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INTRODUCTORY NOTE

From the point of view of the student of Greek mathematics

there has been, in recent years, no event comparable in interest

with the discovery by Heiberg in 1906 of a Greek MS. containing,

among other works of Archimedes, substantially the whole of a

treatise which was formerly thought to be irretrievably lost.

The full description of the MS. as given in the preface to Vol. i.

(1910) of the new edition of Heiberg's text of Archimedes now in

course of publication is

—

Codex rescriptus Metochii Constantinopolitani S. Sepulchri

monasterii Hierosolymitani 355, 4to.

Heiberg has told the story of his discovery of this MS. and

given a full description of it*. His attention having been called

to a notice in Vol. iv. (1899) of the 'Upoao\viJi,iTiKri Pt^XioOTjKr) of

Papadopulos Kerameus relating to a palimpsest of mathematical

content, he at once inferred from a few specimen lines which were

quoted that the MS. must contain something by Archimedes. As

the result of inspection, at Constantinople, of the MS. itself, and

by means of a photograph taken of it, he was able to see what it

contained and to decipher much of the contents. This was in the

year 1906, and he inspected the MS. once more in 1908. With

the exception of the last leaves, 178 to 185, which are of paper

of the 16th century, the MS. is of parchment and contains writings

of Archimedes copied in a good hand of the 10th century, in two

columns. An attempt was made (fortunately with only partial

success) to wash out the old writing,- and then the parchment was

used again, for the purpose of writing a Euchologion thereon, in the

12th—13th or 13th—14th centuries. The earlier writing appears

with more or less clearness on most of the 177 leaves; only 29

leaves are destitute of any trace of such writing; from 9 more

it was hopelessly washed off; on a few more leaves only a few

words can be made out ; and again some 1 i leaves have old writing

* Hermes xlh. 1907, pp. 235 sq.
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upon them in a different hand and with no division into columns.

All the rest is tolerably legible with the aid of a magnifying glass.

Of the treatises of Archimedes which are found in other MSS., the

new MS. contains, in great part, the books On the Sphere and

Cylinder, almost the whole of the work On Spirals, and some parts

of th.Q Measurement of a Circle and of the books On the Equilibrium

of Planes. But the important fact is that it contains (1) a con-

siderable proportion of the work On Floating Bodies which was

formerly supposed to be lost so far as the Greek text is concerned

and only to have survived in the translation by Wilhelm von

Morbeke, and (2), most precious of all, the greater part of the

book called, according to its own heading, 'E^oSos and elsewhere,

alternatively, 'E(^d8iov or 'E^oSikoV, meaning Method. The portion

of this latter -work contained in the MS. has already been published

by Heiberg (1) in Greek* and (2) in a German translation with

commentary by Zeuthenf. The treatise was formerly only known

by an allusion to it in Suidas, who says that Theodosius wrote a

commentary upon it ; but the Metrica of Heron, newly discovered

by R. Schone and published in 1903, quotes three propositions from

itj, including the two main propositions enunciated by Archimedes

at the beginning as theorems novel in character which the method

furnished a means of investigating. Lastly the MS. contains two

short propositions, in addition to the preface, of a work called

Stomachion (as it might be "Neck-Spiel" or " Qual-Geist ") which

treated of a sort of Chinese puzzle known afterwards by the name

of " loculus Archimedius '' ; it thus turns out that this puzzle, which

Heiberg was formerly disinclined to attribute to Archimedes §, is

really genuine.

The Method, so happily recovered, is of the greatest interest for

the following reason. Nothing is more characteristic of the classical

works of the great geometers of Greece, or more tantalising, than

the absence of any indication of the steps by which they worked

their way to the discovery of their great theorems. As they have

come down to us, these theorems are finished masterpieces which

leave no traces of any rough-hewn stage, no hint of the method

by which they were evolved. We cannot but suppose that the

* Hermes xlii. 1907, pp. 243—297.

t Bibliotheca Mathematica VII3, 1906-7, pp. 321—863.

t Heronis Alexandrini opera, Vol. in. 1903, pp. 80, 17 ; 130, 15 ; 130, 25.

§ Yide The Works of Archimedes, p. xxii.
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Greeks had some method or methods of analysis hardly less powerful

than those of modern analysis
;

yet, in general, they seem to have

taken pains to clear away all traces of the machinery used and all

the litter, so to speak, resulting from tentative efforts, before they

permitted themselves to publish, in sequence carefully thought out,

and with definitive and rigorously scientific proofs, the results

obtained. A partial exception is now furnished by the Method; for

here we have a sort of lifting of the veil, a glimpse of the interior

of Archimedes' workshop as it werp. He tells us how he discovered

certain theorems in quadrature and cubature, and he is at the same

time careful to insist on the difference between (1) the means which

may be sufficient to suggest the truth of theorems, although not

furnishing scientific proofs of them, and (2) the rigorous demonstra-

tions of them by irrefragable geometrical methods which must follow

before they can be finally accepted as established ; to use Archi-

medes' own terms, the former enable theorems to be investigated

{Oewpeiv) but not to be proved (aVoSetxvuVat). The mechanical

method, then, used in our treatise and shown to be so useful for

the discovery of theorems is distinctly said to be incapable of

furnishing proofs of them ; and Archimedes promises to add, as

regards the two main theorems enunciated at the beginning, the

necessary supplement in the shape of the formal geometrical proof.

One of the two geometrical proofs is lost, but fragments of the other

are contained in the MS. which are sufficient to show that the

method was the orthodox method of exhaustion in the form in

which Archimedes applies it elsewhere, and to enable the proof to

be reconstructed.

The rest of this note will be best understood after the treatise

itself has been read ; but the essential features of the mechanical

method employed by Archimedes are these. Suppose X to be a

plane or solid figure, the area or content of which has to be found.

The method is to weigh infinitesimal elements of X (with or without

the addition of the corresponding elements of another figure C)

against the corresponding elements of a figure B, B and C being

such figures that their areas or volumes, and the position of the

centre of gravity of B, are known beforehand. For this purpose

the figures are first placed in such a position that they have, as

common diameter or axis, one and the same straight hne ; if then

the infinitesimal elements are sections of the figures made by parallel

planes perpendicular (in general) to the axis and cutting the figures,
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the centres of gravity of all the elements lie at one point or other

on the common diameter or axis. This diameter or axis is produced

and is imagined to be the bar or lever of a balance. It is sufficient

to take the simple case where the elements of X alone are weighed

against the elements of another figure B. The elements which cor-

respond to one another are the sections of X and B respectively by

any one plane perpendicular (in general) to the diameter or axis

and cutting both figures; the elements are spoken of as straight

lines in the case of plane figurea and as plane areas in the case of

solid figures. Although Archimedes calls the elements straight lines

and plane areas respectively, they are of course, in the first case,

indefinitely narrow strips (areas) and, in the second case, indefinitely

thin plane laminae (solids) ; but the breadth or thickness {dx, as

we might call it) does not enter into the calculation because it is

regarded as the same in each of the two corresponding elements

which are separately weighed against each other, and therefore

divides out. The number of the elements in each figure is in-

finite, but Archimedes has no need to say this ; he merely says

that X and B are made up of all the elements in them respectively,

i.e. of the straight lines in the case of areas and of the plane areas

in the case of solids.

The object of Archimedes is so to arrange the balancing of the

elements that the elements of X are all applied at one point of

the lever, while the elements of B operate at difierent points,

namely where they actually are in the first instance. He con-

trives therefore to move the elements of X away from their first

position and to concentrate them at one point on the lever, while

the elements of B are left where they are, and so operate at their

respective centres of gravity. Since the centre of gravity of B as

a whole is known, as well as its area or volume, it may then be

supposed to act as one mass applied at its centre of gravity ; and

consequently, taking the whole bodies X and B as ultimately placed

respectively, we know the distances of the two centres of gravity

from the fulcrum or point of suspension of the lever, and also the

area or volume of B. Hence the area or volume of X is found.

The method may be applied, conversely, to the problem of finding

the centre of gravity of X when its area or volume is known before-

hand ; in this case it is necessary that the elements of X, and

therefore X itself, should be weighed in the places where they are,

and that the figures the elements of which are moved to one single
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point of the lever, to be weighed there, should be other figures and

not X.

The method will be seen to be, not integration, as certain

geometrical proofs in the great treatises actually are, but a clever

device for avoiding the particular integration which would naturally

be used to find directly the area or volume required, and making

the solution depend, instead, upon another integration the result of

which is already known. Archimedes deals with moments about

the point of suspension of the lever, i.e. the products of the ele-

ments of area or Volume into the distances between the point of

suspension of the lever and the centres of gravity of the elements

respectively ; and, as we said above, while these distances are

different for all the elements of B, he contrives, by moving the

elements of X, to make them the same for all the elements of X
in their final position. He assumes, as known, the fact that the

sum of the moments of each particle of the figure B acting at

the point where it is placed is equal to the moment of the whole

figure applied as one mass at one point, its centre of gravity.

Suppose now that the element of X is it . dx, u being the length

or area of a section of X by one of a whole series of parallel planes

cutting the lever at right angles, x being measured along the lever

(which is the common axis of the two figures) from the point of

suspension of the lever as origin. This element is then supposed

to be placed on the lever at a constant distance, say a, from the

origin and on the opposite side of it from B. If v! . dx is the cor-

responding element of B cut off by the same plane and x its distance

from the origin, Archimedes' argument establishes the equation

rk rk

a I udx = I xu'dx.
Jh Jh

Now the second integral is known because the area or volume of

the figure B (say a triangle, a pyramid, a prism, a sphere, a cone,

or a cylinder) is known, and it can be supposed to be applied as

one mass at its centre of gravity, which is also known ; the integral

is equal to bU, where b is the distance of the centre of grayity from

the point of suspension of the lever, and U is the area or content

of B. Hence

the area or volume of X =—

.

a

In the case where the elements of X are weighed along with the

corresponding elements of another figure C against corresponding
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elements of B, we have, if v be the element of G, and V its area

or content,

udx + a I vdx= I xu'dx
h Jh Jh

and (area or volume oi X + V)a = hU.

In the particular problems dealt with in the treatise h is always

= 0, and h is often, but not always, equal to a.

Our admiration of the genius of the greatest mathematician of

antiquity must surely be increased, if that were possible, by a

perusal of the work before us. Mathematicians will doubtless

agree that it is astounding that Archimedes, writing (say) about

250 B.C., should have been able to solve such problems as those of

finding the volume and the centre of gravity of any segment of a

sphere, and the centre of gravity of a semicircle, by a method so

simple, a method too (be it observed) which would be quite rigorous

enough for us to-day, although it did not satisfy Archimedes himself.

Apart from the mathematical content of the book, it is in-

teresting, not only for Archimedes' explanations of the course which

his investigations took, but also for the allusion to Democritus as

the discoverer of the theorem that the volumes of a pyramid and

a cone are one-third of the volumes of a prism and a cylinder

respectively which have the same base and equal height. These

propositions had always been supposed to be due to Eudoxus, and

indeed Archimedes himself has a statement to this eflFect*. It

now appears that, though Eudoxus was the first to prove them

scientifically, Democritus was the first to assert their truth. I have

elsewhere t made a suggestion as to the probable course of Democritus'

argument, which, on Archimedes' view, did not amount to a proof

of the propositions ; but it may be well to re-state it here. Plutarch,

in a well-known passage J, speaks of Democritus as having raised the

following question in natural philosophy (<^i;o-ik(us) :
" if a cone were

cut by a plane parallel to the base [by which is clearly meant a

plane indefinitely near to the base], what must we think of the

surfaces of the sections ? Are they equal or unequal ? For, if they

are unequal, they will make the cone irregular, as having many
indentations, like steps, and unevennesses ; but, if they are equal,

the sections will be equal, and the cone will appear to have the

property of the cylinder and to be made up of equal, not unequal,

* On the Sphere and Cylinder, Preface to Book i.

t The Thirteen Books of Euclid's Elements, Vol. in. p. 368.

J Plutarch, Be Comm. Not. adv. Stoicos xxxix. 3.
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circles, which is very absurd," The phrase "made up of equal...

circles" (e^ tcrwv (rvyKeifievo<s...KVK\(i>v) shows that Democritus already

had the idea of a solid being the sum of an infinite number of

parallel planes, or indefinitely thin laminae, indefinitely near to-

gether : a most important anticipation of the same thought which

led to such fruitful results in Archimedes. If then we may make
a conjecture as to Democritus' argument with regard to a pyramid,

it seems probable that he would notice that, if two pyramids of the

same height and with equal triangular bases are respectively cut by

planes parallel to the base and dividing the heights in the same

ratio, the corresponding sections of the two pyramids are equal,

whence he would infer that the pyramids are equal because they

are the sums of the same infinite numbers of equal plane sections

or indefinitely thin laminae. (This would be a particular anti-

cipation of Cavalieri's proposition that the areal or solid contents

of two figures are equal if two sections of them taken at the same

height, whatever the height may be, always give equal straight lines

or equal surfaces respectively.) And Democritus would of course

see that the three pyramids into which a prism on the same base

and of equal height with the original pyramid is divided (as in

Eucl. XII. 7) satisfy, in pairs, this test of equality, so that the

pyramid would be one third part of the prism. The extension to

a pyramid with a polygonal base would be easy. And Democritus

may have stated the proposition for the cone (of course without an

absolute proof) as a natural inference from the result of increasing

indefinitely the number of sides in a regular polygon forming the

base of a pyramid.

In accordance with the plan adopted in The Works of Archimedes,

I have marked by inverted commas the passages which, on account

of their importance, historically or otherwise, I have translated

literally from the Greek ; the rest of the tract is reproduced in

modern notation and phraseology. Words and sentences in square

brackets represent for the most part Heiberg's conjectural restoration

(in his German translation) of what may be supposed to have been

written in the places where the MS. is illegible; in a few cases

where the gap is considerable a note in brackets indicates what the

missing passage presumably contained and, so far as necessary, how

the deficiency may be made good.

T. L. H.

7 June 1912.



THE METHOD OF AECHIMEDES TREATING
OF MECHANICAL PROBLEMS—

TO ERATOSTHENES

"Archimedes to Eratosthenes greeting.

I sent you on a former occasion some of the theorems

discovered by me, merely writing out the enunciations and

inviting you to discover the proofs, which at the moment

I did not give. The enunciations of the theorems which I

sent were as follows.

1. If in a right prism with a parallelogrammic base a

cylinder be inscribed which has its bases in the opposite

parallelograms*, and its sides [i.e. four generators] on the

remaining planes (faces) of the prism, and if through the

centre of the circle which is the base of the cylinder and

(through) one side of the square in the plane opposite to

it a plane be drawn, the plane so drawn will cut off from

the cylinder a segment which is bounded by two planes

and the surface of the cylinder, one of the two planes being

the plane which has been drawn and the other the plane

in which the base of the cylinder is, and the surface being

that which is between the said planes ; and the segment cut

off from the cylinder is one sixth part of the whole prism.

2. If in a cube a cylinder be inscribed which has its

bases in the opposite parallelograms •{ and touches with its

surface the remaining four planes (faces), and if there also

be inscribed in the same cube another cylinder which has

its bases in other parallelograms and touches with its surface

the remaining four planes (faces), then the figure bounded

by the surfaces of the cylinders, which is within both cylinders,

is two-thirds of the whole cube.

Now these theorems differ in character from those commu-

nicated before ; for we compared the figures then in question,

* The parallelograms are apparently squares. t i.e. squares.
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conoids and spheroids and segments of them, in respect of size,

with figures of cones and cylinders : but none of those figures

have yet been found to be equal to a solid figure bounded by

planes; whereas each of the present figures bounded by two

planes and surfaces of cylinders is found to be equal to one of

the solid figures which are bounded by planes. The proofs then

of these theorems I have written in this book and now send

to you. Seeing moreover in you, as I say, an earnest student,

a man of considerable eminence in philosophy, and an admirer

[of mathematical inquiry], I thought fit to write out for you

and explain in detail in the same book the peculiarity of a

certain method, by which it will be possible for you to get

a start to enable you to investigate some of the problems in

mathematics by means of mechanics. This procedure is, I am
persuaded, no less useful even for the proof of the theorems

themselves ; for certain things first became clear to me by a

mechanical method, although they had to be demonstrated by

geometry afterwards because their investigation by the said

method did not furnish an actual demonstration. But it is of

course easier, when we have previously acquired, by the method,

some knowledge of the questions, to supply the proof than

it is to find it without any previous knowledge. This is a

reason why, in the case of the theorems the proof of which

Eudoxus was the first to discover, namely that the cone is

a third part of the cylinder, and the pyramid of the prism,

having the same base and equal height, we should give no

small share of the credit to Democritus who was the first

to make the assertion with regard to the said figure* though

he did not prove it. I am myself in the position of having

first made the discovery of the theorem now to be published

[by the method indicated], and I deem it necessary to expound

the method partly because I have already spoken of itf and

I do not want to be thought to have uttered vain words, but

vepl ToO elfnin^vou ax-flliaros, in the singular. Possibly Archimedes may

have thought of the case of the pyramid as being the more fundamental and as

really involving that of the cone. Or perhaps "figure" may be intended for

" type of figure."

+ Of. Preface to Quadrature of Parabola.
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equally because I am persuaded that it will be of no little

service to mathematics; for I apprehend that some, either of

my contemporaries or of my successors, will, by means of the

method when once established, be able to discover other

theorems in addition, which have not yet occurred to me.

First then I will set out the very first theorem which

became known to me by means of mechanics, namely that

Any segment ofa section of a right-angled cone {i.e. aparabola)

is four-thirds of the triangle which has the same base and equal

height,

and after this I will give each of the other theorems investi-

gated by the same method. Then, at the end of the book,

I will give the geometrical [proofs of the propositions]...

[I premise the following propositions which I shall use

in the course of the work.]

1. If from [one magnitude another magnitude be sub-

tracted which has not the same centre of gravity, the centre

of gravity of the remainder is found by] producing [the

straight line joining the centres of gravity of the whole

magnitude and of the subtracted part in the direction of

the centre of gravity of the whole] and cutting off fi-om it

a length which has to the distance between the said centres

of gra\'ity the ratio which the weight of the subtracted

magnitude has to the weight of the remainder.

[On the Equilibrium of Planes, I. 8]

2. If the centres of gravity of any number of magnitudes

whatever be on the same straight line, the centre of gravity

of the magnitude made up of all of them will be on the same

straight line. [Cf Ibid. i. 5]

3. The centre of gravity of any straight line is the point

of bisection of the straight line. [Cf Ibid. i. 4]

4. The centre of gravity of any triangle is the point in

which the straight lines drawn from the angular points of

the triangle to the middle points of the (opposite) sides cut

one another. [Ihid. i. 13, 14]

5. The centre of gravity of any parallelogram is the point

in which the diagonals meet. [Ihid. i. 10]
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6. The centre of gravity of a circle is the point which is

also the centre [of the circle].

7. The centre of gravity of any cylinder is the point of

bisection of the axis.

8. The centre of gravity of any cone is [the point which

divides its axis so that] the portion [adjacent to the vertex is]

triple [of the portion adjacent to the base].

[All these propositions have already been] proved*. [Besides

these I require also the following proposition, which is easily

proved

:

If in two series of magnitudes those of the first series are,

in order, proportional to those of the second series and further]

the magnitudes [of the first series], either all or some of them,

are in any ratio whatever [to those of a third series], and if the

magnitudes of the second series are in the same ratio to the

corresponding magnitudes [of a fourth series], then the sum
of the magnitudes of the first series has to the sum of the

selected magnitudes of the third series the same ratio which

the sum of the magnitudes of the second series has to the

sum of the (correspondingly) selected magnitudes of the fourth

series. [On Conoids and Spheroids, Prop. 1.]"

Proposition 1 .

Let ABG be a segment of a parabola bounded by the

straight line AC and the parabola ABC, and let D be the

middle point of AC. Draw the straight line BBE parallel

to the axis of the parabola and join AB, BC.

Then shall the segment ABC be | of the triangle ABC.

From A draw AKF parallel to BE, and let the tangent

to the parabola at C meet BBE in E and AKF in F. Produce

CB to meet AF in K, and again produce GK to H, making

KH equal to CK.

* The problem of finding the centre of gravity of a cone is not solved in

any extant work of Archimedes. It may ha.ye been solved either in a separate

treatise, such as the irepl ivywv, which is lost, or perhaps in a larger mechanical

work of which the extant books On the Equilibrium of Planes formed only a part.
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Consider GH as the bar of a balance, K being its middle

point.

Let MO be any straight line parallel to ED, and let it meet

OF, GK, AG in M,N,0 and the curve in P.

Now, since GE is a tangent to the parabola and GD the

semi-ordinate,

EB = BD;
" for this is proved in the Elements [of Conies]*."

Since FA, MO are parallel to EB, it follows that

FK^KA, MN=NO.
Now, by the property of the parabola, " proved in a lemma,"

MO:OP=GA:AO [Cf Quadrature of Parahola, Prop. 5]

= GK : KN [Eucl. VI. 2]

= HK:KN.

Take a straight line TG equal to OP, and place it with its

centre of gravity at H, so that TH = HO ; then, since N is the

centre of gravity of the straight line MO,

and MO:TQ = HK: KN,
* i.e. the works on conies by Ariataeus and Euclid. Cf. the similar

expression in On Conoids and Spheroids, Prop. 3, and Qiiadrature of Parabola,

Prop. 3.
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it follows that TG at H and MO at N will be in equilibrium

about K. [On the Equilibrium of Planes, i. 6, 7]

Similarly, for all other straight lines parallel to DE and

meeting the arc of the parabola, (1) the portion intercepted

between FC, AC with its middle point on KG and (2) a

length equal to the intercept between the curve and AG
placed with its centre of gravity at H will be in equilibrium

about K.

Therefore K is the centre of gravity of the whole system

consisting (1) of all the straight lines as MO intercepted between

FG, AG and placed as they actually are in the figure and (2) of

all the straight lines placed at H equal to the straight lines

as PO intercepted between the curve and AG.

And, since the triangle GFA is made up of all the parallel

lines like MO,

and the segment GBA is made up of all the straight lines like

PO within the curve,

it follows that the triangle, placed where it is in the figure, is

in equilibrium about K with the segment GBA placed with its

centre of gravity at H.

Divide KG at W so that GK=SKW;
then W is the centre of gravity of the triangle AGF ;

" for this

is proved in the books on equilibrium " {ev toi<; laoppoinKoi';).

[Cf On the Equilibrium of Planes i. 15]

Therefore AACF: (segment ABC) = HK : KW
= 3:1.

Therefore segment ABG=^AAGF.

But AAGF=4>AABG.

Therefore segment ABG = ^AABG.

"Now the fact here stated is not actually demonstrated

by the argument used; but that argument has given a sort

of indication that the conclusion is true. Seeing then that

the theorem is not demonstrated, but at the same time

H. A. 2
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busjjecting that the conclusion is true, we shall have recourse

to the geometrical demortstration which I myself discovered

and have already published*."

Proposition 2.

We can investigate by the same method the propositions that

(1) Any sphere is {in respect of solid content) four times

the cone with hose equal to a great circle of the sphere and

height equal to its radius; and

(2) the cylinder with base equal to a great circle of the

sphere and height equal to the diameter is 1^ times the sphere.

(1) Let ABCD be a great circle of a sphere, and AG, BD
diameters at right angles to one another.

Let a circle be drawn about BB as diameter and in a plane

perpendicular to AG, and on this circle as base let a cone

be described with A as vertex. Let the surface of this cone

be produced and then cut by a plane through G parallel to

its base ; the section will be a circle on EF as diameter. On
this circle as base let a cylinder be erected with height and

axis AG, and produce GA to U, making AH equal to GA.

Let CH be regarded as the bar of a balance, A being its

middle point.

Draw any straight line MN in the plane of the circle

ABGD and parallel to BD. Let MN meet the circle in 0, P,

the diameter AG in S, and the straight lines AJE, AF in Q, E
respectively. Join AO.

* The word governing tV yeaiierpoviiirriv dirdSei^ii' in the Greek text is

rd^ofiev, a reading which seems to be doubtful and is certainly difficult to

translate. Heiberg translates as if Td^o/iev meant "we shall give lower down"

or "later on," but I agree with Th. Beinach {Revite gengrale des sciences puree

et appliquges, 30 November 1907, p. 918) that it is questionable whether

Archimedes would really have written out in full once more, as an appendix,

a proof which, as he says, had already been published (i.e. presumably in the

Quadrature of a Parabola). Td^o/iev, if correct, should apparently mean "we
shall appoint,'' "prescribe" or "assign."
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Through MN draw a plane at right angles to AC;

this plane will cut the cylinder in a circle with diameter MN,
the sphere in a circle with diameter OP, and the cone in a

circle with diameter QB.

Now, since MS = AG, and QS = AS,

MS.SQ = CA.AS
= A0'
= OS' + SQ'-

L V
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with the circle in the cone, if both the latter circles are placed

with their centres of gravity at H.

Similarly for the three corresponding sections made by a

plane perpendicular to AG and passing through any other

straight line in the parallelogram LF parallel to EF.

If we deal in the same way with all the sets of three circles

in which planes perpendicular to AG cut the cylinder, the

sphere and the cone, and which make up those solids respec-

tively, it follows that the cylinder, in the place where it is, will

be in equilibrium about A with the sphere and the cone together,

when both are placed with their centres of gravity at H.

Therefore, since K is the centre of gravity of the cylinder,

HA : J.ir = (cylinder) : (sphere + cone AEF).

ButHA=2AK;
therefore cylinder = 2 (sphere + cone AEF).

Now cylinder = 3 (cone AEF)
;

[Eucl. xii. 10]

therefore cone AEF = 2 (sphere).

But, since EF=2BI>,

cone AEF=8 (cone ABD)

;

therefore sphere = 4 (cone ABB).

(2) Through B, D draw VBW, XDY parallel to AG;

and imagine a cylinder which has AG for axis and the circles

on VX, WY as diameters for bases.

Then cylinder FF= 2 (cylinder VD)

= 6 (cone ABD) [Eucl. xii. 10]

= f (sphere), from above.

Q.E.D.

"From this theorem, to the effect that a sphere is four

times as great as the cone with a great circle of the sphere as

base and with height equal to the radius of the sphere, I con-

ceived the notion that the surface of any sphere is four times as

great as a great circle in it; for, judging from the fact that any

circle is equal to a triangle with base equal to the circumference

and height equal to the radius of the circle, I apprehended
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that, in like manner, any sphere is equal to a cone with base

equal to the surface of the sphere and height equal to the

radius*."

Proposition 3.

By this method we can also investigate the theorem that

A cylinder with base equal to the greatest circle in a spheroid

and height equal to the axis of the spheroid is 1\ times the

spheroid;

and, when this is established, it is plain that

If any spheroid he cut by a plane through the centre and at

right angles to the axis, the half of the spheroid is double of the

cone which has the same base and the same axis as the segment

{i.e. the half of the spheroid).

Let a plane through the axis of a spheroid cut its surface in

the ellipse ABGD, the diameters (i.e. axes) of which are AG,
BD ; and let K be the centre.

Draw a circle about BD as diameter and in a plane per-

pendicular to AG;

imagine a cone with this circle as base and A as vertex

produced and cut by a plane through G parallel to its base

;

the section will be a circle in a plane at right angles to AG
and about EF as diameter.

Imagine a cylinder with the latter circle as base and axis

AG; produce GA to H, making AH equal to GA.

Let HG be regarded as the bar of a balance, A being its

middle point.

In the parallelogram LF draw any straight line MN
parallel to EF meeting the ellipse in 0, P and AE, AF, AG in

Q, R, 8 respectively.

* That is to say, Archimedes originally solved the problem of finding the

solid content of a sphere before that of finding its surface, and he inferred the

result of the latter problem from that of the former. Yet in On the Sphere and

Gyliixder i. the surface is independently found (Prop. 33) and before the

volume, which is found in Prop. 34 : another illustration of the fact that the

order of propositions in the treatises of the Greek geometers as finally

elaborated does not necessarily follow the order of discovery.
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If now a plane be drawn through MN a.t right angles to

AC, it will cut the cylinder in a circle with diameter MN, the

spheroid in a circle with diameter OP, and the cone in a circle

with diameter QR.

Since HA = AC,
HA:AS=CA : AS

=EA:AQ
= M8:SQ.

Therefore HA:AS = MS" : MS . SQ.

H

M

L V
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That is,

HA -.AS^ (circle in cylinder) : (circle in spheroid + circle in cone).

Therefore the circle in the cylinder, in the place where it is,

is in equilibrium, about A, with the circle in the spheroid and

the circle in the cone together, if both the latter circles are

placed with their centres of gravity at H.

Similarly for the three corresponding sections made by a

plane perpendicular to AG and passing through any other

straight line in the parallelogram LF parallel to EF.

If we deal in the same way with all the sets of three circles

in which planes perpendicular to AG cut the cylinder, the

spheroid and the cone, and which make up those figures

respectively, it follows that the cylinder, in the place where it

is, will be in equilibrium about A with the spheroid and the

cone together, when both are placed with their centres of

gravity at H.

Therefore, since K is the centre of gravity of the cylinder,

HA : 4ir= (cylinder) : (spheroid + cone AEF).

But HA = 2AK;

therefore cylinder = 2 (spheroid + cone AEF).

And cylinder = 3 (cone AEF) ;
[Eucl. xii. 10]

therefore cone AEF = 2 (spheroid).

But, since EF= 2BD,

cone AEF = 8 (cone ABD)
;

therefore spheroid = 4 (cone ABB),

and half the spheroid = 2 (cone ABD).

Through B, D draw VBW, Zi)F parallel to AG;

and imagine a cylinder which has AG for axis and the circles

on VX, WY as diameters for bases.

Then cylinder VY= 2 (cylinder VD)

= 6 (cone^^D)

= I (spheroid), from above.

Q.E.D.
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Proposition 4.

Any segment of a right-angled conoid (i.e. a paraboloid of

revolution) cut off by a plane at right angles to the axis is

\\ times the cone which has the same base and the same axis

as the segment.

This can be investigated by our method, as follows.

Let a paraboloid of revolution be cut by a plane through

the axis in the parabola BAG;

and let it also be cut by another plane at right angles to the

axis and intersecting the former plane in BG. Produce BA,
the axis of the segment, to H, making HA equal to AD.

Imagine that HD is the bar of a balance, A being its

middle point.

The base of the segment being the circle on BG as diameter
and in a plane perpendicular to AD,
imagine (1) a cone drawn with the latter circle as base and A
as vertex, and (2) a cylinder with the same circle as base and
AD as axis.

In the parallelogram EG let any straight line MN be drawn
parallel to BG, and through MN let a plane be drawn at right

angles to AD ; this plane will cut the cylinder in a circle with
diameter MN and the paraboloid in a circle with diameter OP-
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Now, BAG being a parabola and BD, OS ordinates,

DA -.AS^BD": 08\
or HA : A8 = MS' : 80\

Therefore

HA : AS= {circle, rad. MS) : (circle, rad. OS)

= (circle in cylinder) : (circle in paraboloid).

Therefore the circle in the cylinder, in the place where it is,

will be in equilibrium, about A, with the circle in the paraboloid,

if the latter is placed with its centre of gravity at H.

Similarly for the two corresponding circular sections made
by a plane perpendicular to AD and passing through any other

straight line in the parallelogram which is parallel to BC.

Therefore, as usual, if we take all the circles making up the

whole cylinder and the whole segment and treat them in the

same way, we find that the cylinder, in the place where it is,

is in equilibrium about A with the segment placed with its

centre of gravity at H.

IfK is the middle point oi AD, K is the centre of gravity

of the cylinder

;

therefore HA : AK= (cylinder) : (segment).

Therefore cylinder = 2 (segment).

And cylinder = 3 (cone ^50); [Eucl. xii. 10]

therefore segment = f (cone ABC).

Proposition 5.

The centre of gravity of a segment of a right-angled conoid

{i.e. a paraboloid of revolution) cut off by a plane at right angles

to the aods is on the straight line which is the axis of the segment,

and divides the said straight line in such a way that the portion

of it adjacent to the vertex is double of the remaining portion.

This can be investigated by the method, as follows.

Let a paraboloid of revolution be cut by a plane through

the axis in the parabola BAG;

and let it also be cut by another plane at right angles to the

axis and intersecting the former plane in BG.
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Produce BA, the axis of the segment, to H, making HA
equal to AD; and imagine DH to be the bar of a balance, its

middle point being A,

The base of the segment being the circle on BG as diameter

and in a plane perpendicular to AD,

imagine a cone with this circle as base and A as vertex, so that

AB, AG are generators of the cone.

In the parabola let any double ordinate OP be drawn

meeting AB, AD, AG in Q, 8, R respectively.

Now, from the property of the parabola.
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If now through OP a, plane be drawn at right angles to

AD, this plane cuts the paraboloid in a circle with diameter

OP and the cone in a circle with diameter QR.

We see therefore that

HA : AS=(cuc\e, diam. OP) : (circle, diam. QR)
= (circle in paraboloid) : (circle in cone);,

and the circle in the paraboloid, in the place where it is, is in

equilibrium about A with the circle in the cone placed with its

centre of gravity at H.

Similarly for the two corresponding circular sections made
by a plane perpendicular to AD and passing through any other

ordinate of the parabola.

Dealing therefore in the same way with all the circular

sections which make up the whole of the segment of the

paraboloid and the cone respectively, we see that the segment

of the paraboloid, in the place where it is, is in equilibrium

about A with the cone placed with its centre of gravity at H.

Now, since A is the centre of gravity of the whole system

as placed, and the centre of gravity of part of it, namely the

cone, as placed, is at H, the centre of gravity of the rest,

namely the segment, is at a point K on HA produced such

that

HA : AK= (segment) : (cone).

But segment = | (cone). [Prop. 4]

Therefore HA=^AK;
that is, K divides AD in such a way that AK=2KD.

Proposition 6.

The centre of gravity of any hemisphere [is on the straight

line which] is its oasis, and divides the said straight line in such

a way that the portion of it adjacent to the surface of the

hemisphere has to the remaining portion the ratio which 5 has

to 3.

Let a sphere be cut by a plane through its centre in the

circle ABGD;
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let AG, BD be perpendicular diameters of this circle,

and through BD let a plane be drawn at right angles to AG.

The latter plane will cut the sphere in a circle on BD as

diameter.

Imagine a cone with the latter circle as base and A as

vertex.

Produce GA to H, making AH equal to GA, and let HG be

regarded as the bar of a balance, A being its middle point.

In the semicircle BAD, let any

straight line OP be drawn parallel to

BD and cutting AG \n E and the two

generators AB, AD of the cone in Q, R
respectively. Join AO.

Through OP let a plane be drawn

at right angles to AG;

this plane will cut the hemisphere in a

circle with diameter OP and the cone

in a circle with diameter QR.

Now
RA:AE=AG:AE

= AO^:AE'
= {OE'+AE'):AE'
= {OE'+QE'):QE'
= (circle, diam. OP + circle,diam. QR) : (circle, diam. QR).

Therefore the circles with diameters OP, QR, in the places

where they are, are in equilibrium about A with the circle with

diameter QR ii the latter is placed with its centre of gravity

a,tH.

And, since the centre of gravity of the two circles with

diameters OP, QR taken together, in the place where they are,

is

[There is a lacuna here ; but the proof can easily be com-

pleted on the lines of the corresponding but more diflScult case

in Prop. 8.

We proceed thus from the point where the circles with

diameters OP, QR,in the place where they are, balance, about A,
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the circle with diameter QR placed with its centre of gravity

at H.

A similar relation holds for all the other sets of circular

sections made by other planes passing through points on AO
and at right angles to AO.

Taking then all the circles which fill up the hemisphere

BAD and the cone ABD respectively, we find that

the hemisphere BAD and the cone ABD, in the places where

they are, together balance, about A, a cone equal to ABD placed

with its centre of gravity at H.

Let the cylinder M + Nhe equal to the cone ABD.
Then, since the cylinder M+N placed with its centre of

gravity at H balances the hemisphere BAD and the cone ABD
in the places where they are,

suppose that the portion M of the cylinder, placed with its

centre of gravity at H, balances the cone ABD (alone) in the

place where it is; therefore the portion N of the cylinder placed

with its centre of gravity at H balances the hemisphere (alone)

in the place where it is.

Now the centre of gravity of the cone is at a point V such

that^G' = 4GF;

therefore, since M at fi" is in equilibrium with the cone,

M : (cone) = fJ.G : HA=iAC : AG,

whence Jlf=|(cone).

But Jlf+iV"=(cone); therefore i\/"= |(cone).

Now let the centre of gravity of the hemisphere be at W,

which is somewhere on AO.

Then, since N at H balances the hemisphere alone,

(hemisphere) : N = HA : AW.

But the hemisphere BAD = tviice the cone ABD;

[On the Sphere and Cylinder I. 34 and Prop. 2 above]

and iV=f (cone), from above.

Therefore 2:i = EA -.AW
= 2AG:AW,

whence AW = ^A0, so that W divides AO in such a way that

AW: WG = 5:3.]
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Proposition 7.

We can also investigate by the same method the theorem

that

[Any segment of a sphere has] to the cone [with the same

base and height the ratio which the sum. of the radius of the

sphere and the height of the complementary segment has to

the height of the complementary segment]

[There is a lacuna here; but all that is missing is the

construction, and the construction is easily understood by

M
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equilibrium about A with the two circles with diameters OT,

QB if these circles are both moved and placed with their centres

of gravity at H.

The same thing can be proved of all sets of three circles

in which the cylinder, the segment of the sphere, and the

cone with the common height AO are all cut by any plane

perpendicular to AG.

Since then the sets of circles make up the whole cylinder,

the whole segment of the sphere and the whole cone respec-

tively, it follows that the cylinder, in the place where it is,

is in equilibrium about A with the sum of the segment of

the sphere and the cone if both are placed with their centres

of gravity at H.

Divide AO at W, F in such a way that

AW=WO, AV=3VG.
Therefore W will be the centre of gravity of the cylinder,

and V will be the centre of gravity of the cone.

Since, now, the bodies are in equilibrium as described,

(cylinder) : (cone J. ^i''+ segment BAD of sphere)

= HA -.AW.

[The rest of the proof is lost ; but it can easily be suppHed

thus.

We have

(cone AEF+ segmt. BAD) : (cylinder) =AW:AG
= AW.AG:AG'.

But (cylinder) : (cone AEF) = AG': ^EG'
= AG':iAG'.

Therefore, eoc aequali,

(cone AEF+ segmt.BAD)

:

(cone AEF) =AW . AG : ^AG^-

= ^AG:iAG.

whence (segmt. BAD) : (cone AEF) = {^AG - ^ AG) : ^AG.

Again (cone AEF) : (cone ABD) = EG' : DG'
= AG"-:AG.GG
= AG:GG
= ^AG:WG.
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Therefore, ex aequali,

(segment BAD) : (cone ABD) = (^AG-^AG): ^GG
= {^AC-AG):GG
= {iAC+GC):GG.

Q.E.D.J

Proposition 8.

[The enunciation, the setting-out, and a few words of the

construction are missing.

The enunciation however can be supplied from that of

Prop. 9, with which it must be identical except that it cannot

refer to " any segment," and the presumption therefore is that

the proposition was enunciated with reference to one kind of

segment only, i.e. either a segment greater than a hemisphere

or a segment less than a hemisphere.

Heiberg's figure corresponds to the case of a segment

greater than a hemisphere. The

segment investigated is of course

the segment BAD. The setting-

out and construction are self-

evident from the figure.]

Produce AC to H, 0, making

HA equal to AG and CO equal

to the radius of the sphere

;

and let HG be regarded as the

bar of a balance, the middle point

being A.

In the plane cutting off the

segment describe a circle with G
as centre and radius (GE) equal

to AG; and on this circle as

base, and with A as vertex, let

a cone be described. AE, AF
are generators of this cone.

Draw KL, through any point

Q on AG, parallel to EF and cutting the segment in K, L, and

AE, AF in E, P respectively. Join AK.
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Now HA:AQ = GA: AQ
= AK':AQ^
= (KQ' + QA'):QA'

— (circle, diam. KL + circle, diam. PR)
: (circle, diam. PR).

Imagine a circle equal to the circle with diameter PR
placed with its centre of gravity at H;

therefore the circles on diameters KL, PR, in the places where

they are, are in equilibrium about A with the circle with

diameter PR placed with its centre of gravity at H.

Similarly for the corresponding circular sections made by

any other plane perpendicular to AG.

Therefore, taking all the circular sections which make up

the segment ABD of the sphere and the cone AEF respec-

tively, we find that the segment ABD of the sphere and the

cone AEF, in the places where they are, are in equilibrium

with the cone ^^^^ assumed to be placed with its centre of

gravity at H.

Let the cylinder M+ If he equal to the cone AEF which

has A for vertex and the circle on EF as diameter for base.

Divide AG at V so that AG = 4<VG;

therefore V is the centre of gravity of the cone AEF; "for

this has been proved before*."

Let the cylinder M+ Nhe cut by a plane perpendicular to

the axis in such a way that the cylinder M (alone), placed with

its centre of gravity at H, is in equilibrium with the cone AEF.

Since M+N suspended at H is in equilibrium with the

segment ABB of the sphere and the cone AEF in the places

where they are,

while M, also at H, is in equilibrium with the cone AEF in

the place where it is, it follows that

iV" at -Ef is in equilibrium with the segment ABD of the

sphere in the place where it is.

* Cf. note on p. 15 above.

H. A. 2
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Now (s>;giii..Dt ABD of sphere) : (cone ABB)
= OG : GC;

" for this is already proved " [Cf, On the Sphere and, Cylinder

II. 2 Cor. as well as Prop. 7 ante].

And (cone ABD) : (cone AEF)
= (circle, diam. BD) : (circle, diam. EF)

= BL' : EF'
= BG^:GE-
= CG . GA : GA'

= CG : GA.

Therefore, ex aequali,

(segment ABD of sphere) : (cone AEF)
= OG : GA.

Take a point W on AG such that

AW: WG = {GA + iGG) : {GA + 2GG).

We have then, inversely,

GW:WA= (2GC + GA) : (4(?(7 + GA),

and, cotnpojiendo,

GA .AW={QGC + 2GA):{iGG+GA).

But GO = i (6GG + 2GA), [for GO-GG = \ (GG + GA)]

and GV=l{iGG+GA);
therefore GA : AW=OG : CV,

and, alternately and inversely,

OG:GA = CV: WA.

It follows, from above, that

(segment ABD of sphere) : (cone AEF) = GV : WA.

Now, since the cylinder M with its centre of gravity at H
is in equilibrium about A with the cone AEF with its centre

of gravity at V.

(cone AEF) : (cylinder M) = HA:AV
= GA:AV;

and, since the cone AEF = the. cylinder M+N, we have,

dividendo and invertendo,

(cylinder M) : (cylinder jy^ = AV:CV.
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Hence, componendo,

(cone AEF) : (cylinder N)=GA:GV*
= HA:CV.

But it was proved that

(segment ABD of sphere) : (cone AEF) = GV : WA;
therefore, ex aequali,

(segment ABD of sphere) : (cylinder N) = HA : A W.

And it was above proved that the cylinder N at H is

in equilibrium about A with the segment ABB, in the place

where it is;

therefore, since H is the centre of gravity of the cylinder N,

W is the centre of gravity of the segment ABD of the sphere.

Proposition 9.

In the same way we can investigate the theorem that

The centre of gravity of any segment of a sphere is on the

straight line which is the axis of the segment, and divides this

straight line in such a way that the part of it adjacent to the

vertex of the segment has to the remaining part the ratio which

the sum of the axis of the segment and four times the axis of

the complementary segment has to the sum of the axis of the

segment and double the axis of the complementary segment.

[As this theorem relates to " any segment " but states the

same result as that proved in the preceding proposition, it

follows that Prop. 8 must have related to one kind of segment,

either a segment greater than a semicircle (as in Heiberg's

figure of Prop. 8) or a segment less than a semicircle ; and

the present proposition completed the proof for both kinds of

segments. It would only require a slight change in the figure,

in any case.]

Proposition 1 0.

By this method too we can investigate the theorem that

[A segment of an obtuse-angled conoid {i.e. a hyperboloid of

revolution) has to the cone which has] the same base [as the

* Archimedes arrives at this result in a very roundabout way, seeing that it

could have been obtained at once convertendo. Of. Euclid x. 14.

3—2
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iigffi.erd and equal height the same ratio ax the sum of the axis

of the segment and itiree times'] tfte "annex to the axis" (i.e. half

the transverse axis of the hyperbolic section through the oris of

the hyperholoid or, in other words, the distance between the

vertex of the segment and the vertex oftiie enveloping cone) has to

the sum of tJie axis of tfie segment and double of the " annex " *

[this is the theorem proved in On Conoids and Spheroids,

Prop. 25], " and also many other theorems, which, as the method

has been made clear by means of the foregoing examples, I will

omit, in order that I may now proceed to compass the proofe

of the theorems mentioned above."

Proposition 1

1

.

If in a right prism xtnth square bases a cylinder he inscribed

having its bases in opposite square faces and touching with its

surface the remaining four parallelogrammic faces, and if

through the centre of the circle which is the base of the cylinder

and one side of the opposite square faxx a plane be drawn, the

figure cut off by the plane so drawn is one sixth part of the

whole prism.

"This can be investigated by the method, and, when it

is set out, I will go back to the proof of it by geometrical

considerations."

[The investigation by the mechanical method is contained

in the two Propositions, 11, 12. Prop. 13 gives another solution

which, although it contains no mechanics, is still of the character

which Archimedes regards as inconclusive, since it assumes that

the solid is actually made up of parallel plane sections and that

an auxiliary parabola is actually made up of parallel straight

lines in it. Prop. 14 added the conclusive geometrical proof]

Let there be a right prism with a cylinder inscribed as

stated.

• The text has "triple" {Tpi-rrXturlan) in the last line instead of "double."

As there is a considerable lacuna before the last few lines, a theorem about the

centre of gravity of a segment of a hyperboloid of revolution may have fallen

out.
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IS
of the cylinder cut off in a parallelogram, one side of which
equal to ST and the other is equal and parallel to UV (in the
first figure).

UV will be parallel to BY and will cut off, along EG in the

parallelogram DE, the segment EI equal to QW.

Now, since EC is a parallelogram, and VI is parallel to GO,

EG : QI = YG : CV
= BY: UV
= {HJ in half cyl.) : (O in portion of cyl).

And EG = HQ, GI=HW, QH=OH;
therefore OH : HW= (O in half cyl.) : (O in portion).

Imagine that the parallelogram in the portion of the

cylinder is moved and placed at so that is its centre

of gravity, and that OQ is the bar of a balance, H being its

middle point.

Then, since W is the centre of gravity of the parallelogram

in the half cylinder, it follows from the above that the paral-

lelogram in the half cylinder, in the place where it is, with its

centre of gravity at W, is in equilibrium about H with the

parallelogram in the portion of the cylinder when placed with

its centre of gravity at 0.

Similarly for the other parallelogrammic sections made by

any plane perpendicular to OQ and passing through any other

chord in the semicircle PQR perpendicular to OQ.

If then we take all the parallelograms making up the half

cylinder and the portion of the cylinder respectively, it follows

that the half cylinder, in the place where it is, is in equilibrium

about H with the portion of the cylinder cut off when the

latter is placed with its centre of gravity at 0.

Proposition 12.

Let the parallelogram (square) MIf perpendicular to the

axis, with the circle OPQR and its diameters OQ, PR, be

drawn separately.
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Join HG, HM, and through them draw planes at right

angles to the plane of the circle,

producing them on both sides of

that plane.

This produces a prism with

triangular section OHM and height

equal to the axis of the cylinder

;

this prism is \ of the original

prism circumscribing the cylinder.

Let LK, UT be drawn parallel

to OQ and equidistant from it,

cutting the circle in K, T, MP
in S, F, and GH, HM in W, V respectively.

Through LK, UT draw planes at right angles to PR,
producing them on both sides of the plane of the circle

;

these planes produce as sections in the half cylinder PQR
and in the prism GHM four parallelograms in which the

heights are equal to the axis of the cylinder, and the other

sides are equal to KS, TF, LW, UV respectively

y
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And ^{LS + 8W) is the distance of the centre of gravity

oi LW from 8,

while ^8K is the distance of the centre of gravity of SK from 8.

Therefore 8K and LW, in the places where they are,

balance about *Si.

Similarly for the corresponding parallelograms.

Taking all the parallelogrammic elements in the half

cylinder and prism respectively, we find that

the half cylinder PQR and the prism OHM, in the places

where they are respectively, balance about H.

From this result and that of Prop. 11 we can at once deduce

the volume of the portion cut off from the cylinder. For in

Prop. 11 the portion of the cylinder, placed with its centre of

gravity at 0, is shown to balance (about H) the half-cyUnder

in the place where it is. By Prop. 12 we may substitute for

the half-cylinder in the place where it is the prism GEM
of that proposition turned the opposite way relatively to RP.

The centre of gravity of the prism as thus placed is at a point

(say Z) on HQ such that EZ= ^HQ.

Therefore, assuming the prism to be applied at its centre of

gravity, we have

(portion of cylinder) : (prism) = f-ffQ : OH
= 2:3;

therefore (portion of cylinder) = | (prism GHM)
= ^ (original prism).

Note. This proposition of course solves the problem of

finding the centre of gravity of a half cylinder or, in other

words, of a semicircle.

For the triangle OHM in the place where it is balances,

about H, the semicircle PQR in the place where it is.

If then X is the point on HQ which is the centre of

gravity of the semicircle,

%H0 . (A OHM) = HX . (semicircle PQR),

or lHO.HO' = HX.\-rr.HO';

that is, HX = ^.HQ.^
OTT
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[There is a lacuna here, to be supplied as follows.

Since MN : NL = OK^ : LS'

it follows that MN : ML = MN' : (MN' - LS')

= MN':(MN'-MK')
= MN' : M0\

But the triangle (1) in the prism is to the triangle (2) in

the portion of the cylinder in the ratio of MN' : MO'.

Therefore

(A in prism) : (A in portion of cylinder)

= MN:ML
= (straight line in rect. DG) : (straight line in parabola).

We now take all the corresponding elements in the prism,

the portion of the cylinder, the rectangle DG and the parabola

EFG respectively
;]

and it will follow that

(all the As in prism) : (all the As in portion of cylinder)

= (all the str. lines in O DG)

: (all the straight lines between parabola and EG).

But the prism is made up of the triangles in the prism,

[the portion of the cylinder is made up of the triangles in it],

the parallelogram DG of the straight lines in it parallel to KF,

and the parabolic segment of the straight lines parallel to KF
intercepted between its circumference and EG

;

therefore (prism) : (portion of cylinder)

= (O GD) : (parabolic segment EFG).

But CJ GD = % (parabolic segment EFG)
;

" for this is proved in my earlier treatise."

[Quadrature of Parabola']

Therefore prism = f (portion of cylinder).

If then we denote the portion of the cylinder by 2, the

prism is 3, and the original prism circumscribing the cylinder

is 12 (being 4 times the other prism);

therefore the portion of the cylinder = ^ (original prism).

Q.E.D.
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[The above proposition and the next are peculiarly interest-

ing for the fact that the parabola is an auxiliary curve introduced

for the sole purpose of analytically reducing the required

cubature to the known quadrature of the parabola.]

Proposition 14.

Let there be a right prism with square bases [and a

cylinder inscribed therein having its base in the square ABGD
and touching its sides at E, F, G,H;

let the cylinder be cut by a plane through EQ and the side

corresponding to GD in the square face opposite to ABGDI.

This plane cuts off from the prism a prism, and from the

cylinder a portion of it.

It can be proved that the portion of the cylinder cut off by

the plane is ^ of the whole prism.

But we will first prove that it is possible to inscribe in

the portion cut off from the cylinder, and to circumscribe about

it, solid figures made up of prisms which have equal height

and similar triangular bases, in such a way that the circum-

scribed figure exceeds the inscribed by less than any assigned

magnitude

But it was proved that

(prism cut off by oblique plane)

< f (figure inscribed in portion of cylinder).

Now

(prism cut off) : (inscribed figure)

= O DQ : (ZZ7s inscribed in parabolic segment)

;

therefore /U DQ < f (CZs in parabolic segment) :

which is impossible, since " it has been proved elsewhere " that

the parallelogram DO is | of the parabolic segment.

Consequently

not greater.



44 ARCHIMEDES

And (all the prisms in prism cut off)

: (all prisms in circurascr. figure)

= (all Os in O DG)

: (all Os in fig. circumscr. about parabolic segmt.)

;

therefore

(prism cut off) : (figure circumscr. about portion of cylinder)

= {EJ DQ) : (figure circumscr. about parabolic segment).

But the prism cut off by the oblique plane is > f of

the solid figure circumscribed about the portion of the

cylinder

[There are large gaps in the exposition of this geometrical

proof but the way in which the method of exhaustion was

applied, and the parallelism between this and other applications

of it, are clear. The first fragment shows that solid figures

made up of prisms were circumscribed and inscribed to the

portion of the cylinder. The parallel triangular faces of these

prisms were perpendicular to GE in the figure of Prop. 13

;

they divided GE into equal portions of the requisite smallness

;

each section of the portion of the cylinder by such a plane was

a triangular face common to an inscribed and a circumscribed

right prism. The planes also produced prisms in the prism cut

ofP by the same oblique plane as cuts off the portion of the

cylinder and standing on GD as base.

The number of parts into which the parallel planes divided

GE was made great enough to secure that the circumscribed

figure exceeded the inscribed figure by less than a small

assigned magnitude.

The second part of the proof began with the assumption

that the portion of the cylinder is > | of the prism cut off;

and this was proved to be impossible, by means of the use of

the auxiliary parabola and the proportion

MN:ML = MJST' : MO'

which are employed in Prop. 13.
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We may supply the missing proof as follows*.

In the accompanying figure are represented (1) the first

M spyo

element-prism circumscribed to the portion of the cylinder,

(2) two element-prisms adjacent to the ordinate OM, of which

that on the left is circumscribed and

that on the right (equal to the other)

inscribed, (3) the corresponding element-

prisms forming part of the prism cut

off (GG'GEDD') which is ^ of the original

prism.

In the second figure are shown

element-rectangles circumscribed and

inscribed to the auxiliary parabola,

which rectangles correspond exactly to

the circumscribed and inscribed element-

prisms represented in the first figure

(the length of GM is the same in both

figures, and the breadths of the element-

rectangles are the same as the heights of the element-prisms)

;

* It is right to mention that this has already been done by Th. Eeinaoh in

his version of the treatise ("Un Traits de G6om6trie in^dit d'Archim^de " in

Revue gSnSrale des sciences pures et appliquees, 30 Nov. and 15 Dee. 1907) ;

but I prefer my own statement of the proof.
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the corresponding element-rectangles forming part of the

rectangle GD are similarly shown.

For convenience we suppose that OE is divided into an

even number of equal parts, so that OK contains an integral

number of these parts.

For the sake of brevity we will call each of the two element-

prisms of which OM is an edge "el. prism (0)" and each of

the element-prisms of which MNN' is a common face "el.

prism (iV)." Similarly we will use the corresponding abbrevia-

tions " el. rect. (i) " and " el. rect. (iV) " for the corresponding

elements in relation to the auxiliary parabola as shown in

the second figure.

Now it is easy to see that the figure made up of all the

inscribed prisms is less than the figure made up of the circum-

scribed prisms by twice the final circumscribed prism adjacent

to FK, i.e. by twice " el. prism {N) " ; and, as the height of this

prism may be made as small as we please by dividing GK into

sufficiently small parts, it follows that inscribed and circum-

scribed solid figures made up of element-prisms can be drawn

differing by less than any assigned solid figure.

(1) Suppose, if possible, that

(portion of cylinder) > | (prism cut off),

or (prism cut off) < | (portion of cylinder).

Let (prism cut off) = | (portion of cylinder — X), say.

Construct circumscribed and inscribed figures made up of

element-prisms, such that

(circumscr. fig.) — (inscr. fig.) < X.

l
Therefore (inscr. fig.) > (circumscr. fig. —X),

arid a fortiori > (portion of cyl. — X).

It follows that

(prism cut off) < f (inscribed figure).

Considering now the element-prisms in the prism cut off

and those in the inscribed figure respectively, we have

el. prism (N) : el. prism (0) = MN'' : MO''

= MJSr : ML [as in Prop. 13]

= el. rect. (N) : el. rect. (L).
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It follows that

t {el. prism (N)] : 2 {el. prism (0)}

= S {el. rect. (iV)} : S {el. rect. (L)}.

(There are really two more prisms and rectangles in the

first and third than there are in the second and fourth terms

respectively; but this makes no difference because the first

and third terms may be multiplied by a common factor as

n/(n—2) without affecting the truth of the proportion. Of.

the proposition fi-om On Conoids and Spheroids quoted on p. 15

above.)

Therefore

(prism cut off) : (figure inscr. in portion of cyl.)

= (rect. GD) : (fig. inscr. in parabola).

But it was proved above that

(prism cut off) < f (fig. inscr. in portion of cyl.)

;

therefore (rect. OD) < f (fig. inscr. in parabola),

and, a fortiori,

(rect. GD) < f (parabolic segmt.)

:

which is impossible, since

(rect. GD) = | (parabolic segmt.).

Therefore

(portion of cyl.) is not greater than | (prism cut off).

(2) In the second lacuna must have come the beginning of

the next reductio ad absurdurii demolishing the other possible

assumption that the portion of the cylinder is < | of the prism
cut off.

In this case our assumption is that

(prism cut off) > I (portion of cylinder)

;

and we circumscribe and inscribe figures made up of element-

prisms, such that

(prism cut off) > f (fig. circumscr. about portion of cyl.).
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We now consider the element-prisms in the prism cut off

and in the circumscribed figure respectively, and the same

argument as above gives

(prism cut off) : (fig. circumscr. about portion of cyl.)

= (rect. GD) : (fig. circumscr. about parabola),

whence it follows that

(rect. QD) > | (fig. circumscribed about parabola),

and, a fortiori,

(rect. OD) > | (parabolic segment)

:

which is impossible, since

(rect. GB) = f (parabolic segmt.).

Therefore

(portion of cyl.) is not less than | (prism cut off).

But it was also proved that neither is it greater

;

therefore (portion of cyl.) = § (prism cut off)

= ^ (original prism).]

[Proposition 15.]

[This proposition, which is lost, would be the mechanical

investigation of the second of the two special problems

mentioned in the preface to the treatise, namely that of the

cubature of the figure included between two cylinders, each

of which is inscribed in one and the same cube so that its

opposite bases are in two opposite faces of the cube and its

surface touches the other four faces.

Zeuthen has shown how the mechanical method can be

applied to this case*.

In the accompanying figure VWYX is a section of the

cube by a plane (that of the paper) passing through the axis

BD of one of the cylinders inscribed in the cube and parallel

to two opposite faces.

The same plane gives the circle ABOB as the section of

the other inscribed cylinder with axis perpendicular to the

* Zeuthen in Bibliotheca Mathematica VII3, 1906-7, pp. 356-7.
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plane of the paper and extending on each side of the plane

to a distance equal to the radius of the circle or half the side

of the cube.

AG is the diameter of the circle which is perpendicular

to BD.

Join AB, AD and produce them to meet the tangent at G

to the circle in E, F.

Then EC = OF =GA.

Let LG be the tangent at A, and complete the rectangle

EFGL.

M

L V
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This plane cuts

—

(1) the solid included by the two cylinders in a square with

side equal to OP,

(2) the prism in a square with side equal to MN, and

(3) the pyramid in a square with side equal to QR.

Produce GA to H, making HA equal to AC, and imagine

HG to be the bar of a balance.

Now, as in Prop. 2, since MS = AG,QS = AS,

MS.SQ=^GA. AS
= A0'
= OS^ + SQ\

Also

HA :AS=CA : AS
= MS:SQ
= MS' : MS . SQ
= MS'' : {OS' + SQ'), from above,

= MN' : (OP' + QR')

= (square, side MN) : (sq., side OP + sq., side QR).

Therefore the square with side equal to MN, in the place

where it is, is in equilibrium about A with the squares with

sides equal to OP, QR respectively placed with their centres of

gravity at H.

Proceeding in the same way with the square sections

produced by other planes perpendicular to AG, we finally

prove that the prism, in the place where it is, is in equilibrium

about A with the solid included by the two cylinders and the

pyramid, both placed with their centres of gravity at H.

Now the centre of gravity of the prism is at K.

Therefore HA : AK = (prism) : (solid + pyramid)

or 2:1= (prism) : (solid + ^ prism).

Therefore 2 (solid) + § (prism) = (prism).

It follows that

(solid included by cylinders) = ^ (prism)

= I (cube). Q.E.D.
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There is no doubt that Archimedes proceeded to, and

completed, the rigorous geometrical proof by the method of

exhaustion.

As observed by Prof. C. Juel (Zeuthen I.e.), the solid in the

present proposition is made up of 8 pieces of cylinders of the

t3rpe of that treated in the preceding proposition. As however

the two propositions are separately stated, there is no doubt

that Archimedes' proofs of them were distinct.

In this case AG would be divided into a very large number

of equal parts and planes would be drawn through the points

of division perpendicular to AG. These planes cut the solid,

and also the cube VY, in square sections. Thus we can inscribe

and circumscribe to the solid the requisite solid figures made

up of element-prisms and differing by less than any assigned

solid magnitude; the prisms have square bases and their

heights are the small segments of AG. The element-prism

in the inscribed and circumscribed figures which has the square

equal to OP^ for base corresponds to an element-prism in the

cube which has for base a square with side" equal to that of

the cube; and as the ratio of the element-prisms is the ratio

OS^ : BK', we can use the same auxiliary parabola, and work

out the proof in exactly the same way, as in Prop. 14.j
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