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PREFACE.

IT is not too much to say that, to the great majority of

mathematicians at the present time, Apollonius is nothing
more than a name and his Contcs, for all practical purposes, a
book unknown. Yet this book, written some twenty-one
centuries ago, contains, in the words of Chasles, “the most
interesting properties of the conics,” to say nothing of such
brilliant investigations as those in which, by purely geometrical
means, the author arrives at what amounts to the complete
determination of the evolute of any conic. The general neglect
of the “ great geometer,” as he was called by his contemporaries
on account of this very work, is all the more remarkable from
the contrast which it affords to the fate of his predecessor
Euclid ; for, whereas in this country at least the Elements of
Euclid are still, both as regards their contents and their order,
the accepted basis of elementary geometry, the influence of
Apollonius upon modern text-books on conic sections is, so far
as form and method are concerned, practically nil.

Nor is it hard to find probable reasons for the prevailing
absence of knowledge on the subject. In the first place, it could
hardly be considered surprising if the average mathematician
were apt to show a certain faintheartedness when confronted
with seven Books in Greek or Latin which contain 387
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propositions in all; and doubtless the apparently portentous
bulk of the treatise has deterred many from attempting to
make its acquaintance. Again, the form of the propositions is
an additional difficulty, because the reader finds in them none
of the ordinary aids towards the comprehension of somewhat
complicated geometrical work, such as the conventional appro-
priation, in modern text-books, of definite letters to denote
particular points on the various conic sections. On the contrary,
the enunciations of propositions which, by the aid of a notation
once agreed upon, can now be stated in a few lines, were by Apol-
lonius invariably given in words like the enunciations of Euclid.
These latter are often sufficiently unwieldy; but the incon-
venience is greatly intensified in Apollonius, where the greater
complexity of the conceptions entering into the investigation of
conics, as compared with the more elementary notions relating
to the line and circle, necessitates in many instances an enun-
ciation extending over a space equal to (say) half a page of this
book. Hence it is often a matter of considerable labour even
to grasp the enunciation of a proposition. Further, the propo-
sitions are, with the exception that separate paragraphs mark
the formal divisions, printed continuously ; there are no breaks
for the purpose of enabling the eye to take in readily the
successive steps in the demonstration and so facilitating the
comprehension of the argument as a whole. There is no uni-
formity of notation, but in almost every fresh proposition a
different letter is employed to denote the same point: what
wonder then if there are the most serious obstacles in the way
of even remembering the results of certain propositions?
Nevertheless these propusitions, though unfamiliar to mathe-
maticians of the present day, are of the very essence of
Apollonius’ system, are being constantly used, and must there-
fore necessarily be borne in mind.

The foregoing remarks refer to the editions where Apollonius
can be read in the Greek or in a Latin translation, i.e. to those
of Halley and Heiberg; but the only attempt which has been
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made to give a complete view of the substance of Apollonius
in a form more accessible to the modern reader is open to
much the same objections. This reproduction of the Conics in
German by H. Balsam (Berlin, 1861) is a work deserving great
praise both for its accuracy and the usefulness of the occasional
explanatory notes, but perhaps most of all for an admirable set
of figures to the number of 400 at the end of the book; the
enunciations of the propositions are, however, still in words,
there are few breaks in the continuity of the printing, and the
notation is not sufficiently modernised to make the book of any
more real service to the ordinary reader than the original
editions.

An edition is therefore still wanted which shall, while in
some places adhering even more closely than Balsam to the
original text, at the same time be so entirely remodelled by
the aid of accepted modern notation as to be thoroughly
readable by any competent mathematician; and this want
it is the object of the present work to supply.

In setting myself this task, I made up my mind that any
satisfactory reproduction of the Conics must fulfil certain
easential conditions: (1) it should be Apollonius and nothing
but Apollonius, and nothing should be altered either in the
substance or in the order of his thought, (2) it should be
complete, leaving out nothing of any significance or importance,
(8) it should exhibit under different headings the successive
divisions of the subject, so that the definite scheme followed by
the author- may be seen as a whole.

Accordingly I considered it to be the first essential that I
should make myself thoroughly familiar with the whole work at
first hand. With this object I first wrote out a perfectly literal
translation of the whole of the extant seven Books. This was a
laborious task, but it was not in other respects difficult, owing
to the excellence of the standard editions. Of these editions,
Halley’s is a monumental work, beyond praise alike in respect
of its design and execution; and for Books v—VII it is still the
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only complete edition. For Books 1—Iv I used for the most
port the new Greek text of Heiberg, a scholar who has earned
the undying gratitude of all who are interested in the history
of Greek mathematics by successively bringing out a critical
text (with Latin translation) of Archimedes, of Euclid’s Elements,
and of all the writings of Apollonius still extant in Greek. The
only drawback to Heiberg's Apollonius is the figures, which are
poor and not seldom even misleading, so that I found it a great
advantage to have Halley’s edition, with its admirably executed
diagrams, before me even while engaged on Books 1—Iv.

The real difficulty began with the constructive work of
re-writing the book, involving as it did the substitution of &
new and uniform notation, the condensation of some pro-
positions, the combination of two or more into one, some slight
re-arrangements of order for the purpose of bringing together
kindred propositions in cases where their separation was rather
a matter of accident than indicative of design, and so on. The
result has been (without leaving out anything essential or
important) to diminish the bulk of the work by considerably
more than one-half and to reduce to a corresponding extent the
number of separate propositions.

When the re-editing of the Conics was finished, it seemed
necessary for completeness to prefix an Introduction for the
purposes (1) of showing the relation of Apollonius to his pre-
decessors in the same field both as regards matter and method,
(2) of explaining more fully than was possible in the few notes
inserted in square brackets in the body of the book the mathe-
matical significance of certain portions of the Conics and the
probable connexion between this and other smaller treatises of
Apollonius about which we have information, (3) of describing
and illustrating fully the form and language of the propositions
as they stand in the original Greek text. The first of these
purposes required that I should give a sketch of the history of
conic sections up to the time of Apollonius; and I have ac-
cordingly considered it worth while to make this part of the
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Introduction as far as possible complete. Thus e.g. in the case
of Archimedes I have collected practically all the propositions
in conics to be found in his numerous works with the substance
of the proofs where given ; and I hope that the historical sketch
as a whole will be found not only more exhaustive, for the
period covered, than any that has yet appeared in English, but
also not less interesting than the rest of the book.

For the purposes of the earlier history of conics, and the
chapters on the mathematical significance of certain portions of
the Contcs and of the other smaller treatises of Apollonius, I
have been constantly indebted to an admirable work by
H. G. Zeuthen, Die Lehre von den Kegelschnitten tm Altertum
(German edition, Copenhagen, 1886), which to a large extent
covers the same ground, though a great portion of his work,
consisting of a mathematical analysis rather than a reproduction
of Apollonius, is of course here replaced by the re-edited
treatise itself. I have also made constant use of Heiberg’s
Litterargeschichtliche Studien uber Euklid (Leipzig, 1882), the
original Greek of Euclid’'s Elements, the works of Archimedes,
the cvvaywyr of Pappus and the important Commentary on
Eucl. Book 1. by Proclus (ed. Friedlein, Leipzig, 1873).

The frontispiece to this volume is a reproduction of a
quaint picture and attached legend which appeared at the
beginning of Halley’s edition. The story is also told elsewhere
than in Vitruvius, but with less point (cf Claudii Galeni
Pergameni Iporpentids éml Téxvas c. v. § 8, p. 108, 3-8
ed. I. Marquardt, Leipzig, 1884). The quotation on the title
page is from a vigorous and inspiring passage in Proclus’
Commentary on Eucl. Book 1. (p. 84, ed. Friedlein) in which he
is describing the scientific purpose of his work and contrasting
it with the useless investigations of paltry lemmas, distinctions
of cases, and the like, which formed the stock-in-trade of the
ordinary Greek commentator. One merit claimed by Proclus
for his work I think I may fairly claim for my own, that it
at least contains doa mpayuateiwdeorépay &yer Gewplav; and 1
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should indeed be proud if, in the judginent of competent critics,
it should be found possible to apply to it the succeeding phrase,
auvTelel wpos Ty AV Pidogodiav.

Lastly, I wish to express my thanks to my brother,
Dr R. S. Heath, Principal of Mason College, Birmingham,
for his kindness in reading over most of the proof sheets and
for the constant interest which he has taken in the progress
of the work.

T. L. HEATH.

March, 1896.
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INTRODUCTION.

PART L

THE EARLIER HISTORY OF CONIC SECTIONS
AMONG THE GREEKS.

CHAPTER I
THE DISCOVERY OF CONIC SECTIONS: MENAECHMUS.

THERE is perhaps no question that occupies, comparatively, a
larger space in the history of Greek geometry than the problem of
the Doubling of the Cube. The tradition concerning its origin is
given in a letter from Eratosthenes of Cyrene to King Ptolemy
Euergetes quoted by Eutocius in his commentary on the second
Book of Archimedes’ treatise On the Sphere and Cylinder® ; and the
following is a translation of the letter as far as the point where we
find mention of Menaechmus, with whom the present subject
begins,

‘ Eratosthenes to King Ptolemy greeting.

“There is a story that one of the old tragedians represented
Minos as wishing to erect a tomb for Glaucus and as saying, when
he heard that it was a hundred feet every way,

Too small thy plan to bound a royal tomb.
Let it be double; yet of its fair form
Pail not, but haste to double every side t.

* In quotations from Archimedes or the commentaries of Eutocius on his
works the references are throughout to Heiberg's edition (drckimedis opera
omnia cum commentariis Eutocii. 8 vols. Leipzig, 1880-1). The reference here
is m. p. 102.

+ puxpby " Eebas Bacuxod ankdy Tdgov

Surhdoios &orw* 10D xalol 3¢ uh gpalels
Sixhaf’ Exacror xdhow dv Tdxes Tddov.

Valckenser (Diatribe de fragm. Eurip.) suggests that the verses are from the
H. C. b
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But he was clearly in error ; for, when the sides are doubled, the area
becomes four times as great, and the solid content eight times
as great. Geometers also continued to investigate the question in
what manner one might double a given solid while it remained in
the same form. And a problem of this kind was called the doubling
of the cube; for they started from a cube and sought to double it.
While then for a long time everyone was at a loss, Hippocrates of
Chios was the first to observe that, if between two straight lines of
which the greater is double of the less it were discovered how to find
two mean proportionals in continued proportion, the cube would be
doubled ; and thus he turned the difficulty in the original problem *
into another difficulty no less than the former. Afterwards, they
say, some Delians attempting, in accordance with an oracle, to
double one of the altars fell into the same difficulty. And they sent
and begged the geometers who were with Plato in the Academy to
find for them the required solution. And while they set themselves
energetically to work and sought to find two means between two
given straight lines, Archytas of Tarentum is said to have dis-
covered them by means of half-cylinders, and Eudoxus by means
of the so-called curved lines. It is, however, characteristic of them
all that they indeed gave demonstrations, but were unable to make
the actual construction or to reach the point of practical application,
exocept to a small extent Menaechmus and that with difficulty.”
Some verses at the end of the letter, in commending Eratosthenes’
own solution, suggest that there need be no resort to Archytas’
unwieldy contrivances of cylinders or to  cutting the cone in the
triads of Menaechmust.” This last phrase of Eratosthenes appears

Polyidus of Euripides, but that the words after sgalels (or spalgs) are
Eratosthenes’ own, and that the verses from the tragedy are simply

wxpdy o E\etas Pacihxod onxdy ThPov:
Sir\daios dorw* Tob xUfov 88 uh cpakps.

It would, however, be strange if Eratosthenes had added words merely for the
purpose of correcting them again : and Nauck (Tragicorum Graecorum Fragmenta,
Leipzig, 1889, p. 874) gives the three verses as above, but holds that they do not
belong to the Polyidus, adding that they are no doubt from an earlier poet than
Euripides, perhaps Aeschylus,

* 79 dwdpnua adrol is translated by Heiberg * haesitatio eius,” which no
doubt means * his difficulty.” I think it is better to regard adrod as neuter, and
as referring to the problem of doubling the cube.

1 und Mevexuelovs xwworopely rpiddas.
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again, by way of confirmatory evidence, in a passage of Proclus®,
where, quoting Geminus, he says that the conic sections were
discovered by Menaechmus.

Thus the evidence so far shows (1) that Menaechmus (a pupil of
Eudoxus and a contemporary of Plato) was the discoverer of the
conic sections, and (2) that he used them as a means of solving the
problem of the doubling of the cube. We learn further from
Eutociust that Menaechmus gave two solutions of the problem of
the two mean proportionals, to which Hippocrates had reduced the
original problem, obtaining the two means first by the intersection
of a certain parabola and a certain rectangular hyperbola, and
secondly by the intersection of two parabolas}. Assuming that a, b
are the two given unequal straight lines and z, y the two required
mean proportionals, the discovery of Hippocrates amounted to the
discovery of the fact that from the relation

a =z
2=y" g 1)
it follows that (1‘.)’ _8
z/ b
and, if a = 25, a® = 22,
The equations (1) are equivalent to the three equations
a’=ay, Y'=bzr, ay=ab.................. (2),

and the solutions of Menaechmus described by Eutocius amount to the
determination of a point as the intersection of the curves represented
in a rectangular system of Cartesiun coordinates by any two of the
equations (2).

Let A0, BO be straight lines placed so as to form a right angle
at 0, and of length a, b respectively§. Produce BO to z and 40
to y. :

* Comm. on Eucl. 1., p. 111 (ed. Friedlein). The passage is quoted, with
the ocontext, in the work of Bretschneider, Die Geometrie und die Geometer vor
Euklides, p. 177.

t Commentary on Archimedes (ed. Heiberg, 111. p. 92—98).

1 It must be borne in mind that the words parabola and hyperbola could not
have been used by Mensechmus, as will be seen later on ; but the phraseology is
that of Eutocius himself, . ’

§ One figure has been substituted for the two given by Eutocius, so as to
make it serve for both solutions, The figure is identical with that attached to
the second solution, with the sole addition of the portion of the rectangular
hyperbola used in the first solution.

It is a curious circumstance that in Eutocius’ second figure the straight line

b2
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The first solution now consists in drawing a parabola, with
vertex O and axis Oz, such that its parameter is equal to BO or b,
and a hyperbola with Oz, Oy as asymptotes such that the rectangle
under the distances of any point on the curve from Oz, Oy respec-
tively is equal to the rectangle under 40, BO, i.e. to ab. If P be

L
\

A

the point of intersection of the parabola and hyperbola, and PN, PM
be drawn perpendicular to Oz, Oy, ie. if PN, PM be denoted by
¥, z, the coordinates of the point P, we shall have

y*=b.ON=b. PM=bx }

and xy=PM.PN=ab
whence ¢z Y
x y b

In the second solution of Menaechmus we are to draw the
parabola described in the first solution and also the parabola whose

representing the length of the parameter of each parabola is drawn in the same
straight line with the axis of the parabola, whereas Apollonius always draws the
parameter as a line starting from the vertex (or the end of a diameter) and
perpendicular to the axis (or diameter). It is possible that we may have here
an additional indication that the idea of the parameter as épfla or the latus
rectum originated with Apollonius; though it is aleo possible that the selection
of the directions of 40, BO was due to nothing more than accident, or may
have been made in order that the successive terms in the continued proportion
might appear in the figure in cyclic order, which corresponds moreover to their
relative positions in the mechanical solution attributed to Plato. For this solu-
tion see the same passage of Eutocius (4drchimedes, ed. Heiberg, m1. p. 66—70).
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vertex is 0, axis Oy and parameter equal to a. The point P where
the two parabolas intersect is given by

¥ =bx }
z*'=ay )’
whence, as before, §= ; =%

We have therefore, in these two solutions, the parabola and the
rectangular hyperbola in the aspect of loct any points of which
respectively fulfil the conditions expressed by the equations in (2);
and it is more than probable that the discovery of Menaechmus was
due to efforts to determine loci possessing these characteristic
properties rather than to any idea of a systematic investigation of
the sections of a cone as such. This supposition is confirmed by
the very special way in which, as will be seen presently, the conic
sections were originally produced from the right circular come;
indeed the special method is difficult to explain on any other
assumption. It is moreover natural to suppose that, after the
discovery of the convertibility of the cube-problem into that of
finding two mean proportionals, the two forms of the resulting
equations would be made the subject of the most minute and
searching investigation. The form (1) expressing the equality of
three ratios led naturally to the solution attributed to Plato, in which
the four lines representing the successive terms of the continued pro-
portion are placed mutually at right angles and in cyclic order round
a fixed point, and the extremities of the lines are found by means of
a rectangular frame, three sides of which are fixed, while the fourth
side can move freely parallel to itself. The investigation of the
form (2) of the equations led to the attempt of Menaechmus to
determine the loci corresponding thereto. It was known that the
locus represented by y*=x,,, where y is the perpendicular from
any point on a fixed straight line of given length, and =,, x, are the
segments into which the line is divided by the perpendicular, was a
circle; and it would be natural to assume that the equation y* = bz,
differing from the other only in the fact that a constant is sub-
stituted for one of the variable magnitudes, would be capable of
representation as a locus or a continuous curve. The only difficulty
would be to discover its form, and it was here that the cone was
introduced. :

If an explanation is needed of the circumstance that Menaech-
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mus should have had recourse to any solid figure, and to & cone in
particular, for the purpose of producing a plane locus, we find it in
the fact that solid geometry had already reached a high state of
development, as is shown by the solution of the problem of the two
mean proportionals by Archytas of Tarentum (born about 430 B.c.).
This solution, in itself perhaps more remarkable than any other,
determines a certain point as the intersection of three surfaces of
revolution, (1) a right cone, (2) a right cylinder whose base is a
circle on the axis of the cone as diameter and passing through the
apex of the cone, (3) the surface formed by causing a semicircle,
whose diameter is the same as that of the circular base of the cylinder
and whose plane is perpendicular to that of the circle, to revolve
about the apex of the cone as a fixed point so that the diameter of
the semicircle moves always in the plane of the circle, in other words,
the surface consisting of half a spli¢ ring whose centre is the apex of
the cone and whose inner diameter is indefinitely small. We find that
in the course of the solution (a) the intersection of the surfaces (2) and
(8) is said to be a certain curve (ypapurjv iva), being in fact a curve of
double curvature, (b) a circular section of the right cone is used in
the proof, and (c), as the penultimate step, two mean proportionals
are found in one and the same plane (triangular) section of the cone ®.

* The solution of Archytas is, like the others, given by Eutocius (p. 98—102)
and is so instructive that I cannot forbear to quote it. Suppose that AC, 4B are
the straight lines between which two mean proportionals are to be found. AC
is then made the diameter of a circle, and 4B is placed as a chord in the circle.

A semicircle is drawn with diameter 4C but in a plane perpendicular to that
of 4BC, and revolves about an axis through 4 perpendicular to the plane of 4BC.
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Thus the introduction of cones by Menaechmus should not in itself
be a matter for surprise.

Concerning Menaechmus’ actual method of deducing the proper-
ties of the conic sections from the cone we have no definite
information ; but we may form some idea of his probable procedure

A half-cylinder (right) is now erected with 4BC as base: this will cut the
surface described by the moving semicircle 4PC in a certain ocurve.

Lastly let CD, the tangent to the circle 4ABC at the point C, meet 4B
produced in D; and suppose the triangle 4CD to revolve about AC as axis.
This will generate the surface of a right ciroular cone, and the point B will
describe a semicircle BQE perpendicular to the plane of 4BC and having its
diameter BE at right angles to 4C. The surface of the cone will meet in some
point P the curve described on the cylinder. Let 4PC’ be the corresponding
position of the revolving semicircle, and let 4C’ meet the circle ABC in M.

Drawing PM perpendicular to the plane of 4 BC, we see that it must meet the
circumference of the circle 4 BC because P is on the oylinder which stands on
ABC as base. Let AP meet the ciroumference of the semicircle BQE in Q, and
let AC’ meet its diameter BE in N. Join PC’, QM, QN.

Then, since both semicircles are perpendicular to the plane 4BC, so is their
line of intersection QN. Therefore QN is perpendicular to BE.

Hence QN3*=BN.NE=AN.NM.

Therefore the angle AQM is a right angle.

But the angle C’P4 is also right: therefore MQ is parallel to C’P.

It follows, by similar triangles, that

C'Ad: AP=AP : AM=AM : 4Q.

That is, AC : AP=AP : AM=AM : AB,
and 4B, AM, AP, 4C are in continued proportion.

In the language of analytical geometry, if AC is the axis of z, a line through
4 perpendicular to AC in the plane of 4BC the axis of y, and a line through
4 parallel to P2f the axis of s, then P is determined as the intersection of the
surfaces

:’+y’+z’=§:’ ................................. (1),
ZIHYI=aT i 2),
Dyl d=a I F Y (8),
where AC=a, AB=).
From the first two equations

D +ytiat= (”’f—b!—')f ,
and from this equation and (8) we have
_a__ _JErEe_ Jory
N N ey v

or AC: AP=AP : AM=AM: AB.
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if we bear in mind (1) what we are told of the manner in which the
earlier writers on conics produced the three curves from particular
kinds of right circular cones, and (2) the course followed by Apol-
lonius (and Archimedes) in dealing with sections of any circular cone,
whether right or oblique.

Eutocius, in his commentary on the Conics of Apollonius, quotes
with approval a statement of Geminus to the effect that the ancients
defined a cone as the surface described by the revolution of & right-
angled triangle about one of the sides containing the right angle, and
that they knew no other cones than right cones. Of these they dis-
tinguished three kinds according as the vertical angle of the cone
was less than, equal to, or greater than, a right angle. Further
they produced only one of the three sections from each kind of cone,
always cutting it by a plane perpendicular to one of the generating
lines, and calling the respective curves by names corresponding to
the particular kind of cone; thus the ‘“section of a right-angled
oone ” was their name for a parabola, the * section of an acute-angled
cone” for an ellipse, and the * section of an obtuse-angled cone ” for
a hyperbola. The sections are so described by Archimedes.

Now clearly the parabola is the one of the three sections for the
production of which the use of a right-angled cone and a section at
right angles to a generator gave the readiest means. If N be a
point on the diameter BC of any circular section in such a cone, and
if NP be a straight line drawn in the plane of the section and perpen-
dicular to BC, meeting the circumference of the circle (and therefore
the surface of the cone) in P,

PN*=BN.NC.

Draw AN in the plane of the axial triangle 0.BC meeting the
generator OB at right angles in 4, and draw 4D parallel to BC

meeting OC in D; let DEF, perpendicular to 4D or BC, meet BC
in K and AN produced in F.

Then 4D is bisected by the axis of the cone, and therefore 4 F
is likewise bisected by it. Draw CG perpendicular to BC meeting
AF produced in G.

Now the angles BAN, BC@ are right ; therefore B, 4, C, @ are
concyclic, and

BN.NC=A4AN.NG.
But AN=CD=FG,;
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therefore, if 4 F meets the axis of the cone in Z,

NG=AF=24L.
Hence PN*=BN.NC
=24L.AN,

and, if 4 is fixed, 24 L is constant.

Thus P satisfies the equation
y'=24L.x,
where y= PN, x= AN.
Therefore we have only to select 4 as a point on OB such that

AL (or 40) = -g-, and the curve corresponding to the equation

y*'=bx is found.

The * parameter’ of the parabola is equal to twice the distance
between 4 and the point where AN meets the axis of the cone, or
d Surhaoia ris péxpt Tob dfovos, as Archimedes calls it*.

The discovery that the hyperbola represented by the equation
xy =ab, where the asymptotes are the coordinate axes, could be
obtained by cutting an obtuse-angled cone by a plane perpendicular
to a generator was not so easy, and it has been questioned whether
Menaechmus was aware of the fact. The property, zy = (const.), for
a hyperbola referred to its asymptotes does not appear in Apollonius
until the second Book, after the diameter-properties have been
proved. It depends on the propositions (1) that every series of
parallel chords is bisected by one and the same diameter, and
(2) that the parts of any chord intercepted between the curve and
the asymptotes are equal. But it is not necessary to assume that

* Cf. On Conoids and Spheroids, 8, p. 804.
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Menaechmus was aware of these general propositions. It is more
probable that he obtained the equation referred to the asymptotes
from the equation referred to the axes; and in the particular case
which he uses (that of the rectangular hyperbola) this is not difficult.

o,
m

»{
z

A

e

Thus, if P be a point on the curve and PK, PK’ be perpendicular
to the asymptotes CR, CR’ of a rectangular hyperbola, and if
RPNR' be perpendicular to the bisector of the angle between the

asymptotes, PK.PK'=the rect. CKPK'
= the quadrilateral CRPE,
since ACEK'= APRK.
Hence PK.PK'= ARCN- APEN
=} (CN*-PN?)
_#-g
==,

where z, y are the coordinates of P referred to the axes of the
hyperbola.

We have then to show how Menaechmus could obtain from an
obtuse-angled cone, by a section perpendicular to a generator, the
rectangular hyperbola

2~ 3 = (const) =5 , say,
or !I'===:x:,

where 2,, , are the distances of the foot of the ordinate y from the
points 4, 4’ respectively, and 44'=a.
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Take an obtuse-angled cone, and let BC be the dismeter of any
circular section of it. Let 4 be any point on the generator OB, and
through 4 draw AN at right angles to OB meeting CO produced in
4’ and BC in N.

Let y be the length of the straight line drawn from N perpen-
dicular to the plane of the axial triangle OBC and meeting the
surface of the cone. Then y will be determined by the equation

4*=BN.NC.

(<]

Let 4D be drawn, as before, parallel to BC and meeting OC in
D, and let OL, DF, CQ be drawn perpendicular to BC meeting AN
produced in L, F, G respectively.

Then, since the angles BAG, BCG are right, the points B, 4,C, @

are concyclic ;
S y*=BN.NC=AN.NG

But NG : AF=CN : AD, by similar triangles,
=A'N: A4'.
AF |,
Henoe yi:AN.ZI'AN
_24L .
=g 0%

and the locus of the extremity of y for different positions of the

circular section, or (in other words) the section of the cone by a

plane through 4 ¥ perpendicular to the plane of the axial triangle,
24L

satisfies the desired condition provided that v 1.
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This relation, together with the fact that the angle AOL is equal
to half the supplement of the angle 4°'04, enables us to determine
the poeition of the apex O, and therefore the vertical angle, of the
desired cone which is to contain the rectangular hyperbola.

For suppose O determined, and draw the circle circumscribing
A404’; this will meet LO produced in some point X, and 04’ will
be its diameter. Thus the angle 4'KO is right ;

<. 2 AA’K = complement of L ALK=. AOL=, LOC = 4A'OK,
whence it follows that the segments AKX, 4'K are equal, and
therefore K lies on the line bisecting 44’ at right angles.

But, since the angle A'KL is right, K also lies on the semicircle
with 4'L as diameter.

K is therefore determined by drawing that semicircle and then
drawing a line bisecting 44’ at right angles and meeting the
semicircle. Thus, K being found and KL joined, O is determined.

The foregoing construction for a rectangular hyperbola can be
equally well applied to the case of the hyperbola generally or of an
ellipse ; only the value of the constant 2:—:, will be different from
unity. In every case 24L is equal to the parameter of the ordinates
to 44', or the parameter is equal to twice the distance between the
vertex of the section and the axis of the cone, d Sixhacia rds péxp:
T0oV dfovos (a8 Archimedes called the principal parameter of the
parabola).

The assumption that Menaechmus discovered all three sections
in the manner above set forth agrees with the reference of
Eratosthenes to the ¢ Menaechmean triads,” though it is not im-
probable that the ellipse was known earlier as a section of a right
cylinder. Thus a passage of Euclid’s Phaenomena says, “if a cone
or cylinder be cut by a plane not parallel to the base, the resulting
section is a section of an acute-angled cone which is similar to a
Ovpeds,” showing that Euclid distinguished the two ways of pro-
ducing an ellipse. Heiberg (Litterargeschichtliche Studien dber
Euklid, p. 88) thinks it probable that fupeds was the name by which
Menaechmus called the curve®.

It is a question whether Menaechmus used mechanical contriv-

* The expression # 7ol Gupeoi for the ellipse ocours several times in Proclus
and partioularly in a passage in which Geminus is quoted (p. 111); and it
would seem as though this name for the curve was more common in Geminus’
time than the name ‘‘ellipse.” [Bretschneider, p. 176.]



MENAECHMUS. xxix

ances for effecting the construction of his curves. The idea that he
did so rests (1) upon the passage in the letter of Eratosthenes*® to
the effect that all who had solved the problem of the two mean pro-
portionals had written theoretically but had not been able to effect
the actual construction and reduce the theory to practice except, to
a certain extent, Menaechmus and that only with difficulty, (2) upon
two well known passages in Plutarch. One of these latter states
that Plato blamed Eudoxus, Archytas and Menaechmus for trying
to reduce the doubling of the cube to instrumental and mechanical
constructions (as though such methods of finding two mean pro-
portionals were not legitimate), arguing that the good of geometry
was thus lost and destroyed, as it was brought back again to the world
of sense instead of soaring upwards and laying hold of those eternal
and incorporeal images amid which God is and thus is ever Godt;
the other passage (Vita Marcelli 14, § 5) states that, in consequence
of this attitude of Plato, mechanics was completely divorced from
geometry and, after being neglected by philosophers for a long time,
became merely a part of the science of war. I do not think it
follows from these passages that Menaechmus and Archytas made
machines for effecting their constructions; such a supposition would
in fact seem to be inconsistent with the direct statement of
Eratosthenes that, with the partial exception of Menaechmus, the
three geometers referred to gave theoretical solutions only. The words
of Eratosthenes imply that Archytas did not use any mechanical
contrivance, and, as regards Menaechmus, they rather suggest such
a method as the finding of a large number of points on the curvei.
It seems likely therefore that Plato’s criticism referred, not to the

* BSee the passage from Eratosthenes, translated above, p. xviii. The Greek
of the sentence in question is : quuBéBnxe 3¢ xdow adrols dwodewrinds yeypapéras,
xespovpyfioas 3 xal els xpeiar weoeir ph dtwacfar AWy dxl Bpaxt v rob Mevéxuov
xal ravra Svoxepds.

+ Awd xal IINdrwr adrds éuéuyaro Tods wepl Eodotor xal’Apxirar xal Mévaixuor
els dpyarixds xal punxarixds xarasxevds Td» 7ol orepeoi Sixhaciacmdy dwdyer
émixapoirras (Gorep wepwpévovs 3i1d Noyov [ser. 8¢ dNéyov] 3o uéoas drdhoyor uh
[sor. §] wapelxoc Nafeir). dwéAAvobas 1dp ofrw xal Siagfelpesfas 10 yewperplas
dyalbo, adlis éxl Td alofgra wakwdpouoions xal uh Pepouérns dvw, und' drriap-
Pavouérys riw dilww xal dowudrwr elxbvuw, xpds alowep v & Oeds del Oebs éor.
(Quaest. conviv, VL. 2. 1.)

1 This is partly suggested by Eutocius’ commentary on Apollonius 1. 20, 21,
where it is remarked that it was often necessary for want of instruments to
describe a oconio by a continnous series of points. This passage is quoted by
Dr Taylor, Ancient and Modern Geometry of Conics, p. xxxiii.
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use of machines, but simply to the introduction of mechanical
considerations in each of the three solutions of Archytas, Eudoxus,
and Menaechmus.

Much has been written on the difficulty of reconciling the
censure on Archytas and the rest with the fact that a mechanical
solution is attributed by Eutocius to Plato himself. The most
probable explanation is to suppose that Eutocius was mistaken in
giving the solution as Plato’s ; indeed, had the solution been Plato’s,
it is scarcely possible that Eratosthenes should not have mentioned
it along with the others, seeing that he mentions Plato as having
been consulted by the Delians on the duplication problem.

Zeuthen has suggested that Plato’s objection may have referred,
in the case of Menaechmus, to the fact that he was not satisfied to
regard a curve as completely defined by a fundamental plane property
such as we express by the equation, but must needs give it a geo-
metrical definition as a curve arrived at by cutting a cone, in order to
make its form realisable by the senses, though this presentation of
it was not made use of in the subsequent investigations of its
properties ; but this explanation is not so comprehensible if applied
to the objection to Archytas’ solution, where the curve in which the
revolving semicircle and the fixed half-cylinder intersect is a curve
of double curvature and not a plane curve easily represented by an
equation.



CHAPTER IL
ARISTAEUS AND EUCLID.

WEe come next to the treatises which Aristaeus the elder’ and
Euclid are said to have written ; and it will be convenient to deal
with these together, in view of the manner in which the two names
are associated in the description of Pappus, who is our authority
upon the contents of the works, both of which arelost. The passage
of Pappus is in some places obscure and some sentences are put in
brackets by Hultach, but the following represents substantially its
effect®. “The four books of Euclid’s conics were completed by
Apollonius, who added four more and produced eight books of conics.
Aristaeus, who wrote the still extant five books of solid loct con-
nected with the conics, called one of the conic sections the section
of an acute-angled cone, another the section of a right-angled cone
and the third the section of an obtuse-angled cone.... Apollonius
says in his third book that the ‘locus with respect to three or four
lines’ had not been completely investigated by Euclid, and in fact
neither Apollonius himself nor any one else could have added in the
least to what was written by Euclid with the help of those properties
of conics only which had been proved up to Euclid’s time; Apollonius
himself is evidence for this fact when he says that the theory of
that locus oould not be completed without the propositions which
he had been obliged to work out for himself. Now Euclid—regard-
ing Aristaeus as deserving credit for the discoveries he had already
made in conics, and without anticipating him or wishing to construct
anew the same system (such was his scrupulous fairness and his
exemplary kindliness towards all who could advance mathematical
science to however small an extent), being moreover in no wise con-
tentious and, though exact, yet no braggart like the other—wrote so
much about the locus as was possible by means of the conics of
Aristaeus, without claiming completeness for his demonstrations.

* See Pappus (ed. Hultsch), pp. 673—678.
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Had he done so he would certainly have deserved censure, but, as
matters stand, he does not by any means deserve it, seeing that
neither is Apollonius called to account, though he left the most part
of his conics incomplete. Apollonius, too, has been enabled to add
the lacking portion of the theory of the locus through having become
familiar beforehand with what had already been written about it by
Euclid and having spent a long time with the pupils of Euclid in
Alexandria, to which training he owed his scientific habit of mind.
Now this ‘locus with respect to three and four lines,’ the theory of
which he is so proud of having added to (though he should rather
acknowledge his obligations to the original author of it), is arrived at
in this way. If three straight lines be given in position and from
one and the same point straight lines be drawn to meet the three
straight lines at given angles, and if the ratio of the rectangle
contained by two of the straight lines 8o drawn to the square of the
remaining one be given, then the point will lie on a solid locus given
in poeition, that is on one of the three conic sections. And, if
straight lines be drawn to meet, at given angles, four straight lines
given in position, and the ratio of the rectangle under two of the
lines so drawn to the rectangle under the remaining two be given,
then in the same way the point will lie on a conic section given in
position.”

It is necessary at this point to say a word about the solid locus
(orepeds romos). Proclus defines a locus (rowos) as “ a position of a
line or a surface involving one and the same property” (ypapuuis %
impavelas Oéois xowoioa tv xal ralrdv ovprrwpa), and proceeds to say
that loci are divided into two classes, line-loci (rdwou wpods ypappuais)
and surfaceloci (rowor wpds dmpavelass). The former, or loci which
are lines, are again divided by Proclus into plane locs and solid loci
(rdmwor érireSot and réwor arepeoi), the former being simply generated
in a plane, like the straight line, the latter from some section of a
solid figure, like the cylindrical helix and the conic sections.
Similarly Eutocius, after giving as examples of the plane locus
(1) the circle which is the locus of all points the perpendiculars
from which on a finite straight line are mean proportionals between
the segnents into which the line is divided by the foot of the
perpendicular, (2) the circle which is the locus of a point whose
distances from two fixed points are in a given ratio (a locus investi-
gated by Apollonius in the réwos dvalvduevos), proceeds to say that
the so-called solid loci have derived their name from the fact that
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they arise from the cutting of solid figures, as for instance the
sections of the cone and several others®. Pappus makes a further
division of those line-loci which are not plane locs, i.e. of the class
which Proclus and Eutocius call by the one name of solid loci, into
solid loct (orepeoi Toxor) and linear loct (rowo ypappwxol). Thus, he
says, plane loci may be generally described as those which are
straight lines or circles, solid loci as those which are sections of
cones, i.e. parabolas or ellipses or hyperbolas, while linear loci are lines
such as are not straight lines, nor circles, nor any of the said three
oconic sectionst. For example, the curve described on the cylinder in
Archytas’ solution of the problem of the two mean proportionals is
a linear locus (being in fact a curve of double curvature), and such
a locus arises out of, or is traced upon, a locus which is a surface
(rowos mwpos émpaveia). Thus linear loci are those which have a
more complicated and unnatural origin than straight lines, circles
and oonics, “being generated from more irregular surfaces and
intricate movements}.” .

It is now possible to draw certain conclusions from the passage
of Pappus above reproduced.

1. The work of Aristaeus on solid loci was concerned with those
loci which are parabolas, ellipses, or hyperbolas; in other words, it
was a treatise on conics regarded as loci.

2. This book on solid loci preceded that of Euclid on conics
and was, at least in point of originality, more important. Though
both treatises dealt with the same subject-matter, the object
and the point of view were different; had they been the same,
Euclid could scarcely have refrained, as Pappus says he did, from an
attempt to improve upon the earlier treatise. Pappus’ meaning
must therefore be that, while Euclid wrote on the general theory of
conics as Apollonius did, he yet confined himself to those properties
which were necessary for the analysis of the solid loct of Aristaeus.

3. Aristaeus used the names ‘“section of a right-angled, acute-
angled, and obtuse-angled cone,” by which up to the time of
Apollonius the three conic sections were known.

4, The thresline and fourline locus must have been, albeit
imperfectly, discussed in the treatise of Aristaeus; and Euclid, in

* Apollonius, Vol. 11, p. 184, + Pappus, p. 662.

1 Pappus, p. 270 : ypauual ydp Erepas xapd Tds elpnuévas els Thy xaracxeviy
Aaufdrorras ouwrépar éxovoar Ty yéveow xal BeBiacuérmy palor, & draxro-
répw éxuparadv xal xrfoewy émixexheyubvay yervipevai.

H. C. c
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dealing synthetically with the same locus, was unable to work out
the theory completely because he only used the conics of Aristaeus
and did not add fresh discoveries of his own.

5. The Conics of Euclid was superseded by the treatise of
Apollonius, and, though the Solid Loci of Aristaeus was still extant
in Pappus’ time, it is doubtful whether Euclid’s work was so.

The subject of the three-line and fourdine locus will be discussed
in some detail in connexion with Apollonius; but it may be
convenient to mention here that Zeuthen, who devotes some bril-
liant chapters to it, conjectures that the imperfection of the
investigations of Aristaeus and Euclid arose from the absence of
any conception of the hyperbola with two branches as forming
one curve (which was the discovery of Apollonius, as may be in-
ferred even from the fulness with which he treats of the double-
hyperbola). Thus the proposition that the rectangles under the
segments of intersecting chords in tixed directions are in a constant
ratio independent of the position of the point of intersection is
proved by Apollonius for the double-hyperbola as well as for the
single branch and for the ellipse and parabola. So far therefore as
the theorem was not proved for the double-hyperbola before Apollo-
nius, it was incomplete. On the other hand, had Euclid been in
possession of the proof of the theorem in its most general form,
then, assuming e.g. that the three-line or four-line locus was reduced
by Aristaeus’ analysis to this particular property, Euclid would
have had the means (which we are told that he had not) of
completing the synthesis of the locus also. Apollonius probably
mentions Euclid rather than Aristaeus as having failed to complete
the theory for the reason that it was Euclid’s treatise which was on
the same lines as his own; and, as Euclid was somewhat later in
time than Aristaeus, it would in any case be natural for Apollonius
to regard Euclid as the representative of the older and defective
investigations which he himself brought to completion.

With regard to the contents of the Conics of Euclid we have the
following indications.

1. The scope must have been generally the same as that of the
first three Books of Apollonius, though the development of the
subject was more systematic and complete in the later treatise.
This we infer from Apollonius’ own preface as well as from the
statement of Pappus quoted above.

2. A more important source of information, in the sense of
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giving more details, is at hand in the works of Archimedes, who
frequently refers to propositions in conics as well known and not
requiring proof. Thus

(a) The fundamental property of the ellipse,

PN':AN.NA'=P'N": AN'.N'A' = BC* : AC",
that of the hyperbola,
PN*: AN .NA'=P'N": AN'.N'A,
and that of the parabola,
PN%=p,. AN,
are assumed, and must therefore presumably have been contained in
Euclid’s work.

(5) At the beginning of the treatise on the area of a
parabolic segment the following theorems are simply cited.

(1) If PV be a diameter of a segment of a parabola and
QVq a chord parallel to the tangent at P, Q7 = Vq.

(2) 1If the tangent at Q meet VP produced in 7', PV = PT.

(3) If QVq, @'V’ be two chords parallel to the tangent
at P and bisected in V, V',

PV PV =QV*:Q' V"

““ And these propositions are proved in the elements of conics” (i.e. in
Euclid and Aristaeus).

(¢) The third proposition of the treatise On Conotds and
Spheroids begins by enunciating the following theorem : If straight
lines drawn from the same point touch any conic section whatever,
and if there be also other straight lines drawn in the conic section
parallel to the tangents and cutting one another, the rectangles
contained by the segments (of the chords) will have to one another
the same ratio as the squares of the (parallel) tangents. ‘ And this
is proved in the elements of conics.”

(d) In the same proposition we find the following property of
the parabola: If p, be the parameter of the ordinates to the axis,
and QQ’ be any chord not perpendicular to the axis such that the
diameter PV bisects it in ¥, and if @D be drawn perpendicular
to PV, then (says Archimedes), supposing p to be such a length

that
@V : QD =p : p,,
the squares of the ordinates to P¥ (which are parallel to QQ’) are
equal to the rectangles applied to a straight line equal to p and of
c2
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width equal to the respective intercepts on PV towards P. ¢ For
this has been proved in the conics.”

In other words, if p,, p are the parameters corresponding
respectively to the axis and the diameter bisecting Q@’,

P:p.=QV*: QD"

(For a figure and a proof of this property the reader is referred
to the chapter on Archimedes p. liii.)

Euclid still used the old names for the three conic sections, but
he was aware that an ellipse could be obtained by cutting a cone in
any manner by a plane not parallel to the base (assuming the
section to lie wholly between the apex of the cone and its base), and
also by cutting a cylinder. This is expressly stated in the passage
quoted above (p. xxviii) from the Phaenomena. But it is scarcely
possible that Euclid had in mind any other than a right cone ; for,
had the cone been oblique, the statement would not have been true
without a qualification excluding the circular sections subcontrary
to the base of the ocone.

Of the contents of Euclid’s Surface-locs, or 1owor wpds émudavely,
we know nothing, though it is reasonable to suppose that the
treatise dealt with such loci as the surfaces of cones, spheres and
cylinders, and perhaps other surfaces of the second degree. But
Pappus gives two lemmas to the Surface-loci, one of which (the
second) is of the highest importance®*. This lemma states, and
gives a complete proof of, the proposition that the locus of a point
whose distance from a given point is in a given ratio to its distance
Jrom a fixed line is a conic section, and is an ellipse, a parabola, or a
hyperbola according as the given ratio is less than, equal to, or greater
than, unity.

The proof in the case where the given ratio is different from
unity is shortly as follows.

Let S be the fixed point, and let SX be the perpendicular from §
on the fixed line. Let P be any point on the locus and PN perpen-
dicular to SX, so that SP is to NX in the given ratio. Let ¢ be
this ratio, so that

PN' + SN*
&= Y
Now let K be a point on the line SX such that
SN?

¢=¥r

* Pappus (ed. Hultach) p. 1006 seqq.
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then, if X’ be another point so taken that NX = NK', we shall have

s PN+SH'_SN' _ PN' PN’
—¥X* "N NX -~k XK.XK'

The position of the points &V, X, K' changes with the position of P.
If we suppose 4 to be the point on which & falls when K coincides
with X, we have

S4 ___S¥
Aix-°“¥x
Xk ew %

It follows that 4x NK are both known and equal, and therefore

S4°’ SN
SX SK
§4° S ¥ both known and equal. Hence either of the latter

expressions is equal to
SX-SK XK

SA—sn’ ° 4
which is therefore known
[-5511)
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In like manner, if A’ be the point on which &N falls when X'
. . S4’
coincides with X, we have YD

find that the ratio i:'%' is known and is equal to

SX 1
s [=1-3):

XK. XX’
AN . A'N

T= ¢*, from above,

=e¢; and in the same way we shall

Hence, by multiplication, the ratio has a known value.

PN

XK. X
we have %:(mnst.)[:e’(l~},-)=l~d’].

This is the property of a central conic, and the conic will be an
ellipse or a hyperbola according as ¢ is less or greater than 1; for in
the former case the points 4, A’ will lie on the same side of X and
in the latter case on opposite sides of X, while in the former case
& will lie on 44’ and in the latter & will lie on A4’ produced.

The case where ¢ =1 is easy, and the proof need not be given
here.

We can scarcely avoid the conclusion that Euclid must have
used this proposition in the treatise on surfaceloci to which Pappus’
lemma refers, and that the necessity for the lemma arose out of the
fact that Euclid did not prove it. It must therefore have been
assumed by him as evident or quoted as well known. It may
therefore well be that it was taken from some known work®, not
impossibly that of Aristaeus on solid loci.

That Euclid should have been acquainted with the property of
conics referred to the focus and directrix cannot but excite surprise

And, since

* It is interesting to note in this connexion another passage in Pappus
where he is discussing the various methods of trisecting an angle or circular
aro. He gives (p. 284) a method which * some™ had used and which involves
the construction of a hyperbola whose eccentricity is 3.

Suppose it is a segment of a circle which has to be divided into three equal

R X N L]

parts. Suppose it done, and let SP be one-third of the arc SPR. Join RP, SP.
Then the angle RSP is equal to twice the angle SRP.
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seeing that this property does not appear at all in Apollonius, and
the focus of a parabola is not even mentioned by him. The ex-
planation may be that, as we gather from the preface of Apollonius,
he does not profess to give all the properties of conics known to
him, and his third Book is intended to give the means for the
synthesis of solid loci, not the actual determination of them. The
focal property may therefore have been held to be a more suitable
subject for a treatise on solid loci than for a work on conics proper.
We must not assume that the focal properties had not, up to
the time of Apollonius, received much attention. The contrary
is indeed more probable, and this supposition is supported by a
remarkable coincidence between Apollonius’ method of determining
the foci of a central conic and the theorem contained in Pappus’
31st lemma to Euclid’s Porisms.

This theorem is as follows: Let 4'4 be the diameter of a semi-
circle, and from 4, 4 let two straight lines be drawn at right angles
to A’A. Let any straight line RR’ meet the two perpendiculars
in R, R’ respectively and the semicircle in ¥. Further let Y.S be
drawn perpendicular to RR’, meeting 4'A produced in S.

It is to be proved that

AS.S4'=AR. A'R,
i.e. that SA:AR=A'R : A'S.

Now, since X', 4, Y, § are concyclic, the angle 4'SK’ is equal to

the angle 4'Y R’ in the same segment. '

Let SE bisect the angle RSP, meeting RP in E aud draw EX, PN perpen-
dicular to RS.
Then the angle ERS is equal to the angle ESR, so that RE=ES ;

.. RX=XS, and X is given.

Also RS : SP=RE : EP=RX: XN;
~. RS : RX=SP : NX.
But RS=2RX;
. SP=3NX,
whence SP3=4NX?,
or PN34+SN3=4NX2.

** 8inoe then the two points S, X are given, and PN is perpendicular to §X,
while the ratio of NX3 to PN2+ SN? is given, P lies on a hyperbola.”
This is obviously a particular case of the leama to the réxo xpos émparelq,

NX?
and the ratio PN TT N} is stated in the same form in both cases.
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Similarly, the angle 4 RS is equal to the angle 4 ¥S.
But, since 4'YA4, R'YS are both right angles,
LtA'YR =L AYS;
So wA'SR' = ARS;
hence, by similar triangles,
AR : A'S=84: AR,
or AS.S4'=AR.4'R.

» It follows of course from this that, if the rectangle AR.A'R’ is
constant, 45..54 is also constant and § is a fixed point.

It will be observed that in Apollonius, m. 45 [Prop. 69], the
complete circle is used, 4R, A'R’ are tangents at the extremities of
the axis 44’ of a conic, and RR’ is any other tangent to the conic.
He has already proved, 11 42 [Prop. 66], that in this case
AR.A'R' = BC*, and he now takes two points S, S’ on the axis
or the axis produced such that

AS.SA'=AS'.8'A’ = BC".
He then proves that RR’' subtends a right angle at each of the
points 8, §’, and proceeds to deduce other focal properties.

Thus Apollonius’ procedure is exactly similar to that in the
lemma to Euclid’s Porisms, except that the latter does not bring in
the conic. This fact goes far to support the view of Zeuthen as to
the origin and aim of Euclid’s Porisms, namely, that they were
partly a sort of by-product in the investigation of oonic sections and
partly a means devised for the further development of the subject.



CHAPTER III

ARCHIMEDES.,

No survey of the history of conic sections could be complete
without a tolerably exhaustive account of everything bearing on the
subject which can be found in the extant works of Archimedes.

There is no trustworthy evidence that Archimedes wrote a
separate work on conics. The idea that he did so rests upon no more
substantial basis than the references to xwrwxd oroixeia (without any
mention of the name of the author) in the passages quoted above,
which have by some been assumed to refer to a treatise by Archi-
medes himself. But the assumption is easily seen to be unsafe when
the references are compared with a similar reference in another
passage®* where by the words & tjj oroixewiocee the ZElements
of Euclid are undoubtedly meant. Similarly the words *this is
proved in the elements of conics” simply mean that it is found in
the text-books on the elementary principles of conics. A positive
proof that this is so may be drawn from a passage in Eutocius’
.commentary on Apollonius. Heracleidest, the biographer of Archi-
medes, is there quoted as saying that Archimedes was the first to
invent theorems in conics, and that Apollonius, having found that
they had not been published by Archimedes, appropriated them};

* On the Sphere and Cylinder, 1. p. 24. The proposition quoted is Eucl. x11. 2.

+ The name appears in the passage referred to as 'HpdxAewos. Apollonius
(ed. Heiberg) Vol. 1. p. 168.

t Heracleides’ statement that Archimedes was the first to *‘invent”
(éxwoficas) theorems in conics is not easy to explain. Bretschneider (p. 156)
puts it, as well as the charge of plagiarism levelled at Apollonius, down to the
malioe with which small minds would probably seek to avenge themselves for
the contempt in which they would be held by an intellectual giant like
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and Eutocius subjoins the remark that the allegation is in his
opinion not true, ¢ for on the one hand Archimedes appears in many
passages to have referred to the elements of conics as an older
treatise (s walatorépas), and on the other hand Apollonius does not
profess to be giving his own discoveries.” Thus Eutocius regarded
the reference as being to earlier expositions of the elementary
theory of conics by other geometers: otherwise, i.e. if he had
thought; that Archimedes referred to an earlier work of his own, he
would not have used the word walatorépas but rather some expression
like wpdrepov Ixdedopévys.

In searching for the various propositions in conics to be found
in Archimedes, it is natural to look, in the first instance, for indica-
tions to show how far Archimedes was aware of the possibility of
producing the three conic sections from cones other than right cones
and by plane sections other than those perpendicular to a generator
of the cone. We observe, first, that he always uses the old names
“section of a right-angled cone” &c. employed by Aristaeus, and
there is no doubt that in the three places where the word éAewn:s
appears in the Mss. it has no business there. But, secondly, at the
very beginning of the treatise On Conotds and Spheroids we find the
following : “1f a cone be cut by a plane meeting all the sides of the
cone, the section will be either a circle or a section of an acute-
angled cone” [i.e. an ellipse]. The way in which this proposition was
proved in the case where the plane of section is at right angles to the
plane of symmetry can be inferred from propositions 7 and 8 of the
same treatise, where it i8 shown that it is possible to find a cone of
which a given ellipse is a section and whose apex is on a straight
line drawn from the centre of the ellipse (1) perpendicular to the
plane of the ellipse, (2) not perpendicular to its plane, but lying in
a plane at right angles to it and passing through one of the axes
of the ellipse. The problem evidently amounts to determining the

Apollonius. Heiberg, on the other hand, thinks that this is unfair to Hera-
oleides, who was probably misled into making the charge of plagiarism by finding
many of the propositions of Apollonius already quoted by Archimedes as known.
Heiberg holds also that Heracleides did not intend to ascribe the actual
invention of conics to Archimedes, but only meant that the elementary theory of
conio sections as formulated by Apollonius was due to Archimedes ; otherwise
Eutociug’ contradiction would have taken a different form and he would not
have omitted to point to the well-known fact that Mensechmus was the
discoverer of the conic sections,
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circular sections of the cone, and this is what Archimedes proceeds
to do.

(1) Conceive an ellipse with BB’ as its minor axis and
lying in u plane perpendicular to the plane of the paper : suppose
the line CO drawn perpendicular to the plane of the ellipse, and

let O be the apex of the required cone. Produce 0B, 0C, OB, and
in the same plane with them draw BED meeting OC, OB’ produced
in E, D respectively, and in such a direction that

BE.ED:E0*=C4*:C0¢

(where C4 is half the major axis of the ellipse).
And this is possible, since

BE.ED:EO*>BC.CH :C0~

[Both the construction and this last proposition are assumed as
known.]

Now conceive a circle with BD as diameter drawn in a plane
perpendicular to that of the paper, and describe a cone passing
through this circle and having O for its apex.

We have then to prove that the given ellipse is a section of this
cone, or, if P is any point on the ellipse, that P lies on the surface
of the cone.

Draw PN perpendicular to BB. Join OV, and produce it to
meet BD in M, and let #Q be drawn in the plane of the circle on
BD as diameter and perpendicular to BD, meeting the circumference
of the circle in @. Also draw FG, HK through E, M respectively
each parallel to BB'.
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Now QM . HM .MK=BM.MD:HM. MK
=BE.ED: FE.EG
=(BE.ED: E0%.(EO*: FE.EG)
=(C4*:C0%.(CO*: BC.CPh)
=CA*: BC.CH
=PN*:BN.NPB.

.. QM*: PM=HM.MK:BN.NB

=O0M*':0N?,

whence, since PN, QM are parallel, OPQ is a straight line.

But @Q is on the circumference of the circle on BD as diameter ;
therefore OQ is a generator of the cone, and therefore P lies on the
cone.

Thus the oone passes through all points of the given ellipse.

(2) Let OC not be perpendicular to 44’, one of the axes of
the given ellipse, and let the plane of the paper be that containing
A4’ and OC, so that the plane of the ellipse is perpendicular to that
plane. Let BB’ be the other axis of the ellipse.

Now 04, 04’ are unequal. Produce 04’ to D so that O4 = OD.
Join 4D, and draw F@G@ through C parallel to it.



ARCHIMEDES. xlv

Conceive a plane through 4. perpendicular to the plane of the
paper, and in it describe

either (a), if CB* = F(C . CG, a circle with diameter 4.0,

or (b), if not, an ellipse on 4D as axis such that if d be the other

axis
d':AD*=CHB*: FC.CG.

Take a cone with apex O and passing through the circle or
ellipse just drawn. This is possible even when the curve is an
ellipse, because the line from O to the middle point of 4.D is perpen-
dicular to the plane of the ellipse, and the construction follows that
in the preceding case (1).

Let P be any point on the given ellipse, and we have only to
prove that P lies on the surface of the cone so described.

Draw PN perpendicular to 44’. Join ON, and produce it to
meet AD in M. Through M draw HK parallel to 4'A. Lastly, draw
MQ perpendicular to the plane of the paper (and therefore perpen-
dicular to both HK and 4D) meeting the ellipse or circle about 4D
(and therefore the surface of the cone) in Q.

Then

QM': HM MK =(QM*:DM. MA).(DM.MA : HM . MK)
=(d*: AD%).(FC.CG:4'C.CA)
=(CB*: FC.CG).(FC.CG:4'C.CA4)
=CB*:4'C.CA
=PN*: A'N.NA.
S QM :PN*=HM .MK:A'N.NA
=0M*: ON?,

Hence OPQ is a straight line, and, Q being on the surface of the
cone, it follows that P is also on the surface of the cone.

The proof that the three conics can be produced by means of
sections of any circular cone, whether right or oblique, which are
made by planes perpendicular to the plane of symmetry, but not
necessarily perpendicular to a generating line of the cone, is of course
essentially the same as the proof for the ellipse. It is therefore to
be inferred that Archimedes was equally aware of the fact that the
parabola and the hyperbola could be found otherwise than by th
old method. The continued use of the old names of the curves is of
no importance in this connexion because the ellipse was still called
the “section of an acute-angled cone” after it was discovered that
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it could he produced by means of a plane cutting all the generating
lines of any cone, whatever its vertical angle. Heiberg concludes
that Archimedes only obtained the parabola in the old way
because he describes the parameter as double of the line between
the vertex of the parabola and the axis of the cone, which is only
correct in the case of the right-angled cone; but this is no more
- an objection to the continued use of the term as a well-known
description of the parameter than it is an objection to the con-
tinued use by Archimedes of the term ¢‘section of an acute-angled
cone” that the ellipse had been found to be obtainable in a different
manner. Zeuthen points out, as further evidence, the fact that we
have the following propositions enunciated by Archimedes without
proof (On Conoids and Spheroids, 11):

(1) «If a right-angled conoid [a paraboloid of revolution] be
cut by a plane through the axis or parallel to the axis, the section
will be a section of a right-angled cone the same as that compre-
hending the figure (d alrd rd wepihapBavovog 16 oxfpa). And its
diameter [axis] will be the common section of the plane which
cuts the figure and of that which is drawn through the axis perpen-
dicular to the cutting plane.

(2) “If an obtuse-angled conoid [a hyperboloid of revolution] be
cut by & plane through the axis or parallel to the axis or through
the apex of the cone enveloping (wrepiéxorros) the conoid, the section
will be a section of an obtuse-angled cone: if [the cutting plane
passes] through the axis, the same as that comprehending the figure:
if parallel to the axis, similar to it: and if through the apex of the
cone enveloping the conoid, not similar. And the diameter [axis] of
the section will be the common section of the plane which cuts the
figure and of that drawn through the axis at right angles to the
cutting plane.

(8) “If any one of the spheroidal figures be cut by a plane
through the axis or parallel to the axis, the section will be a section of
an acute-angled cone: if through the axis, the actual section which
comprehends the figure : if parallel to the axis, similar to it.”

Archimedes adds that the proofs of all these propositions are
obvious. It is therefore tolerably certain that they were based
on the same essential principles as his earlier proofs relating to the
sections of conical surfaces and the proofs given in his later investi-
gations of the elliptic sections of the various surfaces of revolutiou.
These depend, as will be seen, on the proposition that, if two chords
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drawn in fixed directions intersect in a point, the ratio of the rect-
angles under the segments is independent of the position of the
point. This corresponds exactly to the use, in the above proofs with

regard to the cone, of the proposition that, if straight lines /G, IIK
are drawn in fixed directions between two lines forming an angle,
and if FG, HK meet in any point M, the ratio F . MG : H)M . MK
is constant; the latter property being in fact the particular case
of the former where the conic reduces to two straight lines.

The following is a reproduction, given by way of example, of the
proposition (13) of the treatise On Conoids and Spheroids which proves
that the section of an obtuse-angled conoid [a hyperboloid of re-
volution] by any plane which meets all the generators of the en-
veloping cone, and is not perpendicular to the axis, is an ellipse
whose major axis is the part intercepted within the hyperboloid of
the line of intersection of the cutting plune and the plane through
the axis perpendicular to it.

Suppose the plane of the paper to be this latter plane, and the
line BC to be its intersection with the plane of section which is
perpendicular to the plane of the paper. Let @ be any point on
the section of the hyperboloid, and draw QM perpendicular to BC.
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Let EAF be the hyperbolic section of the hyperboloid made by
the plane of the paper and 4D its axis. Through M in this plane
draw EDF at right angles to 4.D meeting the hyperbola in E, F.

Then the section of the hyperboloid by the plane through EF
perpendicular to 4D is a circle, QM lies in its plane, and Q is a
point on it.

Therefore QM'=EM_MPF.

Now let PT be that tangent to the hyperbola which is parallel
to BC, and let it meet the axis in 7 and the tangent at 4 in O.
Draw PX perpendicular to 4.D.

Then QM*: BM MC=EM.MF:BM.MC
=04*: 0P,
which is constant for all positions of Q on the section through BC.
Also 04 < OP, because it is a property of hyperbolas that

AT < AN, and therefore 07'< OP,

whence a fortiori 04 <OP.

Therefore @ lies on an ellipse whose major axis is BC.

It is also at once evident that all parallel elliptic sections are
similar.

Archimedes, it will be seen, here assumes two propositions

() that the ratio of the rectangles under the segments of
intersecting chords in fixed directions is equal to the constant ratio
of the squares on the parallel tangents to the conic, and

(b) that in a hyperbola AN > AT.

The first of these two propositions has already been referred to
as having been known before Archimedes’ time [p. xxxv] ; the second
assumption is also interesting. It is not easy to see how the latter

_oould be readily proved except by means of the general property
that, if PP’ be a diameter of a hyperbola and from any point Q on
the curve the ordinate @V be drawn to the diameter, while the
tangent Q7 meets the diameter in T, then

TP :TP=PV:PYV,

so that we may probably assume that Archimedes was aware of this
property of the hyperbola, or at least of the particular case of it
where the diameter is the axis.

1t is certain that the corresponding general proposition for the
parabola, PV = PT, was familiar to him ; for he makes frequent use
of it.
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As a preliminary to collecting and arranging in order the other
properties of conics either assumed or proved by Archimedes, it may
be useful to note some peculiarities in his nomenclature as compared
with that of Apollonius. The term diameter, when used with
reference to the complete conic as distinguished from a segment, is
only applied to what was afterwards called the axis, In an ellipss
the major axis is d pelfwv Suiperpos and the minor axis d dAdoowy
Sudperpos. For the hyperbola, by the ‘diameter’ is only understood
that part of it which is within the (single-branch) hyperbola. This we
infer from the fact that the ‘diameter’ of a hyperbola is identified
with the axis of the figure described by its revolution about the
diameter, while the axis of the hyperboloid does not extend outside
it, a8 it meets (dwrerar) the surface in the vertex (xopugd), and the
distance between the vertex and the apex of the enveloping cone
[the centre of the revolving hyperbola] is ¢ the line adjacent to the
axis’ (d woreovoa 7¢ dfovt). In the parabola diameters other than
the axis are called ‘the lines parallel to the diameter’; but in a
segment of a parabola that one which bisects the base of the segment
is called the diameter of the segment (tod Tpdparos). In the ellipse
diameters other than the axes have no special name, but are simply
‘lines drawn through the centre.’

The term axis is only used with reference to the solids of
revolution. For the complete figure it is the axis of revolution ; for
a segment cut off by a plane it is the portion intercepted within the
segment of the line, (1) in the paraboloid, drawn through the vertex
of the segment parallel to the axis of revolution, (2) in the hyper-
boloid, joining the vertex of the segment and the apex of the
enveloping cone, (3) in the spheroid, joining the vertices of the two
segments into which the figure is divided, the vertex of any segment
being the point of contact of the tangent plane parallel to the base.
In a spheroid the ‘diameter’ has a special signification, meaning
the straight line drawn through the centre (defined as the middle
point of the axis) at right angles to the axis. Thus we are told
that ¢“those spheroidal figures are called similar whose axes have
the same ratio to the diameters*.”

The two diameters (axes) of an ellipse are called conjugate
(ovlvyeis).

The asymptotes of a hyperbola are in Archimedes the straight
lines mearest to the section of the obtuse-angled cone (al &yyiora

* On Conoids and Spheroids, p. 282,
H.C. d
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deiac 1is Tob duBAvywriov xuwvov ropds), while what we call the
centre of a hyperbola is for Archimedes the point in which the
nearest lines meet (10 capciov, xaf® 8 al &ywra ovpwizrovm).
Archimedes never speaks of the ‘ centre’ of a hyperbola : indeed the
use of it implies the conception of the two branches of a hyperbola
as forming one curve, which does not appear earlier than in
Apollonius.

When the asymptotes of a hyperbola revolve with the curve
round the axis they generate the cone enveloping or comprehending
the hyperboloid, (rov 8t xivov Tov wepihagdbévra Ixd riv &yyora rds
r0% dufBlvywriov xdvov topds wepiéxorra 16 xwvoadis xaleiofar).

The following enumeration* gives the principal properties of
conics mentioned or proved in Archimedes. It will be convenient
to divide them into classes, taking first those propositions which are
either quoted as having been proved by earlier writers, or assumed
as known. They fall naturally under four heads.

I. GENERAL.

1. The proposition about the rectangles under the segments of
intersecting chords has been already mentioned (p. xxxv and xlviii).

2. Similar conics. The criteria of similarity in the case of
central conics and of segments of conics are practically the same as
those given by Apollonius.

The proposition that all parabolas are similar was evidently
familiar to Archimedes, and is in fact involved in his statement that
all paraboloids of revolution are similar (t& piv olv Spfoyuria
xovoedéa wdvra dpoud bvri).

3. Tangents at the extremities of a ‘diameter’ (axis) are
perpendicular to it.

II. Tre ELniese.

1. The relations

PN*: AN A'N=PN'?*: AN' . A'N'
=BB'*: 44" or CB* :C4®

* A word of acknowledgement is due here to Heiberg for the valuable
summary of * Die Kenntnisse des Archimedes iber die Kegelschnitte,” contained
in the Zeitschrift far Mathematik und Physik (Historisch-literarische Abtheilung)
1880, pp. 41—67. This article is a complete guide to the relevant passages in

Archimedes, though I bave of course not considered myself excused in any
instance from referring to the original.
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are constantly used as expressing the fundamental property and the
criterion by which it is established that a curve is an ellipse.
2. The more general proposition

QV*':PY.PV=QV":PV'.PV
also occurs.
3. If a circle be described on the major axis as diameter, and
an ordinate PN to the axis of the ellipse be produced to meet the

circle in p, then
PN : PN =(const.).

4. The straight line drawn from the centre to the point of
contact of a tangent bisects all chords parallel to the tangent.

6. The straight line joining the points of contact of parallel
tangents passes through the centre ; and, if a line be drawn through
the centre parallel to either tangent and meeting the ellipse in two
points, the parallels through those points to the chord of contact of
the original parallel tangents will touch the ellipse.

6. If a cone be cut by a plane meeting all the generators, the
section is either a circle or an ellipse.

Also, if a cylinder be cut by two parallel planes each meeting all
the generators, the sections will be either circles or ellipses equal
and similar to one another.

III. Tae HYPERBOLA.
1. We find, as fundamental properties, the following,
PN*: P'N*=AN.A'N : AN' . A'N',
QV*:QV*=PY.PV:PV.PV;
but Archimedes does not give any expression for the constant ratios
PN*:AN.A'N and QV*: PV.P'V, from which we may infer that
he had no conception of diameters or radii of a hyperbola not
meeting the curve.

If C be the point of concourse of the asymptotes, 4'is arrived at by
producing AC and measuring C4' along it equal to C4 ; and the same
procedure is used for finding P’, the other extremity of the diameter
through P: the lengths A4’, PP’ are then in each case doubls of the
line adjacent to the axis [in one case of the whole surface, and in the
other of a segment of which P is the ‘vertex']. This term for 44’,
PP’ was, no doubt, only used in order to avoid mention of the cone of

d2
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which the hyperbola is a section, as the introduction of this cone
might have complicated matters (seeing that the enveloping cone also
appears) ; for it is obvious that 44’ appeared first as the distance
along the principal diameter of the hyperbola intercepted between
the vertex and the point where it meets the surface of the opposite
half of the double cone, and the notion of the asymptotes came
later in the order of things.

2. If from a point on a hyperbola two straight lines are drawn
in any directions to meet the asymptotes, and from another point
two other straight lines are similarly drawn parallel respectively to
the former, the rectangles contained by each pair will be equal *.

3. A line through the point of concourse of the asymptotes and
the point of contact of any tangent bisects all chords parallel to the
tangent.

4. It PN, the principal ordinate from P, and P7), the tangent
at P, meet the axis in &, 7 respectively, then

AN > AT.

5. If a line between the asymptotes meets a hyperbola and is
bisected at the point of concourse, it will touch the hyperbola t.

IV. TaE ParaBOLA.

1. PN®: P'N"= AN : AN’
and QV*:QV*=PV PV }
‘We find also the forms
PN’:p..AN}
QV’:P.PV

Pa (the principal parameter) is called by Archimedes the parameter
of the ordinates (parallel to the tangent at the vertex), wap’ dv
Sdvavras al dwo 7ds ropds, and is also described as the double of the line
extending [from the vertex] to the azis [of the cone] d &whacia rds
péxpt Tov déovos.

The term ‘parameter’ is not applied by Archimedes to p, the
constant in the last of the four equations just given. p is simply
described as the line to which the rectangle equal to Q7* and of
width equal to PV is applied.

2. Parallel chords are bisected by one line parallel to the axis;

* This proposition and its converse appear in a fragment given by Eutocius
in his note on the 4th proposition of Book 11. On the Sphere and Cylinder.
+ This is also used in the fragment quoted by Eutocius,
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and a line parallel to the axis bisects chords parallel to the tangent
at the point where the said line cuts the parabola.

3. 1f QD be drawn perpendicular to the diameter PV bisecting
the chord @ V¢, and if p be the parameter
of the ordinates parallel to Q@’, while p,
is the principal parameter,

P:p.=QV': QD"

[This proposition has already been
mentioned above (p. xxxv, xxxvi). It is y /v D
easily derived from Apollonius’ proposi-
tion I 49 [Prop. 22]. If PV meet the "v
tangent at 4 in E, and PT, AE intersect
in O, the proposition in question proves ¢
that

OP : PE=p : 2PT,
and OP= }PT;
. PI*=p.PE
=p.4AN.
Thus QV*: QD' = PT* : PN', by sinilar triangles,
=p. AN :p,. AN

=p: Pa']
4. If the tangent at Q meet the diameter PV in 7, and Q¥ be
an ordinate to the diameter,

PV =PT.

5. By the aid of the preceding, tangents can be drawn to a
parabola (a) from a point on it, (b) parallel to a given chord.

6. In the treatise On floating bodies (wepi rdv Sxovpévwy), I1. 5,
we have this proposition: If X be a point on the axis, and KF be
measured along the axis away from the vertex and equal to half the
principal parameter, while K& is drawn perpendicular to the
diameter through any point P, then FH is perpendicular to the
tangent at P. (See the next figure.)

It is obvious that this is equivalent to the proposition that the
subnormal at any point P 18 constant and equal to half the principal
parameter.
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7. If QAQ’ be a segment of a parabola such that QQ’ is
perpendicular to the axis, while QVyg,
parallel to the tangent at P, meets the
diameter through P in ¥, and if R be
any other point on the curve the ordinate
from which RHK meets PV in H and
the axis in X, then (X being the middle
point of Q")

PV :PH ;_ MK : KA,

“ for this is proved.” (On floating bodies,

1. 6.) N
[There is nothing to show where or

by whomn the proposition was demon-

strated, but the proof can be supplied

as follows :

‘We have to prove that PH™ %—f is positive or zero.

Let Qg meet AAf in O.

PV MK PV.AK-PH.MK

PH KA~ PH. KA

_4K.PV—(AK—-AN)(4M - AK)
AK.PH
_AK*— AK(AM + AN —PV)+ AM.AN
= AK. PH ’
_AK'—AK.OM+AM.AN
AK.PH !

Now

(since AN = AT).

OM NT
Q™ PN’

. OM' 44N'
" pa AM " p,. AN’
whence OM*=44M. AN,

OM'
4

But

or AM.AN =
It follows that
oM

AK' - AK . OM + AM.AN=AK"* - AK. 0M+—4-
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which is a complete square, and therefore cannot be negative ;

PV MK
PH "Z'A)
whence the proposition follows.]

8. If any three similar and similarly situated parabolic seg-

ments have one extremity (B) of their bases common and their
bases BQ,, BQ,, BQ, lying along the same straight line, and if £0

>0,

or=

be drawn parallel to the axis of any of the segments meeting the
tangent at B to one of them in E, the common base in O, and each
of the three segments in R, R,, R,, then

RR, @0, B¢
RR,~BY, Q0
[This proposition is given in this place because it is assumed
without proof (On floating bodies, 11. 10). But it may well be that
it is assumed, not because it was too well known to need proof, but
as being an easy deduction from another proposition proved in the
Quadrature of a parabola which the reader could work out for
himself. The latter proposition is given below (No. 1 of the next
group) and demonstrates that, if £B be the tangent at B to the
segment BR Q,,
ER : RO=BO0:00Q,.

To deduce from this the property enunciated above, we observe
Sfirst that, if V, V,, V, be the middle points of the bases of the three
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segments and the (parallel) diameters through V,, V,, V, meet the
respective segments in P,, P,, P,, then, since the segments are
similar,
BV :BV,:BV,=PV,:PJV,:PV,.

It follows that B, P, P,, P, are in one straight line.

But, since BE is the tangent at B to the segment BR,@Q,,
T\P, =PV, (where ¥V P meets BE in T)).

Therefore, if V,P,, VP, meet BEin T,, T,,

T.P,=P7,

[ M 14
and T.P,=P}YV,
and BE is therefore a tangent to all three segments.

Next, since ER : RO=BO0:0Q,

ER, : EO=B0: BQ,.
Similarly ER,: E0=BO : BQ,, }
and ER,: EO=BO : BQ,.
From the first two relations we derive
RR,
%0 Bo BQ BQ)
_B0.Q.0,
= BQ,. BQ.'

.. RR, B0.QQ,
Similarly —E——O' = __.BQ.. é 0.
From the last two results it follows that

_,1_!, 00, B¢,
BQ "Q,Q,

9. If two similar pa.ra.bohc segments with bases BQ,, BQ, be
placed as described in the preceding proposition, and if BR R, be any

€ X
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straight line through B cutting the segments in X,, X, respectively,
then
BQ, : BQ,= BR, : BR,.

[Let the diameter through R, meet the tangent at B in E, the
other segment in R, and the common base in O.

Then, as in the last proposition,

ER : EO=BO0: BQ,
and ER: EO=BO0: BQ,;
~. ER: ER = BQ, : BQ,.

But, since R, is a point within the segment BRQ,, and KRR, is the
diameter through R,, we have in like manner
ER : ER = BR, : BR,.

Hence BQ, : BQ,=BR, : BR,.]

10. Archimedes assumes the solution of the problem of placing,
between two parabolic segments, similar and similarly situated as
in the last case, a straight line of a given length and in a direction
parallel to the diameters of either parabola.

(Let the given length be I, and assume the problem solved, RR,
being equal to

Using the last figure, we have

30 _ER,
BQ, EO’

and ——s,

Subtracting, we obtain

B0.QQ, KRR,
BQ,. BQ, EO°

whenoe 30.0E=1.29-B¢,

Qe, ’

which is known.

And the ratio BO : OF is given.

Therefore BO', or OE*, can be found, and therefore O.

Lastly, the diameter through O determines RR,.]

It remains to describe the investigations in which it is either
expressed or implied that they represent new developments of the
theory of conics due to Archimedes himself. With the exception of
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certain prupositions relating to the areas of ellipses, his discoveries
mostly have reference to the parabola and, in particular, to the
determination of the area of any parabolic segment.

The preface to the treatise on that subject (which was called by
Archimedes, not rerpaywriopds rapaBolis, but wepl rijs Tov Spfoywriov
xwvov Topss) is interesting. After alluding to the attempts of the
earlier geometers to square the circle and a segment of a circle, he
proceeds: “And after that they endeavoured to square the area
bounded by the section of the whole cone® and a straight line,
assuming lemmas not easily conceded, so that it was recognised by
most people that the problem was not solved. But I am not
aware that any one of my predecessors has attempted to square the
segment bounded by a straight line and a section of a right-angled
cone, of which problem I have now discovered the solution. For
it is here shown that every segment bounded by a straight line and
a section of a right-angled cone is four-thirds of the triangle which
has the same base and an equal altitude with the segment, and for
the demonstration of this fact the following lemina is assumedt :
that the excess by which the greater of (two) unequal areas exceeds
the less can, by being added to itself, be made to exceed any given
finite area. The earlier geometers have also used this lemma ; for it
is by the use of this same lemma that they have shown that circles
are to one another in the duplicate ratio of their diameters, and that
spheres are to one another in the triplicate ratio of their diameters,
and further that every pyramid is one third part of the prism having
the same base with the pyramid and equal altitude: also, that every
cone is one third part of the cylinder having the same base as
the cone and equal altitude they proved by assuming a certain
lemma similar to that aforesaid. And, in the result, each of the
aforesaid theorems has been accepted} no less than those proved

* There seems to be some corruption here : the expression in the text is rds
Sov 7ol xdrov Topds, and it is not easy to give a natural and intelligible meaning
to it. The section of ‘the whole cone’ might perhaps mean a section cutting
right through it, i.e. an ellipse, and the *straight line’ might be an axis or
s diameter. But Heiberg objects to the suggestion to read rds éfvywrlov xdwov
Touds, in view of the addition of xal elfelas, on the ground that the former
expression always signifies the whole of an ellipse, never a segment of it
(Quaestiones Archimedeae, p. 149).

+ The lemma is used in the mechanical proof only (Prop. 16 of the treatise)
and not in the geometrical proof, which depends on Eucl. x. 1 (see p. Ixi, lxiii),

%+ The Greek of this passage is: cuuBSalve: 3¢ rdv wpoetpnuérwr Oewpyudrwr
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without the lemma. As therefore my work now published has
satisfied the same test as the propositions referred to, I have
written out the proof of it and send it to you, first as investigated
by means of mechanics and next also as demonstrated by geometry.
Prefixed are, also, the elementary propositions in conics which are of
service in the proof” (croixeta xwvika xpeiav éxovra &s Tav drodefiv).

The first three propositions are simple ones merely stated without
proof. The remainder, which are given below, were apparently not
oonsidered as forming part of the elementary theory of conics; and
this fact, together with the circumstance that they appear only as
subsidiary to the determination of the areas of parabolic segments,
no doubt accounts for what might at first seem strange, viz. that
they do not appear in the Conics of Apollonius.

1. If Qg be ths base of any segment of a parabola, and P the
vertex® of the segment, and if the diameter through any other point R
on the curve meet Qq in O, QP in F, and the tangent at Q in E, then

(1) @QV:V0=0F:FR,

(2) QO :0q=ER: ROt.

&aorow undéy Joagor Tw dvev Tobrov Toi Nfuuares dwodedeyuévwr wewwrevkévac.
Here it would seem that wexwrevkévar must be wrong and that the Passive
should have been used.

* Aooording to Archimedes’ definition the Acight (thos) of the segment is
“the greatest perpendicular from the curve upon the base,” and the vertez
(xopvpd) *the point (on the curve) from which the greatest perpendicular
is drawn.” The vertex is therefore P, the extremity of the diameter
bisecting Qq.

t+ These results are used in the mechanical investigation of the area of
8 parabolic segment. The mechanical proof is here omitted both because it is
more lengthy and because for the present purpose the geometrical proof given
below is more germane.
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To prove (1), we draw the ordinate RIV to PV, meeting QP
in K.

Now PV :PW=QV*': RW*;

therefore, by parallels,
PQ: PK=PQ': PF",

In other words, PQ, PF, PK are in continued proportion ;
. PQ:PF=PF:PK
=PF + PQ-: PK + PF
=QF : KF;
therefore, by parallels,
QV : VO=OF : FR.
To prove (2), we obtain from the relation just proved
QV:q0=0F: OR.
Also, since 7P = PV, EF = OF.
Acoordingly, doubling the antecedents in the proportion,
Qg :90=0E : OR,
or QO : Og=ER : RO.

It is clear that the equation (1) above is equivalent to a change
of axes of coordinates from the tangent and diameter to the chord
Qg (as axis of x, say) and the diameter through @ (as the axis of y).

2
For, if QV=a, PV=",
and if Q0=z, RO=y,
we have at once from (1)

LI
z-a OF-y’

z.2

.8 9F __
2a-2 y Yy

whence ry=2(2a - ).

Zeuthen points out (p. 61) that the results (1) and (2) above can
be put in the forms

RO.OV=FR.qO...........cccvvveennn... 1)
and RO.0Q=ER.qO......cc.cceceevurereernnes 2)
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and either of these equations represents a particular case of the
parabola as a “locus with respect to four lines.” Thus the first
represents the equality of the rectangles formed, two and two, from
the distances of the movable point R taken in fixed directions from
the fixed lines Qg, PV, PQ and Ggq (where Gq is the diameter
through ¢); while the second represents the same property with
respect to the lines Qg, @D (the diameter through @), Q7 and Gyq.
2. If RM be a diameter bisecting QV in M, and RW be the
ordinate to PV from R, then
PV =4RM.
For PV:PW=QV':RIV*
=4RW'*: RW?*;

.. PV =4PW,
and PV =$§RM.
3. The triangle PQq is greater than
half the segment PQq.

For the triangle PQq is equal to half
the parallelogram contained by Qg, the
tangent at P, and the diameters through @, ¢. It is therefore
greater than half the segment.

Cor. It follows that a polygon can be inscribed in the segment
such that the remaining segments are together less than any assignable
area.

For, if we continually take away an area greater than the half,
we can clearly, by continually diminishing the remainders, make
them, at some time, together less than any given area (Eucl x. 1).

4. With the same assumptions as in No. 2 above, the triangle PQq
18 equal to eight times the triangle RPQ.

RM bisects QV, and therefore it bisects PQ (in ¥, say).

Therefore the tangent at R is parallel to PQ.

Now PV =4RM,
and PV =2YNM;
s YM =2RY,
and A PQM =24 PRQ.
Hence A PQV =44 PRQ,

so that A PQg =84 PRQ.
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Also, if RW produced meet the curve again in r,
A PQq = 8 A Prg, similarly.

b. If there be a series of areas 4, B, C, D... each of which is four
times the next tn order, and if the largest, A, is equal to the triangle
PQq, then the sum of all the areas A, B, C, D... will be less than the
area of the parabolic segment PQq.

For, since A PQg=8A PQR =84 Pgr,

APQq=4(LPQR + A Pgr);
therefore, since A PQg =4,
A PQR + A Pgr= B,

In like manner we can prove that the triangles similarly in-
scribed in the remaining segments are together equal to the area C,
and so on.

Therefore A+B+C+D+ ...

is equal to the area of a certain inscribed polygon, and therefore less
than the area of the segment.

6. Given the series A, B, C, D... just described, if Z be the last
of the series, then
A+B+C+..+Z+3Z=44A.
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Let b=3}B,
¢=13C,

d = }D, and so on.
Then, since b=1B,
and B=14,
B+b=}4.
Similarly C+c=1B,

Therefore B+C+D+..+Z+b+c+d+..+2
=3(4+B+C+D+...+7¥)
But btrec+d+...+y=3(B+C+D+...+7Y);
S B+C+D+...+Z+2=}4,
or A+B+C+D+...+Z+32=%4.
7. Every segment bounded by a parabola and a chord is

Jour-thirds of the triangle which has the same base and equal
altitude.

Let K=4%.A PQq,

and we have then to prove that the segment is equal to X.

Now, if the segment is not equal to K, it must be either greater
or less.

First, suppose it greater. Then, continuing the construction
indicated in No. 4, we shall finally have segments remaining whose
sum is less than the area by which the segment PQq exceeds K
[No. 3, Cor.].

Therefore the polygon must exceed K: which is impossible, for,
by the last proposition,

A+B+C+..+Z<44,

where 4 =4 PQq.
Secondly, suppose the segment less than K.
If APQg=4, B=}4, C=15,

and so on, until we arrive at an area X such that X is less than the
difference between K and the segment,

A+B+C+...+X+4X =44
=K,
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Now, since K exceeds A + B+ C + ... + X by an area less than
X, and the segment by an area greater than X, it follows that
A+B+C+...+X

is greater than the segment: which is impossible, by No. 4 above.

Thus, since the segment is neither greater nor less than KX, it

follows that
the segment = K = §. a PQq.

8. The second proposition of the second Book of the treatise On
the equilibrium of planes (émméSwv looppomidv) gives a special term
for the construction of a polygon in a parabolic segment after the
manner indicated in Nos. 2, 4 and 5 above, and enunciates certain
theorems connected with it, in the following passage :

“If in a segment bounded by a straight line and a section of a
right-angled cone a triangle be inscribed having the same base as
the segment and equal altitude, if again triangles be inscribed in the
remaining segments having the same bases as those segments and
equal altitude, and if in the remaining segments triangles be
continually inscribed in the same manner, let the figure so produced
be said to be inscribed in the recognised manner (yvwpipws &yypdpeabar)
in the segment.

And it is plain

(1) that the lines joining the two angles of the figure 80 inscribed
which are nearest to the vertex of the segment, and the next pairs of
angles in order, will be parallel to the base of the segment,

(2) that the said lines will be bisected by the diameter of the
segment, and

(3) that they will cut the diameter in the proportions of the
successive odd numbers, the number one having reference to [the
length adjacent to) the vertex of the segment.

And these properties will have to be proved in their proper
places (& rals rifeaw).”

These propositions were no doubt established by Archimedes by
means of the above-mentioned properties of parabolic segments; and
the last words indicate an intention to collect the propositions in
systematic order with proofs. But the intention does not appear to
have been carried out, or at least we know of no lost work of
Archimedes in which they could have been included. Eutocius
proves them by means of Apollonius’ Conics, as he does not appear
to have seen the work on the area of a parabolic segment ; but the
first two are easily derived from No. 2 above (p. Ixi).
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The third may be proved as follows.

If Q,0,0,9,P9,9.9.9, be a figure yvwpipws dyyeypappévor, we have,
since @Q,g,, @,g, ... are all parallel and bisected by PV,,

PV, : PV,: PV,: PV, ...
=QVr:QV:QF:QVr...

whence it follows that
PY :VV,:V,V, :V,J7V,..
=1:3:5:7....
9. If Q@ be a chord of a parabola bisected in V by the diameter
PV, and if PV is of constant length, then the areas of the triangle

PQQ' and of the segment PQQ' are both constant whatever be the
direction of QQ’.
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If BAB be the particular segment whose vertex is 4, so that
BB’ is bisected perpendicularly hy the axis at the point & where
AN =PV, and if QD be drawn perpendicular to PV, we have (by

No. 3 on p. liii)
QV*':QD*=p : p,.
Also, since AN = PV,
QV*:BN'=p:p,;
: .. BN =QD.
Hence BN.AN=QD. PV,
and A ABB' = A PQQ'.

Therefore the triangle PQQ’is of constant area provided that £V
is of given length. .

Also the area of the segment PQQ’ is equal to §. 4 PQQ’;

[No. 7, p. Ixiii).
therefore the area of the segment is also constant under the same
conditions.

10. The area of any ellipse is to that of a circle whose diameter
8 equal to the major axis of the cllipse as the minor axis i¢ to the
major (or the diameter of the circle).

| This is proved in Prop. 4 of the book On Conoids and Spheroids.]

11. The area of an ellipse whose axes are a, b is to that of a
circle whose diameter is d, as ab to d'.

[On Conoids and Spheroids, Prop. 5.]

12. The areas of ellipses are to one another as the rectangles
under their axes; and hence similar ellipses are to one another as the
squares of corresponding axes.

[On Conoids and Spheroids, Prop. 6 and Cor.]

It is not within the scope of the present work to give an account
of the applications of conic sections, by Archimedes and others,
e.g. for the purpose of solving equations of a degree higher than the
second or in the problems known as veioas*. The former application

* The word »efois, commonly inclinatio in Latin, is dificult to translate
satisfactorily. Its meaning is best gathered from Pappus’ explanation. He
says (p. 670) : * A line is said to verge (vevewr) towards a point if, being produced,
it reaches the point.” As particular cases of the general form of the problem he
gives the following :

*Two lines being given in position, to place between them a straight line
given in length and verging towards a given point.”

*¢ A semicircle and a straight line at right angles to the base being given in
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is involved in Prop. 4 of Book II. On the Sphere and Cylinder, where
the problem is to cut a given sphere (by a plane) so that the
segments may bear to one another a given ratio. The book On
Spirals contains propositions which assume the solution of certain
veioas, e.g. Props. 8 and 9, in which Archimedes assumes the
following problem to be effected: If 4B be any chord of a circle
and O any point on the circumference, to draw through O a
straight line ODP meeting AB in D and the circle again in P
and such that DP is equal to a given length. Though Archimedes
does not give the solution, we may infer that he obtained it by
means of conic sections®.

A full account of these applications of conic sections by the
Greeks will be found in the 11th and 12th chapters of Zeuthen’s
work, Die Lehre von den Kegelschnitten im Altertum.

position, or two semicircles with their bases in a straight line, to place between
the two lines a straight line given in length and verging towards a corner of the
semicircle.” )

Thus a line has to be laid across two given lines or curves so that it passes
through a given point and the portion intercepted between the lines or curves is
equal to a given length.

Zeuthen translates the word redois by * Einschiebung,” or as we might say,
‘“interpolation " ; but this fails to express the condition that the required line
must pass through a given point, just as the Latin inclinatio (and for that
matter the Greek term itself) does not explicitly express the other requirement
that the intercepted portion of the line shall be of given length.

* Cf. Pappus, pp. 298—38032.

e2



PART 1IIL
INTRODUCTION TO THE CONICS OF APOLLONIUS.

CHAPTER L
THE AUTHOR AND HIS OWN ACCOUNT OF THE CONICS.

‘WE possess only the most meagre information about Apallonius,
viz. that he was born at Perga, in Pamphylia, in the reign of
Ptolemy Euergetes (247-222 B.c.), that he flourished under Ptolemy
Philopator, and that he went when quite young to Alexandria, where
he studied under the successors of Euclid. We also hear of a visit
to Pergamum, where he made the acquaintance of Eudemus, to
whom he dedicated the first three of the eight Books of the Conscs.
According to the testimony of Geminus, quoted by Eutocius, he was
greatly held in honour by his contemporaries, who, in admiration of
his marvellous treatise on conics, called him the “ great geometer®.”

Seven Books only out of the eight have survived, four in the
original Greek, and three in an Arabic translation. They were
edited by Halley in 1710, the first four Books being given in Greek
with a Latin translation, and the remaining three in a Latin
translation from the Arabic, to which Halley added a conjectural
restoration of the eighth Book.

The first four Books have recently appeared in a new edition by
J. L. Heiberg (Teubner, Leipzig, 1891 and 1893), which contains, in
addition to the Greek text and a Latin translation, the fragments
of the other works of Apollonius which are still extant in Greek,
the commentaries and lemmas of Pappus, and the commentaries of
Eutocius.

* The quotation is from the sixth Book of Geminus’ 7G» pabpudrwr fewpla.
See Apolloniue (ed, Heiberg) Vol. 1t. p. 170.
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No additional light has been thrown on the Arabic text of
Books V. to VII. since the monumental edition of Halley, except as
regards the preface and the first few propositions of Book V., of
which L. M. Ludwig Nix published a German translation in 1889*.

For fuller details relating to the MSS. and editions of the
Conics reference should be made to the Prolegomena to the second
volume of Heiberg’s edition.

The following is a literal translation of the dedicatory letters in
which Apollonius introduces the various Books of his Conics to
Eudemus and Attalus respectively.

1. Book I. General preface.

“ Apollonius to Eudemus, greeting.

“If you are in good hcalth and circumstances are in other
respects as you wish, it is well ; I too am tolerably well. When
I was with you in Pergamum, I observed that you were eager to
become acquainted with my work in conics ; therefore I send you
the first boek which I have corrected, and the remaining books
I will forward when I have finished them to my satisfaction. I
daresay you have not forgotten my telling you that I undertook
the investigation of this subject at the request of Naucrates the
geometer at the time when he came to Alexandria and stayed
with me, and that, after working it out in eight books, I
communicated them to him at once, somewhat too hurriedly,
without a thorough revision (as he was on the point of
sailing), but putting down all that occurred to me, with the
intention of returning to them later. Wherefore I now take
the opportunity of publishing each portion from time to time,
as it is gradually corrected. But, since it has chanced that
some other persons also who have been with me have got the
first and second books before they were corrected, do not be
surprised if you find them in a different shape.

* Thie appeared in a dissertation entitled Das fiinfte Buch der Conica des
Apollonius von Perga in der arabischen Uebersetzung des Thabit ibn Corrah
(Leipzig, 188Y), which however goes no further than the middle of the 7th
propositign of Book v, and ends on p. 82 in the middle of a sentence with the
words * gleich dem Quadrat von ! The fragment is nevertheless valuable in
that it gives a new translation of the important preface to Book v., part of which
Halley appears to have misunderstood,
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“Now of the eight books the first four form an elementary
introduction; the first contains the modes of producing the
three sections and the opposite branches [of the hyperbola]
(tdv dvricepévov) and their fundamental properties worked
out more fully and generally than in the writings of other
authors; the second treats of the properties of the diameters and
axes of the sections as well as the asymptotes and other things of
general importance and necessary for determining limits of pos-
sibility (mwpés Tods Siopiopnovs)®, and what I mean by diameters
and axes you will learn from this book. The third book
contains many remarkable theorems useful for the synthesis
of solid loci and determinations of limits; the most and

* It is not possible to express in one word the meaning of 3wpioués here. In
explanation of it it will perhaps be best to quote Eutocius who speaks of * that
[3copiopubs] which does not admit that the proposition is general, but says when
and how and in how many ways it is possible to make the required construction,
like that which ocours in the twenty-second proposition of Euclid’s Elements,
From three straight lines, which are equal to three given straight lines, to
construct a triangle; for in this case it is of course a necessary ocondition
that any two of the straight lines taken together must be greater than
the remaining one,” [Comm. on dpoll. p. 178]. In like manner Pappus
[p. 80], in explaining the distinction between a ‘ theorem’ and & ¢ problem,’
says: ‘“But he who propounds a problem, even though he requires what is for
some reason impossible of realisation, may be pardoned and held free from
blame; for it is the business of the man who seeks a solution to determine at
the same time [xal robro dioploas] the question of the possible and the impossible,
and, if the solution be possible, when and how and in how many ways it is
possible.” Instances of the 3wpwués are common enough. Of. Eueclid vi. 27,
which gives the criterion for the possibility of a real solution of the proposi-
tion immediately following; the 3iopwrués there expresses the fact that, for a real

2
solution of the equation x(a - x) =1?, it is a necessary condition that 4*3 (%) .

Again, we find in Archimedes, On the Sphere and Cylinder [p. 314], the remark
that a certain problem *stated thus absolutely requires a 3copoués, but, if
certain oonditions here existing are added, it does not require a dwpiruds.”

Many instances will be found in Apollonius’ work ; but it is to be observed
that, as he uses the term, it frequently involves, not only a necessary condition,
as in the cases just quoted, but, closely conneoted therewith, the determination
of the number of solutions. This can be readily understood when the use of the
word in the preface to Book 1v. is considered. That Book deals with the
number of possible points of intersection of two conics; it follows that, when
e.g. in the fifth Book hyperbolas are used for determining by their intersections
with given oonics the feet of normals to the latter, the number of solutions comes
to light at the same time a8 the conditions necessary to admit of a solutiou.
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prettiest of these theorems are new, and, when I had discovered
them, I observed that Euclid had not worked out the synthesis of
the locus with respect to three and four lines, but only a chance
portion of it and that not successfully: for it was not possible that
the synthesis could have been completed without my additional
discoveries. The fourth book shows in how many ways the
sections of cones meet one another and the circumference of a
circle; it contains other matters in addition, none of which has
been discussed by earlier writers, concerning the number of points
in which a section of a cone or the circumference of a circle meets
[the opposite branches of a hyperbola]®.

“The rest [of the books] are more by way of surplusage+
(meprovaiaaTicdrepa): one of them deals somewhat fully (émi
m\éov) with minima and mazima, one with equal and similar
sections of cones, one with theorems involving determination of
limits (Siopioricdy Gewpnudrwy), and the last with determinate
conic problems.

* The reading here translated is Heiberg's xdwov rouh % xéxhov wepigépeia
<rais drricepévais> xard wooca onue’a ocumBd\\ovor. Halley had read xdwov
Topd 7 xOkhov weppépeia xal Ere drrikelpevat dvriceipévals kard wéoa
anueia ouuBd\\over. Heiberg thinks Halley’s longer interpolation unnecessary,
but I cannot help thinking that Halley gives the truer reading, for the following
reasons. (1) The contents of Book 1v. show that the sense is not really
complete without the mention of the number of intersections of & double-branch
hyperbola with another double-branch hyperbola as well as with any of the
single-branch conics; and it is scarcely conceivable that Apollonius, in
describing what was new in his work, should have mentioned only the less
complicated question. (2) If Heiberg's reading is right we should hardly have
the plural cuuSdAlovoe after the disjunctive expression ‘“ a section of a cone or
the circumference of a circle.” (8) There is positive evidence for xal drrexel-
ueva: in Pappus’ quotation from this preface [ed. Hultsch, p. 676], where the
words are xiwov Touh KikAov Tepipepela kal drriceluerar dvrixeipévass, o section of
8 oone with the circumference of a circle and opposite branches with opposite
branches.” Thus to combine the reading of our text and that of Pappus would
give a satisfactory sense as follows : ‘* in how many points a section of a cone
or a ciroumference of a circle, as well as opposite branches, may [respectively]
intersect opposite branches.” See, in addition, the note on the corresponding
passage in the preface to Book 1v. given below.

+ repovriagricdrepa has been translated ‘“ more advanced,” but literally it
implies extensions of the subject beyond the mere essentials. Hultsch
translates ‘ ad abundantiorem scientiam pertinent,” and Heiberg less precisely
‘‘ulterius progredinntur.”
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“When all the books are published it will of course be open
to those who read them to judge them as they individually
please. Farewell.”

2. Preface to Book II.

“ Apollonius to Eudemus, greeting.

“If you are in good health, it is well; I too am moderately
well. I have sent my son Apollonius to you with the second
book of my collected conics. Peruse it carefully and com-
municate it to those who are worthy to take part in such
studies. And if Philonides the geometer, whom I introduced
to you in Ephesus, should at any time visit the neighbourhood
of Pergamum, communicate the book to him. Take care of
your health. Farewell.”

3. Preface to Book 1IV.

“ Apollonius to Attalus, greeting.

“Some time ago, I expounded and sent to Eudemus of
Pergamum the first three books of my conics collected in eight
books; but, as he has passed away, I have resolved to send the
remaining books to you because of your earnest desire to
possess my works. Accordingly I now send you the fourth
book. It contains a discussion of the question, in how many
points at most it is possible for the sections of cones to meet
one another and the circumference of a circle, on the sup-
position that they do not coincide throughout, and further in
how many points at most a section of a cone and the. circum-
ference of a circle meet the opposite branches [of a hyperbola]*

* Here again Halley adds to the text as above translated the words xal &7
drrixeluevar drricespévais. Heiberg thinks the addition unnecessary as in the
similar passage in the first preface above. I cannot but think that Halley is
right both for the reasons given in the note on the earlier passage, and
because, without the added words, it seems to me impossible to explain satis-
factorily the distinction between the three separate questions referred to in the
next sentence. Heiberg thinke that these refer to the intersections

(1) of conic sections with one another or with a circle,

(2) of sections of & cone with the double-branch hyperbola,

(8) of circles with the double-branch hyperbola.

But to specify separately, as essentially distinct questions, Heiberg's (2) and
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and, besides these questions, not a few others of a similar
character. Now the first-named question Conon expounded to
Thrasydaeus, without however showing proper mastery of the
proofs, for which cause Nicoteles of Cyrene with some’ reason
fell foul of him. The second matter has merely been mentioned
by Nicoteles, in connexion with his attack upon Conon, as one
capable of demonstration; but I have not found it so de-
monstrated either by himself or by any one else. The third
question and the others akin to it I have not found so much as
noticed by any one. And all the matters alluded to, which I
have not found proved hitherto, needed many and various
novel theorems, most of which I have already expounded in the
first three books, while the rest are contained in the present
one. The investigation of these theorems is of great service
both for the synthesis of problems and the determinations of
limits of possibility (wpés Te Tds Tdv wpoSAnuarwy cvvbéceis
xai Tovs Swopiopovs). On the other hand Nicoteles, on account
of his controversy with Conon, will not bave it that any use
can be made of the discoveries of Conon for determinations
of limits: in which opinion he is mistaken, for, even if it is
possible, without using them at all, to arrive at results re-
lating to such determinations, yet they at all events afford a
more ready means of observing some things, e.g. that several

(8) is altogether inconsistent with the scientific method of Apollonius. When
he mentions s circle, it is always as a mere appendage to the other curves
(OxepBold 1 EXNetyus 9 xUxhov wepupépea is his usual phrase), and it is impossible,
I think, to imagine him drawing a serious distinction between (2) and (8) or
treating the omiesion of Nicoteles to mention (3) as a matter worth noting. 73
rpiror should surely be something essentially distinct from, not a particular case
of, 70 8eirepor. I think it certain, therefore, that rd rplror is the case of the
intersection of two double-branch hyperbolas with one another; and the
adoption of Halley’s reading would make the passage intelligible. We should
then have the following three distinct cases, :

(1) the intersections of single-branch conics with one another or with
a circle,

(2) the intersections of a single-branch conio or a circle with the double-
branch hyperbola,

(3) the intersections of two double-branch hyperbolas ;
and d\\a odx é\lya Suoa rosrois may naturally be taken as referring to those
cases ¢.g. Where the curves touch at one or two points,
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solutions are possible or that they are so many in number,
and again that no solution is possible; and such previous
knowledge secures a satisfactory basis for investigations, while
the theorems in question are further useful for the analyses
of determinations of limits (wpds Tds dvakvoces 8¢ Tav Sio-
pioudy). Moreover, apart from such usefulness, they are
worthy of acceptance for the sake of the demonstrations
themselves, in the same way as we accept many other things in
mathematics for this and for no other reason.”

4. Preface to Book V*.

“ Apollonius to Attalus, greeting.

“In this fifth book I have laid down propositions relating
to mazximum and mintmum straight lines. You must know
that our predecessors and contemporaries have only superficially
touched upon the investigation of the shortest lines, and have
only proved what straight lines touch the sections and, con-
versely, what properties they have in virtue of which they are
tangents. For my part, I have proved these properties in the
first book (without however making any use, in the proofs, of
the doctrine of the shortest lines) inasmuch as I wished to
place them in close connexion with that part of the subject in
which I treated of the production of the three conic sections, in
order to show at the same time that in each of the three
sections numberless properties and necessary results appear, as
they do with reference to the original (transverse) diameter.
The propositions in which I discuss the shortest lines I have
separated into classes, and dealt with each individual case by
careful demonstration; I have also connected the investigation
of them with the investigation of the greatest lines above
mentioned, because I considered that those who cultivate this
science needed them for obtaining a knowledge of the analysis
and determination of problems as well as for their synthesis,
irrespective of the fact that the subject is one of those which
seem worthy of study for their own sake. Farewell.”

* In the translation of this preface I have followed pretty closely the
German translation of L. M. L. Nix above referred to [p. lxix, note]. The
prefaces to Books v1. and vir. are translated from Halley.
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5. Preface to Book VI.

“ Apollonius to Attalus, greeting.

“I send you the sixth book of the conics, which embraces
propositions about conic sections and segments of conics equal
and unequal, similar and dissimilar, besides some other matters
left out by those who have preceded me. In particular, you
will find in this book how, in a given right cone, a section is to
be cut equal to a given section, and how a right cone is to be
described similar to a given cone and so as to contain a given
conic section. And these matters in truth I have treated
somewhat more fully and clearly than those who wrote before
our time on these subjects. Farewell.”

6. Preface to Book VII.

“ Apollonius to Attalus, greeting.

“I send to you with this letter the seventh book on conic
sections. In it are contained very many new propositions
concerning diameters of sections and the figures described upon
them ; and all these have their use in many kinds of problems,
and especially in the determination of the conditions of their
possibility. Several examples of these occur in the determinate
conic problems solved and demonstrated by me in the eighth
book, which is by way of an appendix, and which I will take
care to send you as speedily as possible. Farewell.”

The first point to be noted in the above account by Apollonius
of his own work is the explicit distinction which he draws between
the two main divisions of it. The first four Books contain matters
which fall within the range of an elementary introduction (xérruxer
els dywyyv ororxesdn), while the second four are extensions beyond
the mere essentials (repiovoiacricdrepa), or (as we may say) more
‘“advanced,” provided that we are careful not to understand the
relative terms ‘“elementary” and “advanced” in the sense which
we should attach to them in speaking of a modern mathematical
work. Thus it would be wrong to regard the investigations of the
fifth Book as more advanced than the earlier Books on the ground
that the results, leading to the determination of the evolute of any
oonic, are such as are now generally obtained by the aid of the
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differential calculus ; for the investigation of the limiting conditions
for the possibility of drawing a certain number of normals to a
given conic from a given'point is essentially similar in character to
many other 8wpiopoi found in other writers. The only difference is
that, while in the case of the parabola the investigation is not very
difficult, the corresponding propositions for the hyperbola and ellipse
make exceptionally large demands on a geometer’s acuteness and
grasp. The real distinction between the first four Books and the
fifth consists rather in the fact that the former contain a connected
and scientific exposition of the general theory of conic sections as
the indispensable basis for further extensions of the subject in
certain special directions, while the fifth Book is an instance of such
specialisation ; and the same is true of the sixth and seventh Books.
Thus the first four Books were limited to what were considered the
essential principles; and their scope was that prescribed by tradi-
tion for treatises intended to form an accepted groundwork for
such special applications as were found e.g. in the kindred theory of
solid loci developed by Aristaeus. It would follow that the subject-
matter would be for the most part the same as that of earlier
treatises, though it would naturally be the object of Apollonius to
introduce such improvements of method as the state of knowledge
at the time suggested, with a view to securing greater generality
and establishing a more thoroughly scientific, and therefore more
definitive, system. One effect of the repeated working-up, by suc-
cessive authors, of for the most part existing material would be to
produce crystallisation, so to speak ; and therefore we should expect
to find in the first four Books of Apollonius greater conciseness than
would be possible in a treatise where new ground was being broken.
In the latter case the advance would be more gradual, precautions
would have to be taken with a view to securing the absolute impreg-
nability of each successive position, and one result would naturally
be a certain diffuseness and an apparently excessive attention to
minute detail. We find this contrast in the two divisions of
Apollonius’ Conics; in fact, if we except the somewhat lengthy
treatment of a small proportion of new matter (such as the
properties of the hyperbola with two branches regarded as one
conic), the first four Books are concisely put together in comparison
with Books V.—VIL

The distinction, therefore, between the two divisions of the work
is the distinction between what may be called a text-book or com-
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pendium of conic sections and a series of monographs on special
portions of the subject.

For the first four Books it will be seen that Apollonius does not
claim originality except as regards a number of theorems in the
third Book and the investigations in the fourth Book about inter-
secting conics; for the rest he only claims that the treatment
is more full and general than that contained in the earlier works on
conics. This statement is quite consistent with that of Pappus that
in his first four Books Apollonius incorporated and completed
(dvarAnpuoas) the four Books of Euclid on the same subject.

Eutocius, however, at the beginning of his commentary claims
more for Apollonius than he claims for himself. After quoting
Geminus’ account of the old method of producing the three conics
from right cones with different vertical angles by means of plane
sections in every case perpendicular to a generator, he says (still
purporting to quote Geminus), “But afterwards Apollonius of
Perga investigated the general proposition that in every cone,
whether right or scalene, all the sections are found, according as the
plane [of section] meets the cone in different ways.” Again he says,
‘¢ Apollonius supposed the cone to be either right or scalene, and
made the sections different by giving different inclinations to the
plane.” It can only be inferred that, according to Eutocius,
Apollonius was-the first discoverer of the fact that other sections
than those perpendicular to a generator, and sections of cones other
than right cones, had the same properties as the curves produced in
the old way. But, as has already been pointed out, we find (1) that
Euclid had already declared in the Plhaenomena that, if a cone
(presumably right) or a cylinder be cut by a plane not parallel to
the base, the resulting section is a “section of an acute-angled cone,”
and Archimedes states expressly that all sections of a cone which
meet all the generators (and here the cone may be oblique) are
either circles or ‘“sections of an acute-angled cone.” And it cannot
be supposed that Archimedes, or whoever discovered this proposition,
could have discovered it otherwise than by a method which would
equally show that hyperbolic and parabolic sections could be pro-
duced in the same general manner as elliptic sections, which
Archimedes singles out for mention because he makes special use of
them. Nor (2) can any different conclusion be drawn from the
continued use of the old names of the curves even after the more
general method of producing them was known; there is nothing
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unnatural in this because, first, hesitation might well be felt .in
giving up a traditional definition associated with certain standard
propositions, determinations of constants, &e., and secondly, it is not
thought strange, e.g. in a modern text-book of analytical geometry,
to define conic sections by means of simple properties and equations,
and to adhere to the definitions after it is proved that the curves
represented by the general equation of the second degree are none
other than the identical curves of the definitions. Hence we must
conclude that the statement of Eutocius (which is in any case too
general, in that it might lead to the supposition that every hyperbola
could be produced as a section of any cone) rests on a misappre-
hension, though perhaps a natural one considering that to him,
living 8o much later, conics probably meant the treatise of Apollo-
nius only, so that he might easily lose sight of the extent of the
knowledge posseased by earlier writers®.

At the same time it seems clear that, in the generality of his
treatment of the subject from the very beginning, Apollonius was
making an entirely new departure. Though Archimedes was aware
of the possibility of producing the three conics by means of sections
of an oblique or scalene cone, we find no sign of his having used
sections other than those which are perpendicular to the plane of
symmetry ; in other words, he only derives directly from the cone
the fundamental property referred to an axis, i.e. the relation

PN*: AN . A'N=P'N": AN’ . AN,
and we must assume that it was by means of the equation referred
to the axes that the more general property

@QV*: PY.P'V =(oonst.)
was proved. Apollonius on the other hand starts at once with

* There seems also to have been some confusion in Eutocius’' mind about the
exact basis of the names parbola, ellipse and hyperbola, though, as we shall see,
Apollonius makes this clear enough by connecting them immediately with
the method of application of areas. Thue Eutocius speaks of the hyperbola
as being 80 called because a certain pair of angles (the vertical angle of an
obtuse-angled right cone and the right angle at which the section, made in the
old way, is inclined to a generator) together exceed (VrepSi\ew) two right
angles, or because the plane of the section passes beyond (ixepSdAlew) the apex
of the cone and meets the half of the double cone beyond the apex ; and he gives
similar explanations of the other two names. But on this interpretation the
nomenclature would have no significance; for in each ease we could choose
different angles in the figure with equal reason, and so vary the names,
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the most general section of an oblique cone, and proves directly
from the cone that the conic has the latter general property with
reference to a particular diameter arising out of his construction,
which however is not in general one of the principal diameters.
Then, in truly scientific fashion, he proceeds to show directly that
the same property which was proved true with reference to the
original diameter is equally true with reference to any other
diameter, and the axes do not appear at all until they appear as par-
ticular cases of the new (and arbitrary) diameter. Another indica-
tion of the originality of this fuller and more general working-out of
the principal properties (r& dpxwd ovpmrdpara ért wAéov xal xafolov
pua@Aov éepyaopéva) is, I think, to be found in the preface to Book V.
as newly translated from the Arabic. Apollonius seems there to imply
that minimum straight lines (i.e. normals) had only been discussed
by previous writers in connexion with the properties of tangents,
whereas his own order of exposition necessitated an early introduc-
tion of the tangent properties, independently of any questions about
normals, for the purpose of effecting the transition from the original
diameter of reference to any other diameter. This is easily under-
stood when it is remembered that the ordinary properties of
normals are expressed with reference to the axes, and Apollonius
was not in a position to use the axes until they could be brought in
a8 particular cases of the new and arbitrary diameter of reference.
Hence he had to adopt a different order from that of earlier works
and to postpone the investigation of normals for separate and later
treatment.

All authorities agree in attributing to Apollonius the designation
of the three conics by the names parabola, ellipse and hyperbola ;
but it remains a question whether the exact form in which their
fundamental properties were stated by him, and which suggested the
new names, represented a new discovery or may have been known
to earlier writers of whom we may take Archimedes as the repre-
sentative.

It will be seen from Apollonius 1. 11 [Prop. 1] that the fundamental
property proved from the cone for the parabola is that expressed by
the Cartesian equation y* =pxz, where the axes of coordinates are
any diameter (as the axis of x) and the tangent at its extremity (as
the axis of y). Let it be assumed in like manner for the ellipse and
hyperbola that y is the ordinate drawn from any point to the
original diameter of the conic,  the abscissa measured from one
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extremity of the diameter, while z, is the abscissa measured from the
other extremity. Apollonius’ procedure is then to take a certain
length (p, say) determined in a certain manner with reference to the
cone, and to prove, first, that

where d is the length of the original diameter, and, secondly, that,
if a perpendicular be erected to the diameter at that extremity of it
from which x is measured and of length p, then g* is equal to a
rectangle of breadth x and “applied ” to the perpendicular of length
p, but falling short (or exceeding) by a rectangle similar and similarly
situated to that contained by p and d; in other words,

or y'=p:c'-'|-‘d.x’ ........................... (2).

Thus for the ellipse or hyperbola an equation is obtained which
differs from that of the parabola in that it contains another term,
and y* is less or greater than pz instead of being equal to it. The
line p is called, for all three curves alike, the parameter or latus
rectum corresponding to the original diameter, and the characteristics
expressed by the respective equations suggested the three names.
Thus the parabola is the curve in which the rectangle which is equal
to y* is applied to p and neither falls short of it nor overlaps it,
the ellipse and hyperbola are those in which the rectangle is applied
to p but falls short of it, or overlaps it, respectively.

In Archimedes, on the other hand, while the parameter duly
appears with reference to the parabola, no such line is anywhere
mentioned in connexion with the ellipse or hyperbola, but the
fundamental property of the two latter curves is given in the form

yl y'l

=T N
z.x, X.x

it being further noted that, in the ellipse, either of the equal ratios
]
is equal to g—, in the case where the equation is referred to the axes

and a, b are the major and minor semi-axes respectively.
Thus Apollonius’ equation expressed the equality of two areas,
while Archimedes’ equation expressed the equality of two propor-
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tions ; and the question is whether Archimedes and his predecessors
were acquainted with the equation of the central conic in the form
in which Apollonius gives it, in other words, whether the special use
of the parameter or latus rectum for the purpose of graphically
constructing a rectangle having x for one side and equal in area to
y* was new in Apollonius or not.

On this question Zeuthen makes the following observations.

(1) The equation of the conic in the form

a%;— = (const.)

had the advantage that the constant could be expressed in any shape
which might be useful in a particular case, e.g. it might be expressed
either as the ratio of one area to another or as the ratio of one
straight line to another, in which latter case, if the consequent in
the ratio were assumed to be the diameter d, the antecedent would
be the parameter p.

(2) Although Archimedes does not, as a rule, connect his
description of conics with the technical expressions used in the
well-known method of application of areas, yet the practical use of
that method stood in the same close relation to the formula of
Archimedes as it did to that of Apollonius. Thus, where the axes
of reference are the axes of the conic and a represents the major or
transverse axis, the equation

Y
2.z, - (const.) = (say)
is equivalent to the equation

and, in one place (On Conoids and Spheroids, 25, p. 420) where
Archimedes uses the property that z—"‘% has the same value for all
it

points on a hyperbola, he actually expresses the denominator of the
ratio in the form in which it appears in (3), speaking of it as an
area applied to a line equal to a but exceeding by a square figure
(vrepBdAov €ldet Terpayuvy), in other words, as the area denoted
by ax + 2"

(3) The equation z—y';- = (const.) represents y as a mean pro-

et ]

portional between x and a certain constant multiple of z,, which

H. C. f
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last can easily be expressed as the ordinate ¥, corresponding to the
abscissa 2, of a point on a certain straight line passing through the
other extremity of the diameter (i.e. the extremity from which z, is
measured). Whether this particular line appeared as an auxiliary
line in the figures used by the predecessors of Apollonius (of which
there is no sign), or the well-known constructions were somewhat
differently made, is immaterial.

(4) The differences between the two modes of presenting the
fundamental properties are so slight that we may regard Apollonius
as in reality the typical representative of the Greek theory of conics
and as giving indications in his proofs of the train of thought which
had led his predecessors no less than himself to the formulation of
the various propositions.

Thus, where Archimedes chooses to use pmportwm in investiga-
tions for which Apollonius prefers the method of application of
areas which is more akin to our algebra, Zeuthen is most inclined
to think that it is Archimedes who is showing individual peculi-
arities rather than Apollonius, who kept closer to his Alexandrine
predecessors: a view which (he thinks) is supported by the
circumstance that the system of applying areas as found in Euclid
Book II is decidedly older than the Euclidean dooctrine of pro-
portions.

I cannot but think that the argument just stated leaves out of
account the important fact that, as will be seen, the Archimedean
form of the equation actually appears as an intermediate step in the
proof which Apollonius gives of his own fundamental equation.
Therefore, as a matter of fact, the Archimedean form can hardly
be regarded as a personal variant from the normal statement of
the property according to the Alexandrine method. Further, to
represent Archimedes’ equation in the form

a:i.f—z—, = (const.),

and to speak of this as having the advantage that the constant may
be expressed differently for different purposes, implies rather more
than we actually find in Archimedes, who never uses the constant at
all when the hyperbola is in question, and uses it for the ellipse only
in the case where the axes of reference are the axes of the ellipse,

and then only in the single form ab-:
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Now the equation
¥y ¥
ax-2 a'’
P b
or y’_;.x—;,.x’,

does not give an easy means of exhibiting the area y* as a simple
rectangle applied to a straight line but falling short by another

8
rectangle of equal breadth, unless we take some line equal to b;
and erect it perpendicularly to the abscissa 2 at that extremity of
it which is on the curve. Therefore, for the purpose of arriving at
an expression for y* corresponding to those obtained by means of
the principle of application of areas, the essential thing was the
determination of the parameter p and the expression of the con-

stant in the particular form 5, which however does not appear in

Archimedes. :

Again, it is to be noted that, though Apollonius actually sup-
plies the proof of the Archimedean form of the fundamental property
in the course of the propositions 1. 12, 13 [Props. 2, 3] establishing
the basis of his definitions of the hyperbola and ellipse, he retraces
his steps in 1. 21 [Prop. 8], and proves it again as a deduction from
those definitions: a procedure which suggests a somewhat forced
adherence to the latter at the cost of some repetition. This slight
awkwardness is easily accounted for if it is assumed that Apollonius
was deliberately supplanting an old form of the fundamental
property by a new one; but the facts are moré difficult to explain
on any other assumption. The idea that the form of the equation
as given by Apollonius was new is not inconsistent with the fact
that the principle of application of areas was older than the
Euclidean theory of proportions; indeed there would be no cause
for surprise if so orthodox a geometer as Apollonius intentionally
harked back and sought to connect his new system of conics with
the most ancient traditional methods.

It is curious that Pappus, in explaining the new definitions of
Apollonius, says (p. 674): “For a certain rectangle applied to a
certain line in the section of an acute-angled cone becomes dsficient
by a square (\\éimov Terpaywry), in the section of an obtuse-angled
oone exceeding by a square, and in that of a right-angled cone
neither deficient nor exceeding.” There is evidently some confusion

f2
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here, because in the definitions of Apollonius there is no question
of exceeding or falling-short by a square, but the rectangle which is
equal to y* exceeds or falls short by a rectangle similar and similarly
situated to that contained by the diameter and the latus rectum.
The description “deficient, or exceeding, by a square” recalls
Archimedes’ description of the rectangle .z, appearing in the
equation of the hyperbola as vrepSdllov €lda Terpayump ; so that it
would appear that Pappus somehow confused the two forms in
which the two writers give the fundamental property.

It will be observed that the ‘opposites,” by which are meant
the opposite branches of a hyperbola, are specially mentioned as
distinct from the three sections (the words used by Apollonius
being rdv rpidv Topwr xai rav dvrwapdvwyv). They are first intro-
duced in the proposition 1. 14 [Prop. 4], but it is in 1. 16 [Prop. 6]
that they are for the first time regarded as together forming one
curve. It is true that the preface to Book IV. shows that other
writers had already noticed the two opposite branches of a hyper-
bola, but there can be no doubt that the complete investigation
of their properties was reserved for Apollonius. This view is
supported by the following evidence. (1) The words of the first
preface promise something new and more perfect with reference to
the double-branch hyperbola as well as the three single-branch
curves; and a comparison between the works of Apollonius and
Archimedes (who does not mention the two branches of a hyper-
bola) would lead us to expect that the greater generality claimed by
Apollonius for his treatment of the subject would show itself, if
anywhere, in the discussion of the complete hyperbola. The words,
too, about the “new and remarkable theorems” in the third Book
point unmistakeably to the extension to the case of the complete
hyperbola of such properties as that of the rectangles under the
segments of intersecting chords. (2) That the treatment of the two
branches as one curve was somewhat new in Apollonius is attested
by the fact that, notwithstanding the completeness with which he
establishes the correspondence between their properties and those of
the single branch, he yet continues throughout to speak of them as
two independent curves and to prove each proposition with regard
to them separately and subsequently to the demonstration of it for
the single curves, the result being a certain diffuseness which might
have been avoided if the first propositions had been so combined as
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to prove each property at one and the same time for both double-
branch and single-branch conics, and if the further developments
had then taken as their basis the generalised property. As it is,
the diffuseness marking the separate treatment of the double
hyperbola contrasts strongly with the remarkable ingenuity shown
by Apollonius in compressing into one proposition the proof of a
property common to all three conics. This facility in treating the
three curves together is to be explained by the fact that, as
successive discoveries in conics were handed down by tradition,
the general notion of a conic had been gradually evolved ; whereas,
if Apollonius had to add new matter with reference to the double
hyperbola, it would naturally take the form of propositions supple-
mentary to those affecting the three single-branch curves.

It may be noted in this connexion that the proposition 1. 38
[Prop. 15] makes use for the first time of the secondary diameter (&)
of a hyperbola regarded as a line of definite length determined by
the relation

d'l

T=a
where d is the transverse diameter and p the parameter of the
ordinates to it. The actual definition of the secondary diameter in
this sense occurs earlier in the Book, namely between 1. 16 and
L 17. The idea may be assumed to have been new, as also the
determination of the conjugate hyperbola with two branches as the
complete hyperbola which has a pair of conjugate diameters common
with the original hyperbola, with the difference that the secondary
diameter of the original hyperbola is the transverse diameter of the
conjugate hyperbola and vice versd.

The reference to Book II. in the preface does not call for any
special remark except as regards the meaning given by Apollonius
to the terms diameter and axis. The words of the preface suggest
that the terms were used in a new sense, and this supposition agrees
with the observation made above (p. xlix) that with Archimedes
only the axes are diameters.

The preface speaks of the ‘“many remarkable theorems” con-
tained in Book III. as being useful for ‘the synthesis of solid
loci,” and goes on to refer more particularly to the “locus with
respect to three and four lines.” It is strange that in the Book
itself we do not find any theorem stating in terms that a particular
geometrical locus is a conic section, though of course we find



lzxxvi INTRODUCTION TO APOLLONIUS.

theorems stating conversely that all points on a conic have a
certain property. The explanation of this is probably to be found
in the fact that the determination of a locus, even when it was a
oonic section, was not regarded as belonging to a synthetic treatise
on conics, and the ground for this may have been that the subject
of such loci was extensive enough to require a separate book. This
oonjecture is supported by the analogy of the treatises of Euclid and
Aristeeus on conics and solid loci respectively, where, so far as we
can judge, a very definite line of demarcation appears to have been
drawn between the determination of the loci themselves and the
theorems in conics which were useful for that end.

There can be no doubt that the brilliant investigations in Book
V. with reference to normals regarded as maximum and minimum
straight lines from certain points to the curve were mostly, if not
altogether, new. It will be seen that they lead directly to the
determination of the Cartesian equation to the evolute of any conic.

Book VL is about similar conics for the most part, and Book VIIL.
contains an elaborate series of propositions about the magnitude of
various functions of the lengths of conjugate diameters, including
the determination of their maximum and minimum values. A
comparison of the contents of Book VII. with the remarks about
Book VIL and VIIL in the preface to the former suggests that the
lost Book VIII. contained a number of problems having for their
object the finding of conjugate diameters in a given conic such that
certain functions of their lengths have given values. These
problems would be solved by means of the results of Book VII.,
and it is probable that Halley’s restoration of Book VIII. represents
the nearest conjecture as to their contents which is possible in the
present state of our knowledge.



CHAPTER 1II..
GENERAL CHARACTERISTICS.

§ 1. Adherence to Euclidean form, conceptions and
language.

The accepted form of geometrical proposition with which Euclid’s
Elements more than any othér book has made mathematicians
familiar, and the regular division of each proposition into its com-
ponent parts or stages, cannot be better described than in the words
of Proclus. He says*: “Every problem and every theorem which
is complete with all its parts perfect purports to contain in itself all
of the following elements: enunciation (wpéraoss), setting-out (&beats),
definitiont (Scoprpds), construction (xaraoxevij), proof (awdédefis),
conclusion (ovpmépaopa). Now of these the enunciation states what
is given and what is that which is sought, the perfect enunciation
consisting of both these parts. The setting-out marks off what is
given, by itself, and adapts it beforehand for use in the investigation.
The definition states separately and makes clear what the particular
thing is which is sought. The construction adds what is wanting to
the datum for the purpose of finding what is sought. The proof
draws the required inference by reasoning scientifically from ac-
knowledged facts. The conclusion reverts again to the enunciation,
confirming what has been demonstrated. These are all the parts of
problems and theorems, but the most essential and those which are
found in all are enunciation, proof, conclusion. For it is equally
necessary to know beforehand what is sought, and that this should
be demonstrated by means of the intermediate steps and the de-
monstrated fact should be inferred; it is impossible to dispense

* Proclus (ed. Friedlein), p. 208.

+ The word definition is used for want of a better. As will appear from
what follows, 8iopioués really means a closer description, by means of a concrete
figure, of what the enunciation states in general terms as the property to be
proved or the problem to be solved.
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with any of these three things. The remaining parts are often
brought in, but are often left out as serving no purpose. Thus
there is neither setting-out nor definition in the problem of con-
structing an isosceles triangle having each of the angles at the base
double of the remaining angle, and in most theorems there is no
construction because the setting-out suffices without any addition
for demonstrating the required property from the data. When then
do we say that the setting-out is wanting? The answer is, when
there is nothing given in the enunciation; for, though the enun-
ciation is in general divided into what is given and what is sought,
this is not always the case, but sometimes it states only what is
sought, i.e. what must be known or found, as in the case of the
problem just mentioned. That problem does not, in fact, state
beforehand with what datum we are to construct the isosceles
triangle having each of the equal angles double of the remaining
one, but (simply) that we are to find such a triangle....When,
then, the enunciation contains both (what is given and what
is sought), in that case we find both dsfinition and setting-ous, but,
whenever the datum is wanting, they too are wanting. For not only
is the setting-out concerned with the datum but so is the dgfinition
also, as, in the absence of the datum, the definition will be identical
with the enunciation. In fact, what could you say in defining the
object of the aforesaid problem except that it is required to find an
isosceles triangle of the kind referred to?! But that is what the
enunciation stated. If then the enunciation does not include, on the
one hand, what is given and, on the other, what is sought, there is
no setting-out in virtue of there being no datum, and the dgfinition
is left out in order to avoid a mere repetition of the enunciation.”

The constituent parts of an Euclidean proposition will be readily
identified by means of the above description without further details.
It will be observed that the word Siopiopuds has here a different
signification from that described in the note to p. lxx above. Here
it means a closer definition or description of the object aimed at, by
means of the concrete lines or figures set out in the éxfeos instead
of the general terms used in the enunciation ; and its purpose is to
rivet the attention better, as indicated by Proclus in a later passage,
Tpdwov Twa wpoaexeias doTiv alrios ¢ Siopirpds.

The other technical use of the word to signify the limitations to
which the possible solutions of a problem are subject is also described
by Proclus, who speaks of Swpiwpol deterinining ¢ whether what is
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sought is impossible or possible, and how far it is practicable and in
how many ways*”; and the Swpworuds in this sense appears in the
same form in Euclid as in Archimedes and Apollonius. In Apollo-
nius it is sometimes inserted in the body of a problem as in the
instance 11. 50 [Prop. 50] given below ; in another case it forms the
subject of a separate preliminary theorem, 1. 52 [Prop. 51}, the
result being quoted in the succeeding proposition 11. 53 [Prop. 52] in
the same way as the Swpwpuds in Eucl. vi. 27 is quoted in the
enunciation of vi. 28 (see p. cviii).

Lastly, the orthodox division of a problem into analysis and
synthesis appears regularly in Apollonius as in Archimedes. Proclus
speaks of the preliminary analysis as a way of investigating the
more recondite problems (rd doapéorepe Tdv wpoSAnpdrwy); thus it
happens that in this respect Apollonius is often even more formal
than Euclid, who, in the Elements, is generally able to leave out all
the preliminary analysis in consequence of the comparative sim-
plicity of the problems solved, though the Data exhibit the method
as clearly as possible.

In order to illustrate the foregoing remarks, it is only necessary
to reproduce a theorem and a problem in the exact form in which
they appear in Apollonius, and accordingly the following propo-
sitions are given in full as typical specimens, the translation on the
right-hand side following the Greek exactly, except that the letters
are changed in order to facilitate comparison with the same propo-
sitions as reproduced in this work and with the corresponding
figures.

III. 54 [Prop. 75 with the first figure].

Edv xdvov ropils ) xukhov wepi-
Pepeias Vo evbeias épanripervar qup-
ninroot, did 3¢ roy addy wapd\Anho
dx0éa: rais épamropévas, kal dmd rév
dpdy wpds 7O aird ompeior Tijs ypapuis
Suax0o o evleiar répvovoas ras wapak-
Ardovs, 10 meprexopevor opboyavioy
Urd Téy amorepvouévay wpos TS dwd
riis émlevyvvoioms ras dis rerpdyw-
vov Adyor @xes Tov ovyeiperov ix Te
1o, Ov ¥xes Tiis émifevyrvovons Ty
oVunTeow Tov dpanropiver xal Ty
dixoropiay rijs ras dpdsémlevyrvovons

If two straight lines touching a
section of a cone or the circum-
ference of a circle meet, and through
the points of contact parallels be
drawn to the tangents, and from
the points of contact straight lines
be drawn through the same point of
the curve cutting the parallels, the
rectangle contained by the inter-
cepts bears to the square on the
line joining the points of ocontact
the ratio compounded [1] of that
which the square of the inner seg-

* Proclus, p. 202.
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10 érros Tpfjpa wpds o Mowrdy Suwdues,
xal rob, v fxes T Vo rav dpawropé-
oy mepiexopevor Spboysvior wpds 1O
téraprov pépos rov dwo ris ras ddas
émevyvvovons rerpaydvov.

forw xedvov Topi) § xUKlov wep:-
¢épea 1} ABT xal épamriperas al AA,
TA, xal éwe(eixOn 5 AT kal dixa
rerpiofe xard 1o E, xal éme(eixbw 1
ABE, xal fx6w dwo piv rov A wapd
v TA 1) AZ, dwd 8¢ rov T wapd mijv
AA 1} TH, xal eljpbo ¢ onueiov éxl
Tiis ypapuils o ©, xal émlevyfeicas
al A6, I'0 ¢xBeBNfjobwcar énl ra H,
Z. \éyw, ors T Umd AZ, TH mpds vo
dwd AT rdv qvyxeipevor Ixes Aéyov dx
rob, ov xes vo dwd EB wpds v dmd
BA xal o vwo AAT mpds 15 réraproy
rob dno AT, rovréors 6 Ymo AET.

fixbe ydp dwd piv roi © wapd )y
AT 1 KOOXA, dw> 8i roé B §j MBN-
Pavepdy i, drs dpdnveras § MN.
éxel odv loy doviy 1} AE rjj ET, loy
éomi xal §f MB 7j BN xal § KO rj OA
xal § ©0 rj OX xal § KO rj XA.
éxel odv dpdmrovras al MB, MA, xal
mapd miy MB feras 1§ KOA, Jorw, o5
13 awo AM wpos 1o drd MB, rovréors
5 Yo MBN, 10 dwo AK mpos v Vo
XKO, rovriors 0 vmd AGK. s 3¢
10 Urd NT, MA wpds 0 dwd MA, 1o
Uxo AT, KA wpds vd dwd KA+ &
loov 3pa, es 18 Swd NT, MA wpos rd
md NBM, rd dmd AT, KA wpds v vwd

ment of the line joining the point
of concourse of the tangents and
the point of bisection of the line
joining the points of contact bears
to the square of the remaining seg-
ment, and [2] of that which the
rectangle contained by the tangents
bears to the fourth part of the
square on the line joining the
points of contact.

Let QPQ’ be a section of a cone
or the circumferenoce of a circle and
@T, Q'T tangents, and let @@’ be
joined and bisected at V, and let
TPV be joined, and let there be
drawn, from @, @r parallel to @'T
and, from @', Q'r’ parallel to Q7
and let any point R be taken on the
curve, and let @R, @R be joined
and produced to ~, r. I say that

. the rectangle contained by @r, @'r’

has to the square on @@’ the ratio
compounded of that which the
square on VP has to the square on
PT and that which the rectangle
under Q7'Q’ ® has to the fourth part
of the square on @@’, ie. the rect-
angle under QV¢'.

For let there be drawn, from R,
KRWR'K', and, from P, LPL'
parallel to @Q’; it is then clear
that LL'is a tangent. Now, since
@V is equal to V@', LP is also
equal to PL' and KW to WK’ and
RW to WR' and KR to R'K'
Since therefore LP, LQ are tan-
gents, and KRK' is drawn parallel
to LP, as the square on QL is to
the square on LP, that is, the rect-
angle under LPL', so is the square
on @K to the rectangle under R’'KR,
that is, the rectangle under K'RK.
And, as the rectangle under L'Q’,

® 70 ¢xd AAT, *the rect. under QT'Q",” means the rectangle QT.T¢Q’, and

similarly in other cases.
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ABGK. 1 8¢ Umd AT, KA mpds 7o vmo
ABK Tdv ovyxelpevor Ixes Aoyov éx
rod rijs TA wpos AO, rovréar: rijs ZA
mwpds AT, xal rot ris AK mpos KO,
rovréors rijs HI mpds TA, is dorwv
avrds T, ov Ixes 70 Vwd HI, ZA mpos
70 dwo TA* o5 dpa T0 Uxd NT, MA
wpds 10 vwd NBM, rd vwd HT, ZA
mpds 70 dwd TA. rd 8 vmd I'N, MA
wpds 10 Ywd NBM rob vwo NAM péoov
AapBaropévov Tdv ovyxelpevor Ixe
Adyov ¢k roi, v Exes 16 Ywd I'N, AM
wpos v0 Uwo NAM «xal ro dwd NAM
wpds vd vwd NBM- 7 dpa vwo HT,
ZA wpds o dwo TA 1ov ovyxeiperor
¥xes Noyor éx rov rob vwd I'N, AM
mpds 70 uvwd NAM «xal roi vwd NAM
wpds 0 Umo NBM. AN ds pév v
vwo NT, AM wpos vd vwd NAM, 76 dwd
EB wmpos 10 awd BA, o5 8¢ 10 vwo
NAM mpos 10 twdo NBM, 16 vrd TAA
wpos 16 Vwo.TEA- rd dpa Usd HT, AZ
wpds v dwo AT 1w ovyxeipevor Iye
Adyor éx roi 1o dwo BE wpds rd dwo
BA xai Tov Umo T'AA wpds 7d vwd
TEA.

xci

LQ is to the square on L@, so is the
rectangle under K'Q’, K@ to the
square on K@ ; therefore exr aequo
as the rectangle under L'Q’, L@ is
to the rectangle under L'PL, so is
the rectangle under K'Q’, K@ to the
rectangle under A’RX. But the
rectangle under K'Q’, KQ has to
the rectangle under X’RK the ratio
compounded of that of @’K’ to K'R,
that is, of r@ to @@, and of that of
QK to KR, that is, of r'Q’ to Q'Q,
which is the same as the ratio
which the rectangle under r'Q’, r@
has to the square on @'Q; henoce,
as the rectangle under L'Q’, L@ is
to the rectangle under L’'PL, 80 is
the rectangle under r'Q’, r@ to the
square on @'Q. But the rectangle
under @'L’, LQ has to the rectangle
under L'PL (if the rectangle under
L’TL be taken as a mean) the ratio
compounded of that which the rect-
angle under Q'L’, QL has to the
rectangle under L'7'L and the rect-
angle under L’TL to the rectangle
under L'PL; hence the rectangle
under r'Q’, rQ has to the square on
Q'Q the ratio compounded of that
of the rectangle under Q’Z’, QL to
the rectangle under L’TL and of
the rectangle under L'TL to the
rectangle under L'PL. But, as the
rectangle under L’'Q’, @L is to the
rectangle under L'TL, so is the
square on VP to the square on PT,
and, as the rectangle under L'TL is
to the rectangle under L’ PL, so is the
rectangle under Q’7'Q to the rect-
angleunder @ V'Q; therefore the rect-
angle under '@, rQ has to the square
on Q¢ the ratio compounded of that
of the square on PV to the square
on PT and of the rectanglo under
@' TQ to the rectangle under @' VQ.
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I1. 50 [Prop. 50 (Problem)].
(8o far as relating to the Ayperbola.)

Tis 808eions xavov Touijs épaxro-
pbmy dyayeiv, iric mwpds T dfom
yoviar woujoes émi Tavra v ropg lomy
rf dobeio dfely yovie

* 2 » =

“Bave 1 rou SwepBoM, xal yeyo-
vétw, xal forw dPamropén 1 TA, xal
e«ijpbo T0 xévrpov Tiis rouids rd X,
xal érelevyfe 1} T'X xal xdferos fj T'E-
Adyos dpa rob vwd réy XEA mpds rd
dnd rijs ET 30feis: 6 avrés ydp dors
r¢ Tijs whaylas wpos ry dpbiar. rob
3¢ dwo rijs TE wpds 1o dwd vijs EA
Adyos dori 3o8¢is - 8obeioa yap éxarépa
rév Uwd TAE, AET. Aiyos dpa xal
rob ¢wo XEA wpds vo dwd rijs EA
80feis- dore xal mijs XE mpds EA
Adyos éorl Bobels. xal 3ofciga 1) wpos
r¢ E- dobcica dpa xal 1j wpds r¢ X.
mwpds 37 Béoes eVbelg i XE kai 30bévrs
¢ X dijeral mis ) TX dv dedopévy
yavig: Oéoes 3pa j TX. Oéoes 8¢ xal
1) Toun)* 308év dpa v6 . «kal ijxras
ddamroudrm 1} TA- Béoes 8pa 1 TA.

fix0w dodpmreros rijs vouds 1§ ZX -
1} TA dpa éxBAnbeioa ovuweoeiras rj
dovunTéry. ovpminTére xara 1o Z.
peilov dpa oras v vnd ZAE ywria ris
Uwo ZXA. dejoe dpa els Ty acvvleawy
iy dedopémy dfeiay ywviav peifova
elvas tijs Huoeias Tis mwepexopdvns
uwd rév dovunrerer.

To draw a tangent to a given
section of a cone which shall make
with the axis towards the same
parts with the section an angle
equal to a given acute angle.

* % * »

Let the section be a hyperbola,
and suppose it done, and let PT' be
the tangent, and let the centre C of
the section be taken and let PC be
joined and PN be perpendicular ;
therefore the ratio of the rectangle
contained by CNT to the square on
NP is given, for it is the same as
that of the transverse to the erect.
And the ratio of the square PN to
the square on N7 is given, for each
of the angles PTN, TNP is given.
Therefore also the ratio of the rect-
angle under CNT to the square on
NT is given; so that the ratio of
CN to NT is also given. And the
angle at ¥ is given ; therefore also
tho angle at Cis given. Thus with
the straight line CN [given] in posi-
tion and at the given point C a
certain straight line PC has been
drawn at a given angle; therefore
PC is [given] in position. Also the
section is [given] in position ; there-
fore P is given. And the tangent
PT has been drawn; therefore PT'
is [given] in position.

Let the asymptote LC of the
section be drawn; then PT pro-
duced will meet the asymptote.
Let it meet it in L ; then the angle
LTN will be greater than the angle
LCT. Therefore it will be necessary
for the synthesis that the given
acute angle should be greater than
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ovrrebiceras 8) vd wpéBinua ov-
ras: fore 1j pdv 8obeica vmepBold, s
38wy 6 AB, dotpwreros 8¢ 1) XZ, 1 8¢
808¢ica ywvia dfcia peilwy odoa rijs
Um0 Ty AXZ 1} Umd KOH, xal oro
T Ywo réy AXZ lon 1) omd KOA, xal
#x6e dwd To A v AB mpos Spbas 1
AZ, el B 3¢ ¢ anpeiov éxl Tijs HO
rd H, xal fxfw dx’ avrov émi miy OK
xdferos 7 HK. émei oy {om dovly v
vrd ZXA ) vmo AOK, elol 8¢ xal al
wpds rois A, K ywvias éplai, {orw dpa,
&5 1 XA wpds AZ, 1 OK mpds KA. o
3¢ OK mpds KA pelfova Aéyor ixes
fiwep wpds miv HK- xal 1) XA mpds AZ
dpa peifora Aoyoy ixes fmwep fj OK
wpos KH. dore xal 1o drd XA mpds
rd dxd AZ pelfova Adyor ixer fwep 5
dwd OK mwpds 10 dwd KH. o5 3¢ 1o
dwo XA wpds o dwo A2, 4 mhayla
wpis Ty dpblav: xal fj mhayla dpa
wpds Tiv dpblav pelfova Aoyor ixes
fiwep 0 dwo OK mpds rd dwd KH.
dir 3) wovjowpey, ds 1O dwd XA ®pos
10 dwd AZ, ovrws d\\o T wpds T
dwd KH, upeifov orar roi dwd OK.
fore 15 Vw6 MKO- xal éwelevybw 1
HM. {wel odv peifdv dori vo dwd MK
rob vwd MKO, rd dpa dwd MK mpds
10 dwd KH peifora Adyor Ixes fmep rd
vmo MKO mpos o dwrd KH, rovréar:
10 dwd XA mpds vd dwd AZ. «kal ddv
woujowpey, ws O dwo MK mpds 1o dwo
KH, oUrwes o dwd XA wpds dA\do 1,
¥orai wpds farrov rov dwd AZ- xal 1f
dwo rob X dxl 6 Andliv amueior
émevyrvpér evbeia dpow woujoes Td
tplywra, xai 83 Tovro peifor dorw 4
und ZXA tijs vwo HMK. «xeiofw 8)
i) Yo HMK Tom 1j vnd AXT 1} dpa
XT repei mjy Toprjy. reuvére xara 1o
T, xal dwd Toi T épamropém rijs Topijs
#x0@ 1 TA, xal xaferos 1j TE* Cpowv
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the half of that contained by the
asymptotes.

Thus the synthesis of the prob-
lem will proceed as follows : let the
given hyperbola be that of which
A A’ isthe axis and CZ an asymptote,
and the given acute angle (being
greater than the angle ACZ) the
angle FED, and let the angle FEH
be equal to the angle ACZ, and let
AZ be drawn from A at right angles
to 44', and let any point D be
taken on DK, and let a perpendicu-
lar DF be drawn from it upon EF.
Then, nince the angle ZC4 is equal
to the angle HEF, and also the
angles at A, F are right, as C4 is to
AZ,80is EF to FH. But EF has
to FH a greater ratio than it has to
FD; therefore also CA has to AZ a
greater ratio than EF has to FD.
Hence also the square on CA4 has to
the square on AZ a greater ratio
than the square on EF has to the
square on F’D. And, as the square
on CA is to the square on 427, so is
the transverse to the erect ; therefore
also the transverse has to the erect
a greater ratio than the square on
EF has to the square on FD. If
then we make, as the square on C4
to the square on 4Z, so some other
area to the square on FD, that area
will be greater than the square on
EF. Let it be the rectangle under
KFE; and let DK be joined. Then,
sinoe the square on AF is greater
than the rectangle under KFE, the
square on K7 has to the square on
FD a greater ratio than the rectangle
under KFE has to the square on
FD, that is, the square on C4 to
the square on AZ. And if we make,
as the square on KF to the square
on FD, so the square on C4 to
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dpa dorl ro TXE rpiywror r¢ HMK.
{orw &pa, ds 13 dxd XE wpds vo dwo
ET, rd dwd MK wpds vd dmd KH.
fors 3¢ xal, ds 5 whayla wpds Ty
dpliav, vé re Umd XEA mpos 1o dwd
ET xal 10 vrd MKO mpos rd and KH.
xal dviralw, ds v0 drd TE mpos 1o
vxd XEA, ré drd HK wpos vo dwo
MK©: &’ loov dpa, s ™ dwo XE
wpos 70 Uwd XEA, ro dwd MK wpds vo
vmo MKO. xal os &pa 7 XE wpds
. EA, 1 MK wpds KO. v 8¢ xal, és 5
T'E wpds EX, ) HK wpds KM- &’ loov
dpa, és 1} TE mpds EA, j HK wpos
KO. «xal eloly dpbal al wpds rois E,
K ywria® ion dpa 1j wpos ¢ A yovia
rj v HOK.
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another area, [the ratio] will be to a
smaller area than the square on
AZ; and the straight line joining C
to the point taken will make the
triangles similar, and for this reason
the angle ZC4 is greater than the
angle DKF. Let the angle ACP be
made equal to the angle DKF;
therefore CP will cut the section.
Let it cut it at P, and from P let
PT be drawn touching the section,
and PN perpendicular; therefore
the triangle PCN is similar to
DKF. Therefore, as is the square
on CN to the square on NP, so is
the square on KF to the square on
FD. Also, as the transverse is to
the erect, so is both the rectangle
under CN7 to the square on NP
and the rectangle under KFE to
the square on FD. And conversely,
as the square on PN is to the
rectangle under CNT, so is the
square on DF to the rectangle under
KFE; therefore ex asquo, as the
square on CN is to the rectangle
under CN'T, so is the square on XF
to the rectangle under XFE. There-
fore, as CN is to NT, s0 is KF to
FE. But also, as PN is to NC, so
was DF to FK ; therefore ex asguo,
a8 PN is to NT, so is DF to FE,
And the angles at ¥, F are right ;
therefore the angle at 7' is equal to
the angle DEF.

In connexion with the propositions just quoted, it may not be
out of place to remark upon some peculiar advantages of the Greek
language as a vehicle for geometrical investigations. Its richness
in grammatical forms is, from this point of view, of extreme import-
ance. For instance, nothing could be more elegant than the regular
use of the perfect imperative passive in constructions; thus, where
we should bave to say “let a perpendicular be drawn” or, more
peremptorily, “draw a perpendicular,” the Greek expression is jjxfw
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xdferos, the former word expressing in itself the meaning “let it Aave
been drawn ” or “suppose it drawn,” and similarly in all other cases,
e.g. yoypddlw, érelaixfo, ixBeBrjobw, rerpiobm, dhidbw, dépprnobe
and the like. Neatest of all is the word yeyovéro with which the
analysis of a problem begins, “suppose it done.” The same form is
used very effectively along with the usual expression for a propor-
tion, e.g. wemoujofu, ws 7 HK wpds KE, j NEB =pds HM, which can
hardly be translated in English by anything shorter than * Let NE
be so0 taken that NH is to EM as HK to KE.”

Again, the existence of the separate masculine, feminine and
neuter forms of the definite article makes it possible to abbreviate
the expressions for straight lines, angles, rectangles and squares by
leaving the particular substantive to be understood. Thus 5} HK is
7 HK (ypappr), the line HK; in 5 vrd ABT or % vxd rav ABI' the word
understood i8 ywvia and the meaning is the angle ABT (i.e. the angle
contained by AB and BT'); 76 vxd ABT or 16 vmd rév ABT is 10 vxd ABT
(xwplov or 8pfoyuviov), the rectangle contained by AB, BT ; 3 axd AB
is 70 dxd AB (rerpdywvov), the square on AB. The result is that much
of the language of Greek geometry is scarcely less concise than the
most modern notation.

The closeness with which Apollonius followed the Euclidean
tradition is further illustrated by the exact similarity of language
between the enunciations of Apollonius’ propositions about the conic
and the corresponding propositions in Euclid’s third Book about
circles. The following are some obvious examples.

Eucl. m. 1. Ap. . 48.

Tob 3ofévros xvkhov 10 Kévrpor
edpeir.

Eucl m. 8.

'Bar xvxkov éwl rijs wepupepelas
Anglj dvo Tuxdrra ompeia, 1 émd rd
onueia dmlevyrvpbm ebeia évrds
weoeiras Tof xVkAove

Eucl. m. 4.

*Edv év xirhg 3vo evleias répvwoy
d\\fhas p3) 8ud roi kévrpov odoas, o
réprovow d\Ajhas dixa.

Tiis dofelons E\heipews # vmep-

Bolijs 1o xévrpor evpeiy.
Ap. L 10.

'Edy énl xdrov rouis Andby Svo
onpeia, fj pdv éul ra onpeia dnfevyr-
pév eleia dvros weaeiras rijs Topuis,
1 8¢ én’ evbelas adry éxrds.

Ap. m. 26.

'Edr v deiec § xixkov wepe-
Pepeig 3o Wbeias réurwow dAfras
p7) 8 rov évrpov odoas, 0¥ réuvovow
d\Afjhas 8ixa. :
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Eucl mL 7.

'Edv xUxhov éml tis duapérpov
AndO5 1 ompeiov, § pi dovi xévrpov
T00 KUxAov, dmd 3¢ ToU onpeiov wpds
0¥ xUKAov wpoawinTeow evleial rives,
peylory piv forar, éd’ s o xévrpoy,
Aayiorn 8¢ 1 Nowmi, réy 3é dAAwv ded
7 &yywor ris 3id Tob xévrpov Tips
dwerepor peilwv doviv, 3o 8¢ pdvor
{oas dwd vob onpelov mpoowegoirras
wpds v xiehov ¢’ éxdrepa Tiis
axlors.
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Ap. v. 4 and 6.
(Translated from Halley.)

If a point be taken on the axis
of an ellipse whose distance from
the vertex of the section is equal to
half the latus rectum, and if from
the point any straight lines what-
ever be drawn to the section, the
least of all the straight lines drawn
from the given point will be that
which is equal to half the latus
rectum, the greatest the remaining
part of the axis, and of the rest
those which are nearer to the least
will be less than those more re-

As an instance of Apollonius’ adherence to the conceptions of

Euclid’s Elements, those propositions of the first Book of the Conics
may be mentioned which first introduce the notion of a tangent.
Thus in 1. 17 we have the proposition that, if in a conic a straight
line be drawn through the extremity of the diameter parallel to the
ordinates to that diameter, the said straight line will fall without
the conic ; and the conclusion is drawn that it is a tangent. This
argument recalls the Euclidean definition of a tangent to a circle as
“any straight line which meets the circle and being produced does
not cut the circle.” We have also in Apollonius as well as in Euclid
the proof that no straight line can fall between the tangent and the
curve. Compare the following enunciations:

Eucl. m. 16.

‘H 7 Sapérpp rob ximhov mpds
8pbas dn’ drpas ayopéwn éxrds meaeira
Tou kvaAov, xai els TOv perafd romwor
ris re evbelas xal Tis wepipepeias
érépa eVbeia oV wapepweoeiras,

Ap. 1 32
"Edv redvov ropijs 8 rijs xopuiiis
evleia wapds reraypéves xarmypérny
dx0y, {pdémreras Tijs rouks, xal els
rov perafd rémov Tiis re xevov rTopis
xal rijs efeias érépa eSbdia oV mapep-
meoeirat.

Another instance of the orthodoxy of Apollonius is found in the

fact that, when enunciating propositions as holding good of a circle
as well as a conic, he speaks of “a hyperbola or an ellipse or the
circumference of a circle,” not of a circle simply. In this he follows
the practice of Euclid based upon his definition of a circle as “a
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plane figure bounded by one line.” It is only very exceptionally
that the word circle alone is used to denote the circumfsrence of the
circle, e.g. in Euclid 1v. 16 and Apollonius 1. 37.

§ 2. Planimetric character of the treatise.

Apollonius, like all the Greek geometers whose works have come
down to us, uses the stereometric origin of the three conics as
sections of the cone only so far as is necessary in order to deduce
a single fundamental plane property for each curve. This plane
property is then made the basis of the further development of the
theory, which proceeds without further reference to the cone, except
indeed when, by way of rounding-off the subject, it is considered
necessary to prove that a cone can be found which will contain any
given conic. As pointed out above (p. xxi), it is probable that the
discovery of the conic sections was the outcome of the attempt of
Menaechmus to solve the problem of the two mean proportionals by
sonstructing the plane loci represented by the equations

Z'=ay, y'=bx, xy=ab,

and, in like manner, the Greek geometers in genéml seem to have con-
aected the conic sections with the cone only because it was in their
7iew necessary to give the curves a geometrical definition expressive
of their relation to other known geometrical figures, as distinct from
n abstract definition as the loci of points satisfying certain conditions.
Hence finding a particular conic was understood as being synonymous
with localising it in a cone, and we actually meet with this idea in
Apollonius 1. 52—58 [Propa. 24, 25, 27], where the problem of
“finding” a parabola, an ellipse, and a hyperbola satisfying certain
conditions takes the form of finding a cone of which the required
curves are sections. Mensechmus and his contemporaries would
perhaps hardly have ventured, without such a geometrical defini-
tion, to regard the loci represented by the three equations as being
really curves. When however they were found to be producible by
cutting & cone in a particular manner, this fact was a sort of
guarantee that they were genuine curves; and there was no longer
any hesitation in proceeding with the further investigation of their
properties in a plane, without reference to their origin in the cone.

There is no reason to suppose that the method adopted in the
Solid Loci of Aristaeus was different. We know from Pappus that
Aristaeus called the conics by their original names; whereas, if (as

H, C. 9
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the title might be thought to imply) he had used in his book the
methods of solid geometry, he would hardly have failed to discover
a more general method of producing the curves than that implied by
their old names. We may also assume that the other predecessors
of Apollonius used, equally with him, the planimetric method ; for
(1) among the properties of conics which were well-known before
his time there are many, e.g. the asymptote-properties of the
hyperbola, which could not have been evolved in any natural way
from the consideration of the cone, (2) there are practically no
traces of the deduction of the plane properties of a conic from other
stereometric investigations, even in the few instances where it would
bave been easy. Thus it would have been easy to regard an ellipse
as a section of a right cylinder and then to prove the property of
conjugate diameters, or to find the area of the ellipse, by projection
from the circular sections ; but this method does not appear to have
been used.

§ 3. Definite order and aim.

Some writers have regarded the Conics as wanting in system and
containing merely a bundle of propositions thrown together in a
hap-hazard way without any definite plan having taken shape in the
author's mind. This idea may have been partly due to the words
used at the beginning of the preface, where Apollonius speaks of
having put down everything as it occurred to him ; but it is clear
that the reference is to the imperfect copies of the Books which
had been communicated to various persons before they took their
final form. Again, to a superficial observer the order adopted in the
first Book might seem strange, and so tend to produce the same
impression ; for the investigation begins with the properties of the
conics derived from the cone itself, then it passes to the properties
of conjugate diameters, tangents, etc., and returns at the end of the
Book to the connexion of particular conics with the cone, which is
immediately dropped again. But, if the Book is examined more
closely, it is apparent that from the beginning to the end a definite
object is aimed at, and only such propositions are given as are
necessary for the attainment of that object. It is true that they
contain plane properties which are constantly made use of after-
wards ; but for the time being they are simply links in a chain of
proof leading to the conclusion that the parabolas, ellipses and
hyperbolas which Apollonius obtains by any possible section of any
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kind of circular cone are identical with those which are produced
from sections of cones of revolution.

The order of procedure (leaving out unnecessary details) is as
follows. First, we have the property of the conic which is the
equivalent of the Cartesian equation referred to the particular
diameter which emerges from the process of cutting the cone, and
the tangent at its extremity, as axes of coordinates. Next, we are
introduced to the conjugate diameter and the reciprocal relation be-
tween it and the original diameter. Then follow properties of tangents
(1) at the extremity of the original diameter and (2) at any other
point of the curve which is not on the diameter. After these come
a series of propositions leading up to the conclusion that any new
diameter, the tangent at its extremity, and the chords parallel to
the tangent (in other words, the ordinates to the new diameter)
have to one another the same relation as that subsisting between the
original diameter, the tangent at its extremity, and the ordinates
to it, and hence that the equation of the conic when referred to
the new diameter and the tangent at its extremity is of the same
Jorm as the equation referred to the original diameter and tangent®.
Apollonius i8 now in a position to pass to the proof of the
proposition that the curves represented by his original definitions
can be represented by equations of the same form with reference to
rectangular axes, and can be produced by means of sections of right
cones. He proceeds to propose the problem ‘“to find” a parabols,
ellipse, or hyperbola, when a diameter, the angle of inclination of its
ordinates, and the corresponding parameter are given, or, in other
words, when the curve is given by its equation referred to given
axes, “Finding” the curve is, as stated above, regarded as
synonymous with determining it as a section of a right circular
cone. This Apollonius does in two steps: he first assumes that the
ordinates are at right angles to the diameter and solves the problem
for this particular case, going back to the method followed in his
original derivation of the curves from the cone, and not using any of
the results obtained in the intervening plane investigations; then,
secondly, he reduces the case where the ordinates are not perpen-

* The definiteness of the design up to this point is attested by a formal
recapitulation introduced by Apollonius himself at the end of 1. 51 and
concluding with the statement that ‘‘all the properties which have been shown
to be true with regard to the sections by reference to the original diameters
will equally result when the other diameters are taken.”

g2
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dicular to the diameter to the former case, proving by his procedure
that it is always possible to draw a diameter which is at right angles
to the chords bisected by it. Thus what is proved here is not the
mere converse of the first propositions of the Book. If that had
been all that was intended, the problems would more naturally have
followed directly after those propositions. It is clear, however, that
the solution of the problems as given is not poesible without the
help of the intermediate propositions, and that Apollonius does in
fact succeed in proving, concurrently with the solution of the
problems, that there cannot be obtained from oblique cones any
other curves than can be derived from right cones, and that all
conics have axes.

The contents of the first Book, therefore, so far from being a
fortuitous collection of propositions, constitute a complete section of
the treatise arranged and elaborated with a definite intention
throughout.

In like manner it will be seen that the other Books follow,
generally, an intelligible plan; as, however, it is not the object of
this introduction to give an abstract of the work, the remaining
Books shall speak for themselves.



CHAPTER III
THE METHODS OF APOLLONIUS.

As a preliminary to the consideration in detail of the methods
employed in the Conics, it may be stated generally that they follow
steadily the accepted principles of geometrical investigation which
found their definitive expression in the Zlements of Euclid. Any
one who has mastered the Elements can, if he remembers what
he gradually learns as he proceeds in his reading of the Conics,
understand every argument of which Apollonius makes use. In
order, however, to thoroughly appreciate the whole course of his
thought, it is necessary to bear in mind that some of the methods
employed by the Greek geometers were much more extensively used
than they are in modern geometry, and were consequently handled
by Apollonius and his contemporary readers with much greater
deftness and facility than would be possible, without special study,
to a modern mathematician. Hence it frequently happens that
Apollonius omits an intermediate step such as a practised mathema-
tician would now omit in a piece of algebraical work which was
not intended for the mere beginner. In several such instances
Pappus and Eutocius think it necessary to supply the omission by a
lemma.

§1. The principal machinery used by Apollonius as well as by
the earlier geometers comes under the head of what has been not
inappropriately called a geometrical Algebra; and it will be
convenient to exhibit the part which this plays in the Conics under
the following important subdivisions.

(1) The theory of proportions.

This theory in its most complete form, as expounded in the fifth
and sixth Books of Euclid, lies at the very root of the system of
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Apollonius ; and a very short consideration suffices to show how far
it is capable of being used as a substitute for algebraical operations.
Thus it is obvious that it supplies a ready method of effecting the
operations of multiplication and division. Again, suppose, for
example, that we have a series in geometrical progression consisting
of the terms a,, a,, a, ... a,, 50 that

‘We have then a—":(;‘)., or ﬂ=4:/€".
a, L) e,

Thus the continued use of the method of proportions enables an
expression to be given for the sum of the geometrical series (cf. the
summation in Eucl. 1x. 35).

(2) The application of areas.

Whether the theory of proportions in the form in which Euclid
presents it is due to Eudoxus of Cnidus (408—356 B.C.) or not,
there is no doubt that the method of application of areas, to which
allusion has already been made, was used much earlier still. We
have the authority of the pupils of Eudemus (quoted by Proclus on
Euclid 1. 44) for the statement that *these propositions are the
discoveries of the Pythagorean muse, the application of areas, their
exceeding, and their falling short” (3§ r¢ wapaBSoly rdv xwplwy xai 9
vrepBoly) xal 3 deyns), where we find the very terms afterwards
applied by Apollonius to the three conic sections on the ground of
the corresponding distinction between their respective fundamental
properties a8 presented by him. The problem in Euclid 1. 44 is “to
apply to a given straight line a parallelogram which shall be equal
to a given triangle and have one of its angles equal to a given
rectilineal angle.” The solution of this clearly gives the means of
adding together or subtracting any triangles, parallelograms, or other
figures which can be decomposed into triangles.

Next, the second Book of Euclid (with an extension which is
found in vi. 27—29) supplies means for solving the problems of
modern algebra so long as they do not involve expressions above the
second degree, and provided, so far as the solution of quadratic
equations is concerned, that negative and imaginary solutions are
excluded ; the only further qualification to be borne in mind is
that, since negative magnitudes are not used in Greek geometry,



THE METHODS OF APOLLONIUS. ciii

it is often necessary to solve a problem in two parts, with different
figures, where one solution by algebra would cover both cases.

It is readily seen that Book 11. of the Elements makes it possible
to multiply two factors with any number of linear terms in each ;
and the compression of the result into a single product follows by
the aid of the application-theorem. That theorem itself supplies a
method of dividing the product of any two linear factors by a third.
The remaining operations for which the second Book affords the
means are, however, the most important of all, namely,

(a) the finding of a square whose area is equal to that of a
given rectangle [11. 14], which problem is the equivalent of extract-
ing the square root, or of the solution of a pure quadratic equation,

() the geometrical solution of a mixed quadratic equation,
which can be derived from 11. 5, 6.

In the first case (a) we produce the side 4B of the rectangle to
E, making BE equal to BC ; then we bisect AE in F, and, with F
as centre and radius F£, draw a circle meeting CB produced in G.

G
A F 8 €
c
Then FG'=FB* + BG".
Also FG'=FE'=AB.BE+FB*, zuf X.Q
whence, taking away the common FB?,
BG*=AB.BE.
This corresponds to the equation
F=ab oooviiiiniiiiriiiiii (1),

and B@ or z is found.
In the second case (b) we have, if AB is divided equally at C
and unequally at D,
AD.DB+CD*=CB* [Eucl. 1. 5.)

Now suppose AB=a, DB==x



civ INTRODUCTION TO APOLLONIUS,

Then ax—a'=rect. AH
=the gnomon CMF.
Thus, if the area of the gnomon is given (=", say), and if a is given
(= 4B), the problem of solving the equation
ax—a'=b

is, in the language of geometry, “To a given straight line (a) to
apply a rectangle which shall be equal to a given square (b*) and
d¢ficient by a square,” i.e. to construct the rectangle 4H.

N
A/G o B
H
3 T M
)
o
€ q

This simply requires the construction of a gnomon, equal in area

to %, of which each of the outer sides is given (CB, or ?2-) . Now

3
we know the area %— (i.e. the square CF), and we know the area of

part of it, the required gnomon CMF (=b") ; hence we have only to
find the difference between the two, namely the area of the square
L@, in order to find CD which is equal to its side. This can he
done by applying the Pythagorean proposition, 1. 47.

Simson gives the following easy solution in his note on vI.
28-29. Measure CO perpendicular to 4B and equal to 8, produce

0C to & so that ON = CB (or g) and with O as centre and radius

ON describe a circle cutting CB in D.
Then DB (or z) is found, and therefore the rectangle AH.

For AD.DB+CD*'=CB*
=0D*

=0C* +CD*,
whence AD.DB=0C?,

or ax-z"=b" ......... e (2).
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It is clear that it is a necessary condition of the possibility of a
L]
real solution that &* must not be greater than (g) , and that the

geometrical solution derived from Euclid does not differ from our
practice of solving a quadratic by completing the square on the side
containing the terms in z* and z*®.

To show how closely Apollonius keeps to this method and to the old
terminology connected therewith, we have only to compare his way
of describing the foci of a hyperbola or an ellipse. He says, “ Let
a rectangle equal to one fourth part of the ‘figure’ [i.e. equal to
CB*] be applied to the axis at either end, for the hyperbola or the
opposite branches exceeding, but for the ellipse deficient, by a
square”; and the case of the ellipse corresponds exactly to the
solution of the equation just given.

* It will be observed that, while in this case there are two geometrically
real solutions, Euclid gives only one. It must not however be understood from
this that he was unaware that there are two solutions. The contrary may be
inferred from the proposition vi. 27, in which he gives the iopoués stating the

2
necessary condition corresponding to 3%} (g) ; for, although the separate treat-

ment, i the text translated by Simson, of the two cases where the base of the
applied parallelogram is greater and less than half the given line appears to
be the result of interpolations (see Heiberg's edition, Vol. 1. p. 161), the dis-
tinction is perfectly obvious, and we must therefore assume that, in the case
given above in the text, Euclid was aware that z=A4D satisfies the equation as
well as z=BD. The reason why he omitted to specify the former solution is no
doubt that the rectangle so found would simply be an equal rectangle but on BD
88 base instead of AD, and therefore there is no real objeot in distinguishing
two solutions. This is easily understood when we regard the equation as a
statement of the problem of finding two quantities whose sum (a) and product
(%) are given, i.e. as equivalent to the simultaneous equations
zt+y=a,
t ozy=b,

These symmetrical equations have really only one solution, as the two
apparent solutions are simply the result of interchanging the values of z and y.
This form of the problem was known to Euclid, as appears from Prop. 86 of the
Data (as translated by Simson): * If two straight lines contain a parallelogram
given in magnitude, in a given angle; if both of them together be given, they
shall each of them be given.”

From Euclid’s point of view the equations next referred to in the text

z*+ax=>5

have of course only one solution.
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Again, from the proposition in Euclid 11. 6, we have, if 4B is
bisected at C and produced to D,

AD.DB+CB'=CD".

o

E G F

Let us suppose that, in Euclid's figure, AB=a, BD = z.

Then AD.DB =azx + x°,
and, if this is equal to 4* (a given area), the solution of the equation

ax + x°="b'
is equivalent to finding a gnomon equal in area to 4* and having as
one of the sides containing the inner right angle a straight line
L]

equal to the given length C'B or ;. Thus we know (%) and b*, and
we have to find, by the Pythagorean proposition, a square equal to
the sum of two given squares.

To do this Simson draws BO at right angles to 4B and equal to
b, joins CO, and describes with centre C and radius CO a circle
meeting AB produced in D. Thus BD, or z, is found.

Now AD.DB +CB*=CD*
=00*
=CB* + BO?,
whence AD. DB = B0O"*,
or az + z* = b*,

This solution corresponds exactly to Apollonius’ determination of
the foci of the hyperbola.
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The equation z'—ax=05"
can be dealt with in a similar manner.
It AB=a, and if we suppose the problem solved, so that
AD =z, then
2* — ax = AM = the gnomon CHF,

and, to find the gnomon, we have its area (%), and the area CB*
]
or (g) by which the gnomon differs from CD®. Thus we can find

D (and therefore 4D, or x) by the same construction as in the case
immediately preceding.

Hence Euclid has no need to treat this case separately, because
it is the same as the preceding except that here z is equal to 4D
instead of BD, and one solution can be derived from the other.

8o far Euclid has not put his propositions in the form of an
actual solution of the quadratic equations referred to, though he
has in 11. 5, 6 supplied the means of solving them. In vi. 28, 29
however he has not only made the problem more general by
substituting for the square by which the required rectangle is to
exceed or fall short a parallelogram similar and similarly situated to
a given parallelogram, but he has put the propositions in the form
of an actual solution of the general quadratic, and has prefixed to
the first case (the deficiency by a parallelogram) the necessary
condition of possibility [vi. 27] corresponding to the obvious
Swpwopuss referred to above in connection with the equation

ax—a'=b"

Of the problems in vi. 28, 29 Simson rightly says “These two
problems, to the first of which the 27th prop. is necessary, are the
most general and useful of all in the elements, and are most
frequently made use of by the ancient geometers in the solution of
other problems ; and therefore are very ignorantly left out by Tacquet
and Dechales in their editions of the Elements, who pretend that they
are scarce of any use.*”

*® It is strange that, notwithstanding this observation of Simson’s, the three
propositions vi. 37, 28, 29 are omitted from Todhunter’s Euclid, which contains
a note to this effect : * We have omitted in the sixth Book Propositions 27, 28,
29 and the first solution which Euclid gives of Proposition 30, as they appear
now to be never required and have been condemned as useless by various
modern commentators; see Austin, Walker, and Lardner.”

I would suggest that all three propositions should be at once restored to the
text-books of Euclid with a note explaining their mathematical significance.
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The enunciations of these propositions are as follows® :

VL. 27. “Of all the parallelograms applied to the same straight
line and deficient by parallelograms similar and similarly situated to
that which is described upon the half of the line, that which is applied
to the half, and is similar to its defect, 38 greatest.

V1. 28. “To a given straight line to apply a parallelogram equal
to a given rectilineal figure and defictent by a parallelogram similar
to a given parallelogram : But the given rectilineal figure must not be
greater than the parallelogram applied to half of the given line and
similar to the dafect.

V1. 29. “To a given straight line to apply a parallelogram equal
to a given rectilineal figure and exceeding by a parallelogram similar
o a given one.”

Corresponding propositions are found among the Data of Euclid.
Thus Prop. 83 states that, “If a parallelogram equal to a given
space be applied to a given straight line, deficient by a parallelogram
given in species, the sides of the defect are given,” and Prop. 84 states
the same fact in the case of an excess. )

It is worth while to give shortly Euclid’s proof of one of these
propositions, and vi. 28 is accordingly selected.

H a o F

)

L 1]
K N
* The translation follows the text of Heiberg's edition of Euclid (Teubner,
1888-8).
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Let AB be the given straight line, C' the given area, D the
parallelogram to which the defect of the required parallelogram is to
be similar.

Bisect AB at E, and on EB describe a parallelogram GEBF
similar and similarly situated to D [by vi. 18] Then, by the
Swpiopds [vi. 27), AG must be either equal to C' or greater than it.
If the former, the problem is solved ; if the latter, it follows that
the parallelogram EF is greater than C.

Now construct a parallelogram LKNM equal to the excess of
EF over C and similar and similarly situated to D [vi. 25].

Therefore LKNM is similar and similarly situated to EF, while,
if GE, LK, and GF, LM, are homologous sides respectively,

GE> LK, and GF> LM,

Make GX (along GE) and GO (along GF) equal respectively to
LK, LM, and complete the parallelogram XGOP.

Then GPB must be the diagonal of the parallelogram GB
[vi. 26]. Complete the figure, and we have

EF=C + KM, by construction,
and X0=KM.

Therefore the difference, the gnomon ERO, is equal to C.

Hence the parallelogram 7'S, which is equal to the gnomon, is
equal to C.

Suppose now that AB=a, SP =2, and that 4 : ¢ is the ratio of
the sides XN, LK of the parallelogram LKNM to one another; we
then have, if m is a certain constant,

TB=m.az,

SR:m.:i,..bc

b

=m.-z',
c

8o that u-é;‘:Q,
¢ m

Proposition 28 in like manner solves the equation

ax+éz'=€.
¢ m
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If we compare these equations with those by which Apollonius
expresses the fundamental property of a central conic, viz.

W¢%"’=y’p

it is seen that the only difference is that p takes the place of & and,
instead of any parallelogram whose sides are in a certain ratio, that
perticular similar parallelogram is taken whose sides are p, d.
Further, Apollonius draws p at right angles to d. Subject to these
differences, the phraseology of the Conics is similar to that of
Euclid : the square of the ordinate is said to be equal to a rectangle
‘“applied to” a certain straight line (i.e. p), “having as its width”
(wAdros dxov) the abscissa, and “falling short (or exceeding) by a
figure similar and similarly situated to that contained by the
diameter and the parameter.”

It will be seen from what has been said, and from the book
itself, that Apollonius is nothing if not orthodox in his adherence to
the traditional method of application of areas, and in his manipula-
tion of equations between areas such as are exemplified in the
second Book of Euclid. From the extensive use which is made of
these principles we may conclude that, where equations hetween
areas are stated by Apollonius without proof, though they are not
immediately obvious, the explanation is to be found in the fact
that his readers as well as himself were so imbued with the methods
of geometrical algebra that they were naturally expected to be
able to work out any necessary intermediate step for themselves.
And, with regard to the manner of establishing the results assumed
by Apollonius, we may safely infer, with Zeuthen, that it was
the practice to prove them directly by using the procedure of the
second Book of the Elements rather than by such combinations and
transformations of the results obtained in that Book as we find in
the lemmas of Pappus to the propositions of Apollonius. The
kind of result most frequently assumed by Apollonius is some
relation between the products of pairs of segments of a straight
line divided by points on it into a number of parts, and Pappus’
method of proving such a relation amounts practically to the pro-
cedure of modern algebra, whereas it is more likely that Apollonius
and his contemporaries would, after the manner of geometrical
algebra, draw a figure showing the various rectangles and squares,
and thence, in many cases by simple inspection, conclude e.g. that
one rectangle is equal to the sum of two others, and so on.
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An instance will make this clear. In Apollonius m. 26
[Prop. 60] it is assumed that, if E, 4, B, C, D be points on a line
in the order named, and if 4B = CD, then

EC.EB=AB.BD + ED. EA.

A

E A -y c

This appears at once if we set off £B’ perpendicular and equal
to EB, and EA’ along EB’ equal to E4, and if we complete the
parallelograms as in the figure®. _

Similarly Eutocius’ lemma to 11, 29 [Prop. 61] is more likely to
represent Apollonius’ method of proof than is Pappus’ 6th lemma
to Book III. (ed. Hultsch, p. 949).

(3) Graphic representation of areas by means of aux-
iliary lines.

The Greek geometers were fruitful in devices for the compression
of the sum or difference of the areas of any rectilineal figures into a
single area ; and in fact the Elements of Euclid furnish the means
of effecting such compression generally. The Conics of Apollonius
contain some instances of similar procedure which deserve mention
for their elegance. There is, first, the representation of the area of
the square on the ordinate y in the form of a rectangle whose base
is the abscissa 2. While the procedure for this purpose is, in

* On the other hand Pappus’ method is simply to draw a line with points on
it, and to proceed semi-algebraically. Thus in this case [Lemma 4 to Book .,
P- 947] he prooceeds as follows, first bisecting BC in Z.

CE.EB+BZ3=EZ?,

and DE.EA+AZ%=EZ3,
while AZ3=CA.4B+ B2,

It follows that CE.EB+BZ*=DE.EA+CA.AB+B23,
whenoe CE.EB=DE.EA+CA.AB,

(and CA=BD).
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form, closely connected with the traditional application of areas,
its special neatness is due to the use of a certain auxiliary line.
The Cartesian equation of a central conic referred to any diameter
of length d and the tangent at its extremity is (if d’ be the length
of the conjugate diameter)
d® _d"
y. = —d- T+ ? . x’,
and the problem is to express the right hand side of the equation in
the form of a single rectangle Y, in other words, to find a simple

construction for ¥ where
ar* _d"
Y= 7 + ? o

Apollonius’ device is to take a length p such that

p_d*

a=
(so that p is the parameter of the ordinates to the diameter of
length d). If PP’ be the diameter taken as the axis of x, and P
the origin of coordinates, he draws PL perpendicular to PP’ and of
length p, and joins P’L. Then, if PV =2, and if VR drawn parallel
to PL meets P'L in R we have (using the figures of Props. 2, 3), by
similar triangles,

= e— =

so that VR=p$’—)x

and the construction for ¥ is therefore effected.

Again, in v. 1-3 [Prop. 81), another auxiliary line is used
for expressing y* in the form of an area standing on x as base
in the particular case where y is an ordinate to the axis. AJM is

drawn perpendicular to 44’ and of length equal to p_; (where p, is

the parameter corresponding to the axis 44'), and CH¥ is joined.
If the ordinate PN meets CH in H, it is then proved that

y* = 2 (quadrilateral ¥ANH).
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Apollonius then proceeds in v. 9, 10 [Prop. 86] to give, by means of
a second auxiliary line, an extremely elegant construction for an
area equal to the difference between the square on a normal PG
and the square on P'G, where P’ is any other point on the curve
than P’. The method is as follows. If PN is the ordinate of P,
measure NG along the axis away from the nearer vertex so that

NG:CN=p,:44'[=CB': C4"].

In the figures of Prop. 86 let PN produced meet CHM in H, as
before. GH is now joined and produced if necessary, forming the
second auxiliary line. It is then proved at once that NG = NH,
and therefore that

NG* =2 A NGH,
and similarly that ~ N'G*= 2 A N'GH'.

Hence, by the aid of the expression for y* above, the areas PG*
and P’G* are exhibited in the figures, and it is proved that

P'G*-PG*=3 A HEH',
so that we have in the figures a graphic representation of the

difference between the areas of the two squares effected by means
of the two fixed auxiliary lines Cif, GH.

(4) Special use of auxiliary points in Book VII.

The seventh Book investigates the values of certain quadratic
functions of the lengths of any two conjugate diameters ’P’, DD’
in central conics of different excentricities, with particular reference
to the maxtmum and minimum values of those functions. The
whole procedure of Apollonius depends upon the reduction of the
ratio CP*: CD*® to a ratio between straight lines MH' and MH,
where H, H' are fixed points on the transverse axis of the hyperbola
or on either axis of the ellipse, and M is a variable point on the
same axis determined in a certain manner with reference to the
position of the point P. The proposition that

PP" :DD"*=MH': MH

appears in viL 6, 7 [Prop. 127), and the remainder of the Book is a
sufficient proof of the effectiveness of this formula as the geometrical
substitute for algebraical operations.
The bearing of the proposition may be exhibited as follows, with
the help of the notation of analytical geometry. If the axes of
H. C. h
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coordinates are the principal axes of the oonic, and if 4, b are the
lengths of the axes, we have, e.g., in the case of the hyperbola,

OPt+CD"_ 3 +y) ‘r{(g). -2} ’
e

where z, y are the coordinates of P.
Eliminating y by means of the equation of the curve, we obtain

ooz 27 (0 0)
CPF-CD (;) - (%)

=4(2z'—%').

- -—

il

Apollonius’ procedure is to take a certain fixed point H on the
axis whose coordinates are (A, 0), and a variable point M whose
coordinates are (z, 0), such that the numerator and denominator of
the last expression are respectively equal to 2ax’, 2aA; whence the

fraction is itself equal to 3 , and we have

h a-b

T: GT;_'b' --------------------------- (l)’

()
and az =2 (2 -),
or a (z’ +g =4 i (2).
From (1) we derive at once

a

5=k

a ., a

D) +h
whence AH:A'H=b':a'

=p,: 44"
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Thus, to find H, we have only to divide 44’ in the ratio p,: 44’
This is what is done in vi1. 3, 3 [Prop. 124].
H' is similarly found by dividing 4’4 in the same ratio p,:44’,
and clearly AH=A'H', A’H=AH'
Again, from (2), we have

a: (z'+‘—')- a—'.'z.
: 3)= '
In other words, AA':A’'M=CT:CN
or AM:AM=CN:TN ......cccovvvvvenees (3).

If now, as in the figures of Prop. 127, we draw 4@ parallel to
the tangent at P meeting the curve again in @, 4Q is bisected by
CP; and, since 44’ is bisected at C, it follows that 4'Q is parallel
to CP.

Hence, if QM' be the ordinate of @, the triangles 4'QM’, CPN
are similar, as also are the triangles AQM’, TPN ;

S AM AM'=CN:TN.

Thus, on comparison with (3), it appears that M coincides with
M’ ; or, in other words, the determination of Q by the construction
described gives the position of M.

Since now H, H', M are found, and «/, A were 8o determined
that .

CP+CD* o
cP-CD* &’
it follows that CP:CD'=x'+h:2 -4,
or PP*:DD"=MH': MH.

The construction is similar for the ellipse except that in that case
A4’ is divided externally at H, H' in the ratio described.

§ 3. The use of coordinates.

We have here one of the most characteristic features of the
Greek treatment of conic sections. The use of coordinates is not
peculiar to Apollonius, but it will have been observed that the same
point of view appears also in the earlier works on the subject. Thus
Menaechmus used the characteristic property of the parabola which
we now express by the equation y* = px referred to rectangular axes.
He used also the property of the rectangular hyperbola which is
expressed in our notation by the equation xy=c’, where the axes of
coordinates are the asymptotes.

h2
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Archimedes too used the same form of equation for the parabola,
while his mode of representing the fundamental property of a
central conic y

;.—z: - (eonst.)
can easily be put into the form of the Cartesian equation.

8o Apollonius, in deriving the three conics from any cone cut in
the most general manner, seeks to find the relation between the
coordinates of any point on the curve referred to the original
diameter and the tangent at its extremity as axes (in general
oblique), and proceeds to deduce from this relation, when found, the
other properties of the curves. His method does not eesentially differ
from that of modern analytical geometry except that in Apollonius
geometrical operations take the place of algebraical calculations.

‘We have seen that the graphic representation of the area of y*
in the form of a rectangle on z as base, where (2, y) is any point on
a central conic, was effected by means of an auxiliary fixed line P’
whose equation referred to PP, PL as rectangular axes is

=p¢sa

That an equation of this form between the coordinates 2, ¥ repre-
sents a straight line we must assume Apollonius to have been aware,
because we find in Pappus’ account of the contents of the first Book
of his separate work on plane loci the following proposition :

“If straight lines be drawn from a point meeting at given angles
two straight lines given in position, and if the former lines are in a
given ratio, or if the sum of one of them and of such a line as bears
a given ratio to the second is given, then the point will lie on a
given straight line” ; in other words, the equation

z+ay=b

represents a straight line, where a, b are positive.

The altitude of the rectangle whose base is  and whose area is
equal to y* is thus determined by a procedure like that of analytical
geometry except that Y is found by a geometrical construction
instead of being calculated algebraically from the equation of the
auxiliary line

Y=p$§m
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If it should seem curious that the auxiliary line is determined with
reference to an independent (rectangular) pair of coordinate axes
different from the oblique axes to which the conic is itself referred,
it has only to be borne in mind that, in order to show the area y* as
a rectangle, it was necessary that the angle between z and Y should
be right. But, as soon as the line 7’Z was once drawn, the object
was gained, and the subsidiary axes of coordinates were forthwith
dropped, so that there was no danger of confusion in the further
development of the theory.

Another neat example of the use of an auxiliary line regarded
from the point of view of ooordinate geometry ococurs in 1. 32
[Prop. 11}, where it is proved that, if a straight line be drawn from
the end of a diameter parallel to its ordinates (in other words, a
tangent), no straight line can fall between the parallel and the
curve. Apollonius first supposes that such a line can be drawn
from P passing through X, a point outside the curve, and the
ordinate XQV is drawn. Then, if 3/, y be the ordinates of X, Q
respectively, and x their common abscissa, referred to the diameter
and tangent as axes, we have for the central conic (figures on pp.

23, 24
‘ y*>y' or z¥,

where Y represents the ordinate of the point on the auxiliary line
P’ L before referred to corresponding to the abscissa = (with PP, PL
as independent rectangular axes).

Let y”* be equal to z¥”, so that ¥’> ¥, and let ¥’ be measured
along Y (so that, in the figures referred to, VR =¥, and ¥V§=Y").

Then the locus of the extremity of ¥ for different values of = is
the straight line 7L, and the locus of the extremity of Y’ for
different points K on PK is the straight line PS. It follows, since
the lines P’L, PSS intersect, that there is one point (their intersection
R’) where Y=1Y", and therefore that, for the corresponding points
@', M on the conic and the supposed line PX respectively, y =y, so
that @, M are coincident, and accordingly PK must meet the
curve between P and K. Hence PK cannot lie between the tangent
and the curve in the manner supposed.

Here then we have two auxiliary lines used, viz.

and Y =mz,

Y=p%
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where m is some constant ; and the point of intersection of PX and
the conic is determined by the point of intersection of the two
auxiliary lines; only here again the latter point is found by a
geometrical construction and not by an algebraical calculation.

In seeking in the various propositions of Apollonius for the
equivalent of the Cartesian equation of & conic referred to other
axes different from those originally taken, it is necessary to bear in
mind what has already been illustrated by the original equation
which forms the basis of the respective definitions, viz. that, where
the equivalents of Cartesian equations occur, they appear in the
guise of simple equations between areas. The book contains several
such equations between areas which can either be directly expressed
as, or split up into parts which are seen to be, constant multiples of
o', xy, y', =, and y, where z, y are the coordinates of any point on
the curve referred to different coordinate axes; and we have there-
fore the equivalent of so many different Cartesian equations.

Further, the essential difference between the Greek and the
modern method is that the Greeks did not direct their efforts to
making the fixed lines of the figure as few as possible, but rather to
expressing their equations between areas in as short and simple a
form as possible. Accordingly they did not hesitate to use a number
of auxiliary fixed lines, provided only that by that means the areas
corresponding to the various terms in 2, y, ... forming the Cartesian
equation could be brought together and combined into a smaller
number of terms. Instances have already been given in which such
compression is effected by means of one or two auxiliary lines. In
the case, then, where two auxiliary fixed lines are used in addition
to the original axes of coordinates, and it appears that the properties
of the conic (in the form of equations between areas) can be equally
well expressed relatively to the two auxiliary lines and to the two
original axes of reference, we have clearly what amounts to a
trangformation of coordinates.

§ 3. Transformation of coordinates.

A simple case is found as early as 1. 156 [Prop. 5], where, for the
ellipse, the axes of reference are changed from the original diameter
and the tangent at its extremity to the diameter conjugate to the
first and the corresponding tangent. This transformation may with
sufficient accuracy be said to be effected, first, by a simple transference
of the origin of coordinates from the extremity of the original diameter
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to the centre of the ellipse, and, secondly, by moving the origin a
second time from the centre to D, the end of the conjugate diameter.
We find in fact, as an intermediate step in the proof, the statement

" of the property that (d being the original diameter and d' its
conjugate in the figure of Prop. b)

(-2- .—y'= the rectangle RT, TE

d'!
= o,
where z, y are the coordinates of the point Q with reference to the
diameter and its conjugate as axes and the centre as origin; and
ultimately the equation is expressed in the old form, only with 4’

for diameter and p’ for the corresponding parameter, where

The equation of the hyperbola as well as of the ellipse referred
to the centre as origin and the original diameter and its conjugate
as axes is at once seen to be included as a particular case in 1. 41
[Prop. 16], which proposition proves generally that, if two similar
parallelograms be described on CP, CV respectively, and an equi-
angular parallelogram be described on @V such that QV is to the
other side of the parallelogram on it in the ratio compounded of the
ratio of CP to the other side of the parallelogram on CP and of the
ratio p : d, then the parallelogram on QV is equal to the difference
between the parallelograms on CP, CV. Suppose now that the
parallelograms on CP, CV are squares, and therefore that the
parallelogram on Q7 is a rectangle; it follows that

-t
=;1;.y' ....................... Q).

Apollonius is now in a position to undertake the transformation
to a different pair of axes consisting of any diameter whatever and
the tangent at its extremity. The method which he adopts is to
use the new diameter as what has been termed an auxiliary fixed
line.

It will be best to keep to the case of the ellipse throughout, in
order to avoid ambiguities of sign. Suppose that the new diameter
CQ meets the tangent at P in E, as in the figure of 1. 47 [Prop. 21];
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then, if from any point R on the curve the ordinate RW is drawn
to PP, it is parallel to the tangent PE, and, if it meets CQ in
F, the triangles CPE, CWF are similar, and one angle in each
is that between the old and the new diameters.

Also, as the triangles CPE, C WF are the halves of two similar
parallelograms on CP, CW, we can use the relation proved in 1. 41
[Prop. 18] for parallelograms, provided that we take a triangle on
RW as base such that RWP is one angle, and the side WU lying
along WP is determined by the relation

RW_CP p
WU~ PE'd’

Apollonius satisfies this condition by drawing RU parallel to QT,
the tangent at Q. The proof is as follows.

From the property of the tangent, 1. 37 [Prop. 14},

Qr _»
CY.vr— a
Also, by similar triangles,
Qv_RW . Q7 _PE
VYT~ wo' cv CP
RW PE p
Therefore W—U-C—P-a’
RW_CP p

or (the required relation).

WU PE'd
Thus it is clear that the proposition 1. 41 [Prop. 16] is true of
the three triangles CPE, CFW, RUW ; that is,
ACPE-ACFW=ARUW...........cune.e. (2).
It is now necessary to prove, as is done in 1. 47 [Prop. 21}, that
the chord RE’ parallel to the tangent at @ is bisected by CQ*, in
order to show that RM is the ordinate to CQ in the same way as

* This is proved in 1. 47 [Prop. 21] as follows :
ACPE - ACFW=ARUW.

Similarly, ACPE- ACF'W'=aARUW'.
By subtraction, F'W'WF=R'W'WR,
whenoe, taking away the figure R’'W'WFM from each side,

AR'F'M=aRFM,

and it follows that RM=R'M.
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RWis to CP. It then follows that the two triangles RUW, CFW
have the same relation to the original axes, and to the diameter
@@, as the triangles RFM, CUM have to the new axes, consisting
of Q¢ and the tangent at @, and to the diameter PP, respectively.

Also the triangle CPE has the same relation to the old axes
that the triangle CQZ7 has to the new.

Therefore, in order to prove that a like relation to that in (2)
above holds between three triangles similarly determined with
reference to CQ, the tangent at Q and the diameter PP, it has to

be shown that
ACQT-ACUM=ARMPF.

The first step is to prove the equality of the triangles CPE,
CQT, as to which see note on 1. 50 [Prop. 28] and 111. 1 [Prop. 53].

We have then, from (2) above,

ACQT-ACFW=ARUW,

or the quadrilateral Q7TWF=ARUW,

therefore, subtracting the quadrilateral ¥UWF from each side,
ACQT-ACUM=ARMF,

the property which it was required to prove.

Thus a relation between areas has been found in exactly the
same form as that in (2), but with Q@’ as the diameter of reference
in place of PP. Hence, by reversing the process, we can determine
the parameter ¢ corresponding to the diameter @¢, and so obtain
the equation of the conic with reference to the new axes in the same
form as the equation (1) above (p. cxix) referred to PP and its
conjugate ; and, when this is done, we have only to move the origin
from C to Q in order to effect the complete transformation to the
new axes of coordinates consisting of QQ’ and the tangent at @,
and to obtain the equation

=qx— L
y'=qx Qq,.ar'.

Now the original parameter p is determined with reference to
the length (d) of PP’ by the relation

p_ Q' _PE OP_OP 3PE

d-CV.YVI-CP'PT_PT" " d '

_or

so that P=pp



exxii INTRODUCTION TO APOLLONIUS.

and the corresponding value for ¢ should accordingly be given by
the equation

1= 0207,
which Apollonius proves to be the case in 1. 50 [Prop. 23).

No mention of the parabola has been made in the above, because
the proof of the corresponding transformation is essentially the
same ; but it may be noted here that Archimedes was familiar with
a method of effecting the same transformation for the parabola.
This has been already alluded to (p. liii) as easily deducible from
the proposition of Apollonius.

There is another result, and that perhaps the most interesting
of all, which can be derived from the foregoing equations between
areas. We have seen that

ARUW=ACPE - ACFVW,
80 that ARUW + ACFW= ACPE,

Le. the quadrilateral CFRU = ACPE.

Now, if PP, QQ’ are fixed diameters, and R a variable point on
the curve, we observe that RU, RF are drawn always in fixed
directions (parallel to the tangents at @, P respectively), while the
area of the triangle C PE is constant.

It follows therefore that, {f PP, QQ' are two fixed diameters and
if from any point R on the curve ordinates be drawn to PP, Q@
meeting QQ', PP in F, U respectively, then

the area of the quadrilateral CFRU is constant.

Conversely, +f in a guadrilateral CFRU the two sides CU, CF lie
along fixed straight lines, while the two other sides are drawn from a
moveable point B in given directions and meeting the fized lines, and
¢f the quadrilateral has a constant area, then the locus of the point R
is an ellipse or a hyperbola.

Apollonius does not specifically give this converse proposition,
nor in fact any proposition stating that this or that locus is a conic.
But, as he says in his preface that his work contains * remarkable
theorems which are useful for the synthesis of solid loci,” we must
conclude that among them was the proposition which in effect states
that the area of the quadrilateral CFRU is constant, and that the
converse way of stating it was perfectly well known to him.
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It will be seen from the note to Prop. 18 that the proposition
that the area of CFRU is constant is the equivalent of saying that
the equation of a central conic referred to any two diameters as

axes is
ax’ + Bay +yy' = 4,
where a, B, vy, 4 are constants.

It is also interesting to observe that this equation is the equiva-
lent of the intermediate step in the transformation from one diameter
and tangent to another diameter and tangent as axes; in other
words, Apollonius passes from the equation referred to one pair of
conjugate diamelers to the equation referved to a second pair of
conjugate diameters by means of the more general egquation of the
curve referred to axes consisting of one of each pair of conjugates.

Other forms of the equation of the conic can be obtained, e.g. by
regarding RF, RU as fixed coordinate axes and expressing the
constancy of the area of the quadrilateral C#'R'U” for any point R’
with reference to RF, RU as axes. The axes of reference may
then be any axes meeting in a point on the curve.

For obtaining the equation we may use the formula

CFRU=CF'RU,

or the other relations derived immediately from it, viz.
FIRF=IUUR,

or FJR'F' =JU UR,

which are proved in 111. 3 [Prop. 55).

The coordinates of B’ would in this case be R'I, R'J.

Similarly an equation can be found corresponding to the property
in 111, 2 [Prop. 54] that

A HFQ = quadrilateral HTUR.

Again, 1. 54, 56 [Prop. 75] lead at once to the “locus with
respect to three lines,” and from this we obtain the well-known
equation to a conic with reference to two tangents as axes, where
the lengths of the tangents are 4, &, viz.

(;—:+%-1)=2>.(M‘"—-")i

and, in the particular case of the parabola,

GROM
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The latter equation can also be derived directly from 1. 41
[Prop. 65), which proves that three tangents to a parabola forming
a triangle are divided in the same proportion.

Thus, if 2, y be the coordinates of Q with reference to ¢R, ¢P as
axes, and if gp==x,, rg =y, (cf. the figure of Prop. 65), we have, by
the proposition,

z -r—Q=y‘_y=k—yl= wL.
x,—z @p y Y, h—z,

From these equations we find
A

H_1=2-1, or a'=hz

® B (1)
k

"{;-l-;—l, or ' y'=ky

Also, since o R [T
z Y-y

z ¥y
— 4+ Zm] i, 2
sty )

therefore by combining (1) and (2) we obtain

x\& y i-
G+ - |
The same equation can equally be derived from the property
proved by Archimedes (pp. lix, Ix).

Lastly, we find of course the equation of the hyperbola referred
to its asymptotes
zy=c)

and, if Apollonius had had a relation between the coordinates of a
point (z, y) represented to him in a geometrical form equivalent to
the equation

ay+ax+by+C=0,

he would certainly not have failed to see that the locus was a
hyperbola ; for the nature of the equation would immediately have
suggested the compression of it into a form which would show that
the product of the distances of the point (reckoned in fixed
directions) from two fixed straight lines is constant.
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§4. Method of finding two mean proportionals.

It will be remembered that Menaechmus’ solution of the problem
of the two mean proportionals was effected by finding the points of
intersection between any two of the curves

z' = ay, y* = bz, ay = ab.
It is clear that the points of intersection of the first two curves
lie on the circle
'+y'—br—ay=0,
and therefore that the two mean proportionals can be determined by
means of the intersection of this circle with any one of the three curves.
Now, in the construction for two mean proportionals which is
attributed to Apollonius, we find this very circle used, and we must
therefore assume that he had discovered that the points of inter-
section of the two parabolas lay on the circle.
We have it on the authority of Ioannes Philoponus* (who
quotes one Parmenio) that Apollonius solved the problem thus.
Let the two given unequal straight lines be placed at right
angles, as 04, OB.

E .\“
) F
B ‘ C
e
| . ..................... y

Complete the parallelogram and draw the diagonal OC. On OC
as diameter describe the semicircle OBC, produce 04, OB, and
through C draw DCFE (meeting 04 in D, the circle again in F,
and OB in E) so that DC=FE. ‘“And this is assumed as a
postulate unproved.”

Now DC = FE, and therefore DF = CE.

* On the Anal. post. 1. The passage is quoted in Heiberg's Apollonius,
Vol. n. p. 106.
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And, since the circle on OC as diameter passes through 4,
OD.DA=FD.DC
=CE.EF
=0F.EB;
S+ OD:0E=BE:AD.......... ............ (1).
But, by similar triangles,
: OD:0E=CB:BE

=04:BE..........ccccvun... (2).
Also, by similar triangles,
OD:0E=DA:4AC
=DA:0B........cuccuuveinnen. (3).

It follows from (1), (2) and (3) that
OA:BE=BE:AD=AD:0B;
hence BE, AD are the two required mean proportionals.

The important step in the above is the assumed step of drawing
DE through C so that DC = FE.

If we compare with this the passage in Pappus which says that
Apollonius “has also contrived the resolution of it by means of the
sections of the cone®,” we may conclude that the point F in the
above figure was determined by drawing a rectangular hyperbola
with 04, OB as asymptotes and passing through C. And this is
the actual procedure of the Arabian scholiast in expounding this
solution. Hence it is sufficiently clear that Apollonius’ solution
was obtained by means of the intersection of the circle on OC as
diameter with the rectangular hyperbola referred to, ie. by the
intersection of the curves

2 +y'-bzx—ay=0
zy = ab } )

The mechanical solution attributed to Apollonius is given by
Eutociust. In this solution ¥, the middle point of OC, is taken,
and with M as centre a circle has to be described cutting 04, OB
produced in points D, E such that the line DE passes through C';
and this, the writer says, can be done by moving a ruler about C as
a fixed point until the distances of D, K (the points in which it
crosses 04, OB) from M are equal. '

* Pappus mr. p. 56. Obroc ydp duoloyolrres orepedw evar 78 wpbfAnua iy
xaracxevhy alrod wbvor Spyarixds wewolprar cvppdwws "Axol\wrly 1§ Mepyaly, 8s

xal Ty drd\vow adrod wewolyras 3ia v Tob xiwov Topdy.
+ Archimedes, Vol. m. pp. 76—78.
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It is clear that this solution is essentially the same as the other,
because, if DC be made equal to FE as in the former case, the line
from M perpendicular to DE must bisect it, and therefore MD = ME.
This coincidence is noticed in Eutocius’ description of the solution of
the problem by Philo Byzantinus. This latter solution is the same
as that attributed by Ioannes Philoponus to Apollonius except
that Philo obtains the required position for DE by moving the ruler
about C' until DC, FE become equal. Eutocius adds that this
solution is almost the same as Heron’s (given just before and
identical with the mechanical solution of Apollonius), but that
Philo’s method is more convenient in practice (wpds xpiow elfera-
Tepov), because it is, by dividing the ruler into equal and con-
tinuous parts, possible to watch the equality of the lines DC, FE
with much greater ease than to make trial with a pair of compasses
(rapxivy Samepdfear) whether D, ME are equal®.

It may be mentioned here that, when Apollonius uses the
problem of the two mean proportionals in the Conics, it is for the
purpose of connecting the coordinates of a point on a central conic
with the coordinates of the corresponding centre of curvature, i.e. of
the corresponding point on the evolute. The propositions on the
subject are v. 51, 52 [Prop. 99}

§ 5. Method of constructing normals passing through
a given point.

Without entering into details, for which reference should be
made to v. 58-63 [Props. 102, 103], it may be stated generally that
Apollonius’ method of finding the feet of the various normals passing
through a given point is by the construction of a certain rectangular
hyperbola which determines, by its intersections with the conic, the
required pointa.

The analytical equivalent of Apollonius’ procedure is as follows,
Suppose O to be the fixed point through which the
normals are to pass, and PGO to be one of those
normals, meeting the major or transverse axis of
a central conic, or the axis of a parabola, in G. "
Let PN be the ordinate of P, and OM the A e
perpendicular from O on the axis.

Then, if we take as axes of coordinates the
axes of the central conic, and, for the parabola,

* Archimedes, Vol. m1. p. 76.

P
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the axis and the tangent at the vertex, and if (z, y), (z,, ¥,) be
the coordinates of P, O respectively, we have

¥y _ NG

_y'"z,—c—NZ‘
Therefore, (1) for the parabola,

Pa

vy 2

% z-x-—%
or W—( l—%)y—yl.%'=0 .................. (l);
(2) for the ellipse or hyperbola,

- b b
:vy(l +?.)—z,y¢?.ylz=0.

The intersections of these rectangular hyperbolas with the
respective conics give the feet of the various normals passing
through 0.

Now Pappus criticises this procedure, so far as applied to the para-
bola, as being unorthodox. He is speaking (p. 270) of the distinction
between the three classes of * plane” (¢xiweda), “ solid ” (areped), and
the still more complicated “linear” problems (ypappuixd wpoSijuara),
and says, “Such procedure seems a serious error on the part of
geometers when the solution of a plane problem is discovered by
means of conics or higher curves, and generally when it is solved
by means of a foreign kind (¢ dvoixeiov yévors), as, for example, the
problem in the fifth Book of the Conics of Apollonius in the case of
the parabola, and the solid vebois with reference to a circle assumed
in the book about the spiral by Archimedes; for it is possible
without the use of anything solid to discover the theorem pro-
pounded by the latter....” The first allusion must clearly be to the
use of the intersections of a rectangular hyperbola with the parabola
when the same points could be obtained by means of the intersec-
tions of the latter with a certain circle. Presumably Pappus
regarded the parabola itself as being completely drawn and given,
so that its character as a *solid locus” was not considered to affect
the order of the problem. On this assumption the criticism has no
doubt some force, because it is a clear advantage to be able to effect
the construction by means of the line and circle only.
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The circle in this case can of course be obtained by combining
the equation of the rectangular hyperbola (1) above with that of

the parabola y* = p,.
Multiply (1) by 1% , and we have
a

and, substituting p,z for y*,

o - (z,-B)z-P=0,

whence, by adding the equation of the parabola, we have
x’+y’-—(z. +%‘)z-—"—g.y=0.

But there is nothing in the operations leading to this result
which could not have been expressed in the geometrical language
which the Greeks used. Moreover we have seen that in Apollonius’
solution of the problem of the two mean proportionals the same
reduction of the intersections between two conics to the intersec-
tions of a conic and a circle is found. We must therefore assume
that Apollonius could have reduced the problem of the normals to
a parabola in the same way, but that he purposely refrained from
doing so. Two explanations of this are possible; either (1) he
may have been unwilling to sacrifice to a pedantic orthodoxy the
convenience of using one uniform method for all three conics alike,
or (2) he may have regarded the presence of one ‘solid locus”
(the given parabola) in his figure as determinative of the class of
problem, and may have considered that to solve it with the help of
a circle only would not, in the circumstances, have the effect of
making it & “plane” problem.



CHAPTER 1IV.
THE CONSTRUCTION OF A CONIC BY MEANS OF TANGENTS.

Ix Book m. 41-43 [Props. 65, 66, 67] Apollonius gives three
theorems which may be enunciated as follows:

41. If three straight lines, each of which touches a parabola,
meet one another, they will be cut in the same proportion.

42. If in a central conic parallel tangents be drawn at the
extremities of a fixed diameter, and of both tangents be met by any
variable tangent, the rectangle under the intercepts on the parallel
tangents is constant, being equal to the square on half the parallel dia-
meter, i.c. the diameter conjugate to that joining the points of contact.

43. Any tangent to a hyperbola cuts off lengths from the asymp-
totes whose product is constant.

There is an obvious family likeness between these three consecu-
tive propositions, and their arrangement in this manner can hardly
have been the result of mere accident. It is true that 111. 42 [Prop.
66] is used almost directly afterwards for determining the foci of a
central conic, and it might be supposed that it had its place in the
book for this reason only; but, if this were the case, we should have
expected that the propositions about the foci would follow directly
after it instead of being separated from it by . 43, 44 [Props. 67,
68]. We have also a strong positive reason for supposing that the
arrangement was due to set purpose rather than to chance, namely the
fact that all three propositions can be used for describing a conic by
means of tangents. Thus, if two tangents to a parabola are given,
the first of the three propositions gives a general method of drawing
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any number of other tangents; while the second and third give the
simplest cases of the construction of an ellipse and a hyperbola by
the same means, those cases, namely, in which the fixed tangents
employed are chosen in a special manner.

As therefore the three propositions taken together contain the
essentials for the construction of all three conics by this method, it
becomes important to inquire whether Apollonius possessed the
means of drawing any number of tangents satisfying the given
conditions in each case. That Apollonius was in a position to solve
this problem is proved by the contents of two of his smaller
treatises. Ome of these, Adyov dworopijs 8 (two Books On culting
off a proportion), we possess in a translation by Halley from the
Arabic under the title De sectione rationis; the other, now lost,
was xwpiov droroutjs B’ (two Books On cutting off a space, which means
cutting off from two fixed lines lengths, measured from fixed points
on the lines respectively, such that they contain a rectangle of
constant area). Now the very problem just mentioned of drawing
any number of tangents to a parabola reduces precisely to that
which is discussed with great fulness in the former of the two
treatises, while the construction of any number of tangents to
the ellipse and hyperbola in accordance with the conditions of
m. 42, 43 [Props. 66, 67] reduces to two important cases of the
general problem discussed in the second treatise.

I. In the case of the parabola, if two tangents ¢P, gR and the
points of contact P, R are given, we have to draw through any
point a straight line which will intersect the given tangents
(in r, p respectively) in such a way that

Pr:rg=gqp:pR,
or Pr:Pg=qp:qR;
that is, we must have =ep:ak;

Pr : gp = Pq : qR (a constant ratio).
In fact, we have to draw a line such that the intercept on one
tangent measured from the point of contact is to the intercept on
the other tangent measured from the intersection of the tangents in
a given ratio. How to do this is shown in the greatest detail in the
first Book Adyov dworopijs.

If, again, instead of the points of contact, two other tangents

are given meeting the fixed tangent gP in r,, r, and the fixed
tangent gR in p,, p,, we have to draw a straight line rp cutting off

12
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along the tangents ¢P, ¢R parts measured from r,, p, respectively
which are in a given proportion, i.e. such that
rriopp=rr,:pp, (afixed ratio);

and this problem is solved in the second Book Adyov éwurouis.

The general problem discussed in that treatise is, to draw from
a point O a straight line which shall cut off from two given straight
lines portions, measured from two fixed points 4, B, which are in a
given proportion, e.g., in the accompanying figure, ONM is to be
drawn so that AM : BN is a given ratio. In the second Book of

CT- 8" c

the treatise this general case is reduced to a more special one in
which the fixed point B occupies a position B’ on the first line 4 X,
80 that one of the intercepts is measured from the intersection of
the two lines. The reduction is made by joining OB and drawing
B'N’ parallel to BN from the point B’ in which OB, MA intersect.
Then clearly B'N' : BN is a given ratio, and therefore the ratio
B'N': AM is given.
We have now to draw a straight line ON'M cutting MAB', B'N’
in points M, N’ such that
B'N'
AM
This problem is solved in the first Book, and the solution is
substantially as follows.
Draw OC parallel to N'B’ meeting MA produced in C. Now
suppoge a point D found on 4 M such that
oc
A'—Do

= a given ratio, A suppose.

A=
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. . B'N',
Then, supposing that the ratio e made equal to A, we have
AM B'N' B'M
4D 0oC " CcM’

wh up _CB
ence iD- oM’
and therefore CM.MD =AD.CB’ (a given rectangle).

Thus a given line CD has to be divided at M so that CM . MD
has a given value ; and this is the Euclidean problem of applying to
a given straight line a rectangle equal to a given area but falling
short, or exceeding, by a square.

In the absence of algebraical signs, it was of course necessary for
Apollonius to investigate a large number of separate cases, and also
to find the limiting conditions of possibility and the number of the
possible solutions between each set of limits. In the case repre-
sented in the above figure the solution is always possible for any
value of the given ratio, because the given value 4D . CB’, to which
CY.MD is to be equal, is always less than CA. 4D, and therefore

L]
always less than (%—D) , the maximum value of the rectangle whose

sides are together equal to CD. As the application of the rectangle
would give two positions of ¥, it remains to be proved that only
one of them falls on 40 and so gives a solution such as the figure
requires; and this is 80 because CM.MD must be less than
C4.AD.

The application to the parabola has more significance in the
cases where the given ratio must be subject to certain limits in
order that the solution of the problem may be possible. This will
be so, e.g. in the annexed figure, where the letters have the same
meaning as before, and the particular case is taken in which one
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intercept BN’ is measured from B’, the intersection of the two fixed
lines. Apollonius begins by stating the limiting case, saying that
we obtain a solution in a speciul manner in the case where M is the
middle point of CD, so that the given rectangle CM.MD or
CB’. AD has its maximum value.

In order to find the corresponding limiting value of A, Apollonius
seeks the corresponding position of D.

BC CM_ BM
MD~ 4D MA’
whence, since D =CH,

B'C CM B'M

‘We have

and therefore B'M*=B'C.B'A.

Thus M is determined, and therefore D also.
According, therefore, as A is less or greater than the particular

value of 33 thus determined, Apollonius finds no solution or two
solutions.
At the end we find also the following further determination of

the limiting value of A. 'We have
AD=PBA+BC—-(BD+BC)
=BA+BC-2BM

=BA+BC-2JF4.BC.

Thus, if we refer the various points to a system of coordinates with
B'A, B'N' as axes, and if we denote the coordinates of O by (z, y)
and the length 5’4 by 4, we have

A9y

If we suppose Apollonius to have used these results for the
parabola, he cannot have failed to observe that the limiting case
described is that in which O is on the parabola, while N'OX is the
tangent at O ; for, as above,

BM BC
B4 BM

0
=¥ by parallels,
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8o that B’'A, N'M are divided at M, O respectively in the same
proportion.
Further, if we put for A the proportion between the lengths of

the two fixed tangents, we obtain, if A, & be those lengths,

ko vy

b~ h+z-2Jha’
which is the equation of the parabola referred to the fixed tangents
as coordinate axes, and which can easily be reduced to the sym-

metrical form
GO

II. In the case of the ellipse and Ayperbola the problem is to
draw through a given point O a straight line cutting two straight
lines in such a way that the intercepts upon them measured from
fixed points contain a rectangle of constant area, and for the ellipse
the straight lines are parallel, while for the Ayperbola they meet in
a point and the intercepts on each are measured from the point of
their intersection.

These are particular cases of the general problem which, accord-
ing to Pappus, was discussed in the treatise entitled xwplov dworups ;
and, as we are told that the propositions in this work corresponded
severally to those in the Adyov dworops), we know that the particular
cases now in question were included. We can also form an idea
how the general problem was solved. The reduction to the particular
case where one of the points from which the intercepts are measured
is the intersection of the two fixed lines is effected in the same
manner as in the case of proportional section described above.
Then, using the same figure (p. cxxxii), we should take the point D
(in the position represented by (D) in the figure) such that

OC . AD = the given rectangle.

We have then to draw the line ON'Y so that

BN .AM=0C.AD,

or BN _4D
0C AM’
But, since B'N’, OC are parallel,
BN BM
oc T’
Therefore -4—‘-{= 4D = by



cxxxvi INTRODUCTION TO APOLLONIUS.

and the rectangle B’M . MD = AD. B'C, which is given. Hence, as
before, the problem is reduced to an application of a rectangle in
the well-known manner.

The complete treatment of the particular cases of the problem,
with their Scopiopof, could present no difficulty to Apollonius.

III. 1t is not a very great step from what we find in Apollonius
to the general theorem that, if a straight line cuts off from two fixed
straight lines intercepts, measured from given points on the lines
respectively, which contain a rectangle of given area, the envelope of
the first straight line is a conic section touching the two fixed straight
lines.

Q

Thus, suppose 4BCD to be a parallelogram described about a
conic and Z, F to be the points of contact of 4B, CD. If a fifth
tangent N cuts AB,CD in M, N and 4D, CB in P, Q respectively,
we have, by the proposition of Apollonius,

EA.FD=EM.FN.
EA EM AM AP

Therefore FN-FD-ND- PD"
Hence, since £4 = CF,
cr_F¥_cxy
AP~ PD 4D’
and therefore AP.CN=CF.AD,

or the rectangle 4P.CXN has an area independent of the position of
the particular fifth tangent MN.
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Conversely, if the lines 4D, DC are given as well as the points
4, C and the area of the rectangle AP.CN, we can determine the
point ¥, and therefore also the point £ where 4B touches the conic.
We have then the diameter £F and the direction of the chords
bisected by it, as well as the tangent 4D ; thus we can find the
ordinate to EF drawn through the point of contact of 4D, and
hence we can obtain the equation of the conic referred to the
diameter EF and its conjugate as axes of coordinates. Cf. Lemma
xxv. of the first Book of Newton’s Principia and the succeeding
investigations.



CHAPTER V.
THE THREE-LINE AND FOUR-LINE LOCUS.

THE so-called rdwos &l Tpels kai Téooapas ypappuds is, as we have
seen, specially mentioned in the first preface of Apollonius as a
subject which up to his time had not received full treatment. He says
that he found that Euclid had not worked out the synthesis of the
locus, but only some part of it, and that not successfully, adding
that in fact the complete theory of it could not be established
without the “new and remarkable theorems” discovered by himself
and contained in the third book of his Conics. The words used
indicate clearly that Apollonius did himself possess a complete
solution of the problem of the four-line locus, and the remarks of
Pappus on the subject (quoted above, p. xxxi, xxxii), though not
friendly to Apollonius, confirm the same inference. We must
further assume that the key to Apollonius’ solution is to be found
in the third Book, and it is therefore necessary to examine the
propositions in that Book for indications of the way in which he
went to work.

The three-line locus need not detain us long, because it is really a
particular case of the fourline locus. But we have, in fact, in
11, 53-56 [Props. 74-76] what amounts to a complete demonstration
of the theoretical converse of the three-line locus, viz. the proposition
that, if from any point of a conic there be drawn three straight lines
in fized directions to mest respectively two fixed tangents to the conic
and thesr chord of contact, the ratio of the rectangls contained by the
Jirst two lines so drawn to the square on the third lins i constant.
The proof of this for the case where the two tangents are parallel is
obtained from 11 53 [Prop. 74], and the remaining three propo-
sitions, 111. 54-56 [Props. 75, 76), give the proof where the tangents
are not parallel.
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Tn like manner, we should expect to find the theorem of the
Jour-line locus appearing, if at all, in the form of the converse
proposition stating that every conic section has, with reference to any
inscribed quadrilateral, the properties of the four-line locus. It will
be seen from the note following Props. 75, 76 that this theorem is
easily obtained from that of the three-line locus as presented by
Apollonius in those propositions ; but there is nowhere in the Book
any proposition more directly leading to the former. The explana-
tion may be that the construction of the locus, that is, the aspect of
the question which would be appropriate to a work on solid loci
rather than one on conics, was considered to be of preponderant im-
portance, and that the theoretical converse was regarded as a
mere appendage to it. But, from the nature of the case, that
converse must presumably have appeared as an intermediate step
in the investigation of the locus, and it could hardly have
been unknown even to earlier geometers, such as Euclid and
Aristaeus, who had studied the subject thoroughly.

In these circumstances we have to seek for indications of the
probable course followed by Greek geometers in their investiga-
tion of the four-line locus; and, in doing so, we have to bear
in mind that the problem must have been capable of partial
solution before the time of Apollonius, and that it could be
completely solved by means of the propositions in his third Book.

We observe, in the first place, that 1. 54-56 [Props. 75, 76],
which lead to the property of the three-line locus, are proved by
means of the proposition that the ratio of the rectangles under the
segments of any intersecting chords drawn in fixed directions is
constant. Also the property of the three-line locus is a particular
case of the property of a conic with reference to an inscribed quadri-
lateral having two of its sides parallel, that case, namely, in which
the two parallel sides are coincident; and it will be seen that the
proposition relating to the rectangles under the segments of in-
tersecting chords can equally well be used for proving generally
that a conic is a four-line locus with reference to any inscribed
quadrilateral which has two sides parallel

For, if AB is a fixed chord of a conic and Rr a chord in a given
direction cutting 4B in I, we have

RI.Ir
AI.IB
If we measure RK along Rr equal to Ir, the locus of X is a chord

= (const.).
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DC meeting the diameter which bisects chords parallel to Rr in
the same point in which it is met by 4.B, and the points D, C lie on
lines drawn through 4, B respectively parallel to Rr.

Then, if z, y, 2, u be the distances of R from the sides of the
quadrilateral ABCD, we shall have

xz
e (const.).

And, since ABCD may be any inscribed quadrilateral with two
sides parallel, or a trapezium, the proposition is proved generally for
the particular kind of quadrilateral.

If we have, on the other hand, to find the geometrical locus of a
point R whose distances z, ¥, z, 4 from the sides of such a trapezium
. are connected by the above relation, we can first manipulate the
constants so as to allow the distances to be measured in the
directions indicated in the figure, and we shall have

RI.RK _RI.Ir
AI.IB ~—AI.IB’

where A i3 a given constant. We must then try to find a conic
whose points R satisfy the given relation, but we must take care to
determine it in such a manner as to show synthetically at the same
time that the points of the conic so found do really satisfy the given
condition ; for, of course, we are not yet supposed to know that the
locus s a conic.

It seems clear, as shown by Zeuthen, that the defective state of
knowledge which prevented the predecessors of Apollonius from
completing the determination of the four-line locus had reference
rather to this first step of finding the locus in the particular case of
a trapezium than to the transition from the case of a trapezium to
that of a quadrilateral of any form. The transition was in fact, in

A=
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itself, possible by means which were within the competence of
Euclid, as will presently be seen; but the difficulty in the way of
the earlier step was apparently due to the fact that the conception
of the two branches of a hyperbola as a single curve had not
occurred to any one before Apollonius. His predecessors ac-
cordingly, in the case where the four-line locus is a complete
hyperbola in the modern sense, probably considered only one branch
of it ; and the question which branch it would be would depend on
some further condition determining it as one of the two branches,
e.g. the constant might have been determined by means of a given
point through which the conic or single-branch hyperbola, which it
was required to prove to be the four-line locus, should pass.

To prove that such a single branch of a hyperbola, not passing
through all four corners of the quadrilateral, could be the four-line
locus, and also to determine the locus corresponding to the value of
A leading to such a hyperbola, it was necessary to know of the
connexion of one branch with the other, and the corresponding
extensions of all the propositions used in the proof of the property
of the inscribed quadrilateral, as well as of the various steps in the
converse procedure for determining the locus. These extensions to
the case of the complete hyperbola may, as already mentioned
(p- Ixxxiv segq.), be regarded as due to Apollonius. His predeces-
sors could perfectly well have proved the proposition of the in-
scribed trapezium for any single-branch conic; and it will be seen
that the converse, the construction of the locus, would in the
particular case present no difficulty to them. The difficulty would
come in where the conic was a hyperbola with two branches.

Assuming, then, that the property of the four-line locus was
established with respect to an inscribed trapezium by means of the
proposition that the rectangles under the segments of intersecting
chords are to one another in the ratio of the squares on the parallel
tangents, what was wanted to complete the theory was (1) the
extension to the case where the tangents are tangents to op-
posite branches of a hyperbola, (2) the expression of the constant
ratio between the rectangles referred to in those cases where no
tangent can be drawn parallel to either of the chords, or where a
tangent can be drawn parallel to one of them only. Now we find
(1) that Apollonius proves the proposition for the case where the
tangents touch opposite branches in 1. 19 [Prop. 59, Case ).
Also (2) the proposition 1i1. 23 [Prop. 59, Case 1v.] proves that,
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where there is no tangent to the hyperbola parallel to either of the
chords, the constant ratio of the rectangles is equal to the ratio of
the squares of the parallel tangents to the conjugate hyperbola ; and
1. 21 [Prop. 59, Case 11.] deals with the case where a tangent can
be drawn parallel to one of the chords, while no tangent can be drawn
parallel to the other, and proves that, if ¢Q, the tangent, meets the
diameter bisecting the chord to which it is not parallel in ¢, and if
tg is half the chord through ¢ parallel to the same chord, the
constant ratio is then ¢Q*:¢g".

Zeuthen suggests (p. 140) that the method adopted for deter-
mining the complete conic described about a given trapezium 4BCD,
which is the locus with respect to the four sides of the trapezium
corresponding to a given value of the constant ratio A, may have
been to employ an auxiliary figure for the purpose of constructing a
conic similar to that required to be found, or rather of finding the
form of certain rectilineal figures connected with such a similar
conic. This procedure is exemplified in Apollonius, 1. 50-53
[Props. 50-52], where a certain figure is determined by means of a
previous construction of another figure of the same form; and the
suggestion that the same procedure was employed in this case has
the advantage that it can be successfully applied to each of the
separate cases in which Apollonius gives the different expressions
for the constant ratio between the rectangles under the segments
of intersecting chords in fixed directions.

We have the following data for determining the form of the
conic similar to the required conic circumscribing ABCD: the value
(A) of the ratio —f} II; between the products of segments of lines in
two different directions, and the direction of the diameter Pp
bisecting chords in one of the given directions.

I. Suppose that the conic has tangents in both given directions
(which is always the case if the conic is a conic in the old sense of
_ the term, i.e. if the double-branch hyperbola is excluded).

Let the points of the auxiliary figure be denoted by accented
letters corresponding to those in the figure on p. cxl.

‘We know the ratio

oP -
og=*
and, if we choose any straight line for O’ P’, we know (1) the position
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of a diameter, (2) its extremity P’, (3) the direction of the chords
bisected by the diameter, (4) a point @' with the tangent at that
int.

P Then the intersection of the tangent at @ with the diameter
and the foot of the ordinate to it from @' determine, with P’, three
points out of four which are harmonically related, so that the
remaining one, the other extremity (p’) of the diameter, is found.
Hence the conic in the auxiliary figure is determined.

II. Suppose that the conic has no tangent in either direction.

In this case we know the ratio between the tangents to the
hyperbola conjugate to the required auxiliary hyperbola, and we can
therefore determine the conjugate hyperbola in the manner just
described ; then, by means of the conjugate, the required auxiliary
hyperbola is determined.

IIT. Suppose that the conic has a tangent in the direction of
AD, but not in the direction of 4.B.

A

[+

In this case, if the tangent Pt parallel to 4D and the diameter
bisecting 4B meet in ¢, Apollonius has expressed the constant A as
the ratio between the squares of the tangent ¢tP and of ¢g, the half
of the chord through ¢ parallel to AB. We have then

If we now choose t'P’ arbitrarily, we have, towards determining the
auxiliary similar conic,

(1) a diameter with the direction of chords bisected by it,

(2) one extremity P’ of that diameter,

(3) two points ¢, & on the curve.
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If y,, y, are the ordinates of ¢/, s’ with respect to the diameter,
x,, z, the distances of the feet of the ordinates from P’, and =/, «,’
their distances from the other (unknown) extremity of the diameter,
we have , ,

M Y

whence :—’l, is determined.

The point p’ can thus be found by means of the ratio between
its distances from two known points on the straight line on which
it must lie.

IV. B8uppose that the conic has a tangent in the direction of
4B, but not in the direction of 4D,

Let the tangent at P, parallel to 4B, meet the diameter bisecting
BC, AD in t, and let ¢g parallel to 4D meet the conic in ¢ ; we then
have

If we choose either ¢'q’ or ¢'P arbitrarily, we have

(1) the diameter ¢'7",

(2) the points P’, ¢’ on the curve, the ordinates from which to
the diameter meet it in ¢/, 7"’ respectively,

(3) the tangent at P’
Since ¢'P’ is the tangent at P,
Cct.CT'=}%.a",
where C’ is the centre, and a’ the length of the diameter.
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Therefore, by symmetry, 7°¢’ is the tangent at ¢. [Prop. 42.]

Hence we can find the centre C' by joining V", the middle point
of Py¢, to O, the point of intersection of the tangents, since V'O’
must be a diameter and therefore meets ¢ 7' in C".

Thus the auxiliary conic can be readily determined. The
relation between the diameter a’ and the diameter b’ conjugate to it
is given by

" b b
Ct.iT o o

Thus it is seen that, in all four cases, the propositions of Apollo-
nius supply means for determining an auxiliary figure similar to
that which is sought. The transition to the latter can then be
made in various ways; e.g. the auxiliary figure gives at once the
direction of the diameter bisecting 4B, so that the centre is given;
and we can effect the transition by means of the ratio between C4
and C'4’",

There are, however, indications that the auxiliary figures would
not in practice be used beyond the point at which the ratio of the
diameter (a) bisecting the parallel sides of the trapezium to its
conjugate (b) is determined, inasmuch as we find in Apollonius
propositions which lead directly to the determination of the absolute

values of @ and b when the ratio ;(: %:) is given. The problem to

be solved is, in fact, to describe a conic through two given points 4
and B such that one diameter of it lies along a given straight line, while
the direction of the chords bisected by the diameter is given, as well as

the ratio (%) between the length of the diameter and its conjugate.
Suppose that, in the accompanying figure, a straight line is
drawn through B parallel to the known direction of the diameter,

o B8
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and meeting DA produced in 0. Also let OB meet the curve
(which we will suppose to be an ellipee) again in X.
Then we must have
OB.OE a'
04.0D~

whence OF can be found, and therefore the position of E. The line
bisecting BE and parallel to 4D or BC will determine the centre.

We have now, for the case of the ellipse, a proposition given
by Apollonius which determines the value of a* directly. By
1t 27 [Prop. 61 (1)] we know that

0B+ 0B+ (04" + 0D = ",

whence a’ is at once found.

Similar propositions are given for the hyperbola (see m. 24-26,
28, 29 [Props. 60 and 61 (2)]). The construction in the case of the
hyperbola is also facilitated by means of the asymptote properties.
In this case, if the letters have the same significations as in the
figure for the ellipse, we find the centre by means of the chord BE
or by using the auxiliary similar figure. The asymptotes are then

determined by the ratio g. If these out the chord 4D in K, L,

then
AK.AL =P,

or AK.KD= *b’.

If the required curve is a parabols, the determination of the
auxiliary similar figure after the manner of the first of the four
cases detailed above would show that 7, the end of the diameter, is
at the middle point of the intercept between the intersection of the
diameter with the tangent at @’ and with the ordinate from @’ respec-
tively. The curve can then be determined by the simple use of the
ordinary equation of the parabola.

8o far the determination of the four-line locus has only been
considered in the particular case where two opposite sides of the
inscribed quadrilateral are parallel. It remains to consider the
possible means by which the determination of the locus with
referpnce to a quadrilateral of any form whatever might have been
reduced to the problem of finding the locus with reference to a
trapezium. As Apollonius’ third Book contains no propositions
which can well be used for effecting the transition, it must be
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concluded that the transition itself was not affected by Apollonius’
completion of the theory of the locus, but that the key must be
looked for elsewhere. Zeuthen (Chapter 8) finds the key in the
Porisms of Euclid*. He notes first that Archimedes’ proposi-
tion (given on p. lix, Ix above) respecting the parabola exhibits the
curve as a fourline locus with respect to two quadrilaterals, of
which one is obtained from the other by turning two adjacent
sides about the points on the parabola in which they meet the two
other sides. (Thus PQ is turned about @ and takes the position
@QT, while PV is turned about its intersection with the parabola
at infinity and takes the position of the diameter through @.)
This suggests the inquiry whether the same means which are
used to effect the transition in this very special case cannot
also be employed in the more general case now under consi-
deration.

As the Porisms of Euclid are themselves lost, it is necessary to
resort to the account which Pappus gives of their contents; and
the only one of the Portsms which is there preserved in its original
form is as follows+:

If from two given points there be drawn siraight lines which
intersect one another on a straight line given in position, and if one
of the straight lines so drawn cuts off from a straight line given in
position a certain length measured from a given point on it, then the
other straight line also will cut off a portion from another straight
line bearing a given ratio [to the former intercept).

The same proposition is true also when a fourline locus is
substituted for the first-mentioned given straight line and the two
fixed points are any two fixed points on the locus. Suppose that we
take as the two fixed points the points 4 and C, being two opposite
corners of the quadrilateral 4 BCD to which the locus is referred,
and suppose the lines from which the intercepts are cut off to be
CE, AE drawn respectively parallel to the sides B4, BC of the
quadrilateral.

Let M be a point on the required locus, and let 4D, AM meet

* That the Porisms of Euclid were a very important contribution to geometry
is indicated by the desoription of them in Pappus (p. 648) as a collection most
ingeniously adapted for the solution of the more weighty problems (dfpowpua
@orexvéraror els Tip drd\vow Tov dufpidearépwr wpofinudrur).

+ Pappus, p. 656.

k2
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CE in D', M’ respectively, while CD, CM meet AE in D*, M"
respectively.

For the purpose of determining the geometrical locus, let the
distances of M from AB, CD be measured parallel to BC, and its
distances from BC, AD parallel to BA.

Then the ratio of the distances of A from CD, BC respectively

"

will be equal to DT;-, and the ratio of the distances of M from 4B,
AE

D4 wﬂlbeequltow,.

Therefore the fact that the ratio of the rectangles under the
distances of M from each pair of opposite sides of the quadrilateral
ABCD is constant may be expressed by the equation

D"M" _ A CE _
H T AETH
where u is a new constant independent of the position of M.

If now A be determined by means of the position of a point F of

the locus, we have
DIIMII _ DIIFII _ FIIM'I (2)
DHCDEF S FTH ,

where F”, F" are the intersections of AF, CE and of CF, AE
respectively. :

And, since the last ratio in (2), which is derived from the other
two, remains constant while M moves along the required locus, it
follows that that locus is also a four-line locus with reference to the
four sides of the quadrilateral ABCF.

Thus, in order to extend the proposition about an inscribed
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trapezium to a quadrilateral of any form, or, conversely, to reduce
the determination of a four-line locus with reference to any quadri-
lateral to a similar locus with reference to a trapezium, it was only
necessary to consider the case in which one of the lines 4D or AF
coincides with AE. It follows that the four-line locus with reference
to any quadrilateral is, like the four-line locus with reference to a
trapezium, a conic section.

The actual determination of the locus in the general form can
be effected by expressing it in the more particular form.

Suppose that the distances of M from 4B, CD (reckoned parallel
to BC) are denoted by =, z, and the distances of M from BC, 4D
(reckoned parallel to BA) are y, u respectively. Then the locus is
determined by an equation of the form

where A is a constant, and 2, y are the coordinates of the point M
with reference to BC, B4 as axes.

If P, Q are the points in which the ordinate (y) of / meets 4D,
AEK respectively,

Since (- MQ) is the distance of M from 4 £ measured parallel to
BA, let it be denoted by u,.
Then, from the figure,
D'E

w(z—AB—Ey)=Ayu..

Therefore, from (1),

In order to substitute a single term for ( )L v E’ , we derive
from the figure
_ D"MII
*="cx ¥
and we have then to take a point G on AE such that
\DE_D'G
4E ~ CE~

(The point @ is thus seen to be a point on the locus.)
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DE DM’ DG
AEY=TCE Y crVY
_GM”
=CE ‘Y
= zl,
where 2, is the distance of the point A from the line CG measured

parallel to BC.
The equation representing the locus is accordingly transformed
into the equation

Hence z-\

x% = \.yu,,
and the locas is expressed as a four-line locus with reference to the
trapezium A BCG.

The method here given contains nothing which would be beyond
the means at the disposal of the Greek geometers except the mere
notation and the single use of the negative sign in (- #Q), which
however is not an essential difference, but only means that, whereas
by the use of the negative sign we can combine several cases into
one, the Greeks would be compelled to treat each separately.

Lastly, it should be observed that the fourline locus with
reference to a trapezium corresponds to the equation

ox’ + Bry + yy' + dz + ey =0,
which may be written in the form

z(ax+By+d)=—y(yy +e).
Thus the exact determination of the four-line locus with reference
to a trapezium is the.problem corresponding to that of tracing a
conic from the general equation of the second degree wanting only
the constant term.



CHAPTER VI
THE CONSTRUCTION OF A CONIC THROUGH FIVE POINTS.

8ince Apollonius was in possession of a complete solution of the
problem of constructing the four-line locus referred to the sides of a
quadrilateral of any form, it is clear that he had in fact solved the
problem of constructing a conic through five pointa. For, given the
quadrilateral to which the four-line locus is referred, and given a
fifth point, the ratio (A) between the rectangles contained by the
distances of any point on the locus from each pair of opposite sides
of the quadrilateral measured in any fixed directions is also given.
Hence the construction of the conic through the five points is
reduced to the construction of the four-line locus where the constant
ratio A is given.

The problem of the construction of a conic through five points
is, however, not found in the work of Apollonius any more than the
actual determination of the four-line locus. The omission of the
latter is easily explained by the fact that, according to the author’s
own words, he only professed to give the theorems which were
necessary for the solution, no doubt regarding the actual construc-
tion as outside the scope of his treatise. But, as in Euclid we find
the problem of describing a circle about a triangle, it would have
been natural to give in a treatise on conics the construction of a
conic through five points. The explanation of the omission may be
that it was not found possible to present the general problem
in a form sufficiently concise to be included in a treatise embracing
the whole subject of conics. This may be easily understood when
it is remembered that, in the first place, a Greek geometer
would regard the problem as being in reality thres problems
and involving a separate construction for each of the three
conics, the parabola, the ellipse, and the hyperbola. He would
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then discover that the construction was not always possible
for a parabola, since four points are sufficient to determine a
parabola ; and the construction of a parabola through four points
would be a completely different problem not solved along with the
construction of the four-line locus. Further, if the curve were an
ellipse or a hyperbola, it would be necessary to find a Swpirpcs
expressing the conditions which must be satisfied by the particular
points in order that the conic might be the one or the other. If it
were an ellipse, it might have been considered necessary to provide
against its degeneration into a circle. Again, at all events until the
time of Apollonius, it would have been regarded as necessary to find
a Swpirpds expressing the conditions for securing that the five points
should not be distributed over both branches of the hyperbola.
Thus it would follow that the complete treatment of the problem by
the methods then in use must have involved a discussion of con-
siderable length which would have been disproportionate in such a
work as that of Apollonius,

It is interesting to note how far what we actually find in
Apollonius can be employed for the direct construction of a conic
through five points independently of the theory of the four-line
locus. The methods of Book IV. on the number of points in which
two conics may intersect are instructive in this connexion. These
methods depend (1) on the harmonic polar property and (2) on the
relation between the rectangles under the segments of intersecting
chords drawn in fixed directions. The former property gives a
method, when five points are given, of determining a sixth ; and by
repeating the process over and over again we may obtain as many
separate points on the curve as we please. The latter proposition
has the additional advantage that it allows us to choose more freely
the particular points to be determined ; and by this method we can
find conjugate diameters and thence the axes. This is the method
employed by Pappus in determining an ellipse passing through five
points respecting which it is known beforehand that an ellipse can
be drawn through them®. It is to be noted that Pappus’ solution
is not given as an independent problem in conic sections, but it is
an intermediate step in another problem, that of finding the dimen-
sions of a cylinder of which only a broken fragment is given such
that no portion of the circumference of either of its bases is left
whole. Further, the solution is made to depend on what is to be

* Pappus (ed. Hultsch), p. 1076 seqq.
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found in Apollonius, and no claim is advanced that it contains
anything more than any capable geometer could readily deduce for
himself from the materials available in the Conscs.

Pappus’ construction is substantially as follows. If the given
points are 4, B, C, D, E, and are such that no two of the lines
connecting the different pairs are parallel, we can reduce the problem
to the construction of a conic through 4, B, D, E, F, where EF is
parallel to 4B.

For, if EF be drawn through Z parallel to 45, and if CD meet
AB in O and EF in 0, we have, by the proposition relating to
intersecting chords,

C0.0D:40.0B=C0'.0D: EO'.OF,

whence (' F is known, and therefore F is determined.

‘We have therefore to construct an ellipee through 4, B, D, E, F,
where EF is parallel to 4B.

And, if 7, W be the middle points of 4B, EF respectively, the
line joining ¥ and W is a diameter.

Suppose DR to be the chord through D parallel to the diameter,
and let it meet 4B, EF in G, H respectively. Then R is deter-
mined by means of the relation

RG.GD : BG.GA=RH.HD : FH HE ......... (1)
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In order to determine R, let DB, RA be joined meeting EF in K, L

respectively.
Then

RG.GD : BG.GA=(RH : HL).(DH : HK), by similar triangles,
=RH.HD :KH.HL.
Therefore, from (1), we have
FH.HE=KH.HL,

whence HL is found, and therefore L is determined. And the
intersection of AL, DH determines R.

In order to find the extremities of the diameter (PP’), we draw
ED, RF meeting the diameter in M, N respectively. And, by the
same procedure as before, we obtain

FH.HE : RH.HD=FW.WE : PW.WP,
by the property of the ellipse.
Also FH.HE:RH.HD=FW.WE:NW. WA,
by similar triangles.
Hence PW.WP=NW.WM;

and similarly we can find the value of P’V . VP.

Pappus’ method of determining P, P’ by means of the given
values of P'V. VP and P W.WP amounts to an elimination of one
of the unknown points and the determination of the other by an
equation of the second degree.

Take two points @, @' on the diameter such that

PV.VP=WV.VQ...cccervrvenn... (a),
PW.WP=VW.WQ ..ccovveerereere.. ®),

and V, W, Q, Q' are thus known, while £, P’ remain to be found.
It follows from (a) that

PV :VW=QV:VP,
whence PW:.VW=PQ:PYV.
From this we obtain, by means of (83),

PQ.PV=QW:WP,
80 that PQ:QV=QW: PQ,
or PQ.PQ =QV.QW.
Thus 2 can be found, and similarly 7,
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It is noteworthy that Pappus’ method of determining the ex-
tremities of the diameter PP’ (which is the principal object of his
construction) can be applied to the direct construction of the points
of intersection of a conic determined by five points with any straight
line whatever, and there is no reason to doubt that this construction
could have been effected by Apollonius. But there is a simpler
expedient which we know from other sources that Apollonius was
acquainted with, and which can be employed for the same purpose
when once it is known that the four-line locus is a conic. .

The auxiliary construction referred to formed the subject of a
whole separate treatise of Apollonius On determinate section (wepi
Swpirpéims Topns). The problem is as follows :

Given four points 4, B, C, D on a straight line, to determine
another point P on the same straight line so that the ratio

AP.CP:BP.DP
has a given value.

The determination of the poiuts of intersection of the given
straight line and a four-line locus can be immediately transformed
into this problem, 4, B, C, D being in fact the points of intersection
of the given straight line with the four lines to which the locus
has reference.

Hence it is important to examine all the evidence which we
possess about the separate treatise referred to, This is contained
in the seventh Book of Pappus, who gives a short account of the
contents of the work® as well as a number of lemmas to the
different propositions in it. It is clear that the question was very
exhaustively discussed, and in fact at much greater length than
would have been likely had the investigation not been intended as
a means of solving other important problems. The conclusion is
therefore irresistible that, like the Books Adyov dmoropijs and xwplov
dxoropijs above mentioned, that On determinats section also was
meant to be used for solving problems in conic sections.

To determine P by means of the equation

AP.CP=\.BP.DP,

where 4, B, C, D, \ are given, is now an easy matter because the
problem can at once be put into the form of a quadratic equation,
and the Greeks also would have no difficulty in reducing it to the
usual application of areas. But, if it was intended for application

* Pappus, pp. 643—644.
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in further investigations, the complete discussion of it would
naturally include, not only the finding of a solution, but also the
determination of the limits of possibility and the number of poesible
solutions for different positions of the given pairs of points 4, C and
B, D, for the cases where the points in either pair coincide, where
one is infinitely distant, and so forth : so that we should expect the
subject to oocupy considerable space. And this agrees with what
we find in Pappus, who further makes it clear that, though we do
not meet with any express mention of series of point-pairs deter-
mined by the equation for different values of A, yet the treatise
contained what amounts to a complete theory of Involution. Thus
Pappus says that the separate cases were dealt with in which the
given ratio was that of either (1) the square of one abscissa
measured from the required point or (2) the rectangle contained by
two such abscisse to any one of the following : (1) the square of one
absciasa, (2) the rectangle contained by one abecissa and another
separate line of given length independent of the position of the
required point, (3) the rectangle contained by two abecissee. We
also learn that maxima and minima were investigated. From the
lemmas too we may draw other conclusions, e.g.

(1) that, in the case where A =1, and therefore P has to be
determined by the equation

AP.CP=BP.DP,
Apollonius used the relation*
BP:DP=AB.BC:4D.DC;

(2) that Apollonius probably obtained a double point &' of the

involution determined by the point-pairs 4, C and B, D by means of

the relationt
AB.BC:AD.DC = BE*: DE".

Assuming then that the results of the work On deferminate
section were used for finding the points of intersection of a straight
line with a conic section represented as a four-line locus, or a conic
determined by five points on it, the special cases and the various
Swopurpol would lead to the same number of properties of the conics
under consideration. There is therefore nothing violent in the
supposition that Apollonius had already set up many landmarks in
the field explored eighteen centuries later by Desargues.

* This appears in the first lemma (p. 704) and is proved by Pappus for
several different cases.

+ Cf. Pappus’ prop. 40 (p. 783).
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NOTES ON THE TERMINOLOGY OF GREEK GEOMETRY.

Tax propositions from the Conics of Apollonius which are given
at léngth in Chapter II. above will have served to convey some idea
of the phraseology of the Greek geometers; and the object of the
following notes is to supplement what may be learnt from those
propositions by setting out in detail the principal technical terms
and expressions, with special reference to those which are found in
Apollonius. It will be convenient to group them under different
headings.

1. Points and lines.

A point is onpciov, the point A 16 A ompueior or 73 A simply; a
fuller expression commonly used by the earlier geometers was 3
(ompeiov) ¢’ ob A, “the point on which (is put the letter) A%.” Any
point is ruxdv aqucior, the point (s0) arising 0 yevouevov ompucior, the
point (s0) taken 10 AndOiv omueiov, a point not within the section
onpetov pi) dvrds Tijs Touils, any point within the surface ompeior Tt rév
brrds Tijs dmpavelas ; in one point only xaf® & udvov ompueior, in two
points xara 8vo, and so on.

The following are names for particular points: apex or vertex
xopug], cenire xévrpov, point of division Siwalpeais, point of bisection
Sixoropla, extremity wépas.

A lins i8 ypappy, & straight lins dfca ypapurj or «ifcia alone, a
Sinite straight line dfda wexepaouém; a curved line is xauwvly

*® A similar expression was # (c30¢ia) é¢’ 3 AB the straight line (on which are
the letters) AB. The same phrases, with the rame variation of case after ¢,
are found frequently in Aristotle, particularly in the logical treatises and the
Physics.
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ypappyj, but ypap,pr; alone is often used of a curve, e.g. a circle or a
conic ; thus rd wépas rijs ebfeias 6 xpds 1)) ypappi is that exiremity of
thectmaghthmwhwhumthcm A segment (of a line as well
as a curve) is rujpa.

Of lines in relation to other lines we find the terms parallel
wapd\Anhos, a perpendicular to xdferos éxi (with acc.); a straight
line produced is 4 &x' ebfdlas abry.

For a line passing through particular points we have the follow-
ing expressions used with 8:d and the genitive, ¢« dpxeras, Acioeras,
wopeierar ; likewise wixrw 8ud, or xard (with acc.).

Of a line meeting another line wixrraw éxi (with acc.), ovprirrer,
oupfBdA\av, dxropac are used ; until &t meets i8 &ws of ovpwéoy or
dxpis &v qupréay, point of meding aiprrwos ; the line from the point
of -concourse to A, 1 &xd Tis cvurrdoews dxi ™ A; the straight line
Joining H, @, 4 éxi 7d H, @ éxfovyrvuém dbeia; BA passes through
the points of contact, &xi ras dds dorw 5 BA.

The line Z® is bisected in M, 8lxa rérpnras 7 ZO xard v M;
bisecting one another dixa réuvovoar 8\\vjhas, the line joining their
middle points 1) ras 8ixoroplas atrdv Erfevyviovoa, t8 cut into equal
and unequal parts ds piv loa, ds 8 dvica Térpnrac

Straight lines cut off or intercepted are dworeuvépevar or drolau-
Bavdpavar, the part cut off without (the curve) 1) éxrds dwolauSavoudr,
will cut off an equal length lomv dwoknyerar, the lengths intercepted on
it by the (conic) section towards the asymptotes al dxohapSavopevar dx’
atlrijs xpds rals dovuwraros.

A point on a line is often elegantly denoted by an adjective

agreeing with it: thus dx’ dxpas alrijs from its extremity, dx’
700 dfovos from the extremity of the axis, 7 &x" dxpav miv dwrorndldoay
ayopéry the line drawn to the extremity of the intercept, ai xpds péony
Ty Topny ’Adpevas ebbcias the straight lines drawn so as to meet at the
middle point of the section.

2. Angles,

An angle is ywvia, an acute angle 8cia ywvia, obtuse dufSAcia,
right 8p81} ; at right angles to xpds Spfds (with dative) or 8pfds xpos
(with acc.); the line AA (drawn) from A at right angles to EA, dxd Tod
A vjj EA 8p63) 7 AA ; to cut at right angles wpds épfds réuvew, will not
in general be at right angles but only when... odx alei wpds dpfis ioray,
dAN’ Srav...
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At any angles & ruxodoais ywrviais, at a given angle v Sofeloy
yovig.

Vertically opposite (angles) xard xopvdiyy dAAjAaus xelpevar; the
angle vertically opposite to the angle Z@E, v xard xopvyy tijs twd ZOE
ywvias; the same expression is also used of triangles (e.g. in ma
ywipera xard xopvdyy Tpiywva), and of the two halves of a double
cone, which are called vertically opposite surfaces al xard xopvdnv
dmipdvanr,

The exterior angle of the triangle is v dxrds Tot Tprywvov ywria.

For the angls ATE we find the full expression % mepiexopérn yuvia
vmd rév ATE or “the angle contained by the lines AT, TE,” but
more usually 4 ¥xd rév ATE or 3 vwd ATE. The angles AT'Z, AZT
are (together) equal to a right angle al vxd ATZ, AZT' g Spbf loar
doiv.

The adjacent angle, or the mpplemeut of an angle, i8 7} dpetis yovia.

To subtend (an angle) is vroreivew either with a simple accusa-
tive, or with vrd and acc. (extend under) as in al ywviay, v¢p’ ds al
dudhoyot whevpal vrorelvovow the angles which the homologous sides
subtend.

3. Planes and plane figures.

A plane is rizedov, 8 figure axijpa or €ldos, & figure in the sense
of a diagram xaraypadnj or oxijpa

(A circle) which is not in the same plane with the point 8 ovk
iorw & 1§ avr§ drurédy T onpelyp.

The line of intersection of two planes is their xour) rous.

A rectilineal figure is oxijpa cwvypa,qmv (Euclid), and among the
figures of this kind are triangle rpiywvov, quadrilateral rerpdxAevpov,
a five-sided figure wevrarAevpor etc., mAevpd being a side.

A circle i8 xixhos, its circ‘umfmnca wepipépea, 8 semicircle
pucixhov, & segment of a circle Tuijpa xixhov, & ssgment greater, or
less, than a semicircle rpnpa peifov, or Dacoov, Yuuvrhiov ; & segment
of a circle containing an angls equal to the angls AT'B is xixAov ufjua
Sexopevov yuviav loyy 7j) vro ATB.

Of quadrilaterals, a parallelogram is wapadAyAoypapuor, & square
rerpdywvoy, & rectangle opboydviov or frequently xwpior with or without
opfoydviov. Diagonal is Sudperpos.

To describe a figure upon a given line (as base) is dvaypdgew drxo.
Thus the figure @IH has been described upon the radius ®H is dvayé-
ypawras axd Tijs dx Tov xévrpov Tijs OH el8os 70 OIH, the square on 20
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is 70 dxd mjs ZO (rerpdywvov), the figures on KA, AZ is rd dxrc KAZ
@y, But & with the genitive is used of describing a semicircle,
or a segment of a circle, on a given straight line, e.g. éxi ijs AA
yeypadlo jpuxinliov, Tpijpa xixkov. Similarly quadrilaterals standing
on the diameters as bases are Be¢fyxdra ixi rav Siapérpwy Terpdrievpa.

A rectangle applied to a given straight line is wapaxeluevor wapd
(with acc.), and its breadth is xAdros. The rectangls contained by
AZ, ZE is 1 vxo rdv AZ, ZE or 1o vxo (rov) AZE ; will contain (with
another straight line) a rectangle equal to the square on is loov
wepuéfa 1§ and.

With reference to squares the most important point to notice is
the use of the word &vau:s and the various parts of the verb Sivapac
SUvaus expresses a square (literally a power) ; thus in Diopbantus it
is used throughout as the technical term for the square of the
unknown in an algebraical equation, i.e. for 2*. In geometrical
language it is used most commonly in the dative singular, Surduee, in
such expressions as the following: Adyos 8v &xes 76 drros Tuijua wpos
70 Aowwov Suvdpe, “ the ratio which ” (as one might say) ¢ the inner
segment has to the remaining segment potentially,” meaning the ratio
of the square of the inner segment to that of the other. (Similarly
Archimedes speaks of the radius of a circle as being Swwdpa loa to the
sum of two areas, meaning that the square of the radius is equal etc.)
In like manner, when &vrvara: is used of a straight line, it means
‘literally that the line is (if squared) capable of producing an area
equal to another. Iogov Svwwduevar ¢ vwo is in Apollonius (straight
lines) the squares on which are equal to the rectangle contained by ;
Svarar 10 wepiexdpavor viro the square on it is equal to the rectangle
contained by; MN &Sivaras 70 2, the square on MN is equal to the
rectangle ZE ; Sujoerar 10 wapaxeipevov opfoywviov wpds v wpooro-
pwidaay the square on it will be equal to the rectangle applied to the
straight line so taken in addition (to the figure); and so on.

To construct a triangle out of thres straight lines is in Euclid dx
Tpudy eWladv rplywvov ovomjcacfar, and similarly Apollonius speaks
of its being possible ovorjoacfas rpiywvov &k ijs © xai So riv EA, to
construct a triangle from the straight line ® and two straight lines
(equal to) EA. The triangle formed by three straight lines is ro
ywipevov vx' avriv Tpiywvoy.

Equiangular is looydvios, similar dpows, similar and similarly
situated Spows xal Spolws xelpevos; because of the similarity of the
triangles ®EN, KEO is 8id mjy dpowryra riv ®EN, KEO rpyuvwr.
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4. Cones and sections of cones.

A cone is xdvos, a right cone 6pfos xdvos, an obligue or scalene cone
oxaAyvos xdvos, the surface of a cone is xwvucy) érupdvaa, the straight
line generating the surface by its motion about the circumference of
a circle is vy ypddovoa efeia, the fixzed point through which the
straight line always passes is 70 pepemxds onueior, the surface of the
double cone is that which consists of two surfaces lying vertically
opposite to one another i) avyxedras ix 8o dmdavedv xara xopvdry
dA\\jAats kepédvwy, the circular base is Bdots, the apex xopugni, the
axis afwr.

A circular section subcontrary to the base is vrevavria Topy.

In addition to the names parabola, ellipss, and hyperbola (which
last means only one branch of a hyperbola), Apollonius uses the
expression ropal drricelpevar or al dvrcelpevar denoting the opposite
branches of a hyperbola; also ai xar’ &vavriov ropal has the same
meaning, and we even find the expression Suiperpos rdv &o ovlvywr
for a diameter of two pairs of opposite branches, so that conjugats
here means opposite branches. (Cf. too &v pév 14j érépg ovlvylg in the
one pair of opposites.) Generally, however, the expression rouai
avlvyels is used of conjugate hyperbolas, which are also called al xard
ovlvylay dymiceipevas or ov{vyels dvriceipevas conjugate opposites. Of
the four branches of two conjugate hyperbolas any two adjoining
branches are al épelijs Topal.

In the middle of a proposition, where we should generally use the
word curve to denote the conic, Apollonius generally uses ropus
section, sometimes ypauu.

5. Diameters and chords of conics.

Diameter is 4 Sudperpos, conjugate diameters avlvyeis Suiperpo, of
which the transverse is 4 whayla, the other i opfia (erect) or Sevripa
(secondary).

The original diameter (ie. that first arising out of the cutting of
a cone in a certain manner) is i dx Tijs yevéowss Swperpos or % mpod-
wdpyovoa Suduerpos, and (in the plural) ai dpxwai Sudperpor The
bisecting diameter is 1) Stxoropotoa Sidperpos. A radius of a central
conic is simply & rob xévrpov (with or without the definite article).

Chords are simply ai dydpevas &v 1 Top.

6. Ordinates.

The word used is the adverb reraypévws ordinate-wise, and the
advantage of this is that it can be used with any part of the verb
H.C. l
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signifying to draw. This verb is either xardyewr or dwdyew, the
former being used when the ordinate is drawn down to the diameter
from a point on the curve, and the latter when it is drawn upwards
from a point on a diameter. Thus rerayuérus xanfxfo éxl riy
Sudperpov means suppose an ordinate drawn to the diameter, which
diameter is then sometimes called i ¢¢’ v dyovras or xanjrrae. dn
ordinate is Terayudrus karayouéry or xaryyuéry, and sometimes reray-
pévus alone or xaryyuém alone, the other word being understood ;
similarly xerjxras and dvijcra: are used alone for is an ordinate or
has been drawn ordinate-wise. reraypéves is also used of the tangent
at the extremity of a diameter.

Parallel to an ordinate is wapd reraypuévws xarqypénp or wapa-
Terayuévws in one word.

7. Abscissa.

The abscissa of an ordinate is % dwodapBavouéry ¥x" alrijs dwd
Tis Swpdrpov wpds Tij xopudyj the (portion) cut off by it from the
diameter towards the vertex. Similarly we find the expressions al
drorquvépevar Uxd rijs xarpypévis, or al dwrolapfardpovar vx' atrdy,
wpds rois wépace rijs Thaylas wAeupds Tob elBovs the (portions) cut off by
the ordinate, or by them, towards the extremities of the transverse
side of the figure (as to which last expression see paragraph 9
following).

8. Parameter.

The full phrase is the parameter of the ordinates, which is 3 wap’
v Svavrar al xataydpevar Teraypévws, i.e. the straight line to which
are applied the rectangles which in each conic are equal to the
squares on the ordinates, or (perhaps) to which the said squares are
related (by comparison).

9. The “figure” of a central conie.

The figure (10 l8os) is the technical term for a rectangle
supposed to be described on the transverse diameter as base and
with altitude equal to the parameter or latus rectum. Its area is
therefore equal to the square on the conjugate diameter, and, with
reference to the rectangle, the transverse diameter is called the
transverss side (xAayla wAevpd) and the parameter is the erect side
(8pbia whevpd) of the figure (ldos). We find the following different
expressions, 16 mpds 1) BA «l8os the figure on (the diameter) BA ; 7o
wapd v AB ldos the figure applied to (the diameter) AB; 16 vmo AE,
H eldos the figure contained by (the diameter) AE and (the parameter)
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H. Similarly 76 ywduevov elSos wpds 1) 8id mijs dijs dyopévy Sapérpe
is the figure formed on the diameter drawn through the point of contact
and 70 wpds 1 Tis dpas dmfevyvvodoy lBos is the figure on (the
diameter which <s) the chord joining the points of contact (of two
parallel tangents).

0 réraprov Tov €ldovs onefourth of the figure is, with reference to
a diameter PP, one-fourth of the square of the conjugate diameter
DD, ie CD*

10. Tangents etc.

To touch is most commonly épdnreofar, whether used of straight
lines touching curves or of curves touching each other, a fangent
being of course épamropdin ; the tangent at A, 1 xard 76 A idaxropévy.
(The simple verb dwreofat is not generally used in this sense but as
a rule means to meet, or is used of points lying on a locus. Cf
Pappus, p. 664, 28, dyerac 16 aqueov Oéoea SeSopbims ebbelas the point
will lie on a straight line given in position ; p. 664, 2, &v dxryras xe-
n&ov rdwov Béoer Sedopévov if it lies on a plane locus given in position).
The word érufavew is also commonly used of touching, e.g. xab’ &
{rwavovoa Tis Touijs is touching the section in one point, s &ruxe
T4y Topdv &rupavovoa touching any one of the sections at random.

Point of contact is d¢vj, chord of contact 1 ras ddas émfevyviovoa.

The point of intersection of two tangents is v ovprrwots Tdv -
arropdvor.

The following elliptical expressions are found in Apollonius: dx’
atrod 1 AB dpantéobw let AB be the tangent (drawn) from A (outside
the curve); div dr’ adrov 1 ptv dpdmryray, 7 d¢ réuvy of (there be
drawn) from st (two straight lines of which) one touches, and the other
cuts (the curve).

11. Asymptotes.

Though the technical term used by Apollonius for the asymp-
totes i8 dovpwrwros, it is to be observed that the Greek word has a
wider meaning and was used of any lines which do not meet, in
whatever direction they are produced. Thus Proclus®, quoting from
Geminus, distinguishes between (a) dovumrwro. which are in one
plane and (b) those which are not. He adds that of dovuwrwro
which are in one plane ‘ some are always at the same distance from
one another (ie. parallel), while others continually diminish the
distance, as a hyperbola approaches the straight line and the

* Comment. in Eucl, 1. p. 171.
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conchoid the straight line.” The same use of dovpwrwros in its
general sense is found even in Apollonius, who says (11. 14) wacdy
rév dovprrarey 1) Topuy &yywv dlow al AB, AT, the lines AB, AT (the
asymptotes proper) are nearer than any Qf the lines which do not
meet the section.

The original enunciation of 1. 14 [Prop. 36) is interesting: al
dojprrwro. xal 9 Topr ds drapov dxBalldpevar dyywWv Te Tpoodyovow
davrais kal wavrds 1o Sobévros dwaoriparos eds Darrov duxvoivrar
Sudornua, the asymptotes and the section, if produced to infinity,
approach nearer to one another and come within a distance less than
any given distance.

One of the angles formed by the asymptotes is 1 wepiéxovoa mjv
vrepBolijy the amgle containing (or including) the hyperbola, and
similarly we find the expression &rl mds rév dovuwrrdrev Tov
Tepuexovoiy Ty Towiv on one of the asymptotes containing the
section.

The space between the asymptotes and the curve is & dpopuldpevos
TO¥0s UId TGV douuRTOTLY Kai Tis Touds.

12. Data and hypotheses.

Given i8 Sofels or 8Bopdvos ; given in position Oéoe SeSopévy, given
in magnitude v¢ peyéfe SeSopérn (of straight lines). For is or will
be, given in position we frequently find Géce doriv, éorar without Sedo-
pévos, or even Oéow alone, as in Géoe dpa 7 AE. A more remarkable
ellipse is that commonly found in such expressions as xapd féoer 7)v
AB, parallel to AB (given) in position, and =pos Géce 1) AB, used
of an angle made with AB (given) in position.

Of hypotheses vwoxerrar and the other parts of the same verb are
used, either alone, as in vwoxelobw rd piv dA\Aa rd alrd let all the
other suppositions be the same, rdv adrav vwokepédvwy with the same
suppositions, or with substantives or adjectives following, e.g. xixAos
vmdxaras 7 AKEA ypapps) the line AKEA is by hypothesis a circle,
vmoxeras (o7 8 by Aypothesis equal, vrdxavrar ovprizrovoa they meet
by hypothesis. In accordance with the well-known Greek idiom drep
olx Ymoxerar means which is contrary to the hypothesis.

13. Theorems and problems.

In a theorem what is required to be proved is sometimes denoted
by 18 mporefév, and the requirement in a problem is r6 éwraxfév.
Thus el puiv olv 5j AB déwr ori, yeyords dv eln 0 émraxlév if then AB
is an axis, that which was required would have been done. To draw
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in the manner required is dyayelv us wpdxaras. When the solution
of a problem has been arrived at, e.g. when a required tangent has
been drawn, the tangent is said wowiv 6 wpdfSAnua.

In the &feois or setting out of a theorem the re-statement of
what it is required to prove is generally introduced by Apollonius
as well as Euclid by the words Aéyw, 671 ; and in one case Apollonius
abbreviates the re-statement by saying simply Aéyw, or¢ éorar rd s
wxpordoews I say that the property stated in the enunciation will be
true; it 18 to be proved is Sewcréov, it remains to be proved Aouwdv dpa
Scwcrdo, let st be required to draw 8éov oTw dyaycir.

The synthesis of a problem regularly begins with the words ovv-
rebjoerar 8 (19 wpdBAnua) ovrws.

14. Constructions.

These are nearly always expressed by the use of the perfect
imperative passive (with which may be classified such perfect
imperatives as yeyovérw from yiveobai, ovveordrw from ovnwordvay,
and the imperative xelofw from xeipar). The instances in Apollonius
where active forms of transitive verbs appear in constructions are
rare; but we find the following, édv woujowper 3f we make (one line
in a certain ratio to another), Spoiws ydp 7§ wpoepnuévy dyaydv Ty
AB ({pamropdmy AMyw, oru for in the same manner as before, after
drawing the tangent AB, I say that..., émdeiéavres mjv AB épotper
having joined AB we shall prove ; while in dyaydrres yap émufadovoav
v OFE épdnrerar atry we have a somewhat violent anacoluthon, for,
having drawn the tangent OF, this touches.

Of the words used in constructions the following are the most
common : o draw dyev, Sulyew and other compounds, to join érlevy-
vivas, to produce ixBi\Aew, mpooexBdlieaw, to take or supply wopilew,
to cut off dwohapBdvew, droréuvew, ddatpaiv, to construct ovvicracbay,
xarackevaley, to describe ypidw and its compounds, to apply wapa-
BdA\ew, to erect dviordvar, to divide Swipety, to bisect Suxoropdiv.

Typical expressions are the following : 77 w6 rév HOE yuwrig ioy
ouveordrw 1) Uwé Tav BAT let the angle BAT be constructed equal to the
angle HOE ; & xérrpy 7¢ K Saorijpare 8¢ 1§ KT xixdos ypadduevos the
circle described with K as centre and at a distance KT ; dveordrw dzo
7ijs AB dxinwedov 8pOdv wpos 10 Imoxeipevov éxiwedov let a plane be
erected on AB at right angles to the supposed plans ; xeiocBw atrj loy
let (an angle) be made equal to 3¢, ixxeicOw let (a line, circle etc.) be set
out, dpypriobw dx’ alrod Tuipua let a segment be cut off from it, rév
adrov karaoxevacdérrwy with the same construction.
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No detailed enumeration of the various perfect imperatives is
necessary ; but yeyovérw for suppose it done deserves mention for its
elegance.

Let it be conceived is voulolw : thus voelobw xdvos, o xopudy) 1o Z
onueiov let a cone be conceived whose apex is the point Z.

A curious word i8 xAdw, meaning literally to break off and
generally used of two straight lines meeting and forming an angle,
e.g. of two straight lines drawn from the foci of a central conic to
one and the same point on the curve, dxo rév E, A onuelwy xexAd-
afwoay wpos Ty ypappi ai EZ, ZA, (literally) from the points E, A let
EZ, ZA be broken short off against the curve. Similarly, in a propo-
sition of Apollonius quoted by Eutocius from the "AvaAvspuevos réwos,
the straight lines drawn from the given points to mest on the circum-
Jerence of the circle are al éwo rdv Sobérruy oquelwy éri Ty xepipéperay
Tob xvxAov MAupevar eddelac.

15. Operations (Addition, Subtraction ete.).

The usual word for besng added i3 wpdoxeyras : thus 8ixa rérunrar
7 Z® xara 70 M wpookeppdmy éxovoa mjy AZ, or ZO is bisected in M
and has AZ added. Of a magnitude kaving another added to it the
participle of wpoohapBdvew is used in the same way as Aurdv for
having something subtracted. Thus 70 KP Mwov 4 xpooiafSov v¢ BO
loov éori v¢ MII means KP minus or plus BO is equal to MII. perd
(with gen.) is also used for plus, e.g. r0 w6 AEB perd rov dwo ZE is
equivalent to AE.EB + ZE®.

A curious expression is cuvapdorepos i AA, AB, or cuvaupirepos
7 T'ZA meaning the sum of AA, AB, or of T'Z, ZA.

Of adding or subtracting a common magnitude xowds is used :
thus xowov xpoaxelcfw or dgpprobuw is let the common (magnituds) be
added, or taken away, the adjective Aourds being applied to the
remainder in the latter case.

To exceed is vrepBdAlewv or Swepéxewv, the excess is often v vrepoxj,
v vrepéixa x.1.\., TIA exceeds AO by OII is 76 [IA 70b AO Vmepéxar ¢
OII, to differ from is Siadéperv with gen., to differ by is expressed by
the dative, e.g.' (a certain triangle) differs from TA® by the triangle
on A® as base similar to TAA, Sadéper 7ot TA® 7§ dwd s A®
rpryuny Spolp 7@ TAA ; (the area) by which the square on TP differs
Sfrom the square on AZ, ¢ Swadépe 0 dwo T'P rov amo AZ.

For multiplications and divisions the geometrical equivalents
are the methods of proportions and the application of areas; but of
numerical multiples or fractions of magnitudes the following are
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typical instances: the half of AB, ) yuicaa mjs AB ; the fourth part
of the figure, 70 réraprov rol elBovs ; four times the rectangle AE . EA,
70 Terpdxis vxo AEA.

16. Proportions.

Ratio is Adyos, will be cut in the same ratio «ls rov abrov Aoyov
Tunbioovras, the thres proportionals al Tpeis dvaloyov ; being a mean
proportional between EO, @A, pégov Adyov &éovoa, or péom dvdloyov,
16y E@A. The sides about the right angles (are) proportional wepi
8pfas ywvias al wAevpal dvdloyor.

The ratio of A to B is § Adyos, v &« 16 A wpos 10 B, or & rov A
mpos 0 B Adyos ; suppose the ratio of TA to AB made the same as the
ratio of TH to HB, ¢ rijs TH wpds HB Adyp & alrds weroujofw & mijs
TA =xpos AB; A has to B a greater (or less) ratio than T has to A, 1o
A xpos 1 B pelfova (or éNdooova) Adyor &xe wep 70 I' wpds 18 A, or
o3, v e 7o T #pos 10 A; the ratio of the square of the inner segment
to the square of the remaining segment, Adyos, Sv & 10 brds Tpijpa
wpds 10 Aowwrow Suvdper.

The following is the ordinary form of a proportion : as the square
on A3 is to the rectangle under BX, =T 30 i8 E@ to EII, us 70 drd AS
#pds 70 vxd BIT, ovrws i) E® =pods EII. In a proportion the antece-
dents are ra jyovpeve, ie. the leading terms, the consequents ra
éxdpeva; as one of the antecedents is to one of the consequents so are
all the antecedents (taken together) to all the consequents (taken together)
o5 & 1dv fyovpévuv mpds v Tiv dwopévuy, ovrws dwavra Td yovpeva
#pds dxavra & dropeva.

A very neat and characteristic sentence is that which forms the
enunciation of Euclid v. 19: v 3§ ds SAov xpds SAov, ovrws dpatpediy
#pos dpatpelév, xai 16 Aowwdv wpds 10 Aowwdv dotar s GAov wpds GAov.
If as a whole s to a whole s0 is (a part) taken away to (a part) taken
away, the remainder also will be to the remainder as the whole to the
whole. Similarly in Apollonius we have e.g. ¢rel odv us SAov dori 75
did AE mpds dhov 10 AZ, ovrws daipeliv 70 vrd AAB wpos dopaipediv
70 AH, xai Aowwdy ot wpos Aourdv, ws SAov wpds oMo, since then, as the
whole the square on AE s to the whole the (parallelogram) AZ, so s
(the part) taken away the rectangle under AA, AB to (the part) taken
away the (parallelogram) AH, remainder 13 also to remainder as whole
to whole.

To be compounded of i8 ovyxeiofas, the ratio compounded of &
auyxeipevos (or ovwmupévos, from owvdwrew) Adyos (éx Te Tov, &y ixe
x.7.\.), the ratio compounded (of the ratios) of the sides & ovyxelpevos
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Abyos Ik rdv wAevpdv. ovyxciofas is moreover used not only of deing
a compounded ratio, but also of deing equal to a ratio compounded
of two others, even when none of the terms in the two latter ratios
are the same as either term of the first ratio.
Another way of describing the ratio compounded of two others
i8 to use perd (with gen.) which here implies multiplication and not
addition. Thus  rijs AX wpds 3" Adyos pera Tob mjs A wpos 3B is
the ratio compounded of the ratio of AZ to ST and that of AS to 3B.
Similarly xowds d¢ypryobfe & mijs TA wpés I'® means let the common
ratio of TA to T'® be divided out (and not, as usual, subtracted),
xowod ddatpefévros Tovrov Tol Adyov dividing out by this common ratio,
Taking the rectangle contained by @E, EZ as a middle term is rod
Vw6 @EZ péoov AapSavouévov, taking AH as a common altstude Tijs
AH xowol tovs AapSBavouérys.
So that the corresponding terms are continuous dore ris Spoldyovs
owexels dvac; so that the segments adjotning the vertex are corve-
sponding terms dore dudhoya elvas T wpds T xopuvdf Turjpara.
There remain the technical terms for transforming such a pro-
portion a8 @ : =c : d. These correspond with the definitions at the
beginning of Eucl. Book v. Thus &vaAAd§ alternately (usually called
permutando or alternando) means transforming the proportion into
ag:c=b:d.
dvdmwalw reversely (usually invertendo), b : a=d : ¢
aivleos Adyov is composition of a ratio, by which the ratioa : &
becomes a + 6 : b The corresponding Greek term to compo-
nendo i8 owlfévre which means no doubt, literally, “to one
who has compounded,” or *“if we compound,” the ratios. Thus
owlévr is used of the inference that a +b:b=c + d:d.

Swaipeots Adyov means division of a ratio in the sense of separalion
or subtraction in the same way as avvfeas signifies addition.
Similarly SceAévre (the translation of which as dividendo or
dirimendo is misleading) means really separating in the sense
of subtracting: thus a-b :b=c—-d:d.

dvagrpodi) Adyov conversion of a ratio and dvaorpéfavre conver-

tendo oorrespond respectively to the ratio a :a —b and to the
inference that a : a—~b=c : c-d.
8’ loov, generally translated ex aequali (sc. distantia), is applied
to the inference e.g. from the proportions
a:b:c:detc.=4: B:C: D etc.
that a:d=4:D.
All the expressions above explained, dvaAAd{, dvdmalw, ovvlévre,
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8eddvri, dvaorpéfarre, 8¢ loov are constantly used in Apollonius as
in Euclid. In one place we find the variant 8t 8& 75 dvdwalc.
Are in reciprocal proportion is dvrirerdviaoy.

17. Inferences.

The usual equivalent for therefore is dpa, e.g. & 1} éxupaveiq dpa
dori it 8 therefore on the surface, eblcia dpa doriv 1) AB thergfore AB
is a straight line; olv is generally used in a somewhat weaker sense,
and in conjunction with some other word, in order to mark the
starting point of an argument rather than to express a formal
inference, so that we can usually translate it by then, e.g. éwei odv
since, then, 61u piv olv...pavepdy it is, then, clear that.... &j is some-
what similarly used in taking up an argument. So that is Gore,
that is rovréorw. A corollary is often introduced by xai ¢avepsv,
ore, or by cwarodéeicras it i8 proved at the same time.

It is at once clear davepdy abrdfev, from this it is olear ix &)
Tovrov pavepov, for this reason 8 roiro, for the same reason did ro
abrd, wherefore duimep, n the same way as above or before xard ra
alrd Tois éwdvw or uwpooley, similarly it will be shown dpolws xai
Saxbrioeras, the same results as before will follow ré abrd rois wporepov
avufrioerar, the same proofs will apply al atrai drodelfas dppdaovor.

Conversely avrorpddws, by the converse of the theorem 8k v
dvrwrrpodyy Tob Oewpriparos, by what was proved and sts converse Six
Ta elpypéva xal Ta dvriorpoda alrav.

By what was befors proved in the case of the hyperbola 8w o
wpodedaypévov &xt Tis vwepfolijs; for the same (facts) have been
proved in the case of the parallelograms which are thesr doubles xai
Yop éri 76y Sirhacivv adrdy wapalAyhoypdpupwy & adrd Sédaxrar

By the similarity of the triangles 8 Ty Spodryra TAY TRLyUVWY,
by parallels 82 ras wapadljhovs, by the (property of the) section,
poarabola, hyperbola 8id v rourfv, wapafolijy, vrepSolijv.

The properties which have already been proved true of the sections
when the original diamsters are taken (as axes of reference) doa
wpodédexrar wept Tas Topds ovuPalvovra cuumapaBaldlopévev TV
dpyxiciv Swpérpwy.

Much more wol§ pallov. Cf. wold mpdrepov répver Tv Toprfy
much sooner does it cut the section.

18. Conclusions.
Which it was required to do, to prove omwep &e wovjoar, Sdfac;
which is absurd Gwep dromwov; and this is smpossible, so that the
H. C. m
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original supposition is 8o also rovro 8t délvarov: dore xai 76 ¢ dpxijs.
And again the absurdity will be similarly inforred xai xdliv dpolus

owaxtigerar 19 drowov.
19. Distinctions of cases.

These properties are general, but for the hyperbola only etc. raira
uiv xowds, &mi 8 s Uwepfolis pbvms x.r.X, wn the third figure &xi
mijs Tplrys xaraypadijs or Tob Tpirov oxiiparos, in all the possible cases
xara wdoas ras dvSexopévas Saarolds.

20. Direction, concavity, convexity. .

In both directions i’ ixdrepa, towards the sams parts as the
section &xi ralra 1 Topjj; towards the direction of the point E, éri ra
pépn, i’ d ot 10 E; on the same side of the centre as AB, érl rd
adra pdpn T0b xévrpov, & ols dorw  AB. There is also the expression
xard T éwdpeva wépn s Topils, meaning literally in the succeeding
ports of the section, and used of a line cutting a branch of a hyperbola
and passing inside.

The concave parts r& xotha, the convexities rd xuprd, not having sts
concavity (convexity) towards the same parts p3) i ta alrd pdpy 7a
xotAa (1d xuprd) ixovoa, towards the same parts as the concavity of the
curve dxi Ta abrd Tois xol\os Tjs ypaupijs, if i touches with its concave
side v dpdwmmrar Tots xolhois adris, will touch on its concave side
dpdjerar xard 1@ xoika.

Having sts convexity turned the opposits way dvesrpapuéve T
xvprd éxovoa.

21. Infinite, Infinity.

Unlimited or infinite dwapos, lo increase without limit or indefi-
nitdy s arapoy adédverfar

dmepos is also used in a numerical sense ; thus in the same way
we shall find an infinite number of diameters ¢ 8t alrg Tpowy xal
axeipovs cprigoper Siapérpovs.
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THE CONE.

Ir a straight line indefinite in length, and passing always
through a fixed point, be made to move round the circumference
of a circle which is not in the same plane with the point, so as
to pass successively through every point of that circumference,
the moving straight line will trace out the surface of a double
cone, or two similar cones lying in opposite directions and
meeting in the fixed point, which is the apex of each cone.

The circle about which the straight line moves is called
the base of the cone lying between the said circle and the
fixed point, and the axis is defined as the straight line drawn
from the fixed point or the apex to the centre of the circle
forming the base.

The cone so described is a scalene or oblique cone except
in the particular case where the axis is perpendicular to the
base. In this latter case the cone is a right cone.

If a cone be cut by a plane passing through the apex, the
resulting section is a triangle, two sides being straight lines
lying on the surface of the cone and the third side being
the straight line which is the intersection of the cutting plane
and the plane of the base.

Let there be a cone whose apex is 4 and whose base is the
circle BC, and let O be the centre of the circle, so that 40 is
the axis of the cone. Suppose now that the cone is cut by any
plane parallel to the plane of the base BC, as DE, and let

H. C. 1
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the axis A0 meet the plane DE in 0. Let p be any point on
the intersection of the plane DE and the surface of the cone.
Join Ap and produce it to meet the circumference of the circle
BCin P. Join OP, op.

Then, since the plane passing through the straight lines
A0, AP cuts the two parallel planes BC, DE in the straight
lines OP, op respectively, OP, op are parallel.

c.op:OP=2Ao: AO.
And, BPC being a circle, OP remains constant for all positions
of p on the curve DpE, and the ratio 4o: 40 is also constant.

Therefore op is constant for all points on the section of the
surface by the plane DE. In other words, that section is
a circle.

Hence all sections of the cone which are parallel to the
circular base are circles. [L 4.]*

Next, let the cone be cut by a plane passing through the
axis and perpendicular to the plane of the base BC, and let the
section be the triangle ABC. Conceive another plane HK
drawn at right angles to the plane of the triangle 4BC
and cutting off from it the triangle AHK such that AHK is
similar to the triangle ABC but lies in the contrary sense,
ie. such that the angle AKH is equal to the angle ABC.
Then the section of the cone by the plane HK is called a
subcontrary section (Vwevavria Tour).

* The references in this form, here and throughout the book, are to the
original propositions of Apollonius,
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Let P be any point on the intersection of the plane HK
with the surface, and F any point on the circumference of the
circle BC. Draw PM, FL each perpendicular to the plane of
the triangle ABC, meeting the straight lines HK, BC respec-
tively in M, L. ‘Then PM, FL are parallel.

Draw through M the straight line DE parallel to BC, and
it follows that the plane through
DME, PM is parallel to the base
BC of the cone.

Thus the section DPE is a
circle, and DM . ME = PM*,

A

But, since DE is parallel to BC, )
the angle ADE is equal to the ° £
angle A BC which is by hypothesis
equal to the angle AKH.

Therefore in the triangles HDH, F

EKM the angles HDM, EKM are R
equal, as also are the vertical \_’y"
angles at M.

Therefore the triangles HDM, EKM are similar.

Hence HM : MD=EM : MK.

.. HM . MK =DM . ME = PM",

And P is any point on the intersection of the plane HK
with the surface. Therefore the section made by the plane
HK is a circle.

Thus there are two series of circular sections of an oblique
cone, one series being parallel to the base, and the other consisting
of the sections subcontrary to the first series. [L 5.]

Suppose a cone to be cut by any plane through the axis
making the triangular section 4 BC, so that BC is a diameter
of the circular base. Let H be any point on the circumference
of the base, let HK be perpendicular to the diameter BC, and let
a parallel to HK be drawn from any point Q on the surface
of the cone but not lying in the plane of the axial triangle.
Further, let AQ be joined and produced, if necessary; to meet

1—2
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the circumference of the base in F, and let FLF’ be the chord
perpendicular to BC. Join AL, AF'. Then the straight line
through Q parallel to HK is also parallel to FLF'; it follows
therefore that the parallel through Q will meet both AL and
AF'. And AL is in the plane of the axial triangle ABC.
Therefore the parallel through Q will meet both the plane
of the axial triangle and the other side of the surface of the
cone, since A F” lies on the cone.

Let the points of intersection be V¥, @ respectively.
Then QV:VQ=FL:LF, and FL=LF".
- QV=7¢Q,
or QQ’ is bisected by the plane of the axial triangle. [I. 6.]

Again, let the cone be cut by another plane not passing
through the apex but intersecting the plane of the base in
a straight line DME perpendicular to BC, the base of any axial
triangle, and let the resulting section of the surface of the cone
be DPE, the point P lying on either of the sides 4B, AC of
the axial triangle. The plane of the section will then cut the
plane of the axial triangle in the straight line PM joining P to
the middle point of DE.

Now let Q be any point on the curve of section, and through
Q draw a straight line parallel to DE.

Then this parallel will, if produced to meet the other side
of the surface in @, meet, and be bisected by, the axial
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triangle. But it lies also in the plane of the section DPE; it
will therefore meet, and be bisected by, PM.

Therefore PM bisects any chord of the section which is
parallel to DE.

Now a straight line bisecting each of a series of parallel
chords of a section of a cone is called a diameter.

Hence, if a cone be cut by a plane which intersects the
circular base n a strasght line perpendicular to the base of any
axial triangle, the sntersection of the cutting plane and the plane
of the axial triangle will be a diameter of the resulting section
of the cons. [I.17.]

If the cone be a right cone it is clear that the diameter so
found will, for all sections, be at right angles to the chords
which it bisects.

If the cone be oblique, the angle between the diameter so
found and the parallel chords which it bisects will in general
not be a right angle, but will be a right angle in the particular
case only where the plane of the axial triangle ABC is at right
angles to the plane of the base.

Again, if PM be the diameter of a section made by a plane
cutting the circular base in the straight line DME perpen-
dicular to BC, and if PM be in such a direction that it does not
meet AC though produced to infinity, ie. if PM be either
parallel to AC, or makes with PB an angle less than the angle
BAC and therefore meets CA produced beyond the apex of the
cone, the section made by the said plane extends to infinity-
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For, if we take any point ¥ on PM produced and draw through
it HK parallel to BC. and QQ’ parallel to DE, the plane
through HK, QQ’ is parallel to that through DE, BC, i.e. to the
base. Therefore the section HQKQ'isa circle. And D, E,Q, Q'
are all on the surface of the cone and are also on the cutting
plane. Therefore the section DPE extends to the circle HQK,
and in like manner to the circular section through any point
on PM produced, and therefore to any distance from P. [L 8.]

A

[It is also clear that DM*=BM.MC,and QV*=HV.VK,
and HV.VK becomes greater as V is taken more distant
from P. For, in the case where PM is parallel to AC, VK
remains constant while HV increases; and in the case where the
diameter PM meets CA produced beyond the apex of the cone,
both HV, VK increase together as ¥V moves away from P.
Thus QV increases indefinitely as the section extends to
infinity.]

If on the other hand PM meets AC, the section does not
extend to infinity. In that case the section will be a circle
if its plane is parallel to the base or subcontrary. But, if the
section is neither parallel to the base nor subcontrary, it will
not be a circle. (L 9.]

For let the plane of the section meet the plane of the base
in DME, a straight line perpendicular to BC, a diameter of the
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circular base. Take the axial triangle through BC meeting the
plane of section in the straight line PP’. Then P, P’, M are
all points in the plane of the axial triangle and in the plane
of section. Therefore PP’M is a straight line.

If possible, let the section PP’ be a circle. Take any point
Q on it and draw QQ’ parallel to DME. Then if QQ' meets
the axial triangle in V, QV=VQ’. Therefore PP’ is the
diameter of the supposed circle.

Let HQKQ' be the circular section through QQ’ parallel to
the base.
" Then, from the circles, QV*= HV. VK,
QV*=PV.VP.
. HV.VK=PV.VP,
so that HV:VP=P'V: VK.
.*. the triangles VPH, VK P’ are similar, and
LPHV=¢tEKP'V;
. ZKP'V=¢ ABC, and the section PP’ is subcontrary:
which contradicts the hypothesis.
.. PQP’ is not a circle.
It remains to investigate the character of the sections

mentioned on the preceding page, viz. (a) those which extend
to infinity, (b) those which are finite but are not circles.

Suppose, as usual, that the plane of section cuts the circular
base in a straight line DME and that ABC is the axial triangle

-
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whose base BC is that diameter of the base of the cone which
bisects DME at right angles at the point M. Then, if the
plane of the section and the plane of the axial triangle intersect
in the straight line PM, PM is a diameter of the section
bisecting all chords of the section, as QQ’, which are drawn
parallel to DE.

If QQ is so bisected in V, QV is said to be an ordinate, or
a straight line drawn ordinate-wise (rerayuévas xarnyuévn),
to the diameter PM; and the length PV cut off from the
diameter by any ordinate Q¥ will be called the abscissa of QV.

Prdpodtlon 1.
[I. 11]

First let the diameter PM of the section be parallel to one of
the sides of the axial triangle as AC, and let QV be any ordinate
to the diameter PM. Then,if a straight line PL (supposed to be
drawn perpendicular to PM in the plane of the section) be taken
of such a length that PL: PA = BC*: BA . AC, it 13 to be proved
that

QV*=PL.PV.

Let HK be drawn through V parallel to BC. Then, since
QV is also parallel to DE, it follows that the plane through
H, Q, K is parallel to the base of the cone and therefore
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produces a circular section whose diameter is HK. Also QV is
at right angles to HK.
. HV . VK =QV".
Now, by similar triangles and by parallels,
HV :PV=BC:AC

and ' VK : PA =BC : BA.
s. HV . VK:PV.PA=BC*:BA . AC.
Hence QV*:PV.PA=PL:PA
=PL.PV:PV.PA.
.. QV*=PL.PV.

It follows that the square on any ordinate to the fixed
diameter PM is equal to a rectangle applied (wapaBdAhew)
to the fixed straight line PL drawn at right angles to PM with
altitude equal to the corresponding abscissa PV. Hence the
section is called a PARABOLA.

The fixed straight line PL is called the latus rectum
(dpbia) or the parameter of the ordinates (wap' v &i-
vavra: ai Katayouevai TeTayuéves).

This parameter, corresponding to the diameter P M, will for
the future be denoted by the symbol p.

Thus QV*=p.PV,
or QV*x PV.

Proposition 2.
[I. 12]

Next let PM not be parallel to AC but let st meet CA
produced beyond the apez of the cone in P. Draw PL at right
angles to PM in the plane of the section and of such a length
that PL : PP'=BF.FC: AF*, where AF 13 a strasght line
through A parallel to PM and mesting BC tn F. Then, if VR
be drawn parallel to PL and P'L be joined and produced to
meet VR in R, it 13 to be proved that

QV*=PV.VR

As before, let HK be drawn through ¥ parallel to BC, so
that QV*=HV.VK.
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Then, by similar triangles,
HV :PV=BF:AF,
VK :PV=FC:AF.

.. HV.VK : PV.PV=BF.FC: AF".
Hence QV*:PV.PV=PL :PF
=VR:PV
=PV.VR:PV.PYV.
. QV*=PV.VR.

It follows that the square on the ordinate is equal to a
rectangle whose height is equal to the abscissa and whose base
lies along the fixed straight line PL but overlaps (VmepBaihet)
it by a length equal to the difference between VR and PL*.
Hence the section is called a HYPERBOLA.

* Apollonius desoribes the rectangle PR as applied to the latus rectum but
exceeding by a figure similar and similarly situated to that contained by PP’ and

PL, i.e. exceeding the rectangle VL by the rectangle LR. Thus, if QV=y,
PV=z, PL=p, and PP'=d,

v=pz+§.2,

which is simply the Cartesian equation of the hyperbola referred to oblique axes
oonsisting of a diameter and the tangent at its extremity.
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PL is called the latus rectum or the parameter of the
ordinates as before, and PP’ is called the transverse (7}
mAayla). The fuller expression transverse diameter (3 mAayia
Sudpetpos) is also used; and, even more commonly, Apollonius
speaks of the diameter and the corresponding parameter together,
calling the latter the latus rectum (ie. the erect side, 4 dpbia
m\evpd), and the former the transverse side () mAayia mAevpa),
of the figure (el80s) on, or applied to, the diameter (7pos T3
Siapérpy), ie. of the rectangle contained by PL, PP’ as drawn.

The parameter PL will in future be denoted by p.

[Cor. It follows from the proportion
QV*:PV.P'V=PL:PP'
that, for any fixed diameter PP’,
QV*:PV.PYV is a constant ratio,
or QV* varies as PV . P'V]

Proposition 3.
1. 13]
If PM meets AC in P’ and BC in M, draw AF parallel to
P M meeting BC produced sn F, and draw PL at right angles to
PM +in the plane of the section and of such a length that
PL:PP'=BF.FC:AF*. Join P'L and draw VR parallel
to PL meeting P'L in R. It will be proved that
QV*'=PV.VR
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Draw HK through V parallel to BC. Then, as before,
QV*'=HV.VK.
Now, by similar triangles,
HV :PV=BF:AF,
VK :P'V=FC:AF.
. HV.VK :PV.P'V=BF.FC: AF".
Hence QV*:PV.P'V=PL:PP
=VR:P'V
=PV.VR:PV.P'V.
- QV*=PV.VR
Thus the square on the ordinate is equal to a rectangle
whose height is equal to the abscissa and whose base lies along
the fixed straight line PL but falls short of it (éAAeimes) by a

length equal to the difference between VR and PL*®. The
section is therefore called an ELLIPSE.

As before, PL is called the latus rectum, or the para-
meter of the ordinates to the diameter PP, and PP’ itself is
called the transverse (with or without the addition of
diameter or side of the flgure, as explained in the last

proposition).

PL will henceforth be denoted by p.

[Cor. It follows from the proportion

QV*:PY.PV' =PL: PP
that, for any fixed diameter PP,
QV*: PV. PV is a constant ratio,
or QV* varies as PV . P'V.]
* Apollonius describes the rectangle PR as applied to the latus rectum but

Jalling short by a figure similar and similarly situated to that contained by PP’

and PL, i.e. falling short of the rectangle VL by the rectangle LR.
If QV=y, PV=z, PL=p, and PP’=d,

y'=pz —5 .z

Thus Apollonius’ enunciation simply expresses the Cartesian equation referred
to a diameter and the tangent at its extremity as (oblique) axes.
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Proposition 4.
I 14.]

If a plane cuts both parts of a double cone and does not pass
through the apez, the sections of the two parts of the come unll
both be hyperbolas which unll have the same diameter and equal
latera recta corresponding thereto. And such sections are called
OPPOSITE BRANCHES.

[ 14

Let BC be the circle about which the straight line generating
the cone revolves, and let B'C’ be any parallel section cutting
the opposite half of the cone. Let a plane cut both halves
of the cone, intersecting the base BC in the straight line DE
and the plane B'C’ in D'E’. Then D'E’ must be parallel to
DE.

Let BC be that diameter of the base which bisects DE at
right angles, and let a plane pass through BC and the apex 4
cutting the circle B'C’ in B'C’, which will therefore be a diameter
of that circle and will cut D’E" at right angles, since B'C" is
parallel to BC, and D’'E’ to DE.
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Let FAF’ be drawn through A parallel to MM’ the straight
line joining the middle points of DE, D’E’ and meeting CA4,
B’A respectively in P, P'.

Draw perpendiculars PL, P’'L’ to MM’ in the plane of the
section and of such length that

PL :PP'=BF.FC:AF?
PL :PP=BF .FC:AF"
Since now MP, the diameter of the section DPE, when

produced, meets BA produced beyond the apex, the section
DPE is a hyperbola.

Also, since I’E’ is bisected at right angles by the base of
the axial triangle AB’C’, and M'P in the plane of the axial
triangle meets C"A produced beyond the apex A, the section
D'P'E’ is also a hyperbola. '

And the two hyperbolas have the same diameter MPP'M’,
It remains to prove that PL = P’L’.
We have, by similar triangles,

BF: AF=BF : AF',

FC:AF=F'C': AF'

~.BF.FC: AF*=BF .F'C': AF".
Hence PL: PP =PL : PP
- PL=PL.



THE DIAMETER AND ITS CONJUGATE.

Proposition 5.
[I. 15.]

If through O, the middle point of the diameter PP’ of an
ellipse, a double ordinate DCD' be draum to PP, DCD' will
bisect all chords parallel to PP, and will therefore be a diameter
the ordinates to which are parallel to PP,

In other words, if the diameter bisect all chords parallel to a
second diameter, the second diameter will bisect all chords
parallel to the first.

Also the parameter of the ordinates to DCD’ unll be a third
proportional to DI, PP

(1) Let QV be any ordinate to PP, and through Q draw
QQ parallel to PP’ meeting DD’ in v and the ellipse in @'; and
let @ V” be the ordinate drawn from @ to PP
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Then, if PL is the parameter of the ordinates, and if P'L is
joined and VR, CE, V'R’ drawn parallel to PL to meet P’L, we
have [Prop. 3] QV*=PV.VR,

QV*=PV .V'R;
and QV = Q'V’, because QV is parallel to @'V’ and QQ’ to PP
. PV.VR=PV'.V'R.
Hence PV:PV'=V'R:VR=PV':PV.
S PV:PV'~PV=PV':PV~PV,

or PV:VV' =PV :.VV.
S PV=PV.
Also CP=CP.
By subtraction, CV=CV’

and .*. Qv =1v(, so that Q@ is bisected by DD,

(2) Draw DK at right angles to DI’ and of such a length
that DD’ : PP'=PP : DK. Join 'K and draw vr parallel to
DK to meet D’K in 7.

Also draw TR, LUH and ES parallel to PP,

Then, since PC=CP, PS=8L and CE=EH;

. the parallelogram  (PE)=(SH).

Also (PR)=(V8)+(SR)=(SU) + (RH).

By subtraction, (PE)- (PR)=(RE);
. CD'—QV*=RT.TE.

But CD?—QV*=CD* - Ov* = D'v.vD.

S Dv.vD=RT.TE ...........c....... (A).

Now DD : PP = PP : DK, by hypothesis.

-.DD : DK =DD*: PP"”
=CD': CP*
=PC.CE:CP*
= RT.TE : RT",

and DD : DK =D'v:or
=D'v.vD:vD.vr;
s D'v.vD:Dv.vr=RT.TE : RT"
But D'v.vD=RT.TE, from (A) above;
s.Dyv.or=RT*=CV*=Qv"
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Qthus DK is the parameter of the ordinates to DI, such
as Qu.

Therefore the parameter of the ordinates to DI is a third
proportional to DD/, PP'.

Cor. We have CD*'=PC.CE

=4PP .}PL;
~.DD*=PP.PL,

or PP : DD’ =DD' : PL,
and PL is a third proportional to PP, DD'.

Thus the relations of PP, DD’ and the corresponding
parameters are reciprocal.

Der. Diameters such as PP, DD, each of which bisects
all chords parallel to the other, are called conjugate diameters.

Propositicn 6.
(L 16]

If from the middle point of the diameter of a hyperbola with
two branches a line be drawn parallel to the ordinates to that
diameter, the line so drawn will be a diameter conjugate to the
Jformer one.

If any straight line be drawn parallel to PP, the given
diameter, and meeting the two branches of the hyperbola in Q, ¢’
respectively, and if from C, the middle point of PP, a straight
line be drawn parallel to the ordinates to PP’ meeting QQ’ in
v, we have to prove that Q@' is bisected in v.

Let QV, @'V’ be ordinates to PP, and let PL, P’L’ be the
parameters of the ordinates in each branch so that [Prop. 4]
H,C. 2
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PL=PL. Draw VR, V'R parallel to PL, P’L’, and let PL’,
P’L be joined and produced to meet V'R’, VR respectively in
R, R
Then we have QV*=PV.VR,
QV*=PV'.V'R.
o PV.VR=PV'.V'R, and V'R : VR=PV : PV".
Also PV': V'R =PP :PL=PP:PL=PV:VR
s PV':PV=V'R :VR
= PV : P'V’, from above;
S PV :PV=PV:PV,

and PV +PV:PV=PV+PV:PV,
or VV :PV=VV':PV,;
s PV =PV,
But CP=CF;
. by addition, CV =CV",
or Qv=Qv.

Hence Cv is a diameter conjugate to PP’
[More shortly, we have, from the proof of Prop. 2,
QV*: PV.PV=PL: PP,
QV*: PV'.PV'=PL: PP,
and QV=QV, PL=PL,
s PV.PV=PV'.PV' or PV:PV'=PV':PV,
whence, as above, PV=PV.]

DEer. The middle point of the diameter of an ellipse or
hyperbola is called the centre; and the straight line drawn
parallel to the ordinates of the diameter, of a length equal to
the mean proportional between the diameter and the parameter,
and bisected at the centre, is called the secondary diameter
(Sevrépa dduerpos).

Proposition 7.
[L 20]

In a parabola the square on an ordinate to the diameter
varies as the abscissa,
This is at once evident from Prop. 1.
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Proposition 8.
L 21]
In a hyperbola, an ellipse, or a circle, if QV be any ordinate
to the diameter PP,
QV'x PV.PYV.
[This property is at once evident from the proportion
QV*: PY.PV=PL: PP
obtained in the course of Props. 2 and 3; but Apollonius gives
a separate proof, starting from the property QV*=PV.VR
which forms the basis of the definition of the conic, as follows.]
Let QV, Q' V' be two ordinates to the diameter PP,

Q'
\ % Q
P! )
v \'A

Then QV*=PV.VR,
QV*=PV'.V'R;
~ QV*:PV.PV=PV.VR:PV.PV
=VR:PV=PL:PP.
2—2
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Similarly QV**: PV'.P'V’'=PL : PP’
s QV*: Q' V*=PV.PV:PV.PV;
and QV*: PV . P’V is a constant ratio,
or QV*«< PV.PY.

Proposition 0©.
(I 29.]

If a strasght line through the centre of a hyperbola with
two branches meet one branch, it will, if produced, meet the
other also.

Let PP’ be the given diameter and C the centre. Let CQ
meet one branch in . Draw the ordinate QV to PP’ and set
off CV’ along PP’ on the other side of the centre equal
to CV. Let V'K be the ordinate to PP through V’. We
shall prove that QCK is a straight line.

Since CV=CV"’, and CP = CP', it follows that PV =PV’;
o PV.PV=PV.PV.

But QV*:EV*=PV.PV:PV'.PV. [Prop. 8]

<. QV=EKV’; and QV, KV’ are parallel, while CV = CV".

Therefore QCK is a straight line.

Hence QC, if produced, will cut the opposite branch.
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Proposition 10.
[X. 30.]

In a hyperbola or an ellipse any chord through the centre
18 bisected at the centre.

Let PP’ be the diameter and C the centre; and let QQ’ be
any chord through the centre. Draw the ordinates QV, @'V’
to the diameter PP

Then

PY.PV:PV.PV'=QV*:QV"
= CV*: CV™, by similar triangles.
s CV*s PV.PV:CV*=0V*+ PV'.PV':CV"

(where the upper sign applies to the ellipse and the lower
to the hyperbola).

~. OP*: CV*=CP*: CV™
But CP*=(CP";
s CV*=CV" and OV=CV.
And QV, Q' V" are parallel;
s CQ=07Q.
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Proposition 11.
[I. 17, 32.]

If a straight line be drawn through the eatremity of the
diameter of any conic parallel to the ordinates to that diameter,
the straight line will touch the conic, and no other straight
line can fall between it and the conic.

It is first proved that the straight line drawn in the
manner described will fall without the conic.

For, if not, let it fall within it, as PK, where ’
PM is the given diameter. Then KP, being
drawn from a point K on the conic parallel to #,
the ordinates to PM, will meet PM and will be
bisected by it. But KP produced falls without
the conic; therefore it will not be bisected at P.

Therefore the straight line PK must fall without the conic
and will therefore touch it.

It remains to be proved that no straight line can fall
between the straight line drawn as described and the conic.

(1) Let the conic be a parabola, and let PF be parallel
to the ordinates to the diameter PV. If possible, let PK fall
between PF and the parabola, and draw KV parallel to the
ordinates, meeting the curve in Q.

Then KV*: PV*>QV*:. PV?*

>PL.PV:PV*
>PL: PV.
Let V' be taken on PV such that
KV*: PV*=PL: PV,
and let V’Q’M be drawn parallel to @V, meeting the curve in
Q and PK in M.
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Then KV*:PV*=PL:PV’
=PL.PV': PV*
=QV*: PV",

L
and KV?*: PV*=MV": PV", by parallels.
Therefore MV*=QV"? and MV' =QV".
Thus PK cuts the curve in €, and therefore does not fall
outside it: which is contrary to the hypothesis.
Therefore no straight line can fall between PF and the
curve.

(2) Let the curve be a hyperbola or an ellipse or a
circle.

e

Let PF be parallel to the ordinates to PP, and, if poesible,
let PK fall between PF and the curve. Draw KV parallel to
the ordinates, meeting the curve in @, and draw VR per-_
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pendicular to PV. Join P'L and let it (produced if necessary)
meet VR in R.

Then @QV*'=PV.VR, so that KV*>PV.VR.

Take a point S on VR produced such that KV*= PV . V8.
Join PS and let it meet PR in R. Draw R'V’ parallel to PL
meeting PV in V’, and through V' draw V'Q'M parallel to
QV, meeting the curve in Q' and PK in M.

“
a
¥
v "
L N
R
(i4
-
s
Now KV*=PV.VS,
.. VS:KV=KV: PV,
so that , VS: PV =KV*: PV*
Hence, by parallels,

V'R : PV'=MV"*: PV", ,
or MV is a mean proportional between PV’, V'R,
i.e. MV*=PV'.V'R
= Q'V", by the property of the conic.
MV =QV.

Thus PK cuts the curve in @, and therefore does not fall
outside it : which is contrary to the hypothesis.

Hence no straight line can fall between PF and the curve.
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Proposition 142.
[I. 33, 35.]

If a point T be taken on the diameter of a parabola outside
the curve and such that TP = PV, where V is the foot of the
ordinate from Q to the diameter PV, the line TQ will touch
the parabola.

We have to prove that the straight line T'Q or T'Q produced
does not fall within the curve on either side of Q.

For, if possible, let K, a point on T'Q or T'Q produced,
fall within the curve®, and through K draw QKV" parallel
to an ordinate and meeting the diameter in ¥’ and the curve

in Q.
Then Q' V'*: QV*
> KV’*: QV?*, by hypothesis,
>TV*:.TV:

PV :PYV>TV™:TV™
Hence -
4TP.PV':4TP.PV>TV'*.TV",
and, since TP = PV,

4TP. PV =TV,
;. 4TP.PV'>TV"
But, since by hypothesis TV’ is not bisected in P, -
4TP.PYV' <TV",

which is absurd.

Therefore TQ does not at any point fall within the curve,
and is therefore a tangent.

* Though the proofs of this proposition and the next follow in form the
method of reductio ad absurdum, it is easily seen that they give in fact the
direct demonstration that, if X is any point on the tangent other than Q, the
point of contact, K lies outside the curve because, if KQ'V"’ be parallel to QV, it
is proved that KV’>Q'V’. The figures in both propositions have accordingly
been drawn in accordance with the facts instead of representing the inoorrect
assumption which leads to the absurdity in each case.
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Conversely, if the tangent at Q meet the diameter produced
outside the curve in the point T, TP = PV. Also no straight line
can fall between TQ and the curve.

[Apollonius gives a separate proof of this, using the method
of reductio ad absurdum.]

Proposition 13.
[1. 34, 36.]

In a hyperbola, an ellipse, or a circle, if PP’ be the
diameter and QV an ordinate to it from a point Q, and if a
point T' be taken on the diameter but outside the curve such that
TP :TP' =PV : VP', then the strasght line TQ unll touch the
curve.

We have to prove that no point on TQ or T'Q produced falls
within the curve.

TP
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If possible, let a point K on T'Q or I'Q produced fall within
the curve®; draw Q'KV"’ parallel to an ordinate meeting the
curve in Q. Join P‘Q, V’'Q, producing them if necessary,
and draw through P’, P parallels to TQ meeting V'Q, VQ in Z,
O and H, N respectively. Also let the parallel through P
meet P’Q in M.

Now, by hypothesis, P'V : PV =TP': TP,

.. by parallels, P'"H : PN =P'Q : QM

=P'H: NM.
Therefore PN=NM.
Hence PN.NM > PO.0OM,
or NM: MO>OP: PN;
- . P'H:PI>O0P: PN,
or P'H.PN>P'I.OP.
It follows that P'H.PN :TQ*> P'I.OP: TQ*;

.". by similar triangles
PV.PV:TV'>P'V'.PV':TV",
or P'V.PV:PV'.PV'>TV*:TV",
S QY Q' VSTV TV
>QV*: KV",
.. Q'V’ < KV", which is contrary to the hypothesis.
Thus T'Q does not cut the curve, and therefore it touches it.
Conversely, if the tangent at a point Q meet the diameter
PP’ outside the section in the point T, and QV ss the ordinate

Srom Q,
TP:TP'=PV:.VP.
Also no other straight line can fall between T'Q and the curve.
[This again is separately proved by Apollonius by a simple
reductio ad absurdum.]

* See the note on the previous proposition,
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Proposition 14.
[L 37, 89.]

In a hyperbola, an ellipse, or a circle, sf QV be an ordinate
to the diameter PP’, and the tangent at Q meet PP’ in T, then

(1) Ccv.CT=CP,

() QV*:CV.VT=p: PP’ [or CD*: CP").

Q

(1) Since QT is the tangent at Q,
TP:TP'=PV:P'V, [Prop. 13]
o.TP+TP' :TP~TP'=PV+ P'V:PV~P'V;
thus, for the Ayperbola,
2CP : 2CT =2CV : 2CP;
and for the ellipse or circle,
2CT : 2CP =2CP : 2CV;
therefore for all three curves
CcV.cT=CP
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(2) Since CV:CP=CP:CT,
OV~CP:CV=CP~CT:CP,

whence PV:CV=PT:CP,
or PV :PT=CV:CP.
. PV:PV+PI'=CV:CV+CP,
or PV :VT=CV:P'V,
and CV.VT=PV.P'V.
But QV*: PV.P'V=p: PP’ (or CD*: CP*. [Prop. 8]

. QV*:CV.VT'=p: PP’ (or CD*: CP").
Conr. It follows at once that Q¥ : VT is equal to the ratio
compounded of the ratios p : PP’ (or CD* : CP") and CV : QV.

Proposition 18.
(1. 38, 40.]

If Qu be the ordinate to the diameter conjugate to PP’, and
QT, the tangent at Q, meet that conjugate diameter in t, then

(1) Cv.Ct=0CD",

(2) Quv':Cv.vt=PP’':p[or CP*:CD"),

(8) tD:tD'=vD’: vD for the hyperbola,
and tD:tD’ = vD : vD’ for the ellipse and circle.

Using the figures drawn for the preceding proposition, we
have (1)

QV*:CV.VT=CD*: CP?, [Prop. 14]
But QV:0V=Cv:CV,
and QV:VI=Ct:CT;

QY. CV.VI=0Cv.Ct: CV.CT.
Hence Cv.Ct: CV.CT=CD*: CP".
And OV .CT = CP?; [Prop. 14]
.. Cv.Ct=CD"
(2) As before,

QV*:CV.VI'=CD*": CP* (orp: PP).
But QV:CV =Cv: Qy,
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and QV:VT=19t:Qu;
coQVE:CV. VT =Cv.vt: Qo'
Hence Qv*:Cv.vt=CP*: CD*
=PP’':p.
(3) Aguin,

Ct.Cv=CD*=CD.CD’;
. Ct:CD=CD': Cy,
and -.Ct+CD :Ct~CD=CD'+ Cy: CD'~Cv.
Thus tD :tD' =vD’: vD for the hyperbola,
and tD :tD =vD’: vD for the ellipse and circle.

Cor. It follows from (2) that Qv : Cv is equal to the ratio
compounded of the ratios PP’ : p (or CP* : CD*) and ot : Qv.



PROPOSITIONS LEADING TO THE REFERENCE OF
A CONIC TO ANY NEW DIAMETER AND THE
TANGENT AT ITS EXTREMITY.

Proposition 186.
- [1. 41.]

In a hyperbola, an ellipse, or a circle, if equiangular paral-
lelograms (VK), (PM) be described on QV, CP respectively, and

. QV_p CP[. CD* CP .
their sides are such that QR = PP O [t.e. CP"UH]' and if
(VN) be the parallslogram on CV simslar and similarly situated
to (PM), then

(VN) £ (VK)=(PHN),

the lower sign applying to the hyperbola.

Suppose O to be so taken on KQ produced that

QV:Q0=p: PP,
so that QV*: QV.Q0=QV*: PYV.PV.
Thus QV.QO=PV.PV...cecevncuernne ).

Also QV:QK =(CP:CM).(p: PP)=(CP:CM).(QV:Q0),
or Q@V:Q0).(Q0: QK)=(CP :CM).(QV : Q0);
2 Q0:QK=CP:CM.................. 2)
But QO:QK=QV.Q0:QV.QK
and CP:CM= CP* :CP.CM;




32 THE CONICS OF APOLLONIUS.

S CP:CP.CM=QV.Q0:QV.QK
=PV.PV:QV.QK, from (1).
Therefore, since PM, VK are equiangular,
CP*: PV.PV=(PM):(VK)............ (3)-

Hence CP*¥ PV.P'V:CP'=(PM) ¥ (VK): (PHM),
where the upper sign applies to the ellipse and circle and the
lower to the hyperbola.

s.CV*:CP*=(PM) ¥ (VK):(PM),
and hence (VN):(PM)=(PM)F(VK):(PN),
so that (VN)=(PM) ¥ (VK),
or (VN) £ (VK) = (PM).

[The above proof is reproduced as given by Apollonius in
order to show his method of dealing with a somewhat compli-
cated problem by purely geometrical means. The proposition
is more shortly proved by a method more akin to algebra as
follows.

We have QV*:CV*~CP*=CD*: CP,

QV CD* CP D
ad  Sp=cpom ° V=9K.-opow
. CD . — .

- QV.QR G OV~ CP* = CIF : CP,
or QV.QK:GP.CM(%’~1).

. (VE)=(VN)~(PM),
or (VN) £ (VK) = (PM))
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Proposition 17.
(L 42]

In a parabola, if QV, RW be ordinates to the diameter
through P, and QT, the tangent at Q, and RU parallel to it
meet the diameter in T, U respectively; and if through Q a
parallel to the diameter be drawn meeting RW produced in F
and the tangent at P in E, then

A RUW = the parallelogram (EW).
Since QT is a tangent,
TV =2PV; [Prop. 12]
oA QTV =(EV)......... (1).
Also QV':RW'=PV:PW;
s AQTV: ARUW=(EV):(EW),
and A QTV =(EV), from (1);
. A RUW=(EW).

Proposition 18.
[I. 43, 44.]

In a hyperbola, an ellipse, or a circle, if the tangent at Q
and the ordinate from Q meet the diameter in T, V, and if RW
be the ordinate from any point R and RU be parallel to QT ; if
also RW and the parallel to it through P meet CQ in F, E

respectively, then

ACFW~A CPE=A RUW.
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We have QV*:CV.VT'=p: PP [or CD*: CP",
whence QV: VT =(p: PP').(CV : QV); [Prop. 14 and Cor.]
therefore, by parallels,

RW:WU=(p:PP).(CP:PE)

Thus, by Prop. 186, the parallelograms which are the doubles
of the triangles RUW, CPE, CWF have the property proved in
that proposition. It follows that the same is true of the
triangles themselves.

.. ACFW~ACPE=A RUW.

[It is interesting to observe the exact significance of this
proposition, which is the foundation of Apollonius’ method of
transformation of coordinates. The proposition amounts to
this: If CP, CQ are fixed semidiameters and R a variable
point, the area of the quadrilateral CFRU is constant for all
positions of R on the conic. Suppose now that CP, CQ are
taken as axes of coordinates (CP being the axis of z). If we
draw RX parallel to CQ to meet CP and RY parallel to CP to
meet CQ, the proposition asserts that (subject to the proper
convention as to sign)

A RYF+ 0O CXRY + A RXU = (const.).

But, since RX, RY, RF, RU are in fixed directions,

A RYF « RY?,
or A RYF = as?;
O CXRY « RX .RY,
or O CXRY = Bzy;
A RXU « RX?,

or A RXU =qy*
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Hence, if «, y are the coordinates of R,

az’ + fay + oy' = 4,
which is the Cartesian equation referred to the centre as origin
and any two diameters as axes.]

Proposition 19.

(1. 45.]

If the tangent at Q and the straight line through R parallel
to 1t meet the secondary diameter in t, u respectively, and Qv, Rw
be parallel to the diameter PP’, meeting the secondary diameter
in v, w; if also Rw meet CQ n f, then

A Cfw= A Ruw~ A CQt.

[Let PK be drawn parallel to Q¢ meeting the secondary
diameter in K, so that the triangle CPK is similar to the
triangle vQt.]

We have [Prop. 14, Cor.]

QV:CV=(p: PP).(VT:QV)
=(p: PP).(Qu:w),
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and the triangles QuC, Qut are the halves of equiangular paral-
lelograms on Cv (or QV) and Qv (or CV') respectively: also
CPK is the triangle on CP similar to Qut.

Therefore [by Prop. 16], A CQv= A Qut~ A CPK,
and clearly ACQu= A Qut~ A CQ¢;
. ACPK=A CQt
Aguain, the triangle Cfw is similar to the triangle CQu, and

the triangle Rwu to the triangle Quvt. Therefore, for the ordinate
RV,

A Gfw= A Ruw~ A CPK = A Ruw~ A CQt.

Proposition 20.
[L 46.)
In a parabola the straight line drawn through any point

parallel to the diameter bisects all chords parallel to the tangent
at the point.

Let RR' be any chord parallel
to the tangent at Q and let it
meet the diameter PV in U. Let
QM drawn parallel to PV meet
RR in M, and the straight lines
drawn ordinate-wise through R,
R, P in F, F', E respectively.

We have then [Prop. 17]

ARUW=0OEW,
and ARUW =0EW.
Therefore, by subtraction, the figure RWW'R' =7 F'W. Take
away the common part R'W’'WFM, and we have
A RMF = A R'MF'.
And R’F' is parallel to RF;
.. RM= MR’
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Proposition 21.
[L 47, 48.]
In a hyperbola, an ellipse, or a circle, the line joining any
point to the centre bisects the chords parallel to the tangent at the
point.

If QT be the given tangent and RR’ any parallel chord, let
RW, R'W', PE be drawn ordinate-wise to PP, and let CQ
meet them in F, ¥, E respectively. Further let CQ meet RR’
in M.

Then we have [by Prop. 18]

ACFW~ACPE=ARUW,
and ACF'W' ~ACPE=ARUW.
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Thus (1), as the figure is drawn for the Ayperbola,
A RUW = quadrilateral EPWF,

and A R'UW = quadrilateral EPW'F;
.., by subtraction, the figure ¥ W’ WF = the figure R W WR.

Taking away the common part R’ W’ WFM, we obtain

AFRM =AFRM.
And, - FR, F'R' are parallel,
RM =MR.
(2) as the figure is drawn for the ellipse,
ACPE -ACFW=ARUW,

ACPE -ACFW=ARTUW,
.., by subtraction,

ACF'W ~-ACFW=ARUW-ARUW,
or ARUW+ ACFW=ARUW + ACF'W.
Therefore the quadrilaterals CFRU, CF'R'U are equal, and,
taking away the common part, the triangle CUM, we have
AFRM=AF'R'M,

and, as before, RM = MR

(3) if RR’ is a chord in the opposite branch of a hyperbola,
and @ the point where QC produced meets the said opposite
branch, CQ will bisect RR’ proviled RR’' is parallel to the
tangent at Q.

We have therefore to prove that the tangent at ' is parallel
to the tangent at Q, and the proposition follows immediately®.

* Eutocius supplies the proof of the parallelism of the two tangents as
follows.

We have CV .CT=CP3[Prop. 14),
and CV'.CT'=CP?;
s CV.0T=CV'.CT,
and CV=CV', *» CQ=CQ’ [Prop. 10];
- CT=CT.

Henoe, from the As CQT, CQ'T", it follows that QT, Q’T" are parallel.
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Proposition 242.
(L 49]

Let the tangent to a parabola at P, the extremity of the
original diameter, meet the tangent at any pownt Q in O, and the
parallel through Q to the diameter in E; and let RR' be any
chord parallel to the tangent at Q meeting PT sn U and EQ
produced in M ; then, if p’ be taken such that

0Q:QE=p :2QT,
it 18 to be proved that
RM*=p'.QM.
In the figure of Prop. 20 draw the ordinate QV.
Then we have, by hypothesis,
0Q :QE=p' :2TQ.

Also QE=PV=TP.

Therefore the triangles £0Q, POT are equal.

Add to each the figure QQPWF',

.. the quadrilateral QTWF=((EW)=A RUW. [Prop.17]

Subtract the quadrilateral MUWF

.. OQU = A RMF,
and hence RM MF=2QM.QT.................. (1).

But RM:MF=0Q:QE=p :2QT,
or RM*: RM .MF=yp'.QM : 2QM . QT.
Therefore, from (1), RM*'=p’.QM.

Proposition 23.
[L 50.]

If in a hyperbola, an ellipse, or a circle, the tangents at P, Q
meet in O, and the tangent at P meet the line joining Q to the
centre in E ; if also a length QL (= p) be taken such that

0Q:QE=QL :27Q



40 THE CONICS OF APOLLONIUS.

and erected perpendicular to QC ; if further Q'L be joined (where
Q' 1s on QC produced and CQ = CQ), and MK be drawn parallel
to QL to meet QL in K (where M 1is the point of concourse of
CQ and RR, a chord parallel to the tangent at Q): then it s
to be proved that

RM*=QM . MK.

In the figures of Prop. 21 draw CHN parallel to @'L, meet-
ing QL in H and MK in N, and let RW be an ordinate to PP,
meeting CQ in F.

Then, since CQ = CQ, QH = HL.

Also 0Q:QE=QL:2QT
=QH : QT;
RM:MF=QH :QT .........c....... (A).
Now

ARUW=ACFW~ACPE=ACFW-~ACQT*;
.". in the figures as drawn

(1) for the hyperbola, (2) for the ellipse and circle,
ARUW=QTWF, ARUW=ACQT - ACFW,;
."., subtracting MUWF, +.ACQT=quadrilateral RUCF,
we have and, subtracting AMUC, we
ARMF=QTUM. have
ARMF=QTUNM.
s. RM.MF=QM QT + MU)............. (B).

* It will be observed that Apollonius here assumes the equality of the two
triangles CPE, CQT, though it is not until Prop. 58 [IIL 1] that this equality
is actually proved. But Eutocius gives another proof of Prop. 18 which, he says,
appears in some copies, and which begins by proving these two triangles to be
equal by exactly the same method as is used in our text of the later proof. If
then the alternative proof is genuine, we have an explanation of the assumption
bhere. If not, we should be tempted to suppose that Apolionius quoted the
property as an obvious limiting case of Prop. 18 (L 48, 44] where R coincides
with Q; but this would be contrary to the usual practice of Greek geometers
who, no doubt for the purpose of securing greater siringency, preferred to give
separate proofs of the limiting cases, though the parallelism of the respective
proofs suggests that they were not unaware of the connexion between the
general theorem and its limiting cases. Compare Prop. 81 [V. 3], where
Apollonius proves separately the case where P coincides with B, though we have
for the sake of brevity only mentioned it as a limiting case.
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Now QT: MU=CQ:CM=QH: MN,
S QH+MN: QT+ MU=QH : QT
= RM : MF [from (A)];
S QM(QH + MN) : QM(QT+ MU)=RM*: RM. MF;
- [by (B)] RM*= QM (QH + MN)
=QM.MK.

The same is true for the opposite branch of the hyperbola.
The tangent at @ is parallel to QT, and P’£’ to PE.
[Prop. 21, Note.]
OQ:QE=0Q:QE=p :2QT=p': 2QT,
whence the proposition follows.

It results from the propositions just proved that in a parabola
all straight lines drawn parallel to the original diameter are
diameters, and in the Ayperbola and ellipse all straight lines
drawn through the centre are diameters; also that the conics
can each be referred indifferently to any diameter and the
tangent at its extremity as axes.



CONSTRUCTION OF CONICS FROM CERTAIN DATA.

Proposition 24. (Problem.)
(I 52, 53]

Given a strasght line in a. fixed plane and terminating in a
Siwed point, and another strasght line of a certasn length, to find
a parabola in the plane such that the first strasght line is a
diameter, the second straight line 18 the corresponding parameter,
and the ordinates are inclined to the diameter at a given angle.

First, let the given angle be a right angle, so that the given
straight line is to be the azts.

Let AB be the given straight line terminating at 4, p, the
given length.

Produce BA to C so that AC > £e, and let  be & mean
proportional between AC and ps. (Thus p,: AC=S8*: AC’,

]
and AC'> ip,, whence AC*>3, or 240> 8, so that it is
possible to describe an isosceles triangle having two sides equal
to AC and the third equal to S.)

Let AOC be an isosceles triangle in a plane perpendicular
to the given plane and such that 40 =AC, OC = 8.

Complete the parallelogram ACOE, and about AE as

diameter, in a plane perpendicular to that of the triangle
AOC, describe a circle, and let a cone be drawn with O as
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apex and the said circle as base. Then the cone is a right
cone because OF = AC = 0A.

Produce OF, OA to H, K, and draw HK parallel to AE,
and let the cone be cut by a plane through HK parallel to the
base of the cone. This plane will produce a circular section,
and will intersect the original plane in a line PP’, cutting AB
at right angles in N.

Now p,: AE=AE: AOQ,since AE=0C=S, A0=AC;

o Pa:A0=AEK": A0

=AE"': A0.0OE.
Hence PAP' is a parabola in which p, is the parameter
of the ordinates to AB. [Prop. 1]

Secondly, let the given angle not be right. Let the line
which is to be the diameter be PM, let p be the length of the
parameter, and let MP be produced to F so that PF ={p.
Make the angle FPT equal to the given angle and draw FT
perpendicular to TP. Draw T'N parallel to PM, and PN perpen-
dicular to T'NV; bisect TN in A and draw LAE through 4
perpendicular to FP meeting PT in O; and let

NA.AL=PN" '

Now with axis AN and parameter AL describe a para-
bola, as in the first case.

This will pass through P since PN*=LA.AN. Also PT
will be a tangent to it since AT =AN. And PM is parallel
to AN. Therefore PM is a dia-
meter of the parabola bisecting
chords parallel to the tangent

PT, which are therefore inclined to
the diameter at the given angle. \/
Again the triangles FTP, OEP p T AN

are similar;
..OP:PE=FP: PT,
=p:2PT,

L

by hypothesis.
Therefore p is the parameter of the parabola corresponding to
the diameter PM. [Prop. 22]
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Proposition 25. (Problem.)
(L 54, 55, 59.]

Given a straight line AA’' in a plane, and also another
strasght line of a certain length ; to find a hyperbola in the plane
such that the first straight line s a diameter of it and the second
equal to the corresponding parameter, while the ordinates to the
diameter make with it a given angle.

First, let the given angle be a right angle.

Let A4’, p, be the given straight lines, and let a circle be
drawn through 4, 4’ in a plane perpendicular to the given
plane and such that, if C be the middle point of A4’ and DF
the diameter perpendicular to 44,

DC:CF ¥ AA': p,

Then, if DC : CF = AA’ : p,, we should use the point F for

our construction, but, if not, suppose
DC:CG=AA’': p, (CG being less than CF).
Draw GO parallel to A4’, meeting the circle in 0. Join 40,

A’0, DO. Draw AE parallel to DO meeting A’O produced
in £. Let DO meet A4’ in B.
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Then <OFA=£A'0D= 2 AO0D=_,0AE;
.. 0A =0E.

Let a cone be described with O for apex and for base the
circle whose diameter is AE and whose plane is perpendicular
to that of the circle AOD. The cone will therefore be right,
since 04 = OF.

Produce OF, OA to H, K and draw HK parallel to AE.
Draw a plane through HK perpendicular to the plane of the
circle AOD. This plane will be parallel to the base of the cone,
and the resulting section will be a circle cutting the original
plane in PP’ at right angles to A’A produced. Let GO meet
HK in M.

Then, because NA meets HO produced beyond O, the curve
PAP' is a hyperbola,

And AA’:p,=DC:CG
=DB: BO
= DB.BO : BO*
=A'B.BA : BO".
But A'B:B0O=0M: MH

Py ek MK} by similar triangles.
<. A’B.BA : BO*= OM*: HM. MK.

Hence AA’:p,=0M"': HM . MK.
Therefore p, is the parameter of the hyperbola PAP’ cor-
responding to the diameter 44’. [Prop. 2]

Secondly, let the given angle not be a right angle. Let
PP’, p be the given straight lines, CPT the given angle, and
C the middle point of PP’. On CP describe a semicircle, and
let N be such a point on it that, if NH is drawn parallel to PT
to meet CP produced in H,

NH*:CH.HP=p: PP'*.

* This construction is assumed by Apollonius without any explanation; but
we may infer that it was arrived at by & method similar to that adopted for
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Join NC meeting PT in T, and take A on CN such that
CA*=CT.CN. Join PN and produce it to K so that

PN*'=AN.NK.

Produce AC to A’ so that AC = CA’, join A’K, and draw
EOAM through A parallel to PN meeting CP, PT, A'K in
E, 0, M respectively.

With AA’ as axis, and AM as the corresponding parameter,

describe a hyperbola as in the first part of the proposition.
This will pass through P because PN*= AN .NK.

& similar oase in Prop. 53. In fact the solution given by Eutocius represents
sufficiently closely Apollonius’ probable procedure.

™ $ v [

If HN produced be supposed to meet the curve again in N’, then
N'H.HN=CH.HP;
.. NH® : CH.HP=NH : N'H.

Thus we have to draw HNN"’ at & given inclination to PC and so that

N'H: NH=PP' : p.
Take any straight line a8 and divide it at v so that

aB : fpy=PP’ : p.

Biseot ay in 3. Then draw from G, the centre of the semicircle, GR at right
angles to PT which is in the given direction, and let GR meet the circumference
in R. Then RF drawn parallel to PT will be the tangent at R. Suppose RF

meets CP produced in F. Divide FR at S so that FS : SR=gy : y3, and
produce FR to S’ so that RS’=RS.

Join GS, GS’, meeting the semicircle in N, N’, and join N'N and produce it
to meet CF in H. Then NH is the straight line which it was required to
find.

The proof is obvious.
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Also PT will be the tangent at P because CT'.CN = C4®.
Therefore CP will be a diameter of the hyperbola bisecting

chords parallel to PT and therefore inclined to the diameter at
the given angle.

Again we have
p:2CP = NH*: CH. HP, by construction,
and 2CP:2PT=CH:NH
=CH.HP: NH.HP;
s p:2PT=NH":NH.HP
=NH: HP
=0P : PE, by similar triangles;
therefore p is the parameter corresponding to the diameter PP,
[Prop. 23]

The opposite branch of the hyperbola with vertex A’ can be
described in the same way.

Proposition 26. (Problem.)
(1. 60.]

Given two strasght lines bisecting one another at any angle, to
describe two hyperbolas each with two branches such that the
straight lines are conjugate diameters of both hyperbolas.

Let PP, DIY be the two straight lines bisecting each other
at C.
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From P draw PL perpendicular to PP and of such a length
that PP'. PL = DD'*; then, as in Prop. 25, describe a double
hyperbola with diameter PP’ and parameter PL and such that
the ordinates in it to PP are parallel to DI,

Then PP, DI’ are conjugate diameters of the hyperbola
so constructed.

Again, draw DM perpendicular to DD’ of such a length that
DM .DD' = PP*; and, with DD’ as diameter, and DM as the
corresponding parameter, describe a double hyperbola such that
the ordinates in it to DI’ are parallel to PP,

Then DIY, PP’ are conjugate diameters to this hyperbola,

and DI is the transverse, while PP’ is the secondary dia-
meter. '

The two hyperbolas so constructed are called conjugate

hyperbolas, and that last drawn is the hyperbola conjugate to
the first.

Proposition 27. (Problem.)
[L 56, 57, 58.]

Given a diameter of an ellipse, the corresponding parameter,
and the angle of snclination between the diameter and its ordi-
nates: to find the ellipse.

First, let the angle of inclination be a right angle, and let
the diameter be greater than its parameter.
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Let AA’ be the diameter and AL, a straight line of length
Pa perpendicular to it, the parameter.

a2\

In a plane at right angles to the plane containing the
diameter and parameter describe a segment of a circle on 44’
as base.

Take AD on A4’ equal to AL. Draw AE, A'E to meet at
E, the middle point of the segment. Draw DF parallel to 4'E
meeting AE in F, and OFN parallel to 44’ meeting the
circumference in 0. Join £O0 and produce it to meet A'A
produced in T. Through any point H on OA4 produced draw
HEMN parallel to OF meeting 04’, A4, OF in K, M, N
respectively.

Now

LTOA=L0FEA+ ¢OAE=LAA0+ ¢ OA'E=¢AA'E
‘ =¢EAA'= ¢ EOA’,

and HK is parallel to OF,
whence ¢0OHK = £ OKH,
and OH = OK.

H. C. 4
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With O as vertex, and as base the circle drawn with diameter
HK and in a plane perpendicular to that of the triangle OHK,
let a cone be described. This cone will be a right cone because
OH =O0K.

Consider the section of this cone by the plane containing
AA’, AL This will be an ellipse.

And Pa: AA'=AD: AA’
=AF: AE
=T0:TE
=T0':T0.TE
=TO0*:TA.T4'
Now TO:TA=HN:NO,
and T0 :TA'= NK : NO, by similar triangles,
~.TO*:TA.TA’'=HN .NK : NO*,
so that Pa:AA'=HN_.NK : NO*,
or p, is the parameter of the ordinates to 44’. [Prop. 3]

Secondly, if the angle of inclination of the ordinates be
still a right angle, but the given diameter less than the para-
meter, let them be BB’, BM respectively.

Let C be the middle point of BB, and through it draw A4,
perpendicular to BB’ and bisected at , such that

AA" =BFB .BM;
and draw A L, parallel to BB, such that
BM :BB'=AA': AL;
thus A4’ > AL,
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Now with 44’ as diameter and AL as the corresponding
parameter describe an ellipse in which the ordinates to 44’ are
perpendicular to it, as above.

This will be the ellipse required, for
(1) it passes through B, B’ because
AL:AA'=BB : BM
| =BB*: 44"

=BC": AC.C4’,
() BM : BB'= AC*: BC*

=AC": BC.CB,

so that BM is the parameter corresponding to BB'.

Th’rdly, let the given angle not be a right angle but

L

A'

P'

equal to the angle CPT, where C is the middle point of the
given diameter PP’; and let PL be the parameter correspond-
ing to PP, :

Take a point N, on the semicircle which has CP for its
diameter, such that NH drawn parallel to PT satisfies the
relation

NH':CH.HP = PL : PP'*.

* This construction like that in Prop. 25 is assumed without explanation.
If NH be supposed to meet the other semicircle on CP as diameter in N’, the

4—2
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Join CN and produce it to meet PTin I. Take 4, on CT, such
that CT.CN = CA4?, and produce AC to 4’ so that AC = CA4’.
Join PN and produce it to K so that AN.NK = PN Join
A'K. Draw EAM through A perpendicular to C4 (and
therefore parallel to NK) meeting CP produced in E, PT in O,
and A’K produced in M.

~ Then with axis AA’ and parameter A M describe an ellipse
as in the first part of this proposition. This will be the ellipse
required. -

For (1) it will pass through P - PN*= AN.NK. For
a similar reason, it will pass through P’ ‘- CP’=CP and
CA’' =CA.

(2) PT will be the tangent at P - CT.CN = CA"
(3) Wehave p:2CP=NH":CH.HP,
and 2CP:2PT=CH : HN
=CH.HP : NH.HP;
. ez asquali p:2PT=NH': NH.HP
=NH : HP
= 0P : PE.

Therefore p is the parameter corresponding to PP,
[Prop. 23]

problem here reduces to drawing NHN' in a given direction (parallel to PT) so
that N'H: NH=PP :p,

and the construction can be effected by the method shown in the note to Prop. 25
mutatis mutandis,
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Proposition 28.
1L 1, 15, 17, 21.]

(1) If PP be a diamster of a hyperbola and p the corre-
sponding parameter, and if on the tangent at P there be set off
on each side equal lengths PL, PL', such that

PL*=PL*=}{p. PP [=CDY,
then CL, CL' produced unll not meet the curve in any finite point
and are accordingly defined as asymptotes.

(2) The opposite branches have the same asymptotes.
(8) Conjugate hyperbolas have their asymptotes common.
(1) If possible, let CL meet the hyperbola in Q. Draw the

ordinate QV, which will accordingly be parallel to LL'.
Now p: PP =p PP :PP*
= PL*: CP*
=QV*:CV"
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But p: PP =QV*:PV.PV.
s PV.PV=CV?
ie. CV* — CP*= CV"*, which is absurd.

Therefore CL does not meet the hyperbola in any finite
point, and the same is true for CL'

In other words, CL, CL’ are asymptotes.
(2) If the tangent at P’ (on the opposite branch) be taken,

and P'M, P’M’ measured on it such that PM* = PM" = CD",
it follows in like manner that CM, CM’ are asymptotes.

Now MM', LL' are parallel, PL=FPM, and PCP is a
straight line. Therefore LCM is a straight line.

So also is L'CM’, and therefore the opposite branches have
the same asymptotes.

(8) Let PP, DI be conjugate diameters of two conjugate

hyperbolas. Draw the tangents at P, P, D, D'. Then [Prop.
11 and Prop. 26] the tangents form a parallelogram, and the
diagonals of it, LM, L' M, pass through the centre.

Also PL=PL=PM=PM =CD.

Therefore LM, L'M’ are the asymptotes of the hyperbola in
which PP is a transverse diameter and DI its conjugate.

Similarly DL =DM'=D'L'’= DM =CP, and LM, I'M’ are
the asymptotes of the hyperbola in which DI is a transverse
diameter and PP its conjugate, i.e. the conjugate hyperbola.

Therefore conjugate hyperbolas have their asymptotes
common.
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Proposition 29.
[IL 2]

No strasght line through C within the angle between the

asymptotes can stself be an asymptote.
R’

If possible, let CK be an asymptote. Draw from P the
straight line PK parallel to CL and meeting CK in K, and
through K draw RKQR' parallel to LL’, the tangent at P.

Then, since PL=PL’, and RR', LL' are parallel, RV=R'V,
where V' is the point of intersection of RR’ and CP.

And, since PKRL is a parallelogram, PK = LR, PL = KR.

Therefore QR > PL. Also R'Q > PL’;

. RQ.QR'> PL.PL, or PL* ............ Q).
Again  RV*:CV*=PL':CP'=p: PP, [Prop.28]
and p: PP’ =QV*: PV.P'V [Prop. 8]
=QV*. CV* - OPY;
thus RV*':CV*=QV*:CV*'-CP*

=RV*-QV*: CP*;
o PD?:CP*=RV*-QV*: CP,
whence PL*=RV*—-QV*=RQ.QR’,
which is impossible, by (1) above.
Therefore CK cannot be an asymptote.
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Proposition 30.
[IL 3.]

If a straight line touch a hyperbola at P, it will meet
the asymptotes wn two points L, L' ; LL' will be bisected at P,
and PL* =}p.PP’'[=CD".

[This proposition is the converse of Prop. 28 (1) above.]

For, if the tangent at P does not meet the asymptotes
in the points L, L’ described, take
on the tangent lengths PK, PK’
each equal to CD.

Then CK, CK’ are asymptotes; ¢ 4
which is impossible. \

Therefore the points K, K’ must ¢
be identical with the points L, L’
on the asymptotes.

Proposition 31. (Problem.)
(. 4)

Qiven the asymptotes and a point P on a hyperbola, to find
the curve.

Let CL, CL' be the asymptotes,
and P the point. Produce PC
to P’ so that CP=CP'. Draw
PK parallel to CL’ meeting CL
in K, and let CL be made equal to
twice CK. Join LP and produce
it to L.

Take a length p such that
LL*=p.PP’, and with diameter PP’ and parameter p
describe a hyperbola such that the ordinates to PP’ are
parallel to LL' [Prop. 25]
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Proposition 32.
[IL 8, 10.]

57

If Qq be any chord, it will, if produced both ways, meet

the asymptotes in two points as R, r, and
(1) QR, qr will be equal,
(2) RQ.Qr=%p.PP'[=CD"]

Take V the middle point of Qg, and join CV meeting

the curve in P. Then CV isa
diameter and the tangent at P
is parallel to Qg.  [Prop. 11]

Also the tangent at P meets
the asymptotes (in L, L)
Therefore Qg parallel to it also
meets the asymptotes.

Then (1), since Qg is parallel
to LL', and LP = PL', it follows that RV = Vr.

But QV="Vg;
therefore, subtracting, QR =gr.
(2) We have

-

p: PP =PL*:CP*

=RV*.CV?,

and p: PP =QV*:CV*-CP?;
s PL*:CP'=p: PP =RV*-QV*:.CP*

=RQ.Qr: CP*,;
thus RQ.Qr=PL*

={p. PP =CD"
Similarly rg.qR =CD".

[Prop. 8]
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Proposition 33.
[IL 11, 16.]

If Q, Q are on opposite branches, and QQ meet the asymp-
totes in K, K', and 1f CP be the semidiameter parallel to QQ’, then

(1) KQ.QK'=CP,
(2) QK =QK"
Draw the tangent at P meeting the asymptotes in L, L', and

let the chord Qg parallel to LL' meet the asymptotes in R, r.
Qg is therefore a double ordinate to CP.

Then we have
PL*: CP*=(PL :CP).(PL’': CP)
=(RQ: KQ).(Qr: QK’)

=RQ.Qr: KQ.QK".
But PL*=RQ.Qr; [Prop. 32]
-. KQ.QK'=CP~
Similarly K'Q.QK=CP*
2 EQ.QK'=CP'=K'Q .QK,

- KQ.(KQ+ KK =K'QKX'Q( + KK’),
whence it follows that KQ=K'Q.



Proposition 34.
[IL 12]
If Q, q be any two points on a hyperbola, and parallel
straight lines QH, gh be drawn to mest one asymptote at any
angle, and QK, gk (also parallel to one another) meet the other

asymptote at any angle, then

HQ.QK = hq. gk.

Let Qg meet the asymptotes in R, r.

We have RQ.Qr=Rq.qr; [Prop. 32]
- RQ:Rg=gqr:Qr.
But RQ: Rg=HQ: hq,
and qr:Qr=qk:QK;
- HQ: hg =gk : QK,

or HQ.QK=hq.qk.
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Proposition 38.
[IL 13]

If in the space between the asymptotes and the hyperbola a
straight line be drawn parallel to one of the asymptotes, it will
meet the hyperbola in one point only.

Let £ be a point on one asymptote, and let EF be drawn
parallel to the other.

Then EF produced shall
meet the curve in one point
only.

For, if ‘possible, let it not
meet the curve.

Take Q, any point on the
curve, and draw QH, QK each
parallel to one asymptote and
meeting the other; let a point
F be taken on EF such that

HQ.QK =CE . EF.

Join CF and produce it to
meet the curve in ¢; and draw
gh, gk respectively parallel to QH, QK.

Then hg.qk= HQ.QK, [Prop. 34]
and HQ.QK = CE. EF, by hypothesis,
hq.qk=CE.EF:

which is impossible, ‘.- hg > EF, and ¢k > CE.
Therefore EF will meet the hyperbola in one point, as R.
Again, EF will not meet the hyperbola in any other point.

For, if possible, let EF meet it in R’ as well as R, and let
RM, R'M’ be drawn parallel to QK.

Then ER.RM=ER .RM': [Prop. 34]
which is impossible, *.- ER' > ER.

Therefore EF does not meet the hyperbola in a second
point R
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Proposition 36.
1L 14]

The asymptotes and the hyperbola, as they pass on to infinity,
approach continually nearer, and will come within a distance

less than any assignable length.
Let 8 be the given length.

Draw two parallel chords Qg, @¢ meeting the asymptotes
in R, » and R',#. Join Cq and produce it to meet @'¢/ in F.

Then ¢ .¢'R' =rq.qR,
and dR >qR;
s g <gr,
and hence, as successive chords are taken more and more distant
from the centre, gr becomes smaller and smaller.

Take now on rg a length »H less than S, and draw HM
parallel to the asymptote Cr.

HM will then meet the curve [Prop. 35] in a point M. And,
if MK be drawn parallel to Qg to meet Cr in K,

MK =rH,
whence MK <S8
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Proposition 37.
[IL 19.]
Any tangent to the conjugate hyperbola will meet both

branches of the original hyperbola and be bisected at the point
of contact.

(1) Let a tangent be drawn to either branch of the conju-
gate hyperbola at a point D.

This tangent will then meet the asymptotes [Prop. 30], and
will therefore meet both branches of the original hyperbola.

(2) Let the tangent meet the asymptotes in L, M and the
original hyperbola in Q, €.

Then [Prop. 30] DL =DM.

Also [Prop. 33] LQ=MQ';
whence, by addition, DQ=DQ.



Proposition 38.
[11. 28.]

If a chord Qq in one branch of a hyperbola meet the asymp-
totes tn R, r and the conjugate hyperbola in Q, ¢, then

@Q.Qq’ = 20D".

Let CD be the parallel semi-diameter. Then we have
[Props. 32, 83]

RQ.Qr=0CD",

RQ.Qr=CD";

;. 20D'=RQ.Qr+ RQ.Qr
=(RQ+ RQ)Qr+ RQ.QY
=QQ.(Qr+ RQ)
= Q¢ @r+r9)

. =QQ. Q.
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Proposition 39.
[II. 20.]

If Q be any point on a hyperbola, and CE be drawn from
the centre parallel to the tangent at Q to meet the conjugate
hyperbola sn E, then

(1) the tangent at E will be parallel to CQ, and
(2) CQ. CE unll be conjugate diameters.

Let PP’, DD’ be the conjugate diameters of reference, and

let QV be the ordinate from @ to PP’, and EW the ordinate

from E to DD'. Let the tangent at Q meet PP’, DD’ in
T, t respectively, let the tangent at £ meet DD’ in U, and let
the tangent at D meet EU, CE in O, H respectively.
Let p, p’ be the parameters corresponding to PP’, DD’
in the two hyperbolas, and we have
(1) PP’ :p=p': DD,
[ p.PP'=DD* p.DD=PP*



TANGENTS, CONJUGATE DIAMETERS AND AXES. 85

and PP :p=CV.VT:QV?", .
p:DD'=EW*':CW.WU. [Prop. 14]
SOV .VT:QV=EW*':CW.WU.
But, by similar triangles,
VT:QV=EW:CW.
Therefore, by division,
CY:QV=EW: WU.
And in the triangles CVQ, EWU the angles at V, W
are equal.
Therefore the triangles are similar, and
¢QCV = ¢ UEW. ,
But < VCE= £CEW, since EW, CV are parallel.
Therefore, by subtraction, 2 QCE = « CEU.
Hence EU is parallel to CQ.
(2) Take a straight line S of such length that
HE:EO0=EU:S,
so that S is equal to half the parameter of the ordinates to the

diameter EE’ of the conjugate hyperbola. [Prop. 28]
Also Ct.QV = CD?, (since QV =Cv),
or Ct:QV=Ct:CD

Now  Ct:QV=tT:TQ= AtCT: ACQT,
and  Cf':CD'= A(CT: ACDH = AtCT: ACEU

[as in Prop. 23]
It follows that ACQT = ACEU.
And £2CQT = «CEU.
5. 0Q.QT=CE.EU .................. (A). |
But S: EU=0F :EH
=0Q: QT.

~.8.CE:CE.EU=0Q":CQ.QT.
Hence, by (A), S.CE =CQ".
.. 28.EE' =QQ",

where 28 is the parameter corresponding to EE’.

And similarly it may be proved that KE" is equal to the
rectangle contained by QQ’ and the corresponding parameter.

Therefore QQ’, EE’ are conjugate diameters. [Prop. 26]

- H.C 5



66 THE CONICS OF APOLLONIUS.

Proposition 40.
[IL 37.]

If Q @ are any points on opposite branches, and v the
middle point of the chord QQ, then Cv ts the * secondary”
diameter corresponding to the transverse diameter drawn parallel

to QQ'.

Join Q’C and produce it to meet the hyperbola in ¢. Join
@¢, and draw the diameter PP’ parallel to QQ’.

Then we have

CQ'=Cq, and Qv=Qu.
Therefore Qg is parallel to Cv.
Let the diameter PP’ produced meet Qg in V.
Now QV=Cv="Vq, because CQ =(Y%.

Therefore the ordinates to PP’ are parallel to Qg, and
therefore to Cv.

Hence PP’, Cv are conjugate diameters, [Prop. 6]

Proposition 41.
(1L 29, 30, 38.]
If two tangents TQ, TQ be drawn to a conic, and V be the
middle point of the chord of contact QQ’, then T'V 1s a diameter.
For, if not, let VE be a diameter, meeting 7Q’in E. Join
EQ meeting the curve in R, and draw the chord RR’ parallel to
QQ’ meeting EV, EQ’ respectively in K, H.
Then, since RH is parallel to QQ’, and QV=Q'V,
RK =KH.
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Also, since RR’ is a chord parallel to QQ’ bisected by
the diameter £V, RK = KR’
Therefore KR’ = KH : which is impossible.

Therefore EV is not a diameter, and it may be proved
in like maonner that no other straight line through V is a
diameter except T'V.

Conversely, the diameter of the conic drawn through T, the
point of intersection of the tangents, unll bisect the chord of
contact QQ’.

[This is separately proved by Apollonius by means of
an easy reductio ad absurdum.]

Proposition 42.
AL 40.]

If tQ, tQ' be tangents to opposite branches of a hyperbola,
and a chord RR’ be drawn through t parallel to QQ’, then the
lines josning R, R’ to v, the middle point of QQ’, unll be tangents
at R, R’

5—2
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Join vt. ot is then the diameter conjugate to the transverse
diameter drawn parallel to QQ’, i.e. to PP’,

But, since the tangent Q¢ meets the secondary diameter
in ¢,
Cv.Ct=4%p. PP'[=CD"] [Prop. 15]
Therefore the relation between v and ¢ is reciprocal, and the
tangents at R, R’ intersect in v.

Proposition 43.
[I1. 26, 41, 42]
In a conic, or a circle, or in conjugate hyperbolas, if two

chords not passing through the centre intersect, they do not
bisect each other.

Let Qq, Rr, two chords not passing through the centre,
meet in 0. Join CO, and draw the diameters Pp, P’p’ re-

spectively parallel to Qg, Rr.

Then Qg, Rr shall not bisect one another. For, if possible,
let each be bisected in O.
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Then, since Qg is bisected in O and Pp is a diameter
parallel to it, CO, Pp are conjugate diameters,

Therefore the tangent at P is parallel to CO.

Similarly it can be proved that the tangent at P’ is
parallel to CO.

Therefore the tangents at P, P’ are parallel: which is
impossible, since PP’ is not a diameter.

Therefore Qg, Rr do not bisect one another.

Proposition 44. (Problem.)
[IL 44, 45.]

To find a diameter of a consc, and the centre of a central
consc.

(1) Draw two parallel chords and join their middle pointas.
The joining line will then be a diameter.

(2) Draw any two diameters; and these will meet in, and
so determine, the centre,

Proposition 45. (Problem.)
[IL 46, 47.]

To find the axis of a parabola, and the azes of a central
conic.

(1) In the case of the parabola, let PD be any diameter.
Draw any chord QQ’ perpendicular to PD, and
let N be its middle point. Then AN drawn
through N parallel to PD will be the axis. P

For, being parallel to PD, AN is a diameter,
and, inasmuch as it bisects QQ’ at right angles,
it is the axis,

And there is only one axis because there is
only one diameter which bisects QQ".

A
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(2) In the case of a central conic, take any point P on the
conic, and with centre C and radius CP describe a circle
cutting the conic in P, P’, @', Q.

N () C
’

Let PP’, PQ be two common chords not passing through
the centre, and let N, M be their middle points respectively.
Join CN, CM.

Then CN, CM will both be axes because they are both
diameters bisecting chords at right angles. They are also
conjugate because each bisects chords parallel to the other.

Proposition 46.
[11. 48]
No central conic has more than two axes.

If possible, let there be another axis CL. Through P’
draw P’L perpendicular to CL, and produce P’L to meet the

-]
P
Pﬁ
A L
[+ A C
P\
B8

curve again in R. Join CP, CR.
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Then, since CL is an axis, P'L = LR ; therefore also
CP =CP’=CR.

Now in the case of the hyperbola it is clear that the circle
PP’ cannot meet the same branch of the hyperbola in any
other points than P, P’. Therefore the assumption is absurd.

In the ellipse draw RK, PH perpendicular to the (minor)
axis which is parallel to PP".

Then, since it was proved that CP = CR,
CP*=CR*,
or CH'+ HP'=CK®+ KR"
W CK*—~CH'=HP*—KR'.......cccccu...... (1).
Now BK.KB’'+ CK'=CB’,
and BH.HB’ + CH* = CB".
+.CK*-CH*=BH .HB'- BK.KB'
Hence HP*— KR'=BH.HB’ - BK.KB', from (1).
But, since PH, RK are ordinates to BB’,

PH':BH.HB'=RK": BK.KB',

and the difference between the antecedents has been proved
equal to the difference between the consequents.

.. PH*=BH.HPB',
and RK*=BK.KB'.

.". P, R are points on a circle with diameter BB : which is
absurd.

Hence CL is not an axis.
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Proposition 47. (Problem.)
[11. 49.]
To draw a tangent to a parabola through any point on or
outside the curve.

(1) Let the point be P on the curve. Draw PN per-
pendicular to the axis, and produce N4 to T so that AT = AN.
Join PT.

Then, since AT = AN, PT is the tangent at P. [Prop. 12]

In the particular case where P coincides with A, the
vertex, the perpendicular to the axis through A is the tangent.

(2) Let the given point be any external point 0. Draw
the diameter OBV meeting the curve at B, and make BV
equal to OB. Then draw through V the straight line VP
parallel to the tangent at B [drawn as in (1)] meeting the
curve in P. Join OP.

OP is the tangent required, because PV, being parallel to
the tangent at B, is an ordinate to BV, and OB = BYV.

[Prop. 12]

[This construction obviously gives the two tangents through
0]
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Proposition 48. (Problem.)
[11. 49.]

To draw a tangent to a hyperbola through any point on
or outside the curve.

There are here four cases.

Case I. Let the point be Q on the curve.

Draw QN perpendicular to the axis A4’ produced, and
take on 44’ a point T such that A'T: AT=A4'N:AN.
Join TQ.

Then T'Q is the tangent at Q. [Prop. 13]

In the particular case where Q coincides with 4 or A’ the
perpendicular to the axis at that point is the tangent.

Case II. Let the point be any point O within the angle
contained by the asymptotes.

Join CO and produce it both ways to meet the hyperbola in
P, P’. Take a point ¥ on CP produced such that
P'V:PV=0P':0P,
and through V draw VQ parallel to the tangent at P [drawn
as in Case I.] meeting the curve in Q. Join 0Q.

Then, since QV is parallel to the tangent at P, QV is an
ordinate to the diameter P’P, and moreover

P'V:PV=0P :OP.
Therefore 0Q is the tangent at Q. [Prop. 13]

[This construction obviously gives the two tangents through
0]
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Case III. Let the point O be on one of the asymptotes.
Bisect CO at H, and through H draw HP parallel to the other

asymptote meeting the curve in . J. oin OP and produce it to
meet the other asymptote in L. ’

Then, by parallels;
OP : PL=0H : HC,
whence OP = PL.
Therefore OL touches the hyperbola at P.  [Prope. 28, 30]

Case IV. Let the point O lie within one of the exterior
angles made by the asymptotes.

Join CO. Take any chord Qg parallel to CO, and let V be
its middle point. Draw through V the diameter PP’. Then
PP’ is the diameter conjugate to CO. Now take on OC
produced a point w such that CO.Cw =}p. PP'[= CD"], and
draw through w the straight line wR parallel to PP’ meeting
the curve in B. Join OR. Then, since Rw is parallel to CP
and Cw conjugate to it, while CO.Cw =CD?*, OR is the tangent
at RB. [Prop. 15]
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Proposition 49. (Problem.)
[1I. 49.]

"To draw a tangent to an ellipse through any point on or
outside the curve.

There are here two cases, (1) where the point is on the
curve, and (2) where it is outside the curve; and the con-

structions correspond, mutatis mutandis, with Cases I. and IL
of the hyperbola just given, depending as before on Prop. 13.

When the point is external to the ellipse, the construction
gives, as before, the fwo tangents through the point.

Proposition 50. (Problem.)
[II. 50.]

To draw a tangent to a given conic making with the azis an
angle equal to a given acute angle.
L Let the conic be a parabola, and let DEF be the given

acute angle. Draw DF perpendicular to EF, bisect EF at H,
and join DH.

Now let AN be the axis of the parabola, and make the
angle NAP equal to the angle DHF. Let AP meet the curve
in P. Draw PN perpendicular to AN. Produce N4 to T so
that AN = AT, and join PT.

Then PT is a tangent, and we have to prove that
£ PTN =« DEF.



76

THE OONICS OF APOLLONIUS.

Since £¢DHF =<« PAN,
HF : FD=AN : NP.
.. 2HF : FD=2AN : NP,
or EF :FD=TN : NP.
... £ PTN =« DEF.

II. Let the conic be a central conic.

Then, for the hyperbola, it is a necessary condition of the
possibility of the solution that the given angle DEF must be

z Z 'r : : o\
° N \oj
A

K E F

greater than the angle between the axis and an asymptote,
or half that between the asymptotes. If DEF be the given
angle and DF be at right angles to EF, let H be so taken
on DF that £« HEF =« ACZ, or half the angle between

the asymptotes. Let AZ be the tangent at A meeting an
asymptote in Z.
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We have then CA*: AZ* (or CA*: CB*)= EF*: FH".
.. CA*:CB*> EF*: FD*.
Take a point K on FE produced such that
CA*:CB*=KF.FE : FD*
Thus KF*:FD*>CA*: AZ".
Therefore, if DK be joined, the angle DKF is less than the

angle ACZ. Hence, if the angle ACP be made equal to the
angle DKF, CP must meet the hyperbola in some point P.

In the case of the ellipse K has to be taken on EF produced
so that CA*: CB'= KF.FE : FD* and from this point the
constructions are similar for both the central conics, the angle
ACP being made equal to the angle DKF in each case.

Draw now PN perpendicular to the axis, and draw the
tangent PT. [Props. 48, 49]
Then PN*:CN.NT=CB*: CA* [Prop. 14]

=FD*': KF.FE, from above;
and, by similar triangles,

CN*: PN*=KF*: FD"
...CN':CN.NT=KF*: KF.FE,

or CN:NT=KF:FE.
And PN :CN=DF: KF.
..PN:NT=DF:FE.
Hence £ PTN =« DEF.
Proposition 81.
[II. 52.]

In an ellipse, if the tangent at any point P meet the majdr
azis wn T, the angle CPT 1s not greater than the angle ABA’
(where B is one extremity of the minor azis).

Taking P in the quadrant 4B, join PC.

Then PC is either parallel to BA’ or not parallel to it.
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First, let PC be parallel to BA’. Then, by parallels,
CP bisects AB. Therefore the

tangent at P is parallel to 4B, [ ™
and «CPT = < A’'BA.
Secondly, suppose that PC F > A
is not parallel to BA’, and we
have in that case, drawing PN

perpendicular to the axis,
LPCN+4 £BAC, or «BAC.

2N
AN

: CN* 4 BC* : AC",
whence PN*: 0N‘+PN’. CN.NT. [Prop. 14]
. CN 4 NT.

Let FDE be a segment in a circle contammg an angle FDE
equal to the angle ABA’, and let .

D@ be the diameter of the circle %
bisecting FE at right angles in 7.
Divide FE in M so that .
EM :MF=CN:NT, ! "

and draw. through M the chord o L
HK at right angles to EF. From
0, the centre of the circle, draw OL

ndicular to HK, and join
perpe! o_/

EH, HF. 1
The triangles DFI, BAC are
then similar, and

m

FI*: ID'=CA*: CB*.
Now OD : 0I > LH : LM, since OI = LM.
. 0D :DI<LH : HM
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and, doubling the antecedents,
DG : DI < HK : HM,

whence GI:ID< KM : MH.
But GI:ID=FI':ID*=CA*:CB*
=CN.NT: PN

.. ON.NT: PN'<KM: MH
< KM.MH : MH*
<EM.MF : MH".
Let CN.NT: PN'=EM.MF : MR",
where R is some point on HK or HK produced.

It follows that MR > MH, and R lies on KH produced.
Join ER, RF.

Now CN.NT : EM.MF=PN': RM",
and CN*:EM*=CN.NT : EM.MF
(since CN : NT'=EM : MF).
. CN:EM=PN:RM.
Therefore the triangles CPN, ERM are similar.
In like manner the triangles PTN, RFM are similar.
Therefore the triangles CPT, ERF are similar,
and £CPT = ¢« ERF;
whence it follows that
£ CPT is less than < EHF, or £ ABA'.

Therefore, whether CP is parallel to BA’ or not, the £ CPT
is not greater than the £ ABA’.

Proposition 82. (Problem.)
[IL 51, 53.]

To draw a tangent to any given conic making a given angle
with the diameter through the point of contact.

I. In the case of the parabola the given angle must be
an acute angle, and, since any diameter is parallel to the axis,
the problem reduces itself to Prop. 50 (1) above.
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II. In the case of a central conic, the angle CPT must be
acute for the hyperbola, and for the ellipse it must not
be less than a right angle, nor greater than the angle ABA’, as
proved in Prop. 51.

Suppose @ to be the given angle, and take first the particu-
lar case for the elltpse in which the angle 6 is equal to the
angle ABA’. In this case we have simply, as in Prop. 51, to
draw CP parallel to BA' (or AB) and to draw through P a
parallel to the chord 4B (or A’B).

Next suppose 6 to be any acute angle for the hyperbola,
and for the ellipse any obtuse angle less than ABA’; and
suppose the problem solved, the angle CPT being equal to 6.
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Imagine a segment of a circle taken containing an angle
(EDF) equal to the angle 6. Then, if a point D on the
circumference of the segment could be found such that, if DM be
the perpendicular on the base EF, the ratio EM . MF : DM* is
equal to the ratio CA* : CB', +.e. to the ratio CN.NT : PN*, we
should have

LCPT = £68= £EDF,
and CN.NT : PN*=EM.MF : DM®,

and it would follow that triangles PCN, PTN are respectively
similar to DEM, DFM*. Thus the angle DEM would be
equal to the angle PCN.

The construction would then be as follows:

Draw CP so that the angle PCN is equal to the angle
DEM, and draw the tangent at P meeting the axis A4’ in T.
Also let PN be perpendicular to the axis 44°.

Then CN.NT:PN*'=CA':CB*=EM.MF : DM*,

and the triangles PCN, DEM are similar, whence it follows
that the triangles PTN, DFM are similar, and therefore also
the triangles CPT, EDF*.

*. £CPT=¢EDF=/,0.

It only remains to be proved for the hyperbola that, if
the angle PCN be made equal to the angle DEM, CP must
necessarily meet the curve, i.e. that the angle DEM is less
than half the angle between the asymptotes. If AZ is per-
pendicular to the axis and meets an asymptote in Z, we have

EM . MF : DM*=CA*:CB'=CA*: AZ",
<. EM*: DM*>CA*: AZ",
and the angle DEM is less than the angle ZCA.

We have now shown that the construction reduces itself

to finding the point D on the segment of the circle, such that
EM.MF: DM*=CA*: CB".

* These conclusions are taken for granted by Apollonius, but they are easily
proved.

H. C. 6
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This is effected as follows :
Take lengths a8, By in one straight line such that
af : By=CA*: CB’,
By being measured towards a for the hyperbola and away
from a for the ellipse; and let ay be bisected in 8.

Draw OI from O, the centre of the circle, perpendicular to
EF; and on OI or OI produced take a point H such that

OH : HI = 8y: 48,
(the points O, H, I occupying positions relative to one another
corresponding to the relative positions of §, ¥, 8).

Draw HD parallel to EF to meet the segment in D. Let
DK be the chord through D at right angles to £F and meeting
it in M. ‘

Draw OR bisecting DK at right angles.

Then RD:DM=OH: HI =8y: 8.

Therefore, doubling the two antecedents,

KD:DM=ay: y8;
so that KM:DM=aB:By.
Thus
KM.MD : DM*=EM MF : DM*=af : By=CA": CB".
Therefore the required point D is found.

In the particular case of the hyperbola where CA*=CB", t.e.
for the rectangular hyperbola, we have EM . MF = DM®, or DM
is the tangent to the circle at D.

Note. Apollonius proves incidentally that, in the second
figure applying to the case of the ellipse, H falls between I and
the middle point (L) of the segment as follows :

£ FLI =} £ CPT, which is less than § £ ABA’:
». £ FLI is less than « ABC,
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whence CA*:CB*>FI*: IL®
>LT:IL.
It follows that a8:By>LT:IL,
80 that ay:y8>L'L: IL,
and, balving the antecedents,
&y :98>0L: LI,
so that 88:By>0I: IL.
Hence, if H be such a point that
88 :By=0I:IH,
IH is less than IL.

83
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Proposition 83.
(IIL 1, 4, 13.]

(1) P, Q being any two points on a conic, if the tangent at
P and the diameter through Q meet in E, and the tangent at Q
and the diameter through P in T, and if the tangents tntersect at
O, then AOPT=A0QE.

(2) If P be any point on a hyperbola and Q any point on
the conjugate hyperbola, and if T, E have the same significance
as before, then ACPE =ACQT.

(1) Let QV be the ordinate from Q to the diameter

through P.
e /
2\
T P\
Then for the parabola we have
TP = PV, [Prop. 12]
so that TV = 2PV,

and 00 EV =0QTV.
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Subtracting the common area OPVQ,
AOQE=AOPT.
For the central conic we have
CV.CT=CP,

or CV:CT=CV*: CP;
- ACQV : ACQT =ACQV : ACPE;
s ACQT =ACPE.
Hence the sums or differences of the area OTCE and each

triangle are equal, or
AOPT=AO0QE.

(2) In the conjugate hyperbolas draw CD parallel to the
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tangent at P to meet the conjugate hyperbola in D, and draw
QV also parallel to PE meeting CP in V. Then OP, OD are
conjugate diameters of both hyperbolas, and QV is drawn
ordinate-wise to CP.
Therefore [Prop. 15]
' CV.CT=CP,
or CP:CT=CV:CP
=(0Q:CE;

~. CP.CE=0(Q.0T.
And the angles PCE, QCT are supplementary ;

- ACQT =ACPE.

Proposition 84.
[IIL 2, 6.]

If we keep the notation of the last proposition, and sf R be
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any other point on the conic, let RU be drawn parallel to QT to
meet the diameter through P in U, and let a parallel through R
to the tangent at P meet QT and the diameters through Q, P in
H, F, W respectively. Then

A HQF = quadrilateral HTUR.

Let RU meet the diameter through Q in M. Then, as in

Props. 22, 23, we have

A RMF = quadrilateral QTUM ;
.., adding (or subtracting) the area HM,

A HQF =quadrilateral HTUR.

Proposition 55.
[IIL 8, 7, 9, 10.]

If we keep the same notation as in the last proposition and
take two points R’, R on the curve with points H', F', etc. corre
sponding to H, F, etc. and if, further, RU, R'W’ intersect in I
and R’'U’, RW +n J, then the quadrilaterals F'IRF, IUU'R'
are equal, as also the quadrilaterals FJR'F', JU'UR.

[N.B. It will be seen that in some R
cases (according to the positions of R, R')
the quadrilaterals take a form like that
in the margin, in which case #’JRF must ~
be taken as meaning the difference
between the triangles F'MI, RMF.] )
L Wehaveinfigs. 1,2,3
A HFQ = quadrilateral HTUR, [Prop. 54]
A H'F'Q = quadrilateral H'TU'R’,
.. FH'HF=H'TU'R’'~ HTUR
=IUU'R'¥(IH);
whence, adding or subtracting IH,
FIRF=IUUR'........ccvevvivmrnnnnnnns ),



88 THE OONICS OF APOLLONIUS.

and, adding (1J) to both,
FPIRF <JUUR.....ooeeeeeeeeeereeeanns @)

Fig. 4.
II. In figs. 4, 5, 6 we have [Props. 18, 53]
ARUW =ACF'W - ACQT,
so that A CQT = quadrilateral CU'R'F",
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ding the quadrilateral CF'H'T, we have
A H’F'Q = quadrilateral H'TU'R".

Similarly AHFQ=HTUR;
and we deduce, as before,
FIRF=IUU'R .cccuuvuvueererenninnnenronen Q).
Thus e.g. in fig. 4, A
AH'FQ-AHFQ=H'TU'R'-HTUR;
.. FH'HF =(R’'H) - (RU"),
and, subtracting each from (7H),
FIRF=IUUR

In fig. 6,
FH'HF =H'TUR' - AHTW+ ARUW,

v

Fig. 6.
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and, adding (ZH) to each side,
FIRF=HTU'R'+ HTUI

Then, subtracting (IJ) from each side in fig. 4, and sub-
tracting each side from (ZJ) in figs. 5, 6, we obtain
FIR'F' =JU'UR...........ccuuvevveeeune, (2),
(the quadrilaterals in fig. 6 being the differences between the
triangles FJM’, F’R’M’ and between the triangles JU'W, RUW
respectively).
III. The same properties are proved in exactly the same

manner in the case where P, Q are on opposite branches, and
the quadrilaterals take the same form as in fig. 6 above.

Cor. In the particular case of this proposition where R’
coincides with P the results reduce to

EIRF = APUI,
PJRU =PJFE.

Proposition 86.
[11I. 8]
If PP', QQ' be two diameters and the tangents at P, P’,
Q, Q' be drawn, the former two mesting QQ’ in E, E’ and the
latter two meeting PP’ in T, T', and if the parallel through P’
to the tangent at Q meets the tangent at P in K while the parallel
through Q’ to the tangent at P mests the tangent at Q in K', then
the quadrilaterals (EP’), (TQ') are equal, as also the quadri-
laterals (E'K), (T'K’).
Since the triangles CQT, CPE are equal [Prop. 53] and
have a common vertical angle,
CQ.CT=CP.CE;

- CQ:CE=CP: (T,
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whence QQ’': EQ=PP’ : TP,
and the same proport.;ion is true for the squares;
.. AQQ'K’': AQEO = APP’'K : APTO.

And the consequents are equal ;

. AQY'K’' = APP'K,
and, subtracting the equal triangles CQT, CPE, we obtain

(EP')=(TQ)uvceveeeecrreenenns (1).

Adding the equal triangles CP’'E’, CQ'T" respectively, we
have

(B'B)=(T'E’) cecverererernennns @)

Proposition 87.
[IIL. 5, 11, 12, 14.]
(Application to the case where the ordinates through R, R',

the points used in the last two propositions, are drawn to a
secondary diameter.)

(1) Let Cv be the secondary diameter to which the ordi-
nates are to be drawn. Let the tangent at Q meet it in ¢, and
let the ordinate Rw meet Q¢ in h and CQ in f. Also let Ru,
parallel to Q¢, meet Cv in u.

Then [Prop. 19]
ARuw~ ACfw= ACQt.................. (a)
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and, subtracting the quadrilateral CwhQ,
ARuw~ ARQf=AMw,;
~. ARQf = quadrilateral AtuR.

(2) Let R'w/ be another ordinate, and A, w &c. points
corresponding to h, w, &c. Also let Ru, R'w’ meet in ¢ and Rw,
R mj.

Then, from above,

AKQSf = Ntw' R,
and ARQSf = htuR.

Therefore, subtracting,

SHEhf =ur'R — (k)

and, adding (As),
SiRf=wu'R.....ccouvvvnnrnnnnnn. (1)
If we add (t)) to each, we have
SFiRf =juuR .......cvvvveninnnnnnnn (2).

[This is obviously the case where P is on the conjugate
hyperbola, and we deduce from (A) above, by adding the area
CwRM to each of the triangles Ruw, Cfw,

ACuM ~ ARfM = ACG,
a property of which Apollonius gives a separate proof.]
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Proposition 88.
[IIL. 15.]

In the case where P, Q are on the original hyperbola and R
on the conjugate hyperbola, the same properties as those formu-
lated in Propositions 55, 57 still hold, vis.

ARMF~ ACMU = ACQT,
and FIRF=IUUR.

Let D'D"” be the diameter of the conjugate hyperbola
parallel to RU, and let QT be drawn; and from IY draw D@
parallel to PE to meet CQ in @. Then I’D” is the diameter
conjugate to CQ.

Let p’ be the parameter in the conjugate hyperbola corre-
sponding to the transverse diameter I'D”, and let p be the
parameter corresponding to the transverse diameter QQ’ in the

original hyperbola, so that
£.0Q=cD", and E.op=ce.

Now we have [Prop. 23]
0Q:QE=p: zQT=g : QT;
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3 Do:ce=12!:QT

=§.oQ;CQ.QT

=CD": CQ.QT.
Hence DC.CG=CQ.QT,
or ADCG=ACQT..........cccccnuenn.... (1).
Again, CM:MU=0Q:QT

=(ce:5).(p: 27

=(p': DD").(0Q: QE)
=(p': 'D").(RM : MF)...... 2).
Therefore the triangles CMU, RMF, D'CG, being respec-
tively half of equiangular parallelograms on CM (or Rv),
RM (or Cv), CD, the last two of which are similar while the

sides of the first two are connected by the relation (2), have the
property of Prop. 186.

.. ARMF~ ACMU = ADCG=ACQT.. ...... 3.

If R’ be another point on the conjugate hyperbola, we have,
by subtraction, :

RJFF — RMM'J = MUU'M’, or RJFF = RUU'J.
And, adding (1),
FIRF=IUUR .............. (4)



RECTANGLES UNDER SEGMENTS OF
INTERSECTING CHORDS.

Proposition 59.
[IIL. 16, 17, 18, 19, 20, 21, 22, 23.]

Case I. If OP, 0Q be two tangents to any conic and Rr,
R’y two chords parallel to them respectively and intersecting in
J, an internal or external point, then

OP*:0Q'"=RJ.Jr:RJ.Jr.

(a) Let the construction and figures be the same as in
Prop. 55.

We have then
RJ.Jr=RW~JW*,

and RW*:JW'= ARUW: AJU'W;
S RW~JW': RW'=JU'UR: ARUW.
But RW*: OP*= ARUW: AOPT;

<+ RJ.Jr:0P*=JU'UR: AOPT ............ Q).
Again RJ.J¥ =RM*-JM"

and RM*.JM*= ARFM : AJFN,,

or RM*~-JM*: RM*=FIRF : ARFM.
But RM*: 0@ = ARFM': AOQE;

o RJ.JY:O@=FIRF: AOQE ... ).
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Comparing (1) and (2), we have
JU'UR = FJR'F, by Prop. 55,

and AOPT = AOQE, by Prop. 53.
Thus RJ.Jr:0P*= RJ.J¥: 0@,
or OP*: 0@ =RJ.Jr: RJ.Jr.

() If we had taken the chords R'r/, Rr, parallel respec-
tively to OP, 0Q and intersecting in 7, an internal or external
point, we should have established in the same manner that

OP*:0Q*=RI.Ir/: RI. Ir,.
Hence the proposition is completely demonstrated.

[Cor. If I, or J, which may be any internal or external
point be assumed (as a particular case) to be the centre, we
have the proposition that the rectangles under the segments of
intersecting chords in fixed directions are as the squares of the
parallel semi-diameters.]

Case II. If P be a point on the conjugate hyperbola and
the tangent at Q meet CP in t; if further g be drawn through
t parallel to the tangent at P, and Rr, R'r’ be two chords parallel
respectively to the tangents at Q, P, and sntersecting at 1, then

tQ': tg’ = Ri.ir : R .o,
Using the figure of Prop. 57, we have
Ri.ir = Me* ~ MR',
and My : MR'= AMfi: AMfR.
Hence Ri.ir: MR'= fiRf: AMfR.
Therefore, if QC, g¢’ (both produced) meet in Z,

Ri.ir: tQ =f%iRf: AQL ............... ().
Similarly,  R%.ir': R/ =uw'R': ARwW ;
SRt =R ARE ... @),

where ¢K is parallel to Q¢ and meets Ct produced in K.
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Baut, comparing (1) and (2), we have

SRf =wu'R), [Prop. 57]
and AtgK = ACLt + ACQt= AQtL. [Prop. 19]
s Riir: Q=R : tg’,
or tQ*: tg’ = Ri.or : Ri.or'.

Case III. If PP be a diameter and Rr, R'r’ be chords
parallel respectively to the tangent at P and the diameter PP’
and intersecting in I, then

RI.Ir:RI.I¥ =p: PP.

If RW, R'W’ are ordinates to PP,

p: PP=RW*':CW*~CP [Prop. 8]
=RW*:.CW*~-CP*
=RW'~RW*:CW*'~CW"
=RI.Ir:RI.Iy.

Case IV. If OP, 0Q be tangents to a hyperbola and Rr,
R'Y betwo chords of the conjugate hyperbola parallel respectively
to 0Q, OP, and meeting in I, then

0Q*:0P*=RI.Ir: R1.1Iv.
Using the figure of Prop. 58, we have
0Q': AOQE=RM*': ARMF
=MI': AMIF
=RI.Ir: ARMF~ AMIF'
=RI.Ir: F'IRF,
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and, in the same way,
OP*': AOPT=RI.I¥V: ARUW ~ AIUW’
=RI.IY:IUUR;
whence, by Props. 53 and 58, as before,
OQ:RI.Ir=0P: RI.I¥,
or OQ:0P*=RI.Ir:RI.IvV.

Proposition 60.
[II1. 24, 25, 26.]

If Rr, R’y be chords of conjugate hyperbolas meeting in O
and parallel respectively to conjugate diameters PP, DIV, then

cp

[ RO.Or R’O.Or’=2]

o —ep T oD

Let Rr, R’ meet the asymptotes in K, k; K’, ¥, and CD,
CP in w, W’ respectively. Draw LPL’, the tangent at P,
meeting the asymptotes in L, I/, so that PL = PL'.

Then LP.PL =CD',
and LP.PL :CP'=CD': CP.
Now LP:CP=K0:0K,

PL': CP =0k : Ok;
s CD*:CP*=K'0.0K : KO. Ok,
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[From this point Apollonius distinguishes five cases: (1)
where O is in the angle LCL/, (2) where O is on one of the
asymptotes, (3) where O is in the angle LCk or its opposite, (4)
where O is within one of the branches of the original hyperbola,
(5) where O lies within one of the branches of the conjugate
hyperbola. The proof is similar in all these cases, and it will
be sufficient to take case (1), that represented in the accom-

panying figure.]
We have therefore

CD*:CP*=K'0.0K + CD*: KO.Ok + CP*
=K'0.0F + K'R'.R'K : KO.Ok + CP*
=K'W'-0W*+RW*-K'W"*: 0w — Kw'+ CP*
=RW*-0W": Rw* — Kw* — Rw* + Ouw' + CP*
=R0.0r: RK.Kr+CP*~R0O.Or
= R'0.0r : 2CP* - RO. Or (since Kr = Rk),

cpP .,
whence R0.0r+6-ﬁ.r.RO.01’=2C'P',
RO.Or RO.Or
or ot o T

[The following proof serves for all the cases : we have
RW*-CD':CW*=CD*: CP*
and Cw*': Rw* - CP*=CD*: CP*;
s RW"*~Cu*—-CD*: CP*~ (Rw* - CW™) = CD*: CP’,
so that +R'0.0r —-CD*:CP*+ RO.Or=CD": CP",
whence  + R'0.0¢:2CP* + RO.Or=CD*: CP*

R0.0¢  RO.Or_,,
. ) )
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Proposition 61.
(IIL. 27, 28, 29.]

If in an ellipse or in conjugate hyperbolas two chords Rr,
R’y be drawn meeting in O and parallel respectively to two
conjugate diameters PP, DIV, then

(1) for the ellipse
cp
RO’+0#+C,3.(R'0'+01-")=40P',
RO’+O1"_'_R'O’+01-"‘=4
cP cp ’
and for the hyperbolas
RO*+ 0r*: R'0*+ Or”=CP*: CD*

Also, (2) if R'r’ in the hyperbolas meet the asymptotes in
K', K, then

K'C’+ Ok + 2CD* : RO* + Or* = CD*: CP*.

or

(1) We have for both curves
CP': CD'=PW.WP': RW*
=R'w*: Duf . /D’
=CP'+ PW.WP' t Rw*:CD*+ RW*' + Dw' .w'D’,



INTERSECTING CHORDS, 101
(taking the upper sign for the hyperbolas and the lower
for the ellipse);
S CP:CD'=CP*+CW"*+ PW.WP : CD'+ Cuw' + Dw'.w'D,
whence, for the Ayperbolas,
CP*:CD*=CW"+CW"*: Cuw' + Cuw'*
=3(R0* + 0r*) : §(R'O* + Or™),
or RO+ 0 :RO+0"=CP:CD* ......... (4),
while, for the elltpse,
CP*.CD*=2CP'—(CW*+CW*"): Cuw"* + Cw*
=4CP'—- (RO + O0r") : (RO*+ Or™),

RO*+ Or' , RO*+ 01"
whence ot oD = L (B).

(2) We have to prove that, in the hyperbolas,
R'O*+ 0r*=K'0" + OF* + 2CD".
Now R'0O*-~K'0'=R'K”+2R'K’'.K’0,
and 0™ = Ok™ =o'k + 2r'K . KO
=R'K™+2R'K'.¥0.
Therefore, by addition,
RO+ 0" -K0'-0k*=2R'K'(R'K'+ K'O + OF)
=2R'K’'.R'¥
=20D".
s R'O’+ 0" =K'0" + Ok™ + 2CD*,
whence K’'O'+ Ok™+2CD*: RO*+ Or*=CD*: CP,
by means of (A) above.
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Proposition 62.
[III1. 30, 31, 32, 33, 34.]

TQ, Tq being tangents to a hyperbola, if V be the middle
point of Qq, and if TM be drawn parallel to an asymptote
meeting the curve in R and Qq in M, while VN parallel to
an asymptote meets the curve sn R’ and the parallel through T
to the chord of contact in N, then

TR = RM,
VR'=R'N*.

L Let CV meet the curve in P, and draw the tangent PL,
which is therefore parallel to Qg. Also draw the ordinates
RW, R"W’ to CP.

Then, since the triangles CPL, TWR are similar,

RW*:.TW*=PL'.CP*=CD*: CP*
=RW': PW.WP,
S TW*=PW.WP.
* It will be observed from this proposition and the next that Apollonius
begins with two particular cases of the general property in Prop. 64, namely
(a) the case where the transversal is parallel to an asymptote, (b) the case where

the chord of contact is parallel to an asymptote, i.e. where one of the tangents
is an asymptote, or a tangent at infinity.
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Also CV.CT=CP*;
o PW.WP'+CP*=CV.CT+TW?,
or CW*=CV.CT+TW?",
whence CT(CW+TW)=CV.CT,
and TW=WV.
It follows by parallels that 7TR=RM..................... (1).
Again CP': PL*=W'V*: WR";
s WV WR=PW'.WP: WR",
so that PW . WP=WV.
And CV.CT =CP;

s CW*=CV.CT+ W'V,
whence, as before, TW =W'Y,
and NR' =R'V..cvrvniiviiinniinninnns (2
II. Next let Q, g be on opposite branches, and let P’P be
the diameter parallel to Qg. Draw the tangent PL, and the
ordinates from R, R’, as before.

Let TM, CP intersect in K.
Then, since the triangles CPL, K WR are similar,
CP*: PL’'=KW*: WR?,
and CP*.CD'=PW.WP': WR';
s KW*=PW.WP’
Hence, adding CP?,
CW*'[=Ruw*]=KW*+CP
But Ruw':KW*'+CP'=Tu': RW*+ PL,
by similar triangles.
Therefore Tw'=RW*'+CD*
= Cw'+ CV.CT,
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whence Tw—-Cw=CV, or Tw=wV;
* TR=RM ....cccccvvevvrrneanns Q).
Again CP*: PL'=PW .WP: :RW"
=PW .WP +CP*: R'W*+CD*
=CW"*: Cw*+COV.CT.
Also CP*: PL'=R'uw*: w'V?*;
s w'PP=0w*+CV.CT,
whence, as before, Tw =w'V,
and, by parallels, NR'=R'V........ccovviiinrinniniicnnns (2)-

III. The particular case in which one of the tangents is
a tangent at infinity, or an asymptote, is separately proved
a8 follows.

Let LPL' be the tangent at P. Draw PD, LM parallel to
CL, and let LM meet the curve in R
and the straight line PF drawn through
P parallel to CL in M. Also draw RE
parallel to CL.

Now LP=PL';

o PD=CF=FL, FP=CD=DL.
And FP.PD=ER.RL. [Prop. 34]
But ER=LC=2CD=2FP,

~. PD=2LR,
or LR = RM.

Proposition 63.
[IIL. 35, 36.]

If PL, the tangent to a hyperbola at P, meet the asymptote
wn L, and if PO be parallel to that asymptote, and any strasght
line LQOQ’ be drawn meeting the hyperbola in Q, Q' and PO n
0, then :
' LQ : LQ=Q0: 0Q.
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We have, drawing parallels through L, Q, P, Q' to both
asymptotes as in the figures,
LQ = Q'L’; whence, by similar triangles, DL=IQ'=CF
~. CD=FL,
and CD:DL=FL:LD
=QL:LQ
=MD : DQ.

Hence (HD) : (DW)‘= (MC): (CQ)

=(MC):(EW),
since (CQ)=(CP)=(EW). [Prop. 34]
Therefore
(MO) : (EW) = (MC) + (HD) : (EW) £ (DW)
=(MH): (EU)......c.cveevvvunennns ).
Now (DG)=(HE). [Prop. 34]
Therefore, subtracting CX from both,
(DX)=(XH),

and, adding (X U) to each, (EU) = (HQ).
Hence, from (1), since (EW) = (CQ),
(MO): (CQ)=(MH) : (HQ),
or LQ' : LQ=Q'0: 0Q.

[Apollonius gives separate proofs of the above for the two
cases in which Q, @ are (1) on the same branch, and (2) on
opposite branches, but the second proof is omitted for the sake
of brevity.

Eutocius gives two simpler proofs, of which the following is
one.

Join PQ and produce it both ways to meet the asymptotes
in R, R'. Draw PV parallel to CR’ meeting Q@' in V.
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Then LV=VL.
But QL=QL'; . QV=V¢Q.

Now QV:VL =QP: PR

= PQ: QR

=0Q : QL.

s 2QV:2VL =0Q: QL,

or QY:0Q=LL :QL;

S Q0:0Q0=LQ : LQ]

Proposition 64.
[II1. 87, 88, 39, 40.]

(1) If TQ, Tq be tangents to a consc and any strasght line
be drawn through T meeting the conic and the chord of contact,
the straight line 1s divided harmonscally ;

(2) If any straight line be drawn through V, the middle
point of Qg, to meet the conic and the parallel through T to Qq
[or the polar of the point V'), this straight line is also divided
harmonically ;

i.e. in the figures drawn below
(1) RT:TR =RI:IR,
(2) RO:0OR'=RV:VR.
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Let TP be the diameter bisecting Qg in V. Draw as usual
HRFW, H'R'F'W', EP ordinate-wise to the diameter T'P; and
draw RU, R'U’ parallel to QT meeting TP in U, U".

(1) We have then
RI:IR=HQ': HQ
=AH'FQ: AHFQ
= H'TU'R': HTUR. [Propes. 54,55]
Also RT*:TR*=RU™: RU*
=ARUW : ARUW,;
and at the same time
RT*:TR*=TW":TW*
=ATH'W': ATHW;
s RT:TR'= ARU'W ~ ATH'W': ARUW ~ ATHW
=H'TUR : HTUR
= R'I*: IR, from above.
s RT:TR' =RI:IR.
(2) We have in this case (it is unnecessary to give more
than two figures)
RV*: VR*=RU*: R'U"
= ARUW: ARU'W',



108 THE CONICS OF APOLLONIUS.

Allo  RV':VR*=HQ:QH"
= AHFQ: AH'F'Q=HTUR : HTUR.
. RV*: VR*= HTUR + ARUW : H'TU'R + ARU'W’
= ATHW : ATH'W'
-TW*:TW*
=RO': OR™;
that is, RO : OR' =RV : VR.

U




INTERCEPTS MADE ON TWO TANGENTS BY
A THIRD.

Proposition 68.
[II1. 41.]

If the tangents to a parabola at thres points P, Q, R form a
triangle pqr, all three tangents are divided tn the same propor-

tion, or

Pr:rg=rQ:Qp=gp:pR.

Let V be the middle point of PR, and join ¢V, which- is
therefore a diameter. Draw I'TQW parallel to it through Q,
meeting Pg in T and gR in T”. Then QW is also a diameter.
Draw the ordinates to it from P, R, viz. PU, RW, which are

therefore parallel to pQr.
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Now, if ¢V passes through Q, the proposition is obvious, and
the ratios will all be ratios of equality.

If not, we have, by the properties of tangents, drawing EBF
the tangent at the point B where ¢V meets the curve,

7Q = QU, T'Q=QW, gB =BV,
whence, by parallels,
Pyr=1¢T, Tp=pR, qF = FR.

Then (1) rP:PT=EP:Pg=1:2,

and, alternately, rP:PE=TP: Pq
=0P: PV,
whence, doubling the consequents,
rP: Pq=0P: PR,

and Pr:rq=PO:0R ............... 1).
) *Q: Qp=PU : RW,
gince PU=2rQ, and RW = 2pQ;
S 1Q:Qp=PO:0R............... €))
3 FR:Rq=pR:RT,
and, alternately, FR:Rp=qR:RT
= VR : RO.

Therefore, doubling the antecedents,
gR: Rp=PR: RO,
whence gp:pR=PO:0R ............... (3)
It follows from (1), (2) and (3) that ‘

Pr:rg=rQ:Qp=gp:pR.
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Proposition 66.
[IIL. 42.]

If the tangents at the extremities of a diameter PP’ of a
central conic be drawn, and any other tangent meet them in r, +'

respectively, then
Pr. Py =CD

Draw the ordinates QV, Qv to the conjugate diameters PP’
and DD’; and let the tangent at Q meet the diameters in T, ¢
respectively.

If now, in the case of an ellspse or circle, CD pass through Q,
the proposition is evident, since in that case »P, CD, P’ will all
be equal.

If not, we have for all three curves
CT.CV=CP,
go that CT:CP=CP:CV
=CTI'~CP:CP-~CV
= PT: PV;
s CT:CP =PT: PV,
whence CT:PT=PT: VT
Hence, by parallels, Ct : P'rY’ = Pr: QV
= Pr: Cv;
s Pr. Py =0v.Ct=CD\
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Proposition 67.
[II1. 43.]

If a tangent to a hyperbola, LPL', meet the asymptotes in
L, L, the triangle LCL' has a constant area, or the rectangle
LC.CL’ ts constant.
Draw PD, PF parallel to the asymptotes (as in the third
figure of Prop. 62).
Now LP=PL;
. CL =2CD = 2PF,
CL' = 2CF = 2PD.
». LC.CL'=4DP. PF,
which is constant for all positions of P. [Prop. 34)

Proposition 68.
[IIL 44.]

If the tangents at P, Q to a hyperbola meet the asymptotes
respectively in L, L'; M, M’, then LM', L'M are each parallel
to PQ, the chord of contact.

Let the tangents meet at O.
We have then [Prop. 67]
LC.CL' = MC.CM',
80 that LC:CM'=MC:CL;
.. LM', L'M are parallel.
It follows that OL : LL'=0M': M'M,
or, halving the consequents,
OL: LP=0M': M'Q;
~. LM’, PQ are parallel.
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The foci are not spoken of by Apollonius under any equiva-
lent of that name, but they are determined as the two points
on the axis of a central conic (lying in the case of the ellipse
between the vertices, and in the case of the hyperbola within
each branch, or on the axis produced) such that the rectangles
AS.SA4', AS'.8’A’ are each equal to “one-fourth part of the
figure of the conic,” i.e. }ps. A4’ or CB'. The shortened
expression by which 8, S’ are denoted is 7d éx Tijs mapaSoAijs
rywopeva anueia, “the points arising out of the application.”
The meaning of this will appear from the full description of the
method by which they are arrived at, which is as follows: éaw
7¢ TerdpTe pépes Tob €elSovs loov wapd Tov dfova mapaSAnby
ép’' éxdrepa éml pdv Tis UmwepBolijs xal TV dvTikeipévoy
UmepBdA\\ov elbec Terpaywve, érl 8¢ Tis éAhelyrews éNheimoy,
“if there be applied along the axis in each direction [a rect-
angle] equal to one-fourth part of the figure, in the case of the
hyperbola and opposite branches exceeding, and in the case of

N

the ellipse falling short, by a square figure.” This determines
two points, which are accordingly 7a éx s apaBoijs yermbévra
H. C. 8

A
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anueia. That is, we are to suppose a rectangle applied to the
axis as base which is equal to CB* but which exceeds or falls
short of the rectangle of equal altitude described on the whole
axis by a square. Thus in the figures drawn the rectangles AF,
A'F are respectively to be equal to CB', the base 4.8’ falling short
of AA’in the ellipse, and the base A’S exceeding 4’4 in the
hyperbola, while 8'F or SF is equal to 8’4’ or S4 respectively.

The focus of a parabola is not used or mentioned by
Apollonius,

Proposition 69.
[IIL. 45, 46.]

If Ar, A’Y, the tangents at the extremities of the axis of a
central conic, meet the tangent at any point P in r, 1’ respectively,
then :

(1) 7 subtends a right angle at each focus, S, S’;

(2) the angles rr'S, A'¥'S’ are equal, as also are the angles
r'rS, ArS.

(1) Since [Prop. 66]
rd . A'Y = CB*
=A48.84’, by definition,
rd : AS=SA4": A'r,
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K
Hence the triangles A4S, SA’7’ are similar, and
LArS= 2 A'Sr;
.. the angles 7SA, A’S¥ are together equal to a right angle,
so that the angle rSr’ is a right angle.
And similarly the angle r8 is a right angle.
(2) Since 78r', »S8'r are right angles, the circle on r+' as
diameter passes through 8, §';
s £r’S=£r8'8, in the same segment,
= £ 8'r’A’, by similar triangles.
In like manner 2778 = £ ArS.

Proposition 70.
(II1. 47.]

If, in the same figures, O be the intersection of r8', 1S, then
OP will be perpendicular to the tangent at P.
Suppose that OR is the perpendicular from O to the tangent
at P. We shall show that R must coincide with P.
For £ Or'R =2 8'rA’, and the angles at R, A’ are right;
~. the triangles Or’R, 8'7'A’ are similar.
8—2
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Therefore A7 :YR=87 :70
= 8r : rO, by similar triangles,
=Ar:rR,
because the triangles 478, RrO are similar;
S rR:Rr=AY: Ar

=AT:TA..uen..... ).
Again, if PN be drawn perpendicular to the axis, we have
[Prop. 18] A'T:TA=A'N:NA

=7P : Pr, by parallels.
Hence, from (1), *R: Rr=v+P: Pr,
and therefore R coincides with P.
It follows that OP is perpendicular to the tangent at P.

Proposition 71.
[1II1. 48]

The focal distances of P make equal angles with the tangent
at that point.

In the above figures, since the angles »SO, OPr are right
[Props. 69, 70] the points O, P, r, S are concyclic;

+. £8Pr = £ 80r, in the same segment.

In like manner LS Pr=¢£807,
. and the angles SOr, 8'Or’ are equal, being the same or opporite
angles.

Therefore £ 8Pr=c8Pr.

Proposition 792.
[IIL 49, 50.]

(1) If, from either focus, as S, SY be drawn perpendicular
to the tangent at any point P, the angle AYA' unll be a right
angle, or the locus of ¥ is a circle on the axis AA’ as diameter.

(2) The line drawn through C parallel to either of the focal
distances of P to meet the tangent will be equal in length to CA,
or CA’,
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Draw SY perpendicular to the tangent, and join AY, Y4’
Let the rest of the construction be as in the foregoing proposi-
tions.

We have then
(1) the angles rAS, r¥S are right ;
<. 4,r, Y, 8 are concyclic, and
LAYS= £ ArS
= £1r'84’, since £ rSr’ is right
= «£r'YA’, in the same segment,
8, ¥, v/, A’ being concyclic;
.., adding the angle SY4’, or subtracting each angle from it,
£ AYA' = £ SYr' =a right angle.
Therefore Y lies on the circle having 44’ for diameter.
Similarly for ¥”.

(2) Draw CZ parallel to SP meeting the tangent in Z, and
draw S'K also parallel to SP, meeting the tangent in K.

Now AS.S4'=A8 .84,
whence AS=8'4’, and therefore CS' = CS’.
Therefore, by parallels, PZ=ZK,
Again £ S'KP = £ SPY, since SP, S'K are parallel,
=¢8PK,; [Prop. 71]
. 8P=8'K.
And PZ=2K,
.. 8°Z is at right angles to the tangent, or Z coincides with ¥”.
But Y is on the circle having A4’ for diameter ;
.. CY'=CA, or C4A'.
And similarly for CY.
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Proposition 73.
[IIL 51, 52.
In an ellipse the sum, and tn a hyperbola the difference, of the
focal distances of any point i8 equal to the aris AA’.

We have, as in the last proposition, if SP, CY’, 8’K are
parallel, 'K =8’P. Let 8’P, CY’ meet in M.

Then, since 8C=0Y,
8P = 20M,
S'P=8'K=2MY";
.. SP+8'P=2(CM + MY")
=20y’
=AA". [Prop. 72)
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Proposition 74.
[IIL. 53.]

If PP be a diameter of a central conic, and Q any other
point on it, and if PQ, P'Q respectively meet the tangents at P,
Pin R, R, then

PR.PR =DD"

RI

R’

(%
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Draw the ordinate QV to PP’

Now p:PP=QV*:PV.PV [Prop. 8]
=(QV : PV).(QV:PV)
=(PR': PP).(PR: PP), by similar triangles;

Hence p: PP'=PR.PR': PP
Therefore @~ PR.PR =p.PFP
= DD".

Proposition 78.
[IIIL. 54, 56.]

TQ, TQ being two tangents to a conic, and R any other
pownt on st, of Qr, Q' be drawn parallel respectively to TQ,
TQ, and +f Qr, @R meet in r and Q'+, QR in 7, then

Qr.Qv:QQ*=(PV*: PT*) x (TQ.TQ : QV™),
where P 18 the point of contact of a tangent parallel to QQ'.

’

r
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Draw through R the ordinate RW (parallel to QQ') meeting
the curve again in R’ and meeting 7Q, TQ’ in K, K’ respec-
tively; also let the tangent at P meet TQ, T'Q in L, L'. Then,
since PV bisects QQ’, it bisects LL’, KK’, RR’ also.

(4

K

Now QL': LP.PL'=QL': LP*
=QK': RK.KR' [Prop. 59]
=QK': RK.RK'.

But QL.QL :QL*'=QK.QK’: QK"

Therefore, ez aequals,

QL.QL :LP.PL'=QK.QK : RK.RK’
=(QK': K'R).(QK : KR)
=Qr:Q@).(¢r: QQ)
=Qr.Q7:Q¢%;

Qr.Qv:QQ*=QL.QL : LP.PL
=(QL.QL:LT.TL).(LT.TL': LP.PL)
=(PV*: PT").(TQ.TQ : Q).
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Proposition 76.
[IIL 55.)

If the tangents are tangents to opposite branches and meet in ¢,
und if tq 18 half the chord through t parallel to QQ', while R, r,
have the same meaning as before, then

Qr.Qr:QQ*=1tQ.tQ : tg"
Let RR’ be the chord parallel to Q@' drawn through R, and

let it meet tQ, tQ' in L, L. Then QQ, RR’, LL’ are all bisected
by tv.

Now tg*:tQ'=RL.LR: LQ* [Prop. 59]
=L'R.RL: LQ"
But tQ*:1Q.tQ'=LQ': LQ.LQ".
Therefore, ex aequals,
tg":tQ.tQ'=L'R.RL: LQ.LQ
=(L'R:L'Q).(RL: LQ)
=(QQ:Qr).(QQ': @) =QQ": Qr.¢7".
Thus Qr.Qr:QQ"=1Q.tQ : tg".

[It is easy to see that the last two propositions give the
property of the three-line locus. For, since the two tangents and
the chord of contact are fixed while the position of R alone
varies, the result may be expressed thus,

@». Qv = (const.).
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Now suppose Q,, Q,, 7, in the accompanying figure substi-
tuted for Q, @, T respectively in the first figure of Prop. 75,
and we have

Q,r. Q' = (const.)

r
13
™
H
.
H
‘.
.

Draw Rg,, Rq,’ parallel respectively to 7,Q,, T,Q, and
meeting @,Q, in g,, g,- Also let Ry, be drawn parallel to the
diameter CT, and meeting Q,, in v,.

Then, by similar triangles,

er : ‘@" = QIQ' : qul”
QI’J : &I = QIQI : qul'

Hence er "‘Qtr, : an * RQ; = qu: : qux * QIQI"

But Rq,.Rg,': Rv'=TQ,.T,Q,: T,V", by similar triangles

<. Rq,.Rq,': Rv}=(const.).

Also Q,Q,' is constant, and Q,r. Q,r’ is constant, as proved.

It follows that

Ry’ : Qg,. Q.. = (const.).

But Ry, is the distance of R from Q,Q,, the chord of
contact measured in a fixed direction (parallel to CT,); and
Q4. @9, are equal to the distances of R from the tangents
T.Q,, T,Q, respectively, measured in a fixed direction (parallel
to the chord of contact). If the distances are measured in any
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other fixed directions, they will be similarly related, and the
constant value of the ratio will alone be changed.

Hence R is such a point that, if three straight lines be
drawn from it to meet three fixed straight lines at given
angles, the rectangle contained by two of the straight lines so
drawn bears a constant ratio to the square on the third. In
other words, a conic is a “three-line locus” where the three
lines are any two tangents and the chord of contact.

The four-line locus can be easily deduced from the three-
line locus, as presented by Apollonius, in the following manner.

If QQ,0Q,Q, be an inscribed quadrilateral, and the tangents
at Q,, @, meet at T, the tangents at Q,, @, at T, and so on,

suppose Rg,, Rq, drawn parallel to the tangents at Q,, Q,
respectively and meeting @Q,Q, in g,, ¢,' (in the same way as

Rgq,, Rq,' were drawn parallel to the tangents at Q,, @, to meet

Q,Q,), and let similar pairs of lines Rg,, Rg,' and Rgq,, Rg,’ be
drawn to meet Q,Q, and Q,Q, respectively.

Also suppose Ry, drawn parallel to the diameter CT,, meet-
ing Q,Q, in v,, and 8o on.

Then we have

Q.- Qg =k, Ry}
Q!ql ° thl, = kl * Rv: where kp kp kgr k¢ are
QOqO . ng.' = k. . .Rv.. constants_

Q4. Qg =k,. Ry}
Hence we derive
Ro?. e 9% Gn Qe 94/
R” R”. 1% qul Gl%:- Ot_;d
where k 1s some constant.

But the triangles Q,¢,9,, @,4,9, etc. are given in species,
as all their sides are in fixed directions. Hence all the ratios

Q‘q‘ etc. are constant;
Qg/
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But Rv,, Rv,, Rv,, Ry, are straight lines drawn in fixed
directions (parallel to CT,, etc.) to meet the sides of the
inscribed quadrilateral Q,Q,Q,Q. '

Hence the conic has the property of the four-line locus with
respect to the sides of any tnscribed quadrilateral.]

The beginning of Book IV. of Apollonius’ work contains
a series of propositions, 23 in number, in which he proves
the converse of Propositions 62, 63, and 64 above for a great
variety of different cases. The method of proof adopted is the
reductio ad absurdum, and it has therefore been thought
unnecessary to reproduce the propositions.

It may, however, be observed that one of them [IV. 9] gives
a method of drawing two tangents to a conic from an external
point.

Draw any two straight lines through T' each cutting the
conic in two points as @, Q' and
R, R'. Divide QQ’ in O and RR’
in O’ so that

7Q:TQ'=Q0: 0Q’,

TR:TR'=RO': O'R'.
Join 00’, and produce it both ways
to meet the conic in P, P’. Then

P, P’ are the points of contact of the
two tangents from T.
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Proposition 77.
[IV. 24.]

No two conics can sintersect in such a way that part of one
of them 18 common to both, while the rest 18 not.

If possible, let a portion ¢'Q’'PQ of a conic be common
to two, and let them diverge at Q. Take Q'
any other point on the common portion and
join QQ’. Bisect QQ’ in V and draw the
diameter PV. Draw rqug’ parallel to QQ".

Then the line through P parallel to QQ’
will touch both curves and we shall have in
oue of them gv =vq’, and in the other rv=1vq’;

*. v = qu, which is impossible.

There follow a large number of propositions with regard to
the number of points in which two conics can meet or touch
each other, but to give all these propositions in detail would
require too much space. They have accordingly been divided
into five groups, three of which can be combined in a general
enunciation and are accordingly given as Props. 78, 79 and 80,
while indications are given of the proofs by which each
particular case under all the five groups is established. The
terms “ conic” and “ hyperbola” in the various enunciations do
not (except when otherwise stated) include the double-branch
hyperbola but only the single branch. The term “ conic ” must
be understood as including a circle.
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Group I. Propositions depending on the more elementary
considerations affecting conics.

1. Two conics having their concavities in opposite directions
will not meet in more than two points. [IV. 35.]

If possible, let ABC, ADBEC be two such conics meeting in
three points, and draw the chords of contact 4B,
BC. Then AB, BC contain an angle towards
the same parts as the concavity of ABC. And
for the same reason they contain an angle towards o
the same parts as the concavity of ADBEC.

Therefore the concavity of the two curves -
is in the same direction: which is contrary to
the hypothesis.

2. If a conic meet one branch of a hyperbola in two
points, and the concavities of the conic and the branch are in
the same direction, the part of the conic produced beyond the
chord of contact will not meet the opposite branch of the
byperbola. [IV. 36.]

‘The chord joining the two points of intersection will cut both
the lines forming one of the angles made by the asymptotes of
the double hyperbola. It will not therefore fall within the
opposite angle between the asymptotes and so cannot meet the
opposite branch. Therefore neither can the part of the conic
more remote than the said chord.

3. If a conic meet one branch of a hyperbola, it will not
meet the other branch in more points than two. [IV. 37.]

The conic, being a one-branch curve, must have its
concavity in the opposite direction to that of the branch which
it meets in two points, for otherwise it could not meet the
opposite branch in a third point [by the last proposition]. The
proposition therefore follows from (1) above. The same is true
if the conic touches the first branch.

4. A conic touching one branch of a hyperbola with its
concave side will not meet the opposite branch. [IV. 89.]
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Both the conic and the branch which it touches must be on
the same side of the common tangent and therefore will be

y C

separated by the tangent from the opposite branch. Whence
the proposition follows.

5. If one branch of a hyperbola meet one branch of
another hyperbola with concavity in the opposite direction
in two points, the opposite branch of the first hyperbola
will not meet the opposite branch of the second. [IV. 41.]

—

The chord joining the two points of concourse will fall
across one asymptotal angle in each hyperbola. It will not
therefore fall across the opposite asymptotal angle and
therefore will not meet either of the opposite branches.
Therefore neither will the opposite branches themselves meet,
being separated by the chord referred to.

6. If one branch of a hyperbola meet both branches of
another hyperbola, the opposite branch of the former will not
meet either branch of the second in two points. [IV. 42.]

For, if possible, let the second branch of the former meet
one branch of the latter in D, E. Then, joining DE, we use
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the same argument as in the last proposition. For DE
crosses one asymptotal angle of each hyperbola, and it will
therefore not meet either of the branches opposite to the
branches DE. Hence those branches are separated by DE
and therefore cannot meet one another: which contradicts

the hypothesis.

Similarly, if the two branches DE touch, the result will be
the same, an impossibility.

7. If one branch of a hyperbola meet one branch of
another hyperbola with concavity in the same direction, and
if it also meet the other branch of the second hyperbola in one
point, then the opposite branch of the first hyperbola will not
meet either branch of the second. [IV. 45.]

X

A, B being the points of meeting with the first branch and
H.C. 9
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C that with the opposite branch, by the same principle as
before, neither AC nor BC will meet the branch opposite to
ACB. Also they will not meet the branch C opposite to
AB in any other point than C, for, if either met it in two
points, it would not meet the branch AB, which, however,
it does, by hypothesis.

Hence D will be within the angle formed by AC, BC
produced and will not meet C or AB.

8. If a hyperbola touch one of the branches of a second
hyperbola with its concavity in the opposite direction, the
opposite branch of the first will not meet the opposite branch
of the second. [IV. 54.]

The figure is like that in (6) above except that in this case
D and E are two consecutive points; and it is seen in a similar
manner that the second branches of the two hyperbolas are
separated by the common tangent to the first branches,
and therefore the second branches cannot meet.

Group II. containing propositions capable of being ex-
pressed in one general enunciation as follows:

Proposition 78.
No two conics (including under the term a hyperbola with
two branches) can intersect 1n more than four points.

1. Suppose the double-branch hyperbola to be alone
excluded. [IV. 25.]
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If possible, let there be five points of intersection 4, B, C,
D, E, being successive intersections, so that there are no others
between. Join AB, DC and produce them. Then

(a) if they meet, let them meet at I. Let O, O’ be
taken on AB, DC such that T4, TD are harmonically divided.
If OO0’ be joined and produced it will meet each conic, and the
lines joining the intersections to T' will be tangents to the
conics. Then T cuts the two conics in different points P, P’,
since it does not pass through any common point except E.

Therefore ET:TP=EI:IP
and ET:TP'=EI:IP')’
where 00’, TE intersect at I.

But these ratios cannot hold simultaneously; therefore the
conics do not intersect in a fifth point E.

(b) If AB, DC are parallel, the conics will be either

ellipses or circles. Bisect AB, DC at M, M’'; MM’ is then

L
a diameter. Draw ENPP’ through E parallel to AB or DC,
meeting MM’ in N and the conics in P, P’. Then, since MM’
is a diameter of both,
NP=NE=NP/,
which is impossible.
Thus the conics do not intersect in more than four points.

2. A conic section not having two branches will not meet
a double-branch hyperbola in more than four points. [IV. 38.]

This is clear from the fact that [Group I. 3] the conic
meeting one branch will not meet the opposite branch in more
points than two.

9—2
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8. If one branch of a hyperbola cut each branch of a second
hyperbola in two points, the opposite branch of the first
hyperbola will not meet either branch of the second. [IV. 43.]

The text of the proof in Apollonius is corrupt, but Eutocius
gives a proof similar to that in Group I. 5 above. Let HOH’
be the asymptotal angle containing the one branch of the first
hyperbola, and KOK"’ that containing the other branch. Now
A B, meeting one branch of the second hyperbola, will not meet
the other, and therefore AB separates the latter from the
asymptote OK'. Similarly DC separates the former branch
from OK. Therefore the proposition follows.

4. If one branch of a hyperbola cut one branch of a second
in four points, the opposite branch of the first will not meet the
opposite branch of the second. [IV. 44.]

The proof is like that of 1 (a) above. If E is the supposed
fifth point and T is determined as before, ET meets the inter-
secting branches in separate points, whence the harmonic
property produces an absurdity.

5. If one branch of a hyperbola meet one branch of a
second in three points, the other branch of the first will not
meet the other branch of the second in more than one point.
[IV. 46.]
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Let the first two branches intersect in A4, B, C, and (if
possible) the other two in D, E. Then

(a) if AB, DE be parallel, the line joining their middle
points will be a diameter of both conics, and the parallel chord
through C in both conics will be bisected by the diameter;
which is impossible.

(b) If AB, DE be not parallel, let them meet in O.

Bisect AB, DE in M, M’, and draw the diameters MP, MP’
and M'Q, M’Q’ in the respective hyperbolas. Then the tangents
at P, P will be parallel to A0,and the tangents at ¢, Q parallel
to BO.

Let the tangents at P, Q and P, @ meet in T, 7".

Let CRR’ be parallel to A0 and meet the hyperbolas in
R, R, and DO in O

Then TP*:TQ'=A0.0B:D0.0E

= T'P": T'Q™ [Prop. 59]
It follows that

RO'.0C:DO.OE=R0.00:D0.0E,
whence RO'.0C=R0.00;
which is impossible.
Therefore, ete.

6. The two branches of a hyperbola do not meet the
two branches of another hyperbola in more points than four.
[IV. 55.]
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Let A, A’ be the two branches of the first hyperbola and
B, B’ the two branches of the second.

Then (a) if A meet B, B’ each in two points, the proposition
follows from (3) above;

(b) if A meet Bin two points and B’ in one point, A’ cannot
meet B’ at all [Group I 5], and it can only meet B in one
point, for if A’ met B in two points A could not have met B’
(which it does);

(c) if A meet Bin two points and A’ meet B, 4’ will not
meet B’ [Group I. 5], and A’ cannot meet B in more points than
two [Group L 3];

(d) if A meet B in one point and B’ in one point, 4’ will
not meet either B or B’ in two points [Group L 6];

(e) if the branches A, B have their concavities in the same
direction, and A cut B in four points, A’ will not cut B’ [case
(4) above] nor B [case (2) above] ;

(f) if A meet B in three points, A’ will not meet B’ in
more than one point [case (5) above].

And similarly for all possible cases.

Group III. being particular cases of

Proposition 79.
Two conics (1ncluding double hyperbolas) which touch at one
point cannot intersect tn more than two other points.

1. The proposition is true of all conics excluding hyperbolas
with two branches. [IV. 26.]

The proof follows the method of Prop. 78 (1) above.
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2. If one branch of a hyperbola touch one branch of another
in one point and meet the other branch of the second hyperbola
in two points, the opposite branch of the first will not meet
either branch of the second. [IV. 47.]

The text of Apollonius’ proof is corrupt, but the proof of
Prop. 78 (3) can be applied.

3. If one branch of a hyperbola touch one branch of a
second in one point and cut the same branch in two other
points, the opposite branch of the first does not meet either
branch of the second. [IV. 48.]

Proved by the harmonic property like Prop. 78 (4).

4. If one branch of a hyperbola touch one branch of a
second hyperbola in one point and meet it in one other point,
the opposite branch of the first will not meet the opposite
branch of the second in more than one point. [IV. 49.]

The proof follows the method of Prop. 78 (5).

5. If one branch of a hyperbola touch one branch of
another hyperbola (having its concavity in the same direction),
the opposite branch of the first will not meet the opposite
branch of the second in more than two points. [IV. 50.]

The proof follows the method of Prop. 78 (5), like the last
case (4).

6. If a hyperbola with two branches touch another hyper-
bola with two branches in one point, the hyperbolas will not
meet in more than two other points. [IV. 56.]

The proofs of the separate cases follow the methods em-
ployed in Group I. 3, 5, and 8.

Group I'V. merging in
Proposition 80.

No two conics touching each other at two points can intersect
at any other point.

1. The proposition is true of all conics excluding hyperbolas
with two branches. [IV. 27, 28, 29.]
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Suppose the conics touch at 4, B. Then, if possible, let
them also cut at C.

(a) If the tangents are not parallel and C does not lie
between 4 and B, the proposition is proved from the harmonic
property;

(b) if the tangents are parallel, the absurdity is proved by
the bisection of the chord of each conic through C by the chord
of contact which is a diameter;

(c) if the tangents are not parallel, and C is between 4 and
B, draw T'V from the point of intersection of the tangents to the
middle point of AB. Then T'V cannot pass through C, for then
the parallel through C to 4B would touch both conics, which is
absurd. And the bisection of the chords parallel to A B through
O in each conic results in an absurdity.

2. If a single-branch conic touch each branch of a hyper-
bola, it will not intersect either branch in any other point.
[IV. 40.]

This follows by the method employed in Group I. 4.

3. If one branch of a hyperbola touch each branch of a
second hyperbola, the opposite branch of the first will not meet
either branch of the second. [IV. 51.]

A

5
o
E
Let the branch AB touch the branches AC, BE in A, B.
Draw the tangents at 4, B meeting in 7. If possible, let CD,
the opposite branch to AB, meet AC in 0. Join CT.

Then 7 is within the asymptotes to 4B, and therefore CT
falls within the angle ATB. But BT, touching BE, cannot
meet the opposite branch AC. Therefore BT falls on the side
of CT remote from the branch AC, or CT passes through
the angle adjacent to ATB; which is impossible, since it falls
within the angle ATB.
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4. If one branch of one hyperbola touch one branch of
another in one point, and if also the other branches touch in
ove point, the concavities of each pair being in the same
direction, there are no other points of intersection. [IV. 52.]

This is proved at once by means of the bisection of chords
parallel to the chord of contact.

5. If one branch of a hyperbola touch one branch of another
in two points, the opposite branches do not intersect. [IV. 53.]

This is proved by the harmonic property.
6. If a hyperbola with two branches touch another hyper-

bola with two branches in two points, the hyperbolas will not
meet in any other point. [IV. 57.]

The proofs of the separate cases follow those of (3), (4), (5)
above and Group I. 8.

Group V. Propositions respecting double contact between
conics, .

1. A parabols cannot touch another parabola in more
points than one. [IV. 30.]
This follows at once from the property that TP = PV.
2. A parabols, if it fall outside a hyperbola, cannot have
double contact with the hyperbola. [IV. 31.]
For the hyperbola
CV:CP=CP:CT
=CV-CP:CP-CT
=PV PT.
Therefore Py > PT.
And for the parabola P'V=PT: therefore the hyperbola
falls outside the parabola, which is impossible.
3. A parabola cannot have internal double contact with an
ellipse or circle. [IV. 32.]
The proof is similar to the preceding.
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‘4. A hyperbola cannot have double contact with another
hyperbola having the same centre. [IV. 33.]
Proved by means of CV.CT = CP*.
5. If an ellipse have double contact with an ellipse or a
circle having the same centre, the chord of contact will pass
through the centre. [IV. 34.]

Let (if possible) the tangents at 4, B meet in 7, and let V'
be the middle point of AB. Then TV s a diameter. If
possible, let C be the centre.

Then CP*= CV.CT = CP", which is absurd. Therefore the
tangents at 4, B do not meet, i.e. they are parallel. Therefore
AB is a diameter and accordingly passes through the centre.
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Proposition 81. (Preliminary.)
[V. 1,2 3]

If in an ellipse or a hyperbola AM be drawn perpendicular
to the axis AA’ and equal to one-half its parameter, and 1f CM
meet the ordinate PN of any point P on the curve in H, then

PN = 2(quadrilateral MANH).

Let AL be twice AM, ie. let AL be the latus rectum or
parameter. Join A’L meeting PN in R. Then A’L is parallel
to CM. Therefore HR=LM = AM.

Now PN*=AN.NR; [Props. 2, 3]
. PN*= AN (AM + HN)
= 2 (quadrilateral MANH).

In the particular case where P is between C and A’ in the
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ellipse, the quadrilateral becomes the difference between two
triangles, and
PN*"=2(ACAM - ACN'H’).
Also, if P be the end of the minor axis of the ellipse, the
quadrilateral becomes the triangle CA M, and
BC*=2ACAM.

[The two last cases are proved by Apollonius in separate
propositions. Cf. the note on Prop. 23 above, p. 40.]

Proposition 842.
[V. 4]

In a parabola, if E be a point on the axis such that AE 1s
equal to half the latus rectum, then the minimum straight line
Jrom E to the curve 18 AE ; and, if P be any other point on the
curve, PE increases as P moves further from A on either side.
Also for any point

PE'=AE"+ AN

Let AL be the parameter or latus rectum.
Then PN*=AL.AN
=24E.AN.
Adding EN", we have
PE*=24E.AN + EN?
=24E.AN + (AE ~ ANY
=AE'+ AN’
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Thus PE*> AE* and increases with AN, ie. as P moves
further and further from A.

Also the minimum value of PE is AE, or AE is the
shortest straight line from E to the curve.

[In this proposition, as in the succeeding propositions,
Apollonius takes three cases, (1) where N is between 4 and E,
(2) where N coincides with £ and PE is therefore perpen-
dicular to the axis, (3) where AN is greater than AE, and
he proves the result separately for each. The three cases will
for the sake of brevity be compressed, where possible, into one.]

Proposition 83.
[V. 5, 6]

If K be a point on the axis of a hyperbola or an ellipse such
that AE is equal to half the latus rectum, then AE 13 the least
of all the straight lines which can be drawn from E to the curve;
and, if P be any other point on it, PE increases as P moves
further from A on either sids, and

PE = AE + AN* 22 2P0 4 gy 0. AN
(where the upper sign refers to the hyperbola)®.

Also in the ellipse EA’ 18 the maximum straight line from
E to the curve.

Let AL be drawn perpendicular to the axis and equal to
the parameter; and let AL be bisected at M, so that AM = AE.

Let P be any point on the curve, and let PN (produced if
necessary) meet CM in H and EM in K. Join EP, and draw
MT perpendicular to HK. Then, by similar triangles,

MI=IK, and EN=NK.

* The area represented by the second term on the right-hand side of the
equation is of course desaribed, in Apollonius’ phrase, as the rectangle on the
base AN similar to that contained by the axis (as base) and the sum (or difference)
of the axis and its parameter. A similar remark applies to the similar expression
on the next page.
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Now  PN*'=2 (quadrilateral MANH), [Prop. 81]
and EN*'=2AENK;
. PE*=2(AEAM + AMHK)
=AE'+ MI.HK
=AE'+ MI.(IK t IH)
=AE'+ MI.(MI £ IH).................. (1).

Now MI:IH=CA:AM=AA':p,
Therefore MI.(MI + IH): AA’.(AA’ t p,)=MI*: AA™,
t ]
- MI.(UI+ 1H)= Y00 A (44 1 p)
44’ p,
= 3 e
MI*. 1A
AA' +p,
= AN =g
whence, by means of (1),
AA' + p,
L
PE*=AE*+ AN*. V.

It follows that AE is the mintmum value of PE, and that
PE increases with AN, ie. as the point P moves further
from A.

Also in the ellipse the mazimum value of PE" is
AE*+ AA'(AA'—p)=AE*+ AA”—-24E . AA’
= FEA™.
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Proposition 84.
[v. 7]

If any point O be taken on the axis of any conic such that
A0 < }p,, then OA 1s the minimum straight line from O
to the curve, and OP (if P is any other point on it) increases as
P moves further and further from A.

Let A E be set off along the axis equal to half the parameter,
and join PE, PO, PA.

Then [Props. 82, 83] PE > AE,

8o that LPAE >/ APE;
and a fortior:
£PAO > APO,
so that PO> A40. ®

And, if P’ be another point more S
remote from A4,
PE > PE. A
‘. LEPP >/ EPP;
and a fortiors
£OPP >£0PP.
. OP' > 0P,

OE

and so on.

Proposition 88.
[V. 8]
In a parabola, if G be a point on the azis such that
AG > 3ps, and iof N be taken between A and @ such that
=Pe
NG 3

then, if NP 18 drawn perpendicular to the axis meeting the curve
wn P, PG s the minimum straight line from G to the curve [or
the normal at P].
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If P’ be any other point on the curve, P'G increases as P’ moves
Jurther from P in either direction.
Also P@F=PF+NN"

We have PN*=p,. AN’

=2NG.AN".
Also N'G=NN"+ NG +2NG.NN’
(according to the position of N').

Therefore, adding,
PG =2NG.AN+NN*+ NG
=PN'+ NG+ NN"
=PG@ + NN",

Thus it is clear that PG is the mintmum straight line from
@ to the curve [or the normal at P].

And PG increases with NN, i.e. as P’ moves further from
P in either direction.

Proposition 86.
[V. 9, 10, 11.]

In a hyperbola or an ellipse, if G be any point on A A’ (within
the curve) such that AG >%, and if GN be measured towards

the nearer vertex A so that
NG:CN=p,: AA' [=CB*': C4%,
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then, if the ordinate through N meet the curve in P, PQ s the
minimum straight line from G to the curve [or PG 1s the
normal at P]; and, if P’ be any other point on the curve, P'G
increases as P’ moves further from P on either side.

v _ a A4’ 1 p,
[=¢.NN7,
where P’N' is the ordsnate from P

Draw AM perpendicular to the axis and equal to half the
parameter. Join CM meeting PN in H and PN’ in K. Join
GH meeting P'N’ in H'.

Then since, by hypothesis,

NG:CN=p,: A4,
and, by similar triangles,

NH:CN=AM:AC

=pg: 44,
it follows that NH = NG,
whence also N'H'=N'G.
Now PN*=2 (quadrilateral MANH), [Prop. 81]

N@=2AHNG.
Therefore, by addition, PG =2 (quadrilateral AMHG).
H. C. 10
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Also PG*=PN*+ NG =2 (quadr. AMKN")+ 2AH'N'G
=2 (quadr. AMHG) + 2AHH'K.

.. PP-P@=20HH'K

=HI.(H'I + IK)
= HI.(HI t IK)
CA+AM AA’
=HP 22 LT o NN 2o AR

Thus it follows that PG is the minsmum straight line from
@ to the curve, and P'G increases with NN’ as P moves
further from P in either direction.

In the ellipse GA’ will be the mazimum straight line from
@ to the curve, as is easily proved in a similar manner.

Cor. In the particular case where G coincides with C, the
centre, the two minimum straight lines are proved in a sinrilar
manner to be CB, CB’, and the two maxima CA, CA’, and CP
increases continually as P moves from B to 4.

Proposition 87.
[v. 12]

If @ be a point on the axis of a consc and GP be the mins-
mum straight line from G to the curve [or the normal at P}, and
tf O be any point on PQ, then OP s the minimum straight line
JSrom O to the curve, and OF continually increases as P’ moves

Jrom Pto A [orto A').

Since PG> PG,
ZGPP >£GPP,
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Therefore, a fortiors,
<20PP >, 0PP,
or OP'> OP.
Similarly OP” > OF [&c. as in Prop. 84].
[There follow three propositions establishing for the three
curves, by reductio ad absurdum, the converse of the propo-

sitions 85 and 86 just given. It is also proved that the normal
makes with the axis towards the nearer vertex an acute angle.]

Proposition 88.
[V. 16, 17, 18]

If K’ be a point on the minor axis of an ellipse at a distance
JSrom B egqual to half the parameter of BB’ [or %—%'],thm E'B
18 the maximum straight line from E to the curve ; and, if P be
any other point on it, E'P diminishes as P moves further from
B on either side.

v _ gepa_ poy Po—BB[ CA*-CB*

Also E'B* EP—B”.—-BB, [—Bﬂ'. —GTBT— .

Apollonius proves this separately for the cases (1) where
B< BB, (2) where §=BB, and (3) where &> BB.

The method of proof is the same for all three cases, and only
the first case of the three is given here.

10—2
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By Prop. 81 (which is applicable to either axis) we have, if
Bm =1-°2-' = BE’, and Pn meets Cm, E'm in h, k respectively,
Pp*= 2 (quadrilateral mBnh).

Also nE™*=2AnkE’.
. PE®=2AmBE’' — 2 Amhk.
But BE™*=2AmBE’.

s BE"— PE™=2Amhk
= ms. (hs — ks) = ms. (hs — ms)

_ 4 mB-CB
=m. —

= Bn? pb—BB'
' BB’

whence the proposition follows.

Proposition 89.
[V. 19.]
If BE' be measured along the minor azis of an ellipse equal

toha{fthapammeter[orco-%'] and any point O be taken on the
minor ams such that BO > BE’, then OB 1s the maximum
straight line from O to the curve; and, if P be any other point
on it, OP diminishes continually as P moves tn either direction
Jrom B to B

The proof follows the method of Props. 84, 87.



NORMALS AS MAXIMA AND MINIMA. 149

Proposition 90.
[V. 20, 21, 22
If g be a point on the minor axis of an ellipse such that
Bg>BO and By<ip [or%%'],andyouba measured to-
wards B so that
Cn :ng=BB : p[= CB*: CA'],
then the perpendicular through n to BB’ unll meet the curve in
two points P such that Pg is the maximum straight line from
g to the curve.
Also, 1f P’ be any other point on the curve, P'g diminishes as
P’ moves further from P on either side to B or B, and

P - Pt BB [ T 0T

BE s/
B8 »
P o O~ ) ./
'[<\x 7
» n M
o

Draw Bm perpendicular to BB’ and equal to half its para-
meter p,. Join Cm meeting Pn in A and P'n’ in &', and join
gh meeting P'n’ in k.

Then since, by hypothesis,

Cn :ng=BB : py=BC: Bm,
and Cn : nh = BC : Bm, by similar triangles,

it follows that ng = nh. Also gn’' = n'k, and As = ik, where hi is
perpendicular to P'n’.
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Now Pp* = 2 (quadrilateral mBnh),
ng'=2Ahng;
*. Pg'=2 (mBnh + Ahng).
Similarly  P'g*=2(mBn'A’' + Akn'g).
By subtraction,
Pg'— Pg*=2AM0k
=hi.(h'V - ke)
= hi. (k'S — ht)

Bm — B
BC

=nn" &—BB'.
. BF

=h|’.(

whence it follows that Pg is the mazimum straight line from g
to the curve, and the difference between Pg* and P'g* is the
area described.

Cor. 1. It follows from the same method of proof as that
used in Props. 84, 87, 89 that, if O be any point on Pg produced
beyond the minor axis, PO is the maazimum straight line that
can be drawn from O to the same part of the ellipse in which
Pg is a maximum, i.e. to the semi-ellipse BPB’, and if OP be
drawn to any other point on the semi-ellipse, OP’ diminishes as
P’ moves from P to B or B'.

Cor. 2. In the particular case where g coincides with the
centre C, the maximum straight line from C to the ellipse is
perpendicular to BB', viz. CA or CA’. Also, if g be not the
centre, the angle PgB must be acute if Pg is a mazimum ;
and, if Pg is a maximum [or a normal],

Cn:ng=CB:CA"
[This corollary is proved separately by reductio ad absurdum.]
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Proposition 91.
[V. 23]

If g be on the minor azis of an ellipse,and gP is a maztmum
straight line from g to the curve, and if gP meet the major axis
n G, GP 1s a minimum straight line from @ to the curve.

[In other words, the minimum from @ and the maximum
from g determine one and the same normal.]

9
We have Cn:ng=BB':p, [Prop. 90]
[=CB*: CA"]
mp,: AA'
Also On:ng=PN:ng
= NG : Pn, by similar triangles
= NG : CN.
o NG:CN=p,: A4,
or PG is the normal determined as the minimum straight line
from G. [Prop. 86]

Proposition 943.
[V. 24, 25, 26.]

Only one normal can be drawn from any one point of a conic,
whether such normal be regarded as the minimum straight line
Jrom the point in which it meets A A’, or as the mazimum strasght
line from the point in which (in the case of an ellipse) it meets
the minor ams.



152 THE COONICS OF APOLLONIUS.

This is at once proved by reductio ad absurdum on assuming
that P@, PH (meeting the axis A4’ in G, H) are minimum
straight lines from @G and H to the curve, and on a similar
assumption for the minor axis of an ellipse.

Proposition 93.
[V. 27, 28, 29, 30.]

The normal at any point P on a conic, whether regarded
as a minimum straight line from sts intersection with the axis
AA’ or as a mazimum from sts intersection with BB’ (in the
case of an ellipse), is perpendicular to the tangent at P.

Let the tangent at P meet the axis of the parabola, or the
axis AA’ of a hyperbola or an ellipse, in 7. Then we have to
prove that TP@ is a right angle.

(1) For the parabola we have
AT=AN, and NG=%‘;

o NG:p,=AN: NT,
so that ITN.NG=p,. AN
= PN
And the angle at N is a right angle;
. £TPQ@ is a right angle.
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(2) For the hyperbola or ellipse

PN*:CN.NT
=p,: AA’ [Prop. 14]
= NG : CN, by the property of the minimum,

[Prop. 86]

=TN.NG:CN.NT.
~. PN*=TN.NG, while the angle at N is right;
*. £TPG@G is a right angle.

(8) If Pg be the maximum straight line from g on the
minor axis of an ellipse, and if Pg meet A4’ in G, PG is
a minimum from G, and the result follows as in (2).

[Apollonius gives an alternative proof applicable to all three
conics. If GP is not perpendicular to the tangent, let GK be
perpendicular to it.

Then 2 GKP > £ GPEK, and therefore GP > GK.

Hence a fortiors GP > GQ, where Q is the point in which
GK cuts the conic; and this is impossible because GP is a
minimum. Therefore &c.]

Proposition 94.
[V. 31, 33, 34.]

(1) In general, if O be any point within a conic and OP be
a maximum or a minsmum strasght line from O to the conic, a
strasght line PT drawn at right angles to PO wnll touch the
conic at P.
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(2) If O be any point on OP produced outside the conic,
then, of all strasght lines drawn from O’ to meet the conic in one
point but not produced so as to meet ¢ sn a second point, O'P
will be the minimum ; and of the rest that which ts nearer to it
will be less than that which 18 more remote.

(1) PFirst,let OP be a marimum. Then, if TP does not
touch the conic, let it cut it again at Q, and draw OK to meet
PQ in K and the curve in R.

T

o

Then, since the angle OPK is right, £ OPK > 2 OKP.

Therefore OK > OP, and a jfortiors OR > OP: which is
impossible, since OP is a maximum.

Therefore TP must touch the conic at P.

Secondly, let OP be a minimum. If possible, let TP cut the

curve again in Q. From any point between T'P and the curve
draw a straight line to P and draw ORK perpendicular to this

line meeting it at K and the curve in R. Then the angle OKP
is a right angle. Therefore OP > OK, and a fortiors OP > OR :
which is impossible, since OP is & minimum. Therefore TP
must touch the curve.
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(2) Let O’ be any point on OP produced. Draw the
tangent at P, as PK, which is therefore at right angles to OP.
Then draw 0’'Q, O’R to meet the curve in one point only, and
let 0’'Q meet PK in K.

o

Then O'K > O'P. Therefore afortwn 0Q>O0P,and OP
is a minimum.

Join RP, RQ. Then the angle O’QR is obtuse, and therefore
the angle O’'RQ is acute. Therefore O’'R > 0'Q, and so on.

Proposition 98.
[v. 85, 36, 37, 88, 39, 40.]

(1) If the normal at P meet the axis of a parabola or the
azs AA’ of a hyperbola or ellipse in G,the angle PGA increases
as P or G moves further and further from A, but sn the
hyperbola the angle PGA will always be less than the complement
of half the angle between the asymptotes.

(2) Two normals at points on the same side of the axis AA’
wnll meet on the opposite side of that azts.

(8) Two normals at points on the same quadrant of an
ellspse, as AB, unll meet at a point within the angle ACB'.

(1) Suppose P’ is further from the vertex than P. Then,
since PG, P’'G’ are minimum straight lines from G, G’ to the
curve, we have
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(a) For the parabola
Ne=Ee=N@,

and P'N’'>PN;

.. 2P'G'A > £ PGA.
B
P nt
P, [

K
AN N a0 [C

° ~
\,
. 4
]

.I

(b) For the hyperbola and ellipse, joining CP and producing
it if necessary to meet P’N’ in K, and joining KG', we have
NG :CN'=p,: AA’ [Prop. 86]
=NG:CN;
o NG@ :NG=CN':CN
= KN’ : PN, by similar triangles.
Therefore the triangles PN@, KN'G’ are similar, and
.KG'N'= £ PGN.
Therefore 2 P'G'N’'> £ PGN.

(¢) In the hyperbola, let AL be drawn perpendicular to
AA’ to meet the asymptote in L and CP in 0. Also let AM

be equal to 229 .
Now AA’':p,=CA:AM=CN: NG,
and OA : CA= PN : CN, by similar triangles ;

therefore, ex aequals, OA : AM=PN : NG.
Hence AL : AM> PN : NG.
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But AL: AM=CA : AL; [Prop. 28]
»~.CA:AL>PN: NG;
~. 2 PGN is less than ZCLA.

(2) It follows at once from (1) that two normals at points
on one side of AA’ will meet on the other side of 44’.

(3) Regard the two normals as the mazimum straight
lines from g, ¢’, the points where they meet the minor axis of
the ellipse.

Then On :n'g =BB : p [Prop. 90]
=Cn:ng;
. On': Cg=0Cn:Cy.
But Cn’'>Cn; ..Cq >Cyg,

whence it follows that Pg, P’g’ must cross at a point O before
cutting the minor axis. Therefore O lies on the side of BB’
towards 4.

And, by (2) above, O lies below AC'; therefore O lies within
the 2 ACB'.

Proposition 96.
[V. 41, 42, 43.]

(1) In a parabola or an ellipse any normal PG will meet
the curve agasn.

(2) In the hyperbola (a), if AA’ be not greater than p,, no
normal can meet the curve sn a second point on the same branch ;
but (b), sf AA’ > p,, some normals will meet the same branch
agasn and others not.

(1) For the ellipse the proposition is sufficiently obvious,
and in the parabola, since PG meets a diameter (the axis), it
will meet another diameter, viz. that through the point of
contact of the tangent parallel to PG, i.e. the diameter bisecting
it. Therefore it will meet the curve again.
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(2) (a) Let CL, CL' be the asymptotes, and let the

tangent at A meet them in L, L'. Take AM equal to%'. Let
P@ be any normal and PN the ordinate.

/

P

Then, by hypothesis, CA $ AM,

and CA:AM=CA*: AL, [Prop. 28]
~.CASAL;
hence the angle CLA is not greater than ACL or ACL'.
But £4CLA><PGN; [Prop. 95]
- LACL' > £ PGN.

It follows that the angle ACL’' together with the angle
adjacent to PGN will be greater than two right angles.

Therefore PG will not meet CL' towards L’ and therefore
will not meet the branch of the hyperbola again.

(b) Suppose CA > AM or 223 . Then

LA :AM>LA : AC.
Take a point K on AL such that
KA :AM=LA : AC.
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Join CK, and produce it to meet the hyperbola in P, and
let PN be the ordinate, and PG the normal, at P.

P@ is then the mintmum from G to the curve, and
NG :CON=p,: AA’

=AM : AC.
Also CN : PN=AC : AK, by similar triangles.
Therefore, ez aequals, NG : PN=AM : AK

=CA : AL, from above.
Hence LACL'=2ACL =« PGN;

~. PG, CL' are parallel and do not meet.

But the normals at points between 4 and P make with the
axis angles less than the angle PGN, and normals at points
beyond P make with the axis angles greater than PGN.

Therefore normals at points between A and P will not meet -
the asymptote CL, or the branch of the hyperbola, again; but
normals beyond P will meet the branch again.
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Proposition 97.
[V. 44, 45, 46, 4%, 48.]

If P.G,, P,G, be normals at points on one side of the axis of
a conic meeting in 0, and if O be joined to any other point P on
the conic (it being further supposed sn the case of the ellipse
that all three lines OP,, OP,, OP cut the same half of the axis),
then

(1) OP cannot be a normal to the curve;

(2) §f OP meet the axis sn K, and PG be the normal
at P,

AG < AK when P 1is intermediate between P, and P,,

and AG>AK when P does not lie between P, and P,.

1. First let the conic be a PARABOLA.

o

Let P P, meet the axis in 7', and draw the ordinates P, N,,
P,N,.
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Draw OM perpendicular to the axis, and measure MH
towards the vertex equal to %’

Then MH=N_G,,
and NH=GM.
Therefore MH : HN,=N,G,: G M
=P.N, : MO, by similar triangles.

T!)el"efore HM.MO= PN, N'H} .................. (A).
Similarly HM . MO=PN, NH
Therefore HN,: HN,=P/N,: PN,
=TN,:TN,,
whence NN,: HN,=N\N,:TN,;
~TN,=
o Tﬁ;gﬁ:} ........................... (B).

If P be a variable point and PN the ordinate®, we have
now three cases:

TN <TN, or HN,......coovvvvnnneriniannninnnnens 1),
TN >TN, or HN,, but <TN, or HN,......(2),
TN>TN, or HN,...ccvvnnrvreinnniiiiinninennnns (3).

Thus, denoting the several cases by the numbers (1), (2),
(8), we have

NN:TN>NN: HN,.....ccoeeuuene. (1),
<NN: HN,......cocvvuunee (),
<NN:HN,.....ccoununns 3),

and we derive respectively
TN,:TN>HN: HN,.......c.ccenv.u. (1),
<HN:HN,......ooevvnveuene (2),
>HN: HN,........ccouuue. (3).

* It will be observed that there are three sets of points P, N, K, in the
figure denoted by the same letters. This is done in order to exhibit the three
different cases; and it is only necessary to bear in mind that attention must
be confined to one at a time as indicated in the course of the proof.

H.C. 11
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If NP meet P,P, in F, we have, by similar triangles,
PN,:FN>HN : HN,......(1) and (3),

But in (1) and (8) FN > PN, and in (2) FN < PN.
Therefore, a fortiors in all the cases,

PN,: PN>HN:HN,...... (1) and (3),
< HN: HN,................. (2)
Thus PN, .NH>PN.NH........cc00uvrcnv... (1) and (3),
< PN.NH...ccoovtvviinireninnennnenns (2)
e PN N o ) b7 (&) sbore.
Therefore MO: PN>NH : HM .................. (1) and (8),
SNH:HM .....ccovvvvvniininninnnnns ?)
and MO : PN=MK : NK.
Therefore MK:NK>NH :HM ....... (1) and (3),
<NH :HM.........ccvcc... 2),
whence we obtain MN : NK>MN : HM ....... (1) and (3),
<MN :HM........ccuv.ccu. (2),
8o that HM or NG > NK in (1) and (3),
and < NK in (2).

Thus the proposition is proved.

II. Let the conic be a HYPERBOLA or an ELLIPSE.

Let the normals at P,, P, meet at 0, and draw OM perpen-
dicular to the axis. Dividle CM in H (internally for the
hyperbola and externally for the ellipse) so that

CH:HM=AA': p,[or CA*: CB"},
and let OM be similarly divided at L. Draw HVR parallel
to OM and LVE, ORF parallel to CM.
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Suppose P,P, produced to meet EL in 7, and let P,N,,
P,N, meet it in U,, U,.

Take any other point P on the curve. Join OP meeting
the axes in K, k, and let PN meet P,P,in Q and EL in U.

11—2
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Now CN,: N,G,=AA’: p,=CH : HM.
Therefore, componendo for the hyperbola and dividendo for

the ellipse,
CM :CH=CG,:CN,

=CG,~CM : CN,~CH

=M@, : HN,
=MQ@,: VUy.ceeeevevernnnncarens (A).
Next
FE :EC=AA':p,=CN,: NG,,
so that FC:CE=CG, : N,G,
Thus FC: N,U,=(CG@, : N,G,
=Cg, : P,N,, by similar triangles,
= FC+Cyg,: N,U,+ P,N,
=Fg, : PUy..coueiniiininnnnnns (B).
Again

FC.CM :EC.CH=(FC :CE).(CM: CH)
= (Fg,: P,U,). (MG, : VU,),
from (A) and (B),
and FC.CM=Fyg, MG,, ‘. Fg,: CM=FC: MG,.
.. EC.CH=P,U,. UV,
or CE.EV=PU, U,V
= P,U;. U,V, in like manner;
s BV U,V=PU,: P,U,
= TU, : TU,, by similar triangles,

whence " 0,0,: U,V=UU, TU,;
- TU,=VU,
wad 0 - VU’} ........................... ©).
Now suppose (1) that AN < AN,;

then U,V > TU, from (C) above;

S UU,:TU>UU,: UV,
hence TU,:TU>UV: UV,

s PU:QU>UV:UY,
by similar triangles.

Therefore PU,.UV>QU.UV,
and a fortiors >PU.UV.
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But PU,.U,V=CEL.EV, from above,
=LO0.0OR, *'» CE:LO=0R:EV;
. LO.OR>PU.UV.
Suppose (2) that AN > AN, but < AN,

Then TU, < UV;
S UOU:TU > UU:UY,
whence TU:TU,>UYV:UV,
S QU:PUSUYV:UV,
by similar triangles.
Therefore (a fortiors) PU.UV > P,U,. UV
> L0.OR.
Lastly (3) let AN be > AN,.
Then TU, > UV,
S UU:TU < UU: UV,
whence TU:TU, < UV: UV,
or QU:PU<UYV:UV;
S PULLUYV>QU.UV,
and a fortiors >PU.UV;

.. LO.OR>PU.UYV,
a8 in (1) above.

Thus we have for cases (1) and (3)
LO.OR>PU.UV,
and for (2) LO.OR< PU. UYV.

That is, we shall have, supposing the upper symbol to refer
to (1) and (3) and the lower to (2),

LO:PUZ UV:OR,
ie. LS:SUZ UV:LV;
s LU:USZLU: LV,

and LV Z US.
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It follows that
FO:LVS FO:8U, or Fk: PU,

or CM : MH S Fk : PU;
.. FC:CES Fk: PU
SFk¥FC:PUFCE
SCk:PN
SCK:NE.
Therefore, componendo or dividendo,
FE :ECSCN: NK,

or CN : NK Z FE : EC,
Le. : A4’ : p,.
But CN:NG=A44':p,;

.. NE S NG;

i.e. when P is not between P, and P, NK < NG, and when P
lies between P, and P,, NK > NG, whence the proposition
follows.

CoRr. 1. In the particular case of a quadrant of an ellipse
where P, coincides with B, i.e. where O coincides with g,,
it follows that no other normal besides P,g,, Bg, can be drawn
through g, to the quadrant, and, if P be a point between 4 and
P,, while Pg, meets the axis in K, NG > NK.

But if P lie between P, and B, NG < NK.

[This is separately proved by Apollonius from the property
in Prop. 95 (3).]

CoRr. 2. Thres normals at points on one quadrant of an
ellipse cannot meet at ons povnt.

This follows at once from the preceding propositions.
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CoRr. 8. Four normals at points on one semi-ellipse bounded
by the major axis cannot meet at one point.

For, if four such normals cut the major axis and meet in one
point, the centre must (1) separate one normal from the three
others, or (2) must separate two from the other two, or (3)
must lie on one of them.

In cases (1) and (3) a contradiction of the preceding
proposition is involved, and in case (2) a contradiction of
Prop. 95 (3) which requires two points of intersection, one on
each side of the minor axis.

Proposition 98.
[V. 49, 50.]

In any conic, if M be any point on the axis such that AM 1is
not greater than half the latus rectum, and if O be any pownt on
the perpendicular to the azis through M, then no strasght
line drawn to any point on the curve on the side of the axis
opposite to O and meeting the axis between A and M can
be a normal.

Let OP be drawn to the curve meeting the axis in K, and
let PN be the ordinate at P.

We have in the parabola, since AM :'p& s

NM<%‘, ie. <NG.

Therefore, a fortiors, NK < NG.

For the hyperbola and ellipse AA’:p, is not greater
than CA : AM,

and CN:NM>CA:AM;
. CON:NM>AA4':p,
>CN: NG;
~. NM < NG,
and a fortior: NK < NG.

Therefore OP is not a normal,



PROPOSITIONS LEADING IMMEDIATELY TO THE
DETERMINATION OF THE EVOLUTE.

Proposition 99.
[V. 51, 62.]

If AM measured along the asis be greater than L2 (but in

the case of the ellipse less than AC), and if MO be drawn

perpendicular to the axis, then a certain length [y] can be assigned
such that

(a) if OM >y, no normal can be drawn through O which
cuts the axis; but, if OP be any straight line drawn to the curve
culting the axis in K, NK < NG, where PN 138 the ordinate and
PG@ the normal at P;

(b) if OM =y, only one normal can be so drawn through
0, and, sf OP be any other straight line drawn to the curve and
meeting the axis in K, NK < NG, as before ;

(c) f OM <y, two normals can be so drawn through O,
and, if OP be any other straisght line drawn to the curve, NK 13
less or greater than NG according as OP 18 not, or s, inter-
mediate between the two normals.

I Suppose the conic is a PARABOLA.
Measure MH towards the vertex equal to }—;i'.a.nd divideAH
at N, so that HN,=2N,4.
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Take a length y such that
y: P N,=NH:HM,
where P, N, is the ordinate passing through N,.
(a) Suppose OM >y.

Join OP, meeting the axis in K.

Then y: PN =NH:HM,

.. OM:P,N,>NH:HM,

or MK, : K N,>N.H:HM;

henee MN,:NK,>MN, : HM,
so that N.K, < HM,
ie. NE, <L

Therefore OP, is not a normal, and N, K, < N,G,.

Next let P be any other point. Join OP meeting the axis
in K, and let the ordinate PN meet the tangent at P, in Q.
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Then, if AN< AN,, we have,

since N,T'=24N,=N,H,
N.H>NT,

s NNN:NT>N,N:HN,;
thus TN, : TN> HN : HN,,
or PN :QN>HN:HN,
and a fortiors

PN,:PN>HN:HN,,
or PN,.NH>PN.NH;
But

THE CONICS OF APOLLONIUS.

If AN> AN,
N,T>NH,;
o NNN:NH>NN:N,T,
whence
HN,: HN>TN: TN,
>QN: PN,
>PN:PN,,
a fortiors
. PN,.NH>PN.NH.

OM.MH > P.N,.N H, by hypothesis;

.. OM.MH> PN.NH,
or OM: PN>NH : HM,

ie.
by similar triangles.

MK : KN > NH : HM,

Therefore, componendo, MN : NK > MN : HM,

whence

NE < HM or 4‘;-“.

Therefore OP is not a normal, and NK < NG.
(b) Suppose OM =y, and we have in this case
MN,: NK,=MN, : HM,

or NE=HM=R2=Ng,

and P,0 is a normal.

If P is any other point, we have, as before,
PN,.N.H>PN.NH,
and P N,.N, H is in this case equal to OM. MH.

Therefore

OM.MH>PN.NH,

and it follows as before that OP is not normal, and NK <NG.

(c) Lastly,if OM<y,

OM:P N, <N H:HM,
or OM.MH< P,N,.N H.
Let N, R be measured along N, P, so that
OM.MH=RN,.N H.
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Thus R lies within the curve.

Let HL be drawn perpendicular to the axis, and with AH,
HL as asymptotes draw a hyperbola passing through R.
This hyperbola will therefore cut the parabola in two points,
say P, P’

Now, by the property of the hyperbola,

PN.NH=RN,.N.H
= 0M.MH, from above;
.. OM:PN=NH : HM,
or MK : KN=NH : HM,
and, componendo, MN : NK=MN : HM;

s NE=HM=E=Ng,
and PO is normal. |
Similarly PO is normal.
Thus we have two normals meeting in O, and the rest of
the proposition follows from Prop. 97.

[It is clear that in the second case where OM =gy, O is the
intersection of two consecutive normals, ie. is the centre of
curvature at the point P,.

If then z, y be the coordinates of O, so that AM =g,
and if 4a=p,,
HM =2a,

N,H =} (z—2a),
AN, =} (z - 2a).
Also y:PN'=NH*: HM",
or y':4a. AN, =N H': 4a*;
. ay*=AN,. N H*
= (- 2a),
or 27ay* = 4 (z — 2a)',
which is the Cartesian equation of the evolute of a parabola.]
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IL Let the curve be a HYPERBOLA or an ELLIPSE.
We have AM>%‘, so that CA : AM< AA' : p,.

Therefore, if H be taken on AM such that CH : HM =
AA':p,, H will fall between 4 and M.
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Take two mean proportionals CN,, CI between C4 and
CH®, and let P,N, be the ordinate through N,.

Take a point L on OM (in the hyperbola) or on OM
produced (in the ellipse) such that OL : LM=AA’: p,. Draw
LVE, OR both parallel to the axis, and CE, HVR both
perpendicular to the axis. Let the tangent at P, meet the axis
in T and EL in W, and let P,N, meet EL in U,. Join OP,,
meeting the axis in K.

Let now y be such a length that
y:P N =(CM: MH).(HN,: N,O)
(z) Suppose first that OM > y;

s OM:P N, >y:PN,.
But

OM: PN, =(OM: ML).(ML: P N,)
=(0OM : ML).(N,U,: P,N,),

and
y:P,N,=(CM: MH).(HN, : N,C)
=(0M : ML).(HN, : N,0C);
o NU,: PN, >HN,:NC ..... coovene (1),
or PN,.NH<CN,.N,U,.
Adding or subtracting the rectangle U,N,. N, H, we have
PU,.UV<CH.HV '
<LO.OR, . CH: HM=0L : LM.

But, for a normal at P,, we must have [from the proof of
Prop. 97]
PU,.UV=LO0.0R

Therefore P,0 is not a normal, and [as in the proof of

Prop. 97]
N.K <NG,.

* For Apollonius’ method of finding two mean proportionals see the Intro-
duction,
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Next let P be any other point than P, and let U, N, K
have the same relation to P that U,, N,, K, have to P,.

Also, since U\N,: NP, > HN, : N,C by (1) above, let u,
be taken on U, N, such that
uN,: NP, =HN,:NQC.................. ),
and draw wuu v parallel to WUU,V.
Now CON,.CT=CA", sothat CN,:CA=CA :CT;
. CT is a third proportional to CN,, CA.
But CN, is a third proportional to CH, CI,
and ON,:CA=CI:CN,=CH :CI;
oo CH:CN,=CN,:CT
=CH ~CN,:CN,~ CT
=HN,: NT.
And CH:CN,=Pu,: PN,
since w, N, : N, P,= HN, : NC, from (2) above;
o HN,: NT=Pu,: PN,

=uw:N,T,
thus : vw=HN =up.
IfAN< AN,, If AN> AN,
wu < uY, wu, > uv,
and wu:uw>uy:uy, Soout, Uy > uu, t wy,,
whence uw : uw > uv : uy. whence
oo Pt Qu>uv i uy U, YU > WU wy,
(where PN meets P,T in Q); >Qu:Pu;
thus  P,.u9> Qu.uy thus Pu,.uv> Qu.uv
> Pu.uv,
a fortiors, > Pu.uv,
But, since a fortiors,
HN,: NC=uN,: PN, | and the proof proceeds as in
PN,.NH=CN,.Nu, the first column, leading to
and, adding or subtracting the | the same result,
rectangle ,N,. N, H, PU.UV<LO.OR.
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Pu, .uv=CH.Hv,
.. CH.Hv> Pu.uv,

and, adding or subtracting the
rectangle uU. UV,

PU.UV<CH.Hv+uU.UV

for the hyperbola,

or
PU.UV<CH.Hy-uU.UV
for the ellipse,

.. in either case, a fortiors,
PU.UV<CH.HV,
or PU.UV<LO.OR.

Therefore, as in the proof of Prop. 97, PO is not a normal,
but NK < NG.

(b) Next suppose OM =y, so that OM: PN, =y: P N,,
and we obtain in this case
UN,:N,P,=HN,: NC;
-.CN,.NU,=PN,. N H.
Adding or subtracting U, N,. N H, we have
PU,.UV=CH.HV =L0.0OR,
and this [Prop. 97] is the property of the normal at P,.
Therefore one normal can be drawn from O.

If P be any other point on the curve, it will be shown as
before that U, W = U,V, because in this case the lines WV, wv
coincide ; also

UU,: UW>UU,: UV in the case where UW< U,V,

and

UU,: UV>UU,: UW in the case where U, W > UV,
whence, exactly as before, we derive that
PU.UV>QU.TV
> PU.UV, a fortior,
and thence that PU.UV <LO.OR.
Therefore PO is not a normal, and NK < NG.
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(¢) Lastly, if OM <y, we shall have in this case
NU,:PN,<HN,:NC,

E ]
o
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and we shall derive
LO.OR<P,U,.UV.

Let 8 be taken on P, N, such that LO.OR =SU,. U,V,and
through 8 describe a hyperbola whose asymptotes are VW and
VH produced. This hyperbola will therefore meet the conic in
two points P, P, and by the property of the hyperbola

PU.UV=PU.UV=8U,.U,V=L0.0OR,
so that PO, P’O are both normals.
The rest of the proposition follows at once from Prop. 97.
[It is clear that in case (b) O is the point of intersection

of two consecutive normals, or the centre of the circle of
curvature at P.

To find the Cartesian equation of the evolute we have

«=CM,
oH & O0H _a
HM b " z~CH ¥
y_.OM BN
Also PN, -HE _.ZVT/" .................. (2),
cat OV BNy oo ®
where the upper sign refers to the hyperbola.
And, lastly, a:CN,=CN,:CI=CI:CH ............ (4).
From (4) CN!=a.Cl,
and CN,= Ta. CH;
*“ON!=a'.CH .......cuvveuveee. (5).

= C_y_ g_Nl
P.N,” HE NC
a't+ b CH-~CN,

== CN, !, by aid of (1),

Now, from (2),
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b.
Thus PN} =5,

whence PN}!=V. (&,—b:—b-,)‘ ........................ (6)-

a'z

But, from (l), CH = E;—i—b,.

a'z
Therefore, by (5), CN* = ey

3 ar '
whence CN'!=a". (a' 3 b’) ........................ (7).
Thus, from (6) and (7), by the aid of (8),

(o) 2.

or (aa) F (by)t = (" £ ]

Proposition 100.
[V. 53, 54.]

If O be a point on the minor azis of an ellipse, then

(a) tf OB : BC 4 AA’ : p,, and P be any point on either of
the quadrants BA, BA’ except the point B, and sf OP meet the
major axis in K,

PO cannot be a normal, but NK < NG;

(® +f OB: BC<AA’: p,, one normal only besides OB can
be drawn to either of the two quadrants as OP, and, if P’ be any
other point, N'K’ is less or greater than N'G’ according as P’
18 further from, or nearer to, the minor axis than P.

[This proposition follows at once as a particular case of the
preceding, but Apollonius proves it separately thus.]

(@) Wehave OB:BC<On:nC,

. On:nC,or CN:NK>AA': p,,
whence CN : NK >CN : NG,
and NK < NG.
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(b) Suppose now that
OB:BC< AA': p,.
Take a point n on O’B such that
On:nC=A44':p,.
8

P .

o

Therefore CN:NK,=AA4': p,,

where N is the foot of the ordinate of P, the point in which
nP drawn parallel to the major axis meets the ellipse,and K, is
the point in which O’ P meets the major axis;

~. NK, = NG, and PO’ is a normal.

PQ', BO' are then two normals through (', and the rest of
the proposition follows from Prop. 97.

12—2



CONSTRUCTION OF NORMALS.

Proposition 101.
[V. 55, 56, 57.]

If O 18 ony point below the azis AA’ of an ellipse, and
AM > AC (where M 13 the foot of the perpendicular from O
on the axis), then one normal to the ellipse can always be drawn
through O cutting the azis between A and C, but never more than
one such normal.

Produce OM to L and CM to H so that
OL :LM=CH: HM=AA': p,,

and draw LI, IH parallel and perpendicular to the axis
respectively. Then with IL, TH as asymptotes describe a
[rectangular] hyperbola passing through O.
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This will meet the ellipse in some point P,. For, drawing
AD, the tangent at A, to meet /L produced in D, we have

AH:HM>CH : HM
> 44 :p,
>0L:LM;
~. AH.LM >OL.HM,
or AD.DI>O0L.LI

Thus, from the property of the hyperbola, it must meet AD
between 4 and D, and therefore must meet the ellipse in some
point P,.

Produce OP, both ways to meet the asymptotes in R, R’,
and draw R’E perpendicular to the axis.

Therefore OR = P, R’, and cbnsequently EN,= MH.

Now AA':p,=OL : LM
=ME : EK,, by similar triangles.
Also AA':p,=CH:HM,
. AA’: p,=ME -CH: EK, - MH
=CN,: N\K,,
since EN,=MH.

Therefore N, K, = N,G,, and P, 0 is a normal.

Let P be any other point such that OP meets AC in K.

Produce BC to meet OP, in F, and join FP, meeting the
axis in K'.

Then, since two normals [at P,, B] meet in F, FP is not
a normal, but NK’'> NG. Therefore, a fortiors, NK >NG.
And, if P is between 4 and P,, NK < NG. [Prop. 97, Cor. 1.]
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Proposition 104.
[V. 58, 59, 60, 61.]

If 0 be any point outside a conic, but not on the axis whose
extremity is A, we can draw a normal to the curve through O.

For the parabola we have only to measure MH in the
direction of the axis produced outside the curve, and of length

equal to %‘- , to draw HR perpendicular to the axis on the same

side as O, and, with HR, HA as asymptotes, to describe a
[rectangular] hyperbola through O. This will meet the curve
in a point P, and, if OP be joined and produced to meet
the axis in K and HR in R, we have at once HM = NK.

Therefore NK = %’ ,
and PK is a normal.

In the hyperbola or ellipse take H on CM or on CM
produced, and L on OM or OM produced, so that

CH:HM=0L:LM=AA’: p,.
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Then draw HIR perpendicular to the axis, and JLR’
through L parallel to the axis.

(1) If M falls on the side of C towards A, draw with
asymptotes IR, IL, and through O, a [rectangular] hyperbola
cutting the curve in P,

(2) If M falls on the side of C' further from A in the

hyperbola, draw a [rectangular] hyperbola with IH, IR’ as
asymptotes and through C, the centre, cutting the curve in P.
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Then OP will be a normal.
For we have (1) MK : HN=MK : LR/,
since OR = PR’, and therefore /L = UR'.
Therefore MK : HN = MO : OL, by similar triangles,
= MC : CH,
‘+ CH: HM=0L : LM.
Therefore, alternately,
MK : MC=NH:HO ............... (A).
In case (2) OL:LM=CH: HM,
or OL.LI=CH.HI,

[so that O, C are on opposite branches of the same rectangular
hyperbola].
Therefore PU:0OL=LI:IU,
or, by similar triangles,
UR':R'L=LI:1IU,

whence R'L=IU= HN;
o MK : HN=MK : R'L
=MO0:OL
=MC : CH,
and MK : MC = NH : HC, as before (A).

Thus, in either case, we derive
CK :CM=CN :CH,
and hence, alternately,
CN:CK=CH:CM,
so that CN:NK=CH: HM
=A44": p.;
.. NK = NG,
and OP is the normal at P.
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(3) For the hyperbola, in the particular case where M
coincides with C, or O is on the conjugate axis, we need only
divide OC in L, so that

OL:LC=AA’": p,,

and then draw LP parallel to A4’ to meet the hyperbola in P.
P is then the foot of the n_ormal through O, for

AA’:p,=O0L:LC
=0P: PK
=CN: NK,

and NK =NG.

[The particular case is that in which the hyperbola used
in the construction reduces to two straight lines.]

Proposition 103.
[V. 62, 63.]

If O be an internal point, we can draw through O a normal
to the conic.
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The construction and proof proceed as in the preceding
proposition, mutatis mutandis.
The case of the parabola is obvious; and for the hyperbola

or ellipse
MK : HN=0M : OL

=CM : CH.
~.CM:CH=CM 4+ MK : CH + HN
=CK :CN;
.. NE:CN=HM:CH
=pe: A4';
.. NK= NG,
and PO is a normal.



OTHER PROPOSITIONS RESPECTING MAXIMA
AND MINIMA.

Proposition 104.
[V. 64, 65, 66, 67.]

If O be a point below the axis of any conic such that either
no normal, or only one normal, can be drawn to the curve through
O which cuts the axis (between A and C in the case of the ellipse),
then OA 1s the least of the lines OP cutting the axis, and that
which 18 nearer to OA s less than that which is more remote.

If OM be perpendicular to the axis, we must have
A>T,

and also OM must be either greater than or equal to y, where
(a) in the case of the parabola
y:PN=NH:HM,
(b) in the case of the hyperbola or ellipse
y: PN ,=(CM: MH).(HN,: N,C),
with the notation of Prop. 99.

In the case where OM >y, we have proved in Prop. 99 for
all three curves that, for any straight line OP drawn from O to
the curve and cutting the axis in K, NK < NG;

but, in the case where OM =y, NK < NG for any point P
between 4 and P, except P, itself, for which N K, =N,G,.
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Also for any point P more remote from A than P, it is still
true that NXK < NG.

I. Consider now the case of any of the three conics where,
for all points P, NK < N@.

Let P be any point other than A. Draw the tangents
AY, PT. Then the angle OAY is obtuse. Therefore the per-
pendicular at 4 to A0, as AL, falls within the curve. Also,
since NK<NG, and PG is perpendicular to PT, the
angle OPT is acute.

(1) Suppose, if possible, OP = 0A.

With OP as radius and O as centre describe a circle.
Since the angle OPT is acute, this circle will cut the tangent PT,

o

but AL will Jie wholly without it. It follows that the circle
must cut the conic in some intermediate point as B. If RU
be the tangent to the conic at R, the angle ORU is acute.
Therefore RU must meet the circle. But it falls wholly
outside it : which is absurd.

Therefore OP is not equal to OA.
(2) Suppose, if possible, OP < 04.
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In this case the circle drawn with O as centre and OP
as radius must cut AM in some point, D. And an absurdity is
proved in the same manner as before.

Therefore OP is neither equal to OA4 nor less than 04,
ie. 04 < OP.

It remains to be proved that, if P’ be a point beyond P,
OP <OP'.

If the tangent T'P be produced to 7", the angle OPT" is
obtuse because the angle OPT is acute. Therefore the perpen-
dicular from P to OP, viz. PE, falls within the curve, and
the same proof as was used for 4, P will apply to P, P’

Therefore 0A < OP, OP < OP’, &c.

IL Where only one normal, OP,, cutting the axis can be
drawn from O, the above proof applies to all points P between 4
and P, (excluding P, itself) and also applies to the comparison
between two points P each of which is more remote from 4
than P,.
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It only remains therefore to prove that
(a) OP, > any straight line OP between OA and OP,,
(b) OP, < any straight line OP’ beyond OP,.

(a) Suppose first, if possible, that OP = OP,, and let Q be
any point between them, so that, by the preceding proof,
0Q> OP. Measure along OQ a length Og such that Og is
greater than OP, and less than 0Q. With O as centre and Ogq as
radius describe a circle meeting OP, produced in p,. This circle
must then meet the conic in an intermediate point R.

Thus, by the preceding proof, OQ is less than OR, and there-
fore is less than Og: which is absurd.

Therefore OP is not equal to OP,.
Again suppose, if possible, that OP > OP,. Then, by taking

on OP, a length Op, greater than OP, and less than OP, an
absurdity is proved in the same manner.

Therefore, since OP is neither equal to nor greater than OP,,

OP< OP,.
() If OP' lies more remote from OA than OP,, an
exactly similar proof will show that OP, < OP"'.

Thus the proposition is completely established.

Proposition 105. (Lemma.)
[V. 68, 69, 70, 71.]

If two tangents at points Q, Q' on one side of the axis of a
conic meet i T, and if Q be nearer to the axis than Q', then
Q< TQ'

The proposition is proved at once for the parabola and
hyperbola and for the case where @, Q' are on one quadrant of

an ellipse: for the angle T'VQ’ is greater than the a.ngle TV,
and QV = V(.
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Therefore the base T'Q is less than the base 7Q".

’

¢

Q
c A\

In the case where Q, Q' are on different quadrants of an
ellipse, produce the ordinate Q’N’ to meet the ellipse again
in ¢. Join ¢’C and produce it to meet the ellipse in R. Then
Q’'N’'=N'q,and ¢'C =CR, so that Q'R is parallel to the axis.
Let RM be the ordinate of R.

>

Now RM >QN;
. [Prop. 86, Cor.] CQ > CR,
ie. >0Q;
. £LCVQ>CVQ,
and, as before, < TQ.

Proposition 106.
[V. 72]

If from a point O below the azis of a parabola or hyperbola
it 18 possible to draw two normals OP,, OP, cutting the axis
(P, being mearer to the vertex A than P,), and if further
P be any other point on the curve and OP be joined, then



192 THE CONICS OF APOLLONIUS.

(1) if P lies between A and P,, OP, is the greatest of all
the lines OP, and that which is nearer to OP, on each side is
greater than that which is more remote;

(2) if P lies between P, and P,, or beyond P,, OP, is the
least of all the lines OP, and the nearer to OP, 13 less than the
more remote.

°

By Prop. 99, if P is between A and P,, OP is not a normal,

but NK < NG. Therefore, by the same proof as that employed

in Prop. 104, we find that OP increases continually as P moves
from 4 towards P,.

We have therefore to prove that OP diminishes continually
as P moves from P, to P,, Let P be any point between
P, and P,, and let the tangents at P,, P meet in T. Join OT.

Then, by Prop. 105, TP, < TP.

Also TP!+OP!>TP*+ OP*,
since AK > A@, and consequently the angle OPT is obtuse.
Therefore OP < OP,.

Similarly it can be proved that, if P’ is a point between P
and P,, OP’' < OP.

That OP increases continually as P moves from P, further
away from 4 and P, is proved by the method of Prop. 104.

Thus the proposition is established.
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Proposition 107.
[V. 73]

If O be a point below the major axis of an ellipse such that
1t 18 possible to draw through O one normal only to the whole of
the semi-ellipse ABA’, then, if OP, be that normal and P, is on
the quadrant AB, OP, will be the greatest of all the straight
lines drawn from O to the semi-ellipse, and that which 1s nearer
to OP, will be greater than that which is more remote. Also
OA’ unll be the least of all the straight lines drawn from O to
the semi-ellipse.

It follows from Props. 99 and 101 that, if OM be per-
pendicular to the axis, M must lie between C and A’, and that
OM must be greater than the length y determined as in
Prop. 99.

Thus for all points P between A’ and B, since K is nearer
to A’ than G is, it is proved by the method of Prop. 104 that
04’ is the least of all such lines OP, and OP increases con-
tinually as P passes from 4’ to B.

For any point P’ between B and P, we use the method of
Prop. 106, drawing the tangents at P’ and B, meeting in T.

H. C. 18
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Thus we derive at once that OB < OP’, and similarly that OP’
increases continually as P’ passes from B to P,.

For the part of the curve between P, and A we employ the
method of reductio ad absurdum used in the second part of
Prop. 104.

Proposition 108.
[V. 74]

If O be a point below the major axis of an ellipse such that
two normals only can be drawn through it to the whole sems-
ellipse ABA’, then that normal, OP,, which cuts the minor azis
18 the greatest of all straight lines from O to the semi-ellipse,
and that which 18 nearer to it 18 greater than that which s more
remote. Also OA, joining O to the nearer vertez A, s the least
of all such straight lines.

It follows from Prop. 99 that, if O be nearer to 4 than to
4’, then P,, the point at which O is the centre of curvature,
is on the quadrant AB, and that OP, is one of the only two
possible normals, while P,, the extremity of the other, is on the
quadrant BA’; also OM =y determined as in Prop. 99.

In this case, since only one normal can be drawn to the
quadrant AB, we prove that OP
increases as P moves from A4 to
P, by the method of Prop. 104, as
also that OP increases as P moves
from P, to B.

That OP increases as P moves
from B to P,, and diminishes as
it passes from P, to 4’, is established by the method employed
in the last proposition.




OTHER MAXIMA AND MINIMA. 195

Proposition 109.
[v. 75, 76, 77.]

If O be a point below the major axis of an ellipse such that
three normals can be drawn to the semi-ellipse ABA’ at points
P, P,, P, where P,, P, are on the quadrant AB and P, on the
quadrant BA’, then (if P, be nearest to the vertex A),

(1) OP, is the greatest of all lines drawn from O to points
on the semi-ellipse between A’ and P,, and the nearer to OP, on
etther side 18 greater than the more remote ;

(2) OP, is the greatest of all lines from O to points on the
semi-ellipse from A to P,, and the nearer to OP, on either side
18 greater than the more remote.

(8) of the two maxima, OP, > OP,.

Part (2) of this proposition is established by the method of
Prop. 106.

Part (1) is proved by the
method of Prop. 107.

It remains to prove (3).

We have
CN,: NG =A4AA':p,=CN,: N,G,;

~. MN,: N,.G,<CN, : NG,
< MN,: N,G,, a fortiors,
whence MG, : N.G,< MG, : NG,;
and, by similar triangles,
OM:PN,<OM:PN,,
or PN,>PN,.

If then P,p, be parallel to the axis, meeting the curve in
p,, we have at once, on producing OM to R,

p,R> PR,
so that Op, > OP,;
~. a fortiors OP,> OP,.

13—2
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As particular cases of the foregoing propositions we have

(1) If O be on the minor axis, and no normal except OB
can be drawn to the ellipse, OB is greater than any other
straight line from O to the curve, and the nearer to it is greater
than the more remote.

(2) If Obe on the minor axis, and one normal (besides OB)
can be drawn to either quadrant as OP,, then OP, is the

greatest of all straight lines from O to the curve, and the nearer
to it is greater than the more remote.



EQUAL AND SIMILAR CONICS.

DEFINITIONS.

1. Conic sections are said to be equal when one can be
applied to the other in such a way that they everywhere
coincide and nowhere cut one another. When this is not the
case they are unequal

2. Conics are said to be similar if, the same number of
ordinates being drawn to the axis at proportional distances
from the vertex, all the ordinates are respectively proportional
to the corresponding abscissae. Otherwise they are dissimilar.

3. The straight line subtending a segment of a circle or a
conic is called the base of the segment.

4. The diameter of the segment is the straight line which
bisects all chords in it parallel to the base, and the point where
the diameter meets the segment is the vertex of the segment.

5. Equal segments are such that one can be applied to the
other in such a way that they everywhere coincide and nowhere
cut one another. Otherwise they are unequal

6. Segments are similar in which the angles between the
respective bases and diameters are equal, and in which, parallels
to the base being drawn from points on each segment to meet
the diameter at points proportionally distant from the vertex,
each parallel is respectively proportional to the corresponding
abscissa in each.
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Proposition 110.
[VL 1, 2]

(1) In two parabolas, if the ordinates to a diameter in each
are inclined to the respective diameters at equal angles, and if
the corresponding parameters are equal, the two parabolas are
equal.

(2) If the ordinates to a diameter in each of two hyperbolas
or two ellipses are equally inclined to the respective diameters,
and if the diameters as well as the corresponding parameters are
equal respectively, the two conics are equal, and conversely.

This proposition is at once established by means of the
fundamental properties

(1) QV*=PL.PYV for the parabola, and

(2) QV*=PV.VR for the hyperbola or ellipse
proved in Props. 1—3.

Proposition 111.
[VL 3]

Since an ellspse 18 limited, while a parabola and a hyperbola
proceed to infinity, an ellipse cannot be equal to either of the
other curves. Also a parabola cannot be equal to a hyperbola.

For, if a parabola be equal to a hyperbola, they can be
applied to one another so as to coincide throughout. If then
equal abscissae AN, AN’ be taken along the axes in each we
have for the parabola

AN :AN'=PN': P'N",
Therefore the same holds for the hyperbola: which is im-
possible, because
PN': P'N*=AN.A'N: AN’ . A'N".
Therefore a parabola and hyperbola cannot be equal.

[Here follow six easy propositions, chiefly depending upon
the symmetrical form of a conic, which need not be re-
produced.]
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Proposition 114.
[VL 11, 12, 18]

(1) AU parabolas are ssmilar.

(2) Hyperbolas, or ellipses, are similar to one another when
the “ figure” on a diameter of one 18 similar to the “ figure” on a
diameter of the other and the ordinates to the diamesters in each
make equal angles with the diameters respectively.

(1) The result is derived at once from the property

PN'=p,.AN.

(2) Suppose the diameters to be axes in the first place
(conjugate axes for hyperbolas, and both major or both minor
axes for ellipses) so that the ordinates are at right angles to the
diameters in both.

Then the ratio p, : A4’ is the same in both curves. There-
fore, using capital letters for one conic and small letters for the
other, and making AN : an equal to 44’ : aa’, we have at the
same time

PN*: AN.NA'=pn’: an.nd'.

But AN .NA': AN*=an.na : an’,
because A'N:AN=an:an;
. PN*: AN*=pn": an’,
or PN :AN=pn:an,

and the condition of similarity is satisfied (Def. 2).

Again, let PP’, pp’ be diameters in two hyperbolas or two
ellipses, such that the corresponding ordinates make equal
angles with the diameters, and the ratios of each diameter to
its parameter are equal.

Draw tangents at P, p meeting the axes in T, ¢ respectively.
Then the angles CPT, cpt are equal. Draw AH, ah perpen-
dicular to the axes and meeting CP, cp in H, h; and on CH,
ch as diameters describe circles, which therefore pass respectively
through 4, a. Draw QAR, gar through A4, a parallel respec-
tively to the tangents at P, p and meeting the circles just
described in R, r.
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Let V, v be the middle points of 4Q, ag, so that V, v lie on
CP, cp respectively.

Then, since the “figures” on PP’, pp’ are similar,

AV*:CV.VH =av': cv.vh, [Prop. 14]
or AV : AV. VR =av*: av.vr,
whence AV :VR=av:vr..cccceecvvcevnnn... (a),

and, since the angle AVC is equal to the angle ave, it follows
that the angles at C, ¢ are equal.
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[For, if K, k be the centres of the circles, and 7, ¢ the middle
points of AR, ar, we derive from (a)

VA:AI=va:as;
and, since LKVI = £kw,
the triangles K V1, kvi are similar.

Therefore, since VI, v: are divided at 4, @ in the same ratio’
the triangles KV A, kva are similar;

S LAKV = Laky;
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hence the halves of these angles, or of their supplements, are
equal, or
£ KCA = £ kea.]
Therefore, since the angles at P, p are also equal, the
triangles CPT, cpt are similar.

Draw PN, pn perpendicular to the axes, and it will follow
that
PN*:CN.NT=pn*:cn.nt,
whence the ratio of 44’ to its parameter and that of aa’ to
its parameter are equal. [Prop. 14]

Therefore (by the previous case) the conics are similar.

Proposition 113.
[VI. 14, 15]

A parabola ts neither similar to a hyperbola nor to an
ellipse; and a hyperbola 18 not similar to an ellipse.

[Proved by reductio ad absurdum from the ordinate pro-
perties.]

Proposition 114.
[VIL 17, 18]

(1) If PT, pt be tangents to two stmilar conics meeting the
azes in T, t respectively and making equal angles with them ;
if, further, PV, pv be measured along the diameters through P,
p 8o that

PV: PT=pv:pt,
and if QQ’, q¢’ be the chords through V, v parallel to PT, pt
respectively : then the segments QPQ’, gpq' are similar and
similarly situated.

(2) And, conversely, if the segments are similar and
similarly situated, PV : PT=pv:pt, and the tangents are
equally inclined to the axes.
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I. Let the conics be parabolas.

Draw the tangents at A, @ meeting the diameters through
P,pin H, h, and let PL, pl be such lengths that

PL:2PT=0P: P
and pl : 2pt=op : ph,
where O, o are the points of intersection of A H, PT and ah, pt.

Therefore PL, pl are the parameters of the ordinates
to the diameters PV, pv. [Prop. 22]

H P

LV A__»

i A

Hence QV*=PL.PV,
qv' =pl.pv.
(1) Now, since £ PTA = /pta,
£ OPH = £ oph,
and the triangles OPH, oph are similar.
Therefore OP: PH =op : ph,
so that PL : PT=pl: pt.
But, by hypothesis,
PV:PT=pv:pt,
o PL:PV=pl:py,
and, since QV is a mean proportional between PV, PL, and qv

between pv, pl,
QV:PV=gqv:pv
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Similarly, if V7, v’ be points on PV, pv such that
PV: PV =pv:pv,
and therefore PL: PV’ =pl: pv,

it follows that the ordinates passing through V’, v’ are in the
same ratio to their respective abscissae.

Therefore the segments are similar. (Def. 6.)

(2) If the segments are similar and similarly situated,
we have to prove that

£ PTA = 2 pta,
and PV:PT=pv:pt.

Now the tangents at P, p are parallel to QQ’, q¢’ respec-
tively, and the angles at V, v are equal.

Therefore the angles PT A, pta are equal.
Also, by similar segments,
QV:PV=gqv:py

while PL:QV=QV:PV, and pl: qu=gqv:pv;
o PL: PV=pl:pv
But PL:2PT=0P: PH}
pl:2pt=op:ph )’
and OP : PH =op : ph,
by similar triangles.
Therefore PV:PT=pv:pt.

II. If the curves be hyperbolas or ellipses, suppose a
similar construction made, and let the ordinates PN, pn be
drawn to the major or conjugate axes. We can use the figures
of Prop. 112, only remembering that the chords are here QQ’,
9¢’, and do not pass through 4, a.

(1) Since the conics are similar, the ratio of the axis to its
parameter is the same for both.
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Therefore =~ PN*:CN.NT=pn*: cn.nt. [Prop. 14]
Also the angles PTN, ptn are equal,
therefore PN:NT=pn:nt.
Hence PN :CN=pn: cn,
and £ PCN = £ pcn.
Therefore also ¢ CPT = ZLcpt.
It follows that the triangles OPH, oph are similar.
Therefore OP : PH =op : ph.
But OP : PH=PL: 2P
op:ph=pl:2pt |}’
whence PL : PT=pl : pt
Also, by similar triangles,
PT:CP=pt:cp;
~ PL:CP=pl:cp,
or PL: PP =pl:pp ..., (A).

Therefore the “figures” on the diameters PP’, pp’ are
similar.

Again, we made PV :PT=pv:pt,

so that PL:PV=pl:py.......ccccuv....... (B).
We derive, by the method employed in Prop. 112, that
QV : PV =gqv: py,

and that, if PV, pv be proportionally divided in the points V7,
v/, the ordinates through these points are in the same ratios.

Also the angles at V, v are equal.
Therefore the segments are similar.

(2) If the segments are similar, the ordinates are in the
ratio of their abscissae, and we have
QV:PV=qv:pv
PV:PV'=pv:pv}.
PV :QV =pv:¢v
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Then RV*: Q' V*=¢gv': ¢'v*;
S PV.VP': PV'.V'P' =pv.op': pv'.vp,
and . PV:PV' =pv:pv,
so that P'V:PV =py:p.
From these equations it follows that
PV :VV' =pv: w’}
and PV :VV =pv o)’
whence PV :PV=p%v:pv;
S PV.VP:PV™=pv.vp: pv™
But PV*:QV*=pv: ¢v*;

S PV .VP:QV*=pv.vp: gV

But these ratios are those of PP’, pp’ to their respective
parameters.

Therefore the “ figures” on PP’, pp’ are similar; and, since
the angles at V, v are equal, the conics are similar.

Again, since the conics are similar, the “figures” on the
axes are similar.

Therefore PN*:CN.NT =pn":cn.nt,
and the angles at N, n are right, while the angle CPT is equal
to the angle cpt.

Therefore the triangles CPT, cpt are similar, and the angle
CTP is equal to the angle ctp.

Now, since PV.VP':QV'=pv.vp : qv",

and QV': PV*=qv*: pv';
it follows that PV:P'V=pv:ph,
whence PP’ : PV=pp :pv.
But, by the similar triangles CPT, cpt,
CP:PT=cp:pt,
or PP’ : PT=pp :pt;

s PV:PT=pv:pt,
and the proposition is proved.
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Proposition 118.
[VL 21, 22]

If two ordinates be drawn to the axes of two parabolas, or the
major or conjugate azxes of two similar ellipses or two similar
hyperbolas, as PN, P'N"' and pn, p'n’, such that the ratios AN : an
and AN': an’ are each equal to the ratio of the respective latera
recta, then the segments PP’, pp’ will be similar ; also PP’ will
not be similar to any segment in the other conic which is cut off
by two ordinates other than pn, p'n’, and vice versa.

[The method of proof adopted follows the lines of the
previous propositions, and accordingly it is unnecessary to
reproduce it.]

Proposition 1186.
[VL 26, 27.]

If any cone be cut by two parallel planes making hyperbolic
or elliptic sections, the sections will be simslar but not equal.

On referring to the figures of Props. 2 and 3, it will be seen
at once that, if another plane parallel to the plane of section be
drawn, it will cut the plane of the axial triangle in a straight
line p’pm parallel to P’PHM and the base in a line dme parallel
to DME; also p’pm will be the diameter of the resulting
hyperbola or ellipse, and the ordinates to it will be parallel to
dme, t.e. to DME.

Therefore the ordinates to the diameters are equally
inclined to those diameters in both curves.

Also, if PL,' pl are the corresponding parameters,
PL:PP'=BF.FC: AF'=pl: pp.
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Hence the rectangles PL. PP’ and pl.pp’ are similar.
It follows that the conics are similar. [Prop. 112]

And they cannot be equal, since PL. PP’ cannot be equal to
pl.pp. [Cf. Prop. 110(2)]

[A similar proposition holds for the parabola, since, by
Prop. 1, PL : PA is a constant ratio. Therefore two parallel
parabolic sections have different parameters.]
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Proposition 117.
(VI 28]

In a given right cone to find a parabolic section equal to a
given parabola.

Let the given parabola be that of which am is the axis and
al the latus rectum. Let the given right cone be OBC, where

O is the apex and BC the circular base, and let OBC be a
triangle through the axis meeting the base in BC.

Measure OA along OB such that

al : 0A = BC*: BO.OC.
H. C. 14
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Draw AM parallel to OC meeting BC in M, and through
AM draw a plane at right angles to the plane OBC and cutting
the circular base in DME.

Then DE is perpendicular to 4 M, and the section DAK is
a parabola whose axis is A M.

Also [Prop. 1), if AL is the latus rectum,
AL : AO=BC": BO.0C,

whence AL =al, and the parabola is equal to the given one
[Prop. 110].

No other parabola with vertex on OB can be found which is
equal to the given parabola except DAE. For, if another such
parabola were possible, its plane must be perpendicular to the
plane OBC and its axis must be parallel to OC. If A’ were
the supposed vertex and A’L’ the latus rectum, we should have
A'L' : A’0=BC":B0.0C=AL: AO. Thus, if 4’ does not
coincide with 4, AL’ cannot be equal to AL or al, and the
parabola cannot be equal to the given one.

Proposition 118.

[VL 29.]

In a given right cone to find a section equal to a given
hyperbola. (A necessary condition of possibility is that the ratio
of the square on the azis of the cone to the square on the radius
of the base must not be greater than the ratio of the transverse
azis of the given hyperbola to its parameter.)

Let the given hyperbola be that of which aa’, al are the
transverse axis and parameter respectively.

L Suppose OI": BI' < aa’: al, where I is the centre of the
base of the given cone.

Let a circle be circumscribed about the axial triangle OBC,
and produce OI to meet the circle again in D.
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Then OI :ID=0I*: BI*,
so that OI :ID<aa’: al

-

Take E on ID such that O : IE=aa’: al, and through £
draw the chord QQ’ parallel to BC.

Suppose now that 44', 4 A are placed in the angle formed
by OC and BO produced, such that AA’=A A’'=aqa’, and
AA', A A’ are respectively parallel to 0Q, 0, meeting BO
in M, M".

Through A’AM, A'A M’ draw planes perpendicular to the
plane of the triangle OBC making hyperbolic sections, of which
A’AM, A’A M’ will therefore be the transverse axes.

Suppose 0Q, 0Q to meet BC in F, F’.
Then ad :al=0I : IE
=OF : FQ or OF' : F'Q
= OF': OF.FQ or OF*: OF'.F'Q
=(0F': BF.FC or OF*: BF' .F'C
=AA":ALor AA’: AL,
14—2
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where AL, AL, are the parameters of AA4’, A A/ in the
sections respectively.
It follows, since AA'=A A’ =ad,
that AL=AL =al

Hence the two hyperbolic sections are each equal to the given
hyperbola.

There are no other equal sections having their vertices on
0cC.

For (1), if such a section were possible and OH were parallel
to the axis of such a section, OH could not be coincident
either with 0Q or OQ. This is proved after the manner of
the preceding proposition for the parabola.

If then (2) OH meet BC in H, QQ in R, and the circle
again in K, we should have, if the section were possible,
ad’ :al=0H': BH .HC
=0H': OH.HK
=0H : HK ;
which is impossible, since
ad :al=0I:IE=0H: HR.
II. If OI': BI*=aaq’ : al, we shall have OI : ID maa’: al,
and 0Q, 0Q' will both coincide with OD.

In this case there will be only one section equal to the
given hyperbola whose vertex is on OC, and the axis of this
section will be perpendicular to BC.

III. If OI': BI*>aa’ : al, no section can be found in the
right cone which is equal to the given hyperbola.

For, if possible, let there be such a section, and let ON be
drawn parallel to its axis meeting BC in N.

Then we must have aa’ : al= ON*: BN. NC,
so that OI*:BI.IC>ON®: BN.NC.

But ON*> OI', while BI.IC>BN . NC': which is absurd.
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Proposition 119.
[VL 30.]

In a given right cone to find a section equal to a given ellipse.

In this case we describe the circle about OBC and suppose
F, F’ taken on BC produced in both directions such that, if
OF, OF' meet the circle in Q,

OF : FQ=0F' : F'Q =aa’ : al.

o

Then we place straight lines 44’, 4, A/ in the angle BOC
so that they are each equal to aa’, while A4’ is parallel to
0Q and 4,4, to 0Q.

Next suppose planes drawn through AA4’', 4,4, each
perpendicular to the plane of OBC, and these planes determine
two sections each of which is equal to the given ellipse.

The proof follows the method of the preceding proposition.
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Proposition 120.
[VL 31.]

To find a right cone similar to a given one and contasning
a given parabola as a section of it.

Let OBC be an axial section of the given right cone, and
let the given parabola be that of which AN is the axis and AL
the latus rectum. Erect a plane passing through AN and
perpendicular to the plane of the parabola, and in this plane
make the angle NAM equal to the angle OBC.

Let AM be taken of such a length that AL : AM=BC : BO,
and on AM as base, in the plane MAN, describe the triangle
EAM similar to the triangle OBC. Then suppose a cone
described with vertex £ and base the circle on AM as diameter
in a plane perpendicular to the plane EAM.

The cone EAM will be the cone required.
For LMAN=¢0BC=¢t EAM=¢ EMA;
therefore EM is parallel to AN, the axis of the parabola.

Thus the plane of the given parabola cuts the cone in a
section which is also a parabola.

Now AL: AM=BC: BO
=AM : AE,

or AM*=FEA .AL;
S AM*: AE . EM=AL : EM

=AL: EA.
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Hence AL is the latus rectum of the parabolic section of
the cone made by the plane of the given parabola. It is also
the latus rectum of the given parabola.

Therefore the given parabola is itself the parabolic section,
and EA M is the cone required.

There can be no other right cone similar to the given one,
having its vertex on the same side of the given parabola, and
containing that parabola as a section.

For, if another such cone be possible, with vertex F, draw
through the axis of this cone a plane cutting the plane of the
given parabola at right angles. The planes must then intersect
in AN, the axis of the parabola, and therefore ' must lie in the
plane of EAN.

Again, if AF, FR are the sides of the axial triangle of the
cone, FR must be parallel to 4N, or to EM, and

LAFR=¢BOC=¢ AEM,
so that F must lie on AL or AE produced. Let AM meet
FR in R.
Then, if AL’ be the latus rectum of the parabolic section of
the cone FAR made by the plane of the given parabola,
AL : AF=AR': AF.FR
=AM': AE.EM
=AL: AE.

Therefore AL’, AL cannot be equal; or the given parabola
is not a section of the cone FAR.

Proposition 121.
[VL 32]

To find a right cone similar to a given one and containing a
given hyperbola as a section of st. (If OBC be the given cone and
D the centre of its base BC, and if AA', AL be the axis and
parameter of the given hyperbola, a necessary condition of
possibility is that the ratio OD*: DB* must not be greater than
the ratio AA’': AL.)
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Let a plane be drawn through the axis of the given
hyperbola and perpendicular to its plane; and on A’A4, in the
plane so described, describe a segment of a circle containing an

angle equal to the exterior angle B’'OC at the vertex of the
given cone. Complete the circle, and let EF be the diameter
of it bisecting AA’ at right angles in 1. Join A’E, AE, and
draw A parallel to EF meeting A’E produced in G.

Then, since EF bisects the angle A’EA, the angle EGA
is equal to the angle EAG. And the angle AEG is equal
to the angle BOC, so that the triangles EA®, OBC are similar.

Draw EM perpendicular to AG.

Then OD*: DB*=EM* : MA®
=IA*: EI"
=FI:IE.

L Suppose that

OD': DB*< AA': AL,
so that FI:IE<AA': AL
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Take a point H on EI such that FI: IH=AA’': AL, and
through H draw the chord QQ’ of the circle parallel to 44’
Join 4’Q, AQ, and in the plane of the circle draw A R making
with 4Q an angle equal to the angle OBC. Let AR meet
A’Q produced in R, and QQ’ produced in N.

Join FQ meeting A4’ in K.
Then, since the angle QAR is equal to the angle OBC, and
LFQA=}4£AQA=42B'0C,
AR is parallel to FQ.
Also the triangle QAR is similar to the triangle OBC.

Suppose a cone formed with vertex Q and base the circle
described on AR as diameter in a plane perpendicular to that
of the circle FQA.

This cone will be such that the given hyperbola is a
section of it.

We have, by construction,
AA': AL=FI:IH
= FK : KQ, by parallels,
=FK.KQ: KQ’
=A'K.KA : KQ"
But, by the parallelogram QKAN,
A’K : KQ=QN : NR,
and KA:KQ=QN:NA,
whence A'K.KA:KQ'=QN': AN.NR.

It follows that
AA': AL=QN*': AN.NR.

Therefore [Prop. 2] AL is the parameter of the hyperbolic
section of the cone QAR made by the plane of the given
hyperbola. The two hyperbolas accordingly have the same
‘axis and parameter, whence they coincide [Prop. 110 (2)]; and
the cone QAR has the required property.
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Another such cone is found by taking the point Q instead
of Q and proceeding as before.

No other right cone except these two can be found which
is similar to the given one, has its apex on the same side of the
plane of the given hyperbola, and contains that hyperbola as a
section.

For, if such a cone be possible with apex P, draw through
its axis a plane cutting the plane of the given hyperbola at
right angles. The plane thus described must then pass
through the axis of the given hyperbola, whence P must lie in
the plane of the circle FQA. And, since the cone is similar to
the given cone, P must lie on the arc 4'Q4.

Then, by the converse of the preceding proof, we must have
(if FP meet A’A in T)
AA': AL=FT:TP;
& FT:TP=FI:IH,
which is impossible.
II. Suppose that
OD*:DB*=AA': AL,
8o that FI:IE=AA": AL.

In this case @, Q' coalesce with K, and the cone with
apex K and base the circle on AG as diameter perpendicular
to the plane of FQA is the cone required.

III. If OD*: DB*>AA’: AL, no right cone having the
desired properties can be drawn.

For, if possible, let P be the apex of such a cone, and we

shall have, as before,
FT:TP=AA": AL

But AA : AL<OD*: DB® or FI:IE.
Hence FT : TP < FI : IE, which is absurd.

Therefore, etc.
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Proposition 1242.
[VI 33]

To find a right cone ssmilar to a given one and contasning
a given ellipse as a section of it.

As before, take a plane through 4.4’ perpendicular to the
plane of the given ellipse; and in the plane so drawn describe
on AA’ as base a segment of a circle containing an angle equal
to the angle BOC, the vertical angle of the given cone. Bisect

~ the arc of the segment in F.

Draw two lines FK, FK’ to meet 44’ produced both ways

and such that, if they respectively meet the segment in Q, Q’,

FK:KQ=FK':K'Q=AA': AL.
Draw QN parallel to A4’, and AN parallel to QF, meeting in N.
Join 4Q, A’Q, and let 4'Q meet AN in R.

| 4

Conceive a cone drawn with Q as apex and as base the circle
on AR as diameter and in a plane at right angles to that
of AFA’'.

This cone will be such that the given ellipse is one of
its sections.
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For, since FQ, AR are parallel,
£FQR= £ ARQ,
o £ARQ=¢FAA’
=« OBC.
And LAQR= ¢ AFA’
= £ BOC.

Therefore the triangles QA R, OBC are similar, and likewise
the cones QA R, OBC.

Now AA’: AL=FK : KQ, by construction,
=FK.KQ: KQ*
=A'K.KA: KQ*
=(A'K:KQ).(KA: KQ)
=(QN: NR).(QN: NA), by parallels,
=QN*': AN.NR.

Therefore [Prop. 3] AL is the latus rectum of the elliptic

section of the cone QAR made by the plane of the given

ellipse. And AL is the latus rectum of the given ellipse.
Therefore that ellipse is itself the elliptic section.

In like manner another similar right cone can be found with
apex Q' such that the given ellipse is a section.

No other right cone besides these two can be found satis-
fying the given conditions and having its apex on the same
side of the plane of the given ellipse. For, as in the preceding
proposition, its apex P, if any, must lie on the arc AFA’.
Draw PM parallel to 4’4, and A’M parallel to FP, meeting
in M. Join AP, A’P, and let AP meet A’M in S.

The triangle PA’S will then be similar to OBC, and we
shall have PM*: AM . MS=AT.TA’ : TP*=FT.TP : TP? in
the same way as before.

We must therefore have

AA': AL=FT:TP;
and this is impossible, because

AA’: AL=FK: KQ.



VALUES OF CERTAIN FUNCTIONS OF THE
LENGTHS OF CONJUGATE DIAMETERS.

Proposition 123 (Lemma).
[VIL 1.]

In a parabola®, if PN be an ordinate and AH be measured
along the axis away from N and equal to the latus rectum,
AP*=AN.NH. [=AN (AN + pa))

This is proved at once from the property PN* = p,. AN, by
adding AN" to each side.

Proposition 124 (Lemma).
[VIL 2, 8]

If AA’ be divided at H, internally for the hyperbola, and
externally for the ellipse, so that AH: HA' =p,: AA’, then,
if PN be any ordinate,

AP*: AN.NH=AA’: A'H.

* Though Book VIL is mainly concerned with conjugate diameters of a
central oonie, one or two propositions for the parabola are inserted, no doubt
in order to show, in connection with particular propositions about a central

conic, any obviously corresponding properties of the parabola.
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Produce AN to K, so that
AN.NK=PN?*;
thus AN NK:AN_ AN
=PN*: AN.A'N
=pe: A4’ [Prop. 8]
= AH: A’H, by construction,
or NK:A'N=AH:A’H.

N H

It follows that
AN+ NK:AN=A'H+ AH: A'H

(where the upper sign applies to the hyperbola).

Hence A'K : A'N=AA’: A'H;

s AK4+AA': A'N+ A'H=A4A": A'H,

or AK:NH=AA': A’H.

Thus AN.AK: AN.NH=A4A4': A’H.

But AN.AK = AP since AN.NK = PN*.

Therefore AP*: AN.NH=AA': A'H,

The same proposition is true if A4’ is the minor axis of an
ellipse and p, the corresponding parameter.
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Proposition 128 (Lemma).
[VIL 4]

If in a hyperbola or an ellipse the tangent at P mest the azis
A4’ in T, and if CD be the sems-diameter parallel to PT, then

PT*:CD*=NT:CN.

Draw AE, TF at right angles to CA to meet CP, and
let AE meet PT in O.

Then, if p be the parameter of the ordinates to PP’
we have

£:Pr=0P:PE. [Prop. 23]
Also, since CD is parallel to PT, it is conjugate to CP.
Therefore g. OP=CD"...oocvveeeeereennn. (1).
Now OP : PE=TP: PF;
. E:PT=PT: PF,
or E.PF=PT" .ccooirrrnnne, @).
From (1) and (2) we have

PT*:CD*=PF:CP
=NT : CN.
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Proposition 126 (Lemma).
[VIL 5.]

In a parabola, if p be the parameter of the ordinates to the
diameter through P, and PN the principal ordinate, and of AL
be the latus rectum,

p=AL+ 4AN.

o

pd

T A N

[ 8

Let the tangent at 4 meet PT in O and the diameter
through P in K, and let P@, at right angles to PT, meet
the axis in G.

Then, since the triangles PTG, EPO are similar,

GT:TP=0P: PE,

3 GT=123 ............... (1) [Prop. 22]
Again, since TPQ is a right angle,
TN.NG=PN*
=LA.AN,
by the property of the parabola.
But TN =2AN. [Prop. 12]
Therefore AL=2NG@ .....cc..ceevvvurenenn. (?);
thus AL+4AN=2(TN +NG@G)
=2T@

=p, from (1) above.
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[Note. The property of the normal (NG = half the latus
rectum) is incidentally proved here by regarding it as the
perpendicular through P to the tangent at that point. Cf.
Prop. 85 where the normal is regarded as the minimum straight
line from G to the curve.]

DEr. If AA’ be divided, internally for the hyperbola, and
externally for the ellipse, in each of two points H, H' such that
AH:AH=AH': AH'=AA': p,,
where p, is the parameter of the ordinates to Ad’, then AH,
A’H’ (corresponding to p, in the proportion) are called

homologues.

In this definition A4’ may be either the major or the
msnor axis of an ellipse.

Proposition 127.
[VIL 6, 7.]

If AH, A’H' be the “homologues” wn a hyperbola or an
ellipse, and PP’, DD’ any two conjugate diameters, and if AQ
be drawn parallel to DD’ meeting the curve tn Q, and QM be
perpendicular to AA’, then

PP*: DD"=MH': MH.

Join A’Q, and let the tangent at P meet A4’ in T.

Then, since 4'C=CA, and QV = VA (where CP meets Q4
in V), 4'Q is parallel to CV.

Now PT*:CD*=NT:CN [Prop. 125]

=AM : A’M, by similar triangles.

And, also by similar triangles,

CP': PT*=A'Q": AQ",
whence, ez aequals,
CP':CD*=(AM: A'M).(4'Q": AQ")
=(AM: A'M)x(A4'Q*: A’M.MH')
x\(A’M.MH’ tAM MH)x (AM.MH : AQ").
H. C. 15
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But, by Prop. 124,
A'Q*: AM MH'=AA': AH',
and AM MH:AQ'=A'H: AA'=AH': AA".
Also A’'M .MH': AM MH=(A'M: AM).(MH' : MH).
It follows that
CP*:CD*=MH’': MH,
or PP™: DD"=MH': MH.
This result may of course be written in the form
PP’ :p=MH': MH,
where p is the parameter of the ordinates to PP".

Proposition 128.
[VIL 8, 9, 10, 11.]

In the figures of the last proposition the following relations
hold for both the hyperbola and the ellipse :
(1) 4A”:(PP'+DD'y=A'H.MH':(MH' + VMH . MHy,
(2) AA™:PP'.DD'=A'H:vMH.MH'
(38)A44™: (PP*4+ DD™)=A'H: MH+ MH".

(1) We have
AA”™: PP"=CA*: CP*;
. AA™: PP"=CN.CT : CP* [Prop. 14]
=A'M.A'A: A'Q",
by similar triangles.
Now A'Q': A'M.MH' =AA':AH’ [Prop. 124]

=AA'": A'H

=AM AA:A'M.A'H,
whence, alternately,

AM A'A:AQ =AM AH: A’'M.MH'.
Therefore, from above,
AA™: PP*=A'H: MH' ............... (a),
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Again, PP*: DD™*=MH': MH ...(8), [Prop. 127]
=MH": MH.MH';
s PP': DD'=MH': VMH . MH’
Hence PP’': PP’y DD’'=MH': MH' + VMH.MH’,
and PP™: (PP’ + DD'y= MH™: (MH' + VMH . MH')*.
Therefore by (a) above, ez aequalt,
AA™:(PP'4+ DD'y=A'H.MH' : (MH' + VMH . MH')".
(2) We derive from (vy) above
PP*: PP'.DD' = MH' : VMH . MH'.

Therefore by (a), ez aequals,
AA™: PP'.DD'=A'H :vMH.MH.
(8) From (8),

PP*:(PP™*+ DD")=MH': MH + MH'.
Therefore by (), ez aequals,
AA™:(PP*+ DD")=A'H : MH + MH"'.

Proposition 129.
[VIL 12, 13, 29, 30.]

In every ellipse the sum, and in every hyperbola the difference,

of the squares on any two conjugate diameters is equal to the sum
or difference respectively of the squares on the azes.

Using the figures and construction of the preceding two
propositions, we have

AA™:BB*=AA':p,
= A’H : AH, by construction,
=A'H : A'H'.
Therefore
AA™: AA 4+ BB"=A'H: AH+ A'H'
(where the upper sign belongs to the ellipse),
or AA™: AA®+BB*=A'H : HH' ............... (a).
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Again, by (a) in Prop. 128 (1),
AA™: PP*=A'H : MH',
and, by means of (8) in the same proposition,
PP": (PP*4 DD")=MH' : MH + MH'
=MH': HH'
From the last two relations we obtain
AA™ . (PP*4DD™)=A'H : HH'.
Comparing this with (a) above, we have at once
(PP” 4 DD™)=(AA" + BB™).

Proposition 130.
[VIL 14, 15, 16, 17, 18, 19, 20]
The following results can be dertved from the preceding
propositions, vis.
(1) For the ellipse,
AA™: PP" -~ DD"=A'H:2CM,;

and for both the ellipse and hyperbola, if p denote the parameter
of the ordinates to PP’,

¢)) AA™:p'=A'H.MH' : MH",

(3) AA™:(PP'4py=A'H . MH':(MH + MH')",

(4) AA”:PP' .p=A'H:MH, and

(5) AA™:PP*4p*'=A'H.MH': MH" + MH".

(1) We have

AA™: PP*=A'H : MH’, [Prop. 128 (1), (a)]
and PP"*: PP*~DD*=MH': MH' - MH [ibid, (B)]
=MH': 2CM in the ellipse.
Therefore for the ellipse
AA™: PP*~ DD"=A'H : 2CM.
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(2) For either curve
AA™: PP*=A'H : MH’, as before,
=A'H.MH': MH",
and, by Prop. 127,
. PP™:p'= MH" : MH*,;
. AA":p*=A'H.MH': MH".
(3) By Prop. 127,
PP :p=MH': MH;
s PP*:(PP'4p)=MH":(MH + MH')".
And AA™: PP*"=A'H.MH': MH", as before ;
. AA"™: (PP ¢ p)=A'H.MH': (MH + MH')".
4) AA™: PP*= A'H : MH', as before,
and PP™: PP'.p=PP':p
=MH': MH,; [Prop. 127]
. AA" . PP’ .p=A'H: MH.
(5) AA™: PP*"=A'H.MH': MH", as before,
and PP": PP*4p'=MH": MH™ + MH",
by means of Prop. 127
s AA™: PP*" 4 p'=A'H. MH': MH"+ MH".

Proposition 131.
[VIL 21, 22, 23]

In a hyperbola, if AA’ wz BB’ then, sf PP’, DD’ be any

other two conjugate diameters, PP’ orz DD’ respectively ; and

decreases

the ratio PP': DD’ continually {or increases

Surther from A on either side.
Also, yf AA'=BB’, PP'=DD".

} as P moves
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(1) Of the figures of Prop. 127, the first corresponds to
the case where AA4’> BB’, and the second to the case where
AA’ < BB’

. first . .
Taking then the {seeon d} figure respectively, it follows
from
PP*:DD*=MH': MH [Prop. 127]
that PP’ 2 DD".
Also AA":BB"=AA':p,= A'H : AH, by construction,
=AH':AH,
and AH': AHm_Z MH': MH,
while MH' : MH {dmpmsbes } continually as M moves further
or increases

from A4, t.e. a8 Q, or P, moves further from 4 along the curve.

Therefore @ AA”: BB” orz PP*: DD,

and the latter ratio {di".‘i“i’h“ } as P moves further from 4.
or increases

And the same is true of the ratios
AA': BB’ and PP’ : DD’
(2) If AA’=BB’, then A A'=p,, and both H and H’
coincide with C.
In this case therefore
AH=AH' = AC,
MH=MH'=CM,
and PP'= DD’ always.

Proposition 134.
[VIL 24.]
In an ellipse, if AA’ be the major, und BB’ the minor, axis,
and of PP’, DD’ be any other two conjugate diameters, then
AA': BB’> PP’: DD’,
and the latter ratio diminishes continually as P moves from
At B
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We have CA*:CB*=AN.NA': PN*;
. AN.NA’> PN*,
and, adding CN* to each,
CA*> CP?,

or

Also CB*: CA*=BM.MB’: DM*,
where DM is the ordinate to BB’.

Therefore BM.MB’' < DM*,
and, adding CM*, CB*< CD*;

s BB'< DD’ ......c.uvnvenennnnns (2).

Again, if PP/, DD/ be another pair of conjugates, P,
being further from A than P, D, will be further from B
than D.

And AN.NA': AN,.NA'=PN': PN
But AN,.NA'>AN.NA';
~. PN'>PN?
and AN, NA'-AN.NA'>PNS'—-PN"
But, as above, AN, .N A'>PN'

and AN,.NA'—~AN.NA'=CN*-CN},;
.. CN*~CN!>PN}!-PN*;
thus CP*>CP;},
or PP'>PP,.....counne.. (3).

In an exactly similar manner we prove that
DD’ < DD, .......ccovvnnnnnnn (4).
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We have therefore, by (1) and (2),
AA’: BB'>PP':DD’,
and, by (3) and (4), PP’: DD’'> P,P,: D,D,.
Cor. It is at once clear, if ps, p, p, are the parameters
corresponding to A4’, PP’, P P/, that
Pa<p, P<p, etc.

Proposition 133.
[VIL 25, 26.]
(1) In a hyperbola or an ellipse
AA'+ BB'< PP'+ DD,
where PP’, DD’ are any conjugate diameters other than
the awxes.

(2) In the hyperbola PP’ + DD’ increases continually as P
moves further from A, while in the ellipse it increases as P
moves from A until PP’, DD’ take the position of the equal
conjugate diameters, when it is a maximum.

(1) For the hyperbola

AA” ~ BB*= PP"™~ DD" [Prop. 129]
or (44'+ BB').(AA’ ~ BB’)=(PP'+ DD’).(PP’' ~ DD’),
and, by the aid of Prop. 131,
AA’' ~ BB’ > PP'~DD’;
.. AA’'+ BB’ < PP’'+ DD’

Similarly it is proved that PP’ + DI’ increases as P moves
further from A.

In the case where AA’'=BB, PP'=DD’, and PP’'>AA4’;
and the proposition still holds.

(2) For the ellipse

AA’': BB'> PP’ :DD’;

. (AA™+BB"): (A4’ + BB’} > (PP*+DD"): (PP’ + DD')'*
But AA"+ BB”®=PP"+DD"; [Prop. 129]
. AA’+BB'< PP'+DD'.

* Apollonius draws this inference directly, and gives no intermediate steps,
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Similarly it may be proved that PP’+ DD’ increases as
P moves from A until PP’, DD’ take the position of the equal
conjugate diameters, when it begins to diminish again.

Proposition 134.
[VIL 27.]
In every ellipse or hyperbola having w - awes
AA’ ~ BB'> PP’ ~ DD’,
where PP’, DD’ are any other conjugate diameters. Also, as P
moves from A, PP’ ~ DD’ diminishes, sn the hyperbola con-
tinually, and in the ellipse until PP’, DD’ take up the position
of the equal conjugate diameters.
For the ellipse the proposition is clear from what was
proved in Prop. 132.
For the hyperbolu
AA”™ ~ BB" = PP* ~ DD",
and PP’'>AA'
It follows that
AA’ ~- BB'> PP’ ~ DD',
and the latter diminishes continually as P moves farther
from A.

[This proposition should more properly have come before
Prop. 133, because it is really used (so far as regards the
hyperbola) in the proof of that proposition.]

Proposition 1385.
[VII 28.]
In every hyperbola or ellipse
AA’' .BB'< PP'.DD’,

and PP’'.DD’ tincreases as P moves away from A, in the
hyperbola continually, and tn the ellipse until PP’, DD’ coincide
with the equal conjugate diameters.

We have d4A’+ BB'< PP'+ DD, [Prop. 133]
so that .. (A4’ +BB’)' < (PP'+ DD'y".
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And, for the ellipse,
AA” + BB™ = PP” + DD". [Prop. 129]
Therefore, by subtraction,
AA' .BB'<PP'.DD’,

and in like manner it will be shown that PP.DD’ increases
. until PP’, DD’ coincide with the equal conjugate diameters.

For the hyperbola [proof omitted in Apollonius] PP’ > 4 A4’,
DD’ > BB’,and PP’, DD’ both increase continually as P moves
away from A. Hence the proposition is obvious.

Proposition 136.
[VIL 31.]
If PP, DIY be two conjugate diameters in an ellipse or
n conjugate hyperbolas, and if tungents be drawn at the four
extremities forming a parallelogram LL'MM’, then
the parallelogram LL'MM’ = rect. AA’. BB'.
Let the tangents at P, D meet the axis 44’ in T, T”

respectively. Let PN be an ordinate to 4A4’, and take a

length PO such that
PO*=CN.NT.

Now CA*: CB*'=CN.NT: PN* [Prop. 14]
= P0*: PN*,
or CA :CB=PO: PN;
». CA*: CA.CB=P0.CT:CT.PN.
Hence, alternately,
CA': PO.CT=CA.CB:CT.PN,
or CT.CN:PO.CT=CA.CB:CT.PN ...... (1).




236 THE CONICS OF APOLLONIUS.

Again, PT*:CD*=NT:CN, [Prop. 125]
so that 2ACPT:2AT'DC=NT:CN.
But the parallelogram (CL) is a mean proportional between
2ACPT and 2AT'DC,
for 2ACPT : (CL)=PT :CD
=CP : DT"
=(CL):2AT'DC.
Also PO is a mean proportional between ON and NT.
Therefore
2ACPT : (CL)y=P0:CN=PO.CT:CT.CN
=CT.PN: CA .CB, from (1) above.
And 2ACPT =CT.PN;
<. (CLy=CA .CB,
or, quadrupling each side,
OLLMM'=AA'. BB

Proposition 137.
[VIL 33, 34, 35.]

Supposing p, to be the parameter corresponding to the azis
AA’ in a hyperbola, and p to be the parameter corresponding
to a diameter PP’,

(1) of AA’ be not less than p,, then p, < p, and p tncreases
continually as P moves further from A ;



LENGTHS OF CONJUGATE DIAMETERS. 237

(2) if AA’ be less than p, but not less than % , then ps < p,
and p increases as P moves away from A ;

(3) if A4’ < %‘ , there can be found a diameter P, Py on

either side of the azis such that p,=2P,P;,. Also p, is less
than any other parameter p, and p increases as P moves further
Jrom P, in either direction.
(1) (a) If AA’ = p,, we have [Prop. 131 (2)]
PP'=p=DD’,
and PP’, and therefore p, increases continually as P moves
away from A.

% If AA’'>p,, AA’>BB’, and, as in Prop. 131 (1),
PP’: DD’, and therefore PP’: p, diminishes continually as P
moves away from A. But PP’ increases. Therefore p in-
creases all the more.

(2) Suppose 44’ <p, but 4:%'.

Let P be any point on the branch with vertex 4; draw
A’Q parallel to CP meeting the same branch in Q, and draw
the ordinate QM.

Divide A’A at H, H' so that
A'H: HA=AH' : HA'=AA’: p,,
as in the preceding propositions.
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Therefore AA":p'=A'H.AH': AH™ ............ (a).
We have now AH > AH' but $24H'
And MH + HA > 24H;
.. MH+HA:AH>AH: AH',
or (MH+ HAYAH' > AH".................. B)-

It follows that
(MH + HAYAM : MH + HA)AH', or AM: AH',
<(MH+ HA) AM: AH".
Therefore, componendo,
MH' : AH' < (MH+ HA)AM + AH*: AH*

whence A'H.MH': A’'H.AH' < MH*: AH",
or, alternately,
A'H.MH': MH'< A'H.AH': AH".

But, by Prop. 130 (2), and by the result (a) above, these
ratios are respectively equal to 44”: p*, and 44" : p,".

Therefore AA™:p'< AA”: p,,
or Pa<p-

Aguin, if P, be a point further from A than P is, and if
A’Q, is parallel to CP,, and M, is the foot of the ordinate QM,,

then, since AH $»24H’,
MH <2MH’;

also M.H + HM > 2MAH.
Thus (M,H + HM) MH' > MH".

This is a similar relation to that in (8) above except that
M is substituted for 4, and M, for M.

We thus derive, by the same proof, the corresponding result
to (vy) above, or
MH :MH < M H': MH",
whence A'H.M\H':M H'< A’'H.MH’': MH",
or AA™:pl<AA™:p',
so that p < p,, and the proposition is proved.
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(3) Now let A4’ be less than %‘-‘ .

Take a point M, such that HH’ = H'M,, and let Q,, P, be
related to M, in the same way that Q, P are to M.

Then P,P/:p,=MH': M,H. [Prop. 127)
It follows, since HH' = H'M,, that
p.'—- 2P.P°'.

Next, let P be a point on the curve between P, and A4,
and Q, M corresponding points.

Then MH .H'M< HH"”
since MH' < M,H'.

Add to each side the rectangle (MH + HH’) MH', and we
have

(M,H+ HM)MH’' < MH".

This again corresponds to the relation (8) above, with M
substituted for 4, M, for M, and < instead of >.

The result corresponding to () above is

M,H' : MH' > M H*: MH*,
s AH.MH' : MH*> A'H.MH': MH",

or AA™:p'> AA™: p'.

Therefore P > Po-

And in like manner we prove that p increases as P moves
from P, to A.

Lastly, let P be more remote from A than P, is.

In this case H'M > H'M,,
and we have MH' .H'M,> HH",
and, by the last preceding proof, interchanging M and M, and
substituting the opposite sign of relation,

AA™:p'< AA™: ),

and P> Po.

In the same way we prove that p increases as P moves
further away from P and A.

Hence the proposition is established.
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Proposition 138.
[VIL 36.]

In a hyperbola with unequal azes, if p, be the parameter
corresponding to AA’ and p that corresponding to PP’,
AA’ ~p,> PP’ ~ p,
and PP’ ~ p diminishes continually as P moves away from A.
With the same notation as in the preceding propositions,
A'H: HA=AH': H'A'= AA': p,,
whence AA™:(AA' ~p,)=A'H.AH': HH".
Also [Prop. 180 (3)]
AA™:(PP'~p)=A'H.MH': HH".

But A'H.MH'>A'H.AH';
s AA": (PP ~p)y>AA™: (A4’ ~p,)
Hence AA’ ~p,> PP ~p.

Similarly, if P,, M, be further from 4 than P, M are,
we have
A'H MH'>A'H.MH’,
and it follows that
PP'~p>P,P/~p,
and so on.

Proposition 139.
[VIL 37.]

In an ellipse, if P, P/, D,D, be the equal conjugate diamesters
and PP’, DD’ any other conjugate diameters, and sf p,, p, Pa> Pb
be the parameters corresponding to P,P/, PP', AA’, BB’
respectively, then

(1) AA’'~p, s the maximum value of PP'~p for
all points P between A and P,, and PP’ ~ p diminishes con-
tinually as P moves from A to P,,
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(2) BB’ ~ p, is the maximum value of PP’ ~ p for all
points P between B and P,, and PP’ ~ p diminishes continually
as P passes from B to P,,

(8) BB ~py>AA’' ~p,.

The results (1) and (2) follow at once from Prop. 182.

(8) Since p,: BB'=AA’: p,, and p, > A4’, it follows at
once that BB’ ~p, > AA’ ~ p,.

Proposition 140.
[VIL 38, 39, 40.]

(1) In a hyperbola, if AA’ be not less than ¥ p,,
PP +p>AA'+ p,,
where PP’ i3 any other diameter and p the corresponding
parameter; and PP'+p will be the smaller the nearer P
approaches to A.

(2) If AA'< }p,, there 13 on each side of the axis a
diameter, as P, Py, such that PP, =}p,; and P,P, + p, 18
less than PP’ + p, where PP’ i3 any other diameter on the same
side of the axis. Also PP’ + p increases as P moves away from
P,

(1) The construction being the same as before, we suppose

(a) AA' & p,.
In this case [Prop. 137 (1)] PP’ increases as P moves from
4, and p along with it.

Therefore PP’ + p also increases continually.
(%) Suppose AA’<p,but ¢ §pa;
s AH' ¢} AH;

thus AH' ¢ }(AH + AH'),
and (AH + AH').4AH' ¢ (AH + AH')".

Hence 4(AH+AH')AM :4(AH+AH')AH',or AM:AH’,

P4(AH+ AH')AM : (AH+ AH'Y;
H. C. 16
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and, componendo,
MH :AH' $4(AH+ AH)AM+(AH+ AH"Y:(AH+ AH')"
Now
(MH+ MH')Y—-(AH+AH') =2AMMH+ MH'+ AH+AH)
>4AM(AH+ AH");
;. 4AM(AH+AH'Y+ (AH+ AH'Y < (MH+ MH').
It follows that
MH':AH'< (MH + MH")*: (AH + AH")",
or AH.MH':(MH+MH')< A'H.AH':(AH+AH');
s AA™: (PP’ +p)< AA™:(AA’ + p,) [by Prop. 130 (8)]).

Hence AA' 4+ p,< PP’ +p.
Again, since AH' ¢ }(AH + AH"),
MH' > }(MH + MH');

. 4(MH+MH')MH' >(MH + MH")".
And, if P, be another point further from A than P is, and

Q,, M, points corresponding to Q, M, we have, by the same proof
as before (substituting M for 4, and M, for M),

AHMH :(MH+MH)<A'H. MH' : (MH + MH')",
We derive PP’ +p< PP/ +p,;

and the proposition is established.
(2) We have AH'< }AH, so that AH'< § HH'.
Make H'M, equal to § HH', so that M .H' =} M H.
Then PP/:p,=MH': MH=1:3,

and P0P°I=%.

Next, since MH =}M,H,
MH'= }(M,H + M,H').
Now suppose P to be a point between 4 and P,, so that
M,H' > MH';
s (M H+MH'Y >(M,H+MH').4M H',
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Subtracting from each side the rectangle (M,H + MH’).4MM,,
(MH + MH'Y > (M ,H + MH'). 4MH';
s (MH + MH') .4MM, : (M,H+ MH") .4MH’, or MM, : MH’,
>(M,H+ MH').4MM, : (MH + MH')".
Therefore, componendo,
MH' MH' >(M ,H+MH'y. 4MM,+(MH + MH'Y":(MH+MH"')
>(M,H+MH') :(MH + MH')".
Hence
A'H MH' : M,H+ MH)>A'H.MH': (MH + MH')".
Therefore [Prop. 130 (3)]
AA™: (P Py +p)>AA4": (PP’ +p),
and PP'+p>P,P/+p,.
Again, if P, be a point between P and A, we have
(MH+ MH'Y* > (MH + M\H") . 4MH’,
and we prove exactly as before that

P,P/+p,>PP'+p,
and 8o on.

Lastly, if MH > M, H, we shall have
(MH + M,H') . 4M ,H' > (M, H + M H")".

If to both sides of this inequality there be added the
rectangle (MH + M,H'). 4MM,, they become respectively

(MH + M, H').4MH' and (MH + MH')’,
and the method of proof used above gives
PP/ +p,< PP'+p,
and so on.
Hence the proposition is established.

16—°
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Proposition 141.
[VIL 41.]

In any ellipse, if PP’ be any diameter and p its parameter,
PP'+p>AA’ +p.,andPP’+putholucthammPuto
A. Also BB'+ p,>PP'+p

A 'y
With the same construction as before,
AH:HA=AH : H'A

=AA": p,

= : BB’,
Then AA’:(AA'+p.)=A'H': HH"

=A'H.AH' : HH"......... (a).
Also AA™ :BB"=AA':p,=A'H: A'H’'

=A'H.A'H': A'H® }
and BB*: (BB'+p)=A'H": HH"

Therefore, ez aequalt,
AA™:(BB'+p)'=A'H. A’'H': HH"......... B)-
From (a) and (B), since AH’> A'H’,
AA' + p.< BB+ p.

Again AA™: (PP'+p)'=A'"H.MH' : HH", [Prop. 130 (3)]
and AA™:(P,P/+p)=A'H. MH': HH",
where P, is between P and B, from which it follows, since

AH'>MH >MH' > A'H',
that AA'+p,< PP’ +p,
PP +p< PP/'+p,
PP/ +p,<BB’'+py,

and the proposition follows.
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Proposition 144.
[VIL 42)]
In a hyperbola, if PP’ be any diameter with parameter p,
AA’.p,< PP’.p,
and PP’. p increases as P moves away from A.
We have A'H:HA=AA4":AA'.p,,

and A'H:MH=AA™: PP'.p, [Prop. 130 (4)]
while AH< MH;
o AA'.p,< PP'.p,

and, since M H increases as P moves from 4, so does PP’. p.

Proposition 143.
[VIL 43]

In an ellipse AA’.p, < PP'.p, where PP’ i3 any diameter,
and PP’.p increases as P moves away from A, reaching a
maximum when P coincides with B or B’.

The result is derived at once, like the last proposition, from
Prop. 130 (4).

[Both propositions are also at once obvious since
PP'.p=DD"]

Proposition 144.
[VIL 44, 45, 46,
In a hyperbola,
(1) fA4'&ps,or
() f AA'<p,, but AA™& § (AA' ~ p,)', then
AA"+p¢’<P-P"+p',
where PP’ 13 any diameter, and PP" + p* increases as P moves
away from 4 ;
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(3) if AA" <} (AA’ ~ p,), then there will be found on either
side of the axis a diameter P, Py such that P,P,*=}(P,P,’ ~ p,)",
and P,P,* + p;' will be less than PP™+ p*, where PP’ is any
other diameter. Also PP"+ p* wnll be the smaller the nearer
PP’ is to P,P,.

(1) Let AA’ be not less than p,.

Then, if PP’ be any other diameter, p > p,, and p increases
a8 P moves further from A [Prop. 137 (1)]; also 44’ < PP",
which increases as P moves further from 4 ;

. AA"+p'< PP+ p',
and PP” 4 p* increases continually as P moves further from 4.

(2) Let AA’ be less than p,, but 44”4 § (44’ ~ p,)".
Then, since AA' : p,=A'H: AH=AH': A'H’,
24H" 4« HH",
and 2MH'.AH' > HH".
Adding 24 H.AH' to each side of the last inequality,
e(MH+ AH')AH'>2AH.AH'+ HH"
>AH'+ AH"™;
. 2(MH+ AH')AM : 2(MH + AH')AH', or AM: AH’,
<2(MH+ AH')AM : AH*+ AH".
Therefore, componendo,
MH':AH'<2(MH+ AHYAM + AH"+ AH": AH*+ AH"™,
and MH'+ MH"=AH'+AH™+2AM(MH + AH’),
so that MH :AH'< MH*+ MH™: AH*+ AH",
or AH MH' :MH*+MH"<A'H.AH':AH'+ AH™;
s AA™:PP*+p'< AA": AA™+p,". [Prop. 180 (5)]
Thus AA™+ pg' < PP™ 4 p'.
Again, since 2MH"™> HH",
and (if AM,>AM) 2M,H'.MH’ > HH",
we prove in a similar manner, by substituting M for A and M,

for M, that
PP*+p'< PP+ p’.
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(3) Let AA’ be less than § (44’ ~ p,),

so that 2AH*< HH",
Make 2M H” equal to HH™.
Now MH': MH = PP, : p, [Prop. 127]
so that P,P* =% (PP, ~p,).
Next, if P be between 4 and P,,
M H™= HH",
and eMH' .MH'< HH".

Adding 2MH . MH’ to each side,
2(M,H+ MH') MH' < MH* + MH",
and, exactly in the same way as before, we prove that
PP + p! < PP™ 4 p.
Again, if P, be between 4 and P,
2MH' .M,H' < HH",
whence (adding 2M, H . M, H’)
S(MH+ M\HYM\H' < M\H"+ M\H",
and, in the same way,

PP+ p'< PP +p".
Similarly PP +p'<AA"+p,.
Lastly, if AM> AM,,
eMH'.M,H' > HH",
and, if AM,> AM,

2M,H' .MH' > HH"”;
whence we derive in like manner that
PP* +p*> P,P* + p,’,
P,P" 4+ p'>PP" + p',

and so on.
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Proposition 145.
[VIL 47, 48.]

In an ellipse,

(1) if AA"$}(AA'+p,), then AA™+p< PP+,
and the latter increases as P moves away from A, reaching a
maximum when P coincides with B ;

() of AA™> (A4’ +p,)', then there unll be on each side
of the axis a diameter P,P, such that P,P,* = {(P,P, + p,)',
and P,P,” + p; will then be less than PP™ +p* in the same
quadrant, while this latter increases as P moves from P, on either
side.

(1) Suppose 44" 3 §(A4' +p.)
Now A'H.AH':AH'+AH®=AA":A44"+p,
Also AA™ :BB*=p,: BB'=AA' :p,=A'H : A'H’
=A'H.A'H' : A’H",
and BB": (BB +p')=A'H™: AH'+ A’'H";
hence, ez aequalt,
AA™ . (BB*+p)=A'H.A'H' : AH*+ A'H",
and, as above,
AA™:(AA"+p)=A'H.AH' : A’H*+ A’'H™,

Again, A4 3 F(A4' +po),
». 24’H.AH’' ¥ HH",
whence 24'H.MH' < HH".
Subtracting 2MH . MH’, we have
24'M .MH' < MH*+ MH".................. (1),

s 24'M AM :24'M . MH', or AM : MH',
>24'M.AM : MH* + MH",
and, since 24'M.AM+ MH'+ MH™=A'H* + A’H",
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we have,'componendo,

AH' : MH' > A'H*+ A’'H™ : MH* + MH",
s AH. AH':A'H*+ A'H* > A’'H.MH' : MH* + MH",
whence AA™:(AA"+p,")> AA™ : (PP +p"),

[Prop. 130(5)]
or AA™ 4+ p;' < PP+ p"

Again, either MH < M\H', or MH & M\ H".

(a) Let MH< M\H'.
Then MH*+ MH" > M,H*+ M,H",
and MH'+ M H”> M\ H'.2(M,H' - MH)*;
o MM, .2(M\H'- MH): M\H'.2 (M,H'—~ MH), or MM, : M\ H’,
>MM,.2(M\H' - MH) : M\H* + M, H*.
But MH*+ MH"—(M,H*+ M, H") =2 (CM* - CM,*);
S MM, .2(M\H'-MH)+ M\H*+ M\H" = MH* + MH",
thus, componendo, we have
MH' : M\H' > MH*+ MH™ : M\H*+ M,H";
therefore, alternately,

A'H . MH' : MH*+ MH*>A'H.M\H' : \\H*+ M\H",
and AA™: PP* +p*'> AA™: P, P,” + p*,[Prop. 130 (5)]
so that PP+ p'< P,P" +p"

o If MH & M. H’,
MH'+ MH™ » M\H*+ M\H",
and it results, in the same way as before, that

A'H.MH' : MH*+ MH" > A'H M\H’' : M\H* + M,\H",
and PP*+p'< P, P," +p".

Lastly, since
A'H AH :AH*+ A’'H”=AA" : BB®+py’,
and A'H.MH :MH'+ M\H”=AA": P,P," +p),

* Asin (1) above,

M, H*+ M H">24'M, . M,H’
>MH'.3(MH' - A'H’)
>M,H’'.3 (M,H’ - MH), a fortiori.
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it is shown in the same manuner that

P,P"+p'< BB™ +p"
(2) Suppose AA™> (A4 +p,),
so that 24AH™ > HH".

Make 2M,H"™ equal to HH", so that
MH*={HH"=HH' .CH’;
. HH':MH = M,H': CH'
=HH' ~ M,H' : M\H' ~ CH",

whence MH :CM,=HH' : M,.H',
and HH'.CM,=M,H.M,H'.
If then (a) AM< AM,

4CM,.CH' >2MH .M, H'.
Adding 2MM,. M, H’ to each side,
4CM,.CH' + °MM, M ,H' > 2M . H . M H’,
and again, adding 4CM ",
2(CM +CM,) MH' > (M,H* + M,H").
It follows that
2(CM+CM,) MM, : 2(CM + CM,) M,H’, or MM, : M H',
<2(CM+CM,) MM, : (M, H* + M .H™).
Now 2(CM+CM)MM,+ M,H*+MH™

=MH'+ MH",
so that, componendo,

MH : M\H' < MH*+ MH™ : M,H*+ M H",
and

AH MH : MH*+ MH*< A'H. M H' . M\H*+ M,H"”
whence P,P +p< PP*+p',
Similarly, if AM, < AM,
2HH'.CM >2M,H MH',
and we prove, in the same manner as above,
PP*+p'< P, P,* + py".
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And, since 2HH'.CM,>24H .M H',
in like manner
P,P"+p'< AA™ +p,'
Lastly (b), if AM > AM,, the same method of proof gives
PP +p! < PP*+p',
etec.

Proposition 146.
[VIL 49, 50.]

In a hyperbola,

(1) i A4’ > p,, then
AA™ ~ p < PP” ~ p*, where PP’ is any diameter, and PP" ~ p'
increases as P moves further from 4 ;
also PP? ~p*'> AA" ~p, . AA' but <2(AA™ ~p,. A4’):

(2) #f AA' < p,, then
AA™ ~ p' > PP™ ~ p*, which diminishes as P moves away
Jrom A;
also PP™~ p*> 2(AA™ ~ pg. AA").

(1) Asusual, AH: AH=AH : A'H' = AA’: p,;

s A’'H.AH': AH” ~ AH'=AA": AA" ~ p,".
Now MH': AH'< MH : AH;
o MH :AH'<MH'+ MH : AH'+ AH
<(MH'+ MH)HH':(AH'+ AH)HH',

ie. <MH™~ MH': AH™~ AH".

Hence

A'H.MH': MH” ~ MH'< A'H . AH': AH" ~ AH*;
s AA™: PP"~p'< AA™: AA™ ~ p,*, [Prop. 180 (5)]

or AA™ ~ p< PP"~ p"

Again, if AM > AM,

MH :MH <M H: MH;
S MH:MH<MH+MH: MH'+ MH,
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and, proceeding as before, we find
PP”~p'< P,P"~p},
and so on.
Now, if PO be measured along PP’ equal to p,
PP* ~ p*=2P0.0P'+ OP"™,;
‘. PP® ~ p*> PP’'.OP’ but < 2PP’. OP".
But PP’ .OP'=PP*-PP'.PO
=PP"*-p.PP'
=AA"-p, . AA’; [Prop. 129]
‘. PP"~p'>AA" ~p,. A4’ but <2(44"~p,. 4 A").
(2) If A4’ < ps,
MH':AH'>MH: AH;

S MH :AH'>MH'+ MH : AH'+ AH,
and

A'H.MH':A'H.AH'>(MH'+ MH)HH':(AH'+ AH)HH',
ie. >MH™~ MH*: AH” ~ AH".
Therefore, proceeding as above, we find in this case
PP™ -~ p'<AA" ~ p,;
Similarly
’ PP”~p'< PP™~p',
and so on.
Lastly, if PP’ be produced to O so that PO = p,
AA”~p,.AA'= PP"~ p. PP’ [Prop. 129]
= PP’ . OP',
And PP"” -~ p*'= PP* ~ PO*
=2PP'.P'0+ P'0®
> 2PP'.OP'
or >2(AA" ~ p,. A4
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Proposition 147.

[VIL 51
In an ellipse,
(1) sf PP’ be any diameter such that PP'> p,
AA™ ~ pt> PP" ~ p',

and PP"™ ~ p* diminishes as P moves further from A ;
(2) of PP’ be any diameter such that PP’ < p,
BB™ ~ py' > PP" ~ p',
and PP"™ ~ p* diminishes as P moves further from B.
(1) In this case (using the figure of Prop. 141)
AH': MH'< AC:CM
~A'H.AH': A’H.MH'< 2HH' . AC : 2HH'.CM
ie. <AH” -~ AH*: MH™ ~ MH".
Therefore, alternately,
A'H AH' : AH® ~ AH'< A’'H MH': MH™ ~ MH".
Hence
AA™: AA™~ pl< AA™: PP” ~ p*, [Prop. 130 (5)]
and AA™~ p> PP~ p,
Also, if AM, > AM, we shall have in the same way
A'H.MH': A’H M\H'< MH"~ MH*: M H* ~ M . H",
and therefore = PP"~p'> P P~ p® and so on.
(2) P must in this case lie between B and the extremity

of either of the equal conjugate diameters, and M will lie
between C and 4’ if P is on the quadrant 4 B.
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Then, if M, corresponds to another point P,,and AM, > AM,
we have

MH'> M H', and CM < CM;
. AH.MH': A'H.M,H'>CM : CM,
>20M.HH': 2CM,. HE',

ie. >MH"'~ MH™: MH* ~- M H",
whence, in the same manner, we prove
PP""P‘< PIPI"~p!,;

and PP”™~ p* increases as P moves nearer to B, being a
mazimum when P coincides with B.
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