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PREFACE.

THIS book is intended to form a companion volume to my

edition of the treatise of Apollonius on Conic Sections
lately published. If it was worth while to attempt to make the
work of “the great geometer” accessible to the mathematician
of to-day who might not be able, in consequence of its length
and of its form, either to read it in the original Greek or in a
Latin translation, or, having read it, to master it and grasp the
whole scheme of the treatise, I feel that I owe even less of an
apology for offering to the public a reproduction, on the same
lines, of the extant works of perhaps the greatest mathematical
genius that the world has ever seen.

Michel Chasles has drawn an instructive distinction between
the predominant features of the geometry of Archimedes and
of the geometry which we find so highly developed in Apollo-
nius. Their works may be regarded, says Chasles, as the origin
and basis of two great inquiries which seem to share between
them the domain of geometry. Apollonius is concerned with
the Geometry of Forms and Situations, while in Archimedes
we find the Geometry of Measurements dealing with the quad-
rature of curvilinear plane figures and with the quadrature
and cubature of curved surfaces, investigations which “gave
birth to the calculus of the infinite conceived and brought
to perfection successively by Kepler, Cavalieri, Fermat, Leibniz,_
and Newton.” But whether Archimedes is viewed as the
man who, with the limited means at his disposal, nevertheless
succeeded in performing what are really integrations for the
purpose of finding the area of a parabolic segment and a
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spiral, the surface and volume of a sphere and a segment
of a sphere, and the volume of any segments of the solids
of revolution of the second degree, whether he is seen finding
the centre of gravity of a parabolic segment, calculating
arithmetical approximations to the value of =, inventing a
system for expressing in words any number up to that which
we should write down with 1 followed by 80,000 billion
ciphers, or inventing the whole science of hydrostatics and at
the same time carrying it so far as to give a most complete
investigation of the positions of rest and stability of a right
segment of a paraboloid of revolution floating in a fluid, the
intelligent reader cannot fail to be struck by the remarkable
range of subjects and the mastery of treatment. And if these
are such as to create genuine enthusiasm in the student of
Archimedes, the style and method are no less irresistibly
attractive. One feature which will probably most impress the
mathematician accustomed to the rapidity and directness secured
by the generality of modern methods is the deliberation with
which Archimedes approaches the solution of any one of his
main problems. Yet this very characteristic, with its incidental
effects, is calculated to excite the more admiration because the
method suggests the tactics of some great strategist who
foresees everything, eliminates everything not immediately
conducive to the execution of his plan, masters every position
in its order, and then suddenly (when the very elaboration of
the scheme has almost obscured, in the mind of the spectator,
its ultimate object) strikes the final blow. Thus we read in
Archimedes proposition after proposition the bearing of which is
not immediately obvious but which we find infallibly used later
on; and we are led on by such easy stages that the difficulty of
the original problem, as presented at the outset, is scarcely
appreciated. As Plutarch says, “it is not possible to find in
geometry more difficult and troublesome questions, or more
simple and lucid explanations.” But it is decidedly a rhetorical
exaggeration when Plutarch goes on to say that we are deceived
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by the easiness of the successive steps into the belief that anyone
could have discovered them for himself. On the contrary, the
(studied simplicity and the perfect finish of the treatises involve
at the same time an element of mystery. Though each step
depends upon the preceding ones, we are left in the dark as to
how they were suggested to Archimedes. There is, in fact,
much truth in a remark of Wallis to the effect that he seems
“as 1t were of set purpose to have covered up the traces of his
investigation as if he had grudged posterity the secret of his
method of inquiry while he wished to extort from them assent
to his results.” Wallis adds with equal reason that not only
Archimedes but nearly all the ancients so hid away from
posterity their method of Analysis (though it is certain that
they had one) that more modern mathematicians found it easier
to invent a new Analysis than to seek out the old. This is no
doubt the reason why Archimedes and other Greek geometers
have received so little attention during the present century and
why Archimedes is for the most part only vaguely remembered
as the inventor of a screw, while even mathematicians scarcely
know him except as the discoverer of the principle in hydro-
statics which bears his name. It is only of recent years that
we have had a satisfactory edition of the Greek text, that of
Heiberg brought out in 1880-1, and I know of no complete
translation since the German one of Nizze, published in 1824,
which is now out of print and so rare that I had some difficulty
in procuring a copy.

The plan of this work is then the same as that which I
followed in editing the Conics of Apollonius. In this case,
however, there has been less need as well as less opportunity for
compression, and it has been possible to retain the numbering
of the propositions and to enunciate them in a manner more
nearly approaching the original without thereby making the
enunciations obscure. Moreover, the subject matter is not so
complicated as to necessitate absolute uniformity in the notation
used (which is the only means whereby Apollonius can be made
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even tolerably readable), though I have tried to secure as much
uniformity as was fairly possible. My main object has been to
present a perfectly faithful reproduction of the treatises as they
have come down to us, neither adding anything nor leaving out
anything essential or important. The notes are for the most
part intended to throw light on particular points in the text or
to supply proofs of propositions assumed by Archimedes as
known ; sometimes I have thought it right to insert within
square brackets after certain propositions, and in the same type,
notes designed to bring out the exact significance of those
propositions, in cases where to place such notes in the Intro-
duction or at the bottom of the page might lead to their being
overlooked.

Much of the Introduction is, as will be seen, historical ; the
rest is devoted partly to giving a more general view of certain
methods employed by Archimedes and of their mathematical
significance than would be possible in notes to separate propo-
sitions, and partly to the discussion of certain questions arising
out of the subject matter upon which we have no positive
historical data to guide us. In these latter cases, where it is
necessary to put forward hypotheses for the purpose of explaining
obscure points, I have been careful to call attention to their
speculative character, though I have given the historical evidence
where such can be quoted in support of a particular hypothesis,
my object being to place side by side the authentic information
which we possess and the inferences which have been or may
be drawn from it, in order that the reader may be in a position
to judge for himself how far he can accept the latter as probable.
Perhaps I may be thought to owe an apology for the length of
one chapter on the so-called vevoess, or inclinationes, which goes
somewhat beyond what is necessary for the elucidation of
Archimedes; but the subject is interesting, and I thought it
well to make my account of it as complete as possible in
order to round off, as it were, my studies in Apollonius and
Archimedes.
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I have had one disappointment in preparing this book for
the press. I was particularly anxious to place on or opposite
the title-page a portrait of Archimedes, and I was encouraged
in this idea by the fact that the title-page of Torelli’s edition
bears a representation in medallion form on which are endorsed
the words Archimedis effigies marmorea tn vetert anaglypho
Romae asservato. Caution was however suggested when I
found two more portraits wholly unlike this but still claiming to
represent Archimedes, one of them appearing at the beginning
of Peyrard’s French translation of 1807, and the other in
Gronovius’ Thesaurus Graecarum Antiquitatum ; and I thought
it well to inquire further into the matter. I am now informed
by Dr A. S. Murray of the British Museum that there does
not appear to be any authority for any one of the three, and
that writers on iconography apparently do not recognise an
Archimedes among existing portraits. I was, therefore, re-
luctantly obliged to give up my idea.

The proof sheets have, as on the former occasion, been read
over by my brother, Dr R. S. Heath, Principal of Mason College,
Birmingham ; and I desire to take this opportunity of thanking
him for undertaking what might well have seemed, to any one
less genuinely interested in Greek geometry, a thankless task.

T. L. HEATH.

March, 1897,
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INTRODUCTION.

CHAPTER L
ARCHIMEDES,

A vuFE of Archimedes was written by one Heracleides*, but
this biography has not survived, and such particulars as are known
have to be collected from many various sourcesft. According to
Tzetzes| he died at the age of 75, and, as he perished in the sack
of Syracuse (B.c. 212), it follows that he was probably born about
287 B.c. He was the son of Pheidias the astronomer§, and was
on intimate terms with, if not related to, king Hieron and his

* Eutocius mentions this work in his commentary on Archimedes’ Measure-
ment of the circle, ds gpnow ‘Hpakheldns év 16 *Apxyrhdovs Bly. He alludes to it
again in his commentary on Apollonius’ Conics (ed. Heiberg, Vol. 1. p. 168),
where, however, the name is wrongly given as ‘Hpdx\ewos. This Heracleides is
perhaps the same as the Heracleides mentioned by Archimedes himself in the
preface to his book On Spirals.

*+ An exhaustive collection of the materials is given in Heiberg’s Quaestiones
Archimedeae (1879). The preface to Torelli’s edition also gives the main points,
and the same work (pp. 863—370) quotes at length most of the original
references to the mechanical inventions of Archimedes. Further, the article
Archimedes (by Hultsch) in Pauly-Wissowa's Real-Encyclopidie der classischen
Altertumswissenschaften gives an entirely admirable summary of all the available
information. See also Susemihl’s Geschichte der griechischen Litteratur in der
Alexandrinerzeit, 1. pp. 728—1733.

I Tzetzes, Chiliad., 11. 35, 105.

§ Pheidias is mentioned in the Sand-reckoner of Archimedes, 7@v mporépwy
dorpohbywy Evddtov.. Pedla 8¢ Tol duol marpds (the last words being the correction
of Blass for ro0 ’AkoUmarpos, the reading of the text). Cf. Schol. Clark. in
Gregore Nazianz. Or. 34, p. 355 a Morel. ®edlas 70 uév yévos Ww Zvpakboios
doTponéyos 0 "Apxiuhdous warip.
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son Gelon. It appears from a passage of Diodorus* that he spent
a considerable time at Alexandria, where it may be inferred that
he studied with the successors of Euclid. It may have been at
Alexandria that he made the acquaintance of Conon of Samos
(for whom he had the highest regard both as a mathematician
and as a personal friend) and of Eratosthenes. To the former
he was in the habit of communicating his discoveries before their
publication, and it is to the latter that the famous Cattle-problem
purports to have been sent. Another friend, to whom he dedicated
several of his works, was Dositheus of Pelusium, a pupil of Conon,
presumably at Alexandria though at a date subsequent to Archi-
medes’ sojourn there.

After his return to Syracuse he lived a life entirely devoted
to mathematical research. Incidentally he made himself famous
by a variety of ingenious mechanical inventions. These things
were however merely the ‘““diversions of geometry at play +,” and
he attached no importance to them. In the words of Plutarch, “he
possessed so high a spirit, so profound a soul, and such treasures
of scientific knowledge that, though these inventions had obtained
for him the renown of more than human sagacity, he yet would
not deign to leave behind him any written work on such subjects,
but, regarding as ignoble and sordid the business of mechanics
and every sort of art which is directed to use and profit, he placed
his whole ambition in those speculations in whose beauty and
subtlety there is no admixture of the common needs of life}.” In
fact he wrote only one such mechanical book, On Sphere-makings,
to which allusion will be made later.

Some of his mechanical inventions were used with great effect
against the Romans during the siege of Syracuse. Thus he contrived

* Diodorus v. 87, 8, ods [rods roxMas] *Apxuundns 6 Zvpaxéoros edpev, bre
wapéBaley els Alyvrrov.

+ Plutarch, Marcellus, 14.

1 bid. 17.

§ Pappus vir. p. 1026 (ed. Hultsch). Kdpmros 8¢ mov ¢now 6 "Avrioxeds
" Apxiuhdn Tov Svpaxboiov & udvor BiSAlov guvteraxévar umxavikdy TS Katd ThY
opapomoilay, @y §¢ dNNwv o0dey fEiwkévar ovvrdéar. kalror wapd Tols woANois éri
unxaviky dofacels kal peyakopuis Tis yevbuevos 6 favpuaocrds éxeivos, dore diaueivar
wapl wiow dvfpdmois IrepBalhbyTws Vuvovpuevos, TOV TE WPONYOUREVWY YEWUETPikT)s
kal dpibunriciis éxouévwr Bewplas Td Bpaxirara SoxolvTa elvaw omovdaiws cuvéypagper
Os galverar Tas elpyuévas émorhuas olrws dyamioas os undéy Ewbev Vmouévew
atrais érewdyew.
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catapults so ingeniously constructed as to be equally serviceable
at long or short ranges, machines for discharging showers of
missiles through holes made in the walls, and others consisting
of long moveable poles projecting beyond the walls which either
dropped heavy weights upon the enemy’s ships, or grappled the
prows by means of an iron hand or a beak like that of a crane,
then lifted them into the air and let them fall again*. Marcellus
is said to have derided his own engineers and artificers with the
words, ‘“Shall we not make an end of fighting against this geo-
" metrical Briareus who, sitting at ease by the sea, plays pitch and
toss with our ships to our confusion, and by the multitude of
missiles that he hurls at us outdoes the hundred-handed giants of
mythology?+”; but the exhortation had no effect, the Romans being
in such abject terror that ¢“if they did but see a piece of rope
or wood projecting above the wall, they would cry ¢there it is
again,’ declaring that Archimedes was setting some engine in motion
against them, and would turn their backs and run away, insomuch
that Marcellus desisted from all econflicts and assaults, putting all
his hope in a long siege}.”

If we are rightly informed, Archimedes died, as he had lived,
absorbed in mathematical contemplation. The accounts of the
exact circumstances of his death differ in some details. Thus
Livy says simply that, amid the scenes of confusion that followed
the capture of Syracuse, he was found intent on some figures which
he had drawn in the dust, and was killed by a soldier who did
not know who he was§. Plutarch gives more than one version in
the following passage. ¢ Marcellus was most of all afflicted at
the death of Archimedes; for, as fate would have it, he was intent
on working out some problem with a diagram and, having fixed
his mind and his eyes alike on his investigation, he never noticed
the incursion of the Romans nor the capture of the city. And
when a soldier came up to him suddenly and bade him follow to

* Polybius, Hist. viir. 7—8 ; Livy xx1v. 34; Plutarch, Marcellus, 15—17.

+ Plutarch, Marcellus, 17.

T ibid. .

§ Livy xxv. 31. Cum multa irae, multa auaritiae foeda exempla ederentur,
Archimedem memoriae proditum est in tanto tuniultu, quantum pauor captae
urbis in discursu diripientium militum ciere poterat, intentum formis, quas in
puluere descripserat, ab ignaro milite quis esset interfectum ; aegre id Marcellum
tulisse sepulturaeque curam habitam, et propinquis etiam inquisitis honori
praesidioque nomen ac memoriam eius fuisse.

H. A. b
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Marcellus, he refused to do so until he had worked out his problem
to a demonstration; whereat the soldier was so enraged that he
drew his sword and slew him. Others say that the Roman ran
up to him with a drawn sword offering to kill him; and, when
Archimedes saw him, he begged him earnestly to wait a short time
in order that he might not leave his problem incomplete and
unsolved, but the other took no notice and killed him. Again
there is a third account to the effect that, as he was carrying to
Marcellus some of his mathematical instruments, sundials, spheres,
and angles adjusted to the apparent size of the sun to the sight, some
soldiers met him and, being under the impression that he carried
gold in the vessel, slew him*.” The most picturesque version of the
story is perhaps that which represents him as saying to a Roman
soldier who came too close, “ Stand away, fellow, from my diagram,”
whereat the man was so enraged that he killed himt. The addition
made to this story by Zonaras, representing him as saying wapd
kepalav kai un wopd ypappdv, while it no doubt recalls the second
version given by Plutarch, is perhaps the most far-fetched of the
touches put to the picture by later hands.

Archimedes is said to have requested his friends and relatives
to place upon his tomb a representation of a cylinder circumseribing
a sphere within it, together with an inscription giving the ratio
which the cylinder bears to the sphere}; from which we may
infer that he himself regarded the discovery of this ratio [On the
Sphere and Cylinder, 1. 33, 34] as his greatest achievement. Cicero,
when quaestor in Sicily, found the tomb in a neglected state and
restored it§.

Beyond the above particulars of the life of Archimedes, we
have nothing left except a number of ‘stories, which, though perhaps
not literally accurate, yet help us to a conception of the personality
of the most original mathematician of antiquity which we would
not willingly have altered. Thus, in illustration of his entire
preoccupation by his abstract- studies, we are told that he would
forget all about his food and such necessities of life, and would
be drawing geometrical figures in the ashes of the fire, or, when

* Plutarch, Marcellus, 19.

+ Tzetzes, Chil. 11. 35, 135 ; Zonaras 1x. 5.
1 Plutarch, Marcellus, 17 ad fin.

§ Cicero, Tusc. v. 64 sq.
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anointing himself, in the oil on his body*. Of the same kind is
the well-known story that, when he discovered in a bath the
solution of the question referred to him by Hieron as to whether
a certain crown supposed to have been made of gold did not in
reality contain a certain proportion of silver, he ran naked through
the street to his home shouting elpyka, efpykat.

According to Pappusi it was in connexion with his discovery
of the solution of the problem 7o move a given weight by a given
Jorce that Archimedes uttered the famous saying, “Give me a
place to stand on, and I can move the earth (8¢s por mod 074 «ai
kwd v yiv).” Plutarch represents him as declaring to Hieron
that any given weight could be moved by a given force, and
boasting, in reliance on the cogency of his demonstration, that, if
he were given another earth, he would cross over to it and move
this one. “And when Hieron was struck with amazement and asked
him to reduce the problem to practice and to give an illustration
of some great weight moved by a small force, he fixed upon a ship
of burden with three masts from the king’s arsenal which had
only been drawn up with great labour and many men ; and loading
her with many passengers and a full freight, sitting himself the
while far off, with no great endeavour but only holding the end
of a compound pulley (roMjoragros) quietly in his hand and pulling
at it, he drew the ship along smoothly and safely as if she were
moving through the sea§.” According to Proclus the ship was one
which Hieron had had made to send to king Ptolemy, and, when all
the Syracusans with their combined strength were unable to launch
it, Archimedes contrived a mechanical device which enabled Hieron
to move it by himself, insomuch that the latter declared that
“from that day forth Archimedes was to be believed in every-
thing that he might say|.”* While however it is thus established
that Archimedes invented some mechanical contrivance for moving
a large ship and thus gave a practical illustration of his thesis,
it is not certain whether the machine used was simply a compound

* Plutarch, Marcellus, 17.

+ Vitruvius, drchitect. 1x. 3. For an explanation of the manner in which
Archimedes probably solved this problem, see the note following On floating
bodies, 1. 7 (p. 259 8q.).

1 Pappus vir. p. 1060.

§ Plutarch, Marcellus, 14.

Il Proclus, Comm. on Eucl. 1., p. 63 (ed. Friedlein).
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pulley (moAdomragros) as stated by Plutarch; for Athenaeus*, in
describing the same incident, says that a helix was used. This
term must be supposed to refer to a machine similar to the xoxAlas
described by Pappus, in which a cog-wheel with oblique teeth
moves on a cylindrical helix turned by a handlef. Pappus, how-
ever, describes it in connexion with the BapovAxds of Heron, and,
while he distinctly refers to Heron as his authority, he gives no
hint that Archimedes invented either the BopovAxds or the par-
ticular xoyAias; on the other hand, the woljomagros is mentioned
by Galen}, and the rpiocmacros (triple pulley) by Oribasius§, as one
of the inventions of Archimedes, the tplomacros being so called
either from its having three wheels (Vitruvius) or three ropes
(Oribasius). Nevertheless, it may well be that though the ship
could easily be kept in motion, when once started, by the rpi-
omaoros or woliowaaros, Archimedes was obliged to use an appliance
similar to the xoxAias to give the first impulse.

The name of yet another instrument appears in connexion with
the phrase about moving the earth. Tzetzes’ version is, * Give
me a place to stand on (wd Bd), and I will move the whole earth
with a yopioriwv|”; but, as in another passage¥ he uses the word
mplomaoros, it may be assumed that the two words represented one
and the same thing**,

It will be convenient to mention in this place the other
mechanical inventions of Archimedes. The best known is the

* Athenaeus v. 207 a-b, xarackevdoas yap E\wka 70 Ty\ikodrov crdpos els T
OdNagoay kariyaye® wpdros 8 Apxuidns elpe Thv Ths E\kos karackeviy. To the
same effect is the statement of Eustathius ad Il 11 p. 114 (ed. Stallb.) Néyerar
8¢ e\t kal 7o unxavis eldos, 8 wpldros ebpiw 6 Apxiuhdns evdokluncé, pac, 8 airod.

+ Pappus viir. pp. 1066, 1108 sq.

1 Galen, in Hippocr. De artic., 1v. 47 (=xvu1. p. 747, ed. Kiihn).

§ Oribasius, Coll. med., xr1x. 22 (1v. p. 407, ed. Bussemaker), *AmeAidovs %
*Apxuphdovs Tplomagrov, described in the same passage as having been invented
wpos Tas TGy wholwy kabolkds.

|| Tzetzes, Chil. 11. 130.

o Ibid., 111, 61, 6 yijy dvaswdy unxavy T4 TewomdaTy Boby: ma Bé kal calelow
T xféva.

** Heiberg compares Simplicius, Comm. in Aristot. Phys. (ed. Diels, p. 1110,
L 2), ravry 8¢ 79 dvaloylg Tol kwobvTos kal ToD Kwovuévov kal Tol Sasriuaros
T orabuorikdy , Spyavor TOv Kkaholuevov Xapioriwva cuorTicas 6 "Apxumdns bs
péxpe wavrds Ths dvahoylas mwpoxwpolons éxbumacey ékevo TO wd B kal ki TIw
~av.
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water-screw * (also called xoyAias) which was apparently invented
by him in Egypt, for the purpose of irrigating fields. It was
also used for pumping water out of mines or from the hold of
ships.

Another invention was that of a sphere constructed so as to
imitate the motions of the sun, the moon, and the five planets
in the heavens. Cicero actually saw this contrivance and gives a
description of itf, stating that it represented the periods of the
moon and the apparent motion of the sun with such accuracy that
it would even (over a short period) show the eclipses of the sun
and moon. Hultsch conjectures that it was moved by wateri.
We know, as above stated, from Pappus that Archimedes wrote
a book on the construction of such a sphere (wepi odarpomrorias),
and Pappus speaks in one place of “those who understand the
making of spheres and produce a model of the heavens by means
of the regular circular motion of water.” In any case it is certain
that Archimedes was much occupied with astronomy. Livy calls
him “unicus spectator caeli siderumque.” Hipparchus says§,
“From these observations it is clear that the differences in the
years are altogether small, but, as to the solstices, I almost
think (ovk dwewilw) that both I and Archimedes have erred to
the extent of a quarter of a day both in the observation and in the
deduction therefrom.” It appears therefore that Archimedes had
considered the question of the length of the year, as Ammianus
also states|. Macrobius says that he discovered the distances of
the planetsY. Archimedes himself describes in the Sand-reckoner
the apparatus by which he measured the apparent diameter of the
sun, or the angle subtended by it at the eye.

The story that he set the Roman ships on fire by an arrange-
ment of burning-glasses or concave mirrors is not found in any

* Diodorus 1. 34, v. 87; Vitruvius x. 16 (11); Philo 11 p. 330 (ed. Pfeiffer);
Strabo xvir. p. 807; Athenaeus v. 208 f.

+ Cicero, De rep., 1. 21-22; Tusc., 1. 63; De nat. deor., 1. 88. Cf. Ovid,
Fasti, v1. 277 ; Lactantius, Instit., 1. 5, 18; Martianus Capells, 11. 212, v1.
583 sq.; Claudian, Epigr. 18 ; Sextus Empiricus, p. 416 (ed. Bekker).

t Zeitschrift f. Math. u. Physik (hist. litt. Abth.), xx11. (1877), 106 sq.

§ Ptolemy, odvralis, 1. p. 153.

|| Ammianus Marcell., xxv1. i. 8.

9 Macrobius, in Somn. Scip., 11. 3.
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authority earlier than Lucian*; and the so-called loculus Archi-
medius, which was a sort of puzzle made of 14 pieces of ivory of
different shapes cut out of a square, cannot be supposed to be his
invention, the explanation of the name being perhaps that it was
only a method of expressing that the puzzle was cleverly made,
in the same way as the mpofAnua *Apxyujdeiov came to be simply
& proverbial expression for something very difficultt.

* The same story is told of Proclus in Zonaras xiv. 3. For the other
references on the subject see Heiberg’s Quaestiones Archimedeae, pp. 39-41.
+ Cf. also Tzetzes, Chil. x11. 270, Tav *Apxiundovs unxavov xpelav Exw.



CHAPTER IL

MANUSCRIPTS AND PRINCIPAL EDITIONS—ORDER OF
COMPOSITION—DIALECT—LOST WORKS.

THE sources of the text and versions are very fully described
by Heiberg in the Prolegomena to Vol. 111. of his edition of Archi-
medes, where the editor supplements and to some extent amends
what he had previously written on the same subject in his dis-
sertation entitled Quaestiones Archimedeae (1879). It will there-
fore suffice here to state briefly the main points of the discussion.

The MSS. of the best class all had a common origin in a MS.
which, so far as is known, is no longer extant. It is described
in one of the copies made from it (to be mentioned later and dating
from some time between A.p. 1499 and 1531) as ‘most ancient’
(ralatordrov), and all the evidence goes to show that it was written
as early as the 9th or 10th century. At one time it was in the
possession of George Valla, who taught at Venice between the
years 1486 and 1499 ; and many important inferences with regard
to its readings can be drawn from some translations of parts of
Archimedes and Eutocius made by Valla himself and published
in his book entitled de expetendis et fugiendis rebus (Venice, 1501).
It appears to have been carefully copied from an original belonging
to some one well versed in mathematics, and it contained figures
drawn for the most part with great care and accuracy, but there
was considerable confusion between the letters in the figures and
those in the text. This MS., after the death of Valla in 1499,
became the property of Albertus Pius Carpensis (Alberto Pio,
prince of Carpi). Part of his library passed through various hands
and ultimately reached the Vatican; but the fate of the Valla
MS. appears to have been different, for we hear of its being in
the possession of Cardinal Rodolphus Pius (Rodolfo Pio), a nephew
of Albertus, in 1544, after which it seems to have disappeared.
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The three most important MSS. extant are:

F (=Codex Florentinus bibliothecae Laurentianae Mediceae
plutei xxvii 4to.).

B (=Codex Parisinus 2360, olim Mediceus).
C (=Codex Parisinus 2361, Fonteblandensis).

Of these it is certain that B was copied from the Valla MS,
This is proved by a note on the copy itself, which states that the
archetype formerly belonged to George Valla and afterwards to
Albertus Pius. From this it may also be inferred that B was
written before the death of Albertus in 1531; for, if at the date
of B the Valla MS. had passed to Rodolphus Pius, the name of
the latter would presumably have been mentioned. The note re-
ferred to also gives a list of peculiar abbreviations used in the
archetype, which list is of importance for the purpose of com-
parison with F and other MSS.

From a note on C it appears that that MS. was written by
one Christophorus Auverus at Rome in 1544, at the expense of
Georgius Armagniacus (Georges d’Armagnac), Bishop of Rodez,
then on a mission from King Francis I. to Pope Paul ITI. Further,
a certain Guilelmus Philander, in a letter to Francis I. published
in an edition of Vitruvius (1552), mentions that he was allowed,
by the kindness of Cardinal Rodolphus Pius, acting at the instance
of Georgius Armagniacus, to see and make extracts from a volume
of Archimedes which was destined to adorn the library founded
by Francis at Fontainebleau. He adds that the volume had been
the property of George Valla. We can therefore hardly doubt
that C was the copy which Georgius Armagniacus had made in
order to present it to the library at Fontainebleau.

Now F, B and C all contain the same works of Archimedes
and Eutocius, and in the same order, viz. (1) two Books de sphaera
et cylindro, (2) de dimensione circuli, (3) de conoidibus, (4) de
lineis spiralibus, (5) de planis aeque ponderamtibus, (6) arenarius,
(7) quadratura parabolae, and the commentaries of Eutocius on
(1) (2) and (5). At the end of the gquadratura parabolae both
F and B give the following lines:

ebrvxolns Aéov yevperpa

moAovs els AvkdBavras lois oAV Pilrare poloais.
F and C also contain mensurae from Heron and two fragments
wepl orafudy and wepi pérpwv, the order being the same in both
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and the contents only differing in the one respect that the last
fragment wepl pérpwv is slightly longer in F than in C.

A short preface to C states that the first page of the archetype
was so rubbed and worn with age that not even the name of
Archimedes could be read upon it, while there was no copy at
Rome by means of which the defect could be made good, and
further that the last page of Heron’s de mensuris was similarly
obliterated. Now in F the first page was apparently left blank
at first and afterwards written in by a different hand with many
gaps, while in B there are similar deficiencies and a note attached
by the copyist is to the effect that the first page of the archetype
was indistinect. In another place (p. 4 of Vol. 11, ed. Heiberg)
all three MSS. have the same lacuna, and the scribe of B notes
that one whole page or even two are missing.

Now C could not have been copied from F because the last
page of the fragment wepl pérpwv is perfectly distinet in F; and,
on the other hand, the archetype of F must have been illegible
at the end because there is no word rélos at the end of F, nor any
other of the signs by which copyists usually marked the completion
of their task. Again, Valla’s translations show that his MS. had
certain readings corresponding to correct readings in B and C
instead of incorrect readings given by F. Hence F cannot have
been Valla’s MS. itself.

The positive evidence about F is as follows. Valla’s trans-
lations, with the exception of the few readings just referred to,
agree completely with the text of F. From a letter written at
Venice in 1491 by Angelus Politianus (Angelo Poliziano) to Lau-
rentius Mediceus (Lorenzo de’ Medici), it appears that the former
had found a MS. at Venice containing works by Archimedes and
Heron and proposed to have it copied. As G. Valla then lived
at Venice, the MS. can hardly have been any other but his, and
no doubt F was actually copied from it in 1491 or soon after.
Confirmatory evidence for this origin of F is found in the fact
that the form of most of the letters in it is older than the 15th
century, and the abbreviations etc., while they all savour of an
ancient archetype, agree marvellously with the description which
the note to B above referred to gives of the abbreviations used
in Valla’s MS. Further, it is remarkable that the corrupt passage
corresponding to the illegible first page of the archetype just takes
up one page of F, no more and no less.
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The natural inference from all the evidence is that F, B and
C all had their origin in the Valla MS.; and of the three F is
the most trustworthy. For (1) the extreme care with which the
copyist of F kept to the original is illustrated by a number of
mistakes in it which correspond to Valla’s readings but are cor-
rected in B and C, and (2) there is no doubt that the writer of
B was somewhat of an expert and made many alterations on his
own authority, not always with success.

Passing to other MSS., we know that Pope Nicholas V. had
a MS. of Archimedes which he caused to be translated into Latin.
The translation was made by Jacobus Cremonensis (Jacopo Cas-
siani*), and one copy of this was written out by Joannes Regio-
montanus (Johann Miiller of Konigsberg, near Hassfurt, in Fran-
conia), about 1461, who not only noted in the margin a number
of corrections of the Latin but added also in many places Greek
readings from another MS. This copy by Regiomontanus is pre-
served at Nirnberg and was the source of the Latin translation
given in the editio princeps of Thomas Gechauff Venatorius (Basel,
1544); it is called N® by Heiberg. (Another copy of the same
translation is alluded to by Regiomontanus, and this is doubtless
the Latin MS. 327 of 15th c. still extant at Venice.) From the
fact that the translation of Jacobus Cremonensis has the same
lacuna as that in F, B and C above referred to (Vol. 11, ed.
Heiberg, p. 4), it seems clear that the translator had before him
either the Valla MS. itself or (more likely) a copy of it, though
the order of the books in the translation differs in one respect
from that in our MSS., viz. that the arenarius comes after instead
of before the quadratura parabolae.

It is probable that the Greek MS. used by Regiomontanus was V
(= Codex Venetus Marcianus cccv. of the 15th ¢.), which is still extant
and contains the same books of Archimedes and Eutocius with the
same fragment of Heron as F has, and in the same order. If the
above conclusion that F dates from 1491 or thereabouts is correct,
then, as V belonged to Cardinal Bessarione who died in 1472, it
cannot have been copied from F, and the simplest way of accounting
for its similarity to F is to suppose that it too was derived from
Valla’s MS.

* Tiraboschi, Storia della Letteratura Italiana, Vol. vi. Pt. 1 (p. 358 of the
edition of 1807). Cantor (Vorlesungen iib. Gesch. d. Math., 11. p. 192) gives the
full name and title as Jacopo da S. Cassiano Cremonese canonico regolare.
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Regiomontanus mentions, in a note inserted later than the
rest and in different ink, two other Greek MSS., one of which he
calls “exemplar vetus apud magistrum Paulum.” Probably the
monk Paulus (Albertini) of Venice is here meant, whose date was
1430 to 1475; and it is possible that the ¢ exemplar vetus” is
the MS. of Valla.

The two other inferior MSS., viz. A (=Codex Parisinus 2359,
olim Mediceus) and D (= Cod. Parisinus 2362, Fonteblandensis),
owe their origin to V.

It is next necessary to consider the probabilities as to the MSS.
used by Nicolas Tartaglia for his Latin translation of certain of
the works of Archimedes. The portion of this translation published
at Venice in 1543 contained the books de centris gravium vel de
aequerepentibus I-I1, tetragonismus [parabolae], dimensio circuli
and de insidenttbus aquae I; the rest, consisting of Book II de
insidentibus aquae, was published with Book I of the same treatise,
after Tartaglia’s death in 1557, by Troianus Curtius (Venice, 1565).
Now the last-named treatise is not extant in any Greek MS. and,
as Tartaglia adds it, without any hint of a separate origin, to the
rest of the books which he says he took from a mutilated and
almost illegible Greek MS., it might easily be inferred that the
Greek MS. contained that treatise also. But it is established, by
a letter written by Tartaglia himself eight years later (1551) that
he then had no Greek text of the Books de insidentibus aquae, and
it would be strange if it had disappeared in so short a time without
leaving any trace. Further, Commandinus in the preface to his
edition of the same treatise (Bologna, 1565) shows that he had
never heard of a Greek text of it. Hence it is most natural to
suppose that it reached Tartaglia from some other source and in the
Latin translation only*.

The fact that Tartaglia speaks of the old MS. which he used
as “fracti et qui vix legi poterant libri,” at practically the same
time as the writer of the preface to C was giving a similar de-
scription of Valla’s MS., makes it probable that the two were

LY

* The Greek fragment of Book 1.. mwepl 7dw Udare épuorauévwy 7 mepl Tv
Sxovuévwr, edited by A. Mai from two Vatican MSS. (Classici auct. 1. p. 426-30 ;
Vol. 11. of Heiberg’s edition, pp. 356-8), seems to be of doubtful authenticity.
Except for the first proposition, it contains enunciations only and no proofs.
Heiberg is inclined to think that it represents an attempt at retranslation into
Greek made by some mediaeval scholar, and he compares the similar attempt
made by Rivault.
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identical ; and this probability is confirmed by a considerable agree-
ment between the mistakes in Tartaglia and in Valla’s versions.

But in the case of the quadratura parabolae and the dimensio
circuli Tartaglia adopted bodily, without alluding in any way to
the source of it, another Latin translation published by Lucas
Gauricus “Iuphanensis ex regno Neapolitano” (Luca Gaurico of
Gifuni) in 1503, and he copied it so faithfully as to reproduce most
obvious errors and perverse punctuation, only filling up a few
gaps and changing some figures and letters. This translation by
Gauricus is seen, by means of a comparison with Valla’s readings
and with the translation of Jacobus Cremonensis, to have been
made from the same MS. as the latter, viz. that of Pope Nicolas V.

Even where Tartaglia used the Valla MS. he does not seem
to have taken very great pains to decipher it when it was
not easily legible—it may be that he was unused to deciphering
MSS.—and in such cases he did not hesitate to draw from other
sources. In one place (de planor. equiltb. 11. 9) he actually
gives as the Archimedean proof a paraphrase of Eutocius some-
what retouched and abridged, and in many other instances he
has inserted corrections and interpolations from another Greek
MS. which he once names. This MS. appears to have been a copy
made from F, with interpolations due to some one not unskilled
in the subject-matter; and this interpolated copy of F was ap-
parently also the source of the Niirnberg MS. now to be mentioned.

N# (= Codex Norimbergensis) was written in the 16th century
and brought from Rome to Niirnberg by Wilibald Pirckheymer.
It contains the same works of Archimedes and Eutocius, and in
the same order, as F, but was evidently not copied from F direct,
while, on the other hand, it agrees so closely with Tartaglia’s
version as to suggest a common origin. N® was used by Vena-
torius in preparing the editio princeps, and Venatorius corrected
many mistakes in it with his own hand by notes in the margin
or on slips attached thereto; he also made many alterations in
the body of it, erasing the original, and sometimes wrote on it
directions to the printer, so that it was probably actually used
to print from. The character of the MS. shows it to belong to
the same class as the others; it agrees with them in the more
important errors and in having a similar lacuna at the beginning.
Some mistakes common to it and F alone show that its source was
F, though at second hand, as above indicated.
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It remains to enumerate the principal editions of the Greek
text and the published Latin versions which are based, wholly or
partially, upon direct collation of the MSS. These are as follows,
in addition to Gaurico’s and Tartaglia’s translations.

1. The editio princeps published at Basel in 1544 by Thomas
Gechauff Venatorius under the title Archimedis opera quae quidem
exstant omnia nunc primum graece et latine in lucem edita. Adiecta
quoque sunt Eutocii Ascalonitae commentaria item graece et latine
nunquam antea excusa. The Greek text and the Latin version in
this edition were taken from different sources, that of the Greek
text being N*, while the translation was Joannes Regiomontanus’
revised copy (N®) of the Latin version made by Jacobus Cremo-
nensis from the MS. of Pope Nicolas V. The revision by
Regiomontanus was effected by the aid of (1) another copy of
the same translation still extant, (2) other Greek MSS., one of

which was probably V, while another may have been Valla’s MS.
itself.

2. A translation by F. Commandinus (containing the following
works, circult dimensio, de lineis spiralibus, quadratura parabolae,
de conoidibus et sphaeroidibus, de arenae mumero) appeared at
Venice in 1558 under the title Archimedis opera monnulla in
latinum comversa et commentariis dllustrata. For this translation
several MSS. were used, among which was V, but none preferable
to those which we now possess.

3. D. Rivault’s edition, Archimedis opera quae exstant graece
et latine movis demonstr. et comment. illustr. (Paris, 1615), gives
only the propositions in Greek, while the proofs are in Latin and
somewhat retouched. Rivault followed the Basel editio princeps
with the assistance of B.

4. Torelli’s edition (Oxford, 1792) entitled *Apxiuijdovs ¢ cw-
{opeva pera tév Edrokiov 'Ackalwvirov tmopvnudrov, Archimedis
quae supersunt omnia cum Kutocit Ascalonitae commentariis ex
recensione J. Torelli Veronensis cum mova wersione latina. Acced-
unt lectiones wariantes ex codd. Mediceo et Parisiensibus. Torelli
followed the Basel editio princeps in the main, but also collated
V. The book was brought out after Torelli's death by Abram
Robertson, who added the collation of five more MSS., F, A, B, C, D,
with the Basel edition. The collation however was not well done,
and the edition was not properly corrected when in the press.
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5. Last of all comes the definitive edition of Heiberg (dArchi-
medis opera omnia cum commentariis Eutocti. E codice Florentino
recensuit, Latine uertit notisque illustrauit J. L. Heiberg. Leipzig,
1880—1).

The relation of all the MSS. and the above editions and trans-
lations is well shown by Heiberg in the following scheme (with
the omission, however, of his own edition):

Codex Uallae saee. 1x—x

Cod. Nicolai V F Tartalea v B C
c. 1453 c. 1491 a. 1543 sa€ec. XV c. 1500 a. 1544
S———— —
Cod. Tartaleae 11 i Ed. Riualti
a. 1615
N2 gaec. xvI —
| A, D Commandinus
Ed. Basil. 1544 saec. XvI 1558
;i Torellius 1792
Gauricus Cremonensis ¢. 1460
Cod. Uenet. 327 Nb, ¢. 1461
saec. xv

The remaining editions which give portions of Archimedes in
Greek, and the rest of the translations of the complete works or
parts of them which appeared before Heiberg’s edition, were not
based upon any fresh collation of the original sources, though some
excellent corrections of the text were made by some of the editors,
notably Wallis and Nizze. The following books may be mentioned.

Joh. Chr. Sturm, Des unvergleichlichen Archimedis Kunstbiicher,
ubersetzt und erliutert (Niirnberg, 1670). This translation em-
braced all the works extant in Greek and followed three years
after the same author’s separate translation of the Sand-reckoner.
It appears from Sturm’s preface that he principally used the edition
of Rivault.

Is. Barrow, Opera Archimedis, Apollonii Pergaei conicorum libri,

Theodosii sphaerica methodo novo illustrata et demonstrata (London,

1675).

Wallis, Archimedrs arenarius et dimensio circuli, Eutociz in hanc
commentarii cum versione et notis (Oxford, 1678), also given
in Wallis’ Opera, Vol. 111. pp. 509—546.

Karl Friedr. Hauber, drchimeds zwei Biicher diber Kugel und
Cylinder. Ebendesselben Kreismessung. Uebersetzt mit Anmerkungen
u. 8. w. begleitet (Tiibingen, 1798).
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F. Peyrard, uvres d’Archiméde, traduites littéralement, avec
un commentaire, suivies d'un mémoire du traducteur, sur un nowveau
mirotr ardent, et d'un autre mémoire de M. Delambre, sur Uarith-
métique des Grecs. (Second edition, Paris, 1808.)

Ernst Nizze, drchimedes von Syrakus vorhandene Werke, aus dem
Griechischen 1tibersetzt und mit erliuternden und kritischen Anmer-
kungen begleitet (Stralsund, 1824).

The MSS. give the several treatises in the following order.

1. wepl aaipas kai kvAivdpov o [, two Books On the Sphere
and Cylinder.

2. «ikdov pérpnois®*, Measurement of a Circle.

3.  wepi kwvoedéwy kal apapoedéwv, On Conoids and Spheroids.

4. wepl érikwv, On Spirals.

5. émurédwv looppomdv o’ BT, two Books Ow the Equilibrium
of Planes.

6. Yappitys, The Sand-reckomer.

7. rerpaywviopos wapaBolis (a name substituted later for that
given to the treatise by Archimedes himself, which must
undoubtedly have been rerpaywviopos wijs Tod Jpboywriov
kwvov Topfsl), Quadrature of the Parabola.

To these should be added

8. wepl dxovpévur §, the Greek title of the treatise On Aoating
bodies, only preserved in a Latin translation.

* Pappus alludes (1. p. 312, ed. Hultsch) to the xdxhov uérpyois in the words
& T wepl THis Tob KbKAOV TepLpepelas.

+ Archimedes himself twice alludes to properties proved in Book 1. as
demonstrated év Tois unxavikols (Quadrature of the Parabola, Props. 6, 10).
Pappus (virr. p. 1034) quotes 74’ Apxiprhdovs mepl isoppom@v. The beginning of
Book 1. is also cited by Proclus in his Commentary on Eucl. 1., p. 181, where the
reading should be 700 & {roppomiiv, and not 7év dvisoppomrwwy (Hultsch).

1 The name * parabola’ was first applied to the curve by Apollonius. Archi-
medes always used the old term *section of a right-angled cone,” Cf. Eutocius
(Heiberg, vol. 111., p. 342) dédewxrar év 7¢ mepl Tijs Tob pfoywriov kdvov Touss.

§ This title corresponds to the references to the book in Strabo 1. p. 54
(Apxiuhdns év Tois wepl Tdv dxovpévwr) and Pappus vim. p. 1024 (bs’Apxiundns
Oxovuévais). The fragment edited by Mai has a longer title, wepl 7dv dar:
épiorauévor 7 mepl TGy dxovuévwr, where the first part corresponds to Tartaglia’s
version, de insidentibus aquae, and to that of Commandinus, de iis quae vehun-
tur in aqua. But Archimedes intentionally used the more general word dypér
(fluid) instead of #dwp; and hence the shorter title mepl dxovuévwr, de iis quae
in humido vehuntur (Torelli and Heiberg), seems the better.
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The books were not, however, written in the above order; and
Archimedes himself, partly through his prefatory letters and partly
by the use in later works of properties proved in earlier treatises,
gives indications sufficient to enable the chronological sequence
to be stated approximately as follows :

1. On the equilibrium of planes, 1.
Quadrature of the Parabola.

On the equilibrium of planes, II.
On the Sphere and Cylinder, I, II.
On Spirals.

On Conoids and Spheroids.

On floating bodies, I, II.
Measurement of a circle.

9. The Sand-reckoner.

It should however be observed that, with regard to (7), no
more is certain than that it was written after (6), and with regard
to (8) no more than that it was later than (4) and before (9).

In addition to the above we have a collection of Lemmas (Liber
Assumptorum) which has reached us through the Arabic. The
collection was first edited by 8. Foster, Miscellanea (London, 1659),
and next by Borelli in a book published at Florence, 1661, in
which the title is given as Liber assumptorum Archimedis interprete
Thebit ben Kora et exponente doctore Almochtasso Abilhasan. The
Lemmas cannot, however, have been written by Archimedes in
their present form, because his name is quoted in them more than
once. The probability is that they were propositions collected by
some Greek writer* of a later date for the purpose of elucidating
some ancient work, though it is quite likely that some of the
propositions were of Archimedean origin, e.g. those concerning
the geometrical figures called respectively dpBylost (literally

® NS oot

* It would seem that the compiler of the Liber Assumptorum must have
drawn, to a considerable extent, from the same sources as Pappus. The
number of propositions appearing substantially in the same form in both
collections is, I think, even greater than has yet been noticed. Tannery (La
Géométrie grecque, p. 162) mentions, as instances, Lemmas 1, 4, 5, 6; but it
will be seen from the notes in this work that there are several other coin-
cidences.

+ Pappus gives (p. 208) what he calls an ‘ancient proposition’ (dpxaia
mwpbérasis) about the same figure, which he describes as xwplov, 8 &) kaloiow
dpBnrov. Cf, the note to Prop. 6 (p. 308). The meaning of the word is gathered
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‘shoemaker’s knife’) and galwov (probably a ‘salt-cellar’*), and
Prop. 8 which bears on the problem of trisecting an angle.

from the Scholia to Nicander, Theriaca, 423 : &pByhot Néyorrar T8 KkukhorepH
dfpua, ofs ol cxvrorbpor Téuvovse kal Eover T4 Oépuara. Cf. Hesychius,
dvdpBnha, 1o ui) éfeopéva dépparac &pBnlot yip T4 omla.

* The best authorities appear to hold that in any case the name sd\wor was
not applied to the figure in question by Archimedes himself but by some later
writer. Subject to this remark, I believe gdAwov to be simply a Graecised
form of the Latin word salinum. We know that a salt-cellar was an essential
part of the domestic apparatus in Italy from the early days of the Roman
Republic. “All who were raised above poverty had one of silver which
descended from father to son (Hor., Carm. 1. 16, 13, Liv. xxvr. 36), and
was accompanied by a silver patella which was used together with the sali-
cellar in the domestic sacrifices (Pers. . 24, 25). These two articles of
silver were alone compatible with the simplicity of Roman manners in the
early times of the Republic (Plin., H. N. xxxm1. § 153, Val. Max. 1v. 4, § 3).
...In shape the salinum was probably in most cases a round shallow bowl”
[Dict. of Greek and Roman Antiquities, article salinum]. Further we have
in the early chapters of Mommsen’s History of Rome abundant evidence
of similar transferences of Latin words to the Sicilian dialect of Greek. Thus
(Book 1., ch. xiii.) it is shown that, in consequence of Latino-Sicilian com-
merce, certain words denoting measures of weight, libra, triens, quadrans,
sextans, uncia, found their way into the common speech of Sicily in the third
century of the city under the forms Arpa, Tpids, Terpds, ééas, obykla. Similarly
Latin law-terms (ch. xi.) were transferred; thus mutuum (a form of loan)
became uoirov, carcer (a prison) xdpkapov. Lastly, the Latin word for lard,
arvina, became in Sicilian Greek dpBivn, and patina (a dish) wardvy. The last
word is as close a parallel for the supposed transfer of salinum as could be
wished. Moreover the explanation of sdAwov as salinum has two obvious
advantages in that (1) it does not require any alteration in the word, and

(2) the resemblance of the lower curve to an ordinary type of salt-cellar is

evident, I should add, as confirmation of my hypothesis, that Dr A. S. Murray,

of the British Museum, expresses the opinion that we cannot be far wrong in

accepting as a salinum one of the small silver bowls in the Roman ministerium
H. A. c
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Archimedes is further credited with the authorship of the
Cattle-problem enunciated in the epigram edited by Lessing in
1773. According to the heading prefixed to the epigram it was
communicated by Archimedes to the mathematicians at Alexandria
in a letter to Eratosthenes*. There is also in the Scholia to Plato’s
Charmides 165 E a reference to the problem “called by Archimedes
the Cattle-problem” (ro xAnbev vm *Apxipmidovs Boewkov mpofinua).
The question whether Archimedes really propounded the problem,
or whether his name was only prefixed to it in order to mark the
extraordinary difficulty of it, has been much debated. A complete
account of the arguments for and against is given in an article
by Krumbiegel in the Zeitschrift fiir Mathematik und Physik
(Haist. litt. Abtheilung) xxv. (1880), p. 121 sq., to which Amthor
added (¢bid. p. 153 sq.) a discussion of the problem itself. The
general result of Krumbiegel's investigation is to show (1) that

at the Museum which was found at Chaourse (Aisne) in France and is of a
section sufficiently like the curve in the Salinon.

The other explanations of sdAwov which have been suggested are as follows.

(1) Cantor connects it with cdhos, ‘das Schwanken des hohen Meeres,”
and would presumably translate it as wave-line. But the resemblance is
not altogether satisfactory, and the termination -wov would need explanation.

(2) Heiberg says the word is ‘‘sine dubio ab Arabibus deprauatum,” and
suggests that it should be cé\wov, parsley (‘‘ex similitudine frondis apii”).
But, whatever may be thought of the resemblance, the theory that the word is
corrupted is certainly not supported by the analogy of &pBnos which is correctly
reproduced by the Arabs, as we know from the passage of Pappus referred to in
the last note.

(8) Dr Gow suggests that cd\wor may be a ¢sieve,” comparing sdhaf. But
this guess is not supported by any evidence.

* The heading is, IIpéB\nua 8mep *Apxtundns év émvypdupaow evpdv Tols év
*ANeavpelq mepl Tadra mpayuarevouévois {nrely dméoreker év Ty wpds Eparoshévny
rov Kvpyraiov émworony. Heiberg translates this as ‘““the problem which
Archimedes discovered and sent in an epigram...in a letter to Eratosthenes.”
He admits however that the order of words is against this, as is also the use of
the plural émvypdupacw. It is clear that to take the two expressions év
émeypdupacw and év émaroly as both following dmésreler is very awkward. In
fact there seems to be no alternative but to translate, as Krumbiegel does, in
accordance with the order of the words, ‘‘a problem which Archimedes found
among (some) epigrams and sent...in his letter to Eratosthenes”; and this sense
is certainly unsatisfactory. Hultsch remarks that, though the mistake mpay-
narovuévois for mpayuarevouévors and the composition of the heading as a whole
betray the hand of a writer who lived some centuries after Archimedes, yet he
must have had an earlier source of information, because he could hardly have
invented the story of the letter to Eratosthenes.
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the epigram can hardly have been written by Archimedes in its
present form, but (2) that it is possible, nay probable, that the
problem was in substance originated by Archimedes. Hultsch* has
an ingenious suggestion as to the occasion of it. It is known that
Apollonius in his dxvrdkiov had calculated a closer approximation to
the value of = than that of Archimedes, and he must therefore have
worked out more difficult multiplications than those contained in
the Measurement of a circle. Also the other work of Apollonius
on the multiplication of large numbers, which is partly preserved
in Pappus, was inspired by the Sand-reckoner of Archimedes ; and,
though we need not exactly regard the treatise of Apollonius as
polemical, yet it did in fact constitute a criticism of the earlier
book. Accordingly, that Archimedes should then reply with a
problem which involved such a manipulation of immense numbers
as would be difficult even for Apollonius is not altogether outside
the bounds of possibility. And there is an unmistakable vein of
satire in the opening words of the epigram ¢ Compute the number
of the oxen of the Sun, giving thy mind thereto, if thou hast a
share of wisdom,” in the transition from the first part to the
second where it is said that ability to solve the first part would
entitle one to be regarded as ‘“not unknowing nor unskilled in
numbers, but still not yet to be numbered among the wise,” and
again in the last lines. Hultsch concludes that in any case the
problem is not much later than the time of Archimedes and dates
from the beginning of the 2nd century B.c. at the latest.

Of the extant books it is certain that in the 6th century A.p.
only three were generally known, viz. On the Sphere and Cylinder,
the Measurement of a circle, and On the equilibrium of planes. Thus
Eutocius of Ascalon who wrote commentaries on these works only
knew the Quadrature of the Parabola by name and had never seen
it nor the book On Spirals. Where passages might have been
elucidated by references to the former book, Eutocius gives ex-
planations derived from Apollonius and other sources, and he
speaks vaguely of the discovery of a straight line equal to the
circumference of a given circle “by means of certain spirals,”
whereas, if he had known the treatise On Spirals, he would have
quoted Prop. 18. There is reason to suppose that only the three
treatises on which Eutocius commented were contained in the

* Pauly-Wissowa’s Real-Encyclopidie, 11, 1, pp. 534, 5.
c2
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ordinary editions of the time such as that of Isidorus of Miletus,
the teacher of Eutocius, to which the latter several times alludes.

In these circumstances the wonder is that so many more books
have survived to the present day. As it is, they have lost to a
considerable extent their original form. Archimedes wrote in the
Doric dialect*, but in the best known books (On the Sphere and
Cylinder and the Measurement of a circle) practically all traces
of that dialect have disappeared, while a partial loss of Doric forms
has taken place in other books, of which however the Sand-
reckoner has suffered least. Moreover in all the books, except the
Sand-reckoner, alterations and additions were first of all made by
an interpolator who was acquainted with the Doric dialect, and
then, at a date subsequent to that of Eutocius, the book On the
Sphere and Cylinder and the Measurement of a circle were completely
recast.

Of the lost works of Archimedes the following can be identified.

1. Investigations relating to polyhedra are referred to by
Pappus who, after alluding (v. p. 352) to the five regular polyhedra,
gives a description of thirteen others discovered by Archimedes
which are semi-regular, being contained by polygons equilateral
and equiangular but not similar.

2. A book of arithmetical content, entitled dpyxail Principles
and dedicated to Zeuxippus. We learn from Archimedes himself
that the book dealt with the naming of numbers (xarovipabis Tév
apfpdv)t and expounded a system of expressing numbers higher

* Thus Eutocius in his commentary on Prop. 4 of Book 11. On the Sphere
and Cylinder speaks of the fragment, which he found in an old book and which
appeared to him to be the missing supplement to the proposition referred to,
as ‘‘preserving in part Archimedes’ favourite Doric dialect” (év uéper 8¢ Tip
*Apxemhder pidgy Awplda yANdooar dréowov). From the use of the expression é»
wépec Heiberg concludes that the Dorie forms had by the time of Eutocius
begun to disappear in the books which have come down to us no less than in
the fragment referred to.

+ Observing that in all the references to this work in the Sand-reckoner
Archimedes speaks of the naming of numbers or of numbers which are named or have
their names (4pifuol xarwropacpévor, T dvbpara Exovres, Tav katovouatlar éxovres),
Hultsch (Pauly-Wissowa’s Real-Encyclopddie, 11. 1, p. 511) speaks of xarovd-
pafs TGv dpbucy as the name of the work; and he explains the words rwas rév
& dpxals <dplfudv> tov karovouaflav éxbvrwr as meaning ‘‘some of the
numbers mentioned at the beginning which have a special name,” where * at
the beginning ” refers to the passage in which Archimedes first mentions r&»
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than those which could be expressed in the ordinary Greek no-
tation. This system embraced all numbers up to the enormous
figure which we should now represent by a 1 followed by 80,000
billion ciphers ; and, in setting out the same system in the Sand-
reckoner, Archimedes explains that he does so for the benefit of
those who had not had the opportunity of seeing the earlier work
addressed to Zeuxippus.

3. mepl Lvydv, On balances or levers, in which Pappus says (viir.
p. 1068) that Archimedes proved that * greater circles overpower
(katakparovo) lesser circles when they revolve about the same
centre.” It was doubtless in this book that Archimedes proved
the theorem assumed by him in the Quadrature of the Parabola,
Prop. 6, viz. that, if a body hangs at rest from a point, the centre
of gravity of the body and the point of suspension are in the same
vertical line.

4. xevrpoBopikd, On centres of gravity. This work is mentioned
by Simplicius on Aristot. de caelo 11. (Scholia in Arist. 508 a 30).
Archimedes may be referring to it when he says (On the equilibrium
of planes 1. 4) that it has before been proved that the centre of
gravity of two bodies taken together lies on the line joining the
centres of gravity of the separate bodies. In the treatise On
Sloating bodies Archimedes assumes that the centre of gravity of a
segment of a paraboloid of revolution is on the axis of the segment
at a distance from the vertex equal to Zrds of its length. This
may perhaps have been proved in the kevrpoBapwd, if it was
not made the subject of a separate work.

Doubtless both the mepi {vyév and the kevrpoBapicd preceded
the extant treatise On the equilibrium of planes.

5. «karomwTpikd, an optical work, from which Theon (on Ptolemy,
Synt. 1. p. 29, ed. Halma) quotes a remark about refraction.
Cf. Olympiodorus ¢n Aristot. Meteor., 11. p. 94, ed. Ideler.

O’ audv karwvouasuévwy dplfudv kol évdedoulvwr év Tols worl LebEirmor yeypau-
mévois. But év dpyals seems a less natural expression for ““at the beginning”
than é dpxy or kar’ dpxds would have been. Moreover, there being no
participial expression except karovouatior éybvrwr to be taken with év dpyals in
this sense, the meaning would be unsatisfactory ; for the numbers are not
named at the beginning, but only referred to, and therefore some word like
elpnuévwr should have been used. For these reasons I think that Heiberg,
Cantor and Susemihl are right in taking dpxal to be the name of the treatise.
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6. wepl opaporoilas, On sphere-making, a mechanical work on
the construction of a sphere representing the motions of the
heavenly bodies as already mentioned (p. xxi).

7. épddiov, a Method, noticed by Suidas, who says that Theo-
dosius wrote a commentary on it, but gives no further information
about it.

8. According to Hipparchus Archimedes must have written
on the Calendar or the length of the year (cf. p. xxi).

Some Arabian writers attribute to Archimedes works (1) On
a heptagon in a circle, (2) On circles touching one another, (3) On
parallel lines, (4) On triangles, (5) On the properties of right-
angled triangles, (6) a book of Data; but there is no confirmatory
evidence of his having written such works. A book translated
into Latin from the Arabic by Gongava (Louvain, 1548) and en-
titled antiqut scriptoris de speculo comburente concavitatis parabolae
cannot be the work of Archimedes, since it quotes Apollonius.



CHAPTER IIIL
THE RELATION OF ARCHIMEDES TO HIS PREDECESSORS.

AN extraordinarily large proportion of the subject matter of
the writings of Archimedes represents entirely new discoveries of
his own. Though his range of subjects was almost encyclopaedic,
embracing geometry (plane and solid), arithmetic, mechanics, hydro-
statics and astronomy, he was no compiler, no writer of text-
books ; and in this respect he differs even from his great successor
Apollonius, whose work, like that of Euclid before him, largely
consisted of systematising and generalising the methods used, and
the results obtained, in the isolated efforts of earlier geometers.
There is in Archimedes no mere working-up of existing materials ;
his objective is always some new thing, some definite addition to
the sum of knowledge, and his complete originality cannot fail
to strike any one who reads his works intelligently, without any
corroborative evidence such as is found in the introductory letters
prefixed to most of them. (These introductions, however, are emi-
nently characteristic of the man and of his work ; their directness
and simplicity, the complete absence of egoism and of any effort
to magnify his own achievements by comparison with those of
others or by emphasising their failures where he himself succeeded :
all these things intensify the same impression. Thus his manner
is to state simply what particular discoveries made by his pre-
decessors had suggested to him the possibility of extending them
in new directions; e.g. he says that, in connexion with the efforts
of earlier geometers to square the circle and other figures, it
occurred to him that no one had endeavoured ‘to square a parabola,
and he accordingly attempted the problem and finally solved it.
In like manner, he speaks, in the preface of his treatise On the
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Sphere and Cylinder, of his discoveries with reference to those
solids as supplementing the theorems about the pyramid, the cone
and the cylinder proved by Eudoxus. He does not hesitate to
say that certain problems baffled him for a long time, and that
the solution of some took him many years to effect; and in one
place (in the preface to the book On Spirals) he positively insists,
for the sake of pointing a moral, on specifying two propositions
which he had enunciated and which proved on further investigation
to be wrong. The same preface contains a generous eulogy of
Conon, declaring that, but for his untimely death, Conon would
have solved certain problems before him and would have enriched
geometry by many other discoveries in the meantime.

In some of his subjects Archimedes had no fore-runners, e.g.
in hydrostatics, where he invented the whole science, and (so
far as mathematical demonstration was concerned) in his me-
chanical investigations. In these cases therefore he had, in laying
the foundations of the subject, to adopt a form more closely re-
sembling that of an elementary textbook, but in the later parts
he at once applied himself to specialised investigations.

Thus the historian of mathematics, in dealing with Archimedes’
obligations to his predecessors, has a comparatively easy task before
him. But it is necessary, first, to give some description of the use
which Archimedes made of the general methods which had found
acceptance with the earlier geometers, and, secondly, to refer to
some particular results which he mentions as having been previously
discovered and as lying at the root of his own investigations, or
which he tacitly assumes as known.

§ 1. Use of traditional geometrical methods.

In my edition of the Conics of Apollonius¥*, I endeavoured,
following the lead given in Zeuthen’s work, Die Lehre von den
Kegelschnitten im Altertum, to give some account of what has been
fitly called the geometrical algebra which played such an important
part in the works of the Greek geometers. The two main methods
included under the term were (1) the use of the theory of pro-
portions, and (2) the method of application of areas, and it was
shown that, while both methods are fully expounded in the Elements
of Euclid, the second was much the older of the two, being
attributed by the pupils of Eudemus (quoted by Proclus) to the

* Apollonius of Perga, pp. ci sqq.
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Pythagoreans. It was pointed out that the application of areas,
as set forth in the second Book of Euclid and extended in the
sixth, was made by Apollonius the means of expressing what he
takes as the fundamental properties of the conic sections, namely
the properties which we express by the Cartesian equations

Y =po,
Y=pr¥ ‘2:1:2,

referred to any diameter and the tangent at its extremity as axes;
and the latter equation was compared with the results obtained in the
27th, 28th and 29th Props. of Euclid’s Book v1, which are equivalent
to the solution, by geometrical means, of the quadratic equations

awii—jw’:D.

It was also shown that Archimedes does not, as a rule, connect his
description of the central conics with the method of application of
areas, as Apollonius does, but that Archimedes generally expresses
the fundamental property in the form of a proportion

2 2

v _ oy
.z, «.x"
and, in the case of the ellipse,
yi B bE
x. .2, a®’

where «, x, are the abscissae measured from the ends of the diameter
of reference.

It results from this that the application of areas is of much less
frequent ocgurrence in Archimedes than in Apollonius. It is
however used by the former in all but the most general form. The
simplest form of ‘“applying a rectangle” to a given straight line
which shall be equal to a given area occurs e.g. in the proposition On
the equilibrium of Planes 11. 1; and the same mode of expression
is used (as in Apollonius) for the property y*= px in the parabola,
px being described in Archimedes’ phrase as the rectangle “applied
t0” (rapamirrov mapd) a line equal to p and “having at its width”
(mAdTos &ov) the abscissa (z). Then in Props. 2, 25, 26, 29 of the
book On Conoids and Spheroids we have the complete expression
which is the equivalent of solving the equation

ax + x* = b,

“let a rectangle be applied (to a certain straight line) exceeding by



xli1 INTRODUCTION.

a square figure (rapamerroxére xwplov tmepfdllov €lder Terpayuve)
and equal to (a certain rectangle).” Thus a rectangle of this sort
has to be made (in Prop. 25) equal to what we have above called
.2, in the case of the hyperbola, which is the same thing as
z(a+x) or ax+ ', where a is the length of the transverse axis.
But, curiously enough, we do not find in Archimedes the application
of a rectangle “ falling short by a square figure,” which we should
obtain in the case of the ellipse if we substituted z (¢ —x) for . ;.
In the case of the ellipse the area x.x, is represented (On Conoids
and Spheroids, Prop. 29) as a gnomon which is the difference
between the rectangle %.A%, (where %, %, are the abscissae of the
ordinate bounding a segment of an ellipse) and a rectangle applied
to h, — 4 and exceeding by a square figure whose side is & — x; and
the rectangle 4. A, is simply constructed from the sides A, A,. Thus
Archimedes avoids* the application of a rectangle falling short by a
square, using for x.x, the rather complicated form

beoby—{(hy =) (h— ) + (h—2)?}.
It is easy to see that this last expression is equal to x. =, for it
reduces to
hohy— by (h—x) — (b - x))
= (b +h) -,
=ax — «°, since b+ h=a,
=x.mz.

It will readily be understood that the transformation of rectangles
and squares in accordance with the methods of Euclid, Book 11, is
Jjust as important to Archimedes as to other geometers, and there is
no need to enlarge on that form of geometrical algebra.

The theory of proportions, as expounded in the fifth and sixth
Books of Euclid, including the transformation of ratios (denoted by
the terms componendo, dividendo, etc.) and the -omposition or
multiplication of ratios, made it possible for the ancient geometers
to deal with magnitudes in general and to work out relations
between them with an effectiveness not much inferior to that of
modern algebra. Thus the addition and subtraction of ratios could
be effected by procedure equivalent to what we should in algebra

* The object of Archimedes was no doubt to make the Lemma in Prop. 2
(dealing with the summation of a series of terms of the form a .7z + (rz)?, where r
successively takes the values 1, 2, 8, ...) serve for the hyperboloid of revolution
and the spheroid as well.
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call bringing to a common denominator. Next, the composition or
multiplication of ratios could be indefinitely extended, and hence
the algebraical operations of multiplication and division found easy
and convenient expression in the geometrical algebra. As a par-
ticular case, suppose that there is a series of magnitudes in continued
proportion (i.e. in geometrical progression) as a,, ay, as, ... @,, so that

G _H_
L L A,
We have then, by multiplication, -
o (2), o O "fn
% \% % %

It is easy to understand how powerful such a method as that of
proportions would become in the hands of an Archimedes, and a few
instances are here appended in order to illustrate the mastery with
which he uses it.

1. A good example of a reduction in the order of a ratio after
the manner just shown is furnished by On the equilibrium of Planes
1. 10. Here Archimedes has a ratio which we will call a?/b% where
a’/b*=c/d; and he reduces the ratio between cubes to a ratio
between straight lines by taking two lines «, ¥ such that

c_x_d
x d y’
. NP ¢ o
It follows from this that (5) =g= @
or a_c.
b’
a® (e\® ¢ x d ¢
and hence i (a_o) “ady-y

2. In the last example we have an instance of the use of
auxiliary fixed lines for the purpose of simplifying ratios and
thereby, as it were, economising power in order to grapple the more
successfully with a complicated problem. With the aid of such
auxiliary lines or (what is the same thing) auxiliary fixed points in
a figure, combined with the use of proportions, Archimedes is able to
effect some remarkable eliminations.

Thus in the proposition On the Sphere and Cylinder 11. 4 he obtains
three relations connecting three as yet undetermined points, and
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proceeds at once to eliminate two of the points, so that the problem
is then reduced to finding the remaining point by means of one
equation. Expressed in an algebraical form, the three original
relations amount to the three equations

3a—x _y
Qa0—x
a+x P

z  2a-x’
y_m

¥4 n

and the result, after the elimination of y and 2 is stated by
Archimedes in a form equivalent to

m+n at+x _ 4d’
n " a  (2a—x)
Again the proposition On the equilibrium of Planes 11. 9 proves

by the same method of proportions that, if a, b, ¢, d, , y, are straight
lines satisfying the conditions

g:g:%, (a>b>c>d)
4 __=
a-d 2(a-c)’
and 20+4b+6c+3d ¥y )
ba +10b+10c+5d a—c’
then x+y = 2a.

The proposition is merely brought in as a subsidiary lemma to the
proposition following, and is not of any intrinsic importance ; but a
glance at the proof (which again introduces an auxiliary line) will
show that it is a really extraordinary instance of the manipulation
of proportions.

3. Yet another instance is worth giving here. It amounts to
the proof that, if

@y
@t p=h
2a+x 2a—-x
. —-— . -+ :4 b2.
then pranyes (@ —zx) + oz Y (@ + x) = 4a

4, A’ are the points of contact of two parallel tangent planes to a
spheroid ; the plane of the paper is the plane through 44’ and the
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axis of the spheroid, and PP’ is the intersection of this plane with
another plane at right angles to it (and therefore parallel to the
tangent planes), which latter plane divides the spheroid into two
segments whose axes are AN, A’N. Another plane is drawn through

B%P

)

;

BI

the centre and parallel to the tangent plane, cutting the spheroid
into two halves. Lastly cones are drawn whose bases are the
sections of the spheroid by the parallel planes as shown in the
figure.

Archimedes’ proposition takes the following form [On Conoids
and Spheroids, Props. 31, 32].

APP’ being the smaller segment of the two whose common base
is the section through PP’, and x, y being the coordinates of P,
he has proved in preceding propositions that

(volume of) segment APP’ 2a+x

(volume of) cone APP" ~ a+a T (),
half spheroid 4 BB’
and cone ABEB’ =2 i iirriieen (B),

and he seeks to prove that

segment 4'PP’ 2q -

cone A’PP' ~— a-x’
The method is as follows.

Wo have cone ABB" a b «a a’
cone APP' a-z'y* a-z at-a*’
If we suppose s: a—‘j—; .............................. )
20

the ratio of the cones becomes

a? -2’
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Next, by hypothesis (),

cone APP’  a+w
segmt. APP’' ™~ 2a+x’

Therefore, ex aequal,
cone ABB’ 2a
segmt. APP' ™~ (a—x) (2a+x)
It follows from (B8) that

spheroid 42a
segmt. APP'~ (a-x) (2a +2)’

segmt. A'PP'  4za— (a—x) (20 +x)

segmt. APP'~  (a—x)(2a +x)

whence

2 (20 —2)+(2a+2) (2 —a—x)
(a—2) (20 + x) ’

Now we have to obtain the ratio of the segment 4'PP’ to the cone
A’PP’, and the comparison between the segment AP P’ and the cone
A’PP’ is made by combining two ratios ex aequali. Thus

segmt. APP' 2a+x
cone APP’ ~ a+uax’ by (@),
cone APP' a-x

and cone APP' " ava’

Thus combining the last three proportions, ex aequali, we have

segmt. A'PP' _ z(2a—2)+(2a+) (z—a—=x)

cone 4"PP’ a? + 2ax + x*
_#(2a—a)+(Za+2)(z—a-u)
- z(a-2)+2a+x)xe
since a®=z(a—x), by (y).

[The object of the transformation of the numerator and denominator
of the last fraction, by which 2 (2e — «) and z (@ —«) are made the

. . 20 —x . . .
first terms, is now obvious, because is the fraction which

—
Archimedes wishes to arrive at, and, in order to prove that the
required ratio is equal to this, it is only necessary to show that
20— 2z—(a—ux) ]
a—xz =
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2a — x o
Now =1+
a—x a—

2
:l+a’ by (V)’

_a+z

a
I Nl (Z_ ) (dividendo),

segmt. A'PP’ 20—
cone A'PP’ ~ a—a '

so that

4. One use by Euclid of the method of proportions deserves
mention because Archimedes does %0t use it in similar circumstances.
Archimedes (Quadrature of the Parabola, Prop. 23) sums a particular
geometric series

at+a()+a})+...+a(@)!
in a manner somewhat similar to that of our text-books, whereas
Euclid (1x. 35) sums any geometric series of any number of terms by
means of proportions thus.

Suppose a,, @y, ... @y, @y to be (n+1) terms of a geometric
series in which a,,, is the greatest term. Then

vy _ O _ a1 _ %
@y Op_y Ay g a
Therefore 17 _ OO T
Ay, Ay ay

Adding all the antecedents and all the consequents, we have

Uny1— O Ay
O+t ay+ ... +a, a,

)

which gives the sum of n terms of the series.

§ 2. Earlier discoveries affecting quadrature and cuba-
ture.

Archimedes quotes the theorem that circles are fo one another as
the squares on their diameters as having being proved by earlier
geometers, and he also says that it was proved by means of a certain
lemmna which he states as follows: “Of unequal lines, unequal
surfaces, or unequal solids, the greater exceeds the less by such a
magnitude as is capable, if added [continually] to itself, of exceeding
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any given magnitude of those which are comparable with one another
(Tév mpds dAApha Aeyopévor).” We know that Hippocrates of Chios
proved the theorem that circles are to one another as the squares on
their diameters, but no clear conclusion can be established as to the
method which he used. On the other hand, Eudoxus (who is
mentioned in the preface to The Sphere and Cylinder as having
proved two theorems in solid geometry to be mentioned presently)
is generally credited with the invention of the method of exhaustion
by which Euclid proves the proposition in question in x11. 2. The
lemma stated by Archimedes to have been used in the original proof
is not however found in that form in Euclid and is not used in the
proof of xi1. 2, where the lemma used is that proved by him in
X. 1, viz. that “ Given two unequal magnitudes, if from the greater
[a part] be subtracted greater than the half, if from the remainder
[a part] greater than the half be subtracted, and so on continually,
there will be left some magnitude which will be less than the lesser
given magnitude.” This last lemma is frequently assumed by
Archimedes, and the application of it to equilateral polygons in-
seribed in a circle or sector in the manner of xi1. 2 is referred to as
having been handed down in the Elements*, by which it is clear
that only Euclid’s Elements can be meant. The apparent difficulty
caused by the mention of fwo lemmas in connexion with the theorem
in question can, however, I think, be explained by reference to
the proof of x. 1 in Euclid. He there takes the lesser magnitude
and says that it is possible, by multiplying it, to make it some time
exceed the greater, and this statement he clearly bases on the 4th
definition of Book v. to the effect that “ magnitudes are said to bear
a ratio to one another, which can, if multiplied, exceed one another.”
Since then the smaller magnitude in x. 1 may be regarded as the
difference between some two unequal magnitudes, it is clear that the
lemma first quoted by Archimedes is in substance used to prove the
lemma in x. 1 which appears to play so much larger a part in the in-
vestigations in quadrature and cubature which have come down to us.

¥The two theorems which Archimedes attributes to Eudoxus
by namet are

(1) that any pyramid is one third part of the prism which has
the same base as the pyramid and equal height, and

* On the Sphere and Cylinder, 1. 6.
+ ibid. Preface.
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v (2) that any cone is one third part of the cylinder which has

the same base as the cone and equal height.

The other theorems in solid geometry which Archimedes quotes
as having been proved by earlier geometers are*:

(3) Cones of equal height are in the ratio of their bases, and
conwersely.

(4) If a cylinder be divided by a plane parallel to the base,
cylinder is to cylinder as axis to awxis.

(5) Cones which have the same bases as cylinders and equal
height with them are to one another as the cylinders.

(6) The bases of equal comes are reciprocally proportional to
their hetghts, and conversely.

(7) Cones the diameters of whose bases have the same ratio as
their axes are in the triplicate ratio of the diameters of their bases.

In the preface to the Quadrature of the Parabola he says
that earlier geometers had also proved that

(8) Spheres have to ome another the triplicate ratio of their
diameters ; and he adds that this proposition and the first of those
which he attributes to Eudoxus, numbered (1) above, were proved
by means of the sa,meplemma., viz. that the difference between
any two unequal magnitudes can be so multiplied as to exceed
any given magnitude, while (if the text of Heiberg is right) the
second of the propositions of Eudoxus, numbered (2), was proved
by means of “a lemma similar to that aforesaid.” As a matter
of fact, all the propositions (1) to (8) are given in Euclid’s twelfth
Book, except (5), which, however, is an easy deduction from (2);
and (1), (2), (3), and (7) all depend upon the same lemma [x. 1]
as that used in Eucl. x1. 2.

The proofs of the above seven propositions, excluding (5), as
given by Euclid are too long to quote here, but the following sketch
will show the line taken in the proofs and the order of the propo-
sitions. Suppose 4BCD to be a pyramid with a triangular base,
and suppose it to be cut by two planes, one bisecting 4B, AC,
4D in F, G, E respectively, and the other bisecting BC, BD, BA
in H, K, F respectively. These planes are then each parallel to
one face, and they cut off two pyramids each similar to the original

* Lemmas placed between Props. 16 and 17 of Book 1. On the Sphere and
Cylinder.

H. A. d
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pyramid and equal to one another, while the remainder of the
pyramid is proved to form two equal prisms which, taken together,

are greater than one half of the original pyramid [xm. 3]. It is
next proved [xi11. 4] that, if there are two pyramids with triangular
bases and equal height, and if they are each divided in the
manner shown into two equal pyramids each similar to the whole
and two prisms, the sum of the prisms in one pyramid is to the
sum of the prisms in the other in the ratio of the bases of the
whole pyramids respectively. Thus, if we divide in the same
manner the two pyramids which remain in each, then all
the pyramids which remain, and so on continually, it follows
on the one hand, by x. 1, that we shall ultimately have
pyramids remaining which are together less than any assigned
solid, while on the other hand the sums of all the prisms
resulting from the successive subdivisions are in the ratio of
the bases of the original pyramids. Accordingly Euclid is able
to use the regular method of exhaustion exemplified in xi. 2,
and to establish the proposition [x11. 5] that pyramids with the
same height and with triangular bases are to one another as their
bases. The proposition is then extended [x11. 6] to pyramids with the
same height and with polygonal bases. Next [x11. 7] a prism with
a triangular base is divided into three pyramids which are shown
to be equal by means of x11. 5; and it follows, as a corollary, that
any pyramid is one third part of the prism which has the same
base and equal height. Again, two similar and similarly situated
pyramids are taken and the solid parallelepipeds are completed,
which are then seen to be six times as large as the pyramids
respectively ; and, since (by x1. 33) similar parallelepipeds are in
the triplicate ratio of corresponding sides, it follows that the same
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is true of the pyramids.[x11. 8]. A corollary gives the obvious
extension to the case of similar pyramids with polygonal bases,
The proposition [x11. 9] that, in equal pyramids with triangular
bases, the bases are reciprocally proportional to the heights is
proved by the same method of completing the parallelepipeds and
using X1 34; and similarly for the converse. It is next proved
[x11. 10] that, if in the circle which is the base of a cylinder a
square be described, and then polygons be successively described
by bisecting the arcs remaining in each case, and so doubling the
number of sides, and if prisms of the same height as the cylinder
be erected on the square and the polygons as bases respectively,
the prism with the square base will be greater than half the
cylinder, the next prism will add to it more than half of the
remainder, and so on. And each prism is triple of the pyramid with
the same base and altitude. Thus the same method of exhaustion
as that in xiI. 2 proves that any cone is one third part of the
cylinder with the same base and equal height. Exactly the same
method is used to prove [x11. 11] that cones and cylinders which
have the same height are to one another as their bases, and
[xm. 12] that similar cones and cylinders are to one another in
the triplicate ratio of the diameters of their bases (the latter
proposition depending of course on the similar proposition xI11. 8
for pyramids). The next three propositions are proved without
fresh recourse to x. 1. Thus the criterion of equimultiples laid
down in Def. 5 of Book v. is used to prove [x1r. 13] that, if a
cylinder be cut by a plane parallel to its bases, the resulting
cylinders are to one another as their axes. It is an easy deduction
[x1. 14] that cones and cylinders which have equal bases are
proportional to their heights, and [x11. 15] that in equal cones
and cylinders the bases are reciprocally proportional to the heights,
and, conversely, that cones or cylinders having this property are
equal. Lastly, to prove that spheres are to one another in the
triplicate ratio of their diameters [x11. 18], a new procedure is
adopted, involving two preliminary propositions. In the first of
these [x11. 16] it is proved, by an application of the usual lemma
X. 1, that, if two concentric circles are given (however nearly
equal), an equilateral polygon can be inscribed in the outer circle
Wwhose sides do not touch the inner ; the second proposition [x11. 17]
uses the result of the first to prove that, given two concentric
spheres, it is possible to inscribe a certain polyhedron in the outer

d2
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so that it does not anywhere touch the inner, and a corollary adds
the proof that, if a similar polyhedron be inscribed in a second
sphere, the volumes of the polyhedra are to one another in the
triplicate ratio of the diameters of the respective spheres, This
last property is then applied [x11. 18] to prove that spheres are
in the triplicate ratio of their diameters.

§ 3. Conic Sections.

In my edition of the Conics of Apollonius there is a complete
account of all the propositions in conics which are used by Archi-
medes, classified under three headings, (1) those propositions
which he expressly attributes to earlier writers, (2) those which
are assumed without any such reference, (3) those which appear to
represent new developments of the theory of conics due to Archi-
medes himself.  As all these properties will appear in this
volume in their proper places, it will suffice here to state only
such propositions as come under the first heading and a few under
the second which may safely be supposed to have been previously
known.

Archimedes says that the following propositions “are proved
in the elements of conics,” ie. in the earlier treatises of Euclid

and Aristaeus.

1. In the parabola

(@) if PV be the diameter of a segment and @QVg the
chord parallel to the tangent at P, then QV= Vq;

(b) if the tangent at @ meet VP produced in 7, then
PV=PT;

(¢c) if two chords @ Vg, @'V'q’ each parallel to the tangent
at P meet the diameter PV in V, V' respectively,

PY:PV'=QV*:Q'V".

2. If straight lines drawn from the same point touch any
conic section whatever, and if two chords parallel to the respective
tangents intersect one another, then the rectangles under the
segments of the chords are to one another as the squares on the

parallel tangents respectively.

¥> 3. The following proposition is quoted as proved “in the conics.”
If in a parabola p, be the parameter of the principal ordinates,



RELATION OF ARCHIMEDES TO HIS PREDECESSORS.  liii

@@’ any chord not perpendicular to the axis which is bisected in V
by the diameter PV, p the parameter of the ordinates to PV, and
if @D be drawn perpendicular to PV, then

QV::QD*=p : p,
[On Conoids and Spheroids, Prop. 3, which see.]

The properties of a parabola, PN*=p,. AN, and QV*=p.PV,
were already well known before the time of Archimedes. In fact
the former property was used by Menaechmus, the discoverer of
conic sections, in his duplication of the cube.

It may be taken as certain that the following properties of the
ellipse and hyperbola were proved in the Conics of Euclid.

1. For the ellipse
PN?: AN.A'N=P'N"* : AN'. A’N'=CB* : C4*
and QV*: PV.P'V=QV*:PV' .P'V' =CD*:CP=
(Either proposition could in fact be derived from the proposition

about the rectangles under the segments of intersecting chords
above referred to.)

2. For the hyperbola
PN? : AN . A'N=P'N'*: AN' . A'N'
and QV*:PV.P'V=Q'V'*: PV'.P'V',
though in this case the absence of the conception of the double
hyperbola as one curve (first found in Apollonius) prevented Euclid,

and Archimedes also, from equating the respective ratios to those
of the squares on the parallel semidiameters.

3. In a hyperbola, if P be any point on the curve and PK,
PL be each drawn parallel to one asymptote and meeting the
other,

PK. PL=(const.)

This property, in the particular case of the rectangular hyperbola,
was known to Menaechmus.

R1t is probable also that the property of the subnormal of the
parabola (VG =4%p,) was known to Archimedes’ predecessors. It
is tacitly assumed, On floating bodies, 11. 4, etc.

From the assumption that, in the hyperbola, 47'< AN (where
X is the foot of the ordinate from P, and 7' the point in which the
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tangent at P meets the transverse axis) we may perhaps infer
that the harmonic property

TP : TP =PV :P'YV,
or at least the particular case of it,

T4 :TA'=AN : 4'N,
was known before Archimedes’ time.

Lastly, with reference to the genesis of conic sections from
cones and cylinders, Euclid had already stated in his Phaenomena
that, “if a cone or cylinder be cut by a plane not parallel to the
base, the resulting section is a section of an acute-angled cone
[an ellipse] which is similar to a fupeds.” Though it is not probable

that Euclid had in mind any other than a right cone, the statement
should be compared with On Conoids and Spheroids, Props. 7, 8, 9.

§4. Surfaces of the second degree.

Prop. 11 of the treatise On Conoids and Spheroids states without
proof the nature of certain plane sections of the conicoids of revo-
lution. Besides the obvious facts (1) that sections perpendicular
to the axis of revolution are circles, and (2) that sections through
the axis are the same as the generating conic, Archimedes asserts
the following.

1. In a paraboloid of revolution any plane section parallel to
the axis is a parabola equal to the generating parabola.

2. In a hyperboloid of revolution any plane section parallel
to the axis is a hyperbola similar to the generating hyperbola.

3. In a hyperboloid of revolution a plane section through the
vertex of the enveloping cone is a hyperbola which is not similar
to the generating hyperhola.

4. In any spheroid a plane section parallel to the axis is an
ellipse similar to the generating ellipse.

Archimedes adds that “the proofs of all these propositions
are manifest (pavepai).” The proofs may in fact be supplied as
follows,

1. Section of a paraboloid of revolution by a plane parallel
to the axis.
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Suppose that the plane of the paper represents the plane section
through the axis 4 ¥ which intersects the given plane section at right
angles, and let 4’0 be the line of intersection. P
Let POP’ be any double ordinate to AN in the /
section through the axis, meeting 4’0 and AN
at right angles in O, &V respectively. Draw 4'M
perpendicular to AN.

Suppose a perpendicular drawn from O to
4’0 in the plane of the given section parallel to
the axis, and let ¥ be the length intercepted by
the surface on this perpendicular.

Then, since the extremity of y is on the
circular section whose diameter is PP’,

y*=P0.0P".

A' o

If 4’0 =2, and if p is the principal parameter of the generating
.parabola, we have then

y'=PN*- ON*
= PN*—A'M*
=p (AN — AM)
= px,

so that the section is a parabola equal to the generating parabola.

2. Section of a hyperboloid of revolution by a plane parallel to
the axts.

Take, as before, the plane section through the axis which intersects

¢ A

) Al'Mm N

.

the given plane section at right angles in 4'0. Let the hyperbola
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PAP' in the plane of the paper represent the plane section through
the axis, and let C be the centre (or the vertex of the enveloping
cone). Draw CC’ perpendicular to C4, and produce 04’ to meet it
in C'. Let the rest of the construction be as before.
Suppose that
CAd=a, C'Ad'=0a’, C'0=ux,
and let y have the same meaning as before.
Then y*=P0.0P =PN*-A'M*
And, by the property of the original hyperbola,
PN®:CN*-CA*=A'M? . CM?—~(CA4*? (which is constant).
Thus A'M?: CM?—CA*=PN?:CN*-CA4*
=PN*—A'M*: CN°—-CM*
=y 2’ — a'?
whence it appears that the section is a hyperbola similar to the
original one.

3. Section of a hyperboloid of revolution by a plane passing
through the centre (or the vertex of the enveloping cone).

I think there can be no doubt that Archimedes would have proved
his proposition about this section by means of the same general
property of conics which he uses to prove Props. 3 and 12—14 of
the same treatise, and which he enunciates at the beginning of
Prop. 3 as a known theorem proved in the ‘“‘elements of conics,” viz.
that the rectangles under the segments of intersecting chords are as
the squares of the parallel tangents.

Let the plane of the paper represent the plane section through
the axis which intersects the given plane passing through the
centre at right angles. Let ('A’O be the line of intersection, ¢
being the centre, and 4’ being the point where (4’0 meets the
surface. Suppose CAMN to be the axis of the hyperboloid, and
POp, P'O’p’ two double ordinates to it in the plane section through
the axis, meeting C4'0 in 0, O’ respectively ; similarly let 4’} be
the ordinate from A’. Draw the tangents at 4 and 4’ to the
section through the axis meeting in 7, and let @Og, @'0’q’ be the
two double ordinates in the same section which are parallel to the
tangent at 4’ and pass through O, O’ respectively.

Suppose, as before, that y, y’ are the lengths cut off by the
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surface from the perpendiculars at O and O’ to OC in the plane of
the given section through C4’0, and that

CO==, 00" =a', CAd=a, CA'=da'.

P ng

Then, by the property of the intersecting chords, we have, since

QO:Oq,

PO.Op:Q0*=TA®:T4"*

=P'0".0p :Q0"
Also y?=PO0 . Op, y'°=P'0". 0'p,
and, by the property of the hyperhola,
QO?:x*-a?=Q'0%: 2" ~a'".
It follows, ex acquali, that
yix®t—at=y't -0t (a),

and therefore that the section is a hyperbola.

To prove that this hyperbola is not similar to the generating
hyperbola, we draw CC' perpendicular to C4, and C’4’ parallel to
C4 meeting CC' in ¢’ and Pp in U.

If then the hyperbola (a) is similar to the original hyperbola, it
must by the last proposition be similar to the hyperbolic section
made by the plane through C’A’U at right angles to the plane of
the paper.

Now C0*-CA”=(C'U*-(C'4"%)+(CC'+0U)*--CC"*
>C0'U*-C'4A"?,
and PO .Op<PU. Up.
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Therefore PO . Op:C0*-CA"*<PU.Up:C0'U*-C'4%,

and it follows that the hyperbolas are not similar*.

4. Section of a spheroid by a plane parallel to the axis.

That this is an ellipse similar to the generating ellipse can of
course be proved in exactly the same way as theorem (2) above
for the hyperboloid.

* I think Archimedes is more likely to have used this proof than one on the
lines suggested by Zeuthen (p. 421). The latter uses the equation of the
hyperbola simply and proceeds thus. If y have the same meaning as above,
and if the coordinates of P referred to C4, CC’ as axes be z, z, while those of O
referred to the same axes are z, 2/, we have, for the point P,

2=k (22 - a?),
where « is constant.
Also, since the angle 4’C4 is given, 2’ =az, where a is constant.

Thus Y =22~ 2"= (k- a?) 2% — ka®
Now z is proportional to CO, being in fact equal to Jita and the equation

becomes
k—a?
y2=1—_?;2 LCO2 =KAo, 1),
which is clearly a hyperbola, since a%<«x.

Now, though the Greeks could have worked out the proof in a geometrical
form equivalent to the above, I think that it is alien from the manner in which
Archimedes regarded the equations to central conics. These he always expressed
in the form of a proportion

y? y'? b2 . .
5= 2 [: o the case of the ellipse |,

a2~a? gt~
and never in the form of an equation between areas like that used by
Apollonius, viz.
yl=pr g x2.

Moreover the occurrence of the two different constants and the necessity
of expressing them geometrically as ratios between areas and lines respectively
would have made the proof very long and complicated ; and, as a matter of fact,
Archimedes never does express the ratio y2/(z%— a?) in the case of the hyperbola
in the form of a ratio between constant areas like b%/a?. Lastly, when the
equation of the given section through C4’0 was found in the form (1), assuming
that the Greeks had actually found the geometrical equivalent, it would still
have been held necessary, I think, to verify that

car="01%) .,
k—a? ’
before it was finally pronounced that the hyperbola represented by the equation
and the section made by the plane were one and the same thing.
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‘We are now in a position to consider the meaning of Archimedes’
remark that “the proofs of all these properties are manifest.” In
the first place, it is not likely that ““manifest” means “known” as
having been proved by earlier geometers; for Archimedes’ habit is
to be precise in stating the fact whenever he uses important
propositions due to his immediate predecessors, as witness his
references to Eudoxus, to the Elements [of Euclid], and to the
“‘elements of conics.” When we consider the remark with reference
to the cases of the sections parallel to the axes of the surfaces
respectively, a natural interpretation of it is to suppose that
Archimedes meant simply that the theorems are such as can easily
be deduced from the fundamental properties of the three conics now
expressed by their equations, coupled with the consideration that
the sections by planes perpendicular to the axes are circles. But I
think that this particular explanation of the ‘“manifest” character
of the proofs is not so applicable to the third of the theorems
stating that any plane section of a hyperboloid of revolution
through the vertex of the enveloping cone but not through the axis
is a hyperbola. This fact is indeed no more ‘“manifest” in the
ordinary sense of the term than is the like theorem about the
spheroid, viz. that any section through the centre but not through
the axis is an ellipse. But this latter theorem is not given along
with the other in Prop. 11 as being “manifest” ; the proof of it is
included in the more general proposition (14) that any section of a
spheroid not perpendicular to the axis is an ellipse, and that parallel
sections are similar. Nor, seeing that the propositions are essen-
tially similar in character, can I think it possible that Archimedes
wished it to be understood, as Zeuthen suggests, that the proposition
about the hyperboloid alone, and not the other, should be proved
directly by means of the geometrical equivalent of the Cartesian
equation of the conic, and not by means of the property of the
rectangles under the segments of intersecting chords, used earlier
[Prop. 3] with reference to the parabola and later for the case of
the spheroid and the elliptic sections of the conoids and spheroids
generally. This is the more unlikely, I think, because the proof
by means of the equation of the conic alone would present much
more difficulty to the Greek, and therefore could hardly be called
“ manifest.”

It seems necessary therefore to seek for another explanation,
and I think it is the following. The theorems, numbered 1, 2, and
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4 above, about sections of conoids and spheroids parallel to the axis
are used afterwards in Props. 15—17 relating to tangent planes;
whereas the theorem (3) about the section of the hyperboloid by a
plane through the centre but not through the axis is not used in
connexion with tangent planes, but only for formally proving that a
straight line drawn from any point on a hyperboloid parallel to any
transverse diameter of the hyperboloid falls, on the convex side of
the surface, without it, and on the concave side within it. Hence
it does not seem so probable that the four theorems were collected
in Prop. 11 on account of the use made of them later, as that they
were inserted in the particular place with special reference to the
three propositions (12—14) immediately following and treating of the
elliptic sections of the three surfaces. The main object of the whole
treatise was the determination of the volumes of segments of the
three solids cut off by planes, and hence it was first necessary to
determine all the sections which were ellipses or circles and therefore
could form the bases of the segments. Thus in Props. 12-14
Archimedes addresses himself to finding the elliptic sections, but,
before he does this, he gives the theorems grouped in Prop. 11 by
way of clearing the ground, so as to enable the propositions about
elliptic sections to be enunciated with the utmost precision. Prop.
11 contains, in fact, explanations directed to defining the scope of
the three following propositions rather than theorems definitely
enunciated for their own sake; Archimedes thinks it necessary to
explain, before passing to elliptic sections, that sections perpen-
dicular to the axis of each surface are not ellipses but circles, and
that some sections of each of the two conoids are neither ellipses nor
circles, but parabolas and hyperbolas respectively. It is as if he had
said, “ My object being to find the volumes of segments of the three
solids cut off by circular or elliptic sections, I proceed to consider
the various elliptic sections; but I should first explain that sections
at right angles to the axis are not ellipses but circles, while sections
of the conoids by planes drawn in a certain manner are neither
ellipses nor circles, but parabolas and hyperbolas respectively. With
these last sections I am not concerned in the next propositions, and
I need not therefore cumber my book with the proofs ; but, as some
of them can be easily supplied by the help of the ordinary properties
of conics, and others by means of the methods illustrated in the
propositions now about to be given, I leave them as an exercise for
the reader.” This will, I think, completely explain the assumption
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of all the theorems except that concerning the sections of a spheroid
parallel to the axis; and I think this is mentioned along with the
others for symmetry, and because it can be proved in the same way
as the corresponding one for the hyperboloid, whereas, if mention of
it had been postponed till Prop. 14 about the elliptic sections of a
spheroid generally, it would still require a proposition for itself, since
the axes of the sections dealt with in Prop. 14 make an angle with
the axis of the spheroid and are not parallel to it.

At the same time the fact that Archimedes omits the proofs of
the theorems about sections of conoids and spheroids parallel to the
axis as “manifest” is in itself sufficient to raise the presumption
that contemporary geometers were familiar with the idea of three
dimensions and knew how to apply it in practice. This is no matter
for surprise, seeing that we find Archytas, in his solution of the
problem of the two mean proportionals, using the intersection of a
certain cone with a curve of double curvature traced on a right
circular cylinder*., But, when we look for other instances of early
investigations in geometry of three dimensions, we find practically
nothing except a few vague indications as to the contents of a lost
treatise of Euclid’s consisting of two Books entitled Suzface-loc
(vémor wpds émpavela)t. This treatise is mentioned by Pappus
among other works by Aristaeus, Euclid and Apollonius grouped
as forming the so-called rdmos dvalvduevos}. As the other works in
the list which were on plane subjects dealt only with straight lines,
circles and conic sections, it is @ prior: likely that the surfuce-loci of

* Of. Eutocius on Archimedes (Vol. 111. pp. 98—102), or Apollonius of Perga,
pp. xxii.—xxiii.

+ By this term we conclude that the Greeks meant *loci which are surfaces”
as distinct from loci which are lines. Cf. Proclus’ definition of a locus as
“a position of a line or a surface involving one and the same property”
(ypapuds 4 émpavelas Oégis mowoboa & kal TalrTdv clumTwua), P. 394. Pappus
(pp 660—2) gives, quoting from the Plane Loci of Apollonius, a classification of
loci according to their order in relation to that of which they are the loci. Thus,
he says, loci are (1) épekrixol, i.e. fized, e.g. in this sense the locus of a point is
a point, of a line a line, and so on; (2) dieodixoi or moving along, & line being in
this sense the locus of a point, a surface of a line, and a solid of a surface;
(3) dvacrpodukol, turning backwards, i.e., presumably, moving backwards and
forwards, a surface being in this sense the locus of a point, and a solid of a line.
Thus a surface-locus might apparently be either the locus of a point or the
locus of a line moving in space.

+ Pappus, pp. 634, 636.
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Euclid included at least such loci as were cones, cylinders and
spheres. Beyond this, all is conjecture based upon two lemmas
given by Pappus in connexion with the treatise.

First lemma to the Surface-loci of Euclid*.

The text of this lemma and the attached figure are not satisfac-
tory as they stand, but they have been explained by Tannery in a
way which requires a change in the figure, but only the very slightest
alteration in the text, as followsf.

“If AB be a straight line and CD be parallel to a straight line
given in position, and if the ratio 4D . DB : DC*® be [given], the
point C lies on a conic section.

If now AB be no longer given in
position and 4, B be no longer
given but lie on straight lines
AE, EB given in positionf, the c
point C raised above [the plane  p \
containing A, EB] is on a
surface given in position. And
this was proved.”

According to this interpretation, it is asserted that, if 458 moves
with one extremity on each of the lines 4, EB which are fixed,
while DC is in a fixed direction and 4D . DB : D(C? is constant,
then C lies on a certain surface. So far as the first sentence is
concerned, AB remains of constant length, but it is not made
precisely clear whether, when 428 is no longer given in position, its
length may also vary§. If however 4B remains of constant length
for all positions which it assumes, the surface which is the locus of
C would be a complicated one which we cannot suppose that Euclid
could have profitably investigated. It may, therefore, be that
Pappus purposely left the enunciation somewhat vague in order to
make it appear to cover several surface-loci which, though belonging
to the same type, were separately discussed by Euclid as involving

E

D

* Pappus, p. 1004.

+ Bulletin des sciences math., 2¢ Série, vi, 149.

1+ The words of the Greek text are yévnrac 8¢ wpds Oéoer etfeta Tals AE, EB,
and the above translation only requires evfefacs instead of evfeta. The figure in
the text is so drawn that 4ADB, AEB are represented as two parallel lines, and
CD is represented as perpendicular to 4ADB and meeting AEB in E.

§ The words are simply ‘“if AB be deprived of its position (screpndy Tis
0éoews) and the points 4, B be deprived of their [character of] being given”
(oTepn07 100 SoBévros elvar).
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in each case somewhat different sets of conditions limiting the
generality of the theorem.

It is at least open to conjecture, as Zeuthen has pointed out*,
that two cases of the type were considered by Euclid, namely, (1)
that in which 4.8 remains of constant length while the two fixed
straight lines on which 4, B respectively move are parallel instead
of meeting in a point, and (2) that in which the two fixed straight
lines meet in a point while AB moves always parallel to itself
and varies in length accordingly.

(1) In the first case, where the length of 4B is constant and
the two fixed lines parallel, we should have a surface described by a
conic moving bodily . This surface would be a cylindrical surface,
though it would only have been called a “ cylinder ” by the ancients
in the case where the moving conic was an ellipse, since the essence
of a “cylinder” was that it could be bounded between two parallel
circular sections. If then the moving conic was an ellipse, it would
not be difficult to find the circular sections of the cylinder; this
could be done by first taking a section at right angles to the axis,
after which it could be proved, after the manner of Archimedes,
On Conoids and Spheroids, Prop. 9, first that the section is an ellipse
or a circle, and then, in the former case, that a section made by
a plane drawn at a certain inclination to the ellipse and passing
through, or parallel -to, the major axis is a circle. There was
nothing to prevent Euclid from investigating the surface similarly
generated by a moving hyperbola or parabola; but there would
be no circular sections, and hence the surfaces might perhaps not
have been considered as of very great importance.

(2) In the second case, where 4%, BE meet at a point and
4B moves always parallel to itself, the surface generated is of
course a cone. Some particular cases of this sort may easily have
been discussed by Euclid, but he could hardly have dealt with the
general case, where DC has any direction whatever, up to the
point of showing that the surface was really a cone in the sense
in which the Greeks understood the term, or (in other words)
of finding the circular sections. To do this it would have been
necessary to determine the principal planes, or to solve the dis-

* Zeuthen, Die Lehre von den Kegelschnitten, pp. 425 sqq.
+ This would give a surface generated by a moving line, diefodixds ypauuis
a8 Pappus has it.
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criminating cubic, which we cannot suppose Euclid to have done.
Moreover, if Euclid had found the circular sections in the most
general case, Archimedes would simply have referred to the fact
instead of setting himself to do the same thing in the particular
case where the plane of symmetry is given. These remarks apply
to the case where the conic which is the locus of C is an ellipse ;
there is still less ground for supposing that Euclid could have
proved the existence of circular sections where the conic was a
hyperbola, for there is no evidence that Euclid even knew that
hyperbolas and parabolas could be obtained by cutting an oblique
circular cone.

Second lemma to the Surface-loci.

In this Pappus states, and gives a complete proof of the propo-
sition, that the locus of a point whose distance from a given point
i8¢ in a given ratio to its distance from a fixed line is a conic
section, which is an ellipse, a parabola, or a hyperbola according
as the given ratio is less than, equal to, or greater than wunity¥.
Two conjectures are possible as to the application of this theorem
by Euclid in the treatise referred to.

(1) Consider a plane and a straight line meeting it at any angle.
Imagine any plane drawn at right angles to the straight line and
meeting the first plane in another straight line which we will call
X. If then the given straight line meets the plane at right angles
to it in the point .S, a conic can be described in that plane with
S for focus and X for directrix ; and, as the perpendicular on X
from any point on the conic is in a constant ratio to the per-
pendicular from the same point on the original plane, all points
on the conic have the property that their distances from S are in
a given ratio to their distances from the given plane respectively.
Similarly, by taking planes cutting the given straight line at right
angles in any number of other points besides S, we see that the locus
of o point whose distance from a given straight line is in o given
ratio to its distance from a given plane is a cone whose vertex is
the point in which the given line meets the given plane, while the
plane of symmetry passes through the given line and s at right
angles to the given plane. If the given ratio was such that the
guiding conic was an ellipse, the circular sections of the surface

* See Pappus, pp. 1006—1014, and Hultsch’s Appendix, pp. 1270—1273 ; or
cf, Apollonius of Perga, pp. Xxxvi.—Xxxviii,
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could, in that case at least, be found by the same method as
that used by Archimedes (On Conoids and Spheroids, Prop. 8) in
the rather more general case where the perpendicular from the
vertex of the cone on the plane of the given elliptic section does
not necessarily pass through the focus.

(2) Another natural conjecture would be to suppose that, by
means of the proposition given by Pappus, Euclid found ¢tke locus
of a point whose distance from a givem point is in a given ratio
to its distance from a fixed plane. This would have given surfaces
identical with the conoids and spheroids discussed by Archimedes
excluding the spheroid generated by the revolution of an ellipse
about the minor axis. We are thus brought to the same point as
Chasles who conjectured that the Surfuce-loei of Euclid dealt with
surfaces of revolution of the second degree and sections of the
same*. Recent writers have generally regarded this theory as
improbable. Thus Heiberg says that the conoids and spheroids
were without any doubt discovered by Archimedes himself ; other-
wise he would not have held it necessary to give exact definitions
of them in his introductory letter to Dositheus; hence they could
not have been the subject of Euclid’s treatiset. I confess I think
that the argument of Heiberg, so far from being conclusive against
the probability of Chasles’ conjecture, is not of any great weight.
To suppose that Euclid found, by means of the theorem enunciated
and proved by Pappus, the locus of a point whose distance from
a given point is in a given ratio to its distance from a fixed plane
does not oblige us to assume either that he gave a name to the
loci or that he investigated them further than to show that sections
through the perpendicular from the given point on the given plane
were conics, while sections at right angles to the same perpendicular
were circles ; and of course these facts would readily suggest them-
selves. Seeing however that the object of Archimedes was to
find the volumes of segments of each surface, it is not surprising
that he should have preferred to give a definition of them which
would indicate their form more directly than a description of them
as loci would have done; and we have a parallel case in the dis-
tinction drawn between conics as such and conics regarded as loci,
which is illustrated by the different titles of Euclid’s Conics and
the Solid Loci of Aristaeus, and also by the fact that Apollonius,

* Apergu historique, pp. 273, 4.
+ Litterargeschichtliche Studien iiber Euklid, p. 79.
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though he speaks in his preface of some of the theorems in his
Conics as useful for the synthesis of ‘solid loci’ and goes on to
mention the ‘locus with respect to three or four lines,” yet enun-
ciates no proposition stating that the locus of such and such a point
is a conic. There was a further special reason for defining the
conoids and spheroids as surfaces described by the revolution of
a conic about its axis, namely that this definition enabled Archi-
medes to include the spheroid which he calls ‘flat’ (émurdary
a¢apoedés), i.e. the spheroid described by the revolution of an
ellipse about its minor axis, which is not one of the loci which
the hypothesis assumes Euclid to have discovered. Archimedes’
new definition had the incidental effect of making the nature of
the sections through and perpendicular to the axis of revolution
even more obvious than it would be from Euclid’s supposed way
of treating the surfaces; and this would account for Archimedes’
omission to state that the two classes of sections had been known
before, for there would have been no point in attributing to Euclid
the proof of propositions which, with the new definition of the
surfaces, became self-evident. The further definitions given by
Archimedes may be explained on the same principle. Thus the
axis, as defined by him, has special reference to his definition of
the surfaces, since it means the axis of revolution, whereas the
axis of a conic is for Archimedes a diameter. The enveloping cone
of the hyperboloid, which is generated by the revolution of the
asymptotes about the axis, and the centre regarded as the point
of intersection of the asymptotes were useful to Archimedes’ dis-
cussion of the surfaces, but need not have been brought into
Euclid’s description of the surfaces as loci. Similarly with the
axis and wvertex of a segment of each surface. And, generally, it
seems to me that all the definitions given by Archimedes can be
explained in like manner without prejudice to the supposed dis-
covery of three of the surfaces by Euclid.

I think, then, that we may still regard it as possible that
Euclid’s Surface-loci was concerned, not only with cones, cylinders
and (probably) spheres, but also (to a limited extent) with three
other surfaces of revolution of the second degree, viz. the paraboloid,
the hyperboloid and the prolate spheroid. Unfortunately however
we are confined to the statement of possibilities; and certainty
can hardly be attained unless as the result of the discovery of
fresh documents.
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§ 5. Two mean proportionals in continued proportion.

Archimedes assumes the construction of two mean proportionals
in two propositions (On the Sphere and Cylinder 11. 1, 5). Perhaps
he was content to use the constructions given by Archytas,
Menaechmus*, and Eudoxus. It is worth noting, however, that
Archimedes does not introduce the two geometric means where
they are merely convenient but not necessary; thus, when (On the

Sphere and Cylinder 1. 34) he has to substitute for a ratio (/_3)% ,
where B>+7, a ratio between lines, and it is sufficient fory his
purpose that the required ratio cannot be greater than (E\)* but
may be less, he takes two arithmetic means between j, y,ya.s 3, ¢
and then assumest as a known result that

B _B
3 .
&y
* The constructions of Archytas and Menaechmus are given by Eutocius
[4rchimedes, Vol. 11 pp. 92—102]; or see dpollonius of Perga, pp. xix—xxiii.

+ The proposition is proved by Eutocius; see the note to On the Sphere
and Cylinder 1. 34 (p. 42).

e2



CHAPTER 1IV.
ARITHMETIC IN ARCHIMEDES.

Two of the treatises, the Measurement of a circle and the
Sand-reckoner, are mostly arithmetical in content. Of the Sand-
reckoner nothing need be said here, because the system for expressing
numbers of any magnitude which it unfolds and applies cannot be
better described than in the book itself; in the Measurement of a
circle, however, which involves a great deal of manipulation of
numbers of considerable size though expressible by means of the
ordinary Greek notation for numerals, Archimedes merely gives the
results of the various arithmetical operations, multiplication, extrac-
tion of the square root, etc., without setting out any of the operations
themselves. Various interesting questions are accordingly involved,
and, for the convenience of the reader, I shall first give a short
account of the Greek system of numerals and of the methods by
which other Greek mathematicians usually performed the various
operations included under the general term Aoywruaj (the art of
calculating), in order to lead up to an explanation (1) of the way in
which Archimedes worked out approximations to the square roots of
large numbers, (2) of his method of arriving at the two approximate

values of »/3 which he simply sets down without any hint as to how
they were obtained *.

* In writing this chapter I have been under particular obligations to Hultsch’s
articles Arithmetica and Archimedes in Pauly-Wissowa’s Real-Encyclopidie, 11.
1, as well as to the same scholar’s articles (1) Die Naherungswerthe irrationaler
Quadratwurzeln bei Archimedes in the Nachrichten von der kgl. Gesellschaft der
Wissenschaften zu Gottingen (1893), pp. 367 saq., and (2) Zur Kreismessung des
Archimedes in the Zeitschrift fiir Math. u. Physik (Hist. litt. Abtheilung) xxxix.
(1894), pp. 121 sqq. and 161 sqq. I have also made use, in the earlier part
of the chapter, of Nesselmann’s work Die 4lgebra der Griechen and the histories

of Cantor and Gow.
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§ 1. Greek numeral system.

It is well known that the Greeks expressed all numbers from 1
to 999 by means of the letters of the alphabet reinforced by the
addition of three other signs, according to the following scheme, in
which however the accent on each letter might be replaced by a
short horizontal stroke above it, as a.

o, B,v,8, ¢ s, L, 7,0 are 1,2, 3, 4, 5, 6, 7, 8 9 respectively.

G N, WV, E o, 7, g, 10, 20, 30, ......... 90 »

e, o, TV, ¢, X, ¥, o, A7, 100, 200, 300,...... 900 ”
Intermediate numbers were expressed by simple juxtaposition

(representing in this case addition), the largest number being placed
on the left, the next largest following it, and so on in order. Thus
the number 153 would be expressed by pvy’ or pry. There was no
sign for zero, and therefore 780 was y=', and 306 r¢” simply.

Thousands (x:\ddes) were taken as units of a higher order, and
1,000, 2,000, ... up to 9,000 (spoken of as x{Aot, 8ioxiAtor, k.7.1.) Were
represented by the same letters as the first nine natural numbers
but with a small dash in front and below the line; thus e.g. 8 was
4,000, and, on the same principle of juxtaposition as before, 1,823 was
expressed by awky’ or awxy, 1,007 by af’, and so on.

Above 9,999 came a myriad (uvpuds), and 10,000 and higher
numbers were expressed by using the ordinary numerals with the
substantive uvpiddes taken as a new denomination (though the words
pipto, Swmdpioy, Tpiopvpioy, k.7.A. are also found, following the
analogy of xi\iwot, duoxidior and so on). Various abbreviations were
used for the word pvpuds, the most common being M or Mv; and,
where this was used, the number of myriads, or the multiple of
10,000, was generally written over the abbreviation, though some-

times before it and even after it. Thus 349,450 was ﬁﬁvv' *,
Fractions (Aewrd) were written in a variety of ways. The most
usual was to express the denominator by the ordinary numeral with
two accents affixed. When the numerator was unity, and it was
therefore simply a question of a symbol for a single word such as
* Diophantus denoted myriads followed by thousands by the ordinary signs
for numbers of units, only separating them by a dot from the thousands. Thus

for 3,069,000 he writes 7s.,6, and \y. ayos for 331,776. Sometimes myriads
were represented by the ordinary letters with two dots above, as 5 =100 myriads
(1,000,000), and myriads of myriads with two pairs of dots, as ¢ for 10 myriad-
myriads (1,000,000,000).
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Tpirov, %, there was no need to express the numerator, and the
symbol was y”; similarly s”=1, «¢"=,%, and so on. When the
numerator was not unity and a certain number of fourths, fifths,
etc.,, had to be expressed, the ordinary numeral was used for the
numerator ; thus ¢ w’ =&, ¢ 0a’=3%. In Heron’s Geometry the
denominator was written twice in the latter class of fractions; thus
2 (8o wéumwra) was B'¢"e”, 23 (Aemrd TpaxooTéTpita ky Or eikooirpla
Tplakoototpira) was ky Ay" Ay”. The sign for 4, juwov, is in
Archimedes, Diophantus and Eutocius L”, in Heron C or a sign
similar to a capital S*.

A favourite way of expressing fractions with numerators greater
than unity was to separate them into component fractions with
numerator unity, when juxtaposition as usual meant addition. Thus
4 was written L"8"=}+1; 15 was C8'7"uws’=%+1+31+5;
Eutocius writes |."£8” or § + ¢ for 22, and so on. Sometimes the
same fraction was separated into several different sums; thus in
Heron (p. 119, ed. Hultsch) 282 is variously expressed as

(@) 3+3+dc+1ie+oim
) 3+5+15+5r+1im
and (€ 3+3+3r+1iz+ ot

Sexagesimal fractions. This system has to be mentioned because
the only instances of the working out of some arithmetical operations
which have been handed down to us are calculations expressed in
terms of such fractions; and moreover they are of special interest
as having much in common with the modern system of decimal
fractions, with the difference of course that the submultiple is 60
instead of 10. The scheme of sexagesimal fractions was used by the
Greeks in astronomical calculations and appears fully developed in
the ovvraéis of Ptolemy. The circumference of a circle, and along
with it the four right angles subtended by it at the centre, are
divided into 360 parts (tujpara or woipar) or as we should say degrees,
each potpa into 60 parts called (first) siaticths, (mpodra) ééykoord,
or minutes (Aerrd), each of these again into Selrepa éénroard (seconds),
and so on. A similar division of the radius of the circle into 60

* Diophantus has a general method of expressing fractions which is the

exact reverse of modern practice; the denominator is written above the
Z E a.ws

numerator, thus e=5/3, xa =21/25, and p«{. ¢ty =1,270,568/10,816. Some-

times he writes down the numerator and then introduces the denominator

with & uoply or uoplov, e.g. 7= . 0 pop. Ny. agos =3,069,000/331,776.
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parts (rurjpara) was also made, and these were each subdivided into
sixtieths, and so on. Thus a convenient fractional system was
available for general arithmetical calculations, expressed in units of
any magnitude or character, so many of the fractions which we
should represent by 44, so many of those which we should write
()% (g%)% and so on to any extent. It is therefore not surprising
that Ptolemy should say in one place “In general we shall use the
method of numbers according to the sexagesimal manner because of
the inconvenience of the [ordinary] fractions.” For it is clear that
the successive submultiples by 60 formed a sort of frame with fixed
compartments into which any fractions whatever could be located,
and it is easy to see that e.g. in additions and subtractions the
sexagesimal fractions were almost as easy to work with as decimals
are now, 60 units of one denomination being equal to one unit of
the next higher denomination, and “carrying” and *borrowing”
being no less simple than it is when the number of units of one
denomination necessary to make one of the next higher is 10 instead
of 60. In expressing the units of the circumference, degrees, potpar
or the symbol & was generally used along with the ordinary numeral
which had a stroke above it ; minutes, seconds, etc. were expressed
by one, two, etc. accents affixed to the numerals. Thus &B=2°
popdv pl uB ' =47°42'40”. Also where there was no unit in any
particular denomination O was used, signifying oddeuia poipa, otdev
éénroordy and the like ; thus O o' 870" =0°1'2" 0", Similarly, for
the units representing the divisions of the radius the word rwjpara
or some equivalent was used, and the fractions were represented as

before ; thus runudrov £C8 ve' =67 (units) 4’ 55",
§ 2. Addition and Subtraction.

There is no doubt that, in writing down numbers for these
purposes, the several powers of 10 were kept separate in a manner
corresponding practically to our system of numerals, and the
hundreds, thousands, etc., were written in separate vertical rows,
The following would therefore be a typical form of a sum in addition ;

avkd = 1424
p Y 103

MBora 12281
M XN 30030
MM 30030

Mywhy 43838
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and the mental part of the work would be the same for the Greek as
for us.

Similarly a subtraction would be represented as follows :

fquxxs-' =93636
IF\]/I;,fv 6 23409
15’[ okl 70227

§ 3. Multiplication.

A number of instances are given in Eutocius’ commentary on
the Measurement of a circle, and the similarity to our procedure is
just as marked as in the above cases of addition and subtraction.
The multiplicand is written first, and below it the multiplier preceded
by éni (=“into”). Then the highest power of 10 in the multiplier
is taken and multiplied into the terms containing the separate
multiples of the successive powers of 10, beginning with the highest
and descending to the lowest ; after which the next highest power
of 10 in the multiplier is multiplied into the various denominations
in the multiplicand in the same order. The same procedure is
followed where either or both of the numbers to be multiplied
contain fractions. Two instances from Eutocius are appended from
which the whole procedure will be understood.

Q) g’ 780
éri Yy’ x 780
0 € -
MM ¢’ 490000 56000
M, s 56000 6400
Moy 56000 6400
50 Mg’ sum 608400
(2)
iy L8 3013} } [=3013%]
éml yy' Y x 3013% }
k)
MM 6 achy’ 9,000,000 30,000 9,000 1500 750
MpAé L 30,000 100 30 5 2}
ONGa’ L LS 9,000 30 9 13 }+1
Ia¢lela/ L,"S,,"’,, 1’500 5 1% _i %.
WB L LS s 750 2 3+1 1 &

A
[6po?] I\E,waé’zs-” [9,041,250 + 30,1374 + 9,041} + 1506 + 4 + } + 1
+753+1+31+ ]
=9,082,689%.
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One instance of a similar multiplication of numbers involving
fractions may be given from Heron (pp. 80, 81). It is only one of
many, and, for brevity, the Greek notation will be omitted. Heron
has to find the product of 432 and 742, and proceeds as follows:

4.7=28,
62 _ 248
485 =%
33 7 _ 231
31'7_'8'1"’
33 622046 1 _ 31,62
461 "64 *BL 64 "64L°64

The result is accordingly
28+ 510+ 82 A =28+ T+ 83 +82. 4%
=3b+82+82 L.
The multiplication of 37° 4’ 55” (in the sexagesimal system) by

itself is performed by Theon of Alexandria in his commentary on
Ptolemy’s odvraéis in an exactly similar manner.

§ 4. Division.

The operation of dividing by a number of one digit only was
easy for the Greeks as for us, and what we call “long division” was
with them performed, mutatis mutandis, in the same way as now
with the help of multiplication and subtraction. Suppose, for
instance, that the operation in the first case of multiplication given

above had to be reversed and that 1\54,’7”' (608,400) had to be divided
by =’ (780). The terms involving the different powers of 10 would
be mentally kept separate as in addition and subtraction, and the
first question would be, how many times will 7 hundreds go into 60
myriads, due allowance being made for the fact that the 7 hundreds
have 80 behind them and that 780 is not far short of 8 hundreds?
The answer is 7 hundreds or y', and this multiplied by the divisor

v8 £
ya' (780) would give M s’ (546,000) which, subtracted from M’

(608,400), leaves the remainder 1\;/[,,81:’ (62,400). This remainder has
then to be divided by 780 or a number approaching 8 hundreds, and
8 tens or »' would have to be tried. In the particular case the
result would then be complete, the quotient being yx' (780), and
there being no remainder, since =’ (80) multiplied by y=' (780) gives

the exact figure M’ (62,400).
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An actual case of long division where the dividend and divisor
contain sexagesimal fractions is described by Theon. The problem
is to divide 1515 20" 15” by 25 12’ 10”, and Theon’s account of the
process comes to this.

Divisor Dividend Quotient
25 12" 10” 1515 200 15" First term 60
o 25. 60 = 1500
Remainder 15 = 900’
Sum 920’
12'.60 = 720’
Remainder 200
10”.60 = 10’
Remainder 190’ Second term 7’
25.7 = 175
15" =900"
Sum 915"
12,7 84"
Remainder 831"
10”.7 1710
Remainder 829”50 | Third term 33"
25.33" 825"
Remainder 4750 =290"
127.33” 396"

(too great by) 106"

Thus the quotient is something less than 60 7' 33". It will be
observed that the difference between this operation of Theon’s and

that followed in dividing lfllqv’ (608,400) by =’ (780) as above is
that Theon makes three subtractions for one term of the quotient,
whereas the remainder was arrived at in the other case after one
subtraction. The result is that, though Theon’s method is quite
clear, it is longer, and moreover makes it less easy to foresee what
will be the proper figure to try in the quotient, so that more time
would be apt to be lost in making unsuccessful trials.

§ 5. Extraction of the square root.

We are now in a position to see how the operation of extracting
the square root would be likely to be attacked. First, as in the case
of division, the given whole number whose square root is required
would be separated, so to speak, into compartments each containing
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such and such a number of units and of the separate powers of 10.
Thus there would be so many units, so many tens, so many hundreds,
etc., and it would have to be borne in mind that the squares of
numbers from 1 to 9 would lie between 1 and 99, the squares of
numbers from 10 to 90 between 100 and 9900, and so on. Then the
first term of the square root would be some number of tens or
hundreds or thousands, and so on, and would have to be found in
much the same way as the first term of a quotient in a ‘“long
division,” by trial if necessary. If 4 is the number whose square
root is required, while a represents the first term or denomination of
the square root and x the next term or denomination still to be
found, it would be necessary to use the identity (@ + «)* = a® + 2ax + 2*
and to find @ so that 2az + 2* might be somewhat less than the
remainder 4 —¢® Thus by trial the highest possible value of «
satisfying the condition would be easily found. If that value were
b, the further quantity 2ab +b* would have to be subtracted from
the first remainder 4 — o, and from the second remainder thus left
a third term or denomination of the square root would have to be
derived, and so on. That this was the actual procedure adopted is
clear from a simple case given by Theon in his commentary on the
ovvraéis. Here the square root of 144 is in question, and it is
obtained by means of Eucl. 1. 4. The highest possible denomina-
tion (i.e. power of 10) in the square root is 10 ; 10? subtracted from
144 leaves 44, and this must contain not only twice the product of
10 and the next term of the square root but also the square of that
next term itself. Now, since 2. 10 itself produces 20, the division
of 44 by 20 suggests 2 as the next term of the square root; and
this turns out to be the exact figure required, since

2.20+2°=44.

The same procedure is illustrated by Theon’s explanation of
Ptolemy’s method of extracting square roots according to the
sexagesimal system of fractions. The problem is to find approxi-
mately the square root of 4500 potpar or degrees, and a geometrical
figure is used which makes clear the essentially Euclidean basis of
the whole method. Nesselmann gives a complete reproduction of
the passage of Theon, but the following purely arithmetical represen-
tation of its purport will probably be found clearer, when looked at
side by side with the figure.

Ptolemy has first found the integral part of ~/4500 to be 67.
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Now 67%=4489, so that the remainder is 11. Suppose now that
the rest of the square root is expressed by means of the usual
sexagesimal fractions, and that we may therefore put

V4500 = /675 + 11 = 67 +6—”i) + 6903,,

2.67x
60
11.60
2.67

or 7 which is at the same time greater than 4. On trial, it

where z, y are yet to be found. Thus « must be such that

is somewhat less than 11, or  must be somewhat less than

turns out that 4 will satisfy the conditions of the problem, namely

2
that (67 + B%) must be less than 4500, so that a remainder will
be left by means of which y may be found.

a 7 K 9
670 4 55"
4489 268" | S
-
%
3
o
¢ ¢
4 268 16”
0 A
55" 3688" 40"
B Y
2.67.4 4\2. . -
Now 11 — 47;—— - <@> is the remainder, and this is equal to

11.60°~2.67.4.60—16 7424
60° -0

7424

4\ y .
Thus we must suppose that 2 <67 + G@) 60? approximates to 507 °

or that 8048y is approximately equal to 7424 . 60.
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Therefore y is approximately equal to 55. We have then to

subtract
4\ 55 55* 442640 3025
2(‘*“@)@*(@) » O 80P T 607

from the remainder 7424 above found.

60°
. 442640 7424 . 2800 46 40
The subtraction of 60" from 607 8VeS g5 OF g+ i s
3025
604’

but Theon does not go further and subtract the remaining

instead of which he merely remarks that the square of g@

. 4
approximates to 6_(§;2 + é%)a As a matter of fact, if we deduct the
3025 2
0% from —2-870 , S0 as to obtain the correct remainder, it is
found to be 16?355.

To show the power of this method of extracting square roots by
means of sexagesimal fractions, it is only necessary to mention that

Ptolemy gives %%3— +%2 + 5—03—3 as an approximation to /3, which
approximation is equivalent to 17320509 in the ordinary decimal
notation and is therefore correct to 6 places.

But it is now time to pass to the question how Archimedes
obtained the two approximations to the value of /3 which he
assumes in the Measurement of a circle. In dealing with this
subject I shall follow the historical method of explanation adopted
by Hultsch, in preference to any of the mostly a priori theories
which the ingenuity of a multitude of writers has devised at
different times.

§ 6. Early investigations of surds or incommensurables.

From a passage in Proclus’ commentary on Eucl. .* we learn
that it was Pythagoras who discovered the theory of irrationals
(7 7dv d\éywv mpayparein). Further Plato says (Theaetetus 147 p),
“On square roots this Theodorus [of Cyrene] wrote a work in

* p. 65 (ed. Friedlein).
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which he proved to us, with reference to those of 3 or 5 [square] feet
that they are incommensurable in length with the side of one square
foot, and proceeded similarly to select, one by one, each [of the other
incommensurable roots] as far as the root of 17 square feet, beyond

which for some reason he did not go.” The reason why /2 is not
mentioned as an incommensurable square root must be, as Cantor
says, that it was before known to be such. We may therefore
conclude that it was the square root of 2 which was geometrically
constructed by Pythagoras and proved to be incommensurable with
the side of a square in which it represented the diagonal. A clue
to the method by which Pythagoras investigated the value of /2
is found by Cantor and Hultsch in the famous passage of Plato
(Rep. viiL. 546 B, ¢) about the ‘geometrical’ or ‘nuptial’ number.
Thus, when Plato contrasts the gy and appnros Swdperpos 7ijs
mepmddos, he is referring to the diagonal of a square whose side
contains five units of length ; the dppnros didperpos, or the irrational
diagonal, is then /50 itself, and the nearest rational number is
A/50—1, which is the pym) Siuduerpos. We have herein the
explanation of the way in which Pythagoras must have made the
first and most readily comprehensible approximation to ~/2; he
must have taken, instead of 2, an improper fraction equal to it but
such that the denominator was a square in any case, while the
numerator was as near as possible to a complete square. Thus
and the first approximation to N2 was

50
Pythagoras chose 35

accordingly %, it being moreover obvious that ~/§>—;-. Again,

Pythagoras cannot have been unaware of the truth of the
proposition, proved in Eucl. 11. 4, that (@ + b)*=a® + 2ab + b*, where
a, b are any two straight lines, for this proposition depends solely
upon propositions in Book 1. which precede the Pythagorean
proposition 1. 47 and which, as the basis of 1. 47, must necessarily
have been in substance known to its author. A slightly different
geometrical proof would give the formula (a-b)’=a’—2ab+¥’,
which must have been equally well known to Pythagoras. It could
not therefore have escaped the discoverer of the first approximation
A/50 —1 for /50 that the use of the formula with the positive sign

would give a much nearer approximation, viz. 7 + 11—4 , which is only
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S— 2
greater than /50 to the extent of (TIZ) . Thus we may properly

assign to Pythagoras the discovery of the fact represented by
1 _
Ty V50>T.

The consequential result that /2> % V50=1 is used by

Aristarchus of Samos in the Tth proposition of his work On the
size and distances of the sun and moon¥*,

With reference to the investigations of the values of /3, /5,

NG, ...... V17 by Theodorus, it is pretty certain that /3 was
geometrically represented by him, in the same way as it appears

* Part of the proof of this proposition was a sort of foretaste of the first part
of Prop. 3 of Archimedes’ Measurement of a
circle, and the substance of it is accordingly A K
appended as reproduced by Hultsch.

ABEK is a square, KB a diagonal, £ HBE
=3} . KBE, £ FBE=38°and AC is perpendicu-
lar to BF so that the triangles ACB, BEF are

similar. H
Aristarchus seeks to prove that
AB:BC>18:1. D
If R denote a right angle, the angles KBE,
HBE, FBE are respectively 3$R, 33R, %R. B =

Then HE : FE > Lt HBE : L FBE.

[This is assumed as a known lemma by Aristarchus as well as Archimedes.]

Therefore HE:FE>15:2.....cccoooeviiiinnniiniinnnnn, (a).
Now, by construction, BK2=2BE?2,
Also [Eucl. v1. 3] BK : BE=KH : HE ;

whence KH=N2HE.

And, since N2 > A /éoz—;l,

KH: HE >17:5,
so that KE :EH>12:5 ...ccciiiiiiiiiiiiiiiinnn, (B).
From (a) and (8), ex aequali,
KE:FE > 18 :1.
Therefore, since BF > BE (or KE),

BF:FE >18:1,
80 that, by similar triangles,
AB : BC> 18 : 1.
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afterwards in Archimedes, as the perpendicular from an angular
point of an equilateral triangle on the opposite side. It would
thus be readily comparable with the side of the “1 square foot”
mentioned by Plato. The fact also that it is the side of three
square feet (rpimovs Svvaps) which was proved to be incommensurable
suggests that there was some special reason in Theodorus’ proof for
specifying feet, instead of units of length simply; and the ex-
planation is probably that Theodorus subdivided the sides of his
triangles in the same way as the Greek foot was divided into
halves, fourths, eighths and sixteenths. Presumably therefore,

exactly as Pythagoras had approximated to »/2Z by putting %

for 2, Theodorus started from the identity 3 = %—2 It would then
be clear that

= 48+1 . T
'\/3<\/—771A6—,1.e. 1.

To investigate »/48 further, Theodorus would put it in the form

4971, as Pythagoras put /50 into the form /49 + 1, and the
result would be

I — 1
VB (= VA9 -1) <T-37.

We know of no further investigations into incommensurable
square roots until we come to Archimedes.

§7. Archimedes’ approximations to /3.

Seeing that Aristarchus of Samos was still content to use the
first and very rough approximation to /2 discovered by Pythagoras,
it is all the more astounding that Aristarchus’ younger contemporary
Archimedes should all at once, without a word of explanation, give
out that

1351 5 265
780 7 V3~ 5y
as he does in the Measurement of o circle.

In order to lead up to the explanation of the probable steps by
which Archimedes obtained these approximations, Hultsch adopts
the same method of analysis as was used by the Greek geometers in
solving problems, the method, that is, of supposing the problem
solved and following out the necessary consequences. To compare
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the two fractions —2-65 and 1351 we first divide both denominators

153 780’
into their smallest factors, and we obtain

780=2.2.3.5.13,
1563 =3.3.17.

We observe also that 2.2.13 =52, while 3.17 =51, and we may
therefore show the relations between the numbers thus,

780=3.5.52,
153 =3.51.

For convenience of comparison we multiply the numerator and

denominator of 265 by 5; the two original fractions are then

153
1351 . 1325
15.52 ¢ 15.51°

so that we can put Archimedes’ assumption in the form

1351 1325
59> 16v3> "1

and this is seen to be equivalent to

26——>15J3>26——

1 . 1\* .
Now 26—5—2_ \/ 26°— 1+(52> , and the latter expression
is an approximation to /26— 1 26’—1

‘We have then 26 53~ ,J26’ -1.

As 26-—;2 was compared with 154/3, and we want an ap-

proximation to /3 itself, we divide by 15 and so obtain

1 (26 1)>—~/d6=—1

15
1 —,-_\/676-—1_ 675 = .
But IB“/% ~1=,/ 595 = 2_2/5_~/3, and it follows
that 15( 6—'“') > /3.

The lower limit for /3 was given by
1 1
V3> 15 (26-57),
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and a glance at this suggests that it may have been arrived at by
simply substituting (62— 1) for 52.

Now as a matter of fact the following proposition is true. If
a® +b i3 a whole number which s not a square, while o® is the nearest
square number (above or below the first number, as the case may be),
then

ai%> x/d"i—b>at%-b;1--
Hultsch proves this pair of inequalities in a series of propositions
formulated after the Greek manner, and there can be little doubt
that Archimedes had discovered and proved the same results in
substance, if not in the same form. The following circumstances
confirm the probability of this assumption.

(1) Certain approximations given by Heron show that he
knew and frequently used the formula

JiEheatl,
2a
(where the sign co denotes “is approximately equal to”).

Thus he gives ~/56N7+ﬁ,
N63 o 8 - L
16’
- 11
NT5eo8+ 1.
(2) The formula No'+beoa+ b s used by the Arabian
2a +1
Alkarkhi (11th century) who drew from Greek sources (Cantor,
p. 719 sq.).

It can therefore hardly be accidental that the formula

b 7 b
aj—,%> Ja ib>a12;£T

gives us what we want in order to obtain the two Archimedean
approximations to /3, and that in direct connexion with one
another*, ' -

* Most of the a priori theories as to the origin of the approximations are
open to the serious objection that, as a rule, they give series of approximate
values in which the two now in question do not follow consecutively, but are
separated by others which do not appear in Archimedes. Hultsch’s explanation
is much preferable as being free from this objection. But it is fair to say that
the actual formula used by Hultsch appears in Hunrath’s solution of the puzzle
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We are now in a position to work out the synthesis as follows.

From the geometrical representation of /3 as the perpendicular
from an angle of an equilateral triangle on the opposite side we

obtain +/2°—1 = /3 and, as a first approximation,
2— ‘1I > /3.
Using our formula we can transform this at once into

N3>2- , or 2—

1 1
i-1 3"
Avrchimedes would then square (2 ——%>, or g, and would obtain

which he would compare with 3, or gZ; i.e. he would put

9
5
\/ 25+2 and would obtain

1 1 = . 26 =
g(5+-5—)>~/3, ie. 1—5>J3.

To obtain a still nearer approximation, he would proceed in the

)

§D| (S}

26\* 676 675 .
same manner and compare <T5> , or 395 V¥ with 3, or —— 395 whence it
= 262 -1
would appear that N3=,/° 995
and therefore that 11—5 (26 - —-) N3 3,
135
that is, 1. Vs

780
The application of the formula would then give the result

g 1 1
N/3 > ~— <26 - 52—:1>,
1326 1 265

that is, V3> — 551 53
The complete result would therefore be
1351 265
780 > 3> 153"

(Die Berechnung irrationaler Quadratwurzeln vor der Herrschaft der Decimal-
briiche, Kiel, 1884, p. 21; of. Ueber das Ausziehen der Quadratwurzel bei
Griechen und Indern, Hadersleben, 1883), and the same formula is implicitly
used in one of the solutions suggested by Tannery (Sur la mesure du cercle
& drchimede in Mémoires de la société des sciences physiques et naturelles de
Bordeauzx, 2° série, 1v. (1882), p. 313-337).

12
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Thus Archimedes probably passed from the first approximation
7.5 5, 26 26 . 1351
i to 3 from 3 to 15° and from 15 directly to 780 °

approximation of all, from which again he derived the less close

the closest

approximation 265 The reason why he did not proceed to a still

153"
nearer approximation than 173:8;%1 is probably that the squaring of
this fraction would have brought in numbers much too large to be

conveniently used in the rest of his calculations. A similar reason

will account for his having started from g instead of % ; if he had

used the latter, he would first have obtained, by the same method,
_ 1 _1 _ _

V3 2\/91“51’ and thence ‘—7—4E> V3, or gg> ~/3; the squaring

97 . . NP1

of 56 would have given ~/ 3=T

approximation would have given 3168—811;1 , where again the numbers

, and the corresponding

are inconveniently large for his purpose.
§ 8. Approximations to the square roots of large
numbers.

Archimedes gives in the Measurement of a circle the following
approximate values:

(1) 30132 > 4/9082321,
(2) 18382, > /3380929,
3 10093 > »/1018405,
4) 2017} > /4069284 %,
(5) 59131 < »/349450,

(6) 11723 < /137394333,
) 23391 < /5472132

There is no doubt that in obtaining the integral portion
of the square root of these numbers Archimedes used the method
based on the Euclidean theorem (a+3)®=a®+ 2ab +b* which has
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already been exemplified in the instance given above from Theon,

where an approximation to /4500 is found in sexagesimal fractions.
The method does not substantially differ from that now followed ; but
whereas, to take the first case, /9082321, we can at once see what
will be the number of digits in the square root by marking off pairs
of digits in the given number, beginning from the end, the absence
of a sign for 0 in Greek made the number of digits in the square
root less easy to ascertain because, as written in Greek, the number

Mlﬂ'rxu' only contains six signs representing digits instead of seven.
Even in the Greek notation however it would not be difficult to see
that, of the denominations, units, tens, hundreds, etc. in the square
root, the units would correspond to xa’ in the original number, the

A
tens to Br, the hundreds to 1;'], and the thousands to M. Thus it
would be clear that the square root of 9082321 must be of the form

1000z + 100y + 102 + w,

where 2, y, z, w can only ‘have one or other of the values 0,1,2,...9.
Supposing then that x is found, the remainder &V — (1000x)?, where
N is the given number, must next contain 2.1000z.100y and
(100y)?, then 2(1000z+100y).10z and (10z)’, after which the
remainder must contain two more numbers similarly formed.

In the particular case (1) clearly =3. The subtraction of
(3000) leaves 82321, which must contain 2.3000.100y. But, even
if y is as small as 1, this product would be 600,000, which is greater
than 82321. Hence there is no digit representing Aundreds in the
square root. To find z, we know that 82321 must contain

2.3000. 10z + (10z)",

and z has to be obtained by dividing 82321 by 60,000. Therefore
z=1. Again, to find w, we know that the remainder

(82321 -2.3000. 10~ 10%),

or 22221, must contain 2.3010w +«? and dividing 22221 by
2.3010 we see that w=3. Thus 3013 is the integral portion of
the square root, and the remainder is 22221 —(2.3010.3 + 3%), or
4152.

The conditions of the proposition now require that the approxi-
mate value to be taken for the square root must not be less than
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the real value, and therefore the fractional part to be added to 3013
must be if anything too great. Now it is easy to see that the

2
less than the remainder 4152. Suppose then that the number

2
fraction to be added is greater than % because 2.3013 .1+ (%) is

required (which is nearer to 3014 than to 3013) is 3014—;—),
and ;—7 has to be if anything too small.

Now (3014)*=(3013)% + 2.3013 + 1= (3013)* + 6027
= 9082321 - 4152 + 6027,

whence 9082321 = (3014)° - 1875.
By applying Archimedes’ formula Va* +b<a + —26—“ , We obtain
1875
3014 - 5o s > +/9082321.
The required value £ has therefore to be not greater than —— 1875
q 6028
It remains to be explained why Archimedes put for§ the value%
which is equal to (13(5)(2); In the first place, he evidently preferred

fractions with unity for numerator and some power of 2 for
denominator because they contributed to ease in working, e.g. when
two such fractions, being equal to each other, had to be added.

The exceptions, the fractions d l, are to be explained b
P 6 P y

9

i1 an
exceptional circumstances presently to be mentioned.) Further, in
the particular case, it must be remembered that in the subsequent

work 2911 had to be added to 3014——3 and the sum divided by 780,

or2.2.3.5.13. It would obviously lead to simplification if a
factor could be divided out, e.g. the best for the purpose, 13. Now,
dividing 2911 + 3014, or 5925, by 13, we obtain the quotient 455,

and a remainder 10, so that 10—-15 remains to be divided by 13.

Therefore has to be so chosen that 10g— p is divisible by 13, while

& a.pproxxma.tes to, but is not greater than, (15(8):7)2 The solution

p=1,¢g=4 would therefore be natural and easy.
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(2) +/3380929.

The usual process for extraction of the square root gave as the
integral part of it 1838, and as the remainder 2685. As before, it
was easy to see that the exact root was nearer to 1839 than to 1838,
and that

/3380929 = 1838 + 2685 = 1839* — 2. 1838 — 1 + 2685
=1839%—992.
The Archimedean formula then gave

992

— 9
51839~ ~/3380929.

1839 —

It could not have escaped Archimedes that % Wwas a near approxima-

992 1984 . 1 1839 1 .
3678 °F 7356 SN0 7= 7aEgs and i would have satisfied
the necessary condition that the fraction to be taken must be less

tion to

than the real value. Thus it is clear that, in taking % as the

approximate value of the fraction, Archimedes had in view the
simplification of the subsequent work by the elimination of a factor.

If the fraction be denoted by g, the sum of 1839—]5 and 1823, or

3662 —g , had to be divided by 240, i.e. by 6.40. Division of 3662
by 40 gave 22 as remainder, and then p, ¢ had to be so chosen that

22—25 was conveniently divisible by 40, while %’ was less than but

)
approximately equal to ;6_7:8 - The solution p =2, ¢=11 was easily

seen to satisfy the conditions.

(3) ~1018405.
The usual procedure gave 1018405 =1009°+324 and the ap-
proximation

324 YT D
1009 gorg > ~/1018405. s
2
It was here necessary that the fraction to replace 3018 should be

greater but approximately equal to it, and —(15— satisfied the conditions,

while the subsequent work did not require any change in it.
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(4) 4069284k

The usual process gave 406928454 =2017° + 995.%; it followed
that
36.995+1
36.2.2017
and 2017} was an obvious value to take as an approximation
somewhat greater than the left side of the inequality.

2017 + > /4069284 %,

(5) ~/349450.

In the case of this and the two following roots an approximation
had to be obtained which was less, instead of greater, than the true
value. Thus Archimedes had to use the second part of the formula

b S
+ — *t+b>a+ —=
a_2“>~/a,_ —“2a+1

In the particular case of ,/349450 the integral part of the root is
591, and the remainder is 169. This gave the result

169 169
2.591 2.591+1°
and since 169=13° while 2.591+1="7.13% it resulted without
further calculation that

591 + > /349450 > 591 +

/349450 > 5912,
Why then did Archimedes take, instead of this approximation,
another which was not so close, viz. 59147 The answer which the

subsequent working and the other approximations in the first part of
the proof suggest is that he preferred, for convenience of calculation,

to use for his approximations fractions of the form 2—1" only. But he

could not have failed to see that to take the nearest fraction of this
form, %, instead of ; might conceivably affect his final result and
make it less near the truth than it need be. As a matter of fact,
as Hultsch shows, it does not affect the result to take 5911 and to
work onwards from that figure. Hence we must suppose that
Archimedes had satisfied himself, by taking 591} and proceeding on
that basis for some distance, that he would not be introducing any
appreciable error in taking the more convenient though less accurate
approximation 5913.
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(6) /137394332.

In this case the integral portion of the root is 1172, and the
remainder 35932. Thus, if R denote the root,

35932
E>1T24 5 179 11
359 -
>1172 + 2—.—1':[7—:2‘?1" afOThm.
Now 2.1172 +1=2345; the fraction accordingly becomes 233%%,
and % (: 23—551%) satisfies the necessary conditions, viz. that it must

be approximately equal to, but not greater than, the given fraction.
Here again Archimedes would have taken 1172} as the approximate
value but that, for the same reason as in the last case, 1172} was
more convenient.

() 54721324,
The integral portion of the root is here 2339, and the remainder

12114, so that, if R is the exact root,

1211
2.2339+ 1

> 2339}, a jfortiori.

A few words may be added concerning Archimedes’ ultimate
reduction of the inequalities

RB>2339 +

6671 2841
3+ 467337 ™7 3 0174
to the simpler result 3 % >r>3 %(T) .
As a matter of fact 1_ 8613 so that in the first fraction it was
7 46721°

only necessary to make the small change of diminishing the de-

nominator by 1 in order to obtain the simple 3;.
.. 284} 1137

As regards the lower limit for m, we see that 20171 ~ 80 69-’ and
Hultsch ingeniously suggests the method of trying the effect of

increasing the denominator of the latter fraction by 1. This
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1137 379 . .. .
8070 or 9690° and, if we divide 2690 by 379, the quotient

is between 7 and 8, so that

produces

1379 1
772690 8
Now it is a known proposition (proved in Pappus vir. p. 689)
L@ C a a+e
that,xfl;>a,then 5>?T;d'

Similarly it may be proved that
ate ¢
v ra” 3

b+d
It follows in the above case that

379 379+1 1
2690~ 2690+8 8’

. . 10 1
which exactly gives >3
10 . 379 1, .
and 77 is very much nearer to 3690 than g s

Note on alternative hypotheses with regard to the
approximations to 3.

For a description and examination of all the various theories put
forward, up to the year 1882, for the purpose of explaining Archimedes’
approximations to 4’3 the reader is referred to the exhaustive paper by
Dr Siegmund Giinther, entitled Die guadratischen Irrationalititen der Alten
und deren Entwickelungsmethoden (Leipzig, 1882). The same author gives
further references in his Abriss der Geschichte der Mathematik und der Natur-
wissenschajften v Altertwm forming an Appendix to Vol. v. Pt. 1 of Iwan von
Miiller'’s Handbuch der klassischen Altertums-wissenschaft (Miinchen, 1894).

Giinther groups the different hypotheses under three general heads :

(1) those which amount to a more or less disguised use of the
method of continued fractions and under which are included the solutions
of De Lagny, Mollweide, Hauber, Buzengeiger, Zeuthen, P. Tannery (first
solution), Heilermann ;

(2) those which give the approximations in the form of a series

of fractions such as @ + 1 + 1 + !

@i D92 N9
solutions of Radicke, v. Pessl, Rodet (with reference to the Culvastitras),

Tannery (second solution);

+...; under this class come the
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(3) those which locate the incommensurable surd between a greater
and lesser limit and then proceed to draw the limits closer and closer.
This class includes the solutions of Oppermann, Alexejeff, Schénborn,
Hunrath, though the first two are also connected by Giinther with the
method of continued fractions.

Of the methods so distinguished by Giinther only those need be here
referred to which can, more or less, claim to rest on a historical basis
in the sense of representing applications or extensions of principles laid
down in the works of Greek mathematicians other than Archimedes which
have come down to us. Most of these quasi-historical solutions connect
themselves with the system of side- and diagonal-numbers (mhevpikoi and
diaperpikot dpibpoi) explained by Theon of Smyrna (c. 130 A.D.) in a work
which was intended to give so much of the principles of mathematics as
was necessary for the study of the works of Plato.

The side- and diagonal-numbers are formed as follows. We start with
two units, and (@) from the sum of them, (b) from the sum of twice
the first unit and once the second, we form two new numbers ; thus

1.1+41=2, 2.1+1=3.

Of these numbers the first is a side- and the second a diagonal-number
respectively, or (as we may say)

ay=2, dy=3.
In the same way as these numbers were formed from a,=1, d;=1, suc-
cessive pairs of numbers are formed from a,, d,, and so on, in accordance

with the formula
an+1=an+dm dn+1=2an+dn,
whence we have
az=1.2+3=5, dy=2.2+3=7,

ay=1.5+7=12, d,=2.5+7=17,
and so0 on.

Theon states, with reference to these numbers, the general proposition
which we should express by the equation

dr=2a,2+1.
The proof (no doubt omitted because it was well-known) is simple. For

we have
d,2~2a, =(2an—1+dn—1)2"'2(an—-1+dn—1)2

=20, 12— d,*
== (dn-lz— 2an—12)

+(dp—g? — 2a,-,7), and so on,

while d;?—2a,2= —1; whence the proposition is established.

Cantor has pointed out that any one familiar with the truth of this
proposition could not have failed to observe that, as the numbers were
successively formed, the value of d,2/a,? would approach more and more
nearly to 2, and consequently the successive fractions dy/a, would give
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nearer and nearer approximations to the value of 4/2, or in other words that
13 7 17 4
1 ’ 2 9 5 1 12 9 % §ecsese
are successive approximations to A/2. It is to be observed that the third
of these approximations, g, is the Pythagorean approximation which

appears to be hinted at by Plato, while the above scheme of Theon,
amounting to a method of finding all the solutions in positive integers of
the indeterminate equation
' 22~ y2=+1,

and given in a work designedly introductory to the study of Plato,
distinctly suggests, as Tannery has pointed out, the probability that even
in Plato’s lifetime the systematic investigation of the said equation had
already begun in the Academy. In this connexion Proclus’ commentary
on Eucl 1. 47 is interesting. It is there explained that in isosceles
right-angled triangles “it is not possible to find numbers corresponding to
the sides; for there is no square number which is double of a square
except in the sense of approximately double, e.g. 72 is double of 52 less 1.”
When it is remembered that Theon’s process has for its object the finding
of any number of squares differing only by unity from double the squares
of another series of numbers respectively, and that the sides of the two
sets of squares are called diagonal- and side-numbers respectively, the
conclusion becomes almost irresistible that Plato had such a system in
mind when he spoke of pyry Siuduerpos (rational diagonal) as compared
with &ppryros Suduerpos (irrational diagonal) ris mepmddos (cf. p. xxviii above).

One supposition then is that, following a similar line to that by which
successive approximations to 4/Z could be obtained from the successive
solutions, in rational numbers, of the indeterminate equations 222 — y2= +1,
Archimedes set himself the task of finding all the solutions, in rational
numbers, of the two indeterminate equations bearing a similar relation
to 4/3, viz.

2% -3yt=1,
% =3yt= 2.

Zeuthen appears to have been the first to connect, ¢o nomine, the ancient
approximations to 4/3 with the solution of these equations, which are also
made by Tannery the basis of his first method. But, in substance, the
same method had been used as early as 1723 by De Lagny, whose
hypothesis will be, for purposes of comparison, described after Tannery’s
which it so exactly anticipated.

Zeuthen's solution.

After recalling the fact that, even before Euclid’s time, the solution
of the indeterminate equation 22+y2?=2? by means of the substitutions
_mi—nt _mign?

z=mn, Y g ¢ 3
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was well known, Zeuthen concludes that there could have been no
difficulty in deducing from Eucl. 11. 5 the identity

2 _ 3p2\2 2.1 3p2\2
3(mn)2+<m 3n) =<m +3n> ,
2 2
from which, by multiplying up, it was easy to obtain the formula
3 (2mn)2 + (m? — 3n2)2=(m?+ 3n?)

If therefore one solution m?— 3n%=1 was known, a second could at once
be found by putting

rz=m?+3n?  y=2mn.
Now obviously the equation

m?—3n?=1
is satisfied by the values m=2, n=1; hence the next solution of the
equation

22— 3yt=1
is 2,=224+3.1=17, y,=2.2.1=4;
and, proceeding in like manner, we have any number of solutions as

Zy=T243.42=97,  y,=2.7.4=56,

2,=972+3.562=18817,  y,=2.97.56=10864,
and so on.

Next, addressing himself to the other equation

22— 3yt= -2,
Zeuthen uses the identity

(m+3n)2—3 (m+n)2= —2 (m?— 3n?).
Thus, if we know one solution of the equation m? —3n?=1, we can proceed
to substitute
x=m+3n, y=m+n.
Suppose m=2, n=1, as before ; we then have
2, =5, =3
If we put z,=2,+3y,=14, y,=x,+y,=8, we obtain
z, 147

¥y 8 4
(and m=7, n=4 is seen to be a solution of m?—3n2=1).
Starting again from 2, y,, we have
=38, Y3=22,
xy 19
and .;/_: =1,
(m=19, n=11 being a solution of the equation m?—3n?= -2);
xy=104, Y4=60,

whence L P 2

Ya 15_
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(and m=26, n=15 satisfies m?-3n?=1),
2,=284,  y;=164,
or z 11

Ys 41

imi 97 @y 265

Similarly 756" 7, 1537

This method gives all the successive approximations to /3, taking
account as it does of both the equations

x2—3y2=1,

and so on.

2% —3yt=-2.

Tannery's first solution.

Tannery asks himself the question how Diophantus would have set
about solving the two indeterminate equations. He takes the first equation
in the generalised form

22—ay?=1,
and then, assuming one solution (p, ¢) of the equation to be known, he

supposes
p=mE—-p, ¢1=%+q.

Then - agt=mPa? - 2mpx +p? — ax?—2a9r — agi=1,
whence, since p?—ag?=1, by hypothesis,
g, "PHIL
m2 —a
(m?+ a) p+2am 2mp +(m?+a)
go that p= _-.meq y @=— ﬂ?}iﬂ:&"j ,

and p,2—ag,?=1.
The values of p,, g, so found are rational but not necessarily integral ;
if integral solutions are wanted, we have only to put

2= (W¥+ av?) p+2auvg,  g,=2puv+ (ut+ar?)q,
where (», v) is another integral solution of #2 — ay?=1.
Generally, if (p, ¢) be a known solution of the equation
22— og?=r,
suppose p; =ap+B¢, ¢;=yp+8g, and il suffit pour déterminer a, B, y, 5 de
connaitre les trois groupes de solutions les plus simples et de résoudre
deux couples d’équations du premier degré & deux inconnues.” Thus

(1) for the equation
x?-3yt=1,
the first three solutions are
(p=1, g=0), (p=2, g=1), (p=T1, g=4),
2=a 7=2a+3
whence 1=-y} and 4=2y+ 8} s
so that a=2, =3, y=1, 8=2,
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and it follows that the fourth solution is given by
p=2.7+3.4=26,
g=1.74+2.4=15;

(2) for the equation 2?2 -3yl= -2,

the first three solutions being (1, 1), (5, 3), (19, 11), we have

3—yes) 9 115y soa)
whence a=2, 8=3, y=1, 8=2, and the next solution is given by
p=2.194+3.11=171,

g=1.19+2.11=41,
and so0 on.

Therefore, by using the two indeterminate equations and proceeding as
shown, all the successive approximations to /3 can be found.

Of the two methods of dealing with the equations it will be seen that
Tannery’s has the advantage, as compared with Zeuthen’s, that it can be
applied to the solution of any equation of the form 2% — ay?=r.

De Lagny’s method.

The argument is this. If V2 could be exactly expressed by an im-
proper fraction, that fraction would fall between 1 and 2, and the square of
its numerator would be three times the square of its denominator. Since
this is impossible, two numbers have to be sought such that the square of
the greater differs as little as possible from 3 times the square of the
smaller, though it may be either greater or less. De Lagny then evolved
the following successive relations,

92=3.1241, 52=3.32-2, 72=3.424+1, 192=3.112-2,
262=3.152+1, 712=3.412—2, etc.
From these relations were derived a series of fractions greater than /3,

viz. %, %, %?,’ etc., and another series of fractions less than /3, viz.
519 11 formati found in each be that, if
3 110 41° etc. The law of formation was found in each case to be that, i
g was one fraction in the series and Z;~, the next, then
P _%pt3g
g p+2q
This led to the results
2_7_26_97_362_ 1351 =
1171”567 200 780 VP
265 989 3691 =
and S 1o M 26 <o . <N3;

3<TT<@ <153 571 231"
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while the law of formation of the successive approximations in each series
is precisely that obtained by Tannery as the result of treating the two
indeterminate equations by the Diophantine method.

Heilermann’s method.

This method needs to be mentioned because it also depends upon a
generalisation of the system of side- and diagonal-numbers given by Theon
of Smyrna.

Theon’s rule of formation was

Sn=Sn—1+D -1 -Dn=2Sn—1+Dn—1;

and Heilermann simply substitutes for 2 in the second relation any
arbitrary number @, developing the following scheme,

8,=8+Dy, Dy=a8+D,,
S;=8,+D,, Dy=a8,+D,,
83=8,+Dy, Dy=aS,+D,,

8p=8p1+Dpy, Dp=0aS+D,,.
It follows that
aS2=aS,2+2a8, D, +aD,_?
D 2=0a?8, 2 +2a8, 1Dy _ 1+ Dy o>
By subtraction, D2 —aS,2=(1-a)(Dy_*— aS,—?
=(1— )2 (Dp-g?— aSp—%), similarly,

=(1-a)y(De?- aly?).
This corresponds to the most general form of the * Pellian” equation
2% — ay?=(const.).
If now we put Dy=S,=1, we have
D,2 (1 ay+l
S 3 =@+ — S22 !
from which it appears that, where the fraction on the right-hand side

3 Dn . . ~/—
approaches zero as n increases, —¢* is an approximate value for va.
n

Clearly in the case where a=3, Dy=2, §,=1 we have
Dy_2 Dy_5 Dy _14_T7 Dy _ 1924522}_;
S, 108, 38 8, 8 4 & 117§, 15’

Dy 71 Dy 194 97 Dy 265

=4 S, 112756 5, 163’

&

and so on.
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But the method is, as shown by Heilermann, more rapid if it is used to
find, not A/a, but b4/a, where b is so chosen as to make 4% (which takes

the place of @) somewhat near to unity. Thus suppose a~gz, so that

25
'\/o—c-——g 4/3, and we then have (putting Dy=S,=1)
S§;=2, D1=——, and \/3:\:2 Zg, or f—g,
Si=gyr Dim s =g md W3 f i, or 100,

i e 5404 5 1351
an 95.208°3" °F 780

This is one of the very few instances of success in bringing out the two
Archimedean approximations in immediate sequence without any foreign
values intervening. No other methods appear to connect the two values
in this direct way except those of Hunrath and Hultsch depending on the
formula

b 2
aks >aat+ +b>oc-:2 +1°

We now pass to the second class of solutions which develops the
approximations in the form of the sum of a series of fractions, and under
this head comes

Tannery’s second method.
This may be exhibited by means of its application (1) to the case of the

square root of a large number, e.g. /349450 or A/5712+23409, the first of
the kind appearing in Archimedes, (2) to the case of A/3.

(1) Using the formula

g b
'\/a‘+b<\>a+2—a,

we try the effect of putting for /5712423409 the expression

23409
1142 °

It turns out that this gives correctly the integral part of the root, and we
now suppose the root to be

5714 S

571+2o+1.

Squaring and rega,rdmg 5 as negligible, we have

57 12+4OO+22840+1142 + 59_5712+234o9
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wheuce 1182 _ 169,
m
and 1_169 1
m 11827 7’
50 that /349450 > 591 %

(2) Bearing in mind that

— b
Valtbeoastg ts,

Ry — 2
have 3=4/12 e
we hav N3=41 +2ml+2.1+1
2 5
C\J1+§, or 5.

Assuming then that /3 = (g + 7—%) , squaring and neglecting ml‘“ we obtain

256 10
R
whence m=15, and we get as the second approximation
5 1 26
g + 1—5 y Or 'ig .
‘We have now 262-3.15%=1,

and can proceed to find other approximations by means of Tannery’s first
method.

Or we can also put 1 %+_1_ ~1*2—3
P t3tmta) =2

and, neglecting 7%2, we get
| 20 52 _
1527 160
whence n=—15.52= —"780, and

~ 2 1 1 1351
Ve (145 + 55 750= 1m0 )

3,

It is however to be observed that this method only connects %%1 with

i 5;, to obtain which
Tannery implicitly uses a particular case of the formula of Hunrath and
Hultsch.

Rodet’s method was apparently invented to explain the approximation

in the gulvasﬁtras*

%—g— and not with the intermediate approximation 26

1 1

_ 1
VEeoldg+ g — s

* See Cantor, Vorlesungen iiber Gesch. d. Math. p. 600 sq.
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but, given the approximation %, the other two successive approximations
indicated by the formula can be obtained by the method of squaring just
described* without such elaborate work as that of Rodet, which, when
applied to /3, only gives the same results as the simpler method.

Lastly, with reference to the third class of solutions, it may be
mentioned

(1) that Oppermann used the formula

a+b_ ,— _ 2ab
o V>,
. . 2 =_ 3
which gave successively i~ V3> 3
7 5. 12
>V3> e
97 —_ 168
5§> v 97

but only led to one of the Archimedean approximations, and that by
combining the last two ratios, thus

97+168 _ 265

56+97 = 153’
(2) that Schonborn came somewhat near to the formula successfully used
by Hunrath and Hultsch when he provedt that

b
o 2 )
ai2a>\/a +b>a+

b
2aif\/5.

* Cantor had already pointed this out in his first edition of 1880.

+ Zeitschrift fiir. Math. w. Physik (Hist. litt. Abtheilung) xxvim, (1883),
p. 169 sq.

g2



CHAPTER V.
ON THE PROBLEMS KNOWN AS NEYZEIZ.

THE word velows, commonly snclinatio in Latin, is difficult to
translate satisfactorily, but its meaning will be gathered from some
general remarks by Pappus having reference to the two Books of
Apollonius entitled vedoes (now lost). Pappus says*, “A line is
said to verge (vedew) towards a point if, being produced, it reach the
point,” and he gives, among particular cases of the general form of
the problem, the following.

“Two lines being given in position, to place between them a
straight line given in length and verging towards a given point.”

“If there be given in position (1) a semicircle and a straight
line at right angles to the base, or (2) two semicircles with their
bases in a straight line, to place between the two lines a straight
line given in length and verging towards a corner (ywviav) of a
semicircle.”

Thus a straight line has to be laid across two lines or curves so
that it passes through a given point and the intercept on it between
the lines or curves is equal to a given length+.

§1. The following allusions to particular vevoes are found in
Archimedes. The proofs of Props. 5, 6, 7 of the book On Spirals
use respectively three particular cases of the general theorem that,

* Pappus (ed. Hultsch) vi1. p. 670.

+ In the German translation of Zeuthen’s work, Die Lehre won den
Kegelschnitten im Altertum, veios is translated by ‘ Einschiebung,” or as we
might say * insertion,” but this fails to express the condition that the required
line must pass through a given point, just as inclinatio (and for that matter the
Greek term itself) fails to express the other requirement that the intercept on

the line must be of given length.
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if A be any point on a circle and BC any diameter, it is possible to
draw through A o straight line, meeting the circle again in P and
BC produced in R, such that the intercept PR is equal to any given

length. In each particular case the fact is merely stated as true
without any explanation or proof, and

(1) Prop. 5 assumes the case where the tangent at 4 is parallel
to BC,

(2) Prop. 6 the case where the points 4, P in the figure are
interchanged,

(3) Prop. 7 the case where 4, P are in the relative positions
shown in the figure.

Again, (4) Props. 8 and 9 each assume (as before, without proof,
and without giving any solution of the

implied problem) that, if 4E, BC be two A
chords of a circle intersecting at right B c
angles in @ point D such that BD > DC, RP

then it s possible to draw through A
another line ARP, meeting BC in R and
the circle again in P, such that PR = DE.
Lastly, with the assumptions in Props, P
5, 6, 7 should be compared Prop. 8 of the
Liber Assumptorum, which may well be
due to Archimedes, whatever may be said of the composition of the
whole book. This proposition proves that, if in the first figure
APR is so drawn that PR is equal to the radius OP, then the arc
AB is three times the arc PC. In other words, if an arc 4B of a
circle be taken subtending any angle at the centre 0, an arc equal
to one-third of the given arc can be found, <.e. the given angle can be
trisected, if only APR can be drawn through A in such a manner

E
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that the intercept PR between the circle and BO produced is equal to
the radius of the circle. Thus the trisection of an angle is reduced to
a vebows exactly similar to those assumed as possible in Props. 6, 7
of the book On Spirals.

The veloes so referred to by Archimedes are not, in general,
capable of solution by means of the straight line and circle alone,
as may be easily shown. Suppose in the first figure that w
represents the unknown length OR, where O is the middle point
of BC, and that k£ is the given length to which PR is to be equal;
also let OD=a, AD =b, BC =2c. Then, whether BC be a diameter
or (more generally) any chord of the circle, we have

AR.RP=BR.RC,
and therefore ENE + (z—ap=2"—c

The resulting equation, after rationalisation, is an equation of the
fourth degree in z; or, if we denote the length of 4R by y, we have,
for the determination of = and y, the two equations

yi=(x-—-a)+ b

ky=o—c? }
In other words, if we have a rectangular system of coordinate
axes, the values of  and y satisfying the conditions of the problem
can be determined as the coordinates of the points of intersection of
a certain rectangular hyperbola and a certain parabola.

In one particular case, that namely in which D coincides with O
the middle point of BC, or in which 4 is one extremity of the
diameter bisecting BC at right angles, =0, and the equations
reduce to the single equation

¥ —ky =0+ ¢,
which is a quadratic and can be geometrically solved by the

traditional method of application of areas; for, if u be substituted
for y — %, so that u = 4P, the equation becomes

w (kb +wu) =0+ ¢,

and we have simply “to apply to a straight line of length £ a
rectangle exceeding by a square figure and equal to a given
area (b*+c?).”

The other veiois referred to in Props. 8 and 9 can be solved in
the more general form where %, the given length to which PR
is to be equal, has any value within a certain maximum and is not
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necessarily equal to DE, in exactly the samhe manner; and the two
equations corresponding to (a) will be for the second figure
2 2 2 5
/fy=§?, :} b } ........................ (B).

Here, again, the problem can be solved by the ordinary method
of application of areas in the particular case where AZ is the
diameter bisecting BC at right angles; and it is interesting to note
that this particular case appears to be assumed in a fragment
of Hippocrates’ Quadrature of lunes preserved in a quotation
by Simplicius* from Eudemus’ History of Geometry, while Hippo-
crates flourished probably as early as 450 B.c.

Accordingly we find that Pappus distinguishes different classes
of veloes corresponding to his classification of geometrical problems
in general. According to him, the Greeks distinguished three kinds
of problems, some being plane, others solid, and others linear. He
proceeds thust: ‘“Those which can be solved by means of a straight
line and a circumference of a circle may properly be called plane
(éwimeda); for the lines by means of which such problems are
solved have their origin in a plane. Those however which are
solved by using for their discovery (elpeci) one or more of the
sections of the cone have been called solid (oreped); for the
construction requires the use of surfaces of solid figures, namely,
those of cones. There remains a third kind of problem, that
which is called linear (ypappuxdv); for other lines [curves] besides
those mentioned are assumed for the construction whose origin
is more complicated and less natural, as they are generated from
more irregular surfaces and intricate movements.” Among other
instances of the linear class of curves Pappus mentions spirals, the
curves known as quadratrices, conchoids and cissoids. He adds
that “it seems to be a grave error which geometers fall into
whenever any one discovers the solution of a plane problem by
means of conics or linear curves, or generally solves it by means of
a foreign kind, as is the case, for example, (1) with the problem in
the fifth Book of the Conics of Apollonius relating to the parabolaf,

* Simplicius, Comment. in Aristot. Phys. pp. 61—68 (ed. Diels). The whole
quotation is reproduced by Bretschneider, Die Geometrie und die Geometer vor
Euklides, pp. 109—121. As regards the assumed construction see particularly
P. 64 and p. xxiv of Diels’ edition; cf. Bretschneider, pp. 114, 115, and Zeuthen,
Die Lehre von den Kegelschnitten im Altertum, pp. 269, 270.

+ Pappus 1v. pp. 270—272.
I Cf. dpollonius of Perga, pp. cxxviii. cxxix.
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~and (2) when Archimedes assumes in his work on the spiral a
velais of a solid character with reference to a circle; for it is
possible without calling in the aid of anything solid to find the
[proof of the] theorem given by the latter [ Archimedes), that is, to
prove that the circumference of the circle arrived at in the first
revolution is equal to the straight line drawn at right angles to the
initial line to meet the tangent to the spiral.”

The “solid vebous” referred to in this passage is that assumed to
be possible in Props. 8 and 9 of the book On Spirals, and is mentioned
again by Pappus in another place where he shows how to solve the
problem by means of conics®*. This solution will be given later, but,
when Pappus objects to the procedure of Archimedes as unorthodox,
the objection appears strained if we consider what precisely it is that
Archimedes assumes. It is not the actual solution which is assumed,
but only its possibility ; and its possibility can be perceived without
any use of conics. For in the particular case it is only necessary,
as a condition of possibility, that DE in the second figure above
should not be the maximum length which the intercept PR could
have as APR revolves about 4 from the position 4DK in the
direction of the centre of the circle; and that DE is not the
maximum length which PR can have is almost self-evident. In
fact, if P, instead of moving along the circle, moved along the
straight line through Z parallel to BC, and if 4 RP moved from the
position ADE in the direction of the centre, the length of PR would
continually increase, and a fortiori, so long as P is on the arc of the
circle cut off by the parallel through £ to BC, PR must be greater
in length than DE; and on the other hand, as ARP moves further
in the direction of B, it must sometime intercept a length PR
equal to DE before P reaches B, when PR vanishes. Since, then,
Archimedes’ method merely depends upon the theoretical possibility
of a solution of the velous, and this possibility could be inferred
from quite elementary considerations, he had no occasion to use
conic sections for the purpose immediately in view, and he cannot
fairly be said to have solved a plane problem by the use of conics.

At the same time we may safely assume that Archimedes
was in possession of a solution of the vevais referred to. But there
is no evidence to show how he solved it, whether by means of conics,
or otherwise. That he would have been able to effect the solution,

* Pappus 1v. p. 298 sq.
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as Pappus does, by the use of conics cannot be doubted. A precedent
for the introduction of conics where a “solid problem” had to be
solved was at hand in the determination of two mean proportionals
between two unequal straight lines by Menaechmus, the inventor of
the conic sections, who used for the purpose the intersections of a
parabola and a rectangular hyperbola. The solution of the cubic
equation on which the proposition On the Sphere and Cylinder 11. 4
depends is also effected by means of the intersections of a parabola
with a rectangular hyperbola in the fragment given by Eutocius
and by him assumed to be the work of Archimedes himself*,

‘Whenever a problem did not admit of solution by means of the
straight line and circle, its solution, where possible, by means of
conics was of the greatest theoretical importance. First, the
possibility of such a solution enabled the problem to be classified
as a “solid problem ”; hence the importance attached by Pappus
to solution by means of conics. But, secondly, the method had
other great advantages, particularly in view of the requirement that
the solution of a problem should be accompanied by a diopiouds
giving the criterion for the possibility of a real solution. Often too
the diopiouds involved (as frequently in Apollonius) the determination
of the number of solutions as well as the limits for their possibility.
Thus, in any case where the solution of a problem depended on the
intersections of two conics, the theory of conics afforded an effective
means of investigating diwopiomol.

§ 2. But though the solution of ¢“solid problems” by means of
conics had such advantages, it was not the only method open to
Archimedes. An alternative would be the use of some mechanical
construction such as was often used by the Greek geometers and is
recognised by Pappus himself as a legitimate substitute for conics,
which are not easy to draw in a planet. Thus in Apollonius’
solution of the problem of the two mean proportionals as given by
Eutocius a ruler is supposed to be moved about a point until the
points at which the ruler crosses two given straight lines at right
angles are equidistant from a certain other fixed point; and the
same construction is also given under Heron’s name. Another
version of Apollonius’ solution is that given by Ioannes Philoponus,
which assumes that, given a circle with diameter OC and two

* See note to On the Sphere and Cylinder, 11. 4.
+ Pappus 11 p. 54,
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straight lines 0D, OF through O and at right angles to one
another, a line can be drawn through C, meeting the circle again
in F and the two lines in D, E respectively, such that the in-
tercepts OD, FE are equal. This solution was no doubt discovered
by means of the intersection of the circle with a rectangular hyper-
bola drawn with 0D, OF as asymptotes and passing through C;
and this supposition accords with Pappus’ statement that Apollonius
solved the problem by means of the sections of the cone*. The
equivalent mechanical construction is given by Eutocius as that
of Philo Byzantinus, who turns a ruler about C until CD, FE are
equalt.

Now clearly a similar method could be used for the purpose of
effecting a velois. We have only to suppose a ruler (or any object
with a straight edge) with two marks made on it at a distance
equal to the given length which the problem requires to be
intercepted between two curves by a line passing through the
fixed point; then, if the ruler be so moved that it always passes
through the fixed point, while one of the marked points on it follows
the course of one of the curves, it is only necessary to move the
ruler until the second marked point falls on the other curve. Some
such operation as this may have led Nicomedes to the discovery of
his curve, the conchoid, which he introduced (according to Pappus)
into his doubling of the cube, and by which he also trisected an
angle (according to the same authority). From the fact that
Nicomedes is said to have spoken disrespectfully of Eratosthenes’
mechanical solution of the duplication problem, and therefore must
have lived later than Eratosthenes, it is concluded that his date
must have been subsequent to 200 B.c., while on the other hand
he must have written earlier than 70 B.c., since Geminus knew the
name of the curve about that date; Tannery places him between
Archimedes and Apollonius}. While therefore there appears to
be no evidence of the use, before the time of Nicomedes, of such
a mechanical method of solving a vetois, the interval between
Archimedes and the discovery of the conchoid can hardly have
been very long. As a matter of fact, the conchoid of Nicomedes
can be used to solve not only all the vedoes mentioned in Archimedes
but any case of such a problem where one of the curves is a straight

* Pappus 111, p. 56.
+ For fuller details see Apollonius of Perga, pp. CXXv——eXXvii.
% Bulletin des Sciences Mathématiques, 2° série vir. p. 284,
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line. Both Pappus and Eutocius attribute to Nicomedes the inven-
tion of a machine for drawing his conchoid. 425 is supposed to be

:[s

E

a ruler with a slot in it parallel to its length, #'E a second ruler at
right angles to the first with a fixed peg in it, C. This peg moves
in a slot made in a third ruler parallel to its length, while this
ruler has a fixed peg on it, D, in a straight line with the slot in
which (' moves ; and the peg D can move along the slot in 4B. If
then the ruler D moves so that the peg D describes the length of
the slot in AB on each side of F, the extremity of the ruler, P,
describes the curve which is called a conchoid. Nicomedes called
the straight line 4B the ruler (kavdv), the fixed point C' the pole
(wdhos), and the length PD the distance (Sdoryua); and the
fundamental property of the curve, which in polar coordinates
would now be denoted by the equation r=a +bsec 6, is that, if
any radius vector be drawn from C to the curve, as C'P, the length
intercepted on the radius vector between the curve and the straight
line AB is constant. Thus any velows in which one of the two
given lines is a straight line can be solved by means of the
intersection of the other line with a certain conchoid whose pole
is the fixed point to which the required straight line must verge
(vedew). In practice Pappus tells us that the conchoid was not
always actually drawn, but that “some,” for greater convenience,
moved the ruler about the fixed point until by trial the intercept
was made equal to the given length*,

§ 3. The following is the way in which Pappus applies
conic sections to the solution of the vedous referred to in Props. 8, 9
of the book On Spirals. He begins with two lemmas.

* Pappus 1v. p. 246,
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(1) If from a given point 4 any straight line be drawn meeting
a straight line BC given in position in R, and if RQ be drawn
perpendicular to BC and bearing a given ratio to AR, the locus of
Q is a hyperbola.

For draw 4D perpendicular to BC, and on 4.0 produced take 4’

such that
QF : RA=A'D : DA = (the given ratio).

Measure DA4” along DA equal to DA’
Then, if QN be perpendicular to 44,
(AR*— AD?) : (QR*® — A'D?) = (const.),
or QN?: A'N . A"N = (const.)
(2) If BC be given in length, and if R, a straight line drawn
at right angles to BC from any point R on it, be such that
BR.RC=Fk. RQ,

where % is a straight line of given length, then the locus of @ is a
parabola.

Let O be the middle point of BC, and let OK be drawn at right
angles to it and of such length that

0C*=k . KO.
Draw @AN' perpendicular to OK.
Then QN'*=0R*=0C*-BR . RC

=k. (KO — RQ), by hypothesis,
=k. KN
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In the particular case referred to by Archimedes (with the slight
generalisation that the given length % to which PR is to be equal is
not necessarily equal to DZ) we have

(1) the given ratio RQ : AR is unity, or RQ = AR, whence 4"
coincides with 4, and, by the first lemma,

QN*=AN . A'N,
so that @ lies on a rectangular hyperbola.
(2) BR.RC=AR. RP=k. AR=k . RQ, and, by the second

lemma, @ lies on a certain parabola.

If now we take O as origin, OC as axis of z and OK as axis of ¥,
and if we put OD=a, AD=b, BC = 2c, the hyperbola and parabola
determining the position of @ are respectively denoted by the
equations

(a_ m)2: y‘.’. _ b?)
¢’ —a® = ky,
which correspond exactly to the equations (8) above obtained by
purely algebraical methods.

Pappus says nothing of the Swpiouds which is necessary to the
complete solution of the generalised problem, the diopiruds namely
which determines the maximuimn value of % for which the solution is
possible. This maximum value would of course correspond to the
case in which the rectangular hyperbola and the parabola touch one
another. Zeuthen has shown* that the corresponding value of % can
be determined by means of the intersection of two other hyperbolas or
of a hyperbola and a parabola, and there is no doubt that Apollonius,
with his knowledge of conics, and in accordance with his avowed
object in giving the properties useful and necessary for Siwpiopof,
would have been able to work out this particular dwpirpds by means
of conies; but there is no evidence to show that Archimedes investi-
gated it by the aid of conics, or indeed at all, it being clear, as shown
above, that it was not necessary for his immediate purpose.

This chapter may fitly conclude with a description of (1) some
important applications of veloes given by Pappus, and (2) certain -
particular cases of the same class of problems which are plane, that
is, can be solved by the aid of the straight line and circle only, and
which were (according to Pappus) shown by the Greek geometers to
be of that character.

* Zeuthen, Die Lehre von den Kegelschnitten im Altertum, pp. 273—5.
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§4. One of the two important applications of ‘solid’ veloeis was
discovered by Nicomedes, the inventor of the conchoid, who intro-
duced that curve for solving a vedous to which he reduced the problem
of doubling the cube* or (what amounts to the same thing) the finding
of two mean proportionals between two given unequal straight lines.

Let the given unequal straight lines be placed at right angles as
CL, LA. Complete the parallelogram 4 BCL, and bisect 4B at D,
and BC at . Join LD and produce it to meet CB produced in H.
From £ draw EF at right angles to BC, and take a point 7' on £F
such that CF is equal to 40. Join HF, and through C draw C&
parallel to HF. If we produce BC to K, the straight lines CG, CK

M

F

form an angle, and we now draw from the given point F a straight
line FGK, meeting CG, CK in G, K respectively, such that the
intercept GK is equal to AD or FC. (This is the vedois to which
the problem is reduced, and it can be solved by means of a conchoid
with F as pole.)
Join KL and produce it to meet B4 produced in M.
Then shall CK, AM be the required mean proportionals between
CL, LA, or
CL:CRK=CK:AM=AM : AL
We have, by Eucl. 11. 6,
BK . KC + CE*=EK’,
If we add EF? tq each side,
BK . KC + CF*=FK°.

Now, by parallels,
MA : AB=ML : LK

=BC : CK;
* Pappus 1v. p, 242 sq. and . p. 58 sq. ; Eutocius on Archimedes, On the
Sphere and Cylinder, 1. 1 (Vol. . p. 114 8q.)



ON THE PROBLEMS KNOWN AS NETSEIZ. cxi

and, since 48 =24D, and BC =1HC,
MA : AD=HC :CK

=F@ : GK, by parallels,
whence, componendo,
MD : AD=FK : GK.

But GK = 4D ; therefore MD = FK, and MD*= FK*

Again, MD*=BM . MA + AD?,
and FK*=BK . KC + CF*, from above,
while MD*®=FK? and AD*=CF*,
therefore BM . MA=BK . KC.
Hence CK : MA=BM : BK
=MA : AL

_IC: 0K }, by parallels,

that is, LC:CK=CK: MA=MA : AL.

§ 5. The second important problem which can be reduced to
a ‘solid’ vebows is the ¢risection of any angle. One method of
reducing it to a vedous has been mentioned above as following from
Prop. 8 of the Liber Assumptorum. This method is not mentioned
by Pappus, who describes (1v. p. 272 sq.) another way of effecting
the reduction, introducing it with the words, “The earlier
geometers, when they sought to solve the aforesaid problem about
the [trisection of the] angle, a problem by nature ‘solid, by
‘plane’ methods, were unable to discover the solution; for they
were not yet accustomed to the use of the sections of the cone,
and were for that reason at a loss. Later, however, they trisected
an angle by means of conics, having used for the discovery of it
the following vebos.”

he vebaus is thus enunciated : Given a rectangle ABCD, let it
be required to draw through A a straight line AQR, meeting CD in
@ and BC produced in R, such that the intercept QR is equal to a
given length, £ suppose.

Suppose the problem solved, QR being equal to 4. Draw DP
parallel to QR and RP parallel to CD, meeting in P. Then, in the
parallelogram DR, DP = QR =k.

Hence P lies on a circle with centre D and radius £.

Again, by Eucl. 1. 43 relating to the complements of the
paralielograms about the diagonal of the complete parallelogram,
BC.CD=BR. QD

=PR. RB;

> r \:_ D

< PREFEN
* P [

o -
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and, since BC.CD is given, it follows that P lies on a rectangular
hyperbola with BR, BA as asymptotes and passing through D.

Therefore, to effect the construction, we have only to draw this
rectangular hyperbola and the circle with centre 2 and radius equal
to k. The intersection of the two curves gives the point P, and R
is determined by drawing PR parallel to DC. Thus AQR is found.

[Though Pappus makes ABCD a wrectangle, the construction
applies equally if ABCD is any parallelogram.]

Now suppose 4 BC to be any acute angle which it is required to
trisect. Let AC be perpendicular to BC. Complete the parallelo-
gram ADBC, and produce DA.

Suppose the problem solved, and let the angle CBE be one-third
of the angle ABC. Let BE meet AC in X and DA produced in F.
Bisect ZF in H, and join 4 H.

Then, since the angle 4BE is equal to twice the angle ZB( and,
by parallels, the angles £BC, EFA are equal,

LABE =2, AFH =/ AHB.

Therefore AB=AH=HF,
and EF=2HF
=24B.

8 c

Hence, in order to trisect the angle 4BC, we have only to solve
the following velois: Given the rectangle ADBC whose diagonal
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18 AB, to draw through B a straight line BEF, meeting AC in K and
DA produced in F, such that EF may be equal to twice AB ; and this
vevos is solved in the manner just shown.

These methods of doubling the cube and trisecting any acute
angle are seen to depend upon the application of one and the same
vedous, which may be stated in its most general form thus. Given
any two straight lines forming an angle and any fixed point
which 1s not on either line, it 18 required to draw through the
Jixed point a straight line such that the portion of it intercepted
between the fixed lines is equal to a given length. If AE, AC be

B [

the fixed lines and B the fixed point, let the parallelogram 4CBD
be completed, and suppose that BQR, meeting C4 in @ and AZ in
R, satisfies the conditions of the problem, so that QR is equal to
the given length. If then the parallelogram CQRP is completed,
we may regard P as an auxiliary point to be determined in order
that the problem may be solved ; and we have seen that P can be
found as one of the points of intersection of (1) a circle with centre
C and radius equal to %, the given length, and (2) the hyperbola
which passes through C' and has DE, DB for its asymptotes.

It remains only to consider some particular cases of the problem
which do not require conics for their solution, but are ¢plane’
problems requiring only the use of the straight line and circle.

§ 6. We know from Pappus that Apollonius occupied him-
self, in his two Books of veioes, with problems of that type
which were capable of solution by ‘plane’ methods. As a matter
of fact, the above vebows reduces to a ‘plane’ problem in the
particular case where B lies on one of the bisectors of the angle
between the two given straight lines, or (in other words) where the
parallelogram ACBD is a rhombus or a square. Accordingly we
find Pappus enunciating, as one of the ¢plane’ cases which had

H. A, . h
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been singled out for proof on account of their greater utility for
many purposes, the following*: Given a rhombus with one side
produced, to fit into the exterior angle a straight line given in
length and verging to the opposite angle ; and he gives later on, in
his lemmas to Apollonius’ work, a theorem bearing on the problem
with regard to the rhombus, and (after a preliminary lemma)
a solution of the velaus with reference to a square.

The question therefore arises, how did the Greek geometers
discover these and other particular cases, where a problem which
is in general ‘solid,” and therefore requires the use of conics (or a
mechanical equivalent), becomes ‘plane’? Zeuthen is of opinion that
they were probably discovered as the result of a study of the general
solution by means of conicst. I do not feel convinced of this, for
the following reasons.

(1) The authenticated instances appear to be very rare in
which we should be justified in assuming that the Greeks used
the properties of conics, in the same way as we should combine
and transform two Cartesian equations of the second degree, for
the purpose of proving that the intersections of two conics also
lie on certain circles or straight lines. It is true that we may
reasonably infer that Apollonius discovered by a method of this sort
his solution of the problem of doubling the cube where, in place
of the parabola and rectangular hyperbola used by Menaechmus,
he employs the same hyperbola along with the circle which passes
through the points common to the hyperbola and parabolai; but
in the only propositions contained in his conics which offer an
opportunity for making a similar reduction§, Apollonius does not
make it, and is blamed by Pappus for not doing so. In the pro-
positions referred to the feet of the normals to a parabola drawn
from a given point are determined as the intersections of the
parabola with a certain rectangular hyperbola, and Pappus objects

* Pappus vir. p. 670. .

+ “Mit dieser selben Aufgabe ist nimlich ein wichtiges Beispiel dafiir
verkniipft, dass man bemiiht war solche Fille zu entdecken, in denen Aufgaben,
zu deren Lisung im allgemeinen Kegelschnitte erforderlich sind, sich mittels
Zirkel und Lineal 16sen lassen. Da nun das Studium der allgemeinen Liosung
durch Kegelschnitte das beste Mittel gewdhrt solche Fiille zu entdecken, so ist
es ziemlich wahrscheinlich, dass man wirklich diesen Weg eingeschlagen hat.”
Zeuthen, op. cit. p. 280.

1 Apolloniug of Perga, p. 0XXv, CXXVi.

§ Ibid. p. cxxviii and pp. 182, 186 (Conics, v. 58, 62
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to this method as an instance of discovering the solution of a
‘plane’ problem by means of conics*, the objection having reference
to the use of a Ayperbola where the same points could be obtained
as the intersections of the parabola with a certain circle. Now the
proof of this latter fact would present no difficulty to Apollonius,
and Pappus must have been aware that it would not; if therefore
he objects in the circumstances to the use of the hyperbola, it is at
least arguable that he would equally have objected had Apollonius
brought in the hyperbola and used its properties for the purpose
of proving the problem to be ¢plane’ in the particular case.

(2) The solution of the general problem by means of conics
brings in the auxiliary point P and the straight line CP. We
should therefore naturally expect to find some trace of these in the
particular solutions of the vebois for a rhombus and square; but
they do not appear in the corresponding demonstrations and figures
given by Pappus.

Zeuthen considers that the velois with reference to a square was
probably shown to be ‘plane’ by means of the same investigation
which showed that the more general case of the rhombus was also
capable of solution with the help of the straight line and circle
only, i.e. by a systematic study of the general solution by means of
conics. This supposition seems to him more probable than the view
that the discovery of the plane construction for the square may have
been accidental ; for (he says) if the same problem is treated solely
by the aid of elementary geometrical expedients, the discovery that
it is ‘plane’ is by no means a simple mattert. Here, again, I am
not convinced by Zeuthen’s argument, as it seems to me that a
simpler explanation is possible of the way in which the Greeks were
led to the discovery that the particular veioeis were plane. ey
knew in the first place that the trisection of a right angle was a
‘plane’ problem, and therefore that /half a right angle could be
trisected by means of the straight line and circle. It followed

* Pappus 1v. p, 270. Cf. p. ciii above.

t “Die Ausfiihrbarkeit kann dann auf die zuerst angedeutete Weise gefunden
sein, die den allgemeinen Fall, wo der Winkel zwischen den gegebenen Geraden
beliebig ist, in sich begreift. Dies scheint mir viel wahrscheinlicher als die
Annahme, dass die Entdeckung dieser ebenen Konstruction zufillig sein sollte ;
denn wenn man dieselbe Aufgabe nur mittels rein elementar-geometrischer
Hiilfsmittel behandelt, so liegt die Entdeckung, dass sie eben ist, ziemlich fern.”
Zeuthen, op. cit. p. 282.

h2
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therefore that the corresponding velos, i.e. that for a square, was
a ‘plane’ problem in the particular case where the given length
to which the required intercept was to be equal was double of
the diagonal of the square. This fact would naturally suggest
the question whether the problem was still plane if % had
any other value; and, when once this question was thoroughly
investigated, the proof that the problem was ‘plane, and the
solution of it, could hardly have evaded for long the pursuit of
geometers so ingenious as the Greeks. This will, I think, be
clear when the solution given by Pappus and reproduced below
is examined. Again, after it had been proved that the vebois with
reference to a square was ‘plane,” what more natural than the further
inquiry as to whether the intermediate case between that of the
square and parallelogram, that of the rhombus, might perhaps be a
¢ plane’ problem ?

As regards the actual solution of the plane vevoes with respect
to the rhombus and square, i.e. the cases in general where the fixed
point B lies on one of the bisectors of the angles between the two
given straight lines, Zeuthen says that only in one of the cases have
we a positive statement that the Greeks solved the velois by means
of the circle and ruler, the case, namely, where ACBD is a squarc*.
This appears to be a misapprehension, for not only does Pappus
mention the case of the rhombus as one of the plane vevoes which
the Greeks had solved, but it is clear, from a proposition given by
him later, how it was actually solved. The proposition is stated
by Pappus to be “involved” (wapalfewpovuevor, meaning presumably
“the subject of concurrent investigation”) in the 8th problem of
Apollonius’ first Book of veloeis, and is enunciated in the following
form+t. Given a rhombus AD with diameter BC produced to E, if EF
be @ mean proportional between BE, EC, and if a circle be described
with centre E and radius EF cutting CD in K and AC produced in
H, BKH shall be a straight line. The proof is as follows.

Let the circle cut AC in L, and join HE, KE, LE. Let LK
meet BC in M.

* «Indessen besitzen wir doch nur in einem einzelnen hierher gehérigen
Falle eine positive Angabe dariiber, dass die Griechen die Einschiebung mittels
Zirkel und Lineal ausgefiihrt haben, wenn niémlich die gegebenen Geraden
zugleich rechte Winkel bilden, 4IBC also ein Quadrat wird.” Zeuthen, op. cit.
p. 281.

1 Pappus vir. p. 778.
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Since, from the property of the rhombus, the angles LOM, KCM
are equal, and therefore C'L, CK make equal angles with the diameter
FG of the circle, it follows that CL = CK.

Also EX = EL, and CE is common to the triangles ECK, ECL.
Therefore the said triangles are equal in all respects, and

tCKE=LCLE=.CHE.
Now, by hypothesis,
EB: EF=EF: EC,
or EB: EK=FEK: EC (since EF = EK),

and the angle CEK is common to the triangles BEK, KEC ; there-
fore the triangles BEK, KEC are similar, and

LCBK=.CKE
= ¢ CHE, from above.
Again, LHCE =, ACB= . BCK.
Thus in the triangles CBK, CHE two angles are equal re-
spectively ;
therefore ~CEH=rCKB.

But, since . CKE =, CHE, from above, the points X, C, E, H
are concyclic.
Hence L CEH + . CKH = (two right angles).
Accordingly, since LCEH =, CKB,
¢ CKH + . CKB = (two right angles),
and BKH is a straight line.
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Now the form of the proposition at once suggests that, in the
8th problem referred to, Apollonius had simply given a construction
involving the drawing of a circle cutting CD and AC produced in
the points K, H respectively, and Pappus’ proof that BKH is a
straight line is intended to prove that HK wverges towards B, or (in
other words) to verify that the construction given by Apollonius
solves a certain vebous requiring BKH to be drawn so that KH s
equal to a given length.

The analysis leading to the construction must have been worked
out somewhat as follows.

Suppose BKH drawn so that KH is equal to the given length £.
Bisect KH at N, and draw NZ at right angles to KH meeting BC
produced in Z.

Draw KM perpendicular to BC and produce it to meet C4 in L.
Then, from the property of the rhombus, the triangles KOM, LCM
are equal in all respects.

Therefore KM = ML ; and accordingly, if MN be joined, XN,
LH are parallel.

Now, since the angles at M, IV are right, a circle can be described
about ZMKN.

Therefore L CEK = MNK, in the same segment,
=+ CHK, by parallels.
Hence a circle can be described about CEHK. It follows that
LBCD=.CEK + . CKE
=L CHK + . CHE
=, EHK =, EKH.
Therefore the triangles ZKH, DBC are similar.
Lastly, LCKN=.CBK+. BCK;

and, subtracting from these equals the equal angles EXN, BCK

respectively, we have
L EKC =, EBK.

Hence the triangles ZBK, EKC are similar, and
BE :EK = EK : EC,
or BE . EC=EK*
But, by similar triangles, EK : KH = DC : CB,
and the ratio DC : OB is given, while X is also given (= k).



ON THE PROBLEMS KNOWN AS NETZEIZ, cxix

Therefore EK is given, and, in order to find %, we have only, in
the Greek phrase, to ‘““apply to BC a rectangle exceeding by a square
figure and equal to the given area EK%”

Thus the construction given by Apollonius was clearly the
following *.

If k be the given length, take a straight line p such that

p:k=A4B: BC.

Apply to BC a rectangle exceeding by a square figure and equal to
the area p°. Let BE . EC be this rectangle, and with E as centre and
radius equal to p describe a circle cutting AC produced in H and

CD in K.
HK is then equal to %, and verges towards B, as proved by
Pappus; the problem is therefore solved.

The construction used by Apollonius for the ‘ plane’ vedois with
reference to the rhombus having been thus restored by means of the
theorem given by Pappus, we are enabled to understand the purpose

* This construction was suggested to me by a careful examination of
Pappus’ proposition without other aid; but it is no new discovery.
Samuel Horsley gives the same construction in his restoration of Apollonii
Pergaei Inclinationum libri duo (Oxford, 1770); he explains, however, that
he went astray in consequence of a mistake in the figure given in the mss.,
and was unable to deduce the construction from Pappus’s proposition until he
was recalled to the right track by a solution of the same problem by Hugo
d’0Omerique. This solution appears in a work entitled, Analysis geometrica, sive
nova et vera methodus resolvendi tam problemata geometrica quam arithmeticas
quaestiones, published at Cadiz in 1698. D’Omerique’s construction, which is
practically identical with that of Apollonius, appears to have been evolved by
means of an independent analysis of his own, since he makes no reference to
Pappus, as he does in other cases where Pappus is drawn upon (e.g. when giving
the construction for the case of the square attributed by Pappus to one
Heraclitus). The construction differs from that given above only in the fact
that the circle is merely used to determine the point K, after which BK is joined
and produced to meet 4C in H. Of other solutions of the same problem two
may here be mentioned. (1) The solution contained in Marino Ghetaldi’s
posthumous work De Resolutione et Compositione Mathematica Libri quingue
(Rome, 1630), and included among the solutions of other problems all purporting
to be solved “methodo qua antiqui utebantur,” is, though geometrical, entirely
different from that above given, being effected by means of a reduction of the
problem to a simpler plane vefois of the same character as that assumed by
Hippocrates in his Quadrature of lumes. (2) Christian Huygens (De circuli
magnitudine inventa; accedunt problematum quorundam tllustrium constructiones,
Lugduni Batavorum, 1654) gave a rather complicated solution, which may be
described as a generalisation of Heraclitus’ solution in the case of a square.
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for which Pappus, while still on the subject of the “8th problem ”
of Apollonius, adds a solution for the particular case of the square
(which he calls a ‘ problem after Heraclitus”) with an introductory
lemma. It seems clear that Apollonius did not treat the case of the
square separately from the rhombus because the solution for the
rhombus was equally applicable to the square, and this supposition
is confirmed by the fact that, in setting out the main problems
discussed in the vedoes, Pappus only mentions the rhombus and not
the square. Being however acquainted with a solution by one
Heraclitus of the vedous relating to a square which was not on the
same lines as that of Apollonius, while it was not applicable to the
case of the rhombus, Pappus adds it as an alternative method for
the square which is worth noting*. This is no doubt the explanation
of the heading to the lemma prefixed to Heraclitus’ problem which
Hultsch found so much difficulty in explaining and put in brackets
as an interpolation by a writer who misunderstood the figure
and the object of the theorem. The words mean “Lemma useful
for the [problem] with reference to squares taking the place
of the rhombus” (literally ‘“having the same property as the
rhombus”), ie. a lemma useful for Heraclitus’ solution of the

* This view of the matter receives strong support from the following
facts. In Pappus’ summary (p. 670) of the contents of the vevoeis of Apollonius
“two cases’ of the vefois with reference to the rhombus are mentioned last
among the particular problems given in the first of the two Books. As we have
seen, one case (that given above) was the subject of the ¢ 8th problem” of
Apollonius, and it is equally clear that the other case was dealt with in the
«9th problem.” The other case is clearly that in which
the line to be drawn through B, instead of crossing the n A c
exterior angle of the rhombus at C, lies across the angle
C itself, i.e. meets C4, CD both produced. In the former
case the solution of the problem is always possible what-
ever be the length of %; but in the second case clearly
the problem is not capable of solution if %, the given
length, is less than a certain minimum. Hence the
problem requires a Siwopioués to determine the minimum K
length of k. Accordingly we find Pappus giving, after
the interposition of the case of the square, a * lemma useful for the dwopisuds of
the 9th problem,” which proves that, if CH=CK and B be the middle point of
HK, then HK is the least straight line which can be drawn through B to meet
CH, CK. Pappus adds that the copiruds for the rhombus is then evident; if
HK be the line drawn through B perpendicular to CB and meeting C4, CD
produced in H, K, then, in order that the problem may admit of solution, the
given length % must be not less than HK.
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vedows in the particular case of a square*. The lemma is as
follows.

ABCD being a square, suppose BHE drawn so as to meet CD in
H and AD produced in E, and let EF be drawn perpendicular to BE
meeting BC produced in F. To prove that

CF?= BC* + HE?
Suppose EG drawn parallel to DC meeting CF in G. Then
since BEF is a right angle, the angles HBC, FEG are equal.

B c G F

Therefore the triangles BCH, EGF are equal in all respects, and

EF= BH.
Now BF*® = BE* + EF?,
or BC.BF+BF.FC=BH.BE +BE.EH+ EF.

But, the angles HCF, HEF being right, the points C, H, E, F
are concyclic, and therefore
BC.BF=BH. BE.
Subtracting these equals, we have
BF.FC=BE.EH+ EF*
=BE.EH + BH*
=BH.HE + EH* + BH®
=FEB.BH + EH*
=FB.BC+ EH".

* Hultsch translates the words Mjuua xpfowuor eis 7o éml rerpaywrwy TololyTwy
74 ad7d 7¢ popBy (p. 780) thus, “ Lemma utile ad problema de quadratis quorum
summa rhombo aequalis est,” and has a note in his Appendix (p. 1260) explaining
what he supposes to be meant. The ¢squares’ he takes to be the given square
and the square on the given length of the intercept, and the rhombus to be one
for which he indicates a construction but which is not shown in Pappus’ figure.
Thus he is obliged to translate ¢ pduS¢ a8 *a rhombus,” which is one objec-
tion to his interpretation, while “whose squares are equal” scarcely seems a
possible rendering of wowodyrwr Té adrd.
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Take away the common part BC' . CF, and
OF*= BC* + EH".

Heraclitus’ analysis and construction are now as follows.
Suppose that we have drawn BHE so that HE has a given
length %.

Since CF*= BC*® + EH?® or BC? + F*,
and BC and k% are both given,
CF is given, and therefore BF is given.

Thus the semicircle on BF as diameter is given, and therefore
also E, its intersection with the given line ADE; hence BE is
given.

To effect the construction, we first find a square equal to the
sum of the given square and the square on 4 We then produce
BC to I so that CF is equal to the side of the square so found. If
a semicircle be now described on BF as diameter, it will pass above
D (since CF > CD, and therefore BC . CF > CD?), and will therefore
meet 4D produced in some point £.

Join BE meeting CD in H.

Then HE =k, and the problem is solved.



CHAPTER VI

CUBIC EQUATIONS.

It has often been explained how the Greek geometers were able
to solve geometrically all forms of the quadratic equation which give
positive roots; while they could take no account of others because
the conception of a negative quantity was unknown to them. The
quadratic equation was regarded as a simple equation connecting
areas, and its geometrical expression was facilitated by the methods
which they possessed of transforming any rectilineal areas whatever
into parallelograms, rectangles, and ultimately squares, of equal
area ; its solution then depended on the principle of application of
areas, the discovery of which is attributed to the Pythagoreans.
Thus any plane problem which could be reduced to the geometrical
equivalent of a quadratic equation with a positive root was at once
solved. A particular form of the equation was the pure quadratic,
which meant for the Greeks the problem of finding a square equal
to a given rectilineal area. This area could be transformed into a
rectangle, and the general form of the equation thus became 22 = ab,
so that it was only necessary to find a mean proportional between a
and 5. In the particular case where the area was given as the
sum of two or more squares, or as the difference of two squares,
an alternative method depended on the Pythagorean theorem of
Eucl. 1. 47 (applied, if necessary, any number of times successively).
The connexion between the two methods is seen by comparing
Eucl. v1. 13, where the mean proportional between @ and b is
found, and Eucl. 11. 14, where the same problem is solved without
the use of proportions by means of 1. 47, and where in fact the

formula used is
b= a+b\* [a—0D\*
P=a _(_2_> _( . )
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The choice between the two methods was equally patent when the
equation to be solved was a® = pa?, where p is any integer; hence
the ‘multiplication’ of squares was seen to be dependent on the
finding of a mean proportional. The equation a°=2a" was the
simplest equation of the kind, and the discovery of a geometrical
construction for the side of a square equal to twice a given square
was specially important, as it was the beginning of the theory of
incommensurables or ‘irrationals’ (déAdywv mpaymareia) which was
invented by Pythagoras. There is every reason to believe that this
successful doubling of the square was what suggested the question
whether a construction could not be found for the doubling of the
cube, and the stories of the tomb erected by Minos for his son and
of the oracle bidding the Delians to double a cubical altar were no
doubt intended to invest the purely mathematical problem with an
element of romance. It may then have been the connexion between
the doubling of the square and the finding of one mean proportional
which suggested the reduction of the doubling of the cube to the
problem of finding two mean proportionals between two unequal
straight lines. This reduction, attributed to Hippocrates of Chios,
showed at the same time the possibility of multiplying the cube
by any ratio. Thus, if x, y are two mean proportionals between
a, b, we have
a:x=x:y=y:DH,
and we derive at once
a:b=a®: 2,

whence a cube (2°) is obtained which bears to «® the ratio b : «,

while any fraction g can be transformed into a ratio between lines

of which one (the consequent) is equal to the side a of the given
cube. Thus the finding of two mean proportionals gives the solution
of any pure cubic equation, or the equivalent of extracting the cube
root, just as the single mean proportional is equivalent to extracting
the square root. For suppose the given equation to be = bed.
We have then only to find a mean proportional a between ¢ and d,

. b L.
and the equation becomes a®=a?.b=a’.- which is exactly the
q p Yy

multiplication of a cube by a ratio between lines which the two
mean proportionals enable us to effect.

As a matter of fact, we do not find that the great geometers
were in the habit of reducing problems to the multiplication of the
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cube eo momine, but to the equivalent problem of the two mean
proportionals ; and the cubic equation 2 =a% is not usually stated
in that form but as a proportion. Thus in the two propositions On
the Sphere and Cylinder 11. 1, 5, where Archimedes uses the two
mean proportionals, it is required to find & where
a*:2f=w:b;

he does not speak of finding the side of a cube equal to a certain
parallelepiped, as the analogy of finding a square equal to a given
rectangle might have suggested. So far therefore we do not find
any evidence of a general system of adding and subtracting solids
by transforming parallelepipeds into cubes and cubes into parallel-
epipeds which we should have expected to see in operation if the
Greeks had systematically investigated the solution of the general
form of the cubic equation by a method analogous to that of the
application of areas employed in dealing with quadratic equations.

The question then arises, did the Greek geometers deal thus
generally with the cubic equation

P +ar’+ Be+T =0,
which, on the supposition that it was regarded as an independent
problem in solid geometry, would be for them a simple equation
between solid figures,  and @ both representing linear magnitudes,
B an area (a rectangle), and T' a volume (a parallelepiped)? And
was the reduction of a problem of an order higher than that which
could be solved by means of a quadratic equation to the solution of
a cubic equation in the form shown above a regular and recognised
method of dealing with such a problem? The only direct evidence
pointing to such a supposition is found in Archimedes, who reduces
the problem of dividing a sphere by a plane into two segments
whose volumes are in a given ratio (On the Sphere and Cylinder 11. 4)
to the solution of a cubic equation which he states in a form
equivalent to
2, _ . m
4o .ar;’_(?za—w).%-—a .................. (1),

where a is the radius of the sphere, m : n the given ratio (being a
ratio between straight lines of which m >n), and « the height of the
greater of the required segments. Archimedes explains that this is
a particular case of a more general problem, to divide a straight
line (a) into two parts (x, @ — =) such that one part (¢ —x) is to an-
other given straight line (c) as a given area (which for convenience’
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sake we suppose transformed into a square, b°) is to the square on
the other part («°), i.e. so that

(=) te=b":a% . ivvrrninnnnnn. cereeaes (2).

He further explains that the equation (2) stated thus generally
requires a Swopiopds, i.e. that the limits for the possibility of a real
solution, etc., require to be investigated, but that the particular case
(with the conditions obtaining in the particular proposition) requires
no Swpiouds, i.e. the equation (1) will always give a real solution.
He adds that ““the analysis and synthesis of both these problems
will be given at the end.” That is, he promises to give separately a
complete investigation of the equation (2), which is equivalent to the
cubic equation

and to apply it to the particular case (1).

Wherever the solution was given, it was temporarily lost, having
apparently disappeared even before the time of Dionysodorus and
Diocles (the latter of whom lived, according to Cantor, not later
than about 100 B.c.); but Eutocius describes how he found an
old fragment which appeared to contain the original solution of
Archimedes, and gives it in full. It will be seen on reference to
Eutocius’ note (which I have reproduced immediately after the
proposition to which it relates, On the Sphere and Cylinder 11. 4)
that the solution (the genuineness of which there seems to be no
reason to doubt) was effected by means of the intersection of a
parabola and a rectangular hyperbola whose equations may re-

spectively be written thus,
2

Xt = a Y
(& —x) y=ac.

The dopiouds takes the form of investigating the maaimum
possible value of #®(a—w), and it is proved that this maximum

2
value for a real solution is that corresponding to the value z = ; a.

3
This is established by showing that, if &% =§47 a®, the curves touch
at the point for which « =§ a. If on the other hand &% <;,~7 a’, it

is proved that there are two real solutions. In the particular case
(1) it is clear that the condition for a real solution is satisfied, for
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m

the expression in (1) corresponding to &% in (2) is e

4a?, and it

is only necessary that
m

gt 40® 3 % (3a)’, or 4a?,
which is obviously true.

Hence it is clear that not only did Archimedes solve the cubic
equation (3) by means of the intersections of two conics, but he also
discussed completely the conditions under which there are 0, 1 or 2
roots lying between 0 and a. It is to be noted further that the
Swopiopds is similar in character to that by which Apollonius
investigates the number of possible normals that can be drawn
to a conic from a given point*. Lastly, Archimedes’ method is
seen to be an extension of that used by Menaechmus for the solution
of the pure cubic equation. This can be put in the form

a®:x*=a:b,
which can again be put in Archimedes’ form thus,

a?:a=x: b,
and the conics used by Menaechmus are respectively

2 = ay, xy = ab,
which were of course suggested by the two mean proportionals
satisfying the equations
a:x=x:y=y:0b.

The case above described is not the only one where we may
assume Archimedes to have solved a problem by first reducing it
to a cubic equation and then solving that. At the end of the
preface to the book On Conoids and Spheroids he says that the
results therein obtained may be used for discovering many theorems
and problems, and, as instances of the latter, he mentions the
following, “from a given spheroidal figure or conoid to cut off,
by a plane drawn parallel to a given plane, a segment which shall
be equal to a given cone or cylinder, or to a given sphere.” Though
Archimedes does not give the solutions, the following considerations
may satisfy us as to his method.

(1) The case of the ‘right-angled conoid’ (the paraboloid of
revolution) is a ‘plane’ problem and therefore does not concern us
here.

* Cf. Apollonius of Perga, p. 168 sqq.
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(2) In the case of the spheroid, the volume of the whole
spheroid could be easily ascertained, and, by means of that, the
ratio between the required segment and the remaining segment ;
after which the problem could be solved in exactly the same way
as the similar one in the case of the sphere above described,
since the results in On Conoids and Spheroids, Props. 29—32,
correspond to those of On the Sphere and Cylinder 11. 2. Or
Archimedes may have proceeded in this case by a more direct
method, which we may represent thus. Let a plane be drawn
through the axis of the spheroid perpendicular to the given
plane (and therefore to the base of the required segment). This
plane will cut the elliptical base of the segment in one of its
axes, which we will call 2y. Let x be the length of the axis
of the segment (or the length intercepted within the segment
of the diameter of the spheroid passing through the centre of the
base of the segment). Then the area of the base of the segment will
vary as y° (since all sections of the spheroid parallel to the given
plane must be similar), and therefore the volume of the cone which
has the same vertex and base as the required segment will vary as
y’x. And the ratio of the volume of the segment to that of the
cone is (On Conoids and Spheroids, Props. 29—32) the ratio
(3a¢ — ) : (2a — ), where 2a is the length of the diameter of the
spheroid which passes through the vertex of the segment. There-

fore
2 3a—x
Y% 50w

=0,

where C is a known volume. Further, since x, y are the coordinates
of a point on the elliptical section of the spheroid made by the plane
through the axis perpendicular to the cutting plane, referred to a
diameter of that ellipse and the tangent at the extremity of the
diameter, the ratio y*:x (20 —a) is given. Hence the equation
can be put in the form
o (3a — x) = b,

and this again is the same equation as that solved in the fragment
given by Eutocius. A 8iopiopos is formally necessary in this case,
though it only requires the constants to be such that the volume
to which the segment is to be equal must be less than that of the
whole spheroid.

(3) For the ‘obtuse-angled conoid’ (hyperboloid of revolution)
it would be necessary to use the direct method just described for
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the spheroid, and, if the notation be the same, the corresponding
equations will be found, with the help of On Conoids and Spheroids,
Props. 25, 26, to be .
. So+x
"Jat+ax

Y
’

and, since the ratio y* : « (24 + x) is constant,
x* (3a + x) = b.

If this equation is written in the form of a proportion like the
similar one above, it becomes
V:a"=(3a+x):c

There can be no doubt that Archimedes solved this equation as
well as the similar one with a negative sign, i.e. he solved the two
equations

® + ax® F b%c=0,
obtaining all their positive real roots. In other words, he solved
completely, so far as the real roots are concerned, a cubic equation
in which the term in x is absent, although the determination of the
positive and negative roots of one and the same equation meant for
him two separate problems. And it is clear that all cubic equations
can be easily reduced to the type which Archimedes solved.

‘We possess one other solution of the cubic equation to which
the division of a sphere into segments bearing a given ratio to one
another is reduced by Archimedes. This solution is by Dionysodorus,
and is given in the same note of Eutocius*. Dionysodorus does not
generalise the equation, however, as is done in the fragment quoted
above ; he merely addresses himself to the particular case,

4a® : * = (3a—x) : ;%a,

thereby avoiding the necessity for a diopiopuds. The curves which he
uses are the parabola

m

— — Y
@ Ba—x)=y
and the rectangular hyperbola
m 2 _
e 20° = xy.

When we turn to Apollonius, we find him emphasising in his

* On the Sphere and Cylinder 11. 4 (note at end).
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preface to Book 1v. of the Conics* the usefulness of investigations
of the possible number of points in which conics may intersect one
another or circles, because ‘“they at all events afford a more ready
means of observing some things, e.g. that several solutions are
possible, or that they are so many in number, and again that no
solution is possible”; and he shows his mastery of this method
of investigation in Book v., where he determines the number of
normals that can be drawn to a conic through any given point, the
condition that two normals through it coincide, or (in other words)
that the point lies on the evolute of the conic, and so on. For these
purposes he uses the points of intersection of a certain rectangular
hyperbola with the conic in question, and among the cases we find
(v. 51, 58, 62) some which can be reduced to cubic equations, those
namely in which the conic is a parabola and the axis of the parabola
is parallel to one of the asymptotes of the hyperbola. Apollonius
however does not bring in the cubic equation ; he addresses himself
to the direct geometrical solution of the problem in hand without
reducing it to another. This is after all only natural, because the
solution necessitated the drawing of the rectangular hyperbola in
the actual figure containing the conic in question ; thus, e.g. in the
case of the problem leading to a cubic equation, Apollonius can, so
to speak, compress two steps into one, and the introduction of the
cubic as such would be mere surplusage. The case was different
with Archimedes, when he had no conic in his original figure ; and
the fact that he set himself to solve a cubic somewhat more general
than that actually involved in the problem made separate treatment
with a number of new figures necessary. Moreover Apollonius was
at the same time dealing, in other propositions, with cases which did
not reduce to cubics, but would, if put in an algebraical form, lead
to biquadratic equations, and these, expressed as such, would have
had no meaning for the Greeks; there was therefore the less reason
in the simpler case to introduce a subsidiary problem.

As already indicated, the cubic equation, as a subject of syste-
matic and independent study, appears to have been lost sight of
within a century or so after the death of Archimedes. Thus Diocles,
the discoverer of the cissoid, speaks of the problem of the division of
the sphere into segments in a given ratio as having been reduced
by Archimedes ‘to another problem, which he does not solve in
his work on the sphere and cylinder”; and he then proceeds to

* Apollonius of Perga, p. 1xxiii.
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solve the original problem directly, without in any way bringing
in the cubic. This circumstance does not argue any want of
geometrical ability in Diocles; on the contrary, his solution of the
original problem is a remarkable instance of dexterity in the use of
conics for the solution of a somewhat complicated problem, and it
proceeds on independent lines in that it depends on the intersection
of an ellipse and a rectangular hyperbola, whereas the solutions of
the cubic equation have accustomed us to the use of the parabola
and the rectangular hyperbola. I have reproduced Diocles’ solution
in its proper place as part of the note of Eutocius on Archimedes’
proposition ; but it will, I think, be convenient to give here its
equivalent in the ordinary notation of analytical geometry, in
accordance with the plan of this chapter. Archimedes had proved
[On the Sphere and Cylinder 11. 2] that, if £ be the height of a
segment cut off by a plane from a sphere of radius @, and if 4 be
the height of the cone standing on the same base as that of the
segment and equal in volume to the segment, then

(Ba—-k): 2a-k)=h: k.

Also, if /4’ be the height of the cone similarly related to the
remaining segment of the sphere,

(a+k):k=h":(2a—Fk).
From these equations we derive
(h—k):k=a:(2a-k),
and (A —2a+k):(2a-k)=a:k.
Slightly generalising these equations by substituting for & in the
third term of each proportion another length b, and adding the
condition that the segments (and therefore the cones) are to bear to

each other the ratio m : n, Diocles sets himself to solve the three
equations
(h—k):k=0b: (20 k)
W —2a+k): a-k)y=b:k [ oo (A).

and h:b/=m:n

Suppose m >n, so that £>a. The problem then is to divide a
straight line of length 24 into two parts & and (2a — k&) of which % is
the greater, and which are such that the three given equations are
all simultaneously satisfied.

Imagine two coordinate axes such that the origin is the middle
point of the given straight line, the axis of y is at right angles to it,

12
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and z is positive when measured along that half of the given straight
line which is to contain the required point of division. Then the
conics drawn by Diocles are

(1) the ellipse represented by the equation
(y+a—a) == {(a+bP-a?,

and (2) the rectangular hyperbola
(z+a) (y + b) = 2ab.

One intersection between these conics gives a value of x between 0
and a, and leads to the solution required. Treating the equations
algebraically, and eliminating y by means of the second equation
which gives
=2=% %
Yava”
we obtain from the first equation

(a—ay (1 + L)” = 2 @ty o),

a+x
that is, (a+m)“‘(a+b—m)=g(a—w)2(a+b+ac) ......... (B).

In other words Diocles’ method is the equivalent of solving a
complete cubic equation containing all the three powers of x and a
constant, though no mention is made of such an equation.

To verify the correctness of the result we have only to remember
that, « being the distance of the point of division from the middle
point of the given straight line,

k=a+2, 20-k=a-2.
Thus, from the first two of the given equations (A) we obtain
respectively
h=a+x+ 252, b,
a—x
a—w

KN=a-2+—.0
a+x

whence, by means of the third equation, we derive
(a+m)’(a+b-—w)=%"(a—x)“’ (@ + b +x),

which is the same equation as that found by elimjnation above (B).
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I have purposely postponed, until the evidence respecting the
Greek treatment of the cubic equation was complete, any allusion
to an interesting hypothesis of Zeuthen’s* which, if it could be
accepted as proved, would explain some difficulties involved in
Pappus’ account of the orthodox classification of problems and loci.
I have already quoted the passage in which Pappus distinguishes
the problems which are plane (érireda), those which are solid (oreped)
and those which are linear (ypaupixd)t. Parallel to this division of
problems into three orders or classes is the distinction between three
classes of locif. The first class consists of plane loci (rémwo émwimedor)
which are exclusively straight lines and cireles, the second of solid
loct (romou orepeol) which are conic sections§, and the third of
linear loct (témwou ypapmwkol). It is at the same time clearly implied
by Pappus that problems were originally called plane, solid or linear
respectively for the specific reason that they required for their
solution the geometrical loci which bore the corresponding names.
But there are some logical defects in the classification both as
regards the problems and the loci.

(1) Pappus speaks of its being a serious error on the part of
geometers to solve a plane problem by means of conics (i.e. ¢solid
loci’) or ‘linear’ curves, and generally to solve a problem “by means
of a foreign kind” (é dvowkelov yévovs). If this principle were
applied strictly, the objection would surely apply equally to the
solution of a ‘solid’ problem by means of a ‘linear’ curve. Yet,
though e.g. Pappus mentions the conchoid and the cissoid as being
‘linear’ curves, he does not object to their employment in the
solution of the problem of the two mean proportionals, which is a
“solid’ problem.

(2) The application of the term ‘solid loci’ to the three conic
sections must have reference simply to the definition of the curves
as sections of a solid figure, viz. the cone, and it was no doubt in
contrast to the ‘solid locus’ that the ‘plane locus’ was so called.
This agrees with the statement of Pappus that ¢ plane’ problems may

* Die Lehre von den Kegelschnitten, p. 226 sqq.

+ p. ciii.

$ Pappus vii. pp. 652, 662.

§ It is true that Proclus (p. 394, ed. Friedlein) gives a wider definition of
“ golid lines” as those which arise * from some section of a solid figure, as the
cylindrical helix and the conic curves”; but the reference to the cylindrieal
helix would seem to be due to some confusion.
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properly be so called because the lines by means of which they are
solved “have their origin in a plane.” But, though this may be
regarded as a satisfactory distinction when ¢plane’ and ‘solid’ loci
are merely considered in relation to one another, it becomes at once
logically defective when the third or ‘linear’ class is also brought
in. For, on the one hand, Pappus shows how the ‘quadratrix’ (a
‘linear’ curve) can be produced by a construction in three
dimensions (‘“by means of surface-loci,” 8ud 7dv mpds émipaveiars
7émwy) ; and, on the other hand, other ‘linear’ loci, the conchoid
and cissoid, have their origin in a plane. If then Pappus’ account
of the origin of the terms ‘plane’ and ¢solid’ as applied to problems
and loci is literally correct, it would seem necessary to assume that
the third name of ‘linear’ problems and loci was not invented until
a period when the terms plane’ and ‘solid loci’ had been so long
recognised and used that their origin was forgotten.

To get rid of these difficulties, Zeuthen suggests that the terms
‘plane’ and ‘solid’ were first applied to problems, and that they
came afterwards to be applied to the geometrical loci which were
used for the purpose of solving them. On this interpretation, when
problems which could be solved by means of the straight line and
circle were called ‘plane,’ the term is supposed to have had reference,
not to any particular property of the straight line or circle, but to
the fact that the problems were such as depend on an equation of a
degree not higher than the second. The solution of a quadratic
equation took the geometrical form of application of areas, and the
term ‘ plane’ became a natural one to apply to the class of problems
so soon as the Greeks found themselves confronted with a new class
of problems to which, in contrast, the term ¢solid’ could be applied.
This would happen when the operations by which problems were
reduced to applications of areas were tried upon problems which
depend on the solution of a cubic equation. Zeuthen, then,
supposes that the Greeks sought to give this equation a similar
shape to that which the reduced ‘plane’ problem took, that is, to
form a simple equation between solids corresponding to the cubic
equation

?+ax?+Bx+T=0;
the term ‘solid’ or ‘plane’ being then applied according as it had
been reduced, in the manner indicated, to the geometrical equivalent
of a cubic or a quadratic equation.

Zeuthen further explains the term ‘linear problem’ as having
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been invented afterwards to describe the cases which, being
equivalent to algebraical equations of an order higher than the
third, would not admit of reduction to a simple relation between
lengths, areas and volumes, and either could not be reduced to an
equation at all or could only be represented as such by the use of
compound ratios. The term ‘linear’ may perhaps have been applied
because, in such cases, recourse was had to new classes of curves,
directly and without any intermediate step in the shape of an
equation. Or, possibly, the term may not have been used at all
until a time when the original source of the names ¢plane’ and
‘solid”’ problems had been forgotten.

On these assumptions, it would still be necessary to explain how
Pappus came to give a more extended meaning to the term solid
problem,” which according to him equally includes those problems
which, though solved by the same method of conics as was used to
solve the equivalent of cubics, do not reduce to cubic equations but
to biquadratics. This is explained by the supposition that, the
cubic equation having by the time of Apollonius been obscured
from view owing to the attention given to the method of solution
by means of conics and the discovery that the latter method was
one admitting of wider application, the possibility of solution by
means of conics came itself to be regarded as the criterion deter-
mining the class of problem, and the name ‘solid problem’ came
to be used in the sense given to it by Pappus through a natural
misapprehension. A similar supposition would account, in Zeuthen’s
view, for a circumstance which would otherwise seem strange, viz.
that Apollonius does not use the expression ‘solid problem,” though
it might have been looked for in the preface to the fourth Book
of the Conics. The term may have been avoided by Apollonius
because it then had the more restricted meaning attributed to it by
Zeuthen and therefore would not have been applicable to all the
problems which Apollonius had in view.

It must be admitted that Zeuthen’s hypothesis is in several
respects attractive. I cannot however feel satisfied that the
positive evidence in favour of it is sufficiently strong to outweigh
the authority of Pappus where his statements tell the other way.
To make the position clear, we have to remember that Menaechmus,
the discoverer of the conic sections, was a pupil of Eudoxus who
flourished about 365 B.c.; probably therefore we may place the
discovery of conics at about 350 B.c. Now Aristaeus ‘the elder’
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wrote a book on solid loci (orepeol Tdmor) the date of which Cantor
concludes to have been about 320 B.c. Thus, on Zeuthen’s hypo-
thesis, the ¢solid problems’ the solution of which by means of conics
caused the latter to be called ‘solid loci’ must have been such as
had been already investigated and recognised as solid problems
before 320 B.c., while the definite appropriation, so to speak, of the
newly discovered curves to the service of the class of problems must
have come about in the short period between their discovery and
the date of Aristaeus’ work. It is therefore important to consider
what particular problems leading to cubic equations appear to have
been the subject of speculation before 320 B.c. 'We have certainly
no ground for assuming that the cubic equation used by Archimedes
(On the Sphere and Cylinder 11. 4) was one of these problems; for
the problem of cutting a sphere into segments bearing a given ratio
to one another could not have been investigated by geometers who
had not succeeded in finding the volume of a sphere and a segment
of a sphere, and we know that Archimedes was the first to discover
this. On the other hand there was the duplication of the cube, or
the solution of a pure cubic equation, which was a problem dating
from very early times. Also it is certain that the trisection of an
angle had long exercised the minds of the Greek geometers. Pappus
says that “the ancient geometers” considered this problem and first
tried to solve it, though it was by nature a solid problem (mpoSAnpa
™) Pploe orepedy Ymdpxov), by means of plane considerations (8w v
émrédwv) but failed; and we know that Hippias of Elis invented,
about 420 B.c., a transcendental curve which was capable of being
used for two purposes, the trisection of an angle, and the quadrature
of a circle*. This curve came to be called the Quadratrixt, but, as
Deinostratus, a brother of Menaechmus, was apparently the first to
apply the curve to the quadrature of the circle}, we may no doubt
conclude that it was originally intended for the purpose of trisecting

* Proclus (ed. Friedlein), p. 272.

+ The character of the curve may be described as follows. Suppose there
are two rectangular axes Oy, Ox and that a straight line OP of a certain length
(a) revolves uniformly from a position along Oy to a position along Oz, while a
straight line remaining always parallel to Oz and passing through P in its
original position also moves uniformly and reaches Ox in the same time as the
moving radius OP. The point of intersection of this line and OP describes the
Quadratrix, which may therefore be represented by the equation

yla=206/[m.
1 Pappus 1v. pp. 250—2,
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an angle. Seeing therefore that the Greek geometers had used their
best efforts to solve this problem before the invention of conics, it
may easily be that they had succeeded in reducing it to the geo-
metrical equivalent of a cubic equation. They would not have been
unequal to effecting this reduction by means of the figure of the
velous given above on p. cxii. with a few lines added. The proof
would of course be the equivalent of eliminating = between the two
equations

@y = ab } ................... ()
(x—a)®+ (y—b)2=4 (a®+ b?) :
where x=DF, y=FP=FEC, a=DA, b=DB.
The second equation gives
(x+a) (x—3a) = (y +b) (30— y).
From the first equation it is easily seen that
(x+a): (y+b)=a:y,
and that (x~3a)y=a(—3y);
we have therefore a?(b—3y)=y*(Bb—y) ..o, B)
[or y® — 3by* ~ 3a’y + a’ = 0],

If then the trisection of an angle had been reduced to the geo-
metrical equivalent of this cubic equation, it would be natural for
the Greeks to speak of it as a solid problem. In this respect it
would be seen to be similar in character to the simpler problem of
the duplication of the cube or the equivalent of a pure cubic
equation; and it would be natural to see whether the transformation
of volumes would enable the mixed cubic to be reduced to the form
of the pure cubic, in the same way as the transformation of areas
enabled the mixed quadratic to be reduced to the pure quadratic.
The reduction to the pure cubic would soon be seen to be impossible,
and the stereometric line of investigation would prove unfruitful
and be abandoned accordingly.

The two problems of the duplication of the cube and the
trisection of an angle, leading in one case to a pure cubic equation
and in the other to a mixed cubic, are then the only problems
leading to cubic equations which we can be certain that the Greeks
had occupied themselves with up to the time of the discovery of the
conic sections. Menaechmus, who discovered these, showed that
they could be successfully used for finding the two mean propor-
tionals and therefore for solving the pure cubic equation, and the
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next question is whether it had been proved before the date of
Aristaeus’ Solid Loci that the trisection of an angle could be
effected by means of the same conics, either in the form of the
vetous above described directly and without the reduction to a cubic
equation, or in the form of the subsidiary cubic (8). Now (1) the
solution of the cubic would be somewhat difficult in the days when
conics were still a new thing. The solution of the equation (B) as
such would involve the drawing of the conics which we should
represent by the equations
xy = @,
bx = 3a® + 3by — %,

and the construction would be decidedly more difficult than that
used by Archimedes in connexion with his cubie, which only requires
" the construction of the conics

bﬂ

2
X :Ey,

(2-2)y=ac;

hence we can hardly assume that the trisection of an angle in the
form of the subsidiary cubic equation was solved by means of conies
before 320 B.c. (2) The angle may have been trisected by means
of conics in the sense that the vefois referred to was effected by
drawing the curves (a), i.e. a rectangular hyperbola and a circle.
This could easily have been done before the date of Aristaeus; but
if the assignment of the name ‘solid loci’ to conics had in view their
applicability to the direct solution of the problem in this manner
without any reference to the cubic equation, or simply because
the problem had been before proved to be ‘solid’ by means of the
reduction to that cubic, then there does not appear to be any
reason why the Quadratrix, which had been used for the same
purpose, should not at the time have been also regarded as a ‘solid
locus,” in which case Aristaeus could hardly have appropriated the
latter term, in his work, to conics alone. (3) The only remaining
alternative consistent with Zeuthen’s view of the origin of the
name ‘solid locus’ appears to be to suppose that conics were so
called simply because they gave a means of solving one ‘solid
problem,” viz. the doubling of the cube, and not a problem of the
more general character corresponding to a mixed cubic equation, in
which case the justification for the general name ¢solid locus’ could
only be admitted on the assumption that it was adopted at a time
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when the Greeks were still hoping to be able tp reduce the general
cubic equation to the pure form. I think however that the
traditional explanation of the term is more natural than this
would be. Conics were the first curves of general interest for
the description of which recourse to solid figures was necessary as
distinct from the ordinary construction of plane figures in a plane*;
hence the use of the term ‘solid locus’ for conics on the mere ground
of their solid origin would be a natural way of describing the new
class of curves in the first instance, and the term would be likely
to remain in use, even when the solid origin was no longer thought
of, just as the individual conics continued to be called * sections of
a right-angled, obtuse-angled, and acute-angled” cone respectively.
‘While therefore, as I have said, the two problems mentioned
might naturally have been called ¢solid problems’ before the dis-
covery of ‘solid loci,” I do not think there is sufficient evidence
to show that ‘solid problem’ was then or later a technical term
for a problem capable of reduction to a cubic equation in the sense
of implying that the geometrical equivalent of the general cubic
equation was investigated for its own sake, independently of its
applications, and that it ever occupied such a recognised position
in Greek geometry that a problem would be considered solved so
soon as it was reduced to a cubic equation. If this had been so,
and if the technical term for such a cubic was ‘solid problem,” I
find it hard to see how Archimedes could have failed to imply some-
thing of the kind when arriving at his cubic equation. Instead of
this, his words rather suggest that he had attacked it as res integra.
Again, if the general cubic had been regarded over any length of
time as a problem of independent interest which was solved by
means of the intersections of conics, the fact could hardly have been
unknown to Nicoteles who is mentioned in the preface to Book 1v.
of the Conics of Apollonius as having had a controversy with Conon
respecting the investigations in which the latter discussed the maxi-
mum number of points of intersection between two conics. Now
Nicoteles is stated by Apollonius to have maintained that no use.

* It is true that Archytas’ solution of the problem of the two mean propor-
tionals used a curve of double curvature drawn on a cylinder ; but this was not
such a curve as was likely to be investigated for itself or even to be regarded as
a locus, strictly speaking; hence the solid origin of this isolated curve would
not be likely to suggest objections to the appropriation of the term ‘solid locus’

" to conics.
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could be made of the discoveries of Conon for Swopiopol ; but it seems
incredible that Nicoteles could have made such a statement, even for
controversial purposes, if cubic equations then formed a recognised
class of problems for the discussion of which the intersections of
conics were necessarily all-important.

I think therefore that the positive evidence available will not
justify us in accepting the conclusions of Zeuthen except to the
following extent.

1. Pappus’ explanation of the meaning of the term ‘plane
problem’ (ériwedov mpdfBAyua) as used by the ancients can hardly
be right. Pappus says, namely, that ‘“problems which can be
solved by means of the straight line and circle may properly be
called plane (Aéyorr” dv eixdrws émimeda); for the lines by means of
which such problems are solved have their origin in a plane.” The
words “may properly be called” suggest that, so far as plane
problems were concerned, Pappus was not giving the ancient
definition of them, but his own inference as to why they were
called ‘plane.’ The true significance of the term is no doubt, as
Zeuthen says, not that straight lines and circles have their origin
in a plane (which would be equally true of some other curves), but
that the problems in question admitted of solution by the ordinary
plane methods of transformation of areas, manipulation of simple
equations between areas, and in particular the application of areas.
In other words, plane problems were those which, if expressed
algebraically, depend on equations of a degree not higher than the
second.

2. When further problems were attacked which proved to be
beyond the scope of the plane methods referred to, it would be
found that some of such problems, in particular the duplication
of the cube and the trisection of an angle, were reducible to simple
equations between volumes instead of equations between areas; and
it is quite possible that, following the analogy of the distinction
existing in nature between plane figures and solid figures (an analogy
which was also followed in the distinction between numbers as ‘plane’
and ‘solid’ expressly drawn by Euclid), the Greeks applied the term
‘solid problem’ to such a problem as they could reduce to an
equation between volumes, as distinct from a ‘plane problem’
reducible to a simple equation between areas.

3. The first ‘solid problem’ in this sense which they succeeded



CUBIC EQUATIONS. exli

in solving was the multiplication of the cube, corresponding to the
solution of a pure cubic equation in algebra, and it was found that
this could be effected by means of curves obtained by making plane
sections of a solid figure, namely the cone. Thus curves having a
solid origin were found to solve one particular solid problem, which
could not but seem an appropriate result; and hence the conic, as
being the simplest curve so connected with a solid problem, was
considered to be properly termed a ¢solid locus,” whether because of
its application or (more probably) because of its origin.

4. Further investigation showed that the general cubic equation
could not be reduced, by means of stereometric methods, to the
simpler form, the pure cubic; and it was found necessary to try
the method of conics directly either (1) upon the derivative cubic
equation or (2) upon the original problem which led to it. In
practice, as e.g. in the case of the trisection of an angle, it was
found that the cubic was often more difficult to solve in that
manner than the original problem was. Hence the reduction of
it to a cubic was dropped as an unnecessary complication, and
the geometrical equivalent of a cubic equation stated as an in-
dependent problem never obtained a permanent footing as the
‘solid problem’ par excellence.

5. It followed that solution by conics came to be regarded as
the criterion for distinguishing a certain class of problem, and, as
conics had retained their old name of ‘solid loci,’ the corresponding
term ‘solid problem’ came to be used in the wider sense in which
Pappus interprets it, according to which it includes a problem
depending on a biquadratic as well as a problem reducible to a
cubic equation.

6. The terms ‘linear problem’ and ‘linear locus’ were then
invented on the analogy of the other terms to describe respectively
a problem which could not be solved by means of straight lines,
circles, or conics, and a curve which could be used for solving such
a problem, as explained by Pappus.
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CHAPTER VIL
ANTICIPATIONS BY ARCHIMEDES OF THE INTEGRAL CALCULUS.

It has been often remarked that, though the method of exhaustion
exemplified in BEuclid x11. 2 really brought the Greek geometers face
to face with the infinitely great and the infinitely small, they
never allowed themselves to use such conceptions. It is true that
Antiphon, a sophist who is said to have often had disputes with
Socrates, had stated* that, if one inscribed any regular polygon,
say a square, in a circle, then inscribed an octagon by constructing
isosceles triangles in the four segments, then inscribed isosceles
triangles in the remaining eight segments, and so on, “until the
whole area of the circle was by this means exhausted, a polygon
would thus be inscribed whose_sides, in consequence of their small-
ness, would coincide with the circumference of the circle.” But as
against this Simplicius remarks, and quotes Eudemus to the same
effect, that the inscribed polygon will never coincide with the
circumference of the circle, even though it be possible to carry
the division of the area to infinity, and to suppose that it would
is to set aside a geometrical principle which lays down that magni-
tudes are divisible ad infinitumt. The time had, in fact, not come
for the acceptance of Antiphon’s idea, and, perhaps as the result of
the dialectic disputes to which the notion of the infinite gave rise,
the Greek geometers shrank from the use of such expressions as
infinitely great and infinitely small and substituted the idea of things
greater or less than any assigned magnitude. Thus, as Hankel says f,
they never said that a circle 4s a polygon with an infinite number of

* Bretschneider, p. 101.

t Bretschneider, p. 102.

1 Hankel, Zur Geschichte der Mathematik im Alterthum und Mittelalter,
p- 123.
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infinitely small sides ; they always stood still before the abyss of the
infinite and never ventured to overstep the bounds of clear con-
ceptions. They never spoke of an infinitely close approximation or
a limiting value of the sum of a series extending to an infinite
number of terms. Yet they must have arrived practically at such
p conception, e.g., in the case of the proposition that circles are to
one another as the squares on their diameters, they must have been
in the first instance led to infer the truth of the proposition by the
idea that the circle could be regarded as the limit of an inscribed
regular polygon with an indefinitely increased number of corre-
spondingly small sides. They did not, however, rest satisfied with
such an inference ; they strove after an irrefragable proof, and this,
from the nature of the case, could only be an indirect one. Ac-
cordingly we always find, in proofs by the method of exhgustion,
a demonstration that an impossibility is involved by any other
assumption than that which the proposition maintains. Moreover
this stringent verification, by means of a double reductio ad ab-
surdum, is repeated in every individual instance of the use of the
method of exhaustion ; there is no attempt to establish, in lieu of
this part of the proof, any general propositions which could be
simply quoted in any particular case.

The above general characteristics of the Greek method of
exhaustion are equally present in the extensions of the method
found in Archimedes. To illustrate this, it will be convenient,
before passing to the cases where he performs genuine tntegrations,
to mention his geometrical proof of the property that the area of a
parabolic segment is four-thirds of the triangle with the same base
and vertex. Here Archimedes exhausts the parabola by continually
drawing, in each segment left over, a triangle with the same base
and vertex as the segment. If A be the area of the triangle so
inscribed in the original segment, the process gives a series of areas

4, 14, )4, ..
and the area of the segment is really the sum of the infinite series
AP +2+@+ 3P+ )
But Archimedes does not express it in this way. He first proves

that, if 4,, 4,,...4, be any number of terms of such a series, so that
A,=44,, A,=44, ..., then

A +d,+ A5+ ...+ A4, + 34, =344,
or A+ 3+ @+ o+ @D =54



cxliv INTRODUCTION,

Having obtained this result, we should nowadays suppose n to
increase indefinitely and should infer at once that (1)*~! becomes
indefinitely small, and that the limit of the sum on the left-hand side
is the area of the parabolic segment, which must therefore be equal
to $4. Archimedes does not avow that he inferred the result in
this way; he merely states that the area of the segment is equal
to £4, and then verifies it in the orthodox manner by proving that
it cannot be either greater or less than £4.

I pass now to the extensions by Archimedes of the method
of exhaustion which are the immediate subject of this chapter. It
will be noticed, as an essential feature of all of them, that
Archimedes takes both an inscribed figure and a circumscribed
figure in relation to the curve or surface of which he is investigating
the area or the solid content, and then, as it were, compresses the
two figures into one so that they coincide with one another and
with the curvilinear figure to be measured; but again it must
be understood that he does not describe his method in this way or
say at any time that the given curve or surface is the limiting form
of the circumscribed or inscribed figure. I will take the cases
in the order in which they come in the text of this book.

1. Surface of a sphere or spherical segment.

The first step is to prove (On the Sphere and Cylinder 1. 21, 22)
that, if in a circle or a segment of a circle there be inscribed
polygons, whose sides 48, BC, CD, ... are all equal, as shown
in the respective figures, then

(z) for the circle
(BB'+CC'+...): AAd'=A'B : BA,
(0) for the segment
(BB'+CC'+...+KK'+ LM) : AM=A'B : BA.

Next it is proved that, if the polygons revolve about the
diameter AA4’, the surface described by the equal sides of the
polygon in a complete revolution is [1. 24, 35]

(@) equal to a circle with radius JAB (BB +CC"+ ...+ YY)

or (b) equal to a circle with radius /4B (BB"+CC’ + ... + LM).

Therefore, by means of the above proportions, the surfaces
described by the equal sides are seen to be equal to
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(@) a circle with radius JA4 . A'B,

and (b) a circle with radius /A . 4'B;

they are therefore respectively [1. 25, 37] less than
(@) a circle with radius 44’
(b) a circle with radius 4 L.

Archimedes now proceeds to take polygons circumscribed to the
circle or segment of a circle (supposed in this case to be less than a
semicircle) so that their sides are parallel to those of the inscribed
polygons before mentioned (cf. the figures on pp. 38, 51); and he
proves by like steps [1. 30, 40] that, if the polygons revolve about the
diameter as before, the surfaces described by the equal sides during
a complete revolution are greater than the same circles respectively.

Lastly, having proved these results for the inscribed and
circumseribed figures respectively, Archimedes concludes and proves
[1. 33, 42, 43] that the surface of the sphere or the segment of the
sphere is equal to the first or the second of the circles respectively.

In order to see the effect of the successive steps, let us express
the several results by means of trigonometry. If, in the figures on
pp. 33, 47 respectively, we suppose 4n to be the number of sides in
the polygon inscribed in the circle and 2n the number of the equal
sides in the polygon inscribed in the segment, while in the latter
case the angle 40L is denoted by a, the proportions given above
are respectively equivalent to the formulae*

. . 2 . T T
sin — +sin — + ... +sin(2n—1) —— =cot —
2n oIn ( )Qn 4in’
. a . 2a . a .
2 4sin—+sin —+ ... +sin(n—1) -t + sina
n n n
and =cot—.
1 —cosa In

Thus the two proportions give in fact a summation of the series
sin @+sin 20+ ... +sin (n—1) 6

both generally where nf is equal to any angle a less than =, and in
the particular case where n is even and 6 ==/n.

Again, the areas of the circles which are equal to the surfaces
described by the revolution of the equal sides of the inscribed

* These formulae are taken, with a slight modification, from Loria, Il periodo
aureo della geometria greca, p. 108.

H. A. k
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polygons are respectively (if « be the radius of the great circle
of the sphere)
I

.om (. ™ . 27 . T
47a’ sin - {sm 5= +8ins—+... +sin (2n—1) -2—7;}, or 4ma’®cos n’

4in 2n 2n
and

9
. a . a . Lo . a .
ra’.Zsln—[2 sin—+sin — + ... +sin(n—1) =t +sina |,
2n n n n

a
or ma®. 2 cos o (1 -cosa).

The areas of the circles which are equal to the surfaces described
by the equal sides of the circumscribed polygons are obtained from
the areas of the circles just given by dividing them by cos® =/4n and
cos® a/2n respectively.

Thus the results obtained by Archimedes are the same as would
be obtained by taking the limiting value of the above trigonometri-
cal expressions when n is indefinitely increased, and when therefore
cos w/4n and cos a/2n are both unity.

But the first expressions for the areas of the circles are (when n
is indefinitely increased) exactly what we represent by the
integrals

4ma’. } f " sing dl, or 4mwa’®,
0
and wa® . f “9sing db, or 2wa’(1l— cos a).
0

Thus Archimedes’ procedure is the equivalent of a genuine
integration in each case.

2. Volume of a sphere or a sector of a sphere.

The method does not need to be separately set out in detail here,
because it depends directly on the preceding case. The investiga-
tion proceeds concurrently with that of the surface of a sphere or a
segment of a sphere. The same inscribed and circumscribed figures
are used, the sector of a sphere being of course compared with the
solid figure made up of the figure inscribed or circumscribed to the
segment and of the cone which has the same base as that figure and
has its vertex at the centre of the sphere. It is then proved,
(1) for the figure inscribed or circumscribed to the sphere, that its
volume is equal to that of a cone with base equal to the surface of
the figure and height equal to the perpendicular from the centre of
the sphere on any one of the equal sides of the revolving polygon,
(2) for the figure inscribed or circumscribed to the sector, that the
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volume is equal to that of a cone with base equal to the surface of
the portion of the figure which is inscribed or circumscribed to the
segment of the sphere included in the sector and whose height is the
perpendicular from the centre on one of the equal sides of the
polygon.

Thus, when the inscribed and circumscribed figures are, so
to speak, compressed into one, the taking of the limit is practically
the same thing in this case as in the case of the surfaces, the
resulting volumes being simply the before-mentioned surfaces
multiplied in each case by ia.

3. Area of an ellipse.

This case again is not strictly in point here, because it does
not exhibit any of the peculiarities of Archimedes’ extensions of
the method of exhaustion. That method is, in fact, applied in
the same manner, mutatis mutandis, as in Eucl. x11. 2. There
is no simultaneous use of inscribed and circumscribed figures, but
only the simple exhaustion of the ellipse and auxiliary circle by
increasing to any desired extent the number of sides in polygons
inscribed to each (On Conoids and Spheroids, Prop. 4).

4. Volume of a segment of a paraboloid of revolution.
Archimedes first states, as a Lemma, a result proved incidentally
in a proposition of another treatise (On Spirals, Prop. 11), viz. that,
if there be » terms of an arithmetical progression %, 24, 3%, ..., then
h+2h+ 3h+ ... +nh>§n*h
and h+2h+3h+...+(n—1)h<%n2h}

Next he inscribes and circumscribes to the segment of the
paraboloid figures made up of small cylinders (as shown in the figure
of On Conoids and Spheroids, Props. 21, 22) whose axes lie along
the axis of the segment and divide it into any number of equal
parts. If ¢ is the length of the axis 4D of the segment, and if
there are n cylinders in the circumscribed figure and their axes are
each of length %, so that ¢=mnh, Archimedes proves that

cylinder C'% n*h

@) insoribed fig. ~ A+ Oh+ Sh+ .+ (n=1)h
> 2, by the Lemma,
. cylinder CE n*h
and (2) circumscribed fig. ~ A+ 2h+3h+ ... + 1k
<2,

k2
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Meantime it has been proved [Props. 19, 20] that, by increasing
n sufficiently, the inscribed and circumscribed figure can be made
to differ by less than any assignable volume. It is accordingly
concluded and proved by the usual rigorous method that

(cylinder CE) = 2 (segment),
so that (segment ABC) =3 (cone 4BC).

The proof is therefore equivalent to the assertion, that if 4 is
indefinitely diminished and » indefinitely increased, while nA remains

equal to ¢,
limit of A {h + 2k + 3k + ... + (n—1) A} = c*;

that is, in our notation,

c
xde = c
sz{;c

Thus the method is essentially the same as ours when we
express the volume of the segment of the paraboloid in the form

c
K / yidx,
0

where « is a constant, which does not appear in Archimedes’ result
for the reason that he does not give the actual content of the
segment of the paraboloid but only the ratio which it bears to the
circumscribed cylinder.

5. Volume of a segment of a hyperboloid of revolution.

The first step in this case is to prove [On Conoids and Spheroids,
Prop. 2] that, if there be a series of » terms,

ah+ R, a.2h+ (2hP, a.3h+ (3h), ... a.nh+ (nh)?,
and if (ah + /%) +{a.2h + (20)%} + ... + {a. nh + (nh)} = S,,

then  nfe.mhs (oiYS, < (a i) [ (5 + ) @
and nla. nh + (nhY})S,_y > (a + nk) / (g + ”—5‘)

Next [Props. 25, 26] Archimedes draws inscribed and circum-
scribed figures made up of cylinders as before (figure on p. 137), and
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proves that, if 4D is divided into » equal parts of length %, so that
nh=A4D, and if A4’ =aqa, then

cylinder ZB’  n{a.nh+ (nh)?}
inseribed tigure — S,

> (a+nh)/(2 + ?%h>

cylinder £B°  n{a.nh+ (nh)?%
circumscribed fig. — S

o nh
<(a,+nk)/<§ + ?) .

The conclusion, arrived at in the same manner as before, is that

cylmder EB’ P nh
segment yment A BB’ =(a+n b)

and

This is the same as saying that, if nk = b, and if % be indefinitely
diminished while = is indefinitely increased,

limit of n (ab + b%)/S =(a+b)/<§ . g>

or limit of S =52 <a b)

Now S,=a(h+2h+...+nh)+{+(2h) +... +(nh)3,
so that  AS,=ah (b +2h+ ... +nh) + b B+ (2h)2 + ... + (nh)2).

The limit of the last expression is what we should write as
b
f (a2 + o?) d,
which is equal to (2 )

and Archimedes has given the equivalent of this integration.

6. Volume of a segment of a spheroid.

Archimedes does not here give the equivalent of the integration

Lb (az - a2),

presumably because, with his method, it would have required yet
another lemma corresponding to that in which the results (8) above
are established.



cl INTRODUCTION.

Suppose that, in the case of a segment less than half the spheroid
(figure on p. 142), 44'=a, (D =}c, AD =b; and let 4D be divided
into n equal parts of length .

The gnomons mentioned in Props. 29, 30 are then the differences
between the rectangle cb + 5% and the successive rectangles

ch+h% c.2h+(2h) ... c.(n=1)h+{(n—-1)A},
and in this case we have the conclusions that (if S, be the sum of
n terms of the series representing the latter rectangles)
cylinder £B°  n(chb+?°)
inscribed figure ~ 7 (cb + b°) — S,

-0 (5+%),

_ cylinder EB'  n(ch+1?)
circumscribed fig. ~ % (cb + b°) — S,

<(c+b)/(%+?313),

. .. cylinder EB’V _ c 26)
and in the limit segment BB’ (c+0b) <§ +3)

and

Accordingly we have the limit taken of the expression
n (cb + b°) - S, S,
e or 1~ —
n (cb + b%) n (cb + b%)
and the integration performed is the same as that in the case of the
hyperboloid above, with ¢ substituted for a.

Archimedes discusses, as a separate case, the volume of half a
spheroid [Props. 27, 28]. It differs from that just given in that ¢
vanishes and b= }a, so that it is necessary to find the limit of

RE+ (2h) + (BR)*+ ... + (nh)®
n (nh)? >
and this is done by means of a corollary to the lemma given on
pp. 107—9 [On Spirals, Prop. 10] which proves that
B+ (2R) + ... + (nh)® > in (nh)?,
and B+ (20) + ...+ {(n—1) k}* < in (nk)®

The limit of course corresponds to the integral

b
/ a'dx = 1b°.
0
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7. Area of a spiral.

(1) Archimedes finds the area bounded by the first complete
turn of a spiral and the initial line by means of the proposition just
quoted, viz.

R+ (2h)2 + ... + (nh)® > En (nh),
R+ (2R) + ... +{(n—1) A2 < In (nh)

He proves [Props. 21, 22, 23] that a figure consisting of similar
sectors of circles can be circumscribed about any arc of a spiral such
that the area of the circumscribed figure exceeds that of the spiral
by less than any assigned area, and also that a figure of the same
kind can be inscribed such that the area of the spiral exceeds that
of the inscribed figure by less than any assigned area. Then, lastly,
he circumscribes and inscribes figures of this kind [Prop. 24]; thus
e.g. in the circumscribed figure, if there are » similar sectors, the
radii will be n lines forming an arithmetical progression, as A, 24,
3h, ... nh, and nh will be equal to @, where a is the length inter-
cepted on the initial line by the spiral at the end of the first turn.
Since, then, similar sectors are' to one another as the square of their
radii, and n times the sector of radius nk or a is equal to the circle
with the same radius, the first of the above formulae proves that

(circumscribed fig.) > 4wa®

A similar procedure for the inscribed figure leads, by the use of the
second formula, to the result that

(inscribed fig.) < ma’.
The conclusion, arrived at in the usual manner, is that
(area of spiral) = 4ma®;

and the proof is equivalent to taking the limit of
(84 (2R + .+ {(n = 1) AP

wh

or of [70 +(2h) + ... +{(n~1) A}7],

which last limit we should express as

2/ «* do = ywa’
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[It is clear that this method of proof equally gives the area
bounded by the spiral and any radius vector of length & not being
greater than a; for we have only to substitute wb/a for =, and to
remember that in this case nh=5. We thus obtain for the area

T b o
— | 2°dx, or iwb*la.)
aJo

(2) To find the area bounded by an arc on any turn of the
spiral (not being greater than a complete turn) and the radii
vectores to its extremities, of lengths b and ¢ say, where ¢>9,
Archimedes uses the proposition that, if there be an arithmetic
progression consisting of the terms

b, b+hy b+2h, ... b+(n-1)h,
and if Sp=0+0+h)>2+(0+2h)+...+{b+(n-1)4p,

then | (n=Dibr(=DAE _ b+ (n—1) A
S, — 8 b+ (a=1)hb+} {(n-T)A>’
nd (n=1){o+(n=1)h}" _ B+@m-1n
St B+ (=1 Aj o+ 3 (= 1y

[On Spirals, Prop. 11 and note.]

Then in Prop. 26 he circumscribes and inscribes figures consisting
of similar sectors of circles, as before. There are n—1 sectors in
each figure and therefore n radii altogether, including both b and ¢,
so that we can take them to be the terms of the arithmetic progres-
sion given above, where {6+ (n—1)A}=c. It is thus proved, by
means of the above inequalities, that

sector 0B'C - {b+(n-1)Ap sector OB'C’
circumscribed fig. ~ {6+ (n—1)A}b+4{(n—1)A} ~ “inser. fig. ’

and it is concluded after the usual manner that

sector OB'C {6+ (n—1)A}

spiral OBC ~ {b+(n—1)h{b+1{(n—1)A}?

2

B ¢
T b+ 4 (c—0)*

Remembering that n—1=(c—b)/h, we see that the result is the
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same thing as proving that, in the limit, when n becomes indefinitely
great and 4 indefinitely small, while b + (n — 1) A=c¢,

limit of A [5%+ (b + ) + ... + {b + (n — 2) A)]
=(c—b){cb+}(c—0)7

=}(-8);
that is, with our notation,

/C arde =% (¢ - ).
b

(3) Archimedes works out separately [Prop. 25], by exactly
the same method, the particular case where the area is that described
in any one complete turn of the spiral beginning from the initial
line. This is equivalent to substituting (n—1)« for b and na for ¢,
where a is the radius vector to the end of the first complete turn of
the spiral.

It will be observed that Archimedes does not use the result

corresponding to
[ c b
f aczdw—/ wgdx:/ x* da.
0 b 0

8. Area of a parabolic segment.

Of the two solutions which Archimedes gives of the problem of
squaring a parabolic segment, it is the mechanical solution which
gives the equivalent of a genuine integration. In Props. 14, 15 of
the Quadrature of the Parabola it is proved that, of two figures
inscribed and circumscribed to the segment and consisting in each
case of trapezia whose parallel sides are diameters of the parabola,
the inscribed figure is less, and the circumscribed figure greater,
than one-third of a certain triangle (£¢@ in the figure on p. 242).
Then in Prop. 16 we have the usual process which is equivalent to
taking the limit when the trapezia become infinite in number and
their breadth infinitely small, and it is proved that

(area of segment) =% A Eq@Q.

The result is the equivalent of using the equation of the parabola
referred to Qg as axis of z and the diameter through @ as axis of
¥y, viz.

py = (2a — x),
which can, as shown on p. 236, be obtained from Prop. 4, and finding

20
yda,
0
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where y has the value in terms of « given by the equation ; and of

course

1 (2 4a3

- 2a - ') de = -.

pﬁ ( ) 3p

The equivalence of the method to an integration can also be

seen thus. It is proved in Prop. 16 (see figure on p. 244) that, if
gE be divided into » equal parts and the construction of the
proposition be made, Qg is divided at O,, O,, ... into the same
number of equal parts. The area of the circumscribed figure is then
easily seen to be the sum of the areas of the triangles

QqF, QR.F,, QR,F, ..
that is, of the areas of the triangles
QQF’ QO]RU QOQDI, eee

Suppose now that the area of the triangle @¢F is denoted by A, and
it follows that

1\ __9\2
(circumscribed fig.) = A {1 + (3—2721! P Gt SN l}

nt n?

= o A AT+ 22A% + L+ A%

AR {AZ + 22A% + ...+ n°A%
Similarly we obtain

(inscribed fig.) =

oyl A{A%+ 2°A% + ...+ (n—1)2A%

Taking the limit we have, if 4 denote the area of the triangle £¢@),
so that 4 =nA,
1 r4
(area of segment) = Ve / A%A
0

=34.

If the conclusion be regarded in this manner, the integration is
the same as that which corresponds to Archimedes’ squaring of the
spiral.



CHAPTER VIIIL
THE TERMINOLOGY OF ARCHIMEDES.

So far as the language of Archimedes is that of Greek geometry
in general, it must necessarily have much in common with that of
Euclid and Apollonius, and it is therefore inevitable that the
present chapter should repeat many of the explanations of terms of
general application which I have already given in the corresponding
chapter of my edition of Apollonius’ Conics*. But I think it will
be best to make this chapter so far as possible complete and self-
contained, even at the cost of some slight repetition, which will
however be relieved (1) by the fact that all the particular phrases
quoted by way of illustration will be taken from the text of
Archimedes instead of Apollonius, and (2) by the addition of a large
amount of entirely different matter corresponding to the great
variety of subjects dealt with by Archimedes as compared with the
limitation of the work of Apollonius to the one subject of conics.

One element of difficulty in the present case arises out of the
circumstance that, whereas Archimedes wrote in the Doric dialect,
the original language has been in some books completely, and in others
partially, transformed into the ordinary dialect of Greek. Uni-
formity of dialect cannot therefore be preserved in the quotations
about to be made; but I have thought it best, when explaining
single words, to use the ordinary form, and, when illustrating their
use by quoting phrases or sentences, to give the latter as they appear
in Heiberg’s text, whether in Doric or Attic in the particular case.
Lest the casual reader should imagine the paroxytone words evfelas,
Swapérpol, mweoelral, wesolvrar, docelral, Swvdvray, dmrérai, kalelofai,
kelcBa: and the like to be misprints, I add that the quotations in
Doric from Heiberg’s text have the unfamiliar Doric accents.

I shall again follow the plan of grouping the various technical

* dApollonius of Perga, pp. clvii—clxx.
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terms under certain general headings, which will enable the Greek
term corresponding to each expression in the ordinary mathematical
phraseology of the present day to be readily traced wherever such
a Greek equivalent exists.

Points and lines.

A point is onueioy, the point B 76 B onuelov or 76 B simply; a
point on (a line or curve) oyuetov émi (with gen.) or év; a point
rawsed above (a plane) omuelov peréwpov; any two points whatever
being taken 8o oquelwv AapBavopévev omowwvovv.

At a point (e.g. of an angle) wpds (with dat.), having s vertex ot
the centre of the sphere kopupmy éxwv mpds 16 kévpw s opaipas; of
lines meeting in a point, touching or dividing a¢ a point, ete., xard
(with acc.), thus AE s bisected at Z is & AE dixa Teuvérar xara 70 Z;
of a point falling on or being placed on another éx{ or kard (with
acc.), thus Z will fall on T, 70 peév Z éri 76 I' weoelrar, so that E les
on A, date 70 pév E kara 70 A kelofau.

Particular points are extremity mépas, vertex ropvgyf, centre
kévrpov, point of division dwaipeats, point of meeting ovumTwots, point
of section Towyj, point of bisection Sixorouln, the middle point 7o
péoov ; the points of division H, I, K, 1d 1dv Swupecivv caueia Ta H,
I, K; let B be its middle point péoov 3¢ avrds éorw 70 B; the point of
section in which (a circle) cuts o Toud, kaf’ dv Téuve.

A line is ypapuy, a curved line kapmwily ypoput, a straight line
e@fela with or without ypapwj. The straight line ®IKA, d ®IKA
eifeia ; but sometimes the older expression is used, the straight line
on which (ér{ with gen. or dat. of the pronoun) are placed certain
letters, thus let it be the straight line M, oo ép’ & 76 M, other
straight lines K, A, d\\av ypappal, ép’ av 7ma K, A. The straight
lines between the points ai perald Tdv onuelwv edbeiar, of the lines
which have the same extremities the straight line is the least vdv Ta
ovra mépata éxovodv ypauudv éNaxioTyy evar v edbeiav, straight lines
cutting one another ebelar Tepvoioar aAldAas.

For points in relation to lines we have such expressions as the
following : the points T, ®, M are on a straight line ér eibelas éori
ra I, ®, M capela, the point of bisection of the straight line containing
the centres of the middle magnitudes d Siyoropla tds evfelas Tas
éxovoas To kévtpa TGV péowy peyebéwv. A very characteristic phrase
for at a point which divides the straight line in such a proportion
that... is éml 1ds edfelas Swapebeigas dore...; similarly érl ras XE
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ruafeloas ovrws, dore. A certain point will be on the straight line...
dividing it so that... éooelrar émi 7ds edfelos...Biaipéoy ovTws Tav
elppuévay edfetav, doTe....

The middle point of a line is often elegantly denoted by an
adjective in agreement ; thus at the middle point of the segment émi
péaov Tod Tudparos, (a line) drawn from T to the middle point of
EB, 47 1o I éml péoav rav EB dxfeioa, drawn to the middle point of
the base émi péoav rav Bdow dyopéva.

A straight line produced is the (straight line) in the same straight
line with it 5 én' ebfelas adry. In the same straight line with the
axis éwl 7as adras elbelos 7¢ dovi. Of a straight line falling on
another line xard (with gen.) is used, e.g. wiwrrovor kar’ admis; émi
(with acc.) is also used of a straight line placed on another, thus #f
EH be placed on BA, releicas tds EH émt vav BA.

For lines passing through points we find the following ex-
pressions : will pass through N, née 8ua Tod N ; will pass through the
centre du Tod kévrpov wopedaerar, will fall through ® weselrar 816 T0d
0, verging towards B vedovaa émt T0 B, pass through the same point
éml 10 adTd capeiov épxdvrac; the diagonals of the parallelogram fall
(t.e. meet) at ©, kard 8¢ 10 @ ai Swauérpor Tob mapaAAnloypdpupov
wiwrovre; BZ (passes) through the points bisecting AB, T'A, éml 8¢ rav
dixoropiav Tav AB, TA & EZ. The verb eiui is also used of passing
through, thus ésoelrar & adra S Tod @.

For lines in relation to other lines we have perpendicular to
kdferos éwl (with acc.), parallel to wapdAAylos with dat. or mapd
(with acc.); let KA be (drawn) from K parallel to TA, énd 70d K
mapa Tav PA éoro o KA.

Lines meeting one another cuumrizrovoar dANjAais; the point in
which ZH, MN produced meet one another and AT, 16 oqueiov, kaf’ &
ocvpBdallovory éxBarAdpevar ai ZH, MN dANjAais e kal 7] AT'; so as
to meet the tangent oore éumeoely Td émwupavoioq, let straight lines be
drawn parallel to AT to meet the section of the cone dxfwv edlela
waps Tav AT éore morl Tav ToV kWvou Topdy, t0 draw o straight line to
meet its circumference woti Tov wepipépelay adrov woriBalely edfeiav,
the line drawn to meet & mworurecodoa, let AE, AA be drawn from the
point A to meet the spiral and produced to meet the circumference of
the circle worumurrévrov dmd 700 A capelov worl Tav E\ika ai AE, AA
Kal EKTUTTOVTOY TOTL TOV TOU KUkAOU Tepidépetar ; until it meets ®A in
0, éore ka ovuméon 7¢ ®A kata 76 O (of a circle).
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(The straight line) will fall outside (i.e. will extend beyond) P,
éxtos Tob P weoetrar; will fall within the section of the figure &vrds
TeTovvTaL Tas TOD TYPRATOS TOUES.

The ( perpendicular) distance between (two parallel lines) AZ, BH,
76 udomypa tdv AZ, BH. Other ways of expressing distances are the
following : the magnitudes equidistant from the middle one 7d. ioov
dméxovra dmd Tob péoov peyéfea, are at equal distances from ome
another lga dm’ dAAdAwv Siéorakev; the segments (lengths) on AH
equal to N, ra & 74 AH 7pdpara loopeyéfea 74 N ; greater by one
segment évi Tpdpare pellwv.

The word edfeia itself is also often used in the sense of distance ;
of. the terms mpdry ebfeia ete. in the book On Spirals, also & edfeta
6 perafy 1o Kkéyrpov Tob dAov kal Tod wévtpov Tas vyas the distamce
between the centre of the sun and the centre of the earth.

The word for join is émlevyviw or émievyvvue; the straight line
Joining the points of contact & tas dgas émlevyviovaa edbeta, BA when
Joined & BA émlevxbeica ; let EZ join the points of bisection of AA,
BT, & 8¢ EZ émlevyvvéro tis Suxotopins Tav AA, BI. In one case
the word seems to be used in the sense of drawing simply, € «o
edfeta émlevxly ypappd év émréde.

Angles.

An angle is ywvia, the three kinds of angles are right dp6j, acute
8¢eia, obtuse duBleia ; right-angled ete. dpboydvios, dévydvios, duBAv-
yuvios ; equiangular looydvios; with an even number of angles
dpribywvos or dprioydvios.

At right angles to 8pfos mpds (with acc.) or mpds dpbds (with dat.
following); thus ¢f @ line be erected at right angles to the plane ypappds
dvearaxovaas dpfas mwori 16 émiwedov, the planes are at right angles to
one another 8pfa wor’ dANald évri Td émimeda, being at right angles
to ABT, mpos dpbas av 1@ ABT'; KT, EA are at right angles to one
another wor” dpfds évri dAdAaws of KT, EA, to cut at right angles
Téuvew wpos dpfds. The expression making right angles with is also
used, e.g. épbas mowodaa ywvias wori Tav AB.

The complete expression for the angle contained by the lines AH,
AT i8 & yovia & wepiexopéva, Iwo Tav AH, AT ; but there are a great
variety of shorter expressions, ywvia itself being often understood ;
thus the angles A, E, A, B, ai A, E, A, B yovia; the angle at ©, é worl
7@ ®; the angle contained by AA, AZ, & yovia 6 9m6 Tav AA, AZ ; the
angle AHT, 3 976 7év AHT ywvia, 1 w6 AHT' (with or without yovia).
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Making the angle K equal to the angle ®, ywviav mwowtoa rav K
loav ¢ ®; the angle into which the sun fits and which has its vertex
at the eye yovia, els av 6 dlwos évappdle Tav rkopvddy Exovoav worl 7§
Syrec; of the sides subtending the right angle (hypotenuses) rév o
Tav Spfw ywviay vmorewovody, they subtend the same angle &vri ¥md
Tav adrav ywviay.

If a line through an angular point of a polygon divides it
exactly symmetrically, ¢the opposite angles of the polygon, ai amwevavriov
ywviae 703 Tolvywrov, are those answering to each other on each side
of the bisecting line.

Planes and plane figures.

A plane énimedov; the plane through BA, 16 émiwedov 0 rkard
™ BA, or 70 8k s BA, plane of the base énimedov rijs Bdoews, plane
(Le. base) of the cylinder émimedov 10b kvAivSpov; cutting plane émi-
wedov Téuvay, tangent plane érimedov émupaiov; the inmtersection of
planes is their common section xowy Towy.

In the same plane as the circle & 76 odrd émméde 76 kiklo.

Let o plane be erected on TIZ at right angles to the plane in which
AB, TA are dmd 7ds IIZ érimedov dveararéro dpfov wori 7o émimedov 74,
év ¢ dvreal AB, TA.

The plane surface v émimedos (émpdven), a plane segment émimedov
Tpa, o plane figure oxijua ériredov.

A rectilineal figure eb@Sypappov (oxipa), a side whevpd, perimeter
7 weplperpos, similar duotos, similarly situated Spolws reluwevos.

To coincide with (when one figure is applied to another),
épapudlew followed by the dative or éml (with acc.); one part
cotncides with the other épapudler 70 &repov pépos éml 76 Erepov; the
plane through NZ coincides with the plane through AT, 16 émimeSov 1o
katd oy NZ épapudler ¢ émmédy 76 rard, 7ov AT. The passive is
also used ; of equal and similar plane figures coincide with one another
76V lowv kai bpolwy oxudrey érirédwy épappolopévav ér’ dAlala.

Triangles.

A triangle is Tplywvov, the triangles bounded by (their three
sides) 7& wepiexdpeva Tplywva vwd Tév.... A right-angled triangle
Tplywvov Spboydviov, one of the sides about the right angle pia Tév wepl
v Spbv.  The triangle through the axis (of a cone) 70 dua 70v d€ovos
Tplywvor.
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Quadrilaterals.

A quadrilateral is a four-sided figure (rerpdmAevpov) as dis-
tinguished from a four-angled figure, terpdywvov, which means a
square. A trapezium, tpamélwov, is in one place more precisely
described as a trapezium having its two sides parallel Tpaméliov ras
8vo mhevpds &ov mapaAlddovs dAAdAats.

A parallelogram mapalgAdypopuov ; for a parallelogram on a
straight line as base én( (with gen.) is used, thus the parallelograms
on them are of equal height éoriv iootym 7o wapalAyldypappo 70 éx’
adrov. A diagonal of a parallelogram is Suduerpos, the opposite sides
of the parallelogram ai xat' évavriov Tod wapalAyloypdupov wAevpal.

Rectangles.

The word generally used for a rectangle is xwplov (space or area)
without any further description. As in the case of angles, the
rectangles contained by straight lines are generally expressed more
shortly than by the phrase 7a mwepexdueva xwpla vmd ; either ywplov
may be omitted or both xwpiov and mepiexdpevov, thus the rectangle
AT, TE may be any of the following, 70 vmo rév AT, TE, 76 vmd
AT, T'E, 76 vwd ATE, and the rectangle under ®K, AH is 76 vwo s
OK «kai s AH. Rectangles ®, I, K, A, xwpio év ols 1o (or ép’ dv
éxaotov Tov) O, I, K, A.

To apply a rectangle to a straight line (in the technical sense) is
mapafBdallew, and raparirre is generally used in place of the passive;
the participle wapaxefpevos is also used in the sense of applied to. In
each case applying fo a straight line is expressed by wapd (with acc.).
Examples are, areas which we can apply to a given straight line (i.e.
which we can transform into a rectangle of the same area) ywpla, &
Suvduefa mapd Tav Sofeicav elfeiav mapafaletv, let a rectangle be
applied to each of them wapawentwxérw wap’ éxdorav adrav xwplov;
if there be applied to each of them a rectangle exceeding by a square
Sigure, and the sides of the excesses exceed each other by an equal
amount (i.e. form an arithmetical progression) e «a map’ éxdorav
alrdv wapawéoy Tu xwplov TwepBdAlov €ldec TeTpaydvy, vt 8¢ ai
mAevpal 1@V wepBAnudrov 7@ low dANdAay Vmepexovoac.

The rectangle applied is mapafinpa.

Squares.

A square is terpdywvov, a square on a straight line is a square
{erected) from it (émd). The square on T'E, 16 drd as T'H rerpdywvov,
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is shortened into 76 dwo rds T'E, or 76 dwd T'E simply. The square
next in order to it (when there are a number of squares in a row) is
76 wap adTQ TeTpdaywyoy Or TO ExGuEvov TETpdywYOY.

With reference to squares, a most important part is played by
the word &ivauis and the various parts of the verb Svvapar. Stvapms
expresses a square (literally a power) ; thus in Diophantus it is used
throughout as the technical term for the square of the unknown
quantity in an algebraical equation, i.e. for a*. In geometrical
language it is the dative singular Suwvdmer which is mostly used;
thus a straight line is said to be potentially equal, Swdue. loa, to a
certain rectangle where the meaning is that the square on the straight
line 1s equal to the rectangle ; similarly for the square on BA is less
than double the square on. AK we have 5 BA é\doowv éoriv ) Surdaciowy
dwdpe s AK. The verb 8dvacfu (with or without {wov) has the
sense of being Swdper loa, and, when Svacfac is used alone, it is
followed by the accusative; thus the square (on a straight line) is
equal to the rectangle contained by... is (edfein) loov ddvarar ¢
Teplexopéve tmo...; let the square on the radius be equal to the
rectangle BA, AZ, v ék 7100 kévrpov dwvdoBw 76 vmo Tév BAZ, (the
difference) by which the square on ZT' is greater than the square on
half the other diameter § peilov Svvdrar & ZT' 7ds moelas tds érépas
dwapérpov.

A gnomon is yvopwy, and its breadth (wldros) is the breadth of
each end; a gnomon of breadth equal to BI, ywvdpwv mhdros éwv loov
7@ BI, (o gnomon) whose breadth is greater by one segment than the
breadth of the gnomon last taken away ob wAdros évi Tudpart ueilov
700 wAdTeos ToU mpd airol ddarpovpévov yvduovos.

. Polygons.

A polygon is woldywrov, an equilateral polygon is ioémlevpov,
a polygon of an even number of sides or amgles dpridmhevpov or
apridywvor ; a polygon with all its sides equal except BA, AA, loas
éov 1as Thevpds xwpis Tav BAA ; a polygon with its sides, excluding
the base, equal and even in number Tas whevpas Exov xwpis Tis Pdaews
loas kal dpriovs ; an equilateral polygon the number of whose sides is
measured by four wolvywvov loomhevpov, ob ai whevpal vmd TeTpddos
perpotvra, let the number of its sides be measured by four vo wAijfos
TGV whevpdv petpelobo Yo Terpddos. A chiliagon x\dywvov.

The straight lines subtending two sides of the polygon (i.e. joining
angles next but one to each other) ai ¥wo 8o wAevpis 7o moAvydvov

H. A. {
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tworetvovoar, the straight line subtending one less thon half the
number of the sides 1 vmrorelvovoa Tos wd ENdoaovas TOV fuiTewy.

Circles.

A circle is kixhos, the circle W is 6 ¥ kivkhos or & kvkdos év & 70 P,
let the given circle be that drawn below éorw 6 Sofels kixhos 6
Umokelpevos.

The centre is xévrpov, the circumference wepipépera, the former
word having doubtless been suggested by something stuck in and
the latter by something, e.g. a cord stretched tight, carried round
the centre as a fixed point and describing a circle with its other
extremity. Accordingly wepidpépeia is used for a circular arc as well
as for the whole circumference ; thus the arc BA is 3 BA mwepidpépeia,
the (part of the) circumference of the circle cut off by the same
(straight line) 4 1o kiklov wepipépeia 7 Iwo Tis avTis omoreuvopérn.
Though the circumference of a circle is also sometimes called its
perimeter (1] wepiperpos) in the treatises On the Sphere and Cylinder
and on the Measurement of a Circle, the word does not seem to have
been used by Archimedes himself in this sense ; he speaks, however,
in the Sand-reckoner of the perimeter of the earth (wepiperpos Tds yas).

The radius is 7 ék Tob kévrpov simply, and this expression
without the article is used as a predicate as if it were one word;
thus the circle whose radius is ®E is 6 kiklos ob ék Tod kévrpov d
O®FE; BE s a radius of the circle 77 8 BE é Tob kévrpov éori Tob kixMov.

A diameter is Oudperpos, the circle on AE as diameter & mepl
Sudperpov Ty AE kikAos.

For drawing a chord of a circle there is no special technical
term, but we find such phrases as the following: édv eis Tov kvkAov
edfeta. ypapuy éuméay if in a circle a straight line be placed, and the
chord is then the straight line so placed v épwecoioa, or quite
commonly 7 é& 7¢ xikhe (edfela) simply. For the chord subtending
one 656th part of the circumference of a circle we have the following
interesting phrase, d vworelvovoa & Tpdua Suapefeigas vas Tod ABT
kVKAOV Tepupepelas és xvST.

A segment of a circle is Tufjpo. kikAov ; sometimes, to distinguish
it from a segment of a sphere, it is called a plane segment
Tuipa émimwedov. A semicircle is yuuikhov; a segment less than a
semicircle cut off by AB, Tufpa é\acoov ruikvkAiov & dmoréuver
7 AB. The segments on AE, EB (as bases) are 7a éml rév
AE, EB rwjpara; but the semicircle on ZH as diameter is o

.
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pikkhiov 70 wepl Suomerpov Tov ZH or 7o nuukdxAiov 10 mepi Tav ZH
simply. The expression the angle of the semicircle, a Tob fuwkuxAiov
(ywvia), is used of the (right) angle contained by the diameter and
the arc (or tangent) at one extremity of it.

A sector of a circle is Touwels or, when it is necessary to
distinguish it from what Archimedes calls a ¢solid sector,” émimweSos
Topeds kukhov a plane sector of a circle. The sector including the
right angle (at the centre) is 6 Topevs & Tdv dpfav ywviav mepiéxwr.
Either of the radii bounding a sector is called a side of it, w\evpd ;
each of the sectors (is) equal to the sector which has a side common
(with it) ékooTos Tév Topéwy ioos TG Kkoway Exovri wAevpay TOWeL; &
sector is sometimes regarded as described on one of the bounding
radii as a side, thus similar sectors have been described on all (the
straight lines) dvayeypaddrar dmo wacdv opuolor Touées.

Of polygons inscribed in or circumscribed about a circle éyypdpew
els or & and wepiypddew wepl (With acc.) are used; we also find
meptyeypappévos used with the simple dative, thus 70 wepiye-
ypappévoy oxiue T3 Topel is the figure circumscribed to the sector.
‘A polygon is said to be inscribed in a segment of a circle when
the base of the segment is one side and the other sides subtend
arcs making up the circumference ; thus let a polygon be inscribed
on AT in the segment ABI, émi mjs AT wolvywvov éyyeypdpfw
els 70 ABT rujua. A regular polygon is said to be inscribed in
a sector when the two radii are two of the sides and the other sides
are all equal to one another, and a similar polygon is said to be
circumscribed about @ sector when the equal sides are formed by the
tangents to the arc which are respectively parallel to the equal
sides of the inscribed polygon and the remaining two sides are the
bounding radii produced to meet the adjacent tangents. Of a
circle circumscribed to a polygon mwephapBavew is also used; thus
moAywvov kikhos Tepryeypaupévos mephapBavétw mepl TO 0dTo KévTpov
ywipevos, as we might say let a circumscribed circle be drawn with
the same centre going round the polygon. Similarly the circle ABTA
containing the polygon 6 ABT'A kikhos éwv 16 moAvywvoy.

When a polygon is inscribed in a circle, the segments left over
between the sides of the polygon and the subtended arcs are
Teperdueva Turdpara; when a polygon is circumscribed to the
circle, the spaces between the two are variously called ra mep-
Nemdpeva tis wepiypadrs Tpjuate, T& Tepherdueva oxfpata, To
wepulelupara or 1o dmolelppata.

12
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Spheres, ete.

In connexion with a sphere (o¢paipa) a number of terms are
used on the analogy of the older and similar terms connected with
the circle. Thus the centre is xévrpov, the radius 7 & Tob kévrpov,
the diameter 7 8uiperpos. Two segments, rwjpara odalpas or
Twjpare opaipd, are formed when a sphere is cut by a plane;
a hemisphere is nuicdaipwov ; the segment of the sphere at T, 7o kord 76
T rpsjua s opaipas; the segment on the side of ABT, 76 dmd ABD
Tpqpa; the segment including the circumference BAA, 7o kard v BAA
mepupéperav Tufjpa. The curved swrfuce of a sphere or segment
is émpdveia ; thus of spherical segments bounded by equal surfaces the
hemisphere is greatest is vév ) loy émpavely mepiexopévav opaipikdy
TunpaTov petldv éore 10 uopaipiov.  The terms base (Bdos), vertex
(xopueprj) and height (Tjos) are also used with reference to a segment
of a sphere.

Another term borrowed from the geometry of the circle is the
word sector (rouels) qualified with the adjective orepeds (solid).
A solid sector (topels orepeds) is defined by Archimedes as the
figure bounded by a cone which has its vertex at the centre of
a sphere and the part of the surface of the sphere within the cone.
The segment of the sphere included in the sector is 16 Tuqjmo Tis
aaipas 70 év TG Topel OF TO KaTO TOV Topéa.

A great circle of a sphere is 6 péyioros kikhos T@v & 1) odalpa
and often 6 péyworos kikhos alone.

Let a sphere be cut by a plane not through the centre rerwijofo
opaipa w3 il Tod révrpov émiméde ; o sphere cut by a plane through
the centre in the circle EZHO, o¢aipe émmédy rerpmuévy 8ia 7od
kévtpov karda Tov EZHO rikov.

Prisms and pyramids,

A prism is wpiopa, a pyramid wvpepls. As usual, dvaypdew dmd
is used of describing a prism or pyramid on a rectilineal figure
as base; thus let a prism be described on the rectilineal figure
(as base) dvayeypdpfo dmd Tob edbuypdumov wpiopa, on the polygon
circumscribed about the circle A let a pyramid be set up dmo Tob wepl
Tov A kikAov mepiyeypapuévov molvywvov mupapls dvestite dvayeypap-
pévm. A pyramid with an equilateral base ABT is wvpapis lodmAevpor
éxovoa Bdow 16 ABT.

The surfuce is, as usual, émpdvea and, when any particular face
or a base is excluded, some qualifying phrase has to be used.
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Thus the surface of the prism consisting of the parallelograms
(i.e. excluding the bases) % émupdvea 7100 wplomaros 7 ék Tav
mapaAAyloypappuwy ovykeyévy ; the surfuce (of a pyramid) excluding
the base or the triangle AET, 1 émupdven xwpls Tis Pdoews or Tod
AET rprydvov.

The triangles bounding the pyramid o wepiéyovra Tpiywva v
mwupapuida (as distinet from the base, which may be polygonal).

Cones and solid rhombi.

The Elements of Euclid only introduce right cones, which are
simply called cones without the qualifying adjective. A cone is
there defined as the surface described by the revolution of a right-
angled triangle about one of the sides containing the right angle.
Archimedes does not define a cone, but generally describes a right
cone as an isosceles cone (kavos icookelss), though once he calls it
right (ép0ds). J. H. T. Miller rightly observes that the term
1sosceles applied to a cone was suggested by the analogy of the
isosceles triangle, but I doubt whether such a cone was thought of
(as he supposes) as one which could be described by making an
isosceles triangle revolve about the perpendicular from the vertex
on the base; it seems more natural to connect it with the use of
the word side (rAevpd) by which Archimedes designates a generator
of the cone, a right cone being thus directly regarded as a cone having
all its legs equal. The latter supposition would also accord better
with the term scalene cone (kdvos oxalyvds) by which Apollonius
denotes an oblique circular cone; such a cone could not of course
be described by the revolution of a scalene ¢riangle. An oblique
circular cone is simply a cone for Archimedes, and he does not
define it; but, while he speaks of finding a cone with a given
vertex and passing through every point on a given ‘section of an
acute-angled cone’ [ellipse], he regards the finding of the cone as
being equivalent to finding the circular sections, and we may
therefore conclude that he would have defined the cone in
practically the same way as Apollonius does, namely as the surface
described by a straight line always passing through a fixed point
and moving round the circumference of any circle not in the same
plane with the point.

The vertex of a cone is, as usual, kopvsj, the base Bdos, the axis
déov and the height Wyos; the cones are of the same height eiolv of
Kk@voL 5wd 16 adrd Dfos. A generator is called a side (whevpd); if a
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cone be cut by a plane meeting all the generators of the cone € «a
k@vos émwédy Tpaby cvpmirrovT TATAS TAls TV KWVOU TAEUpals.

The surface of the cone excluding the base 7 émpaveia T0d kdvov
Xopis 17s Baoews ; the conical surface between (two generators) AA, AB,
koviky) émupdvea 1 peradd vév AAB.

There is no special name for what we call a frustum of a cone
or the portion intercepted between two planes parallel to the base;
the surface of such a frustum is simply the swrface of the cone
between the parallel planes 7 émpdven ToD kdvou peraly Tév
mapaAAgloy émimédov.

. A curious term is segment of @ cone (dmérpopa kdvov), which is
used of the portion of any circular cone, right or oblique, cut off
towards the vertex by any plane which makes an elliptic and not a
circular section. With reference to a segment of a cone the axis
(¢€wv) is defined as the straight line drawn from the vertex of the
cone to the centre of the elliptic base.

As usual, dvaypdpew dmo is used of deseribing a cone on a circle
as base. Similarly, a very common phrase is dwo o0 kixkhov k@vos
éorw let there be a cone on the circle (as base).

A solid rhombus (péuBos orepess) is the figure made up of two
cones having their base common, their vertices on opposite sides of
it, and their axes in one straight line. A 7hombus made up of
1sosceles cones ﬁép.ﬁoq ¢ icookedGy kdvwy ovykeipevos, and the two
cones are spoken of as the cones bounding the rhombus of xavor oi
wepiéxovres Tov ouSov.

Cylinders.

A right cylinder is xdéhivpos dpfds, and the following terms
apply to the cylinder as to the cone: base Bdois, one base or the
other 4 érépa Bdos, of which the circle AB is a base and TA opposite
to 1¢ ov Bdois pev 6 AB xikMos, dwevavriov 8¢ 6 TA ; axis dfwv, height
Wpos, gemerator whevpd. The cylindrical surface cut off by (two
generators) AT, BA, 7 dmoreuvopévy kvhiwdpwky émipoveia vrd tov AT,
BA ; the surface of the cylinder adjacent to the circumference ABT, 5
érupdveia Tov kuAivdpov 1 kara v ABT wepipépeiav denotes the
surface of the cylinder between the two generators drawn through
the extremities of the arc.

A frustum of a cylinder répos kvAivlpov is a portion of a
cylinder intercepted between two parallel sections which are elliptic
and not circular, and the awxis (dfwv) of it is the straight line
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joining the centres of the two sections, which is in the same straight
line with the axis of the cylinder.

Conic Sections,

General terms are xwvicd oroxeia, elements of comics, T kwvikd
(the theory of) comics. Amy comic section «dvov Touy OSmoraody.
Chords are simply ebfelar év 74 Tod kivov Topd dypévar. Archimedes
never uses the word awis (dfwv) with reference to a conic ; the axes
are with him diameters (8udperpor), and Sudperpos, when it has
reference to a complete conic, is used in this sense exclusively. A
tangent is érwjotovoa or épamrouévy (with gen.).

The separate conic sections are still denoted by the old names; °
a parabola is a section of a right-angled cone dpoywviov kdvov Toud,
a hyperbola a section of an obtuse-angled cone apBAvyoviov kévov
ropaj, and an ellipse a section of an acute-angled cone $évywviov kdvov

Top].

The parabola.

Only the axis of a complete parabola is called a diameter, and
the other diameters are simply lines parallel to the diameter. Thus
parallel to the diameter or itself the diameter is mwapd Tav Sidperpov 7
abra Owiperpos; AZ is parallel to the diameter & AZ wopd rav
Sudperpdy éor. Once the term principal or original (diameter) is
used, apywd (sc. Suluerpos).

A segment of a parabola is rufua, which is more fully described
as the segment bounded by o straight line and a section of a right-
angled cone Tpapa O TeprexGpevov Imd Te ebfelas kal dpfoywviov kdvou
topuas. The word Suiperpos is again used with reference to a
segment of a parabola in the sense of our word axis; Archimedes
defines the diameter of any segment as the line bisecting all the
straight lines (chords) drawn parallel to its base rav diya Téuvovoav
Tas edfelas wdoas Tos wapa Tav Pdow adrod dyopévas.

The part of a parabola included between two parallel chords is-
called a frustum rduos (dwod Spfoywviov xdvov Topds dpaipoduevos),
the two chords are its lesser and greater base (é\doowv and pellwv
Bdous) respectively, and the line joining the middle points of the
two chords is the diameter (Sudperpos) of the frustum.

What we call the latus rectum of a parabola is in Archimedes
the line which is double of the line drawn as far as the axis é dwrhacio
7ds péxpe Tov dfovos. In this expression the axis (déwv) is the axis
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of the right-angled cone from which the curve was originally derived
by means of a section perpendicular to a generator*. Or, again, the
equivalent of our word parameter (wap dv Suvdvraw al dwo Tds Topds)
is used by Archimedes as by Apollonius, meaning the straight line
to which the rectangle which has its breadth equal to the abscissa
of a point and is equal to the square of the ordinate must be
applied as base. The full phrase states that the ordinates Aave
their squares equal to the rectangles applied to the line equal to N (or
the parameter) which have as their breadth the lines which they (the
ordinates) cut off from AZ (the diameter) towards the extremity A,
Svvdvraw T& wapd av loav 7@ N mapamirrovra whdros éovra, ds adral
amolapfBdvovte dwd s AZ wori 0 A mépas.

Ordinates are the lines drawn from the section to the diameter
(of the segment) parallel to the base (of the segment) ai dwd Tas Topds
éri tov AZ dyopévar wapd tav AE, or simply ai dwd 7ds Touds. Once
also the regular phrase drawn ordinate-wise terayuévws xarnypévy is
used to describe an ordinate, as in Apollonius.

The hyperbola.

‘What we call the asymptotes (ai doduntwror in Apollonius) are
in Archimedes the lines (approaching) mearest to the section of the
obtuse-angled cone oi &yyiora 1is Tod duBlvywviov kévov Topds.

The centre is not described as such, but it is the point at which
the lines mearest (to the curve) meet 70 copeiov, ko' & ai éyywora
gvpmiTToVTL.

This is a property of the sections of obtuse-angled cones rodro ydp
éomwv & Tals Tov duBlvywviov kdvov Topals cUuTTOMA.

The ellipse.

The major and minor axes are the greater and lesser diameters
pellwv and é\doowv Sudperpos. Let the greater diameter be AT,
diudperpos 8¢ (adrds) 4 ptv peilowv dotw ép’ ds 70 A, T.  The rectangle
contained by the diameters (axes) 76 mwepiexopevov vmwd 1dv dapérpwr.
One axis is called comjugate (cvlvyis) to the other: thus let the
straight line N be equal to half of the other diameter which s
conjugate to AB, d 8¢ N elfeila iva éorw 74 Huioeln Tds érépas Sapérpov,
a éore ovlvyns ¢ AB.

The centre is here xévrpov.

* Cf. 4pollonius of Perga, pp. xxiv, xxv.
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Conoids and Spheroids.

There is a remarkable similarity between the language in which
Archimedes describes the genesis of his solids of revolution and that
used by Euclid in defining the sphere. Thus Euclid says: when, the
diameter of a semicircle remaining fixed, the semicircle revolves and
returns to the same position from which it began to move, the included
figure is a sphere apatpd éoTiv, dtav fuikukAiov pevolions Tis dwapérpov
meprevexBev 16 fuikikAiov els 16 adrd wdAw dwokaraoTady, 80ev vpfaro
dépeabar, 10 mephnplev oxijua; and he proceeds to state that the
axis of the sphere is the fixed straight line about which the semicircle
turns déwv 8¢ s oaipas éoriv 1) pévovoa edbela, wepi Ay TO YuikdkAiov
orpéperar.  Compare with this e.g. Archimedes’ definition of the
right-angled conoid (paraboloid of revolution): #f a section of a
right-angled cone, with its diameter (awis) remaining fixed, revolves
and returns to the position jfrom which it started, the figure included
by the section of the right-angled cone is called a right-angled conoid,
and its axis is defined as the diameter which has remained fized,
€l ko Sploywviov kévov Tops mevoloas Tis Siapérpov weprevexfeioa
dmrokataoralj wdlw, 6fev dppacev, 0 wepihadfey oxHpa wd Tds Tod
Spfoywviov kdvov Topds dpboydviov kwvoeldés kaheicfar, xal dfova
pev adrod Tav pepevaxovoav diduerpov kalelocfar, and it will be seen
that the several phrases used are practically identical with those of
Euclid, except that dppacev takes the place of 7fpfaro ¢pépecbfar; and
even the latter phrase occurs in Archimedes’ description of the
genesis of the spiral later on.

The words conoid rkwvoedés (oxima) and spheroid odatpoedes
(oxfua) are simply adapted from xévos and ocaipa, meaning that
the respective figures have the appearance (ldos) of, or resemble,
cones and spheres; and in this respect the names are perhaps more
satisfactory than paraboloid, hyperboloid and ellipsoid, which can
only be said to resemble the respective conics in a different sense.
But when xowvoedés is qualified by the adjective right-angled
8pfoydviov: to denote the paraboloid of revolution, and by duSAv-
yoviov obtuse-angled to denote the hyperboloid of revolution, the
expressions are less logical, as the solids do not resemble right-
angled and obtuse-angled cones respectively; in fact, since the
angle between the asymptotes of the generating hyperbola may be
acute, a hyperboloid of revolution would in that case more resemble
an acute-angled cone. The terms right-angled and obtuse-angled



clxx INTRODUCTION.

were merely transferred to the conoids from the names for the
respective conics without any more thought of their meaning.

It is unnecessary to give separately the definition of each
conoid and spheroid; the phraseology is in all cases the same
as that given above for the paraboloid. But it may be remarked
that Archimedes does not mention the conjugate axis of a hyperbola
or the figure obtained by causing a hyperbola to revolve about that
axis; the conjugate axis of a hyperbola first appears in Apollonius,
who was apparently the first to conceive of the two branches of a
hyperbola as one curve. Thus there is only one obtuse-angled
conoid in Archimedes, whereas there are two kinds of spheroids
according as the revolution takes place about the greater diameter
(axis) or lesser diameter of the generating section of am acute-
angled cone (ellipse); the spheroid is in the former case oblong
(rapapdkes opapoedés) and in the latter case flat (émmwdary
adatpoedés).

A special feature is, however, to be observed in the description
of the obtuse-angled conoid (hyperboloid of revolution), namely that
the asymptotes of the hyperbola are supposed to revolve about the
axis at the same time as the curve, and Archimedes explains that
they will include an isosceles cone (kdvov loookelén mepihayoivrar),
which he thereupon defines as the cone enwveloping the conoid
(repiéxwv 76 kwvoedés). Also in a spheroid the term diameter
(Sudperpos) is appropriated to the straight line drawn through
the centre at right angles to the axis (6 & Tod «kévrpov wor’ 8pbis
dyopéva ¢ afovi). The centre of a spheroid is the middle point of
the axis 10 péocov T0v dovos.

The following terms are used of all the conoids and spheroids.
The vertex (kopudy) is the point at which the axis meets the surface 76
oopueloy, kaf’ § drrérac 6 dfwv 1ds émpavelns, the spheroid having of
course two vertices. A segment (tudua) is a part cut off by a plane,
and the dase (Bdois) of the segment is defined as the plane (figure)
included by the section of the conoid (or spheroid) in the cutting
plane 76 énimedov 76 wepiladfev Imd Tds Tod kwroedéos (or aparpoedéos)
Topds &v 16 moréuvovtt émurédy. The vertex of a segment is the point
at which the tangent plane parallel to the base of the segment meets
the surface, 70 capelov, kaf’ & amrérar 70 émimedov 70 émupador (Tod
kwvoedéos). The axis (dfwv) of a segment is differently defined for
the three surfaces ; (a) in the paraboloid it is the straight line cut off
within the segment from the line drawn through the vertex of the
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segment parallel to the axis of the conoid & évaroladleiva etbeia é&v TG
Tpdpare dmd Tds dyfeloas Siud Tds kopupds ToU Tmaparos mwapd TOV
afova Tob kwvoedéos, (b) in the hyperboloid it is the straight line cut
off within the segment frony the line drawn through the vertex of the
segment and the vertex of the cone enveloping the conoid dwod 7ds
axfeioas o Tds Kopupas Tov TudpaTos kol TAs kopupds ToD KWvov TOD
mwepLéxovtos 10 kwvoedés, (¢) in the spheroid it is the part similarly
cut off frrom the straight line joining the vertices of the two segments
into which the base divides the spheroid, dwo tds edfelas Tds Tas
kopuds abrav (tav Tuaudrwv) émlevyrvovoas.

Archimedes does not use the word centre with respect to the
hyperboloid of revolution, but calls the centre the vertex of the
enveloping cone. Also the awis of a hyperboloid or a segment is

~only that part of it which is within the surface. The distance

between the vertex of the hyperboloid or segment and the vertex
of the enveloping cone is the line adjacent to the awxis & woreodoa
76 afovt,

The following are miscellaneous expressions. The part inter-
cepted within the conoid of the intersection of the planes & évamo-
Aogleioa év 7@ kwvoedel Tds yevopévas Touds TGy émumréduy, (the plane)
will have cut the spheroid through its axis terpaxds éooeirar 70
gapoedes diuw Tod dfovos, so that the section it makes will be a
CONIcC Section GoTe TAV Toudv ToujoEL KWVou Tomdv, let two segments be
cut off in any manner drorerpdobfw Vo Tudpara ws érvyev or by
planes drawn in any manner érurédois 6mwoodv dypévots.

Half the spheroid 6 duloeov- 100 odapoedéos, half the line
Joining the vertices of the segments (of a spheroid), i.e. what we should
call a semi-diameter, d fjuiocéa adrds rds émlevyvvoioas Tds kopuis
TOV THOMATOV.

The spiral.

We have already had, in the conoids and spheroids, instances of
the evolution of figures by the motion of curves about an axis. The
same sort of motion is used for the construction of solid figures
inscribed in and circumseribed about a sphere, a circle and an
inscribed or circumscribed polygon being made to revolve about
a diameter passing through an angular point of the polygon and
dividing it and the circle symmetrically. In this case, in Archimedes’
phrase, the angular points of the polygon will move along the circum-
Jerences of circles, ai yoviow kard kixklwv mepipepedy évexbiicovrar (or
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olobijoovrar) and the sides will move on certain cones, or on the surface
of a cone katd Tivov kwvey évexfricovral or kat' émpavelas kwvov; and
sometimes the angular points or the points of contact of the sides of
a circumscribed polygon are said to describe circles ypdpovar kikAovs.
The solid figure so formed is 16 yevnbev arepedv oxqua, and let the
sphere by its revolution make a figure wepievexfeioa 7 odaipa woleltw
TXTpL TL.

For the construction of the spiral, however, we have a new
element introduced, that of #ime, and we have two different uniform
motions combined ; if a straight line in a plane turn uniformly
about one extremity which remains fixed, and return to the position
Jrom which it started and if, at the same time as the line is revolving,
a point move at a uniform rate along the line starting from the fixed
extrematy, the point will describe a spiral in the plane, € ka edfeta...év
émumédy...pévovros Tod érépov mépatos adrds loorayéws mepievexbeioa
dmroxaracralfj mwalw, Ofev wppaoev, dua 8¢ TE ypapupd wepayouéva
bepiitar T capeiov looTaxéws adrd éavr@ kard Tas edfelas Gpapevov amo
70D pévovros wéparos, 10 gamelor Elka ypael év TG émumédy.

The spiral (described) in the first, second, or any turn is & Eé & év
74 wpurg, devrépg, or Smougolv mepupopd yeypoupméva, and the turns
other than any particular ones are the other spirals ai dAhar éAikes.

The distance traversed by the point along the line in any time is
& ebfela & Sarvobeioa, and the times in which the point moved over the
distances ol xpdvo, év ols TO gapeiov Tas ypaupds émopedln ; in the time
in which the revolving line reaches AT from AB, & ¢ xpdve d weplayopéva
ypaups dwo tas AB éml rav AT dpukvelrar.

The origin of the spiral is dpxd 1ds é\ikos, the initial line dpxa Tds
wepipopds. The distance described by the point along the line in
the first complete revolution is edfeia mpdra (first distance), that
described during the second revolution the second distance edfeia
devrépa, and so on, the distances being called by the number of the
revolutions dpwvipws Tals wepipopats. The first area, xwpiov wparov,
is the area bounded by the spiral described in the first revolution and
by the  first distance’ 16 xwplov 16 mephapbey Iwd Te Tds Ekos Tds v
74 TpwTe TEpupopd ypadelTas kal Tds ebfelas, & éoTw mpdTa; the second
area is that bounded by the spiral in the second turn and the ‘second
distance,’ and so on.  The area added by the spiral in any turn is 76
xwpiov 76 worihapléyv 1o 7ds é\ikos & Twi wepidopa.

The first circle, kikhos mpdros, is the circle described with the
‘first distance’ as radius and the origin as centre, the second circle



THE TERMINOLOGY OF ARCHIMEDES. clxxiii

that with the origin as centre and twice the ‘first distance’ as
radius, and so on.

Together with as many times the whole of the circumference of the
circle as (is represented by) the mumber less by one than (that of)
the revolutions ped’ Ghas 7ds Tob kikAov mepipepelas Tooavrdkis Aau-
Bavopévas, doos éotiv 6 évi éNdoowv aplbuds Tav wepupopav, the circle
called by the number corresponding to that of the revolutions 6 kixhos
6 katd 1OV adrov dpifudv Aeyduevos Tals mepigopals.

With reference to any radius vector, the side which is in the
direction of the revolution is forward 76 mpoayoiueva, the other
backward va émdpeva.

Tangents, ete.

Though the word drrouar is sometimes used in Archimedes of a
line fouching a curve, its general meaning is not to touch but simply
to meet; e.g. the axis of a conoid or spheroid meets (dwrerar) the
surface in the vertex. (The word is also often used elsewhere than
in Archimedes of points lying on a locus; e.g. in Pappus, p. 664, the
point will lie on a straight line given in position dyerar 70 onueiov
Oéoer dedopévms edfelas.)

To touch a curve or surface is generally épdnresfor or érupadew
(with gen.). A tangent is épamropéry or émupatovoa (sc. ebfeia) and
a tangent plane émupadov émiredov. Let tangents be drawn to the circle
ABT, 0% ABT' kikAov épamropevar fxfuaar; if stratght lines be drawn
touching the circles éw dxOdalv Twes émupavovoar Ty kikhwv. The
full phrase of touching without cutting is sometimes found in
Archimedes; if a plane touch (any of) the conoidal figures
without cutting the conoid € ko tGv kwvoedéwy oynudrwy érimedov
épamrryrar uy) Téuvov 76 kwvoedés. The simple word Yadev is
occasionally used (participially), the tangent planes va émimeda T&
Yatovra.

To touch at a point is expressed by xard (with acc.); the points
at which the sides...touch (or meet) the circle onuela, kaf® & dmrrovrac
700 KklkMov ai whevpal.... Let them touch the circle at the middle
points of the circumferences cut off by the sides of the imscribed
polygon érupavérwocav Tob KklkAov katd pésa TGV mepipepady TGV
dmorepvopévoy Imd 70D éyyeypappévov wodvywrov whevpdr.

The distinction between érujadew and drropar is well brought
out in the following sentence; but that the planes touching the
spherotd meet its surface at ome point only we shall prove oru &¢



clxxiv INTRODUCTION.

70, émupadovra ériweda Tod opapoedéos kal’ & pdvov awrdvrar capeiov
Tas émupavelas adrod deifovpes.

The point of contact 5 dr].

Tangents drawn from (a point) dyuévar dwd; we find also the
elliptical expression dwd 7od E épamréocbw 7 OET, let OEIL be the
tangent from E, where, in the particular case, E is on the circle.

Constructions.

The richness of the Greek language in expressions for con-
structions is forcibly illustrated by the variety of words which
may be used (with different shades of meaning) for drawing a
line. Thus we have in the first place dyw and the compounds
dudyw (of drawing a line through a figure, with es or é following,
of producing a plane beyond a figure, or of drawing a line in a
plane), kardyw (used of drawing an ordinate down from a point on
a conic), mpoodyw (of drawing a line fo meet another). As an
alternative to mpoodyw, wpooBallw is also used; and mposwimrw
may take the place of the passive of either verb. To produce is
éxfBaAlw, and the same word is also used of a plane drawn through a
point or through a straight line; an alternative for the passive is
supplied by éxmiwrre. Moreover wpdokeipar is an alternative word
for being produced (literally being added).

In the vast majority of cases constructions are expressed by the
elegant use of the perfect imperative passive (with which may be
classed such forms as yeyovérw from ylyvopai, érrw from elui, and
kelofw from xetuar), or occasionally the aorist imperative passive.
The great variety of the forms used will be understood from the
following specimens. Let BT be made (or supposed) equal to A,
kelobw 76 A loov 70 BT ; let it be drawn qxfw, let a straight line be
drawn in it (a chord of a circle) dujxfw 7is els adrov edfela, let KM be
drawn equal to... ion kamjxfo 7 KM, let it be joined émeleixbuw, let
KA be drawn to meet wpooBeBhicfw 7 KA, let them be produced
éfeBhjabuaar, suppose them found espriocbuoav, let a circle be set out
éxxelofo kikdos, let it be taken elljdpbow, let K, H be taken rrocav
eiAmupévac of K, H, let a circle ¥ be taken NehddpOo kikdos év § 70 ¥, let
1t be cut Terpajobo, let it be divided Suapriabo (Siypriobw) ; let one cone be
cut by a plane parallel to the base and produce the section EZ, runbire 6
&repos kdvos émmédy mwapadljlo 1 Bdoe kal woelrw Topny Ty EZ, let
TZ be cut off dmrokedddpbuw ¢ TZ ; let (such an angle) be left and let it
be NHT, Aeheipfw kal éorw 1 vro NHT, let a figure be made yeyerjobo



THE TERMINOLOGY OF ARCHIMEDES, clxxv

oxiua, let the sector be made &otw yeyermuévos & Touevs, let cones be
described on the circles (as bases) dvayeypapbooay amd Tév kikAwv
Kk@voL, o Tod KUkAov kGvos éotw, let it be imscribed or circumscribed
éyyeypapbfu (or éyyeypappuévov éorw), wepryeypadbuw ; let an area (equal
to that) of AB be applied to AH, wapaBeSAiofw wapd rav AH 76 xwpiov
100 AB; let a segment of a circle be described on OK, émi tis OK
kVkAov Tuijuo épeardoduw, let the circle be completed dvamremrAypdobfon &
kvkMos, let NE (a parallelogram) be completed ovumerdnpdofo 10 NE,
let it be made mwerouvjaw, let the rest of the construction be the same as
before o dANa kaTeokevdofw TOv avTov Tpdmov Tols mpoTepov. Suppose
it done yeyovéro. :

Another method is to use the passive imperative of voéw (lef it be
conceived). Let straight lines be conceived to be drawn voelsfwoav
edfelor nypévar, let the sphere be conceived to be cut voeloGo 1 odatpa
rerunpévy, let a figure (generated) from the inscribed polygon be
concewed as inscribed in the sphere dwd Tob molvydvou Tod éyypadpo-
pévov voeloclw Tu els ™y opalpav éyypadiv oxfma. Sometimes the
participle for drawn is left out; thus dn’ avrod voeloOw émpdvea let
a surface be conceived (generated) from it.

The active is much more rarely used ; but we find (1) édv with
subjunctive, if we cut éav Téuwuer, if we draw éov dydywper, if you
produce édv éBalys ; (2) the participle, ¢ is posstble to inscribe...and
(ultimately) to leave Swvardv éorw éyypddovra... \elwew, if we con-
tinually circumscribe polygons, bisecting the remaining circumferences
and drawing tangents, we shall (ultimately) leave del 8y meprypddovres
moMywva Sixa Tepvopévoy TOV mepiheropévoy Tepipeperdy kal dyopévav
épamropévav Aelfopev, it is possible, if we take the area..., to inscribe
Aafdvra. (or hopSdvovra) 76 xwplov...Svvarov éoTw...éyypdyar; (3) the
first person singular, I take two straight lines AapBdve dvo edfelas,
I t00k a straight line EaBov Twa edbeiav ; I draw OM from ® parallel
t0 AZ, dyw dmd 700 @ 1av OM mapdAAglov ¢ AZ, having drawn T'K
perpendicular, I cut off AK equal to TK dyayov kdferov v TK 7q
TK igav aréhaBov rav AK, I inscribed a solid figure...and circum-
seribed another dvéypayo oxijpa oTepedv...kai dANo wepiéypaiya.

The genitive of the passive participle is used absolutely,
etpefévros & it being supposed found, éyypadévros 8 (the figure)
being inscribed.

To make o figure similar to one (and equal to another) épowsoar,
to find experimentally SpyavikGs AaBeiv, to cut into unequal parts els
dnoa Téuvew.
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Operations (addition, subtraction, etc.).

1. Addition, and sums, of magnitudes.

To add is wpoorifiyu, for the passive of which mpdorear is often
used ; thus one segment being added évos Tuduaros mworirebévros, the
added (straight line) & worweypéva, let the common HA, ZT' be added
kowal wpookelohwoar ol HA, ZT'; the words are generally followed
by mpés (with acc. of the thing added fo), but sometimes by the
dative, that to which the addition was made ¢ mworeréfn.

For being added together we have ovvrifeocfac; thus being added
to itself ovvrilféuevov adro éavrd, added together & 76 adrd cuvredévra,
added to itself (continually) émovvriBéuevor éavrd.

Sums are commonly expressed for two magnitudes by cwoudd-
Tepos used in the following different ways; the sum of BA, AA
auvauporepos 7 BAA, the sum of AT, T'B owanddrepos § AT, I'B, the
sum of the area and the circle 16 ovvapuddrepov & Te kikhos kai TO
Xwpiov. Again for sums in general we have such expressions as the
line which s equal to both the radii v lom dudorépais Tals e Tod
Kkévrpov, the line equal to (the sum of) all the lines joining v iom
mdoos Tals émlevyyvvovoas. Also all the circles of wdvres KixAoc
means the sum of all the circles; and ovykerrac ék is used for is
equal to the sum of (two other magnitudes).

To denote plus werd (with gen.) and odv are used ; fogether with
the bases perd 7év Bdoewy, together with half the base of the segment
oW ) quoele s Tob Tpaparos Bdoews ; Te and kal also express the
same thing, and the participle of mposAauBdvw gives another way of
describing having something added to it; thus the squares on (all)
the lines equal to the greatest together with the square on the greatest...
is 78 Terpaywva & dwd Tav iodv T4 peylore worhapBdvovta T4 Te dmd
7ds peyloTas Terpdywvov....

2. Subtraction and differences.

To subtract from is dpaipelv amd ; of (the rhombus) be conceived as
taken away éuwv vonbyf agypmuévos, let the segments be subtracted
dpapefdévrov 184 Twijpare. Terms common to each side in an
equation are rowd ; the squares are common to both (sides) xowd évri
éxarépwy 1o Terpdywva. Then let the common area be subtracted
is xowdv dppprcdw 6 xwpiov, and so on; the remainder is denoted
by the adjective Nourds, e.g. the conical surface remaining Aowry %
koviky) émipdvela.

The difference or excess is tmepoxyf, or more fully the excess by
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which (one magnitude) exceeds (another) tmwepoxr, 7 mepéxet... or
vmepoxd, ¢ ueilwv éori.... The excess is also expressed by means of
the verb vrepéxew alone ; let the difference by which the said triangles
exceed the triangle AAT be @, ¢ &) vrepéxer ta elpyuéva Tplywva Tod
AAT 7piydvov éorw 76 ©, to exceed by less than the excess of the cone
¥ over the half of the spheroid vrepéxew éhdooove 7 & (or dAike)
vmepéxer & W kévos Tob fjuloeos Tod apapoedéos (Where § vmepéxer may
also be omitted). Again the excess may be § mellwv éori. The
opposite to vmepéxer is Aefmerar (with gen.).

Equal to twice a certain excess loa Svolv vmrepoxals, with which
equal to one excess, loa pid vrepoxd, is contrasted.

The following sentence practically states the equivalent of an
algebraical equation ; the rectangle under ZH, EA exceeds the rect-
angle under ZE, EA by the (sum of) the rectangle contained by EA,
EH and the rectongle under ZE, EE, vrepéxer 76 vro rav ZH, BA 7od
vmo 7av ZE, EA 7@ ve vwo 7dv EA, BEH wepiexopévy ral 74 vwo 1av ZE,
EE. Similarly twice PH together with IIZ s (equal to) the sum of
3P, PII, &Yo pev ai PH pere 7ds IIS owwapgpdrepds éorw ¢ SPIL.

3.  Multiplication.

To multiply is woANawlaoidlw; multiply one another (of numbers)
moAamAacidew dAhddovs ; to multiply by a number is expressed by
the dative ; let A be multiplied by ® wemoAamrlacdofow 6 A 1§ ©.

Multiplied into is sometimes ér{ (with acc.); thus the rectangle
HO, OA into ®A (ie. a solid figure) is 70 vwo 7év HO, A éml
™y GA.

4. Division.

To divide darpetv ; let it be divided into three equal parts at the
points K, 0, dupriobw s Tpla ioa kard K, ® capeia ; to be divisible
by perpelofar vro.

Proportions.

A ratio is Aoyos, proportional is expressed by the phrase in
proportion dvdloyov, and a proportion is dvaloyie. We find in
Archimedes some uses of the verb Aéyw which seem to throw light
on the definition found in Euclid of the relation or ratio between
two magnitudes. One passage (On Conoids and Spheroids, Prop. 1)
says of the terms similarly placed have, two and two, the same ratio
and the first magnitudes are taken in relation to some other mag-
nitudes in any ratios whatever € ko kard Sbo Tov adrév Adyov Exwvre

H, A, m
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70 Spolws Teraypéva, Aeypjror 8¢ T& wpdra peyéfea mori Twa dAla
peyélea...év Adyois éwowowrodv, if A, B... be in relation to N, E... but
Z be not in relation to anything (ie. has no term corresponding to
it) e ka... 70 pev A, B,... Aeyovrar mort 7a N, E,... 70 8 Z undt
woff & Aeyijras.

A mean proportional between is péon dvdloyov Tdév..., 18 @ mean
proportional between péoov Adyov &xer Tis...kal Ts..., two mean pro-
portionals 8o pégar dvdhoyov with or without rxard 70 ovvexés in
continued proportion.

If three straight lines be proportional é&w tpels edfetar dvdAoyoy
doi, a fourth proportional rerdpra dvdloyov, if four straight lines be
proportional in continued proportion € ko Tésaapes ypappal dvdloyov
éovre & 14 ovvexel dvadoylq, at the point dividing (the line) in the
said proportion katd Tov dvdloyov Topdy T8 elpnuéva. -

The ratio of one straight line to another is e.g. o mis PA wpés AX
Adyos or ¢ (Adyos), Ov & e 1) PA mpos Ty AX ; the ratio of the bases &
76v Baciwv Ndyos; has the ratio of b to 2 Noyov éxer, v wévre mwpds
Svo. )

For having the same ratio as we find the following constructions.
Have the same ratio to one another as the bases vov adrov &xovre Adyov
mor’ dAAdlovs Tais Bdoeaw, as the squares on the radit ov ai ék Tév
kévrpwv Svvdper; TA has to PZ the (linear) ratio which the square on
TA has to the square on H, v &e Aoyov 77 TA mpos v H Suvdpuer,
Todrov & e Tov Adyov ) TA wpds PZ pijker. Is divided in the same
ratio els Tov adrov.Aéyov Térpmrar, or simply duolws ; will divide the
diameter in the proportion of the successive odd nmumbers, wnity
corresponding to the (part) adjacent to the vertex of the segment Tav
Sudperpov Tepotvre els Tovs Tdv éfs wepuoady dplfudy Adyovs, évos
Aeyopévov moti 74 kopvdd TOD TudpmaTos. '

To have a less (or greater) ratio than is éxew Aoyov édoaova (Or
peifova) with the genitive of the second ratio or a phrase introduced
by 7 ; to ‘have a less ratio than the greater magnitude has to the less,
Ixew Adyov é\dooova 7 10 peilov péyebos mpds 16 Eacaor.

For duplicate, triplicate etc. ratios we have the following
expressions : has the triplicate ratio of the same ratio Tpurlaciova
Néyov &er 7o adrod Adyov, has the duplicate ratio of EA to AK
durhaciova Aoyov Exeu imep j EA mpos AK, are in the triplicate ratio
of the diameters in the bases év tpurhaciovt Noyyw elol 7év év Tals
Bdoeat Sopérpwv, sesquialterate ratio ygudhios Adyos. With these
expressions must be contrasted the use of double, quadruple etc.
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ratio in the sense of a simple multiple by 2, 4 etc., e.g. if any
number of areas be placed in order, each being four times the next €
ka xwpia Teféove éfs brogaoly év T4 Terpamraciov Nyw.

The ordinary expression for a proportion is as A is fo B so is T
to A, ws o A mpos mjv B, ovrws 4 T mpos v A, Let AE be made so
that AE is to TE as the sum of @A, AE is to AE, meroujobo, s
owvapdorepos j ®A, AE mpos v AE, ovrws 4§ AE wpos TE. The
antecedents are Ta yyovpeva, the consequents T émdpeva.

For reciprocally proportional the parts of dvrurémovfa are used ;
the bases are reciprocally proportional to the heights dvruremdvbacw
ai PBdoes tals Weow, fo be reciprocally in the same proportion
dvruremovépev katd Tov adrov Adyov.

A ratio compounded of is Adyos ovvmupévos (or ovykelpevos) & e
T0V...Kkal T0V...; the ratio of PA to AX is equal to that compounded of
6 7ijs PA mpds AX Adyos owvijrrar ék.... Two other expressions for
compounded ratios are 6 Tod dwo A® mpds 76 dmo BO kai & (or
mpogAafav Tov) Tijs A® wpos OB, the ratio of the square on A® to
the square on BO® multiplied by the ratio of A® to OB.

The technical terms for transforming such a proportion as
a:b=c:d are as follows:

L. &vadrdé alternately (usually called permutando or alternando)
means transforming the proportion into @ : ¢ =5 : d.

2. dvdralw reversely (usually invertendo), b : a=d : c.

3. otvbeois Adyov is composition of a ratio by which the ratio
@ :b becomes @ +b:5 The corresponding Greek term to com-
ponendo is ovwBévr,, which means no doubt literally “to one who
has compounded,” i.e. “if we compound,” the ratios. Thus cufévre
denotes the inference that a +b : b=c+d : d. kara ovvfeow is also
used in the same sense by Archimedes.

4. Swipeois Adyov signifies the division of a ratio in the sense of
separation or subtraction by which a : b becomes @ —b : b, Similarly
dueAdvre (or kard Sialpecww) denotes the infereilce that a—b:b=
c¢—d:d. The translation dividendo is therefore somewhat mis-
leading. '

B. dvaorpody Adyov comversion of a ratio and dvaoTpéfavre
correspond respectively to the ratio @ : @ —b and to the inference
thata :a —b=c:c—d.
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6. & loov ex aequali (sc. distantia) is applied e.g. to the
inference from the proportions

a:b:c:detc.=4:B:C: D ete.
that a:d=4:D.
When this dividing-out of ratios takes place between proportions
with corresponding terms placed crosswise, it is described as 8 ioov
&v Ty Terapayuévy dvaloyle, ex aequali in disturbed proportion or
avopolws T6v Adywv teraypévov the ratios being dissimilarly placed ;
this is the case e.g. when we have two proportions

a:6=8:C,
b:c=4: B,
and we infer that a:c=4:0C.

Arithmetical terms.

Whole multiples of any magnitude are generally described as the
double of, the triple of etc., 6 durhdaros, 6 TpurAdoios k.7.\., following
the gender of the particular magnitude ; thus the (surface which is)
Jour times the greatest circle in the sphere j Terpamhacio 705 peylorov
KkiKkAov Tov &v 1) aaipe ; five times the sum of AB, BE together with
ten times the sum of T'B, BA, & wevrarlacio auvauporépov ras AB, BE
pera Tés Sexamhacias cuvauporépov Tds I'B, BA.  The same multiple
as roocavramlacivv...6camhaciov éorl, or lodkis moAhawlaciwv...kal.
The general word for a multiple of is woAazAdoios or moAhamAacivy,
which may be qualified by any expression denoting the number of
temes multiplied ; thus multiplied by the same number wollardoios
¢ avtd aplbpd, multiples according to the successive numbers
moAAamAdoia katd Tovs é&is dptfuovs.

Another method is to use the adverbial forms twice (s, thrice
7pis, etc., which are either followed by the nominative, e.g. twice EA
dis 7 EA, or constructed with a participle, e.g. twice taken 8is Aou-
Bavdpevos or dis elpnuévos ; together with twice the whole circumference
of the circle pel’ Ghas tds Tod wkikAov wepupepelas dis AapBavouévas.
Similarly the same nuwmber of times (the said circumference) as is
expressed by the number one less than (that of ) the revolutions
rooavrdkis AopBavouévas, Soos éoTiv 6 évi éldogwv dplfuds Tav.
mwepupopdv.  An interesting phrase is the following, as many times as
the line T A is contained (literally added together) in AA, so many times
let the time ZH be confained in the time AH, odris ovykeirar 6 TA
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Ypopud év T3 AA, Toogavrdkis avykelchw & xpdvos 6 ZH & 16 xpove T
AH.

Submultiples are denoted by the ordinal number followed by
pépos ; one-seventh is €B8opov puépos and so on, one-half being however
ypwovs.  When the denominator is a large number, a circumlocutory
phrase is used ; thus less than 13pth part of a right angle é\drrov 4
duupefeizas Tas dphas els p&d TovTwv & pépos.

When the numerator of a fraction is not unity, it is expressed
by the ordinal number, and the denominator by a compound
substantive denoting such and such a submultiple; e.g. two-thirds
8o Tpirapopia, three-fifths Tpla wepmrapdpia.

There are two iniproper fractions which have special names,
thus one-and-a-half of is nudhos, one-and-a-third of émirpiros.
‘Where a number is partly integral and partly fractional, the integer
is first stated and the fraction follows introduced by xai éri or kai
and besides. The phrases used to express the fact that the cir-
cumference of a circle is less than 31 but greater than 3312 times its
diameter deserve special notice ; (1) mwavros kikhov % wepiperpos T1s
Stapérpov rpurdaciov éori, kal &r brepéxe ENdaaove wév 7 880w pmépe
s diapérpov, pellowt 8¢ 7 déxa éRSopnrooTopdvors, and (2) Tpurdacivy
éori kal E\dogove pev 1) éBO0pw méper, pellove 8¢ ¢ oa” pellwv. We
also have the phrase for the first part é\docwv % rpurdaciwy kai
By péper pellwv.

To measure perpeiv, common measure kowdv pérpov, commensurable,
imcommensurable odpperpos, dovuperpos.

Mechanical terms.

Mechanics o pnxavicd, weight Bdpos; centre of grawity xévrpov
700 Bdpeos with another genitive of the body or magnitude; in the
plural we have either & kévrpa adrdv 10D PBdpeos or 7o kévrpa Ta@v
Bapéwv. kévrpov is also used alone.

A lever Luyds or {hyov, the horizon 6 6pllwv ; in @ vertical line is
represented by perpendicularly xars xdferov, thus the point of
suspension and the centre of gravity of the body suspended are in @
vertical line kard kdferdv éori 10 Te capelov TOD KpepaoTod Kai TO
kévrpov Tov Bdpeos Tod kpewauévov. Of suspension from or at ék or
kard (with acc.) is used. Let the triangle be suspended from the
points B, T, xpepdofo 76 tplywvor ék 7ov B, T capelov; if the
suspension of the triangle BAT at B, T be set free, and it be suspended
at B, the triangle remains in its position € xa Tod BAT rpiydvov &



clxxxii ‘ INTRODUCTION.

pev kara 7@ B, T' xpépagis Avbj, kard 8 70 E kpepactj, péver 76
Tpiyavoy, ds viv e

To incline towards pérew émi (acc.); to be in equilibrium
icoppomeiv, they will be in equilibrium with A held fast xarexouévov
T0b A loopporrjae, they will be in equilibrium at A (ie. will balance
about A) kard 70 A looppomyootvri; AB is too great to balance T
peilév éoru 76 AB 3} dore ioopporetv 7¢ T'. The adjective for in
equilibrium is icoppemys ; let it be in equilibrium with the triangle
TAH, icopperes éorw v¢ TAH tpiydve. To balance at certain
distances (from the point of support or the centre of gravity of a
system) is éwd Twwv pakéwv lgoppomeiv.

Theorems, problems, ete.

A theorem Oedpnpa (from Oewpelv to imvestigate); a problem
wpofBAnua, with which the following expressions may be compared,
the (questions) propounded concerning the figures t& mwpoBeBAnuéva
mwepl Tav axnudTwy, these things are propounded for investigation
wpofalrérar tade Oewprioar; also mpikewpar takes the place of the
passive, which it was proposed (or required) to find dmwep mpoéxerro
evpeiv.

Another similar word is érirayua, direction or requirement ;
thus the theorems and directions necessary for the proofs of them o
Oewpripara kal 7o émrdypata T& Xpelav éxovra els Tas dmodeallas adriv,
in order that the requirement may be fulfilled Smws yéryrar 76 éme-
raxfév (or ériraypa). To satisfy the requirement is wowelv 6 émiraypa
(either e.g. of lines in a figure, or of the person solving the
‘problem).

After the setting out (éfeots) in any proposition there follows
the short statement of what it is required to prove or to do. In
the former case (that of a theorem) Archimedes uses one of three
expressions dewkréov it is required to prove, Méyw or ¢paul &) I assert
or say; and in the second case (that of a problem) 8¢ & 4 is
required (to do so and so).

In a problem the analysis dvdlvois and synthesis oivfeais are
distinguished, the latter being generally introduced with the words
the synthesis of the problem will be as jfollows cvvrebrjoerar 7o
mpéfAqpa ofrws. The parts of the verb dvaldew are similarly
used ; thus the analysis and synthesis of each of these (problems) will
be given at the end éxdrepo 8¢ TaVra éml Téher dvalvOyoeral te Kal
cuvrebjoerac.
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A notable term in connexion with problems is the 8ioptopds
(determination), which means the determination of the limits within
which a solution is possible*. If a solution is always possible, the
problem does not involve a 8ropiouds, odx éxe diopiopov ; otherwise
it does involve it, éxet dropiopov.

Data and hypotheses.

For given some part of the verb 8{8wu. is used, generally the
participle dofefs, but sometimes dedouévos and once or twice 8ddpevos.
Let a circle be given 3edéafw Kkiros, given two unequal magnitudes
8o peyefov avicwv Sobévtwy, each of the two lines TA, EZ is given
éoriv dobeloa ékatépa Tdv T'A, EZ, the same ratio as the given ome
Adyos 6 adros 7@ dofévr. Similar expressions are the asstgned ratio
6 TaxBeis Aoyos, the given area T wporefev (or mpokeipevor) xwplov.

Gliven in position Géoe simply (sc. dedopévy).

Of hypotheses the parts of the verb vmorifepar and (for the
passive) vmokeipuar are used ; with the same suppositions rév adrdy
vmokewévoy, let the said suppositions be made vmokeloOw 7o elpyuéva,
we make these suppositions vroriféueba Tdde.

Where in a reductio ad absurdum the original hypothesis is
referred to, and generally where an earlier step is quoted, the past
tense of the verb is used ; but it was not (so) odk Jv 8¢, for it was less
v yap é\doowy, they were proved equal amedeixOnoav loor, for this has
been proved to be possible dedeikrar yip Todro Swvarov édv. Where a
hypothesis is thus quoted, the past tense of vmdkeyuar has various
constructions after it, (1) an adjective or participle, AZ, BH were
supposed equal loar vrékewro ai AZ, BH, it s by hypothesis a tangent
vmékerro émupadovaa, (2) an infinitive, for by hypothesis it does not
cut vmékero yap my Téuvew, the axis is by hypothesis not at right
angles to the parallel planes vmécerro 6 déwv py elpev pos mwori Ta
mapdAala érimeda, (3) the plame is supposed to have been drawn
through the centre 76 émiwedov vmdkerar 8ud 100 Kkévrpov dyfac.

Supposing it found eipeBévros absolutely. Suppose it done
yeyovérw.

The usual idiomatic use of el 8¢ uy after a negative statement
may be mentioned ; it will not meet the surface in another point,
otherwise... ob ydp Aérar kar’ dANo capeiov 7ds émdpaveios: el O¢
m....

* Cf. dpollonius of Perga, p. 1xx, note.
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Inferences, and adaptation to different cases.

The usual equivalent for therefore is dpa; odv and rolvvv are
generally used in a somewhat weaker sense to mark the starting-
point of an argument, thus érel obv may be translated as since, then.
Since is émwel, because dudre.

woAAG pdAAov much more then is apparently not used in Archi-
medes, who has moAAG alone ; thus much less then is the ratio of the
circumscribed figure to the inscribed than that of K to H woAlg
dpa 10 meprypacpev mpds 16 éyypapev édoaova Adyov ie oD, v e 4
K mpos H.

dud with the accusative is a common way of expressing the
reason why; because the come is isosceles duo. 70 ioooke)ij elvar Tov
KkGvov, for the same reason du Tadrd.

8ud with the genitive expresses the means by which a proposition
is proved ; by means of the construction i Tis karackevis, by the
same means 8 Tdv adrdv, by the same method 8 Tob adrod tpémwov.

Whenever this is the case, the surface is greater Srav Todro 7,
pellov ylverar 1§ émdvew..., if this is the case, the angle BA® s
equal..., € 8& Todro, loa éotiv ¢ dmd BA® ywvia..., which is the same
thing as showing that... 6 Tabrdv éore 7§ 8eifar, ore....

Similarly for the sector Spolws 8¢ kal émi Tod Topéws, the proof
18 the same as (that used to show) that & obra dwédefis dmep xal o,
the proof that...is the same 6 adrd dwddeaéls évri kal 8idre..., the same
argument holds for all rectilineal figures inscribed in the segments in
the recognised manner (see p. 204) éml wdvrov ebvypappov Tdv
éyypagopévar é Td TpdpaTa yropipws & atrds Nyos ; it will be possible,
having proved it for a circle, to tramsfer the same argument in
the case of the sector &rrau éml xkixhov delfavra perayayelv Tov Gpowov
Adyov kai émi Tod Topéws ; the rest will be the same, but it will be the
lesser of the diameters which will be intercepted within the spheroid
(enstead of the greater) T& pév dAAa 78 adrd éooeirar, Tav 3¢ Sduapérpov
& e\doowr ooelrar & dvamohaplecioa &v 76 oPapoedet ; it will make
no difference whether...or...dwice 8¢ otdéy, eire.. ele....

Conclusions.

The proposition is therefore obvious, or is proved jlov odv éure
(or 8&ekrar) 76 mpo