE = \frac{1}{\sin . 77^{\circ} 31'}$	9,989609 5
= 0,63186	0,8006203 - 1

Jam in fig. 75. respondent lineae EC et CD lineis modo inventis DC et CE fig. 74. et angulas ECD acquat summam angulorum ECF et $FCD = 2 \times 64^{\circ}$ 23' 30" = 128° 47', quibas addit Keplerus 19".

Non tam expedite Keplerus in manuscripto procedit; consumtis calculo 7 foliis inquit: Vitium! Ponitur ECN 63° 35', at is est, ut vides fol. 107 (Mscti) 33° 7' 32''. Erroris occasio, quod "signum" (s.) pro sexagena fuit habitum. Quod "vitium" corrigit sequentibus foliis 6, eandemque prodit quantitatem quam textus habet. Inquirentes calculum Kepleri, qui sequitur, deprehendimus CB = 0,01142, vel ad BD = 1, CB = 0,01835. Manuscripta habent 1140 et 1832.

Speculationem, quam Keplerus Capite XXII. proponit, adiit (alia quidem spectans) cum non succederet inquisitio latitudinum Martis, quam his concludit verbis: nisi hanc pragmatiam suspendam, multa quae interea inciderant incommode mittenda erunt. Itaque hoc jaim agamus: in Sole acquantem collocare hac lege, ut ubi jam Sol, ibi centrum sit acquantis. Sol medio loco eccentricitatis nullum affert incommodum; nam differentia non major est 1' 10" in anomalia 135°. At si tale quid sit in Sole, turbabitur omnis nostra operatio, dum acqualem semper assumimus radium orbis annui, qui inacqualis est ad centrum assumtum. Id quidem saepius jam tentavi explorare, sed nullum aliud est medium id tentandi, quam si possint haberi in eodem eccentrici Martis loco duae oppositae parallaxes, quando commutationis angulus est idem.

Jam Keplerus his innixus principiis comparat observationes Tychonis (v. s. p. 270) et retinens illas annorum 1585 et 1591 calculum absolvit ea quam modo diximus ratione.

72) p. 274. Fig. 76, exhibet in "forma Copernicana" positiones Terrae propositis temporibus in ϑ , η , ε et ζ , arcubus $\vartheta \eta$, $\eta \varepsilon$, $\varepsilon \zeta$ aequalibus; Solis locum in β , andam Martis in ε ; $\alpha \beta \varepsilon$ lineam apsidum Terrae, ε in $5^{1}/_{2}^{0}$ \mathfrak{S} , $\alpha \lambda$ lineam apsidum Martis; apogaeum in 231, 0

23 / " 3° Differentia medii motus Solis et Martis = 10^s 18^o 19' 56'' 11. 14. 55. $\angle \Im \alpha x$, sive commutatio coaequata = $\overline{10^{\circ} 7^{\circ} 5' F'}$: $180^{\circ} = \Theta$ $4^{s} 7^{\circ} 5' 1'' = 127^{\circ} 5' 1''.$ Locus \bigcirc visus ex \Im Terra in 25° 6' Υ , ex puncto α in 15° 53' 45'' \circlearrowright ergo $\angle \Im x \alpha = 1^{s} 15^{\circ} 53' 45'' - 0^{s} 25^{\circ} 6' = 20^{\circ} 47' 45''$ $\Im \alpha x = 127. 5. 1.$ ergo $\alpha \Im x = 180^{\circ} - 147^{\circ} 52' 46'' = 32^{\circ} 7' 14''.$ Inde, posito radio $\alpha x = 1$, $\Im \alpha = \frac{\sin \alpha x \Re}{\sin \alpha \Im x} = 0.66774.$ \cdot II. Anno 1592 adduntur longitudini coaequatae priori 1' 38'', prodit 1* 15° 55' 23'',

ergo commut. coaeq.' sive $\angle \eta \alpha x = 8$ 24° 10' 34" $180^{\circ} = 6^{\circ}$ $2 \eta \alpha \alpha = 1^{\circ} 15^{\circ} 55' 23'' - 0^{\circ} 10^{\circ} 9' = 35^{\circ} 46' 23''$ $\angle \alpha \eta x = 180^{\circ} - 119^{\circ} 56' 57'' = 60^{\circ} 3' 3''$ Hinc $\eta \alpha = \frac{\sin \eta x \alpha}{\sin \eta x} = 0,67467$.

Notae Editoria.

III. Anno 1593 iterum aucta long. coaeq. per 1' 38" prodeunt anguli $\epsilon \alpha x = 41^{\circ}$ 16' 16", $\epsilon x \alpha = 42^{\circ}$ 21' 30" et $x \epsilon \alpha = 96^{\circ}$ 22' 14", ergo $\epsilon \alpha = \frac{\sin \cdot \epsilon \times \alpha}{2}$ sin. aex = 0,67794. 1V. Anno 1595: / xaζ = 1° 38' 5", ζxa = 3° 23' 5" et xζa = 174° 58' 50" $\alpha \zeta = \frac{\sin \zeta \pi \alpha}{\zeta \pi \alpha}$ = 0,67479. sin. alx 73) p. 277. Ut probemus numeros Kepleri, integrum repetimus calculum. I. In $\triangle 3 \alpha \eta$ dantur latus $\alpha 3 = 0.66774$, $\alpha \eta = 0.67467$ et $2 \alpha \eta = 42^{\circ} 52' 47''$. Ergo $\alpha \eta + \alpha \vartheta = 1,34241$ $- \alpha \vartheta = 0.00693$ an . $\frac{1}{2}(9+\eta) = 68^{\circ} 33' 36''$ hinc $\frac{4}{2}(\vartheta - \eta) = 0^{\circ} 45' 11'''$ $\frac{4}{2}(\vartheta + \eta) = 68^{\circ} 33' 36''$ a 9 y = 69° 18' 47" $\vartheta \eta = \frac{\alpha \eta \, . \, \sin . \, \vartheta \, \alpha \eta}{\eta} = 0.4907 \, (K. \, 0.49169)$ sin. a97 II. Jam datis in $\triangle \alpha \eta \varepsilon$: $\alpha \eta = 0,67467$, $\alpha \varepsilon = 0,67794$, et $\angle \eta \alpha \varepsilon = 42^{\circ} 52' 47''$, computator $\angle \alpha \varepsilon \eta$ sic: $\alpha \varepsilon \eta + \alpha \eta \varepsilon = 180^{\circ} - 42^{\circ} 52' 47'' = 137'' 7' 13''$; 1/3 $(\eta + \epsilon) = 68^{\circ} 33' 36''; \alpha \epsilon - \alpha \eta = 0,00327, \alpha \epsilon + \alpha \eta = 1,35261; hinc$ ${}^{1/_{2}}(\eta - \epsilon) = 0^{\circ} 21' 10''$ ${}^{1/_{2}}(\eta + \epsilon) = 68^{\circ} 33' 36''$ ∠ αεη = 68° 12' 26" III. In Δ θαε dantur: αθ = 0,66774, αε = 0,67794, Δ θαε = 85° 45' 34" $\alpha \varepsilon + \alpha \vartheta = 1,34568$ $\alpha \varepsilon - \alpha \vartheta = 0.01020$ $\frac{1}{2}(9+\epsilon) = 47^{\circ} 7' 13''$ hinc $\frac{1}{2}(\vartheta - \varepsilon) = 0^{\circ} 28' 3''$ IV. In Δ 3βη acquicrurio dantur latus 3η (N. I.) et ∠ 3βη (N. III.), quare $\Im n \beta = 90^{\circ} - 21^{\circ} 33' 16''$ $\vartheta\eta \cdot \sin \cdot \vartheta\eta\beta = 0,66917$ (K. 0,66923). Hinc $\vartheta \beta =$ sin. 9 By V. In $\bigtriangleup \beta \beta \alpha$ ex $\beta \beta = 0.66923$, $\alpha \beta = 0.66774$, $\angle \beta = 52' 2''$ (nam in N. I. inventus est $\angle \alpha \beta \eta = 69^{\circ} 18' 46''$ et N. IV. $\angle \beta \beta \eta = 68^{\circ} 26' 44''$, et $\beta \beta \alpha = \alpha \beta \eta$ $-\beta \beta \eta$) computatur $\frac{1}{2} (\alpha - \beta) = 8^{\circ} 22' 37''$ $\frac{1}{2} (\alpha + \beta) = 89^{\circ} 33' 59''$ 3αβ = 97° 56' 36" (K. 97° 50' 30") h. e. 3s 8° p. p. Cum vergat a 3 in 5s 22º 59' 2 θαβ = 3s 7° 56' 36" vergit αβ in 2^s 15⁰ 2' 24" (K. 15⁰ 8' 30" II) Apogaenm ⊙ Tych. 3^s 5¹/₂⁰ 20º c. diff. αθ. sin. θ = 0,01023. Designe in eodem $\triangle \Im \alpha \beta$ computatur $\alpha \beta =$ sin. B 0,01023 Si $\beta\beta$, supra (N. IV.) inventa = 0,66923, ponatur = 1, prodit $\alpha\beta = 0.86923 = 0.01530$. 74) p. 279. Sit in fig. 80. \mathcal{P} locus \mathcal{J} datis temporibus, \mathcal{J} , \mathcal{E} , η loca Terrae iisdem temporibus, ut apparent α Sol, ex Terra \mathcal{J} inspective, anno 1590 in 24° 0' 25") (et \mathcal{J} , \mathcal{P} , in 24° 20' Υ . Sic \mathcal{J} ab $\dot{\alpha}$ Sole in 14° 15' 4" \mathcal{D} dec. In 24° 20° J. Sic 3 ab d Sole in 14° 15′ 4″ 8 de. erit $\angle \alpha \partial \beta = 12^{\alpha} 24^{\circ} 30^{\circ} - 11^{\alpha} 24^{\circ} 0' 25^{\circ\prime} =, 30^{\circ} 19' 35^{\circ\prime};$ Sic anno 1592. $\angle \alpha \partial \beta = 12^{\alpha} 9^{\circ} 24^{\circ} - 10^{\alpha} 10^{\circ} 17' 8^{\prime\prime} = 59^{\circ} 6' 52^{\prime\prime};$ anno 1593. $\angle \alpha \partial \beta = 12^{\alpha} 3^{\circ} 4' 30^{\prime\prime} - 9^{\alpha} 25^{\circ} 53' 24^{\prime\prime} = 97^{\circ} 11' 6^{\prime\prime};$ anno 1595. $\angle \alpha \eta \beta = 13^{\alpha} 19^{\circ} 42^{\circ} - 7^{\alpha} 11^{\circ} 41' 34^{\prime\prime} = 188^{\circ} 0' 26^{\prime\prime};$ et $\angle \partial \beta \alpha = 1^{\alpha} 14^{\circ} 15' 4^{\prime\prime} - 0^{\alpha} 24^{\circ} 20' 0^{\prime\prime} = 19^{\circ} 55' 4^{\prime\prime};$ $, \ \angle \epsilon \beta \alpha = 1^{\alpha} 14^{\circ} 16' 40^{\prime\prime} - 0^{\alpha} 9^{\circ} 24' 0^{\prime\prime} = 34^{\circ} 52' 40^{\prime\prime};$ $, \ \angle \delta \beta \alpha = 1^{\alpha} 14^{\circ} 18' 16^{\prime\prime} - 0^{\alpha} 3^{\circ} 4' 30^{\prime\prime} = 41^{\circ} 13' 46^{\prime\prime};$ $, \ \angle \delta \beta \alpha = 1^{\alpha} 19^{\circ} 42^{\prime} - 1^{\alpha} 14^{\circ} 19' 52^{\prime\prime} = 5^{\circ} 22' 8''.$ - 11: 24° 0' 25" =, 30° 19' 35":

Deinde assumatur $\alpha \vartheta = 1$, prodeunt :

1) $\alpha \delta = \frac{\sin \alpha \delta \delta}{\sin \alpha \delta \delta}$ lg. sin. 19° 55′ 4′′ = 9,5323354 lg. sin. 30° 19′ 35′′ = 9,7032270	
$= 0.67469$ lg. $\alpha \delta = 0.8291084$	1
$\sin \epsilon \vartheta \alpha$ lg. sin. $34^{\circ} 52' 40'' = 9,7572652$	
2) $\alpha \epsilon = \frac{1}{\sin \alpha \epsilon \vartheta}$ lg. sin. 59° 6' 52" = 9,9335856	
$= 0.66632$ lg. $\alpha \epsilon = 0.8236796$ -	1
sin. 5.9 at 1g. sin. 41° 13' 46" = 9,8189355	
3) $\alpha \zeta = \frac{1}{\sin \alpha \zeta \vartheta}$ lg. sin. 97° 11' 6" = 9,9965762	
$= 0.66429$ lg. $\alpha \zeta = 0.8223593$ -	1
$\sin_{10} \eta \vartheta \alpha$ lg. $\sin_{10} 5^{\circ} 22' 8'' = 8,9711259$	
4) $\alpha \eta = \frac{1}{\sin \alpha \eta - 3}$ lg. sin. 188° 0' 26" = 9,1439446	
$= 0,67171$ lg. $\alpha \eta = 0,8271813$ -	1

Keplero prodit $\alpha_{\eta} = 0.67220$ major justo; quia autem calculus deest, erroris hujus causa nequit proponi. In manuscripto hunc quidem calculum non deprehendimus, inest vero illi longa series irritorum conatuum deprehendendi justas distantias. Longum est omnes illos recensere conatus, quare unum ex his elegimus, qui loco sit reliquorum. Animus fert, inquit, per 4 observationes Martis extra situm azoovoyiov, Marte semper eodem eccentrici loco sub fixis existente, probare dimidiationem eccent

tatis Terrae... Sunt loca et distantiae \bigcirc et \bigcirc ad haec tempora: 1590: \bigcirc 24° 0' 19" H, \bigcirc : 24° 22' 30" \curlyvee ; 1592: \bigcirc 10° 17' 7" \mod , \bigcirc : 9° 25' 0" \curlyvee ; 1593: \bigcirc 25° 53' 26" \checkmark , \bigcirc 3° 2' \curlyvee ; 1595: \bigcirc 11° 41' 36" M, \bigcirc 16° \circlearrowright . Constitutio angulorum: $a \bigcirc a = 30^\circ$ 22' 11", $a \varepsilon \oslash = 59^\circ$ 7' 53", $a \bigcirc a = 97^\circ$ 8' 34", $\circ a \varepsilon = 43^\circ$ 43' 12", $\varepsilon a \sub = 44^\circ$ 23' 41", $\sub = 44^\circ$ 11' 50", $\circ a \eta = 132^\circ$ 18' 43" (+ 5' 10" pro praecess.) = 132° 23' 53", $a \oslash \varepsilon = 36^\circ$ 31' 33", $a \oslash d = 21^\circ$ 32' 20', $\eta \alpha \oslash = 4^\circ$ 18' 24", $\alpha \eta \oslash = 171^\circ$ 57' 21", $\alpha \oslash \varUpsilon = 42^\circ$ 56' 16", $a \oslash \eta = 3^\circ$ 44' 15". $\eta \vartheta = \frac{\sin \eta \alpha \vartheta}{2} = 68318; \ \alpha \vartheta = \frac{\sin \alpha \vartheta \vartheta}{2} = 72617; \ \alpha \zeta = \frac{\sin \zeta \vartheta \alpha}{2}$ $\frac{1}{2} = 68653$:

sin.
$$\alpha\eta$$
 Sin. α S

 $\frac{1}{\sin \alpha \epsilon \vartheta} = 69340; \ \alpha \eta = \frac{1}{\sin \alpha \eta \vartheta} = \frac{1}{10993} = 3... \text{ Vides, } \alpha \eta \text{ prodire admodum}$ breven,, ergo $\alpha \vartheta \eta$ augendus, ut sit $\alpha \vartheta$ in 14° \heartsuit . Iteratus calculus prodit 6983 $\alpha \delta = 66152, \ \alpha \varepsilon = 66031, \ \alpha \zeta = 66036; \ \alpha \eta = \frac{0503}{10993} = 63...$ Facile patet, adhuc nimis esse brevem, nam praescio, longiorem esse quam a ɛ. Sit a 9 in 13º 50' ö. Hic. duo peccantur, ad fit brevior quam as, et haec brevior quam as. Sit as in 13° 55' 8 ... Hie eadem peccantur. Error in deductione, nam in & retrogradus fit d. Et tamen an fit brevior quam at. Itaque vitium est in assumtis vel 93

vel na non recte habent.

Post correctionem adhibitam apparet, verum inter 16 et 14 versari. ,Sit $\alpha\vartheta$ 15°°; $\alpha\vartheta\delta = 20^{\circ}32'20''$, $\alpha\vartheta\epsilon = 35^{\circ}31'33''$, $\alpha\vartheta\zeta = 40^{\circ}56'16''$, $\alpha\vartheta\eta = 4^{\circ}44'15''$ $\alpha \delta = 69395; \qquad \alpha \epsilon = 67696;$ prodit αζ =67355 $\cdot \alpha \eta = 60 \dots$

Haec nimis brevis prodit, ergo adime ipsi loco a9. Sit $\alpha \vartheta = 14^{\circ} 50' \ \forall$: $\alpha \vartheta = 670$, $\alpha \varepsilon = 670$, $\alpha \eta = 61$ Perge ulterius.

Jam quatuor triangulorum anguli ad basin quaerendi &c.

75) p. 281. Ut Kepleri calculus probetur, apponimus integrum hujus loci calculum,

numeris nsi, qui prodierant annot. praeced. I) In $\triangle \ \delta \alpha \zeta \ dantur \ \ \delta \alpha \zeta = 88^{\circ} \ 10' \ 13'', \ \alpha \delta = 0.67469, \ \alpha \zeta = 0.66429$ ergo ¹/₈ $(\zeta + \delta) = 45^{\circ} \ 54'' \ 54''; \ 10.0138734$ $\delta \zeta = 88^{\circ} \ 10' \ 13'', \ \alpha \delta = 0.67469, \ \alpha \zeta = 0.66429$ $\delta \zeta = 0.6822357''; \ \delta \zeta = 0.6822357''; \ \delta \zeta = 0.66429$ $\delta\zeta = \frac{\alpha\zeta \cdot \sin \alpha}{1-\alpha}$ 0.8223577-1 ·9,9997785 0,0170333-2 sin. ð $\alpha \delta - \alpha \zeta =$ 0,01040; 9,8529107 αδ + αζ = 1,33898; 0,1267742 = 0,93159. lg. $\delta \zeta = 0,9692255-1$ lg. tg. $\frac{1}{6} (\zeta - \delta) = 7,9041325$ 1/2 (G-J) = 0° 27' 34" $\frac{1}{2}(\zeta+\delta) = 45, 54.54.$ / ad 5 = 45° 27' 20"

II) In △ δαη, datis ∠ δαη = 132° 23′ 39″, αδ = 0,67469 et αη = 0,67171 computetur angulus $\alpha \eta \delta$. $\frac{1}{3}(\eta - \delta) = 0^{\circ} 3' 21''$ $\frac{1}{3}(\eta + \delta) = 23.48.11.$ $\frac{1}{2}(\eta + \delta) = 23^{\circ} 48' 11''$ 9,6445530 $a \delta - a \eta = 0,00298$ $a \delta + a \eta = 1,34640$ 0.4742163 - 30,1291741 / and = 23° 51' 32" 6,9895952 III) In $\triangle \zeta \alpha \eta$ prodit angulus $\alpha \eta \zeta$ ex datis $\zeta \alpha \eta = 44^{\circ} 13' 26'', \alpha \zeta = 0.66429$ et an = 0,67171 $\frac{1}{2}(\zeta - \eta) = 0^{\circ} 46' 59''$ $\frac{1}{2}(\zeta + \eta) = 67^{\circ} 53' 17''$ sic: $\frac{1}{2}$ ($\zeta + \eta$) = 67° 53' 17" 10,3911523 $-\alpha\zeta=0,00742$ αη -0,8704039--3 $\alpha \eta + \alpha \zeta = 1,33600$ 0,1258065 $a\eta\zeta = 67^{\circ} - 6' - 18''(K. 3' - 12'')$ 8,1357497. IV) $\delta\eta\zeta = \alpha\eta\zeta - \alpha\eta\delta = 67^{\circ} 6' 18'' - 23^{\circ} 51' 32'' = 43^{\circ} 14' 46'' (K. 12' 12'')$ $\delta \gamma \zeta = 2 \ \delta \eta \zeta$ = 86° 29' 32" Praeter hunc angulum datur in $\triangle \delta \gamma \zeta$ latus $\delta \zeta = 0.93159$ (N. I.) et, cum sit triangulum acquicrurium $\angle \gamma \zeta \delta = 90^\circ - 43^\circ$ 14' 46'' = 46° 45' 14'' ergo $d\gamma = \frac{\delta \zeta \cdot \sin \cdot \gamma \zeta \delta}{\sin \cdot \delta \gamma \zeta}$; 0,9692248-1 9,8623803 9,9991855 = 0,67986lg. $\delta \gamma = 0.8324196 - 1$ (K. 0,68141). V) In $\triangle \gamma \delta \alpha$ deprehendimus $\angle \delta = \gamma \delta \zeta$ (N. IV.) — $\alpha \delta \zeta$ (N. I.) = 1° 17' 54" deinde dantur $\delta \alpha = 0.67469$ et $\delta \gamma = 0.67986$. $\begin{array}{r} -0.01405 & \text{et } y = 0.01750. \\ \frac{1}{2} (\alpha + \gamma) = 89^{\circ} 21' \quad 3'' - 11.9457478 \\ \frac{\delta \gamma}{\gamma} - \frac{\delta \alpha}{\alpha} = 0.00517 \quad - \quad 0.7134905 \\ \frac{\delta \gamma}{\gamma} + \frac{\delta \alpha}{\alpha} = 1.35455 \quad - \quad 0.1317951 \\ \frac{\delta \gamma}{\gamma} (\alpha - \gamma) = 18^{\circ} \quad 36' \quad 59'' - \quad 9.5274432 \end{array}$ - 0,7134905-3 89. 21. 3. 13º 16' 21" 5 $\alpha \gamma$ in Sive Kepleri usi numeris: $\frac{1}{3}(\alpha + \gamma) = 89^{\circ} 19' 47''$ $\frac{3}{7} - \frac{3}{6}\alpha = 0,00674$ 11,9318479 0,8286599-3 $\delta \gamma + \delta \alpha = 1,35608$ 0,1322855 9,6282223 $\frac{1}{2} (\alpha - \gamma) = 23^{\circ} 1' 3''$ $\frac{1}{2} (\alpha + \gamma) = 89. 19. 47$ Keplerus: ∠ δya = 66° 18' 44" 68º 26' 7" Cum vergat a d in 11= 24. 0. 25. - 11. 24° 0' 25" verget a y in 287° 41' 41" -h. e. 17. 41. 41. 5 285° 34' 18" 15. 34. 18. 2 VI) Cam Keplero prodeat $\gamma \delta = 0.68141$, $\alpha \delta \gamma = 1^{\circ} 20' 26''$ et ponatur $\delta \alpha \gamma$ pro $\delta \gamma \alpha = 68^{\circ} 26' 7''$ grit $\alpha \gamma = \frac{0.68141 \times \sin 1^{\circ} 20' 26''}{\pi^{\circ} 20' 26''}$. sin. 68º 26' 7" sive, posita $\gamma \delta = 1$, $\alpha \gamma = \frac{\sin \cdot 1^{\circ} 20' 26''}{100}$. 8,3691225 sin. 68° 26' .7"; 9,9684843 = 0.025160,4006382-2 Adhibitis autem numeris, qui prodierunt in calculo nostro usque ad N. V., prodit $\alpha \gamma = 0.024$. In manuscriptis, quorum partem illuc pertinentem annot. 74. addidimus, Keplerus hanc prodit quantitatem angulorum: $\delta \alpha \epsilon = 43^{\circ} 43' 12''$, $\delta \alpha \zeta = 88^{\circ} 6' 53''$, $\eta \alpha \epsilon =$ 88° 35' 31", $\eta \alpha \zeta = 44^{\circ}$ 11' 50" et numeris usus, quos ultima positione $\alpha \vartheta$ computaverat, exhibet angulum $\alpha \delta \varepsilon = 67^{\circ}$ 20' 22", $\alpha \delta \zeta = 45^{\circ}$ 33' 58", $\alpha \eta \varepsilon = 45^{\circ}$ 41' 29", 45. 38. 58 $\alpha \eta \zeta = 67.46.2$ ed (= 21. 46. 24 $\epsilon \eta \zeta = 22.$ 4.33 Deinde pergit : Non sunt pares. Requiritur ergo ad η minuendum longior

Deinde pergit: Non sunt pares. Requiritur ergo ad 7 minuendum longior «q, val brevior co. Supra autem, ante triduum, huis itidem loco defait aliquid.

Quare jam hoc novum praestabimus, ut ex hypothesi nostra computemus 4 loca. nam etiam in neglecta praecessione est ponnihil. - Jam iterato per aliquot folia calculo, cum is non succederet, addit: Quid denique facias his observationibus, quae nullo pacto officium faciunt? Nempe hoc agam : semel atque iterum assumam α ? in certa quantitate, et computabo, quales debuerint esse visiones. (Calculus). In his error, quod eccentricus 3 non bene et ex hypothesi mea habeat, ut quidem habere putabam. Ut tamen certissimus sim de loco d'eccentrico, computabo eune ex hypothesi (calenlus). Ego prius per anomaliam coaequatam excerpsi, oportuit per simplicem. Prodeunt 14° 19' 46" &, 14° 18' 10", 14° 16' 34", 14° 14' 58"...

Quid, si fixae 7' essent promotiores? Tune pro oppositione azoovuzia, cum 3 putaretur in 17° 47' 45'' 5, fuisset in 17° 54' 45'', et distitissent sidera per 7 plus. Si 84 dat 24 quid 7? Ergo 2 horis posterius d', et d' motus, respondens residuo temporis, pro 15' 35" fiet 17' 32", ergo in 17° 36' 43". Sed horis 2 medius motus d' est 2' 37", quae adde ad 17° 31′ 40″ putatum, ut sit putatus 17° 34′ 17″ \heartsuit , qui est vere 17° 36′ 43″; diff. 2′ 26″, quae adde etiam ad nostra loca. Prodit $\alpha \beta \sigma$ 30° 29′ 31″, $\beta \sigma \alpha 19^{\circ} 47' 28″, \alpha \epsilon \phi 59^{\circ} 13' 33″, \epsilon \phi \alpha 34^{\circ} 48′ 20″, \alpha \zeta \sigma 97° 8′ 56″, <math>\zeta \sigma \alpha 41^{\circ} 18′ 16″, \alpha \eta \sigma 8° 9′ 45″, \eta \sigma \alpha 5° 29′ 7″. Hinc abit ad priora (ann. 74), omittens angulos <math>\delta \alpha \epsilon \delta c_{c}$,

neque vero rem a	d finem perducit.		
76) p. 287.	Primo momento, Terra in ζ	posita, vergit	
~ •	ζη in 4= 26° 54' 30"	sic ζη in 4= 26° 54' 30"	
	$\zeta \alpha$ in 1. 28. 55. 45	αη in 6. 5. 22. 2	
. erge	$\alpha \zeta \eta = 87^{\circ} 58' 45''$	/ an 5 = 38° 27' 32"	
Jam datis in 🛆 🕻	$\alpha\eta$ latere $\alpha\eta = 1$ et angulis,	non latebit quantitas lineae	
	$\alpha\zeta = \frac{\alpha\eta \cdot \sin \cdot \zeta\eta\alpha}{\sin \cdot \eta\zeta\alpha} = 0.64$	2234 (K. 0,62227 ¹ / ₂).	
Secundo momento	Terra in e posita,		
	εη in 5 ^s 18° 12'	ε y in 5ª 18º 12'	
	εα in O. 16. 50. 24"	αη in 6. 5.23.38"	
	$\angle \alpha \epsilon \eta = 151^{\circ} 21' 36''$	$\alpha \eta \varepsilon = 17^{\circ} 11' 38''$	
	$\alpha \varepsilon = \frac{\sin \alpha \eta \varepsilon}{\sin \alpha \varepsilon \eta} =$	0.61674	
		0,01014	
Tertio momento	đη in 7• 8° 48′ 15″	δη in 7° 8° 48' 15''	•
	δα in 11. 3. 41. 40	αη in 6. 5.25.14	
• •	adn = 114° 53' 25"	and = 33° 23′ 1″	
•	$\alpha \delta = \frac{\sin. \alpha \eta \delta}{\sin. \alpha \delta \eta} =$		
Denique qua	rto momento. Terra in y exist	tente, eadem qua priores zatione	1

prodeunt $\angle \alpha \gamma \eta = 69^{\circ} 19' 38'' \text{ et } \angle \alpha \eta \gamma = 34^{\circ} 20' 20''$

$$\alpha \gamma = \frac{\sin \alpha \eta \gamma}{\sin \alpha \gamma \eta} = 0,60291.$$

77) p. 287. Cum sint ζ , ε , ϑ , γ loca Terrae propositis temporibas, et Solis α loca ex Tychone cognita, prodeunt ζαδ = 85° 14' 5", εαδ = 43° 8' 44", εαγ = 87° 43' 36", $\zeta \alpha \gamma = 129^{\circ} 48' 57''.$

Tempus	autem	inter	primum et	ter	rtium	momentum	elapsum	=	31/1	ann.	
79		*	secundum	et	terti	im "	` n	=	1%	39	

= 3 1/4 " secundum et quartum *

Praecessio aequinoctiorum annua secundam Tychonem = $51''_{,3}$ = $52'_{,3}$ ergo prodibit $\angle \zeta \alpha \delta = 85^{\circ} 17' 17'', \angle \varepsilon \alpha \delta = 43^{\circ} 10' 20'', \angle \varepsilon \alpha \gamma = 87^{\circ} 46' 48'', \angle \varepsilon \alpha \delta = 43^{\circ} 10' 20'', \angle \varepsilon \alpha \gamma = 87^{\circ} 46' 48'', \angle \varepsilon \alpha \delta = 43^{\circ} 52' 45''$ ζ ζαγ = 129° 53' 45".

His usi angulis et quantitatibus laterum $\alpha \zeta$, $\alpha \epsilon$, $\alpha \vartheta$, $\alpha \gamma$, quas Keplerus prodit, com-putavimus angulos $\zeta \vartheta \alpha = 48^{\circ}$ 9', $\epsilon \vartheta \alpha = 69^{\circ}$ 37' 3", $\epsilon \gamma \alpha = 46^{\circ}$ 47' 9", $\zeta \gamma \alpha \Rightarrow 25^{\circ}28'$ 30". Hinc $\epsilon \vartheta \zeta = 69^{\circ}$ 37' 3" - 48° 9' = 21° 28' 3" et $\epsilon \gamma \zeta = 46.47.9 - 25.28.30'' = 21.18.39$

78) p. 290. Keplerus in praemissis iterum computandi rationem plenam exhibet, quam omisimus, exhibentes tantam es, quae quaerenda proposuit. Ne vero quid desit, es

Notas Editoris.

quae in textu omisimus, in sequentibus addidimus. Notamus autem, in figura 82. aliquid a sculptore peccatum esse ; circulus scilicet $\zeta \in \delta$ debuit ex centro β , neque vero ex α describi. Calculus sic se habet: 1) Puncta ε et δ respondent observationibus annorum 1585 et 87, quae exhibent loca Solis 11s 29º 41' 4" et 10, 16, 5, 55. Ead = 43° 35' 9". Distantia temporum = 1⁸/₆ anni, ergo 1' 36" addenda ob praecessionem aequinoctii, prodit angulus $\epsilon \alpha \sigma = 43^{\circ}$ 36' 45". Jam datis in $\triangle \epsilon \alpha \sigma$ lateribus $\alpha \epsilon = 0.9977$, $\alpha \sigma =$ 0,98613, quaeruntur anguli reliqui et latus tertium. $\frac{1}{3}(\sigma + \epsilon) = 68^{\circ} 11' 38'' - 10,3978366$ $\alpha \epsilon - \alpha \sigma = 0,01157 - 0,0633334$ $\alpha \epsilon + \alpha \delta = 1,98383$ 0,2975045 8,1636655 1/2 $(\delta - \epsilon) = 0^{\circ} 50' 6'' (K. 50' 3')$ 68. 11. 38. $\alpha \delta \varepsilon = 69.$ 1. 44.; $\alpha \varepsilon \delta = 67.$ 21. 32. lg. $\alpha \epsilon = 0,9990000-1$. sin. a lg. sin. $\alpha = 9,8387089$ sin. d lg. sin. $\delta = 9,9702357$ 1 10 0.8674732 - 1= 0.73701 2) Cum sit locus Martis η anno 1585 in 4s 11° 48 20" (+ 12s) locus Solis a " " " " 11. 29. 41. 4. erit $\leq \alpha \epsilon \eta = 132$. 7. 16. $\alpha \epsilon \delta = 67. 21. 32.$ (N. 1.) $\sum_{i=1}^{n} \eta \varepsilon \delta = \alpha \varepsilon \eta - \alpha \varepsilon \delta = 64.45.44.$ Sic anno 1587 locus Martis η in 6^{s} 4^{0} 41' 45''Solis a " 10. 16. 5. 55. 110 11 62. 22. 26. $/ \eta \delta \varepsilon = \alpha \delta \eta - \alpha \delta \varepsilon =$ εηδ = 180 - (64° 45' 44" + 62º 22' 26") 52º 51' 50" Dafis in $\triangle \epsilon \eta \delta$ angulis et latere $\epsilon \delta = 0.73701$, prodit . _ ed. sin. d 0.8674734-1 9,9474299 sin. ŋ. • 9,9015692 = 0,81910. 0,9133341-1 (K. 0,81915) 3) In $\triangle \eta \epsilon \alpha$ datis lateribus $\epsilon \eta = 0.81910$ (N. 2), $\epsilon \alpha = 0.9977$ et angulo comprehenso $\varepsilon = 132^{\circ}$ 7' 16" (N. 2) computatur $\angle \varepsilon \alpha \eta$ et latus tertium. $1/2 (\eta + \alpha) = 23^{\circ} 56' 22'' - 9,6473466$ εα - εη = 0,1786- 0,2518815-1 $\epsilon \alpha + \epsilon \eta = 1,8168$ - 0,2593071 8,6399210 $\frac{1}{1}(\eta - \alpha) =$ 2º 29' 57" $\frac{1}{2}(\eta + \alpha) = 23.56.22.$ = 21. 26. 25. (K. 21° 26' 32"); 29° 41' 4" m / εαη $\hat{2}1^{\circ} 26' 25'' = \hat{8}^{\circ} 14' 39'' 10$ 0,9133369εη. sin. ε an = 9.8702451 sin. a 9,5629244 = 1,6621 0,2206576 (K. 1,66208). 4) Locus Solis anno 1583 in 1= 12° 10' 3" (+ 12=) 1588 " 9. 1. 44. 59. Distantia locorum = 130. 25. 10. Dist. temporum = $5^{1/2}$ anni, ergo praecessio aequin. = 4. 48. $\angle \zeta \alpha \gamma = 130.$ 29. 58.; $\alpha \zeta = 1,01049$, $\alpha \gamma = 0,98203$.

 $\frac{1}{2}(\gamma + \zeta) = 24^{\circ} 45' \cdot 1'' - 9,6637124$ ay αζ -= 0,02846-0.4542349 - 2as + ay = 1.99252- 0,2994027 7,8185446 1/2 (y - 5) = 0° 22' 38" (Keplero prodeunt 22' 48", ob errorem calculi in divisione commissi.) 24. 45. 1. $\alpha \gamma \zeta = 25. 7. 39. \\ \alpha \zeta \gamma = 24. 22. 23.$ $\alpha \zeta$. sin. α 0,0045320 5y = 9,8810491 sin. y 9,6280148 = 1.80950.2575663 5) Anno 1583 locus of in 4s 1º 29' 30" Anno 1588 of in 6s 13º 35' 40" • " 1. 12. 10. 3. **. . O , 9**. **1. 44. 53**. 9. 13. 7. 39. (N. 4) $\gamma \eta \zeta = 180^{\circ} - (54^{\circ} 57' 4'' + 53^{\circ} 1' 34'') = 72^{\circ} 1' 22''.$ 1. 34. 6) In $\triangle \zeta \eta \gamma$ dantur anguli $\eta = 72^{\circ}$ 1' 22", $\gamma = 53^{\circ}$ 1' 34", et latus $\zeta \gamma =$ 1,8095, hine: $\zeta \eta = \zeta \gamma$. sin. γ 0,2575663 9,9024976 sin. ŋ 9,9782623 = 1.51980,1818016 7) In Δηζα dantur ζη = 1,5198 (N. 6), ζα = 1,01049 Δαζη = .79° 19' 27" (N. 5). quaeruntur angulus α et latus $\alpha \eta$. $1/_2 (\alpha + \eta) = 50^{\circ} 20' 16''$ - 10,0813916 $\zeta_{\eta}^{2} - \zeta_{\alpha}^{2} = 0,50931$ $\zeta_{\eta} + \zeta_{\alpha}^{2} = 2,53029$ - 0,7069822-1 0,4031704 9.3852034 $\frac{1}{2} (\alpha - \zeta) = 13^{\circ} 38' 45''$ 50. 20. 16. Z Say = - 63. 59. 1, = 2 · 3 ° 59' 1" (K. 63 ° 58') anno 83: a Ç in 7. 12. 10. 3. . . 5. 8. 11. 2. αη in 🗠 Praecessie 1. 36. 8. 12. 38. mp ",Quod esset in" prius in 8. 14. 32. m Diff. 1. 54. $5\eta - 5\alpha = 20122$ In Kepleri calculo haec mutanda sunt. Cum ipsi prodeat $\zeta \eta + \zeta \alpha$ multiplicato hoc quotiente in tang. 50° 20' 16", exhibet factum 24270 = tg. 13° 38' 39" pro 13° 38' 31" 50. 20. 16. 63. 58. 47. αζ in 12. 10. 3. 11 (Sol in Ö, ergo Terra in 11) Ergo an in 8. 11. 16. MP Praec. 1. 36. 8. 12. 52. 110 Prius in 8. 14. 32. 1. 40. Diff. ζη. sin. ζ 0,1818016 (N. 6) Denique $\alpha \eta =$ 9,9924169 sin. a 9.9535995 = 1,6619 (K. 1,66179) 0,2206190 prius == 1,6621 (N. 3) Diff. 0,0002; Keplero: 0,00029. 8) In Δ αηθ datis αη = 1,66208, αθη = 44° 31' 13", αθ = 0,9877, prodit

Hunc quoque calculum deprehendimus inter manuscripta Kepleri per multa folia ertensum, numeris quidem suis cum numeris textus quadamtenus consentientibus, neque vero plane eccelem exhibentem. Numeri sc. manuscr. sunt: $\alpha \delta = 98628$, $\delta \varepsilon = 73706$, $\alpha \delta \varepsilon$ = 69° 1′ 3′/₂″, $\alpha \varepsilon \delta = 67°$ 22′ 11 ′/₂″, $\varepsilon \eta \delta = 52°$ 51′ 50″. Deinde $\varepsilon \eta = 81923$, $\varepsilon \alpha \eta$ = 21° 26′ 22″, $\alpha \eta = 166246$; $\alpha \zeta = 101069$, $\eta \zeta \gamma = 54°$ 57′ 44″, $\eta \gamma \zeta = 53°$ 2′ 54″, $\zeta \gamma = 180970$, $\gamma \eta \zeta = 71°$ 59′ 22″, $\zeta \eta = 152074$. Denique $\alpha \eta = 166284$, prins 166246; diff. 38, "efficit in perigace et [] \odot 1′."

Distantiae Terrae a Sole, quibus superstruxit Keplerus totum hunc praecedentem calculum ($\alpha\zeta = 1,01049$, $\alpha\varepsilon = 0.9977$, $\alpha\delta = 0.98613$, $\alpha\gamma = 0.98203$ et $\alpha\vartheta = 0.98770$) desumtae sunt ex tabula cap. XXX. hunc in modum:

Anno 1583 distat Sol ab apogaeo per 3* 5° 30' - 1* 12° 10' 3" = 53° 19' 57"

Anom. coaeq. tabulae = 53. 9. 56

exhibet distantiam = 1,01047;

Anno 1585 distat Sol ab apogaeo per 3° 5° 30' — 11° 29° 41° 4" = 95° 48' 56" Anom. coaeq. tab. = 94° 58' 28" exhibet dist. = 0,99796; diff. utriusque anom. = 50' 28", eadem in tabula = 60' 7"; diff. distantiarum in tabula = 0,00031, quare subtrahe a 0,99796 quantitatem 757.0,00031.60 = 0,00026, restat 0,9977.

Anno 1587. Dist. Solis = 139° 24', in tabula ad an. coaeq. 139° 20' 24" dist. = 0,98614.

Anno 1588. Dist. Solis == 176° 15', tab. exhibet ad an. coaeq. 175° 55' 42" dist. 0,98204, ad eandem 176° 56' 46": 0,98202.

Anno 1590. Dist. Solis = 132°; tab. ad 132° 143/4', -- dist. 0,98764, ad 131° 14' 1" dist. 0,98787, differentia exhibet particulas 6 deficientes, ut respondent 132° dist. 0,9877.

Tabula autem cap. XXX. quomodo computetur, relatum quidem est capite XXIX; ut autem Kepleri verba facilius intelligantur, exemplo rem proponemus:

Sit. (fig. 83) $\angle \vartheta \alpha \delta = 1^{\delta}$; cognitis in triangulo $\beta x \alpha$ ad x rectangulo angulis et latere $\alpha \beta = 0.018$ (posita semidiametro eccentrici Terrae = 100000, assumit Keplerus eccentricitatem $\alpha \beta = 1800$, ergo posita illa = 1, erit $\alpha \beta = 0.018$), prodit quantitas lateris $\beta x = \sin 1^{\circ} \cdot 0.018 = 0.000314$ et lateris $\alpha x = \cos 1^{\circ} \cdot 0.018 = 0.017997$. Jam dantur in triangulo $\beta x \vartheta$, item ad x rectangulo, latera $\beta x = 0.000314$ et $\beta \vartheta = 1$, ergo $\beta x = \sin . \angle \vartheta = \sin . 0^{\circ} 1' 5''$, quare erit $\angle \vartheta \beta \beta d = \vartheta \alpha \beta + \alpha \vartheta \beta = 1^{\circ} 1' 5''$ (Anomalia media tabulae). Porro $\vartheta x = \cos . x \vartheta \beta = \cos . 0^{\circ} 1' 5'' = 0.9999999$, ergo $\alpha \vartheta = \alpha x + x \vartheta = 1.017997$ (distantia Solis a Terra tabulae = 1.018). Secundo sit $\angle \vartheta \alpha \delta = 2^{\circ}$, simili processu prodit $\angle \vartheta = 0^{\circ} 2' 10''$ ergo $\angle \vartheta \beta \delta = 2^{\circ} 2' 10''$ et latus $\alpha \vartheta = 1.01799$ &c.

"Anomalia coaequata" (columnae tertiae) prodit subtractis angulis ϑ ab angulis $\vartheta \alpha \vartheta$; v. c. anom. coaeq. $1^{\circ} = 1^{\circ} - 0^{\circ} 1' 5'' = 0^{\circ} 58' 55''$.

79) p. 297. Appendicem hanc Keplerum addidisse editioni Progymnasmatum, quae prodiit anno 1602, prius diximus.

Monet Keplerus in praefatione ad Ephemerides (Lincii 1616) p. 1. haec: Aequationes Solis computavi ex principiis physicis. Itaque in 4 quadrantum medietatibus provenit mihi hoc nomine Solis aequatio 1' auctior vel diminutior, quam si usus essem forma usitata cum Tychone. Qua de re vide cap. XXXI. Comment. de Marte, sed memineris, me ibi, dum corrigo numeros, quos antea prodideram in appendice ad Progymn. Tychonis, potius illos infelici cura pervertisse, ut recte me per epistolam monuit Jo. Ant. Maginus. Operare secundum praescriptum ejus loci et deprehendes ipse, quod dico. Usus est hac differentiola Chr. Severini, Tychonis computator, in examine eclipsium fundamentalium, quae sunt in Tomo L. Prog. pag. P.

Maginum libro suo inscripto: Supplementum Ephemeridum &c. adjunxisse literas Kepleri diximus in praefatione et ea, quae illuc pertinebant, lectoribus proposuimus.

Epistola, cujus Keplerus mentionem facit, haec est: Clarissimo et Excellentissimo Viro D. J. Keplero, Mathematico Caesareo. Doctissime ac praestantissime Vir.

Vidi nuper insigne tuum opus de motu Martis a quodam librario nostro Bononiensi hac pro nobili viro Venetia allatum, et mutao quidem mihi ad unicam diem concessum percari breviter, quantum per angustiam temporis mihi concessum fuit.

Infer cetera offendi caput 31, positum pag. 164 (297), in quo proponis, per bisectionem eccentricitatis Solis non turbari sensibiliter acquationes Solis a Tychone expositas; quod sane cum avide percurrissem invenissemque, tuam rationem a Ptolemaei et Tychonis fundamentis tam in simplici Solis eccentricitate quam in duplicata valde differre, neque ullo pacto convenire posse cum tabula ad simplicem Solis eccentricitatem a Tychone allata, neque cum mea, quam recenter secundum hypothesin acquantis supputavi ad eccentricitatem partium 1792: cognovi tandem, te male angulum anomaliae Solis ad mundi centrum accepisse, cum verius ad vccentrici centrum in simplici Solis theoria, vel ad aequantis centrum in bisecata eccentricitate sit accipiendum, ut ex hac adjecta supputatione clarius veritatem percipies.

Sed mirum minime est, homines tam eximia eruditione praestantes, et gravissimis ac difficillimis speculationibus districtos, interdum a vero tramite deflectere. Ignoscas igitar et in honam partem haec accipias quaeso, et qua decet animi benevolentia, quia veri et sincerf amici munus gero. Hand illibenter enim fateor, quod etiam mihi soleat idem interdum accidere, quia enim homines sumus, facile errare possumus. Me enim et tibi et tuis amicum, quam din spiritus meos reget artus, ex asse verum et sincerum esse perpetuo faturum et mansurum, plane ac plene confidas. Sed quam primum ipsum opus tuum mihi allatum fuerit (exspecto enim illud avide ab amico), a capite ad calcem totum summa cum diligentia et assiduitate percurram.

Cosmographicum Mysterium D. V. longo temporis spatio interjecto a me summa can diligentia quaesitum, nunquam consequi potui, nisi paucis abhinc mensibus, idque a nobili Germano, qui ad nos Bononiam venit, eundemque librum secum attulit, pro quo munere illi "Primum Mobile" meum gratitudinis ergo obtuli. Et quia in itinere duo priora foha cum titulo et dedicatione corrosa sunt, rogo V. D., ut eadem ad me mittat simul cum tabalis magnis, quae in eodem desiderantur (nulla enim alia exstat, quam tertia tabula, orbium planetarum dimensionem et distantias exhibens); hoc enim erit mihi gratissimum, pro que certe mea officia promtissima et paratissima prolixe quovis tempore defero et polliceor. His bene et feliciter vale et de Astronomia perficienda bene mereri ne desine. Bonond. 15. Jan. 1610. Excell. Tuae studiosiss. Jo. Ant. Maginus Patavinus.

"Supputationis," quan supra dicit, summa haec est:

• Deciperis in assumtione anomaliae 45° et 135° penes angulum FAE (FAD) (fig. 84), qui, cum sit ad centrum mundi, ignotus est, et est re vera FCE (FGD) ad quem refereur circumferentia FE (FD). Bene quidem colligis angulum AEC = 1° 27' 31", sed tali pacto neque Ptolemaeus neque Copernicus aut Braheus computavit aequattenes Solis, ut videre es apud Tychonem p. 29, qui assumit cognitum triangulum ACE notorum laterum CE 100000, AC 3584, vel ut tu 3600, cum angulo ACE. Unde adinvenitur \angle AEC = 1° 25' 29". (Tycho habet 1° 24' 56"); sed si accipiatur eccentricitas, qua praecise fuit usus Tycho, nempe 3584, colligitur eadem cum Tychone acquatio 1° 24' 56".

In secundo modo computandi acquationes, tu, retento priori angulo falso BAE, du-fugis primo ad \triangle BBA et colligis \swarrow BEA = 9° 43', 46". Sed non est ille angular CAE, sed BCE notus; bene tamen procedit methodus tua illa ad colligendum Z BEC, 43' 46"; sed si acceperimus eccentricitatem 1792, erit BEC = 43' 34". Postrema guan pars calculi tui falsa est, dum ex EB, BC cum angulo comprehenso quaeris angulam BEC. Nam vice versa secundum rectum calculum venandus est e prioribus $\angle EBC = 44^{\circ}$ 16' 10', et jam datis AB et BE lateribus cum ABE indagabitur $\angle AEB = 0^{\circ}$ 42' 40", et inde totus angulus aequationis AEC = 1° 26' 26". Sic quoque expediendo calculum cum praccisiore ecc. 1792, est $\angle AEC = 1^{\circ}$ 26' 2", differtque ab angulo Tychonicas tabulat 1' 6". Quare in Progymnasmatum appendice, ubi calculi utriusque differentia prodit 11/6'. debet legi 1' 6" et non, ut tu ais, 0' 1/6"; nam verisimilius est, Tychonem scripsisse 6", et fuisse male transscriptum 1/a.

Quibus Keplerus haec respondit: Clarissime et praestantissime D. Magine. Quas ad me dedisti Bononia die 15. Jan., accepi 1. Febr. et auswor respondeo.

Gratiam inivisti non parvam, quod significasti, tibi meum opus de Marte curae esse. Obsecre propter studia nostra, ut eadem lima totum percurras. In id enim est editum, ut, sicubi erro, tui similium censuris in hoc veluti fundamento sublever, ut quam correctissimum superstruam astronomiae opificium, primum atque mihi a summis difficultatibus aulicae vitae affulserit tranquilla serenitas.

Quod rem praesentem attinet, decepit te ambiguitas meae dictionis, quam

Notae Editoris.

discutiet lectio totius libri. Acque hoc primo modo. Primus modus hic denominatur non a methodi forma, sed à forma eccentricitatis, quae hic assumitur simplex. Nam methodum adhibeo sane aliam et compendiosiorem pro hoc instituto (id facio passim in opere). Re ipsa convenimus Tycho et ego. Nam assume anomaliam mediam 46° 27' 31", invenies coaequatam Tychonis 45°. Deinde quaere anom. med. 45° in tabula (Cap. XXX.), qua anomalia tu uteris in secundo meo modo, quae est bisectae eccentricitatis, ubi exstruis aequationem 1° 26' 2", invenies ex tabula mea eandem. Ecce: 44° 42' 59" dat 43° 17' 1", aequatio 1° 25' 58" 45. 43. 45 " 44. 16. 15 " 1. 27. 30.

Proportionaliter igitur 45° dat 1° 26' 28''; sed hoc in tabula mea, quae habet modum tertium. Tu vero in modo secundo constitue anomaliam coaequatam 43° 33' 58'' (subtracta aequatione 1° 26' 2'' a te inventa), et utere mea methodo, invenies mediam 45° , quam et assumsisti. Appendicis ad Progymnasmata ipse auctor sum. Sed fieri potuit, ut in illins computo ego tunc fuerim hallucinatus, ita computans, ut tu nunc; hoc est, comparans aequationem, quam mihi dat coaequata 45° , cum aequatione, quam Ptolemaeo dat simplex, seu media anom. 45° .

Par erat, ut Caesar mihi mandaret gratis donare exemplaria mathematicis. At, quia strenue me patitur esurire, coactus sum vendere typographo sine exceptione. Pro tribus tamen florenis hic Pragae habere possum unum.

Mitto defectus Mysterii petitos, paratus totum mittere; sed quia habes reliqua, postae parcendum duxi.

Vale Vir celeberrime, et perge censendo mihi prodesse.

Pragae d. 1. Feb. 1610.

T. Excell. amicus

Jo. Keplerus, S. C. M. Mathematicus.

E Magini responsione haec desumenda sunt: Vidi ex tua responsione, te non temere, sed studiose et tuo quodam consilio supputasse acquationes Solis, initio facto ab angulo anomaliae verae ignoto, non autem, ut fierf ordinarie consuevit, ab angulo anomaliae mediae. Quae ratio quid commodi possit afferre, cum ex ipsa prodeant numeri introituales fractionibus molestis implicati, ignoro. Sicut videre est etiam in fabula tua distantiarum, quae molesta est pro ingressibus.

Non video autem, quomodo ex hac tua supputationis forma aequationes Solis ex bisecta eccentricitate prodeant in iisdem numeris a te positis. Ex anom. vers penes $\angle EAB = 45^{\circ}$ recte colligis $\angle BEA = 43' 46''$; hic additas ad EAB anom. vers constituit $\angle EBC = 45^{\circ} 43' 46''$; calculus manifestat $\angle CEA = 1^{\circ} 28' 38''$, non ut ta ponis $1^{\circ} 27' 24''$; quare differt hic modo inventus angulus ab illo secundum simplicem eccentricitatem ($1^{\circ} 27' 31'4$) uno minuto et 7''. Pariter in anom. 135° est totus $\angle CDA = 1^{\circ} 26' 26''$, et non ut tu ponis $1^{\circ} 27' 28''$. Ex tua tabula distantiarum Solis a Terra colligitur cum anom. aequata 45° aequatio Solis $1^{\circ} 28' 38''$, et cum anom. 135', - $1^{\circ} 26' 20''$. Ex his autem patet, non esse aequales aequationis partes, nempe optica et physica, unde in constructiope tabulae ex duplicatione prosthaphaeresis non obtinebitur exactissima aequatio.

. Cuperens te cap. 31. correcturum libenter, quanvis lapsus sit exigui momenti.

Quibus addens Maginus quaedam de Origani Ephemeridibus deque corrigendis diametris luminarium, et petens a Keplero tabulas motuum Martis, sic concludit : Has manu propria ab adversam valeundinem, qua 15 plus diebus teneor, exarare minime potui. Tu Vir Excell. vale optime. Bonou. 23. Febr. 1610.

Keplerus in responsione sua (d. d. 22. Martii 1610) refert Magino, cogitare se ante editienem Tabularum Rudolphi scribere Ephemerides ad annos 80, initia facto ab anno 1583, et invitat Maginum, ut operam suam conferat ad illas computandas et communi nomine edendas. Quae quum non huc pertineant, ea tantum ex hac epistola desumsimus, quae ad hunc locum attinent.

Ex morbo, scribit, te convaluisse gaudeo. Vix tandem tua opera discusai hanc nebulam. Video jam causam nullam fuisse, cur meos numeros in Appendice Progymn. fol. 821. insertos posterioribus curis in Martis fol. 164 (297) corrigerem. Mirum fatum, cum toties operationem repetierim (quippe grave mihi videbatur erratum in Progymn. fateri), adeo constanti me ratione aberrasse. Interdum igitur deutegat apportides atugets xat avonto. In felicitatis parte est, quod is parvus est error, et nihil illi superstructum, ita ut exemtus ex libro ruinam trahat nullam. Nam quod tu infers, non esse aequales partes aequationis opticam et physicam, id quidem verum est, neque dixeram plane aequales; quod vero addis, in constructione tabulae ex duplicatione prosthaphaeresis non obtineri exactissime aequationem, id tantum abest ut verum dicas, ut potius per hanc tuam correctionem contrarium probes. Nonne enim tu ipse in his literis ex mea tabula ad coaequatam 45° elicis aequationem 1° 28'38", ad 135° — 1° 26'26"? At quid tua correctio? Nempe 1° 28'38", et 1° 26'26". Miraberis, quae hae praestigiae? Sed cogita, quod in duplicatione tabulari partes aequationis connectantur ad gradus integros anomaliae non mediae, non coaequatae, sed eccentri. Non mirum igitur, si quanto minor est optica anomalia eccentri 45°, quam optica anom. coaeq. 45°, tanto etiam minor sit pars physica, quam sumitur per duplicationem opticae.

Cogita, an haec mihi origo errandi, qui aliam forte methedum computando sum secutus, aliam postea in Commentariis perscripsi, numeris ex illa mutuatis. Nam nunc non vacat quaerere.

Ut errorculus hic propaletur, nihil reformido; tantum ut qui id facturus est, totum librum legat. Origanus enim aut quicunque alius, si abusurus est hoc meo sphalmate, non impune feret si vixero. Nam ut nolo meis erroribus praejudicare veritati, ita ne aliis quidem concedam silentium tenens. In computandis eclipsibus non solae luminarium diametri, sed et alia multa corrigenda sunt, et a me correcta sunt in Hipparcho meo, licet nondum absoluto, ut edi possit.

Tabulas Martis habeo absolutissimas, est mihi et compendium computandi praesto, ut unus aliquis locus Martis, tam in longum quam in latum multo breviori methodo computetur, quam ex Prutenicis; multi vero simul facillima ratione computantur. Nisi tantum circa punctum oppositionis cum Sole, ibi correctiunculis est opus. Sed et in bet 4 tabulae sunt perfectae, in \heartsuit et \bigcirc dimidium earum.

80) p. 306. Primum hanc sententiam de Solis motu circa axem pronunciavit Keplerus in libro de Nova Stella (Vol. II. p. 673), repetiit in libellis contra Röslinum et Feselium, (Vol. I. p. 508, 570, 590), et confirmatam gloriatur literis ad amicos flatis de maculis Solaribus, retractans quidem ea, quae de tempore volutionis somniaverat (Vol. II. p. 780).

81) p. 315. Adstant schemati N. 90. in Kepleri delineatione ad punctum α duse forte genios repraesentantes figurae, converso ad circulum $\partial \epsilon \eta \vartheta$ vultu, altera in manhus tenens circulum et normam, altera librum evolutum. Quod schema quum hine inde saepius repetatur et adhibeatur ad demonstrationes theorematum hujus libri praecipuorum, opinatur Delambrus (Hist. de l'Ast.), significare voluisse Keplerum hor ornamento praestantiam illim et praecipuum momentum in investionibus suis.

82) p. 323. E verbis "ex recentissima recognitione" concludere licet, Keplerum hic spettare A. Romani opus, quod prodiisse refert Vossius (de scientiis math.) anno 1607, inscriptum: Methodus cifris exprimendi numerum quantumvis maximum. Item mathematicae analyseo triumphus, in quo enneagoni circulo inscripti ad circulum ratio exhibetar. Ceterum perhibent, Vietam ante Romanum hunc ipsum numerum (ultimam notam habuit 5 pro 6) and 1579 pronunciasse; A. Romanum vero illum ulterius usque ad 15 notas extendisse in libro, qui prodiit anno 1593 inscriptus "Ideae mathém pars prima."

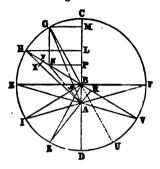
83) p. 327. Sit in schemate 132. A nodus, AE ecliptica, B locus Martis, $\angle E =$ 90°, erit sin. BE = sin. A . sin. AB = sin. 1° 50′ 45″ × sin. $\begin{cases} 41°. BE = 1° 12′ 49″ \\ 68°. = 1° 42′ 40″ \\ 68°. = 1° 42′ 40″ \end{cases}$ cosin. AE = $\frac{\cos. 41°}{\cos. 1° 12′ 40″} = \cos. 40° 59′ 7″$, vel cos. AE = $\frac{\cos. 68°}{\cos. 1° 42′ 40″} = \cos. 67° 59′ 23″$.

44° - 40° 59′ 7″ = 53″; 68° - 67° 59′ 23″ = 37″. Keplero prodeunt 50″ et 16″. Reductio ad eclipticam prioris loci: 6^s 5° 25′ 20″ - 50″ = 5° 24′ 30″ : , eaque posterioris: 5^s 8° 19′ 20″ - 16″ = 8° 19′ 4″ \mathfrak{M} . In contextu pro voce "longiotis" ponenda est vox "brevioris". Ob praceessionem aequin. ab anno 1590 in a. 1595 subtrahuntur a 14° 21′ 7″ \circlearrowright : 4′ 15″, ita ut reducatur locus \circlearrowright in 14° 16′ 52″ \circlearrowright ; sic pro 2 mensibus (31. Oct. ad. 31. Dec. 1590) subtrahuntur 9″ a 5° 24′ 30″ : , restat 5° 24′ 21″ :

Jam in triangulo rectilineo rectangulo datis latere uno = 1, et angulo (ad centrum orbis) 1° 12' 40", erit alter latus = $\frac{1}{\cos 1^{\circ} 12' 40"}$ = 1,00022 vel reducendo ad distantiam 1,63100 = 1,00022 × 1,63100 = 1,63134. Sic ad angulum 1° 42' 40"

quaesita distantia = $\frac{1}{\cos 1^{\circ} 42^{\circ} 40^{\circ}}$ = 1,00045, et reducendo ad dist. 1,6618 = 1,6618 × 1,00045 = 1,66235.

84) p. 329. Insunt has observationes Hist. Coel. Brahei; ultima (p. 434) hasc est: Die 6. Oct. mane:


* 85) p. 334. Sit AEB "pars acq. opticae" in anom. eccentri 90°, BE radius, ergo BA = 0.09264 =tg. $\angle AEB = tg. 5° 17' 34''. \triangle AEB = 1/, AB . EB$ = 0.04632

Jam comparata area trianguli AEB cum area circuli proportione: $3,14159...:0,04632 = 360^\circ: x$ prodeunt pro "parte aequationis physicae" $5,30785^\circ =$ $5^\circ 18' 28''$, qui additi ad $5^\circ 17' 34''$ exhibent "totam aequationem" = $10^\circ 36 2''$.

Anomalia media . = 90° + 5° 18' 28" = 93° 18' 28" , coaeq. = 95° 18' 28" - 10° 36' 2" = 84° 42' 26"

Ad anomaliam = 45° et 135° progressus, sic rem absolvit Keplerus : Cum sit \triangle HBL ad L rectangulum, \angle HBL = 45° (135°) et HB = 1, erit HL = sin. 45° 0,70711, ergo altitudo \triangle ABH = 0,70711, et area = $1/{}_{3}$ AB \times HL = 0.04632 \times 0,70711 = 0.032753. Jam proportione : 3,14159 : 0.032753 = 360° : x

Fig. 139.

prodit pars acq. physicae = $3,7532^{\circ} = 3^{\circ} 45' 12''$, sive, adhibito trianguli AEB valore supra invento = $5^{\circ} 18' 28'' = 19108''$, compendiosius sic: pars acq. phys. = $0,70711 \times 19108 = 13511.4'' = 3^{\circ} 45' 12''$.

Hinc anom. media = $45^{\circ} + 3^{\circ} 45' 12'' = 48^{\circ} 45' 12'' = 135^{\circ} + 3^{\circ} 45' 12'' = 138^{\circ} 45' 12''.$

Deinde in \triangle AHB dantar HB = 1, AB = 0,09264, et \angle HBA = 135° (45°); quare ¹/_a (A + H) = 22° 30′ (67° 30′) HB - AB = 0,90736 HB + AB = 1,09264 Ergo tg. ¹/_a (A - H) = $\frac{0,90736}{1,09264}$ tg 22° 30′ = to 18° 58′ 55″ \angle H - 9° 94′ 5″

 ${}^{4}/_{a} (A - H) = \frac{0.80730 \cdot tg 22^{\circ} 30'}{1.09264} = tg. 18^{\circ} 58' 55''. \ \angle H = 3^{\circ} 31' 5'' \\ = \frac{0.90736 \cdot tg 67^{\circ} 30'}{1.09264} = tg. 63^{\circ} 29' 25''. \ \angle H = 4^{\circ} 0' 35'', \\ Anomalia \ coasequata = 45^{\circ} - 3^{\circ} 31' 5'' = 41^{\circ} 28' 55'' \\ = 135^{\circ} - 4^{\circ} 0' 35'' = 130^{\circ} 59' 25''.$

86) p. 335. Haee sunt Cardani verba (de Subtil. lib. XVI.): "Si diametros proencatur extra quantum libet, alia vero diametros in centro secetur ad rectos, ex hujus fine divisa portione quarta circumferentiae in quotquot aequales partes, per earum ultimam recta ducatur ad eam, quae exterius in directo diametri adjacet, erit ipsa diametro adjacens aequalis omnibus rectis ex divisionum peripheriae punctis perpendicularibus in subjectam diametrum, usque ad adversam circumferentiae partem, quae quidem lineae omnes diametro, quae exterius est producta. aequidistant." — Quae Keplerus addit de Byrgio, referenda forte sunt ad "Arithmeticam" Byrgii, quam diximus (Vol. II. p. 834.) non absolutam inesse Kopleri manuscriptis. Praefatio hujus "Arithmeticae" declarat, doctrinam linearum goniometricarum finem praecipuum libri fuisse. ("Günstiger Leser, es möcht dich vielleicht Wunder nemen, warum unter einer grossen Anzahl gelehrter und der geometrischen Kunst erfahrener Leute eben Ich diesen Canonem sinuum zu rechnen fürgenommen u. jezo in offenen Druck gebe, der ich doch griechischer und lateinischer Sprach unerfahren u. derohalbien diejenigen, welche hievon geschrieben, in ihrer rechten Sprach nit vernehmen könnte" etc.)

Quod rem ipsain attinet, notamus, Archimedem (de Sphaera et Cylindro I, 21) demonstrasse, diviso' semicirculo in partes quascunque aequales, ductisque e divisionum punctis Keplerí Opéra. III. 32

497

Sindo assumatur $\alpha \vartheta = 1$, prosin. $\alpha \vartheta \vartheta$	lg. sin. $19^{\circ} 55' 4'' = 9,5323354$
1) $\alpha \delta = \frac{\sin \alpha \delta \delta}{\sin \alpha \delta \delta}$	lg. sin. 30° 19' 35" = 9,7032270
= 0,67469 sin. $\varepsilon \Im \alpha$	$lg. \ \alpha \delta = 0.8291084 - 1$ lg. sin. 34° 52′ 40′′ = 9.7572652
2) $\alpha \varepsilon = \frac{1}{\sin \alpha \varepsilon \vartheta}$	lg. sin. 59° 6' 52" = 9,9335856
$= 0,66632$ sin. $\zeta \Im \alpha$	lg. $\alpha \epsilon = 0.8236796 - 1$ lg. sin. 41° 13' 46" = 9.8189355
3) $\alpha \zeta = \frac{\sin \varphi \sigma \alpha}{\sin \alpha \zeta \vartheta}$	Ig. sin. 97º 11' 6" = 9,9965762
= 0,66429 sin. $\eta \Im \alpha$	lg. $\alpha \zeta = 0.8223593 - 1$ lg. sin. 5° 22' 8" = 8.9711259
4) $\alpha \eta = \frac{\sin \eta \sigma \alpha}{\sin \alpha \eta \sigma}$	lg. sin. 188° 0' 26" = 9,1439446
= 0,67171 eplero prodit $\alpha \eta = 0,67220$	lg. $\alpha \eta = 0.8271813 - 1$ major justo; quia autem calculus deest, erro

Ker oris hujus causa nequit proponi. In manuscripto hunc quidem calculum non deprehendimus, inest vero illi longa series irritorum conatuum deprehendendi justas distantias. Longum est omnes illos recensere conatus, quare unum ex his elegimus, qui loco sit reliquorum. Animus fert, inquit, per 4 observationes Martis extra situm azgovuziov, Marte semper eodem eccentrici loco sub fixis existente, probare dimidiationem eccent

tatis Terrae... Sunt loca et distantiae O et \eth ad haec tempora: 1590: O 24° 0' 19" \oiint , \circlearrowright : 24° 22' 30" Υ ; 1592: O 10° 17' 7" O, \circlearrowright : \eth : \eth 26° 25' 0" Υ ; 1593: O25° 53' 26" \checkmark , \circlearrowright 3° 2' Υ ; 1595: O 11° 41' 36" \Cap , \circlearrowright 16° \heartsuit . Constitutio angulorum: $a \delta \vartheta = 30^{\circ} 22'$ 11", $a \epsilon \vartheta = 59^{\circ} 7' 53"$, $a \zeta \vartheta = 97^{\circ} 8' 34"$, $\delta a \epsilon = 43^{\circ} 43' 12"$, $\epsilon a \zeta = 44^{\circ} 23' 41"$, $\zeta a \eta = 44^{\circ} 11' 50"$, $\delta a \eta = 132^{\circ} 18' 43''$ (+ 5' 10" pro pracess.) = 132° 23' 53", $a \vartheta \xi = 36^{\circ} 31' 33"$, $a \vartheta \vartheta = 21^{\circ} 32' 20''$, $\eta a \vartheta = 4^{\circ} 18' 24''$, $a \eta \vartheta = 171^{\circ} 57' 21''$, $a \vartheta \xi = 42^{\circ} 56' 16''$, $a \vartheta \eta = 3^{\circ} 44' 15''$. $\eta \vartheta = \frac{\sin \eta \alpha \vartheta}{2} = 68318; \ \alpha \vartheta = \frac{\sin \alpha \vartheta \vartheta}{2} = 72617; \ \alpha \zeta = \frac{\sin \zeta \vartheta \alpha}{2}$ = 68653 ·

$$\sin \alpha \eta \vartheta$$
 $\sin \alpha \delta \vartheta$ $\sin \alpha \zeta \vartheta$
 $\sin \alpha \vartheta \varepsilon$ $\sin \alpha \vartheta \eta$ 3497

= 69340; $\alpha \eta = \frac{\sin \alpha \eta \eta}{\sin \alpha \eta \theta} = \frac{\cos \eta}{10993} = 3...$ Vides, $\alpha \eta$ prodire admodum at = sin. arg Iteratus calculus prodit breven, ergo $\alpha \vartheta \eta$ augendus, ut sit $\alpha \vartheta$ in 14° 8.

 $\alpha \delta = 66152, \ \alpha \varepsilon = 66031, \ \alpha \zeta = 66036, \ \alpha \eta = \frac{6983}{10993} = 63...$ Facile patet,

adhuc nimis esse breven, nam praescio, longiorem esse quam as. Sit a3 in 13º 50' 8. Hic. duo peccantur, ad fit brevior quam as, et haec brevior quam as. Sit as in 13º, 55' S ... Hic cadem peccantur. Error in deductione, nam in & retrogradus fit 3. Et tamen an fit brevior quam as. Itaque vitium est in assumtis; vel no vel næ non recte hubent.

Post correctionem adhibitam apparet, verum inter 16 et 14 versari. Sit $\alpha\vartheta$ 15°°°; $\alpha\vartheta\delta = 20°32'20''$, $\alpha\vartheta\epsilon = 35°31'33''$, $\alpha\vartheta\zeta = 40°56'16''$, $\alpha\vartheta\eta = 4°44'15''$ prodit $\alpha\delta = 69395$; $\alpha\varepsilon = 67696$; $n^{7} = 67255$ $\alpha \delta = 69395; \qquad \alpha \epsilon = 67696;$ $\alpha \zeta = 67355$ prodit · an = 60 ... Haec nimis brevis prodit, ergo adime ipsi loco #9.

Sit $\alpha \vartheta$ 14° 50 \heartsuit : . $\alpha \vartheta = 670$. . $\alpha \varepsilon = 670$ $\alpha \eta = 61$ Perge ulterius.

Jam quatuor triangulorum anguli ad basin quaerendi &c.

75) p. 281. Ut Kepleri calculus probetur, apponimus integrum hujus loci calculum, numeris usi, qui prodierunt annot. praeced.

1) In $\triangle \delta \alpha \zeta$ dantur $\angle \delta \alpha \zeta = 88^{\circ}$ 10' 13", $\alpha \delta = 0.67409$, $\alpha \zeta = 0.66429$ $\delta\zeta = \frac{\alpha\zeta \cdot \sin \alpha}{1-\alpha}$ ergo $\frac{1}{2}$ ($\zeta + \delta$) = 45° 54' 54''; 10.0138734 0.8223577 - 19,9997785 0,0170333-2 $\alpha \delta - \alpha \zeta = 0.01040;$ sin. d 9,8529107 $\alpha \delta + \alpha \zeta =$ 1.33898; 0,1267742 $= 0,93159. lg. d\zeta = 0,9692255-1$ lg. tg. 1/2 ($\zeta - \delta$) = 7,9041325 $\frac{1}{2}(\zeta - \delta) = 0^{\circ} 27' 34''$ $\frac{1}{2}(\zeta+\delta) = 45, 54.54.$ / adj = 45° 27' 20"

II) In $\triangle \delta \alpha \eta$, datas $\angle \delta \alpha \eta = 132^{\circ} 23' 39''$, $\alpha \delta = 0,67469$ et $\alpha \eta = 0,67171$ computetur angulus $\alpha \eta \delta$. $\frac{\frac{1}{3}}{\frac{1}{3}} (\eta - \delta) = 0^{\circ} 3' 21'' \frac{1}{3} \frac{1}{3} (\eta + \delta) = 23.48.11.}{2 \alpha \eta \delta = 23^{\circ} 51' 32''}$ $\frac{1}{2}(\eta + \delta) = 23^{\circ} 48' 11''$ 9,6445530 $a d - a \eta = 0,00298$ $a d + a \eta = 1,34640$ 0.4742163 - 30,1291741 6.9895952 III) In $\triangle \zeta \alpha \eta$ prodit angulus $\alpha \eta \zeta$ ex datis $\zeta \alpha \eta = 44^{\circ} 13' 26'', \alpha \zeta = 0,66429$ et $\alpha \eta = 0,67171$ $\frac{\eta_2}{\eta_2} (\zeta - \eta) = 0^\circ 46' 59'''$ $\frac{\eta_2}{\eta_2} (\zeta + \eta) = 67^\circ 53' 17''$ sic: $\frac{1}{3}$ ($\zeta + \eta$) = 67° 53' 17" 10,3911523 $a\eta - a\zeta = 0.00742$ $a\eta + a\zeta = 1.33600$ 0,8704039--3 αη -0,1258065 / an ζ = 67° 6' 18" (K. 3' 12") 8.1357497. IV) $\delta\eta\zeta = \alpha\eta\zeta - \alpha\eta\delta = 67^{\circ} 6' 18'' - 23^{\circ} 51' 32'' = 43^{\circ} 14' 46'' (K. 12' 12'')$ $\delta \gamma \zeta = 2 \ \delta \eta \zeta$ = 86° 29' 32" Praeter hunc angulum datur in $\triangle \delta \gamma \zeta$ latus $\delta \zeta = 0.93159$ (N. I.) et, cum sit triangulum acquicrurium $\angle \gamma \zeta \delta = 90^\circ - 43^\circ$ 14' $46'' = 46^\circ 45' 14''$ ergo $\delta \gamma = \frac{\delta \zeta \cdot \sin \cdot \gamma \zeta \delta}{\sin \cdot \delta \gamma \zeta}$; 0.9692248-1 9.8623803 9,9991855 = 0,67986 lg. $\delta \gamma = 0.8324196-1$ (K. 0,68141). V) In $\triangle \gamma \delta \alpha$ deprehendimus $\angle \delta = \gamma \delta \zeta$ (N. IV.) $-\alpha \delta \zeta$ (N. I.) = 1° 17' 54" deinde dantur $\delta \alpha = 0.67469$ et $\delta \gamma = 0.67986$. $\begin{array}{c} -0.51795 \ ev \ 0\gamma = 0.51756. \\ 1/s \ (\alpha + \gamma) = 89^{\circ} 21' \ 3'' - 11.9457478 \\ \delta\gamma - \delta\alpha = 0.00517 \ - 0.7134905 \\ \delta\gamma + \delta\alpha = 1.35455 \ - 0.1317951 \\ \hline 1/s \ (\alpha - \gamma) = 18^{\circ} 36' \ 59'' - 9.5274432 \\ 89. \ 21. \ 3. \end{array}$ - 0,7134905-3 $\frac{2}{\alpha \delta} \frac{\delta \gamma \alpha}{\ln 11^{\circ} 24.} \frac{70^{\circ} 44' 4''}{0.25.}$ ay in Sive Kepleri usi numeris: $\frac{1}{3}(\alpha + \gamma) = 89^{\circ} 19' 47''$ $\frac{1}{3}\gamma - \frac{1}{3}\alpha = 0,00674$ 11,9318479 0,8286599-3 $\delta \gamma + \delta \alpha = 1,35608$ 0,1322855 9,6282223 $\frac{1/2}{1/2} (\alpha - \gamma) = 23^{\circ} 1' 3''$ Keplerus : ∠ 8 y a = 66° 18' 44" 68º 26' 7" Cum vergat a d in 11s 24. 0. 25. - 11* 24° 0' 25" verget ay in 287° 41' 41" -h. e. 17. 41. 41. Z-285° 34' 18" 15. 34. 18. 7 VI) Cam Keplero prodeat $\gamma \delta = 0.68141$, $\alpha \delta \gamma = 1^{\circ} 20^{\circ} 26^{\circ \circ}$ et ponatur $\delta \alpha \gamma$ pro $\delta \gamma \alpha = 68^{\circ} 26^{\circ} 7^{\circ \circ}$ prit $\alpha \gamma = \frac{0.68141 \times \sin 1^{\circ} 20^{\circ} 26^{\circ \circ}}{\pi^{1-} 80^{\circ} 26^{\circ} 7^{\circ \circ}}$ sin. 68º 26' 7" $\alpha \gamma = \frac{\sin \theta}{20^{\circ} 20^{\circ}}$ 8,3691225 sin. 68° 26' .7"; 9,9684843 = 0.025160,4006382-2 Adhibitis autem numeris, qui prodierunt in calculo nostro usque ad N. V., prodit $\alpha \gamma = 0.024$. In manuscriptis, quorum partem illuc pertinentem annot. 74. addidimus, Keplerus hanc prodit quantitatem angulorum: $\partial \alpha \varepsilon = 43^{\circ} 43' \cdot 12''$, $\partial \alpha \zeta = 88^{\circ} 6' \cdot 53''$, $\eta \alpha \varepsilon = 88^{\circ} 35' \cdot 31''$, $\eta \alpha \zeta = 44^{\circ} 11' \cdot 50''$ et numeris usus, quos ultima positione $\alpha \vartheta$ computarerat, ethibet angulum $\alpha \vartheta \varepsilon = 67^{\circ} 20' \cdot 22''$, $\alpha \vartheta \zeta = 45^{\circ} 33' \cdot 58''$, $\alpha \eta \varepsilon = 45^{\circ} 41' \cdot 29''$, $45 \cdot 38 \cdot 58$, $\alpha \eta \zeta = 67 \cdot 46 \cdot 2$

ε ∂ ζ = 21. 46. 24 ε η ζ = 22. 4. 33Deinde pergit: Non sunt pares. Bequiritur ergo ad η minuendum longior ε η, vel brevior α δ. Supra autem, ante triduum, huis itidem loco defuit aliquid.

489

Quare jam hoc novum praestabimus, ut ex hypothesi nostra computemus 4 loca, nam etiam in neglecta praecessione est ponnihil. - Jam iterato per aliquot folia calculo, cum is non succederet, addit: Quid denique facias his observationibus, quae nullo pacto officium faciunt? Nempe hoc agam : semel atque iterum assumam a3 in certa quantitate, et computabo, quales debuerint esse visiones. (Calculus). In his error, quod eccentricus of non bene et ex hypothesi mea habeat, ut quidem habere putabam. Ut tamen certissimus sim de loco d'eccentrico, computabo eum ex hypothesi (calculus). Ego prius per anomaliam coaequatam excerpsi, oportuit per simplicem. Prodeunt 14° 19' 46" 8, 14° 18' 10", 14° 16' 34", 14° 14' 58"...

Quid, si fixae 7' essent promotiores? Tunc pro oppositione azoovozie, cum 3 putaretur in 17° 47' 45" &, fuisset in 17° 54' 45", et distitissent sidera per 7 plus. Si an 9 8º 9' 45", n 9 a 5º 29' 7". Hinc abit ad priora (ann. 74), omittens angulos das &c., neque vero rem ad finem perducit.

	F		
76) p. 287.	Primo momento, Terra in ζ		
	ζη in 4= 26° 54' 30"	sic ζη in 4 ^s 26° 54′ 30′′	
	ζα in 1. 28. 55. 45		
	$\sigma \ \ \alpha \zeta \eta = 87^{\circ} 58' 45''$		
Jam datis in 🛆 🤅	$\zeta \alpha \eta$ latere $\alpha \eta = 1$ et angulis,	non latebit quantitas lineae	
	$\alpha\zeta = \frac{\alpha\eta \cdot \sin \cdot \zeta\eta\alpha}{\sin \cdot \eta\zeta\alpha} = 0.65$	2234 (K. 0,62227 ¹ / ₂).	
Secundo momento	Terra in ϵ posita,		
	εη in 5 ^s 18 ^o 12'	εų in 5• 18° 12'	
	εα in 0. 16. 50. 24"	αη in 6. 5.23.38"	
	$\angle \alpha \epsilon \eta = 151^{\circ} 21' 36''$	$\alpha \eta \varepsilon = 17^{\circ} 11' 38''$	
;	$\alpha \varepsilon = \frac{\sin \alpha \eta \varepsilon}{\sin \alpha \varepsilon} =$	= 0,61674.	
Tertio momento	δη in 7• 8° 48' 15"	δη in 7* 8° 48' 15"	
	δαin 11. 3. 41. 40	đη in 7= 8° 48' 15" αη in 6. 5. 25. 14	
• •	αδη = 114° 53' 25"	$\alpha \eta \delta = 33^{\circ} 23' \cdot 1''$	
•	$\alpha \delta = \frac{\sin. \alpha \eta \delta}{\sin. \alpha \delta \eta} =$	= 0,60658.	
Denique qua	arto momenito, Terra in y exist	tente, eadem qua priores ratione pr	od

deunt $\angle \alpha \gamma \eta = 69^{\circ} 19' 38'' \text{ et } \angle \alpha \eta \gamma = 34^{\circ} 20' 20''$

$$\alpha \gamma = \frac{\sin \alpha \eta \gamma}{\sin \alpha \gamma \eta} = 0,60291,$$

77) p. 287. Cum sint ζ , ε , ϑ , γ loca Terrae propositis temporibus, et Sohs α loca ex Tychone cognita, prodeunt $\zeta \alpha \delta = 85^{\circ} 14' 5''$, $\epsilon \alpha \delta = 43^{\circ} 8' 44''$, $\epsilon \alpha \gamma = 87^{\circ} 43' 36''$, ζαγ = 129° 48' 57".

Tempus	autem		primum et			elapsum	=	33/4	ann.
, n	*	77	secundum		n	"	=	1%	**

secundum et quartum

Praccessio acquinoctiorum annua secundam Tychonem = 51", ergo addenda erunt singulis angulis : primo: 3' 12", secundo : 1' 36" (1. 33), tertio: 3' 12", quarto : 4' 48", ergo prodibit $\angle \zeta \alpha \delta = 85^{\circ}$ 17' 17", $\angle \varepsilon \alpha \delta = 43^{\circ}$ 10' 20", $\angle \varepsilon \alpha \gamma = 87^{\circ}$ 46' 48", $\angle \zeta \alpha \gamma = 129^{\circ}$ 53' 45".

His usi angulis et quantitatibus laterum $\alpha \zeta$, $\alpha \varepsilon$, $\alpha \vartheta$, $\alpha \gamma$, quas Keplerus prodit, com-putavimus angulos $\zeta \vartheta \alpha = 48^{\circ} 9'$, $\varepsilon \vartheta \alpha = 69^{\circ} 37' 3''$, $\varepsilon \gamma \alpha = 46^{\circ} 47' 9''$, $\zeta \gamma \alpha = 25^{\circ} 28' 30''$. = 21° 28' . 3' Hinc ed (= 69° 37' 3" - 48° 9'

et
$$\varepsilon_{\gamma}\zeta = 46.47.9 - 25.28.30'' = 21.18.39$$

Keplerus in praemissis iterum computandi rationem plenam exhibet, 78) p. 290. quam omisimus, exhibentes tantum es, quae quaerenda proposuit. Ne vero quid desit, es

quae in textu omisimus, in sequentibus addidimus. Notamus autem, in figura 82. aliquid a sculptore peccatum esse ; circulus scilicet $\zeta \in \delta$ debuit ex centro β , neque vero ex α describi. Calculus sic se habet: 1) Puncta ε et δ respondent observationibus annorum 1585 et 87, quae exhibent loca Solis 11s 29º 41' 4" et 10. 16. 5. 55. Ead = 43° 35' 9". Distantia temporum = 1% anni, ergo 1' 36" addenda ob praecessionem aequinoctii, prodit angulus $\epsilon \alpha \delta = 43^{\circ}$ 36' 45". Jam datis in $\triangle \epsilon \alpha \delta$ lateribus $\alpha \epsilon = 0.9977$, $\alpha \delta =$ 0,98613, quaeruntur anguli reliqui et latus tertium. $\frac{1}{3}(d + \epsilon) = 68^{\circ} 11' 38'' - 10,3978366$ $\alpha \epsilon - \alpha d = 0,01157 - 0,0633334$ 0.0633334ae + ad = 1,98383 0.2975045 8,1636655 ${}^{t}_{2}(\delta - \epsilon) = 0^{0} 50' 6'' (K. 50' 3')$ 68. 11. 38. $\alpha \delta \varepsilon = 69.$ 1. 44.; $\alpha \varepsilon \delta = 67.$ 21. 32. lg. $\alpha \epsilon = 0,9990000-1$ sin. a lg. sin. $\alpha = 9,8387089$ sin. ð lg. sin. d = 9,9702357 = 0,73701 0.8674732 - 1 Cum sit locus Martis η anno 1585 in 4s 11° 48' 20" (+ 12s) locus Solis α p n η 11. 29. 41. 4. erit $\angle \alpha \epsilon \eta = 132.$ 7. 16. $\angle \alpha \epsilon \delta = 67.$ 21. 32. (N. 1.) $\sum_{n=0}^{\infty} \eta \varepsilon \delta = \alpha \varepsilon \eta + \alpha \varepsilon \delta = 64.45.44.$ Sic anno 1587 locus Martis η in 6^s 4^o 41^o 45^o Solis a " 10. 16. 5. 55. $2 \begin{array}{c} \alpha \, \delta \, \eta = & 131. \ 24. \ 10. \\ \alpha \, \delta \, \epsilon = & 69. \ 1. \ 44. \end{array}$ 62. 22. 26. End = 180 - (64° 45' 44" + 62° 22' 26") 52º 51' 50" _ Datis in $\triangle \epsilon \eta \delta$ angulis et latere $\epsilon \delta = 0,73701$, prodit $\varepsilon_{\eta} = \frac{\varepsilon \delta. \sin. \delta}{\delta}$ 0,8674734-1 9,9474299 sin. η. 9,9015692 . 0,9133341-1 = 0,81910. (K 0,81915) 3) In $\triangle \eta \in \alpha$ datis lateribus $\epsilon \eta = 0.81910$ (N. 2), $\epsilon \alpha = 0.9977$ et angulo comprehenso $\epsilon = 132^{\circ}$ 7' 16" (N. 2) computatur $\angle \epsilon \alpha \eta$ et latus tertium. $\frac{1}{2}(\eta + \alpha) = 23^{\circ} 56' 22'' - 9,6473466$ $\epsilon \alpha - \epsilon \eta = 0,1786$ - 0,2518815-1 $\epsilon \alpha + \epsilon \eta = 1,8168$ - 0,2593071 8,6399210 $1/1 (\eta - \alpha) =$ 2º 29' 57" $\frac{1}{2}(\eta + \alpha) = 23.56.22.$ = 21. 26. 25. (K. 21° 26' 32"); 29° 41' 4" mp -/ εαη $21^{\circ} 26' 25'' = 8^{\circ} 14' 39'' 10.$ 0,9133369-1 <u>εη. sin. ε</u> sin. α an = 9.8702451 9,5629244 = 1,6621 0,2206576 (K. 1,66208). 4) Locus Solis anno 1583 in 1º 12º 10' 3" (+ 12º) 1588 " 9. 1. 44. 53. Distantia locorum = 130. 25. 10. Dist. temporum = $5^2/_{i}$ anni, ergo praecessio aequin. = 4. 48.

 $\angle \zeta \alpha \gamma = 130.$ 29. 58.; $\alpha \zeta = 1,01049, \ \alpha \gamma = 0,98203.$

 $\frac{4}{2}(\gamma + \zeta) = 24^{\circ} 45' 1'' - 9,6637124''$ $\frac{4}{2} - \alpha \gamma = 0,02846 - 0,4542349 - 0.45429 - 0.$ ay $\alpha\zeta + \alpha\gamma$ = 1.99252-0.29940277,8185446 1/2 (y - 5) = 0° 22' 38" (Keplero prodeunt 22' 48", ob errorem calculi in divisione commissi.) 24. 45. 1. $\alpha \gamma \zeta = 25.$ 7. 39. $\alpha \zeta \gamma = 24.$ 22. 23. 7. 39. $\alpha \zeta$. sin. α 0.0045320 54 = 9,8810491 sin. y 9,6280148 = 1.80950.2575663 5) Anno 1583 locus & in 4s 1º 29' 30" Anno 1588 & in 6s 13º 35' 40" $\overbrace{}^{\bigcirc} \ \ \frac{1}{2} 12. 10. 3. \ \ \frac{1}{2} 10. 3. \ \ \frac{1}{2} 10. 3. \ \ \frac{1}{2} 10. 3. \ \ \frac{1}{2} 10. 3. \ \ \frac{1}{2} 10. 3. \ \ \frac{1}{2} 10. 3. \ \ \frac{1}{2} 10. 3. \ \ \frac{1}{2} 10. 3. \ \ \frac{1}{2} 10. 3. \ \ \frac{1}{2} 10. 3. \ \ \frac{1}{2} 10. \ \frac{1}{2} 10. \ \ \ \frac{1}{2} 10. \ \ \ \frac{1}{2} 10. \$ $\gamma \eta \zeta = 180^{\circ} - (54^{\circ} 57' 4'' + 53^{\circ} 1' 34'') = 72^{\circ} 1' 22''.$ 6) In $\triangle \zeta \eta \gamma$ dantur anguli $\eta = 72^{\circ} 1' 22'', \gamma = 53^{\circ} 1' 34'', \text{ et latus } \zeta \gamma = 8095, \text{ hine: } \zeta \eta = \zeta \gamma. \text{ sin. } \gamma = 0.2575663$ 1,8095, hine: $\zeta \eta = \zeta \gamma$. sin. γ 9,9024976 9,9782623 = 1.51980,1818016 7) In Δηζα dantur ζη = 1,5198 (N. 6), ζα = 1,01049 ∠ αζη = 79° 19' 27" (N. 5). quaeruntur angulus α et latus $\alpha \eta$. $\frac{1}{2}(\alpha + \eta) = 50^{\circ} 20' 16'' - 10,0813916$ $\zeta_{\eta} - \zeta_{\alpha} = 0,50931$ $\zeta_{\eta} + \zeta_{\alpha} = 2,53029$ - 0.7069822-10,4031704 9.3852034 $\frac{1}{2} (\alpha - \zeta) = 13^{\circ} 38' 45''$ 50. 20. 16. 1. = 2s 3º 59' 1" (K. 63º 58') 5 an = 63. 59. anno 83: a (in 7. 12. 10. 3. 2. 5. 8. 11. $\alpha \eta$ in 1. 36. Praecessie 8. 12. 38. mp. ",Quod esset in" prius in 8: 14. 32. m Diff. 1. 54. Cum ipsi prodeat $\frac{\zeta \eta - \zeta \alpha}{20122}$, In Kepleri calculo haec mutanda sunt. $\zeta \eta + \zeta \alpha$ multiplicato hoc quotiente in tang. 50° 20' 16", exhibet factum 24270 = tg. 13° 38' 39" pro 13° 38' 31" 50. 20. 16. 63. 58. 47. $\alpha \zeta$ in 12. 10. 3. 11 (Sol in \heartsuit , ergo Terra in 11) Ergo an in 8. 11. 16. MP Praec. 1. 36. 8. 12. 52. m Prius in 8. 14. 32. Diff. 1. 40. ζη. sin. ζ 0,1818016 (N. 6) Denique $\alpha \eta =$ 9,9924169 sin. a 9,9535995 = 1,6619 (K. 1,66179) 0,2206190 prius == 1,6621 (N. 3) Diff. 0,0002; Keplero: 0,00029. 8) In Δ αηθ datis αη = 1,66208, αθη = 44° 31' 13", αθ = 0,9877, prodit

$$\begin{array}{rcl} \sin & \alpha \eta \vartheta = & \frac{\sin & \alpha \vartheta \eta & \alpha \vartheta}{\alpha \eta}; & \begin{array}{c} 0.9946251 - \\ 9.8458181 & \\ 0.2206519 \end{array} \\ \\ \underline{\checkmark & \alpha \eta \vartheta = 24^{\circ} \ 37' \ 28'' & \\ ann. \ 1590 & \operatorname{in} \ 6* \ 2. \ 57. \ 20. & \\ ergo \ \alpha \eta & \operatorname{in} \ 5. & 8. \ 19. \ 52. & \end{array}$$

ð

Hunc quoque calculum deprehendimus inter manuscripta Kepleri per multa folia extensuus, numeris quidem suis cum numeris textus quadamtenus consentientibus, neque vero plane eosdem exhibentem. Numeri sc. manuscr. sunt: $\alpha d = 98628$, $\delta \epsilon = 73706$, $\alpha \delta \epsilon = 69^{\circ} 1' 3'/_{3}'', \alpha \epsilon \delta = 67^{\circ} 22' 11'/_{3}'', \epsilon \eta \delta = 52^{\circ} 51' 50''$. Deinde $\epsilon \eta = 81923$, $\epsilon \alpha \eta = 21^{\circ} 26' 22'', \alpha \eta = 166246$; $\alpha \zeta = 101069$, $\eta \zeta \gamma = 54^{\circ} 57' 44''$, $\eta \gamma \zeta = 53^{\circ} 2' 54''$. $\zeta \gamma = 180970$, $\gamma \eta \zeta = 71^{\circ} 59' 22''$, $\zeta \eta = 152074$. Denique $\alpha \eta = 166284$, prius 166246; diff. 38, "efficit in perigaeo et $\Box \odot 1'$."

Distantiae Terrae a Sole, quibus superstruxit Keplerus totum hunc praecedentem calculum ($\alpha \zeta = 1.01049$, $\alpha \varepsilon = 0.9977$, $\alpha \delta = 0.98613$, $\alpha \gamma = 0.98203$ et $\alpha \vartheta = 0.98770$) desumtae sunt ex tabula cap. XXX. hunc in modum:

Anno 1583 distat Sol ab apogaeo per 3^s 5^o 30' - 1^s 12^o 10' 3" = 53^o 19' 57" Anom. coaeq. tabulae = 53. 9. 56

exhibet distantiam = 1,01047;

Anno 1585 distat Sol ab apogaeo per 3° 50° 30′ — 11° 29° 41′ 4″ = 95° 48′ 56″ Anom. coaeq. tab. = 94° 58′ 28″ exhibet dist. = 0,99796; diff. utriusque anom. = 50′ 28″, eadem in tabula = 60′ 7″; diff. distantiarum in tabula = 0,00031, quare subtrahe a 0,99796 quantitatem $\frac{757.0,00031.60}{15.3607} = 0,00026$, restat 0,9977.

Anno 1587. Dist. Solis == 139° 24', in tabula ad an. coaeq. 139° 20' 24" dist. = 0,98614.

Anno 1588. Dist. Solis == 176° 15', tab. exhibet ad an. coaeq. 175° 55' 42" dist. 0,98204, ad eandem 176° 56' 46"; 0,98202.

Anno 1590. Dist. Solis = 132°; tab. ad 132° 143/4', - dist. 0,98764, ad 131° 14' 1" dist. 0,98787, differentia exhibet particulas 6 deficientes, ut respondent 132° dist. 0,9877.

Tabula autem cap. XXX. quomodo computetur, relatum quidem est capite XXIX; ut autem Kepleri verba facilius intelligantur, exemplo rem proponemus:

Sit. (fig. 83) $\angle \vartheta \alpha \vartheta = 1^{\circ}$; cognitis in triangulo $\beta z \alpha$ ad z rectangulo angulis et latere $\alpha \beta = 0.018$ (posita semidiametro eccentrici Terrae = 100000, assumit Keplerus eccentricitatem $\alpha \beta' = 1800$, ergo posita illa = 1; erit $\alpha \beta = 0.018$), prodit quantitas lateris $\beta z = \sin 1^{\circ}$. 0.018 = 0.000314 et lateris $\alpha z = \cos 1^{\circ}$. 0.018 = 0.017997. Jam dantur in triangulo $\beta z \vartheta$, item ad z rectangulo, latera $\beta z = 0.000314$ et $\beta \vartheta = 1$, ergo $\beta z = \sin . \angle \vartheta = \sin . 0^{\circ} 1' 5''$, quare erit $\angle \vartheta \beta \delta = \vartheta \alpha \beta + \alpha \vartheta \beta = 1^{\circ} 1' 5''$ (Anomalia media tabalae). Porro $\vartheta z = \cos . x \vartheta \beta = \cos . 0^{\circ} 1' 5''' = 0.9999999,$ ergo $\alpha \vartheta = \alpha z + z \vartheta = 1.017997$ (distantia Solis a Terra tabulae = 1.018). Secundo sit $\angle \vartheta \alpha \delta' = 2^{\circ}$, simili processu prodit $\angle \vartheta = 0^{\circ} 2' 10''$ ergo $\angle \vartheta \beta \delta = 2^{\circ} 2' 10''$ et latus $\alpha \vartheta = 1.01799$ &c.

"Anomalia coaequata" (columnae tertiae) prodit subtractis angulis ϑ ab angulis $\vartheta \sigma \sigma$; v. q. anom. coaeq. $1^{\circ} = 1^{\circ} - 0^{\circ} 1' 5'' = 0^{\circ} 58' 55''.$

79) p. 297. 'Appendicem hanc Keplerum addidisse editioni Progymnasmatum, quae prodiit anno 1602, prius diximus.

Monet Keplerus in praefatione ad Ephemerides (Lincii 1616) p. 1. haec: Acquationes Solis computavi ex principiis physicis. Itaque in 4 quadrantum medietatibus provenit mihi hoc nomine Solis acquatio 1' auctior vel diminutior, quam si usus essem forma usitata cum Tychone. Qua de re vide cap. XXXI. Comment. de Marte, sed memineris, me ibi, dum corrigo numeros, quos antea prodideram in appendice ad Progymn. Tychonis, potius illos infelici cura pervertisse, ut recte me per epistolam monuit Jo. Ant. Maginus. Operare secundum praescriptum ejus loci et deprehendes ipse, quod dico. Usus est hac differentiola Chr. Severini, Tychonis computator, in examine eclipsium fundamentalium, quae sunt in Tomo I. Prog. pag. P.

Maginum libro suo inscripto: Supplementum Ephemeridum &c. adjunxisse literas Kepleri diximus in praefatione et ea, quae illuc pertinebant, lectoribus proposuimus.

Epistola, cujus Keplerus mentionem facit, haec est: Clarissimo et Excellentissimo Viro D. J. Keplero, Mathematico Caesareo. Doctissime ac praestantissime Vir.

Vidi nuper insigne tuum opus de motu Martis a quodam librario nostro Bononiensi huc pro nobili viro Venetia allatum, et mutao quidem mihi ad unicam diem concessum pertanti breviter, quantum per angustiam temposis mihi concessum fuit.

Inter cetera offendi caput 31, positum pag. 164 (297), in quo proponis, per bisectionem eccentricitatis Solis non turbari sensibiliter aequationes Solis a Tychone expositas; quod sane cum avide percurrissem invenissemque, tuam rationem a Ptolemaei et Tychonis fundamentis tam in simplici Solis eccentricitate quam in duplicata valde differre, neque ullo pacto convenire posse cum tabula ad simplicem Solis eccentricitatem a Tychone allata, neque cum mea, quam recenter secundum hypothesin aequantis supputavi ad eccentricitatem partium 1792: cognovi tandem, te male angulum anomaliae Solis ad mundi centrum accepisse, cum verius ad occentrici centrum in simplici Solis theoria, vel ad aequantis centrum in bisecata eccentricitate sit accipiendum, ut ex hac adjecta supputatione clarius veritatem percipies.

Sed mirum minime est, homines tam eximia eruditione praestantes, et gravissimis ac difficillimis speculationibus districtos, interdum a vero tramite deflectere. Ignoscas igitur et in bonam partem haec accipias quaeso, et qua decet animi benevolentia, quia veri et sincerfamici munus gero. Haud illibenter enim fateor, quod etiam mihi soleat idem interdum accidere, quia enim homines sumus, facile errare possumus. Me enim et tibi et tuis amicum, quam diu spiritus meos reget artus, ex asse verum et sincerum esse perpetuo futurum et mansurum, plane ac plene confidas. Sed quam primum ipsum opus tuum mihi allatam fuerit (exspecto enim illud avide ab amico), a capite ad calcem totum summa cum diligentia et assiduitate percurram.

Cosmographicum Mysterium D. V. longo temporis spatio interjecto a me summa can diligentia quaesitum, nunquam consequi potul, nisi paucis abhino mensibus, idque a nobili Germano, qui ad nos Bononiam venit, eundemque librum secum attulit, pro quo munere illi "Primum Mobile" meum gratitudinis ergo obtuli. Et quia in itinere duo priora folia cam titulo et dedicatione corrosa sunt, rogo V. D., ut eadem ad me mittat simul cum tabulis magnis, quae in eodem desiderantur (nulla enim alia exstat, quam tertia tabula, orbium planetarum dimensionem et distantias exhibens); hoc enim erit mihi gratissimum, pro quo certe mea officia promtissima et paratissima prolixe quovis tempore defero et polliceor. His bene et feliciter vale et de Astronomia perficienda bene mereri me desine. Bonead. 15. Jan. 1610. Excell. Tuae studiosiss. Jo. Ant. Maginus Patavinus.

"Supputationis," qaam supra dicit, summa haec est:

Deciperis in assumtione anomaliae 45° et 135° penes angulum FAE (FAD) (fig. 84), qui, cum sit ad centrum mundi, ignotus est, et est re vera FCE (FGD) ad quem refertur circumferentia FE (FD). Bene quidem colligis angulum AEC = 1° 27° 31″, sed tali pacto neque Ptolemaeus neque Copernicus aut Braheus computavit acquattenes Solis, ut videre est apud Tychonem p. 29, qui assumit cognitum triangulum ACE notorum laterum CE 100000, AC 3584, vel ut tu 3600, cum angulo ACE. Unde adinvenitur $\angle AEC = 1° 25' 28″.$ (Tycho habet 1° 24′ 56″); sed si accipitatur eccentricitas, qua praecise fuit usua Tychone nempe 3584, colligitur eadem cum Tychone acquatio 1° 24′ 56″.

In secundo modo computandi acquationes, tu, retento priori angulo falso CAE, onfugis primo ad \triangle BBA et colligis \swarrow BEA = 6° 43', 46". Sed non est illa angula CAE, sed BCE notus; bene tamen procedit methodus tua illa ad colligendum \geqq BBC, 43' 46"; sed si acceperimus eccentricitatem 1792, erit BEC = 43' 34". Pottrema giam pars calculi tui falsa est, dum ex EB, BC cum angulo comprehenso quaeris angulm BEC. Nam vice versa secundum rectum calculum venandus est e prioribus \measuredangle EBC = 44° 16' 18". et jam datis AB et BE lateribus cum ABE indagabitur \measuredangle AEB = 0° 42' 40", et inde totus angulus acquationis AEC = 1° 26' 26". Sic quoque expediendo calculum cum praecisiore ecc. 1792, est \oiint AEC = 1° 26' 26", differtque ab angulo Tychonicae tabulae 1' 6". Quare in Progymnasmatum appendice, ubi calculi utriusque differentia prodit 1'/a'; debet legi 1' 6" et non, ut tu ais, 0' 1/a"; nam verisimilius est, Tychonem scriptiste 6".

Quibus Keplerus haec respondit: Clarissime et praestantissime D. Magine. Quas ad me dedisti Bononia die 15. Jan., accepi 1. Febr. et audouou respondeo.

Gratiam inivisti non parvam, quod significasti, tibi meum opus de Marte curae esse. Obsecto propter studia nostra, ut eadem lima totum percurras. In id enim est editum, ut, sicubi erro, tui similium censuris in hoc veluti fundamento sublever, ut quam correctissimum superstruam astronomiae opificium, primum atque mihi a summis difficultatibus aulicae vitae affulserit tranquilla serenitas.

Quod rem praesentem attinet, decepit te ambiguitas meae dictionis, quam

Notae Editoris.

discutiet lectio totius libri. Adque hoc primo modo. Primus modus hic denominatur non a methodi forma, sed a forma eccentricitatis, quae hic assumitur simplex. Nam methodum adhibeo sane aliam et compendiosiorem pro hoc instituto (id facio passim in opere). Re ipsa convenimus Tycho et ego. Nam assume anomaliam mediam 46° 27' 31", invenies coaequatam Tychonis 45°. Deinde quaere anom. med. 45° in tabula (Cap. XXX.), qua anomalia tu uteris in secundo meo modo, quae est bisectae eccentricitatis, ubi exstruis aequationem 1° 26' 2", invenies ex tabula mea eandem. Ecce: 44° 42' 59" dat 43° 17' 1", aequatio 1° 25' 58" 45. 43. 45 " 44. 16. 15 " 1. 27. 30.

Proportionaliter igitur 45° dat 1° 26' 28''; sed hoc in tabula mea, quae habet modum tertium. Tu vero in modo secundo constitue anomaliam coaequatam 43° 33' 58'' (subtracta aequatione 1° 26' 2'' a te inventa), et utere mea methodo, invenies mediam 45° , quam et assumsisti. Appendicis ad Progymnasmata ipse auctor sum. Sed fieri potuit, ut in illius computo ego tunc fuerim hallucinatus, ita computans, ut tu nunc; hoc est, comparans aequationem, quam mihi dat coaequata 45° , cum aequatione, quam Ptolemaeo dat simplex, seu media anom. 45° .

Par erat, ut Caesar mihi mandaret gratis donare exemplaria mathematicis. At, quia strenue me patitur esurire, coactus sum vendere typographo sine exceptione. Pro tribus tamen florenis hic Pragae habere possum unum.

Mitto defectus Mysterii petitos, paratus totum mittere; sed quia habes reliqua, postae parcendum duxi.

Vale Vir celeberrime, et perge censendo mihi prodesse.

Pragae d. 1. Feb. 1610.

T. Excell. amicus

Jo. Keplerus, S. C. M. Mathematicus.

E Magini responsione haec desumenda sunt: Vidi ex tua responsione, te non temere, sed studiose et tuo quodam consilio supputasse acquationes Solis, initio facto ab angulo anomaliae verae ignoto, non autem, ut fierf ordinarie consuevit, ab angulo anomaliae mediae. Quae ratio quid commodi possit afferre, cum ex ipsa prodeant numeri introituales fractionibus molestis implicati, ignoro. Sicut videre est etiam in tabula tua distantiarum, quae molesta est pro ingressious.

Non video autem, quomodo ex hac tua supputationis forma aequationes Solis ex bisecta eccentricitate prodeant in iisdem numeris a te positis. Ex anom. vera penes $\angle EAB = 45^{\circ}$ recte colligis $\angle BEA = 43'$ 46"; hic additus ad EAB anom. vera constituit $\angle EBC = 45^{\circ}$ 43' 46"; calculus manifestat $\angle CEA = 1^{\circ}$ 28' 38", non ut ta ponis 1° 27' 24"; quare differt hic modo inventus angulus ab illo secundum simplicem eccentricitatem (1° 27' 314) uno minuto et 7". Pariter in anom. 135° est totus $\angle CDA = 1^{\circ}$ 26' 26", et non ut tu ponis 1° 27' 28". Ex tua tabula distantiarum Solis a Terra colligitur cum anom. aequata 45° aequatio Solis 1° 28' 38", et cum anom. 135°, — 1° 26' 20". Ex his autem patet, non esse aequales aequationis partes, nempe optica et physica, unde in constructiope tabulae ex duplicatione prosthaphaeresis non obtinebitur exactissima aequatio.

. Cuperes te cap. 31. correctarum libenter, quanvis lapsus sit exigui momenti.

Quibus addens Maginus quaedam de Origani Ephemeridibus deque corrigendis diametris luminarium, et petens a Keplero tabulas motuum Martis, sic concludit: Has manu propria ob adversam valetadinem, qua 15 plus diebus teneor, exarare minime potui. Tu Vir Excell. vale optime. Bonom. 23. Febr. 1610.

Keplerus in responsione sua (d. d. 22. Martii 1610) refert Magino, cogitare se ante editionem Tabularum Rudolphi scribere Ephemerides ad annos 80, initio facto ab anno 1583, et invitat Maginum, ut operam suam conferat ad illas computandas et communi nomine edendas. Quae quum non huc pertineant, ea tantum ex hac epistola desumsimus, quae ad hunc locum attinent.

Ex morbo, scribit, te convaluisse gaudeo. Vix tandem tua opera discussi hanc nebulam. Video jam causam nullam fuisse, cur meos numeros in Appendice Progymn. fol. 821. insertos posterioribus curis in Martis fol. 164 (297) corrigerem. Mirum fatum, cum toties operationem repetierim (quippe grave mihi videbatur erratum in Progymn. fateri), adeo constanti me ratione aberrasse. Interdum igitur deutegat apportides anugers au avontos. In felicitatis parte est, quod is parvus est error, et nihil illi superstructum, ita ut exemtus ex libro ruinam trahat nullam. Nam quod tu infers, non esse aequales partes aequationis opticam et physicam, id quidem verum est, neque dixeram plane aequales; quod vero addis, in constructione tabulae ex duplicatione prosthaphaeresis non obtineri exactissime aequationem, id tantum abest ut verum dicas, ut potius per hanc tuam correctionem contrarium probes. Nonne enim tu ipse in his literis ex mea tabula ad coaequatam 45° elicis aequationem 1° 28' 38", ad 135° — 1° 26' 26"? At quid tua correctio? Nempe 1° 28' 38", et 1° 26' 26". Miraberis, quae hae praestigiae? Sed cogita, quod in duplicatione tabulari partes aequationis connectantur ad gradus integros anomaliae non mediae, non coaequatae, sed eccentri. Non mirum igitur, si quanto minor est optica anomalia eccentri 45°, quam optica anom. coaeq. 45°, tanto etiam minor sit pars physica, quam sumitur per duplicationem opticae.

Cogita, an hace mihi origo errandi, qui aliam forte methedum computando sum secutus, aliam postea in Commentariis perscripsi, numeris ex illa mutuatis. Nam nunc non vacat quaerere.

Ut errorculus hic propaletur, nihil reformido; tantum ut qui id facturus est, totum librum legat. Origanus enim aut quicunque alius, si abusurus est hoc meo sphalmate, non impune feret si vixero. Nam ut nolo meis erroribus praejudicare veritati, ita ne aliis quidem concedam silentium tenens. In computandis eclipsibus non solae luminarium diametri, sed et alia multa corrigenda sunt, et a me correcta sunt in Hipparcho meo, licet nondum absoluto, ut edi possit.

Tabulas Martis habeo absolutissimas, est mihi et compendium computandi praesto, ut unus aliquis locus Martis, tam in longum quam in latum multo breviori methodo computetur, quam ex Prutenicis; multi vero simul facillima ratione computantur. Nisi tantum circa punctum oppositionis cum Sole, ibi correctiunculis est opus. Sed et in bet 4 tabulae sunt perfectae, in aetic quam ex quam ex quam ex quam ex quam ex quam ex quam ex quam ex quam ex perfectae.

80) p. 306. Primum hanc sententiam de Solis motu circa axem pronunciavit Keplerus in libro de Nova Stella (Vol. II. p. 673), repetiit in libellis contra Roslinum et Feselium, (Vol. I. p. 508, 570, 590), et confirmatam gloriatur literis ad amicos flatis de maculis Solaribus, retractans quidem ea, quae de tempore volutionis somniaverat (Vol. II. p. 780).

81) p. 315. Adstant schemati N. 90. in Kepleri delineatione ad punctum α duae forte genios repraesentantes figurae, converso ad circulum $\delta \in \eta \mathcal{S}$ vultu, altera in manibus tenens circulum et normam, altera librum evolutum. Quod schema quum hinc inde saepius repetatur et adhibeatur ad demonstrationes theorematum hujus libri praecipuorum, opinatur Delambrus (Hist. de l'Ast.), significare voluisse Keplerum hoc ornamento praestantiam illius et praecipuum momentum in inventionibus suis.

82) p. 323. E verbis "ex recentissima recognitione" concludere licet, Keplerum hic spectare A. Romani opus, quod prodiisse refert Vossius (de scientiis math.) anno 1607, inscriptum: Methodus cifris exprimendi numerum quantumvis maximum. Item mathematicae analyseos triumphus, in quo enneagoni circulo inscripti ad circulum ratio exhibetur. Ceterum perhibent, Vietam ante Romanum hunc ipsum numerum (ultimam notam habuit 5 pro 6) anne 1579 pronunciasse; A. Romanum vero illum ulterius usque ad 15 notas extendisse in libro, qui prodiit anno 1593 inscriptus "Ideae mathem. pars prima."

83) p. 327. Sit in schemate 132. A nodus, AE ecliptica, B locus Martis, $\angle E =$ 90°, erit sin. BE = sin. A . sin. AB = sin. 1° 50′ 45″ × sin. $\begin{cases} 41^{\circ}. BE = 1^{\circ} 12′ 40″ \\ 68^{\circ}. = 1^{\circ} 42′ 40″ \\ 68^{\circ}. = 1^{\circ} 42′ 40″ \end{cases}$ cosin. AE = $\frac{\cos. 41^{\circ}}{\cos. 1^{\circ} 12′ 40″} = \cos. 40° 59′ 7″$, vel cos. AE = $\frac{\cos. 68^{\circ}}{\cos. 1^{\circ} 42′ 40″} = \cos. 67° 59′ 23″$.

 $44^{\circ} - 40^{\circ}$ 59' 7" = 53"; $68^{\circ} - 67^{\circ}$ 59' 23" = 37". Keplero prodeunt 50" et 16". Reductio ad eclipticam prioris loci: 6° 5° 25' 20" - 50" = 5° 24' 30" \approx , caque posterioris: 5° 8° 19' 20" - 16" = 8° 19' 4" \mathbb{T} . In contextu pro voce "longioris" ponenda est vox "brevioris". Ob praecessionem aequin. ab anno 1590 in a. 1595 subtrahuntur a 14° 21' 7" \heartsuit : 4' 15", ita ut reducatur locus \circlearrowright in 14° 16' 52" \circlearrowright ; sic pro 2 messibus (31. Oct. ad. 31. Dec. 1590) subtrahuntur 9" a 5° 24' 30" \approx , restat 5° 24' 21" \approx .

Jam in triangulo rectilineo rectangulo datis latere uno = 1, et angulo (ad centrum orbis) 1° 12' 40", erit alter latus = $\frac{1}{\cos 1^{\circ} 12' 40"}$ = 1,00022 vel reducendo ad distantiam 1,63100 = 1,00022 × 1,63100 = 1,63134. Sic ad anguhum 1° 42' 40"

quassita distantia = $\frac{1}{\cos 1^0 42' 40''} = 1,00045$, et reducendo ad dist. 1,6618 = 1,6618 × 1.00045 = 1,66235.

84) p. 329. Insunt has observationes Hist. Coel. Brahei; ultima (p. 434) hasc est: Die 6. Oct. mane:

85) p. 334. Sit AEB "pars acq. opticae" in anom. eccentri 90°, BE radius, ergo BA = 0,09264 = tg. $\angle AEB = tg. 5°$ 17' 34". $\triangle AEB = 1/AB$. EB = 0,04632.

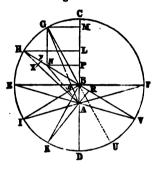
Jam comparata area trianguli AEB cum area circuli proportione: $3,14159...:0,04632 = 360^\circ: x$ prodeunt pro "parte aequationis physicae" $5,30785^\circ =$ $5^\circ 18^\circ 28^\circ$, qui additi ad $5^\circ 17^\circ 34^\circ$ exhibent "totam aequationem" = $10^\circ 36^\circ 2^\circ$.

Anomalia media . = 90° + 5° 18' 28" = 93° 18' 28" , coaeq. = 95° 18' 28" - 10° 38' 2" = 84° 42' 28"

Ad anomaliam = 45° et 135° progressus, sic rem absolvit Kepleras: Com sit \triangle HBL ad L rectangulum, \angle HBL = 45° (135°) et HB = 1, erit HL = sin. 45° 0,70711, ergo altitudo \triangle ABH = 0,70711, et area = $\frac{1}{4}$ AB > HL = 0.04632 > 0.70711 = 0.032753. Jam proportione: 3,14159: 0.032753 = 360°: x

prodit pars aeq. physicae = 3.7532° = $3^\circ 45' 12''$, sive, adhibito trianguli AEB valors supra invento = $5^\circ 18' 28'' = 19108''$, compendiosius sic: pars aeq. phys. = $0,70711 \times 19108 = 13511.4'' = 3^\circ 45' 12''$.

Hinc anom. media = $45^{\circ} + 3^{\circ} 45' 12'' = 48^{\circ} 45' 12'' = 135^{\circ} + 3^{\circ} 45' 12'' = 138^{\circ} 45' 12'' = 138^{\circ} 45' 12''.$ Deinde in \triangle AHB dantur HB = 1, AB = 0,09264, et \angle HBA = 135° (45°); quare ¹/₈ (A + H) = 22° 30' (67° 30') HB - AB = 0,90736 HB + AB = 1,09264 Ergo tg. ¹/₈ (A - H) = $\frac{0,90736 \cdot \text{tg} \cdot 22^{\circ} 30'}{1,09264} = \text{tg} \cdot 18^{\circ} 58' 55''. \angle H = 3^{\circ} 31' 5''$ $= \frac{0,90736 \cdot \text{tg} \cdot 67^{\circ} 30'}{1,09264} = \text{tg} \cdot 63^{\circ} 29' 25''. \angle H = 4^{\circ} 0' 85'',$ Anomalia cosequata = $45^{\circ} - 3^{\circ} 31' 5'' = 41^{\circ} 28' 55''$


 $= 135^{\circ} - 4^{\circ} \quad 0' \quad 35'' = 130^{\circ} \quad 59' \quad 25''.$

66) p. 335. Haee sunt Cardani verba (de Subtil. lib. XVI.): "Si diametros producatur extra quantum libet, alia vero diametros in centro secetur ad rectos, ex hujus fine divisa portione quarta circumferentiae in quotquot aequales partes, per earum ultimam recta ducatur ad eam, quae exterius in directo diametri adjacet, erit ipsa diametro adjacens aequalis omnibus rectis ex divisionum peripheriae punctis perpendicularibus in subjectam diametrum, usque ad adversam circumferentiae partem, quae quidem lineae omnes diametro, quae exterius est producta, aequidistant." — Quae Keplerus addit de Byrgio, referenda forte sunt ad "Arithmeticam" Byrgii, quam diximus (Vol. II. p. 834.) non absolutam inesse Kepleri manuscriptis. Praefatio hujus "Arithmeticae" declarat, doctrinam linearum goniometricarum finem praecipuum libri fuisse. ("Günstiger Leser, es möcht dich vielleicht Wunder nemen, warum unter einer grossen Anzahl gelehrter und der geometrischen Kunst efabrener Leute eben Ich diesen Canonem sin num zu rechnen fürgenommen u. jezo im öffenen Druck gebe, der ich doch griechischer und lateinischer Sprach unerfahren u. derohalben diejenigen, welche hievon geschrieben, in ihrer rechten Sprach nit vernehmen könnte" etc.)

Quod rem ipsam attinet, notamus, Archimedem (de Sphaera et Cylindro I, 21) demonstrasse, diviso semicirculo in partes quascunque acquales, ductisque e divisionum punctis Leplerí Opera. III. 82

Fig. 139.

Deinde assumatur	a.9 = 1, pro	deunt:	11000
1) <i>uð</i> =	sin. a98	lg. sin.	19° 55′ 4″ = 9,5323354
	sin. ad 9	lg. sin.	30° 19' 35" = 9,7032270
1.1246.4	= 0,67469		lg. $\alpha \delta = 0.8291084 - 1$
2)	sin. e 9 a	lg. sin.	$34^{\circ} 52' 40'' = 9,7572652$
2) as =	sin. a e 9	lg. sin.	59° 6' 52" = 9,9335856
2000 h a	= 0.66632	- 907 ·	lg. $\alpha \epsilon = 0.8236796 - 1$
3) aζ =	sin. ζθa	lg. sin.	$41^{\circ} \ 13' \ 46'' = 9,8189355$
	sin. a ζ 9	lg. sin.	97° 11' 6" = 9,9965762
	= 0,66429		lg. $\alpha \zeta = 0.8223593 - 1$
1.1.1	sin. n 9 a	lg. sin.	5° 22' 8" = 8,9711259
4) $\alpha \eta =$	sin. ang	lg. sin.	$188^{\circ} 0' 26'' = 9,1439446$
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	= 0,67171		lg. $\alpha \eta = 0,8271813 - 1$

Keplero prodit $\alpha \eta = 0.67220$ major justo; quia autem calculus deest, erroris hujus causa nequit proponi. In manuscripto hunc quidem calculum non deprehendimus, inest vero illi longa series irritorum conatuum deprehendendi justas distantias. Longum est omnes illos recensere conatus, quare unum ex his elegimus, qui loco sit reliquorum. Animus fert, inquit, per 4 observationes Martis extra situm azoovuziov, Marte semper eodem eccentrici loco sub fixis existente, probare dimidiationem eccent

scaper codem eccentrici 10co sub ixis existente, probare dimidiationem eccent tatis Terrae... Sunt loca et distantiae o et o ad haec tempora: 1590: o 24° 0' 19" \oiint , o: 24° 22' 30" \curlyvee ; 1592: o 10° 17' 7" o, o: o' 25° 0" \curlyvee ; 1593: o25° 53' 26" \swarrow , o 3° 2" \curlyvee ; 1595: o 11° 41' 36" \Cap , o 16° \heartsuit . Constitutio angulorum: $ad \vartheta = 30^{\circ}$ 22' 11", $a\varepsilon\vartheta = 59^{\circ}$ 7' 53", $a\zeta\vartheta = 97^{\circ}$ 8' 34", $\delta a\varepsilon = 43^{\circ}$ 43' 12", $\varepsilon a\zeta = 44^{\circ}$ 23' 41", $\zeta a\eta = 44^{\circ}$ 11' 50", $\delta a\eta = 132^{\circ}$ 18' 43" (+ 5' 10" pro praecess.) = 132° 23' 53", $a\vartheta \xi = 36^{\circ}$ 31' 33", $a\vartheta \vartheta = 21^{\circ}$ 32' 20", $\eta a\vartheta = 4^{\circ}$ 18' 24", $a\eta\vartheta = 171^{\circ}$ 57' 21", $a\vartheta \zeta = 42^{\circ}$ 56' 16", $a\vartheta \eta = 3^{\circ}$ 44' 15". $\eta\vartheta = \frac{\sin. \eta a\vartheta}{\sin. \alpha \eta\vartheta} = 68318; a\vartheta = \frac{\sin. a\vartheta\vartheta}{\sin. \alpha\vartheta\vartheta} = 72617; a\zeta = \frac{\sin. \zeta\vartheta}{\sin. \alpha\zeta\vartheta} = 68653;$

$$\vartheta = \frac{1}{\sin \alpha \eta \vartheta} = 68318; \ \alpha \vartheta = \frac{1}{\sin \alpha \vartheta \vartheta} = 72017; \ \alpha \zeta = \frac{1}{\sin \alpha \zeta \vartheta} = 08053;$$

 $\frac{\sin \alpha \, \vartheta \, \varepsilon}{\sin \alpha \, \alpha \, \vartheta \, \vartheta} = 69340; \ \alpha \eta = \frac{\sin \alpha \, \vartheta \, \eta}{\sin \alpha \, \eta \, \vartheta} = \frac{3497}{10993} = 3 \dots \text{ Vides, } \alpha \eta \text{ prodire admodum}$ a = 3 3 Iteratus calculus prodit brevem, ergo $\alpha \vartheta \eta$ augendus, ut sit $\alpha \vartheta$ in 14° S. 6983 $\alpha \delta = 66152, \ \alpha \epsilon = 66031, \ \alpha \zeta = 66036, \ \alpha \eta = \frac{0503}{10993} = 63...$ Facile pater, adhuc nimis esse breven, nam praescio, longiorem esse quam a e. Sit a 9 in 13º 50' 8. Hic duo peccantur, ad fit brevior quam as, et haec brevior quam af. Sit as in 13º 55' S ... Hic eadem peccantur. Error in deductione, nam in S retrogradus

fit J. Et tamen an fit brevior quam as. Itaque vitium est in assumtis; vel n3 vel na non recte habent.

Post correctionem adhibitam apparet, verum inter 16 et 14 versari. Sit $\alpha\vartheta$ 15°°°; $\alpha\vartheta\delta = 20°32'20''$, $\alpha\vartheta\epsilon = 35°31'33''$, $\alpha\vartheta\zeta = 40°56'16''$, $\alpha\vartheta\eta = 4°44'15''$ $\alpha \delta = 69395; \quad \alpha \epsilon = 67696;$ ac =67355 prodit $\alpha \eta \Rightarrow 60 \dots$ Haec nimis brevis prodit, ergo adime ipsi loco a9.

Sit $\alpha \vartheta$ 14° 50' \heartsuit : $\alpha \vartheta = 670 \dots \alpha \varepsilon = 670 \dots \alpha \eta = 61$ Perge ulterius.

Jam quatuor triangulorum anguli ad basis quaerendi &c. 75) p. 281. Ut Kepleri calculus probetur, apponimus integrum hujus loci calculum.

numeris nsi, qui prodierant annot. praeced. I) In $\triangle \delta \alpha \zeta$ dantur $\angle \delta \alpha \zeta = 88^{\circ}$ 10' 13", $\alpha \delta = 0.67409$, $\alpha \zeta = 0.66429$ ergo ¹/_s $(\zeta + \delta) = 45^{\circ} 54' 54''$; 10.0138734 $\beta \zeta = \alpha \zeta \cdot \sin \alpha = 0.822357'$ $= \frac{\alpha \zeta \cdot \sin \alpha}{\alpha \zeta \cdot \sin \alpha}$ 0.8223577-1 -9,9997785 0,0170333-2 $\alpha \delta - \alpha \zeta =$ 0,01040; sin. d 9.8529107 $\alpha\delta + \alpha\zeta =$ 1.33898: 0,1267742 = 0,93159. lg. 8 = 0,9692255lg. tg. $\frac{1}{3}$ ($\zeta - \delta$) = 7,9041325 / ((- d) = 0° 27' 34" $\frac{1}{1}(\zeta + \delta) = 45, 54.54.$ ∠ ad ζ = 45° 27' 20"

II) In $\triangle \delta \alpha \eta$, datas $\angle \delta \alpha \eta = 132^{\circ} 23' 39''$, $\alpha \delta = 0,67469$ et $\alpha \eta = 0,67171$ computetur angulus $\alpha \eta \delta$. $\frac{1}{3} (\eta - \delta) = 0^{\circ} 3' 21''$ $\frac{1}{3} (\eta + \delta) = 23.48.11.$ $\frac{1}{2}(\eta + \delta) = 23^{\circ} 48' 11''$ 9.6445530 $a \delta - a \eta = 0,00298$ $a \delta + a \eta = 1,34640$ 0,4742163 - 30,1291741 ∠ and = 23° 51' 32" 6,9895952 III) In $\triangle \zeta \alpha \eta$ prodit angulus $\alpha \eta \zeta$ ex datis $\zeta \alpha \eta = 44^{\circ} 13' 26'', \alpha \zeta = 0.66429$ et $\alpha \eta = 0,67171$ $\frac{1}{2}(\zeta - \eta) = 0^{\circ} 46' 59''$ $\frac{1}{2}(\zeta + \eta) = 67^{\circ} 53' 17''$ sic: $\frac{\eta}{2}$ ($\zeta + \eta$) = 67° 53' 17" 10,3911523 $\alpha \eta - \alpha \zeta = 0,00742$ 0,8704039-3 $\alpha \eta + \alpha \zeta = 1,33600$ 0,1258065 / an 5 = 67° 6' 18" (K. 3' 12") 8,1357497. IV) $\delta\eta\zeta = a\eta\zeta - a\eta\delta = 67^{\circ} 6' 18'' - 23^{\circ} 51' 32'' = 43^{\circ} 14' 46'' (K. 12' 12'')$ $\delta \gamma \zeta = 2 \ \delta \eta \zeta$ = 86° 29' 32" Practor hunc angulum datur in $\triangle \delta \gamma \zeta$ latus $\delta \zeta = 0.93159$ (N. I.) et, cum sit triangulum acquicrurium $\angle \gamma \zeta \delta = 90^\circ - 43^\circ$ 14' 46'' = 46' 45' 14'' ergo $\delta \gamma = \frac{\delta \zeta \cdot \sin \cdot \gamma \zeta \delta}{\sin \cdot \delta \gamma \zeta}$; 0.9692248-1 9.8623803 9,9991855 = 0,67986lg. $d\gamma = 0.8324196-1$ (K. 0,68141). V) In $\triangle \gamma \delta \alpha$ deprehendimus $\angle \delta = \gamma \delta \zeta$ (N. IV.) — $\alpha \delta \zeta$ (N. I.) = 1° 17' 54" dein de dantur $\delta \alpha = 0.67469$ et $\delta \gamma = 0.67986$. $\frac{\partial y}{\partial y} = \frac{\partial y}{\partial x} =$ - 0,7134905-3 $\frac{1}{1/2} (\alpha - \gamma) = 18^{\circ} 36' 59'' - 9,5274432$ 89. 21. 3. $\angle d \gamma \alpha = 70^{\circ} 44' 4'' \alpha d$ in 11= 24. 0. 25. 13º 16' 21" Z ay in Sive Kepleri usi numeris: ${}^{1/2}(\alpha + \gamma) = 89^{\circ} 19' 47''$ ${}^{3}\gamma - {}^{3}\alpha = 0,00674$ 11,9318479 0,8286599-3 $\delta \gamma + \delta \alpha = 1,35608$ 0,1322855 9,6282223 $\frac{1}{2} (\alpha - \gamma) = 23^{\circ} 1' 3''$ $\frac{1}{2} (\alpha + \gamma) = 89. 19. 47$ Keplerus : ∠ δya = 66° 18' 44" 68º 26' 7" - 11. 24° 0' 25" Cum vergat a d in 11s 24. 0. 25. verget ay in 287° 41' 41" -h. e. 17. 41. 41. Z-285° 34' 18" 15. 34. 18. 8 VI) Cam Keplero prodeat $\gamma \delta = 0.68141 \times \sin 1^{\circ} 20^{\circ} 26^{\circ}$ et ponatur $\delta \alpha \gamma$ pro $\delta \gamma \alpha \doteq 68^{\circ} 26^{\circ} 7^{\circ}$ prit $\alpha \gamma = \frac{0.68141 \times \sin 1^{\circ} 20^{\circ} 26^{\circ}}{\cos 26^{\circ} 7^{\circ}}$. sin. 68º 26' 7" sive, posita $\gamma d = 1$, $\alpha \gamma = \frac{\sin 1^{\circ} 20' 26''}{100}$ 8,3691225 sin. 68° 26' .7"; 9.9684843 = 0.025160.4006382-2 Adhibitis autem numeris, qui prodierunt in calculo nostro usque ad N. V., prodit $\alpha \gamma = 0.024$. In manuscriptis, quorum partem illuc pertinentem annot. 74. addidimus, Keplerus hanc prodit quantitatem angulorum: $\delta \alpha \epsilon = 43^{\circ} 43' 12''$, $\delta \alpha \zeta = 88^{\circ} 6' 53''$, $\eta \alpha \epsilon =$ 88° 35' 31", $\eta \alpha \zeta = 44^{\circ}$ 11' 50" et numeris usus, quos ultima positione $\alpha \vartheta$ computaverat, exhibet angulum $\alpha \delta \varepsilon = 67^{\circ} 20' 22''$, $\alpha \delta \zeta = 45^{\circ} 33' 58''$, $\alpha \eta \varepsilon = 45^{\circ} 41' 29''$, 45. 38. 58 $\alpha \eta \zeta = 67.46.2$ εðζ = 21. 46. 24 $\epsilon \eta \zeta = 22.$ 4.33

Deinde pergit: Non sunt pares. Requiritur ergo ad η minuendum longior « η , vel brevior $c\delta$. Supra autem, ante triduum, huic itidem loco defait aliquid.

Quare jam hoc novum praestabimus, ut ex hypothesi nostra computemus 4 loca, nam etiam in neglecta praecessione est nonnihil. - Jam iterato per aliquot folia calculo, cum is non succederet, addit: Quid denique facias his observationibus, quae nullo pacto officium faciunt? Nempe hoc agam: semel atque iterum assumam as in certa quantitate, et computabo, quales debuerint esse visiones. (Calculus). In his error, quod eccentricus 👌 non bene et ex hypothesi mea habeat, ut quidem habere putabam. Ut tamen certissimus sim de loco d eccentrico, computabo eum ex hypothesi (calenlus). Ego prius per anomaliam coaequatam excerpsi, oportuit per simplicem. Prodeunt 14° 19' 46" 8, 14° 18' 10", 14° 16' 34", 14° 14' 58"...

Quid, si fixae 7' essent promotiores? Tunc pro oppositione *dxoovuxuq*, cum d putaretur in 17° 47' 45" of, fuisset in 17° 54' 45", et distitissent sidera per 7 plus. Si 84 dat 24 quid 7? Ergo 2 horis posterius d, et d motus, respondens residuo temporis, pro 15' 35" fiet 17' 32", ergo in 17° 36' 43". Sed horis 2 medius motus & est 2' 37". quae adde ad 17° 31' 40" putatum, ut sit putatus 17° 34' 17" 8, qui est vere 17° 36' 43"; diff. 2' 26", quae adde etiam ad nostra loca. Prodit $\alpha \delta \sigma$ 30° 29' 31", $\delta \sigma \alpha 19^{\circ} 47' 28'', \alpha \epsilon \sigma 59^{\circ} 13' 33'', \epsilon \sigma \alpha 34^{\circ} 48' 20'', \alpha \zeta \sigma 97^{\circ} 8' 56'', \zeta \sigma \alpha 41^{\circ} 18' 16'',$ $<math>\alpha \eta \sigma 8^{\circ} 9' 45'', \eta \sigma \alpha 5^{\circ} 29' 7''$. Hinc abit ad priora (ann. 74), omittens angulos $\delta \alpha \epsilon \delta c_{\sigma}$, neque vero rem ad finem perducit.

76) p. 287.	. Primo momento, Terra in ζ		
• •	ζη in 4= 26° 54' 30"	sic ζη in 4= 26° 54' 30"	-
	ζα in 1. 28. 55. 45	αη in 6. 5. 22. 2	
. erg	$a \zeta \eta = 87^{\circ} 58' 45''$	$2 \alpha \eta \zeta = 38^{\circ} 27' 32''$	
Jam datis in 🛆	$\zeta \alpha \eta$ latere $\alpha \eta = 1$ et angulis,	, non latebit quantitas lineae	•
	$\alpha\zeta = \frac{\alpha\eta \cdot \sin \zeta\eta\alpha}{\sin \eta \zeta\alpha} = 0.6$	2234 (K. 0,62227 ¹ / ₂).	-
Secundo momento	τerra in ε posita,		
	εη in 5° 18° 12'	εų in 5s 18° 12′	
	εα in 0. 16. 50. 24"	ay in 6. 5.23.38"	
	$\angle \alpha \epsilon \eta = 151^{\circ} 21' 36''$	$\alpha \eta \varepsilon = 17^{\circ} 11' 38''$	
	$\alpha \varepsilon = \frac{\sin \alpha \eta \varepsilon}{\sin \alpha \varepsilon \eta} =$	= 0,61674.	
Tertio momento	δη in 7= 8°48'15"	δη in 7° 8° 48' 15"	- .
•	δα in 11. 3. 41. 40	αη in 6. 5. 25. 14	
•	α δη = 114° 53' 25"	$\alpha n \delta = 33^{\circ} 23' 1''$	
•	$\alpha \vartheta = \frac{\sin. \ \alpha \eta \vartheta}{\sin. \ \alpha \vartheta \eta}$	= 0,60658.	
Denique qu	arto momento, Terra in y exis	stente, eadem qua priores zati	one prodeu

mt $\angle \alpha \gamma \eta = 69^{\circ} 19' 38'' \text{ et } \angle \alpha \eta \gamma = 34^{\circ} 20' 20''$

$$\alpha \gamma = \frac{\sin \alpha \eta \gamma}{\sin \alpha \gamma \eta} = 0,60291,$$

77) p. 287. Cum sint ζ , ε , δ , γ loca Terrae propositis temporibas, et Solis α loca ex Tychone cognita, prodeunt $\zeta \alpha \delta = 85^{\circ} 14' 5''$, $\varepsilon \alpha \delta = 43^{\circ} 8' 44''$, $\varepsilon \alpha \gamma = 87^{\circ} 43' 36''$, $\zeta \alpha \gamma = 129^{\circ} 48' 57''.$

- Tempus autem inter primum et tertium momentum elapsum = $3^{3}/_{4}$ ann. = 1% secundum et tertium . = 31/4 secondum et quartum =
- Praecessio acquinoctiorum annua secundam Tychonem = 51^{''}, ergo addenda erunt singulis angulis : primo : 3' 12", secundo : 1' 36" (1. 83), tertio : 3' 12", quarto : 4' 48", ergo prodibit $\angle \zeta \alpha \delta = 85^{\circ}$ 17' 17", $\angle \varepsilon \alpha \delta = 43^{\circ}$ 10' 20", $\angle \varepsilon \alpha \gamma = 87^{\circ}$ 46' 48", = 52/3

His usi angulis et quantitatibus laterum $\alpha \zeta$, $\alpha \varepsilon$, $\alpha \delta$, $\alpha \gamma$, quas Keplerus prodit, com-putavinus angulos $\zeta \delta \alpha = 48^{\circ}$ 9', $\varepsilon \delta \alpha = 69^{\circ}$ 37' 3'', $\varepsilon \gamma \alpha = 46^{\circ}$ 47' 9'', $\zeta \gamma \alpha \doteq 25^{\circ}26' 30''$. Hinc $\varepsilon \delta \zeta = 69^{\circ}$ 37' 3'' - 48° 9' = 21° 28' 3''

et
$$\epsilon_{\gamma}\zeta = 46.47.9 - 25.28.30'' = 21, 18.39$$

Keplerus in praemissis iterum computandi rationem plenam exhibet, 78) p. 290. quam omisimus, exhibentes tantam es, quae quaerenda proposuit. Ne vero quid desis, es

quae in textu omisimus, in sequentibus addidimus. Notamus autem, in figura 82. aliquid a sculptore peccatum esse; circulus scilicet $\zeta \in \delta$ debuit ex centro β , neque vero ex α describi... Calculus sic se habet:

 Puncta ε et δ respondent observationibus annorum 1585 et 87, quae exhibent loca Solis 11= 29° 41′ 4″ et

$$\frac{10.\ 16.\ 5.\ 55.}{ad} = 43^{\circ}\ 35'\ 9''.$$

Distantia temporum = 1% anni, ergo 1' 36" addenda ob praecessionem aequinoctii, prodit angulus $\epsilon \alpha \sigma = 43^{\circ} 36' 45"$. Jam datis in $\triangle \epsilon \alpha \sigma$ lateribus $\alpha \epsilon = 0.9977$, $\alpha \sigma = 0.98613$, quaeruntur anguli reliqui et latus tertium.

 $\frac{1}{2}$ ($d + \epsilon$) = 68° 11′ 38″ - 10,3978366 ae - ad = 0,01157 0,0633334- $\alpha \epsilon + \alpha \delta = 1,98383$ 0,2975045 8,1636655 $1/2 (\delta - \epsilon) = 0^{\circ} 50' 6'' (K. 50' 3')$ 68. 11. 38. $\alpha \delta \epsilon = 69.$ 1. 44.; $\alpha \epsilon \delta = 67.$ 21. 32. lg. αε = 0,9990000-1 te, sin, a lg. sin. $\alpha = 9,8387089$ sin. ð lg. sin. $\delta = 9,9702357$ 0,8674732-1 1.5 ₽ 0.73701 2) Cum sit locus Martis n anno 1585 in 4 11º 48 20" (+ 12) locus Noits η anno 1303 in 4 11 43 20 (1 12 locus Solis α , , , , 11. 29. 41. 4. erit $\alpha \varepsilon \eta = 132$. 7. 16. $\alpha \varepsilon \delta = 67. 21. 32.$ (N. 1.) $\Delta \eta \varepsilon \delta = \alpha \varepsilon \eta + \alpha \varepsilon \delta = 64. 45. 44.$ Sic anno 1587 locus Martis η in 6⁵ 4⁰ 41' 45" Solis α , 10. 16. 5. 55. $\angle \alpha \delta \eta = 131. 24. 10.$ $\angle \alpha \delta \varepsilon = 69. 1. 44.$ 62. 22. 26. $/\eta \delta \epsilon = \alpha \delta \eta - \alpha \delta \epsilon =$ $\epsilon \eta \delta = 180 - (64^{\circ} 45' 44'' + 62^{\circ} 22' 26'')$ 52º 51' 50" Datis'in $\triangle \epsilon \eta \delta$ angulis et latere $\epsilon \delta = 0.73701$, prodit εδ. sin. δ 0,8674734 - 19,9474299 sin. n. 9,9015692 = 0.81910.0.9133341-1 (K. 0.81915) 3) In $\triangle \eta \epsilon \alpha$ datis lateribus $\epsilon \eta = 0.81910$ (N. 2), $\epsilon \alpha = 0.9977$ et angulo comprehenso $\varepsilon = 132^{\circ}$ 7' 16'' (N. 2) computer $\angle \varepsilon \alpha \eta$ et latus tertium. $\frac{4}{2} (\eta + \alpha) = 23^{\circ}$ 56' 22'' — 9,6473466 $\varepsilon \alpha - \varepsilon \eta = 0,1786 - 0,2518815-1$ - 0,2593071 $\epsilon \alpha + \epsilon \eta = 1,8168$ 8,6399210 $\frac{1}{1}(\eta - \alpha) = 2^{\circ} 29' 57''$ $\frac{1}{2}(\eta + \alpha) = 23.56.22.$ = 21. 26. 25. (K. 21° 26' 32"); 29° 41' 4" m / εαη $21^{\circ} 26' 25'' = 8^{\circ} 14' 39'' 10$ 0.9133369-1 εη. sin. ε 9,8702451 sin. a 9,5629244 = 1,6621 0,2206576 (K. 1,66208). 4) Locus Solis anno 1583 in 1º 12º 10' 3" (+ 12º) 1588 " 9. 1. 44. 53. Distantia locorum = 130. 25. 10. Dist. temporum = $5^2/_{a}$ anni, 4. 48. ergo praecessio aequin. == $\zeta \alpha \gamma = 130.$ 29. 58.; $\alpha \zeta = 1,01049, \alpha \gamma = 0,98203.$

- 0,4542349-2 7.8185446 1/2 (y - ζ) = 0° 22' 38" (Keplero prodeunt 22' 48", ob errorem calculi in divisione commissi.) 24. 45. 1. ays = 25. 7. 39. açy = 24. 22. 23. 0,0045320 $\alpha \zeta$. sin. α 54 = 9,8810491 sin. y 9,6280148 = 1.80950.2575663 5) Anno 1583 locus of in 4s 1º 29' 30" Anno 1588 of in 6s 13º 35' 40" " " O " 9. 1. 44. 53. • " 1. 12. 10. 3. $\gamma \eta \zeta = 180^{\circ} - (54^{\circ} 57' 4'' + 53^{\circ} 1' 34'') = 72^{\circ} 1' 22''$ $\eta \gamma \zeta = 53.$ 1. 34. 6) In $\bigtriangleup \xi \eta \gamma$ dantur anguli $\eta = 72^{\circ}$ 1, 22", $\gamma = 53^{\circ}$ 1, 34", et latus $\zeta \gamma = 8095$, hine: $\zeta \eta = \zeta \gamma$. sin. $\gamma = 0.2575663$ 1,8095, hine: $\zeta \eta = \zeta \gamma$. sin. γ 9,9024976 sin. η 9,9782623 0,1818016 = 1.51987) In $\triangle \eta \zeta \alpha$ dantur $\zeta \eta = 1,5198$ (N. 6), $\zeta \alpha = 1,01049 / \alpha \zeta \eta = .79^{\circ} 19' 27''$ (N. 5). quaeruntur angulus α et latus $\alpha \eta$. $1/2 (\alpha + \eta) = 50^{\circ} 20' 16'' - 10,0813916$ $\zeta \eta - \zeta \alpha = 0,50931$ $\zeta \eta + \zeta \alpha = 2,53029$ -0.7069822 - 157 + 50 0.4031704 9,3852034 $1/2 (\alpha - \zeta) = 13^{\circ} 38' 45''$ 50. 20. 16. . 2 ∠ ζαη = 63. 59. 1, = 2. 3° 59' 1" (K. 63° 58') . . 7. 12. 10. 3. anno 83: αζin αη in 5. 8. 11. 2. · Praecessie 1. 36. ",Quod esset in" 8. 12. 38. m 8. 14. 32. m prius in Diff. 1. 54. Cam ipsi prodest $\frac{\zeta\eta-\zeta_{-}}{\zeta\eta+\zeta\alpha}$ In Kepleri calculo haec mutanda sunt. - = 20122. multiplicato hoc quotiente in tang. 50° 20' 16", exhibet factum 24270 = tg. 13° 38' 39" pro 13° 38' 31" 50. 20. 16. 63. 58. 47. αζ in 12. 10. 3. 11 (Sol in O, ergo Terra in 11) Ergo an in 8. 11. 16. m 1. 36. Praec. 8. 12. 52. mp Prius in 8. 14. 32. Diff. 1. 40. ζη. sin. ζ 0,1818016 (N. 6) Denique $\alpha \eta =$ 9,9924169 sin. a 9,9535995 = 1,6619 (K. 1,66179) 0,2206190 prius == 1,6621 (N. 3) Diff. 0,0002; Keplero: 0,00029. 8) In Δ αηθ datis αη = 1,66208, αθη = 44° 31' 13", αθ = 0,9877, prodit

492

sin.
$$\alpha \eta \vartheta = \frac{\sin. \alpha \vartheta \eta \cdot \alpha \vartheta}{\alpha \eta}; \qquad \begin{array}{c} 0.9946251 - 1\\ 9.8458181\\ 0.2206519\\ \hline 0.2206519\\ \hline 0.6197913\\ $

15.3607

ð

Hunc quoque calculum deprehendimus inter manuscripta Kepleri per multa folia extensume, numeris quidem suis cum numeris textus quadamtenus consentientibus, neque vero plane eccedem exhibentem. Numeri sc. manuscr. sunt: $\alpha \delta = 98628$, $\delta \epsilon = 73706$, $\alpha \delta \epsilon = 69^{\circ} 1' 3'_{3}$, $\alpha \epsilon \delta = 67^{\circ} 22' 11'_{3}''$, $\epsilon \eta \delta = 52^{\circ} 51' 50''$. Deinde $\epsilon \eta = 81923$, $\epsilon \alpha \eta = 21^{\circ} 26' 22''$, $\alpha \eta = 166246$; $\alpha \zeta = 101069$, $\eta \zeta \gamma = 54^{\circ} 57' 44''$, $\eta \gamma \zeta = 53^{\circ} 2' 54''$. $\zeta \gamma = 180970$, $\gamma \eta \zeta = 71^{\circ} 59' 22''$, $\zeta \eta = 152074$. Denique $\alpha \eta = 166284$, prius 166246; diff. 38, "efficit in perigaeo et $\Box \odot 1'$."

Distantiae Terrae a Sole, quibus superstruxit Keplerus totum hunc praecedentem calculum ($\alpha \zeta = 1,01049$, $\alpha \varepsilon = 0,9977$, $\alpha \vartheta = 0,98613$, $\alpha \gamma = 0,98203$ et $\alpha \vartheta = 0,98770$) desumtae sunt ex tabula cap. XXX. hunc in modum:

Anno 1583 distat Sol ab apogaeo per 3^s 5^o 30' - 1^s 12^o 10' 3" = 53^o 19' 57" Anom. coaeq. tabulae = 53. 9. 56

exhibet distantiam = 1,01047;

Anno 1585 distat Sol ab apogaeo per 3° 50° 30′ — 11° 29° 41′ 4″ = 95° 48′ 56″ Anom. coaeq. tab. = 94° 58′ 28″ exhibet dist. = 0,99796; diff. utriusque anom. = 50′ 28″, eadem in tabula = 60′ 7″; diff. distantiarum in tabula = 0,00031, quare subtrahe a 0,99796 quantitatem 757.0,00031.60 = 0,00026, restat 0,9977.

Anno 1587. Dist. Solis = 139° 24', in tabula ad an. coaeq. 139° 20' 24" dist. = 0,98614.

Anno 1588. Dist. Solis = 176° 15', tab. exhibet ad an. coaeq. 175° 55' 42" dist. 0,98204, ad eandem 176° 56' 46"; 0,98202.

Anno 1590. Dist. Solis == 132°; tab. ad 132° 14³/₄', -- dist. 0,98764, ad 131° 14' 1" dist. 0,98787, differentia exhibet particulas 6 deficientes, ut respondent 132° dist. 0,9877.

Tabula autem cap. XXX. quomodo computetur, relatum quidem est capite XXIX; ut autem Kepleri verba facilius intelligantur, exemplo rem proponemus:

Sit. (fig. 83) $\angle \Im \alpha \delta = 1^{\circ}$; cognitis in triangulo $\beta \times \alpha$ ad \times rectangulo angulis et latere $\alpha\beta = 0.018$ (posita semidiametro eccentrici Terrae = 100000, assumit Keplerus eccentricitatem $\alpha\beta' = 1800$, ergo posita illa = 1; erit $\alpha\beta = 0.018$), prodit quantitas lateris $\beta \times = \sin 1^{\circ}$. 0.018 = 0.000314 et lateris $\alpha \times = \cos 1^{\circ}$. 0.018 = 0.017997. Jam dantur in triangulo $\beta \times \vartheta$, item ad \times rectangulo, latera $\beta \times = 0.000314$ et $\beta\vartheta = 1$, ergo $\beta \times = \sin . \ 2 \ \vartheta = \sin . 0^{\circ} 1' 5''$, quare erit $\ 2 \ \beta\beta\delta = \Im \alpha\beta + \alpha \vartheta\beta = 1^{\circ} 1' 5''$ (Anomalia media tabulae). Porro $\vartheta \times = \cos . \times \vartheta\beta = \cos . 0^{\circ} 1' 5'' = 0.99999999$, ergo $\alpha \Im = \alpha \times + \varkappa \vartheta = 1.017997$ (distantia Solis a Terra tabulae = 1.018). Secundo sit $\ 2 \ \vartheta \alpha \delta' = 2^{\circ}$, simili processu prodit $\ 2 \ \vartheta = 0^{\circ} 2' 10''$ ergo $\ 2 \ \beta\beta\delta = 2^{\circ} 2 \cdot 10''$ et latus $\alpha \vartheta = 1.01799$ &c.

"Anomalia coaequata" (columnae tertiae) prodit subtractis angulis ϑ ab angulis $\vartheta \sigma \sigma$; v. c. anom. coaeq. $1^{\circ} = 1^{\circ} - 0^{\circ} 1' 5'' = 0^{\circ} 58' 55''$.

79) p. 297. Appendicem hanc Keplerum addidisse editioni Progymnasmatum, quae prodiit anno 1602, prius diximus.

Monet Keplerus in praefatione ad Ephemerides (Lincii 1616) p. 1. haec: Acquationes Solis computavi ex principiis physicis. Itaque in 4 quadrantum medietatibus provenit mihi hoc nomine Solis acquatio 1' auctior vel diminutior, quam si usus essem forma usitata cum Tychone. Qua de re vide cap. XXXI. Comment. de Marte, sed memineris, me ibi, dum corrigo numeros, quos antea prodideram in appendice ad Progymn. Tychonis, potius illos infelici cura pervertisse, ut recte me per epistolam monuit Jo. Ant. Maginus. Operare secundum praescriptum ejus loci et deprehendes ipse, quod dico. Usus est hac differentiola Chr. Severini, Tychonis computator, in examine eclipsium fundamentalium, quae sunt in Tomo I. Prog. pag. P.

Maginum libro suo inscripto: Supplementum Ephemeridum &c. adjunxisse literas Kepleri diximus in praefatione et ea, quae illuc pertinebant, lectoribus proposuimus.

Epistola, cujus Keplerus mentionem facit, haec est: Clarissimo et Excellentissimo Viro D. J. Keplero, Mathematico Caesareo. Doctissime ac praestantissime Vir.

Vidi nuper insigne tuum opus de motu Martis a quodam librario nostro Bononiensi huc pro nobili viro Venetia allatum, et muteo quidem mihi ad unicam diem concessum percami breviter, quantum per angustiam temports mihi concessum fuit.

Inter cetera offendi caput 31, positum pag. 164 (297), in quo proponis, per bisectionem eccentricitatis Solis non turbari sensibiliter acquationes Solis a Tychone expositas; quod sane cum avide percurrissem invenissemque, tuam ratienem a Ptolemaei et Tychonis fundamentis tam in simplici Solis eccentricitate quam in duplicata valde differre, neque ullo pacto convenire posse cum tabula ad simplicem Solis eccentricitatem a Tychone allata, neque cum mea, quam recenter secundum hypothesin acquantis supputavi ad eccentricitatem partium 1792: cognovi tandem, te male angulum anomaliae Solis ad mundi centrum accepisse, cum verius ad eccentrici centrum in simplici Solis theoria, vel ad acquantis centrum in bisecata eccentricitate sit accipiendum, ut ex hac adjecta supputatione clarius veritatem percipies.

Sed mirum minime est, homines tam eximia eruditione praestantes, et gravissimis ac difficillimis speculationibus districtos, interdum a vero tramite deflectere. Ignoscas igitur et in bonam partem haec accipias quaeso, et qua decet animi benevolentia, quia veri et sincerfi amfei munus gero. Haud illibenter enim fateor, quod etiam mihi soleat idem interdum accidere, quia enim homines sumus, facile errare possumus. Me enim et tibi et tuis amicum, quam din spiritus meos reget artus, ex asse verum et sincerum esse perpetuo futurum et mansurum, plane ac plene confidas. Sed quam primum ipsum opus tuum mihi allatum fuerit (exspecto enim illud avide ab amico), a capite ad calcem totum summa cum diligentia et assiduitate percurram.

Cosmographicum Mysterium D. V. longo temporis spatio interjecto a me summa cum diligentia quaesitum, nunquam consequi potui, nisi paucis abhinc mensibus, idque a nobili Germano, qui ad nos Bononiam venit, eundemque librum secum attulit, pro quo munere illi "Primum Mobile" meum gratitudinis ergo obtuli. Et quia in itinere duo priora folia cum titulo et dedicatione corrosa sunt, rogo V. D., ut eadem ad me mittat simul cum tabulis magnis, quae in eodem desiderantur (nulla enim alia exstat, quam tertia tabula, orbium planetarum dimensionem et distantias exhibens); hoc enim erit mihi gratissimum, pro quo certe mea officia promtissima et paratissima prolize quovis tempore defero et polliceor. His bene et feliciter vale et de Astronomia perficienda bene mereri ne desine. Bonen. d. 15. Jan. 1610. Excell. Tuae studiosiss. Jo. Ant. Maginus Patavinus.

. "Supputationis," quam supra dicit, summa haec est :

Deciperis in assumtione anomaliae 45° et 135° penes angulum FAE (FAD) (fig. 84), qui, cum sit ad centrum mundi, ignotus est, et est re vera FCE (FGD) ad quem refertur circumferentia FE (FD). Bene quidem colligis angulum AEC = 1° 27 31", sed tali pacto neque Ptolemaeus neque Copernicus aut Braheus computavit aequationes Solis, ut videre est apud Tychonem p. 29, qui assumit cognitum triangulum ACC motorum laterum CE 100000, AC 3584, vel ut tu 3600, cum angulo ACE. Unde adinvenitur $\angle AEC = 1^{\circ}$ 25' 20". (Tycho habet 1° 24' 56"); sed si accipiatur eccentricitas, qua praecise fuit usus Tychov nempe 3584, colligitur eadem cum Tychone aequatio 1° 24' 56".

In secundo modo computandi aequationes, tue retento priori angulo falso-CAE, senfugis primo ad \triangle BEA et colligis \swarrow BEA = 6° 43', 46". Sed non est illa angulat CAE, sed BCE notus; bene tamen procedit methodus tua illa ad colligendum \measuredangle BBC, 43' 46"; sed si acceperimus eccentricitatem 1792, erit BEC = 43' 34". Postrema gram pars calculi tui falsa est, dum ex EB, BC cum angulo, comprehenso quaeris angulam BEC. Nam vice versa secundum rectum calculum venandus est e prioribus \measuredangle EBC == 44' 16' 16'. et jam datis AB et BE lateribus cum ABE indagabitur \measuredangle AEB = 0° 42' 40", et inde totus angulus aequationis AEC = 1° 26' 26". Sic quoque expediendo calculum cum praecisiore ecc. 1792, est \bigcirc AEC == 1° 26' 2", differtque ab angulo Tychonicae tabulae 1' 6". Quare in Progymnasmatum appendice, ubi calculi utriusque differentia prodit 1'/6', debet legi 1' 6" et non, ut tu ais, 0' 1/6"; nam verisimilius est, Tychonem scriptisse 6", et fuisse male transscriptum 1/6.

Quibus Keplerus haec respondit: Clarissime et praestantissime D. Magine. Quas ad me dedisti Bononia die 15. Jan., accepi 1. Febr. et adduct respondeo.

Gratiam inivisti non parvam, quod significasti, tibi meum opus de Marte curae esse. Obsecro propter studia nostra, ut eadem lima totum percurras. In id enim est editum, ut, sicubi erro, tui similium censuris in hoc veluti fundamento sublever, ut quam correctissimum superstruam astronomiae opificium, primum atque mihi a summis difficultatibus aulicae vitae affulserit tranquilla serenitas.

Quod rem praesentem attinet, decepit te ambiguitas meae dictionis, quam

Notae Editoris.

discutiet lectio totius libri. Atque hoc primo modo. Primus modus hic denominatur non a methodi forma, sed a forma eccentricitatis, quae hic assumitur simplex. Nam methodum adhibeo sane aliam et compendiosiorem pro hoc instituto (id facio passim in opere). Re ipsa convenimus Tycho et ego. Nam assume anomaliam mediam 46° 27' 31", invenies coaequatam Tychonis 45°. Deinde quaere anom. med. 45° in tabula (Cap. XXX.), qua anomalia tu uteris in secundo meo modo, quae est bisectae eccentricitatis, ubi exstruis aequationem 1° 26' 2", invenies ex tabula mea eandem. Ecce: 44° 42' 59" dat 43° 17' 1", aequatio 1° 25' 58" 45. 43. 45 " 44. 16. 15 " 1. 27. 30.

Proportionaliter igitur 45° dat 1° 26' 28''; sed hoc in tabula mea, quae habet modum tertium. Tu vero in modo secundo constitue anomaliam coaequatam 43° 33' 58'' (subtracta aequatione 1° 26' 2'' a te inventa), et utere mea methodo, invenies mediam 45° , quam et assumsisti. Appendicis ad Progymnasmata ipse auctor sum. Sed fieri potuit, ut in illius computo ego tunc fuerim hallucinatus, ita computans, ut tu nunc; hoc est, comparans aequationem, quam mihi dat coaequata 45° , cum aequatione, quam Ptolemaeo dat simplex, seu media anom. 45° .

Par erat, ut Caesar mihi mandaret gratis donare exemplaria mathematicis. At, quia strenue me patitur esurire, coactus sum vendere typographo sine exceptione. Pro tribus tamen florenis hic Pragae habere possum unum.

Mitto defectus Mysterii petitos, paratus totum mittere; sed quia habes reliqua, postae parcendum duxi.

Vale Vir celeberrime, et perge censendo mihi prodesse.

Pragae d. 1. Feb. 1610.

T. Excell. amicus

Jo. Keplerus, S. C. M. Mathematicus.

E Magini responsione haec desumenda sunt: Vidi ex tua responsione, te non temere, sed studiose et tuo quodam consilio supputasse aequationes Solis, initio facto ab angulo anomaliae verze ignoto, non autem, ut fierf ordinarie consuevit, ab angulo anomaliae mediae. Quae ratio quid commodi possit afferre, cum ex ipsa prodeant numeri introituales fractionibus molestis implicati, ignoro. Sicut videre est etiam in tabula tua distantiarum, quae molesta est pro ingressibus.

Non video autem, quomodo ex hac tua supputationis forma aequationes Solis ex bisecta eccentricitate prodeant in iisdem numeris a te positis. Ex anom. vers penes $\angle EAB = 45^{\circ}$ recte colligis $\angle BEA = 43'$ 46"; hic additus ad EAB anom. vers constituit $\angle EBC = 45^{\circ}$ 43' 46"; calculus manifestat $\angle CEA = 1^{\circ}$ 28' 38", non ut ta ponis 1° 27' 24"; quare differt hic modo inventus angulus ab illo secundum simplicem eccentricitatem (1° 27' 314) uno minuto et 7". Pariter in anom. 135° est totus $\angle CDA$ $= 1^{\circ}$ 26' 26", et non ut tu ponis 1° 27' 28". Ex tua tabula distantiarum Solis a Terra colligitur cum anom. aequata 45° aequatio Solis 1° 28' 38", et cum anom. 135°, -1° 26' 20". Ex his autem patet, non esse aequales aequationis partes, nempe optica et physica, unde in constructiope tabulae ex duplicatione prosthaphaeresis non obtinebitur exactissima aequatio.

. Cupereno te cap. 31. correcturum libenter, quanvis lapsus sit exigui momenti.

Quibus addens Maginus quaedam de Origani Ephemeridibus deque corrigendis diametris luminarium, et petens a Keplero tabulas motuum Martis, sic concludit: Has manu propria ab adversam valetadinem, qua 15 plus diebus teneor, exarare minime potui. Tu Vir Excell. vale optime. Bonon. 23. Febr. 1610.

Keplerus in responsione sua (d. d. 22. Martii 1610) refert Magino, cogitare se ante editionem Tabularum Rudolphi scribere Ephemerides ad annos 80, initio facto ab anno 1583, et invitat Maginum, ut operam suam conferat ad illas computandas et communi nomine edendas. Quae quum non huc pertineant, ea tantum ex hac epistola desumsimus, quae ad hunc locum attinent.

Ex morbo, scribit, te convaluisse gaudeo. Vix tandem tua opera discussi hanc nebulam. Video jam causam nullam fuisse, cur meos numeros in Appendice Progymn. fol. 821. insertos posterioribus curis in Martis fol. 164 (297) corrigerem. Mirum fatum, cum toties operationem repetierim (quippe gravo mihi videbatur erratum in Progymn. fateri), adeo constanti me ratione aberrasse. Interdum igitur deutepat apportides drugtes zat dromtos. In felicitatis parte est, quod is parvus est error, et nihil illi superstructum, ita ut exemtus ex libro ruinam trahat nullam. Nam quod tu infers, non esse aequales partes aequationis opticam et physicam, id quidem verum est, neque dixeram plane aequales; quod vero addis, in constructione tabulae ex duplicatione prosthaphaeresis non obtineri exactissime aequationem, id tantum abest ut verum dicas, ut potius per hanc tuam correctionem contrarium probes. Nonne enim tu ipse in his literis ex mea tabula ad coaequatam 45° elicis aequationem 1° 28' 38", ad 135° — 1° 26' 26"? At quid tua correctio? Nempe 1° 28' 38", et 1° 26' 26". Miraberis, quae hae praestigiae? Sed cogita, quod in duplicatione tabulari partes aequationis connectantur ad gradus integros anomaliae non mediae, non coaequatae, sed eccentri. Non mirum igitur, si quanto minor est optica anomalia eccentri 45°, quam optica anom. coaeq. 45°, tanto etiam minor sit pars physica, quam sumitur per duplicationem opticae.

Cogita, an haec mihi origo errandi, qui aliam forte methedum computando sum secutus, aliam postea in Commentariis perscripsi, numeris ex illa mutuatis. Nam nunc non vacat quaerere.

Ut errorculus hic propaletur, nihil reformido; tantum ut qui id facturus est, totum librum legat. Origanus enim aut quicunque alius, si abusurus est hoc meo sphalmate, non impune feret si vixero. Nam ut nolo meis erroribus praejudicare veritati, ita ne aliis quidem concedam silentium tenens. In computandis eclipsibus non solae luminarium diametri, sed et alia multa corrigenda sunt, et a me correcta sunt in Hipparcho meo, licet nondum absoluto, ut edi possit.

Tabulas Martis habeo absolutissimas, est mihi et compendium computandi praests, ut unus aliquis locus Martis, tam in longum quam in latum multo breviori methodo computetur, quam ex Prutenicis; multi vero simul facillima ratione computantur. Nisi tantum circa punctum oppositionis cum Sole, ibi correctiunculis est opus. Sed et in \mathfrak{F} et 4 tabulae sunt perfectae, in \mathfrak{P} et \mathfrak{P} dimidium earum.

80) p. 306. Primum hanc sententiam de Solis motu circa axem pronunciavit Keplerus in libro de Nova Stella (Vol. II. p. 673), repetiit in libellis contra Röslinum et Feselium, (Vol. I. p. 508, 570, 590), et confirmatam gloriatur literis ad amicos flatis de maculis Solaribus, retractans quidem ea, quae de tempore volutionis somniaverat (Vol. II. p. 780).

81) p. 315. Adstant schemati N. 90. in Kepleri delineatione ad punctum α duae forte genios repraesentantes figurae, converso ad circulum $\sigma \epsilon \eta S$ vultu, altera in manibus tenens circulum et normam, altera librum evolutum. Quod schema quum hinc inde saspius repetatur et adhibeatur ad demonstrationes theorematum hujus libri praecipuorum, opinatur Delambrus (Hist. de l'Ast.), significare voluisse Keplerum hoc ornamento praestantiam illius et praecipuum momentum in inventionibus suis.

82) p. 323. E verbis "ex recentissima recognitione" concludere licet, Keplerum hic spectare A. Romani opus, quod prodiisse refert Vossius (de scientiis math.) anno 1607, inscriptum: Methodus cifris exprimendi numerum quantumvis maximum. Item mathematicae analyseos triumphus, in quo enneagoni circulo inscripti ad circulum ratio exhibetur. Ceterum perhibent, Vietam ante Romanum hunc ipsum numerum (ultimam notam habuit 5 pro 6) anne 1579 pronunciasse; A. Romanum vero illum ulterius usque ad 15 notas extendisse in libro, qui prodiit anno 1593 inscriptus "Ideae mathém. pars prima."

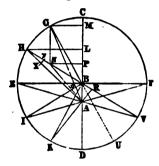
83) p. 327. Sit in schemate 132. A nodus, AE ecliptica, B locus Martis, $\angle E =$ 90°, erit sin. BE = sin. A . sin. AB = sin. 1° 50′ 45″ × sin. $\begin{cases} 41^{\circ} \cdot BE = 1° 12′ 40″ \\ 68^{\circ} \cdot E = 1° 42′ 40″ \\ 6$

Jam in triangulo rectilineo rectangulo datis latere uno = 1, et angulo (ad centrum orbis) 1° 12' 40", erit alter latus = $\frac{1}{\cos 1^\circ 12' 40"}$ = 1,00022 vel reducendo ad distantiam 1,63100 = 1,00022 × 1,63100 = 1,63134. Sic ad angulum 1° 42' 40"

quassita distantia = $\frac{1}{\cos 1^{\circ} 42' 40''}$ = 1,00045, et reducendo ad dist. 1,6618 = 1,6618 × 1,00045 = 1,66235.

84) p. 329. Insunt has observationes Hist. Coel. Brahei; ultima (p. 434) has est: Die 6. Oct. mane:

Inter J et lucidam I	Hydrae).	•••	340	33'/,'
Tunc erat lucida γ	occid.			64.	55.
Latitudo of per chalyb.	. (sc. a	uadr	antem)	12.	29.
Declinatio					
Tunc erat lucida γ of					
Inter of et caudam S					


85) p. 334. Sit AEB "pars and opticae" in anom. eccentri 90°, BE radius, ergo BA = 0.09264 =tg. $\angle AEB = tg. 5° 17' 34''$. $\triangle AEB = 1/AB$. EB = 0.04632

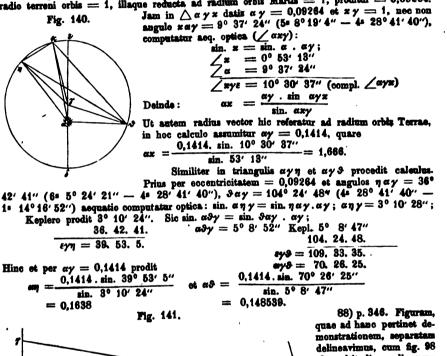
Jam comparata area trianguli AEB cum area circuli proportione: $3,14159...:0,04632 = 360^\circ: x$ prodeunt pro "parte aequationis physicae" $5,30785^\circ =$ $5^\circ 18' 28''$, qui additi ad $5^\circ 17' 34''$ exhibent "totam aequationem" = $10^\circ 36 2''$.

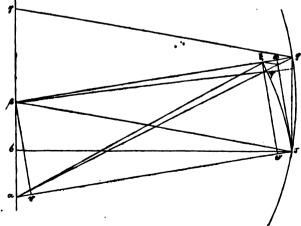
Anomalia media . = 90° + 5° 18' 28" = 95° 18' 28" , coaeq. = 95° 18' 28" - 10° 36' 2" = 84° 42' 28"

Ad anomaliam = 45° et 133° progressus, sic rem absolvit Keplerus: Cum sit \triangle HBL ad L rectangulum, \angle HBL = 45° (135°) et HB = 1, erit HL = sin. 45° 0,70711, ergo altitudo \triangle ABH = 0,70711, et area = $\frac{1}{3}$ AB \times HL = 0.04632 \times 0.70711 = 0.032753. Jam proportione: 3,14159 : 0.032753 = 360° : x

prodit pars acq. physicae = $3.7532^{\circ} = 3^{\circ} 45' 12''$, sive, adhibito trianguli AEB valore supra invento = $5^{\circ} 18' 28'' = 19108''$, compendiosius sic: pars acq. phys. = $0.70711 \times 19108 = 13511.4'' = 3^{\circ} 45' 12''$.

Hine anom. media = $45^{\circ} + 3^{\circ} 45' 12'' = 48^{\circ} 45' 12'' = 135^{\circ} + 3^{\circ} 45' 12'' = 138^{\circ} 45' 12''.$ Deinde in \triangle AHB dantar HB = 1, AB = 0,09264, et \angle HBA = 135° (45°); quare $\frac{3}{5} (A + H) = 22^{\circ} 30' (67^{\circ} 30')$ HB - AB = 0,90736 HB + AB = 1,09264 Ergo tg. $\frac{4}{5} (A - H) = \frac{0,90736}{1.09264} = tg. 18^{\circ} 58' 55''. <math>\angle$ H = 3° 31' 5''


g. f_3' ($\mathbf{X} = \mathbf{H}$) = $\frac{1,09264}{1,09264}$ = \mathbf{tg} . 18 06 06 . $\mathbf{\Sigma} = \mathbf{H} = \mathbf{0}$ 01 0 = $\frac{0.90736 \cdot \mathbf{tg}}{1,09264}$ = \mathbf{tg} . 63° 29' 25". $\mathbf{\Sigma} = \mathbf{41}^\circ$ 0' 35", Anomalia coaequata = $\mathbf{45}^\circ - \mathbf{3}^\circ$ 31' 5" = $\mathbf{41}^\circ$ 28' 55" = $\mathbf{135}^\circ - \mathbf{4}^\circ$ 0' $\mathbf{35}^{"} = \mathbf{130}^\circ$ 59' 25".


86) p. 335. Hase sunt Cardani verba (de Subtil. lib. XVI.): "Si diametros producatur extra quantum libet, alia vero diametros in centro secetur ad rectos, ex hujus fine divisa portione quarta circumferentiae in quotquot aequales partes, per earum ultimam recta ducatur ad eam, quae exterius in directo diametri adjacet, erit ipsa diametro adjacens aequalis omnibus rectis ex divisionum peripheriae punctis perpendicularibus in subjectam diametrum, usque ad adversam circumferentiae partem, quae quidem lineae omnes diametro, quae exterius est producta, aequidistant." — Quae Keplerus addit de B yrgio, referenda forte sunt ad "Arithmeticam" Byrgii, quam diximus (Vol. II. p. 834.) non absolutam inesse Kepleri manuscriptis. Praefatio hujus "Arithmeticae" declarat, doctrinam linearum goniometricarum finem praecipuum libri fuisse. ("Günstiger Leser, es möcht dich vielleicht Wunder nemen, warum unter einer grossen Anzahl gelehrter und der geometrischen Kunst erfahrener Leute eben Ich diesen Canonem sinuum zu rechnen fürgenommen u. jezo in offenen Druck gebe, der ich doch griechischer und lateinischer Sprach unerfahren u. derobalben diejenigen, welche hievon geschrieben, in ihrer rechten Sprach nit vernehmen könnte" etc.)

Quod rem ipsain attinet, notamus, Archimedem (de Sphaera et Cylindro I, 21) demonstrasse, diviso semicirculo in partes quascunque aequales, ductisque e divisionum punctis Espieri Opera. III. 32 chordis ad diametrum perpendicularibus, summam harum chordarum esse ad diametrum, ut chorda a termino diametro opposito ad primum sectionum punctum duota ad chordam alterum diametri terminum conjungentem cum illo puncto. Hoc Archimedis theorema etiam hac forma exprimi potest, assumto angulo ad centrum insistente arcui per primam sectionem terminato, = a, numeroque sectionum = n et circuli radio = r : sin. a + sin. 2 a + sin. 3 a + . . . sin. n a : r = cos. $\frac{1}{3}$ a : sin. $\frac{1}{3}$ a ; assume r = 1, erit sin. a $\frac{\cos^{1/2} a}{\cos^{1/2} a} = \cos^{1/2} a.$ + sin. 2a + . . . sin. na == sin. 1/, a

Hase ad Kepleri propositionem referentes, e goniometria desuminus theorema: cot. $\frac{4}{3}a$ = cosec. $a + \cot a$, et ponentes $a = 1^{\circ}$, $2a = 2^{\circ}$ etc. $na = 180^{\circ}$, erit sin. $1^{\circ} + \sin 2^{\circ} + \sin 3^{\circ} \dots + \sin 180^{\circ} = \cot \frac{4}{3}^{\circ} = \cos c$. $1^{\circ} + \cot 1^{\circ} = \sec 89^{\circ} + tg. 89^{\circ}$. Rationem hanc Keplerus paucis explicat verbis Fabricio in literis (d. d. 11. Oct. 1605), quas

praemisimus p. 105. 87) p. 336. Capite 42 (p. 333) inventa est eccentricitas orbis Martis == 0,1414 assumto radio terreni orbis == 1, illaque reducta ad radium orbis Martis == 1, proditar == 0,09264.

ob multitudinem linearum nimis intricatam praches: speciem.

Quas ad constructionem schematis hujus pertinent, cum Keplerus ipes aatis luculenta ea exhibeat. non repetenda constinus.

Demonstratio autom **100 est:** 1) Cum sit $\beta \gamma$ $=\beta\alpha,\,\beta\varphi=\beta\tau=\alpha\tau,$ et $\angle \gamma \beta \varphi = \beta \alpha \tau$, quia $\beta \varphi \parallel \alpha \tau$, ergo $\triangle \gamma \beta \varphi$ $\stackrel{\simeq}{=} \bigtriangleup \tau \beta \alpha, \text{ quare } \gamma \phi = \beta \tau, \\ \gamma \phi \parallel \beta \tau \text{ (constr.), ergo}$ et $\gamma\beta = \text{et } || \varphi \tau$, igitar otiam $\alpha\beta = \text{ot} \parallel \varphi \tau$. 2) In 🛆 🖉 🗰 🛤

 $\tau \varphi \chi$ est $\beta \alpha = \varphi \tau$, $\angle \beta \alpha u = \tau \varphi \chi$ (anguli oppositi in parallelogrammo $\alpha \varphi$) et $\angle v = \chi$ (R.) ergo $\triangle \beta \alpha u = \tau \varphi \chi$ et $\alpha u = \chi \varphi$, $\beta u = \chi \tau$. 3) $\triangle \tau \chi \beta \doteq \triangle \alpha \omega \xi$, cum sit $\tau \chi = \xi \omega$, $\beta \tau = \alpha \xi$ (= $\alpha \tau$) et $\angle \chi = \omega$ (R.), quare $\beta \chi = \alpha \omega$ et cum sit $\beta \xi = v \omega$, erit $\beta \chi - \beta \xi = \alpha \omega - v \omega$ size $\xi \chi = \alpha v =$ $\chi \varphi$ (N. 2), $\xi \chi + \varphi \chi = \xi \varphi = 2 \alpha v$. 4) Cum sit $\beta \varphi$ radius circuli $\varphi \tau$ circa β descripti (r) et $\tau \chi \perp \beta \varphi$; erit $\chi \tau^3 = \varphi \chi$ ($2\tau - \varphi \chi$) = $2\tau \varphi \chi - \varphi \chi^3$. $\angle \varphi \chi \tau = R$, ergo $\chi \varphi^3 + \chi \tau^3 = \varphi \tau^3 = \alpha \beta^2$ (N. 1); hine $\alpha \beta^2 = 2r \varphi \chi = r\xi \varphi = \beta \varphi$ ($\beta \varphi - \beta \xi$) = $\beta \varphi^2 - \beta \varphi$. $\beta \xi = \beta \varphi$. $\xi \varphi$. Assumtis $\beta \varphi$ et $\beta \xi$ semiaxibus ellipseos $\lambda \pi \delta \xi$ (fig. 98), quam tangit circulus $\lambda \delta \delta \varphi$, erit circulus ad ellipsin vel G : E = $\beta \varphi^{i}$: $\beta \varphi$. $\beta \xi$ $\mathbf{C} - \mathbf{E} : \mathbf{C} = \boldsymbol{\beta} \boldsymbol{\varphi}^{1} - \boldsymbol{\beta} \boldsymbol{\varphi} \cdot \boldsymbol{\beta} \boldsymbol{\xi} : \boldsymbol{\beta} \boldsymbol{\varphi}^{1} = \boldsymbol{\alpha} \boldsymbol{\beta}^{1} : \boldsymbol{\beta} \boldsymbol{\varphi}^{1}$ = circ. radio $\alpha\beta$: circ. rad. $\beta\phi$ descriptom (C). C - E = 2 lunulis $\lambda \mathcal{F} \delta D$, ergo 2 lunulae $\lambda \mathcal{F} \delta D$ acquant circulum, cujus radius $\alpha \mathcal{F}$. sive, cum $\beta \xi$ non est brevier semidiameter ellipsees, sed insensibili ab ea differt, superat circulus radio « f descriptus insensibili lunulam utramque resectam. 89) p. 347. Quia, si junxeris puncta ξ et τ , triangulum $\xi \varphi \tau$ simile $\triangle \beta \varphi \tau$, erit $\beta \varphi : \varphi \tau = \varphi \tau : \xi \varphi$ et hinc $\beta \varphi : \xi \varphi = \beta \varphi^3 : \varphi \tau^3$ $\beta \varphi = 1$, $\varphi \tau = \alpha \beta = 0.09264$; ergo $\xi \varphi = 0.09264^3 = 0.00858$. Sit circulus, cujus radius $\beta \varphi$ est, = C, circulus, cujus radius $\alpha \beta$, = c, erit C: $c = \beta \varphi^3$: $\alpha \beta^3 = \beta \varphi$: $\xi \varphi$ (not. 88. (.) quare $c = 0,00858 \times 3,14159$ = 0,02695C = 3,14159C - c = plan. ooldis = 3,11464 / \$αδ = 95° 18' 28", quare, quia 360° valet aream 3,1416, 90) p. 349. Sit valebit area $\vartheta \alpha \vartheta = \frac{95,3077 \times 3,1416}{200} = 0.83172$ 360 $\triangle \ \vartheta \beta \alpha = \frac{1}{2} \alpha \beta \cdot \vartheta \beta = 0.04632 \times \min \ \vartheta \beta \vartheta.$ Assumatur areas $\delta \vartheta$, quare $\angle \vartheta \beta \vartheta = 90^{\circ}$, erit $\triangle \vartheta \beta \alpha = 0.04632$. Area $\vartheta \beta \vartheta = \frac{1}{4} \cdot 3.1416 = 0.7854$ Area $\Im \alpha \delta = \Im \beta \alpha + \Im \beta \delta = 0.83172$ ut supra. 91) p. 348. In triangulo sphaerico rectangulo dantur hypotenusa = 50° 34' (distantia d a Spica) et altera cathetarum = 1° 59' (latit. Spicae), reliquae cosinus erit _____ cos. 50° 34' $\frac{1000}{1000} = \frac{1000}{1000} Long. Spicae 6ª 18º 11' 8º 43' 18" 2 locus d'in (medium arithmeticum inter 2' 39" et addendum pro refrac-3' 36" 4' 34" refractiones longitudinis) tione prodit 8º 46' 54" 🖍 anno 1594. _reponetur in" 8º 46' 20" 2 logus Solis in 16º 47' (10)" Z $OBM = 38^{\circ} O' 40^{\circ}, OM = 1,54168, OB = 0,08232.$ sin. 38° 0' 40". 0.98232 = sin. 23° 6' 11" ergo sin. OMB = 1,54168 BM vergit in 8ª 8° 46' 20" ergo OM in 7= 15° 40' 9" Anno 1569: locus & M in 64 27 7' 26" ⊙ 0 in 7. 25. 48. 40. 28. 41. 14. $-\sin M \triangle 0 = \frac{\sin 28^{\circ} 41' 14'' \cdot 1,901}{\times 1,01365}$ / AMO =OM = 1.542OA = 1,0136518º 23' 39" MAO =AM vergit in 6ª 27. 7. 26. ergo' OM in 7. 15. 31. 5. Supra inventa est OM in 7. 15. 40. 9. 9' 4". Diff. 32 *

499

In Commentaria de motibus Martis

$$NK^{3} = (1 + e. \cos x)^{3} \left(1 + \frac{e^{3} \sin^{3} x}{(1 + e. \cos x)^{2}} \right)$$

= $(1 + e \cos x)^{3} + e^{3} \sin^{3} x$
= $1 + 2e \cos x + e^{3}$

Com sit in \triangle HNE ad H rectangulo HE = 1. erit NH (= e) = sin. NEH = sin. s, quare NK³ = 1 + 2 sin. ϵ . cos. x + sin.³ ϵ . — Quae sequentur relegas apud Delambrum I. c.

98) p. 404. Theorematum, quae praemissa sunt demonstrationi ellipticae viae Martis, inscriptorum "protheoremata" priora I—XI. haec sunt, loco verborum, quibus Keplerus utitur, literis expressa. Reliqua (XII—XV) cum hac ratione exprimi nequeant, relegantur in textu. Sint R, r, semidiametri ellipseos; C, E areae circuli eique inscriptae ellipseos; y et z ordinatae respondentes circuli et ellipseos; A, a, areae sectorum circuli et ellipseos KNA et MNA (fig. 118)

- erit İ. II.
 - и. III.
- $\mathbf{r} : \mathbf{R} = \mathbf{g} : \mathbf{y}$ $\mathbf{E} : \mathbf{C} = \mathbf{g} : \mathbf{y}$ $\mathbf{a} : \mathbf{A} = \mathbf{g} : \mathbf{y}$
- IV. Peripheria circuli in acquales arcus divisa et a divisionum punctis ordinatis in majorem ellipseos diametrum ductis, arcus ellipseos his ordinatis inclusi sunt inacquales etc.
- V. Peripheria ellipseos = π (R + r) "proxime".
- VI. $y^3 z^3$: $R^2 r^2 = y^2$: R^2 .
- VII. Si BN = R, erit HN² = R²-r².
- VIII. Ductis a puncto N diametri AC lineis quibuscunque (n) ad peripheriam circuli (a, a', a") erit (a + a' + a") > n R etc. vide textum. Conclusio: area circuli non est apta ad mensuram summae distantiarum suae circumferentiae.

IX. Si sumantur distantiae diametrales pro circumferentialibus, tunc summa aequat summam earum, quae ex centro ducuntur.

X. Hoc theorems similia continet de arcubus ellipseos, quae N. IV. et VIII de arcubus circuli dicta sunt.
 XI. Demonstratio : KN³ = KL² + LN³

y = sin. arc. KA; δx = sin. arc. δy (schem. 111), similis arcui KA, βy (= NH) semidiameter epicycli $\delta y \vartheta$, ergo

99) p. 404. In Epit. Astr. Cop. haec leguntur: Triangula singula justissime sunt in proportione mensurae singulorum suorum arcuum. Demonstratio hujus plenariae aequipollentiae traditur in Comm. Martis Cap. LLX. fol. 291 (404), cujus folii linea, "psis longiorem" (his verbis incipit linea, in qua vox "erit" est, in originali editione) unica vocula erit magnam obscuritatem induxit. Quam si mutaveris in computaretur, omnia erunt planiora. Quanquam fateor, obscurius ibi traditam plusque operae natum ex eo, quod distantiae ibi non ut triangula consideratae sunt, sed ut numeri et lineae.

100) p. 408. Dato arcu AK, et radio KH = 1, deprehendimus aream $\text{KAH} = \frac{1}{2}\text{AK}$. $\triangle \square$ NHE et NHK basin HN communem habent, quare \triangle NHE : \triangle NHK = EH : KL = 1 : sin. KA. \triangle ENH = $\frac{1}{3}$ NH . EH = $\frac{1}{3}$ eccentr., quare \triangle NHK (= \triangle NHE \times sin. KA) = $\frac{1}{3}$ ecc. \times sin. KA. Area KNA = \triangle KNH + ar. KHA = $\frac{1}{3}$ ecc. \times sin. KA + $\frac{1}{3}$ ecc.

101) p. 408. $\text{NM} = 1 + \text{LH} \times \text{NH} = 1 + \text{ecc.} \times \cos . \text{KA}$; LN = NH + LH= eec. + cos. KA; $\frac{\text{NL}}{\text{MN}}$ = cos. MNL, quare cos. MNL = $\frac{\text{ecc.} + \cos . \text{KA}}{1 + \text{ecc.} \times \cos . \text{KA}}$. (Comp. ann. 100.)

Notae Editoris.

102) p. 410. In
$$\triangle$$
 VHD (Fig. 120) sit $\angle V = 90^{\circ}$, \angle VHD = 45°, HD = 1.
Curn sit (Fig. 118) EH : KL = EB : KM, et EB = 0,00432, KL = DV (Fig. 120) = sin. 45°, erit FD (KM) = 0,00432 × sin. 45°.
VF = VD - FD = sin. 45° (1-0,00432)
= 0,99568 . sin 45°
 $\frac{VF}{VH} = tg.VHF = \frac{0.99568 × sin. 45^{\circ}}{\cos . 45^{\circ}} = 0,99568 = tg. 44^{\circ} 52' 19''.$
Deducentes quaesitum ex formula annot. 101, calculus sic se habet:
Curn sit (Fig. 118) cos. MNL = $\frac{e + \cos . KA}{1 + e \times \cos . KA}$, prodit
cos. MNL + cos. MNL × e × cos. KA = e + cos. KA, et inde
cos. MNL + cos. MNL × e × cos. KA = e + cos. KA, et inde
cos. KA = $\frac{e - \cos . MNL}{\cos . MNL \times e - 1} = \frac{\cos . MNL - e}{1 - e \cdot \cos . MNL}$.
103) p. 410. Ratio calculi Kepleri ad hace redit : Sit eccentricitas NH = e, $\angle LNM_{e}$, anom. coasequata vera^o, = a, HK = 1. Deinde, curn sit NM major radio quantitate in-
cognita, signetur NM per 1 + x; sic linea LH per y, eritque
x : y = e : 1, quare
I. $y = \frac{x}{e}$.
 $\frac{LN}{MN} = \cos . a, et inde$
II. $y = (1 + x) \cos . a - e$.
Hinc III. $\frac{x}{e} = (1 + x) \cos . a - e$.
 $x = \frac{e(\cos . a - e)}{1 - e \cdot \cos . a} (= \frac{\cos . a - e}{1 - \cos . a}$.
Numeri, quibus utitur Keplerus absolvens hunc calculum, sunt: $e = 0,09265$, $\angle a = 30^{\circ}$.

qui applicati ad formulam (III) exhibent

$$\mathbf{x} = \frac{0.09265 (0.86603 - 0.09265)}{1 - 0.09265 \times 0.86603} \left(= \frac{0.86603 - 0.09265}{1} \\ = \frac{0.09265 \times 0.77338}{1 - 0.0802376} \left(= \frac{0.77338}{10.7933 - 0.86603} \right) \\ = \frac{0.0716536}{0.9197624} \left(= \frac{0.77338}{9.92727} \right) \\ = 0.077905 \quad (= 0.077905).$$

Quae cancellis inclusa addidimus, numeri sunt Kepleri, hoc discrimine, st denominatorem fractionis penultimae habeat 10,7932 — 0,86603 = 9,92717, et pro quotiente 0,077905 quotientem 0,07744 falsum.

Jam, cum assumtus sit initio radius vector MN = 1 + x, quantitas hujus prodit = 1,077905 (K : 1,07744).

Desigue LH
$$=\frac{x}{e} = \frac{0.077905}{0.09265} = 0.84085$$
 (K. 0.83583), et cam ait \triangle KHL ad L

rectangulum, KH = 1, erit cos. KHL = cos. arc. KA = 0,84085 = cos. 32° 46', h. e. anomalia eccentri = 32° 46', quae, adhibita quantitate lineae LH, a Keplero deprehensa anomana eccentri $= 32^{\circ}$ 30', quae, annota quantitato imaga Lin, a Replerio deprenenta (0,83583) prodit $= 33^{\circ}$ 18', eadem, quam accipimus subtractis Keplerianis 58° 42' a 90°; unda ipsi prodisrins 33° 46', conjectande tantum concludimus, justam habuisse in manua scripto quaptitatem arcus AK, et immixto posthac errore calculi repetiti, erroneos retinuisse gradus 33 et justa minuta 46.

Vol. XIV. Mss. Petrop. deprehendimus fragmentum literarum Kepleri, quod quum ex parte quidem huc pertinent, superioribus adjungendum censuimns. Jam aliquid ex astronomia mea. Sunt enim cap. LIX. et LX, crebra vitia in literis, nec omnia, in vestro exemplari correcta. Tres mihi sunt anomaliae; media, per tempus data, quam numero in area AKN; eccentri, quae est improprie vel area circuli AKH, vel arcus AK, vel angulus AHK, vel denique proprie arcus ellipseos AM. Coacquata vero MNA angulus. Data media AKN non habeo modum inveniendi eccentri anomaliam AK aliter quam per falsi. Pono enim arcum AK et ejus sinum KL, multiplico in valorem areae maximae EHN, qui est 19110 secunda [prodit hic valor ex multiplicatione EH in dimidiam HN eccentricitatem, et comparatione facta ad aream circuli, quam pono valere technice 360°]. Hoc paoto mihi prodit area KHN in scrupulis secundis, quae addo ad positum arcum AK, seu aream AHK [quia eadem jam est mensura] ut prodat AKN: quae si acquat datam anomaliam mediam, tunc bene posui AK. Tabulis constructis, ut quidem ego jam construxi, jam nulla est amplius in hac positione difficultas. Statim enim excerpitur. Sed ego jam versor in traditione modi computandi acquationem unicam aliquam. Dato arcu AK et LH, cui addo HN eccentricitatem, prodit LN. Ducta KH ejusque perpendiculari NT, erit KT mensura distantiae M planetae ab N Sole. Nam KT et MN sunt acquales. Hoc in Commentariis dixi quidem, sed in hoc schemate cap. LIX. et LX non explicavi.

Jam igitur habetur MN, NL et L rectus, datur igitur MNL anom. coaequata. Haec ideo jam, quia recolligo memoria, fuisse mihi controversiam tecum. primo quod putabas, incongrue a me dictum, aream AKN metiri distantias, quae sunt lineae, deinde, quia magis tibi arrisit ratio Fabricii. Sed de primo prius. Demonstratum habeo, distantias duas punctorum oppositorum MN, NY junctas aequare diametrum KI. Secto igitur circulo AK in partes aequales quotcunque, constituentur totidem sectores, qui implent circulum. Nec major nec minor est area circuli omnibus suis sectoribus. Atqui MN, NY et reliquae distantiae aequant KT. TL id est KH. HI, duos sectores, et sic sunt distantiae totidem, quot sectores aequales cum illis [in summa] longitudine, quam longitudinem verbotenus patimur habere latitudinem sectorum, re ipsa nullam: quippe etiam in infinita diviso circulo vera etiamnum est affirmatio: ergo area circuli metitur ellipseos punctorum M, Y etc. distantias eam latitudinem habentes, quam sectores. Hunc modum ideo retineo, quia in effectu est optimus. Nam si diviso circulo in 360 computem totidem lineas, res eodem recidit, quia facilis computatu, et quia, quod caput est, physicas causas exprimit. Cum enim in aequalibus arcubus morae sint ut distantiae, area metiens hoc pacto distantias metitur et moras junctas. Distantias autem per se singulas computandi et colligendi in summas labor est immensus.

Jam ad Fabricianam viam. Is educta HD (schema deest), quae sit ipsi KM aequalis, retinet AK circulum, librato centro ex H in D. Tunc erecta ND nova linea apsidum libratili dicit MDF esse mediam anomaliam. Quia enim paralleli sunt KH. MD. sic et HA, DG, angulum GDF, i. e. HND facit acqualem valori areae KHN. Id prope verum est ex hac causa: semper HN est parva, triangulum igitur KHN non multo superat sectorem, cujus angulus HKN, radius HK, inferius minus paulo est. Et areae sectorum sunt ut anguli eorum. Ergo angulus HKN fere metitur aream HKN. Jam HND angulus est fere acqualis angulo HKN. Quippe demonstratum habeo, ut EH ad HN, sic HN esse ad EB. Ut vero HN ad NT, sic EB ad KM, i. e. HD. Quippe ut HN ad NT, sic HK ad KL, ut vero HK, i. e. HE ad KL, sic EB ad KM. Ut igitur HN ad NT, sic EB ad KM, i. e. HD. Quodsi ergo KT esset acqualis ipsi KH, tunc TKN et HND essent simpliciter acquales. Paulo igitur major est HND quam TKN. Atqui etiam paulo major est area HKN in valore suo, quam angulus HKN. Ergo credibile est, plane aequales esse angulum HND vel GDF et valorem trianguli HKN. Quodsi aequales, tunc utrique et mihi et Fabricio per eandem anomaliam mediam prodit eadem anomalia eccentri, mihi quidem AK impropria, ipsi vero GM: quippe acquales ponuntur MDF et valor areae AKN, sequalia vero et GDF et valor areae KHN, relinquuntur igitur acqua-Ha GDM et valor areae AHD, i. e. angulus AHD.

Verum vide, quibus difficultatibus bonus vir conflictetur, quippe cum posset per eccentricitatem HN, i. e. DX computare DMX et postea addere XMN, ut habeat DMN, sicut ego alia aliqua forma calculi interdum computo KNA anomahiam fictitiam conequatam, postea KNM, eaque ablata habeo MNA vere conequa-

tam: ipse potius manet in simplicitate, computans DMN, sed non perpendit, sibi hoc pacto fieri DN longiorem quam HN. Itaque valde miratur defectum aequationum ab observatis: supra quidem et infra quadrantem. Culpam conjicit in calculum per tangentes et sinus. Sed etsi admoneatur, nullum habet compendium, mihi enim una multiplicatione citra sinuum tabulas prodit valor areae KHN. Ipsi una operatione HD, altera per tabulas sinuum et tangentum HND, tertia per secantes ND prodit, nisi et vitiosam aequationem et vitiosam distantiam MN, quae requiritur ad prosthaph. orbis, velit exstruere.

Liberat se ab incertitudine prima propter insensibilem errorem. Ducit enim sinum FM in eccentricitatem pro habenda HD, cum ego sinu GM, i. e. AK constituam KM, non aperte sed per KT, i. e. per NZ in NM transpositam. (nil sequitur)

104) p. 411. Celebre est problema illud, a mathematicis posterioribus dictum K e p l e r i a n u m, quod multorum torsit ingenia excellentissimorum mathematicorum, neque vere, ut ipse Keplerus pronunciat, elementari et directa via solvi potest. Problema: "Data semicirculi area, datoque puncto in diametro, lineam ab hoc puncto ad circumferentiam ducere, qua area semicirculi secetur ad datam rationem." solutum debebat ad ellipsin applicari, et inde "a media anomalia perveniri ad coaequatam" quaesitam. Quae primo aspectu diversa sic cohaerent: Data (schem. 118) area AKN = KHA + KHN, quaeratur AK arcus. Sector KHA = $\frac{1}{2}$ KA × KH; \triangle KHN = $\frac{1}{2}$ NH × KL = $\frac{1}{2}$ NH . sin. KHA, KH = 1, NH = e, quare area AKN = $\frac{1}{2}$ (KA + e. sin. KHA). In hac aequatione datur e et area AKN, quaerentus arcus AK, et sin. \angle KHA. Jam, quia area semicirculi = $\frac{1}{2}\frac{1}{2}\frac{1}{7}$ et area KNA coguita, non latet ratio utriusque areae; sit = m : n, quare pro aequatione illa hanc construimus proportionem : $\frac{1}{2}r^{2}\pi$: $\frac{1}{2}$ (KA + e. sin. KHA) = m : n, sive π : KA + e. sin. KA = m : n.

Quia vero iter planetao non est circulus AKC, sed ellipsis CMA, pro anomalia "fictitia" AKN, datur area AMN = sect. AMH $+ \triangle$ MHN = sect. AMH $+ \frac{1}{2}$ e sin. MHA, et reliqua sequuntur eadem ratione ut supra, ita ut hic quoque, ut in circulo, aequatio prodeat, in qua duo, scilicet arcus et sinus anguli ad centrum, quaeruntur e data area sectoris AMN et eccentricitate NH, quod problema solvi non potest, "quia proportiones inter arcus et eorum sinus infinitae sunt numero." Solutio appropinquans per series infinitas diversimode proposita est, quam si cognoscere cupias, quodenque astronomiae compendium sive librum continentem theoremata altioris mathematicae, sive historias ejusdem adeas.

105) p. 413. In \triangle ABC dantur: AB = 1,00666, AC = 1,38556 et EBC = 6° 2' 30", ergo sin. BCA = $\frac{sin. EBC \cdot AB}{AC}$; $\frac{\angle BCA = 4^{\circ} 23' 8''}{\angle ABC = 173.57.30}$ $\overline{\angle BAC = 1^{\circ} 38' 22''}$ Nodus in 1° 16° 43' (+12°) Mars in 11.12.16 Restat 64° 27'

Sin. 64° 27' : sin. 1° 39' 22'' = 1 : x; inclin. limitis anstrini = 1° 50' 8''.

106) p. 423. Mars in 2° 40′ 48″ \rightarrow existens, distat a nodo per 13° 16° 43′ \rightarrow 11° 2° 40′ 48″ = 74° 2′. Cap. LXII. "inclinatio limitum" inventa est = 1° 50′ 25″, quare datis in triangulo sphaerico rectangulo altero latere ad rectum et angulo ad hoc latus, non latebit latus huic angulo oppositum:

$$\cot x = \frac{\cot x}{\sin .74^{\circ} 2^{\circ}}$$

$$x = 1^{\circ} 46^{\circ} 10^{\circ \circ}.$$
Jam (Fig. 122) quia AK vergit in 11s 2° 41' 18"
AE , 10. 27. 37. 49
erit $\angle EAK = 5. 3. 29$
Sic, quia EK vergit in 11. 16. 3
EA , 4. 27. 37. 49
erit $\angle KEA = 18^{\circ} 25^{\circ} \cdot$
adum Cap. LXII. est: sin. lat. visae = $\frac{\sin .1^{\circ} 46^{\circ} 10^{\circ} \times \sin .18^{\circ} 25^{\circ}}{44^{\circ} 10^{\circ} \times \sin .18^{\circ} 25^{\circ}}$;

In $\triangle \lambda \beta \chi$ ad β rectangulo (schematis 128) dantar $\chi \beta$ (= EAK schem. 122) = 5° 8' 29''; $\lambda \beta$ = 1° 46' 10", quare cos. $\chi \lambda$ = cos. 5° 3' 29" × cos. 1° 46' 10"; $\chi \lambda$ = $\angle CAL$ = 5° 21' 28".

Jam, datis in \triangle CAL lateribus AC = 1,01077, AL = 1,38261, et angulo CAL, computatur angulus LCA.

``\

L

In Commentaria de motibus Martis

Hinc ut supra: sin. lat. visae = $\frac{\sin 1.140 \text{ for } \times \sin 10^{-2} \text{ for } \times \sin 10^{-2} \text{ for } \times \sin 10^{-2} \text{ for } \sin 10^{-2}$

107) p. 430. Redit Keplerus ad hanc speculationem in Epit. Astr. Cop. libro VII, rem quidem aliquantum accuratius inspiciens, neque vero plane scopum attingens, illo quoque tempore, quo librum hunc conscripsit (anao 1621), accuratioribus observationibus destitutus, quanquam tum theoriam suam ad ceteros applicaverat planetas. Haec ibi addit: "Comparet lector ea, quae in Comment. Martis Cap. LXVIII. de situ circellorum horum disputavi; quanque inveniet differentiam, rei ipsius difficultati et penuriae observationum opportunarum tribuat."

In literis ad Fabricium item de his agit hunc in modum : Motus Solis ab Arietis principio inaequalis, stellarum ab Arietis principio inaequalis, Solis a stellis aequalis. Ergo Arietis principium inaequaliter mobile est, causa utriusque inaequalitatis praemissae. Fixae igitur quiescunt, capita Arietis et Librae ad motum polorum transponuntur sub fixis. Omnino sic cogitandum, motus omnium planetarum tradi posse sine acquatore. Et ego id observarem, si mihi aliquis esset in astronomia instituendus. Perceptis illis, jam denique ultimo omnium traderem doctrinam primí mobilis, ostendens, quomodo poli Terrae axisque inclinentur ad polos eclipticae. Super qua re inspice schema hoc (N. 131) ex meis in Martem Commentariis, ubi plura videbis, quam hic quaesivisti. A polus eclipticae mediae, seu της δινησεως corporis Solaris. Hoc punctum est solum immobile. In circulo E et opposito partibus oppositis circumeunt poli aequatoris, facientes corollas, quarum quaelibet acquat amplitudinem orbis annui, neque tamen in comparatione ad sphaeram fixarum acquant unius minuti latitudinem. AE est 23°42' in Prutenicis. In circello I circumit polus orbitae Telluris, seu eclipticae verae, unde fit, ut mutentur stellarum latitudines et declinatio eclipticae ab acquatore. In circello H circumit polus orbitae Martis sub fixis.

Fixarum motum salvari per motum polorum aequatoris, absurdum non est, nec nihil manet stabile in toto universo, cum maximum omnium corporum, sphaera fixarum visibilis, plane quiescat. De aliqua vero sphaera altiore, in qua aequator et poli, nihil constat oculis. Et hac etiam data, quid, quaeso, in ea tibi et Ptolemaeo quiescit, nisi 2 puncta, h. e. nihil ? Falleris autem, dum existimas, aliam et aliam fore poli elevationem eodem loco Terrae, si poli aequatoris moveantur. Nam nihil aliud sunt poli aequatoris, quam poli Terrae, cum aequator sit maximus circulus Telluris. Qui vero urbibus variare velit poli elevationes, ei necesse esset, Terram in aliis et aliis sui punctis quasi in torno supendere. Et hace erat olim mea vana speculatio, olim Tellurem circa illud punctum convolutam, in quo esse perhibetur polus magneticus hodie. Manente igitur eodem puncto, circa qued Tellus convertitur, manet eadem omnibus locis poli elevatio.

Falsam esse hodierni anni quantitatem ex Copernico, legere potes in Progymnasmatis Tychonis; at non ideo falsae sunt omnes hypotheseos partes. In praesenti schemate non est expressa Copernici tota hypothesis, deest ejus intorta corolla, quam ego ex parte transtuli in societatem circellorum E et F; pars ejus altera hic deest. Contra corollae hic expressae desunt in Copernico, sed subintelliguntur sub ratione puncti seu circuli E nudi, propter exiguitatem sui. Et ego per hoc schema aliquam quidem inaequalitatem anni tropici demonstro (seu potius praecessionis aequinoctiorum), non vero tantam vel talem, quanta qualisque apparet ex comparatione soculi Ptolemaici cum ceteris.

De abstrahendo motu praecessionis, competente tempore inter 2 aeronychias, judica ex iis, quae supra dixi. Omnino abstrahendus est ab angulis, si subtilitatem omnem velimus consectari. Ego, ne totam praecessionem cogar toties abstrahere, soleo observationes posteriores ad primam reducere, tantum abstrahens ab eorum

longitudinis motu, quantum tempus interlapsum largitur de motu praecessionis. — Desumsimus haec e literis Kepleri d. 10. Nov. 1608, in quibus ad quaestiones d. 12. Oct. propositas a Fabricio respondit. Quaestiones autem hae sunt: 1) Anni quantitas hoc tempore multum variat a veritate. Copernici tabulae dant 5^h 55', at Tycho 5^h $48'/_3'$ supra 365 dies. Cupio scire, an praecessio aequinoctiorum non alia, quam Copernici ratione, salvari possit, ut poli mundi immobiles maneant? 2) De eccentricitate Solis mutabili noanulli dubitare videntur, nec observationibus veterum non minum fidendum multa indicant. Tuam sententiam scire cupio &c. (Similem prius conceperat sententiam Keplerus, quam in literis ad Herwartum proponit. v. annot. p. 448)

108) p. 432. Arzachel, Arabs, celeber astronomus in Hispania c. a. 1080. W. Snellins (Observ. Hassiacae &c.) hunc astronomum laudibus effert in appendice, quam addit observationibus a se collectis; in disquisitione erudita de eclipticae obliquitate comparat abservationes veterum cum recentioribus. "Hipparchus, inquit, et eum secutus Ptolemaeus, tres Solis epochas delegerant, e quibus per angulos motus apparentis observatos et per peripherias mediorum motuum ex intervallo temporum derivatas locum apogaei et ecoentricitatem ernerent." Jam, inquisitis rationibus, quas hi astronomi secuti sunt, selstitiorum observationes lubricas cese affirmat, nec calculo pervestigabiles, nisi antes locus apogaei sit definitus. Deinde concludit : "hinc adeo planum fit in locis apogaei consignandis, quam hibrico in loco pedem ponant, qui solstitierum epocham huc advocant. Senserunt hanc incertitudinem Alfonsini, ideo quod suae causae inserviret, apogasum aliquot gradibus in anteriora protruserunt, cum potius retrotrahere debuissent. Verum eorum audaciam sequens aetas facile refutavit. Ptolemacum excepit Albategnius, Hipparchaeam plane et Ptolemaicam viam ingressus, et apogasum non defixum, quod Ptolemasus existimabat, sed mobile docuit, et inde a Ptolemasi astate ad suam annis 751 profecisse 16° 43'. Veram minus constans est haec ratio et in errorem proclivis, ut necessitas Arzakeli Hispano imposita sit, alia et tutiore via apogaei investigationem tentandi. Is namque assumtis tribus epochis, in quibus Sol mota diurno notabilem declinationis differentiam induceret, unde ipsius verus locus. in ecliptica vel ad scrupulum cognosci posset, locum apogasi non paulo constantius et accuratius definivisse videtur: secutus cam epilogismi formulam, quam in Lunaris apogaei inquisitione Ptolemaens adhibuit. Arzakel igitur hanc viam secutus apogaei locum in 17º 50' II deprehendit, cum tamen ante annum 139. Albategnius eidem assignavisset 22° 17' II, ut omnino intra duo secula 4° 27' retroiisse oportuerit. Ego quidem hic vitium Albategnii observationibus oblatum existimo. Certe tam praeclara fuit Arzakelis industria, ut suo seculo hominibus observandi certitudine palmam praeripuerit. Tam illustre testimonium ei perhibet doctissimus Aben Exra in libro suo cui titulus : Initium Sapientiae; locus exstat in libris viri summi Josephi Scaligeri, quos de Temporum Emendatione inscripsit. Est estam (inquit) quidam ex illiz, qui dinit dininutionem de quadrante, qui unicuique anno competit, esse partem contesimam sectam unius disi (Albategnium intelligit Cap. 52), quidam ex illiz partom contesiman desiman. Atqui constat, justa seculum nostrum esse partom contesiman tricesiman unam. Nitimur enim loco Solis (id est seguinoctio) qui erat tempore Elsuphi: oui similem artificom nullum audivimus in opilogismo astrorum. Et ipse quidom ita docuit. Scoutue est cum Abraham Elsarabeel (puto quem vocant Arzakel) cui nomo temporum suorum comparandus fuerit. Ipse investigavit locum Solis (asquinoctium) in seculo suo : qui quidem conveniebat tempori Elsuphi. Unde industrie et naviter emnia ab Arzakele curata liquet, cum Aben Esra, quemadmodum ipse prodit, ante an. 472. ista scripserit, qui sunt anni post observationem Arsakelis duntaxat 71, ut tanto magis fidem diligentissimus autor mercatur, quanto ab ejus actate propius abfuerit.

Cum Arzakel inter se et Albategnium tantam discrepantiam deprehendisset, et simul eccentricitatis decrementum observavisset, circellum effinxit, in cujus ambitu centrum eccentrici ita versaretur, ut id mode a Terris propius, mode abesset longius, et simul iptum apogasum repedare posset. Ingeniosum equidem inventum, etsi nimium levi de causa videatur introductum. Quis enim nobis hace definire andeat, istorum motuum lege nondum deprehensa? et cum incertum sit, au omnine apogasum unquam retrocedat. Difficilis quaestio inter Arzakelem et Albategnium controvertitar, neque est qui eam litem dirimat; nam in tanta caligine et tam alto scriptorum veterno neme exstat, qui nobis facem ad veri investigationem alluceat. Unum mihi in mentem venit, nec, ut arbitror, omnine contemnendum. Cum Alphonsus, Castiliae Rex vere magnanimus, tabulas fatiscentes et periodorum numeros exorbitantes certis legibus coërcere, et planetis suos motus restituere in animum induxisset, mullis pepercit sumtibus, ut undique viros doctos et in isto pulvere subactos convocaret, qui ad tam nobile institutum operas suas tanquam symbolas conferrent. Non possum hic a me ipso impetrare, ut credam, adeo ab omnibus observationibus nudos et imparatos ad rem tam arduam istos se accinxisse, ut ne Solis quidem motum et ojus apogasi locum observare

instituerint, nacti Principem profuse liberalem. Nam cedo, quae eos ratio impulisset apogaeum Ptolemaei tot gradus promovendi, ut motum apogaei cum affixarum motu pari velocitate cierent: hoc si tantum a Ptolemaei observationibus derivare satis credidissent. additis circiter 15° rem factam habuissent, ut apogaeum Solis in aera Alphonsi anno 1252. ex hac formula obtinere debuerit quasi 20 aut 21° Π . Quod Arzakelis observatis fuerit consentaneum, cum is ante 180 circiter annos ejus locum in 17° 50' assignavisset. Verum longissime hinc absunt, cum apogaeum eo tempore statuant in 28° 40' Π . Quod dum faciunt, totum ex Albategnio hausisse videntur, qui stellas fixas 66 annis integro gradu in consequentia signorum suo aevo promoveri demonstrat. Isti apogaeo eundem motum attribuunt; hinc igitar, si secundum istam analogiam apogaei motum concludas et istum numerum ad locum ab Albategnio assignatum adjicias, plane assequeris eundem cum Alphonsinis limitem. Itaque secundum easdem leges apogaeum Ptolemaicum interpolaverunt. Ita Arzakele insuper habito in Albategnii sententiam toti concesserunt.

Quae Keplerus paulo supra (p. 431) affert de acquinoctio bis codem die observata, ea in Optica pluribus inquirit. Comp. Vol. II. p. 219. De "motu trepidationis" diximus Vol. I. p. 195.

109) p. 435. In Almagesto Ptolemaei has, quas Keplerus enumerat, observationes deprehendimus: 1) Lib. X. cap. 9: anno 13. secundum Dionysium Capricornionis 25. stella Martis matutina cernebatur boreali Scorpionis incumbere fronti, et est tempus observationis in anno 52. a morte Alexandri, h. e. annus 476. a Nabonassaro Athir (Octobr.) secundum Aegyptios die 20, sequente 21. in mane. 2) Lib. X. cap. 7: Tree cepimus observationes in Marte, quarum primam 15. anno Adriani observarimus Tybi (Decembris) secundum Aegyptios die 26, sequente 27. post mediam noctem una sequali hora, et erat in gradu. Geminorum 21. Alteram anno Adriani 19. Pharmuthi (Martii) die 6, sequente 7. ante mediam noctem horis 3, et erat in gradibus Leonis 28. 50'. Tertiam anno Antonini 2, Epiphi (Junii) die 12. sequente 13. ante mediam noctem 2 aequalibus horis, et erat in gradibus Sagittarii 2. 34'.

In aera autem Aegyptiaca fuit mensis Tybi quintus, Pharmuti octavus, Epiphi undecimus ab anni initio, singuli 30 dierum, et annus Antonini secundus fuit quartus ab anno Adriano novemdecime, quare intervalla sic colliguntur a Ptolemaeo:

I.	Anni	-14	dies	146	horae	13
II.	n	18	n	216		9
	7	4	17	69	,,	20
П.	"	18	30	216		9
Ш.	"	22		312	39 ·	10
		-		96		1

Keplerus, momentum inquirens verae oppositionis, subtractis ab observatione Iª horis 8, a IIª horis 41. 21', a IIIª h. 2. 6', illud prodit:

I. Anni 14 dies 146 horse 5

II. " 18 " 214 " 15. 39'

III. " 22 " 312 " 7. 54,

unde intervalla temporum aliquantum a prioribus discrepantia producuntur: 4^{aa.} 684 10^a 39' et 4. 97. 16. 15.

FRAGMENTA STUDIORUM KEPLERI Astronomicorum.

DESUMTA E MANUSCRIPTIS KEPLERI, QUAE PRIUS PETROPOLI, JAM PULKOWAE CONSERVANTUR.

PROOEMIUM

Passim in praemissis operum Kepleri voluminibus occurrit mentio operis, auod conscribendum sibi proposuit Keplerus inscribendumque censuit Hipparchum. Volumina I. et XV. Manuscriptorum Pulkowensium exhibent ea, quae per multos annos Keplerus in his studiis profecit, cum ad formam perducta eam, quae ad typum apta videtur, tum nondum plane perfecta et quasi limanda ad aptius tempus reservata, tum denique fragmenta tantum, parum inter se cohaerentia raptimque conscripta, ut in mentem venerant, adscripto die, quo conscripta sunt, velut signo ad revocandam posthac rei memoriam. Testimonium praebent haec fragmenta cum indefessae Kepleri industriae et summae diligentiae, tum peculiaris libros conscribendi rationis. Millies redit ad eandem rem, si primo impetu eam assequi non potuit, millies repetit numeros, donec ad exoptatum venit finem, quamquam, at ipse saepius fatetur, conficiendi calculi numerici plurimum ipsi facessebant negotjum, et Keplerus hic minus certum se praebuit, quam in philosophicis disquisitionibus, quo in doctrinae genere neminem habuit parem. Intacto antea tramite progressus, parum adjutus observationibus, quibus firmiter inniti posset, rem, quam in Marte feliciter aggressus est, absolvendam sibi proposuit in reliquis planetis, in Sole et in Luna, imitatus Ptolemaei Almagestum. Quantum, hunc spectans finem, insumserit laboris et temporis, quanta perseverantia rem toties tentatam iterum iterumque aggressus sit, non perculsus erroribus, quos observationes minus fidae causabantur, quos ipse in calculis committebat, haec enarrant singula fere folia manuscriptorum, quae inspeximus, atque ex his potissimum ea, quae continent libros, quos sequentes exhibent paginae. Iidem vero Keplerum, ut diximus, in libris conficiendis occupatum quasi oculis adspiciendum praebent. Quorum operum priores cum inspexeris paginas, absoluta et plane ad finem perducta censebis; primum occurrit titulus, maxima conscriptus diligentia, ita ut variis coloribus depicti sint singuli versus; nil deest, nisi nomen typographi. Titulum sequitur dedicatio, quasi res sit plane absoluta (non quidem in Hipparcho, at in alio, item non plane ad calcem perducto libello, quem inscripsit: Transformatio hypotheseos et tabularum Lunarium &c); deinde adhuc firma manu scriptae exhibent sequentes paginae operis exordinm, subdivisi in capita, theoremata, problemata, adscriptis rite numeris; sed paulo post magis magisque senescit studium, literae occurrant minus clarae. * munditia deficit; paulatim deprehendis minorem orationis subtilitatem, tandem subito abrumpitur sermo. Singula, quae sequuntur, folia testimonium

praebent constuum rem ulterius continuandi, singula theoremata vel problemata digitum intendunt ad praemissa, omissis vero numeris ordinariis; calculi multiplices his additi sunt ad inceptum pertinentes negotium, donec res plane deseritur.

Si ex his, quae praesto sunt, exemplis, si inspectis passim manuscriptis et comparatis iis, quae ipse affert de ratione procedendi in Comment. Martis (comp. literas Kepleri ad Maestlinum, Fabricium aliosque in praefatione ad hoc opus) si ex his concludere licet de reliquis, quae conscripsit Keplerus, non sine veritatis specie haec de anctore nostro dicamus: Primum, quaecunque occurrebant Keplero notabiliora, cum domi tum in itinere (adscripsit saepius, praeter diem quo lucubrationes chartae mandavit, etiam urbem, v. g. "Monachii", "Pragae", "Tubingae" &c.), inter studia astronomica et in otio, extemplo ubi posset chartis tradebat, vel per literas ad amicos datas dubitationes, quae occurrebant, sibi ipsi eximere studebat. Deinde, quum res ipsum agitaret gravis, quum, ut accidit in "Hipparcho", moliretur editionem cujusdam operis, versabat rem propositam, donec maxima ex parte, ut ita dicam, in conspectu esset, et sive nullas animo praecipiens difficultates, quae objici possent, sive illas se, procedente negotio, victurum fiducia plenus, rem alacriter aggressus, quasi sibi ipsi stimulos subdere vellet, ab initio quanta potuit diligentia rem tractabat, prima jam linea respiciens quasi ad typum, ordinemque servans inde ab initio animo propositum. Sic singulae deinceps libri partes se invicem sequebantur (ut v. c. in Martis Commentariis capita ab initio 52 priora), donec improvisum deprehendens impedimentum gradum sistebat, et, reversus ad exordium, rem et ea quae chartis mandata habebat accuratius inspiciebat, tum demum forte ea, quae de instituenda operis ratione animo comprehenderat, chartis mandans. In "Hipparcho" difficultates frangunt impetum, et quamquam iterum iterumque rediit, tandem infectum reliquit, partem eorum, quae absoluta fuerunt, "praeceptis" Tabularum Rudolphinarum accommodans.

Keplerus quam ob rem opus suum inscribendum censuerit Hipparchum, facile conjicient ii, qui, imbuti astronomiae historia, non ignorant, Hipparchum peculiari ratione dimensum esse distantiam et quantitatem Solis et Lunae, singulari in hunc finem usum delineatione, quae "diagramma Hipparchi" dicitur, apparentes Solis Lunaeque diametros eorumque parallaxes horizontales comparantem, nec non umbrae Terrestris diametrum eo loco, quo secatur per Lunam eclipsatam. Alii autem, minus versati in his studiis, haec habeant: Hipparchus, natus Nicaeae Bithynorum, primus collegit ea, quae priores in coelo observaverant, et, non contentus observationibus siderum per se cum ab illis tum ab ipso diligentissime factis, studium hoc altins accipiens, integrae scientiae conformandae operam dedit (ab anno a. Ch. 160-125). Motum planetarum, Solis et Lunae periodos ac- . curatius constituere sibi proposuit, comparans suas ipsius observationes cum illis veterum, primusque confecit hypothesin vel quod posteriores mundi systema dicebant, orbes planetarum eccentricos ponens, ut salvaret motuum irregularitatem. Anni quantitatem accuratius dimensus est, tabulas constituit motuum Solis et Lunae, catalogum denique confecit stellarum fixarum. Sed studiorum horum gravissimorum documenta omnia fere perierunt temporum injuria, uno tantum excepto libello, quem inscripsit: ror 'Aparov nas Eudožov Dawoperor išnynoewr Biblia y, quem primum edidit Petrus Victorius Florentiae 1567, et in Latinam versum linguam D. Petavius

Procemium.

addidit collectioni inscriptae: Uranologion, sive Systema variorum authorum, qui de sphaera ac sideribus eorumque motibus Graece commentati sunt (Lut. Par. 1630). Unum fere habemus testem de Hipparchi astronomia Ptolemaeum, qui illius observationibus et hypothesibus fundamenti loco usus, superstruxit his librum suum, quem dicit Meyalar Zverafer, ab Arabibus ad nostra tempora notum sub titulo Almagestum. Passim hic occurrit nomen Hipparchi maximis additis laudibus. Libri V. capitibus 11-15 illum secutus Solis, Lunae et Terrae diametros &c. comparat Ptolemaeus, schemate usus quod supra dictum est "diagramma Hipparchi" (Comp Fig. 1. sequentem), theoriam constituens horum corporum.

Keplerus in sequenti libro hanc theoriam, subtilioribus adjutus observationibus, emendare conatus est, rem vero, quamquam iterum iterumque ad illam reversus, imperfectam reliquit, deficientibus observationibus accuratioribus, quam illae, quae ipsi praesto fuere, nondum sufficerent. Ipse Keplerus passim librum hunc in operibus suis et literis privatis dicit nunc conscribendum, nunc quoque quasi conscriptum, quam ob rem multi aequalium opus hoc ab ipso efflagitabant vel non obtinuisse legendum aegre ferre se publice profitebantur. Jeremias Horroccius inter hos primus dicendus est. cum ob ingenii doctrinaeque subtilitatem, tum ob singularem quam exhibuit Keplero reverentiam, quam testantur ea, quae infra sequentur, quaeque desumsimus ex libro, quem edidit Joannes Wallis, "Geometriae professor Savilianus Oxoniae," et inscripsit: "J. Horroccii, Liverpolensis Angli, ex Palatinatu Lancastriae, Opera posthuma. Videlicet: Astronomia Kepleriana defensa et promota. Excerpta ex epistolis ad Crabtraeum Observationum coelestium catalogus. Lunae theoria nova." &c. annm. (Londini 1678.)

Haec igitur Horroccius: Divinissimus Keplerus, feliciter adhibitis speculationibus physicis, veras et naturales motuum coelestium causas atque ideo genuinas orbium formas (saltem in sex primariis) in lucem tandem protraxit, atque veris undique hypothesibus innititur; in eo solum peccans, quod numeros motuum et planetarum eccentricitates non praecise recte constituit. Sin autem numeros mos (in Tab. Rudolph.) parum commutes, consensum accuratum et constantem observationum et calculi merito miraberis. - Quod autem Keplerus fateatur, se luminarium deliquia aliter observasse, quam exhibet tabularum calculus, tabulas (Rudolphinas) quidem imperfectas arguit, sed animum re vera ingenuum, et veritatis magis, quam immeritae laudis studiosum. Nimirum non erat ille homo tam perfrictae frontis, ut absurdas quasvis ampullas magno clamore ignaris divenderet, modo ipse in fucati laboris praemium, brevissimo inanis gloriae flatu, intumesceret, et inter inconditos plaudentium strepitus placide sibi adularetur. Tales ego novi (Lansbergium his dicit Horroccius, contra quem, Keplerum longe aliter taxantem, ibi acerrime invehitur. Comp. annot. ad Comm. Martis nro. 45), sed talem nemo novit Keplerum. Modestior fuit mehercule ingenuus ille et ingeniosissimus heros, quam ut, suae ipsius laudis buccinator, apud reliquos nullam merito inveniret. At mihi cum laude licet in Kepleri laude arctiores modestiae limites transilire; licet mihi illum supra mortales admirari; licet egregium, divinissimum aut si quid majus appellare; licet denique, supra totam philosophantium scholam vel unicum Keplerum aestimare. Hunc solum canite poetae, in ipsius laude veritatem nunquam aequaturi, hune solum terite philosophi, de illo certi, habere istum omnia, qui habet Keplerum.

His praemissis propius adit Horroccius Kepleri opera, praesertim Tabulas Rudolphinas et Harmoniam, errores in illis a Keplero commissos ingenue recensens: "motus aequales, aphelia, eccentricitates, orbium proportiones et alia hujusmodi non satis praecise erdinavit. Et hinc factum est, tabulas Kepleri, etsi omnibus aliis praestantiores, apparentiis tamen non posse in minimis satisfacere. Ille autem exiguam hanc dis-

Kepleri Opera, III.

83

crepantiam, cum non posset ad regulas reducere, in casus physicos conjecit, omnine persuasus, numeros suos exacte esse constitutos." Hoc negans demonstrat Horroccias, "tabularum numeros solos esse in culpa", differentiam calculi et observationum non in causas accidentarias conjiciendam esse, sed ex observationibus emendandum esse calculum. Observationes priorum, Ptolemaei, Waltheri, Regiomontani, Copernici, ne Tychonis quidem, non esse abique eractissimos, "non esse ea omnia satis diligenter observata, quae tamen a summis viris tanquam omni exceptione majora venditantur." Cansam dissensus in observationibus bane esse dicit, quod "magni viri, inventis propriis nimium confidentes, observationem strictim enarrant, processum autem, quem in observando tenuerunt, minus candide dissimulant. Longe magis ingenue Keplerus, qui non solum observationes, sed et modum observandi candide nobis communicavit. Unde factum est, ut illius observationes sint aliorum omnium certiores, ac proinde a me maximi funt. Illius igitur exemplo omnes admonitos velim, ut totum observandi processum nobis non invideant; sit licet paulo plus laboris, singulas ambages prolixius recensere, nunquam tamen poenitebit veritatem tanti emisse."

Deinde causas recensens, quae ipsum moverint, ut Copernici mundi theoriam aliis praeferret, maxima ex parte Kepleri secutus Epitomen Astr. Copernicanae, addit Horroccius: haec apud lectorem praefari volui, ut gratias agerem doctissimo Keplero, cujus muneris esse fateor, quod hic non caecutiam; mihi enim cum reliquis erranti aperuit ille oculos, quare illi quidem me ac mea (si qua sunt) deberi nunquam non confitebor. Deo immortali O. M. ex animo grates ago, quod pulcherrimam hanc atque humanarum omnium suavissimam veritatem amplectendam concesserit.

His similibusque permultis in Keplerum laudibus cumulatis interponit Horroccius inde a primo exordio Lansbergii censuram haud minus gravem, hujus erroras semper comparans cum Kepleri meritis, non omittens alice, quorum nomen in astronomicis plus minuswe inclaruit. In comparandis v. c. astronomicis hypothesibus ipis sententia stat: "centrum omnium mobilium est ipsum Solis corpus, fons motus, non autem punctum quodvis mathematicum prope Solem, ut perperam statuunt Copernicus, Braheus, Lansbergius; qui quidem Lansbergius multo magis culpandus est, quam reliqui duo, eo quod videret dottissimum Keplerum opinioni isti adversantem summaque vi ac firmissimis argumentis oppugaantem, nec ipse locum cessit veritati." — Sic comparans Tabulas astronomicas contendit, priorum tabulas longissime a veritate abesse, tres tantum esse, quorum tabulae respiciendae sint, Longomontanum, Keplerum, Lansbergium. "Vis, inquit, de his sententiam meam breviter audire? Optimae sunt R u d ol phi nae, proxime illis accedunt D anic ae, omniumque ut postremae ita pessimae Lansbergianae. Long om on tanus numeros non male ordinat, in hypothesibus solis peccat, Keplerus utrumque rectissime facit, Lansbergius neutrum. Maltes errores in astronomia abstulit Longomontanus, longe plures Keplerus, quos omnes restituti Lansbergius. Denique astronomiam emendavit Longomontanus, perfecit fere Keplerus, miserrime perturbavit Lansbergius."

Lansbergius in "Uranometria" (Middelburgi 1631) idem, quod Keplerus in "Hipparcho" suo perficiendum sibi proposuerat, aggreditur, Solis scilicet et Lunae et Terrae mag-nitudines et intervalla geometrice demonstrare, usus "diagrammate Hipparchi." Concludit, quasi re bene confecta, his verbis: Kepleri hypotheses prima fronte videntur praestare Tychonicis, eo quod Hipparchi diagrammati respondent; penitius tamen inspectae non minus absurdae esse deprehenduntur, quam Tychonicae. Facit enim Keplerus semidiametrum umbrae apparentem in transitu Lunae apogaeae 44' 22", putatque hanc veriorem esse ea, quam Tycho in eclipsibus Lunae demonstravit, 43'. Sed valde fallitur opinione sua. Nos demonstrabimus, semidiametrum umbrae in transitu Lunae apogaeae adhuc minorem esse Tyobonica. ... Unde manifestum est, Kepleri hypotheses non minus laborare falso et absurdo, quam Tychonicas Haec et alia, quae Lansbergius in "Uranometria" contra Keplerum increpane affert, Horroccium moverunt, ut illam censurae suae subjiceret, itemque "diagramma" illud ad examen revocaret. Summam inquisitionis sume his complectitur: 1) hypotheses Lansbergii non ubique sibi constant, sed absurdae sunt non minus quam quae maxime, nihilque vitii ab ipso in quovis alio repertum est, quod non in suis etiam hypothesibus inveniatur, ac proinde ipse Lansbergius solidam diagrammatis Hipparchici notitiam non habuit. 2) Nemo est astronomorum, quos ille recenset, qui non ea omnia sciverit, quae nos ille docuit; Keplerus autem solus diagrammatis hujus perfectam intelligentiam habuit. 3) Hypotheses L., etsi sibi consentirent, sunt tamen omnium maxime coelo dissentaneae, Keplerianae in omnibus veritati propio-

res. 4) Impossibile omnino est, veram Solis a Terra distantiam hac ratione demonstrare.

Jam, "illustraturus illud diagramma brevi commentario, quod neminem noverit, qui demonstrationes hasce ad umbilicum perduxit" haec praemittit: Hipparchum Kepleri, librum diu desideratum, nondum mihi contigit videre, forte quia nondum editum. Certo tamen praesumere ausim, totam hanc artem in illo libro perfectissime tradi. Valde metuo auctoris mortem nunquam non praematuram nos tanto thesauro privasse. Utut sit, effectum operis, ut ipse testatur, in praeceptis Tabularum Rudolphinarum prodiit ex Hipparcho suo deductis, quae sunt omnino veritati consentanea; hypotheses ejus inde exstructae omnium solae geometriae et sibi undiquaque consentiunt, unde satis intelligenti est manifestum, Keplerum unicum diagrammatis hujus solidam habuisse notitiam. Facile est, a praeceptis suis totam artem addiscere; nihil hac ex parte est, quod in Keplero desideres praeter demonstrationes. Has autem jam tibi exhibeo etc.

Diagramma Hipparchi, pergit Horroccius, est inventum ingeniosissimum, cujus artificio Solis, Lunae et umbrae Terrestris semidiametri et parallaxes geometrice inter se connectuntur. Dicitur Hipparchi, quoniam is (teste Theone) peculiarem tractatum de usu ejus conscripsit, et ex illo magnitudines et intervalla Solis. Lunae et Terrae demonstravit. Primus, quod scitur, diagrammatis hujus auctor et inventor fuit Aristarchus Samius, mathematicus eximius et astronomiae Pythagoricae de Terrae motu sectator, annis 160 a. n. Ch. in Graecia florens. Hujus opus de magnitudinibus et intervallis Solis et Lunae etiamnum exstare dicitur, ego vere nondum illud vidi. (Errat hic in tempore, quo floruisse dicit Aristarchum Horroccius per 100 annos, nisi quem ponit numerus 160, corrigendus in 260, tribuendus est errori typographico. Opus Aristarchi edidit latine versum G. Valla. Ven. 1498.) Diagrammatis proprii usum Aristarchus ignorasse videtur Lansbergio, fortasse quod nec ipse usum ejus perfecte intelligit. Paucis (centum) post Aristarchum annis Hipparchus Rhodius (verius: Bithynus) eandem demonstrationem peculiari tractatu exposuit, unde vocari solet Hipparchi Diagramma. Liber ipse periit, at demonstratio apud Ptolemaeum exstat.

Longomontanus (Astronomia Danica p. 164. 169) hanc veterum demonstrationem ad suas hypotheses, Tychoni maxima ex parte acceptas, applicat. At quoniam non quadrat, eam rejicit, culpam conjiciens in refractiones radiorum Solarium, hanc *agenymatsice* irritam facientes.

Lansbergius toto Uranometriae libro usum et praestantiam demonstrationis depraedicat, ubi nescio quae magniloqua de sua ipsius nuda et simplici ejus explicatione, de hypothesium propriarum consonantia mirabili, aliorum absurditate et inter se discrepantia omni fere pagina inculcat, librum suum tanquam Lydium lapidem ad probandas aliorum hypotheses commendans posteris. At pauca iste, praeter speciosos titulos, ad veram diagrammatis hujus naturam exponendam attulit, simul cum demonstratione a veteribus accepta ipsorum etiam errores retinens. Nec quidquam novi in tanta verborum copia nos docuit, praeter unicum theorema panlo faciliori modo propositum, et totum illud a Keplero suffuratus, cujus divino plane ingenio ignorantiae et absurditatis notam iniquissime inurit, sui ipsius re vera ignorantis absurditatem mihi detegendam relinquens.

Quocirca diagramma illud Hipparchicum sequenti commentario illustrandum censeo, collectis in unum corpus theorematibus praecipuis ab illo enatis; non ad demonstrandam Solis distantiam, quam nunquam hac ratione invenies, sed ad detegendos errores nonnullos, quos ab antiquitate traditos amplectitur adhuc religiosa nimis recentium credulitas; ad cohibendam Lansbergii vanissimam arrogantiam, cujus imperita tractatione miserrime depravatur ingeniosum hoc inventum; ad vindicandam Kepleri famam, immerito a Lansbergio laceratam.

His praem'ssis Horreccius absolvit propositam demonstrationem simili qua Keplerus ratione, theorematibus tredecim, additis problematibus septem, semper respiciens ad Lansbergium et Tabulas Rudolphinas. Haec sequentur capita 4, in quibus Lansbergii hypotheses accuratius examinat, comparans illas cum Keplerianis, quibus ubique palmam tribuit. Gradum sistit disputans de Solis distantia et parallaxi, inquisiturus, ut ultimis dicit versibus, refractio-n e m, quae inquisitio desideratur. Huic enim disputationi idem quod Kepleri Hipparcho accidit, cum non absolutam reliquerit illam auctor, repentina abreptus morte. Mortuns est Horroccius, teste Wallisio, d. 3. 13. Jan. 1641, "sub actatis annum, quantum intelligo, vicesimum secundum", paucis tantum annis in astronomicis studiis consumtis, cum, eodem teste, ...c. annum 1633 animum ad haec studia videatur primum applicuisse", et prius soli Lansbergio, deficientibus aliorum astronomorum operibus, addictus, ab anno demum 1636 lectis Kepleri operibus totum se Keplero dedidit, et quasi iratus ob errores, quos Lansbergii astronomia ipsi imperito obtruserat, co majore amore Keplerum amplectebatur et furibundus juvenili ardore Lansbergium refutandum sibi proposuit. — Missis boc loco reliquis Horroccii disquisitionibus quae supersunt astronomicis, quas omnes, ut nobis videtur, in unum corpus redactas meliorem in formam politioremque transferendas censuerat, ut expletum et perfectum mundi systema innixum Kepleri hypothesibus proponeret, si sic fuisset in fatis, hoc tantum notamus, nomen juvenis excellentissimi astronomis inclaruisse jam ante edita haec opera posthuma. Hevelius scilicet, astronomus ille Dantiscanus, edidit anno 1662 Gedani libellum inscriptum "Mercurius in Sole visus", cui annexuit: "Venus in Sole visa anno 1639 (d. 24. Nov. st. v.), seu tractatus astronomicus de nobilissima Veneris et Solis conjunctione, Liverpoliae a Jer. Horroxio, nunc primum edita notisque illustrata." Wallisins in praefatione de hoc libello haec affert: "quantus vir fuerat (quantus futurus esset, ni praematura morte juvenis obiisset) Horroccius noster, testatur elegans illud et aureum opus, de Venere, quod anno sequente (1640) ab ipso conscriptum, delituit (proh dolor!) nimium diu, donec propitia tandem doctissimi celeberrimique Hevelii manu obstetricante post annos 22 aliena procul terra feliciter in lucem prodiit, quo Venus Angla Mercurio Dantiscano se comitem sociaret. -

Jam ad Keplerum redeuntes haec monemus.

J. Hevelius, quem omnia Kepleri manuscripta obtinuisse diximus (Vol. I. pag. 58.) haec de Hipparcho Kepleri ad academiam Londinensem perscripsit: "inter manuscripta illa eminet Hipparchus, quamquam non sit, ut par est, digestus, qui tamen posset a quopiam harum rerum perito et otio abundante facile in ordinem redigi et absolvi." Talis "peritus et otio abundans" nemo huc usque erstitit, ne sociis quidem academiae Petropolitanae, quibus mandatum fuit hoc munus ab imperatrice Russica Catharina II, tantum otii fuit, ut mandatum hoc curarent. Hanschius quidem, Hevelio mortuo nactus illa manuscripta, omnia typis mandare sibi proposuerat, nil vero praeter Epistolas imprimendum curavit, quamquam peculiari scripto astronomos de edendo Hipparcho certiores fecit. (Mich. Gottl. Hansch, Collegii B. Mariae Virginis in Academia Lipsiensi Collegiati, de opere Kepleriano ανεκσοτφ, cui delectantur, Epistola. Lips. 1709.)

Ex hac "Epistola" haec apponenda censemus: Quemadmodum divina et philosophe dignissima occupatio est (astronomia), ita etiam praestantissima quaevis omnium temporum ingenia exercuit. Quae inter elapso demum seculo divinum etiam Kepleri illuxit ingenium. quod prout praeclaris ingeniis familiare esse recte sentit Philo, $\pi o \lambda \lambda a$ 'zasvo $\pi o \mu \epsilon s$ $\tilde{t}\pi_i\sigma_i\eta_\mu\eta_\nu$, relictis Ptolemaicorum tricis methodo multo simpliciori atque evidentiori eclipses Terrae, quas Solares dicimus, determinare docuit, fundamenti loco assumto systemate planetarum Coperniceo. Methodum ipsam exposuit in Epitome Astr. Cop. eo redeuntem, ut ocnlo spectatoris in Luna supposito, calculus eclipseos Terrestris non secus instituatur, ac cum e Terra Lunarem adspicimus. Cum enim ante Keplerum tenebrae eclipsium Solarium non aliter, ac si veri essent lucis defectus in Sole, tractarentur, calculusque maximo cum taedio longissimoque numerorum apparatu pro larva Lunari unicuique Telluris loco competente peculiariter suscipiendus esset, nulla interim ratione inita, quam tenebrae istae faciem universae Terrarum superficiei inducturae essent, et quo tempore quantaque magnitudine spectandam se praebitura esset eclipsis Solaris cuilibet Telluris tractui: Keplerus contra nullam sibi causam esse arbitratus, cur, Luna Terraque mutuas in subtrahendis Solis radiis sibi vices reddentibus, umbrae penumbraeque (quam primus ipse in astronomiam introduxit) Lunari non sundem effectum in zoviluniis tribueret, quam umbrae Terrenae in pleniluniis communis hactenus astronomorum consensus assignasset, hinc utrobique similibus uti principiis non dubitavis, cum oppido manifestum sit, quemadmodum in pleniluniis non Sol, sed Luna re ipsa Solis lumine privatur Terrae interpositu, ita et vicissim Terram in noviluniis ab umbra penumbrave Lunari obduci, neutiquam vero Solem lumen suum amittere, adeoque, quod inde consequitar. nec ipsos defectus luminis Solaris in Terra ex Lunae interventu ortos a defectibus ejusdem in Luna a Terrae interpositu productis differre. Quae cum ita sint, assumtis Lunarium eclipsium principiis simili prorsus modo Terrenas tractavit, et ante omnia centro Telluris in Lunae centrum mutato quantitates semidiametrorum disci Terreni, nec non umbrae et pen-

Procemium.

umbrae Lunaris, quarum illa totalium, haec partialium Telluris eclipsium causa existit, determinavit. Ex quorum postea comparatione, advocatis in subsidium ipsis luminarium motibus temporamque currentium momentis, praecipuas eclipsium Terrenarum phases, magnitudines, terminos, loca et durationes ad quodvis novilunium investigare docuit. Cum vero maximum in eo situm esset momentum, ut semidiametrorum disci Terreni, umbrae penumbraeque Lunaris, tanquam primariorum Terrenae eclipseos elementorum determinatae quantitates geometricis demonstrationibus fulcirentur, id ipsum ex diagrammate Hipparcheo praestare aggressus est Keplerus noster in opere, cui nomen fecit Hipparcho, ubi plus fere admirationis meretur ingenium humanum ad cognitionem operum Dei viam moliens, quam opera ipsa naturae per se bruta. Ipsa vero calculi capita etiam exhibet Ricciolus in Astronomia reformata et in Almagesto suo, in quo simul memorati modo diagrammatis partes aliquas demonstrare annititur. Quemadmodum etiam Keplerianis ulterius excolendis tempus aliquod impendere haud gravati sunt Bullialdus, Paganus, Wardus, Horroccius aliique his recentiores, quorum meditata hic exponere nec spatii nec instituti ratio permittit. Redeo potius ad ipsum Kepleri opus posthumum, in quo se laudati diagrammatis demonstrationem daturum esse jam in Epitome sua Astronomiae Copernicanae promiserat. Sed temporum suorum injuria praepeditus auctor foetum huncce suum in lucem edere non potuit, utut Imp. Matthiae gloriosae mem. petentibus Consiliariis exhibitum. Hipparchus in duas partes dividitur, quarum prior fundamenta optica corum, quae ad doctrinam eclipticam accuratius examinandam pertinent, demonstrat, et generalibus opticae theorematibus praemissis inter alia agit de figura radii et umbrae, de dimensione refractionum, de parallaxibus, de dispersione lucis siderum in Lunam et Terram, in specie lucis Solaris in Lunam, Lunae in Terram, et Terrae in Lunam; posterior ipsam eclipsium doctrinam exhibet, et Ptolemaicae methodi pericula, dispendia et errores estendit, sciametriae theoremata demonstrat, multaque notatu digna proponit de diametris Solis et Lunae observandis, de motu Lunae diurno et horario in conjunctionibus et oppositionibus inveniendo, de motu et angulo latitudinis una cum Lunae parallaxi nova methodo inquirendis, itemque de observatione hujus anguli citra maximae latitudinis considerationem, de umbrae semidiametro varie inquirenda, de Solis parallaxi, altitudine et proportione trium illorum corporum varie detegendis, de commodis denique inde in geographiam et in reliquas scientias redundantibus; ut multarum eclipsium tam Solarium quam Lunarium juxta Keplerianam hypothesin examen adjectum taceam. Sed hic liber, immortalitate sane dignissimus, cujus tibi, lector astrophile, argumentum breviter exposui, affectus quidem fuit a Keplero nostro et Imperatori Matthiae gloriosiasimae memoriae oblatus, at ob injurias illorum temporum perfici et publicae luci exponi non potuit. Ut tamen ne ignorares, hog celeberrimi auctoris monimentum adhuc superesse et in casses meos incidisse, te hisce certiorem facere non intempestivum duxi, in me simul recipieus, nihil intermissurum me esse, quod ad editionem praestantissimi hujus operis maturandam ullo modo pertinere videbitur, divina fretus providentia, quae subsidiis ad studiorum mathematicorum continuationem quam maxime necessariis labores meos sublevabit, quorum hic per omnem vitam finis erit unicus, ut naturae arcana magis magisque detegantur, atque hac ratione, qua nulla cogitari potest melior, humani generis salus promoveatur. In genere enim judicio illius Verulamii (lib. II. de augm. scient.) pro certo habendum, magnos in rebus naturae abditis eruendis et reserandis progressus vix fieri posse, nisi ad experimenta Vulcani et Daedali vel cujuscunque alterius generis sumtus abunde suppeditentur. Tu vero, mi astrophile, conatibus meis, quos in nobilissimae scientiae incrementum et ornamentum tendere hine facile intelligis, fave et rem tuam ex voto age. Scribebam Lipsiae pridie Non. Dec. 1708.

Fragmentum operis inscripti H i p p a r c h u s eadem qua occurrit in codice forma typis mandavimus, in proposito susceptoque consilio permanentes, immutata Kepleri opera hac editione colligendi; et quamvis aegre ferendum sit, quod Keplerus inchoatum non absolvit opus, absolvendum illud alii permittendum esse censemus, qui, ut Hevelius dicit, rerum peritus sit et otio abundet; sparsas annotationes, quae ad rem pertinent, nos sub finem subjungemus.

Quantum temporis Keplerus, semper reversus ad propositum suum, consumserit in conscribendo hoc opere, cum ex inscriptione apparet ("Pragae inchoata a multis annis, Lincii vero continuata, praesertim anno 1616") tum e singulis foliis in vol I. et II. manuscriptorum, adacriptis annis diversissimis.

Quae ipse Keplerus in libris, quos ipse publici juris fecit nec non in literis privatis, quas ad amicos dedit, de edendo hoc opere scripsit, sequentia exhibent. Primum occurrit mentio Hipparchi in "Peroratione" Opticae (Vol. II. pag. 398) h. e. anno 1603, et concludere licet ex his verbis, Keplerum codem tempore, quo Opticam conscripsit, initium fecisse Hipparchi. In Optica (II. 362) librum hunc dicit "partem alteram, quae demonstrationes continet restitutionum Lunarium ex eclipsibus." Perorationem illam Kepleri in Opticis attingens haec dedit Reinhardus Zieglerus Moguntiacus Id. Jan. 1606 Keplero: In Opticis certe tuis Paralipomenis ea usus es ingenii felicitate, ut illecti tam perspicua luce praemissae facis Hipparchum tuum quam avidissime exspectemus, quo nomine hortor te etiam atque etiam, ne patiaris exspectando mathematicorum ex orbe Christiano responsa de Solari hoc deliquio Hipparchum illum tuum diutius publico carere. (Epistolam hic Kepleri Zieglerus dicit eam, quam anno 1605 publici juris fecit inscriptam: Epistola ad rerum coelestium amatores de Solis deliquio d. 12. Oct. 1605.)

Quibus Keplerus (d. 14. Feb. 1606) hace brevi respondit: Hipparohum meum aequum est quam limatissimum prodire, ne honestissimum titulum paulo callidius et arrogantius susceptum foedet.

Anno 1608 (d. 19. Jul.) Herm. Bulderus, "vetus Kepleri amicus" (comp. Astrologiae Fund. Vol. I, p. 420) haet Keplero dedit Treboniis: Exspectamus omnes motum Lunae propter eclipses restauratum, quem tumet ipse a Tychone nondum ad perfectionem adductum judicas. Fac, ne nos diu detineas. Pestis et tumultus pracedentes procul dubio multum te retardarunt ; aëre hoc sereno fac, ne ferieris. - Annis 1609, 10 et 12 adhuc intento studio incubuisse Keplerum ad perficiendum edendumque Hipparchum, testantur haec ejus dicta: in Comment. de Motu Martis (1609):... ,ut in Hipparcho meo probabo;" in "Dissert. cum nuncio sid.: (1610): opto mihi tuum instrumentum in eclipseos Lunaris contemplatione; sperarem ex co praestantissima praesidia ad expoliendum, est ubi et reformandum totum Hipparchum meum. In epistola ad 8. Marium data (10. Nov. 1612) legimus: Ex meo Hipparcho apparebit, doctrinam demonstrandi proportiones corporum Solis, Lunae et Terrae &c. incertissimam esse." Eodem autem tempore (18. Mart. 1612) in literis ad Remum datis minus promtus videtur ad edendum Hipparchum, scribens: Sed haec est materia Hipparchi mei, quem spero me elaboraturum, ubi me ad quietem composuero Deo vitam largiente. Sic in praefatione ad libellum chronologicum, inscriptum Bericht, dass unser Herr &c." (ed. a 1613): "die Astronomia, mein Hipparchus . . . wissen disen disceptationibus chronicis schlechten Danck, denn sie hiedurch abermahl vmb ein par Monat gegen meinen Todt verschoben worden."

Posthac vero, (annis 1617-1621) loquitur Keplerus iterum de Hipparcho, quasi sit brevi proditurus, vel quasi sit in omnium manibus. In praefatione ad Ephem. ad annum 1617 N. 19. dicit: . . . vis demonstrationis, quam in Hipparcho meo ejusque parte illa, quae Sciametria dicitur, sum complexus. In Epitome Astronomiae legimus: (p. 482) longo demonstrationis ambitu, quem vide in meo Hipparcho. (p. 874 et 875): Demonstro in Hipparcho meo, et: demonstratio hujus et adhaerentium est in Hipparcho meo. R em o (1619) scripst: Memini inter Sciametrica mea, in libro cui Hipparcho nomen dedi, problemata varia esse de omnibus membris observatae alicujus eclipsis. . . . Memini quantum temporis quam frustra insumserim. Problemata quidem pulcherrima sunt et digna, quae non praetermittantur, opus ipsum impervium.

Haec denique legimus annis 1624 et 1627 de Hipparcho non edito. K rūgere scripsit Keplerus: ... Hipparchus ante annos 20 promissus (est). At quia sunt absolutae Rudolphinae, nunc aliter videtur, scilicet Hipparchum hunc non seorsim edendum, sed partem constituendum libri, qui respondeat ry Meyady Surražsu Ptolemaei, quod opus post tabulas edetur, si Deus vitam et vires produxerit.

In libello inscripto: Terrentii Epistolium (1627. 1630) ad verba Terrentii: "Non dubito, prodiisse Kepleri Hipparchum," haec Keplerus respondit: Prodiit, si effectum respicias, in tabulis Rudolphi, praesertim in foliis de parallaxibus Solis et Lunae, semidiametrisque umbrae et praeceptis eas formandi: non prodiit, si demonstrationes desideres. Sed proxima erit editio, si vitam Deus concesserit. Praecipuam partem occupabit Sciametria, quae constat demonstratio-

nibus geometricis jucundissimis, quibus quantitas diametri umbrae cum parallaxibus Solis et Lunae et semidiametro Solis arctius connectitur; quod hactenus fuit neglectum ab artificibus. —

Finem facientes huic introductioni, antequam ipsum lectoribus proponimus fragmentum, prioribus subjungimus partem epistolae Kepleri ad Vincentium Blanchium (alias: Comes Alerani; comp. Hansch. p 600. 603) datae, ut ipsius verba testimonio sint eorum, quae supra diximus de Kepleri studiis et lucubrationibus.

Cujus (cunctationis in operibus, quae sub manibus habebat) excusationes multae sont et variae. Primum calamitates aulae sub Rudolpho, turbatum statum regni et mala domestica, quibus per aliquot annos sum impeditus (scripsit haec Keplerus a. 1619), non teneor praestare. Quorum externorum praecipuum hoc est quod, cum adscriptum mihi sit salarium sane quam honestum a Caesare, id tamen non solvitur; nisi a communitate hujus provinciae Ordinum modicum acciperem, ne domum quidem sustentare possem, sed dudum cum dedecore principum extraneam opem implorassem. Ex hoc sequitur, quod raro amanuensem alo et calculatorem. Est mihi jam sedulus calculator et totius matheseos capax, Janus Gringalletus Sabaudus, qui opus Ephemeridum in annos multos calculare posset in meis acdibus: at cum ei non satisfacere possim desertus a Caesareanis, de diuturna ejus praesentia certus nequaquam sum. Rursum igitur in me solum recident omnia; neque sane vel amicis scribendis epistolis interdum sufficio, nedum ad calculationes. Sunt et aliquae morarum causae in meo ingenio: "non omnia possumus omnes." Neque ego ordinem tenere possum: extemporaneus sum

ego, confusus, et si quid ordinatum a me proficiscitur, decies id repetitum est. Interdum error calculi ex properatione commissus longissimo tempore me remoratur. Possem sane infinita effundere; nam etsi deest lectio, superest imaginatio: at non placeo mihi in confusaneis talibus: taedet pigetque; eoque vel abjicio vel reservo, donec revideam, id est donec nova scribam, quod plerumque fit. Peto etiam a vobis amicis, ut ne me totum damnetis in pistrinum calculationum mathematicarum: tempus mihi ad speculationes philosophicas indulgeatis, delicias meas unicas. Irasci mihi nonnullos ob dilatas tabulas Rudolphi, non dissimulavi in prologo libri V. Harmonicorum, dixi scilicet, me tempore abuti ad speculationes harmonicas. Suum cuique pulchrum: alii tabulae et materia genesium, mihi flos astronomiae, politia motuum et ornatus placent. Quid quod ipsae Tabulae causas serunt morarum: nihil de difficultate dicam; ipsa forma calculi jam perfecta tota renovanda est secundum logarithmos, ut superveniens alius principiis meis assumtis commodiorem illum modum novis tabulis exprimat. Denique si perfectae Tabulae essent, possent tamen impedire Braheani editionem, quia, cum observationes Brahei ex ipsorum habeam concessu, vicissim illis obstrictus sum.

Inscripsit Kepleres fasciculum, qui continet Hipparchum similiaque: "Restitutionum Lunarium adversaria", ipsum autem opusculum inscriptionem prae se fert:

Hipparekus.

metrum Solis apparentem, relinquitur semidiameter umbrae Terrae, quanta ea semidiameter est in illo loco, quam Luna monstrat.

Theorema IV.

Si ab aggregato semidiametrorum Solis et umbrae Terrae auferatur parallaxis Lunae a Sole quanta potest esse in horizonte, relinquitur duplum parallaxeos Solis.

Nam per th. III. parallaxis Lunae tota et parallaxis Solis horizontales junctae aequant junctas semidiametros Solis et umbrae Terrae in puncto, quod Luna monstrat suo transitu, apparentes. Sed tota Lunae parallaxis diminuta parallaxi Solis appellatur parallaxis Lunae a Sole. Ergo parallaxis Solis bis, et parallaxis Lunae a Sole aequant semidiametros dictas. Ablata igitur parallaxi Lunae a Sole ab aggregato semidiametrorum Solis et umbrae relinquitur duplum parallaxeos Solis; q. e. d.

Theorema V.

Quanta est differentia semimucronum umbrae diversis Solis elongationibus a Terrae formatorum, tanta est etiam in unoquolibet loco transitus Lunae differentia semidiametrorum umbrae Terrae in horizontem exporrectae, affectionis tamen contrariae.

In schemate praemisso appropinquet Sol Terrae usque in K, sitque KL semidiameter aequalis ipsi AD eique parallela, ducaturque nova linea contingens utrumque corpus in E et L, continueturque usque dum secet arem umbrae Telluris in H, ut EHB sit semimucro novus. Secabitur igitur FG linea per EH lineam; secet in I. Quia igitur ECB semimucro pristinus et EHB novus, differentia utriusque est HEC, h. e. IEF. At IEF est differentia angulorum GEF apparentis semidiametri pristinae et GEI novae, in eodem Lunae transitu GF. Aequales igitur differentiae, q. e. d.

Dico autem "in horizontem exporrectae," quia si Luua deficiens appropinquet coeli medio, tunc una semidiametro Terrae fit propior visui, quam centro Terrae, tunc igitur theorema non limitatum non exacte verum esset.

Theorema VI.

Si auferas a differentia semidiametrorum Solis apparentium ex diversis ejus elongationibus differentiolam parallaxium Solis horizontalium in iisdem elongationibus, relinquitur differentia semidiametrorum umbrae apparentium, in uno et eodem loco transitus Lunae, respondentium diversis illis Solis elongationibus.

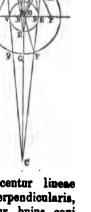
Nam per th. V. differentia semimucronum est differentia semidiametrorum umbrae Terrae in eodem loco transitus Lunae. Sed per coroll. ad th. I. differentia semimucronum est minor quam differentia semidiametrorum Solis differentiola parallaxium Solis horizontalium. Ergo deminuta haec differentiola a differentia semidiametrorum Solis relinquit differentiam semidiametrorum umbrae apparentium, h. e. ejus angulorum.

Corollarium. Cum differentiola parallaxium Solis illa, quae oriur ex Solis eccentricitate, sit pene insensibilis, uti possumus differentia semidiametrorum Solis pro differentia diametrorum umbrae singularum in singula locis transitus Lunae; ut quantum augetur Solis diameter, tantum diminuatur diameter umbrae fere.

Theorema VII.

Proposita certa quantitate anguli apparentis semidiametri Solis et suppositis diversis sub eodem angulo elongationibus ejusdem a Terra, quantum minuitur parallaxis Solis in suppositione majoris elongationis, tantundem minuitur et semidia-

meter umbrae in quolibet transitu Lunae per eam.


Sit enim in schemate nostro SBD vel TBX unus et idem angulus Solis; et supponatur Solem a Terra distare vel brevius per BA, vel longius per BO, et ducantur contingentes SVC, TVP. Igitur in \triangle STV exterior BSV acqualis est junctis STV et SVT, id est CVP. Sed BSV est Darallaxis Solis propioris suppositi; et BTV est parallaxis Solis remotioris suppositi, mavente eodem apparentiae angulo in centro B. Denique PVC est differentia semidiametrorum umbrae in eodem transitu Lunae, quae sit FGQ (per th. V.) quia TV producta fit interior (VP), secans GQ in R, et quia TPO est semimucro umbrae a Sole ut remotiore. SCA vero semimucro a Sole ut propiore. Ergo quanto minor est VTB parallaxis, quam VSB, tanto etiam minor est RBG angulus semidiametri umbrae a Sole ut remotiore, quam QBG ejusdem a Sole ut propiore. Q. E. D.

Corollarium. Quanto minores supposueris parallaxes Solis, tanto minus peccatur, si pro differentia semidiametrorum umbrae in uno certo loco transitus Luuae adhibeatur differentia semidiametrorum Solis apparentium illa, quae oritur ex Solis eccentricitate 1). Fig. 2.

Definitio I. Luminis vocabulo utemur technice pro coni umbram Terrae formantis parte illa, quae est inter Solem et Terram, tota luminosa (sicut umbra Terrae est ejusdem coni pars reliqua tenebrosa, ultra Terram in mucronem desinens). Nam si abit Luna tota ab illo spatio, totum Terrae hemisphaerium Soli obversum toto Solis lumine fruitur. (Horroccius dicit "irradiationem," quod Keplero "lumen" dicitur.) In schemate praesenti sint A, B centra Solis et Terrae, tangantque illorum corpora duae rectae SV et DE in plano per centra ducto, quae continuatae concurrant inter se et cum axe in C, repraesentantes conum. Ergo coni hujus truncus SVED lumen dicatur, sicut ejusdem mucro VCE est umbra.

Definitio II. Penumbra Lunae est omne illud spatium, in quo particula aliqua de Sole a Luna tegitur. Sit I Lunae centrum, umbra Lunae formetur lineis tangentibus corpora Solis et Lunae SK, DL, concurrentibus in R. In spatio igitur KRL conico nulla particula Solis cerni potest, itaque conus hic est umbra Ducantur jam aliae lineae per axem um-Lnnae. brae Lunae AR, tangentes corpora Solis et Lunae in punctis invicem oppositis; ut SXL, DXK, continua-

tae in P, M, et fiat XMXP superficies conica, et secentur lineae omnes plano circuli Terrae B maximi, in quem axis AB perpendicularis. SR. DR in N, O, at XK et XL in M, P. Truncus igitur hujus coni KMPL in regione intima quidem KNOL est umbra Lunae, in regione reliqua KNM, LOP circulariter circumjecta est penumbra, quia in

Egenten.

penetie M. 2 manages control per Re. Restaura 50 militate rates reter pater. Lands some nus mages approximent of militate and the in Soc legiter a Land. 1980 weather from al contrainer per N 1 pateria classe, so rates 50 reg. manuf.

245 1 7.4 III. 2 6416 Terrae on armine proper manual liminelsone Telara, and antere Terrae propertientation score maps Terra content. Decen decime, and forgunal aspecticus. Telaras illumination propertant once a planet input armit.

Theirens TT

Алдала адасета е са селота Тетте села цажето била е и лася семаната Славе сел ведах в развала Славе баталана. ез селанота, кнасте Тетак разок в

In existence 2 at some reasons have per inner ET. If emifemeter manue. Justice E3. ent E1E mignue a r-nov fame & lipter at _ EC3 at E21 enterner = 381 - BCE, microscies et qpoints; set 260, 1, 4. BEE at paralaxe increments punct II at Lange at at at BCE at semanary matrice. Q. E. D

2:11.434 II

Datis paralian and itminarium of someic amotre Solis appente

Ad paralante Lanae invitationen anne semiel. Suis apprenten, a comma aufer paralante Suis: vei pari men est, conjue a non same paralante Lanae a Sue et semiciameteux Suis, prosit utimpe semilimeter innime apparent. (Vid. prost. L.

Танина П.

Diplicata Linze parallanis in certa distantia Linne a Terra acçuat apparentes in eadem distantia a Terra semidiametres ambrae Terrae et liminis.

Nan semisiameter humas encoit paralaxie Lance semismeras unles. (a., VIIL) At semisiameter unless minor est Lance parallati coles semismorose unless: junctas lartar semisiametri huminis et unless acquit tans paralattes Lance, encessa compensante defectuat acquiten. Ergo la Brevins ex schemate: IBH superst BHE angulo BCE; can BHE, BE GBF superstar BFE angulo BCE; sint acquite.

Theorema X

Angulus apparentis semidiametri Lunae ex centro Terrae est aequalis junctis semidiametris. Solis ex centro Terrae visi et umbrae Lunae apud centrum Terrae velut ex Luna visae.

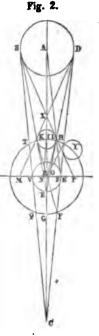
In schemate connectantur puncta L, B. Erro in _ LRB enterint LEI est acqualis interioribus et oppositis BLR. BRL. Sed LBI est semificameter Lanze ex centro Terrae apparens, et BLR, id est BLO, et semid. underse constituta ad centrum Terrae B et apparens ex L puncto Lanze: designe BRL, h. e. ARD est semidiameter Soins ex puncto R apparens, quod semper est praxime B centrum Terrae. Ergo de. q. e. d.

Corollariam. Some semidiametrorum Solis et Linne acquat sulmen ex diametro Solis et semidiametro unbrae Lunne.

584

Problema IV.

Datis semidiametris luminarium apparentibus, invenire semidiametrum umbrae Lunae.


Ablata semidiametro Solis a semidiametro Lunae, si major, relinquitur semidiameter umbrae Lunae apparens tanquam ex Luna.

Theorema XI.

Semidiameter penumbrae Lunae cum sua umbra in medio componitur ex semidiametris Solis et Lunae, et ex parallaxis Solis horizontalis tanta portione, quanta est portio diametri Solis apparentis de parallaxi Lunae.

In schemate connexis K cum B, I cum N, quia MP est diameter

penumbrae (def. II.), ergo MIB vel MKB est ejus semidiametri apparentiae angulus tanquam ex Luna prospicienti. Habet vero MKB duas partes MKN et NKB, vel NIB, quarum ista quidem est semidiameter umbrae Lunae constituta in disco Terrae, apparens vero ex Luna ut in priori, illa vero, seu MKN angulus aequat angulum SKD apparentiae diametri Solis in puncto Lunae K. Et est ut DM ad DK vel SN ad SK, sic ex adverso angulus SKD ad angulum SBD apparentis diametri Solis ex centro B. Nam in tanta exilitate horum angulorum nihil obstat nobis prop. 8. Opticorum Euclidis. Est vero etiam ut SN ad KN sic e contrario parallaxis Lunae ad parallaxin Solis. Ergo etiam, ut SN ad differentiam SN et KN, sc. ad SK, sic parallaxis) ad differentiam parallaxis) et parallaxis (), quae est parallaxis) a (). Ut igitur parallaxis) ad parallaxin) a (), sic SKD ad SBD et vicissim: ut parallaxis) a (•) ad parallaxin) totam, sic SBD diameter (•) apparens in centro Terrae ad SKD seu MKN partem penumbrae alteram. Sed excessus parallaxis) totalis super) a () est circiter sexagesima, ergo etiam excessus MKN super SKD est pars circiter sexagesima ac proinde circiter 30" seu semissis parallaxeos Solis. Utroque igitar elemento MKN et NKB in unum MKB compositis.

habebimus diametrum (), semidiametrum umbrae) et semissem parallaxeos Solis circiter. Sed per coroll. th. X. diameter () et semidiameter umbrae) acquant semidiametros () et) junctas. Ergo semidiameter penumbrae acquat et semissem parallaxeos) et semidiametros () et) junctim.

Problema V.

Datis semidiametris luminarium, definire semidiametrum penumbrae Lunae.

Conjiciantur in unam summam semidiametri luminarium et parallaxeos Solis horizontalis circiter dimidium, ita fiet semidiameter penumbrae.

Problema VI.

Datis parallaxibus horizontalibus luminarium eorumque semidiametris apparentibus, invenire summam semidiametrorum disci Terrae et penumbrae Lupae,

Hipparchas.

Conjice in unam summam semidiametros luminarium, parallaxin Lunae horizontalem et semissem de parallaxi Solis horizontalis, conflabitur summa semidiametrorum disci et penumbrae.

Theorema XII.

Parallaxis Lunae horizontalis in quolibet puncto distantiae ejus a Terra aequalis est semidiametro disci Terrae apparenti.

Nam quia proportionem quaerimus semidiametrorum disci Terrae et penumbrae, angulos etiam, quibus utraque apparet, eodem loco constitui oportet. Atqui penumbrae et umbrae angulos necessarie constituimus in Luna, quippe a qua dilatatur penumbra (MKN). Quare etiam semidiameter disci Terrae subtendere debet angulum in Luna. At quem in Luna subtendit semidiameter Terrae angulum, is est parallaxeos Lunae borizontalis.

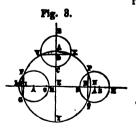
Theorema XIII.

Lineae motus longitudinis) a () vel latitudinis ab ecliptica, in planum disci Terrae projectae, sunt sub angulis in Luna proportionem eam habentibus ad angulos, quibus ipsae videntur

ex Terra, quae est summa parallaxeon Lunae et Solis ad parallaxin Lunae solam.

In schemate 2. sit I punctum orbitae Lunae subjectum eclipticae, LI arcus latitudinis, ducatur AL et continuetur in Z punctum in plano disci. Est igitur ut AI ad IL, sic AB ad BZ. Sed AB est ad AI ut parallaxis) et () ad parallaxin Lunae solitariam, q. e. d.

Problema VII.


Horarium rite ampliare.

Dividatur parallaxis) per parallaxin Ô, quotiens dividat arcum latitudinis vel horarium Lunae et bic quotiens adjiciatur toti.

Theorema XIV.

Duobus circulis inter se inaequalibus se mutuo secantibus, si recta per centra utriusque ducta et continuata ad circumferentias utrinque secta fuerit per rectam sectionum circumferentiarum: siquidem centrum minoris fuerit in circumferentia majoris, quadratum semidiametri minoris aequabit rectangulum sub tota diametro majori et ejus segmento minori per

im sub tota diametro majori et ejus segmento minor

rectam sectionum facto.

Sit circulus major AKN, quem secet minor, centro A in circumferentia majoris stante: sectiones sint V, X, et per eas ducatur recta, secans ductam per centra E, A, et continuatam ad B, Y circumferentias: sectio sit D. Dico quadratum semidiametri minoris AB aequari rectangulo sob .YA et AD. — Connectatur n. centrum A cum X sectione. Quia igitur ipsi AB aequalis est AX, et DX perpendicularis ad AY, erit ut DA ad AX

sie AX ad AY. In proportionalibus vero continue quadratum mediae acquat rectangulum sub extremis, q. e. d.

Hipparobus.

Corollarium. Si dixero, rectangulum sub segmentis diametri minoris a circumferentia majoris factis, scil. BA, AC, aequari rectangulo sub segmento minori diametri majoris a linea VX sectionum facto, et sub diametri majoris AY et differentiae partium BA, AC vel summa vel differentia, res eodem redibit. Nam rectangulum BA, AC est idem, quod quadratum BA. Sic differentia segmentorum BA, AC est nihil. Nihil vero subtractum ab AY relinquit AY, nihil additum ad AY facit AY.

Theorema XV.

Ceteris manentibus ut prius, si centrum minoris fuerit intra circumferentiam majoris, rectangulum sub partibus diametri minoris, quas disseparat circumferentia major, aequale est rectangulo sub segmento diametri majoris minori, quod linea per sectiones facit, et sub differentia inter diametrum majorem differentiamque dictarum minoris partium.

Stet centrum minoris A intra circumferentiam majoris, et sit linea sectionum FG, secans ductam per E, A in puncto I, in qua EA continuata sint puncta circumferentiae majoris N, K, minoris L, M, sintque K. M interiora. Et ipsi LK ex M aequalis versus A centrum extendatur MO, ut KO sit differentia partium LK, KM, et ON differentia ipsarum NK, KO. Dico rectangulum sub LK, KM acquari rectangulo sub KI, ON. Ut hoc sine magna perplexitate demonstretur, considera, quod IF sit communis perpendicularis ex puncto diametri I in utramque circumferentiam F. Quadratum igitur IF aequale est rectangulo sub Kl, IN segmentis diametri majoris, aequale et rectangulo sub LI, IM segmentis diametri minoris. Ac proinde rectangula haec utrobique sunt inter se aequalia. Verum quod sub LI, IM majus est eo, quod sub LK, IM quantitate ejus, quod sub KI, IM. Commune auferatur KI, IM. Quod ergo sub LK, IM aequale erit ei, quod sub KI, MN. Rursum autem, quod sub LK, IM minus est eo, quod propositio habet, sub LK, KM, quantitate ejus, quod sub LK, KI. Et similiter, quod sub KI, MN minus est eo, quod propositio habet sub KI, ON, quantitate ejus, quod sub KI, OM, h. e. LK ex constructione. Aequalia igitar aequali aliquo minora sunt iis quae proposita sunt, quodque suo respondenti. Igitur et proposita inter se sunt aequalia.²)

Theorema XVI.

Rursum ceteris manentibus ut theor. XIV. si centrum minoris fuerit extra circumferentiam majoris: rectangulum sub partibus diametri minoris, quas disseparat circumferentia major, aequale est rectangulo sub segmento diametri majoris minori, quod facit linea per sectiones et sub composita ex diametro majore et differentia dictarum minoris partium.

Stet centrum minoris A extra circumferentiam majoris, et sit linea sectionum PQ, secans ductam per E, A in puncto R, sintque in hac per centra ducta puncta circumferentiae majoris N, K ut prius, minoris vero H, S, sed N, S interiora: et ipsi SN aequalis ab H extendatur HZ versus A, nt ZN sit differentia partium HN, NS, et ZK summa ipsarum KN, NZ. Dico rectangulum sub partibus HN, NS aequale esse rectangulo sub RN, KZ. Rarsum enim, ut prius mediante communi perpendiculari RP in atroque circulo demonstratur, aequalia rectangula, quod sub SR, RH, et quod sub

Hipperchas.

NR, RK: sed quod sub SR, RH, minus est eo quod sub SN, RH, quantitate rectanguli quod sub NR, RH. Commune accedat quod sub NR, RH. Quod ergo sub SN, RH, aequale erit ei, quod sub NB et composita ex RK, RH, h. e. KH. Rursum autem, quod sub SN, RH, majus est eo, quod sub SN, NH in propositione nominato, quantitate SN, NR: et similiter, quod sub NR, KH, majus est eo, quod sub NR, KZ in propositione nominato, quantitate NR, ZH, h. e. SN ex constructione. Aequalia igitur aequali aliquo majora sunt, quodque suo respondenti in propositione nominato. Igitur et nominata inter se sunt aequalia.⁵)

Problema VIII.

Datis semidiametris luminaris et umbrae, et quantitate arcus orae luminaris vel lucidae vel obscuratae, inquirere partes diametri vel luminaris vel umbrae constitutas a linea per sectiones, quarum quae minor apotome vel sagitta luminaris vel umbrae dici potest.

Data enim diametro circuli et arcu, datur et ejus arcus sagitta in eadem dimensione, quae multiplicata in residuum diametri luminaris constituit quadratum semissis de linea sectionum. Id vero quadratum ablatum a quadrato semidiametri umbrae, relinquit quadratum ejus, quod post sagittam ablatam est residuum usque ad centrum umbrae. Quare radix a semidiametro umbrae ablata, ostendit sagittam umbrae. Aliter: Data semidiametro luminaris et dimidio arcus deficientis vel lucidi, datur ejus sinus in eadem dimensione, in qua utraque semidiameter. Dato vero sinu in dimensione semidiametri, datur etiam sinus complementi, qui ablatus a semidiametro constituit sagittam.

Problema IX.

Datis semidiametris disci Terrae et penumbrae et latitudine menisci de penumbra extra discum porrecti, inquirere partes diametri penumbrae, factas a recta per sectiones.

Multiplicetur latitudo menisci in reșiduum diametri penumbrae, summa dividatur per diametrum disci, diminutam duplo ejus differentiae, quae est inter latitudinem menisci et semidiametrum penumbrae majorem: vel per diametrum disci auctam duplo ejus differentiae, quae est inter latitudinem menisci et semidiametrum penumbrae minorem. (Si meniscus est minori latitudine quam semidiameter penumbrae, duplum hujus defectus aufer a diametro disci; sin major, duplum excessus adde diametro disci; ita habes divisorem. Vel duplica distantiam centrorum, habes divisorem).

Problema X.

Datis diametris luminaris et umbrae et quantitate defectus, inquirere partes diametri umbrae, constitutas a linea per sectiones.

Multiplica latitudinem partis lucidae in latitudinem partis tenebrosae, deinde et minorem a majore subtrahe, differentiam, si major est lucida, adde ad diametrum umbrae, sin major tenebrosa, aufer a diametro umbrae; et per hoc sive aggregatum sive residuum divide factum ex prima multiplicatione, prodit segmentum diametri umbrae constitutum a linea sectionis.

Problema XI.

Data quantitate diametri tam luminaris quam umbrae, et arca deficiente vel lucido, elicere quantitatem defectus.

Quaere sagittas tam luminaris quam umbrae; et quantisper quidem minus semicirculo luminaris est in umbra, adde sagittae umbrae sagittam luminaris, pro quantitate defectus; at si obscurata ora fuerit major semicirculo, tunc pro sagitta luminaris addendum est residuum diametri, semper sc. ea pars diametri, quae in umbra est. (Vel subtrahe sagittam umbrae a sagitta luminaris pro residua parte luminosa.) Ita conflabitur summa scrupulorum deficientium.

Typus operationis per Logarithmos. Sit residua ora lucida 81°

dimidiae 40° 30′ logar. 43155 Sit semidiameter) 17′ 1″ — 126000 sexagenartus logar. 169155 sexag.

Hie ostendit 11' 3", quod est dimidium lineae sectionum. Hinc sagittae per antilogarithmos. Semidiameter umbrae sit 48' 36" Antil. 9. 98 Lunae 17' 1" Antil. 1. 225 Semissis lineae sectionis 11' 3" Antil. 0. 515 0. 515 Ergo resid. semid. 47. 18 9. 465 Resid. sem. 12. 57 0. 710 Sagitta umbrae 1. 18 Resid. Jiam. 29. 58 quia plus semicirculo in defectu. 1. 18

31. 16, quantitas defectus. *)

Problema XII.

Data diametro luminaris deficientis, quantitate arcus orae vel lucidae vel tenebrosae, et quantitate defectus, indagare semidiametrum umbrae Terrae.

Problema est argutum magis, quam utile. Data enim semidiametro luminaris, erit ut sinus totus ad sinum arcus lucidi dimidiati (schem. 3) LF vel HP, sic haec semidiameter ad FI vel PR semissem lineae per sectiones. Deinde ut idem totus ad sagittam ejusdem arcus, sic semidiameter luminaris ad LI vel HR rectam, quae in lineam per sectiones terminatur. Aufer ab hac linea quantitatem defectus, expressam eadem mensura cum semidiametro luminaris, sc. LK vel HN, residuum erit sagitta umbrae KI vel NR. Ut vero haec ad priorem semissem lineae per sectiones, sc. ad FI vel PR, sic haec ad residuum de diametro umbrae sc. ad IN vel RK.

Theorema XVII.

Si duo circuli inaequales se mutuo secuerint, ducta recta per centra, eique ex centro minoris erecta perpendiculari, ex centro vero majoris ad perpendicularem applicata composita ex utriusque semidiametro, quadratum hujus perpendicularis aequabit rectangulum sub segmento diametri circuli minoris et sub com-

posita ex hoc et ex distantia centrorum duplicata. Sint duo circuli, major LEM (Fig 4), centro P, minor OFX centro A, secantes se mutuo in VX, et recta per centra PA ducatur, secans circumferentias, majorem in E, minorem ultra centrum in F et cis centrum in O, et ex A ipsi PF perpendicularis erigatur AB, ex P vero in BA terminetur recta composita ex PL, LB, aequalibus ipsis PE et AF junctis, quae sit BP. Dico quadratum ipsius BA aequale esse rectangulo sub EO et sub composita ex una EO et duabus AP. (BA³ = EO (EO + 2AP))

Kepleri Opera, III.

34

.*

. 1

. Mipparekus.

metrum Solis apparentem, relinquitur semidiameter umbrae Terrae, quanta ea semidiameter est in illo loco, quam Luna monstrat.

Theorema IV.

Si ab aggregato semidiametrorum Solis et umbrae Terrae auferatur parallaxis Lunae a Sole quanta potest esse in horizonte, relinquitur duplum parallaxeos Solis.

Nam per th. III. parallaxis Lunae tota et parallaxis Solis horizontales junctae aequant junctas semidiametros Solis et umbrae Terrae in puncto, quod Luna monstrat suo transitu, apparentes. Sed tota Lunae parallaxis diminuta parallaxi Solis appellatur parallaxis Lunae a Sole. Ergo parallaxis Solis bis, et parallaxis Lunae a Sole acquant semidiametros dictas. Ablata igitur parallaxi Lunae a Sole ab aggregato semidiametrorum Solis et umbrae relinquitur duplum parallaxeos Solis; q. e. d.

Theorema V.

Quanta est differentia semimucronum umbrae diversis Solis elongationibus a Terrae formatorum, tanta est etiam in unoquolibet loco transitus Lunae differentia semidiametrorum umbrae Terrae in horizontem exporrectae, affectionis tamen contrariae.

In schemate praemisso appropinquet Sol Terrae usque in K, sitque KL semidiameter aequalis ipsi AD eique parallela, ducaturque nova linea contingens utrumque corpus in E et L, continueturque usque dum secet axem umbrae Telluris in H, ut EHB sit semimucro novus. Secabitur igitur FG linea per EH lineam; secet in I. Quia igitur ECB semimucro pristinus et EHB novus, differentia utriusque est HEC, h. e. IEF. At IEF est differentia angulorum GEF apparentis semidiametri pristinae et GEI novae, in eodem Lunae transitu GF. Aequales igitur differentiae, q. e. d.

Dico antem "in horizontem exporrectae," quia si Luna deficiens appropinquet coeli medio, tunc una semidiametro Terrae fit propior visui, quam centro Terrae, tunc igitur theorema non limitatum non exacte verum esset.

Theorema VI.

Si auferas a differentia semidiametrorum Solis apparentium ex diversis ejus elongationibus differentiolam parallaxium Solis horizontalium in iisdem elongationibus, relinquitur differentia semidiametrorum umbrae apparentium. in uno et eodem loco transitus Lunae, respondentium diversis illis Solis elongationibus.

Nam per th. V. differentia semimucronum est differentia semidiametrorum umbrae Terrae in eodem loco transitus Lunae. Sed per coroll. ad th. I. differentia semimucronum est minor quam differentia semidiametrorum Solis differentiola parallaxium Solis horizontalium. Ergo deminuta haec differentiola a differentia semidiametrorum Solis relinquit differentiam semidiametrorum umbrae apparentium, h. e. ejus angulorum.

Corollarium. Cum differentiola parallaxium Solis illa, quae oritur ex Solis eccentricitate, sit pene insensibilis, uti possumus differentia semidiametrorum Solis pro differentia diametrorum umbrae singularum in singulis locis transitus Lunae; ut quantum augetur Solis diameter. tantum diminuatar diameter umbrae fere.

Hipparehus.

Theorema VII.

Proposita certa quantitate anguli apparentis semidiametri Solis et suppositis diversis sub eodem angulo elongationibus ejusdem a Terra, quantum minuitur parallaxis Solis in suppositione majoris elongationis, tantundem minuitur et semidiameter umbrae in quolibet transitu Lunae per eam.

Sit enim in schemate nostro SBD vel TBX unus et idem angulus Solis; et supponatur Solem a Terra distare vel brevius per BA, vel longius per BO, et ducantur contingentes SVC, TVP. Igitur in \triangle STV exterior BSV aequalis est junctis STV et SVT, id est CVP. Sed BSV est parallaxis Solis propioris suppositi; et BTV est parallaxis Solis remotioris suppositi, mauente eodem apparentiae angulo in centro B. Denique PVC est differentia semidiametrorum umbrae in eodem transitu Lunae, quae sit FGQ (per th. V.) quia TV producta fit interior (VP), secans GQ in R, et quia TPO est semimucro umbrae a Sole ut remotiore, SCA vero semimucro a Sole ut propiore. Efgo quanto minor est VTB parallaxis, quam VSB, tanto etiam minor est RBG angulus semidiametri umbrae a Sole ut remotiore, quam QBG ejusdem a Sole ut propiore. Q. E. D.

Corollarium. Quanto minores supposueris parallaxes Solis, tanto minus peccatur, si pro differentia semidiametrorum umbrae in uno certo loco transitus Luuae adhibeatur differentia semidiametrorum Solis apparentium illa, quae oritur ex Solis eccentricitate '). Fig. 2.

Definitio I. Luminis vocabulo utemur technice pro coui umbram Terrae formantis parte illa, quae est inter Solem et Terram, tota luminosa (sicut umbra Terrae est ejusdem coni pars reliqua tenebrosa, ultra Terram in mucronem desinens). Nam si abit Luna tota ab illo spatio, totum Terrae hemisphaerium Soli obversum toto Solis lumine fruitur. (Horroccius dicit "irradiatiosem," quod Keplero "lumen" dicitur.) In schemate praesenti sint A, B centra Solis et Terrae, tangantque illorum corpora duae rectae SV et DE in plano per centra ducto, quae continuatae concurrant inter se et cum axe in C, repraesentantes conum. Ergo coni hujus truncus SVED lumen dicatur, sicut ejusdem mucro VCE est umbra.

Definitio II. Penumbra Lunae est omne illud spatium, in quo particula aliqua de Sole a Luna tegitur. Sit I Lunae centrum, umbra Lunae formetur lineis tangentibus corpora Solis et Lunae SK, DL, concurrentibus in R. In spatio igitur KRL conico nulla particula Solis cerni potest, itaque conus hic est umbra Lunae. Ducantur jam aliae lineae per axem umbrae Lunae AR, tangentes corpora Solis et Lunae in punctis invicem oppositis; ut SXL, DXK, continua-

tae in P, M, et fiat XMXP superficies conica, et secentur lineae omnes plano circuli Terrae B maximi, in quem axis AB perpendicularis, SR, DR in N, O, at XK et XL in M, P. Truncus igitur hujus coni KMPL, in regione intima quidem KNOL est umbra Lunae, in regione reliqua KNM, LOP circulariter circumjecta est penumbra, quia in

S A D T T D B T R D B T S C P

Hipparehus.

punctis M, P totoque circulo per illa traducto Sol ultimo totus videri potest. Exinde enim quo magis ingredimur ad interiora, hoc plus de Sole tegitur a Luna, quoad ventum fuerit ad circulum per N, O puncta ductum, ubi totus Sol tegi incipit.

Definitio III. Discus Terrae est circulus prope maximus illuminationis Telluris, axem umbrae Terrae perpendiculariter secans prope Terrae centrum. Discus dicitur, quia fingimus superficiem Telluris illuminatam projectam esse in planum hujus circuli.

Theorema VIII.

Angulus apparentis ex centro Terrae semidiametri luminis in loco transitus Lunae est aequalis parallaxi Lunae horizontali et semimucroni umbrae Terrae junctis.

In schemate 2. sit locus transitus Lunae per lumen HIT, HI semidiameter luminis. Ducatur HB, erit IBH angulus in centro Terrae B. Igitur in \triangle HCB est HBI exterior = BHC + BCH, interioribus et oppositis; sed BHC h. e. BHE est parallaxis horizontalis puncti H seu Lunae in eo, et BCH est semimucro umbrae. Q. E. D.

Problema III.

Datis parallaxibus luminarium et semidiametro Solis apparenti, invenire semidiametrum luminis.

Ad parallaxin Lunae horizontalem adde semid. Solis apparentem, a summa aufer parallaxin Solis: vel quod idem est, conjice in unam summam parallaxin Lunae a Sole et semidiametrum Solis, prodit utrinque semidiameter luminis apparens. (Vid. probl. I.)

Theorema IX.

Duplicata Lunae parallaxis in certa distantia Lunae a Terra aequat apparentes in eadem distantia a Terra semidia-

metros umbrae Terrae et luminis.

Nam semidiameter luminis excedit parallaxin Lunae semimucrone umbrae. (th. VIII.) At semidiameter umbrae minor est Lunae parallaxi eodem semimucrone umbrae: junctae igitur semidiametri luminis et umbrae aequant duas parallaxes Lunae, excessu compensante defectum aequalem. Ergo &c. Brevius ex schemate: IBH superat BHE angulo BCE cum BHE, BFE GBF superatur BFE angulo BCE sint aequales.

Theorema X.

Angulus apparentis semidiametri Lunae ex centro Terrae est aequalis junctis semidiametris, Solis ex centro Terrae visi et

umbrae Lunae apud centrum Terrae velut ex Luna visae.

In schemate connectantur puncta L, B. Ergo in \triangle LRB exterior LBI est acqualis interioribus et oppositis BLR, BRL. Sed LBI est semidiameter Lunae ex centro Terrae apparens, et BLR, id est BLO, est semid. umbrae constituta ad centrum Terrae B et apparens ex L puncto Lunae: denique BRL, h. e. ARD est semidiameter Solis ex puncto R apparens, quod semper est proxime B centrum Terrae. Ergo &c. q. e. d.

Corollarium. Summa semidiametrorum Solis et Lunae acquat summam ex diametro Solis et semidiametro umbrae Lunae.

Problema IV.

Datis semidiametris luminarium apparentibus, invenire semidiametrum umbrae Lunae.

Ablata semidiametro Solis a semidiametro Lunae, si major, relinquitur semidiameter umbrae Lunae apparens tanquam ex Luna.

Theorema XI.

Semidiameter penumbrae Lunae cum sua umbra in medio componitur ex semidiametris Solis et Lunae, et ex parallaxis Solis horizontalis tanta portione, quanta est portio diametri Solis apparentis de parallaxi Lunae.

In schemate connexis K cum B, I cum N, quia MP est diameter

penumbrae (def. II.), ergo MIB vel MKB est ejus semidiametri apparentiae angulus tanquam ex Luna prospi-Habet vero MKB duas partes MKN et NKB, cienti. vel NIB, quarum ista quidem est semidiameter umbrae Lunae constituta in disco Terrae, apparens vero ex Luna ut in priori, illa vero, seu MKN angulus aequat angulum SKD apparentiae diametri Solis in puncto Lunae K. Et est ut DM ad DK vel SN ad SK, sic ex adverso angulus SKD ad angulum SBD apparentis diametri Solis ex centro B. Nam in tanta exilitate horum angulorum nihil obstat nobis prop. 8. Opticorum Euclidis. Est vero etiam ut SN ad KN sic e contrario parallaxis Lunae ad parallaxin Solis. Ergo etiam, ut SN ad differentiam SN et KN, sc. ad SK, sic parallaxis D ad differentiam parallaxis) et parallaxis), quae est parallaxis) a (). Ut igitur parallaxis) ad parallaxin) a (), sic SKD ad SBD et vicissim: ut parallaxis) a () ad parallaxin) totam, sic SBD diameter () apparens in centro Terrae ad SKD seu MKN partem penumbrae alteram. Sed excessus parallaxis) totalis super) a () est circiter sexagesima, ergo etiam excessus MKN super SKD est pars circiter sexagesima ac proinde circiter 30" seu semissis parallaxeos Solis. Utroque igitar elemento MKN et NKB in unum MKB compositis,

Fig. 2.

habebimus diametrum (), semidiametrum umbrae) et semissem parallaxeos Solis circiter. Sed per coroll. th. X. diameter () et semidiameter umbrae) acquant semidiametros () et) junctas. Ergo semidiameter penumbrae acquat et semissem parallaxeos) et semidiametros () et) junctim.

Problema V.

Datis semidiametris luminarium, definire semidiametrum penumbrae Lunae.

Conjiciantur in unam summam semidiametri luminarium et parallaxeos Solis horizontalis circiter dimidium, ita fiet semidiameter penumbrae.

Problema VI.

Datis parallaxibus horizontalibus luminarium eorumque semidiametris apparentibus, invenire summam semidiametrorum disci Terrae et penumbrae Lunae,

Hipparchus.

Conjice in unam summam semidiametros luminarium, parallaxin Lunae horizontalem et semissem de parallaxi Solis horizontalis, conflabitur summa semidiametrorum disci et penumbrae.

Theorema XII.

Parallaxis Lunae horizontalis in quolibet puncto distantiae ejus a Terra aequalis est semidiametro disci Terrae

apparenti.

Nam quia proportionem quaerimus semidiametrorum disci Terrae et penumbrae, angulos etiam, quibus utraque apparet, eodem loco constitui oportet. Atqui penumbrae et umbrae angulos necessarie constituimus in Lnna, ouippe a qua dilatatur penumbra (MKN). Quare etiam semidiameter disci Terrae subtendere debet angulum in Luna. At quem in Luna subtendit semidiameter Terrae angulum, is est parallaxeos Lunae horizontalia.

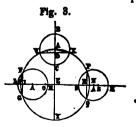
Theorema XIII.

Lineae motus longitudinis) a () vel latitudinis ab ecliptica, in planum disci Terrae projectae, sunt sub angulis in Luna proportionem eam habentibus ad angulos, quibus ipsae videntur

ex Terra, quae est summa parallaxeon Lunae et Solis

ad parallaxin Lunae solam.

In schemate 2. sit I punctum orbitae Lunae subjectum eclipticae, LI arcus latitudinis, ducatur AL et continuetur in Z punctum in plano disci. Est igitur ut AI ad IL, sic AB ad BZ. Sed AB est ad AI ut parallaxis) et () ad parallaxin Lunae solitariam, q. e. d.


Problema VII.

Horarium rite ampliare.

Dividatur parallaxis) per parallaxin 🖲, quotiens dividat arcum latitudinis vel horarium Lunae et hic quotiens adjiciatur toti.

Theorema XIV.

Duobus circulis inter se inaequalibus se mutuo secantibus, si recta per centra utriusque ducta et continuata ad circumferentias utrinque secta fuerit per rectam sectionum circumferentiarum: siguidem centrum minoris fuerit in circumferentia majoris, quadratum semidiametri minoris aequabit rectangulum sub tota diametro majori et ejus segmento minori per

rectam sectionum facto.

Sit circulus major AKN, quem secet minor, centro A in circumferentia majoris stante: sectiones sint V, X, et per eas ducatur recta, secans ductam per centra E, A, et continuatam ad B, Y circumferentias: sectio sit D. Dico quadratum semidiametri minoris AB aequari rectangulo sob .YA et AD. - Connectatur n. centrum A cum X sectione. Quia igitur ipsi AB aequalis est AX, et DX perpendicularis ad AY, erit ut DA ad AX

sie AX ad AY. In proportionalibus vero continue quadratum mediae acquat rectangulum sub extremis, q. e. d.

Hipparebus.

Corollarium. Si dixere, rectangulum sub segmentis diametri minoris a circumferentia majoris factis, scil. BA, AC, acquari rectanguló sub segmento minori diametri majoris a linea VX sectionum facto, et sub diametri majoris AY et differentiae partium BA, AC vel summa vel differentia, res eodem redibit. Nam rectangulum BA, AC est idem, quod quadratum BA. Sic differentia segmentorum BA, AC est nihil. Nihil vero subtractum ab AY relinquit AY, nihil additum ad AY facit AY.

Theorema XV.

Ceteris manentibus ut prius, si centrum minoris fuerit intra circumferentiam majoris, rectangulum sub partibus diametri minoris, quas disseparat circumferentia major, aequale est rectangulo sub segmento diametri majoris minori, quod linea per sectiones facit, et sub differentia inter diametrum majorem differentiamque dictarum minoris partium.

Stet centrum minoris A intra circumferentiam majoris, et sit linea sectionum FG, secans ductam per E, A in puncto I, in qua EA continusta sint puncta circumferentiae majoris N, K, minoris L, M, sintque K, M interiora. Et ipsi LK ex M aequalis versus A centrum extendatur MO, ut KO sit differentia partium I.K, KM, et ON differentia ipsarum NK, KO. Dico rectangulum sub LK, KM acquari rectangulo sub KI, ON. Ut hoc sine magna perplexitate demonstretur, considera, quod IF sit communis perpendicularis ex puncto diametri I in utramque circumferentiam F. Quadratum igitur IF acquale est rectangulo sub KI, IN segmentis diametri majoris, aequale et rectangulo sub LI, IM segmentis diametri minoris. Ac proinde rectangula haec utrobique sunt inter se aegualia. Verum quod sub LI, IM majus est eo, quod sub LK, IM quantitate ejus, quod sub KI, IM. Commune auferatur KI, IM. Quod ergo sub LK, IM aequale erit ei, quod sub KI, MN. Rursum autem, quod sub LK, IM minus est eo, quod propositio habet, sub LK, KM, quantitate ejus, quod sub LK, KI. Et similiter, quod sub KL MN minus est eo, quod propositio habet sub KI, ON, quantitate ejus, quod sub KI, OM, h. e. LK ex constructione. Aequalia igitar sequali aliquo minora sunt iis quae proposita sunt, quodque suo respondenti. Igitur et proposita inter se sunt aequalia.²)

Theorema XVI.

Rursum ceteris manentibus ut theor. XIV. si centrum minoris fuerit extra circumferentiam majoris: rectangulum sub partibus diametri minoris, quas disseparat circumferentia major, aequale est rectangulo sub segmento diametri majoris minori, quod facit linea per sectiones et sub composita ex diametro majore et differentia dictarum minoris partium.

Stet centrum minoris A extra circumferentiam majoris, et sit linea sectionum PQ, secans ductam per E, A in puncto R, sintque in hac per centra ducta puncta circumferentiae majoris N, K ut prius, minoris vero H, S, sed N, S interiora: et ipsi SN aequalis ab H extendatur HZ versus A, nt ZN sit differentia partium HN, NS, et ZK summa ipsarum KN, NZ. Dico rectangulum sub partibus HN, NS aequale esse rectangulo sub RN, KZ. Rursum enim, ut prius mediante communi perpendiculari RP in utroque circulo demonstratur, aequalia rectangula, quod sub SR, RH, et quod sub

Hipparchas.

NR, RK: sed quod sub SR, RH, minus est eo quod sub SN, RH, quantitate rectanguli quod sub NR, RH. Commune accedat quod sub NR, RH. Quod ergo sub SN, RH, aequale erit ei, quod sub NB et composita ex RK, RH, h. e. KH. Rursum autem, quod sub SN, RH, majus est eo, quod sub SN, NH in propositione nominato, quantitate SN, NR: et similiter, quod sub NR, KH, majus est eo, quod sub NR, KZ in propositione nominato, quantitate NR, ZH, h. e. SN ex constructione. Aequalia igitur aequali aliquo majora sunt, quodque suo respondenti in propositione nominato. Igitur et nominata inter se sunt aequalia. ⁵)

Problema VIII.

Datis semidiametris luminaris et umbrae, et quantitate arcus orae luminaris vel lucidae vel obscuratae, inquirere partes diametri vel luminaris vel umbrae constitutas a linea per sectiones, quarum quae minor apotome vel sagitta luminaris vel umbrae dici potest.

Data enim diametro circuli et arcu, datur et ejus arcus sagitta in eadem dimensione, quae multiplicata in residuum diametri luminaris constituit quadratum semissis de linea sectionum. Id vero quadratum ablatum a quadrato semidiametri umbrae, relinquit quadratum ejus, quod post sagittam ablatam est residuum usque ad centrum umbrae. Quare radix a semidiametro umbrae ablata, ostendit sagittam umbrae. Aliter: Data semidiametro luminaris et dimidio arcus deficientis vel lucidi, datur ejus sinus in eadem dimensione, in qua utraque semidiameter. Dato vero sinu in dimensione semidiametri, datur etiam sinus complementi, qui ablatus a semidiametro constituit sagittam.

Problema IX.

Datis semidiametris disci Terrae et penumbrae et latitudine menisci de penumbra extra discum porrecti, inquirere partes diametri penumbrae, factas a recta per sectiones.

Multiplicetur latitudo menisci in residuum diametri penumbrae, summa dividatur per diametrum disci, diminutam duplo ejus differentiae, quae est inter latitudinem menisci et semidiametrum penumbrae majorem: vel per diametrum disci auctam duplo ejus differentiae, quae est inter latitudinem menisci et semidiametrum penumbrae minorem. (Si meniscus est minori latitudine quam semidiameter penumbrae, duplum hujus defectus aufer a diametro disci; sin major, duplum excessus adde diametro disci; ita habes divisorem. Vel duplica distantiam centrorum, habes divisorem).

Problema X.

Datis diametris luminaris et umbrae et quantitate defectua, inquirere partes diametri umbrae, constitutas a linea per sectiones.

Multiplica latitudinem partis lucidae in latitudinem partis tenebrosse, deinde et minorem a majore subtrahe, differentiam, si major est lucida, adde ad diametrum umbrae, sin major tenebrosa, aufer a diametro umbrae; et per hoc sive aggregatum sive residuum divide factum ex prima multiplicatione, prodit segmentum diametri umbrae constitutum a linea sectionia.

Problema XI.

Data quantitate diametri tam luminaris quam umbrae, et arca deficiente vel lucido, elicere quantitatem defectus.

Quaere sagittas tam luminaris quam umbrae; et quantisper quidem minus semicirculo luminaris est in umbra, adde sagittae umbrae sagittam luminaris, pro quantitate defectus; at si obscurata ora fuerit major semicirculo, tunc pro sagitta luminaris addendum est residuum diametri, semper sc. ea pars diametri, quae in umbra est. (Vel subtrahe sagittam umbrae a sagitta luminaris pro residua parte luminosa.) Ita conflabitur summa scrupalorum deficientium.

Typus operationis per Logarithmos. Sit residua ora lucida 81º

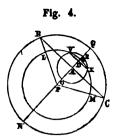
dimidiae 40° 30' logar. 43155 Sit semidiameter) 17' 1" - 126000 sexagenarius logar. 169155 sexag.

Hic ostendit	11' 3",	quod est	limidium	lineae sectionum. Hinc s	agittae pe	r antilogarithmos.
		-		Semidiameter umbrae sit	4 8' 36"	Antil. 9. 98
Lunae	17' 1"	Antil.	1. 225	Semissis lineae sectionis	11' 3"	Antil. 0. 515
		(D. 515	Ergo resid. semid.	47. 18	9. 465
Reaid. sem.				Sagitta umbrae	1. 18	•
Resid. diam.	29. 58	quia plus	semicirc	ulo in defectu.		

31. 16, quantitas defectus. 4)

Problema XII.

Data diametro luminaris deficientis, quantitate arcus orae vel lucidae vel tenebrosae, et quantitate defectus, indagare semidiametrum umbrae Terrae.


Problema est argutum magis, quam utile. Data enim semidiametro luminaris, erit ut sinus totus ad sinum arcus lucidi dimidiati (schem. 3) LF vel HP, sic haec semidiameter ad FI vel PR semissem lineae per sectiones. Deinde ut idem totus ad sagittam ejusdem arcus, sic semidiameter luminaris ad LI vel HR rectam, quae in lineam per sectiones terminatur. Aufer ab hac linea quantitatem defectus, expressam eadem mensura cum semidiametro luminaris, sc. LK vel HN, residuum erit sagitta umbrae KI vel NR. Ut vero haec ad priorem semissem lineae per sectiones, sc. ad FI vel PR, sic haec ad residuum de diametro umbrae sc. ad IN vel RK.

Theorema XVII.

Si duo circuli inaequales se mutuo secuerint, ducta recta per centra, eique ex centro minoris erecta perpendiculari, ex centro vero majoris ad perpendicularem applicata composita ex utriusque semidiametro, quadratum hujus perpendicularis aequabit rectangulum sub segmento diametri circuli minoris et sub composita ex hoc et ex distantia centrorum duplicata.

Sint duo circuli, major LEM (Fig. 4), centro P, minor OFX centro A, secantes se mutuo in VX, et recta per centra PA ducatur, secans circumferentias, majorem in E, minorem altra centrum in F et cis centrum in O, et ex A ipsi PF perpendicularis erigatur AB, ex P vero in BA terminetar recta composita ex PL, LB, aequalibus ipsis PE et AF junctis, quae sit BP. Dico quadratum ipsius BA acquale esse rectangulo sub EQ et sub composita ex una EO et duabus AP. $(BA^3 = EO (EO + 2AP))$ 34

Kepleri Opera, III.

Scribatur enim circulus centro P, intervallo PB, quem secet PF producta in N, Q. Out igitur QAB sit rectus, quadratum AB aequale erit rectantgulo sub QA, AN. Sed QA est aequalis ipsi EO, quia AE est elementum utrique commune, AO vero vel AF et EQ vel LB constitutae fuerunt aequales. AN vero est aequalis compositae ex EO et AP bis. Quia enim EO aequat AQ, AQ vero et AP aequat PQ, quare et EO cum AP aequat PQ, h. e. PN: accedat igitur ad PN ipsa AP secundo: tota AN aequabit

EO et duas AP.

Problema XIII.

Data quantitate defectus et proportione semidiametri Lunae ad arcum dimidiae durationis, invenire proportionem ejusdem semidiametri) ad semidiametrum umbrae et ad latitu-

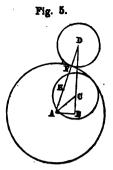
dinis arcum.

Datur proportio OF et ad OE (schemate 4) partem deficientem et ad AB arcum dimidiae durationis. Igitur quadratum OE auferatur a quadrato AB, residuum transformetur in rectangulum, cujus alterum latus aequet EO bis, reliquum latus erit PA, cui addatur AE, differentia inter AO, OE; vel alterum latus aequet EO, reliquum erit PA bis. Quia enim BA quadratum aequat rectangulum ex OE et composito ex OE et PL duplo, quare communi quadrato OE utrinque ablato, reliquetur illic differentia quadratorum BA et OE, hic OE . 2PA, vel PA . 2OE.

Sit FO == 34' 2"	Deficiant 33' 20"				Et sit BA !	54' 22''
Ergo PA = 27. 6	Logarithmus 58790			••	logarithm.	9872
AE = 16.19	117580		18 .	31		
PE = 43.25		_		15	logarithm.	19744
			30'	44"		66900
		FO	34.	2		56710
	Duplum	PA	54.	12		10190. 5)

Theorema XVIII.

Si circulum majorem contigerint duo circuli minores inter se aequales, alter intra, alter extra ab eadem plaga a centro majoris, connexisque centris minorum et cum centro majoris et inter se per rectam continuatam, ducatur ex centro majoris perpendicularis in illam, rectangulum sub differentia duarum, quae centra minorum cum centro majoris connectunt, et sub composita ex utraque, juncto quadrato ejus, quae inter centrum interioris et perpendicularem, aequale erit quadrato ejus, quae


inter centrum exterioris et eandem perpendicularem.

Vel: si latus unum trianguli rectanguli secuerit recta ex opposito angulo, triangulum minus constituens intra majus, communi angulo recto: parallelogrammum rectangulum sub differentia hypotenusarum et sub composita ex utraque, una cum quadrato lateris in triangulo minori, aequabunt quadratum lateris in triangulo majori.

Trianguli ABD latus BD secetur in C per rectam AC, ex A angulo opposito ductam, ut sit minus \triangle BAC, communi angulo recto B: et in AD determinetur ipsi AC aequalis AE, dico rectangulum sub ED et sub

composita ex DA; AC cum quadrato CB, aequare quadratum BD.

Nam quia B rectus, CA^2 , h. e. $AE^2 = AB^2 + BC^2$. Sed $AD^2 = DE^2 + EA^2 + 2DE$. EA; quare si pro EA^2 substituas $AB^2 + BC^2$, erit $AD^2 =$ $DE^2 + 2DE$. $EA + AB^2 + BC^2$. At vero $DE^2 + 2DE$. $EA^2 = ED$ (DA + AE) = ED (DA + AC). Ergo $AD^2 = ED$ (DA + AC) + $AB^2 + BC^2$. Porro idem $AD^2 = AB^2 + BD^2$, ergo ED (DA + AC) + $AB^2 + BC^2 = AB^2 + BD^2$. Commune aufer AB^2 , relinquetur illic ED (DA + AC) + BC^2 , hic BD², aequalia, q. e. d.

Problema XIV.

Data diametro Lunae DE et arcu incidentiae CD, cum arcu dimidiae morae CB in eclipsi totali, invenire semidiametrum umbrae AF et latitudinis arcum AB.

Constructio: Addatur arcus incidentiae DC ad arcum dimidiae morae CB, ut fiat arcus durationis dimidiae DB, et super DB fiat quadratum, unde auferatur quadratum super BC, residuum transformetur in rectangulum latitudine diametri Lunae DE, fiet longitudo aequalis compositae ex DA, AC, seu duplae ipsius AF semidiametri umbrae: deinde ablata ab AF semidiametro Lunae FE et super EA vel CA quadrato facto, exque eo ablato quadrato ipsius CB, residuum in formam quadratam redactum latitudinem sortietur AB, arcum latitudinis.

Sit diameter) DE = 31' 44", arcus incidentiae DC = 36' 30", arcus morae dimidiae CB = 39' 46". Ergo arcus DB durationis dimidiae 1° 16' 16", hujus quadratum est 1° 36' 52". Sed quadratum morae dimidiae (CB) est 26' 22" quod aufer 26. 22

1. 10. 30.Hoc divide per duplum diametri) (DE)1. 3. 28provenit 66' 39" AF.Hino aufer semidiametrum) 15. 52relinquitur AC = 50. 47.Cujus quadratum est 42' 58"Hino aufer quadratum morae dimidiae 26. 2216' 36"

et hujus latus 31' 33" est latitudo. *)

Problema XV.

Data semidiametro Solis, data etiam semidiametro umbrae a priori, h. e. non per parallaxin Solis, data denique parallaxi Lunae, indagare et parallaxin Solis.

Adde semidiametros • et umbrae, a summa aufer parallaxin), relinquitur parallaxis •. Nam per th. III. semidiametri • et umbrae sunt aequales junctae junctis parallaxibus • et).

Problema XVI.

Manentibus ceteris, pro parallaxi vero) pura data parallaxi) a • ex observatione eclipsis •, eandem parallaxin • indagare.

Adde semidiametros) et umbrae ut prius, a summa aufer parallaxin) a), relinquitur duplum parallaxeos).

34 *

Hipparchus.

Problema.⁸)

Data quantitate et loco unius eclipsis septentrionalis et unius australis, utriusque vel pene totalis vel pene nullius, ut sit tanto securior aestimatio, utriusque circa apsidas oppositas, et siquidem utraque ab eadem plaga nodorum fuerit, etiam nodorum locis datis, dato denique angulo latitudinis et diametris Lunae apparentibus, invenire semidiametrum umbrae.

Data sit eclipsis) septentrionalis a. 1620, nocte quae sequitur 26. Junii, Sole in 4° 45' \odot , quantitate 2' 20", anomalia eccentri existente circiter 15°, nodo in 14° 57' 30" \odot , semidiametro) 14' 44". Et quia centrum umbrae abest a nodo per 10° 12' 30", angulo existente 5° 18', erit latitudinis arcus inter centra 56' 31". Adde defectum 2' 20", conficietur summa semidiametrorum 58' 51". Igitur ablata semidiametro) 14' 44", relinquitur semidiameter umbrae uno loco, circa sc. apogaeum): 44' 7".

Data sit altera eclipsis austr. a. 1620. nocte, quae sequitar 20. Decbr. Sole in 29° 2' 34" \swarrow , quantitate digitorum 10²/₈, qui in anomalia eccentri 169° prope perigaeum, Lunae semidiametro existente 16' 43", funt 29' 43", nodo existente in 5° 35' \Im , qui cum absit a centro umbrae per 6° 32' 26", manente angulo priori, dat inter centra 36' 27". Cui si addatur defectus 29' 43", conficietur summa semidiametrorum 1° 6' 10". Unde subtracta semidiametro \Im 16' 43", relinquitur semid. umbrae circa perigaeum 49' 27". Adde hanc prius inventae 44' 7", summa 93' 34" dimidiata ostendet in long. media semidiametrum umbrae 46' 47".

Quodsi nodus utrinque 11' fieret anterior manente angulo, latitudo utraque esset 1' minor, sic et utraque semidiameter umbrae, et summa igitur 2' esset minor, et media denique 1' minor, sc. 45' 47".

Ita si aestimatio peccasset vel utrobique vel altrobique et si summa peccati esset 2' nimia, res per correctionem recideret eodem, manente nodo.

Problema.

Datis iisdem ut in antecedenti, eccentricitatem Lunae arguere; assumta parallaxi et diametro Solis, et distantiam D a Terra.

Sit enim ut supra semidiameter umbrae in prima 44' 7", in secunda 49' 27". Adde igitur semidiametrum (), illic 15' 0", hic 15' 33", summae erunt illic 59' 7", hic 65' 0". Hinc ablata parallaxis (), illic 1', hic 1' 2", relinquit illic 58' 7", hic 63' 58". Ergo distabat Luna a Terra illic 5914000, hic 5374000.) Necdum distabat illic longissime, hic brevissime. Nam ut 96593 sinus compl. anom. 15°, et 98153 sinus compl. anom. 169° ad semicirculum, in summa 194746 ad 200000, ita differentia distantiarum 540000 ad totalem 553500. Quodsi summa distantiarum 11288000 valet 194746, in ea dimensione 553500 valebit eccentricitatem duplicem 9550, simplex igitur esset 4775.

Quodsi in defectu primo peccatum esset aestimando, semissisque scrupuli detraheretur de defectu 2' 20", ut restet 1' 50", vicissim in defectu secundo aestimatus sit defectus non satis magnus, ut si fuisset non $\frac{9}{10}$, sed $\frac{9}{10}$; non 10²/_s sed 10⁴/_s dig. et sic non 29' 43", sed 30' 13", jam apogaea umbra proveniret tenuior, perigaea crassior, manentibus latitudinibus: paulo igitur altior fieret \supset in apogaeo, paulo humilior in perigaeo; tandemque eccentricitas hoc pacto conflaretur 6543.

Theorema.

Datis aliquot () eclipsibus cum tempore interlapso, cognoscitur motus latitudinis) crassiori Minerva.

Cum enim non in omni novilunio D subtercurrat Soli, sed plerumque ad latera evagetur, quoties ergo D subtercurrit (), necesse est, vicinam esse intersectionibus orbium Solis et sui.

Vicissim cum Solis orbis ab orbe Lunae secetur duobus locis inter se oppositis, si igitur () iisdem diebus anni incurreret in nodos, novilunia vicina praestans ecliptica, eodem coeli loco nodi persisterent, et sic Lunae eadem elongatio esset in latum seu ab intersectionibus, quae est a fixis. Sin vero serius in annis sequentibus eclipses inciderent, argumentum esset, nodos progradi; sin maturius, regredi. Ex quo progressu et regressu necesse est alias esse elongationes Lunae a sectionibus ab iis quae sunt a fixis.

Praxis: Anno 1605. 2/12. Oct. fuit magna Solis eclipsis et rursum a. 1601. 14/24. Dec. Cum igitur a. 1601. eclipsis fuerit 14. Dec., anno vero 1605. 2. Oct., et anno 1608. 11. Julii, apparet igitur sectiones retrocedere.

Et cum a 14. Dec. anni 1601 ad 2. Oct. anni 1605 numerentur menses Lunares 47, dies vero desint orbitae Solis complendae 73, quibus respondent de motu Solis gradus totidem, mensibus ergo 47, sive annis 4 minus quinta parte retrocedit sectio per 73°. Et igitur annis 19 retrocedit sectio per integrum circulum, ut sit retrocessus nodorum in anno uno per 19°, in die paulo plus quam 3'. Itaque motus latitudinis Lunae seu elongatio a nodo auctior 3' in die, quam a fixis.

Caput I.

De diametrie Solis et Lunae apparentibus.

Diametri • apparens magnitudo constituta fuit in Astr. parte Optica Cap. XI. prob. 1-3, et inventa fuit citra controversiam in apogaeo 30', in perigaeo vero 31', ubi et consensus artificum excussus fuit.

Diameter) paulo plus exhibet difficultatis. Inventa tamen est in Opticis (cap. XI. pr. 4-13) praecipue observatione eclipsis () a. 1601. 14/24. Dec. 30' 30". Ex qua quantitate per ratiocinationem deducta est etiam perigaea quantitas et constituta vel 33' 20", vel 34', vel 34' 40", non ad-versante peculiari ejus observatione probl. 4. Sed lubet eandem etiam explorare per observationem eclipsis () magnae, quae fuit a. 1605. 2/12. Oct. De hac exstat publice mea epistola, ex qua constat, me Pragae nubibus impeditum fuisse in accurata diametri Lunaris dimensione. Observarunt tamen eam ad modum probl. 13. Opt. Maestlinus Tubingae, et Jo. Eriksen Sic igitur scribit Maestlinus (in libello de variis Londini in Anglia. motnum apparentium inaequalitatibus, Tubingae edito a. 1606) et de hac eclipsi et de hoc observandi modo Th. 147: Hic modus observandi ut jucundus et facilis est, ita si rite ad usum accommodetur, certissimus. Ibi enim defectus magnitado nec non diametrorum Solis et Lunae proportio non rudi et oculari tantum intnitu conjectatur, sed mediante circino in opposita tabula, tanquam Sol et Luna manibus contrectarentur, exacte notantur. Veruntamen quam necessariam limita-

Hipparchus.

tionem, ut ad usum rite adhibeatur, et omnes errores de quibus suspectus semper fui excludantur, postulet, Keplerus primus fideliter monuit, et ingeniosissima demonstratione ob oculos posuit. Proxima igitur Solari eclipsi d. 2. Oct. deprehendimus (quanta quidem praecisione fieri potuit), diametrorum Solis et Lunae proportionem fuisse quam proxime sicut 13 ad 14.

Locum posui integrum, ut axiomata, quae ex observationibus h. e. ab oculis petuntur, pro demonstrationibus (quibus gaudent theoremata) firmarentur testimonio clari artificis, quae propria axiomatum est confirmatio.

Cum igitur diameter Solis eo die fuerit 30' 37", sequitur ut 13 ad 14, sic 30' 37" fuisse ad diametrum Lunae 32' 58", quam ego in epistola dicta usurpavi 32' 59", ex jam allegatis meis ratiociniis. Admirabilis quidem consensus et certe suspectus aliquibus futurus, nisi fulciretur observatione Anglicana. Etsi quid opus esset Maestlino, celebri astronomo, adulari suo olim discipulo? An fortassis ipsa mihi adulata est numerorum 13 ad 14 inter se primorum proportio? quae multo promtius oculis ex schemate Solari, quam menti ex calculo sese offert.

Sch et Jo. Ericksen audiamus. "Eclipsin Lunae hic observare non potui, Solis initium propter loci incommoditatem etiam non vidi, sed medium et finem. Confeceram mihi peculiare instrumentum 14 pedum longum paulo aliter atque Kepleri, cum quadrante. (Opt. p. 340.) Distantia tabellarum erat 9168, semidiameter fenestrae illarum 4¹/_s, radii Solis 45, Lunae 39. Hinc Solis semidiameter 15' 12", Lunae 16' 20". Ut omnino experientia testetur, Keplerum vere jam antea suspicatum de nimis magna Lunae diametro dc. Communica haec Keplero, qui docuit me hunc modum observandi, ut et hoc testimonio (si forsan apud vos non fuerit serenum) in speculationibus suis fruatur."

En tibi Londini in Anglia diametrum Solis 30' 24", quam ego usurpavi 30' 37", Lunae vero diametrum 32' 40", quam eodem momento Maestlinus Tubingae in Suevia observavit 32' 58" quam proxime: exque hac collatione diversissimorum locorum, et de certitudine hujus modi observaudi et de quantitate hujus Lunae apparentis diametri judica. Major enim consensus peti ab oculis non debet.

Cum autem fuerit anomalia Lunae 4º 19º sive 139º, ejusque sinus versus 175471, ut igitur hic ad totam diametrum 200000, sic differentia inter quantitatem apogaeam 30' 30" et 32' 58" hujus loci, id est 2' 28" ad totam differentiam inter diametrum apogaeam et perigaeam 2' 49". Itaque in ipso perigaeo diameter Lunae 33' 19". Quod est consonum meis ratiocinationibus, de quibus paulo supra, et infra Cap. III, ubi limitabitur haec jam ex observationibus constituta quantitas, ut omnia omnibus consentiant, fietque in apogaeo ... in perigneo... 10) Notandum autem, quod Luna ex ipso Telluris centro, ad quod aequum est ejus apparentes diametros referri, utraque in eclipsi paulo minor fuisset spectata, ut monui Proportio tamen apogaea diametri ad perigaeam ex his ob-Opt. p. 354. servationibus non variatur sensibili aliqua quantitate, propterea quod utriusque observatio humilibus luminaribus est facta, nec multo altioribus in 19º 🗪 quam in 3º Z, cadem utrinque diei hora: tota quippe differentia altitudinum 90° non plus varietatis exhibet, quam 30".

Caput II.

De motu Lunae horario in syzygiis.

Cum horarius Lunae ex observationibus fide dignis haberi possit, jure inter principia assumitur.

Sequitur quidem ex hypothesibus artificum aliquis certus horarius in singulis anomalize Lunae partibus. At causae sunt, cur iis solis hac in speculatione non utendum, neque testimonia observationum de iis negligenda existimem. Nam cupio hanc materiam, quoad fieri potest, per se stare, ut sit et comprehensu facilior et fide dignior. Latuit enim veteres aliquid circa horarium Lunae in conjunctionibus et oppositionibus: quod posterior Brahei diligentia in lucem extulit. Satisfaciendum itaque sollicitudini geometricorum ingeniorum, quae propter hanc leviusculam differentiam cavendum sibi putabant ab horariis, qui nobis ex anctorum hypothesibus offeruntur.

Maestlinus (Epit. Astron. p. 444) ex hypothesibus Ptolemaicis prodit, in una hora superari Solem a Luna apogaca 27' 52'', mediocri 30' 29'', perigaca 33' 35'' Rheinholdus in Prut. Tab.

(p. 96. 97) ex Copernico sic: 26. 33 — 30. 9 — 35. 7 Tycho Braheus in Tab. Lunaribus (Progymn. p. 128): 27. 12 — 30. 42 — 35. 37.

Sed necesse est, Ptolemaeum et Copernicum in quantitate convenire, com hypothesibus utantur oirca hanc rem aequipollentibus. Etenim quod Copernico praestat epicyclium, retrahens Lunam apogaeam sub Sole transeuntem in antecedentia, et perigaeam promovens in consequentia, plus quam fert ratio majoris epicycli: idem Ptolemaeo praestat apogaeum epicycli medium, semper vicinius lineae per Solem et Terram ductae, quam apogaeum ejusdem epicycli verum vel punctum concavitatis, et perigaeum e contra remotius. Itaque horarii Maestlini nituntur tantummodo simplici consideratione epicycli. Qualem rationem et Braheus in suo horario et diurno ficto sequitur (loc. cit. p. 128.), quo articulos conjunctionum et oppositionum inquirit, quia in illis articulis epicyclus et variatio plane nihil turbat. Apogaeae enim Lunae horarium exhibet 27' 43", perigaeae 33' 24";

Maestlinus: 27. 52 — 33. 35.

Nec alios quam Copernicus horarios veros exstrueret Braheus ex sna hypothesi Lunae, quippe qui epicyclium Copernicanum plane retinet, situ solum emotum, et ad Terram detractum: nisi superveniret apud ipsum motus, quem ipse variationem dixit, omnes horarios Lunae in copulis auctiores efficiens. Itaque observationum testimonium interponi necesse.est, ut appareat, differentiam horariorum hypotheticorum apud diversos auctores ut plurimum misorem esse, quam differentiam ipsarum inter se observationum, aut sicubi majuscula est apud auctores, cuinam igitur ex auctoribus circa horarium fides sit adhibenda.

Ceterum variis modis ex observationibus 'elicitur horarius. I) Exstat inter problemata Cap. XI. Opt. probl. 26. huic instituto idoneum. Praesupponit antem probl. 24, in quo docetur, quomodo ex observatione eclipsis Solis eruatur longitado et latitudo visibilis Lunae a Sole. Quatnor enim hace accurate notanda: 1) Certum horae momentum, 2) quantitas defectus, 3) diametrorum Solis et Lunae apparens magnitudo, 4) lineae per

centra Solis et Lunae inclinatio ad circulum verticalem. Quae omnia quomodo habeantur modo observationis admirabili, artificioso et jucundissimo, vide problemata praecedentia ejus libri. Modus quidem sic medium tenet inter opticam et astronomiam, ut nescias, ad utram scientiam potius eum referas. Itaque passim in illo libro nuncupavi hunc, quem hic scribo, partem secundam illius, interdum appendicem: cum ille potius hujus praeambulum dici debeat.

His quatuor rebus uno et eodem momento observatis, habetur per probl. 24. longitudo et latitudo visibilis ad illud momentum. Id vero si flat duobus momentis a se metuo distantibus justo temporis intervallo: jam probl. 26. superexstruit veram utroque momento longitudinem et latitudinem, proinde et verum motum Lunae a Sole, competentem tempori interjecto, quem horarium dicimus, si quantum de eo competat uni horae, constituatur.

Assumit tamen problema illud 26. hanc conditionem, ut mediocriter sit praecognitus parallaxeos Lunaris excessus super parallaxin Solis, in quo si quid falsum admittitur, non penitus sanus prodibit horarius. Etsi 2' vel 3' in parallaxi falsitas utrinque eadem parum nocet horario. Deinde si 1' vitietur motus duarum horarum, quod facile fieri potest, propter titubationem manuum et instrumenti, quando observatur inclinatio circulorum aut quantitas eclipsis, dimidio jam minuto vitiabitur motus unius horae, quantum in Braheanae hypotheseos horario vix peccari potest.

Utamur nos tamen exemplis, non quasi indemonstratis superstructuri demonstrationem, sed ut consensus appareat.

Anno 1601. d. 14/24. Dec. h. 1. 17 1/, ' in eclipsi Solis, cujus exstat descriptio fol 395. Opt., fuit inter verticalem et circulum per centra 72°, cum eclipsis initium notaretur, Lunae centro infra Solis centrum ad occasum. Quantitas defectus exigua: quippe in ipso contactu luminarium, cum qui Solem ipsum intuerentur, nondum quidquam cernerent deficeren Summa semidiametrorum Solis et Lunae erat 30' 40". Itaque distantia centrorum fuerit 30' 40". Tempus annotatum et locus Solis exhibent culminantem 20 1/ ° Z, itaque fuit angulus inter verticalem Solis et eclipticam 76° 9'; cum quo comparatus angulus 72°, qui fuit observatus inter verticalem et circulum per centra, arguit angulum inter eclipticam et circulum per centra 4º 9', qui ex tabula parallactica cap. IX. Opt. sub columnis 30', 40" exhibet visam latitudinem centri Lunae a centro Solis 2' 14", ejus vero complementum 85° 51' longitudinem 30' 40". Ponamus parallaxin Lunae a Sole in horizonte et circulo verticali esse 56', quia ut dictum excessus aliquot scrupulorum in hac fictione nihil nocet praesenti negotio. Cum igitur culminet 20 1/2 ° Z, in nonagesimo erit 15 1/2 ° xxx, qui Atque baec didistat a vertice 70° 4' Pragae, in loço observationis. stantia 70° 4', quaesita in margine parallacticae, exhibet sub columna 56' parallaxin latitudinis 52' 38", unde ablata visa latitudo Lunae a Sole (austr.) 2' 14", constituit latitudinem Lunae ab ecliptica 50' 24" bor. Ejusdem vero distantiae 70° 4' compl. 19° 56' sub eadem columna exhibet parallaxin longitudinis horizontalem 19' 5".

Cum vero $15 \frac{3}{4}^{\circ} \frac{1}{2222}$ sit in nonagesimo, et Sol in 2° 53' \mathcal{J} , distat igitut a nonagesimo in occasum 42° 52', quae distantia sub columna 19' et 5" exhibet longitudinis parallaxin in occasum seu antecedentia 12' 58", quam aufer a visibili Lunae praecessione 30' 40", prodit quasi vera prae-

cessio Lurae 17' 42". ¹¹) Eodem modo etiam alio momento, sc. hora 3. $9'_{12}'$ observati sunt digiti $6'_{13}$, inclinatio centrorum 14° a verticali ad sinistram. Distantia igitur centrorum per probl. 12. est 10' 28". Tum culminat 18° 5' xxx et secat verticalis eclipticam angulo 60° 30'. Itaque circulus centrorum angulo 46° 30', dans ex columnis 10' et 28" latitudinem visam bor. 7' 36", ejusque complementum 43° 30' dat longitudinem Lunae a Sole visam 7' 26". Et quia cum 18° 5' xxx versatur in nonagesimo 22° 3' \pm , distans a vertice 60° 3', erit per usurpationem prioris parallaxeos quasi verae latitudinis parallaxis 48' 32", cui addita visa latitudo 7' 36", quippe borealis, facit Lunae veram latitudinem hoc momento 56' 8", complementum vero 29° 57' distantiae nonagesimi a vertice dat longitudinis horizontalem parallaxin 27' 57". Sed quia Sol abest a nonagesimo per 79° 5', ergo sub columnis 27', 57", respondet longitudinis parallaxis 27' 27" in occasum, cui adde visam Lunae superationem 7' 26", prodit quasi vera superatio 34' 53". Atque hoc est alterum momentum.

Jam horarium hinc eliciemus, comparato momento utroque. Ablata quippe est ex motu Lunae a Sole parallaxis, relinquitur igitur verus motus Lunae a Sole.

Et quia h. 1. 17' 30'' Luna praccessit 17' 42'' hora vero " 3. 9. 30 secuta est per 34. 53, ergo horis

1. 52 promota est a Sole per 52' 35". Itaque horae uni competerent 28' 10": Luna in apogaeo fuit. Braheus, ut supra dictum, Lunae in apogaeo dedit 27' 12".

Per inclinationum vitium nibil peccari potuit in longitudine. Nam in principio parum mutabantur, in posteriori momento celeriter quidem mutabatur inclinatio, sed distantia centrorum fuit parva, ut unus gradus aberrationis in inclinatione causari potuerit non ultra 8". Diametri luminum etiam certae sunt. Superest aestimatio defectus. Ego enim hic ita operatus sum, ac si nihil adhuc defecisset in principio. At si nihil defecisset, ego non agnovissem initium defectus. Quodsi in principio, quando ego agnovi defectum, jam defecit pars Solis tricesima, horarius jam fit dimidio minuto minor. Eadem et de altero momento tenenda. Sed videamus, si 6' majorem justo assumsissemus parallaxin Lunae a Sole, quantum variaretur horarius Lunae. Utamur pro 56', columna 50'; ergo priori momento cum arcu 19º 56' eruitur horizontalis longitudinis 17' 2", de qua distantiae a nonagesimo 42° 51' competit 11' 35". Posteriori vero momento cum distantiae a vertice complemento 29° 57' sub columna 50' excerpitur 24' 58". Sub quibus columnis 21' et 58" cum distantia Solis a nonagesimo 79° 5' excerpitur 24' 30" differens a priori parallaxi longitudivis 12' 55", cum. usurpata priori parallaxi 56', discrepaverint per 14' 29", itaque motus ad h. 1. 52' minor jam fiet per 1' 34". Itaque horario decederent 47": et hoc per errorem in parallaxi 6', quantum procul dubio in hoc opere non sum commissurus. Unius itaque minuti error in parallaxi hic non plus vitiat horarium quam 8" circiter.

Si cum arcubus 70° 4' et 60° 3' parallaxes eruuntur latitudinis 47' et 43' 19", quarum differentia 3' 41", ablata a summa visarum latitudinum, quia sunt affectionis diversae, sc. a 9' 50", relinquit 6' 9" variationem verae latitudinis, quae prius erat 5' 44".

Alterum exemplum (ex fol. 390. Opt.) sit in eclipsi anni 1600. 30. Jun. vel 10. Jul. Graetii Styriae, alt. poli 47° 2'. Principium fuit h. 12. 38', inclinatio 72¹/,⁰, culminabat 27° \otimes , angulus verticalis et eclipticae 83° 2′. Ergo angulus eclipticae et oirculi per centra 10° 32′. Et quia Solis diameter 30′ 2″, Lunae vero anomalia sig. 8. 14° 30′, Lunaeque ideo diameter 32′ 20″, summa igitur semidiametrorum est. 31′ 11″, quae cum angulo dicto ostendit visam latitudinem Lunae a Sole 5′ 34″, long. 29′ 56″. Hora 2. 42′ inclin. 64° 15′, quantitas defectus in radio fimbriato paulo minor 4 digitis. Itaque distantia centrorum 25′ 4″. Culminabat 28° \otimes . Angulus verticalis et eclipticae 55° 7′, ex quo et inclinatione habetur angulus inter centrorum circulum et eclipticam 44° 53′. Itaque latitudo visibilis 17′ 40″, longitudo visibilis Lunae a Sole 17′ 42″, promotaque est Luna ad visum per 47′ 38″ in longitudinem, in latitudinem vero 12′ 6″.

Parallaxin assumam 59', ut Luna tribus circiter semidiametris Terrae sit humilior, quam in priori exemplo. In primo igitur momento fuit in nonagesimo $21\frac{1}{2}^{\circ}$ \mathfrak{S} , cujus a vertice distantia 25° 40' dat parallaxin latitadinis 25' 34". In secundo momento fuit in nonag. $14\frac{1}{2}^{\circ} \Omega$, distans a vertice per 32° 26', itaque latitudinis parallaxis hic 31' 39", major quam prior per 6' 5". Latitudo igitur vera per 6' 5" minus variabatur quam visa, sc. per 6' 1" tantum.

Eodem modo per complementa distantiae nonagesimi a vertice 64° 20', 57° 34' excerpuntur longitudinis parallaxes horiz. 53' 11" et 49' 53". De quibus per distantias Solis a nonagesimo 3° 22' et 26° 18' ostenduntur parallaxes long. 3' 7" et 22' 6", quarum differentia 19', adjesta promotioni longitudinis a Sole visibilis 47' 38", ostendit 1° 6' 38" promotionem veram Lunae a Sole, tempori competentem inter h. 12. 38' et h. 2. 42', horis sc. 2. 4'. Itaque horarius hic esset 32' 12", quem exhibet hypothesis Brahei 31' 46".

Sic in eclipsi Solis, quae fuit a. 1605. 2/12. Oct., ex observationibus et usurpata parallaxi Lunae a Sole 58' 33" inventus est horarius Lunae a Sole nibil differre ab eo, quem prodidit Braheana hypothesis, sc. 34' 10". Vide epistolam editam.

In eclipsi Solis anni 1598. 25. Febr. vel 7. Mart., cujus exstat descriptio a fol. 363. in 374. Opt., cum horarius Braheanus esset 33' 38", usurparetur vero parallaxis Lunae a Sole 59', quamvis incerta observatione, tamen horarius non ultra unum minutum minor evasit, quod vitio observationum tribui potest, quia primi momenti tempus non certo annotatum.

Denique in eclipsi Solis anni 1590. 21. Jul., quae exstat a fol. 374 in 380. Opt. cum usurparetur parallaxis 56', ab hora 7. 14' in h. 8. 48', per horas 1. 34' (quantum ex observatione non satis cauta colligi potest) promotio facta est 45' 42", horarius igitur '29' 16", quem Braheus prodit 27' 56". Sed latitudo vera 13' variata satis arguit, in observatione vitinm inesse.

Sufficit igitur, hoc genus observationum eminus assentiri horario Braheanae hypothesis.

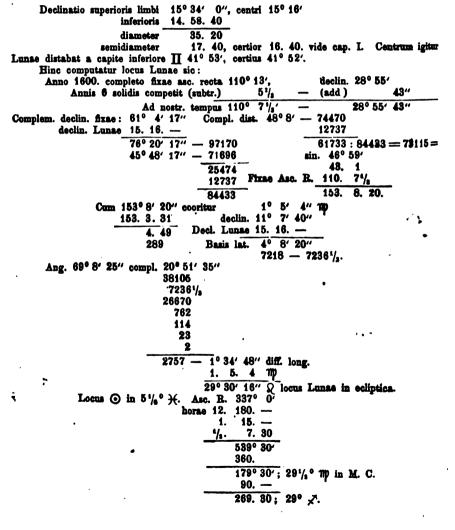
II. Hactenus parallaxin assumsi quasi praecognitam. At superest modus, que, si quis magna ex parvis conjectare velit, et parallaxis Lunae a Sole et horarius una argumentatione ex una Solis eclipsi magna probe observata elici possit, assumto angulo latitudinis, in quo minus inesse dubitationis vulgo putatur. Atque is non absimilis operationi illi, cujus mentio in fine probl. 26. Opt fol. 371. Nam quia uni gradui digressionis Lunae a nodo (quare 55' digressionis a Sole) respondere putatur augmentum latitudinis circa nodos 5' 13", parallaxis igitur talis est eligenda, quae latitudinem proferat longitudini ad hunc modulum correspondentem. Quo impetrato certi sumus et de longitudine, i. e. horario, et de parallaxi. Quem ad finem in duobus exemplis supra positis tractavi parallaxes latitudinis, et in primo quidem exemplo longitudinis arcui 52' 35" latitudinis incrementum competiit 5' 44", parallaxi 56'. At cum parallaxi 50', digressioni Lunae a Sole 51', respondebat variatio 6' 9", illa igitur parallaxis verior est, quam haec. In secundo vero exemplo motu a Sole per 1° 6' 38" Luna deprehenditur latitudinem mutasse per 6' 1", itaque parallaxis 59' ibi adhibita non multum abesse poterit a vero; et sic et horarius utrinque confirmatur.

Verum plus delectant haec problemata artificio, quam prosunt subtilitate numerorum. Observationes enim nonnisi limatissimae requiruntur, quae vix unquam haberi possunt.

Praeterea supponitur cognitus latitudinis angulus, de quo nihil adhuc dictum. Et quia multo magis prodest hic modus arguendae parallaxi crassiori Minerva, quam horario, pertinet igitur ad sequentia.

Missis igitur his duobus modis horarios observandi, transeamus ad alios, in quibus non tantum nihil indemonstratum praesupponitur, sed etiam magnitudo ejus rei, ex qua ratiocinamur, pleuiorem fidem facit circa id quod ratiocinando concludimus.

Motus Lunae oppositae Soli ad unguem aequales esse motibus ejusdem conjunctae Soli ceteris paribus, tritissimum est apud astronomos. Si ergo prodid-rimus horarios in oppositionibus, ii valebunt et in conjunctionibus. Si quis hoc principium negare voluerit astronomis, quod quidem ex omnium illorum hypothesibus sequitur, convinci is poterit consensu horariorum, quos hactenus sub articulo conjunctionum investigavimus, cum iis, qui jam prodibunt ex oppositionalibus. Horarius vero oppositionum habetur facile, si, quantum Luna circa oppositionem progreditur in uno die naturali, exploretur.


. III. Diurnos igitur Lunae motus Braheus ut observaret citra mixturam parallaxeon, hanc viam est ingressus, ut exploraret, quando Luna esset in nonagesimo gradu a puncto eclipticae oriente. Tunc enim omnis parallaxis in latum abit, nihil in longum. Eo sic facto duobus continuis diebus circa oppositionem, facile patuit Lunae diurnus motus verus.

Anno 1595. 8. Oct. mane fuit oppositio Lunae et Solis, Luna in apogaeo versante. Igitur praecedenti vespera h. 9. 24' circa nonagesimum ab ortu per observationem inventa est in 18° 47' Υ , cum latitudine visa 1° 12' meridiana. Sequente vespera 8. Oct. h. 11. 22', oriente 9° Ω , ipsa observata fuit in 1° 26'/₂' \Im , distans 8° a nonagesimo. Cum autem 9° \Im distaret a vertice circiter 45°, itaque parallaxis $\mu\eta\kappa\sigma\eta\lambda\alpha\eta\gamma_{2}$, κ_{5} 6 in horizonte esset 40' circiter, de qua 8° competunt 5'/₂, tantulo promotior erat Luna, quippe quae jam in occidentem propenderet. Sic itaque locus Lunae verus 1° 32' \Im . Promota est igitur horis 26 minus 2' per 12° 45', idque a fixis. Interim vero Sol ab iisdem fixis promotus est arcu 1° 2' 20", Luna igitur a Sole promotus est 11° 42' 40". Cujus distributione facta in horas 26 minus 2', venit uni horae 27' 3". Itaque in ipso puncto medio, quando acceleratio (copularum propria) est in summo vigore, plane verisimile est, horarium esse 27' 12". Potest enim et ratione

Hipparchus.

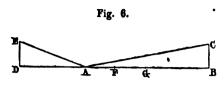
diametri Lunae unum fortasse ant alterum minutum abesse in hoc diurno. Nam solet capi distantia marginis Lunae aversi ab arcu diurno, quippe clarioris et integri: postea aestimatione semidiametri Lunae corrigitur distantia Lunae a fixis. Ubi si diameter Lunae nimis magna accipitur (de quo in Opt. Cap. V. fol. 266—268), tunc centrum ejus versus arcum diurnum utrinque introrsum plus justo truditur, et sic arcus iste diurnus brevis efficitur. Parum tamen hoc potest in horarium, quippe omnis error diurni vicesima quarta demum parte attinet horarium. Itaque sat tutus hic modus usque ad sextantem scrupuli.

Sed transeamus etiam ad observationem Lunae motus horarii in perigaeo. Anno eodem 1595. 24. Febr. paulo ante meridiem fuit oppositio Solis et Lunae perigaeae. Praecedente igitur hora 1. 30' post mediam noctem, oriente 29° m distabat occidentalis Lunae limbus ab inferiore capite II 41° 35'.

540

a spica Virginis per . 16. 40 Declin. fixae 8. 59 A. Adde semid. Centri remotio 32. 43. 81. 1 8. 22 84135 57. 17. Cent. Lunae 2272 89. 23 - 99994 9. 20 $\overline{86407:97722} = 88421$ 62. 72. 39 -- 95460 27. 50. 40 4544 Fizae A. B. 195. 59. 2272 168. 8. 20 2. 36 97722 - 17º 5' 51" 170 -- 5. 168. 2. 54 9. 5 Ang. 67° 0' 30" compl. 22° 59' 30" Declin. 5. 6. 29 5, 26. 42430 Lun. 8. 22. 5694 Basis lat. 3. 15. 31. 254580000 12729000 24185 25 1. 23. 4 24160 17. 5. 51 110 15º 42' 47" mp locus) in ecliptica. Locus () 6⁴/₆) A. R. Horae 14. 338 210 Min. 56. 14 15. 8. 43 divide 202 ; 24° = in M. C. 25. 26 90 12. 43. - 30 292; 22° Z in orta. 1. 30 mane in 29. 30. 16 Q 2. 25. 43 6 Erat ergo d. 14. h. d. 15. h. 2. 56 mane in 15. 42. 47 m 2. 32. 36 Minus 1. h. 1. 26 per 6. 53 progressa est d. 16. 12. 31 vel h. 25. 26 6. 21 30 Aufer motum Solis 1. 3. 48 32 16 17) 15. 8. 43 divide in 25h 26'.

Igitur hic horarius in perigaeo prodit 35' 44", et minor etiam, quia Luna ultra nonagesimum habuit unius forte minuti parallaxin longitudinis ; quae demta horario adimit 2, ut sit 35' 42", cum Tychonica hypothesis det 35' 37".


In apogaeo observatio prodit paulo minorem horarium Tychomico, "in perigaeo paulo majorem. Id verisimile est sic esse. Braheus enim acce-" lerationem hanc copularum propriam aequalem fecit in apogaeo et perigaeo. At si est physica aliqua ejus causa, oportet eam minus operari in Lunam apogaeam, quam in perigaeam, longius enim illic abest a Terris, voce ipsa testante, quam hic.

Caput III.

De genuina eccentricitate Lunae in syzygiis.

Cum non exstent omnium temporum observationes sufficienti diligentia et subtilitate habitae, sic ut Lunam in sequentibus demonstrationibus in eadem ubique elongatione a centro Telluris usurpare possimus: necessario a nobis inter principia disputandum fuit de metis, inter quas illa vagatur, earumque maximo interstitio, ut quid in unaqualibet observatione cavendum

sit, ob aliud et aliud Lunae et Telluris intervafium, nobis versetur ob oculos. Duo vero sunt argumentorum genera, quibus de siderum propinquitate variante ratiocinamur, opticum utrumque. Aut enim quantitas corporis aspectabilis deprehenditur mutari, aut motus. Et postulat priorum capitum series et materia, ut a corpore incipiamus.

Sit A Terra, BAD linea apsidum, B centrum Lunae in apogaeo, BC semidiameter: cui aequalis statuatur DE in perigaeo; connectantar extremitates C, E cum A, et sit BAC angulus secundum assunta capitis prioris 15' 15", DAE vero

16' 40"; quaeritur proportio linearum DA, AB ad invicem. Cum igitur anguli ad B, D sint recti, et noti qui ad A anguli, scientur etiam C, E anguli residui ad rectum. C quidem 89° 44' 45", E vero 89° 43' 20". Ut igitur sinus totus ad angulorum E, C tangentes, sic ED vel BC ad lineas DA, BA. Si enim BC vel DE sit 100000, erit BA 22560000, DA vero 20640000. Quibus in unum compositis, fiet BD 43200000. Bisecta vero BD in puncto F, erit BF radius orbis, ut appellant, 21600000. Igitur FA eccentricitas 960000. Qualium vero FB est 100000, talium AF habebit 4444. Tanto longius abesset Luna, cum abest longissime, quam cum mediocriter. Sed quia plurimum expedit, nos circa rem eandem consensu muniri plurium argumentorum, age et a motu argumentemur. Sic enim apparebit, quid ad illa, quae objici possent, respondendum sit.

Ex motus igitur inconstantia duobus modis ratiocinari possumus de intervallo mutabili: aut enim totos consideramus semicirculos superiorem et inferiorem, aut diurnos motus in ipsis himitibus apogeao et perigaeo. Prius igitur de totis agemus semicirculis.

Veteres, quo primum tempore coeperant huic speculationi operam dare, somnem inconstantis motus causam in visum retulerant, rati, ob hoc solum videri Lunam tardam, quia longins absit a Terra, et velocem, quia vicinior Terris incedat. Hoc posito, ex quantitate temporis, quod inter diversas eolipses Lunae in diversis anomaliae gradibus versantis interlapsum esset, • admirabili ingenio eruerunt diametrum epicycli, per quem intervalla Lunae variarentur. Processum omnem explicare non est hujus loci. Quantum vero Luna ceteris planetis (quorum apogaeum non adeo vagum est) assimilari captus causa potest, remitto lectorem imperitiorem ad Cap. X. Opt, p. 336.

. Hoc itaque pacto Hipparchus (ut habes Cap. VIII. Opt. p. 313) Lunae distantiam in syzygiis perigaeam exhibuit 71 semidiametrorum Terrae, apogaeam 83, mediocrem 77, igitur eccentricitatem 6, hoc est, qualium radius orbis 100000, talem eccentricitatem 7792, quod est fere duplum ejas, quod ex variata diametro superius erat inventum. Idem Hipparchus, alio tempore sese corrigens, Lunam in syzygiis citimam pronunciavit abesse 62 semidiametris Terrae, ultimam vero 72 $\frac{1}{2}$; mediam igitur 67 $\frac{1}{4}$, et eccentricitatem 5 $\frac{1}{4}$, h. e. in dimensione consueta 7807. Post hunc Ptolemaeus ista corrigens invenit eccentricitatem 8730, quantus sc. est sinus 5⁴, aequationis maximae Lunae in copulis versantis. Atque hoc longe propins accedit ad duplum ejus, quod ego supra inveni. Albategnius, retenta quantitate acquationis hujus, nihil etiam in eccentricitate mutare potuit.

Copernicus exiguum aliquid demsit. Nam ejus aequatio maxima copularis in syzygiis 4° 56' 20" ostendit eccentricitatem 8610. Atque hic modus est investigandae eccentricitatis Lunae idem apud omnes.

Atqui non unum est, quod in hac ratione desiderem. Primum enim innixi sunt principio insufficienti. Non enim omnis variati motus inaequalitas ex fallacia visus oritur: aliquid ipsi etiam Lunae, non minus quam Quemadmodum enim illorum motus et ceteris re vera inest planetis. lentescunt vere, cum a Sole digrediuntur et contrahi in angustum videntur, ob discessum a visu, idque aequalibus propemodum utrisque decrementis, ex quo evenit, ut sinus acquationis maximae non totus, sed parte sui dimidia metiatar eccentricitatem, qua de re vide praeludium loco supra allegato Opt. p. 336, plenissimam vero demonstrationem Commentariis de Marte, cap. XVI. Ad eundem modum et in Luna res habet, ut semicirculus, qui a Tellure longius abest, non tantam minor visui videatur ob remotionem majorem a visu, sed etiam lentins et longiori tempore a sidere decurratur. Quae duae causae compositae cum conficiant' aequationem maximam copularem, ut supra dictum, 5°, quaelibet igitur per se causabitur dimidium $2^{1/2}$ circiter : et sic eccentricitati orbis Lunae (epicyclum enim veterum auctorum ego in eccentricum commuto, ut similium rerum similes etiam sint conceptus) relinquitar non plus quam 4365, dimidium sc. de Ptolemaica: quod minimum abest ab eo, quod ex apparentibus diametris supra inveneram.

Si quis ex me quaerat, qui probem, idem evenire Lunae, quod planetis ceteris, metnatque, ne quid indemonstratum irrepat inter initia: huic ego si analogiam allegem planetarum omnium ipsiusque adeo Solis (Terrae Copernico) causasque physicas, quibus planetae ipsaque Luna cientur in vacuo aethere nullis revincti orbibus, quarum ingenium hoc est, ut concessa variatione intervalli (quod in Luna certo arguit mutabilis apparentia diametri) necessario et physica motus intentio et remissio sequatur: haec inquam si allegem, repudiabit talis aliquis ut physica ac proinde extranea ab astronomia: perinde ac si contrarium huic axioma de motuum aequabilitate non sit aeque physicum, quod tamen usurpant veteres inter astronomiae principia. Quare ut litem intempestivam differam, remitto opponentem in Comment. Martis, ubi de Luna peculiare caput Nro. XXXVII. inveniet. In praesentia satis est, coiise nobis duo argumentorum genera in eccentricitatem propemodum eandem, quorum vel solitarium alterutrum probando instituto sufficit.

Brahens, adjutore Christiano Severini (Longomontano) cum videret, cansas aequationum ex dimidio esse physicas, idque mihi in Sole succedere, introduxit etiam in Lunam simile quid, more tamen suo, ut qui cum Copernico inaequalitatem motus perosus, aequantes Ptolemaicos seu meas causas physicas speraret duobus epicycliis exprimi et repraesentari seu salvari posse. Igitar, eccentricitate Ptolemaica, 8700 rotundo numero, ex sinu in tangentem conversa relicta quantitate, pro aequatione 5° 1' assumsit 4° 58' 20", quantum exhibuit numerus 8700 ex tabula tangentum. Eoque secto in partes tres, quod 8700 in tria facile divideretur, et circellorum alteri datis 5800, reliquo 2900, effecit ut Luna in apogaeo vel perigaeo versante eccentricitas esset non major quam 2900; quod etiam in parallaxibus tractandis sibi opportunum esse credebat. Vide de hoc et partem primam Comment. de

motu Martis. Verum origine et methodo perspectis, quibus Braheana et quibus mea eccentricitas est exstructa, spero lectorem non magis motum iri Braheana quam Ptolemaica veteri. At non ideo depugnatum est penitus: restat, quod non tantum in veteribus sed etiam in me ipso requiram, ut supra paulo profiteri coeperam. Magnum quidem aliquid est, consentire bisectionem eccentricitatis Ptolemaicae cum variatione diametrorum, ut jure credas, acquiescendum in hac eccentricitate 4360, repellendasque fortiter si quae ingruant objectiones aliae. At primo imbecillis est et timida experientia diametri Lunae apogaeae in speculatione adeo subtili, non alia quidem re, quam ipsa solitudine: optandumque (si impossibilia homini optanda) ut multae hujusmodi existerent, atque ita inter multarum errorculos pro certo sumi posset, quod est medium. Quid enim, si parvo aliquo aberravit non oculus in aestimando, sed longe ante manus in construenda circinoque metienda fenestella et lunula papyracea, quam facile potuit me effugere tertia pars minuti? Quod nolim eo trahi, quasi de toto hoc negotio concederem. In rebus enim minutis, ubi semisses et quadrantes facile est internoscere, ab unciis jam difficultas potest incipere. Sunt igitur hae meae copiolae in hac subtilitate tuenda timidiusculae. Ex adverso vero validus ingruit hostis, magna verisimilitudine pugnans, qui profecto contemni non potest. Quod sic Veteres inaequalitatem motus Lunae exstruxerunt ex solis eclipsihabet. bus Lunae. Umbra enim Telluris pro instrumento fuit astronomico, arguens verissimum Lunae locum in Solis opposito. In hunc modum constituta ratione inaequalitatis Lunae in oppositionibus, cum postea Ptolemaeus perpenderet observata in quadraturis, invenit totius inaequalitatis rationem in quadraturis longe aliam, majorem nempe aequationem maximam, sc. 7° 49, pro quo Braheus correctius reponit 7º 28'. Igitur quia aequatio effectas est eccentricitatis causa, effectus vero alius in quadraturis, alius in oppositionibus, concluserunt artifices, et causam, id est eccentricitatem, diversam esse in oppositionibus ab ea, quae est in quadraturis. Ptolemaeus quidem causam auctae aequationis commentus est diminutionem intervalli inter Lunam et Terram parte amplius tertia. Quem refutavit Regiomontanus eo, quod Lunaris corporis diameter non ad hunc modulum augeatur, refutarunt et Copernicus et Braheus argumento parallaxium, quae tantae non fiunt in quadraturis.

Copernicus igitur et Brahens diversis inter se modis eandem causam dixerunt eo tempore, quo Luna est dividua, majorem esse orbis Lunaris hic eccentricitatem, ille epicyclum. Qua ratione Copernicus in quadraturis effecit distantiam Lunae citimam semidiametrorum $52^{1}/_{4}$, remotissimam $68'_{4}$, vagantem per 16 semidiametros, in oppositionibus vero et conjunctionibus non humiliorem 55, nec altiorem $65^{1}/_{2}$, discursu $10^{1}/_{2}$ semidiametrorum. Braheus ob causas supra allatas breviora facit spatia, cui in quadris Luna humillima est $52^{2}/_{6}$, altissima $60^{3}/_{5}$ alta, discursu per $8'/_{6}$ semid.; in copulis vero a 55 in 58 variat sua intervalla, multo minori ambitu, quam variatio diametri Lunae, qua in eclipsibus utitur, postulabat. Fatetur tamen, in quadris minora adhuc spatia, nimirum, ut alibi inveni, non plane 6 semidiametros Telluris tractatione parallaxium effici.

Hunc in modum priores artifices ex iis quae apparent, Luna versante in quadraturis, ratiocinati sunt de eccentricitate ejus temporis, quo est Luna in quadraturis, si etiam linea apsidum coincidat cum linea per Solem et

Terram ducta, in qua aliis diebus copulantur luminaria. At Luna ex quadris digressa inque copulis versante, ponunt istam eccentricitatem reddi minorem et tantam, quanta requiritar ab observationibus copularum.

At dum ego causas motuum ex physica accerso, videor aliam rationem Si enim eccentricitas hoc nomine fit aequationis causa ingredi debere. physica, quia semicirculus superior a fonte virtutis distat longius, eamque virtutem non its fortem experitur, ut alter humilior: certe, Sole versante circa Lunae apogaeum (quod veteres dicunt epicycli, ego eccentri), Luna ideo nanciscitur magnam aequationem in quadris, quia non tantum locus apogaei tunc longius a Terra distat, sed ipsa etiam Luna ante octiduum cum Sole, id est in loco apogaei fuerat, multum tunc a Terris re vera remota, ex quo tempore per dies octo in languidiore virtute usque ad quadram promota, tanto majorem accumulavit differentiam motus seu aequationem. Vicissim. Sole inter apogaeum et perigaeum Lunae medio loco versante. Luna in copula cum Sole ideo minorem habet aequationem, quia non tantum locus apogaei tunc brevius a Terra distat, sed ipsa etiam Luna ante octiduum in quadra, id est in apogaeo illo fuerat, minus a Terris remota quam prius, cum esset apogaeum cum Sole. Hoc itaque pacto plane centrarium evenit ejus, quod putabant artifices priores, ut angustiora sint intervalla Lunae humillimae et altissimae in quadris quam in copulis, cum illi laxiora fecissent, magnaque sit eccentricitas orbis Lunae, non ut apud veteres singulis quadris, sed rarius, nimirum quoties Sol in lineam apsidum Lunae incidit, quod quotannis fit bis paulo minus. Nisi forte causam quis dicat aliam hujus menstruae aequationum differentiae, cujusmodi ego quidem investigare non potui.

Sed ad rem: et posito, quod aequatio 7° 28' suam ex his causis habeat originem, cum ejus sinus sit 13000, dimidium 6500 esset eccentricitas orbis Lunae, Sole in linea apsidum Lunae versante.

In schemate priori (Nr. 6) sit AF 6500, qualium FB 100000, ut sit AB 106500, AD 93500. Et sit jam angulus BAC 15''8''. Ut igitur totus ad tangentem BAC 440, sic AB ad BC $468'_{/2}$. Ei verd &equalis est DE. Ut igitur AD ad DE, sic totus ad 501, tangentem anguli 17' 13". Diametro igitur apogaea in copulis posita 30' 16", perigaea evaderet 34' 26" uno scrupulo major quam supra, quum hic apogaeum usurpemus quarta parte minorem quam supra. Neque dubito, si speculationem hanc super eccentricitate comprobem evidentius, quin omnes me jussuri sint cum observationibus diametri Lunae causa errorculi adeo subtilis transigere.

Hic igitar modus est primus ex totis semicirculis circuitus planetarum ratiocinandi de eccentricitate.

Sequitur alter, qui eandem ratiocinationem ex motu horario in apogaeo et perigaeo deducit.

Demonstravi in Comment. de motibus Martis, proportionem diurnoram in aphelio et perihelio (quibus in Luna respondent apogaeum et perigaeum) esse in proportione dupla eversa linearum, quae ex centro Terrae in apogaei et perigaei loca ducuntur. Assumantur igitur ex capite II. horarins motus apogaei 27' 3", perigaei 35' 42", in oppositionibus. Neque nos tarbet illa consideratio, quod scimus, admixtam esse accelerationem copularum (Braheo variationem dictam): jam enim vel ipsae observationes docent illam accelerationem in eadem proportione cum horariis admixtam illis, manet igitur proportio eadem etiam in compositis motibus (Eucl. V. 21)

Kepleri Opera. III.

35

Hipparchus.

F. 6. In schemate superiore (Nr. 6) sit A centrum Telluris, B apogaeum
 B Lunae, D perigaeum, F centrum orbis, G centrum aequantis, AF, FG
 aequales, per ea quae demonstrata sunt Comment. de Marte.

Primum subtrahamus variationem. Minutis 60 distantiae Lunae a Sole competit acceleratio seu variatio 1' 26"; sed motus apogaei habet tantum 27' 3", perigaei 35' 42". Acceleratio igitur ad hunc G modulum erit illic 39", hic 51". Et quia hic vigor accelerationis aequalis ponitur in apogaeo et perigaeo, consentaneum vero est inaequalem esse, id igitur in fine notabimus. Ergo: 27' 9" - 39" A = 26' 24" = 1584"; 35' 42" - 51" = 34' 51" = 2091. Medium proportionale = 1820; tota BD = 3911; dimidia FD = 1955'/₂, differentia AF = 135'/₂. Sin autem ex FD fat 100000, tunc ex FA fiet 6930, quod paulo superat prius inventam eccentricitatem 6500. Causa cur superet in inaequalem vigorem conferri potest. Sit enim mediocris vigor ut 200000. Si 200000 dat 39

et 51, tunc 6500 eccentricitas (quam jam praesupponamus ut ĉertam, quia priori modo mediocriter fuit praecognita) dat illic $2\frac{1}{2}$, hic $3\frac{1}{3}$. Itaque pro 39 et 51 debuimus usurpare $36\frac{1}{2}$ et $54\frac{1}{3}$, quibus ablatis ab horariis relinquitur $26^{\circ} 26\frac{1}{2}^{\circ\prime\prime}$ et $34^{\circ} 47\frac{1}{3}^{\circ\prime\prime}$, vel $1586\frac{1}{2}$ et $2087\frac{1}{3}^{\circ\prime}$, manet autem medium proportionale 1820; tota BD = $3907\frac{1}{3}$, FD = $1953\frac{1}{6}$, FA = $133\frac{6}{6}$. Sin autem ex FD fiat 100000, tunc ex FA fiet 6850 circiter, quod propius ad scopum collineat.

Lubet vero et in Tychonis horario eandem experiri rationem, nam qui ex observationibus desumitur, is in minimis non est adeo scrupulose certus. In apogaeo 27' 12" = 1632, $1632 - 36 \frac{1}{2} = 1595 \frac{1}{2}$; in perigaeo: 35' 37" = 2137; $2137 - 54 \frac{1}{3} = 2082 \frac{1}{3}$. Horum medium proportionale est 1823. BD = $3905 \frac{1}{3}$, FD = $1952 \frac{5}{6}$, FA = $129 \frac{1}{6}$. Valet 6649, quod proximum est priori 6500.

Hic ad pleniorem rei fidem indulgebo nonnihil speculationibas physicis, et detegam lectori objectionem aliquam, quae me diu exercuit. Cum adhuc haererem in antecessorum opinione, existimans eccentricitatem Lunae singulis mensibus augeri et minui, mihique ex praemissis fundamentis innotuisset, non in copulis minimam, in quadris maximam, sed vicissim in quadris esse minimam eccentricitatem, in copulis maximam, coepit apud me vacillare fiducia, utramque Lunae inaequalitatem ex eccentricitate exstruendi. Hinc in Opt. Cap. XI, probl. 5. fol. 348. unam aliquam constantem eccentricitatem concepi, quae esset media inter 4336 et 6520, scilicet 5428, quae aequationem efficeret mediam etiam 6° 15'. Hanc vero posui variari per aliam aliquam occultam causam physicam, ut vel ad 5° attenuetur in copulis, vel in quadris excrescat in 7° 30'. De observationibus vero meris diametri Lunae dubitavi, an ejus essent subtilitatis, ut de hoc negotio testari possint.

Causa cur diffiderem eccentricitati ad efficiendam utramque inaequalitatem, fuit haec. Nam posita quantacunque eccentricitate, cum Luna apogaea est in copulis, illa certe eccentricitas non poterit prodere aequationem maximam, quia non operatur illa toto tempore periodi, quippe persuasus eram ab antecessoribus, illam decrescere cum successu mensis. Ergo ut exeat haec quantitas 7° 30' in quadris, oportuisse putabam longe majorem quantitatem institui, in copula per eccentricitatem longe etiam majorem: cum tamen ne hanc quidem eccentricitatem 6520 satis bene cum observatione diametrorum (Opt. p. 348) conciliare potuerim; nedum majorem.

itaque quoties horariorum tractatio in copulis de majori eccontricitate, quam est 6520, testari videbatur, toties animi dubius, horariis assentirer an diametris, abjeci totum negotium desperato explicatu. At non me deseruit physica contemplatio, fidissimus mihi comes per totam astronomiam. imo dux sagacissimus. Ex ea enim tandem patuit, non opus esse, ut menstrua ponatur mutatio eccentricitatis, sufficere, ut sit annua: imo ne stare quidem rationes physicas, nisi sit annua. Etenim in opere de Marte demonstratum est. eccentricitatem circuitus planetae existere a vi magnetica globi planetarii, quae lineis rectis toto corpore globi porrigitar constanter tote circuita in longitudines medias. Fit itaque rapta globi circa Solem, ut tractus magnetici opposita puncta Soli obvertantur, quae ut opposita oppositam etiam vim obtinent. Nam illo extremo, quod in longitudinem mediam priorem vergit, faciant globum suum fugere a Sole per ascendentem semicirculum, donec transmisso jugo altera extremitas in posteriorem longitudinem mediam obversa per descendentem semicirculum prolectare incipiat globum suum, ut vicissim ad Solem adnaviget. Ascendere enim est, inter gyrationem extrinsecus sibi illatam fugere a Sole: descendere est, raptui circulari extrinsecus sibi illato miscere accessum suum ad Solem intrinsecus ortum. Haec ex Martis Comment, huc transferenda fuerunt : jam ad Lunam accommodabo.

Luna itaque circa Terram a Terrae gyratione menstruo circumactu gyrata easdem cum ceteris planetis affectiones sui 'corporis 'obtinet, 'sed quibus non Solem longinguum, sed vicinam Tellurem, a qua gyratur, vicissim fugit et appetit: quae etiam efficient, ut quamvis Tellus a Sole per aetherem rapiatur, nihilominus Luna illam comitetur semper in justa distantia. Haec igitur virtus magnetica corporis Lunaris, quomodo causetur eccentricitatem aliquam a centro Telluris simplicem, mediocriter patet in exemplo planetarum ceterorum, qui a centro Solis fiunt eccentrici. At quomodo virtus haec Lunae magnetica intendi et remitti possit, ut aliis temporibus aliam cansetur eccentricitatem, id difficultatem habet aliquam, nec profiteor, me totum hunc arcanum naturae thesaurum aperturum: non reticebo tamen, quid diutissime quaerens invenerim, quod numeris et observationibus se accommodet. Nimirum si apogaeum Lunae est cum Sole, vel perigaeum, Luna virtnosam lineam eccentricitatis effectricem tum demum in Terram porrigit. cam est in quadrato Solis. At Luna in quadrato Solis versans diametrum aliquam circuli illuminationis sui corporis etiam in Terram porrigit, et sic. quo tempore Sol habet apogaéum vel perigaeum Lunae locum, toto illo mense pars illuminata Lunae a parte obscura dividitur secundum tractum filamentorum magneticorum, sic ut virtus magnetica et 'lucis terminatio Contra si Sol obtineat medias Lunae longitudines, narallelae sint. circulus illuminationis Lunae secat omnes lineas virtuosas ad angulos rectos. At testantur observationes, si Sol obtinet apogaeum vel perigaeum' Lanae, tunc fieri acquationes maximas, quadrarum scilicet: quod secondum ista principia tantundem est ac si dicam, Lunam in quadris versantem fortius Terram appetere, et vicissim fugere in opposito, ut ita in apogaeo altius pervadat, in perigaeo humilius. Consentaneum est igitur, cum virtus Lunae magnetica extentis et rectis lateribus objicitur lumini Solis, sic at circulus seu terminus illaminationis fiat virtati parallelus, virtatem hanc magneticam per hunc situm ad Solem intendi; nullam vero ejus esse fortificationem, cum virtus magnetica rectis lineis in Solem porrigitur,

^{35 *}

Hipparchus.

eique puncti modo objicitur, ac si quantitatem hujus situs respecto nullam obtineret : quod fit, si Sol medias Lunae longitudines obtineat. Qua igitur mensura punctum hoc enascitur in lineam, eadem par est crescere et eccentricitatem et aequationes. Sed in sinuum proportione fit illud, quare et hoc in proportione sinuum distantiae Solis a mediis longitudinibus crescere necesse est.

Transegisse mihi videbar hisce sic constitutis. At postea me deceptum intellexi, nondum quippe transactum erat in solidum. Nam per has quidem extremas apogaei Lunae habitudines ad Solem integrum fuit mihi, secundam hanc inaequalitatem Lunae ab apogaeo ejusdem incipere, atque sic tantummodo unam et eandem virtutem magneticam in corpore Lunae ponere, sed eam postea intendere ant remittere; atque ingenium ejus tale est, observationibus testantibus, ut a linea per Solem et Terram, scilicet a copulis. incipiat. Fieri enim potest per alios situs apogaei ad Solem, ut nulla sit aequatio secunda Luna extra apogaeum versante, sc. cum est in copulis: et vicissim accidit, ut Luna in apogaeo et perigaeo versans habeat tamen aliquam aequationem secundam: quod evidentissimum erat argumentum, non unam, sed duas in Luna esse virtutes magneticas, quarum prior sit constans, posterior cum discessu apogaei vel perigaei a Sole vel ejus opposito deficiat, et cum quadrante distat apogaeum a Sole plane annihiletur. Cum autem haec secunda virtus quasi magnetica faciat similiter ut prior illa Lunam sequi Terram alternis et fugere, constituatque gradus summos sequelae vel fugae in quadris, juga in copulis: in quadris igitur filamenta sua in Terram porriget. At in quadris circulus Illuminatorius Lunae in Terram porrigitur, ut supra dictum, fitque ut uterque illuminationis circulus et Lunae et Terrae coincidant in idem planum, perinde ac si duo magnetes aptent filamenta in eandem rectam, capite unius post caudam alterius stante. Ergo conjectura physica subjecit opinionem, virtutem hanc secundam omnino consistere in illuminatione corporum a Sole; non ut supra, quatenus haec illuminatio fortificet priorem virtutem magneticam, et velut in jus ejus transeat, sed per se, suo insius separato situ. Hoc enim posito superiora non evertebantur. Apogaeo enim Lunae in Solis loco versante coincidant situ virtus utraque, quod tantundem est, ac si ut supra dicam, alteram ab altera totaliter fortificari.

Quid vero ad hoc sumus dicturi, qued experientia observationum docet, hanc virtutem secundam, acquationis secundae effectricem, interdum evanescere totam, ut cum est apogacum loco medio inter Solis locum et oppositum; cum contra hacc illuminatio corporum a Sole sit perpetua?

Scilicet hoc insuper adhuç limitandum, illuminationem suo quidem separato situ, ut jam positum erat, effici virtuosam, at non se ipsa, sed quatenus a priore virtute magnetica per applicationem ejus capitis vel caudae imbuitur. Non igitur in illam transit fortificatione sua, sed potius aliquid de illa sibi privatim appropriat. Nam se ipsa quidem utrinque ad Terram aequaliter habet illuminatio, nec causa est, cur potius Lunam a Terra fugere faciat, quam accedere, curque eadem plaga jam fugiat, jam sequatur. Illa vero prima virtus magnetica diversas sui plagas, caput et caudam diversis illuminationis plagis aliis temporibus aliter applicans, illas imbuit similiter.

Si physicus aliquis credere non potest, lumen adventitium, quod qualitas est, corpori Lunae novam conciliare vim magneticam, imbuique a priore illa vi magnetica, ut alias corpora ferrea imbuuntur a corporum magneti-

Hipparchus.

corum virtutibus, is igitur statuat intra exteriorem Lunaris globi crustam latere abditam sphaeram aliam convertibilem intus, quae polos et axem conversionis suae habeat in linea per Solem et Terram, quod potest fieri per naturalem $\delta o \pi \eta p$ poli in Solem, convertaturque sic, ut quoties Sol ab apogaeo Lunae venit in perigaeum ejusdem, toties illius partes dextimae fiant sinistimae: et tunc positione magis physica plane idem obtinebitur.

In his gradum sistit Keplerus et hinc inde plane interruptus est ordo et series disquisitionum Lunarium. Quae alia insunt codicibus Petropolitanis, documento quidem sunt, Keplerum rem ad finem perducere studio nunquam intermisso statuisse, neque vero ex his fragmentis integra deduci potest et compilari Lunae theoria, nisi quis conetur plane novum concinnare opus, cujus nullum videmus usum neque astronomiae neque historiae hujus scientiae. Ceterum inter manuscripta eorum, quae "Hipparchus" Kepleri comprehensurus erat, extat index, et volumine XV. Mss. Petrop., quod totum eclipsium calculis refertum est, eclipsium Lunae 46 (ab a. 1572. ad a. 1625) acchrata inquisitio, quam forte Keplerus adjungendam censuit "Hipparcho". Conscripta certe sunt haec folia Kepleri manu ad typum praeparata, loquitur auctor ut "de libro" perfecto, admonetque "lectorem" quasi praesentem. Ratione calculi utitar eadem, quam supra (p. 540) proponit, eamque in omnibus his 46 eclipsibus cum Tychonis calculo comparat.

"Index" autem hace habet: Possent fieri distincta capita utpote: 1) De diametris luminarium observandis, indeque et de eccentricitate Lunae in conjunctionibus et oppositionibus.

2) De motu diurno et horario Lunae in conjunctionibus et oppositionibus observando.

3) De motu et angulo latitudinis, h. e. de latitudine maxima, una cum Lunae parallaxi observanda. Et admonitio super inconstantia hujus anguli. Igitur etiam de observatione hujus ipsius anguli, citra maximae latitudinis considerationem, eaque duplici, vel ex eclipsibus simpliciter, vel cum parallaxi, ex Solis eclipsi, per horarium.

4) Sciametria. 5) Semidiametri umbrae variae. 6) Lunae parallaxes variae. 7) Solis parallaxis, altitudo et corporum proportio.

Eclipsium fasciculus hanc prae se fert inscriptionem :

AD MOTUUM LUNAE RESTITUTIONES PERTINENTIA.

DOCUMENTA PRAECIPUE

OBSERVATARUM ET PARTIM EXAMINATARUM ECLIPSIUM.

Pleraeque eclipses Lincii rursum de novo examinatae, quibus accesserunt etiam sequentium annorum eclipses observatae ibidem.

I. Eclipsis Lunae, quae visa est a. 1572. 25. Jun.

'Historia observationis'. Corn. Gemma in Cosmocritico ad praecedentem diem 24. annotat ventorum tempestatem magnam in Belgia.

Lauterbachius Graetii Śtyriae in Ephemeridum libro ad diem ipsum 25. adscripsit magnam tempestatem, ad 26. pluviam. Nec Tycho Braheus hac usus est, utique quia etiam in ipsius loco coelum nubilum fuerat. Sane \odot et \heartsuit retrogradus jungebantur illis diebus in $\square \mathcal{O}$. Itaque valde verisimile est, hanc eclipsin nuspiam esse observatam.

Maestlinus tamen in Epitome Astronomiae, ubi definit, quaenam eclipses usque ad dimidiam diametrum deficiant, addit, hujusmodi fuisse eclipsin a 72. 25. Jun. Nec tamen, addit, a se observatam esse. (In marg.: Tantam computavit et pinxit in libro mscr. Obs., ex Tab. Alphons. et Prut. paulo minorem. Addit, eam Tubingae videri non potuisse, toto enim illo die aërem nubibus repletum fuisse, imbribus crebris; post h. 12. (m. n.) discussas nubes, aërem temperatiorem fuisse.)

Lauterbachius adscripsit in libro Ephem. principium d. 25. Jun. h. 10., medium h. 11. 25', finem h. 12. 50. Sed videtur hoc non ex observatione sed ex computatione desumsisse. Stadius auctor Eph. ponit Antwerpiae initium h. 10. 40'. Diff. vero meridianorum inter Viennam et Antw. in horis 0. 45; esset itaque medium Viennae plane h. 11. 25, ut scripsit Lauterbachius. Graetii enim et Viennae long. propemodum est eadem, Lauterbachiique manu apposita est diff. inter Antw. et Graetium h. 0. 43'. Atque hic idem L. quantitati hujus eclipseos, quam Eph. Stadianae vestibulum prodit dig. 7. 14', supposuit quaternarium, quasi 4 tantum digiti defecerint, non 6.

Ex quo apparet, tempora Lauterbachii, qui medium cum Eph. Stadiana ponit in h. 10. 40', esse non ex observatione, sed ex nuda accommodatione ejus, quod Stadius posuit, ad merid. Graetiensem.

Nam Graetii si quod Uraniburgi computatur apparuisset, in h. 9. 57' cecidisset, non in h. 11. 25'. Quare nihil est opus etiam durationem addere, ut quae non est observata. Scrupula quidem dimidiae durationis essent 39' 30", horarius a \odot verus ex 2. columna Prog. fol. 128 quippe ultra ∂ extensus, esset 33' 50", itaque dimidia duratio h. 1. 10' 43", tota 2^h 21' 26", cum Lauterb. habeat 2. 50'. Jam subjungo etiam meum calculum, de cujus tamen epocha nostri temporis

in hoc libro deliberatur.

Pro ③. Anno 1572. 16. Jun. h. 16. 23' ④ in 5. 13. 59 ⑤ 25. " 9. 46 7. 36. 50
8 dies h. 17. 23 41. 20
57. 5 1 3. 32. 👳
4983
32294
37277
Pro D.
1571 27. 0. 41. 7 - 4. 6. 30. 55 - 4. 3. 48. 6
Majus 152. 31. 46
24. 9. 46. 0 1. 46
203. 10. 27. 7 25. Corr.
Revol. VII. 192. 21. 10. 4 0. 21. 29. 22 4. 3. 39. 34
10. 13. 17. 3 4. 15. 24. 2 10. 12. 50
35. 40 10. 7 💦 23. 26. 44 😔
52012 J 13. 34. 26 5 O 13. 32 0
125820 Requisitus 13. 34. 28 9. 54. 44 lat. 0. 54. 51
177832 2. 28 Reductio
Parall.) 62. 52 Ipsissima oppositio 13. 34. 28 5
\odot 0. 59 Aequatio physica mihi 6' 30" add. hic sub.
63. 51 Ergo h. 9. 39' 30''.
Semid. umbrae 48. 51
" <u>) 16. 10 </u>
65. 1 - 17.880
Latit. 54. 41 — 12. 660
Scrupala def 10. 20 Haec scrupula sunt digiti paulo minus 4.
" dur. dim. 35. 10 — 5. 220 ¹³) Simplex lat. dat ultra 5, ex voto.
Horar.) 37. 10 Duratio h. 2. 0' 40"
• 2. 23
34. 47

Quodsi quantitatem Lauterbachius digitorum 4 observavit, equidem hanc omnino repraesentat meus calculus. Quod autem minor mihi fit ecliptis quam Braheo, id fit ob 2 causas concurrentes. Etsi enim tempus idem ego colligo, at angulo'lat. majore et nodo in consequentia remotiore utor: qui concursus causarum plus etiam efficeret, nisi vicissim major etiam umbrae semid. mihi fieret, geometricis demonstr. exstructa, quam Braheo, qui solutus his legibus quantitatem hanc experientiae relinquit, quae propter causas opticas non semper est sui similis.' Haec igitur eclipsis & retroposito in antecedentia fieret major et annotationi Maestlini vicinior.

II. Eclipsis Lunae anno 1573, nocte quae sequitur diem 8. Decembris.

Historia observationis. Annus est, quo novum sidus toto fulsit, Braheumque in laboribus astronomicis assiduum cumprimis habuit. In hunc annum diarium latino sermone scripsit, luculento cum praeambulo, quod subscriptionem habet "in Museo nostro Herivadiensi a. 1572 mense Decembri." Sequebatur descriptio eolipsis futurae, cum praescriptione altitudinis magnarum stellarum ad praecipua momenta seu phases, idque in horizonte, cui alt. Poli 56°, long. 36° 45′, 10° so minor ea, quam Beinholdus assignat Regiomonti Prussiae. Hoc praeambulum longo post tempore inter epistolas Jo. Pratensis Medici suasque mutuas excudendum dedit, initio facto ad Epistolarum Vol. II ; sed quod morte praeventus non ultra 12 paginas continuavit. Sed accessit tamen ad id praeambulum annotatio auctoris, in qua refert, eclipsin hanc a se fuisse observatam in Curi a sua K pudsdorpiana. Initium paulo prius quam caput inferioris II elevaretur 14° 30′, totam exstinctam fuisse in alt. ejusdem 22° 40′. Cum inciperet egredi Caniculam elafam ad 17° 50′, finem non conspectum ob nubes. At hiantibus postea nubibus totam plenam fuisso, cum supremus margo alt. prae se ferret 50° 25′. Has alt. ita prodit, nec attento quod paulo alias praedixisset.

Computabimus igitur tria dic	ta omenta.	
34. 0 log. 58126	34. 0 — log.	58126
Inf. II 61. 2 , 13364	Canis 83. 45 — "	596
27. 2 71490	49. 45	58722
Dist. a V. 75. 30	27. 2 71490	49.45 58722
102.32 - 51.16 - 24838	67. 20	72. 10
48.28 - 24.14 - 89049	94. 22 47. 11- 30988	121. 55 - 60. 57 1/2 - 13440
113887	40. 18 20. 9-106572	$22.25 - 11.12\frac{1}{2} - 163800$
42397	137560	177240
	66070	118518
108. 0 - 54. 0 21199	91.54 - 45.57 33035	67. 8 - 33. 34 - 59259
A. R. 109. 49	109. 49	109. 15
A. R. M. C. 1. 49	17.55	42. 7
	1. 49	17. 55
	16. 6	24. 12

Hinc prodit tempus incidentiae h. 1. 4' 24'' aut quid amplius, quia eclipsis incepit paulo antequam esset alt. stellae primo prodita. Mora fit h. 1. 37'. In media igitar mora A. R. M. C. 30° 1'. Et quia () anno 73. 8. Dec. ad horam est in 26° 50' \checkmark c. c., cujus A. R. 266. 37, hinc tempus apparens medii observati emergit 123. 24. sea h. 8. 14. Locus autem ponitar esse 2' orientalior Hafnia, igitar Hafniae medium h. 8. 12'. Pro hoc in Progymn. fol. 02. assumsit h. 8. 3'. In chartis restitutionum habet Chr. Severini h. 8. 6'.

Frid. Rittelius, curialis Principis Wirt., doctrinae hujus perquam studiosus, annotavit ex obs. nescio cujus : medium hujus eclipseos Tub. visum esse h. 8. 57', ita diff. meridd. esset 15. ¹⁴) Invenio etiam Lovanii illam incepisse h. 6. Ablata a vera duratione dimidia 1^h 53', venit Hafniae initium h. 6. 19'. At diff. meridd. major est. Non igitar accurata est obs. Lovaniensis, Corn. Gemmae puto.

Sequitur calculus hujus eclipseos ex Tychone.

Huic acquatio est 1' 5" sub. Ergo tempus medium 8° 10' 30" circ., restat ad meridiem primam anni 1574. non plus quam 23 d. 154 49' 30".

D. 23. — 22. 40. 12 b. 15. 36. 59 49' 2. 2 30''	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
23. 19. 12 Completo 73. — 9. 20. 27. 56 8. 27. 8. 44	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3. 5. 19. 30 Anom. 5. 21. 49. 14 19. 59	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
1. 48 Prosth. 18. 11 ⊙ 26. 50. 33 ∏	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

552

Igitur calculus Tychonis medium observatum praevegtit, statuitque medium h. 8. 1' 40" aequali. In cujus favorem assumtum fuit medium h. 8. 2' aequali. De hoc sane multum non esset contendendum, quia dum agnoscitur phasis, illa jam transiit, interimque dum capitur alt. stellae, labitur alia aliqua pars coeli : quin etiam errorculus in altitudine facile aliquot minuta horae surripit vel obtrudit.

Semid. umbrae est 45' 48", variatio umbrae 56", umbrae igitur semid. correcta 44' 52", Lunae 17' 28" Summa 62. 20 - 16. 440 Scrupula durationis dimidiae 61. 27 10. 28 - 00. 470 59532 - 33. 5 74910 - 28. 22 15. 970 Duratio dim. h. 1. 51. 27 15378 Diff. semidd, 27. 24 -78380 49. 42 18848 Dimidia mora Tempus incidentiae h. 1. 1. 45. Haec satis bene cum observatis stant : etsi umbra non sit geometricae quantitatis assumta. Ex meo calculo sic computo: Acquatio temporis physica est hoc () loco 1' add., astronomica esset 2 subt. Nam epochas, de quibus corrigendis hoc libro deliberatur, usurpo sic, ut aequatio temporis mihi non a 0° Y. sed a 2° 😔 incipiat, ubi Tycho habet 0. 45". Contra ubi ille nihil habet, ego subtraho physice 13' 20" vel addo astron. 8' 12", prout eclipsium suffragia huc vel illuc magis inclinaverint. Aequale ergo tempus medii est h. 8. 12' 40" 1572. 7. 6. 20. 58 - 5. 19. 29. 30 - -3. 13. 22. 25 Novb. 334. 7. 8. 12. 40 D. 348. 14. 33. 38 Bevol XIII. 358. 5. 1. 34 - 1. 9. 54. 33 -0. 18. 58. 9. 14. 27. 56 - 6. 29. 24. 3 -2. 24. 24. 17 24. 30 28.36 2. 3.44 4. 2.56 Parall.) 62. 24 13.58 ⊙ 1. 1 25. 0 1.52 63. 25 Ω 25. 20. 49 Π 14 🧿 26. 51. 14 📈 Semid. 💿 15.32 2. 19. 48 Umbra 47.53 1. 30. 25 Lat. 8. 20. Simplex Ty-27. 3.21) 16. 3 0. 25 Reductio. chonica quasi 26, 50, 49 Requisitus 7' 58' Summa 63. 56 - 17. 290 26. 50. 49 Requisitus. 12. 32 - 156700 correcta. Latit. 7. 12 - 00. 230 33. 47 - 57400 7. 12. 17.060 99300 Horar.) 36. 20 Scrupula 2. 33 dimidiae
 1) a O 33. 47 durationis 63. 30 . 57400 63.30 Colligo igitur ego medium hujus eclipsis Dim. duratio h. 1. 52. 45. 70250 29. 43 h. 7. 50. 26 aeguali. Ita Tychonicus cal-Min. 22. 14 abundamus. 12850 culus 111/2' propior est observationi quam Diff. semid. 31.50 - 04.29 meus. Sed cave lector, triumphum canas 00. 23 ante victoriam. Erit enim ubi contrarium 04.06 quoque locum habeat. Scrup. morae dimidiae 30.58

Mora dimidia H. 0. 54. 45

Tempus incidentiae " 0. 58, 0.

Temporis quidem acquatio sustinet unicum scrupulum de hac discrepantia, cetera sunt, ut in priori quoque eclipsi, ex diversitate acquationum), ut explicavi in Prolegomenis Ephem. N. 14; tanto enim hic praevenio, quanto ibi sequebar Tychonicam calculum, quia acquatio hic additur, ibi subtrahebatur, utrinque mihi major Tychonica.

Quod attinet moram in tenebris, quam ego colligo h. 1. 49. 30, Tycho h. 1. 39. 24, cum sit observata mora 1. 37. 0: monendus est lector identidem, semid. Tychonicam umbrae non esse geometricam, sed accommodatam legibus opticis, quae non semper eodem modo se habent. Hic enim sese quam proxime accommodant calculo Tychonis, at alias discedunt longius. Quod dixi, probo hujus eclipseos exemplo. Tycho parall.) infra long. mediam in o' et o' luminarium prodit 63' co.; adde parall. O 3' 7", acervantur 66. 7. Hino aufer semid. O, quam Tycho exhibet 16', restat semid. umbrae 50' 7", si umbra rectis lineis formata intelligatur. At Tycho jubet hic umbrae semid. statuere minorem quam 45, ita umbra fit 10' angustior, quare ad 18' temporis decedent durationi, quarum tamen partem ipse compensat aliter. Atque hoc est illud, quod Griganus, quod Marius, quod alii publicis scriptis in Tychone desiderant. Ne mireris igitur, mihi durationem in tenebris fieri 12' prolixiorem observata; verissime enim de umbra usurpamus, quod Braheus de) corpore dixit (Prog. p. 134), vi luminis margines ejus dilui: quod quomodo fiat, disputo in Opticis, et in Epitome nuper edita summam rei propono.

Confirmat hoc $\pi \alpha \vartheta o_c$ umbrae etiam duratio temporis incidentiae, quod cum ego prodam 58', Tycho 62, observatio dat plus quam 65. Nimirum latius excurrunt limites illi umbrae dilutae, quorum ingressu Lunae adhuc plenae et clarissimae margo incipit obfuscari, quam illi limites, quibus desertis postremus) margo desinit in lumine censeri; quidquid est inter hos duplices limites lucis dubiae, id in principio eclipsis pro tenebris habetur, comparatione claritatis in toto reliquo corpore, in fine vero incidentiae id habetur pro lumine, comparatione obscuritatis in toto reliquo corpore. Atque hinc est, quod in hac eclipsi fere tanto longior est mihi dimidia mora quam observatum, quanto breviorem exhibeo incidentiam, ut sic dimidiae durationi summa sua constet. Adde enim semissem observatae morae in tenebris, sc. 48' 30" ad incidentiam h. 1. 4. 24, conficies dimidiam durationem observatam h. 1. 53', quantam omnino exhibet meus calculus. Hujus negotii testimonia complura sequentur ex ipsarum obss. tractatione.

Interim non dissimulo, si lat.) assumatur major transpositione nodi antecedentis in antecedentia, moram penes me diminutum iri, sed sic ut una etiam duratio nonnihil diminuatur deseratque observationem, quam nunc repraesentat.

Observatio	Maestlini Tu	bingae habita.	
Initio	Incidenti ae	Emersionis	Finis
Altit. seq. 👖 7° 50' —	17. 4	32. 21	42. 25
Dext. hum. Or. 8. 10 -		Canicul. 16. 0	- 26. 18
17mae II 8. 35 -	18. 56	4ta Leon. 10, 58	
h. 6. 4' 45"	. h. 7. 9' 15"	h. 8. 41'	h. 9. 45' 36"
Тусьо 6. 21	Т. 7. 25	T. 9. 2.	
43 . 30 — 37345		medium observavit]	
55. 15 - 19644 - 56212		locus 🕽 apparens	septentrionalior ad
parall. 62. 24 — 3950 — 3950		ui diametrum. Tycho	
15694 52262		∏, lat. 0. 58' au	
51. 17 35. 35	anno 73. in	n 27° 30′ ∏. Sane	lat. projiciebat)
) 26. 50. lat. 7. 12	# 26° 20' T	I in orientem et in ans	trum. Ad 266. 37.
Visus) 27. 41. 17 II 42. 47	A. R. 🕑 8	dd. 119° consurgit	25. 30, oriturque
semid. 16. 3		o) a Nonag. 43. 30.	
58, 50		i 11' superavit stellam	
	margine su	o austral i texisset a u	u summinister mam.

III. Eclipsis Lunae anno 1576. 7. Octobris.

Tycho Brahe Uraniburgi nihil nisi finem observavit, tunc Canicula habuit alt. 18° 30'; hora igitur fuit 13. 23' a meridie. Confirmationis causa caput II meridionalis altum 37° 0' est deprehensum, unde elicitur h. 13. 25', quippe haec obs. posterior est. Et assumsit Severini initium h. 13. 20.

Maestlinus Tubingae initium observavit in alt. Aquilae $27\frac{1}{4}$, dig. 107₂, aestimatione usus possibili. Post finem humerus Pegasi 26° 20' in occ. altus. filled b. 9. 51' signare ait, hoc 1^h 28'; finem putat h. 0. 20. ante fuisse, ergo h. 1. 8. Ergo diff. merid. 15. 17. vel 12.

4575	Calculus hujus eclipseos ex Tycho	DB8.	
1575. (•) biss. Sept. 9. 19. 59. 17 d. 6. 9. 5. 58. 13 h. 11. 27. 6 M. 24. 0. 59 6. 26. 25. 35 3. 5. 21. 35 3. 21. 4. 1. 56. 27	$ \begin{array}{c} 0 & 3. 22. 39 \\ 0. & 3. 22. 39 \\ 5. 23. 24. 34 \\ - & 1. 28. 11. 43 \\ - & 5. 35. 15 \\ - & 5. 59. 17 \\ - \\ 12. 11 \\ - & 13. 4 \\ \hline 6. & 2. 34. 39 \\ - & 2. 5. 28. 8 \\ 4. 27. 14 \\ - & 2. 15 \\ \hline 1. & 3 \\ - & 56 \\ \hline 5. 28. 6. 22 \\ \end{array} $	- 0. 24. 50. 31 - 2. 19. 21. 34 6. 3. 49 13. 14	0. 17. 12. 35 0. 14. 50. 18 <u>1. 31</u> 0. 2. 20. 46
, ⊙ 24. 29. 8 ⊭		1. 0. 8. 18 4. 28. 17 11. 24. 23. 39	Lat. 31. 9
		5. 11	2. 2
Horarins 28. 50 Semid.) 16. 31 Umbrae 43. 51 Variatio <u>45</u> Correctae 43. 6	Summa 59. 37 — 15. 040 Lat. 29. 7 — 03. 580 ala durat. 52. 2 <u>11. 46</u> 95000 23. 12 73281 28. 50 21719 Dimidia duratio h. 1. 48'	1. 58 4	29. 7

Igitur praecessit exacta calculi oppositio 5' c. c. nimirum h. 11. 19 aequali. Adde dimid. dur. 1. 48. Dur. h. 3. 36. Maestl. 3. 17

Computatur finis 13. 7 (5)

7. 16 sub. Acquatio Tychonica

Addita igitur ad medium facit tempus apparens initii h. 13. 14

Obs. habet 13.23 vel plus.

In Prog. ponitur medium hujus eclipseos quasi observatum h. 11. 32', id est ex Seve-riaii charta, qui 2' addidit, medio computato ob tardiorem ingressum, de quo nihil in Pro-gymn., 8' aufert loco acquationis temporis, dimidiam dur. facit h. 1. 50', ut habeat acquale tempus mediae eclipseos h. 11. 24'. Sed ut vides, tabulae editae dant minus. Itaque Tychonis calculus hanc eclipsin quoad ultimam phasin c. 9' praevertit.

Ex meo calculo sic computo.

	(•) Jun.h.
1575. 0. 1. 57. 42-9. 22.		76. 16. 17. 20 - 5. 18. 11 🥹
280. 11. 19	0	ct. 7.11.19
Revol.K. 275. 13. 5. 49-1. 0. 4	1. 57 — 0. 14. 35. 29 d. 1	112. 17. 59 - 18. 26. 58
5. 0. 10. 53-2. 1. 2		29 . 55
31. 42	5. 45 25. 0 Cor.	14. 56
170709 24.3	1.45 Y R 0.34. 6 8	⊙ 24. 30. 6=
63800 Req. 24. 3	1. 35 0 24. 30. 0	6 0. 47
234500		3. 34, simpl. 31. 41
• •	1. 35 Reduct	
Parall.) 59.44		
⊙ <u>1. 0</u>) horariu		ratio fiet
60.44 • *	2. 30	longior.
Semid. () 15. 18) a (29. 27 - 71200	
Semid. umbr. 45. 26	21.13 - 104000	
•) 15.21	32800	· _
Summa 60. 47 - 15. 620		Medium h. 11. 19
Latit. 33. 34 - 04. 760		1. 43
Ser. dimid. 50. 40 10. 860 T	Duratio dimid. 1. 43. 14	Finis 18. 2 acqu.
Sc. def. 27. 18	Dur. 3. 26. 28	Aequatio phys. 5' 23" add.
	8. Dur. Maestl. 3. 17 ergo	subtr. erit h. 12. 56. 37 appar.
	O. LUIT. MARCHI, J. 14 CAN	areas of the second apparts

Hanc igitur finis phasin seu tempus ejus minus ego assequor quam Tycho, quamvis in medio eclipsis ad tempus medium plane coincidamus; disto enim per 26' 23", quorum 5 solum sunt ob durationis meae parvitatem, at 12' 40" ob diversam rationem aequandi tempus, de qua hoc libro pronunciandum erit; reliqua 9 sunt mihi cum Tychone communia.

Mirari possis, cur mihi duratio brevior, cum tamen umbrae transitus sit mihi prolixior? Est igitur causa haec, quia mihi vicissim et) semidiameter brevior et latitudo major: major autem ista, propter duas causas: quia mihi et elongatior umbra a nodo sequenti, et major angulus excursuum in latitudinem. Sed de hisce parum habet quod testetur eclipsis ista, ut in qua solus finis observatus: nisi quod duratio quanto auctior fieret, tanto minus ab observato fine distaremus. Etsi et valde contemtum est utriusque dimidiae durationis intervallum 5', et facile in alt. stellae vel minimus defectus tantum efficit et denique in fine mero internoscendo diversorum oculorum multo major est dissonantia, ut in sequentibus apparebit.

Notabimus interim, quod revocato nodo sequente in antecedentia latitudo fiat minor, duratio major.

IV. Eclipsis Lunae anno 1577. 2. Aprilis.

Hujus eclipsis observationes Severinius ex observationibus Tychonis antiquioribus (quae ut rariores et quarta forma compactae cum ceterarum protocollis in folio non jungebantur, ecque in meam potestatem non devenerunt) sic exscripsit, quod principium fuerit in ortu h. 7. 0, non tamen satis discerni potuerit, pute ob vapores c. horizontem turbidiores, totus vero orbis in umbra h. 8. 7', emersus initium h. 9. 42', finis h. 10. 44'. Est igitur medium inter initium et finem h. 8. 52' incertiusculum. At medium inter immersionem totalem et emersus initium esset h. 8. $54^{4}/_{2}$ ', mora in tenebris h. 1. 35'. Et quià emersio duravit ab h. 9. 42'in h. 10. 44' per h. 1. 2', si tantum est immersione consumtum, statuamus: initium cadet h. 7. 5. Ponitur autem medium in Progymn. h. 8. 50'.

Habeo etiam observationem Barth. Sculteti Goerlicensis, qui postea consulatum in illa urbe gessit, qui initium eclipsis signavit altitudine \Im 5° 56', immersionem totalem in alt. ejusdem 13° 9', quo ecdem momento notavit et pulsum in urbe h. 1. noctis, initium emersionis cum sonaret dimidiam tertiam ecdem in horologio; et dimidio quadrante posterius h. 10; a meridie in alio horologio. Ex hac mensuratione morae primum illud patet, moram illi visam h. 1. 30' longam, quae Tychoni h. 1. 35: quae diversitas post omnem adhibitam diligentiam caveri tamen non potest.

Hinc computanda sunt tempora duplicis initii. Si igitur alt.) (centri puto) initio morae fuit 13° 9', parallaxis) addita veram exhibet alt. veri loci centri) 14° 12' (contemta jam refractione, ut quae tantummodo 9' a Tychone exhibetur). Erat vero tunc) 47' ante medium eclipsis, quod illam referebat in 22° $45'_{15'} \simeq$. Cum igitur sit verus) horarius 37' 30'', quare 47' intervallo respondent 29' 22'' de vero motu), ut) fuerit in 22° 16' \simeq , cum lat., ut ex sequenti calculo apparebit, 0. 6' austr., ut fuerit ejus declinatio vera 8° 48' austr., A. R. 200° 35'. Alt poli Goerliconsis comparatione cum Pragensi ex tab. recentissimis est 51° 20', etsi auctor ipse anno 1577 in descriptione cometae assumserit eam 50° 40', secutus puto fidem tabularum illius temporis. Nam cum Pragae alt poli sit 50° 6' et distantia itineraria Goerlicium usque milliaria Germ. 21, parum admodum a linea septentrionis deflectens in ortum: computatis 15 mill. in gradum, veniret alt. poli Goerliconsis 51° 30'; quam propter deflectionem dictam et in favorem tabularum relinquo intra 51. 20.

Ex his igitur datis computo horam ut sequitur:

VP 38. 40 53. 47 47034 26. 534, . . SP 98.48 1184 AR) 200. 35 60. 8 \odot 21. 48218 **V8**_75.48 125. 48 8. 23 Horae 7 Huennae 8. 15. 40 - 7. 50 - 199295 135. 56 - 67. 58 -7584 Esset diff. meridd. 16' 206879 158661 79331

Sic pro initio, a) visa est in alt. 5° 56', vera alt. fuit 6. 59 sine refractione et) in 21° 38'/₅' =; declinatio

98. 38.			• •	•	•	1118 47034
59.		•-	•••	•	•	48152
<u>83.</u> 23.	$\frac{1}{\alpha}$		• 4 4	34		160690
142.	-					5335
				-		166025
				•		117873
						58937

67. 22 33. 41 AR) 200. 35 (20. 57) 111. 16 Horae 7. 27 Hnennae 7. 5 Esset diff. meridianorum 22'.

Vides, quantum de duratione seu mora in tenebris Sculteto decesserat, tantum etiam secunda vice accedere differentiae meridianorum, ut pene ausimus pronunciare, Scultetum visus sui conditionibus 5' serius quam Tychonem agnovisse totalem immersionem, atque ita meridianorum diff. esse 16' temporis, quod proxime accedit ad tab. geogr. recentiores. Etenim Praga est Huennae ad ortum c. 5' et Praga Goerlicium proficiscentes deflectunt etiam ad ortum, praesertim egressi angustias et saltum in regni Bohemici limitibus. Sed relinquantur sane paucula minuta temporis in dubio, confirmanda per sequentes eclipses. Quod vero Tycho Prog. II. fol. 375. Goerlicium et Huennam sub eundem meridianum confert, id de effectu differentiae meridianorum est intelligendum in motu diurno cometae, quo de agitur eo loco.

Satis igitur confirmatum habemus ex 2 locis, medium hujus eclipsis Uraniburgi apparuisse h. 8. 54¹/₃'; sequitur jam calculus ex Tychone, cujus aequatio•temporis 6' 38" S. Ergo obs. tempus medium h. 8. 48'.

\odot
1576. 9. 20. 44. 6 - 25. 11. 29 - 3. 12. 51. 5 - 1. 20. 18. 19
Apr. d. 1. 2. 29. 41. 38 - 0. 29. 21. 29 - 3. 18. 54. 49 - 4. 3. 52. 15
h. 8. 21. 41 — 4. 3. 48 — . 4. 21. 18 — 4. 24. 36
M. 48. 24. 23 — 26. 6 — 26. 27
0. 20, 47, 25 - 5, 29, 1, 9 - 7, 6, 33, 18 - 5, 29, 1, 37
3. 5. 22. 2. 59. 52 4. 13 3. 2. 19
9, 15, 25, 25 2, 27 2, 17 6, 2, 3, 56 Lat. 10' 46"
1. 57. 35 0. 20. 47. 25 3. 2. 19
$\overline{\bigcirc}$ 22. 45. 0γ $\overline{\bigcirc}$ 22. 50. 53= 7. 9. 35. 37
Horarius 34' 17" Scrup. morae 26. 0 Prodit autem tempus
Semid.) 17. 43 83825 - 28. 0 incidentiae h. 1. 4 ¹ / ₄ '
Umbrae 46. 21 74680 - 28. 26 mora 1. 31.
Variatio 25 55970 — 34, 17 tota duratio " 3. 39' 30",
Umbrae cor. 45. 56
Summa 63, 39 — 17, 140 Dimidia $mor 27655 - 0.45, 30$ value conclusioneur
Lat. 10. 46 - 00, 500 Tempus incidentiae h. 1. 4' 15".
Scrip, durat. 62, 43 — 16, 640
Scrup. durat. 62. 43 — 16. 640
Meo calculo sic :
Meo calculo sic : 1577. ⊙ 1578.)
Meo calculo sic : 1577. O 1576. D 16. Jun. b. 23. 35 — 5. 19. 14 @ 7. 20. 56. 8 — 11. 2. 11. 55 — 0. 26. 2. 21
Meo calculo sic : 1577.
Meo calculo sic : 1577. (a) 1576. (b) 16. Jun. b. 23. 35 - 5. 19. 14 (c) 7. 20. 56. 8 - 11. 2. 11. 55 - 0. 26. 2. 21 2. Apr. 8. 32 91. 8. 32 75 dies h. 15. 3 - 11. 57. 13 99. 5. 28. 8 - 0. 12. 16. 47 - 0. 5. 50. 12
Meo calculo sic : 1576. 1577. \odot 1577. \odot 16. Jun. h. 23. 35 - 5. 19. 14 \odot 7. 20. 56. 8 - 11. 2. 11. 55 - 0. 26. 2. 21 2. Apr. 8. 32 91. 8. 32 95. 5. 28. 8 0. 12. 16. 47 - 0. 5. 50. 12 58. 32 29. 16 110. 5. 14. 20 11: 14. 28. 42 - 0. 20. 12. 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

lat. 8' 35'' simplex 8. 6.

Digitized by Google

557

7⁴/₅ minutis temporis medii citius, quam in Tychonico, idem effectas cum co, qui fuit in secunda, propter candem causam. Vicissim \odot in 22° 45′ Υ exhibet acquationem temporis physice compositam 19′ 46′′ subtrahendam ab apparenti, quae igitur addita medie efficit apparens h. 8. 50′. Propius igitur ad obs. venio quam Tycho, et omaino proxime; sed in hoc propterea calculus meus non est justificatus.

Parallaxis) 63. 4 , 0 1. 0		Horarius) 37. 30 17 2. 27 04	
64. 4) $a \odot 35. 3 - 53$	
Semid. () 15. 12		Latitudo 8. 35 - 00	
Semid. umbrae 48. 52			. 600
") <u>16. 13</u>			. 190 34542
Summa 65. 5	- 17. 920	29. 27	71166
Diff. 32. 39	- 04. 510	Mora dimid. h. 0. 53. 52 Duratio dimid. h. 1. 50. 25	10785 17409.

Rursum igitur ut in eclipsi 3. prodit mihi tempus incidentiae brevius observato, sc. h. 0. 56. 33. Mora vicissim longior h. 1. 47. 44. Duratio vero aequalis proxime observatae h. 3. 40. 50.

Si quaeris, cur jam mihi duratio longior quam Tychoni, in promtu causa est: longior mihi quam illi semidiameter umbrae. Illud potius quaere, cur non multo longior? Nam mea semid. umbrae demonstrativa 48' 52" est multo longior quam Tychonis experientialis 46' 21". Et causa est, quia primo diameter) est mihi brevior, deinde horarius major. Methodum sane construendi horarii in d' et d'vera, qua Tycho usus, ego nunquam vidi. Componi debet ex 3 principiis praeter horarium medium, sc. ex aequatione soluta, aeq. menstrua et variatione. Cumque menstrua in anomalia 90° evanescat, nescio cur horaris ultra d' d' in illa anomalia \odot 18" major sit horario in ipsis articulis, ex sola simplici aequatione confecto; debere namque videtur totum illud excedere, quod de variatione debetar horario illi simpliciori, ut apud me fit. Recordor quidem in exemplari, unde sunt in typum transsumta Lunaria, fuisse praeter horarium ultra syzygiarum momenta excurrentem ad latus appositum etiam diurnum ejusdem conditionis, qui omissus est ideo, quia folium informi latitudine futurum erat et quia horarius sufficere visus. Qui etsi pars 24th praecise constitutus fuit diurni, ut ita non ipsi horae d' competeret, sed c. 6° vel 7° ante vel post conjunctionem: at videtur ei majus aliquid deesse quam quod hinc emergere possit.

Maestlinus in Backnang (alt. poli 48° 52', Tubinga versus Nordost) vidit) in ipso puncto exortus sui deficere incepisse. Stabat quidem ante umbram ad occidentem, projecta vero erat per parallaxin in orientem. Quibus rationibus inter se pensatis, si occasum \odot sumamus h. 6. 41' non errabimus. Tychoni etiam in ipso ortu obscure tamen agnitum initium h. 7. 0'. At correxi h. 7. 5.' Ita diff. meridianorum esset 19 vel 24, enormis.

V. Eclipsis Lunae anno eodem 1577. 26. Septemb.

De hac non invenio quid amplius observatum praeterquam quod h. 13. 56' coeperit emergere e tenebris, referente Severinio, qui etiam hoc ipsum quodammodo vocare videtur in dubium, dum ait, se fidem horologii sequi, dimissis azimuthis, utpote linea meridiana non recte inventa. Non erit igitur magni ponderis eclipsis, si quid sola testetur. Medium statuitur in Prog. h. 13. 3. Computo igitur ad hoc tempus, cujus aequatio 4' 20'' subt.

Maostli	nus in Bs	IC KINH	ang sio	:					,		
		Ini	tium.		Incid	lent.		Emersio.		Finis.	
	Lyra	32.	6		22.	5		10.50		3.40	
	Pr.∏	14.	22	-	24.	7		40. 0		50.46	
	Hora	11.	71/2		12.	18	-	13. 58		15 61/2	•

Calculus Tychonis. 3. 12. 51. 5 1. 20. 18. 19 25. 11. 29 1578. 9. 20. 44. 0. 27. 7. 13 8. 21. 24. 56 10. 5. 27. 56 Sept. d. 25. 8. 24. 9. 13 7. 9.57 6. 36. 12 7. 4.37 32. 2 H. 13. 43 44 41 3 M. 1. 20. 0. 11. 19. 55 0. 2. 55. 28 5, 28, 54, 13 6. 15. 25. 18 5. 57. 8 3. 5.23. 0 1.38 1.38 1. 58. 20 55. 30 3. 10. 2. 18 57. 8 lat. 10' 18" 2. 2. 1 6. 15. 25. 18 0. 10. 22. 47 ⊙ 13. 23. 18 = D 13. 22. 25 γ 78990 Horarius 27.14 Semid. 7 16. - 4 umbras 48. 2 Variatio 39 Correcta semid. umbrae 42.23 Summa 58. 24 - 14. 450 Diff. 26. 22 - 02. 950 Latit. 10. 18 - 00. 460 Scrup. dim. dur. 57. 30 - 13. 990 90593 mor. 24. 15 - 02. 490 298500 residua 3.12 53' 26" 11603 Mora dimidia h-219510 Dim. duratio h. 2. 6' 40" Prodit tempus acquale h. 13. 1. 5. 20 Apparens fuit 13. 53. 25 Adde dim. moram Computo initium emersionis h. 13. 58. 45. Sed haec propinquitas ad obs. est suspecta. ne forte Severinius id assumserit in dubio, quod calculo magis appropinquavit, quia dimisit azimutha causatus incertitudine lineae meridianae. Ex meo calculo. ⊙ 1577. 1576. ☽ 16. Jun. h. 23. 35 -7. 20. 56. 8 - 11. 2. 11. 55 - 0. 26. 2. 21 5. 19, 14 @ 26. Sept. 12.57 268, 12. 57 D. 101. h. 13. 22 -7. 30. 33 276. 9.53. 8 33. 7 1. 0.41.57 -14. 35. 29 59.28 -275. 13. 5. 49 ---2.46 0. 20. 47. 19 -897 10. 5. 3 58529 30.17 23.40 25. Cor. 13 Ω 11.49. 6 Y 59426 () 13. 22. 54) 13. 22. 48 γ () 13. 22. 54 Requisitus 13. 22. 27 1. 33. 48 Lat. 8' 40" 27 Rad. Simpl. 8.11 Requis. 13. 22. 27 (Ex obs. Maestlini eclipsis haec in $13^{1}/_{2}$ γ venit multo tardius calculi indicio.)

Medium ergo computo tempore aequali h. 12. $56'_{b'}$, non totis 5' ante quam Tycho, quia et minor mihi aequatio subt. c. 1', et meta etiam 1' anterior. Calculus n. Tychonis nihil praecipit de via) obliqua ad eclipticam. Aequatio temporis physica est 9' add. (hic. sub.), ergo medium apparenti h. 12. $47'_{b'}$.

P	arall. 🔵	58.	25				Horar.	30.	0							
	, Õ	1.	0				0	2.	26							
	•	59.	25	-)•0	27.	34							
Semid.	0	15.	16					55.								
*	umbrae	44.	9	-			D. resid.	3.	22	Duratio	dim.	h.	2.	7.	0	,
	\supset	15.	1				Morae "			Mora		,,	1.	0.	30	
	Summa	59.	10		14.	820]	Medium aj	p par .		12.	46.	0	
	Diff.	29.	8	_	03.	590			Ir	nitium egre	aparet	h.	13.	461/	3 . 81	pp.
	Lat.	8.	40	• •	00.	330								•	•	•
Serup. die	n. dur. –	58.	30	-	14.	490										
* *	morae	27.	45		03.	260										

Citius tamen agnoscitur egressus. Itaque haec eclipsis, si fide digna observatio, pulsat acquationem temporis physicam; calculus praevenit. (Notabimus, quod retracto nodo fiat major latitudo, brevior mora, egressus initium adhuc citius.)

VI. Eclipsis Lunae anno 1578, 15, Sept.

Severinius exscripsit ex antiquis obs. Tychonis initium Uranib. h. 12. 27', finem h. 14. 10, medium igitur h. 13. 181/,, et duratio h. 1. 43, assumitur in Prog. h. 13, 17.

Ex Mss.	obs. Maestlini :	Maestlini : Initio.			Fi	ne
	Alt. Lyrae	29.	0		13.	50
	Post. II	11.	35		28.	35
	Dext. hum. Or.				30.	48
	Hora	12.	7	- b	. 2.	1.

In exemplari Ephemeridum Maestlini manu auctoris assignatum reperi medium in Backnang Wirt. h. 13. 9', quod esset Tubingae h. 13. 8., et sic diff. meridd. 10 1/z, quod non dissidet a tabulis geogr. Exprimunt Prog. et quantitatem digit. 2¹/2. Et Maestlinus in Epit. Astr. professus, se observasse hanc eclipsin, addit picturam cum distinctione digit. in diam. D, ubi umbra abscindit 21/2, ut cogitem, num Tycho hanc quantitatem transscripserit in suum librum? Nec Maestlinus expressis verbis addit, hanc quantitatem sese observasse (in Mss.: "observavimus item ejusdem eclipsis magnitudinem, juxta modum quem Reinholdus tradit. Digiti erant 2⁴/_a nil amplius."), quam expressit in schemate, quin potius verisimile est, illum in schemate sic adornando respexisse ad calculum vel Prutenicum, ex quo computavit dig. 2. 28[^], ut vides in Ephemeride anni 1578, vel suum proprium, ex quo plane hoc computavit, quod pictura exhibet, sc. dig. 2. 20, quem calculum auctor in vestibulo operis Eph. praemittit.

Sequitur calculus ex Tychone, cujus acquatio temp. 8' 45" sub. ⊙ 2. 18. 4 : D 2. 16. 35 Y. Anom, 10. 19. 50. 31. Mot. Lat. 0. 6. 15. 31 Horarius 27. 56 3. 21. 28 Semid.) 16. 15 0. 9. 37. 19 32. 30 - 61310 5. 8 Umbr. 43. 25 · 3. 7 Variat. 33 Lat. 49. 48. Correcta 42. 52 Scrupula durationis dimidiae 31. 50 Summa 59. 7 - 14. 790 27. 56 Lat. 49. 48 - 10. 500 3. 54 H. 1. 8' 21" dur. dim. 4. 290 sc. dur. Tota h. 2. 16. 9. 19 Vera copula fit h. 13. 18' aequali, 31. 50 Scrup. def. 4.40 255390 seu h. 13. 18' 45" apparenti. digiti 3. 26 194080. Meo calculo. ⊙ 2. 17. 34 🗠) 2. 15. 14 γ ฏี 23. 4. 19 头 9. 13. 15 Lat. 0. 50. 52

Reductio 2. 20 Simpl. 48. 1 2. 15. 14 = Requisitus.

Ad unguem colligo veram \mathcal{S} hora eadem aequali; quanto enim minorem addo acquationem, tantum ob obliquitatem viae Lunae de meta, ad quam calculus Lunam deducit, detraho. Sed acq. physica temporis est hoc O loco 12' 40" add. Esset igitur apparens h. 13. 5' 20". Rursum pulsatur hic. acq. physica tem-

porís, quia calculus praevenit observationem.

Parallaxis) 58. 59 () 1. 0	
59. 59	
Semid. () 15. 15 Semid. umbra 44. 44	Horarius) 30. 51
n) <u>15. 9</u>	<u>O</u> 2. 27
Summa 59. 53 — 15. 180) a ⊙ 28. 24

560

	Summa	59.	53 —	15. 180			
	Lat.	50.	52 —	10. 950		28.	24
•	Defectus	9.	1.	4. 230,	scrupula durat. dimidiae	31.	36
		4.	301/2 -	259000	-	3.	12
Diam. 🕽				68300			
Digiti	3. 34			190700	Duratio dimidia h. 1.	6.	30
Major per	lat. simp	l.			tota _ 2.		

Vides in utroque calculo prodire et defectum et durationem majores, quam fuit observatum; atque hacc duo cohaerent invicem, ut quamvis certam et confirmatam quantitatis obs. non habeamus, ea tamen plus quam verisimilem habeat probationem a duratione. Atque hoc si fuisset, ad Optices penum hic quoque confugium meditabor. (Vid. Opt. meae fol. 266.) Sit enim duratio dimidia h. 0. 51' 30", quae ducta in horarium) a \odot 28. 24 procreat scrupula dimidiae

durationis 24' 24" — 02. 530 • quae cum summa semidd. 59. 53 — 15. 180 creat latitudinem 54. 50 <u>12. 650</u>

Ergo scrupula defectus 5. 3, quae sunt digiti 2. 0. c.

Et haec lat. argueret dist. a nodo 9° 55' etiam in meo magno angulo. Atqui ut locus nodi per 42' retroagatur, id per reliquas eclipses fieri nequit. Quare si plura hujusmodi testimonia eclipsium acervabuntur, concedendum nobis erit, aut) motus aequabiles in minimis non esse, nimirum hac vice exorbitasse in septentrionem, aut, quod promtius comminiscimur, umbram Terrae propter aliquam refractionem opticam, quae facta sit in materia inter \bigcirc et \bigcirc interposita, deflexisse in austrum. Non enim sufficit illa refractio, quae fit in aëre nostro: nam etsi illa radios \bigcirc in limites umbrae intromittit, aër ipse tamen projicit umbram nihilominus, idque rectis a \bigcirc margine lineis, atque ita umbra sentitur initio et fine eclipsium, ut hactenus posuimus. Quanquam si provolemus ad audaces hujusmodi positiones, illa magna difficultas existet, qui caveri potuerit, ut vitiatas \bigcirc altitudines meridianas Tycho nunquam deprehenderit, si interdum interjectu substantiae athereae omnes circumcirca Terram evadentes radii Solares in eandem plagam mundi refringi possunt. Eadem difficultas occurreret circa stellas, si materiae refractoriae lecdm quaesiveris inter \bigcirc et \bigcirc Soli oppositam.

Vide infra in eclipsi XII, simile quid, ubi non minus quam hic retroactu nodi juvamur. Sic etiam in XLV.

VII. Eclipsis Lunae anno 1580. 31. Jan.

Severinius ex Tychonicis antiquioribus obss. exscripsit initium h. 8. 15'; finem dubium h. 12. 5'. Cum vero dimidia pars obscuraretur, horam fuisse 8. 59', cum iterum dimidiam recuperasset, h. 11. 19'; hinc medium h. 10. 9', ut assumitur in Progymn., et finem h. 12. 3'.

Maestlinus in Baknang principium morae significavit alt. cordis Q 44° 48', fnem morae 48° 36', et oculi & alt. 33° 36'; finem totius eclipseos alt. Spicae 15° 20'. In principio morae D ora proxima per radium a corde Q distare visa est 2° 5', mox remotior ab eadem stella 2° 37', ergo D centrum quasi 2° 20'. Fines quidem si comparo, Huennae h. 12. 3', in Baknang h. 11. 52', diff. meridianorum prodit 11' et igitur Tubingae 12', quod bene satis congruit cum

Fines quidem si comparo, Huennae h. 12. 3', in Baknang h. 11. 52', diff. meridianorum prodit 11' et igitur Tubingae 12', quod bene satis congruit cum praecedenti. At si tempus ex ceteris alt. exstruam, prodit initium morae h. 9. 52', finis morae h. 10. 24' vel certius (quippe ab humiliori stella) h. 10. 21'/₂'. Mora igitur 29'/₂', dimidia 15'. (Maestlinus computavit ex alt. suis 16. In compendio, postquam, inquit, defecisset tota, brevissimo interposito intervallo lumen iterum recepit), quod ad initium adjunctum ostendit medium morae h. 10. 7', essetque diff. meridd. nil ultra 2', et emersio h. 1. 30': cui si acqualis immersio statuatur, initium veniet h. 8. 22', duratio 3. 30', quae Tychoni est. 3. 48. Itaque labes est aliqua in observatione principii morae. Quid si namque pro 44° 48' scribendum fuerit 44° 8', tune sane principium morae cadit' in h. 9. 39'/₃', ut sit mora tota 42', medium h. 9. 0'/₃', quod satis congruit cum Braheano medio. Viderit Maestlinus.

Kepleri Opera, III.

36

Calculus Eclipsium Lunas

Quae de colore hujus eclipsess ipse puer quanvis memoria condiderim, vide in Opticis meis fol. 302. Sequitar calculus ex Tychene, cui acquatie T. 9' 35" A. == 39. 52. Totalis. Horarias 28. 0 03. 130 3 16. 17 Lat. 23. 35 - 02. 350 8----4 brae 43. 27 Scrupela dim. morae 13. 25 - 00. 780 - 149785 Var. 53 " durat. 53. 56 - 12. 310 Semma 58. 51 - 14. 660 53' 56'' - 28' = 25.5683900 Diff. 27. 10 - 03. 130 28. 76214 28. 45 - 73571 Dimidia mora duratio h. 1. 55' 34" --7686 Tempos incidentiae , 1. 26. 49. Haec igitur colipsi fundamentalis fuit assumta, eique calculus sic accommodatus, ut can exacte repraesentaret, quoad ipsum medium : cetera tempora morae et durationis superant observata, praesertim morae. Mao Calculo.

⊙ 21° 29′ 0″	4
Ω 26. 26. 32 Requisitas 30. 18 0 1.	
4, 57. 32 Diff. 1. 35 60.	5 , 🛈 2. 32
1. 18 Red. Ang. lat. 27. 30 Semid. () 15. 3) a () 28. 28 - 74550
21. 30. 18 Requis. Simplex 25. 55 44. 3	
,) 15.1	24. 35 - 89200
59.4	5 - 15. 110 Dur. h. 1. 51. 50 - 14650
	0 - 03. 200 Sc. morae 10. 20 - 175900
Fit totalis, 12. 4	
	4 - 03. 660 Per simplicem panlo longior.
Scrup. dur. 53.	
mor. 10. 2) — 00. 460

Igitur ego ipsissimum medium subduco ad h. 10. 15' acqualem. Rursum enim hic diminutam quidem acquationem subtraho, quo nomine calculus plus praevertere debuit, at vicissim fere tantum ad metam mediae et profundissimam immersionem accedit, ut ita solis 4' meus praevertat calculus Tychonicum. Et cum \odot in 21¹/₂° \Longrightarrow physicam acquationem nullam faciat, proinde calculus meus observationem sequitur 6' horae. Moram exacte repraesento nec minus et durationem. Itaque retroactu nodi majorem utramque facerem observatis.

VIII. Eclipsis Lunae anno 1581. 19. Jan.

Severinius ex observationibus Tychonicis Uranib. exscripsit initium h. 7. 57', incidentiam h. 9. 16', emersionem h. 10. 40', ut totalis fuerit. Praeterea nihil. Morata igitur est in tenebris h. 1. 24', cujus dimidium 42' adjectum ad incidentiam constituit medium h. 9. 58' apparenti Uranib. Et adscripta est in Prog. h. 9. 57'. Jam quia \odot in 10° ..., aequatio temporis Tychonica est 9' 52'' add. Hine calculus Tychonis sic habet.

⊙ 10° 5′ 27″	nom, 11= 12° 10' 47". 6= 2° 48' 5" Lat. 14' 33" Horar. 27' 14"
Var. 54	Medium igitur indicatur h. 10. 8 ¹ / ₈ '
Summa 58. 7 — 13. 320	exacto satis consensu cum obs., duratio
Diff. 26. 7 — 02. 880	similiter tantum 3 ¹ / ₂ ' fit minor obser-
Lat. 14. 33 — 00. 910	vata; sed durationem computo h. 1.35',
Scrup. dur. dim. 54. 8 - 12. 410	quae fuit observata h. 1. 24' ob causas
mor. , 21. 33 - 01. 970 - 10	92400 opticas ut in superioribus.
Horarius 27. 14	
26. 54 8	30220 frustra niti astronomum, qui, ut tem-
Mora dim. 47. 28 2	23410 pora durationis et morae calculo
Dur. dim. h. 1, 59. 16	1230 repraesentare queat, vim facit ipsis

562

demonstrationibus in constituendis semidiametris) et umbrae. Ecce enim Tycho in gratiam quarundam observatarum eclipsium diminuit umbrae, auxit) semidiametros; et illas quidem tunc expressit observationes, at jam ne sic quidem obs. hujus eclipseos exprimere potest.

Lubet autem positis hisoe: duratione sc. dimidia h. 2. 1' ut observatum, et mora dimidia 0. 42', ut et assumto horario 27' 14" et semid.) 16. 0, lubet, inquam, videre, quanta conficiatur lat., quanta semid. umbrae ex theoremate, quod in Hipparcho demonstro. Nam si horarius tantus, respondebunt scrup. durationi quidem 54' 55", morae vero 19' 4"; horum quadrata sunt 50' 16" et 6' 4", ut horum diff. 44' 12" esset semid. umbrae, unde ablata semid.) 16. 0. restaret 28' 12" cujus quadratum 13' 15", unde ablato quadrato 6' 4", restaret 7' 11" quadratum latitudinis, et lat. igitur 20. 46 (v. s. p. 531). Quanta hinc perturbatio, si sic velles corrigere in Tychone semid. et lat. eoque etiam locum nodi? Et a qua tunc standum, si singulae observatae per se peculiarem correctionem poposcerint hac methodo examinatae?

Jam igitur ad meum calculum.

© 10. 4.58	= 58. 26 (+par.)= 1' 1") = 59' 27"
	ambrae = 59.27 - semid. \bigcirc 15.29 = 43'58"
) 10. 3. 55 Ω diff. = 24" 10. 4. 19 Requis.	43. $58 + 15'$ (semid.)) = 58' 58' - 14. 710 43. $58 - 15'$ = 28' 58'' - 03. 550
Lat. 13. 11; simpl. 12. 28.	43.58 - 15 = 28.58 - 05.550 Latit, = 13. 11 - 00.740
Hor.) 30. 0 log. 27' 27'' = 78200	Sc. dur. dim. 57. 27 $-$ 13. 970
\odot 2.33 , 2.33 = 316	" mor. " 25. 43 — 02. 810
) \$ (9 27. 27 237800	Dur. dim. h. 2. 5. 34
, 25. 43 = 84700	_
6500.	Mora . 0. 56. 13

Medium computo h. 10. 6³/₃, aequali, plane ut Tycho, quia causae varietatem efficientes per se hoc loco sunt exiguae et compensantur; sed physica aequatio addit hoc loco apparenti 2' 30". Ergo vicissim hic ablata relinquit h. 10. 5'. Itaque calculus meus sequitur observationem per 7'. Fit etiam duratio mihi paulo longior, tanto superans observatam, quanto Tychonica deficit ab observata. Morae vero prolixitas major quam Tychonicae causam habet minorem diametrum), majorem umbrae, superatque observatam 28' propter easdem causas ob quas et Tychonica superat per 11'.

Quare hic iterum nodus antecedens in antecedentia translatus latitudinem majorem, durationem minorem, moramque multo breviorem facit.

IX. Eclipsis Lunae anno 1581. 15. Julii.

Tycho Brahe reliquit annotatum, tempus hujus eclipseos abundasse per h. 1. 20', siquidem, ante quam) occideret Huennae, dimidiam in umbram ingressam fuisse.

Sole igitur in 2^{6} , Q versante arcus semidiurnus sub alt. poli 56° est h. 8. 7′, oritur igitur \odot h. 15. 53′; sed tunc) jam occidit, quippe stans adhuc ante oppositum \odot , lat. sept. parva et per parallaxin ultra 1° profundius in occasum demersa, quam ejus locus verus fert. Etsi vero dimidium hujus refractio emendat, eadem tamen et \odot tantulo ante h. 15. 53′ apparere facit, ut ita refractio hic omitti possit. Luna igitur c. h. 15. 48′ occidit; ante igitur h. 15. 48′ dimidia in unbra fuit. Ac cum semid. fuerit 16′ 15″, horarius a \odot 35′ 21″, immersioni igitur dimidiae, siquidem) omni latitudine careret, venirent 27′ 35″ et jam per hanc lat. veniunt plura, dimidium c. de tempore incidentiae, quod mihi est h. 1. 5′ 34″; ablato igitur dimidio 33′ de h. 15. 48′ restat initium antc h. 15. 15′.

Praeterea annotavit Tycho, horologio a Lunae alt. correcto quartam partem abfuisse h. 15. 22', quo confirmantur priora. Si enim quartam etiam incidentiae, id est 16' auferas ab h. 15. 22', restabit h. 15. 6' pro initio, quod est same ante h. 15. 15', Initium tamen Severinius assumsit h. 15. 11', et medium in Prog,

36 *

expressum est h. 16. 57', quod per Tychonicam acquationem temporis 9' 12" ft h. 17. 6' 12". Sequitar calculus hujus eclipseos ex Tychone. ⊙ 2º 43' 29" 2) 2. 42. 6 mm An. 4= 25° 3' 0" Motas lat. 4. 48. 41 Lat. 25. 0 Horarius) 34. 29 - 55390 Sequitar calculus 3' ergo h. 17 appar. Semid. , 17. 48 itaque principium h. 15. 17 Umbrae 46. 29 cum assumserint h. 15. 11 Var. 4 02. 650 Summa 64. 13 17. 450 Scrup. d. dur. 59. 8 - 14. 800 59'8"- 34'29"=24. 39 -88950 Dur. dim. h. 1. 42. 53 -33560. Calculo meo. ○ 2.42.59 Q
 ○ 2.42.10 mm Horarius) 37.44 Parall.) 63. 12 2.23
 2.3 Õ 59 Requis. 2. 41. 50) a () 35. 21 52900 64. 11 ີ_ມ 28. 18. 27 Z 15. 5 60.46 4. 24. 32 Lat. 24. 14 Semid. umbr. 49. 6 25. 25 - 85900 1. 9 Red. 23. ³ Dim. dur. 1. 43. 7 16.15 33000 2. 41. 50 65. 21 - 18. 090 Lat. 24. 14 - 02. 480 60. 46 - 15. 610

Durationem computo eandem, quanto enim mihi major umbrae, tanto minor) diameter majorque horarius, in acqualis etiam temporis momento, solis $4^{4}/_{5}$ Tychonicum supero, superarem autem plus, si non respicerem obliquitatem viae): same mihi acquatio versus perigacum major est et subtracta diminuit locum), ut ei plus restet ad \mathcal{S} O. At physica temporis acquatio 15' 24" add. si hic subtrahatar, medium tempore app. exhibet h. 16. 58' plane ut vult observatio, initium ergo h. 15. 15', quod est observationi vicinius, quam quod ex Tychonico prodit.

Hic igitur si nodus retro ageretur, aucta latitudine duratio fieret minor, initium tardius et ab observatione remotius.

X. Eclipsis Lunae anno 1584. 7/17. Novembris.

Tycho Brahe Tomo I. Epist. fol. 72. initium profitetur h. 11. 12', finem h. 15. 0. Duratio igitur 3, 48. Medium h. 13. 6, quod in Progymn. expressum est h. 13. 12. Severinius same collegit, initium observatum esse h. 11. 16, finem 15. 2; huic igitur medium esset h. 13. 9. 'Unde haec titubatio circa temporis minuta, non facile conjectura consequor. Tycho same verbis utitur confidentibus "Diligenter deprehendi;" item: "ex remotione certarum stellarum aequatoria a meridiano infallibili ratione inquisivi." Et tamen in protocollo obss. ad hanc diem eclipseos nec vola nec vestigium apparet, cum tamen durante ea culminationes annotatae exstent lucidae Υ h. 10. 10%, oculi \heartsuit h. 12. 38%, capitis II merid. h. 15. 45%: puta quia phases D in scheda seorsim ad horologium annotatae, que postmodum errantes tandem perierunt.

Facit Tycho primam dicto loco mentionem medii eclipseos alterutro termino propioris propter obliquitatem viae) ad eclipticam. Medium enim statuit h. 13.8', etsi in Progymn. nihil hac de re praecipit. Ego medium temporis non vario, sed demitto per perpendicularem viae) ex centro umbrae indicem loci, quem obtinuit) in medio durationis.

Befert ibidem Braheus etiam Henr. Brucaei obs. Rostochii habitam in litore maris Baltici, quae medium referat in h. 13. 4'. Itaque diff. meridd. deinceps am plexus est 2', etsi tunc plane nullam credebat, confisus procul dubio Tab. Geogr. Jodoci Hondii et nautarum crassiusculis obss., quibus tritissimum iter ex freto Huennae circumfuso ad litus Megalopolitanum.

564

1 . Sec. . . .

sellis Chattorum habitam, sed in quam prodit 23' breviorem quam	ematici perquam ingeniosi et industrii obs. Cas- quam vitium irrepsit in duratione et mora, ut Tycho. Sed si ponatur finis recte observatus .45', diff. meridd. erit 15', quod tabulae exhi-
Calculus Tychoni	is, cujus aeq. T. 9' 22" sub.
	An. 4. 3. 21. 0 Motus lat. 6. 2, 8. 0 Lat. 11' 6" 00, 530
33. 6 - 59480 5. 2 61. 41 Semi 28. 35 - 74152 " 14672 h. 1. 51. 49 dur. dim.	Horarius 33. 6 Summa 62. 19 — 16. 430 d.) 17. 29 Scr. d. dur. 61. 41 — 16. 100 umbrae 45. 44 Diff. 27. 21 03. 170 Var. 54 Scr. mor. d. 24. 57 02. 640
27. 21 78560 19080	, umb. corr. 44. 50
h. 0. 49' 35" mora dimid.	
	us eclipsis 9', durationem colligit 4 1/2' minorem
observata, tempus incidentiae h. 1.	2'.
Calculo -	vero meo sic computo. 💿
1583. 1. 7. 8. 1 - 8. 17. 42.	. 1 - 8. 10. 20. 22 1584. 16. Jun. h. 19. 15'
Bins. Nov. 305.	7. Nov. " 13. 6.
6. 13. 6 .	d. 143. h. 17. 51.
312. 20. 14. 1	5°26' 35"@
Revol. XI. 303. 2. 24. 24 - 1. 3. 46	. 9 - 0. 16. 3. 2 19. 37. 27
9. 17. 49. 37 9. 21. 28.	
34. 35 4. 3. 47.	. 22 31 37
55097 28	. 37 25. 0 corr. <u>© 25°49' 16"111</u>
18964) 25. 44	. 98 R 24. 11. 20 m
74061 25.48	. 49 requis. 25. 49. 16
Diff. 4	. 40 1. 38 Lat. 9' 2" simpl. 8' 32"
Parall.) 62. 28	27 Red.
\odot 1. 1	25. 48. 49 Requis.
63. 29	Colligo tempus mediae oppositionis aequale
Semid. 💽 15. 26	h. 13. 15' aequali, ita sequor Tychonicum 9'.
Umbrae 48. 3	Acquationem enim aufero majorem versus peri-
) 16. 4	gaeum.
Summa 64. 7 - 17. 400	Et quia sic physica acquatio est 0' 47"
Ang. lat. 9. 2 - 00. 350	sub., tempus igitur apparens prodit h. 13. 15 ¹ / ₂ .
Ser. dur. 63. 29 - 17. 050	Quantum igitur Tychonicus praevenit observa-
Diff. 32. 0 — 04. 340	tionem, tantum ego sequor eandem. In dura-
Scr. mor. d. 30. 42 - 03. 990	tione fere coincido cum Tychonico, colligo 31/2
Horar.) 36. 28	minus quam observatum, tempus incidentiae
○ 2. 32 67000	h. 0. 58, minutis 4 minus quam Tycho, ubi
) a <u>0</u> 33. 56 — 57000	Witichius praecise medium observavit inter
Resid. 29. 33 — 70850	utrumque.
Dur. dim. h. 1. 52. 15 — 13850	Si in duratione calculi jubeantur imitari
Mora dim. 0. 54. 16 - 10000	observationem, latitudinem poscent minorem,
	eoque nodum, qui antecedit Lunam, promotiorem in consequentia.

XI. Eclipsis Lunae anno 1587. 6/16. Sept.

Observata est haec eclipsis Uranib. coelo nubilo, ita ut neque principii neque finis certum signari potuerit momentum.

H. 7. 53¹/₃ in tribus observatoriis distincte pronunciatum; in primo) non satis plena inter nubes; in secundo "videbatur (incerte tamen inter nubes)) talis" et addita est pictura, in qua desunt digitus cum besse. In tertio "videbatur tantum decise et pictura habet 3 dig. minus 'h digiti, additurque: "sed inter nubes. Hoc igitur momento) jam dudum inceperat (sic). Sic h. 11. 25 'h' annotatum in duobus observatoriis,) totam integram emersisse ex nubibus, additur in une: utrum autem prius totaliter egressa, propter densitatem nubium discernere non licuisse." Finis igitur fuit ante hoc momentum. Proinde medium fuit ante h. 9. 39'. Hora quidem 9. 44' cum emicuisset), videbatur superesse quasi minus quarta diametri, id esset paulo post medium et concordat cum sequentibus. Nam h. 8. 47' quasi quarta superfuit, iterumque h. 10. 11' quasi quarta, quae ultima phasis conspecta fuit; inter ista medium est h. 9. 29', quod equidem recte cadit ante h. 9. 39' ut supra. Hoc igitur pro medio usurpari potest. Progymn. ponunt medium h. 9. 16, quod vim facit obss. jam recensitis. Nam additum, tempora, quae ubique observabantur, esse verificata ad stellas, et consenserunt inter se ex 3 locis intra minutum unicum.

Calcu	lus Tychonicus, cujus s	leq. t. 2. 15	i Add,		
⊙ 5. 25. 8. 40	5. 23. 51. 57 —	10. 1. 23.	5 5	. 19. 5	i. 57
3. 5. 3 0. 0	4. 12. 8	2.	47	4. 1	l . 4
2. 19. 38. 40	1. 4	1.	4 5	. 24.	
2. 0. 22	4. 11. 4	4. 11.	4	lat. 30	r 33"
⊙ 23. 8. 18' 110	5, 25. 8. 40	10. 5. 34.	9		
- 1) 23. 11. 41)(-		
	9. 5		aid.) 1(
Scr. defectus sunt 29. 55	Diff. 2. 36		umbr. 4		
15. 0	_ 138790 Horar. 2		• Var		
32. 50			rae corr. 4		
Digiti 10. 56	10000	4500	Summa 5		
In Prog. 9. 45	ponuntur 6 — 23				· 03. 960
At obs. 9 plus.	h. 9. 22		Sc. dur. 51		
Residui 3 minus,	h. 9. 16 media.			3. 29	74400
quod est quasi minus	9, 14 appare	nti.	Resid. 22	2. 41	97280
quarta diametri.					22880
			Dur. dir	n. h. 1.	47' 44".

Apparet, calculum Tychonicum id assequi fere, quod ponitur in Prog., atque sic deficit ab observatione ad 15'. Frustra hic Severinius titubat super certitudine observationum, dum ait, collatione phaenomenon ostendi, incertas esse. Neque enim haec unica et sola est eclipsis, quae exorbitat, ut fiducia aequabilitatis motuum fidem oculis nostris detrahamus. Quin potius resumendus animus fatendumque ingenue, nondum nobis esse cognitas omnium enormitatum talium causas, quod attinet minimos scrupulos.

Ut evidentia major sit hujus dissidii, esto sane medium h. 9. 12', lat. igitur fare 31', summa semidd. 59' 36", scrup. defectus 28' 36" +

	28. 14.	_	143400	lat		-	15. 040 04. 070	-
Digiti		 	60290 83110				10. 970	-
•				Durat. h. 1	 2. 2		 98400 23900	

Haec duratio ab h. 9. 14' ablata, relinqueret h. 7. 27' initio; addita, h. 11. 1' fini. Atqui h. 7. 53' ad summam 3 digiti defecerunt, minus enim habent omnes tres, duo vero illorum minus quam 2. Sunto tamen 3: facile hinc colligenus initium. Nam 3 dig. de diametro) sunt sç. 8. 13", quae addita ad semid. umbrae 43. 11 faciunt distantiam centrorum 51' 24" — 11. 190

Usurpetur latitudo		- 04. 890
Ergo scrupula viae	38.34 28.29	- 06. 300
-	10. 5	745
,		103846.

103846, dant h. 1. 21' 14".

Ablata igitur h. 1. 21. 14 a dimidia duratione h. 1. 47. 15, relinquuntur 26' et haec ab h. 7. $53^{3}/_{3}$ ablata, relinquunt h. 7. $27^{4}/_{3}$. Itaque 3 solidi digiti vix ponunt hoc initium, nedum 2 vel 1. Adde, quod duratio tanta non fuit, quia nec quantitas eclipseos tanta.

Sed venio ad meam	calculum.
1586.	⊙ 1587.
22. 16. 3. 20 - 0. 17. 25. 40 - 6. 13. 25. 59	
248. 9. 22.	8. Sept. 9. 22 26. 50. 14
271. 1. 25. 20	47. 27
275. 13. 5. 49 - 1. 0. 41. 57 - 0. 14. 35. 29	d. 80 - 19. 24 - 0 23° 7' 25" 110
4. 11. 40. 29 - 1. 18. 7. 37 - 5. 28. 50. 30	
31. 25 1. 24. 37. 3 14. 22	
<u>64700</u> 21, 12 25. 0	
<u></u>	110 23478
104100 Beg. 23. 9. 4 0 23. 7. 25	
	lat. 0. 35. 14, simpl. 33. 17
0 1. 0 1. 39	Reduct.
60. 27 23. 9. 4	
Semid. () 15. 13 Horar, () 31. 33	
umbrae 45. 14 • 2. 27	
Lunae 15. 17) a O 29. 6	quam Tychonicus per 1 di- 72300 gitum abundo tamen adhuc
	Brun, abuilde tunei dunte
Summa 60. 31 — 15. 490	c. dimidio digito aut plus
Lat. 35. 14 05. 250	super id quod observatum.
Sc. defect. 25. 17 10. 240 - 49. 12	Nec emendamus nisi aucta
12. 39 20. 6	- 109400 latitudine et seguente nodo
155600	37100 amplius promoto, quod est
67400	contrarium superioribus
Digiti 9, 56' 88200	eclipsibus.
N	1 All 94# minor over Trebonic

Eesidui 2. 4. Duratio h. 1. 41' 24", minor quam Tychonis, quia et digiti pauciores et observationi propiores, quippe latitudinis quam umbrae major excessus hic. Et quia \odot in 23° \mathcal{W} , aeq. temp. physica est 15' 20". Etsi igitur in tempore aequali sequor Tychonicum 8', propteres quod minorem aequationem addo, vicissim tamen apparens tempus prodit mihi h. 9. 6' 40", adhuc 7' citius quam in Tychonico, ut differam ab obs. 22', sitque initium et h. 7. 26', quod tardius fuisse observatione testatur.

XII. Eclipsis Lunae anno 1588. 3/13. Martii.

Nulla unquam eclipsis diligentius opinor operosiusque est observata, idque in 3 observatoriis. In primo observatorio initium animadversum h. 13. 13', horologio per Canem correcto. Tota in umbra h. 14. 20'. Coepit egredi h. 15. 44'. Desiderabatur non multum h. 16. 45': quantitas per nubes discerni non potuit. At h. 16. 50' conjecturando inquiunt, quod aequaliter undique lumen spargeret, hie desiit, teta plena, quantum per densiores nubes videri potuit. Igitur inter h. 13. 13' et 16. 50' medium est h. 15. 0'. At inter 14. 20 et 15. 44. medium est 15. 2. Hoc igitur translatum est in Progymn. Sic visa est in umbra pars quarta h. 13. 26' et h. 16. 36'; medium h. 15. 1. Sic tertia pars signata est ad h. 13. 30'/_a' et 16. 28'₄, medium h. 15. 0 fere. Et semissis in umbra h. 13. 38' et 16. 28'₁₂, medium h. 15. 3 fere. Satis igitur in hoc observatorio confirmatum est medium h. 15. 0.

At in secundo observatorio h. 13. $45\frac{1}{6}$ et h. 16. $27\frac{3}{4}$ aestimatus est semissis deficere; medium est h. 15. $6\frac{1}{5}$. Sic h. 14. 26' et 15. 40' initium et finis totalis obscurationis, medium h. 15. 3'. Et ab hora quidem 15. 40 videbatur egredi sed obscure, inde dubitatum usque post 13', cum inconsuetum haberet lumen. Itaque prior ille moram habet h. 1. 24', hic jami 1. 14', per 10 minus. Tantum facit diversitas oculorum.

Denique in tertio observatorio penitus immersa videbatur ab h. 14. 31' usque in h. 15. 47' per 1. 16', medium est h. 15. 9', Etsi et hic 6' citius notavit, jam altera parte lucidiorem D fuisse, quasi mox emersuram ex umbra. Plures hac de diversitate querelas vide Astr. Opt. fol. 303, ubi de hac eclipsi paucula a me pro captu puerili observata commemoro.

De observatione latitudinis et distantiae a fixis dicam postea plura. Nunc ad calculum Tychonis, cujus aequatio temporis 2' 20" Add.

⊙ 11. 20. 49. 23) 6. 6. 42. 20 3. 20. 2. 43 3. 5. 30. 30 4. 43. 8 1. 42	0. 7. 53. 21 Horarius 31' 48" 4. 43. 8 Sd. D 17. 15
8. 15. 18. 53 6. 1. 59. 12 4. 43. 8 2. 0. 13 11. 20. 49. 23 3. 15. 19. 35	0. 3. 10. 13 " umbr. 45. 14 Lat. 16. 30 Variat. 41
⊙ 22. 49. 36) () 22. 48. 35 m	Summa 61. 48 — 16. 150 01. 160
· ·	Scrupula durationis 59. 31 - 14. 990
	59' 31'' - 31' 48'' = 27.43 - 77200 63480
	Duratio dimidia h. 1. 52. 18 - 13720 Diff. 27. 18 - 03. 160
·	Din. 27. 18 - 03. 160 01. 160
	Scrup. morae 21. 43 - 02.000

101600 Mora dimid. 40. 58 -38120

Igitur calculus Tychonis plane assequitur h. 15. 2' apparentem, durationem facit h. 3. 44¹/₂, quae superat observatam per 8' vel plura, moram in tenebris 1. 22', quod congruit.

Cum vero semper hactenus duratio computata consenserit observationi, mora computata superaverit saepe observatam, non injuria causam quaerimus, cur in hac eclipsi durationem computemus prolixiorem? Anne igitur D non adeo profunde erat in umbram immersa, sed magis ad latus septentrionis breviori via trajecit? Anne igitur lat. major fuit? Id quidem datur ex observatione discernere. Nam crebro est observata declinatio visibilis cornuum D, praesertim toto illo tempore, quo tota delituit in tenebris, et quidem eo ipso momento, quo incidit in gradum ab ortu nonagesimum ecliptiçae hora sc. 14. 35', supremus margo declinavit 2º 38' 30"; nam inferior viewri non potuit; et huic declinationi ceterae ante et post exceptae pro ratione promotionis Lunae angulique eclipticae cum horizonte consentiunt. In alt. vero poli 35° 55', oriente 23° ×, angulus seu alt. nonagesimi est 28° 32' et a 22%, 11 latitudo usque in aequatorem 3° 7', angulus circuli latitudinis et aequatoris 66º 40'. Cum ergo supremus margo declinaverit 2° 38' 30", centrum igitur subtracta semid. D Tychonica declinavit 2° 21' 15". Quare inter centrum) et aequatorem in circulo latitudinis su-perfuit 2° 33' 51", quod ablatum a 3° 7' relinquit 33' 9" lat.) visibilem australem. In anomalia vero 105° et alt. $28\frac{1}{2}$ ° parallaxis Tychonica est 54' 30", unde ablata lat. visa austr. 33' 9" relinquit latitudinem veram sept. 21' 21", cum Tychonis calculus habeat 16' 30". Ex meis parallaxibus et semid.) colligeretur vera lat. ex observatione adhuc uno scrupulo major.

Ex hac igitur observatoria lat. vide quanta exeant tempora eclipseos Tychoni:

Summa semidd. 61. 48 — 16. 150 Latitudo 21. 21 - 01. 930 Scrup. durationis 57. 57 14. 220 Horarius 31. 48 -63480 26. 9 --83050 Duratio dim. h. 1. 49, 20 - 19570 Diff. semidd. 27. 18 - 03. 160 Scrup. morae dimid. 17. 0 - 01. 230 126113 Mora dimidia h. 0. 32. 4 - 62633

568

Vides, per hanc veram lat. prodire etiam durationem proxime acqualem observatae. Mora vero fit per Tychonicum 10' minor, quam is observavit, quam brevissimam dixit.

Sequitur calculus meus. 1588. Pro () 1587.) 16. Jun. h. 20. 12 - 5. 30. 47 @ Feb. Bis. 1. 21. 43. 11 - 2. 0. 24. 21 - 5. 23. 0. 18 15. 3-12.28.14 d. 61. 15. 3. 2. Mar. 5. 9 12.48 D. 106. 63. 12. 46. 11 59. 39 ⊙ 22. 49. 45) Revol. II. 55. 2. 37. 10 - 0. 6. 8. 24 - 0. 2. 55. 6 8. 10. 9. 1-2. 6. 32. 45 - 5. 20. 15. 12 585 + 153900= 154485. 33. 48 3.16. 7. 7 25. 25 Parall.) 61.43 Horar.) 35. 10 5. 5 57400 1.20 2. 29 ⊙ 1. O 22. 44. 57 110 189500 Cor. 25. 0) a 🔾 32. 41 62. 43 246900 Req. 22. 49. 0 Q 20. 3. 27 10 Θ 15.16 Semid. 60750 4. 3 ⊙ 22. 49. 45)` umbras 47. 27 28.46 - 73510 2. 46. 18 27.35 - 77713 15.52 Э Reduct. 0. 46 Summa 63. 19 - 16. 960 12760 Duratio dim. h. 1. 52. 48 Requis. 22. 49. 0 Diff. 31. 35 - 04. 220 16963 Mora dim. 0. 50. 38. Lat. 15. 18 Latitudo 15. 18 - 01. 000 Simpl. 14. 27 61. 27 - 15. 960 Duratio et mihi 27. 35 - 03. 220 27. 35 — 03. 220 prodit 9' major observata, mora vero 1. 41', valde magna, quia umbram habeo magnam, diam.) parvam. Sed ubi lat. usurpo eam,

quae congruit observationi, tunc consueta funt. -

Mihi igitur tempus \mathscr{E} acquale sequitur post 7', quia majusculam acquationem subtraho versus perigaeum. Sed physica temporis aequatio est 10' 40" subt., quae hic addita constituit medium h. 15. 201/2' apparenti. Convellitur sic temporis acquatio physica.

-	- •	16.960		04. 220			
	Lat. 22. 14	02. 090		02. 090			
		14. 870		02. 130		•	
	Scr. dur.	59. 6	60750	Scr. dur. 2	22' 26"	98360	
		32. 41	82035			60750	
		26. 25	21285			37610	
		h. 1.	48' 30"	dur. dim.		Mora dim.	0. 41.

11. Hic plane exprimo utrumque tempus ut est observatum; quasi causae opticae hac vice cessaverint. Apparet ergo, calculum astronomicum non debere accommodari causis opticis, ut fecit Tycho in diminuenda diam, umbrae. Hic igitur non umbra cessit in meridiem, quale quid supra sum suspicatus eclipsi VI; sed plane) exorbitavit in septentrionem aut nodus retroactus est.

Sed considerabo etiam observationes) ad fixas. Cum enim Braheus ad h. 15, 0, app. referat locum centri ⊙ in 22° 49′ 28″ H, erit umbrae centrum, si non vitietur illa per opticas causas, in 22° 49′ 28″ M. Jam vero h. 14. 40′ et sic 20′ ante id momentum, quo \mathfrak{D} visa est in $\mathfrak{S} \mathfrak{O}$, fuit per 10' 36" ante centrum umbrae, et illud in 22° 48' 40" 11. Illo vero momento visus est margo ejus occidentalis distare a corde & 28 1', et sic centrum per semid. Tychonicam 25° 18' 15", cum visa lat. austr. 0° 33' ut prius, et stella habet lat. bor. 0. 26 1/2'; summa utriusque est 59 1/2', propter quam haec distantia obliqua in zodiaco fit 1' brevior, sc. 28° 17' 15". Ac cum) 5' antea fuerit in ipso Nonag., nulla erit parallaxis long. aut perexigua in occasum. Itaque visus $\mathcal D$ locus in 22° 38' $\mathfrak M$. Aufer dist. 28° 17' 15", veniet locus cordis $\mathcal Q$ in 24° 20' 45" & aut (posita aliqua parallaxi long.) paulo anterius. At Tycho ponit stellam illo anno in 24° 6' &, ita invenietur Cor & per 14 vel 15' promotius, quam in calculo Tychonis. Et quia mihi) in obscuratione maxima in 22° 49' m orbitae, stans e regione 22° 48' 14" eclipticae, ablato triente horarii mei 11' 43" relinquiter 22° 36' 31". Hinc aufer intervallum 28° 16' 15" (auctum sc. semid. mea), restat otiam 24° 20' R.

Circa ipsum medium fuit hace distantia iters 28° 9', potins 28° 11' collatione ad praecedentes 28° 14', igitur ipsa h 15. 0 fuerit 28° 12'/ ₂ . Hic jan	et sequentes. Et h. 15. 3' fuit m prius quaerenda parallaxis long.
Asc. R. () 353° 25'	. 18847
Н. 15. 225.	82308 - 10710
90.	67. 12
Asc. obl. hor. 308. 25	23. 31 1/2
Latus acquat. 51. 35 — 24397	90. 43 ¹ /.
Alt. acquat. 34. 5 - 57911 - 18847	89. 16 ¹ / 8
	ent. 26. 3 ¹ / ₈ - 82280 10718
	88, 39 - 28
	28. 39 110
) <u>22. 48 mp</u>
	5. 51 - 228352
	402000 - 402000
	7 12632 412718
-	2. 48 55. 30

Cum igitur centrum) distiterit a corde per 28° 29' 45'', diametro) Tychonica, fuerit vero versus occasum et cor \mathcal{Q} projectior per 2' 48'': locus ejus visus esset 22° 46' \mathfrak{M} . Aufer hinc distantiam dictam uno minuto diminutam propter obliquitatem, prodit 24° 17' \mathcal{Q} locus stellae, tribus saltem aut quatuor minutis minus quam prius. Ita confirmatur nobis long. fixarum promotior per 11'.

Eodem momento fuit inter eundem limbum Lunae et spicam 10° 25° 41' 30". Aufer semid. D Tychonicam, erit inter centrum et spicam 25° 24' 15". Sed lat. spicae 'est 1° 59' austr., ablata lat. visa D 33' c., restat 1° 26', ob quam 2' plus sunt deterenda de distantia, ut restet 25° 22'; hoc adde ad locum D visum 22° 46' 10° , consurgit locus spicae 18° 8' \leq . Sed Tycho collocat illam in 18° 5'. Invenitar quidem et haec stella promotior, sed non tanto quanto spica. Scilicet in medio umbrae difficulter margo cernitur, quare instrumenti pinnacidia in aliquam partem coeli dirigi consentaneum est, non in merum limbum, ut ita comparatus cum coelo fuscus Lunae margo cerni possit. Hoc pacto illic plus subtrahetur, hic plus addetur, ut medium inter 3 et 11, sc. 7 valeat. Certo igitur fixae hic 7' c. inveniuntur ab aequinoctio promotiores.

Ex iisdem distantiis) a fixis licet etiam pronunciare de horario). Nam Tychonicus est 31' 48", meus 32' 41". Etenim nocte antecedenti h. 13. 27', quando) in Nonagesimo fuit, longitudinis parallaxi carens, margo occidentalis visus est distare a corde Ω 14° minus '/₂'. Hac vero nocte h. 14. 40' idem margo ab eadem stella abfuit 28° 1'. Sic horis 25. 13') promota fuit per 14° 1'/₂. Ergo uni horae veniunt 33'24"; unde aufor horarium O 2' 27", restant 30' 57". Et quia) est in descendenti semicirculo, principio igitur hujus temporis minor fuit horarius, medio tantus, sc. circa h. 3'/₄ diei antecedentis; fine vero, sc. durante ipsa eclipsi, jam fuit major. Recte igitur majorem uterque exhibet quam 31'. Melior vero meus, quia, quem diximus horae 3 diei accommodari sc. 31', is non est in ipso articulo oppositionis, sed 12 h. ante, non igitur celerrimus. Datur enim intelligi, si) totis his 25 horis in vigore hoc oppositionali cucurrisset, plus omnino promoturam fuisse.

XIII. Eclipsis Lunae anno 1590. 6/16. Julii.

Haec eolipsis Uraniburgi non est visa, nam \mathfrak{D} prius occidit, quam de ea quicquam delibaretur. Oritur autem \mathfrak{O} in 23¹/₄° \mathfrak{O} Uraniburgi h. 15. 38', et \mathfrak{D} , quippe adhuc paulo ante \mathcal{S} \mathfrak{O} , occidit etiam aliquot scrupulis maturius, cum etiam parallaxi deji iatur in occidentem plus quam a refractione attollitur.

Vicissim de eadem eclipsi scribit sic Maestlinus libello de Eclipsibus anno (96) 97. edito: "Nos hic Tubingae () centro supra horizontem emergente vidimus) ab austro aliquot digitis jam deficientem 2° c. elevatam; et contra) centro sub occasum descendente notavimus () supra ortum 2° altitudinem."

Oritur eo die Sol Tubingae h. 16. 15' et propter refractionem 1° majoren aliquot minutis maturius. Oportet igitur D Uraniburgi post occasum quidem ad

.

umbrae marginem venisse, at multo ante h. 16. 26', quia in tanta lat. tarde conficiuntur aliquot digiti.

Calculus Tychonis. ⊙ 3. 24. 35. 24 6. 2. 38. 17 - 4. 14. 22. 10 - 5. 22. 55. 11 3. 38 3. 37. 55 3. 5. 32. 0 3. 39. 16 19. 3. 24 1. 21 3. 37. 55 5, 19, 17, 16 0. 38. 54 21. 32 4. 10. 44. 15 3. 37. 55 23. 56. 30 @ 5. 19. 38. 48 Lat. 55' 12" 5. 29. 0. 22 35, 46 3. 24. 35. 24 Diff. 20. 44 23. 35. 46 2 Oppositio contigit post 37' 3" h. 16. 57' aeq. Uranib. () 23° 57' 12" @ Horar. 33. 34 106250 Semid.) 17' 35" 16. 49¹/₁ apparenti 561/3 58080 Umbrae 46. 2 48170 63. 37 - 17. 120 15. 53 initium, Tubingas h. 15. 42' Latit. 55. 12 --- 12. 900 Scr. defic. 8. 25 4. 220 64220 Sor. dur. dim. 31. 34 Dur. dim. h. 0. 56. 25 58080 6140 4. 13 265732 53425 35. 10 212307 Digiti 2. 52' Calculo meo. ⊙ 23° 57′ 7″ ญ Ergo maxima obscuratio h. 17. 9' **D** 23. 52. 33 aequali. Minutis 12 sequor Tychonicum 4. 43. 26 Ω in observatione maxima, quia versus perigaeum magnam aequationem sublat. 59' 20", simpl. 56' 1" 10. 46. 19 traho, simul propter obliquitatem) me-2. 44 tam promoveo maximae obscurationis. 23. 59. 51 Horarius) 36. 57 () 2. 24 Parall.) 62. 46 **⊙**∙ 0. 59 63. 45) a () 34. 33 - 55200 Scr. durat. dim. 26. 8 - 83100 Semid. () 15. 2 Umbrae 48. 43 Durat. d. h. 0. 45. 23 - 27900 16. 8 Medium 17. 9 Initium h. 16. 23. 37 aequali. 64. 51 17.800 Aequatio physica 11' 46" add. ergo h. 16. 12' Lat. 59. 20 14.900 apparenti. Tubingae vero h. 16. 1'. Sc. defectus 5. 31 02.900 Digiti paulo minus duo.

Sic igitur apparens initium ex meo calculo venit 19' posterius quam ex Tychonico, quadrantem tamen horae antevertit occasum Lunae. Hic observatio nos non discernit: versatur enim hoc initium ab utroque nostrum computatam intra terminos ab obs. praescriptos, ut et ipsum cadat inter occasum) Huennensem et Tubingensem, et occasus) cadat inter initium et mediam obscurationem.

Illud vero utrique nostrum objici potest ex Maestlino, majorem per illius verba repraesentari defectum, quam in nostris calculis. Si enim prius quam maximus esset defectus, et secundum meum quidem calculum multo prius, "jam aliquot digiti erant in defectu," certe quod majus est aliquot digitis, id omnino majus quid erit 2 digitis a me dictis, majus etiam 3 digitis a Tychone dictis. Anne igitur Luna ad \Im iens meridionalior fuit et nodum hunc loco anteriori invenit? et multo quidem anteriori? Igitur in hac re concurrunt eclipses praecedentes XII, VI et aliae, contrarium postulantibus IX—XI.

> XIV. Eclipsis Lunae anno 1590. 30. Dec. 1591. 9. Jan.

Finis hujus deliquii fuit observatus Uraniburgi 2' 40" prius quam sequens

humerus Orionis a meridiano in orientem remotus esset 20° 41' cum stellae asc. recta anno 90. esset $83^{\circ}18^{1}$, ablato intervallo relinguitur asc. recta M. C. 62° 37. Hinc aufer 40' pro 2' 40", restant 61° 57' tempore finis. Sol vero in 19° 8' \mathcal{S} habet asc. rect. 290° 43', diff. 131° 14' conficit h. 8. 45.'

Etsi coadjutorum unus ante 3' pronunciaverat) totam rotundam, Tychone reclamante, Severinius finem assumsit h. 8. 40'. Viginti figurae distinctorum phasium se invicem sequentur, annotatis ubique temporibus et inclinatione umbrae, est ubi et altitudine D: initium tamen deest, prima enim phasium fuit, quando paulo plus dimidio diametri) in umbra et cornuum linea ad perpendiculum erecta pingitur, horologii quidem indicatione h. 6. 5', sed quod tunc ostendit h. 6. 40', quando Aldebaran a meridiano abfuit 30° 1', i. e. in Asc. R. M. C. 33° 8', i. e. h. 6. 491/2', ut its phasis dicts congrust horse 6. 141/2 correctse. Altitudo supremi marginis) 20° 25' cum declinatione 21° 2'/2' angulum ad polum facit 84° 22′. Etsi vero) est vere ante O. at visibiliter est projecta in ortum, fere in 8 O. Et simul habet lat. merid. estque parallaxi adhuc projectior in meridiem. Si igitur ipsum punctum eclipticae O oppositum fuisset, hora indicaretur 6. 22'. Sed propter dictas causas aliquot scrupulis minus fuit, ut prius. Inde ad VI. schema dicitur paulo minus quarta parte superfuisse ad h. 7. 13⁴/₃ correctam et quidem paulo etiam ante pars residua aestimabatur quasi quarta. Et inclinatio cornu congruebat medio circiter, erat enim quasi 45°, cavitate sursum spectante versus sinistram. Sane h. 7. 33 supina cornua arguebant, jam transisse medium. Et schema X. exhibet h. 7. 46' eandem quantitatem illi, quae in I. schemate, ut hoc pacto medium fuerit h. 7. 0. Exiit umbra versus verticem ad dextram. Medium in Prog. adscriptum est h. 6. 55'.

			С	alcu	lus Tych	юni	s, cui s	equat	io e	st]	. 6	22	" ad	ld.		•	•	
O 19). 9. 6 ,			19.	11. 35	ତ						. 1	Mot.	Lat.	11.	24.		
		51.						Hora	rius	29.	36						5.	11
		29.	36	_	70700		Semid.	umb									1.	12
		22.	21		98800		**)	· -	16.	_							2
					28100								15.		1	Lat.	29'	55~
Dim.	duratio	33.	28	_	58400					29.	55	-	03: 5	795				
		15.			138400			rup.					11.4	135	•			
	Dig.	10.	47		80000		1	, dur	. d .	31.	57.							

Medium ergo calculo Tychonis repræsentatur h. 6. 52', finis h. 8. 37'. Sed utcunque sint ista propinqua observatis, quantitas certe nimia est, ubi superest nihil ultra 1'/a dig., cum 3 dig. censiti sint superesse. (Comp. Hist. Coel. p. 423.)

Consulo igitur meum etiam calculum.

169 D. h. 7. 51' () 19° 8' 46" () 5. 23. 36. 35 - 6. 3. 12. 12 - 3. 24. 38. 22 1.1.15 32. 11 - 2. 13. 40. 59 19. 1 19. 39 25. 0 Corr. 67200 Parall.) 60. 16 62300) 19. 11. 34 @ 25. 22. 23 @ 52330 \odot 49475 1. 1 **⊙** 19. 8. 46 111775 Req. 19. 10. 23 119530 61. 17 1. 11 6. 13. 37 Θ 15. 32 Semid. Medium h. 7. $1^{1/2}$ aeq. 1. 37 Reduc. umbrae 45. 45 15. 30 19. 10. 23 66035 . ☽ 61. 15 - 15. 870 Lat. 34. 26 - 05 010 10.860 Scrup, def. 26. 49 80500 Digiti 10. 23 50. 40 sc. dur. 14465 30. 14 - 68500 20. 26 - 107700 Dim. dur. 1. 40. 33 - 39200 Medium 7. 1. 30 aeguali Finis 8. 42. Temporis acquatio physica est 3. 22 add. _ ergo h. 8. 88' 38" apparenti.

Hic sequitur meus Tychonicum in tempore medii acquali $3^{4}/_{2}^{4}$, quia acquatio quidem mihi est eadem, reductio vero ad metam obscurationis maximae totum confait. Latitudinem habeo majorem, quia et angulus mihi major et nodus magis in sequentia a) distans. Hic etiam dimidia duratio mihi minor, essetque multo minor, nisi mihi auctior umbra, diminutior). Nec multo tamen mihi minor defectus, etsi multo major latitudo. Nam scrupula quidem defectus pauciora habeo, at simul et) diametrum breviorem.

Quod vero observationem attinet quantitatis defectus, illa sane utrumque nostrum redarguit fortiter, magis tamen Tychonicum. Minor enim fuit, major igitur latitudo, ac proinde nodus promotior, quippe) sequens. Accedit igitur hacc eclipsis ad classem posteriorem, in qua sunt IX, X, XI.

Considerabimus tamen etiam declinationem in prima phasi observatam, an ea pobis adstipuletur. Si enim supremi cornu declinationem in prima phasi observatani, an ea nobis adstipuletur. Si enim supremi cornu declinatio fuit $21^\circ 2^{1}/_{2}$, alt. vero $20^\circ 25'$, angulus inter azimuthalem et circulum declinationis fuit $36^\circ 30^{\prime}/_{2}$. Et quia pa-rall. D fuit 60' 16" mihi, alt. vero D cornu superioris $20^\circ 25'$, ergo parall. altitudinis 56' 30". Haec cum sit basis trianguli rectanguli minimi, cujus jam unus angulus expressus est, quare alter angulus erit 53° $29^{1}/_{2}$; huic autem objicitur parallaxis declinationis: hace igitur fit his principiis 45' 25". Vera igitur decl. supremi cornu sept. fuit 21° 48'; aufer partem proportionalem collectam per semid. D secundum me 15' 30", sc. 12' 28", restat decl. centri 21° 35' 32". Posito igitur, quod hac vice centrum) visum sit in loco eclipticae penitus O opposito, sc. in 19° 6' &, cum hic declinet 22° 9', distaret igitur centrum) ab ecliptica in circulo declinationis 33' 38", et quia angulus eclipticae cum hoc circulo est 82°, ideo via brevissima distant per 33' et haec esset vera lat austr. centri. At si parallaxis long. vel asc. recta superaret diff. long. centrorum, ita ut visus locus sit jam ultra \mathscr{E} \odot , locus ejus eclipticus paulo minus declinabit, proinde lat. vera centri) erit paulo minor quam 33'. Post horam igitur in medio eclipsis Luna propior nodo facta haberet lat. 30⁴/2' c., quantum proxime dicit calculus Tychonis, cum tamen ipsa quantitatis observatio liquido testata sit, oportuisse tunc lat. esse majorem. Hunc igitur dissensum tribuere possumus difficultati observandi declinationem ipsissimi cornu. Dum enim cavet observator, ne pro margine extremo sumat aliquid de corpore D, eaque de causa splendorem extremum sequitur, qui ex causis opticis latius excurrit, fit ut majorem justo declinationem sumat per unum et alterum scrupulum. Ita rursum diminuta declinatione sept. augetur latitudo merid. centri D.

Multo magis hoc obtinebimus, si refractionem etiam adhibeamus, quae in alt.) 20° statuitur 5′ 30′′. Nam haec diminuta de parall. alt. 56′ 30′′ relinquit 51′, proinde portio competens declinationi erit 41′. Ita centri decl. erit 21° 31′ et lat. 37⁴/₂′, etei plane nihil observationis vitio tribuamus. Neque omnino tantam hoc momento latitudinem veram statuo, cum refractionis quantitas non sit semper constantissima: sufficit, quorsum ea tendat, id saltem ostendisse.

Ad comprobanda et limitanda ea, quae jam de parallaxibus sunt dicta, et propter sequens epichirema constituam etiam parallaxes.

Asc. R. () 290° 43' Hora 6. 14'/3' 93. 38 90	In Nonagesimo 16° 46′ 🖯 Ejus altit. 48. 0 — 29685 — 40178 Sit) visibiliter in 19. 6 😨
Asc. obl. horoscopi 114. 21	Dist. a Nonag. 62. 20 - 12142 Parall. horiz, 60' 16"- 404400 - 404400
	446227 - 444578 ,, long. 39' 40", lat. 40' 22"

Lubet nunc etiam ex specie phaseos exstruere tam veram dist.) a centro umbrae, quam lat. ejus veram: non quod haec latitudo sit omnium certissima; non est enim annotatum, cornua fuisse ad perpendiculum erecta, sed ita saltem pin-

guntur in primis 2 phasibus pictura rudi et saepe limata, in tertia vero jam subito ad dextram est reclinis species idque evidenter valde.

Data igitur distantia) a Nonag. visibili et dist. Nonag. a vertice ut prius, et insuper alt. centri) visa 20° 9′, dabitur angulus inter verticalem et eclipticam praeter propter. Nam) in austro est, non in ipsa ecliptica, cujus rei causa pro 42° usurpabimus 43° 20′ quasi duoto circulo a puncto oriente per centrum). His principiis angulus iste fit 46° 58′. Posito ergo, quod cornua steterint ad unguem erecta, angulus inter diacentron et eclipticam, utpote in triangulo minimo erit 43° 2′. Et quia centrum umbrae dicitur transgressa, minus igitur aliquid isterfuit inter centra semidiametro umbrae, minus igitur mihi quidem quam 45′ 45″. Tychoni adhuc minus. De hac vero ut basi secundum angulos jam patefactos respondet longitudini quidem 33′ 26″, lat. 31′ 12″. Minus igitur quam 31′ fuisset in latitudine, si phasis fuisset exacta, et Tychoni multo minus. Ita ne Tychonica quidem parvitas sufficeret, cum tamen observatio quantitatis aliquid majus postulet mea etiam magnitudine. Non fuit igitur exacta phasis, sed reolinis jam

'Ex eo vero, quod obvenit longitudini, collatae cum parallaxi longitudinis, apparet, Lunae locum visum fuisse jam ultra $\mathscr{E} \odot$ c. 8' vel 9'. Simul autem de medio durationis certius aliquid pronunciare possumus. Horarius enim) a \odot fuit 30' 14". quare c. horam abfuit obscuratio maxima aut tanto minus una hora, quanto inclinatiora in phasi fuerunt cornua.

Cuperem eadem methodo etiam illas phases tractare, ubi cornua prona pinguntur; sed quantitas defectus deest et in picturis nimio variat: nihil igitur huc conferunt. Et in fine umbra vertici quidem corporis Lunaris pingitur propinqua, at inclinatio non est expressa nec numeris nec verbis, picturae vero nudae non est fidendum.

Satis tamen ex observata quantitate demonstratum est, attestante et declinatione observata, latitudinem omnino augendam nodo promoto, itaque hanc eclipsin accedere classi secundae, in qua sunt IX. X. XI. —

XV. 'Eclipsis Lunae anno 1592. 14/24. Junii.

Cum O in 3° 15' O occidat Uranib. h. 8. 40', centrum O occidit, cum) corpus subobscurum inter densas nubes totaliter supra visibilem horizontem conspiceretur elevatum, nec propter nubes aliquanto spissiores (verba exscribo) discerni potuit, an aliqua ejus particula fuerit in umbra.

Emersit ex nubibus h. 9. 28', quo momento cornua pinguntur erecta, defectus minor semisse corporis D; h. 9. 36' adhuc erecta, defectus semissi proximus; h. 9. 57' declinatio est annotata inferioris integri limbi 24° 58' vel 59'. Sed D valde humilis ad 5° et in refractionibus. Inter h. 10. 13' et 10. 25' annotatur defectus plenus, neque tamen minor pars illuminata 14' unquam fuisse scribitur, quorum 32'/, inventa sunt inter cornuum extrema. Color partis offuscatae ferrugineus. H. 10. 46' scrupula lucida 16, cornua exacte supina; h. 11. 58', visa est recuperasse lumen. Statim h. 12. 3'/4' medium D in meridiano cum alt limbi inferioris 9° 1' vel 9° 0'. (Comp. Hist. Coel. p. 529.) Igitur si ponas initium h. 8. 50', finem h. 11. 58', erit duratio dim. h. 1. 34', medium h. 10. 24'. Et respondet mediocriter inclinatio ad id momentum. Sin autem tardius incepit, minor etiam fit duratio, posterius medium. In Prog. ponitur h. 10. 16' certe nimis maturum hoc medium. Sic enim defectus principium sub Terram caderet et D oriens, si jam per quadrantem horae laborasset ingressu in tenebras, facillime potuisset defectus coargui. Infra ex phasi supinorum cornuum colligetur medium etiam posterius hac h. 10. 24'.

Calculus Tychonis. Acq. t. 1' 10' add.							
⊙ 3. 15. 13 ⊕.) 3. 18. 29 Z. 1= 1° 29' 11 6. 9. 16. 7. Lat.	31. 9						
2. 44. 7	2. 35						
Ser. dof. 25. 5. Digiti 9. 25. Ser. dur. dim. 48. 17. 6. 32. 0	11						
Dim. dur. h. 1. 45' 0".	33. 55 Mer.						
Same calculus id entribet and accurate terms modilis and act in Decemen	at an amonit						

Sane calculus id exhibet pro aequali tempere medii, quod est in Progym., at praevenit observationem 7'.

Haec duratio fere per h. ⁴/₃ superat observationem, et sic finem observatum per accidens assequitur. Quantitatem etiam refutat Braheus, qui non 7 dig. totos observavit. Ergo latitudo major nodusque antecedens remotior fuit in antecedentia. Inserta quidem est protocollo observatio Witebergae habita a Chr. Joh. Ripensi, qui aliquamdiu Tychoni inservierat, sine initio et fine eclipsis, qui cum maximam pingit 9⁴/₃ dig. ut habet calculus. At pictura haec est in cornibus supinis post medium nec respondent ceterae figurae, nec quicquam de quantitate verbis exprimitur: cum Tycho etiam dimensus sit partem residuam. Ultima illi phasis habet adhuc digitum in defecta, cum Vultur esset orientalior medio coeli per 16° 15′, ut fuerit A. R. M. C. 276° 20′, © 93° 33′. Tempus igitur arguitur h. 12. 11′, finis igitur c. h. 12. 18′, quasi sit diff. meridianorum 20′, quod multum repugnat tabulis geogr. Non est igitur fide digna observatio.

	Calculo meo.
⊙ Jun. H. '	
	1. 2. 12. 18. 21 - 7. 13. 6. 40 - 3. 5. 40. 15
14. 10. 25 1. 54. 7 Maj bin	
2. 10. 45 25. 33	167. 22. 43. 21
<u>57.</u> 3∕⊙ 3. 15. 20 ⊛	$165. \ 7. \ 51. \ 29 \ -0. \ 18. \ 25. \ 11 \ -0. \ 8. \ 45. \ 17$
80300	2. 14. 51. 52 - 1. 1. 23. $0 - 2.26.54.58$
5050	30. 40 25. 56 8. 22
85350	35 25. OCor.
) 3. 21. 22 5 R 27. 11. 36 II
	Requis. 3. 13. 46 🕥 3. 15. 20
,	7.36 6. 3.44
Denall D KO AA	
Parall.) 58. 44	Horarius) 30. 28. Red. 1. 34
<u> 0.59</u>	O 2. 23 Requis. 3. 13. 46
59. 43) a () 28. 5. Lat. 33. 33,
Semid. 💿 15.	simpl. 31. 40
umbrae 44. 43	
) 15. 5 - 68760	Fuit medium h. 10. 9' acquali, acquatio tempo-
59. 48 15.130	ris physica 0. 30' A.
	Ergo h. 10. 8' 30".
33. 33 04.750	Quod igitur praevenit calculus meus, fit quia
Scr. def. 26, 15 152000	minorem subtraho aequationem post apogaeum,

Quod igner praevenit calcinus meus, nt quia minorem subtraho aequationem post apogaeum, simulque anticipo metam obscurationis maximae. Quod latitudo mihi pene eadem, fit quia ex majori quidem angulo excerpo, at vicissim nodum)) propiorem habeo.

dim. dur. h. 1. 45. 48 - 26983

49. 32

28. 5

21. 27

digiti 10, 27.

Ser. dur. dim.

Quod nihilo minus digitos uno plures exhibeo, fit quia umbra mihi major, Luna minor. Nec tamen ultra dodrantem scrupuli plus habeo in dimidia duratione, quia minor diameter D, major horarius.

83240

10.380

75917

102900

Cum igitur quantitas defectus arguat latitudinem utraque nostra multo majorem, age consulamus etiam observatam declinationem statim post finem eclipsis. Si alt. limbi inferioris in meridiano fuit 9° $0'_{4}$, centri igitur 9° $15'_{4}$, altitudini huic parallaxis congruit 58', refractio ex Lunaribus 11': superat igitur parallaxis per 47', vera ergo centri alt. 10° 2'. Acquatoris vero alt. est 34° 5' 15", declinatio igitur vera centri) 24° 3' 15". Sed) in fine eclipsis superavit locum $\mathscr{E} \odot$ per 49' 35" ex meo calculo, ergo est in 4° 7' \odot , qui declinat 23° 28'; residua sunt 35' 15" pro vera lat. meridiana. Vides autem ex ipso processu, tantum augeri lat. veram, quanto minuitur haec assumta refractio; et est quidem in \odot minor, sc. 10', in fixis 6' ecque non semper constans. Digiti quidem 7 cum mea umbrae semidiametro compositi, latitudinem in medio desiderant 24' 18", distantiam a nodo per meum angulum 7° 40'; itaque Ω esset hac vice in 25° 35' Π , non vero in 27° 12' Π ; tunc et scrupula durationis erunt pauciora sc. 42' 15" et duratio dim. h. 1. 30', quanta et observata.

Imprimis vero evidens est phasis h. 10. 46' cum cornua exacte supina, et superfuere in lumine 16', quorum tota diameter habuit 32. Centrum igitur) fuit in margine umbrae, et utrumque centrum in eodem verticali fuit. Hic enim distantia centrorum aequavit semid. umbrae 44' 43", nec verticalis valde inclinabatur ad eclipticam. Aufer enim ab asc. recta oppositi \odot 273° 35' pro h. 1. 14' gradus 18. 30', restat A.R. medii coeli 255° 5' et A.R. horoscopi 345° 5' estque in Nonag. 19° M et distantia) ab eo 45° c., angulus 12° 35', complem. 77° 25', quod

79° 45.	0′		1854	_	165600 34660
			920		200260
82.	11.		934	_	199500
			29400		29400
44'	18″	_	30334;	6' 5'' —	228900

augebimus ob lat.) visam austr. ut sit 79°; ita conficimus angulum 82° 11′ c., remanentque in latitudine 44′ 18″, in long. 6′ 5″, quae) conficit 13′: quare medium eclipseos fuisset h. 10. 33′, dimidia duratio h. 1. 25′. Et in medio eclipsis) ut prius fere 43′. Omnes igitur circumstantiae adstipulantur magnae

latitudini. Et simul eclipsis medium in calculis certe per 16' praecurrit observationem.

XVI. Eclipsis Lunae anno 1592. 8/18. Dec.

Uraniburgi coelum nubilum; per nubila tamen usque ad h. 6. 52' non quidquam orbis rotunditati decedere visum. Deinde conditus in nubem non emicuit ante h. 8. 50' nec tunc quidem ita liber erat, ut de specie defectus pronunciari posset. Hora denique 9. 0' vestigia discedentis umbrae visa sunt in dextro margine inferius.

At Sorae in Seelandia Tycho ipse) quasi mediam in umbra vidit in alt. 34° 45'; finem signavit alt. limbi superioris 42° c., unde tempus elicuit Severinius h. 8. 50', quod Uranib. esse dicit h. 8. 56'. Ita medium caderet c. h. 7. 54', quod in Prog. exprimitur h. 7. 41'.

Calculo Tychonis, cui	aeq. to	emp. 1	' ()	sub.
-----------------------	---------	--------	------	------

⊙ 27° 13′ 53″ 🖈	$) 27. 24. 54 \Pi.$ <u>13. 53</u> <u>11. 1</u>	An. 6. 5. 53. 13. Mot. lat. 0. 10. 0. 52, lat. 51. 51. 11. 1.
Colligo medium : l Dur. dim. Finis		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	•	digiti 4. 24 169880 Sc. dur. d. 37. 30. — 05.950 35. 22. 2. 8. Dim. dur. h. 1. 3. 30.
		Calculo meo.
🗿 Jun. h.	1	
1592. 16-21-		1592. 10. 7. 16. 47 - 8. 23. 1. 13 - 2. 16. 42. 7
Dec. 8 - '8	21.11.27	dies 23. 16. 42. 28
	27.40	13. 8. 43. 13 - 5. 25. 9. 0 25. 0 Corr.
174-10.	50 @27. 14. 7,	Ž 36. 4 25. 58 Ω 17. 49. 35 Π
61.	18	50900) 27. 25. 15TT @ 27. 14. 7
67	150	32800 11. 44 9. 24. 32
103	230	83700 13. 31 2. 23 Red.
77	380	Rog. 27. 11. 44
•••		Lat. 51. 54, simplex 49. 7

Parallazis) 63. 40	. Colligo medium	n Horar.) 38. 33
Ō 1. 1	h. 7. 37 ¹ / ₃ ' aegi	
64. 41	-) a () 36 . 0
Semid. 💿 15, 33		18' 36'' 149000
" ambrae 49. 8		36' — 51080
.) 16. 22		22'32''- 97920
65. 30 -	— 18. 1 50	
Lat. 51.54 -	11. 810 (52' 54")	Si fidendum est huic animadversioni Tycho-
	06. 340	nis, quod) quasi media in umbra est visa,
, dur. d. 38. 42	Dur. d. h. 1. 4. 15	lat. hie requiretur minor eoque nodus antece-
36	7. 37. 30	dens promotior in consequentia seu, quod eo-
2. 42	Finis h. 8. 41. 45 aeq. 8. 41 app.	dem recidit, minor angulus excursus ad latera hac vice.

Conveniunt calculi eodem, licet per diversa quantitatis principia, sed uterque praevenit observationem per 15' c., sicut et in praecedenti.

XVII. Eclipsis Lunae anno 1594. 18/28. Oct.

Certum in 2 observatoriis initium Uraniburgi deprehensum est h. 17. 54' in supremo margine parum versus dextram. Hora 18, 35' Tychoni, at h. 6. 26' Gellio Sasceridi dimidia in umbra fuit censita, crevitque defectus, quousque aestimari potuit prae vaporibus, ad 9 digitos h. 18. 45'. Exinde 🔵 vaporibus immersa, O coepit oriri h. 19. 12' usque in h. 19. 17', cum tempus seminocturnum postulet 19. 23': per refractionem quippe tollebatur in altum. In Prog. medium reponitur in h. 19. 26'.

Fabricius in Frisia Or, pago Resterhavensi, qui 2' erientalior est Emda, habens alt. poli 53° 38', observavit alt. Sirii, cum parum jam incepisset, 18° 10'. Hinc computo tempus:

computo tempus:		36. 22 - 52	
	SP	106.10 - 4	035
Cam igitar hoc momento jam transmissum fuerit		69.48	56299
initium, major fit diff. meridd, quam 5° 55' vel tem-	VS	71.50	
poris 24'. Tycho sane statuit 6° 45', seu 27'. Con-		141. 38 - 70.	49 5718
frmavit tempus distantia Procyonis a meridiano 30'			1-403175
temporis circ. Et tunc defectum aestimavit 2 vel 3'.		9. 53	408888
		19.46	352589
Si	rii A.B.	96. 49	176294
		116. 35 Rest	rhaviae.
	≜ t	122. 30 Uran	
		5, 55 Diff.	U
Calculus Tychonis. Aeq. T. 9' 15	5" sub.	0.00 2	
⊙ 5. 28. 6 11) 5. 32. 37 8 - 1. 28. 18. 43 - 11. 24		at. 30/ 33"	
32.37		59.25	
4.31			sc. defectus.
5. 31 Sc. dimid. durat. 50. 56. Dur. dim. h. 1. 46. 38. Medi	01/ 4		
b 19. 16 ¹ / ₃ appar. $-1.46^{1}/_{3} = 17.30$ app. Initiam p			
Calculo meo. Aeq. physica temp. 2	2' 20''	Add.	
O Jan. h. '			
1594. 17. 9. 38 - 5. 37. 5 - 1593. 17. 2. 15. 13 - 10	0. 2.55	. 46 - 1. 27.	43. 9
Oct. 18. 19. 17-29. 27. 2 Sept. 17. 290. 19. 17			
4. 123. 9. 39 24. 8 307. 21. 32. 13			

4. 123. 9. 39 24. 8 307. 2 6 Revol. x1 303. 2. 24. 24 - 1. 8. 46. 9 - 0. 16. 3. 2 60.13 ⊙ 5. 28. 21 m' 4. 19. 7. 49 - 1. 28. 48. 40 - 1. 11. 40. 57 Parall.) 59. 37 Hor.)31. 49 31.32 4. 2 (8) 15. 16 ō 2. 31 25. 0 Corr. **⊙** 1. 0) 5. 34. 37 8 64300 R 11. 50. 41 8 60. 37 Ja@29. 18 203600 Requ. 5. 30. 0 4' 8" - 267900 diff. 4. 37 37

Kepleri Opera. III.

Calculus Belipsium Lunae

60. 37	29' 18"	ິ ດີ 11. 50. 41 ອ
Semid. () 15. 24	71700	õ 5. 28. 21 m
Umbrae 45.13	107700 - 20' 26"	6. 22, 20
) 15. 20	36000 - 41.51	1. 40 Rol.
60. 33.	15.720	5. 30. 0 Req.
Lat. 35. 14.	05.250	Lat. 35' 14", simpl. 33' 15".
-	10.470 Dim. dur. h. 1.41.	
Sc. dur. dimidiae	19. 5	Medium. Exacte cum Tych. compensante re-
49.44		ductione parvitatem acquationis. Ergo h. 19.5.
29. 18	17. 23.	Initium comput. praevertit per 31'. app.

Besid. 20.26

VISUS

Et quia defectus usque ad dodrantem crescere animadversus est, quae sunt 23' 6", recte sane fit, quod uterque calculus plura exhibet scrupula defectus, ille quidem fere 29, meus vero 25' 19", etsi Fabricius misit pictam formam deliquii horizontem subeuntis, quae minus habet dodrante, quaei jam transisset medium. Ita non pervenisset ad 10 dig., possetque etiam in ista eclipsi latitudo calculi augeri vel aucto angulo vel promoto nodo sequente in consequentia. Tum etiam duratio minor fieret et finis aliquot scrupulis propinquior fieret observato. Occidit) dicto loco oriente \odot h. 19. 15' vel paulo ante ob parallaxin, vicissimque refractio quanto citius facit oriri \odot , tanto tardius facit occidere). Si ergo ab initio observato h. 17. 27' numeraveris minus quam h. 1. 42', dimidiam durationem, pervenies non usque ad h. 19. 9', et sic supererunt a medio usque ad occasum) scrupula aliquot. Quae omnia cum inter se consentiant, patet hanc eclipsin inter illas esse, quae nodum sequentem promotum, calculi tempus prolongatum postulant.

XVIII. Eclipsis Lunae anno 1595. 13/23, Apr.

In hujus eclipseos observatione magna fuit adhibita diligentia, cujus et nos vestigia sequimur praecipue ob testimonium latitudini conquirendum.

Primum in media nocte locus \odot erat 3° 8' \circlearrowright , asc. recta 30° 54'. Cum igitur esset cor Ω (cujus asc. r, tunc 146° 42') occidentale 65° 50' (h. 12. 6',),) limbus occideatalis removebatur a spica 12° 17', cujus declinatio 8° 59' A. Lunae vero declinatio centri erat 12° 26' 15'' aust. per armillas. Hinc datur locus sic:

Compl. decl. maj. 77°33′45 C. d. min. 81. 1. 0		bus, A. R. M. C. 212. 32 frac- Angulus Or. 28. 20	Nonag. 23. 23 m
3. 27. 18	5 3609 tione.	74528	37.18
Dist. centri 12. 33. (D	$\log. 37' 18'' = 50089$	61.40
9. 5. 48	5 - 4. 33 - 253418	Parall. 63' 9" 399710	12760
16. 0. 1	5 — 8. 0 — 197204		399710
	450619		412470
450	$619 - 3609 = \overline{447010}$	Ver. " 0. 22. 37 M	Parall. lat. 55. 37
12. 16. 40	0 — 6 . 8. 20 — 223505		Visa lat. 44. 2
Asc. R. Spicae 196. 0	_		Vera lat. 11.35
, ,) 208. 16. 40	0		sept.
Commedians 0.24.1	5 M Declin. 11º 39'		•
Angulus 69.25.3	0 At) 12. 26	Sed si 🕽 fuit i	n refractione, ea
Respondet long. 16. 32 Ergo locus	2 diff. 0.47	detracta minor	fiet vera lat. sept.

0. 40. 47 m, lat. visa 44' 2".

Pro confirmatione hujus declinationis, quae plurimum confert ad latitudinem, notata est ante quadrantem horae altitudo centri merid. 21° 45', ițaque declinabat 12° 20', et simul consultae armillae ostendebant 12° 22'. Itaque per hoc vera lat. sept. ad illud momentum statuitur major, sc. 15' 30", quod non potissimum ob majorem remotionem a nodo contingit, sed ob difficultatem observandi.

Jam) visa est alignid lucis amittere cum lucida Vulturis (asc. r. 292° 45') abesset a meridiano 38° 5'. Id igitur fuit h. 14. 54', per 2 observatoria h. 14. 52'. Post 12' distabat occid.) limbus (decl. 13° 59' A.) a Vulture 85° 25', ergo AR. centri) sic invenitur 209° 39'; commediat 1° 50' M, qui declinat 12° 9' 12" A., ita) excedit 1° 0'.

578

Et cam angelus meridiani cum ecliptica sit 69° 42', respondet huio long. 20' 50" et visus igitar) locus 2° 10' 50" 11, visa lat. 0° 56' 17". Hine aufer parallaxes dissimulata refractione; est enim AR. M. C 251° 40' et in Nonag. 25° 11, et) ab eo in occasum per 22° 49', angulus orientis 12°.

1	12.	0.	0	- 157064		78.	0.	0	- 2209
1	22.	49.	0	- 94731		1.	3.	9	- 399710
	1.	3.	9	- 399710					401919
				651505		1.	1.	45	parall. lat.
		5.	5	parall. long.		0.	56.	17	-
	2.	10.	50		lat.	0.	5.	28	sept. vera.
ิง	2.	15.	55	Ш уств.					

Igitur ab h. 12. 6' 30" in h. 15. 6' per horas 3 deprehenditur) promota per 1° 53' 18". Et si nulla refractio subtrahatur, in lat. sept. decrevit per 6'; at proportionaliter debuit decrescere per 10' 24", quare si utrinque justa fuit observatio, datur hinc excessus refractionis in) humiliori $4^{1/2}$ in lat. At si magis fidamus obs. meridianae proximae, quae lat. habuit 15' 30", tunc perexiguus relinquitur sensus variatae refractionis. Interim hoc nota de utraque vice, Lunae latitudinem veram detractis refractionibus fore minorem.

Inde h. 15. 48' tota in umbram ingressa visa est per 3 observatoria consensu exacto, consumtis in incidentia 56' cum jam illucesceret; nec ex eo quid amplius est observatum, \odot enim h. 16. 42' oritur ea die.

Hanc eclipsin Krabbus Math. Brunswicensis in urbe Brunswigia observavit in alt. Arcturi 43^o incipere. Colligitur h. 14. 56'. Esset igitur diff. meridd. 4' et Brunswigia orientalior, quod repugnat tabulis, ponunt enim illam tanto occidentaliorem et plus etiam. Sed exspectabimus plura suffragia. Facile 1^o in alt. stellae peccat observator non exercitatissimus.

Eandem et ego Graetii observavi; coepit in alt. Arcturi 44° c. (astrolabio papyraceo), cum et) alt. esset 15° 30′ c. Inde desiit lucula transparere per densum horizontis aërem, cum Arcturi alt. esset 34°,) 6°. Prodit pro initio tempus h. 15. 2′. Vel si) respiciamus, cum eo momento Uranib. fuerit ejus AR. visibilis 209° 39′, decl. 13° 59′ nec multo alia Graetii, ut ea quidem sit utilis ad indagandum tempus; ergo ejus alt. 15° 30′ arguit h. 15. 5¹/₂′; ita conficeremus diff. meridd. 10′ vel 13′. Posteriori momento colligo vel h. 16. 2′ ex Arcturo vel h. 16. 13′ ex alt.) posterius sunta: sed inepta est haec incerta observatio ad confirmandam diff. meridd. Medium Program. est h. 16. 36′ app.

frmandam diff. meridd. Medium Progymn. est h. 16. 36' app. Sequitur calculus Tychonis. Aeq. T. 8' 50" S. (2) 3. 24. 32 (2) 3. 23. 59 (3), 7. 6. 27. 49; - 6. 1. 20. 19; lat. 6' 59" austr.

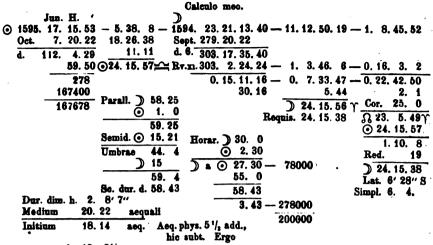
Horar. 34' 24"; semid.) 17' 45"; umbrae 46' 25", cor. per var. 46. 5.

Dur. dim. 1^h 50' 37", mor. 47' 44", incidentia h. 1. 3. Medium eclipsis cadit h. 16. 28' temp. acquali, h. 16. 37' appar.; initium ergo h. 14. 46¹/₃'. Sed tempus incidentiae multo computatur longins observato.

⊙ Jun. h.	Calculo meo.
	3. 1594. 23d21h13'40" - 11. 12. 50. 19 - 1. 8. 45. 52
Apr. 13, 16.27	Mart. 102. 16. 27
D. 64. 23. 26 - 2. 13. 50	d. 12. 126. 13. 40. 40
58.10 1.22	Rev. V. 137. 18. 32. 55 - 0. 15. 20. 59 - 0. 7. 17. 44
@ 3. 25. 40 X	11. 4. 52. 15 - 11. 28. 11. 18 - 1. 1. 28. 8
Parall.) 63. 9 Horar.) 37. 40	0 35. 22 4. 24. 12. 10 35. 36
Š 1. 0 Š 2. 20	6 52800 30.49 25 Corr.
64. 9 D a @ 35. 14	4 - 53200 13800) 3. 28. 191η; Ω2. 28. 44 8
8. () 15. 8 Sc dur. 64. 5	
49. 1 29. 37	7 — 70600 diff. 2.54 0.57. 0
) 16. 14 D.d.h. 1. 50. 25	5 17400 0.15 Red.
65.15	0. 5. 27 lat.
	Simpl. 4. 58.
32. 47 - 04.550 32. 18	8 - 01900
5. 27 - 00.130	8700
Se. mor. 32. 18 - 04.420	Mora dim. h. 0. 55. 0. Tempus incid. 55' 25".
	37 *

Copulam mediam computo 6' citius quam Tycho, durationem candem, tempus incidentiae brevius et proximum observato. Sed initium per durationem cadit h. 14. 32' acquali et per acquationem temp. physicam 21' subt., quae hic additur, plane h. 14. 53'. Quod latitudinem attinet, etiamsi refractionem quantam Tycho in) prodit removeam, manet tamen in medio septentrionalis observata. Proinde vult hic nodus in consequentia promoveri, ut pro meridiana 5' 27" flat sept. 1' c. c., idque non argumento durationis, quae parum mutatur in eclipsi pene centrali, quacunque nodum moveas, sed sola observationis fide in declinatione : nisi forte eam quis insolita et valde insignivrefractione statuta evertere voluerit. Atqui ne hoc quidem passurae sunt istae observationes. Refractionis enim haec est natura, ut versus horizontem subito crescat, etsi magna admodum fuit refractio in meridiano 🔵 situ, quando fuit altissima totius illius noctis: necesse erat post 3 horas magnam etiam animadverti refractionis hujus diversitatem. Luna quippe jam humiliori multum. Non vero deprehensa est magna refractionis hujus diversitas, sed aut 4' 30" solum, aut plane nulla, ut superius ex ipsis observationibus demonstravimus. Certissimum igitur est, promotiorem hoc loco nodum fuisse. Nihil hic proficeremus anguli auctione, solus nodi situs in culpa est.

Pro fixarum locatione nota, quod 12' post principium respectu fixarum inventa sit) in 2° 16' M nec multo anterius per refractionem, ut quae in hac alt. minima pars est parallaxis, cum ipsa etiam long. parallaxis sit exigua, sc. 5'. Minutis 12 congruunt sc. horarii) a \odot 7' 3". Et quia) proxime eclipticam, latitudine non majori quam 5' 23" sept., tota demta de 65' 15" distantia centrorum, relinquit 58' 12". Centrum igitur umbrae respectu fixarum erit in 3. 14. 7 M. At computatur ex Tychone ad h. 1. 38' ante medium in 3. 21. 35 M. Vicissim igitur, si centrum umbrae in 3. 21. 35 M collocetur, fixae sunt promovendae per 6¹/₃.


XIX. Eclipsis Lunae anno 1595, 7/17. Oct.

Cum 4 c. digiti aut paulo plus in umbra essent, occidit) centrum, 9' solum postquam primum fuit animadversus defectus aliquis, quem pictura exhibet quantitate $\frac{1}{6}$ de semidiametro, seu digiti $\frac{1}{6}$; itaque 7' c. maturius, i. e. 16' ante eccasum) fuit merum initium. Oritur vero \odot in $24\frac{1}{6} \rightleftharpoons h$. 18. 57' et) nondum in opposito \odot praeoccidit, nimirum h. 18. 50', ut operose per applicationem parallaxeos et refractionis inveni computatum. Ergo initium fuit h. 18. 34. Prog. ponunt medium h. 20. 29' appar.

Calculus Tycho	is. cui	8.00.	T.	7'	14"	sub.
----------------	---------	-------	----	----	-----	------

1594. Oct.	. d.	6. h	. 20	. 22	' 🕽	•													
(90	. 26	. 12	. 46	_	5.	28.	43.	33		0.	8.	16.	- 4	_	0,	2.	15.	56
	ັ 3	. 5.	. 35	. 46				40.	28				5.	1				41:	48
	3	. 20	. 37	. 0				1.	20	_			1.	20		Ō.	1.	34.	8
				. 46				2.			•		41.	48	•			5.	12
	ō	24	. 16	. 0	3	6.	26.	12.	46		n			16			-	Z.	57
	•					$\overline{\mathbf{D}}$	24.	14.	51	-γ	ν.	••						5.	13
					Ho	181	20.	24 1	reda	ali	est	ve	na b	Ρ.			Lat	. 8,	10
Horarius	27.	18	_			790	00	D	imi	dia	dùr	. h	. 2	. 7	. 1	6			
Semid. 🔵	16.	0	:	3. 18	3. 2	900	00	D	(edi	um	h. :	Leq.	. 20	. 24		0			
Umbrae	43.	1	•		2	110	00	Ĩ	nitiu	m			18	. 18		7,		ali	
Var.		44						_							. 2				
Correcta	42.	17											18	. 25	. 3	2 1		rent	í
Summa			- 1	14. 1	390				P	-	enit	; ot		atio					
	8.																		
Sc. dur. d.	57.	44	-	14. 1	100														
	3.	18		00. 3	290														

580

h. 18. 8¹/₂ appar.

Ita praevenit meus calculus observationem $25 \frac{1}{2}$, quassaturque aeq. physica, quae tantam diversitatem efficit: nisi contra excipiam, quod alio tempore eadem et Tychonico calculo contingant.

XX. Eclipsis Lunae anno 1596. 2/12. Apr. vesperi.

Observata est Uranib. in 3 observatoriis quantum per nubes potuit. Initium enim latuit sub densis nubibus. At h. 8. 24' tempore correcto ex stellis in uno observatorio ut primum emicuit, quintam semidiametri partem deperditam prae se fert in pictura, id est 3' c. In observatorio secundo post $3'_{12}'$ pingitur quasi $'_{17}$ totius diametri. In observatorio tertið h. 8. 28' pinguntur 2 digiti. Igitur c. h. 8. 18' principium fuit aut 1—2' anterius propter ingressum ex obliquo, et sic assumsit illud Severinius. Circa h. 9. 8' per nubes quasi dimidia) pars in umbra videbatur eoque vultu permansit aliquamdiu invariato, cum nubes eam subiere. Tandem h. 10. 43' detecta discessu nubium tota rotunda apparuit. Ita finis antecessit, incertam quantum temporis. Medium in Prog. exprimitur h. 9. 29'.

Calculus Tychonis, cui aeq. temp. 7' sub.										
1595. Biss. Apr. 1. h. 9.	. 22′.									
○ 0. 21. 12. 10)		- 5. 17. 50. 4	3 - 6. 1	11. 1. 35						
3. 5. 36. 10	1. 9. 14	- 5. 15		1. 4. 48						
9. 15. 36. 0	4. 26	4. 14	6.	9. 56. 47						
1. 57. 28	1, 4, 48	12	2	5.8						
O 23. 9. 38 γ	6. 2. 1. 3	1. 4. 48		5500						
. .	0. 21. 12. 10	5. 16. 46. 0	j	2458						
Luna 6' antes, sc. h. 9. 16') 23. 13. 13	== Horar. 35. 20	, –	251300						
acquali, seu h. 9. 23' app.	23. 9. 38			4. 47						
in 8 💿 fuit.	3. 35	Umb. cor. 46. 28	11.20 0	0. 46. 38						
		64. 26	- 17. 570	0. 51. 25 Lat.						
		Sc. dur. d. 38, 48								
		3, 28	28	5000						
Initium h. 8. 1		dim. d. h. 1. 5. 54	5	2950						
satis propinguum ol	pervationi.	Latit. 51. 25	23	2050						
		Scrup. def. 13. 1								
		•		observati 6.						

	Calculo	1000.			•
⊙ Jan. Ħ. ')				
1596. 16. 22. 7 - 5. 39. 119			- 0. 25. 49.	0 - 0. 18.	20. 12
Apr. 2. 9.16 - 11.57 13	Biss. Mart. 92.	9.16			
D. 75. 12. 51 31. 20	95.	12. 9.31			
58. 32 ⊙ 23. 10. 38 γ					
2480	12.	20. 13 46	5. 17. 57.	57 - 0. 13.	
62470		3 5. 53	8.	14	40. 50
64950	-	147300	23. 7.	4≏	25. 0 Cor.
Parall.) 63. 35 Hori	ur. 🕽 38. 24	51400	Req. 23. 8.	4 β 13 .	41.43 Υ
Ŏ 1. 0		198700	•	O 23	10. 28 Y
64.35	a () 35. 56			9.	28.45
8emid. () 15. 13	39.48		digitis :		. 52. 17
Umbrae 49. 22 ·	3. 52		40 - 6080	00 Simpl	. 49. 23
) 16.20	274000	Sc. d. 13.			2. 24Red.
65. 42 - 18. 270	51200	6.	43 - 21910	23.	8.4
Lat. 52. 17 - 11. 570	222800		15830	Ö Re	q nisitus .
Ser. def. 13. 25	dim. dur h. 1.	6' 27"	Dig. 4.56	¥.	
Ser. der. 13. 25 Se. dim. dur. 39. 48 – 06. 700		16	. 8		•
ge. um. um. ve. 40 - ve. 100	Initium h. 8.	9. 33 aem	nali.		
		19.50			

8. 29. 23 apparenti. Sequor igitur observ. 13'.

In acquali tempore medii plane coincidunt calculi, quia magnam quidem acquationem versus perigaeum subtraho, at vicissim et terminum obscurationis maximae tantundem anticipo. Reliqua igitur sunt ex diversa ratione acquandi tempus. Quodsi minuatur latitudo, ut defectus acquet dig. 6, tunc dimidia duratio fit longior, initium igitur observationi propius et Tychonicus illud praevenit. Minuetur autem latitudo, si nodus hic antecedens promoveatur in consequentia.

Quando defectus colligitur major observato, locus est suspicioni, quod residuum lucidum ex causis opticis dilatetur. Hic contrarium fit. Si enim residuum ex causis opticis fuisset dilatatum, defectum adhuc majorem colligere debuissemus. Satis igitur fida est attestatio observationis, hac vice promovendum esse nodum.

XXI. Eclipsis Lunae anno 1598. 10/20 Februarii.

Haec ut in multis locis, ita magna etiam varietate est observata temporum et quantitatis. Incipiam ab incertioribus.

Graetii in Styria ego conscendi propugnaculum urbis, in quo, cum instrumentis idoneis carerem, horam a media nocte tertiam in urbico horologio examinavi ad alt. Spicae 33° 20', unde prodit h. 3. 25'. Sed immemor, mediantium coelum altitudines valde late indicare, non satis bene mihi cavi. Etenim si vel unius gradus quadrantem peccaverit observatio, jam 7' temporis in dubio ponuntur. Exiguum hoc est, cum illa nocte h: 6. 47' oriatur \odot , quod sonante h. 6, quod esset h. 6. 25' secundum correctionem. D deficiens adhuc aliquot graduum altitudinem habuit, ut censerem, post 3 horae quadrantes demum occubituram; quae censura si justa fuisset, horologium correctione nulla indiguisset. Sic igitur habuit horologium. Jam cum sonaret h. 4. 30' nondum animadverti defectus initium, sed per nubes fleri potuit, ut tunc inciperet. Nam paulo ante h. 5. urbis D nondum ex dimidio obscurata penitus erecta stetit. Paulo vero post quintam dimidia diameter defecit, Luna jam resupinata. Paulo ante sextam tenuissimo cum lumine subduxit se sub nubes, adeo ut videretur adhuc decrescere, lumen omne deperditura. Sesquihoram igitur laboravit hucusque in ingressu, initiumque c. h. 4. 35' urbis, correctione vero praedicta stante, c. h. 5. 0' fuit. Vide meae Astr. partis Opticae fol. 358.

T. Brahe tunc excesserat e Dania haerebatque Wandesburgi. Ad quem Severinius transmisit observationem Rostochii habitam a Wilh. Laurenbergio Doctore per alt. Arcturi cum mediocri quadrante. Sed Severinius summam solum perscripsit,

dicens, quod saltem ex phasibus quibusdam ad ingressum et egressum consinhilibus mediam enucleaverit h. 18. 4'. At huio consignationi juncta est in protocollo, alia, quam Tycho scribit ad se missam a M. Joach. Radenicio, quae idem exhibet medium per consimiles phases ingressus et egressus, et per ejusdem Arcturi altitudinem. Erat enim illa 55° 12' cum quadrans in umbra esset, et 54° 32' cum semissis, et 53° 14' cum bes, et 52° 27' cum dodrans. Inde nubes; at post medium, cum iterum dodrans, alt.) fuit 2° exacte. Additur: respondere tempora, h. 4. 44', 4. 51', 5. 9' et pro dodrantibus h. 5. 18' et h. 6. 49'; ut sit medium h. 6. $3^{\prime}_{1s'}$. Videtur igitur illa ipsa esse observatio, cujus summam Severinius scripsit. Quodsi comparaveris phasin semissis h. 4. 51' cum mea obs. h. 5 paulo plus, .vel per correctionem h. 5. 25' paulo plus: dabitur animadvertere diff. meridd. inter Rostochium et Gratium vel 9' plus, vel 34' plus. Unde facile patet, timiam esse meam correctionem, nec tamen nullam omnino statuendam; tabulae enim requirunt c. 17'.

Jam Tycho Wandesburgi, quod non amplius quam ⁴/₂ mill. Hamburgo distat (alt. poli 53° 46', initium signavit alt. superioris limbi D 23° 30', itaque constituto visibili loco) hinc elicuit h. 16. 12', quod esset Uranib. h. 16. 25' ex fide tabb. Quae comparata cum mea obs. h. 4. 35', vel h. 5. 0' per correctionem. ostendit diff. meridd. 19' vel 43', quae discerne ex superioribus; nam tabulae ponunt 28'. At cum semissis obscuraretur, caput Ophiuchi a meridiano ad ortum fuit 26° 24'; cum igitur sit ejus AR. 259° 2', erit AR. med. coeli 232° 38', hinc ablata AR. \odot 334° 27' relinquit 258° 11'; hora est 17. 13'. Eadem vero phasis Rostochii h. 5. 18' visa scribitur, esset igitur diff. meridd. non major quam 5', quam tabulae faciunt 11'. Scilicet phasis ista semissis in umbra pro diversitate visus aliter ab aliis animadvertitur. Ecce post 36' scribitur superfuisse triens; at Rostochii post 19'; rursum post alia 3' superfuere scr. 9 i. e. fere quadrans, Rostochii post alia 9'. Inde semper minor deprehensa est pars residua usque ad h. 18. 0'; tunc dimensi sunt eam sc. 3; ex eo rursum crevit, ut h. 18. 48' esset quasi 10'. Comparatione igitur cum h. 17. 52', quando 9' superfuere, veniet medium ante h. 18. 20', et Tycho quidem c. h. 18. 0' medium incidisse opinabatur. Oritur ea die 🗿 h. 19. 0' in dicto horizonte. Atque ex hisce omnibus primum hoc habetur, superfuisse in maximo defectu adhuc sc. 3, ubi tamen adduntur verba dubitationis "quae ullo modo discerni poterant". Deinde, quoad ipsum medium, illud lato modo fuisse inter h. 18. 0' et 18. 20'; in Progymn. ponitur h. 18. 7'. Opinor tamen c. h. 18. 0' perperam aestimata fuisse residua sola 3' respectu ceterarum phasium : nam subito apparuit residua pars major, et longa nimis videtur dimidia duratio a principio illo indubitato. Adde quod Rostochiana obs. medium suum h. 18. 4' Wandesb. transmittit in horam anteriorem. Huc accedunt observata sequentia.

D. Fabricius in pago Resterhavensi prope Auricum initium eclipseos notavit alt. Reguli 24° 30', ergo h. 16. 1'. Ita emergit diff. meridd. Wandesb. et Aurici 13', quod proxime congruit mappis. Exinde cum in maxima obscuratione esset, lucidi cornu residui lat. erat aestimata 5', sed quod obscurius esset lumen propter vapores circa horizontem, instrumento id metiri non potuit. Fabricius id contigisse ait h. 17. $58'_{1s'}$, sed appingit phasin, in qua cornua sunt exacte prona et horizonti obversa; ex qua phasi certum est, id fuisse post medium, quia) in quadrante occidentali satis humilis erat; atque id etiam congruit observatis. Si enim Rostochii medium fuit h. 18. 4', convenit secundum mappas, ut Aurici fuerit h. 17. 41'.

Maestlinus vero et Rittelius, quod mireris, totalem observarunt. Principium in alt. \bigcirc 26°, unde elicitur h. 16. 6'; ubi vides, quanto consensu cum mappis Tubinga media cadat inter Auricum et Hamburgum. In principio totalis obscurationis, omni vestigio lucis exstincto, annotarunt alt. \bigcirc 13°; id est h. 17. 25'; ex eo plus dimidio horae \bigcirc in umbra, cum nubes eam eripuerunt. Credideris illos de alia eclipsi loqui, cum aliorum observatorum consensu superfuerunt aliquot scrupula: nisi ipsorum observatorum verba relinquerent locum dubitandi, num forte loquantur de rubore illo, quem prae se fert Luna in lateribus umbrae. Itaque jam ante aanos 18 in Astr. parte Optica super hac Tychenis observatione provocavi ad Cap. V. fol. sc. 266 et ad Cap. VII. fol. 302 et ad exemplum eclipsis proxime sequentis, de qua fol. 302 dicti libri. In hac exceptione contra observationem scrupulorum residuorum in lumine perstiti in prolegomenis Ephemeridum p. 12, confirmatus exemplo eclipsis simili diversitate observatae, quae infra sequetur (XXXV). Ne tamen quid in partem etiam alteram omittam: potest excipi etiam contra Masstlinum, lucem illam imbecillem seu vere residuam, sive etiam ruboris dicti, quae purioribus horizontibus movit observatorum oculos, eam, inquam, Tubingae in crassiore et aquoso aëre sic delituisse, ut etiam mihi Graetii in consimili dispositione aëris sese subductura videretur, sic ut observatores ex amisso in humore omis lucis vestigio conjicerent totam in umbram immersam; post semihoram vero nen tam Lunam, ut quae latebat antea, sed ipaum illum coeli locum a nubibus densis teetum, sic ut non videre tantum, sed quaerere etiam Lunam desinerent. Hoc interpretamento relinquitur in incerto, restiterit quippiam in vero lumine necne: de quo infra ex latitudinis observatione pronunciabitur.

Ultimus observatorum accedat Gulielmus Jansonius, qui primus globes coelestes ex Tychonis restitutione fixarum sculpsit, rationumque observandi Tychonicarum peritus ex autouug fuit. Scheda ejus ad Tychonem transmissa habet schemata seu phases 14, cum appositis altitudinibus caudae Leonis, Alcmaria in Hollandia captis. In primo 1' abest, alt. stellae 42° 15'. Tempus respondet h. 15. 51'; merum igitur initium h. 15. 49'. Et diff. meridd. Alcmariae et Aurici 10', Tubingae 15, Hamburgi 21, egregia fide mapparum. Circa magnitudinem defectat schemata phasium pro Tychone loquuntur, sed sola pictura sine scriptura, relinquunt enim 2' fere, pulchro situs ordine a dextra per summam ad sinistram, sed per 4 schemata circa medium acquali fere quantitate, ante et post subito magna, unde apparet., non tanta cura intentum in quantitatem fuisse. Ultima phasis dodrantem habet in umbra, alt. Arcturi 46° 40', de qua vide in mea observatione, etsi jam magis fida est. Respondet igitur h. 18. 40'. Et quia etiam in alt. candre 33° 30', id est h. 16. 56' dodrans in umbra esse potuit, indicibus circumstantibus phasibus. Ergo medium caderet in h. 17. 48', quod Tychonico quam Rostochiensi medio propius quadrat.

De iis quae Tycho et Fabricius observarunt circa visam Lunae long. et lat. dicam inferius. Nunc ad calculum Tychonis, cui aeq. t. 8' add.

⊙ 2° 32′ 47″ → .) 2° 34′ 97″ m. Anom. 1* 10° 25′ 47″ Lat. metns 5. 25. 16. 30. Lat. 24′ 33″. Medium h. 18. 11′ acquali, 3′ apparenti.
Horar. 27' 54'' 76600
Semid.) 16. 15 53. $22 - 27.54 = 25.28.85700$
Umbrae 42. 32 h. 1. 54. 46 — 9100 Duratio dimidia.
Summa 58. 47 — 14. 620 18. 3' appar. Med.
10. S' Initium. satis longe recedit ab observauose,
Diff. 34. 14 Totalis 34. 46 to 17'.
Ser. defie. 53. 27 12.060 27. 54 - 76600
Diff. diam. 42. 32 - 07. 660 6. 52 - 217000
Sc. mor. d. 34. 46 05. 100 Mora dim. 14' 45" - 140400
Incidentia h. 0. 40'.
Calculo meo.
⊙ Jun. h. ')
1598. 17. 10. 36 - 5. 41. 7. @ 1597. 17. 16. 50. 23 - 3. 15. 38. 6 - 11. 10. 23. 56
Febr. 10. 18. 11 Jan. 9. 40. 18. 11
D. 126, 16, 25 $-$ 2, 27, 47 58, 11, 1, 23
60. 17 41. 13 Ber. II, 55. 2. 37. 10 - 0. 6. 8. 24 - 0. 2. 55. 6
Parall.) 59. 0 30.53 12.26 10.39
○ 1. 1 90730) 2. 35. 37 Hp 25. Con
60. 1 66413 Req. 2. 38. 28 3. 7. 49. 11 +
157143 diff. 2. 9

584

Annorum 1572-1625.

	80/	1"				۹.	Ω	7°43' 11")(
Samid. 🕥	15.	31						2. 32. 7
Umbrae							<u>×</u>	5.11
	15.	10						1. 21
Lat.		$\frac{40}{41}$ - 15.070 41 - 03.480		т	at. 1	28′		2. 33. 28 impl. 27' 5".
Sc. def.	30.	59. Totalis et	hic, sed pene in	Horar.			, .	
Diam.			ipso contactu.		-			
		20 - 03. 640		1:0	28.	23	- 74	860
Sc. morae	3.	42 - 00. 060	Dim. mora est	2 -	23.	56	- 91	900
Sc. dur. d.	52.	20 - 11. 590	tantum 8'.			•	_	040
				Dim. dur. h. 1.	50.	35		
				Medium 18.	7.	35	8.eq.	
				Initiam 16.	17			

Propterea quod ego parvam aequationem post apogaeum subtraho, praevenit meus calculus Tychonicum $4^{4}/_{3}$ et paulo plus praeveniret, si non ratione obliquitatis viae Lunae vicissim aliquid adderem.

Acquatio temporis physica est 3' 15" subt., ergo hic adde. Ita initium erit h. 16. $20\frac{1}{6}$ app.; hoc est observationi propinquius. Initium n. visum est h. 16. 12'; quod esset Uranib. h. 16. 25'.

Hic calculus uterque totalem exhibet eclipsin, qualem et Maestliniana tradit observatio. Sed quia haec supra in dubium est vocata, age videamus, si quid de Lunae latitudine fuerit observatum insuper, quod discrimen faciat inter totalem et partialem. Nam si vere superfuerunt aliquot in medio scrupula, oportet nodum V, qui hic sequitur Lunam, fuisse promotiorem in consequentia, et latitudinem majorem in septentrionem. — Igitur h. $4^{1}/_{2}$ ante initium eclipsis contrum) in meridiano (nondum tamen exactissime invento) Wandesburgi visum est habere alt. 48° $12^{1}/_{2}$, cui respondet parallaxis alt. 39' 19", vera igitur alt. centri fuit 48° 51' 49". Eadem vero nocte observata fuit alt. poli 53" 46'. Vera igitur declinatio centri) 12° 37' 49". Cum igitur h. 18. 67'. D fuerit vere in opposito O, vel in orbitae suae 2° 331/2' 19, horarius vero) a O sit 28' 23", horis c. 61/2 conficientur paulo minus tres gradus. Luna igitur in meridiano erit 12' citius quam 🕥 oppositum, puta h. 11. 48'. Temporis igitur intervallo emendato h. 6. 18' com-petit exacte arcus sub fixis 3° 14' 18", ut in ipso oppositionis impetu, qui parum admodum remittit 6 h. ante, ut) culminans fere fuerit in 29° 9' & orbitae suae, paulo ulterius. Etsi vero 3 distincti circuli sunt, latitudinis, perpendicularis in orbitam) et denique meridiani, non est tamen hoc loco nimium subtiliter attendendum hoc discrimen, sed potest per positiones ad verum satis propinque veniri. Nam declinatio 29° 10' Q est 11° 50', Lunae fuit 12° 37' 49". Si ergo \supset cum 29° 10' & stetisset in meridiano, inter ipsam et eclipticam in circulo declinationis interfuisset 0° 47' 49". Sed quia posterius aliquid commediavit, id praeter propter indagatur ex hac quantitate jam eruta, quamvis non verissima, exque angulo ad 29° 10' R, qui est 69° 30'. Itaque commediavit c. 29° 28', cujus decl. 11° 42' et verior arcus interceptus 55° 49', verior angulus 69° 27', quare lat. vera secundum hunc angulum 52' 49" vel et 1' plus. Haec vere latitudo requirit distantiam a nodo 9° 26'. Hunc arcum si addideris ad locum) praesentem 29° 10', veniet nodus in 8° 36' 119, quem ego computo in 7° 44' 119. Certum igitur est, superfuisse minuta c. aliquot latitudinemque fuisse majorem. Nam si jam in ipsa maxima obscuratione promoveris nodum ulterius per 42', ea foenerant in latitudine c. 4', itaque calculus meus relinquet in lumine scr. 3. 30", plane ut observarunt Tycho. Fabricius. Jansonius.

Eandem diligentiam adhibuit etiam Fabricius, paulo post initium dimensus distantias) a fixis Q et M, ex quibus computavit locum) visum 1° 19' M, lat. visam 0° 17'/, austr. Hinc nos extricabimus parallaxes. Erat \odot h. 16. 2' in 2° 28: \rightarrow , ase. recta \odot 334° 28', ergo ase. oblique horoscopi 395°.

585

,	•	Latus Alt.	acquatoris "	55° 36.		_	1 9950 52 264		21662
Si utimur	logarithmo parallaxeos					-	72214	_	13453
	canonico :			67.	6				8209
72195					311/2				, in the second se
77050			-	90	374,				
406508	406508				22 1/1		72195	_	e)
550753						-			49489
13' 17"	51 ¹ /s'			88.			19		13459
			Nonag.						1681
	im log. est proportio sinuum			1.	19 mp			-	15140
	illo prop. arcuum quidem sed	mini-		27.	34		77050		
morum, qu	u ut rectae considerantur.		Parall.)		59. () _	1681		
			"long.		13. 16	3	150926		
Paral	1. lat. 51, 34		Verus)	1.	32' 10	3" TR).	-	
Vie	a lat 17 30					्य			

Visa lat. 17. 30 Vera lat. 34. 4 sept.

Ergo etiam Fabriciana observatio redarguit latitudinem Tychonicam parvitatis, mea vero non adeo multo fit major. Nam quia abhinc usque ad medium eclipsis) promovetur minus quam 1°, sunt enim scrup. durationis dimidiae 52' 19", quibus adde motum \odot , fient 57' fere, cum tamen) non tam profunde fuerit in umbra ecque brevior hic arcus; quare minus quam per 5 decrescit ecusque latitudo, manet ergo in medio plus quam 29'.

Hic tamen omjttendum nequaquam est, distantias quas indicat Fabricius aliam exhibere latitudinem) visam. Nam si centrum) abfuit a secunda in ala \P 33° 21¹/₅', et simul occidentalis limbus (septentrionalis potius) a cervice Q 11° 8', semidiameter) 17¹/₅', ut Fabricius tuno statuit, proinde centri 11° 25¹/₅', hinc sane prodit locus centri visus 1° 19' Π , ut recte Fabricius: at lat. visa fet 0° 1' sept., proinde illa 17¹/₅', quae exprimit Fabricius venditans ea pro lat. visa aust., videntur hallucinanti excidisse, ut cum videret locum computatum in eclipticam incidere, censuerit semidiametrum) 17¹/₅ hinc usque ad centrum in austrum porrigi, oblitus se jam antea adjecisse semidiametrum ipsi distantiae limbi 11° 8'.

Si est, quod dico, tunc sane totis 19' flet major latitudo sept., quam ego computo, quod ut valde enorme fidem omnem observationi adimeret, nisi hac re conciliaretur, quod ejus magna pars refractioni, a nobis hic neglectae, tribui potest; cum) fuerit humilior cervice Ω . Ita fluctuantibus causis elevari posset hoc testimonium observationis Fabricianae, si sola esset, ut nobis tantum non commodet. Sed Tychonis observatio) culminantis ob magnam ejus latitudinem manet se ipta vel sola fide dignissima. Itaque cedo tandem exceptione illa in prolegom. Eph. a, 1617. adhibita.

Quantum ad fixas examinabimus eandem Fabricii traditionem. Igitur visum est centrum D abesse a secunda alae ¹¹⁰ per 33° 15⁴/₄' in ecliptica, vere igitur (ablata parallaxi long.) 33° 2'. Quantum vero abfuerit a centro umbrae, facile colligitur ex eo, quod non ultra 1' a principio eclipsis aberat observatio, cum esset lat. vera c. 34' aut paulo plus; fuit igitur dist. centrorum paulo minor quam in calculo meo summa semidiametrorum, sc. c. 59' 0".

48. 14 - 09. 840. Ergo) ante & O per 48' 14".

Si vero latitudo usurpetur 4' major, haec long. diff. fiet 3' brevior. Et quis Solem Tychonicus calculus ad h. 16. 2', quod est Uranib. h. 16. 29', refert in 2° 27' 51" \rightarrow , hinc ablata 48' 14", relinquunt D locum in 1° 39' 37"; vel si major latitudo fuit, 3' ulterius. Adde 33° 2', prodibit locus stellae in 4° 41' 37" vel 3' ulterius. At Tycho ponit illam in 4° 34' \rightarrow . Luna tamen hic fuit in nonnulla refractione longitudinis, sic ut non tota 8' vel 11' locis fixarum adjicere audeam ob hanc solam observationem, nisi etiam aliaq consenserint.

Ipse etiam Braheus observavit) ad fixas, sed ante initium, cum esset) c. Nonag. ab oriente, carens parallaxi long. Estque hoc observationis summarium, quod in alt. Procyonis 17° centrum) abfuerit a corde Ω in consequentia 6° ad visum Wandesburgi. Hinc computabo et tempus et parallaxin longitudinis.

		▲ ▲	•	-		
PV.	36° 14'	52581	Latus aeq.	89°10'	- 11	
PS.	83. 48	587	Alt. aoq.		- 52581 -	- 21491
	47.34	53168			52592 -	- 21485
V8.	73. 0			89. 23 ¹ / ₃		6
	120. 34	-60.17 - 14100		23. 31 1/2		
	25. 26	12. 43 - 151354		65. 52	•	9146
		165454			39040 -	- 30631
	69. 331	112286 		29. 9.4	0 — 1355 2	1681 32312
AR. Proc.	109. 36 1/		Nonag.	0. 40 1/2	1110	
	179.10	<u>.</u>		0. 20		lat. 43' 25".
			Distanti	a 0. 201/2	•	

Cum ergo) sit in ipsissimo Nonag. cum parall. long. nulla, quare visa distantia ejus a corde \mathcal{D} , quae fuit 6°, eadem est cum vera distantia.

Jam vero fidendum est horario) a fixis. Nam quia coepit eclipsis h. 16. 12', Asc. R. O 334° 27', erat igitur A. R. M. C. 217° 27'; prius vero 179° 10', ergo diff. 38° 17', vel h. 2. 33', quae cum horario 30' 52'' capiunt portionem 1° 18' 43''. Erat vero h. 16. 12') in contactu umbrae cum lat. 34' aut paulo plus.

Dist. centrorum erat 59' 40'' - 15.070<u>34.0 - 04.890</u> <u>49.3 - 10.180</u>

Locus) in principio 1. 38. 42 mp vel ultra 1. 18. 43

Locus) verus tempore obs. 0. 20. 0 m vel ultra 5. 58. 20

Cor Q 24. 21. 40 Q vel ultra. Tycho in 24° 15¹/₃ Q collocat.

Et quis horarius, si peccat, magnitudine peccat, nam horis 5 ante medium et apogaeo vicinior fuit) et extra vigorem oppositionis, quare pro portione intervalli minus quam 1° 19' subtrahendum : ita cor \mathcal{Q} veniet adhuc ulterius. Satis igitur consentiunt hic Fabricius et Tycho.

XXII. Eclipsis Lunae anno 1598. 6/16. Aug.

Wandesburgi) orta in tenebris, etiam in crasso 'aëre circa horizontem, ut videri expedite non posset. Coepit umbram egredi in alt. inferioris limbi 3°, centri 3° 18', itaque correcto vero loco Lunae inque visum redacto per parallaxes et refractiones colligit Severinius tempus h. 7. 51'. Exinde cum stella in eductione caudae Ursae esset alta 41° 53', limbus) inferior 11° 21', visa est tota plena, splendidior tamen ab orientali parte; arguitur h. 9. 7^{1}_{12} ', quod etiam aliis fixis confirmatur, observata earum distantia a meridiano. Tempus igitur incidentiae fuit h. 7. 16'.

Ejusdem eclipsis finem observavit etiam J. Krabbus, mathematicus Ducis Brunswicedeis in arce Wolfenbutela prope Brunswicium, in alt. Arcturi 28° hora asualis scioterici 9. 2'. Quodsi utamur alt. poli 52° 30', elicitur hora 9. 1', quasi locus iste fuerit occidentalior Wandesburgo per $6\frac{1}{2}$, cum tamen tabulae differentiam exhibeant contrariam 5'. Sed satis esto, quod auctores intra 11' consentiunt, de minutiori vero praecisione major fides Tychoni debetur, nisi tab. chorographica Germaniae hic insigniter peccat.

Hujus eclipsis observationem prope Graetium in Styria habitam a me in suburbano

Respondet igitur longitudini 49' 3" vel 3' c. minus.

Lat.) visa austr. 10' et lat. cordis Q parvula 26' sept. decurtabant distantiam nonnibil reductione ad eclipticam, ut sit 5° 58 $\frac{1}{4}$.

Calculus Eolipsium Lunae

reperiet lector in Optica fol. 302, ubi pro Witebergae lege Wandesburgi. Feci et in prolegomenis Ephem. ejus menționem, praecipue propter explicationem opticam ruboris, fol. 12. Visa est autem egredi h. 7. 45' urbis paulo ante, impleta est b. 9, ubi tempus quidem emersionis idem est, quod annotavit Braheus, at hora vitiose indicata fuit a machina; nam Wandesburgica observatio semissem horae insuper adjicere jubet. Occidit ea die \odot h. 7. 1' Graetii. In Progymn. medium et h. 7. 37'.

Calculus Tychonicus, cui acq. temp. 9' 24" add. 1597. Aug. d. 5. h. 7. 46' 24" — O 23° 20' 10" Q; D 23° 22' 0", anom. 6. 11. 32. 54. Mot. Lat. 11. 25. 24. 55. Lat. 23' 49". Horar. 35. 24 Semid. D 17. 58

		60.	_			Umbrae	46.	44	81	02.	410
	_	35.	24	_	52760	-2.205	64.	42	1	17.	710
		24.	44	-	88620	Sc. dim. dur.	60.	8	-	15.	300
Dim. dur.	1.	41.	55	-	35860	Diff.	28.	46	-	03.	510
					131656	Sc. mor. dimid.	16.	5	_	01.	100
Dim. mor.	0,	27.	16	- 1	78896						
T. emers.	1.	14.	. 39	0							

Ergo computo Uraniburgi h. 7. 33' apparenti obscurationem mediam, cui adde dimidiam durationem h. 1. 42', provenit finis h. 9. 15', quod esset Wandesburgi h. 9. 3', quam proxime ut fuit observatum, tempore etiam emersionis consentiente: quod celebrat Braheus in libris observationum ad eolipsin seq.

- Without	Calculo meo sic:
 Jun. h. ' 	
	1597. 17. 16. 50. $23 - 3$. 15. 38. $6 - 11$. 10. 23. 56
Aug. 6. 7.46 16.46.48	Jul. 217. 7.46.24
D. 49. 21. 10 50. 55	235. 0. 36. 47
57. 44 ⊙ 23. 19. 0 Q Re	w.IX. 247. 23. 47. 14 — 0. 27. 37. 46 — 0. 13. 7. 56
12563	12. 23. 10. 27 4. 13. 15. 52 10. 27. 16. 0
3870	35. 55 5. 19. 45. 38 41. 16
16433	51314 6.15 25. 0 Cor.
Parall.) 63. 38	174770) 23, 23, 59 28. 22. 16
○ 1.	226084 Beq. 23. 20. 19 @ 23. 19
64. 38	8.40 5. 3.16
Semid. () 15. 6	0. 40 0. 0. 10 1. 19
Umbrae 49. 32	Horarius) 38. 28 23. 20. 19 Req.
) 16. 21	2. 25 Lat. 27' 58", simpl. 26. 24.
Summa 65, 53 - 18, 370) a () 36. 3 - 50940
Diff. 33. 11 - 04. 655	59. 39
Latit. 27. 58 03. 310	Besid. 23. 36 - 93310
Sc. dur. d. 59. 39 - 15.060	17.47 - 121610
Sc. morae 17. 47 - 01. 345	
	Dim. durat. h. 1. 39' 17" — 42370
	Dim. mora h. 0. 29. 36 — 70670
	Emersio h. 1. 9. 41.

Medium cadit h. 7. 40' aequali. Physica aequatio \odot in 23° Q est 19'20" add., hic ergo subtrah., erit apparenter h. 7. 20' 40" Uranib.; adde dur. dim. h. 1. 39' 17", provenit finis h. 9. 0. 0. Wandesb., secundum tabb. h. 8. 48. Hoc igitur loco pulsatur aeq. temporis physica ab obs. Wandesburgica; stabiliretar a Wolfenb. si esset authentica. Tempus emersionis provenit mihi paulo brevius ob minorem) diametrum majoremque horarium. Nec tamen arguitur ab observatione, sed quadrat sic recte ad exceptiones opticas, superioribus exemplis stabilitas. Etsi ne Tychonicus quidem emersionem observatam penitus expressit. Non necuerit tamen hic observare, quod aucta latitudine, id est promoto Ω nodo sequente in consequentia, tempus emersionis prolixius flat, at simul duratic brevior, finis maturior, ubi discedimus ab observatione.

XXIII. Eclipsis Lunae anno 1599. 30. Jan. 9. Feb.

Observata est in pago Longimontano, qui uno milliari in ortum abest a Boveberga, promontorio chersonnesi Cimbricae, quod est obversum oceano Germanico in occasum, ubi alt. poli 56° 40'. Distantia ab Uraniburgo milliarium 40 Germanicorum, quia 10 milliaria sunt Viburgum usque. Quodsi mill. 15 conficiunt 1º circuli magni, sub hoc parallelo igitur 40 milliaria facient differentiam meridd. in tempore 19'. Et sane mappae ostendunt 18'.

Verba observatoris Severini sunt ista: Deprehendi ex stellis tum meridianum transcuntibus, tum in eodem verticali constitutis eodem tempore (qua pragmatia fuit utendum, cum instrumentis destituerer) deprehendi, inquam, principium deliquii hujus h. 3. 28' vel 30' adeoque ex diligenti animadversione tum aliarum phasium, tum praecipue ingressus ac primi exitus ex umbra, medium h. 5. 30' vel potius quasi 3' ante. Ergo dimidia duratio h. 1. 59', et emersionis initium h. 7. 29', cum tamen Sol oriatur h. 7. 32', ut verear, ne emersio nequiverit animadverti.

At Tycho Brahe tunc Witebergam usque venerat. Ibi altitudo poli $51^{\circ} 52'_{1s}'$. Initium igitur eclipsis fuit in altitud. capitis Ophiuchi $30^{\circ} 5'$, supremi vero marginis) 29° 45'. Ex utraque altitudine colligitur h. 15. 54', sed fuit tunc aliqua defectus quantitas, ut ita 2' ante censeretur incepisse. Altitudine Aquilae existente $17^{\circ} 14'$, id est h. 17. 9' tota Luna visa est in umbra et inferior ejus pars lucidior superiore. Tempus igitur incidentiae h. 1. 17'. Plura non invenio observata, puto nubes ortas, quibus etiam Fabricius se excusavit. Sed ex initio constituitur differentia merid. Longimontii et Witebergae 24', proinde esset differentia Uraniburgi et Witebergae orientalioris 6' ex supra allegata fide chorographiae Daniae, quod psulo plus est, quam chorographica Germaniae tabula concedit. Itaque non nimium inhaerendum est observationi Longimontanae.

Eandem eclipsin et Krabbus observavit Grüningae 7 milliaribus a Wolfebuttelo versus euro-austrum. Igitur altitudo poli fuerit 52° 20', diff. meridd. Uraniburgi et hujus loci ratiocinatione per Rostochium et viciniorem urbem Magdeburgum facta, circiter 5' in occidentem. Initium notatur altitudine Spicae 27°, cordis Q25°, h 16. 24', sed ex calculo per has altitudines hora provenit illic 16. 37', hic h. 16. 40'/s', quod tempus secundum observationem in vicina Witeberga habitam cadit medium inter initium et totalem immersionem, ita haec observatio nullius est momenti.

Ego Graetii Styriae, ut in Paralip. ad Vitellionem fol. 286 indicavi, principum observavi ad horologium urbis h. 15. 45', cujus hora 16. Jupiter circiter 6° altitudinem habebat, h. 16. 15' jam post montes abierat, nondum tamen sub horizonte. Et tunc nendum dimidium in umbra erat. Occidit ea die 2 oriente 10° \mathcal{K} , quado A. R. M. C. 14° 32'. Sed A. R \odot in horis erat 21. 34'. Occidit igitur 2 h. 16. 28', pro qua sonuit minus quam in h. 16. 15'. Ita quadrans horae vel plus defuit indicationi temporis, quod illa observatione magis confirmatam fuit, quod h. 6. 45' Sol oriri visus, at ea die h. 7. 5' oriebatur, ergo eclipsis incepit vere h. 16. 5'. Quo pacto differentia meridd. Witebergae et Graetii esset non major 13', quod congruit fere tabulis. Hora urbis 5. 0' tota mergebatur, id esset vere h. 5. 20'. At hoc fuit Tychoni Witebergae h. 5. 9'. Diff. 11' et tempus incidentiae h. 1. 15'.

Plura de hac eclipsi vide dicto libro Paralipom. ad Vitell. f. 302. Nam occidit Luna priusquam ex umbra cerneretur emergere, et id meo tunc judicio circa medinm obscurationis. Quomodo ad fixas sit observata, dicam ultimo.

Quodsi Longimontii medium fuit fere h. 17. 27', additis 18', veniet Uraniburgi h. 17. 45'. Et assumta in Progymnasm. h. 17. 50'. Calculus Tychonis, cui acquatio temp. 9' 36" add.

⊙ 21° 12′ 4″; 〕 21. 12. 40 G Medium computatur 1 ¹ / ₄ ′ ante h. 18 g	; an Lequal	om. 11• 1 em.	90	37'	33"	'; I	not. lat	. 6.	2.	39. 5.	
78990		Horarius	27.	14						3.	17
99430	Semi	id.)	16.	0						10.	25
20440	,,	Umbrae	43.	1		00.	820			13.	42
Dim. duratio h. 2. 4' 24"		Variatio		52						t. m	
"mora 0. 48. 55		Summa	58.	9		14.	230				
Tempus incidentiae 1. 15, 29		Diff.	26:	9	-	02.	910				
Initium igitur h. 15. 54' 15" aequali,	Sc.	dim. dur.	56.	27		13.	410				
quod est h. 15. 44. 40 apparenti Urani-	**	,, mor.	22 .	12		02.	090				
burgi eoque et Witebergae fere ex fide		Resid.	2.	0							

tabularum ; praeveniens observationem, quia super anticipatione frustra turbatus est Tycho, ignarus, in aliis eclipaibus majorem esse.

	Calculo meo sic.	
🕥 Jan. h. '	2	_
1599. 17. 16. 50 - 5°42' 20" @	+ 1598. 24. 17. 48. 49 — 4. 25. 8	2. 39 — 10. 21. 25. 49
Jun. 30. 18	29. 18	
138. 1.10 - 14.33.43	54. 5. 48. 49	
60. 42 2. 57	Rev. IL 55. 2. 37. 10 - 0. 6.	8. 24 - 0. 2. 55. 6
2. 57 @ 21. 11. 34		1. 3 10. 18. 30. 43
Parall.) 58. 25 Horar.)	30. 0 30. 17 10.	5. 3 2.46
<u> </u>	A AA	4. 10 Corr. 25. 0
59. 26) . O	27. 28	13 18. 58. 29
Semid. () 15. 30) 21. 1	1. 37 (21. 11. 34
" umbrae 43. 56	Requis. 21. 1	
"		Red. 0. 37
Summa 58, 57 - 14, 710	78150	Reg. 21. 10. 57
'Diff. 28, 55 - 03, 540		t. 12' 20'', simpl. 11' 45".
Lat. 12. 20 - 00. 660		
26. 2 - 02. 880	83500 Acquatio temp	oris physica, in 21°
57. 37 - 14. 050	Sole versante	
54. 56		53' 0", quia medium com-
2. 41	- 312000 putatur 1' a	
		52"
	233850 , dur. 2. 5.	
、		
·	Tempus incidentiae 1. 8.	55

Quod autem tempus incidentiae brevius computatur, id quadrat exceptionibus opticis, ut in priore, quae in hac eclipsi luculentissime confirmantur illa relatione observationis meae, quam inserui in Opticis fol. 302. Est autem mihi brevius quam Tychonico, quia Lunae diameter brevior, horarius paulo longior.

Tentemus etiam, si quid hace eclipsis testetur de locis fixarum. Sic enim observavi. Paulo post urbis h. 4. 15', id est correcte h. 4. 38' nondum erat abscissa dimidia pars circumferentiae, 4 tunc jam post montes abierat. Et tune) transiverat lineam ex cervice in pectus Ω . Erat autem angulus inter lineas ex pectore Ω et ex) in cor Ω ductus rectus et triangulum ad sensum isosceles. Rursum post semissem horae exacte linea ex cervice per pectus in aliquam longe infra se valedicebat extremo margine.

Hic cum Luna habeat latitudinem veram australem non incertissimae quantitatis, facile praeterpropter constituitur visa latitudo; quae cum unum gradum superare non possit, quare aestimatam anguli rectitudinem ad cor tueri nequimus, at posita latitudine visa, sequitur ex imaginatis rectis aliquis lócus longitudinis:

 A. R. 323° 86' h. 16. 38' 249. 30 213. 6 A. obl. hor. 303. 6 Latus acq. 56. 54 - 17707 28235 	55669 19907 34657 2674 2674 22581 47'54" latitudo. 93000 23' 40" parall. long. Vera lat. '9. 6 circ. - 31232 Visa 57 0 anstr.
	- 31232 Visa 57. 0 austr. - 19727
373 -	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Ergo Luna fuit jam ultra hunc locum visibiliter, et addita parallaxi longitudinis vere fuit ultra 20° 16' Ω .

Et quia nondum deficiebat semissis circumferentiae Lunae, linea verò defectus est arcus introrsum flexus, quam proxime igitur deficiebat semidiameter, et centrum ante locum centri umbrae fuit fere una semidiametro umbrae, quippe latitudo parva est: umbrae igitur centrum si colloces trans 43', veniet ultra 20° 59' \Re , sane Θ hac hora est in 21° 8' \implies calculo Tychonis: ut probabile sit, etiam hac vice fixas circiter 6 sc. promovendas, ne cogamur id, quo Lunae centrum superavit lineam dictam, nimium statuere.

Sed certiora pollicetur phasis altera, quae fuit post horae semissem.

• ·		-	••••••						
Lains acc.	49° 24'	27540							
•	42.58 -	38335 -	- 31232						
	•	65875 -	- 15580						
	58.46 -		15652				•		
_	23. 31 1/2								
_	82. 171/3-		908				•		
		63490 -	- 16488						
	77. 32 -	2385	2674						
Non.	12. 28 🕰	-	19162	Parall.	lat.	49'	82"	•	
)	20. 42 Q					10.	0	Vera	lat.
-	51. 46	24144				59.	32	Visa	lat.
		2674		•					
Parall. long. 24' 19"		90308						•	

Luna semisse herae promovetur per 13' 44'', sequitur ergo centrum per 29' 16" ex phasi antecedenti.

Et quia lat. visa est 1° aust., stellarum vero altera in pectore habet latit. 4° 52' sept., ergo differentia est 5° 52'. Sed altera stella habet lat. 3° 47' austr. Differentia lat. 8° 39'; long. differentia 3° 40'. Si ergo 8° 39' dat 3° 40', tunc 5° 52' dabit 2° 29'. Quod aufer de loco stellae pectoris 22° 19', relinquitur 19° 50', cui adde parallaxin long., provenit 20° 14'₁₆'. Et quia dicitur Luna extremo margine lineam attigisse, fuit igitur centrum vere in $20° 29'_{16}$ Ω , sed centrum umbrae per $29'_{16}$ ' ultra, ergo in $20° 58'_{16}$ Ω , quod tamen calculo Selis in 21° 9' Ω collocatur. Fixae igitur sunt promovendae in zodiaco. Nec error in tempore quidquam nocere potest praeterquam parallaxi longitudinis.

XXIV. Eclipsis Lunae anno 1601. 29. Nov. 9. Dec.

Hactenus eclipses eas absolvi, quas Tycho Brahe in satalogo posuit fol. 02. post 112. Progymnas. Nec diutius vir ille supervixit, mortuus hujus ipsius anni 1601. Octobri mense. Nam quae in Januarium anni 1600 incidit, ea Pragae coelo obscuro et ningido non potuit observari, nec alibi visam comperi.

Hujus vero praesentis observatio Pragensis descripta exstat meae Opt. Astr. fol. 360. Initium h. 5. 23', finis h. 8. 35', medium h. 6. 59'. Cumque in Progymnas. Lunarium fol. 131 pingatur et computetur defectus dig. 11 fere, defectus tamen hic paulo minor visus est. Hora 6. 8' cornua in parallelo horiz. 47°, hora 7. 54 $\frac{1}{3}$ cum deficeret plus dimidio, phasis erecta stetit.

Krabbus Wolfebuttelae principium visum tradit h. 5. 24', finem h. 8. 24'; medium igitur h. 6. 49', ex alt. oculi & 14° et 40° 30'. Diff. longit. 10', tabulis 16.

Avarici Biturigum principium est visum h. 4. 15', puto ad urbis horologia. Diff. meridd. ejus loci et Pragae esset h. 1. 8'. Ponit loci longitudinem Joh. Temporarius mathematicus Gallus 21°, Tycho Pragae 38°, diff. 17°, seu plane h. 1. 8'. Observator fuit Arminius Rittelius, nunc Principis Wirtembergiae a secretis. De fixis infra.

Calculus Tychonis, cui acquat. T. 4' 15" subt. Nam in Progymn. Lun. fol. 131 excerptio est facta per locum Solis simplicem, ubi et diff. meridd. ponit 5'. (a) 17° 48' 7" 2. (b) 17° 47' 9" II. Anom. 5. 21 3. 13 Mot. Lat. 5. 93 57 94

(° 48' (″ √.)) Heaning		9" <u>[]</u> . Ano		13. Mot.		57. 50. 31' 20"	
			04040				
Semid. 🔵	17.58				Summa	63. 58	
" Umbrae	46. 55			1	Sc. defectus	32. 38.	
Variatio	55			-			
Sem. umbr. corr.	46. 0	04. 160				•	
		- 17. 310					
Sc. dim. dur.	55. 45	- 13. 150					
Dimidia dur	atioh. 🤉	1. 34' 51'' —	54310	•			

Vera igitur oppositio h. 6. 51' 30" Uraniburgi, sed Pragae h. 6. 56'/₃' aequali: quod propinque admodum accedit ad observationem. Et conveniunt cetera Progymnasmatum computo, excepta duratione, de qua monui in Opticis fol, 360.

Eandem et meo calculo computabo.

⊙ Jan. h. ').
1601. 17. 5. 19 — 5. 44. 26 g 1600. 11. 12. 27. 8 — 7. 18. 25. 52 — 9. 12. 2. 1
Nov. 29. 6. 50 — 12. 0. 11 Oct. 28. 332. 6. 49. 45
165. 1. 31 3. 52 343. 19. 16. 58
⊙ 17. 48. 29 x ⁴ Rev. XII. 330. 15. 42. 49 - 1. 6. 50. 21 - 0. 17. 30. 35
13. 3. 34. 4 - 8. 25. 16. 13 - 8. 24. 31. 26
5' tardius repraesento maximam obscurationem, 35.56 — 5.22, 9.18 — 41.48
quam Tycho, tempore aequali. Aequatio phy- 51270 . 20.19 25.0
sica 8' 30" subt. hic adde, ut sit medium 57000) 17. 45. 59 II 6 24. 14. 38 x
h. 7. 5 ¹ / ₃ ' apparenti. <u>108270</u> 17. 50. 9 0 17. 48. 29
64. 41) a @ 36. 0 - 51083 Requis. 17. 50. 9
Semid. () 15. 30 (28) 65. 33 114640 Lat. 35' 35", simpl.
" umbr. 49. 11 Lat. 35. 35 12. 835, 63557 33' 3".
n 🗩 16. 22 Sc. d. dur. 55. 4. Beaid. 19. 4.
65. 33 Dim. dur. 1. 31, 41.
Lat. 35. 35
Sc. defic. 29. 58 Durationem computo breviorem Tychonics, cum uitages
14. 59 — 138740 sit brevior observata.
Diam.) \$2. 44 - 60600
11 fore — 78140

Hic considera, quod minus in defectu fuerit observatum, quam est in calculis, et tamen duratio fuit annotata longior; quae duo contradictorie pugnant, nisi horarium bona parte minuamus, quod tamen non concedi potest. Igitur confugiendum est mihi ad causas opticas, quas explicavi, recenti adhuc observatione ista, Optic. fol. 266 lin. 37. Nam in aestimando principio et fine meum visum secutus sum. Mihi itaque citius incipere, tardius desinere visa est, binc longiuscula duratio.

Quod vero quantitatem defectus attinet, videndum jam erit, quid de vera latitudine testentur observationes. Etenim spatio h. 1. 46¹/₂, cui de motu D a \odot competunt 1° 3′ 54″, de motu vero 1° 8′ 20″, ac proinde mutatio latitudinis 6′ 18″, hoc, inquam, temporis spatio phasis Lunae deficientis a prona mutata est in erectam. Quodsi circulus verticalis per centrum umbrae secuisset umbram eodem in loco ad utrumque momentum, Luna quadrantem confecisset de circulo umbrae, et si tunc praecise dimidia pars in umbra fuisset, tam umbrae ipsius, quam latitudinis dimensio daretur. At quia et verticalis mutavit et Luna profundius in umbram erat immersa, major igitur nobis opera nascitur inquirendi tam Nonagesimos, quam angulos verticalis, quamvis hac vice parallaxes tractandae non sint. Horae erant prior 6. 8′, posterior 7. 54′.

Angulum verticalis et eclipticae ex tempore.

AB. () h. 17. 6' 45"	H. 17. 7' 0"
6. 8	7.54
h. 23. 14. 45	H . 1. 1. 0
· Nonag. 16° 45' γ	6° 34′ 8
Asc. obl. 41. 2 - Mesolog. comp. 13890	5028 - Mesolog. 19199
Centr. umb. 17. 46 3333	17. 501/2 000
NC 58. 59 - Log. 15430	48. 43 1/2 28560
29320	9361
VCN 53. 17 - Log. 22117	47. 41 39567
Sem. umbr. 49. 11 — Log. logist. 19900	19900
Lat. puncti in	33' 6" - 59467
circulo umbrae	Lat. puncti in circulo umbras ex compl. anguli
ez angulo ver-	verticalis.
ticalis	

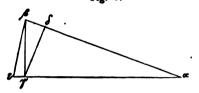
Vides exactissime repraesentari debitam mutationem latitudinis Lunae, si utrimque centrum Lunae statuatur in ipso circulo umbrae. Et quia in posteriori angulus minor est, a puncto igitur propiori ipsi ecliptico puncto fit numeratio quadrantis de circulo umbrae, quare arcus a duabus diaxerrooix resectus est

	34° 24', Imbrae s				39800 1 9900	
orgo	semissis	quaesiti	33'	1"-	59700	•

Ecce subtensa huic arcui prodit 1° 6' 2", cum horarius requirat fere idem sc. 1° 3' 54", scilicet jure paulo minus, hoc est, quia in primo momento annotavi, plus semisse defecisse, itaque centrum Lunae non in circumferentia umbrae, sed interius fluit; in posteriori vero nihil est annotatum de quantitate defectus. Confirmatur igitar mea latitudo contra parvitatem Tychonicae, sed per meam semidiametrum umbrae paulo auctiorem. Nam priori momento latitudo fuit perquam exiguo minor quam 33' 6": si enim defectus fuisset plane 7 digitorum, jam hoc potuisset discerni, et vero 1 digitus est 2³/₈ scrupula et in latitudine vix 2 sc. Abhino vero 51' sequebatur obscuratio maxima, quibus de motu D respondent 32' et his de lat. 2. 43, ut sic in medio lat. fuerit exiguo minor quam 36', cum meus calculus exhibeat $35^{1}/_{6}$.

Quod igitur pars in medio residua visa est major uno digito, id rursum ad causas opticas referendum erit, quae lucida solent amplificare; vide locum supra allegatum Opt. meae fol. 266. Sane conveniebat, nos duarum rerum distinctarum, durationis longioris et residui majoris, remedium tale quaerere, quod utrimque juvaret. In astronomia enim et principiis calculi si id quaesissemus, altero juvando

Kepleri Opera, III.


noonissemus aliquid; gratulamur igitur astronomiae, latitudinem hac vice manere loco suo. Vide similia in XXVII.

Contuli etiam hanc eclipsin ad fixas.

Etenim, 11' postquam caput Andromedae in meridiano fuit, linea per cornua Tauri secabat cornu Lunae residuum ita, ut bessem ejus relinqueret supra, respectu verticis, et in meridie respectu cornuum inclinationis, trientem vero infra in septentrione, quod erat versus ortum.

A. R. stellae Minutis 11		0 45			F B
A. R. M. C.	359.	45	•		
A. R. Solis	256.	44			
	103.	b .	6.	52'	

Fig. 7.

Fuit igitur 7 minutis ante medium. Horarius 38. 32 (\times 7) = 4' 30".

) in medio erat in γ orbita sua gradu 17. 50' 9" II. scilicet in illo loco, quem nobis ostendit calculus loci Solis et opposita umbra β reductione ad orbitam y e correctus : nam si a nodus, oportet in calculo meo $\alpha \gamma \beta$ esse rectum et ab $\alpha \epsilon$, aequali ipsi $\alpha\beta$, auferre $\epsilon\gamma$: ita γ fit meta obscurationis maximae. Et quia aequales $\alpha\beta$, $\alpha\varepsilon$, et $\beta\gamma$ perpendicularis ipsi & e; et y locus centri Lunae in sua orbita et $\gamma \sigma$ parpendicularis in $\alpha \beta$ eclipti-cam, erit σ locus Lunae eclipticus. Ut antem $\alpha\beta$ ad $\alpha\gamma$, sic $\alpha\gamma$ ad $\alpha\sigma$; ex quo conficitar, cum $\alpha\beta$ et $\alpha\epsilon$ acquales sint, ut $\partial\beta$ sit insensibili aliquo minor, quam dupla ipsius $\gamma \epsilon$. Et

quia « nodus est in consequentia, additum igitur reductionis duplum 3' 20", videlicet ad β locum centri umbrae 17. 48. 29 Π: indicat δ locum eclipticum Lunae 17° 51' 49" Π. Let. 36.

Asc. obl. horoscopi 89° 45' ---Alt. aequatoris 39. 54 - 44402 -26505 44403 -26504 89. 45 23. 31 1/2 113. 161/, Ad occasum' 66. 431/2 8490 34320 -34994 64. 42 - 10083 - 398900 Nonages, 25. 18 Y 433894 17. 52 👖 44' 54" parall. lat. 52. 34 - 23059 36. 0 lat. sept. Parail.) 1º 3' 40 - 398900 Parall. long. 35' 56" -456279 17. 51. 43 8. 54 visa latitudo.

Visus locus) 18. 27. 39 TT

Et quia fuerunt in medio, quod non longe abest, scrupula lucentia rezidua 2' 42", fat sectio ipsius lucidi cornu in tria in parte cava.⁹ Ablata igitur 2' 42" de semidiametro) 16' 22" relinquant 13' 40". Hinc aufer visam latit. meridianam 8' 54", restat suscepte Lunae puncto latitudo in septentrionem 4' 46". Longitudo subtensae huic comu Lunae potait esse 24' summum, de qua pars tertia 8' et dimidia 12' differant minutis 4. Tanton igitur punctum, quod visum est in linea, sequebatur centrum Lunae. Ejus igitur visa longitudo in ecliptica 18º 31' 39" II, lat. visa 4' 46" bor., cornuum 🖯 vero longitudinis diff. 2º 12' 30", latit. 7º 34' et superioris latitudo 5º 24' bor. Differentia 5º 19' 14".

Hisce principiis conficitur differentia longitudinis 1° 33', stella, igitur in 16° 58' 39" II. At ponitur anno 1601 in 17° 0' II. Hic igitur fixae vel recte locatae essent, quia sesquiscrupulus ab hac observatione desiderari non petest, vel nimium essent promotae et retrahendae in antecedentia, cum ex eclipsibus annorum 88. 98. 99 contrarium apparuerit. Erant quidem illae post perigaeum Solis, praesens vero est ante perigaeum ejus.

Si lapsus essem scribendo, ponens bessem supra, qui erat infra, multo longius discederem a locis fixarum. Nihil igitur habeo, quod de observatione dubitem,

stellae vicinae sunt loco eclipsis. Tale quid etiam post annos 18 in eclipsi anni 1619, quae fuit in ecdem signo, deprehensum a me fuit.

Exstat observatio mea qualiscunque Pragae habita Astr. parte Optica fol. 359. Etsi enim horologium Tychonicum accommodavi ad altitudinem Solis 4° 40', quae dat h. 7. 24', quando monstrabatur h. 6. 43', incertus tamen sum, annon intermedio tempore steterit, ut solebat interdum. Cum autem centrum Solis occidat eo die h. 7. 58' sine refractione, supremus vero Selis margo tardius circiter 2', rursumque tardius ob refractionem aliis 4': ita h. 8. 4' circiter vestigium iridis duravit • usque ad Tychonicam h. 7. 0', etsi Sol mihi post montem erat: simul nubes colore Solis occasum prodebant. Tunc orassae nubes conspectum Lunae orientis prohibuerunt, praesertim cum immersa tenebris nullo luminis fulgore sibi ipsi adminicularetur. Intra minutum sonait urbicum horologium horam 24. Inde hora una transiit cum 2', ut esset vere h. 9. 6', cum primum ex nubibus aliquod Lunae vestigium emicuit, et post 11', sc. h. 9. 17' de rotunda Lunae circumferentia sexta pars in umbra restabat. Post 6' nondum omnis desierat, sc. h. 9. 23', at circumferentia omnis visa post 2', h. 9. 25'. Umbra spectabat infra Jovem. Exiit igitur cum exigua latitudine australi vera.

Ci	deulus Tychonis,, cui	aeq. temp. 5' 34" subt.	•
⊙ 13° 40′ 85″ ∏.)) 13. 44. 13 🗶 10.	27. 16. 52 11. 29.	17. 4
	27. 38 Semid. un		5. 13
		riatio 3 ⁻	1. 27. Lat. 3' 46"
	59. 16 " cor	recta 43. 13	mer.
	-4.0 ")	1 6. 10 00. 065	
Dimidia duratio h. 2.	8' 30" Su	mma 59. 23 - 14. 930	
Medium h. 7.	0. 0 Sc.	def. 59, 16 - 14.865	•
Finis Uranib. h. 9.	8. 30 aequali tempor	e.	
	5. 34		
9. 1	14. 0 apparenti.		
9. 1	19. 0 Pragae. Obset	rvatio dat h. 9. 25'.	•

Latitudo in fine exhibetur jam septentrisnalis, at umbra infra Jovem spectans sensibiliter arguit meridianam fuisse. Nam etsi Jupiter habuit latitudinem $1^{2}/_{4}^{0}$ sept., Luna per parallaxin latit. nonnullam meridianam, id tamen sensibile nequaquam est in longitudine arcus 60°. Non igitur in ecliptica, sed in austro desiit.

	Calculo m	eo sic.
🗿 Jun. h. ')	
1002. 17. 11. 33 - 5	. 45. 29 🜚 1601. 18.	7. 25. 33 — 8. 28. 20. 25 — 8. 23. 3. 53
Maj. 25. 7. 8-21	. 53. 30 Apr. d. 24. 144.	
23. 4.25		14. 33. 33
57. 13 013.	41. 27 I Rev. VI. 165.	7. 51. 29 - 0. 18. 25. 11 - 0. 8. 45. 17
169300	2.	17. 17. 56 - 9. 16. 45. 36 - 8. 14. 18. 36
4690	•	30. 43 9. 11 8. 38
173990		66950 1. 2. 55. 4 25. 0
Parall.) 58. 48	Herar.) 30. 34	120800) 13. 41. 21 7 0 14. 52. 14 7
Š 59	ō 2. 23	187750; Reg. 13. 41, 46 13. 41. 27
59. 47) a () 28. 11	1. 10. 47
Semid. () 15. 2		Lat. 0. 6. 31; simpl. 6. 10. Reduct. 19
. umbr. 44. 45	59. 3 3	Requis. 13. 41. 46
,) 15. 7	Resid. 3. 11	
59. 52	Dim. durat. h. 2. 6. 30	Versus apogaeum aeq. parvam addo et in
Lat. 6. 31	Medium 7. 8.	loco 💿 abundo sc. uno ; item et metae
Ser. dim. dur. 59. 33	Finis 9, 14, 30 acquali Uranib.	aliquid addo: hae sunt causae postven- tionis.

38 *

Calculus Eclipsium Lunae

Acquatio^{*}temporis physica mihi est 10' 40" subt., hic adde, ut sit finis h. 9. 25' 10" Uraniburgi, et Pragae h. 9. 30' 10". Tantum supero observatum, quantum Tycho deficit. Et quia a medio ad finem sunt 59' 33", abest vero D a Ω nodo per 1° 10' 47", in fine igitur latitudo adhuc australis fuit, quod congruit observatae plagae umbrae. Melius igitur sto cum latitudine, quam Tychonicus.

XXVI. Eclipsis Lunae anno 1603. 14/24. Maji.

Diligenter est observata Pragae exstatque observatio descripta in Astr. part. Opt. fol. 361, sed et aliis locis est observata.

	Initium	Finis
Mihi Pragae	h. 10. 59' .	h. 13. 59' vel 13. 56'
Mario Patavii		
Maestlino Tubing		
Frid. Rittelio Stuccard		" 13. 38′
Krabbo in Altershem. 12 milliaribus	-	
TTT 14.1 1 1.1		A A A A

a Wolfeb. in occidentem . . . 10. 48' 14. 4' Hydrae altit. 52°, Spicae alt. 2°, in tanta altitudine non bene arguit. Hinc Patavium Praga orientalius per 15', Tubinga occidentalior per 19'; Alterahem. occidentalins per 11'. Et quia 12 milliaria sub hot parallelo latit. 52° 30' faciunt 5' 16", ergo Wolfebutela occidentalior Praga per 6', eclipsis XXIV. dicit per 10', eclipsis vero XXII. multo occidentaliorem facit.

Potest et finis Krabbo objici, ut intelligamus, defuisse nonnihil ejus diligentiae. Nam quomodo duratio ipsi visa esset tam longa, contra quam aliis? Forsan igitur cervicem Ω pro spica habuit in tanta humilitate, spica sub nubibus forte latente.

Dignum observatu fuit, 10' antequam initium mihi videretur, jam me sensisse umbram appropinquantem, et 10' aliis postquam finisset adhuc debilitatem luminis) a me animadversam ex defectu vibrationis. Alii vero 5' posterius annotarunt initium, quam ego. Reliqua infra.

Calculus Tychonis, cui a	aeq. temp. 8' 13" sub.	
⊙ 3. 18. 28 ∏ .) 3. 7. 21 ⊀. A Horarius 30' 12''		25.38 5.16
Umbra corr. 44' 24" Semid.) 16. 53 Post 2' plena- ria 8. Summa 61. 17 - 15. 890 Lat. 38. 27 - 06. 260 47. 43 - 09. 630	Medium h. 12. 17 Dur. dim. 1. 34. 48 Aeq. temp. 8. 13 5.	2. 8 36. 19 38. 27 latit.
30. 12 68650 Resid. 17. 31 123120 54470	Finis 14. 5 Pragae. Med. app. 12. 30. 12 - 34' 48" - 34' 48"	Dim. dur. h. 1. 34. 48 h. 3. 9. 36

Atqui ego, qui plurimum, nihil ultra h. 3. 0', Maestlinus et Rittelius h. 2. 58', qui vero me observando juvit, solum h. 2. 52' observavit. Sed de hoc posterius.

		Calculo 1	meo sic.					
🗿 Jun. h. '								
1603. 17. 17. 47	- 5. 46. 32 @	1602. 25.	2. 24.	0 —	10. 8,	14. 58	- 8. 4.	5.46
14.Maj. 14, 12, 15								
54. 5.32	13. 14	158.	14. 39.	0				
57. 24) 3. 9. 34∏				0. 18.	25.11 -	- 0. 8.	45. 17
146700	•	6.	17. 12.	29	10. 26.	40. 9 -	- 7. 25.	20. 29
4450		•.	32.	40	2. 23.	24.57		21. 22
151150			6.	32			Corr.	
				16	3.	8. 24 2	· β 26.	6. 51M
Parall.)	60. 40			Re	ouis. 3.	7.46	Q 3.	9. 34 🎽
"Ō	0. 59	Ant	e 2' fui					2.43
	61. 39			•			Red.	1.48
Semid. 🕥	15. 4		•			Re	quis. 3.	7.48
<u>.</u>	46. 35				Lat.	0. 38. 57		

596

46. 35	Med. h. 12. 13
Semid. 🔵 15. 36	d. dur. 1. 33. 50
Summa 62. 11 - 16.360	13. 46. 50. Uranib. aequali tempore.
Lat. 38. 57 - 06. 420	15. 33. Physica temporis acquatio subt.,
Sc. dim. dur. 48. 29 — 09. 940	Pro Praga 5 hic add.
Horarius 🕽 33. 24	14. 7. 23 Pragae appar.
	Medium 12. 33. 33
) a () 31. 0 - 66000	Uterque calculus proximum observationi tenet.
Resid. 17. 29 - 123300	
Dim. dur. h. 1. 33' 50" 57300	

Quantitas quanta fuerit, neglexi annotare, sed sperabam posse de ea judicium fieri ex inclinationibus. Nam in principio declinabat umbra ab infra ad orum $45 \frac{1}{3}^{\circ}$; in fine ad occasum 32° vel 30°. Computavi vero ad haec momenta:

Nonag. 14° 6' 🕰	≒ 1.30 <i>ズ</i>
Centrum umbras 3. 6 🖈	
Distantia 49. 0	log. 28142 27. 47 - log. 76330
Dist. Nonag. a vertice 62. 20 M	desolog. 64575 73. 37 Mesolog. 122418
Ang. verticalis cum ecliptica 68. 25	- <u>92717</u> 82. 7 - <u>198748</u>
	superius, initio versus occasum, fine versus ortum.
Adjunge inclinationes . 68° 25'	82
Lineae diacentrum 45. 30	32. 0
Anguli ecl. cum diacentro 22. 55	50. 0 vel 52.
Erat vero summa semidd. 62' 11" vel	1° 2′ 11″.
Hinc	latera triangulorum.
Lat. 23' 22". Long. 55' 16". Lat.	45' 57" vel 47' 17". Long. 38' 34" vel 36' 57".
	1. 31 1. 34 [.] 1. 17 1. 13
5 12	10 10 8 8

 24. 13
 57. 18
 47. 38
 — 49. 1
 39. 59
 — 38. 18

 Vides autem omnino vitium esse in his inclinationibus.
 Nam et latitudinis

initialis a finali prodit nimia differentia et horarius prodit nimius. Cogitabam pulchra quaedam et artificiosa problemata texere, quae datis quatuor praecipuarum phasium inclinationibus, terminorum so. tam durationis quam morae, insuperque vel diametro) vel horario, reliqua omnia sumerent demonstranda. Sed deprehendi lubricum esse negotium observandi inclinationes in Luna exacte et minimo ex errore magnam ruinam sequi. Praetereaque stultum est, semidiametrum umbrae et alia permittere aleae tam periculosae exque minimis colligere maxima, cum ea possis habere certiori via. 'Ρεχθεν δε τε νηπιον έγνω, postquam plurimum temporis frustra perditum.

Alia igitur certiore via de quantitate defectus visi deque latitudine D vera in medio eclipsis ratiocinabimur. Cum enim detur horarius ex hypothesi fida, semidiametrorumque summa a priori, et duratio ex observatione: facile datur et arcus latitudinarius rectus in viam D. Summa semidiametrorum 62' 11". Antil. 16. 360.

Sc. def. 20. 21. Digiti paulo minus 8. Diam.) 31. 12. Horis dim. durat. observatae 1. 29' de horario debentur 46. 0

debentur	46.	0	08. 960
Lat.	41.	50	07.400

Major igitur prodit latitudo, quam computamus, eoque nodus Ω antecedens hac vice retroagendus est. Si vero adjutoris mei durationem sequerer, adhuc major fieret latitudo. — Sed inquiratur hacc latitudo etiam per alias phases. Nam h. 11. 38' defecit dimidium. Fuit ergo centrum) in circumferentia circuli umbrae, et fidei causa fuit annotatum h. 11. 49', sc. post 11', de circumferentia Lunae decessisse dimidium, tunc igitur plus dimidio fuit in umbra. Cum igitur ab h. 11. 38' usque in h. 12. 28', quando medium, supersint 50', quibus debentur de herario) a \odot 25' 50'', et umbrae semidiameter sit 46' 35'', hinc latitudo ut prius in medio prodit 38' 43'', scilicet aestimatio cornu lucidi peccat excessu ex causis opticis. Sic cum h. 13. 29' et sic h. 1. 1' post medium censeretur abesse triens diametri, eoque sexta pars diametri) seu 5' 11" accesserint ad umbrae semidiametrum, ut esset distantia centrorum 51' 46", hinc et ex portione de horario 31' 31". prodit latitudo in medio 41' 0", fere ut initio et fine, confirmaturque finali observatione inclinationis ut certiori, fuit nempe per eam lat. 47' 38" vel 49'.

Consideretur tamen etiam evidentissima inclinatio, quomodo illa consentiat cum medio. Ergo h. 12. 25' Luna stabat cernua, demissis aequaliter cornibus. Erst in meridiano $9^{\circ} \swarrow$. Angulus meridiani cum ecl. 81° c., quae igitur ad eclipticam recta desuper inclinabat ad ortum 9° c. Nec multo aliter fuit cum verticali Lunae et ea quae in centrum Lunae recta ad eclipticam, Luna igitur inequitans umbrae centrum habuit in verticali, ergo ad occidentem, et sic ante medium fuit. Recte. At h. 12. 44' jam occidentalius cornu elevabatur nonnihil, et ita fieri necesse erat et in ipso medio et post medium Quia tamen haec elevatio non fuit insignia, additum enim est observationi nonnihil, hinc observamus, partes Lunae non aequaliter claras inclinationum fidem in dubium vocare. Cujus rei argumenta etiam infra sequentur.

Observata est Luna et ad fixas.

Hora 10. 38', 11' antequam culminaret Jupiter, Luna nondum deficiens stabat in eodem praecise verticali cum corde M, a quo tamen propter motum primum et parallaxin toto durationis tempore recessit iterum in occidentem, ut praecipue apparuit h. 12. 13', quando Luna nondum recta inequitans umbrae spectabat cor M cornibus, velut ex obliquo versus sinistram. Et h. 12. 25' diserte fuit annotatum, adhuc occidentaliorem fuisse corde M.

dundo obtilontanotom tanto obtilo
Ergo A.R.
Asc. obl. horosc. 310. 32 1. 1. 14
Latus aequat. 49. 28 Log. 27440 *) 3. 6. 0 x
Alt. acquator. 39. 54 " 44402 — 26305 2. 4. 46. Latit. aufert 5' 37"
71842 13570 a lat. medii, quae per obser-
61, 29
23. 31 1/2
$\frac{10}{85}$, $\frac{0}{3}$, $\frac{1}{3}$, $\frac{380}{3}$
70636 — 13950 Mesol. 58250
81. 7 - 1206 403600
Nonag. 8. 53 = 417550
<u>Verus</u> <u>)</u> 2. 5 x ⁴
53. 12 - 22220 Parall. lat. 0. 52' 50"
Parall.) 62. 11 - 403600 Vera latit. 36. 13
Long. 24. 0-496456 Visa lat. austr. 16. 37 εβ, zδ
Visa long. 2. 29. 0 x Vera cord. 11 4. 27. 0 y d
Log. 262100 4. 10. 23 yz
Dist. a Nonag. 53° 36' log. 21704
7#954 Mesol.
Angulus 65. 47 ¹ / ₂ — ζεθ, γεπ Fig. 8.
Ut igitur e ad yx sic x ad ey 89180
54' 44" 24' 36" 351280
· 9198 31 / A
ey 1° 52' 30" 342082
e 2. 29. 18 x ¹
Cor 11] in 4. 21. 48 x
At Tycho id refert anno 1602 1/s in 4. 15. 0 x ^A . Deprehenduntur igitur fixae a calculo motus promotiores, ut in eclipsibus anno-
rum 88, 98, 99, cum biennio ante nimium essent promotae, sed
in opposita' zodiaci parte.
III opposita zodiaci paros.

Hujus rei fidem perichtabor etiam ex h. 12. 25' proxime medium eclipsis, quando locus) in orbita 3° 6' 15", reductus ad eclipticam 3° 4' 27" x³, cum lat. ex obs. 41' 35". Ase. obl. horosc. 336° 47'

Latus acquat.	23. 13	93087		•	
Alt. "	39. 54	44402 -	- 26505		
		137489 -	- 3304		
	52. 271/2		- 23201		
-	23. 31 1/,				
	75. 59	····	- 3023		
		100493 -	- 6327	Mesol. 100116	
	47. 11	- 30996	403600		
	12. 49 m		409927	Par. lat. 57' 0"	
\supset	3. $4^{1}/_{2}$ X			41: 35	
Distantia	20. 151/2	105940 Co	orr. Visa	lat. 0. 15. 25	
•		403600		105350	
Parall. long.	7' 15" —	616033 An	g. 82° 38′	- 205466.	Est adhuc 🕽 in
Visus locus)			205350	4. 27. 0	quadr. orient.
). 32. 40		261600	4. 11. 35	· x
-	3. 44. 12 🖍	•	466950		
			828		
-			466122	(log. 32' 40")	;

Sic in hunc locum referretur cor M, si) in illins verticali fuisset. Refertur ergo ulterius. Recte, et quidem plus quam semidiametro); ergo ultra 4°2' ×⁷. Nam si margo) in hoc verticali fuisset, hoc ego procul dubio notassem.

Fine eclipsis fuit angulus inter eclipticam et verticalem, ut supra computatum, 82°7' et Nonag. inventu facilis. A.R. \odot 61°8', h. 13. 57' sunt 209° 5'; ergo A.R. med. coeli 270° 13'. Ita erit 0° 13' \mathcal{J} in M. C. et Nonag. paulo ulterius. Ergo dist. Nonag. a vertice 63° 26', quanta potest maxime.

Quare parall. lat. secundum hanc: 11159

4036

 414759
 — 0° 54' 20". Lat. observata 46' c.

 Ergo visa lat. 8' 20" anstr., dist. a corde 4° 18' 40" xγ

 Et quia parallaxis horiz. 62. 11
 — 16. 360

 Et ista 54. 20
 — 12. 490

Ergo long. totalis 30' 15" - 03.870 Log. 68485

Dist. a Nonag. 27º 42' - 76330

Parall. long. 14. 6 - 144815

Ad locum) proximum 3° 4' 27" eclipticum adde horarium ad h. 1. 32' a fixis 51' 13", provenit 3° 55' 40" x². Et quia jam Luna in occidentali quadrante, aufer parallarin long., manet 3° 41' 34" x² locus) visibilia. 197714

258800

456514 - 0° 35' 50"; aufer a

3. 5. 44 x locus cordis 111,. si Luna in ejus verticali ultimo stetisset. Sed quia non est annotatum, reversam illam esse in ejus verticalem ante finem eclipsis, praesumitur igitur, cor 111 fuisse ulterius. Certe n. si in eodem eclipticae loco visae essent, Luna occidentaliorem tenuisset verticalem. Et vicissim, si in eodem stetissent verticali, oportuisset Lunam in ecliptica fuisse 35' 50" ultra locum eclipticum cordis 111.

XXVII. Eclipsis Lunae anno 1603. 8/18. Novemb.

Exstat observationis meae Pragensis descriptio Astron. part. Opt. fol. 384. Ex culminatione fixarum notavi principium h. 6. 21', finem h. 8. 17', duratio igitur h. 1. 56', medium h. 7. 19'. Incepit deficere circiter 65° a vertice ad sinistram, aestimando, desiit ab eadem parte sinistra, id est non plane in vertice. Defecit minus quarta diametri, parte circumferentiae inter trientem et quadrantem, quod priori observationi consentit. Calculus Eclipsium Lunae

· ·
Calculus Tychonis, cui acq. temp. 9. 21 subt.
⊙ 25. 57. 46 11].) 25. 54. 38 8. Anom. 2. 10. 11. 3. Mot. lat. 6. 9. 36. 46
Plena β h. 7. 6 Horar) 29. 22 5. 8
h. 7. 20. 21 Pragas temp. app. Summa 58. 13 - 14. 350 46. 38
49. 47 - 10. 490 49. 47 lat. anst.
Sc. defectus 8. 26 Plus quam 3 digiti.
Sc. dur. dim. 30. 12 - 03.860
Dur. h. 1. 1. 50
Calculo meo sic.
Jun. 17. h. 17. 47 - 5. 46. 32 25. 2. 24. 0 - 10. 8. 14. 58 - 8. 4. 5. 46
Nov. 8. 7. 19.37.27 7. Oct. 311. 7.
143. 13. 13 33. 28 336. 9. 24. 0 - 1. 6. 50. 21 - 0. 17. 30. 35
⊙ 25. 57. 27 m. Rev.XII.330. 15. 43. 0 2. 10. 28. 12 - 7. 16. 35. 11
Parall.) 60. 8 5. 17. 41. 0 21. 55 18. 14
" ⊙ 1. 1 32. 4 <u>) 25. 55. 26</u> Cor. 25. 0
0.000
umbrae 45.39 100607 9.15.30
n) 15.28 Red. 2.21
Summa 61. 7 — 15. 800
Lat. 51. 5 — 11.070 Lat. 51. 5
10. 2. Paulo minus 4 digitis. Simpl. 48. 13.
Sc. dim. dur. 33. 26 - 04. 730 Aequatio physica est 0' 48" subt, hic add,
Horar.) 32.34 ergo h. 7. 0. 0 app.
2. 32 Duratio h. 1. 6' 48" Pragae h. 7. 5.
) a ⊙ 30. 2.,

Non assequor 14' observationem, 15' calculum Tychonis et pulsatur hic aequatio temporis physica. Nam citra temporis aequationem solis 6' a Tychonico discedo, quia minorem aequationem post apogaeum subtraho, plus id efficeret in tempore, nisi reductio ad orbitam Lunae aliquid compensaret.

In duratione vero et in quantitate uterque calculus superat observata, quare latitudo major et nodus \mathcal{C} antecedens magis in antecedentia promotus hic requiritur. Nec enim licet mederi diminutione diametri umbrae, ut quae in Tychone oppido est parva jam antea.

Datur vero etiam ex inclinatione periculum latitudinis facere. Nec enim adeo incerta est inclinatio, cum umbra summo vel imo puncto corporis Lunae imminet in extremis durationis.

Angulus orie	entis 44°	9'.		Compl.	45°	51'	Me	olog.	2967
Et quia No	nag. 23.	10 Υ	ergo) abest	36.	•		Log.	53139
Ergo a	angulus v	erticalis	et no	nagesimi	60°	164	_		56106.

Summa igitur semidiametrorum 61' 7", secundum hunc angulum distributa in longum et latum, dat latitudinem in fine 53' 5", siquidem umbra praecise fuisset in ipso vertice, majorem vero, quia declinavit adhuc umbra ad sinistram. Et quia summa semidiametrorum in Tychonico tribus scrupulis minor est, latitudo quoque prodibit circiter 50' et paulo major. Esset igitur in medio 46¹/₃ minor, quam Tycho computat. Ita haec observata inclinatio commensurationem insuper Tychonicam adoritur; meam relinquit intactam, sed tamen majoris latitudinis, quod exspectabam, non plenam fidem facit.

Quia igitur inclinatio non plane determinata est, age subsidio nobis venist horarius. Observata dimidia duratio est 58', scrupula dim. durationis 29' 1".

Log. 72650 10950		Summa se	emidd.	61' 29.		- 15.800 03.560	
Mes. 61700	Ang. 28. 21 61. 39 5. 18 66. 57 60. 16 6. 41.		Latit.	53'	46"	12. 240.	Ecce consensum.

Nam si Luna accipiat scrupula durationis ex observatione et horario) a \bigcirc , latitudo exstruitur sane major, quam si finis eclipsationis in ipso vertice ponatur, eoque oportet declinaverit a vertice Lunaris disci ad sinistram. Haec enim latitudo 53' 46" competet ipsi medio facietque angulos 28° 21' et 61° 39', si rectus formetur ad orbitam Lunae, sed ipsius orbitae ad eclipticam inclinatio addet alios 5° 18', ut sic linea per centra cum verticali formet angulum 6° 41'. Consentiunt igitur inclinatio finalis, duratio et quantitas ad latitudinem calculi augendam retroactu \Im nodi.

XXVIII. Eclipsis Lunae anno 1605. 24. Mart. 3. Apr.

Hanc David Fabricius observavit sub meridiano civitatis Emdensis in pago Ostela, ubi alt. poli 53° 38'. Initium ex altitudine Sirii 17° fuit h. 7. 16'. Finis ex altit. Arcturi 46° 25' h. 10. 31'. Duratio igitur h. 3. 15' et medium h. 8. 53' 30''.

Reliqua, inquit, lucis particula (in media duratione) aestimative digitum unum aequabat, at difficile fuit internoscere. Diametrum Lunae sextante instrumento prodidit 34' 30" et cum cornua erecta stare viderentur, altitudo Sirii fuit ipsi 13° 35'.

Maestlinus Tubingae initium notavit alt. Arct. 18° 12' i. e. h. 7. 20' 30", fnem h. 10. 40' 30" ex alt. Arct. 50° 20', ubi duratio h. 3. 20'. Confirmat eandem et Rittelius. Ergo medium h. 9. 0' 30": (Libello de irregularitatibus motuum fol. 89.) Differ. meridd. 7' fere ut in eclipsi XXI. a. 1598. Defectum digitorum 11. 40'; addit quidem "ex observatione," sed simul addit etiam "ex computatione per inclinationes tempore ingressus et egressus," quae observatio, ut supra dixi, lubrica est.

Krabbus Wolfebutelae initium notavit altitudine Spicae 4°, ergo h. 7. 24'; finem alt. ejusdem 26° ergo h. 10. 48'. Duratio hinc 3. 24' et medium h. 9. 6'. Differentia a Tubinga 5' 30".

Ego Pragae initium h. 7. 38', finem h. 10. 55'.

Duratio h. 3. 17', proxime ut Fabriciana. Medium ergo h. 9. 16' 30'. Differt igitur Praga a Tubinga per 16'. Quoad quantitatem, h. 9. 4' cornuum linea vix erat imaginabilis ob exilitatem cornu. Rursum h. 9. 7' annotatum, superfuisse inaestimabile aliquid. Et tamen h. 9. 19' proxime medium superstes locus circumferentiae fuit agnitus, sic ut linea ex illo per centrum ducta incideret in praecedens genu Bootis, quod erat indicium medii. Ac proinde cum 12' et 15' ante tam parum superfuerit, omnino consentaneum est, ultimam lucem Lunae ex." Sole circa medium desiisse in ruboris gradum altissimum, sic ut inter exstinctam puram ex Sole lucem et hunc ruborem a refractis Solis radiis ortum discerni non posset articulus transmutationis; itaque penitus immersa esset Luna in umbram, quamvis videretur aliquid superesse, quod Maestlinus triente digiti, Fabricius digito aestimavit; ille, ut apparet, computatione phasium propinquarum, de quibus ego; iste nudi ruboris intuitu, qui quod gradatim obliteraretur in meras tenebras internosci a Fabricio difficulter potuit. Ita hic aliter pronunciandum, quam supra eclipsi XXI., super eadem observationum diversitate. Et infra pluribus hase exceptio confirmabitur exemplis, ut eclipsi XXXVL a. 1616,

Calculus Eclipsium Lunse

Calculus Tychonis, cui aeq. t. 4' 33" sub.
⊙ 14. 10. 46 γ.) 14. 12. 20 = Anom. 5. 2. 32. 26. Mot. lat. 11. 24. 30. 44
Ante 3' fuit 8. Horarius 34' 51" 5. 11
Semid. umbrae 46. 10 2. 39
n D 17. 52 31. 9
Ita haec eclipsis ex calculo Summa 64. 2 — 17. 350 Latitudo 28. 30
Tychonis valde propinquat obser- Sc. dim. dur. 57. 20 03. 440 64. 2
vationi temporis et durationis et Resid. 22. 29 13. 910 Sc. defectus 35. 32
quantitatis. 34' 51'' - 54300 Semid. 35. 44
98100 Proxime totalis.
43800 Dim. dur. h. 1, 38, 42,
Calculo vero meo.
1605. O h. , 1604. D
Jun. 17. 6. 18 - 5. 48. 38 @ Febr. 12. 3. 2. 17 - 1. 1. 8. 12 - 6. 24. 41. 58
Mart. 24. 9. 7 – 20. 45. 15 D. 23. 82. 9. 7.
84. 21. 9 51. 46 94. 12. 9. 17
58. 50 ⊙ 14. 11. 37 Y Rev. III. 82. 15. 55: 45 - 0. 9. 12. 36 - 0. 4. 22. 39
1960 11. 20, 13, 32 - 5, 3, 39, 58 6, 20, 19, 19
12800 35.37 8.3 34.57
14760 52100) 14. 8. 49 - 2. 40
Parall.) 63. 22 Hor.) 38. 2 148900 Reg. 14. 13. 9 Corr. 25. 0
1221119000 1010000 1010000 1010000 1010000 10100000 10100000 101000000 1010000000 1010000000000
64. 22 D a O 35. 33 - 52247 Post. 8' Ο 14. 11. 37 γ
Semid. () 15. 14 Sc. d. dur. 56. 37
") 16. 17 52653 Requis. 14. 13. 9
Summa 65. 25 — — 18. 110 Dimidia duratio h. 1. 35. 28.
Latit. 32. 45 — 04. 540 Aequatio temporis physica est 17' 50" subt. hic add.
Sc. defectus 82. 40 13. 570 (56' 37")

Diam.) 32. 34

Fit totalis praecise.

Hic sequitur meus calculus Tychonicum ratione temporis medii quidem 11', non tantum enim metae addo pro reductione ad orbitam, sed etiam auctam aequationem subtraho. Et quia hic ad medium tempus additur aequatio physica major quam Tychoni, differentia calculorum emergit 24 et calculus meus 21' superat tempus observationis. Pulsatur aequatio temporis physica.

Quoad durationem, ea mihi prodit non longa satis et minor Tychonica, etiamsi majorem umbrae semidiametrum habeam. Nam Lunae semidiameter minor summam diametrorum non multo fasit majorem; latitudo contra duobus nominibus mihi major, cum summa illa pauciora jam producit scrupula durationis, quae conficiuntur ab auctiore etiam horario. Et tamen eadem in utroque calculo quantitas defectus, quia mihi simul augentur et latitudo et umbra.

Cum itaque durationem observatam non assequar, id indicio est, Lunam profundius mergendam in umbram: nec quidquam obstabit observatio, ut in qua falsa lux pro vera fuit agnita, ut supra dictum. Sit dimidia duratio, ut observavi, h. 1. 38' 30" ergo scrupula durationis 35' 35" — 52247

22. 5	50 — 9	6616		
58. 2	25 - 4	4369 -	38'	30"
_	14	. 450		
65. 2	25 18	. 110		•
29. 2	25 - 03	. 660		

Quae cum summa semidd. comparata, requirunt latit. 29' 25", ita margo ultimus ad 3' recessisset ab umbrae termino: quanto plus sutem, si Maestlinianam et si Krabbi durationem sequerer ? Hinc igitur discat, qui minutias exigit, quanta circa eas occurrat varietas. Hic enim, si durationem spectem, nodus A sequens

602

petit retro agi, sin quantitatem, promoveri. Praestat hic confugere ad visus conditiones. Tale quid enim etiam in XXIV. a. 1601. observatum est.

XXIX. Eclipsis Lunae anno 1605. 16/26. Sept.

Fabricius ad urbem Emden Frisiae, cum c. 2' deficerent, altitudinem (Sirii) invenit 8° 20', unde habetur h. 14. 55', ut initium fuerit h. 14. 51', Maestlinus Tubingae inter nubes idem initium, quantum dabatur, signavit altitudine ejusdem Sirii 13⁶, unde h. 15. 6' et differentia meridd. 15', multo plus quam in antecedenți. Tabulae dant 9. Etsi in disputatione de irregularitatibus (Maestlini) fol. 19. perperam exprimitur h. 15. 34'. Occidit Luna lumine nondum repleta, ergo duratio longior quam h. 2. 46'. Pragae quidem serenum non fuit.

Rittelius Stuccardiae et indice hoc Marius Hailsbronnae, Krabbusque Wolfebutelae consentiunt, quod mireris, in eandem absurdam observationem, quam ut nimis maturam omitto, majoris facio dictorum mathematicorum annotationes, de quibus mihi certius constat. Et Krabbus altitudine Hirci usus est 70° permagna. Idem et finem eclipseos annotavit h. 17. 58' in altitudine \mathbb{D} ¹/₂°, cum eo die Sol oriatur h. 17. 52', refracte maturius, atqui orto jam Sole Lunam in tanta ad horizontem propinquitate, coelo nubilo, videre et simul discernere, an exacte impleatur, omnino lubrici res est negotii. Et Maestlino occidentaliori occidit Luna nondum repleta.

•	Calculus Tychonis, cui aeq. temp. 1' 18" sub.	
	≓;) 3. 56. 20 γ, anom. 10. 2. 37. 49. Mot. lat. 5. 23. 34.	56
	16. 37 Horar. 28' 40" 73861 5.	10
Dim. durat. "		55
Initium .	14. 58. 13 aeguali » D 16. 28	12
	1. 18 hic add. Summa semid. 59. 41 - 14. 090 36.	19
Pro Tubing. "	11. Subt. Lat. ,, 33. 12 - 04. 660 Latit. 33.	12
	14. 48. 31 Tub. appar. Sc. defect. 26. 29	
Pro Emda "		
,	14. 39. 31 Emdae. Resid. 18. 32 117500	
	Dim. dur. h. 1. 38. 47 43639	
	Dissidet ab observatione, tempus ejus antevertens 10 vel 17'.	

Calculo meo sic.

) 1604. Jan. h. 1605. 17. 6. 16 - 5. 48. 38 @ Aug. 12. 3. 2.17 - 1. 1. 8.12 - 6.24.41.58 1 27. 37. 56 Sept. 16. 16. 44 D. 15. 258. 16. 44. 25.46 91. 10. 28 270. 19. 46. 17 59. 5 ⊙ 3. 52. 20 🚔 Rev. X. 275. 13. 5. 49 — 1. 0. 41. 57 — 0. 14. 35. 29 4. 17. 19. 32 - 2. 1. 50. 9 - 6. 10. 6. 29 1540 1. 27. 45. 40 82986 31. 29 15. 1 10.16 84526 Cor. 25. 0 64500 Parall.) 59. 35 3. 54. 13 γ β 10. 46. 30= -112100 176600 Bequis. 3. 54. 7 ⊙ 1. O ⊙ 3. 52. 20 60. 35 6. 54. 10' Semid. 🗐 🔿 15. 15 Red. 1.47 umbrae 45. 20 Requis. 3. 54. 7 15.19 Lat. 38. 9 Simpl. 36. 1. 60. 39 — 15. 5**6**0 38. 9-06.160 Medium h. 16. 44 1, 36. 36 Scr. def. 22. 30 Sc. dim. dur. 47. 7 09.400 Initium 15. 7.24 acquali. Horar.) 31. 44 Aeq. physica 12, 10 add. hic subtr. ② 2.28 14. 55. 14 Uranib. app. 71800 🕽 a 🛈 29. 16 121200 14.44. 7 Tubing. Emdae et Ostelae. 14.35 Resid. 17. 51 49400 Dimid. dur. h. 1. 36' 36"

609

Tardior est calculus mens Tychonico, quia magnam acquationem addit. Cum hoc igitur et cum acquatione temporis physica plane assequor calculum Tychonis; aberramus vero uterque ab observatione. (Nota : Eclipsis \mathbb{D} in 4° Υ tardior.)

XXX. Eclipsis Lunae anno 1607. 26. Aug. 5. Sept.

Pragae per nubes properatis occasionibus observavi ista: hora arcis 12. cullminavit Luna; quae cum fuerit ante $\mathscr{E} \odot 1^{\circ} 45'$ -circiter, vere igitur fuit h. 12. 7', quam correctionem horologii observabo in sequentibus.

Hora arcis 13. index horologii mei domestici monstravit 41'. Inde fluxerunt minuta 37, cum Juptter in azimutho 37° instrumenti fuit. Ergo cum 31° azimuthum instrumenti staret in meridie, jam 4 in vero azimutho 6° ad occasum fuit. Perperam additum, tunc illum culminasse ibi, ubi hora 12. Luna. Nam hoc si esset, hora tantum 13. 30' prodiret, cum sit 13. 44.

Hora arcis 14. rursum index meus erat in minuto 41. Post 23', quod esset secundum culminationem Lunae h. 14. 30', initium visum in ipso Lunae vertice. Post 3' jam agnosci potuit aliquis defectus, parum ad dextram.

Post alia 20' quarta circumferentiae pars defecit. Post alia 12' fuit altitudo oculi Tauri 45° 37', quadrante collocato in azimutho 20° ad ortum in numeratione instrumenti, cujus tamen initium non erat in meridiano, sed 31° contigui quadrantis. Itaque inter meridianum et verticalem erant 51°.

Paulo post hora arcis 15. in meo horologio monstrabatur 42' et post unum quadrantem arcis 57'. Ita vides constantia fuisse horologia.

Hinc pro tempore eliciendo.

Ex altitudine oculi 💍	Ex asimutho
VP 39° 54' 44402	VP 39. 54 — 44402 — 26505
PS 74. 19 3794	PVS 51. 0 - 25213
34. 25 48196	69615 - 14283
VS 44. 23	76444 - 12222
9. 58 - 4. 59 244339	46. 33 - 32042
78. 48 — 39. 24 — 45455	PS 74. 19 - 3794 - 130615
VPS 34. 46 - 17. 23 289794	5115 - 116532
AR. stellae 63. 23	80. 42 - 1321
AR. M. C. 28, 37 vel plus ex asim.	VPS 34. 9
AR. <u>0</u> 164. 9	Paulo aliter ex azimutho nonnihil vitizio.
224. 28 vel plus. Ergo h. 14. 58	
Hinc anfer intermed. 35	35.

Initium ex alt. stellae h. 14. 23 Ex axim. st. h. 14. 25. 30

. Satis igitur confirmatum est initium h. 14. 29'. Et quia in 23' minus obscuratum fuit, quam quarta diametri, parvus igitur defectus fuit. Uraniburgi igitur fuit h. 14. 24' apparenti, at quià Tychoni acq. temp. est 5' 24'' add., quare medium tempus Uraniburgi est h. 14. 29'.

Calculus Tychonis.

· ⊙ 12. 48. 58 m,) 12. 48. 21 ¥ - 6. 22. 30	
Vera 8 h. 15. 30 aequali. Verus horarius 35. 4.	Semid. umbr. corr. 45. 24
Aufer 1. 5) 17. 55
Initium 14. 25 acq. Uranib.	Summa 64. 19 — 17.500
Appar. Pragae.	Lat. 51. 43 - 11.330
Exacte satis, ut observatum.	Sc. def. 12. 36
	Sc. dim. dur. 38. 12 - 06. 170
•	35. 4
	3. 8

Dimidia duratio h. 1. 5.

		Calculo meo	ric.		
Jun. h. ,	لا	1606.			
			. 9 - 3.20.	57. 18 - !	5. 16. 45. 43
Aug. 26. 15. 28 -		5. 237. 15. 2			
69. 20. 43	50. 21	263. 8. 27	. 9	•	
	. 47. 54 10 Rev.	X.275. 13.	. 49 - 1. 0.	41.57 - 0	. 14. 35. 29
14770	•	12. 4. 38			5. 2. 10. 14
2817				$\frac{10}{25.18}$	38.41
17587			0. 0.	23. 3	Cor. 25. 0
Parall.) 63. 29		-			Ω 3. 13. 55
"O 1. 0					12. 47. 54
64.29			100 12.		9. 34.
Semid. () 15. 9				5. 25	2. 25
Umbrae 49. 20	Er	go h. 15. 18 ¹	1.		12. 45. 29
) 16.18		Aufer 1. 5	12		Lat. 52. 46
Summa 65. 38 -		nitium 14. 13		8	impl. 50. 58
Lat. 52. 46 -					•
Ser. def. 12. 52					
8c. dur. dim. 39. 3 -	- 06. 450. Ho	arina D 38.	12 . @ 2. 28 .	3.0 35	44 - 51800
	Dimidium	dur. h. 1. 5'	35"	Resid. 3	. 19 289300
			•••		237500
Praevenio Tychon	icum et observ	rationem 12'	et onia demo	alionid m	
magnam acquationem a	ddo. At acqua	tio physica	17' 48" add	hic subtr	cumulat plane
30', itaque pulsatur hic	aequatio phys	ica Pro	betur etiam co	nsensus ind	linationis cum
latitudin e.	•				
AR. () 164. 9.	Sit AR. M. C	. 29. 0. Er	go asc. obliqua	horoscopi :	1 19°.
Latus acquatoris		- 13397			
Alt. "	39.54 -	- 44402	—	26505	
		57799		18940	
•	68.0			7565	
	23. 31 ¹ / ₂				
	44. 281/2 .			36582	
Mesolog. 35545		. 19980	-	55522	
-	43. 15 -	- 37819			
	16. 45 8		Log	. 61084	17460
	12. 13 💥		Summa semid.		395800
	64. 32 -	- 10221	1. 5. 38.		413260
1		399200			ng. 55' 10"
Parall. lo	ng. 46' 54" -	- 429401		-	-
-					
	11º 26' + loca			·	

55. 19 distantia visa.

Mesolog. 9582

25963 - angulus 37° 39'.

Ecce si in principio umbra stetit praecise in ipso vertice Lunae, tunc intervallum longitadinis fait 55' 10", cum tamen scrupula durationis dimidiae computem tantum 39' 3". Vicissim latitudo vera faisset 35' 40", cum tamen latitudo computetur 52' 46". Si i initua differencia lancia diria 29', locaz 447900

Sit igitur differentia longitudinis 39'; logar. 447900. Hinc anfer logar. summae semidd. 395800, restat 52100; log. arcus 36° 26', cujus complem. 53° 34'.

log. 21750 Lat. 52' 50'. Haec quidem consentirent calculo. At quia angulus <u>395800</u> <u>417550</u> diacentri cum ecliptica est 53° 34', angulus vero verticalis cum eadem tantum 37° 39', angulus igitar diacentri cum verticali esset 15° 55'. Ita umbra declinasset a vertice ad dextram fere 16°: quod certe esset non parum, ut annotatum 3' post initium, sed 24. pars

dextram fere 16°; quod certe esset non parum, ut annotatum 3' post initium, sed 24. pars de circulo disci Lunae.

XXXI. Eclipsis Lunae anno 1609. 9/19. Januar.

Krabbus Wolfenbutelae principium notavit altitudine Spicae 12° et hora 13. 10' sciotherici, et sane haec altitudo dat h. 13. 8'. Finem altit. Spicae 25°, h. 16. 24' scioterici. Verum haec inter se multum dissentiunt. Nam haec altitudo dat h. 15. 38', scilicet ipsa Spica in meridiano nequiit altius assurgere, quam 28° 45', itaque parvus error in altitudine multum efficit in tempore. Esto tamen principium h. 13. 8' et duratio h. 3. 16', medium h. 14. 46'.

Calculus Tychonis, cui aeq. temp. 8' 50" add. $\bigcirc 0^{\circ} 19' 4'' \dots$, $\bigcirc 0. 21, 58 - 9. 14. 8. 37 - 11. 24. 8. 4.$ lat. 0. 30' 28" h. 15. 16 vera oppos. Horarius 29' 44" Aufer 1.44 Semid. umbr. 44. 16 60. 7 Variatio 55 Initium 13. 32 aequali Uranib. Sc. def. 29. 39. Non totalis. Correcta 43. 21 Aeq. t. 8. 50 hic subt. 29' 44" - 70200 Sefhid.) 16. 46 13. 23 Pro diff. merid. 10 ex fide tab. Summa 60. 7 - 15. 280 Latit. 30. 28 - 03. 930 Wolfebut. h. 13. 13' Sc. dur. dim. 51. 46 11. 350 Residua 22. 4 100000 29800 (K. 30800) Dim. duratio h. 1. 44. 5 Calculo meo sic. Jun. െ 1609. 17. h. 7. 13 - 5. 52. 50 @ 1608. 12. 17. 37. 27 - 6. 13. 50. 31 - 4. 7. 21. 55 9. 15. 22 4. 52. 4 8. 15. 22. Jan. 39. 37 D. 128. 15. 51 21. 8. 59. 27 44 Revol. I. 27. 13. 18. 35 - 0. 3. 4. 12 - 0. 1. 27. 33 61. 7 ● 0. 20. 25 mm 6. 4. 19. 8 - 6. 16. 54. 43 - 4. 5. 54. 22 32. 22 2. 16. 22. 20 19. 35 Corr. 25. 10. 19 61700 D 0. 22. 4 8 8 6. 38. 57 8 114300 **⊙ 0**. 20. 25 176000 Req. 0. 22. 2 Parall.) 60. 24 Horar.) 32. 58 6. 18. 32 0 2. 32 Õ. 1. 1 Red. 1.17 . 61. 25) a () 30. 26 Requis. 0. 22. 2 Sc. dur. d. 50. 38 Latit. 0. 34' 48" Semid. () 15. 30 61. 27 umbr. 45. 55 20, 12 n <u>)</u> 15. 32 Sc. defect. 26. 39 Dimidia duratio h. 1. 40 61. 27 - 15. 970 15. 22 Initium 13. 42 Uranib. acquali. Lat. 34. 48 - 05. 120 3. 20 add. hic subt. Aeq. temp. phys. Sc. dur. dim. 50. 38 10.850 Pro Wolfebut. 10. 13. 28³/₂ Initium Wolfeb.

Propter 💿 acquationem sequor 3', propter reductionem aliis 3', propter acq. temp. aliis 5'/s, reliquum propter durationis brevitatem. Sed Krabbi observationum perlaxa est fides. Ego tamen durationem ejus propius exprimo.

XXXII. Eclipsis Lunae anno 1609. 6/16. Julii.

Pragae noctis principio nubes densissimae somnum invitarunt. Itaque phases ceterae si videri potuerunt, a me neglectae. At cum locus medius inter Lunam et 5 esset in meridiano, jam paulo admodum ante coeperat emergere, lux in margine satis evidenter, quamvis per crassam auram, effulsit. Et quamvis esset in tenebris, videbatur tamen toto corpore clarissime, vix parvula obscuritas ex adverso emersionis. Haec ita discerni poterant, quamvis aura esset admodum crassa. Saturnus erat in 10° cm; A.R. $312^{\circ}.30'$.

Luna in 24° 20' Z. A.R. 297° 15' circiter, differ. 15° 15', dimidium 7° 38'. Itaque A.R. M.C. 305° 0' proxime, sed A.R. \odot 116°, ergo h. 12. 36' fuit, quasdo jam coeperat emergere.

Cuiminante 5, i. e. h. 13. 6' semicircumferentia videbatur emersisse, at nondum dimidium diametri corporis. At post 4' jam dimidium diametri redierat. Post

alia 32', sc. h. 13. 42' finis visus. Propinquitatem tamen umbrae sensi per 26' deinceps. Tempus igitur emersionis h. 1. 5'.

Krabbus Wolfebutelae notavit initio altitudinem Aquilae 42°, quae arguit h. 10. 18', ipse tamen apposuit horam 10. 26', fine altitudinem mediae in cauda Ursae 33°, quae dat h. 12. 48', cum ipse apponat h. 13. 50' et addit durationem h. 3. 44', cum extrema in horologio includant h. 3. 24'. In descriptione colorum disertus est, rufam apparuisse dictitans et fuscam, in circumferentia gilvam et in margine subfuscam.

Rittelius Stuccardiae initium morae prodidit h. 10. 45', finem morae h. 12. 41', ergo med. h. 11. 43' ex altitudinibus Aquilae. Quodsi Krabbus h. 12. 48' vidisset finem solius morae, non totius eclipsis, differentia meridd. esset 7'. At quia mihi finis morae h. 12. 36' Pragae vel etiam ante, hino dubitandi mihi causa est, an omnino sana bit etiam Ritteliana observatio. Etsi in mea quoque observatione iavenio annotatum, videndum, an situs instrumenti tenuerit meridiem. Alias bene conveniunt mea tempora, quod cum coeperit ante h. 12. 36', hinc usque ad h. 13. 10' per 34' emerserit dimidium, hinc iterum per 32 alia minuta reliquum dimidium.

Calculus Tychonis, cui aeq. temp. 7' 40" add.) 24. 10. 3 Z, anom. 2. 18. 7. 44; mot. lat. 5. 27. 21. 17 ⊙ 24. 9. 46 ⊗, Semid. umbrae 44. 18 Medium h. 12. 5. 15 5.11) 16. 48 - 00. 830 7. 40 hie subt. Aeq. T. 1.46 3 h. 11. 57. 35 Uranib. Summa 61. 6 - 15.800 12. 2. 35 app. Pragae Diff. 27. 30 - 03. 200 13. 36 1. 59. 30 69800 Lat. 13. 47 Sc. dur. dim, 59. 28 - 14. 970 Finis 14. 2. app. Sc. mor. dim. 23. 40 - 02. 370 -- 93000 Horar. 29. 52 Duplum 59. 44 23200 Dim. dur. h. 1. 59. 30 mora 0. 47. 34 Emersio 1.12. Calculo meo sic. Jan 1609, 17. L. 7. 13 — 5. 52. 50 @ 1608. 12. 17. 37. 27 — 6. 13. 50. 31 — 4. 7. 21. 55 Jul. 6. 12. 6 - 18. 4.46 186. 12. 6. 4.53 . 11. 38 D. 19. 198. 29. 43. 27 57. 10 24. 9. 14 Rev. VII. 192. 21. 10. 4 - 0. 21. 29. 22 - 0. 10. 12. 50 6. 8. 33. 23 - 7. 5. 19. 53 - 3. 27. 9. 5 159200 **20. 13** 4840 32.31 2. 18. 31. 57 18. 5 Corr. 25. 164040 61360 58600) 24. 9. 55 J B 27. 13. 52 3 Parall.) 60. 28 O. 59 0 24. 9.14 119960 Req. 24. 10. 4 Horar.) 33. 3. 4.38 61. 27 6 2. 23
 23
 Reductio 0. 50 Semid. Θ 15. 1 Requisitus 24. 10. 4 **) a ()** 30. 43 umbr. 46. 26 Lat. 17' 0" 15. 32 66900) Simpl. 16. 8. Summa 61. 58 - 16. 240 Diff. 30. 54 - 04. 039 Lat. 17. 0 - 01. 230 59. 23 - 15.010 25. 42 - 02. 809 - 84800 17900 Mora dimidia h. 0. 50. 10 28. 49 73300 Durat dimid. " 1. 56. 16 6400 Emersio , 1. 6.

In tempore acquali consentimus, in tempore emersionis tucor observationem rectius; acquatio temporis physica 11' 53" add., hic subt Medium Uranib. h. 12. 6' acq. Medium Pragae 12. 1 apparenti.

Pro Praga 5 1. 56

Finis 13. 57', sequitur observatum meum per 15'. Exacte convenit medium computatum cum observatione Ritteliana, si ad h. 11. 43' Stuccardiae pro Praga addas 16', ut sit Pragae h. 11. 59'.

XXXIII. Eclipsis Lunae anno 1610. 19/29. Decembr.

Pragae obscurae erant noctes et dies. Observata est a Galilaeo Florentiae, ut videre est in epistola, quam praefixi Dioptricae meae (II, p. 465): sed tempora nulla addidit. At Frid. Rittelius Stuccardiae principium signavit altitudine Sirii 12° 30' occid., addidit h. 15. 15', sed haec altitudo dat horam 15. 2'. Finis visus h. 17. 25' urbis et in sciotherico Solari ad Lunam applicato.

Marius Onoldsbachii promit principium h. 15. 16', finem h. 17. 26'. Duratio ergo h. 2. 10', ergo medium h. 16. 21' et differentia meridd. Stuccardiae et Onoldsbachii 14'. Mappae dant 9'.

Calculus Tychonis, eui aeq. temp. 3' 0" add.

⊙ 8.	26. 52	2 5. 3 8. 24. 46 3 6. 3. 11. 35. 0. 9. 43. 37
Acquatio temp. 3. 0. Hora 16.	32 8	vera. Horarius 35. 26 5. 10
h. 16. 32.	•	Semid. umbr. 46. 3 3. 38
16. 29. appar.		" <u>) 18. 0</u> 10. 740 46. 38
Onoldab. 16. 27. Marius 16.	21	Summa 64. 3 - 17. 360 Lat. 50. 23
Stattg. 16, 18.		Sc. dur. dim. 39. 34 - 06. 620 64. 3
1. 7. Initium 15. 11. Rittel. 15.	2	4. 8 Sc. def. 13. 40 Duratio dimidia h. 1. 7' ut Marius observavit.
Finis 17. 25.		

Calculo meo sic.

⊙ 1611, 17. 19. 42 – 5. 54. 56) 1610. 26. 7. 34. 19 - 9. 3. 39. 37 - 2. 29. 25. 40
Antec.Dec. 19. 16. 28-27. 19. 15	Compl. 44. 29
D. 100. 0. 11	ad finem 12.7.32 6.4.44.19 2
61. 19 💿 8. 27. 25	6 14.0. 2.19 1.24 Corr. 25. 0
8. 5	35. 57) 8. 25. 20 @ ₀ 29. 6. 9 II
8	1. 12 $1000, 0, 20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$
3	12 0.17 9.21 18
	Hora 16. 27. 30 vera o Reduct 9 99
· · · · · · · · · · · · · · · · · · ·	10ranus) 50. 53
64. 42	" Lat 51 43
Semid. \bigcirc 15. 33	
-0. 0	Dimidia duratio h. 1. 6' 40".
<u> </u>	
Summa 65. 31 — 18. 170	
Lat. 51. 43 — 11. 330	
Sc. def. 13. 48	
$\mathbf{R}_{\mathbf{n}}$ $\mathbf{A}_{\mathbf{n}}$	

Sc. dur. dim. 40. 13 — 06. 840.

Ergo ob reductionent ad orbitam) differo in tempore acquali medii h. 20. 4', sed acquatio temporis physica est 2' 27" add. hic subt. Acquale igitur tempus Uraniburgi h. 16. 25', Onoldsbachii h. 16, 23', quod est jam Mario propius Stuccardiae h. 16. 14'. Aufer dim. durationem, ergo principium h. 15. 7' et observavit Rittelius h. 15. 2'.

XXXIV. Eclipsis Lunae anno 1612. 4/14. Maji.

Eram Selevicii in Moravia. Tonuit, pluit. Frid. Rittelius Stuccardiae finem signavit altitudine Spicae 24° 25', i. e. h. 11. 55' 30".

Epistola sub Apellis nomine scripta de Maculis Solaribus Monachii dicit hanc eclipsin coepisse ante horam nonam vespertinam dimidio veluti quadrante, desiisse hora noctis duodecima. Quodsi ad coelum correcta horologia fuere, diff. meridd. hinc prodit 2' 30", at Tabulae dant 10. Duratio h. 3. 7' 30". Additur digitorum fuisse minimum octo. At Hafniae in Dania cum plurimum abfuit, digitorum 6¹/₃, est censitum. (Longom. Th. fol. 182.) Ablata duratione h. 2. 43' de h. 12. 6' manet initium h. 9. 23'. At Longomontanus sub Uraniburgico meridiano initium observavit h. 9. 14'. Hinc pulsatur mea aequandi temporis pars physica.

Calculus Tychonis, cui acquatio temp. 9' 32" subt. ⊙ 24. 16. 14 g. 🔵 24. 16. 47 m. 8. 23. 9. 54. 5. 22. 10. 12 Horarius 31' 11" 5. 10 Semid. umbrae 44. 50 53 17. 8 D 06. 970 41. 29 61. 58 - 16. 250 Lat. 49. 36 Sc. dim. dur. 46. 48 - 09. 280 61. 58 15. 37 Sc. def. 21. 22 Dim. 10. 41 -172700 34. 16 -56000 Digiti 7. 28' 116700 Dim. duratio h. 1. 30'. Vera & h. 10. 25' 30", aeq. temp. hic add. 9' 32", 5' spp. finis Uranib. h. 12. Stuccardiae " 11. 54. Calculo meo sic. Jun.h., 1812. 17. 1. 56 — 5. 56. 0 @ 1611. 5. 13. 14. 10 — 10. 16. 38. 18 — 2. 9. 0. 0 Maj. 4. 19. 26 - 11. 0. 57 Biss. Apr. 124. 10. 26. 87. 12 D. 3. D. 43. 15. 30 @ 24. 17. 51 8 129. 23. 40. 10 Parall.) 61. 19 Bevol. V. 137. 18. 32. 55 - 0. 15. 20. 59 - 0. 7. 17. 44 ō 1. 0 7. 18. 52. 45 - 11. 1. 59. 17 - 2. 1. 42. 16 . 62. 19 24.46 33. 22 8. 7. 10. 7 Θ 29. 22 Corr. 25. 0 15. 5 58600 umbr. 47. 14-) 24. 19. 48 m S 2. 32. 2 Π 12878 0 24. 17. 51 8) 15.46 71478 Req. 24, 19, 57 amma 63. 0 - 16. 790 Horar. 34. 30 Latit. 45. 30 - 06. 760 Horar. 34. 30 Summa 63. 8.14.11 Reduct. 2. 6 2. 25
 Bequisit. 24. 19. 57 Sc. def. 17. 30) a () 32. 5 - 62600 Lat. 45. 30 Se. dim. dur. 43. 35 - 08. 030 43. 35 Simpl. 42. 36 Digiti minus 7. 11. 30 - 165200 Dim.dur. h. 1. 21. 30 21. 30 - 102600 Medium . 10. 26. Finis ,11. 47. 30 Physica temp. acq. subt. hic add. " 18. 33 Finis 12. 6. 3 Uranib.app. 11. 55. Stuccardiae.

Conveniunt calculi in tempore acquali medii, compensante magnitudinem acquationis meae addendae reductione ad orbitam. Conveniunt et in fine, compensante brevitatem morae, ob magnam meam latitudinem, aucta acquatione temporis. Cum igitur et plures Monachii digiti et longior duratio sit observata, latitudo vera minor fuisset non mea tantum sed etiam Tychonica latitudine, ac proinde nodus \Im sequens hac vice fuisset retractior in antecedentia, vide igitur quantum astronomus, qui ad quam plurimas observatas respicit, tribuere debeat affirmationibus observatorum singulorum. Nam si Monachensem in quantitate secutus essem, tunc et adversarium habuissem Hafniensem professione et astronomum et restauratorem scientiae, magnamque ruinam traxisset mutatio nodi.

XXXV. Eclipsis Lunae anno 1613. 18/28. Octobr.

Eferdingae eram, pluviosa et turbida aëris constitutio; Lunae ortum crassissima aura circa horizontem obnubilavit, nec diu post ortum durare potuisset. Nam Frid. Rittelius Stuccardiae notavit in fine alt. centri Lunae non majorem quam 9° 25', cum horologium urbicum (cum solario consentiens die antecedenti) post 5' circiter sonuisset horam 6. a meridie.

Sed si computes horam ex altitudine Lunas addito de parallaxi Lunas totali 58' 24" ad altitudinem 9° 25', quantum ei competit, sc. 57' 32", ut vera altitudo sit 10° 22' 32" et ad locum & 5° 17' d' scrupulis dimidiae durationis 59' additis, ut vera longit. Lunas Keplert Opera. III. 39

Calculus Eclipsium Lunse

emergrat 6° 16' 8, cum lat. 10' 30' sept. vers. et declinatio 13° 49'. A.R. 33° 56'. deinde colligimus horam, ut sequitur : VP 41° 12' 41750 SP 76. 11 2936 34. 59 44686 SV 79. 371/2 44. 38¹/₁ - 22. 19 -96800 114. $36\frac{1}{3} - 57. 18 -$ 17251 114051 69365 89. 58 44. 59 -34683 33. 56 Hora 6. 31/, Stuccardiae 36 A.R. M. C. 303. 58 ⊙ 213. 5 A.R. 90. 53

David Fabricius in Prognostico ait, finem fuisse Ostelae ad Emdam Frisiae in altitudine Lucidae Υ 23° 30′. At in altitudine ejusdem 20°, cum ad oculum adhuc digitus deficeret, ait se finem perspicilli usu discrevisse. Sed totus ibi loci est in stabiliendo gemino defectu Lunae, quorum unus in corpore Lunaris globi, alter in amictu aëris Lunaris, qui Lunae corpus obnubit. Ego in Prolegomenis Ephemeridum fol. 21 ventilavi hoc dogma (comp. II, 113), nec rem in ipso coelo, sed speciem fortioris lucis diffusiorem in oculo, phaenomeni hujus mihi notissimi et in superioribus contestatissimi ream ago. Amplector igitur pro fine eclipseos altit. stellae 20°, unde elicitur h. 5. 52′. Et differ. meridd. inter Stuccardiam et Ostelam hine emergit 11′, mappae dant 10. Quod enim Fabricius perspicillo videt initium vel finem eclipsis, idem alii sine perspicillo in commune tenent initium vel finem, nec ego, qui cum Fabricio eodem visus vitio laboro, nisi suspicione tantum et inconstanter defectus durationem ultra ista momenta prorogo. Quodsi vicinas phase; cum adhuc aestimari potest quantitas defectus, inter se comparare datur: facile me ex his insidiis expedio, ut finem cum ceteris spectatoribus eundem sgnoscam

Calculo Tychonis, cui aeq. temp. 9' 14" sub. 5° 13' 40" 11. 2° 5° 16' 49" 2° - 0. 4. 55. 10. Ante 6' vera 2° 77110 Horarius 27. 45 Semid. umbr. 42. 12 2° 16. 0 00. 220 Summa 58. 12 - 14. 340 Diff. 26. 12 - 02. 920 86750 25. 12 - 02. 700 57. 45 - 14. 120 328340 Resid 32. 15 251230 Dur. dim. h. 2. 4' 52" Media oppos. 3. 58.	$ \begin{array}{r} 27. 13 \\ \overline{)0. 1. 19. 25} \\ 5. 12 \\ \overline{)1. 37} \\ 4 \\ 5. 13 \\ Lat. 6. 54 \\ \\ \\ $
Finis 6. 3. aequali Uranib.,h. 6. 12' Id est secundum mappas h. 5. 50' Ostelae, h. 6. 1' Stuccardiae.	apparenter.
Calculo meo sic. 1613. 17. $8.11 - 5.57.2 \oplus 1612.$ 13. $8.12.36 - 11.26.32.51 - 12.000$ Oct. 18. 4. 4 28.26.50 Sept. d. 17.290.4.4. D. 122. 19.53 49.52 $60.12 \oplus 5.13.44$ M Rev. XI. 303. 2.24.24 - 1.3.46.9 - 0. 0. 9.52.12 30.15	9. 16. 3. 2 1. 3. 58. 50 1. 19
Parallaxis 58. 24 Horarius 30. 0	Corr. 25.

610

Annorum 1572-1625.

Semid. umbrae	44. 15.	-			Lat. 4. 43 Simpl. 4. 27
Summa	59.	0	- 14. 73)	Red. 14
Diff.	29.	0	- 03. 560		⊙ 5° 13' 30"
Lat.	4.	43	- 00. 100		Medium h. 3. 56. aequali
Sc. morae dim.	28.	35	- 03. 46		Dim. dur. 2. 8. 15
, dur. dim.					Finis 6. 4. 15
Residuum	1.	5	Mora din	. h. 1. 2' 22"	Acq. phys. add. hic subt. 2. 24
	3.	47	Dur. "	, 2. 8. 15.	Pro Tubings 11.
-					Tubingae 5. 51.
					Ostelae 5. 41.

Calculi cetera conveniunt, in sola acq. temp. est diversitas, statque Tycho cum observatis, et pulsatur mea acquatio physica.

XXXVI. Eclipsis Lunae anno 1616, 16/26. Augusti.

Descriptio observationum hujus eclipsis exstat in Proleg. Ephem. Maestlinus Tubingae principium prodidit h. 13. 33' ex altit. dextri humeri Orienis 9°. Finem h. 16. 43' ex alt. Sirii 11° 20'. Ergo duratio h. 3. 10' et medium h. 15. 8'. Affirmat, superfuisse aliquid, ut non esset totalis etiam telescopio usus. (v. Hansch. p. 48.)

Romae vero nactus Georgius Herwartus observationem ad me transmisit. Principium h. 13. 43' 30"; finis h. 4. 56' 24". Censuit et hic observator, superfuisse quippiam nec totalem fuisse. Sed addit aliam observationem in aliis aedibus, ubi observatores usi telescopio momentum incidentiae prodiderunt h. 15. 6' 30", emersionis vero h. 15. 33' 45". Ita morata esset in tenebris per 27' 15". Medium ergo h. 15. 20', et duratio h. 3. 13', fere ut et Maestlino visum. Ergo differentia meridd. Tubingae et Romae 12'.

Observavi eandem eclipsin et ego. Sed cum Lincium montibus sit circumvallatum, ego spe potiundi spectaculi, quo utrumque luminarium' diametraliter oppositorum simul in horizonte visui exhibetur, vespera eclipsin praecedente, ut primum serenitatis duraturae fiduciam concepi, porta jam elaudenda egressus, collem oppido quam arduum ad septentrionem urbis concendi, instrumento instructus portabili; regulae quadrantales erant, super circulo azimuthali unius pedis diametrum habente versatiles. Agricolae metu grassantium tunc incendiariorum nullum ignoto mihi luminis usum intra tecta, vix locum sub dio in novali sulcis aspero, carbonesque vivos concessere, quibus vice lucernae sun usus in dinumerandis instrumenti divisionibas. Trunco tripede duum pedum altitudine sustinebatur instrumentum, inter observandum plerumque supinus jacebam, ut oculus pinnacidiis inferior esse posset

Principium per nubes sparsas et dehiscentes identidem est conspectum in altit. Lunae, incertum an 29° anne 25°: nondum enim inter latera regulae distinxeram. Situs instrumenti fortuito captus azimuth Lunae monstrabat 32°. Umbra in summo Lunne margine, parum admodum declinans ad sinistram. In eo azimutho capitis Andromedae altitudinem probandi azimuthi causa notavi 70° vel 66° 15'. Tuno Luna nondum dimidia in umbra fuit; atque ea, priusquam ala Pegasi in id azimuth insideret, jam ad dextram declinabat.

In eodem azimutho instrumenti ala Pegasi elevabatur $55\frac{4}{5}^{\circ}$ vel $51\frac{4}{5}$, Fomahant vero 7°.

Cum umbra declinaret quasi ad 2 superiores in palma vel urna ∞ , erat) in aximutho instrumenti 46° 30', altitudo imi marginis latere regulae inferiori quo oportuit 17° 20'. Cum polaris et spira Serpentis eundem obtinerent verticalem proxime, azimuth) fuit 49° 50' in instrumento.

Nondum occidente Aquila Lunae azimuth 51° 30', altit. 16°, linea per medium cornu recta ducta tendebat super remótiorem quinquanguli illius notabilis in constellatione Aquarii, i. e. oris Pegasi. Circa haec tempora Luna fuit obscurissima, superesse tamen aliquid in lumine censebam. Tota rubicunda fuit, magis vero partes contiguae cornu lucido superiori ad sinistram.

Occidit Luna nondum plane restituta (ut videbatur) in azimutho 74°, cum

39 *

611

Sol jam e regione in azimutho 75° haberet altitudinem 1° 20'. Certe utrunque luminare in semicirculo instrumenti meridionali visebatur. Erat quidem, ut dixi, residui alicujus defectus suspicio in occumbente; at parvo admodum discrimine Luna discernebatur ab aëre circumstante, radiis Solis albescente. Cogitandum igitur, an fuerit tantum debilitas luminis ex illa parte.

Erat igitur Luna adhuc in austro circiter 24', parallaxi quidem projectior erat in austrum, at vicissim refractione rursus elevata in septentrionem, cum occideret. Quin et tertia causa fuit, cur australior videretur ab oppositionis linea, quia jam superaverat locum Solis uno fere gradu. Has igitur causas vincere non potuit refractio utriusque luminaris contrarium efficiens, quin adhuc in eandem plagam declinarent ob oppositione luminaria.

Non fuit igitur magna refractio. Et quia Sol erat fore in 4° 0' 11 cum declinatione 10° 6' tent log. 174087

aequat.		
	133390	

Esset ergo pure orientis azimuth 15° 17'.

Sed quia Solis azimuth in instrumento est observatum in alt. 1° 20', dentur 20' refractioni, maneat altitudini 1°. Erit angulus orientis 5'/,° TP 62° 24' circ. log. 12081 1° log. 404828 392747

latus eclipticae 1º 8'. Orietur 5º 8' 110, cujus declinatio 9º 40'; log. 178429 40697 15.230

Asimuth 14° 37' 137732 19. 560

Hinc anfer 32 . . . 04.330

Manet azimuth () 14° 5'

et hoc numeratum fuit in instrumento 75°. Proinde in ortu acquinoctiali instrumenti stetis 89° 5′. Inde si numeres primo 0° 55′, deinde 90°, tum 32°, quod fuit aximuth), colliguntar 122° 55′, itaque Luna a meridiano removebatur 32° 55′. Erat antem $\mathcal{O} \odot 3°$ 50′ \mathcal{H} , unde ablatis scrupulis durationis 57′, restat verus locus) 2° 53′ \mathcal{H} , latitudo circiter 0° 35′ merid.

Ut etiam parallaxin adhibeamus, usurpetur ex antecipato tempus principii Romanum h. 13. 43', quod sit secundum tabulas h. 13. 53' Lincii. Quare ad A.R. & @ 334° 55' adjectis 28° 15', qui valent horam cum 53', constituitur A.R. M. C. 3° 10'. Et Asc. ebiq. horoscopi 93° 10'. Oriturque 26° 30' @, angulo orientis 47° 57' et Luna abest a sousgesimo 53° 37'. 47. 57. — 29765 — 42. 3. — 40081

					21683 —	1.	3.	30	-	399000	
Parall. 🕽	1.	З.	40	-	399000					439081 - 0.	42. 30
					450448 -	0.	38.	0		Parall. lat. 0.	35.
					Parall. long Visa long.					Visa lat. 1.	17. 30 austr.

156412 - 12º 4' 40". Declinationis Ant. 2238 Ergo arcus acquatoris 4º 38'; hinc A.R. centri) 334º 47' 328. Hinc horam colligamus ex declinatione et A.R. visi loci) et ex azimutho. PV 41. 44 40697 -29269 PVS 147. 5 60987 101684 -7012 22257 PS 102. 5 77. 55 2240 - 156382 77. 11/3 149870 102. 581/3 VS 66. 9 8926 Discrepat alt. ex observato azimutho computata, discrepat inquam ab alt. observata uno gradu. Et ai sequar alt-23. 51 altitudo. 25°, jam azimuth erit propius meridiano, tempus maturius. 58747 67773 (67673)

,

Annorum 1572-1625.

VPS 30. 31	Sit PV 41. 44	40697 VP8 72086
334. 47	PS 102. 5	1240 PS 1240
5. 18 A.R. M. C.	60. 21	41937 73326
154. 55 A.R. ⊙	VS 65. 0	VS 9838
210. 23 H. 14. 1. 32.	125. 21 - 62. $40^{1/3}$ -	306460 PVS 63488 — 32° 0' 11832 Alt.) dat h. 13. 56', 318292 azimuth 32° 0'
		276355 a meridie. 138178

Cum autem certior sit observatio per altitudinem, quam per azimuth, quia regulae stantes facile inclinantur ad latus alterutrum : dimitto igitur azimuth 32° 55', dimitto et azimuth 31° 20', quod in Proleg. Ephem. visus mihi eram ex fixarum altitudinibus correxisse, retineo vero altitudine inquisitum tempus initii, nisi quod ob nubes id forte tardiuscule agnovi.

Pro fine, cum Sel oriatur h. 17. 14' fiatque uno gradu altior post 6', ergo h. 17. 20', prodiret mihi duratio h. 3. 24', si certo in ipeo occasu Luna restituta fuisset. At si 4' ante, ut in Proleg. concessi, mihi luscioso duratio fiet 3. 20'. Ex comparatione igitur observationum initii differentia Romae et Lincii fiet 13' vel 12', Tubingae et Lincii 23' vel 22' Modium Lincii circiter h. 15. 32', ut finis fuerit h. 17. 9'. Uraniburgi medium h. 15. 22'.

Calculus Tychonis, cui	acquat. temp. 7' 37" add.
⊙ 3. 55. 4 mp.) 3. 55. 2) . 6.	8. 24. 52. 11. 24. 41. 15
Horarius 35' 23''	52800 5. 11
Semid. umbrae 46. 39	3. 26
) 17. 59 03. 320	7
Summa 64. 38 — 17. 670	31. 9
Ser. dim. dur. 58. 25 - 14. 350	27. 36 lat.
Residua 23. 2	95800 64. 38 summa semidd.
· · · ·	43000 37. 2 Scr. def.
Dimidia duratio h. 1. 39. 1.	35. 58 diam. 🕽
	Totalis sine mora.
Calculo	meo sic.

1616. 17. 2. 54 --- , 6. 0. 11 - 1615. 6. 3. 49. 20 --- 3. 29. 20. 37 -- 11. 21. 39. 57 Aug. 16. 15. 30 Biss. Jul.

60. 12. 36 - 57. 23. 17 D. 15. 228. 15. 30.	
58, 3 29. 2 234, 19. 19. 20	
1. 27 Rev. IX. 247. 23. 47. 14 - 0. 27. 37. 46 - 0. 13. 7.	56
⊙ 3, 53, 57 mp 13, 4, 27, 54 4, 26, 58, 23 11, 8, 32,	1
Parall.) 63. 40 35. 56 5. 22. 45. 14 41.	
• • 1. 0 51200 16.40 25.	
64. 40 <u>76600</u> 3. 56. 27 + Ω 9. 38.	54)
Semid. () 15. 8 127800 Reg. 3. 55. 27 () 3. 53.	57
umbrae 49. 32 Horar.) 38. 31 5. 44.	57
,) 16. 22 , O 2. 26 Red. 1.	
65. 54 - 18. 380) a 36. 5 - 50851 Requisitus 3. 55.	27 ·
Lat. 31. 49 — 04. 290 57. 41 Lat. 31.	49
Diff. semid. 33. 10 - 04. 650 21. 36 - 102000 Simpl. 30.	2
Ser. dim. dur. 57. 41 - 14. 090 Dim. dur. h 1. 36' 51149 00. 360	
Ser. morae dim. 11. 45 163000	
Mora dim. 19' 33" 111851, paulo alia, qua	m in
Proleg. Eph., quia hypothesis ab eo tempore correcta.	

Convenit Tychonicus in tempore medii cum observatione exacte, sed totalem sine mora exhibet. Praevenit mihi ∂ tempus Solis 2' tempore aequali. At si jam cum 4° m excerpam physicam aequationem 19' 4" add: hic subtrahendam, vera oppositio Uraniburgi tempore apparenti prodiret h. 15: 9'. Ita praeveniret calculus meus 13'.

Mora Romae paulo longior est observata, quare latitudo paulo debet esse minor et nodus hic Ω sequens retractior. Quid vero respondendum sit ad testi-

Calculus Eclipsium Lunae

monia Maestlini, alterius Romani, meumque adeo ipsius, quibus defectus visus est non fuisse totalis: insertum inveniet lector Prolegomenis Ephem. fol. 12. Nam mihi diu admodum et plus quam dimidiam horam Luna visa est cunctari neque diminuens lumen ulterius neque rursum augens ; limbus qui superesse censebatur in lumine, fuit oppido brevis respectu corporis Lunae, nec late spargebat lumen in oculis meis, uti solent lucida, nec latitudo aestimari potuit. Erat et inordinatum cornu ad lineam diacentron, inordinatus et rubor circa cornu. Hoc ut probetur, sumatur altitudo Lunae tunc observata, cum hoc cornu obverteretur partibus, quae sunt ore Pegasi in illo situ paulo superiores, scilicet magis in consequentia, inter os et caput. In prolegomenis caput pro ore sumtum perperam : caput nempe non erat remotius, sed os. Cum igitur Luna fuerit in 4° H, motu proprio iens a dextra ad sinistram, at vero os Pegasi in 26³/s^o, caput in 1¹/_{s^o} H et umbrae plags transponeretur a sinistra ad dextram : jam igitur umbra vergebat in antecedentia, quippe versus 27°, proinde conveniebat, ut Luna jam ultra centrum umbrae in consequentia esset. Quippe in circulo azimuthali 5º anterius vergebat umbra versus duas in palma, quae stabant e regione loci Lunae in 4° X, quasi tunc fuisset medium eclipsis. Atqui Lunae altitudo observata 16° diversum arguit. Addatur de parallazi) 63' 40" quantum huic altitudini convenit 398900

et sit altitudo vera 17º 0'. 3951

402851 sc. 1º.4'

Est antem tune vera longitudo 3º 52' H, lat. 0. 32' anstr. ergo A.R. 335° 47'

48. 44

A.R. M. C. 24. 31

A.R. ① 155. 48
 ③

Declinatio

228. 43. Hora erat 15. 15, in Proleg. 15. 17.

vera 10° 44' fere.		41. 100.						- 40697 1765
	VS	59. 73.	0	-	•	•	•	42462
		14. 132.						210480 9042
								219522 177060
	VPS	48.	-44		24.	22	_	88530

Ecce tempus emergit, quod 17' antecedit medium eclipsis. At si plaga hujus cornu verum indicium faceret, debuisset ipsa vera oppositio, seu medium eclipsis jam totidem minutis et amplius transiisse. Quare lucidum hoc cornu ab ora Lunae meridionalissima recesserat in ortum. Non derogat igitur calculis, non observationi Romanae per telescopium, observatio mea et ceterorum falsi hujus cornu. Etsi vero exemplo, quo in Proleg. Eph. me insuper muniveram, sc. eclipsi anni 1598. - hoc in opere rursum cessi, admisso vero cornu in illa residua, in locum tames ejus dimissi succedit aliud ex anno 1605, quae eclipsis numero XXVIII.

Age vero, ne quid in diligentia nostra desideretur, ventilemus etiam ab inclinatione initiali petitum testimonium, quaesito angulo inter eclipticam et verticalen. Erat enim in superi

ioribus	vrs	29.	0	_	12086	
	٧P	41.	44	-	40697	
					112783	
E	t VS	73.	0		4460	
	•				409292	

Ergo VSP angulus 19° 47'. Sed in illo puncto eclipticae, quod vere obtinebat Luna, sc. in 2° 53' H, angulus eclipticae et circuli declinationis est 68° 49', residuns' ergo inter eclipticam et verticalem est .49° 2'. Pone primo umbram in ipsiasimo fuiase vertice. Summ

12	semidd. 1° 40.		94 '' -		400 217 4	19.	2		5400 5092	
				437	617			423	492	
	Latus	long.	43'	17".	Latus	h	tit.	49'	46"	

Hie prodiret latitudo valde magna, differentia longitudinis viciesim parva. Sunt enim scrupula durationis dimidiae, ex observata duratione dimidia et horario circiter 58'. Bene igitur habet, quod umbra parum admodum dicitur declinasse ad sinistram. Scilicet ipsa duratio calculi consentit cum observata, quare etiam latitudinem calculi ratam esse necesse est, qua stante anguli constituentur in hunc modum: 57' 41'' — 408800

1. 5. 54 - 395400

13400 Ang. 61º.

Ergo diacentros ad orbitam) inclinabatur angulo 29°, ad eclipticam 34° 18′, ad verticalem igitur angulo 14° 44′; hoo illud "parum" est, quo umbra declinavit a vertice ad sinistram. Nihil igitur inclinatio observata repugnat latitudini calculi; nihil defectus quantitati hactenus defensae, quin potius hanc confirmat duratio observata, aut si augenda est ista, ut propius ad meam durationem observatam adducatur, multo profundius Luna in umbram mergetur, nodusque sequens Ω in antecedentia revocabitur, ut jam ante dictum.¹⁵)

XXXVII. Eclipsis Lunae anno 1617. 6/16. Augusti.

Finem notavit Frid. Rittelius Stuccardiae altitudine Aquilae, sed quae laxum facit indicium temporis, cum stella meridiano propinquet. Et perperam puto scripsisse alt. poli pro alt. Aquilae. Dimittatur igitur hac vice.

Romae finem observatum esse h. 9. 48' Jo. Remus Quietanus ad me perscripsit : tempus emersus h. 1. 1'. Lincii observavimus illam utcunque. Descriptio exatat observationis in Eph. anni 1617. mense Augusto, examen in vestibulo illius Ephemeridis.

Quantitas refractionis infida, coelo pluvio, aŭra penitus aquea. Cum Luna eo die oriatur Lincii h. 7. 3' ortu puro, factum est, postquam quatuor distincta horologia nonnullis intervallis invicem insequentia sonuissent h. 7., jam imminente uno quadrante in arcis horologio, factum, inquam. est, ut Luna quasi sub longo tabulato nubium e vaporibus aqueis exorta conspiceretur, habens altitudinem supremi marginis 1º 36'. Deficiebat plus dodrante. Tenebat azimuth instrumenti 24° 32' statimque altius subvecta post illud velum densissimum sese condidit atrarum nubium.

Postquam sonuisset h. 8. 45', incepit ex hubibus emergere, jam initio emersionis ex umbra facto. Cum tardissimum horologium sonuisset h. 9., censebantur lucere 3 digiti. Altitudo) erat 18° 15', 4 18° 50'. Cum sonaret insuper quadrantem in uno, nondum dimidia lucida, cum in altero jam semicircumferentia lucida erat. H. 9. 30' arcis dodrans lucebat, alt.) 20°, in azimutho 52° 50'. H. 9. 45' quasi digitus in umbra restabat, alt.) 22° 40', azimutho 56°. Paulo post visa est integra. Alt. 23° +, azimutho 57° +.

Hisce ex observationibus tempora initii et finis eliciuntur. Nam quia proditur altitudo Lunae supremi marginis 1° 36', centri igitur 1° 20'; et quia in hac altitudine parallaxis horizontalis 1° 3' valet tota, refractio vero ex Tychone 23', adhue igitur superat parallaxis per 40', ut sit vera altitudo centri 2° 0'. Cum autem Luna tunc 40' ante \mathcal{S} \odot fuerit, et \odot in 23° 42' \mathcal{Q} (erat enim summa semid. 65', pene recta secundum eclipticam extensa, de qua decedunt 25', plus sc. quam dodrans diametri D, qui delitescebat in umbra), relinquitur locus D 23° 2' \approx cum lat. 0° 11' sept. ex calculo. Non potest autem in hac altitudine locus designatus elevari 2°, nisi oriatur 25° 30' \approx , cujus angulus 19° 56'. Habet antem hic locus amplitudinem ortivam 18° 15', et Luna igitur in hac altitudine per alios 5° 5' recesserat ab hoc puncto in meridiem, ut esset ejus azimuth ab ortu numeratum 23° 20', quod in instrumento numerabatur 24° 32'. Omnibus igitur azimuthis sunt adimendi 1° 12'. Oriente vero 28° 30' \approx , Sole in 23° 42' \mathcal{Q} , hora est 7. 14' a meridie : tardius igitur justo sonuerunt horologia.

Hinc jam incidentiae momentum eliciemus sat fido calculo. Restabant enim de Luna minus quam 8' 6'', cum horarius) a O sit^o 35'.

53900 Minus igitur quam 14' post, h. e. ante h. 7. 28' tota incidit. Esto hoc 200300 h. 7. 26'. Atqui paulo post h. 8. 45' urbis, i. e., ut in seq. corrigetur, paulo post 146400 h. 8. 55' jam initium animadversum emersionis. Ergo mora circiter h. 1. 29' et medium h. 8. 20'. Rursum, si ponamus dedrantem exacte duisse in umbra, quo tempore horologium tardissimum sonuit h. 7. vel paulo post: visus vere est dodrans in umbra, etiam cum idem sonaret h. 9. Ergo hujus horologii h. 8. aut paulo post medium eclipsis incidit: tardius vero, si corrigatur, nam ex sequentibus adjicienda sunt 10' indicio horologii. Fuit igitur medium iterum paulo post 8. 10'. Tertio: tres isti digiti emerserant per 14', principium igitur emersionis h. 8. 56' correcta, medium ergo h. 8. 11' ut prius fere.

In fine eclipsis, cum notatum sit azimuth) 57°, ablata correctione initio stabilita 1° 12′, restat justum azimuth 55° 48′. Et quia) jam erat in 24° 53′ ... cum lat. 0° 23′ sept., si nullam commutationem esset passa, abfuisset per hoc azimuthum a meridiano 32° 11′ in aequatore, habens veram altitudinem 22° 31′. Per parallaxin igitur habuit altitudinem in hoc azimutho minorem, circiter 21° 30′, non vero 23° 0′. Fieri potest, ut connixerit hic hypotenusa mea, ad quod proclivis est, claudendo sc. seu complicando instrumento. Situs ipse instrumenti super fenestra minus impeditus erat ad azimutha, quam ad altitudines capiendas. Si igitur Luna per 32° 11′ abest a meridiano, Sol aberat per 31° 8′ fuitque h. 9.55″. vel secundum altitudinem) majorem paulo plus: esto h. 9. 58′. Cui consentinut etiam altitudines et azimutha antecedentia: postulantia omnia, ut circiter 10′ addantur horologiis. Ita emersio est unius circiter horae, quantum et Romanus ille observavit. Confirmatur autem hinc differentia meridd. Romae et Lincii 10′ circiter.

Calculus Tychonis, cui aeq. temp. 9' 21" add.

⊙ 23. 43. 55 Q.) 23. 39. 10 cm. 4. 18. 38. 26. 0. 3. 11. 50. Lat. 16' 38" Post 9'. Horarius 34. 7 Semid. umbrae 46. 6 17. 42 - 01. 180 \mathbf{D} Summa 63. 48 - '17. 220 Diff. 28. 24 - 03. 420 Sc. dur. dim. 61. 35 - 16.040 Sc. mor. dim. 23. 0 02. 240 95900 Residua 27. 28 . 78140 21690 Duratio dimidia h. 1. 48. 18 Mora dimidia " 0. 40. 27 39450 Emersie " 1. 7. 51

Cum igitar medium Uraniburgi statuatar h. 8. 18' aequali, at h. 8. 9' apparenti, id erit Lincii h. 8. 19', itaque hic calculus Tychonis insequitar observationem 9' vel 8'; it etiam emersio 7' prolizior observata.

Calculo meo sic, ex ultima restitutione, quae nonnihil differt ab eo, quod in Ephem. secutus sum.

⊙ Jun. h. ,)	•					
1617.27. 9.8 - 6. 1.14 @ 1616. 13.2	22. 47. 46-5. 9. 15. 10-11. 2. 41. 49					
Aug. 16. 8. 9 47. 44. 32 Jul. 217.	8. 9.					
49. 23. 1 <u>3</u> D. 5. 231.	6. 56. 46					
⊙ 23. 45. 49 2 Rev. VIII. 220. 1	0.28.39 - 0.24.33.34 - 0.11.40.23					
2. 25 10. 2	0. 28. 7 - 4. 19. 29. 55 10. 21. 1. 26					
⊙ 23. 43. 24 g	35. 12 16. 30 34. 31					
) venit ad metam obscurationis	53300) 23. 35. 9 Corr. 25. 0					
maximae post 13'	75800 23. 42. 37 0. 20. 51. 55 ==					
Parall.) 63. 3	129100 7. 28 0 23. 43. 24					
" 💿 1. 0 Horar.	37. 22 2. 51. 29					
64. 3	2. 25 Reduct. 0. 47					
Semid. () 15. 5	34. 57 Requisit. 23. 42. 37					
umbrae 48. 58	63. 9 Lat. 16' 7"					
") 16. 12 Residuum	28. 12 Simpl. 15. 3					
Diff. 32. 46 — 04. 540	75500					
Summa 65. 10 — 17. 970	54040 Dim. dur. h. 1, 48, 55					
Lat. 16. 7 — 01.100	21460					
Sc. morae 28. 30 - 03. 440	74440 Dim. morae h. 0. 48. 55					
Sc. durationis 63. 9 16.870	20400 Emersio h. 1, 0, 0					

Digitized by Google

616

In tempore medio vix 4' Tychonicum sequor, 13' observationem. Sed aequatio temporis physica est 19' 21" add., hic subtr. Igitur h. 8. 3' apparenti Uraniburgi, seu h. 8. 13' Lincii fit obscuratio maxima; ita proxime observatum venio. Etiam emersionem tueor ut est observata.

XXXVIII. Eclipsis Lunae anno 1619. 16/26. Junii.

Frid. Rittelius Stuccardiae principium observavit, cum in arce et curia oppidana simul sonarent horologia h. 11. 45', altitudine centri) 18° 30', qua nihil juvamur, utcunque bona sit, quia Luna vicinissima meridiano.

Maestlinus certi nihil observare potuit ob nubila, nisi quod durationem putat fuisse circiter h. 1. 45'. Erant et Lincii densae nubes, interdum patentes. Hora 12. 30' urbis, cum per raras nubeculas pelluceret, nihil deperdidisse putabatur; quoties vero discessu nubis in sudo conspecta est, visa est quasi rasa superius, ac vix agnoscebatur deflexio defectus ad sinistram, quasi versus Lyram (puto autem legendum versus Aquilam, quia Lyra ex fenestra humili conspici non potuit vertici imminens jamque ultra meridianum ad dextram progressa). --- Post quadrantem horae rursum enixa e nubibus, praecise sursum vertebat particulam deficientem. Erat quidem defectus satis latus fere semidiametrum Lunae a margine et cornu quasi occidentali in orientalem; at defectus quantitas nisi infidissime aestimari non potuit, Finem nubes et hiems interceperunt. Discedunt horologia ab invicem Stuccardiana et Lincianum, nam differentia meridd. non est 45', sed tantum 21'. Probabiliter utrique potest adhiberi correctio, additis Stuccardiano 8, ablatis Linciano totidem, ut initium merum sit h. 12. 14' Lincii. Et quia umbra in principio h. 12. 22', sic correcte fuit ad sinistram, quando verticalis per Lunam cum ecliptica proxime rectum formabat angulum; quanto igitur minus agnoscebatur deflexio ad sinistram, tanto minor et defectus fieri potuit. Et quia 8 💿 in 4º 45' 3 et Aquila in 20° \mathcal{Z} , umbra ad illam vergens parum adhuc erat in consequentia. Rursum quia post horae quadrantem (h. 12. 33' correcte) defectus stetit in summo, ne tunc quidem medium esse potuit, quia diacentros juncta verticali secabat eclipticam oblique, orbitam Lunae obliquius, annuens infra eclipticam versus occasum, sed parum. Esto enim ex abundanti hora plane 12. 45' sine correctione, fiet Asc. obliq. boroscopi 16° 25', orietar 3° 10' , distabit Nonag. a vertice 71° 46', a Luna 27° 50'

116191	 5151
128486	3984

1167 Angulus sit 81° 16', cum orbita 76°.

Cum hoc angulo deprehenduntur restare ad medium eclipsis sc. 14' 24", quae conficientur 32', a principio observationis 47', siquidem tantus omnino angulus fuisset et tempas tam serum, et umbra exactissime in vertice. Duplicatum igitur esset h. 1. 34' et quia pado ante jam defecerat, fere igitur conficeremus 7 quadrantes Maestlini.

Aller A. M. Stante and and Assess At A14 + 33

			Calçuius	Tycnoms,	cui aeq.	rem	ıр. 1	. 41	" a aa.				
			⊙ 4. 44. 35						14. 4. 22	;			
H.	12.	351	acq. est vera	8	Horarius	27'	16"	,			1.	17.	1
			20 appar.	Semid.	umbrae					1	1. 20.	18.	53
			20 Linch		٦	16.	1					5.	8
Initian					Summa	59.	4		14. 770			1.	27
	11.	14.	Stuccardiae						10.710			51.	46
			•	Sc	. defect.	8.	45		Digiti 3.	18' -	Lat.	50.	19
				Sc. d	lim. dur.	30.	58	-	04. 060				
				Dim, dur.	h. 1. 8	; 3.	42.	Hae	e duratio	ad mi	inimum	semi	

im, dur. n. 1. 6°; 5. 42. rises duratio ad minimum senius borae est justo longior.

Calculo meo, ut is 11. Apr. 1620 correctus, post scriptam jam Ephemerida. O Jun. h. , 1619. 17. 21. 37 — 6. 3. 20) 1618. 27. 12. 44. 39 — 7. 29. 4. 16 — 9. 24. 45. 34 Jun. 16. 12. 38 57. 3 Maj. 166. 12. 38. 1. 9. 21. 22 D. 15. 194. 1. 22. 39 O 4. 44. 55 O

Calculus Eclipsium Lunaé

D 1	194. 1.22.39 7.29. 4.16	
Liev. v	II. 192. 21. 10 . 4 - 0. 21. 29. 22 -	- 0. 10. 12. 50
Acquatio temp. physica 1' 30" add. hic s	ubt. 1. 4. 12. 35 14. 7. 25	9. 14. 32. 44
Ergo h. 12. 48' Lincii, initium h. 12. 4	11. 30.19 6.18	3.44
Parall.) 58. 29	4	25.
" 💿 0. 59) 4. 47. 25	δ <u>β14.54.0</u> δ
59. 28	4. 47, 39	0 4. 44. 55
Semid. () 15.		and the second s
		10. 9. 0
" umbras 44. 28		Red. 2.44
" 🔵 15. 0		Requis. 47. 39
Summa 59, 28 - 14.960		Lat. 56. 0
Lat. 56. 0 — 13. 270		Simpl. 52. 49
Sc. def. 3. 28	77800	-
Digiti 1. 24		
	110000	
. –	32200	

Dimidia duratio h. 0. 43' 28". Haec duratio convenit proxime cum observatione et cum quantitate perexigua ante medium observata.

Lubet autem explorare, quanta fuerit illa, ex eo, quod pars obumbrata pene semidiametri longitudinem habuit. Fuit Lunae semidiameter 15', fuerit ergo sectio ista 14'; dimidium 7' est semissium arcuum utriusque communis sinus. Ergo sinus complementi in Luna erit 13' 10", in umbra 43' 56". Distantia ergo centrorum 57' 6", quae differt a summa semidd. per 2' 22", quod est minus uno digito. Fuit autem procul dubio minus aliquid, quia longitudo cornu obscurati non visa esset tanta, nisi lucida sese dilatarent in oculis. Et quia abhinc ad medium eclipsis restat minus quam 14' 24", hinc habetur quantitas defectus in medio 4' 14", sesquidigitus seu 1. 42'. Haec quantitas certo major est ea, quam observatio patitur, quod ex assumtis patet.

Satis etiam apparet, calculos praevenire observationem, magis Tychonicum.

XXXIX. Eclipsis Lunae anno 1619. 10/20. Decemb.

Hace eclipsis quo diligentius observata est, hoc plus exhibuit mihi negotii. Liber justus fieret, si quaecunque de ea disputavi variis chartis fasciculo colligerem. Causa perplexitatis fuit, quod fixarum loca repugnare vidi observationi, cujus rei exempla plura nondum conquisiveram.

Maestlinus Tubingae per altitudines fixarum ad ortum et occasum consensu exquisito principium notavit h. 13. 55'; finem 16. 59'. Medium igitur h. 3. 27'; duratio h. 3. 4'. Valde exiguam portionem ait remansisse in medio defectus, quae vix unius digiti quadrantem acquaverit, hocque et per telescopia et aimplici visu et sibi et filio suo sic visum, consensu inter ipsos mero. (Comp Hansch. p. 49.)

Jo. Scheineri Soc. J. observationem Oeniponti habitam, ubi A. P. 47⁶ 17', ad me perscripsit Jo. Remus Quietanus Serenissimi Arch. Leopoldi medicus, principium indubitatum in alt. Arcturi 14° 50', unde computo h. 13. 59'. Finis alt. Arcturi 44° 20', unde horam 16. 55' 30" computo. Esset igitur differentia meridd. Tubingae et Oeniponti 4', cum tabulae statuaut 12', eandem quam Monachii fere. Duratio quidem fit h. 2. 57' 30", quam parvitatem magnae altitudini finali Arcturi tribuendam puto. Nam aliter, defluxu arenae, durationem mensus est h. 2. 59'. Digitos censuit 11 cum semisse defecisse. (Comp. Hansch. p. 536.)

Mihi Lincii principium in distantia oculi Tauri a vertice 58°, cum horologium domus provincialis sonaret h. 2. post mediam noctem. Sed haec altitudo fixae ostendit h. 14. 15' vel potius h. 14. 18', si alios quadrantes respiciam, quibus ejusdem fixae altitudines notavi. Erat etiam in alio instrumento altitudo 31° 30' et sic minor. Hinc differentia meridd. Tubingae et Lincii 23'. Statim ut instrumento telescopo Lunam inspexi, vidi marginem aliquantulae latitudinis, cum multo quidem adhuc lumine, sed tamen evidenter distinctum a lumine Lunae reliquae. Censebam hunc marginem esse praecise ad sinistram. Stabat Luna super stellas

ì

pedis Geminorum duas claras vicinas invicem, nondum tamen angulus ad priorem stellam rectus erat.

Postea versus quadrantem primum provincialis (correcte versus h. 14. 33') cum deficeret quarta pars, angulus hic rectus erat, et plus aberat stella a margine sibi proximo, quam est una diameter Lunae. Nihil accuratius potuit notari, nequibant enim eodem intuitu simul aspici et Luna et stellae ob claritatem Lunae, sed quoties stellae erant respiciendae, tegenda fuit Luna tigillo fenestrae.

Inter h. 14. 48' et h. 15. 3' notatum, quod centrum Lunae jam satis evidenter visum fuerit ultra perpendicularem in lineam stellarum ex stella priore, et quod umbra jam deorsum vergeret et quod dimidium in umbra fuerit. Distantia stellae a proximo margine paulo major diametro Lunae.

Circiter h. 15. 6' correctam, cum bes in umbra censeretur, jam occidentalis margo in dictam perpendicularem incidebat. Linea per apices cornuum nondum erat parallela pedis stellarum lineae: ac ne quidem b. 15. 19'. Quartam restare putabam, quintam Gringalletus adjutor meus. Rubebat Luna in umbra clarissime.

Paulo post circa h. 15. 33', cum parallelae flerent lineae, quod hoc medium eclipsis imminens argueret, consideravi latitudinem residui cornu, quae tertiam partem occupabat ejus, quod ego telescopio meo comprehendo; comprehendo autem mihil ultra 13' seu duas quintas Lunae. Erant ergo 4' 30" circiter.

Nudis oculis inter quintam et quartam partem circumferentiae censui in lumine, Gringalletus ad sextam attenuabat. Latitudo lucidae ad latitudinem obumbratae partis, ut 1 ad 8 circiter; nihil enim accurati dici potuit, etsi pars obscurata in conspectu erat.

Hora 16. 18' correcta linea per cornuum extrema tendebat in secundam ex 2 pedia, ejus vero perpendicularis per centrum tendebat simul in primam, sic ut hae duae rectum formarent, subtensum a recta inter stellas. Confirmabatur haec ebservatio per aliam, quod ductae ex stellis in centrum Lunae viderentur formare obtusiusculum. Nondum autem distabat Luna aequaliter ab utraque stellarum, discrimine tamen perexiguo. Erat in lumine paulo plus quam quarta diametri.

Inter h. 16. 18' et 16. 33' diacentros in verticalem incidit et distantia Lunae a stellis utrinque acquata fuit.

Hora 16. 48' Luna paulo admodum plus una sua diametro a stella secunda aberat margine proximo; in umbra restare videbatur mihi quidem quarta diametri, Gringalleto plus quam tertia. Altitudo oculi Tauri 9° 20', quae dat horam praescriptam. Hora 17. 18' finis eclipsis. Altitudo rubicundae in Orione 10°.

Inter h. 17. 33' et 17. 48' margo Lunae a secunda dictarum aberat spatio tanto, quasi quod telescopio videtur, puta 14'. Distabat stella versus sinistram deersum, altior tamen imo Lunae margine, qui h. 18. 3' jam factus erat altior stella. Hora 18. 18' "quantum judicari potuit" (inquit observatio) quae ex stella versus eclipticae polum tetendit in Lunae contrum.

Igitur ab h. 14. 18' vel 17' in h. 17. 18' duratie a me est animadversa h. 3. 0' vel 3. 1'; medium h. 15. 48' et secundum hos medium differ. meridd. Tubingae et Lincii 21'.

Sequitur	Cale. Tych, cui acq. temp. 0'	20" add.
⊙ 29. 1. 11 x,) 28.	58. 40 II , 5. 18. 33. 23 -	5. 25. 52. 43
Post 6'	Horar. 35' 22"	5. 10
	Semid.umbrae 45. 59	4.24 (+ 9")
Sequitur calculus observatum	" Lunae 17.58	36. 19 35. 56 - 51200
tempus 6'.	Summa 63. 57 - 17. 300	Lat. 31. 46 diam.)
In duratione et quantitate	Lat. 31. 46 — 04. 270	52900
excedit ebservationem. Ergo latitudo major fuit.	Sc. defect. 32. 11	16. 6 — 131550
intende major fuit.	Sc. dur. dim. 55. 30 - 13. 030	Digiti 10. 45' 80350
	Residnum 20. 8	- 109200
		56300

Calculo meo sic.	
0)	
1619. 17. 21. 37 - 6. 3. 20 · 1618. 27. 12. 44. 39 - 7. 29. 4. 16 -	9. 24. 45. 34
Dec. 10. 15. 38 Nov.	
175. 18. 1 - 22. 12. 44 d. 9. 343. 15. 38.	
30. 39 371. 4. 22. 39	
15. 20 Rev. XIII. 358. 5. 1. 34 - 1. 9. 54. 33 -	0. 18. 58. 8
3 12.23.21. 5 - 5.19.45.39 -	9. 5. 47. 26
	41, 13
Parall.) 63. 37 104586) 28. 57. 5 II	
" O 1. 1 51314 Req. 29. 3. 47	Q 5. 31. 13 Z
64. 38 155900 6. 42	⊙ 29. 2. 6
Semid. () 15. 33	6. 29. 7
umbrae 49. 5 Horarius) 38. 30	Bed. 1. 41
``) 16. 21	29. 3.47
Summa 65. 26 - 18. 120) a O 35. 57 - 51230	
Anena lat 25 59 - 05 440 - Desidence 19 47 - 118120	Lat. 35' 52"
Sc. defectus 29. 34 Dim. duratio h. 1. 31' 21" 64900	Simpl. 33. 51.
Sc. dur. dim. 54. 44 - 12. 680 Tots , 3. 3.	

Majusculam acquationem subtraho versus perigacum insuperque reduco ad orbitam Lunae; sequor igitur Tychonicum tempus 5', observationem 11' tempore medio. Sed acquatio physica 1' 17" add., hic iterum subtrahit, ut restent 10'.

In duratione et quantitate consentit calculus meus cum observatione ; supersunt enim 2' 47", quae sunt digitus unus, cum ego plus uno digito, ceteri minus superesse censuissent.

Quantum ad fixas, cum omnes phases notatae consentiant inter sese pulcherrime, ante omnia loca duarum stellarum ex ipsis nudis observationibus computavi denuo. Distantiae sumtae erant ab oculo Tauri et corde Ω et ab inferiore capite II, quibus stellis si relinquo loca sua, uti sunt iis assignata ad completum 1600: stellae istae, dictae planta et calx pedis, cadunt uno minuto anterius, et latitudo differt uno minuto plus, quam in catalogo. Ad completum igitur 1619. loca sic habent.

Calcis 2 Plantae 2	9°59/ 3. 8	₽	Lat. Lat.	52' 58.	30″ 30	australi	s .	
Differ.	1° 51′			6'			-	
30U	111'		Mediam	55'	30"	semissis	de	111'.

Ex hoc apparet, si semicirculus scribatur super linea stellas connectente, posito quod stellae sint ejusdem latitudinis, hunc ab ecliptica tactum in loco praecise medio. At quia latitudine differunt per 6', quare linea per stellas versus consequentia inclinatur ad eclipticam et semicircellus iste secabitur ab ecliptica, et linea ex stella perpendicularis isti stellarum lineae, ubi usque ad eclipticam ascenderit, inclinabitur a circulo latitudinis dimidio hujus differentiae, scil. 3'.

Cum igitur fuerit annotatum, versus h. 14. 33' centrum Lunae in hac perpendiculari fuisse visibiliter, deficiente parte quarta: dabitur locus Lunae visibilis gemino medo, ac proinde et locus stellae.

Nam primum distabat hoc momentum a medio eclipsis h. 1. 15', cui intervallo respondent sc. motus Lunae veri 48' 8". Et cum Luna in ipso medio eclipsis h. 15. 48' fuerit in 29° 3' 47" II ratione orbitae, stans e regione loci eclipsici 29° 5' 28" II, ablatis igitur 48' 8" restat verus locus Lunae eclipticus 28° 17' 20" II. cum latitudinis arcu computato 37' 15" sept. Rursum posita hac latitudine et summa semidiametrorum 65' 26", si hinc auferatur quarta pars Lunae diametri 8' 10", relinquitur distantia centrorum 57' 16"— 13. 870

Digitized by Google

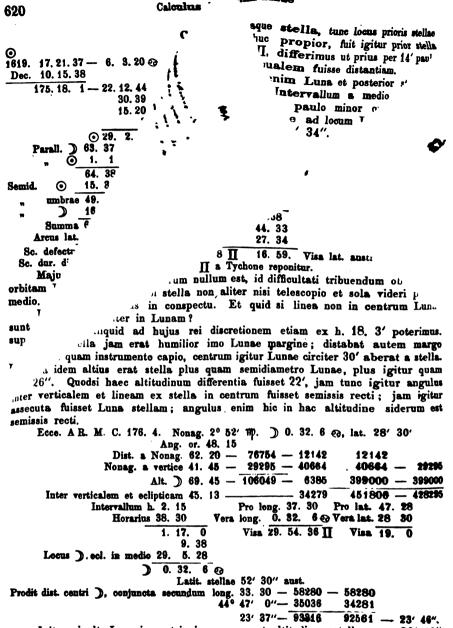
620

Hinc elicitur differentia longitudinis 43' 32", ex aestimatione defectus lubrica (et non liquida, non nempe est additum, diametri an circumferentiae quarta defecerit), quae ex temporis intervallo constituta fuit 48' ferc. Retineamus igitur verum Lunae locum satis comprobatum utraque via. Oportet jam hunc redigere in locum visum.

A.R. M. C. 127º 12'. Nona	g. 27°	12' 😡		
	€ 28.	17 II		
Dist. a Nona	g. 28.	55 -	7266	0
Angulus	or. 61.	47	1265	1 74907
Parallaxis)	63. 37	39900	0 - 399000
	-	-	48431	1 - 473907
Parall. long. 0. 27.	12	Lat.	30′	5"
28. 17.	20		37. 1	
1 1 1 1 1 1 0 TO	0	TT: 1.4	-	<u> </u>

Visa long. in ecliptica 27. 50. 8 Visa lat. 7. 10 sept.

Quia igitur centrum Lunae est in septentrione, stella paulo plus 3' secuta est hunc locum, ut fuerit in 27° 53' 8' II, quae collocatur in 28° 8' II, per 15' ultra quam observamus, posito loco Solis vero, ut is ex Tychone computatur. At secundum aestimatam quantitatem eclipsis ad summum 5' fieret fixa promotior, adhuc 10' differens a loco ex Progymnasmatis accepto. Quo posito, oportet phasis tempus 8' serius justo esse annotatum.


Convenit autem simul etiam hoc, quod summa latitudinum stellae et visae) efficit 65' 30", unde ablata semidiameter) relinquit 49' circiter, quae sunt sesquiplum diametri), quod est observationi consentaneum. Distabat enim margo proximus plus quam diametro) dilatatae in oculo ob claritatem.

Consulatur aliud momentum: h. 16. 18' distantia nondum penitus par fuit ab utraque stella. Est dimidia stellarum distantia 55' 30". Fuit etiam tunc sectio linearum per cornu imaginatarum (quae rectum angulum format), fuit, inquam, in ecliptica, quia singulae lineae in singulas stellas tendebant, et vere angulus rectus stat in semicirculo suae hypotenusae, et hunc semicirculum, ut supra dictum, proxime tangit ecliptica in medio. Si cornu visum in ecliptica, centrum igitur Lunae visum est nonnihil in austro; angulus igitur, qui formatur lineis, quae stellas et centrum connectunt, obtusus erit, et sic sane fuit annotatum. Si centrum Lunae visum fuit in austro, quare etiam cum aequaliter a stellis abfuit, paulo quid minus tribus minutis distitit locus ejus visus a loco ecliptico, stellarum intermedio, propter iselinationem lineae stellarum ad eclipticam.

Computetur vera Lunae distantia a centro umbrae vel ex intervallo temporis a medio eglipsis, vel ex annotata quantitate defectus, et redigatur locus verus in visum adhibitis parallaxibus.

House addition bar and another
Cum igitar h. 15. 48' locus Lunae eclipticus fuerit 29° 5' 28" II, unde ad nostrum momentum fluxerunt 30', quibus promovetur Luna per 19' 15", ergo locus Lunae verus erit 29° 24' 43" II. Latitudo ex meo calculo 34' 2". Hunc locum conferam cum anno-
tata quantitate
Prodit enim ex dicta long. et lat. centrorum distantia 39. 8 — 06.480 At summa semidd. 65.26
Scrup. defectus 26' 18". At observatio prodidit paulo
minus quam 24' 31'/2", quia diameter est 32' 42", scilicet lucida nimium sese dilatant in
oculo. A.R. (2) 268. 58. A.R. M. C. 153. 28. Nonag. 16. 24 S
Distantia a Nonag. 47. 4 — 31177 29. 20 П
Angulus Or. 55. 33 - 19283 - 56876 47. 4
Parall.) 399000 — 399000 (
449460 - 455976
. Longit 38' 24" . Lat. 36. 0
. 29. 24. 43 II 34. 2
Visa long. ecl. 28. 46. 19 II Visa lat. 2. 2 anst.
Diff. long. stellarum dimidia 55. 30
27. 50. 49
Pro inclinatione lineae ad eclipt3.
Prodit locus stellae 27º 53' 49" II.

for Lana

Igitur si alt. Lunaris centri visa superasset altitudinem stellae per 23' 46", conjunctio fuisset secundum longitudinem. At superatio agnita est major quam 16' 21", imo major quam ampliata semid.) in oculo meo; itaque aut non malto alia quam 23' 37" aut forte major. Sed visa long.) fuit 29° $54'/_{3}$ ', igitur etiam stellae tanta fuisset, eratque vere; vel certe minor.

Tribus igitur momentis conficinus, fixas fuisse minimum 5', duobus vero certioribus momentis plane 15 vel 14' anteriores per calculatum locum centri umbrae ex Tychone. Atque hoc est illud mirabile, quod me tam diu torsit, quodque concoquere non potui, priusquam omnes eclipses examinassem. Nam ex observationibus

30

An

amorum 1588. 1598. 1599. 16 At postquam examinavi eclips suo fuisse fixas, vel idem ac Locatione hac fixarum 'aculum, quod h. 16. ' 'rem, linea huic 's me per litera 'mnibus pur incidit, 'erat

derat

یناند secat ۷۵ australis، ۲ septentrionalis, majo. ureretur.

XL. Eclipsis Lu.

Haec eclipsis Tubingae a Maestlin. gravium Hassiae Philippum perscriptum fu. nomicis. Initium ex altit. Arcturi 43° 20' . alt. Arcturi 32° i. e. h. 12. 45'. Finis mora. Mors igitur fuisset h. 1. 31' et medium h. 13. 3. per analogiam finis eclipsis h. 15. 25'. Duratio h. 3. principium idem, ejusdem Arcturi alt., 43°, Lunae 16° 5. Arct. 30° 30'. Principio emersionis, altit. Aquilae 48°, cum in ... cum h. 2. 0' Arcturi altitudo fuisset 19°. Quae consentiunt Tubing., ubi meridianus proxime idem. Nam si h. 2. Arcturi Stuccardiae, post 16' omnino erit ejus altitudo 17° Tubingae. Mir.

Puzbachii contendunt Landgraviani, visum initium h. 11. 18'; immer h. 12. 28', ubi tempus quidem incidentiae idem, at in horologio videtur fnisse, nam locum hune nihil ultra 3' occidentaliorem esse Tubinga tabulae signat in confinition Alsatiae et Lotharingiae Jo. Berne

fnisse, nam locum nune man una confinibus Alsatiae et Lotharingiae Jo. Remus Quia.
Sulzae ad Rubeacum in confinibus Alsatiae et Lotharingiae Jo. Remus Quia.
tanus principium notavit h. 11. 23'. Ingressus totalis non animadversus cires
h. 11. 30' propter lucem secundariam, quae duravit usque ad h. 12. 48'. Hora
12. 43' visa est stellula ad 4' vel 5' perpendiculariter infra Lunam. Inde h. 13. 54'
per nubes et crassissimum aërem Lunae corpus iterum apparuit. Hinc differ. meridd.
Tubingae et Rubeaci vel Sulzae esset 13', at tabulae nihil ultra 8' admittant.
(Comp. Hansch. p. 537.)

Exstat et mea observatio Lincii habita sermone vernaculo conscripta et edita Ulmme. Principium ex altit. Arcturi simpliei quidem perspicillo h. 11. 51', at telescopio h. 11. 53' ad sinistram paulo supra medium. Corporis pars obumbrata videri non potuit Superfuerant autem h. 12. 38' circiter 7', dimidium sc. ejus, quod telescopio meo capio. Hora 13. 0' vix tenue vestigium de lumine Lunae apparuit, quasi stella primae magnitudinis, cum tamen appareret ramus uterque viae lacteae. Hora 13. 6' adhuc quasi fixa obscura in loco, ubi se Luna condiderat, erat propemodum in una recta cum una in humero Sagittarii et una in Sagitta, nonnihil tamen australier. Crediderim, fixam illam fuisse, quam sub Luna vidit Remus, nisi et hoc lucis vestigium paulo post disparuisset. Hic igitur fuisset Luna totaliter immersa, essetque tempus incidentiae h. 1. 9', idem quod cateris. Luna penitus disparmerat coelo puro, stellis Sagittarii et via lactea apparentibus.

Hora 14. 8' coepit dilucescere. Vidi tamen stellam in capite Ophinchi usque

Dist. a nodo 5° 4'. Nodus ?? in 29° 9' 32" x³.

n ultra h. 1. 17' ad summum vt. Quibus angustiis eo maniisse parvam praeter solitum. m in ortu ferruginei coloris. a usque adeo delituit, ut la tamen, totam Terram us marginum Terrae adste Opticorum fol. 304 ixβ3Pφχυ ex parte notus fuerit, et Luna lumine censeretur. pium obscurationis rine sursum pausinistris approunae superior ab ccliptica. ultum tran-Quodsi er: Luna restans. dorum. imam

olo

Calculus Eclipsium Lunae

Ergo si acqualiter abfuisset Luna ab utraque stella, tunc locus prioris stellae emergeret 27° 54' II, sed quia Luna illi adhuc propior, fuit igitur prior stella paulo ultra 27° 54' II, sed ponitur in 28° 8' II, differimus ut prius per 14' paulo minus, nam intra pauca minuta additur, jam aequalem fuisse distantiam.

Consulatur denique etiam h. 18. 18', tunc enim Luna et posterior stellarum ad visum jungebantur secundum longitudinem. Intervallum a medio h. 2. 30', Intervallo igitur respondeant 1° 35′ 45″, quae adde ad locum Lunae eclipticum in medio, conficitur locus) 0° 11′ 13″ ©, latit. 27′ 34″. Asc. R. © 269. 4. A.R. M. C. 183. 34. Nonag. 8. 40 10 horarius in tanta distantia ab articulo oppositionis paulo minor quam 38' 30".

J 0. 36 🥹 Dist. 68. 4 -7513 Ang. or. 45. 30 -**33797** — 35588 399000 - 399000 440310 - 43453844. 33 0. 42. 5 27. 34 0. 41. 13

16. 59. Visa lat. austr.

Visus locus) in ecliptica 29. 59. 8 II 16. 59. Vis At calcis II locus in 29° 59' 0" II a Tychone reponitur.

Quod hic intervallum locorum nullum est, id difficultati tribuendum observandi in tanta claritate Lunae, ubi stella non aliter nisi telescopio et sola videri potuit, ubi nec eclipticae polus in conspectu. Et quid si linea non in centrum Lunae tetendit, sed simpliciter in Lunam?

Colligere aliquid ad hujus rei discretionem etiam ex h. 18. 3' poterimus. Tunc enim stella jam erat humilior imo Lunae margine; distabat autem margo paulo plus quam instrumento capio, centrum igitur Lunae circiter 30' aberat a stella. Et quia idem altius erat stella plus quam semidiametro Lunae, plus igitur quam 16' 26". Quodsi haec altitudinum differentia fuisset 22', jam tunc igitur angulus inter verticalem et lineam ex stella in centrum fuisset semissis recti; jam igitur assecuta fuisset Luna stellam; angulus enim hic in hac altitudine siderum est semissis recti.

Ecce. A.B. M. C. 176. 4. Nonag. 2º 52' HP. D 0. 32. 6 @, lat. 28' 30'

Trong True W. C. LIG. H. Tronged
Ang. or. 48. 15
Dist. a Nonag. 62. 20 - 76754 - 12142 12142
Nonag. a vertice 41. 45 - 29295 - 40664 . 40664 - 29295
Alt.) 69. 45 - 106049 - 6385 399000 - 399000
Inter verticalem et eclipticam 45. 13 34279 451806 - 428285
Intervalium h 2, 15 Pro long, 37, 30 Pro lac. 47, 20
Horarius 38. 30 Vera long. 0. 32. 6 @ Vera lat. 28 30
1. 17. 0 Visa 29. 54. 36 II Visa 19. 0
9. 38
Locus). ecl. in medio 29. 5. 28

0.32.6 ର

Latit. stellae 52' 30" aust.

Prodit dist. centri), conjuncta secundum long. 33. 30 — 58280 — 58280 44° 47' 0"— 35036 34281

23' 37"- 93316 92561 - 23' 46".

Igitur si alt. Lunaris centri visa superasset altitudinem stellae per 23' 46", conjunctio fuisset secundum longitudinem. At superatio agnita est major quam 16' 21", imo major quam ampliata semid.) in oculo meo; itaque aut non multo alia quam 23' 37" aut forte major. Sed visa long. D fuit 29° 54%, igitur etiam stellae tanta fuisset, eratque vere ; vel certe minor.

Tribus igitur momentis conficimus, fixas fuisse minimum 5', duobus vero certioribus momentis plane 15 vel 14' anteriores per calculatum locum centri umbrae ex Tychone. Atque hoc est illud mirabile, quod me tam diu torsit, quodque concoquere non potui, priusquam omnes eclipses examinassem. Nam ex observationibus

annorum 1588. 1598. 1599. 1603. patnit, fixas promovendas respectu Solis loci. At postquam examinavi eclipsin anni 1601, in eodem signo Π , vidi, tunc vel loco suo fuisse fixas, vel idem accidisse, quod in hac. Vide et eclips. 1620.

Locatione hac fixarum salvatur etiam pulchrum illud et plane geometricum spectaculum, quod h. 16. 18' linea per apices cornuum ducta veniebat in stellam posteriorem, linea huic perpendicularis ex centro in priorem. Nam etsi, quod Maestlinus me per literas monuit, nihil certi sequitur ex hoc angulo linearum recto, cum is in omnibus punctis semicircumferentiae in stellas terminatae stare possit: at simul hoc incidit, ut distantia Lunae a stellis esset quam proxime aequalis; quo simul considerato sequitur jam ultro certus puncti abscessus, in quo puncto secabant sese lineae, quod erat altius centro Lunae; nimirum erat ille quam proxime tantus, quantum dimidium stellarum intervallum sc. 55' 30". Et hic abscessus puncti a linea stellarum, extensus versus eclipticam, pertingit exiguo spatiolo in septentrionem, quia tanta est latitudo loci inter stellas intermedii, ecliptica vero semicircellum secat versus anteriorem. Recte itaque prodit ex calculo meo latitudo Lunae septentrionalis, major defectus, et nodus & sequens reductior in antecedentia requireretur.

XL. Eclipsis Lunae anno 1620. 4/14. Junii.

Haec eclipsis Tubingae a Maestlino est observata (ut ab ejus filio ad Landgravium Hassiae Philippum perscriptum fuit) coelo valde nubilo nec oculis astronomicis. Initium ex altit. Arcturi 43° 20' colligitur h. 11. 36'. Tota immersa alt. Arcturi 32° i. e. h. 12. 45'. Finis morae h. 14. 16', ex alt. Arcturi 17°. Mors igitur fuisset h. 1. 31' et medium h. 13. 30'/₂'. Incidentia h. 1. 9'. Et per analogiam finis eclipsis h. 15. 25'. Duratio h. 3. 49'. Stuccardiae Rittelius principium idem, ejusdem Arcturi alt., 43°, Lunae 16° 50'. Tota immersa in altit. Arct. 30° 30'. Principio emersionis, altit. Aquilae 48°, cum in arce sonuisset h. 2. 15', cum h. 2. 0' Arcturi altitudo fuisset 19°. Quae consentiunt cum observatione Tubing., ubi meridianus proxime idem. Nam si h. 2. Arcturi altitudo fuit 19° Stuccardiae, post 16' omnino erit ejus altitudo 17° Tubingae. Mirum autem, si fortuito fieri potuit, ut 'utrinque eufidem errorem errarent.

Puzbachii contendunt Landgraviani, visum initium h. 11. 18'; immersionem
h. 12. 28', ubi tempus quidem incidentiae idem, at in horologio videtur error
fuiste, nam locum hunc nihil ultra 3' occidentaliorem esse Tubinga tabulae sinunt. Sulzae ad Rubeacum in confinibus Alsatiae et Lotharingiae Jo. Remus Quietanus principium notavit h. 11. 23'. Ingressus totalis non animadversus circa
h. 11. 30' propter lucem secundariam, quae duravit usque ad h. 12. 48'. Hora
12. 43' visa est stellula ad 4' vel 5' perpendiculariter infra Lunam. Inde h. 13. 54'
per nubes et crassissimum aërem Lunae corpus iterum apparuit. Hinc differ. meridd.
Tubingae et Rubeaci vel Sulzae esset 13', at tabulae nihil ultra 8' admittunt. (Comp. Hansch. p. 537.)

Exstat et mea observatio Lincii habita sermone vernaculo conscripta et edita Ulmae. Principium ex altit. Arcturi simpliei quidem perspicillo h. 11. 51', at telescopio h. 11. 53' ad sinistram paulo supra medium. Corporis pars obumbrata videri non potuit. Superfuerant autem h. 12. 38' circiter 7', dimidium so. ejus, quod telescopio meo capio. Hora 13. 0' vix tenue vestigium de lumine Lunae apparuit, quasi stella primae magnitudinis, cum tamen appareret ramus uterque viae lacteae. Hora 13. 6' adhuc quasi fixa obseura in loco, ubi se Luna condiderat, erat propemodum in una recta cum una in humero Sagittarii et una in Sagitta, noanihil tamen australier. Crediderim, fixam illam fuisse, quam sub Luna vidit Remus, nisi et hec lucis vestigium paulo post disparuisset. Hic igitur fuisset Luna totaliter immersa, essetque tempus incidentiae h. 1. 9', idem quod ceteris. Luna penitus disparuerat coelo puro, stellis Sagittarii et via lactee apparentibus.

Hora 14. 8' coopit dilucescore. Vidi tamen stellam in capite Ophiuchi usque

ad h. 14. 23'. Tunc h. 14. 32' rursum apparuit tantum lucis, quantum h. 13. 0' idque paulo supra sinistrum medium Lunae marginem. Itaque medium esseth. 13. 46', et mora dimidia h. 1. 32', ut et Maestlino fere. Sursum ad sinistram vergebat haec lucula. H. 14. 52' rursum 7' lucebant, ut h. 12. 38'. Per has duas phases medium referretur in h. 13. 45' fere ut prius. Itaque, si quantum est ab h. 11. 51' in h. 12. 38', sc. 47' addideris ad h. 14. 52', finis emerget h. 15. 39'. Sane h. 15. 32' in altit. 3° 20' deerat quinta vel sexta pars diametri, quantum in aurora potuit aestimari, cum Luna post montem abiit. Ita duratio fit h. 3. 48' vel h. 3. 51'.

Considerato igitur initio Lincensi et collato cum ceteris, inveniretur differ. meridd. Tubingae et Lincii tantum 15', Rubeaci et Lincii 28', et tabulae hanc quidem fere admittunt, illam vero 6' augent, ut etiam eclipses ceterae. Concludimus igitur, non repugnantibus ne ipsis quidem observatoribus, Tubingensem observationem post principis factam circiter 6', tunc enim conciliatur cum Rubeaquensi, cum Lincensi et cum tabulis.

Calculo Tychonis, cui aeq. temp. 2' 7" subt.
(0) 24. 4. 46 (Π) (1) 24. 4. 33 (2) (2) 10. 23. 56. 32 (2) 11. 28. 20. 33
Medium calculus Tychonis asseguitar praecise, duratione 5. 12
et mora excedit observatum. 1. 43
Horarius 27' 45''
Semid.) 16. 12 10. 25
Semid. umbr. 43. 18 00. 330 8. 38 Lat.
· Summa 59. 30 - 14. 980
Diff. 27. 6 — 03. 110
Scr. d. dur. 58, 50 - 14, 650
mor. 25. 35 - 02. 780 - 85240
Resid. 3. 20 289037
Mora dim. 55. 18 8130
Dur. dim. 2. 7. 12
Calculo meo sic.
1620. 17. 3. 51 — 6. 4. 23 1619. 6. 18. 24. 30 — 9. 12. 2. 57 — 9. 4. 19. 53
4. 13. 34 11. 24. 52 Maj. 3. 155. 13. 34.
12. 14. 17 33. 59 162. 7. 58. 30
57. 6 24. 5. 32 TRev. VI.165. 7. 51. 29 - 0. 18. 25. 11 - 0. 8. 45. 17
$\frac{4940}{2,23,52,59-10, 0.28, 8-8,25,34,36}$
51900 Fictus diurnus 30. 47 1. 5. 59. 23 9. 32
• 56840 66740 27. 12 Corr. 25. 0 Parall.) 58. 52 12450) 24. 1. 33 x ² ⋅ 26. 9. 8 x ²
10100
Summa 58. 59 - 15. 220 Letter j con the
08. 02 - 14. 004
27. 23 — 63. 179 Incidentia , 1. 7

In Sole abundo uno scrupulo, ad metam etiam obscurationis maximae addo somissem, quibus conficientur temporis minuta 3, reliqua 7 sunt ex co, quod parvam acquationem versus apogacum addo. Ita Tycho tenet observationem ipsissimam, ego illam insequor post minuta paucula. Nam acquatio temporis physics est mihi 4' 55'' subt. hic add., ita tardius indico medium post 7'.

Sed duratio in utroque calculo magisque in Tychonico est manifeste major justa et observata; incidentia paulo minor, quibus rebus argui videtur latitudo major. Sit enim dimidia duratio h. 1. 51 -- 16250 Horarius ... 28. 19 -- 75100

Hic incidentia fieret nimia., Non potest enim ultra h. 1. 17' ad summum extendi. Praetereaque promotio nodi prodigiosa fieret. Quibus angustiis eo manifeste adigimur, ut dicamus, umbram Terrae hać vice fuisse parvam praeter solitum. Ac nescio an quid ad rem faciat, quod annotavi, coelum in ortu ferruginei coloris, Limam rubicundam praesertim occidentem, quodque Luna usque adeo delituit, ut penitus amitteretur. An densior aliqua materia, pellucida tamen, totam Terram amiciebat, quae refractos Solis radios clarissimos ex partibus marginum Terrae adversis in oppositos umbrae margines mitteret, ut in schemate Opticorum fol. 304 organge of $\gamma \lambda \gamma \iota Q \psi \chi \tau$ exparte una, sic $\xi \delta \zeta P \omega \psi \sigma$ et $\mu \varkappa \beta \delta P \phi \chi \upsilon$ exparte vel plaga altera? ut sic rubor Lunae in densa aura non distinctus fuerit, et Luna B in regione quidem umbrae consistens, extra tamen umbram in lumine censeretur.

Addant etiam inclinationes suum testimonium : nam et principium obscurationis et principium repletionis utrumque vergebat a medio Lunae margine sursum paululum. Atqui in principio ecliptica a meridiano versus Lunam a sinistris appropinquantem tendebas insensibili aliquo deorsum: si ergo margo Lunae superior medio Sensibiliter delibavit umbram, Luna australis fuit sensibiliter ab ecliptica. In principio vicissim repletionis ecliptica a ceptro umbrae, quod jam multum transiverat ad dextram, tendebat versus sinistram sursum, sensibiliter valde. Quodsi 'etiam linea per centra tetendit sursum ab eodem centro umbrae sensibiliter: Luna igitur eclipticae fuit vicina valde, sive in boream transgressa, sive in austro restans. Quantitates non sunt determinatae; supersedeo igitur computatione angulorum. Sufficit, inclinationes latitudini (quod non ita magna fuerit, ut duratio per legitimam umbrae diametrum postulare videbatur) testimonium praebere eminus.

Fixam, quam vidit Remus sub Luna, minimarum unam esse puto, quae solo telescopio videntur; nihil igitur conducit ad examinanda loca fixarum.

XLI. Eclipsis Lunae anno 1620. 29. Nov. 9. Dec.

Hanc eclipsin observavi Stuccardiae adjutus a Frid. Rittelio et aliis matheseos studiosis, exstatque cum superiori impressa.

Luna orta in parte coeli nubila. Ut primum emersit e nube, defecerant digiti 8. Alt. 4 24° 20', rhora igitur 4. 54'. Altitudine 4 26° 30' perierant 10 digiti, alt. 4 27° 40' nondum tota erat immersa, sc. h. 5. 15'. At cum esset oculi Tauri altitudo 13° 25', sc. h. 5. 16', jam tota erat in umbra, lucidior tamen ad occasum. Tunc Luna erat alta 11º 'circiter. Appropingutabat lineae cornuum Ö, cui phasi diligenter intenti fuinus.

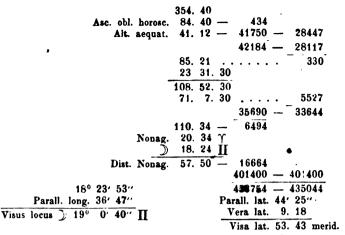
H. 5. 36' adhuc erat lucidior pars ad occasum acquabatque lumine oculum & vicinum. H. 6. 10' jam lucidior erat ad sinistram sursum versum, cum tamen Luna in australi parte umbrae incederet. In altitudine 4 39° 24', 5 10° circiter centrum erat in linea cornuum exacte, hora ex Jove 6. 30', ex Saturno 6. 35' circiter. In altit. 4 42° 30' jam coeperat emergere, mira facie, margo luminosus versus 5 et pedem II, rubor versus caput Erichthonii. In medio angulus ater, meram lucem a rubore discriminans, specie vomeris. Hora indicatur 6.51'. Paulo post alt. oculi & 30° dedit horam 6. 57'.

Cum oculus & attolleretur 39°, sc. h. 7. 54' tota emerserat, superius tamen atra macula restabat, et splendor ille superfluus circa Lunam adhuc frangebatur in meis oculis. Rittelius non pronunciavit liberam, usus telescopio, usque dum Kepleri Opera, III. 40

Calculus Eclipsium Lunae

oculus & attollebatur 39° 45', id erat h. 7. 59'. Cum igitur h. 5. 16' tota mersa sit, h. 6. 56' coeperit emergere, tempus morae fuit h. 1. 40' et obscuratio summa h. 6. 6', tempus emersionis h. 6. 58'; si tanta et immersio statuatur, principium cadet h. 4. 18' paulo post ortum Lunae, Sol enim pure occidit h. 4. 6'. Ita duratio conficeretur h. 3. 36', sed ex Rittelii indicio h. 3. 46' et tempus incidentiae h. 1: 34.

Calculus Tychonis, cui aeq	J. temp. 4' 10'' subt.
 (○ 18 10. 33 √.) 18. 6. 2 H. Horarius) 32: 45	60544 <u>5. 12</u> 3. 53 9 5. 13 Lat. 9. 15 Sequitur vera & observatum 8',
	; 3. 24. 30 — 9. 12. 2. 57 — 9. 4. 4 9. 53 3. 13


Acquatio temporis physica hic mihi est nulla, quare computo medium Stuccardiae h. 6. 17' apparenti, per 11' serius observato, per 4' serius Tychone.

Ad exploranda loca fixarum ad horam 6. 30' initio constituatur locus Lunae verus. Cum enim h. 6. 6' fuerit in 18° 10' 16" Π secundum orbitam, in ecliptica vero in 18° 9' 52" Π , inde vero ad nostrum momentum sint 24', quae de horario Lunae a fris 36' 7" absumunt 14' 26". Verus igitur locus Lunae fuit 18° 24' 18" Π , latitudinis arcus 9' 18" merid.:

Quaerantur jam parallaxes : A. R. () 257. 10 Horae 6. 30. 97. 30 354. 40

626

Differunt autem cornua 🖯 in long. 132' 30", latit. 454, et 〕 in lat. differt a cornu austr. 80' 17".

13' 15"- 151035	- 132. 30 - 202100	Ergo differentia longitudinis Lunae et
8. 2 - 201400	80. 17 — 252300	cornu australis est 23. 30. Qua'e addita ad
352435	454400	visum locum Lunae constituit locum cornu
45. 24 - 27900	454 — 78966	australis 19°24' II. At Tycho collocat in
2, 21 - 324535	23. 30 $-$ 375434	19° 29' II. Fixae igitur hac vice sunt per
	~	5' loco anteriori. Idem vero et in eclipsi-
bus annorum 1601.	1619, quae ibidem visae	sunt in signo II, apparuit.

XLII. Eclipsia Lunae anno 1621, 18/28. Nov.

Observata est a me Lincii. Hora 14. 0' horologii provincialis jam animadversa obscuritas in summo, cum tamen hora demum 14. 30' ejus inciperet, quasi ad sinistram de summo margine. Erat alt. Lunae 48° 20', adde 40' parallaxin altitudinis, vera igitur altit. 49° 0'. Et erat hora una ante oppositionem, ergo Luna in 6° 34' II, dat. 0. 48' circiter austr. Ergo declinatio centri 20° 32' circ., A.R. 64°. Hinc hora correcta 14. 33'. Hora 3. 15' aequiparabam sectionis umbrosae longitudinem quasi basi isopleuri in disco Lunae, et forte major erat. Cum autem sola recta trianguli aequilateri quartam diametri, i. e. tres digitos intercipiat, curva igitur sectio umbrae interius penetrans hoc momento plus quam 3 digitos absumserat.

Finis observatus est post usualem h. 14. 30' in alt. 29° 30'; adde parallaxin altit. 52' et reliqua ut in principio corrige, proveniet h. 16. 34'. Duratio h. 2. 1' et medium h. 15. 33' 30''. Uraniburgi hoc fuit 15. 23. 30''.

Calculus	Tychonis, cui aeq. temp. 7' 20" subt.	
⊙ 7. 6. 12 x ² ,) 7. 4. 48 ∏. 2. 7. 40. 0 6. 9.	31. 19
	· -	5. 8
••		2. 37
	Semid. umbrae cor. 43. 5	3.
	") 16. 38	46. 38
5' posterius est vera &.	Summa 59 43	49. 18 lat.
Horarius 29. 14 - 71900	15, 100	59. 43
33. 45		10. 25 - 2444
Residua 4. 31 - 258700	04.810 .	590
186800	Sc. dur. dim. 33. 45. Digiti 3. Dimidia duratio h. 1. 9' 15". Nimi	

Calculo meo sic.

\odot															_	-			•
1621. 17.	10. 5	6	. 5. 1	2 6 E	•	1620	. 14.	. 13.	22.	56 -	- 10). 2:	1.5	7. 3	D —	- 8.	15.	21.	45
Nov. 18.	15.16				Oct.	d. 17.	321.	15.	16										
154.	5.11		13. 1	0	7		336.	4.	38.	56									
	61. 2	07	. 6. 2	22 X	' Re	v.XII.	330.	15.	43.	0 -	- 1	. (B. 5). 2	l —	- 0.	17.	30.	35
Parall.	60. 2		`				5.	12.	55.	56 -	-1	1.2	8. 4	7.5	1 -	- 7.	27.	51.	10
"Ō	1. 1								31.	5 6 -	- 1	2. 1						17.	÷ ·
	61. 3							-	630	70		•	2	9. 4	7	Co	n.	25.	0
Semid. ()	15.30								70	20			1. 5	5.51	I	S:	27.	58.	33M
. umbr.	45.33	-						•	700	90	R	9. i	7. 4	I. 3	3	Θ	7.	6.	22 🗶
" ⊃	15.26					•					_		1	. 48	3		9.	7.	49
6	60. 59		15. 7	30		Hora	rius ⁻) 3	2. 2	0					1	Redu	ict.	2.	19
Arc. lat.	50.13	<u> </u>	10. 63	70		n	ē	5	2. 3	2					Req	quis.	7.	4.	3
Sc. dur. d.	34. 36		05. 0	80		3) a () 2	9. 4	8					A	rcus	lat	. 50). 13.
Horarius	29.48			•	1	Dimidi	a dui	atio	h.	1. 9) 4 ()".							
<u>e</u>	4. 48	-																•	

Quia parvam acquationem subtraho, ideo praevenit calculus meus Tychonicum ratione temporis medii, tanto magis, quia demo quid metae obscurationis maximae. Sed physica temporis acquatio 1' subt., hic addita, dat Uraniburgi obscurationem h. 15. 13', Lincü h. 15. 23', 10' ante observatum, 15' ante Tychonicam oppositionem. In utroque vero calculo et quantitas et duratio nimiae arguunt hac vice latit. majorem, quare nodum \Im remotiorem in antecedentia.

XLIII. Eclipsis Lunae anno 1623. 4/14. Aprilis, post sequentem mediam noctem.

Steti accinctus in jugo montis, vespera enim pollicebatur serenitatem. Verum a media nocte nubes coortae principium obtexerunt. Circa medium vidi cornua sursum versa; nihil potuit aestimari ob raptos intuitus brevissimos. Erat quasi hora una ante Lunae occasum. Finis rursum fuit immersus aëri nubiloso et aquóso, ut nihil de Luna cerneretur. Visa est tamen per nubes praevertisse exspectationem cum suo initio.

Calculus Tychonis (vacuum spatium in manuscripto).

Calculo meo sic.

⊙ Jun. h. ′
1623. 17. 22. 24. 35 — 6. 7. 10@ 1622. 0. 14. 1. 13 — 1. 14. 50. 44 — 7. 5. 57. 57
April. 4. 17. 15 70. 58. 45 Mart. 3. 93. 17. 15
74. 5. 9.35 12.36 94. 7.16.13
153600 (24. 55. 49 Rev.III. 82. 15. 55. 45 - 0. 9. 12. 36 - 0. 4. 22. 39
2560 Red. 1. 40 11. 15. 20. 28 1. 24. 3. 20 Cor. 25
156160 Reg. 24. 57. 29 - 35. 37 + 5. 0. 42. 5 7. 2. 0. 18
Locus) 24. 57. 31 $=$ 11. 49 12. 6 36. 57
Parall. (\odot 1. 0 17 24. 57. 51= Ω_1 1. 23. 21 m
Semid. (a) 15. 6 Semid. umbrae 49. 12 Horar.) verus 37. 52 Lat. 35' 45'' merid.
",
" Chapte of to t
Samma semidd: 65 28 — Antil, 18, 130 35, 26 — 52670
Summa semidd. 65. 28 — Antil. 18. 130 35. 26 — 52670
Diff. 32. 56 ·
Diff. 32. 56 · Látitudo 35. 45 — Antil. 5. 410 35' 26"
Diff. 32. 56 . Latitudo 35. 45 — Antil. 5. 410 35' 26'' Ser. def. 29. 43 — 70320 12. 720 Sor. dim. dur. 54. 50
Diff. 32. 56 Látitudo 35. 45 Antil. 5. 410 35' 26" Ser. def. 29. 43 70320 12. 720 Sor. dim. dur. 54. 50 Diameter 32. 32 61208 Residua 19. 24
Diff. 32. 56 Látitudo 35. 45 — Antil. 5. 410 35' 26" Ser. def. 29. 43 — 70320 12. 720 Sor. dim. dur. 54. 50 Diameter 32. 32 — 61208 Residua 19. 24 — 112910 Digiti 10. 57 9112 60240
Diff. 32. 56 Látitudo 35. 45 Antil. 5. 410 35' 26" Scr. def. 29. 43 - 70320 12. 720 Scr. dim. dur. 54. 50 Diameter 32. 32 - 61208 Residua 19. 24 - 112910 Digiti 10. 57 9112 60240 Supersunt 1. 3 in austro. Dim. duratio h. 1. 32. 51
Diff. 32. 56 Látitudo 35. 45 Antil. 5. 410 $35' 26''$ Scr. def. 29. 43 - 70320 12. 720 Scr. dim. dur. 54. 50 Diameter 32. 32 - 61208 Residua 19. 24 - 112910 Digiti 10. 57 9112 60240 Supersunt 1. 3 in austro. Dim. duratio h. 1. 32. 51 Medium h. 17. 15
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Si praecisa esset observatio, quod hora una ante ortum Solis prnua essent versa sursum. Sol anidem oritur h. 17. 16'. Cornua vero sursum vertuntur ante medium in quadrante occidentali, medium igitur fuisset post horam 16. 16' paulo. Atqui computo medium h. 17. 45' Lincii. Ergo haec observatio anticiparet calculum meum. Sed nihil certi colligi potuit ex illa solitudine, ademtis stellis et horologiis.

XLIV. Eclipsis Lunae anno 1624. 24. Mart.

Pluviae densissimae coelum contexerunt Lincii. Pluviae etiam Stuccardiae erant. Sed tamen ruptis vento nubibus emicuit eo loco Luna tota laborans in umbra colore fusco, subrufo, kesselbraunroth, ut scribit Frid. Rittelius, nequaquam adeo nigra ut alias. Cum inciperet emergere, erat altit. Arcturi 20°, post 2' circiter sonuit septimam in urbis horologio, male, inquit, directo. Cum lucerent 3 digiti, Arcturi altitudo 22° 45' circiter. Cum dimidia luceret, alt. Arcturi 24° 18' circiter. Finem furtim rapuit detectis ad momentum nubibus. Post 2' circiter sonnit 8. Sed altitudines dant haec momenta 7. 32¹/₂; 7. 49¹/₃; 8. 0. Finis ergo h. 8. 32¹/₂[']. Pro emersione dimidiae habemus 7¹/₂, sat bene, et media altitudo arguitur nimia.

Calculus Tychonis (vacuum spatium in manuscripto).

Calculo meo sic.
⊙ Jun. h. '
1624. 17. 4. 38. 33 - 6. 8. 129 1623. 7. 8. 59 40 - 2. 24. 45. 17 - 6. 17. 24. 50cor.
Mart. 24. 6. 57 80. 45. 15 83. 6. 57
84. 21. 41. 33 53. 10 90. 15. 56. 40
2000 (\odot 14. 29. 47 γ Rev.III. 82. 15. 55. 45 – 0. 9. 12. 36 – 0. 4. 22. 39
10100 \Re 12. 36. 46 8. 0. 0. 55 - 3. 10. 30. 43 - 6. 13. 2. 11
12100 1.53. 1. Lat. 10' 24" 30 25. 25
Reduct. 32. Simpl. 9' 52" 6. 14. 29. 6 3 12. 36. 46
Requisitus 14. 29. 15 14. 29. 15 requisitus.
Parall. 💿 1. 0 Horar. 🕽 verus 34. 43
,) 61. 27 . O 2. 27
62. 27) a O 32. 16 - 62030
Semid. () 15. 30
", umb. 46. 57 Aequatio temporis mea 18' add. ad medium.
") 15. 48 Diff. meridd. 10 adde.
diff. 31. 9 Ant. 04. 100 Ergo med. h. 7. 25 Lincii apparenter.
Summa 62. 45 _ 16. 645 Emersio h. 8. 19 ¹ / ₂
Lat. 10. 24 " 00. 460 Finis h. 9. 20
Ser. morae dim. 29. 20 - 03. 640
Scr. dur. dim. 61. 52 — 16. 185 9532 h. 0. 54. 33 mor. dim.
32. 16 29' 36''' - 70670
29. 36 8640 h. 1. 55. 2 dim. dur.

Debuit haec eclipsis Stuccardiae desinere secundum meum calculum paulo ante h. 9. In acquatione temporis plus addidi quam Tycho 131/2. Quodsi bene observavit Rittelius, maturior fuit utroque calculo.

XLV. Eclipsis Lunae anno 1624. 16/26. Sept.

Etsi aër initio visus est aliquando crassior, ab ortu tamen Lunae usque ad . fnem eclipsis fuit eximia serenitas, sic ut potuerint observari omnes phases. Luna etiam visa est tota propter intensum ruborem partis obscuratae, sic ut margo versus finem videretur, cum non plus 3 digitis in umbra delitesceret. Itaque non erat difficile distinguere inter meram lucem et secundariam, etsi haec valde fortis fuit. Si vero aër paulo fuisset crassior, procul dubio distingui non potuisset. Initium in altitudine D 10³/2°. Posito igitur loco Lunae vero 2° 45′ 45″ Υ,

lat. 0° 58' austr., sequitur circiter hoc tempus locus visus 3° 11' Υ , lat. 0. 56' austr. Ergo declinatio 0° 25' sept., et A. R. 3° 18'. Hinc Lincii h. 7. 6¹/₃'_x, quae mediocriter confirmabatur etiam per intervallum ex horologio, et altitudine Lunae 3¹/₂°. Sed et post 30' observata est altitudo cornu sinistri Arietis 15°, quae dat h. 7. 37' bono consensu. Tunc plus quam dimidium diametri erat in umbra. Eadem stella cum elevaretur 20¹/₄°, indicavit h. 7. 58'. Post 4' sc. h. 8. 2' tota incidit, erat tamen, ut dici coeptum, adhuc clarissima toto margine occidentali satis lato, nec multo obscurior reliquo tempore.

Orta postea fuit infima quinquanguli in Heniocho, quae pingitur sub retinaculo, ortus et oculus Tauri super montes, ergo post h. 8. 48'. Inde abierunt 8', sc. versus nonam, cum potior limbi claritudo fuit infra ad sinistram, summa obscuritas inter summum et dextram. Id erat argumentum summae obscurationis, sed jam oportebat transiisse medium, si umbra circumcirca fuisset aequaliter diluta.

Ortum deinde fuit supra montes cornu Tauri posterius, sc. post h. 9. 24'. Et hinc elapsis aliis 16' coepit emergere; post 3' fuit altit. \Im 34'₁°, arguens h. 9. 50'. Emersio igitur coepit h. 9. 47' ad sinistram paulo inferius. Post quadrantem erat liberata semissis circumferentiae; post 3' circiter semissis diametri: post alia 19' dodrans circiter. Post quadrantem nondum plane finis erat, sed statim est secutus. Et post 2' fuit altit. Lunae 39^{2} , °, qua signatur h. 10. 46'. Igitur finis erat h. 10. 44'. Desiit ad dextram paulo admodum superius, ut vix agnosceres. Ita colligitur duratio h. 3. 38'; mora in umbra h. 1. 45'.

Calcul. Tych. — — caret.

Calculo meo sic.

1624. 17. 4. 38. 33 - 6. 8. 12 \odot 1673. 7. 8. 59. 49 - 2. 24. 45. 17 - 6. 17. 24. 50 cor. Sept. 16. 8. 32 91. 3. 53. 27 9. 36 15. 8. 32 181800 15. 0 15. 0 15. 0 15. 0 15. 0 15. 0 15. 8. 32 181800 15. 0 15. 0 15. 0 183320 183320 183320 183320 183320 183320 18. 17. 23 γ R. X. 275. 13. 5. 49 - 1. 0. 41. 57 - 0. 14. 35. 29 183320 183320 183320 18. 21. 12. 19 28. 2 Requis. 3. 55. 34 γ . Simpl. 3' 20'' 17. 5 19. 21 20. 3. 55. 34 γ Requis. 3. 55. 34 γ . Simpl. 3' 20'' 17. 5 19. 21 20. 3. 55. 34 γ Parall. \odot 1. 0 2: 16 2: 16 2: 16 2: 28 Semid. \odot 15. 33 γ umb. 47, 23 γ 15. 55 Summa 63. 18 - 16. 952 16. 897. 30. 8 Residua 68820 04. 155 Mora dimidia 5490 04. 155 Mora dimidia 5490 04. 155 Mora dimidia 5490 10. 0. 56. 48 Duratio γ 9240 - h. 1. 54. 42. In medio deficit calculus per 20 ⁴ / ₂ , in mora excedit per 9 ⁴ / ₂ , in duratione excedit per 11 ¹ / ₅ . Consideratio morae et durationis: Regrediamur ergo in calculo quasi pre investigatione nodi correcti. Et sit duratio ut observari h. 3. 38', dimidia h. 1. 49. 59580 - 33. 4 20253 - 49. 79833 - 27. 0	• Jun. h. '	<u> </u>
Sept. 16. 8. 32 91. 3. 53. 27 9. 36 15. 8. 32 181800 1520 183320 0. 38. 21. Lat. 3. 32 Reductio 10 10. 38. 21. Lat. 3. 32 Requis. 3. 55. 34 γ . Simpl. 3' 20'' 17. 5 19. 21 28. 2 Requis. 3. 55. 34 γ . Simpl. 3' 20'' 17. 5 19. 21 28. 2 19. 21 28. 2 2. 16 3. 21. 12. 19 28. 2 3. 21. 12. 19 28. 2 3. 21. 12. 19 28. 2 3. 21. 12. 19 28. 2 3. 3. 17. 23== Parall. \bigcirc 1. 0 2. 16 3. 55. 34 γ mub. 47, 23 mub. 47, 23 15. 55 Summa 63. 18 - 16. 952 16. 897. 30. 8 10. 41. 57 - 0. 14. 35. 29 19. 21 28. 2 2. 16 3. 21. 12. 19 28. 2 3. 21. 12. 19 28. 2 3. 21. 12. 19 28. 2 3. 3. 17. 23== Parall. \bigcirc 1. 0 2. 16 3. 55. 34 γ mub. 47, 23 mub. 47, 23 10. 4. 33. 4 2. 28 Semid. \bigcirc 15. 35 Summa 63. 18 - 16. 952 10. 31. 18 mor. d. 65070 Lat. 3. 32 - 00. 055 33. 4 59580 04. 155 Mora dimidia 5490 - h. 0. 56. 48 Duratio morae et durationis: Regrediamur ergo in calculo quasi pro investigatione nodi correcti. Et sit durationis: Regrediamur ergo in calculo quasi pro investigatione nodi correcti. Et sit durationis: Regrediamur ergo in calculo quasi pro 10. 253 - 49.		23. 7. 8. 59. 40- 2. 24. 45. 17 - 6. 17. 24. 50cor.
91. 3. 53. 27 91. 3. 53. 27 181800 1520 1520 163320 10. 38. 21. Lat. 3. 32 Reductio 10 Reductio 10 10. 38. 21. Lat. 3. 32 Reductio 10 10. 38. 21. Lat. 3. 32 10. 34. 3 3. 21. 12. 19 28. 2 Reductio 10 10. 41. 57 - 0. 14. 35. 29 10. 41. 5. 32 10. 21. 12. 19 28. 2 10. 21. 3. 21. 12. 19 28. 2 10. 21. 3. 21. 12. 19 28. 2 10. 21. 3. 21. 12. 19 28. 2 10. 21. 3. 21. 12. 19 28. 2 10. 21. 3. 21. 12. 19 28. 2 10. 21. 35. 34 γ 10. 21. 35. 34 γ 10. 0 hic subt. 10. 0 hic subt.	Sept. 16. 8. 32 87. 37. 56 Biss.Au	ng. 244.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	91, 3, 53, 27 9, 36	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	181800 () 3. 55. 44	266, 17, 31, 40
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		X. 275. 13. 5. 49 – 1. 0. 41. 57 – 0. 14. 35. 29
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Reductio 10 au	st, 34. 3 3. 21. 12. 19 28. 2
Parall. (\odot 1. 0 2,16 3.55.34 γ \underline{n} 61.56 Verus hor. \bigcirc 35.32 \bigcirc 0.228 Semid. (\odot 15.33 \bigcirc a (\odot 3.3 4 Aeq. T. phys. 12.4 Add. ad sp. Diff. merid. 10.0 hic subt. \underline{n} 15.55 \bigcirc 0.35.32 \bigcirc 0.0 hic subt. \underline{n} 15.55 \bigcirc 0.15.33 \bigcirc a (\odot 3.12 Scr. dur. dim. Initium 6.35.14 Diff. 31. 28 00.055 33.4 \bigcirc 59580 Emersio 9.26.44 Lat. 3.32 \bigcirc 00.055 33.4 \bigcirc 59580 Emersio 9.26.44 \cdot 16.897.30.8 Residua 68820 \bigcirc 04.155 Mora dimidia 5490 h. 0.56.48 Duratio $_{m}$ 9240 h. 1.54.42. $11^{1}/_{2}$. Consideratio morae et durationis: Regrediamur ergo in calculo quasi pre investigatione nodi correcti. Et sit duratio ut observari h. 3.38', dimidia h. 1.49. $59580 - 33.4$ Spector 0.31.4	Requis. 3, 55, 34 Y. Simp	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		○ 9 28
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$) a 🕥 33. 4 - Aeq. T. phys. 12. 4 Add. ad sp.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		'Initium 6. 35. 14
Summa 63. $18 - 10. 302$ 63. 12 Ser. dr. dr. dr. Medium 8, 29. 56 Diff. 31. $28 - 04. 210$ 31. 18 mor. d. 65070 Emersio 9. 26. 44 Lat. 3. $32 - 00.055$ 33. 4 59580 Finis 10. 24. 38 04. 155 Mora dimidia 5490 - h. 0. 56. 48 Duratio n 9240 - h. 1. 54. 42. In medio deficit calculus per 20 ¹ / ₂ , in mora excedit per 9 ¹ / ₂ , in duratione excedit per 11 ¹ / ₂ . Consideratio morae et durationis: Regrediamur ergo in calculo quasi pre investigatione nodi correcti. Et sit duratio ut observavi h. 3. 38', dimidia h. 1. 49. 59580 - 33. 4 20253 - 49.		Incid. 7. 33. 8
Lat. 3. $32 = \frac{00.053}{16.897}$, 30. 8 Residua <u>68820</u> 04. 155 Mora dimidia 5490 — h. 0. 56. 48 Duratio $_{\pi}$ 9240 — h. 1. 54. 42. In medio deficit calculus per 20 ¹ / ₂ , in mora excedit per 9 ¹ / ₂ , in duratione excedit per 11 ¹ / ₂ . Consideratio morae et durationis: Regrediamur ergo in calculo quasi pre investigatione nodi correcti. Et sit duratio ut observavi h. 3. 38, dimidia h. 1. 49. 59580 - 33.4 20253 - 49.	Summa 63. $18 - 10.952$ 63.	12 Scr. dur. dim.
Lat. 3. $32 = \frac{00.053}{16.897}$, 30. 8 Residua <u>68820</u> 04. 155 Mora dimidia 5490 — h. 0. 56. 48 Duratio $_{\pi}$ 9240 — h. 1. 54. 42. In medio deficit calculus per 20 ¹ / ₂ , in mora excedit per 9 ¹ / ₂ , in duratione excedit per 11 ¹ / ₂ . Consideratio morae et durationis: Regrediamur ergo in calculo quasi pre investigatione nodi correcti. Et sit duratio ut observavi h. 3. 38, dimidia h. 1. 49. 59580 - 33.4 20253 - 49.	Diff. 31. $28 - 04.210 - 31.$. 18 " mor. d. 05070 Emersio 9, 26, 44
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Lat. 3. $32 - 00.055 - 33.$	4 09000 Finis 10 24 38
Duratio " 9240 — h. 1. 54. 42. In medio deficit calculus per 20 ¹ / _z , in mora excedit per 9 ¹ / _z , in duratione excedit per 11 ¹ / _z . Consideratio morae et durationis: Regrediamur ergo in calculo quasi pre investigatione nodi correcti. Et sit duratio ut observavi h. 3. 38', dimidia h. 1. 49. 59580 — 33. 4 20253 — 49.	• 16.897• 30.	8 Residua 08820
In medio deficit calculus per 20 ¹ / ₂ , in mora excedit per 9 ¹ / ₂ , in duratione excedit per 11 ¹ / ₂ . Consideratio morae et durationis: Regrediamur ergo in calculo quasi pre investigatione nodi correcti. Et sit duratio ut observavi h. 3. 38', dimidia h. 1. 49. 59580 - 33. 4 20253 - 49.	04. 155	Mora dimidia 5490 — h. 0. 56. 48
Consideratio morae et durationis: Regrediamur ergo in calculo quasi pre investigatione nodi correcti. Et sit duratio ut observavi h. 3. 38', dimidia h. 1. 49. 59580 — 33. 4 20253 — 49.	D	uratio " 9240 – h. 1. 54. 42.
investigatione nodi correcti. Et sit duratio ut observavi h. 3. 38', dimidia h. 1. 49. 59580 — 33. 4 20253 — 49.	In medio deficit calculus per 201/2, in n	nora excedit per $9'/_{z}$, in durations excedit per $11'/_{z}$.
investigatione nodi correcti. Et sit duratio ut observavi h. 3. 38', dimidia h. 1. 49. 59580 — 33. 4 20253 — 49.	Consideratio morae et dur	ationis: Regrediamur ergo in calculo quasi pro
59580 — 33. 4 20253 — 49.		
20253 - 49.		
10000 - 21. 0	_	
	-	•
Erunt scr. dim. dur. 60. 4 - 15. 264	F	
Summa semidd. 63. 18 - 16. 952		Summa semidd. 63. 18 — 16. 952
Scrapula lat. 19. 56 — 01. 688		Scrupula lat. 19. 56 - 01. 688
59580 Diff. semidd. 31. 28 - 04. 210	59580	Diff. semidd. 31. 28 — 04. 210

59580 89970 Prodiret 30390.

Scr. morae dimid. 24. 24 - 02. 522

630

Apparit, quatuor integrorum graduum retroductione nodi nos vir assequi justam durationem, stante hac diametro umbrae. Et tunc mora fieret minor obsetvata. Ergo hic, quia luxatione nodi non possumus juvari, arguitur semidiameter umbrae nimia. Atqui eam non licet nobis mutare per alias eclipses, est etiam revincta demonstrationibus geometricis a parallaxibus et semidiametris luminarium. Explorabimus tamen, quantum mutetur stante hac latitudine calculi.

Lat. 3	32"	' Antil.	00 . 053			
Pouantur scr. dur. dim. 60.	4		15. 267	•		
Prodit summa semidd. 60.	10		15.320		, -	
Sed est semid. 🔵 15.	55				₩ -	ź
Ergo semid. umbrae 44.	15	cum ca	lculus det	majorem.		•
Et diff. semidd. 28.	20	_	03. 397			
Ergo scr. morae dim. 28.	33	_	03.450	- 74270		<u>6</u> 4
Horarius -33.	4			5958 0		· •
Mora dimidia 51.	49			14690	•	•
paulo minor, qu	t sino	dat obs	ervatio.			•

Ita conciliantur quam proxime observatio durationis cum observatione morae. Ergo hic valet diminutio umbrae optica, quam nullatenus admittit geometria. Adde nempe ad 44' 15" sic elicitam semid. \odot 15' 33", quae certo non estalia, confabis 59' 48", quae debebat esse summa parallaxium \odot et D, cum tamen sit certo certius, parallaxin solius D hic esse 62' circiter. Est igitur et hoc aeque cartum, semidiametrum umbrae geometricae esse majorem, quam quanta prodit ex observatione; quia nimirum umbra ob causas physicas et opticas hac vice contractior fuit.

XLVI. Eclipsis Lunae anno 1625. 13/23. Martii nocte seq.

Nubila quidem nulla, sed totus aër adeo crassus erat, ut Jupiter videri non posset, quamvis Lunae vicinus staret hora prima post mediam noctem. Cum jam a dimidio horae quadrante visa esset pallere ad sinistram infra, ut solet ante initium, etiam cum pura est aura, jam tamen discerni non potuit, essetne initium, adeo coelum erat turbidum et quasi nebulosum, sic ut paulatim enasceretur halo circa Lunam; videbatur illa veluti per aquam dilutis marginibus.

Post quadrantem ad sinistram infra pallor quidem erat, obscurum tamen, ex debilitatione an ex aliquo defectu orae rotundae. Post alium quadrantem infra parumper ad sinistram orat pallor vix agnoscendos, aspectu Lunae magis magisque confuso. Post tres quadrantes pallor fere infra, defectus incertus, nec facile quis aliquid desiderasset, nisi de defectu prius admonitus. Post 10', quamvis nihil certi de defectu, tamen si quis diligentius lustraret, pallor erat quasi in imo. Itaque h. 1. 55' medium fuisset, quia oritur 4° \mathcal{Z} , ut sit \mathcal{D} in Nonagesimo. Quadrante post h. 2. adhuc nihil aliud judicari potuit, quam quod pallor sit infra. Post 2 quadrantes ultra 2. vix conspecta Luna, aër paulatim in nubem.

Calc. Tych. cui aeq. temp. 1' 12" subt. ab app. hic add. (vacuum spat.).

Calculo meo sic. Pro. O. Curr. 1625. Jun. 17d 10h 52' 31" ---- Apog. 6. 9. 15 '3 Martii 13. 13. 43 Dies 95. 21. 9. 31 91. 34. 32 Log. 12600 52.13 1290 · 3. 42. 30 γ 13890 Finiente 1624. 15. 4. 0. 41 — 4. 4. 38. 27 — 5. 28. 26. 20 Com. 12. Mart. 71. 13. 43 Pro D. simpl. 86. 17. 43. 41 Revol. III. 82. 15. 55. 44 - 0. 9. 12. 34 - 0. 4. 22. 39 1. 47. 57 - 4. 13. 51. 1 - 5. 24. 3. 41

1. 47. 57 - 4. 13. 51. 1 4. 1. 19. 24. 11 Horarins fictus 31. 12 12. 57 24. 58 65370 50. 44) 3. 40. 10 🗠 🗿 3. 42. 30 22400 Requis. 3. 40. 1 87770 9. 51. 46 Q., 2. 29 Lat. 54' 21", simpl. 51' 19". Requis. 3. 40. 1 Tempus correctissimum h. 13. 42' 42". Summe gemidd. 60' 13" - Antilog. 15.340 Lincii 13º 52' 42" acquali Latitudo 54. 21 12.500 54. 6 Ergo scr. dur. dim. 25. 50 2.840 Inition 12. 58. 36 Finis 14. 46. 48 Horarius verus) a 📀 28. 39 log. 84270 • Sc. defectus 5' 52" - 233300 1540 73920 Semid.) 15, 14 284840 dat dig. 3. 18. 10350 -- 54' 6" Tempus dim. dur, h. 0. 54. 6.

Hic caderet medium per acquationem Tychonicam in h. 13. 53' 32", Copernicanam in h. 13. 44' 27", meam in 14. 7' 21".

Igitur secundum observationis indicia satis dubia medium incidit h. 13. 55' circiter.

•

Has 46 eclipsium Lunarium descriptiones et calculos haec sequuntur in Cod. Msc., quae respiciunt eclipses N. 36, 37, 38 et 39, conscripta a d. 5. Apr. ad 6. Maji 1620, ergo ante absolutam totam illam seriem, forte etiam ante constitutam eam, qua jam exstat, formam.

5. April 1620.

Ex eclipsibus Lunae recentissimis hypethesin Lunae probare, tam longitudinis quam latitudinis.

- 1. Praesupponitur' forma hypothesis longitudinis ut in ceteris planetis. Et in ipso articulo medii eclipsis sint exstinctae inaequalitates menstruae.
- 2. Sumatur medium eclipsis ex latitudinis rationibus, quando scilicet recta ex centro umbrae perpendicularis est in orbitam Lunae. Hinc sit regula:
- 3. In omni medio eclipsis temporali et quantitativo Luna propior est nodo vicino quam Soli oppositum seu umbrae centrum.
- 4. Dato igitur momento eclipsis aequalis temporis, et assumta eccentricitate, datur locus apogaei et aequatio et motus medius. Et vicissim
- 5. Dato momento eclipsis aequalis temporis et assumta aequatione, vel apogaco cum motu medio, datur eccentricitas.
- 6. Si Luna fuerit circa anomaliam mediam, minima mutatio aequationis dat maximum errorem in apogaeo.
- 7. Datis momentis duarum eclipsium aequalis temporis, datur motus medii differentia, datur et elongationum verarum a vero loco Solis differentia, scilicet nibil fere. Datur igitur summa vel differentia aequationis utriusque. His si addatur locus apogaei, cogitur certa quantitas eccentricitatis. Et vicissim assumta eccentricitate, sed ea non libera penitus, cogitur apogaeum. Hic vero utendum est motu apogaei ad tempus interceptum; qui sat certo est cognitus ad hoc tempus.
- 8. Datis igitur tribus eclipsibus, necessaria fit tota hypothesis.
- 9. Acquatione temporis utemur trifariam : primum.omissa physica; secundo adhibita physica simplici; tertio duplicata physica,

621

è

633

Prima eclipsis.

Anno 1619, nocte quae secuta est 20. Dec., hora Lincii 3. 48' p. m. n. apparenti, Tubingae h. 3. 27' egregio consensu. 3. 48' subtr. 1' 21" h. 3. 46. 39. Acquatio astron., sed physica simplex 2. 37, duplicata 5. 14. Locus () in 29° 2' 34" Aequatio 🕥 ex loco perigaei 6° 3' 52" Z) in 29. 4. 16 29. 2. 34 1. 42 14. 48 compl. 7. 1. 18 Superatio) 16' 30" Acq. 14' 48" add. Anom. ecc. 169 Nodus 3 5. 35. Parall. Q 1: 2" Inter ceams 35. 50. Ex dist. 5. 28. 39. Semid. 7) 16. 21 5 63. 37 52. 11 64. 39 Umbr. 49. 6 Semid, 💿 15. 33 3 5 scr. superstitia. Semid. umb. 49. 6 27.149 novus. 16. 21 32. 41 diam. D. 7) 65. 27 Antil. 18, 120 Non exactissime congruit. Inter centra 36. 27 5. 620 12. 500 dat. 54' 21" Horar. a () 35. 57 log. 51230 65. 27 35: 52 🗘 😜 Superfl. 18. 24 118250 • 29. 35. Dimidia dur. h. 1. 30' 42". 67020 tota h. 3. 1' 24". (in marg.: Haec posterius addita ex correctione 11. Apr. 1620.) Horarius) a () 35' 28" Corrige durationem ex Maestlino h. 3. 4'. Arcus Paradxis () 1. 1 ") 62. 15 dim. 54' 21". Angl. 12. 51 17. 74 Summa 63. 16 Arc. lat. 35. 10. 5. 23 Semidiam. () 15. 33 6º 21' 26" respondet motus 29. 2. 34 👖 " umbr. 47. 43 **)** 17. 1 Ω 5. 24. 0 Q -Summa semidd: 1º 4' 44" Forte et Maestliniana duratio est nimia, quia nos tantum 2. 59' vel 3. 0' invenimus. Cum igitur duraverit h. 3, respondet motus 1º 46' 24", dimid. 0º 53' 12". Hinc et ex summa semidiametrorum arcus latit. Antilog. 12.000 ٠ 17.74 Antilog. 5. 74 lat. 36' 50". Posito angulo lat. 5º 28', venit motus verae lat. 6º 39' 20# 29. 2. 34
 34
 Nodus observ. 5. 41. 54. Ex assumtis sat certis et ex computatis per observationes elicitur etiam quantitas defectus. Subtractis enim sc. arcus latit. 36' 50" a summa semidd. 1º 4' 44", residua 27' 54" ostendunt digitos sc. 27. 54 — log. 76570 diam. 34. 4 — log. 56710 digiti pro 19. 40. 20 - 19860 dim. 9. 50. restabant 2. 10. Corrigantur jam et haec ex superioribus 0. 35' 10" 1. 4. 44 logarithmus 70760 29. 34 56710 . 14050 digiti p. 20, 51, dim. 10. 26, rest. 1. 34. Observatio mea habet: ut 9 ad 1 sic circiter fuisse diametrum D dig. 12 ad lucidam, quae fiet 1. 20. Maestlinus ait, vix unius digiti quadrantem superfuisse.

Conciliatur meum eo, quod mihi semper lucida major fuit.

Praedixit et Remus minorem sc. 11¹2.

Hic mora longior dat latitudinem minorem, digitos pauciores, nodum igitur anteriorem. Maestlinus habet h. 3. 4' durationem, quantam posui in Ephemeride. Haec same nequaquam consentit cum magnitudine defectus, stante semidiametro umbrae nostra et angulo latitudinis et loco nodi. Etenim in horario non potest esse magnum vitium, eritque 1º 48' 44", dim. 54' 22". Esto jah quantitas defectus dig. 0. 15', 🗱 vult Maestlinus : quaeritur proportio semidd. 💪 et umbrae. Est autem ponenda quantitas diam. . Sit ea 34' 2" log. 56710. Quadrantis digiti duplum 4 30' log. 387000 443710. Ergo 1/4 digitos valet 0' 42" et defi-33' 20" log. 58790. ciant dupl. 117580 - 18. 31 quadr. defect. Arcus 54' 22" log. 9872 19744 dat quadr. 49. 15 quadratum 30. 44 log. 66900 At diametri 34. 2 log. 56710 Ergo arcus 54. 12 - 10190 Ejus dim. 27. & est arcus infer centra, adde 16. 19 quod deficit ultra sem. Responderet motus latitudit angulo magno 4º 53' 50". venit sem. umb. 43, 25.

Omissa igitur Macstliniana quantitate defectus, ut nimium exorbitante (forte haeret in eclipsi 1616) consideretur hoc tantum, quibus mediis paulo minor effici possit pars lucidit. Valde autem parvus est eorum effectus.

- 1. Parallanis () major | et duratio fiet longior. 2. ,) major |
- 2
- 3. Semidiam. J minor, et duratio fiet brevior.
- 4. Minor angulus latitudinis.
- 5. Nodus anterior.
- Igitur ex correctione de 7. Apr. Parall. 🕥 1' 2" <u>)</u> 64. 45 1 65. 47 Semid. 💽 15. 33 Umbrae 50. 14) 16. 43 66. 57 Antil. 18. 96 Maestlin. dur. 54, 22 Antil. 12. 51 Inter centra 39. 4 Antil. 6.45 Scrupula 27. 53 log. 76600 Diam.) 33. 26 log. 58510 Pro 20. 1. 13 - 18090 Dim. 10. 0. 36. Duratio adhuc longior minuet latitudinem, ut locus nodi nostri congruat.

- Mens arcus int. centra 36. 27 Antil. 5.62 〕 16. 43 13.34
 - 53. 10 dur. sc. 56, 8
 - Umbrae 50. 14

Optime ! 2. 56 Duratio fit longa.

Vide retro computationem de 11. Apr. 1620 exactiorem.

Secunda eclipsis Lunae. Anno 1619, nocte quae sequitur 26. Junii.

H. 12¹/₂ urbis tam parum defuit in summo ad sinistram, ut id per raras nubes non agnosceretur, quasi versus Lyram. H. 12³/4. urbis scabat defectus praccise supra; aestimari quantitas non potuit. Erat hic igitur paulo ante medium.

Est igitur duratio longior semihora, quae incipit ante h. 121/2 et h. 121/2 nondum medium. Itaque desiit post h. 13. 0'. Maestlinus dicit durationem fuisse circiter septem quadrantum horae, quod nimium est. Certi nihil ait observatum ob nubila. Remus praedixit mihi durationem futuram h. 1. 1'.

Pone medium fuisse h. 12. 52', pone etiam correctum fuisse horologium; pone tertio, durationem fuisse h. 1. 45'.

Cum ergo locus \odot sit 4° 45' 9" 56, et reductio 2' 34", erit) in 4° 47' 43" \widetilde{o} . Et Ω post), et quia parallaxis \odot 0' 58'/₃",) 54' 53", summa 55' 52", et semid. \odot 15' 0", ergo semid. umbrae 40' 52". Sed semid.) 15' 3", summa 55' 55". Sit ergo dimidia duratio 52' 30", et horarius) a \odot 27' 17": adde logarithmos 13353 78730

55' 56" Antil. 13. 20 veniunt scrupula 23' 53". — 2. 41

et lat. arc. 50' 30" - 10. 79.

Ergo hic arcus lat. 50' 30" dat motum latit. a \odot 9° 9' 5", posito meo angulo latitudinis. Et quia latitudinis arcus esset 50' 30", quare hoc ablato a summa diametrorum 55' 55", relinquerentur scrupula deficientia 5' 25". Digiti plus quam duo, quod certe potuissem aestimare.

In Ephemeride perscriptum exstat, transversam latitudinem defectus pene aequasse semidiametrum). Aequaverit 14', dimidium 7' 0''. Antil. 0.2073

-		Semid. 1	imbrae	40.	52		7. 120	
		*	\supset	15.	3		0. 958	•
				40.	15	_	6.9127	•
. •				13.	19	—	0.7507	
•		Esset arc	. latit.	53.	34			•
		Scrup.	defic.	2.	21.	Minor	uno d'gito.	
Hic esset motus	latitudinis	9' 43". Quodsi latit.	531 3	4".	Antil	. 12. 1	5	
		et summa semidd.	55.5	5		13. 2		
		Erunt sc. incid.	15. 4	5	_	1.0	5	
		Horarius	27. 1	7	log.	13358	0	
					0	7875	3	
		Dim. dur,	34. 5	1		5482	7	•

Haec certe duratio h. 1. 10' aut eo minus est verisimilior, quia meae observationi consentit tam in tempore, quam in transversa prolixitate defectus Odenique in motu latitudinis est tolerabilior.

Cum autem in calculo meo prodeat minor defectus, imo vix tangatur umbra, prodest causas in numerato habere, quibus defectus potest fieri major: 1. si major parallaxis \odot ; 2. si major parallaxis \mathbb{D} ; 3. si major semidiameter \mathbb{D} ; 4. si minor angulus latit.; 5. si nodus anteriori loco.

Igitur ex correctione 7. Apr. 1620. Parall.) 57' 30" 1. 0 Summa 58, 30 Semid. () 15. Semid. umbr. 43. 30 14. 44 58, 14 Antil. 14. 35 - 13. 51 Duratio ultra horam h. 1. 4. Mea inter centra 56. 31 1. 43 0. 84 - 14' 10" sc. incid. Ex correctione 11. Apr. 1620. Parall.) 58' 29" ⊙ 1. 0 Summa 59. 29 Semid. 🗿 15. " umbr. 44. 29

"umbr. 44. 29 ") 15. 0

59. 29. Antil. 14. 970

635

92103.

Calculus Eclipsium Lunae

Inter cent.				14. 970 13. 510		
Sc. defect.	2.	58	-	1. 460 ser. horar.		Dim. dur. 40' 30'' tota 1.21', Maestl. 1. 41' certo nimia,
						 ut supra.

Hinc explora latitudinem defectus. Est nempe antilogarithmus tantus subtrahendus, ut residuorum arcus juncti faciant 56. 31.

Antil. 0. 300 8. 435 - 0. 952 8. 135. 43' 41" 0. 652 12. 24 Ergo 0. 255 est antil. dim. sect. 7. 45 56. 5

sectio 15. 30;

panlo plus semidiametro D. Nec n. in ipso medio vidi; et potuit aestimatio fallere.

. Harum 2 eclipsium magna est opportunitas, non quidem propter tempora, quae in altera desunt, sed propter locum Solis certo cognitum et quia) in altera erat apogaeo vicina, in reliqua perigaeo, et quia altera septentrionale latus umbrae signabat, altera meridionale, licet superius. Itaque posito loco Ω et angulo et diamegro), datur crassities umbrae et summa parallaxeos) et \odot in utraque.

1618. Majus	151	12h 12.		39"		7.	29° t	4	16"	. –	91	24° `.	45'	34"	•
Revol. VII.	194. 192.				_	0.	21.	29.	22						•
•	1.	~	26. 30. 13.	19	-		20. 14.			-			25	43	
Ergo medium Huer						5) 4.	54.	30 ,	7	<u>ی</u>	4.	54. 45.	9	
¢	q. asti	r											8. 2. 47.	34	
			- '		· ·	•						Loc	us]) req	ais.

Tertia eclipsis D. Anno 1617. 16. Augusti.

Luna oriens habuit plus que doct dotrantem in umbra, cum esset anomalis eccentri 138° 39'. Diameter) 32' 56". Hinc ablata pars quarta 8' 14" relinquit 24' 42" et eo plus in umbra. Horarius) a \odot 34' 21". Ergo conficiuntur ista in 43' 8" unius horae; quare phasis nostra primo oriente Luna plus quam 43 aberat a principio, quando sc.) habuit altit. $1^{1}/_{3}^{\circ}$, quo notatur hora 7. 14'. Exquiro occasum Solis consensus causa, qui cum esset in 23° 44' Ω , occidit h. 7. 3', refracte h. 7. 6'. Sane Luna in austrum projecta per parallaxin, quae superabst latitudinem sept., etiamque in consequentia, ultra centrum umbrae, quamvis vere esset ante, et simul 1° 20' alta, quae secundum aequatorem extensa daret 5', jam in perpendiculo erecta dare potest 8'. (Ubi tamen haereo. Nam in altit. poli 50° 6' circa 20° 30' $\frac{43}{200}$ ab hora $4^{3}/_{4}$ in h. 5 mutatur altit. puncti eclipticae per 2° 15' circitat. Igitur 1° 20' daret sane 8 temporis vel 9, sed quantitas refractionis est incerta coelo pluvio.

Itaque coepit eclipsis ante h. 6. 31', puto circa 6. 25', finis fuit h. 9. 58'. Duratio h. 3. 34', dimidia h. 1. 47'. Medium h. 8. 12'. Aut quia finis concordat cum meo calculo, si etiam duratio concordet, ut initium sit h. 6. 19', erit medium h. 8. 9'.

Haec eclipsis tantum ob tempus erit utilis. Remus scribit illam Romae desüsse h. 9. 48'. Lincium vero est orientalius Roma per 10'. Ergo id esset Lincii h. 9. 58'. Egregie. Calculus meus dat h. 9. 59'.

Tempus emersionis definit observatu	um esse h. 1. 1'. Finis igitur morae fuit
h. S. 47", Lincii h. 8. 57', calculus met	18 dat h. 8. 55'.
Sed repetam calculum ex emendation	one 7. Apr. 1620.
Sol in 23° 43' 45" Ω (infra repeto loc	um ()), ⁻
Ω in 20. 51	
Mot. lat. 2. 52. 45 dat lat. 15' 56".	
	Ex amondations 11 Apr 1690
	Ex emendatione 11. Apr. 1620.
Parallaxis () 1. 0	1' 0"
<u>) 63. 57</u>	<u>63. 3</u>
64. 57	64. 3
Semid. () 15. 8	15. 8
" umb. 49. 49	48. 55
") 16. 30	16. 12
Summa 1. 6. 19 Antil. 18. 61 -	65. 7 Antil. 17. 850 65. 7
Lat. 15. 56 — 1. 074 —	1.074 lat. 15. 56
Arc. d. dur. 1. 4. 23 17. 536	62. 57 sc. d. 16. 776 sc. dur. 49. 11
Diff. 33, 19 4, 696	27. 59 log. 76290
Arc. dim. mor. 29. 26 3. 622	54000
Horar. 34. 21 - 55774	22290
Arc. dim. d. 1. 4. 23	H. 1. 48. 3 dim. dur.
[°] Superfluum 30. 2 — 69215	32. 43 - 4. 530 (-1,074)
H. 1. 52. 27 - 13441	3. 456
Arcus dim. mor. 29. 26 — 71233	28. 35 sc. mor. 74160
Mora dim. 51. 25 - 15459	Hor.a 34'57" 54000
$1, \frac{1}{1}, \frac{2}{2}$	20160
1. 1. 6	49. 2 dim. mor.
Hinc tempora ex observ. Romana et Li	••
ILLIC CEMPUTA EX ODSETV. ROMANA EL LI	ucensi unis, el morae el quislionis.

Hinc tempora ex obser. Romana et Lincensi finis, et morae et durationis.

		priv	LS :		Li	Lincii		Romano	fine	
Pinis Lincii h. 9.	50	9.	59					•	9.58	
"morae 8.	52 . 27	8.	55	•					8. 59	
Medium 8.	51. 33	8	9						8. 10	
Initium morae 7.	14. 31								7. 21	
" Lincii 🚯	13. 6								6. 22	
N	0 001/ 1		•							

Emersio 0. 59, Romae 0. 60¹/2, obs. Hic omnia egregie concordant quoad durationem.

Tempus emérsionis tueor, ut Romae fuit observatum, accurate. Sed prima phasis mea videtur discrepares-quia ex altitudine computavi primam phasin h. 7. 14', quando Luna nondum in tenebris tota, cum tamen hic eadem hora et minuto computetur emersa tota.

Profecto si consideretur observatio, non fuit h. 7. 14'. Nam quia Sol occidit h. 7. 3', pone illum in horizonte, erit et centrum umbrae in horizonte, et) motu vero supra horizontem, quippe ante medium eclipsis. Sub eo quidem per parallaxin, at vicissim elevata per refractionem, et quis scit, quam magna ea fuerit? Praeterea non exprimitur, quanto minus superfuerit in lumine quam quadrans. Amplius, quis mihi dicet, per nubem aqueam qualis lux fuerit, Solaris an lux refracta in ora Lunae occidentali? Cogito nempe, quid mihi acciderit a. 1598. Si vidissem diu, minus esset dubitationis. Conspectus fuit unicus.

Medium igitur dubium est inter h. 8. 33' et h. 8. 9'. Ne nimium fidamus differentiae meridd., ponatur finis secundum obs. meam ad h. 9. 59'. Ergo medium sequamur h. 8. 6' 33". Temporis aequatio est addenda apparenti, astronomica quidem 3' 10", mea vero composita 29' 20". Et duplicata aequatione physica 35' 30".

> Hic repeto locum () et). () anno 1617. 27. Junii, h. 9. 8' in 6° 1' 14" () <u>16. Aug. h. 8. 19' in 47. 44. 32</u> <u>d. 49.</u> 23. 11. 23. 45. 46 & <u>49</u> <u>1. 58</u> <u>23. 43. 48 &</u>

Calculus Eclipsium Lunae

) 1616. Julius 21.		2. 47. 46 3. 19	-	5.	9.	15.	10	-	11.	2.	41.	49		
	231.	7. 6. 46												
Revol. VIII.	220. 10). 28. 39		0.	24.	83.	34		0:	11.	40.	23		
	10. 20	0. 38. 7	_	6.	3.	48.	44		10.	21.	1.	26		•
		35. 12		4.	19.	29.					31.	46		
		53300				22.	23				2.	45		
		45300		\mathfrak{I}	23.	41.	2				25.	A .		
		98600		-					2	20.	51.	55	***	
									Õ	23.	43.	48	ନ	
Ergo h. 8. 23. 0	aeonali	Uranib.		٠						2.	51.	53		
10		0.0000										47		
8, 33, 0	,,	Lincii.) re	quis.	23.	43.	1		
3. 10	.,							<i>y</i>	•				15'	52".

8. 29. 50 astronomice apparenti Lincii.

Igitur hic 20' temporis ad minimum abundant in calculo, si astronomice aequem. At si physice aequem, tempus apparens Lincii prodibit 8º 13' 40". Et quia Luna deberet esse in calculo promotior, ut pauculis minutis citius incideret medium, ideo etiam retracto apogaeo et minuta eccentricitate minuitur subtractoria aequatio.

Quarta eclipsis Lunae. Anno 1616. 16/26. Augusti nocte sequente.

Differ. meridd. Tubingae et Lincii 22.
Medium Finis Duratio
Principium Tubingae h. 1. 33 - 3. 8 - 4. 43 - 3. 10
Romae , 1. 43. $30 - 3$. $30 - 4$. 56. $24 - 3$. 13
Lincii , 1. 50 - 3. $20 - 5. 20 - 3. 20$
Prius de novo computabo hanc eclipsim ex emendatione 41. Apr. 1620.
Sit Uraniburgi tempus apparens h. 3. 20', astronomica 0' 34" add.
Mea acquatio add. 19.4
Tempus medium 3. 39. 4
1616. 17/27. Jun. h. 2. 54' O' () in 6° 0' 11'' 😪
16/26. Aug. , 15. 39. 4
d. 60. h. 12. 45. 4 - 57. 23 17
10
29. 2
1. 48
Diurnus Solis 58' 3" 💿 in-3. 54. 28 m
Apog. Nodus
32000000000000000000000000000000000000
Julii biss. 213. $0.27.37.46 - 0.13.7.56$
4. 20. 00. 20 - 11. 0. 32, 1
234. 19. 28. 24 5. 22. 45. 14 41. 18
Rev. IX. 247. 23. 47. 14 11. 53 35
13. 4. 18. 50 11. 4. 1. 16 25 Correctio.
35. 56 11. 9. 38. 54 Nodus.
11. 59 Locus () 3. 54. 28
6 Lat. 31' 47". 5. 44. 26
Reductio 1. 30.

Sic etiam est in prolegomenis Ephemeridum, ubi medium colloco h. 3. 0' 3" apparenti, ergo h. 15. 19' 7" media. Additis enim 1' 30" reductionis ad 4° 1' 16", ut sit locus Lunae 4° 2' 46", superavit Luna Solem per 8' 18". Ablato vero horario \odot 2' 28' a ficto \supset 35' 56", restat horarius \supset a \odot 33' 28" fictus, cum quo divisa 8' 18" prodeunt temporaria scrupula 15' 30".

Itaque vera ecliptica conjunctio pro maxima eclipsi fuit h. 15. 23' 34'', 4' plus. Videtur in Ephem. prolegomenis errorculus commissus, quem quaeram, ut probem tabulam diurnorum.

Annorum 1572 -- 625.

Djes superflui :	9	*
13. — 5. 19. 50. 41 — Ap. 1. 26. 58 Quaeram aequationem etiam ex prim 4. — 2. 10. 39 — 1. 7 172. 20. 52 — 42' 26	a tabula.	
19 10. 21 - 5 $173. 18. 16 - 37. 10$		
50 27 1. 28. 10 57. 24 dat 5. 16 ; -	- 8 44	
5. 22. 12. 8 quid 60? seq. 5. 29	0. 11	
43 43. 40		
5. 21. 49. 8 - mg. 43. 0 4. 22		
1. 28. 10 Hic aeg. 43' 4" 48		
5. 22. 57. 18. Diff. est 1". Hic igitur tabulae nullum faciunt e	rrorem.	
Haec infra ex emend. 11. Apr. 1620. invenies aliter.		
Parallaxis () 1' 0" Horarius) a () verus 35' 37" log. 52	4.40	
) 64.50 Superfl. sc. dur. dim. 23. 43 — 92		
$\frac{1}{65.50}$		
Semid. () 15. 15 Dim. dur. h. 1. 39. 57 - 40		Ъ,
Semid. umb. 50. 35 Dim. ther. h. 0. 19. 40 - 111		
) 16. 44 <u>15. 23. 34</u>		
Summa 1° 7' 19" Antil. 19. 17 Initium 13. 43. 37		
Latit. 31. 47 Antil. 4. 274 Incident. 15. 3. 54		
Semid.) 16. 44 Medium 15. 23. 34		
Summa min. quam umb. 48. 31 Emersio 15. 43. 14		
Diff. semid, umbr. et) 33. 51 Antil. 4.85 Finis 97. 3. 31		
Scrup. dur. 59. 20 14. 896		
Scr. mor. dim. 11. 40 0. 576		

9. April 1620.

٠٦

Hanc igitur eclipsin computo majorem et longiorem, quam fuit vel Romae vel Tubingae, etsi ad meam magnitudinem observatam, sed procul dubio vitiosam, áccedit.

Et nota quod etiam duratio fuerit major observata minutis 12, quae minuta facile conficiuntur latitudine minimum aucta vel umbra minuta. Ut sis non per eccentricitatem novam, sed alia ratione conficeretur variatio in copulis. Tunc enim duae primae eclipses manerent propius apud observata et archetypica, semid. D valeret etiam in copulis et incredibilitas minueretur in imbuitione speciei et fortasse variatio cum nutu epicycli posset in unum conflari: ut si merus esset aequans, cujus eccentricitas aequalis eccentricitati Lunae simplici. Hic causa pateret, cur menstrua dimidium esset solutae, qua caruimus hactenus. Vide in Hipparchi adversariis.

Ad hunc modum emendatis tabulis de 11. Apr. 1620, eccentricitate simplici \mathcal{D} in Ap. 15, parallaxi a priori, variatione ad modum Tychonis, quantitate majore a priori, ut augeatur horarius, computabo jam hanc eclipsin.

t

I	Parallaxis 🛈	1'	0	u 🕨					•
	Ľ.		40		Dn	ratio 3. 11' 36'			
	<u> </u>	15. 49. 16. 65. 31. 16.	15 25 22 47 47 22	Lincii accomm ad Tub. et J Horar. a 36' : Antil. 18. 310 Antil. 4. 274 14. 036 minor quam umbr	odato medio Rom. obs. 5''. — —	H. 1. 35. 48 51680 Log. 50850 Initium Incident. Medium Emersio Finit	h. 1. " 3. " 3. " 3.	15.5 31.	5 0 5
I	. Dist.	_1.	34	<u>Antil.</u> 4. 622 0. 348	uperat 21. 31	Log. 102530 - Log. 189000 138150	-		

Officiar, Eclipsium Land

Q		615.			4 9'	20"		9•	290	20'	87"	_	11=	21•	39'	57'	,
	Biss.	Jul.											-4				
			15.	15.	39.	4											
			234.	19.	28.	24											
	Revol.	IX.	247.	23.	47.	14	_	6	27.	37.	46		0.	13.	7.	56	_
	,		13.	4.	18.	50		4.	26.	58.	23	-	11.	8.	32.	1	-
					35.	56		5.	2 2.	45.	14				41.	18	Ad.
				-	115	800				11,	18						۸d.
					51	250		7) 4.	1.	51		_		25.	0	_
				-	167	050		_					- ភ្	9.	38.	54	• ₩
		-											C	3.	54.	28	
A.	stron. a	eous	tio O	· 34	··.									5.	44.	26	-
			subt.		-			'							1.	30	
		•									2) R	equis	. 3.	55.	58	`

Hic Luna paulo post perigaeum per physicam acquationem est per 6' ultra debitum, per astronomicam erit per 6' ante debitum. Et tunc promovebitur retracto apogaeo, ut asquatio ejus adjentoria flat major. Eccentricitatis mutatio hic nihil juvat.

23. Apr. 1620. Opte ipsum²ex 3 eclipsibus struendi hypothesin coeptam 5. Apr. 1620.

Sic fuerunt eclipses :

	•			Aeq. astron.	Aeguali	Sub ecliptics.		
1616. 26. Aug. st. n.	. h. 15. 31'	apparenti	Lincii	0' 34" add.	b. 15. 31' 34"	3° 55′ 12″)(
1617. 16. 🦷 🖕	8.10	"		3.12 🖕	h. 8. 11. 12	23. 42. 21		
1619. 20. Dec. "	15.48		99	1. 21 subt.	h. 15. 46. 39	29. 4. 16 👖		
Intervalla d. 354					h. 16. 39, 38	349. 47. 9		
Anni 2. d. 126	•				h. 7. 35. 27	125. 21. 55 🛓		
3. d. 116					h. 0. 15. 5	115. 9. 4		

Hinc colligo motum anomaliae mediae cum motu apogaei.

D. 354 10* 5° 0' 14"45" 1* 9°25' 33"11"" H. 16 8. 42. 35. 58 4. 27. 17 M. 39 21. 13. 50 10. 52 S. 38 20. 41 11	Probationis causa. Anni 3 8•26° 9' 24''17''' 4* 1°57' 10''36''' D. 116 2. 15. 32. 17. 2 12. 55. 9. 11
10. 14. 4. 25. 14 1. 9. 30. 11. 31	M. 15 8. 9. 56 4. 11
Anni 2 5. 27. 26. 16. 12 2. 21. 18. 7. 4 D. 126 6. 26. 11. 16. 26 0. 14. 1. 58. 36	<u>S. 5</u> 111. 11. 49. 53. 58 4. 14. 52. 23. 59
H. 7 3. 48. 38. 14 1. 56. 56	
M. 35 19. 3. 11 9. 45 S. 27 14. 42 7	
0. 27. 45. 28. 45 3. 5. 22. 12. 28	•
11. 11. 49. 53. 58 4. 14. 52. 23. 59 0. 27. 45. 28. 45 3. 5. 22. 12. 28	۹ ا

Igitur primae duae differunt per 10° 14° 4', posteriores per 27° 45'; quare prima et ultima per 11° 11° 50'.

Ratione motus medii prima posita in apogaeo, secunda debuit cadere in

	3.	55.	12.	- 4	¥
1.	9.	30.	11.	31	
10.	14.	4.	25.	14	
	27.	29.	48.	49	
Inventa in	23.	42.	21		
Diff.	3.	47.	28.		

Atqui positá prima in aphelio, secunda habens anomaliam 10°14°, haberet acquationem adjectoriam; itaque D esset últra locum medium. Non est igiur prima in apogaco. An igitur in perigaco? Tum secunda anomalia erit 4°14°4′26″ posita Igitur eccentricitate 4362, erit acquatio subtractoria 3°43′45″.

Aut igitur non est in perigaeo prima, aut major est eccentricitas. Sit primae anomalia 6^a 1^o 48', aequatio 0. 10' 0" add., erit secundae anomalia 4^a 15^o 52' 25", aequatio 3. 37. 10 subt. Sit denique primae aequatio 0. 11. 0 add., erit secundae anomalia 4^a 16^o 3' 25", aequatio 3. 36. 34 subt.

Sic conciliatae sunt duae, stante hac eccentricitate.

Jam igitur ad tertiam.

Ľ	dia secunda in Adde Ap. 3ª et an	5.	2 2 .	12		. [.] .	•	•		_		-	16º 27.	-		•	
			50. 8.	2 П 9	_			Dat	. 20	qu	tio	nem		28.	25	sub.	
	Esset tertia in	28.	58.	11		Era	t 1	He CT	mdi	L0_	and	uat.	3.	36.	34	sub.	
	At est inventa in	29.	4.	16 II	_							Diff.	2.	8.	9	-	
	Tan	tum	6'	deficin	nus.												

Minuatur igitur acquatio parte sexagesima, et quia in duabus primis conficere debezus acquationem partium 3° 47' 28"

	.dde		3.	47		1618. 11= 29 [•] 41' 31"
		3.	51.	15	-	Nov. 1. 13. 42' 16
Hoc quaerendum et val	ahit	3	47	48		d. 9. 3. 27. 35. 5
Igitur sit primae anoms		•••			,	h. 15. 8. 9. 56
6• 4° 10′ 1			22.	0	add.	36' 19. 36
					subt.	Huennae aeq. 39. 20
27. 49. 29	•					5. 19. 28, 44
Tertiae diff. 5. 16. 3. 54	seq.	1.	16.	20		5. 13. 48. 54
•		2.	11.	44	-	5, 39. 50
Haec est minuenda parte	61=	18	2.	10		Nimio vero minueretur haec ano-
		2.	9.	34	-	malia.

Per acquationem maximam 4° 55' lucrati sumus 1. 26. Ergo deberomus per 25 minuere acquationem, ut lucraremur 6. Esset acquatio 4° 35'.

Ut certum hoc sit, proba etiam augmentationem. Augeatur aequatio parte 60^{ma}. Igitur a requisito ad duas primas 3º 47' 28"

		1	aufe	T	3.	47						
							Hec	valebit	3 °	47'	284	
Est	igitur primae	anom.	6.	Q.	0.		•	8.eq.				
	secundae							8.0g.	3.	43.	45	sub.
				27.	45.	29		-				
	Ergo	tertiae	5.	11.	49.	54		aeq.	1.	38 .	50	sub.
								Diff.	2.	4.	55	
						Auge	parte	59ma		2.	7	
						-			9	7	2	

Certum igitur efficitur per has 3 eclipses, acquationem non posse majorem esse quam 4° 35', stante hac acquatione temporis astronomica.

> Igitur secundo utamur acquatione physica : loca secundum

 apparentia tempora
 media
 aequationes
 temp.
 emendata.

 M. 3. 55 m
 18. 30 add.
 H. 15. 31'
 H. 15. 49'
 30''
 3° 55. 58
 \neq

 28. 43 Q 19. 21 $_{n}$ 8. 10
 8. 29. 21
 23. 43. 1
 \cong

 29. 4 $_{X}$ 1. 17 $_{n}$ 15. 48
 15. 50. 5
 29. 4. 23
 Π

 Differentiae 16. 39. 51

 7. 20. 44

 0. 0. 35

Lopieri Opera. III.

641

Primum igitur intervallum est auctum per 13", secundum diminutum p 14' 43". Respondent motus anomaliae 7" 5" et 7. 37. 16 Apognei 4 23. 25 8. 0. 41 3. 12 54 4. 6	1
Ergo anomaliae intervalla correcta 10º 14º 4' 25" 14" 7, 5 10. 14. 4. 32. 19 27. 45. 28. 45 8. 0. 41 Alterum 27. 37. 28. 4	
Sit prima in perigaeo, secunda habebit anomaliam 4. 14. 4. 32, aeq. 3. 43. 45. Sit rursum primae anom. 6. 2. 10 aeq. 0. 12. 0 1. 9. 30. 12 et anom 12. 10. 14. 4. 32 Secunda habebit 4. 16. 14. 52 — 3. 35. 52 10. 14. 4. 32 Z7. 37. 28 10. 14. 4. 32 11. 27. 30. 42 Ergo tertiae anom. 5. 13. 52. 0 — 1. 28. 10. 14. 4. 32 Hie nos aequatio physica abducit multo longius. Diff. 2. 7. 32. 11. 27. 30. 42	

			Sed	bio	ba, D	e er	retu	r.							
Anomaliae mediae	6.									8 .			52. 28.		8.
23. 43. 1 5. 22. 8			22. 55.			4.	12.	38.	50		5.	12.	23.	50	-
27. 37. 28	_	1.	33.	58	T		1.	33.	58						
26. 42. 37 🖈	1.	9.	30.	12		1.	9.	30.	12	-					
2. 7. 32															
28. 50. 9		23.	43.	0		5.	12.	23.	50		•				
<i>γ</i> -							28.	50.	8	Ecce.					

6. Maji 1620.

Cum in his tribus eclipsibus magna vis sit, nec facile negari possit minutem temporis, quo media fuit eclipsis: vide igitur, ne quid istis noceat calculus loci Solis. Nam Rothmannus Tychoni litem movit super vero loco \odot circa brumale solstitium et in \simeq . Et promovit fixas 6' ulterius.

Pensitemus modum :

Per acquationem temporis astronomicam inventa est \mathcal{D} in 28° 58⁴/₃ II, per Solem in 29° 4′ 16″ II. Si per Solem etiam in 28° 58⁴/₃ II inveniretur, oporteret apogaeum Solis esse tribus gradibus posterius, ut sic circa perigaeum 6′ plus in acquatione subtractoria essent. Hujusmodi nihil vel parum accidit in 28° \mathcal{Q} ; 4° \mathfrak{M} , quia prope long. mediam.

Porro hoc idem videtur cognationem obtinere cum observatione Lunae ad fixas in eadem eclipsi a. 1619. Nam fixa non implebat 28° II observata per Lunam, quae debebat esse in 28° 9' II. Luna ergo non tantum ratione temporis astronomice aequali, sed etiam ratione loci inter fixas erat anterior. Sed haec non adstipulantur Landgravio, quin potius Tychonem longius adhuc abstraherent ab illo, certe quidem in \times . Fixae quidem hae etiam tunc consentiunt in quantitate fere, sum aequatione temporis mea utar.

De his igitur cogitandum, exspectanda vero exempla alia.

Notabis tamen etiam futuram quantitatem eclipseos, si Luna anterius in umbram incidit.

Digitized by Google

Alia tractatio harum trium eclipsium.

Ut incipiatur a 2 ultimis.

Quia prima et ultima sunt prope perigaeum, major erit earum emphasis, cito enim mutatur acquatio.

Sit prima 3° Tertia in 29.	55' 4.	12″)(16 ∏	Apog. Anom.	4. 11.	14. 11.	52. 49.	24 — 54 —	3. 29.	55. 4.	58 ¥ 23 ∏	_	4. 11.	14. 11.	52. 41.	20 53
Diff. 115.	9,	4				42. 9.	18 — 3. 4	25.	8.	25			26. 25.		
		Summ	a acquat	• .	1.	33.	14					_	1.	26	

At cum usurparem anomaliam 5° 13° 48′ 54″, etiam anomaliam 6° 1° 59′ 0″, collegi 1° 39′ 25″.

Retrocedendo igitur cum apogaeo per unum gradum conficio hanc summam: ut 5º 12º 45' dat 1º 34'

et 6. 0. 55. 6 dat 0. 5. 6.

Hem! praeter opinionem manet ad sensum quantitas eadem, sc. quia loca utraque sunt perigaeo valde vieina. Scilicet magna vis est vel in duabus solis. Nam differentia anomaliarum est 18° 10° $6^{\circ\prime}$. Haco ex uno latere perigaei applicata non dat minus quam 1° 39° per 4362. Ex utroque latere aequaliter applicata dat paulo plus quam 1° 40° .

In Tychone dat 1° 36'

1. 32, sed eccentricitate minori.

Per has igitur duas perigaeas arctissime constringimur, ut aut minuatur eccentricitas, aut Solis apogaeum promoveatur, aut in aequatione temporis contrarium aliquid physicae aequationi designetur.

Tunc media facile se praebebit. Nam ibi loci 16' anomaliae dant 1' aequationis.

His, quae ex Vol. XV. Mas. desumsimus, interpositie redimus ad Vol. I. Mas. ex illo ea excerpentes, quae diversis conscripta temporibus (saspius, ut in modo praemissis, notato die que illa scripsit Keplerus) ant priora magis minusve attingunt, aut per se stant.

DE LUFA

(8. 3er. 1601.)

Assunta hac acquationan hypothesi, quod tempora gradum acquation eint ad invicem ut distantine a virtutis foste, erit sinus acquationis maximee dimidiandus pro eccentricitate. Est antem sinus acquationis maxime in copulis 8672. Ergo eccentricitate est atem sinus acquationis maxime eccentrici 2° 29' 20"; acquatio vero acquantis est itidem 2° 29' 20". In quadraturis est arquantis acquatio practise dupla, sc. 4° 58' 40", ut sit tota 7° 28'. Hac itaque ratione speculatio concinua oritur. Contrum acquantis enim in quadraturis duplo altins esse censetur a centro eccentrici in locis intermediis, quae est proportio sinus elongationis a diametro (\odot 5) ad sinum totum, cadem acquationis tertiae (dicatur enim eccentrici acquatio prima, acquantis secunda, phasmatum tertia) ad acquationem secundam. Ut igitur acquales sunt prima et secunda acquatio, ita etiam secunda et tertia. Acquationes antem non maxime ex suo genere censeatur. Nam in acquationibus solis disputatum est, an mediae secentur oumes.

Aliter: bisecetor quadrantalis, et prodibit dimidios sines 6500, arcus 3° 44'; copularis 4° 59' 40", diff. 1° 14' 40", triplum 3° 44'. Itaque quo minus in (diametris) copulis morae essent ut distantiae, pars tertia praecise deesset, tanto sc. esset solito velocior Lana versans in virtuosa diametro. Forte nec hoc inconcinum.

Aliter tertio. Centrum eccentrici vere discedat a centro Terrae in quadraturis, fiatque altius parte tertia. Sit enim in diametro 4336, foris 6505. Tunc prima et seconda aequatio abique bisecabuntur, eritque nulla tertia. Tunc sane etiam octantes juvabuntur, forsan et latitudines. Sed considera melius, maxima quadrantalis ponit centrum in diametro () 5), diametralis in quadrantibus. Ergo centrum in diametro (() 2) altum, in quadrantibus humile. Transeamus perspicuitatis gratia ab eccentrico in epicyclum, epicyclus maneat invariatus, sed centrum concentrici, Luna in longitudine media et quadraturis versante, sit in diametro () 5) supra vel infra Terram, sed Luna versante in longitudine media et diametro, sit in centro Terrae. Nam et aestus maris realem videntur appropinquationem requirere (modo non et diurnam). Similiter Luna in apogaeo et quadraturis versante, contrum sit supra vel infra Terram in diametro (() 古). Nam haec elevatio nil variat acquationem, quae nulla est. Sed nota, hoc pacto vere octantum inaequalitas, variatio dicta, in quadraturas redundabit, possitque forte per alium et concentricum circulum centri concentrici Lunae circa Solem excusari. Ergo rejiciatur haec permutatio eccentrici et epicycli.

De Luna.

Ergo per se centrum eccentrici describat figuram ovalem circa centrum Terrae motu apogaei, ita ut diameter virtuosa non sit, sed solum centrum Terrae. Contra facit, quod haec inaequalitas a vero loco Solis pendet et quod nova pro octantibus esset confingenda ratio. Ergo de prioribus consulantur dimensiones, an etiam octantes complectantur.

Ponatur centrum in diametro (\odot \circlearrowright) altum 4336. Maneat interea ibi (nam vix 13 vel 15 lunationibus periodum absolvit), Luna vero ab apogaeo volvatur in long. mediam et quadraturas. Si virtus maneret eadem, acquatio secunda esset 2° 29⁴/₅'; jam est 4° 58³/₅', ergo 90 radii paulatim a diametro (\odot \circlearrowright) elongati et paulatim longiores, sunt per 2° 29⁴/₅' tardiores, quam tetidem manentes in diametro et longiores, et per 4° 58²/₅' tardiores, quam 90 medii, egredientes paulatim a diametro in quadraturas. (Nota Keplen in margine: "hoc dubium".) Sed 90 medii egredientes e diametro in quadraturas volvunt 90°, ergo 90 paulatim longiores sunt ad 90 medios, ut 94. 58³/₅ ad 90, et 90 sinus eccentricitatum ad 90 radios sunt ut 4. 58³/₄ ad 90. Ita 90 sinus 90 eccentricitatum sunt ad radium, ut 4. 58³/₅ ad 1. Sed 90 ordine sinus sunt ad radium, ut tangens semiradio auctus ad radium fore, ergo ut 57⁷/₁₀ ad 1. Ergo 90 sinus toti eccentricitatis sunt ad 90 sin. totos simplices, et per consequens eccentricitas ad radium ut 4. 58³/₅ ad 57¹/₁₄. Est itaque ¹/₁₄ ima, ratione virtutis. Ergo si censetur ¹/₁₄ ima, erit censita pro 9091, qualium radius 100000; sed ita, ut omnes radii eccentricitatum ratione virtutis sint proportionales suis longitudinibus, quod tamen non est. Nam longiores plus habent virtutis, cum sint propiores diametro.

Ergo aliter. Çum apogaeum est in quadratura, nihil differt verus locus a medio. Inde 90 ordine radii apogaei in quadraturis sunt causa virtutis longiores 90 ordine radiis apogaeis in diametro (nam hic respicimus, ubi centrum habitet, cum virtus ex centrali linea non veniat) per 2. 29¹/₈. Faciunt ergo .illi tempus 94. 58³/₈, hi faciunt tempus 02. 29¹/₈. At quod illos virtuosiores efficit, est distantia) a Terra in quadraturis (Nota K. in margine : "Hic me ipsum confudi et assumsi heterogeneam hypothesin".), eaque nonagies ab apogaeo. Ergo si 90 distantiae ab apogaeo in quadraturis dant 2. 29¹/₈, quid una mediocris? (facit ¹/₁₆, ss. 1' 40" ut ante. Tanto tardior esset) in [].) Haec subtiliter computentur alias. Jam si 90 dant 2. 29¹/₈, quid 1, sc. media fere inter remotionem longissimam et apogaeam ? sequitur ¹/₈ scrupuli fere, sive 1' 40".

Itaque Luna in uno quadraturarum gradu tardior est per 1' 40" de 360° tempore revolutionis suae, quam in diametris, quare per 50" tardior, et in diametris 50" velocior justo. Jam fácile computari potest, quantum in octantes redundet. Primo diminuatur (securitatis causa) temporis revolutionis Lunae octava pars per 1' 40" quadragies quinquies. Deinde colligantur sinus omnes ab uno gradu ad 45. Et dic: si totus valet 100", quid valet summa 45 sinuum minorum; quod prodit tempus rursum addatur. Ergo ut 45 minores ad 45 totos, sic tardatio ad insitationem, ut igitur excessus 45 totorum super 45 minores, sic incitatio) manens ad incitationem 1' 40" quadragies quinquies.

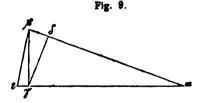
Collige summam omnium sinuum ad gradus integros, incipiens a 0° usque ad 45°, et abjice (si 7 cýphris utaris) figuras 5 posteriores. Relictum sunt scrupula secunda, quae reduc ad prima et gradus, et asserva. Deinde multiplica 1' 40" per 45°, prodibit summa major; aufer igitur quod prius servasti ab hac summa majori, et vide, an maneant circiter 45' prima.

Dimensio plane convenit. Nam quod in octantes redundant $46^{1/2}$, perpende, quod omnes elongationes a linea virtutis assumserim paulo longiores, sc. tam longas, quam longa est distantia) 5 in loco inter apogacum et long. mediam intermedio. Si justas assumsero, paulo minor evadet.

Dubitatur, si solus distantiarum excessus a mediocribus efficit 2⁴/₃°, quomodo integrae distantiae tantum 46' faciant? Nempe ille excessus consideratur totus in quadraturis, distantiae vero considerantur non totae, sed quantum) distet a diametro. Illic igitar colliguatur excessus a toto ad nihil, hic distantiae.) & a tota ad nihil.

At rursum instatur, haec illius summa est 22^{um} , et supra hoc falsum assumseram, totam distantiam in quadraturis versantem hoc efficere, ut acquatio per $2\frac{1}{s}$ sit major. Falsum inquam hoc est. Nam quod mediocris distantia in quadraturis versatur, id causatur inacqualitatem octantum. At quod excedentes distantiae in quadraturis versantur, id demum facit inacqualitatem acquationis.

(1601. 9. Nov.)


Imo dicam aliquid amplius. In quadraturis omnes ordine distantiarum excessus damnum afferunt ejusdem virtutis, ejusque maximae. At digressus Lunae a diametro initio parvae virtutis parvum affert damnum, quia diameter non est undique aequaliter virtuosa, sed in centro Terrae virtuosissima. Inde magis magisque augetur damnum, estque in quadraturis maximum, virtutis maximae. Cum ergo longior sit sinuum dimidia pars, quam reliqua brevior, adhuc multo magis efficiet octantum inaequalitas, quam prius. Utut sit, testatur experientia inaequalitatis octantum aggerationem usque in quadraturas efficere 2° 29', plane ut et aggerationem inaequalitatis aequationis in ipsis quadraturis. Quodsi esset proportio, quia excessus distantiarum in diametro simplum affert damnum, in quadraturis duplum, virtutis igitur in diametro (supra ubi Luna transit) dupla esset virtutis quae in quadraturis, Luna igitur duplo celerior in diametro quam in quadraturis foret.

Iterum ab hoc exorsi, retrogrediamur. Quia testantur octantes, tempora punctalia (?) quadraturarum ad diametralia esse ut 61' 40" ad 60', statuatur etiam tale damnum aequationis, eritque eccentricitas ipsa variabilis. At hoc fugio. Itaque omittatur. Considerandum potius, quomodo possit manere duplus motus diametralis ad quadraturalem, et tamen non fieri tanta exaggeratio in octantibus, ut si subito illic decresceret, hic cresceret, in medio tarde.

Hoc vero unde sit deducendum, non est in promtu. Si esset vel valeret gradus in diametro tempora 40' et in quadrato 1º 20', augmentum esset 40' nonagies; si utaris progressione arithmetica, ut gradui uni (distantiae a diametro) debeantur 1, et gradui 89 debeantur 79, incrementum erit immane. Sin des gradibus singulis 40, in octantibus augmentum nullum erit.

Sin per sinus a principio digrediens a diametro totos opereris, quid flet? Valeant 45° singuli temporis 40', valebunt igitur universi 30°. Ut si Luna totum quadrantem in virtute diametrali conficeret, eum absolveret temporibus 60. Valeant igitur sinus universi distantiae D a diametro 30°, quid valebunt 45 majores ? Sinus omnes sunt 57 $\frac{1}{100}$, sinus 45 minores 17, majores 40 $\frac{1000}{1000}$; 57 $\frac{1}{1000}$ dat 30, quid 40 $\frac{1000}{1000}$;

Sequetur hinc diutius versari Lunam in octante diametrali, cujus contrarium verum est. Et quae hujus rei causa esset? Severinus quidem (Longomontanus)

de aequationis augmento aliquid tale dixit. Sed si bene considerès, ea per sinus initio parvos crescit. Dixit enim, si sit a Sol, γ Luna, δ Terra, esse β centrum concentrici \mathbf{J} , quando apogaeum est supra. Videamus. Sit $\beta\gamma\delta$ et sic $\delta\alpha\gamma$ 2° 29', sinus 4336. Si ergo $\alpha\gamma$ 100000 fit 1150 semidiametri Terrae, quid 4336? 49,864. Proportio quam proxime convenit. Credibile est igitur, ut est orbis \mathbf{J}

ad orbem \odot , sic esse eccentricitatem \mathbb{D} ad orbem \mathbb{D} . Quid si igitur mutaretar eccentricitas pro proportione distantiae \mathbb{D} a \odot ? Tunc quoties \mathbb{D} in \mathcal{J} , eccantricitas esset minima, quare et aequatio minor, et quoties \mathbb{D} in \mathcal{J} , maxima. Falsum igitur, quod supra mihi ipsi objeci. Videor pro me uti posse. Valeant quidem sinus universi elongationis \mathbb{D} a diametro 22^{cuplum} augmenti aequationis, si illi sinus seu perpendicula in \mathcal{J} inciderent. At quia potior pars a Terra deficit, idque celeriter ubi sinus sunt longi, ideoque ut sin. tot. ad versos sinus initio longiorea, ita mora sinus cujuslibet elongationis \mathbb{D} a diametro, censita per perpendicularem

De Luna.

quasi in Terram cadet, ad moram sinus illius, quatenus supra Terram incidit in diametrum. Ergo quia sinus omnes, seu 57 1/10 valent 2. 29, quid sinus unus totus, seu 1, vel tota eccentricitas in quadrantibus semel? — 155'' = 2'35''.

Et quia 4336 valent 155", quid 100000? 3575" vel 59' 35". Ergo quod totus sinus medioeris in quadraturis versatur, facit temporis 1º fere accrescere, estque pars dimidia. queritur quantum faciat accrescere elong.) a ⊙ 89? Primo ut 100000 ad 99985, sic 3575 ad 3574¹/_s; deinde ut

100009 ad 98255, sic 3574¹/₂ ad justum 3512. Multiplica 3575 in omnes sinus ordine, et rejice 7 ultimas, quod prodit multiplica in omnes versos ordine, incipiens a toto vel maximo, et abjice ultimas. Vel multiplica 3575 in summan sinuum 45 majorum, quotientem multiplica in summam sinuum versorum majorum 45 et divide per 45 totos. Habetur summa versorum, si summam sinuum subtraxeris a totidem totis. Summa 45 minorum sinuum est 1713467, summa 90: 5775000, summa 45 majorum: 4061533 (× 3575) = 145200, tantum esset, si perpendicula omnia in Terram caderent, sc. 2420' vel 40° 20', 104336 dat 59, quid 100000? – $56^{3}/_{4}$. 56' 45'' + 2' 28'' =59' 13''; 56' 45'' - 2' 28'' = 54' 17''. Hasc bene cum quadrantalibus parallaribus.

Lunae recapitulatio et eclipsium.

Si de novo inciperem restituere motus Lunze, hinc potissimum facerem exordinm. Solis diametrum observavi in apogaeo 29' 30". Consentit Maestlinus et Tycho cum datis suis : etsi in Progymnasmatis majorem faciat, sed occasionem alicubi vidi.

Sinus 14' 45" = 429; si 100000 fit 101800, quid 429? - 437, sin. 15' 1". Haque in long. media erit 30' sine additamento. In apogaeo 29' 30", in perigaeo 30' 30''. Nam hic assumitur eccentricitas 💿 nota 1800. Jam pro scienda dia-, metro Lunae sumatur eclipsis Clavii 9. Apr. 1567 (comp. Opt. p. 316), quando Romae Sol exili circulo supra Lunam eminebat (videat modo Clavius, ut circulus integer fuerit). Sol in 29° Υ , dist. 66° ab apogaeo. Ergo diameter 29′ 48″. Respectu 100000 diameter \odot est 29′ 48″, vel 433 (sin. 14′ 54″). At si 100000 , fat 99620, tunc illud flet 431. Jam 🕽 diameter fuit minor; fuerit aequalis, ut videamus, quid sequatur. Nam vel 15" diminutioni semidiametri sufficiunt ad sentiendum circulum.

Luna ergo habet anomaliam coaequatam 3º 1º 52' 57", estque paulo propior. quum est mediocris. Cum sit acquatio fere 5°, ejus compl. 85°. Sit sane distantia 99620. Si 100000 fit 99620, quid sinus diametri 🛈 apparentis 433? 🕽 ergo distantiae sinus 431 (sin. 14' 50"). Ipsa 29' 40", etiam cum illi relinquitur dia-meter aequalis Solari. Compara jam 4336 ecceptr. D cum 431; 104336 fit 100000, quid 431? sequitur 418 (sin. 14' 22"); diameter 28' 44". Ergo diameter maxima 31' 20". At si minorem sumam etiam perigaeam, minor evadet, itaque non valebit tegere Solem totaliter, quando is habet diametrum 29' 40" circiter, mense Augusto. Ipsa vero in perigaeo habet 30' 24" minus. (In austro diameter) ceteris paribus apparet major, quam in septentrione. Nam 55 ad 1 est ut 100000 ad 1800. Ergo potest variari dimidio scrupulo, ut in Sole, sc. qui sub polo et qui sub aequatore est.) Subiit igitur animum suspicio, an ille circellus lucidus sit aërium corpus Lunam circumdans, quod vicissim in Luna plena habeatur pro corpore. Esset omnino diminuenda

28.44	29.40	31. 20	
15	- 15	15	
28. 30	29. 25	31. 5	

Nisi forte Lunam altius passuri simus ascendere, ut per dimidiam acquationem latitudinum 3° 45', sinus 6540. Sed et haec et priores paulo aliter sunt constituendae. Qualium distantia 100000, talium diameter 🕥, cui jam sit par 🕽, 433. Sed distantia non est recte sumta. Nam quia aequatio 5°, vel 7° 30', dim. 2° 30'

vel 3° 45'. Compl. 87° 30', 86° 15'; sinus 99905 vel 99786, quamvis propter 2 residuos gradus paulo sint breviores, ut 99900 vel 99780. Ergo si 100000 facit 433, quid 99900 vel 99780? sunt ergo 432'/, vel 432. Mediae ergo 29' 45" vel 29' 43". Postea modo priore: 104336 est ad 432'/, ut 100000 ad 414; diameter apog. 28' 30". Et 95664 est ad 432'/, ut 100000 ad 452; diam. 31' 5". Rursum posteriore modo: 106540 est ad 432, ut 100000 ad 405'/s, diam. 27' 53". Denique 93460 est ad 432 ut 100000 ad 462, diam. 31' 48".

Collectio ex eclipt.: 28' 30". 29' 25". 31' 5". Hisce minores utrinque ex quadrant: 27' 53". 29' 43". 31' 48". sunt assumendi.

Reiteratio hujus considerationis.

Ponamus, cum Luna est in diametro Solis, naturalem observare planetarum ceterorum aequationem. Cum ergo aequatio est 5, sic est, ac si omnes distantias confecisset in diametro, ita cum aequatio est $7\frac{1}{2}$, similiter in quadraturis. Nam puto futuram inaequalitatem,' si sic considerares, ut vere conficit distantias: sc. cum aequatio est $7\frac{1}{2}$, longiores conficit in diametro, mediocres in . Contra cum est 5, longiores conficit in ., mediocres in diametro. Quod ergo omnes ordine excessus a maximo ordine elongantur a diametro, et propiores sunt, non tamen proximi: id valet 21/, plus, quam si omnes ordine excessus a minimo ordine elongantur a diametro. Quod enim ipsos mediocres attinet, et qui subjecti sunt excessibus, illi utrinque aequales sunt et aequaliter habent. Ergo hoc longe aliud est, non omnes excessus, proxime tamen omnes; in quadratura non ipsa, proxime Minimum versus diametrum. Ex adversa parte paucissimi excestamen. sus, longiores tamen versus diametrum, et propemodum aequaliter sparsi in quadraturas. Hic enim sibi mutuo per intermedia obviant. Longe inquam aliud hoc est, quam omnes excessus in quadraturis hinc inde. omnes in diametro ipsissima.

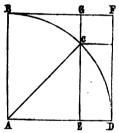
Illic videtur compensatio non tantum distantiarum, ut manifestissime patet, ductis quadrantibus eccentricis et a 🗋 et a diametro, sed etiam distantiae et virtutis. Nam ubi minima decrementa distantiarum in fliametro, ibi maxima decrementa, vel celerrimi discessus a diametro, contra ubi maxima decrementa, ibi minimi discessus. Verum vicissim ex quadraturis contra accidit. Nam accumulantur et tarditas decrescentium distantiarum, et tarditas accessus ad diametrum. Haec ergo duo demonstret mihi aliquis ejusdem esse proportionis. Nam certe distantiae omnes in quadraturis tardiores sunt, quam paulatim sparsae in diametrum minimis. Contra omnes in diametro velociores, quam paulatim sparsae in quadraturas minimis. Major itaque proportio tarditatis unius ad velocitatem alterius, quam re vera Quodsi continua virtus a diametro in quadraturas esset ad paulatim sparsiorem, ut continuus limbus circuli ad lunulam, facilior esset modus computandi. Hoc est, si ita decresceret virtus euntibus a diametro, ut decrescit lunula distantiarum. At nescimus gradus illius virtutis diametralis. Opinamur esse ut decrementa sinuum a minimo. Si hoc: non eadem est ratio virtutis et distantiarum. Nam illarum decrementa sunt fere ut decrementa sinuum a maximo. Hic ergo computandi ratio adhuc impedita est. Illa expeditissima, si distantiae omnes censeantur 1) in quadraturis, 2) in dia-

metro. Et non caret ratione. Nam aliquando apogaeum est in 🗋. Ab hoc, ceu ab epocha post revolutiones integras, quae semper faciunt aequalia, omnes ordine distantiae locantur in \Box , et sic fit aequatio $7^{1/2}$. Itaque sint omnes et hic et illic. Et cum hic tempus faciant illius duplum, dupla itaque virtus diametri ad quadraturam? Minime. Nec bene considero, quia non seorsim, sed integrae incitantur. Sint integrae distantiae hic et illic. Et cum faciant hic tempus 95, illic 97¹/₂, ut ergo 95 ad 97¹/₂, sic virtus una ad alteram. (Hic propemodum apparet utriusque modi aequatio. Illic n. separatim considero distantias et temporum excessus.) Et ut $2^{4}/_{2}$ ad 95, sic excessus virtutis unius ad totam alteram, sed ut 21/2 ad 95, sic lunula (vel ei aequale parallelogrammum) semis ad quadrantem sirculi plani. Ergo ut triangulum aequatorium ad superpositum auctum quadrantem, sic virtutis excessus ad virtutem alteram. Haec nihil novi habent. In quadrantibus crescunt universis $2^{4}/_{2}$, summa universorum est in plano: et planum dividitur in 92¹/₂ sectores et praeterea triangulum, quod itidem valet 2¹/₂. Dividitur ergo illud planum in 95 sectores. Uni ergo sectori $1^{1/1}_{1,0}$ competit. Quare quilibet sector in diametro $1^{1/1}_{1,0}$ minus temporis habet. Nempe sub anomalia simplici 58%, in diametro volvitur 60. Jam hinc transitus in octantés quaeratur. Distantiae omnes ordine a diametro in octantes ad omnes a diametro in quadraturas sunt ut segmentum quadrantis ad residuum. Sit circulus 31416, erit quadrans BAD 7854, et BAC 3927; radius AC 100, ejus quadratum 10000, dim. 5000, et 🛆 ACE

2500; subtrahe ab ACD (3927) restat ECD 1427. Haec summa digressionum ad octantem. Jam ergo si sector unus (quorum sunt 360) foeneratur 1¹¹/₁₉, quid 1427? 2253; vides parum prodire.

Itaque apparet,' debilitationem hujus virtutis diametralis non esse in incremento sinuum a minimis. Nempe ita debilitatur, ut via Lunae a communi planetarum in transversum inflectitur, itaque ut decrementa sinuum a maximis.

Est ACE 2500, BAC 3927, ergo BAEC 6427; 3716 + 6427 = 10143. Hic nimium prodit.


(Hic non recte computavi. Si proportionaliter cum tempore decrescit, ergo in 45 addit ¹⁶/₁₀ dimidium et in 1 : ²⁰/₁₀, junctim ⁴⁶/₁₀, et hoc $22\frac{1}{3}$ - 53; parum absumus.)

Ergone in proportione arithmetica decreacit, seu in tempore, ut quo diutius a diametro abest, hoc flat debilior? Si nonagies 111/1, multiplices, et quartam partem auferas, h. e. si 67^{1/2 ies} multiplices. Ne hoc quidem. Nam prodit nimium. Crescunt ergo scrupula cum DE? Ut EA sit in ipso circulo Lunae, DE linea diametralis. Est AE 70711, ergo ED 29289. Minime. Nam sinus versus 1° nimis erit parvus. Ergone ut anguli radii Solis incidentis in curriculum Lunae? At quomodo omnes angulos colliges? Rursum enim plus 45 colligitur usque in 45°.

Supra non recte collegi. Quia inquam tempus ab egressu e diametro aequale additur ei e centro egressui, ergo virtus utraque et diametri et eccentricitatis sequalis est. Iterum non recte computavi, dum de toto dixi, quod de dimidio est verum. Nam si quilibet sector in diametro $1^{11}/_{19}$ minus habet quam in quadraturis, et motus igitur in diametro est auctus, in quadraturis diminutus, in 8 medius. Ergo medius et aequabilis alicubi, loco intermedio. Oportet totum in quadrantem prius computare. Est ergo 1/4 plani in circulo 7854; si sector 871/4 dat 111/10, quid '7854 ? 12401000 : 8725 = 142. Totum foenus est 142' c. = 2° 22'. Minus guam 2° 29'.

Jam si semper currant in virtute quadrantali, 90×1^{4} , deessent, n. 2. 22,

Fig. 10.

motusque 87° 38'. At a diametro in quadraturas accedunt 2. 22; dividendi sunt sic, ut BAD dividitur per CE. Tota BAD dat 142, quid ECD?

 $7854 - 142 - 1427? 25^{3}/_{4}$; $142 - 25^{3}/_{6}$ = 116⁴/₄; $70^{1}/_{1}$ excessus, nimis magnus. Num ergo dividitur ut quadrants? Videtur dividendum ut quadrantis residuum. Ut: AE = 70711, ED = 29289 (- 14270) = 15019. EDFG = 70711, GCDF = 6427, BGC = 6441. Hic est ratio quadrupla. Totum ergo in 5 dividitur - ¹⁴³/₆ = 28³/₆, pene hoc idem est. In progressione arithmetica sic: ¹⁴²/₄₆ summa 2 partium, primae et ultimae, item 2 mediarum. Ergo ¹³/₆₆ est una media, et ²⁰/₁₆ extrema. Junctim ergo ¹¹/₆₅ + ²⁰/₁₆₉ ; hoc 22¹⁶⁰ ¹⁵⁶¹/₆₆ + ⁶⁶⁰/₁₆₉ = 35 + 35; summa 70, reliquum 52; 90 - 52 = 58; hic propius accedimus.

Statueretur itaque virtus cum tempore proportionaliter in quadraturis decrescere. At hoc absurdum physicis rationibus, quia tempus in 14 dies excurrit, donec in diametrum redeat. Ergo hoc omnino a decremento anguli inter radium Solis et viam Lunae.

Non est ergo debilitatio propter tempus, sed omnino propter elongationem a diametro. Et quia elongatio a diametro est in linea recta computanda, ergo arcus digressionis non metitur hanc elongationem physicam, sed sinus. Sinus autem physice non bene colliguntur ex aestimatione segmenti, quia stipantur ibi, Luna vero conficit illos sparsim. Esset extendendus quadrans in rectum. Hoc pacto in 45 ab 8 ad octantes tarditas ut omnino dimidia esset. Promotio igitur ut prius 52' c. ut contra 38' c.

Atque tandem progressio arithmetica sola dominabitur. Nam arcus confectus a diametro est complementum anguli, quem facit via Lunae cum radio (•) fere.

Consideretur vero melius. Summa 90 est 2° 22' vel 143 ₆₀; summa primae et ultimae 1¹¹/₁₀ vel 20 /₁₀, eadem est summa duarum mediarum in 45°, 46°. Sed illae aequales fere, media ergo 15 /₆₀ fere. Ergo quae in diametro et quae in octante faciunt sinus 45 /₁₀. Harum vero copularum sunt 22¹/₅, quanta fiet summa? 45×22^{1} /₂ = 1012¹/₁₂. 1012¹/₅ : 19 = 53, ut prius fere.

Illa forma elliptica extensi quadrantis videtur concinnior. Tentemus. Conjice in unam summam sinus 90, item et sinus 45, nam plane bona spes est. Pro arcubus enim sumuntur sinus, qui sunt multo breviores.

Fol. 274 (390) Martialium summa sinuum 45 est 171346716

90 — 578943140. Si 578...dat 142, quid 1713...? R. 42', optime convenit.

Creari ellipsin inde constat, quod iidem sinus, qui in circulo, etiam in has figura ordinantur. Modus computandi fere hic esse videtur, ut sicut se habet sinus totus in 90° ductus ad 2° 21', ita se habet sinus temporarius in suum arcum ductus ad portionem temporariam. Nam spatia ellipsium integra sunt ad invicem ut rectangula diametrorum, sic et dimidia. Cur non et relique? Proba aequipollentiam in nostro exemplo. $90 \times 100000 = 9000000, 45.70711 = 3181995$. Si ergo 9000000 fit 142, quid 3181995? - 50' paulo aliter. Forte non est ellipsis, sed ductior quam ellipsis et acuminata, neque tamen hyperbole, sed incipiens ab hyperbole, desinens in ellipsi. Haec quominus perfecte credam, unicum obstat, quod anno 1588, in eclipsi Lunae deprehenditur motus horarius 40.

De Lunae hypothesi. 26. Sept. 1602.

Postquam in Marte successit demonstratumque, quod duabus vehator virtatibus: communi ex Sole eaque inaequali, et propria, in se aequali, cer-

tem jam et de Lena, qued ad minimum tribus vehatur. Consentaneum una ex . Sole, secunda ex Terra, tertia in se. Sed tamen, quid si duas in se haberet? (ut Terra ipsa habet unam rotandi sese, alteram faciendi gyrum apogaei, in cujus compensationem Luna non rotat.) Videmur in phaenomenis consentanea dicturi, si tribuamus diametro sane ut hactenus vim majorem, at distantias \mathfrak{D} a Sole dicamus ita confici aequalibus temporibus, ut distantias suas Mars conficit. Tunc sane suas a Terra eadem vis conficiet. His positis hoc sequitur, ab \mathscr{S} in octantes augeri distantias a Terra, in quadraturis pene coincidere. Nam cito transit \mathfrak{D} in \mathscr{S} , vi extrema Solis promota. Parum igitur ad Solem accedit, utpote in parvo tempore. Quodsi multum distat, diu igitur movetur. At initio positum cito transire. Falsum igitur. Nisi dicas cito transire ratione moduli ex Sole, tarde ratione moduli ex Terra.

Exorsi igitur non a sensu, sed ab analogia magis, dicamus, tres illas virtates esse in Sole, Terra, Luna; in sola Luna aequabilem, in Terra ratione annua variabilem in sese, et variabilem respectu Lunae a Terra ascendentis et descendentis; in Sole variabilem ratione accessus et recessus Lunae et in apogaeo et in orbe et in ratione diametri. Primae modus est unus, secundae 2, tertiae 4, (ut 29 ad 30, ut 8 ad 10). Haec enim possunt esse suspiciones. Sed nihil in tertia videtur considerari debere modus tertius (si tertius nihil, ergo nec primus, nec secundus). Nam restitutio insequalitatis est dupla ad distantiarum circuitum : celeris est enim Luna tam in d'quam in 8. In secundo vero celeritas illa puto non est animadvertibilis. (Quare neque tertiae primus?) Considerandum est ergo in tertiae modo quarto, quae sit ejus genuina causa. 'An vere vis in diametro velocior? An est ita quadraturarum retardatio plane non ex Sole, sed ex majore distantia a Terra? Et distantiae variatio ibidem aliunde. At contra Luna potius propius Terram venit, quia crescit ejus latitudo. Sed sit illa variatio latitudinis sane aliunde (forte, quod eadem est proportio totius latitudinis ad hunc excessum, quae orbis Terrae ad orbem Lunae). Jam vide, quid sequatur in longitudinem et apogaeum? Idem nempe, quod jam pridem, dum consideravi sinus elongationis a diametro. Nam si tota distantia) a () foenerat, portio eccentricitatis non nisi in proportione foenerabit, parum nempe. Nam illud jam pridem sciebam, et si perpendas, ut Tycho dixit, augeri eccentricitatem in quadraturis, quasi ellipsin tendas a 🗌 in 🛄, et apogaeitatem proportionaliter augeas.

Nota haec. In quadraturis distantiae sunt semidiametrorum 54, 60, sc. $\frac{1}{10}$ de majori. Si 57 fit 100000, quid 3? — 5263. Subtendit 3° 1', duplum 6° 2', tanta non est aequatio Lunae oppositionalis. Sed insensibili juvatur, ut prodeat aequatio oppositionalis, ut si sint distantiae 55, 60. Ita si sint 53, 60, prodibit justus modulus aequationis quadrantalis. Eadem igitur est distantia in quadraturis ex observatione, et ϑ ex. ratiocinatione physica simplici. Nec in varianda eccentricitate) plus integra Terrae diametro opus habemus, ut physica simplici ratio-cinatione utramque aequationis quantitatem servemus.

In aliis de Luna foliis sic statui. Vere decedere aliquid Lunae motui, accedere tempori, cum e diametro Solis egreditur (esto causa, quod inaequalem et transversam ceteris sideribus viam currit). Ibi sequitur, quod semilunula eccentricitatis sit ad quartam circuli plani, ut 5 ad 90, pars $\frac{1}{10}$. Sed praesupponitur hic, quadrantem et lunulam proportionaliter increscere. Nam concentricus quadrans haberet 90 temporis. At eccentricus habet $97^{1}/_{2}$, de quo $2^{1}/_{3}$ debetur eccentricitati. Repetam hanc considerationem. Esto, ut virtus, quae est ab approximatione diametri \odot , aequali proportione spargatur in lunulam et in quadrantem. Erit vere proportio lunulae ad quadrantem ut 1 ad 18. Lunula est quadrans, misms segmento, cui ademtum est parallelogrammum eccentricitatis.

Horarius hypotheseos Tychonicae.

Nota, horarium Tychonis prodere omnino eccentricitatem illam, quae reddit aequationes quadrantales.

Credibile est igitur, Lunae virtutem esse magneticam, quae axem porrigat in longitudines medias. Cum igitur Tellus convertat Lunam remissios in quadris, Luna in quadris diu moratur. Cum ergo apsidum linea est id diametro, axis in quadris tendit ad Terram, fuga et persecutio fit fortis, pervasio fit alta.

Et nota, cum jam ante species corporum stabiliantur, quae omnino fortes sunt in illo sudo et immateriato aethere, non opus videtur positione magneticae virtutis in () et 5 motoribus: sufficit moveri, nam sicut cum specie carbonis exit species lucis, ut accidentis, ita cum specie Telluris exit species motus. At in motis pro eccentricitate omnino ponendus magneticus vigor.

Jam considerandum, an discessio e diametro proportionetur angulis vigorum mensoribus. Et videtur. An autem maneat ellipsis? Nescio. Videtur tamen et hoc in hoc casu, ubi apsidum linea coincidit cum diametro. Nam paulatim crescit utrumque, et ubi parum ascendit, celeriter transvolat, h. e. parum moratur.

Considera et alterum casum, si linea apsidum in quadris, tunc axis parallelos est diametro. Certe difficile contradicere, facile credere : et hic manere ellipsin.

Hoc unum restat quaerendum, an dicta Tychoni variatio quantitate sus sufficiat moris ad tantum ascensum necessariis? At quis metietur? Quibus principiis?

De physica hypothesi Lunae.

Ponatur hoc: volutionem Terrae circa axem conciliare Lunae motum circa Terram: illam vero virtutem Telluris adjuvari in movenda Luna a virtute Solis; quatenus quidem species'immateriatae Solis et Telluris lineas motuum describunt parallelas. Ubi vero se secant ad rectos, ibi nullum esse adjumentum ex Sole. Videamus, an quid opponi possit huic hypothesi. Cum igitur adjumenti mensura statuatur in angulis linearum, virtus vero angulorum insit in eorum sinibus, considera, quod in quadraturis angulus rectus sit; adjumentum nullum, recti vero sinus totus, residuum itidem nultum. Circa quadraturas angulus recto propinquus habet diu sinum non multo minorem toto, residua ad totum sinum parva, adjumentam etiam parvum. In copulis linearum angulus nullus, sinus nullus, residuum sinus totus, adjumentum maximum. Post copulam anguli orientis sinus subito crescunt, residua subito decrescunt, ut et adjumenta. Sunt ergo colligenda residua sinuma

is unam summam, ut acque valeat hacc toti adjumento. Quodsi ergo nibil est de adjumento in quadraturis, ibi igitur sincera erit virtus solius Telluris. Quare accipiendus erit motus horarius in anomalia 90° et quadrato Solis.

Computetur hic horarius Lunae. Primo propter aequationem sive copularum sive quadrarum in anomalia 90 manet horarius aequalis mediocri. Est vero mediocris 30' 29". Jam variatio uni gradui aufert 1' 26", ergo huic horario auferet 44" circiter. Itaque horarius quadrarum spoliatus adjumento ex Sole relinquitur 29' 45". Quodsi in horas singulas abselveretur de Luna arcus 29' 45" aequaliter, in bihorio 59" 30", in 3 : 1° 29' 15", in 6 : 2° 58' 30", in 12 : 5° 57', in uno die 11° 54', tricesima pars orbis, minus 1/10°. In 30 diebus integer orbis minus 3°. Ergo in 30 d. 6 h. 3' totus orbis. Nimirum adjuvaret Sol circ. 9° uno mense, et in quarta 2° 15'. Cum autem in una quarta eccentricitas menstrua de 90 possit retardare 2° 30', perparum erit, quod de hoc 2° 15' retardare possit.

Etsi igitur valet haec hypothesis pro variatione Tychoni dicta, non tamen valet pro augmento aequationis, quod ipsum majus est hoc toto.

Neque sana sunt, quae d. 8. Nov. 1601 disputavi, quod centrum aequantis a centro eccentrici in quadra sit duplo altius. Nam aequantis causa inest in ipso corpore motoris. At concipi mente non potest, qui Terra Lunam, in linea O O versantam, tardius apogaeam incitet, si illa non absit longius, velocius perigaeam, si non absistat brevius. Nisi forte inhabilitas in ipso corpore Lunae sit in apogaeo versantis alia, quam si alia esset anomalia; quod incredibile est nec mente concipi potest. Restat igitur ut dicamus, Lunam insita vi corporis, cum in Terram $\partial igoromor$ porrigit diametrum, valentiorem esse et sic eccentricitatem causari majorem.

21. Apr. 1616.

Ut recte contempleris variationem, diduc eam per sinus. Nam si sinus tetus valet 2° 15', dimidius valebit 1° $7\frac{1}{2}$ '.

Omnino differemus a Braheo, si variationem retulerimus ad naturam. Nam si naturalis est causa variationis, dispensari debet sinibus versis distantiae a quadris; quod attinet vires in momentis singulis. At versi initio notabiliter, fine insensibiliter decrescunt, cum variatio Braheana aequaliter incipiat desinatque. Maxima igitur erit variatio non in 45° sed in 30°. Addantur in unum, primo sinus totus seu sinus vers. quadrantis, deinde ceteri.

Ex Martialium p. 211 (335): sit tangens 89° = 5729869 secans 5728996

11458865. Si haec summa valet 2° 15', quid 100000? quid 15? — 1) 4' 42"; 2) non unum secundum. Variatio igitur 4' 7". Si 10 dat 55. 53 (60 — 4' 7"), quid 30. 29? — 28' 24", in quadris mediocris; 32' 35" in copulis mediocris. Haec res videur eclipses () et) turbatura.

Videtur simplicior et verisimilior ratio, ut ipsa summa omnium virtutum mensuretur a sinu ejusque locis, et virtutes in momentis acquiparentur differentiis sinuum. Tum si 100000 valet 135', quid 1745 et quid 15? — 2' 22" et 1" 12". Centies vicesima pars est incrementum finale incrementi initialis, cum in Braheo sit acquale.

Vide, an multo diversum prodeat, si colligamus sinus parallelos diametro, seu sinus distantiae a copula, sic ut quilibet sinus valeat vires momentorum, summa opus confectum. Si 5729432 valet 135, quid 100000? — 2,36; et quid 1745? — Hic initium plane idem, finis habet incrementum 2" 30", quasi $\frac{1}{60}$ initialis. Si 30 praecise

De Lúna.

diebus rediret ad \odot Luna, horarius esset 30'. Hoc est, si $\frac{30}{365^{1/4}}$ anni. At si 300 dat 30, 12 dat 1, quid $365^{1/4}$; $-30^{1/1}$, sunt 30 d. 10 h. 30'.

For ut natura dederit viribus Terrae puras revolutiones 360, Lunae 12, venientes a puris Terrae revolutionibus; Sol vero incitationibus suis efficiat alias Terrae 5¹/₄. Tune si 360 dant 12, quid 5¹/₄? $-\frac{63}{360}$. Terra ad fixas 361^{ies},) ad fixas 13^{ies}. Sed \odot addit in $\circlearrowright 5^{1}/_{4}$. Si 361 dant 13, quid 5¹/₄? $-\frac{273}{1444} = 68^{\circ}$ 3' 39". Ergo Luna ultra 13 revolutiones sub fixis agitar per 68° 3' 39" a Terra; a \bigcirc per 5° 40' 18", restant 62° 23' 21" an. 365d 4s 9° 37' 23"

	0ª	J.	Z.	οz					
		ς.		28					
	4.	12.	40.	43					
	2.	8.	3.	39					-
-	2.	4.	37.	4	<u> </u>	•			
		64.	37.	- 4	incitatio	6 X	Θ	sub	fizis.
2,	guid	64.	37.	- 4	?				

Haec reduc ad () sic: 13 dant 12, quid 64. 37. 4?

pars 1/42 5: 23. 5

a 💿 59. 14

Si ergo Terrae gyratio non incitaretur a Sole, in anno gyraretur 360^{ies}, et circumferret Lunam 12^{ies}. Sed quia incitatur a Sole, in hac proportione circumferret Lunam amplius per 63 gradus. Residuum usque ad 2^s 12° 40′ 14″, sc. 69° 40′ 14″ incitat Sel Lunam. Divide residuum 69° 40′ 14″ in revolutiones 12 et gradus 63. Si 1. 13. 3 dat 69. 40. 14, quid 1. 30? — 1° 25′ 50″.

Promovet ergo Sol Lunam in anno per 59° 14', id est in revolutionibus) circa O 12 et 62° 23' 21''; quid accedit uni gradui seu 2 horis? quid uni quadrae, quid uni revolutioni ad O? 1. 12. 2. 23. 21

1. 13. 2. 23. 21.

Eo igitur tempore, quo de Luna volvendi essent 90, revolvuntur 91° 25' 50", nimirum in 7¹/, diebus. Horarius enim sine incitatione \odot manet hic 30". Et quis in 2 horis gradus esset revolvendus, igitur in 2 primis horis a copula ultra gradum revolvitur 1° 1' 29", in hora 30' 44'/₃".

Haec incitatio dupliciter variatur, primo propter apogaeum .), deinde propter aphelium \mathcal{T} . Illa variatio sic comparata est secundum meam intentionem, ut incipiat a linea ex \odot per centrum eccentrici): quadrans a puncto contactus eccentrici), superiores igitur quadrantes, qui sunt longiores, plus etiam incitantur, cuilibet gradui competit modulus incitationis aequalis, sive supra sive infra sit modo in aequali propinquitate ad lineam per centrum eccentrici; durat autem incitatio usque ad punctum contactus. Ut si orbis) est $\frac{1}{200}$ orbis \odot , durat incitatio superius usque ad 92° 52' utrinque, inferius ad 87° 8' utrinque. Sed nec linea per centrum eccentrici recte secat eclipticam nisi in 4 locis, nec puncta contactuum manent eadem, propius n. coeunt, si $\overset{\circ}{\mathbb{T}}$ in perihelio. Et fortasse fortior est incitatio in inferiori semicirculo, quamvis contrarium speciei motrici.

Quodsi dat 100000 in horam proxime copulam 44⁴/s, quid 101800? — 3⁴/s. (?) In apogaeo 3'. Vide quid sequatur in distantiam a copula 30, 45, 60? Summa sinuum 179 semicirculi est 11458865 valetque 141, quid 2° 51' 40"?

Summa sin. 30 79259831 × 8503	45 171346716 . 8503	$\frac{60}{290801743 \cdot 8503} = 21$
$\frac{11458865}{11458865} = 58$	$; \frac{1145}{1145} = 12;$	1145
8	30. 9. 18 8	5
	9	45. 21' 29" 7
•		60. 43. 34
30. 11. 52	45. 25. 40 60. 43. 34	91. 25. 50
30. 14. 18 35. 4	45. 42. 55 60. 28. 37 40. 29 20. 6	91. 25. 50 • 0. 0

De Luna.

Hinc apparet, non posse me quadrante praestare, quod Braheus praestat semicirculo. Oportet ergo ab observationibus esse munitos, ut sciamus, non tantum velocem esse diurnum in copulis, sed etiam tardum in quadraturis.

Consideratio tertiae partis aequationis temporis. Anno 1616.

Cum Tellus interim, dum sub idem fixarum punctum circa Solem restitnitur, circa suum axem volvatur 365^{iso} cum quarta paulo amplius (cujus argumentum sunt 6^h 9') volvatur vero virtute propria tantum 360^{iso} , reliquae volutiones 5 h. 6. 9' seu horae 126. 9' h. e. 2' 6° 9' sint ex promotione Solari, et varietur haec Solaris promotio cum distantiis Solis a Terra, ut non tanta sit ubi Terra multum distat, quanta est ubi Terra parum distat, sicut ratio distantiarum in promotjonum modulis permutetur, et sicut se habet aphelia distantia ad periheliam, sic se habeat perihelius promotionis modulus ad aphelium et vicissim (cum ubi tarda promotio, ibi longa mora), sic etiam se habeat mora apogaea in aequali modulo promoti itineris ad moram perigeam : promotionis igitur totius, quae facit horas 2' 6° 9', summa sic dividetur inter semicirculos anomaliae coaequatae Solis, sicut dividitur summa distantiarum omnium graduum integrorum anomaliae eccentri inter arcus eccentri, respondentes anomaliae coaequatae.

At distantiarum dictarum summa sic dividitur inter semicirculos anomaliae coaequatae, sicut dividitur planum eccentrici a linea per Terram in terminos semicirculorum anomaliae coaequatae ducta, qui termini quadrante distant ab apsidibus. Causa est, quia non tantum plures sunt in arcu superiori, sed etiam longiores. Pro eo igitur, quod plures sunt distantiae in arcu superiori, habemus plures etiam sectores, pro eo vero quod longiores, habemus triangulum, quod cum sectoribus constituit planum superius. Planum igitur eccentrici dividitur a linea per Terram et per $6^{\circ} \Upsilon$, \simeq in partes has: $184^{\circ}7'32''$ (quanta illi semicirculo anomaliae coaeq. respondet anomalia media) et $175^{\circ}52'28''$. Si ergo planum totum 360 vel 6' valet 2' 6° 9' promotionem totam, quid valet pars plani $184^{\circ}7'32''$ seu 3' 4° 7' 32''? patet quod 3' valeat 1' 3° 4' 30'' horas; residuum 4° 7' 32'' $\times 2' 6^{\circ} 9': 6' = 1^{\circ} 26' 44'' 23''' 18''''.$

Itaque in uno quolibet quadrante superiori haec pars aequationis efficeret scrupula horae 43' 22" addenda, sic ut is tanto esset tardior, quam horae 1' 3° 4' 30" (et revolutiones 92. 3. 44). — Veruntamen hic oculi sunt aperiendi. Nam. haec 43' 22" minuta temporis diximus addenda ob promotionem Solarem quadrantis superioris ob duas causas: 1) quia major arcus, 2) quia longius distat, h. e. quia plus temporis unicuilibet gradui competit. Atque etiam vulgo, cum totum compositum tempus ex 360 et ex 5. h. 6. 9' distribuimus inter semicirculos anomaliae coaequatae, tunc üsdem utimur causis. Quare possit alicui videri, nos hac separata divisione dierum 5. h. 6. 9' nihil novi facere? Respondeo, omnino dissimilitudinem esse. Cum enim tempus compositum d. 365. h. 6. 9' dividitur, omnes revolutiones ponuntur. aequales esse tempore; cum vero seorsim dividuntur d. 5. h. 6. 9', hoc ipsum quaeritur, quanto sint pauciores horae, quae superiori arcui competunt, sc. quanto tardiores revolutiones.

De Luna.

Discussa hac objectione jam tanto facilius etiam aliam expedimus cautionem, et corrigimus aut confirmamus inceptum. Verum est, quod proportio partium plani composita sit ex proportionibus duabus, una arcuum eccentri, altera distantiarum. At prius elementum non minuit numerum horarum promotionis Solaris, sed auget, posterius vero minuit, quia revolutiones ipsas totas 24 horarum prolongat in tempore. Ac cum sint elementa proportionis compositae aequalia proxime, sed altera directa, altera permutata, ergo valet compensatio, gignens proportionem aequalitatis. Itaque arcubus tam superioribus quam inferioribus competunt dimidia promotionis Solaris; sc. 1' 3° 4' 30". Ergo per arcum superiorem contingunt revolutiones 184. 7. 32, i. e. h. 3. 0' 48", et h. 1' 3° 4' 30" i. e. revol. 2. h. 15. 4' 30" junctim rev. 186. h. 18. 5' 18". At via usitata et simplici:

360° an. med.: 365. 6. 9 dies = 184° 7. 32 an. med.:?

6 : 6. 5. 15. 22. $30 = 3^{\circ} 4^{\circ} 7' 32''$:?

Resp.: 3. 6. 48. 50. 5. 58. 15 = 186. h. 19. 32. 2. 23. 18 - 186. h. 18. 5. 18 = 1. 26. 44. 23. 18

Dim. 43. 22. 11. 39.

Revertimur etiam sic ad numeros priores, sc. quia totum, quo superior plani pars abundat, detrahimus promotioni, quae competit superiori semicirculo anomaliae coaequatae secundum viam usitatam. Ergo amplius considera, an hoc fiat recte. Cum numerus revolutionum 365 etc. dividitur inter semicirculos anomaliae coaeq., tunc vi hujus divisionis dividuntur etiam sopernumerariae eadem proportione, ut detur superiori h. 1' 4° 31' 14", secundum proportionem partium plani : poniturque, quod quanto longius distet pars a Sole, tanto etiam plures horas aequales de Solari quidem proportione Terra in eo moretur. At quia jam supponimus, quanto plus pars distet, tanto etiam lentiores esse horas, quanto igitur plures esse debebant horae aequales, tanto lentiores sunt horae inaequales de promotione quidem Solari. Quanto lentiores vero, tanto et pauciores. Ergo quanto plures esse debebant aequales, tanto pauciores sunt inaequales, quam aequales. Admetiri igitur debemus arcni eccentrici horas de promotione Solari proportionali numero, sed inaequales. Nihil attinet haec inaequalitas horarum ipsins eccentrici arcuum inaequalitatem, et fit per accidens, ut et numero et temporis aequalis summa illis respondeant. Cum ergo unam causam remittimus. distantiam sc. alteram retinemus, quantitatem arcus, dimidiamas omnino suprapositam summulam differentiae.

Ergo arcus eccentrici, respondens quadranti coaequatae superiori est $91^{\circ}1'53''$. Si totus eccentricus 360 valet numerum horarum inaequalium 2'6°9', quid 1. 1. 53 ? R.: 21'41'' 5''' 50''''. Ergo de promotione Solari respondent arcui eccentrici 1. 3. 47. 52 (21'41'' 5''' 50'''' + 31° 32'15'' (quarta promotionis Solaris) = 31° 53' 56'', dupl.: 1. 3. 47. 52). At anomaliae mediae h. 1. 4. 31. 14 dist arcus superioris 43. 22; pro quadrante dim. 21. 41. Porro numerus minutoram horariorum est pars tertia et sexagesima numeri minutorum aequationis eccentri. Ecce: 1. 1. 53 acq. ecc. Itaque ex minutis aequationis eccentri facile tempus

 20. 38
 Tertia
 hujus tertiae partis acquationis habetur.

 1. 2 sexages.
 21. 40.

Comparatio Variationis et hujus aequationis temporis.

Terra suum ipsius corpus volvit cominus, Lunam circumagit eminus per speciem sui corporis rotatam. In utroque opere Sol mittit illi suppetias, sed quibus illa utitur arbitratu suo.

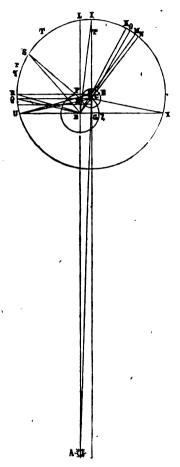
Convenientissimum esset, si ut 360 ad 12, sic 5^d h. 6. 9' essent ad $^{133}/_{160}$, quantum Luna currit ultra 12 revolutiones in anno. At non est ita 5¹/₈ ad $^{11}/_{30}$, i. e. $^{21}/_{8}$ ad $^{11}/_{30}$ vel $^{216}/_{60}$ ad $^{22}/_{60}$. Nam illa amplius duplo est major hac.

Ergo summa adjumenti Solaris ad volutionem Terrae non causatur variationis effectus summam, sed sunt isti duo effectus separati ab invicem dimensionibus. Deinde sunt et modis separati motus. Variatio intenditur et remittitur totaliter menstruatim, prout Luna in diametro luminum fuerit, volutionis incitatio continua est magis, nec nisi parum remittit annuatim. Tertio et causis distinguntur. Virtutem volvendi corpus proprium Sol confortat in Terra per tenuitatem vel densitatem suae speciei : at virtutem circumagendi Lunam Sol confortat in Terra per figuram illuminationis Terrae, et vere per figuram, non per quantitatem circuli, qui insensibiliter variatur : sed neque per fortitudinem vel debilitatem illuminationis. Nam cum variatio praestet gradus 132, praestaret igitur in 6 revolutionibus aestivis per 90^{am} et hujns 30^{am} minus quam dim. 66, quia aequatio eccentri maxima est 1° 1' 53". Eadem n. est proportio quadrantis ad simplam aequationem, quae semicirculi ad duplam : 90:66 = 1° 1' 53" : x: 45' 22" 52"'.

Igitar in semestri aestivo per 45' 22" minus colligeremas in variatione. Id vero non apparet; potius enim per 10' plus observamus. Ergo non per fortitudinem illuminationis Sol confortat Terram in volvenda Luna.

Contra per figuram confortari patet ex modo, quia ubi disci species apparens evanescit, ibi et confortatio nulla, utcunque fortiter Terra illuminetur. Superest unica objectio, si Terra movet Lunam per speciem corporis moti, quippe in plagam eandem, annon et per speciem celeritatis moveat celeriter vel tarde. Non hoe quaero, an species haec celeritatis vel tarditatis recipiatur in mentem motoris, ut is eam in motu Lunae exprimat, alias vincered totum assem aut certe nunquam sineret Lunam tardiorem velociorem fieri suis legibus, materialis mihi species in animo est, quae necessitate materiali agat, quae ipsa sit Lunae motor, quae debilitetur attenuatione in latum, non debilitetur attenuatione in longum, compensatione facta attenuationis per laxiorem particulam ambitus, aeque celerem.

Quae hic causa esse possit, cur, cum movendi munus reliquum celeritate sua dispenset, non etiam agat pro celeritatis hibernae et tarditatis aestivae modulis? Praesertim cum ex numeris appareat, superfluos 12° Lunae annaos etiam a 360 volutionibus Terrae pendere, non tamen a superfluis 5¹/₄ revolutionibus, quae inaequales ponuntor? Dicendumne, tarditatem speciei compensari tempore longiori, ut tanto sit efficacior quilibet radius (cum latitudine sumtus, ut sector globi) quanto diutius movet, seu quanto diutius tenet Lunam: quod non esset, si totum assem vinceret, tunc enim idem radius semper teneret Lunam, itaque Luna necessario tam celeris vel tarda esset, quam Terra. Nec potuit idem dici de Lunae ipsius tarditate apogaea: quia tunc non est idem radius, quippe tenuior secundum latitudinem, nor idem ut sector globi, sed tamen idem ut sector circuli: et quia pondu Lunae gravius. —


A d haec respondeo 11. Apr. 1620: Terra specie corporis movet Lunam per 349, illuminatione per 11. Illa vis ex se ipsa est aequabilis, haec acceleratio sit sane inaequabilis, sicuti in ipsa Terra est inaequabilis. Cum autem aequatio temporis physica sit adhibenda 21' 41" pro totis

Kepleri Opera, III.

360, de ea 11 sint pars $\frac{1}{35}$, et hacc particula sequitur sane incitationem Telluris inaequalem, itaque tota particula sc. 39" remittenda de acquatione physica, ut maneat 21' 2". (21' 41" : 33 = 39)

Sit A Sol, B Terra, C centrum eccentrici Lunae in quadris, CE dimidium ipsius CB, libretur autem centrum eccentrici in DC diametro, quae sit ipsi AB parallela. Sit FC motus apogaei ab opposito Solis retrorsum, cujus sinus HC vel BG, qualium BC est sinus totus. Cum autem BC sit dupla ad CE, erit etiam. GC dupla ad CD, et centrum eccentrici hac vice in D. Qualium igitur BC est 100000, talium CG est sinus compl. FC, et DC ejus dimidium et tota DG sesqui. Erat vero BG sinus. Ut vero sinus ad sinum complementi, sic totus ad tangentem complementi. Ergo sesquitangens complementi FC quaesitus in tangentibus detegit angulum DBG, cujus compl. est FBD, motus apogaei verus. Pro eccentricitate BD nota: sicut GB sinus ad BC totum, sic totus ad secantem compl. ipsius FC. Rursum ut BG ad BD, sic totus ad secantem anguli DBG, complementi \angle FBD : per compositionem ergo, ut BG ad BC, BD, sic totus ad secantes complementorum. Dantur ergo ex secantibus BC et BD in eadem mensura. Atque BC debet esse 4362. Si erge BC numerus et secantibus valet 4362, quid BD numerus ex secantibus?

 Exemplum: Sit FC 30°, compl. 60°. Tang. 173205,

 sec. 200000.
 dim. $86602\frac{1}{16}$

 FBD = 21° 33' 13.
 sesq. 259807'/s,

 Tang. 68° 56' 57''; sec. 278383 × 4362 (BC) =

 12131.66, dim. 6066 (BD).

Ad probandum; an haec composita eccentricitas 6066 et motus apogaei inaequalis easdem exhibeat aequationes, quas elementa et motus apogaei simplex, maneat igitur haec dispositio

apogaei in 30° ante Solis oppositum. Primo sit Luna in apogaeo, erit aequatio prima 0, et cum sit per 30° ante Solis oppositum, erit ejus aequatio secunda talis. Cum enim Luna crescat appropinquans oppositioni, distantia \odot ab apogaeo.) 210° dat scrupula 51′ 58″ adjectoria. Et cum \odot sit vicinior perigaeo.), erge dist. D ab $\partial \odot 330°$ vel 30° dat aequationem menstruam 1° 12′ 35″; duc in 51′ 58″, aequatio 1° 2′ 32″, addenda per elementa aequationis. Per compositam vero aequationem, cum sit apogaeum in 21° 34′ ante $\partial \odot$ et D per 30°, ergo habet etiam aequationem adjiciendam. Quodsi simplex esset escentricitas 4362, aequatio esset 0° 44′. Si 4362 dat 44, quid 6066? — 61; ecce fere.

Sit vicissim \mathcal{I} in \mathcal{S} \odot , erit ejus acquatio secunda 0; prima vero sic habebitur: cum enim distet per 30° ab apogaeo acquabili, habebit acq. subt. 2° 23', nec ei quicquam adjicitur. Per compositam vero hypothesin' \mathcal{I} distans ab apogaeo inacquali per 21° 34', haberet per eccentricitatem 4362 : 1. 45 = 105. At si 4362 dat 105; quid 6066 ? 146 = 2' 26".

Consideratio hujus hypotheseos exactior.

Cum Luna est apogaea, tunc motu medio esset in N, at propter distantiam a Sole est in M, et hoc quidem loco promotior. Et cum DBC sit 8° 26', erit etiam KDM tantus; sed KDM est hic compl. anomaliae compositae; quaeritur aequatio MBN. Respondet anomaliae 8° 26' aequatio 41' 45", hic addenda. Et quia \odot distat ab apogaeo \supset 210°, scrupula longitudinis superiora sunt 46' 48", quae duc dimidiata in 41. 45, prodit 58. 2; ergo MBN vel DMB est ex composita eccentricitate 58' 2", igitur KBM est 7° 27' 58".

Quodsi) motu medio perrexerit 8° 26", veniet in K, et hic non egebit aequatione. Nam quantam habuisset aequationem subtrahendam in eccentricitate simplici, tantum est promota per elevationem centri ex C in D. Esset antem aequatio subtrahenda paulo minor quam 58' 2", ut apparet ex parallelis, scilicet, quia eccentricitas BC minor, quam BD. Est ergo attendendum, quando) motu medio sit in K. Auferendus sc. est hoc loco ∠DBC ab anomalia media, sive ei aequalis KDM. Ergo si fingas centrum in C, Lunam^o ponis in O, sin illud in D attollitur, Luna erit in K. Per anomaliam vero OCN ex eccentricitate simplici excerpitur COB subtractoria aequatio 41' 45". Itaque BO erit per 41' 45" anterius quam CO vel DK. Quare qui usurpat OCN h. e. KDM vel KBN pro OBN, ille dicit,

quod elevatio CD hac vice effecerit 41' 45".

Pone jam) in O. Posito igitur centro in C, anomalia PCN daret subtractoriam CPB, sed posito centro in D, anomalia non IDM sed IDK minor dabit aequationem DIB minorem, quamvis per eccentricitatem BD majorem.

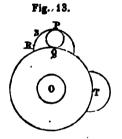

Artificialiter: Linea motus apogaei medii est BCN. Linea motus apogaei veri est DM. MDR est anomalia media ut et NCQ; MDK est aequatio anomaliae, KDR anomalia composita, DB eccentricitas composita, DRB aequatio longitudinis). Datur igitur BL, linea motus () veri, BCN linea motus apogaei) medii, NCQ anomalia media, ut et MDR. CQB aequatio simplex. Datur etiam DC, quae semper est dimidia ipsius HB, si CH perpendicularis, ergo per eam datur KDM vel DBC, quare et KDR, anomalia composita. Quodsi DB aequaret BC, tunc DBR esset aequatio simplex, sed quanto DB superat, fanto major est composita DRB.

Sit commutatio annus 2° 20° 46' 21", quae dat compositionem anomalize 4° 28' subt. Sit anomalia media 4° 20° 19' 24" (- 4° 28') == 4° 15° 51' 24" (- 3° 40' 42") ==

Ap. 6. 20	. 21. 25		1
11. 7			
Variatio	33. 11	l	
. 7	. 33. 18	<u>,</u>	
	Ap. 6. 20 Compos. add. 4 11. 7 Variatio	Ap. 6. 20. 21. 25 Compos. add. 4. 28 11. 7. 0. 7 Variatio 33. 11 7. 33. 18	Variatio 7. 33. 11 7. 33. 18

, Hypothesis Latitudinis.

Cum prima phasis nodum Ω spectat, inclinatio menstrua nulla est, inde prima phasis a nodo Ω it in consequentia, et simul celeriter, modulo sinuum, inclinatio oritur in plagam septentrionis, a qua denominatur, appropinquans phasi primae, limes boreus: denique tardissime modulo sinuum magnorum 42* consummatur inclinatio borea, cum phasis prima spectat limitem boreum. Tunc inclinationis planorum sectio eadem est cum sectione planorum latitudinis (i. e. orbita), concentricus) et ecliptica se secant eadem linea). At cum phasis prima digreditur a limite boreo, inclinatio limitis cognominis initio tarde remittit (quo naturae principio?). Tunc sectio eclipticae et orbitae) in consequentia transponitur (antea in antecedentia) crescente initio additamento, fine item decrescente.



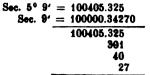
Sit AC eclipticae circulus, AB orbita ordinaria, CB menstrua. Est BAC 5^e perpetuo, ABC est inter 0^e 18' et 0^e 0' daturque, et AB est aequalis discessui phasis a limite; quaeritur AC promotio nodi ex BA et angulis A, B.

Cum jam phasis prima spectat nodum U, ab hoc puncto temporis oritur inclinatio in austrum iisdem legibus ut prius. Nunquam boreus semicirculus inclinatorius fit

austrinus, nec austrinus boreus, sed annuunt et abnuunt mediae orbitae semper lege parvorum sinuum, quoties vel appropinquant vel digredi incipiunt.

Triangulum convenit in Pitisco IV. proportionum axiomati per accidens (pro AB constituitur angulus ex complemento ipsius AB ad semicirculum) et quaeritur primo ACB, inde AC.

Sed quia triangulum parum abest a plano, possumus uti ut plano, ut 3 anguli ejus aequent 2 R. At cogita, triangula valde longa fieri. Propter difficultatem igitur transfer oculos ad polos. Sit O polus eclipticae, Q polus orbitae Lunae ordinariae, OQ 5^o. Sit QP 0^o 18'. Declinet jam alter circulus ab ordinario, sed ejus limes respectu ipsius digrediatur in consequentia, qui si non variaret inclinationem, efficeret quadrantem PSR, sed quia paulatim remittit lege sinuum, igitur pro R venit in Q. Et quia sinus omnes ordine disponuntur ab uno centro terminis alteris in vicinia qua-


drantis, videntur igitur facere circellum. Id sive sit sive non, certe dantur anguli SQO', et lineae SQ, QO. Erit ergo SO latitudo quovis tempore maxima et SOQ prosthaphaeresis.

Forma processus gemino exemplo. Discesserit () a nodo 1° 89°. 0٥ 0' 19" 50 Latus minus 0º 18' 0" 5° 0' 19"; sin. 85° 0' 19 = 99620,27 0. 18. 0 85. majus 5 99618,66 85. 18. 0 5º 18' 1,60 Sin. 85° 18' = 99663.7 84º 42' 80 Sin. 84° 42' = 99572,5 91,2 45,1 (45,6) Sin, anguli 179 : - 199984,77 × 45,1 = \$0,19313 99663,7 - 90,193 = 99573,5 = sin. 84. 42. 21Sin. $91: -101745, 24 \times 8, 02 = 813961, 92.$ 5. 17. 39 (Sin. 85° 19") 99620,272 - 0,8139 = 99619,458 = sin. 85°; compl. 5°. 1°) Compendiosius haec investigantur per secantes.

De Luni.

În gradu 45 maximus est cam angulus prosthaphaereticus, tum etiaîn diversitas inter istas et basin distantiae polorum. Nam ad 5° adde 9', ergo rectangulum sphaericum habet base latera : 5° 9' et 0° 9'.

100405.6687. Hic secans ostendit tantum

8" plus, ubi maxima differenția.

Ut vero 5° 9' 8" ad totum, ita 0° 9' 0" ad 1° 40' 14". In inferiore sunt paulo minores superioribus.

Etsi igitur subtensa seu basis tantulo semper est major, potest tamen toto contemni in computando, et scrupula proportionalia latitudinis possunt accommodari ex perfecta lege circuli; et quantitas 9' seu 540" distribui secundum sinus binorum integrorum graduum.

Hypothesis Lunae mutata. 9. Apr. 1620.

Cum eclipses Lanae (assumta parallaxi apogaea in anomalia soluta a priori) illae sc. quae fuerunt a. 1616 et 1620 videantur respuere eccentricitatem novam in copulis, cogitandum, utrum rationes physicae sic institui possint, ut ea careamus, retenta tamen duplici latitudine. Nam ut ab exemplo latitudinis caveamus, prius illud velitabimus. Si quis diceret, Lunam quidem excurrere in latum, ut facturam latitudines simplices, in lateribus vero appropinquare, ut angulus 5° appareat 5° 18'; Tang. compl. 5° = 1143005 primum haec appropinquatio superaret ipsam eccentricitatem, deinde consentaneum esset rationibus physicis, ut etiam acceleraretur; in quadris retardata est potius. Non est igitur angmentum latitudinis ex appropinquatione, sed est reale ex inclinatione seu libratione.

Igitur ad longitudinem. In schemate (N. 11) sequitur omnis noster effectus, si in hoc situ centri veri eccentrici, puta in C, computentur quidem aequationes eo mense simplices ex eccentricitate BC per angulum et aream trianguli. Menstrua vero computetur sic, ut in BL lineam copularum cadat ex.C centro eccentrici perpendicularis CH, et H sit centrum novi aequantis linearum BS, ut \angle SBL non valeat, nisi post accessionem temporis a \triangle BSH signati, quod ideo erit paulo minus in semicirculo crescentis vel senescentis, in quo non est apogaeum, quippe brevius, ita ut omnia haec triangula summam faciant minorem, quam omnia semicirculi oppositi senescentis vel crescentis) in quo est apogaeum: nec id injuria; cum ipsa per se tempora illius semicirculi etiam sine hac posteriori aequatione sint majora.

Cogitemus nunc de causis. Quomodo potest fieri retardatio sine elongatione a fonte? Sane elongatur : nam dividitur eccentricus a plano circuli illuminationis Terrae in 2 inaequalia. Quia ergo C est elongatum et a corpore Terrae quantitate BC, et a plano circuli illuminationis quantitate CG, h. e. quia fibra magnetica inclinatur et ad lineam ex Terra et ad lineam in plano illuminationis; elevata vero fuit super utrumque per solam fibram motu simplici, sed duorum respectnum; anatenus igitur simplex, dat unam partem acquationis, opticam, quatenus duorum respectuum, dat duas partes aequationis physicae. Sed quae causa, quod tantundem facit elevatio super corpus, quam super circulum illuminationis? An circulo toti tantundem virium est, quantum Terrae ut corpori? Cur ergo non etiam trahit circulus. quia ponimus eccentricitatem nullam novam fieri? An tractio corporum affectus est, incitatio etiam luminis, sane quia per speciem corporis emanantem, ut et lumen est species? Illa vero tractio est per cognationem internam. Incitat igitur lumen Telluris, prout vel cavitas vel gibbus ab exilitate lineae in amplitudinem ellipticam et denique circularem excrescit. Diceres, incitationem fieri pro ratione phaseos, ut quia in dimidia illuminatione simplex est incitatio, igitur in plena Luna est dupla, et quia in dimidia obscura simplex, in tota igitur obscura dupla. Nam accrescit dimidium eadem proportione, qua duplum, id est linea per totas ellipses in totum circulum. At obstat hoc dicturo, quod, si obscurae vim tribuo luminosae aequalem, semper igitar cornu obscurum cum gibbo luminoso, et vicissim cornu luminosum cum gibbosae facie obscura faciunt totum circulum. Non igitur ratione duplicati vel luminis vel obscuri conspectus provenit duplicata retardatio, sed ratione inclinationis circuli illuminationis, plane ut in variatione.

An idem sit negotium variationis et nutus? Idem quidem circellus utilis est, in incrementis quidem, sinus FB, CG, in effectu vero BG vel HC: idem etiam circulus illuminationis utrique mensuram praebet eodem modo, nam totus circulus valet in incrementis sinum FB, in effectu nibil, quippe principium, sicut etiam in nutu, ubi totus est circulus illuminationis, ibi apogaeum est aequatio nulla, incrementa maxima. At vicissim haec est differentia, quod in nutu distantia) a $\overset{}{\bigcirc}$ partes capit, ut de integris 360; in variatione vero partes aliter capi non possent, quam de 11° minus: aut si maxime pro accumulatione sinuum 90 usurparemus sinus totos 90, non plane duplum fiet id, de quo partes caperet nutus. Quaerenda est igitur causa, cur in nutu circulus illuminationis valeat totum (vel dimidium fortasse), in variatione valeat minus quam 20°.

10. Apr. 1620.

Anne variatio deducitur a quadrato ipsius 19, quod est 361? quia non Terrae tantum illuminatio, sed etiam Lunae consideranda, agendumque per sinuum quadrata, ut major fiat motus in copulis, minor duratio eclipsium, quod postulant observationes.

Čomputa: Acceleratio quadrantis est 2° 40′ 59″ seu 9659″, sit 9660″. Igitur quadrata sinuum 90 valent hanc summam. Quis docebit nos colligere breviter quadrata sinuum? Extendatur quadrans in rectum cum suis sinibus. Videtur rectangulum confinere summam quadratorum sinuum. Facile fit periculum. Ang. 30° est $\frac{1}{3}$ de 90°, ejus sinus est $\frac{1}{2}$ de toto. At in rectangulo sinus pars abscissa erit etiam $\frac{1}{3}$, cum tamen quidem ejus sit $\frac{1}{4}$. Peccat igitur triangulum excessu. Sic agemus per logarithmos. Duplicabimus logarithmos omnium integrorum graduum quadrantis, cum iis excerpemus rumeros eosque addemus, inițio facto a maximo.

Praecise assequimur numerum 90 et prima summula est ultimae pars 45th. Si acceleratio 200000, quanta est in 1^o, sumeretur nonagies, prodiret 18000000, duplum summae ex 90 inaequalibus collectae, quia semper duo,

ut 199970 et 30, item 199848 et 152 faciunt 200000. Est igitur merito praecise dupla acceleratio defectus Terrae.

15. Apr. 1620.

Causae, cur summa sagittarum fiat 90, et cur praestetur in qualitate idem, quod per epicyclium Tychonis libratorium, inveniuntur in epistola ad Maeatlinum hoc mense scripta (vide infra p. 676). In praesens tento ulterius conciliare variationem cum prosneusi. Nam etsi verum est, variatione considerata aestimari vim omnem, qua Sol adjuvat Terram in circumagenda Luna, duplo ejus quod nunc est: sc. $21^{1/2}$ °; at nondum divisa est variatio a prosneusi. Non enim aestimatur prosneusis vis seu illuminatio totalis 360°, si maxime toto mense totalis maneret. Sume ob id horarios fictos, id est, exstructos ab aequatione quadrantum, qui sunt 30' 14'' et 35' 57''. Si Luna circumiret in perigaeo, cursum absolveret in $600^{3/2}$, horis: si in apogaeo tunc in $714^{3/4}$ horis viam longiorem. Nam illa ad hanc esset, ut 95638 ad 104362. Et causa quidem viae longioris in apogaeo circumiret in 657 horis, itaque debilitatio adjicit 57 horas, quae sunt c. 28° .

Sed erit fortasse facilior consideratio distantiarum. Sicut enim 104362 ad 100000, sic est virtus mediocris ejusque effectus (detracto effectu variationis 10° 44') sc. 349° 16' ad virtutem debilem sen ejus effectum 334²/₅, diff. 14° 35'. Si ergo in apogaea virtute maneret, currens viam concentricam mediocrem, in unius mensis moderni tempore minus curreret per 14° 35'.

Esto jam proportio duplicata distantiarum ex eo fundamento, quod aequatio physica copularum est dupla physicae quadrarum, sitque ut 104362 ad 100000 bis, sic virtus mediocris in copulis ejusque effectus 360 ad virtutem debilem seu ejus effectum 335°, diff. 25°. Itaque si) in apogaea debilitate copulari curreret viam concentricam mediocrem', tunc in unico mensis moderni tempore minus curreret per 25°, pars dimidia $12^{1}/_{2}$. Currat etiam in laxiori circulo et triplicetur proportio, veniet effectus $316^{2}/_{3}$, diff. $43^{1}/_{3}$, pars tertia $14^{4}/_{9}$, cujus sesquialtera est $21^{1}/_{3}^{\circ}$. Cur ergo debilitatio illuminatoriae virtutis totaliter computata dat in prosneusi $14^{4}/_{9}$, in variatione $21^{2}/_{3}$? Considera, utrum vere diversi sint modi collectionis, ut ita in variatione dimidium collectum aequet id, quod in prosneusi colligitur? Sane in prosneusi fit collectio per sinus; nam incrementa suas habent mensuras in sinibus, summas vero sinuum metitur sagitta ultimi sinus (15,23). Sinus toti 90 sunt 90000.00, qualium primus est 1745. Sed sagitta 100000.00 valet omnes, qualium 15,23 valet primum 1745,24 fere.

Si ergo 15,23 valet 1745,24 quid valebit 100000,00? - 1146000000.

1745,24 - 15,23 - - - 872,66.

Si ergo 872,66 sumas 90^{iee} — 78539,40, simpliciter sic sinus toti 90 valent $14^{4}/_{0} = \frac{130}{3}$, quid 1745,24? — ($d\pi o \rho o \nu$). Si totus sumitur 90^{iee}, id ominino plus est, quam si 90 addantur toto mino-

Si totus sumitur 90⁴⁰⁵, id ominino plus est, quam si 90 addantur toto minores. Hanc summam velim scire.

16. Apr. 1620.

Imo valor maximi trianguli crescit non cum summa sinuum, sed cum eorum differentiis. Multiplica igitur sinum 1°, id est 1745,24 in 90 — 157071,60 dat 14%, quid 100000.0? Sequitur c. 9°, At in variatione sunt 10^s/a. Haec cum ab invicem non longe distent, quaeritur, utrum contemperari possint? Primum variationis quantitas est necessaria ex residuo 12 lunationum, atque illa testatur de proportione dupla accessionis in copulis, confirmat etiam proportionem duplam retardationis in copulis physicae ad physicam retardationem in quadris. Cum autem pars optica aequationis et partes physicae sint pene aequales inter se, videtur dari ex variatione eccentricitas his positis. Sit enim 1º motus) a 💿 medii in copulis auctus variatione sua, sic ut pro eo sumantur 1º 1' 47", utque hoc pacto colligatur ex omnibus variationibus 4 quadrantum summa 10° 44'. Quodsi etiam in prosneusi sinus totus colligit per 90 differentias, ex quibus componitur, summam 10° 44', quid colligit sinus unius gradus? - 2' 48" 35". Sit ergo ut 60' ad 62' 48" 35", sic 100000 ad 104683. Esset aequatio optica 2° 41', tota in copulis 8° 18' 10". Vicissim sit ut 100000 ad 104683. sic 60 ad 62.38, et quadrupletur 2.38, ut sit 10'32"; quodsi hoc datur a 1745.24, quid datur a toto? $-36213'' = 10^{\circ} 3' 33''$ pro variatione. - Quasi variatio etiam, ut proportionalitas dierum $3651_{a}'$, 360, $3541_{s}'$, non a toto residuo 132° 45', sed a diminuto deducenda sit. Nam si 360 dat 10° 3' 33", quid 12^{iee} 360 cum 132¹/₄° vel 1'14' 12° 45'? - 124° $25'; 132^{\circ} 45' - 124^{\circ} 25' = 8^{\circ} 20'.$

24. Aug. 1620.

Exerceamur. Si accumulentur quadrata sinuum 90 ad totidem gradus quadrantis, summa prodit 45^{pla} primi sinus. Atqui variatio primi gradus in quadrante est Tychoni 1' 26". Et quia tanta est et retardatio in gradu 90^{imo} quadrantis, qui est quadrae, dupla igitur erit acceleratio gradus primi, ut ita sit nulla in 90°. Ergo acceleratio erit 2' 52". Hoc sume 45^{imo} , erit summa accelerationis 2° 9' in uno quadrante, et 8° 36' in toto circulo. Quaeritur quantum accumuletur in anno sidereo, in.quo sunt Lunae 12 et 132° 45' de tredecima? 6` 0° dat 8. 36, quid 1`` 14` 12° 45'? Colliginus 1.0. 1.26. 1.14.12.45

106° 22' 16" 30", pro his datur nobis ex appendice illa 5 dierum anni 127°, ex appendice ad 12 lunationes 132° etc.

Jam in 1 mense synodico volvuntur de anomalia 385° 49' 0". Ergo gradui periodico respondent 0° 56" fere synodici. Si autem gradus primus synodicus habet variationem mea forma 2' 52", ergo 56' habebunt variationem 2' 40 '/₂". Tanta igitur competit gradui periodico. Hanc possumus comparare cum aequatione physica. Primum si 1' 26" colligam nonagies, ac si causa intentissima variationis operaretur toto circulo, tunc praecise duplum colligerem in toto circulo ejus, quod prius collegeram, sc. 17° 12', unde ablata ut prius parte 15^{ima}, restat 16° 3'. An igitur etiam causa aequationis physicae per totum circulum operari passa, efficiet 16° 3'? Aut quia perinde est, si cum unico primo gradu operemur, quia igitur acceleratur Luna in 1° periodico per 2' 40'/₂", an igitur etiam aequatio physica illius gradus est tanta? Sane ut 100000 ad 104362, sic 60' ad 62' 38"; en additamentum 2' 38", cum ibi sit 2' 40'/₂".

Igitur variatio Tychonica tanta est, quanta aequationis pars physica periodica. Quantum igitur Luna retardatur in apogaeo, tantum acceleratur in copulis, hoc videtur archetypicum, non vero necessitatis.

Hine jam facilis est comparatio cum acquatione menstrua. Nam in

mense turgido et pleno retardatio in apogaeo aequalis est retardationi menstruae, vel quia 56 synodici respondent periodicis 60, est igitur quindecima parte minor. Imo nihil hic agis. Nam synodici gradus aequatio etiam censenda est in gradibus et minutis synodicis. Igitur gradus unius primi aequatio physica est 2' 38", menstrua etiam 2' 38", at variatio 2' 52" Tychoni, at ex appendice 132 fit mihi 3' 34" 40"". Igitur physica quidem et menstrua teste experientia sunt aequales, at major est variatio.

Si major variatio, non igitur omnem incitationem exhaurit eccentricitas in apogaeo, nec plane duplicat in perigaeo, relinquit enim illic quartam et hic dat $\frac{1}{4}$. Dici sic posset: intervallo quidem medio 100000 etiam fortificari speciem motricem a lumine, at illi cum augmento vel diminutione intervalli accrescere compositum qu'il ex utraque causa, ut sic et Terrae et Solis ratione debilitetur vel confirmetur, forte ex aequo, at in mense turgente duplo aequationis physicae argui proportionem, quod sc. Sol duas partes, Terra unam faciat. Atque hoc est contra illos $132\frac{1}{4}$ °. Nota: 2.52 est ad 2.38 ut 11 ad 10. Quia igitur per 2' 52" colliginus in anno 106° 22', ergo per 2.38 colligemus 96° circiter. —

De latitudine Lunae in eclipsibus. 22. Martii 1626.

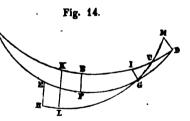
T. Brahe Progymn. T. I. f. 130. inserto de latitudine) in eclipsibus praecipit sic : Neque enim opus est longis ambagibus, ut alias, siquidem in plenilunio vero prosthaphaeresis nodorum nullam diversitatem inducat. Hoc idem et ego hactenus in computatione eclipsium cum angulo majori sum secutus feliciter. Sed cum prosthaphaeresis nodorum sit Tychoni menstrua, incipiens a copulis veris, mihi annus, incipiens ab obviatione 💿 🔉, hinc adeo sequitur, a me prosthaphaeresin nodorum negligi non posse, aut corrigendum esse praeceptum. Si adhibeo prosthaphaeresin nodorum in eclipsibus, magna sequitur ruina in eclipses partiales Solisque totales, ut in quibus plerumque penes nos Luna fit 3 scrupulis in austrum depressior. Est ergo pensiculandum praeceptum computandae latitudinis in Rudolphinis, et conferendum cam hypothesi physica. Primum hyp. physica Epitomes f. 620. plane consentit modo computandi, quem hactenus usurpavi in eclipsibus, ut et Tycho computat per suum angulum. Nam pono fibram latitudinis inclinari semper angulo 5°. Sed cum haec inclinatio est in copulis, tunc illam fortificari a lumine, ut fiat expulsio tanquam angulo 5º 18', quantum etiam Luna tunc assequitur in quadris. Itaque hoc habet hypothesis physica, latitudines provenire ex angulo 5° 0' vi fibrarum sola, sed vi luminis eas provenire ex angulo 5º 18'. Ne vero quis existimet, si angulus 5° est fibrarum ipsarum, propterea latitudines ipsis copulis provenire ex angulo 5°, quasi nihil adjutas lumine, propterea quia lumen a copulis incipiat. Secus enim se res habet. Computatio quidem incipit a copulis, sequens accumulationis adjumentorum leges. At lumen ampliat angulum toto eo tempore, quo Luna ex quadra per copulam in quadram transit, et ampliat illum pro modulo propinquitatis nodi ad copulam. Cum autem termini ecliptici excurrant usque ad 17° 19', in tanta remotione nodi a Sole latitudinis angulus fit 5° 17' 10". Etsi igitur Lunam totos 17° 19' pateremur a nodo evagari, latitudo ejus non majore modulo quam 15' fieret minor; cum vero eclipsationes non longius pateant a copula quam 1º 36', patet ob id non deteri plena 2" ulterius de latitudine in ipsa eclipsatione.

Jam igitur considera, an sit emendandum praeceptum Radolphinaram. Id jubet (etiam in ipsis copulis) distantiam) a nodo aequare per prosthaphaeresin nodorum contraria ratione, quam jubent tituli. Distet () a Ω per 17° 19'. Respondet prosthaphaeresis nodorum 55' 22", inclinatio limitis 17' 10". In copula ipsa distabit etiam ipsa) a Ω per 17° 19', ergo a vero nodo per 16° 23' 38". Per hanc correctam distantiam jubet me praeceptum excerpere latitudinem tanquam simplicem; excerpo per angulum 5° 18' — 1° 29' 25". Hujus quintam 17' 53" tanquam scrupula proportionalia jubet me multiplicare in inclinationem limitis 17' 10", prodit 5' 7"; hoc adjectum ad 1° 29' 25" dat 1° 34' 32". Atque ex tabula latitudinum eclipticarum per distantiam Lunae a nodi loco medio excerpo 1° 34' 52" ad unguem idem. Non est igitur opus emendatione praecepti alia, nisi solo vocabulo "simplicis". Non esset sane opus, si liceret uti angulo 5° 36'. Cum autem construxerim tabulam latitudinum Lunae compositam, operae pretium est videre, quomodo ea possimus uti.

Videmur igitur ingredi debere in fronte per dist. (•) a Ω , in margine per dist. (•) a Ω eodem medio, ut negligatur prosthaphaeresis. Vere boc. Nam quod Maginus utitur nodo aequato, id eodem redit, quia illi cum Tychone prosthaphaeresis nodi est menstrua. At contra: sie (enim) semper esset, latitudo composita major simplici, quod non est; igitur inutilis est mihi tabula ista, nisi aliter agamus.

Repetatur consideratio de corrigendo praecepto. Quando est aequatas nodus, tunc latitudo excerpitur minor, etiam illa, quae angulo 5º 18' erat excerpenda. Et quomodo tunc augebimus illam per inclinationem limitis? aut quo ex fundamento hypotheseos? Nequaquam igitur est adhibenda prosthaphaeresis nodi propter latitudinem, sed tantum propter nodum ipsum. Omnine totum hoc de aequatione nodi est remittendum hypothesi Tychonis, quae statuit illam menstruam. Latitudo illa, quae excerpitur simplex per locum nodi medium, intelligitar fieri super plano diversimodo ad eclipticam inclinato, in copulis existente nodo, valde, in quadris param. Interdum igitar hoc planum inclinatur nonnihil in austrum, eccentricus ea parte in boream, quando scilicet limes eccentrici austrinus est in illo menstrui semicirculo versus oppositum Solis, nodus descendens ultra Solem; tunc inter Solem et nodum Luna versante, diminuitur latitudo ex eccentrico per latitudinem menstruam. Id in hypothesi physica non videtur locum habere, sed sapit necessitatem solidorum ordium. Nam in hoc casa fibra in copulis non tangit eccentricum, sed secat inclinis versus Terram quadamtenus, et in bores transiens lineam copularum pergens ad nodum et eclipticam. An dicemus, etiam in hoc Lunam adjuvari a lumine, ut quorsum pergit, eo trudatur? Et in universum, an motus coelestes non loco sed viribus mensurentar et proportionentur, cum vires intensione et remissione aeque subjaceant quantitatibus? Itaque diceremus, quantum alias ratione spatii localis declinaret in latus alterutrum, tantum jam declinare per vires consumtas, eo modulo ad totas, quo modulo spatium est ad totum.

Quare praeceptum debet primo dare latitudinem super plano inclini, dein plani ipsius inclinationem; utramque per simplicem distantiam a nodo aequabili, illic Lunae, hic Solis.


Quaeritur antem, si formatur et prosthaphaeresis aliqua nodi et inclinatio limitis maxima, cur non etiam per ista possimus computare? Omnino etiam per ista computare possumus, si bene intelligamus hypothesin. Tetigi

autem hanc rem fol. 787 Epitomes. Cum nodus est in copulis, Luna angulo constanti excurrit in quadras ecque magno, estque iter ejus circulus perfectus. Cum limes in copulis, circulus iterum 'perfectus, sed angulus est minor; extra hos casus circulus non est perfectus. An hoc non est de reciprocatione nodi, sed tamen de variatione inclinationis limitum? Acceditne igitur altera jam causa ibi neglecta: quod etiam incipiens egredi a nodo angulo parvo, non pervenit tamen ad limitem nisi magno? An hoc Tychonico non est opus? Sed cum limites fiant 4 simplices, mixtura fit eorum in 2 compositos situ differentes, qui sunt quidem inter binos componentes, semper tamen propiores limitibus eccentrici, cujus major est inclinatio, quam semicirculorum menstruorum. Itaque inclinationes hae compositae, praeterquam Ω cum 💿 existente, semper sunt minores, quam quod componitur ex 5°0' et inclinatione maxima cujusque mensis. Quo nomine tabula illa latitudinis compositae non est utilis. Et hoc est illud, quod manu existat annotatum ad marginem fol. 821. Epitomes. Consistit quippe in hoc aequipollentia cum circello Tychonis, quae in simplici libratione semicirculi menstrui non habet locum, Tycho enim prodit inclinationem limitis intermedii.

Ex hac igitur resultatione alicujus limitis intermedii dependet etiam prosthaphaeresis nodi. Nam nodus aequatus quadrante distat a limite intermedio: est igitur et ipse inter Solem (ejusve oppositum) et nodum medium, semper propior nodo medio.

Cum igitur inclinatio limitis intermedii cum digressione Solis a nodo decrescat tardissime: hinc jam tandem apparet vitium praecepti, quod adhibet prosthaphaeresin nodorum. Distet enim \odot a nodo 18°, erit inclinatio menstrua 17' 7'' in limite menstruo (sin. 90°: sin. 18' = sin. 72°: sin. 17' 8''), sed in distantia limitis eccentrici a \odot 72° inclinatio est 16' 17'' (sin. 90°: sin. 17' 8'' = sin. 72°: sin. 16' 17''), itaque respondet angulus maximus 5° 16' 17'' fere. Probetur tamen; nam forte transversa fit major. Sit ABD ecliptica, A Sol,

AFD semicirculus menstruus, F limes menstruus, BF 17' 7", FE 18°, FG 72°. HG 90°. HE 5°. ergo CGD 5° et GD 18° et CDG 0° 17' 7", quaeritur GC, CD, BCH. Datur latus cum duobus angulis adjacentibus, quaeruntur duo reliqua latera et angulus oppositus. Invenitur ergo GCI vel KL inclinatio limitis intermedii 5° 17' 4" et CD 17. 0. 12. Nodorum prosth. 0. 59. 48, quia G est nodus medius, C verus. Et quia

D est locus copulae, et LGM orbita D, et CD ecliptica, sit ergo CDM rectus et C datus. Ut ergo sinus totus ad tangentem anguli C, sic sinus CD ad tang. DM latitudinem 1° 32' 57". 18' - 525220

57".		18′			5252 20	
GD =	18º	·			11743	
					642656	- 14
GI	80.	43.		• •		1.3
IGD	89.	42.	56	• •		1. 24
CGD	58.				,	1. 44
IGC	84.	42.	56	• • •		426.
. ICG	50	17'	4"		238488	426. 14
GD	18°	•			117486	460, 14
CGD	5°		•		244006	
					361442	
CD	17.	0.	12	Mesol.	122954	
ICG	5.	17.	4		238062	
DM	1.	82.	57	Mesol.	361016	-

Mira res; omnia repraesentat iste calculus, quae a tabulis repraesentantur, nimirum tantundem per GD 18°, MGD 5° et per CD 17° 0' 12", MCD 5° 17' 4", utroque modo DM 1° 32' 57".

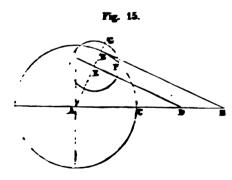
Omnino igitur videtur in copulis esse debere angulus pro ratione distantiae \odot a \Re magnus, at prosthaphaeresis nulla in copulis, sed tamen extra. Imo vide, quid in causa versetur. Hic enim calculus pollicetar exactissimam aequipollentiam cum Tychone, eoque latitudinem in eclipsibus aeque parvam ut Tychonis est, quantumvis praetendamus, angulum esse magnum. Est magnus, at propinquitas nodi tantum demit latitudini. Non solum autem hic calculus, sed et alter per compositionem latitudinis ex simplici et menstrua plane aequipollet Tychonico modo. Ergo omnino verum est, me extra ordinem magnas adhibere latitudines in copulis eclipticis. Eas tamen patiuntur etiamque desiderant omnes eclipses Lunares partiales, quae et majores vellent latitudines. Sed subvenit Tychonicis latitudinibus semidiameter umbrae parva ob causas opticas et ampliationem luminis Solis. Itaque nisi etiam Solares eclipses postulent magnas latitudines, causa haec patebit satis clare.

Examinatis aliquot Solaribus eclipsibus, patet omnino etiam illas desiderare magnum angulum. Quodsi volumus defendere latitudines Tychonis in octantibus et angulum nihilominus magnum in eclipsibus, oportet tamen,) in Ω in octantibus versante, uti prosthaphaeresi; pro dispertiendo vero illo augmento copulari 18 sc. oportet inifio quidem illam navaonsvny orbium, quae inclinationes reddit, fundamenti loco ponere, at deinde arcus a copulis inceptos oportet respectu hujus augmenti longos censeri; ut sicut vigor promovens) per copulas in longum est validus, sic etiam idem vigor inferens latitudinibus hoc augmentum tam in augenda quam in minuenda sit validus. Et omnino sicut est variatio (dupla) 81 ad 2º 9' vel 129, totum quod ex Sole est, sic erit quodlibet augmentum ad totum 18. i. e. distribuetur hoc augmentum 18', vel quantum requirit inclinatio limitis, in proportione sinuum duplicata. Et videtur eatiem esse proportio prosth. Sed sic agamus. Primi gradus variatio est 1' 26", duplam nodorum. 2' 52", ut ergo summa 129 ad 2' 52" sic 18' ad augmentum unius gradus in copula, sc. 24". Hoc pacto facile colligeretur augmentum latitudinis per rectangulorum quadrantis proportionem. Sed vide quorsum id sic collectum nobis fieret utile. Pone & cum) et) of . Hic nobis sufficit ad angendam latitudinem sinuum proportio simplex, dupla vitiabit latitudines nimis. Ergo hic spe frustramur. An distribuemus quidem latitudinis angmentum pro modulo inclinationis limitis magnum vel parvun, distribuemus id, inquam, primum cum digressu) a R vero et aequato per proportionem sinuum distantiae: et deinde addemus huic augmento aliquid in proportione variationis? Tunc nihil adderemus in σ , ϑ , ϑ , nihil in \Box . Ita non augebitur nobis vicissim lat. in \mathcal{A} , \mathcal{B} , quam diminuit prosthaphaeresis nodi.

Sed dices forte, quantum Ω distat a $\mathcal{A} \odot$ vel $\mathcal{B} \odot$, tantae distantiae) a \odot variationem esse adhibendam ad eruendam variationis latitudinariae portionem in copulis. Quid ergo fiet extra copulas? Nonne etiam sic fieret extraordinaria augmentatio in copulis? Quodsi confugiamus ad compositienem latitudinis tabularem: primum notandum, quod illa repraesentet latitudines Tychonicas etiam sine prosth. nodi, si usurpetur secundum praecepta Radolphina. Et fit ingressus per dist. \odot a Ω et \mathcal{F} a \odot in tabulam lat. menstruae, sed per dist. \Im a Ω in tabulam lat. simplicis. Quomodo ergo

efficiemus, ut augmentum fiat majus in copulis, non fiat majus) in R versante? An ingrediemur per dist.) a () amplius, quam per variationem incitatam? Tunc vitiabimus lat.) in R. Nec causa patebit talis augmenti) a 🕥 dist. supra verum. Ergo videmur eo redigi, ut prosth. nodi faciamus menstruam, inclinatione limitis manente annua. Causa est procul dubio in variatione. Nam maxima prosth. nbdi est mihi 1° 39', id est 99', duplum vero variationis est 81'. Sed variatio ex 51/4 appendicibus diebus deducta est 51, duplum 102, plane aequale huic prosthaphaeresi. Si tamen duplicanda variatio? Imo non est duplicanda, variatio n. est tantum excessus trunci quadrantis super sectorem. Ac cum quadrans valeat 129', sector octans erit 64 $\frac{1}{2}$, adde variationem maximam 40 $\frac{1}{2}$, coges 105', i. e. 1° 45', cum prosth. nodi sit mihi 1° 39' + et Tychoni 1° 48' +. Ecce aequalitatem. Ergo Luna per variationem incitata venit ad nodum perinde ac si duplo magis per variationem incitaretur, tunc quidem, quando R est in octante, h. e. non incitatur tantum in longum, sed flectit etiam cursum suum in latus utrumque eodem incitationis vigore: si modo vera sunt exempla latitudinis in octantibus apud Tychonem.

Cum igitur haec nodi reciprocatio sit tantum propter latitudines) in ipso nodo, non opus est ipsum menstrua libratione semper aequali aequare; sufficit, illum a Luna inveniri ibi, ubi est per annuam nostram librationem. Nam 7 diebus Luna venit a quadra in copulam, octavo R in octante, igitur septimo ex tanta libratione vitium est nullum, quod probo ex eclipsibus, quarto itidem nullum, quia Luna tunc invenit libratum annue. Quatriduo ante primum et post septimum Luna venit in limites, ibi etsi vitiatus est nodus, contemtissima tamen fit mutatio latitudis: et est quidem vitiatus nodus. Nam is Lunam fugit in latus utrumque in eo quadrante, qui habet nodum. Cum igitur est) in , nodus est medius; illa exeunte versus nodum, nodus fugit versus Solem, et recedit ab illa, ubi illa trajecerit nodum versus Solem; ut ipse revertatur ad locum medium, ubi Luna in d 🕥 venerit. Ergo cum 🕽 est ante 🗌 in limite, nodus non fugit versus (), ubi est per meam librationem annuam, sed e contrario annuit Lunae et fugit ipsum . Cum igitur observationes eclipsium testentur, die septimo copulari nullum fieri vitium, oportet neque in quadra fieri vitium. Sane etsi fieret, id difficulter esset observabile, cum ob parvitatem, quae destituitur Solaris corporis evidentia, tum ob raritatem occasionum, ubi D observata in 🗔, 🔉 in octante. Restant dies obviationi 🕽 🖓 proximi. Atque si proximi, erit etiam prosth. nodi proxime eadem, et sic proxime correcta; ut ita solae quadrae maneant in suspenso, ut dictum.


Libri pars altera. De doctrina eclipsium. Cap. XI. (Mase disquisitio eo conscripta videtur tempore, quo primum de "Hipparcho" meditabatur Keplerus.)

Eorum quae ad doctrinam eclipticam accuratius examinandam pertinent, fundamenta optica hactenus sunt demonstrata. Restat nobis opus ipsum. Ut autem juvetur lector in discernendo instituto nostro, simul et necessitatem cernat eorum, quae hic repetuntur, praemittenda est synopsis methodi, qua Ptolemaens est 2505, demonstranda ejas vel pericula vel dispendin vel errores : subjungenda summa methodi, guan nos seguennas.

Postquan Ptolemaens E. I. et II. primum mitum, E. III. motam .) demonstrasset, quorum cognitio plane praemittenia frit. Sh. IV. V. VI. jam Lazares motas subjurgit, et in. IV. primum inquirit motas acquales, constratione artiguissimarum observationum cum suis. Secundo anomalian) primam, suppositione usus epicyeli in excentricy, demonstrat. Quam ad rem opus ipsi fait organiticae acqualium motoum praemissa, quemadmodum anomalea inter ad sequentem investigationem vertentitin povilaniorum plane pecessaria est. Rarsun non defiritat lamina in comi colta vel oppositione verteste, sed tuentur certum orben, que circumacto codem propemodum ordino redennt. Ejus orbis investigatio eadem est cum mota latitudinis. Hane erge lat. motum Projemacus via directa prias investigaverat, en sempe, quam et Hipparchas praeivit. Cujus explicatio etsi neu tota in Ptolemaco exstat, ansas tamen som eam ex ils, quae ego secularas sum, problematis conficere, quod talis fuerit. Initia Lazae dimetsens capiebatur per dioptros, quotnam esset scrupulorum. Hos initizm et Theor in Commentariis super hoe capat nobis monstrat. Deinde ex ante demonstratis horarius Lunae inquirebatur ad propositum tempos eclipseos. Seguitur antem horarius ex hypothesi inaequalitatem democstracte.

Jam erast in promtu multae eclipses Lanares cum mora, eligebantur, quae diutissime daraverant. Ex tempore ergo duraticuis, motu horario et diametro), vel etiam sine horum alterniro. colligebantur proportiones dimetientium Lunae et umbrae. Ac cognita Lunae dimetiente in gradibus et scrupulis, cognoscelatur et dimetiens umbrae in eadem mensura.

Ad haee ab Hippareiro demonstrata Ptelemaeus adjunxit angulum, quo Lunae orbis ad eclipticam inclinatur, de quo mox dicemus. Haee si quis ad duarum eclipsium partialium considerationem afferat, inveniet, quantum straque a vicina intersectione orbium distiterit, ac proinde quantus motus latitudinis tempori inter eclipses interjecto debeatur.

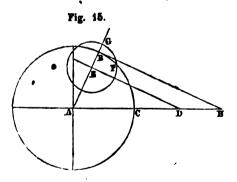
Sit A centrum umbrae BC, AD ecliptica, quam secet in D via Lnnae DE sub certo et cognito angulo EDA. Et ex A perpendicularis in DE ducatur, quae sit AE. Cunque omnium ex A in DE brevissima sit AE, punctum E situm ostendet Lanae in obsçuratione maxima, quae est circa mediam durationem. Scribatur centro E, distantia EF, quae certam habeat proportionem ad AB (ex Hipparchi traditione $\frac{1}{4}$ ejus) cir-

culus Lunae FG, secans circulum umbrae, ut eclipsis fat partialis, producatar AE in G, secans circulum umbrae in B; et sit cognitus defectus ex observatione in digitis, h. e. duodecimis partibus diametri Lunae, ut si BG pars residua de diametro Lunae sit 2 digitorum. Cum ergo detur proportio EG ad GB et residuam BE, proportio item EG ad AB dabitur, et proportio BE ad ^oAB et residuam EA, quae est centri ; distantia ab ocliptica. Sed proportio EG ad 360° datur ex observatione dioptrae, quare

et proportio ceterorum et denique 'ipsins AE ad 360° dabitur. In triangulo igitur sphaerico AED, rectangulo ad E, datur praeterea latus AE et angulus oppositus ADE, quare et AD distantia.nodi ab opposito loco Solis dabitur, et ED elongatio Lunae ab illo nodo, quod erat quaesitum. Atque haec est methodus, qua Ptolemaeus initio fuerat usus.

Ceterum aliam viam insistens in Magna Compositione, regressus est ad baec ipsa, quae inter principia assumserat et quae inde deducebantur, redarguenda. Facillime enim error in tam subtili materia contingere potest. Primum dioptra Hipparchum fefellit, nec plane tanta est Lunae diameter. Deinde nec horarius ita certus est, ut omni dubio careat. Duas enim Luna obtinet inaequalitates, quarum quae in coitus luminum desinit admodum hactenus incerta fuit, ut aliter illam Ptolemaeus tradiderit, aliter Copernicus, aliter Tycho. Fieri etiam potuit, ut in eclipseos et morae et digitorum observatione non satis diligentiae sit adhibitum. Nam in defectu Lunae difficile est aestimare quod periit, cum non videatur. Denique latitudinis augulus, ut infra dicetur, dubio non caret. Ut jam non dicam de eo, quod diameter Lunae, etsi in uno epicycli loco recte fuerit observata, in aliis tamen locis vitium contrahat ob nimiam ab Hipparcho suppositam quantitatem epicycli, dum inaequalitas omnis ex epicyclo derivatur, quae dimidia ex parte aliande venit.

Ptolemaeus ergo in iterationibus pauciora assumsit et certiora demonstrando motui latitudinis. Binas eclipses, quam potuit invenire longissimo temporis intervallo distantes, elegit sic comparatas, ut utraque esset partialis ejusdem quantitatis, apud eundem nodum, in eadem plaga mundi, devique in eodem loco epicycli, ut constaret, umbram in transitu utrinque ejusdem esse crassitiei. His enim datis certum erat, utrinque aequaliter abfuisse illam a nodo, ac proinde orbes latitudinum consummatos esse atque integros, nibil residuum, nibil deficiens, nec opus. fuit ut antea, praecognosci horarium, diametrum Lunae aut umbrae, nec angulum inclinationis, aç ne epocham quidem motus latitudinis. Suffecit scire, Lunam aequaliter a nodo abfuisse utrinque, potnit nesciri, quantum abfuerit. Ut autem et hoc sciretur postmodum, rursum Ptolemaeus elegit duas partiales eclipses, ejusdem anomaliae plagae et quantitatis, sed alteram nodo descendenti vicinam, alteram ascendenti. Nam tempus interjectum secundum latitudinis motum ante investigatum ostendebat, quanto arcu circuli ab invicem abessent. Certum autem, minus semicirculo distare. Quare residuum ad semicirculum est distantia utriusque eclipseos a suo nodo in unam summam conjecta. quae bisecta prodit secretam singularum a nodo distantiam, quod quaerebatur: angula latitudinis etiamnum ignorato.


Succincta sane methodus, siquidem quantitas defectus aestimatorum intuitus non fefellerit, et semper in promtu sint tam commodae observationes.

Sed pergamus; quarto itaque Ptolemaeus alteram inaequalitatem Lunae lib. V. aggreditur, quae in novilunia desinit et plenilunia, quam cap. 10. demonstrat citra magnum incommodum in calculo eclipsium omitti posse.

Quinto latitudinem Lunae maximam, quae eadem est cum angulo inclinationis orbis Lunae ad planum eclipticae, Ptolemaeus non minus compendiose inquisivit, exspectato momento, quo Luna in Cancro borealem limitem attingebat. Tunc enim in Alexandrina poli elevatione Luna proxime verticem accedens pene omni se parallaxi exuebat. In hoc quidem situ Ptolemaeus affirmat, se semper eandem Lunae distantiam a vertice quoad

sensum deprehendisse, unde latitudinem maximam colligit 5°. Ceterum totum hoc negotium non una ratione suspectam reddidit. Nam ut Luna in Cancro boreum limitem inveniret, fieri non saepius semel intra unum 19 annorum orbem potnit : annis scilicet 10. et 11. Adriani Caesaris, Et consurgunt quidem observationes Ptolemaicae, quantum earum est in Magno Opere, ab anno 9. dicti principis, sed praeter unicam eclipsin anni 10. 11 et aliquot sequentes omnino vacni praetermittuntur. Ultima vero observatio in annum 3. Antonini cadit. Itaque annos non plus 15 complectuntur. Ac relinouamus sane tantam his observationibus culminantis Lunae amplitudinem, ut nodus evehens a 15° ¥ in 15° Y moveatur, fient omnino ingressus Lunae in Cancrum 18. Inter hos unum tantum est plenilunium, reliqui sab Sole partim latent, partim in quadraturas et ceteras phases concedunt. Jam hac nostra tempestate Tycho infallibili ratione deprehendit, Lunam in quadraturis tertia parte gradus amplius ad boream et austrum concedere in latitudine maxima, quam si plenilunium sit. Fieri ergo non potuit, ut semper deprehenderetur aequalis Lunae distantia a vertice, nisi hodie alia sit forma motnum Lunarium, cujus ansam suspicionis aliam non habemus. Crediderim, non anod factum sit, sed quod fieri debuerit, a Ptolemaeo hic inculcatum, adhibitam vero latitudinem eam, quam in priore opere aliunde transsumserat. Obsecro enim, quando illud fuit, cum speciosioribus hisce insistens vestigiis priores curas correxit? Opinor post initia snarum observationum, post illam igitar Lunae culminantis occasionem. At principio. h. e. cum observare inciperet, circa annum 9. Adriani, Hipparchicis datis contentus astronomiae incubuit. Admodum igitur diligens fuerit, si illas quoque observationes conscripserit, quibus tunc non uteretur. Uno verbe, si vere observavit, cur non unam e lectissimis observationibus apposuit?

Atque haec de methodo latitudinis. Sexto iisdem insidiis Ptolemaeus et diametrum umbrae circumvenit: electa eclipsi Lunae, in qua semidiameter defecisset. Tunc enim in priori schemate centrum Lunae in B cadit.

Ducatur ex B parallelos ipsi ED, quia parum refert, tam parvum triangulum in plano fingi; secans eclipticam in H. Erit H nodus in hac Lunae latitudine. Ex tempore igitur et ante demonstratis scitur Lunae remotio ab H nodo, tum et angulus BHA, per doctrinam igitur sphaericorum triangalorum scibitur et BA Lunaris centri distantia ab ecliptica in media eclipsi, quaré et umbrae latitude seu semidiameter. Optima sane

ratio, si et priora certa, quibus hic utitur Ptolemaeus, et eclipsis talis in promtu, et aestimator defectus certus est, nulla ratione falli posse suos oculos, dum Lunam in coelo haerentem sine circino dimidia ex parte deficere censent.

Septimo diametros visibiles Solis et Lunae Ptolemaeus ullo instrumento metiri desperavit, nisi quod hoc ex observatione sumit, Lunae visibilem diametrum, cum in apogaeo est epicycli Soli opposita, proxime aequalem esse diametro Solis. Quanta vero esset utraque, maluit per umbram Terrae

jam pridem dimensam metiri. Elegit igitur echipsin, cui acqualis esset transitus per umbram, acqualis inquam anomalia cum priore, qua umbram erat mensus. Motus latitudinis paulo alius; sit illa in E. Scitur ergo ED non minus quam prius BH, ex calculo ante exstructo. Et anguli sunt similes ad D et H, item E et B. Latera igitur utraque AE et AB dantur, quare et differentia EB in usitata circuli distributione. Ceterum in aestimatione proportionis ejus, quae est inter BG et GE residuam ex eclipsi semidiametrum, credidit Ptolemaeus oculis, quare et proportio EB ad EG semidiametrum dabatur et EG semidiameter in usitata dimensione. Ad hanc partem rursum dico, quod antea: si oculi tam sunt perspicaces, ut in aestimatione defectuum nihil aberrent, et si cetera hujus demonstrationis principia bene habent, methodus utique bona est, quamvis per ambages et dispendia incedat.

At in omnibus hisce videndum est etiam atque etiam, ne in angulo latitudinis, qui undique concurrit, error lateat. Nam etsi maxima latitudo in oppositionibus hodie eadem est quae olim, nihilque habet dubii, angulus tamen, quem haec latitudo metitur, consistit utique in quadraturis. Quis igitar nos certos reddet, eum angulum, qui est in conjunctionibus et oppositionibus, non mensurari a maxima latitudine quadraturarum? Quare non sufficit, maximas oppositionum, non maximas quadraturarum latitudines metiri, quorum illud Ptolemaeus, hoc Tycho fecit: oportet et angulum ipsum metiri. Parvus enim error in immensum augetur, ubi ad reliqua capita processerimus.

His ergo 7 capitibus instruit Ptolemaeus lectorem ad computanda tempora, moras ingressus et emersus Lunae e tenebris, quantitatem defectus et si placet etiam inclinationes defectus ad varias mundi plagas: quae omnia observatione unius eclipsis vel confirmari vel redargui possunt.

Ad eclipses vero Solares hac methodo pergit Ptolemaeus. Nam octavo parallaxes Lunae per instrumentum investigat, observans quantum Luna in austrum declivis sit, ex calculo inquirens quantum tunc propter latitudinem declivis esse debeat, si ex centro Terrae spectetur: ex horum enim collatione apparet, quanto angulo Luna commutaverit locum ex centro videndum in locum ex superficie visum; ex qua una re postea altitudo Lunae a Terfa, et adminiculante umbrae magnitudine cum visibili diametro Solis etiam altitudo Solis a Terra et ejus parallaxis dantur cum appendice de proportione corporum. Quibus perceptis ad calculum eclipsium Solarium lector accedere potest, computans moras, principia, fines, quantitates et inclinationes diversas in diversis regionibus, quae rursum omnia unius Solaris eclipsis accurata observatione vel confirmari vel redargui possunt.

Hic iterum Ptolemaeus maximas de se suspiciones concitat, quasi observationes adulterinas subornaverit ad theorema expediendum. Cum enim indigeret magna parallaxi in quadraturis, sic ferente ipsius hypothesi' et eccentrico Lunae, cujus est in mense dupla revolutio, fingit etiam, se tantam observasse parallaxin, et ex hac fictitia postea veram procul dubio aliunde transsumtam et aliis principiis constitutam in coitus luminum derivat. Esse vero vitiosam illam parallaxin, quam dimensum se fingit Luna in Capricorno et limite boreo versante, testabuntur omnes post Regiomontanum astronomi, testatur maxime Tycho, qui invenit, Lunam etiam in quadraturis cum Sole non propius Terram venire, quam ad 54 semidiametros Terrae, quum Ptolemaeus ex sua parallaxi statuit 33. Quodsi latitudinem Lunae

Kepleri Opera. III.

43

auctam adhibueris, qualem Tycho deprehendit in quadrantibus, multo major et prodigiosior haec parallaxis evadet. Quin igitur falsum hic loci admiserit, dubitari non debet.

Denique non levis momenti error fuit apud veteres inde ab Hipparcho usque ad Tychonem, quod cum diametros Lunae et umbrae in certa aliqua epicycli parte essent dimensi, ceteris epicycli locis vitiose diametros accommodarent, eo quod epicyclo nimiam tribuerent amplitudinem. Fons hujus rei scaturit ex desideratis inaequalitatum causis, et redundat in utriusque luminaris motum. Etenim cum esset in confesso, tardiora videri quae longius abstitissent, eademque celeriora ubi propius accessissent, nec illud ignoraretur, discedere lumina et accedere, veteres illi praepostero aequalitatis studio omnem motus luminum diversitatem in hos abscessus et accessus eorum contulerunt, quae dimidia solum illis debetur, reliqua pars, nec quicquam repugnante Copernico, plane causam habet physicam, ex ipso quidem accessu et recessu sideris resultantem, sed in secundo respectu.

Ac in tribus quidem superioribus haec causa physica sese Ptolemaeo manifeste prodiderat indicio, quod amplificatio epicycli optica, quam Alphonsus diversitatem diametri, Prutenicae excessum appellitant, non respondebat accessus et recessus magnitudini, quam aequatio eccentri requirebat, si quis eam unice per centrorum orbis et mundi distantiam niteretur excusare. Qua re coactus Ptolemaeus punctum aequantis introducit, rem plane physicam, si bene considerasset eam anctor. Copernicus abhorrens ab hac inaequalitate physica, quam putabat indignam coelesti natura, transformavit acquantem in epicyclium, gavisus in luminaribus opus illo non esse. Cave lector confundaris, non est mihi sermo de menstruae inaequalitatis aequatorio puncto, quod scio Ptolemaeum adhibuisse. De prima inaequalitate loquor, quae a menstruo circuita tempore discernitur. Hanc igitar Ptolemaeus per unum epicyclum excusavit eunque tantum statuit, ut sufficeret toti aequationi. Copernicus mutationem illi nonnullam attulit, sed ita ut iisdem principiis inhaereret, tantum esse oportere epicyclum, quanta esset aequatio quovis tempore. Quare etsi epicyclium adjunxit, quo primarius epicyclus augeretur vel minueretur, eo tamen nullam primariae aequationis partem expedivit. Nam illud ad menstruam acqualitatem spectat et vice Ptolemaici menstrui aequantis fungitur. Adhuc ergo Copernicus primam inaequalitatem per solam centrorum distantjam (seu epicyclum) expedivit, exclusa causa physica; quo nomine et ipsi nimia in differentia sunt Lunae a Terra distantiae, proinde et diametri aspectabiles et transitus per umbram. Tycho Copernici vestigia pressit usque ad annum 1600. Nam illi duo epicycli, quorum alterius diameter statuitur 11000, alterius 22000 (in paginis Witebergae editis a. 1599) mere Copernicani sunt; residui duo ad novas nec a veteribus animadversas inaequalitates referentur nihilque habent com prima inaequalitate commercii.

Quod autem Christianus Severini, cujus opera Tycho in ultima correctione usus est, in primam quoque inaequalitatem aequantem introduxit sea more Copernicano epicyclium: id si in Lunam statuere nefas arbitraris vellesque non esse factum a Tychone, mihi adscribito. Nam eo tempore Christiano et spectator et auctor fui ad id andendum. Et sane non tantam in motu longitudinis plurimum Christiano res ista profuit, sed etiam ad parallaxes apprime fuit commoda. Semper aqua haerebat, parallaxibus aut repugnantibus hypothesi aut sibi non constantibus. Tandem ubi animum

isdaxit vim epicyclo afferre, ad parallaxes examinandas sincero animo accessit, invenitque in quadraturis non esse majorem epicyclo amplitudinem, quam 6 semidiametrorum Terrae. Cujusmodi quidem amplitudo non patitur acquationem ad 3º excrescere, cum maxima in quadraturis acquatio 71/, º postulet. Itaque jam et in Luna natura nobis argumentum monstravit causae physicae introducendae, non minus quam prius in tribus superioribus. Quomodo id in theoria Solis quoque probetur, partim Cap. II. dictum, ubi de apparente Solis diametro agebamus, partim differendum est in partem astronomiae physicam, quam una cum demonstratione motuum stellae Martis primo quoque tempore Deo vitam et vires largiente in lucem dabo, hancque inaequalium motuum causam physicam luculenter et legibus quidem geometricis, ne qua metuas calculo, tractabo. In praesentia tantum dicere volui, veteres circa diametros luminarium atque ipsius umbrae in errore esse ob neglectam hanc physicam causam nimisque suctum epicyclum. Jamque et Ptolemaei methodum et quae in illa suspecta sint fere tenes : superest ut ad hujus quoque libelli methodum accedam.

De mea Methodo.

Ingenium tibi lector traditurus eram contexendi operis talis, quale Ptolemaeus appellat µsyahn gurrafin, epus ipsum majori conatu aggressurus. Leges igitur theoremata et problemata exstruendae ex eclipsibus astronomiae; sparsa illa nec plane cohaerentia, sed conditionibus aliqua circumscripta. Sed tamen, uti quondam Daedalus suam Venerem, sic ego mea problemata captus amore descriptionis magna ex parte animata reddidi, ut magnam partem operis amplectantur; in quibus methodum hanc notabis:

Primum ostenditur, quanta sit apparens diameter Solis ad haec nostra tempora.

Secundo eandem curam in diametrum Lunae apparentem transferemus. Tertio necessarium erit explanare, quantum accessus et recessus Solis

umbram Terrae variet, ut certum sit, insensibile quippiam id esse.

Quarto latitudinis angulum in ipsis oppositionibus et conjunctionibus eclipticis constituemus.

Quinto motum latitudinis et ipsam latitudinem novis problematis inquirere docebimus.

Sexto. Hinc diameter umbrae in certis locis anomaliae Lunae mensurabitur.

Septimo parallaxes et altitudines Lunae a Terra varie inquirentur.

Octavo, hinc examinabitur proportio corporum.

Nono, hinc motum horarium docebimus invenire, quo rectissime hypotheses aliorum examinentur.

Decimo, quae hinc ad ipsam) hypothesin ad theoriam (), ad geo- • graphiam &c. redundent, obiter indicabuntur.

Pleraque ex simplicibus et facile comparabilibus observationibus, ut identidem aliis exemplis reiterari et communiors fieri possint, qui praecipuus hujus libelli finis est.

43 4

De Lass.

Hase sunt, ques Manuscripta achibent de canatilus Kaplati, Elsum quem inscriptions "Hipparchi" intignitum in locum Almaganti antonnanis aubstituerse veluit, perficiendi. Relign, quas insunt voluminibus L et XV. Mn. Petrop., testimenium quidem praebent, ut en quas initio dixianus repetanus, mangana plane omissam esse rem inceptan, superatam vero voluztatom difficultatibus magis magisque increscentibus. Nihil in his voluminibus occurrit, qued praeminis addendum sit, escepta "Transformatione hypothesses Lumanis," quae infra sequetar ; religna calculis constant continuedarum ecliption, cum Solarium tum Lumazium, quibus hypothesin suzan emendare vel fulcire studet Keplerus.

Polio 663 Keplerus literas dicit ad Maestlinum datas, quas hie inserendas censeuns. Ultima quae superest Maestlini ad Keplerum epistola data est d. 11. Mart. 1620. Ex es apparet, Keplerum a W. Schickardo Talingunzi professore potiinse, ut zihi communicaret ess, quae ipsi et Maestlino praesto essent, observationes eclipsium, praesutim anni proxime exacti. Ad quae respondit Schickardus (Hansch. p. 678) ad Maestlinum recurrum. Maestlinum oclipsin describit Lunarem, addeas calculum astronomicum, praesertim de parallazilus; ad calculum sum non adhibet logarithmos "quia fundamentum ego hacteuus erveru non potni." (Comp. Hansch. p. 50.) Keplerus respondit hune in modum :

Clarissime Vir. Nuncius me absente literas tuas in meas aedes intulit, cum denunciatione, ut intra praestitutum tempus responderem. Brevis igitar esse studeo; an id sim assecuturus, finis epistblae ostendet. Gratias ingentes ago et pro observatione tua eclipseos et pro examine meae. Opus vero tibi esse puto declaratione quarundam rerum, qua percepta rogo, ut iteres censuram tuam: res enim magna agitur de locis sc. omnium fixarum.

Primum parallaxis) 62' 10" nequaquam a me fuit adhibita altitudini 50°, sed est haec parallaxis altitudinis in ipso horizonte. Demonstravi autem ante 16 annos in Opticis Cap. IX. fol. 330, quod, posito uno certo gradu eclipticae in horizonte eoque retento immobili in eo, Luna vero per totum semicirculum eclipticae exstantem ennte in eadem a Terra distantia, semper eadem maneat parallaxis latitudinis. (Sit 24° M in orta, ait etian eadem distantia) a Terra, erit parallaxis latitudinis) tanta in 24° Q in nonegesimo, quanta in 24° M in oriente vel 24° C in occidente.) Ut igitar sin. tot. ad sin. distantiae nonagesimi a vertice, ita 62' 10" ad parallaxin latitedinis; et ut idem sin. tot. ad sin. altitudinis nonagesimi, ita 62' 10" ad parallaxin long. horizontalem; nt vero sin. tot. ad sinum distantiae Lanae a nonagesimo, ita parallaxis horizontalis ad parallaxin longitudinis in preposita aktitudine, Lunae. Hinc patet, si sin. alt. nonagesimi multiplicetur in sin. distantiae Lunae a nonagesimo, factus in 62' 10", ablatis 10 figuris ultimis, confectum iri parallaxin long. horizontalem. Atqui multiplicationes telluntur additione logarithmorum, ut demonstravit Neperus. Itaque invenies hoc tempore altitudinem) 55 semidd. Terrae ex mea parallaxi 62' 10", puta horizontali altitudinis.

Ut autem tibi per hanc occasionem explicem obiter rationem logarithmorum, attende primo nomen, quod sint aliqui numeri, qui sunt écoduce see logoe. Verbi causa sit minima omnium proportio suscepta inter numeros 100000.00 et 99999.99 : hase proportio signetur nobis unitate (quanta • nimirum est terminorum differentia, et sic logarithmi sunt accuratiores. Nam initium debet fieri a proportione adhuc longe minori, ita ut hase proportio aeguaret nomen paulo majus unitate) : jam scis, quod proportio inter 99999.99 et 99999.98 sit. major quam illa prior et sequens rursum major, sc. inter 99999.98 et 99999.97 et sic consequenter, sic ut proportio inter 50000.01 et 50000.00 sit major, quam ulla priorum, quae sit proximorum numerorum ordinis naturalis. Quia ergo primae proportionis quantitas est expressa numero 1, secundae quantitas non exprimetur numero 1, sed aliquo paulo majori, et sic consequenter : ipsa denique inter 50000.01

et 50000.00 exprimenda erit numero 2 proxime. Denique ergo si quaerator, quanta sit proportio 100000.00 et 50000.00, h. e. 2 ad 1 in ea numeratione, quae minima superius fuit 1, respondetur sic: primo si omnes intermedii numeri ordinis naturalis, semper bini et bini unitate differentes, constituerent candem quantitatem proportionis, tunc, quia inter 100000.00 et 50000.00 intersunt 49999.99 numeri, numerus igitur proportionis 100000.00 et 50000.00 esset 50000.00. Sed quia posterior quoque est major quam 1, ergo numerus proportionis duplae in suscepta dimensione fiet 69314.72; toties nimirum continetur proportio 100000.00 (99999.99 in proportione 100000.00) ad 50000.00, vel 2:1. Haec est factura logarithmorum, cui demonstrandae schemate opus non est.

Jam attende, quomodo per logarithmos aboleatur multiplicatio. Sit at 100000.00 ad 90000.00 sic 80000.00 ad 72000.00. (a : b = c : d). Hie proportio a : d componitur ex, proportionibus tribus, scilicet ex a : b, et ex b : c, et ex c : d. Quare etiam numeratio proportionis a : d seu logarithmus ejus componetur ex logarithmis a : b et b : c et c : d. Atqui proportio c : d est aequalis proportioni a : b, ergo log. a : d componetur ex 2 log. ipsius a : b et b : c. Sed usus log. a : b et log. b : c componunt log. a : c, quia ipsae proportiones a : b et b : c sunt elementa proportionis a : c. Ergo unus log. a : b (1053605 —) et unus a : c (2231436 —) componunt log. a : d (3285040 +).

Hac demonstratione percepta, non est ut amplius dubites circa logarithmos. Nam optio tibi datur, vel his uti addendo vel pro iis multiplicare sinus expressorum arcuum.

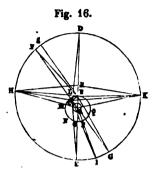
Alterum caput declarandorum est hoc, quod non nititur praecipue mea observatio rectitudine anguli ad Lunam, sed additur, quo momento, qua altitudine Aldebaran angulus ad priorem stellam fuerit rectus et cum centro Lanae et cum margine occidentali : hoc habet magnam certitudinem, quia linea stellarum est pene parallela eclipticae: additur etiam, quo momento visa sit) distare aequaliter ab utraque stella, angulo ad Lunam existente quasi recto. Tertio sic est intelligenda mea observatio, quod uno quasi minuto temporis prius quam Aldebaran distaret a vertice 58° fuerit initium. notavi enim, quod provinciale nno quadrante serius sonuerit per totam durationem. Computavi sane et ego medium ex observatis h. 3. 48', Tubingae h. 3. 27'. Differentia meridd. $5^{1}/_{a}^{0}$, cum ex eclipsi 1617. colle-gerim $5^{1}/_{2}^{0}$, quanquam per longiusculam et suspectam durationem. Quod igitur angulum eclipticae cum meridiano computas 70° 44', ita et ego habeo in Tabulis Epitomes meae, scilicet ad 23° & 70° 50', ad 24° & 70° 36'. Angulo vero eclipticae cum verticali Lunae etsi alias ego non utor, utar tamen nunc. Nam ut sinus totus ad sin. distantiae) a vertice 50° 47'. ita sinus 62' 10" ad sinum parallaxis µηκοπλατος competentis huic distantiae a vertice. Ut vero sin. tot. ad sinum anguli eclipticae et verticalis 39° 14', ita haec parallaxis unnonlarne ad parallaxin latitudinis. Ex hoc fundamento operabor ego per logarithmos (breves)

1°	2′	10″	Log.	401200	Correcte 43° 38 ¹ / ₂ (in margine)
50.	47.	0	,	2 55 2 0	Log. 37085
39.	14.	0		45811	, 25520
0.	30.	38	Log.	472531	, 401200
			•		Log. 463805

Ad exquirendum consensum etiam meo utar modo. Quia enim ascensio recta medii coeli est a te computata 145° 46', oritur igitur 10° 38' 11 angulo orientis ex Epitome mea existente 57° 40'. Distat igitur nonages. a vertice 32° 20'. Ergo legarithmus ad 32° 20' est 62578 Logarith. 1° 2' 10" <u>401200</u> 0° 33' 20"; Logar. <u>463778</u> In Meridiano 23° 24' Q In Nonages. <u>10. 38 Q</u> <u>MN 12. 46 Antil. (h. e. log. compl.)</u> 2502 Deinde culm. 13° 46' Altit. aeq. <u>41. 44</u> <u>55. 30</u> Log. <u>19343</u> Ang. eel. et hor. 57. 40 idem qui supra. Log. <u>16841</u>

Opinor si sinum 41° 35' in foecundum 32° 20' multiplices, proditurum foecundum arcus 43° 38%, et hanc esse legitimam viam inquirendi angulum eclipticae et verticalis.

Ex his igitur datis etiam probabo angulum eclipticae cum verticali,


) 29° 3′ II Nonag. 10. 38 ? 41. 35 Nonag. a vert. 32° 20' 43. 38½ Mes. 45730 + (Mesologarithmus = log. tang.)

Omnia consentiunt, angulum eclipticae cum verticali Lunae esse majorem, scilicet non 39° 14', sed 43° 38 1/2'. Quarto quod attinet magnitudinem defectus, mihi insolens non est, eum diversis videri diversum. Ego certe et Gringalletus meus diligentissimi hic fuimus, et usi sumus perspicillis non nimium multiplicantibus, sic ut Luna tota simul videri possit. Et quamvis non accurate potuerit aestimari, non tamen dubitabamus, quin circa medium esset nona pars Lunae in lumine circiter. Sane haec incertitudo observandi digitos fecit me tandem desperare de parallaxi Solis observationibus hisce eruenda, quod non dissimulavi in Comment. Martis, inqué Ephemeridum praeambulo. (Comp. Optices meae fol. 320. 349.) Itaque in Epitoma, quae forte edetur, parallaxin Solis constituam a priori, minorem eam faciens quam in Ephemeridibus et omnino tantam, quantam in Commentario Martis suspicatus sum. Nam si hoc axioma usurpem, toties Solem esse majorem Terra, quoties semidiameter orbis 🕥 major est semidiametro Terrae, et vicissim toties Terram majorem Luna, quoties semidiameter orbis Lunae est major semidiametro Terrae ejusdem : sequitur assumto visionis apogaeae angulo 30' (qui habet etiam suas rationes a priori) Solem abesse 3469 semidiametris in mediocri distantia, Lunam 59: ergo Solis parallaris circiter 1'. Pro concinnitate vero proportionis, quam elegi in Epbem. Num. 7. jam obtineo aliam concinnitatem sane quam mirabilem; scilicet hanc, quod his legibus sphaera Lunae fit medium proportionale inter globum Terrae et sphaeram Solis (seu Terrae) sicut libro de Stella Nova (II, p. 672) sphaeram Saturni, extimi mobilium, feci medium proportionale inter globum Solis motoris et sphaeram fixarum; quod ea re confirmatur, quod sicut motus planetarum ex Sole est, sic etiam motus Lunae est ex Terra, ex utriusque scilicet globi tornatione circa axem. Sed haec obiter. Nuc igitur his dilucidatis, rogo majorem in modum, idque propter bonum pablicum et propter honorem professionis nostrae, quae consistit in hoc adjuvando, ut dispicias, quid agendum putes in motu fixarum emendando. Nam similia etiam ex nonnullis observationibus Veneris videor eruere posse, ut ita diurnae Q observationes cum proximis Tychonicis nocturnis interventa horarii Q non optime conveniant.

Haec ultima mea emendatio (pro nunc quidem) non potuit hactenus fieri, priusquam haberem quatuor eclipsium observationes uno loco habitas et observationibus aliorum locorum, scilicet Tubingae et Romae confirmatas. His parallaxibus assumtis et horario (etiam a priori) nonnihil emendato, retento vero angulo latitudinis copulari et loco nodi, ut in Ephemeridibus, eccentricitate vero Lunae reali simplici et diametro) in apogaeo 30', observationes supra vota tueor quoad digitos et durationem. In accommodatione temporis adhuc haereo.

Mitto salutis loco Theoriam Lunae renovatam. A centrum Terrae,

B centrum eccentrici Lunae (qui tamen intelligatur ellipticus, ut sunt eccentrici ceterorum planetarum), DE linea apsidum, FG linea copularum, BLMNOPQ circellus respectu copularum annuus in antecedentia, sed respectu fixarum novennalis fere in consequentia; lineae ex A in D, F, H, E, I, G, K lineae sunt veri motus Lunae. Ponamus centrum B in uno mense esse immobile, etsi id movetur versus Q in uno mense per unum signum fere. Ducta igitur ex B perpendiculari in FG lineam copularum, quae sit BC, erit C punctum aequationis menstruae et F veluti apogaeum quoddam, quia D apogaeum

est ipsi vicinius quam E perigaeum. Et in FHG acquationes subtractoriae, in GKF adjectoriae. Luna igitur in tali mense in D vel E versante vero motu, nulla est aequatio solutae inaequalitatis. At est aliqua aequatio menstruae inaequalitatis, cujus quantitatem indicat area trianguli CDA, CEA, quae in gradus anomaliae mediae seu temporariae redacta adjicitur ad angulum FAD vel FAE; ita conciliatur angulo visionis FAD vel FAE suum justum tempus denominationis astronomicae. Vicissim sit planeta vero motu (vel prope vero, de variatione enim dicetur ultimo) in F vel G Soli oppositus vel conjunctus. Hic quia lineae AF, CF, item AG, CG coincidunt, menstrua aequatio est nulla, est vero aliqua solutae inaequalitatis, constans duabus partibus, plane ut in planetis ceteris. Pars enim aequationis optica est BFA vel BGA angulus, pars physica est area BFA vel BGA in gradus anomaliae mediae conversa: at sic Luna in F posita competat angulo FAD tempus seu anomalia media, quantam valet area AFD. Haec enim ratio acquationum ducitur ex ipsissimis causis motuum naturalibus per demonstrationes firmissimas et ineluctabiles, nec est arbitraria, nec potest ulla acquipollentia plane tolli, nec cedit facilitate computandi cuiquam.' Id tibi facile erit explorare, si ipsi AB constituas aequalem BR, ut sit R centrum aequantis, angulus quidem RHB non multum differet a valore areae BHA, at longe difficilius computabitur, nec ullatenus intendet digitum in causas physicas, demto hoc unico, quod primo ponendus est arcus eccentrici DF, deinde ex una parte computandus angulus . DAF apparentiae, ex altera parte area FDA anomaliae ejus mediae, unica multiplicatione valoris maximi trianguli in sinum arcus FD: ut ita anomalia · media FDA data, non sit directus processus ad coaequatam FAD.

Jam vero operae pretium est videre acquationes mixtas, ut si Luna sit in H, I vel K. Hic ego in Ephemeride et hactenus duplicem eccentricitatem adhibni: sed deprehendi eclipses illam non ferre. Nam in copulis

De Luna.

retinenda est eccentricitas 4362, et distantize ad unguem eaedem a Terra, quas reperit Braheus in quadris, scilicet a 59 in 54 semid. Terrae. Sit igitur AH linea motus) prope veri, et DAH angulus anomaliae coaequatae, et DFH anomalia eccentri, quaeritur media. Quodsi simplex esset aequatio, quaererem aream DFHA per partes suas DHB, HBA. Sed quia accedit menstrua aequatio, illam habeo in area CHA adjicienda ad DFHA, ita conficitur anomalia media, respondens angulo DAH, cum inter apsidum et copularum lineas est hic angulus DAF.

Esto Luna in K, anguli FAD, DAK; respondebit igitur coaequatae DAK media, composita ex areis ADK et ACK.

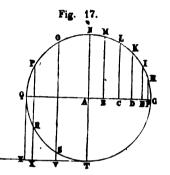
Esto Luna in I, scilicet inter perigaeum solutum E et perigaeum menstruum G, anguli EAD, DAI. Hic coaequatae DAI (complemento inquam ejus ad circulum) respondet anomalia media ADKI, cui tamen ademtus sit valor areae ACI. Porro facillima est computatio etiam hujus areae CKA, si ad anguli GAK sinum addideris BC in semicirculo apogaei, vel subtraxeris in opposito, pro altitudine justa trianguli CKA, hanc in sinum complementi ipsius FAD et factum in valorem maximi trianguli super AB multiplicaveris: quas multiplicationes duas tollit additio unica trium logarithmorum.

Variationis calculo servire posset hic idem circellus BL, etsi remotior est a causis physicis. Posito enim, lineam motus) prope veri esse AD (sine respectu apogaei), quae secet circellum in B: quadrata sinuum complementorum omnium usque ad sinum CA in summam redactá indicast portionem accelerationis addendae ad DAF. Hic de quadratis sinuum et summa eorum monuerunt me causae physicae: at effectus in forma est ad unguem idem, qui circelli Tychoniani, motu duplici ipsius distantiae Lunae a Sole. Horum, inquam, duorum principiorum consociatione efficitur tantundem, quantum circella Tychonico libratorio, quod valde me exhilaravit. In quantitate adhuc differo a Tychone, qui variationem facit 41', observavit tamer interdum 46'. Ego vero a priori invenio 51', et tantum postulant etiam justi horarii in copulis pro eclipsibus, ne durationes fiant nimiae.

In Ephemeridum prolegomenis non summa quadratorum, sed ipso sion BC utebar, ubi defeci a Tychone quantum nunc supero.

Moneo autem obiter, ne frustraneas tibi cogitationes excitem, negotiam variationis non'nuda additione perfici accelerationis, sed prius aliquid esse subtrahendum aequabiliter. Subtrahuntur singulis gradibus distantiae Lunae a Sole prope verae, scilicet 1' $47 \frac{1}{3}$ "; adduntur vicissim, in ipsa copula 3' $34^2/_3$ " praecise duplum, inde minus et minus, prout decrescunt quadrata sinuum; donec in quadris plane nihil additur. Ita in quadris pro uno gradu dist.) a O aequatae bis sumenda sunt propter tertiam aequationem $58' 13^2/_3$ ", in copulis pro uno gradu 1° 1' $47 \frac{1}{3}$ ".

Sed redeo ad priorem aequationem menstruam, in qua vides, si B centrum eccentrici sit in L vel P, puta in copulis, quod tunc Luna in H posita, aequatio optica sit futura angulus LHA, sed physica pars aequationis desumenda sit ex area LHA bis sumta, semel pro constituenda • aequatione inaequalitatis solutae, item pro aequatione menstruae inaequalitatis: quia BC tunc absumitur, redacta in punctum C, ut sit.triangulorum aequatoriorum, unius pro soluta, alterius pro menstrua aequatione, eadem basis AL. Vicissim quo mense centrum B venit in quadras, ibi perpendicularis ex centro cadit in A centrum Terrae, itaque illo mense (vel quamdu


hoc fit) acquatio menstrua nulla est, ubicunque Luna ipsa sit. Ita satis clarum efficitur, tarditatem ex intervallo aucto esse duplo majorem in copulis, quam vel in planetis ceteris, vel etiam in ipsa Luna, cum ejus apogaeum est in quadris; et id causa quidem hujus menstruae inaequalitatis prioris.

Valde igitur laboravi hactenus, ut variationis negotium cum hac menstrua aequatione ab iisdem causis physicis deducerem: sed frustra fui hactenus: alterum ex altero non sequitur, quodlibet est a suo principio. Non dubito *mocorevosco* (sic Ptolemaeus appellat) causam in ipsa Luna esse, sicut in univeranm eccentricitatis causae insunt in ipsis globis planetarum, variationis vero causam esse in Terra, Lunae motrice, utrumque tamen secundum illuminationem ejusque phases. Itaque consultum puto, variationem, etiam quae menstrua est, a circello BL, qui annuus, removere verbis, illud vero simpliciter affirmare, portiones variationis accrescere gradibus distantiae Lunae a Sole (seu angulis FAD) in proportione qua sumt quadrata sinuum distantiae Lunae a quadris. Addo demonstrationem inchoa-

tam aequivalentiae. Sit G quadra, N copula, GH, HI, IK, KL, LM, MN partes aequales. NO, OP, PQ, QR, RS, ST totidem partes duplae: sinus ipsi sint NA, MB, LC, KD, IE, HF. Et sint duplorum arcuum sagittae NT, OV, PX, QY, RX, SV. Demonstravit igitar Justus Byrgius, ut AN ad BM, duplam esse proportionem TN ad VO, sicut est dupla proportio quadrati AN ad quadratum BM. Ita linearum A, B, C, D, E, F, quadrata insunt proportione in lineis TN, VO, XP, YQ, XR, VS, ubi semper duae OV et VS aequant diametrum, sic PX,

RX. sie QY, YQ: ut ita facilis sit collectio summae. Ex hoc quadamtenns apparet, quo fundamento nitatur apud Tychonem circellus variationis, sic affixus ad orbitam Lunae, ut NT eam quasi tangat in A; nec tamen NT manet ejusdem longitudinis. Cum enim AT librationem faciat semper 41' in apparentia, erit igitur brevis in perigaeo, longa in apogaeo. *) Ponit autem Lunam in A in 8, in T in octante gibbae, in A in quadra, in N in octante falcatae, in A rursum in d. Ego vero causas physicas eodem ducentes sic explico, ut de annuo motu Lunae a Sole, qui est revolutionum 12 et 132° 45', illas quidem revolutiones 12 aequaliter dispertiar in tempora aequalia, superfluos vero 132º 45' tribuo illuminationis phasibus ut regulae, imo apparenti latitudini circuli illuminationis vel semicirculi (nam de cansa ipsa efficiente jubeo considerare metaphysicos, quidnam sit, quod hac regula utatur in movenda Luna, si non volunt credere, luminis ipsius ut rei naturalis hanc esse vim). Jam vero decrescunt phases sic: posita A Terra. NG concentrico, N copula, G quadra, latitudo circuli illuminationis Terrae vel Lunae altrinsecus apparens est in proportione linearum NA, MB,... HF. Cumque Terra, quatenus illuminata hoc adjumentitio motu moveat Lunam, itidem quatenus illuminata est illa, eadem vero utrinque

•) Est etiam libratio tempore inacqualis, absolvitur enim a copula in quadram veram semidiameter AT bis, sive brevis hacc quarta mensis facrit, sive longa tempore. Ita etiam Tycho omnibus modis versatur in physica.

sint incrementa phasium, ut quo tempore Terra videt Lunam falcatam, eodem Luna videat Terram gibbam &c. Quantam igitur portionem de toto iumine (vel tota parte obscura) possidet una phasis Terrae et una Lunae, tantam de illa phasi portionem Terra habet pro regula admetiendae hujus superfluae celeritatis. Ita valent quadrata linearum BM, hoc est lineae OV.

Haec ego, Clarissime Vir, potius exercendi mei quam tui defatigandi causa de theoriae Lunae reformatione scripsi: tui erit arbitrii, quid ad hanc partem literarum respondeas; illud solum rogo, de fixis quod petii, ut curae habeas utque sic respondeas, uti existimas ex utilitate studii astronomici futurum. Vale. d. 12. Aprilis 1620.

Tuae Excellentiae

observantissimus

Jo. Keplerus.

His addit Hanschius: Posterior literarum pars de nova Lunae theoria emendatior et auctior missa ad Maestlinum d. XXVIII. Maji CIOIOCXX.:

Luna igitur versante in linea apsidum anomaliae solutae, hoc est in D vel E (Fig. 16), tunc etsi nulla potest esse prosthaphaeresis anomalise solutae, est tamen aliqua prosthaphaeresis auomaliae menstruae. quippe puncta D, E versantur extra lineam apsidum anomaliae menstruae FG. Hanc vero prosthaphaeresin prodit area trianguli aequatorii, quod stat super eccentricitate menstruae aequationis CA. Nam Luna in E existente, menstrua aequatio est CEA area. Sit enim vera distantia Lunae ab & Solis angulus FAE, tempus huic angulo respondens erit in sua proportione majus hoc angulo quantitate areae CEA: seu quod est dilucidius, sit notus locus lineae AD sub fixis, Luna igitur existente in ejus oppositione E, tempus respondens angulo DAE (duobus rectis) seu semicirculo orbitae DHE componetur ex area semicirculi DHE et ex triangulo CEA. Et vicissim Luna in D apogaeo versante, quando debebat fieri numerationis temporis initiam. seu quando anomalia media debebat esse 0, si nulla esset aequatio menstrua, tunc jam existente hac numeramus tanto minus quam 0, quantum valet area DAC. Ita conciliatur angulo visionis seu verae distantiae Lunae a Sole FAD vel FAE suum justum tempus seu anomalia media. Vicissim sit planeta vero motu (vel prope vero, quia nondum correctus est per variationem, de qua dicetur infra) sit inquam in F 8 () vel in G d (). Hic quia Lund collocatur in apsidibus anomaliae menstruae, nulla est prosthaphaeresis menstrua, at est aliqua prosthaphaeresis anomaliae solutae plane similis planetis ceteris; ostenditur enim et per angulum et per valorem areae trianguli BFA, BGA per suas scilicet partes, physicam et opticam in unum compositas. Angulus enim verae elongationis apogaei Lunae ab 8 (scilicet DAF minor est angulo DBF et arcu DF quantitate BFA anguli, eidem vero angulo DAF respondet anomalia media, valor areae DAFD. Sic angulo DAG areae DAGD valor assignat suam anomaliam mediam seu complementum ejus ad semicirculum.

Tertio operae pretium est videre prosthaphaereses mixtas ex solutae et ex menstruae anomaliae prosthaphaeresibus. Sit primo Luna inter unius apogaeum et alterius perigaeum, ut in punctis H, K, idque motu prope vero. Hic consideranda sunt bina pro uno triangula aequatoria, pro soluta BHA vel BKA, pro menstrua CHA vel CKA. Angulo igitar DAH respondet anomalia media composita ex area DHAD et ex area CAH: et angulo DAK respondet anomalia media composita ex areis DAKD et CAK.

683

Sit deinde Luna inter duo apogaea vel inter duo perigaea ut in I. Hic triangulum solutae est BAI in semicirculo solutae ascendente, at . triangulum menstruae est CAI in semicirculo menstruae descendente; valores itaque triangulorum sunt inter se affectionis contrariae, quare hic angulo DAI respondet anomalia media constans ex valore areae DKIA, sed a quo diminutus sit valor areae CIA. Hactenus retinuimus distantiam DAF Solis oppositi ab apogaeo Lunae unam et eandem: cum tamen separatio sit fere annua. Notandum ergo, si apogaeum sit in δ vel δ (\bullet) , hoc est si coincidant AD et AF, tunc B centrum eccentrici erit in L vel P. Tunc igitur posita Luna in H vel K, erit pars aequationis optica, ut hactenus, angulus LHA vel LKA: at physica pars aequationis tam solutae quam menstruae communiter est desumenda ex area LHA vel LKA bis sumta. Quia perpendicularis BC tonc est nulla, quippe absumta in punctum L, at sic utrumque triangulum tam sòlutae quam menstruae eandem habeant basin AL. Vicissim si apogaeum D sit in quadris et angulus DAF rectus, tunc perpendicularis BC cadit in A centrum Terrae, quare eccentricitas aequantis AC est nulla, igitur et aequatio menstrua tunc nulla toto orbitae circuitu. Ita satis clarum efficitur, tarditatem sideris ex aucto intervallo esse duplo majorem circa apogaeum in copulis quam vel in planetis ceteris vel etiam in ipsa Luna circa apogaeum in quadris. Et haec intelligantur de aequationibus ex antiquo cognitis, remota jam variatione Tychonica, de qua huc usque nihił dictum. Sed notanda est haec ratio dupli, quia oculos videtur aperire circa causas motuum physicas indagandas. Hactenus hypothesis renovata. In Ephemeride et per hos annos intermedios duplicem eccentricitatem statui: ut, sicut in soluta prosthaphaereses causatur eccentricitas, partim optice partim physice, sic etiam in menstrua prosthaphaereses dividerentur inter physicam et opticam, et ut physica retardatio solitam suam causam haberet, mutationem scilicet intervalli Lunae et Terrae. Verum sic eccentricitas copularum mihi nata fuit 6543, simplex seu quadrarum 4362. Atqui ex diligenti tractatione eclipsium deprehendi, retinendam esse etiam in copulis simplicem eccentricitatem 4362, at sint in copulis distantiae ad unguem eaedem a Terra, quas reperit Braheus in quadris, semidiametrorum Terrae a 59 in 54. Hoc itaque pacto menstrua prosthaphaeresis nunc habet formam mere physicam, non vero ut illa prior ex dimidio opticam. Et tamen haec physica retardatio causam habet consimilem. Sicut enim in soluta eccentricitas AB, angens distantias Lunae a fonte motus A superius, auget etiam physicos motus: sic nunc in menstrua, quia circulus illuminationis semper perpendicularis ipsi FG rationem fontis habet, eadem eccentricitas AB habet suam certam altitudinem super planum illuminationis, quae altitude est AC, et operator elevatio AC physicam retardationem in menstrua maximam circa F, non minus quam in soluta ipsa elevatio B super A operatur retardationem maximam circa D. Itaque triangula CHA &c. quae cum areis suis significant rețardationem physicam, non carent sua etiam causa, quod hactenus me torserat adque confingendam peculiarem eccentricitatem adegerat. Omnibus modis, Maestline praestantissime, dives est et sibi ipsi sufficientissima physica speculatio motuum. Sequitur igitur calculus. In eo hoc unum deest, quod data anomalia media non aliter invenitur anomalia coaequata, nisi per falsi regulam, ut in Commentariis Martis luculenter ostendi. Ad Tabulas vero construendas nihil nos impedit incipere ab anomalia eccentri, quae mihi est quantitate media

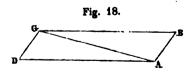
inter veteribus dictam mediam et inter coaequatam. Etsi vero tradita est ratio computandi in Marte, tamen ne Te circumcursitare opus sit per varios libros, repetam hic modum, ut videas ejus facilitatem et certitudinem.

Ponatur anomalia eccentrici 60°, quaeritur et quanto tempore (quod est anomalia media) Luna versetur in hoc arcu, et quanto angulo ex Terra spectetur hic arcus orbitae, quae ut in planetis figuram habet ellipticam. Igitur sinus erit 86603, qui multiplicatus in dimidium eccentricitatis solutae, scilicet in 2181, conficit aream trianguli, quae quantum valeat, facile computatur. Nam area totius semicirculi ex Archimede petita valet anomaliam mediam 180°. Et cum initiostatim constitui possit, quantum valeat triangulum omnium maximum, quod competit anomaliae eccentri 90°, scilicet area 218100000, quot valeat gradus, minuta et secunda, seu unico numero quot secunda ? puta hic 2° 30' 0" chrciter, seu 150' seu 9000". Ergo in omnibus aliis operationibus, posita anomalia eccentri ut hic 60°, sinus ejus tantummodo multiplicatur in base 9000" et predit valor ipse cujusque trianguli in secundis scrupulis. Igitur hic sunt 7792" seu 2° 9' 52". dico igitur anomaliam mediam quaesitam esse 62° 9' 52". Nam sectoris, quae est sub arcu circuli 60°, area valet itidem 60°. Pro coaequata invenienda sic agendum. Hactenus quidem circulus pro ellipsi fuit usurpatus; demonstratur enim haec aequipollentia yeuuerouxororos; at nunc propria planetae orbita est adsciscenda, ut habeatur vera ejus apparentia ex Terra, seu anomalia coaequata. Id hac ratione obtinetur. Sinui 50000 complementi anomaliae eccentri 60° addo in praesenti casu eccentricitatem 4362 et fit 54362. Eundem sinum complementi multiplico in eccentricitatem eandem, et prodit portio librationis 2181, adjicienda hoc loco ad 100000, ut conficiatur distantia Lunae a Terra 102181. Igitar 102181 se habet ut secans, et 54362 se habet ut tangens ; diviso enim 5436200000 per 102181, prodit tangens (seu foecundus) complementi anguli coacquatae. Igitur anomalia coaequata est 57° 51' 31", respondens anomaliae mediae 62° 9' 52": ut sit acquatio solutae anomaliae tota 4º 18' 21". Hactenus igitur Luna fuit similis planetis ceteris. Applicabimus ad schema. Sit DAK angulus 57° 51' 31", ut aequatio 4° 18' 21" hic intelligatur addenda. Cum igitur schema sic sit pictum, ut distantia & Solis ab apogaeo Lunae seu angulus FAD sit 45°; erit ut 100000 ad BA 4362, sie sinus anguli FAD 70711 ad CB 3085; et ut 100000 ad BA sic sinus complementi FAD ad CA 3085. Trianguli igitur CAK nota est basis CA, nota et altitudo seu colligenda potius sic : FAD vel SBD est 45°, DBK vero 60°. Ergo SBK 105°, cujus sinus 96593 proderet trianguli altitudinem, si ejus basis CA tenderetur ex B in lines SB. At punc accedit huic altitudini quantitas CB, ut sit 99678, haec ducta in dimidiam CA scilicet 1543 creat 153800000 circiter, ut sic auctarium hoc altitudinis BC non plus efficiat quam 4800000 circiter. Itaque valor areae CKA est 1º 45' 47". Et excessus ille altitudinis non plus efficit quam 3' 20". In hypothesi priore, ex 'qua computatae sunt Ephemerides quatuor, colligo 1º.44' 0". Cogitabis fortasse, faciliorem esse modum calculandi per hypotheses antiquas. Age igitur ostendam, quomodo hae meae physicae causae etiam in circulos aequantes transferri possint, ut tecum ipse explores, an calculus sit faturus facilior. Manet igitur AB eccentricitas, et in AB continuata ipsi AB. acqualis fat BR et sit R centrum circuli acquantis pro soluta anomalia. Pro ee igitur quod ego computavi valorem areae BKA, computa tu angulum RKB. qui non poterit esse multo alius, sed difficiliorem puto futurum calculum. Altera vero pars acquationis solutate AKB angulus manebit ut prius. Pro menstrua vero anomalia fiet C centrum aequantis menstrui, in cujus circumferentia numerabitur arcus aequalis angulo FAK. Pro eo igitur, quod ego computavi valorem areae CKA altiusculae in semicirculo FKG, in quo est apogaeum solutae, computandus tibi erit angulus CKA acutiusculus. Ita bic circiter 6 vel 7 minutis differemus.

(Fundamenta physica calculi mei, quem hactenus adhibui ad variationem) computandam.) Transco vel tandem ad tertiam Lunae presthaphaeresin,

quae secunda est ex menstruís, Tychoni variatio dicta, quae mysteriorum et perplexitatis vere est plenissima, ipsoque Tychone teste nihil aliud quam physica acceleratio et retardatio. Hic aliqua videre incipio, discussis tenebris ignorantiae; circa plurima, quae palpitando quaero, adhuc caecutio. Hactenus quidem, ut in Prolegomenis Ephemeridum videre potes Num. XIX, sic censui distribuendam variationem per orbitam Lunae. Primum statui : qua in proportione sunt ad se mutuo revolutiones integrae duodecim cum appendice 132° 45', quae accedunt usque ad completionem anni siderei, et seorsim haec ipsa appendix 132° 45', in eadem proportione dividendum esse unumquemque gradum distantiae Lunae a Sole coaequatum ; ut major quidem pars, in annuo quidem motu revolutiones Lunae 12 integrae, in ano vero gradu 58' 12²/,", causam habeant motricem aequabilem in se ipsa, puta revolutionem diutumam corporis Telluris, quae per emissam speciem secum rotat etiam Lunam; at minor pars, puta in anno quidem appendix 132° 45', in uno vero gradu residua 1' 47 1/1" causam habeant motricem se ipsa inaequabilem, quam statui esse apparentem ipsi Lunae latitudinem circuli illuminationis Telluris. Non disputo jam, an apparentiae opticae sit aliqua vis physica movendi; sufficit mihi, si sit aliqua causa movens, quae hac apparentiae varietate utatur pro lege et regula seu mensura motus sui. Quodsi igitur haec residua 1' 47 1/, " de omnibus 90° quadrantis colligantur in unam summam, deinde summa ista rursum in illos 90° distribuatur, admensa scilicet ad sinus distantiae Lunae a Sole vel ab 8 Solis, putavi hanc esse bonam distributionem physicam. Sic enim provenerunt mihi in copulis quidem pro uno gradu 61' 1", in quadris vero pro uno gradu facta sunt 58' 13'/, quia in copulis sinuum incrementa plus restituebant uni gradui, quam prius ei erat detractum; in quadris vero sinus jam pleni pene nihilo amplius augebantur, nihil igitur perfecta diminutione restituunt.

Haec calculi ratio differebat a Tychonica in forma plurimum, in quantitate nonnihil. Effectus calculi varie Tychonicas variationes nunc antecessit, nunc secutus fuit, nuspiam tamen ultra 9' facta fuit diversitas. Ego vero meis variationibus malui credere, ut quae ex sinibus lege physica orirentur, cujus legis exempla alia sunt satis evidentia; Tychonicas vero variationes tanquam non physicas deserendas existimavi, quippe quae nascuntur ex libratione in diametro circelli, motus duplicis ad elongationem Lunae a Sole: cum nulla appareret cansa physica hujus duplicationis. Haec igitur hactenus fui secutus, usque ad initium hujus ansi 1620, quando hypothesin Lunae modo praemisso reformare, eccentricitatem menstruam tollere inque merum (ut ex usitatis hypothesibus loquar) aequantem transfermare coactus fui.


Sequitur nunc hujus circa variationem considerationis et calculationis emendatio. Cum enim viderem ratione explicatae superins inaequalitatis menstruae seu $\pi \rho o \sigma rev \sigma s \omega_c$ Ptolemaicae Lunam fieri duplo tardiorem in apogaeo et copulis, quam in perigaeo et quadris : constituendum mihi videbatur, ubi duplum posset existere lucri vel damni, ibidem et duplum oportere esse sortis : itaque variationem Tychonis et $\pi \rho o \sigma rev \sigma r$ Ptolemaei ab una et eadem causa esse deducendam, et tandem esse statuendam variationis accelerationem in copulis, ut damnum ex eccentricitate in copulis ad duplum damni usitati, in quadris apogaeo versante, posset excrescere. Hie cum mea in copulis acceleratio non responderet magnitudine apparenti necessitati physicae, coepi eogitare, quo pacto ea posset augeri. Summa

quidem totius accelerationis per totum quadrantem jam erat mihi praescripța, eadem scilicet quae hactenus. Itaque quanto augerem accelerationes in copulis, tanto videbam diminutum iri ceteras extra copulas. Sinus ergo primorum graduum digressionis Lunae a copulis non erant magni pro mea mensura, sinus vero circa quadras et finem quadrantis nimis erant magni. At sinus primus et incrementa sequentium sunt index apparitionis latitudinis circuli illuminationis Terrae; non ergo ut evanescit circulus hic illuminationis Terrae in Luna, sic etiam minuitur variationis celeritas, sed magis praecipitatis utitur decrementis, orta a majori quantitate totius.

Coepi igitur circumspicere, quidnam esset hic circulus illuminationis Terrae, qui pro motore constituitur, juxta Terram ipsam inaequaliter movens, juxta moventem acqualiter se ipso (?), et quid consentaneum sit ab hoc circulo illuminationis moveri. Nam si eadem est Terra, quae movet duplici respecta. et ratione sui corporis diurno motu rotati et ratione suae illuminationis. eodem modo et de Lunae corpore dicendum esse videbatur, ut eadem esset Luna quae moveretur duplici respectu, et in quantum est solidum in coelo corpus, et in quantum et ipsa illuminatur a Sole. De hujus rei possibilitate et modis et de ro diori disputent metaphysici, mihi ut supra dictum mensurae motuum tales, quae appareant in rerum natura, ad investigandum sunt propositae et ro br. Itaque divisim etiam. Telluris quidem rotatae species, ut solidi corporis, aequabili suarum virium contentione movet Lunae corpus, ut corpus, modificantibus tamen intervallis ut in planetis ceteris: at ejusdem Telluris corpus uti figuratum varie habet adspectum illuminationis suae versus Lunam porrectum, movet ejusdem Lunae corpus, uti et ipsum varie figuratum habet illuminationis suae adspectum versus Terram porrectum. Movet itaque apparens latitudo circulum illuminationis, et quantum ipsa habet in se latitudinis apparentis et quantum ejus invenit in Luna quovis tempore. Atqui eadem sunt increments phasium utrarumque : ut quo tempore Terra videt Lunam falcatam, eoden Luna videat Terram gibbosam. ut ita circuli illuminationis diametri latitudinum sint semper paralleli, et ejusdem ex inclinatione quantitatis apparentis, in comparatione ad cujusque recte objectae visionem quasi totalem. Ergo non est distribuendum illod auctarium 132° 45' super 12 Lunae revolutiones integras, non est, inquam, distribuendum secundum mensuram simplicis hujus latitudinis ellipseos seu circuli illuminationis apparentis, sed oportet illam bis adhibere : hoc est, ut geometrice rem eloquar, non incrementa ipsorum sinuum digressionis Lunae ab oppositione vel conjunctione Solis, ut hactenus, sed incrementa quadratorum sinuum debent statui pro mensura accelerationis hujus in copulis.

Porro ut revertar ad initium, talis nascitur forma hujus calculi, ex qua luculentissime appareat, tam variationem Tychonis quam $\pi \rho o \sigma r \sigma \sigma \sigma$ Ptolemaei ex eodem esse fonte. Nam esto in adjecto schemate A centrum

Terrae, AB semidiameter illuminationis Terrae, G centrum Lunae, GD semidiameter illuminationis Lunae. . Si ergo semper GD et AB parallelae quam proxime, et si sinus GAD multiplicatus in sinum AGB facit numerum, qui metitur

quantitatem seu vigorem accelerationis competentem in tali situ, sic at factus iste sit maximus in copulis, nihil in quadris : facile apparet, si jam etiam prolongentur lineae AD, BG, per eccentricitatis interventum apgulos

GAD diminutum iri, ac proinde accelerationes in toto illo semisse mensis (inchoando a quadris), in quo reperitur apogaeum Lunae, fore minores, id quod supra in schemate 16. praestitit nobis punctum C aequantis menstrui ejusque eccentricitas AC.

Et haec sunt, quae ad hoc usque tempus in lucem eruere potui: at in quantitate utriusque rei concilianda etiamnum haereo. Nam si utraque aequatio est ab eodem fonte, prosneusis quidem Ptolemaei effectum habet maximum (quando apogaeum Lunae est in copulis. Luna ipsa in quadris) 2º 30', ex hac vero quantitate nascitur jam aliqua etiam variationis quantitas necessaria, sed quae nonnullis scrupulis (non tamen valde multis) distat tam a maxima variatione Tychonica, quam ab ea quantitate, quam mens efficit calculus et assumtio appendicis illius 132° 45' ad 12 revolutiones in uno anno. Quare vitandae perplexitatis causa finiam hic discursum super causa utriusque physica, et me convertam ad demonstrationem calculi, quae habet aliquot jucunda theoremata et effectum inopinatum. Diminutione enim facta de gradibus singulis distantiae Lunae a Sole vel $\mathcal S$ Solis, vicissim iis accrescere dico accelerationis proportiones seu incrementa decrescentia in ea proportione, quam servant quadrata sinuum distantiae Lunae a quadris : sicut enim accelerationis vigor est in copulis maximus, sic etiam sinus distantiae copulae a quadra, id est quadrantis, est maximus et totus. Porro quod hic dico idem est cum eo quod supra dixi, sinum primum distantiae Lunae a copulis et incrementa sequentium omnia quadrata esse debere mensuras incrementorum accelerationis decrescentium. Nam diviso quadrante in partes acquales minimas, ut hic quadrante GN, summa

sinum ad divisiones aequales proxime est in proportione sagittae cujusque arcus sinus illos continentis: sicut enim summa sinuum ex H, I, K ad sagittam GD, sic summa sinuum ex H, I, K, L, M ad sagittam GB. Hujus prope veri theorematis fundamentum est illud Pappi theorema simpliciter verum, quod segmenta superficiei sphaericae sint in proportione suarum axis portionum seu sagittarum GD, GB &c. Posito igitur N loco Lunae in copulis, G loco ejusdem in quadris, si colligam portiones incrementorum, accelerationes decrescentium, servantes pro-

Fig. 19.

portionem quadratorum de NA, MB &c., summa omnium totius quadrantis eadem erit, quae colligitur, si incipiendo ab eadem portione prima comparem illam quadrato ipsius AB, sinus arcus NM, deinde reliquas portiones admetiar in proportione BC, CD &c. quadratorum. Cum autem detur mihi summa effectus totius accelerationis per totum quadrantem, ut ea distribui rite possit, opus mihi est summa quadratorum vel NA, MB &c. vel AB, BC &c. et in priori quidem mea vitiosa forma calculi, quaudo mihi non fuit opus quadratis ipsorum AB, BC, sed ipsis AB, BC, non valde laborandum fuit de summa emnium AB, BC. Nam sinus ipse totus AG continebat partes suas omnes. Itaque summam accelerationis, debitam uni NG quadranti, tantummodo comparavi sinui toti AG, summam vero debitam arcui NI aequiparavi ejus sinui AE. At quia jam nobis opus est quadratis ipsorum AB, BC &c., nihil nobis prodest totius AG quadratum, quia illad

De Luna.

multo est majus summa quadratorum ex omnibus suis partibus. Hic igitur commoda admodum nobis accidit aequipollentia inter NA, MB &c. et inter AB, BC &c. Quia enim indigemus ipsorum NA, MB quadratis, non per se, sed ob mutuam eorum proportionem: hic nobis subsidio venit Justus Byrgius, proportionem horum quadratorum exponens in lineis rectis. Sit enim in continuato quadrantis nostri circulo semicirculus NQT, divisus in partes numero aequales partibus quadrantis NG aequalibus, quantitate vero duplas illarum; et sint arcuum semicirculi sagittae ut hic ordine videre est.

Arcus quadrantis Sinus Dupli arcus Sagittae	GH HF TS SV	IÈ TB	KD	LC TP	GM MB TO OV	NA TN	ut horum quadrata inter se : sic hae lineae inter se.
--	----------------------	----------	----	----------	----------------------	----------	---

Jam vero binae sagittae OV et SV aequant diametrum circuli, sic etiam PX, RX. Quare pro quadratis AN et GG (hoc analogice appello quadratum) sumitur diameter NT, pro quadratis BM, FH diameter alia, pro quadratis CL, EI tertia, denique pro quadrato DK semidiameter YQ. Itaque si, quot sunt partium aequalium quadrantis termini, tot constituam semidiametrorum summam, habeo summam quadratorum omnium sinuum ad illas partes. Et quia terminorum semper uno plus est, quam partium : ideo sciendum est, quo magis minutae multaeque fiunt unius quadrantis partes, hoc magis terminum hunc supernumerarium evanescere. Itaque pro 90 partibus quadrantis 90 semidiametri sumtae quam proxime constituent summam omnium quadratorum. Reliquorum arcuum summae colligendae sunt ex continua additione secantium, ut sciatur quantitas effectus in uno quolibet arcu distantiae Lunae a Sole vel & . Hoc itaque pacto fit, ut accelerationem in copulis repraesentet linea NT, et accelerationem in quadris lines 0 seu nulla. Cum itaque pro primo et pro ultimo gradu quadrantis distantiae Lunae a Sole sumatur linea NT diameter, sit vero de summa omnium sagittarum pars quadragesima quinta: erit igitur valor ejus de summa accelerationis quadranti debita tantos 3' 34²/₃". Haec est acceleratio in primo gradu distantiae Lunae a Sole vel 8. Adde hanc ad modulum virtuti motrici Telluris aequabili debitum, scilicet ad 58' 12", ", conficitur 61' 47 1/3". Est enim acceleratio 3' 34"," praecise dupla diminutionis, quae ad hujus calculi formam est necessaria tam in vitiosa quam in emendata forma. Itaque hic in 1º distantiae Lunae • a Sole variatio est 1' 47 1/2" addenda. Contra in quadris et gradu proximo pro duobus gradibus, uno in copulis et uno in quadris, valet lines. NT: illam vero totam vindicat gradus copularum, ut ita nihil relinquatur gradui in quadris. Si gradui in quadris, pro diminutione, quam est passas eandem cum ceteris quadrantis gradibus, nihil vicissim accedit : ergo is manet diminutus, scilicet 58' 12'/s". Ergo variatio competens circa quadras est 1' 47 1/4" subtrahenda. Erat vero in copulis ejusdem quantitatis addenda. Est igitur inopinata aequipollentia mera inter hanc meam ad physicas causas accommodatam calculi formam, interque Tychonicam calculi formam circelli, cujus motus duplo celerior est digressione Lunae a Sole. Dici non potest, quam valde me exhilaraverit inopinatus hic exitus calculi et demonstratio, quod etiam Tychonis circellus cum suo motu duplici contra quam bactenus credideram causis nitatur physicis. Nam circellum ipsum

688

۱

per se realem non esse, sed causis niti physicis, Tycho ipse credidit, et sunt in eo tres notae physicarum causarum : prima, quod Luna libratur in ejus diametro tangente orbitam, non vero circumit in circumferentia ; secunda, quod circelli motus est inaequalis, tardus in apogaeo eccentrici versans, velox in perigaeo; tertia, quod diameter ejus deberet augeri et minui, si realis esset. Nam semper apparet 40' 30", sive remota sit in apogaeo, sive propinqua in perigaeo. Demonstratur autem aequipollentia sic, quia gradus singuli apud me sunt diminuti quantitate 1' 47 1, ", maximum vero incrementum accelerationis est hujus duplum, scilicet $3' 34'_{3}''$, et hoc comparatur lineae NT. Tycho vicissim non diminuit gradus, additque tantum, quantum indicant NT, OV, diminutae AT, SV, id est quantum indicant NA, OS &c. Atqui summae ipsarum NA, OS, ut prius dictum, insunt in sinibus AC, AF, AG, haec igitur est semidiameter libratoria Tychonis, ut Luna in copulis sit in A, in octante vero in G, in quadra' rursum in A, quia idem est, si ille post octantem minuat motum initio non diminutum, ego augeam initio diminutum. Ceterum hoc adhuc desidero in hoc calculo, ut supra etiam dixi, quod, si quantitatem Tychonis 40¹/₂' sequar, tunc neque plane eum concilio cum quantitate noorevosos Ptolemaicae, neque in uno anno conficio 132º 45', quanta sc. est appendix ad revolutiones 12; et vicissim si conficio 132º 45', tunc variatio maxima mihi fit non 40 1/2 ut Tychoni, sed plane 51', ubi plus excedo Tychonem, quam in priori vitiosa forma calculi defeceram. Etsi neque observata · Tychonis semper modulum 40¹/₂' exprimant, sed interdum etiam 46'. Tunc autem augetur mihi horarius in eclipsibus per magnam meam variationem: hoc vero percommode mihi accidit, ne nimiae mihi, nt solebant, prodeant durationes et morae.

Haec ergo, clarissime Vir, potins exercendi mei, quam tui defatigandi cansa et scripsi primum, et, cum in nupero discessu Mutschelii nostri literae ad Te acriptae ex incuria ceteris assumtis essent relictae, transscripsi et copiosins et luculentins. Tui jam esto arbitrii, quid ad hanc posteriorem partem literarum respondeas, quod theoriam Lunae attinet. Illud solum rogo, de fixis quod petii, ut curae habeas, utque sic respondeas, uti existimas ex utilitate studii astronomici futurum. Et ut melior sit informatio, duo adhuc addo.

1) Cum scias, post annos 18 dies 10 easdem reverti eclipses, eandem sc. anomaliam Lunae, eundem locum Solis intra 10°, commode accidit, ut ad fixas etiam sociam hujus eclipsis anni 1619, sc. eclipsin anni 1601. d. 19/29. Nov. Pragae observarem. Exstat observatio in Optica fol. 360. Examina illam, videbis illam testari locum centri umbrae c. 5 scrupulis esse promotierem quam vult Tycho, et sic conspirare cum Landgravio contra Tychonem. Quidnam igitur hoc est, propter Deum immortalem! quod jam post annos 18 anterius invenio centrum umbrae, quam Tycho vult in theoria Solis? Anne dicemus, praecessionem aequinoctiorum per hos 18 annos quievisse, aut etiam in retrocessionem aliquot secundorum esse mutatam?

2) Circa eandem eclipsin 1619. (Dec.) alia occurrit difficultas. Interim enim dum Mutschelius ivit redivitque, totus in computatione fui observatarum eclipsium. Eclipsis anno 1616. 16/26. Aug., observata est 3 locis, Tubingae, Romae, Lincii consensu egregio. Eclipsis anno 1619. 30. Nov. 10. Dec. observata est Tubingae et Lincii consensu iterum optimo, nibil enim te Espieri opera III.

factisse pato in gratiam mese observationis. Jam vero utraque circa petigaeum fuit, haec ante, illa post. Differentia anomaliarum est 17° circiter. Quodsi perigaeum penitus mediasset inter utramone anomaliam, summa prosthaphaereseon non potnit esse major quam 1° 34'. At si altera fat perigaeo propior, mizor paalo erit summa. Jam vero non potest valde maguus error esse in distantia locorum Solis in utraque eclipsi. I mue, et acqua more Tychonico seu meo, seu etiam nalla utere acquatione, mila ratione efficies, ut Luna his Solis locis opponatur ad observata tempora, nisi valde maguo aliquo mutes eccentricitatem Lunae et prosthaphaerese. Quasi omnino aliquid loco Solis acciderit anno 1619. 6. Dec., ut qui net Lunae motibus, net fixis accommodat centrum umbrae. Vides omnihus astronomis etiam atque etiam cogitandum de hac eclipsi anni 1619. Qua adhortatione finiam. Vale. Scripsi 12. Apr., rescripsi 28. Maj. 1620. Lincii. Addideram multa politica, sed illa Deo et politicis curae sunto; nos ut mones precibus nisi, Deo confisi nostra agamus.

Transformatio Hypotheseos et Tabularum Lunarium Tychonis Brahe.

Praemissis disquisitionibus Kepleri de Luna et eclipsibus, quas conscripsit variis temporibus, subjungendam censemus partem opusculi, quod Keplerus plane ad calcem perduxit typisque mandandum sibi proposuit, diversis vero causis motus mutato consilio secum retinuit. Sequentes Herwarti Keplerique epistolae mutuae haec habent ad illam "transformationem" pertinentia.

Herwartus d. 2. Dec. 1601. scripsit Keplero: ... Ausser dessen (comp. Vol. I. p. 73) füg ich dem Herrn zu vernehmen, dass mir Tycho Brahe in seinem Leben die Verwehnung gemacht, dass er mir seine rationem calculi Eclipsium Solis et Lunae mittheilen wolle. Hat mir darauf seinen I. Partem Progymnasu. Astron. restauratae (der, wie ich verstehe, in kurzem offentlich publiciert werden solle) geschickt, und noch zu Eingang dieses 1601. Jahrs seine Meinung de motu Lunae, so er "De motu Lunae restituto per novam hypothesin et hinc deductos numeros" intitulirt, zugeschickt, darinnen eine tabula aequationis temporis und parallaxium Solis et Lunae. Darüber ich mich nit wenig gefreut. Wie ich aber die Feder angesezt, hab ich befunden, dass ich noch nit gar damit fortkommen kann, und will mir in calculo mediorum motuum und in indagatione temporis verae $d \in S$ \bigcirc et \bigcirc mangeln und ungleich zutreffen.

Derowegen gelangt an den Herrn mein Bitt, er wolle mir behülflich seyn, auch viam demonstriren, damit ich zu meinem Vorhaben gelangen und dadurch sehen möge. Als zum Exempel anno a. Ch. 183 et 180. O Romae tantum defecit, ut coelo sereno tenebrat ingentes fuerint subortae, finde ich ex Tabulis Prutenicis veram d' O et) Romae a meridie h. 1. 1' 33'', visam 2^h 9' 38'', O in 22° cm defecit digitis 6. 16 tantummodo. Gleicher weiss find ich ex Tab. Prut. ante Epocham Christf⁴ retroactis annis Aegyptiacis,

Gleicher weiss find ich ex Tab. Prut. ante Epocham Christf⁴ retroactis annis Aegyptiacis, 2 Sexag. 59. annos Aegypt. 31^d 4' 39" 53'" 16¹⁷, mediam \checkmark \bigcirc et \bigcirc Borussiae, veram citius h. 11. 29' 19" sicque Romae apparenter a. m. h. 2. 2' 19", cum \bigcirc in 20° 3' 35" \bigcirc deficeret dig. 7. 53'.

Da welt ich gern so weit gelangen können, dass ich wissen möchte, wie des Tychonis data und observationes zutreffen. Auch möchte mir der Herr obige 2 eclipses secundum Tychonem supputiren. Ich weiss wohl, dass es ohne sonderbare grosse Mühe nit abgehet, ich wolt es aber gern beschulden und vergleichen.

Wann mir der Herr mit diesem calculo eine oder andere demonstration oder auch delineationes geometricas mit zukommen lassen wollte, wäre mir um so viel mehr gedient, cum, ut fatear quod res est, Davus potins quam Oedipus in hoc genere calculi esse videar. Es delectiren mich gleichwohl alle Mathematische Sachen, ich kann aber, durch Wahrheit zu melden, andere wenig gebrauchen; darum will ich um so viel mehr hoffen und gebeten haben, dass mir der Herr hierinnen wohl verhelfen und Satisfaction geben welle.

Keplerum hoc Herwarti petitum proximo tempore ex parte quidem explevisse, ex hac illius responsione patet (literae Kepleri desunt): ... Zu meiner von Salzburg wieder Allherkunft hab ich des Herrn Schreiben, den 10. dieses datirt, empfangen, auch die beiden Beilagen, demonstrationem motus Lunae befunden, deren ich mich freundlich bedanke.

Hab mich fürnehmlich erfreut, dass ich aus des Herrn Schreiben vernommen, dass er die beide von mir designirte eclipses Solis secundum Tychonis mentem et tabulas supputirt, mir ehestens welle zukommen lassen, deren will ich mit sonderem Verlangen seiner Zeit erwarten. Wenn der Herr in calculo ipso andeutet, in was für Puncten der Herr denselben noch für suspect haltet, ist es um so viel besser. Sonsten hat Tycho die motus fizarum und anni quautitatem väriatam wohl apecificirt, ebenso Solis apogaei motum, eccentricitatis

44 *

Longes 7 Bunker

eringiene variationen. Das dass men diene une siener en be dass adapte was escaliona. Un plaque generale eclipus fais sa sue su generale ventes, tem a par milità general set s'assertits venter cora quanta 3. 3. militar.

Lanar was ten Merre wa me' joner for her and augments on and him d Here aspectus: Dent 25 orthog, actes Vinchag one angulation and willight ghousing he game willing and genorge.

Lines Minches & M Los. 1991

lasante nues 1992 transmir Kepterni Hervard promotor culculum. Herva tas agens, vervinst ante die . Has gers versammen, sam der Berr er fie utlichen schot, de écheran nonnarian crea finne prayers nacharrechant, benades wel ve ses ordipat fide taxes, for a at ser, and a average share electron. and we ar encount op, inclusion water. We such an Paneman keine late campi bandandar st : moten vi has ance es sus éstes et assunts etique eclipses Suis cores de mangene calculat and infunder, day as, and party and firmenicia rations parallanam Lange or uzdalo Padenzel zametzena, in verna dez predimitos nomena na superiolien. Se kann et die skorvelsnes und calculus 7schruns auch fahrt an seingen . dass me dar graditionition antonio overenousfietes. Aver oes executos Proteinens e insilius Constant finde ich wellich mit den undammönes anteren eierospiedwen. Allen dänts mich, das je veiles ene ochpas grimer gevenen, ab dover calculus exiliura.

M haef Keplerss in suscept, coming fore proximum eclipane abadems: De Mort a PJAFES in pricepan, choume nois printenen companie and anti-e liets vos Hervar per sonaces son 1992 a orius pratus agt per scanninis ci-culis shape plura tangs (comp. Vo. E. p. 715. EL 25. and de proposita concolutions theories Tychomete depresentiums. Unus vers de Juli ade Hervarius, Juli Macadardan, R. Kais. Me Latenno-core Camiey Registratoren⁺ quaerus : Nachden ach ait weiss, ve sich anjetze M. J. Kepter, I. N. Mattematicus, st set en Zeit lang her veiland Tyche Benhe aufgehalten, mit im jewen Leien zu erkundigen, aufanhe uter annabulien seun michte als Bitt ech Loca fremdlich. Ir willet mir so vel za Gefallen ervenen, und Inc dons indegend Schreiben zusertnen. Und beiß sch &c.

In Istens his subjuncts assart Herwartzs, at Keplerus tollight Tychnik shorvation llangue amendet. Denide, accepta Kepler, responsione, Herwartus (d. 24. Sept.) pram tationilus, at evitet descertas can Traisus Lacedilus, canet encadandam care metan Solis et Lanze adhilintis veterum auctorum de eclipsilles relationilles addisque: Und welk ich gars winen, wann einer ras loca 3 et) hat secula eracte practitien. auch ende de eclipses luminarium ex antoribus praeteritorum temporum salviren hann, was doch ime abgeben solte, in doesen Sachen mit affein quand fintura certitudinaliter quand fien potest 28 prachairen, sondern anch de practernis abservation.lus fundamentaliste en judiciren.

Der Herr hat mir Urtach zu dieter Anregnug geben, indem er mir eine quaestionen chronologicam proponist.

Aera obitus Alexandui in Piolemaco et praesertim Theone ante Ch. annis Aog. 323.

inde ab Epocha Christi deinceps d. 130.

863. " 116. 53' 45" ad acquin. automaale Albategnii

1206 anni Aegypt. 246. 53' 45" dies.

At ante Epocham (Invisti 81 et port Ep. Ch. 220 dies in hoc spatio intermodio intercalantar, qui conflant d. 301 intercalares, atque consequenter hoc tempes acquinocti antonnalis ab Albategnie observati incidit ante exactum annum ab epocha mortis Alexandri 1206 Julianam (non Acgypt.). Consimiliter et in fortioribus terminis : ab epocha mortis Alexandri praedictorum ad pienikunium Albategnii d. 23. Jul. 883. Ch. observatum, sant intermedii anni Aeg. 1206. d. 180. 14' 40". Sed in hec spatio intermedio ante ep. Ch. 81 et port 220, qui confant 301 dies intercalarus, sunt chapsi, ideoque id ipsum quoque plouibunium morito intra annum a morte Alexandri 1206 collocat. Julianum videlicet. Ego vuro hac ipes in re majorem difficultatem invenio in Tab. Alphonsinis, ubi prope 8 ep. Ch. signatur in moridie currentis ultimi disi Decembris. Et tamen ante sam usque ad initium regui Alez. M. habet sunos Aeg. 323. d. 131 integros. Ille etiam epocham ipann Nabonascari integra die anticipat citinoque ponit, quam Prolomacus et Theon et Regiomoutanus in Epit. Hb. 3. prop. 21. eandem collocat. Refert quidem P. Nonius, Regiomentanum hec intermedio spatie diem unum Alphoneo demere, atque post epocham Ch. usque ad acquinectium Antonini eandem restituere. Sed nen animadvertit, hanc injuriam non tam Alphonso, quam Ptolemaes, Theoni et observationibus ipeerum contingere.

Quid de observationibus Ptolemaei dicendum, siquidem observationem Agrippae of Lunas et Plejadam d. 29. Nov. a. Ch. 92. optime same collocat in annum Domitiani 12? At vere observ. Menelai of Lunae et spicae d. 11. Jan. 98. habitam adscribit anno 1. Trajani, cum tamon co tempore adhue vizorit Nerva, qui Trajanum pro conserte imperii sibi arrogavit.

612

a Keplero emendata.

Sed sit id ferendum, quoniam tum re vera Trajanus una cum Nerva imperitaverit. Quid quaeso reliquis observationibus omnibus ab ipso Ptolemaeo habitis faciamus? Nam aequinoctium autumnale observavit 25. Sept. a. Ch. 132. idque lib. III. c. 8. adscribit anno 17. Adriani, cum contigerit anno ejusdem 16. Et Lunae defectum d. 6. Maj. 133. tribuit anno Adriani 17. eidem, qui ejusdem 16. evenit; defectus) 20. Oct. a. 134. adscribitur a. 19. Adriani pro 18. Sic Ptolemaeus observavit Q 16. Dec. 138, et libro X. cap. 4. eam observationem assignat anno II. Antonini, cum Idib. Jul. proxime praecedentibus demum inchoavit primus ejusdem annus. Observavit 26. Sept. 139. aequinoctium autumn. et 22. Mart. 140. vernale, sicque utrumque observavit currente anno 2. Antonini, cum disertis verbis utrumque adscribat anno 3. ejusdem, adeo ut omnes observationes Ptolemaei uno anno citius contigerint, quam ab ipsissimo earum authore inscribantur.

Voluit hanc difficultatem evitare H. Buntingus, ut contra autoritatem gravissimorum authorum e medio tollendum censuerit consulatum Severiani 2. et Sentii Augurini, qui a. 132. Coss. ordinarii fuere. Will des Herrn Bedenken ratione eclipsium praeteritorum temporum gern vernehmen.

Fallet mir zu Gemüth, wie es komme, dass der Herr die differentiam ratione temporis mortis Alexandri M. zwischen Ptolemaeus und Albategnius so fest anziehe, und nit bedenke, dass des Ptolemaeus seine Sachen a Chaldaeis, und die Chaldaei mortem vel saltem monarchiam Alexandri M. ante Ch. 312. desinente vel 311. currente gesetzt. Dices fortasse, illam opinionem esse absurdam; sed considera, Ptolemaeum et Hipparchum pleraque ex Chaldaeis bansisse ; deinde contemplare quaeso Livtum, ubi de Perseo, ultimo Macedonum rege debellato agit, regnum Macedonicum a summo fastigio usque ad interitum solis 150 annis stetisse affirmat. Ponas itaque juxta Chaldaeos a. a. Ch. 311. Alex. M. Babylonem reversum paulo post obiisse, atque a tempore mortis illius, quod Judai quoque anno a. Ch. 310. collocant, subtrahe 150, remanebit utique annus a. Ch. 160, quo contigit eclipsis), quam describit Livius, et cui totalem characterem ratione temporis et durationis tribuit, cui refragari absque calumnia, vix atque adeo ne vix quidem aliquis queat.

Dieses Alles in Eil &c.

Datum München &c.

Keplerus respondit (d. 7. Oct. 1602. Comp. Vol. II. p. 77. 755. et III. p. 28): ... Ac cum ipse horteris, ut concordes simus, dabis veniam, si quae ad Progymnasmata accesserunt, ab ipsis (haeredibus Tychonis) potius, quam a me Magn. Tuam petere cupiam ("Den Appendicem, addit Herwartus monitif suis. libri primi Progymn. wollt ich gern lesen, und wie durch denselben Andeutung geschieht, wird das Werk hiedurch um so viel mehr Nachdenkens bei gelehrten Leuten erwecken."); mihi enim unicum saltem exemplar est : ab ipsis Magn. Tuae nomine petere invidiosum. In motu Solis nihil aliud mutatur per appendicem, quam quod ipsa realis eccentricitas dimidio diminuitur, pro reliquo dimidio ratio aequantis substituitur. Ita in solidum eaedem manent aequationes, uno forte scrupulo in 19° \bowtie , 11° Ω desiderato. Lunae theoria etiam manet salva et illaesa per appendicem, paucula ad eclipses pertinentia tanguntur. Privatim tamen agito aliquid, non jam ut praecisiorem calculum (qui posteriorum cura erit). sed ut credibiliorem et simpliciorem faciam hypothesin. Difficillima res est: et tamen interdum me scopum penitus tetigisse puto. Id agito (quemadmodum in Marte), ut Luna unum solum habeat epicyclum, quo eccentricitatem conficit; reliquae inaequalitates, tres numero in longum (ut in Marte meo), sint a causis physicis. Tum non amplius absurdum erit, inaequalitatem menstruam a vero Solis loco pendere. Sed plane uti tu, sic ego quoque sentio, aequationem temporis esse suspectam, quia negligit inaequalitatem additamentorum diurnorum.

Quaestionem chronologicam, si bene percipio, Magnitudo tua bene quidem solvit, sed ita ut tamen duo scrupuli resideant. Summa haec: Ptolemaeus annos obitus Alexandri intelligit Aegyptios, Albategnius Julianos. Ptolemaeus a 12. Nov. mortem Alexandri praecedente numerat; Albategnius forsitan a solstitio proxime mortem Alexandri secuto perque dies pauculos.

Haec si concedo in praesens, quaero autem primo, quid causa sit, quod

Ptolemaeus illud aequinoctium antumnale, quod contigit 32. tertiae Calippicae, die 2. Epagomenon, conferat in 178. mortis Alexandri, cum tamen ad complendum 177 ab epocha 12. Nov. superessent duo pene dies. Nec potest dici, vernale praecessisse. Nam quia anni Calippici incipiunt a solstitio, in eo igitor anno praecedit autumnale: utrumque autem assignat eidem 32. anno. Hoc unum est. Deinde si haec ita habeant, equidem Albategnius in intervallo inter Ptolemaeum et se erraverit. Ptolemaeus enim annum Nabonassari tradit, Albategnius Julianum seu tropicum intelligit. Quos igitur ille 743 computat, illi re vera 744 sunt. Id enim animadvertens Buntingus nescio quid dicit. Sed ex eius computationibus (qua re mihi pergratus est) apparet. Reinholdum Albategnio vim fecisse, quasi 1206 et 1194 intelligendi essent hoc loco de Aegyptiis : cum tamen eo ipso anno Juliano non Aegyptiaco eclipsin collocet: quae character est irrefutabilis. Haec mea ratiocinia si admittenda censes; possunt in futurum esse utilia. Anni tamen quantitas non multo prodit alia. Albategnius enim habet h. 5. 46' 24"; correctus h. 5. 45' 56", adhuc brevior per 28" horae.

De aeris Alphonsi gratias ago quod monuisti. Nam in iis tabulis parum versatus sum, cum id non ferat usus; illud a Tychone solum andivi, consulendas olim illas, quae aequinoctium praebeant suo Alphonsi tempore; non se dubitare, quin aequinoctium observaverint eique tabulas superstruxerint. De cetero non multa facta est earum mentio. Leovitius nobis vicem earum supplevit ut plurimum. Illud in genere monuit Reinholdus, fine canonum aeras Alphonsi a vera historia multis in partibus plurimum discrepare.

Ceterum in sequentibus ridiculum mihi negotium exhibet Magnitudo Tua, dum me jubet principia defendere. Scilicet omnes Ptolemaei et Chaldaeorum observationes erunt dubiae, si eviceris, quosdam historicos annos regum sub quibus observarunt aliter numerare. Scio, non te ita sentire, sed mei tentandi gratia scribere; sed quia responsum urges, parendum est tanquam in re seria. Dicam primum pro astronomia, deinde pro historiis. Quamquam pro astronomia supra dixi, cum illam tuam dubitationem de antiquissimis monarchis ante Alexandrum tangerem.

Hic jam multo aequiorem habeo causam. Supra de magno aliquo annorum numero lis erat, jam de uno anno imperii Adriani, Trajani, Antonini, Domitiani, et ad summum de biennio in annis mortis Alexandri agitur. Nihil haec disceptatiuncula facit ad incertas faciendas observationes. Observationes in universum hae sunt : aequinoctii, Mercurii, Veneris, Lunae, eclipsium. Sic definiendo aequinoctii anno Ptolemaens mentionem Principis Romani potuit omittere; sufficit ut indicaverit connexionem cum periodo Calippica. In hac connexione falsus non fuit. Eadem enim Luna, quae Calippo suas periodos, Ptolemaeo suam a Calippicis distantiam patefecit. Nec difficile caput invenire periodi : non quotannis novilunium in 1º 😔 in-In Venere et Mercurio, si error in annorum illic 8, hic 13 summa cidit. committatur, tantum observatio aberravit, quantum planeta ad summam biduo conficit. Nam post 8 annos Venus, post 13 Mercurius propemodum eodem revolventer. At te praesupponis unius saltem anni aut summum biennii errorem. Quare impossibile est, si annus observationis adulteretar. ut non tanta sit dissonantia observationis cum coelestibus motibus, vulgariter saltem et crassa Minerva cognitis, quantam vel coecus palpare possit. Adde quod neutra harum observationum solitarie ponitur, sed illi locus certus

in annis Nabonassari (seu homo jam is, seu fabula fuerit), in quibus et nos hodie certissimum locum invenimus nostri temporis assignatum. Amplius utraque sociam habet aetate Timocharidis conscriptam ; quare tam certa est. quam sua socia. Denique utraque per Lunae praesentiam ita certa est facta, ut non possit certior. Ito enim et intra 10° vel 12° vicinitatem Lunae et Veneris aut Lunae et Mercurii conjunctionem talem, quae ad expressum diem mensis Aegyptii expressi quadret, intra non duos vel tres, sed omnino plurimos annos invenito aliam, quam est ea quam Ptolemaeus annotavit. De Luna quid verbis opus est? Quando enim quaeso hoc animadversum est, Lunam exacto anno vel Juliano vel Aegyptio rursum eodem die et hora diei, non dicam in eodem gradu vel signi decano, sed omnino in eodem quadrante zodiaci fuisse, quo erat in suscepto temporis principio? Non potest itaque, expressa hora diei, die mensis certi et loco Luna, praesertim conjunctione cum fixa, errari uno vel duobus annis. Novendecim integros intercedere necesse est, vel certe octo. De eclipsibus res est tanto certior, quanto plura concurrunt requisita, quae non quocunque mense possunt accidere, sed ne dies quidem unicus deesse potest observationi Lunae. Dato enim anno et mense cum loco Lunae datur dies, et vicissim die data cum ceteris datur annus. Ita conficitur, ut etsi concedam Ptolemaeum errasse in annis Imperatorum, tamen observationes maneant in suis annis, nec ratione annorum incertae fiant.

Restat, ut de historiis pauca dicam, nec enim est mea professio in his literis. Ac Magn. Tuae judicium libentius audiam, si Ptolemaeus nobis observationes depromit, quarum a nobis retro distantiam habemus certam, iis vere alios Imperatorum annos attribuit, quam alii historici attribuere videntur (iterum in distantia a nobis retro), utrum faciendum sit : Ptolemaeusne erroris arguendus circa stilum sui seculi, an historici eo posteriores? De aera enim mortis Alexandri causa in confesso est, sita nempe in ignorantia chronologiae. Mihi astronomi certiores temporum characteres in siderum aeouabili motu (nisi hunc negaveris), quam historici in suis consulum catalogis habere videntur. Quare malo propter astronomiae certitudinem obloqui factis, quam propter turbatissimorum factorum (quicunque quantumcunque) mendicati sint) fiduciam, astronomiae filum Daedaleum e manibus abjicere. Non erat itaque inferendum, omnes observationes Ptolemaei anno uno citius contigisse, quam ab auctore inscribantur, sed hoc potius, omnes Imperatores uno anno tardius coepisse, quam Ptolemaeus tradiderit : siguidem historicis credis et antiquariis contra Ptolemaeum avroarny, nou enim Imperatores mensura sunt motuum coelestium, sed hi Imperatorum et Imperiorum.

Quid Buntingus in ordinatione consulum praestiterit, astronomi parum interesse puto ut sciat, nisi quatenus eclipses aliquae monstrantur, quae postea, dato annorum confinio, quaeruntur ab astronomo, utcunque habente annotatione per consules. Si intempestive omisit illos consules anno 132, quod M. Tuae ex auctoribus fidem facienti credo, continuentur ergo, et eorum vice omittatur aliud par abhinc usque ad Constantini tempora. Nam eclipses clare testantur, Mercatorem abundare uno anno inter 59. et 360. Christi. Nec mirum, hoc accidere in consulibus sub Imperatoribus: cum Dion testetur, multos nominatos consules magistratum ob inopiam non gessisse, sed cessisse aliis. Facile hic error irrepit: Sed tu fortasse annos Imperatorum, sub quibus factae observationes, indissolubili nexu cum hisce consulibus circa annum Chr. 132 conjungis. Dicis, non adeo mirandum, quod plus numeret Ptolemaeus ab Alexandro in observationibus aequinoctiorum, cum pleraque hauserit a Chaldaeis errantibus. Non sum contentus, multo minus quam prius. Si erravit, cur ergo uterque superius ipsum conciliavimus, quasi Aegyptiacos annos a 12. Novembris mortem Alex. antecedente usurpantem. Deinde aequinoctia non a Chaldaeis sed Hipparcho sumit. Nihil igitur huc facit Chaldaeorum error.

Denique epistolam M. Tua claudit propugnatione eclipsis in clade Persei a se inventae, quae septennio abest a clade Persei. Ex errore Chaldaeorum et crassa computatione Livii, duabus scilicet egregiis partibus, unum totum conflat, cladem Persei 7 annis a vero aberrantem. Characterem putas irrefutabilem 150 annos imperii Persici. Imo refutatur contrario irrefutabili charactere, quod illa eclipsis in hiemem incidit, cum vera et Persei clades contigerit circa solstitium, ut superioribus paginis scripseram. Quin potins ad annum ante Christum 167. addimus illos 150 Livii, quia ex eclipsi constat, Perseum victum anno 167: nec fasti consulares inde a 6. Augusto retro continuati ultra unum annum ab hac computatione abeunt, quibus te hic quoque in summa 6, 7 vel 8 annorum fidem adhibere par est, cum ipsis infra de unico anno contra Ptolemaeum avronrov credideris. Ergo additi 150 ad 167 faciunt 317, quo anno regnum Macedoniae, interfecto Philippo Arrhidaeo, ad aliam stirpem transiit, Cassandro succedente. An hic quicquam contra Livium? recenset per partes fortunam ejus regni: seorsim antiquissimos reges, seorsim bella civilia successorum, qui ad incerti dominatus certi ex Alexandri gente haeredes fuere: ubi primum Cassandro confirmatum Macedoniae regnum, et occisus Arrhidaeus, ab eo summo fastigio ad ultimum finem annos 150 numerat. Si non placet seorsim commemorata bella civilia, sed inclusa summae annorum CL, quod forte ex textus inspectione dices : ergo aut mecum fateare, Livium crassiori calculo summaria numerorum consectari omissis minutiis, ant hanc Persei cladem non jam septem annis justo propius Christo admoveas, sed aliis septem annis longius a Christo in antecedentia retrahas. Exspecto utrum velis. An tu putas, summum fastigium regni Macedonici in morte Alexandri fuisse? minime proprie. Fuit is multorum regnorum dominus et monarcha, successorem in Monarchia nominetenus habens jam fratrem, jam filios. Ab eorum exstirpatione demum seorsim de regno Macedonico judicamus. Nisi hoc fiat, non poterimus Macedonum potestatem in clade Persei terminare : superstitibus in Asia Eumene, in Syria Antiochis, in Aegypto Ptolemaeicia, Macedonibus.

Sed enim satis feci verborum. Rogo majorem in modum ut Magnitudo Tua mihi libertatem hanc disputandi, quam provocationibus suis auget, in malam partem non interpretetur, et me sibi commendatum habeat. Vale. 7. Octobris Anno 1602.

> Magn. Nob. Tuae officiosissimus

Keplerus.

Postscripta.

Lunae eclipses antiquae ad Solis motum sic possunt esse utiles, si de anno et mense certi simus, et pro die nox sit facta, tunc correctio Prutenicis non tantam eclipsin praebentibus adhiberi potest: ea vel in motibus

Solis et Lunae mediis vel in alterutrius aequatione, et sic varie. Poterimus autem adhibere hodiernas aequationes Lunae tanquam perpetuas et periculum facere. Ita et per hodiernas aequationes Solis. Sed res est valde perplexa ob varietatem, dum omnia suspecta sunt. Apogaeam, eccentricitas, motus medius, obliquitas eclipticae, Lunae anomalia, motus medius, eccentricitas, parallaxis, insuper latitudo, item hora diei ignorata. Quare summa circumspectione opus est, ubi incipiendum, quid pro indubitato ponendum: quae experientia per ceterorum planetarum motus confirmanda fuit. Ita et ceterorum planetarum motus utiles esse possunt indirecte, ut geometria alias ad mores et ad omnes subtiles artes utilis esse dicitur, ingenium accendendo.

Alio modo planetarum ceterorum, ac praesertim Martis et Veneris theoriae proderunt Solari theoriae. Si binae saltem in singulis observationes certae sint (quales sunt, si cum fixis visi sunt conjungi), tunc quia scio, inaequalitates omnes praeter unicam esse ex Sole ejusque eccentricitate, videbo itaque, minutane Solis eccentricitas an aucta illis prosit. Sed hic praesupponendum est, eccentricitates planetarum esse constantes. In summa fortuna invocanda est. Nam propter defectum observationum idonearum non potero uti multiplicibus meris problematis astronomicis, ut methodo procedam infallibiliter ad finem suum procedente ex sufficientibus principiis.

Ad hase Herwartus: Ehrenvester etc.

Dessen Schreiben hab ich wol empfangen und will des Maestlini halber einen Versuch thun (vid. Vol. II, p. 755).

Die Progymnamata Tychonis seind im Catalogo und folglich, wie ich hoffe, offentlich numehr feyl. Tengnagel gibt mir keine Autwort. Ist möglich, mein Schreiben hab ihne offendirt, so ich doch Ime und den Erben gut gemeint.

Residua duo dubia propositae quaestionis: 1) warum Ptolemaeus aequinoctium illud autumnale a. 32. tertiae periodi Calippicae secunda die $\ell\pi\alpha\gamma\circ\mu\epsilon\nu\omega\nu$ in annum 178. a morte Alexandri setze, so doch ad complendum 177. noch 2 oder 3 Tag verbleiben. Darauf wird geautwortet, dass dadurch die anni Calippici verstanden werden, die bald nach dem Solstitio asstivo, gleichwoll nit zu einer gewissen Zeit, aber doch alle gewiss und seitlich vor dem aequinoctio autumnali ihren Anfang nehmen. 2) Dass Rheinhold apud Albategnium annos 1206 et 1194, de quibus agitur, pro Aegyptiis assumiere, weiss ich nit wa oder wie Es von Ihm geschrieben. Was dan übrigen Inhalt seines Schreibens betrifft, so versteht er in dem Postscripte mein Intention gar wohl, aber in dem Schreiben nit.

Denn 1) ist es gewiss, dass die observationes in opere Ptolemaei sub nomine authoris crassiori, nisi forte et crassissima Minerva observirt worden. Ich hab aber allein zu erwägen proponiren wollen, dass die anni imperatorum, so adscribit, verae historiae nit correspondiren, also dass sie entweder ex margine in contextum irrepiert, oder sonst hinzugesetzt worden oder anch die *curratic*, post observatorem illarum observationum colligirt, oder auch a posterioribus bono sed male dextro zelo immutirt, salvo interim operis autore quoad nomen manente.

Ingleichem zweifelt mir nit, es seyen auch wohl gar alte eclipses), aber crassiori filo observirt. Es könnten aber auch viele zurückgerechnet und pro observatis posteritati tradiert worden seyn, weil die reges, denen sie inscribirt, derselben Zeit nit in rerum natura gewesen.

His de causis, censet Herwartus, Keplerum, missis pro tempore reliquis planetis, motus () et) inquirendos sibi proponere debere. Er wolle, pergit Herwartus, auf diesem Weg etwas tentiren, wann er nur calculum Tychonis, quoad inventionem verae syzygiae et aequationis temporis () et) ad calculum Tab. Prut. bringen könnte; s. B. er Tab. Prut. ist ante vulg. ep. Christi retro

Gesetzt nun diese Zeit wäre verum et exactum, wie könnte ich ad haec data ex Tab. Tyehonis verum et apparens tempus verae synodi finden? nemlich vera loca \bigcirc et) cum exacta accommodatione acquationis temporis tam \bigcirc quam). Ersuche dennach den Horra formellich und Genetlich, Er volle mir unbeschwerkt den calendam bierfiber zukommen hauen.

Dans ich aber seusten den Herrn ab investigatione motumm reliquorum planetarum abmahnen wolte (v. II, 77), absit, und weil ich diafah vernimme, dass Er in constituenda quantitate anni Solaris laborirs, weins ich nit, ob der Herr den errorum in calculo observirt, so Tyche in d. Progyma. einkonnen hanen. Daueben fallt mir ein, vas Rabbi Ben Esra in initio Sepientine schwiht: "Est etiam quidam ex illis, qui dixit, diminutionen de quadrante, qui micnique anno competit, esso partem 106an mains diei (nti Albategnins videlicet), quidam ex illis partem 110an. Atqui constat, juzta seculum nostrum esso partem 131an. Nitimur enim loco Solis (acquimoctii se.) qui erat temporibus Elzuphi, cui similem artificem nultum audivinus in epilogiumo agrorum. Et ipoe quidam ita docuit. Secutus est sum Abr. Alzarakteel (Arzaknel) cui nuono temporum suorum comparandes fuerit. Ipoe investigavit locum Solis (in acquin.) in zoculo suo, qui quidem couveniebat cum observatione Elzuphi." Scripsit haoc a. m. 4908, a. Ch. 1148. (v. s. p. 507.)

Et quese planetas, occurrunt mihi 2 observationes ab illo habitae, qui temporibus Caroli M. observavit occipoes luminazium, quas Bantingus calculo exhibuit. His addit Herwartus voterum relata de Marte ot Mercurio, quae loguntur Vol. II,

His addit Herwartus voterum relata de Marte et Mercurio, quae leguntur Vol. II, p. 789, reditque concludens ad calculum ex Tabulis Tychonis, quem ipei transmittat Koplerus. (Datae sunt hae literae Monachii d. 20. Oct. 1602.)

Keplerus respondit (12. Nov. 1662): Literas M. Tuae 20. Oct. scriptas 3. Nov. accepi, eas enim Mainhardus per proprium famulum ad me misit.

Maestlini judicium avide exspecto. Tengnaglius literas ad M. T. miserat prius quam has ego acciperem : spero traditas.

Ad quaestionem et de numero anni non habeo aliud quod dicam, quam quod ante dictum est. Verum sic nodum secamus, non solvemus. Errandi occasionem sane Reinholdo Ptolemaeus praebuisse videtur. De Reinholdo affirmavi non ex relatione aut lectione alia, sed ex eventu calculi, qui observationibus Hipparchi, Ptolemaei, Albategnii ceu fundamentis nititur. Cum enim Albategnius tradat aequinoctium autumnale in mane 19. Sept. incidens, secundum Albategnianam numerationem annorum Alexandri in 1206. Christi 883, Reinholdus accipit Ptolemaicam annorum Alexandri numerationem, ut incidat in annum Christi 882. Ita ergo format calculum, ut aequinoctium praestet in mane 19. Sept. anno 882, perinde in meridie 19. Sept. anno 883. Bonam vero cautionem mihi monstraveris, si quibus locis exemplaria Ptolemaei varient, per amanuensem describi curaveris.

Ptolemaei observationum ut aliquae teneantur suspicione tua, quod suppositae sint, omnes et antiquissimae teneri non possunt. Quas enim Ptolemaeus mutuatur, illae descriptae exstabant in publicis monumentis Hipparchi, Metonis, Aristarchi etc. Nec omnes erant adhibitae in tentanda aliqua luminarium hypothesi, ut jure quaeratur, cui bono corruptae vel confictae fuerint. Et an fieri possit, ut ils corruptis fortunae tamen ita commendatas error fuerit, ut hodie quam proxime consentiant universali calculo. Quas vero Hipparchus adhibuit, non pensi habuit, si calculo non undiquaque exprimeret, utpote vir alnosoraros, quo eum elogio Ptolemaeus ornat. adeo ut Ptolemaeus Hipparchum ex suis ipsius eclipsibus corrigat ostendatque, quod in calculo erraverit. Ubi hic verecundia, ubi rubor Ptolemaeo, si bonas ab Hipparcho eclipses acceptas prius corrupisset (quod factum latere lectorem Hipparchi non poterat) exque corruptis Hipparchum erroris coarguere voluisset? Exstare dicitur libellus Hipparchi de magnitudine anni in bibliotheca Vaticana. Tale quid et Aristarchi superesse fertur, adeoque typis excusum, in Gemini mathematici opere puto itidem aliqua occursura. M. V. investiget hos libros publicae fidei causa, si qua in parte miser

666

Ptolemaeus, qui solus hodie nobiscum loquitur, suscipione mendacii liberari queat.

Gratias ago, quod me monuit M. Tua de loco Rabbi Aven Ezrae. Jam pridem, cum in libro Scaligeri de temporibus id legissem, quaesivi a Judaeis nostris, an posset mihi fieri copia ejus auctoris. Dicunt, amissum in Hispaniis.

Quae jam Keplerus addit de g et 5 vide Vol. II, p. 755. 789. et III, p. 29. Deinde pergit: Petis denique a me comparationem calculi Tychonici et Prutenici, proposita scilicet verissima hora mediae conjunctionis luminarium ex Prutenicis, quomodo 1) vera loca Solis et Lunae, 2) ipsum sed aequale tempus verae conjunctionis, 3) apparens tempus verae conjunctionis ex sententia Tychonis inveniatur.

I. Locum verum Solis ad quodcunque tempus ante Christum, quod proponitur, invenire, non docent tabulae Tychonis editae.

Nam institutum Tychonis versatur in proximis seculis: de anteactis sententiam nondum dixit, certus rationem illorum temporum esse aliam, quam est hodie, propter mutatam eccentricitatem, de qua minus quam ego dubitavit. Ac in computandis eclipsibus Ptolemaei usus est tabula aequationum Solis Ptolemaica, apogaeo Solis Ptolemaeio, praecessione aequinoctiorum itidem Ptolemaica seu ex Ptolemaeo Prutenica, nisi quatenus motum Solis simplicem a fixis nonnihil alteravit, propter suas recentes observationes. Ut haec probem, simul ut exemplo praeeam, si forte imitari velis, quod non puto consultum esse (quando quidem exempla petis): sumatur locus Solis medius anno Christi 133. 6. Maj. h. 11. 15' Alexandriae in prima sc. eclipsi Ptolemaica. Invenio igitur in compendio eorum, quae Christianus Severini Longimontanus in Lunae restitutione laboraverat, annotatum locum Solis verum 1º 13° 14', medium 1º 12° 21'; Ptolemaeus ponit itidem verum Solis ad hoc momentum 1º 13° 15'. Buntingus e Prutenicis verum 1º 13° 15' 22", medium 1º 12° 20' 7".

Non esse autem hunc motum medium consentaneum ei motui, quem Tycho prodit in Progymnasmatis, ex Waltheri et suis observationibus exstructum (ut luculenter testatur fol. 54), poterat etiam sic colligi: tempus completam in forma Tychonica 132. Aprilis simplex d. 5. h. 10. circiter. Addo bissextilem qui me ducat in tabulam resolutorum annorum Tychonis. Sit additio anni 1500

132

1632. Sed Tycho spatium 1500 a Ergo 1632 9 21° 9 59'' Apr. 3. 28. 16. 39	Sumo	quintam j	complexus. partem annorum, sc. bissexta).	300 (cum sint
d. 5. 4. 55. 42		1500	9. 20. 9. 0	
H. 10. 24. 38		1800	9. 22. 27. 36	
1. 24. 46. 58		300	9. 22. 18. 36	•
	Juinquie	s 1500	11. 33. 0	
Motus ergo annorum 1500 est Sed locus anno 1633. 6. Maji est			Ex Prutenicis comp. 11°	
Erge locus anno 133. 6. Maji est	1. 13	13 58		
Ptolemaei simplex as vero aequinoctio :				
differentia :	-	53. 51		
Sed compositus Solis ex Prutenicia				
a medio acquinoctio est	1. 13.	7. 2		
differentia :		6. 56.		

De apogaeo et aequatione patet, quia consentit ipsorum locus verus et medius cum calculatione Bantingi ex Prutenicis, Prutenicae vero cum Ptolemaeo. Nam aequatio Tychonis 20 maxime minutis minor est Ptolemaica. Et motus apogaei Tychonici diminutus, adeo ut retrocedat sub fixis per 6 annuatim.

II. Locum Lunae verum computare non potest quisquam, nisi qui de maxima Solis aequatione vel loco apogaei certus est. Quod accipe cum hac distinctione : tria requiruntur, motus simplex) et (), anomalia), et tabula aequationum. Quod simplicem) attinet, eum Tycho expiscatus est ex Ptolemaicis et suis eclipsibus, comparato interjecto spatio. Methodus haec est: in puncto eclipsis maximae Luna est in opposito loco Solis, qui quot contineat gradus vel minuta ejus signi, ad Lunae rationes nihil interest. Ceterum hoc interest ad rationes Lunae, quod in tabulas referendus est motus ejus medius a medio loco Solis. At medius et verus locus Solis non coincidunt. Ergo si Ptolemaeus et ex eo Tycho in priori eclipsi hora 11 1/a, quo momento fuit medium deliquii, dicant aequationem Solis esse 55' ex tabula aequationum Ptolemaica, illa vero sit minor per 12 sc., putabitar utique verus motus Lunae eo momento a Solis medio sc. 55, qui est tantum sc. 43'. Itaque etsi alter terminus penes nos rite constituatur, tamen ad Ptolemaei tempora quantitas mensis Lunaris falleret per 12, et in duplo tempore sub Trojam captam per 24 et sic consequenter. Compensaretur id quidem per aequationem Lunae, quoties eadem anomalia rediret, at in ceteris omnibus anomaliae locis tanto gravius peccaretur.

Jam quod anomaliam attinet, indidem illa petitur, unde et motus simplex. Ad tempora Ptolemaei ex tribus eclipsibus constituitur anomaliae motus. Itemque ad nostra tempora ita comparatione temporis medias anomaliae motus elicitur. Rursum itaque, si Sol sub momentum oppositionis statuatur 13° 15' 🗑 per eccentricitatem diminutam, tunc sane 12' illa, quibus aberrari statuimus, adscriberentur aequationi Lunae. Et quia alteraretur verus ejus motus excessusque ejus supra medium, necesse esset ipsam etiam eccentricitatem vel apogaeum alterari. Atque hoc sane nomine gratias tibi ago, quod me in hanc considerationem inducis. Etenim per otium explorabo, an notabile aliquid peccetur in acquatione Lunae maxima constituenda, si alicubi 12' praeter justum accedat. Id ubi sic habere deprehendero et ubi nihilo minus ex Ptolemaei eclipsibus eandem hypothesin exstruxero quam ex recentibus (quod Tycho sane fecit), pro certo affirmabo, eccentricitatem et anni magnitudinem et acquinoctium id fuisse tempore Ptolemaci, quod is nobis assignatum reliquit. Nihil aut parum hic impedit nos, si in horse aliqua parte aberremus : quantum enim in illo spatiolo motui Lunae medio accedit, tantundem fere accedit et vero. Sed haec interjicio. Vides autem, quod motus anomaliae una cum motu Lunae simplici ad tempora a. Chr. pene totus in Ptolemaei arbitrio consistat.

III. Quod tertio tabulam aequationum attinet, aequationes Tychonicae maximae Prutenicas tantum 2' superant, sc. in 90° et 270°. At in 45° differentia est 10', idque propter differentiam hypotheseos. Cum igitur ex disputationibus meis de causis aequationum physicis appariturum sit, ne Tychonicam quidem ordinationem hypotheseos seu applicationem aequantis ex omni parte recte habere : erit et haec revidenda, nec illi in antiquis eclipsibus pertinaciter fidendum.

Puto autem (nunc sine calculo, ex aestimatione), medium quodammodo inter Prutenicas et Tychonicas aequationes esse sequendum. In universum videor mihi sine auctoris injuria, imo secunda ejus voluntate (quantum ex folio 54

et aliis apparet), monere posse, parum profuturum ejus calculum Solis et Lunae, si quis illum cum omnibus praesuppositis sine delectu temporibus Christi accommodare velit. Quod qui facere volet, ille sequatur praecepta in Progymn. et solvat triangulum, quo locum Lunae quaerit extra veras oppositiones. In ipsis oppositionibus habet compendium per motum horarium Lunae fictitium.

Hinc jam patet, quod supra secundo loco mihi imperabatur : quomodo ad datum mediae conj. tempus verae oppositionis medium tempus inveniatur ad tempora Christi; potest enim fieri dupliciter, prout aequationem hanc vel illam usurpare placuerit: me suasore per anomaliam Solis annuam ex Prutenicis collectam excerpat aequationem Solis itidem Prutenicam, et per anomaliam Lunae ad datum tempus mediae oppositionis excerpat acquationem Lunae, sumendo medium inter Ptolemaicam et Tychonicam, et si utraque et Solis et Lunae sunt diversarum affectionum, colligat illas in unam summam cum titulo, quem Solaris habet aequatio; sin ejusdem sunt affectionis, minorem a majori auferat, residuo titulum faciat, quem habent aequationes ambae, si a Sole stat excessus, contrarium si a Luna. Reliquum praecepti expediam per correctionem textus in Lunaribus folio 126 a linea 16 "Aggregatum autem prosthaphaeresium in casu priori, et differentiam earundem in posteriori in tempus quaesitum sic resolve. Cum iisdem multiplica 24 horas, et summam partire in motum diurnum Lunae a Sole, quantum illum anomalia Lunae ex columna prima tabulae suppeditat." Et tempus seu horas quae prodeunt, pro tituli exigentia quem fecisti, adde vel subtrahe tempori opp. et coni, mediae.

In exemplis propositis,	quae illa ipsa sunt,	quae jam	olim • computavi
	M. T. petente.		

•		
Annis 3' 2º diebus 1' 59º	38' 544 Annis 2' 59°	diebus 31. 4' 40"
Ex Prut. prosth. orbis absoluta est	1° 35′ 35″ sub	2° 18′ 51″ sub.
Anom.) simplex 4	17. 10. 35 10- 2	0. 43. 39
Aequatio ex Prut.		2. 55. 19 add.
Ex Tychone	3. 27. 30	3. 4. 54
Diff.	6. 57 Diff.	. 9. 35
Dim.	3. 28 Dim	. 4. 48
Aequatio secundum me-		3. 0. 7 add.
Solis	1. 35. 35 "	2. 18. 51 sub.
Besiduum :	1. 55. 25 Summa	5. 18. 58 sub.
Horarius ex Ty	rch. 32. 34 Hor. Tyc	h. 28. 18 0
· · ·	1. 37. 42 30	4. 43. 0 10
•	17. 43. 0	35. 58. 1
NT 0 7/ 20//	16. 17. 0 30'	
H. 3 7' 30" 32 1. 20	1. 26. 0 2	7. 40. 0
8 20	1. 5. 8	7. 4. 30 28. 18 16'
		7. 12. 15"
9. 10 9. 10 9. 10	20. 52 8"	
3, 2. 1, 59. 29. 44.	Prodeunt h. 3. 32. 8 add.	Horae 11. 16, 15 sub.
Vera conj.	versus tempora consequentia,	Sed jam ante epocham
· ····································	sed, quia tempus jam ante	addendae sc. 28. $47^{1/3}$
•	Christum, subtrahendae.	2. 59. 31. 4. 40
	•	2. 59. 31. 33. 271/1
		ou ou n /1

Miraberis de mendis in textu. Verum est; aut ego nimium curiosus haeredibus visus fui in alieno, aut haeredes nimis negligentes fuere, ut ideo me ablegaverint et ad typos corrigendos non adhibuerint. In manuscripto

Lunaria T. Brahei

appositus erat diurnus ante suum horarium, ut tres columnae essent. Diurnus fictitius in conj. et opp., diurnus ante et post, et horarius ante et post. Tot ordines numerorum paginae forma ferre non potuit, et per se res eodem recidit. Itaque haeredes privato consilio opera studiosi Jo. Erikson diurnum utrinque removerunt, horarium utrinque substituerunt, ut duae tantum columnae fierent. Id factum sane non male, et monueram de hoc in meis notis, quas a me cum aliis quodammodo extorserunt: sed oportuit et verba praeceptorum mutare et novae formae tabulae accommodare; imo vel sine tabulae mutatione praeceptum alicubi plane corrigere. Sed nec ipsi considerati fuere : dum praecipitantur omnia, nec me arbitrum invitis et offensis, imo et juridicas actiones minantibus ingerere debui. Quae hactenus errata deprehendi, scribam.

P. 02. puto scribendum 1567. Apr. 9. h. 0. 0'. 6 d. 29', nam ita invenio ab ipsis inventum in calculo.

- P. 04. Centro B nuspiam assignat suum certum situm. Sciendum igitur, AB esse lineats ejus apogaei, quod constituitur, si pro epicyclo scriberetur eccentricus; circumit enim B sub zod. annis circ. 8. Idem p. 024, ubi KC || AB.
- P. 06. in calce pro 111 Z.
- P. 07. 1540 sub tit. Anom. lege 1 sig. 1. 23. 21. Passim eclipsis pro eclipsi. Et 029. in in tit. Nodorum.
- P. 125. lege a. 1596.
- P. 029. fronti et calci ascribe : Veras motus Lunae a vero Solis. P. 112 vero : motus lat. verus. Id puto facere ad meliorem Tab. intellectum.
- P. 127 I. 12. Verba "ob implicationem annuam" parenthesi notaveram, in notis monebam, videri ex priori restitutione hic impertinenter restare. At manaerunt in textu cam parenthesi; ita signata cum sint, plus lectorem feriunt, quam antea.
- P. 128. Luxandi marginales inferiores ad dextr. ascendentes, et cyphra a summo loco in imum detrudenda. Ibid. secundarum ordo sub anom. 5 talis esse debetur: 45. 53. 0. 8. 14. 18. 21. 23. 25. 26. 27.
- P. 129. Sub tit, horar, lege 8. textu 1. 5 et 10 adde simplicem; lege mensis 14.

P. 130 1. 5 1. 33' 21"; fine l. per motum Lunae hor. ex II. columna. P. 132 1. 5 iterum adde simpl. 1. 12 horarium) ex prima columna, qui est 27' 44".

Fol. 133 I. 30 lege : ut ex secundae tab. columna liquet.

Hi hactenus errores mihi occurrerunt, si M. Tuae aliqui occurrant, praesertim si quid vides in calculo Solis, id mecum rogo communices. Nescio an illum dicas, cujus exstat mentio ineptissima in erratis (ad fol. 22), quam hercle indignabundus lego. Usurpant enim mea verba, quae ego monendi causa adscripseram exspectans ut colloqueremur, an et quomodo monendus esset lector. Nam his sane crudis verbis ex musca elephantem faciunt, cum in apogaeo Solis vix duo scrupula efficiat, in ceteris nihil verbo dignum : et possit per aequipollentiam arcuum parvorum cum suis subtensis excusari. Miserrima libri conditio, quem auctor 20 annos parturit, tandem haeredes festinantes ad nundinas abortierunt.

IV. Restat ultimum postulatum, de aequali tempore verae conjunctionis in apparens convertendo secundum Tychonis mentem. At expeditissima ratio est ejus ante et post Christum. Nam differentiola, quae se immiscet ob diversam olim obliquitatem, nullius est momenti, aut si cui lubet ano-Bolover tolli potest per tabulas primi mobilis Reinholdi.

In primo exemplo () est in 23° . in secundo in 20° Q. Tychonis acquatio 7° 22'. Ut fiat apparens, fac contrarium titulis. Contra, quia tempora ante epocham, fac iterum contrarium.

3. 2. 1. 59. 29. 44 - 2. 59. 31. 38. 27 1/2 7. 22 9, 42 Temp. app. 3. 2. 1. 59. 37. 6 2. 59. 31, 43, 10

Si quis vero nolit negligere acquationis partem alteram a Tychone exterminatam, is adeat Prutenicarum modum acquationis primum. Jam enim non Tychonico, sed Ptolemaico modo acquabit.

Huc usque Keplerus; conclusio literarum in manuscripto deest. Ex Herwarti responsione, d. d. 20. Nov. 1602, haec tantum ad praemissa pertinent: Dem D. Tengnagell hab ich jüngst geschrieben und wegen Ergenzung des Abgange dank gesagt.

In assumtione temporis acquinoctii ab Albategnio observati sweifelt mir nit, dass sich Reinhold geirrt und annos tropicos pro acquinoctialibus Ptolemaeo usitatis angenommen, wie ich denn nit wüste, wie es sich sonsten vertheidigen liesse. Das von Ptolemaeus bezieht sich blos auf die errores chronologicos und observationes crassiori Minerva factas.

Von Hipparch ist "de magnitudine anni" nichts vorhanden. Das so anno 67. zu Florenz ausging, $\pi \epsilon \rho \epsilon \varphi auvo \mu \epsilon \nu \omega \nu$, ist sein Werk nit.

Für die zugeschickte declaration super calculo Tychonico und der Sphalmata im Druck the ich mich bedanken.

Deinde Herwartus, pro transmissis Tabulis Kepleri Lunaribus (Ade supra pag. 30) gratias agens, addit: Die Tabulas hab ich gar gern gesehen, und hat der Herr den Stadiosis Matheseos hieran gewisslich ein sonderes beneficium gethan. Da sie blos temporales — ab anng 1400 ad 1800 — so sind sie mir zu den finsternissen, so circa tempora Christi et ante Christum sich begeben, als welchen ich allein nachtrachte, nit dienstlich; trag sorg, sie seyen ad tempora ante Christum nit zu extendiren.

Ich halt auch für gewiss, dass wenn diese dilucidatio tabularum gedruckt und den Progymnasmatis beigefügt würden, es werde zu besserem Abgang der Progymnasmatum dienstlich seyn. Ich wolt auch nit unterlassen, quondam Tychonis haeredes dessen zu avisiren, wann ich wüsste, wie solches geschehen solle; denn ich, wer sie eigentlich seyn, nit weiss.

Von übrigen bleib ich etc.

Datum München d. 6. Juni 1603.

Kepleri responsionis (d. 5. Jul. 1603) exordium exhibuimus Vol. I, p. 655. Reliqua base sunt: In prioribus literis scribis, din delituisse Lunaria mea, quod miror, nec injuria aliquid suspicor; rogo itaque majorem in modum, ut me certiorem faciat M. T., an in lituris quibusdam agnoscat M. T. meam manum. Quod attinet eclipses, non dissimulandum, compendiosius ex tabulis Tychonis inveniri Lunaris eclipsis medium momentum, in Solaribus quidem, ubi Tycho admiscet triangulum suum rectilineum, ex meis compendiosius procedetur. Nam etsi in universum in hoc reputo compendium inesse, quod apogaei et nodi motum ab aequinoctio inquirere doceo, hic tamen modus necessario particularis est, quod consilio feci, ut cum Tychonis Lunaribus pari passu ambularem. Quomodo vero tabulae Tychonis ad antiqua tempora quodammodo possint accommodari, scripsisse me memini superiore anno. Ea accommodatio in his meis tabulis fiet operosior et requiret multa, de quibus nondum certi sunt astronomi, ita inhabiliores sunt hae meae ad antiqua tempora, quam Tychonicae. Ac etsi possunt accommodari, non tamen operae pretium. Ego quidem meum consilium et usum omnem in praefatione explicavi.

Quod haeredes attinet Tychonicos, unus est instar omnium Fr. G. Tegnagl, nobili genere Westphalus et in praesens Caesareae Majestatis minister aulicus. Mathematicus enim non vult audire. Nihil honoris hac mentione M. T. impono. Volo ut pro mero arbitrio suo M. T. agat cum his tabulis.

Ne vero nihil scripserim, addam compendium expeditissimum quaerendi in Solaribus eclipsibus parallaxes latitudinis. In Copernico exstat tabula angulorum eclipticae cum horizonte; cum hoc igitur angulo (tanquam essent ' gradus altitudinis Solis) ingredere tabulam parallacticam Tychonis sub convenienti titulo semidiametrorum Terrae, et area statim exhibet parallaxin latitudinis verissimam.

Oriatur 18º Z sub A. P. 45º. Angulus 32º 32'. Sit Luna in perigaeo, alt. 55 semidiametrorum. Ergo has in fronte, angulum 321/2° in sinistro margine quaerens invenio 53' 13" parallaxín latitudinis Lunae, ubicunque illa sit in zodiaco, modo supra Terram. Et ut propius accommodem ad eclipses, quia sub titulo 55 semid. est horizontalis Lunae parallaxis 62' 30" et Solis horiz. 3', subtractione facta est parallaxis Lunae a Sole 591/6': hanc quaero e regione 0° altitudinis, et invenio illam fere sub 58 semid.; itaque in hac columna e regione 321/2° datur 50' 27" parall, lat. Lunae a Sole. Jam et longitudinis parall. inde habetur. Sit enim DE horizon, BA verticalis, CA ecliptica. Quia BAD est 90° et CAD 32° 32', erit BAC 57° 28'. In triangulo igitur BCA quasi rectilineo, rectangulo in C, dantur angulus A et BA et BC latitudinis parallaxis. Nam BA est in hoc exemplo 59¹/₂', BC est 50¹/₂', quaeritur CA, longitudinis Lunae a Sole parallaxis horizontalis, idque ut lubet, abundamus enim datis: compendiosissime vero, quia CBA fere rectilineum, erit CBA acqualis CAD: ut ergo sinus BCA rectus ad BA 59¹/s sic sin. CAD, id est CBA anguli, qui est 32¹/₃° ad CA. Ergo CA in horizonte est 32. At non ut BC sic et CA per omnes eclipticae gradus oriente 18° \mathcal{J} manet aequalis, sed mutatur. Sit ergo Luna in 19° \mathcal{M} , distat ab 18° \mathcal{J} oriente 59°: per hanc distantiam iterum ingredior tabulam Tychonis in margine, et horizontalem longitudinis Lunae a Sole parall. 32' quaero in fronte, jam (quia hic titulus abest, sumo ejus duplum 64', quae invenio fere sub 54 semid:) area ex-hibet 16' 40'' (hic duplum ejus 33' 19''), itaque 16' 40'' in 19° M est parallaxis longitudinis Lunae a Sole oriente 18° \mathcal{J} in Alt. P. 45°. Sed 50'/s est parall. lat. Lunae a Sole, ubicunque fuerit Luna in ==, M. x etc., modo cetera maneant.

Ita vides, unica brevissima multiplicatiuncula parall. lat. Lunae a Sole in sinum anguli eclipticae cum horizonte prodire; quod et Tychonis tabula exhibet parall. longit. Lunae a Sole. ("Error" Kepterus in marg. adacripat.) De latitudinis parallaxi demonstratio est certissima, ad longit. parall. argumentor per analogiam.

In meis Opticis tandem, Deo gratia, ad finem perveni; quatenus titulus patet Astr. Pars Optica, quae additurus sum, usum in exquirenda vera motuum Lunarium hypothesi patefacient. Illa vero sunt pars magua astronomiae geometricae, nempe lib. IV, V et VI Operis magni Ptolemaei. Jam et de occasionibus edendi et de extorquendo salario meo cogito, inque his sum occupatus. In theoria Martis cetera sunt expedita, verba adhuc desunt.

Vale magnifice Vir et me amare perge.

5. Juli 1603. Pragae.

Magn. Nob. Tuae officiosissimus Johann Kepler.

De Tabulis Kepleri Herwartus haeo nunciat Keplero d. 13. Nov. 1603 (simul se excusans ob dinturnum silentium, vid. Vol. I, p. 655): Ich bin verschienenen Tagen zu Augsburg gewesen, u. hab dasselbsten Nachforschung geflogen, ob u. was Gestalt des Herrn facilitatio calculi Lunae secundum data Tychonis Brahe möchte gedruckt werden. So haben aber die, so anwesend gewesen, so viel Ziffer Characteres nit, und gewart ich von einem, so abwesend gewesen, ferneren Bericht.

Wie es Ime in den unter Handen habenden operibus, und sonderlich ratione theorise Martis, wie auch sonsten ergehe, vernimb ich gar gerne. Und bleib Ime angenehme dienst und freundlich geneigten Willen zu erweisen, vorders genaigt und gewogen. Dat. München etc.

His exceptis nil amplius deprehendimus in literis Kepleri et Herwarti mutais de "Tabulis Lunaribus". Haec autem cum Longomontano egit de iisdem Keplerus. In literia quas diximus p. 32. 443. ille gravissime aggreditur Keplerum propter "nimiam industriam circa refutationem Tychonianae in Lunam hypothesis". Keplerus in responsione sua (anno 1605) se contra Longomontani objurgationes sie defendit: Tu vero scias, me nullam instituisse refutationem; aliud est transformare, aliud refutare.

Transformatio mea nihil aliud fuit, quam ejusdem restitutionis ampliatio. at intelligeretur, diversis hypothesibus idem praestari. Tu ipse affirmas, modos tibi sex superesse. Mibi vero ad meum institutum necessaria fuit transformatio, ut id obtinerem, quod agebam, scilicet ut calculum trianguli unius in tabulas conjicerem. Poterit alius forsitan idem praestare retenta hypothesi Tychoniana: ego tunc quidem tam felix non fui, et inclinatum me fateor ad formam physicam, quam amplector prae ceteris, quoties acque ac ceterae officium facit. Ex praefatione ad Herwartum aliquid fortasse possit excerpi, quod refutationem vel omnino insimulationem aliquam sapiat: quasi obscura sit hypothesis et quasi tabulae non sublevent calculum labore triangulari. At primum ego illam praefationem ita immutavi, ut Tengnaglio placuit; deinde nihil ex me dixi, sed ab aliis et ab Herwarto ad me scripta assumsi, ut literis auctorum cuivis quovis tempore demonstrare possum. Tu vero, si dubitas me sic in praefatione loqui, pete illam a Tengnaglio; exstat apud illum manu Matthiae (Saiffarti) sine quidem mutatione, qualem scripseram ex me ipso, non qualem ex sententia Tengnaglii immutatam. Posteaquam acceperis, addam ego quae fuerint mutata. Nihil ergo in mea transformatione est, quod mereatur nomen refutationis. Non opinor, te in epistolio meo legisse, quod vehementer mihi applaudam de transformata hypothesi Tychoniana Lunae. Itaque non aegre mihi faciunt tui sex modi alii; mihi ad institutum meus modus suffecit ac forsitan idem unus ex tuis sex fuerit. Quin hac commemoratione me excusas de ea supervacanea opera, cujus me insimulaveras. Nam si tibi placuit sex modis ludere, placuit et mihi uno. Nec est major gloria, quod tu hoc in proprio labore suscepisti, ego in alieno. Nam quae publici juris sunt, aliena amplius non sunt. Ita Ptolemaei observata Copernicus in suam hypothesin transfudit. ita Maginus Copernicana in antiquas Ptolemaicas hypotheses. Itaque si hic est scriptionis tuae scopus, ut dicas, me nihil magni praestitisse, aequis te aaribas audio: nunquam magnifeci. Allegavi Herwarto non unam privatam utilitatem, quam ex hoc exercitio percepi. Non magni tamen facio, quia non imprimi curavi hactenus, nec communicavi amicis enixe petentibus.

At hoc pacto non probas, me refutationem Tychonis instituisse, scilicet hoc ipsum refutas. Illud enixius agis, ut mihi scopum potissimum eripias triangularis laboris sublati. Primum ais, consulto factum a Tychone, ut causa esset, cur adolescentes triangulis operam darent. Si disputandum hoc sumerem, credo, ut est probabilitatis ingenium, dicendo facile efficerem, ut tu contrarium ei sentires, quod Tycho sensit. Sed non est opus, praesertim apud te, qui scis, artis nostrae ignoratione fieri, ut potius decem astronomiae valedicere velint, quam ut unus ad triangula veniat astronomiae causa. Illud saltem dicam, propositum hoc mihi ab ipso Tengnaglio suppeditatum. Cum enim sumeret Matthias anno 1602. operam scribendi Ephemerida motuum Lunae ad annum sequentem, triangularis labor plane multum temporis insumsit. Itaque et Tengnaglius et Matthias hoc questi sunt, et, contra quam tu jam, satis quidem se exercitatos esse putarunt in triangulari labore, sed non satis temporis et nimium taedii se habere agnoverunt ad eandem viam toties eundam. Dicebam ego Matthiae, existimare me, citius posse **scribi tabula**s, quam unius anni Ephemerida. Ille, idem sibi videri, ac perinde, si director esse velim, abrupta Ephemeride, se tabulas prius conditnrum. Sed factum est simultate nostra, ut et Tengnaglius suo ministro solus uti malle videretur (idem enim perlibenter a me audiit, posse tabulas 45

Kepleri Open, III.

condi faciliter per aliam imaginationem hypotheseos; tantummodo hoc pro jure suo ursit, ut id primum perficeretur, quod sibi esset visum. Ephemeris nempe), et ego id, quod levi mea opera fieri posset, Tengnaglio inviderem, ne is de re non magni momenti et meae inventionis olim gloriari posset. Ita factum simultatibus, ut res, se ipsa ab initio exoptata, postmodum verteretur in fel et acetum; praesertim cum ego opus non prius monstrarem Tengnaglio, quam jam scriptis ad Herwartum literis et postae commendatis, exemplum, quod videbat Tengnaglius, etiam postae commendaturus essem. Nam vix obiter hypothesin Matthiae delineaveram, atque ex eo non verbo uno dicto intra 6 septimanas jam perfectas esse tabulas indicavi. Haec importunitas nova exasperabat antiquas et diuturnas simultates. Tengnaglius ipse opera Johannis (Eriksen) et Matthiae tabulas hujusmodi condidit, quibus meas facilitate superet; itaque non res est vitiosa, sed modus agendi; atque utinam scopum facilitatis attigissem propius; certus enim sum, gratias mihi acturos esse multos, contra quam tu.

Altera tua refutatio mei insituti est haec, quod labor triangularis suppeditet distantias Lunae a Terra, utiles in astrologia ob particulares parallaxes. Respondeo: calculus Tychonis a me non est sublatus, computet qui volet; nam mea transformatio exhibet easdem distantias. At si quis non quaerat distantias, sed nudam longitudinem, ei taediosum est, triangula consulere et distantias prius adire, quas primario non expetit. Tum autem, quid tu de circello argutaris ejusque effectu in variandis parallaxibus? Quid si in omnibus parallaxibus plus aberrares, quam circellus efficit? Non plane hoc affirmo, sed sub conditione. Nam si tu diametrum Solis et umbrae mordicus fueris tutatus cum parallaxi Solis, omnino tibi res huc recidet sub contradictionis comminatione, ut parallaxin Lunae evidenter mutare cogaris.

Iam ad alia venis, et si tuam reprehensionem tectam bene percipio, jam tu hanc particulam tituli mearum transformationum adoriris, quod dixi: "pro typo tabularum Rudolphi ad deliberandum propositas." Tu ergo miraris, audere me ceteros planetas, de quibus nondum constat, aequiparare Lunae. Non facio, mi Christiane; cur enim "ad deliberandum" proponerem, si jam esset exploratum? Scio, Lunae esse particularia multa, ac fortassis.etiam planetae ceteri inaequalitatum numero et qualitate distinguuntur plus quam hactenus credidi. Unum autem est in tabularum transformatione, quod citra controversiam imitari possumus in ceteris omnibus planetis, si modo consultum fuerit (quod deliberandum esse dixi), ut scilicet per excessum temporis supra momentum, quo planeta in apogaeo eccentri fuerit. statim excerpatur anomalia eccentri coaequata; atque huc ego potissimum respexi, quia apogaea et nodi planetarum ceterorum valde tardi sunt, et facili opera computantur. - Quae ad singula eorum, quae praestita in Luna commemoras, dici fortasse possent ab astronomo, mitto, ne novas quaestiones serere videar non finitis veteribus, praesertim cmm nihil habeam in praesens nisi conjecturas physicas, nec ex professo tractem Lunae negotium. Quid nunc de me meruit odiosissima illa tua exagitatio insolentiae ejus, quam mihi per nequissimam calumniam tribuisti? (Longomontanus recensitis iis, quae Tycho in Lunae theoria perfecit, addit: talia a te unquam praestari posse vehementer metuo. Id autem non metuo, quod ad praeclaram censuram omnima bonorum et intelligentium virorum de defuncto Tychone haec sordida tua insolentia magis sordescat et odiosa fiat.) Quid enim nisi ut te vicissim et tuam xaxondear ex-

agitando tantum paginae spatium occupem, quantum tu occupasti. Sed mitior ero, nec quicquam tibi ad tot convicia regero, nisi ut relegas schedam meam, eaque lecta quod ingenuum virum decet erubescas teque ira et falsa imaginatione literarum absentium praecipitatum doleas. (Ad verba Longomostani supra allata adscripsit Keplerus: Debacchare in larvam a te concinnatam.)

Quod vero ne monitus quidem errorem deprehendis, eo te tanto magis errori obstringis. Sed facessat odiosa exprobratio, orta ex contagio tam vicinae calumniae. Dicam ingenue, candide, astronomice. Tu parallaxes Lunae explorasti seorsim, diametrum 💿 seorsim, diametrum umbrae seorsim. Ex his nosti Ptolemaeum inquirere altitudinem 💽 ex centro Terrae, ex ea parallaxin (). Hoc tu neglexisti existimans, sufficere ut a veteribus et Tychone itidem seorsim parallaxis 💿 sit assumta. At si tu Ptolemaeum imitatus (vel non multo aliam methodum, assumtis aliis quam Ptolemaicis) ex parallaxi Lunae in transitu umbrae et latitudine umbrae, itemque ex apparente () diametro, qualem assumsisti, quaesivisses tanquam ex genuinis principiis elongationem et parallaxin Solis, non tantum non hanc parallaxin () invenisses, quam Tycho ex veteribus retinuit, sed deprehendisses, rem tibi plane ad impossibile redire. Certe ego nunc demum video Ptolemaei consilium, cur ille Lunae et per eam Solis diametrum in eclipsibus per ante notam latitudinem et digitos eclipticos metiri maluerit, quam alia faciliori ratione ex ipsis observationibus deducta. Nam me hercule modus per se absurdus est. Si etiamnum obscurus tibi videor, ad calculos eas, statim omnia tibi fient dilucida, nec me plura verba facere opus. Invenies rationem adeo lubricam, ut intra 900 et 2000 semidiametros nihil certi concludi posse videatur de altitudine Solis. Admodum hilaris sum, postquam ex lacuna contentionum eluctari me videor ad philosophicam disceptationem atque eam meae professionis, qui Optica scripsi. Videbis igitur in meo opere aliqua tibi placentia, aliqua contraria. Illud contrarium tibi, quod si 🕽 cum 💽 (separatis jam parallaxibus) non videbitur alibi plus, alibi per aliam refractionem minus cum (), quia refractio non potest divellere visui sidera, quae citra refractionem viderentur conjuncta.

Hase Keplerus, reliqua vide supra p. 32 sq. — Keplerum parum curasse, ut typis exscriberetur libellus, cujus partem (omissis tabulis) sequentes referunt paginae, apparet ex his ad J. Remum anno 1619 datis verbis: Meas transformationes anno 1602 perfectas et Herwarto inscriptas, dignas non judico quae inserantur (Tabulis Rudolphinis), quia nihil de principiis Tychonicis mutant; solummodo aequationes hinc inde pausulis scrupulis variant necessitate hypotheseon, in quas Tychonicam sumsi transformandam.

Inscripsit Keplerus hoc opusculum :

Transformatio hypotheseos et tabularum Lunarium, quas generosus ac magnificus D. D. TYCHO BRAHE,

eques Danus, Dominus in Knudstrupp et Uraniburg &c., nostri seculi alter Hipparchus, libro primo Progymnasmatum edidit, qua libri illius usus facilior redditur,

concinnata Pragae

a M. Joanne Keplero S. C. M. Mathematico.

Accesserunt Lincii, anno potissimum 1616, sparsim tabulae aliquot novae ad auctoris sensim proprie accommodatee.

45 *

Nobili et magnifico viro D. D. Joanni Georgio Herwarto ab Hohenburg, Cancellario Bavariae, illustrissimi Bavariae Principis consiliario et praesidi Suabae. Domino et Fautori meo plurimum colendo.

Si nunquam in Magn. tuae familiaritatem fuissem receptus, poterat me vel sola illa tua egregia in literas voluntas et amor doctorum virorum passim increbescens invitare ad te pro viribus percolendum. Quia vero non tantum creberrimis abs te literis jam per annos aliquot sum cohonestatus, sed etiam re ipsa nec uno in loco tuam in me benevolentiam cum meo commodo expertus sum : equidem jam pridem decuisse arbitror, ut gratitudinem meam aliquo munere literario declararem, si mihi Urania sat propitia Cum igitur nuper in hoc qualicunque opusculo tabularum Lunafuisset. rium mihi videretur successisse, teque insuper cum universae astronomiae tum potissimum doctrinae de eclipsibus studiosissimum scirem : non erat mihi quisquam alius deligendus huic occupatiunculae patronus, idque tanto magis, quod cum nihil hic alind agam, quam ut summi illius astronomi Tychonis Brahe placita de Lunae motibus, quae in Progymnasmatum tomo nuper sunt publica facta, communiora et ad usum accommodatiora reddam : vix cuiquam id gratius accidere possit, quam tibi, qui et vivum studiose coluisti et mortui monimentis literariis sollicite faves. Quin et ipsum laboris hujus institutum te potissimum judicem et arbitrum poscere videtur : quod quale sit diligenter explicandum est.

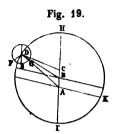
Postquam, quae dixi, Progymnasmata Tychonis et in iis Tabulae Lunares prodierunt, diversa duo mathematicorum judicia, partim abs te, partim ab aliis ad me perscripta sunt, hinc alteris intricatam captuque difficilem hypothesin et a natura alienam notantibus, inde aliis querentibus, nondum tabularum muneri satisfactum esse, quando altera menstruarum acquationum etiamnum per doctrinam triangulorum prolixo et taedioso labore solvenda sit., Utrisque hoc labore consulere sum conatus. Etenim si quos movet vel circellorum multitudo vel centri orbis in centrum Terrae semimenstruns ingressus et discessus : illis ostensum est hic, Copernicanum illum duplicem epicyclum in concentrico, quem Tycho tantopere adamavit, ut a tribus superioribus mutuatum etiam in Lunam introduceret, nihil esse alind, quam unum Ptolemaicum (in tribus superioribus) eccentricum, cujus motus circa punctum aliquod aequatorium supra centrum orbis elevatum circínaretur aequabiliter : quam inaequalitatem motus propediem in alio opere, cui fundamenta in meo Prodromo sen Mysterio Cosmographico jeci, physicis principiis convenientissimam demonstrabo et Copernici objectionibus in solidum satisfaciam. Eundem in modum hic demonstratur, circellum illum, quem Tycho per centrum Terrae transire facit, plane coincidere cum Copernicano secundo epicyclo Lunari; nec nisi positione et nonnihil quantitate differre, effectu vero motus aequipollere, quale quid Tycho ipse in explicatione snae hypotheseos monuit. Itaque in universum Lunae theoria, quod longitudinem attinet, totidem constabit orbibus et centris, quot apud Ptolemaeum alignis ex tribus superioribus : nisi quod praeterea etiam medius Lunae motus in conjunctionibus et oppositionibus parumper acceleratur, quam Tycho Variationem dixit; quae, ut a causa physica profecta, circello peculiari ad speculationem non indiget, cum ab ipsissimo menstruo circuitu pascatur. De hac tamen, ut infra dicetur, nondum penitus liquet. Quemadmodum vero hypothesis Lunae conformis est reddita usitatis Ptolemaicis trium superio-

rum, sic jam et calculus in alterorum, quos dixi, gratiam et ut mathematici in communi labore taediosissimo liberarentur, accommodari facile potuit, composita tabula prosthaphaeresium menstruarum ejus epicycli, quem Tycho collocaverat ad Terram. Hae causae laboris hujus in publicum, de quibus, quod prins dicebam, tu rectissime judicabis, qui tuis hortatibus cunctantem me impulisti cum ad haec tum ad alia incommoda si fieri posset lenienda. Mihi vero privatim causae suppetebant non contemnendae. Primum de tam multiplicibus inaequalitatibus Lunae multa mihi cum Tychone vivo dissertatio fuit; quo hortatore semper aliquid tentabam, ut una quod ajunt fidelia duos parietes dealbarem (una inquam hypothesi utramque inaequalitatem excusarem). Sexcentos tentavi aditus cum plurimi temporis jactura: totiesque jam devoratam praedam iterum e faucibus amisi. Nam mihi subinde imponebat circellus ille ad Terram post dumeta triangularis laboris latitans. Tandem igitur in apricum commodioris hypotheseos fuit protrahendus et totus cum omnibus artibus suis in tabulam conjiciendus.

In posterum itaque mihi erit expeditius, variam hujus prosthaphaereseos permistionem cum dicta Tychoni variatione menstrua propius contemplari, et videre an sufficientibus observationum conditionibus suffulta, an (quod interdum suspicor) vel cum variatione Tychonica (cum physicam plane utramque esse necesse sit) vel cum Ptolemaica *incluosi* menstrua epicycli commune quid obtineat: sic ut susceptus a Copernico secundus epicyclus et transsumtus a Tychone adque Terram collocatus non plane illam Ptolemaicam *incluosi* praestet, contra quam Copernicus lib. IV. cap. 9 demonstrare nititur.

Simul etiam periculum facere volui laboris tabularum Rudolphinarum condendarum: quo nomine (etsi opus ipsum seu irritum seu non necessarium esset) non mediocriter me profecisse censeo.

Quod autem non eam formam tabularum sum secutus, quam Ptolemaeus, Alphonsini, Copernicus et Prutenicae praeiverunt, causa haec est, quia haec mihi forma omnium brevissima videtur loca computandi ex tabulis; quae etsi in Luna nonnihil habet etiamnum laboris, propter apogaei et nodorum celeres motus, in ceteris tamen planetis tanto majori cum foenore erit. Et tamen in ipsa etiam Luna plurimum expedire puto: non per anfractus et latentes vias longitudinis, anomaliae, motus latitudinis incedere ignarum ubi verseris, priusquam ad ultimum pervenias ostium: sed ex editiore loco, apogaei scilicet et nodorum tardo motu, prospectum totius itineris semper habere ob oculos. Quare tibi, Vir harum rerum peritissime juxtaque amplissime, exemplar repraesentare volui ejus formae tabularum Rudolphaearum, quam ego animo concepi, ut quia publicum opus futurum est (si Deo placuerit) plurium etiam et intelligentium judicio firmetur. Paratus enim sum, si quisquam mibi compendiosiorem viam monstraverit, illam sequi, institutum deserere. Accipe igitur has Tibi proprias chartas, easque ut lubet et expedire tibi videbitur, cum literatis et rerum intelligentibus seu publice seu privatim communica: sic tamen ut virorum doctorum judicia in meum et totius astronomiae commodum vicissim colligere, qua commode poteris, Tuumque adjungere non negligas. Facies id, quod doctos omnes a Te exspectare diuturna consuetudine docuisti. Vale et me amare perge. Pragae Bohemorum X. Cal. Majas anno vulg. epochae Christi Dei 1603.


Nob. et Mag. tuae addictissimus

Jo. Keplerus.

Hanc dedicationem sequitur pagina aversa: "Tabula acquationis dierum naturalium ad annum 1616 completum, quo anno apogaeum Solis ponitur in 6º @ completo: acquatio maxima 2º 3' 45''," his adscriptis verbis: "Absolvi 14. Martii 1616. Non usurpavi illam in Ephemeride." — Hanc tabulam excipit:

Schema Hypotheseos Longitudinis.

Sit A Terra, B centrum eccentrici Lunae HDK, AB linea absidum, H apogaeum, I perigaeum. Motus hujus lineae est in consequentia a puncto

aequinoctiali super puncto A seu centro Terrae aequabilis, restitutio annorum $8 \frac{1}{2}$. Ad novilunia tamen comparatum hoc apogaeum videbitur ab illis retrocedere, quia semper prius ad apogaeum redit Luna, quam ad Solem. In eccentrico moveatur D centrum epicycli FG aequaliter circa C punctum aliquod, quod aequatorium dicunt. Estque qualium BD 100000, talium BA 5074, composita scilicet ex 2900 et 2174 dimensionibus Tychonicis, earundem BC est 5800 et DE semidiameter epicycli 2174 ut apud Tychonem.

Epicycli motus talis est: sit DE diameter in omni situ epicycli parallelos ad HI lineam absidum, monstrans epicycli puncta eccentrici apogaeo et perigaeo respondentia, ut E respondens puncto I perigaeo; quod perigaeum epicycli dicere vereor, quod abusu vocis lectorem nolim confundere, quia D in I transposito E omnium epicycli punctorum longissime ab A aberit, et sic antiqua vocis notione anoyelor efficietur. In hoc igitur E puncto sit corpus Lunae quoties centrum epicycli D in lineam per A Terram et corpus Solis utrinque productam incidit, in omnibus scilicet noviluniis et pleniluniis. Ab hac linea quantum centrum epicycli D digreditur motu ad A comparato, duplo hujus anguli corpus Lunae ab E versus G digrediatur. Ut si linea per Terram et Solem sit AK in antecedentibus signorum, quantus est arcus KHD, si ex A descriptus esset, duplo major erit arcus EGF, et Luna in F. Hanc hypothesin dico satisfacere placitis Tychonicis de Lunae motibus ad sensus subtilitatem. Nam quod Tycho non ipsius D puncti, sed paulo aliam distantiam ab AK adhibet (ut patet, si comparatio instituatur subtilissima), nihil tamen verbo dignum in effectum hinc resultat. Plus fortasse movebit lectorem, quod aequationes eccentri maximae in quadraturis circiter sesquiscrupulo majores fiunt Tychonicis; idque propter ea, quae Copernicus libro V. cap. 4. circa medium demonstravit. Ceterum sciat lector, hoc quicquid est a me non necessitate sed consilio praeteritum. Facile enim id cavere potuissem, si pro 8700, qui Tychoni in quadraturis tangens est, sinum 8667 elegissem. At quid opus mihi fuit rudem et asperum numerum repudiato Tychonico adsciscere propter tantillam differentiam sesquiscrupuli, cum Tycho ipse summam scrupulositatem tractabilium et rotundorum numerorum compendiis postposuerit. Nam fortuiti non sunt hi numeri 8700, 5800, 2900, quorum primus tertii triplus est, secundus duplus. Quare malui dimensiones Tychonicas retinere cum calculi compendio, quam ad ipsam effectus Tychonici subtilitatem adspirare sine necessitate praecipua.

Variatio Tychonica proprie est accidens motus medii. Nam qui ceteris planetis motus medius est, Lunae non est. Quoties enim Luna lineae AK per Terram et Solem transeunti appropinquat, etsi plane in concentrico

Digitized by Google

710

illam incedere fingas: toties intenditur motus ejus celeritas. Itaque vim quandam movendi obtinet tractus ille. Quod mirum esse minime debet in corporibus coelestibus, quae non externa vi vectium, ventorum aut aquarum, sed nutibus perfectissimarum mentium et geometriae imaginatione topica Sic igitur habe: nisi inesset in illo tractu vis haec adventitia cientar. promovendi corpus Lunae, tantum futurum ejus motum medium, quantum esse solet in quadraturis (ceteris paribus): plures vero in una restitutione horas fore, quam jam obtinet. At quia jam accedit illa motio menstrua, colligi illam necesse est et intendi initio tarde, cum Luna circa quadraturas brevibus passibus ad lineam AK appropinquat; ubi proxime venerit, majora hujus incitationis incrementa sunt, quod Luna e directo in lineam involet, non ut prius ex obliquo. Adeoque quae est proportio sinuum distantiae Lunae a Sole vel eius opposito, haec est proportio incitamentorum. Quare si usurparemus Lunae motum pro medio, quantus in quadraturis est : semper adderemus illi incitationis aliquid, minimum tamen in quadraturis, plurimum in syzygiis. At quia antiquitus hunc pro medio motu adhibemus, qui existit diviso circulo in dies unius restitutionis, ubivis illa altera commiscetur, hine existit tantus motus, quantus est ceteris paribus medio loco inter quadraturam et copulam, ubi et haec modo descripta acceleratio mediocris Is igitur motus quia in copulis parvus est, in quadraturis nimius, est. consequens est, ut illic augeatur hic minuatur: unde quam prius accelerationem vel incitationem dixi, variationis nomen apud Tychonem obtinet. Haec de hac variatione dicere volui, partim ne circellum ejus viderer neglexisse, oui est tantum ad mensuram susceptus, non ad motus formam, partim ut lectorem mecum paulatim in contemplationem physicam inducerem. Nam idem plane (physicum nempe) judicium ferendum tandem erit et de hoc residuo epicyclo FE, quem parallaxes Lunares a Tychone observatae respuunt nec patiuntur, Lunam per illum etiam attolli vel deprimi. In examine enim parallaxium, quas Luna in quadraturis pateretur, discursitare inveniebatur a 54 semidiametris Terrae in 60 circiter. Quos Tycho terminos hypothesi serviens prorogavit a 52 in 61, quod ipse in capitulo de Lunae parallaxibus innuit. Dubium non est, quin simpliciter tam in quadraturis quam in copulis idem spatium 6 circiter semidiametrorum Terrae ascensu descensuque occupet, idque per eccentricitatem AB seu latentem in eccentrico epicyclum tantae semidiametri.

Explicatio et accommodatio tabularum transformatarum ad schema.

Tres sunt potissimum tabulae; in prioris prima columna notantur tempora, quibus ante finem adscripti in margine anni centrum epicycli (ceteris paribus) in apogaeo seu puncto H fuerit novamque periodum fuerit auspicatum. In secunda columna notatur locus AH sub ecliptica, in tertia locus nodi.

In secundae tabulae margine sinistro sunt gradus integri anomaliae coaequatae centri epicycli seu HAD anguli, ab AH usque ad AI vel 180°. In prima columna sunt tempora his gradibus respondentia, cum adjunctis differentiis temporum cuilibet integro gradui respondentibus. In secunda est motus apogaei AH, temporibus adscriptis respondens. In tertia motus

nodi in praecedentia; in quarta scrupula proportionalia longitudinis seu differentiae inter lineas AD et AH.

In tertiae tabulae marginibus sunt numeri communes arcubus EGF ab E incepto, et GF ab F incepto. Sequentur in columna prima anguli DAF (si D fingas in H constitutum), ut F a G per omnes gradus semicirculi epicycli dispositum intelligatur. In secunda sunt excessus illorum angulorum DAF, si D in I perigaeo constituatur. In has 2 columnas introitur cum arcubus GF. In tertia occurrit variatio Tychonica, quam simpliciter transscripsi: in quarta prosthaphaeresis nodorum, quam a Tychone transsumtam titulis mutatis extendi ad duplicem distantiam Lunae a Sole : sicut et de scrupulis latitudinis in quinta columna factum: ut hae quoque ad hanc formam accommodarentur et uno ingressu per EGF arcum excerperentur.

Quartam tabulam addere supervacuum esse putavi, in tua scilicet latitudo Lunae cum excessu et reductione ad eclipticam jungeretur. Nam hae tabulae, quamvis divisae, exstant in libro Progymnasmatum Tychonis, sine quibus hae meae tabulae propemodum erunt inutiles. Levis opera est, ut si cui placeat compendiosus ingressus, is ex suis locis utramque petitam describendo conjungat. (Sequenter tabulae, quarum si frontem et calcem exhibeanm satisfactum censemus curiosiori lectori.)

I. Epochae aequalium motuum Lunae.

	1	Resid	luun	n te	mpo	ris	-									
. Anı	ni	ad	, fin	em	anr	ui.	1	l pog	aéi	ecce	ntrici.	Nod	li eveb	entis.	•	
			. Ь			"		S.	G.		"	8.	G. '			
140	00	8	. 10	B. 2	7. 1	30		0.	10.	5.	22	6.	10. 12	. 17		
142	20	- 11	. 17	7. 2	3.	19		3.	13.	37.	Ò	5.	13. 32	. 1		
144	10	14	. 18	3. 1	9.	8		6.	17.	8.	38	4.	16. 51	. 45		
152		26	. 22	2.	2. 2	24		7.	· .	 15.	9	1.	0. 10	. 39		
180	0	14			6. 4			2.	26.	46.	23	0.	13. 51			
			II.	ุ่า	abı	ula	ina	ieqi	alit	atis	prim	ae.			•	
		l I				1				Ad	ld.	8	ubt.			
Add. a coae			Ten	apu	L	ŀ	Diff				ipogae uinoctio	i Motus	nodi inoctio		cru- ula	
Sig. (-	D.	Ħ.	М.	s.	H.	М.	s.		-	[. S.		. S.		. S.	1
0.	0	0.	0.	0.	0	2.	2.	57	0). ģ	. 0	0	. 0	0). 0	
•	1	0.	2.	2.	57	2.	2.	56	· 0). 0	. 34 .	0	. 16). 0	
	2	0.	4.	5.	53	2.	2.	55	0). 1	. 8	0	. 33	0). 1	
:	i			•												
6.	0	13.	18.	39.	18	11.	38.	53	1	. 32	. 6	43	. 48	60). 0	

III. Tabula inaequalitatis menstruae.

Numeri com- munes	Prosthaph. epicycli	Diff.	Excessus seu ampli- ficatio epi- cycli	Diff.	Variatio Tychonica	Add. Prosthaph. nodi Tychonis	Scrup. latitud.	Numeri com- munes
	G. M. S.		optica		sub. diff.			
6. 0	0. 0. 0	73"	0. 0	8	0. 0 43	0. 0. 0	60. 0	6. 0
1	0. 1. 13	73	0.8	8	0.43 43	1.48	59. 59	29
2	0. 2. 26	73	0. 16	8	1. 26 42	3. 36	59.58	28
3	0. 3. 89	73	0. 24	7	2. 8 42	5. 24	59. 57	27
4	0. 4. 52	73	0. 31	8	2.50 42	7. 11	59. 55	26
11. 29	0. 1. 18	78	0. 9	9	0. 43 43	0, 1, 55	1.55	
12. 0	0. 0. 0			1			1.00	
10. V	0. 0. 0	P .	0.0	1	0.0	0. 0. 0	1	0. 0

712

Keplero emendata.

).0		0.	45.	90.	135.	- 180.
	0	0	0. 40 ¹ / ₂ A.	0	0. 40 ¹ / ₃ S.	0
	45	3. 27 Sub.	4.30 S.	5. 1. 17 8.	4. 1 ¹ / ₃ S.	3. 27 8.
	90	4. 58 ¹ / ₈ S.	5. 41 ¹ / ₃ S.	7. 29 ³ / ₈ S.	6.46 S.	4. 58 ¹ / ₈ 8.
4	135	8. 35 ³ / ₂ 8.	3. 2 8.	5. 35 8.	6.4 S.	3. 35 ² / ₈ 8.
	180	0.	0. 40 ¹ / ₃ A.	0	0. 40 ¹ / ₂ S.	0
Anomalia.	225	3. 35 ³ /, Ad.		5.35 A.	3. 2 ¹ / ₂ A.	3. 35 ² / ₈ A.
4	270	4. 58 ¹ / ₈ A.	6.45 A.	7. 29 ³ / ₂ A.	5. 40 ⁴ / ₂ A.	4. 58 ⁴ / ₂ A.
	315		3. 571/2 A.		4. 30 A.	3. 27 A.
	360	0	0. 40 ¹ / ₃ A.	0	0. 40 ¹ / ₂ S.	0, .

IV.	TYDDS	acquationum	Lunae	impli	icitarum.
-----	-------	-------------	-------	-------	-----------

Cum distantia varietur a 97100 in 102900. eccentricitas vero a 4400 in 0, erge index proportionis laterum variatur a 91312 in 100000. Sit tangens gr. 1. — 174550 \times 92000 = 1606

17455 93 — 1623 94 — 1641 95 — 1658 Hic in principio fiunt proportionalia 96 — 1676 citra controversiam.

V. Motus in annis singulis usque ad viginti.

A	Adde mi. Temp. resid. ad fin. anni.				Adde			Subtrahe Nodi evenentis.			
Anni.		610. 34 EL. 4			g.ec G.		<i>"</i>		G.		
1.	6.	18. 5	8. 26	1.	9.	54.	33	0.	18.	58.	8
2.	13.	13. 5	6.52	2.	19.	49.	5	· 1.	7.	56.	15
3.	20.	8.5	5.19	3.	29.	43.	33	1.	26.	54.	22
19.		• • •			•	••			•	• •	
19.	22.	19. 1	5.58		20.			0.	6.	14.	35 ·
20.	3.	0.5	5.49	3.	3.	31.	38	0.	26.	40.	16

VI. In diebus et horis integrarum revolutionum.

		Adde	Subtrahe			
	Tempus.	Motus apogaei eccentrici.	Motus nodi.			
L	27. 13. 18. 35	0. 3. 4. 12	0. 1. 27. 33			
п.	55. 237. 10	0. 6. 8. 24	0. 2. 55. 6			
Ш.	82. 15. 55. 45	0. 9. 12. 36	0. 4. 22. 39			
xvi.	440. 20. 57. 18	1. 19. 7. 9	0. 23. 20. 46			

• De verae longitudinis Lunae et nodi evehentis ex hisce tabulis supputatione.

Primum quae Tycho de acquando et reducendo tempore praecepit, manent invariata. Deinde loco Solis medio hic. non est opus. Sufficit verum teneri idque vel in $\pi\lambda\alpha\tau\omega$: melius tamen, si plane sciatur ad scrupulum.

Tertio cum annis completis excerpantur primum tempora residua ad finem anni illius, secundo epocha apogaei epicycli, tertio epocha nodi evehentis. Quarto, si sic usu vesiat, cam numero ausorum infra 20 excerpantar similiter 1) tempora, et addantur temporibus prioribus. 2) Motas apogaei et addatur epochae superiori, rejecto integro circulo. 3) Motas nodi et subtrahatur ab epocha superiore, ut ipsi etiam tituli adscripti indicant, adscito, si opus est, integro circulo.

Quinto summam dierum mensis completi, insuper dies tuos completos cum horis et scrupulis adde temporibus hactenus collectis nihil abjecto, etsi modulum unius anni superent.

Sexto haec summa temporum comparatur ad tabellam revolutionum integrarum. Nam alias propior erit proxime minori numero temporum, alias proxime majori.

De primo casa prius. Ergo subtrabe quod est proxime misas a tuis temporibus, motum vero apogaei juxta scriptum adde, motum nodi subtrabe a superioribus, ut prius etiam factum. Cum residuo temporis ingredere tabulam inaequalitatis primae. Nam si residuum tuum praecise inveniatur sub titulo temporis: quod juxta invenis in margine est praecisa anomalia coaequata centri epicycli, in sequentibus duabus columnis motus apogaei et nodi, cum quibus age secundum titulorum requisita, ut tam apogaei quam apomaliae motus addatur motui apogaei superius collecto, motus vero nodi subtrahatur motui nodi superius collecto. Scrupula vero ex ultima columna adserventur. Sin autem residuum tuum temporis non praecise inveniatur, age ut solet fieri, proportionaliter: dividens quod tibi est etiamnum residuum per differentiam temporis juxta adscriptam.*) In motu vero apogaei et nodi aestimatio vel sine divisione perfacilis est. Nam apogaei motus differentia nunquam est major, quam 34" (nodi 16"), nunquam minor 27" (nodi 13").

In casu posteriore, atque si summa temporum collecta plus accedit in tabula revolutionum ad proxime majorem summam temporis: subtrahe vicissim tuam summam a proxime majori, cum adscriptis vero motibus apogaei et nodi age ut prins. Jam vero cum residuo post subtractionem, ubi ex tabula inaequalitatis primae excerpseris anomaliam coaequatam, motum apogaei et motum nodi: cum his contrarium titulis erit faciendum. Nam quia prius plus addideras apogaeo, plus subtraxeras nodo quam tua tempora ferebant, jam vicissim quod residuo tuo de anomalia et motu apogaei debetur, subtrahendum apogaeo, quod de motu nodi, addendum nodo. Si te hujus varietatis taedet, facile te expedies duplicatione tabulae inaequalitatis primae, ut procedat usque ad 360. Utroque vero casu colliges hoc pacto locum verum centri epicycli et verum locum nodi, qualis esse solet in eclipsibus.

Septimo. Locum verum Soliş (vel oppositi (). Nam si distantia superat 6 signa, tunc ex 6 in duplicatione fiunt 12 et abjiciuntur) a loco centri epicycli subtrahe, residuum duplica, ut apud Tychonem, et cum iis excerpe ex tabula inaequalitatis menstruae variationem menstruam et prostha-

") In motu apogaei nodi et scrupulis longitudinis pars proportionalis habetar. Si in proportionum regula primo loco ponatar differentia temporis, secundo loco differentia apogaei, nodi et scrupulorum, tertio loco residuum temporum, vel si anomaliam centri coaequatam in minutis et secundis inveneris, illis minutis primis et secundis quaere partem proportionalem competentem, quod commodius est, quam prior modus, reperitur n. pars proportionalis saltem multiplicatione.

phaeresin nodi, et scrupula latitudinis adservanda. Nam fila Tychonica in hunc usum transtulimus et in has, ut compendiosa esset excerptio.

Octavo. Anomaliam centri coaequatam in casu priore subtrahe ab hac duplici distantia, in posteriori adde (nam erat illa non re vera ipsa anomalia, sed ejus complementum ad circulum). Cum eo quod prodit ex tabula inaequalitatis secundae excerpe prosthaphaeresin epicycli cum excessu, de quo per scrupula longitudinis ex primae inaequalitatis tabulis asservata pars proportionalis addita constituit emendatam prosthaphaeresin, quam una cum variatione pro cujusque titulo adde vel aufer longitudini centri: ita colliges veram longitudinem Lunae. Ubi et nodi prosthaphaeresin prout tituli te docuerint addideris vel abstileris a loco nodi, verum habes et hujus calculum. Per vera loca Lunae et nodi et scrupula latitudinis ex secunda tabula adservata poteris excerpere ex tabellis Tychonicis latitudinem Lunae veram et reducere locum orbitae ad eclipticam. Nam hic nihil est. varietatis a praeceptionibus Tychonis, tantum consulo, ut ex ambabus tabulis unam facias, quo expeditius excerpas.

Ceterum plus est in praecepto verborum, quam laboris in opere. Quare rem exemplis declarabo.

Exemplum prioris casus. Sit tempus acquale in meridiano Uraniburgico 1540. 31. Dec. h. 1. 45'. Apog. Nodus. Tempus 1520. - 26ª 22h 2' 24" - 7. 1º 15' 9" - 1. 0º 10' 39" - 22. 19. 15. 58 - 1. 20. 32. 55 ad. - 0. 6. 14. 35 subt. 19. – Biss. Novembr. 335, 0. 0. 0 Scrupula longitudinis 1.45.0 Dies compl. 30. 1' 12". Summa: 414. 19. 3. 22 Revol. XV.: 413. 7. 38. 43 1. 16. 2. 57 ad. - 0. 21. 53. 14 subt. <u>(</u> 4. 41 subt. Residuum : 1. 11. 24. 39 9, 49 ad. 0. 28. 12. 30 summa sub. Ex tabula : 1. 10. 46. 11 17. 0. 9 ad. 0. 1. 58. 9 Locus nodi 38. 28 Et residuum : simplex. divisum per diff. 2h 2' 16" prodit - 18. 58 ad. Summa est verus locus centri epic. 10. 25. 19. 48 Verus 🕥 9. 20 Distant. 1. 5. 19. 48 Variatio 38. 14 Add." duplum 2. 10. 39. 36 Prosth. R 1. 41. 0 sub. sub. Anom. centri 0. 17. 18. 58 sub. 0. 0. 17. 9 loc. nodi ver. Prosth. 0. 57, 50 Exc. 6' 17" 10. 25. 0. 4 ") verus " menst. 1. 23. 20. 38 Pars prop. 8 sc. 1. 12 10. 24. 42. 55 argm. lat. Prsth. emend. 57. 58 pars 8 Resid. supra variationem 19' 44" Scrup. latit. 20' 35" 2. 52. 16 lat. respond. Excess. lat. 10 56 10. 25. 19. 48 long. centri 10. 25. 0. 4 long.) orbitae 10. 56 excess. 3. 39 3. 45 pars. 6. 47 ad. pro reduct. 6 10. 25: 6. 51 ad eclipticam 2. 56. 1 vera latitudo. 3. 45 pars. locus) eclipticus.

Aliud exemplum posterioris casus.

Sit tempus acquale in meridiano Uraniburgico 1820, primo Martli in meridie.

 Tempus.
 Apog.
 Nodus.

 1800.
 —
 14.
 8.
 28.
 42.
 —
 2.
 26.
 46.
 23.
 —
 0.
 13.
 51.
 45.

 19.
 —
 22.
 19.
 15.
 58.
 —
 1.
 20.
 32.
 55 ad.
 —
 0.
 6.
 14.
 35 subt.

 37.
 3.
 42.
 40
 4.
 17.
 19.
 18
 0.
 7.
 37.
 10

Launia T. Balai

11.12.4 4 17. 19. 19 Tder Vie. 0 17. 1. 12. 40 Ronil IV. 119. 5. 54 19 1. 12. 15. **6 1 5 32** 12 min. - 42.8 5 Pres. mai. Rend. 13. 1. 31. 30 - 1 1 4 5 4. 34. 48 second. 34. 1. 27. 15 / . . . Re minis 12. 41. 39 <u>ail</u> a LLERALSILSE Read nn. Ing. 97 X* 1. 30. 3 Sames 5. 21. 4. 7 L s per älf. Ennis & # nn opie. 11. 8. 31. 58 Loon on Press of 3 . 11. 23. Lot. 11 mmp. 0. 2. 28. 25 nnin 11. 15. 31. 38 Min. 112 16 Dupl 11. 1. 3. 56 -Pat. and 0. 32. 47 1. 15 Variatio 19. 36 out. Anomalia contri epic. 5. 19. 36. 52 6. 3. 21. 15 we be mi 1. 22. 42. 45 11. 2. 22. 16 . .). Anna, mante. Loc. 4. 46 Frank. Ep. 44. 20. 11. 4. 1. 1 Ann. Int." Pais 4. 46 Sec. 50. 32 2. 18. 38 Jun lat. **#**, **6** Pas 4.46 8. 18 Luci . 32 page page. 1. 9. 42 sums stanbark 11. 5. 31. 50 count locus epic. 2. 11. 10 Yes bits 11. 7. 22. 16 longit.) in ertite. 5. 9 sil pri relactions al orlipticam. 11. 7. 27. 25. Locus) eclipticus. Adde et bec exemplum. Anno 1984. 10. Jan. in mexidie Uraniburgico acquato tempero quantitar logas Lugas vara. 7. 1000. - 4. 8. 3. 48 - 11. 21. 13. 30 Count and 9 12. 8. 2. 48 Tempus est minus dimidia surelatione, etge casus pist. Es tabals 13. 7. 6. 51 Residence 56. 57 das 1. 28. 39 definer, h. 1. 39' 57") et an . 68 ÷. 5. 23. 34. 36 Sc. img. 50. 50. Locus cintri 5. 16, 17. 14 Variatio 40' 27" add. Locus () 9. 29. 55. 13 1* 10 20" Br. 7. 37 Distat 7. 16. 22. 1 m. 50. 50 7. 36 Dupl. 3. 2. 44. 2 Pass 1. 56. 29 Page 7. 36 non. conir. 5. 23. 34. 36 Anon. measters 9. 9. 9. 28 Loc. 5. 16. 17. 14 Loc.) orb. 5. 18. 15. 43 Porre in hunc modum quaeritur novilunium verum. Agno 1005. die 2. Oct. magna erit oclipsis Solis, quaaritur verum novilmism et locur noli-1604. - 124 24 2' 15" - 1= 1º 8' 12" - 0= 24º 41' 58" Sept. 273 dies compl. 1 Summa 286. 3. 2. 15 Revel. X. prezime minus 275. 13. 5. 48 - 1. 0. 41. 57 - 0. 14. 35. 29 Benid. 10. 13, 56, 27 - 2, 1, 50, 9 - 6, 10, 6, 29 Verus 🕢 in meridie 6. 19. 1. 8 🖂 Ö diarmas 59' 41".

Hic diebes 10. h. 13. 56' 27" ante meridiem constitutum Luna droyeto; est in 2º 1° 50' 9", reducenda est ad verum Solis in 6, 19. 1. 8. Distat adhuc per 4º 17° 11' 0", ergo in tabula inacqualitatis primae quaesita anomalia 4º 16°, quae habet adjunctum motum apogaci 1° 11' 43", exhibet tempus 10ª 17^h 27' 5", qued superat nostrum tempus per 3^h 30' 38". Itaque totidem horis post meridiem

716

diei 2. Octobris. Additur apogaeo in universum 4° 17° 11′ 43″, ut sit longitudo centri ad illam heram 6. 19. 1. 52, scrupula vero sunt 51′ 57″ servanda. Est autem illa hora locus \odot 6. 49. 9. 52, qui subtractus a loco \Im , relinquit 11. 29. 52. 0. Cujus duplum 11° 29° 44′ 0″ exhibet variationem 12″ subtrahendam. Subtracta vero hoc loco anomalia 4° 16° a duplici distantia relinquit 7. 13. 44. 0 anomaliam menstruam, quae exhibet prosthaphaeresin epicyli 48′ 30″ add. cum amplificatione 5. 15, de quibus pars proportionalis ad scrupula servata est 4′ 33″. Hinc prosthaphaeresis emendata 53′ 3″ add. Hinc ablata variatio 12″ relinquit 0° 52′ 51″, addendum Lunae, ut sit ejus locus 6° 19° 54′ 43″. Itaque vides, quod Luna superaverit locum Solis verum per 44. 51. Quare divide hanc superationem per motum \Im horarium, qui est ante et post $\sigma' \sigma'$: et prodibit tempus verae σ' . At horarius ex tabula Tychonis per simplicem anomaliam (quam ex nostra coaequata centri anomalia scripsimus aestimatione crassiuscula) excerpitur 34′ 9″. Ergo distantiae 44′ 51″ respondent h. 1. 18. 14; subtrahe a 3. 30. 3, restat 2^h 11′ 49″, tempus aequale pomeridianum verae conjunctionis.

IN HIPPARCHUM

NOTAE EDITORIS.

1) p. 523. His Kepleri propositionibus subjungimus Horroccii eadem fere cum illis ratione demonstratas, ut comparatione instituta apparent, quam prope ille ad Kepleri sensum penetraverit.

- 1) Semiangulus coni umbrae idem est cum semidiametro Solis vel Terrae apparenti, oculo in mucrone umbrae.
- 2) Semidiameter Solis apparens in Terra major est semiangulo coni umbrae.
- 3) Semidiametri Solis in Terra apparentis et semianguli coni umbrae differentia est parallaxis Solis horizontalis.
- Parall. hor.) in umbra existentis ubique major est semid. umbrae apparente in illo) transitu per umbram.
- 5) Diff. semid. apparentis umbrae et parall. hor.) in umbra sitae est semiangulus coni umbrae.
- 6) Semid. apparens () et) (ant cujusvis stellae) ad parall. earundem horizontalem eandem in omni distantia retinent proportionem.
- 7) Diff. inter semid. app. () aut) stellaeve, et earum parallaxin horizontalem, non est ubique eadem, sed in majori distantia minor, in minori major.
- 8) Diff. inter semid. app. umbrae et parallarin horiz.) in umbra (h. e. semiangulus coni umbrae) in eadem Solis distantia semper est eadem, nec per varium) et Terrae intervallum variatur.
- Semid. umbrae vera non est ubique ejusdem quantitatis; sed major in minore a Terra intervallo, minor in majori; manente eadem Solis et Terrae distantia.
- 10) Semid. umbrae apparens non habet ubique eandem proportionem ad parall. horiz.].
- 11) Neque tamen datur perpetua proportio inter semid. app.) et umbrae.
- 12) Inaequalis distantia Solis a Terra semidiametrum umbrae apparentem et veram mutat, in eodem) per umbram transitu.
- 13) Stella ea, cujus parall. horiz. major est semidiametro ejus apparente, minor est Terra et contra-

Ad theorems 5. (Keplero II.) hase annotat Horroccius: Ne cujusvis inscitia demonstrationem hanc minus firmam esse contendat, ex eo quod anguli EFB et EGB non sint precise acquales ut assumitur, ostendam, quam nullius momenti sit in hoc negotio adeo insensibilis differentia. Sit igitar semiangulus coni umbrae BCE 14' (qualis est Keplero in apogaeo Solis. Epit. Astr. Cop.), et ejus tangens 40725; sit item semid. apparens umbrae GBF 50' (qua nunquam est major), et ejus tangens 145454. Angulorum summa est BFE 1° 4', tangentium summa est 186179, cui respondet \angle BGE = 1° 3' 59" 46"". Deficit igitar hic angulus a praecedente BFE (cui acqualis assumitur) tantum 14'", quae non efficient quartam partem unius secundi, nec est es differentia unquam in hoc negotio major.

Ex hoo theoremate (et tertio) fundamentum habes praecepti 148. Tabularum Rudolphi, quod totam fere dimensionem coelestem in se continet.

2) p. 527. Kepleri demonstratio haec est :

 $KI \times IN = LI \times IM (= FI^2)$

$$LI \times IM = (LK + KI) IM = LK \times IM + KI \times IM$$
, quare

 $KI \times IN - KI \times IM = KI (IN - IM) = KI \times MN = LK \times IM$. Est vero

 $KI \times MN = KI (ON - OM) = KI \times ON - KI \times OM$ et LK × IM = LK (KM - KI) = LK × KM - LK × KI

 $KI \times ON - KI \times OM = LK \times KM - LK \times KI.$

Cum autom OM = LK, est etiam $KI \times OM = LK \times KI$,

 $ergo KI \times ON = LK \times KM.$

8) p. 528. SR \times RH = KR \times RN

 $SR \times RH = (SN - RN) RH = SN \times RH - RN \times RH$, quare

 $\mathbf{KR} \times \mathbf{RN} + \mathbf{RN} \times \mathbf{RH} = \mathbf{SN} \times \mathbf{RH}$, h. e. $\mathbf{KH} \times \mathbf{RN} = \mathbf{SN} \times \mathbf{RH}$.

 $\begin{array}{l} \mathrm{RH}\times\mathrm{SN}=(\mathrm{NH}+\mathrm{RN})\,\mathrm{SN}=\mathrm{NH}\times\mathrm{SN}+\mathrm{RN}\times\mathrm{SN},\\ \mathrm{KH}\times\mathrm{RN}=(\mathrm{KZ}+\mathrm{ZH})\,\mathrm{RN}=\mathrm{KZ}\times\mathrm{RN}+\mathrm{SN}\times\mathrm{RN}. \end{array}$

$$NH \times SN = KZ \times RN.$$

Huie theoremati addit Keplerus hoc problema, ut non numero ita his verbis insignitum : "Utile computationi eclipsis Solis universalis."

Datis semidiametris disci et penumbrae, et distantia centrorum, indagare lineam per sectiones, et quantitatem arcus disci a penumbra intercepti.

Sit primo centrum penumbrae extra discum. Ergo distantiam centrorum duplica; cum duplo divide factum ex scrupulis in disco et scrupulis extra, prodit sagitta disci, quam duc in residuum disci; facti radix est sinus arcus dimidii disci a penumbra incepti.

Sit iterum centrum penumbrae intra discum. Ergo semidiametro disci adde distantiam centrorum, a summa aufer quantum est de semidiametro penumbrae intra discum, scilicet usque ad centrum: cum residuo divide factum ex scrupulis in disco et scrupulis extra, prodit eadem sagitta ut prius.

Demonstrationem, a Keplero omissam, hanc addimus : 1) Sit KAN "discus", SPH penumbra, centro A extra discum existente. Secundum theor. 16 (comp. initium hujus

annoi.) est

 $\begin{array}{l} \mathrm{NH} \times \mathrm{SN} = \mathrm{KZ} \times \mathrm{RN}, \ \mathrm{quare} \\ \mathrm{RN} = \frac{\mathrm{NH} \times \mathrm{SN}}{\mathrm{KZ}} \ ; \\ \mathrm{KZ} = \mathrm{KN} + \mathrm{NZ} = 2\mathrm{EN} + 2\mathrm{NA} = 2\mathrm{EA} \\ \mathrm{ergo} \ \mathrm{RN} = \frac{\mathrm{NH} \times \mathrm{SN}}{2\mathrm{EA}} \end{array}$

KR = KN - NR. Jam, quia

PR
$$\perp$$
 KN, erit PR = $V_{\overline{\text{KR}} \times \text{RN}} = \sqrt{\frac{(\overline{\text{KN}} - \overline{\text{NR}}) (\overline{\text{NH}} \times \overline{\text{SN}})}{2EA}}$

2) Penumbra LFM ea ratione in discum incidente, ut centrum A sit intra circumferentiam KAN, erit secundum theor. 15 (annot. 2)

 $\begin{array}{l} \textbf{KI} \times \textbf{ON} = \textbf{LK} \times \textbf{KM}, \\ \textbf{ON} = \textbf{KN} - \textbf{KO} = 2\textbf{KE} - 2\textbf{KA} = 2\textbf{AE}, \text{ quare} \\ \textbf{KI} = \frac{\textbf{LK} \times \textbf{KM}}{2\textbf{AE}}, \\ \textbf{FI} = \sqrt{\textbf{KI} \times \textbf{IN}} = \sqrt{\frac{\textbf{LK} \times \textbf{KM} \times \textbf{IN}}{2\textbf{AE}}} = \sqrt{\frac{\textbf{LK} \cdot \textbf{KM} (\textbf{KN} - \textbf{KI})}{2\textbf{AE}}} \end{array}$

In Nro. 1. Keplerus problema in hoc certum numerorum exemplum translatum exhibet: Sint scrupula penumbrae in disco (SN) = 19' 41'' - 111458semidiameter penumbrae (SA) = 32. 13

$$SH = 64.26$$

Scrupula penumbrae extra
$$(SH - SN) = \overline{44.45} - 29325$$

Rectangulum 14' 41" - 140783 (NH × SN)
Sit dist. centrorum (EA) 75' 54", duplum 151' 48" - 92819

RN)
$$6' 25'' - 233602$$
 (:2)

$$sinus 10^{\circ} 7^{\circ} - 110001$$

semidiameter (disci) 63. 22 - 5471

Qualium discus 60 - 17' 40" - 122272 •

Arcus 17° 71/2'.

Hic Kepleri calculus his illustrandus est: Numeri ad dextram adscripti logarithmi sunst e Tab. Budolphinis desumti, quare hoc exemplum, sicut etiam exempla, quae ad Probl. XI. et XIII. pertinent, ex tempore tabularum supremum recognitarum orta videntur.

Tabulae Rudolphinae hae constitutae sunt ratione, ut ad logarithmum 122272 in columna superinscripta "Partes sexagesimae" deprehendas arcum 17' 49", nac non in

In Reportant

columnt "Arens quadrantis" cundem 17" 71 3', quae cadem quantitas publit, si ponuis 00 : 100000 = 17^{1/2}; : x: x = 530000 = 25444 = sin. 17⁴ 7¹3¹. Etsi hit son de car-16

struendio tabalis Kepleri logarithmorum plaribus disserendem est, hoe tamen, respicients Kepleri calculum supra posicum, mesendum censemus : Keplerus logarithmos sus maine seu potius unice ad astronomiae usum cenferri voluit ; quam ad rem cum magni memeni sius numeri 24 et 60, praeter divisionum semidiametri mistatam partium 160000, aliam illiar in 24, aliamque in 60 acquales partes adjecit ("partos vicesimos quantus" et "sezaguarius"), adecripeitone inibus, quos e tabulis trigunometricis tum mitatis decumit quam menime returis (incipiens a sina 3 28 = 100, et inde paulatim, unicnique priori sinai addens 100, ascendit ad sin. 90° = 100000), logarithmos. Hac ratione forman tabulae Kepleri nactae sont longo aliam, onam recentiore actate consurvement astronomi, cam sinus quidem croccast plane regularion processom secuti , anguli vero minus exhibemut, tequlatitatem ikun, quan tabalae siavam horzoque usitatze, sicut etiam tabalae logarithuseum Keplesiasis beri succedentes. His dicta ratione constitutis, partes '24mine et 60mine adocriptae sunt singlis augulia, quie tabalae exhibuerunt, computatae in hune medam : Sit v. c. 2200 ninus aros 1º 15' 30". Respondentes buie areni "partes vie. quartae" oust = 2200. 24

100000 2200 00

" " alio quam mitato sonsu acceptis. Haoc de tabalis dicta sunte, quas exhibet liber Kopleri, quem inscripcit "Chiliada" (prodije Marpurgi 1624). Tabularum Rudolphiuarum pars, eadem quae jam diequirimus continens, simili quidem, sol non plane en u art un part, eacon quite jam ensperanne continues, sont quiteren, sont non prime contra ratione computata est, qua "Chilias". Inscripta est "Heptaconias Legarithmorum Legiti-corum," continetque legarithmos tantam simum, son sinus ipees. Orde in columnis inquite non ut in Chiliade adaptatus est similur, sod vice versa "partibus seragenimis", qua inti-pient a 0° 0°, et, crescentes ordine singulae partibus 5, desimust scrapulis 60, vel, que ad idem redit, partibus "quadrivicenis", cum has ad illas, vel illae ad has facillino he calculo roducantur: v. c. partes 7 sexag. = $\frac{7}{24} = 2^{\circ}$ 48' part. quadrivic. Ex his com-60 putantur sizus ad r = 100000 sic: 60: 100000 = 7: x; x = 11666 = siz. 6º 41' 50".

quem arcum deprehendes in prima columna tabellae, adscriptum partibus sexagesimis 7'0". His praemissis redimus ad Kepleri calculum : partibus sexag. 19' 41'', 44' 45" &c. adscripti numeri 111458 &c. logarithmi sunt, desumti ex jam dicta tabula (eo temper, que Keplerus hoe exemplum Hipparcho suo adscripsit, nondum typis expressa); processas es idem, qui alibi in usu est, quare nil amplius notandum esset, nisi logarithmi diviserme 151' 48" et 63' 22" negativo sensu sumendi essent, quod inde evenit, quia utraque quantitat numerum 60 excedit. Hunc in finem tabulae exhibent practer jam dictas 4 insuper quintan

columnam, quae inscripta est: "Partes sexag, privativorum." In hac columna namers 2° 31' 48" (= 151' 48") inquirendus est, quem quidem non ipeum deprehendes, sel 2º 31' 35", cui adscriptus est in praecedenti columna log. 92676, qui levi operatione in illum commutatur, quem calculas desiderat, quique "privative" adhibendus est, nicut etim log. 63' 22", qui, ut "privativus," pro subtractione additione prioribus adjungendus est.

Sexagesimarum antem illarum partium "privativarum" columna exstruitur ex columna partium sexagesimarum simplici divisione numeri 3600 per scrupula sexagesima; v. c. 23' 45" in columns inscripts "sexag. scrupula" divisa in $3600 = \frac{3600 \cdot 4}{05} = 151^{11}/_{10} = 2^{\circ} 31' 35"$. 95

4) p. 529. Sit (Fig. 3) LM diameter "luminaris" (Lunae), KN diameter unbra. FLG = 81°, ergo FL = 40° 30′, LA = 17′ 1″, (= FA) erit FI ("dimidium lineae sectionum") = FA, sin. LF lg. 17' 1" = log. 1021" = 3,0090257

lg. sin.
$$40^{\circ} 30^{\circ} = 9,8125444$$

lg. FI = 2,8215701; FI = 663" = 11'3". Deinde ducta semid. FE in \wedge IFE dantur latera FI et FE, hinc sin. / FEI = sin. arc. $\mathbf{FK} = \frac{\mathbf{FI}}{\mathbf{FE}} = \frac{663}{2916}$, unde arous $\mathbf{KF} = 13^{\circ} 8' 37''$, ejusque cosinus = 0,9738; quare IE = cos. arc. FK . FE = 0,9738.48,6 = 47.3' = 47' 18"

Keplerus tabula usus "Antiloganithmorum" (in Rudolphinis p. 23), praeceptumque secure 29. (ib. p. 25: Datorum laterum antilogarithmos ex tabula excerpe, differentia sorum quaesita per areas tabulae ostendit scrupula lateris quaesiti), compendiosori via rom ad finom perducit.

Notae Editoris.

Simili calculo deprehendit IA = 12' 57", deinde sagittam IK = EK - El = 48' 36" - 47' 18" = 1' 18" et IM = AI + AM = 12' 57'' + 17' 1'' = 29' 58''Inde quantitas defectus = KM = KI + IM = 31' 16''5) p. 530. Cum sit (theor. 17): $AB^2 - OE^3 = 2OE \cdot AP$, erit $AP = \frac{AB^3 - OE^2}{OE^2}$ 20E $AB = 54' 22''; 2 \log 54' 22'' = 3,4706654 = \lg 49' 15''$ $OE = 33' \ 20''; \ 2 \ \log. \ 33' \ 20'' = 3.0457574 = \lg. \ 18' \ 31''$ 30' 44" $\mathbf{AB^2} - \mathbf{OE^2} =$ log. 30' 44" = 1,4876096 20E = 66' 40''; $\log. 66' 40'' = 1.8239087$ 0.6637009 - 1 $AP = 0,4610^{\circ} = 27^{\circ} 40^{\circ\circ}$ Keplero prodit AP = 27' 6", quia pro 20E, 20F posuit. Jam, quia OF (diameter Lunae) = 34' 2", ergo EF = 34' 2" - 33' 20" = 42", prodit AE ("arcus latitudinis") = AF - EF = 17' 1" - 42" = 16' 19" et PE (semidiameter umbrae) = PA + AE = 27' 40" + 16' 19" = 43' 59". 6) p. 531. Secundum theor. 18. est $DB^2 - CB^2 = ED$ (DA + AC), et cum sit constructione probl. 14: DE = 2EF, quare DA + AC = 2EF + 2AE = 2AF, erit - $CB^{1} = ED \cdot 2AF$, et inde $AF = \frac{DB^{2} - CB^{2}}{2ED}$. 2ED Jam datis AF et EF (= $\frac{1}{2}$ DE) prodit AE (= AC) = AF - EF; denique in \triangle ABC ad B rectangulo $AB = V \overline{AC^2 - CB^2}$. Sit DE = 31' 44", DC = 36' 30", CB = 39' 46"; hinc DB = DC + CB = 76' 16" 2 log. 76' 16" = 3,7646694 . . . 1º 36' 57" 2 log. 39' 46" = 3,1990382 . . . 26. 22 $DB^2 - CB^3 = 1^\circ 10' 35'' = 70'/_{12}'.$ $\Delta F = \frac{70^{7}/_{13}}{63^{7}/_{16}} = 1^{\circ} 6' 43'', \ \Delta C = 66' 43'' - 15' 52'' = 50' 51''.$ $\Delta B^{2} = (50^{17}/_{20})^{2} - (39^{23}/_{80})^{2} = 16' 43'' = 1003''.$ $AB = V \overline{1003} = 31' 40''$ 7) p. 531. In schemate 1. sit SD Sol, VE Terra, QF linea transitus Lunae per umbram. EFB parallaxis Lunae, BDE eadem Solis, ABD semidiameter Solis visa ex B, centro Terrae, FBG semidiameter umbrae. Ergo BDC = ABD - BCD.

$$BCD = BGE - GEC = BFE - FBG$$

Parallaxin "Lunae a Sole" dicit Keplerus differentiam EFB — BDE, quare ABD + FBG — EFB + BDE = 2BDE.

8) p. 532. Huc usque Keplerus finem secutus est suum justo ordine. Jam vero per aliquot folia sistems passum constantem, in computandis compluribus eclipsibus ad normam problematum modo praemissorum occupatur, iisque adjungit problemata sequentia, omissis numeris continuis:

9) p. 532. Ex annot. 7 sequitar: ABD + FBG - BDC = BFE1) 15' +44' 7" - 1' = 58' 7" 2) 15' 33" + 49' 27" - 1' 2" = 63' 58"

Hinc distantias Lunae elicit Keplerus per "Tabulam parallacticam" in Optica.
 Ut comprobemus numeros Kepleri, sic calculum instituimus: In triangulo BEF (fig. 1)
 ad E rectangulo datur BE = 1, et angulus BFE = 58' 7" (63' 58") quare

 $BF = \frac{BE}{\sin \cdot BFE} = \frac{1}{\sin \cdot 58' 7''} \left(= \frac{1}{\sin \cdot 63' 58''} \right)$ log. BF = 1,7719939 = 1,7303452 BF = 59,115 = 53,746.

10) p. 534. Vacua haec reliquit Keplerus ipse. Cap. III. exhibet diametrum Lunae perigaeae 33' 20", apogaeae 30' 30".

Kepleri Opera. III.

46

:

le Ayentan

11, p. 536. Com "Taintan parallectican" in Optica unimism. en, ques Kaplar unt, jan franks scenes nation a er Ila sem . . Annunts distantia contrarum Laure et Suis = 30 40° et anguis uner eclipt corrections per contra = 41 P. predix n mangués spinannes metanguis 41 P ; L. c. sepas interestions Lance = un. 41 P / mn. 30 40 : aanee soctaaguis latas oppe -Lat. Lause = 2 14": Laus ad anguing 41 9 sic: Te longeration Lane = ----as. 30 W Long, Lance = 37 35- : Densie im. paral. hatednin = na. 54 × in. 74 4 ; Paral. Int. = 52 35 :: Tang. paral. longentions = tang. 54 \times cm. 74 4; Paral. long = 19 5"; Sin. "longtudinis paral. in scenarus" = sin. 42° 51' \times sin. 19 5";

pende 12 56".

Sanificer in respectives produt: in. lat. Lance = un. 19 20" > in. 46' 20' = in. 7 30" etc.

12) p. 541. Loca fracum ad annun 1565 computat Keplarus e Tychenis "Tabula 160 selectarum stellarum" ad annun completum 1600, quas samat in Program. L. p. 276 app. (ed. anni 1602), net non et ejustem tabula Ast. Rectarum et Declinationum Eclipticas (A. p. 61 app.).

Calculus autem Kopleri his illustrandus est: dantur in telengulo sphenetico latura 41°52 (Lunzo distantia a fizz), 61° 4′ 17″ (compl. decl. fizze) et 74° 44″ (compl. declin. enni Lunzo); hue cos. arcus zeptatoris inter carculas declinationum fizze et Lunzo

$$= \frac{\cos 41^{\circ} 52' - \cos 61^{\circ} 4' 17'' \times \cos 74^{\circ} 44}{\sin 61^{\circ} 4' 17'' \times \sin 74^{\circ} 44'}$$

= $\frac{6,74470 - 6,12737}{0.84433}$
= $0.73115 - \cos 43^{\circ} 1'.$

Koplorus hune calculum absolvit "compondio prosthaphaorotico" unu, quam computandi rationem dizinus exemplisque illustravinus Vol. II, p. 438, 822. Fixae asc. recta = 110° 7' 20"

Lunse are rocta =
$$\frac{43.1}{153.8.29}$$
. In Tychonis tabula (loc. c. p. 86) al
1° W are rocta 153.3.31
Def 104 40 - 998*

Ex Tabula, quam adjecit Koplerus libro suo "Epitome" inscripto, prodit angulus, quam meridianus cum 1° 5' 4" TP eclipticae facit, 69° 8' 25", sive per calculum trigonometrious sic; dantur in triangulo sphaerico rectangulo latus oppositum recto = $151^{\circ}5'$ 4" (28° 54' 56"), eique adjacens angulus acutus = 23° 31' 30", ergo: cot. ang. verticalis cum ecliptica = cos. $151^{\circ}5'$ 4" \times tg. 23° 31' 30"; angulus quaesitus = 69° 8' 25".

Jam in alio triangulo sphaerico rectangulo datis angulo acuto 69° 8' 25" et latere opposito 4° 8' 20", computatur arcus eclipticae (diff. longitudinis) formula: sin. x = tg. 4° 8' 20" \times cot. 69° 8' 25" = tg. 1° 34' 48". (Latus 4° 8' 20" dicit Keplerus "basin latitudinis", et calculum absolvit secundum praeceptum in Epitome, usus multiplicatione curtata.) "Locus Lunae in ecliptica" = 1° 5' 4" $\mathfrak{P} - 1°$ 34' 48" = 29° 30' 16" Q. Eadem qua supra ratione procedit posteriore momento (nocte seq. p. m. h. 2. 56') distante a priore per horas 25. 26'), et prodit longitudinis diff. = 1° 23' 4" indeque locus Lunae = 17° 5' 51" $\mathfrak{P} - 1°$ 23' 4" = 15° 42' 47" \mathfrak{P} etc.

722

Notae Editoris.

Motus Lunae horarius = 15° 8' 43": 25 h. 26' = 32' 16". Calculum Keplerus absolvens "ratione prosthaphaeretica", singulari insuper utitur compendio in multiplicatione et divisione : $42430 \times 5694 = 42430 (6000 - 300 - 6) = 254580000 - 12729000 - 254580 =$

= 24159.6420.

Divisio absolvitur "logistica sexagenaria", hac ratione: 15° 8' 43" 20 25' 43" $= \frac{1}{3} = 30^{\prime}$ · = 6' 254 26' 254 26' $\frac{1}{15} \times 25.26 = 12^{\circ} 43'$ $15^{\circ} \times 43'' - 12^{\circ} \times 43' = 2^{\circ} \times 25' \times 43''$ $6 \times 25^{h} 26' = 2^{\circ} 32' 36'' (> 2.25.43)$ 2°32'36" - 2°25'43" = 6' 53" 8' 58" $\frac{1}{25^{h}} \frac{26'}{26'} = \frac{1}{4} = 15''$ $\frac{1}{6} \times \frac{25h}{26'} = \frac{6'}{21''} = \frac{21''}{32''}$ 32 1" 25.26 16" 30' + 6' - 16'' = 35' 44''.

13) p. 551. Ut lectores hunc et qui sequentur calculos facilius comprehendant, haec

addenda censuimus; quanquam quae supra (ann. 3) proposuimus, hue quoque referenda sunt. Diurnus 🕥 = 57' 5" multiplicatus in dies 8 prodit 7° 36' 40"; idem in 17h 23' multiplicatus (Keplerus utitur logarithmis ex Tab. Rud. p. 2 sq.) exhibet factum 41' 20", indeque elicitur locus Solis ad d. 25. Junii 13º 32º 😨. Item in Luna numeri maxima ex parte desumti sunt e Tabulis Rud. (nondum quidem tum temporis, quo Keplerus haec computarit, ad calcem perductis, sed ad suum usum praeparatis) cum ex tabulis motuum Lunae (p. 78 sq.) tum e "tabula subsidiaria" (p. 94). Factum 17' 3". 35' 40" = 10' 7" com-putatur per logarithmos (p. 2), numeri 17. 880 etc. itidem logarithmi sunt e tabula p. 23. In loco Ω summa 4= 3° 39' 34" prodit addita "correctione" 25' ad 4= 3° 48' 6", subtractisque 31' 46" et 1' 46" pro diebus 10 et horis 13. 17', quibus superantur 7 revolu-tiones Lunae diebus 203 etc. Hine subtractis 10° 12' 50" pro 7 revol., prodit locus S. "Calculus ex Tychone" hic et in sequentibus eclipsibus utitur tabulis, quas Progymn. Pars I. continet. In computatione Lunae prima columna exhibet longitudinem Lunae a Sole, secunda anomaliam, tertia motum latitudinis.

14) p. 552. Frid. Rutilius (Rüttelius) Stuttgartiensis "Registrator et Historicus" multa per literas egit cum Keplero ab anno 1613 in a. 1625. Affinitate conjunctum fuisse Rutihum cum Keplero significant verba, quibus unamquamque epistolarum inscripsit: "meinem Herrn Schwager". In literis Rutilii, quas exhibet Vol. XI. Mss. Petropol., pauca deprehendimus, quae notatu digna sunt; pleraque pertinent ad eclipses, quarum observationes undequaque collectas transmisit Keplero (Riegeri Herbipolensis, Krabbii etc.), deinde ad Kepleri opera, quibus colligendis frustra operam insumsit Ratilius (a. 1613: des Herrn Schwagers Opticam kann ich nit bekommen; dann ich unsern Bibliopolis etliche mal memorialia gen Frankfurt geben, sie haben aber ihrer Sag nach und als ich zu Strassburg fast in allen Buchläden nachgefragt, und nit bekommen können. Anno 1623: Unsere Buchhändler kaufen vichts als Pfaffengezänk ein etc.) Thema natale sibi expetens a Keplero natum se scribit Rutilius d. 11. Oct. 1579 Stuttgartiae.

Quascunque inspeximus Rutilii epistolas, omnes viri exhibent animum hilarem, saepius forte excitatum jocis Kepleri, quales passim occurrunt inter res serias, quas per literas cum amicis egit. Unum proponimus pro ceteris. Keplerus certiorem fecisse videtur Rutilium anno 1613 de inito novo matrimonio sicut de studijs in theoriis ceterorum planetarum abaoluta theoria Martis. Ad haec respondit Rutilius: Ad labores Veneris wünsche ich dem Herrn Schwager viel Glück; halt wohl dafür, es werde nit viel Krummes bedürfen, denn die personae femineae faciliores exoratu und zu compesciren, als viri Martiales sein, so wird auch sweifelsfrey derselbig seiner studiosi Hilf darzu nit bedürfen, sondern nunmehr so viel selbs gelernt, ein solchs allein zu verrichten, weil es ein amicabile und aspectabile sidus ist, sonderlich bei Nacht.

Quem supra dicit Keplerus "Pratensem" referunt scriptores rerum Danicarum medicinam professum esse in academia Havniensi. Mortuns est Havniae a. 1576 annum agens 33um.

15) p. 615. Hanc eclipsin Keplerus his, ex parte iisdem quibus supra verbis, describit Maestlino, descriptionem addens literis, d. d. 22. Dec. 1616, quarum partem exhibuimus vol. II, p. 31 seq.:

46 *

Observatio Eclipsis Lunae 27. Aug. anni MDCXVI.

In monte Pesting (Poestling) dimidio milliari a Linz versus septentrionem in altum, unde pulsus horologiorum et voces vigilum urbanorum exaudiuntur, nec minus Otensheni et Wilderigae (Wilhering) horologia.

Hora una post mediam noctem subito sunt ortae nubes. Umbra in summo margine parum admodum ad sinistram declinavit. Principium erat in azimuth) fortuito constituto 22° et altitudine 28³/₃ vel correctins 29°, sed vide ne sit hoc in superiori latere regulae vitioso, pro eo enim sequendum esset indicíum inferioris lateris 26°: principium hoc conspectum est per nubes sparsas et dehiscentes identidem, vide itaque, ne paulo prius fuerit merum principium.

Ad probandum hoc azimuth quodnam fuerit, capta est in eo altitudo capitis Andromedae 70°, sed rursum puto fuisse superioris lateris indicium, quando latus regulae inferioris monstravit 66¹/₄. Tunc Luna nondum dimidia in umbra erat. Antequam ala Pegasi veniret in id azimuth, umbra jam ad dextram inclinabat. — Ala Pegasi in illo azimuth habuit altitudinem $55^{1}/_{5}^{\circ}$ (cave ut supra, nam forte erat $51^{1}/_{5}^{\circ}$), Fomahant in illo azimuth erat alta 7°. — Cum umbra declinaret quasi ad 2 superiores in urna, erat) in azimutho $46^{1}/_{5}^{\circ}$, altitudo imi marginis $21^{1}/_{5}^{\circ}$ vitiose et superiori latere, vere et in inferiori $17^{1}/_{5}^{\circ}$. Hinc jam discernere coepi inter superius et inferius latus regulae. Cum lucida pars vergeret in lineam inter duas fusionis et cum perpendiculum ex polari demissum caderet proxime spiram Serpéntis, quae est versus quadrilaterum minoris Ursae, erat azimuth Lunae 50° minus $\frac{1}{6}$. Azimuth Lunae $51^{1}/_{5}^{\circ}$, altitudo 16°. Tunc nondum occidebat Aquila-Tunc linea per) et umbram contendebat paulo super remotiorem claram quinquanguli in \approx , puta humerum. Nam hoc quinquangulum habet duos humeros \approx , oculum et os Pegasi et oculum equulei. Hic et supra Luna erat obscurissima, superfuit tamen aliquid.

Luna tota rubicunda fuit, sed magis cornu superius partis constitutae in umbra, quod erat ad sinistram supra lucidam particulam residuam.

Luna nondum plane restituta occidit in azimuth 74°; O in azimuth 75° habait altitudinem 1[']/₂°, certe utrumque luminare in semicirculo meridionali erat. Erat quidem suspicio alicujus defectus residui, sed cogita, an fuerit tantum debilitas luminis ex illa parte.

Causa incertae observationis fuit ista. Cum oppidum Linzium montibus vicinis sit circumvallatum, versus ortum das hocheckh, versus occasum Wienberg und S. Martinsberg, in cujus collo arx altissima omnem prospectum eripiens habitationi meae: ego ut utrumque luminare in horizonte viderem, vespera praecedente, ut primum serenitatis duraturae fides mihi est facta, porta jam jam claudenda erupi, et comitibus duobus adscitis in arduum montem per unius horae spatium enisus sum, instrumento instructus non admodum commodo, triangulum erat azimuthali circulo unius pedis diametro impositum, lateribus complicatilibus. Locus observationis sub dio in novali aspero. A rustico vicino per duarum horarum spatium importune et indesinenter pulsando fores et clamando ad ravim usque, vix tandem nec nisi prius convocatis vicinis ab unius atque alterius stadii intervallo (cum nuncium clam per posticum emisisset) admissi sumus; nec amplius aliquid impetravimus, guam tripedem truncum duorum pedum altitudine, in quo erigeremus instrumentum.

Candelam aut faculam nullis omnino precibus extorsimus, nec ignis accendendí, licet eminus in agro, copia nobis facta, metu incendiariorum; itaque carbone ardente notas in instrumento inquisivimus, virgultis et assulis pro forcipe sumus usi in apprehendendo carbone, denique supinus in agro prostratus oculum pinnacidiis supposui notavique cerussa observationes in papyro humida ob rorem, ad lumen vel Lunae vel carbonis.

Cum sit anomalia) 6° 6° 42', est semidiameter) 17' 4" vel paulo major. Nam si diametrum in apogaeo statuerem 30' 30", ut ante annos 12, perigaea prodiret major quam 34' 8"; umbrae semidiameter 49' 8". Est autem et distantia a nodo 5° 45' secundum me, et latitudo angulo magno 5° 18' est 31' 50". Summa

ex lat. et semidiametro \Im 48' 54", quod est insensibili minus quam 49' 8". Si autem parum augeatur diameter \Im , jam excedit umbram. Certe partem residuam aestimare non potui, praesertim in circumstantia limbi illustrati a radiis refractis et rubentis.

Finis Tubingae h. 4. 43' Oritur ③ in alt. P. 48'/4 h. 5. 14'

Diff. 31'. Si ergo finita fuisset eclipsis in ipso exortu Solis Lincii, dist. meridianorum esset 31'.

Maestlini observatio legitur in Hanschio p. 48.

16) p. 660. Barth. Pitisci, Grunbergensis Silesii, Trigonometriae, sive de dimensione triangulorum libri quinque (Aug. Vind. 1608. Primum prodiit hoc opus Frankof. a. 1599, postea ib. a. 1612). "Axioma" IV, quod dicit Keplerus, inest libro IV. et sic se habet: si duo latera sigillatim quadrantibus minora primum ipsa inter sese, deinde latus minus cum complemento majoris componas, et sinui arcus compositi posterioris sinum complementi arcus compositi prioris subtrahas vel sinum excessus addas, est ut radius ad medietatem rectae per illam sive subtractionem sive additionem factae, ita sinus versus anguli a dictis duobus lateribus comprehensi ad rectam, qua subtracta de sinu arcus compositi posterioris, relinquitur sinus complementi tertii lateris; vel de qua subtractus sinus arcus compositi posterioris relinquit sinum excessus tertii lateris.

Huic "axiomati" addit Pitiscus in capite quod inscripsit: "Usus praecedentium axiomatum: quarto proportionum axiomati per accidens conveniunt (obliquangula triangula), in quibus vel ex datis tribus angulis latus aliquod, vel ex datis duobus angulis cum latere ipsis interjacente tertius angulus inquiritur." In demonstratione respicit ad lib. I, prop. 61, ubi demonstratur, "Trianguli sphaerici latera in angulos et contra permutari posse; complementis ad semicirculum pro latere et angulo maximo hinc inde desumtis."

Si hae'c quae ex Pitisco praemisimus respecteris, facile rationem quam secutus est Keplerus percipies, inspecta fig. 12, ubi in $\triangle ABC$ dantur $\angle A = 5^{\circ}$, $\angle B = 0^{\circ}$ 18', latus $AB = 1^{\circ}$; $BD \perp AD$ vel $AE \perp CE$. Compl. $AB = 89^{\circ}$, compl. $\angle A = 85^{\circ}$.

17) p. 674. In "Appendice" ad Tychonis Progymnasmatum partem primam (ed. ann. 1602, p. 818) Keplerus haec refert: Quamvis initio non statueret (Tycho) hoc libro de Luna ex professo agere, tamen cum absoluta restitutione Solari superessent in alphabeto paginae aliquot, intereaque in Luna succederent operae, visa illi est praeclara res, Soli sororem Lunam adjungere.... Reliquit ille nobis impressa omnia exceptis Lunaribus, quam pragmatiam non semel de novo a primis repetitam principiis tandem anno 1600 et 1601 sic plane ut jam prodit absolvit, plurima usus opera Ch. Severini Longomontani, viri ingeniosi et perquam industrii, qui astronomiam Braheanam Uraniburgi, et in convictu ipsius per 10 prope contimuos annos hausit; cujus honorificam mentionem, quod parens proposuerat, nos merito facimus.

EPISTOLA DE SOLIS DELIQUIO

quod die 12. Oct. 1605 contigit.

PBABFATIO.

Keplero inde ab eo tempore, quo observationibus astronomicis operam dabat, non contigit, ut totalem, quam dicunt, Solis eclipsin conspiceret, neget tales conquirere potuit observationes magnarum eclipsium priorum temperum, quibus tuto fidere vel calculum, qualem optabat, superstruere posset. Quare omni quo potait studio astronomos nec non qualesquales alios "rerum coelestinm amatores" provocavit, admonens illos de eclipsi, quae ad d. 12. Oct. 1605 hora circiter meridiana exspectabatur. In Opticis (Vol. II, p. 288 et 353) monet, hanc eclipsin (Luna perigaea) commodam fore, ut quaestio de luce Lunae propria decideretur, deinde ut observata Lunae diametro "certi quid de vera Lunae eccentricitate concludi possit". In libro de Nova Stella (II, p. 696) hanc eclipsin affert, ut probet , coeli materiam alterabilem esse". In literis privatis viros adiit Keplerus astronomica doctrina claros, ut in hunc quem diximus finem attenti essent eclipsi futurae et quum minas quam cupiebat responsi acceperit, publica epistola cum petitionem suam repetiit tum suam ipsius observationem exhibuit. Volumini XV. Mss. Petropol. inest conspectus eorum, quibus transmisit Keplerus opusculum suum, qui sunt:

"Galliae Agenti 2, gehn Paris; Iesuitis 4 gehn Rom, in Niederland, Clavio, Hispanian. Wackerio 2, Barwitio 5 gehn Rom, in Niederland; Gotfried 2 gehn Francford; Bodemie 2, Herwardo gehn München; Schnneckart 2 gehn Amsterdam; von Polheim 2 gehn Heidelberg; Odontio 1 gehn Altorf; Bacchatio 1, Byrgio 1, Memhardo 1, Maestlino 1, Beselde 1, Maestlino 1, und 1 zu Galliam per Fleinerium.

Wackerio 25 alia, Bonevilio (?) 4 alia, Corraducio 1, Veneto 4, Florentino 3, Gallo 3, Corraducio 3, Maximiliano 1, Palatino Neub. 3, Heller. 3 Italo Secr., Magino, 2 Pleiner, Leoni in Frisiam 8. Lehmanno Helvet., Bolando ad Lipsiam, Wagger, Poltzins. Fabricio, Schele, Francio, Ritterhusio, Brunowsky; Basileam 1, Casalio 4."

Idem Volumen exhibet responsum Casalii hunc:

Edler Hochgelerter . . . geliebter Herr !

1

Mein willigste dienst neben wünschung aller wollfahrt.

Das ich dem Herrn in langer Zeit nicht geschrieben, ist nit die Vraach, dass Ich seiner vergessen hette oder in seinen dienst nit gewöst wäre. Sondern die vnamhörliche Brichtungen nemben mir die Zeit also hinwekh, dass Ich mich gegen meine gutten Freundte mit Briefen der Nothdurfft nach nit ersaigen möge.

Aus beyliegunden drey anschnlicher Leütte Briefen hat der Herr zu sehen, wie lang es sey, dass sein opus durch mich an frembde Orth vberschickht und publicirt worden sey. Dessen sich nun der Herr zu erfreüen und beynebens zu getrösten, er werde mit sollicher Beschreibung an vielen orthen viel guetts und Ime selbst ein merkhliches Lob vervrsacht haben.

Wais Er mich in seinen Diensten ferner zu brauchen, so hat Er mich darzue ganz willig. Gottes Segen mit vns allen.

Graz d. 12. Tag Julii 1606.

Des Herrn dinstwilliger

P. Casal.

Inscr. Dem Edlen und Hochgel. Herrn J. Kepplern der Röm. Kais. Maj. Mathematico, meinem sonders freundl. und geliebten Herren Praag.

Epistolae, quas dicit Casalius, datae sunt a Ferd. Contarini d. 8. Apr. 1606, Comofratta Cardinali d. Roma 7. Jan. 1606, et a medico J. G. Göpel, Martio 1606 (comp. vol. II, p. 829). Quase Serarius et Zieglerus responderunt leguntur in Hanschio p. 349 et 351. Responsio Kepleri vol. II, p. 828. Observationem Fabricii addito Kepleri calculo exhibutinus vol. II, p. 103 sq. Alii quorum literas Keplerus secum retinuit, sunt: Stanial. Crzistanovic (comp. vol. II, p. 829), Aegidius Martini, advocatus Antwerpiensis, Dieterus et Malleolus Argentinenses. Eberhardus Schele, legatus Lüneburgensis, haec dedit Keplero:

S. P. D.

Clarissime Keplere.

Redditae mihi sunt hoc mane literae a Joh. Leone scriptae Pragae 3. Dec., quibus adjuncta erant septem exemplaria epistolae tuae de Solis deliquio proxime praeterito ad rerum coelestium amatores scriptae, quae quidem suis locis reddi curabo. Meditationes tuas super directionibus Fabricio nostro communicaram, verum ille nondum (saepius licet admonitus) remisit, alioquin dudum remisissem. Faciam tamen, quam primum ab ipso recepero (comp. I. 356). Totus is namque nunc est in refigendo judicio suo de nova stella, quod tertium nunc edidit inscriptum Henr. Julio Duci Brunsw. et Luneb. Praeteres Calendaria et prognostica scribit et edit. De quibus cum meum non sit judicare, supersedeo. Epigramma solummodo in ipsius honorem a me scriptum addo:

Arte laboratas vestes aurumque domosque Suspicit insipido pectore vulgus iners. At coeli Solisque vias positusque facesque Sidera quas faciunt, Cinthia quadque facit, Solus is observat, cujus Sapientia mentem Lustrat et ad Jovae facta notanda rapit. FABRICI, hinc capiant famam tua scripta perennem; Spernit humum et coelum gloria vera petit.

Intra quatriduum ille mihi aderit, tum ipse epistolam tuam et cetera tradam.

Interea (postquam ex epistola tua intelligo, te etiam despecta et vili narratione contentum fore atque de ipsis quoque nubibus certiorem fieri cupere, quae tempore eclipsis Solaris conspectae sunt) hoc quoque te scire volui, me tametsi instrumentis mathematicis destitutum eclipain tamen illam diligenter et curiose oculis adspexisse (nam tantum Dei gratia visu adhuc valeo, ut apertis quoque oculis Solem intueri possim) atque initium ejus in hoc meo praedio observasse hora 12. 30' fere post merid. Finis a me exacte observatus fuit, cum umbra in scietherice notaret horam 2. 45'. Medium sive $\dot{\alpha} x \mu \eta \gamma$ observare non potui deceptus tempore a te et aliis in Calendariis et Ephemeridibus notato, tum etiam nubium concursu, quae ante medium eclipseos frequentes Solem obtegebant, sic tamen, ut subinde eluceret, post medium vero coelum serenum, clarum et omni nubecula quasi purgatum cernebatur. Ťum ipse quoque 📀 in eclipsi tantum splendoris retinebat, quantum Luna nova post triduum emergens, sic ut nec stellae ullae hic visae sint, imo a plerisque ex vulgo non animadversum ait, eclipsin ullam fuisse. Haec rudi Minerva annotare tibique communicare volui. A Fabricio accuratiora et certiora habebis, qui duobus abhinc milliaribus eandem observavit instrumentis adhibitis ad eam rem conducentibus.

Hipparchum suum ubi edideris, mihi quaeso communicato una cum Opticis tuis Paralipomenis. Delector nempe hoe studio tametsi rudis in ea arte et ayeeueronros.

Vale mi Keplere et saepius ad me scribito, literis solummodo traditis Jo. Leoni nostro. Celeri ut vides calamo scripta in praedio meo Tunumano XXIX. Dec. stilo vet. anni prope finiti 1605.

T. Eb. Schele.

Herwartus post biennium ab oclipsis temporo haor nunciat :

Ehrenvester, Hoch und Wolgeleiter. Dem seind meine willige Dianst bevor, sonden lieber Herr und guetter Freund.

Les schreikt mir ein Engellendischer Graf e genere Talbetierum, so rerum antrummicarum praesertim calculi eclipsium humintrium admodum gunrus, vuder anderem sovill, das Er die Eclipsin Solis de anno 1605 in Anglin mit Pleins, und aber jedoch alogue instrumentis mathematicis observiert und sovill befunden, quod sub lat. 53° et long. 20¹¹, ^a Angline circiter junta Cal. Nov. d. 12. Oct. h. 0¹¹, c. defecerint digiti () 9¹¹, a baren. Tempus autem incidentiae fuerit unius horae plus minus.

Das hab Ich dem Herrn zu vissen fürgen wellen und bleib ime angenemen dienst und fretil. villen zu erweisen allezeit gewogen.

Datum München den 27. Nov. 1607.

Des Herm

denst: und gustvilliger Hans Goörg Herwart von Hohenburg.

Observationem oclipsis Loudinensem, "habitam a Jo. Erihosnio Hamburgensi, quondam Tychonis Brahei ministro, nunc ejus generi Fr. G. Tengnagel nomine Cossaris ihi pracoustis" integram inserendam censenna, cum quia accuration fuit reliquis, tum eb annotationes a Keplero ipso adscriptas.

Observatio eclipsis Solis a. 1605, 2. Octob. stil. vet. Londini Britanniae.

Horologium pro	intercapedinibus : nam	er altitudine patet	ejus aberratio y	ne 23'.
----------------	------------------------	---------------------	------------------	---------

Horologium post merid. H. M.	Correcte H. M.	1 Akitado	Declinatio circuli p. centra a verticali.	Digiti	Pars lucida in particulis distantiae.
0.44	1. 7	29. 30	0	2. 12	
0.50		' 2 9 . 0	5 ad sinist.	2. 12	
0. 52 ¹ /2	1.15	28. 45	7 ad dextr.		
0.58		28. 30	43	2. 20	
1. 2		28. 15	47	2. 40	10

Cum lucida pars propter opticam rationem semper justo major sit, corrigam in sequentibus omnia et ponam veram partem lucidam in particulis distantiae.

1. 9	-	27.45	60 exacte eber	3. 30 · ·	19'ja
1. 20		27. 0	71	4. 49	29
1. 24		26. 45	76	5. 20	34*/3
Hic paululu	m movebam	instrumentum	ad dextram, ut	quadrans libere posse	st pulsare.
1. 27	1.50	26. 30	65	6	40
		1		correcte 6 ¹ / ₂	
1. 30	- 1	26. 20	68	6.30	44
1. 33	1. 56	26. 0	77	7	48
1. 38	_	25. 45	80	7.40	55
1. 40	_	25. 30	74	8	56
1. 42 1/,	- 1	25. 20	78	8. 20	5 9
1. 48	_	24. 50	77	9	64
_		24. 40	84	9. 15	66
1.53	-	24. 30	80	10	72
1. 55	_	24. 20	83	10 plus paulo.	73
1. 59	_	23. 50	85 .	10.40	78
2. 10	-	23. 45	85 '	Totus lucidus.	

Circulus rotulae papyraceae aequabat partes 12, sed radius Solis etiam per foramen ampliatus aequabat $10^{2}/_{2}$. Hinc corrige.

Hactenus verba observationis; sequentur nunc notae Kepleri.

Et primo praemisit observator Ericius summan quandam observationis in literis ad Matthiam Seiffardum, qui mihi communicavit 13. Dec. Summa haec erat: Instrumenti longitudo 14 pedes, etc. v. s. p. 534; maxima obscuratio 11 digitorum h. 1. 7' p. m.; declinatio a vertice ad sinistram mihi post tabulam stanti 5°; finis h. 2. 21'. Inclinatio paulo ante 85° ad dextram. Polus hic 51° 32'.

Primm quod tempera attinet. Observator tam in scheda observatoria, quam in literis Pragam scriptis addidit ubique 23' ad horologium. Probabo ego fidem correctionis ex observatis altitudinibus.

Phasi secunda. Compl. declinationis () 82° 29' 43" - 7° 30' 17" Altit. () 29° 0' - 48481 Alt. aeq. 38. 28 38. 28 120. 57. 43 - 45. 58. 17 71899 - 71899 30. 57. 43 51449 120380 123348 61674 120380 $= 195188; 95188 = sin. 72^{\circ} 9' 12''$ 61674 17. 50. 48 h. 1. 11. 23 . Horolog. 0. 50 Differentia 21' 23"

Computus temporis finis.

Alt. () 23° 45' - 40275 71899 112174

 $\frac{112174}{61674} = 181882; 81882 = sin. 54^{\circ} 58'$

35. 2 h. 2. 20' 8" Horolog. 2. 0

Differentia 20. 8". Ergo observator nimium addidit addens 23', debuit tantum 20', quia parvis altitudinibus potius fidendum, quam meridianis, quae parum variantur.

De declinationibus circuli per centra notandum, magnam esse irregularitatem; non satis enim diligens hic fuit observator. Et est valde lubrica ratio observandi. Primum nota, si facies obvertatur tabellae, eadem esse nobis dextra in tabella, quae dextra sunt in coelo, spectantibus Solem ipsum. Atqui in coelo occasus ad dextram est, unde ingruit Luna, ortus ad sinistram, qua exit Luna. Cum ergo sine haesitatione tam in scheda quam in literis inclinatio initialis ad sinistram ponatur, finalis ad dextram: diligenter nota, quod hoc velit intellectum de situ corporis sui. Mihi, inquit, post tabulam stanti. Nimirum spectavit et coelum et tabulam, sed illud suspexit supinus; hane superinhians despexit corpore prono non converso. Itaque quae sunt in coelo dextra, erant illi in tabula, sic stanti, sinistra. Fuissent sane dextra, si tergum Soli obvertisset, faciem tabulae.

Confirmat hoc quantitas. Nam intra $2^{1}/_{2}'$ temporis a 5° sinist. mutatio est facta ad 7° dext. per 12°, quae celeritas omnino convenit eclipseos medio; tunc nempe celerrima est mutatio. Accidunt enim fere proportionalia in sequentibus. Nam a tempore $52^{1}/_{2}$ in 58′, quod est prioris intervalli triplum fere, mutatio facta est a 7° in 43°, per 36°, quod est prioris itidem triplum. Nihil igitar dubitandum, quin sub titulo inclinationum ad primam phasin per errorem sit adscripta figura 0. Sive dubitaverit observator in prima trepidatione, quorsum inclinet umbra, sive posterius addiderit illam, existimans naturalem esse consecutionem a 0 ad 5° et 7° et cetera, cum non respiceret ad diversos titulos sinistr. dextr. Nam cur nihil erroris admitteremus in ipso observationis principio, cum videamus in sequentibus errores omnino insignes?

Epistola de Solis deliquio

Sic autem corrigo sequentes. In fine solet esse tardissima mutatio: crede ergo hisce 60. 71. 74. 85. 85, falsi sunt ceteri. Ausim etiam manus admovere ipsi 43 et pro eo scribere 40. Ut in 4' mutatio 7°; in 7' sequentibus mutatio 13° fieret, ad illam exactam observationem 60. Inde per 11' competant 12° et scribatur 72° pro 71°. Inde per 4' competant 3° et scribatur 75° pro 76°. Ex eo sunt 4 saltus per trina minuta; scribo igitur 76¹/₅ pro 65; et 78 pro 68 et 79 pro 77. Succedunt 5', quibus cedant 2°. scribaturque 81 pro 80, inde 2' cedat dimidius et scribatur 81⁴/₅ pro 74, sequentibus 2'/₅ iterum dimidius scribaturque 82 pro 78, sequentibus 5'/₅ detur 1 et scribatur 83 pro 77. Maneat 84 et ponstur 84¹/₅ pro 80, sic 85 pro 83.

Typus correctionis.

Scripti : 0. 5 sin. 7 dext. 43. 47. 60. 71. 76. 65. 68. 77. 80. 74. 78. 77. 84. 80. 83. 85. 85. Correcti : 0. 5 sin. 7 dext. 40. 47. 60. 72. 75. 76¹/₂. 78. 79¹/₃. 81. 81¹/₃. 82. 83. 84. 84¹/₃. 85. 85. 85.

De digitis.

Adscripsit observator latitudinem residuae lucentis partis et admonuit in fine de quantitate sui digiti. Nam in circulo rotulae papyraceae diviserat diametrum in digitos 12, sed totus Sol acquavit corum tantum 10³/₈. Et hinc jubet corrigere digitos omnes residuos. Verbi causa, si 10³/₈ mensurae valent 12 Solis (Solem enim dividimus in 12) quid valent 2⁴/₆? R. 2¹⁹/₄₀.

Ergo fimbriatae speciei Solis superfuerunt in medio digiti 2¹⁹/40. Quia igitur in literis posita est quantitas defectus 11 digiti: videamus nos certitudinem.

Enucleatio cornu residui 2¹⁹/40.

In principio schedae tribuitur semidiametro radii Solaris fimbriati 45, duplum 90. Hinc aufer diametrum foraminis 9, et restat diameter puri Solis 81, atque is dividendus est in digitos 12. Ergo $6^{2}/_{6}$ valent digitum in puro Sole.

Jam quantitas cornu residui fimbriati ponitur 2"%, qualium totus Sol fimbriatus habuit 12.

Si 12 valent 90 quid 2¹⁹/40 vel ⁹⁹/40? R. 18⁹/46. In particulis distantiae fimbriatem cornu fuit 18⁹/46.

A fimbriato cornu 18⁹/₁₆ aufer fimbriam 9, restat purum cornu 9⁹/₁₆. Sed 6³/₆ valent digitum. Superfuit digitus 1 cum ${}^{6}/_{12}$, vel 1. 25⁷.

Quantitas igitur defectus dig. 10° 35', quod observator in literis dixit 11° 0'. De particulis distantiae, quibus definita est pars lucida. Harum series ultima non potest esse ex observatione, sed est ex observatoris computatione. Est autem tam primus numerus 10 quam sequentes, post admonitionem, intelligendus de vera parte lucida: quod sic patet.

Nam si fimbriatus 10^{3} , valet 90, quid 2^{3} , sequitur 22^{3} . Aufer fimbriam 9 a 22^{3} , restant 13^{3} , et ecce 10 est adhuc minus. Itaque tam 10 quam 13^{4} , sunt intelligendi de enucleata specie.

Error autem trium particularum inest in omnibus numeris. Nam etiam in fine, cum debeat enucleatus radius Solis habere 81, habet tantum 78.

Erroris occasio videtur haec esse, quod pro Solis semidiametro 45 perperam arripuit Lunae diametrum 39, cujus duplum 78. Nam si 10³/₈ dat 78, quid 2³, ? seq. 19¹/₅, unde ablata fimbria 9 relinquit 10¹/₅.

Nihil igitur nos turbet series ultima, quae est ex computatione.

Longitudo visa) a O in fine eclipsis.

	-
Ez Praecepto Rudolphi.	Primum inquiratur Nonagesimus.
ad occasum Latus acquat. 37. 21 — 49975 Alt 38. 28 — 47472 — 24466 97447 — 7680	A.R. (a) 197. 37 Tempora p. m. <u>35.</u> 2 <u>232.</u> 39 Competens loco (a) in con- junctione vera, quod parum nocet etiam in fine usur- pari.
57. 43 16786 23. 31 ¹ / ₂	Asc.obliq. 322. 39 Cooritur 20. 39 Z Nonages. 20. 39 ===
$\frac{81.\ 14^{1}/_{3}}{90950} - \frac{1173}{8853}$	Luminaria sunt in quadrante occidentali
69. 34 — 6497 Nonag. 20. 26 🖂	

Pro angulo inter eclipticam et verticalem.

Angulus hic supra ad sinistram est paulo minor recto, infra paulo major. Inquiritur hic facile ex data Solis altitudine et distantia ejus a Nonagesimo.

> Alt. © 23. 45 Tang. 44001 Compl. dist. © a Nonag. 88. 27 Tang. 3695600 44001

 $\frac{44001}{3695600} = 1190 = sin.$ compl. anguli 0. 41

Angulus infra 90. 41

Aufer angulum inter diacentron et verticalem 85. 0 in coelo etiam infra. Angulus inter diacentron et eclipticam 5. 41. Latitudo erit anstr.

Distantia centrorum.

Etsi observator habet diametrum) 32' 40" et ego in epistola 32' 59", sit tamen illa 33' 32", quantam statuo in ultima correctione Hipparchi. Nam semidiameter habet tantum 26" plus observata, quod notabimus.

Semid. 🗿 15. 16

Distant, centror. 32' 2" vel 31' 36" observatori.

Hinc angulo 5° 41' respondent pro latitudine australi infra centrum \odot 3' 10" vel 3' 8"; parall. 54' 57"; 54. 57 — 3. 10 = 51. 47.

Pro longitudine) a O visa respondeat angulo 84° 19' vel 31' 50" vel 31' 24".

Vera longitudo 🕽 a ⊙.

Altit. Nonag. est 23° 41', paulo sc. minor quam alt. O. Assumta igitur parallaxi 60, respondet angulo 66. 19 parallaxis latitudinis 54' 57", longitudinis angulo 23° 41' respondet 24' 5" in horizonte, unde in distantiam D a Nonagesimo 1° 2' (quia Luna est illi propior quam Sol per 32 circiter) competit 0' 26" in occasum. Ergo Luna hoc momento motu vero fuit per 32' 16" vel per 31' 50" ultra locum Solis visibilem.

Ex fine articulus conjunct. verae. Superation Horarius Lunae a Sole est in Tychone	34.		30	Tempus
Tempus finis fuit h. 2. 21. 8 aufer 56. 40		28. (54.		56' vel 55'
h. 1. 24. 28 vel h. 1. 25. 16. Tempus quo Luna Soli centraliter conjuncta fuit Londini. In Sole parallaxis long. nulla fuit, in Luna non ultra 2".	-	21. 4 10, 4 10. 4 21. 5	45	52" /

Epistola de Solis deliguio

Longitudo vins.) a 3 in plani primes provins. Raman at prov A.R. 3 197. 37 Temp. p. m. 17. 51 A.R. M.C. 213. 28 Ase. sidie, house. 305. 28. Consister 2. 5 7 Kanagea. 2. 5 ----Laminaria in quade. extent. 19. 6 17. 1.

Pro angulo inter eclipticam et verticalem.

Ak. 2 29' Tang. 55631. Compl. dist. 3 Non. 72. 56'1. Tang. 326526. 55431 326526 = 16976 = in. 9' 46' compl. anguli.

Est igitar angulas supra ad dextram seu occidentem 50° 14'. Infra ad dextram versus occidentem 99° 46'. Sed inclinatio spectata fuit superius 5° ad sinistram, cum desuper in radio spectaret observator, ergo infra ad dextram in coelo se. ad occidentem. Anfer igitar 5° a 99. 46. prodit 94. 46. Ergo angulas inter diacentron et eclipticam est 85' 14', jam versus ortum; Luna ergo fuit visibiliter ultra Solem.

Distantia centrorum.

Erant supra in cornu enucleato particulae 9¹⁰16, qualium 81 in toto Sole. Sed totus Sol habet 30' 24". Ergo pars nona 3. 23 et hujus sedecima 12¹⁰3". Super-fuerunt igitur 3' 36".

Adde residus 3. 36 ad comidian.) 16. 46, voninnt 20. 22 vel 19. 56, ander semid. 3 15. 12, restat dist. centr. 5. 10 vel 4. 44.

Lat. visa 5' 9" 4' 43" Parallaxis assumta 51. 40 51. 40

Lat. vera 46. 31 46. 57 Respondet igitur angulo 85° 14' visibilis hatitudo <u>Fine 51. 47</u> 51. 47 5. 16 4. 50 0' 25" vel 4' 43", angulo 4° 46' visibilis longitudo 0' 25" vel 0' 24" in ortum, ukra visibilem Salis.

Vera longitudo) a 🛈 visibili.

Altitudo Nonagesimi est 30° 33', cui de parallaxi 60 respondet longitudinis tota 30' 30" et huic distantiae a Nonagesimo 8' 56". Latitudinis vero 51' 40". Haec parallaxis est in ortum, auferenda igitur motui Lunae, quae est ultra Solem visa per 0. 0' 25". Aufer 25" ab 8' 56", restat 5' 30", tantum est Luna ante \odot vere, posita parallaxi Lunae a Solis vera.

> Hinc articulus c' verae. Superatio 8. 30 Horarins 34. 10 ' 15. Tempes 14' 56". 8. 32. 30 ! 2. 20 ; Tempes phases erat h. 1. 11. 23 Adde min. 14. 56 h. 1. 26. 19

Comparatio.

Ex secunda phasi of vera h. 1. 26. 19. Hac parallaxi minore diametro. Ex ultima h. 1. 25. 16.

Memineris igitur, quod phasi secunda altitudo 1 minuto plus addebat horologie quam in fine, et nos diximus, fidem fini potiorem habendam. Omnino igitur reponitur medium Londini in horam 1. 25. 30.

Reductio ad meridianum Uraniburgicum.

Hondins Londino dat long, 27º 32' circ. Uraniburgo 41. 45 Differentia 14. 13. Temp. 57'.

Ergo quod est Londini h. 1. 25. 30

57

id erit Uraniburgi h. 2. 22. 30 Calculus Tychonis dat h. 2. 13. 37. Tabula mea magna Germaniae habet inter Uraniburgum et Caletum 49. Hinc usque Londinum numerat Origanus 15; summa 64. Sed Origanus perperam, quia non sunt ultra 12°. Mea universalis habet inter Uraniburg. et Londinum 12° 45' circiter, quae sunt 51'.

In literis ad Nautonnerium et Coignetum datis Keplerus propius adit ea, quae libello suo spectaverit, quam ob rem literas ad utrumque datas subjungimus, omissis iis, quae p. 457 ex literis ad Nautonnerium excerpsimus.

Haec igitur scripsit Keplerus Nautonnerio:

Illustrissime Domine! Liber tuns idiomate Gallico conscriptus Pragam quoque importatus est, et in bibliothecas doctissimorum virorum, quos habet aula Caesarea, acquisitus. Ejus mihi legendi copiam fecit Ill. D. M. Wackherius a Wackenfels, S. C. M. a consiliis aulae Imperialis. Quo minus jam totum evolverim impedimento fuit idiomatis pertenuis cognitio, vel olim a Gallis pueris in Germania hausta vel usu librorum interea acquisita. Lecta epistola, in qua lectores alloqueris, valde fui exhilaratus similitudine studii, quo suum uterque negotium agimus, tu magneticum, ego eclipticum. Itaque et dignam tuam petitionem judicavi, cui quantum in me esset satisfieret, et maxime te idoneum, cui vicissim meum negotium communicarem. Quo quidem ex animi sententia confecto, plus ad tuum afferre potero subsidii, quam si Lunares meras curarem et sequerer eclipses. - Petis observationes Lunarium eclipsium; eas ex fide instrumentorum et diligentiae adhibitae accipe hac conditione, ut earundem observationes vicissim vestras et ego nanciscar.

Anno 1603. 18. Nov. Pragae Bohemorum ad Muldavam fluvium, quae in Albim incurrit (quidam Casurgint Ptolemaei esse existimant, alii negant), eclipsis coepit 10" postquam culminasset dexter humerus Aquarii; desiit 3' postquam culminasset caput Andromedae; initium ergo h. 6. 21', me-dium h. 7. 19', finis h. 8. 17', ut annotatum invenies in Optica fol. 412 (II, 384). Anno 1605. 3. Apr. eclipsis Lunae accurate observata est duobus locis : Pragae et in Frisiae orientalis pago Ostelae, prope Auricum comitis oppidum. Initium Pragae h. 7. 38'. Ostelae 7. 14'

, 9. 17. Medium n

8. 52. .

Finis . 10. 56. 10. 30. Consensus causa annotavi, quod paulo ante h. 9. 20' linea ex superstite loco circumferentiae per centrum Lunae ducta inciderit in praecedens genu Bootis. Hinc differentia meridianorum ad summum 6⁴/₆^o. In Optica posui plures eclipsium observationes (ut et illas, quas petis, a. 1601. 9. Dec., medium h. 6. 59', et a. 1603. 24. Maji, medium h. 12¹/2. Sed fol. 372 (360) est hallucinatio calculi, ex suis principiis etiamnum restituenda; duratio enim Tychonica est etiamnum minor (comp. II, 439). Et fol. 374 (361): hic locus f est ex Magino. Nam ex posita observatione sequitur 0° 4' x), etiam Solarium,

Ibi et methodum meam videbis, quomodo citra omne periculum parallaxes removeam, atque inde ex principio et fine per diversa loca observatis differentiam longitudinum eliciam. Hoc modo cum et magnam illam Solis eclipsin superiori Octobri observassem, et dimissis chartis meis (quarum bic habes exemplum) ex Londino Angliae responsum quale volui accepissem, didici diff. long. inter 11° et 12° citra omne majus dubium certissime versari, quam chartae 16°-19° faciunt. Utinam toto illo districtu, quo visa est, in hunc modum fuisset observata; una enim eclipsis tibi cumulatissime satisfecisset. Finem in Anglia observarunt h. 2. 21', ego Pragae h. 3. 28', diff. h. 1. 7' dat sane 16³/₄°, si non consideremus parallaxin. At quia per parallaxin Luna mihi occidentalior est facta quam Anglo, serius deseruerit Solem, ita vides minorem fieri differentiam meridianorum quam 16 1/2°. Quod autem de 1º dubito causa est, quia Anglus principium non observavit, medium vero, quod ille prodidit ex inclinatione ducto argumento, a fine aliter abest, quam apud me fuit separatis utrinque parallaxibus. De majori autem quam de 1º dubitatio plane nulla est. . . .

.... Interim commendo Tibi negotium meum eclipticum quam possum diligentissime. Literas, si quibus me fueris dignatus, puto te rectissime procuraturum, si via Parisiana inclusae deferantur ad agentem Regis Galliarum, qui Pragae apud aulam Caesaris perpetuo versatur. Illud unice peto ut discam, an in aliquibus partibus ultimae Galliae eclipsis totalis fuerit; et si accesserit verum initium et finis, cumulatissime mihi erit satisfactum. Sed quid ego multis, cum capita quaesitorum diligenter fuerint in "Epistola" inculcata, quae rogo sedulo excutias, et hac etiam in parte seu ex te ipso narrando seu ex aliis percontando philosophiam juves. Celebrabunt id stadium posteri et Deus ipse approbabit. Vale. Datae Pragae Bohemorum a. d. IV. Non. Febr. 1606.

Michael Coignetus, Belgii ordinum mathematicus († 1623) conscriptis quadam de arte navigandi (Antw. 1581); deinde tractatum de eclipsi Solis anni 1605, que Keplerus metus Nicolaum Serarium (e Soc. Jesu, Moguntiae) adiit, ut certiorem se faceret de illo tro. Accepta responsione ("Dominus ille Coignetus albus an ater esset, nescivi hactenus. Sed hisce diebus, cum iter huc haberet clarissimus et summus mathematicus, D. Adrianus Romanus, duo mihi significabat: unum, virum esse in astronomicis laudatum, alterum, virum esse, quem alio aliquando abripiant alia.") literas dedit Keplerus Coigneto quaerens varia de illa

Scheibelius (Einl. zur Math. Bücherkenntniss) ad annum 1606. librum de stells nova verbo tangit, Claramontium secutus, auctore Michaele "Cognato", dicens forte Coignetum.

Praeter haec nil nobis de Coigneto innotuit, donec inspecto vol. manuscr. Petropolitano deprehendimus inter es, quae Keplerus collegit ad Stereometriam, "M. Coigneti opes gallicum de usu 12 divisionum," quod ait multa habere ad suum scopum pertinentia. In Stereometriae editione Germanica (N. 98) Keplerus dicit Coignetum: "Ertzh. Mathematicum zu Brüssel," ablegans lectores ad ejusdem "französische Instruction über die Proportional Circkeln, die mir nur schriftlich zu sehen worden."

Coigneti observatio ecl. 1605 valde turbavit Keplerum, cum eam suae ipsins observationi non congruam inveniret (comp. II, 426) ita ut Vinc. Blancho (1616) haec dederit: Eclipsis a. 1605 observationes a tribus praestantissimis mathematicis, Ericio Tychonis discipulo Londini, Coigneto et Fabricio, meam observationem, Pragae in viridario Caesaris inter turbas aulicorum habitam, erroris ant hortulanum malae fidei arguunt, qui non diligenter arcuerit ab instrumentis turbatores. Nam initium in "Epistola" adscripsi h. 1. 6' p. m., quod per tria dictorum locorum observata inter se consentientia fieri non potest.

Ipeum Coignetum his adiit Keplerus literis: Concessit mihi ill. Hispaniae Regis legatus scriptum tuum breve de eclipsi Solis anni 1605. Ex cajus

pensitatione nata mihi est dubitatio, a nemine praeter te rectius dissolvenda. Pulchre consentit observatio tua cum Anglicana Londini habita, si differentiam longitudinum (quae non potest non esse certissima propter navigationes creberrimas) et una parallaxin Lunae a Sole utroque loco convenienter applices. Harum utraque si cum mea observatione comparetar, cujus descriptum publicis typis excusum tibi transmissum puto, intervallum Pragam inter et utrumque locum valde breve efficitur. Ecce typum operationis: posita parallaxi horiz.) a (•) 58' 33", in alt. poli 50° 5' hora 1. 6' fit parall. long. 8' 33" in ortum; simul autem adscitis diametris () 30' 30",) 32' 59" et summa semidiametrorum 31' 45", in principio Luna visa est ante Solem 30' 40", et addita parall. long. 39' 13" vere ante . Ad eundem modum posito, quod azimuth Solis sumseris praecise in ipso eclipsis principio, neque fortasse paulo tardius, ut fieri solet, ergo h. 0. 33' in alt. poli 51° 12' parallaxis) a () in ortum est 14' 14" major quam mihi, quia Luna etiam longius abest a nonagesimo. In principio vero eclipsis Luna pene ut mihi visa est ante Solem stare 30' 40", ergo addita parallaxi in universum 44' 54" vere ante Solem fuit. Oportet tempus eligere, quo tempore Pragae quoque) per 44' 54" fuerit ante (), nempe 5' 41" plus quam in Pragensi principio; tunc enim tantummodo per 39' 13" fuit ante Solem. Cum autem horarius verus) a () sit 34' 10", ergo 5' 41" confecta sunt per 10' temporis; itaque h. O. 56' Pragae Luna ibi fuit, ubi h. 0. 33' Antwerpiae. Diff. 23', quae faciunt 5° 45'. Eodem pacto in-veni inter Pragam et Londinum paulo minus 13°. Nam ex observatione medii prodiit 12º 40', ex finis observatione pene idem. Coepi itaque credere, tabulae geographicae Germaniae ad litus oceani et per Saxoniam occidentalem nimiam esse latitudinem. At me revocat eclipsis alia Lunae, ea quae 3. Apr. contigit. Ejus initium hic Pragae fuit 14' prius quam Spica attolleretur 8° 33', cessavit 58' postquam Spica fuit alta 24° 1'. Hinc colligitur medium h. 9. 17. Jam in Ostfrisia meridiano Emdensi, pago Ostelae, cujus alt. poli 53º 38', animadversum initium in alt. Sirii 17°, finis in alt. Arcturi 46° 25' (comp. II, 102), itaque duratio prodit brevior mea merito: nam sunt causae opticae, quas explicavi in libro meo. Sed medio comparato cum Pragensi medio existit diff. meridianorum 6º 10'. (In margine :) At quid opus eclipsi Lunae? Haec ipsa Solis est observata ab eodem. Finis in alt. () 18° 10', ergo h. 3. Tunc parall. long. 5' 25" in occasum, adde 31' 40" superationem) a (), est igitur vera superatio 37' 5". In Anglia vero Londini sc. h. 2. 21' fuit vera superatio 32' 7", igitar h. 2. 30' fait ibi etiam 37' 5". Ergo inter Auricam et Londinum 30' horaria vel 7° 30"; at inter Londinum et Pragam 12° 40', ergo inter Auricum et Pragam 5º 10'. Hic igitur Antwerpia solis 40' esset occidentalior Aurico Frisiae. Horum si utrumque verum, etsi Emda cum Antwerpia sub eodem est meridiano, imo 20' occidentalior, res mira erit. Quis enim credat, in Belgio nesciri situm Belgii? Cui verisimile fieri potest, falli nautas, qui litus omne Seelandiae Hollandiaeque, maxime vero Frisiae occidentalis a septentrione declinant versus orientem? Ego certe credere ista non possum; et tamen, ubi lateat error, non video. Meam observationem confirmat perpetuus consensus calculi Tychonici cum observatis Pragensibus, mediocris is quidem. Nam initium computaveram h. 1. 11', medium h. 2. 21'. Tuam observationem confirmat Anglicana. Fabricianam vero Ostfrišiae meamque Pragae habitas confirmat ratio itineraria per loca mediterranea. Nam

Epistola de Solis deliquio

trianguli sphaerici, cujus alterum latus est 39° 55', alterum 36° 22' et angulus comprehensus 6° 10', latus tertium est 6°, itaque milliaria 90. Itaque rogandus es astronomiae causa, quam agere te serio video, ut mihi tuam sententiam patefacias, an existimes, hunc errorem Belgis et nautis tribui posse ob impedita loca aquis, an vero existat aliquis prospectus ex Antwerpia in alterutram Frisiam, ex quo de plaga Frisiae judicium ferri possit? (nil sequitar)

Proponentes lectoribus opusculum quod praemissa respiciunt, hoc tantam notamus, perquam raro illud occurrere in bibliothecis. Unicum quod nobis in manus venit exemplar accepimus benevole concedente viro doctissimo Otto de Struve ex bibliotheca Pulkovensi paulo postquam volumen II. nostras editionis typis exsculptum erat, illudque ad verbum secuti sequentibus foliis recudendum curavimus.

AD RERUM COELESTIUM

AMATORES UNIVERSOS,

Hispaniae potissimum citerioris et Galliae ulterioris, Insularumque Corsicae et Siciliae Incolas

DE SOLIS DELIQUIO,

QUOD HOC ANNO 1605 MENSE OCTOBRI CONTIGIT,

EPISTOLA

JOANNIS KEPLERI

S. C. Mus Mathematici.

PRAGAE.

E Typographio Schumaniano.

Causa mihi vos, o Viri rerum cognitione nobiles, florentissimi seculi foetura uberrima, alloquendi voce publica, neque frivola est neque impertinens : deliquium Solis, quod hujus anni, quem quintum numeramus in novo seculo, mense Octobri contigit. Qua de materia si quem vestrum, quod abominor, pigeret mutuas haurire et reddere voces, at me non quaerere pudeat, qui a summo Christiani orbis Principe in partem restaurandae astronomiae sum adscitus; non quaesisse poeniteat perpetim, quando auream hanc occasionem, ipsa solitudine nobilem, amens neglexero. Legistis de Hipparcho, qui sub Ptolemaeis Aegypti primus fere scientiam Solis et Lunae motuum constituit, referentem ista Theonem, qui sub Diocletiano floruit, Commontario super quintum Magni. Operis Ptolemaei : Is (Hipparchus) libro I. de Magnitudinibus et Intervallis assumit spectaculum hujusmodi: deliguium Solis, quo deliguio in locis circa Hellespontum totus Sol accurate tectus fuerit, ut nihil de eo videretur, in Alexandria vero Aegypti de quinque partibus diametri quatuor summum defecerint. Itaque per haec supposita demonstrat in primo libro, quod cujusmodi partium semidiameter Telluris possidet unam, tantarum 71 sint in brevissimo Lunae et Telluris intervallo, in longissimo vero 83. Hactenus Theon, quae fere eadem et Cleomedes.

Ex hoc igitur exemplo cernite primum Hipparchi industriam, qui in mediis Macedonicorum motuum tumultibus per decies centena passuum millia vestigia umbrae Lunaris indagavit, cum esset astronomiam super hoc deliquio exstructurus.

Considerate amplins, nequaquam ista perfici aliter potuisse, nisi reges Asiae, Macedoniae, Aegypti, quamvis tunc de rerum summa inter sese concertantes acerrime terraque et mari grassantes, in unius tamen privati hominis vota unanimes consensissent iterque tutum illi artis praeclarissimae studio praestitissent, forsan et sumtibus javissent.

Jam vero ad haec nostra revoco tempora, quibus post jacta per Tychonem Brahe solidissima fundamenta id unice agitur, ut astronomiam quam perfectissimam habeamus; et quod meam partem attinet, tempus forsan et externa adminicula mihi defuerint, animus certe nunquam deest, successus spem praebuit, observationes adsunt in copia, quales quaevis temporum et motuum conditio exhibet: sola haec Hipparcho usurpata occasio hactenus defuit, ut per defectum Solis diversis locis accurate observatum eadem investigarentur expeditius, quae aliunde quoque innotuere per longiores ambages, itaque consensus veritati praeberet testimonium. Quodsi seculum exactum contemplemur, rarissimas videbimus hujusmodi occasiones.

Anno 1544 magna fuit eclipsis et alicubi totalis et mediocriter adulto die; cumque, ut Gemma Frisius adnotavit, inferior Solis pars defecerit Lovanii, meridionalibus igitur locis alicubi totus Sol post Lunam latuit. Magna opportunitas, sed neglecta, forte quod tunc astronomiae restauratio non ita ferebat, observationibus accuratioribus nondum consignatis.

Anao 1560 eclipsis Solis et totalis et in meridie fuit in Lusitania, et observata est passim per Germaniam, digitorum tamen numerus sola aestimatione nullo artificio proditus; itaque non majorem ad certitudinem nos perducere apta est, quam Hipparchum sua perduxit. Adde quod et haec et quae anno 1567 sequuta est, Romae in meridie centralis, astronomos in diversas traxerunt sententias super quantitate diametri Lunae; quam controversiam in Opticis meis explicavi cap. VIII. Ita fides illarum observationum penes auctores est. Sperant autem mecum multi fore, ut qui utramque dictarum eclipsium memoriae consignavit, Christophorus Clavius, vir de his artibus optime meritus, luculenta aliqua narratione seu publica seu privata, priusquam ex hac vita, jam senex admodum, discedat, nos ex iis ambiguitatibus eripiat, in quibus nos ex lectione allegati loci meorum Opticorum suspensos teneri videt.

Sed ad meum institutum redeo et pergo ad sequentes eclipses. Quas enim hactenus commemoravi, meum ortum omnes praeverterunt. Anni 1579 eclipsis magna quidem, sed Sole nimium inclinato ad occasum, instituto astronomorum non fuit idonea. Anno 1590 minor fuit obscuratio, quam ut umbra Lunae per Europam, qua Christianus porrigitur orbis, quaeri posset. Anno 1598 umbra Lunae vix extremum et inhospitum attigit septentrionem, ac nescio an plane propter Terram intactam transierit.

Anno 1600 umbra Lunae in remotissimo meridie quaerenda fuit. Anno 1601 umbra Lunae longins etiam quam anno 1598 a meditullio faciei Terrestris versus septentriones aberravit.

Jam porro nulla nobis exspectanda eclipsis magna usque ad annum 1621, cujus et sequentium annorum deliquia magna iis commendo, qui tunc victuri sunt. Sola hujus anni 1605 eclipsis, quod observatio mea docuit, sic est Kepleri Opera. III. 47 comparata, ut vobis, viri docti, interpretibus genus humanum illa docere possit, quae hodie quaeruntur ab astronomis. Primum fuit meridiei vicina Galliae praesertim et Hispaniae; deinde magna fuit et nobis inferiorem Solis partem texit, ut impossibile sit, quod his pagellis demonstro, quin alicubi in Gallia vel Hispania, ubi pax, ubi commercia, ubi Christianorum imperia, qua facilis vobis rei investigatio, centrorum visa sit conjunctio; denique Luna fuit loco Terris pene proximo, ubi majore angulo cernitur.

Haec cum ita habeant, equidem opto mihimet potestatem esse, iter in illa loca suscipiendi passimque omnes percontandi coram, atque ita in rem praesentem veniendi. Qua potestate quia careo, vos ego jam viri docti per haec stupendae divinae sapientiae opera, per fidem, qua Creatori estis obligati, per amorem posteritatis, per vestras delicias, quas vobis viri philosophi jam olim non absimili studio atque cura peperere, vos inquam obsecro atque obtestor, uti hanc levissimam operam lubentes volentes sumatis, et quae quisque vidit, quae memoria complexus est, quae a vicinis, doctis, indoctis, modo fide dignis audivit, imo quae ab iisdem singulari studio et dedita opera explorare etiamnum poterit, ea brevi epistolio consignata, dum recens est memoria, veredariis committat, Pragam Bohemorum ad Regum et Principum vestrorum legatos et procuratores, aut si mavultis Francofurtum ad Claudium Marnium indeque ad me transportanda.

Sunt autem capita quaesitorum ista. Quibus locis aliqua de Sole particula in supremo Solis margine, cum esset eclipsis medium, superfuerit, quibus vicissim aliqua in imo margine; et quibus locis totus Sol fuerit tectus; tum quae facies diei, quantae tenebrae, quae species aëris circa Solem circumfusi, an integer circulus lucidus circa Lunam, isque vel terminatus intra et extra, vel exterius evanidus incerto fine; qui Lunae sub Sole tecto consistentis color; quae stellae visae; et quae cuique ultro praeter istam admonitionem occurrent. Nulla adeo despecta et vilis erit narratio, dummodo fida et candida, quam ego non ingenti gratiarum actione sum suscepturus. De ipsis etiam nubibus discere cupio, non quod hae ad rem faciant, sed ut in me sitim hanc inquirendi exstinguant, si constiterit, conspectum Solis alicubi per has ereptum.

Si qui sunt mathematici ex professo (nam hactenus alloquebar universos), qui coelo sereno usi sese ad hujus deliquii observationem eo artificio compararunt, quod ante annum ipsis in Opticis editis descripsi, adhortatus mature omnes ad diligentem hujus defectus observationem, illi quamvis non eo in tractu versati, qui totum Solem tectum vidit, nihilominus de quantitate diametri Lunae ipsiusque defectus vel me privatim vel publice omnes edocebunt, quibus vicissim ego hoc quantulum est mearum observationum hisce pagellis communico, ut videant, quanta me nubes opportunitate privaverint, suasque liberiores tanto libentius in compensationem mei damni ad me transmittant. Quibus quidem Hipparchus meus, qui jam in procinctu est, hanc unicam eclipsin a vobis auctarii loco exspectans plurimum se debere lubens fatebitur.

Rogo autem imprimis viros literis celebres, quorum sese ad remota loca porrigit notitia, uti ea jam utantur ad percontandos idoneos, ad monendos Magnates; rogo Magnates, quos harum rerum cura tangit, ditionibes potentes, quemlibet pro dignitatis suae conditione, ut exemplo Monarcharum, quorum prius facta mentio, qua quisque ratione commodissime potest, plurimum hujus narrationis conquirat ecque me per suos líteratos impertiri.

Equidem et spero et fatentur omnes, totum hoc et quae superstruere cogito, Deo conditori, cujus de gloria agitur, fore gratissimum.

Si quis paulo iniquior insanire me clamabit, qui orbem Terrarum longe gravioribus occupatum negotiis e solio regio ad meos pulveres geometricos detraham, ratus scilicet, ad hoc conditum esse genus humanum, huc referendas omnium cogitationes, ut agro colendo se mutuo expellant, sanguinem mutuum fundant, alter alterum servituti mancipet, Dei vero perennia isthaec opera et hanc scientiam vel rideant vel probro habeant et quasi quoddam dedecus aut aperte fugiant aut privatim occultent: hujusmodi objicientibus equidem aliud quod respondeam non habeo, quam quod olim Diogenes dolium suum versans deteriori quidem jure respondit: scilicet in tanto universorum fervore, tanta suarum actionum fiducia, me quoque a partibus instaurandae astronomiae stantem aut non oportuit aliter facere, aut quid me aliud oportuerit facere, neque ego neque consultores mei intelleximus. Veniam itaque dabunt imbecillitati nostrae. Valete et ne mihi sumtus et opera frustra perierit, crebris responsorum nimbis efficite. Pragae Bohemorum, Martinalibus anni 1605.

Observatio Defectus Solis, qui contigit die 12. Octobris anni hujus 1605, Prugae Bohemorum habita.

Nox praecedens pluvia fuit et mane turbidum. Hora tamen undecima pulsae nubes et Sol per unam atque alteram horam purus luxit. Principium h. 1. 6' ex azimutho et horologio Tychonis primorum et secundorum indice. Id initium animadverti in tabella clare, cum nemo qui Solem adspexisset quicquam animadverteret. Hoc adeo perpetuum, oculos clara luce Solis in agnoscendo minimo defectu impediri, ut in Opticis demonstravi.

Inclinatio instrumento ostendebatur paulo supra medium rotundi radii. Sit ergo angulus inter eclipticam et circulum per centra 85° aut plus, in coelo igitur Luna fuit Sole inferior, ut in Opticis docetur, et angulus 95° aut paulo minus. Angulus vero inter eclipticam et verticalem per Solem fuit eo momento 79° 55' ex doctrina primi mobilis, qui subtractus a 95° relinquit 15° 5', angulum inter circulum per centra et eclipticam aut paulo minus. Assumatur diameter Solis 30' 37", Lunae vero 32' 59". Summa semidiametrorum, quae jam metitur distantiam centrorum, est 31' 47". Luna ergo secundum praxin in Opticis declaratam fuit ante Solem 30' 40" c., babens lat. austr. 8' 16" c. Illud certissimum, angulum majorem fuisse 90°, quia Luna visa est inferior Sole, et latitudinem apparentem majorem quam 5' 33".

Tunc ortae denuo nubes identidem dehiscentes, sed nunquam tantisper, dum observatio repeti posset, usque ad horam 1. 40' 30", quo momento angulus verticalis et eclipticae est 85° 46'. Tunc observati sunt in radio rotundo super tabellam meam digiti $4^{2}/_{3}$. Et quia digiti 12 habebant particulas 109 $\frac{1}{2}$, ergo digiti $4^{2}/_{3}$ habebant particulas $42^{4}/_{2}$. Foraminis vero amplitudo cepit particulas 17 $\frac{1}{2}$, ergo radius enucleatus habuit 92 (et obiter addendo, ut 10368, distantia tabellarum, ad 92, vel semidiametrum radii enucleati 46, sic sinus totus ad 443.6, qui tangit arcum 15' 16", ut Solis diameter sit 30' 32", quantam fere ex Opticis meis assumsi). Ut igitar 92 ad $42^{1}/_{2}$, sic 30' 37" ad 14' 9" deficientia Solis minuta, quae ablata a summa semidiametrorum relinquunt distantiam centrorum 17' 38".

Fuit tunc inclinatio 69°, umbra superius a medio versante, inferius igitur in coelo et angulus 111°, unde ablatus angulus 85° 46′ relinquit 25° 14′; quare parallactica meorum Opticorum exhibet 15′ 57″ distantiam Lunae a Sole in ecliptica, et 7′ 31″ latitudinem visibilem.

Lunula mea habens particulas 74, quae additis 17¹/₂ foraminis faciebant summam 91¹/₂ et definientes diametrum lunulae 30['] 20^{''}, haec igitur fuit multo minor justo. Lunae ergo diameter multo fuit major 30['] 20^{''}, major igitur Solari. Eclipsis igitur omnino alicubi totalis. Quo vero tempore diametrum hanc Lunae exacte mensurus eram circa medium eclipsis, densissima nubes diutius integra hora Solis conspectum soli urbi, Pragae eripuit, campis circumcirca clarescentibus luce Solis. Itaque hac a multo tempore exspectata occasione frui non potui.

Hora 3. 13' 30", quae in hac altitudine poli 50° 5' ostendit angulum inter eclipticam et verticalem versus orientem 81°50', hoc inquam momento rursum nonnihil dehiscentibus nubibus digiti superfuerunt 3 in meo fimbriato radio, aut eo minus aliquid, scilicet minus quam particulae 27, quae sunt 9' 6", et haec a summa semidiametrorum 31' 47" ablata relinquunt distantiam centrorum 22' 41" et plus etiam, siquidem minus quam 3 digiti superfuere. Inclinatio fuit 85° a supra, ergo in coelo 95°, et Luna inferior Sole; aufer 81° 50', remanet angulus 13° 10' et compl. 56° 50' (76° 50'), quibus indicatur latitudo plus quam 5' 10" austr. et superatio Lunae seu distantia ecliptica a Sole plus quam 22' 5".

Hora 3. 30' dispulsae sunt nubes, et spectatores nullum potuerunt amplius agnoscere defectum. At illis non potest certo credi, quia oculi ut et initio minimum in Sole defectum non agnoscunt: me vero in instrumento contemplaturum praevenere nubes subito coeuntes iterum.

Hora 3. 34' rursum purus Solis radius, quo momento certo jam evanuerat defectus in tabella mea.

Exploratio, an tres has observationes secum ipsae et cum veritate consentiant.

Non satis muniti sumus frequentia phasium, ut suffragiorum multitudine agi possit. Atque haec ipsa tria momenta per nubium importunitatem properatissima sunt, nec satis fida. Itaque nisi ultra consentanea et secum ipsa consentientia fuerint, compositione nobis et quadam quasi transactione utendum erit.

Prima	phasis	h.	1.	6′	0'',	cum)	30′	4 0′	'ante	Solem.	
Secunda	- n	n	1.	40.	30		n	15.	57		77	
	Interv	all	m	34.	30		cui	14.	43	motus	apparens	competit.
Jam se	ecunda	h.	1.	40.						ante S		
Tertia.	ph asis	"	3.	13.	30	•	n	22.	5	+ por	st "	
Itaque int	ervallo	**	1.	33		mo	tus	38.	2	+ res	pondet.	
											Ξ.	

At si mansit idem motus apparens tantulo intervallo, oportuit posteriorem motum ad normam prioris esse 39' 40". Hic itaque quoad longitudinem non stamus male, nam observatio dat plus quam 38' 2". Ut vero et horarius Tychonis cum his observatis comparetur, et idem periculam fiat et in latitudine, tractandae sunt parallaxes ad haec tria momenta. Assu-

mamus parallaxin Lunae a Sole maximam in verticali circulo 58' 33". quantam in Hipparcho meo constitui; parum enim refert ad longitudinem, etsi uno aut altero scrupulo plus minusve sumserimus. Itaque secundum doctrinam meorum Opticorum Cap. IX. adminiculo parallacticae exhibentur parallaxes in hunc modum:

Phasi	Longitudinis.	Diff.	Latitudinis.	Diff.
1. 2.	In ortum : 8' 33" In ortum : 3. 41	4' 52'' Summa	51. 20	1' 48''
.3.	In occasum: 7.44	11. 25	54. 51	3. 31

Cum igitur horarjus Tychonis sit 34' 10" et primo intervallo competat portio 19' 39", secando 52' 57", parall. long. aufert illic 4' 52", hic 11' 25", manetque illic 14' 47", hic 41' 32"; nos vero habemus 14' 43", **39'** 40". Ergo apparens noster horarius est minor Tychenis; id non est causa vitiose, assumtae parallaxeos, unum enim vel alterum minutum in has differentias nihil sensibile accumulat; nec peccavimus assumtione majoris diametri Lunae, quam est Tychonica, quin potius nobis profuerit etiamnum augere Lunae diametrum, et Tychonica huc applicata augebit hoc horariorum dissidium; sed sunt causae quaerendae alibi.

Jam latitudinis consensus exquiritur. Parallaxes lat. hae fuere :

54' 51". 49' 32". 51' 20".

5. 10 +, latitudinem sc. apparentem. Aufer 8. 16 c. 7. 31. Restat 41. 16 c. 43. 49. 49. 41 - vera latitudo.

Hic si parallaxis totalis angetur, angetur pene aequaliter et latitudo vera ubique. Habet vero aliam difficultatem, quod intervallo primo variatur latitudo per 2' 33", secundo per 5' 52" minus. At non potest tanto variari. Nam si ad motum intervallorum ex Tychone etiam desumtum addideris molum Solis, ut sit motus Lunae a nodo 18' 4" et 47' 10", invenies latitudinem variandam per 1' 33" et 4' 1". Tribus itaque scrupulis abundat nostrum incrementum. Causa videtur primae phaseos indeterminata inclinatio, tertiae indeterminata quantitas. Itaque sic transigemus : quia in principio Luna fuit inferior Sole, certo itaque plus quam 5' 33" in visa latitudine; quare posito, quod est certius, latitudinem scilicet non plus variari quam per 1' 32" et 4' 1", certo igitur latitudines verae (posita vera parallaxi) minores quam 44' 0", 45' 32", 49' 33", quare duae reliquae latitudines apparentes certo majores quam 5' 48", 5' 18". Esto igitur ut aberraverint oculi inter properandum alicubi, atque ita visae latitudines sint 6' 33", 6' 18", et inclinatio principii, quam non satis definitive expressi, habuerit plus quam 85°.

Probatur et finis eclipseos, et corrigitur annotatio phaseos tertiae.

Quia a prima phasi ad ultimam horis 2. 8' confecta 52' 45" plus. h. e. 54' 23" analogos, et in ultima phasi Luna superavit Solem per 12' 5" plus, eclipsis vero tunc desiit, cum in latitudine 5' 30" indice nostra parallactica Sol per 31' 18" superatur : ergo restant ad finem 9' 13" minus, quae faciunt minus 28' 45" temporis, quae adde ad tempus ultimae phaseos, exsurgit pro fine hora 3. 35' 15" minus. Igitur ante h. 3. 35' desiit: eja, nam h. 3. 34' jam nihil amplius videbam. Quid autem? Si vere h. 3. 30' nihil amplius superfuisset? Tunc

omnino argueretur erroris quantitas phasis tertiae sic, ut quam annotavi minus 3 digitos, ea fuerit minus 2 digiti, qui sunt particulae 18²/_a, et scrupula Solis 6' 13". Itaque distantia centrorum 25' 34", quae per angulos supra constitutos dat superationem 24' 52", latitudinem apparentem 5' 49" plus, quod convenit superiori argumentationi ex principii latitudine deductae; quod est unum argumentum. Deinde propius accedimus ad horarium Tychonis. Nam supra cum apparente motu ex Tychone 41' 22" non habuimus plus quod compararemus, quam 38' 2" plus, et 39' 40" ad summum. Hic jam ex 22' 5" plus fit 24' 52" plus, itaque 2' 47" accedunt nostro tam parvo horario, ut fiat 40' 49" plus. Tertio jam et finem observatum tenemus rectius. Cum enim hoc pacto subtractis 24' 52" a 31' 18" restent 6' 26" minus, et horis 2. 8' jam debeantur 55' 31" plus, itaque residua illa 6' 26" minus analogon conficiuntur 15' minus, quae adde ad horam ultimae phaseos 3. 13' 30", exsurgunt h. 3. 28' 30" minus pro fine: ex voto. In hac igitar incertitudine nos reliquit solum finis momentam, nubium invidia nobis ereptum.

Quando fuerit eclipsis medium!

Medium illud est, cum centrum Lunae apparet in circulo latitudinis per centrum Solis traducto.

Quandoquidem igitur h. 1. 40' 20" Luna fuit ante Solem per 15' 57", igitur ex analogia motus, qui fuit observatus in intervallo primo, ista residua 15' 57" fuere confecta 37' 32", quae addita ad 1. 40' 20" ostendunt medium h. 2. 18'. *)

Duravit igitur a principio hucusque per h. 1. 12', quod est tempas incidentiae; cui si aequale constituero tempus emersionis, finis recidet in h. 3. 30'; sed quia celerior emersio quam incidentia, finis igitur ante h. 2. 30', quod rursum confirmat, me ultimo vidisse non 3 sed 2 digitos. Duratio itaque h. 2. 22'.

Quis verae conjunctionis articulus?

Ex doctrina primi mobilis et meis Opticis h. 2. 18' coelum mediabat 24° 29' M, oriebatur 22° \mathcal{F} et 22° \rightleftharpoons nonagesimus ab ortu, itaque luminaria in occidentali quadrante. Quaeritar parallaxis. Igitar angulus eclipticae et meridiani hic est 25° 11', titularis igitar parallaxis longitudinis in horizonte est 24' 54" (per totalem 58' 33"), et quia Luna abest 3° a nonagesimo, ideo parall. long. in occasum est 1' 18"; apparet vero hoc momento juncta Soli, est igitar per 1' 18" vere ultra Solem, ergo 3' ante fuit vere in circulo latitudinis per Solem. Id fuit hora 2. 15'. **)

*) Kepleri manu in margine adscripta: Per horarium Tychonia. 15' 57'' |

34. 10 28. Siguidem nullam parallaxis mutationem attuliaset. 15. 54. 40

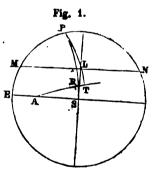
**) K. in marg.: Phasi seconda erat) ante () visa per 15' 57" Parallaxis corr. 3, 41

Hora	1.	40. 34.			Horarius	19. 34.	38 10 5.	34 [,]		
-	2.	15.	Vera	ፈ.		19.				
		-		•			18	9811	٠	

742

Quantitas eclipsis.

Latitudo visa ex supra dictis in medio proportionaliter fuit 6' 30" vel 6' 0"; sit autem 6' 30". Haec ablata a summa semidiametrorum 31' 47" relinquit scrupula obscurata 25. 17", quae faciunt digitos proxime 10. Superfuerant digiti 2. Et tamen cum Pragam inter et Solem unica sola nubes esset, coelo circumcirca patenti, campis illustratis, lumen diurnum notabiliter fuit imminutum, quasi advesperasceret aut praegnans imbre nubes totum coelum occupasset; credibile igitur, ubi totus Sol tectus, meram fuisse noctem.


In ipso verae conjunctionis articulo ubi Sol totus fuerit tectus!

Ad hoc nobis opus est cognitione verae latitudinis Lunae. Ac cum hactenus usus sim parallaxi ex Hipparcho meo, utar jam quoque. Sed duplicem is exhibet hoc situ Lunae parallaxin, akteram sub conditione angnli inter plana eclipticae et viae Lunae 4° 58', alteram, si hic angulus mensuretur quadrantali latitudine Lunae 5° 17', 30", quam suspicionem foveo. Illa est 58' 13", haec 62' 16". Itaque si assumserimus apparentem in medio latitudinem 6' 30", vera latitudo prodibit vel 46' 30" vel 49' 44". Hipparchus meus vult illic 48' 5", hic 49' 57".*) Confirmat igitur haec eclipsis angulum magnum.

Cum igitur h. 2. 15' Pragae fuerit vera conjunctio, quae horae faciant 33° 45' tempora, igitur in meridiano, qui est occidentalior Pragensi per 33° 45' fuit tunc meridies, et cum declinatio Solis sit 7° 30' àustr., ergo in latitudine loci 7° 30', australi fuit Sol verticalis. Is igitur locus fuit in oceano Atlantico, vel Guineae, ante insulam Ascensionis.

Hic igitur terminus est, a quo computandum. Nam ibi quidem Sol obscuratus minime fuit; Luna enim habuit et apparuit habere latitudinem 46' 30" vel 49' 44" septentrionalem.

Centro S, quod loca Soli perpendiculariter subjecta indicat, scribatur circulus maximus globi Telluris PE, in quo sit SE tractus Terrarum subjectus eclipticae hoc momento. Et quia S est 19° 6' \simeq , sit igitur A 0° \simeq , et AT Terrae aequator, qui in hoc situ apparet in figura ellipseos, et sit SL ad SE rectus; erit E tractus subjectus circulo latitudinis, in quo Luna. Quaeritur, quantum sit progrediendum in SL, donec latitudo Lunae 46' 30" a parallaxi horizontali 58' 33", vel latitudo 49' 44" a parallaxi 62' 16" absorbeatur, itaque centra Solis et

Lunae juncta sint. Parallactica Opticorum ostendit arcum 52° 35' vel 53° 0'; is sit SL, et L locus quaesitus. Quaeritar ejus longitudo et latitudo geographica. Sit ergo P polus aequatorius Terrae, quamvis is in hac facie globi non sit, sed infra nonnihil sit absconditus, et ex puncto P descendant arcus circulorum magnorum, PS secans aequatorem in R, et PL, secans aequatorem in T. Est igitur PR meridianus Solis 33° 45' occidentalior Pragensi, PL vero est meridianus loci quaesiti, et RT differentia

^{*)} K. i. m.: Tycho sub hujuş angeli conditione tantum 49' 34".

meridianorum, et LT altitudo loci aequalis altitudini poli. In triangulo igitur PSL datur PS 97° 20', quia RS est declinatio Solis et PR quadrans, et SL 52° 35' vel 53° 0'; sit 53° 0', et angulus PSL ex doctrina primi mobilis vel ex tabula anguli eclipticae et meridiani; nam RS est meridianus et ASR 67° 38', ergo RSL complementum est 22° 22'. Tribus igitur datis invenitur et LP 40° 48' et SPL vel RT 23° 44'. Sed PR est 33° 45' occidentalior Praga, ergo PLT est 10° 1' occidentalior Praga.

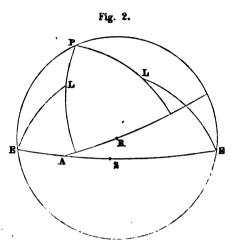
Locus est in sinu Balearico, inter Marsiliam et Minoricam. Tunc autem numerabant horam 1' 35", quia nos Pragae h. 2. 15'. Si autem Tycho Brahe justiorem prodidit lasitudinem, quae est 49' 33", tunc umbra Lunae ad Marsiliam propius accedit.

Quot horarum spatio centrum umbrae Lunaris in facie Telluris fuerit!

Etsi Tellus continue aliam atque aliam faciem Soli offert, quaecunque tamen illa fuerit, maneat ejus centrum S. Et cum ex E spectantibus Luna oriens appareat per 58' 33" vel 62' 16" ultra Solem eodem momento, quo spectantibus ex S apparet sub Sole (tanta enim est Lunae parallaxis), quoad igitur Luna vero motu trajicit 58' 33" vel 62' 16", semper ejus umbrae centrum in aliquo puncto SE haeret, si contingat tractum illum per S transire. Jam vero declinat ab S et transit per L. Ducatur per L recta MN non plane parallelos ipsi ES, quia Lunae orbita ad Solarem angulo 5º c. inclinatur; et sit inclinatio ad partes E occidentis, quia crescit latitudo Lunae septentrionalis. Quaeritur proportio MN ad ES. Sit ac si MN esset parallelos ipsi ES, nam parva est differentia et minuitur labor, ne ex S cogamur ducere perpendicularem in MN. Cum ergo SL (considerată jam ut una recta in plana facie Telluris) sit aequalis latitudini Lunae 46' 30" vel 49' 44", quam parallaxin exhibet arcus SL 53°, ergo arcus 37°, complementum ad priorem, secundum doctrinam Opticorum exhibet longitudinem LM, LN sub iisdem titulis 35' 15" vel 37' 28". Tantisper ergo moratur Luna in superficie Telluris, donec vero motu horum arcum dapla conficit. Ac cum sit horarius ex Tychone 34' 10", ergo vel h. 2.4' vel h. 2. 12" manet centrum umbrae in Terra seu in linea MN.

Quo loco Terrarum umbra Lunae globum Telluris invaserit, quo rursum deserverit!

Horae 1. 2' vel 1. 6' sunt 15° 30' vel 16° 30'; et quia Sol in ipso medio est in meridiano 33° 45' occidentaliori quam Praga, ergo principio totalis per universam Terram durationis Sol est per 18° 15' vel 17° 15', et fine per 49° 15' vel 50° 15' occidentalior Praga. Initio igitur Sol est medio fere loco inter insulam S. Helenae et aequatorem in oceano australi verticalis; fine stat super promontorium S. Augustini et Fernambuco, in orientali litore Brasiliae.


Atqui hic centrum est faciei Telluris; inquirendus jaus et situs eclipticae et quo loco terminentur quadrantes a puncto Solis. Cum enim 19°3' declinet 22°9', ergo hase est lat. loci sub ecliptica, ubi Sol in principio eritur. Sic per 19°9' \mathcal{J} ejusque decl. 22°10' habetar lat. aust. loci, ubi Sol in fime occidit. Et cum a 19°3' \mathfrak{S} in 19°3' \mathfrak{L} coascendant in sphaera recta 86°56', et a 19°9' \mathfrak{L} in 19°9' \mathcal{J} cooriantur 93°4', ergo loca sub ecliptica, quibus Sol oritur, sunt per 105°11' vel 104°11' occi-

dentaliora, et quibus in fine occidit, per 43° 49' vel 42° 49' orientaliora quam Praga. Illic igitur signantur septentrionalia Cubae insulae prope Havanam, hic oceanus orientalis prope Madagascar inter insulas Romeros et S. Mariae.

In figura sequenti centro R scribatur circulus magnus faciei Telluris EP, polum Terrae P transiens, et sit A sub principio \leq , AR asc. recta

Solis, tractus ASE sub ecliptica. S sub Sole, sitque principium, ut S sit in oceano post Africam, et E sinistrum in Cuba, ubi Sol oriens, eclipsis nulla, quia Luna borealis. Ducatur arcus circuli magni EL, rectus ad ES, quo toto tracta Sol spectatur oriens. In eo tractu punctum L sit locus, ubi Luna sub Sole, et connectatur LP. In triangulo igitur LEP datur EP 67°51' ex declinatione 19° @, et LEP 8° 5' ex tabula anguli eclipticae SE et meridiani EP, et LE invenitor per initialem latitudinem Lunae, quae itinere 35' 15" vel 37' 28" a Sole, h. e. 37' 50" vel 40' 10" a nodo per 3' 13" minor

fit quam in medio, quare vel 43' 17" vel 46' 31". Haec inquam latitudo absorbetur a parallaxi, cum ab E per 48° itur in L. Tribus itaque cognitis et PL patebit 21° 53', et EPL 14° 54'. Fuit autem E inter et Pragam 105° 11' vel 104° 11', ergo inter L et Pragam est 90° 17' vel 89° 17', et lat. L 68° 7', quibus describitur zona frigida, Americae incognita pars sub meridiano Hispaniolae. Sic in figurae dextra parte, quae servit fini, sit E post Madagascar, S in Brasilia; datur PE 112° 20' ex declinatione 19° \mathcal{S} , LEP iterum 8° 5', EL 58° 30', quia in tanta discessione ab E parallaxis aequat) lat. 49' 33" vel 53' 9" (quae rursum per 3' 13" differt ab ea, quae in medio, major jam, sic exigente motu Lunae), datur ergo PL 54° 13' et LPE 8° 50', quae aufer ab arcu 43° 40' vel 42° 49' differentiae long. Pragae et E, manet diff. long. Pragae et L 35° vel 34°, lat. 35° 47', qualem habet Mesopotamia et quae Antiochiam Syriae versus orientem sequuntur. Atque haec loca omnium postrema viderunt Solem totum a Luna tegi jam occidentibus luminaribus.

Tractus umbrae Lunaris.

Dato medio et extremis, sequentur interjecta. In America intra arcticum umbra Lunae ad Terram accessit, inde per ostia fluminis Nivosi, per insulam Brasiliam dictam, per intimum oceani Aquitanici angulum, per Pyrenaeum et confinia Galliae et Hispaniae, per Bajonam, relicta a dextris Pampelona, Cordova, Barcelona, a sinistris Burdegala, Narbona, per Lunarium promontorium, per sinum Balearicum, inter Marsiliam et Minoricam, per Calarim Sardiniae, per Tyrrhenum, per Syracusas Siciliae, per Peloponnesum, per Spartam, per mare Nauplium, Creticum et Triopium insulasque interjectas, per Rhodum et qui hanc sequitur sinum Issicum, per Cypri litora et per Antiochiam in Mesopotamiam se recepit et prope Euphratem Terras iterum deseruit.

Quicquid igitur Terrarum ab hoc limite in septentriones vergit, ut Italia et tota fere Europa, iis aliqua de Sole particula a septentrione supra residua visa est, cornua sub medium eclipseos deorsum porrigens, quicquid vero in austrum, ut Hispania ultima, hoc Solis aliquam particulam inferius versus austrum vidit exstantem, et cornua sursum versa, idque constante mea latitudine. Secundum Tychonicam vero latitudinem omnino Romae et in praecipuis locis Italiae totus Sol fuerit tectus. Haec vero omnia populari etiam animadversione facile discernuntur.

OPERUM KEPLERI

QUAE VOLUMEN III. CONTINET DISPOSITIO.

1. Astronomia Nova sou Commont.	de	; 196	oti	bus	st	ella	ia j	Mar	tis									Fol. 1
Notae editoria													•		•			443
2. Fragmonta studiorum astronomi																		
a) Hipparchus (fragm.) .		•		•	•	•	•	•		•	•	•	• .	•		•	•	511
b) Calouli eclipsium Lunae	•				•	•	•	•		•	•	•	•	•		•	•	550
' c) De Luna (fragm.)																		
d) De Tabulis Lunaribus	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	691
Notae editoris	•			•		•	•		•		•	•	•	•	•	•	•	718
3. Epistola de Solis deliquio .	•		;	•	•	•	•	•	•	•	•	•	•	•	•	•	•	726 ·

CONSPECTUS

EPISTOLARUM KEPLERI,

QUAE INSUNT VOLUMINI III.

١đ	Anonymum.	. l. et	d. (fragm.)	• • •					•	•		•		•				14
		,,										•		•					503
-	Vincentium 1	Blanch	ium 🛛	(Alerani)	d. L	incii	d . 4	13.	M	art.	1	619)						519
	_	-		()	d. L														734
"	Brenggerum	d Pro	-															•••	31
99	Dienyyeiawa	u. 11e	Reo	J 90 N	- 44	07		•		100	÷	•	•	•	•	•	•	•••	32
99	~ · " · · · ·	ж и Т.	, , ,	d. 30. N	OV. 10	V7.	Ð.	AP	τ.	10(Ð	•	•	•	•	٠	•	•••	-
99	Coignetum d.	Prage	10 10	. 00	• • •	•	•	•	•	•	•	•	٠	٠	•	•	•	• •	735
39	Crügerum d.																		
,,			d. 8). Sept.	1624												451.	500.	518
	D. Fabricius	nd. P	raga	a d. Ī. ()ct. 1(802									•			12.	64
-	n 7	"		d. 2.]													•		72
				d. 4.			-											•••	
99	79 Y	**	**																
99	n n	**	**	d. 7. 1															
,	7) "	n		d. 18.															95
79	n 7	**	37	d. 11.	Oct. 1	1605	•	•	-	•	•	•		•		•	99.	458.	474
•				d. 1	Aug. 1	607												108.	475
-		-	-	d. 10.															508
77	Joh. Fabrici		Pres																452
79																			
*	Sam. Hafenr						10	00											0
	Hegulontium						•	•	•	•	•	•	٠	•	•	٠	•	••	37
	Horwartum (d. Gra	etii d	. 12. Ju	L 160	Ο.	•	•	•	•	•	•		•	•	•	•		23
_	*	. Pra	gae d	l. 7. Oc	-1602	2.				•							11	. 28.	693

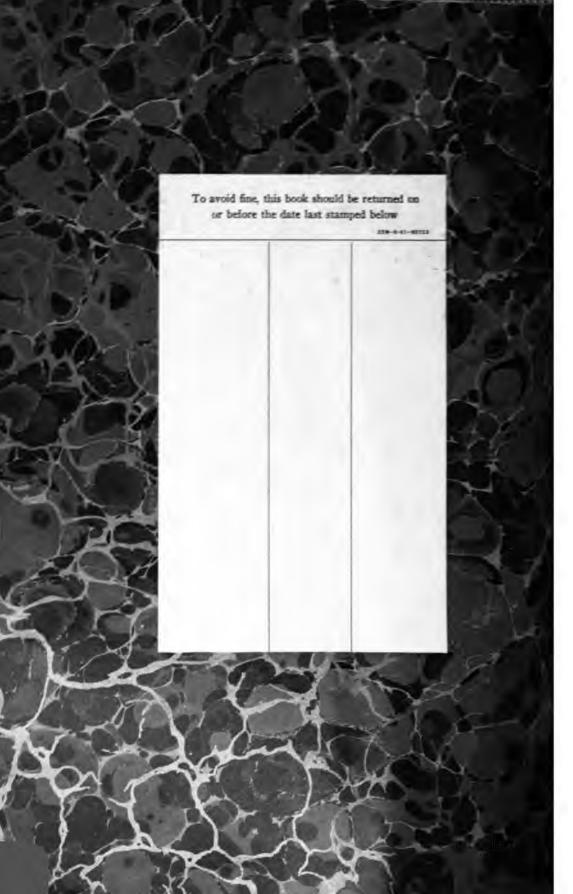
∆d	Herwartum	đ.	Pragae	d.	12.	Nov.	1602							-					11.	29.	њі. 698
		-					1603									۰.				•	445
			-				1603													30.	449
	-			d.	5	Jul. 1	603	÷												12.	703
				d.	13.	Jan.	1606						•	÷	÷	÷	Ż				30
			-				606														30
			*				607														454
	-	-		-			1607														456
<u> </u>			~				1607														30
							1608														31
	Longomonte		m å Pr					-											•	32	704
	Masstlinun																				46
"	22.000000000000000		Tingeo	а. а	20	Die	4804	•	•	•	•	•	•	•	·	•	•	•	• •	•	50
		*		7	44	Dec	. 1601 . 1604	1	•	•	•	•.	•	•.	•	•	•	•	•••	•	55
"	*	*	**				1605	-													56
*	".		*				1606														60
		**	T 1 1 1 1																	•	724
*	n	٣	Lincii																	•	676
	M	"					in 28.													•	
10	<i>Maginum</i> d	. r																		•	37
	, , , , , , , , , , , , , , , , , , ,						610													•	494
**							1610													:	495
*	Nautonneri																			457.	733
m	Odontium d																			•	444
,,	Pistorium (i . 1	Pragae e	i. 1	2.	Jup.	1607	•	•	•	•		•	•	• `	•	•	•		•	444
,,	Praesidem	cw	riae Imp	er.	d.	Praga	1e d. 2	25.	Au	g.	160)8	•		•		•		• •		10
77	Romum d.	Pra	gae d.	18.	Ma	rt. 1(312				• .		•			•	•				518
			icii Oct.																		518
,,	Zieglorum																			•	518
	-		-																		

ŀ ŗ

.

•

•


5Z0.4 K38 V.3

.

.

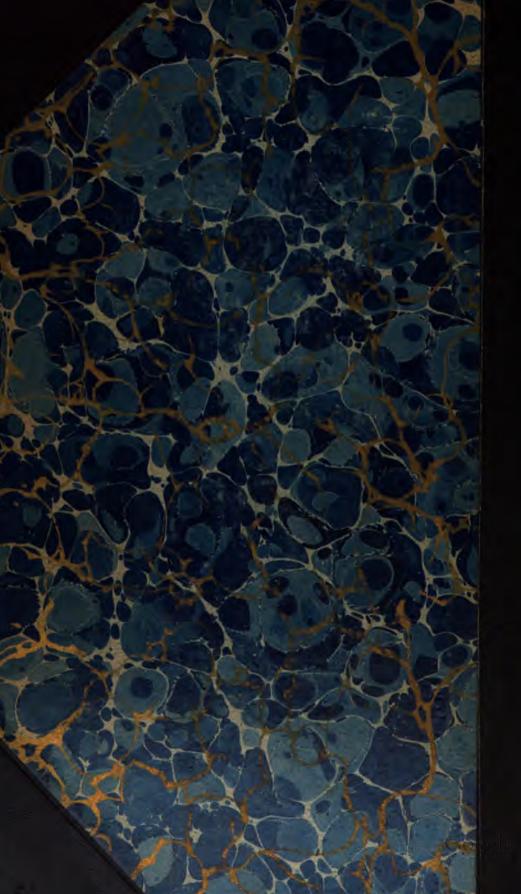
.

•

STANFORD UNIVERSITY LIBRARY Stanford, California PHYSICS LIBRARY

20

K38 V.3 - 4


	Date Du	e	
-			
	-		
			-
	-		
	*		
her wat			
CAT. NO	. 24 165	PRINTED	IN U.S.A

285

6105

З

001

