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PREFACE

Y HERE never has been, and till we see it we never

shall believe that there can be, a system of geometry
worthy of the name, which has any material departures (we do
not speak of corrections or extensions or developments) from
the plan laid down by Euclid.” De Morgan wrote thus in
October 1848 (Short supplementary remarks on the first six
Books of Euclid’'s Elements in the Companion to the Almanac
for 1849); and I do not think that, if he had been living
to-day, he would have seen reason to revise the opinion so
deliberately pronounced sixty years ago. It is true that in the
interval much valuable work has been done on the continent
in the investigation of the first principles, including the
formulation and classification of axioms or postulates which
are necessary to make good the deficiencies of Euclid’s own
explicit postulates and axioms and to justify the further
assumptions which he tacitly makes in certain propositions,
content apparently to let their truth be inferred from observa-
tion of the figures as drawn ; but, once the first principles are
disposed of, the body of doctrine contained in the recent text-
books of elementary geometry does not, and from the nature
of the case cannot, show any substantial differences from that
set forth in the Elements. In England it would seem that far
less of scientific value has been done; the efforts of a multitude
of writers have rather been directed towards producing alter-
natives for Euclid which shall be more suitable, that is to say,
easier, for schoolboys. It is of course not surprising that, in



vi PREFACE

these days of short cuts, there should have arisen a movement
to get rid of Euclid and to substitute a “royal road to
geometry ”; the marvel is that a book which was not written
for schoolboys but for grown men (as all internal evidence
shows, and in particular the essentially theoretical character
of the work and its aloofness from anything of the nature of
“practical” geometry) should have held its own as a school-
book for so long. And now that Euclid’s proofs and arrange-
ment are no longer required from candidates at examinations
there has been a rush of competitors anxious to be first in the
field with a new text-book on the more “practical” lines which
now find so much favour. The natural desire of each teacher
who writes such a text-book is to give prominence to some
special nostrum which he has found successful with pupils.
One result is, too often, a loss of a due sense of proportion;
and, in any case, it is inevitable that there should be great
diversity of treatment. It was with reference to such a danger
that Lardner wrote in 1846 : “Euclid once superseded, every
teacher would esteem his own work the best, and every school
would have its own class book. ~All that rigour and exactitude
which have so long excited the admiration of men of science
would be at an end. These very words would lose all definite
meaning. Every school would have a different standard;
matter of assumption in one being matter of demonstration in
another; until, at length, GEOMETRY, in the ancient sense of
the word, would be altogether frittered away or be only
considered as a particular application of Arithmetic and
Algebra.” It is, perhaps, too early yet to prophesy what will
be the ultimate outcome of the new order of things; but it
would at least seem possible that history will repeat itself and
that, when chaos has come again in geometrical teaching,
there will be a return to Euclid more or less complete for the
purpose of standardising it once more.

But the case for a new edition of Euclid is independent of
any controversies as to how geometry shall be taught to
schoolboys. Euclid’s work will live long after all the text-books
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of the present day are superseded and forgotten. It is one
of the noblest monuments of antiquity; no mathematician
worthy of the name can afford not to know Euclid, the real
Euclid as distinct from any revised or rewritten versions
which will serve for schoolboys or engineers. And, to know
Euclid, it is necessary to know his language, and, so far as it
can be traced, the history of the “elements” which he
collected in his immortal work.

This brings me to the »aison d'étre of the present edition.
A new translation from the Greek was necessary for two
reasons. First, though some time has elapsed since the
appearance of Heiberg’s definitive text and prolegomena,
published between 1883 and 1888, there has not been, so far
as I know, any attempt to make a faithful translation from it
into English even of the Books which are commonly read.
And, secondly, the other Books, vi1 to x. and x111.,, were not
included by Simson and the editors who followed him, or
apparently in any English translation since Williamson’s
(1781—8), so that they are now practically inaccessible to
English readers in any form.

In the matter of notes, the edition of the first six Books
in Greek and Latin with notes by Camerer and Hauber
(Berlin, 1824—5) is a perfect mine of information. It would
have been practically impossible to make the notes more
exhaustive at the time when they were written. But the
researches of the last thirty or forty years into the history of
mathematics (I need only mention such names as those of
Bretschneider, Hankel, Moritz Cantor, Hultsch, Paul Tannery,
Zeuthen, Loria, and Heiberg) have put the whole subject
upon a different plane. I have endeavoured in this edition
to take account of all the main results of these researches up
to the present date. Thus, so far as the geometrical Books
are concerned, my notes are intended to form a sort of
dictionary of the history of elementary geometry, arranged
according to subjects; while the notes on the arithmetical
Books vi.—ix. and on Book x. follow the same plan.
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I desire to express here my thanks to my brother,
Dr R. S. Heath, Vice-Principal of Birmingham University,
for suggestions on the proof sheets and, in particular, for the
reference to the parallelism between Euclid's definition of
proportion and Dedekind’s theory of irrationals, to Mr R. D.
Hicks for advice on a number of difficult points of translation,
to Professor A. A. Bevan for help in the transliteration of
Arabic names, and to the Curators and Librarian of the
Bodleian Library for permission to reproduce, as frontispiece,
a page from the famous Bodleian MS. of the Elements.
Lastly, my best acknowledgments are due to the Syndics of
the Cambridge University Press for their ready acceptance
of the work, and for the zealous and efficient cobperation of
their staff which has much lightened the labour of seeing the
book through the Press.

T. L. H.
November, 1908.



PREFACE TO THE SECOND EDITION

LIKE to think that the exhaustion of the first edition of

this work furnishes a new proof (if such were needed)
that Euclid is far from being defunct or even dormant, and
that, so long as mathematics is studied, mathematicians will
find it necessary and worth while to come back again and
again, for one purpose or another, to the twenty-two-centuries-
old book which, notwithstanding its imperfections, remains the
greatest elementary textbook in mathematics that the world is
privileged to possess.

The present edition has been carefully revised throughout,
and a number of passages (sometimes whole pages) have been
rewritten, with a view to bringing it up to date. Some not in-
considerable additions have also been made, especially in the
Excursuses to Volume I, which will, I hope, find interested
readers.

Since the date of the first edition little has happened in the
domain of geometrical teaching which needs to be chronicled.
Two distinct movements however call for notice.

The first is a movement having for its object the mitigation
of the difficulties (affecting in different ways students, teachers
and examiners) which are found to arise from the multiplicity
of the different textbooks and varying systems now in use for
the teaching of elementary geometry. These difficulties have
evoked a widespread desire among teachers for the establish-
ment of an agreed sequence to be generally adopted in teaching
the subject. One proposal to this end has already been made:
but the chance of the acceptance of an agreed sequence has in
the meantime been prejudiced by a second movement which
has arisen in other quarters.
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I refer to the movement in favour of reviving, in a modified
form, the proposal made by Wallis in 1663 to replace Euclid’s
Parallel-Postulate by a Postulate of Similarity (as to which see
pp. 210—11 of Volume I of this work). The form of Postulate
now suggested is an assumption that “Given one triangle,
there can be constructed, on any arbitrary base, another triangle
equiangular with (or similar to) the given triangle.” It may
perhaps be held that this assumption has the advantage of not
referring, in the statement of it, to the fact that a straight line
is of unlimited length ; but, on the other hand, as is well known,
Saccheri showed (1733) that it involves more than is necessary
to enable Euclid’s Postulate to be proved. In any case it
would seem certain that a scheme based upon the proposed
Postulate, if made scientifically sound, must be more difficult
than the procedure now generally followed. This being so,
and having regard to the facts (1) that the difference between
the suggested Postulate and that of Euclid is in effect so slight
and (2) that the historic interest of Euclid’s Postulate is so
great, | am of opinion that the proposal is very much to be
deprecated.

T. L. H.
December 1925,
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INTRODUCTION.

CHAPTER 1.

EUCLID AND THE TRADITIONS ABOUT HIM.

As in the case of the other great mathematicians of Greece, so in
Euclid’s case, we have only the most meagre particulars of the life
and personality of the man.

Most of what we have is contained in the passage of Proclus
summary relating to him, which is as follows®:

“Not much younger than these (sc. Hermotimus of Colophon and
Philippus of Medma) is Euclid, who put together the Elements, collect-
ing many of Eudoxus’ theorems, perfecting many of Theaetetus’, and
also bringing to irrefragable demonstration the things which were
only somewhat loosely proved by his predecessors. This man lived?
in the time of the first Ptolemy. For Archimedes, who came imme-
diately after the first (Ptolemy)? makes mention of Euclid: and,
further, they say that Ptolemy once asked him if there was in
geometry any shorter way than that of the elements, and he answered
that there was no royal road to geometry*. He is then younger than
the pupils of Plato but older than Eratosthenes and Archimedes; for
the latter were contemporary with one another, as Eratosthenes some-
where says.”

This passage shows that even Proclus had no direct knowledge
of Euclid's birthplace or of the date of his birth or death. He pro-
ceeds by inference. Since Archimedes lived just after the first

! Proclus, ed. Friedlein, p. 68, 6—10.

? The word +yéyove must apparently mean * flourished,” as Heibes;g understands it
(Litterargeschichtliche Studien siber Euklid, 1883, p. 26), not *‘ was born,” as Hankel took
it: otherwise part of Proclus’ argument would lose its cogency.

3 So Hei understands émifardv ¢ wpdry g::c Iroheualy). Friedlein’s text has
xal between émifSaliw and 7¢ mpwry; and it is right to remark that another reading is
xal & 7§ mpdry (without émiBaldw) which has been translated *in his first ook,” by which
is understood On the Sphere and Cylinder 1., where (1) in ProE. 2 are the words ** let 5C
be made equal to D by the second (proposition) of the of Euclid’s (books),” and (2) in
Prop. 6 the words ** For these things are handed down in the Elements” (without the name
of Euclid). Hei thinks the f I is referred to, and that Proclus must

therefore have had before him the words “ by the second of the first of Euclid”: a fair proof
that they are genuine, though in themselves they would be somewhat suspicious.

¢ The same story is told in Stobaeus, Zel. (11, p. 238, 30, ed. Wachsmuth] about
Alexander and Menaechmus. Alexander is represented as having asked Menaechmus to
teach him geometry concisely, but he replied : ““O kini, through the country there are royal
roads and roads for common citizens, but in geometry there is one road for all.”

»
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Ptolemy, and Archimedes mentions Euclid, while there is an anecdote
about some Ptolemy and Euclid, #kerefore Euclid lived in the time of
the first Ptolemy.

We may infer then from Proclus that Euclid was intermediate
between the first pupils of Plato and Archimedes. Now Plato died in
347/6, Archimedes lived 287-212, Eratosthenes ¢. 284—204 B.C. Thus
Euclid must have flourished ¢. 300 B.C., which date agrees well with
the fact that Ptolemy reigned from 306 to 283 B.C.

It is most probable that Euclid received his mathematical training
in Athens from the pupils of Plato; for most of the geometers who
could have taught him were of that school, and it was in Athens that
the older writers of elements, and the other mathematicians on whose
works Euclid’s Elements depend, had lived and taught. He may
himself have been a Platonist, but this does not follow from the state-
ments of Proclus on the subject. Proclus says namely that he was of
the school of Plato and in close touch with that philosophy’. But
this was only an attempt of a New Platonist to connect Euclid with
his philosophy, as is clear from the next words in the same sentence,
“for which reason also he set before himself, as the end of the whole
Elements, the construction of the so-called Platonic figures.” It is
evident that it was only an idea of Proclus’ own to infer that Euclid
was a Platonist because his Elements end with the investigation of
the five regular solids, since a later passage shows him hard put to
it to reconcile the view that the construction of the five regular solids
was the end and aim of the Elements with the obvious fact that they
were intended to supply a foundation for the study of geometry in
general, “to make perfect the understanding of the learner in regard
to the whole of geometry?” To get out of the difficulty he says?® that,
if one should ask him what was the aim (oxomds) of the treatise, he
would reply by making a distinction between Euclid’s intentions
(1) as regards the subjects with which his investigations are concerned,
(2) as regards the learner, and would say as regards (1) that “the
whole of the geometer’s argument is concerned with the cosmic
figures.” This latter statement is obviously incorrect. It is true
that Euclid's Elements end with the construction of the five regular
solids; but the planimetrical portion has no direct relation to them,
and the arithmetical no relation at all; the propositions about them
are merely the conclusion of the stereometrical division of the work.

One thing is however certain, namely that Euclid taught, and
founded a school, at Alexandria. This is clear from the remark of
Pappus about Apollonius*: “he spent a very long time with the
pupils of Euclid at Alexandria, and it was thus that he acquired
such a scientific habit of thought.”

It is in the same passage that Pappus makes a remark which
might, to an unwary reader, seem to throw some light on the

1 Proclus, p. 68, 20, xal 7§ wpoaipéres 8¢ I\arwrinds dati xal 7§ dhocodle Tadry oixeios.

2 jbid. p. 71, 8. 3 gbid. p. 70, 19 £qq.

¢ Pappus, Vi1, p. 678, 10—12, cvoxohdoas Tols Uwd Edwheldov pabnrais dv 'Alefardpely
wheioror xpbror, Sbev Foxe xal Tip Towdrnr Ew olx duadi.
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personality of Euclid. He is speaking about Apollonius’ preface
to the first book of his Conics, where he says that Euclid had not
completely worked out the synthesis of the “three- and four-line
locus,” which in fact was not possible without some theorems first
discovered by himself. Pappus says on this': “Now Euclid—
regarding Aristaeus as deserving credit for the discoveries he had
already made in conics, and without anticipating him or wishing to
construct anew the same system (such was his scrupulous fairness and
his exemplary kindliness towards all who could advance mathematical
science to however small an extent), being moreover in no wise con-
tentious and, though exact, yet no braggart like the other [ Apollonius]
—wrote so much about the locus as was possible by means of the
conics of Aristaeus, without claiming completeness for his demonstra-
tions.” It is however evident, when the passage is examined in its
context, that Pappus is not following any tradition in giving this
account of Euclid: he was offended by the terms of Apollonius’
reference to Euclid, which seemed to him unjust, and he drew a
fancy picture of Euclid in order to show Apollonius in a relatively
unfavourable light.

Another story is told of Euclid which one would like to believe true.
According to Stobaeus?, “ some one who had begun to read geometry
with Euclid, when he had learnt the first theorem, asked Euclid, ¢ But
what shall I get by-learning these things?’ Euclid called his slave
and said ‘ Give him threepence, since he must make gain out of what
he learns.””

In the middle ages most translators and editors spoke of Euclid
as Euclid ¢f Megara. This description arose out of a confusion
between our Euclid and the philosopher Euclid of Megara who lived
about 400 B.C. The first trace of this confusion appears in Valerius
Maximus (in the time of Tiberius) who says® that Plato, on being
appealed to for a solution of the problem of doubling the cubical
altar, sent the inquirers to “Euclid the geometer.” There is no doubt
about the reading, although an early commentator on Valerius
Maximus wanted to correct “ Eucliden” into “ Eudoxum,” and this
correction is clearly right. But, if Valerius Maximus took Euclid the
geometer for a contemporary of Plato, it could only be through
confusing him with Euclid of Megara. The first specific reference to
Euclid as Euclid of Megara belongs to the 14th century, occurring in
the varopvnuariopol of Theodorus Metochita (d. 1332) who speaks of
“ Euclid of Megara, the Socratic philosopher, contemporary oFe Plato,”
as the author of treatises on plane and solid geometry, data, optics
etc.: and a Paris MS. of the 14th century has “Euclidis philosophi
Socratici liber elementorum.” The misunderstanding was general
in the period from Campanus’ translation (Venice 1482) to those of
Tartaglia (Venice 1565) and Candalla (Paris 1566). But one
Constantinus Lascaris (d. about 1493) had already made the proper

! Pappus, VII. pp. 676, 25—678, 6. Hultsch, it is true, brackets the whole passage

pp- 676, 25—678, 15, but apparently on the ground of the diction only.
Ll gmbneus. J’.:’. ! % VIIL 13, ext. 1.



4 INTRODUCTION [cH. 1

distinction by saying of our Euclid that “he was different from him
of Megara of whom Laertius wrote, and who wrote dialogues "*; and
to Commandinus belongs the credit of being the first translator? to
put the matter beyond doubt : “Let us then free a number of people
from the error by which they have been induced to believe that our
Euclid is the same as the philosopher of Megara ” etc.

Another idea, that Euclid was born at Gela in Sicily, is due to tne
same confusion, being based on Diogenes Laertius’ description® of the
philosopher Euclid as being “of Megara, or, according to some, of
Gela, as Alexander says in the Aadoyat.”

In view of the poverty of Greek tr;ﬁition on the subject even as
early as the time of Proclus (410-485 A.D.), we must necessarily take
cum grano the apparently circumstantial accounts of Euclid given by
Arabian authors; and indeed the origin of their stories can be
explained as the result (1) of the Arabian tendency to romance, and
(2) of misunderstandings.

We read* that “ Euclid, son of Naucrates, grandson of Zenarchus®,
called the author of geometry, a philosopher of somewhat ancient
date, a Greek by nationality domiciled at Damascus, born at Tyre,
most learned in the science of geometry, published a most excellent
and most useful work entitled the foundation or elements of geometry,
a subject in which no more general treatise existed before among the
Greeks: nay, there was no one even of later date who did not walk
in his footsteps and frankly profess his doctrine. Hence also Greek,
Roman and Arabian geometers not a few, who undertook the task
of illustrating this work, published commentaries, scholia, and notes
upon it, and made an abridgment of the work itself. For this reason
the Greek philosophers used to post up on the doors of their schools
the well-known notice: ‘Let no one come to our school, who has not
first learned the elements of Euclid’” The details at the beginning
of this extract cannot be derived from Greek sources, for even Proclus
did not know anything about Euclid’s father, while it was not the
Greek habit to record the names of grandfathers, as the Arabians
commonly did. Damascus and Tyre were no doubt brought in to
Emtify a desire which the Arabians always showed to connect famous

reeks in some way or other with the East. Thus Nasiraddin, the
translator of the Elements, who was of Tius in Khurasin, actually
makes Euclid out to have been *“ Thusinus” also®. The readiness of
the Arabians to run away with an idea is illustrated by the last words

1 Letter to Fernandus Acuna, printed in Maurolycus, Historia Siciliae, fol. 21 1. (see
Heiberg, Euklid-Studien, pp. 22—3, 15).
* Preface to translation (Pisauri, 1572).
* Diog. L. 11. 106, p. 58 ed. Cobet.
h i, Bibliotheca Am&im—ﬁi?ma Escurialensis, 1. p. 339. Casiri's source is al-
Qifti (d. 1248), the author of the 7&'rikk al-Hulamd, a collection of biographies of phi-
ers, mathematicians, astronomers etc.
The Fihrist says ‘‘son of Naucrates, the son of Berenice (?)” (see Suter’s translation in
Abhandlungen sur Gesch. d. Math. v1. Heft, 1893, p. 16).
$ The same predilection made the Arabs describe *Pythagoras as a &:pil of the wise
Salomo, Hip us as the exponent of Chaldaean &ﬂm‘fhyw as the C aldaean, -
medes as an tian etc. (Haji Khalfa, Lexicon Bibliographicum; and Casiri).
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of the extract. Everyone knows the story of Plato’s inscription over
the porch of the Academy: “let no one unversed in geometry enter
my doors”; the Arab turned geometry into Euclid's geometry, and
told the story of Greek philosophers in general and “#kes» Academies.”
Equally remarkable are the Arabian accounts of the relation of
Euclid and Apollonius’. According to them the Elements were
originally written, not by Euclid, but by a man whose name was
Apollonius, a carpenter, who wrote the work in 15 books or sections?
In the course of time some of the work was lost and the rest became
disarranged, so that one of the kings at Alexandria who desired to
study geometry and to master this treatise in particular first questioned
about it certain learned men who visited him and then sent for Euclid
who was at that time famous as a geometer, and asked him to revise
and complete the work and reduce it to order. Euclid then re-wrote
it in 13 books which were thereafter known by his name. (According
to another version Euclid composed the 13 books out of commentaries
which he had published on two books of Apollonius on conics and
out of introductory matter added to the doctrine of the five regular
solids.) To the thirteen books were added two more books, the work
of others (though some attribute these also to Euclid) which contain
several things not mentioned by Apollonius. According to another
version Hypsicles, a pupil of Euclid at Alexandria, offered to the
king and published Books XIV. and XV, it being also stated that
Hypsicles had “discovered” the books, by which it appears to be
suggested that Hypsicles had edited them from materials left by Euclid.
We observe here the correct statement that Books XIvV. and XV.
were not written by Euclid, but along with it the incorrect informa-
tion that Hypsicles, the author of Book X1v., wrote Book XV. also.
The whole of the fable about Apollonius having preceded Euclid
and having written the Elements appears to have been evolved out of
the preface to Book XIV. by Hypsicles, and in this way ; the Book
must in early times have been attributed to Euclid, and the inference
based upon this assumption was left uncorrected afterwards when it
was recognised that Hypsicles was the author. The preface is worth
uoting :
3 “ Basilides of Tyre, O Protarchus, when he came to Alexandria
and met my father, spent the greater part of his sojourn with him on
account of their common interest in mathematics. And once, when

! The authorities for these statements quoted by Casiri and Haji Khalfa are al-Kindi's
tract de instituto libri Euclidis (al-Kindi died about 3','?) and a commentary by Qadizide
ar-Riimi (d. about 1440) on a book called 4shkd/ at-ta’ sis (fundamental propositions) by
Ashraf S din as- Iamr?andl (¢. 1276) consisting of elucidations of 35 propositions
selected from the first books of Euclid. Nasiraddin likewise says that Euclid cut out two of
15 books of elements then existing and published the rest under his own name. According to
Qidizade the king heard that there was a celebrated geometer named Euclid at Tyre: Nasir-
addin says that he sent for Euclid of Tiis.

3 So says the Fikrist. Suter (op. cit. p. 49) thinks that the author of the Fikrist did not
su Apollonius of to be the writer of the Elements, as later Arabian authorities
did, but that he distinguished another Apollonius whom he calls ““a carpenter.” Suter’s
argument is based on the fact that the Fikris/'s article on Apollonius (of Perga) says nothi

of the Elements;and that it gives the three great mathematicians, Euclid, Archimedes
Apollonius, in the correct chronological order.
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examining the treatise written by Apollonius about the comparison
between the dodecahedron and the icosahedron inscribed in the same
sphere, (showing) what ratio they have to one another, they thought
that Apollonius had not expounded this matter properly, and
accordingly they emended the exposition, as I was able to learn
from my father. And I myself, later, fell in with another book
published by Apollonius, containing a demonstration relating to the
subject, and I was greatly interested in the investigation of the
problem. The book published by Apollonius is accessible to all—
for it has a large circulation, having apparently been carefully written
out later—but I decided to send you the comments which seem to
me to be necessary, for you will through your proficiency in mathe-
matics in general and in geometry in particular form an expert
judgment on what I am about to say, and you will lend a kindly ear
to my disquisition for the sake of your friendship to my father and
your goodwill to me.”

The idea that Apollonius preceded Euclid must evidently have
been derived from the passage just quoted. It explains other things
besides, Basilides must have been confused with Baci\evs, and we
have a probable explanation of the “ Alexandrian king,” and of the
“learned men who visited” Alexandria. It is possible also that in
the “Tyrian" of Hypsicles’ preface we have the origin of the notion
that Euclid was born in Tyre. These inferences argue, no doubt,
very defective knowledge of Greek: but we could expect no better
from those who took the Organon of Aristotle to be “instrumentum
musicum pneumaticum,” and who explained the name of Euclid,
which they variously pronounced as Uclides or Icludes, to be com-
pounded of Ucli a key, and Dis a measure, or, as some say, geometry,
so that Uclides is equivalent to the Zey of geometry!

Lastly the alternative version, given in brackets above, which says
that Euclid made the Elements out of commentaries which he wrote
on two books of Apollonius on conics and prolegomena added to the
doctrine of the five solids, seems to have arisen, through a like
confusion, out of a later passage® in Hypsicles' Book X1v.: “ And this
is expounded by Aristaeus in the book entitled ‘Comparison of the five
figures,’ and by Apollonius in the second edition of his comparison of
the dodecahedron with the icosahedron.” The “doctrine of the five
solids” in the Arabic must be the “ Comparison of the five figures”
in the passage of Hypsicles, for nowhere else have we any information
about a work bearing this title, nor can the Arabians have had. The
reference to the tfwo books of Apollonius on conics will then be the
result of mixing up the fact that Apollonius wrote a book on conics
with the second edition of the other work mentioned by Hypsicles.
We do not find elsewhere in Arabian authors any mention of a
commentary by Euclid on Apollonius and Aristaeus: so that the
story in the passage quoted is really no more than a variation of the
fable that the Elements were the work of Apollonius,

1 Heiberg’s Euclid, vol. v. p. 6.



CHAPTER 1L

EUCLID'S OTHER WORKS.

IN giving a list of the Euclidean treatises other than the Elements,
I shall be brief: for fuller accounts of them, or speculations with
regard to them, reference should be made to the standard histories of
mathematics’,

I will take first the works which are mentioned by Greek authors.

1. The Pseudaria.

I mention this first because Proclus refers to it in the general
remarks in praise of the Elements which he gives immediately after
the mention of Euclid in his summary. He says®: “But, inasmuch
as many things, while appearing to rest on truth and to follow from
scientific principles, really tend to lead one astray from the principles
and deceive the more superficial minds, he has handed down methods
for the discriminative understanding of these things as well, by the
use of which methods we shall be able to give beginners in this study

ractice in the discovery of paralogisms, and to avoid being misled.
is treatise, by which he puts this machinery in our hands, he
entitled (the book) of Pseudaria, enumerating in order their various
kinds, exercising our intelligence in each case by theorems of all
sorts, setting the true side by side with the false, and combining
the refutation of error with practical illustration. This book then is
by way of cathartic and exercise, while the Elements contain the
irrefragable and complete gmde to the actual scientific investigation
of the subjects of geom ri?

The book is considered to be irreparably lost. We may conclude
however from the connexion of it with the Elements and the reference
to its usefulness for beginners that it did not go outside the domain
of elementary geometry?.

1 See, for example, Loria, Le sciense esatte nell’ antica Greﬂa. 1914, 24 -—':58:
T. L. Heath, History of Greeh Mathematics, 1921, I. Pp. 421—446. :g

ichtliche Studien tiber Euklid, pp. 36—153; Euclidis opera mma, cd elberg aud

enge, Vols. vI.—viIl.

2 Proclus, p. 70, 1—18.

3 Heiberg points out that Alexander Aphrodisi s to allude to the work in his
commentary on Aristotle’s Sophistici Elenchi (fol. 25 d} ““Not only those (f\eyxot) which do
not start from the principles of the under which the problem is classed...but also
those which do start from the proper pnnmples of the science but in some respect admit a
paralogism, e.g. the Pseudographemata of Euclid.” Tannery (Bull. des sciences math. et astr.

2° Série, V1., 1883, 1*™ Partie, p. 147] conjectures that it may be from this treatise that the
same commentator got his information about the quadratures of the circle by Antiphon and
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2. The Data.

The Data (8edopéva) are included by Pappus in the Treasury of
Analysis (témos avalvipevos), and he describes their contents!, They
are still concerned with elementary geometry, though forming part
of the introduction to higher analysis. Their form is that of pro-
positions proving that, if certain things in a figure are given (in
magnitude, in species, etc.), something else is given. The subject-
matter is much the same as that of the planimetrical books of the
Elements, to which the Data are often supplementary. We shall see
this later when we come to compare the propositions in the Elements
which give us the means of solving the general quadratic equation
with the corresponding propositions of the Dafaz which give the
solution. The Data may in fact be regarded as elementary exercises
in analysis.

It is not necessary to go more closely into the contents, as we
have the full Greek text and the commentary by Marinus newly
edited by Menge and therefore easily accessible?,

3. The book On divisions (of figures).

This work (wepl Siapéoewy BiSriov) is mentioned by Proclus®.
In one place he is speaking of the conception or definition (Adyos)
of figure, and of the divisibility of a figure into others differing from
it in kind ; and he adds: “For the circle is divisible into parts unlike
in definition or notion (dvéupota 7@ Adyp), and so is each of the
rectilineal figures; this is in fact the business of the writer of the
Elements in his Divisions, where he divides given figures, in one case
into like figures, and in another into unliket.” “Like” and “unlike”
here mean, not “similar” and “dissimilar” in the technical sense, but
“like” or “unlike #n definition or notion” (Adye): thus to divide a
triangle into triangles would be to divide it into “like” figures, to
divide a triangle into a triangle and a quadrilateral would be to
divide it into “unlike” figures,

The treatise is lost in Greek but has been discovered in the
Arabic. First John Dee discovered a treatise De divisionibus by one
Muhammad Bagdadinus® and handed over a copy of it (in Latin) in
1563 to Commandinus, who Fublished it, in Dee’s name and his own,
in 1570% Dee did not himself translate the tract from the Arabic; he

s to say nothing of the lunules of Hippocrates. I think however that there is an
objection to this theory so far as regards Bryson; for Alexander distinctly says that Bryson's
quadrature did nof start from the proper principles of geometry, but from some principles
more 8
A ai:pus, VIL. p. 638.

# Vol. v1. in the Teubner edition of Euclidis opera omnia by Heiberg and Menge. A
translation of the Data is also included in Simson's Euclid (though naturally his text left
much to be desired).
3 Proclus, p. 69, 4. ¢ ibid. 144, 22—16.
® Steinschneider places him in the 1othe. H. Suter (Bibliotheca Mathematica, 1V, 1903,
Kf. 24, 27) identifies him with Abii (Bekr) Muh. b. ‘Abdalbaqf al-Bagdadi, Qadi (Judge) of
dristdn (circa 1070-1141), to whom he also attributes the Liber judei (? judicis) super decimum
Euclidis translated by Gherard of Cremona.
8 De superficierum divisionibus liber Machometo Bagdadino adscriptus, nunc primum
s Dee 47 s ¢ Federici Commandini Urbinatis opera in lucem editus, Pisaur,
1570, afterwards included in Gregory’s Euclid (Oxford, 1703).
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found it in Latin in a MS. which was then in his own possession but
was about 20 years afterwards stolen or destroyed in an attack by a
mob on his house at Mortlake. Dee, in his preface addressed to
Commandinus, says nothing of his having translated the book, but
only remarks that the very illegible Ms. had caused him much trouble
ancr (in a later passage) speaks of “the actual, very ancient, copy from
which I wrote out...” (in ipso unde descripsi vetustissimo exemplari).
The Latin translation of this tract from the Arabic was probably made
by Gherard of Cremona (1114-1187), among the list of whose numerous
translations a “liber divisionum ” occurs. The Arabic original cannot
have been a direct translation from Euclid, and probably was not even
a direct adaptation of it; it contains mistakes and unmathematical
expressions, and moreover does not contain the propositions about
the division of a circle alluded to by Proclus. Hence it can scarcely
have contained more than a fragment of Euclid’s work.

But Woepcke found in a MS. at Paris a treatise in Arabic on the
division of figures, which he translated and published in 1851% It is
expressly attributed to Euclid in the MS. and corresponds to the
description of it by Proclus. Generally speaking, the divisions are
divisions into figures of the same kind as the original figures, e.g. of
triangles into triangles; but there are also divisions into “unlike”
figures, e.g. that of a triangle by a straight line parallel to the base.
The missing propositions about the division of a circle are also here:
“to divide into two equal parts a given figure bounded by an arc
of a circle and two straight lines including a given angle” and “to
draw in a given circle two parallel straight lines cutting off a certain
part of the circle.” Unfortunately the proofs are given of only four
propositions (including the two last mentioned) out of 36, because
the Arabic translator found them too easy and omitted them. To
illustrate the character of the problems dealt with I need only take
one more example: “To cut off a certain fraction from a (parallel-)
trapezium by a straight line which passes through a given point lying
inside or outside the trapezium but so that a straight line can be
drawn through it cutting both the parallel sides of the trapezium.”
The genuineness of the treatise edited by Woepcke is attested by the
facts that the four proofs which remain are elegant and depend on
propositions in the Elements, and that there is a lemma with a true
Greek ring: “to apply to a straight line a rectangle equal to the
rectangle contained by AB, AC and deficient by a square” Moreover
the treatise is no fragment, but finishes with the words “end of the
treatise,” and is a well-ordered and compact whole. Hence we may
safely conclude that Woepcke's is not only Euclid’s own work but
the whole of it. A restoration of the work, with proofs, was attempted
by Ofterdinger?®, who however does not give Woepcke's props. 30, 31,
34, 35, 36. We have now a satisfactory restoration, with ample notes

1 R. C. Archibald, Euclid’s Book on the Division of Figures with a restoration based on
Wazﬂke’: text and on the Practica geometriae of Leonardo Pisano, Cambridge, 1915, pp. 4—9.
urnal Asiatigue, 1851, p. 233 5qq.
* F. Ofterdinger, Beitrige sur Wiederherstellung der Schrift des Eublides siber die
Theilung der Figuren, Ulm, 1853.
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and an introduction, by R. C. Archibald, who used for the purpose
Woepcke's text and a section of Leonardo of Pisa’s Practica geometriae
(1220).

4. The Porisms.

It is not possible to give in this place any account of the con-
troversies about the contents and significance of the three lost books
of Porisms, or of the important attempts by Robert Simson and
Chasles to restore the work. These may be said to form a whole
literature, references to which will be found most abundantly given
by Heiberg and Loria, the former of whom has treated the subject
from the philological point of view, most exhaustively, while the
latter, founding himself generally on Heiberg, has added useful
details, from the mathematical side, relating to the attempted restora-
tions, etc? It must suffice here to give an extract from the only
original source of information about the nature and contents of the
Porisms, namely Pappus®. In his general preface about the books
composing the Treasury of Analysis (témwos avalviuevos) he says:

“After the Tangencies (of Apollonius) come, in three books, the
Porisms of Euclid, [in the view of many] a collection most ingeniously
devised for the analysis of the more weighty problems, [and] although
nature presents an unlimited number of such porisms¢, [they have
added nothing to what was written originally by Euclid, except that
some before my time have shown their want of taste by adding to a
few (of the propositions) second proofs, each (proposition) admitting
of a definite number of demonstrations, as we have shown, and
Euclid having given one for each, namely that which is the most
lucid. These porisms embody a theory subtle, natural, necessary,
and of considerable generality, which is fascinating to those who can
see and produce results].

“ Now all the varieties of porisms belong, neither to theorems nor
problems, but to a species occupying a sort of intermediate position
[so that their enunciations can be formed like those of either theorems
or problems], the result being that, of the great number of geometers,
some regarded them as of the class of theorems, and others of pro-
blems, looking only to the form of the proposition. But that the
ancients knew better the difference between these three things is
clear from the definitions. For they said that a theorem is that
which is proposed with a view to the demonstration of the very
thing proposed, a problem that which is thrown out with a view to
the construction of the very thing proposed, and a porism that which
is proposed with a view to the producing of the very thing proposed.
[But this definition of the porism was changed by the more recent
writers who could not produce everything, but used these elements

! There is a remarkable similarity between the mpﬂdﬁon& of Woepcke's text and those
of Leonardo, suggesting that Leonardo may have before him a translation (perha;
Gherard of Cremuna]“ogf the Arabic tract. . { b

2 Heiberg, Euklid-Studien, pp. gs—'; , and Loria, gp. cit., pp. 253—265.

8 Papg;:s. ed. Hultsch, viI. pp. 648 I put in square brackets the words bracketed
by Hultsch.

4 I adopt Heiberg's reading of a comma here instead of a full stop.
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and proved only the fact that that which is sought really exists, but
did not produce it! and were accordingly confuted by the definition
and the whole doctrine. They based their definition on an incidental
characteristic, thus: A porism is that which falls short of a locus-
theorem in respect of its hypothesis’. Of this kind of porisms loci
are a species, and they abound in the Treasury of Analysis; but
this species has been collected, named and handed down separately
from the porisms, because it is more widely diffused than the other
species]. But it has further become characteristic of porisms that,
owing to their complication, the enunciations are put in a contracted
form, much being by usage left to be understood; so that many
geometers understand them only in a partial way and are ignorant of
the more essential features of their contents,

“[Now to comprehend a number of propositions in one enunciation
is by no means easy in these porisms, because Euclid himself has not
in fact given many of each species, but chosen, for examples, one or a
few out of a great multitude®. But at the beginning of the first book
he has given some propositions, to the number of ten, of one species,
namely that more fruitful species consisting of loci.] Consequently,
finding that these admitted of being comprehended in one enunciation,
we have set it out thus:

If, in a system of four straight lines* which cut each other
two and two, three points on one straight line be given while the
rest except one lie on different straight lines given in position,
the remaining point also will lie on a straight line given in
position®,

1 Heibergrpointa out that Props. §—g of Archimedes’ treatise On Spirals are porisms in
this sense. To take Prop. 5 as an example, DBF is a tangent to a circle with centre X-

It is then possible, says Archimedes, to draw a straight line o B 3
KHF, meeting the circumference in A and the tangent in £,

such that
FH: HK<(arc BH):¢,

where ¢ is the circumference of any circle. To prove this he
assumes the following construction. £ being any straight line
greater than ¢, he says: let A£G be parallel to D#, “and let
the line G/ equal to £ be placed verging to the point B.”
Archimedes must of course have known how to effect this
construction, which requires conics. But that it is possible requires very little ment, for
if we draw any straight line BHG meeting the circle in & and A in G, it is obvious that
as G moves away from C, &G becomes greater and greater and may be made as great as we
please. The * later writers" would no doubt have contented themselves with this considera-
tion without actually comstructing HG.
? As Heiberg says, this translation is made certain by a preoeding passage of Pappus
. 648, 1—3) where he cc es two iations, the latter of which * falls short of the
er in hypothesis but goes beyond it in reguirement.” E.g. the first enunciation requiring
us, given three circles, to draw a circle touching all three, the second may require us, given
only fwo circles (one less datum), to draw a circle touching them and of a given size (an
'Ireqn.ircme'n}tll.be h a full here followed by mpos dpxp 8¢ Spws [wpds
transl eiberg's reading with a sto] e follow wpos dpxd L
dpxir (Sedopévor) Hnlt:cgh] 700 wpdrov BifMlov.... % %
¢ The four stmi?ht lines are described in the text as (the sides) dwrlov 4 wapurriov, i.e
sides of two' sorts of gudrilaterals which Simson tries to explain (see p. 120 of the Jmdex
Graecitatis of Hultsch's edition of Pabﬁl;ls).
.8 In other words (Chasles, p. 23; Loria, p. 256), if a triangle be so deformed that each of
its sides turns about one of three points in a straight line, and two of its vertices lie on two
straight lines given in position, the third vertex will also lie on a straight line.
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“This has only been enunciated of four straight lines, of which not
more than two pass through the same point, but it is not known (to
most people) that it is true of any assigned number of straight lines
if enunciated thus:

If any number of straight lines cut one another, not more
than two (passing) through the same point, and all the points
(of intersection situated) on one of them be given, and if each of
those which are on another (of them) lie on a straight line given
in position—

or still more generally thus:

if any number of straight lines cut one another, not more than
two (passing) through the same point, and all the points (of
intersection situated) on one of them be given, while of the other
points of intersection in multitude equal to a triangular number
a number corresponding to the side of this triangular number lie
respectively on straight lines given in position, provided that of
these latter points no three are at the angular points of a triangle
(sc. having for sides three of the given straight lines)—each of the
remaining points will lie on a straight line given in position?,

“It is probable that the writer of the Elements was not unaware
of this but that he only set out the principle; and he seems, in the
case of all the porisms, to have laid down the principles and the
seed only [of many important things], the kinds of which should be
distinguished according to the differences, not of their hypotheses, but
of the results and the things sought. [All the hypotheses are different
from one another because they are entirely special, but each of the
results and things sought, being one and the same, follow from many
different hypotheses.]

“We must then in the first book distinguish the following kinds of
things sought :

“At the beginning of the book? is this proposition :

1. ‘If from two given poinis straight lines be drawn meeting
on a straight line given in position, and one cut off from a straight
line given in position (a segment measured) to a given point on it,
the other will also cut off from another (straight line a segment)
having to the first a given ratio!

“ Following on this (we have to prove)

II. that such and such a point lies on a straight line given

in ition ;

III. that the ratio of such and such a pair of straight lines

is given;”
etc. etc. (up to XXIX.).

“The three books of the porisms contain 38 lemmas; of the
theorems themselves there are 171.”

1 i . 3) gi i i inti at Si was
e dbcoverss of 1+ Lr's complete A ausoe) be deformed o5 WAt s sdes respectively turm
about # points on a straight line, and (7 — 1) of its # (- 1)/2 vertices move on as many
straight lines, the other (m— 1) (m—2)/2 of its vertices likewise move on as many straight
lines : but it is necessary that it should be impossible to form with the (s - 1) vertices any
triangle having for sides the sides of the polygon.”

3 Reading, with Heiberg, o6 Si\ov [rod {* Hultsch].
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Pappus further gives lemmas to the Porisms (pp. 866—018, ed.
Hultsch).

With Pappus’ account of Porisms must be compared the passages
of Proclus on the same subject. Proclus distinguishes two senses in
which the word mdpiapa is used. The first is that of corollary where
something a%pears as an incidental result of a proposition, obtained
without trouble or special seeking, a sort of bonus which the investi-
gation has presented us with’. The other sense is that of Euclid’s
Porisms®, In this sense® “porism is the name given to things which
are sought, but need some finding and are neither pure bringing into
existence nor simple theoretic argument. For (to prove) that the
angles at the base of isosceles triangles are equal is a matter of
theoretic argument, and it is with reference to things existing that
such knowledge is (obtained). But to bisect an angle, to construct a
triangle, to cut off, or to place—all these things demand the making
of something ; and to find the centre of a given circle, or to find the
greatest common measure of two given commensurable magnitudes,
or the like, is in some sort between theorems and problems. For in
these cases there is no bringing into existence of the things sought,
but finding of them, nor is the procedure purely theoretic. For it is
necessary to bring that which is sought into view and exhibit it to
the eye. Such are the 'Porisms which Euclid wrote, and arranged in
three books of Porisms.

Proclus’ definition thus agrees well enough with the first, “ older,”
definition of Pappus. A porism occupies a place between a theorem
and a problem: it deals with something already ex#sting, as a theorem
does, but has to find it (e.g. the centre of a circle), and, as a certain
operation is therefore necessary, it partakes to that extent of the
nature of a problem, which requires us to construct or produce some-
thing not previously existing. Thus, besides 111 1 of the Elements
and X. 3, 4 mentioned by Proclus, the following propositions are
real porisms: IIL 2§, VI. 11—I3, VIL 33, 34, 36, 39, VIIL 2, 4, X. 10,
XIIL 18. Similarly in Archimedes On the Sphere and Cylinder 1. 2—6
might be called porisms.

The enunciation given by Pappus as comprehending ten of Euclid’s
gropositions may not reproduce the form of Euclid’s enunciations ;

ut, comparing the result to be proved, that certain points lie on
straight lines given in position, with the c/ass indicated by IL above,
where the question is of such and such a point lying on a straight line
given in position, and with other classes, e.g. (v.) that such and sucha
line is given in position, (V1.) that such and such a line verges to a given
point, (XXVIL) that there exists a given point such that straight lines
drawn from it to such and such (circles) will contain a triangle given
in species, we may conclude that a usual form of a porism was “to
prove that it is possible to find a point with such and such a property”

! Proclus, pp. 213, 143 301, 23.
ibid. E; 312, 12, “The term porism is used of certan problems, like the Porisms

3 ibid.
written
L l‘h?pp 3o1, 25 sqq.
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or “a straight line on which lie all the points satisfying given
conditions” etc.

Simson defined a porism thus: “ Porisma est propositio in qua
proponitur demonstrare rem aliquam, vel plures datas esse, cui, vel
quibus, ut et cuilibet ex rebus innumeris, non quidem datis, sed quae
ad ea quae data sunt eandem habent relationem, convenire ostendendum
est affectionem quandam communem in propositione descriptam.”

From the above it is easy to understand Pappus’ statement that
loci constitute a large class of porisms. A locus is well defined by
Simson thus: “Locus est propositio in qua propositum est datam
esse demonstrare, vel invenire lineam aut superficiem cuius quodlibet
punctum, vel superficiem in qua quaelibet linea data lege descripta,
communem quandam habet proprietatem in propositione descriptam.”
Heiberg cites an excellent instance of a locus which is a porism, namely
the following proposition quoted by Eutocius® from the Plane Loci of
Apollonius :

“Given two points in a plane, and a ratio between unequal straight
lines, it is possible to draw, in the plane, a circle such that the straight
lines drawn from the given points to meet on the circumference of
the circle have (to one another) a ratio the same as the given ratio.”

A difficult point, however, arises on the passage of Pappus, which
says that a porism is “that which, in respect of its hypothesis, falls
short of a locus-theorem” (Tomikot fewprjuaros). Heiberg explains it
by comparing the porism from Apollonius’ Plane Loci just given with
Pappus’ enunciation of the same thing, to the effect that, if from two
given points two straight lines be drawn meeting in a point, and these
straight lines have to one another a given ratio, the point will lie on
either a straight line or a circumference of a circle given in position,
Heiberg observes that in this latter enunciation something is taken
into the hypothesis which was not in the hypothesis of the enunciation
of the porism, viz. “that the ratio of the straight lines is the same.”
I confess this does not seem to me satisfactory : for there is no real
difference between the enunciations, and the supposed difference in
hypothesis is very like playing with words. Chasles says: “ Ce gui
constitue le porisme est ce qui mangue @ I'hypothése d'un théoréme
local (en d’autres termes, le porisme est inférieur, par 'hypothese, au
théoréme local; c’est-a-dire que quand quelques parties d'une pro-
position locale n'ont pas dans I'énoncé la détermination qui leur est
propre, cette proposition cesse d’étre regardée comme un théoréme et
devient un porisme).” But the subject still seems to require further
elucidation.

While there is so much that is obscure, it seems certain (1) that the
Porisms were distinctly part of higher geometry and not of elementary

! This was thus expressed by Chasles: ** Le porisme est une Proposition dans laquelle on
demande de démontrer qu'une chose ou plusieurs ch sont fes, qui, ainsi que l'une
uelconque d'une infinité d’autres ch non données, mais dont chacune est avec des choses
onnées dans une méme relation, ont une certaine propriété commune, décrite dans la pro-
ition.”
* Commentary on Apollonius’ Comics (vol. 11. p. 180, ed. Heiberg).
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geometry, (2) that they contained propositions belonging to the
modern theory of transversals and to projective geometry. It should
be remembered too that it was in the course of his researches on this
subject that Chasles was led to the idea of ankarmonic ratios.

Lastly, allusion should be made to the theory of Zeuthen! on the
subject of the porisms. He observes that the only porjsm of which
Pappus gives the complete enunciation, “ If from two given points
straight lines be drawn meeting on a straight line given in position,
and one cut off from a straight line given in position (a segment
measured) towards a given point on it, the other will also cut off from
another (straight line a segment) bearing to the first a given ratio,”
is also true if there be substituted for the first given straight line a
conic regarded as the “locus with respect to four lines,” and that this
extended porism can be used for completing Apollonius’ exposition
of that locus. Zeuthen concludes that the Porisms were in part by-
products of the theory of conics and in part auxiliary means for the
study of conics, and that Euclid called them by the same name as
that applied to corollaries because they were corollaries with respect to
conics. But there appears to be no evidence to confirm this conjecture,

5. The Surface-loci (Témor wpos émpavelq).

The two books on this subject are mentioned by Pappus as part
of the Treasury of Analysis®. As the other works in the list which
were on plane subjects dealt only with straight lines, circles, and
conic sections, it is @ priori likely that among the loci in this treatise
(loci which are surfaces) were included such loci as were cones,
cylinders and spheres. Beyond this all is conjecture based on two
lemmas %Even by Pappus in connexion with the treatise.

(1) The first of these lemmas?® and the figure attached to it are
not satisfactory as they stand, but a possible restoration is indicated
by Tannery If the latter is right, it suggests that one of the loci
contained all the points on the elliptical parallel sections of a cylinder
and was therefore an oblique circular cylinder. Other assumptions
with regard to the conditions to which the lines in the figure may be
subject would suggest that other loci dealt with were cones regarded
as containing all points on particular elliptical parallel sections of
the cones®.

(2) In the second lemma Pappus states and gives a complete proof
of the focus-and-directrix property of a conic, viz. that #ke locus of a
point whose distance from a given point is in a given ratio to its distance
Jrom a fized line is a conic section, whick is an ellipse, a parabola or a

la according as the given ratio is less than, equal to, or greater
than unity®. Two conjectures are possible as to the application of
this theorem in Euclid’s Suzface-loci. (a) It may have been used to
prove that the locus of a point whose distance from a given straight

1 Die Lehre von den Kegelschnitien im Altertum, chapter viIL.
' Pappus, vir. p. 636. 4 ibid. vi1. p. woq,
gxu des sciences math. ef astron., 2° Série, VI
‘ F\mher E;lmlars will be found in The Works of Ardmcdc.r. pp. Ixii—Ilxiv, and in
Zeuthen, Die Lehre von den Kegelschnitien, p. 425 sq
$ Pappus, VIL pp. 1006—1014, and Hultsch’s Appendu: pp. 1370—3.
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line is in a given ratio to its distance from a given plane is a certain
cone. () It may have been used to prove that the locus of a point
whose distance from a given point is in a given ratio to its distance
from a given plane is the surface formed by the revolution of a conic
about its major or conjugate axisl. Thus Chasles may have been
correct in his conjecture that the Swurface-loci dealt with surfaces of
revolution of the second degree and sections of the same?

6. The Conics.

Pappus says of this lost work: “The four books of Euclid’s Conics
were completed by Apollonius, who added four more and gave us
eight books of Conics®.” It is probable that Euclid’s work was lost
even by Pappus’ time, for he goes on to speak of “ Aristaeus, who wrote
the s#2/! extant five books of Solid Loci connected with the conics.”
Speaking of the relation of Euclid’s work to that of Aristaeus on conics
regarded as loci, Pappus says in a later passage (bracketed however
by Hultsch) that Euclid, regarding Aristaeus as deserving credit for
the discoveries he had already made in conics, did not (try to)
anticipate him or construct anew the same system. We may no
doubt conclude that the book by Aristaeus on solid loci preceded
Euclid’s on conmics and was, at least in point of originality, more
important. Though both treatises dealt with the same subject-matter,
the object and the point of view were different; had they been the
same, Euclid could scarcely have refrained, as Pappus says he did,
from attempting to improve upon the earlier treatise. No doubt
Euclid wrote on the general theory of conics as Apollonius did, but
confined himself to those properties which were necessary for the
analysis of the Solid Loci of Aristaeus. The Conics of Euclid were
evidently superseded by the treatise of Apollonius.

As regards the contents of Euclid's Coenics, the most important
source of our information is Archimedes, who frequently refers to
propositions in conics as well known and not needing proof, adding
in three cases that they are proved in the “elements of conics” or in
“the conics,” which expressions must clearly refer to the works of
Aristaeus and Euclid*

Euclid still used the old names for the conics (sections of a right-
angled, acute-angled, or obtuse-angled cone), but he was aware that
an ellipse could be obtained by cutting a cone in any manner by a
lane not parallel to the base (assuming the section to lie wholly

tween the apex of the cone and its base) and also by cutting a
cylinder. This is expressly stated in a passage from the Phaenomena
of Euclid about to be mentioned®.

7. The Phaenomena.

This is an astronomical work and is still extant. A much inter-

1 For further details see The Works of Archimedes, pp. Ixiv, Ixv, and Zeuthen, Z c.

’ Apcrdpu historigue, pp. 373—4 3 Pappus, VIIL. p. 672.

4 For details of these Jropositions see my Apollonius of Perga, pp. xxxv, xxxvi.

8 Phaenomena, ed. Menge, p. 6: ““If a cone or a t?rlinder be cut by a plane not

- le; t’o the base, the section is a section of an acute-angied cone, which is like a shield
ipeds).”
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polated version appears in Gregory’s Euclid. An earlier and better
recension is however contained in the Ms. Vindobonensis philos.
Gr. 103, though the end of the treatise, from the middle of prop. 16
to the last (18), is missing. The book, now edited by Menge!, consists
of propositions in spkeric geometry. Euclid based it on Autolycus’
work mepl xwovpévns opaipas, but also, evidently, on an earlier text-
book of Sphaerica of exclusively mathematical content. It has been
conjectured that the latter textbook may have been due to Eudoxus®.

8. The Optics.

This book needs no description, as it has been edited by Heiberg
recently?, both in its genuine form and in the recension by Theon.
The Catoptrica published by Heiberg in the same volume is not
genuine, and Heiberg suspects that in its present form it may be
Theon’s. It is not even certain that Euclid wrote Catoptrica at all, as
Proclus may easily have had Theon's work before him and inadvertently
assigned it to Euclid*.

9. Besides the above-mentioned works, Euclid is said to have
written the Elements of Music® (ai kard povaikiy aroryedaes). Two
treatises are attributed to Euclid in our MsSs. of the Musici, the
karatous xavovos, Sectio canonis (the theory of the intervals), and the
elcaywyn dpuovicy (introduction to harmony)®. The first, resting on
the Pythagorean theory of music, is mathematical, and the style and
diction as well as the form of the propositions mostly agree with what
we find in the Elements. Jan thought it genuine, especially as almost
the whole of the treatise (except the preface) is quoted ## exfenso, and
Euclid is twice mentioned by name, in the commentary on Ptolemy's
Harmonica published by Wallis and attributed by him to Porphyry.
Tannery was of the opposite opinion”. The latest editor, Menge, sug-
gests that it may be a redaction by a less competent hand from the
genuine Euclidean Elements of Music. The second treatise is not
Euclid's, but was written by Cleonides, a pupil of Aristoxenus®

Lastly, it is worth while to give the Arabians’ list of Euclid’s
works. [ take this from Suter’s translation of the list of philosophers
and mathematicians in the F7krist, the oldest authority of the kind
that we possess®. “ To the writings of Euclid belong further [in
addition to the Elements]: the book of Phaenomena; the book of

Y Euclidis opera omnia, vol. V1il., 1916, Pi. 2—156.

2 Heiberg, Eublid-Studien, p. 46 ; Hultsch, Autolycus, p. xii; A. A. Bjornbo, Studien
tiber Menelaos' Sphirik (Abkandlungen sur Geschichte der mathematischen Wissenschaften,
X1v. 1go1), p. 565qq.

3 g:rh' 1 @ omnia, vol. VIIL. (1895).

4 Heiberg, Euclid’s ugpﬂ’a, ete. p. 1. 5 Proclus, p. 69, 3.

¢ Both treatises edited by Jan in Musici Scriptores Graeci, 1895, pp. 113—166, 167—107,
and by Menge in Euclidis opera omnia, vol. V1IL, 1916, pp. 157—183, 185—213.

T Comples rendus de I' Acad. des inscriptions et belles-lettres, Paris, 1904, PP. 430—445-
Cf. Bibliotheca Mathematica, v1g, 1905-6, p. 225, note 1.

8 Heiberg, Enklid-Studien, pp. 52—55; Jan, Musici Scriplores Graeci, pp. 169—174.

¥ H. Suter, Das Mathematiker- Verseichniss im Fikrist in Abkandlungen sur Geschichte
der Mathematik, v1., 1892, pp. 1—87 (see especially p. 17). Cf. Casiri, 1. 339, 340, and
Gartz, De interpretibus et explanatoribus Euclidis Arabicis, 1823, pp. 4, 5.
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Given Magnitudes [Data]; the book of Tones, known under the name
of Music, not genuine; the book of Division, emended by Thabit;
the book of Utilisations or Applications [Porisms], not genuine; the
book of the Canon; the book of the Heavy and Light; the book of
Synthesis, not genuine; and the book of Analysis, not genuine.”

It is to be observed that the Arabs already regarded the book of
Tones (by which must be meant the eio appoviki) as spurious.
The book of Division is evidently the book on Divisions (of figures).
The next book is described by Casiri as “ liber de utilitate suppositus.”
Suter gives reason for believing the Porisms to be meant?, but does
not apparently offer any explanation of why the work is supposed to
be spurious. The book of the Canon is clearly the xatarouy xavivos.
The book on “the Heavy and Light” is apparently the tract De levi
et ponderoso, included in the Basel Latin translation of 1537, and in
Gregory’s edition. The fragment, however, cannot safely be attributed
to Euclid, for (1) we have nowhere any mention of his having written
on mechanics, (2) it contains the notion of specific gravity in a form
so clear that it could hardly be attributed to anyone earlier than
Archimedes®. Suter thinks? that the works on Analysis and Synthesis
(said to be spurious in the extract) may be further developments of
the Data or Porisms, or may be the interpolated proofs of Ewucl.
X111 1—5, divided into analysis and synthesis, as to which see the notes
on those propositions.

1 Suter, op. cil. pp. 49, 50. Wenrich translated the word as “utilia.” Suter says that
the nearest meaning of the Arabic word as of *porism” is use, gain (Nutzen, Gewinn), while
a further meaning is explanation, observation, addition: a gain arising out of what has
preceded (cf. Proclus’ dcl?nilion of the porism in the sense of a corollary).

* Heiberg, Euklid-Studien, pp. 9, 10. * Suter, op. cit. p. 50.
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CHAPTER IIL

GREEK COMMENTATORS ON THE ELEMENTS OTHER
THAN PROCLUS.

THAT there was no lack of commentaries on the Elements before
the time of Proclus is evident from the terms in which Proclus refers
to them; and he leaves us in equally little doubt as to the value
which, in his opinion, the generality of them possessed. Thus he says
in one place (at the end of his second prologue)*:

“Before making a beginning with the investigation of details,
I warn those who may read me not to expect from me the things
which have been dinned into our ears ad nauseam (8iarefpiiqgrar) by
those who have preceded me, viz. lemmas, cases, and so forth. For
I am surfeited with these things and shall give little attention to them.
But I shall direct my remarks principally to the points which require
deeper study and contribute to the sum of philosophy, therein emulating
the Pythagoreans who even had this common phrase for what I mean
‘a figure and a platform, but not a figure and sixpence®’”

In another place?® he says: “Let us now turn to the elucidation
of the things proved by the writer of the Elements, selecting the more
subtle of the comments made on them by the ancient writers, while
cutting down their interminable diffuseness, giving the things which
are more systematic and follow scientific methods, attaching more
importance to the working-out of the real subject-matter tham to the
variety of cases and lemmas to which we see recent writers devoting
themselves for the most part.”

At the end of his commentary on Hucl. I. Prockis remarks* that
the commentaries then in vogue were full of all sorts of confusion, and
contained no account of causes, no dialectical discrimination, and no
philosophic thought.

These passages and two others in which Proclus refers to “the
commentators®” suggest that these commentators were numerous.
He does not however give many names; and no doubt the only
important commentaries were those of Heron, Porphyry, and Pappus.

! Proclus, p. 84, 8.
? j.e. we reach a certain height, use the platform so attained as a base on which to build

another stage, then use that as a base and so on.
! Proclus, p. 200, 10. 4 jbid. p. 433, 15 5 jbid, p. 289, 11; p. 328, 16.
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I. Heron.

Proclus alludes to Heron twice as Heron meckanicus, in another
place? he associates him with Ctesibius, and in the three other
passages® where Heron is mentioned there is no reason to doubt that
the same person is meant, namely Heron of Alexandria. The date of
Heron is still a vexed question. In the early stages of the controversy
much was made of the supposed relation of Heron to Ctesibius. The
pest MS. of Heron's Belopoeica has the heading "Hpwvos KrnaiBiov
Belomoaiikd, and an anonymous Byzantine writer of tﬂ: tenth century,
evidently basing himself on this title, speaks of Ctesibius as Heron’s
xabfnymiis, “ master ” or “teacher.” We know of two men of the name
of Ctesibius. One was a barber who lived in the time of Ptolemy
Euergetes II, ie. Ptolemy VII, called Physcon (died 117 B.C.), and
who is said to have made an improved water-organt. The other was a
mechanician mentioned by Athenaeus as having made an elegant
drinking-horn in the time of Ptolemy Philadelphus (285-247 B.C.)%
Martin® took the Ctesibius in question to be the former and accord-
ingly placed Heron at the beginning of the first century B.C., say
126-50 B.C. But Philo of Byzantium’, who repeatedly mentions Ctesi-
bius by name, says that the first mechanicians had the advantage of
being under kings who loved fame and supported the arts. Hence our
Ctesibius is more likely to have been the earlier Ctesibius who was
contemporary with Ptolemy II Philadelphus.

But, whatever be the date of Ctesibius, we cannot safely conclude
that Heron was his immediate pypil. The title “ Heron’s (edition of)
Ctesibius’s Belopoeica” does not, in fact, justify any inferenee as to
the interval of time between the two works.

We now have better evidence for a zerminus post quem. The
Metrica of Heron, besides quoting Archimedes and Apollonius, twice
refers to “ the books about straight lines (chords) in a circle” (év rois
wepl Tov év kixhp elfedr). Now we know of no work giving a Table
of Chords earlier than that of Hipparchus. We get, therefore, at
once, 150 B.C. or thereabouts as the ferminus post quem. But, again,
Heron’s Mechanica quotes a definition of “ centre of gravity ” as given
by “Posidonius, a Stoic”: and, even if this Posidonius lived before
Archimedes, as the context seems to imply, it is certain that another
work of Heron's, the Definitions, owes something to Posidonius of
Apamea or Rhodes, Cicero’s teacher (13551 B.C.). This brings Heron’s
date down to the end of the first century B.C., at least.

We have next to consider the relation, if any, between Heron and
Vitruvius. In his De Architectura, brought out apparently in 14B.C,
Vitruvius quotes twelve authorities on machinationes including Archytas

1 Proclus, p. 305, 243 P- 340, 13.

2 ibid. p. 41, 10.

3 ibid. p. 196, 16; p. 323, 7; P- 439, 13-

4 Athenaeus, Deigno-Soph. iv., c. 75, p. 174 b—c.s

B jbid. xi., c. 97, P- 497 b—=. . :

8 Martin, Kecherches sur la vie et les owvrages d' Héron d’ Alexandrie, Paris, 1854, p. 27.
7 Philo, Mechan. Synt., p. 50, 38, ed. Schone.
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(second), Archimedes (third), Ctesibius (fourth) and Philo of Byzan-
tium (sixth), but does not mention Heron. Nor is it possible to
establish inter-dependence between Vitruvius and Heron; the differ-
ences between them seem on the whole more numerous and important
than the resemblances (e.g. Vitruvius uses 3 as the value of , while
Heron always uses the Archimedean value 34). The inference is that
Heron can hardly have written earlier than the first century A.D.

The most recent theory of Heron’s date makes him later than
Claudius Ptolemy the astronomer (100178 A.D.). The arguments are
mainly these. (1) Ptolemy claims as a discovery of his own a method
of measuring the distance between two places (as an arc of a great
circle on the earth’s surface) in the case where the places are neither
on the same meridian nor on the same parallel circle. Heron, in his
Digptra, speaks of this method as of a thing generally known to
experts, (2) The dioptra described in Heron’s work is a fine and
accurate instrument, much better than anything Ptolemy had at his
disposal. (3) Ptolemy, in his work Ilepi pomev, asserted that water
with water round it has no weight and that the diver, however deep
he dives, does not feel the weight of the water above him. Heron,
strangely enough, accepts as true what Ptolemy says of the diver, but
is dissatisfied with the explanation given by “ some,” namely that it is
because water is uniformly heavy—this seems to be equivalent to
Ptolemy’s dictum that water in water has no weight—and he essays a
different explanation based on Archimedes. (4) It is suggested that
the Dionysius to whom Heron dedicated his Definitions is a certain
Dionysius who was praefectus urbi in 301 A.D.

On the other hand Heron was earlier than Pappus, who was
writing under Diocletian (284-305 A.D.), for Pappus alludes to and
draws upon the works of Heron. The net result, then, of the most
recent research is to place Heron in the third century A.D. and perhaps
little earlier than Pappus. Heiberg® accepts this conclusion, which
may therefore, perhaps, be said to hold the field for the present?.

That Heron wrote a systematic commentary on the Elements
might be inferred from Proclus, but it is rendered quite certain by
references to the commentary in Arabian writers, and particularly in
an-Nairizi's commentary on the first ten Books of the Elements. The
Filrist says, under Euclid, that “ Heron wrote a commentary on this
book [the Elements], endeavouring to solve its_ difficulties®”; and
under Heron, “ He wrote : the book of explanation of the obscurities
in Euclid*....” An-Nairizi's commentary quotes Heron by name very
frequently, and often in such a way as to leave no doubt that the
author had Heron’s work actually before him. Thus the extracts are
given in the first person, introduced by “Heron says” (*Dixit Yrinus”

Y Heronis Alexandrini opera, vol. v. (Teubner, rgrg), p. ix.

2 Fuller details of the various arguments will be foung in my History of Greek Mathe-
matics, 1921, vol. 11., pp. 298—306.

3 Das Mathematiker- Verseichniss im Fihrist (tr. Suter), p. 16.

4 jbid. p. 21.
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or “Heron”); and in other places we are told that Heron “says
nothing,” or “is not found to have said anything,” on such and such
a proposition. The commentary of an-Nairizi is in part edited by
Besthorn and Heiberg from a Leiden Ms. of the translation of the
Elements by al-Hajjaj with the commentary attached®. But this MS.
only contains six Books, and several pages in the first Book, which
contain the comments of Simplicius on the first twenty-two defini-
tions of the first Book, are missing. Fortunately the commentary of
an-Nairizi has been discovered in a more complete form, in a Latin
translation by Gherardus Cremonensis of the twelfth century, which
contains the missing comments by Simplicius and an-Nairizi's com-
ments on the first ten Books. This valuable work has recently been
edited by Curtze.

Thus from the three sources, Proclus, and the two versions of
an-Nairizi, which supplement one another, we are able to form a very
good idea of the character of Heron’s commentary. In some cases
observations given by Proclus without the name of their author are
seen from an-Nairizi to be Heron’s; in a few cases notes attributed
by Proclus to Heron are found in an-Nairizi without Heron’s name ;
and, curiously enough, one alternative proof (of 1. 25) given as Heron’s
by Proclus is introduced by the Arab with the remark that he has
not been able to discover who is the author.

Speaking generally, the comments of Heron do not seem to have
contained much that can be called important. We find

(1) A few general notes, e.g. that Heron would not admit more
than three axioms.

(2) Distinctions of a number of particular cases of Euclid’s pra-
positions according as the figure is drawn in one way or in another.

Of this class are the different cases of 1. 35, 36, 111. 7, 8 (where the
chords to be compared are drawn on different sides of the diameter
instead of on the same side), I11. 12 (which is not Euclid’s, but Heron's
own, adding the case of external contact to that of internal contact in
IIL 11), VL. 19 (where the triangle inwhich an additional line is drawn
is taken to be the smaller of the two), VI 19 (where he gives the
particular case of #kree numbers in continued proportion, instead of
four proportionals).

(3) Alternative proofs. Of these there should be mentioned (a)
the proofs of II. 1—10 “without a figure,” being simply the algebraic
forms of proof, easy but uninstructive, which are so popular nowadays,
the proof of 111. 25 (placed after III. 30 and starting from the arc
instead of the chord), III. 10 (proved by IIL g), 1L 13 (a proof
preceded by a lemma to the effect that a straight line cannot meet a
circle in more than two points). Another class of alternative proof is

! Codex Leidensis 399, 1. Ewuclidis El ta ex inlerpretatione al-Hadschdschadschii
cum commentariis al-Narizsii. Five parts carrying the work to the end of Book 1v. were
issued in 1893, 1897, 1900, 1905 and 1910 respectiveg.

2 Amaritii in decem libros priores el torum Euclidis tarii ex interpretatic
Gherardi Cremonensis.. .edidit Maximilianus Curtze (Teubner, Leipzig, 1899).
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(6) that which is intended to meet a particular odjection (évaraais)
which had been or might be raised to Euclid’s construction. Thus
in certain cases he avoids producing a particular straight line, where
Euclid produces it, in order to meet the objection of any one who should
deny our right to assume that there is any space available’. Of this
class are Heron’s proofs of L 11, L. 20,and his note on 1. 16. Similarly
on I. 48 he supposes the right-angled triangle which is constructed to
be constructed on the same side of the common side as the given
triangle is. A third class (¢) is that which avoids reductio ad
absurdum. Thus, instead of indirect proofs, Heron gives direct
proofs of 1. 19 (for which he requires, and gives, a preliminary
lemma), and of I. 25.

(4) Heron supplies certain converses of Euclid’s propositions,
eg. converses of II. 12, 13, VIIL 27.

(5) A few additions to, and extensions of, Euclid’s propositions
are also found. Some are unimportant, e.g. the construction of isosceles
and scalene triangles in a note on I 1, the construction of fwo tangents
in I1I 17, the remark that vII. 3 about finding the greatest common
measure of three numbers can be applied to as many numbers as we
please (as Euclid tacitly assumes in VIL 31). The most important
extension is that of IIL. 20 to the case where the angle at the
circumference is greater than a right angle, and the direct deduction
from this extension of the result of IIL 22. Interesting also are the
notes on I. 37 (on I 24 in Proclus), where Heron proves that two
triangles with two sides of one equal to two sides of the other and
with the included angles supplementary are equal, and compares the
areas where the sum of the two included angles (one being supposed
greater than the other) is less or greater than two right angles, and
on L 47, where there is a proof (depending on preliminary lemmas) of
the fact that, in the figure of the proposition, the straight lines AL,
BK, CF meet in a point. After 1V. 16 there is a proof that, in a
regular polygon with an even number of sides, the bisector of one
angle also bisects its opposite, and an enunciation of the corresponding
proposition for a regular polygon with an odd number of sides.

Van Pesch? gives reason for attributing to Heron certain other
notes found in Proclus, viz. that they are designed to meet the same
sort of points as Heron 'had in view in other notes undoubtedly written
by him. These are (@) alternative proofs of 1. 5, I. 17, and L 32,
which avoid the producing of certain straight lines, (4) an alternative
proof of I. g avoiding the construction of the equilateral triangle on
the side of BC opposite to 4 ; (¢) partial converses of 1. 35—38, starting
from the equality of the areas and the fact of the parallelograms or
triangles being in the same parallels, and proving that the bases are
the same or equal, may also be Heron’s, Van Pesch further supposes
that it was in Heron’s commentary that the proof by Menelaus of
I 25 and the proof by Philo of 1. 8 were given.

! Cf. Proclus, 275, 7 el 8¢ Myot Tis réwov u eldévau..., 289, 18 Aéyer olv Tiv 87 odx fom
réwos....
2 De Procli fontibus, Lugduni-Batavorum, 1900,
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The last reference to Heron made by an-Nairizi occurs in the note
on VIIL 27, so that the commentary of the former must at least have
reached that point.

II. Porphyry.

The Porphyry here mentioned is of course the Neo-Platonist who
lived about 232-304 A.D. Whether he really wrote a systematic
commentary on the Elements is uncertain. The passages in Proclus
which seem to make this probable are two in which he mentions him
(1) as having demonstrated the necessity of the words “not on the
same side” in the enunciation of 1. 14, and (2) as having pointed out
the necessity of understanding correctly the enunciation of I. 26, since,
if the particular injunctions as to the sides of the triangles to be taken
as equal are not regarded, the student may easily fall into error®
These passages, showing that Porphyry carefully analysed Euclid’s
enunciations in these cases, certainly suggest that his remarks were
part of a systematic commentary. Further, the list of mathematicians
in the Fihrist gives Porphyry as having written “a book on the
Elements.” It is true that Wenrich takes this book to have been a
work by Porphyry mentioned by Suidas and Proclus ( Tkeolog. Platon.),
mepi apyey libri 11

There is nothing of importance in the notes attributed to Porphyry
by Proclus.

(1) Three alternative proofs of I. 20, which avoid producing a side
of the triangle, are assigned to Heron and Porphyry without saying
which belonged to which. If the first of the three was Heron’s, I
agree with van Pesch that it is more probable that the two others
were both Porphyry’s than that the second was Heron’s and only the
third Porphyry’s. For they are similar in character, and the third
uses a result obtained in the second*.

(2) Porphyry gave an alternative proof of I. 18 to meet a childish
objection which is supposed to require the part of AC equal to 45 to
be cut off from CA and not from AC.

Proclus gives a precisely similar alternative proof of I 6 to meet a
similar supposed ogjection; and it may well be that, though Proclus
mentions no name, this proof was also Porphyry’s, as van Pesch
suggests®,

Two other references to Porphyry found in Proclus cannot have
anything to do with commentaries on the Elements. In the first a
work called the Zvuuikrd is quoted, while in the second a philo-
sophical question is raised.

III. Pappus.

The references to Pappus in Proclus are not numerous; but we
have other evidence that he wrote a commentary on the Elements.
Thus a scholiast on the definitions of the Dafa uses the phrase “as

1 o — 1 b . N 3 i .
i E}rgﬂl::'(tfp S:?E;],lp. ;?Bt'o':nd P 45 {notel?f B 285 514, Yo fnd the pages peecading
4 Van Pesch, De Procli fomtibus, pp. 129, 130. Heiberg assigned them as above in his
gﬁ;ﬁd—sw (p- 160), but seems to have changed his view later. (See Besthorn-Heiberg,

s, P 93, note 2.)
® Van Pesch, op. cit. pp. 130—1.
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Pappus says at the beginning of his (commentary) on the 1oth (book)
of Euclid.” Again in the Fikrist we are told that Pappus wrote a
commentary to the tenth book of Euclid in two parts®. Fragments
of this still survive in a MS. described by Woepcke®, Paris. No. g52. 2
(supplément arabe de la Bibliothéque impériale), which contains a
translation by Abii ‘Uthman (beginning of 10oth century) of a Greek
commentary on Book X. It is in two books, and there can now be
no doubt that the author of the Greek commentary was Pappus*.
Again Eutocius, in his note on Archimedes, On the Sphere and
Cylinder 1. 13, says that Pappus explained in his commentary on the
Elements how to inscribe in a circle a polygon similar to a polygon
inscribed in another circle; and this would presumably come in his
commentary on Book XIL, just as the problem is solved in the second
scholium on Eucl. XII. 1. Thus Pappus’ commentary on the Elements
must have been pretty complete, an additional confirmation of this
supposition being forthcoming in the reference of Marinus (a pupil
and follower of Proclus) in his preface to the Data to “the com-
mentaries of Pappus on the booﬁ'."

The actual references to Pappus in Proclus are as follows:

(1) On the Postulate (4) that all right angles are equal, Pappus is
quoted as saying that the converse, viz. that all angles equal to a
right angle are right, is not true, since the angle included between
the arcs of two semicircles which are equal, and have their diameters
at right angles and terminating at one point, is equal to a right angle,
but is not a right angle.

(2) On the axioms Pappus is quoted as saying that, in addition to
Euclid’s axioms, others are on record as well (cvvavaypdpeofar) about
unequals added to equals and equals added to unequals?; these, says
Proclus, follow from the Euclidean axioms, while others given by
Pappus are involved by the definitions, namely those which assert
that “all parts of the plane and of the straight line coincide with one
another,” that “a point divides a straight line, a line a surface, and a
surface a solid,” and that “the infinite is (obtained) in magnitudes
both by addition and diminution®”

! Euclid's Dasa, ed. Menge, p. 262. * Fikrist (tr. Suter), p. 23,

3 Mimoires prisentds a a"’amd).:lit des sciences, 1856, X1V. pp. 658—71

4 Woepcke read the name of the author, in the title of the first bdoz:as B .los (the dot
r;})reaenting a missing vowel). He quotes also from other mss. (e.g. of the 7a'rikk a/-
Hukamd and of the Fikris¢) where he reads the name of the commentator as B./%s, B.n.5
or B.7/.5. Woepcke takes this author to be Valens, and thinks it ible that he may be
the same as the astrologer Vettius Valens. This Heiberg (Ewdlid-Studien, pp. 169, Z:}
proves to be impossible, because, while one of the Mss. quoted by Woepclie says that
“B.n.s, le Rodmi"” (late-Greek) was later than Claudius Ptolemy and the Frkrist says
“B.l.5, le Rodmi” wrote a commentary on Ptolemy’s Plamisphaerium, Vettius Valens
seems to have lived under Hadrian, and must therefore have been an e/der contemporary of
Ptolecmz. But Suter shows (FArist, p. 22 and p. 54, note g2) that Banmos is only distin-

ished from Babes by the position ofp a certain dot, and Balos may also easily have arisen
rom an original Bados (there is no P in Arabic), so that Pappus must be the person meant.
This is further confirmed by the fact that the Fikrist gives this author and Valens as the
subjects of two separate paragraphs, attributing to the latter astrological works only.

Heiberg, Enklid-Studien, p. 173; Euclid’s Data, ed. Menge, pp. 256, lii.
¢ Proclus, pp. 189, 190, 7 ibid. p. 197, 6—10.
8 gbid. p. |g§. 3—15.
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(3) Pappus gave a pretty proof of I. 5. This proof has, I think,
been wrongly understood; on this point see my note on the
proposition.

(4) On L 47 Proclus says': “ As the proof of the writer of the
Elements is manifest, I think that it is not necessary to add anything
further, but that what has been said is sufficient, since indeed those
who have added more, like Heron and Pappus, were obliged to make
use of what is proved in the sixth book, without attaining any
important result.” We shall see what Heron’s addition consisted of ;
what Pappus may have added we do not know, unless it was some-
thing on the lines of his extension of I. 47 found in the Syragoge
(Iv. p. 176, ed. Hultsch).

We may fairly conclude, with van Pesch? that Pappus is drawn
upon in various other passages of Proclus where he quotes no
authority, but where the subject-matter reminds us of other notes
expressly assigned to Pappus or of what we otherwise know to have
been favourite questions with him, Thus:

1. We are reminded of the curvilineal angle which is equal to but
not a right angle by the note on I. 32 to the effect that the converse
(that a figure with its interior angles together equal to two right
angles is a triangle) is not true unless we confine ourselves to
rectilineal figures. This statement is supported by reference to a
figure formed by four semiicircles whose diameters form a square, and
one of which is turned inwards while the others are turned outwards.
The figure forms two angles “equal to” right angles in the sense
described by Pappus on Post. 4, while the other curvilineal angles are
not considered to be angles at all, and are left out in summing the
internal angles. Similarly the allusions in the notes on I 4, 23 to
curvilineal angles of which certain moon-shaped angles (unvoedeis)
are shown to be “equal to” rectilineal angles savour of Pappus.

2. On L g Proclus says?® that “Others, starting from the Archi-
medean spirals, divided any given rectilineal angle in any given ratio.”
We cannot but compare this with Pappus 1v. p. 286, where the spiral
is so used ; hence this note, including remarks immediately preceding
about the conchoid and the quadratrix, which were used for the same
purpose, may very well be due to Pappus.

3. The subject of isoperimetric figures was a favourite one with
Pappus, who wrote a recension of Zenodorus’ treatise on the subject?,
Now on I 35 Proclus speaks® about the paradox of parallelograms
having equal area (between the same parallels) though the two sides
between the parallels may be of any length, adding that of parallelo-
grams with equal perimeter the rectangle is greatest if the base be
given, and the square greatest if the base be not given etc. He
returns to the subject on I 37 about triangles®. Compare” also his
note on I. 4. These notes may have been taken from Pappus.

1 p—. .

1 ggl;:scl;falgw:‘f fontibus, p. 134 5qq- 3 Proclus, p. 272, 10.

4 Pappus, V. pp. 304—350; for Zenodorus' own treatise see Hultsch’s Appendix, pp. 1189
I

—1211
® Proclus, pp. 396—8. S jbid. pp. 403—4- 7 jbid. pp. 236—7-
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4. Again, on L 21, Proclus remarks on the paradox that straight
lines may be drawn from the base to a point within a triangle which
are (1) together greater than the two sides, and (2) include a less
angle, provided that the straight lines may be drawn from points in
the base other than its extremities. The subject of straight lines
satisfying condition (1) was treated at length, with reference to a
variety of cases, by Pappus’, after a collection of *“paradoxes” by
Erycinus, of whom nothing more is known. Proclus gives Pappus’
first case, and adds a rather useless proof of the possibility of drawing
straight lines satisfying condition (2) alore, adding that “the proposi-
tion stated has been proved by me without using the parallels of
the commentators®” By “the commentators” Pappus is doubtless
meant.

5. Lastly, the “four-sided triangle,” called by Zenodorus the
“hollow-angled,”® is mentioned in the notes on I Def. 24—29 and
L. 21. As Pappus wrote on Zenodorus’ work in which the term
occurred!, Pappus may be responsible for these notes.

IV. Simplicius.

According to the Fikriss®, Simplicius the Greek wrote “a com-
mentary to the beginning of Euclid’s book, which forms an introduc-
tion to geometry.” And in fact this commentary on the definitions,
postulates and axioms (including the postulate known as the Parallel-
Axiom) is preserved in the Arabic commentary of an-Nairizi®. On
two subjects this commentary of Simplicius quotes a certain *Aganis,”
the first subject being the definition of an angle, and the second the
definition of parallels and the parallel-postulate. Simplicius gives
word for word, in a long passage placed by an-Nairizi after I. 29, an
attempt by “ Aganis” to prove the parallel-postulate. It starts from
a definition of parallels which agrees with Geminus’ view of them as
given by Proclus’, and is closely connected with the definition given
by Posidonius®, Hence it has been assumed that *“ Aganis” is none
other than Geminus, and the historical importance of the commentary
of Simplicius has been judged accordingly. But it has been recently
shown by Tannery that the identification of “ Aganis” with Geminus
is practically impossible’. In the translation of Besthom-Helberg
Aganis is called by Simplicius in one place “philosophus Aganis,” in
another “magister noster Aganis,” in Gherard’s version he is “socius
Aganis” and “socius noster Aganis.” These expressions seem to
leave no doubt that Aganis was a contemporary and friend, if not
master, of Simplicius ; and it is impossible to suppose that Simplicius
(fl. about 500 A.D.) could have used them of a man who lived four and

! Pappus, III. pp. 104—130. 2 Proclus, p. 318, 15.

3 Proclus, p. 165, 24; cf. pp 3128, 320. 4 See Papp%s. ed. Hultsch, pp. 1154, 1206.

« An-Naitis], ed. Besthorn. Heibe

n-Nairizi, om eil 41, 119—133, ed. Curtze, pp. 1—37, 65—73.

The Codex Leidensis, from which Best nl:g a.'i';:leelbe9 3:.m is taken, as unﬁrtuimi?y
lost some leaves, so that there is a gap from Def. 1 to e!’ 23 (parallels). The loss is, how-
ever, made good by Curtze’s edition of lhe translation by Gherard of Cremona.

7 Proclus, p. 177, 21- 8 jbid. p. 176, 7.

O Bibliotheca Mat. tica, 11y, 1900, pp. 9—I1.
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a half centuries before his time. A phrase in Simplicius’ word-for-
word quotation from Aganis leads to the same conclusion. He speaks
of people who objected “even in ancient times” (iam antiquitus) to
the use by geometers of this postulate. This would not have been an
appropriate phrase had Geminus been the writer. I do not think
that this difficulty can be got over by Suter’s suggestion® that the
passages in question may have been taken out of Heron's commentary,
and that an-Nairizi may have forgotten to name the author; it seems
clear that Simplicius is the person who described “ Aganis,” Hence
we are driven to suppose that Aganis was not Geminus, but some
unknown contemporary of Simplicius®. Considerable interest will
however continue to attach to the comments of Simplicius so
fortunately preserved.

Proclus tells us that one Aegaeas (? Aenaeas) of Hierapolis wrote an
epitome of the Elements*; but we know nothing more of him or of it.

v Zeitschrift fiir Math. w. Physik, XLIV., hist.-litt. Abth. p. 61.

? The above argument seems to me quite insuperable. other arguments of Tannery
do not, however, carry conviction to my mind. I do not follow the reasoning based on
Aganis’ definition of an angle. It appears to me a pure assumption that Geminus would have
seen that Posidonius’ definition of parallels was not admissible. Nor does it seem to me to
count for much that Proclus, while telling us that Geminus held that the ulate ought to be
proved and warned the unwary against hastily concluding that two straight lines aj ing
one another must necessarily meet (cf. a curve and its a.s;mptote), gives no hint that
Geminus did try to prove the postulate. It may well be that Proclus omitted Geminus’
“proof” (if he wrote one) because he preferred Ptolemy's attempt which he gives
(pp. 365—7)-

3 Proclus, p. 361, 21.



CHAPTER IV.

PROCLUS AND HIS SOURCESL

IT is well known that the commentary of Proclus on Eucl. Book I
is one of the two main sources of information as to the history of
Greek geometry which we possess, the other being the Collection of
Pappus. They are the more precious because the original works of
the forerunners of Euclid, Archimedes and Apollonius are lost, having
probably been discarded and forgotten almost immediately after the
appearance of the masterpieces of that great trio.

Proclus himself lived 410-485 A.D., so that there had already
passed a sufficient amount of time for the tradition relating to the
pre-Euclidean geometers to become obscure and defective. In this
connexion a passage is quoted from Simplicius® who, in his account
of the quadrature of certain lunes by Hippocrates of Chios, while
mentioning two authorities for his statements, Alexander Aphro-
disiensis (about 220 A.D.) and Eudemus, says in one place?, “As
regards Hippocrates of Chios we must pay more attention to Eudemus,
since he was nearer the times, being a pupil of Aristotle.”

The importance therefore of a critical examination of Proclus’
commentary with a view to determining from what original sources
he drew need not be further emphasised.

Proclus received his early training in Alexandria, where Olympio-
dorus was his instructor in the works of Aristotle, and mathematics
was taught him by one Heron* (of course a different Heron from the
“mechanicus Hero” of whom we have already spoken). He after-
wards went to Athens where he was imbued by Plutarch, and by
Syrianus, with the Neo-Platonic philosophy, to which he then devoted

! My task in this chapter is made easy by the appearance, in the nick of time, of the
dissertation De Procli m—: by J. G. van Pesch (Lugduni-Batavorum, Apud L. van
Nifterik, MDcccc). chapters dealing directly with the subject show a thorough
acquaintance on the part of author with all the literature bearing on it; he covers
the whole field and he exercises a sound and sober judgment in forming his conclusions.
The same cannot always be said of his only Eedeneuor in the same inquiry, Tannery
(in La (l?lﬁmltru gwg;;c. 1887), w'haphaﬁeqdm hl;::l spml;atio]r:z_a of much of m ovf“lh“i:
conclusions on an arbit; ml:l:d':{ et od P F-Tuwt;nﬂ:e“sf:m’*ﬁ‘m of the words
ol wepl Twva (e.g. "Hpwra, Tlosedimor etc.) as used in Proclus,

: 33@:2; or; Aristotle's Physics, ed. Diels, pp. 54—069.

¢ Ci. mir’l.skxlmja sur la vie ¢f les ouvrages d'Héron & Alexandrie, pp. 140—2.
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heart and soul, becoming one of its most prominent exponents. He
speaks everywhere with the highest respect of his masters, and
was in turn regarded with extravagant veneration by his contem-
poraries, as we learn from Marinus his pupil and biographer. On
the death of Syrianus he was put at the head of the Neo-Platonic
school. He was a man of untiring industry, as is shown by the
number of books which he wrote, including a large number of com-
mentaries, mostly on the dialogues of Plato. He was an acute
dialectician, and pre-eminent among his contemporaries in the
range of his learning'; he was a competent mathematician; he was
even a poet. At the same time he was a believer in all sorts of
myths and mysteries and a devout worshipper of divinities both
Greek and Oriental.

Though he was a competent mathematician, he was evidently
much more a philosopher than a mathematician®?. This is shown
even in his commentary on Eucl. 1, where, not only in the Prologues
.(especially the first), but also in the notes themselves, he seizes any
opportunity for a philosophical digression. He says himself that he
attaches most importance to “the things which require deeper study
and contribute to the sum of philosophy?”; alternative proofs, cases,
and the like (though he gives many) have no attraction for him;
and, in particular, he attaches no value to the addition of Heron to
L 47% which is of considerable mathematical interest. Though he
esteemed mathematics highly, it was only as a handmaid to philosophy.
He quotes Plato’s opinion to the effect that “mathematics, as making
use of hypotheses, falls short of the non-hypothetical and perfect
science®”...“Let us then not say that Plato excludes mathematics
from the sciences, but that he declares it to be secondary to the one
supreme science®” And again, while “mathematical science must be
considered desirable in itself, though not with reference to the needs
of daily life,” “if it is necessary to refer the benefit arising from it to
something else, we must connect that benefit with intellectual know-
ledge (voepav yvéaiv), to which it leads the way and is a propaedeutic,
clearing the eye of the soul and taking away the impediments which
;he senses place in the way of the knowledge of universals (rév
M” 7.)l

V‘?’e know that in the Neo-Platonic school the younger pupils
learnt mathematics; and it is clear that Proclus taught this subject,
and that this was the origin of the commentary. Many passages
show him as a master speaking to scholars. Thus “we Have illustrated

1 Zeller calls him ““Der Gelehrte, dem kein Feld damaligen Wissens verschlossen ist.”

? Van Pesch observes that in his taries on the 71 (pp: 671—1) he speaks
as no real mathematician could have spoken. In the passage referred to the question is
whether the sun occupies a middle place among the planets. Proclus rejects the view of
Hipparchus and Ptolemy because **é #eoupyds” (sc. the C?haidean, says Zeller) thinks otherwise,
“ whom it is not lawful to disbelieve.” Martin says rather neatly, * Pour Proclus, les

léments d'Euclide ont 'heureuse chance de n'étre contredits ni par lyes Oracles chaldaiqués,
ni par les spéculations des pythagoriciens anciens et nouveaux......"

® Proclus, p. 84, 13. 4 ibid. p. 429, 12.

b jbid. p. 31, 20. 8 jbid. p. 33, 2.

7 ibid, p. 27, 27 to 28, 7; cf. also p. 21, 25, PP. 46, 47-
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and made plain all these things in the case of the first problem, but
it is necessary that my kearers should make the same inquiry as
regards the others as well!,” and “I do not indicate these things as a
merely incidental matter but as preparing #s beforehand for the
doctrine of the Timaeus®” Further, the pupils whom he was
addressing were beginners in mathematics; for in one place he says
that he omits “for the present” to speak of the discoveries of those
who employed the curves of Nicomedes and Hippias for trisecting
an angle, and of those who used the Archimedean spiral for dividing
an angle in any given ratio, because these things would be too
difficult for beginners (8vofewprjtous 7Tols elocajyouévors)’. Again, if
his pupils had not been beginners, it would not have been necessary
for Proclus to explain what is meant by saying that sides subtend
certain anglest, the difference between adjacent and wvertical angles®
etc., or to exhort them, as he often does, to work out other particular
cases for themselves, for practice (yvpvacias &vexa).

The commentary seems then to have been founded on Proclus’
lectures to beginners in mathematics. But there are signs that it
was revised and re-edited for a larger public; thus he gives notice in
one place’ “to those who shall come upon” his work (rois évrevéo-
pévois). There are also passages which could not have heen under-
stood by the beginners to whom he lectured, e.g. passages about the
cylindrical helix®, conchoids and cissoids®. These passages may have
been added in the revised edition, or, as van Pesch conjectures, the
explanations given in the lectures may have been much fuller and
more comprehensible to beginners, and they may have been shortened
on revision.

In his comments on the propositions of Euclid, Proclus generally
proceeds in this way : first he gives explanations regarding Euclid’s
proofs, secondly he gives a few different cases, mainly for the sake of
practice, and thirdly he addresses himself to refuting objections
raised by cavillers to particular propositions. The latter class of
note he deems necessary because of “sophistical cavils” and the
attitude of the people who rejoiced in finding paralogisms and in
causing annoyance to scientific men'. His commentary does not
seem to have been written for the purpose of correcting or improving
Euclid. For there are very few passages of mathematical content
in which Proclus can be supposed to be propounding anything of his
own; nearly all are taken from the works of others, mostly earlier
commentators, so that, for the purpose of improving on or correcting
Euclid, there was no need for his commentary at all. Indeed only in
one place does he definitely bring forward anything of his own to get
over a difficulty which he finds in Euclid™; this is where he tries to

: l;zclus, p. 310, 18 :::::‘. p- 385. ;
i . 273, 12 p- 238, 12,
b bid. s a;ﬂ, 14 8 Cf. p. 224, 15 (on 1. 2).
7 ibid. p. B4, 9. 8 fbid. p. 105.
3 Bid. p. 113 “ ibid. p. 375, 8.
W ibid. pp. 368—373
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prove the parallel-postulate, after first giving Ptolemy’s attempt and
then pointing out objections to it. On the other hand, there are a
number of passages in which he extols Euclid; thrice! also he supports
Euclid against Apollonius where the latter had given proofs which he
considered better than Euclid’s (1. 10, 11, and 23).

Allusion must be made to the debated question whether Proclus
continued his commentaries beyond Book 1. His intention to do so
is clear from the following passages. Just after the words above
quoted about the trisection etc. of an angle by means of certain curves
he says, “For we may perhaps more appropriately examine these
things on the third book, where the writer of the Elements bisects a
given circumference®.” Again, after saying that of all parallelograms
which have the same peritheter the square is the greatest “and the
rhomboid least of all,” he adds: “But this we will prove in another
place; for it is more appropriate to the (discussion of the) hypotheses
of the second book3” Lastly, when alluding (on I. 45) to the squaring
of the circle, and to Archimedes’ proposition that any circle is equal
to the right-angled triangle in which the perpendicular is equal to the
radius of the circle and the base to its perimeter, he adds, “But of this
elsewhere*” ; this may imply.an intention to treat of the subject on
Eucl. X11., though Heiberg doubts it®. But it is clear that, at the time
when the commentary on Book I. was written, Proclus had not yet
begun to write on the other Books and was uncertain whether he
would be able to do so: for at the end he says®, *“ For my part, if I
should be able to discuss the other books’ in the same manner, I
should give thanks to the gods; but, if other cares should draw me
away, I beg those who are attracted by this subject to complete the
exposition of the other books as well, following the same method, and
addressing themselves throughout to the deeper and better defined
questions involved” (16 wpaypareiddes mavrayod rai evdialperov
petadidrorras).

There is in fact no satisfactory evidence that Proclus did actually
write any more commentaries than that on Book 1.* The contrary
view receives support from two facts pointed out by Heiberg, viz. (1)
that the scholiast’s copy of Proclus was not so much better than our

1 Proclus, p. 280, 9; p. 282, 20; pp- 335 330- 2 ibid. p. 272, 14.
3 4bid. p. 398, 18. 4 ibid. p. 423, 6.
8 Heiberg, Euklid-Studien, p. 165, note. ¢ Proclus, p. 432, 9

7 The words in the Greek are : el uév Surmfelnuer xai rois howrois Tov alrde Tpbrov éfefeiv.
For éfeMfeiv Heiberg would read émefehfeiv.

8 True, a Vatican Ms. has a collection of scholia on Books 1. (extracts from the extant
commentary of Proclus), 1L., V., VI., X. headed Els ra& Edx\eldov aroixeia wpohaufSaviuera éx
rév Ilpbxhov.owopddny kal xar’ émirousr. Heiberg holds that this title itself suggests that the
authorship of Proclus was limited to the scholia on Book I.; for mpohauBaréueva éx Tdv
1Ipbrhov suits extracts from Proclus’ prologues, but hardly scholia to later Books. Again, a
certain scholium (Heiberg in Aermes. XXXV1IL., 1903, pP- 341, No. 17) purports to quote
words from the end of **a scholium of Proclus” on X. g. The words quoted are from the
scholium X. No. 62, one of the Scholia Vaticana, But none of the other, older, sources
connect Proclus’ name with X. No. 62 ; it is probable therefore that a Byzantine, who had in
his Ms. of Euclid the collection of Schol. Vat. and knew that those on Book 1. came from
Proclus, himself attached Proclus’ name to the others.
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MSS. as to suggest that the scholiast had further commentaries of
Proclus which have vanished for us!; (2) that there is no trace in the
scbl:)o]ia of the notes which Proclus promised in the passages quoted
above.

Coming now to the question of the sources of Proclus, we may say
that everything goes to show that his commentary is a compilation,
though a compilation “in the better sense” of the term? He does not
even give us to understand that we shall find in it much of his own;
“let us,” he says, “now turn to the exposition of the theorems proved
by Euclid, selecting the more subtle of the comments made on them
by the ancient writers, and cutting down their interminable diffuse-
ness...?”: not a word about anything of his own. At the same time,
he seems to imply that he will not necessarily on each occasion quote
the source of each extract from an earlier commentary ; and, in fact,
while he quotes the name of his authority in many places, especially
where the subject is important, in many others, where it is equally
certain that he is not giving anything of his own, he mentions no
authority. Thus he quotes Heron by name six times; but we now
know, from the commentary of an-Nairizi, that a number of other
passages, where he mentions no name, are taken from Heron, and
among them the, not unimportant addition of an alternative proof to
1. 19. Hence we can by no means conclude that, where no authority
is mentioned, Proclus is giving notes of his own. The presumption is
geénerally the other way ; and it is often possible to arrive at a con-
clusion, either that a particular note is not Proclus’ own, or that it
is definitely attributable to someone else, by applying the ordinary
principles of criticism. Thus, where the note shows an unmistakable
affinity to another which Proclus definitely attributes to some com-
mentator by name, especially when both contain some peculiar and
distinctive idea, we cannot have much doubt in assigning both to the
same commentator!. Again, van Pesch finds a criterion in the form
of a note, where the explanation is so condensed as to be only just
intelligible ; the note is that in which a converse of I. 32 is proved®
the proposition namely that a rectilineal figure which has all its in-
terior angles together equal to two right angles is a triangle.

It is not safe to attribute a passage to Proclus himself because he
uses the first person in such expressions as “I say” or “I will prove”
—for he was in the habit of putting into his own words the substance
of notes borrowed from others—nor because, in speaking of an

! While one class ot scnuua (Schol. Vat.) have some better readings than our Mss. of
Proclus have, and partly fill up the gaps at 1. 36, 37 and I. 41—43, the other class (Schol.
Vind.) derive from an inferior Proclus Ms. which also had the same lacunae.

2 Knoche, Untersuchungen iiber des Proklus Diadochus Commentar zu Eullid's Ele-
menten (1862), p. 11.

3 Proclus, p. 200, 10—13.

¢ Inst of the apf ion of this criterion will be found in the discussion of Proclus’
indebted to the taries of Heron, Porphyry and Pappus.

% Van Pesch attributes this converse and proof to Pappus, arguing from the fact that the
proof is followed by a passage which, on comparison with Pappus’ note on the ulate that
all right angles are equal, he feels justified in assigning to Pappus. I doubt if the evidence is
sufficient,
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objection raised to a particular proposition, he uses such expressions
as “perhaps someone may object” (lcws &' dv Tives évoraier...): for
sometimes other words in the same passage.indicate that the objection
had actually been taken by someone’. Speaking generally, we shall
not be justified in concluding that Proclus is stating something new of
his own unless he indicates this himself in express terms.

As regards the form of Proclus’ references to others by name, van
Pesch notes that he very seldom mentions the particular er from
which he is borrowing. If we leave out of account the references to
Plato's dialogues, there are only the following references to books:
the Bacchae of Philolaus?, the Symmikia of Porphyry?, Archimedes On
the Sphere and Cylinder', Apollonius On the cochlias®, a book by
Eudemus on 7/e Angle®, a whole book of Posidonius directed against
Zeno of the Epicurean sect?, Carpus’ Astronomy®, Eudemus’ History of
Geometry®, and a tract by Ptolemy on the parallel-postulate®,

Again, Proclus does not always indicate that he is quoting some-
thing at second-hand. He often does so, e.g. he quotes Heron as the
authority for a statement about Philippus, Eudemus as attributing a
certain theorem to Oenopides etc.; but he says on 1. 12 that “ Oeno-
pides first investigated this problem, thinking it useful for astronomy "
when he cannot have had Oenopides’ work before him.

It has been said above that Proclus was in the habit of stating in
his own words the substance of the things which he borrowed. We
are prepared for this when we find him stating that he will select the
best things from ancient commentaries and “ cut short their intermin-
able diffuseness,” that he will “ briefly describe” (cuvropws ioropiicat)
the other proofs of 1. 20 given by Heron and Porphyry and also the
proofs of 1. 25 by Menelaus and Heron. But the best evidence is of
course to be found in the passages where he quotes works still extant,
eg. those of Plato, Aristotle and Plotinus. Examination of these
passages shows great divergences from the original; even where he
purports to quote textually, using the expressions “ Plato says,” or
“ Plotinus says,” he by no means quotes word for word™. In fact, he
seems to have had a positive distaste for quoting textually from other
works. He cannot conquer this even when quoting from Euclid; he
says in his note on L 22, “we will follow the words of the geometer”
but fails, nevertheless, to reproduce the text of Euclid unchanged®.

We now come to the sources themselves from which Proclus drew

1 Van Pesch illustrates this by an objection refuted in the note on 1. 9, p. 273, 11 sqq.
After using the above expression to introduce the objection, Proclus uses further on (p. 273, 25)
the term “they say " (pacly).

* Proclus, p. 22, 15. 3 jbid. p. 56, 25.

4 ibid. p. 7?, 18. 5 sbid., g 105, 5.

¢ ibid, p. 195, 6. T ibid, p. 200, 1.

8 jbid. p. 241, 19. ¥ ibid. p. 353, 15.

10 ibid. p. 362, 15.

U See tte passages referred to by van Pesch (p. 70). The most glaringca.’se is a passage

(p. 21, 19) where he quotes Plotinus, using the expression * Plotinus says......” Comparison
with l"lotinus. Ennead. 1. 3, 3, shows that very few words are those of Plotinus himself; the
rest regreaent Plotinus’ views in Proclus’ own language.

1 Proclus, p- 330, 19 5qq
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in writing his commentary. Three have already been disposed of,
viz. Heron, Porphyry and Pappus, who had all written commentaries
on the Elements’. We go on to

Eudemus, the pupil of Aristotle, who, among other works, wrote a
history of arithmetic, a history of astronomy, and a history of geometry.
The importance of the last mentioned work is attested by the frequent
use made of it by ancient writers, That there was no other history
of geometry written after the time of Eudemus seems to be proved by
the remark of Proclus in the course of his famous summary: “ Those
who compiled histories bring the development of this science up to
this point. Not muck younger than these is Euclid®...” The loss of
Eudemus’ history is one of the gravest which fate has inflicted upon
us, for it cannot be doubted that Eudemus had before him a number
of the actual works of earlier geometers, which, as before observed,
seem to have vanished completely when they were superseded by the
treatises of Euclid, Archimedes and Apollonius. As it is, we have to
be thankful for the fragments from Eudemus which such writers as
Proclus have preserved to us.

I agree with van Pesch® that there is no sufficient reason for
doubting that the work of Eudemus was accessible to Proclus at first
hand. For the later writers Simplicius and Eutocius refer to it in
terms such as leave no room for doubt that #¢y had it before them.
I have already quoted a passage from Simplicius’ account of the lunes
of Hippocrates to the effect that Eudemus must be considered the
best authority since he lived nearer the times® In the same place
Simplicius says®, “I will set out what Eudemus says word for word
(xatd AéEw Aeyoueva), adding only a little explanation in the shape of
reference to Euclid’s Elements owing to the memorandum-like style of
Eudemus (81a Tov imopvnpaticov Tpomwor Toi Eddjpov) who sets out
his explanations in the abbreviated form usual with ancient writers.
Now in the second book of the history of geometry he writes as
follows®” It is not possible to suppose that Simplicius would have
written in this way about the style of Eudemus if he had merely been
copying certain passages second-hand out of some other author and
had not the original work itself to refer to. In like manner, Eutocius
speaks of the paralogisms handed down in connexion with the
attempts of Hippocrates and Antiphon to square:the circle®, “with
which I imagine that those are accurately acquainted who have
examined (émeoxeppévous) the geometrical history of Eudemus and
know the Ceria Aristotelica.” How could the contemporaries of Euto-
cius have evamined the work of Eudemus unless it was still extant in
his time?

The passages in which Proclus quotes Eudemus by name as his
authority are as follows :

(1) On L 26 he says that Eudemus in his history of geometry

1 See pp. 20 to 27 above.

* Proclus, p. 68, 4—7. 8 De Procli fontibus, pp. 73—75-

4 See above, p. 19. 3 Simplicius, Joc. cit., ed. Diels, p. 6o, 27.
® Archimedes, ed. Heiberg, vol. 111, p. 228,
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referred this theorem to Thales, inasmuch as it was necessary to
Thales’ method of ascertaining the distance of ships from the shore’.

d(z) Eudemus attributed to Thales the discovery of Eucl. I. 15%
an

(3) to Oenopides the problem of 1. 23%

(4) Eudemus referred the discovery of the theorem in 1. 32 to the
Pythagoreans, and gave their proof of it, which Proclus reproduces.

(5) On L 44 Proclus tells us® that Eudemus says that “these
things are ancient, being discoveries of the Pythagorean muse, the
application (wapaBol7) of areas, their exceeding (JmwepBols) and
their falling short (Ahewris).” The next words about the appro-
‘priation of these terms (parabola, hyperbola and ellipse) by later
writers (i.e. Apollonius) to denote the conic sections are of course not
due to Eudemus.

Coming now to notes where Eudemus is not named by Proclus,
we may fairly conjecture, with van Pesch, that Eudemus was really
the authority for the statements (1) that Thales first proved that a
circle is bisected by its diameter® (though the proof by reductio ad
absurdum which follows in Proclus cannot be attributed to Thales?),
(2) that “Plato made over to Leodamas the analytical method, by
means of which it is recorded (iorépnrai) that the latter too made
many discoveries in geometry®,” (3) that the theorem of 1. § was due
to Thales, and that for equal angles he used the more archaic
expression “similar” angles®, (4) that Oenopides first investigated
the problem of I 12, and that he called the perpendicular the
grnomonic line (katd yvapova)™, (5) that the theorem that only three
sorts of polygons can fill up the space round a point, viz. the
equilateral triangle, the square and the regular hexagon, was
Pythagorean”, Eudemus may also be the authority for Proclus’
description of the two methods, referred to Plato and Pythagoras
respectively, of forming right-angled triangles in whole numbers,

We cannot attribute to Eudemus the beginning of the note on
L 47 where Proclus says that “if we listen to those who like to’
recount ancient history, we may find some of them referring this
theorem to Pythagoras and saying that he sacrificed an ox in honour
of his discovery®” As such a sacrifice was contrary to the Pytha-
gorean tenets, and Eudemus could not have been unaware of this,
the story cannot rest on his authority. Moreover Proclus speaks as
though he were not certain of the correctness of the tradition ; indeed,

: ‘!;;du. P- 352, 14—18. : m p- 299, 3- y
-« P- 333 5+ P 379, 1—10.
b ibid. 1:;: 419, 15—18. 8 ibid. p. 15?;. 10, 11.

T Cantor (Gesch. d. Math. 13, p. nsgdpoims out the connexion between the reductio ad
absurdum and the analytical method to have been discovered by Plato, Proclus gives
the proof by reductio ad absurdum to meet an imaginary critic who desires a mathematical
proof ; possibly Thales may have been satisfied with the argument in the same sentence
which mentions Thales, ‘*the cause of the bisection being the unswerving course of the
straight line through the centre.”

¥ Proclus, p. 211, 19—23. Y ¢bid. p. ago, 20.

W ibid, p. 283, 7—10. 1 $bid. pp. 304, 11—305, 3.

¥ ibid, pp. 418, 7—439, 9. 3 sbid. p. 426, 6—9g.
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so far as the story of the sacrifice is concerned, the same thing is told
of Thales in connexion with his discovery that the angle in a semi-
circle is a right angle?, and Plutarch is not certain whether the ox
was sacrificed on the discovery of L 47 or of the problem about
application of areas® Plutarch’s doubt suggests that he knew of no
evidence for the story beyond the vague allusion in the distich of
Apollodorus “Logisticus” (the “calculator”) cited by Diogenes
Laertius also®; and Proclus may have had in mind this couplet with
the es of Plutarch.

e come now to the question of the famous historical summary
given by Proclus®. No one appears to maintain that Eudemus is the
author of even the early part of this summary in the form in which
Proclus gives it. It is, as is well known, divided into two distinct
parts, between which comes the remark, “Those who compiled
histories® bring the development of this science up to this point.
Not much younger than these is Euclid, who put together the
Elements, collecting many of the theorems of Eudoxus, perfecting
many others by Theaetetus, and bringing to irrefragable demonstration
the things which had only been somewhat loosely proved by his pre-
decessors.” Since Euclid was later than Eudemus, it is impossible that
Eudemus can have written this. Yet the style of the summary after
this point does not show any such change from that of the former
portion as to suggest different autharship. The author of the earlier
portion recurs frequently to the question of the origin of the
elements of geometry in a way in which no one would be likely to
do who was not later than Euclid; and it must be the same hand
which in the second portion connects Euclid’s Elements with the
work of Eudoxus and Theaetetus®

If then the summary is the work of one author, and that author
not Eudemus, who is it likely to have been? Tannery answers that
it is Geminus’; but I think, with van Pesch, that he has failed to
show why it should be Geminus rather than another. And certainly
the extracts which we have from Geminus’ work suggest that the sort
of topics which it dealt with was quite different; they seem rather to
have been general questions of the confent of mathematics, and even
Tannery admits that historical details could only have come inci-
dentally into the work®.

Could the author have been Proclus himself? Circumstances

1 Diogenes Laertius, I. 14, p. 6, ed. Cobet.

2 Plutarch, mon posse suaviter vivi secundum Epicurum, 11; Symp. V111, 2.

2 Diog. LaerL VIIL. 12, p. 207, ed. Cobet :

‘Hyixa Ilvbaybpns 70 wepucheds ebipero ypdupa,
kel ég Br xhewdr flyaye Bovbualne.

See on this subject Tumer)r, La Glométrie grecque, p. 105.

4 Proclus,

b The Pltll'l:hl well e:plllned by Tannery, La Géométrie grecque, 73, 74- No doubt
the author of the summary tried to supplement Eudemus by meampgf l.l.’sl}" other histories’
which threw light on the subject. Thus e.g. the allusion (p. 64, 21) to the Nile recalls
Herodotus. Cf. the expression in Proclus, p. 64, 19, wapd 7@ woAAdw lerépnrat.

¢ Tannery, La Géoméirie grecque, p. 75.

7 jbid. pp. 66—75. 8 jbid. p. 19.



38 INTRODUCTION [cn. v

which seem to suggest this possibility are (1) that, as already stated,
the question of the origin of the Elements is kept prominent,
(2) that there is no mention of Democritus, whom Eudemuys would
not be likely to have ignored, while a follower of Plato would be
likely enough to do him the injustice, following the example of Plato
who was an opponent of Democritus, never once mentions him, and
is said to have wished to burn all his writings?, and (3) the allusion at
the beginning to the “inspired Aristotle” (0 8acuovios "ApiaToTéins)?,
though this may easily have been inserted by Proclus in a quotation
made by him from someone else. On the other hand there are
considerations which suggest that Proclus himself was nof the writer.
(1) The style of the whole passage is not such as to point to him
as the author. (2) If he wrote it, it is hardly conceivable that he
would have passed over in silence the discovery of the analytical
method, the invention of Plato to which he attached so much
importance®,

There is nothing improbable in the conjecture that Proclus quoted
the summary from a compendium of Eudemus’ history made by some
later writer: but as yet the question has not been definitely settled.
All that is certain is that the early part of the summary must have
been made up from scattered notices found in the great work of
Eudemus.

Proclus refers to another work of Eudemus besides the history,
viz. a book on The Angle (BiB\iov mepl ywvias)'. Tannery assumes
that this must have been part of the history, and uses this assumption
to confirm his idea that the history was arranged according to subyects,
not according to chronological order®. The phraseology of Proclus
however unmistakably suggests a separate work; and that the
history was chronologically arranged seems to be clearly indicated by
the remark of Simplicius that Eudemus “also counted Hippocrates
among the more ancient writers” (év Tois malatorépors)®.

The passage of Simplicius about the lunes of Hippocrates throws
considerable light on the style of Eudemus’ history. Eudemus wrote
in a memorandum-like or summary manner (rov UmopvyuaTikdy Tpomwoy
Tot Ed8sjpuov)” when reproducing what he found in the ancient writers;
sometimes it is clear that he left out altogether proofs or constructions
of things by mo means easy®.

Geminus.

The discussions about the date and birthplace of Geminus form a
whole literature, as to which [ must refer the reader to Manitius and
Tittel®. Though the name looks like a Latin name (Geminus), Mani-

! Diog. Laertius, IX. 40, p. 237, ed. Cobet. 2 Proclus, p. 64, 8.
¥ Proclus, p. 211, 19 sqq.; the passage is quoted above, p. 36.

4 ibid. p. 125, 8.  Tannery, La Géomdirie grecque, p. 26.
s Simg icius, ed. Diels, p. 69, 23. 7 jbid. p: 6o, 29.
8 Cf. Simplicius, p. 63, 19 5qq.; p. 64. 25 sqq. ; also Usener’s note * de supplendis

Hip’pocmtis quas omisit Eudemus constructionibus " added to Diels’ preface, pp. xxiti—xxvi.

Manitius, Gemini el la astr (Teubner, 1898), pp. 237—252; Tittel, art.
L (i‘rerninos“ in Pauly-Wissowa’s Keal-Encyclopidie der classischen Altertumswissenschaft,
vol. VIL.. 1g10.
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tius concluded that, since it appears as I'euivos in all Greek MSS. and
as Ieueivos in some inscriptions, it is Greek and possibly formed from
weu as 'Epyivos is from épy and *AXefivos from ahef (cf. also ’lkrivos,
Kparives). Tittel is equally positive that it is Geminus and suggests
that [euivos is due to a false analogy with 'A\efivos etc. and Tepeivos
wrongly formed on the model of 'Avrwveivos, 'Aypimrmeiva. Geminus,
a Stoic philosopher, born probably in the island of Rhodes, was the
author of a comprehensive work on the classification of mathematics,
and also wrote, about 73-67 B.C., a not less comprehensive commenta

on the meteorological textbook of his teacher Posidonius of Rhodes.

It is the former work in which we are specially interested here.
Though Proclus made great use of it, he does not mention its title,
unless we may suppose that, in the passage (p. 177, 24) where, after
quoting from Geminus a classification of lines which never meet, he
says, “ these remarks I have selected from the ¢ehoxaria of Geminus,”
¢dehoxalia is a title or an alternative title. Pappus however quotes a
work of Geminus “on the classification of the mathematics” (év ¢
mepi Tis Tov pabpudrwr rifews)!, while Eutocius quotes from “the
sixth book of the doctrine of the mathematics” (év 7¢ éxre Tijs TdY
pabnudrwy Bewpias)'. Tannery® pointed out that the former title
corresponds well enough to the long extract* which Proclus gives in
his first prologue, and also to the fragments contained in the Anonymsi
variae collectiones published by Hultsch at the end of his edition of
Heron®; but it does not suit most of the other passages borrowed by
Proclus. The correct title was therefore probably that given by
Eutocius, The Doctrine, or Theory, of the Mathematics; and Pappus
probably refers to one particular portion of the work, say the first
Book. If the sixth Book treated of conics, as we may conclude from
Eutocius, there must have been more Books to follow, because Proclus
has preserved us details about higher curves, which must have come
later. If again Geminus finished his work and wrote with the same
fulness about the other branches of mathematics as he did about
geometry, there must have been a considerable number of Books
altogether. At all events it seems to have been designed to give
a complete view of the whole science of mathematics, and in fact to
be a sort of encyclopaedia of the subject.

I shall now indicate first the certain, and secondly the probable,
obligations of Proclus to Geminus, in which task I have only to follow
van Pesch, who has embodied the results of Tittel’s similar inquiry also®.
I shall only omit the passages as regards which a case for attributing
them to Geminus does not seem to me to have been made out.

First come the following passages which must be attributed to
Geminus, because Proclus mentions his name:

(1) (In the first prologue of Proclus?) on the division of mathe-

1 Pappus, ed. Hultsch, p. 1016, * Apollonius, ed. Heiberg, vol. Ir. p.

L Tapng::;r, La G’Jom&ﬂl: grec m?pp. 18, 19. S P':':cl?;, 11;11:.1 t;':siglioia’us-p g

5 Heron, ed. Hultsch, pp. 246, 16—149, 12.

® Van Pesch, D¢ Procli fontibus, pp. 97—113. The dissertation of Tittel is entitled De
Gemini Stoici studiis mathematicis (1895).

7 Proclus, pp. 38, 1—43, 8, except the allusion in p. 41, 8—10, to Ctesibius and Heron and
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matical sciences into arithmetic, geometry, mechanics, astronomy,
optics, geodesy, canonic (science of musical harmony), and logistic
(apparently arithmetical problems);

(2) (in the note on the definition of a straight line) on the
classification of lines (including curves) as simple (straight or circular)
and mixed, composite and incomposite, uniform (opocopepeis) and
non-uniform (dvouoiopepets), lines “about solids” and lines produced
by cutting solids, including conic and spiric sections';

(3) (in the note on the definition of a plane surface) on similar
distinctions extended to surfaces and solids?;

(4) (in the note on the definition of parallels) on lines which
do not meet (dovumrwro)) but which are not on that account
parallel, e.g. a curve and its asymptote, showing that the property of
not meeting does not make lines parallel—a favourite observation of
Geminus—and, incidentally, on éounded lines or those which enclose a

re and those which do not?;

(5) (in the same note) the definition of parallels given by
Posidonius¢;

(6) on the distinction between postulates and axioms, the futility
of trying to prove axioms, as Apollonius tried to prove Axiom 1, and
the equal incorrectness of assuming what really requires proof, “as
Euclid did in the fourth postulate [equality of right angles] and in
the fifth postulate [the parallel-postulate]®” ;

(7) on Postulates 1, 2, 3, which Geminus makes depend on the
idea of a straight line being described by the motion of a point?;

(8) (in the note on Postulate 5) on the inadmissibility in geometry
of an argument which is merely plausible, and the danger in this
particular case owing to the existence of lines which do converge
ad infinitum and yet never meet’;

(9) (in the note on I 1) on the subject-matter of geometry,
theorems, problems and 8iwpiouol (conditions of possibility) for

roblems?;

(10) (in the note on I. 5) on a generalisation of L § by Geminus
through the substitution for the rectilineal base of “one uniform line
(curve),” by means of which he proved that the only “uniform lines”

their pneumatic devices (favuarowoling), as regards which Proclus’ authority may be P:
VIII. p. 1024, 24—17) Who uses very similar expressions. Heron, even if not later |
inus, could hardly have been included in a historical work by him. Perh.l?s Geminus
may have referred to Ctesibius only, and Proclus may have inserted “and Heron” himself.
! Proclus, pp. 103, 21—107, 10} pp- (11, I—I13, 3.
* ibid. pp. 117, 14—110, 12, where perhaps in the passage pp. 117, 22—118, 23 we may
have Geminus' own words.
® ibid. pp. 176, 18—1%7, 25; perhaps also p. 175. The note ends with the words
““These things too we have selected from Geminus’ @oxaMa for the elucidation of the
matters in question.” Tannery (p. 27) takes these words coming at the end of the commen-
tary on the definitions as referring to the whole of the portion of the commentary dealing
with the definitions. Van Pesch ‘pmper!y regards them as only applying to the note on
parallels, This seems to me clear from the use of the word fo0 (rwagm xal),
: Proclus, p. 176, 5—17.
ibid. pp. 178—183, 4; pp. 183, 14—184, 10; cf. p. 188, 3—11.
¢ ibid. p. 185, 6—as. P R .
T ibid, p. 193, 5—19. 8 ibid. pp. 100, 21—101, 25.
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aalli.ke' in all their parts) are a straight line, a circle, and a cylindrical
elix';

(11) (in the note on L 10) on the question whether a line is made
up of indivisible parts (duep#), as affecting the problem of bisecting
a given straight line?;

(12) (in the note on I 35) on ftopical, or locus-theorems?, where
the illustration of the equal parallelograms described between a
hyperbola and its asymptotes may also be due to Geminus*.

Other passages which may fairly be attributed to Geminus, though
his name is not mentioned, are the following :

(1) in the prologue, where there is the same allusion as in the
passage (8) above to a remark of Aristotle that it is equally absvrd to
expect scientific proofs from a rhetorician and to accept mere plausi-
bilities from a geometer?®;

(2) a passage in the prologue about the subject-matter, methods,
and bases of geometry, the latter including axioms and postulates®;

(3) another on the definition and nature of elemenis’ ;

(4) a remark on the Stoic use of the term axiom for every simple
statement (awédavais dmAf)?;

(5) another discussion on theorems and problems?, in the middle
of which however there are some senterices by Proclus himself®,

(6) another passage, in connexion with Def, 3, on lines including
or not including a figure (with which cf. part of the passage (4)
above)u;

(7) a classification of different sorts of angles according as they
are contained by simple or mixed lines (or curves)®;

(8) a similar classification of figures®, and of plane figures™;

(9) Posidonius’ definition of a figure®;

(10) a classification of triangles into seven kinds™ ;

(11) a note distinguishing lines (or curves) producible indefinitely
or not so producible, whether forming a figure or not forming a
figure (like the “single-turn spiral ”)¥;

(12) passages distinguishing different sorts of problems?, different
sorts of theorems®, and two sorts of converses (complete and partial)®;

(13) the definition of the term “porism” as used in the title of
Euclid’s Porisms, as distinct from the other meaning of “corollary "%;

(14) a note on the Epicurean objection to I 20 as being obvious
even to an ass®;

(15) a passage on the properties of parallels, with allusions to

1 Proclus, p. 251, 2—I11. 3 ibid. pp. 277, 25—179, 11.
: sbid. pp. 394, 11—395, 2 and p. 395, 13—2I. = PM P- 395, 8—I11.
» ibid. pp. 33, 21—34, I. § ibid. pp. 57, 9—58, 3
ibid. pp, 72, 3—75, 4- 8 #bid. p. 77, 3—6.
® dbid. pp. 77, 7—78, 13, and 79, 3—81, 4. 10 ibid. pp. 78, 13—79, 2.
1 ibid. pp. 102, 22—103, 18. 12 jbid. pp. 126, 7—127, I16.
13 jbid. pp. 159, 12—160, 9. M gbid. pp. 162, 27—164, 6.
18 bid. p. 143, 5—11. 18 ibid. p. 168, 4—13.
7 ibid. p. 187, 19—127. 18 gbid. pp. 220, 7—222, 14; also p. 330, 6—9.
¥ ibid, pp. 244, 14—1246, 12.  ibid. pp. 252, 5—354, 20.

N jbid. pp. 301, 21—301, 13. 32 jbid. pp. 333, 4—333, 3-
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Apollonius’ Conics, and the curves invented by Nicomedes, Hippias
and Perseus’;

) (16) a passage on the parallel-postulate regarded as the converse
of I. 17%

Of the authors to whom Proclus was indebted in a less degree the
most important is Apollonius of Perga. Two passages allude to his
Conics®, one to a work on irrationalst, and two to a treatise On the
cocklias (apparently the cylindrical helix) by Apollonius®. But more
important for our purpose are six references to Apollonius in connexion
with elementary geometry.

(1) He appears as the author of an attempt to explain the idea
of a line (possessing length but no breadth) by reference to daily
experience, e.g. when we tell someone to measure, merely, the length
of a road or of a wall®; and doubtless the similar passage showing
how we may in like manner get a notion of a surface (without depth)
is his also”.

(2) He gave a new general definition of an angle®.

(3) He tried to prove certain axioms® and Proclus gives his
attempt to prove Axiom I, word for word™.

Proclus further quotes:

(4) Apollonius’ solution of the problem in Eucl. I 10, avoiding
Euclid’s use of 1. g,

(5) his solution of the problem in I 11, differing only slightly
from Euclid’s®, and

(6) his solution of the problem in L. 23%,

Heiberg* conjectures that Apollonius departed from Euclid’s
method in these propositions because he objected to solving problems
of a more general, by means of problems of a more particular,
character. Proclus however considers all three solutions inferior to
Euclid’s; and his remarks on Apollonius’ handling of these ele-
mentary matters generally suggest that he was nettled by criticisms
of Euclid in the work containing the things which he quotes from
Apollonius, just as we conclude that Pappus was offended by the
remarks of Apollonius about Euclid’s incomplete treatment of the
“three- and four-line locus®.” If this was the case, Proclus can hardly
have got his information about these things at second-hand; and
there seems to be no reason to doubt that he had the actual work of
Apollonius before him. This work may have been the treatise
mentioned by Marinus in the words “Apollonius in his general
treatise” ("AmoMAdvios év 1) xalorov mpaypateig)®. If the notice
in the Fikrist" stating, on the authority of Thabit b. Qurra, that

1 Proclus, pp. 355, 20—356, 16. % #bid. p. 364, 9—12; pp. 364, 20—365, 4.
® ibid. p. 71, 19; p. 356, 8, 6. % ibid. p. 74, 23, 24.

5 ibid. pp. 105, 5, 6, 14, 15. ® ibid. p. 100, 5—19.

7 ibid. p. 114, 20—125. 8 jbid. p. 123, 15—19 (cf. p. 124, 17, p- 125, 17).

9 jbid. p. 183, 13, 14. 10 jbid. pp. 194, 25—195, 5.

1 ibid. pp. 279, 16—1280, 4. 2 ibid. p. 282, 8—19.

13 ;bid. pp. 335, 16—336, 5. W Philologus, vol. XLIIL p. 489.

18 See above, pp. 2, 3. 18 Marinus in Euclidis Data, ed. Menge, p. 234, 16.

17 Fikrist, tr. Suter, p. 19.
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Apollonius wrote a tract on the parallel-postulate be correct, it may
have been included in the same work. We may conclude generally
that, in it, Apollonius tried to remodel the beginnings of geometry,
reducing the number of axioms, appealing, in his definitions of lines,
surfaces etc, more to experience than to abstract reason, and
substituting for certain proofs others of a more general character.

The probabilities are that, in quoting from the tract of Ptolemy in
which he tried to prove the parallel-postulate, Proclus had the actual
work before him. For, after an allusion to it as “a certain book!”
he gives two long extracts?, and at the beginning of the second
indicates the title of the tract, “in the (book) about the meeting of
straight lines produced from (angles) less than two right angles,” as
he has very rarely done in other cases.

Certain things from Posidonius are evidently quoted at second-
hand, the authority being Geminus (e.g. the definitions of figure and
parallels) ; but besides these we have quotations from a separate work
which he wrote to controvert Zeno of Sidon, an Epicurean who had
sought to destroy the whole of geometry?. We are told that Zeao
had argued that, even if we admit the fundamental principles (dpyat)
of geometry, the deductions from them cannot be proved without the
admission of something else as well, which has not been included in
the said principles. On I 1 Proclus gives at some length the argu-
ments of Zeno and the reply of Posidonius as regards this proposition®.
In this case Zeno's “something else” which he considers to be
assumed is the fact that two straight lines cannot have a common
segment, and then, as regards the “proof” of it by means of the
bisection of a circle by its diameter, he objects that it has been
assumed that two circumferences (arcs) of circles cannot have a
common part. Lastly, he makes up, for the purpose of attacking it,
another supposed “proof” of the fact that two straight lines cannot
have a common part. Proclus appears, more than once, to be quoting
the actual words of Zeno and Posidonius; in particular, two expres-
sions used by Posidonius about “the acrid Epicurean” (rov dpipdv
’Emrwcovpeov)® and his “ misrepresentations” (Iloceddwids ¢nae Tov
Znvwva avcopavteiv)’. It is not necessary to suppose that Proclus
had the original work of Zeno before him, because Zeno's arguments
may easily have been got from Posidonius’ reply; but he would
appear to have quoted direct from the latter at all events.

The work of Carpus mechanicus (a treatise on astronomy) quoted
from by Proclus® must have been accessible to him at first-hand,
because a portion of the extract from it about the relation of theorems
and problems? is reproduced word for word. Moreover, if he were not
using the book itself, Proclus would hardly be in a position to question
whether the introduction of the subject of theorems and problems

! Proclus, p. 191, 23. % ibid. pp. 362, 14—363, 18; pp. 365, 7—367, 27.
3 jbid. p. 200, 1—3. 4 ibid. pp. 199, 11—200, I.

S ibid, pp. 214, 18—215, 13; pp. 216, 10—1218, 11.

8 ibid. p. 216, a1. 7 ibid. p. 218, 1.

8 fbid. pp. 241, 19—1243, 11. 9 ibid, pp. 242, 22—1243, 11.
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was opportune in the place where it was found (el uév rvard xacpov 9
p1, wapetabw wpos T6 mapov).

It is of course evident that Proclus had before him the original
works of Plato, Aristotle, Archimedes and Plotinus, as well as the
Zvppxrd of Porphyry and the works of his master Syrianus (¢ uérepos
xafnyeudv)?, from whom he quotes in his note on the definition of an
angle. Tannery also points out that he must have had before him a
group of works representing the Pythagorean tradition on its mystic,
as distinct from its mathematical, side, from Philolaus downwards, and
comprising the more or less apocryphal iepds Aoyos of Pythagoras, the
Oracles (Aéyia), and Orphic verses®.

Besides quotations from writers whom we can identify with more
or less certainty, there are many other passages which are doubtless
quoted from other commentators whose names we do not know. A
list of such passages is given by van Pesch, and there is no need to
cite them here.

Van Pesch also gives at the end of his work®a convenient list of
the books which, as the result of his investigation, he deems to have
been accessible to and directly used by Proclus, The list is worth
giving here, on the same ground of convenience. It is as follows:

Eudemus: kistory of geometry.

Geminus: the theory of the mathematical sciences.
Heron : commentary on the Elements of Euclid.
Porphyry : i » ”»
Pappus : ” N n
Apollonius of Perga: a work relating to elementary geometry.
Ptolemy : on the parallel-postulate.

Posidonius : a book controverting Zeno of Sidon.
Carpus: astronomy.

Syrianus: a discussion on the angle.
Pythagorean philosophical tradition,

Plato’s works.

Aristotle’s works.

Archimedes’ works.

Plotinus : Enneades.

Lastly we come to the question what passages, if any, in the
commentary of Proclus represent his own contributions to the subject.
As we have seen, the onus probandi must be held to rest upon him
who shall maintain that a particular note is original on the part of
Proclus. Hence it is not enough that it should be impossible to point
to another writer as the probable source of a note; we must have a
positive reason for attributing it to Proclus. The criterion must there-
fore be found either (1) in the general terms in which Proclus points
out the deficiencies in previous commentaries and indicates the
respects in which his own will differ from them, or (2) in specific
expressions used by him in introducing particular notes which may

1 Proclus, p. 241, 21, 22. ? jbid. p. 123, 19.
3 Tannery, La Géométrie grecgue, pp. 15, 16,
4 Van Pesch, De Procli fontibus, p. 139. b ibid. p. 155.
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indicate that he is giving his own views. Besides indicating that he
paid more attention than his predecessors to questions requirin
deeper study (10 mpaypareiides) and “pursued clear distinctions”
(1o evdiaiperov peradiwrovras)'—by which he appears to imply that
his predecessors had confused the different departments of their
commentaries, viz. lemmas, cases, and objections (évoraceis)*—Proclus
complains that the earlier commentators had fajled to indicate the
ultimate grounds or causes of propositions®. Although it is from
Geminus that he borrowed a passage maintaining that it is one of the
proper functions of geometry to inquire into causes (thv alriav rxai
70 Ti), yet it is not likely that Geminus dealt with Euclid’s
propositions one by one; and consequently, when we find Proclus, on
L. 8, 16, 17, 18, 32, and 4% endeavouring to explain causes, we have
good reason to suppose that the explanations are his own.

Again, his remarks on certain things which he quotes from Pappus
can scarcely be due to anyone else, since Pappus is the latest of the
commentators whose works he appears to have used. Under this
head.come

(1) his objections to certain new axioms introduced by Pappus®,

(2) his conjecture as to how Pappus came to think of his alterna-
tive proof of L. 57,

(3) an addition to Pappus’ remarks about the curvilineal angle
which is equal to a right angle without being one®

The defence of Geminus against Carpus, who combated his view
of theorems and problems, is also probably due to Proclus?®, as well as
an observation on I. 38 to the effect that 1. 35—38 are really compre-
hended in VI 1 as particular cases™.

Lastly, we can have no hesitation in attributing to Proclus himself
(1) the criticism of Ptolemy’s attempt to prove the parallel-postulate®,
and (2) the other attempted proof given in the same note™ (on I. 29)
and assuming as an axiem that “if from one point two straight lines
forming an angle be produced ad infinitum the distance between them
when so produced ad infinitum exceeds any finite magnitude (i.e.
length),” an assumption which purports to be the equivalent of a
statement in Aristotle®, It is introduced by words in which the
writer appears to claim originality for his proof: “To him who
desires to see this proved (rarackevalduevov) let it be said by us
(Aeyéobw map' Audv)” etc* Moreover, Philoponus, in a note on
Aristotle’s Anal. post. 1. 10, says that “ the geometer (Euclid) assumes
this as an axiom, but it wants a great deal of proof, insomuch that
both Ptolemy and Proclus wrote a whole book upon it®.”

! Proclus, p. 84, 13, P- 433, 14, 15. * Cf. ibid. p. 289, 11—15; p. 432, 15—17.
b l&t'd'lg 433 17. 4 ibid. p. 202, 9—15.
& See Proclus, p. 270, 5—34 St. 8); pp- 309, 3—310, 8 (1. 16); pp. 310, 190—311, 23
(1. :7};‘01;3. 316, 14—318, 2 (1. 18); p. 384, 13—21 (1. 32); pp- 416, 21—427, 8 (L 47)
Proclus, p. 198, 5—15. 7 ibid. p. 250, 13—19. ® sbid. p. 190, g—23.
:yw P- 243, 12—129. : ibid. pp. 405, 6—406, 9.

ibid. p. 368, 1—a3. ibid. pp. 371, 11—373, 2.
B Aristotle, de caelo, 1. § (371 b 28—30). M Proclus, . 371, 10.
® Berlin Aristotle, vol. 1V. p. 2142 g—113.



CHAPTER V.

THE TEXT.

IT is well known that the title of Simson’s edition of Euclid (first
brought out in “Latin and English in 1756) claims that, in it, “the
errors by which Theon, or others, have long ago vitiated these books
are corrected, and some of Euclid’s demonstrations are restored ” ; and
readers of Simson’s notes are familiar with the phrases used, where
anything in the text does not seem to him satisfactory, to the effect
that the demonstration has been spoiled, or things have been interpo-
lated or omitted, by Theon “or some other unskilful editor.” Now
most of the MsS. of the Greek text prove by their titles that they
proceed from the recension of the Elements by Theon; they purport
to be either “from the edition of Theon” (éx Tijs ®éwvos éxdioews) or
“from the lectures of Theon” (dmé avvovaidy Tod Béwvos). This was
Theon of Alexandria (4th c. A.D.) who also wrote a commentary on
Ptolemy, in which there occurs a passage of the greatest importance
in this connexion?: “But that sectors in equal circles are to one
another as the angles on which they stand 4as been proved by me in
my edition of the Elements at the end of the sixth book.” Thus Theon
himself says that he edited the Elements and also that the second part
of V1. 33, found in nearly all the MSs,, is his addition. .

This passage is the key to the whole question of Theon’s changes
in the text of Euclid; for, when Peyrard found in the Vatican the
MS. 190 which contained neither the words from the titles of the other
MsS. quoted above nor the interpolated second part of VI. 33, he was
justified in concluding, as he did, that in the Vatican Ms. we have an
edition more ancient than Theon’s. It is also clear that the copyist
of P, or rather of its archetype, had before him the two recensions and
systematically gave the preference to the earlier one; for at XIIL 6 in
P the first hand has added a note in the margin: “This theorem is
not given in most copies of the new edition, but is found in those of
the old” Thus we are more fortunate than Simson, since our
judgment of Theon’s recension can be formed on the basis, not of
mere conjecture, but of the documentary evidence afforded by a
comparison of the Vatican MS. just mentioned with what we may
conveniently call, after Heiberg, the Theonine MSS.

! The material for the whole of this chapter is taken from Heibe:f_s edition of the
Elements, introduction to vol. v., and from the same scholar’s Litterargeschichtliche Studien

siber Euklid, p. 1745qq. and Paralipomena zu Euklid in Hermes, XXXVIIL., 1903.
3 1. p. 201 ¢d. Halma=p. 50 ed. Basel.
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The Mss. used for Heiberg’s edition of the Elements are the
following :

(1) P=Vatican MS. numbered 190, 4to, in two volumes (doubt-

less one originally); 10th c.

This is the MS. which Peyrard was able to use; it was sent from
Rome to Paris for his use and bears the stamp of the Paris Imperial
Library on the last page. It is well and carefully written. There are
corrections some of which are by the original hand, but generally in
paler ink, others, still pretty old, by several different hands, or by one
hand with different ink in different places (P m. 2), and others again
by the latest hand (P m. rec.). It contains, first, the Elements 1.—XIIL
with scholia, then Marinus’ commentary on the Dafa (without the
name of the author), followed by the Data itself and scholia, then the
Elements X1V., XV. (so called), and lastly three books and a part of a
fourth of a commentary by Theon eis Tols mpoyeipovs xavovas [lTohe-
paiov.

The other Mss. are “ Theonine.”

(2) F=Ms. XXVIII, 3, in the Laurentian Library at Florence, 4to;

1oth c.

This Ms. is written in a beautiful and scholarly hand and contains
the Elements 1.—XV., the Optics and the Phaenomena, but is not well
preserved. Not only is the original writing renewed in many places,
where it had become faint, by a later hand of the 16th c., but the same
hand has filled certain smaller lacunae by gumming on to torn
pages new pieces of parchment, and has replaced bodily certain
portions of the MS,, which had doubtless become illegible, by fresh
leaves. The larger gaps so made good extend from Eucl. VII 12 to
IX. 15, and from XII 3 to the end ; so that, besides the conclusion of the
Elements, the Optics and Phaenomena are also in the later hand, and we
cannot even tell what in addition to the Elements 1.—XIIL the original
MS. contained. Heiberg denotes the later hand by ¢ and observes
that, while in restoring words which had become faint and filling up
minor lacunae the writer used no other Ms, yet in the two larger
restorations he used the Laurentian MS. XXVIiI, 6, belonging to the
13th—i14th c. The latter Ms. (which Heiberg denotes by f) was
copied from the Viennese Ms. (V) to be described below.

(3) B=Bodleian Ms,, D'Orville X. 1 inf. 2, 30, 4to; A.D. 888.

This Ms. contains the Elements 1.—XV. with many scholia. Leaves
15—118 contain I 14 (from about the middle of the proposition) to
the end of Book VI, and leaves 123—387 (wrongly numbered 397)
Books VIL—XV, in one and the same elegant hand (gth c.). The
leaves preceding leaf 15 seem to have been lost at some time, leaves
6 to 14 (containing Elem. 1. to the place in I 14 above referred to)
being carelessly written by a later hand on thick and common parch-
ment (13th c.). On leaves 2 to 4 and 122 are certain notes in the
hand of Arethas, who also wrote a two-line epigram on leaf §, the
greater part of the scholia in uncial letters, a few notes and corrections,
and two sentences on the last leaf, the first of which states that the
MS. was written by one Stephen clericus in the year of the world 6397
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(=888 A.n.), while the second records Arethas’ own acquisition of it.
Arethas lived from, say, 865 to 939 A.D. He was Archbishop of
Caesarea and wrote a commentary on the Apocalypse. The portions
of his library which survive are of the greatest interest to palaeography
on account of his exact notes of dates, names of copyists, prices of
parchment etc. It is to him also that we owe the famous Plato Ms.
grom Patmos (Cod. Clarkianus) which was written for him in November
95"

(4) V = Viennese Ms. Philos. Gr. No. 103 ; probably 12th c.

This Ms. contains 292 leaves, Eucl. Elements 1.—XV. occupying
leaves 1 to 254, after which come the Optics (to leaf 271), the
Phaenomena (mutilated at the end) from leaf 272 to leaf 282, and lastly
scholia, on leaves 283 to 292, also imperfect at the end. The different
material used for different parts and the varieties of handwriting make
it necessary for Heiberg to discuss this Ms. at some length?. The
handwriting on leaves 1 to 183 (Book I. to the middle of X. 105) and
on leaves 203 to 234 (from XI. 31, towards the end of the proposition,
to XIIL 7, a few lines down) is the same ; between leaves 184 and 202
there are two varieties of handwriting, that of leaves 184 to 189 and
that of leaves 200 (verso) to 202 being the same. Leaf 235 begins in
the same handwriting, changes first gradually into that of leaves 184
to 189 and then (verso) into a third more rapid cursive writing which
is the same as that of the greater part of the scholia, and also as that
of leaves 243 and 282, although, as these leaves are of different
material, the look of the writing and of the ink seems altered.
There are corrections both by the first and a second hand, and scholia
by many hands. On the whole, in spite of the apparent diversity of
handwriting in the MS,, it is probable that the whole of it was written
at about the same time, and it may (allowing for changes of material,
ink etc.) even have been written by the same man. It is at least
certain that, when the Laurentian Ms. XXVIII, 6 was copied from it, the
whole Ms, was in the condition in which it is now, except as regards
the later scholia and leaves 283 to 292 which are not in the Laurentian
MS., that MS. coming to an end where the Phaenomena breaks off
abruptly in V. Hence Heiberg attributes the whole Ms. to the 12th c.

But it was apparently in two volumes originally, the first con-
sisting of leaves 1 to 183; and it is certain that it was not all copied
at the same time or from one and the same original. For leaves
184 to 202 were evidently copied from two MsS. different both from
one another and from that from which the rest was copied. Leaves
184 to the middle of leaf 189 (recto) must have been copied from a
MS. similar to P, as is -proved by similarity of readings, though not
trom P itself. The rest, up to leaf 202, were copied from the Bologna
MS. (b) to be mentioned below. It seems clear that the content of
leaves 184 to 202 was supplied from other MsS. because there was a
lacuna in the original from which the rest of V was copied.

1 See Pauly-Wissowa, Keal-Encyclopidie der class. Altertumswissenschaft, vol. 11., 1896,
p- 67
= ?Iel'helg, vol. V. pp. xxix—xxxiii. *
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Heiberg sums up his conclusions thus., The copyist of V first
copied leaves 1 to 183 from an original in which two guaterniones
were missing (covering from the middle of Eucl. X. 105 to near the
end of XI 31). Noticing the lacuna he put aside one guaternio of the
parchment used up to that point. Then he copied onwards from
the end of the lacuna in the original to the end of the Phaenomena.
After this he looked about him for another MS. from which to fill up
the lacuna; finding one, he copied from it as far as the middle of leaf
189 (recto). Then, noticing that the MS. from which he was copying
was of a different class, he had recourse to yet another MS. from which
he copied up to leaf 202. At the same time, finding that the lacuna
was longer than he had reckoned for, he had to use twelve more
leaves of a different parchment in addition to the gwaternio which he
had put aside. The whole MS. at first formed two volumes (the first
containing leaves 1 to 183 and the second leaves 184 to 282); then,
after the last leaf had perished, the two volumes were made into one
tc which two more guaterniones were also added. A few leaves of the
latter of these two have since perished.

(5) b= MS. numbered 18—I19 in the Communal Library at

Bologna, in two volumes, 4to; 11th c.

This M. has scholia in the margin written both by the first hand
and by two or three later hands; some are written by the latest hand,
Theodorus Cabasilas (a descendant apparently of Nicolaus Cabasilas,
14th c.) who owned the MS. at one time. It contains (@) in 14 guater-
niones the definitions and the enunciations (without proofs) of the
Elements 1L—XIIL. and of the Data, (§) in the remainder of the
volumes the Proem to Geometry (published among the Pariae
Collectiones in Hultsch’s edition of Heron, pp. 252, 24 to 274, 14)
followed by the Elements 1.—XI11L (part of XIIL 18 to the end being
missing), and then by part of the Data (from the last three words of
the enunciation of Prop. 38 to the end of the penultimate clause in
Prop. 87, ed. Menge). From XI. 36 inclusive to the end of XIL this
MS. appears to represent an entirely different recension. Heiberg is
compelled to give this portion of b separately in an appendix. He
conjectures that it is due to a Byzantine mathematician who thought
Euclid’s proofs too long and tiresome and consequently contented
himself with indicating the course followed’. At the same time this
Byzantine must have had an excellent MS. before him, probably of the
ante-Theonine variety of which the Vatican Ms. 190 (P) is the sole
representative.

(6) p = Paris Ms. 2466, 4to; 12th c,

This manuscript is written in two hands, the finer hand occupying
leaves 1 to 53 (recto), and a more careless hand leaves 53 (verso) to
64, which are of the same parchment as the earlier leaves, and leaves
65 to 239, which are of a thinner and rougher parchment showing
traces of writing of the 8th—gth c. (a Greek version of the Old
Testament). The MS. contains the Elements 1.—XI11. and some scholia
after Books XI., XIL and XIIL

V Zeitschrift fiir Math. w. Physik, XX1X., hist.-litt. Abtheilung, p. 13.
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(7) q = Paris MS. 2344, folio; 12th c.

It is written by one hand but includes scholia by many hands.
On leaves 1 to 16 (recto) are scholia with the same title as that found
by Wachsmuth in a Vatican Ms. and relied upon by him to prove that
Proclus continued his commentaries beyond Book 1! Leaves 17 to
357 contain the Elements 1.—X1IL (except that there is a lacuna from
the middle of VIIL 25 to the éxfeo:s of IX. 14); before Books VIL and
X. there are some leaves filled with scholia only, and leaves 358 to 366
contain nothing but scholia.

(8) Heiberg also used a palimpsest in the British Museum (Add.
17211). Five pages are of the 7th—8th c. and are contained (leaves
49—53) in the second volume of the Syrian MS. Brit. Mus. 687 of the
oth c.; half of leaf 5o has perished. The leaves contain various frag-
ments from Book X. enumerated by Heiberg, Vol. IIL, p. v, and nearly
the whole of XIII 14.

Since his edition of the Elements was published, Heiberg has
collected further material bearing on the history of the text® Besides
giving the results of further or new examination of MsS., he has
collected the fresh evidence contained in an-Nairizi's commentary,
and particularly in the quotations from Heron’s commentary given in
it (often word for word), which enable us in several cases to trace
differences between our text and the text as Heron had it, and to
identify some interpolations which actually found their way into the
text from Heron’s commentary itself; and lastly he has dealt with
some valuable fragments of ancient papyri which have recently come
to light, and which are especially important in that the evidence drawn
from them necessitates some modification in the views expressed in
the preface to Vol. V. as to the nature of the changes made in Theon’s
recension, and in the principles laid down for differentiating between
Theon’s recension and the original text, on the basis of a comparison
between P and the Theonine Mss. alone.

The fragments of ancient papyri referred to are the following.

1. Papyrus Herculanensis No. 1061

This fragment quotes Def. 15 of Book L in Greek, and omits the
words # xaleitar mepiupépera, “ which is called the circumference,”
found in all our Mss, and the further addition mpés Tiv Tod xixhov
wepipéperav also found in practically all the MSS. Thus Heiberg’s
assumption that both expressions are interpolations is now confirmed
by this oldest of all sources.

2. The Oxyriynchus Papyri 1. p. §8, No. XXIX. of the 3rd or 4th c.

This fragment contains the enunciation of Eucl. I1L. 5 (with figure,
apparently without letters, immediately following, and not, as usual in
our MSS, at the end of the proof) and before it the part of a word
wrepexope belonging to IL 4 (with room for —ve dploywyip: Smep éde

1 [els 7]& ro0 Edxheldov oroiyeia wpohauBavbuera éx Tdv Ilpbchov owopddny xal xar' éwe-
ropsiw. Cf. p. 32, note 8, above.

ol Heéberg. Paralipomena su Euklid in Hermes, XXXVI1L., 1903, pp. 46—74, 161—301,
331—350.

# Described by Heiberg in Ouversigt over det kngl. danske Videnskabernes Selskads
Forkandlinger, 1900, p. 161.
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8eifas and a stroke to mark the end), showing that the fragment kad
not the Porism which appears in all the Theonine MSS. and (in a later
hand) in P, and thereby confirming Heiberg’s assumption that the
Porism was due to Theon.

3. A fragment in Fayum towns and their papyri, p. 96, No. IX, of
2nd or 3rd c.

This contains 1. 39 and L 41 following one another and almost
complete, showing that I. 40 was wanting, whereas it is found in all
the Mss. and is recognised by Proclus. Moreover the text of the
beginning of 1. 39 is better than ours, since it has no double 8iopiouds
but omits the first (“I say that they are also in the same parallels”)
and has “and” instead of “ for let A.D be joined ” in the next sentence.
It is clear that I 40 was interpolated by someone who thought there
ought to be a proposition following I. 39 and related to it as I. 38 is
related to I 37 and L 36 to L 35, although Euclid nowhere uses I. 40,
and therefore was not likely to include it. The same interpolator
failed to realise that the words “let 4D be joined ” were part of the
éxbeaus or setting-out, and took them for the xaTaokew) or “construc-
tion ” which generally follows the 8topiopés or “ particular statement”
of the conclusion to be proved, and consequently thought it necessary
to insert a Scopiouds before the words.

The conclusions drawn by Heiberg from a consideration of
particular readings in this papyrus along with those of our Mss. will
be referred to below.

We now come to the principles which Heiberg followed, when
preparing his edition, in differentiating the original text from the
Theonine recension by means of a comparison of the readings of P
and of the Theonine Mss. The rules which he gives are subject to a
certain number of exceptions (mostly in cases where one Ms. or the
other shows readings due to copyists’ errors), but in general they may
be relied upon to give conclusive results.

The possible alternatives which the comparison of P with the
Theonine MSS, may give in particular passages are as follows :

I. There may be agreement in three different degrees.

(1) P and a// the Theonine MSS. may agree.

In this case the reading common to all, even if it is corrupt or
interpolated, is more ancient than Theon, i.e. than the 4th c.

(2) P may agree with some (only) of the Theonine MSs.

In this case Heiberg considered that the latter give the true
reading of Theon’s recension, and the other Theonine MsS. have
departed from it.

(13) P and ore only of the Theonine MSS may agree.

n this case too Heiberg assumed that the one Theonine MS. which
agrees with P gives the true Theonine reading, and that this rule even
supplies a sort of measure of the quality and faithfulness of the
Theonine MSS. Now none of them agrees alone v.ith P in preserving
the true reading so often as F. Hence F must be held to have pre-
served Theon’s recension more faithfully than the other Theonine MSs.;
and it would follow that in those portions where F fails us P must
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carry rather more weight even though it may differ from the Theonine
MSS. BVpq. (Heiberg gives many examples in proof of this, as of his
main rules generally, for which reference must be made to his Prole-
gomena in Vol. v.) The specially close relation of F and P is also
illustrated by passages in which they have the same errors; the
explanation of these common errors (where not due to accident) is
found by Heiberg in the supposition that they existed, but were not
noticed by Theon, in the original copy in which he made his changes.

Although however F is by far the best of the Theonine MsSs,, there
are a considerable number of passages where one of the others (B, V,
p or q) alone with P gives the genuine reading of Theon’s recension.

As the result of the discovery of the papyrus fragment containing
L 39, 41, the principles above cnunmatecf)aunder (2) and (3) are found
by Heiberg to require some qualification. For there is in some cases
a remarkable agreement between the papyrus and the Theonine Mss.
(some or all) as against P. This shows that Theon took more trouble
to follow older Mss., and made fewer arbitrary changes of his own,
than has hitherto been supposed. Next, when the papyrus agrees
with some of the Theonine MSS. against P, it must now be held that
these Mss. (and not, as formerly supposed, those which agree with P)
give the true reading of Theon. If it were otherwise, the agreement
between the papyrus and the Theonine MSs. would be accidental: but
it happens too often for this. It is clear also that there must have
been contamination between the two recensions; otherwise, whence
could the Theonine MsS. which agree with P and not with the papyrus
have got their readings? The influence of the P class on the Theonine
F is especially marked.

II. There may be disagreement between P and all the Theonine
MSS.

The following possibilities arise.

(1) The Theonine Mss. differ also among themselves.

In this case Heiberg considered that P nearly always has the true
reading, and the Theonine MSS. have suffered interpolation in different
ways after Theon’s time.

(2) The Theonine MsS. all combine against P.

In this case the explanation was assumed by Heiberg to be one or
other of the following.

(a) The common reading is due to an error which cannot be
imputed to Theon (though it may have escaped him when putting
together the archetype of his edition); such error may either have
arisen accidentally in all alike, or (more frequently) may be
referred to a common archetype of all the MSS.

(B8) There may be an accidental error in P; eg. something
has dropped out of P in a good many places, genera.lly through
opot.o'ré).wrov

) There may be words interpolated in P.
‘g' Lastly, we may have in the Theonine MSS. a change made
by Theon himself.

(The discovery of the ancient papyrus showing readings agreeing



CH. V] THE TEXT 55

with some, or with all, of the Theonine MsS. against P now makes it
necessary to be very cautious in applying these criteria.)

It is of course the last class (8) of changes which we have to
investigate in order to get a proper idea of Theon’s recension.

Heiberg first observes, as regards these, that we shall find that
Theon, in editing the Elements, altered hardly anything without some
reason, often inadequate according to our ideas, but still some reason
which seemed to him sufficient. Hence, in cases of very slight differ-
ences where both the Theonine MSs. and P have readings guod and
probable in themselves, Heiberg is not prepared to put the differences
down to Theon. In those passages where we cannot see the least
reason why Theon, if he had the reading of P before him, should have
altered it, Heiberg would not at once assume the superiority of P
unless there was such a consistency in the differences as would indicate
that they were due not to accident but to design. In the absence of
such indications, he thinks that the ordinary principles of criticism
should be followed and that proper weight should be attached to the
antiguity of the sources. And it cannot be denied that the sources of
the Theonine version are the more ancient. For not only is the
British Museum palimpsest (L), which is intimately connected with
the rest of our MSS,, 4t least two centuries older than P, but the other
Theonine Mss. are so nearly allied that they must be held to have
had a common archetype intermediate between them and the actual
edition of Theon; and, since they themselves are as old as, or older
than P, their archetype must have been much older. Heiberg gives
gpr xlvi, xlvii) a list of passages where, for this reason, he has
ollowed the Theonine MSS. in preference to P.

It has been mentioned above that the copyist of P or rather of its
archetype wished to give an ancient recension. Therefore (apart from
clerical errors and interpolations) the first hand in P may be relied
upon as giving a genuine reading even where a correction by the first
hand has been made a# tke same time. But in many places the first
hand has made corrections afterwards; on these occasions he must
have used new sources, e.g. when inserting the scholia to the first
Book which P alone has, and in a number of passages he has made
additions from Theonine MsS.

We cannot make out any “family tree” for the different Theonine
MsS. Although they all proceeded from a common archetype later
than the edition of Theon itself, they cannot have been copied one
from the other; for, if they hac been, how could it have come about
that in one place or other each of them agrees alone with P in pre-
serving the genuine reading ? Moreover the great variety in their
agreements and disagreements indicates that they have all diverged
to about the same extent from their archetype. As we have seen that
P contains corrections from the Theonine family, so they show correc-
tions from P or other Mss. of the same family. Thus V has part of
the lacuna in the Ms, from which it was copied filled up from a Ms.
similar to P, and has corrections apparently derived from the same;
the copyist, however, in correcting V, also used another Ms. to which
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he alludes in the additions to IX. 19 and 30 (and also on X. 23 Por.):
“in the book of the Ephesian (this) is not found.” Who this Ephesian
of the 12th c. was, we do not know.

We now come to the alterations made by Theon in his edition of
the Elements. 1 shall indicate c/asses into which these alterations
may be divided but without details (except in cases where they affect
the matllzmatkai content as distinct from form or language pure and
simple)*,

II). )A lterations made by Theon where he found, or thought he found,
mistakes in the original.

1. Real blots in the original which Theon saw and tried to
remove.

(a) Euclid has a porism (corollary) to VL 19, the enunciation
of which speaks of similar and similarly described figures though the
proposition itself refers only to triangles, and therefore the porism
should have come after VI. 20. Theon substitutes triangle for figure
and proves the more general porism after VI. 20.

(6) In 1X. 19 there is a statement which is obviously incorrect.
Theon saw this and altered the proof by reducing four alternatives to
two, with the result that it fails to correspond to the enunciation even
with Theon’s substitution of “if” for “ when” in the enunciation,

(¢) Theon omits a porism to IX. 11, although it is necessary for
the proof of the succeeding proposition, apparently because, owing to
an error in the text (kara Tov corrected by Heiberg into émri 76), he
could not get out of it the right sense.

(d) I should also put into this category a case which Heiberg
classifies among those in which Theon merely fancied that he found
mistakes, viz. the porism to V. 7 stating that, if four magnitudes are
proportional, they are proportional inversely. Theon puts this after
V. 4 with a proof, which however has no necessary connexion with
V. 4 but is obvious from the definition of proportion.

(¢) 1 should also put under this head XI. 1, where Euclid’s argu-
ment to prove that two straight lines cannot have a common segment
is altered.

2. Passages which seemed to Theon to contain blots, and which
he therefore set himself to correct, though more careful consideration
would have shown that Euclid’s words are right or at least may be
excused and offer no difficulty to an intelligent reader. Under this
head come:

(@) an alteration in IIL 24,

(¢) a perfectly unnecessary alteration, in VI 14, of “equiangular
parallelograms” into “ parallelograms having one angle equal to one
angle,” where Theon followed the false analogy of VI. 15.

(¢) an omission of words in V. 26, owing to his having been mis-
led by a wrong figure.

(d) an alteration of the order of xI. Deff. 27, 28.

(¢) the substitution of “parallelepipedal solid” for “ cube” in XI.

! Exhaustive details under all the different heads are given by Heiberg (Vol. v.
pp- li—lxxv).
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38, because Theon observed, correctly enough, that it was true of the
parallelepipedal solid in general as well as of the cube, but failed to
give weight to the fact that Euclid must have given the particular
case of the cube for the simple reason that that was all he wanted for
use in XIIL 17.

(f) the substitution of the letter ® for (¥ for Z in my figure)
because he saw that the perpendicular from K to B® would fall on @
itself, so that ®, ) coincide. But, if the substitution is made, it should
be proved that ®, () coincide. Euclid can hardly have failed to notice
the fact, but it may be that he deliberately ignored it as unnecessary
for his purpose, because he did not want to lengthen his proposition
by giving the proof.

I1. Emendations intended to improve the form or diction of Euclid.

Some of these emendations of Theon affect passages of appreciable
length. Heiberg notes about ten such passages; the longest is
in Eucl. XIL 4 where a whole page of Heiberg’s text is affected and
Theon’s version is put in the Appendix. The kind of alteration may
be illustrated by that in 1X. 15 where Euclid uses successively the
propositions VIL 24, 25, quoting the enunciation of the former but not
of the latter ; Theon does exactly the reverse. In a few of the cases
here quoted by Heiberg, Theon shortened the original somewhat.

But, as a rule, the emendations affect only a few words in each
sentence. Sometimes they are considerable enough to alter the con-
formation of the sentence, sometimes they ate trifling alterations
“more magistellorum ineptorum” and unworthy of Theon. Generally
speaking, they were prompted by a desire to change anything which
was out of the common in expression or in form, in order to reduce
the language to one and the same standard or norm. Thus Theon
changed the order of words, substituted one word for another where
the latter was used in a sense unusual with Euclid (eg. Jw;Sqrep,
“since,” for &7¢ in the sense of “because”), or one expression for
another in like circumstances (e.g. where, finding “that which was
enjoined would be done” in a theorem, VIL 31, and deeming the phrase
more appropriate to a problem, he substituted for it “that which is
sought would be manifest”; probably also and for similar reasons he
made certain variations between the two expressions usual at the end
of propositions &mwep éder Seifar and Gmep éder mouijoar, quod erat
demonstrandum and quod erat faciendum). Sometimes his alterations
show carelessness in the use of technical terms, as when he uses
dmreaBai (to meet) for épamreabar (to fouck) although the ancients
carefully distinguished the two words. The desire of keeping to a
standard phraseology also led Theon to omit or add words in a
gumber of cases, and also, sometimes, to change the lettering of

res.

g‘L‘But Theon seems, in editing the Elements, to have bestowed the
most attention upon

111. Additions designed to supplement or explain Euclid.

First, he did not hesitate to interpolate whole propositions where
he thought there was room or use for them. We have already
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mentioned the addition to V1. 33 of the second part relating to secfors,
for which Theon himself takes credit in his commentary on Ptolemy.
Again, he interpolated the proposition commonly known as VIL 22
(ex aequo in proportione perturbata for numbers, corresponding to V. 23),
and perhaps also VIL 20, a particular case of VIL 19 as VL 17 is of VL.
16. He added a second case to VI. 27, a porism to IIL 4, a second
porism to III 16, and a lemma after X. 12; perhaps also the porism
to V. 19 and the first porism to VI 20. He also inserted alternative
proofs here and there, e.g. in II. 4 (where the alternative differs little
from the original) and in VIL 31; perhaps also in X. I, 6, and q.

Secondly, he sometimes repeats an argument where Euclid had
said “For the same reason,” adds specific references to points,
straight lines etc. in the figures in order to exclude the possibility
of mistake arising from Euclid's reference to them in general terms,
or inserts words to make the meaning of Euclid more plain, e.g.
componendo and alternately, where Euclid had left them out. Some-
times he thought to increase by his additions the mathematical
precision of Euclid’s language in enunciations or elsewhere, sometimes
to make smoother and clearer things which Euclid had expressed
with unusual brevity and harshness or carelessness, in reliance on the
intelligence of his readers.

Thirdly, he supplied intermediate steps where Euclid's argument
seemed too rapid and not easy enough to follow. The form of these
additions varies; they are sometimes placed as a definite intermediate
step with “therefore” or “so that,” sometimes they are additions to
the statement of premisses, sometimes phrases introduced by “since,”
“for” and the like, after the inference.

Lastly, there is a very large class of additions of a word, or one
or two words, for the sake of clearness or consistency. Heiberg
gives a number of examples of the addition of such nouns as
“triangle,” “square,” “rectangle,” “magnitude,” “number,” “ point,”
“side,” “circle,” “straight line,” “area” and the like, of adjectives
such as “remaining,” “right,” “ whole,” “ proportional,” and of other
parts of speech, even down to words like “is” (éor{) which is added
600 times, 81, dpa, pév, ydp, xal and the like,

IV. Omissions by Theon.

Heiberg remarks that, Theon's object having been, as above
shown, to amplify and explain Euclid, we should not natutally have
expected to find him doing much in the contrary process of com-
pression, and it is only owing to the recurrence of a certain sort of
omissions so frequently (especially in the first Books) as to exclude
the hypothesis of their being all due to chance that we are bound to
credit him with alterations making for greater brevity. We have
seen, it is true, that he made omissions as well as additions for the
purpose of reducing the language to a certain standard form. But
there are also a good number of cases where in the enunciation of
propositions, and in the exposition (the re-statement of them with
reference to the figure), he has left out words because, apparently,
he regarded Euclid’s language as being o careful and precise.
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Again, he is apparently responsible for the frequent omission of the
words dmep éder Seifac (or moufjoar), Q.E.D. (or F.), at the end of
propositions. This is often the case at the end of porisms, where,
in omitting the words, Theon seems to have deliberately departed
from Euclid’s practice. The Ms. P seems to show clearly that, where
Euclid put a porism at the end of a proposition, he omitted the
Q.E.D. at the end of the proposition but inserted it at the end of the
porism, as if he regarded the latter as being actually a part of the
proposition itself. As in the Theonine MSS. the Q.E.D. is generally
omitted, the omission would seem to have been due to Theon.
Sometimes in these cases the Q.E.D. is interpolated at the end of the
proposition.

Heiberg summed up the discussion of Theon’s edition by the
remark that Theon evidently took no pains to discover and restore
from MsS. the actual words which Euclid had written, but aimed
much more at removing difficulties that might be felt by learners
in studying tke book. His edition is therefore not to be compared
with the editions of the Alexandrine grammarians, but rather with
the work done by Eutocius in editing Apollonius and with an
interpolated recension of some of the works of Archimedes by a
certain Byzantine, Theon occupying a position midway between these
two editors, being superior to the latter in mathematical knowledge
but behind Eutocius in industry (these views now require to be some-
what modified, as above stated). But however little Theon'’s object
may be approved by those of us who would rather know the
ipsissima verba of Euclid, there is no doubt that his work was
approved by his pupils at Alexandria for whom it was written ; and
his edition was almost exclusively used by later Greeks, with the
result that the more ancient text is only preserved to us in one MS.

As the result of the above investigation, we may feel satisfied
that, where P and the Theonine MSS. agree, they give us (except in a
few accidental instances) Euclid as he was read by the Greeks of
the 4th c. But even at that time the text had been passed from
hand to hand through more than six centuries, so that it is certain
that it had already suffered changes, due partly to the fault of
copyists and partly to the interpolations of mathematicians. Some
errors of copyists escaped Theon and were corrected in some MsS.
by later hands. Others appear in all our Mss. and, as they cannot
have arisen accidentally in all, we must put them down to a common
source more ancient than Theon. A somewhat serious instance is
to be found in 11L. 8; and the use of dwréofw for épamrécbw in the
sense of “touch” may also be mentioned, the proper distinction
between the words having been ignored as it was by Theon also.
But there are a number of imperfections in the ante-Theonine text
which it would be unsafe to put down to the errors of copyists, those
namely where the good MsS. agree and it is not possible to see any
motive that a copyist could have had for altering a correct reading.
In these cases it is possible that the imperfections are due to a
certain degree of carelessness on the part of Euclid himself; for it
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is not possible “Euclidem ab omni naevo vindicare,” to use the
words of Saccheri’, and consequently Simson is not right in attributing
to Theon and other editors all the things in Euclid to which mathe-
matical objection can be taken. Thus, when Euclid speaks of “the
ratio compounded of the sides” for “the ratio compounded of the
ratios of the sides,” there is no reason for doubting that Euclid himself
is responsible for the more slip-shod expression. Again, in the Books
XL—XIIL relating to solid geometry there are blots neither few
nor altogether unimportant which can only be attributed to Euclid
himself?; and there is the less reason for hesitation in so attributing
them because solid geometry was then being treated in a thoroughly
systematic manner for the first time. Sometimes the comnclusion
(ovpmépacua) of a proposition does not correspond exactly to the
enunciation, often it is cut short with the words xai Ta éffjs “and the
rest” (especially from Book X. onwards), and very often in Books VIIL,
IX, it is omitted. Where all the MSs. agree, there is no ground for
hesitating to attribute the abbreviation or omission to Euclid; though,
of course, where one or more Mss. have the longer form, it must be
retained because this is one of the cases where a copyist has a
temptation to abbreviate.

Where the true reading is preserved in one of the Theonine Mss,
alone, Heiberg attributes the wrong reading to a mistake which arose
before Theon’s time, and the right reading of the single MSs. to a
successful correction.

We now come to the most important question of the /nterpolations
introduced before Theon's time.

I. Alternative proofs or additional cases,

It is not in itself probable that Euclid would have given two
proofs of the same proposition ; and the doubt as to the genuineness
of the alternatives is increased when we consider the character of
some of them and the way in which they are introduced. First of
all, we have those of VI. 20 and XII. 17 introduced by “we shall prove
this otherwise more readily (wpoyeiporepov)” or that of X.go “it is
possible to prove more shortly (avrropwrepor).” Now it is impossible
to suppose that Euclid would have given one proof as that definitely
accepted by him and then added another with the express comment
that the latter has certain advantages over the former. Had he con-
sidered the two proofs and come to this conclusion, he would have
inserted the latter in the received text instead of the former. These
alternative proofs must therefore have been interpolated. The same
argument applies to alternatives introduced with the words “or even
thus” (4 xai orws), “or even otherwise” (3 xai &\Aws). Under this
head come the alternatives for the last portions of IIL 7, 8; and
Heiberg also compares the alternatives for parts of IIL 31 (that the
angle in a semicircle is a right angle) and XIII 18, and the alternative
proof of the lemma after X. 32. The alternatives to X. 105 and 106,

Y Euclides ab omni naevo vindicatus, Mediolani, 1733. 1 3 y
2 Cf. ially the assumption, without proof or dehnition, of the criterion for egual solid
angles, the incomplete proof of X11, 17.
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again, are condemned by the place in which they occur, namely after
an alternative proof to X. 115. The above alternatives being all
admitted to be spurious, suspicion must necessarily attach to the few
others which are in themselves unobjectionable. Heiberg instances
the alternative proofs to III 9, IIL 10, VI. 30, VI. 31 and XI. 22, observing
that it is quite comprehensible that any of these might have occurred
to a teacher or editor and seemed to him, rightly or wrongly, to be
better than the corresponding proofs in Euclid. Curiously enough,
Simson adopted the alternatives to III. 9, 10 in preference to the
genuine proofs, Since Heiberg's preface was written, his suspicion
has been amply confirmed as regards 1IL. 10 by the commentary of
an-Nairizi (ed. Curtze) which shows not only that this alternative is
Heron’s, but also that the substantive proposition IIIL 12 in Euclid
is also Heron's, having been given by him to supplement IIIL 11
which must originally have been enunciated of circles “touching one
another” simply, i.e. so as to include the case of external as well as
internal contact, though the proof covered the case of internal contact
only. “Euclid, in the 11th proposition,” says Heron, “supposed two
circles touching one another internally and wrote the proposition on
this case, proving what it was required to prove in it. Bur I will
show how 1t is to be proved if the contact be external’.” This additional
proposition of Heron's is by way of adding another case, which brings
us to that class of interpolation. It was the practice of Euclid and
the ancients to give only one case (generally the most difficult one)
and to leave the others to be investigated by the reader for himself.
One interpolation of a second case (VI. 27) is due, as we have seen,
to Theon. The two extra cases of XI. 23 were manifestly interpolated
before Theon’s time, for the preliminary distinction of three cases,
“(the centre) will either be within the triangle LMN, or on one of
the sides, or outside. First let it be within,” is a spurious addition
(B and V only). Similarly an unnecessary case is interpolated in
L II

II. Lemmas.

Heiberg has unhesitatingly placed in his Appendix to Vol. 111
certain lemmas interpolated either by Theon (on X. 13) or later
writers (on X. 27, 29, 31, 32, 33, 34, where V only has the lemmas).
But we are here concerned with the lemmas found in all the Mss,,
which however are, for different reasons, necessarily suspected. We
will deal with the Book X. lemmas last.

(1) There is an a priori ground of objection to those lemmas
which come affer the propositions to which they relate and prove
properties used in those propositions; for, if genuine, they would be a
sign of faulty arrangement such as would not be likely in a systematic
work so carefully ordered as the Elements. The lemma to VI 22 is
one of this class, and there is the further objection to it that in VI 28
Euclid makes an assumption which would equally require a lemma
though none is found. The lemma after XIL 4 is open to the further
objections that certain altitudes are used but are not drawn in the

1 An-Nairlzl, ed. Curtze, p. 131.
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figure (which is not in the mauner of Euclid), and that a peculiar
expression “ parallelepipedal solids described on (dvarypadopeva dmo)
prisms” betrays a hand other than Euclid’s. There is an objection on
the score of language to the lemma after XIIL 2. The lemmas on
XL 23, XIIL 13, XIIL 18, besides coming after the propositions to
which they relate, are not very necessary in themselves and, as regards
the lemma to XIIL 13, it is to be noticed that the writer of a gloss
in the proposition could not have had it, and the words “as will
be proved afterwards” in the text are rightly suspected owing to
differences between the Ms. readings. The lemma to XIL 2 also, to
which Simson raised objection, comes after the proposition ; but, if it
is rejected, the words “as was proved before” used in XII 5 and 18,
and referring to this lemma, must be struck out.

(2) Reasons of substance are fatal to the lemma before X. 6o,
which is really assumed in X. 44 and therefore should have appeared
there if anywhere, and to the lemma on X. 20, which tries to prove
what is already stated in X. Def. 4.

We now come to the remaining lemmas in Book X., eleven in
number, which come before the propositions to which they relate and
remove difficulties in the way of their demonstration. That before
X. 42 introduces a set of propositions with the words “ that the said
irrational straight lines are uniquely divided ... we will prove after
premising the following lemma,” and it is not possible to suppose
that these words are due to an interpolator; nor are there any
objections to the lemmas before X. 14, 17, 22, 33, 54, except perhaps
that they are rather easy. The lemma before X. 10 and X. 10 itself
should probably be removed from the Elements ; for X. 10 really uses
the following proposition X. 11, which is moreover numbered 10 by
the first hand in P, and the words in X. 10 referring to the lemma “for
we learnt (how to do this)” betray the interpolator. Heiberg gives
reason also for rejecting the lemmas before X. 19 and 24 with the
words “in any of the aforesaid ways” (omitted in the Theonine Mss.)
in the enunciations of X. 19, 24 and in the exposition of X. 20. Lastly,
the lemmas before X. 29 may be genuine, though there is an addition
to the second of them which is spurious.

Heiberg includes under this heading of interpolated lemmas two
which purport to be sybstantive propositions, XI. 38 and X111 6. These
must be rejected as spurious for reasons which will be found in detail
in my notes on XI 37 and XIIIL 6 respectively. The latter proposition
is only quoted once (in XIiL 17); probably the words quoting it
(with ypapus instead of elfeia) are themselves interpolated, and
Euclid thought the fact stated a sufficiently obvious inference from
XIIL L

II1. Porisms (or corollaries).

Most of the porisms in the text are both genuine and necessary;
but some are shown by differences-in the MSS. not to be so, e.g. those
to L. 15 (though Proclus has it), 111, 31 and VI. 20 (Por. 2). Sometimes
parts of porisms are interpolated. Such are the last few lines in
the porisms to Iv. 5, VL. 8; the latter addition is proved later by
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means of VL 4, 8, so that the writer of these proofs could not have had
the addition to V1. 8 Por. before him. Lastly, interpolators have added
a sort of proof to some porisms, as though they were not quite
obvious enough ; but to add a demonstration is inconsistent with the
idea of a porism, which, according to Proclus, is a by-product of a
praposition appearing without our seeking it.

IV. Scholia.

Several interpolated scholia betray themselves by their wording,
e.g. those given by Heiberg in the Appendix to Book X. and contain-
ing the words xa\ei, éxdhece (“he calls” or “called”); these scholia were
apparently written as marginal notes before Theon’s time, and, being
adopted as such by Theon, found their way into the text in P and
some of the Theonine MSs. The same thing no doubt accounts for
the interpolated analyses and syntheses to XIII. 1—s5, as to which see
my note on XIIL I.

V. Interpolations in Book X.

First comes the proposition “ Let it be proposed to us to show that
in square figures the diameter is incommensurable in length with the
side,” which, with a scholium after it, ends the tenth Book. The form
of the enunciation is suspicious enough and the proposition, the proof
of which is indicated by Aristotle and perhaps was Pythagorean, is
perfectly unnecessary when X. 9 has preceded. The scholium ends
with remarks about commensurable and incommensurable solidls,
which are of course out of place before the Books on solids. The
scholiast on Book X. alludes to this particular scholium as being due
to “ Theon and some others.” But it is doubtless much more ancient,
and may, as Heiberg conjectures have been the beginning of
Apollonius’ more advanced treatise on incommensurables. Not only
is everything in Book X. after X. 115 interpolated, but Heiberg doubts
the genuineness even of X. 112—115, on the ground that X. III
rounds off the theory of incommensurables as we want it in the Books
on solid geometry, while X. 112—115 are not really connected with
what precedes, nor wanted for the later Books, but seem to form the
starting-point of a new and more elaborate theory of irrationals.

VI. Other minor interpolations are found of the same character as
those above attributed to Theon. First there are two places (XI. 35
and XI. 26) where, after “similarly we shail prove ” and *for the same
reason,” an actual proof is nevertheless given. Clearly the proofs are
interpolated; and there are other similar interpolations. There
are also interpolations of intermediate steps in proofs, unnecessary
explanations and so on, as to which I need not enter into details.

Lastly, following Heiberg’s order, I come to

VII. Interpolated definitions, axioms etc.

Apart from VI Def. 5 (which may have been interpolated by
Theon although it is found written in the margin of P by the first
hand), the definition of a segment of a circle in Book 1. is interpolated,
as is clear from the fact that it occurs in a more appropriate place in
Book 111. and Proclus omits it. VI. Def. 2 (reciprocal figures) is rightly
condemned by Simson—perhaps it was taken from Heron—and
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Heiberg would reject VIL Def. 10, as to which see my note on that
definition. Lastly the double definition of a solid angle (XI. Def. 11)
constitutes a difficulty. The use of the word émipavera suggests that
the first definition may have been older than Euclid, and he may have
quoted it from older elements, especially as his own definition which
follows only includes solid angles contained by planes, whereas the
other includes other sorts (cf. the words ypapudv, ypappais) which are
also distinguished by Heron (Def. 22). If the first definition had come
last, it could have been rejected without hesitation : but it is not so
easy to reject the first part up to and including “otherwise” (d\Aws).
No difficulty need be felt about the definitions of “oblong,” “rhombus,”
and “rhomboid,” which are not actually used in the Elements; they
were no doubt taken from earlier elements and given for the sake of
completeness.

As regards the axioms or, as they are called in the text, common
notions (xowal évvoral), it is to be observed that Proclus says' that
Apollonius tried to prove “the axioms,” and he gives Apollonius’
attempt to prove Axiom 1. This shows at all events that Apollonius
had seme of the axioms now appearing in the text. But how could
Apollonius have taken a controversial line against Euclid on the
subject of axioms if these axioms had not been Euclid’s to his know-
ledge? And, if they had been interpolated between Euclid’s time
and his own, how could Apollonius, living so comparatively short a
time after Euclid, have been ignorant of the fact? Therefore some of
the axioms are Euclid’s (whether he called them common notions, or
axioms, as is perhaps more likely since Proclus calls them axioms):
and we need not hesitate to accept as genuine the first three discussed
by Proclus, viz. (1) things equal to the same equal to one another,
(2) if equals be added to equals, wholes equal, (3) if equals be
subtracted from equals, remainders equal. The other two mentioned
by Proclus (whole greater than part, and congruent figures equal) are
more doubtful, since they are omitted by Heron, Martianus Capella,
and others. The axiom that “two lines cannot enclose a space” is
however clearly an interpolation due to the fact that 1. 4 appeared to
require it. The others about equals added to unequals, doubles of
the same thing, and halves of the same thing are also interpolated ;
they are connected with other interpolations, and Proclus clearly
used some source which did not contain them.

Euclid evidently limited his formal axioms to those. which seemed
to him most essential and of the widest application; for he not un-
frequently assumes other things as axiomatic, e.g. in VIL 28 that, if a
number measures two numbers, it measures their difference.

The differences of reading appearing in Proclus suggest the
question of the comparative purity of the sources used by Proclus,
Heron and others, and of our text. The omission of the definition of
a segment in Book I and of the old gloss “which is called the cir-
cumference ” in I Def. 15 (also omitted by Heron, Taurus, Sextus

! Proclus, pp. 194, 105qq.
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Empiricus and others) indicates that Proclus had better sources than
we have ; and Heiberg gives other cases where Proclus omits words
which are in all our MsS. and where Proclus’ reading should perhaps
be preferred. But, except in these instances (where Proclus may have
drawn from some ancient source such as one of the older com-
mentaries), Proclus’ MS. does not seem to have been ameng the best.
Often it agrees with our worst MsS.,, sometimes it agrees with F where
F alone has a certain reading in the text, so that (e.g. in I 15 Por.)
the common reading of Proclus and F must be rejected, thrice only
does it agree with P alone, sometimes it agrees with P and some
Theonine MSS., and once it agrees with the Theonine MSSs. against P
and other sources.

Of the other external sources, those which are older than Theon
generally agree with our best Mss, eg. Heron, allowing for the
difference in the plan of his definitions and the somewhat free adap-
tation to his purpose of the Euclidean definitions in Books X., XI.

Heiberg concludes that the Elements were most spoiled by inter-
polations about the 3rd c., for Sextus Empiricus had a correct text,
while Iamblichus had an interpolated one; but doubtless the purer
text continued for a long time in circulation, as we conclude from the
fact that our MsS. are free from interpolations already found in
Iamblichus’ Ms.



CHAPTER VL

THE SCHOLIA.

HEIBERG has collected scholia, to the number of about 1500, in
Vol. v. of his edition of Euclid, and has also discussed and classified
them in a separate short treatise, in which he added a few others?.

These scholia cannot be regarded as doing much to facilitate the
reading of the Elements. As a rule, they contain only such observa-
tions as any intelligent reader could make for himself Among the
few exceptions are XI. Nos. 33, 35 (where XI. 22, 23 are extended to
solid angles formed by any number of plane angles), X1, No. 85
(where an assumption tacitly made by Euclid in XIL 17 is proved),
1X. Nos, 28, 29 (where the scholiast has pointed out the error in the
text of IX. 19).

Nor are they very rich in historical information ; they cannot be
compared in this respect with Proclus’ commentary on Book I. or
with those of Eutocius on Archimedes and Apollonius. But even
under this head they contain some things of interest, e.g. IL. No. 11
explaining that the gnomon was invented by geometers for the sake of
brevity, and that its name was suggested by an incidental characteristic,
namely that “from it the whole is known (yrwpiferar), either of the
whole area or of the remainder, when it (the ypopwv) is either placed
round or taken away”; II. No. 13, also on the gnomon; 1v. No. 2
stating that Book 1V. was the discovery of the Pythagoreans;
V. No. 1 attributing the content of Book v. to Eudoxus; X. No. 1 with
its allusion to the discovery of incommensurability by the Pytha-
goreans and to Apollonius’ work on irrationals; X. No. 62 definitely
attributing X. g to Theaetetus; XIIL No. 1 about the “Platonic” figures,
which attributes the cube, the pyramid, and the dodecahedron to the
Pythagoreans, and the octahedron and icosahedron to Theaetetus.

Sometimes the scholia are useful in connexion with the settlement
of the text, (1) directly, e.g. III. No. 16 on the interpolation of the
word “within” (évrds) in the enunciation of III. 6, and X. No. 1
alluding to the discussion by “Theon and some others” of irrational
“surfaces” and “solids,” as well as “lines,” from which we may

\ Heiberg, Om Scholierne il Euklids Elementer, Kjobenhavn, 1888. The tract is

written in Danish, but, fortunately for those who do not read Danish easily, the author has
appended (pp. 70—78) a résumé in French.
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conclude that the scholium at the end of Book X. is not genuine;
(2) indirectly in that they sometimes throw light on the connexion
of certain MSS.

Lastly, they have their historical importance as enabling us to
judge of the state of mathematical science at the times when they
were written.

Before passing to the classification of the scholia, Heiberg remarks
that we must separate from them a number of additions in the nature
of scholia which are found in the text of our MsS. but which can, in
one way or another, be proved to be spurious. As they are found
both in P and in the Theonine MsS,, they must have been in the MSs.
anterior to Theon (4th c.). But they are, in great part, only found in
the margin of P and the Theonine MSS.; in V they are half in the
text and half in the margin. This can hardly be explained except
on the supposition that these additions were originally (in the MSs.
before Theor) in the margin, and that Theon kept them there in his
edition, but that they afterwards found their way gradually into the
text of P as well as of the Theonine MSSs., or were omitted altogether,
while particular MSS. have in certain places preserved the old arrange-
ment. Of such spurious additions Heiberg enumerates the following:
the axiom about equals subtracted from unequals, the last lines of the
porism to VI. 8, second porisms to V. 19 and to VI. 20, the porism
to IIL 31, VL. Def. 5, various additions in Book X., the analyses and
syntheses of XIIL. 1—s§, and the proposition XIIIL 6.

The two first classes of scholia distinguished by Heiberg are
denoted by the convenient abbreviations “Schol. Vat.” and “Schol.
Vind.”

I. Schol. Vat.

It is first necessary to set out the letters by which Heiberg
denotes certain collections of scholia.

P = Scholia in P written by the first hand.

B=Scholia in B by a hand of the same date as the MSs. itself,
generally that of Arethas.

F = Scholia in F by the first hand.

Vat. =Scholia of the Vatican MS. 204 of the 1oth c, which has
these scholia on leaves 198—205 (the end is missing) as an independent
collection, It does not contain the text of the Elements.

Ve=Scholia found on leaves 283—292 of V and written in the
same hand as that part of the Ms. itself which begins at leaf 235.

Vat. 192=a Vatican MS. of the 14th c. which contains, after
(1) the Elements 1.—XI11. (without scholia), (2) the Data with scholia,
(3) Marinus on the Data, the Schol. Vat. as an independent collection
;?d in their entirety, beginning with 1. No. 88 and ending with XIIIL

0. 44.

The Schol. Vat., the most ancient and important collection of
scholia, comprise those which are found in PBF Vat. and, from VIL 12
to IX. 15, in PB Vat. only, since in that portion of the Elements
F was restored by a later hand without scholia; they also include I
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No. 88 which only happens to be erased in F, and 1x. Nos. 28, 29
which may be left out because F. here has a different text. In F
and Vat. the collection ends with Book X.; but it must also include
Schol. PB of Books XIL.—XI11,, since these are found along with Schol.
Vat. to Books I.—X. in several Mss. (of which Vat. 192 is one) as a
separate collection. The Schol. Vat, to Books X.—XIII. are also
found in the collection V¢ (where, curiously enough, X111. Nos. 43, 44
are at the beginning). The Schol. Vat. accordingly include Schol.
PBVe Vat, 192, and doubtless also those which are found in two of
these sources. The total number of scholia classified by Heiberg as
Schol. Vat. is 138.

As regards the contents of Schol. Vat. Heiberg has the following
observations. The thirteen scholia to Book 1. are extracts made
from Proclus by a writer thoroughly conversant with the subject,
and cleverly recast (with some additions). Their author does not
seem to have had the two lacunae which our text of Proclus has
(at the end of the note on I. 36 and the beginning of the next note,
and at the beginning of the note on I. 43), for the scholia I. Nos. 125
and 137 seem to fill the gaps appropriately, at least in part. In
some passages he had better readings than our MsS. have. The rest
of Schol. Vat. (on Books IL—XIIL) are essentially of the same
character as those on Book I, containing prolegomena, remarks on
the object of the propositions, critical remarks on the text, converses,
lemmas; they are, in general, exact and true to tradition. The
reason of the resemblance between them and Proclus appears to be
due to the fact that they have their origin in the commentary of
Pappus, of which we know that Proclus also made use. In support
of the view that Pappus is the source, Heiberg places some of the
Schol. Vat. to Book X. side by side with passages from the com-
mentary of Pappus in the Arabic translation discovered by Woepcke?;
he also refers to the striking confirmation afforded by the fact that
XII. No. 2 contains the solution of the problemn of inscribing in a
given circle a polygon similar to a polygon inscribed in another circle,
which problem Eutocius says? that Pappus gave in his commentary
on the Elements.

But, on the other hand, Schol. Vat. contain some things which
cannot have come from Pappus, e.g. the allusion in X. No. 1 to Theon
and irrational surfaces and solids, Theon being later than Pappus;
11. No. 10 about porisms is more like Proclus’ treatment of the
subject than Pappus’, though one expression recalls that of Pappus
about forming (oxynparitesbar) the enunciations of porisms like those
of either theorems or problems.

The Schol. Vat. give us important indications as regards the
text of the Elements as Pappus had it. In particular, they show that
he could not have had in his text certain of the lemmas in Book X.
For example, three of these are identical with what we find in Schol.
o 1 Om Sj{&;ﬁeﬂm il Eﬁiﬂ?AEm?_pp. "'8" : cf. E"‘éﬁf%" PP: 170, 171;

" % i es, 1856, XIV. p. f
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Vat. (the lemma to X. 17=Schol. X. No. 106, and the lemmas to
X. 54, 60 come in Schol. X. No. 328); and it is not possible to suppose.
that these lemmas, if they were already in the text, would also be
given as scholia. Of these three lemmas, that before X. 60 has
already been condemned for other reasons; the other two, un-
objectionable in themselves, must be rejected on the ground now
stated. There were four others against which Heiberg found nothing
to urge when writing his prolegomena to Vol. v., viz. the lemmas
before X. 42, X. 14, X. 22 and X. 33. Of these, the lemma to X. 22
is not reconcilable with Schol. X. No. 161, which takes up the
assumption in the text of Eucl. X. 22 as if no lemma had gone before.
The lemma to X. 42, which, on account of the words introducing it
(see p. 60 above), Heiberg at first hesitated to regard as an inter-
polation, is identical with Schol. X. No. 270. It is true that in
Schol. X. No. 269 we find the words “this lemma has been proved
before (év Tois éumpoaler), but it shall also be proved now for
convenience’ sake (toi éroipov &vexa),” and it is possible to suppose
that “before” may mean in Euclid’s text defore X. 42; but a proof
in that place would surely have been as “convenient” as could be
desired, and it is therefore more probable that the proof had been
given by Pappus in some earlier place. (It may be added that the
lemma to X. 14, which is identical with the lemma to XI. 23, con-
demned on other grounds, is for that reason open to suspicion.)

Heiberg’s conclusion is that @// the lemmas are spurious, and that
most or all of them have found their way into the text from Pappus’
commentary, though at a time anterior to Theon’s edition, since
they are found in all our MSS. This enables us to fix a date for these
interpolations, namely the first half of the 4th c.

Of course Pappus had not in his text the interpolations which,
from the fact of their appearing only in some of our MSS,, are seen to
be later than those above-mentioned. Such are the lemmas which
are found in the text of V only after X. 29 and X. 31 respectively and
are given in Heiberg's Appendix to Book X. (numbered 10 and 11).
On the other hand it appears from Woepcke’s tract! that Pappus
already had X. 115 in his text: though it does not follow from this
that the proposition is genuine but only that interpolations began
very early.

Theon interpolated a proposition (or lemma) between X. 12 and
X. 13 (No. 5 in Heiberg's Appendix). Schol. Vat. has the same
thing (X. No. 125). The writer of the scholia therefore did not find
this lemma in the text. Schol. Vat. 1X. Nos. 28, 29 show that neither
did he find in his text the alterations which Theon made in Eucl. I1x.
19; the scholia in fact only agree with the text of P, not with Theon’s.
This suggests that Schol. Vat. were written for use with a Ms. of the
ante-Theonine recension snch as P is. This probability is further
confirmed by a certain independence which P shows in several places
when compared with the Theorine MSS. Not only has P better
readings in some passages, but more substantial divergences; and,

1 Woepcke, gg. cit. p. j03.
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in particular, the absence in P of three notes of a historical character
which are added, wholly or partly from Proclus, in the Theonine MSS.
attests an independent and more primitive point of view in P.

In view of the distinctive character of P, it is possible that some
of the scholia found in it in the first hand, but not in the other
sources of Schol. Vat., also belong to that collection; and several
circumstances confirm this. Schol. XIIL. No. 45, found in P only,
which relates to a in Eucl. XI111. 13, shows that certain words
in the text, thougﬁ older than Theon, are interpolated; and, as the
scholium is itself older than Theon, is headed “#krd lemma,” and
follows a “second lemma” relating to a passage in the text im-
mediately preceding, which “second lemma” belongs to Schol. Vat.
and is taken from Pappus, the “third” in all probability came from
Pappus also. The same is true of Schol. X11, No. 72 and x111. No. 69,
which are respectively identical with the propositions vuxlgo XI. 38
(Heiberg, App. to Book XI., No. 3) and XIIL. 6; for both of these
interpolations are older than Theon. Moreover most of the scholia
which P in the first hand alone has are of the same character as
Schol. Vat. Thus viI. No. 7 and X1L No. 1 introducing Books VIL
and XIIL respectively are of the same historical character as several
of Schol. Vat.; that vil. No. 7 appears in the ez of P at the
beginning of Book VIIL constitutes no difficulty. There are a number
of converses, remarks on the relation of propositions to one another,
explanations such as XII No. 89 in which it is remarked that ®, )
in Euclid’s figure to XIL 17 (Z, ¥ in my figure) are really the same
point but that this makes no difference in the proof. Two other
Schol. P on XIL 17 are connected by their headings with x11. No. 72
mentioned above. XI No. 10 (P) is only another form of XI.
No. 11 (B); and B often, alone with P, has preserved Schol. Vat.
On the whole Heiberg considers some 40 scholia found in P alone to
belong to Schol. Vat.

The history of Schol. Vat. appears to have been, in its main
outlines, the following. They were put together after 500 A.D,, since
they contain extracts from Proclus, to which we ought not to assign
a date too near to that of Proclus’ work itself; and they must at least
be earlier than the latter half of the gth c, in which B was written.
As there must evidently have been several intermediate links between
the archetype and B, we must assign them rather to the first half of
the period between the two dates, and it is not improbable that they
were a new product of the great development of mathematical studies
at the end of the 6th c. (Isidorus of Miletus). The author extracted
what he found of interest in the commentary of Proclus on Book I
and in that of Pappus on the rest of the work, and put these extracts
in the margin of a Ms. of the class of P. As there are no scholia to
1. 1—22, the first leaves of the archetype or of one of the earliest
copies must have been lost at an early date, and it was from that
mutilated copy that partly P and partly a Ms. of the Theonine class
were taken, the scholia being put in the margin in both. Then the
collection spread through the Theonine MsS., gradually losing some
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scholia which could not be read or understood, or which were
accidentally or deliberately omitted. Next it was extracted from
one of these MSS. and made into a separate work which has been
preserved, in part, in its entirety (Vat. 192 etc.) and, in part, divided
into sections, so that the scholia to Books X.—XIII. were detached
(Ve). It had the same fate in the MSS. which kept the original
arrangement (in the margin), and in consequence there are some MSS.
where the scholia to the stereometric Books are missing, those Books
having come to be less read in the period of decadence. It is from
one of these MSs. that the collection was extracted as a separate work
such as we find it in Vat. (1oth ¢.).

II. The second great division of the scholia is Schol. Vind.

This title is taken from the Viennese Ms. (V), and the letters used
by Heiberg to indicate the sources here in question are as follows.

Va=scholia in V written by the same hand that copied the MSs.
itself from fol. 235 onward.

q =scholia of the Paris MS. 2344 (q) written by the first hand.

I = scholia of the Florence Ms. Laurent. XXVIII, 2 written in the
;3t1.:1—14th c, mostly in the first hand, but partly in two later

ands.

Vb=scholia in V written by the same hand as the first part
(leaves 1—183) of the Ms, itself; V® wrote his scholia after V2.

q' =scholia of the Paris Ms. (q) found here and there in another
hand of early date.

Schol. Vind. include scholia found in V*q. | is nearly related to
q; and in fact the three MsSs. which, so far as Euclid’s text is con-
cerned, show no direct interdependence, are, as regards their scholia,
derived from one eriginal. Heiberg proves this by reference to the
readings of the three in two passages (found in Schol. 1. No. 109 and
X. No. 39 respectively). The common source must have contained,
besides the scholia found in the three MSs. Vagl, those also which
are contained in two of them, for it is more unlikely that two of the
three should contain common interpolations than that a particular
scholium should drop out of one of them. Besides V* and q, the
scholia V® and @' must equally be referred to Schol. Vind., since the
greater part of their scholia are found in . There is a lacuna in q
from Eucl. VIIL 25 to IX. 14, so that for this portion of the Elements
Schol. Vind. are represented by VI only. Heiberg gives about 450
numbers in all as belonging to this collection.

Schol. Vind. did not all come from one source ; this is shown by
differences of substance, e.g. between X. Nos. 36 and 39, and by
differences of time of writing: e.g. V1. No. 52 refers at the beginning
to No. 55 with the words “as the scholium has it” and is therefore
later than that scholium; X. No. 247 is also later than X. No. 246.

The scholia to Book I. are here also extracts from Proclus, but
more copious and more verbatim than in Schol. Vat. The author
has not always understood Proclus; and he had a text as bad as
that of our MsS.,, with the same lacunae. The scholia to the other
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Books are partly drawn (1) from Schol. Vat,, the MsS. representing
Schol. Vind. and Schol. Vat. in these cases showing nearly all possible
combinations; but there is no certain trace in Schol. Vind. of the
scholia peculiar to P. The author used a copy of Schol. Vat. in the
form in which they were attached to the Theonine text; thus Schol.
Vind. correspond to BF Vat, where these diverge from P, and
especially closely to B. Besides Schol. Vat, the edifors of Schol.
Vind. used (2) other old collections of scholia of which we find traces
in B and F; Schol. Vind. have also some scholia common with b,
The scholia which Schol. Vind. have in common with BF come from
two different sources, and were apparently afterwards introduced
into the other Mss.; one result of this is that several scholia are
reproduced twice.

But, besides the scholia derived from these sources, Schol. Vind.
contain a large number of others of late date, characterised by in-
correct language or by triviality of content (there are many examples
in numbers, citations of propositions used, absurd dwropias, and the
like). Unlike Schol. Vat., these scholia often quote words from Euclid
as a heading (in one case a heading is inserted in Schol. Vind. where
a scholium without the heading is quoted from Schol. Vat,, see v.
No. 14). The explanations given often presuppose very little know-
ledge on the part of the reader and frequently contain obscurities
and gross errors.

Schol. Vind. were collected for use with a MS. of the Theonine
class; this follows from the fact that they contain a note on the
proposition wuige VII. 22 interpolated by Theon (given in Heiberg’s
App. to Vol. 11. p. 430). Since the scholium to VII. 39 given in V and
p in the text after the title of Book VIII. quotes the proposition as
VIL 39, it follows that this scholium must have been written before
the interpolation of the two propositions wulge VII 20, 22; Schol.
Vind. contain (viI. No. 80) the first sentence of it, but without the
heading referring to VIL 39. Schol. viI. No. 97 quotes VIL 33 as
VIL 34, so that the proposition zxigo VII. 22 may have stood in the
scholiast’s text but not the later interpolation wulge VIL. 20 (later
because only found in B in the margin by the first hand). Of course
the scholiast had also the interpolations earlier than Theon.

For the date of the collection we have a lower limit in the date
(12th c.) of MSS. in which the scholia appear. That it was not much
earlier than the 12th c. is indicated (1) by the poverty of its contents,
(2) by the quality of the Ms. of Proclus which was used in the
compilation of it (the Munich MS. used by Friedlein with which the
scholiast’s excerpts are essentially in agreement belongs to the 11th—
12th c.), (3) by the fact that Schol. Vind. appear only in MsS. of the
12th c. and no trace of them is found in our MSS. belonging to
the gth—10th c. in which Schol. Vat. are found. The collection may
therefore probably be assigned to the j1th c. Perhaps it may be in
part due to Psellus who lived towards the end of that century: for in
a Florence MS. (Magliabecch. X1, 53 of the 15th c.) containing a
mathematical compendium intended for use in the reading of Aristotle
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the scholia 1. Nos. 40 and 49 appear with the name of Psellus
attached.

Schol. Vind. are not found without the admixture of foreign
elements in any of our three sources. In | there are only very few
such in the first hand. In q there are several new scholia in the first
hand, for the most part due to the copyist himself. The collection of
scholia on Book X. in q (Heiberg’s q°) is also in the first hand ; it is
not original, and it may perhaps be due to Psellus (Maglb. has some
definitions of Book X. with a heading “scholia of ... Michael Psellus
on the definitions of Euclid's 10th Element” and Schol. X. No. g),
whose name must have been attached to it in the common source of
Maglb. and q; to a great extent it consists of extracts from Schol.
Vind. taken from the same source as V1. The scholia q' (in an
ancient hand in q), confined to Book II., partly belong to Schol. Vind.
and partly correspond to b? (Bologna Ms.). q* and q® are in one hand
(Theodorus Antiochita), the nearest to the first hand of q; they are
doubtless due to an early possessor of the Ms. of whom we know
nothing more,

V# has, besides Schol. Vind., a number of scholia which also appear
in other MsS., one in BFb, some others in P, and some in v (Codex
Vat. 1038, 13th c.); these scholia were taken from a source in which
many abbreviations were used, as they were often misunderstood by V2,
Other scholia in V* which are not found in the older sources—some
appearing in V* alone—are also not original, as is proved by mistakes
or corruptions which they contain; some others may be due to the
copyist himself,

seldom has scholia common with the other older sources; for
the most part they either appear in V® alone or only in the later
sources as v or F? (later scholia in F), some being original, others not.
In Book X. VP? has three series of numerical examples, (1) with Greek
numerals, (2) alternatives added later, also mostly with Greek numerals,
(3) with Arabic numerals. The last class were probably the work of
the copyist himself. These examples (cf. p. 74 below) show the facility
with which the Byzantines made calculations at the date of the Ms,
(12th c.). They prove also that the use of the Arabic numerals (in the
East-Arabian form) was thoroughly established in the 12th c.; they
were actually known to the Byzantines a century earlier, since they
appear, in the first hand, in an Escurial Ms. of the 11th c.

Of collections in other hands in V distinguished by Heiberg (see
preface to Vol. v.), V! has very few scholia which are found in other
sources, the greater part being original ; V* V* are the work of the
copyist himself; V* are so in part only, and contain several scholia
from Schol. Vat. and other sources. V? and V* are later than 13th
—14th c,, since they are not found in f (cod. Laurent. XxvIi1, 6) which
was copied from V and contains, besides V* Vb, the greater part of
V! and V1. No. 20 of V* (in the text).

In P there are, besides P* (a quite late hand, probably one of the
old Scriptores Graeci at the Vatican), two late hands (P?), one of
which has some new and independent scholia, while the other has
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added the greater part of Schol. Vind, partly in the margin and
partly on pieces of leaves stitched on.

Our sources for Schol. Vat. also contain other elements. In P
there were introduced a certain number of extracts from Proclus, to
supplement Schol. Vat. to Book I.; they are all written with a
different ink from that used for the oldest part of the MS, and the
text is inferior. There are additions in the other sources of Schol.
Vat. (F and B) which point to a common source for FB and which
are nearly all found in other MsS, and, in particular, in Schol. Vind,,
which also used the same source; that they are not assignable to
Schol. Vat. results only from their not being found in Vat. Of other
additions in F, some are peculiar to F and some common to it and b;
but they are not original. [F? (scholia in a later hand in F) contains
three original scholia; the rest come from V. B contains, besides
scholia common to it and F, b or other sources, several scholia which
seem to have been put together by Arethas, who wrote at least a part
of them with his own hand.

Heiberg has satisfied himself, by a closer study of b, that the
scholia which he denotes by b, 8 and b' are by one hand; they are
mostly to be found in other sources as well, though some are original.
By the same hand (Theodorus Cabasilas, 15th c.) are also the scholia
denoted by b?, B?, b* and B%. These scholia come in great part from
Schol. Vind,, and in making these extracts Theodorus probably used
one of our sources, 1, mistakes in which often correspond to those of
Theodorus. To one scholium is attached the name of Demetrius (who
must be Demetrius Cydonius, a friend of Nicolaus Cabasilas, 14th c.);
but it could not have been written by him, since it appears in B and
Schol. Vind. Nor are all the scholia which bear the name of
Theodorus due to Theodorus himself, though some are so.

As B* (a late hand in B) contains several of the original scholia of
b?, B®* must have used b itself as his source, and, as all the scholia in
B? are in b, the latter is also the source of the scholia in B* which are
found in other MSS. B and b were therefore, in the 15th c, in the
hands of the same person; this explains, too, the fact that b in a late
hand has some scholia which can only come from B. We arrive then
at the conclusion that Theodorus Cabasilas, in the 15th c., owned both
the Mss. B and b, and that he transferred to B scholia which he had
before written in b, either independently or after other sources, and
inversely transferred some scholia from B to b. Further, B* are
earlier than Theodorus Cabasilas, who certainly himself wrote B* as
well as b?* and b?,

An author’s name is also attached to the scholia V1. No. 6 and
X. No. 223, which are attributed to Maximus Planudes (end of 13thc.)
along with scholia on I 31, X. 14 and X. 18 found in | in a quite late
hand and published on pp. 46, 47 of Heibérg’s dissertation. These
seem to have been taken from lectures of Planudes on the Elements
by a pupil who used | as his copy.

There are also in | two other Byzantine scholia, written by a late
hand, and bearing the names Ioannes and Pediasimus respectively ;
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these must in like manner have been written by a pupil after lectures
of Ioannes Pediasimus (first half of 14th c.), and this pupil must also
have used 1.

Before these scholia were edited by Heiberg, very few of them had
been published in the original Greek. The Basel editio princeps has a
few (V. No. 1, VL. Nos. 3, 4 and some in Book X.) which are taken,
some from the Paris MS. (Paris. Gr. 2343) used by Grynaeus, others
probably from the Venice MS., (Marc. 301) also used by him; one
published by Heiberg, not in his edition of Euclid but in his paper
on the scholia, may also be from Venet. 301, but appears also in
Paris. Gr. 2342. The scholia in the Basel edition passed into the
Oxford edition in the text, and were also given by August in the
Appendix to his Vol. 11.

Several specimens of the two series of scholia (Vat. and Vind.)
were published by C. Wachsmuth (Rkein. Mus. XVIIL p. 132 sqq.)
and by Knoche (Untersuchungen iiber die neu aufgefundenen Scholien
des Proklus, Herford, 1865).

The scholia published in Latin were much more numerous. G.
Valla (De expetendis et fugiendis rebus, 1501) reproduced apparently
some 200 of the scholia included in Heiberg's edition. Several of
these he obtained from two Modena MSs. which at one time were
in his possession (Mutin. 111 B, 4 and 11 E, g, both of the 15th c.);
but he must have used another source as well, containing extracts
from other series of scholia, notably Schol. Vind. with which he has
some 87 scholia in common. He has also several that are new.

Commandinus included in his translation under the title “ Scholia
antiqua” the greater part of the Schol. Vat. which he certainly
obtained from a Ms. of the class of Vat. 192; on the whole he
adhered closely to the Greek text. Besides these scholia Com-
mandinus has the scholia and lemmas which he found in the Basel
editio princeps, and also three other scholia not belonging to Schol.
Vat,, as well as one new scholium (to XIL 13) not included in
Heiberg’s edition, which are distinguished by different type and were
doubtless taken from the Greek Ms. used by him along with the
Basel edition.

In Conrad Dasypodius’ Lexicon mathematicum published in 1573
there is (on fol. 42—44) “ Graecum scholion in definitiones Euclidis
libri quinti elementorum appendicis loco propter pagellas vacantes
annexum.” This contains four scholia, and part of two others,
published in Heiberg’s edition, with some variations of readings, and
with some new matter added (for which see pp. 64—6 of Heiberg’s
pamphlet). The source of these scholia is revealed to us by another
work of Dasypodius, [saaci Monachi Scholia in Euclidis elementorum
Leometriae sex prioves libros per C. Dasypodium in latinum sermonem
translata et in lucem edita (1579). This work contains, besides
excerpts from Proclus on Book L (in part closely related to Schol.
Vind.), some 30 scholia included in Heiberg's edition, several new
scholia, and the above-mentioned scholia to the definitions of Book V.
published in Greek in 1573. After the scholia follow “ Isaaci Monachi
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prolegomena in Euclidis Elementorum geometriae libros” (two
definitions of geometry) and “ Varia miscellanea ad geometriae cogni-
tionem necessaria ab Isaaco Monacho collecta” (mostly the same as
PP 252, 24—272, 27 in the Variae Collectiones included in Hultsch’s
Heron) ; lastly, a note of Dasypodius to the reader says that these
scholia were taken “ex clarissimi viri Joannis Sambuci antiquo codice
manu propria Isaaci Monachi scripto.” Isaak Monachus is doubtless
Isaak Argyrus, 14th c.; and Dasypodius used a MS. in which, besides
the passage in Hultsch’s Variae Collectiones, there were a number of
scholia marked in the margin with the name of Isaak (cf. those in b
under the name of Theodorus Cabasilas). Whether the new scholia
are original cannot be decided until they are published in Greek ; but
it is not improbable that they are at all events independent arrange-
ments of older scholia. All but five of the others, and all but one of
the Greek scholia to Book V., are taken from Schol. Vat.; three of the
excepted ones are from Schol. Vind., and the other three seem to
come from F (where some words of them are illegible, but can be
supplied by means of Mut. 111 B, 4, which has these three scholia and
generally shows a certain likeness to Isaak’s scholia).

Dasypodius also published in 1564 the arithmetical commentary
of Barlaam the monk (14th c.) on Eucl. Book I11., which finds a place
in Appendix IV. to the Scholia in Heiberg’s edition.

Hultsch has some remarks on the origin of the scholia’. He
observes that the scholia to Book I. contain a considerable portion
of Geminus' commentary on the definitions and are specially valuable
because they contain extracts from Geminus on/y, whereas Proclus,
though drawing mainly upon him, quotes from others as well. On the
postulates and axioms the scholia give more than is found in Proclus.
Hultsch conjectures that the scholium on Book V., No. 3, attributing
the discovery of the theorems to Eudoxus but their arrangement to
Euclid, represents the tradition going back to Geminus, and that the
scholium XIII., No. 1, has the same origin.

A word should be added about the numerical illustrations of
Euclid’s propositions in the scholia to Book X. They contain a large
number of calculations with sexagesimal fractions?; the fractions go
as far as _fourth-siztieths (1/60%). Numbers expressed in these fractions
are handled with skill and include some results of surprising accuracy?®

1 Art, ‘“ Eukleides” in Pauly-Wissowa’s Real-Encyclopidie,

2 Hultsch has written upon these in Bibliotheca Mathematica, Vg, 1904, Pp. 335—333.

3 Thus 4/(27) is given (allowing for a slight correction by means of the context) as § 11’
46" 10", which gives for 4/3 the value 1 43" 55" 23", being the same value as that given by
Hipparchus in his Table of Chords, and correct to the seventh decimal place. Similarly /8
is given as 2 49" 42” 20" 10””, which is equivalent to \/2=1"41421335. Hultsch gives
instances of the various operations, addition, subtraction, etc., carried out in these fractions,
and shows how the extraction of the square root was effected. Cf. T. L. Heath, History of
Greek Mathematics, 1., pp. 59—63-



CHAPTER VIL

EUCLID IN ARABIA.

WE are told by Haji Khalfa? that the Caliph al-Mansiir (754-775)
sent a mission to the Byzantine Emperor as the result of which he
obtained from him a copy of Euclid among other Greek books, and
again that the Caliph al-Ma'miin (813-833) obtained manuscripts of
Euclid, among others, from the Byzantines. The version of the
Elements by al-Hajjaj b. Yasuf b. Matar is, if not the very first, at
least one of the first books translated from the Greek into Arabic%
According to the Fzkrist® it was translated by al-Hajjaj twice; the
first translation was known as “ Harini” (“for Harin "), the second
bore the name “Ma’'miini” (“for al-Ma’miin”) and was the more trust-
worthy. Six Books of the second of these versions survive in a Leiden
MS. (Codex Leidensis 399, 1) now in part published by Besthorn
and Heiberg®. In the preface to this MS. it is stated that, in the reign
of Hartin ar-Rashid (786-809), al-Hajjaj was commanded by Yahya
b. Khalid b. Barmak to translate the book into Arabic. Then, when
al-Ma'miin became Caliph, as he was devoted to learning, al-Hajjaj
saw that he would secure the favour of al-Ma'miin “if he illustrated
and expounded this book and reduced it to smaller dimensions. He
accordingly left out the superfluities, filled up the gaps, corrected or
removed the errors, until he had gone through the book and reduced
it, when corrected and explained, to smaller dimensions, as in this
copy, but without altering the substance, for the use of men endowed
with ability and devoted to learning, the earlier edition being left in
the hands of readers.”

The Fikrist goes on to say that the work was next translated by
Ishdq b. Hunain, and that this translation was improved by Thabit b,
Qurra. This Abii Ya'qiib Ishaq b. Hunain b, Ishaq al-'Ibadi (d. 910)
was the son of the most famous of Arabic translators, Hunain b. Ishaq
al-‘Ibadi (809-873), a Christian and physician to the Caliph al-
Mutawakkil (847-861). There seems to be no doubt that Ishaq, who

Y Lexicon bibliogr. et encyclop. ed. Fliigel, 111. pp. g1, 9a.

* Klamroth, Zeitschrift der Deutschen Morgenlindischen Gesellschaft, XXXV. p. 303.

3 Fikrist (tr. Suter), p. 16.

4 Codex Leidensis 399, 1. FEuclidis El. ta ex wmberpretatione al-Hadschdschadschii cum
commentariis al-Narizii, Hauniae, part 1. i. 1893, part I ii. 1897, part 1I. i. 19oo, part IL
ii. 1905, part 111. i. 1910,
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must have known Greek as well as his father, made his translation
direct from the Greek. The revision must apparently have been the
subject of an arrangement between Ishiq and Thabit, as the latter
died in 9o1 or nine years before Ishdq. Thabit undoubtedly consulted
Greek Mss. for the purposes of his revision. This is expressly stated
in a marginal note to a Hebrew version of the Elements, made from
Ishiqg’s, attributed to one of two scholars belonging to the same family,
viz, either to Moses b. Tibbon (about 1244-1274) or to Jakob b. Machir
(who died soon after 1306)’. Moreover Thabit observes, on the pro-
position which he gives as IX. 31, that he had not found this proposition
and the one before it in the Greek but only in the Arabic; from which
statement Klamroth draws two conclusions, (1) that the Arabs had
already begun to interest themselves in the authenticity of the text
and (2) that Thabit did not alter the numbers of the propositions in
Ishaq’s translation®. The Fikrist also says that Yuhanna al-Qass (i.e.
“the Priest”) had seen in the Greek copy in his possession the pro-
position in Book 1. which Thabit took credit for, and that this was
confirmed by Nazif, the physician, to whom Yuhanna had shown it.
This proposition may have been wanting in Ishiag, and Thabit may
have added it, but without claiming it as his own discovery’. As
a fact, I. 45 is missing in the translation by al-Hajjaj.

The original version of Ishaq witkout the improvements by Thibit
has probably not survived any more than the first of the two versions
by al-Hajjaj; the divergences between the MSS. are apparently due to
the voluntary or involuntary changes of copyists, the former class
varying according to the degree of mathematical knowledge possessed
by the copyists and the extent to which they were influenced by
considerations of practical utility for teaching purposes’. Two Mss.
of the Ishaq-Thabit version exist in the Bodleian Library (No. 279
belonging to the year 1238, and No. 280 written in 1260-1)%; Books
L—XIIL are in the Ishaq-Thabit version, the non-Euclidean Books
XIV., XV. in the translation of Qusta b. .iiqa al-Ba'labakki (d. about
912). The first of these MSs. (No. 279) is that-¢O) used by Klamroth
for the purpose of his paper on the Arabian Euclid. The other Ms.
used by Klamroth is (K) Kjobenhavn LXXXI, undated but probably
of the 13th c., containing Books V.—XV., Books V.—X. being in the
Ishag-Thabit version, Books XI.—XIIL purporting to be in al-Hajjaj’s
translation, and Books XIV., XV. in the version of Qusta b. Liqa. In
not a few propositions K and O show not the slightest difference, and,
even where the proofs show considerable differences, they are generally
such that, by a careful comparison, it is possible to reconstruct the
common archetype, so that it is fairly clear that we have in these cases,
not two recensions of one translation, but arbitrarily altered and

1 Steinschneider, Zeitschrift fiir Math. u. Physik, xxx1., hist.-litt. Abtheilung, pp. 8s,

’ggilamroth, p- 279. 8 Steinschneider, p. 88.

¢ Klamroth, p. 300.

® These Mss. are described by Nicoll and Pusey, Catalogus cod. mss. orient. bibl. Boa-
leianae, pt. 11 1835 (pp. 257—163).
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shortened copies of one and the same recension!, The Bodleian MS.
No. 280 contains a preface, translated by Nicoll, which cannot be by
Thabit himself because it mentions Avicenna (980-1037) and other
later authors. The MS. was written at Maraga in the year 1260-1 and
has in the margin readings and emendations from the edition of
Nasiraddin at-T1si (shortly to be mentioned) who was living at Maraga
at the time. Is it possible that at-Tisi himself is the author of the
preface’? Be this as it may, the preface is interesting because it
throws light on the liberties which the Arabians allowed themselves
to take with the text. After the observation that the book (in spite
of the labours of many editors) is not free from errors, obscurities,
redundancies, omissions etc., and is without certain definitions neces-
sary for the proofs, it goes on to say that the man has not yet been
found who could make it perfect, and next proceeds to explain
(1) that Avicenna “cut out postulates and many aefinitions” and
attempted to clear up difficult and obscure passages, (2) that Abiu'l
Wafa al-Biizjani (939-997) “introduced unnecessary additions and
left out many things of great importance and entirely necessary,”
inasmuch as he was too long in various places in Book VI. and too
short in Book X. where he left out entirely the proofs of the apotomae,
while he made an unsuccessful attempt to emend XIIL 14, (3) that Abi
Ja'far al-Khazin (d. between 961 and 971) arranged the postulates
excellently but “disturbed the number and order of the propositions,
reduced several propositions to one” etc. Next the preface describes
the editor's own claims® and then ends with the sentences, “ But we
have kept to the order of the books and propositions in the work itself
(i.e. Euclid’s) except in the twelfth and thirteenth books. For we have
dealt in Book XIII. with the (solid) bodies and in Book XII with the
surfaces by themselves.”

After Thabit the Fikrist mentions Abii ‘Uthmin ad-Dimashqi as
having translated some Books of the Elements including Book X. (It
is Abii ‘Uthman’s translation of Pappus’ commentary on Book X.
which Woepcke discovered at Paris.) The Fikrist adds also that
“ Nazif the physician told me that he had seen the tenth Book of
Euclid in Greek, that it had 40 propositions more than the version
in common circulation which had 109 propositions, and that he had
determined to translate 1t into Arabic.”

But the third form of the Arabian Euclid actually accessible to us
is the edition of Abii Ja'far Muh. b. Muh. b. al-Hasan Nasiraddin
at-Tusi (whom we shall call at-Tasi for short), born at Tias (in
Khura.san) in 1201 (d. 1274). This edition appeared in two forms, a
larger and a smaller. The larger is said to survive in Florence only
(Pal. 272 and 313, the latter MS. containing only six Books); this was
published at Rome in 1594, and, remarkably enough, some copies of

! Klamroth, 5 306—8.
* Steinschnei er, p. 98. Heiberg has 1 ted the whole of this preface in the Zeitschrift
fur Math. u, Physik, XxX1X., hist.-litt. Abt
% This seems to include a rearrangement ol’ the contents of Books X1v., XV, added to the
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this edition are to be found with 12 and some with 13 Books, some
with a Latin title and some without'. But the book was printed in
Arabic, so that Kistner remarks that he will say as much about it as
can be said about a book which one cannot read®. The shorter form,
which however, in most MSS,, is in 15 Books, survives at Berlin, Munich,
Oxford, British Museum (974, 1334% 1335), Paris (2465, 2466), India
Office, and Constantinople; it was printed at Constantinople in
1801, and the first six Books at Calcutta in 18244
At-Tist's work is however not a translation of Euclid’s text, but a

re-written Euclid based on the older Arabic translations. In this
respect it seems to be like the Latin version of the Elements by
Campanus (Campano), which was first published by Erhard Ratdolt
at Venice in 1482 (the first printed edition of Euclid®). Campanus
(13th c.) was a mathematician, and it is likely enough that he allowed
himself the same liberty as at-Tisi in reproducing Euclid. What-
ever may be the relation between Campanus’ version and that of
Athelhard of Bath (about 1120), and whether, as Curtze thinks®, they
both used one and the same Latin version of 1oth—11th c., or whether
Campanus used Athelhard’s version in the same way as at-T1isi used
those of his predecessors’, it is certain that both versions came from
an Arabian source, as is evident from the occurrence of Arabic words
in them®. Campanus’ version is not of much service for the purpose
of forming a judgment on the relative authenticity of the Greek and
Arabian tradition; but it sometimes preserves traces of the purer
source, as when it omits Theon’s addition to vI. 33°. A curious
circumstance is that, while Campanus’ version agrees with at-Tiisi’s
in the number of the propositions in all the genuine Euclidean Books
except V. and IX,, it agrees with Athelhard’s in having 34 propositions
in Book V. (as against 25 in other versions), which confirms the view
that the two are not independent, and also leads, as Klamroth says,
to this dilemma: either the additions to Book V. are Athelhard’s
own, or he used an Arabian Euclid which is not known to us®,
Heiberg also notes that Campanus’ Books X1V., XV. show a certain
agreement with the preface to the Thabit-Ishaq version, in which the
author claims to have (1) given a method of inscribing spheres in the
five regular solids, (2) carried further the solution of the problem how

1 Suter, Dic Mathematiker und Asty der Araber, p. 151. The Latin title is
Euclidis elementorum geometricorum libri tredecim. Ex itione doctissimi Nasiridini
Tusini nunc primum arabice impressi. Romae in typographia Medicea MpxcIv. Cum
licentia superiorum.

? Kiistner, Geschichie der Mathemaitik, 1. f 367.

3 Suter has a note that this M. is very old, having been copied from the original in the
author’s lifetime.

s Decatibed by Kistner, Geschichte der Mathematit, 89—399, and by Wei

& i dstner, 2cnle al, I. 2. " €lss-
i DV URnRps e BulNa Jirck Conoss i Somiirti, ale s. 'S, 1883,
pp. 1—7. See also infra, Chapter vii1, p.z;,:.

8 Sonderabdruck des Jahresberichtes diber die Fortschritte der klassischen Allerthums-
wissenschaft vom Okt. 1879—188a, Berlin, 1884.

7 Klamroth, p. 271,

8 Curtze, op. cit. p. 30; Heiberg, Euklid-Studien, p. 178.

? Heiberg's Euclid, vol. v. p. ci. 10 Klamroth, pp. 273—4-
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to inscribe any one of the solids in any other and (3) noted the cases
where this could not be done.

With a view to arriving at what may be called a common measure
of the Arabian tradition, it is necessary to compare, in the first place,
the numbers of propositions in the various Books. Haji Khalfa says
that al-Hajjaj's translation contained 468 propositions, and Thabit’s
478; this is stated on the authority of at-Tisi, whose own edition
contained 468". The fact that Thabit’s version had 478 propositions
is confirmed by an index in the Bodleian Ms. 279 (called O by
Klamroth). A register at the beginning of the Codex Leidensis 399, 1
which gives Ishag’s numbers (although the translation is that of
al-Hajjaj) apparently makes the total 479 propositions (the number in
Book x1v. being apparently 11, instead of the 10 of O®). I subjoin a
table of relative numbers taken from Klamroth, to which I have added
the corresponding numbers in August’s and Heiberg’s editions of the
Greek text.

The Arabian Euclid The Greek Euclid
Books  Ishiaq at-Tisi  Campanus Gregory August  Heiberg
I 48 48 48 48 48 48
1 14 14 14 14 14 14
11 36 36 36 37 37 37
v 16 16 16 16 16 16
\ 4 25 25 34 25 25 25
VI 33 32 32 33 33 33
v 9 39 39 41 41 39
Vi 27 25 25 27 27 27
X 38 36 39 36 36 36
X 109 107 107 117 116 115
X1 41 41 41 40 40 39
X1 15 15 15 18 18 18
X1 21 18 18 18 18 18
462 452 464 470 469 465
[xv 10 10 18 7 ?
XV 6 6 13 10
478 468 495 487 7]

The numbers in the case of Heiberg include all propositions which
he has printed in the text; they include therefore XIIL 6 and IIL 12
now to be regarded as spurious, and X. 112—115 which he brackets
as doubtful. He does not number the propositions in Books XIv., XV.,
but I conclude that the numbers in P reach at least g in X1V, and 9
in XV.

1 i 7 ] s . . 7 1 .y i - i . i ] . .

s Kiamecthe e 470 Scinaconcider, Zubschrit i Mafh. . Dhyash, Kt bist it

Abth. p.-g8. . »
3 Besthorn-Heiberg read * 117" as the number, Klamroth had read it as 21 (p. 273).
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The Fikrist confirms the number 109 for Book X., from which
Klamroth concludes that Ishaq’s version was considered as by far the
most authoritative.

In the text of O, Book IV. consists of 17 propositions and Book
X1v. of 12, differing in this respect from its own table of contents; 1Iv.
15, 16 in O are really two proofs of the same proposition,

In al-Hajjaj’s version Book I. consists of 47 propositions only, I. 45
being omitted. It has also one proposition fewer in Book III, the
Heronic proposition IIL. 12 being no doubt omitted.

In speaking of particular propositions, I shall use Heiberg's
numbering, except where otherwise stated.

The difference of 10 propositions between Thabit-Ishaq and
at-Tisi is accounted for thus:

(1) The three propositions VL. 12 and X. 28, 29 which both Ishiaq
and the Greek text have are omitted in at-Tisi.

(2) Ishaq divides each of the propositions XIIL. 1—3 into two,
making six instead of three in at-Tfisi and in the Greek.

(3) Ishiaq has four propositions (numbered by him VIIL 24, 25,
IX. 30, 31) which are neither in the Greek Euclid nor in at-Tiisi.

Apart from the above differences al-Hajjaj (so far as we know),
Ishaq and at-Tisi agree; but their Euclid shows many differences
from our Greek text. These differences we will classify as follows™.

1. Propositions.

The Arabian Euclid omits V1L 20, 22 of Gregory’s and August's
editions (Heiberg, App. to Vol. IL. pp. 428-32); VIIL 16, 17; X. 7, 8,
13, 16, 24, 112, 113, 114, besides a lemma. vuigo X. 13, the proposition
X. 117 of Gregory’s edition, and the scholium at the end of the Book
(see for these Heiberg’s Appendix to Vol. II. pp. 382, 408—416);
XI 38 in Gregory and August (Heiberg, App. to Vol. 1v. p. 354);
XIL 6, 13, 14; (also all but the first third of Book xv.).

The Arabian Euclid makes I1IL. 11, 12 into one proposition, and
divides some propositions (X. 31, 32; XL 31, 34; XIIL. I—3) into two
each.

The order is also changed in the Arabic to the following extent.
V. 12, 13 are interchanged and the order in Books VI, VIIL, IX.—
XIIL is:

VL. 1—8, 13, 11, 12, 9, 10, 14—17, 19, 20, 18, 21, 22, 24, 26, 23,
25: 27—30, 32, 31, 33.

VII. 1—20, 22, 21, 23—28, 31, 32, 29, 30, 33—39.

IX. 1—13, 20, 14—19, 21—25, 27, 26, 28—36, with two new pro-
positions coming before prop. 30.

X. 1—6, 9—I2, 15, 14, 17—23, 26—28, 25, 29—30, 31, 32, 33—
111, 115,

XI. 1—30, 31, 32, 34, 33, 35—39.

XIL. 1—5,7,9, 8, 10, 12, 11, 15, 16—18.

XIIL 1—3, 5.4, 6, 7, 12,9, 10, 8, 11, 13, 15, 14, 16—18.

1 See Klamroth, pp. 275—0, 280, 282—4, 314—15, 326 ; Heiberg, vol. v. pp. xcvi, xcvii.
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2. Definitions.

The Arabic omits the following definitions: 1v. Deff. 3—7, VIL
Def. 9 (or 10), XI. Deff. 5—7, 15, 17, 23, 25—28; but it has the
spurious definitions VI. Deff. 2, 5, and those of proportion and ordered
pmﬁaﬂmn in Book V. (Deff. 8, 19 August), and wrongly interchanges

eff. 11, 12 and also VI Deff, 3 4

The order of the definitions is also different in Book VIL where,
after Def. 11, the order is 12, 14, 13, 15, 16, 19, 20, 17, 18, 2I, 22, 23,
and in Book XI. where the order is 1, 2, 3, 4, 8, 10, 9, 13, 14, 16, 12, 21,
22, 18, 19, 20, 11, 24.

3. Lemmas and porisms.

All are omitted in the Arabic except the porisms to VI. 8, VIIL 2,
X. 3; but there are slight additions here and there, not found in the
Greek, e.g. in VIIL 14, 15 (in K).

4. Alternative proofs.

These are all omitted in the Arabic, except that in X. 105, 106 they
are substituted for the genuine proofs; but one or two alternative
proofs are peculiar to the Arabic (VI. 32 and VIIL 4, 6).

The analyses and syntheses to XIIL 1—5 are also omitted in the
Arabic.

Klamroth is inclined, on a consideration of all these differences, to
give preference to the Arabian tradition over the Greek (1) “on
historical grounds,” subject to the proviso that no Greek MS. as
ancient as the 8th c. is found to contradict his conclusions, which are
based generally (2) on the improbability that the Arabs would have
omitted so much if they had found it in their Greek Mss,, it being clear
from the Fikrist that the Arabs had already shown an anxiety for a
pure text, and that the old translators were subjected in this matter to
the check of public criticism. Against the “historical grounds,” Heiberg
is able to bring a considerable amount of evidence'. First of all there
is the British Museum palimpsest (L) of the 7th or the beginning of
the 8th c. This has fragments of propositions in Book X. which are
omitted in the Arabic; the numbering of one proposition, which agrees
with the numbering in other Greek MS., is not comprehensible on
the assumption that eight preceding propositions were omitted in it,
as they are in the Arabic; and lastly, the readings in L are tolerably
like those of our MsS., and surprisingly like those of B. It is also to
be noted that, although P dates from the 10th c. only, it contains,
according to all appearance, an ante-Theonine recension.

Moreover there is positive evidence against certain omissions by
the Arabians. At-Tisi omits VL. 12, but it is scarcely possible that,
if Eutocius had not had it, he would have quoted VI 23 by that
number?. This quotation of VI. 23 by Eutocius also tells against
Ishaq who has the proposition as VL. 25. Again, Simplicius quotes VI.
10 by that number, whereas it is VI. 13 in Ishaq; and Pappus quotes,
by number, X111. 2 (Ishaq 3, 4), X11L 4 (Ishaq 8), x1IL 16 (Ishaq 19).

1 Heiberg in Zeitschrift fiir Math. u. Physik, XX1X., hist.-litt. Abth. p. 3sqq.
2 Apollonius, ed. Heiberg, vol. 11. p. 218, 3—s.
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On the other hand the contraction of IIL 11, 12 into one proposition
in the Arabic tells in favour of the Arabic.

Further, the omission of certain porisms in the Arabic cannot be
supported ; for Pappus quotes the porism to XIIL 17}, Proclus those
to II. 4, IIL I, VIL 2% and Simplicius that to 1v. 15.

Lastly, some propositions omitted in the Arabic are required in
Iaterpegosltxons. Thus X. 13 is used in X. 18, 22, 23, 26 etc.; X. 17
is wanted in X. 18, 26, 36; XII 6, 13 are requtred for XIL 11 and XIL
15 respectively.

It must also be remembered that some of the things which were
properly omitted by the Arabians are omitted or marked as doubtful
in Greek MSS, also, especially in P, and others are rightly suspected for
other reasons (e.g. a number of alternative proofs, lemmas, and porisms,
as well as the analyses and syntheses of XIII. 1—5). On the other
hand, the Arabic has certain interpolations peculiar to our inferior
MsS. (cf. the definition Vi Def. 2 and those of proportion and ordered
proportion).

Heiberg comes to the general conclusion that, not only is the
Arabic tradition not to be preferred offhand to that of the Greek Mss,,
but it must be regarded as inferior in authority. It is a question
how far the differences shown in the Arabic are due to the use of
Greek Mss. differing from those which have been most used as the
basis of our text, and how far to the arbitrary changes made by
the Arabians themselves. Changes of order and arbitrary omissions
could not surprise us, in view of the preface above quoted from the
Oxford Ms. of Thabit-Ishaq, with its allusion to the many important
and necessary things left out by Abii’l Wafa and to the author’s
own rearrangement of Books XII, XIII. But there is evidence of
differences due to the use by the Arabs of other Greek Mss. Heiberg?
is able to show considerable resemblances between the Arabic text
and the Bologna Ms. b in that part of the MS. where it diverges so
remarkably from our other MSs. (see the short description of it above,
P-49); in illustration he gives a comparison of the proofs of XIL 7 in b
and in the Arabic respectively, and points to the omission in both of
the proposition given in Gregory’s edition as X1 38, and to a remark-
able agreement between them as regards the order of the propositions
of Book XII. As above stated, the remarkable divergence of b only
affects Books XI. (at end) and XIL; and Book XIII in b shows none
of the transpositions and other peculiarities of the Arabic. There
are many differences between b and the Arabic, especially in the
definitions of Book XI, as well as in Book x1i1. It is therefore a

uestion whether the Arabians made arbitrary changes, or the Arabic
orm is the more ancient, and b has been altered through contact
with other Mss. Heiberg points out that the Arabians must be alone
responsible for their definitiont of a prism, which only covers a prism
with a triangular base. This could not have been Euclid's own, for
the word grism already has the wider meaning in Archimedes, and

1 2 —

: g:tpfms;y"; rt%ﬁdk u. Physik, XXIX., hpbtm‘illr: 'x&t?os ¥
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Euclid himself speaks of prisms with parallelograms and polygons
as bases (XI. 39; XIL 10). Moreover, a Greek would not have been
likely to leave out the definitions of the “ Platonic" regular solids.

Heiberg considers that the Arabian translator had before him
a MS. which was related to b, but diverged still further from the rest
of our Mss, He does not think that there is evidence of the existence of
a redaction of Books 1.—X. similar to that of Books XI., XIL in b; for
Klamroth observes that it is the Books on solid geometry (XI.—XIIL)
which are more remarkable than the others for omissions and shorter
proofs, and it is a noteworthy coincidence that it is just in these
Books that we have a divergent text in b.

An advantage in the Arabic version is the omission of ViL Def. 1o,
although, as Iamblichus had it, it may have been deliberately omitted
by the Arabic translator. Another advantage is the omission of the
analyses and syntheses of XII1. 1—35 ; but again these may have been
omitted purposely, as were evidently a number of porisms which
are really necessary.

One or two remarks may be added about the Arabic versions
as compared with one another. Al-Hajjdj’s object seems to have
been less to give a faithful reflection of the original than to write
a useful and convenient mathematical text-book. One characteristic
of it is the careful references to earlier propositions when their results
are used. Such specific quotations of earlier propositions are rare in
Euclid ; but in al-Hajjaj we find not only such phrases as “by prop,
so and so,” “which was proved” or “which we showed how to do in
prop. so and so,” but also still longer phrases. Sometimes he xgpeats
a construction, as in I 44 where, instead of constructing “the parallelo-
gram BEFG equal to the triangle C in the angle EBG which is equal
to the angle D” and placing it in a certain position, he produces 458
to G, making BG equal to half DE (the base of the triangle CDE in
his figure), and on GB so constructs the parallelogram BHKG by
L 42 that it is equal to the triangle CDE, and its angle GBH is equal
to the given angle.

Secondly, al-Hajjaj, in the arithmetical books, in the theory of
proportion, in the applications of the Pythagorean I. 47, and generally
where possible, illustrates the proofs by numerical examples. It is
true, observes Klamroth, that these examples are not apparently
separated from the commentary of an-Nairizi, and might not there-
fore have been due to al-Hajjaj himself; but the marginal notes to
the Hebrew translation in Municn MS. 36 show that these additions
were in the copy of al-Hajjaj used by the translator, for they expressly
give these proofs in numbers as variants taken from al-Hajjaj.

These characteristics, together with al-Hajjaj’s freer formulation
of the propositions and expansion of the proofs, constitute an in-
telligible reason why Ishaq should have undertaken a fresh translation
from the Greek. l{lamroth calls Ishaq’s version a model of a good
translation of a mathematical text; the introductory and transitional

! Klamroth, p. 310; Steinschneider, pp. 85—6.
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phrases are stereotyped and few in number, the technical terms are
simply and consistently rendered, and the less formal expressions
connect themselves as closely with the Greek as is consistent with
intelligibility and the character of the Arabic language. Only in
isolated cases does the formulation of definitions and enunciations
differ to any considerable extent from the original. In general, his
object seems to have been to get rid of difficulties and unevennesses
in the Greek text by neat devices, while at the same time giving a
faithful reproduction of it

There are curious points of contact between the versions of
al-Hajjaj and Thabit-Ishiq. For example, the definitions and
enunciations of propositions are often word for word the same.
Presumably this is owing to the fact that Ishidq found these de-
finitions and enunciations already established in the schools in his
time, where they would no doubt be learnt by heart, and refrained
from translating them afresh, merely adopting the older version with
some changes?® Secondly, there is remarkable agreement between
the Arabic versions as regards the figures, which show considerable
variations from the figures of the Greek text, especially as regards
the letters; this is also probably to be explained in the same way,
all the later translators having most likely borrowed al-Hajjaj's
adaptation of the Greek figures®. Lastly, it is remarkable that the
version of Books X1—XIIL in the Kjgbenhavn Ms. (K), purporting
to be by al-Hajjaj, is almost exactly the same as the Thabit-Ishaq
version of the same Books in O. Klamroth conjectures that Ishaq
may not have translated the Books on solid geometry at all, and that
Thabit took them from al-Hajjaj, only making some changes in order
to fit them to the translation of Ishaq*.

From the facts (1) that at-Tiusi's edition had the same number
of propositions (468) as al-Hajjaj's version, while Thabit-Ishaq’s had
478, and (2) that at-Tisi has the same careful references to earlier
propositions, Klamroth concludes that at-Tiisi deliberately preferred
al-Hajjaj’s version to that of Ishiq®. Heiberg, however, points out
(1) that at-Tsi left out VI. 12 which, if we may judge by Klamroth’s
silence, al-Hajjaj had, and (2) al-Hajjij’s version had one proposition
less in Books I and IIL than at-Tisi has. Besides, in a passage quoted
by Haji Khalfa® from at-Tisi, the latter says that “he separated the
things which, in the approved editions, were taken from the archetype
from the things which had been added thereto,” indicating that he
had compiled his edition from oz% the earlier translations”.

There were a large number of Arabian commentaries on, or
reproductions of, the Elements or portions thereof, which will be

1 Klamroth, illustrates Ishiq" s melhod by his way of distinguis ipapubler
(to be congruent ]:vithgjoa’nd égpapubleata (t pplied to), the confusion of tlglgch by trans-
lators was animadverted on by Savile. sblq avoided the confusion by using two entirely
different words.

' Klnmrnth, PpP- 310———1 ' ibid. P a8y,

' Hi i Khsl!' i
T Helberg, Zamjn}; ﬁ;r Math. u.' Physik, XX1X., hist,-litt. Abth. pp. 3, 3
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found fully noticed by Steinschneider’. I shall mention here the
commentators etc. referred to in the Fikrist, with a few others.

1. Abi 'l ‘Abbas al-Fadl b. Hatim an-Nairizi (born at Nairiz,
died about 922) has already been mentioned?. His commentary
survives, as rc‘gards Books 1.—VI, in the Codex Leidensis 399, I, now
edited, as to four Books, by Besthorn and Heiberg, and as regards
Books I.—X. in the Latin translation made by Gherard of Cremona
in the 12th c. and now published by Curtze from a Cracow MS?® Its
importance lies mainly in the quotations from Heron and Simplicius.

2. Ahmad b. ‘Umar al-Karabisi (date uncertain, probably gth—
1oth c.), “who was among the most distinguished geometers and
arithmeticians*.”

3. Al-‘Abbas b. Sa‘id al-Jauhari (fl. 830) was one of the astro-
nomical observers under al-Ma'miin, but devoted himself mostly to
geometry. He wrote a commentary to the whole of the Elements,
from the beginning to the end; also the “Book of the propositions
which he added to the first book of Euclid®”

4. Muh, b. ‘Isa Abi ‘Abdallah al-Mahéni (d. between 874 and
884) wrote, according to the F7krist, (1) a commentary on Eucl
Book V., (2) “On proportion,” (3) “On the 26 propositions of the
first Book of Euclid which are proved without reductio ad absurdum?®.”
The work “On proportion” survives and is probably identical with, or
part of, the commentary on Book v? He also wrote, what is not
mentioned by the Fikrist,a commentary on Eucl. Book X., a fragment
of which survives in a Paris Ms.*

5. Abii Ja'far al-Khazin (i.e. “the treasurer” or “librarian”), one
of the first mathematicians and astronomers of his time, was born in
Khurasan and died between the years 961 and 971. The Fikrist
speaks of him as having written a commentary on the whole of the

lements®, but only the commentary on the beginning of Book X.
survives (in Leiden, Berlin and Paris); therefore either the notes on
the rest of the Books have perished, or the Fikrist is in error®, The
latter would seem more probable, for, at the end of his commentary,
al-Khazin remarks that the rest had already been commented on by
Sulaimin b. ‘Usma (Leiden Ms.)® or ‘Oqgba (Suter), to be mentioned
below. Al-Khazin’s method is criticised unfavourably in the preface
to the Oxford MS. quoted by Nicoll (see p. 77 above).

6. Abfi’'l Wafa al-Biizjini (940-997), one of the greatest
Arabian mathematicians, wrote a commentary on the Elements, but

1 Steinschneider, Zcftmlrg? {iir Math, u. Physik, XxXI., hist.-litt. Abth. pp. 86sqq.

3 Steinschneider, p. 86, Frhrist (ir. Suter), pp. 16, 67; Suter, Die Mat, mal:lr' und
Astronomen der Araber (190o), p. 45.

3 Supplementum ad Emfﬂmn omnia, ed. Heiberg and Menge, Leipzig, 1899,

4 Fihrist, pp. 16, 38; Stei eider, p. 87 ; Suter, p. 65.

5 Fikrist, pp. 16, 25 ; Steinschneider, p. 88; Suter, p. 12.

¢ Fikrist, pp. 16, 25, 58.

7 Suter, p. 26, note, quotes the Paris Ms. 2467, 16° containing the work *“on proportion
"?“d?‘hoﬁw“?}h\%mj;:kmm Mim. prés. & Pacad. de 856, p. 669

MS. 2457, 39° (cf. Woepcke in . prés. @ Pacad, des sciences, X1V, 1856, p. 669).
¥ Fikrist, p. 17 10 Suter, p. 58, note b. 11 Steinschneider, p. 89.
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did not complete it>. His method is also unfavourably regarded in
the same preface to the Oxford Ms. 280. According to Haji Khalfa, he
also wrote a book on geometrical constructions, in thirteen chapters.
Apparently a book answering to this description was compiled by a
gifted pupil from lectures by Abii 'l Wafa, and a Paris Ms. (Anc. fonds
169) contains a Persian translation of this work, not that of Abii 'l Wafa
himself. An analysis of the work was given by Woepcke?, and some
particulars will be found in Cantor’. Abii’l Wafd also wrote a
commentary on Diophantus, as well as a separate “book of proofs
to the propositions which Diophantus used in his book and to what
he (Abii 'l Wafa) employed in his commentary*."”

7. Ibn Rahawaihi al-Arjani also commented on Eucl. Book X.*

8. ‘Ali b. Ahmad Abii’l-Qisim al-Antaki (d. 987) wrote a
commentary on the whole book®; part of it seems to survive (from
the 5th Book onwards) at Oxford (Catal. Mss. orient. IL 281)".

9. Sind b. ‘Ali Abd 't-Taiyib was a Jew who went over to
Islam in the time of al-Ma’'miin, and was received among his astro-
nomical observers, whose head he became?® (about 830); he died after
864. He wrote a commentary on the whole of the Elements; “ Abi
‘Ali saw nine books of it, and a part of the tenth®” His book “On
the Apotomae and the Medials,” mentioned by the Fikrist, may be
the same as, or part of, his commentary on Book X.

1o. Abil Yisuf Ya'qib b. Muh. ar-Razi “wrote a commentary
on Book X, and that an excellent one, at the instance of Ibn al-
‘Amid»,”

11. The Fikrist next mentions al-Kindi (Abi Yisuf Ya'qib b.
Ishiq b. as-Sabbdh al-Kindi, d. about 873), as the author (1) of a
work “on the objects of Euclid’s book,” in which occurs the statement
that the Elements were originally written by Apollonius, the carpenter
(see above, p. § and note), (2) of a book “on the improvement of
Euclid’s work,” and (3) of another “on the improvement of the 14th
and 15th Books of Euclid.” *He was the most distinguished man
of his time, and stood alone in the knowledge of the old sciences
collectively ; he was called ‘the philosopher of the Arabians’; his
writings treat of the most different branches of knowledge, as logic,
philosophy, geometry, calculation, arithmetic, music, astronomy and
others™.” Among the other geometrical works of al-Kindi mentioned
by the Fikrist are treatises on the closer investigation of the results
of Archimedes concerning the measure of the diameter of a circle in
terms of its circumference, on the construction of the figure of the two
mean proportionals, on the approximate determination of the chords

: Fikrist, p. 17,
Wi Asiatigue, Sér. v. T. V. pp. 218—256 and 309—

3 Gesch. d. Math. vol. 13, pp. 743—6. pp. 5 £

4 Fikrist, p. 39; Suter, p. 71. 5 Fikrist, p. 17 ; Suter, p. 17.

S Fikrist, p. 17. 7 Suter, p. 64.

8 Fikrist, p. 17, 29 ; Suter, pp. 13, 14. Y Fikrist, p. 175,

1 Fikrist, p. 17; Suter, |P o N Fikrist, P- 17, 10—1I5.

" mere catalogue of al-Kindi’s works on the various branches of science takes up
four octavo pages (11—15) of Suter’s translation of the Fikrisz.

1
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of the circle, on the approximate determination of the chord (side) of
the nonagon, on the division of triangles and quadrilaterals and con-
structions for that purpose, on the manner of construction of a circle
which is equal to &e surface of a given cylinder, on the division of
the circle, in three chapters etc.

12, The physician Nazif b. Yumn (or Yaman) al-Qass (“the
priest”) is mentioned by the Firist as having seen a Greek copy
of Eucl. Book X. which had 40 more propositions than that which
was in general circulation (containing logg, and having determined
to translate it into Arabic. Fragments of such a translation exist
at Paris, Nos. 18 and 34 of the MS. 2457 (952, 2 Suppl. Arab. in
Woepcke’s tract); No. 18 contains “additions to some propositions
of the 1oth Book, existing in the Greek language®.” Nazif must have
died about ggo®.

13. Yihanna b. Yisuf b. al-Harith b. al-Bitriq al-Qass (d. about
980) lectured on the Elements and other geometrical books, made
translations from the Greek, and wrote a tract on the “ proof” of the
case of two straight lines both meeting a third and making with it,
on one side, two angles together less than two right anglest. Nothing
of his appears to survive, except that a tract “on rational and irrational
mafnitudes," No. 48 in the Paris MS. just mentioned, is attributed
to him.

14. Abi Muh. al-Hasan b. ‘Ubaidallah b. Sulaimin b. Wahb
(d. go1) was a geometer of distinction, who wrote works under the
two distinct titles “ A commentary on the difficult parts of the work
of Euclid” and “The Book on Proportion®” Suter thinks that an-
other reading is possible in the case of the second title, and that it
may refer to the Euclidean work “on the divisions (of figures)®.”

15. Qustd b. Liiqa al-Ba'labakki (d. about g12), a physician,
philosopher, astronomer, mathematician and translator, wrote “ on the
difficult passages of Euclid’s book” and “on the solution of arith-
metical problems from the third book of Euclid””; also an “intro-
duction to geometry,” in the form of question and answer?®,

16. Thabit b. Qurra (826—go1), besides translating some parts
of Archimedes and Books V.—VIL of the Conics of Apollonius, and
revising Ishaq’s translation of Euclid’s Elements, also revised the trans-
lation of the Data by the same Ishdq and the book Oz divisions of
JSigures translated by an anonymous writerr Wge are told also
that he wrote the following works: (1) On the Premisses (Axioms,
Postulates etc.) of Euclid, (2) On the Propositions of Euclid, (3) On
the propositions and questions which arise when two straight lines
are cut by a third (or on the “proof” of Euclid's famous postulate).
The last tract is extant in the MS. discovered Woepcke (Paris
2457, 32°). He is also credited with “an excellent work” in the
shape of an “Introduction to the Book of Euclid,” a treatise on

i%‘“’""""' Tk, & Paced. e 666, 668.
3 Su?e?k 68. s m‘ x;iw, p- 38; Sauter, p. 6o.

p-
® Fikrist, p. 26, and Suter’s note, p. fo. ' Sater, p. 211, note 23.
T Fikrist, p. 43- mmr. p- 43 ; Suter, p. 41.



83 INTRODUCTION [cH. vu1

Geometry dedicated to Isma‘il b. Bulbul, a Compendium of Geometry,
and a large number of other works for the titles of which reference
may be made to Suter, who also gives particulars as to which are
extant?,

17. Abii Sa'id Sinan b. Thabit b. Qurra, the son of the translator
of Euclid, followed in his father's footsteps as geometer, astronomer
and physician. He wrote an “improvement of the book of ...... on
the Elements of Geometry, in which he made various additions to the
original.” It is natural to conjecture that Euc/id is the name missing
in this description (by Ibn abi Usaibi‘a); Casiri has the name Aqaton?
The latest editor of the 7a'rikk al- Hukama, however, makes the name
to be Iflaton (= Plato), and he refers to the statement by the Fikrist
and Ibn al-Qifti attributing to Plato a work on the Elements of
Geometry translated by Qusta. It is just possible, therefore, that at
the time of Qustd the Arabs were acquainted with a book on the
Elements of Geometry translated from the Greek, which they attri-
buted to Plato®. Sinin died in 943.

18. Abii Sahl Wijan (or Waijan) b. Rustam al-Kahi (fl. 988),
born at Kiih in Tabaristin, a distinguished geometer and astronomer,
wrote, according to the Fikrist, a “ Book of the Elements” after that
of Euclid*; the 1st and 2nd Books survive at Cairo, and a part of
the 3rd Book at Berlin (5922)°%. He wrote also a number of other
geometrical works: Additions to the 2nd Book of Archimedes on
the Sphere and Cylinder (extant at Paris, at Leiden, and in the India
Office), On the finding of the side of a heptagon in a circle (India
Office and Cairo), On two mean proportionals (India Office), which
last may be only a part of the Additions to Archimedes’ On the Sphere
and Cylinder, etc.

19. Abi Nasr Muh. b. Muh. b. Tarkhdan b. Uzlag al-Farabi
(870-950) wrote a commentary on the difficulties of the introductory
matter to Books I. and v.* This appears to survive in the Hebrew
translation which is, with probability, attributed to Moses b. Tibbon’.

20. Abu ‘Al al-Hasan b. al-Hasan b. al-Haitham (about g65-
1039), known by the name Ibn al-Haitham or Aba ‘Ali-al-Basri, was a
man of great powers and knowledge, and no one of his time approached
him in the field of mathematical science. He wrote several works on
Euclid the titles of which, as translated by Woepcke from Usaibi‘a,
are as follows®:

1. Commentary and abridgment of the Elements.

2. Collection of the Elements of Geometry and Arithmetic,
drawn from the treatises of Euclid and Apollonius.

3. Collection of the Elements of the Calculus deduced from
the principles laid down by Euclid in his Elements.

1 Suter, pp. 34—S8.
2 Fihrist (ed. Suter), p. 50, note 132; Suter, p. 52, note b.
* See Suter in Bibliotheca Mathematica, 1vy, 1903-4, pp. 296—7, review of Julius
Upj)e;‘s lbn al-Qifti,  Ta'rick al-hukamd, Leipzig, 1go3.
i

“a fn‘:i, p- 40. : guter, o 785,
uter, p. §5. teinschneider, p. g2.
. Steinsctneider, Pp- 92—3. e



CH. vII] EUCLID IN ARABIA 89

4. Treatise on “measure” after the manner of Euclid’s

Elements,

5. Memoir on the solution of the difficulties in Book I.
6. Memoir for the solution of a doubt about Euclid, relative

to Book v.

7. Memoir on the solution of a doubt about the stereometric
portion.

8. Memoir on the solution of a doubt about Book XII.

9. Memoir on the division of the two magnitudes mentioned
in X. 1 (the theorem of exhaustion).

10. Commentary on the definitions in the work of Euclid

(where Steinschneider thinks that some more general expression

should be substituted for “ definitions ”).

The last-named work (which Suter calls a commentary on the
Postulates of Euclid) survives in an Oxford Ms. (Catal. MSS. orient.
I. go8) and in Algiers (1446, 1°).

A Leiden MS. (966) contains his Commentary “on the difficult
places” up to Book v. We do not know whether in this commentary,
which the author intended to form, with the commentary on the
Musadarat, a sort of complete commentary, he had collected the
separate memoirs on certain doubts and difficult passages mentioned
in the above list.

A commentary on Book V. and following Books found in a
Bodleian Ms. (Catal. II. p. 262) with the title “ Commentary on Euclid
and solution of his difficulties ” is attributed to b. Haitham; this might
be a continuation of the Leiden MS.

The memoir on X. I appears to survive at St Petersburg, Ms. de
I'Institut des langues orient. 192, 5° (Rosen, Catal. p. 125).

21. Ibn Sina, known as Avicenna (980-1037), wrote a Com-
pendium of Euclid, preserved in a Leiden MS. No. 1445, and forming
the geometrical portion of an encyclopaedic work embracing Logic,
Mathematics, Physics and Metaphysics®.

22, Ahmad b. al-Husain al-Ahwazi al-Katib wrote a com-
mentary on Book X., a fragment of which (some 10 pages) is to be
found at Leiden (970), Berlin (5923) and Paris (2467, 18°)%

23. Nasiraddin at-Tusi (1201-1274) who, as we have seen,
brought out a Euclid in two forms, wrote:

I. A treatise on the postulates of Euclid (Paris, 2467, 5°).

2. A treatise on the s5th postulate, perhaps only a part of
the foregoing (Berlin, 5042, Paris, 2467, 6°).

3. Principles of Geometry taken from Euclid, perhaps
identical with No. 1 above (Florence, Pal. 2g8).

4. 105 problems out of the Elements (Cairo). He also edited
the Data (Berlin, Florence, Oxford etc.)?

24. Muh. b. Ashraf Shamsaddin as-Samarqandi (fl. 1276) wrote
“ Fundamental Propositions, being elucidations of 35 selected proposi-

1 Steinschneider, p. 92; Suter, p. 89. ? Suter, p. 57.
3 Suter, pp. 150—I.
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tions of the first Books of Euclid,” which are extant at Gotha (1496
and 1497), Oxford (Catal. 1. 967, 2°), and Brit. Mus.",

25. Misa b. Muh. b. Mahmiid, known as Q&dizade ar-Rimi (i.e.
the son of the judge from Asia Minor), who died between 1436 and
1446, wrote a commentary on the “Fundamental Propositions” just
mentioned, of which many Mss, are extant?, It contained biographical
statements about Euclid alluded to above (p. 5, note).

26. Abi Da'ud Sulaimin b. ‘Ugba, a contemporary of al-Khazin
(see above, No. 5), wrote a commentary on the second half of Book X,
which is, at least partly, extant at Leiden (974) under the title “On
the binomials and apotomae found in the 10oth Book of Euclid®.”

27. The Codex Leidensis 399, 1 contammg al- Haj;ajs transla-
tion of Books I.—VL is said to contain glosses to it by Sa‘id b. Mas‘iid

b. al-Qass, apparently identical with Abi Nasr Gars al-Na‘ma, son of
the physician Mas'ad b. al-Qass al-Bagdadi, who lived in the time of
the last Caliph al-Musta'sim (d. 1258)%,

28. Abi Muhammad b. Abdalbaql al-Bagdadi al-Faradi (d.
1141, at the age of over 7o years) is stated in the Ta'rikh al-Hukamad
to have written an excellent commentary on Book X. of the Elements,
in which he gave numerical examples of the propositions®, This is
published in Curtze’s edition of an-Nairizi where it occupies pages
252—386°

: 29.3 Yahya b. Muh. b. “Abdan b. ‘Abdalwahid, known by the
name of Ibn al-Lubidi (1210-1268), wrote a Compendium of Euclid,
and a short presentation of the postulates’.

30. Abii ‘Abdallah Muh. b. Mu‘adh al-Jayyani wrote a com-
mentary on Eucl. Book V. which survives at Algiers (1446, 3°)°.

31. Abii Nasr Mansiir b. “Ali b. ‘Irdq wrote, at the instance of
Muh. b. Ahmad Abi ’r-Raihdn al-Biriini (973-1048), a tract “on
a doubtful (difficult) passage in Eucl. Book X111.” (Berlin, 5925)®.

! Suter, p. 157. 2 jbid. p. 175. 3 ibid. p. 56.
4 sbid. pp. 153-——4, 217,
5 Gartz, p. 14; Steinschneider, pp. 94—s5.
® Suter in Bibliotheca Mathematica, IVg, 1903, PP. 25, 205; Suter has also an article on
its contents, Bibliotheca Mathematica, V1ly, 1 7y PP+ 234—251.
7 Steinschneider, p. 94 ; Suter, p. 146.
8 Sutér, Nachtrige und Bmdmgvmm in Abkandlungen sur Gesch. der math. Wissen-
schaften, X1V., 1901, g 170,
Suter, p. 81, and Nacktrige, p. 172.



CHAPTER VIIL

PRINCIPAL TRANSLATIONS AND EDITIONS OF THE ELEMENTS.

CICERO is the first Latin author to mention Euclid!; but it is not
likely that in Cicero’s time Euclid had been translated into Latin or
was studied to any considerable extent by the Romans; for, as Cicero
says in another place?, while geometry was held in high honour
among the Greeks, so that nothing was more brilliant than their
mathematicians, the Romans limited its scope by having regard only
to its utility for measurements and calculations. How very little
theoretical geometry satisfied the Roman agrimensores is evidenced
by the work of Balbus de mensuris®, where some of the definitions of
Eucl. Book 1. are given. Again, the extracts from the Elements found
in the fragment attributed to Censorinus (fl. 238 A.D )* are confined to
the definitions, postulates, and common notions. But by degrees the
Elements passed even among the Romans into the curriculum of a
liberal education ; for Martianus Capella speaks of the effect of the
enunciation of the proposition “how to construct an equilateral
triangle on a given straight line” among a company of philosophers,
who, recognising the first proposition of the Elements, straightway
break out into encomiums on Euclid®. But the Elements were then
(c. 470 A.D.) doubtless read in Greek; for what Martianus Capella
gives® was drawn from a Greek source, as is shown by the occurrence
of Greek words and by the wrong translation of I def. 1 (“punctum
vero est cuius pars m#hi/ est”). Martianus may, it is true, have
quoted, not from Euclid himself, but from Heron or some other ancient
source.

But it is clear from a certain palimpsest at Verona that some
scholar had already attempted to translate the Elements into Latin.
This palimpsest” has part of the “ Moral reflections on the Book of
Job" by Pope Gregory the Great written in a hand of the gth c.above
certain fragments which in the opinion of the best judges date from
the 4th c. Among these are fragments of Vergil and of Livy, as well
as a geometrical fragment which purports to be taken from the 14tn
and 15th Books of Euclid. As a matter of fact it is from Books XIL
and XIII and is of the nature of a free rendering, or rather a new

1 De oratore 111 132. ? Tuse. 1. 5.
3 G?T;ﬁd veleres, 1. 97 sq. (ed. F. Blume, K. Lachmann and A. Rudorf. Berlin,
la"8'(!,015&0:11'1\15, ed. Hultsch, pp. 6o—3.

¥ Martianus Capella, V1. 714. & gbid. v1. 708 sq.
7 Cf. Cantor, 14, p. 565.
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arrangement, of Euclid with the propositions in different order’. The
MS. was evidently the translator’s own copy, because some words are
struck out and replaced by synonyms. We do not know whether the
translator completed the translation of the whole, or in what relation
his version stood to our other sources.

Magnus Aurelius Cassiodorus (b. about 475 A.D.) in the geometrical
part of his encyclopaedia De artibus ac disciplinis liberalium literarum
says that geometry was represented among the Greeks by Euclid,
Apollonius, Archimedes, and others, “ of whom Euclid was given us
translated into the Latin language by the same great man Boethius” ;
also in his collection of letters® is a letter from Theodoric to Boethius
containing the words, “for in your translations... Nicomachus the
arithmetician, and Euclid the geometer, are heard in the Ausonian
tongue.” The so-called Geometry of Boethius which has come down
to us by no means constitutes a translation of Euclid. The Mss.
variously give five, four, three or two Books, but they represent only
two distinct compilations, one normally in five Books and the other
in two. Even the latter, which was edited by Friedlein, is not
genuine?, but appears to have been put together in the 1ith c, from
various sources. It begins with the definitions of Eucl. I, and in these
are traces of perfectly correct readings which are not found even in
the Mss, of the 1oth c., but which can be traced in Proclus and other
ancient sources; then come the Postulates (five only), the Axioms
(three only), and after these some definitions of Eucl 11, 1L, IV.
Next come the enunciations of Eucl, L, of ten propositions of Book I1,,
and of some from Books IIIL., Iv., but always without proofs ; there
follows an extraordinary passage which indicates that the author will
now give something of his own in elucidation of Euclid, though what
follows is a literal translation of the proofs of Eucl. I. 1—3. This
latter passage, although it affords a strong argument against the
genuineness of this part of the work, shows that the Pseudoboethius
had a Latin translation of Euclid from which he extracted the three
propositions.

Curtze has reproduced, in the preface to his edition of the trans-
lation by Gherard of Cremona of an-Nairizi’s Arabic commentary on
Euclid, some interesting fragments of a translation of Euclid taken
from a Munich MS. of the 10th c. They are on two leaves used
for the cover of the Ms. (Bibliothecae Regiae Universitatis Monacensis
20 757) and consist of portions of Eucl. I. 37, 38 and II 8, translated
literally word for word from the Greek text. The translator seems to
have been an Italian (cf. the words “capitolo nono” used for the ninth
prop. of Book 11.) who knew very little Greek and had moreover little
mathematical knowledge. For example, he translates the capital letters
denoting points in figures as if they were numerals: thus rd ABT,

Ca:: The fragment was deciphered by W. Studemund, who communicated his results to
tor.
9 Cassiodorus, Fariae, 1. 45, p- 49, 12 ed. Mommsen.
3 See eigecinll Weissenborn in Abkandlungen sur Gesch. d. Math. 11. p. 185 sq.;
Heiberg in Philologus, XL111. p. 507 sq. ; Cantor, 13, p. 580 sq.
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AEZ is translated “que primo secundo et tertio quarto quinto et
septimo,” T becomes “tricentissimo” and so on. The Greek Ms. which
he used was evidently written in uncials, for AEZ® becomes in one
place “quod autem septimo nono,” showing that he mistook AE for
the particle 8, and xai ¢ ZTU is rendered *“sicut tricentissimo et
quadringentissimo,” showing that the letters must have been written
KAIOCTU.

The date of the Englishman Athelhard (&Ethelhard) is approxi-
mately fixed by some remarks in his work Perdifficiles Quaestiones
Naturales which, on the ground of the personal allusions they contain,
must be assigned to the first thirty years of the 12th ¢! He wrote a
number of philosophical works. Little is known about his life. He
is said to have studied at Tours and Laon, and to have lectured at the
latter school. He travelled to Spain, Greece, Asia Minor and Egypt,
and acquired a knowledge of Arabic, which enabled him to translate
from the Arabic into Latin, among other works, the Elements of
Euclid. The date of this translation must be put at about 1120,
MSS. purporting to contain Athelhard’s version are extant in the
British Museum (Harleian No. 5404 and others), Oxford (Trin. Coll.
47 and Ball. Coll. 257 of 12th c.), Niirnberg (Johannes Regiomontanus’
copy) and Erfurt.

Among the very numerous works of Gherard of Cremona (1114—
1187) are mentioned translations of “ 15 Books of Euclid” and of the
Data*. Till recently this translation of the Elements was supposed to
be lost; but Axel Anthon Bjérnbo has succeeded (1904) in discovering
a translation from the Arabic which is different from the two others
known to us (those by Athelhard and Campanus respectively), and
which he, on grounds apparently convincing, holds to be Gherard’s.
Already in 1901 Bjérnbo had found Books X.—XV. of this translation
in a Ms. at Rome (Codex Reginensis lat. 1268 of 14th c.)*; but three
years later he had traced three MSS. containing the whole of the same
translation at Paris (Cod. Paris. 7216, 15th c.), Boulogne-sur-Mer
(Cod. Bononiens. 196, 14th c.), and Bruges (Cod. Brugens, 521, 14th c.),
and another at Oxford (Cod. Digby 174, end of 12th c.) containing a
fragment, XL 2 to XIV. The occurrence of Greek words in this
translation such as rombus, romboides (where Athelhard keeps the
Arabic terms), ambligonius, orthogonius, gnomo, pyramis etc., show
that the translation is independent of Athelhard’s. Gherard apg»ears
to have had before him an old translation of Euclid from the Greek
which Athelhard also often followed, especially in his terminology,
using it however in a very different manner. Again, there are some
Arabic terms, e.g. meguar for axis of rotation, which Athelhard did not
use, but which is found in almost all the translations that are with
certainty attributed to Gherard of Cremona; there occurs also the

1 Cantor, Gesch. d. Math. 1y, p. gob.

* Boncompagni, Della vita e dell di Gherardo Cremonese, Rome, 1851, p. 5.

3 Described in an appendix to jen iiber Menelaos' Sphirik {A#hniywm ur
Geschichte der mathematischen Wi haften, X1v., 1901).

¢ See Bibliotheca Math jca, V1, 1905-0, pp. 243—8.
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expression “superficies equidistantium laterum et rectorum angulorum,”
found also in Gherard’s translation of an-Nairizi, where Athelhard says
“ parallelogrammum rectangulum.” The translation is much clearer
than Athelhard’s: it is neither abbreviated nor “edited” as Athelhard’s
appears to have been ; it is a word-for-word translation of an Arabic
MS. containing a revised and critical edition of Thabit's version. It
contains several notes quoted from Thabit himself ( Thebit dixit), eg.
about alternative proofs etc. which Thabit found “in another Greek
Ms.,” and is therefore a further testimony to Thabit's critical treatment
of the text after Greek MSS. The new editor also added critical
remarks of his own, eg. on other proofs which he found in other
Arabic versions, but not in the Greek: whence it is clear that he
compared the Thabit version before him with other versions as care-
fully as Thabit collated the Greek MsS. Lastly, the new editor speaks
of “Thebit qui transtulit hunc librum in arabicam linguam ” and of
“translatio Thebit,” which may tend to confirm the statement of al-Qifti
who credited Thabit with an independent translation, and not (as the
Fikrist does) with a mere improvement of the version of Ishaq b.
Hunain.

Gherard’s translation of the Arabic commentary of an-Nairizi on
the first ten Books of the Elements was discovered by Maximilian
Curtze in a MS, at Cracow and published as a supplementary volume
to Heiberg and Menge’s Euclid!: it will often be referred to in this
work.

Next in chronological order comes Johannes Campanus (Campano)
of Novara., He is mentioned by Roger Bacon (1214-1294) as a
prominent mathematician of his time?, and this indication of his date
is confirmed by the fact that he was chaplain to Pope Urban IV, who
was Pope from 1261 to 1281° His most important achievement was
his -edition of the Elements including the two Books XIV. and XV.
which are not Euclid’s. The sources of Athelhard's and Campanus’
translations, and the relation between them, have been the subject of
much discussion, which does not seem to have led as yet to any
definite conclusion. Cantor (II,, p. 91) gives references* and some
particulars. It appears that there is a Ms. at Munich (Cod. lat. Mon.
13021) written by Sigboto in the 12th c. at Priifning near Regensburg,
and denoted by Curtze by the letter R, which contains the enunciations
of part of Euclid. The Munich Mss. of Athelhard and Campanus’
translations have many enunciations textually identical with those in
R, so thar the source of all three must, for these enunciations, have

L Anaritii in decem libros priores Elementorum Euclidis Commentlarii ex interprelalione
Gherardi Cremonensis in codice Cracoviensi 569 servata edidit Maximilianus Curtze, Leipzig
(Teubner), 1899.

2 Cantor, 11,, p. 88.

* Tiraboschi, Storia della letteratura italiana, 1v. 145—160.

4 H. Weissenborn in Zeitschrift fiir Math. w. Physik, XXv., Supplement, pp. 143—166,
and in_his monograph, Die Ubersetsungen des Euklid durch Campano und Zamberti (1881) ;
Max. Curtze in Philologische Rundschas (1881), 1. pp. 943—950, and in Fahresbericht siber
die Fortschritte der classischen Alterthumswissenschaft, XL. (1884, 11L.) pp. 19—31; Heiberg
in Zeitschrift fiir Math. u. Physik, XXXV., hist.-litt. Abth., pp. 48—58 and pp. 81—6.
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been the same; in others Athelhard and Campanus diverge com-
pletely from R, which in these places follows the Greek text and is
therefore genuine and authoritative, In the 32nd definition occurs the
word “elinuam,” the Arabic term for “rhombus,” and throughout the
translation are a number of Arabic figures. But R was not translated
from the Arabic, as is shown by (among other things) its close
resemblance to the translation from Euclid given on pp. 377 sqq. of
the Gromatici Veteres and to the so-called geometry of Boethius. The
explanation of the Arabic figures and the word “ elinuam ” in Def. 32
appears to be that R was a late copy of an earlier original with
corruptions introduced in many places ; thus in Def. 32 a part of the
text was completely lost and was supplied by some intelligent copyist
who inserted the word “elinuam,” which was known to him, and also
the Arabic figures. Thus Athelhard certainly was not the first to
translate Euclid into Latin ; there must have been in existence before
the 11th c. a Latin translation which was the common source of R,
the passage in the Gromatici, and “ Boethius.” As in the two latter
there occur the progfs as well as the enunciations of 1. 1—3, it is
possible that this translation originally contained the proofs also.
Athelhard must have had before him this translation of the
enunciations, as well as the Arabic source from which he obtained his
proofs. That some sort of translation, or at least fragments of one,
were available before Athelhard’s time even in England is indicated
by some old English verses®:
“The clerk Euclide on this wyse hit fonde

Thys craft of gemetry yn Egypte londe

Yn Egypte he tawghte hyt ful wyde,

In dyvers londe on every syde.

Mony erys afterwarde y understonde

Yer that the craft com ynto thys londe.

Thys craft com into England, as y yow say,
Yn tyme of good kyng Adelstone’s day,”

which would put the introduction of Euclid into England as far back
as 924-940 A.D.

We now come to the relation between Athelhard and Campanus.
That their translations were not independent, as Weissenborn would
have us believe, is clear from the fact that in all MSS, and editions,
apart from orthographical differences and such small differences as
are bound to arise when MSS. are copied by persons with some
knowledge of the subject-matter, the definitions, postulates, axioms,
and the 364 enunciations are word for word identical in Athelhard
and Campanus; and this is the case not only where both have the
same text as R but where they diverge from it. Hence it would seem
that Campanus used Athelhard’s translation and only developed the
proofs by means of another redaction of the Arabian Euclid. It is
true that the difference between the proofs of the propositions in the
two translations is considerable; Athelhard’s are short and com-

! Quoted by Halliwell in Kara Mathematica (p. 56 note) from Ms. Bib. Reg. Mus. Brit.
17 A. 1. f. 3"—3.
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pressed, Campanus’ clearer and more complete, following the Greek
text more closely, though still at some distance. Further, the
arrangement in the two is different; in Athelhard the proofs regularly
precede the enunciations, Campanus follows the usual order. Itisa
question how far the differences in the proofs, and certain additions in
each, are due to the two translators themselves or go back to Arabic
originals. The latter supposition seems to Curtze and Cantor the
more probable one. Curtze's general view of the relation of Campanus
to Athelhard is to the effect that Athelhard’s translation was gradually
altered, from the form in which it appears in the two Erfurt Mss.
described by Weissenborn, by successive copyists and commentators
who had Arabic originals before them, until it took the form which
Campanus gave it and in which it was published. In support of this
view Curtze refers to Regiomontanus’ copy of the Athelhard-Campanus
translation. In Regiomontanus’ own preface the title is given, and
this attributes the translation to Athelhard; but, while this copy
agrees almost exactly with Athelhard in Book I, yet, in places where
Campanus is more lengthy, it has similar additions, and in the later
Books, especially from Book I11I. onwards, agrees absolutely with
Campanus; Regiomontanus, too, himself implies that, though the
translation was Athelhard’s, Campanus had revised it; for he has
notes in the margin such as the following, “Campani est hec,” “dubito
an demonstret hic Campanus” etc.

We come now to the printed editions of the whole or of portions
of the Elements. This is not the place for a complete bibliography,
such as Riccardi has attempted in his valuable memoir issued in five
parts between 1887 and 1893, which makes a large book in itself
I shall confine myself to saying something of the most noteworthy
translations and editions, It will be convenient to give first the Latin
translations which preceded the publication of the editio princeps of
the Greek text in 1533, next the most important editions of the Greek
text itself, and after them the most important translations arranged
according to date of first appearance and languages, first the Latin
translations after 1533, then the Italian, German, French and English
translations in order.

It may be added here that the first allusion, in the West, to the
Greek text as still extant is found in Boccaccio’s commentary on the
Divina Commedia of Dante®. Next Johannes Regiomontanus, who
intended to publish the Elements after the version of Campanus, but
with the latter's mistakes corrected, saw in Italy (doubtless when
staying with his friend Bessarion) some Greek MsSS. and noticed how
far they differed from the Latin version (see a letter of his written in
the year 1471 to Christian Roder of Hamburg)®.

1 Sagpio di una Bibliografia Euclidea, memoria del Prof. Pietro Riccardi (Bologna,
1883, 1888, 1890, 1893).
« P- 404+
3 Puglished in C. T. de Murr's Memorabilia Bibliothecarum Norimbergensium, Part I
P. 190 sqq.
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I. LATIN TRANSLATIONS PRIOR TO 1533.

1482. In this year appeared the first printed edition of Euclid,
which was also the first printed mathematical book of any import-
ance. This was printed at Venice by Erhard Ratdolt and contained
Campanus’ translation’. Ratdolt belonged to a family of artists at
Augsburg, where he was born about 1443. Having learnt the trade
of printing at home, he went in 1475 to Venice, and founded there a
famous printing house which he managed for 11 years, after which he
returned to Augsburg and continued to print important books until
1516. He is said to have died in 1528, Kaistner? gives a short
description of this first edition of Euclid and quotes the dedication to
Prince Mocenigo of Venice which occupies the page opposite to the
first page of text. The book has a margin of 24 inches, and in this
margin are placed the figures of the propositions. Ratdolt says in
his dedication that at that time, although books by ancient and
modern authors were printed every day in Venice, little or nothing
mathematical had appeared : a fact which he puts down to the diffi-
culty involved by the figures, which no one had up to that time
succeeded in printing. He adds that after much labour he had
discovered a method by which figures could be produced as easily as
letters®. Experts are in doubt as to the nature of Ratdolt’s discovery.
Was it a method of making figures up out of separate parts of figures,
straight or curved lines, put together as letters are put together to
make words? In a life of Joh, Gottlob Immanuel Breitkopf, a con-
temporary of Kistner’s own, this member of the great house of
Breitkopf is credited with this particular discovery. Experts in that
same house expressed the opinion that Ratdolt’s figures were wood-
cuts, while the letters denoting points in the figures were like the
other letters in the text; yet it was with carved wooden blocks that
printing began. If Ratdolt was the first to print geometrical figures,
it was not %ng before an emulator arose; for in the very same year
Mattheus Cordonis of Windischgritz employed woodcut mathematical
figures in printing Oresme’s De latitudinibus’. How eagerly the
opportunity of spreading geometrical knowledge was seized upon is
proved by the number of editions which followed in the next few
years. Even the year 1482 saw two forms of the book, though they
only differ in the first sheet. Another edition came out in 1486
(Ubmnae, apud lo. Regerum) and another in 1491 (Vincentiae per

! Curtze (An-Nairizi, p. xiii) reproduces the heading of the first e of the text as
follows (there is no ‘lll!‘wt:l Preclariffimi opus elemento2} Euclidis megarélis ¥na ci
comentis Campani I.Ee picacillimi in arté geometrid incipit felicit’, after which the definitions
begin at once. Other copies have the shorter heading : Preclarissimus liber elemem.omm
Euclidis perspicacissimi : m artem Geometrie incipit quam foelicissime. At the end stands
the following : d Opus elementorii euclidis megarenfis in geometrid arté Jn id quoq3 Campani

pfpicaciflimi Comentationes finiiit. Erhardus ratdolt Augustensis impreffor folertiffimus .
venetijs impreflit . Anno falutis . M.cccc.lxxxij . Octauls . Calefi . Jufi . Lector . Vale.
¥ Kiistner, Geschichte der Mathematik, 1. p. 189 sqq. See also Weissenborn, Die Ubersets-
ngen des Euklid durch Campano und Zamberti, pp. 1—7.
3 ““Mea industria non sine maximo labore efieci yt qua facilitate litterarum elementa
imprimuntur ea etiam g trice figure confi
4 Curtze in Zeitschrift fiir Math. u. Pjy.rné XX, , Bist. -litt. Abth. p. 58.
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Leonardum de Bastlea et Gulielmum de Papia), but without the dedi-
cation to Mocenigo who had died in the meantime (1485). If Cam-
panus added anything of his own, his additions are at all events not
distinguished by any difference of type or otherwise; the enunciations
are in large type, and the rest is printed continuously in smaller type.
There are no superscriptions to particular passages such as Euclides
ex Campano, Campanus, Campani additio, or Campani annotatio, which
are found for the first time in the Paris edition of 1516 giving
bothedc)ampanus’ version and that of Zamberti (presently to be men-
tioned).

1501. G. Valla included in his encyclopaedic work De expetendis
et fugiendis rebus published in this year at Venice (in aedibus Aldi
Romani) a number of propositions with proofs and scholia translated
from a Greek MS. which was once in his possession (cod. Mutin. 111
B, 4 of the 15th c.).

1505. In this year Bartolomeo Zamberti (Zambertus) brought out
at Venice the first translation, from the Greek text, of the whole of the
Elements. From the title!, as well as from his prefaces to the Catoptrica
and Data, with their allusions to previous translators “ who take some
things out of authors, omit some, and change some,” or “to that most
barbarous translator” who filled a volume purporting to be Euclid’s
“with extraordinary scarecrows, nightmares and phantasies,” one object
of Zamberti’s translation is clear. His animus against Campanus
appears also in a number of notes, e.g. when he condemns the terms
“helmuain” and “helmuariphe” used by Campanus as barbarous,
un-Latin etc,, and when he is roused to wrath by Campanus’ unfortu-
nate mistranslation of V. Def. 5. He does not seem to have had the
penetration to see that Campanus was translating from an Arabic,
and not from a Greek, text. Zamberti tells us that he spent
seven years over his translation of the thirteen Books of the
Elements. As he seems to have been born in 1473, and the Elements
were printed as early as 1500, though the complete work (including the
Phaenomena, Optica, Catoptrica, Data etc.) has the date 1505 at the
end, he must have translated Euclid before the age of 30. Heiberg
has not been able to identify the Ms. of the Elements which Zamberti
used ; but it is clear that it belonged to the worse class of MsS,, since
it contains most of the interpolations of the Theonine variety. Zam-
berti, as his title shows, attributed the progfs to Theon.

1509. As a counterblast to Zamberti, Luca Paciuolo brought out
an edition of Euclid, apparently at the expense of Ratdolt, at Venice
(per Paganinum de Paganinis), in which he set himself to vindicate
Campanus. The title-page of this now very rare edition? begins thus:
“The works of Euclid of Megara, a most acute philosopher and without

! The title begins thus: ‘‘Euclidis megaresis philosophi platonicj mathematicarum
disciplinarum Janitoris: Habent in hoc volumine quicunque ad math icam substantiam
aspirant : elementorum libros xiij cum expositione Theonis insignis mathematici. quibus
multa quae deerant ex lectione graeca sumpta addita sunt nec non plurima peruersa et
%ﬂepoatere‘: voluta in Campani interpretatione: ordinata digesta et castigata sunt etc.

ora dm\::'p_non of the book see Weissenborn, p. 12 sqq.

2 See Weissenborn, p. 30 sqq.
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question the chief of all mathematicians, translated by Campanus their
most faithful interpreter.” 1t proceeds to say that the translation had
been, through the fault of copyists, so spoiled and deformed that it
could scarcely be recognised as Euclid. Luca Paciuolo accordingly
has polished and emended it with the most critical judgment, has
corrected 129 figures wrongly drawn and added others, besides supply-
ing short explanations of difficult passages. It is added that Scipio
Vegius of Milan, distinguished for his knowledge “ of both languages”
(i.e. of course Latin and Greek), as well as in medicine and the more
sublime studies, had helped to make the edition more perfect. Though
Zamberti is not once mentioned, this latter remark must have refer-
ence to Zamberti's statement that his translation was from the Greek
text; and no doubt Zamberti is aimed at in the wish of Paciuolo’s
“that others too would seek to acquire knowledge instead of merely
showing off, or that they would not try to make a market of the
things of which they are ignorant, as it were (selling) smoke'.”
Weissenborn observes that, while there are many trivialities in Paci-
uolo’s notes, they contain some useful and practical hints and explana-
tions of terms, besides some new proofs which of course are not
difficult if one takes the liberty, as Paciuolo does, of diverging from
Euclid’s order and assuming for the proof of a proposition results not
arrived at till later. Two not inapt terms are used in this edition to
describe the figures of 11I. 7, 8, the former of which is called the
goose's foot (pes anseris), the second the peacock’s tail (cauda pavonis)
Paciuolo as the castigator of Campanus’ translation, as he calls himself,
failed to correct the mistranslation of v. Def. 5% Before the fifth
Book he inserted a discourse which he gave at Venice on the
15th August, 1508, in S. Bartholomew’s Church, -before a select
audience of 500, as an introduction to his elucidation of that Book.

1516. The first of the editions giving Campanus’ and Zamberti's
translations in conjunction was brought out at Paris (i officina Henrici
Stephani e regione scholae Decretorum). The idea that only the enun-
ciations were Euclid’s, and that Campanus was the author of the proofs
in his translation, while Theon was the author of the proofs in the Greek
text, reappears in the title of this edition; and the enunciations of the
added Books X1V, XV. are also attributed to Euclid, Hypsicles being
credited with the proofs®. The date is not on the title-page nor at the

1 “‘Atque utinam et alii cognoscere vellent non ostentare aut ea quae nesciunt veluti
fumum venditare non conarentur.”

* Campanus’ translation in Ratdolt’s edition is as follows: ‘‘Quantitates quae dicuntur
continuam habere proportionalitatem, sunt, quarum equé multiplicia aut equa sunt aut

ué sibi sine interruptione addunt aut minuunt” (!), to which Campanus the note :
E“Cominué proportionalia sunt quorum omnia multiplicia equalia sunt oontinqé‘gmpuniomﬁa.
Sed noluit ipsam diffinitionem proponere sub hac forma, quia tunc diffipiret idem per idem,
aperte (?a parte) tamen rei est istud cum sua diffinitione convertibile,"”

3 ¢ Euclidis Megarensis' Geometricorum Elementorum Libri xv. Campani Galli trans-
alpini in eosd tariorum libri xv. Theonis Al drini Barthol Zambert,
Veneto interprete, in tredeci i tati libri x111. Hypsiclis Alexandrini in
duos posterivres, eodem Bartholomaeo Zamberto Veneto interprete, commentariorum libri 11.”
On the last page (261) is a similar statement of content, but with the difference that the

pression ‘“‘ex C i...deinde Theonis...et Hypsiclis...traditionibus.”” For description
see Weissenborn, p. 56 sqq.
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end, but the letter of dedication to Frangois Briconnet by Jacques
Lefévre is dated the day after the Epiphany, 1516. The figures are
in the margin. The arrangement of the propositions is as follows:
first the enunciation with the heading Euclides ex Campano, then the
proof with the note Campanus, and after that, as Campani additio, any
passage found in the edition of Campanus’ translation but not in the
Greek text; then follows the text of the enunciation translated from
the Greek with the heading Euclides ex Zamberto, and lastly the proof
headed Theo ex Zamberto. There are separate figures for the two proofs.
This edition was reissued with few changes in 1537 and 1546 at Basel
(apud Iohannem Hervagium), but with the addition of the Phaenomena,
Optica, Catoptrica etc. For the edition of 1537 the Paris edition of
1516 was collated with “a Greek copy” (as the preface says) by
Christian Herlin, professor of mathematical studies at Strassburg,
who however seems to have done no more than correct one or two
passages by the help of the Basel editio princeps (1533), and add the
Greek word in cases where Zamberti’s translation of it seemed unsuit-
able or inaccurate,
We now come to

II. EDITIONS OF THE GREEK TEXT.

1533 is the date of the editio princeps, the title-page of which reads
as follows :

ETKAEIAOT =TOIXEION BIBA» IE»
EK TON OEQNOZ ZYNOYZION.

Eis Tob adrod 1o mpdrtov, éfnynudrev Tpikrov BiB\. §.
Adiecta praefatiuncula in qua de disciplinis
Mathematicis nonnihil
BASILEAE APVD IOAN. HERVAGIVM ANNO
M.D.XXXIIL MENSE SEPTEMBRI

The editor was Simon Grynaeus the elder (d. 1541), who, after
working at Vienna and Ofen, Heidelberg and Tiibingen, taught last
of all at Basel, where theology was his main subject. His “prae-
fatiuncula” is addressed to an Englishman, Cuthbert Tonstall (1474~
1559), who, having studied first at Oxford, then at Cambridge, where
he became Doctor of Laws, and afterwards at Padua, where in addi-
tion he learnt mathematics—mostly from the works of Regiomontanus
and Paciuolo—wrote a book on arithmetic' as “a farewell to the
sciences,” and then, entering politics, became Bishop of Londcn and
member of the Privy Council, and afterwards (1530) Bishop of Durham.
Grynaeus tells us that he used two MsS. of the text of the Elements,
entrusted to friends of his, one at Venice by “ Lazarus Bayfius”
(Lazare de Batf, then the ambassador of the King of France at Venice),
the other at Paris by “Ioann. Rvellius” (Jean Ruel, a French doctor
and a Greek scholar), while the commentaries of Proclus were put at

1 De arti supputandi libri g

‘i s
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the disposal of Grynaeus himself by *“Ioann. Claymundus” at Oxford.
Heiberg has been able to identify the two MsS. used for the text;
they are (1) cod. Venetus Marcianus 301 and (2) cod. Paris. gr. 2343
of the 16th c., containing Books 1.—XV., with some scholia which are
embodied in the text. When Grynaeus notes in the margin the
readings from “the other copy,” this “other copy” is as a rule the
Paris Ms., though sometimes the reading of the Paris Ms. is taken
into the text and the “other copy” of the margin is the Venice Ms.
Besides these two MsS. Grynaeus consulted Zamberti, as is shown by
a number of marginal notes referring to “ Zampertus” or to “latinum
exemplar” in certain propositions of Books 1X.—XI. When it is con-
sidered that the two MSS. used by Grynaeus are among the worst, it
is obvious how entirely unauthoritative is the text of the editio princeps.
Yet it remained the source and foundation of later editions of the
Greek text for a long period, the editions which followed being
designed, not for the purpose of giving, from other MSS,, a text more
nearly representing what Euclid himself wrote, but of supplying a
handy compendium to students at a moderate price.

1536. Bercmtins Finaeus (Oronce Fine) published at Paris (apud
Simonem Colinaeum) “demonstrations on the first six books of Euclid’s
elements of geometry,” “in which the Greek text of Euclid himself is
inserted in its proper places, with the Latin translation of Barth.
Zamberti of Venice,” which seems to imply that only the enunciations
were given in Greek. The preface, from which Kistner quotes!, says
that the University of Paris at that time required, from all who
aspired to the laurels of philosophy, a most solemn oath that they
had attended lectures on the said first six Books. Other editions of
Fine's work followed in 1544 and 1551,

1545. The enunciations of the fifteen Books were published in
Greek, with an Italian translation by Angelo Caiani, at Rome (apud
Antonium Bladum Asulanum). The translator claims to have cor-
rected the books and “ purged them of six hundred things which did
not seem to savour of the almost divine genius and the perspicuity of
Euclid*”

1549. Joachim Camerarius published the enunciations of the first
six Books in Greek and Latin (Leipzig). The book, with preface,
purports to be brought out by Rhaeticus (1514-1576), a pupil of
Copernicus. Another edition with proofs of the propositions of the
first three Books was published by Moritz Steinmetz in 1577 (Leipzig);
a note by the printer attributes the preface to Camerarius himself.

1550. loan. Scheubel published at Basel (also per loan. Her-
vagium) the first six Books in Greek and Latin “together with true
and appropriate proofs of the propositions, without the use of letters”
(i.e. letters denoting points in the figures), the various straight lines
and angles being described in words?

1557 (also 1558). Stephanus Gracilis published another edition
(repeated 1573, 1578, 1598) of the enunciations (alone) of Books 1.—XV.

1 Kiistner, I. p. 260. 2 Heiberg, vol. v. p. cvii. 3 Kistner, I. p. 359
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in Greek and Latin at Paris (apud Gulielmum Cavellat). He remarks
in the preface that for want of time he had changed scarcely anything
in Books 1.—VI., but ‘n the remaining Books he had emended what
seemed obscure or inelegant in the Latin translation, while he had
adopted in its entirety the translation of Book X. by Pierre Mondoré
(Petrus Montaurcus), published separately at Paris in 1551. Gracilis
also added a few “scholia.”

1564. In this year Conrad Dasypodius (Rauchfuss), the inventor
and maker of the clock in Strassburg cathedral, similar to the present
one, which did duty from 1571 to 1789, edited (Strassburg, Chr.
Mylius) (1) Book 1. of the Elements in Greek and Latin with scholia,
(2) Book 1I. in Greek and Latin with Barlaam’s arithmetical version
of Book 11, and (3) the enunciations of the remaining Books II1.—XIIL
Book I. was reissued with “vocabula quaedam geometrica” of Heron,
the enunciations of all the Books of the Elements, and the other works
of Euclid, all in Greek and Latin. In the preface to (1) he says that it
had been for twenty-six years the rule of his school that all who were
promoted from the classes to public lectures should learn the first
Book, and that he brought it out, because there were then no longer
any copies to be had, and in order to prevent a good and fruitful
regulation of his school from falling through. In the preface to the
edition of 1571 he says that the first Book was generally taught in all
gymnasia and that it was prescribed in his school for the first class.
In the preface to (3) he tells us that he published the enunciations of
Books III.—XIIL in order not to leave his work unfinished, but that, as
it would be irksome to carry about the whole work of Euclid in
extenso, he thought it would be more convenient to students of
ﬁretry to learn the Elements if they were compressed into a smaller

1620. Henry Briggs (of Briggs’ logarithms) published the first
six Books in Greek with a Latin translation after Commandinus,
“corrected in many places” (London, G. Jones).

1703 is the date of the Oxford edition by David Gregory which,
until the issue of Heiberg and Menge’s edition, was still the only
edition of the complete works of Euclidl. In the Latin translation
attached to the Greek text Gregory says that he followed Comman-
dinus in the main, but corrected numberless passages in it by means
of the books in the Bodleian Library which belonged to Edward
Bernard (1638-1696), formerly Savilian Professor of Astronomy, who
had conceived the plan of publishing the complete works of the ancient
mathematicians in fourteen volumes, of which the first was to contain
Euclid’s Elements 1.—XV. As regards the Greek text, Gregory tells us
that he consulted, as far as was necessary, not a few Mss. of the better
sort, bequeathed by the great Savile to the University, as well as the
corrections made by Savile in his own hand in the margin of the Basel
edition. He had the help of John Hudson, Bodley’s Librarian, who

1 ETEAEIAOT TA ZOQZOMENA. Euclidis qoae supersunt omnia. Ex recensione

Davidis Gregorii M.D. Astronomiae Professoris Saviliani et R.5,S. Oxoniae, e Theatro
Sheldoniano, An. Dom. MDCCIII.
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unctuated the Basel text before it went to the printer, compared the
tin version with the Greek throughout, especially in the Elements
and Data, and, where they differed or where he suspected the Greek text,
consulted the Greek MsS. and put their readings in the margin if
they agreed with the Latin and, if they did not agree, affixed an
asterisk in order that Gregory might judge which reading was geo-
metrically preferable. Hence it is clear that no Greek MS., but the
Basel edition, was the foundation of Gregory’s text, and that Greek
Mss. were only referred to in the special passages to which Hudson
called attention.

1814-1818. A most important step towards a good Greek text
was taken by F. Peyrard, who published at Paris, between these years,
in three volumes, the Elements and Data in Greek, Latin and French®
At the time (1808) when Napoleon was having valuable Mss. selected
from Italian libraries and sent to Paris, Peyrard managed to get two
ancient Vatican MSS. (190 and 1038) sent to Paris for his use (Vat.
204 was also at Paris at the time, but all three were restored to their
owners in 1814). Peyrard noticed the excellence of Cod. Vat. 190,
adopted many of its readings, and gave in an appendix a conspectus
of these readings and those of Gregory’s edition ; he also noted here
and there readings from Vat. 1038 and various Paris Mss. He there-
fore pointed the way towards a better text, but committed the error
of correcting the Basel text instead of rejecting it altogether and
starting afresh.

1824-1825. A most valuable edition of Books I.—VI. is that of
{3.:6. Camerer (and C. F. Hauber) in two volumes published at

rlin. The Greek text is based on Peyrard, although the Basel
and Oxford editions were also used. There is a Latin translation
and a collection of notes far more complete than any other I have
seen and well nigh inexhaustible. There is no editor or commentator
of any mark who is not quoted from ; to show the variety of important
authorities drawn upon by Camerer, I need only mention the following
names: Proclus, Pappus, Tartaglia, Commandinus, Clavius, Peletier,
Barrow, Borelli, Wallis, Tacquet, Austin, Simson, Playfair. No words
of praise would be too warm for this veritable encyclopaedia of
information.

1825. J. G. C. Neide edited, from Peyrard, the text of Books
1.—VL, XI. and XIL (Halis Sazoniae).

1826-9. The last edition of the Greek text before Heiberg’s is
that of E. F. August, who followed the Vatican MS. more closely
than Peyrard did, and consulted at all events the Viennese Ms.
Gr. 103 (Heiberg’s V). August’s edition (Berlin, 1826-9) contains
Books IL.—XIIL

v Euclidis quae supersunt. Les Ewvres d'Euclide, en Grec, en Lalin et en Frangais
d'apris un manusérit trds-ancien, gui Hait resté inconnu jusqu’'d nos jours. Par F. Peyrard.
O\Wr%e l%rouvé par I'Institut de France (Paris, chez M. Patris).

2 Euclidis elementorum libri sex priores graece ef latine commentario ¢ scriptis velerum ac
recentiorum mathematicorum el Fficidereri maxime illustrati (Berolini, sumptibus G. Reimeri).
Tom. 1. 1824 ; tom. I1I. 1825,
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III. LATIN VERSIONS OR COMMENTARIES AFTER 1533.

1545. Petrus Ramus (Pierre de la Ramée, 1515-1572) is credited
with a translation of Euclid which appeared in 1545 and again in
1549 at Paris’. Ramus, who was more rhetorician and logician than
geometer, also published in his Scikolae mathematicae (1559, Frankfurt;
1560, Basel) what amounts to a series of lectures on Euclid’'s Elements,
in which he criticises Euclid’s arrangement of his propositions, the
definitions, postulates and axioms, all from the point of view of logic.

1557. Demonstrations to the geometrical Elements of Euclid, six
Books, by Peletarius (Jacques Peletier). The second edition (1610)
contained the same with the addition of the “Greek text of Euclid”;
but only the emunciations of the propositions, as well as the defini-
tions etc., are given in Greek (with a Latin translation), the rest is
in Latin only. He has some acute observations, for instance about
the “angle” of contact.

1559. Johannes Buteo, or Borrel (1492-1572), published in an
appendix to his book De guadratura circuli some notes “on the errors
of Campanus, Zambertus, Orontius, Peletarius, Pena, interpreters of
Euclid.” Buteo in these notes proved, by reasoned argument based
on original authorities, that Euclid himself and not Theon was the
author of the proofs of the propositions.

1566. Franciscus Flussates Candalla (Frangois de Foix, Comte de
Candale, 1502-1594, “restored” the fifteen Books, following, as he
says, the terminology of Zamberti's translation from the Greek, but
drawing, for his proofs, on both Campanus and Theon (i.e. Zamberti)
except where mistakes in them made emendation necessary. Other
editions followed in 1578, 1602, 1695 (in Dutch).

1572. The most important Latin translation is that of Com-
mandinus (1509-1575) of Urbino, since it was the foundation of most
translations which followed it up to the time of Peyrard, including
that of Simson and therefore of those editions, numerous in England,
which give Euclid “chiefly after the text of Simson.”  Simson’s first
(Latin) edition (1756) has “ex versione Latina Federici Commandini”
on the title-page. Commandinus not only followed the original Greek
more closely than his predecessors but added to his translation some
ancient scholia as well as good notes of his own. The title of his
work is

Euclidis elementorum libri XV, una cum scholiis antiquis.

A Federico Commandino Urbinate nuper in latinum conversi,

commentariisque quibusdam illustrati (Pisauri, apud Camillum

Francischinum).

He remarks in his preface that Orontius Finaeus had only edited
six Books without reference to any Greek MS., that Peletarius had
followed Campanus’ version from the Arabic rather than the Greek
text, and that Candalla had diverged too far from Euclid, having
rejected as inelegant the proofs given in the Greek text and
substituted faulty proofs of his own. Commandinus appears to have

1 Described by Boncompagni, Bullettine, 11. p. 389.
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used, in addition to the Basel editio princeps, some Greek Ms., so far
not identified ; he also extracted his “scholia antiqua” from a Ms.
of the class of Vat. 192 containing the scholia distinguished by
Heiberg as “ Schol. Vat.” New editions of Commandinus’ translation
followed in 1575 (in Italian), 1619, 1749 (in English, by Keill and
Stone), 1756 (Books 1.—VI, XI, XL in Latin and English, by Simson),
1763 (Keill). Besides these there were many editions of parts of the
whole work, e.g. the first six Books.

1574. The first edition of the Latin version by Clavius!
(Christoph Klau [?]. born at Bamberg 1537, died 1612) appeared
in 1574, and new editions of it in 1589, 1591, 1603, 1607, 1612. It is
not a translation, as Clavius himself states in the preface, but it
contains a vast amount of notes collected from previous commentators
and editors, as well as some good criticisms and elucidations of his
own. Among other things, Clavius finally disposed of the error by
which Euclid had been identified with Euclid of Megara. He speaks
of the differences between Campanus who followed the Arabic
tradition and the “commentaries of Theon,” by which he appears to
mean the Euclidean proofs as handed down by Theon; he complains
of predecessors who have either only given the first six Books, or
have rejected the ancient proofs and substituted worse proofs of their
own, but makes an exception as regards Commandinus, “a geometer
not of the common sort, who has lately restored Euclid, in a Latin
translation, to his original brilliancy.” Clavius, as already stated, did
not give a translation of the Elements but rewrote the proofs, com-
pressing them or adding to them, where he thought that he could
make them clearer. Altogether his book is a most useful work.

1621. Henry Savile’s lectures (Praelectiones tresdecim in prin-
cipium Elementorum Euclidis Oxoniae habitae MDC.XX., Oxonii 1621),
though they do not extend beyond 1. 8, are valuable because they
grapple with the difficulties connected with the preliminary matter,
the definitions etc., and the tacit assumptions contained in the first
propositions,

1654. André Tacquet’s Elementa geometriae planae et solidae
containing apparently the eight geometrical Books arranged for
general use in schools. It came out in a large number of editions up
to the end of the eighteenth century.

1655. Barrow's Euclidis Elementorum Libri XV breviter demon-
strati is a book of the same kind. In the preface (to the edition of
1659) he says that he would not have written it but for the fact that
Tacquet gave only eight Books of Euclid. He compressed the work
into a very small compass (less than 400 small pages, in the edition
of 1659, for the whole of the fifteen Books and the Data) by abbre-
viating the proofs and using a large quantity of symbols (which, he
says, are generally Oughtred’s). There were several editions up to
1732 (those of 1660 and 1732 and one or two others are in English).

v Euclidis elementorum libri Xv. Accessit XV1. de solidorum regularium m?::m 3
Omnes perspicuis demonstrationibus, accuratisque scholiis illustrati. Auctore Christophore
Clavio &:mu. apud Vincentium Accoltum), 2 vols.
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1658. Giovanni Alfonso Borelli (1608-1679) published Euclides
restitutus, on apparently similar lines, which went through three more
editions (one in Italian, 1663).

1660. Claude Frangois Milliet Dechales’ eight geometrical Books
of Euclid’s Elements made easy. Dechales’ versions of the Elements
had great vogue, appearing in French, Italian and English as well
as Latin. Riccardi enumerates over twenty editions.

1733. Saccheri’s Euclides ab omni naeve vindicatus sive conatus
geometricus quo stabiliuntur prima ipsa geometriae principia is
important for his elaborate attempt to prove the parallel-postulate,
forming an important stage in the history of the development of non-
Euclidean geometry.

: 1756. Simson’s first edition, in Latin and in English. The Latin
title is
Euclidis elementorum libri prioves sex, item undecimus et duo-
decimus, ex versione latina Federici Commandini; sublatis iis
quibus olim libri hi a Theone, aliisve, vitiati sunt, et quibusdam
Euclidis demonstrationibus restitutis. A Roberto Simson M.D.
Glasguae, in aedibus Academicis excudebant Robertus et Andreas
Foulis, Academiae typographi.

1802. Euclidis elementorum libri prioves X11 ex Commandini et
Gregorii versionibus latinis. In usum juventutis Academicae...by
Samuel Horsley, Bishop of Rochester. (Oxford, Clarendon Press.)

IV. ITALIAN VERSIONS OR COMMENTARIES,

1543. Tartaglia’s version, a second edition of which was pub-
lished in 1565, and a third in 1585. It does not appear that he used
any Greek text, for in the edition of 1565 he mentions as available
only “the first translation by Campano,” “the second made by
Bartolomeo Zamberto Veneto who is still alive,” “the editions of
Paris or Germany in which they have included both the aforesaid
translations,” and “our own translation into the vulgar (tongue).”

g ].11 575. Commandinus’ translation turned into Italian and revised

im.

y 1613. The first six Books “reduced to practice” by Pietro
Antonio Cataldi, re-issued in 1620, and followed by Books ViL.—IX.
(1621) and Book X. (1625).

1663. Borelli’s Latin translation turned into Italian by Domenico
Magni.
aEnGSO. Euclide restituto by Vitale Giordano.

1690. Vincenzo Viviani's Elementi piani e solidi di Euclide
(Book v. in 1674).

1 The title-page of the edition of 1565 is as follows : Euclide Megarense philosopho, solo
introduttore delle scientic mathematice, diligentemente rassettato, ef alla integriid ridotto, per il
degno professore di tal scientie Nicolo Tartalea Brisciano. secondo le due tradottioni. con una
ampla espositione dello istesso tradotlore di nuouo aggiunta. (talmente chiara, che ogni mediocre
ingegno, sensa la motitia, ouer suffragio di alcun’ alira scientia com facilitd serd capace a
poterlo intendere. In Venetia, Appresso Curtio Troiano, 1563.
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1731, Elementi geometrici piani e solidi di Euclide by Guido
Grandi. No translation, but an abbreviated version, of which new
editions followed one another up to 1806.

1749. Italian translation of Dechales with Ozanam's corrections
and additions, re-issued 1785, 1797.

1752. Leonardo Ximenes (the first six Books). Fifth edition,
1819.

1818. Vincenzo Flauti's Corso di geometria elementare e sublime
(4 vols.) contains (Vol. 1.) the first six Books, with additions and a
dissertation on Postulate 5, and (Vol. 11.) Books XI, XII. Flauti
also published the first six Books in 1827 and the Elements of geometry
of Euclid in 1843 and 1854

V. GERMAN,

1558. The arithmetical Books VII.—IX. by Scheubel! (cf. the
edition of the first six Books, with enunciations in Greek and Latin,
mentioned above, under date 1550).

1562. The version of the first six Books by Wilhelm Holtzmann
(Xylander)®. This work has its interest as the first edition in German,
but otherwise it is not of importance. Xylander tells us that it was
written for practical people such as artists, goldsmiths, builders etc.,
and that, as the simple amateur is of course content to know facts,
without knowing how to prove them, he has often left out the proofs
altogether. He has indeed taken the greatest possible liberties with
Euclid, and has not grappled with any of the theoretical difficulties,
such as that of the theory of parallels

1651. Heinrich Hoa'y mann’s Teutscher Euclides (2nd edition 1653),
not a translation.

1604. Ant. Ernst Burkh. v. Pirckenstein's Teutsch Redender
Euclides (eight geometrical Books), “for generals, engineers etc.”
“proved in a new and quite easy manner.” Other editions 1699,
1744.

1697. Samuel Reyher's /n teutscher Spracke vorgestellter Euclides
(six Books), “made easy, with symbols algebraical or derived from the
newest art of solution.”

1714. Euclidis XV Biicher teutsch, “treated in a special and
brief)ma.nner, yet completely,” by Chr. Schessler (another edition in
1729).

1773. The first six Books translated from the Greek for the
use of schools by J. F, Lorenz. The first attempt to reproduce
Euclid in German word for word.

1781. Books XI., XiI. by Lorenz (supplementary to the pre-
ceding). Also Euklid’s Elemente fiinfzehn Biicher translated from

1 Das sibend acht und neunt buck des hochberiimbten Mathematici Buclidis Megarensis
durch Magistrum Fohann Scheybl, der liblichen universitet su Tiibingen, des Euclidis und
Arithmetic Ordinarien, auss dem latein ins teutsch gebracht...

* Die sechs ersie Biicher Euclidis vom anfang oder grund der Geometry... Auss Griechischer
sprach in die Teiitsch gebracht mgeuﬁmi ernlirt.. .Dum::cs vormals in Teiitscher sprack nie
mu worden...Durch Wilhelm Holt; £ ¢t Xylander von Augspurg. Getruckht zu
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the Greek by Lorenz (second edition 1798 ; editions of 1809, 1818,
1824 by Mollweide, of 1840 by Dippe). The edition of 1824, and
I presume those before it, are shortened by the use of symbols and
the compression of the enunciation and “setting-out” into one.

1807. Books IL.—VL, XI, XII “newly translated from the Greek,”
by J. K. F. Hauff.

1828. The same Books by Joh. Jos. Ign. Hoffmann “as guide
to instruction in elementary geometry,” followed in 1832 by observa-
tions on the text by the same editor.

1833. Die Geometrie des Euklid und das Wesen derselben by
E. S. Unger; also 1838, 1851.

1901. Max Simon, Euclid und die sechs planimetrischen Biicher.

VI. FRENCH.

1564-1566. Nine Books translated by Pierre Forcadel, a pupil
and friend of P. de la Ramée.

1604. The first nine Books translated and annotated by Jean
Errard de Bar-le-Duc; second edition, 1605.

1615. Denis Henrion’s translation of the 15 Books (seven
editions up to 1676).

1639. The first six Books “demonstrated by symbols, by a
method very brief and intelligible,” by Pierre Hérigone, mentioned
by Barrow as the only editor who, before him, had used symbols for
the exposition of Euclid.

1672. Eight Books “rendus plus faciles” by Claude Frangois
Milliet Dechales, who also brought out Les élémens d’Euclide ex-
Dliqués d'une maniére nouvelle et trés facile, which appeared in man
editions, 1672, 1677, 1683 etc. (from 1709 onwards revised bg Ozanam),
and was translated into Italian (1749 etc.) and English (by William
Halifax, 1685).

1804. In this year, and therefore before his edition of the Greek
text, F. Peyrard published the Elements literally translated into
French. A second edition appeared in 1809 with the addition of the
fifth Book. As this second edition contains Books L—VI. XI, XII
and X. 1, it would appear that the first edition contained Books I.—IV.,
VL, XL, XII. Peyrard used for this translation the Oxford Greek text
and Simson.

VII. DuTtcH.

1606. Jan Pieterszoon Dou (six Books). There were many later
editions. Kistner, in mentioning one of 1702, says that Dou explains
in his preface that he used Xylander’s translation, but, having after-
wards obtained the French translation of the six Books by Errard
de Bar-le-Duc (see above), the proofs in which sometimes pleased
him more than those of the German edition, he made his Dutch
version by the help of both.

1617. Frans van Schooten, “ The Propositions of the Books of
Euclid’s Elements”; the fifteen Books in this version “enlarged” by
Jakob van Leest in 1662.

1695. C. J. Vooght, fifteen Books complete, with Candalla’s “16th.”
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1702. Hendrik Coets, six Books (also in Latin, 1692); several
editions up to 1752, Apparently not a translation. but an edition for
school use.

1763. Pybo Steenstra, Books 1.—VI, XI., XIIL, likewise an abbre-
viated version, several times reissued until 1825.

VIII. ENGLISH.

1570 saw the first and the most important translation, that of Sir
Henry Billingsley. The title-page is as follows:

THE ELEMENTS
OF GEOMETRIE
of the most auncient Philosopher
EVCLIDE
of Megara

Faithfully (now first) translated into the Englishe toung,
&y H. Billingsley, Citizen of London. Whereunto are annexed
certaine Scholies, Annotations, and Inuentions, of the best
Mathematiciens, both of time past, and in this our age.

With a very fruitfull Preface by M. 1. Dee, specifying the
chiefe Mathematicall Sciéces, what they are, and whereunto
commodious: where, also, are disclosed certaine new Secrets
Mathematicall and Mechanicall, untill these our daies, greatly
missed.

Imprinted at London by jokn Daye.

The Preface by the translator, after a sentence observing that with-
out the diligent study of Euclides Elementes it is impossible to attain
unto the perfect knowledge of Geometry, proceeds thus. “ Wherefore
considering the want and lacke of such good authors hitherto in our
Englishe tounge, lamenting also the negligence, and lacke of zeale to
their countrey in those of our nation, to whom God hath geuen both
knowledge and also abilitie to translate into our tounge, and to
publishe abroad such good authors and bookes (the chiefe instrumentes
of all learninges): seing moreouer that many good wittes both of
gentlemen and of others of all degrees, much desirous and studious of
these artes, and seeking for them as much as they can, sparing no
paines, and yet frustrate of their intent, by no meanes attaining to
that which they seeke: I haue for their sakes, with some charge and
great trauaile, faithfully translated into our vulgare tolige, and set
abroad in Print, this booke of Euclide. Whereunto I haue added
easie and plaine declarations and examples by figures, of the defini-
tions. In which booke also ye shall in due place finde manifolde
additions, Scholies, Annotations, and Inuentions: which I haue
gthered out of many of the most famous and chiefe Mathematici€s,

th of old time, and in our age: as by diligent reading it in course,
ye shall well perceaue....”

It is truly a monumental work, consisting of 464 leaves, and there-
fore 928 pages, of folio size, excluding the lengthy preface by Dee.
The notes certainly include all the most important that had ever been
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written, from those of the Greek commentators, Proclus and the others
whom he quotes, down to those of Dee himself on the last books.
Besides the fifteen Books, Billingsley included the “sixteenth” added
by Candalla. The print and appearance of the book are worthy of its
contents; and, in order that it may be understood how no pains were
spared to represent everything in the clearest and most perfect form,
I need only mention that the figures of the propositions in Book XI.
are nearly all duplicated, one being the figure of Euclid, the other an
arrangement of pieces of paper (triangular, rectangular etc.) pasted at
the edges on to the page of the book so that the pieces can be turned
up and made to show the real form of the solid figures represented.

Billingsley was admitted Lady Margaret Scholar of St John's
College, Cambridge, in 1551, and he is also said to have studied at
Oxford, but he did not take a degree at either University. He was
afterwards apprenticed to a London haberdasher and rapidly became
a wealthy merchant. Sheriff of London in 1584, he was elected Lord
Mayor on 31st December, 1596, on the death, during his year of office,
of Sir Thomas Skinner. From 1589 he was one of the Queen's four
“ customers,” or farmers of customs, of the port of London. In 1591
he founded three scholarships at St John’s College for poor students,
and gave to the College for their maintenance two messuages and
tenements in Tower Street and in Mark Lane, Allhallows, Barking.
He died in 1606.

1651. Elements of Geometry. The first V1 Boocks: In a compen-
dious form contracted and demonstrated by Captain Thomas Rudd, with
the mathematicall preface of John Dee ({ondon).

1660. The first English edition of Barrow’s Euclid (published in
Latin in 1655), appeared in London. It contained “the whole fifteen
books compendiously demonstrated”; several editions followed, in
1705, 1722, 1732, 1751.

1661. Euclid's Elements of Geometry, with a supplement of divers
Propositions and Corollaries. To whick is added a Treatise of regular
Solids by Campane and Flussat; likewise Euclid's Data and Marinus
his Preface. Also a Treatise of the Divisions of Superficies, ascribed to
Machomet Bagdedine, but published by Commandine at the request of
J. Dee of London. Published by care and industry of John Leeke and
Geo. Serle, students in the Math. (London). According to Potts this
was a second edition of Billingsley’s translation.

1685. William Halifax’s version of Dechales’ “ Elements of Euclid
explained in a new but most easy method” (London and Oxford).

1705. The English Euclide; being the first six Elements of
Geometry, translated out of the Greek, with annotations and usefull
supplements by Edmund Scarburgh (Oxford). A noteworthy and
useful edition.

1708. Books L—VL, XL, XIL, translated from Commandinus’ Latin
version by Dr John Keill, Savilian Professor of Astronomy at Oxford.

Keill complains in his preface of the omissions by such editors as
Tacquet and Dechales of many necessary propositions (e.g. VL 27—29),
and of their substitution of proofs of their own for Euclid’s. He praises
Barrow’s version on the whole, though objecting to the “algebraical ”
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form of proof adopted in Book 11, and to the excessive use of notes
and symbols, which (he considers) make the proofs #ee short and
thereby obscure; his edition was therefore intended to hit a proper
mean between Barrow’s excessive brevity and Clavius’ prolixity.

Keill's translation was revised by Samuel Cunn and several times
reissued. 1749 saw the eighth edition, 1772 the eleventh, and 1782
the twelfth.

1714. W. Whiston's English version (abridged) of The Elements
qyf Euclid with select theovems out of Archimedes by the learned Andy.

acquet.

1756. Simson’s first English edition appeared in the same year as
his Latin version under the title:

The Elements of Euclid, vis. the first six Books together with
the eleventh and twelfth. In this Edition the Errors by which
Theon or others have long ago vitiated these Books are corvected and
some of Euclid’s Demonstrations are restored. By Robert Simson
(Glasgow).

As above stated, the Latin edition, by its title, purports to be “ex
versione latina Federici Commandini,” but to the Latin edition, as well
as to the English editions, are appended

Notes Critical and Geometrical ; containing an Account of those
things in which this Edition differs from the Greek text; and the
Reasons of the Alterations which have been made. As also Obser-
vations on some of the Propositions.

Simson says in the Preface to some editions (e.g. the tenth, of
1799) that “the translation is much amended by the friendly assistance
of a learned gentleman.”

Simson’s version and his notes are so well known as not to need
any further description. The book went through some thirty suc-
cessive editions. The first five appear to have been dated 1756, 1762,
1767, 1772 and 1775 respectively; the tenth 1799, the thirteenth 1806,
the twenty-third 1830, the twenty-fourth 1834, the twenty-sixth 1844.
The Data “in like manner corrected” was added for the first time in
the edition of 1762 (the first octavo edition).

1781, 1788, In these years respectively appeared the two volumes
containing the complete translation of the whole thirteen Books by
James Williamson, the last English translation which reproduced
Euclid word for word. The title is

The Elements of Euclid, with Dissertations intended to assist
and encourage a critical examination of these Elements, as the most
effectual means of establishing a juster taste upon mathematical
subjects than that which at present prevails. By James Williamson.

In the first volume (Oxford, 1781) he is described as “M.A.
Fellow of Hertford College,” and in the second (London, printed by
T. Spilsbury, 1788) as “B.D.” simply. Books V., VL. with the Con-
clusion in the first volume are paged separately from the rest.

1781. 4n examination of the first six Books of Euclid’s Elements,
by William Austin (London).

1795. John Playfair’s first edition, containing “the first six Books
of Euclid with two Books on the Geometry of Solids.” The Look
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reached a fifth edition in 1819, an eighth in 1831, a ninth in 1836, and
a tenth in 1846.

1826. Riccardi notes under this date Euclid’s Elements of Geo-
metry containing the whole twelve Books translated into English, from the
edition of Peyrard, by George Phillips. The editor, who was President
of Queens’ College, Cambridge, 1857-1892, was born in 1804 and
matriculated at Queens’ in 1826, so that he must have published the
book as an undergraduate.

1828. A very valuable edition of the first six Books is that of
Dionysius Lardner, with commentary and geometrical exercises, to
which he added, in place of Books XL, XII, a Treatise on Solid
Geometry mostly based on Legendre. Lardner compresses the pro-
positions by combining the enunciation and the setting-out, and he
gives a vast number of riders and additional propositions in smaller
print. The book had reached a ninth edition by 1846, and an eleventh
by 1855. Among other things, Lardner gives an Appendix “on the
theory of parallel lines,” in which he gives a short history of the
attempts to get over the difficulty of the parallel-postulate, down to
that of Legendre.

1833. T. Perronet Thompson's Geometry without axioms, or the
Jirst Book of Euclid’s Elements with alterations and notes; and an
intercalary book in whick the straight line and plane are derived from
properties of the sphere, with an appendix containing notices of methods
proposed for getting over the difficulty in the twelfth axiom of Euclid.

Thompson (1783-1869) was 7th wrangler 1802, midshipman 1803,
Fellow of Queens’ College, Cambridge, 1804, and afterwards general
and politician. The book went through several editions, but, having
been well translated into French by Van Tenac, is said to have
received more recognition in France than at home.

1845. Robert Potts’ first edition (and one of the best) entitled:

Euclid’s Elements of Geometry chiefly from the text of
Dy Simson with explanatory notes...to which is prefived an
introduction containing a brief outline of the History of Geometry.
Designed for the use of the higher forms in Public Schools and
students in the Universities (Cambridge University Press, and
London, John W. Parker), to which was added (1847) 4=
Appendix to the larger edition of Euclid's Elements of Geomelry,
containing additional notes on the Elements, a short tract on trans-
versals, and hints for the solution of the problems etc.

1862. Todhunter’s edition.

The later English editions I will not attempt to enumerate ; their
name is legion and their object mostly that of adapting Euclid for school
use, with all possible gradations of departure from his text and order.

IX. SPANISH.

1576. The first six Books translated into Spanish by Rodrigo

orano.

1637. The first six Books translated, with notes, by L. Carduchi.

1689. Books L—VIL, X1, XII, translated and explained by Jacob
Knesa,
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X. RusSsIAN.

1739. Ivan Astaroff (translation from Latin).

1789. Pr. Suvoroff and Yos. Nikitin (translation from Greek).
1880. Vachtchenko-Zakhartchenko.

(1817. A translation into Polish by Jo. Czecha.)

XI[. SWEDISH.

1744. MaArten Strémer, the first six Books ; second edition 1748.
The third edition (1753) contained Books XI.—XIL as well; new
editions continued to appear till 1884.

1836. H. Falk, the first six Books.

1844, 1845, 1859. P. R. Brakenhjelm, Books I.—VI,, XI., XIL

1850. F. A. A. Lundgren.

1850. H. A. Witt and M. E. Areskong, Books I.—VI,, XI., XIL

XII. DANISH.

1745. Ernest Gottlieb Ziegenbalg.
1803. H. C. Linderup, Books 1.—VI.

XIII. MODERN GREEK.

1820. Benjamin of Lesbos.

I should add a reference to certain editions which have appeared
in recent years.

A Danish translation (Euklid's Elementer oversat af Thyra Eibe)
was completed in 1912 ; Books I.—II. were published (with an Intro-
duction by Zeuthen) in 1897, Books IIL.—IV. in 1900, Books V.—VI.
in 1904, Books VIL—XIIL in 1912.

The Italians, whose great services to elementary geometry are
more than once emphasised in this work, have lately shown a note-
worthy disposition to make the zpsissima verba of Euclid once more
the object of study. Giovanni Vacca has edited the text of Book I.
(1 primo libro degli Elementi. Testo greco, versione italiana, intro-
duzione e note, Firenze 1916.) Federigo Enriques has begun the
publication of a complete Italian translation (G/ £lementi d' Euclide
e la critica antica e moderna); Books 1.—1v. appeared in 1925 (Alberto
Stock, Roma).

An edition of Book 1. by the present writer was published in 1918
(PEudz'd in Greek, Book I, with Introduction and Notes, Camb. Univ.

ress).



CHAPTER IX.

§ 1. ON THE NATURE OF ELEMENTS.

IT would not be easy to find a more lucid explanation of the terms
element and elementary, and of the distinction between them, than
is found in Proclus?, who is doubtless, here as so often, quoting
from Geminus. There are, says Proclus, in the whole of geometry
certain leading theorems, bearing to those which follow the relation of
a principle, all-pervading, and furnishing proofs of many properties,
Such theorems are called by the name of elements; and their function
may be compared to that of the letters of the alphabet in relation to
langpage, letters being indeed called by the same name in Greek
(oTovyeia). :

T’lc'nc term elementary, on the other hand, has a wider application :
it is applicable to things “which extend to greater multiplicity, and,
though possessing simplicity and elegance, have no longer the same
dignity as the elements, because their investigation is not of general
use in the whole of the science, e.g. the proposition that in triangles
the perpendiculars from the angles to the transverse sides meet in a

int.”

“ Again, the term element is used in two senses, as Menaechmus
says. For that which is the means of obtaining is an element of that
which is obtained, as the first proposition in Euclid is of the second,
and the fourth of the fifth. In this sense many things may even be
said to be elements of each other, for they are obtained from one
another. Thus from the fact that the exterior angles of rectilineal
figures are (together) equal to four right angles we deduce the number
of right angles equal to the internal angles (taken together)?, and
vice versa. Such an element is like a lemma. But the term element is
otherwise used of that into which, being more simple, the composite is
divided ; and in this sense we can no longer say that everything is an
element of everything, but only that things which are more of the
nature of principles are elements of those which stand to them in the
relation of results, as postulates are elements of theorems. It is

1 Proclus, Comm. on Eucl. 1., ed. Friedlein, pp. 725qq.
% 73 whiiflos 7dv dvrds dplais loww. If the text is right, we must apparently take it as “the

number of the angles equal to right angles that there are inside,” 1.e. that are made up by
the internal angles,
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according to this signification of the term element that the elements
found in Euclid were compiled, being partly those of plane geometry,
and partly those of stereometry. In like manner many writers have
drawn up elementary treatises in arithmetic and astronomy.

“Now it is difficult, in each science, both to select and arrange in
due order the elements from which all the rest proceeds, and into
which all the rest is resolved. And of those who have made the
attempt some were able to put together more and some less; some
used shorter proofs, some extended their investigation to an indefinite
length; some avoided the method of reductio ad absurdum, some
avoided groportion; some contrived preliminary steps directed against
those who reject the principles; and, in a word, many different
methods have been invented by various writers of elements.

“It is essential that such a treatise should be rid of everything
superfluous (for this is an obstacle to the acquisition of knowledge);
it should select everything that embraces the subject and brings it to
a point (for this is of supreme service to science) ; it must have great
regard at once to clearness and conciseness (for their opposites trouble
our understanding); it must aim at the embracing of theorems in
general terms (for the piecemeal division of instruction into the more
partial makes knowledge difficult to grasp). In all these ways
Euclid’s system of elements will be found to be superior to the rest;
for its utility avails towards the investigation of the primordial
figures!, its clearness and organic perfection are secured by the
progression from the more simple to the more complex and by the
foundation of the investigation upon common notions, while generality
of demonstration is secured by the progression through the theorems
which are primary and of the nature of principles to the things sought.
As for the things which seem to be wanting, they are partly to be
discovered by the same methods, like the construction of the scalene
and isosceles (triangle), partly alien to the character of a selection of
elements as introducing hopeless and boundless complexity, like the
subject of unordered irrationals which Apollonius worked out at
length?, and partly developed from things handed down (in the
elements) as causes, like the many species of angles and of lines.
These things then have been omitted in Euclid, though they have
received full discussion in other works ; but the knowledge of them is
derived from the simple (elements).”

Proclus, speaking apparently on his own behalf, in another place
distinguishes two objects aimed at in Euclid’s Elements. The first
has reference to the matter of the investigation, and here, like a good
Platonist, he takes the whole subject of geometry to be concerned
with the “ cosmic figures,” the five regular solids, which in Book XIIL

! rdv dpxwcdv oxnpudrwy, by which Proclus probably means the regular polyhedra
(Tanuery. p- 143m.).

? We have no more than the most obscure indications of the character of this work in an
Arabic Ms. analysed by Woe J)cke. Essai d'une restitution de travaux perdus d'A s
sur les quantités srrationelles d'apris des indications tivles d'un manuscri? arabe in Mémoires

présentés & Pacadéiie des sciences, X1v. 658—710, Paris, 1856. Cf. Cantor, Gesch. d. Math.
Ig, pp. 348—0: details are also given in my notes to Book Xx.
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are constructed, inscribed in a sphere and compared with one another.
The second object is relative to the learner; and, from this standpoint,
the elements may be described as “a means of perfecting the learner’s
understanding with reference to the whole of geometry. For, starting
from these (elements), we shall be able to acquire knowledge of the
other parts of this science as well, while without them it is impossible
for us to get a grasp of so complex a subject, and knowledge of the
rest is unattainable. As it is, the theorems which are most of the
nature of principles, most simple, and most akin to the first hypotheses
are here collected, in their appropriate order; and the proofs of all
other propositions use these theorems as thoroughly well known, and
start from them. Thus Archimedes in the books on the sphere and
cylinder, Apollonius, and all other geometers, clearly use the theorems
proved in this very treatise as constituting admitted principles’”

Aristotle too speaks of elements of geometry in the same sense.
Thus: “in geometry it is well to be thoroughly versed in the
elements?”; “in general the first of the elements are, given the
definitions, e.g. of a straight line and of a circle, most easy to prove,
although of course there are not many data that can be used to
establish each of them because there are not many middle terms®”;
“among geometrical propositions we call those ‘elements’ the proofs of
which are contained in the proofs of all or most of such propositions*”;
“(as in the case of bodies), so in like manner we speak of the elements
of geometrical propositions and, generally, of demonstrations ; for the
demonstrations which come first and are contained in a variety of
other demonstrations are called elements of those demonstrations...
the term element is applied by analogy to that which, being one and
small, is useful for many purposes®.”

§ 22 ELEMENTS ANTERIOR TO EUCLID'S.

The early part of the famous summary of Proclus was no doubt
drawn, at least indirectly, from the history of geometry by Eudemus;
this is generally inferred from the remark, made just after the mention
of Philippus of Medma, a disciple of Plato, that “those who have
written histories bring the development of this science up to this
point.” We have therefore the best authority for the list of writers of
elements given in the summary. Hippocrates of Chios (fl. in second
half of sth c.) is the first; then Leon, who also discovered diorismsi,
put together a more careful collection, the propositions proved in it
being more numerous as well as more serviceable®. Leon was a little
older than Eudoxus (about 408-355 B.C.) and a little younger than
Plato (428/7-347/6 B.C.), but did not belong to the latter’s school. The

! Proclus, pp. 70, 19—71, 21I.

2 Topics VIIL. 14, 163 b 23, 3 Topics vIIL. 3, 158 b 35. ¢ Metaph. 998 a 25.

5 Metaph. 10142 35—D 5.

8 Proclus, p. 66, 20 dore rdv Adovra xal Td orouxeia ouvfeivar T¢ Te wAfBe xal 7] xpela
70v Secrupévwr émypedaTepor.
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geometrical text-book of the Academy was written by Theudius of
Magnesia, who, with Amyclas of Heraclea, Menaechmus the pupil of
Eudoxus, Menaechmus' brother Dinostratus and Athenaeus of Cyzicus
consorted together in the Academy and carried on their investigations
in common. Theudius “ put together the elements adnrirably, making
many partial (or limited) propositions more general’.” Eudemus
mentions no text-book after that of Theudius, only adding that Her-
motimus of Colophon “discovered many of the elements’.” Theudius
then must be taken to be the immediate precursor of Euclid, and no
doubt Euclid made full use of Theudius as well as of the discoveries of
Hermotimus and all other available material. Naturally it is not in
Euclid’s Elements that we can find much light upon the state of the
subject when he took it up ; but we have another source of informa-
tion in Aristotle. Fortunately for the historian of mathematics,
Aristotle was fond of mathematical illustrations; he refers to a con-
siderable number of geometrical propositions, definitions etc, in a
way which shows that his pupils must have had at hand some text-
book where they could find the things he mentions; and this text-book
must have been that of Theudius. Heiberg has made a most valuable
collection of mathematical extracts from Aristotle?, from which much
is to be gathered as to the changes which Euclid made in the methods
of his predecessors ; and these passages, as well as others not included
in Heiberg's selection, will often be referred to in the sequel.

§ 3 FIRST PRINCIPLES: DEFINITIONS, POSTULATES,
AND AXIOMS.

On no part of the subject does Aristotle give more valuable
information than on that of the first principles as, doubtless, generally
accepted at the time when he wrote. One long passage in the
Posterior Analytics is particularly full and lucid, and is worth quoting
in extenso. After laying it down that every demonstrative science
starts from necessary principles®, he proceeds®:

“ By first principles in each genus I mean those the truth of which
it is not possible to prove. What is denoted by the first (terms) and
those derived from them is assumed ; but, as regards their existence,
this must be assumed for the principles but proved for the rest. Thus
what a unit is, what the straight (line) is, or what a triangle is (must
be assumed); and the existence of the unit and of magnitude must
also be assumed, but the rest must be proved. Now of the premisses
used in demonstrative sciences some are peculiar to each science and
others common (to all), the latter being common by analogy, for of
course they are actually useful in so far as they are applied to the sub-
ject-matter included under the particular science. Instances of first

1 Proclus, p. 67, 14 xal ydp 7d oroixeia xalds ouréraber xal mohAd Tdv wepulv [dpidv ()
Friedlein] xafoAwdrepa érolnaer.

2 Proclus, p. 62, 22 70y oroyelwr woAld dreiipe.

3 Mathematisches zu Avristoteles in Abhandls sur Gesch. d. math. Wissenschaften,

xvir Heft (1904), pp. 1—49.
4 Anal. post. 1. 0, 74b 5. 8 jbid. 1. 10, 768 31—77 4 4.



118 INTRODUCTION [ou. 1x. §3

principles peculiar to a science aye the assumptions that a line is of
such and such a character, and similarly for the straight (line); whereas
it is a common principle, for instance, that, if equals be subtracted
from equals, the remainders are equal. But it is enough that each of
the common principles is true so far as regards the particular genus
(subject-matter) ; for (in geometry) the effect will be the same even if
the common principle be assumed to be true, not of everything, but
only of magnitudes, and, in arithmetic, of numbers.

“ Now the things peculiar to the science, the existence of which
must be assumed, are the things with reference to which the science
investigates the essential attributes, e.g. arithmetic with reference to
units, and geometry with reference to points and I'nes. With these
things it is assumed that they exist and that they are of such and
such a nature. But, with regard to their essential properties, what is
assumed is only the meaning of each term employed : thus arithmetic
assumes the answer to the question what is (meant by) ‘odd’ or
‘even,’ ‘a square’ or ‘a cube, and geometry to the question
what is (meant by) ‘the irrational’ or ‘deflection’ or (the so-called)
‘verging’ (to a point); but that there are such things is proved by
means of the common principles and of what has already been
demonstrated. Similarly with astronomy. For every demonstrative
science has to do with three things, (1) the things which are assumed
to exist, namely the genus (subject-matter) in each case, the essential
properties of which the science investigates, (2) the common axioms
so-called, which are the primary source of demonstration, and (3) the
properties with regard to which all that is assumed is the meaning of
the respective terms used. There is, however, no reason why some
sciences should not omit to speak of one or other of these things.
Thus there need not be any supposition as to the existence of the
genus, if it is manifest that it exists (for it is not equally clear that
number exists and that cold and hot exist); and, with regard to the
properties, there need be no assumption as to the meaning of terms if
it is clear: just as in the common (axioms) there is no assumption as
to what is the meaning of subtracting equals from equals, because it is
well known. But none the less is it true that there are three things
naturally distinct, the subject-matter of the proof, the things proved,
and the (axioms) from which (the proof starts).

“Now that which is per se necessarily true, and must necessarily be
thought so, is not a hypothesis nor yet a postulate. For demon-
stration has not to do with reasoning from outside but with the
reason dwelling in the soul, just as is the case with the syllogism.
It is always possible to raise objection to reasoning from outside,
but to contradict the reason within us is not always possible. Now
anything that the teacher assumes, though it is matter of proof|
without proving it himself, is a hypothesis if the thing assumed is
believed by the learner, and it is moreover a hypothesis, not abso-
lutely, but relatively to the particular pupil; but, if the same thing
is assumed when the learner either has no opinion on the subject
or is of a contrary opinion. it is a postulate. This is the difference
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between a hypothesis and a postulate ; for a postulate is that which
is rather contrary than otherwise to the opinion of the learner, or
whatever is assumed and used without being proved, although matter
for demonstration. Now definitions are not hypotheses, for they do
not assert the existence or non-existence of anything, while hypotheses
are among propositions. Definitions only require to be understood :
a definition is therefore not a hypothesis, unless indeed it be asserted
that any audible speech is a hypothesis. A hypothesis is that from
the truth of which, if assumed, a conclusion can be established. Nor
are the geometer’s hypotheses false, as some have said : I mean those
who say that ‘ you should not make use of what is false, and yet the
geometer falsely calls the line which he has drawn a foot long when
it is not, or straight when it is not straight’ The geometer bases no
conclusion on the particular line which he has drawn being that which
he has described, but (he refers to) what is #//ustrated by the figures.
Further, the postulate and every hypothesis are either universal or
particular statements; definitions are neither” (because the subject
is of equal extent with what is predicated of it).

Every demonstrative science, says Aristotle, must start from in-
demonstrable principles : otherwise, the steps of demonstration would
be endless. Of these indemonstrable principles some are (2) common
to all sciences, others are (&) particular, or peculiar to the particular
science ; (@) the common principles are the axioms, most commonly
illustrated by the axiom that, if equals be subtracted from equals, the
remainders are equal, Coming now to (&) the principles peculiar to
the particular science which must be assumed, we have first the genus
or subject-matter, the existence of which must be assumed, viz. magni-
tude in the case of geometry, the unit in the case of arithmetic. Under
this we must assume definitions of manifestations or attributes of the
genus, e.g. straight lines, triangles, deflection etc. The definition in
itself says nothing as to the existence of the thing defined: it only
requires to be understood. But in geometry, in addition to the genus
and the definitions, we have to assume the existence of a few primary
things which are defined, viz. points and lines only: the existence
of everything else, e.g. the various figures made up of these, as
triangles, squares, tangents, and their properties, e.g. incommensur-
ability etc., has to be proved (as it is proved by construction and
demonstration). In arithmetic we assume the erisfence of the wunmit:
but, as regards the rest, only the definitions, e.g. those of odd, even,
square, cube, are assumed, and existence has to be proved. We have then
clearly distinguished, among the indemonstrable principles, axioms
and definitions. A postulate is also distinguished from a Ayppothesis,
the latter being made with the assent of the learner, the former
without such assent or even in opposition to his opinion (though,
strangely enough, immediately after saying this, Aristotle gives a
wider meaning to “postulate” which would cover “hypothesis” as well,
namely whatever is assumed, though it is matter for proof, and used
without being proved). Heiberg remarks that there is no trace in
Aristotle of Euclid’s Postulates, and that “ postulate” in Aristotle has



120 INTRODUCTION [cH. 1x. § 3

a different meaning. He seems to base this on the alternative
description of postulate, indistinguishable from a hypothesis; but,
if we take the other description in which it is distinguished from a
hypothesis as being an assumption of something which is a proper
subject of demonstration without the assent or against the opinion of
the learner, it seems to fit Euclid’s Postulates fairly well, not only the
first three (postulating three constructions), but eminently also the other
two, that all right angles are equal, and that two straight lines meeting
a third and making the internal angles on the same side of it less than
two right angles will meet on that side. Aristotle's description also
seems to me to suit the “ postulates” with which Archimedes begins
his book On the equilibrium of planes, namely that equal weights balance
at equal distances, and that equal weights at unequal distances do not
balance but that the weight at the longer distance will prevail.

Aristotle’s distinction also between /Aypothesis and definition, and
between /ypothesis and axiom, is clear from the following passage:
“ Among immediate syllogistic principles, I call that a zkesis which-
it is neither possible to prove nor essential for any one to hold who
is to learn anything; but that which it is necessary for any one to
hold who is to learn anything whatever is an axiom : for there are
some principles of this kind, and that is the most usual name by
which we speak of them. But, of t4eses, one kind is that which
assumes one or other side of a predication, as, for instance, that
something exists or does not exist, and this is a /zypotkesis ; the other,
which makes no such assumption, is a definition. For a definition is
a thesis: thus the arithmetician posits (7ifera:) that a unit is that
which is indivisible in respect of quantity; but this is not a hypo-
thesis, since what is meant by a unit and the fact that a unit exists
are different things.”

Aristotle uses as an alternative term for axioms “common (things),”
Ta Kowwd, or “common opinions” (kowal 8ofac), as in the following
passages. * That, when equals are taken from equals, the remainders
are equal is (a) common (principle) in the case of all quantities, but
mathematics takes a separate department (émohaBoiica) and directs its
investigation to some portion of its proper subject-matter, as e.g. lines
or angles, numbers, or any of the other quantities?” “The common
(principles), e.g. that one of two contradictories must be true, that
equals taken from equals etc, and the like?....” “With regard to the
principles of demonstration, it is questionable whether they belong to
one science or to several. By principles of demonstration I mean the
common opinions from which all demonstration proceeds, e.g. that one
of two contradictories must be true, and that it is impossible for the
same thing to be and not bei” Similarly “every demonstrative
(science) investigates, with regard to some subject-matter, the essential
attributes, starting from the common gpinions’.” We have then here,
as Heiberg says, a sufficient explanation of Euclid’s term for axioms,

1 dnal. post. 1. 2, 722 14—124. ? Metaph. 1061 b 19—124.
3 Anal. post. 1. 11, 772 30. ’ Ma‘&. 996 b 169—_-39:‘
& Metaph. 997 a 20—22.
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viz. common notions (kowal évvoirar), and there is no reason to suppose
it to be a substitution for the original term due to the Stoics: cf.
Proclus’ remark that, according to Aristotle and the geometers, axiom
and common notion are the same thing?.

Aristotle discusses the indemonstrable character of the axioms
in the Metaphysics. Since “all the demonstrative sciences use the
axioms?” the question arises, to what science does their discussion
belong?? The answer is that, like that of Being (ovcia), it is the
province of the (first) philosopher?, It is impossible that there should
be demonstration of everything, as there would be an infinite series of
demonstrations : if the axioms were the subject of a demonstrative
science, there would have to be here too, as in other demonstrative
sciences, a subject-genus, its attributes and corresponding axioms®; thus
there would be axioms behind axioms, and so on continually. The
axiom is the most firmly established of all principles®. Itis ignorance
alone that could lead any one to try to prove the axioms’; the supposed
proof would be a peritio principii®. 1f it is admitted that not every-
thing can be proved, no one can point to any principle more truly
indemonstrable®. If any one thought he could prove them, he could
at once be refuted; if he did not attempt to say anything, it would
be ridiculous to argue with him: he would be no better than a
vegetable®. The first condition of the possibility of any argument
whatever is that words should signify something both to the speaker
and to the hearer: without this there can be no reasoning with any one.
And, if any one admits that words can mean anything to both hearer
and speaker, he admits that something can be true without demon-
stration. And so on™.

It was necessary to give some sketch of Aristotle’s view of the
first principles, if only in connexion with Proclus’ account, which is
as follows. As in the case of other sciences, so “the compiler of
elements in geometry must give separately the principles of the
science, and after that the conclusions from those principles, not
giving any account of the principles but only of their consequences.
No science proves its own principles, or even discourses about them :
they are treated as self-evident....Thus the first essential was to dis-
tinguish the principles from their consequences. Euclid carries out
this plan practically in every book and, as a preliminary to the whole
enquiry, sets out the common principles of this science. Then he
divides the common principles themselves into Aypotheses, postulates,
and axioms. For all these are different from one another: an axiom,
a postulate and a hypothesis are not the same thing, as the inspired
Aristotle somewhere says. But, whenever that which is assumed and
ranked as a principle is both known to the learner and convincing in
itself, such a thing is an ariom, eg. the statement that things which
are equal to the same thing are also equal to one another. When, on

1 Proclus, p. 194, 8. 2 Metaph. 997 a 10.
3 ibid. ggbb :2. 4 ibid. 100531:-2% . 8 gbid, 9972 5—8.
® fbid. 1005 b 11—17. 7 fbid. 1006 a 5. 8 jbid. 1006a 17.

¥ jbid. 10062 10, 10 sbid. yooba 11—15. 1 ibid. 1006 a 18 sqq.



122 INTRODUCTION [ch.1x. §3

the other hand, the pupil has not the notion of what is told him
which carries conviction in itself, but nevertheless lays it down and
assents to its being assumed, such an assumption is a /Aypothesis.
Thus we do not preconceive by virtue of a common notion, and
without being taught, that the circle is such and such a figure, but,
when we are told so, we assent without demonstration. When again
what is asserted is both unknown and assumed even without the
assent of the learner, then, he says, we call this a postulate, e.g. that
all right angles are equal. This view of a postulate is clearly implied
by those who have made a special and systematic attempt to show,
with regard to one of the postulates, that it cannot be assented to by
any one straight off. According then to the teaching of Aristotle, an
axiom, a postulate and a hypothesis are thus distinguished®.”

We observe, first, that Proclus in this passage confuses Aypot/eses
and definitions, although Aristotle had made the distinction quite
plain. The confusion may be due to his having in his mind a passage
of Plato from which he evidently got the phrase about “not giving
an account of” the principles. The passage is*: “I think you know
that those who treat of geometries and calculations (arithmetic) and
such things take for granted (dmoféuevor) odd and even, figures,
angles of three kinds, and other things akin to these in each subject,
implying that they know these things, and, though using them as
hypotheses, do not even condescend to give any account of them
either to themselves or to others, but begin from these things and
then go through everything else in order, arriving ultimately, by
recognised methods, at the conclusion which they started in search
of.” But the hypothesis is here the assumption, e.g. ‘that there may
be such a thing as length without breadth, henceforward called a line?’
and so on, without any attempt to show that there is such a thing;
it is mentioned in connexion with the distinction between Plato's
‘superior’ and ‘inferior’ intellectual method, the former of which
uses successive hypotheses as stepping-stones by which it mounts
upwards to the idea of Good.

We pass now to Proclus’ account of the difference between postu-
lates and arioms. He begins with the view of Geminus, according
to which “they differ from one another in the same way as theorems
are also distinguished from problems. For, as in theorems we propose
to see and determine what follows on the premisses, while in problems
we are told to find and do something, in like manner in the axioms
such things are assumed as are manifest of themselves and easily
apprehended by our untaught notions, while in the postulates we
assume such things as are easy to find and effect (our understanding
suffering no strain in their assumption), and we require no complication
of machinery*”...“ Both must have the characteristic of being simple

1 Proclus, pp. 75, 10—77, 2.

* Republic, V1. s1oc. Cf. Aristotle, NVie. £th. 11512 17.

3 H. Jackson, Journal of Philology, vol. X. p. 144.

¢ Proclus, pp. 178, 12—179, 8. In illustration Proclus contrasts the d“‘:f of a straight
line or a circle with the drawing of a ** single-turn spiral ” or of an equilateral triangle, the
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and readily grasped, I mean both the postulate and the axiom; but
the postulate bids us contrive and find some subject-matter (JAn) to
exhibit a property simple and easily grasped, while the axiom bids us
assert some essential attribute which is self-evident to the learnet,
just as is the fact that fire is hot, or any of the most obvious things’.”

Again, says Proclus, “some claim that all these things are alike
postulates, in the same way as some inaintain that all things that are
sought are problems. For Archimedes begins his first' book on /n-
equilibrium® with the remark ‘I postulate that equal weights at equal
distances are in equilibrium,” though one would rather call this an
axiom. Others call them all axioms in the same way as some regard
as theorems everything that requires demonstration®.”

“Others again will say that postulates are peculiar to geometrical
subject-matter, while axioms are common to all investigation which
is concerned with quantity and magnitude. Thus it is the geometer
who knows that all right angles are equal and how to produce in
a straight line any limited straight line, whereas it is a ¢common notion
that things which are equal to the same thing are also equal to one
another, and it is employed by the arithmetician and any scientific
person who adapts the general statement to his own subject*.”

The third view of the distinction between a postulate and an axiom
is that of Aristotle above described®.

The difficulties in the way of reconciling Euclid’s classification
of postulates and axioms with any one of the three alternative views
are next dwelt upon. If we accept the first view according to which
an axiom has reference to something known, and a postulate to
something done, then the 4th postulate (that all right angles are
equal) is not a postulate; neither is the sth which states that, if a
straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the straight lines, if
produced indefinitely, will meet on that side on which are the angles
less than two right angles. On the second view, the assumption that
two straight lines cannot enclose a space, “which even now,” says
Proclus, “some add as an axiom,” and which is peculiar to t[‘:c
subject-matter of geometry, like the fact that all right angles are
equal, is not an axiom. According to the third (Aristotelian) view,
“everything which is confirmed (mtorodTar) by a sort of demonstration

spiral requiring more complex machinery and even the equilateral triangle needing a certain
method. ** For the geometrical intelligence will say that by conceiving a straight line fixed
at one end but, as regards the other end, moving round the fixed end, and a point moving
along the straight line from the fixed end, I have described the single-turn spiral ; for the
end of the straight line describing a circle, and the point moving on the straight line simul-
taneously, when they arrive and meet at the same point, complete such a spim . And again,
if I draw equal circles, join their common point to the centres of the circles and draw a
straight line from one of the centres to the other, I shall have the equilateral triangle.
These things then are far from being completed by means of a single act or of a moment’s
thought "’ Fps 180, 8—a1).

1 Proclus, p. 181, 4—11.

? It is necessary to coin a word to render &vigopporidw, which is moreover in the plural.
The title of the treatise as we have it is Eguilibria of planes or centres of gravity of planes in
Book 1 and Eywuilibria of planes in Book 11.

3 Proclus, p. 181, 16—23. 4 ibid. p. 182, 6—14. 5 Pp. 118, 119.
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will be a postulate, and what is incapable of proof will be an axiom.”
This last statement of Proclus is loose, as regards the axiom, because
it omits Aristotle’s requirement that the axiom should be a self-
evident truth, and one that must be admitted by any one who is to
learn anything at all, and, as regards the postulate, because Aristotle
calls a postulate something assumed without proof though it is
“matter of demonstration” (dmodesctov &v), but says nothing of a
guasi-demonstration of the postulates. On the whole I think it is
from Aristotle that we get the best idea of what Euclid understood
by a postulate and an axiom or common notion. Thus Aristotle’s
account of an axiom as a principle common to all sciences, which is
self-evident, though incapable of proof, agrees sufficiently with the
contents of Euclid’s common notions as reduced to five in the most
recent text (not omitting the fourth, that “things which coincide are
equal to one another”). As regards the gostulates, it must be borne
in mind that Aristotle says elsewhere? that, “other things being equal,
that proof is the better which proceeds from the fewer postulates or
hypotheses or propositions.” If then we say that a geometer must
lay down as principles, first certain axioms or common notions, and
then an irreducible minimum of postulates in the Aristotelian sense
concerned only with the subject-matter of geometry, we are not far
from describing what Euclid in fact does. As regards the postulates
we may imagine him saying: “ Besides the common notions there are
a few other things which I must assume without proof, but which
differ from the common notions in that they are not self-evident.
The learner may or may not be disposed to agree to them; but he
must accept them at the outset on the superior authority of his
teacher, and must be left to convince himself of their truth in the
course of the investigation which follows. In the first place certain
simple constructions, the drawing and producing of a straight line,
and the drawing of a circle, must be assumed to be possible, and with
the constructions the existence of such things as straight lines and
circles; and besides this we must lay down some postulate to form
the basis of the theory of parallels.” It is true that the admission of
the 4th postulate that all right angles are equal still presents a
difficulty to which we shall have to recur.

There is of course no foundation for the idea, which has found
its way into many text-books, that “ the object of the postulates is to
declare that the only instruments the use of which is permitted in
geometry are the rule and compass®.”

§ 4 THEOREMS AND PROBLEMS.

“ Again the deductions from the first principles,” says Proclus,
“are divided into problems and theorems, the former embracing the

1 Proclus, pp. 182, 21—183, 13. 2 Anal, post. 1. 25, 86 a 33—35.
3 Cf. Lardner’s Euclid : also Todhunter.
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generation, division, subtraction or addition of figures, and generally
the changes which are brought about in them, the latter exhibiting
the essential attributes of eacht”

“ Now, of the ancients, some, like Speusippus and Amphinomus,
thought proper to call them all theorems, regarding the name of
theorems as more appropriate than that of problems to theoretic
sciences, especially as these deal with eternal objects. For there is
no becoming in things eternal, so that neither could the problem
have any place with them, since it promises the generation and
making of what has not before existed, e.g. the construction of an
equilateral triangle, or the describing of a square on a given straight
line, or the placing of a straight line at a given point. Hence they
say it is better to assert that all (propositions) are of the same kind,
and that we regard the generation that takes place in them as
referring not to actual making but to knowledge, when we treat things
existing eternally as if they were subject to becoming: in other words,
we may say that everything is treated by way of theorem and not
by way of problem? (wdvra Oewpnuaricds aAN ol mwpoBAnuatikds
AapBdveatar).

“Others on the contrary, like the mathematicians of the school
of Menaechmus, thought it right to call them all problems, describing
their purpose as twofold, namely in some cases to furnish (wopi-
caglfas) the thing sought, in others to take a determinate object
and see either what it is, or of what nature, or what is its property,
or in what relations it stands to something else.

“In reality both assertions are correct. Speusippus is right
because the problems of geometry are not like those of mechanics,
the latter being matters of sense and exhibiting becoming and change
of every sort. The school of Menaechmus are right also because the
discoveries even of theorems do not arise without an issuing-forth
into matter, by which I mean intelligible matter. Thus forms going
out into matter and giving it shape may fairly be said to be like
processes of becoming. For we say that the motion of our thought
and the throwing-out of the forms in it is what produces the figures
in the imagination and the conditions subsisting in them. It is in
the imagination that constructions, divisions, placings, applications,
additions and subtractions (take place), but everything in the mind is
fixed and immune from becoming and from- every sort of change?®.”

“Now those who distinguish the theorem from the problem say
that every problem implies the possibility, not only of that which is
predicated of its subject-matter, but also of its opposite, whereas
every theorem implies the possibility of the thing predicated but not
of its opposite as well. By the subject-matter I mean the genus
which is the subject of inquiry, for example, a triangle or a square
or a circle, and by the property predicated the essential attribute,
as equality, section, position, and the likee When then any cne

! Proclus, p. 77, 7—12. * ibid, pp. 77, 15—78, 8.
3 ibid, pp. 78, 8—179, 2.
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enunciates thus, 7o énscribe an equilateral triangle in a circle, he states
a problem; for it is also possible to inscribe in it a triangle which
is not equilateral. Again, if we take the enunciation O a given
limited straight line to comstruct an equilateral triangle, this is a
problem ; for it is possible also to construct one which is not equi-
lateral. But, when any one enunciates that /n isosceles triangles the
angles at the base are equal, we must say that he enunciates a theorem ;
for it is not also possible that the angles at the base of isosceles
triangles should be unequal. It follows that, if any one were to use
the form of a problem and say /n a semicircle to describe a right angle,
he would be set down as no geometer. For every angle in a semi-
circle is right.”

“ Zenodotus, who belonged to the succession of Oenopides, but
was a disciple of Andron, distinguished the theorem from the problem
by the fact that the theorem inquires what is the property predicated
of the subject-matter in it, but the problem what is the cause of what
effect (rivos dvros 7i éomw). Hence too Posidonius defined the one
(the problem) as a proposition in which it is inquired whether a thing
exists or not (el éariw 3 pi), the other (the theorem?) as a proposition
in which it is inquired what (a thing) is or of what nature (7i éoriv #
aroiov T¢) ; and he said that the theoretic proposition must be put in a
declaratory form, e.g., Any triangle has two sides (logether) greater than
the remaining side and In any isosceles triangle the angles at the base
are equal, but that we should state the problematic proposition as if
inquiring whether it is possible to construct an equilateral triangle
upon such and such a straight line. For there is a difference between
inquiring absolutely and indeterminately (dmAds 7e xal doploTws)
whether there exists a straight line from such and such a point at
right angles to such and such a straight line and investigating which
is the straight line at right angles®.”

“That there is a certain difference between the problem and the
theorem is clear from what has been said; and that the Elements of
Euclid contain partly problems and partly theorems will be made
manifest by the individual propositions, where Euclid himself adds at
the end of what is proved in them, in some cases, ‘ that which it was
required to do,” and in others, ‘ that which it was required to prove,’
the latter expression being regarded as characteristic of theorems, in
spite of the fact that, as we have said, demonstration is found in
problems also. In problems, however, even the demonstration is for
the purpose of (confirming) the construction: for wé bring in the
demonstration in order to show that what was enjoined has been
done ; whereas in theorems the demonstration is worthy of study for
its own sake as being capable of putting before us the nature of the
thing sought. And you will find that Euclid sometimes interweaves
theorems with problems and employs them in turn, as in the first

1 Proclus, pp. 79, 11—8o, 5.

2 In the text we have rd 3¢ wpdShnua answering to 7d uév without substantive : wpéFinua
was obviously inserted in error.

3 Proclus, pp. 8o, 15—81, 4.
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book, while at other times he makes one or other preponderate.
For the fourth book consists wholly of problems, and the fifth of
theorems®.”

Again, in his note on Eucl. 1. 4, Proclus says that Carpus, the
writer on mechanics, raised the question of theorems and problems in
his treatise on astronomy. Carpus, we are told, “says that the class
of problems is in order prior to theorems. For the subjects, the
properties of which are sought, are discovered by means of problems.
Moreover in a problem the enunciation is simple and requires no
skilled intelligence; it orders you plainly to do such and such a
thing, 7o construct an equilateral triangle, or, given two straight lines, to
cut off from the greater (a straight line) equal lo the lesser, and what is
there obscure or elaborate in these things? But the enunciation of a
theorem is a matter of labour and requires much exactness and
scientific judgment in order that it may not turn out to exceed or
fall short of the truth; an example is found even in this proposition
(L 4), the first of the theorems. Again, in the case of problems, one
general way has been discovered, that of analysis, by following which
we can always hope to succeed ; it is this method by which the more
obscure problems are investigated. But, in the case of theorems, the
method of setting about them is hard to get hold of since ‘up to our
time,’ says Carpus, ‘no one has been able to hand down a general
method for their discovery. Hence, by reason of their easiness, the
class of problems would naturally be more simple” After these
distinctions, he proceeds: ‘Hence it is that in the Elements too
problems precede theorems, and the Elements begin from them; the
first theorem is fourth in order, not because the fifth? is proved from
the problems, but because, even if it needs tor its demonstration none
of the propositions which precede it, it was necessary that they should
be first because they are problems, while it is a theorem. In fact, in
this theorem he uses the common notions exclusively, and in some
sort takes the same triangle placed in different positions; the
coincidence and the equality proved thereby depend entirely upon
sensible and distinct apprehension. Nevertheless, though the demon-
stration of the first theorem is of this character, the problems properly
preceded it, because in general problems are allotted the order of
precedence®.’”

Proclus himself explains the position of Prop. 4 after Props. 1—3
as due to the fact that a theorem about the essential properties of
triangles ought not to be introduced before we know that such a
thing as a triangle can be constructed, nor a theorem about the
equality of sides or straight lines until we have shown, by constructing
them, that there can be two straight lines which are equal to one
anothert, It is plausible enough to argue in this way that Props. 2
and 3 at all events should precede Prop. 4. And Prop. 1 is used in

1 Proclus, p. 81, 5—21.

2 7% wéuwrov. This should apparently be the fowrtk because in the next words it is
implied that none of the first three propositions are required in proving it.

¥ Proclus, pp. 241, 190—1243, I1. 4 ibid. pp. 233, 21—1234, 6.
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Prop. 2, and must therefore precede it. But Prop. 1 showing how to
construct an eguilateral triangle on a given base is not important, in
relation to Prop. 4, as dealing with the “production of triangles” in
general : for it is of no use to say, as Proclus does, that the construc-
tion of the equilateral triangle is “common to the three species (of
triangles)’,” as we are not in a position to know this at such an early
stage. The existence of triangles in general was doubtless assumed as
following from the existence of straight lines and points in one plane
and from the possibility of drawing a straight line from one point to
another.

Proclus does not however seem to reject definitely the view of
Carpus, for he goes on®: “ And perhaps problems are in order before
theorems, and especially for those who need to ascend from the arts
which are concerned with things of sense to theoretical investigation.
But in dignity theorems are prior to problems....It is then foolish to
blame Geminus for saying that the theorem is more perfect than the
problem. For Carpus himself gave the priority to problems in respect
of order, and Geminus to theorems in point of more perfect dignity,”
so that there was no real inconsistency between the two.

Problems were classified according to the number of their possible
solutions, Amphinomus said that those which had a unique solution
gt.ovwxa'ic) were called “ordered” (the word has dropped out in

roclus, but it must be rerayuéva, in contrast to the third kind,
draxta); those which had a definite number of solutions “inter-
mediate ” (uéga); and those with an infinite variety of solutions “un-
ordered” (&raxta)’. Proclus gives as an example of the last the
problem 7o divide a given straight line into three parts in continued
proportion'. This is the same thing as solving the equations x+y+s=a,
zz=3", Proclus’ remarks upon the problem show that it was solved,
like all quadratic equations, by the method of “application of areas.”
The straight line @ was first divided into any two parts, (z +2) and y,
subject to the sole limitation that (# + 2) must not be less than 2y,
which limitation is the 8iopioucs, or condition of possibility. Then
an area was applied to (x+s), or (a—y), “falling short by a square
Jigure” (é\keimov eidev Terparydvy) and equal to the square on y. This
determines x and z separately m terms of @ and ». For, if 2 be the
side of the square by which the area (i.e. rectangle) “ falls short,” we
have {(2 —y)—z} 2=y whence 2¢=(a~»)t v{(@a—y) -4} And
y may be chosen arbitrarily, provided that it is not greater than a/3.
Hence there are an infinite number of solutions, If y =a/3, then, as
Proclus remarks, the three parts are equal.

Otbher distinctions between different kinds of problems are added
by Proclus. The word “problem,” he says, is used in several senses,
In its widest sense it may mean anything propounded (mporewa-
pevov), whether for the purpose of instruction (nabnoews) or construc-
tion (mowjcews). (In this sense, therefore, it would include a theorem.)

! Proclus, p. 234, 21. 3 ibid, p. 243, 12—15.
3 ibid. p. no, 7—12. 4 ibid. pp. 220, 16—111, 6.
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But its special sense in mathematics is that of something “propounded
with a view to a theoretic construction®.”

Again you may apply the term (in this restricted sense) even to
something which is Zmpossible, although it is more appropriately used
of what is possible and neither asks too much nor contains too little in
the shape of data. According as a problem has one or other of these
defects respectively, it is called (1) a problem i excess (mheovdfov) or
(2) a deficient problem (é\Aurés mpoBanua). The problem 7n excess
(1) is of two kinds, (2) a problem in which the properties of the
figure to be found are either inconsistent (aovuBara) or non-existent
(avvmapkra), in which case the problem is called impossible, or (4) a
problem in which the enunciation is merely redundant: an example
of this would be a problem requiring us to construct an equilateral
triangle with its vertical angle equal to two-thirds of a right angle;
such a problem is possible and is called “more than a problem” (uettor
# wpoSinua). The deficient problem (2) is similarly called “less than
a problem” (é\agoov # wpdBAinua), its characteristic being that
something has to be added to the enunciation in order to convert it
from indeterminateness (dopioria) to order (Tais) and scientific deter-
minateness (8pos émioTnuowvikds): such would be a problem bidding
you “to construct an isosceles triangle,” for the varieties of isosceles
triangles are unlimited. Such “problems” are not problems in the
proper sense (kupiws Aéydueva mpoShijpara), but only equivocally?.

§ 5. THE FORMAL DIVISIONS OF A PROPOSITION.

“Every problem,” says Proclus’, “and every theorem which is
complete with all its parts perfect purports to contain in itself all of
the following elements: enunciation (mpdrag:s), setting-out (éxfeas),
definition or specification (Stopiopds), construction or machinery
(xatackevn), proof (dmodefis), conclusion (a'vm'repao'pa) Now of
these the enunciation states what is given and what is that which is
sought, the perfect enunciation consisting of both these parts. The
setting-ont marks off what is given, by itself, and adapts it before-
hand for use in the investigation. The definition or specification
states separately and makes clear what the particular thing is which
is sought. The construction or machinery adds what is wanting to the
datum for the purpose of finding what is sought. .The proof draws
the required inference by reasoning scientifically from acknowledged
facts. The conclusion reverts again to the emunciation, confirming
what has been demonstrated. These are all the parts of problems
and theorems, but the most essential and those which are found in all
are enunciation, proof, conclusion. For it is equally necessary to know
beforehand what is sought, to prove this by means of the intermediate
steps, and to state the proved fact as a conclusion; it is impossible
to dispense with any of these three things. The remaining parts
are often brought in, but are often left out as serving no purpose.

1 Proclus, p. 241, 7—I1. 2 jbid. pp. 221, 13—223, 14
3 ibid. pp. 903, 1—1204, 13 ; 204, 23—1205, 8.
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Thus there is neither seffimg-out nor definition in the problem of
constructing an isosceles triangle having each of the angles at the
base double of the remaining angle, and in most theorems there
is no construction because the setting-out suffices without any addition
for proving the required property from the data. When then do
we say that the setting-out is wanting? The answer is, when there
is nothing given in the enunciation; for, though the enunciation is
in general divided into what is given and what is sought, this
is not always the case, but sometimes it states only what is sought,
i.e. what must be known or found, as in the case of the problem
just mentioned. That problem does not, in fact, state beforehand
with what datum we are to construct the isosceles triangle having
each of the equal angles double of the remaining angle, but (simply)
that we are to find such a triangle.... When, then, the enuncia-
tion contains both (what is given and what is sought), in that case
we find both definition and setting-out, but, whenever the datum
is wanting, they too are wanting. For not only is the setting-out
concerned with the datum, but so is the definition also, as, in the
absence of the datum, the definition will be identical with the
enunciation. In fact, what could you say in defining the object of
the aforesaid problem except that it is required to find an isosceles
triangle of the kind referred to? But that is what the enunciation
stated. If then the enunciation does not include, on the one hand,
what is given and, on the other, what is sought, there is no setting-out
in virtue of there being no datum, and the definition is left out in
order to avoid a mere repetition of the enunciation.”

The constituent parts of an Euclidean proposition will be readil
identified by means of the above description. As regards the def-
nition or specification (8iopiopés) it is to be observed that we have
here only one of its uses, Here it means a closer definition or descrip-
tion of the object aimed at, by means of the concrete lines or figures
set out in the éxfeais instead of the general terms used in the enun-
ciation ; and its purpose is to rivet the attention better, as Proclus
indicates in a later passage (Tpémov Twa mpoceyelas éotiv alrios o
Stoprapds)’.

IF,The. other technical use of the word to signify the limitations to
which the possible solutions of a problem are subject is also described
by Proclus, who speaks of Siopiopol determining “whether what is
sought is impossible or possible, and how far it is practicable and in
how many ways*”; and the 8wopiouos in this sense appears in Euclid
as well as in Archimedes and Apollonius. Thus we have in Eucl. L.
22 the enunciation “From three straight lines which are equal to
three given straight lines to construct a triangle,” followed imme-
diately by the /lmiting condition (Siopiopés). “Thus two of the
straight lines taken together in any manner must be greater than the
remaining one.” Similarly in Vi, 28 the enunciation “To a given
straight line to apply a parallelogram equal to a given rectilineal

1 Proclus, p. 208, 21. 2 §bid. p. 201, 3.
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figure and falling short by a parallelogrammic figure similar to a
given one” is at once followed by the necessary condition of possi-
bility: “Thus the given rectilineal figure must not be greater than
that described on half the line and similar to the defect.”

Tannery supposed that, in giving the other description of the
Swopiopds as quoted above, Proclus, or rather his guide, was using the
term incorrectly. The 8wpiouos in the better known sense of the
determination of limits or conditions of possibility was, we are told,
invented by Leon. Pappus uses the word in this sense only. The
other use of the term might, Tannery thought, be due to a confusion
occasioned by the use of the same words (def 87) in introducing the

rts of a proposition corresponding to the two meanings of the word
gfapwp&e‘. On the other hand it is to be observed that Eutocius
distinguishes clearly between the two uses and implies that the differ-
ence was well known®. The 8wpiouss in the sense of condition of
possibility follows immediately on the enunciation, is even part of it;
the 8topiauds in the other sense of course comes immediately after the
setting-out.

Proclus has a useful observation respecting the conclusion of a
proposition®, “The conclusion they are accustomed to make double
in a certain way: 1 mean, by proving it in the given case and then
drawing a general inference, passing, that is, from the partial con-
clusion to the general. For, inasmuch as they do not make use of
the individuality of the subjects taken, but only draw an angle or a
straight line with a view to placing the datum before our eyes, they
consider that this same fact which is established in the case of the
particular figure constitutes a conclusion true of every other figure of
the same kind. They pass accordingly to the general in order that
we may not conceive the conclusion to be partial. And they are
justified in so passing, since they use for the demonstration the par-
ticular things set out, not gud particulars, but gud typical of the rest.
For it is not in virtue of such and such a size attaching to the angle
which is set out that I effect the bisection of it, but in virtue of its
being rectilineal and nothing more. Such and such size is peculiar to
the angle set out, but its quality of being rectilineal is common to all
rectilineal angles. Suppose, for example, that the given angle is a
right angle, If then I had employed in the proof the fact of its being
right, I should not have been able to pass to every species of recti-
lineal angle ; but, if [ make no use of its being right, and only consider
it as rectilineal, the argument will equally apply to rectilineal angles
in general.”

1 La Géométrie grecque, p. 149 note. Where 8¢l 83 introduces the closer description of
the problem we may translate, ‘it is then required " or “ thus it is required ” (to construct etc.):
when it introduces the condition of possibility we may translate ‘‘thus it is necessary etc.”
Heiberg originally wrote J¢f 3¢ in the latter sense in 1. 22 on the authority of Proclus and
Eutocius, and inst that of the Mss. Later, on the occasion of XI. 23, he observed that he
should have followed the Mss. and written 8¢ &) which he found to be, after all, the right
reading in Eutocius (Apollonius, ed. Heiberg, 11. p. 178). i ) is also the expression used
by Diophantus for introducing conditions of possibility.

2 See the passage of Eutocius referred to in last note. # Proclus, p. 207, 4—15.
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§ 6. OTHER TECHNICAL TERMS.

1. Things said to be given.

Proclus attaches to his description of the formal divisions of a
proposition an explanation of the different senses in which the word
given or datum (8edopévov) is used in geometry. “Everything that is
given is given in one or other of the following ways, in position, in
ratio, in magnitude, or in species. The point is given in position only,
but a line and the rest may be given in all the senses’.”

The illustrations which Proclus gives of the four senses in which a
thing may be given are not altogether happy, and, as regards things
which are given in position, in magnitude, and in species, it is best, I
think, to follow the definitions given by Euclid himself in his book of
Data. Euclid does not mention the fourth class, things given in ratio,
nor apparently do any of the great geometers.

(1) Given in position really needs no definition; and, when Euclid
says (Data, Def. 4) that “ Points, lines and angles are said to be given
in position which always occupy the same place,” we are not really
the wiser.

(2) Given in magnitude is defined thus (Data, Def. 1): “ Areas,
lines and angles are called given in magnitude to which we can find
equals.” Proclus’ illustration is in this case the following: when, he
says, two unequal straight lines are given from the greater of which
we have to cut off a straight line equal to the lesser, the straight lines
are obviously given in magnitude, “for greater and less, and finite
and infinite are predications peculiar to magnitude.” But he does not
explain that part of the implication of the term is that a thing is given
in magnitude ony, and that, for example, its position is not given and
is a matter of indifference

(3) Given in species. Euclid's definition (Data, Def. 3) is:
“Rectilineal figures are said to be grven in species in which the angles
are severally given and the ratios of the sides to one another are
given.” And this is the recognised use of the term (cf. Pappus,
passtm)  Proclus uses the term in a much wider sense for which I am
not aware of any authority. Thus, he says, when we speak of (bisect-
ing) a given rectilineal angle, the angle is given in species by the word
rectilineal, which prevents our attempting, by the same method, to
bisect a curvilineal angle! On Eucl. I. 9, to which he here refers, he
says that an angle is given in species when e.g. we say that it is right
or acute or obtuse or rectilineal or “mixed,” but that the actual angle
in the proposition is given in species only. As a matter of fact, we
should say that the actual angle in the figure of the proposition is
given in magnitude and not in species, part of the implication of given
in species being that the actual magnitude of the thing grven in species
is indifferent ; an angle cannot be given in species in this sense at all.
The confusion in Proclus’ mind is shown when, after saying that a
right angle is given iz species, he describes a third of a right angle as
given in magnitude.

1 Proclus, p. 205, 13—15.
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No better example of what is meant by given in species, in its
proper sense, as limited to rectilineal figures, can be quoted than the
given parallelogram in Eucl. VI. 28, to which the required parallelo-
gram has to be made similar; the former parallelogram is in fact
given in species, though its actual size, or scale, is indifferent.

(4) Given in ratio presumably means something which is given
by means of its ratio to some other given thing. This we gather from
Proclus’ remark (in his note on I g) that an angle may be given in
ratio “as when we say that it is double and treble of such and such an
angle or, generally, greater and less.” The term, however, appears to
have no authority and to serve no purpose. Proclus may have
derived it from such expressions as “in a given ratio” which are
common enough,

2. Lemma.

“The term lemma,” says Proclus?, “is often used of any proposition
which is assumed for the construction of something else: thus it is a
common remark that a proof has been made out of such and such
lemmas. But the special meaning of /lewmma in geometry is a
proposition requiring confirmation. For when, in either construction
or demonstration, we assume anything which has not been proved but
requires argument, then, because we regard what has been assumed as
doubtful in itsélf and therefore worthy of investigation, we call it a
lemma?, differing as it does from the postulate and the axiom in being
matter of demonstration, whereas they are immediately taken for
granted, without demonstration, for the purpose of confirming other
things. Now in the discovery of lemmas the best aid is a mental
aptitude for it. For we may see many who are quick at solutions and
yet do not work by method ; thus Cratistus in our time was able to
obtain the required result from first principles, and those the fewest
possible, but it was his natural gift which helped him to the discovery.

1 Proclus, pp. 211, 1—2112, 4.

3 It would appear, says Tannery (p. 151 #.), that Geminus understood a lemma as being
simply Aauparéuevov, something assumed (cf. the passage of Proclus, p. 73, 4, relating to
Menaechmus’ view of elements): hence we cannot consider ourselves authorised in attributing
to Geminus the more technical definition of the term here dgiven by Proclus, according to
which it is only used of propositions not proved beforehand. This view of a lemma must
be considered as relatively modern. It seems to have had its origin in an imperfection of
method. In the of a d ration it was necessary to assume a proposition which
required !pmof, but the proof of which would, if inserted in the particular place, Lreak the
thread of the demonstration: hence it was necessary either to prove it beforehand as a

reliminary proposition or to postpone it to be proved afterwards (ds é&fjs Secxffrera).
hen, after the time of Geminus, the progress of original discovery in geometry was arrested,
geometers occupied themselves with the study and elucidation of the works of the great
mathematicians who had preceded them. This involved the investigation of propositions
explicitly quoted or tacitly assumed in the great classical treatises; and naturally it was found
that several such remained to be demonstrated, either because the authors had omitted
them as being easy enough to be left to the reader himself to prove, or because books in
which they were proved had been lost in the meantime. Hence arose a class of complementary
or auxiliary propositions which were called Jemmas. Thus Pappus gives in his Book viia

inielucid

collection of 1 ion of the treatises of Euclid and Apollonius included in the
so-called *Treasury of Analysis” (réwos dvahuvéueros). When Proclus goes on to distinguish
three methods of discovering | rialysis, division, and reductio ad absurdum, he seems
to imply that the principal busi of porary g ers was the investigation of these

auxiliary propositions.


file:///afifiav6fievov

134 INTRODUCTION [cH. 1x. §6

Nevertheless certain methods have been handed down. The finest is
the method which by means of analysis carries the thing sought up to
an acknowledged principle, a method which Plato, as they say, com-
municated to Leodamas?, and by which the latter, too, is said to have
discovered many things in geometry. The second is the method of
division®, which divides into its parts the genus proposed for con-
sideration and gives a starting-point for the demonstration by means
of the elimination of the other elements in the construction of what is
proposed, which method also Plato extolled as being of assistance to
all sciences. The third is that by means of the reductio ad absurdum,
which does not show what is sought directly; but refutes its opposite
and discovers the truth incidentally.”

3. Case.

“The case® (wrrdous),” Proclus proceeds?, “announces different ways
of construction and alteration of positions due to the transposition of
points or lines or planes or solids. And, in general, all its varieties
are seen in the figure, and this is why it is called case, being a trans-
position in the construction.”

4. Porism.

“The term porism is used also of certain problems such as the
Porisms written by Euclid. But it is specially used when from what
has been demonstrated some other theorem is revealed at the same
time without our propounding it, which theorem has on this very
account been called a porism (corollary) as being a sort of incidental
gain arising from the scientific demonstration®” Cf. the note on I 15.

1 This passage and another from Diogenes Laertias (111. 24, p. 74 ed. Cobet) to the effect
that ‘“ He [Plato) explained (elsqyfraro) to Leodamas of Thasos the method of inquiry by
analysis ' have been commonly understood as ascribing to Plato the invention of the method
of ana]{sis; but Tannery points out forcibly (pp. 112, 113) how difficult it is to explain in
what Plato’s discovery could have consisted if analysis be taken in the sense attributed to it
in Pappus, where we can see no more than a series of successive, reductions of a problem
until it is finally reduced to a known problem. On the other hand, Proclus’ words about
carrying up the thing sought to ‘“an acknowledged principle” suggest that what he had in
mind was the grocess described at the end of Book V1 of the Republic by which the dialec-
tician (unlike the mathematician) uses hypotheses as stepping-stones np to a principle which
is not hypothetical, and then is able to descend step by step verifying every one of the
hypotheses by which he ascended. This description does not of course refer to mathematical
am!zysis. but it may have given rise to the idea that analysis was Plato’s discovery, since

lysis and symthesés following each other are related in the same way as the upward and
the downward progression in the dialectician’s intellectual method. And it may be that
Plato’s achievement was to observe the importance, from the point of view of logical rigour,
of the confirmatory synthesis followiﬁ analysis, and to regularise in this way and elevate
into a completely irrefragable method the partial and uncertain analysis upon which the
works of his predecessors depended.

? Here ai‘ain the successive bipartitions of genera into species such as we find in the
Sophist and Republic have very little to say to geometry, and the very fact that they are here
mentioned side by side with analysis suggests that Proclus confused the latter with the
philosophical method of Rep. vI.

3 Tannery rightly remarks (p. 152) that the subdivision of a theorem or problem into
several cases is foreign to the really classic form ; the ancients preferred, where necessary, to
multiply enunciations. As, however, some omissions necessarily occurred, the writers of
lemmas naturally added separate cases, which in some instances found their way into the text.
A good example is Euclid 1. 7, the second case of which, as it appears in our text-books,
was interpolated. On the commentary of Proclus on this proposition Th. Taylor rightly
remarks that ** Euclid everywhere avoids a multitude of cases.”

4 Proclus, p. 212, 5—11.

% Tannery notes however that, so far from distinguishing his corollaries from the con-
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5. Objection.

“The objection (évoraais) obstructs the whole course of the argu-
ment by appearing as an obstacle (or crying ‘halt, dravrdca) either
to the construction or to the demonstration. There is this difference
between the objection and the case, that, whereas he who propounds
the case has to prove the proposition to be true of it, he who makes
the objection does not need to prove anything: on the contrary it is
necessary to destroy the objection and to show that its author is
saying what is falsel.”

That is, in general the objection endeavours to make it appear that
the demonstration is not true in every case; and it is then necessary
to prove, in refutation of the objection, either that the supposed case
is impossible, or that the demonstration #s true even for that case. A
good instance is afforded by Eucl. 1. 7. The text-books give a second
case which is not in the original text of Euclid. Proclus remarks on
the proposition as given by Euclid that the objection may conceivably
be raised that what Euclid declares to be impossible may after all be
possible in the event of one pair of stiaight lines falling completely
within the other pair. Proclus then refutes the objection by proving
the impossibility in that case also. His proof then came to be given
in the text-books as part of Euclid’s proposition.

The objection is one of the technical terms in Aristotle’s logic and
its nature is explained in the Prior Analytics®. “An objection is a
proposition contrary to a proposition.... Objections are of two sorts,
general or partial.... For when it is maintained that an attribute
belongs to every (member of a class), we object either that it belongs
to none (of the class) or that there is some one (member of the class)
to which it does not belong.”

6. Reduction.

This is again an Aristotelian term, explained in the Prior
Analytics®. 1t is well described by Proclus in the following passage :

“ Reduction (amarywyi) is a transition from one problem or theorem
to another, the solution or proof of which makes that which is pro-
pounded manifest also. For example, after the doubling of the cube
had been investigated, they transformed the investigation into another
upon which it follows, namely the finding of the two means ; and from
that time forward they inquired how between two given straight lines
two mean pmﬂortionals could be discovered. And tney say that the
first to effect the reduction of difficult constructions was Hippocrates of
Chios, who also squared a lune and discovered many other things in
geometry, being second to none in ingenuity as regards constructions*.”

clusions of his propositions, Euclid inserts them before the closing words * (being) what it
was required to do” or “to prove.” In fact the porism-corollary is with Euclid rather a
modified form of the r\egiar conclusion than a separate proposition.

! Proclus, p- 212, 18—23.

3 Anal. prior. 11. 26, 69 a 37.- 3 dbid. 11. 25, 69a 20.

4 Proclus, pp. 212, 24—213, 11. This passage has frequently been taken as crediting
Hippocrates with the discovery of the method of geometrical reduction : cf. Taylar (Transla-
tion of Proclus, 1. p. 26), Allman (p. 41 7., 50), Gow (pp. 169, 170). As Tannery remarks
{p. 110), if the particular reduction of the duplication problem to that of the two means is
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7. Reductio ad absurdum.

This is variously called by Aristotle “ reductio ad absurdum” (7 els
16 advvatov dmwaywyn)!, * proof per impossibile” (4 Sia Tod ddvwdrov
Setkis or amddefis)?, “proof leading to the impossible” (3 els 70
adivarov dyovoa dmédefis). It is part of “proof (starting) from a
hypothesis*” (éf Omobéoews). “All (syllogisms) which reach the
conclusion pger impossibile reason out a conclusion which is false, and
they prove the original contention (by the method starting) from a
hypothesis, when something impossible results from assuming the
contradictory of the original contention, as, for example, when it is
proved that the diagonal (of a square) is incommensurable because,
if it be assumed commensurable, it will follow that odd (numbers)
are equal to even (numbers)®.” Or again, “proof (leading) to the
impossible differs from the direct (8ewxtexijs) in that it assumes what
it desires to destroy [namely the hypothesis of the falsity of the
conclusion] and then reduces it to something admittedly false, whereas
the direct proof starts from premisses admittedly true®”

Proclus has the following description of the reductio ad absurdum.
“Proofs by reductio ad absurdum in every case reach a conclusion
manifestly impossible, a conclusion the contradictory of which is
admitted. In some cases the conclusions are found to conflict with
the common notions, or the postulates, or the hypotheses (from which
we started) ; in others they contradict propositions previously estab-
lished?"...“ Every reductio ad absurdum assumes what conflicts with
the desired result, then, using that as a basis, proceeds until it arrives
at an admitted absurdity, and, by thus destroying the hypothesis,
establishes the result originally desired. For it is necessary to under-
stand generally that all mathematical arguments either proeeed from
the first principles or lead back to them, as Porphyry somewhere says.
And those which proceed from the first principles are again of two
kinds, for they start either from common notions and the clearness of
the self-evident alone, or from results previously proved ; while those
which lead back to the principles are either by way of assuming the
principles or by way of destroying them. Those which assume the
principles are called analyses, and the opposite of these are syntheses—
for it is possible to start from the said principles and to proceed in
the regular order to the desired conclusion, and this process is syn-
thesis—while the arguments which would destroy the principles are

the first noted in history, it is difficult to suppose that it was really the first ; for Hippocrates
must have found instances of it in the Pythagorean geometry. Bretschneider, I think, comes
nearer the truth when he boldly (p. gg) translates: *This reduction of the aforesaid con-
struction is said to have been first given by Hippocrates.” The words are wpiror 8¢ gaot
v dropovpdvwr Saypapudrav Ty draywyhy wovjorasfar, which must, literally, be translated
as in the text above; but, when Proclus speaks vaguely of ‘‘difficult constructions,” he
probably means to say simpI{lthat “ this first recorded instance of a reduction of a difficult
construction is attributed to Hippocrates.”

1 Aristotle, Anal. prior. 1. 7, 29 b 5; 1. 44, 502 30.

2 jbid. 1. 21, 39 b 32; L. 20, 45 a 35.

3 Anal. post. 1. 14, 85 a 16 etc, 4 Anal. prior. 1. 23, 40 b 25.

b Anal. prior. 1. 23, 41 2 24. € ¢hid. 11. 14, 62 b 29.

7 Proclus, p. 254, 22—127.
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called reductiones ad absurdum. For it is the function of this method
to upset something admitted as clear.”

8. Analysis and Synthesis.

It will be seen from the note on Eucl. XIIL 1 that the .-MSs. of the
Elements contain definitions of Analysis and Synthesis followed by
alternative proofs of XIII. 1—5 after that method. The definitions and
alternative proofs are interpolated, but they have great historical
interest because of the possibility that they represent an ancient
method of dealing with these propositions, anterior to Euclid. The
propositions give properties of a line cut “in extreme and mean ratio,”
and they are preliminary to the construction and comparison of the
five regular solids. Now Pappus, in the section of his Collection dealing
with the latter subject?, says that he will give the comparisons between
the five figures, the pyramid, cube, octahedron, dodecahedron and
icosahedron, which have equal surfaces, “ not by means of the so-called
analytical inquiry, by which some of the ancients worked out the proofs,
but by the synthetical method®....” The conjecture of Bretsckneider
that the matter interpolated in Eucl. XIIL is a survival of investiga-
tions due to Eudoxus has at first sight much to commend it4. In the
first place, we are told by Proclus that Eudoxus “greatly added to
the number of the theorems which Plato originated regarding #ke
section, and employed in them the method of analysis®.” It is obvious
that “zhe section” was some particular section which by the time of
Plato had assumed great importance; and the one section of which
this can safely be said is that which was called the “golden section,”
namely, the division of a straight line in extreme and mean ratio
which appears in Eucl. I1. 11 and is therefore most probably Pytha-
gorean. Secondly, as Cantor points out?, Eudoxus was the founder
of the theory of proportions in the form in which we find it in Euclid
V., VI, and it was no doubt through meeting, in the course of his
investigations, with proportions not expressible by whole numbers
that he came to realise the necessity for a new theory of proportions
which should be applicable to incommensurable as well as commen-
surable magnitudes. The “golden section” would furnish such a case,
And it is even mentioned by Proclus in this connexion. He is
explaining” that it is only in arithmetic that all quantities bear
“rational” ratios (pyTds Adyos) to one another, while in geometry there
are “irrational ” ones (dppnTos) as well. *Theorems about sections
like those in Euclid’s second Book are common to both [arithmetic
and geometry] except that in which the straight line is cut in extreme

mean ratio®.”

1 Proclus, p. 255, 8—26.

? Pappus, V. p. 410 s%q‘ 3 ibid. pp. 410, 27—412, 2.

4 Bretschneider, p. 168. See however Heiberg's recent suggestion (Paralipomena su
Euklid in Hermes, XXXVIIL, 1903) that the author was Heron. The suggestion is based
on a comparison with the remarks on analysis and synthesis quoted from Heron by an-Nairizi
(ed. Curtze, p. 8g) at the beginning of his commentary on Eucl. Book 11. On the whole,
this suggestion commends itself to me more than that of Bretschneider.

5 Proclus, p. 67, 6. § Cantor, Gesch. d. Math. 14, p. 241.

7 Proclus, p. 60, 7—9. 8 ibid, p. 6o, 16—19.
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The definitions of Analysis and Synthesis interpolated in Eucl.
XIIL are as follows (I adopt the reading of B and V, the only in-
telligible one, for the second).

“ Analysis is an assumption of that which is sought as if it were
admitted <and the passage > through its consequences to something
admitted (to be) true,

“ Synthesis is an assumption of that which is admitted < and the
passage > through its consequences to the finishing or attainment of
what is sought.”

The language is by no means clear and has, at the best, to be
filled out.

Pappus has a fuller account?:

“The so-called dvahvéuevos (‘ Treasury of Analysis’) is, to put it
shortly, a special body of doctrine provided for the use of those who,
after finishing the ordinary Elements, are desirous of acquiring the
power of solving problems which may be set them involving (the
construction of) lines, and it is useful for this alone. It is the work
of three men, Euclid the author of the Elements, Apollonius of Perga,
and Aristaeus the elder, and proceeds by way of analysis and synthesis.

“ Analysis then takes that which is sought as if it were admitted
and passes from it through its successive consequences to something
which is admitted as the result of synthesis: for in analysis we assume
that which is sought as if it were (already) done (yeyovos), and we
inquire what it is from which this results, and again what is the ante-
ccﬁcnt cause of the latter, and so on, until by so retracing our steps
we come upon something already known or belonging to the class of
first principles, and such a method we call analysis as being solution
backwards (avdmaiw Aaw).

“ But in synthesis, reversing the process, we take as already done
that which was last arrived at in the analysis and, by arranging in
their natural order as consequences what were before antecedents,
and successively connecting them one with another, we arrive finally
at the construction of what was sought ; and this we call synthesis.

“ Now analysis is of two kinds, the one directed to searching for
the truth and called theoretical, the other directed to finding what we
are told to find and called prodlematical. (1) In the theoretical kind
we assume what is sought as if it were existent and true, after which
we pass through its successive consequences, as if they too were true
and established by virtue of our hypothesis, to something admitted :
then (a), if that something admitted is true, that which is sought will
also be true and the proof will correspond in the reverse order to the
analysis, but (4), if we come upon something admittedly false, that
which is sought will also be false. (2) In the problematical kind we
assume that which is propounded as if it were known, after which we
pass through its successive consequences, taking them as true, up to
something admitted : if then (a) what is admitted is possible and
obtainable, that is, what mathematicians call given, what was originally
proposed will also be possible, and the proof will again correspond in

1 Pappus, Vil. pp. 634—6.
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reverse order to the analysis, but if (4) we come upon something
admittedly impossible, the problem will also be impossible.”

The ancient Analysis has been made the subject of careful studies
by several writers during the last half-century, the most complete
being those of Hankel, Duhamel and Zeuthen ; others by Ofterdinger
and Cantor should also be mentioned?.

The method is as follows. It is required, let us say, to prove that
a certain proposition A is true. We assume as a hypothesis that A
is true and, starting from this we find that, if A is true, a certain
other proposition B is true; if B is true, then C; and so on until
we arrive at a proposition K which is admittedly true. The object
of the method is to enable us to infer, in the reverse order, that, since
K is true, the proposition A originally assumed is true. Now
Aristotle had already made it clear that false hypotheses mizht lead
to a conclusion which is true. There is therefore a possibility of error
unless a certain precaution is taken. While, for example, B may be a
necessary consequence of A, it may happen that A is not a necessary
consequence of B. Thus, in order that the reverse inference from the
truth of K that A is true may be logically justified, it is necessary
that each step in the chain of inferences should be unconditionally
convertible. As a matter of fact, a very large number of theorems in
elementary geometry are unconditionally convertible, so that in practice
the difficulty in securing that the successive steps shall be convertible
is not so great as might be supposed. But care is always necessary.
For example, as Hankel says? a proposition may not be uncon-
ditionally convertible in the form in which it is generally quoted.
Thus the proposition “ The vertices of all trian$les having a common
base and constant vertical angle lie on a circle” cannot be converted
into' the proposition that “ All triangles with common base and vertices
lying o a circle have a constant vertical angle”; for this is only true
if the further conditions are satisfied (1) that the circle passes through
the extremities of the common base and (2) that only that part of the
circle is taken as the locus of the vertices which lics on one side of the
base. If these conditions are added, the proposition is unconditionally
convertible. Or again, as Zeuthen remarks?, K may be obtained by
a series of inferences in which A or some other proposition in the
series is only epparently used ; this would be the case e.g. when the
method of modern algebra is being employed and the expressions on
each side of the sign of equality have been inadvertently multiplied
by some composite magnitude which is in reality equal to zero.

Although the above extract from Pappus does not make it clear
that each step in the chain of argument must be convertible in the
case taken, he almost implies this in the second part of the definition
of Analysis where, instead of speaking of the consequences B, C...

! Hankel, Zur Geschichte der Mathematik in Alterthum und Mittelalter, 1874, pp. 137—150;
Duhamel, Des'méthodes dans les sciences de raisonnement, Part 1., 3 ed., Paris, 1885, pp. 30—08;
Zeuthen, Geschichte der Mathematik im Altertum und Mittelalter, 1896, pp. 92 —104;
Ofterdinger, Bn'tm;ﬁn sur Geschichle der griechischen Mathematik, Ulm, 186o; Cantor,

Geschichte der Mathematik, 15, pp. 220—2.
* Hankel, p. 139. 3 Zeuthen, p. 103.
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successively following from A, he suddenly changes the expression
and says that we inquire whka? it is (B) from whick A follows (A being
thus the consequence of B, instead of the reverse), and then what
(viz. C) is the antecedent cause of B; and in practice the Greeks
secured what was wanted by always insisting on the analysis being
confirmed by subsequent synthesis, that is, they laboriously worked
backwards the whole way from K to A, reversing the order of the
analysis, which process would undoubtedly bring to light any flaw
which had crept into the argument through the accidental neglect of
the necessary precautions.

Reductio ad absurdum a variety of analysis.

In the process of analysis starting from the hypothesis that a
proposition A is true and passing through B, C... as successive con-
sequences we may arrive at a proposition K which, instead of being
admittedly true, is either admittedly false or the contradictory of the
original hypothesis A or of some one or more of the propositions B, C...
intermediate between A and K. Now correct inference from a true
proposition cannot lead to a false proposition ; and in this case there-
fore we may at once conclude, without any inquiry whether the
various steps in the argument are convertible or not, that the hypo-
thesis A is false, for, if it were true, all the consequences correctly
inferred from it would be true and no incompatibility could arise.
This method of proving that a given hypothesis is false furnishes an
indirect method of proving that a given hypothesis A is frue, since we
have only to take the contradictory of A and to prove that it is false.
This is the method of reductio ad absurdum, which is therefore a variety
of analysis. The contradictory of A, or not-A, will generally include
more than one case and, in order to prove its falsity, each of the cases
must be separately disposed of: e.g., if it is desired to prove that a
certain part of a figure is egual to some other part, we take separately
the hypotheses (1) that it is greater, (2) that it is /ess, and prove
that each of these hypotheses leads to a conclusion either admittedly
false or contradictory to the hypothesis itself or to some one of its
consequences.

Analysis as applied to problems.

It is in relation to problems that the ancient analysis has the
greatest significance, because it was the one general method which
the Greeks used for solving all “the more abstruse problems” (rd
doadéarepa TV mpofAnudTwy)'.

We have, let us suppose, to construct a figure satisfying a certain
set of conditions If we are to proceed at all methodically and not
by mere guesswork, it is first necessary to ““analyse” those conditions,
To enable this to be done we must get them clearly in our minds,
which is only possible by assuming all the conditions to be actually
fulfilled, in other words, by supposing the problem solved. Then we
have to transform those conditions, by all the means which practice in
such cases has taught us to employ, into other conditions which are
necessarily fulfilled if the original conditions are, and to continue this

1 Proclus, p. 241, 16, 17.
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transformation until we at length arrive at conditions which we
are in a position to satisfy!. In other words, we must arrive at
some relation which enables us to comstruct a particular part of
the figure which, it is true, has been hypothetically assumed and
even drawn, but which nevertheless really requires to be found in
order that the problem may be solved. From that moment the
particular part of the figure becomes one of the dafa, and a fresh
relation has to be found which enables a fresh part of the figure
to be determined by means of the original data and the new one
together. When this is done, the second new part of the figure also
belongs to the data; and we proceed in this way until all the parts
of the required figure are found® The first part of the analysis
down to the point of discovery of a relation which enables
us to say that a certain new part of the figure not belonging
to the original data is ,g'ivm, Hankel calls the transformation; the
second part, in which it is proved that all the remaining parts of
the figure are “given,” he calls the reso/ution. Then follows the
synthesis, which also consists of two parts, (1) the construction, in
the order in which it has to be actually carried out, and in general
following the course of the second part of the analysis, the reso/ution ;
(2) the demonstration that the figure obtained does satisfy all the given
conditions, which follows the steps of the first part of the analysis,
the transformation, but in the reverse order. The second part of
the analysis, the resolution, would be much facilitated and shortened
by the existence of a systematic collection of Data such as Euclid’s
book bearing that title, consisting of propositions proving that, if
in a figure certain parts or relations are given, other parts or relations
are also given. As regards the first part of the analysis, the frans-
JSormation, the usual rule applies that every step in the chain must
be unconditionally convertible; and any failure to observe this
condition will be brought to light by the subsequent synthesis.
The second part, the resolution, can be directly turned into the
construction since that only is given which can be constructed by
the means provided in the Elements.

It would be difficult to find a better illustration of the above than
the example chosen by Hankel from Pappus?

Given a circle ABC and two points D, E external to it, to draw
straight lines DB, EB from D, E to a point B on the circle such that,
if ]I::))g, EB produced meet the circle again in C, A, AC shall be parallel
to .

Analysis.

Suppose the problem solved and the tangent at 4 drawn, meeting
ED uced in £.

(Part 1. Transformation.)

Then, since AC is parallel to DE, the angle at C is equal to the
angle CDE.

But, since /4 is a tangent, the angle at C is equal to the angle FAE,

Therefore the angle #A4E is equal to the angle CD£, whence 4,
B, D, F are concyclic,

1 Zeuthen, p. 93. * Hankel, p. 141. 3 Pappus, VII. pp. 830—2.
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EDTherefore the rectangle AE, EB is equal to the rectangle FE,
(Part II. Resolution.)
But the rectangle 4E£, EB is given, A e
because it is equal to the square on the
tangent from £.
_ Therefore the rectangle FE, ED is
given ;
and, since ED is given, FE is given (in
length). [Data, 57.]
But FE is given in position also, so £ = %
that 7 is also given. [Data, 27.]
Now F4 is the tangent from a given point 7 to a circle ABC
given in position ;
therefore /A is given in position and magnitude. [Data, go.]
And Fis given ; therefore 4 is given.
But £ is also given; therefore the straight line AE is given in

position. [Data, 26.]
And the circle ABC is given in position ;
therefore the point 5 is also given. [Data, 25.]

But the points D, E are also given ;
therefore the straight lines DB, BE are also given in position.

Synthesis.

(Part 1. Construction.)

Suppose the circle AB8C and the points D, £ given.

Take a rectangle contained by £ and by a certain straight
line £F equal to the square on the tangent to the circle from E£.

From F draw #A touching the circle in 4 ; join ABE and then
DB, producing DB to meet the circle at C. Join AC.

1 say then that AC is parallel to DE.

(Part 1I. Demonstration.)

Since, by hypothesis, the rectangle FE, ED is equal to the square
on the tangent from £, which again is equal to the rectangle AE, EB,
the rectangle AE, EB is equal to the rectangle FE, ED.

Therefore 4, B, D, F are concyclic,
whence the angle FAE is equal to the angle BDE.

But the angle FAE is equal to the angle ACB in the alternate
segment ;
therefore the angle A CB is equal to the angle BDE.

Therefore AC is parallel to DEx

In cases where a &iwopiouds is necessary, i.e. where a solution is
only possible under certain conditions, the analysis will enable those
conditions to be ascertained. Sometimes the Siopiauds is stated and
proved at the end of the analysis, e.g. in Archimedes, On the Sphere
and Cylinder, 11. 7 ; sometimes it is stated in that place and the proof
postponed till after the end of the synthesis, e.g. in the solution of
the problem subsidiary to On the Sphere and Cylinder, 11. 4, preserved
in Eutocius’ commentary on that proposition. The analysis should
also enable us to determine the number of solutions of which the
problem is susceptible.
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§ 77 THE DEFINITIONS.

General. “ Real” and ‘ Nominal' Definitions.

It is necessary, says Aristotle, whenever any one treats of any
whole subject, to divide the genus into its primary constituents, those
which are indivisible in species respectively: e.g. number must be
divided into triad and dyad; then an attempt must be made in this
way to obtain definitions, e.g. of a straight line, of a circle, and of
a right angle’,

The word for definition is 8pos. The original meaning of this
word seems to have been “boundary,” “landmark.” Then we have
it in Plato and Aristotle in the sense of standard or determining
principle (“id quo alicuius rei natura constituitur vel definitur,”
Index Aristotelicus)?; and closely connected with this is the sense of
definition. Aristotle uses both 8pos and cpioucs for definition, the
former occurring more frequently in the Zgpics, the latter in the
Metaphysics.

Let us now first be clear as to what a definition does noz do.
There is nothing in connexion with definitions which Aristotle takes
more pains to emphasise than that a definition asserts nothing as to
the existence or non-existence of the thing defined. It is an answer
to the question what a thing is (7¢ éo7i), and does not say #iat it
is (874 éori). The existence of the various things defined has to be
proved, except in the case of a few primary things in each science,
the existence of which is indemonstrable and must be assumed among
the first principles of each science; e.g. points and lines in geometry
must be assumed to exist, but the existence of everything else must
be proved. This is stated clearly in the long passage quoted above
under First Principles®. It is reasserted in such passages as the
following. “The (answer to the question) whkat is a man and the
JSact that a man exists are different things’” “Itis clear that, even
according to the view of definitions now current, those who define
things do not prove that they exist’” “We say that it is by
demonstration that we must show that everything exists, except
essence (el % ovaia elp). But the existence of a thing is never
essence; for the existent is not a genus. Therefore there must be
demonstration that a thing exists. Thus, what is meant by triangle
the geometer assumes, bat that it exists he has to prove%” “Anterior
knowledge of two sorts is necessary : for it is necessary to presuppose,
with regard to some things, that they exisf; in other cases it is
necessary to understand what the thing described is, and in other
cases it is necessary to do both. Thus, with the fact that one of two
contradictories must be true, we must know that it exists (is true);

1 Anal. post. 11. 13,96 b 15.

3 Cf. De anima, 1. 1, 404 a g, where ** breathing »’ is spoken of as the &pos of * life,” and
the many passages in the Politics where the woﬁ is used to denote that which gives its
special character to the several forms of government (virtue being the 8pos of aristocracy,
wealth of oligarchy, liberty of democracy, 1294 a :o‘) ; Plato, Rq:ilfr, VIl 5§51 C.

3 Anal. post. 1. 10, 76 a 31 5qq. ibid. 11. 7, 92 b 10.

& ibid. 92 b 19. ® sbid. 92 b 12 sqq.
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of the triangle we must know that it means such and such a thing; of
the unit we must know both what it means and that it existsl.” What
is here so much insisted on is the very fact which Mill pointed out
in his discussion of earlier views of Definitions, where he says that
the so-called 7ea/ definitions or definitions of #kings do not constitute
a different kind of definition from nominal definitions, or definitions
of names ; the former is simply the latter p/us something else, namely
a covert assertion that the thing defined exists. “This covert assertion
is not a definition but a postulate. The definition is a mere identical
proposition which gives information only about the use of language,
and from which no conclusion affecting matters of fact can possibly
be drawn. The accompanying postulate, on the other hand, affirms
a fact which may lead to consequences of every degree of importance.
It affirms the actual or possible existence of Things possessing the
combination of attributes set forth in the definition: and this, if true,
may be foundation sufficient on which to build a whole fabric of
scientific truth®.” This statement really adds nothing to Aristotle’s
doctrine?: it has even the slight disadvantage, due to the use of
the word “postulate” to describe “the covert assertion” in all cases,
of not definitely pointing out that there are cases where existence
has to be proved as distinct from those where it must be assumed.
It is true that the existence of a definiend may have to be taken
for granted provisionally until the time comes for proving it; but,
so far as regards any case where existence must be proved sooner
or later, the provisional assumption would be for Aristotle, not a
postulate, but a hypothesis. In modern times, too, Mill's account of
the true distinction between real and nominal definitions had been
fully anticipated by Saccherit, the editor of Euclides ab omni naevo
vindicatus (1733), famous in the history of non-Euclidean geometry.
In his Logica Demonstrativa (to which he also refers in his Euclid)
Saccheri lays down the clear distinction between what he calls de-
Jinitiones quid nominis or nominales, and definitiones quid rei or reales,
namely that the former are only intended to explain the meaning

Y Anal. post. 1. 1, 71 a 11 5qq. 2 Mill's System of Logic, Bk. 1. ch. viii.

3 It is true that it was in opposition to ‘‘ the ideas of most of the dristotelian logicians”
(rather than of Aristotle himself) that Mill laid such stress on his point of view. Cf. his
observation : ** We have already made, and shall often have to repeat, the remark, that the
Ehilosophers who overthrew Realism by no means got rid of the consequences of Realism,

ut retained long afterwards, in their own philosophy, numerous propositions which could
only have a rational meaning as part of a Realistic system, It had%ecn handed down from
Aristotle, and probably from earlier times, as an obvious truth, that the science of geometry
is deduced from definitions. This, so long as a definition was idered to be a proposition
‘unfolding the nature of the thing,’ did well enough. But Ho) followed and rejected
utterly the notion that a definition declares the nature of the thing, or does anything but
state the meaning of a name ; yet he continued to affirm as broadly as any of his predecessors
that the dpyal, principia, or original premisses of mathematics, and even of all science, are
definitions ; producing the singular paradox that systems of scientific truth, nay, all truths
whatever at which we arrivenf; reasoning, are deduced from the arbitrary conventions of
mankind concerning the signification of words.” Aristotle was guilty of no such paradox;
on the contrary, he exposed it as plainly as did Mill.

* This has been fully brought out in two papers by G. Vailati, La teoria Aristotelica della
féﬁnizi«m (Rivista di Filosofia ¢ scienze affini, 1903), and Di un' opera dimenlicata del

. Gerolamo Saccheri (“ Logica Demonstrativa,” 15’:] (in Rivista Filosofica, 1903).
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that is to be attached to a given term, whereas the latter, besides
declaring the meaning of a word, affirm at the same time the existence
of the thing defined or, in geometry, the possibility of constructing it.
The definitio quid nominis becomes a definitio quid rei “ by means of a
postulate, or when we come to the question whether the thing exists and
it is answered affirmatively’.” Definitiones quid nominis are in them-
selves quite arbitrary, and neither require nor are capable of proof;
they are merely provisional and are only intended to be turned as
quickly as possible into definitiones quid rei, either (1) by means of
a postulate in which it is asserted or conceded that what is defined
exists or can be constructed, e.g. in the case of straight lines and
circles, to which Euclid’s first three postulates refer, or (2) by
means of a demonstration reducing the construction of the figure
defined to the successive carrying-out of a certain number of those
elementary constructions, the possibility of which is postulated. Thus
definitiones quid rei are in general obtained as the result of a series of
demonstrations. Saccheri gives as an instance the construction of a
square in Euclid 1. 46. Suppose that it is objected that Euclid had
no right to define a square, as he does at the beginning of the Book,
when it was not certain that such a figure exists in nature; the
objection, he says, could only have force if, before proving and making
the construction, Euclid had assumed the aforesaid figure as given.
That Euclid is not guilty of this error is clear from the fact that
he never presupposes the existence of the square as defined until
after I. 46.

Confusion between the nominal and the real definition as thus de-
scribed, i.e. the use of the former in demonstration before it has been
turned into the latter by the necessary proof that the thing defined
exists, is according to Saccheri one of the most fruitful sources of
illusory demonstration, and the danger is greater in proportion to
the “complexity” of the definition, i.e. the number and variety of
the attributes belonging to the thing defined. For the greater is the
possibility that there may be among the attributes some that are
incompatible, i.e. the simultaneous presence of which in a given figure
can be proved, by means of ofker postulates etc. forming part of the
basis of the science, to be impossible.

The same thought is expressed by Leibniz also. “If,” he says,
“we give any definition, and it is not clear from it that the idea, which
we ascribe to the thing, is possible, we cannot rely upon the demon-
strations which we have derived from that definition, because, if that
idea by chance involves a contradiction, it is possible that even con-
tradictories may be true of it at one and the same time, and thus our
demonstrations will be useless. Whence it is clear that definitions
are not arbitrary. And this is a secret which is hardly sufficiently
known®” Leibniz’ favourite illustration was the “regular polyhedron
with ten faces,” the impossibility of which is not obvious at first sight.

1« Definitio guid mominis nata est evadere definitio Ym’a’ rei per postulatum vel dum

venitur ad quaestionem an es? et respondetur affirmative.”
3 Opuscules et fragments inddits de Leibniz, Paris, Alcan, 1903, p. 431. Quoted by Vailati,
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It need hardly be added that, speaking generally, Euclid’s defini-
tions, and his use of them, agree with the doctrine of Aristotle
that the definitions themselves say nothing as to the existence of the
things defined, but that the existence of each of them must be
proved or (in the case of the “principles”) assumed. In geometry,
says Aristotle, the existence of points and lines only must be as-
sumed, the existence of the rest being proved. Accordingly Euclid’s
first three postulates declare the possibility of constructing straight
lines and circles (the only “lines” except straight lines used in the
Elements). Other things are defined and afterwards constructed and
proved to exist: e.g. in Book L, Def. 20, it is explained what is meant
by an equilateral triangle; then (L 1) it is proposed to construct it,
and, when constructed, it is proved to agree with the definition.
When a square is defined (1. Def. 22), the question whether such a
thing really exists is left open until, in I. 46, it is proposed to construct
it and, when constructeé). it is proved to satisfy the definition®.
Similarly with the right angle (1. Def. 10, and I. 11) and parallels
(1. Def. 23, and 1. 27—29). The greatest care is taken to exclude
mere presumption and imagination. The transition from the sub-
jective definition of names to the objective definition of things is
made, in geometry, by means of constructions (the first principles of
which are postulated), as in other sciences it is made by means of
experience?.

Aristotle’'s requirements in a definition.

We now come to the positive characteristics by which, according
to Aristotle, scientific definitions must be marked.

First, the different attributes in a definition, when taken separately,
cover more than the notion defined, but the combination of them
does not. Aristotle illustrates this by the “triad,” into which enter
the several notions of number, odd and prime, and the last “in both
its two senses (@) of not being measured by any (other) number (as
ury perpeiabar &ptﬂuiﬁ) and (&) of not being obtainable by adding
numbers together” (ws p9) ovyrelaBar é€ dp;gp&‘w), a unit not being a
number. Of these attributes some are present in all other odd
numbers as well, while the last [primeness in the second sense]
belongs also to the dyad, but in nothing but the triad are they a//

resent’.” The fact can be equally well illustrated from geometry.

hus, e.g. into the definition of a square (Eucl. 1., Def. 22) there enter
the several notions of figure, four-sided, equilateral, and right-angled,
each of which covers more than the notion into which a// enter as
attributes*.

Secondly, a definition must be expressed in terms of things which
are prior to, and better known than, the things defined®. This is

1 Trendelenburg, £/ ta Logices Aristoteleae, § 5o0.

2 Trendelenburg, Erliuterungen su den Elementen der aristotelischen Logik, 3 ed. p. 107.
On construction as proof of exist in ancient g try of. H. G. Zeuthen, Die geometrisc
Cmr.:lmc"{}bﬂ als * Existensbeweis” in der antiken Geomelrie (in Mathematische Annalen,
47- Band).

3 Anal. post. 11. 13, 96 a 33—b 1.
¢ Trendelenburg, Erliuterungen, p. 108. b Topics VI. 4, 141 a 26 5qQ.
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clear, since the object of a definition is to give us knowledge of the
thing defined, and it is by means of things prior and better known
that we acquire fresh knowledge, as in the course of demonstrations.
But the terms “ prior” and “better known” are, as usual susceptible
of two meanings; they may mean (1) absolutely or logically prior and
better known, or (2) better known relatively to us. In the absolute
sense, or from the standpoint of reason, a point is better known than
a line, a line than a plane, and a plane than a solid, as also a unit is
better known than number (for the unit is prior to, and the first
principle of, any number). Similarly, in the absolute sense, a letter is
prior to a syllable. But the case is sometimes different relatively to
us; for example, a solid is more easily realised by the senses than a
plane, a plane than a line, and a line than a point. Hence, while it is
more scientific to begin with the absolutely prior, it may, perhaps, be
permissible, in case the learner is not capable of following the scientific
order, to explain things by means of what is more intelligible 7o Zim.
“Among the definitions framed on this principle are those of the
point, the line and the plane; all these explain what is prior by
means of what is posterior, for the point is described as the extremity
of a line, the line of a plane, the plane of a solid.” But, if it is asserted
that such definitions by means of things which are more intelligible
relatively only to a particular individual are really definitions, it will
follow that there may be many definitions of the same thing, one for
each individual for whom a thing is being defined, and even different
definitions for one and the same individual at different times, since at
first sensible objects are more intelligible, while to a better trained
mind they become less so. It follows therefore that a thing should
be defined by means of the absolutely prior and not the relatively
prior, in order that there may be one sole and immutable definition.
This is further enforced by reference to the requirement that a good
definition must state the genus and the differentiae, for these are
among the things which are, in the absolute sense, better known than,
and prior to, the species (Tév dm\ds yrwpipwrépov kai mporépay Tod
eldovs éariv). For to destroy the genus and the differentia is to
destroy the species, so that the former are prior to the species; they
are also detter known, for, when the species is known, the genus and
the differentia must necessarily be known also, eg. he who knows
“man” must also know “animal” and “land-animal,” but it does not
follow, when the genus and differentia are known, that the species is
known too, and hence the species is less known than they arel. It
may be frankly admitted that the scientific definition will require
superior mental powers for its apprehension; and the extent of its
use must be a matter of discretion. So far Aristotle; and we have
here the best possible explanation why Euclid supplemented his
definition of a point by the statement in L Def. 3 that Zke extremities of
a line are points and his definition of a surface by I Def. 6 to the effect
that ske extremities of a surface are lines. The supplementary expla-

1 Topics V1. 4, 141 b 25—34.
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nations do in fact enable us to arrive at a better understanding of the
formal definitions of a point and a line respectively, as is well ex-
plained by Simson in his note on Def. 1. Simson says, namely, that
we must consider a solid, that is, a magnitude which has length,
breadth and thickness, in order to understand aright the definitions of
a point, a line and a surface. Consider, for instance, the boundaty
common to two solids which are contiguous or the boundary which
divides one solid into two contiguous parts; this boundary is a surface.
We can prove that it has no thickness by taking away either solid,
when it remains the boundary of the other; for, if it had thickness, the
thickness must either be a part of one solid or of the other, in which
case to take away one or other solid would take away the thickness
and therefore the boundary itself: which is impossible. Therefore
the boundary or the surface has no thickness. In exactly the same
way, regarding a line as the boundary of two contiguous surfaces, we
prove that the line has no breadth; and, lastly, regarding a point as
the common boundary or extremity of two lines, we prove that a
point has no length, breadth or thickness,

Aristotle on unscientific definitions.

Aristotle distinguishes three kinds of definition which are un-
scientific because founded on what is 7o# prior (uy éx mporépwv). The
Jfirst is a definition of a thing by means of its opposite, e.g. of “good ”
by means of “bad”; this is wrong because opposites are naturally
evolved together, and the knowledge of opposites is not uncommonly
regarded as one and the same, so that one of the two opposites
cannot be better known than the other. It is true that, in some
cases of opposites, it would appear that no other sort of definition is
gsible: e.g. it would seem impossible to define double apart from the

f and, generally, this would be the case with things which in their
very nature (xaf’ aird) are relative terms (wpés T Méyeras), since one
cannot be known without the other, so that in the notion of either the
other must be comprised as welll, The second kind of definition
which is based on what is not prior is that in which there is a
complete circle through the unconscious use in the definition itself of
the notion to be defined though not of the name? Trendelenburg
illustrates this by two current definitions, (1) that of magnitude as
that which can be increased or diminished, which is bad because the
positive and negative comparatives “more” and “less” presuppose
the notion of the positive “great,” (2) the famous Euclidean definition
of a straight line as that which “lies evenly with the points on itself”
(€€ loov Tois é¢’ éavrijs anuelois reirar), where “lies evenly ” can only
be understood with the aid of the very notion of a straight line which is
to be defined®. The #%i#d kind of vicious definition from that which
is not prior is the definition of one of two coordinate species by means
of its coordinate (dvridippnuévor), e.g. a definition of “odd ” as that
which exceeds the even by a unit (the second alternative in Eucl. vIL
Def. 7); for “odd” and “even” are codrdinates, being differentiae of

1 Topics V1. 4, 142 @ 22—31. 2 ibid, 142 2 34—D 6.
3 Trendelenburg, Erlduterungen, p. 115.



CH. IX. § 7] THE DEFINITIONS 149

number’. This third kind is similar to the first. Thus, says Tren-
delenburg, it would be wrong to define a square as “a rectangle
with equal sides.”

Aristotle’s third requirement.

A third general observation of Aristotle which is specially relevant
to geometrical definitions is that “to know zw/kat a thing is (1¢ éarw) is
the same as knowing why it is (8id ¢ éorw)2” “ What is an eclipse ?
A deprivation of light from the moon through the interposition of the
earth. Wiy does an eclipse take place? Or w/hy is the moon
eclipsed? Because the light fails through the earth obstructing it.
What is harmony? A ratio of numbers in high or low pitch. ﬁ’ky
does the high-pitched harmonise with the low-pitched? Because
the high and the low have a numerical ratio to one another®” “We
seek the cause (t6 8i6mt) when we are already in possession of the
Jact (v6 6m). Sometimes they both become evident at the same time,
but at all events the cause cannot possibly be known [as a cause]
before the fact is known4” “It is impossible to know wh/az a thing is
if we do not know #kat it is*” Trendelenburg paraphrases: “The
definition of the notion does not fulfil its purpose until it is made
genetic. It is the producing cause which first reveals the essence of
the thing.... .The nominal definitions of geometry have only a
provisional significance and are superseded as soon as they are made
genetic by means of construction.” E.g. the genetic definition of a
parallelogram is evolved from Eucl. I. 31 (giving the construction for
parallels) and 1. 33 about the lines joining corresponding ends of two
straight lines parallel and equal in length. Where existence is proved
by construction, the cause and the fact appear Zogether®.

Again, “it is not enough that the defining statement should set
forth the fact, as most definitions do; it should also contain and
present the cause ; whereas in practice what is stated in the definition
is usually no more than a conclusion (cvumépacua). For example,
what is quadrature? The construction of an equilateral right-angled
figure equal to an oblong. But such a definition expresses merely the
conclusion. Whereas, if you say that quadrature is the discovery of a
mean proportional, then you state the reason”.” This is better under-
stood if we compare the statement elsewhere that *the cause is the
middle term, and this is what is sought in all cases®” and the illustra-
tion of this by the case of the proposition that the angle in a semi-
circle is a right angle. Here the middle term which it is sought to
establish by means of the figure is that the angle in the semi-circle is
equal to #4e half of two right angles. We have then the syllogism :
Whatever is half of two right angles is a right angle; the angle in a
semi-circle is the half of two right angles; therefore (conclusion) the
angle in a semi-circle is a right angle®. As with the demonstration, so

1 Topies V1. 4, 142 b 7—10. 1 Anal. . 11. 2, Qo a 31.

3 Anal. post. 11. 2, 0O & 15—12I. 4 ibid. ll'.pgfgs a gg,o ¢

b jbid. 93 a 20. ¢ Trendelenburg, Erliuterungen, p. 110.
T De anima 11. 3, 413 & 13—20, ¥ Anal. post.11. 2, go a 6,

9 gbid. 1. 11, 94 & 28.
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it should be with the definition. A definition which is to show the
genesis of the thing defined should contain the middle term or cause ;
otherwise it is a mere statement of a conclusion. Consider, for
instance, the definition of “quadrature” as “ making a square equal in
area to a rectangle with unequal sides.” This gives no hint as to
whether a solution of the problem is possible or how it is solved : but,
if you add that to find the mean proportional between two given
straight lines gives another straight line such that the square on it is
equal to the rectangle contained by the first two straight lines, you
supply the necessary middle term or cause’.

Technical terms not defined by Euclid.

It will be observed that what is here defined, “quadrature” or
“squaring ” (TeTparywviouss), is not a geometrical figure, or an attribute
of such a figure or a part of a figure, but a technical term used to
describe a certain problem. Euclid does not define such things; but
the fact that Aristotle alludes to this particular definition as well as to
definitions of deflection (kexhaa@ar) and of verging (vedew) seems to
show that earlier text-books included among definitions explanations
of a number of technical terms, and that Euclid deliberately omitted
these explanations from his Elements as surplusage. Later the
tendency was again in the opposite direction, as we see from the much
expanded Definitions of Heron, which, for example, actually include
a definition of a deflected line (kexhaopévn ypapun)®. Euclid uses the
passive of x\av occasionally?, but evidently considered it unnecessary
to explain such terms, which had come to bear a recognised meaning.

The mention too by Aristotle of a definition of verging (vedew)
suggests that the problems indicated by this term were not excluded
from elementary text-books before Euclid. The type of problem
(vebais) was that of placing a straight line across two lines, eg. two
straight lines, or a straight line and a circle, so that it shall verge to a
given point (i.e. pass through it if produced) and at the same time the
intercept on it made by the two given lines shall be of given length.

1 Other passages in Aristotle may be quoted to the like effect: e.g: Amal. post. 1. 3,
1bg “We consider that we know a particular thing in the absolute sense, as distinct
om the sophistical and incidental sense, when we consider that we know the cause on

account of which the thing is, in the sense of knowing that it is the cause of that thing and
that it cannot be otherwise,” #4id. I. 13, 79a 2 ** For here to know the fact is the function of
those who are concerned with sensible t to know the cause is the function of the mathe-
matician ; it is he who possesses the p of the causes, and often he does not know the
fact.” In view of such passages it is difficult to see how Proclus came to write (p. 201, ‘1“:}
that Aristotle was the originator ('Apiororéhous kardptarros) of the idea of Amphinomus
others that geometry does not investigate the cause and the why (rd & i). To this Geminus
replied that the investigation of the cause does, on the contrary, appear in geometry. *‘For
how can it be maintained that it is not the business of the g ter to inquire for what reason,
on the one hand, an infinite number of equilateral pol{gons are inscribed in a circle, bat, on
the other hand, it is not possible to inscribe in a an infinit ber of polyhedral
figures, equilateral, equiangular, and made up of similar plane figures? Whose business is it
to ask this question and find the answer to it if it is not that of the geometer? Now when
g t per & bile the{v are content to discover the property, but when they
argue by direct proof, if such be only partial (éxl pépous), this does not suffice for
showing the cause ; if however it is general and applies to all like cases, the why (rd S ri)
is at once and concurrently made evident.”

3 Heron, Def. 12 (vol. 1v. Heib. pp. 22-24). * e.g. in 111, 20 and in Data 89.
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In general, the use of conics is required for the theoretical solution of
these problems, or a mechanical contrivance for their practical
solution. Zeuthen, following Oppermann, gives reasons for supposing,
not only that mechanical constructions were practically used by the
older Greek geometers for solving these problems, but that they were
theoretically recognised as a permissible means of solution when the
solution could not be effected by means of the straight line and circle,
and that it was only in later times that it was considered necessary to
use conics in every case where that was possible?, Heiberg® suggests
that the allusion of Aristotle to vedoets perhaps confirms this sup-
position, as Aristotle nowhere shows the slightest acquaintance with
conics. I doubt whether this is a safe inference, since the problems
of this type included in the elementary text-books might easily have
been limited to those which could be solved by “plane” methods (i.e.
by means of the straight line and circle). We know, e.g., from Pappus
that Apollonius wrote two Books on plane vedoest. But one thing
is certain, namely that Euclid deliberately excluded this class of
problem, doubtless as not being essential in a book of Elements.

Definitions not afterwards used.

Lastly, Fuclid has definitions of some terms which he never after-
wards uses, e.g. oblong (érepdun«es), rhombus, rhomboid. The “oblong”
occurs in Aristotle; and it is certain that all these definitions are
survivals from earlier books of Elements.

1 Cf. the chapter on vedoeis in The Works of Archimedes, pp. c—cxxii.

* Zeuthen, Die Lehre von den Kegelschnitten im Altertum, ch. 13, p. 262.
3 Heiberg, Mathematisches su Aristoteles, p. 16.

¢ Pappus VII. pp. 670—2.







BOOK 1.

DEFINITIONS.

A point is that which has no part.
A line is breadthless length.
The extremities of a line are points.

4. A straight line is a line which lies evenly with the
points on itself.

5. A surface is that which has length and breadth only.

6. The extremities of a surface are lines.

7. A plane surface is a surface which lies evenly with
the straight lines on itself.

8. A plane angle is the inclination to one another of
two lines in a plane which meet one another and do not lie in
a straight line.

9. And when the lines containing the angle are straight,
the angle is called rectilineal.

10. When a straight line set up on a straight line makes
the adjacent angles equal to one another, each of the equal
angles is right, and the straight line standing on the other is
called a perpendicular to that on which it stands.

11. An obtuse angle is an angle greater than a right
angle,

12. An acute angle is an angle less than a right angle.
e 13. A boundary is that which is an extremity of any-

ing.

14. A figure is that which is contained by any boundary
or boundaries.

15. A circle is a plane figure contained by one line such
that all the straight lines falling upon it from one point among
those lying within the figure are equal to one another ;

S
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16. And the point is called the centre of the circle.

17. A diameter of the circle is any straight line drawn
through the centre and terminated in both directions by the
circumference of the circle, and such a straight line also
bisects the circle.

18. A semicircle is the figure contained by the diameter
and the circumference cut off by it. And the centre of the
semicircle is the same as that of the circle,

19. Rectilineal figures are those which are contained
by straight lines, trilateral figures being those contained by
three, quadrilateral those contained by four, and multi-
lateral those contained by more than four straight lines.

20. Of trilateral figures, an equilateral triangle is that
which has its three siges equal, an isosceles triangle that
which has two of its sides alone equal, and a scalene
triangle that which has its three sides unequal.

21. Further, of trilateral figures, a right-angled tri-
angle is that which has a right angle, an obtuse-angled
triangle that which has an obtuse angle, and an acute-
angled triangle that which has its three angles acute.

22. Of quadrilateral figures, a square is that which is
both equilateral and right-angled ; an oblong that which is
right-angled but not equilateral ; a rhombus that which is
equilateral but not right-angled ; and a rhomboid that which
has its opposite sides and angles equal to one another but is
neither equilateral nor right-angled. And let quadrilaterals
other than these be called trapezia.

23. Parallel straight lines are straight lines which,
being in the same plane and being produced indefinitely in
both directions, do not meet one another in either direction.

POSTULATES.

Let the following be postulated :
1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a
straight line.

3. To describe a circle with any centre and distance.
4. That all right angles are equal to one another.
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5. That, if a straight line falling on two straight lines
make the interior angles on the same side less than two right
angles, the two straight lines, if produced indefinitely, meet
on that side on which are the angles less than the two right
angles.

COMMON NOTIONS.

1. Things which are equal to the same thing are also
equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders
are equal.

[7] 4. Things which coincide with one another are equal to
one another.

[8] 5. The whole is greater than the part.

DEFINITION 1,

Snpeiov o, ob pépos ovblév.

A point is that which has no part.

An exactly parallel use of pépos (dori) in the singular is found in Aristotle,
Metaph. 1035 b 32 pépos piv olv éori xal Tob elous, literally “There is a
part even of the form”; Bonitz translates as if the plural were used, ‘“Theile
giebt es,” and the meaning is simply “even the form is divisidle (into parts).”
Accordingly it would be quite justifiable to translate in this case “A point is
that which is indivisible into parts.”

Martianus Capella (5th c. a.0.) alone or almost alone translated differently,
““Punctum est cuius pars n#4:/ est,” “a point is that a part of which is #othing.”
Notwithstanding that Max Simon (Euclid und die sechs planimetrischen Biicker,
1901) has adopted this translation (on grounds which I shall presently mention),
I cannot think that it gives any sense. If a part of a point is noffing, Euclid
might as w(flell have said that a point is #sef “nothing,” which of course he
does not do.

Pre-Euclidean definitions.

It would appear that this was not the definition given in earlier text-
books ; for Aristotle (Zopics V1. 4, 141 b 20), in speaking of “Z#ke definitions”
of point, line, and surface, says that they aZ define the prior by means of the
posterior, a point as an extremity of a line, a line of a surface, and a surface
of a solid.

The first definition of a point of which we hear is that given by the
Pythagoreans (cf. Proclus, p. 95, 21), who defined it as a “monad having
position” or “with position added” (uovas mpooAaBoviora féow). It is frequently
used by Aristotle, either in this exact form (cf. De anima 1. 4, 409 a 6) or its
equivalent: e.g. in Mefaph. 1016 b 24 he says that that which is indivisible
every way in respect of magnitude and g»d magnitude but has not position is
a monad, while that which 1is similarly indivisible and has position is a goin.

Plato appears to have objected to this definition. Aristotle says (Mefaph.
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992 a 20) that he objected “to this genus [that of points] as being a geometrical
fiction (yewperpucov 8dypa), and called a point the beginning of a line (dpx3
ypappis), while again he frequently spoke of ‘indivisible lines.’”” To which
Aristotle replies that even “indivisible lines” must have extremities, so that
the same argument which proves the existence of Jines can be used to prove
that points exist. It would appear therefore that, when Aristotle objects to
the definition of a point as the extremity of a line (wépas ypaupds) as un-
scientific (Z9pics v1. 4, 141 b 21), he is aiming at Plato. Heiberg conjectures
(Mathematisches su Aristoteles, p. 8) that it was due to Plato’s influence that
the word for “point” generally used by Aristotle (oreypusj) was replaced by
oypeiov (the regular term used by Euclid, Archimedes and later writers), the
latter term (=mnofa, a conventional mark) probably being considered more
?l.l.itable than areyuy (a puncture) which might appear to claim greater reality
or a point.

Arstotle’s conception of a point as that which is indivisible and has

ition is further illustrated by such observations as that a point is not a
m} (De caelo 1. 13, 296 a 17) and has no weight (ibid. m1. 1, 299 a 30);
again, we can make no distinction between a point and the place (rémwos) where
it is (Phpsics 1v. 1, 209 a 11). He finds the usual difficulty in accounting for
the transition from the indivisible, or infinitely small, to the finite or divisible
magnitude. A point being indfvisible, no accumulation of points, however far
it may be carried, can give us anything divisible, whereas of course a line is a
divisible magnitude. Hence he holds that points cannot make up anything
continuous like a line, point cannot be centinuous with point (ob ydp éorv
éxdpevov anueiov onpelov i) oreyps) oriypss, De gen. ef corr. 1. 2, 317 & 10), and
a line is not made up of points (oV ovyxerar éx areyudv, FPhysics 1v. 8, 215
b 19). A point, he says, is like the #ow in time: now is indivisible and is
not a parf of time, it is only the beginning or end, or a division, of time, and
similarly a point may be an extremity, beginning or division of a line, but is
not part of it or of magnitude (cf. De caele 11. 1, 300 a 14, Physies 1v. 11,
220 a 1—21, VL. I, 231 b 6 sqq.). It is only by motion that a point can
generate a line (De anima 1. 4, 409 a 4) and thus be the origin of magnitude.

Other ancient definitions.

According to an-Nairizi (ed. Curtze, p. 3) one “Herundes” (not so far
identified) defined a point as ‘“the indivisible beginning of all magnitudes,”
and Posidonius as “an extremity which has no dimension, or an extremity of
a line.”

Criticisms by commentators.

Euclid’s definition itself is of course practically the same as that which
Aristotle’s frequent allusions show to have been then current, except that it
omits to say that the point must have position. Is it then sufficient, seeing
that there are other things which are without parts or indivisible, e.g. the now
in time, and the #»:# in number? Proclus answers (p. 93, 18) that the point
is the only thing sn the subject-matter of geometry that is indivisible. Relatively
therefore to the particular science the definition is sufficient. Secondly, the
definition has been over and over again criticised because it is purely negative.
Proclus’ answer to this is (p. 94, 10) that negative descriptions are appropriate
to first principles, and he quotes Parmenides as having described his first and
last cause by means of negations merely. Aristotle too admits that it may
sometimes be necessary for one framing a definition to use negations, e.g. in
defining privative terms such as “blind”; and he seems to accept as proper
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the negative element in the definition of a point, since he says (De anima 11. 6,
430 b 20) that “the point and every division [e.g. in a length or in a period
of time), and that which is indivisible in this sense, is exhibited as privation
(Snholitar ws arépmots).”

Simplicius (quoted by an-Nairizi) says that “a point is the beginning of
magnitudes and that from which they grow ; it is also the only thing which,
having position, is not divisible.” He, like Aristotle, adds that it is by its
motion that a point can generate a magnitude : the particular magnitude can
only be “of one dimension,” viz. a line, since the point does not “spread
itself ” (dimittat). Simplicius further observes that Euclid defined a point
negatively because it was arrived at by detaching surface from body, line from
surface, and finally point from line. “Since then body has three dimensions
it follows that a point [arrived at after successively eliminating all three
dimensions) has none of the dimensions, and has no part.” This of course
reappears In modern treatises (cf. Rausenberger, Elementar-geomeirie des
LPunkles, der Geraden und der Lbene, 1887, p. 7).

An-Nairizi adds an interesting observation. ‘““If any one seeks to know
the essence of a point, a thing more simple than a line, let him, in the sensible
world, think of the centre of the universe and the pgols.” But there is
nothing new under the sun: the same idea is mentioned, in an Aristotelian
treatise, in controverting those who imagine that the poles have some influence
in the motion of the sphere, “when the poles have no magnitude but are
extremities and points” (De motu animalium 3, 699 a 21),

Modern views.

In the new geometry represented by the excellent treatises which start
from new systems of postulates or axioms, the result of the profound study of
the fundamental principles of geometry during recent years (I need only
mention the names of Pasch, Veronese, Enriques and Hilbert), points come
before lines, but the vain effort to define them @ priori is not made; instead
of this, the nearest material things ir nature are mentioned as illustrations,
with the remark that it is from them that we can get the abstract idea. Cf.
the full statement as regards the notion of a point in Weber and Wellstein,
Encyclopidie der elementaren Mathematik, 1., 1905, p. 9. “This notion is
evolved from the notion of the real or supposed material point by the process
of limits, i.e. by an act of the mind which sets a term to a series of presen-
tations in itself unlimited. Suppose a grain of sand or a mote in a sunbeam,
which continually becomes smaller and smaller. In this way vanishes more
and more the possibility of determining still smaller atoms in-the grain of
sand, and there is evolved, so we say, with growing certainty, the presentation
of the point as a definite position in space which is one and is incapable of
further division. But this view is untenable ; we have, it is true, some idea
how the fram of sand gets smaller and smaller, but only so long as it remains
just visible; after that we are completely in the dark, and we cannot see or
imagine the further diminution. That this procedure comes to an end is
unthinkable ; that nevertheless there exists a term beyond which it cannot go,
we must believe or postulate without ever reaching it. . . . Itis a pure
act of wil/, not of the understanding.” Max Simon observes similarly (Euc/id,
p. 25) “The notion ‘point’ belongs to the limit-notions (Grenzbegriffe), the
necessary conclusions of continued, and in themselves unlimited, series of
presentations.” He adds, “The point is the limit of localisation; if this is
more and more energetically continued, it leads to the limit-notion point,’
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better ‘position,” which at the same time involves a change of notion. Content
of space vanishes, relative position remains. ‘Point’ then, according to our
interpretation of Euclid, is the extremest lirhit of that which we can still think
of (not observe) as a spatia/ presentation, and if we go further than that, not
only does extension cease but even relative place, and in this sense the ‘part’
is nothing.” 1 confess I think that even the meaning which Simon intends to
convey is better expressed by “it has ne part” than by “the part is nothing,”
since to take a “part” of a thing in Euclid’s sense of the result of a simple
division, corresponding to an arithmetical fraction, would not be to change
the notion from that of the thing divided to an entirely different one.

DEFINITION 2.

Tpappy 8¢ pfxos drharés.

A line is breadthless length.

This definition may safely be attributed to the Platonic School, if not to
Plato himself. Aristotle (Zopics vi. 6, 143 b 11) speaks of it as open to
objection because it “ divides the genus by negation,” length being necessarily
either breadthless or possessed of breadth; it would seem however that the
objection was only taken in order to score a point against the Platonists, since
he says (ibid. 143 b 29) that the argument is ““of service only against those
who assert that the genus [sc. length] is one numerically, that is, those who
assume ideas,” e.g. the idea of length (adrd pijros) which they regard as a
genus: for if the genus, being one and self-existent, could be divided into
two spécies, one of which asserts what the other denies, it would be self-
contradictory (Waitz).

Proclus (pp. 96, 21—97, 3) observes that, whereas the definition of a point
is merely negative, the line introduces the first ‘““dimension,” and so its
definition is to this extent positive, while it has also a negative element which
denies to it the other “dimensions” (8wordoes). The negation of both
breadth and depth is involved in the single expression “breadthless” (drAarés),
since everything that is without breadth is also destitute of depth, though the
converse is of course not true.

Alternative definitions.

The alternative definition alluded to by Proclus, uéyefos ép’ & Sworaror
“ magnitude in one dimension ” or, better perhaps, * magnitude extended one
way ” (since dudoracts as used with reference to line, surface and solid scarcely
corresponds to our use of “dimension” when we speak of “ one,” *“ two,” or
“three dimensions”), is attributed by an-Nairizi to *“ Heromides,” who must
presumably be the same as “ Herundes,” to whom he attributes a certain
definition of a point. It appears however in substance in Aristotle, though
Aristotle does not use the adjective &warrardy, nor does he apparently use
Sudoracis except of dody as having three “dimensions ” or “ having dimension
(or extension; all ways (wdvry),” the “dimensions” being in his view (1) up
and down, (2) before and behind, and (3) right and left, and “up” being the
principle or beginning of Zngth, “right” of breadth, and * before ” of depth
(De caelo 1. 2, 284 b 24). A line 1s, according to Aristotle, a magnitude
“divisible in one way only” (povayjj Swatperdv), In contrast to a magnitude
divisible in swo ways (8exj Siaiperdv), or a surface, and a magnitude divisible
“in all or in three ways” (wdvry xai pixjj Piarperc), or a body (Metaph.
1016 b 25—27); or it is a magnitude “continuous one way (or in one
direction),” as compared with magnitudes continuous #woe ways or #hree ways,
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which curiously enough he describes as “ breadth” and ‘““depth” respectively
(péyebos 82 70 piv i’ & ovvexis pijros, 16 & émi dio whdros, 70 & émi rpla Bdfos,
Metaph. 1020 a 11), though he immediately adds that “length” means a line,
“breadth ” a surface, and “depth” a body.

Proclus gives another alternative definition as “/fux of a point” (pvoes
anueiov), i.e. the path of a point when moved. This idea is also alluded to in
Aristotle (De anima 1. 4, 409 a 4 above quoted): *‘they say that a line by its
motion produoes a surface, and a point by its motion a line.” “This
definition,” says Proclus (p. 97, 8—13), “is a perfect one as showing the
essence of the line: he who called it the flux of a point seems to define it
from its genetic cause, and it is not every line that he sets before us, but only
the immaterial line ; for it is this that is produced by the point, which, though
itself indivisible, is the cause of the existence of things divisible.”

Proclus (p. 100, 5—19) adds the useful remark, which, he says, was
current in the school of Apollonius, that we have the notion of a line when we
ask for the length of a road or a wall measured merely as length ; for in that
case we mean something irrespective of breadth, viz, distance in one
“dimension.” Further we can obtain sensible perception of a line if we look
at the division between the light and the dark when a shadow is thrown on
the earth or the moon; for clearly the division is without breadth, but has
length.

Species of ‘“lines.”

After defining the “line ” Euclid only mentions one species of line, the
straight line, although of course another species appears in the definition of a
circle later. He doubtless omitted all c/assification of lines as unnecessary for
his purpose, whereas, for example, Heron follows up his definition of a line by
a division of lines into (1) those which are “ straight” and (2) those which are
not, and a further division of the latter into (@) “circular circumferences,”
(8) “spiral-shaped” (é\woedeis) lines and (¢) “curved” (kapmiAar) lines generally,

E::explains the four terms. Aristotle tells us (Mefaph. 986 a 25) that
the Pythagoreans distinguished straight (e26%) and curved (kauwxvlov), and this
distinction appears in Plato (cf. Republic x. 602 c) and in Aristotle (cf. “to a
line belong the attributes straight or curved,” 4nal. gost. 1. 4, 73 b 19; “as in
mathematics it is useful to know what is meant by the terms straight and
curved,” De anima 1. 1, 402 b 19). But from the class of “curved” lines
Plato and Aristotle separate off the wepipepjs or “circular” as a distinct
species often similarly contrasted with straight. Aristotle seems to recognise
broken lines forming an angle as one line: thus “a line, if it be bent (xexap-
pm,t), but yet continuous, is called one” (Mefaph. 1016 a 2); *“the straight line
is more one than the bent line” (#id. 1016 a 12). Cf. Heron, Def. 12, “ A
broken line (xexAaouérm ypapury) so-called is a line which, when produced
does not meet ifself.”

When Proclus says that both Plato and Aristotle divided lines into those
which are “straight,” “circular” (repipeprs) or “a mixture of the two,” adding,
as regards Plato, that he included in the last of these classes “ those which are
called helicoidal among plane (curves) and (curves) formed about solids, and
such species of curved lines as arise from sections of solids” (p. 104, 1—5),
he appears to be not quite exact. The reference as regards Plato seems to
to Parmenides 145 B: *“ At that rate it would seem that the one must have
shape, either straight or round (orpoyydAov) or some combination of the two”;
but this scarcely amounts to a formal classification of lines. As regards
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Aristotle, Proclus seems to have in mind the passage (De caelo 1. 2, 268 b 17)
where it is stated that “all mofion in space, which we call translation (¢opd), is
(in) a straight line, a circle, or a combination of the two; for the first two are
the only simple (motions).”

For completeness it is desirable to add the substance of Proclus’ account
of the classification of lines, fot which he quotes Geminus as his authority.

Geminus’ first classification of lines.

This begins (p. 111, 1—g) with a division of lines into composite (avvferos)
and incomposite (dovvferos). The only illustration given of the composite
class is the “broken line which forms an angle” ( xexkhaopém xai ywviav
wowvra) ; the subdivision of the sncomposite class then follows (in the text as
it stands the word “composite ” is clearly an error for ““incomposite ”). The
subdivisions of the incomposite class are repeated in a later passage (pp. 176,
27—177, 23) with some additional details. The following diagram reproduces
the effect of both versions as far as possible (all the illustrations mentioned by
Proclus being shown in brackets).

lines
composite incomposite
(broken line forming an angle)

foming'a figure not formin'g a figure

oxXpaToTollral or

or determinate indeterminate

N~ iige

(circle, ellipse, cissoid) and

extending without limit
éxr’ dwepov dxBadhbueva
(straight line, parabola, hyperbola, conchoid)

The additional details in the second version, which cannot easily be shown
in the diagram, are as follows :

(1) Of the lines which extend without limit, some do not _form a figure at
all (viz. the straight line, the parabola and the hyperbola); but some first
“come together and form a figure” (i.e. have a loop), “and, for the rest,
extend without limit” (p. 177, s%.u

/

As the only other curve, besides the parabola and the hyperbola, which
has been mentioned as proceeding to infinity is the conchoid (of Nicomedes),
we can hardly avoid the conclusion of Tannery® that the curve which has a
loop and then proceeds to infinity is a variety of the conchoid itself. As is

1 Notes pour I'histoive des lignes et surfaces courbes dans Pantiguité in Bulletin des sciences
mathém. et astronom. 2 sér. VIIL. (1884), pp. 108—g (Mémoires scientifigues, 1. p. 23).
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well known, the ordinary conchoid (which was used both for doubling the
cube and for trisecting the angle) is obtained in ‘this way. Suppose any
number of rays passing through a fixed point (the po/) and intersecting a
fixed straight line ; and suppose that points are taken on the rays, beyond the
fixed straight line, such that the portions of the rays intercepted between the
fixed straight line and the point are equal to a constant disfance (8udompa),
the locus of the points is a conchoid which has the fixed straight line for
asymptote. If the “distance”  is measured from the intersection of the ray
with the given straight line, not in the direction away from the pole, but
towards the pole, we obtain three other curves according as a is less than,
equal to, or greater than 4, the distance of the pole from the fixed straight line,
which is an asymptote in each case. The case in which a > & gives a curve
which forms a loop and then proceeds to infinity in the way Proclus describes.
Now we Rnow both from Eutocius (Comm. on Archimedes, ed. Heiberg, 1.
p- 98) and Proclus (p. 272, 3—7) that Nicomedes wrote on conchoids (in
the plural), and Pappus (1v. p. 244, 18) says that besides the “first” (used as
above stated) there were “the second, the third and the fourth which are
useful for other theorems.”

(2) Proclus next observes (p. 177, 9) that, of the lines which extend
without limit, some are “asymplotic” (aovpwrwrar), namely “those which
never meet, however they are produced,” and some are “symplotic,” namely
“‘those which will meet sometime”; and, of the *asymptotic” class, some
are in one plane, and others not. Lastly, of the “asymptotic” lines in one
plane, some preserve always the same distance from one another, while others
continually “lessen the distance, like the hyperbola with reference to the
straight line, and the conchoid with reference to the straight line.”

Geminus’ second classification.

This (from Proclus, pp. 111, g—20 and 112, 16—18) can be shown in a
diagram thus:

Incomposite lines
Wlfﬁl ypappual
simple, dxAj mixed, pucrh
fr——
making a figure indeterminate
woiwira dépirros
(e.g. circle) (straight line)
lines in planes lines on solids
al év Tols arepenis
line meeting itself extending without limit
7 év alr qupwiwrovea 1) éx’ dweapor dxfalhopéry
(e.g. cissoid)
lines formed by sections lines round solids
al kard ras Touds al wepl T4 oreped
(e.g. conic sections, spiric curves) (e.g. Aelix abou! a sphere or about a cone)
homoeomeric not homocomeric
(cylindrical helix) (all others)

Notes on classes of “lines’ and on particular curves.

We will now add the most interesting notes found in Proclus with
reference to the above classifications or the particular curves mentioned.
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1. Homoeomeric lines.

By this term (8uotopepeis) are meant lines which are alike in all parts, so
that in any one such curve any part can be made to coincide with any other
Proclus observes that these lines are only three in number, two being
“simple” and in a plane (the straight line and the circle), and the third
“mixed,” (subsisting) “about a solid,” namely the cylindrical helix. The
latter curve was also called the cochlias or cocklion, and its homoeomeric
property was proved by Apollonius in his work wepi rob xoxAiov (Proclus,
p. 105, 5). The fact that there are only three Aomoeomeric lines was proved
by Geminus, “who proved, as a preliminary proposition, that, if from a point
(dwd Tov onpelov, but on p. 251, 4 d¢’ évds ayuelov) two straight lines be drawn
to a homoeomeric line making equal angles with it, the straight lines are
equal” (pp. 112, 1—113, 3, cf. p. 251, 2—19).

2. Mixed lines.

It might be supposed, says Proclus (p. 105, 11), that the cylindrical helix,
being Aomoeomeric, like the straight line and the circle, must like them be
simple. He replies that it is not simple, but mixed, because it is generated by
two unlike motions. Two /ike motions, said Geminus, e.g. two motions at the
same speed in the directions of two adjoining sides of a square, produce a
simple line, namely a straight line (the diagonal); and again, if a straight line
moves with its extremities upon the two sides of a right angle respectively,
this same motion gives a simple curve (a circle) for the locus of the middle
point of the straight line, and a mixed curve (an ellipse) for the locus of any
other point on it (p. 106, 3—15).

Geminus also explained that the term “mixed,” as applied to curves, and
as applied to surfaces, respectively, is used in different senses. As applied to
curves, “mixing” neither means simple “putting together” (oivfeais) nor
“blending ” (xpaois). Thus the helix (or spiral) is a *“ mixed ” line, but (1) it
is not “mixed” in the sense of “ putting together,” as it would be if, say, part
of it were straight and part circular, and (2) it is not mixed in the sense of
“blending,” because, if it is cut in any way, it does not present the appearance
of any simple lines (of which it might be supposed to be compounded, as it
were). The “mixing” in the case of lines is rather that in which the con-
stituents are destroyed so far as their own character is concerned, and are
replaced, as it were, by a ckemical combination (éorw &v alr) ovveplappéva i
dxpa xal ovyxexupéva). On the other hand “mixed” surfaces are mixed in
the sense of a sort of “blending” (xard rwa xpdow). For take a cone gene-
rated by a straight line passing through a fixed point and passing always
through the circumference of a circle: if you cut this by a plane parallel to
that of the circle, you obtain a circular section, and if you cut it by a plane
through the vertex, you obtain a triangle, the “mixed” surface of the cone
being thus cut into simple lines (pp. 117, 22—118, 23).

3. Spiric curves.

These curves, classed with conics as being sections of solids, were dis-
covered by Perseus, according to an epigram of Perseus’ own quoted by
Proclus (p. 112, 1), which says that Perseus found “three lines upon (or,
perhaps, in addition to) five sections” (rpeis ypappds émi mévre ropals).
Proclus throws some light on these in the following passages :

“Of the spiric sections, one is interlaced, resembling the horse-fetter
(immov wédy) ; another is widened out in the middle and contracts on each
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side (of the middle), a third is elongated and is narrower in the middle,
broadening out on each side of it” (p. r1z, 4—8).

“This is the case with the spiric surface; for it is conceived as generated
by the revolution of a circle remaining at right angles [to a plane] and turning
about a point which is not its centre [in other words, generated by the revo-
lution of a circle about a straight line in its plane not passing through the
centre]. Hence the spire takes three forms, for the centre [of rotation] is
either on the circumference, or within it, or without it. And 1if the centre of
rotation is on the circumference, we have the continuous spire (owexys), if
within, the inferlaced (épmerheypévn), and if without, the gpen (Siexyjs). And
the spiric sections are three according to these three differences” (p. 119,
8—17).

“When the kippopede, which is one of the spiric curves, forms an angle
with itself, this angle also is contained by mixed lines” (p. 127, 1—3).

“Perseus showed for spirics what was their property (ovpmrrwpa)”
(p- 356, 12).

Thus the spiric surface was what we call a Zre, or (when open) an anchor-
ring. Heron (Def. 97) says it was called alternatively spire (owecpa) or ring
(xpixos); he calls the variety in which “the circle cuts itself,” not “interlaced,”
but “ crossing-itself” (éraAAarrovea).

Tannery’ has discussed these passages, as also did Schiaparelli®, It is clear
that Proclus’ remark that the difference in the three curves which he mentions
corresponds to the difference between the three surfaces is a slip, due perhaps
to too hurried transcribing from Geminus: all three arise from plane sections
of the open anchorring. If » is the radius of the revolving circle, @ the
distance of its centre from the axis of rotation, 4 the distance of the plane
section (supposed to be parallel to the axis) from the axis, the three curves
described in the first extract correspond to the following cases :

(1) d=a-r. In this case the curve is the Aippopede, of which the
lemniscate of Bernoulli is a particular case, namely that in which a =27,

The name %ippopede was doubtless adopted for this one of Perseus’ curves
on the ground of its resemblance to the Zippopede of Eudoxus, which seems to
have been the curve of intersection of a sphere with a cylinder touching it
internally.

(2) a+7r>d>a. Here the curve is an oval.

(3) a>d>a-». The curve is now narrowest in the middle.

Tannery explains the “three lines upon (in addition to) five sections”
thus. He points out that with the gpen fore there are two other sections
corresponding to

(4) d=a: transition from (2) to (3).

(5) a-7>d>o, in which case the section consists of two symmetrical
ovals.

He then shows that the sections of the clesed or confinuous tore, corre-
sponding to @ =7, give curves corresponding to (z), (3) and (4) only. Instead
of (1) and (5) we have only a section consisting of two equal circles touching
one another.

On the other hand, the #kird spire (the snterlaced variety) gives three new
forms, which make a group of three in addition to the first group of ffize sections.

Y Pour lhistoire des lignes et surfaces courbes dans Tantiguité in Bulletin des sciences
mathém. et astronom. VilL (1884), pp. 25—27 (Mémoires scientifigues, 11. pp. 24—18).

2 Die homocentrischen Sphiren des Eudoxus, des Kallippus und des Aristoteles (Abhand-
lungen sur Gesch. der Math. 1. Heft, 1877, pp. 149—153).
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The difficulty which I see in this interpretation is the fact that, just after
“three lines on five sections” are mentioned, Proclus describes three curves
which were evidently the most important ; but these three belong to three of
the five sections of the open tore, and are not separate from them.

4. The cissoid.

This curve is assumed to be the same as that by means of which, accordi
to Eutocius (Comm. on Archimedes, n1. p. 66 sqq.), Diocles in his book wep
wvplwv (On burning-glasses) solved the problem of doubling the cube. It is
the locus of points which he found by the following construction. Let AC,
BD be diameters at right angles in a circle with centre 0.

Let E, F be points on the quadrants BC, BA respectively such that the
arcs BE, BF are equal.

Draw EG, FH perpendicular to CA.
Join AE, and let # be its intersection
with FA,

The cissoid is the locus of all the
points P corresponding to different posi-
tions of £ on the quadrant BC and of
at an equal distance from B along the arc
BA.

A is the point on the curve nd-
ing to the position C for the point £, and
B the point on the curve ing
to the position of £ in which it coincides
with B.

It is easy to see that the curve extends /
in the direction 45 beyond B, and that /
CK drawn ndicular to CA is an /
asymptote. It may be regarded also as K
having a branch 4.0 symmetrical with
A B, and, beyond D, approaching XC produced as asymptote.

If 04, OD are coordinate axes, the equation of the curve is obviously

J"(‘“’-“):(ﬂ"x)':
where a is the radius of the circle.

There is a cusp at 4, and it agrees with this that Proclus should say
(p. 126, 24) that “cissoidal lines converging to one point like the leaves of
ivy—for this is the origin of their name—form an angle.” He makes the
shght correction (p. 128, 5) that it is not two par#s of a curve, but ome curve,
which in this case makes an angle.

But what is surprising is that Proclus seems to have no idea of the curve
passing outside the circle and having an asymptote, for he several times
speaks of it as a closed curve (torming a figure and including an area): cf.

152, 7, ““the plane (area) cut off by the cissoidal line has une bounding
ﬁine but it has not in it a centre such that all (straight lines drawn to the
curve) from it are equal.” It would appear as if Proclus regarded the cissoid
as formed by the four symmetrical cissoidal arcs shown in the figure.

Even more peculiar is Proclus’ view of the

5. ‘Single-turn Spiral.”
This is really the spiral of Archimedes traced by a point starting from
the fixed extremity of a straight line and moving uniformly along it, while
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simultaneously the straight line itself moves uniformly in a plane about its fixed
extremity. In Archimedes the spiral has of course any number of turns, the
straight line making the same number of complete revolutions. Yet Proclus,
while giving the same account of the generation of the spiral (p. 180, 8—12),
regards the single-turn spiral as actually stopping short at the point reached
after one complete revolution of the straight line: “it is necessary to know
that extending without limit is not a property of all lines; for it neither
belongs to the circle nor to the cissoid, nor in general to lines which form
figures ; nor even to those which do not form figures. For even the single-
turn spiral does not extend without limit—for i ss constructed between two
points—nor does any of the other lines so generated do so” (p. 187, 19—25).
It is curious that Pappus (VIIL p. 1110 5qq.) uses the same term povoorpocpos
#Auf to denote one turn, not of the spiral, but of the ¢cylindrical kelix.

DEFINITION 3.

Tpappijs 8¢ wépara ompeia,

The extremities of a line are points.

It being unscientific, as Aristotle said, to define a point as the *extremity
of a line” (wépas ypappuss), thereby explaining the prior by the posterior,
Euclid defined a point differently; then, as it was necessary to connect a
point with a line, he introduced this explanation after the definitions of both
had been given. This compromise is no doubt his own idea; the same
thing occurs with reference to a surface and a line as its extremity in Def. 6,
and with reference to a solid and a surface as its extremity in x1. Def. 2.

We miss a statement of the facts, equally requiring to be known, that a
“division " (Suaipeots) of a line, no less than its “beginning” or “end,” is a
point (this 1s brought out by Aristotle: cf, Mefaph. 1060 b 15), and that
the éntersection of two lines is also a point. If these additional explanations
had been given, Proclus would have been spared the difficulty which he finds
in the fact that some of the lines used in Euclid (namely infinite straight lines
on the one hand, and circles on the other) have no “extremities.” So also
the ellipse, which Proclus calls by the old name fvpeds (‘“shield”). In the
case of the circle and ellipse we can, he observes (p. 103, 7), take a portion
bounded by points, and the definition applies to that portion. His rather
far-fetched distinction between two aspects of a circle or ellipse as a &ne and
as a dlosed figure (thus, while you are describing a circle, you have two extremi-
ties at any moment, but they disappear when it is finished) is an unnecessarily
elaborate attempt to establish the literal universality of the *‘definition,”
which is really no more than an explanation that, if a line Zas extremities,
those extremities are points.

DEFINITION 4.

Etbela ypapjsn) dorw, fris €€ loov Tols & davris omuelos xetrar.
A straight line is a line which lies evenly with the points on ifself.

The only definition of a straight line authenticated as pre-Euclidean is
that of Plato, who defined it as “#kat of whick the middle covers the ends”
(relatively, that is, to an eye placed at either end and looking along the
straight line). It appears in the Parmenides 137 E: “siaight is whatever has
its middle in front of (i.e. so placed as to obstruct the view of) both its ends”
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(€26Y ye of &v 5 péoov dudoiv roiv doydrow érimpoobfer ). Aristotle quotes it in
equivalent terms (Zupics VI. 11, 148 b 27), o3 76 péaov &mumpootei Tois mépaow ;
and, as he does not mention the name of its author, but states it in combina-
tion with the definition of a line as the extremity of a surface, we may assume
_that he used it as being well known. Proclus also quotes the definition as
Plato’s in almost identical terms, #s ra. uéoa Tois drpots émmpoalel (p. 109, 21).
This definition is ingenious, but implicitly appeals to the sense of sight and
involves the postulate that the line of sight is straight. (Cf. the Aristotelian
Problems 31, 20, 959 a 39, where the question is why we can better observe
straightness in a row, say, of letters with one eye than with two.) As regards
the straightness of “visual rays,” éfes, cf. Euclid’s own Opfics, Deff. 1, 2,
assumed as Aypotheses, in which he first speaks of the “straight lines” drawn
from the eye, avoiding the word dyres, and then says that the figure contained
by the wisual rays (6yeas) is a cone with its vertex in the eye.

As Aristotle mentions no definition of a straight line resembling Euclid’s,
but gives only Plato’s definition and the other explaining it as the * extremity
of a surface,” the latter being evidently the current definition in contemporary
textbooks, we may safely infer that Euclid’s definition was a new departure of
his own.

Proclus on Euclid’s definition.

Coming now to the interpretation of Euclid’s definition, ebfeia ypappsj
dorw, s € loov Tols i’ éavrijs ompelos xeirar, we find any number of slightly
different versions, but none that can be described as quite satisfactory ; some
authorities, e.g. Savile, have confessed that they could make nothing of it. It
is natural to appeal to Proclus first ; and we find that he does in fact give an
interpretation which at first sight seems plausible, He says (p. 109, 8sq.) that
Euclid “shows by means of this that the straight line alone [of all lines]
occupies a distance (karéxew Sudomua) equal to that between the points on it.
For, as far as one of the points is distant from another, so great is the length
(péyefos) of the straight line of which they are the extremities; and this is the
meaning of lyipg é ioov to (or with) the points on it” [¢& {oov being thus,
apparently, interpreted as “at” (or “over”) “an equal distance”]. “But if
you take two points on the circumference (of a circle) or any other line, the
distance cut off between them along the line is greater than the interval
separating them. And this is the case with every line except the straight line.
Hence the ordinary remark, based on a common notion, that those who
journey in a straight line only travel the necessary distance, while those who
do not go straight travel more than the necessary distance.” (Cf. Aristotle,
De caelo 1. 4, 271 a 13, “we always call the distance of anything the straight
line” drawn to it.) Thus Proclus would interpret somewhat in this way: “a
straight line is that which represents extension equal with (the distances
separating) the points on it.” This explanation seems to be an attempt to
graft on to Euclid’s definition the assumption (it is a AapBavépevov, not a
definition) of Archimedes (On the sphere and cylinder 1. ad init.) that “of all
the lines which have the same extremities the straight line is least.” For this
purpose & {oov has apparently to be taken as meaning “at an equal distance,”
and again “lying at an equal distance” as equivalent to “extending over (or
representing) an equal distance.” This is difficult enough in itself, but is
seen to be an impossible interpretation when applied to the similar definition
of a plane by Euclid (Def. 7) as a surface “which lies evenly with the straight
lines on itself.” In that connexion Proclus tries to make the same words é ioou
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xeirar mean “ extends over an equal aree with.” He says namely (p. 117, 2)
that, “if two straight lines are set out” on the plane, the plane surface
“occupies a space equal to that between the straight lines.” But two straight
lines do not determine by themselves any space at all ; it would be necessary
to have a closed figure with its boundaries in the plane before we could arrive
at the equivalent of the other assumption of Archimedes that “of surfaces
which have the same extremities, if those extremities are in a plane, the plane is
the least [in area].” This seems to be an impossible sense for é ioov even on
the assumption it means “at an equal distance” in the present definition.
The necessity therefore of interpreting é irov similarly in both definitions
makes it impossible to regard it as referring to distance or length at all. It
should be added that Simplicius gave the same explanations as Proclus
(an-Nairizi, p. 5).

The language and construction of the definition.

Let us now consider the actual wording and grammar of the phrase yris &
loov Tols ép éavris onpelots kelrar.  As regards the expression & izov we note
that Plato and Aristotle (whose use of it seems typlcal) commonly have it in
the sense of “on a footing of equality”: cf. oi & {oov in Plato’s Laws 777 D,
919 D; Aristotle, Politics 1259 b 5 é Toow, e Bovherar Tiv piow, “tend to
be on an equality in nature,” Eth. Nic. viii. 12, 1161 a 8 dvratfa wdvres &
ioov, “there all are on a footing of equality.” Slightly different are the uses
in Aristotle, Eth. Vic. X. 8, 1178 a 25 Tév piv yap dvayraiwv ypela xai & lrov
éorw, “both need the necessaries of life fo the same extent, let us say”; Topics 1X.
15, 174 a 32 & loov mowivra Ty dpumyow, “asking the question indifferently”
(i.e. without showing any expectation of one answer being given rather than
another). The natural meaning would therefore appear to be “evenIy placed”
(or balanced), “in equal measure,” “mdlﬂ'erently or “without bias” one way
or the other. Next, is the dative rois ép’ éavrijs onuedots constructed with & foov
or with xeirac? 1In the first case the phrase must mean “that which lies evenly
wit/ (or in respect to) the points on it,” in the second apparently “that which,
in (or by) the points on it, lies (or is placed) evenly (or uniformly).” Max Simon
takes the first construction to give the sense “die Gerade liegt in gleicher
Weise wie ihre Punkte.” If the last words mean “in the same way as (or in
like manner as) its points,” I cannot see that they tell us anything, although
Simon attaches to the words the not!on of distance (Abstand) like Proclus.
The second construction he takes as giving *‘ die Gerade liegt fiir (durch) ihre
Punkte gleichmissig,” * the straight line lies symmetrically for (or through) its
points”; or, if keirac is taken as the passive of rifinu, “die Gerade ist durch
ithre Punkte gleichmissig gegeben worden,” “the straight line is symmetrically
determined by its points.” He adds that the idea is here direction, and that
both dérection and distance (as between two different given points simply)
would be to Euclid, as later to Bolzano (Betrachtungen tiber einige Gegenstinde
der Elementargeometrie, 1804, quoted by Schotten, /nkalt und Methode des
Planimetrischen Unterrichts, 11. p. 16), primary irreducible notions.

While the language is thus seen to be hopelessly obscure, we can safely
say that the sort of idea which Euclid wished to express was that of a line
which presents the same shape at and relatively to all points on it, without
any irregular or unsymmetrical feature distinguishing one part or side of it
from another. Any such irregularity could, as Saccheri points out (Engel and
Stickel, Die Theorie der Parallellinien von Euklid bis Gauss, 1895, p. 109), be
at once made perceptible by keeping the ends fixed and turning the line about
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them right round; if any two positions were distinguishable, e.g. one being to
the left or right relatively to another, *it would not lie in a uniform manner
between its points.”

A conjecture as to its origin and meaning.

The question arises, what: was the origin of Euclid’s definition, or, how
was it suggested to him? It seems to me that the basis of it was really
Plato’s definition of a straight line as “that line the middle of which covers
the ends.” Euclid was a Platonist, and what more natural than that he
should have adopted Plato’s definition in substance, while regarding it as
essential to change the form of words in order to make it independent of any
implied appeal to vision, which, as a physical fact, could not properly find a
place in a purely geometrical definition? 1 believe therefore that Euclid’s
definition is simply an attempt (albeit unsuccessful, from the nature of the
case) to express, in terms to which a geometer could not object as not being
part of geometrical subject-matter, the same thing as the Platonic definition.

The truth is that Euclid was attempting the impossible. As Pfleiderer
says (Scholia to Euclid), “ It seems as though the notion of a straight line,
owing to its simplicity, cannot be explained by any regular definition which
does not introduce words already containing in themselves, by implication,
the notion to be defined (such e.g. are direction, equality, uniformity or
evenness of position, unswerving course), and as though it were impossible, if
a person does not already know what the term sfraight here means, to teach
it to him unless by putting before him in some way a picture or a drawing of
it.” This is accordingly done in such books as Veronese's Elementi di
geometria (Part 1., 1904, p. 10): “A stretched string, e.g. a plummet, a ray of
light entering by a small hole into a dark room, are rectilineal objects. The
image of them gives us the abstract idea of the limited line which is called a
rectilineal segment.”

Other definitions.

We will conclude this note with some other famous definitions of a straight
line. The following are given by Proclus (p. r10, 18—23).

1. A line stretched to the utmost, &’ dxpov rerapdvy ypappi. This appears
in Heron also, with the words “towards the ends” (éri a wépara) added.
(Heron, Def. 4).

2. Part of if cannot be in the assumed plane while part is in one higher up
(év perewporépw). This is a proposition in Euclid (x1. 1).

3 Al its parts fit on all (other parts) alike, wavra abris Ta pépy waow
dpolws dpapucle. Heron has this too (Def. 4), but instead of “alike” he
says wavroiws, “in all ways,” which is better as indicating that the applied part
may be applied one way or the regerse way, with the same result,

4. That line which, when its ends remain fixed, stself remains fixed, 5 rév
mepdrov pevdvruv kal abry pévovea. Heron’s addition to this, “when it is, as
it were, turned round in the same plane” (olov &v 76 alr@ drurédo orpepopém),
and his next variation, “and about the same ends having always the same
position,” show that the definition of a straight line as “that which does
not change its position when it is turned about its extremities (or any two
points in it) as poles” was no original discovery of Leibniz, or Saccheri, or
Krafit, or Gauss, but goes back at least to the beginning of the Christian era.
Gauss’ form of this definition was: “The line in which lie all points that,
during the revolution of a body (a part of space) about two fixed points,
maintain their position unchanged is called a straight line.” Schotten
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(1. p. 315) mantains that the notion of a straight line and its property of
being determined by two points are unconsciously assumed in this definition,
which is therefore a logical “circle.”

5.  That line which with one other of the sume species cannot complete a
Sigure, 7 pere s dpoedols ds oxijua pi dworedoloa. This is an obvious
Uorepov-mporepov, since it assumes the notion of a figure.

Lastly Leibniz' definition should be mentioned: A straight line is one
which divides a plane into two halves identical in all but position. Apart from
the fact that this definition introduces the plane, it does not seem to have any
advantages over the definition last but one referred to.

Legendre uses the Archimedean property of a straight line as the shorfest
distance between two points. Van Swinden observes (Elemente der Geometrie,
1834, p- 4), that to take this as the definition involves assuming the proposition
that any two sides of a triangle are greater than the third and proving that
straight lines which have two points in common coincide throughout their
length (cf. Legendre, Llments de Géométrie 1. 3, 8).

The above definitions all illustrate the observation of Unger (Die Geometrie
des Euklid, 1833): “ Straight is a simple notion, and hence all definitions of
it must fail.... But if the proper idea of a straight line has once been grasped,
it will be recognised in all the various definitions usually given of it ; all
the definitions must therefore be regarded as explanations, and among them
that one is the best from which further inferences can immediately be drawn
as to the essence of the straight line.”

DEFINITION 5.

"Emupdvea 8¢ doTw, 8 pijros xai wAdros pdvov &

A surface és that which has length and breadth only.

The word éripdveaa was used by Euclid and later writers to denote surface
in general, while they appropriated the word éréredov for plane surface, thus
making &rimedov a species of the genus dmpdvea, A solitary use of erspdvea
by Euclid when a plane is meant (x1. Def. 11) is probably due to the fact that
the particular definition came from an earlier textbook. Proclus (p. 116, 17)
remarks that the older philosophers, including Plato and Aristotle, used the
words émpdvea and érimedov indifferently for any kind of surface, Aristotle
does indeed use both words for a surl%.oe, with perhaps a tendency to use
émupaven more than ériredov for a surface not plane. Cf. Categories 6, 5 a 1 sq.,
where both words are used in one sentence: *“You can find a common
boundary at which the parts fit together, a point in the case of a line, and a line
in the case of a surface (ériupdvea); for the parts of the surface (émurédov) do fit
together at some common boundary. Similarly also in the case of a body you
can find a common boundary, a line or a surface (émpdven), at which the
parts of the body fit together.” Plato however does not use émupavea at all in
the sense of surface, but only eémimedov for both surface and plane surface.
There is reason therefore for doubting the correctness of the notice in
Diogenes Laertius, 111. 24, that Plato “was the first philosopher to name,
among extremities, the plane surface ” (ewiwedos émpavaa).

émupdvaa of course means literally the feature of a body which is agparent
to the eye (émuparrjs), namely the surface.

Aristotle tells us (De sensu 3, 439 a 31) that the Pythagoreans called a
surface ypoud, which seems to have meant skin as well as colour. Aristotle
explains the term with reference to colour (xpépa) as a thing inseparable from
the extremity (wépas) of a body.
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Alternative definitions.

The definitions of a surface correspond to those of a line. As in Aristotle
a line is a magnitude “(extended) one way, or in one ‘dimension’” (é¢" &),
“continuous one way” (ép’ & ouveyés), or “divisible in one way” (povaxj
Suaperdv), so a surface is a magnitude extended or continuous fwo ways (et
8vo), or divisible in fwo ways a('g?xﬁ) As in Euclid a surface has “length and
breadth ” only, so in Aristotle “ breadth ” is characteristic of the surface and is
once used as synonymous with it (Mefaph. 1020 a 12), and again “lengths
are made up of long and short, suzfaces of broad and narrow, and solids (dyxot)
of deep and shallow ” (Metaph. 1085 a 10).

Aristotle mentions the common remark that a line by its motion produces a
surface (De anima 1. 4, 409 a 4). He also gives the a posteriori description of
a surface as the ‘‘ extremity of a solid” (Zopics V1. 4, 141 b 22), and as “the
section (rousj) or division (Siaipeois) of a body ” (Metaph. 1060 b 14).

Proclus remarks (p. 114, 20) that we get a notion of a surface when we
measure areas and mark their boundaries in the sense of length and breadth ;
and we further get a sort of perception of it by looking at shadows, since
these have no depth (for they do not penetrate the earth) but only have length
and breadth.

Classification of surfaces.

Heron gives (Def. 74, p. 50, ed. Heiberg) two alternative divisions of
surfaces into two classes, corresponding to Geminus’ alternative divisions of
lines, viz. into (1) incomposite and composite and (2) simple and mixed.

(1) Jncomposite surfaces are “those which, when produced, fall into (or
coalesce with) themselves” (oar éxBaddpevar alrai xad’ éavrav miwrrovow),
i.e. are of continuous curvature, e.g. the sphere.

Composife surfaces are “those which, when produced, cut one another.”
Of composite surfaces, again, some are (¢) made up of non-homogeneous
(elements) (& dvouowoyevav) such as cones, cylinders and hemispheres, others
(b)rfmade up of homogeneous (elements), namely the rectilineal (or polyhedral)
surfaces.

(2) Under the alternative division, simple surfaces are the plane and the
spherical surfaces, but no others; the mixed class includes all other surfaces
whatever and is therefore infinite in variety.

Heron specially mentions as belonging to the mixed class (2) the surface
of cones, cylinders and the like, which are a mixture of plane and circular
(pexrai éf émurédov kai wepidepeias) and (4) spiric surfaces, which are “a mixture
of two circumferences” (by which he must mean a mixture of two circular
elements, namely the generating circle and its circular motion about an axis in
the same plane).

Proclus adds the remark that, curiously enough, mixed surfaces may arise
by the revolution either of simple curves, e.g. in the case of the spire, or of
mixed curves, e.g. the “right-angled conoid” from a parabola, ‘another
conoid ” from the hyperbola, the “oblong” (ém{unxes, in Archimedes mapa-
pdxes) and “flat” (érurhari) spheroids from an ellipse according as it revolves
about the major or minor axis respectively (pp. 119, 6—120, 2). The /omoeo-
meric surfaces, namely those any part of which will coincide with any other
part, are 7zwo only (the plane and the spherical surface), not three as in the case
of lines (p. 120, 7).
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DEFINITION 6.

"Empaveias 8¢ wépara ypappal,

The extremities of a surface are lines.

It being unscientific, as Aristotle says, to define a line as the extremity of
a surface, Euclid avoids the error of defining the prior by means of the
posterior in this way, and gives a different definition not open to this
objection. Then, by way of compromise, and in order to show the connexion
between a line and a surface, he adds the equivalent of the definition of a line
previously current as an explanation.

As in the corresponding Def. 3 above, he omits to add what is made
clear by Aristotle (Metaph. 1060 b 15) that a “division” (Swipeais) or
“section” (rourj) of a solid or body is also a surface, or that the common
boundary at which two parts of a solid fit together (Categories 6, 5 a 2)
may be a surface.

Proclus discusses how the fact stated in Def. 6 can be said to be true of
surfaces like that of the sphere “which is bounded (merépacrar), it is true, but
not by lines.” His explanation (p. 116, 8—14) is that,*“if we take the surface
(of a sphere), so far as it is extended two ways (8ixj Saoraryi), we shall find
that it is bounded by lines as to length and breadth ; and if we consider the
spherical surface as possessing a form of its own and invested with a fresh
quality, we must regard it as having fitted end on to beginning and made
the two ends (or extremities) one, being thus one potentially only, and not in
actuality.”

DEFINITION 7.

*Enimedos dmipdved dorw, fris i loov Tais i’ davris elfelais xetrar

5’! plane surface is a surface which lies evenly with the straight lines on
itself.

The Greek follows exactly the definition of a straight line mutatis mutandis,
i.e. with rals...efelais for rols...onpelors. Proclus remarks that, in general,
all the definitions of a straight line can be adapted to the plane surface by
merely changing the genus. Thus, for instance, a plane surface is “a surface
the middle of which covers the ends” (this being the adaptation of Plato’s
definition of a straight line). Whether Plato actually gave this as the defini-
tion of a plane surgce or not, I believe that Euclid’s definition of a plane
surface as lying evenly with the straight lines on itself was intended simply to
express the same idea without any implied appeal to vision (just as in the
corresponding case of the definition of a straight line).

As already noted under Def. 4, Proclus tries to read into Euclid’s defini-
tion the Archimedean assumption that ‘“of surfaces which have the same
extremities, if those extremities are in a plane, the plane is the least.” But,
as I have stated, his interpretation of the words seems impossible, although it
is adopted by Simplicius also (see an-Nairizi).

Ancient alternatives.

The other ancient definitions recorded are as follows.

1. The surface which is stretched to the utmost (éx' axpov Terapévy):
definition which Proclus describes as equivalent to Euclid’s definition (on
Proclus’ own view of that definition). Cf. Heron, Def. 9, *“(a surface) which
is right (and) stretched out” (8p6% ol dmorerapém), words which he adds to
Euclid’s definition.
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2. The least surface among all those which have the same extremities.
Proclus is here (p. 117, 9) obviously quoting the Archimedean assumption.

3. A surface all the parts of which have the property of filting on (cach
other) (Heron, Def. y).

4. A surface suck that a straight line fits on all parts of it (Proclus,
P- 117, 8), or such that the straight line fits on it all ways, i.e. however placed
(Proclus, p. 117, 20).

With this should be compared :

5. “(d4 plane surface is) such that, if a straight line pass through two
points on 1, the line coincides wholly with it at every spot, all ways,” i.e. however
placed (one way or the reverse, no matter how), 7s éredav dvo onuelwy dymrar
€fela, xal GAy alrj xard wdvra Témov mavrolws épapuilerar (Heron, Def. g).
This appears, with the words xara wdvra Towov mwavroiws omitted, in Theon of
Smyrna (p. 112, 5, ed. Hiller), so that it goes back at least as far as the
1st c. A.D. It is of course the same as the definition commonly attributed to
Robert Simson, and very widely adopted as a substitute for Euclid’s.

This same definition appears also in an-Nairizi (ed. Curtze, p. 10) who,
after quoting Simplicius’ explanation (on the same lines as Proclus’) of the
meaning of Euclid’s definition, goes on to say that * others defined the plane
surface as that in which it is possible to draw a straight line from any point to
any other.”

Pifficulties in ordinary definitions.

Gauss observed in a letter to Bessel that the definition of a plane surface
as a surface such that, if any two points in it be taken, the straight line joining
them lies wholly in the surface (which, for short, we will call “Simson’s”
definition) contains more than is necessary, in that a plane can be obtained by
simply projecting a straight line lying in it from a point outside the line but also
lyinlg on the plane; in fact the definition includes a theorem, or postulate, as
well. The same is true of Euclid’s definition of a plane as the surface which
“lies evenly with (aZ) the straight lines on itself,” because it is sufficient for a
definition of a plane if the surface ““lies evenly ” with those lines only which
pass through a fixed point on it and each of the several points of a straight line
also lying in it but not passing through the point. But frem Euclid’s point
of view it is immaterial whether a definition contains more than the necessary
minimum provided that the existence of a thing possessing all the attributes
contained in the definition is afterwards proved. This however is not done
in regard to the plane. No proposition about the nature of a plane as such
appears before Book xI., although its existence is presupposed in all the
geometrical Books 1.—iIv. and VL. ; nor in Book XI. is there any attempt to
prove, e.g. by construction, the existence of a surface conforming to the
definition. The explanation may be that the existence of the plane as defined
was deliberately assumed from the beginning like that of ‘points and lines, the
existence of which, according to Aristotle, must be assumed as principles
unproved, while the existence of everything else must be proved ; and it may
well be that Aristotle would have included plane surfaces with points and
lines in this statement had it not been that he generally took his illustrations
from plane geometry (excluding solid).

But, whatever definition of a plane is taken, the evolution of its essential
properties is extraordinarily difficult. Crelle, who wrote an elaborate article
Zur Theorte der Ebene (read in the Academie der Wissenschaften in 1834) of
which account must be taken in any full history of the subject, observes that,
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since the plane is the field, as it were, of almost all the rest of geometry, while
a proper conception of it is necessary to enable Eucl. 1. 1 to be understood,
it might have been expected that the theory of the plane would have been the
subject of at least the same amount of attention as, say, that of parallels. This
however was far from being the case, perhaps because the subject of parallels
(which, for the rest, presuppose the notion of a plane) is muck easier than that
of the plane. The nature of the difficulties as regards the plane have also
been pointed out recently by Mr Frankland (Zke First Book of Euclid’s
Elements, Cambridge, 1905): it would appear that, whatever definition is
taken, whether the simplest (as containing the minimum necessary to deter-
mine a plane) or the more complex, e.g. Simson’s, some postulate has to be
assumed in addition before the fundamental properties, or the truth of the
other definitions, can be established. Crelle notes the same thing as regards
Simson’s definition, containing more than is necessary. Suppose a plane in
which lies the triangle ABC. Let AD join the vertex 4

to any point D on BC, and BE the vertex B to an AE
point £ on CA. Then, according to the definition, A.g

lies wholly in the plane of the triangle; so does BE.

But, if both 4D and BE are to lie wholly in the one g

plane, 4.D, BE must intersect, say at & if they did not,

there would be two planes in question, not one. But the fact that the lines
intersect and that, say, 4D does not pass above or below BE, is by no
means self-evident.

Mr Frankland points out the similar difficulty as regards the simpler
definition of a plane as the surface generated by a straight
line passing always through a fixed point and always
intersecting a fixed straight line. Let OFPF, 0Q(
drawn from O intersect the straight line X at # Q
respectively. Let & be any third point on X: then it
needs to be proved that OR intersects Z'Q' in some
point, say &. Without some postulate, however, it is
not easy to see how to prove this, or even to prove that 2'(Q’ intersects X.

Crelle’s essay. Definitions by Fourier, Deahna, Becker.

Crelle takes as the standard of a good definition that it shall be, not only as
simple as possible, but also the best adapted for deducing, with the aid of the
simplest possible principles, further prOJ)erties belonging to the thing defined.
He was much attracted by a very lucid definition, due, he says, to Fourier,
according to which @ plane is formed by the aggregate of all the straight lines
which, passing through one point on a straight line in space, are perpendicular
to that straight line. (This is really no more than an adaptation from Euclid’s
proposition x1. 5, to the effect that, if one of four concurrent straight lines be
at right angles to each of the other three, those three are in one plane, which
proposition is also used in Aristotle, Mefeorologica n1. 3, 373 a 13.) But
Crelle confesses that he had not been able to deduce the necessary properties
from this and had had to substitute the definition, already mentioned, of a
plane as the surface containing, throughout their whole length, all the struight
lines passing through a fixed point and also intersecting a straight line in space;
and he only claims to have proved, after a long series of propositions, that the
“ Fourier "- or “perpendicular ”-surface and the p/are of the other definition
just given are identical, after which the properties of the “Fourier "-surface
can be used along with those of the plane. The advantage of the Fourier
definition is that it leads easily, by means of the two propositions that
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triangles are equal in all respects (1) when two sides and the included angle
are respectively equal and (z) when all three sides are respectively equal, to the
property expressed in Simson’s definition. But Crelle uses to establish these
two congruence-theorems a number of propositions about egual angles, supple-
mentary angles, right angles, greatér and less angles; and it is difficult to
question the soundness of Schotten’s criticism that these notions in themselves
really presuppose that of a plane. The difficulty due to Fourier's use of
the word * perpendicular,” if that were all, could no doubt be got over. Thus
Deahna in a dissertation (Marburg, 1837) constructed a plane as follows.
Presupposing the notions of a straight line and a sphere, he observes that, if a
sphere revolve about a diameter, all the points of its surface which move
describe closed curves (circles). Each of these circles, during the revolution,
moves along itself, and one of them divides the surface of the sphere into two
congruent parts. The aggregate then of the lines joining the centre to the
points of this circle forms the plane. Again, J. K. Becker (Die Elemente der
Geometrie, 1877) pointed out that the revolution of a right angle about one
side of it produces a conical surface which differs from all other conical
surfaces generated by the revolution of other angles in the fact that 2k
particular cone coincides with the cone vertically opposite to it : this characteristic
might therefore be taken in order to get rid of the use of the right angle.

W. Bolyai and Lobachewsky.

Very similar to Deahna’s equivalent for Fourier's definition is the device
of W. Bolyai and Lobachewsky (described by Frischauf, Elemente der
absoluten Geomelrie, 1876). They worked upon a fundamental idea first
suggested, apparently, by Leibniz. Briefly stated, their way of evolving a
plane and a straight line was as follows. Conceive an infinite number of
pairs of concentric spheres described about two fixed points in space, 0, O,
as centres, and with equal radii, gradually increasing: these pairs of equal
spherical surfaces intersect respectively in homogeneous curves (circles), and
the “Inbegriff” or aggregate of these curves of intersection forms a plane.
If A be a point on one of these circles (£ say), suppose points M, M’ to start
simultaneously from 4 and to move in opposite directions a¢ the same specd
till they meet at B, say: B then is “opposite” to 4, and 4, B divide the
circumference into two equal halves. If the points 4, B be held fast and the
whole system be turned about them until O takes the place of @, and O of
O, the circle %4 will occupy the same position as before (though turned a
different way). Two opposite points, Z, Q say, of each of the other circles
will remain stationary during the motion as well as 4, B: the * Inbegriffi” or
aggregate of all such points which remain stationary forms a straight line. It
is next observed that the plane as defined can be generated by the revolution
of the straight line about 00, and this suggests the following construction
for a plane. Let a circle as one of the curves of intersection of the pairs of
spherical surfaces be divided as before into two equal halves at 4, B. Let the
arc ADB be similarly bisected at D, and let C be the
middle point of 48. This determines a straight line CD
which is then defined as “perpendicular” to 45. The revo-
lution of CD about 4B generates a plane. The property p B
stated in Simson’s definition i$ then proved by means of the
congruence-theorems proved in Eucl. 1. 8 and 1. 4. The
first is taken as proved, practically by considerations of
symmetry and homogeneity. If two spherical surfaces, not necessarily equal,
with centres O, O intersect, 4 and its ‘““opposite” point 5 are taken as

D
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before on the curve of intersection (a circle) and, relatively to OO, the point
A is taken to be convertible with 5 or any other point on the homogeneous
curve. The second (that of Eucl. 1. 4) is established by simple application.
Rausenberger objects to these proofs on the grounds that the first assumes
that the two spherical surfaces intersect in one single curve, not in several,
and that the second compares angles : a comparison which, he says, is possnble
only in a plane, so that a plane is really presupposed. Perhaps as regards
the particular comparison of angles Rausenberger is hypercritical ; but it is
difficult to regard the supposed proof of the theorem of Eucl. 1. 8 as suiﬁ(:lently
rigorous (quite apart from the use of the uniform mofion of points for the
purpose of bisecting lines).

Simson’s property is proved from the two congruence-theorems thus.
Suppose that 4.5 is * perpendicular” (as defined by Bolyai) to two generators
CM, CN of a plane, or suppose CM, CV respectively to make with 4B two
angles congruent with one another. It is enough to prove that, if P be any
point on the straight line MWV, then CPZ, just as
much as CM, CN respectively, makes with 45 two A
angles congruent with one another and is therefore
a generator. We prove successively the congruence
of the following pairs of triangles : N

ACM, BCM c
ACN, BCN
AMN, BMN
AMP, BMP
ACP, BCP,
whence the angles 4 CP, BCP are congruent.
Other views.

Enriques and Amaldi (Elementi di geometria, Bologna, 1905), Veronese
(in his Elementi) and Hilbert all assume as a posfulate the property stated in
Simson’s definition. But G. Ingrami (Zlementi di geometria, Bologna, 1904)
proves it in the course of a remarkable series of closely argued proposition
based upon a much less comprehensive postulate. He evolves the theory of
the plane from that of a triangle, beginning with a triangle as a mere #kree-side
(trilatero), i.e. a frame, as it were. His postu]ate relates to the #4ree-side and
is to the effect that each “(rectilineal) segment ” joining a vertex to a point of
the opposite side meets every segment similarly joining each of the other two
vertices to the points of the sides opposue to them respectively, and, con-
versely, if a point be taken on a segment joining a vertex to a point of the
opposite side, and if a straight line be drawn from another vertex to the point
on the segment so taken, it will if produced meet the opposite side. A
triangle is then defined as the figure formed by the aggregate of all the
segments joining the respective vertices of a #hreeside to points on the
opposite sides. After a series of propositions, Ingrami evolves a plane as ke
Jigure formed by the * half straight-lines” whick project from an infernal point
of the triangle the points of the perimeler, and then, after two more theorems,
proves that a plane is determined by any three of its points which are not in
a straight line, and that a straight line which has two points in a plane has all
s points in it.

The argument by which Bolyai and Lobachewsky evolved the plane is
of course equivalent to the definition of a plane as #he locus of all points

equidistant from two fixed points in space.
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Leibniz in a letter to Giordano defined a plane as #fhat surface whick
divides space into two congruent parts. Adverting to Giordano’s criticism that
you could conceive of surfaces and lines which divided space or a plane into
two congruent parts without being plane or straight respectively, Beez (Uber
Euklidische und Nicht-Euklidische Geometrie, 1888) pointed out that what was
wanted to complete the definition was the further condition that the two
congruent spaces could be skd along each other without the surfaces ceasing
to coincide, and claimed priority for his completion of the definition in this
way. But the idea of a// the parts of a plane fitting exactly on a/l other parts
is ancient, appearing, as we have seen, in Heron, Def. 9.

DEFINITIONS 8, 9.

8. 'Emimedos 8¢ ywvia dotiv v év émarédy &lo ypeppdy drropévoy dAMjAwy
kai pi) én” ebbelas xeyuévav mpos dAAAas Tov ypappwy kAigs.

9. “Oray 8 ai mepiéxovoar Ty ywviay ypappai ebféiar Sow, edfvypappos
kaleirat 7) yovia.

8. A plane angle is the inclination to one another of two lines in a plane
which meet one another and do not lie in a straight line.

9. And when the lines containing the angle are straight. the angle is called
rectilineal.

The phrase “not in a sfraight /ine” is strange, seeing that the definition
purports to apply to angles formed by curves as well as straight lines. We
should rather have expected comtinuous (ovvexys) with one another; and
Heron takes this to be the meaning, since he at once adds an explanation as
to what is meant by lines not being continuous (ob ovvexeis). Itlooks as though
Euclid really intended to define a rectilineal angle, but on second thoughts,
as a concession to the then common recognition of curvilineal angles, altered
“straight lines” into “lines” and separated the definition into two.

I think all our evidence suggests that Euclid’s definition of an angle as
inclination (xAiows) was a new departure. The word does not occur in
Aristotle ; and we should gather from him that the idea generally associated
with an angle in his time was rather deflection or breaking of lines (xAdous) : cf.
his common use of xexAdofac and other parts of the verb xAdv, and also his
reference to one bent line forming an angle (mijv xexappévyy xal éovoay ywviav,
Metaph. 1016 a 13)

Proclus has a long and elaborate note on this definition, much of which
(pp. 121, 12—126, 6) is apparently taken direct from a work by his master
Syrianus (& yuerepos xafyyepwv). Two criticisms contained in the note need
occasion no difficulty. One of these asks how, if an angle be an inclination,
one inclination can produce two angles. The other (p. 128, 2) is to the effect
that the definition seems to exclude an angle formed by one and the same
curve with itself, e.g. the complete cissoid [at what we call the “ cusp "] or the
curve known as the Aigpopede (horse-fetter) [shaped like a lemniscate] But
such an “angle” as this belongs to higher geometry, which Euclid may well
be excused for leaving out of account in any case.

Other ancient definitions: Apollonius, Plutarch, Carpus.

Proclus' note records other definitions of great interest. Apollonius
defined an angle as a contracting of a surface or a solid ul one point under a
broken line or surface (quvaywyy émpaveias 3 orepeod mpds i onpely vmd
xexhaopévy ypapp 4 émipavelp), where again an angle is supposed to be
formed by one broken line or surface. Still more interesting, perhaps, is the
definition by “those who say that tke first distance under the point (v mwpdrov
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Subernpa wd 16 ampeiov) s the angle. Among these is Plutarch, who insists
that Apollonius meant the same thing; for, he says, there must be some first
distance under the breaking (or deflection) of the including lines or surfaces,
though, the distance under the point being continuous, it is impossible to
obtain the actual firss, since every distance is divisible without limit” (&’
dreipov). There is some vagueness in the use of the word “ distance” (8udormpa);
thus it was objected that “if we anyhow separate off the firs?” (distance being
apparently the word understood) “and draw a straight line #hrough it, we get
a friangle and not one angle.” In spite of the objection, I cannot but see in
the idea of Plutarch and the others the germ of a valuable conception in
infinitesimals, an attempt (though partial and imperfect) to get at the rate
of divergence between the lines at their point of meeting as a measure of the
angle between them.

A third view of an angle was that of Carpus of Antioch, who said *that
the angle was a guantity (wooov), namely a distance (Suiocryua) between the
lines or surfaces containing it. This means that it would be a distance (or
divergence) in one sense (¢4’ & Suerrds), although the angle is not on that
account a straight line. For it is not everything extended in one sense (16 &g’ &v
Swaorardy) that is a line.” This very phrase “extended one way" being held
to define a Jine, it is natural that Carpus’ idea should have been described as
the greatest possible paradox (wdvrov rapaSoférarov). The difficulty seems to
have been caused by the want of a different technical term to express a new
idea; for Carpus seems undoubtedly to have been anticipating the more
modern idea of an angle as representing dsvergence rather than distance, and to
have meant by é¢" & i one sense (rotationally) as distinct from one way or in
one dimension (linearly).

To what category does an angle belong?

There was much debate among philosophers as to the particular category
(according to the Aristotelian scheme) in which an angle should be placed ;
is it, namely, a guantum (woadv), guale (wowv) or relation (wpds 11)?

1. Those who put it in the category of guantity argued from the fact that
a plane angle is divided by a line and a solid angle by a surface. Since, then,
it is a surface which is divided by a line, and a solid which is divided by
a surface, they felt obliged to conclude that an angle s a surface or a solid, and
therefore a magnitude. But homogeneous finite magnitudes, e.g. plane
angles, must bear a ratio to one another, or one must be capable of being
multiplied until it exceeds the other. This is, however, not the case with a
rectilineal angle and the Aorn-like angle (xeparoadrs), by which latter is meant
the “angle” between a circle and a tangent to it, since (Eucl. 111. 16) the
latter “angle” is less than any rectilineal angle whatever. The objection, it
will be observed, assumes that the two sorts of anglés are homogeneous.
Plutarch and Carpus are classed among those who, in one way or other, placed
an angle among magnifudes; and, as above noted, Plutarch claimed Apollonius
as a supporter of his view, although the word contraction (of a surface or solid)
used by the latter does not in itself suggest magnitude much more than Euclid’s
inclination. It was this last consideration which doubtless led “ Aganis,” the
“friend” (socius) apparently of Simplicius, to substitute for Apollonius’
wording ““ a quantity whick has dimensions and the extremities of which arrive
at one point” (an-Nairizi, p. 13).

2. Eudemus the Peripatetic, who wrote a whole work on the angle, main-
tained that it belonged to the category of guality. Aristotle had given as his
fourth variety of guality “figure and the shape subsisting in each thing, and,
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besides these, straightness, curvature, and the like ” (Categories 8, 10 a 11).
He says that each individual thing is spoken of as mk in respect of its form,
and he instances a triangle and a square, using them again later on (i4d. 112 5)
to show that it is not all qualities which are susceptible of more and Zss ; again,
in Physics 1. 5, 188 a 25 angle, straight, circular are called kinds of figure.
Aristotle would no doubt have regarded defection (xw\awﬂm) as belonging to
the same category with straightness and curvature (xaprvAérys ?, At all events,
Eudemus took up an angle as having its origin in the ing or deflection
(xAdots) of lines: deflection, he argued, was quality if stra:ghl.ncss was, and that
which has its origin in quality is itself quality. Objectors 1o this view argued
thus. If an angle be a quality (roimys) like heat or cold, how can it be bisected,
say? It can in fact be divided ; and, if things of which divisibility is an
essential attribute are varieties of quaurum and not quallnes, an angle cannot
be a quality. Further, the more and the Zss are the appropriate attributes of
quality, not the equal and the unequal; if therefore an angle were a quality,
we should have to say of angles, not that one is greater and another smaller,
but that one is more an angle and another less an angle, and that two angles
are not unequal but dissimilar (dvopoto). As a matter of fact, we are told by
Simplicius, 538, 21, on Arist. De caelo that those who brought the angle under
the category of gwale did call equal angles simi/ar angles; and Aristotle
himself speaks of similar angles in this sense in De caelo 296 b 20, 311 b 34.

3. Euclid and all who called an angle an inclination are held by Syrianus
to have classed it as a relation (mpds 7). Yet Euclid certainly ed angles
as magnitudes; this is clear both from the earliest propositions dealing
specifically with angles, e.g. 1. 9, 13, and also (though in another way) from
his describing an angle in the very next definition and always as confained
(wepuexopévn) by the two lines forming it (Simon, Euclid, p. 28).

Proclus (i.e. in this case Syrianus) adds that the truth ltes between these
three views. The angle partakes in fact of all those categories: it needs the
guantily involved in magnitude, thereby becoming susceptible of equality,
inequality and .the like ; it needs the gwality given it by its form, and lastly
the relation subsisting between the lines or planes bounding it.

Ancient classification of ‘* angles.”

An elaborate classification of angles given by Proclus (pp. 126, 7—127, 16)
may safely be attributed to Geminus. In order to show it by a diagram it
Angles

il
on surfaces  in solids
| (& arepeots)

on .rs'xl:ﬂ: surfaces on mixed surfaces
(e.g. cones, cylinders)

on planes  on spherical surfaces

made by a;‘mple lines made by “mizxed” lines by one of each
e.g. the angle made by a  (e.g the angle formed by an
curve, such as the cissoid ellipse and its axis or by

and Aippopede, with itself) an ellipse and a circle)
line-line line-circumf. circumf.-circumf.
line-convex line-concave convex-convex concave-concave mixéd, or

(e.g. angle of a e.g. horn-like (dpgplevprod) (wm{ convex-concave
semicircle) (xeparoedss) or “*scraper-like” (e.g. those of
(Evorpoedeis) lunes)
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will be necessary to make a convention about terms. Angles are to be under-
stood under each class, “line-circumference ” means an angle contained by a
straight line and an arc of a circle, “line-convex” an angle contained by a
straight line and a circular arc with convexity owfwards, and so on in every
case.

Definitions of angle classified.

As for the point, straight line, and plane, so for the angle, Schotten gives
a valuable summary, classification and criticism of the different modern views
up to date (/nkalt und Methode des planimetrischen Unterrichts, 11., 1893,
Pp- 94—183) ; and for later developments represented by Veronese reference
may be made to the third article (by Amaldi) in Questions riguardanti le
matsmaticke elementari, 1. (Bologna, 1912).

With one or two exceptions, says Schotten, the definitions of an angle may
be classed in three groups representing generally the following views :

1. The angle is the difference of direction between two straignt lines. (With
this group may be compared Euclid’s definition of an angle as an inclination.)

2. The angle is the quantily or amount (or the measure) of the rotation
necessary to bring one of ifs sides from its own position io thai of the other side
without its moving out of the plane containing both.

. The angle is the portion of a plane included between fuwo straight lines in
the plane which meet in a point (or two rays issuing from the point).

It is remarkable however that nearly all of the text-books which give
definitions different from those in group z add to them something pointing to
a connexion between an angle and rotation: a striking indication that the
essential nature of an angle is closely cannected with rotation, and that a good
definition must take account of that connexion.

The definitions in the first group must be admitted to be tautologous, or
circular, inasmuch as they really presuppose some conception of an angle.
Direction (as between two given points) may no doubt be regarded as a primary
notion; and it may be defined as “the immediate relation of two points which
the ray enables us to realise” (Schotten). But “a direction is no intensive
magnitude, and therefore two directions cannot have any quantitative
difference ” (Biirklen). Nor is direction susceptible of differences such as
those between qualities, e.g. colours. Direction is a simgw/ar entity : there
cannot be different sorts or degrees of direction. If we speak of ““a different
direction,” we use the word equivocally ; what we mean 1is simply “another”
direction. The fact is that these definitions of an angle as a difference of
direction unconsciously appeal to something outside the notion of direction
altogether, to some conception equivalent to that of the angle itself.

Recent Italian views.

The second group of definitions are (says Amaldi) based on the idea of the
rotation of a straight line or ray in a plane about a point: an idea which,
logically formulated, may lead to a convenient method of introducing the
angle. But it must be made independent of metric conceptions, or of the
conception of comgruence, so as to bring out jfirst the notion of an angle, and
afterwards the notion of egual angles.

The third group of definitions satisfy the condition of not including metric
conceptions ; but they do not entirely correspond to our intuitive conception
of an angle, to which we attribute the character of an entity in one dimension
(as Veronese says) with respect to the »ay as element, or an entity in faw
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dimensions with reference to poinfs as elements, which may be called an angular
sector. The defect is however easily remedied by considering the angle as
“ the aggregate of the rays issuing from the vertex and comprised in the angular
sector.”

Proceeding to consider the principal methods of arriving at the logical
formulation of the first superficial properties of the plame from which a
definition of the angle may emerge, Amaldi distinguishes two points of view
(1) the genetic, (2) the actual.

(1) From the first point of view we consider the cluster of straight lines
or rays (the aggregate of all the straight lines in a plane passing through a
point, or of all the rays with their extremities in that point) as generated by
the movement of a straight line or ray in the plane, about a point. This leads
to the postulation of a closed order, or circular disposition, of the straight lines
or rays in a cluster. Next comes the connexion subsisting between the
disposition of any two clusters whatever in one, plane, and so on.

2) Starting from the point of view of the acfual, we lay the foundation
of the definition of an angle in the division of the plane inlo two parts (half-
planes) &y the straight line. Next, two straight lines (g, ) in the plane, inter-
secting at a point O, divide the plane into four regions which are called
angular sectors (convex) ; and finally the angle (a) or (ba) may be defined as
the aggregate of the rays issuing from O and belonging to the angular sector
which has a and b for sides.

Veronese's procedure (in his Elementi) is as follows. He begins with the
first properties of the plane introduced by the following definition.

The figure given by all the straight lines joining the points of a straight
line » to a point P outside it and by
the parallel to » through P is called a r
cluster of straight lines, a cluster of rays, s
or a plane, according as we consider
the element of the figure itself to be the 5,
straight line, the ray terminated at 7, :
or a point.

[It will be observed that this method of Troducing a plane involves using
the parallel to . This presents no difficulty to Veronese because he has
previously defined parallels, without reference to the plane, by means of refex
or gpposite figures, with respect to a point O: “two straight lines are called
2arallel, if one of them contains two points opposite to (or the reflex of) two
points of the other with respect to the middle point of a common transversal
(of the two lines).” He proves by means of a postulate that the parallel
does belong to the plane Pr. Ingrami avoids the use of the parallel by
defining a plane as “the figure formed by the half straight lines which project
from an internal point of a triangle (i.e. a point on a line joining any vertex of
a threeside to a point of the opposite side) the points of its perimeter,” and
then defining a c/uster of rays as “the aggregate of the half straight lines in a
plane starting from a given point of the plane and ing through the points
of the perimeter of a triangle containing the point.”]i

Veronese goes on to the definition of an angle. ~ “ We call an angle a part
of a dmqu}gmy.r, bounded by two rays (as the segment is a part of a straight
line bounded by two points).

5 "Ar; angle of the cluster, the bounding rays of which are opposite, is called a
It ang e.]’
Then, after a postulate corresponding to postulates which he lays down for




1. DEFF. g-12] NOTES ON DEFINITIONS g—12 181

a rectilineal segment and for a sfraight line, Veronese proves that a/l flat angles
are equal to one another.

a b

Hence he concludes that “the cluster of rays is a homogeneous linear
system in which the element is the ray instead of the posnst. The cluster
being a homogeneous linear system, all the propositions deduced from
[Veronese’s] Post. 1 for the straight line apply to it, e.g. that relative to
the sum and difference of thc segments: it i1s only necessary to substitute
the ray for the point, and the angle for the segment.”

DEFINITIONS 10, II, 12.

10. "Orav 8t edfeia én' edbeiav araleioa Tas ddefis ywvias loas dAAjAms
wou), 8pfyj éxarépa rdy lowy yoridy dori, xai 1j épearynvia ebfeia xdferos xakdrar,
& v tgioren. .

11, "ApfBAéa -rurfa éoriv v pelfwv dpbis.

12. 'Ofcia 8¢ n ddoowv dpbis.

10. When a straight line set up on a straight line makes the adjacent angles
equal to one another, each of the equal angles is right, and the straight line
standing on the other is called a perpendicular fo that on which it stands.

11. An obtuse angle is an angle greater than a right angle.

12. An acute angle is an angle less than a right angle.

épetns is the regular term for adjacent angles, meaning literally “ (next) in
order.” I do not find the term used in Aristotle of angies, but he explains its
meaning in such passages as Physics vI. 1, 231 b 8: “those things are (next)
in order which have nothing of the same kind (ovyyerés) between them.”

xdleros, perpendicular, means literally /et fa/l : the full expression is perpen-
dicular straight line, as we see from the enunciation of Eucl. 1. 11, and the
notion is that of a straight line let fall upon the surface of the earth, a plumb-
line. Proclus (p. 283, 9) tells us that in ancient times the perpendicular was
called gnomon-wise (xara yvupova), because the gnomon (an upright stick) was
set up at right angles to the horizon.

The three kinds of angles are among the things which according to the
Platonic Socrates (Republic v1. 510 c) the geometer assumes and argues from,
declining to give any account of them because they are obvious. Aristotle
discusses the priority of the right angle in comparison with the acute (Mefaph.
1084 b 7): in one way the ri;ht angle is prior, ie. in being defined (3
dptorar) and by its motion (@ Aéyw), in another way the acute is prior, ie. as
being a part, and because the right angle is divided into acute angles; the
acute angle is prior as matfer, the right angle in respect of form; cf. also
Metaph. 1035 b 6, “the notion of the right angle is not divided into
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that of an acute angle, but the reverse; for, when defining an acute angle,
you make use of the right angle.” Proclus (p. 133, 15) observes that it is by
the perpendicular that we measure the heights of figures, and that it is by
reference to the right angle that we distinguish the other rectilineal angles,
which are otherwise undistinguished the one from the other.

The Aristotelian Problems (16, 4, 913 b 36) contain an expression perhaps
worth quoting. The question distussed is why things which fall on the
ground and rebound make “similar” angles with the surface on both sides of
the point of impact; and it is observed that ‘““the right angle is the /im:f
(pos) of the opposite angles,” where however ‘ opposite ” seems to mean, not
“supplementary ” (or acute and obtuse), but the equal angles made with the
surface on opposite sides of the perpendicular.

Proclus, after his manner, remarks that the statement that an angle less
than a right angle is acute is not true without qualification, for (1) the Aorn-ltke
angle (between the circumference of a circle and a tangent) is less than a
right angle, since it is less tnan an acue angle, but is not an acute angle, while
(2) the “angle of a semicircle” (between the arc and a diameter) is ‘also less
than a right angle, but is not an acute angle.

The existence of the right angle is of course proved in L 11.

DEFINITION 13,

"Opos ¢oriv, & Twds dorL wépas.

A boundary s that whick is an extremity of anything.

Aristotle also uses the words dpos and wépas as synonymous. Cf. De gen.
animal. 11. 6, 745 a 6, 9, where in the expression “limit of magnitude” first
one and then the other word is used.

Proclus (p. 136, 8) remarks that the word boundary is appropriate to the
origin of geometry, which began from the measurement of areas of ground
and involved the marking of boundaries.

DEFINITION 14.

Sxipd Lo 76 Yrd Twos 1 Twwy Spuy TepLexdpevor.

A figure is that which is contained by any boundary or boundaries.

Plato in the Meno observes that roundness (orpoyyvAerns) or the round is a
“figure,” and that #4e sfrajght and many other things are so too; he then
inquires what there is common to all of them, in virtue of which we apply the
term “figure” to them. His answer is (76 a): “with reference to every
figure 1 say that that in which the solid terminates (roiro, els & 10 orepedv
wepaive) s a figure, or, to put it briefly, a figure is an extremity of a solid.”
The first observation is similar to Aristotle’s in the Physies 1. 5, 188 a 25,
where angle, straight, and circular are mentioned as genera of figure. In the
Categories 8, 10 a 11, “figure” is placed with straightness and curvedness in
the category of quality. Here however ‘“figure” appears to mean shage
(wopdn) rather than “figure” in our sense. Coming nearer to “figure” in our
sense, Aristotle admits that figure is “a sort of wagnitude” (De anima 1. 1,
425 a 18), and he distinguishes plane figurés of two kinds, in language not
unlike Euclid’s, as confained by straight and circular lines respectively : “every
plane figure is either rectilineal or formed by circular lines (wepipepdypappor),
and the rectilineal figure is contained by several lines, the circular by one
line” (De caclo 11. 4, 286 b 13). He is careful to explain that a plane is not a
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figure, nor a figure a plane, but that a plane figure constitutes one notion and
is a species of the genus figure (Anal. post. 1. 3, go b 37). Aristotle does not
attempt to define figure in general, in fact he says it would be useless : “ From
this it is clear that there is one definition of soul in the same way as there is
one definition of figure; for in the one case there is no figure except the
triangle, quadrilateral, and so on, nor is there any soul other than those above
mentioned. A definition might be constructed which should apply to all
figures but not specially to any particular figure, and similarly with the
species of soul referred to. [But such a general definition would serve no
purpos:.n:l Hence it is absurd here as elsewhere to seek a general definition
which wijll not be properly a definition of anything in existence and will not
be applicable to the particular irreducible species gefore us, to the neglect of
the definition which is so applicable” (De anima 11. 3, 414 b 20—28),

Comparing Euclid’s definition with the above, we observe that by intro-
ducing doundary (3pos) he at once excludes the straight which Aristotle classed
as figure ; he doubtless excluded angl also, as we may judge by (1) Heron’s
statement that * neither one nor two straight lines can complete a figure,”
(2) the alternative definition of a straight line as *‘that which cannot with
another line of the same species form a figure,” (3) Geminus’ distinction
between the line which forms a figure (sxnparomooioa) and the line which
extends indefinitely (&' dweapov ixBallopéry), which latter term includes a
hyperbola and a parabola. Instead of calling figure an extremity as
Plato did in the expression ‘“extremity (or limit) of a solid,” Euclid
describes a figure as #hat which has a boundary or boundaries. And lastly,
in spite of Aristotle’s objection, he does attempt a general definition to
cover all kinds of figure, solid and plane. It appears certain therefore that
Euclid’s definition is entirely his own.

Another view of a figure, recalling that of Plato in Meno 76 a, is attributed
by Proclus (p. 143, 8) to Posidonivs. The latter regarded the figure as the
confining extremity or limit (wépas ovyxhelov), “ separating the notion of figure
from guantity (or magnitude) and l::{'.ing it the cause of definition, limilation,
and fnclusion (ol wploBar xai werepdofar xai Tijs weproyis)... Posidonius thus
seems to have in view only the boundary placed round from outside, Euclid
the whole content, so that Euclid will speak of the circle as a figure in
respect of its whole plane (surface) and of its inclusion (from) without, whereas
Posidonius (makes it a figure) in respect of its circumference...Posidonius
wished to explain the notion of figure as itself imiting and confining magnitude.”

Proclus observes that a logical and refining critic might object to Euclid’s
definition as defining the genus from the species, since that which is enclosed
by one boundary and that which is enclosed by several are both species of
figure. The best answer to this seems to be supplied by the passage of
Aristotle’s D¢ anima quoted above.

DEFINITIONS 15, 16.

15. Kixhos dorl oyipa emiweSov imd puds ypappis mepexdpevoy [ xaleirar
wepupépeal, wpds v dg’ évds ampelov Tdv évrds Tob oxjparos xepévay wadoac al
wpoonirrovoar edbeiar [mpds Tiv Tob kikAov wepipéperar] loar dAAGAas eloiv.

16. Kévrpov 8& rov xixAov 70 onpelov xaleirar.

15. A circle £s a plane figure contained by one line suck that all the straight
lines falling upon it from one point among those lying within the figure are equal
1o one another ;

16. And the point is called the centre of the cirdle.
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The words 7] xaheira ‘leﬂﬂ, ““ which is called the circumference,” and
wpos v TOv KukAov Teppépaar, “to the circumference of the circle,” are
bracketed by Heiberg because, although the Mss. have them, they are
omitted in other ancient sources, viz. Proclus, Taurus, Sextus Empiricus and
Boethius, and Heron also omits the second gloss. The recently discovered
papyrus Herculanensis No. 1061 also quotes the definition without the words
In question, confirming Heiberg’s rejection of them (see Heiberg in Hermes
XXXVIIL, 1903, p. 47). The words were doubtless added in view of the
occurrence of the word “circumference” in Deff. 17, 18 1mmedlstelz
following, without any explanation. But no explanation was needed. Thoug
the word mepupépea does not occur in Plato, Aristotle uses it several times
(1) in the general sense of confour without any special mathematical signification,
(2) mathematically, with reference to the rainbow and the circumference, as
well as an arc, of a circle. Hence Euclid was Ferfect!y justified in employing
the word in Deff. 17, 18 and elsewhere, but leaving it undefined as Eeinga
word universally understood and not involving in itself any mathematical
conception. It may be added that an-Nairizi had not the bracketed words
in his text; for he comments on and tries to explain Euclid’s omission to
define the circumference.

The definition itself contained nothing new in substance. Plato (Parme-
nides 137 E) says: * Round is, I take it, that the extremes of which are every
way equally distant from the middle ” (orpoyydhov yé woi éore Toro, ob dv 1d
{oxara wavrayfj dnd Tob péoov loov dméxy). In Aristotle we find the following
expressions: ““the circular (mwepipepdypappor) plane figure pounded by one
line” (De caelo 11. 4, 286 b 13—16) ; ““the plane equal (i.e. extending equally
all ways) from the middle” (émwimedov 70 éx To¥ péoov ioov), meaning a
circle (KAetoric 111. 6, 1407 b 27); he also contrasts with the circle “any
other figure which has not the lines from the middle equal, as for example an
egg-shaped figure ” (De caelo 11. 4, 287 a 19). The word “centre” (xevrpor)
was also regularly used: cf. Protlus’ quotation from the “oracles” (Aoywa),
“the centre from which all (lines extending) as far as the rim are equal.”

The definition as it stands has no genefic character. It says nothing as to
the existence or non-existence of the thing defined or as to the method of
constructing it. It simply explains what is meant by the word “circle,” and
is a provisional definition which cannot be used until the existence of circles
is proved or assumed. Generally, in such a case, existence is proved by
actual construction; but here the possibility of constructing the circle as
defined, and consequentiy its existence, are postulated (Postulate 3). A genetic
definition might state that a circle is the figure described when a straight line,
always remaining in one plane, moves about one extremity as a fixed point
until it returns to its first position (so Heron, Def. 27).

Simplicius indeed, who points out that the distance between the feet of a
pair of compasses is a straight line from the centre to the circumference, will
have it that Euclid intended by this definition to show how to construct a
circle by the revolution of a straight line about one end as centre ; and an-
Nairizi points to this as the explanation (1) of Euclid’s definition of a circle
as a plane figure, meaning the whole surface bounded by the circumference,
and not the circumference itself, and (2) of his omission to mention the
“ circumference,” since with this construction the circumference is not drawn
separately as a /ize. But it is not necessary to suppose that Euclid himself
did more than follow the traditional view ; for the same conception of the
circle as a plane figure appears, as we have seen, in Aristotle. While, however,
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Euclid is generally careful to say the “circumference of a circle” when he means
the circumference, or an arc, only, there are cases where “circle” means
“circumference of a circle,” e.g. in 1. 10: “A circle does not cut a circle
in more points than two.”

Heron, Proclus and Simplicius are all careful to point out that the centre
is not the only point which is equidistant from all points of the circumference.
The centre is the only point in the plane of the circle (“lying within the figure,”
as Euclid says) of which this is true; any point not in the same plane which
is equidistant from all points of the circumference is a gole. If you set up a
‘““gnomon ” (an upright stick) at the centre of a circle (i.e. a line through the
centre perpendicular to the plane of the circle), its upper extremity is a pole
(Proclus, p. 153, 3); the perpendicular is the locus of all such poles.

DEFINITION 17.

Awdperpog 8¢ Toi xikdov doriv ebfeld Tis i Tob xkévTpov Yyuéim kai wepatov-
pévy &b’ ixdrepa Ta pépn Tmd Tis Tob Kikhov mepidepeias, Fris xai dixa Tepve TOV
xixAov,

A diameter of the circle is any straight line drawn through the centre and
terminated in both directions by the circumference of the civcle, and suck a straight
line also bisecls the circle.

The last words, literally * which (straight line) also bisects the circle,”
are omitted by Simson and the editors who followed him. But they are
necessary even though they do not “belong to the definition” but only
express a property of the diameter as defined. For, without this explanation,
Euclid would not have been justified in describing as a sems-circle a portion
of a circle bounded by a diameter and the circumference cut off by it.

Simplicius observes that the diameter is so called because it passes through
the whole surface of a circle as if measuring it, and also because it divides the
circle into two equal parts. He might however have added that, in general, it
is a line passing through a figure where it is widest, as well as dividing it
equally: thus in Aristotle & xara Swdperpov xefpeva, “things diametrically
situated " in space, are at their maximum distance apart. Dramefer was the
regular word in Euclid and elsewhere for the diameter of a sguare, and also
of a parallelogram; diagonal (8iaywwios) was a later term, defined by Heron
(Def. 07} as the straight line drawn from an angle to an angle.

Proclus (p. 157, 10) says that Thales was the first to prove that a circle is
bisected by its diameter; but we are not told how he proved it. Proclus gives
as the reason of the property ‘“the undeviating course of the straight line
through the centre” (a simple appeal to symmetry), but adds that, if it is
desired to prove it mathematically, it is only necessary to imagine the diameter
drawn and one part of the circle applied to the other; it is then clear that
they must coincide, for, if they did not, and one fell inside or outside the
other, the straight lines from the centre to the circumference would not all be
equal : which is absurd.

Saccheri’s proof is worth quoting. It depends on three ‘Lemmas”
immediately preceding, (1) that two straight lines cannot enclose a space,
(z) that two straight lines cannot have one and the same segment common,
(3) that, if two straight lines meet at a point, they do not touch, but cut one
another, at it.

“Let MDHNKM be a circle, A its centre, M/ a diameter. Suppose
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the portion MMNVKM of the circle turned about the fixed points A, &, so
that it ultimately comes near to or coincides with the remaining portion
MNHDM.

“Then (i) the whole diameter MA N, with all D
m points, clearly remains in the same position, H
since otherwise two straight lines would enclose a

(contrary to the first Lemma).
“(ii) Clearly no point X of the circumference N
NKM falls within or outside the surface enclosed
by the diameter M4 N and the other part, NHDM,
of the circumference, since otherwise, contrary to
the nature of the circle, a radius as 4K would be
less or greater than another radius as 44"

‘“(iii) Any radius M4 can clearly be rectilineally produced only along a
single other radius 44V, since otherwise (contrary to the second Lemma) two
lines assumed straight, e.g. MAN, MAH, would have one and the same
common segment.

“(iv) All diameters of the circle obviously cut one another in the centre
(Lemma 3 preceding), and they bisect one another there, by the general
properties of the circle.

“From all this it is manifest that the diameter MAN divides its circle
and the circumference of it just exactly into two equal parts, and the same
may be generally asserted for every diameter whatsoever of the same circle ;
which was to be prowv

Simson observes that the property is easily deduced from 1. 31 and 24 ;
for it follows from 11 3t that the two parts of the circle are “similar
segments” of a circle (segments containing equal angles, 1. Def. 11), and
from 111. 24 that they are equal to one another.

DEFINITION 18.

“Hpuxdxhov 8¢ éomt 7o ﬂpuxopuwv axipa me Te Ths Smpc'rpou xm s
itm\n,uﬁuvomv’qc i7" abris wepipepelas. kévrpov 8¢ Tob fuwvkhiov To abrd, &
xai Tov xikAov éotiv.

A semicircle s the figure contained by the diameter and the circumference cut
off by it. And the centre of the semicircle is the same as that of the circle.

The last words, “ And the centre of the semicircle is the same as that
of the circle,” are added from Proclus to the definition as it appears in the
mss, Scarburgh remarks that a semicircle has no centre, properly speaking,
and thinks that the words are not Euclid’s, but only a note by Proclus. I am
however inclined to think that they are genuine, if only because of the very
futility of an observation added by Proclus. He explains, namely, that the
semicircle is the only plane figure that has its centre on its perimeter (1), “so
that you may conclude that the centre has three positions, since it may be
within the figure, as in the case of a circle, or on the perimeter, as with the
semicircle, or outside, as with some conic lines (the single-branch hyperbola
presumably)” !

Proclus and Simplicius point out that, in the order adopted by Euclid for
these definitions of figures, the first figure taken is that bounded by one line
(the circle), then follows that bounded by fwe lines (the semicircle), then the
triangle, bounded by #kree lines, and so on. Proclus, as usual, distinguishes
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different kinds of figures bounded by two lines (pp. 159, 14—160, 9). Thus
they may be formed

(1) by circumference and circumference, e.g. () those forming angles, as
a June (16 pnvoadés) and the figure included by two arcs with convexities
outward, and (&) the angle-less (dydviov), as the figure included between two
concentric circles (the coronal);

(2) by circumference and straight line, e.g. the semicircle or segments of
circles (dytdes is a name given to those less than a semicircle);

(3) by “mixed” line and “mixed” line, e.g. two ellipses cutting one
another ;

(4) by “mixed” line and circumference, e.g. intersecting ellipse and
circle ;

(5) by “mixed” line and straight line, e.g. half an ellipse.

Following Def. 18 in the Mss. is a definition of a segment of a circle which
was obviously interpolated from 1. Def. 6. Proclus, Martianus Capella and
Boethius do not give it in this place, and it is therefore properly omitted.

DEFINITIONS 19, 20, 2I.

19. Zyrjpare ebfiypappd dore 1é Twd edfeady mepiexdueva, Tpimhevpa piv
T& Yo Tpudy, Terpdrhevpa 8¢ T Yrd Tecodpur, molirhevpa 8¢ T& Yo wAewovwy 7
regodpuy edfadv Tepleydpeva.

20. Tdv 8¢ rpurAevpwy oxnpdrwy loorhevpor pdv Tplywvdy éoti 7o Tas Tpels
izas éyov whevpds, loookelis 8t 76 Tas Svo pdvas {oas Exov whevpds, oxaqviv 82
70 1as Tpels dvioovs dyov TAevpds.

21. "Erc 8 7dv rpurheipuv oxyudrev dployuvior pév tpiywvov o 76 Exov
8pfiy ywviav, duBrvydriov 8¢ 16 Exov dpfAeiav yuwviav, dfvydvior 8¢ 10 Tas Tpels
d¢elas dxov yuvias.

19. Rectilineal figures are those which are contained by straight lines,
trilateral figures being those contained by three, quadrilateral those contained by

JSour, and multilateral those contained by more than four straight lines.

20. Of trilateral figures, an equilateral triangle fs that which has its three
sides equal, an isosceles triangle that which has two of its sides alone equal, and
a scalene triangle that whick has ils three sides unequal.

21.  Further, of trilateral figures, a right-angled triangle is that whick has
a right angle, an obtuse-angled triangle that which has an obtuse angle, and an
acute-angled triangle that which has ils three angles acute.

10.

The latter part of this definition, distinguishing fAree-sided, four-sided and
many-sided figures, is probably due to Euclid himself, since the words
pimAevpov, TerpdrAevpov and moAvrAevpur do not appear in Plato or Aristotle
(only in one passage of the Meckanics and of the Prodlems respectively does
even rterpamAevpov, guadrilateral, occur). By his use of rerpdmAevpor,
quadrilateral, Euclid seems practically to have put an end to any ambiguity
in the use by mathematicians of the word rerpdyawvo, literally *four-angled
(figure),” and to have got it restricted to the sguare. Cf. note on Def. 22.

20,

ZIsosceles (loooxelns, with equal legs) is used by Plato as well as Aristotle.
Scalene (axaknvos, with the variant oxaAmwfs) is used by Aristotle of a triangle
with no two sides equal: cf. also Tim. Locr. 98 B. Plato, Enthyphro 12 b,
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applies the term “scalene” to an o4d number in contrast to ““isosceles ” used
of an even number. Proclus (p. 168, 24) seems to connect it with oxd{w, to
limp ; others make it akin to -mu\ws, crooked, aslami. Apollonius uses the
same word “scalene” of an odligue circular cone.

Triangles are classified, first with reference to their sides, and then with
reference to their angles. Proclus points out that seven distinct species of
triangles emerge: (1) the eguilateral triangle, (2) three species of isosceles
triangles, the right-angled, the obtuse-angled and the acute-angled, (3) the
same three varieties of scalene triangles.

Proclus gives an odd reason for the dual classification according to sides
and angles, namely that Euclid was mindful of the fact that it is not every
friangle that is #rilateral also. He explains this statement by reference
%: 165, 22) to a figure which some called Jard-like (dxBouidsjs) while

nodorus called it Aollow-angled (xooydvios). Proclus mentions it again
in his note on 1. 22 (p. 328, 21 5qq.) as one of the paradoxes of geometry,
observing that it is seen in the figure of that proposition. This “triangle” is
merely a guadrilateral with a re-entrant angle ; and the idea that
it has only three angles is due to the non-recognition of the
fourth angle (which is greater than two right angles) as being an
angle at all. Since Proclus speaks of the four-sided triangle as
“one of the paradoxes in geometry,” it is perhaps not safe to
assume that the misconception underlying the expression existed
in the mind of Proclus alone; but there does not seem to be any evidence
that Zenodorus called the ﬁgure in question a triangle (cf. Pappus, ed.
Hultsch, pp. 1154, 1206).

DEFINITION 22.

Tdv 8 Terparieaipuwy n-xqpafw ﬂ-rpaymwv pév dorw, & lodmhevpdy Té &l‘ﬂ

ai Spfoyuniov, érepdunxes 8¢, & dpboydviov pdv, olx lodmAeupov ¢, péufos 8¢, &
lawhva pév, ol dpﬁorywwr 3(, popBoadis 8¢ 7o rds drevayriov whevpds Te xal
ywvias ioas &\AvjAats déxov, 8 ovre lodwhevpdy orw olre dpboyuviov: a 8& rapd
Taira TerparAevpa Tparélia kalelobw,

Of quadrilateral figures, a square is that whick is both equilateral and right-
angled; an oblong that whick is right-angled but not equilateral ; a rhombus
that which is equilateral but not right-angled; and a rhomboid that which has
its opposite sides and angles equal to one another but is neither equilateral nor
right-angled.  And let quadrilaterals other than these be called trapezia.

rerpdywvov was already a sguare with the Pythagoreans (cf. Aristotle,
Metaph. 986 a 26), and it is so most commonly in Aristotle ; but in De anima
IL 3, 414 b 31 it seems to be a quadrilateral, and in Mdcp}! 1054 b 2,
*“equal and eqmangu]xr rerpdywva,” it cannot be anything else but quadn-
lateral if ‘“equiangular” is to have any sense. Though, by introducing
TerpdmAevpov for any quadrilateral, Euclid enabled ambigulty to be avoided,
there seem to be traces of the older vague use of rerpdywrov in much later
writers. Thus Heron (Def. loo) speaks of a cube as “ contained by six equi-
lateral and eguiangular rerpdywva” and Proclus (p. 166, ro) adds to his
remark about the “foursided triangle” that *“you might have rerpdywva with
more than the four sides,” where rerpdywra can hardly mean squares.

érepdpmnes, oblong (w;th sides of different length), is also a Pythagorean term.

The word right-angled (épfoyuviov) as here applied to quadrilaterals
must mean recfangular (i.e., practically, having all its angles right angles) ;
for, although it is tempting to take the word in the same sense for a
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square as for a triangle (i.e. “ having one right angle ”), this will not do in the
case of the oblong, which, unless it were stated that #kree of its angles are
right angles, would not be sufficiently defined.

If it be objected, as it was by Todhunter for example, that the definition
of a square assumes more than is necessary, since it is sufficient that, being
equilateral, it should have one right angle, the answer is that, as in other cases,
the superfluity does not matter from Euclid’s point of view ; on the contrary,
the more of the essential attributes of a thing that could be included in its
definition the better, provided that the existence of the thing defined and its
possession of all those attributes is proved before the definition is, actually
used; and Euclid does this in the case of the square by construction in 1. 46,
making no use of the definition before that proposition.

The word rhombus (pouBos) is apparently derived from péuBw, to furn
round and round, and meant among other things a spinning-fop. Archimedes
uses the term solid rhomébus to denote a solid figure made up of two right
cones with a common circular base and vertices turned in opposite directions.
We can of course easily imagine this solid generated by spinning ; and, if the
cones were equal, the section through the common axis would be a plane
rhombus, which would also be the agparent form of the spinning solid to the
eye. The difficulty in the way of supposing the plane figure to have been
named after the solid figure is that in Archimedes the cones forming the solid
are not necessarily equal. It is however possible that the solid to which the
name was originally given was made up of two equal cones, that the plane
rhombus then received its name from that solid, and that Archimedes, in
taking up the old name again, extended its signification (cf. J. H. T. Miiller,
Beitrage sur Terminologie der griechischem Mathematiker, 1860, p. 20).
Proclus, while he speaks of a rhombus as being like a shaken, i.e. deformed,
square, and of a rhomboid as an oblong that has been moved, tries to explain
the rhombus by reference to the appearance of a spinning square (rerpdywvor
bovospero). i : . .

It is true that the definition of a rhomboid says more than is necessary in
describing it as having its opposite sides and angles equal to one another.
The answer to the objection is the same as the answer to the similar objection
to the definition of a square.

Euclid makes no use in the Elements of the oblong, the rhombus and
the rhomboid. The explanation of his inclusion of definitions of these
figures is no doubt that they were taken from earlier text-books. From
the words “/ef quadrilaterals other than these e called trapezia” we may
perhaps infer that #rapezium was a new name or a new application of an old
name.

As Euclid has not yet defined parallel lines and does not anywhere
define a parallelogram, he is not in a position to make the more elaborate
classification of quadrilaterals attributed by Proclus to Posidonius and
appearing also in Heron’s Definitions. It may be shown by the following
diagram, distinguishing seven species of quadrilaterals.

Quldri]]alernls
panlle]lég-ra.ms m-parl;lllelog:m
rectangular non-rectangular two sides parallel no sides fn_n!le.l

| (erapesium) (trapesoid)
square oblony  vhombus rhomboid  isosceles trapess lene trapesi
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It will be observed that, while Euclid in the above definition classes as
#rapesia all quadrilaterals other than squares, oblongs, rhombi, and rhomboids,
the word is in this classification restricted to quadrilaterals having two sides
(only) parallel, and #ragesoid is used to denote the rest. Euclid appears to
have used #ragezium in the restricted sense of a quadrilateral with two sides
parallel in his book wepi Sumpéoewr (on divisions of figures). Archimedes
uses it in the same sense, but in one place describes it more precisely as a
trapezium with its two sides parallel.

DEFINITION 23.

HapdAAnol elow ebfeiay, airves v 7 abrd émmrédy oboar xai éxBalldpevar
els dwepov &’ éxdTepa Ta uépn i pndérepa oupmimrovow EAAAws.

Parallel straight lines are straight lines whick, being in the same plane and
being produced indefinitely in both directions, do not meet one another in cither
direction.

HapdAAnAos (alongside one another) written in one word does not appear
in Plato ; but with Aristotle it was already a familiar term.

eis arewor cannot be translated “to infinity ” because these words might
seem to suggest a region or place infinitely distant, whereas els dreypov, which
seems to be used indifferently with ér’ drepov, is adverbial, meaning “without
limit,” i.e. “indefinitely.” Thus the expression is used of a magnitude being
“infinitely divisible,” or of a series of terms extending without limit.

In both directions, i’ éxdrepa Ta pépy, literally *‘towards both the parts”
where “parts” must be used in the sense of “regions” (cf Thuc. 11. g6).

It is clear that with Aristotle the general notion of parallels was that of
straight lines which do not meet, as in Euclid : thus Aristotle discusses the
question whether to think that parallels do meet should be called a
geometrical or an ungeometrical error (Anal post. 1. 12, 77 b 22), and (more
interesting still in relation to Euclid) he observes that there is nothing
surprising in different hypotheses leading to the same error, as one might
conclude that parallels meet by starting from the assumption, either (z) that
the interior (angle) is greater than the exterior, or (4) that the angles of a
triangle make up more than two right angles (4nal. prior. 11. 17, 66 a 11).

Another definition is attributed by Proclus to Posidonius, who said that
“parallel lines are those which, (being) in one plane, neither converge nor diverge,
but have all the perpendiculars equal which are drawn from the points of one
line to the other, while such (straight lines) as make the perpendiculars less and
less continually do converge to one another ; for the perpendicular is enough
to define (6pif{ev dvvarar) the heights of areas and the distances between lines.
For this reason, when the perpendiculars are equal, the distances between the
straight lines are equal, but when they become greater and less, the interval is
lessened, and the straight lines converge to one another in the direction in
which the less perpendiculars are” (Proclus, p. 176, 6—17).

Posidonius’ definition, with the explanation as to distances between straight
lines, their convergence and divergence, amounts to the definition quoted by
Simplicius (an-Nairizi, p. 25, ed. Curtze) which described straight lines as
parallel #f, when they are produced indefinitely both ways, the distance between
them, or the perpendicular drawn from cither of them lo the other, is always
equal and not different. To the objection that it should be proved that the
distance between two parallel lines is the perpendicular to them Simplicius
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replies that the definition will do equally well if all mention of the perpen-
dicular be omitted and it be merely stated that the distance remains equal,
although “for groving the matter in question it is necessary to say that one
straight line is perpendicular to both” (an-Nairizi, ed. Besthorn-Heiberg, p. 9).
He then quotes the definition of ‘“‘the philosopher Aganis”: “ Paralle/
straight lines are straight lines, situated in the same plane, the distance between
which, if they are produced indefinitely in both directions at the same time, is
everywhere the same (This definition forms the basis of the attempt of
“Aganis” to prove the Postulate of Parallels.) On the definition Simplicius
remarks that the words “situated in the same plane” are perhaps unnecessary,
since, if the distance between the lines is everywhere the same, and one does
not incline at all towards the other, they must for that reason be in the same
plane. He adds that the “distance” referred to in the definition is the
shortest line which joins things disjoined. Thus, between point and point,
the distance is the straight line joining them ; between a point and a straight
line or between a point and a plarte it is the perpendlcnlar drawn from the point
to the line or plane; “as regards the distance between two lines, that distance
is, if the lines are parallel, one and the same, equal to itself at all places on
the lines, it is the skortest distance and, at all places on the lines, perpendicular
to both” (ibid. p. 10).

The same idea occurs in a quotation by Proclus (p. 177, 11) from
Geminus. As part of a classification of lines which do not meet he observes :
“Of lines which de not meet, some are in one plane with one another, others
not. Of those which meet and are in one plane, some are always the same
distance from one another, others lessen the distance continually, as the hyper-
bola (approaches) the straight line, and the conchoid the straight line (i.e. the
asymptote in each case). For these, while the distance is being continually
lessened, are continually (in the position of) not meeting, though they converge
to one another ; they never converge entirely, and this is the most paradoxical
theorem in geometry, since it shows that the convergence of some lines is non-
convergent. But of lines which are always an equal distance apart, those
which are straight and never make the (distance) between them smaller, and
which are in one plane, are parallel.”

Thus the eguidistance-theory of parallels (to which we shall return) is very
fully represented in antiquity. I seem also to see traces in Greek writers of a
conception equivalent to the vicious direction-theory which has been adopted
in so many modern text-books. Aristotle has an interesting, though obscure,
allusion in Anal. prior. u. 16,654 4 to a ﬁdma ﬁ' incipid committed by “those
who think that they draw parallels” (or “ lish the theory of parallels,”
which is a possible translation of ras rnpo.u.vf&ow ypdpav): “for they un-
consciously assume such things as it is not possible to demonstrate if parallels
do not exist.” It is clear from this that there was a vicious circle in the then
current theory of parallels; something which depended for its truth on the
properties of parallels was assumed in the actual proof of those properties,
e.g. that the three angles of a triangle make up two right angles. This is not
the case in Euclid, and the passage makes it clear that it was Euclid himself
who got rid of the pefitio principii in earlier text-books by formulating and
premising before 1. 29 the famous Postulate 5, which must ever be regarded
as among the most epoch-making achievements in the domain of geometry.
But one of the commentators on Aristotle, Philoponus, has a note on the
above passage puq_)ortmg to give the specific character of the pefitio principii
alluded to; and it is here that a direcfion-theory of parallels may be hinted at,
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whether Philoponus is or is not right in supposing that this was what Aristotle
had in mind. Philoponus says: “The same thing is done by those who draw
parallels, namely begging the original question; for they will have it that it is
possible to draw parallel straight lines from the meridian circle, and they
assume a point, so to say, falling on the plane of that circle and thus they
draw the straight lines. And what was sought is thereby assumed; for he
who does not admit the genesis of the parallels will not admit the point
referred to either.” What is meant is, I think, somewhat as follows. Given
a straight line and a point through which a parallel to it is to be drawn, we
are to suppose the given straight line placed in the plane of the meridian.
Then we are told to draw through the given point another straight line in the
plane of the meridian (strictly speaking it should be drawn in a plane parallel
to the plane of the meridian, but the idea is that, compared with the size of
the meridian circle, the distance between the point and the straight line is
negligible) ; and this, as I read Philoponus, is supposed to be equivalent to
assuming a very distant point in the meridian plane and joining the given
point to it. But obviously no ruler would stretch to such a point, and the
objector would say that we cannot really direct a straight line to the assumed
distant point except by drawing it, without more ado, parallel to the given
straight line. And herein is the pefitio principis. 1 am confirmed in seeing
in Philoponus an allusion to a direcfion-theory by a remark of Schotten on a
similar reference to the meridian plane supposed to be used by advocates of
that theory. Schotten is arguing that direction is not in itself a conception
such that you can predicate one direction of fwo different lines. “If any one
should reply that nevertheless many lines can be conceived which all have the
direction from north fo south,” he replies that this represents only a nominal,
not a real, identity of direction.

Coming now to modern times, we may classify under three groups
practically all the different definitions that have been given of parallels
(Schotten, gp. «t. 1. p. 188 sqq.).

(1) Parallel straight lines have no point eommon, under which general
conception the following varieties of statement may be included:

(a) they do not cut one another,

(#) they meet at infinity, or

(c) they have a common point at infinity.

(2) Parallel straight lines have the same, or like, direclion or directions,
under which class of definitions must be included all those which introduce
transversals and say that the parallels make egual angles with a transversal.

(3) LParallel straight lines have the distance between them constant;
with which group we may connect the attempt to explain a parallel as 7k

rical locus of all points which are equidistant from a straight line.

But the three points of view have a good deal in common ; some of them
lead easily to the others. Thus the idea of the lines having no point common
led to the notion of their having a common point at infinity, through the
influence of modern geometry seeking to embrace different cases under one
conception ; and then again the idea of the lines having a common point at
infinity might suggest their having the same direction. The “non-secant”
idea would also naturally lead to that of equidistance (3), since our
observation shows that it is things which come nearer to one another that
tend to meet, and hence, if lines are not to meet, the obvious thing is to see
that they shall not come nearer, i.e. shall remain the same distance apart.
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We will now take the three groups in order.

(1) The first observation of Schotten is that the varieties of this group
which regard parallels as (a) meeting at infinity or (4) having a common
point at infinity (first mentioned apparently by Kepler, 1604, as a “fagon de
parler” and then used by Desargues, 1639) are at least unsuitable definitions
for elementary text-books. How do we know that the lines cut or meet at
infinity? We are not entitled to assume either that they do or that they do
not, because “infinity” is outside our field of observation and we cannot verify
either. As Gauss says (letter to Schumacher), “ Finite man cannot claim to
be able to regard the infinite as something to be grasped by means of ordinary
methods of observation.” Steiner, in speaking of the rays passing through a
point and successive points of a straight line, observes that as the point of
intersection gets further away the ray moves continually in one and the same
direction (“nach einer und derselben Richtung hin”); only in one position,
that in which it is parallel to the straight line, “there is no real cutting”
between the ray and the straight line; what we have to say is that the ray is
“directed towards the infinitely distant point on the straight line” It is true
that higher geometry has to assume that the lines do meet at infinity: whether
such lines exist in nature or not does not matter (just as we deal with “‘straight
lines ” although there is no such thing as a straight line). But if two lines do
not cut at any finite distance, may not the same thing be true at infinity also?
Are lines conceivable which would not cut even at infinity but always remain
at the same distance from one another even there? Take the case of a line
of railway. Must the two rails meet at infinity so that a train could not stand
on them there (whether we could see it or not makes no difference)? It
seems best therefore to leave to higher geometry the conception of infinitely
distant points on a line and of two straight lines meeting at infinity, like
imaginary points of intersection, and, for the purposes of elementary geometry,
to rely on the plain distinction between ‘“parallel” and “cutting” which
average human intelligence can readily grasp. This is the method adopted
by Euclid in his definition, which of course belongs to the group (1) of
definitions regarding parallels as non-secant.

It is significant, I think, that such authorities as Ingrami (Elementi di
geomelria, 1904) and Enriques and Amaldi (Elementi di geometria, 1905),
after all the discussion of principles that has taken place of late years, give
definitions of parallels equivalent to Euclid’s : *those straight lines in a plane
which have not any point in common are called parallels.” Hilbert adopts
the same point of view. Veronese, it is true, takes a different line. In his
great work Fondamenti di geometria, 1891, he had taken a ray to be parallel to
another when a point at infinity on the second is situated on the first ; but he
appears to have come to the conclusion that this definition was unsuitable for
his Elementi. He avoids however giving the Euclidean definition of parallels
as “straight lines in a plane which, though produced indefinitely, never meet,”
because “no one has ever seen two straight lines of this sort,” and because
the postulate generally used in connexion with this definition is not evident in
the way that, in the field of our experience, it is evident that only one straight
line can pass through two points. Hence he gives a different definition, for
which he claims the advantage that it is independent of the plane. It is
based on a definition of figures * opposite to one another with respect to a
point” (or reflex figures). “Two figures are opposite to one another with

t to a point O, e.g. the figures ABC ... and 4'B'C’ ..., if to every point
of the one there corresponds one sole point of the other, and if the segments
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OA, OB, OC, ... joining the points of one figure to O are respectively equal
and opposite to the segments 04', 05, OC, ... joining to O the corresponding
points of the second”: then, a franszersal of two straight lines being any

ment having as its extremities one point of one line and one point of the
other, “ fwo straight lines are called parallel if one of them contains two points
appostte to two points of the other with respect to the middle point of a common
transversal.” 1t is true, as Veronese says, that the parallels so defined and the
parallels of Euclid are in substance the same ; but it can hardly be said that
the definition gives as good an idea of the essential nature of parallels as does
Euclid’s. Veronese has to prove, of course, that his parallels have no point in
common, and his “Postulate of Parallels” can hardly be called more evident
than Euclid’s: “If two straight lines are parallel, they are figures opposite to
one another with respect to the middle points of all their transversal segments.”

(2) The direction-theory.

The fallacy of this theory has nowhere been more completely exposed
than by C. L. Dodgson (Ewc/id and his modern Rivals, 1879). According to
Killing (Einfiihrung in die Grundlagen der Geomelrie, 1. p. 5) it would appear
to have originated with no less a person than Leibniz. In the text-books
which employ this method the notion of direction appears to be regarded as a
primary, not a derivative notion, since no definition is given. But we ought
at least to know how the same direction or like directions can be recognised
when two different straight lines are in question. But no answer to this
question is forthcoming. The fact is that the whole idea as applied to non-
coincident straight lines is derived from knowledge of the properties of
parallels ; it is a case of explaining a thing by itselfl. The idea of parallels
being in the same direction perhaps arose from the conception of an angle as
a difference of direction (the hollowness of which has already been exposed) ;
sameness of direction for parallels follows from the same *difference of
direction” which both exhibit relatively to a third line. But this is not
enough. As Gauss said ( Werke, 1v. p. 365), “If it [identity of direction] is
recognised by the equality of the angles formed with one third straight line,
we do not yet know without an antecedent proof whether this same equality
will also be found in the angles formed with a four#k straight line” (and any
number of other transversals); and in order to make this theory of parallels
valid, so far from getting rid of axioms such as Euclid’s, you would have to
assume as an axiom what is much less axiomatic, namely that *straight lines
which make equal corresponding angles with a certain transversal do so with
any transversal” (Dodgson, p. 101).

(3) In modern times the conception of parallels as equidistant straight
lines was practically adopted by Clavius (the editor of Euclid, born at
Bamberg, 1537) and (according to Saccheri) by Borelli (Euclides restitutus,
1658) although they do not seem to have defined parallels in this way.
Saccheri points out that, before such a definition can be used, it has to
be proved that “the geometrical locus of points equidistant from a straight
line is a straight line.” To do him justice, Clavius saw this and tried to
prove it: he makes out that the locus is a straight line according to the
definition of Euclid, because “it lies evenly with respect to all the points
on it”; but there is a confusion here, because such “evenness” as the locus
has is with respect to the straight line from which its points are equidistant,
and there is nothing to show that it possesses this property with respect
to itself. In fact the theorem cannot be proved without a postulate.
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POSTULATE 1.

"Hirjofw dme mavrds anueiov éri wav onueiov edfelav ypappry dyayeiv.

Let the following be postulated : to draw a straight line from any point to
any point.

From any point to any point. In general statements of this kind
the Greeks did not say, as we do, “any point,” “any triangle” etc., but
“every point,” “every triangle” and the llke:. Thus the words are "here
literally “from every point to every point.” Similarly the first words of
Postulate 3 are “with every centre and distance,” and the enunciation, e.g., of
1. 18 is “In every triangle the greater side subtends the greater angle.”

It will be remembered that, according to Aristotle, the geometer must in
general assume whaf a thing is, or its definition, but must prove #%af it is,
1.e. the existence of the thing corresponding to the definition : only in the case
of the two most primary things, points and lines, does he assume, without
proof, both the definition and the existence of the thing defined. Euclid has
indeed no separate assumption affirming the existence of points such as we find
nowadays in text-books like those of Veronese, Ingrami, Enriques, “there exist
distinct points” or “there exist an infinite number of points.” But, as re-
gards the only lines dealt with in the Elements, straight lines and circles,
existence is asserted in Postulates 1 and 3 respectively. Postulate 1 however
does much more than (1) postulate the existence of straight lines. It is
(2) an answer to a possible objector who should say that you cannot, with the
imperfect instruments at your disposal, draw a mathematical straight line at all,
and consequently Em the words of Aristotle, Anal. post. 1. 10, 76 b 41) that
the geometer uses false hypotheses, since he calls a line a foot long when it is
not or straight when it is not straight. It would seem (if Gherard’s translation
is right) that an-Nairizi saw that one purpose of the Postulate was to refute
this criticism : “the utility of the first three postulates is (to ensure) that the
weakness of our equipment shall not prevent (scientific) demonstration”
(ed. Curtze, p. 30). The fact is, as Aristotle says, that the geometer's demon-
stration is not concerned with the particular imperfect straight line which he
has drawn, but with the ideal straight line of which it is the :mperfect
representation. Simplicius too indicates that the object of the Postulate is
rather to enable the drawing of a mathematical straight line to be imagined
than to assert that it can actually be realised in practice: “he would be a
rash person who, taking things as they actually are, should postulate the
drawing of a straight line from Aries to Libra.”

There is still something more that must be inferved from the Postulate
combined with the definition of a straight line, namely (3) that the straight
line joining two points is unigue: in other words that, if two straight lines
(“rectilineal segments,” as Veronese would call them) /ave the same extremities,
they must coincide throughout their length. The omission of Euclid to state
this in so many words, though he assumes it in 1. 4, is no doubt answerable for
the interpolation in the text of the equivalent assumption that fwo straight
lines cannot enclose a space, which has constantly appeared in mss. and editions
of Euclid, either among Axioms or Postulates. That Postulate 1 included it,
by conscious implication, is even clear from Proclus’ words in his note on L 4
(p- 239, 16): “therefore two straight lines do not enclose a s and it was
with knowledge of this fact that the writer of the Elements said in the first of
his Postulates, fo draw a straight linc from any point fo any point, implying
that it is one straight line which would always join the two points, not fwe.”
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Proclus attempts in the same note (p. 239) to prove that two straight lines
cannot enclose a space, using as his basis the definition of the diameter of a
circle and the theorem, stated in it, that any diameter divides the circle into
two equal parts.

Suppose, he says, 4CB, ADB to be two straight lines enclosing a space.
Produce them (beyond JB) indefinitely. With centre B
and distance 4B describe a circle, cutting the lines so
produced in %, E respectively.

Then, since ACBF, ADBE are both diameters
cutting off semi-circles, the arcs AE, AEF are equal:
which is impossible. Therefore etc.

It will be observed, however, that the straight lines
produced are assumed to meet the circle given in two
different points E, F, whereas, for anything we know,
E, F might coincide and the straight lines have #4r¢e common points. The
proof is therefore delusive.

Saccheri gives a different proof. From Euclid’s definition of a straight
line as that which lies evenly with its points he infers that, when
such a line is turned about its two extremities, which remain fixed,
all the points on it must remain throughout in the same position, and
cannot take up different positions as the revolution proceeds. “In
this view of the straight line the truth of the assertion that two
straight lines do not enclose a space is obviously involved. In fact,
if two lines are given which enclose a space, and of which the two
points 4 and X are the common extremities, it is easily shown that
neither, or else only one, of the two lines is straight.”

It is however better to assume as a postwl/ate the fact, inseparably
connected with the idea of a straight line, that there exists only one straight
line containing two given points, or, if two straight lines have two points in
common, they coincide throughout.

POSTULATE 2.

Kai wemepaopévmy dfeiav xata 1 ovveyis ér’ cdfelas ixfaleiy.

To produce a finste siraight line continuously in a straight line.

I translate werepacpévyy by finite, because that is the received equivalent,
and because any alternative word such as Ximifed, ferminated, if applied to a
straight line, would equally fail to express what modern Italian geometers aptly
call a rectilineal segment, that is, a straight line having #we extremities.

Just as Post. 1 asserting the possibility of drawing a straight line from any
one point to another must be held to declare at the same time that the
straight line so drawn is unique, so Post. 2 maintaining the possibility of
producing a finite straight line (a “rectilineal segment”) continuously in a
straight line must also be held to assert that the straight line can only be
produced #n ome way at either end, or that the produced part in either
direction is wmigue; in other words, that fwo straight lines cannot have a
common segment. This latter assumption is not expressly appealed to by
Euclid until x1. 1. But it is needed at the very beginning of Book 1. Proclus
(p. 214, 18) says that Zeno of Sidon, an Epicurean, maintained that the very
first proposition 1. 1 requires it to be admitted that “two straight lines cannot
have the same ents ” ; otherwise 4C, BC might meet before they arrive
at C and have the rest of their length common, in which case the actual
triangle formed by them and 4.8 would not be equilateral. The assumption
that two straight lines cannot have a common segment is certainly necessary
in 1. 4, where one side of one triangle is placed on that side of the other
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triangle which is equal to it, and it is inferred that the two coincide throughout
their length : this would by no means follow if two straight lines could have a
common segment. Proclus (p. 215, 24), while observing that Post. 2 clearly
indicates that the produced portion must be one, attempts to prove it, but
unsuccessfully. Both he and Simplicius practically

use the same argument. Suppose, says Proclus, E
that the straight lines 4C, AD have AB as a
common segment. With centre B and radius 54

describe a circle (Post. 3) meeting 4C, 4D in , D
C, D.- Then, since 4 BC is a straight line through

the centre, AEC is a semi-circle. Similarly, 48D

being a straight line through the centre, AED is a

semi-circle. Therefore 4£C is equal to AED:

which is impossible.

Proclus observes that Zeno would object to this proof as really depending
on the assumption that “two circumferences (of circles) cannot have one
portion common ”; for this, he would say, is assumed in the common proof
by superposition of the fact that a circle is bisected by a diameter, since that
proof takes it for granted that, if one part of the circumference cut off by the
diameter, when applied to the other, does not coincide with it, it must neces-
sarily fall either entirely outside or entirely inside it, whereas there is nothing
to prevent their coinciding, not altogether, but in part only ; and, until you
really prove the bisection of a circle by its diameter, the above proof is not
valid. Posidonius is represented as having derided Zeno for not seeing that
the proof of the bisection of a circle by its diameter goes on just as well if the
circumferences fail to coincide ## parf only. But the true objection to the
proof above given is that the proof of the bisection of a circle by any diameter
#fself assumes that two straight lines cannot have a common segment; for, if
we wish to draw the diameter of a circle which has its extremity at a given point
of the circumference we have to join the latter point to the centre (Post. 1) and
then to produce the straight line so drawn till it meets the circle again (Post. 2),
and it is necessary for the proof that the produced part shall be unigue.

Saccheri adopted the proper order when he gave, first the proposition that
two straight lines cannot have a common segment, and after that the
proposition that any diameter of a circle bisects the circle and its circumference.

Saccheri’s proof of the former is very interesting as showing the thorough-
ness of his method, if not at the end entirely convincing. It is in five stages
which I shall indicate shortly, giving the full argument of the first only.

Suppose, if possible, that 4X is a common segment of both the straight
lines AXB, AXC, in one plane, produced beyond
X. Then describe about X as centre, with radius
X B or XC, the arc BMC, and draw through X to
any point on it the straight line XA/,

() I maintain that, with the assumption
made, ke line AXM is also a straight line which
is drawn from the point A to the point X and pro-
duced beyond X.

For, if this line were not straight, we could draw
another straight line 4 M which for its part would
be straight. This straight line will either (&) cut one
of the two straight lines X8, XC in a certain point
K or (#) enclose one of them, for instance X5, in
the area bounded by 4X, XM and APLM,




198 BOOK 1 [1. PosT. 2

But the first alternative () obviously contradicts the foregoing lemma [that
two straight lines cannot enclose a space], since in that case the two lines
AXK, ATK, which by hypothesis are straight, would enclose a space.

The second possibility (3) is at once seen to involve a similar absurdity.
For the straight line XB must, when produced beyond B, ultimately meet
APLM in a point L. Consequently the two lines 4XBL, APL, which by
hypothesis are straight, would again enclose a space. If however we were to
assume that the straight line XB produced beyond B will ultimately meet
either the straight line X or the straight line X4 in another point, we should
in the same way arrive at a contradiction.

From this it obviously follows that, on the assumption made, the line
AXM is itself the straight line which was drawn from the point A4 to the point
M; and that is what was maintained.

The remaining stages are in substance these.

(i) JIf the straight line AXB, regarded as rigid, revolves about AX as axis,
i cannot assume twWo more positions in the same plane, so that, for example, in
one position XB should coincide with XC, and in the other with XM.

This is proved by considerations of symmetry. 4X.Z cannot be altogether
““similar or equal to” 4XC, if viewed from the same side (left or right) of
both : otherwise they would coincide, which by hypothesis they do not. But
there is nothing to prevent AXJZ5 viewed from one side (say the left) being
“similar or equal to” 4XC viewed from the other side (i.e. the right), so that
AXRB can, without any change, be brought into the position 4XC.

AXB cannot however take the position of the other straight line 4XM as
well. If they were like on one side, they would coincide; if they were like on
opposite sides, AXM, AXC would be like on the same side and therefore
coincide.

(ili) The other positions of 4X B during the revolution must be above or
below the original plane.

(iv) It is next maintained that tkere is a point D on the arc BC suck that, if
XD is drawn, AXD is not only a straight line but is suck that viewed from the left
side it is exactly “similar or equal” fo what it is when viewed from the right side.

[First, it is proved that points Af, F can be found on the arc, corresponding
in the same way as B, C do, but nearer together, and of course AXM, AXF
are both straight lines.

Secondly, similar corresponding points can be found still nearer together,
and so on continually, until either (2) we come to one point D such that AXD
is exactly like stself when the right and left sides are compared, or (b) there are
fwoe ultimate points of this sort M, F, so that both AXM, AXF have this
property.

Thirdly, (&) is ruled out by reference to the definition of a straight line.

Hence (a) only is true, and there is only one point D such as described.]

(v) Lastly, Saccheri concludes that the straight line XD so determined
“is alone a straight line, and the immediate prolongation from 4 beyond X to
D,” relying again on the definition of a straight line as “lying evenly.”

Simson deduced the proposition that fwo straight lines cannot have a
common segment as a corollary from 1. 11; but his argument is a complete
petitio princpii, as shown by Todhunter in his note on that proposition.

Proclus (p. 217, 10) records an ancient proof also based on the proposition
L 11. Zeno, he says, propounded this proof and then criticised it.
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Suppose that two straight lines 4C, 4.D have a common segment 4.8, and
let B be drawn at right angles to 4 C.

Then the angle £5C is right. w B

If then the angle Z£BD is also right, the two
angles will be equal : which is impossible.

If the angle £ZB.D is not right, draw BF at right D
angles to 4.0 ; therefore the angle 784 is right.

But the angle £54 is right. A B

Therefore the angles EBA, FBA are equal:
which is impossible.

Zeno objected to this, says Proclus, because it assumed the later pro-
position 1. 11 for its proof. Posidonius said that there was no trace of such
a proof to be found in the text-books of Elements, and that it was only invented
by Zeno for the purpose of slandering contemporary geometers. Posidonius
maintains further that even this proof has something to be said for it. There
must be some straight line at right angles to each of the two straight lines 4C,
AD (the very definition of right angles assumes this): ““suppose then it happens
to be the straight line we have set up.” Here then we have an ancient instance
of a defence of Aypothetical construction, but in such apologetic terms (*it is
possible to say sometking even for this proof”) that we may conclude that in
general it would not have been accepted by geometers of that time as a
legitimate means of proving a proposition.

Todhunter proposed to deduce that fwe straight lines cannol have a
common segment from 1. 13. But this will not serve either, since, as before
mentioned, the assumption is really required for 1. 4.

It is best to make it a postulate.

POSTULATE 3.

Kai marri kévrpe xai Saomjpare xixhov ypapectar,

7o descrite a circle with any centre and distance.

In this case Euclid’s text has the passive of the verb: “a circle can be
drawn” ; Proclus however has the active (ypdyad) as Euclid has in the first
two Postulates.

Distance, Swaorjpar. This word, meaning “ distance ” quite generally (cf.
Arist. Metaph. 1055 a 9 ‘it is between extremities that distance is greatest,”
tbid. 1056 a 36 “ things which have something between them, that is, a certain
distance ”), and also “distance” in the sense of “dimension” (as in *space
has three dimensions, length, breadth and depth,” Arist. Physics 1v. 1, 209 a 4),
was the regular word used for describing a circle with a certain radius, the
idea being that each point of the circumference was at that disfance from the
centre (cf. Arist Meteorologica 1. 5, 376 b 8: “if a circle be drawn...with
distance MIT”). The Greeks had no word corresponding to »adius: if they
had to express it, they said “(straight lines) drawn from the centre” (ai éx Tod
xévrpov, Eucl. 111, Def. 1 and Prop. 26; A{dmmlogrba 11. 5, 362 b 1 has the full

hrase ai éx Tod: kévrpov dydpevar ypappal).
) Mr Frankland olfoservg ':l‘mt it would be remarkable if, unlike Postulates 1
and 2, this Postulate implied merely what it says, that a circle can be drawn
with any centre and distance. We may regard it, if we please, as helping to the
complete delineation of the Space which Euclid’s geometry is to investigate
formally. The Postulate has the effect of removing any restriction upon the
size of the circle. It may (1) be indefinitely small, and this implies that space
is conltinuous, not discrete, with an irreducible minimum distance between
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contiguous points in it. (2) The circle may be indefinitely large, which
implies the fundamental hypothesis of snffinsfude of space. This last assumed
characteristic of space is essential to the proof of 1. 16, a theorem not
universally valid in a space which is unbounded in extent but finite in size. It
would however be unsafe to suppose that Euclid foresaw the use to which his
Postulate might thus be put, or formulated it with such an intention.

POSTULATE 4.

Kal wdoas 735 8pfis yovias loas dA\ojhas elvar,

That all right angles are equal to one another.

While this Postulate asserts the essential truth that a right angle is a
deferminate magnitude so that it really serves as an invariable standard by
which other (acute and obtuse) angles may be measured, much more than
this is implied, as will easily be seen from the following consideration. If the
statement is to be proved, it can only be proved by the method of applying one
pair of right angles to another and so arguing their equality. But this method
would not be valid unless on the assumption of the invariability of figures,
which would therefore have to be asserted as an antecedent postulate. Euclid
preferred to assert as a postulate, directly, the fact that all right angles are
equal; and hence his postulate must be taken as equivalent to the principle of
snvariability of figures or its equivalent, the homogeneily of space.

According to Proclus, Geminus held that this Postulate should not be
classed as a postulate but as an axiom, since it does not, like the first three
Postulates, assert the possibility of some construction but expresses an essential
property of right angles. Proclus further observes (p. 188, 8) that it is not a
postulate in Aristotle’s sense either. (In this I think he is wrong, as explained
above.) Proclus himself, while regarding the assumption as axiomatic (*the
equality of right angles suggests itself even by virtue of our common notions”),
is prepared with a proof, if such is asked for.

Let ABC, DEF be two right A D
angles.
If they are not equal, one of them G
must be the greater, say 4A5C.
Then, if we apply DE to A5, EF H B o) E 3

will fall within 48C, as BG.

Produce CB to H. Then, since
ABC is a right angle, so is 48H, and the two angles are equal (a right angle
being by definition equal to its adjacent angle).

Therefore the angle 4B H is greater than the angle 4A5G.

Producing G B to K, we have similarly the two angles 48X, ABG both
right and equal to one another; whence the angle 4B/ is /ess than the angle
AB

But it is also greater: which is impossible.

Therefore etc.

A defect in this proof is the assumption that CB, GZB can each be
produced only in one way, and that BX falls outside the angle 4 BH.

Saccheri’s proof is more careful in that he premises a third lemma in
addition to those asserting (1) that two straight lines

cannot enclose a space and (z) that two straight lines X
cannot have a common segment. The third lemma is:
If two straight lines AB, CXD meet one another atan ©

intermediate point X, they do not touch at that point, but [»)
cut one another,
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Suppose now that DA standing on BAC makes the two angles DAB,
DAC equal, so that each is a right angle by the definition.

Similarly, let ZA form with the straight line ZHM the right angles LHF,
LHM.

Let DA, HL be equal ; and sup- D L
pose the whole of the second figure
so laid upon the first that the point
H falls on A4, and L on D.

Then the straight line FHM will &

(by the third lemma) not Zouch the & x e F H ]
straight line BC at A4 ; it will either

(a) coincide exactly with BC, or M

(8) aut it so that one of its extremities, as %, will fall above [BC] and the
other, M, below it.

If the alternative (a) is true, we have already proved the exact equality of
all rectilineal right angles.

Under alternative (#) we prove that the angle ZHF, being equal to the
angle DAF, is less than the angle DAB or DAC, and a fortiori less than the
angle DAM or LHM : which is contrary to the hypothesis.

[H]ence (a) is the only possible alternative, so that all right angles are
equal.

Saccheri adds that it makes no difference if the, angle DAF diverges
infinitely little from the angle DAB. This would equally lead to a conclusion
contradicting the hypothesis.

It will be observed that Saccheri speaks of “the exact equality of all

rectilineal right angles.” He may have had in mind the remark of Pappus,
quoted by Proclus (p. 189, 11), that the converse of
this postulate, namely that an angle which is equal A
to a right angle is also right, is not necessarily true, -
unless the former angle is recfilineal. Suppose two
equal straight lines 54, BC at right angles to one ¢ D
another, and semi-circles described on B4, BC
respectively as 4£B, BDC in the figure. Then,
since the semi-circles are equal, they coincide if
applied to one another. Hence the ‘““angles” B C
EBA, DBC are equal. Add to each the “angle”
ABD ; and it follows that the Junular angle EBD is equal to the right angle
ABC. (Similarly, if B4, BC be inclined at an acute or obtuse angle, instead
of at a right angle, we find a /unular angle equal to an acute or obtuse angle.)
This is one of the curiosities which Greek commentators delighted in.

Veronese, Ingrami, and Enriques and Amaldi deduce the fact that a/
right angles are equal from the equivalent fact that a// fla? angles are equal,
which is either itself assumed as a postulate or immediately deduced from some
other postulate.

Hilbert takes quite a different line. He considers that Euclid did wrong
in placing Post. 4 among “axioms.” He himself, after his Group u1 of
Axioms containing six relating to congruence, proves several theorems about
the congruence of triangles and angles, and then deduces our Postulate.

As to the raison d’étre and the place of Post. 4 one thing is quite certain.
It was essential from Euclid’s point of view that it should come before Post. 5,
since the condition in the latter that a certain pair of angles are together less
than two right angles would be useless unless it were first made clear ihat
right angles are angles of determinate and invariable magnitude.
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POSTULATE 5.

Kai éav els 8vp elfelas edbeia fpﬂﬂom Tis dvros kai éml m abra pépm yumt
dvo apﬂmv L\acaoms- woifj, éxBarlopévas Tas Svo elbelas én’ dmepov ovuminTaw,
€4’ & pépy elolv al Tav Svo dpbdv éNdoaoves.

That, if a straight line falling on two straight lines make the intevior angles
on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right
angles.

Although Aristotle gives a clear idea of what he understood by a postulate,
he does not give any instances from geometry; still less has he any allusion
recalling the particular postulates found in Euclid. We naturally infer that
the formulation of these postulates was Euclid’s own work. There is a more
positive indication of the originality of Postulate 5, since in the passage (Ana/.
prior. 11. 16, 65 a 4) quoted above in the note on the definition of parallels he
alludes to some petitio principit involved in the theory of parallels current in
his time. This reproach was removed by Euclid when he laid down this
epoch-making Postulate. When we consider the countless successive attempts
made through more than twenty centuries to prove the Postulate, many of
them by geometers of ability, we cannot but admire the genius of the man
who concluded that such a hypothesis, which he found necessary to the
validity of his whole system of geometry, was really indemonstrable.

From the very beginning, as we know from Proclus, the Postulate was
attacked as such, and attempts were made to prove it as a theorem or to get
rid of it by adophng some other definition of parallels; while in modern times
the literature of the subject is enormous. Riccardi (Sarggw di una bibliografia
Euclidea, Part 1v., Bologna, 1890) has twenty quarto pages of titles of mono-
graphs relating to Post. 5 between the dates 1607 and 1887. Max Simon
(Ueber die Entwicklung der Elementar-geometrie im XIX. Jakrhundert, 1906)
notes that he has seen three new attempts, as late as 1891 (a century after
Gauss laid the foundation of non-Euclidean geometry), to prove the theory of
parallels independently of the Postulate. Max Simon himself (pp. 53—61)
gives a large number of references to books or articles on the subject and
refers to the copious information, as to contents as well as names, con-
tained in Schotten’s /nkalt und Methode des planimetrischen Unterrichts, 1.
pp. 183—332.

This note will include some account of or allusion to a few of the most
noteworthy attempts to prove the Postulate. Only those of ancient times, as
being less generally accessible, will be described at any length; shorter
references must sufficein the case of the modern geometers who have made
the most important contributions to the discussion of the Postulate and have
thereby, in particular, contributed most towards the foundation of the non-
Euclidean geometries, and here I shall make use principally of the valuable
Article 8, Sulla teoria delle paralicle ¢ sulle geomelrie non-euclidee (by Roberto
Bonola), 'in Questioni riguardanti le matemaliche elementari, 1. pp. 247—363.

Proclus (p. 191, 21 5qq.) states very clearly the nature of the first objec-
tions taken to the Postulate.

“This ought even to be struck out of the Postulates altogether ; for it is a
theorem involving many difficulties, which Ptolemy, in a certain book, set
himself to solve, and it requires for the demonstration of it a number
of definitions as well as theorems. And the converse of it is actually
proved by Euclid himself as a theorem. It may be that some would be
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deceived and would think it proper to place even the assumption in question
among the postulates as affording, in the lessening of the two right angles,
ground for an instantaneous belief that the straight lines converge and meet.
To such as these Geminus correctly replied that we have learned from the
very pioneers of this science not to have any regard to mere plausible imagin-
ings when it is a question of the reasonings to be included in our geometrical
doctrine.  For Aristotle says that it is as justifiable to ask scientific proofs of
a rhetorician as to accept mere plausibilities from a geometer; and Simmias is
made by Plato to say that he recognises as quacks those who fashion for
themselves proofs from probabilities. So in this case the fact that, when the
right angles are lessened, the straight lines converge is true and necessary;
but the statement that, since they converge more and more as they are pro-
duced, they will sometime meet is plausible but not necessary, in the absence
of some argument showing that this is true in the case of straight lines. For
the fact that some lines exist which approach indefinitely, but yet remain
non-secant (devdumrwred), although it seems improbable and paradoxical, is
nevertheless true and fully ascertained with regard to other species of lines.
May not then the same thing be possible in the case of straight lines which
happens in the case of the lines referred to? Indeed, until the statement in
the Postulate is clinched by proof, the facts shown in the case of other lines
may direct our imagination the opposite way. And, though the controversial
arguments against the meeting of the straight lines should contain much that
is surprising, is there not all the more reason why we should expel from our
body of doctrine this merely plausible and unreasoned (hypothesis)?

“It is then clear from this that we must seek a proof of the present
theorem, and that it is alien to the special character of postulates, But how
it should be proved, and by what sort of arguments the objections taken to
it should be removed, we must explain at the point where the writer of the
Elements is actually about to recall it and use it as obvious. It will be
necessary at that stage to show that its obvious character does not appear
independently of proof, but is turned by proof into matter of knowledge.”

Before passing to the attempts of Ptolemy and Proclus to prove the
Postulate, I should note here that Simplicius says (in an-Nairizi, ed. Besthorn-
Heiberg, p. 119, ed. Curtze, p. 65) that this Postulate is by no means manifest,
but requires proof, and accordingly “Abthiniathus” and Diodorus had
already proved it by means of many different propositions, while Ptolemy also
had explained and proved it, using for the purpose Eucl. 1. 13, 15 and 16 (or
18). The Diodorus here mentioned may be the author of the Analemma on
which Pappus wrote a commentary. It is difficult even to frame a conjecture
as to who “Abthiniathus” is. In one place in the Arabic text the name
}?pears to be written * Anthisathus” (H. Suter in Zeitschrift fiir Math. und

Yiysik, xxxviiL, hist, litt. Abth. p. 194). It has occurred to me whether he
might be Peithon, a friend of Serenus of Antinoeia (Antinoupolis) who was
long known as Serenus of Antissa. Serenus says (De sectione cylindri, ed.
Heiberg, p. 96): “Peithon the geometer, explaining parallels in a work of his,
was not satisfied with what Euclid said, but showed their nature more cleverly
by an example; for he says that parallel straight lines are such a thing as we
see on walls or on the ground in the shadows of pillars which are made when
either a torch or a lamp is burning behind them. And, although this has only

matter of merriment to every one, I at least must not deride it, for the
t I have for the author, who is my friend.” If Peithon was known as

Antinoeia ” or “of Antissa,” the two forms of the mysterious name might

perhaps be an attempt at an equivalent; but this is no more than a guess.
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Simplicius adds in full and word for word the attempt of his “friend” or
his “ master Aganis” to prove the Postulate.

Proclus returns to the subject (p. 365, 5) in his note on Eucl. 1. 29. He
says that before his time a certain number of geometers had classed as a
theorem this Euclidean postulate and thought it matter for proof, and he then
proceeds to give an account of Ptolemy’s argument.

Noteworthy attempts to prove the Postulate.
Ptolemy.

We learn from Proclus (p. 365, j—11) that Ptolemy wrote a book on the
proposition that “straight lines drawn from angles less than two right angles
meet if produced,” and that he used in his “ proof” many of the theorems in
Euclid preceding 1. 29. Proclus excuses himself from reproducing the early
part of Ptolemy’s argument, only mentioning as one of the propositions
proved in it the theorem of Eucl. 1. 28 that, if two straight lines meeting a
transversal make the two interior angles on the same side equal to two right
angles, the straight lines do not meet, however far produced.

I. From Proclus’ note on 1. 28 (p. 362, 14 sq.) we know that Ptolemy
proved this somewhat as follows.

Suppose that there are two straight lines 4B, CD, and that EFGH,
meeting them, makes the angles BFG, FGD equal to two right angles.
I say that 48, CD are parallel, that is, they
are non-secant. E

For, if possible, let #B, GD meet at K.’ A B

Now, since the angles BFG, FGD are
equal to two right angles, while the four L K
angles A5G, BFG, FGD, FGC are together
equal to four right angles,

the angles 454G, FGC are equal to two
right angles.

“If therefore FB, GD, when the interior angles are equal to two right
angles, meet at K, the straight lines FA, GC will also meet if produced; for the
angles AFG, CGF are also equal to two right angles.

““Therefore the straight lines will either meet in both directions or in
neitlher direction, if the two pairs of interior angles are both equal to two right

es.

“Let, then, 74, GC meet at L.

“Therefore the straight lines LABK, LCDK enclose a space: which is
impossible.

“Therefore it is not possible for two straight lines to meet when the
interior angles are equal to two right angles. Therefore they are lel.”

[The argument in the words italicised would be clearer if 1t" had been
shown that the two interior angles on one side of £H are severally equal to the
two interior angles on the other, namely BFG to CGF and FGD to AFG;
whence, assuming #5B, GD to meet in X, we can take the triangle X7G and
place it (e.g. by rotating it in the plane about O the middle point of #G) so
that #G falls where GFis in the figure and GD falls on F4, in which case
FB must also fall on GC; hence, since B, GD meet at X, GC and FA4
must meet at a corresponding point Z. Or, as Mr Frankland does, we may
substitute for #G a straight line AV through O the middle point of /G
drawn perpendicular to one of the parallels, say 48. Then, since the two
triangles OMF, ONG have two angles equal respectively, namely FOM to
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GON (1. 15) and OFM to OGN, and one side OF equal to one side OG, the
triangles are congruent, the angle ONG is a right angle, and MV is perpen-
dicular to both 48 and CD. Then, by the same method of application,
MA, NC are shown to form with MV a triangle MALCN congruent with
the trmngle NDKBM, and MA, NC meet at a point L corresponding to X.
Thus the two straight lines would meet at the f0 points X, L. This is what
happens under the Riemann hypothesis, where the axiom that two straight
lines cannot enclose a space does not hold, but all straight lines meeting in
one point have another point common also, and e.g. in the particular

just used X, L are points common to all perpendiculars to MN. If we
suppose that X, L are not distinct points, but ene point, the axiom that two
straight lines cannot enclose a space is nof contradicted. ]

II. Ptolemy now tries to prove 1. 29 without using our Postulate, and
then deduces the Postulate from it (Proclus, pp. 365, 14—367, 27).

The argument to prove 1. 29 is as follows.

The straight line which cuts the parallels must make the sum of the
interior angles on the same side equal to, greater
than, or less than, two right angles. A F B

“Let AB, CD be parallel, and let #G meet
them. I say (1) that #G does not make the
interior angles on the same side greater than two g 3 b
right angles.

“For, if the angles AFG, CGF are greater than two right angles, the
remaining angles BFG, DGF are less than two right angles.

*‘ But the same two angles are also greater than two right angles ; for AF,
CG are no more parallel than ¥B, GD, so that, if the straight line falling on
AF, CG mabkes the inlerior angles greater than two right angles, the straight line
JSalling on ¥B, GD will also make the interior angles greater than two right
angles.

“But the same angles are also less than two right angles; for the four
angles AFG, CGF, BFG, DGF are equal to four right angles
which ic 1mpocs1ble

*Similarly (2) we can show that the straight line falling on the parallels
does not make the interior angles on the same side less than two right angles.

“But (3), if it makes them neither greater nor less than two right angles,
it can only make the interior angles on the same side egua/ to two nght
mlu."

III. Ptolemy deduces Post. 5 thus:

Suppose that the straight lines making angles with a transversal less than
two right angles do not meet on the side on which those angles are.

Then, @ fortiori, they will not meet on the other side on which are the
angles greafer than two right angles.

Hence the straight lines will not meet in either direction ; they are there-
fore parallel.

But, if so, the angles made by them w:(th the transversal are equal to two

ht angles, by the preceding proposition (= 1. 29).

¥ Tmonb{he same angles will be both equal to and less than two right
angles :
which is impossible.

Hence the straight lines will meet.
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IV. Ptolemy lastly enforces his conclusion that the straight lines will
meet on the side on whick are the angles less than two right angles by recurring
to the a fortiori step in the foregoing proof.

Let the angles 4FG, CGF in the accompanying figure be together less
than two right angles. ‘

Therefore the angles BFG, DGF are greater E 8
than two right angles.

We have proved that the straight lines are not
non-secant.

If they meet, they must meet either towards
A, C, or towards B, D.

(1) Suppose they meet towards B, D, at X.

Then, since the angles A5G, CGF are less than
two right angles, and the angles A7G, GFB are
equal to two right angles, take away the common angle 4FG, and

the angle CGF is less than the angle BFG;

that is, the exterior angle of the triangle KFG is less than the interior and
opposite angle BFG :
which is impossible.

Therefore A5, CD do not meet towards B, D.

(2) But they do meet, and therefore they must meet in one direction or
the other :

therefore they meet towards 4, B, that is, on the side where are the
angles less than two right angles.

The flaw in Ptolemy’s argument is of course in the part of his proof of
1. 29 which I have italicised. As Proclus says, he is not entitled to assume
that, if 48, CD are parallel, whatever is true of the interior angles on one
side of G (i.e. that they are together equal to, greater than, or less than, two
right angles) is necessarily true at the same time of the interior angles on the
other side. Ptolemy justifies this by saying that #4, GC are no more parallel
in one direction than #B, GD are in the other: which is equivalent to the
assumption that through any point only one parallel can be drawn lo a given
straight line. That is, he assumes an equivalent of the very Postulate he is
endeavouring to prove.

Proclus.

Before passing to his own attempt at a proof, Proclus (p. 368, 26 sqq.)
examines an ingenious argument (recalling somewhat the famous one about
Achilles and the tortoise) which appeared to show that it was impessible for
the lines described in the Postulate to meet.

Let AB, CD make with .1C the angles BAC, ACD together less than

two right angles.

Bisect AC at £ and along 485, CD B
respectively measure 45, CG so that each
is equal to A£.

Bisect #G at & and mark off FK,
GL each equal to & ; and so on. T RIS IR -

Then AF, CG will not meet at any .
point on FG ; for, if that were the case, two sides of a triangle would be
together equal to the third: which is impossible.
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Similarly, 48, CD will not meet at any point on XZ; and “proceeding
like this indefinitely, joining the non-coincident points, blsectmg the lines so
drawn, and cutting off from the straight lines portions equal to the half of
these, they say they thereby prove that the straight lines 4.8, CD will not
meet anywhere.”

It is not surprising that Proclus does not succeed in exposing the fallacy
here (the fact being that the process will indeed be endless, and yet the straight
lines will intersect within a finite distance). But Proclus’ criticism contains

eless something of value. He says that the argument will prove too
much, since we have only to join 4G in order to see that straight lines making
some angles which are together less than two right angles do in fact meet,
namely 4G, CG. “Therefore it is not possible to assert, without some definite
limitation, that the straight lines produced from angles less than two right
angles do not meet. On the contrary, it is manifest that some straight lines,
when produced from angles less than two right angles, do meet, although the
argument seems to require it to be proved that this property belongs to all
such straight lines. For one might say that, the lessening of the two right
angles being subject to no limitation, with swch and such an amount of
lessening the straight lines remain non-secant, but with an amount of lessening
in excess of this they meet (p. 371, 2—10).”

[Here then we have the germ of such an idea as that worked out by
Lobachewsky, namely that the straight lines issuing from a point in a plane
can be divided with reference to a straight line lying in that plane into two
classes, “secant” and “non-secant,” and that we may define as parallel/ the
two straight lines which divide the secant from the non-secant class.]

Proclus goes on (p. 371, 10) to base his own argument upon “an axiom
such as Aristotle too used in arguing that the universe is finjte. For, if from

int two straight lines forming an angle be produced indefinitely, the distance
(S8cacracs, Arist. Sdorpa) defween the said straight lines produced indefinitely
will exceed any finite magnitude. Aristotle at all events showed that, if the
straight lines drawn from the centre to the circumference are infinite, the
mterval between them is infinite. For, if it is finite, it is Imposstble to
increase the distance, so that the straight lines (the radii) are not infinite.
Hence the straight lines, when produced indefinitely, will be at a distance from
one another greater than any assumed finite magnitude.”

This is a fair representation of Aristotle’s argument in De caclo 1. 5, 271
b 28, although of course it is not a proof of what Proclus assumes as an
axiom.

This being premised, Proclus proceeds (p. 371, 24):

I. “1 say that, f any straight line cuts one of two parallels, it will cut
the other also,
) “For let AB, CD be parallel, and let £FG cut 48 ; 1 say that it will cut
D also.

“For, since BF, FG are two straight lines from E
one point £, they have, when produced indefinitely, 5 B
a distance greater than any magnitude, so that it will
also be greater than the interval between the [para]lels. a
Whenever therefore they are at a distance from one ©——— b

another greater than the distance between the parallels,
FG will cut CD.
“ Therefore etc.”
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II. “Having proved this, we shall prove, as a deduction from it, the
theorem in question.

“For let AB, CD be two straight lines, and let EF falling on them make
the angles BEF, 'DFE less than two right angles.

“] say that the straight lines will meet onthat A——_ E

side on which are the angles less than two right K \"“"—--.:
angles.
“For, since the angles BEF, DFE are less ¢ F D

than two right angles, let the angle A E B be equal
to the excess of two right angles (over them), and let £ be produced to X.
“Since then EF falls on KA, CD and makes the two interior angles
HEF, DFE equal to two right angles,
the straight lines AKX, CD are parallel.

“And 428 cuts K& ; therefore it will also cut CD, by what was before
shown.

“Therefore 4.8, C.D will meet on that side on which are the angles less
than two right angles.

“ Hence the theorem is proved.”

Clavius criticised this proof on the ground that the axiom from which
it starts, taken from Aristotle, itself requires proof. He points out that, just
as you cannot assume that two lines which continually approach one another
will meet (witness the hyperbola and its asymptote), so you cannot assume
that two lines which continually diverge will ultimately be so far apart that a
perpendicular from a point on one let fall on the other will be greater than
any assigned distance; and he refers to the conchoid of Nicomedes, which
continually approaches its asymptote, and therefore continually gets farther
away from the tangent at the vertex ; yet the perpendicular from any point on
the curve to that tangent will always be less than the distance between the
tangent and the asymptote. Saccheri supports the objection.

Proclus’ first proposition is open to the objection that it assumes that two
“parallels” (in the Euclidean sense) or, as we may say, two straight lines
which have a common perpendicular, are (not necessarily equidistant, but)
so related that, when they are produced indefinitely, the perpendicular from a
point of one upon the other remains finite.

This last assumption is incorrect on the hyperbolic hypothesis; the
“axiom” taken from Aristotle does not hold on the elliptic hypothesis.

Nasiraddin at-Tuasi.

The Persian-born editor of Euclid, whose date is 1201—1274, has three
lemmas leading up to the final proposition. Their content is substantially as
follows, the first lemma being apparently assumed as evident.

1. (a) If AB, CD be two straight lines such that successive perpen-
diculars, as £F, GH, KL, from points on 48 to CD always make with A5
unequal angles, which are always acute on the side towards B and always
obtuse on the side towards 4, then the lines 4.5,

CD, so long as they do not cut, approach continually k G E _,__...-—-'5
nearer in the direction of the acute angles and diverge 8

continually in the direction of the obtuse angles, and

the perpendiculars diminish towards B, D, and in-

crease towards A, C. L HF

(#) Conversely, if the perpendiculars so drawn
continually become shorter in the direction of B, D, and longer in the
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direction of 4, C, the straight lines 48, CD approach continually nearer in
the direction of B, D and diverge continually in the other direction ; also
each perpendicular will make with 4.8 two angles one of which is acute and
the other is obtuse, and all the acute angles will lie in the direction towards
B, D, and the obtuse angles in the opposite direction.

[Saccheri points out that even the first part (@) requires proof. As
regards the converse (4) he asks, why should not the successive acute angles
made by the perpendiculars with 4.8, while remaining acute, become greater
and greater as the perpendiculars become smaller until we arrive at last at a
perpendicular which is a common perpendicular to Jo#% lines? If that happens,
all the author’s efforts are in vain. And, if you are to assume the truth of the
statement in the lemma without proof, would it not, as Wallis said, be as
easy to assume as axiomatic the statement in Post. 5 without more ado?]

II. If AC, BD Ze drawn from the extremities of AB at right angles to it
and on the same side, and if AC, BD be made equal to one another and CD be
Joined, eack of the angles ACD, BDC will be right, and D 2
CD will be equal to AB. B

The first part of this lemma is proved by reductio ad
absurdum from the preceding lemma. If, e.g., the angle
ACD is not right, it must either be acute or obtuse. 5 A

Suppose it is acute ; then, by lemma 1, 4C is greater
than B0, which is contrary to the hypothesis. And so on.

The angles 4CD, BDC being proved to be right angles, it is easy to
prove that 4.8, CD are equal.

[It is of course assumed in this “ proof ” that, if the angle ACD is acute,
the angle BDC is obtuse, and vice versa.]

IIL. 7n any triangle the three angles are logether equal fo two right angles.

This is proved for a right-angled triangle by means of the foregoing lemma,
the four angles of the quadrilateral 48CD of that lemma being all right angles.
The proposition is then true for any triangle, since any triangle can be divided
into two right-angled triangles.

IV. Here we have the final “proof” of Post. 5. Three cases are
distinguished, but it is enough to show the case where one of the interior
angles is right and the other acute.

Suppose 4.8, CD to be two straight lines met by FC£ making the angle
ECD a right angle and the angle CEB
an acute angle.

Take any point G on £.25, and draw
GH perpendicular to EC.

Since the angle CEG is acute, the
perpendicular GA will fall on the sideof
E towards D, and will either coincide
with CD or not coincide with it. In the
former case the proposition is proved.

If GH does not coincide with CD
but falls on the side of it towards & C.D, being within the triangle formed by
the perpendicular and by CE, EG, must cut £G. [An axiom is here used,
namely that, if CD be produced far enough, it must pass ouside the triangle
and therefore cut some side, which must be ZB, since it cannot be the
perpendicular (1. 27), or CE.]

Lastly, let GA fall on the side of CD towards £.
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Along HC set off HK, KL etc., each equal to £H, until we get the first
point of division, as M, beyon C.

Along G5 set off GN VO etc., each equal to EG, until EP is the same
multiple of £G that EMis of EH.

Then we can prove that the perpendiculars from &, O, £ on EC fall on
the points X, L, M respectively.

For take the first perpendicular, that from 4V, and call it VS.

Draw £Q at right angles to £& and equal to G, and set off SX along
SNV also equal to GH. Join QG, GR.

Then (second lemma) the angles £QG, QG A are right, and QG = EH.

Similarly the angles SRG, RGH are right, and RG = SH.

Thus RGQ is one straight line, and the vertically opposite angles NG R,
E£GQ are equal.  The angles NRG, EQG are both right, and ¥G = GE, by
construction.

Therefore (1. 26) RG = GQ;

whence SH = HE = KH, and S coincides with &.

We may proceed similarly with the other perpendiculars.

Thus PM is perpendicular to FE. Hence CD, being parallel to MP and
within the triangle PME, must cut EP, if produced far enough.

John Wallis.

As is well known. the argument of Wallis (1616—1703) assumed as a
postulate that, given a figure, another figure is possible which is similar to the
given one and of any size whatever. In fact Wallis assumed this for Zriangles
only. He first proved (1) that, if a finite straight line is placed on an infinite
straight line, and is then moved in its own direction as far as we please,
it will always lie on the same infinite straight line, (2) that, if an angle be
moved so that one leg always slides along an infinite straight line, the angle
will remain the same, or equal, (3) that, if two straight lines, cut by a third,
make the interior angles on the same side less than two right angles, each
of the exterior angles 1s greater than the opposite
interior angle (proved by means of 1. 13). g D 8

(4) If AB, CD make, with 4C, the interior
angles less than two right angles, suppose 4C
(with 4B rigidly attached to it) to move along
AF to the position ay, such that a coincides
with C. If 4B then takes the position aB, af lies entirely outside CD (proved
by means of (3) above).

(5) With the same hypotheses, the straight line af, or AB, during its
motion, and before a reackes C, must cut the straight line CD.

?6) Here is enunciated the postulate stated above.

1) Postulate 5 is now proved thus.

Let 458, CD be the straight lines which make, with the infinite straight
line 4CF meeting them, the interior angles
BAC, DCAtogether less than two right angles.

Suppose AC (with 4B rigidly attached to ‘:.
it) to move along ACF until 4B takes the B, |D\B
position of af cutting CD in .

Then, aCr being a triangle, we can, by
the above postulate, suppose a triangle drawn ¢
on the base CA4 similar to the triangle aCr.

Let it be ACP.

[Wallis here interposes a defence of the hypothetical construction. ]
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Thus CP and 4P meet at P; and, as by the definition of similar figures
the angles of the triangles £CA, =Ca are respectively equal, the angle PCA
being equal to the angle wCa and the angle PAC to the angle waC or BAC,
it follows that CP, AP lie on CD, AB produced respectively.

Hence 48, CD meet on the side on which are the angles less than two
right angles.

[The whole gist of this proof lies in the assumed postulate as to the
existence of similar ; and, as Saccheri points out, this is equivalent to
unconditionally assuming the “hypothesis of the right angle,” and consequently
Euclid’s Postulate 5.]

Gerolamo Saccheri.

The book Euclides ab omni naevo vindicatus (1733) by Gerolamo Saccheri
(1667—1733), a Jesuit, and professor at the University of Pavia, is now
accessible (1) edited in German by Engel and Stickel, Die Theoric der
Parallellinien von Euklid bis auf Gauss, 1895, pp. 41—136, and (2) in an
Italian version, abridged but annotated, L' Euclide emendato del P. Gerolamo
Saccheri, by G. Boccardini (Hoepli, Milan, 1904). It is of much greater
importance than all the earlier attempts to prove Post. 5 because Saccheri
was the first to contemplate the possibility of hypotheses other than that of
Euclid, and to work out a number of consequences of those hypotheses.
He was therefore a true precursor of Legendie and of Lobachewsky, as
Beltrami called him (1889), and, it might be added, of Riemann also. For,
as Veronese observes (Fondamenti di geomelria, p. 570), Saccheri obtained
a glimpse of the theory of parallels in all its generality, while Legendre,
Lobachewsky and G. Bolyai excluded & priors, without knowing it, the “hypo-
thesis of the obtuse angle,” or the Riemann hypothesis. Saccheri, however,
was the victim of the preconceived notion of his time that the sole possible
geometry was the Euclidean, and he presents the curious spectacle of a man
laboriously erecting a structure upon new foundations for the very purpose of
demolishing it afterwards; he sought for contradictions in the heart of the
systems which he constructed, in order to prove thereby the falsity of his
hypotheses.

For the purpose of formulating his hypotheses he takes a plane quadri-
lateral 4BDC, two opposite sides of which, 4C, BD,
are equal and perpendicular to a third 48. Then the 4 D
angles at C and D are easily proved to be equal. On o
the Euclidean hypothesis they are both right les ; T
but apart from this hypothesis they might be both T
obtuse or both acute. To the three possibilities, whick ~ \
Saccheri distinguishes by the names (1) #e Aypothesis of A B
the right angle, (2) the hypothesis of the obtuse angle and
(3) the hypothesis of the acute angle respectively, there corresponds a certain
Ecroup of theorems; and Saccheri’s point of view is that the Postulate will

completely proved if the consequences which follow from the last twe
hypotheses comprise results inconsistent with one another.

Among the most important of his propositions are the following :

(1) 1f the hypothesis of the right angle, or of the obtuse angle, or of the acute
angle is proved frue in a single case, it is true in every other case. (Props. v.,
VI, VIL)

(2) According as the hypothesis of the right angle, the obtuse angle, or the
acute angle is true, the sum of the three angles of a triangle is equal to, greater
than, or less than two right angles. (Prop. 1x.)
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(3) From the existence of a single triangle in whick the sum of the angles is
equal lo, greater than, or less than two right angles the truth of the hypothesis
of the right angle, obtuse angle, or acute angle respectively follows. (Prop. xv.)

These propositions involve the following: ff in a single triangle the sum
of the angles is equal lo, greater than, or less than two right angles, then any
triangle has the sum of its angles equal to, greater than, or less than two right
angles respectively, which was proved about a century later by Legendre for
the two cases only where the sum is egual fo or less than two right angles.

The proofs are not free from imperfections, as when, in the proofs of
Prop. x11. and the part of Prop. xi. relating to the hypothesis of the odfuse
angle, Saccheri uses Eucl. 1. 18 depending on 1 16, a proposition which is
only valid on the assumption that s¢raight lines are infinite in length ; for this
assumption itself does not hold under the hypothesis of the obtuse angle
(the Riemann hypothesis).

The hypothesis of the acute angle takes Saccheri much longer to dispose
of, and this part of the book is less satlsfactory, but it contains the following
propositions afterwards established anew by Lobachewsky and Bolyai, viz.:

(4) Two straight lines in a plane (even on the hypothesis of the acute
angle) esther have a common perpendicular, or must, if produced in one and the
same direction, either intersect once al a finite distance or at least continually
approack one another. (Prop. xxiiL)

(5) In a cluster of rays issuing from a point there exist always (on the
hypothesis of the acute angle) #wwo determinate straight lines which separate the
straight lines which intersect a fixed straight line from those whick do not
intersect it, ending with and including the straight line whick has a common
perpendicular with the fixed straight line. (Props. XXX., XXXL, XXXIL)

Lambert.

A dissertation by G.S. Kliigel, Conatuum praecipuorum theoriam parallelarum
demonstrandi recensio (1763), contained an examination of some thirty *“ demon-
strations” of Post. 5 and is remarkable for its conclusion expressing, apparently
for the first time, dowdt as fo its demonstrability and observing that the
certainty which we have in us of the truth of the Euclidean hypothesis is
not the result of a series of rigorous deductions but rather of experimental
observations. It also had the greater merit that it called the attention of
Johann Heinrich Lambert (1728—1777) to the theory of parallels. His

of Parallels was written in 1766 and published after his death by
G. Bernoulli and C. F. Hindenburg; it is reproduced by Engel and Stickel
(op. cit. pp. 152—208).

The third part of Lambert’s tract is devoted to the discussion of the same
three hypotheses as Saccheri’s, the hypothesis of the right angle being for
Lambert the firss, that of the odtuse angle the second, and that of the acute
angle the third, hypothesis; and, with reference to a quadrilateral with #kree
right angles from which Lambert starts (that is, one of the halves into which
the median divides Saccheri’s quadrilateral), the three hypotheses are the
assumptions that the fourth angle is a right angle, an obtuse angle, or an
acute angle respectively.

Lambert goes much further than Saccheri in the deduction of new
propositions from the second and third hypotheses. The most remarkable is
the following.

The area of a plane iriangle, under the second and third Aypotheses, is
proportional to the difference between the sum vof the three angles and two right

angles.
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Thus the numerical expression for the area of a triangle is, under the

third hypothesis

A=k(m—A—B=C) ccoeeerirrirnnrnrnrnnninnns(1),
and under the second hypothesis

A=£(A+B+C—7) iivrcrninssnnnninninnnnns(2),

where £ is a positive constant.

A remarkable observation is appended (§ 82): “In connexion with this it
seems to be remarkable that the secnd hypothesis holds if spkerscal instead of
plane triangles are taken, because in the former also the sum of the angles is
grea.telre than two right angles, and the excess is proportional to the area of the

“It appears still more remarkable that what I here assert of sPherical
triangles can be proved independently of the difficulty of parallels.’

This discovery that the second hypothesis is realised on the surface of a
sphere is important in view of the development, later, of the Riemann
hypothesis (1854).

Still more remarkable is the following prophetic sentence : “ 7 am almost
inclined to draw the conclusion that the third hypothesis arises with an imaginary
spherical surface” (cf. Lobachewsky’s Géométrie imaginaire, 1837).

No doubt Lambert was confirmed in this by the fact that, in the formula
(2) above, which, for #=7", represents the area of a spherical triangle, if
ra/=1 is substituted for 7, and *=#, we obtain the formula (1).

Legendre.

No account of our present subject would be complete without a full
reference to what is of permanent value in the investigations of Adrien Marie
Legendre (1752—1833) relating to the theory of parallels, which extended over
the space of a generation. His different attempts to prove the Euclidean
hypothesis appeared in the successive editions of his Eléments de Géométrie
from the first (1794) to the twelfth (1823), which last may be said to contain
his last word on the subject. Later, in 1833, he published, in the Mémoires
de I Académie Royale des Sciences, x11. p. 367 sqq., a collection of his different
proofs under the title Réflexions sur différentes manidres de démonitrer la théorie
des paralleles. His exposition brought out clearly, as Saccheri had done, and
kept steadily in view, the essential connexion between the theory of parallels
and the sum of the angles of a triangle. In the first edition of the Ements
the proposition that the sum of the angles of a triangle is equal fo two right
angles was proved analytically on the basis of the assumption that the choice
of a unit of length does not affect the correctness of the proposition to be
proved, which is of course equivalent to Wallis’ assumption of #ke existence of
similar figures. A similar analytical proof is given in the notes to the twelfth
edition. In his second edition Legendre proved Postulate 5 by means of the
assumption that, given three points not in a straight line, there exists a arcle
passing through all three. In the third edition (1800) he gave the proposition
that the sum of the angles of a triangle is not greater than two right angles ;
this proof, which was geometrical, was replaced later by another, the best
known, depending on a construction like that of Euclid 1. 16, the continued
application of which enables any number of successive triangles to be evolved
in which, while the sum of the angles in each remains always equal to the
sum of the angles of the original triangle, one of the angles increases and the
sum of the other two diminishes continually. But Legendre found the proof
of the equally necessary proposition that the sum of the angles of a triangle is
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not less than two right angles to present great difficulties. He first observed
that, as in the case of spherical triangles (in which the sum of the angles is
greater than two right angles) the excess of the sum of the angles over two
right angles is proportional to the area of the triangle, so in the case of
rectilineal triangles, if the sum of the angles is less than two right angles by a
sertain dzficit, the deficit will be proportional to the area of the triangle.
Hence if, starting from a given triangle, we could construct another triangle
in which the original triangle is contained at least m times, the deficit of this
new triangle will be equal to at least » times that of the original triangle, so
that the sum of the angles of the greater triangle will diminish progressively
as m increases, until it becomes zero or negative: which is absurd. The
whole difficulty was thus reduced to that of the construction of a triangle
containing the given triangle at least twice; but the solution of even this
simple problem requires it to be assumed (or proved) that fhrough a given
point within a given angle less than two-thirds of a right angle we can always
draw a straight line which shall meet both sides of the angle. This is however
really equivalent to Euclid’s Postulate. The proof in the course of which the
necessity for the assumption appeared is as follows.

It is required to prove that the sum of the angles of a triangle cannot be
less than two right angles,

Suppose A is the least of the three angles of a triangle 48C. Apply to
the opposite side BC a triangle DBC, equal to
the triangle ACB, and such that the angle £
DBC is equal to the angle 4CB, and the angle
DCB to the angle ABC ; and draw any straight B
line through D cutting AB, AC produced in
E, F

If now the sum of the angles of the triangle £ 5 A
ABC is less than two right angles, being equal
to 2R -8 say, the sum of the angles of the triangle DBC, equal to the

i ABC, is also 2R -8.

Since the sum of the three angles of the remaining triangles DEB, FDC
respectively cannot at all events be greafer than two right angles [for Legendre’s
proofs of this see below), the sum of the twelve angles of the four triangles in
the figure cannot be greater than

4R+ (2R-8) + (2R - 3), L.e. 8RR~ 28.

Now the sum of the three angles at each of the points B, C, D is 2R.

Subtracting these nine angles, we have the result that the three angles of
the triangle AEF cannot be greater than 2R — 23,

Hence, if the sum of the angles of the triangle 4 BC is less than two right
angles by 8, the sum of the angles of the:larger triangle 4EF is less than two
right angles by af Jeast 23

We can continue the construction, making a still larger triangle from 4 EF,
and so on.

But, however small 8 is, we can arrive at a multiple z*8 which shall exceed
any given angle and therefore 2% itself; so that the sum of the three angles
of a triangle sufficiently large would be zero or even less than zero: which is
absurd.

Therefore etc.

The difficulty caused by the necessity of making the above-mentioned
assumption made Legendre abandon, in his ninth edition, the method of the
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editions from the third to the eighth and return to Euclid’s method pure and
simple.

But again, in the twelfth, he returned to the plan of constructing any
number of successive triangles such that the sum of the three angles in all of
them remains equal to the sum of the three angles of the original triangle,
but two of the angles of the new triangles become smaller and smaller, while
the third becomes larger and larger ; and this time he claims to prove in one
proposition that the sum of the three angles of the original triangle is egua/ to
two right angles by continuing the construction of new triangles indefinstely
and compressing the two smaller angles of the ultimate triangle into nothing,
while the third angle is made to become a faf angle at the same time. The
construction and attempted proof are as follows.

Let ABC be the given triangle ; let A5 be the greatest side and BC the
least ; therefore C is the greatest angle and A the least.

From A draw A.D to the middle point of BC, and produce 4D to C',
making AC” equal to A5,

Produce 4.8 to B, making 4B’ equal to twice AD.

The triangle 4B'C’ is then such that the sum of its three angles is equal
to the sum of the three angles of the triangle 4BC.

A KB K : B

For take 4K along AB equal to 4D, and join C'X.

Then the triangles 48D, AC'X havc two sides and the included angles
re?ectively equal, and are therefore equal in al! respects; and C’'X is equal to
BD or DC.

Next, in the triangles B'C'K, 4CD, the angles B'KC', ADC are equal,
being respectively supplementary to the equal angles AXC’, ADB; and the
two sides about the equal angles are respectively equal;

therefore the triangles B'C'KX, 4ACD are equal in all respects.

Thus the angle AC'F’ is the sum of two angles respectively equal to the
angles B, C of the original triangle ; and the angle 4 in the original triangle
is the sum of two angles respectively equal to the angles at 4 and 5’ in the
triangle AB'C".

It follows that the sum of the three angles of the new triangle AB8'C’ is
equal to the sum of the angles of the triangle 4BC.

Moreover, the side AC', being equal to 4B, and therefore greater than
AC, is greater than B'C' which is equal to AC.

Hence the angle C'4B'is less than the angle 45'C"; so that the angle
C'ARB’ is less than }4, where 4 denotes the angle CAB of the original

triangle.

[It will be observed that the triangle 4.58'C" is really the same triangle as
the triangle AZ2B obtained by the construction of Eucl. 1. 16, but differently
placed so that the longest side lies along AB.L‘

By taking the middle point 2’ of the side B'C’ and repeating the same
construction, we obtain a triangle 45"C"” such that (1) the sum of its three
angles is equal to the sum of the three angles of A8C, (2z) the sum of the
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two angles C”"AB", AB'C" is equal to the angle C'AB in the preceding
triangle, and is therefore less than 14, and (3) the angle C"4.8" is less than
half the angle C'4.5', and therefore less than 14.

Continuing in this way, we shall obtain a triangle 4éc such that the sum of

two angles, those at 4 and 4, is less than ;A, and the angle at ¢ is greater

than the corresponding angle in the preceding triangle.
If, Legendre argues, the construction be continued indefinitely so that

:;A becomes smaller than any assigned angle, the point ¢ ultimately lies on

Ab, and the sum of the three angles of the triangle (which is equal to the sum
of the three angles of the original triangle) becomes identical with the angle
at ¢, which is then a ffaf angle, and therefore equal to two right angles.

This proof was however shown to be unsound (in respect of the final
inference) by J. P. W. Stein in Gergonne’s Annales de Mathématiques xv.,
1824, pp. 77—179

We will now reproduce shortly the substance of the theorems of Legendre
which are of the most permanent value as not depending on a particular
hypothesis as regards parallels.

1. The sum of the three angles of a triangle cannol be greater than fwo
right angles.

This Legendre proved in two ways.

(1) First proof (in the third edition of the Eléments).

Let ABC be the given triangle, and 4 C/ a straight line.

Make CE equal to AC, the angle DCE equal to the angle B4C, and DC
equal to 4B. Join DE.

Then the triangle DCE is equal to the triangle BAC in all respects.

If then the sum of the three angles of the triangle ABC is greater than

A [+ E G J
2R, the said sum must be greater than the sum of the angles BCA, BCD,

DCE, which sum is egual to 2R.
Subtracting the equal angles on both sides, we have the result that

the angle 4BC is greater than the angle BCD.

But the two sides 4.5, BC of the triangle 4BC are respectively equal to
the two sides DC, CB of the triangle BCD.

Therefore the base AC is greafer than the base BD (Eucl. 1. 24).

Next, make the triangle FEG (by the same construction) equal in all
respects to the triangle B4AC or DCE ; and we prove in the same way that
CE (or AC) is greater than DF,

And, at the same time, BD is equal to DF, because the angles BCD,
DEF are equal.

Continuing the construction of further triangles, however small the
difference between 4C and BD is, we shall ultimately reach some multiple
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of this difference, represented in the figure by (say) the difference between
the straight line 4/ and the composite line BDFHK, which will be greater
than any assigned length, and greater therefore than the sum of 4.8 and /X.

Hence, on the assumption that the sum of the angles of the triangle 48C
is greater than 2%, the broken line 483D FHK] may be less than the straight
line 47: which is impossible.

Therefore etc.

(2) Proof substituted later.

If possible, let 28 + a be the sum of the three angles of the triangle 48C,
of which 4 is not greater than either of the

others. c D
Bisect BC at H, and produce 4H to D,
making HD equal to AH ; join BD. H

Then the triangles 4 HC, DHB are equal in
all respects (1. 4) ; and the angles CAH, ACH are
respectively equal to the angles BDH, DBH. B

It follows that the sum of the angles of the
triangle 48D is equal to the sum of the angles of the original triangle, i.e.
to 2K +a.

And one of the angles DAB, ADB is either equal to or less than half the
angle CAB.

Continuing the same construction with the triangle 4D 5, we find a third
triangle in which the sum of the angles is still 2& + a, while one of them is
equal to or less than ( . CAB)/4.

Proceeding in this way, we arrive at a triangle in which the sum of the
angles is 2R + a, and one of them is not greater than ( . CAB)/z"

And, if # is sufficiently large, this will be less than a; in which case we
should have a triangle in which two angles are together greater than two right
angles : which is absurd.

Therefore a is equal to or less than zero.

(It will be noted that in both these proofs, as in Eucl. 1. 16, it is taken for
granted that @ straight line is infinite in length and does not return into itself,
which is not true under the Riemann hypothesis.)

II. On the assumption that the sum of the angles of a triangle is /Jess
than two right angles, if a friangle is made up of two others, the * deficit” of the
Jormer is equal to the sum of the “ deficits " of the others.

In fact, if the sums of the angles of the component triangles are 2R —a,
2R — B respectively, the sum of the angles of the whole triangle is

(zR—a)+(2R—-B)-2R=2R~(a+f).

II1. If the sum of the three angles of a triangle is equal fo two right
angles, the same is true of all triangles obtained by subdividing it by straight
lines drawn from a verlex to meet the opposite side.

Since the sum of the angles of the triangle 4BC is equal to 2R, if the
sum of the angles of the triangle 48D were 2R — a, it
would follow that the sum of the angles of the triangle A
ADC must be 2R + a, which is absurd (by I. above).

IV. If in a triangle the sum of the three angles is
ual %o two right angles, a guadrilateral can always be
constructed with four right angles and four equal sides B c
exceeding in length any assigned rectilineal segment.
Let ABC be a triangle in which the sum of the angles is equal to two
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right angles. We can assume ABC to be an #sosceles right-angled triangle
because we can reduce the case to this by making subdivisions of 4BC by
straight lines through vertices (as in Prop. 111. above).

Taking two equal triangles of this kind and placing their hypotenuses
together, we obtain a quadrilateral with four right angles and four equal
sides.

Putting four of these quadrilaterals together, we obtain a new quadrilateral
of the same kind but with its sides double of those of the first quadrilateral.

After # such operations we have a quadrilateral with four right angies and
four equal sides, each being equal to 2" times the side 45.

The diagonal of this quadrilateral divides it into two equal isosceles right-
angled triangles in each of which the sum of the angles is equal to two right
angles. :

Consequently, from the existence ot one triangle in which the sum of the
three angles is equal to two right angles it follows that there exists an isosceles
right-angled triangle with sides greater than any assigned rectilineal segment
and such that the sum of its three angles is also equal to two right angles.

V. If the sum of the three angles of one triangle is equal to two sight
angles, the sum of the three angles of any other friangle is also equal to two
right angles.

It is enough to prove this for a right-angled triangle, since any triangle can
be divided into two right-angled triangles.

Let ABC be any right-angled triangle. o'

If then the sum of the angles of any one /
triangle is equal to two right angles, we can
construct (by the preceding Prop.) an isosceles
right-angled triangle with the same property and
with its perpendicular sides. greater than those of
ABC.

Let A"B'C’" be such a triangle, and let it be
applied to 4BC, as in the figure.

Applying then Prop. 111. above, we deduce :
first that the sum of the three angles of the A A B(8)
triangle 48'C is equal to two right angles, and
next, for the same reason, that the sum of the three angles of the original
triangle 4BC is equal to two right angles.

VI. If in any one friangle the sum of the three angles is less than two
right angles, the sum of the three angles of any other friangle is also less than
two right angles.

This follows from the preceding theorem.

(It will be observed that the last two theorems are included among those
of Saccheri, which contain however in addition the corresponding theorem
touching the case where the sum of the angles is greafer than two right
angles.)

We come now to the bearing of these propositions upon Euclid’s Postulate
5 ; and the next theorem is

VIL. If the sum of the three angles of a triangle is equal to two right
angles, through any point in a plane there can only be drawn one parallel to a
given straight line,
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For the proof of this we require the following

LEMMA. 1t is always possible, through a point P, to draw a straight line
which shall make, with a given straight line (v), an angle less than any assigned
angile.

Let Q be the foot of the perpendicular from 2 upon 7.

Let a segment QR be taken on 7,
on either side of @, such that QR is P s
equal to PQ.

Join PR, and mark off the segment
RR’' equal to PR ; join PR'.

H w represents the angle QPR or w
the angle QRP, each of the equal Q R R
angles RPR', RR'P is not greater
than w/2.

Continuing the construction, we obtain, after the requisite number of
operations, a triangle PR, _, &, in which each of the equal angles is equal to
or less than w/2",

Hence we shall arrive at a straight line PR, which, starting from P and
meeting », makes with » an angle as small as we please.

To return now to the Proposition. Draw from 2P the straight line s
perpendicular to PQ.

Then any straight line drawn from P which meets » in & will form equal
angles with » and s, since, by hypothesis, the sum of the angles of the triangle
PQR is equal to two right angles.

And since, by the Lemma, it is always possible to draw through 2 straight
lines which form with » angles as small as we please, it follows that all the
straight lines through 7, except s, will meet . Hence s is the only parallel
to r that can be drawn through 2.

The history of the attempts to prove Postulate 5 or something equivalent
has now been brought down to the parting of the ways. %‘he further
developments on lines independent of the Postulate, beginning with
Schweikart (1780—1857), Tdurinus (1794—1874), Gauss (1777—1855),
Lobachewsky (1793—1856), J. Bolyai (1802—1860), Riemann (1826— 1866),
belong to the history of non-Euclidean geometry, which is outside the scope
of this work. I may refer the reader to the full article Sulla feoria delle
parallele e sulle geometrie non-cuclidee by R. Bonola in Questioni riguardanti
Je matematiche elementari, 1., of which I have made considerable use in the
above, to the same author's La geometria non-cuclidea, Bologna, 1906, to the
first volume of Killing's Einfiihrung in die Grundlagen der Geometrie,
Paderborn, 1893, to P. Mansion's Premiers principes de métagéométrie, and
P. Barbarm s La glométrie non- E:m’:dmsm, Paris, 1902, to the historical
summary in Veronese’s Fond. U di geomelria, 1891 p- 565 sqq., and (for
original sources) to Engel and Stickel, Die Theorie der Parallellinien von
Euklid bis auf Gauss, 1895, and Urkunden sur Geschichte der nicht-Euklidischen
Geometrie, 1. (Lobachewsky), 1899, and 1. (Wolfgang und Johann Bolyai).
I will only add that it was Gauss who first expressed a conviction that the
Postulate could never be proved ; he indicated this in reviews in the Gitfin-
gische gelehrte Anseigen, 20 Apr. 1816 and 28 Oct. 1822, and affirmed it in a
letter to Bessel of 27 January, 1829. The actual indemonstrability of the Pos-
tulate was proved by Beltrami (1868) and by Hoiiel (Vofe sur Pimpossibilsté de
démontrer par une construction plane le principe de la théorie des paralléles dit Pos-
tulatum d' Enclide in Battaglini's Giornale di matematiche, v111., 1870, pp. 84—89).
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Alternatives for Postulate 5.

It may be convenient to collect here a few of the more noteworthy
substitutes which have from time to time been formally suggested or tacitly
assumed.

(1) Through a given point only one parallel can be drawn to a given
straight line or, Two straight lines which intersect one another cannot both be
parallel to one and the same straight line.

This is commonly known as “ Playfair’s Axiom,” but it was of course not
a new discovery. It is distinctly stated in Proclus’ note to Eucl. 1. 31.

(ra) If a straight line intersect one of two parallels, it will intersect the
other also (Proclus).

(18) Straight lines parallel to the same straight line are parallel to one
another.

The forms (1 @) and (1 ) are exactly equivalent to (1).

(2) There exist siraight lines everywhere equidistant from one another
(Posidonius and Geminus); with which may be compared Proclus’ tacit
assumption that Parallels remain, throughout their length, al a finite distance

Jrom one another.

(3) There exists a triangle in which the sum of the three angles is equal to
fwo right angles (Legendre).

(4) Grven any figure, there exists a figure similar to it of any size we please
(Wallis, Carnot, Laplace).

Saccheri points out that it is not necessary to assume so much, and that it
is enough to postulate that there exist two unequal triangles with equal angles.

(5) Through any point within an angle less than two-thirds of a right angle
a straight line can always be drawn which meets both sides of the angle
(Legendre).

With this may be compared the similar axiom of Lorenz (Grundriss der
reinen und angewandten Mathemaltik, 1791): Every straight line through a
point within an angle must meet one of the sides of the angle.

(6) Given any three points not in a straight line, there exists a circle passing
through them (Legendre, W. Bolyai).

(7) “df I could prove that a rectilineal triangle is possible the content of
which is greater than any given area, I am in a position to prove perfectly
rigorously the whole of geometry” (Gauss, in a letter to W. Bolyai, 1799).

Cf. the proposition of Legendre numbered 1v. above, and the axiom of
Worpitzky: There exists no triangle in which every angle is as small as we
Please.

(8) If in a quadrilateral three angles are right angles, the fourth angle is
a right angle also (Clairaut, 1741).

(9) If two straight lines are parallel, they are figures opposite to (or the
reflex of ) one another with respect to the middle points of all their transversal
segments (Veronese, Elementi, 1904).

Or, Two parallel straight lines intercept, on every transversal which passes
through the middle point of a segment included between them, another segment
the middle point of which is the middle point of the first (Ingrami, Elements,
1904).

Veronese and Ingrami deduce immediately Playfair’s Axiom,
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AXIOMS OR COMMON NOTIONS.

In a paper Sur l'authenticité des axiomes d’ Euclide in the Bulletin des sciences
math, et astron. 1884, p. 162 sq. (Mémoires scientifigues, 11., pp. 48—63), Paul
Tannery maintained that the Common Notions (including the first three) were
not in Euclid’s work but were interpolated later. The following are his main
arguments. (1) If Euclid had set about distinguishing between indemon-
strable principles (¢) common to all demonstrative sciences and (4) peculiar
to geometry, he would, says Tannery, certainly not have placed the common
principles second and the special principles (the Postulates) first. (2) If the
Common Notions are Euclid’s, this designation of them must be his too ; for he
must have used some name to distinguish them from the Postulates and, if he
had used another name, such as Axioms, it is impossible to imagine why that
name was changed afterwards for a less suitable one. The word &voia
(notion), says Tannery, never signified a notion in the sense of a gropoesition,
but a notion of some object; nor is it found in any technical sense in Plato
and Aristotle. (3) Tannery’s own view was that the formulation of the
Conmimon Notions dates from the time of Apollonius, and that it was inspired
by his work relating to the Elements (we know from Proclus that Apollonius
tried to prove the Common Notions). This idea, Tannery thought, was
confirmed by a “fortunate coincidence” furnished by the occurrence of the
word éwow (notéon) in a quotation by Proclus (p. 100, 6): “we shall agree
with Apollonius when he says that we have a mofion (éwvowv) of a line when
we order the lengths, only, of roads or walls to be measured.”

In reply to argument (1) that it is an unnatural order to place the purely
geometrical Postulates first, and the Common Notions, which are not peculiar
to geometry, last, it may be pointed out that it would surely have been a still
more awkward arrangement to give the Definitions first and then to separate
from them, by the interposition of the Common Notions, the Postulates, which
are so closely connected with the Definitions in that they proceed to postulate
the exdstence of certain of the things defined, namely straight lines and circles.

(2) Though it is true that é&vow in Plato and Aristotle is generally a
notion of an odjec, not of a fact or proposition, there are instances in Aristotle
where it does mean a notion of a fact : thus in the £#4. Nic. 1x. 11, 11712 32
he speaks of “the notion (or consciousness) tkat friends sympathise” (g &vowa
rob ovralyelv rovs $pilovs) and again, b 14, of “the notion (or consciousness)
that they are pleased at his good fortune.” It is true that Plato and Aristotle
do not use the word in a technical sense ; but neither was there apparently in
Aristotle’s time any fixed technical term for what we call “axioms,” since he
speaks of them variously as “the so-called axioms in mathematics,” “the so-
called common axioms,” “the common (things)” (r& xowd), and even “the
common opinions” (xowai 86fat). I see therefore no reason why Euclid should
not himself have given a technical sense to *“ Common Notions,” which is at
least a distinct improvement upon *common opinions.”

(3) The use of &vow in Proclus’ quotation from Apollonius seems to me
to be an unfortunate, rather than a fortunate, coincidence from Tannery’s point
of view, for it is there used precisely in the old sense of the notion of an
object (in that case a line).

No doubt it is difficult to feel certain that Euclid did himself use the term
Common Notions, seeing that Proclus’ commentary generally speaks of Axioms.
But even Proclus (p. 194, 8), after explaining the meaning of the word
“axiom,” first as used by the Stoics, and secondly as used by “ Aristotle and
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the geometers,” goes on to say: “ For in their view (that of Aristotle and the
geometers) axiom and common notion are the same thing.” This, as it seems
to me, may be a sort of apology for using the word “axiom” exclusively in
what has gone before, as if Proclus had suddenly bethought himself that he
had descnbed both Aristotle and the geometers as using the one term
“axiom,” wherea$ he should have said that Aristotle spoke of “axioms,” while
“the geometers” (in fact Euclid), though meaning the same thing, called them
Common Notions. It may be for a like reason that in another passage (p. 76,
16), after quoting Aristotle’s view of an “axiom,” as distinct from a postulate
and a hypothesis, he proceeds: “For it is not by virtue of a common notion
that, without being taught, we preconceive the circle to be such and such a
figure.” If this view of the two passages just quoted is correct, it would
strengthen rather than weaken the case for the genuineness of Common Notions
as the Euclidean term.

Again, it is clear from Aristotle’s allusions to the “common axioms in
mathematics ” that more than one axiom of this kind had a place in the text-
books of his day; and as he constantly quotes the particular axiom that, if
equals be taken from equals, the remainders are equal, which is Euclid’s Common
Notion 3, it would seem that at least the first three Common Notions were
adopted by Euclid from earlier text-books. Tt is, besides, scarcely credible
that, if the Common Notions which Apollonius tried to prove had not been
introduced earlier (e.g. by Euclid), they would then have been interpolated as
axioms and not as propositions to be proved. The line taken by Apollonius
is much better explained on the assumption that he was directly attacking
axioms which he found already admitted into the Elements.

Proclus, who recognised the five Common Notions given in the text, warns
us, not only against the error of unnecessarily multiplying the axioms, but
against the contrary error of reducing their number unduly (p. 196, 15), “as
Heron does in enunciating three only; for it is also an axiom that #ke wMe is
grealer than the part, and indeed the geometer employs this in many places for
his demonstrations, and again that tkings whick coincide are equal.”

Thus Heron recognised the first three of the Common Notions ; and this
fact, together with Aristotle’s allusions to “ common axioms"” (in the lural),
and in particular to our Common Notion 3, may satisfy us that at least tﬂe first
three Common Notions were contained in the Elements as they left Euclid’s
hands.

CoMMON NOTION 1.

Ta ¢ abr iga kal dAAjhots éoriv iva.

Things which are equal to the same thing are also equal to one another.

Aristotle throughout emphasises the fact that axioms are self-evident truths,
which it is impossible to demonstrate. If, he says, any one should attempt to
prove them, it oould only be through ignorance. Aristotle therefore would
undoubtedly have agreed in Proclus’ strictures on Apollonius for attempting
to prove the axioms. Proclus gives (p. 194, 25), as a specimen
of these attempted proofs by Apollonius, that of the first of the
Common Notions. “Let A be equal to B, and the latter to C;

I say that A is also equal to C. For, since 4 is equal to 5, it B
occupies the same space with it ; and since B is equal to C, it
occupies the same space with it.

Therefore 4 also occupies the same space with C.”

Proclus rightly remarks (p. 194, 22) that “the middle tcrm is no more

c
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intelligible (better known, yvwpyuirepov) than the conclusion, if it is not
actually more disputable.” Again (p. 195, 6), the proof assumes two things,
(1) that. things which “occupy the same space” (rémos) are equal to one
another, and (2) that things which occupy the same space with one and the
same thing occupy the same space with one another ; which is to explain the
obvious by something much more obscure, for space is an entity more
unknown to us than the things which exist in space.

Aristotle would also have objected to the proof that it is partial and not
general (xafdhov), since it refers oniy to things which can be supposed to
occupy & space (or take up room), whereas the axiom is, as Proclus says
(p. 196, 1), true of numbers, speeds, and periods of time as well, though of
course each science uses axioms in relation to its own subject-matter only.

COMMON NOTIONS 2, 3.
Kai v ioos (oa mpoorely, Ta oAa éoriv loa.
Kai éav amd {owv {oa dpapedy), 18 xarakemopeva éorv ioa.
If equals be added to equals, the wholes are equal.
1f equals be subtracted from equals, the remainders are equal.

These two Common Notions are recognised by Heron and Proclus as
genuine. The latter is the axiom which is so favourite an illustration. with
Aristotle.

Following them in the mss. and editions there came four others of the
same type as 1—3. Three of these are given by Heiberg in brackets; the
fourth he omits altogether.

The three are:

(@) If equals be added to unequals, the wholes are unequal.

(6) Things which are double of the same thing are equal to oie anvther.

(¢) Things which are halves of the same thing are equal to one another.

The fourth, which was placed between (a) and (4), was:

(d) If equals be subtracted from unequals, the 1 inders are unequal,

Proclus, in observing that axioms ought not to be multiplied, indicates
that all should be rejected which follow from the five admitted by him and
appearing in the text above (p. 155). He mentions the second of those just
quoted (#) as one of those to be excluded, since it follows from Common
Notion 1. Proclus does not mention (a), (¢) or (4); an-Nainzi gives (a), (), ()
and (¢), in that order, as Euclid’s, adding a note of Simplicius that “three
axioms (sententiae acceptae) only are extant in the ancient manuscripts, but
the number was increased in the more recent.”

(a) stands self-condemned because “unequal” tells us nothing. It is easy
to see what is wanted if we refer to 1. 17, where the same angle is added to a
grealer and a Jess, and it is inferred that the first sum is greater than the second.
So far however as the wording of (a) is concerned, the addition of equal to
greater and Jess might be supposed to produce /ess and greafer respectively. If
therefore such an axiom were given at all, it should be divided into two.
Heiberg conjectures that this axiom may have been taken from the commentary
of Pappus, who had the axiom about equals added to unequais quoted below
(¢); if so, it can only be an unskilful adaptation of some remark of Pappus, for
his axiom (¢) has some point, whereas () is useless.

As regards (&), I agree with Tannery in seeing no sufficient reason why, if

DR
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we reject it (as we certainly must), the words in 1. 47 “ But things which are
double of equals are equal to one another” should be condemned as an
interpolation.  If they were interpolated, we should have expected to find the
same interpolation in 1. 42, where the axiom is facitly assumed. 1 think
it quite possible that Euclid may have inserted such words in one case and
left them out in another, without necessarily implying either that he was
quoting a formal Common Notion of his own or that he had ot included
among his Common Notions the particular fact stated as obvious.

The corresponding axiom (¢) about the Aafzes of equals can hardly be
genuine if (4) is not, and Proclus does not mention it. Tannery acutely
observes however that, when Heiberg, in 1. 37, 38, brackets words stating that
‘“the halves of equal things are equal to one another” on the ground that
axiom (¢) was interpolated (although before Theon’s time), and explains that
Euclid used Common Notion 3 in making his inference, he is clearly mistaken.
For, while axiom (#) is an obvious inference from Common Notion 2, axiom (c)
is not an inference from Common Notion 3. Tannery says, in a note, that (¢)
would have to be established by reductio ad absurdum with the help of axiom
(&), that is to say, of Common Notion 2. But, as the hypothesis in the reductio
ad absurdum would be that one of the halves is greafer than the other, and it
would therefore be necessary to prove that the one whole is greafer than the
other, while axiom (4) or Common Notion 2 only refers to equals, a little
argument would be necessary in addition to the reference to Common Notion 2.
I think Euclid would not have gone through this process in order to prove (¢),
but would have assumed it as equally obvious with (4).

Proclus (pp. 197, 6—198, 5) definitely rejects two other axioms of the
above kind given by Pappus, observing that, as they follow from the genuine
axioms, they are rightly omitted in most copies, although Pappus said that
they were “on record ” with the others (cvvavaypdgectar) :

(e) Af unequals be added to equals, the difference between the wholes is equal
o the difference between the added parts ; and

(f) If equals be added to unequals, the difference between the wholes is equal
lo the difference between the original unequals.

Proclus and Simplicius (in an-Nairizi) give proofs of both. The proof of
the former, as given by Simplicius, is as follows :

Let 4B, CD be equal magnitudes; and let £5, #D be g
added to them respectively, £.8 being greater than #D. ¢l F

I say that A£ exceeds CF by the same difference as that by
which BE exceeds DF.

Cut off from BE the magnitude BG equal to DF.

Then, since AE exceeds AG by GE, and 4G is equal to CF
and BG to DF, Al ¢

AE exceeds CF by the same difference as that by which BE
exceeds DF.

m
o

CoMMON NOTION 4.

Kai 10 épappolovra én’ aMyha loa dAljAas éoriv.

Things whick coincide with one another are equal fo one another.

The word épappolew, as a geometrical term, has a different meaning
according as it is used in the active or in the passive. In the passive,
épapucleabar, it means “to be applied to” without any implication that the
applied figure will exactly fit, or coincide with, the figure to which it is applied;
on the other hand the active épapudfew is used intransitively and means “to
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fit exactly,” “to coincide with.” In Euclid and Archimedes épapudlew is
constructed with éx{ and the accusative, in Pappus with the dative.

On Comsmon Notion 4 Tannery observes that it is incontestably geometrical
in character, and should therefore have been excluded from the Common
Notions; again, it is difficult to see why it is not accompanied by its converse,
at all events for straight lines (and, it might be added, angles also), which
Euclid makes use of in 1. 4. As it is, says Tannery, we have here a definition
of geometrical equality more or less sufficient, but not a real axiom.

It is true that Proclus seems to recognise this Common Notion and the next
as proper axioms in the passage (p. 196, 15—21) where he says that we should
not cut down the axioms to the minimum, as Heron does in giving only three
axioms; but the statement seems to rest, not upon authority, but upon an
assumption that Euclid would state explicitly at the beginning all axioms
subsequently used and not reducible to others unquestionagll;!u}ncluded. Now
in 1. 4 this Common Notion is not quoted ; it is simply inferred that “the base
BC will coincide with £4, and will be equal to it.” The position is therefore
the same as it is in regard to the statement in the same proposition that, “if...
the base BC does not coincide with EF, two straight lines will enclose a space :
which is impossible ” ; and, if we do not admit that Euclid had the axiom that
“two straight lines cannot enclose a space,” neither need we infer that he had
Common Notion 4. 1 am therefore inclined to think that the latter is more
likely than not to be an interpolation.

It seems clear that the Common Notion, as here formulated, is intended
to assert that superposition is a legitimate way of proving the equality of two
figures which have the necessary parts respectively equal, or, in other words,
to serve as an axiom of congruence.

The phraseology of the propositions, e.g. 1. 4 and 1 8, in which Euclid
employs the method indicated, leaves no room for doubt that he regarded one
figure as actually moved and placed upon the other. Thus in 1. 4 he says,
“The triangle 48C being applied (épappolonévov) to the triangle DEF, and
the point 4 being placed (rfepévov) upon the point D, and the straight line
AB on DE, the point B will also coincide with £ because 4.8 is equal to
DE"”; and in 1. 8, “If the sides B4, AC do not coincide with £D, DF, but
Jall beside them (take a different position, rapaldfovow), then” etc. At the
same time, it is clear that Euclid disliked the method and avoided it wherever
he could, e.g. in 1. 26, where he proves the equality of two triangles which have
two angles respectively equal to two angles and one side of the one equal to
the corresponding side of the other. It looks as though he found the method
handed down by tradition (we can hardly suppose that, if Thales proved that
the diameter of a circle divides it into two equal parts, he would do so by any
other method than that of superposition), and followed it, in.the few cases
where he does so, only because he had not been able to see his way to a
satisfactory substitute. But seeing how much of the Elements depends on 1. 4,
directly or indirectly, the method can hardly be regarded as being, in Euclid,
of only subordinate importance ; on the contrary, it is fundamental. Nor, as
a matter of fact, do we find in the ancient geometers any expression of doubt
as to the legitimacy of the method. Archimedes uses it to prove that any
spheroidal figure cut by a plane through the centre is divided into two equal
parts in respect of both its surface and its volume; he also postulates in
Eguilibrium of Planes 1. that “ when equal and similar plane figures coincide
if apglied to one another, their centres of gravity coincide also.”

illing (Zinfiikrung in die Grundlagen der Geomelrie, 1. pp. 4, 5)
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contrasts the attitude of the Greek geometers with that of the philosophers,
who, he says, appear to have agreed in banishing motion from geometry
altogether. In support of this he refers to the view frequently expressed by
Aristotle that mathematics has to do with immovable objects (dxivyra), and that
only where astronomy is admitted as part of mathematical science is motion
mentioned as a subject for mathematics. Cf. Mefaph. 989 b 32 *“ For mathe-
matical objects are among things which exist apart from motion, except such
as relate to astronomy”; Metaph. 1064 a 30 “Physics deals with things
which have in themselves the principle of motion ; mathematics is a theoretical
science and one concerned with things which are stationary (pévovra) but not
separable” (sc. from matter); in Physics 1. 2, 193 b 34 he speaks of the
subjects of mathematics as “in thought separable from motion.”

But I doubt whether in Aristotle’s use of the words “immovable,” *with-
out motion” etc. as applied to the subjects of mathematics there is any
implication such as Killing supposes. We arrive at mathematical concepts
by abstraction from material objects; and just as we, in thought, eliminate
the matter, so according to Aristotle we eliminate the attributes of matter as
such, e.g. qualitative change and motion. It does not appear to me that the
use of “immovable ” in the passages referred to means more than this. I do
not think that Aristotle would have regarded it as illegitimate to move a
geometrical figure from one position to another; and I infer this from a
passage in De caelo 11. 1 where he is criticising *“those who make up every
body that has an origin by putting together planes, and resolve it again into
planes.”” The reference must be to the Zimaeus (54 B sqq.) where Plato
evolves the four elements in this way. He begins with a right-angled triangle
in which the hypotenuse is double of the smaller side; six of these put together
in the proper way produce one equilateral triangle. Making solid angles with
(a) three, (#) four, and (¢) five of these equilateral triangles respectively, and
taking the requisite number of these solid angles, namely four of (&), six of (#)
and twelve of (¢) respectively, and putting them together so as to form regular
solids, he obtains (a) a tetrahedron, (8) an octahedron, (y) an icosahedron
respectively. For the fourth element (earth), four isosceles right-angled triangles
are first put together so as to form a square, and then six of these squares are
put together to form a cube. Now, says Aristotle (299 b 23), “it is absurd that
planes should only admit of being put together so as to touch in a /ine; for just
as a line and a line are put together in both ways, lengthwise and breadthwise,
so must a plane and a plane. A line can be combined with a line in the sense
of being a line superposed, and not added” ; the inference being that a plane can
be superposed on a plane. Now this is precisely the sort of motion in question
here; and Aristotle, so far from denying its permissibility, seems to blame
Plato for not using it. Cf. also Physics v. 4, 228 b 25, where Aristotle speaks
of “the spiral or other magnitude in which any part will not coincide with
any other part,” an where superposition is obviously contemplated.

Motion without deformation.

It is well known that Helmholtz maintained that geometry requires us to
assume the actual existence of rigid bodies and their free mobility in space,
whence he inferred that geometry is dependent on mechanics.

Veronese exposed the fallacy in this (Fondamenti di geometria, pp. xxxv—
xxxvi, 239—240 note, 615—7), his argument being as follows. Since geometry
is concerned with empty space, which is immovable, it would be at least strange
if it was necessary to have recourse to the real motion of bodies for a definition,
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and for the proof of the properties, of immovable space. We must distinguish
the intuitive principle of motion in itself from that of motion without deforma-
tion. Every point of a figure which moves is transferred to another point in
space. ‘‘ Without deformation” means that the mutual relations between the
points of the figure do not change, but the relations between them and other
figures do change (for if they did not, the figure could not move). Now
consider what we mean by saying that, when the figure 4 has moved from
the position 4, to the position A,, the relations between the Pomts of Ain
the pOsition A, are unaltered from what they were in the position 4,, are the
same in fact as if 4 had not moved but remained at 4,. We can only say
that, judging of the figure (or the body with its physical qualities eliminated)
by the impressions it produces in us during its movement, the impressions
produced in us in the two different positions (which are in time distinct)
are equal, In fact, we are making use of the notion of egwality between two
distinct figures. Thus, if we say that two bodies are equal when they
can be superposed by means of movement without deformation, we are com-
mitting a petitio principii. The notion of the equality of spaces is really prior
to that of rigid bodies or of motion without deformation. Helmholtz supported
his view by reference to the process of measurement in which the measure
must be, at least approximately, a rigid body, but the existence of a rigid body
as a standard to measure by, and the question how we discover two equal
spaces to be equal, are matters of no concern to the geometer. The method
of superposition, depending on motion without deformation, is only of use as
a practical test ; it has nothing to do with the #heory of geometry.

Compare an acute observation of Schopenhauer (Dre Welt als Wille, 2 ed.
1844, 1. p. 130) which was a criticism in advance of Helmholtz’ theory: “I
am surprised that, instead of the eleventh axiom [the Parallel-Poatulateg, the
eighth is not rathet attacked: *Figures which coincide (sich decken) are
equal to one another’ For coincidence (das Sichdecken) is either mere
tautology, or something entirely empirical, which belongs, not to pure intuition
(Anschauung), but to external sensuous experience. It presupposes in fact
the mobility of figures; but that which is movable in space is matter and
nothing else. Thus this appeal to coincidence means leaving pure space, the
sole element of geometry, in order to pass over to the material and empirical.”

Mr Bertrand Russell observes (£ncyclopaedia Britannica, Suppl. Vol. 4,
190z, Art. “ Geometry, non-Euclidean ”) that the apparent use of motion here
is deceptive; what in geometry is called a motion is merely the transference
of our attention from one figure to another. Actual superposition, which is
nominally employed by Euclid, is not required; all that is required is the
transference of our attention from the original figure to a new one defined by
the position of some of its elements and by certain properties which it shares
with the original figure.

If the method of superposition is given up as a means of defining theoreti-
cally the equality of two ﬁ%xeres, some other definition of equality is necessary.
But such a definition can be evolved out of empirical or practical observation
of the result of superposing two material representations of figures. This is
done by Veronese (Zlementi di geometria, 1904) and Ingrami (Elementi di
geomelria, 1904). Ingrami says, namely (p. 66):

“If a sheet of paper be folded double, and a triangle be drawn upon it
and then cut out, we obtain two triangles superposed which we in practice call
equal. 1f points 4, B, C, D ... be marked on one of the triangles, then,
when we place this triangle upon the other (so as to coincide with it), we see
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that eack of the particular points taken on the first is superposed on one
particular point of the second in such a way that the segments 4.8, 4C, 4D,
BC, BD, CD, ... are respectively superposed on as many segments in the
second triangle and are therefore equal to them respectively. In this way we
justify the following

“Definition of equality.

“Any two figures whatever will be called egua/ when to the points of one
the points of the other can be made to correspond univocally |i.e. every one
point in one to one distinct point in the other and iz versa) in such a way
that the segments which join the points, two and two, in one figure are
respectively equal to the segments which join, two and two, the corresponding
points in the other.”

Ingrami has of course previously postulated as known the signification of
the phrase egual (rectilineal) segments, of which we get a praciical notion when
we can place one upon the other or can place a third movable segment
successively on both.

New systems of Congruence-Postulates.

In the fourth Article of Questioni riguardanti le matematiche elementari, 1.,
PP- 93—122, a review is given of three different systems: (1) that of Pasch in
Voriesungen tiber neuere Geomelrie, 1882, p. 101 sqq., (2) that of Veronese
according to the Fondamenti di geometria, 1891, s.nd the Elementi taken
together, (3) that of Hilbert (see Grundlagen der Geometrie, 1903, pp. 7—15).

These systems dlﬁ'er in the particular conceptions taken by the three
authors as prim ) Pasch considers as primary the notion of congruence
or equality gctween auy ﬁgum whick are made up of a finite number of points
Mly The definitions of congruent s¢gménts and of congruent angles have to

be deduced in the way shown on pp. 102—r103 of the Article referred to, after
which Eucl. 1. 4 follows immediately, and Eucl. 1. 26 (1) and 1. 8 by a method
recalling that in Eucl. 1. 7, 8.

(2) Veronese takes as primary the conception of congruence between
segments (rectilineal). The transition to congruent amgles, and thence to
¢riangles 1s made by means of the following postulate:

“Let AB, AC and A'B', A'C’ be two pairs of straight lines intersecting
at 4, A', and let there be determined upon them the congruent segments
AB, A'B and the congruent segments AC, 4'C;

then, if BC, B'C’ are congruent, the two pairs of straight lines are con-
gruent.”

(3) Hilbert takes as primary the notions of congruence between otk
segments and angles.

It is observed in the Article referred to that, from the theoretical stand-
point, Veronese's system is an advance upon that of Pasch, since the idea of
congruence between segments is more simple than that of congruence between
any figures ; but, didactically, the development of the theory is more compli-
ﬁ.tei when we start from Veronese's system than when we start from that of
Pasch.

The system of Hilbert offers advantages over both the others from the
point of view of the teaching of geometry, and I shall therefore give a short
account of his system only, following the Artiole above quoted.



L C. N 4] NOTE ON COMMON NOTION 4 229

Hilbert's system.
The following are substantially the Postulates laid down.

(1) If one segment is congruent with another, the second is also congruent
with the first.

(2) If an angle is congruent with another angle, the second angle is also
congruent with the first.

(3) Two segments congruent with a third are congruent with one another.
(4) Two angles congruent with a third are congruent with one another.

(5) Any segment AB is congruent with itself, independently of ifs sense.
This we may express symbolically thus :
AB=AB = BA.

(6) Any angle (ab) is congruent with itself, independently of its sense.
This we may express symbolically thus:
(ab) = (ab) = (ba).

(7) On any straight line ¥, starting from any one of its points A, and on
each side of it respectively, there exists one and only one segment congruent with a
segment AB belonging to the straight line 1.

(8) Given a ray a, issuing from a point O, in any plane whick contains it
and on each of the two sides of it, there exists one and only one ray b issuing
JSrom O such that the angle (ab) is congruent with a given angle (a'b’).

(9) If AB, BC are two consecutive segments of the same straight line x
(ugmm!s, that is, having an extremity and no other point common), and A'B',
B'C' two consecutive segments on another straight line ', and if AB= AB'
BC =B'C, then

AC=A'C.

(10) JIf (ab), (bc) are two consecutive angles in the same plane w (angles,
that is, having the verltex and one side common), and (a'b’), (b'c’) fwo consecu-
tive angles in another plane «', and if (ab) = (a'b’), (bc)=(b'c’), then

(ac) = ().
(11) If two triangles have two sides and the included angles respectively

congruent, they have also their third sides congruent as well as the angles
opposite to the congruent sides respectively.

As a matter of fact, Hilbert’s postulate corresponding to (11) does not
assert the equality of the third sides in each, but only the equality of the two
remaining angles in one triangle to the two remaining angles in the other
respectively. He proves the equality of the third sides (thereby comp]etmg
the theorem of Eucl. 1. 4) by red.ctio
ad absurdum thus. Let ABC, A'B'C’

be the two triangles which have the
sides 4B, AC ICSP(‘.‘LU.\'EIY congruent
with the sides 4'B’', A'C’' and the
included angle at A congruent with

the included angle at 4'. D 0
Then, by Hilbert’s own postulate, the angles ABC’, A'B'C’ are congruent,
as also the angles 4CB, A'C'B.
If BC is not congruent with B'C’, let D be taken on 5'C’ such that BC,
B'D are congruent. and join 4'D.
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Then the two triangles 4BC, A'B'D have two sides and the included
angles congruent respectively ; therefore, by the same postulate, the angles
BAC, B'A'D are congruent.

But the angles BAC, B'A'C’' are congruent; therefore, by (4) above, the
angles B'A'C’, B'A'D are congruent : which is impossible, since it contradicts
(8) above.

Hence BC, B'C’ cannot but be congruent.

Eucl. 1. 4 is thus proved ; but it seems to be as well to include all of that
theorem in the postulate, as is done in (11) above, since the two parts of it are
equally suggested by empmca! observation of the result of one superposition.

A proof similar to that just given immediately establishes Eucl. 1. 26 (1),
and Hilbert next proves that

If two angles ABC, A'B'C’ are congruent with one another, their supple-
mentary angles CBD, C'B'D’ are also congruent with one another.

We choose 4, D on one of the straight lines forming the first angle, and
A', I on one of those forming the second angle, and again C, C’ on the other

c c’

A

A B D A B’ D’

straight lines forming the angles, so that 4’8’ is congruent with 4.8, C'8’
with CB, and D'B' with DB.

The triangles 4BC, A'B'C’ are congruent, by (11) above, and AC is
congruent with 4'C’, and the angle C4.Z with the angle C'4'5".

Thus, 4D, A D being congruent, by (9), the triangles CAD, C'4'D’ are
also congruent, by (11);
whence CD is congruent with C'.2, and the angle 4DC with the angle
ADC.

Lastly, by (11), the triangles CDB, C'D'B' are congruent, and the angles
CBD, C'B'D are thus congruent.

Hllbert’s next proposition is that

Given that the angle (h, k) in the plane a is congruent with the angle (W', ')
in the plane o/, and that | is a half-ray in the plane a starting from the vertex
of the angle (h, k) and lying within that angle, there always exists a half-ray I’
in the second plane o, starting from the vertex of the angle (W, k') and lying
within that angle, suck that

(h, 1) =(W, Y), and (k, 1) = (K, I).
If O, O are the vertices, we choose points 4, B on 4, 4, and points 4', B’
on X, & respectively, such that 04, 0’4’ are congruent and also OB, O'B’.

o h

The triangles 048, O'A'F’ are then congruent ; and, if / meets 45 in C,
we can determine C’ on 4'5B’ such that 4'C’ is congruent with 4C.
Then /7 drawn from O through C is the half-ray required.
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The congruence of the angles (4, Z), (#, /) follows from (x1) directly, and
that of (£, /) and (#, /) follows in the same way after we have inferred by
means of (g) that, 4.5, 4C being respectively congruent with 4'B’, 4'C’, the
difference AC is congruent with the difference B'C".

It is by means of the two propositions just given that Hilbert proves that

All right angles are congruent with one another.
. Let the angle BAD be congruent with its adjacent angle C4D, and
likewise the angle B'4'D’ congruent with its adjacent angle C4'D" All four
angles are then right angles.

D': D D

\
H
Hl
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B A (o B A c'

If the angle B'4’'D’ is not congruent with the angle BA4.D, let the angle
with 428 for one side and congruent with the angle B4’ be the angle
BAD", so that 40" falls either within the angle B4.D or within the angle
DAC. Suppose the former.

By the last proposition but one (about adjacent angles), the angles
B'A'D', BAD" being congruent, the angles C'4'D’, C4A D" are congruent.

Hence, by the hypothesis and postulate (4) above, the angles BAD",
CAD" are also congruent.

And, since the angles 4D, CAD are congruent, we can find within the
angle CAD a halfray CAD" such that the angles BAD", CAD" are
congruent, and likewise the angles DAD", DAD" (by the last proposition).

But the angles BAD", CAD" were congruent (see above); and it
follows, by (4), that the angles CAD", CAD" are congruent: which is
impossible, since it contradicts postulate (8).

Therefore etc.

Euclid 1. 5 follows directly by applying the postulate (11) above to ABC,
ACB as distinct triangles.

Postulates (9), (10) above give in substance the proposition that “the
sums or differences of segments, or of

angles, respectively equal, are equal.” A A
Lastly, Hilbert proves Eucl. 1. 8 by

means of the theorem of Eucl. 1. 5 and

the proposition just stated as applied to 8 ~

angles. ¥ <
ABC, A'B'C being the given triangles

with three sides respectively congruent,

we suppose an angle CBA" to be deter- A’

mined, on the side of BC opposite to 4,
congruent with the angle 4’5 C’, and we make B4" equal to 4'5'.

The proof is obvious, being equivalent to the alternative proof often given
in our text-books for Eucl. 1. 8.
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CoMMON NOTION 5.

xai 76 Shov Tob pépovs peildy [dorwv).

The whole is greater than the part.

Proclus includes this “axiom ” on the same ground as the preceding one.
I think however there is force in the objection which Tannery takes to it,
namely that it replaces a different expression in Eucl. 1. 6, where it is stated
that “the triangle DBC will be equal to the triangle ACB, the less to the
greater: whick is absurd” The axiom appears to be an abstraction or
generalisation substituted for an immediate inference from a geometrical
figure, but it takes the form of a sort of definition of whole and part. The
probabilities seem to be against its being genuine, notwithstanding Proclus’
approval of it.

Clavius added the axiom that tke whole is the equal to the sum of its parts.

OTHER AXIOMS INTRODUCED AFTER EUCLID'S TIME,
lo] Two straight lines do not enclose (or contain) a space.

Proclus (p. 196, 21) mentions this in illustration of the undue multiplication
of axioms, and he points out, as an objection to it, that it belongs to the
subject matter of geometry, whereas axioms are of a general character, and
not peculiar to any one science. 'The real objection to the axiom is that it is
unnecessary, since ihe fact which it states is included in the meaning of
Postulate 1. It was no doubt taken from the passage in 1. 4, “if...the base
BC does not coincide with the base £F, two straight lines will enclose a space:
which is impossible” ; and we must certainly regard it as an interpolation,
notwithstanding that two of the best mss. have it after Postulate 5, and one
gives it as Common Notion 9.

Pappus added some others which Proclus objects to (p. 198, 5) because
they are either anticipated in the definitions or follow from them.

Y Al the parts of a plane, or of a straight line, coincide with one anolher.

%) A point divides a line, a line a surface, and a surface a solid; on which

Proclus remarks that everything is @ivided by the same things as those by
which it is dounded.

An-Nairizi (ed. Besthorn-Heiberg, p. 31, ed. Curtze, p. 38) in his version
of this axiom, which he also attributes to Pappus, omits the reference to
solids, but mentions planes as a particular case of surfaces.
¥ (a} A surface culs a surface in a line ;

(B) If two surfaces whick cut one another are plane, they cut one another
in a straight line ;
(y) A line cuts a line in a point (this last we need in the first proposition).”

(k) Magnitudes are susceptsble of the infinite (or uniimited) both by way of
addition and by way of successive diminution, but in both cases potentially only
g& ‘ifupov)g'v ols peyéfeoiy dorw xal T wpoobéger xal jj émrabapéoe, Svvdpe

Tepov).

An-Nairizl's version of this refers to straight lines and plane surfaces only :
“as regards the straight line and the plane surface, in consequence of their
evenness, it is possible to produce them indefinitely.

This “axiom” of Pappus, as quoted by Proclus, seems to be taken directly
from the discussion of 76 drewpov in Aristotle, Physics 111. 5—8, even to the
wording, for, while Aristotle uses the term division (Swaipeais) most frequently
as the antithesis of addition (civfeais), he occasionally speaks of subiraction
(ddaipeais) and diminution (xabaipeais). Hankel (Zur Geschichte der Mathe-
matik im Alterthum und Mittelalter, 1874, pp. 119—120) gave an admirable
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summary of Aristotle’s views on this subject ; and they are stated in greater
detail in Gorland, Aristoteles und die Mathematik, Marburg, 1899, pp. 157—
183. The infinite or unlimited (dwepov) only exists potentially (dvvaued), not
in actuality (évepyelg). The infinite is so in virtue of its endlessly changing
into something else, like day or the Olympic Games (Pkys. 111. 6, 206 2 15—25).
The infinite is manifested in different forms in time, in Man, and in the
division of magnitudes. For, in general, the infinite consists in something new
being continually taken, that something being itself always finite but always
different. Therefore the infinite must not be regarded as a particular thing
(7é8¢ 7t), as man, house, but as being always in course of becoming or decay,
and, though finite at any moment, always different from moment to moment.
But there is the distinction between the forms above referred to that, whereas
in the case of magnitudes what is once taken remains, in the case of time and
Man it passes or is destroyed but the succession is unbroken. The case of
addition is in a sense the same as that of division ; in the finite magnitude the
former takes place in the converse way to the latter ; for, as we see the finite
magnitude divided ad infinitum, so we shall find that addition gives a sum
tending to a definite limit. I mean that, in the case of a finite magnitude,
you may take a definite fractior: of it and add to it (continually) in the same
ratio; if now the successive added terms do not include one and the same
magnitude whatever it is [i.e. if the successive terms diminish in geometrical
progression], you will not come to the end of the finite magnitude, but, if the
ratio is increased so that each term does include one and the same magnitude
whatever it is, you will come to the end of the finite magnitude, for every
finite magnitude is exhausted by continually taking from it any definite
fraction whatever. Thus in no other sense does the infinite exist, but only
in the sense just mentioned, that is, potentially and by way of diminution
(206 a 25—b 13). And in this sense you may have potentially infinite
addition, the process being, as we say, in a manner, the same as with division
ad infinttum: for in the case of addition you will always be able to find some-
thing outside the total for the time being, but the total will never exceed every
definite (or assigned) magnitude in the way that, in the direction of division,
the result will pass every definite magnitude, that is, by becoming smaller
than it. The infinite therefore cannot exist even potentially in the sense of
exceeding every finite magnitude as the result of successive addition (206 b
16—22). It follows that the correct view of the infinite is the o ite of
that commonly held: it is not that which has nothing outside it, but that
which always has something outside it (206 b 33—207 a 1).

Contrasting the case of number and magnitude, Aristotle points out that
(1) in number there is a limit in the direction of smallness, namely unity, but
none in the other direction: a number may exceed any assigned number
however great ; but (2) with magnitude the contrary is the case : you can find
a magnitude smaller than any assigned magnitude, but in the other direction
there is no such thing as an infinite magnitude (207 b 1—5). The latter
assertion he justified by the following argument. However large a thing can
be potentially, it can be as large actually. But there is no magnitude
perceptible to sense that is infinite. Therefore excess over every assigned
magnitude is an impossibility ; otherwise there would be something larger
than the universe (ofpavds) (207 b 17—21).

Aristotle is aware that it is essentially of physical magnitudes that he is
speaking. He had observed in an earlier passage (Phys. 1iL. 5, 204 2 34) that
it is perhaps a more general inquiry that would be necessary to determine
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whether the infinite is possible in mathematics, and in the domain of thought
and of things which have no magnitude; but he excuses himself from entering
upon this inquiry on the ground that his subject is physics and sensible
objects. He returns however to the bearing of his conclusions on mathematics
in 111. 7, 207 b 27: “my argument does not even rob mathematicians of their
study, although it denies the existence of the infinite in the sense of actual
existence as something increased to such an extent that it cannot be gone
through (&8wefirnrov) ; for, as it is, they do not even need the infinite or use
it, but only require that the finite (straight line) shall be as long as they please;
and another magnitude of any size whatever can be cut in the same ratio as
the greatest magnitude. Hence it will make no difference to them for the
purpose of demonstration.”

Lastly, if it should be urged that the infinite exists in fhought, Aristotle
replies that this does not involve its existence in fas.. A thing is not greater
than a certain size because it is conceived to be so, but because it 7s; and
magnitude is not infinite in virtue of increase in thought (208 a 16—22).

Hankel and Gorland do not quote the passage about an infinite series of
magnitudes (206 b 3—13) included in the above paraphrase; but I have
thought that mathematicians would be interested in the distinct expression of
Aristotle’s view that the existence of an infinite series the terms of which are
magnitudes is impossible unless it is convergent, and (with reference to
Riemann’s developments) in the statement that it does not matter to geometry
if the straight line is not infinite in length, provided that it is as long as we

Aristotle’s denial of even the potential existence of a sum of magnitudes
which shall exceed every definite magnitude was, as he himself implies, in
conflict with the lemma or assumption used by Eudoxus (as we infer from
Archimedes) to prove the theorem about the volume of a pyramid. The
lemma is thus stated by Archimedes (Quadrature of a parabola, preface):
““The excess by which the greater of two unequal areas exceeds the less can,
if it be continually added to itself, be made to exceed any assigned finite
area.” We can therefore well understand why, a century later, Archimedes
felt it necessary to justify his own use of the lemma as he does in the same
preface: “The earlier geometers too have used this lemma: for it is by its
help that they have proved that circles have to one another the duplicate
ratio of their diameters, that spheres have to one another the triplicate ratio
of their diameters, and so on. And, in the result, each of the said theorems
has been accepted no less than those proved without the aid of this lemma.”

Principle of continuity.

The use of actual construction as a method of proving the existence ot
figures having certain properties is one of the characteristics of the Elements.
Now constructions are effected by means of straight lines and circles drawn
in accordance with Postulates 1—3 ; the essence of them is that such straight
lines and circles determine by their intersections other points in addition to
those given, and these points again are used to determine new lines, and so on.
This being so, the exéstence of such points of intersection must be postulated
or proved in the same way as that of the lines which determine them. Yet
there is no postulate of this character expressed in Euclid exceps Post. 5.
This postulate asserts that two straight lines meet if they satisfy a certain
condition. The condition is of the nature of a Swpiwpds (discrimination, or
condition of possibility) in a problem ; and, if the existence of the point of
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intersection were not granted, the solutions of problems in which the points of
intersection of straight lines are used would not in general furnish the required
proofs of the existence of the figures to be constructed.

But, equally with the intersections of straight lines, the intersections of
circle with straight line, and of circle with circle, are used in constructions.
Hence, in addition to Postulate 5, we require postulates asserting the actual
existence of points of intersection of circle with straight line and of circle
with circle. In the very first proposition the vertex of the required equilateral
triangle is determined as one of the intersections of two circles, and we need
therefore to be assured that the circles will intersect. Euclid seems to assume
it as obvious, although it is not so; and he makes a similar assumption in
I 22. It is true that in the latter case Euclid adds to the enunciation that
two of the given straight lines must be together greater than the third; but
there is nothing to show that, if this condition is satisfied, the construction is
always possible. In 1 12, in order to be sure that the circle with a given
centre will intersect a given straight line, Euclid makes the circle pass through
a point on the side of the line opposite to that where the centre is. It appears
therefore as if, in this case, he based his inference in some way upon the
definition of a circle combined with the fact that the point within it called
the ceutre is on one side of the straight line and one point of the circumference
on the other, and, in the case of two intersecting circles, upon similar con-
siderations. But not even in Book 1., where there are several propositions
about the relative positions of two circles, do we find any discussion of the
conditions under which two circles have two, one, or no point common.

The deficiency can only be made good by the Principle of Continuity.

Killing (Einfiikrung in die Grundlagen der Geometrie, 1. p. 43) gives the
following forms as sufficient for most purposes.

(@) Suppose a line belongs entirely to a figure which is divided into two
parts ; then, if the line has at least one point common with each part, it must
also meet the boundary between the parts; or

(4) 1If a point moves in a figure which is divided into two parts, and if it
belongs at the beginning of the motion to one part and at the end of the
motion to the other part, it must during the motion arrive at the boundary
between the two parts.

Inthe Question: riguardanti le matematiche elementari,., Art. 5, pp. 123—143,
the principle of continuity is discussed with special reference to the Postulate
of Dedekind, and it is shown, first, how the Postulate may be led up to and,
secondly, how it may be applied for the purposes of elementary geometry.

Suppose that in a segment A58 of a straight line a poiat C determines
two segments AC, CB. If we consider the point C as belonging to only one
of the two segments 4 C, CB, we have a division of the segment 4.7 into two
parts with the following properties.

1. Every point of the segment 48 belongs to one of the two parts.

2. The point 4 belongs to one of the two parts (which we will call the
Jfirst) and the point B to the other; the point C may belong indifferently to
one or the other of the two parts according as we choose to premise.

3. Every point of the first part precedes every point of the second in the
order 45 of the segment.

(For generality we may also suppose the case in which the point C falls at
A orat B. Considering C, in these cases respectively, as belonging to the
first or second part, we still have a division into parts which have the
properties above enunciated, one part being then a single point 4 or B.)
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Now, considering carefully the inverse of the above proposition, we see
that it agrees with the idea which we have of the continuity of the straight
line. Consequently we are induced to admit as a posfu/ate the following.

If a segment of a straight line AB is divided into two parts so that

(1) every point of the segment AB belongs to one of the parts,

2) the extremity A belongs to the first part and B to the second, and
3) any point whatever of the first part precedes any point whatever of the
second part, in the order AB of the segment,
there exists a point C of the segment AB (which may belong either o one
part or to the other) suck that every point of AB that precedes C belongs to the
Jirst part, and every point of AB that follows C belongs to the second part in
the division originally assumed.

(If one of the two parts consists of the single point 4 or 5, the point C
is the said extremity 4 or B of the segment.)

This is the Postulate of Dedekind, which was enunciated by Dedekind
himself in the following slightly different form (Stetigheit und irrationale Zaklen,
1872, new edition 1905, p. 11),

“If all points of a siraight line fall into two classes such that every point of
the first class lies to the left of every point of the second class, there exists one and
only one point whick produces this division of all the points into two classes, this
division of the straight line into two parts.”

The above enunciation may be said to correspond to the intuitive notion
which we have that, if in a segment of a straight line two points start from
the ends and describe the segment in opposite senses, they meet in a point.
The point of meeting might be regarded as belonging to both parts, but for
the present purpose we must regard it as belonging to one only and subtracted
from the other part.

Application of Dedekind's postulate to angles.

If we consider an angle less than two right angles bounded by two rays
a, b, and draw the straight line connecting A4, a point on &, with 5, a point
on &, we see that all points on the finite segment 48 correspond univocally to
all the rays of the angle, the point corresponding to any ray being the point
in which the ray cuts the segment 47 ; and if a ray be supposed to move
about the vertex of the angle from the position @ to the position &, the
corresponding points of the segment 458 are seen to follow in the same
order as the corresponding rays of the angle (a?).

Consequently, if the angle (aé) is divided into two parts so that

1) each ray of the angle (a4) belongs to one of the two parts,
2) the outside ray & belongs to the first part and the ray 4 to the second,

3) any ray whatever of the first part precedes any ray whatever of the

second part,
the corresponding points of the segment 4B determine two parts of the
segments such that

(1) every point of the segment 4.8 belongs to one of the two parts,

2) the extremity 4 belongs to the first part and B to the second,
3) any point whatever of the first part precedes any point whatever of
the second.

But in that case there exists a point C of 48 (which may belong to one
or the other of the two parts) such that every point of 45 that precedes C
belongs to the first part and every point of 4.5 that follows C belongs to the

second part.
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Thus exactly the same thing holds of ¢, the ray corresponding to C, with
reference to the division of the angle (aé) into two parts.

It is not difficult to extend this to an angle (ad) which is either fas or
greater than two right angles ; this is done (Vitali, op. ¢/t. pp. 126—127) by
supposing the angle to be divided into two, (ad), (d/), each less than two
right angles, and considering the three cases in which

(1) the ray 4 is such that all the rays that precede it belong to the first

patt and those which follow it to the second part,

(2) the ray 4 is followed by some rays of the first part,

(3) the ray 4 is preceded by some rays of the second part.

Application to circular ares.

If we consider an arc 4B of a circle with centre O, the points of the arc
correspond univocally, and in the same order, to the rays from the point O
passing through those points respectively, and the same argument by which
we passed from a segment of a straight line to an angle can be used to make
the transition from an angle to an arc.

Intersections of a straight line with a circle.
It is possible to use the Postulate of Dedekind to prove that

If a straight line has one point inside and one point outside a circle, it has
fewo points common with the circle.

For this purpose it is necessary to assume (1) the proposition with reference
to the perpendicular and obliques drawn from a given point to a given straight
line, namely that of all straight lines drawn from a given point to a given

ight line the perpendicular is the shortest, and of the rest (the obliques)
that is the longer which has the longer projection upon the straight line, while
those are equal the projections of which are equal, so that for any given
length of projection there are two equal obliques and two only, one on each
side of the perpendicular, and (2) the proposition that any side of a triangle
is less than the sum of the other two.

Consider the circle (C) with centre O, and a straight line (r) with one
point A4 inside and one point 5 outside the

e.
By the definition of the circle, if R is

the radius,
0A<R, OB>R.

Draw OP perpendicular to the straight
line 7.

Then OP < OA, so that OP is always
less than R, and P is therefore within the
circle C.

Now let us fix our attention on the finite segment 4B of the straight
line . It can be divided into two parts, (1) that containing all the points A
for which OH <R (i.e. points inside C), and (2) that containing all the
points X for which 0K Z R (points outside C or on the circumference of C).

Thus, remembering that, of two obliques from a given point to a given
straight line, that is greater the projection of which is greater, we can assert
that all the points of the segment PB which precede a point inside C are
inside C, and those which fo/low a point on the circumference of C or outside
C are outside C.

Hence, by the Postulate of Dedekind, there exists on the segment P5 a
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point A such that all the points which precede it belong to the first part and
those which follow it to the second part.

I say that M/ is common to the straight line » and the circle C, or

OM=R.

For suppose, e.g., that OM < R.

There will then exist a segment (or length) o less than the difference
between &R and OM.

Consider the point ", one of those which follow M, such that MM is
equal to o.

Then, because any side of a triangle is less than the sum of the other two,

OM' < OM+ MM'.

But OM+ MM = OM + o < R,
whence oM < R,
which is absurd.

A similar absurdity would follow if we suppose that OM > &.

Therefore OM must be equal to X.

It is immediately obvious that, corresponding to the point M on the segment
PB which is common to » and C, there is another point on # which has the
same property, namely that which is symmetrical to M with respect to 2.

And the proposition is proved.

Intersections of two circles.

We can likewise use the Postulate of Dedekind to prove that

If in a given plane a drcle C has one point X inside and one point Y oulside
another circle C', the two circles intersect in two points.

We must first prove the following

Lemma.

If O, O' are the centres of two circles C, C', and R, R’ their radii
respectively, the straight line OO’ meets the circle C in two points 4, B, one
of which is inside C' and the other outside it.

Now one of these points must fall (1) on the prolongation of OO
beyond O or (2) on OO itself or (3) on the
prolongation of OO’ beyond O.

(1) First, suppose 4 tw lie on O'O pro-
duced.

Then A0 =40+ 00 =R+ 00 ...... (a).
But, in the triangle 00' ¥,
OY<0Y+00,
and, since OY >R, OY=R,
R <R+ 00.

It follows from (a) that 40> R'; and 4
therefore lies outside C".

2) Secondly, suppose A to lie on

00.
Then 00 =04+A0 =R+ A40...(B).
From the triangle OO0'X we have

00 <0X+ 00X,

and, since OX=2R, OX <R it follows
that

00 <R+ R,
whence, by (B8), A0 < &', so that A4 lies inside C'.
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(3) Thirdly, suppose 4 to lie on OO produced.

Then R=04=00+04.......(y).

And, in the triangle 00'X,
0X<00+0X,

that is R<00 + 00X,

whence, by (y),

00 +0'4<00 + 0X,
or 0’4 < 0X,
and 4 lies inside C".

It is to be observed that one of the two points 4, B is in the position of
case (1) and the other in the position of either case (2) or case (3?? whence
we must conclude that one of the two points 4, B is inside and the other
outside the circle C'.

Proof of theorem.

The circle C is divided by the points A4, B into two semicircles, Consider
one of them, and suppose it to be
described by a point moving from 4
to B.

Take two separate points £, Q
on it and, to fix our ideas, suppose
that 2 precedes Q.

Comparing the triangles OO'P,
00 Q, we observe that one side 00O
is common, OP is equal to 0@, and
té'lg angle POQ' is less than the angle

0.

Therefore OP<O'Q.

Now, considering the semicircle 4PQ2B as divided into two parts, so that
the points of the first part are inside the circle €', and those of the second
part on the circumference of C’ or outside it, we have the conditions necessary
for the applicability of the Postulate of Dedekind (which is true for arcs of
circles as for straight lines) ; whence fhere exists a point M separating the two
parts.

I say that O'M =R

For, if not, suppose O'M < &'

If then o signifies the difference between R’ and O' M, suppose a point M,
which follows M, taken on the semicircle such that the chord MM’ is not
greater than o (for a way of doing this see below).

Then, in the triangle O MM,

OM <OM+ MM <OM+o,
and therefore oM <R,

It follows that Af", a point on the arc M5, is inside the circle C':
which is absurd.

Similarly it may be proved that O'Mf is net greater than &.

Hence OM=R.

[To find a point M" such that the chord MM’ is not greater than o, we
may proceed thus.

Draw from M a straight line MP distinct from OM, and cut off P on it
equal to o/2.
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Join OP, and draw another radius OQ such that the angle POQ is equal

to the angle MOP. Q
The intersection, M, of OQ with the !
circle satisfies the required condition. P

For MM' meets OP at right angles M
in S.

Therefore, in the right-angled triangle
MSP, MS is not greater than MP (it is
less, unless MP coincides with MS, when
it is equal).
Therefore M.S is not greater than o2, so that MM’ is not greater than ¢.]
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PRroPOsITION 1.

On a given finite straight line to construct an equilateral
triangle.
Let AB be the given finite straight line.

Thus it is required to con-
s struct an equilateral triangle on c

the straight line 4.5. )
With centre A4 and distance
AB let the circle BCD be

D
described ; [Post. 3]
10 again, with centre B and dis-
tance BA let the circle ACE
be described ; [Post. 3]
and from the point C, in which the circles cut one another, to
the points 4, B let the straight lines CA4, CB be joined.

[Post. 1]

s Now, since the point A is the centre of the circle CDB,
AC is equal 1o A 5. [Def. 15]

Again, since the point B is the centre of the circle CAE,

BC is equal to BA. [Def. 15]

But CA was also proved equal to A58 ;

20 therefore each of the straight lines CA4, CB is equal to A5.

And things which are equal to the same thing are also

equal to one another ; [C. N 1]
therefore CA is also equal to CAB.

Therefore the three straight lines CA, 4B, BC are
2sequal to one another,
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Therefore the triangle 4ABC is equilateral; and it has
been constructed on the given finite straight line 45.
(Being) what it was required to do.

1. On a given finite straight line. The Greek usage differs from ours in that the
definite article is employed in such a phrase as this where we have the indefinite. éwl rijs
Bofelons edfelas wewepacudvys, **on the given finite straight line,” i.e. the finite straight line
which we choose to take.

-3. Let AB be the given finite straight line. To be strictly literal we should have to
translate in the reverse order ‘‘let the given finite straight line be the (straight line) 48";
but this order is inconvenient in other cases where there is more than one datum, e.g. in the
setting-out of 1. 2, *‘let the given &(:int be A, and the given straight line BC," the awkward-
ness arising from the omission of the verb in the second clause. Hence I have, for clearness’
sake, adopted the other order throughout the book.

8. let the circle BCD be described. Two things are here to be noted, (1) the elegant
and practically universal use of the perfect ive imperative in constructions, yeypdgfuw
meanl:': of cgnru “let it have been ruuibes"?;r "m;e it described,” (2) the impossi-
bility of expressing shortly in a translation the force of the words in their original order.
xtchot ¢fw & BI'A means literally **let a circle have been described, the (circle, mmellg;
which mmote ) BCD.” Similarly we have lower down * let straight lines, (namely)
(straight lines) CA, CB, be joined,” éwefebyfwoar edfeiar al T'A, I There seems to be
no practicable alternative, in lish, but to translate as I have done in the text.

13. from the point C.... Euclid is careful to adhere to the ph.rl.mlosy of Postulate 1
except that he speaks of ‘“joining” (éwefedxfwoar) instead of “* drawing " ( w). He
does not allow himself to use the shortened expression * let the straight line be joined
(without mention of the points &, C) until 1. 5.

20. each of the straight lines CA, CB, érarépa riv T'A, I'B and 124. the three
straight lines CA, AB, BC, al 7peis al I'A, AB, BI'. I have, here and in all similar
expressions, inserted the words *‘straight lines ”” which are not in the Greek. The possession
of the infi 1 definite article enables the Greek to omit the words, but this is not possible
in:: lgh. and it would scarcely be English to write “‘each of C4, CB" or *‘the three CA,
A ) 0

It is a commonplace that Euclid has no right to assume, without pre-
mising some postulate, that the two circles wi// meet in a point C. To
supply what is wanted we must invoke the Principle of Continuity (see note
thereon above, p. 235). It is sufficient for the purpose of this proposition and
of 1. 22, where there is a similar tacit assumption, to use the form of postulate
suggested by Killing. “Jf a Jine [in this case e.g. the circumference 4 C.
belongs entirely to a figure [in this case a plane) which is divided into two parts
[namely the part enclosed within the circumference of the circle ZCD and
the part outside that circle), and if the line has at least one point common with
each part, it must also meet the boundary between the parts [i.e. the circum-
ference 4CE must meet the circumference 5CD].”

Zeno's remark that the problem is not solved unless it is taken for granted
that two straight lines cannot have a common segment has already been
mentioned (note on Post. 2, p. 196). Thus, if 4C, BC meet at F before
reaching C, and have the part #C common, the triangle obtained, namely
FAB, will not be equilateral, but 74, #8 will each be less than 45. But
Post. 2 has already laid it down that two straight lines cannot have a common
segment.

Proclus devotes considerable space to this part of Zeno's criticism, but
satisfies himself with the bare mention of the other part, to the effect that it.
is also necessary to assume that two circumferences (with different centres)
cannot have a common part. That is, for anything we know, there may be
any number of points C common to the two circumferences ACE, BCD. It
is not until 17, ro that it is proved that two circles cannot intersect in more
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points than two, so that we are not entitled to assume it here. The most we
can say is that it is enough for the purpose of this proposition if one equilateral
triangle can be found with the given base; that the construction only gives
#wo such triangles has to be left over to be proved subsequently. And indeed
we have not long to wait; for 1. 7 clearly shows that on either side of the
base A8 only one equilateral triangle can be described. Thus 1. 7 gives us
the number of solutions of which the present problem is susceptible, and it
supplies the same want in 1. 22 where a triangle has to be described with
three sides of given length ; that is, 1. 7 furnishes us, in both cases, with one
of the essential parts of a complete Siopiouds, which includés not only the
determination of the conditions of possibility but also the number of solutions
(mocayas dyxwpel, Proclus, p. 202, 5). This view of 1. 7 as supplying an
equivalent for 111. 10 absolutely needed in 1. 1 and 1. 22 should serve to correct
the idea so common among writers of text-books that 1. 7 is merely of use as a
lemma to Euclid’s proof of 1. 8, and therefore may be left out if an alternative
proof of that proposition is adopted.

Agreeably to his notion that it is from 1. 1 that we must satisfy ourselves
that isosceles and scalene triangles actually exist, as well as equilateral triangles,
Proclus shows how to draw, first a particular isosceles triangle, and then a
scalene triangle, by means of the figure of the proposition. To make an
isosceles triangle he produces 43 in both directions to meet the respective
circles in D, E, and then describes
circles with 4, :B as centres and AE,
BD as radii respectively. The result is
an isosceles triangle with each of two
sides double of the third side. To make
an isosceles triangle in which the equal
sides are not so related to the third side
but have any given length would require
the use of 1. 3; and there is no object in
treating the question at all in advance of
I. 22. An easier way of satisfying our-
selves of the existence of some isosceles
triangles would surely be to conceive any
two radii of a circle drawn and their
extremities joined.

There is more point in Proclus’ construction of a scalene triangle. Suppose
AC to be a radius of one of the two
circles, and D a point on AC lying in
that portion of the circle with centre 4
which is outside the circle with centre B. D
Then, joining BD, as in the figure, we ‘
have a triangle which obviously has all its k
sides unequal, that is, a scalene triangle.

The above two constructions appear in
an-Nairizi’s commentary under the name
of Heron; Proclus does not mention his
source.

In addition to the above construction
for a scalene triangle (producing a triangle in which the “given” side is
greater than one and less than the other of the two remaining sides), Heron

has two others showing the other two possible cases, in which the “given”
side is (1) less than, (2) greater than, either of the other two sides.

F
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ProrosiTioN 2.
To place at a given point (as an extremity) a straight line
equal to a given straight line.
Let A be the given point, and BC the given straight line.
Thus it is required to place at the point 4 (as an extremity)
sa straight line equal to the given
straight line BC.
rom the point A4 to the point B
let the straight line 4B be joined ;
[Post. 1]
and on it let the equilateral triangle
10 DARB be constructed. [r 1]
Let the straight lines 4Z, BF be
produced in a straight line with D4,
DB; [Post. z]
with centre B and distance BC let the
s circle CGH be described ; [Post. 3]
and again, with centre D and distance DG let the circle GKL
be described. [Post. 3]
Then, since the point 2 is the centre of the circle CGH,
BC is equal to BG.
20  Again, since the point D is the centre of the circle GKL,
DL is equal to DG.
And in these DA is equal to DB ;
therefore the remainder 4L is equal to the remainder
BG. [CH. 3]
25 But BC was also proved equal to BG;
therefore each of the straight lines AL, BC is equal

to BG.
And things which are equal to the same thing are also
equal to one another; [C.¥. 1)

therefore AL is also equal to BC.
Therefore at the given point A4 the straight line 4L is

placed equal to the given straight line BC.
(Being) what it was required to do.

1. (as an extremity). I bave inserted these words because “ to place a straight line
at a given point ™ (wpds 7y Soférrt nmliwi?ia not quite clear enough, at least in ish.

11. Let the straight lines AE, BF be produced.... It will be observed that in this
first application of Postulate 2, and again in L. 5, Euclid speaks of the comtinuation of the
straight line as that which is produced in such cases, éxBefMjofwoar and wposexfefrfofuwoar
meaning little more than drawing straight lines ““in a straight line with ™' the given straight
lines. The first place in which Euclid uses phraseology exactly corresponding to ours when
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speaking of a ight line produced is in 1. 16: *“let one side of it, BC, be produced
to D" (= X A éxlvd A

13'-‘?&??@?:?;:::?3...&0 r“:liﬁ:‘it?ger BG. }'The Greek jons are Aourh 4
AA and Moorg 7§ BH, and the literal translation would be “AL (or BG) remaining,”
but the shade of meaning coaveyed by the position of the definite article can hardly be
expressed in English.

This proposition gives Proclus an opportunity, such as the Greek
commentators revelled in, of distinguishing a multitude of cases. After
explaining that those theorems and problems are said to have cases which
have the same force, thc::fh admitting of a number of different figures, and

the same method of demonstration while admittin{l variations of
position, and that cases reveal themselves in the construction, he proceeds to
distinguish the cases in this problem arising from the different positions
which the given point may occupy relatively to the given straight line. It may
be (he says) either (1) outside the line or (2) on the line, and, if (1), it may be
either (a) on the line uced or (4) situated obliquely with regard to it ; if
(2), it may be either (@) one of the extremities of the line or (4) an intermediate
point on it. It will be seen that Proclus’ anxiety to subdivide leads him to
give a “case,” (2) (2), which is useless, since in that “case” we are given
what we are required to find, and there is really no problem to solve. As
Savile says, ““ qui quaerit ad 8 punctum ponere rectam aequalem rj By rectae,
quaerit quod datum est, quod nemo faceret nisi forte insaniat.”

Proclus gives the construction for (2) (8) following Euclid’s way of taking
@ as the point in.which the circle with centre B intersects DB produced, and
then proceeds to “ cases,” of which there are still more, which result from the
different ways of drawing the equilateral triangle and of producing its sides.

This last class of “cases” he subdivides into three according as A5 is
(1) equal to, (2) greater than or (3) less than BC. Here again *“case ” (1) serves
no purpose, since, if 4B is equal to BC, the problem is already solved. But
Proclus’ figures for the other two cases are worth giving, because in one of
them the point G is on B.D produced beyond D, and in the other it lies on
BD itself and there is nn need to produce any side of the equilateral triangle.

A glance at these figures will show that, if they were used in the proposition,
each of them would require a slight modification in the wording (1) of the
construction, since BD is in one case produced beyond D instead of B and
in the other case not produced at all, (2) of the proof, since BG, instead of
being the difference between DG and D5, is in one case the sum of DG and
DB and in the other the difference between DB and DG.
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Modern editors generally seem to classify the cases according to the
possible variations in the construction rather than according to differences in
the data. Thus Lardner, Potts, and Todhunter distinguish eight cases due
to the three possible alternatives, (1) that the given point may be joined to
either end of the given straight line, (2) that the equilateral triangle may then
be described on either side of the joining line, and (3) that the side of the
equilateral triangle which is produced may be produced in either direction.
(But it should have been observed that, where 458 is greater than BC, the
third alternative is between producing D2 and not producing it at all.) Potts
adds that, when the given point lies either on the line or on the line produced,
the distinction which arises from joining the two ends of the line with the
given ;]:‘oint no longer exists, and there are only four cases of the problem
(I think he should rather have said so/utions).

To distinguish a number of cases in this way was foreign to the really
classical manner. Thus, as we shall see, Euclid’s method is to give one case
only, for choice the most difficult, leaving the reader to supply the rest for
himself. Where there was a real distinction between cases, sufficient to
necessitate a substantial difference in the proof, the practice was to give
separate enunciations and .proofs altogethei, as we may see, e.g., from the
Conics and the De sectione rationis of Apollonius.

Proclus alludes, in conclusion, to the error of those who proposed to solve
1. 2 by describing a circle with the given point as centre and with a distance
equal to BC, which, as he says, is a pefitio principii. De Morgan puts the
matter very clearly (Supplementary Remarks on the first six Books of Euclid's
Elements in the Companion to the Almanac, 1849, p. 6). We should “insist,”
he says, “here upon the restrictions imposed by the first three postulates,
which do not allow a circle to be drawn with a compass-carried distance ;
suppose the compasses to close of themselves the moment they cease to touch
the paper. These two propositions [1. 2, 3] extend the power of construction
to what it would have been if a/ the usual power of the compasses had been
assumed ; they are mysterious to all who do not see that postulate iii does
not ask for every use of the compasses.”

ProrosiTION 3.

Given two umequal straight lines, to cut off from the
greater a straight line equal to the
less. e .y

Let AB, C be the two given un-
equal straight lines, and let 48 be ©
the greater of them.

hus it is required to cut off from .

AB the greater a straight line equal
to C the less.

At the point A let 4D be placed ¥
equal to the straight line C; [1. 2]
and with centre 4 and distance 4D let the circle DEF be
described. [Post. 3]
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Now, since the point A4 is the centre of the circle DEF,
AE is equal to 4D. [Def. 15]
But C is also equal to 4D.
Therefore each of the straight lines 4, C is equal to
AD ; sothat AE is also equal to C. [CN. 1]

Therefore, given the two straight lines 45, C, from AB
the greater 4£ has been cut off equal to C the less.
(Being) what it was required to do.

Proclus contrives to make a number of “cases” out of this proposition
also, and gives as many as eight figures. But he only produces this variety by
practically incorporating the construction of the preceding proposition, instead
of assuming it as we are entitled to do. If Prop. 2 is assumed, there is really
only one “case” of the present proposition, for Potts distinction between two
cases according to the particular extremity of the straight line from which the
given length has to be cut off scarcely seems to be worth making.

ProrosiTION 4.

If two triangles have the two sides equal to two sides
respectively, and have the angles contained by the equal straight
lines equal, they will also have the base equal to the base, the
triangle will be equal to the triangle, and the vemaining angles

s will be equal to the remaining angles respectively, namely those
whick the equal sides subtend.

Let ABC, DEF be two triangles having the two sides
AB, AC equal to the two sides DE, DF respectively, namely
AB to DE and AC to DF, and the angle BAC equal to the

10 angle EDF,

I say that the base BC is also equal to the base £7, the
triangle 4BC will be equal to the triangle DEF, and the
remaining angles will be equal to the remaining angles
respectively, namely those which the equal sides subtend, that

1518, the an%le ABC to the angle DEF, and the angle ACB
to the angle DFE.,

For, if the triangle 4 8C be

applied to the triangle DEF,
and if the ﬁomt A be placed
20 on the point D
and the stral ht line AB g

then the point B ‘will also coincide with Z, because AB is
equal to DE.
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35 Again, 4B coinciding with DE,
the straight line 4C will also coincide with DF, because the
angle BAC is equal to the angle EDF;

hence the point C will also coincide with the point 7,
because A4C is again equal to DF.

20 But B also coincided with £;

hence the base BC will coincide with the base £F.

[For if, when B coincides with £ and C with F, the base
BC does not coincide with the base £F, two straight lines
will enclose a space : which is impossible.

35 Therefore the base BC will coincide with
EF] and will be equal to it. [C.V. 4]

Thus the whole triangle 4BC will coincide with the
whole triangle DEF,

and will be equal to it.

©  And the remaining angles will also coincide with the
remaining angles and will be equal to them,

the angle A BC to the angle DEF,
and the angle 4CA to the angle DFE.

Therefore etc.
45 (Being) what it was required to prove.

1—3. It is a fact that Euclid’s iations not infi tly leave something to be
desired in point of clearness and precision. Here he speaks of the triangles having *the
angle equal to the angle, namely the angle contained by the equal straight lines " (rip ywrlar
7§ ywrlg loge Exp Thr ixd T0v lowr elfealv wepiexouévnr), only one of the two angles being
described in the latter expression (in the tive), and a similar expression in the dative
being left to be understood of the other angle. It is curious too that, after mentioning two
“ sides," he speaks of the angles contained by the equal *‘ straight lines,” not “‘sides,” It
may be that he wished to adhere scrupulously, at the outset, to the phraseology of the
definitions, where the angle is the inclination to one another of two lines or siraight lines.
Similarly in the enunciation of I. 5 he speaks of producing the equal ** straight lines” as if to
keep strictly to the wording of Postulate 2.

2. respectively. I agree with Mr H. M. Taylor (Euc/id, p. ix) that it is best to
abandon the traditional translation of *‘ each to each,” which would naturally seem to imply
that all the four magnitudes are equal rather than (as the Greek éxarépa éxarépg does) that
one is Tai to one and the other to the other.

3. the base. Here we have the word base used for the first time in the Elements.
Proclus explains it (p. 236, 12—15) as meaning (1), when no side of a triangle has been
mentioned before, the side ** which is on a level with the sight"" (v wpds 75 Sper ketpéimp),
and (1), when two sides have already been mentioned, the third side. Proclus thus avoids
the mistake made by some modern editors who explain the term exclusively with reference to
the case where two sides have heen mentioned before, That this is an error is iwovad (1) by
the occurrence of .the term in the enunciations of 1. 37 etc. about triangles on the same base
and equal bases, (2) by the application of the same term to the bases of parallelograms in
5. 35 ete.  The truth is that the use of the term must have been s ed E;r the practice of

rawing the particular side horizontally, as it were, and the rest of the figure above it. The
base of a figure was therefore spoken of, primarily, in the same sense as the base of anything
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else, e.g. of a pedestal or column; but *vhen, as in 1. 5, two triangles were compared
oocugi‘i;‘g other than the normal itions which g:::lrise to the name, and when two sider
had reviously mentioned, the base was, as us says, necessarily the third side.

6. subtend. dworelvew Uwd, ** to stretch under,” with accusative.

9. the angle BAC, The full Greek expression would be # ird 7éw BA, AT wepiexouérn
ywrla, **the angle contained by the (straight lines) B4, AC.” Butit wasa common practice
of Greek geometers, e.g. of Archimedes and Apollonius (and Euclid too in Books x.—XI11.), to
use the abbreviation al BAI' for al BA, Al', *‘the (straight lines) 54, AC.” Thus, on
wepiexouérn being dropped, the expression would become first ) Uwd 7@v BAT' vywrla, then
] ﬁ'& BAT ~ywela, and Enally % twd %AI‘, without ywsla, as we larly find it in Euclid.

17. if the triangle be applied to..., 23. coincide. The difference between the
technical use of the passive épapubtesdas “‘to be applied (to),” and of the active dpapubiew
““to coincide Swith ' has been noticed above (note on Common Notion 4%314—9.

2. [For if, when B coincides,..36. coincide with EF]. Heiberg ( ipomena su

lid in Hermes, XXXVIIL, 1903, p. 563} has pointed out, as a conclusive reason for regarding
these words as an early interpolation, that the text of an-Nairfzl (Codex Leidensis 399, 1, ed.
Besthorn-Heiberg, p. 55) does not give the words in this place but after the conclusion Q.E.D.,
which shows that they constitute a scholium only. ey were doubtless added some
commentator who thought it necessary to explain the immediate inference that, since B
coincides with £ and C with %, the straight line ZC coincides with the straight line EF,
an inference which really follows from the definition of a straight line and Post. 1} and no
doubt the Postulate that *“ Two straight lines cannot enclose a space” (afterwards placed
among the Common Naﬂb\;ag was interpolated at the same time.

44. Therefore etc. ere (as here) Euclid’s conclusion merely repeats the enunciation
word for word, I shall avoid the repetition and write *‘ Therefore etc.” simply.

In the note on Common Notion 4 1 have already mentioned that Euclid
obviously used the method of superposition with reluctance, and I have given,
after Veronese for the most part, the reason for holding that that method is
not admissible as a #heoretical means of proving equality, although it may be
of use as a practical test, and may thus furnish an empirical basis on which to
found a postulate. Mr Bertrand Russell observes (Principles of Mathematics
I. p. 405) that Euclid would have done better to assume 1. 4 as an axiom, as
is practically done by Hilbert (Grundlagen der Geomelrie, p. g). It may be
that Euclid himself was as well aware of the objections to the method as are
his modern critics ; but at all events those objections were stated, with almost
equal clearness, as early as the middle of the 16th century. Peletarius
(Jacques Peletier) has a long note on this proposition (/n Euclidis Elementa
geometrica demonstrationum libri sex, 1557), in which he observes that, if
superposition of lines and figures could be assumed as a method of proof, the
whole of geometry would be full of such proofs, that it could equally well have
been used in 1. 2, 3 (thus in 1. 2 we could simply have supposed the line taken
up and placed at the point), and that in short it 1s obvious how far removed the
method is from the dignity of geometry. The theorem, he adds, is obvious in
itself and does not require proof ; although it is introduced as a theorem, it
would seem that Euclid intended it rather as a definifion than a theorem, * for
I cannot think that two angles are equal unless I have a conception of what
equality of angles is.” Why then did Euclid include the proposition among
theorems, instead of placing it among the axioms? Peletarius makes the best
excuse he can, but concludes thus: * Huius itaque propositionis veritatem non
aliunde quam a communi iudicio petemus ; cogitabimusque figuras figuris
superponere, Mechanicum quippiam esse: intelligere verd, id demum esse
Mathematicum.”

Expressed in terms of the modern systems of Congruence-Axioms referred
to in the note on Common Notion 4, what Euclid really assumes amounts to
the following :

(1) Onthe line DE, there is a point £, on either side of D, such that 4.5
is equal to DE.
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(2) On either side of the ray DZ there is a ray DF such that the angle
EDPFis equal to the angle BAC.

It{.‘ now follows that on DF there is a point # such that DF is equal
to AC.

And lastly (3), we require an axiom from which to infer that the two
remaining angles of the triangles are respectively equal and that the bases are
equal.

I have shown above (pp. 229—230) that Hilbert has an axiom stating the
equality of the remaining angles simply, but proves the equality of the bases.

Another alternative is that of Pasch (Vorlesungen tiber neuere Geometrie,
p. 109) who has the following *“ Grundsatz” :

If two figures AB and FGH are gl\ren (FGH not being contained in a
straight length), and 4B, FG are congruent, and if a plane surface be laid
through 4 and B, we can specify in this plane surface, produced if necessary,
two points C, D, neither more nor less, such that the figures 48C and 48D
are congruent with the figure FGH, and the straight line C.D has with the
straight line 428 or with 4.5 produced one point common.

I pass to two points of detail in Euclid’s proof :

(1) The inference that, since B coincides with E, and C with & the
bases of the triangles are wholly coincident rests, as expressly stated, on the
impossibility of two straight lines enclosing a space, and therefore presents no
difficulty.

But (2) most editors seem to have failed to observe that at the very
beginning of the proof a much more serious assumption is made without any

lanation whatever, namely that, if 4 be placed on D,and 48 on DE, the
point B will coincide with E, because 45 is equal to DE. That is, the
converse of Common Notion 4 is assumed for straight lines. Proclus merely
observes, with regard to the converse of this Common Notion, that it is only
true in the case of things “of the same form” (3poedy), which he explains as
meaning straight lines, arcs of one and the same circle, and angles * contained
by lines similar and similarly situated ” (p. 241, 3—8).

Savile however saw the difficulty and grappled with it in his note on the
Common Notion. After stating that all straight lines with two points common
are oonﬁruent between them (for otherwise two straight lines would enclose a
space), he argues thus. Let there be two straight lines 4.8, DE, and let 4 be
placed on D, and 48 on DE. Then B will coincide with £Z. For, if not,
let B fall somewhere short of £ or beyond £ ; and in either case it will follow
that the less is equal to the greater, which is impossible.

Savile seems to assume (and so a tly does Lardner who gives the
same proof) that, if the straight lines be pplled B will fall somewhere on
DE or DE produced. But the ground for this assumption should surely be
stated ; and 1t seems to me that it is necessary to use, not Postulate 1 alone,
nor Postulate 2 alone, but both, for this purpose (in other words to assume,
not only that #we straight lines cannot enclose a space, but also that fwo straight
lines cannot have a common segment). For the only safe course is to place 4
upon D and then turn 4.8 about D until some point on AB intermediate
between 4 and B coincides with some point on DE. In this position 45 and
DE have two points common. Then Postulate 1 enables us to infer that the
straight lines coincide Jefween the two common points, and Postulate z that
they coincide beyond the second common point towards B and E. Thus the
straight lines coincide throughout so far as do#4 extend; and Savile’s argument
then proves that 2 coincides with E.
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ProrosiTiON 5.

In isosceles triangles the angles at the base are equal to one
another, and, if the equal straight lines be produced further;
the angles under the base will be equal to one another.

Let ABC be an isosceles triangle having the side A8
s equal to the side AC; -
and let the straight lines 20D, CE be produced further in a

straight line with A8, AC. [Post. 2]
I say that the angle 4BC is equal to the angle ACB, and

the angle CBD to the angle BCE.
10 Let a point / be taken at random A
on BD,
from AE the greater let 4G be cut off
equal to AF the less; [1 3]
and let the strdight lines #C, G2 be joined.
[Post. 1]
15 Then, since AF is equal to AG and
AB to AC,

the two sides 7.4, AC are equal to the
two sides GA, A B, respectively ;

and they contain a common angle, the angle FAG.
20 Therefore the base 7C is equal to the base G5,
and the triangle 4FC is equal to the triangle 4G5,

and the remaining angles will be equal to the remaining angles
respectively, namely those which the equal sides subtend,

that is, the angle 4CF to the angle ABG,
25 and the angle 4FC to the angle AGA. [t 4]
And, since the whole 4 is equal to the whole 4G,
and in these 42 is equal to AC,
the remainder B is equal to the remainder CG.
But FC was also proved equal to G5 ;
o therefore the two sides BF, FC are equal to the two sides
CG, GB respectively ;
and the angle BFC is equal to the angle CG2B,
while the base BC is common to them ;

therefore the triangle BFC is also equal to the triangle CGA3,
ssand the remaining angles will be equal to the remaining
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angles respectively, namely those which the equal sides
subtend ;

therefore the angle #BC is equal to the angle GCB,
and the angle BCF to the angle CBG.

4  Accordingly, since the whole angle 48G was proved
equal to the angle 4ACF,

and in these the angle CBG is equal to the angle BCF,

the remaining angle 4BC is equal to the remaining angle
ACB;

4 and they are at the base of the triangle AB8C.
But the angle #BC was also proved equal to the angle GCB;
and they are under the base.

Therefore etc. Q. E. D.

2. the equal strlight lines (meaning the equal sides). Cf. note on the similar
expression in Prog. , lines 3, 3.

10. Let nt'F be taken at random on BD, elAf¢fw éxl rfis BA ruxdr onpeior 78 Z,
where ruxdr onueior means ‘‘a chance point.”

17. the two sides FA, AC are equal to the two sides GA, AB respectively, 3do
al ZA, AT dvel rais HA, AB foa elolv éxarépa éxarépg. Heu. and in numberless later
}nmgts, I have inserted the word “‘sides” for the reason given in the note on 1. 1, line 0.

t would have been permissible to supply either “ straight lines” or * uda I's but on the
whole ““sides” seems to be more in accordance with the phraseology of

33. the base BC is common to them, i.e., :ppu!ntly. oummon to the angles, as
the airdv in Bdos alrdv xow’ can only refer to -ka 'w-(fpmedmg. Simson wrote
“and the base BC is common to the two les BFC, CGB"; Todhunter left out these
words as being of no use and tending ex a beginner, But Euclid avidently chooe
to quote the conclusion of 1. 4 n.mI the first phrase of that conclusion is that the bases
(of the two triangles) are equal, as the equal bosu are here the same base, Euclid
naturally substitutes the word “ common ” for ““equal.”

As *' (Being) what it was required to prove " (or “do") is somewhat long, I shall
moefonh write the time-honoured *‘Q. E. p.” and “q. E. F." for §wep der deifas and Jwep
wocfoat.

According to Proclus (p. 250, 2z0) the discoverer of the fact that in any
isosceles triangle the angles at the base are equal was Thales, who however
is said to have spoken of the angles as beln; similar, and not as bemg equal.
(Cf. Arist. De caelo 1v. 4, 311 b 34 wpds dpoius ywvias paiverar pepopevor where
equal angles are meant.)

A pre-Euclidean proof of I. 5.

One of the most interesting of the passages in Aristotle indicating differences
between Euclid’s proofs and those with which Aristotle was familiar, in other
words, those of the text-books immediately preceding Euclid’s, has reference to
the theorem of 1. 5. The passage (dnal. Prior. 1. 24, 41 b 13—22) is so
important that I must quote it in full. Aristotle is illustrating the fact that in
any sylloglsm one of the propositions must be affirmative and wniversal
(xaf6dov). “This,” he says, “is better shown in the case of geometrical
propositions” (& Tots Suaypappaciy), e.g. the proposition that tke angles at the
base of an isosceles triangle are equal.

““For let 4, B be drawn [i.e. joined] to the centre.
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“If, then, we assumed (1) that the angle 4C [i.e. 4 + C] is equal to the
angle BD [ie B+ D] without asserting generally
that the angles of semicircles are equal, and again
(2) that the angle C is equal to the angle D without
making the further assumption that ke fwo angles of
all segments are equal, and if we then inferred, lastly,
that, since the whole angles are equal, and equal
angles are subtracted from them, the angles which ‘—:‘-L
remain, namely £, F, are equal. we should commit A
a pelitio principii, unless we assumed [generally|
that, when equals are subtracted from equals, the
remainders are equal.”

The language is noteworthy in some respects.

(1) A, B are said to be drawn (jjypévar) to the centre (of the circle of
which the two equal sides are radii) as if 4, B were not the angular points but
the sides or the radii themselves. (There is a parallel for this in Eucl. 1v. 4.)

(2) “The angle AC” is the angle which is the sum of 4 and C, and 4
means here the angle at A of the #sosceles triangle shown in the figure, and
afterwards spoken of by Aristotle as %, while C is the “mixed ” angle between
AB and the circumference of the smaller ent cut off by it.

(3) The “angle of a semicircle” (i.e. the “angle” between the diameter
and the circumference, at the extremity of the diameter) and the “angle of a
segment” appear in Euclid 111. 16 and 111. Def. 7 respectively, obviously as
survivals from earlier text-books.

But the most significant facts to be gathered from the extract are that in
the text-books which preceded Euclid’s “mixed ” angles played a much more
important part than they do with Euclid, and, in particular, that at least two
propositions concerning such angles appeared quite at the beginning, namely
the propositions that the (mixed) angles of semicircles are equal and that the two
(mixed) angles of any segment of a circle are equal. The wording of the first
of the two propositions is vague, but it does not necessarily mean more than
that the two (mixed) angles in one semicircle are equal, and I know of no
evidence going to show that it asserts that the angle of any one semicircle is
equal to lie angle of any other semicircle (of different size). It is quoted in
the same form, “because the angles of semicircles are equal,” in the Latin
translation from the Arabic of Heron’s Cafgpirica, Prop. 9 (Heron, Vol. 11,
Teubner, p. 334), but it is only inferred that the different radii of one circle
make e%ual ‘““angles” with the circumference ; and in the similar proposition
of the Pseudo-Euclidean Catoptrica (Euclid, Vol. vir,, p. 294) angles of the
same sort in ome circle are said to be equal “because they are (angles) of
a semicircle.” Therefore the first of the two propositions may be only a
particular case of the second.

But it is remarkable enough that the second proposition (that #e fwo
“angles of " any segment of a circle are equal) should, in earlier text-books, have
been placed before the theorem of Eucl. 1. 5. We can hardly suppose it to
have been proved otherwise than by the superposition of the semicircles into
which the circle is divided by the diameter which bisects at right angles the
base of the segment; and no doubt the proof would be closely connected with
that of Thales’ other proposition that any diameter of a circle bisects it, which
must also (as Proclus indicates) have been proved by superposing one of the
two parts upon the other.

It is a natural inference from the passage of Aristotle that Euclid’s proof of
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1. 5 was his own, and it would thus appear that his innovations as regards
order of propositions and methods of proof began at the very threshold of the
subject.

Proof without producing the sides.

In this proof, given by Proclus (pp. 248, 22—249, 19), D and £ are taken
on AB, AC, instead of on AB, AC produced, so that AD, AE are equal. The
method of proof is of course exactly like Euclid’s, but it does not establish the
equality of the angles beyond the base as well.

Pappus’ proof.

Proclus (pp. 249, 20—250, 12) says that Pappus proved the theorem in a
still shorter manner without the help of any construction whatever.

This very interesting proof is given as follows :

“ Let ABC be an isosceles triangle, and 4.8 equal to A
Ac.

Let us conceive this one triangle as two triangles, and let
us argue in this way.

Since AB is equal to AC, and AC to 4B,

the two sides 4.8, AC are equal to the two sides 4C, 4B.

And the angle B4C is equal to the angle CAB, foritis B
the same.

Therefore all the corresponding parts (in the triangles) are equal, namely

BC to BC,
the triangle ABC to the triangle ABC (i.e. ACB),
the angle 4B8C to the angle AC5,
and the angle ACA to the angle 4B8C,
(for these are the angles subtended by the equal sides 4.8, AC.

Therefore in isosceles triangles the angles at the base are equal.”

This will no doubt be recognised as the foundation of the alternative
proof frequently given by modern editors, though they do not refer to Pappus.
But they state the proof in a different form, the common method being to
suppose the triangle to be taken up, turned over, and placed again upon #fself,
after which the same considerations of congruence as those used by Euclid in
I. 4 are used over again. There is the obvious difficulty that it supposes the
triangle to be taken up and at the same time to remain where 1t is. (Cf.
Dodgson’s humorous remark upon this, Euclid and his modern Rivals, p. 47.)
Whatever we may say in justification of the proceeding (e.g. that the triangle
may be supposed to leave a #race), it is really equivalent to assuming the
construction (hypothetical, if you will) of another triangle equal in all respects
to the given triangle ; and such an assumption is not in accordance with
Euclid’s principles and practice.

It seems to me that the form given to the proof by Pappus himself is by far
the best, for the reasons (1) that it assumes no construction of a second
triangle, real or hypothetical, (z) that it avoids the distinct awkwardness
involved by a proof which, instead of merely quoting and applying the resuit
of a previous proposition, repeats, with reference to a new set of data, the
process by which that result was established. If it is asked how we are to
realise Pappus’ idea of fwe triangles, surely we may answer that we keep to one
triangle and merely view it in two aspects. If it were a question of helping a
beginner to understand this, we might say that one triangle is the triangle
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looked at in front and that the other triangle is the same triangle looked at
from dehind ; but even this is not really necessary.

Pappus’ proof, of course, does not include the proof of the second part of
the gropositmn about the angles under the base, and we should still have to
establish this much in the same way as Euclid does.

Purpose of the second part of the theorem.

An interesting question arises as to the reason for Euclid’s insertion of the
second part, to which, it will be observed, the converse proposition 1. 6 has
nothing corresponding. As a matter of fact, it is not necessary for any
subsequent demonstration that is to be found in the original text of Euclid,
but only for the interpolated second case of 1. 7; and it was perhaps not
unnatural that the undoubted genuineness of the second part of 1. 5 convinced
many editors that the second case of 1. 7 must necessarily be Euclid’s also.
Proclus’ explanation, which must apparently be the right one, is that the
second part of 1. 5 was inserted for the purpose of fore-arming the learner
against a possible oJjection (dvoraais), as it was technically called, which might
be raised to 1. 7 as given in the text, with one case only. The odjection would,
as we have seen, take the specific ground that, as demonstrated, the theorem
was not conclusive, since it did not cover all possible cases. From this point
of view, the second part of L 5 is useful not only for 1. 7 but, according to
Proclus, for 1. g also. Simson does not seem to have grasped Proclus’
meaning, for he says: “And Proclus acknowledges, that the second part of
Prop. 5 was added upon account of Prop. 7 but gives a ridiculous reason for
it, ‘that it might afford an answer to objections made against the 7th,’ as if the
case of the 7th which is left out were, as he expressly makes it, an objection
against the proposition itself.”

ProrosiTiON 6.

If in a triangle two angles be equal lo one another, the
sides which subtend the equal angles will also be equal to one
another.

Let ABC be a triangle having the angle 4B8C equal to
the angle ACB;
I say that the side A28 is also equal to the y
side AC. D
For, if AB is unequal to AC, one of them is
greater.
Let AB be greater; and from AZ the
greater let DB be cut off equal to AC the less; ¢
let DC be joined.
Then, since DB is equal to AC,
and BC is common,

the two sides DB, BC are equal to the two sides 4C,
CB respectively ;
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and the angle DZC is equal to the angle 4CAB ;
therefore the base DC is equal to the base 425,
and the triangle DBC will be equal to the triangle 4CA,
the less to the greater:
which is absurd.
Therefore A28 is not unequal to AC;
it is therefore equal to it.

Therefore etc.
Q. E. D.

Euclid assumes that, because D is between 4 and B, the triangle DBC
is less than the triangle 4B8C. Some postulate is necessary to justify this
tacit assumption; considering an angle less than two right angles, say the
angle ACB in the figure of the proposition, as a cluster of rays issuing from
C and bounded by the rays C4, CB, and joining 4B (where 4, B are any
two points on C4, CB respectively), we see that to each successive ray taken
in the direction from CA to CB there corresponds one point on 4.2 in which
the said ray intersects 4.5, and that all the points on 425 taken in order from
4 to B correspond univocally to all the rays taken in order from C4 to
CB, each point namely to the ray intersecting 4.5 in the point.

We have here used, for the first time in the Elements, the method of
reductio ad absurdum, as to which I would refer to the section above (pp. 136,
140) dealing with this among other technical terms.

his proposition also, being the comverse of the preceding proposition,
brings us to the subject of

Geometrical Conversion.

This must of course be distinguished from the Jgical conversion of a
proposition. Thus, from the proposition that all isosceles triangles have the
angles opposite to the equal sides equal, /ogica/ conversion would only enable
us to conclude that some triangles with two angles equal are isosceles. Thus
1. 6 is the geometrical, but not the logical, converse of . 5. On the other
hand, as De Morgan points out (Companion o the Almanac, 1849,p. 7), 1. 6 is
a purely Jogical deduction from 1. 5 and 1. 18 taken together, as is I 19 also.
For the general argument see the note on 1. 19. For the present proposition
it is enough to state the matter thus. Let X denote the class of triangles
which have the two sides other than the base equal, ¥ the class of triangles
which have the base angles equal ; then we may call non-X the class of
triangles having the sides other than the base unequal, non-¥ the class of
triangles having the base angles unequal.

Thus we have
Al X is ¥, fr. 5]
All non-X is non-¥; [1. 18]
and it is a purely logical deduction that
All Y is X. [1 6]
According to Proclus (p. 252, 5 sqq.) two forms of geometrical conversion
were distinguished.
(1) The leading form (mwpoyyovuéin). the conversion par excellence (1) xupiws
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avrwarpod), is the complete or simple conversion in which the hypothesis
and the conclusion of a theorem change places exactly, the conclusion of the
theorem being the hypothesis of the converse theorem, which again establishes,
as its conclusion, the hypothesis of the original theorem. The relation between
the first part of 1. 5 and 1. 6 is of this character. In the former the hypothesis
is that two sides of a triangle are equal and the conclusion is that the angles
at the base are equal, while the converse (1. 6) starts from the hypothesis that
two angles are equal and proves that the sides subtending them are equal.

(2) The other form of conversion, which we may call par#ial, is seen
in cases where a theorem starts from two or more hypotheses combined into
one enunciation and leads to a certain conclusion, after which the converse
theorem takes this conclusion in substitution for one of the hypotheses of
the original theorem and from the said conclusion along with the rest of the
original hypotheses obtains, as its conclusion, the omitted hypothesis of the
original theorem. 1. 8 is in this sense a converse proposition to 1 4; for 1. 4
takes as hypotheses (1) that two sides in two triangles are respectively equal,
(2) that the included angles are equal, and proves (3) that the bases are equal,
while 1. 8 takes (1) and (3) as hypotheses and proves (2) as its conclusion. It
is clear that a conversion of the /eading type must be unique, while there
may be many partial conversions of a theorem according to the number of
hypotheses from which it starts.

Further, of convertible theorems, those which took as their hypothesis
the genus and proved a property were distinguished as the /eading theorems
(mporyovpeva), while those which started from the property as hypothesis
and described, as the conclusion, the genus possessing that property were the
converse theorems. 1.5 is thus the leading theorem and 1. 6 its converse,
since the genus is in this case taken to be the isosceles triangle.

Converse of second part of I. 5.

Why, asks Proclus, did not Euclid convert the second part of 1. 5 as well?
He suggests, properly enough, two reasons: (1) that the second part of 1. §5
itself is not wanted for any proof occurring in the original text, but is only put
in to enable objections to the existing form of later propositions to be met,
whereas the converse is not even wanted for this purpose ; (2) that the converse
could be deduced from 1. 6, if wanted, at any time after we have passed 1. 13,
which can be used to prove that, if the angles formed by producing two sides
of a triangle beyond the base are equal, the base angles themselves are equal.

Proclus adds a proof of the converse of the second part of 1. 5, i.e. of the
proposition that, if the angles formed by producing two
sides of a triangle beyond the base are equal, the triangle A
is isosceles; but it runs to some length and then only
effects a reduction to the theorem of 1. 6 as we have it.
As the result of this should hardly be assumed, a better
proof would be an independent one adapting Euclid’s
own method in 1. 6. Thus, with the construction of L g,
we first prove by means of 1. 4 that the triangles BFC,
CGB are equal in all respects, and therefore that #C is
equal to GB, and the angle BFC equal to the angle CG 5.
Then we have to prove that 4F, AG are equal. If they
are not, let AF be the greater, and from F4 cut off FH equal to GA.
Join CH.
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Then we have, in the two triangles HFC, AGB,
two sides HF, FC equal to two sides 4G, GB
and the angle A FC equal to the angle 4GB.

Therefore (1. 4) the triangles HFC, AGB are equal. But the triangles
BFC, CGB are also equal.

Therefore (if we take away these equals respectively) the triangles ZBC,
ACB are equal: which is impossible.

Therefore AF, AG are not unequal.

Hence AFis equal to 4G and, if we subtract the equals BF CG respec-
tively, A8 is equal to AC.

This proof is found in the commentary of an-Nairizi (ed. Besthorn-Heiberg,
p- 61; ed. Curtze, p. 50).

Alternative proofs of I. 6.

Todhunter points out that 1. 6, not being wanted till 11. 4, could be

tponed till later and proved by means of 1. 26. Bisect the angle BAC
y a straight line meeting the base at D. Then the triangles 48D, ACD
are equal in all respects.

Another method depending on 1. 26 is given by an-Nairizi after that
proposition.

Measure equal lengths B0, CE along the sides B4, CA. A
Join BE, CD.

Then [1. 4] the triangles DBC, ECB are equal in all
respects ; £
therefore £3, DC are equal, and the angles BEC, CDB
are equal.

The supplements of the latter angles are equal [1. 1 3:I,
and hence the triangles 4 8E, ACD have two angles equal respectively and
the side BE equal to the side CD.

Therefore [1. 26] 4B is equal to AC.

[+}

ProrosiTiON 7.

Guen two straight lines constructed on a straight line
(from its axtremz'tz'eg and meeting in a point, there cannot be
constructed on the same straight line (from ils extremilties),
and on the same side of it, two other straight lines meeting in

s another point and equal o the former two respectively, namely
each to that whick has the same extremily with it.

For, if possible, given two straight lines 4C, CB con-
structed on the straight line 4.5 and meeting
at the point C, let two other straight lines ¢

10 AD, DB be constructed on the same straight
line 45, on the same side of it, meeting in
another point D and equal to the former two
respectively, namely each to that which has 8
the same extremity with it, so that CA4 is

1isequal to DA which has the same extremity A4 with it, and

D
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CB to DB which has the same extremity B with it; and let
CD be joined.
Then, since AC is equal to AD,
the angle 4CD is also equal to the angle 4DC; [ 5]
2  therefore the angle ADC is greater than the angle DCB;

therefore the angle CDB is much greater than the angle
DCB.
Again, since CB is equal to D5,

the angle CD2B is also equal to the angle DCA.
25 But it was also proved much greater than it :
which is impossible.
Therefore etc. Q. E. D.

1—6. In an English translation of the enunciation of this 11311‘0 ition it is absolutely
necessary, in order to make it intelligible, to insert some words which are not in the Greek.
The reason is partly that the Greek enunciation is itself very elliptical, and partly that some
words used in it conveyed more meaning than the corresponding words in English do.
Particularly is this the case with o0 cverabfoorrar éxl *“there shall not be constructed M
since ewvloracfa is the regular word for constructing a #riangle in particular. Thus a Greek
would easily understahd ovoradfioorras éxl as meaning the construction of two lines formimg
a triangle on a given straight line as base ; whereas.to *‘ construct two straight lines on a
straight line” is not in English sufficiently definite unless we explain that they are drawn
from the ends of the straight line to mee at a point. I have had the less hesitation in putting
in the words *‘from its extremities” because they are actually used by Euclid in the somewhat
similar enunciation of 1. 21.

How impossible a literal translation into English is, if it is to convey the meaning of the
enunciation intelligibly, will be clear from the t‘ollowinianempl to render literally: *On the
same straight line there shall not be constructed two other straight lines equal, each to each,
to the same two straight lines, (terminating) at different points on. the same side, having the
same extremities as the original straight lines" (éwl Tis airijs edfelas dvo 7als adrais lous
E\\ac 8o edfeiac loas éxarépa éxarépg ob cvorabicorrar wpds dAAg xal EANY onuely éxl Td alrd
pépn T8 adrd wépara Exougas Tais ¢ dpxfis edfelais).

The reason why Euclid allowed himself to use, in this enunciation, language apparently
so obscure is no doubt that the phraseology was traditional and therefore, vague as it was,
had a conventional meaning which the wntemfgorary geometer well understood. This is
proved, I think, by the occurrence in Aristotle El eteorologica 111, 5, 376 a 2 5qq.) of the very
same, evidently technical, expressions. Aristotle is there alluding to the theotem given by
Eutocius from Apollonius’ Plane Loci to the effect that, if &, & be two fixed points and M
such a variable point that the ratio of M/ to MX is a given ratio (not one of equality), the
locus of M is a circle. (For an account of this theorem see note on VI. 3 below.) Now
Aristotle says * The lines drawn up from /&, X in this ratio cannot be constru to two
different points of the semicircle 4" (al obv dwd réw HK dvaybuevar ypapual & robry v¢
My ob cuoraldhoonrat Tol é¢ § A fuuvchlov wpds dAAo xal dAAo cqpei‘o;)l.

If a paraphrase is allowed instead of a translation adhering as closely as possible to the
original, Simson’s is the best that could be found, since the fact that the straight lines form
triangles on the same base is really conveyed in the Greek. Simson's enunciation is, Upon
the same base, and on the same side pfﬂ, there cannot be two triangles that have their sides
which are terminated in one extremity of the base equal to one another, and likewise those
whick are terminated at the other extremity. Th. Taylor (the translator of Proclus) attacks
Simson’s alteration as ‘‘indiscreet” and as detracting from the beauty and accuracy of
Euclid’s enunciation which are enlarged upol}ml:{ Proclus in his commentary. Yet, when
Taylor says * Whatever difficulty learners may in conceiving this proposition abstractedly
is easily removed by its exposition in the figure,” he really gives his case away. The fact is
that Taylor, always enthusiastic over his author, was nettled by Simson’s slighting remarks
on Proclus’ comments on the proposition. Simson had said, with reference to Proclus’
explanation of the bearing of the second part of 1. 5 on I. 7, that it was not *‘ worth while



260 BOOK I [r7

to relate his trifles at full length,” to which Taylor retorts ‘‘But Mr Simson was no
hilosopher ; and therefore the gi t part of these C taries must be idered by
him as trifles, from the want of a philosophic genius to comprehend their g, and
a taste superior to that of a mere mathematician, to discover their beauty and elegance.”
20. It would be natural to insert here the step *but the angle A CD is greater than the
angle 5CD. [C. M. 5.]"
a1. much greater, literally “greater by much” (woA\@ ueifwr). Simson and those who
follow him translate : ““much more then is the angle BDC greater than the angle BCD,”
but the Greek for this would have to be woAAg (or fo?\i-} RAANGY éori.. pelfwy. wohAg pdlhor,
however, though used by Apollonius, is not, apparently, found in Euclid or Archimedes.

Just as in 1. 6 we need a Postulate to justify theoretically the statement that
CD falls within the angle ACB, so that the triangle DBC is less than the
triangle 4BC, so here we need Postulates which shall satisfy us as to the
relative positions of C4, CB, CD on the one hand and of DC, DA, DB
on the other, in order that we may be able to infer that the angle BDC'is
greater than the angle 4.0C, and the angle .4 CD greater than the angle BCD.

De Morgan (¢¢. ¢it. p. 7) observes that 1. 7 would be made easy to
beginners if they were first familiarised, as a common notion, with “if two
magnitudes be equal, any magnitude greater than the one is greater than any
magnitude less than the other.” I doubt however whether a beginner would
follow this easily ; perhaps it would be more easily apprehended in the form
“if any magnitude 4 is greater than a magnitude B, the magnitude 4 is
greater than any magnitude equal to B, and (a forfiori) greater than any
magnitude less than B.”

It has been mentioned already (note on 1. 5) that the second case of 1. 7
given by Simson and in our text-books generally is not in the original text
(the omission being in accordance with Euclid's general practice of giving
only one case, and that the most difficult, and leaving the others to be worked
out by the reader for himself). The second case is given by Proclus as the
answer to a possible ojection to Euclid’s proposition, which should assert that
the propositian is not proved to be universally true, since the proof given does
not cover all possible cases. Here the objector is supposed to contend that
what Eaclid declares to be impossible may still be possible if one pair of lines
lie wholly within the other pair of lines; and the second part of 1. 5 enables
the objection to be refuted.

If possible, let 4D, DB be entirely within the triangle formed by 4C,
CB with AB, and let AC be equal to 4D and BC
to BD, E

Join €D, and produce AC, AD to E and F. E

Then, since AC is equal to 4D, c

the triangle ACD is isosceles,
and the angles £CD, FDC under the base are equal.
But the angle £CD is greater than the angle BCD ,

therefore the angle FDC is also greater than the angle
BCD. A -
Therefore the angle BDC is greater by far than the angle BCD.

Again, since DB is equal to C5,
the angles at the base of the triangle BDC are equal, [r 5]

that is, the angle B.DC is equal {o the angle BCD.

Therefore the same angle BDC is both greater than and equal to the angle
BCD: which is impossible.

The case in which D falls on AC or BC does not require proof.
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_I have already referred (note on I 1) to the mistake made by those
editors who regard 1. 7 as being of no use except to prove 1. 8. What 1. 7
proves is that if, in addition to the base of a triangle, the length of the side
terminating at each extremity of the base is given, only one triangle satisfying
these conditions can be constructed on one and the same side of the given
base. Hence not only does 1. 7 enable us to prove 1. 8, but it supplements
L 1 and 1. 22 by showing that the constructions of those propositions give one
triangle only on one and the same side of the base. But for 1. 7 this could
not be proved except by anticipating 111. 10, of which therefore 1. 7 is the
equivalent for Book I. pu?oses. Dodgson (Zuclid and his modern Rivals,
PP- 194—F5) puts it in another way. “It [1. 7] shows that, of all'plane figures
that can be made by hingeing rods together, the #rec-sided ones (and these
only) are rigid (which is another way of stating the fact that there cannot be
fwo such figures on the same base). This is analogous to the fact, in relation
to solids contained by plane surfaces hinged together, that any such solid is
rigid, there being no maximum number of sides. And there is a close anal
between 1. 7, 8 and 111. 23, 24. These analogies give to geometry much of its
beauty, and I think that they ought not to be lost sight of.” It will therefore
be apparent how ill-advised are those editors who eliminate 1. 7 altogether and
rely on Philo’s proof for 1. 8.

Proclus, it may be added, gives (pp. 268, 19—269, 10) another explanation
of the retention of 1. 7, notwithstanding that it was apparently only required
for 1. 8. It was said that astronomers used it to prove that three successive
eclipses could not occur at equal intervals of time, i.e. that the third could not
follow the second at the same interval as the second followed the first; and it
was argued that Euclid had an eye to this astronomical application of the
proposition. But, as we have seen, there are other grounds for retaining the
proposition which are quite sufficient of themselves.

ProrosiTioN 8.

If two triangles have the two sides equal to two sides
respectively, and have also the base equal to the base, they will
also have the angles equal whick are contained by the equal
straight lines.

s Let ABC, DEF be two triangles having the two sides
AB, AC equal to the two sides
DE, DF respectively, namely
ABto DE,and AC to DF'; and
let them have the base BC equal

10 to the base £F;

I say that the angle BAC is e
also equal to the angle ZDF. 8 £

For, if the triangle A5C be
applied to the triang%e DEF, and if the point 7 be placed on

15 the point £ and the straight line ZC on £F,

the point C will also coincide with #,
because BC is equal to £F,

A D a
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Then, BC coinciding with £7,
BA, AC will also coincide with £D, DFF;

20 for, if the base ZC coincides with the base £F, and the sides
BA, AC do not coincide with £D, DF but fall beside them
as £G, GF,

then, given two straight lines constructed on a straight
line (from its extremities) and meeting in a point, there will
25 have been constructed on the same straight line (from its
extremities), and on the same side of it, two other straight
lines meeting in another point and equal to the former
two respectively, namely each to that which has the same
extremity with it.
30 But they cannot be so constructed. [ 7]

Therefore it is not possible that, if the base BC be applied
to the base £F, the sides B4, AC should not coincide with
ED, DF;

they will therefore coincide,

3sso that the angle BAC will also coincide with the angle
EDF, and will be equal to it.

If therefore etc. Q. E. D.

19. BA, AC. The text has here “ B4, CA."
a1. fall beside them. The Greek has the future, xapal\dfovoi. wapalhdrrw means
‘“to pass by without touching,” ** to miss” or *‘ to deviate.”

As pointed out above (p. 257) 1. 8 is a partial converse of 1. 4.

It is to be observed that in 1. 8 Euclid is satisfied with proving the equality
of the vertical angles and does not, as in 1. 4, add that the triangles are equal,
and the remaining angles are equal respectively. The reason is no doubt (as
pointed out by Proclus and by Savile after him) that, when once the vertical
angles are proved equal, the rest follows from 1. 4, and there is no object in
proving again what has been proved already.

Aristotle has an allusion to the theorem of this proposition in Mefeorologica
1L 3, 373 a 5—16. He is speaking of the rainbow and observes that, if equal
rays be reflected from one and the same point to one and the same point, the
points at which reflection takes place are on the circumference of a circle.
““For let the broken lines 4CB, AFB, ADB be all reflected from the point
A to the point B (in such a way that) 4C, AF, AD are all equal to one
another, and the lines (terminating) at B, i.e. CB, FB, DB, are likewise all
equal ; and let 4Z£B be joined. It follows that the friangles are equal; for
they are upon the equal (base) 4EB.”

Heiberg (Mathematisches su Aristoleles, p. 18) thinks that the form of the
conclusion quoted is an indication that in the corresponding proposition tc
Eucl. 1. 8, as it lay before Aristotle, it was maintained that the #riangles were
equal, and not only the angles, and “we see here therefore, in a clear example,
how the stones of the ancient fabric were recut for the rigid structure of his
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Elements.” 1 do not, however, think that this inference from Aristotle’s
language as to the form of the pre-Euclidean proposition is safe. Thus if we,
nowadays, were arguing from the data in the passage of Aristotle, we should
doubtless infer directly that the triangles are equal in all respects, quoting 1. 8
alone. Besides, Aristotle’s language is rather careless, as the next sentences
of the same passage show. *“Let perpendiculars,”

he says, “be drawn to 4E25 from the angles, CE c
from C, FE from Fand DE from D. These, then,

are equal; for they are all in equal triangles, and

in one plane; for all of them are perpendicular A

to AEB, and they meet at one point Z. There-

fore the (line) drawn (through C, #, D) will be a o
circle, and its centre (will be) £.” Aristotle should

obviously have proved that the three perpendiculars i/ meet at one point £
on AEB before he spoke of drawing the perpendiculars CE, FE, DE.
This of course follows from their being “in equal triangles” (by means of
Eucl. 1. 26); and then, from the fact that the perpendiculars meet at one
point on 4.2, it can be inferred that all three are in one plane.

Philo’s proof of I. 8.

This alternative proof avoids the use of 1. 7, and it is elegant; but it is
inconvenient in one respect, since three cases have to be distinguished.
Proclus gives the f in the following erder (pp. 266, 15—268, 14).

Let ABC, DEF be two triangles having the sides 4.5, 4C equal to the
sides DE, DF respectively, and the base BC equal to the base EX

Let the triangle A8 C be applied to the triangle DEF, so that B is placed
on Eand BC on EF, but so that A4 falls on the opposite side of £F from D,
tjn:‘h’;ng the position G. Then C will coincide with 7, since BC is equal to

Now FG will either be in a straight line with DZ, or make an angle with
it, and in the latter case the angle will either be snterior (xard 75 dvrds) to the
figure or exterior (xard 1o dxros).

I. Let FG be in a straight line with A o
DF.

Then, since DE is equal to £G, and
DFG is a straight line, E F

DEG is an isosceles triangle, and the o $
angle at D is equal to the angle at G.
[r. 5] 5
II. Let DF, FG form an angle #nterior to the figure.
Let DG be joined.

Then, since DE, EG are equal,

D
the angle £DG is equal to the angle A
EGD.
Again, since DF is equal to 7G, BA E%F
the angle DG is equal to the angle
FGD.

Therefore, by addition, e}

the whole angle EDF is equal to the
whole angle EGF,
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III. Let DF, FG form an angle exterior to the figure.

Let DG be joined.

The proof Eroceeds as in the last case, A
except that subtraction takes the place of D
addition, and
the remaining angle £DF is equal to the g E
remaining angle ZGF.

Therefore in all three cases the angle
EDF is equal to the angle EGF, that is, G
to the angle BAC.

It will be observed that, in accordance with the practice of the Greek
geometers in not recognising as an “angle” any angle not less than two right

angles, the re-entrant angle of the quadrilateral DEG F is ignored and the angle
DFG@ is said to be oufside the figure.

PROPOSITION 9.

7o bisect a given rectilineal angle.
Let the angle BAC be the given rectilineal angle.
Thus it is required to bisect it. A
Let a point D be taken at random on 45 ;

let AE be cut off from AC equal to AD; [1 3]

let DE be joined, and on DE let the equilateral 9 C
triangle DEF be constructed ;

let A F be joined.

I say that the angle ZA4C has been bisected by the
straight line 4 F.
or, since 4D is equal to AE,
and 4 F is common,

the two sides DA, AF are equal to the two sides
EA, AF respectively.
And the base DF is equal to the base £F;

therefore the angle DA F is equal to the angle £AF.
[1. 8]
Therefore the given rectilineal angle BAC has been
bisected by the straight line AF. Q. E. F.

It will be observed from the translation of this proposition that Euclid
does not say, in his description of the construction, that the equilateral triangle
should be constructed on the side of .DZ opposite to A4 ; he leaves this to be
inferred from his figure. There is no particular value in Proclus’ explanation
as to how we should proceed in case any one should assert that he could not
recognise the existence of any space below DE. He supposes, then, the
equilateral triangle described on the side of DE towards 4, and hence has to
consider three cases according as the vertex of the equllateral triangle falls
on A, above A4 or below it. The second and third cases do not differ

B/ g ©
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substantially from Euclid’s. In the first case, where 4.DE is the, equilateral
triangle constructed on DE, take any point Fon AD, and from AE cut off
AGequalto AF. Join DG, EF meeting in & ; and A
join AH. Then AH is the bisector required.
Proclus also answers the possible ofjection that
might be raised to Euclid’s proof on the ground that F
it assumes that, if the equilateral triangle be described
on the side of DE opposite to 4, its vertex & will lie
within the angle B4C. The objector is supposed to
argue that this is not necessary, but that /" might fall
either on one of the lines forming the angle or outside 6
it altogether. The two cases are disposed of thus. c
Suppose F to fall as shown in the two figures below respectively.
Then, since FD is equal to FE,
the angle ZDE is equal to the angle FED.
Therefore the angle CED is greater than the angle FDE; and, in the
second figure, a forfiors, the angle CED is greater than the angle BDE.
But, since ADE is an isosceles triangle, and the equal sides are produced,

A

F, C
B B

the angles under the base are equal,
i.e., the angle CED is equal to the angle BDE.

But the angle CZ.D was proved greater : which is impossible.

Here then is the second case in which, in Proclus’ view, the second part
of 1. 5 is useful for refuting objections.

On this proposition Proclus takes occasion (p. 271, 15—19) to emphasize
the fact that the given angle must be rectilineal, since the bisection of any sort
of angle (including angles made by curves with one another or with straight
lines) is not matter for an elementary treatise, besides which it is questionable
whether such bisection is always possible. *Thus it is difficult to say
whether it is possible to bisect the so-called korn-/ike angle” (formed by the
circumference of a circle and a tangent to it).

Trisection of an angle.

Further it is here that Proclus gives us his valuable historical note about
the frisection of any acute angle, which (as well as the division of an angle in
any given ratio) requires resort to other curves than circles, i.e. curves of the
species which, after Geminus, he calls “mixed.” *This,” he says (p. 272,
1—12), “is shown by those who have set themselves the task of trisecting such
a given rectilineal angle. For Nicomedes trisected any rectilineal angle by
means of the conchoidal lines, the origin, order, and properties of which he
has handed down to us, being himself the discoverer of their peculiarity.
Others have done the same thing by means of the guadratrices of Hippias
and Nicomedes, thereby again using ‘mixed’ curves. But others, starting
from the Archimedean spirals, cut a given rectilineal angle in a given ratio.”
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(a) Trisection by means of the conchoid.

I have already spoken of the eonchoid of Nicomedes (note on Def. 2,
pp- 160—1); it remains to show how it could be used for trisecting an
angle. Pappus explains this (1v. pp. 274—5) as follows.

Let ABC be the given acute angle, and from any point 4 in 48 draw
A C perpendicular to BC.

‘ A

E

[+]

B [+]
Cou;?lete the parallelogram #BCA and produce 74 to a point £ such
that, if BE be joined, BE intercepts between AC and AE a length DE equal
fo twice AB.
I say that the angle £BC is one-third of the angle 4BC. ¢
For,é'omlgg A to G, the middle point of DE, we have the three m'aght
y, DG, AED

lines 4 EG equal, and the angle 4G D is double of the angle
or EBC.
But DE is double of 45 ;

therefore 4G, which is equal to DG, is equal to 45.

Hence the angle 4GD is equal to the angle 4BG.

Therefore the angle 48D is also double of the angle £BC;
so that the angle £5C is one-third of the angle 4BC.

So far Pappus, who reduces the construction to the drawing of BE so
that DE shall be equal to twice 4.5.

This is what the conchoid constructed with B as pole, 4C as directrix, and
distance equal to twice 4B enables us to do; for that conchoid cuts 4E in
the required point £.

() Use of the guadratrix.

The plural guadratrices in the above passage is a Hellenism for the
singular guadratriz, which was a curve discovered by Hippias of Elis about
420 B.C. According to Proclus (p. 356, 11) Hippias proved its pmﬁa;
and we are told (1) in the passage quoted al that Nicom also
investigated it and that it was used for trisecting an angle, and (2) by Pappus
(1v. pp. 250, 33—252, 4) that it was used by Dinostratus and Nicomedes and
some more recent writers for squaring the circle, whence its name. It is
described thus (Pappus 1v. p. 252). .

Suppose that ABCD is a square and BED a quadrant of a circle with
centre A.

Suppose (1) that a radius of the circle moves
uniformly about 4 from the position 4B to the
position 4D, and (2) that in the same time the
line BC moves uniformly, always parallel to itself,
and with its extremity B moving along B4, from
the position BC to the position 4.D.

Then the radius 4£ and the moving line BC
determine at any instant by their intersection a

point F.
The locus of F'is the guadrairix.
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The property of the curve is that, if # is any point, the arc BED is
to the arc ED as 4B is to FH.
In other words, if ¢ is the angle F4.D, p the radius vector 47 and a the

side of the square, :
(psin$)/a=$/i.

Now the angle £A.D can not only be #risected but divided in any given
ratio by means of the quadratrix (Pappus 1v. p. 286).

For let FH be divided at X in the given ratio.

Draw XL parallel to 4.0, meeting the curve in Z; join AL and produce
it to meet the circle in .

Then the angles £AN, NAD are in the ratio of 7K to KH, as is easily
proved.

(¢) Use of the spiral of Archimedes.

The trisection of an angle, or the division of an angle in any ratio, by
means of the spiral of Archimedes is of course an equally simple matter.
Suppose any angle included between the two radii vectores OA4 and OB of the
spiral, and let it be required to cut the angle 405 in a given ratio. Since
the radius vector increases proportionally with the angle described by the
vector which generates the curve (reckoned from the original position of the
vector coinciding with the initial line to the particular position assumed), we
have only to lﬂfe the radius vector OB (the greater of the two 04, OB),
mark off OC along it equal to O4, cut CB in the given ratio (at .D say), and
then draw the circle with centre O and radius 0D cutting the spiral in E,
Then OE will divide the angle 402 in the required manner.

ProrosiTiON 10.

T bisect a given finile straight line.

Let 4.8 be the given finite straight line.
Thus it is required to bisect the finite straight line 425.
Let the equilateral triangle 4BC be

constructed on it, [11) S
and let the angle 4CZ be bisected by the
straight line CD; [r. 9]

I say that the straight line 48 has
been bisected at the point D..
For, since AC is equal to CAB, A B
and CD is common,
the two sides AC, CD are equal to the two sides BC,
CD respectively ;
and the angle ACD is equal to the angle BCD ;
therefore the base 4D is equal to the base BD. [ 4]

Therefore the given finite straight line 48 has been
bisected at D, Q. E. F.
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Apollonius, we are told (Proclus, pp. 279, 16— 280, 4), bisected a straight
line 48 by a construction like that of 1 1
With centres 4, B, and radii 48, BA respec-
tively, two circles are described, intersecting in
C, D. Joining CD, AC, CB, AD, DB, Apol-
lonius proves in two steps that C.D bisects A4 B.

(1) Since, in the triangles 4CD, BCD,

two sides 4C, CD are equal to two sides
BC, CD,
and the bases 4.D, BD are cqual,
the angle ACD is equal to the angle
BCD.

[r 8]
(z) The latter angles being equal, and 4C being equal to CB, while CE
is common,
the equality of 4£, EB follows by 1. 4.

The objection to this proof is that, instead of assuming the bisection of
the angle 4CB, as already effected by 1. 9, Apollonius goes a step further
back and embodies a construction for bisecting the angle. That is, he
unnecessarily does over again what has been done before, which is open to
objection from a theoretical point of view.

Proclus (pp. 277, 25—279, 4) warns us against being moved by this
proposition to conclude that geometers assumed, as a preliminary hypothesis,
that a line is not made up of indivisible parts (& duepdv). This might he
argued thus. If a line is made up of indivisibles, there must be in a finite
line either an odd or an even number of them. If the number were odd,
it would be necessary in order to bisect the line to bisect an indivisible (the
odd one). In that case therefore it would not be possible to bisect a straight
line, if it is a magnitude made up of indivisibles. But, if it is not so made
up, the straight line can be divided ad infinitum or without limit (&' drepov
Siatpeirar). Hence it was argued (paciv), says Proclus, that the divisibility
of magnitudes without limit was admitted and assumed as a geometrical
principle. To this he replies, following Geminus, that geometers did indeed
assume, by way of a common notion, that a continuous magnitude, i.e. a

itude consisting of parts connected together (cwnuuévwy), is divisible
(Bwatperdv). But infinite divisibility was not assumed by them ; it was proved
by means of the first principles applicable to the case. “For when,” he
says, “they prove that the incommensurable exists among magnitudes, and
that it is not all things that are commensurable with one another, what
else will any one say that they prove but that every magnitude can be
divided for ever, and that we shall never arrive at the indivisible, that
is, the least common measure of the magnitudes? This then is matter of
demonstration, whereas it is an axiom that everything continuous is divisible,
so that a finite continuous line is divisible. The writer of the Elements
bisects a finite straight line, starting from the latter notion, and not from any
assumption that it is divisible without limit.” Proclus adds that the proposition
may also serve to refute Xenocrates’ theory of indivisible lines (dropot ypapual).
The argument given by Proclus to disprove the existence of indivisible lines
is substantially that used by Aristotle as regards magnitudes generally (cf.
Physics v1. 1, 231 a 21 sqq. and especially V1. 2, 233 b 15—32).
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ProrosiTiON 11.

Zo draw a straight line at right angles to a given straight
line from a given point on it.

Let A2 be the given straight line, and C the given point
on It.

s Thus it is required to draw from the point C a straight
line at right angles to the straight
line A48. A

Let a point D be taken at ran-
dom on AC;

10 let CE be made equal to CD ;[ 3]
on DE let the equilateral triangle
FDE be constructed, [1 1]
and let ~C be joined ;

I say that the straight line #C has been drawn at right
15angles to the given straight line 42 from C the given point
on it.
For, since DC is equal to CZ,
and CF is common,
the two sides DC, CF are equal te the two sides £C,

2 CF respectively ;

and the base DF is equal to the base £ ;
therefore the angle DCF is equal to the angle £CF;

L8

and they are adjacent angles. 5

But, when a straight line set up on a straight line makes

25 the adjacent angles equal to one another, each of the equal

angles is right ; [Def. 10]

therefore each of the angles DCF, FCE is right.

Therefore the straight line C# has been drawn at right

angles to the given straight line 48 from the given point
3 C on it

A D [+] E B

Q. E. F.

10. let CE be made equal to CD. The verb is relofw which, as well as the other
rts of xefpas, is constantly used for the passive of 7ifnu *to place” ; and the latter word
is constantly used in the sense of making, e.g., one straight line equal to another straight line.

De Morgan remarks that this proposition, which is “to bisect the angle
made by a straight line and its continuation ” [i.e. a ffa¢ angle], should be a
particular case of 1. g, the constructions being the same. This is certainly
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worth noting, though I doubt the advantage of rearranging the propositions
in consequence.

Apollonius gave a construction for this proposition (see Proclus, p. 282, 8)
differing from Euclid’s in much the same way as his construction for bisecting
a straight line differed from that of 1. 10. Instead of assuming an equilateral
triangle drawn without repeating the process of 1. 1, Apollonius takes 2 and
£ equidistant from C as in Euclid, and then draws circles in the manner of

F

A D C E B

I I meeting at # This necessitates proving again that DF is equal to FE;
whereas Euclid’s assumption of the construction of 1. I in the words “let the
equilateral triangle #DZE be constructed ” enables him to dispense with the
drawing of circles and with the proof that DF is equal to F£ at the same
time. While however the substitution of Apollonius’ constructions for 1. 10
and 11 would show faulty arrangement in a theoretical treatise like Euclid’s,
they are entirely suitable for what we call practica/ geometry, and such may
have been Apollonius’ object in these constructions and in his alternative for
I 23.

Proclus gives a construction for drawing a straight line at right angles to
another straight line but from one end of it, instead of from an intermediate
point on it, it being supposed (for the sake of argument) that we are not
permitted to produce the straight line. In the commentary of an-Nairizi (ed.
Besthorn-Heiberg, pp. 73—4; ed. Curtze, pp. 54—5) this construction is
attributed to Heron.

Let it be required to draw from A a straight line at right angles to 4.5,

On AB take any point C, and in the manner of the proposition draw CE
at right angles to 45.

From CE cut off CD equal to 4C, bisect the E
angle ACE by the straight line CF, [1 9]
and draw DF at right angles to CZ meeting CF & o
in £ Join FA.

Then the angle F4C will be a right angle.

For, since, in the triangles 4CF, DCF, the
two sides 4C, CF are equal to the two sides

DC, CF respectively, and the included angles A B
ACF, DCF are equal,
the triangles are equal in all respects. [1. 4]

Therefore the angle at 4 is equal to the angle at D, and is accordingly a
right angle.

ProrosiTioN 12.
To a given infinite straight line, from a given point
whick is not on i, to draw a perpendicular strvaight line.

Let AB be the given infinite straight line, and C the
given point which is not on it;
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sthus it is required to draw to the given infinite straight
line 4B, from the given point
C which is not on it, a per- E
pendicular straight line.
For let a point D be taken
10 at random on the other side of
the straight line A58, and with
centre C and distance CD let

the circle £F7G be described; A Gu 8
[Post. 3]

let the straight line £G
15 be bisected at A, [1. 10]

and let the straight lines CG, CH, CE be joined.
[Post. 1]
I say that C/ has been drawn perpendicular to the given
infinite straight line 48 from the given point C which is
not on it.
2  For, since GA is equal to 7E,
and AC is common,

the two sides G/A, HC are equal to the two sides
EH, HC respectively ;

and the base CG is equal to the base C£';
25 therefore the angle C/HG is equal to the angle £AC.

[1. 8]
And they are adjacent angles.

But, when a straight line set up on a straight line makes

the adjacent angles equal to one another, each of the equal

les is right, and the straight line standing on the other is

) cal%ed a perpendicular to that on which it stands. [Def. 10]

Therefore CH has been drawn perpendicular to the given

infinite straight line 42 from the given point C which is
not on it.

Q. E. F.
2. a perpendicular straight line, xd@erov edfeiav ypaupsfr. This is the full expression
for a per, , kdferos meaning /et full or let down, so thal the expression corresponds

to our plumb-line. % xdferos is however constantly used alone for a perpendicular, ypauusd
being understood.
10. on the other side of the straight line AB, literally * towards the other parts of

the ll.mq:mlme AB," éxl T Erepa uépn tis AB. Cf “on the same side” (éwl T4 adrd
pépm) 5 and “in both directions” {Jo’ éxdrepa T& pépn) in Def. 23.

“This problem,” says Proclus (p. 283, 7—10), “was first investigated
by Oenopides [sth cent. B.c.J, who thought it useful for astronomy. He
however calls the perpendicular, in the archaic manner, (a line drawn)
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gnomon-wise (kara yvwpova), because the gnomon is also at right angles to the
horizon.” In this earlier sense the gnomon was a staff placed in a vertical
position for the purpose of casting shadows and so serving as a means of
measuring time (Cantor, Geschichle der Mathematik, 15, p. 161). The later
meanings of the word as used in Eucl. Book m. and elsewhere will be
explained in the note on Book 11. Def. 2.

Proclus says that two kinds of perpendicular were distinguished, the “plane”
(émiwedos) and the “solid” (oreped), the former being the perpendicular
dropped on a line in a plane and the latter the perpendicular dropped on a
plane. The term “solid perpendicular” is sufficiently curious, but it may
perhaps be compared with the Greek term “solid locus” applied to a conic
section, apparently on the ground that it has its origin in the section of a
solid, namely a cone,

Attention is called by most editors to the assumption in this proposition
that, if only 2 be taken on the side of 4.5 remote from C, the circle described
with C.D as radius must necessarily cut 48 in two points. To satisfy us of
this we need, as in 1. 1, some postulate of continuity, e.g. something like that
suggested by Killing {see note on the Principle of Continuity above, p. 235):
“If a point [here the point describing the circle] moves in a figure which is
divided into two parts [by the straight line], and 1f it belongs at the beginning
of the motion to one part and at another stage of the motion to the other
part, it must during the motion cut the boundary between the two parts,” and
this of course applies to the motion in fwe directions from D.

But the editors have not, as a rule, noticed a possible objection to the
Euclidean statement of this problem which is much more difficult to dispose
of at this stage, i.e. without employing any proposition later than this in
Euclid’s order. How do we know, says the supposed critic, that the circle
does not cut 4B in three or more points, in which case there would be not
one perpendicular but #ree or more? Proclus (pp. 286, 12—28g, 6) tries to
refute this objection, and it is interesting to follow his argument, though it
will easily be seen to be inconclusive. He takes in order three possible
suppositions.

1. May not the circle meet 48 in a third point X between the middle
point of G£ and either extremity of it, taking the form drawn in the figure
appended ?

Suppose this possible. Bisect GE in A. Join CH, and produce it to
meet the circle in L. Join CG, CK, CE.

Then, since CG is equal to CE, and
CH is common, while the base GH is
equal to the base AE,

the angles CHG, CHE are equal and,
since they are adjacent, they are both right.

Again, since CG is equal to CE,

the angles at G and E are equal. X

Lastly, since CX is equal to CG and
also to CE, the angles CGK, CKG are
equal, as also are the angles CKE, CEK.

Since the angles CGKX, CEX are equal, it follows that

the angles CKG, CKE are equal and therefore both right.
Therefore the angle CAH is equal to the angle CHXK,
and CH is equal to CK,
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But CK is equal to CZ, by the definition of the circle ; therefore CH is
equal to CZ: which is impossible.

Thus Proclus; but why should not the circle meet 45 in A as well as X?

2. May not the circle meet 45 in A the middle point of GE and take
the form shown in the second figure? _

In that case, says Proclus, join CG, CH, CE as before. Then bisect HE
at X, join CK and produce it to meet
the circumference at L.

Now, since AKX is equal to XE, CK
is common, and the base CH is equal to

the base CE, c
the angles at X are equal and therefore

both right angles. /]\
Therefore the angle CHK is equal to & ok % B

the angle CK A, whence CK isequalto CH
and therefore to CZ: which is impossible.
So Proclus; but why should not the circle meet 453 in X as well as A?

3. May not the circle meet 47 in fwo points besides &, £ and pass,
between those two points, to the side of 4.8 towards C, as in the next figure?

Here again, by the same method, Proclus proves that, X, L being the
otl;er two points in which the circle cuts

L]

CK is equal to CH,
and, since the circle cuts CH in M,
M is equal to CK and therefore to
CH': which is impossible.

But, again, why should the circle not M
cut 4.8 in the point A as well? A G—K H O—E B

In fact, Proclus’ cases are not mutually
exclusive, and his method of proof only enables us to show that, if the circle
meets A8 in one more point besides G, E, it must meet it in more points
still. We can always find a new point of intersection by bisecting the distante
separating any two points of intersection, and so, applying the method ad
infinitum, we should have to conclude ultimately that the circle with radius
CH (or CG) coincides with 45. It would follow that a circle with centre
C and radius greater than CH would not meet 45 at all. Also, since all
straight lines from C to points on 4.8 would be equal in length, there would
be an infinite number of perpendiculars from C on 45.

Is this under any circumstances possible? It is not possible in Euclidean
space, but it is possible, under the Riemann hypothesis {where a straight line
is a “closed series” and returns on itself), in the case where C is the pole of
the straight line 45.

It is natural therefore that, for a proof that in Euclidean space there is
only one perpendicular from a point to a straight line, we have to wait until
1. 16, the precise proposition which under the Riemann hypothesis is only valid
with a certain restriction and not universally. There is no difficulty involved
by waiting until 1. 16, since 1. 12 is not used before that proposition is reached;
and we are only in the same position as when, in order to satisfy ourselves of
the number of possible solutions of 1. 1, we have to wait till 1. 7.

But if we wish, after all, to prove the truth of the assumption without
recourse to any later proposition than 1. 12, we can do so by means of this
same invaluable 1. 7.
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If the circle intersects 45 as before in G, E, let & be the middle point of
GE, and suppose, if possible, that the

circle also intersects 4.3 in any other point c
K on AH.

From A, on the side of 4.5 opposite to
C, draw HL at right angles to 4B, and % W

m
o

make &L equal to AC. A
Join CG, LG, CK, LK.
Now, in the triangles CHG, LHG,

CH is equal to ZH, and HG is common. Y
Also the angles CHG, LHG, being
both right, are equal.
Therefore the base CG is equal to the base LG.
Similarly we prove that CX is equal to ZX.
But, by hypothesis, since X is on the circle,
CKX is equal to CG.

Therefore CG, CK, LG, LK are all equal.

Now the next proposition, 1. 13, will tell us that C&, AL are in a straight
line; but we will not assume this. Join CL.

Then on the same base CZ and on the same side of it we have two pairs
of straight lines drawn from C, L to G and X such that CG is equal to CKX
and Lg to LK.

But this is impossible [1. 7].

Therefore the circle cannot cut B4 or BA produced in any point other
than G on that side of CZ on which & is.

Similarly it cannot cut 45 or A8 produced at any point other than £
on the other side of CL.

The only possibility left therefore is that the circle might cut 45 in the
same point as that in which CZ cuts it. But this is shown to be impossible
by an adaptation of the proof of 1. 7.

For the assumption 1s that there may be some point M on CZ such that
CM is equal to CG and LM to LG.

If possible, let this be the case, and produce CG N
to V.

Then, since CM is equal to CG,
the angle /G is equal to the angle GML (L s, part 2]

Therefore the angle GML is greater than the angle
MGL. y

Again, since LG is equal to LM,
the angle GML is equal to the angle MGL.

But it was also greater : which is impossible.

Hence the circle in the original figure cannot cut 428 in the point in
which CZ cuts it.

Therefore the circle cannot cut 4.8 in any point whatever except G and £.

[This proof of course does not prove that CX is /ess than CG, but only
that it is not equal to it. The proposition that, of the obliques drawn
from C to 4B, that is less the foot of which is nearer to / can only be proved
later. The proof by 1. 7 also fails, under the Riemann hypothesis, if C, Z are
the poles of the straight line 45, since the broken lines CGLZ, CKL etc.
become equal straight lines, all perpendicular to AB]

Proclus rightly adds (p. 289, 18 sqq.) that it is not mecessary to take D on
the side of 4.8 away from A if an objector ““says that there is no space on
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that side.” If it is not desired to trespass on that side of 4.3, we can take D
anywhere on 4.8 and describe the arc of a circle between D and the point
where it meets 4.8 again, drawing the arc on the side of 4.8 on which C is.
If it should happen that the selected point 2 is such that the circle only meets
AB in one point (D itself), we have only to describe the circle with CD as
radius, then, if £ be a point on this circle, take # a point further from C than
Z is, and describe with CF as radius the circular arc meeting 45 in two
points.

ProrosiTION 13.

If a straight line set up on a straight line make angles, it
will make either two right angles or angles equal to two right

angles.

For let any straight line 45 set up on the straight line
s CD make the angles CBA, ABD;
Il say that the angles CBA, ABD € A
are either two right angles or equal to
two right angles.

Now, if the angle CBA is equalto B 3

10 the angle 48D,
they are two right angles. [Det. 10]
But, if not, let BE be drawn from the point B at right
angles to CD; [L 11]

therefore the angles CBE, EBD are two right angles.

15 Then, since the angle CBE is equal to the two angles
CBA, ABE,
let the angle £8.D be added to each;
therefore the angles CBE, EBD are equal to the three

angles CBA, ABE, EBD. [C N 2]
20  Again, since the angle DBA is equal to the two angles
DBE? EBA,

let the angle A BC be added to each;
therefore the angles DBA. ABC are equal to the three
angles DBE, EBA, ABC. [C. . 2]
as  But the angles CBE, EBD were also proved equal to
the same three angles;

and things which are equal to the same thing are also
equal to one another; [C. N 1]
therefore the angles CBE, EBD are also equal to the

3 angles DBA, ABC. ;
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But the angles CBE, EBD are two right angles;

therefore the angles DBA, ABC are also equal to two
right angles.

Therefore etc. Q. E. D.

17. let the angle EBD be added to each, literally * let the angle £8D be added
(so as to be) common,” kow# wpooxelofw 4 iwd EBA. Similarly xowh dppphefw is used of
subming a straight line or angle from each of two others. ‘‘Let the common angle 28D
be added " is c!mf{ an inaccurate translation, for the angle is not common before it is added,
i.e. the xowd) is proleptic. *‘Let the common angle be subtracted” as a translation of xowd
d¢ppicfw would be less unsatisfactory, it is true, but, as it is desirable to use di
words when translating the two expressions, it seems less to attempt to keep the word
“common,” and 1 have therefore said *to each” and **from each ” simply.

ProrosiTiON 14.

If with any straight line, and at a point on it, two straight
lines not lying on the same side make the adjacent angles equal
to two right angles, the two straight lines will be in a straight
line with one another.

s For with any straight line 45, and at the point B on it,
let the two straight lines BC, BD not lying on the same side
make the adjacent angles 4BC, A.Blg equal to two right
angles ;

I say that BD is in a straight line with CA.
1o For, if BD is not in a straight line E

with BC, let BE be in a straight line A
with CB.

Then, since the straight line 48 & 5] D
stands on the straight line CBE,

15 the angles ABC, ABE are equal to two right angles.

[r 13]
But the angles ABC, A BD are also equal to two right angles ;

therefore the angles CBA, ABE are equal to the angles
CBA, ABD. [Post. 4 and C. M. 1]

Let the angle CBA be subtracted from each ;

= therefore the remaining angle 4B E is equal to the remaining
angle ABD, [C. & 3]

the less to the greater : which is impossible.
Therefore BE is not in a straight line with C5.

Similarly we can prove that neither is any other straight
25 line except B0,
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Therefore CZ is in a straight line with BD.

Therefore etc. Q. E. D.

1. If with any straight line.... There is no greater difficulty in translating the works
of the Greek geometers than that of accurately giving the force of prepositions. wpés, for
instance, is used in all sorts of expressions with various shades of meaning. The present
enunciation begins 'Edr wpbs run edfelg xal r¢ wpds abrf onuely, and it is really necessary in
this one sentence to translate wpés by three different words, with, a#, and on. first wpbs
must be translated by witk because two straight lines ‘ make" an angle witk one another. On
the other hand, where the similar expression wpos rjj dofelop edfelg occurs in 1. 23, but it is
a question of *‘ constructing ™ an angle (cverfoarfai), we have to say *‘to construct om a
given straight line.” Against would glelrhaps be the English word coming nearest to
uprcuinq_ all these meanings of wpés, but it would be intolerable as a translation.

17. Todhunter points out that for the inference in this line Post. 4, that all right angles
are equal, is necessary as well as the Common Notion that things which are equal to the same
thing (or rather, here, to egual/ things) are equal. A similar remark applies to steps in the

of 1. 15 and 1. 28,

24. we can prove. The Greek expresses this by the future of the verb, Selfouer,

““we shall prove,” which however would perhaps be misleading in English.

Proclus observes (p. 297) that two straight lines on the same side of another
straight line and meeting it in one and the same
point may make with one and the same portion D E
of the straight line terminated at the point two
angles which are together equal to two right angles,
in which case however the two straight lines would
not be in a straight line with one another. And 7y & B
he quotes from Porphyry a construction for two '
such straight lines in the particular case where they
form with the given straight line angles equal
respectively to half a right angle and one and a F
half right angles. There is no particular value in
the construction, which will be gathered from the annexed figure where CE,
CF are drawn at the prescribed inclinations to CD.

PRrOPOSITION 15.
If two straight lines cut one another, they make the vertical
angles equal to one another.

For let the straight lines 48, CD cut one another at the
point £';

s I say that the angle 4ECis equal to 4
the angle DEB, £
and the angle CEB to the angle P c
AED. g

For, since the straight line 4 .E stands
10 on the straight line CD, making the angles CEA4, AED,

the angles CEA, AED are equal to two right angles ]
1 13
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Again, since the straight line DE stands on the straight
line 4B, making the angles 4£D, DEB,
the angles AED, DEB are equal to two right angles.
[r. 13]
15 But the angles CEA, AED were also proved equal to
two right angles ;

therefore the angles CEA, AED are equal to the
angles AED DEB. [Post. 4 and C. . 1]

Let the angle 4 £D be subtracted from each ;
20  therefore the remaining angle CEA is equal to the
remaining angle BED. [C. N. 3]
Similarly it can be proved that the angles CEB, DEA
are also equal.
Therefore etc. Q. E. D.

25 [Porism. From this it is manifest that, if two straight
lines cut one another, they will make the angles at the point
of section equal to four right angles, ]

1. the vertical angles. The difference between adjacent angles (al épetfs ywrlas) and
wvertical angles (al xard xopughy ywwla) is thus explained by Proclus (p. 298, 14—124). The
first term describes the es made by two straight lines when one only is divided by the
other, i.e. when one straight line meets another at a point which is not either of its extremi-
ties, but is not itself produced beyond the point of meeting. When the first straight line is
produced, so that the lines cross at the point, they make two pairs of vertical angles (which
are more clearly described as vertically opposite angles), and which are so called because their
con’ nce is from opposite directions to one point (the intersection of the lines) as vertex
(xopuepti).

26. at the point of section, literally ‘“at the section,’ wpds 7§ Topuj.

This theorem, according to Eudemus, was first discovered by Thales, but
found its scientific demonstration in Euclid (Proclus, p. 299, 3—6).

Proclus gives a converse theorem which may be stated thus. Jf a strasght
line is met at one and the same point infermediate in its length by two other
straight lines on different sides of it and such as to make the vertical angles
equal, the latter straipht lines are in a straight line with one another. ‘The
proof need not be given, since it is almost self-evident, whether (1) it is direct,
by means of L 13, 14, or (2) indirect, by reductio ad absurdum depending
on I 15.

The balance of Ms. authority seems to be against the genuineness of this
Porism, but Proclus and Psellus both have it. The word is not here used, as it
is in the title of Euclid’s lost Porisms, to signify a particular class of inde ent
propositions which Proclus describes as being in some sort intermediate between
theorems and problems (requiring us, not to bring a thing into existence, but
to find something which we know to exist). Porism has here (and wherever
the term is used in the Elements) its second meaning; it is what we call a
corollaty, i.e. an incidental result springing from the proof of a theorem or the
solution of a problem, a result not directly sought but appearing as it were by
chance without any additional labour, and constituting, as Proclus says, a sort
of windfall (fppacov) and donus (xépSos). These Porisms appear in both the
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metrical and arithmetical Books of the Elements, and may either result
m theorems or problems. Here the Porism is geometrical, and springs out

of a theorem ; viL. 2 affords an instance of an arithmetical Porism. As an
instance of a Porism to a problem Proclus cites “that which is found in the
second Book” (1o & 1@ Sevrépy BifSAip xeipevov) ; but as to this see notes on
. 4 and 1v. 15.

The present Porism, says Proclus, formed the basis of “that paradoxical
theorem which proves that only the following three (regular) polygons can fill
up the whole space surrounding one point, the equilateral triangle, the square,
and the equilateral and equiangular hexagon.” We can in fact place round a
point in this manner six equilateral triangles, three regular hexa.%t;ns, or four
squares. ‘“‘But only the angles of these regular figures, to the number specifi
can make up four right angles : a theorem due to the Pythagoreans.”

Proclus further adds that it results from the Porism that, if any number of
straight lines intersect one another at one point, the sum of all the angles so
formed will still be equal to four right angles. This is of course what is
generally given in the text-books as Corollary 2.

ProrosiTiON 16.

In any triangle, if one of the sides be produced, the exterior
angle is greater than either of the interior and opposite angles.

Let ABC be a triangle, and let one side of it BC be
produced to D ;

I say that the exterior angle ACD is greater than either
of the interior and opposite angles
CBA, BAC. A F

Let AC be bisected at £ [ 10],
and let BE be joined and produced
in a straight line to /;

let £F be made equal to ZEu 3],
let 7C be joined [Post.1],and let 4C B °\

Q

be drawn through to G [Post. 2].

Then, since 4AZ is equal to £C,
and BE to EF,

the two sides A, £B are equal to the two sides CE,
EF respectively ;

and the angle 4 £25 is equal to the angle FEC,

for they are vertical angles. [r 15]
Therefore the base 425 is equal to the base FC,
and the triangle ABE is equal to the triangle CFE,

and the remaining angles are equal to the remaining angles
respectively, namely those which the equal sides subtend ; [1. 4]

therefore the angle BAE is equal to the angle £CF.
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as  But the angle £CD is greater than the angle £CF;
[C. V5]

therefore the angle 4CD is greater than the angle BAE.

Similarly also, if BC be bisected, the angle BCG, that is,
the angle ACD [1 15), can be proved greater than the angle
ABC as well.

Therefore etc. Q E. D.

1. the exterior angle, literally ‘‘the outside angle,” 7 éxrds ywrla.

2. the interior and opposite angles, rdv dvrds kal drevarrior ywride.

12. let AC be drawn through to G. The word is dujxfw, a variation on the more
usual éxBefMfabw, ‘let it be produced.”

21. CFE, in the text ** FEC."”

As is well known, this proposition is not universally true under the
Riemann hypothesis of a space endless in extent but not infinite in size. On
this hypothesis a straight line is a “closed series” and returns on itself; and
two straight lines which have one point of intersection have another point of
intersection also, which bisects the whole length of the straight line measured
from the first point on it to the same point again; thus the axiom of Euclidean
geometry that two straight lines do not enclose a space does not hold.  If 44
denotes the finite length of a straight line measured from any point once
round to the same point again, 24 is the distance between the two intersections
of two straight lines which meet. Two points 4, B do not determine one
sole straight line unless the distance between them is different from 24. In
order that there may only be one perpendicular from a point C to a straight
line 4.8, C must not be one of the two “poles” of the straight line.

Now, in order that the proof of the present proposition may be universally
valid, it is necessary that CF should always fall within the angle 4CD so that,
the angle 4 CF may be less than the angle 4CD. Baut this will not always be
so on the Riemann hypothesis. For, (1) if BE is equal to A, so that BF is
equal to 24, F will be the second point in which BE and BD intersect ; i.e.
F will lie on CD, and the angle ACF will be equal to the angle ACD. In
this case the exterior angle 4CD will be egua/ to the interior angle BAC.
(2) If BE is greater than A and less than 24, so that BF is greater than 24
and less than 44, the angle 4ACF will be greafer than the angle 4CD, and
therefore the angle 4 C.D will be Zess than the interior angle 4C. Thus, e.g.,
in the particular case of a right-angled triangle, the angles other than the right
angle may be (1) both acute, (2) one acute and one obtuse, or (3) both obtuse
according as the perpendicular sides are (1) both less than A, (2) one less and
the other greater than A, (3) both greater than A.

Proclus tells us (p. 307, 1—12) that some combined this theorem with the
next in one enunciation thus: /n any triangle, if one side be produced, the
exterior angle of the triangle is greater than cither of the inierior and opposite
angles, and any two of the interior angles are less than two right angles, the
combination having been suggested by the similar enunciation of Euclid 1. 32,
In any triangle, if onme of the sides be produced, the exterior angle is equal to the
two interior and opposite angles, and the three interior angles of the triangle are
equal fo fwo right angles.

The present proposition enables Proclus to prove what he did not succeed
in establishing conclusively in his note on I 12, namely that from one point:
there cannot be drawn to the same straight line three straight lines equal in length.
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For, if possible, let 4B, AC, AD be all equal, B, C, D being in a
straight line.
Then, since 4B, AC are equal, the angles

ABC, ACB are equal A
Similarly, since 4B, AD are equal, the angles

ABD, ADB are equal. A
Therefore the angle 4CZ is equal to the angle

ADC, ie the exterior angle to the interior and g c D

opposite angle : which is impossible.

Proclus next (p. 308, 14 sqq.) undertakes to prove by means of 1. 16 that,
if a straight line falling on two straight lines make the exterior angle equal fo
the interior and opposite angle, the two straight lines will not form a triangle or
meet, for in that case the same angle would be both greater and equal.

The proof is really equivalent to that of Eucl. 1. 27. If BE falls on the
two straight lines 4.5, CD in such a way that the angle
CDE is equal to the interior and opposite angle 48D, , ¢
AB and CD cannot form a triangle or meet. For, if
they did, then (by 1 16) the angle CDZE would be
greater than the angle 45D, while by the hypothesis
it is at the same time egwal to it.

Hence, says Proclus, in order that B4, DC may
form a triangle it is necessary for them to approack one E
another in the sense of being turned round one pair of
corresponding extremities, e.g. B, D, so that the other extremities 4, C come
nearer. This may be brought about in one of three ways: (1) 42 may
remain fixed and CD be turned about D so that the angle CDE increases;
(2) CD may remain fixed and 45 be turned about B so that the angle 48D
ber omes smaller; (3) both 4.8 and CD may move so as to make the angle
AB8D smaller and the angle CDE larger at the same time. The reason, then,
of the straight lines 48, CD coming to form a triangle or to meet is (says
Proclus) 2ke movement of the straight lines.

Though he does not mention it here, Proclus does in another passage
(p. 371, 2—10, quoted on p. 207 above) hint at the possibility that, while 1. 16
may remain universally true, either of the straight lines B4, DC (or both
together) may be turned through any angle not greater than a certain finite
angle and yet may not meet (the Bolyai-Lobachewsky hypothesis).

PRropPOSITION 17.

In any triangle two angles taken together in any manner
are less than two vight angles.

Let ABC be a triangle ;

I say that two angles of the triangle 4BC taken together in
any manner are less than two right angles.
For let BC be produced to 5 [Post. 2]
Then, since the angle ACD is an exterior angle of the
triangle 45C,
it is greater than the interior and opposite angle 48C.
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Let the angle ACAB be added to each;

therefore the angles 4CD, ACB are greater than the angles
ABC, BCA.

A

B c D

But the angles 4CD, ACB are equal to two right angles.

[1. 13]
Therefore the angles 4BC, BCA are less than two right

angles.

Similarly we can prove that the angles BAC, ACB are
also less than two right angles, and so are the angles CA 5,
ABC as well.

Therefore etc.

Q E. D.

1. taken together in any manner, wdrrp peralapfarbperai, i.e. any pair added
together.

As in his note on the previous proposition, Proclus tries to state the cause
of the property. He takes the case of two straight lines forming right angles
with a transversal and observes that it is the convergence of the straight lines
towards one another (ovvevais rdv eibeadv), the lessening of the two right angles,
which produces the triangle. He will not have it that the fact of the exterior
angle being greater than the interior and opposite angle is the cause of the
property, for the odd reason that ‘it is not necessary that a side should be
produced, or that there should be any exterior angle constructed...and how can
what is not necessary be the cause of what is necessary?” (p. 311, 17—21).

Agreeably to this view, Proclus then sets himself to prove the theorem
without producing a side of the triangle.

Let ABC be a triangle. Take any point D on A

BC, and join AD.
Then the exterior angle 4.DC of the triangle A BD
is greater than the interior and opposite angle 45.D.
Similarly the exterior angle A.D2B of the triangle B o

Agg is greater than the interior and opposite angle
ACD.

Therefore, by addition, the angles 4.DB, 4DC are together greater than
the angles A8C, ACB.

But the angles 408, ADC are equal to two right angles; therefore the
angles ABC, ACHB are less than two right

Lastly, Proclus proves (what is obvious from this proposition) that here
cannot be more than one perpendicular lo a straight line from a point without
it. For, if this were possible, two of such perpendiculars would form a triangle
in which two angles would be right angles: which is impossible, since any two
angles of a triangle are together less than two right angles.
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ProrosiTioNn 18.

In any triangle the greater side subltends the greater angle.

For let ABC be a triangle having the side 4C greater
than A5,

I say that the angle ABC is also greater than the angle
BCA.

For, since AC is greater than 45, let 4D be made equal
to A B 1. 3], and let B0 be joined.

Then, since the angle 4DB A
is an exterior angle of the triangle D
BCD, '

it is greater than the interior
and opposite angle DCB. [1. 16] B c

But the angle A58 is equal
to the angle 48D,

since the side 478 is equal to AD;

therefore the angle 48D is also greater than the angle
ACE;
therefore the angle 4BC is much greater than the angle
ACB.

Therefore etc.

Q. E. D.

In the enunciation of this proposition we have iworelvew (“‘subtend”) used with the
impl tive instead of the more usual owé with accusative. The latter construction
is used in the enunciation of 1. 19, which otherwise only differs from that of 1. 18 in the order
of the words. The point to remember in order to distinguish the two is that the datum
comes first and the ¢ it d, the datum being in this proposition the greater side
and in the next the greater angle. Thus the enunciations are (1. 18) warrds Tpcydvou 9 pelfwr
whevpd Thy pelfova ywrlay iworelver and (1. 19) warrds Tprydwov wd Tip pelfova ywrlar %
pelfwr whevpd Iworelver. In order to keep the proper order in English we must use the
passive of the verb in I. 19 Aristotle quotes the result of I. 19, using the exact wording,
Und yap thy pelfw ywviay Uworelve (Meteorologica 11. 5, 376 a 13).

“In order to assist the student in remembering which of these two
propositions [1. 18, 19] is demonstrated directly and
which indirectly, it may be observed that the orderis A
similar to that in 1. 5 and 1. 6” (Todhunter).

An alternative proof of 1. 18 given by Porpnyry D
(see Proclus, pp. 315, 11—316, 13) is interesting. It
starts by supposing a length equal to 4.5 cut off from
the other end of AC; that is, CD and not 4D is g o
made equal to AB5.

Produce A58 to E so that BE is equal to 4.D, and
join EC.

Then, since 48 is equal to CD, and BE to 4D, E

AE is equal to 4C.
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Therefore the angle AEC is equal to the angle 4CE,
Now the angle 4BC is greater than the angle 4A£C, [1. 16]

and therefore greater than the angle ACE.
Hence, a fortiori, the angle ABC is greater than the angle 4CB.

PRrOPOSITION 19.
In any triangle the greater angle is sublended by the
greater side.

Let ABC be a triangle having the angle 4BC ter
than the angle BCA4 ; 5 3 & RE

I say that the side AC is also greater than the side 45.
For, if not, AC is either equal to 427 or less.

Now AC is not equal to 458 ; A
for then the angle 48C would also have been
equal to the ang?e ACB; [r 5]
but it is not ;
therefore AC is not equal to 45. '

Neither is AC less than 425,
for then the angle 4BC would also have been less than the
angle ACHB; 1. 18]
but it is not;
therefore AC is not less than 43.
And it was proved that it is not equal either.
Therefore AC is greater than AB.
Therefore etc. Q. E. D.

This proposition, like 1. 6, can be proved by merely Zogical deduction from
(. 5 and 1. 18 taken together, as pointed out by De Morgan. The general
form orhthe argument used by De Morgan is given in his Formal Logic (1847),
. 25, thus:

: éwM&eﬁm Let there be any number of propositions or assertions—
three for instance, X, ¥ and Z—of which it is the property that one or the
other must be true, and ome only. Let there be three other propositions
P, Q and R of which it is also the property that one, and one only, must be
true. Let it be a connexion of those assertions that :

when X is true, P is true,

when Y is true, Q is true,

when Z is true, & is true.
Consequence : then it follows that,

when 2P is true, X is true,

when Q is true, Yis true,

when R is true, Z is true.”
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To apply this to the case before us, let us denote the sides of the triangle
ABC by a, b, ¢, and the angles opposite to these sides by 4, B, C respectively,
and suppose that a is the base.

Then we have the three propositions,

when 5 is equal to ¢, B is equal to C, [1 5]

whenéisgreeterthan:,b'isg-rmerthanq} 1. 18)

when & is less than ¢, B is less than C, ;
and it follows Jogically that,

when B is equal to C, 4 is equal to ¢ [1. 6]

when B is greater than C, & is greater than r,} [1. 19]

when B is less than C, & is less than «

Reductio ad absurdum by exhaustion.

Here, says Proclus (p. 318, 16—23), Euclid proves the impossibility by
means of division” (éx Swaipérews). This means simply the separation of
different hypotheses, each of which is inconsistent with the truth of the
theorem to be proved, and which therefore must be successively shown to be
impossible. If a straight line is not greater than a straight line, it must be
either equal to it or less; thus in a reductio ad absurdum intended to prove
such a theorem as 1. 19 it is necessary to dispose successively of #we hypotheses
inconsistent with the truth of the theorem.

Alternative (direct) proof.

Proclus gives a direct proof (pp. 319—321) which an-Nairiz also has and
attributes to Heron. It requires a lemma and is consequently open to the
slight objection of separating a theorem from its converse. But the lemma
and proof are worth giving.

Lemma.

If an angle of a triangle be bisected and the straight line bisecting it meet the
base and divide it into unequal parts, the sides conlaining the angle will be
unegqual, and the greater will be that whick meets the greater segment of the base,
and the less that which meets the less.

Let A.D, the bisector of the angle A of the triangle 4BC, meet BC in D,
making CD greater than B.D.

I say that A C is greater than 4.5. A

Produce 4D to E so that DE is equal to
AD. And, since DC is greater than B.D, cut
off DF equal to BD. G

Join £F and produce it to G.

Then, since the two sides 4D, DB are
equal to the two sides ZD, DF, and the
vertical angles at D are equal,

AB is equal to EF,
and the angle DEF to the angle BAD,
i.e. to the angle D4 G (by hypothesis).
Therefore A& is equal to £G,
and therefore greater than £7, or 4 5.

Hence, a fortiori, AC is greater than 4B.

]
L=
|
[+]
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Proof of I. 19.

A’C];;.t ABC be a triangle in which the angle 4BC is greater than the angle
Bisect BC at D, join AD, and produce it to E so that DE is equal to
AD. Join BE.
Then the wwo sides B0, DE are equal to the two
sides C.D, DA, and the vertical angles at D are equal ;
therefore BE is equal to 4C,
and the angle DBE to the angle at C.
But the angle at C is less than the angle 48C;
Btgerefore the angle DBE is less than the angle

H:ence, if BF bisect the angle 4BE, BF meets
AE between 4 and D. Therefore EF is greater
than F4.

.BAn follows, by the lemma, that BE is greater than

that is, A C is greater than 425,

ProrosIiTION 20.

In any triangle two sides taken together in any manner
are greater than the remaining one.

For let ABC be a triangle;
I say that in the triangle ABC two sides taken together in
any manner are greater than the remaining one, namely
BA, AC greater than BC,
AB, BC grearter than 4AC,
BC, CA greater than AB.
For let BA be drawn through to the point D,
let DA be made equal to CA, and let DC be
joined.
Then, since DA is equal to 4AC,
the angle ADC is also equal to the angle A
ACD; [r. 5]
therefore the angle BCD is greater than
the angle 4DC. [C. N 5]
And, since DCA is a triangle having the angle BCD
greater than the angle BDC,
and the greater angle is subtended by the greater side,

[ 19]
therefore D2 is greater than ZC.
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But DA is equal to AC;
therefore BA, AC are greater than BC.

Similarly we can prove that 48, BC are also greater
than CA, and BC, CA than AB.
Therefore etc.

Q. E. D.

It was the habit of the Epicureans, says Proclus (p. 322), to ridicule this
theorem as being evident even to an ass and requiring no proof, and their
allegation that the theorem was “known” (yvuwpiuov) even to an ass was based
on the fact that, if fodder is placed at one angular point and the ass at another,
he does not, in order to get to his food, traverse the two sides of the t le
but only the one side separating them (an argument which makes Savile exclaim
that its authors were “digni ipsi, qui cum Asino foenum essent,” p. 78)-
Proclus replies truly that a mere perception of the truth of the theorem is a
different thing from a scientific proof of it and a knowledge of the reason why
it is true. Moreover, as Simson says, the number of axioms should not be
increased without necessity.

Alternative Proofs.

Heron and Porphyry, we are told (Proclus, pp. 323—6), proved this
theorem in different ways as follows, without producing one of the sides.

First proof.

Let ABC be the triangle, and let it be required to prove that the sides
BA, AC are greater than BC,

Bisect the angle B4 C by A.D meeting BC in D. A

Then, in the triangle 48D,

the exterior angle ADC is greater than the
interior and opposite angle 54D, [1 16]

that is, greater than the angle DAC.
Therefore the side AC is greater than thf sidti. B ] c
I 19

Smn]m-ly we can prove that 4B is greater than B.D.

Hence, by addition, B4, AC are greater than BC.

Second proof.

This, like the first proof, is direct. There are several cases to be considered.

sl) If the triangle is equi/ateral, the truth of the proposition is obvious.

2) If the triangle is ssosceles, the proposition needs no proof in the case
(@) where each of the equal sides is greater than the base.

(&) If the base is greater than either of the other sides, we have to prove
that the sum of the two equal sides is greater than
the base. Let BC be the base in such a triangle. A

Cut off from BC a length B.D equal to 4.5, and
join AD,

Then, in the triangle 4D.B, the exterior angle
ADC is greater than the interior and opposite angle B D c
BAD. [x. 16}

Similarly, in the triangle 4.DC, the exterior angle A DB is greater than the
interior and opposite angle CAD.
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By addition, the two angles BDA, ADC are together greater than the
two angles BAD, DAC (or the whole angle BAC).

Subtracting the equal angles BDA, BAD, we have the angle ADC
greater than the angle CAD.

It follows that 4 C is greater than CD; [1 19]
and, adding the equals 45, BD respectively, we have B4, AC together
greater than BC.

(3) If the triangle be scalene, we can arrange the sides in order of length.
Suppose BC is the greatest, 45 the intermediate and 4AC the least side.
Then it is obvious that 4.8, BC are together greater than 4C, and BC, CA
together greater than 4.8.

It only remains therefore to prove that CA4, AB are together greater
than BC.

We cut off from BC a length B.D equal to the adjacent side, join 4.D, and
proceed exactly as in the above case of the isosceles triangle.

Third proof.
This proof is by reductio ad absurdum.

Suppose that BC is the greatest side and, as before, we have to prove that
BA, AC are greater than BC.

If they are not, they must be either equal to A
or less than BC.

(1) Suppose BdA, AC are together equal /\
to BC.

From BC cut off BD equal to B4, and B D c
join 4D,

It follows from the hypothesis that DC is equal to AC.

Then, since B4 is equal to BD,
the angle BDA is equal to the angle BAD.

Similarly, since 4C is equal to CD,
the angle CDA is equal to the angle CAD.

By addition, the angles 804, ADC are together equal to the whole angle
BAC.

That is, the angle BAC is equal to two right angles: which is impossible.

(2) Suppose BA4, AC are together less than BC.

From BC cut off BD equal to B4, and from CB cut off CE equal to
CA. Join AD, AE.

In this case, we prove in the same way that A
the angle BDA is equal to the angle BAD, and
the angle CEA to the angle CAE,

By addition, the sum of the angles BD4,
AEC is equal to the sum of the angles B4AD, 8 D E c
CAE.

Now, by L 16, the angle BDA is greater than the angle DAC, and
therefore, @ fortiori, greater than the angle £4C.

Similarly the angle 4ZC is greater than the angle BA.D.

Hence the sum of the angles BDA, AEC is greater than the sum of the
angles BAD, EAC.

But the former sum was also equal to the latter: which is impossible.
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ProrosiTION 21.

If on one of the sides of a triangle, from ils extremities,
theve be comstructed two straight lines meeting within the
triangle, the straight lines so constructed will be less than the
remaining two sides of the triangle, but will contain a greater

sangle.

On BC, one of the sides of the triangle 48C, from its
extremities B, C, let the two straight lines 2D, DC be con-
structed meeting within the triangle ;

I say that BD, DC are less than the remaining two sides

o of the triangle B4, AC, but contain an angle BDC greater
than the angle 2A4C.

For let §D be drawn through, to £, A

Then, since in any triangle two
sides are greater than the remaining
15 One, [1. 20]
therefore, in the triangle ABE, the
twosides 4 B, AE are greaterthan BE, B °

Let £C be added to each ;

therefore BA, AC are greater than BE, EC.
»  Again, since, in the triangle CED,
the two sides CE, £D are greater than CD,
let DB be added to each;
therefore CE, EZ are greater than CD, DB.

But BA, AC were proved greater than BE, EC;

25 therefore BA, AC are much greater than 2D, DC,

Again, since in any triangle the exterior angle is greater
than the interior and opposite angle, [x 16]
therefore, in the triangle CDE,
the exterior angle BDC is greater than the angle CED.
30 For the same reason, moreover, in the triangle ABZ also,
the exterior angle CZ2B is greater than the angle ZA4C.

But the angle BZDC was proved greater than the angle CEZ;
therefore the angle BDC is much greater than the angle
BAC.
35 Therefore etc. 0. E. D,

2. be constructed...meeting within the triangle. The word ““meeting” is not in
the Greek, where the words are évrés overaldaow. owloracfas is the word used of con-
structing two straight lines 70 a point (cf. 1. 7) or so as to form a triangle ; but it is necessary
in English to indicate that they meet.

3. the straight lines so constructed. Observe the elegant brevity of the Greek al

cveraleirar
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The editors generally call attention to the fact that the lines drawn within
the triangle in this proposition must be drawn,
as the enunciation says, from the ends of the A
side ; otherwise it is not necessary that their
sum should be less than that of the remainin
sides of the triangle. Proclus (p. 327, 12 sqq.
gives a simple illustration.

Let A5C be a right-angled triangle. Take
any point D on BC, join D4, and cut off
ﬁom:tDEeqaaltoAB BlsectA’EatF ‘B D ~C
and join #C.

Then shall CF, FD be together greater than C4, 45.

For CF, FE are equal to CF, FA,
and therefore greater than CA.
Add the equals £D, 4B respectively ;
therefore CF, FD are together greater than CA, AB.

Pappus gives the same proposition as that just proved, but follows it up

by a number of others more elaborate in character, selected apparently from
so-called paradoxes” of one Erycinus (Pappus, 111. p. 106 sqq.). Thus
he proves the following :

1. In any triangle, except an equilateral trmngle or an isosceles triangle
with base less than one of the other sides, it is possible to construct on the
base and within the triangle two straight lines the sum of which is equal to
the sum of the other two sides of the triangle.

2. In any triangle in which it is possible to construct two straight lines on
the base which are equal to the sum of the other two sides of the triangle it is
also possible to construct two others the sum of which is gregfer than that sum.

3. Under the same conditions, if the base is greater than either of the
other two sides, two straight lines can be constructed in the manner described
which are respeciively greater than the other two sides of the triangle ; and the
lines may be constructed so as to be respectively egua/ to the two mdes. if one
of those two sides is less than the other and each of them less than the base.

4. The lines may be so constructed that their sum will bear to the sum
of the two sides of the triangle any ratio less than 2 : 1.

As a specimen of the proofs we will give that of the proposition which has

been numbered (1) for the case where the triangle is isasceles (Pappus, 1.
pp. 108—110).
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Let ABC be an isosceles triangle in which the base 4C is greater than
either of the equal sides 4.8, BC.
With centre 4 and radius 4.8 describe a circle meeting 4C in D.
Draw any radius A EF such that it meets BC in a point & outside the circle.
Take any point G on EZ, and through it draw G A parallel to AC. Take
any point X on GH, and draw KL parallel to #4 meeting AC in L.
From BC cut off BN equal to £G.
Thus 4G, or LK, is equal to the sum of 4.5, BN, and CV is less than LK.
Now GZF, FH are together greater than GH,
and CH, HK together greater than CK.
Therefore, by addition,
CF, FG, HK are together greater than CK, HG.
Subtracting X from each side, we see that
CF, FG are together greater than CX, KG';
therefore, if we add 4G to each,
AF, FC are together greater than 4G, GX, KC.
And 4B, BC are together greater than 4%, #C. [1. 21]
Therefore AB, BC are together greater than 4G, GX, XC.
But, by construction, 4.8, BN are together equal to 4G ;
therefore, by subtraction, NVC is greater than GX, KC,
and a forfiori greater than XC.
Take on K C produced a point M such that XM is equal to NC;
with centre X and radius £/ describe a circle meeting CZ in 0, and join XO.
Then shall LK, KO be equal to 45, BC.
For, by construction, LZX is equal to the sum of 4B, BN, and KO is
equal to NC;
therefore LK, KO are together equal to 4.5, BC.

It is after 1. 21 that (as remarked by De Morgan) the important
proposition about the perpendicular and obliques drawn from a point to a
straight line of unlimited length is best introduced :

Of all straight lines that can be drawn to a given straight line of unlimited
length from a given point without it :

(a) the perpendicular is the shortest ;

(8) of the obligues, that is the greater the fool of whick is further from the
perpendicular ;

(¢) given one obligue, only one other can be found of the same length, namely
that the foot of whick is equally distant with the fool of the given one from the

jcular, but on the other side of it.

Let 4 be the given point, BC the given straight line; let 4D be
the perpendicular from 4 on BC,

and 4Z, AF any two obliques of A
which 4F makes the greater angle
with 4.D.
Produce 4D to 4, makin$ A'D D E F
equal to 4D, and join A'E, AF. B @ S

Then the triangles ADE, A'DE
are equal in all respects; and so are
the triangles ADF, A'DF. d
Now (1) in the triangle AE A4’ the ; -
two sides A, EA' are-greater than 44’ [1. 20], that is, twice 4E is greater
than twice 4.D.
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Therefore AE is greater than A4.D. X
(2) Since AE, A'E are drawn to £, a point within the triangle 474,
AF, FA4' are together greater than 4K, EA', [r 21]

or twice A Fis greater than twice 4E,
Therefore AF is greater than AZ.
(3) Along DB measure off DG equal to DF, and join AG.
The triangles AGD, AFD are then equal in all ts, so that the
angles GAD, FAD are equal, and 4G is equal to 4F

ProrosiTiON 22.

Out of three straight lines, whick are equal to three given
straight lines, to construct a triangle : thus it is necessary that
two of the straight lines taken logether in any manner should
be greater than the remaining one. [1. 20]

Let the three given straight lines be 4, 5, C, and of these
let two taken together in any manner be greater than the
remaining one,

namely A, B greater than C,
A, C greater than 5,
and B, C greater than 4 ;

thus it is required to construct a triangle out of straight lines
equal to 4, B, C.

Let there be set out a straight line DE, terminated at D
but of infinite length in the direction of £,
and let DF be made equal to 4, FG equal to B, and GH
equal to C. [r. 3]
With centre / and distance #D let the circle DXL be
described ;
again, with centre G and distance G/ let the circle XLH be
described ;
and let X7, KG be joined ;
I say that the triangle X#G has been constructed out of
three straight lines equal to 4, 5, C.
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For, since the point F is the centre of the circle DKL,
FD is equal to FK.

But 7D is equal to 4 ;
therefore KF is also equal to A.

Again, since the point G is the centre of the circle LKXH,
GH is equal to GX.

But GH is equal to C;
therefore X'G is also equal to C.

And FG is also equal to B ;

therefore the three straight lines X/, FG, GK are equal to
the three straight lines 4, B, C.

Therefore out of the three straight lines K%, FG, GK,
which are equal to the three given straight lines 4, 5, C, the

triangle X7G has been constructed. QiETE

2—4. This is the first case in the Elements of a Swpioubs to a problem in the sense of a
statement of the conditions or limits of the possibility of a solution. The criterion is of
course supplied by the preceding ition.

3. thus it is necessary. is is usually translated (e.g. by Williamson and Simson)
*‘ But it is necessary,” which is however inaccurate, since the Greek is not 3¢ 3¢ but 3¢ 3.
The words are the same as those used to introduce the Siopirpds in the other sense of the
*¢ definition ™ or * icular statement” of a construction to be effected. Hence, as in the
latter case we say ** thus it is required ” [n.g. to bisect the finite straight line 45, 1. 10), we
should here translate * fAus it is necessary.

4 To this enunciation all the Mss. and Boethius add, after the Siopiouds, the words
“because in any trin.n&le two sides taken together in any manner are greater than the
remaining one.” But this ation has the appearance of a gloss, and it is omitted
5‘mclu and Campanus. oreover there is no corresponding addition to the &wopi

VI, 28,

It was early observed that Euclid assumes, without giving any reason, that
the circles drawn as described will meet if the condition that any two of the
straight lines 4, B, C are together greater than the third be fulfilled. Proclus

. 331, 8 sqq.) argues the matter by means of reductio ad absurdum, but
not exhaust the possible hypotheses inconsistent with the contention.
He says the circles must do one of three things, (1) cut one another, (2) touch
one another, (3) stand apart (8weordva:) from one another. He then considers
the hypotheses (GL of their touching externally, (§) of their being separated
from one another by a space. He should have considered also the hypothesis
(¢) of one circle touching the other énfermally or lying entirely within the
other without touching. These three hypotheses being successivel&iispmved,
it follows that the circles must meet (this is the line taken by erer and
Todhunter).

Simson says: “Some authors blame Euclid because he does not
demonstrate that the two circles made use of in the construction of this
problem must cut one another: but this is very plain from the determination
he has given, namely, that any twa of the straight lines DF, FG, GH must
be greater than the third. For who is so dull, though only beginning to
learn the Elements, as not to perceive that the circle described from the
centre 7, at the distance #D, must meet 7/ betwixt # and A, because FD
is less than #& ; and that, for the like reason, the circle described from the
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centre & at the distance GA must meet DG betwixt D and G ; and that
these circles must meet one another, because FD and GH are together
greater than FG.”

We have in fact only to satisfy ourselves that one of the circles, e.g. that
with centre G, has at least one point of its circumference outside the other
circle and also at least one point of its circumference inside the same circle ;
and this is best shown with reference to the points in which the first circle
cuts the straight line DE. For (1) #H, being equal to the sum of B and C,
is greater than 4, i.e. than the radius of the circle with centre &, and therefore
H is outside that circle. (2) If GM be measured along GF equal to GH
or C, then, since GM is either (a) less or (16;) greater than GF M will fall
either (@) between G and F or (#) beyond & towards D ; in the first case
(a) the sum of FM and C is equal to FG and therefore less than the sum
of 4 and C, so that FAf is less than 4 or FD; in the second case (&) the
sum of MF and FG, i.e. the sum of MF and B, is equal to GM or C, and
therefore less than the sum of 4 and B, so that MF is less than 4 or FD;
hence in either case M falls within the circle with centre 7

It being now proved that the circumference of the circle with centre G
has at least one point outside, and at least one point inside, the circle with
centre F, we have only to invoke the Principle of Continuity, as we have to
do in 1 1 (cf. the note on that proposition, p. 242, where the necessary
postulate is stated in the form suggested by lgi]ling).

That the construction of the proposition gives only #we points of
intersection between the circles, and therefore only two triangles satisfying
the condition, one on each side of #G, is clear from 1. %, which, as before
pointed out, takes the place, in Book 1., of 111 10 proving that two circles
cannot intersect in more points than two.

ProrosITION 23.

On a given straight line and at a point on it to construct a
rvectilineal angle equal to a given vectilineal angle.

Let 4B be the given straight line, 4 the point on it, and
the angle DCE the given rectilineal angle;

thus it is required to construct on the given straight line
AB, and at the point A4 on it, a rectilineal angle equal to the
given rectilineal angle DCE.

e

On the straight lines CD, CE respectively let the points
D, E be taken at random ;

let DE be joined,
and out of three straight lines which are equal to the three
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straight lines CD, DE, CE let the triangle AFG be con-
structed in such a way that CD is equal to AF, CE to AG,
and further DE to FG. [x. 22)

Then, since the two sides DC, CE are equal to the two
sides 74, AG respectively,

and the base D£ is equal to the base FG,
the angle DCE is equal to the angle FA4G. [x 8]

Therefore on the given straight line 4B, and at the point
A on it, the rectilineal angle 7.4 G has been constructed equal

to the given rectilineal angle DCE. o E F.

This problem was, according to Eudemus (see Proclus, p. 333, 5), “rather
the discovery of Oenopides,” from which we must apparently infer, not that
Oenopides was the first to find any solution of it, but that it was he who dis-
covered the particular solution given by Euclid. (Cf. Bretschneider, p. 65.)

The editors do not seem to have noticed the fact that the construction of
the triangle assumed in this proposition is not exactly the construction given
in 1. 22 We have here to construct a triangle on a certain finite straight line
AG as base; in 1. 22 we have only to construct a triangle with sides of given
length without any restriction as to how it is to be placed. Thus in 1. 22 we
set out any line whatever and measure successively three lengths along it
beginning from the given extremity, and what we must regard as the base is the
intermediate length, not the length beginning at the given extremity, of the
straight line arbitrarily set out. Here the base is a given straight line abutting
at a given point. Thus the construction has to be modified somewhat from

that of the ing proposition. We must measure 4G along 4.5 so that
AG is equal to CE (or CD), and GH along GB equal to DE; and then we
must produce B4, in the opposite direction, to &, so that 4 Fis equal to CD
(or CE, if AG has been made equal to CD).

Then, by drawing circles (1) with centre A and radius 4F, (2) with centre
G and radius GH, we determine X, one of their points of intersection, and we
prove that the trangle XA G is equal in all respects to the triangle D CE, and
then that the angle at A is equal to the angle DCE.

I think that Proclus must (though he does not say so) have felt the same
difficulty with regard to the use in 1. 23 of the result of 1. 22, and that this is
probably the reason why he gives over again the construction which I have
given above, with the remark Fp 334, 6) that “you may obtain the construction
of the triangle in a more instructive manner ( xaAwwrepor) as follows.”

Proclus objects to the procedure of Apollonius in constructing an angle
under the same conditions, and certainly, if he quotes Apollonius correctly, the
latter’s exposition must have been somewhat slipshod.
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“He takes an angle CDE at random,” says Proclus (p. 335, 19 5qq.), “and
a straight line 4.5, and with centre D and distance
C.D describes the circumference CE, and in the same c
way with centre 4 and distance 4.8 the circumference
FB. Then, cutting off 7B equal to CE, he joins AF.

And he declares that the angles 4, D standing on
equal circumferences are equal.”

In the first place, as Proclus remarks, it should be E
premised that 4.7 is equal to C.D in order that the B
circles may be equal; and the use of Book 11 for
such an elementary construction is objectionable. 4
The omission to state that 4.8 must be taken equal
to C.D was no doubt a slip, if it occurred. And, as
regards the equal angles ““standing on equal circum- F
ferences,” it would seem possible that Apollonius said
this in explanation, for the sake of brevity, rather than by way of proof. It
seems to me probable that his construction was only given from the point of
view of practical, not theoretical, geometry. It really comes to the same thing
as Euclid’s except that DC is taken equal to DE. For cutting off the arc BF
equal to the arc CE can only be meant in the sense of measuring the ckord
CE, say, with a pair of compasses, and then drawing a circle with centre B
and radius equal to the chord CE. Apollonius’ direction was therefore
probably intended as a practical short cut, avoiding the actual drawing of the
chords CE, BF, which, as well as a proof of the equality in all respects of the
triangles CDE, BAF, would be required to establish #seoretically the correct-
ness of the construction.

PRrOPOSITION 24.

If two triangles have the two sides equal to two sides
respectively, but have the one of the angles contained by the equal
straight lines greater than the other, they will also have the
base greater than the base.

s Let ABC, DEF be two triangles having the two sides
AB, AC equal to the two sides DE, DF respectively, namely
AB to DE, and AC to DF, and let the angle at 4 be greater
than the angle at D ;

I say that the base BC is also greater than the base £F.

1o For, since the angle B4C
is greater than the angle £DF, A D
let there be constructed, on the
straight line DZ, and at the
point D on it, the angle £DG

15 equal to the angle BAC; [1. 23] B -
let DG be made equal to either F
of the two straight lines 4C,
DF, and let £G, FG be joined.
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Then, since 42 is equal to DE, and AC to DG,
2 the two sides B4, AC are equal to the two sides £D, DG,
respectively ;
and the angle BAC is equal to the angle £DG ;
therefore the base BC is equal to the base £G.  [1. 4]

Again, since DF is equal to DG,
25 the angle DGF is also equal to the angle DFG; [v 5]
therefore the angle DFG is greater than the angle £GF.
Therefore the angle £FG is much greater than the angle
EGF.
And, since £FG is a triangle having the angle EFG
sogreater than the angle EGF,
and the greater angle is subtended by the greater sidt[e, ]
LI
the side £G is also greater than £F. x

But £G is equal to BC.
Therefore BC is also greater than EF.

35 Therefore etc.
Q E. D.

1o. I have naturally left out the well-known words added by Simson in
order to avoid the necessity of considering three cases: “Of the two sides
DE, DF let DE be the side which is not greater than the other.” I doubt
whether Euclid could have been induced to insert the words himself, even if
it had been represented to him that their omission meant leaving two possible
cases out of consideration. His habit and that of the great Greek geometers
was, not to set out all possible cases, but to give as a rule one case, generally
the most difficult, as here, and to leave the others to the reader to work out for
himself. We have already seen one instance in 1. 7.

Proclus of course gives the other
two cases which arise if we do not

A D
first provide that DE is not ter
than%E 7
(1) In the first case G may fall
on EF produced, and it is then
B C E F a

obvious that £G is greater than £F,
(2) In the second case £G may
fall below EF,

If so, by 1. 21, DF, FE are -« o
together less than DG, GE.
But DF is equal to DG ; there-
fore EF is less than EG, i.e. than
BC. ¥
B C E a

These two cases are therefore
decidedly simpler than the case taken
by Euclid as typical, and could well be left to the ingenuity of the learner.
If however after all we prefer to insert Simson’s words and avoid the latter
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two cases, the proof is not complete unless we show that, with his assumption,
F must, in the figure of the proposition, fall delow EG.

De Morgan would make the following proposition precede: Every straight
line drawn from the vertex of a triangle to the base is less than the grealer of the
two sides, or than either if they are equal, and he would prove it by means of
the proposition relating to perpendicular and obliques given above, p. 291.

But it is easy to prove directly that F falls below EG, if
DE is not greater than DG, by the method employed by D
Pfleiderer, Lardner, and Todhunter.

Let DF, produced if necessary, meet £G in A.

Then the angle DHG is greater than the angle DfG 4 ]

I 16
and the angle DEG is not less than the angle .DGI':E ]
L 18
therefore the angle DHG is greater than the angle DGH.
Hence DH is less than DG, [1. 19]
and therefore DA is less than DF.

Alternative proof.
Lastly, the modern alternative proof is worth giving,

D A D
&7 8 1 i}hck E'AH a
Let DA bisect the angle FDG (after the triangle DEG has been made

equal in all res Pecta to the triangle 4BC, as in the proposition), and let DA
meet EGin Join HF. b

Then, in the triangles FDH, GDH,
the two sides D, DH are equal to the two sides GD, DH,
and the included angles FDH, GDH are equal ;
therefore the base HF is equal to the base HG.
Accordingly £G is equal to the sum of ZH, HF);
and EZX, HF are together greater than £F; [1. 20]
therefore £G, or BC, is greater than EF,

Proclus (p. 339, 11 5qq.) answers by antici}ntion the possible question that
might occur to any one on this proposition, viz. why does Euclid not compare
the areas of the triangles as he does in 1. 4? He observes that inequality of
the areas does not follow from the inequality of the angles contained by the
equal sides, and that Euclid leaves out all reference to the question both for
this reason and because the areas cannot be compared without the help of the
theory of parallels. “But if,” says Proclus, “we must anticipate what is to
come and make our comparison of the areas at once, we assert that (1) if
the angles A, D—supposing that our argument proceeds with reference to the
figure in the proposition—are (fogether) equal to two right angles, the triangles
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are proved equal, (2) if grealer than two right angles, that triangle which has
the greater angle is less, and (3) if they are less, greater.” Proclus then gives
the proof, but without any reference to the source from which he quoted
the proposition. Now an-Nairizi adds a similar proposition to 1. 38, but
definitely attributes it to Heron. I shall accordingly give it in the place
where Heron put it

ProrosITION 25.

If two triangles have the two sides equal fo two sides
vespectively, but have the base greater than the base, they will
also have the one of the angles contained by the equal straight
lines greater than the other.

Let ABC, DEF be two triangles having the two sides
AB, AC equal to the two sides DE, DF respectively, namely
AB o DE, and AC to DF; and let the base BC be greater
than the base £F;

I say that the angle BAC is also greater than the angle
EDF.

D

F

For, if not, it is either equal to it or less.
Now the angle BAC is not equal to the angle £DF;

for then the base ZC would also have been equal to the base
EF, (1 4]
but it is not ;

therefore the angle 24 C is not equal to the angle £DF.
Neither again is the angle BAC less than the angle £DF;

for then the base BC would also have been less than the base
EF, [1 24]

but it is not ;
therefore the angle 2.4 C is not less than the angle £DF.
But it was proved that it is not equal either ;
therefore the angle B4 C is greater than the angle £DF.
Therefore etc.
Q. E. D.
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De Morgan points out that this proposition (as also 1. 8) is a purely Jogical
consequence of 1. 4 and L 24 in the same way as 1. 19 and 1. 6 are purely
logical consequences of 1. 18 and 1. 5. If 4, 4, ¢ denote the sides, A, B, C the
angles opposite to them in a triangle ABC, and @, ¥, ¢, 4', B, C the sides
and opposite angles respectively in a triangle A'B C,1L 4 a.nd 1. 24 tell us
that, &, ¢ being respectively equal to 4, ¢,

(1) if 4 is equal to 4', then a is equal to @',

(2) if A is less than A4', then a is less than &/,

(3) if A is greater than 4', then a is greater than a’;
and it follows Jogically that,

(1) if @ is equal to &', the angle A is equal to the angle 4', [r. 8]
(2) if a is less than &', 4 is less than A',
(3)if¢isgreaterﬂmna’disgreeterthmd'} (1 25]

Two alternative proofs of this theorem are given by Proclus (pp. 345—7),
and they are both interesting. Moreover both are direct.
1. Proof by Menelaus of Alexandria.

Let ABC, DEF be two triangles having the two sides B4, 4C equal to
the two sides £.D, DF, but the base BC greater than the base EF.

Then shall the angle at 4 be greater than the angle at .D.
From BC cut off BG equal to EF. At B, on the straight line BC, make
the angle GBH (on the side of BG remote from A ) equal to the angle FED.
Make BH equal to DE ; join HG, and produce it to meet AC in K.
Join AH.
Then, since the two sides GB, BH are equal to the two sides FE, ED
respectively,
and the angles contained by them are equal,
HG is equal to DF or AC,
and the angle BHG is equal to the angle £DF,
Now HK is greater than HG or AC,
and @ fortiori greater than AKX ;
therefore the angle XA is greater than the angle X54.
And, since 4B is equal to BH,
the angle BAH is equal to the angle BHA.
Therefore, by addition,
the whole angle B4 C is greater than the whole angle BHG,
that is, greater than the angle EDF,
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II. Heron's proof.

Let the triangles be given as before.

Since BC is greater than £5, produce £F to G so that £G is equal to
BC.

Produce EZD to A so that DA is equal to DF, The circle with centre
D and radius DF will then pass through A. Let it be described, as FKH.

~

Now, since B84, AC are together greater than 5C,
and BA, AC are equal to £D, D respectively,
while BC is equal to EG,
EH is greater than EG.

Therefore the circle with centre X and radius £G will cut £, and
therefore will cut the circle already drawn. Let it cut that circle in X, and
join DK, KE.

Then, since D is the centre of the circle FX &,

DX is equal to DF or AC.
Similarly, since Z is the centre of the circle XG,
EK is equal to EG or BC,
And DE is equal to 45.
Therefore the two sides B4, AC are equal to the two sides £D, DX

respectively ;
" and the base BC is equal to the base £K;
therefore the angle BAC is equal to the angle £DX.
Therefore the angle BAC is greater than the angle ZDF.

ProrosiTioN 26.

If two triangles have the two angles equal to two angles
‘.Zem:mjr, one side equal to one side, namely, either the
adjoining the equal angles, or that métmdmg one of the
angles, they will also have the remaining sides equal to
mammg sides and the remaining angle to the remaining
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Let ABC, DEF be two triangles having the two angles
ABC, BCA equal to the two angles DEF, EFD respectively,
namely the angle 4BC to the angle DEF, and the angle

10 BCA to the angle £FD; and let them also have one side
equal to one side, first that adjoining the equal angles, namely
BCto EF,;

I say that they will also have the remaining sides equal

to the remaining sides respectively, namely 45 to DE and
15 AC to DF, and the remaining angle to the remaining angle,
namely the angle ZAC to the angle £DF.

A

B ¢
For, if AB is unequal to DE, one of them is greater.
Let AB be greater, and let BG be made equal to DE;
and let GC be joined.
20 Then, since BG is equal to DE, and BC to EF,
the two sides GB, BC are equal to the two sides DE, EF
respectively;
and the angle GBC is equal to the angle DEF;
therefore the base GC is equal to the base DF,
25 and the triangle GBC is equal to the triangle DEF,
and the remaining angles will be equal to the remaining angles,
namely those which the equal sides subtend ; [1 4]
therefore the angle GCB is equal to the angle DFE.
But the angle DFE is by hypothesis equal to the angle BCA;
therefore the angle BCG is equal to the angle 2CA4,
the less to the greater: which is impossible.
Therefore A8 is not unequal to DE,
and is therefore equal to it.
But BC is also equal to £F;
35 therefore the two sides 48, BC are equal to the two
sides DE, EF respectively,
and the angle 48C is equal to the angle DEF;
therefore the base 4C is equal to the base DF,
and the remaining angle BAC is equal to the remaining
wangle EDF, [r 4]

3o
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Aga.in, let sides subtending equal angles be equal, as A5
to DE;

I say again that the remaining sides will be equal to the
remaining sides, namely 4AC to DF and BC to EF, and
45 further the remaining angle BAC is equal to the remaining
angle £DF.,
For, if BC is unequal to £F, one of them is greater.
Let BC be greater, if possible, and let £/ be made equal
to EF; let AH be joined.
0o Then, since BH is equal to £F, and AB to DE,
the two sides 4B, BH are equal to the two sides DE, EF
respectively, and they contain equal angles ;
therefore the base 4/ is equal to the base DF,
and the triangle ABH is equal to the triangle DEF,
ss and the remaining an les will be equal to the remaining angles,
namely those which the equal sides subtend ; [r. 4]
therefore the angle BA A is equal to the angle £FD.
But the angle £FD is equal to the angle BCA4 ;
therefore, in the triangle A/ C, the exterior angle BHA is
60 equal to the interior and opposite angle BCA :
which is impossible. [r. 16]
Therefore BC is not unequal to £F,
and is therefore equal to it.
But 428 is also equal to DE ;
65 therefore the two sides 48, BC are equal to the two sides
DE, EF respectively, and they contain equal angles ;
therefore the base AC is equal to the base DF,
the triangle 4BC equal to the triangle DEF,
and the remaining angle ZA4C equal to the remaining angle
70 EDF. [1- 4]
Therefore etc.
Q. E. D.

2—3. the side adjoining the equal angles, wAeupdr Thr wpds Tals loass yurlas.

29. is by hypothesis equal. iwbreras loy, wcun?l.::g to the elegant Greek idiom.
imbreipas is used for the passive of lrorifnw, as xeipau is for the passive of rlfmum, and
so with the other compounds. Cf. xpooxeigfas, ** to be added.”

The alternative method of proving this proposition, viz. by applying one
triangle to the other, was very early discovered, at least so far as regards the
case where the equal sides are adjacent to the equal angles in each. An-Nairizi
gives it for this case, observing that the proof is one which he'had found, but
of which he did not know the author.
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Proclus has the following interesting note (p. 352, 13—18): “Eudemus
in his geometrical history refers this theorem to Thales. For he says that, in
the method by which they say that Thales proved the distance of ships in the
sea, it was necessary to make use gf this theorem.” As, unfortunately, this
information is not sufficient of itself to enable us to determine how Thales
solvzdoathis problem, there is considerable room for conjecture as to his
method.

The suggestions of Bretschneider and Cantor agree in the assumption
that the necessary observations were probably made from the top of some
tower or structure of known height, and that a right-angled triangle was used in
which the tower was the perpendicular, and the line connecting the bottom of
the tower and the ship was the base, as in the annexed figure, where 4.8 is the
tower and C the ship. Bretschneider (Die Geometrie und die Geometer vor
Eukleides, § 30) says that it was only necessary for
the observer to observe the angle CA45, and then A
the triangle would be completely determined by pN\E
means of this angle and the known length 4.5.
As Bretschneider says that the result would be
obtained “in a moment” by this method, it is not
clear in what sense he supposes Thales to have
‘“observed” the angle BAC. Cantor is more
definite (Gesch. d. Math. 15, p. 145), for he saysthat B c
the problem was nearly related to that of finding the
Segt from given sides. By the Seg/ in the Papyrus Rhind is meant the
ratio to one another of certain lines in pyramids or obelisks. Eisenlohr and
Cantor took the one word to be equivalent, sometimes to the cosine of the
angle made by the edge of the pyramid with the co-terminous diagonal of the
base, sometimes to the fangent of the angle of slope of the faces of the pyramid.
It is now certain that it meant one thing, viz. the ratio of half the side of
the base to the height of the pyramid, i.e. the cofangent of the angle of
sloj The calculation of the Segs thus implying a sort of theory of simi-
larity, or even of trigonometry, the suggestion of Cantor is apparently that
the Seg? in this case would be found from a small right-angled triangle ADE
having a common angle 4 with 4BC as shown in the figure, and that the
ascertained value of the Seg# with the length 4.8 would determine BC. This
amounts to the use of the property of similar triangles ; and Bretschneider's
suggestion must apparently come to the same thing, since, even if Thales
measured the angl in our sense (e.g. by its ratio to a right angle), he would,
in the absence of something correspondingto a table of trigonometrical ratios,
have gained nothing and would have had to work out the proportions all the
same.

Max C. P. Schmidt also (Kuwlturkistorische Beitrdge sur Kenntnis des
griechischen und romischen Altertums, 1906, p. 32) similarly supposes Thales to
have had a right angle made of wood or gmnze with the legs graduated, to
have placed it in the position 4DE (4 being the position of his eye), and
then to have read off the lengths 4.D, DE respectively, and worked out the
length of BC by the rule of three.

How then does the supposed use of similar triangles and their property
square with Eudemus' remark about 1. 26?7 As it stands, it asserts the
equality of fwo triangles which have two angles and one side respectively
equal, and the theorem can only be brought into relation with the above
explanations by taking it as asserting that, if two angles and one side of ome
triangle are given, the triangle is completely determined. But, if Thales
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practically used proportions, as supposed, 1. 26 is surely not at all the theorem
which this procedure would naturally suggest as underlying it and being
“necessarily used”; the use of proportions or of similar but not equal
triangles would surely have taken attention altogether away from 1. 26 and
fixed it on vI. 4.

For this reason I think Tannery is on the right road when he tries to find
a solution using 1, 26 as it stands, and withal as primitive as any recorded
solution of such a problem. His suggestion (La Géoméirie grecque, o—I
is based on the Auminis varatio of the Roman agrimensor Margup; ?]uniuz
Nipsus and is as follows.

To find the distance from a point 4 to an inaccessible point B. From A4
measure along a straight line at right angles to 45 a
length 4C and bisect it at D. From C draw CZ at right B
angles to CA4 on the side of it remote from B, and let E
be the point on it which is in a straight line with B and D.

Then, by 1. 26, CE is obviously equal to 4.5.

As regards the equality of angles, it is to be observed
that those at D are equal because they are vertically
opposite, and, curiously enough, Thales is expressly
credited with the discovery of the equality of such angles.

The only objection which I can see to Tannery’s
solution is that it would require, in the case of the ship, a
certain extent of free and level ground for the construction
and measurements.

I suggest therefore that the following may have been E
Thales’ method. Assuming that he was on the top of a
tower, he had only to use a rough instrument made of a straight stick and a
cross-piece fastened to it so as to be capable of turning about the fastening
(say a nail) so that it could form any angle with the stick and would remain
where it was put. Then the natural thing would be to fix the stick upright
(by means of a plumb-line) and direct the cross-piece towards the ship.
Next, leaving the cross-piece at the angle so found, the stick could be turned
round, still remaining vertical, until the cross-piece pointed to some visible
object on the shore, when the object could be mentally noted and the distance
from the bottom of the tower to it could be subsequently measured. This
would, by 1. 26, give the distance from the bottom of the tower to the ship.
This solution has the advantage of corresponding better to the simpler and
more probable version of Thales' method of measuring the height of the
pyramids; Diogenes Laertius says namely (1. 27, p. 6, ed. Cobet) on the
authonty of Hieronymus of Rhodes (B.c. 29—230), that he waited for this
purpose until the moment when our skadows are of the same length as ourselves.

>

Recapitulation of congruence theorems.

Proclus, like other commentators, gives at this point (p. 347, 20 sqq.) a
summary of the cases in which the equality of two triangles in all respects can
be established. We may, he says, seek the conditions of such equality by
successively considering as hypotheses the equality (1) of sides alone, (2) of
angles alone, (3) of sides and angles combined. Taking (1) first, we can only
establish the equality of the triangles in all respects if all three sides are
respectively equal; we cannot establish the equality of the triangles by any
hypothesis of class (2), not even the hypothesis that all the three angles are
respectively equal ; among the hypotheses of class (3), the equality of one
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side and one angle in each triangle is not enough, the equality (a) of one side
and all three angles is more than enough, as is also the equality (5) of two
sides and two or three angles, and (¢) of three sides and one or two angles.

The only hypotheses therefore to be examined from this point of view are
the equality of

(a) three sides [Eucl. 1 8].

(B) two sides and one angle [1. 4 proves one case of this, where the angle
is that contained by the sides which are by hypothesis equal].

(y) one side and two angles [1. 26 covers all cases].

It is curious that Proclus makes no allusion to what we call the ambiguous
case, that case namely of (8) in which it is an angle opposite to one of the
two specified sides in one triangle which is equal to the angle opposite to the
equal side in the other triangle, Camerer indeed attributes to Proclus the
observation that in this case the equality of the triangles cannot, unless some
other condition is added, be asserted generally; but it would appear that
Camerer was probably misled by a figure (Proclus, p. 351) which looks like a
figure of the ambiguous case but is really only to show that in 1. 26 the
equal sides must be corresponding sides, i.e., they must be either adjacent to the
equal angles in each triangle, or opposite to corresponding equal angles, and
that, e.g., one of the equal sides must not be adjacent to the two angles in
one triangle, while the side equal to it in the other triangle is opposite to one
of the two corresponding angles in that triangle.

The ambiguous case.

If two triangles have two sides equal fo two sides respectively, and if the
angles opposite to one pair of equal sides be also equal, them will the angles
opposite the other pair of equal sides be cither equal or supplementary ; and, in
the former case, the triangles will be equal in all respects.

Let ABC, DEF be two triangles such that 45 is equal to DE, and 4C
to DF, while the angle 4BC is equal to the angle DEF;
it is required to prove that the angles ACB, DFE are either equal or
supplementary.

St

Now (1), if the angle BAC be equal to the angle EDZF, it follows, since
the two sides 4.8, 4C are equal to the two sides DE, DF respectively, that
the triangles 48C, DEF are equal in all respects, [v 4]
and the angles 4 CB, DFE are equal.

(2) If the angles BAC, EDF be not equal, make the angle £DG (on
the same side of £.D as the angle £DF) equal to the angle BAC.

Let EF, produced if necessary, meet DG in G.

Then, in the triangles 48C, DEG,
the two angles BAC, ABC are equal to the two angles £DG, DEG
respectively,
and the side 4.8 is equal to the side DE;
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therefore the triangles 4.8C, DEG are equal in all respects, [1. 26]
so that the side 4C is equal to the side DG,
and the angle 4 CB is equal to the angle DGE.
Again, since AC is equal to DF as well as to DG,
DFis equal to DG,
and therefore the angles DFG, DGF are equal.
But the angle DFE is supplementary to the angle DFG ; and the angle
DGF was proved equal to the angle-4CB;
therefore the angle DFE is supplementary to the angle 4 CB.

If it is desired to avoid the ambiguity and secure that the triangles may
be congruent, we can introduce the necessary conditions into the enunciation,
on the analogy of Eucl. vi. 7.

If two triangles have two sides of the one equal to two sides of the other
respectively, and the angles opposite to a pair of equal sides equal, then, 5f the
angles opposite to the other pair of equal sides are both acute, or both obtuse, or if
one of them is a right angle, the two triangles are equal in all respects.

The proof of the three cases (by reductio ad absurdum) was given by
Todhunter.

ProrosiTION 27.

If a straight line falling on two straight lines make the
allernate angles equal to one another, the straight lines will be
parallel to one another.

For let the straight line £/ falling on the two straight
slines 48, CD make the alternate angles 4 EF, EFD equal
to one another;

I say that 4.8 is parallel to CD.

For, if not, A58, CD when pro- , 8
duced will meet either in the direction
wof B, D or towards A4, C. a
Let them be produced and meet, ¢ D

in the direction of B, D, at G.
Then, in the triangle GEF,
the exterior angle 4 EF is equal to the interior and opposite
isangle EFG :
which is impossible. [r. 16)
Therefore A8, CD when produced will not meet in the
direction of B, D.

Similarly it can be proved that neither will they meet
aotowards 4, C.
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But straight lines which do not meet in either direction
are parallel; [Def. 23]
therefore 4B is parallel to CD.

Therefore etc.
Q. E. D,

1. falling on two straight lines, els 360 edfelas durirrovaa, the phrase being the same
as that used in Post. 5, meaning a fransversal.

2. the alternate angles, al éraA\af ywrla. Proclus (p. 357, 9) explains that Euclid
uses the word alfermate (or, more exactly, alternately, & in two connexions, (1) of a
certain transformation of a proportion, as in Book v. and the arithmetical Books, (2) as here,
of certain of the angles formed by parallels with a straight line crossing them. Alternate
:\dgles are, according to Euclid as interpreted by Proclus, those which are not on the same

e of the transversal, and are not adjacent, but are separated by the transversal, both hemﬁ
within the parallels but one ‘‘above” and the other “below.” The meaning is matura
enough if we imagine the four internal angles to be taken in cyclic order and alfernate angles
to be any two of them not successive but separated lz one unfie of the four.

9. l{: the direction of B, D or towards A, C, literally *‘ towards the parss B, D or
towards A, C,” éwl 74 B, A pépn 4 éwl rd A, I

With this proposition begins the second section of the first Book. Up
to this point Euclid has dealt mainly with triangles, their construction
and their properties in the sense of the relation of their parts, the sides and
angles, to one another, and the comparison of different triangles in respect of
their parts, and of their area in the particular cases where they are congruent.

The second section leads up to the third, in which we pass to relations
between the areas of triangles, parallelograms and squares, the special feature
being a new conception of eguality of areas, equality not dependent on
congruence. 'This whole subject requires the use of parallels. Consequently
the second section beginning at 1. 27 establishes the theory of
introduces the cognate matter of the equality of the sum of the angles of a
triangle to two right angles (1. 32), and ends with two propositions forming the
transition to the third section, namely 1. 33, 34, which introduce the parallelo-
gram for the first time.

Aristotle on parallels.

We have already seen reason to believe that Euclid’s personal contribution
to the subject was nothing less than the formulation of the famous Postulate
5 (see the notes on that Postulate and on Def. 23), since Aristotle indicates
that the then current theory of parallels contained a pefitio prinapii, and
pres:dmahly therefore it was Euclid who saw the defect and proposed the
remedy.

But it is clear that the propositions 1. 27, 28 were contained in earlier
text-books. They were familiar to Aristotle, as we may judge from two
interesting passages.

(1) In Anal. Post. 1. 5 he is explaining that a scientific demonstration
must not only prove a fact of every individual of a class (xard wavrds) but
must prove it primarily and generally true (wpdrov xafdhov) of the whole of
the class as one; it will not do to prove it first of one part, then of ariother

and so on, until the class is exhausted. He illustrates this (74 a 13—16)

y a reference to parallels: “If then one were to show that right (angles) do
not meet, the proof of this might be thought to depend on the fact that this
is true of all (pairs of actual) right angles. But this is not so, inasmuch as
the result does not follow because (the two angles are) equal (to two right
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angles) in the particular way [i.e. because each is a right angle], but by virtue
of their being equal (to two right angles) in any way whatever [i.e. because
the sum only needs to be equal to two right angles, and the angles themselves
may vary as much as we please subject to this].”

(2) The second passage has already been quoted in the note on Def. 23 :
“there is nothing surprising in different hypotheses leading to the same false
conclusion ; e.g. the conclusion that parallels meet might equally be drawn
from either of the assumptions (@) that the interior (angle) is greater than the
exterior or (4) that the sum of the angles of a triangle is greater than two
right angles ” (4nal. Prior. 11. 17, 66 a 11—15).

I do not quite concur in the interpretation which Heiberg places upon
these passages (Mathematisches su Aristoteles, pp. 18—19). He says, first,
that the allusion to the “interior angle” being “greater than the exterior” in
the second passage shows that the reference in the first passage must be to
Eucl. 1. 28 and not to 1. 27, and he therefore takes the words drt wdi loas in
the first passage (which I have translated “ because the two angles are equal
to two right angles in the particular way ”) as meaning * because the angles,
viz. the exterior and the inferior, are equal in the particular way.” He also
takes al épfal od guprirrover (which I have translated “right angles do not
meet,” an expression quite in Aristotle’s manner) to mean “perpendicular
straight lines do not meet”; this is very awkward, especially as he is obliged
to supply angles with ica: in the next sentence.

But I think that the first passage certainly refers to 1. 28, although I do
not think that the alternative (2) in the second passage suggests it. This
alternative may, I think, equally with the alternative () refer to 1. 27. That
proposition is proved by redudio ad absurdum based on the fact that, if the
straight lines do meet, they must form a #riangle, in which case the exterior
angle must be greater than the interior (while according to the hypothesis
these angles are equal). It is true that Aristotle speaks of the hypothesis
that the smferior angle is greater than the exterior ; but after all Aristotle had
only to state some incorrect hypothesis. It is of course only in connexion
with straight lines meefing, as the hypothesis in 1. 27 makes them, that the
alternative () about the sum of the angles of a triangle could come in, and
alternative (a) implies alternative (2).

It seems clear then from Aristotle that 1. 27, 28 at least are pre-Euclidean,
and that it was only in 1, 29 that Euclid made a change by using his Postulate.

De Morgan observes that 1. 27 is a Jogica/ equivalent of 1. 16, Thus, if 4
means “straight lines forming a triangle with a transversal,” B “straight lines
making angles with a transversal on the same side which are together less
than two right angles,” we have

All 4is B,

All not-B is not-4.

and it follows /Jagically that

ProrosiTION 28.

If a straight line falling on two straight lines make the
exterior angle equal to the interior and opposite angle on the
same side, or the interior angles on the same side equal to two
right angles, the straight lines will be parallel to one another.


http://ti.oX.-A

310 BOOK I [r. 28

For let the straight line £F falling on the two straight
lines AB, CD make the exterior angle £GZB equal to the
interior and opposite angle GHD, or the interior angles on
the same side, namely BG A, GHD, equal to two right angles;

I say that 4B is parallel to CD.

For, since the angle E£G2ZB is £
ual to the angle GHAD, " \ i
while the angle £GB isequal tothe
angle AGH, [r 15] A
the angle AGH is also equal to the © 9
angle GHD;
and they are alternate ;
therefore A2 is parallel to CD. [1. 27]

Again, since the angles BGH, GHD are equal to two
right angles, and the angles AGH, BGH are also equal to
two right angles, [1. 13]
the angles AGH, BGH are equal to the angles BGH, GHD.

Let the angle BGH be subtracted from each ;

therefore the remaining angle 4G/ is equal to the remaining
angle GHD;

and they are alternate ;
therefore A28 is parallel to CD. [x 27)
Therefore etc.
Q. E. D.

One criterion of parallelism, the equality of alternate angles, is given in
1. 27; here we have two more, each of which is easily reducible, and is actually
reduced, to the other.

Proclus observes (pp. 358—9) that Euclid could have stated six criteria as
well as three, by using, in addition, other pairs of angles
in the figure (not adjacent) of which it could be predi-
cated that the two angles are equal or that their sum
is equal to two right angles. A natural division is to
consider, first the pairs which are on the same side of
the transversal, and secondly the pairs which are on
different sides of it.

Taking (1) the possible pairs on the same side, we
may have a pair consisting of

(a) two internal angles, viz. the pairs (BGH,
GHD) and (AGH, GHC);

(8) two external angles, viz. the pairs (EGB, DHF) and (EGA, CHF);

(¢) one external and one internal angle, viz. the pairs (EGB, GHD),
(FHD, HGB), (EGA, GHC) and (FHC, HGA).
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And (2) the possible pairs on different sides of the transversal may consist
respectively of

(a) two internal angles, viz. the pairs (4 GH, GHD) and (CHG, HGB);

(4) two external angles, viz. the pairs (4 GE, DHF) and (EGB, CHF);

(¢) one external and one internal, viz. the pairs (4 GE, GHD), (EGB,
GHC), (FHC, HGB) and (FHD, HGA).

The angles are equal in the pairs (1) (¢), (2) (@) and (2) S&), and the sum
is eqhual to two right angles in the case of the pairs (1) (), (1) () and (2) (¢).
For his criteria Euclid selects the cases (2) (2) [1. 27] and (1) (¢), (1) {a) [1. 28
lea.vmgl out the other three, which are of course equivalent but are not quite
s0 easily

From Proclus’ note on 1. 28 (p. 361) we learn that one Aigeias (? Aineias)
of Hierapolis wrote an epitome or abridgment of the Zlements. This seems
to be the onlgamention of this editor and his work; and they are only
mentioned as having combined Eucl. 1. 27, 28 into one proposition. To do
this, or to make the three hypotheses the subject of #4res separate theorems,
would, Proclus thinks, have been more natural than to deal with them, as
Buclid does, in two propositions. Proclus has no suggestion for explaining
Euclid’s arrangement unless the ground were that 1. 27 deals with angles on
different sides, 1. 28 with angles on one and the same side, of the transversal.
But may not the reason have been one of convenience, namely that the
criterion of 1. 27 is that actually used to prove parallelism, and is moreover
the basis of the construction of parallels in 1. 31, while 1. 28 only reduces the
other two hypotheses to that of 1. 27, so that precision of reference, as well as
clearness of exposition, is better secured by the arrangement adopted ?

PROPOSITION 29.

A straight line falling on parallel strvaight lines makes
the alternate angles equal to one another, the exterior angle
equal to the interior and opposite angle, and the interior angles
on the same side equal to two right angles.

For let the straight line £F fall on the parallel straight
lines AB, CD;

I say that it makes the alternate angles AGH, GHD
equal, the exterior angle £GB equal to the interior and
opposite angle GHD, and the interior angles on the same
side, namely BGH, GHD, equal to two right angles.

For, if the angle AGH is unequal
to the angle GHD, one of them is E
greater. \a

Let the angle AGH be greater. A ™ 4

Let the angle BGH be added to

each; c i o
therefore the angles AGH, BGH \

are greater than the angles BGH,

GHE.
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20  But the angles 4 GH, BGH are equal to two right an[gles j
L 13

therefore the angles BGH, GHD are less than two
right angles.
But straight lines produced indefinitely from angles less
than two right angles meet ; [Post. 5]
25 therefore 4B, CD, if produced indefinitely, will meet;
but they do not meet, because they are by hypothesis parallel.
Therefore the angle AGA is not unequal to the angle
GHD,
and is therefore equal to it.
3  Again, the angle 4GH is equal to the angle £GZ; [ 15]
therefore the angle £G2A is also equal to the angle
GHD. [c N1]
Let the angle G/ be added to each;
therefore the angles £GB, BGH are equal to the

35 angles BGH, GHD. [C. N 2]
But the angles £G5B, BGH are equal to two right angles j
L 13

therefore the angles BGH, GHD are also equal to
two right angles.
Therefore etc. Q. E. D.

23. straight lines produced indefinitely from angles less than two right angles,
al 8¢ dw’ éhacabrwy 1 S0 dpfdv éxBardueras els dwespor ouuwinTovow, a variation from the
more explicit hngu?e of Postulate 5. A deal is left to be understood, namely that the
straight lines begin from points at which they meet a transversal, and make with it internal
angles on the same side the sum of which is less than two right angles.

26. because they are by hypothesis parallel, literally ** because they are supposed
parallel,” 3w & wapadiflovs abrds droxeiofai.

Proof by ¢ Playfair’s’ axiom.

If, instead of Postulate s, it is preferred to use “ Playfair’s” axiom in the
proof of this proposition, we proceed thus.

To prove that the alternate angles AGH, {0 b
GHD are equal. PR ' Wt
If they are not equal, draw another straight K-~ \
line KL through G making the angle KC%H c H (")

equal to the angle GHD.
Then, since the angles XGH, GHD are equal,
KL is parallel to CD. [r. 27]
Therefore two straight lines KL, AB intersecting at G are both parallel to
the straight line CD :
whick is impossible (by the axiom).
Therefore the angle 4 GA cannot but be equal to the angle GHD.
The rest of the proposition follows as in Euclid.

F
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Proof of Euclid’s Postulate 5 from ¢ Playfair’s’ axiom.

Let AB, CD make with the transversal ZF the angles 4EF, EFC
together less than two right angles.

To prove that 4.8, CD meet towards 4, C.

Through £ draw GH making with £F the angle G-
GEF equal (and alternate) to the angle ZFD. s

Thus GH is parallel to CD. [r. 27]
Then (1) 48 must meet C2 in one direction or  © F e
the other.

For, if it does not, 45 must be parallel to CD; hence we have two
straight lines 4.8, GH intersecting at £ and both parallel to CD:
which is impossible.

Therefore 48, CD must meet.

(2) Since 45, CD meet, they must form a triangle with ZZ.

But in any triangle any two angles are together less than two right angles.

Therefore the angles 4EF, EFC (which are less than two right angles),
and not the angles BEF, EFD (which are together greater than two right
angles, by 1. 13), are the angles of the triangle ;
that is, £A4, #C meet in the direction of 4, C, or on the side of E& on
which are the angles together less than two right angles.

The usual course in modern text-books which use *Playfair’s” axiom in
lieu of Euclid’s Postulate is apparently to prove 1. 29 by means of the axiom,
and then Euclid’s Postulate by means of 1. 29,

De Morgan would introduce the proof of Postulate 5 by means of
“ Playfair's ” axiom Jefore 1. 29, and would therefore apparently prove 1. 29 as
Euclid does, without any change.

As between Euclid’s Postulate 5 and “ Playfair's” axiom, it would appear
that the tendency in modern text-books is rather in favour of the latter.
Thus, to take a few noteworthy foreign writers, we find that Rausenberger
stands almost alone in using Euclid’s Postulate, while Hilbert, Henrici and
Trentlein, Rouché and De Comberousse, Enriques and Amaldi all use
“Playfair’s ” axiom.

Yet the case for preferring Euclid’s Postulate is argued with some force by
Dodgson (Ewlsd and his modern Rivals, pp. 44—6). He maintains (1) that
“ Playfair's” axiom in fact involves Euclid’s Postulate, but at the same time
involves more than the latter, so that, to that extent, it is a needless strain on
the faith of the learner. This is shown as follows.

Given 4B, CD making with E£F the angles 4 EF, EFC together less than
two right angles, draw GA through E so that the angles GEF, EFC are
together egua/ to two right angles.

Then, by 1. 28, GH, CD are *‘separational.”

We see then that any lines which have the property (a) that they make
with a transversal angles less than two right angles have also the property (8)
that one of them intersects a straight line which is “separational” from
the other.

Now Playfair's axiom asserts that the lines which have property (B) meet
if produced : for, if they did not, we should have two intersecting straight
lines both “separational ” from a thard which is impossible.

We then argue that lines having property (a) meet because lines having
property (a) are lines having property (8). But we do not know, until we
have proved 1. 29, that all pairs of lines having property (8) have also property
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(a). For anything we know to the contrary, class (8) may be greater than
class (a). Hence, if you assert anything of class (8), the logical effect is more
extensive than if you assert it of class (a) ; for you assert it, not only of that
portion of class () which is known to be mcluded in class (a), but also of the
unknown (but ibly existing) portion which is nof so included.

(2) EuchJ ostulate puts before the beginner clear and posifive con-
ceptions, a pair of straight lines, a transversal, and two angles together less
than two right angles, whereas * Playfair's” axiom requlres him to realise a
pair of straight lines which never meet though produced to mﬁmty a negative
conception which does not convey to the mind any clear notion of the relative
position of the lines. And (p. 68) Euclid’s Postulate gives a direct criterion
for judging that two straight lmes meet, a criterion which is constantly required,
eg in L 44. It is true that the Postulate can be deduced from “ Plnyfal.r’s ¥
axiom, but editors fr uently omit to deduce it, and then tacitly assume it
afterwards: which is the least justifiable course of all.

ProrosiTION 30.

Straight lines parallel to the same straight line are also
parallel to one another.
Let each of the straight lines A5, CD be parallel to £F;

I say that A2 is also parallel to CD.
5 For let the straight line GX fall upon

them, A Of 1.8
Then, since the straight line GX g H/ F
has fallen on the parallel straight lines x/
AB, EF, c D
10 the angle AGK is equal to the /
angle GHF. [x. 29)

Again, since the straight line GX has fallen on the parallel
straight lines £7, CD,

the angle GAF is equal to the angle GKD. (1. 29]
15 But the angle AGK was also proved equal to the angle
GHF;
therefore the angle 4GK is also equal to the angle
GKD; [C. N 1]
and they are alternate,
20  Therefore 4B is parallel to CD.
Q E. D.

20. The usual coneclusion in 1 terms (“Therdm etc.”) repeating the enunciation
is, curiously enough, wanting at the end of this proposition

&“EJI'DPOSIHOI'I is, as De Morgan points out, the Zogica/ equivalent of
““Playfair's” axiom. Thus, if X" denote “pairs of straight lines intersecting one
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another,” ¥ ““pairs of straight lines parallel to one and the same straight line,”
we have

No Xis ¥,

No Vis X.

De Morgan adds that a proposition is much wanted about parallels (or
perpendiculars) to two straight lines respectively making the same angles with
one another as the latter do. The proposition may be enunciated thus :

If the sides of one angle be respectively (1) parallel or (2) perpendicular fo
the sides of another angle, the two angles are either
equal or supplementary.

(2 Let DE be parallel to 48 and GEF parallel
to B

and it follows logically that

Tc: prove that the angles 48C, DEG are equal
and the angles 45C, DEF su]:glementary.
Produce DE to meet BC in H.

Then [1. 29] the angle DEG is equal to the angle !
DHC, B H c
and the angle 45C is equal to the angle DAHC.
Therefore the angle DEG is equal to the angle 4BC; whence also the
angle DEF is supplementary to the angle 48C.
(2) Let ZD be perpendicular to 45, and GEF perpendicular to BC.
To prove that the angles 4BC, DEG are
equal, and the angles 4BC, DEF supplementary. A
Draw ED' at right angles to ED on the side
of it opposite to B, and draw EG’ at right angles
to £F on the side of it opposite to B.
Then, since the angles ZDE, DED', being
right angles, are equal,
ED is parallel to B4. [1. 29] B F c
Similarly £G’ is parallel to BC.
Therefore [Part (1)] the angle ’EG' is equal to the angle 4A5C.
But, the right angle DEL' being equal to the right angle GEG), if the
common angle GEL' be subtracted,
the angle DEG is equal to the angle DEG'.

Therefore the angle DEG is equal to the angle 4BC; and hence the
angle DEF is supplementary to the angle 4B8C.

ProrosiTION 31.

Through a given point to draw a straight line parallel to a
given straight line.

; Let A4 be the given point, and BC the given straight
ine ;

thus it is required to draw through the point 4 a straight
line parallel to the straight line Bg.
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Let a point 2 be taken at random on BC, and let 4D be
joined; on the straight line D4,

and at the point 4 on it, let the £ A .
angle DAE be constructed equal

to the angle 4DC [1 23]; and let the

straight line 4F be produced in a & ) (]

straight line with £4.

hen, since the straight line 420 falling on the two
straight lines BC, £F has made the alternate angles £4D,
ADC equal to one another,

therefore £A4F is parallel to BC. [1. 27]

Therefore through the given point 4 the straight line
EAF has been drawn parallel to the given straight line BC.

Q. E. F.

Proclus rightly remarks (p. 376, 14—20) that, as it is implied in 1. 12
that only one perpendicular can be drawn to a straight line from an external
point, so here it is implied that only one straight line can be drawn through a
point parallel to a given straight line. The construction, be it observed,
depends only upon 1. 27, and might therefore have come directly after that
proposition. Why then did Euclid postpone it until after 1. 29 and 1. 30?
Presumably because he considered it necessary, before giving the construction,
to place beyond all doubt the fact that only one such parallel can be drawn.
Proclus infers this fact from 1. 30; for, he says, if two straight lines could be
drawn through one and the same point parallel to the same straight line, the two
straight lines would be para/le/, though intersecting at the given point: which
is impossible. I think it is a fair inference that Euclid would have considered
it necessary to justify the assumption that only one parallel can be drawn
by some such argument, and that he deliberately determined that his own
assumption was more appropriate to be made the subject of a Postulate
than the assumption of the uniqueness of the parallel.

ProrosiTiON 32.

In any triangle, if one of the sides be produced, the exterior
angle is equal to the two interior and opposite angles, and the
three interior angles of the triangle ave equal to two right
angles.

Let ABC be a triangle, and let one side of it BC be
produced to D ;

I say that the exterior angle ACD is equal to the two
interior and opposite angles CAB, ABC, and the three
interior angles of the triangle 48C, BCA, CAB are equal
to two right angles.
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For let CE be drawn through the point C parallel to the
straight line AB. (1. 31]
Then, since 4B is parallel to CZ,
and AC has fallen upon them,
the alternate angles BAC, ACE are
equal to one another. [x. 29]

Again, since 4B is parallel to § c )
CE,

and the straight line ZD has fallen upon them,

the exterior angle £CD is equal to the interior and opposite
angle ABC. [r. 20]

But the angle ACE was also proved equal to the angle
BAC;

therefore the whole angle ACD is equal to the two
interior and opposite angles BAC, ABC.

Let the angle ACZB be added to each ;

therefore the angles ACD, ACRB are equal to the three
angles ABC, BCA, CAB.

But the angles 4CD, ACB are equal to two right angles;

I. 13
therefore the angles ABC, BCA, CAB are also equa.]
to two right angles.
Therefore etc.

Q. E. D.

This theorem was discovered in the very early stages of Greek geometry.
What we know of the history of it is gathered from three allusions found in
Eutocius, Proclus and Diogenes Laertius respectively.

1. Eutocius at the befinning of his commentary on the Comics of
Apollonius (ed. Heiberg, Vol. 11 p. 170) quotes Geminus as saying that “the
ancients (ol dpyafot) investigated the theorem of the two right angles in each
individual species of triangle, first in the equilateral, again in the isosceles,
and afterwards in the scalene triangle, and later geometers demonstrated the
general theorem to the effect that in any triangle the three interior angles are
equal to two right angles.”

2. Now, a.ccord:::lg to Proclus (p. 379, 2—5), Eudemus the Peripatetic
refers the discovery of this theorem to the Pythagoreans and gives what he
affirms to be their demonstration of it. This demonstration will be given
below, but it should be remarked that it is general, and therefore that the
“later geometers” spoken of by Geminus were presumably the Pythagoreans,
whence it appears that the “ancients” contrasted with them must have
belonged to the time of Thales, if they were not his Egyptian instructors.

3. That the truth of the theorem was known to Thales might also
be inferred from the statement of Pamphile (quoted by Diogenes Laertius,
1. 24—s5, p- 6, ed. Cobet) that ‘“he, having learnt geometry from the
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Egyptians, was the first to inscribe a right-angled triangle in a circle and
sacrificed an ox” (on the strength of it); in other words, he discovered that
the angle in a semicircle is a right angle. No doubt, when this fact was once
discovered (empirically, say), the consideration of the two isosceles triangles
having the centre for vertex and the sides of the right angle for bases
respectively, with the help of the theorem of Eucl 1. 5, also known to
Thales, would easily lead to the conclusion that the sum of the angles of
a right-angled triangle is equal to two right angles, and it could be readily
inferred that the angles of any triangle were likewise equal to two right angles
(by resolving it into two right-angled triangles). But it is not easy to see how
the property of the angle in a semicircle could be groved except (in the reverse
order) by means of the equality of the sum of the angles of a right-angled
triangle to two right angles; and hence it is most natural to suppose, with
Cantor, that Thales proved it (if he did prove it) practically as Euclid does
in 111. 31, 1.e. by means of 1. 32 as applied to right-angled triangles at all events.

If the theorem of 1. 32 was proved before Thales’ time, or by Thales
himself, by the stages indicated in the note of Geminus, we may be satisfied
that the reconstruction of the argument of the older proof by Hankel
(pp- 96—7) and Cantor (15, pp. 143—4) is not far wrong. First, it must have
been observed that six angles equal to an angle of an equilateral triangle would,
if placed adjacent to one another round a common vertex, fill up the whole
space round that vertex. It is true that Proclus attributes to the Pythagoreans
the general theorem that only three kinds of regular polygons, the equilateral
triangle, the square and the regular hexagon, can fill up the entire space round
a point, but the practical knowledge that equilateral triangles have this
property could hardly have escaped the Egyptians, whether they made floors
with tiles in the form of equilateral triangles or regular hexagons (Allman,
Greek Geometry from Thales to Eudlid, p. 12) or joined the ends of adjacent
radii of a figure like the six-spoked wheel, which was their common form of
wheel from the time of Ramses II. of the nineteenth Dynasty, say 1300 B.C.
(Cantor, I,, p. 109). It would then be clear that six angles equal to an angle
of an equilateral triangle are equal to four right angles, and therefore that the
three angles of an equilateral triangle are equal to two right angles. (It would
be as clear or clearer, from observation of a square divided into two triangles
by a diagonal, that an isosceles right-angled triangle has each of its equal
angles equal to half a right angle, so that an isosceles right-angled triangle
must have the sum of its angles equal to two right angles.) Next, with regard
to the equilateral triangle, it could not fail to be observed
that, if 4.D were drawn from the vertex 4 perpendicular
to the base BC, each of the two right-angled triangles so
formed would have the sum of its angles equal to two right
angles; and this would be confirmed by completing the
rectangle A DCE, when it would be seen that the rectangle
(with its angles equal to four right angles) was dividediy
its diagonal into two equal triangles, each of which had
the sum of its angles equal to two right angles. Next it
would be inferred, as the result of drawing the diagonal of any rectangle and
observing the equality of the triangles forming the two halves, that the sum of
the angles of any right-angled triangle is equal to two right angles, and hence
(the two congruent right-angled triangles being then placed so as to form one
isosceles triangle) that the same is true of any dsosceles triangle. Only the
last step remained, namely that of observing that any triangle could be
regarded as the half of a rectangle (drawn as indicated in the next figure), or
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simply that any triangle could be divided into two right-angled triangles,
whence it would be inferred that in general the
sum of the angles of any triangle is equal to two
right angles.

Such would be the probabilities if we could
absolutely rely upon the statements attributed to
Pamphile and Geminus respectively. But in fact
there is considerable ground for doubt in both cases.

1. Pamphile’s story of the sacrifice of an ox by Thales for joy at his
discovery that the angle in a semicircle is a right angle is too suspiciously like
the similar story told with reference to Pythagoras and his discovery of the
theorem of Eucl. 1. 47 (Proclus, p. 426, 6—9). And, as if this were not
enough, Diogenes Laertius immediately adds that “others, among whom is
Apollodorus the calculator (¢ Aoywrwkds), say it was Pythagoras” (sc. who
“Inscribed the right-angled triangle in a circle”). Now Pamphile lived in the
reign of Nero (A.D. 54—68) and therefore some 700 years after the birth of
Thales (about 640 B.c.). I do not know on what Max Schmidt bases his
statement (Kulturkistorische Beitrige sur Kenninis des griechischen und rimischen
Altertums, 1926, p. 31) that “other, much older, sources name Pythagoras as
the discoverer of the said proposition,” because nothing more seems to be
known of Apollodorus than what is stated here by Diogenes Laertius. But it
would at least appear that Apollodorus was only one of several authorities
who attributed the proposition to Pythagoras, while Panfphile is alone
mentioned as referring it to Thales. Again, the connexion of Pythagoras with
the investigation of the right-angled triangle makes it @ priori more likely
that it would be he who would discover its relation to a semicircle. On
the :hole, therefore, the attribution to Thales would seem to be more than
doubtful.

2. As regards Geminus’ account of the three stages through which the
proof of the theorem of 1. 32 passed, we note, first, that it is certainly not
confirmed by Eudemus, who referred to the Pythagoreans the discovery of the
theorem that the sum of the angles of any triangle is equal to two right
angles and says nothing about any gradual stages by which it was proved.
Secondly, it must be admitted, I think, that in the evolution of the proof as
reconstructed by Hankel the middle stage is rather artificial and unnecessary,
since, once it is proved that any right-angled triangle has the sum of its angles

ual to two right angles, it is just as easy to pass at once to any scalene
triangle (which is decomposable into two unegual right-angled triangles) as to
the isosceles triangle made up of two congruent right-angled triangles. Thirdly,
as Heiberg has recently pointed out (Ag:;ukemaﬁ:f&: su Aristoteles, p. 20), it
is quite possible that the statement of Geminus from beginning to end is
simply due to a misapprehension of a passuge of Aristotle (4nal. Post. 1. 5,
74 a 25). Aristotle is illustrating his contention that a property is not
scientifically proved to belong to a class of things unless it is proved to belong
primarily (wparov) and generally (xaf6hov) to the whole of the class. His first
illustration relates to parallels making with a transversal angles on the same
side together equal to two right angles, and has been quoted above in the note
on L 27 (pp. 308—g). His second illustration refers to the transformation of
a proportion alternando, which (he says) “used at one time to be proved
separately ” for numbers, lines, solids, and times, although it admits of being
proved of all at once by one demonstration. The third illustration is: “For
the same reason, even if one should prove (008 dv mis 8elfy) with reference to
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each (sort of) triangle, the equilateral, scalene and isosceles, separately, that
each has its angles equal to two right angles, either by one proof or by different
proofs, he does not yet know that #ke friangle, i.e. the triangle in general, has
its angles equal to two right angles, except in a sophistical sense, even though
there exists no triangle other than triangles of the kinds mentioned. For he
knows it, not gud triangle, nor of ezery triangle, except in a numerical sense
xat’ dpifudv); he does not know it nofionally (xar’ elBos) of every triangle, even
though there be actually no triangle which he does not know.”

The difference between the phrase “used at one time to be proved” in
the second illustration and ‘“if any one should prove” in the third appears to
indicate that, while the former referred to a historical fact, the latter does not;
the reference to a person who should prove the theorem of 1. 32 for the three
kinds of triangle separately, and then claim that he had proved it generally,
states a purely hypothetical case, a mere illustration. Yet, coming after the
historical fact stated in the preceding illustration, it might not unnaturally give
the impression, at first sight, that it was historical too.

On the whole, therefore, it would seem that we cannot safely go behind
the dictum of Eudemus that the discovery and proof of the theorem of 1. 32
in 4ll its generality were Pythagorean. This dpoes not however preclude its
having been discovered by stages such as those above set out after Hankel
and Cantor. Nor need it be doubted that Thales and even his Egyptian
instructors had advanced some way on the same road, so far at all events as
to see that in an equilateral triangle, and in an isosceles right-angled triangle,
the sum of the angles is equal to two right angles.

The Pythagorean proof.

This proof, handed down by Eudemus (Proclus, p. 379, 2—15), is no less
elegant than that given by Euclid, and is a natural
development from the last figure in the recon-
structed argument of Hankel. It would be seen,
after the theory of parallels was added to geometry,
that the actual drawing of the perpendicular and
the complete rectangle on BC as base was
unnecessary, and that the parallel to BC through @ C
A was all that was required.

Let ABC be a triangle, and through 4 draw DZE parallel to BC. [L 31]

Then, since BC, DE are parallel,
the alternate angles DA B, ABC are equal, [1. 20]
and so are the alternate angles £4C, ACRB also.

Therefore the angles 4ABC, ACB are together equal to the angles
DAB, EAC.

Add to each the angle BAC;
therefore the sum of the angles ABC, 4CB, BAC is equal to the sum of the
angles DAB, BAC, CAE, that is, to two right angles.

Euclid's proof pre-Euclidean.

The theorem of 1. 32 is Aristotle’s favourite illustration when he wishes to
refer to some truth generally acknowledged, and so often does it occur that
it is o&en indicated by two or three words in themselves hardly mtelhglble,
e.g. 76 Svoiv opbais (Anal. Post. 1. 24, 85 b 5) and vwdpyet wavri Tpeydve 1o &o
(ébid. 85 b 11).

One passage (Mefaph. 1051 a 24) makes it clear, as Heiberg (o2. at.

D A E
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p. 19) acutely observes, that in the proof as Aristotle knew it Euclid’s
construction was used. ‘“Why does the triangle make up two right angles?
Because the angles about one point are equal to two right angles. If then the
menﬂlel to the side had been drawn up (avijxro), the fact would at once have
n clear from merely looking at the figure,” The words “the angles about
one point” would equally fit the Pythagorean construction, but “drawn
upwards” applied to the parallel to a side can only indicate Euclid’s.

Attempts at proof independently of parallels.

The most indefatigable worker on these lines was Legendre, and a sketch
of his work has been given in the note on Postulate 5 above.

One other attempted proof needs to be mentioned here because it has
found much favour. I allude to

Thibaut’s method.

This appeared in Thibaut’s Grundriss der reinen Mathematik, Gottingen
(2 ed. 1809, 3 ed. 1818), and is to the following effect.

Suppose CB produced to D, and let B0 (produced to any necessary extent
either way) revolve in one direction (say
clockwise) first about & into the position A
B4, then about 4 into the position of AC
produced both ways, and lastly about C
into the position CA produced both ways.

The argument then is that the straight
line BD has revolved through the sum of c\
the three exterior angles of the triangle.

But, since it has at the end of the revolution
assumed a position in the same straight line with its original position, it must
have revolved through four right angles.

Therefore the sum of the three exterior angles is equal to four right
angles ;
from which it follows that the sum of the three angles of the triangle is equal
to two right angles.

But it is to be observed that the straight line B.D revolves about diferent
points in it, so that there is fransiation combined with »ofafory motion, and it
15 necessary to assume as an axiom that the two motions are independent, and
therefore that the #ranslation may be neglected.

Schumacher (letter to Gauss of 3 May, 1831) tried to represent the
rotatory motion graphically in a second figure as mere motion round a point ;
but Gauss (letter of 17 May, 1831) pointed out in reply that he really
assumed, without proving it, a proposition to the effect that “If two straight
lines (1) and (2) which cut one another make angles 4, 4" with a straight
line (3) cutting both of them, and if a straight line (4) in the same plane is
likewise cut by (1) at an angle 4’, then (4) will be cut by (z) at the angle 4”.
But this proposition not only needs proof, but we may say that it is, in
essence, the very proposition to be proved” (see Engel and Stickel, Die
Theorie der Parallellinien von Euklid bis auf Gauss, 1895, p. 230).

How easy it is to be deluded in this way is plainly shown by Proclus’
attempt on the same lines. He says (p. 384, 13—21) that the truth of the
theorem is borne in upon us by the help of “common notions” only. “For,
if we conceive a straight line with two perpendiculars drawn to it at its ex-
tremities, and if we then suppose the perpendiculars to (revolve about
their feet and) approach one another, so as to form a triangle, we see that,
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to the extent to which they converge, they diminish the right angles which
they made with the straight line, so that the amount taken from the right
angles is also the amount added to the vertical angle of the triangle, and the
three angles are necessarily made equal to two right angles.” But a moment’s
reflection shows that, so far from being founded on mere “common notions,”
the supposed proof assumes, to begin with, that, if the perpendiculars ap-

one another ever so little, they will then form a triangle immediately,
Le., it assumes Postulate 5 itself; and the fact about the vertical angle can only
be seen by means of the equality of the alternate angles exhibited by drawing
a perpendicular from the vertex of the triangle to the base, i.e. a paradlel to
either of the original perpendiculars.

Extension to polygons.

The two important corollaries added to 1. 32 in Simson’s edition are given
by Proclus; but Proclus’ proof of the first is different from, and perhaps
somewhat simpler than, Simson’s.

1. The sum of the interior angles of a convex rectilineal figure is equal to
twice as many right angles as the figure has sides,
less four. ‘D
For let one angular point 4 be joined to all
the other angular points with which it is not con-  © &
nected already.
The figure is then divided into triangles, and
mere inspection shows
(1) that the number of triangles is two less F
than the number of sides in the figure, G
(2) that the sum of the angles of all the
iangles is equal to the sum of all the interior angles of the figure.
Since then the sum of the angles of each triangle is equal to two right angles
the sum of the interior angles of the figure is equal to 2 (#—2) right angles,
i.e. (27 — 4) right angles, wgere # is the number of sides in the figure.
2. The exterior angles of any convex rectilineal
JSigure are together equal to four right angles.
For the interior and exterior angles together are
equal to 27 right angles, where # is the number of sides.
And the interior angles are together equal to
(27-4) right angles.
Therefore the exterior angles are together equal to
four right angles.
This last property is already quoted by Aristotle
as true of all rectilineal figures in two passages (Anal.
Post. 1. 24, 85 b 38 and 11. 17, 99 a 19).

ProrosiTION 33.

The straight lines joiming equal and parallel straight
lines (at the extvemities which are) in the same directions
(respectively) are themselves also equal and parallel.

Let AB, CD be equal and parallel, and let the straight

slines AC, BD join them (at the extremities which are) in the
same directions (respectively) ;
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I say that AC, BD are also equal and parallel.
Let BC be joined. i i
Then, since 4B is parallel to CD,
1o and BC has fallen upon them,
the altetnate angles A8C, BCD
are equal to one another. [1. 29]
And, since 4B is equal to CD, ‘
and BC is common,
15 the two sides 4.8, BC are equal to the two sides DC, CB;
and the angle 4BC is equal to the angle BCD ;
therefore the base 4 C is equal to the base BD,
and the triangle 4BC is equal to the triangle DCB,
and the remaining angles will be equal to the remaining angles
20 respectively, namely those which the equal sides subtend ; [1. 4]
therefore the angle ACA is equal to the angle CBD.
And, since the straight line BC falling on the two straight

lines AC, BD has made the alternate angles equal to one
another,

25 AC is parallel to BD. o [n27]

And it was also proved equal to it.
Therefore etc, Q. E. D.

1. joining...(at the extremities which are) in the same directions (respectively).
I have for clearness’ sake inserted the words in brackets though they are not in the ofiginal
Greek, which has “joining...in the same directions” or “‘on the same sides,” éxl v alrd pépn
émiferywiovgas. The expression “‘towards the same parts,” though usage has sanctioned it,
is perhaps not quite satisfactory.

15. DC, CB and 18. DCB. The Greek has “ BC, CD" and * BCD" in these places
mpeaiv:cl{. Euclid is not always careful to write in corresponding order the letters denoting
corresponding points in congruent figures. On the contrary, he evidently prefers the al
betical order, and seems to disdain to alter it for the sake of beginners or others who might
be confused by it. In the case of angles alteration is perhaps unnecessary ; but in the case
of triangles and pairs of corresponding sides I have ventured to alter the order to that which
the mathematician of to-day expects.

This proposition is, as Proclus says (p. 385, 5), the connecting link between
the exposition of the theory of parallels and the investigation of parallelograms.
For, while it only speaks of equal and parallel straight lines connecting those
ends of equal and parallel straight lines which are in the same directions, it
gives, without expressing the fact, the construction or origin of the parallelogram,
so that in the next proposition Euclid is able to speak of *parallelogrammic
areas” without any further explanation.

PROPOSITION 34.
In parallelogrammic arveas the opposite sides and angles
are equal to one another, and the diameler bisecls the areas.
Let ACDB be a parallelogrammic area, and BC its

diameter ;
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5 I say that the opposite sides and angles of the parallelogram
ACDB are equal to one another, and the diameter BC
bisects it.

For, since A8 is parallel to CD, A 8
and the straight line BC has fallen
1o upon them,
the alternate angles 4BC, BCD M
are equal to one another. [ 29] & )

Again, since AC is parallel to 8D,
and ﬁCa:‘ has fallen upoﬁhem,
15 the alternate angles ACAB, CBD are equal to one
another. [r. 29]
Therefore ABC, DCB are two triangles having the two
angles ABC, BCA equal to the two angles DCB, CBD
respectively, and one side equal to one side, namely that
20 adjoining the equal angles and common to both of them, BC;
therefore they will also have the remaining sides equal
to the remaining sides respectively, and the remaining angle
to the remaining angle ; (r. 26]
therefore the side 423 is equal to CD,
25 and AC to BD,
and further the angle 2A4C is equal to the angle CD2A.
And, since the angle ABC is equal to the angle BCD,
and the angle CBD to the angle ACB,

the whole angle 48D is equal to the whole angle ‘f CD. :
C N a2

30 And the angle BA4C was also proved equal to the angle CD2B.
Therefore in parallelogrammic areas the opposite sides
and angles are equal to one another.
I say, next, that the diameter also bisects the areas.
For, since A28 is equal to CD,
ssand BC is common,
the two sides 4B, BC are equal to the two sides DC, CB
respectively ;
and the angle 4BC is equal to the angle BCD ;
therefore the base 4C is also equal to D25,
s  and the triangle 4B8C is equal to the triangle DCB. [ 4]
Therefore the diameter BC bisects the parallelogram
ACDB. Q. E. D.
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1. It is to be observed that, when lelograms have to be mentioned fur the Erst time,
Euclid calls them “punl]elogramm areas " or, more exar.:l&' ‘¢ paralle " areas
(I' wpla). The meaning is simply areas bound pam]lel straight lines

Ile fu mltntmn placed upon the term by Euclid that only fowr-sided figures are so
c:lled alth of course there are certain regular pol mfons which have ite sides
pan.!!el mtimﬁuch therefore might be said to be areas bounded by parallel atmgﬁt lines. We
gher from Proclus (p. 393) that the word *‘ parallelogram " was first introduced by Euclid,

t its use was nd9 {4 33, and that the formation of the word wapadly

(parallel-lined) was nul that of ebfiypaupos (straight-lined or rectilineal).
DCB m DC, CB. The Greek has in these places *“BCD" and

3. 18.
we mpectnfely Cf note on 1. 33, lines 15, 18.

After spem ing the particular kinds of parallelograms (squares and rhombi)
in which the diagonals Eﬂ the angles which they join, as well as the areas,
and those (rectangles and rhombmgs) in which the diagonals do not bisect
the angles, Proclus proceeds (pp. 390 sqq.) to analyse this proposition with
reference to the distinction in Aristotle’s Anal. Post. (1. 4, 5, 73 2 21—74 b 4)
between attributes which are only predicable of every individual thing (xara
mavros) in a class and those which are true of it primarily (robrov mpurov) and
generally (xaflohov). We are apt, says Aristotle, to mistake a proof xara
wavros for a proof rovrov mpwrov xafldhov because it is either impossible to
find a higher generality to comprehend all the particulars of which the
predicate 1s true, or to find a name for it. (Part of this passage of Aristotle
has been quoted above in the note on 1. 32, pp. 319—320.)

Now, says Proclus, adapting Aristotle’s distinction to #keorems, the present
proposition exhibits the distinction between theorems which are general and
theorems which are nof general. According to Proclus, the first part of
the proposition stating that the opposite sides and angles of a parallelogram
are equal is gemeral because the property is only true of parallelograms; but
the second part which asserts that the diameter bisects the area is #nof general
because it does not include all the figures of which this property is true, e.g.
circles and ellipses. Indeed, says Proclus, the first attempts upon problems
seem usually to have been of this partial character (uepucurepar), and genérality
was only attained by degrees. Thus “the ancients, after investigating the
fact that the diameter bisects an ellipse, a circle, and a parallelogram
respectively, proceeded to investigate what was common to these cases,”
though “it is diﬂicult to show what is common to an ellipse, a circle and a

lel

T doubt whether the supposed distinction between the two parts of the
proposition, in point of “ generality,” can be sustained. Proclus himself admits
that it is presupposed that the subject of the proposition is a gwadrilateral,
because there are other figures (e.g. regular polygons of an even number of
sides) besides parallelograms which have their opposite sides and angles
equal; therefore the second part of the theorem is, in this respect, no more
general than the other, and, if we are entitled to the tacit limitation of the
theorem to quadrilaterals in one part, we are equally entitled to it in the other.

It would almost appear as though Proclus had drawn the distinction for
the mere purpose of alluding to investigations by Greek geometers on the
general subject of diameters of all sorts of figures; and it may have been these
which brought the subject to the point at which Apollonius could say in the
first definitions at the beginning of his Contcs that “ In any bent line, such as
is in one plane, I give the name diameter to any straight line which, being
drawn from the bent line, bisects all the straight lines (chords) drawn in the
line parallel to any straight line.” The term bdent line (xapmiAy ypappur)
includes, e.g. in Archimedes, not only curves, but any composite line made
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up of straight lines and curves joined together in any manner. It is of course
ear that either diagonal of a parallelogram bisects all lines drawn within the
parallelogram parallel to the other diagonal. {
An-Nairizi gives after 1. 31 a neat construction for dividing a straight line
into any number of equal parts (ed. Curtze, p. 74, ed. Besthorn-Heiberg,
pp. 141—3) which requires only one measurement repeated, together with the
properties of parallel lines including 1. 33, 34- As 1. 33, 34 are assumed, I
place the problem here. The particular case taken is the problem of dividing
a straight line into #&ree equal parts,
Let AB be the given straight line. Draw AC, B.D at right angles to it

on opposite sides.
An-Nairizi takes 4C, BD of the same
length and then bisects AC at £ and BD / D
at & But of course it is even simpler to
measure 4%, EC along one perpendicular K F

equal and of any length, and BF, FD along
the other also equal and of the same length. H

Join ED, CF meeting AB in G, H A B
respectively.

Then shall 4G, GH, HB all be equal. g

Draw HK parallel to AC, or at right

angles to AB5.
Since now EC, FD are equal and parallel, ¢©
ED, CF are equal and parallel. 1. 33

And K was drawn parallel to 4C.

Therefore ECHK is a parallelogram ; whence K& is equal as well as
parallel to £C, and therefore to £4.

The triangles £4 G, XH G have now two angles respectively equal and the
sides AE, HK equal

Thus the triangles are equal in all respects, and

AG is equal to GH.
Similarly the triangles XHG, FBH are equal in all respects, and
GH is equal to HB.

If now we wish to extend the problem to the case where 45 is to be
divided into # parts, we have only to measure (7#—1) successive equal lengths
along AC and (7—1) successive lengths, each equal to the others, along B.D.
Then join the first point arrived at on 4AC to the last point on BD, the
second on AC to the last but one on BD, and so on; and the joining lines
cut 4.8 in points dividing it into # equal parts.

ProposITION 35.
Parallelograms which ave on the same base and in the
same parallels ave equal to one another.

Let ABCD, EBCF be parallelograms on the same base
BC and in the same parallels 4AF, BC;

5 I say that ABCD is equal to the parallelogram £BCF.
For, since ABCD is a parallelogram,
AD is equal to BC. [1 34)
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For the same reason also
EF is equal to BC,
10 so that 4D is also equal to £F; [C. N 1)
and DE is common;

therefore the whole 4 £ is equal to the whole DF.
[C. V. 2]

But 423 is also equal to DC; [ 34]

therefore the two sides £4, A8 are equal to the two sides
15 FD, DC respectively,

and the angle FDC is equal to
the angle £A425, the exterior to the
interior ; [ 29]
therefore the base £2 is equal

20 to the base FC,

and the triangle £4 2 will be equal to the triangle FDC.

[ 4]
Let DGE be subtracted from each ;

therefore the trapezium ABGD which remains is equal to
the trapezium £GCF which remains. [C. N 3]

25 Let the triangle GBC be added to each ;

therefore the whole parallelogram 4 B2CD is equal to the whole
parallelogram E£BCF. [C. & 2]

Therefore etc.

A D E F

Q. E. D.

at. FDC, The text has *“ DFC."

23. Let DGE be subtracted. Euclid l:enks of the triangle DGE without any
exElmtion that, in the case which he takes (where 4D, EF have no %oml in common),
BE, CD must meet at a point G between the two parallels. He allows this to appear from
the figure simply.

Equality in a new sense.

It is important to observe that we are in this proposition introduced for
the first time to a new conception of equality between figures. Hitherto we
have had equality in the sense of comgruence only, as applied to straight lines,
angles, and even triangles (cf. 1. 4). Now, without any explicit reference to
any change in the meaning of the term, figures are inferred to be egua/ which
are equal in area or in confent but need not be of the same form. No
definition of equality is anywhere given by Euclid; we are left to infer its
meaning from the few axioms about “equal things.” It will be observed that
in the above proof the “equality” of two parallelograms on the same base
and between the same parallels is inferred by the successive steps (1) of
subtracting one and the same area (the triangle DGE) from two areas equal
in the sense of congruence (the triangles AEB, DFC), and inferring that the
remainders (the trapezia 485G D, EGCF) are “equal”; (2) of adding one and
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the same area (the triangle GBC) to each of the latter “equal ” trapezia, and
inferring the equality of the respective sums (the two given parallelograms).

As 1s well known, Simson (after Clairaut) slightly altered the proof in order
to make it applicable to all the three possible cases. The alteration
substituted one step of subtracting congruent areas (the triangles 4 £5, DFC)
from one and the same area (the trapezium 4.BCF) for the fwo steps above
shown of first subtracting and then adding a certain area.

While, in either case, nothing more is explicitly used than the axioms that,
if equals be added to equals, the wholes are equal and that, if equals be subtracted
Srom equals, the remainders are equal, there is the further Zacit assumption that
it is indifferent to w#kat part or from what part of the same or equal areas the
same or equal areas are added or subtracted. De Morgan observes that the
postulate “an area taken from an area leaves the same area from whatever
part it may be taken” is particularly important as the key to equality of non-
rectilineal areas which could not be cut into coincidence geometrically.

Legendre introduced the word eguivalent to express this wider sense of
equality, restricting the term egua/ to things equal in the sense of congruent ;
and this distinction has been found convenient.

I do not think it necessary, nor have I the space, to give any account of
the recent developments of the theory of equivalence on new lines represented
by the researches of W. Bolyai, Duhamel, De Zolt, Stolz, Schur, Veronese,
Hilbert and others, and must refer the reader to Ugo Amaldi’s article Su/a
teoria dell’ equivalensa in Questioni riguardanti le matematiche elementari, 1.
(Bologna, 1912), pp. 145—198, and to Max Simon, Uber die Entwicklung der
Lilementar-geometrie im XIX. Jahrhundert (Leipzig, 1906), pp. 115—120, with
their full references to the literature of the subject. I may however refer to
the suggestive distinction of phraseology used by Hilbert (Grundlagen der
Geometrie, pp. 39, 40):

(1) *Two polygons are called divistbly-equal (serlegungsgleick) if they can
be divided into a fimife number of triangles which are congruent two and two.”

(z) *“Two polygons are called equal in content (inkaltsgleich) or of equal
content if it is possible to add divistbly-equal polygons to them in such a way
that the two combined polygons are divisibly-equal.”’

(Amaldi suggests as alternatives for the terms in (1) and (2) the expressions
eguivalent by sum and eguivalent by difference respectively.)

From these definitions it follows that “by combining divisidly-equal
polygons we again arrive at dsvisibly-equal polygons; and, if we subtract
divisibly-equal polygons from divisibly-equal polygons, the polygons remaining
are egual in content.”

The proposition also follows without difficulty that, ““if two polygons are
divisidly-equal to a third polygon, they are also divisibly-equal to one another ;
and, if two polygons are egua/ in content to a third polygon, they are egual in
confent to one another.”

The different cases.

As usual, Proclus (pp. 399—400), observing that Euclid has given only the
most difficult of the three possible cases, adds the other two with separate

fs. In the case where £ in the figure of the proposition falls between 4
and D, he adds the congruent triangles 4.8E, DCF respectively to the
smaller trapezium ZBCD, instead of subtracting them (as Simson does) from
the larger trapezium A BCF.
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An ancient ‘“ Budget of Paradoxes.”

Proclus observes (p. 396, 12 sqq.) that the present theorem and the
similar one relating to triangles are among the so-called paradoxical theorems
of mathematics, since the uninstructed might well regard it as impossible that
the area of the parallelograms should remain the same while the length of the
sides other than the base and the side opposite to it may increase indefinitely.
He adds that mathematicians had made a collection of such paradoxes, the
so-cal]ed treasury of paradoxes (6 mapdBofos ‘l'o‘l‘a&‘}—cf the snmlar expressions
Tomwos dvadvdpevos (treasury of analysis) and romos mpova,uovms‘—ln the same
way as the Stoics with their i/ustrations (Gomep ol dmwd Tis Zrods éml Tév
Serypdrov). It may be that this freasury of paradoxes was the work of
Erycinus quo)ted by Pappus (111. p. 107, 8) and mentioned above (note on
. 21, p. 290).

Locus-theorems and loci in Greek geometry.

The proposmon L 35 is, says Proclus (pp. 394—6), the first Jocus-theorem
('rmrumlr Oewpnua) given by Euclid. Accordingly it is in his note on this
proposition that Proclus gives us his view of the nature of a locus-theorem
and of the meaning of the word Jocus (rdmos) ; and great importance attaches
to his words because he is one of the three writers (Pappus and Eutocius
being the two others) upon whom we have to rely for all that is known of the
Greek conception of geometrical loci.

Proclus’ explanation (pp. 394, 15—395, 2) is as follows. “I call those
(theorems) Jocus-theorems (romxa) in whlch the same property is found to exist
on the whole of some locus (wpés 6Ae Tui Témg), and (I call) a locus a position
of a line or a surface ‘groducing one and the same property (ypappds 4 ém-
pavelas Béawv wowodoav &v xal ratrov ovupmrrapa). For, of locus-theorems, some
are constructed on lines and others on surfaces (rdv yap Tomkdv r& pév éom
mpds ypappals cuvioTapeva, To 8¢ mpd- impavelas). And, since some lines are
plane (ériredor) and others solid (a-npmf)—those being plane which are simply
conceived of in a plane (dv év émmrédy daAij 7 wonous), and those solid the
origin of which is revealed from some section of a solid ﬁgure, as the cyhm
drical helix and the conic lines (ds s xvAwdpicijs €\xos xai TOV Kwvikdy
ypappudv)—I should say (paipv av) further that, of locus-theorems on lines,
some give a plane locus and others a solid locus.”

Leaving out of sight for the moment the class of /i on surfaces, we find
that the distinction between plane and solid loci, or plane and solid lines, was
similarly understood by Eutocius, who says (Apollonius, ed. Heiberg, 1.
p- 184) that “solid loi have obtained their name from the fact that the lines
used in the solution of problems regarding them have their origin in the
section of solids, for example the sections of the cone and several others.”
Similarly we gather from Pappus that plane loci were straight lines and circles,
and so/d loct were conics. Thus he tells us (ViL. p. 672, 20) that Aristaeus
wrote five books of Solid Loci “ supplementary to (literally, continuous with
the conics”; and, though Hultsch brackets the passage (viI. p. 662, 10—15)
which says plainly that plane /oci are straight lines and circles, while s
are sections of cones, ie. parabolas, ellipses and hyperbolas, we have the
exactly corresponding distinction drawn by Pappus (111 p. 54, 7-—16) between
plane and solid problems, plane problems being those solved by means of
straight lines and circumferences of circles, and solid problems those solved
by means of one or more of the sections of the cone. But, whereas Proclus
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and Eutocius speak of other so/id loci besides conics, there is nothing in
Pappus to support the wider application of the term. According to Pappus
(1L p. 54, 16—21) problems which could not be solved by means of straight
lines, circles, or conics were /inear (ypappixd) because they used for their
construction lines having a more complicated and unnatural origin than those
mentioned, namely such curves as gwadratrices, conchoids and cissoids.
Similarly, in the passage supposed to be interpolated, /inear Joci are distin-
guished as those which are neither straight lines nor circles nor any of the
conic sections (ViL. p. 662, 13—15). Thus the classification given by Proclus
and Eutocius is less precise than that which we find in Pappus; and the
inclusion by Proclus of the cylindrical helix among solid loci, on the ground
that it arises from a section of a solid figure, would seem to be, in any case,
due to some misapprehension.

Comparing these passages and the hints in Pappus about locf on surfaces
(rémor mpds Empavely) with special reference to Euclid’s two books under that
title, Heiberg concludes that /e on lines and loci on surfaces in Proclus’
explanation are loci which are lines and loci which are surfaces respectively.
But some qualification is necessary as regards Proclus’ conception of /e on
Jines, because he goes on to say (p. 395, 5), with reference to this proposition,
that, while the locus is a /ocus on lines and moreover plane, it is “the whole
space between the parallels” which is the locus of the various parallelograms
on the same base proved to be equal in area. Similarly, when he quotes
1. 21 about the equality of the angles in the same segment and 1. 31 about
the right angle in a semicircle as cases where a circumference of a circle
takes the place of a straight line in a plane locus-theorem, he appears to
imply that it is the segment or semicircle as an arez which is regarded as the
locus of an infinite number of #riangles with the same base and equal vertical
angles, rather than that it is the circumference which is the locus of the angular
points.  Likewise he gives the equality of parallelograms inscribed in “the
asymptotes and the hyperbola” as an example of a solid locus-theorem, as if
the area included between the curve and its asymptotes was regarded as the
Jocus of the equal parallelograms. However this may be, it is clear that the
locus in the present proposition can only be either (1) a /ine-locus of a Jine,
not a point, or (z) an area-locus of an area, not a point or a line; and we
seem to be thus brought to another and different classification of loci
corresponding to that quoted by Pappus (viL p. 660, 18 sqq.) from the pre-
liminary exposition given by Apollonius in his Plane Loci. According to this,
loci in general are of three kinds: (1) épexricol, holding-in, in which sense
the locus of a point is a point, of a line a line, of a surface a surface, and of a
solid a solid, (2) Stwfodwol, moving along, a line being in this sense a locus of a
point, a surface of a line and a solid of a surface, (3) dvacrpodukol, where a
surface is a locus of a point and a solid of a line. Thus the locus in this
proposition, whether it is the space between the two parallels regarded as the
locus of the equal parallelograms, or the line parallel to the base regarded as
the locus of the sides opposite to the base, would seem to be of the first class
(édexrwcds) ; and, as Proclus takes the former view of it, a Jocus on lines is
apparently not merely a locus which #s a line but a locus bounded by lines
also, the locus being plane in the particular case because it is bounded by

ight lines, or, in the case of 11, 21, 31, by straight lines and circles, but
not by any higher curves,

Proclus notes lastly (p. 395, 13—21) that, according to Geminus,
“Chrysippus likened locus-theorems to the ideas. For, as the ideas confine
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the genesis of unlimited (particulars) within defined limits, so in such theorems
the unlimited (particular figures) are confined within defined places or loci
(romor). And it is this boundary which is the cause of the equality ; for the
height of the parallels, which remains the same, while an infinite number of
parallelograms are conceived on the same base, is what makes them all equal
to one another.”

PROPOSITION 36.

Parallelograms whick ave on equal bases and in the same
parallels are equal to one another.

Let ABCD, EFGH be parallelograms which are on
equal bases BC, FG and in the same parallels 4/, BG ;

A D E H
I say that the parallelogram 4ABCD is equal to EFGH.

For let BE, CH be joined.
Then, since BC is equal to FG
while FG is equal to £H,
BC is also equal to £H. (C. V1]
But they are also parallel.
And EB, HC join them ;
but straight lines joining equal and parallel straight lines egat
the extremities which are) in the same directions (respectively)
are equal and parallel, [r. 33]
Therefore £BCH is a parallelogram. [r. 34]
And it is equal to ABCD ;
for it has the same base BC with it, and is in the same
parallels 2C, AH with it. [ 35]
For the same reason also £FGH is equal to the same
EBCH; [r. 35]

so that the parallelogram 4BCD is also equal to £FGH.
[C. V. 1]

Therefore etc.
Q. E. D.
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ProrosITION 37.

Triangles which are on the same base and in the same
parallels are equal to one another.

Let ABC, DBC be triangles on the same base BC and
in the same parallels 40, BC;
51 say that the triangle 4BC is equal to the triangle DBC.
Let AD be produced in both
directions to £, F; & AD
through B let B be drawn parallel
to CA4, [r. 31]
roand through C let CF be drawn
parallel to BD. [r. 31] B c
Then each of the figures
EBCA, DBCF is a parallelogram ;
and they are equal,
15 for they are on the same base BC and in the same
parallels BC, EF. [r. 35]
Moreover the triangle 48C is half of the parallelogram
EBCA ; for the diameter 47 bisects it. 1. 34)
And the triangle DBC is half of the parallelogram DBCF;
20 for the diameter DC bisects it. [ 34]
Ll]_But the halves of equal things are equal to one another. ]
herefore the triangle 4B8C is equal to the triangle DBC.
Therefore etc.

Q. E. D,

21. Here and in the next proposition Heiberg brackets the words *But the halves of

ual things are equal to one another” on the ground that, since the Common Notion
which asserted this fact was interpolated at a very early date (before the time of Theon),
it is probable that the words here were interpolated at the same time. Cf. note above
(p. 224) on the interpolated Common Notion.

There is a lacuna in the text of Proclus’ notes to 1. 36 and 1. 37.
Apparently the end of the former and the beginning of the latter are missing,
the mss. and the editio princeps showing no separate note for 1. 37 and no
lacuna, but going straight on without regard to sense. Proclus had evidently
remarked again in the missing passage that, in the case of both parallelograms
and triangles between the same parallels, the two sides which stretch from one
parallel to the other may increase in length to any extent, while the area
remains the same. Thus the perimeter in parallelograms or triangles is of
itself no criterion as to their area. Misconception on this subject was rife
among non-mathematicians; and Proclus (p. 403, 5 sqq.) tells us (1) of
describers of countries (xwpoypdgo) who drew conclusions regarding the size
of cities from their perimeters, and (2) of certain members of communistic
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societies in his own time who cheated their fellow members by giving them
land of greater perimeter but less area than they took themselves, so that, on
the one hand, they got a reputation for greater honesty while, on the other, they
took more than their share of produce. Cantor (Gesch. d. Math. 15, p. 172)
quotes several remarks of ancient authors which show the prevalence of the
same misconception. Thus Thucydides estimates the size of Sicily according
to the time required for circumnavigating it. About 130 B.c. Polybius said
that there were people who could not understand that camps of the same
periphery might have different capacities, Quintilian has a similar remark,
and Cantor thinks he may have had in his mind the calculations of Pliny, who
gompalu the size of different parts of the earth by adding their length to their
readth.

The comparison however of the areas of different figures of equal contour
had not been neglected by mathematicians. Theon of Alexandria, in his
commentary on Book 1. of Ptolemy’s Symfaxfs, has preserved a number of
Ppropositions on the subject taken from a treatise by Zenodorus wepi loopérpwy
oxnudrwy (reproduced in Latin on pp. 119o—i1211 of Hultsch’s edition of
Pappus) which was written at some date between, say, 200 B.C. «.d 9o A.D,,
and probably not long after the former date. Pappus too has at the beginni
of Book v. of his Collection (pp. 308 sqq.) the same propositions, in which he
appears to have followed Zenodorus pretty closely while making some changes
in detail. The propositions proved by Zenodorus and Pappus include the
following: (1) that, of all polygons of the same number of sides and equal
perimeter, the equilateral and equiangular polygon is the greatest in - area,
(2) that, of regular polygons of equal perimeter, that is the greatest in area
whick has the most angles, (3) that a circle is greater than any regular polygon
of equal contour, (4) that, of all crcular segments in whick the ares are equal in
length, the semicircle is the greatest. The treatise of Zenodorus was not con-
fined to propositions about plane figures, but gave also the theorem that, of
all solid figures the surfaces of which are equal, the sphere is the grealest in
volume.

ProrosiTioN 38.

Triangles which are on equal bases and in the same
parallels are equal lo one another.

Let ABC, DEF be triangles on equal bases BC, £F and
in the same parallels BF, 4D ;
I say that the triangle 4BC is

a A D H
equal to the triangle DEF.
For let AD be produced in
both directions to G, & ;
B (¢ E F

through 2 let BG be drawn
parallel to CA4, [x 31]
and through F let #/ be drawn parallel to DE.
Then each of the figures GBCA, DEFH is a parallelo-

gram ;
and GBCA is equal to DEFH ;
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for they are on equal bases BC, £F and in the same
parallels BF, GH. [x 36]

Moreover the triangle 4BC is half of the parallelogram
GBCA ; for the diameter 4B bisects it. [r. 34]

And the triangle £ D is half of the parallelogram DEFH ;
for the diameter DF bisects it. 1. 34]

[But the halves of equal things are equal to one another. ]

Therefore the triangle 48C is equal to the triangle DEZ.

Therefore etc.

Q. E. D.

On this proposition Proclus remarks (pp. 405—6) that Euclid seems to
him to have given in vI. 1 one proof including all the four theorems from
I. 35 to 1. 38, and that most people had failed to notice this. When Euclid,
he says, proves that triangles and parallelograms of the same altitude have to
one another the same ratio as their bases, he simply proves all these
propositions more generally by the use of proportion ; for of course to be of
the same altitude is equivalent to being in the same parallels. It is true that
VL. 1 generalises these propositions, but it must be observed that it does not
prove the propositions themselves, as Proclus seems to imply; they are in fact
assumed in order to prove VI. 1.

Comparison of areas of triangles of I. 24.

The theorem already mentioned as given by Proclus on 1. 24 (pp. 340—4)
is placed here by Heron, who also enunciates it more clearly (an-Nairizi, ed.
Besthorn-Heiberg, pp. 155—161, ed. Curtze, pp. 75—38).

If in two triangles two sides of the one be equal fo two sides of the other
vespectively, and the angle of the one be greater than the angle of the other,
namely the angles contained by the equal sides, then, (1) if the sum of the two
angles contained by the equal sides is equal to two right angles, the two triangles
are equal lo one another ; (2) if léss than two right angles, the triangle which
has the greater angle is also itself greater than the other ; (3) if greater than tfwo
right angles, the triangle which has the less angle is greater than the other
triangle.

D

o
r\l/\

Let two triangles 45C, DEF have the sides 4.5, 4AC respectively equal
to DE, DF.

(x) First, suppose that the angles at 4 and D in the triangles 4.BC,
DEPF are together equal to two right angles.

Heron’s construction is now as follows.

Make the angle EDG equal to the angle BAC.

Draw FH parallel to £D meeting DG in H.

Join EH.
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Then, since the angles BAC, EDF are equal to two right angles, the
angles EDH, EDF are equal to two right angles.

But so are the angles £EDH, DHF.

Therefore the angles £D.F, DHF are equal.

And the alternate angles £DF, DFH are equal. [1. 29]
Therefore the angles DHF, DFH are equal,
and DF is equal to DH. [1. 6]
Hence the two sides £D, DH are equal to the two sides B4, AC; and
the included angles are equal.

Therefore the triangles 4BC, DEH are equal in all tespects.
And the triangles DEF, DEH between the same parallels are equal.

[ 37]
Therefore the triangles 48C, DEF are equal.
Proclus takes the construction of Eucl. 1. 24, i.e.,, he makes DA equal to
DF and then proves that £D, FH are parallel.]
(2) Suppose the angles BA4C, EDF together /ss than two right angles.
As before, make the angle £DG equal to the angle BAC, draw FH
parallel to £D, and jo'm EH.

———

In this case the an, les EDH, EDF are together less than two right
angles, while the s.ngles DH DHF are equal to two right angles.  [1 29]

Hence the angle EDF, and therefore the angle DFH, is less than the
angle DHF.

Therefore DA is less than DF. [r 19]
Produce DA to G so that DG is equal to DF or AC, and join EG.
Then the triangle DEG, which is equal to the triangle 453G, is greater
than the triangle DEH, and therefore greater than the triangle DEF
(3) Suppose the angles BAC, EDF together greater than two right

angles.
A D
/\ %
B [+]
F

We make the same construction in this case, and we prove in like manner

that the angle D& F is less than the angle DFH,
whence DH is greater than DF or AC.

Make DG equal to AC, and join EG.

It then follows that the tnangle DEF is greater than the triangle 4 BC.

[In the second and third cases again Proclus starts from the construction

in 1. 24, and proves, in the second case, that the pa.rallel. FH, to ED cuts
DG and, in the third case, that it cuts DG produced.]
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There is no necessity for Heron to take account of the position of # in
relation to the side opposite 2. For in the first and third cases & mus# fall

A

F

B c E

in the position in which Euclid draws it in 1. 24, whatever be the relative
lengths of A8, AC. In the second case the figure may be as annexed, but the
proof is the same, or rather the case needs no proof at all.

ProrosITION 39.

Equal triangles whickh are on the same base and on the
same side are also in the same parvallels.

Let ABC, DBC be equal triangles which are on the same
base BC and on the same side of it ;
s[1I say that they are also in the same parallels.]
And [For] let AD be joined ;
I say that 4D is parallel to BC. A

For, if not, let A£ be drawn through
the point 4 parallel to the straight line

10 B G [x 31]
and let £C be joined. -
Therefore the triangle AZC is equal
to the triangle £5C;
for it is on the same base AC with it and in the same
15 parallels. [1. 37]
But ABC is equal to DBC;
therefore DBC is also equal to £5C, [C. N 1]

the greater to the less: which is impossible.
Therefore AE is not parallel to BC.
20 Similarly we can prove that neither is any other straight
line except AD ;
therefore 4D is parallel to BC.

Therefore etc.
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5. [I say that they are also in the same parallels.] Heiberg has proved (Hermes,
XXXVIIL., 1 ii p- 50) from a recently discovered pnp]yrus—fmgment (Fayiim towns and their
papyri, p. gg,o. 0. 1X.) that these words are an interpolation by some one who did not observe
that the words * And let 40 be joined " are part of the setting-out (Exfesis), but took them
as belonging to the comstruction (xarasxevf) and consequently thought that a dwopirubs or
““definition ™ (of the thing to be proved) should e. The interpolator then altered
“And" into “For"” in the next sentence.

This theorem is of course the partial converse of 1. 37. In 1. 37 we have
triangles which are (1) on the same base, (2) in the same parallels, and the
theorem proves (3) that the triangles are equal. Here the hypothesis (1) and
the conclusion (3) are combined as hypotheses, and the conclusion is the
hypothesis (2) of 1. 37, that the triangles are in the same parallels. The
additional 1c‘|l.mliﬁt:ation in this proposition that the triangles must be on the
same side of the base is necessary because it is not, as in 1. 37, involved in the
other hypotheses.

Proclus (p. 407, 4—17) remarks that Euclid only converts 1. 37 and 1. 38
relative to triangles, and omits the converses of 1. 35, 36 about parallelograms
as unnecessary because it is easy to see that the method would be the same,
and therefore the reader may properly be left to prove them for himself.

The proof is, as Proclus points out (p. 408, 5—a21), equally easy on the
::apposition that the assumed parallel 4EZ meets BD or CD produced

yond D.

[ProrosiTION 40.

Egqual triangles which are on equal bases and on the same
side are also in the same parallels.
Let ABC, CDE be equal triangles on equal bases BC,
CE and on the same side.
I say that they are also in the same parallels.
For let AD be joined ;
I say that 4D is parallel to BE. A D
For, if not, let 4/ be drawn through
A parallel to BE [1 31], and let F£ be
joined. i
Therefore the triangle A8C is equal 8 ¢ E
to the triangle FCE';
for they are on equal bases BC, CE and in the same parallels
BE, AF. = 38]
But the triangle ABC is equal to the triangle DCE;
therefore the triangle DCE is also equal to the triangle
FCE, [C. N 1]
the greater to the less: which is impossible.
Therefore AF is not parallel to BE,
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Similarly we can prove that neither is any other straight
line except 4D;
therefore 4D is parallel to BE.
Therefore etc.
Q. E. D.]

Heiberg has proved by means of the papyrus-fragment mentioned in the
last note that this proposition is an interpolation by some one who thought
that there should be a proposition following 1. 39 and related to it in the same
way as 1. 38 is related to 1. 37, and 1. 36 to 1. 35.

ProrosiTiON 41.

If a parallelogram have the same base with a triangle and
be in the same parallels, the parallelogram is double of the
triangle.

For let the parallelogram 4BCD have the same base BC
with the triangle £8C, and let it be in the same parallels
BC, AE;

I say that the parallelogram A4ZCD is double of the
triangle BEC.

For let AC be joined. A o £

Then the triangle ABC is equal to
the triangle £B8C;
for it is on the same base BC with it
and in the same parallels BC, AE. ¢

[ 37]

But the parallelogram ABCD is double of the triangle
ABC;

for the diameter 4 bisects it ; (1. 34]

so that the parallelogram 4B8CD is also double of the triangle
EBC.

Therefore etc.
Q. E. D.

On this proposition Proclus (pp. 414, 15—415, 16), “by way of practice”
(yvprvagias évexa), considers the area of a frapesium (a quadrilateral with only
one pair of opposite sides parallel) in comparison with that of the triangles
in the same parallels and having the greater and less of the parallel sides of
the trapezium for bases respectively, and proves that the trapezium is less
than double of the former triangle and more than double of the latter.

He next (pp. 415, 22—416, 14) proves the proposition that,

If a triangle be formed by joining the middle point of either of the non-
parallel sides to the extremities of the opposite side, the area of the trapesium is
always double of that of the triangle.
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Let ABCD be a trapezium in which 4D, BC are the parallel sides, and
E ths middle point of one of the non-parallel sides,
say DC. A F

Join EA4, EB and produce BE to meet AD
produced in £,

Then the triangles BEC, FED have two angles
equal respectively, and one side C£ equal to one
side DE;
therefore the triangles are equal in all respects. [1. 26]

Add to each the quadrilateral ABED ;
therefore the trapezium 4BCD is equal to the triangle 457,

that is, to twice the triangle 4£B, since BE is equal to EF. [1. 38]

The three properties proved by Proclus may be combined in one enuncia-
tion thus :

If a triangle be formed by joining the middle point of one side of a trapesium
to the extremities of the opposite side, the area of the trapesium is (1) greater
than, (2) equal to, or (3) less than, double the area of the triangle according as
the side the middle point of which is taken is (1) the greater of the parallel sides,
(2) either of the non-parallel sides, or (3) the lesser of the parallel sides.

PRrOPOSITION 42.

To construct, in a given vectilineal angle, a parallelogram
equal to a given triangle.

Let ABC be the given triangle, and D the given recti-
lineal angle ;
thus it is required to construct in the rectilineal angle D a
parallelogram equal to the
triangle ABC.

A F Q
Let BC be bisected at E, ‘} XE : /
and let A £ be joined ;
on the straight line £C, and
at the point £ on it, let the 3 ¢

angle CEF be constructed
equal to the angle D ; [r. 23]
through A4 let AG be drawn parallel to £C, and [r 31]
through C let CG be drawn parallel to £F.

Then FECG is a parallelogram.

And, since BE is equal to £C,

the triangle 4B E is also equal to the triangle 4 £C,
for they are on equal bases B, £C and in the same parallels
BC, AG; [r. 38)

therefore the triangle ABC is double of the triangle
AEC,
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But the parallelogram FECG is also double of the triangle
AEC, for it has the same base with it and is in the same
parallels with it; [ 41]

therefore the parallelogram FECG is equal to the
triangle 45BC.

And it has the angle CEF equal to the given angle D.

Therefore the parallelogram FZCG has been constructed
equal to the given triangle 4ABC, in the angle CEF which is
equal to D. Q E F.

PROPOSITION 43.

In any parallelogram the complements of the parallelograms
about the diameter arve equal to one another.
Let ABCD be a parallelogram, and 4C its diameter ;

and about AC let £H, FG be parallelograms, and 8K, KD
5 the so-called complements ;

I say that the complement BX is equal to the complement
KD.
For, since ABCD is a parallelogram, and AC its diameter,

the triangle 4BC is equal to
10 the triangle 4CD. [1 34)
Again, since £/ is a parallelo-

A H D
oy Y.
gram, and AKX is its diameter, / N
the triangle 4£X is equal to
the triangle 4 7KX. d— /

15 For the same reason
the triangle X7C is also equal to XGC.

Now, since the triangle 4ZK is equal to the triangle
AHK,

and KFC to KGC,
20 the triangle 4 £K together with XGC is equal to the triangle
AHK together with KFC., [C. N. 2]
And the whole triangle 48C is also equal to the whole
ADC;
therefore the complement ZX which remains is equal to the
as complement KD which remains. [C. & 3]
Therefore etc.
Q E. D.
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1. complements, ﬂpuﬂwmu, the in to fill up (interstices).
4. and about AC.... Euclid's ﬁ-emdmtpr )ltwnim i

that the complements as well as the otlter elograms are * about" d.hﬂu.l e
words are here wepl 3¢ Tip AT wapaMnhipappe plv forw 74 EO, ZH, 7d B Aeybuera
fwhw“n 4 BK, KA. The lh lled complements” indicates that
this technical use of raparAnpduara was not new, though it might not be universally known,

In the text of Proclus’ commentary as we have it, the end of the note on
L 41, the whole of that on 1. 42, and the beginning of that on 1. 33 are
missing.

Proclus remarks (p. 418, 15—20) that Euclid did not need to give a
formal definition of complement because the name was mmgo u?ested by the
facts; when once we have the two *“parallelograms a e diameter,”
the complements are necessarily the areas remain-
ing over on each side of the diameter, which fill
up the complete parallelogram. Thus (p. 417,

1 5qq.) the complements need not be parallelo-
grams. They are so if the two “parallelograms
about the diameter” are formed by straight lines
drawn through one point of the diameter lel
to the sides of the original parallelogram, but not
otherwise. If, as in the first of the accompanying ﬁgurs, the parallelograms
have no common point, the complements are five-sided figures as shown.
When the parallelograms overlap, as in the second figure, Proclus regards
the complements as being the small parallelo-

i@ EH. But, if complements are strictly A F D
the areas required to fill up the original parallelo- o
gram, Proclus is inaccurate in describing 7G, EA
as the complements. The complements arereally g
(1) the parallelogram #G minus the triangle LMV,
and (2) the parallelogram EH minus the tnangle B H c
KMN, respectively; the possibility that the re-
spective differences may be negative merely means the ﬁwblllty that the
sum of the two parallelograms about the diameter may be together greater
than the original parallelogram.

In all the cases it is easy to show, as Proclus does, that the complements
are still equal.

PROPOSITION 44.

To a given straight line to apply, in a given rectilineal
angle, a parallelogram equal to a given triangle.
Let AB be the given straight line, C the given triangle
and D the given rectilineal angle ;
sthus it is required to apply to the given straight line 4.3, in
an angle equal to the angle D, a parallelogram equal to the
given triangle C.
Let the lelogram BEFG be constructed equal to
the tnangle , in the angle ZBG which is equal to D [1 42);
wlet it be placed so that EE is in a straight line with 42 ; let
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FG be drawn through to /A, and let 4/ be drawn through
A parallel to either BG or EF. (1 31]
Let A B be joined.

F_E K
A °
o/ B M
H A L
Then, since the straight line AF falls upon the parallels
1s AH, EF,

the angles A HF, HFE are equal to two right angles.
[r. 29]

Therefore the angles BHG, GFE are less than two right
angles ;
and straight lines produced indefinitely from angles less than
20 two right angles meet ; [Post. 5]
therefore B, FE, when produced, will meet.
Let them be produced and meet at X ; through the point
K let KL be drawn parallel to either £4 or FH, [ 31]
and let ZA4, GB be produced to the points L, M.
35 Then HLKF is a parallelogram,
HK is its diameter, and AG, ME are parallelograms. and
LB, BF the so-called complements, about ZX;

therefore L2 is equal to BF. [x 43)
But BF is equal to the triangle C;
30 therefore L2 is also equal to C. [C. N.1)

And, since the angle GBE is equal to the angle 48M,

[r. x5]
while the angle GBE is equal to D,

the angle 4BM is also equal to the angle D.

Therefore the parallelogram L5 equal to the given triangle
35 C has been applied to the given straight line 45, in the angle
ABM which is equal to D.

Q. E. F.

14. since the straight line HF falls.... The verb is in the aorist (évérecer) here and
in similar expressions in the following propositions.

This proposition will always remain one of the most impressive in all
geometry when account is taken (1) of the great importance of the result
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obtained, the transformation of a parallelogram of any shape into another
with the same angle and of equal area but with one side of any given
length, e.g. a unst length, and (2) of the simplicity of the means employed,
namely the mere application of the property that the complements of the
“parallelograms about the diameter” of a parallelogram are equal. The
marvellous ingenuity of the solution is indeed worthy of the “godlike men of
old,” as Proclus calls the discoverers of the method of * a.pplwatmn of areas”;
and there would seem to be no reason to doubt that the particular solution,
like the whole theory, was Pythagorean, and not a new solution due to Euclid
himself,

Application of areas.

On this proposition Proclus gives (pp. 419, 15—420, 23) a valuable note
on the method of “application of areas” here introduced, which was one of
the most powerful methods on which Greek geometry relied. The note runs
as follows :

“These things, says Eudemus (ol wepi rov Eddypov), are ancient and are
discoveries of the Muse of the Pythagoreans, I mean the agplication of areas
(wapafoly tdv xwpiwv), their exceeding (SwepBolsj) and their falling-short
(@ Aewns). It was from the Pythagoreans that later geometers [i.e. Apollonius]
took the names, which they again transferred to the so-called conic lines,
designating one of these a parabola (application), another a Ayperbola
(exceeding) and another an elipse (falling-short), whereas those godlike men
of old saw the things signified by these names in the construction, in a plane,
of areas upon a finite straight line. For, when you have a stra.tght line set
out and lay the given area exactly alongsxde the whole of the straight line, then
they say that you apply (wapafdAlev) the said area; when however you
make the length of the area greater than the straight line itself, it is said to
mud (vrepBarrew), and when you make it less, in which case, after the area

drawn, there is some part of the straight line extending beyond it,
1t is said to fall short (é\Aefmew). Euclid too, in the sixth book, speaks in
this way both of exceeding and falling-short; but in this place he needed the
application simply, as he sought to apply to a given straight line an area equal
to a given triangle in order that we might have in our power, not only the
construction (ovoraais) of a parallelogram equal to a given triangle, but also
the application of it to a finite straight line. For example, given a triangle
with an area of 12 feet, and a straight line set out the length of which is
4 feet, we apply to the straight line the area equal to the triangle if we take
the whole length of 4 feet and find how many feet the breadth must be in
order that the parallelogram may be equal to the triangle. In the particular
case, if we find a breadth of 3 feet and multiply the length into the breadth,
supposing that the angle set out is a right angle, we shall have the area. Such
then is the agplication handed down from early times by the Pythagoreans.”

Other passages to a similar effect are quoted from Plutarch. }1) “ Pytha-
goras sacrificed an ox on the strength of his proposition (3uiypappa) as
Apollodotus (?-rus) says...whether it was the theorem of the hypotenuse, viz.
that the square on it is equal to the squares on the sides conmmngthe
right angle, or the problem about the agplication of an area.” (Non posse
suaviter vivi secundum Epicurum, c. 11.) (2) “ Among the most geometrical
theorems, or rather problems, is the following: given two figures, to agply a
third equal to the one and similar to the other, on the strength of which
discovery they say moreover that Pythagoras sacrificed. This is indeed
unquestionably more subtle and more scientific than the theorem which
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demonstrated that the square on the hypotenuse is equal to the squares on
the sides about the right angle” (Symp. viiL 2, 4).

The story of the sacrifice must (as noted by Bretschneider and Hankel)
be gwen up as inconsistent with Pythagorean ritual, which forbade such
sacrifices; but there is no reason to doubt that the first distinct formulation
and introduction into Greek geometry of the method of application of areas
was due to the Pythagoreans. The complete exposition of the app/ication of
areas, their exceeding and their falling-short, and of the construction of a
rectilineal figure equal to one given figure and similar to another, takes us
into the sixth Book of Euclid; but it will be convenient to note here the
general features of the theory ot' application, exceeding and falling-short.

The simple application of a parallelogram of given area to a given
straight line as one of its sides is what we have in 1. 44 and 45; the general
form of the problem with regard to exceeding and falling-short may be stated
thus :

“To apply to a given straight line a rectangle (or, more generally, a

elogram) equal to a given rectilineal figure and (1) exceeding or
2) falling-short by a square (or, in the more general case, a parallelogram
similar to a given parallelogram).”

What is meant by saying that the applied parallelogram (1) exceeds or
(2) falls short is that, while its base coincides and is coterminous af one end
with the straight line, the said base (1) overlaps or (2) falls short of the
straight line at #he other end, and the portion by which the applied
parallelogram exceeds a parallelogram of the same angle and height on the
given straight line (exactly) as base is a parallelogram similar to a given
parallelogram (or, in ps.rncular cases, a square). In the case where the
parallel is to fall short, a Sopurpos is necessary to express the condition
of possibility of solution.

We shall have occasion to see, when we come to the relative propositions
in the second and sixth Books, that the general problem here stated is
equivalent to that of solving geometrically a mixed quadratic equation. We
shall see that, even by means of 11. 5 and 6, we can solve geometrically the

equations
ax+ a2 =P,
B-agx=5 H

but in vi. 28, 29 Euclid gives the equivalent of the solution of the general
equations
& c

ax+-a'=—.
o m

We are now in a position to understand the application of the terms
parabola (application), Ayperbola (exceeding) and ellipse (falling-short) to
conic sections. These names were first so applied by Apollonius as expressing
in each case the fundamental property of the curves as stated by him. This
fundamental property is the geometrical equivalent of the Cartesian equation
referred to any diameter of the conic and the tangent at its extremity as (in
general, oblique) axes. If the parameter of the ordinates from the several
points of the conic drawn to the given diameter be denoted by # (2 being

2

accordingly, in the case of the hyperbola and ellipse, equal to Z where 4 is

the length of the given diameter and 4’ that of its conjugate), Apollonius gives
the properties of the three conics in the following form.
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(1) For the parabola, the square on the ordinate at any point is equal to
a rectangle applied to p as base with altitude equal to the corresponding
abscissa. That is to say, with the usual notation,

' =px.

(2) For the Ayperbola and ellipse, the square on the ordinate is equal to
the rectangle applied to p having as its width the abscissa and exceeding (for
the hyperbola) or falling-short (for the ellipse) by a figure similar and similarly
situated to the rectangle contained by the given diameter and p.

That is, in the Ayperdola 3y =px+ ;-—’, 24,

or f:px-r%x‘;
and in the e/ipse V=px— ;x'.

The form of these equations will be seen to be exactly the same as that of
the general equations above given, and thus Apollonius’ nomenclature followed
exactly the traditional theory of agplication, exceeding, and falling-short.

PROPOSITION 45.

To construct, in a given rectilineal angle, a parallelogram
equal to a given rectilineal figure.

Let ABCD be the given rectilineal figure and £ the given
rectilineal angle ;

sthus it is required to construct, in the given angle £, a
parallelogram equal to the rectilineal figure 48CD.

~re [

Let DB be joined, and let the parallelogram #/ be
constructed equal to the triangle 48D, in the angle AKF
which is equal to £; [r. 42]

10let the parallelogram GM equal to the triangle DBC be
applied to the straight line G/, in the angle GAM which is
equal to £. [r 44]

Then, since the angle £ is equal to each of the angles
HKF, GHM,

15 the angle /K F is also equal to the angle GHM. [C. N. 1]
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Let the angle XA/ G be added to each;

therefore the angles FKH, KHG are equal to the angles
KHG, GHM.

But the angles FKH, KHG are equal to two right anFIes;

29)
2o therefore the angles KXHG, GHM are also equal to two right

angles.

Thus, with a straight line G/, and at the point & on it,
two stra:ght lines KA, AM not lying on the same side make
the adjacent angles equal to two right angles ;

25 therefore K/ is in a straight line with A M. [r. 14]

And, since the straight line ZG falls upon the llels
KM, FG, the alternate angles MA G, HGF are equal to one
another. [r 29]

Let the angle ZGL be added to each;
so therefore the angles MHG, HGL are equal to the angles

HGF, HGL. [C. N 3]
But the angies MHG, HGL are equal to two right anlgles;
I 2
therefore the angles ZGF, HAGL are also equal to two rig}ﬂ
angles, [C Nx]
35 Therefore 7G.is in a straight line with GLZ. [r. 14)
And, since #K is equal and parallel to /G, [r. 34]
and AG to ML also,

KF is also equal and parallel to ML ; [C M. x;130)
and the Stl'a.l‘%;lt lines KM, FL join them (at their extremities);
0 therefore KM, FL are also equal and parallel. [r. 33]

Therefore KFLM is a parallelogram.
And, since the triangle 48D is equal to the parallelogram

£, and DBC to GM,
s the whole rectilineal figure ABCD is equal to the whole
parallelogram KX/~L M.
Therefore the parallelogram K ~L M has been constructed
ual to the given rectilineal figure 4 BCD, in the angle FKM
ﬁnich is equal to the given angle £. Q. E. F.

1, 3, 6, 45, 48. rectilineal figure, in the Greek “rectilineal” simply, without *figure,”
/ 4Aine ing here used as a substantive, like the similarly formed wapal\phéypasuor.

Transformation of areas.

We can now take stock of how far the propositions 1. 43—45 bring us in
the matter of #ransformation of areas, which constitutes so important a part of
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what has been fitly called the geometrical algebra of the Greeks. We have
now learnt how to represent any rectilineal area, which can of course be
resolved into triangles, by a single parallelogram having one side equal to any
iven straight line and one angle equal to any given rectilineal angle. Most
important of all such parallelograms 1s the rectangle, which is one of the simplest
forms in which an area can be shown. Since a rectangle corresponds to the
product of two magnitudes in algebra, we see that application to a given
straight line of a rectangle equal to a given area is the geometrical equivalent
of algebraical division of the product of two quantities by a third. Further
than this, it enables us to add or subtract any rectilineal areas and to represent
the sum or difference by one rectangle with one side of any given length, the
process being the equivalent of ohtaining a common factor. But one step
still remains, the finding of a sgnure equal to a given rectangle, ie. to a
given rectilineal figure; and this step is not taken till 1. 14. In general,
the transformation of combinations of rectangles and squares inta other
combinations of rectangles and squares is the subject-matter of Book i1, with
the exception of the expression of the sum of two squares as a single square
which appears earlier in the other Pythagorean theorem 1. 47. Thus the
transformation of rectilineal areas is made complete in one direction, i.e. in the
direction of their simplest expression in terms of rectangles and squares, by the
end of Book 11. The reverse process of transforming the simpler rectangular
area into an equal area which shall be similar to any rectilineal figure requires,
of course, the use of proportions, and therefore does not appear till v1. 25.
Proclus adds to his note on this proposition the remark (pp. 422, 24—
423, 6): “I conceive that it was in consequence of this problem that the
ancient geometers were led to investigate the squaring of the circle as well.
For, if a parallelogram can be found equal to any rectilineal figure, it is worth
inquiring whether it be not also possible to prove rectilineal figures equal to
circular. And Archimedes actually proved that any circle is equal to the
right-angled triangle which has one of its sides about the right angle [the
ndicular] equal to the radius of the circle and its base equal to the
perimeter of the circle. But of this elsewhere.”

ProrosiTioN 46.

On a given straight line to describe a square.

Let 4B be the given straight line; ¢
thus it is required to describe a square
on the straight line 4.3.

s  Let AC be drawn at right angles to
the straight line 42 from the point 4
on it [r. 11}, and let 4D be made equal
to AB;
through the point D let DE be drawn

10 parallel to 425, p L,
and through the point 2 let BE be drawn parallel to 4D.

[r 31]

o
m
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Therefore ADERB is a parallelogram ;
therefore A8 is equal to DE, and AD to BE. |1 34]
But A8 is equal to 4D ;

15 therefore the four straight lines B4, AD, DE, EB
are equal to one another;

therefore the parallelogram ADEB is equilateral.

I say next that it is also right-angled.

For, since the straight line 40 falls upon the parallels
20 AB, DE,

the angles 4D, ADE are equal to two right angles.

[ 29]
But the angle BA4D is right;
therefore the angle ADE is also right.

And in parallelogrammic areas the opposite sides and
25 angles are equal to one another ; [ 34]

therefore each of the opposite angles ABE, BED is also
right.
Therefore ADERB is right-angled.
And it was also proved equilateral.
30 Therefore it is a square; and it is described on the straight
line AB.
QEF

tu (P-_423, 185qq.) notes the difference between the word comsiruct

(cwﬂ}cu‘uj :ipp by E to the construction of a #riangle (and, he might have added,

he words describe on (dvaypdew dré) used of drawing a square on a given
stmght ne as one side. The friangle (or angl) is, so to say, pieced together, while the
describing of a square on a given straight line is the making of a re ** from ” ome side,
and corresponds to the multiplication of the number representing the side by itself,

Proclus (pp. 424—5) proves that, if squares are described on equal straight
lines, the squares are equal; and, conversely, that,
if dwo squares are equal, the straight lines are
equal on which they are descrided. The first
proposition is immediately obvious if we divide
the squares into two triangles by drawing a
diagonal in each. The converse is proved as
follows. A

Place the two equal squares 45, CG so
that 4B, BC are in a ht line. Then,
since the augles are right, 7B, BG will also
be in a straight line. Join 4%, .FC' CG, GA.

Now, since the squares are equal, the b: E
triangles ABF, CBG are equal.

Add to each the triangle FBC'; therefore the triangles AFC, GFC are
equal, and hence they must be in the same parallels.
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Therefore 4G, CF are parallel. i {
Also, since each of the alternate angles 457G, FGC is half a right angle,
AF, CG are parallel.

Hence AFCG is a parallelogram ; and 45, CG are equal.
Thus the triangles 4BF, CBG have two angles and one side respectively
equal ;

therefore 4.5 is equal to BC, and BFto BG.

ProrosiTION 47.

In right-angled triangles the square on the side sublending
the right angle is equal to the squaves on the sides containing
the right angle.

Let ABC be a right-angled triangle having the angle
s BAC right; % > % e :
I say that the square on BC is equal to the squares on
BA, AC.
For let there be described
on BC the square BDEC, 4/
wand on B4, AC the squares
GB, HC; [1 46]
through 4 let AL be drawn .
parallel to either BD or CE, A
and let AD, FC be joined.
15 Then, since each of the A
anFles BAC, BAG is right, B
it follows that with a straight
line BA, and at the point 4
on it, the two straight lines
0 AC, AG not lying on the
same side make the adjacent

angles equal to two right D L E
angles ;
therefore CA is in a straight line with 4G. [ 14]

35 For the same reason
BA is also in a straight line with 4/,
And, since the angle DBC is equal to the angle FBA: for
each is right :
let the angle ABC be added to each;
3o therefore the whole angle DBA is equal to the whole
angle FBC. [C. & 2]
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And, since D2 is equal to BC, and 7B to BA,
the two sides 45, BD are equal to the two sides 75, BC
respectively ,
35 and the angle 48D is equal to the angle FBC;
therefore the base 40 is equal to the base #C,

and the triangle 48D is equal to the triangle FBC. [ 4)
Now the parallelogram ZLZ is double of the triangle 43D,
for they have the same base B0 and are in the same parallels
wBD, AL, [1 41]
And the square G5 is double of the triangle FBC,
for they again have the same base #/A and are in the same
parallels #5, GC. [x. 41]
[But the doubles of equals are equal to one another.]
45 Therefore the parallelogram BL is also equal to the
square GA.
Similarly, if 4E, BK be joined,
the parallelogram CLZ can also be proved equal to the square
H .

therefore the whole square BDZEC is equal to the two
squares G5, HC. [C. N 2]
And the square BDEC is described on BC,
and the squares GB, H/Con BA, AC.
Therefore the square on the side BC is equal to the
ss squares on the sides B4, AC.
Therefore etc. Q. E. D.

1. the square on, 7d dwd...Terpdywror, the word dvaypagér or drayeypapuévor being
understood.

subtending the right angle. Here dworewodons, *subtending,” is used with the
simple accusative (riw dpfip ywrlay) instead of being followed b and the accusative,
which seems to be the original and more orthodox construction. Cf. 1. 18, note.

33. the two sides AB, BD.... Euclid actually writes ** D5, B.4," and therefore the
equ[,' sides in the two triangles are not mentioned in corresponding order, though he adheres
to the words éxarépa éxarépa ‘‘ respectively.” Here DB is equal to 5C and B4 to FB.

44. [But the doubles of equals are equal to one another.] Heiberg brackets
these words as an interpolation, since it quotes a Commion Notion which is itself interpolated.
Cf. notes on 1. 37, P. 333, and on interpolated Commion Notions, pp. 223—4-

“If we listen,” says Proclus (p. 426, 6 sqq.), “to those who wish to
recount ancient history, we may find some of them referring this theorem to
Pythagoras and saying that he sacrificed an ox in honour of his discovery.
But for my part, while I admire those who first observed the truth of this
theorem, I marvel more at the writer of the Elements, not only because he
made it fast (xarelrioaro) by a most lucid demonstration, but because he
compelled assent to the still more general theorem by the irrefragable
arguments of science in the sixth Book. For in that Book he proves
generally that, in right-angled triangles, the figure on the side subtending
the right angle is equal to the similar and similarly situated figures described
on the sides about the right angle.”

50
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In addition, Plutarch (in the passages quoted above in the note on L 44),
Diogenes Laertius (viir. 1z) and Athenaeus (x. 13) agree in attributing this
proposition to Pythagoras. It is easy to point out, as does G. Junge (*“Wann
haben die Griechen das Irrationale entdeckt?” in Novae Symbolae Joachimicae,
Halle a. 8., 1907, pp. 221—264), that these are late witnesses, and that the
Greek literature which we possess belonging to the first five centuries after
Pythagoras contains no statement specifying this or any other particular great
geometrical discovery as due to him. Yet the distich of Apollodorus the
“calculator,” whose date (though it cannot be fixed) is at least earlier than
that of Plutarch and presumably of Cicero, is quite definite as to the existence
of one “famous proposition” discovered by Pythagoras, whatever it was. Nor
does Cicero, in commenting apparently on the verses (De nat. deor. 111. c. 36,
§ 88), seem to dispute the fact of the geometrical discovery, but only the story
of the sacrifice. Junge naturally emphasises the apparent uncertainty in the
statements of Plutarch and Proclus. But, as I read the passages of Plutarch,
I see nothing in them inconsistent with the supposition that Plutarch un-
hesitatingly accepted as discoveries of Pythagoras do#% the theorem of the
square of the hypotenuse and the problem of the application of an area, and
the only doubt he felt was as to which of the two discoveries was the mare
appropriate occasion for the supposed sacrifice. There is also other evidence
not without bearing on the question. The theorem is closely connected with
the whole of the matter of Eucl. Book 11., in which one of the most prominent
features is the use of the gnomon. Now the gnomon was a well-understood
term with the Pythagoreans (cf. the fragment of Philolaus quoted on p. 141 of
Boeckh’s Philolaos des Pythagoreers Lehren, 1819). Aristotle also {Physics
1L 4, 203 a 10—15) clearly attributes to the Pythagoreans the placing of odd
numbers as gnomons round successive squares beginning with 1, thereby
forming new squares, while in another place (Categ. 14, 15 2 30) the word
gnomon occurs in the same (obviously familiar) sense : “e.g. a square, when a
gnomon is placed round it, is increased in size but is not altered in form.”
The inference must therefore be that practically the whole doctrine of Book 11.
is Pythagorean. Again Heron (? 3rd cent. A.n.), like Proclus, credits Pythagoras
with a general rule for forming nght—angled triangles with rational whole
numbers for sides. Lastly, the “summary” of Proclus appears to credit
Pythagoras with the discovery of the theory, or study, of irrationals (T 16y
dAdywy #pu.yy.a‘rmv} But it is now more or less agreed that the rea.dmg here
should be, not rév dAdywy, but rév dvaddywy, or rather rdv avd Aeyov (““of
proportlona]s”), and that the author intended to attribute to Pythagoras a
theory of proportion, i.e. the (arithmetical) theory of proportion apphcable
only to commensurable magnitudes, as dlstmct from the theory of Eucl.
Book v., which was due to Eudoxus. It is not however disputed that the
ﬁ-ﬂmganam discovered the irrational (cf. the scholium No. 1 to Book x.).
Now everything goes to show that this discovery of the irrational was made
with reference to /2, the ratio of the diagonal of a square to its side. It is
clear that this presupposes the knowledge that 1. 47 is true of an isosceles
right-angled triangle ; and the fact that some triangles of which it had been
discovered to be true were rafional right-angled triangles was doubtless
what suggested the inquiry whether the ratio between the lengths of the
diagonal and the side of a square could also be expressed in whole numbers.
On the whole, therefore, I see no sufficient reason to question the tradition
that, so far as Greek geomelry is concerned (the possible priority of the
discovery of the same proposition in India will be considered later), Pythagoras
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w?.? the first to introduce the theorem of 1. 47 and to give a general proof
of it.

On this assumption, how was Pythagoras led to this discovery? It has
been suggested and commonly assumed that the Egyptians were aware that a
triangle with its sides in the ratio 3, 4, 5 was right-angled. Cantor inferred
this from the fact that this was precisely the triangle with which Pythagoras
began, if we may accept the testimony of Vitruvius (1x. 2) that Pythagoras
taught how to make a right angle by means of three lengths measured by the
numbers 3, 4, 5. If then he took from the Egyptians the triangle 3, 4, 5, he
presumably learnt its property from them also. Now the Egyptians must
certainly be credited from a period at least as far back as 2000 B.C. with the
knowledge that 4*+3*=5% Cantor finds proof of this in a fragment of
papyrus belonging to the time of the rzth Dynasty newly discovered at
Kahun. In this papyrus we have extractions of square roots: e.g. that of 16
is 4, that of 15 is 1}, that of 6} is 2}, and the following equations can be

traced :
v+ (@) =gy
8+ 6 =10
2"+ (13)" = (24)"
16°+ 12! =20%
It will be seen that 4*+ 3"=35? can be derived from each of these by
multiplying, or dividing out, by one and the same factor. We may therefore
admit that the Egyptians knew that 3*+4*=5" But there seems to be no
evidence that they knew that the triangle (3, 4, 5) is right-angled ; indeed,
according to the latest authority (T. Eric Peet, The Rhind Mathematical
PLapyrus, 1923), nothing in Egyptian mathematics suggests that the Egyptians
were acquainted with this or any special cases of the Pythagorean theorem.
How then did Pythagoras discover the general theorem? Observing that
3+ 4, § was a right-angled triangle, while 3"+ 4 =5® he was probably led to

phne Alka'

consider whether a similar relation was true of the sides of right-angled
triangles other than the particular one. The simplest case (geometrically) to
investigate was that of the ssosceles right-angled triangle ; and the truth of the
theorem in this particular case would easily appear from the mere construction
of a figure. Cantor (15, p. 185) and Allman (Greek Geometry from Thales to
Euclid, p. 29) illustrate by a figure in which the squares are drawn outwards,
as in 1. 47, and divided by diagonals into equal triangles ; but I think that the
truth was more likely to be first observed from a figure of the kind suggested
by Biirk (Das Apastamba-Sulba-Satra in Zestschrift der deuts hen morgenlind.
Gesellschaft, LV., 1901, p. 557) to explain how the Indians arrived at the
same thing. The two figures are as shown above. When the geometrical
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consideration of the figure had shown that the isosceles right-angled triangle
had the property in question, the investigation of the same fact from the
arithmetical point of view would ultimately lead to the other momentous
discovery of the irrationality of the length of the diagonal of a square expressed
in terms of its side.

The érrational will come up for discussion later; and our next question
is: Assuming that Pythagoras had observed the geometrical truth of the
theorem in the case of the two particular triangles, and doubtless of other
rational right-angled triangles, how did he establish it generally ?

There is no positive evidence on this point. Two possible lines are
however marked out. (1) Tannery says (La Géométrie grecgue, p. 105) that
the geometry of Pythagoras was sufficiently advanced to make it possible
for him to prove the theorem by similar triangles. He does not say in
what particular manner similar triangles would be used, but their use must
apparently have involved the use of proportions, and, in order that the proof
should be conclusive, of the theory of proportions in its complete form
applicable to incommensurable as well as commensurable magnitudes. Now
Eudoxus was the first to make the theory of proportion independent of the
hypothesis of commensurability ; and as, before Eudoxus’ time, this had not
been done, any proof of the general theorem by means of proportions given
by Pythagoras must at least have been inconclusive. But this does not
constitute any objection to the supposition that the truth of the general
theorem may have been discovered in such a manner; on the contrary, the
supposition that Pythagoras proved it by means of an imperfect theory of
proportions would better than anything else account for the fact that Euclid
had to devise an entirely new proof, as Proclus says he did in 1. 47. This
proof had to be independent of the theory of proportion even in its rigorous
form, because the plan of the Elements postponed that theory to Books v.
and vi, while the Pythagorean theorem was required as early as Book 1L
On the other hand, if the Pythagorean proof had been based on the doctrine
of Books 1. and 11 only, it would scarcely have been necessary for Euclid to
supply a new proof.

The possible proofs by means of proportion would seem to be practically
limited to two.

(@) One method is to prove, from the similarity of the triangles 4.8C,
DABA, that the rectangle CB, BD is equal to the

uare on B4, and, from the similarity of the i
triangles 4BC, DAC, that the rectangle BC, CD
is equal to the square on CA ; whence the result
follows by addition.
It will be observed that this proof is in substance
identical with that of Euclid, the only difference B D c

being that the equality of the two smaller squares

to the respective rectangles is inferred by the method of Book vi. instead
of from the relation between the areas of parallelograms and triangles on the
same base and between the same parallels established in Book 1. It occurred
to me whether, if Pythagoras’ proof had come, even in substance, so near to
Euclid’s, Proclus would have emphasised so much as he does the originality
of Euclid's, or would have gone so far as tb say that he marvelled more at
that proof than at the original discovery of the theorem. But on the whole
I see no difficulty ; for there can be little doubt that the proof by proportion
is what suggested to Euclid the method of 1. 47, and the transformation of
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the method of proportions into one based on Book 1. only, effected by a
construction and proof so extraordinarily ingenious, is a veritable four de
Jorce which compels admiration, notwithstanding the ignorant strictures of
Schopenhauer, who wanted something as obvious as the second figure in
the case of the isosceles right-angled triangle (p. 352), and accordingly
(Simmitiliche. Werke, 1. § 39 and 1. § 15) calls Euclid’s proof “a mouse-trap
proof” and ““a proof walking on stilts, nay, a mean, underhand, proof” (*Des
Eukleides stelzbeiniger, ja, hinterlistiger Beweis ”).

() The other possible method is this. As it would be seen that the
triangles into which the original triangle is divided by the perpendicular from
the right angle on the hypotenuse are similar to one another and to the whole
triangle, while in these three triangles the two sides about the right angle in the
original triangle, and the hypotenuse of the original triangle, are corresponding
sides, and that the sum of the two former similar triangles is identically equal
to the similar triangle on the hypotenuse, it might be inferred that the same
would also be true of sguares described on the corresponding three sides
respectively, because squares as well as similar triangles are to one another in
the duplicate ratio of corresponding sides. But the same thing is equally true
of any similar rectilineal figures, so that this proof would practically establish
the extended theorem of Eucl vi. 31, which theorem, however, Proclus
appears to regard as being entirely Euclid’s discovery.

On the whole, the most probable supposition seems to me to be that
Pythagoras used the first method (a) of proof by means of the theory of
proportion as he knew it, i.e. in the defective form which was in use up to the
date of Eudoxus.

(2) I have pointed out the difficulty in the way of the supposition that
Pythagoras’ proof depended upon the principles of Eucl. Books 1. and 11. only.

a b a b

L

a

Were it not for this difficulty, the conjecture of Bretschneider (p. 82), followed
by Hankel (p. 98), would be the most tempting hypothesis. According to this
suggestion, we are to suppose a figure like that of Eucl. 11. 4 in which g, 4 are
the sides of the two inner squares respectively, and a + 4 is the side of the
complete square. Then if the two complements, which are equal, are divided
by their two diagonals into four equal triangles of sides a, J, ¢, we can place
these triangles round another square of the same size as the whole square, in the
manner shown in the second figure, so that the sides a, 4 of successive tri

make up one of the sides of the square and are arranged in cyclic order. It
readily follows that the remainder of the square when the four triangles are
deducted is, in the one case, a square whose side is ¢, and in the other the sum of
two squares whose sides are a,  respectively. Therefore the.square on ¢is equal
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to the sum of the squares on @, 4. All that can be said against this con-
jectural proof is that it has no specifically Greek colouring
but rather recalls the Indian method. Thus Bhiskara
(bon 1114 A.D.; see Cantor, 15, p. 656) simply draws
four right-angled triangles equal to the original one in-
wards, one on each side of the square on the hypotenuse,
and says ““see!”, without even adding that inspection
shows that

¢’=4a—b+(a—&)’=a’+b’;

Though, for the reason given, there is difficulty in supposing that
Pythagoras used a general proof of this kind, which applies of course to right-
angled triangles with sides mcommensurable as well as commensurable, there
is no objection, I think, to supposing that the truth of the proposition in the
case of the first rational right-angled triangles discovered, e.g. 3, 4, 5, was
proved by a method of this sort. Where the sides are commensurable in this
way, the squares can be divided up into small (unit) squares, which would
much facilitate the comparison between them. That this subdivision was in
fact resorted to in adding and subtracting squares is made probable by
Aristotle’s allusion to odd numbers as gremons placed round unity to form
successive squares in Physics 111 4 ; this must mean that the squares were
represented by dots arranged in the form of a square and a gnomon formed of
dots put round, or that (if the given square was drawn in the usual way) the
gnomon was divided up into unit squares. Zeuthen has shown (* Zhéoréme
de Pythagore” Origine de la Géométrie scientifigue in Comptes rendus du
1™ Congris international de Philosophie, Genéve, 1904), how easily the
proposition could be proved by a method of this kind for the triangle 3, 4, 5.
To admit of the two smaller squares being shown side by side, take a square
on a line containing 7 units of length (4 + 3), and divide it up into 49
small squares. It would be obvious that the
whole square could be exhibited as containing
four rectangles of sides 4, 3 cyclically arranged A
round the figure with one unit square in the
middle. (This same figure is given by Cantor, 1,, B
p. 68o. to illustrate the method given in the p A R
Chinese “ Chéu-pei ”.) It would be seen that E

(i) the whole square (7*) is made up of two
squares 3' and 4% and two rectangles 3, 4; N

(ii) the same square is made up of the square N\ o
EFGH and the halves of four of the same rect-
angles 3, 4, whence the square £5G H, being equal
to the sum of the squares 3* and 4% must contain 25 unit squares and its side,
or the diagonal of one of the rectangles, must contain 5 units of length.

Or the result might equally be seen by observing that

(i) the square EFGH on the diagonal of one of the rectangles is made
up of the halves of four rectangles and the unit square in the middle, while

(ii) the squares 3* and 4* placed at adjacent corners of the large square
make up two rectangles 3, 4 with the unit square in the middle.

The procedure would be equally easy for any rational right-angled triangle,
and would be a natural method of trying to prore the property when it had

E B

X
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qnnsg been empirically observed that triangles like 3, 4, 5 did in fact contain a
e.

Zeuthen has, in the same paper, shown in a most ingenious way how the

property of the triangle 3, 4, 5 could be verified by a sort of combination of

the second possible method by similar triangles,

(4) on p. 354 above, with subdivision of recfamgles A

into similar small recfangles. 1 give the method on

account of its interest, although it is no doubt too

advanced to have been used by those who first

proved the property of the particular triangle. B

Let ABC be a triangle right-angled at 4, and D 3
such that the lengths of the sides 458, AC are 4 and
3 units respectively.

Draw the perpendicular 4D, divide up 45, AC
into unit lengths, complete the rectangle on BC as
base and with 4D as altitude, and subdivide this rectangle into small
%fanglcs by drawing parallels to BC, 4.D through the points of division of

, AC.

Now, since the diagonals of the small rectangles are all equal, each being
of unit mﬂl' it follows by similar triangles that the small rectangles are all
equal. the rectangle with 45 for di contains 16 of the small

while the rectangle with diagonal A4 C contains g of them.

But the sum of the triangles 48D, ADC is equal to the triangle 4ABC.

Hence the rectangle with BC as diagonal contains ¢ + 16 or 25 of the
small rectangles ;
and therefore BC = 5.

Rational right-angled triangles from the arithmetical stand-
point.

Pythagoras investigated the arithmetical problem of finding rational
numbers which could be made the sides of right-angled triangles, or of finding
square numbers which are the sum of two squares; and herein we find the
beginning of the smdeferminate analysis which reached so high a stage of
development in Diophantus. Fortunately Proclus has preserved Pythagoras’
methog of solution in the following (pp. 428, 7—429, 8). “Certain
methods for the discovery of triangles of g.n %ud are handed down, one of
which refer to Plato, and another to P, oras. latter) starts from
odd num For it makes the odd number the sm of the sides about
the right angle; then it takes the square of it, subtracts unity, and makes
half the difference the greater of the sides about the right angle; lastly it adds
unijty to this and so forms the remaining side, the hypotenuse. For enmﬂe,
taking 3, squaring it, and subtracting unity from the 9, the method takes half
of the 8, namely 4 ; then, adding unity to it again, it makes 5, and a right-
angled triangle been found with one side 3, another 4 and another 5. But
the method of Plato argues from even numbers. For it takes the given even
number and makes it one of the sides about the right angle; then, bisecting
this number and squaring the half, it adds unity to the square to form the
hypotenuse, and subtracts unity from the square to form the other side about
the t angle. For example, taking 4, the method squares half of this, or
2, and s0 makes 4 ; then, subtracting unity; it produces 3, and adding unity
it produces 5. Thus it has formed the same triangle as that which was
obtained by the other method.”
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The formula of Pythagoras amounts, if 7 be an odd number, to
m?—1\* /m®+ 1\2
m* + (T = (-——) )

2
2_
the sides of the right-angled triangle being m, e = : " ”!: ', Cantor
(15, pp. 185—6), taking up an idea of Roth (Geschickte der abendlindischen
Philosophie, 11, 527), gives the following as a possible explanation of the way in
which Pythagoras arrived at his formula. If & = a* + &, it follows that

@=C-P=(+8)(c-0).

Numbers can be found satisfying the first equation if (1) ¢+ 4 and ¢ — & are
either both even or both odd, ahd if further (z) ¢+¢ and ¢—& are such
numbers as, when multiplied together, produce a square number. The first
condition is necessary use, in order that ¢ and 4 may both be whole
numbers, the sum and difference of ¢+ # and ¢— 4 maust both be even. The
second condition is satisfied if ¢+ 4 and ¢— 4 are what were called simslar
numbers (Spowoe dpifpol) ; and that such numbers were most probably known
in the time before Plato may be inferred from their appearing in Theon of
Smyrna (Expositio rerum mathematicarum ad legendum Platonem utilium, ed.
Hiller, p. 36, 12), who says that similar plane numbers are, first, all square
numbers and, secondly, such oblong numbers as have the sides which contain
them proportional. Thus 6 is an oblong number with length 3 and breadth 2;
24 is another with length 6 and breadth 4. Since therefore 6 is to 3 as 4 is
to 2, the numbers 6 and 24 are similar.

Now the simplest case of two similar numbers is that of 1 and &% and,
since 1 is odd, the condition (1) requires that a® and therefore g, is also odd.
That is, we may take 1 and (27 + 1)* and equate them respectively to ¢— 4 and
¢+ 6, whence we have

while a=2n+1.

As Cantor remarks, the form in which ¢ and 4 appear correspond sufficiently
closely to the description in the text of Proclus.

Another obvious possibility would be, instead of equating ¢ - 4 to unity, to
put ¢~é=2, in which case the similar number ¢+ 4 must be equated to
double of some square, i.e. to a number of the form 2#*, or to the half of an

even square number, say &Tﬂ)" This would give
a=2n,
b=n*-1,
c=n"+1,

which is Plato’s solution, as given by Proclus.

The two solutions supplement each other. It is interesting to observe that
the method suggested by Roth and Cantor is very like that of Eucl. x.
(Lemma 1 following Prop. 28). We shall come to this later, but it may be
mentioned here that the problem is % find fwo square numbers such that their
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sum is also a square. Euclid there uses the property of 11. 6 to the effect that,
if A.B is bisected at C and produced to D,

AD.DB+ BC'=CD"
We may write this uy=¢7 - b,
where u=c+b wv=c-b
In order that #» may be a square, Euclid points out that # and » must be
similar numbers, and further that # and # must be either both odd or both
even in order that 4 may be a whole number. We may then put for the

similar numbers, say, af* and ay’, whence (if af*, ay" are either both odd or
both even) we obtain the solution

2 2
.ay’+( a}f’)z(uﬁ’+a7’)'

But I think a serious, and even fatal, objection to the conjecture of Cantor
and Roth is the very fact that the method enables both the Pythagorean and
the Platonic series of triangles to be deduced with equal ease. If this had
been the case with the method used by Pythagoras, it would not, I think, have
been left to Plato to discover the second series of such triangles, It seems to
me therefore that Pythagoras must have used some method which would
produce his rule only; and further it would be some less recondite method,
suggested by direct observation rather than by argument from general
principles.

One solution satisfying these conditions is that of Bretschneider (p. 83),
who suggests the following simple method. Pythagoras was certainly aware
that the successive odd numbers are gnomons, or the differences between
successive square numbers. It was then a simple matter to write down in
three rows (z) the natural numbers, () their squares, (c) the successive odd
numbers constituting the differences between the successive squares in (#), thus:

*3% 4.8 6 7 8. 4§ 26 ti, %2 .13, I4d

1 491625 36 49 64 81 100 121 144 169 196

Yd Bty Y0 TL X3hUEEEY (IO BE . 230 AKMinaY

Pythagoras had then only to pick out the numbers in the third row which are
squares, and his rule would be obtained by finding the formula connecting the
square in the third line with the two adjacent squares in the second line. But
even this would require some little argument; and I think a still better
suggestion, because making pure observation }Elay a greater part, is that of
P. Treutlein (Zeitschrift fiir Mathematik und Physik, xxvi., 1883, Hist.-litt.
Abtheilung, pp. 209 sqq.).

We have the best evidence (e.g. in Theon of Smyrna) of the practice of
representing square numbers and other figured numbers, e.g. oblong, triangular,
hexagonal, by dots or signs arranged in the shape of the particular figure.
(Cf. Aristotle, Metaph. 1092 b 12). Thus, says Treutlein, it would be easily
seen that any square number can be turned into the next higher square
by putting a single row of dots round two adjacent sides, in the form of a
gnomon (see figures on next page).

If a is the side of a particular square, the gnomon round it is shown by
simple inspection to contain 2a + 1 dots or units. Now, in order that 2a + 1
may itself be a square, let us suppose

a+1=n,
whence a=4}(n"-1),
and a+1=%(n"+1).
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In order that @ and @ + 1 may be integral, # must be odd, and we have at
once the Pythagorean formula

o n'— :)' " (n’+ l)’-
2 2
I think Treutlein’s hypothesis is shown to be the correct one by the passuge
in Aristotle’s Physics already quoted, where the reference is undoubtedly to the
Pythagoreans, and odd numbers are clearly identified with guomons “placed

round 1.” But the ancient commentaries on the passage make the matter
clearer still. Philoponus says: “ As a proof...the Pythagoreans refer to what
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. j""l lroo.nuonooo\ol
. DRI A A e % 8 0B a0 e
. . s sle|vle ® % 3 8 8 e 88 0 e
. sleile % s 8 % v "o
L] LR " % % 8 8" 8 8w 8wl
LI I A ) ® 8 ® 0 8 e s e

" s s 8 s s e *s 8 s >3
a % 8 8 " 8 F e oea e
PR R R R R RN
L B O O] LR L
.« & 8 8 8 8 8 . 8 & "
- " s 8 88 @ ....lJ
% 8 8 8 8 8 % 8 b

s with the addition of numbers; for when the odd numbers are
successively added to a square number they keep it square and equilateral....
Odd numbers are accordingly called gnomons because, when added to what are
already squares, they preserve the squ.are form....Alexander has excellently
said in explanation that the phrase ‘ when gnomons are pla.ced mund means
making a figure with the odd numbers % xard ToUs wepirrovs aplpois

oxnparoypadiav)...for it is the ice with the Pythagoreans to represent
f&mgs in figures (oxnparoypacpeiv).”

The next question is: assuming this explanation of the Pythagorean
formula, what are we to say of the origin of Plato’s? It could of course be
obtained as a particular case of the general formula of Eucl X. already
referred to; but there are two simple alternative explanations in this case also.
(1) Bretschneider observes that, to obtain Plato’s formula, we have only to
double the sides of the squares in the Pythagorean formula,
for (zn) + (n* — 1) =(n"+ 1)},
where however # is not necessarily odd.

(2) Treutlein would explain by means of an extension of the gnomon idea.
As, he says, the Pythagorean formula was obtained by placing a gnomon
consisting of a single row of dots round two adjacent sides of a square, it
would be natural to try whether another solution could not
be found by placing round the square a gnomon consisting of ~ * *!*
a double row of dots. Such a gnomon would equally turn the
square into a larger square; and the question would be
whether the double-row gnomon itself could be a square. If
the side of the original square was a, it would easily be seen
that the number of units in the double-row gnomon would be 44 + 4, and we
have only to put

ja+4=4x1",
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whence a=n"—1,
a+2=m+1,
and we have the Platonic formula
(2n)" + (n* —1)" = (n*+ 1)"
I think this is, in substance, the right explanation, but, in form, not quite
correct. The Greeks would not, I think, have
treated the dowdle row as a gnomon. Their com-
parison would have been between (1) a certain
square plus a single-row gnomon and (2) the same
square minus a singlerow gnomon. As the
application of Eucl. 11. 4 to the case where the
segments of the side of the square are g, 1 enables
the Pythagorean formula to be obtained as
Treutlein obtains it, so I think that Eucl. 11. 8
confirms the idea that the Platonic formula was
obtained by comparing a square p/us a gnomon
with the same square minus a gnomon. For 11. 8 proves that
4ab + (@ —8)° = (a + &),
whence, substituting 1 for 4, we have
ga+(@a—1)=(a+1),
and we have only to put @ = to obtain Plato’s formula.
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The * theorem of Pythagoras” in India.

This question has been discussed anew in the last few years as the result
of the publication of two important papers by Albert Biirk on Das Apastamba-
Sulba-Sitra in the Zalschrift der deutschen morgenlindischen Gesellschaft
(Lv, 1901, pp. 543—591, and LVL, 1902, pp. 327—391). The first of
the two papers contains the introduction and the text, the second the
translation with notes. A selection of the most important parts of the
material was made and issued by G. Thibaut in the Jjourmal of the Asiatic
Society of ,Bengal, xL1v., 1875, Part 1. (reprinted also at Calcutta, 1875,
as The Sulvasitras, by G. Thibaut). Thibaut in this work gave a most
valuable comparison of extracts from the three Sulvasiitras by Baudhiyana,
Apastamba and Kityiyana respectively, with a running commentary and an
estimate of the date and origina]ity of the geometry of the Indians. Biirk
has however done good service by making the Apastamba-$.-S. accessible in
its entirety and investigating the whole subject afresh. With the natural
enthusiasm of an editor for the work he is editing, he roundly maintains, not
only that the Pythagorean theorem was known and proved in all its generality
by the Indians long before the date of Pythagoras (about 580—500 B.C.), but
that they had also discovered the irrational; and further that, so far from
Indian geometry being indebted to the Greek, the much-travelled Pythagoras
probably obtained his theory from India (/. cit. Lv., p. 575 note). Three impor-
tant notices and criticisms of Biirk’s work have followed, by H. G. Zeuthen
(““ Théordme de Pythagore,” Origine de la Géométrie scientifigue, 1904, already
quoted), by Moritz Cantor (Uber dic dlteste indische Mathematik in the Archiy
der Mathematik und Physik, v, 1905, pp. 63—72) and by Heinrich Vogt
(Haben die alten Inder den Pythagoreischen Lehrsatz und das Irrationale
gekannt? in the Bibliotheca Mathematica, v11,, 1906, pp. 6—23. See also
Cantor’s Geschichte der Mathematik, 15, pp. 635—0645.


http://xi.iv

1. 47] PROPOSITION 47 361

The general effect of the criticisms is, I think, to show the necessity for
the greatest caution, to say the least, in accepting Biirk’s conclusions.

I proceed to give a short summary of the portions of the contents of the
Apnslxmba -5.-S. which are im portant in the Eresent connexion. It may be
premised that the general object of the book is to show how to construct
altars of certain shapes, and to vary the dimensions of altars without altering
the form. It is a collection of rwles for carrying out certam constructions.
There are no proofs, the nearest approach to a proof being in the rule for
obtaining the area of an isosceles trapezium, which is done by drawing a
perpendicular from one extremity of the smaller of the two parallel sides to
the greater, and then taking away the triangle so cut off and placing it, the
other side up, adjacent to the other equal side of the trapezium, thereby
tmnaformmg the trapezium into a rectangle. It should also observed that

ba does not speak of right-angled triangles, but of two adjacent sides
a.nd the diagonal of a reclangle. For brevity, I shall use the ion
“rational rectangle” to denote a rectangle the two sides and the diagonal of
which can be expressed in terms of rational numbers. The references in
brackets are to the chapters and numbers of Apastamba’s work.

(1) Constructions of right angles by means of cords of the following
relative lengths respectively :

{ 3» 4 5
12, 16, 20
15, 20, 25
{ 5 12, 13
15, 36, 39
8, 15, 17
12, 35, 37

(2) A general enunciation of the Pythagorean theorem thus:
diagonal of a rectangle produces [i.e. the

(1 3, v- 3)

(v 3)

(v. 3)

(v. 4)

(L 2, V. 2, 4)

(v. 5)

(v. 5)

“The

square on the diagonal is equal to]

the sum of what the longer and shorter sides separately produce [Le. the

squares on the two sides].”

(v 4)

(3) The application of the Pythagorean theorem to a sguare instead of a

rectangle [i.e. to an dsosceles ri

ht-angled trmngle
produces an area double [of the original square].”

“The diagonal of a )
L.§

(4) An approximation to the value of ,/2; the diagonal of a square is

( 1 I
L= — -
3 3.4 3-4:34

times the side.

(1. 6)

(5) Application of this approximate value to the construction of a square

with side of any length

(1. 1)

(6) The construction of # ,/3, by means of the Pythagorean theorem, as

the diagonal of a rectangle with sides 2 and a ./2 (1. 3)
(7) Remarks equivalent to the following :

(@) a¥is the side of 3 (a /3)", or avd = }a./3. (. 3)

(6) A square on length of 1 unit gives r unit square (nn 4)

e A 2 units gives 4 unit squares (1. 6)

” ” 3 ” 9 ” (111. 6)

» n ‘l% " ?% ” (ll]' 8)
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A square.on length of 2} units gives 6} unit squares (1. 8)

» ” 4 unit gives } unit square (111, 10)

" " & " % ” (lll' Io)

(¢) Generally, the square on any length contains as many rows (of

small, unit, squares) as the length contains units. (11 7)
(8) Constructions, by means of the Pythagorean theorem, of

(a) the sum of two squares as one square, (1. 4)

(6) the difference of two squares as one square. (1. 5)

(9) A transformation of a rectangle into a square. (1. 7)

[This is not directly done as by Euclid in 11. 14, but the rectangle is first
transformed into a gnomon, i.e. into the difference

between two squares, which difference is then trans- o S
formed into one square by the preceding rule. If 1
ABCD be the given rectangle of which BC is the ....JH a

longer side, cut off the square ABEF, bisect the
rectangle DE left over by ZG parallel to 7Z, move
the upper half DG and place it on 4F as base in the
position 4X. Then the rectangle 4BCD is equal to
the gnomon which is the difference between the square
LB and the square LF. In other words, Apastamba
transforms the rectangle a/ into the difference between \ B

a + 6\? a-5\?
the squares (T) and (T) o]
(10) An attempt at a transformation of a square (a*) into a rectangle
which shall have one side of given length (). (nr. 1)

[This shows no sign of such a procedure as that of Eucl. 1. 44, and indeed
does no more than say that we must subtract @b from 4* and then adapt the
remainder a® - @b so that it may “fit on” to the rectangle . The problem
is therefore only reduced to another of the same kind, and presumably it was
only solved arithmetically in the case where a, 4 are given numerically. The
Indian was therefore far from the general, geometrical, solution.]

(11) Increase of a given square into a larger square. (11 9)
[This amounts to saying that you must add two rectangles (a, 4) and

another square E‘) in order to transform a square a®into a square (2 +4)%
The formula is therefore that of Eucl. 11. 4, a®+ 2ad + 6' = (a + )]

The first important question in relation to the above is that of date.
Biirk assigns to the Apastamba.Sulba-Satra a date at least as early as the 5th
or 4th century B.c. He observes however (what is likely enough) that the
matter of it must have been much older than the book itself. Further, as
regards one of the constructions for right angles, that by means of cords of
lengths 15, 36, 39, he shows that it was known at the time of the Zaitfiriya-
Samhita and the Satfapatha-Brikmana, still older works belonging to the
8th century B.c. at latest. It may be that (as Biirk maintains) the discovery
that triangles with sides (a, 4, ¢) in rational numbers such that a*+ 2*= ¢ are
right-angled was nowhere made so early as in India. We find however in two
ancient Chinese treatises (1) a statement that the diagonal of the rectangle
(3, 4) is 5 and (2) a rule for finding the hypotenuse of a “ right triangle ” from
the sides, while tradition connects both works with the name of Chou Kung
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who died 1105 B.C. (D. E. Smith, History of Mathematics, 1. pp. 30—33, 1L
p- 288).

As regards the various “rational rectangles” used by Apastamba, it is to
be observed that two of the seven, viz. 8, 15, 17 and 12, 35, 37, do not belong
to the Pythagorean series, the others consist of two which belong to it, viz. 3,
4 5 and 5§, 12, 13, and multiples of these. It is true, as remarked by
Zeuthen (op. cit. p. 842), that the rules of 11. 7 and 111. 9, numbered (g) and
(11) above respectively, would furnish the means of finding any number of
“rational rectangles.” But it would not appear that the Indians had been
able to formulate any general rule; otherwise their list of such rectangles
would hardly have been so meagre. Apastamba mentions seven only, really
reducible to four (though one other, 7, 24, 25, appears in the Biudhayana-
S.-S., supposed to be older than Apastamba).  These are all that Apastamba
knew of, for he adds (v. 6): *“‘So many recognisable (erkennbare) constructions
are there,” implying that he knew of no other “rational rectangles” that could
be employed. But the words also imply that the theorem of the square on
the diagonal is also true of other rectangles not of the “recognisable ” kind,
i.e. rectangles in which the sides and the diagonal are not in the ratio of
integers; this is indeed implied by the constructions for /2, ./3 etc. up to ,/6
(cf. 1. 2, vurr. 5).  This is all that can be said. The theorem is, it is true,
enunciated as a general proposition, but there is no sign of anything like a
general proof; there is nothing to show thai the assumption of its universal
truth was founded on anything better than an imperfect induction from a
certain number of cases, discovered empirically, of triangles with sides in the
ratio of whole numbers in which the property (1) that the square on the
longest side is equal to the sum of the squares on the other two sides was
found to be always accompanied by the property (2) that the latter two sides
include a right angle.

It remains to consider Biirk’s claim that the Indians had discovered the
irrational. This is based upon the approximate value of /2 given by
Apastamba in his rule 1. 6 numbered (43 above. There is nothing to show
how this was arrived at, but Thibaut’s suggestion certainly seems the best and
most natural. The Indians may have observed that 17°=289 is nearly
double of 12*= 144. If so, the next question which would naturally occur to
them would be, by how much the side 17 must be diminished in order that
the square on it may be 288 exactly. If, in accordance with the Indian
fashion, a gnomon with unit area were to be subtracted from a square with
17 as side, this would approximately be secured by giving the gnomon the
breadth 4, for 2 x 17 x g = 1. The side of the smaller square thus arrived
at would be 17 — ¢ = 12 + 4 + 1 — 4, whence, dividing out by 12, we have

1 I I
e e

v 3 3:4 3.-4-34
But it is a far cry from this calculation of an approximate value to the
discovery of the irrational. First, we ask, is there any sign that this value
was known to be inexact? It comes directly after the statement (1. 6) that
the square on the diagonal of a square is double of that square, and the rule is
quite boldly stated without any qualification : *lengthen the unit by one-third
and the ldtter by one-quarter of itself less one-thirty-fourth of this part.”
Further, the approximate value is actually used for the purpose of constructing
a square when the side is given (1. 1). So familiar was the formula that it
was apparently made the basis of a sub-division of measures of length.

, approximately.
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Thibaut observes ( Journal of the Asiatic Society of Bengal, XLIX., p. 241) that,
according to Baudhayana, the unit of length was divided into 12 fingerdreadths,
and that one of two divisions of the fingerbreadth was into 34 sesame-corns, and
he adds that he has no doubt that this division, which he has not elsewhere
met, owes its origin to the formula for ,/2. The result of using this sub-
division would be that, in a square with side equal to 12 fingerdreadths, the
diagonal would be 17 fingerbreadths less 1 sesame-corn. Is it conceivable that
a sub-division of a measure of length would be based on an evaluation known
to be inexact? No doubt the first discoverer would be aware that the area of
a gnomon with breadth ¢ and outer SIdE 17 is not exactly equal to 1 but less
than it by the square of ¥¢ O by 1757, and therefore that, in taking that
gnomon as the proper area to be subtracted from 17% he was leaving out of
account the small fraction ; as, however, the object of the whole
ing was purely practical, he would, without hesitation, ignore this as
ing of no practical importance, and, thereafter, the formula would be
han down and taken as a matter of course without arousing suspicion as
to its accuracy. This supposition is confirmed by reference to the sort of
rules which the Indians afl)::ed themselves to regard as accurate. Thus
Apa.slnmba. himself gives a construction for a circle equal in area to a given
square, which is equivalent to taking = = 3'09, and yet observes that it gives the
requl.red circle “exactly” (111. 2), while his construction of a square equal to
a circle, which he equally calls “exact,” makes the side of the square equal
to $3ths of the diameter of the circle (ur. 3), and is equivalent to taking
== 3.004. But, even if some who used the approximation for ,/z were
conscious that it was not quite accurate (of which there is no evidence), there
is ar immeasurable difference between arrival at this consciousness and the
of the irrational. As Vogt says, three stages had to be passed
through before the irrationality of the diagonal of a square was discovered in
any real sense. (1) All values found by direct measurement or calculations
based thereon have to be recognised as being inaccurate. Next (2) must
supervene the conviction that it is impossible to arrive at an accurate arithmetical
expression of the value. And lastly (3) the impossibility must be proved.
Now there is no real evidence that the Indians, at the date in question, had
even reached the first stage, still less the second or third.

The net results then of Biirk’s papers and of the criticisms to which they
have given rise rﬁr to be these. (1) It must be admitted that Indian
geometry ed the stage at which we find it in Apastamba quite
inde ndently of Greek influence. But (2) the old Indian geometry was

y empirical and practical, far removed from abstractions such as the
irrational. The Indians had indeed, by-trial in particular wge
themselves of the truth of the Pythagorean theorem and enunciated it in all
its generality ; but they had not established it by scientific proof.

Alternative proofs.

I. The well-known proof of 1. 47 obtained by putting two squares side
by side, with their bases continuous, and cutting off right-angled triangles
which can then be put on again in different positions, is attributed by
an-Nairizi to Thabit b. Qurra (826—go1 A.D.).

His actual construction proceeds thus.

Let ABC be the given triangle right-angled at 4.

Construct on A.glthe square AD;
produce AC to Fso that £F may be equal to 4C.
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Construct on EF the square £G, and produce DH to K so that DK
may be equal to AC.
It is then proved that, in the triangles K

BAC, CFG, KHG, BDK,
the sides B4, CF, KXH, BD are all equal, /
and s

the sides 4C, FG, HG, DK are all equal.

The angles included by the equal sides
are all right angles ; hence the four triangles
are equal in all (L 4]

Hence BC, CG, GK, KB are all equal. D B

Further the angles DBK, ABC are equal;
hence, if we add to each the angle DBC,
the angle XBC is equal to the angle ABD c 3 A
and is therefore a right angle.

In the same way the angle CGX is right ;
therefore BCGXK is a square, i.e. the square on BC.

Now the sum of the quadrilateral GCLA and the triangle ZD2B together
with two of the equal triangles make the squares on 4B, AC, and together
with the other two make the square on BC.

Therefore etc.

ILI.  Another proof is easily arrived at by taking the icular case of
Pappus’ more general proposition given below in whlch the given triangle
is right-angled and the parallelograms on the sides containing the right
are squares. If the figure is drawn, it will be seen that, with no more t
one additional line inserted, it contains Thibit’s figure, so that Thabit’s proof
may have been practically derived from that of Pappus.

III. The most interesting of the remaining proofs seems to be that
shown in the accompanying figure.
It is given by J. W. Miiller, Sysfema- L
tische Zusammenstellung der wichtigsten
bisher bekannten Bewme des Pythag.
Lehrsatzes (Niirnberg, 1819), and in p
the second edition l.?Mninz, 1821) of
Ign. Hoffmann, Der Pythag. Lehr-
sals mit 32 thels bekannten thels
neuen Beweisen [3 more in second
edition]. It appears to come from
one of the scientific papers of Lion- E
ardo da Vinci (1452—1519).

The triangle ZKL is constructed
on the base KA with the side XL -3
equal to BC and the side ZA equal
to 4B.

Then the triangle ZLK is equal in all respects to the triangle 4BC,
and to the triangle EBF

Now DB, EFG which bisect the angles ABE, CBF respectively, are
ina stmght ll.ne Join BL,

1t is easily proved that the four quadrilaterals ADGC, EDGF, ABLK,
HLBC are nli' equal.
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Hence the hexagons ADEFGC, ABCHLK are equal.
Subtracting from the former the two triangles 48C, EBF, and from the
latter the two equal triangles A BC, HLK, we prove that

the square CX is equal to the sum of the squares 4 £, CF

Pappus’ extension of 1. 47.

In this elegant extension the triangle may be any triangle (not necessarily
right-angled), and any parallelograns take the place of squares on two of the
sides.

Pappus (1v. p. 177) enunciates the theorem as follows :

If ABC be a triangle, and any parallelograms whatever ABED, BCFG
be described on AB, BC, and if DE, FG be
produced to H, and HB be joined, the H
parallelograms ABED, BCFG are equal
to the parallelogram contained by AC,

HB in an angle whick is equal to the
sum of the angles BAC, DHB. B

Produce HB to X; through 4, C

draw AL, CM parallel to HK, and join
M.

L
LM,
Then, since ALHB is a parallelo- D
m, AL, HB are equal and parallel.
imilarly M C, HB are equal and parallel.
A K c

Therefore AL, MC are equal and
parallel;
whence LM, AC are also equal and parallel,
and ALMC is a parallelogram.
Further, the angle LAC of this parallelogram is equal to the sum of the
angles BAC, DHB, since the angle DHB is equal to the angle ZAB.
Now, since the parallelogram DABE is equal to the parallelogram ZABH
(for they are on the same base 45 and in the same parallels 45, DH),
and likewise LABH is equal to LAKN (for they are on the same base ZA4
and in the same parallels L4, HK),
the parallelogram DA BE is equal to the parallelogram ZAKN.
For the same reason,
the parallelogram BGZ#C is equal to the parallelogram NXCAM.
Therefore the sum of the parallelograms DABE, BGFC is equal to the
parallelogram LA CM, that is, to the parallelogram which is contained by 4C,
HB in an angle ZA4C which is equal to the sum of the angles BAC, BHD.
“ And this is far more general than what is proved in the Elements about
squares in the case of right-angled (triangles).”

Heron’s proof that AL, BK, CF in Euclid's figure meet in
a point.

The final words of Proclus’ note on 1. 47 (p. 429, 9—15) are historically
interesting. He says: “The demonstration by the writer of the Elements being
clear, I consider that it is unnecessary to add anything further, and that we may
be satisfied with what has been written, since in fact those who have added
anything more, like Pappus and Heron, were obliged to draw upon what is
proved in the sixth Book, for no really useful object.” These words cannot
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of course refer to the extension of 1. 47 given by Pappus; but the key to
them, so far as Heron is concerned, is to be found in the commentary of
an-Nairizi (pp. 175—185, ed. Besthorn-Heiberg; pp. 78—84, ed. Curtze) on
1. 47, wherein he gives Heron’s proof that the lines 4Z, FC, BX in Euclid’s
figure meet in a point. Heron proved this by means of three lemmas which
would most naturally be proved from the principle of similitude as laid down
in Book vi., but which Heron, as a four de force, proved on the principles of
Book 1. only. The firs/ lemma is to the following effect.

If, in a triangle ABC, DE be drawn parallel to the base BC, and if AF be
drawn from the vertex A to the middle point ¥ of BC, then AF will also
bisect DE.

This is proved by drawing ZX through A parallel
to DE or BC and DL, KEM through D, £ re-
spectively parallel to 4GZ, and lastly joining DF, EF.

Then the triangles ABF, AFC are equal (being
on equal bases), and the triangles DB ¥, EFC are also
equal (being on equal bases and between the same
parallels).

Therefore, by subtraction, the triangles 4 DF, AEF
are equal, and hence the parallelograms 4L, 4M are
equal.

These parallelograms are between the same parallels ZM, HKX ; therefore
LF, FM are equal, whence DG, GE are also equal.

The second lemma is an extension of this to the case where DE meets
B4, CA produced beyond 4.

The third lemma proves the converse of Euclid 1. 43, that, Jf a paral-
lelogram AB is cut into four others ADGE, DF, FGCB, CE, so that DF,
CE are equal, the common vertex G will be on the diagonal AB.

Heron produces 4G till it meets CF in AH. Then, if we join HB, we
have to prove that 44 B is one straight line. The
proof is as follows. Since the areas D#, EC are A D
equal, the triangles DGF, ECG are equal.

If we add to each the triangle GCF,

the triangles ECF, DCF are equal ;
therefore £D, CF are parallel.

Now it follows from 1. 34, 29 and 26 that the V)
triangles AKE, GKD are equal in all respects;

therefore £X is equal to XD.
Hence, by the second lemma,
CH is equal to AF

Therefore, in the triangles FA B, CHG,
the two sides BF, FH are equal to the two sides GC, CH,

and the angle BFH is equal to the angle GCH;
hence the triangles are equal in all respects,
and the angle BHF is equal to the angle GHC.

Adding to each the angle GHF, we find that the angles BHF, FHG are
equal to the angles CHG, GHF,

and therefore to two right angles.
Therefore AHB is a straight line.
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Heron now proceeds to prove the proposition that, in the accompanying
figure, if 4XZ perpendicular to BC meet
ECin M, and if BM, MG be joined,

BM, MG are in one straight line.

Parallelograms are completed as shown
in the figure, and the diagonals 04, FH
of the parallelogram FH are drawn.

Then the triangles FAH, BAC are
clearly equal in all respects ;

therefore the angle A ¥4 is equal to
the angle 4.8 C, and therefore to the angle
CAK (since AKX is perpendicular to BC).

But, the diagonals of the rectangle
FH cutting one another in ¥

FYis equal to ¥4,

and the angle AFA4 is equal to the

angle OAF. -

Therefore the angles O4F, CAK are
equal, and accordingly

04, AK are in a straight line.

Hence OM is the diagonal of SQ;

therefore A4S is equal to 4Q,
and, if we add AM to each,
FM is equal to MH.
But, since EC is the diagonal of the parallelogram FN,
. FM is equal to MN.

Therefore MH is equal to MN;

and, by the third lemma, BAM, MG are in a straight line.

ProrosiTiON 48.

If in a triangle the square on one of the sides be equal to
the squares on the remaining two sides of the triangle, the
aqgg contained by the rvemaining two sides of the triangle is
right.

For in the triangle ABC let the square on one side BC
be equal to the squares on the sides B4, 4AC;

I say that the angle BAC is right. ¢

For let AD be drawn from the point 4 at
right angles to the straight line AC, let 4D
be made equal to B4, and let DC be joined.

Since DA is equal to 45,
the square on DA is also equal to the square
on AB. A

Let the square on AC be added to each;
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therefore the squares on DA, AC are equal to the squares
on BA, AC.

But the square on DC is equal to the squares on DA,
AC, for the angle DAC is right ; [x 47]
and the square on BC is equal to the squares on B4, AC, for
this is the hypothesis ;

therefore the square on DC is equal to the square on BC,

so that the side DC is also equal to BC.

And, since DA is equal to 425,

and AC is common,
ACthe two sides DA, AC are equal to the two sides BA,
and the base DC is equal to the base BC;
therefore the angle DAC is equal to the angle BAC. [1. 8)
But the angle DAC is right;
therefore the angle BA4C is also right.
Therefore etc. Q. E. D.

Proclus’ note (p. 430) on this proposition, though it does not mention
Heron’s name, gives an alternative proof, which is the same as that definitely
attributed by an-Nairizi to Heron, the only difference being that Proclus
demonstrates two cases in full, while Heron dismisses the second with a
“similarly.” The alternative proof is another instance of the use of 1. 7 as a
means of answering objections. If, says Proclus, it be not admitted that the
perpendicular 4.0 may be drawn on the opposite side of 4C from B, we may
draw it on the same side as 4.5, in which case it is impossible that it should
not coincide with 4B8. Proclus takes two cases,
first supposing that the perpendicular falls, as A.D, A
within the angle CAB, and secondly that it falls,
as AFE, outside that angle. In either case the
absurdity results that, on the same straight line 4C
and on the same side of it, 40, DC must be re-
spectively equal to 4.5, BC, which contradicts1. 7.

Much to the same effect is the note of De Morgan that there is here “an
appearance of avoiding indirect demonstration by drawing the triarigles on
different sides of the base and appealing to 1. 8, because drawing them on the
same side would make the appeal to 1. 7 (on which, however, 1. 8 is founded).”

c DB



BOOK II.

DEFINITIONS.

1. Any rectangular parallelogram is said to be contained
by the two straight lines containing the right angle.

2. And in any parallelogrammic area let any one whatever
of the parallelograms about its diameter with the two comple-
ments be called a gnomon.

DEFINITION 1.

Hav wapalAgAéypappov dpbfoyurviov mwepiéxeafar Aéyerar vwd o rév v
Spbny yuwviav weprexovadv ebludv.

As the full expression in Greek for ““the angle BAC” is “the angle
contained by the (straight lines) BA, AC,” n vwro rév BA, AT mept

so the full expression for “the rectangle contained by B4, AC”

is 70 vwo Tav BA, AT wepiexdpevor dployuvior. In this case too BA, AT is
commonly abbreviated by the Greek geometers into BAT. Thus in Archi-
medes and Apollonius 76 vwé BAT or 76 vmd vdv BAT' means the rectangle
BA, AC, just as 7 vrd BAT means tke angle BAC; the gender of the article
shows which is meant in each case. In the early Books Euclid uses the full
expression 1o vmd rdv BA, AT'; but the shorter form 76 =6 rdv BAT is found
from Book x. onwards. Cf. x11. 11, where & (rpjuara) éri rov ®OE, ENZ,
ZPH, HZ® means the segments on the eight straight lines ®0, OE, EII, [1Z,
ZP, PH, HS, 30,

DEFINITION 2.

Havrés 8¢ mapalAnhoypdpuov xwpiov T@v wepl Tjv Sudjerpov avrod wapaldy-
Aoypdppwy &y Srotovoiv adv Tois Suol waparAypdpact yvdpwy xakelobo.
Meaning literally a thing enabling something to be Anown, observed or
verified, a feller or marker, as we might say, the word gmomon (yvépwv) was
first used in the sense (1) in which it appears in a passage of Herodotus (11. 109)
stating that “the Greeks learnt the wolos, the gnomon and the twelve parts of
the day from the Babylonians.,” According to Suidas, it was Anaximander
(611—545 B.Cc.) who introduced the gnomon into Greece. Whatever may be
the details of the construction of the two instruments called the wdAos and
the gmomon, so much is certain, that the gnomon had to do with the
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measurement of time by shadows thrown by the sun, and that the word
signified the placing of a staff perpendicular to the horizon. This is borne
out by the statement of Proclus that Oenopides of Chios, who first investigated
the problem (Eucl. 1. 12) of drawing a perpendicular from an external point
to a given straight line, called the perpendicular a straight line drawn
“gnomon-wise” (xard yvipova). Then (2) we find the

term used of a mechanical instrument for drawing right

angles, as shown in the figure annexed. This seems to be

the meaning in Theognis 8os, where it is said that the

envoy sent to consult the oracle at Delphi should be

“straighter ({fvrepos) than the rdpvos, the orafiun and the

grnomon,” and all three words evidently denote appliances,

the répros being an instrument for drawing a circle

(probably a string stretched between a fixed and a moving point), and the
orafuy a plumb-line. Next (3) it was natural that the gnomon, owing to its
shape, should become the figure which remained of a square when a smaller
square was cut out of one corner (or the figure, as Aristotle says, which when
added to a square increases its size but does not alter its form). We have
seen (note on 1. 47, p. 351) that the Pythagoreans used the term in this sense, and
further applied it, by analogy, to the series of odd numbers as having the same
property in relation to square numbers. The earliest evidence for this is the
fragment of Philolaus (¢. 460 B.C.) already mentioned (see Boeckh, Philolaos
des Pythagoreers Lehren, p. 141) where he says that “number makes all things
knowable and mutually agreeing (ordyopa dAdAous) in the way characteristic of
the gnomon ” (xar& yvupovos gvow). As Boeckh says (p. 144), it would appear
from the fragment that the connexion between the gnomon and the square to
which it is added was regarded as symbolical of union and agreement, and that
Philolaus used the idea to explain the knowledge of tlungs, making the
Anewing embrace and grasp the Anown as the gnomon does the square. Cf.
Scholium 11. No. 11 (Euclid, ed. Heiberg, Vol. v. p. 225), which says “It is
to be noted that the gnomon was discovered by geometers with a view to
brevity, while the name came from its incidental property, namely that from
it the whole is known, whether of the whole area or of the remainder, when it
is either placed round or taken away. In sundials too its sole function is to
make the actual time of day known.

The geometrical meaning of the word is extended in the definition of
gnomon given by Euclid, where (4) the gnomon has
the same relation to any paralltlogram as it before
had to a sguare. From the fact that Euclid says
“let” the figure described “ e called a gnomon” we
may infer tﬁ:t he was using the word in the wider
sense for the first time. Later still (5) we find
Heron of Alexandria defining a gnomon in general
as any figure which, when added to any figure
whatever, makes the whole figure similar to that to which it is added. In
this definition of Heron (Def. 58) Hultsch brackets the words which make it
apply to any number as well; but*Theon of Smyrna, who explains that plane,
triangular, square, solid and other kinds of numbers are so called after the
ltkeness of the areas which they measure, does make the term in its most
general sense apply to numbers. ‘“All the successive numbers which [by
being successively added] produce triangles or squares or polygons are
gnomons” (p. 37, 11—13, ed. Hiller). Thus the successive odd numbers added
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together make square numbers; the gnomons in the case of triangular
numbers are the successive numbers 1, 2, 3, 4...; those for pentagonal
numbers are the series 1, 4, 7, 10.. (the common difference being 3), and so
on. In general, the successive gmomonic numbers tor any polygonal number,
say of n sides, have » — 2 for their common difference (Theon of Smyrna,
P- 34, 13—15)

GEOMETRICAL ALGEBRA,

We have already seen (cf. part of the note on 1. 47 and the above note on
the gnomon) how the Pythagoreans and later Greek mathematicians exhibited
different kinds of numbers as forming dlﬂ'erent geometrical figures, Thus,
says Theon of Smyrna (p. 36, 6—11), “plane numbers, triangular, square
and solid numbers, and the rest, are not so called independently (xupiws) but
in virtue of their similarity to the areas which they measure; for 4, since it
measures a square area, is called square by adaptation from 1:, and 6 is called
oblong for the same reason.” A ‘“‘plane number” is similarly described as a
number obtained by multiplying two numbers together, which two numbers
are sometimes spoken of as “sides,” sometimes as the “length” and
“breadth ” respectively, of the number which is their product.

The product of two numbers was thus represented geometrically by the
rectangle contained by the straight lines representing the two numbers
respectively. It only needed the discovery of incommensurable or irrational
straight lines in order to represent geometrically by a rectangle the product of
any two quantities whatever, rational or irrational ; and it was possible to ad-
vance from a geometrical arithmetic to a geometrical a/gebra, which indeed by
Euclid’s time (and probably long before) had reached such a stage of develop-
ment that it could solve the same problems as our algebra so far as they do
not involve the manipulation of expressions of a degree higher than the
second. In order to make the geometrical algebra so generally effective, the
theory of proportions was essential. Thus, suppose that x, y, s etc. are
quantities which can be represented by straight lines, while a, B, y etc. are
coefficients which can be expressed by ratios between straight lines. We can
then by means of Book vi. find a single straight line & such that

ax+ By +yz+..=d.
To solve the simple equation in its general form
ax +a=#4,

where a represents any ratio between straight lines also requires recourse to
the sixth Book, though, e.g., if a is § or } or any submultiple of unity, or if a is
2, 4 or any power of 2, we should not require anything beyond Book 1. for
solving the equation. Smularly the general form of a quadratic equation
requires Book vi. for its geometrical solution, though particular quadratic
equations may be so solved by means of Book 11 alone.

Besides enabling us to solve geometrically these particular quadratic
equations, Book 11. gives the geometrical proofs of a number of algebraical
formulae. Thus the first ten propositions give the equivalent of the several
identities

. a(b+c+d+..)=ab+ac+ad+ ...,
2. (a+b)a+(a+b)b=(atd),

3 (a+d)a=ab+d’,

4 (a+8=a+8 + 2ab.
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5. a&+(‘z—g—6—b)’= a%é)”
or (a+p8)(a-pB) + B =4,
6. (2a+b)é+a’=(a+b),
or{a+fB)(B-a)+d=
7. (@+8P+a'=2(a+b)a+b,
or a’+ 8= z2af8 + (a — B)?,
8 4(a+b)a+F={(a+d)+al,
or 4af +(u~ B)* = (a + B)},

+'0\  ra+b
o a+r=2{(27) (—r"’),}=
or (a+8)"+ (a—B)'=2 (o + §7),
10. (2a+ 8+ =2{a"+(a+b)%,

or (a+B) +(B—a)=2z(a’+ ).
Che form of these identities may of course be varied according to the different
symbols which we may use to denote particular portions of the lines given in
Euclid’s figures. They are, for the most part, simple identities, but there is no
reason to suppose that these were the only applications of the geometrical
algebra that Euclid and his predecessors had ieen able to make. We may
infer the very contrary from the fact that Apollonius in his Conies frequently
states without proof much more complicated propositions of the kind.

It is important however to bear in mind that the whole procedure of
Book 11. is geometrical ; rectangles and squares are shown in the figures, and
the equality of certain combinations te other combinations is proved by those
figures. We gather that this was the classical or standard method of proving
such propositions, and that the algedraical method of proving them, with no
figure except a line with points marked thereon, was a later introduction.
Accordingly Eutocius’ method of proving certain lemmas assumed by
Apollonius (Conics, 1. 23 and 111 29) probably represents more nearly than
Pappus’ proof of the same the point of view from which Apollonius regarded
them.

It would appear that Heron was the first to adopt the a/gebraica/ method
of demonstrating the propositions of Book 1., beginning from the second,
without figures, as consequences of the first proposition corresponding to

a(b+c+d)y=ab+ ac+ad:

According to an-Nairizi (ed. Curtze, p. 89), Heron explains that it is not
possible to prove 11 1 without drawing a number of lines (1.e. without actually
drawing the rectangles), but that the following propositions up to 1. 10
inclusive can be proved by merely drawing one line. He distinguishes two
varieties of the method, one by disso/utio, the other by compositio, by which he
seems to mean sp/itting-up of rectangles and squares, and cwmbination of them
into others. But in his proofs he sometimes combines the two varieties.

When he comes to 1L 11, he says that it is not possible to do without a
figure because the proposition is a problem, which accordingly requires an
operation and therefore the drawing of a figure.

The algebraical method has been preferred to Euclid’s by some English
editors ; but it should not find favour with those who wish to preserve the
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essential features of Greek geometry as presented by its greatest exponents, or
to appreciate their point of view.

It may not be out of place to add a word with reference to the geometrical
equivalent of the algebraical operations. The addition and subtraction of
quantities represented in the geometrical algebra by lines is of course effected
by producing the line to the required extent or cutting off a portion of it. The
equivalent of multiplication is the construction of the rectangle of which the
given lines are adjacent sides. The equivalent of the division of one quantity
represented by a line by another quantity represented by a line is simply the
statement of a rafio between lines on the principles of Books v. and vi. The
division of a product of two quantities by a third is represented in the
geometrical algebra by the finding of a rectangle with one side of a given
length and equal to a given rectangle or square. This is the problem of
application of areas solved in 1. 44, 45. The addition and subtraction of
products is, in the geometrical algebra, the addition and subtraction of
rectangles or squares ; the sum or difference can be transformed into a single
rectangle by means of the application of areas to any line of given length,
corresponding to the algebraical process of finding a common measure. Lastly,
the extraction of the square root is, in the geometrical algebra, the finding of a
square equal to a given rectangle, which is done in 11. 14 with the help of 1. 47.



BOOK II. PROPOSITIONS.

PROPOSITION 1.

If there be two straight lines, and one of them be cut into
any number of segments whalever, the rectangle contained by
the two straight lines is equal to the rectangles contained by the
uncut strvaight line and each of the segments.

5 Let 4, BC be two straight lines, and let BC be cut at
random at the points D, £ ;
I say that the rectangle contained by 4, BC is equal to the
rectangle contained by 4, BD,
that contained by A, DE and
10 that contained by 4, £C. 5 AT e
For let BF be drawn from B
at right angles to BC; [r. x1]
let BG be made equal to A4, [ 3]
through G let GA be drawn g &
15 parallel to BC, [x. 31] 7 =
and through D, £, C let DK, F
EL, CH be drawn parallel to
BG.
Then BH is equal to BK, DL, EH.
20 Now BH is the rectangle 4, BC, for it is contained by
GB, BC, and BG is equal to 4 ;
BK is the rectangle 4, BD, for it is contained by G2B,
BD, and BG is equal to 4 ;
and DL is the rectangle 4, DE, for DK, thatis BG [1 34),
25 is equal to 4.
Similarly also £/ is the rectangle 4, £C.
Therefore the rectangle 4, BC is equal to the rectangle
A, BD, the rectangle 4, DE and the rectangle 4, £C.
Therefore etc.

Q. E. D.
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20. the rectangle A, BC. From this point onward I shall translate thus in cases where
Euclid leaves out the word comfained (wepiexbperor). Though the word “‘rectangle is also
omitted in the Greek (the neuter article heinﬁ_)su!ﬁcienl to show that the rectangle is
meant), it cannot be dispensed with in English. De Morgan advises the use of the expres-
sion * the rectangle umder two lines.” is does not seem to me a very good expression,
and, if used in a translation from the Greek, it might suggest that dwé in 76 {wé meant
under, which it does not.

This proposition, the geometrical equivalent of the algebraical formula

a(b+c+d+..)=ab+ac+ad+...,

can, of course, easily be extended so as to correspond to the more general
algebraical proposition that the- product of an expression consisting of any
number of terms added together and another expression also consisting of
any number of terms added together is equal to the sum of all the products
obtained by multiplying each term of one expression by all the terms of the
other expression, one after another. The geometrical proof of the more
general proposition would be effected by means of a figure showing all the
rectangles corresponding to the partial products, in the same way as they are
shown in the simpler case of 11 1; the difference would be that a series of
par};l;k to BC would have to be drawn as well as the series of parallels
to "\

ProrosiTION 2.

If a straight line be cut at vandom, the rectangle contained
by the whole and both of the segments is equal to the square on
the whole.

For let the straight line 458 be cut at random at the
point C;

I say that the rectangle contained by 4B, BC together with
the rectangle contained by B4, AC is equal
to the square on A5. A%\ e B

For let the square 4 DEB be described
on ARB [1 46), arﬁ let CF be drawn through
C parallel to either 4D or BE. [1. 31)

Then AE is equal to AF, CE.

Now AE is the square on A5 ;

"AF is the rectangle contained by 24, 0 F E
AC, for it is contained by DA, A€, and
AD is equal to A5 ;
ABand CE is the rectangle 4B, BC, for BE is equal to

Therefore the rectangle 4, AC together with the rect-
angle 4B, BC is equal to the square on 425,

Therefore etc.

Q. E. D.
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The fact asserted in the enunciation of this proposition has already been
used in the proof of 1. 47 ; but there was no occasion in that proof to observe
that the two rectangles BZ, CL making up the square on BC are the
rectangles contained by BC and the two parts, respectively, into which it is
divided by the perpendicular from 4 on BC. It is this fact which it is
necessary to state in this proposition, in accordance with the plan of Book 11

The second and third propositians are of course particular cases of the
first. They were no doubt separately enunciated by Euclid in order that they
might be immediately available for use hereafter, instead of having to be
deduced for the particular occasion from 11. 1. For, if they had not been thus
separately stated, it would scarcely have been practicable to quote them later
without explaining at the same time that they are included in 11. 1 as particular
cases. And, though the propositions are not used by Euclid in the later
propositions of Book 11, they are used afterwards in X 1o and IX. 15
respectively ; and they are of extreme importance for geometry generally,
being constantly used by Pappus, for example, who frequently quotes the
third proposition by the Book and number.

Attention bhas been called to the fact that 11. 1 is never used by Euclid;
and this may seem no less remarkable than the fact that 11. 2, 3 are not again
used in Book 11. But it is important, I think, to observe that the proofs of
all the first ten propositions of Book 11 are practically independent of each
other, though the results are really so interwoven that they can often be
deduced from each other in a variety of ways. What then was Euclid’s
intention, first in inserting some propositions not immediately required, and
secondly in making the proofs of the first ten practically independent of
each other? Surely the object was to show the power of the method of
geometrical algebra as much as to arrive at results. From the point of view
of illustrating the me#kod, there can be no doubt that Euclid’s procedure is
far more instructive than the semi-algebraical substitutes which seem to find
a good deal of favour; practically it means that, instead of relying on our
memory of a few standard formulae, we can use the machinery given us by
Euclid’s method to prove immediately aé imitio any of the propositions taken
at random.

Let us contrast with Euclid’s plan the semi-algebraical alternative. One
editor, for example, thinks that, as 11. 1 is not used by Euclid afterwards, it
seems more logical to deduce from it those of the subsequent propositions
which can be readily so deduced. Putting this idea into practice, he proves
1. 2 and 3 by quoting 11. 1, then proves 11. 4 by means of 11. 1 and 3, 11. 5 and
6 by means of 11, 1, 3 and 4, and so on. The result is ultimately to deduce
the whole of the first ten propositions from 11. 1, which Euclid does not use at
all; and this is to give an importance to 1. 1 which is altogether dispro-
portionate and, by starting with such a narrow foundation, to make the whole
structure of Book I1. top-heavy,

Editors have of course been much influenced by a desire to make the
proofs of the propositions of Book 11 easier, as they think, for schoolboys.
But, even from this point of view, is it an improvement to deduce 11. 2 and 3
from 11. 1 as corollaries? I doubt it. For, in the first place, Euclid’s figures
wisualise the results and so make it easier to grasp their meaning ; the truth
of the propositions is made clear even to the eye. Then, in the matter of
brevity, to which such an exaggerated importance is attached, Euclid’s proof
positively has the advantage. Counting a capital letter or a collocation of such
as one word, I find, e.g., that Mr H. M. Taylor’s proof of 11. z contains
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120 words, of which 8 represent the construction. Euclid’s as above trans-
lated has 126 words, of which 22 are descriptive of the construction; therefore
the actual progf by Euclid has 8 words fewer than Mr Taylor’s, and the extra
words due to the construction in Euclid are much more than atoned for by
the advantage of picturing the result in the figure.

The advantages then which Euclid’s method may claim are, I think, these:
in the case of 11. 2, 3 it produces the result more easily and clearly than does
the alternative proof by means of 1. 1, and, in its general application, it is
more powerful in that it makes us independent of any recollection of results,

ProrosiTiON 3.

If a straight line be cul at random, the rectangle contained
by the whole and one of the segments is equal to the rectangle
contained by the segments and the squarve on the aforesaid
segment.

For let the straight line 45 be cut at random at C;

I say that the rectangle contained by 48, BC is equal to the
rectangle contained by 4, CB together

with the square on BC. A ¢ 8
For let the square CDEZB be de-
scribed on CB; (1. 46]

let £D be drawn through to 7,
and through 4 let AF be drawn parallel
to either CD or BE. [L.31]) F €
Then AE is equal to AD, CE.
Now AE is the rectangle contained by 45, BC, for it is
contained by 48, BE, and BE is equal to BC;
AD is the rectangle AC, CB, for DC is equal to CB;
and D2 is the square on CB,
Therefore the rectangle contained by 48, BC is equal to
the rectangle contained by 4C, CB together with the square
on BC.
Therefore etc.

Q. E. D.

If we leave out of account the contents of Book 1. itself and merely look
to the applicability of propositions to general use, this proposition and the
preceding are, as already indicated, of great importance, and particularly so to
the semi-algebraical method just descrl which seems to have found its first
exponents in Heron and Pappus. Thus the proposition that the difference of
the squares on two straight lines is equal o the rectangle contained by the sum
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and the difference of the straight lines, which is generally given as equivalent to
IL. 5, 6, can be proved by means of 1. 1, 2, 3, as shown
by Lardner. For suppose the given straight linesare A ___C B
AB BC, the latter being measured along B4.

by 1. 2, the square on 4B is equal to.the sum of the rectangles
AB, BC and AB, AC.

By 1L 3, the rectangle AB, BC is equal to the sum of the st]uare on BC
and the rectangle AC, CB.

Therefore the square on 45 is equal to the square BC together with the
sum of the rectangles 4C, A8 and AC, (B.

But, by 11. 1, the sum of the latter rectangles is equal to the rectangle
contained b AC and the sum of 4.8, BC, i.e. the rectangle contained by the
sum and difference of 4.8, BC.

Hence the square en ABis equal to the square on BC and the rectangle
contained by the sum and difference of 4.5, BC';

that is, the difference of the squares on 4.5, BC is equal to the rectangle
contained by the sum and difference of 45, BC.

ProrosiTION 4.

If a straight line be cut at vandom, the square on the whole
is equal Lo the squares on the segments and twice the rectangle
contained by the segments.

For let the straight line 4.5 be cut at random at C;

5 I say that the square on A5 is equal to the squares on 4C,

CB and twice the rectangle contained
by AC, CB.

For let the square ADERB be de- T e
scribed on 45, [ 46]
10 let BD be joined ; " g
through C let CF be drawn parallel to
either AD or EB,
and through G let 7K be drawn parallel
to either A5 or DE, [.3x] P

15 Then, since CF is parallel to 4D,
and BD has fallen on them,
the exterior angle CGA is equal to the interior and opposite

angle ADB. [1. 29]
But the angle 402 is equal to the angle 48D,
3o since the side B4 is also equal to 40 ; [x 5]

therefore the angle CGA is also equal to the angle GBC,
so that the side BC is also equal to the side CG. [ 6]
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But CB is equal to GX, and CG to KB; [r 34])
therefore GX is also equal to K5 ;
23 therefore CGK'B is equilateral.
I say next that it is also right-angled.
For, since CG is parallel to BX,
the angles X’BC, GCB are equal to two right angles.

[1. 29]
But the angle X'BC is right;

30 therefore the angle BCG is also right,
so that the opposite angles CGK, GK B are also right.

1.
Therefore CGKB is right-angled ; i
and it was also proved equilateral ;
therefore it is a square ;
3sand it is described on CA.
For the same reason
HF is also a square ;
and it is described on AG, that is AC. [1 34]
Therefore the squares /5, KC are the squares on AC, CB.
40 Now, since 4G is equal to GE£,
and 4G is the rectangle AC, CB, for GC is equal to (5,
therefore GZ is also equal to the rectangle AC, CB.

Therefore AG, GE are equal to twice the rectangle AC,
CB

45 .But the squares A F, CK are also the squares on 4C, CB;
therefore the four areas HF, CK, AG, GE are equal to

the squares on 4C, CB and twice the rectangle contained by
AC, CB.

But AF, CK, AG, GE are the whole ADEB,
so which is the square on 425.

Therefore the square on 428 is equal to the squares on
AC, CB and twice the rectangle contained by AC, CA.
Therefore etc. Q. E. D.

2. twice the rectangle contained by the segments. By a curious idiom this is in
Greek “the rectangle fwice contained by the segments.” Similarly “twice the rectangle
contained by AC, CB" is expressed as ‘' the gle fwice contained by AC, CB" (vd dis
iwd ‘rdv AT, I'B Wmm Splovydwiov). i

35, 38. described. 3‘,; _45{. the squares (before “‘on”). These words are not in the
Gmi, which simply says that the squares *“are on " (eloiv dwd) their respective sides.

46. areas. It is necessary to supply some substantive (the Greek leaves it to be under-
stood); and I prefer *‘areas” to ** figures.”
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The editions of the Greek text which preceded that of E. F. August
(Berlin, 1826—g) give a second proof of this proposition introduced by the
usual word aAAws or “otherwise thus.” Heiberg follows August in omitting
this proof, which is attributed to Theon, and which is indeed not worth
reproducing, since it only differs from the genuine proof in that portion of it
which proves that CGKB is a square. The proof that CGKB is equilateral
is rather longer than Euclid’s, and the only interesting point to notice is that,
whereas Euclid still, as in 1. 46, seems to regard it as necessary to prove that
all the angles of CGKB are right angles before he concludes that it is right-
angled, Theon says simply “ And it also has the angle CBX right; therefore
CK is a square.” The shorter form indicates a legitimate abbreviation of the
genuine proof ; because there can be no need to repeat exactly that part of the
proof of 1. 46 which shows that a/ the angles of the figure there constructed
are right when one is.

There is also in the Greek text a Porism which is undoubtedly interpolated :
“ From this it is manifest that in square areas the parallelograms about the
diameter are squares.” Heiberg doubted its genuineness when preparing his
edition, and conjectured that it too may have been added by Theon ; but the
matter is placed beyond doubt by a papyrus-fragment referred to already (see
Heiberg, Paralipomena su Euklid, in Hermes xxxviilL., 1903, p. 48) in which
the Porism was evidently wanting. It is the only Porism in Book 1., but
does not correspond to Proclus’ remark (p. 304, 2) that “the Porism found in
the second book belongs to a prodlem.” Heiberg regards these words as
referring to the Porism to Iv. 15, the correct reading having probably been not
Sevrépy but &', i.e. rerdpry.

The semi-algebraical proof of this proposition is very easy, and is of course
o;d enough, being found in Clavius and in most later editions. It proceeds
thus.

By 11. 2, the square on 4B is equal to the sum of the rectangles 4.8, AC
and 4B, CB.

But, by 11. 3, the rectangle 4B, AC is equal to the sum of the square on
AC and the rectangle AC, CB ;

while, by 11. 3, the rectangle 4.8, CB is equal to the sum of the square on
BC and the rectangle AC, CB.

Therefore the square on 4.8 is equal to the sum of the squares on
AC, CB and twice the rectangle 4C, C5.

The figure of the proposition also helps to visualise, in the orthodox
manner, the proof of the theorem deduced above from 11. 1—3, viz. that Zke
difference of the squares om two given straight lines is equal lo the reclangle
contained by the sum and the difference of the lines.

For, if the lines be 4B, BC respectively, the shorter of the lines being
measured along B4, the figure shows that

the square 4£ is equal to the sum of the square CK and the rectangles

AF, FK;

that is, the square on 4B is equal to the sum of the square on BZC and

the rectangles 4.8, AC and AC, BC.

But the rectangles 458, AC and BC, AC are, by 1. 1, together equal to

the rectangle contained by 4 C and the sum of 4.5, BC,
i.e to the rectangle contained by the sum and difference of 4.8, BC.

Whence the result follows as before.
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The proposition 1I. 4 can also be extended to the case where a straight
line is divided into any number of segments ; for the figure will show in like
manner that the square on the whole line is equal to the sum of the squares
on all the parts together with twice the rectangles contained by every pair of

the parts.

PRroroSITION 5,

If a straight line be cut into equal and unequal segments,
the rectangle contained by the unequal segments of the whole
together with the square on the straight line between the
poinis of section is equal to the square on the half.

For let a straight line 45 be cut into equal segments
at C and into unequal segments at D ;

I say that the rectangle contained by 4D, DB together with
the square on CD is equal to the square on CB.

A [+] D B
.9
{ HL/
K O |‘5 ™
E G F

For let the square CEF2B be described on CB, [1. 46]
and let BE be joined ;
through D let DG be drawn parallel to either CZ or BF,

through /A again let XM be drawn parallel to either 42 or
EF,
and again through A4 let AKX be drawn parallel to either CL

or BM. [x. 31]
Then, since the complement C/ is equal to the comple-
ment /HF, [r. 43]

let DM be added to each;
therefore the whole CH/ is equal to the whole DF.
But CM is equal to AL,
since AC is also equal to CB;* [x. 36)
therefore AL is also equal to DF.
Let CH be added to &ach; _
therefore the whole 4/ is equal to the gnomon NOP.
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But AH is the rectangle AD, DB, for DH is equal to
DB,

therefore the gnomon NOP is also equal to the rectangle
AD, DB.

Let LG, which is equal to the square on CD, be added to
each ;

therefore the gnomon NOP and LG are equal to the
rectangle contained by 40, DB and the square on CD.

But the gnomon NOP and LG are the whole square
CEFRB, which is described on C5 ;

therefore the rectangle contained by 40D, DB together
with the square on CD is equal to the square on CA5.

Therefore etc. Q. E. D.

3. between the points of section, literally *‘ between the sections,” the word being
the same (rousf) as that used of a conic sertion.

It will be observed that the gnomon is indicated in the figure by three rate letters
and a dotted curve. This is no doubt a clearer way of showing what exactly the gnomen is
than the method usual in our text-books. In this particular case the figure of the Mss. has
two M's in it, the gnomon being MNE. I have corrected the lettering to avoid confusion.

It is easily seen that this proposition and the next give exactly the
theorem already alluded to under the last propositions, namely that #he
difference of the squares on two straight lines is equal lo the rectangle contained
by their sum and difference. The two given lines are, in u. 5, the lines CB
and CD, and their sum and difference are respectively equal to 4.0 and DB.
To show that 11. 6 gives the same theorem we have only to make CD the
greater line and CAB the less, ie. to

daw C'Z’ equal to CB, measure c D B
cB alo? it equal to CD, and then * +
produce & C' to A', making A4'C’ equal A e g o

to B'C’, whence it is immediately clear
that 4’0’ on the second line is equal
to 4D on the first, while % is also equal to D2B, so that the rectangles
AD, DB and A'D', D'EB are equal, while the difference of the squares en
CB, CD is equal to the difference of the squares on C'D', C'B’.
Perhaps the most important fact about 11. 5, 6 is however their bearing on
the
Geometrical solution of a quadratic equation.
Suppose, in the figure of 1. 5, that 4B =a, DB=x;
then ax — x* =the rectangle AH
=the gnomon NOP.
Thus, if the area of the gnomon is given (=#% say), and if a is given
(= A4.B), the problem of solving the equation
ax—x'=§
is, in the language of geometry, 77 a given straight line (a) to apply a rectangle
which shall be equal to a given square (8*) and shall fall short by a square figure,
i.e. to construct the rectangle 4 A or the gnomon NOZ.
Now we are told by Proclus (on 1. 44) that “these propositions are ancient
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and the discoveries of the Muse of the Pythagoreans, the application of
areas, their exceedihg and their falling-short.” We can therefore hardly
avoid crediting the Pythagoreans with the geometrical solution, based upon
1. 5, 6, of the problems corresponding to the quadratic equations which
are directly obtainable from them. It is certain that the Pythagoreans solved
the problem in 11. 11, which corresponds to the quadratic equation

a(a—x)=x°
and Simson has suggested the following easy solution of the equation now in
question,
ax—x'=p,

on exactly similar lines.
Draw CO perpendicular to 4.8 and equal to #; produce OC to N so
that ON= CB (or }a); and with O as centre

and radius ON describe a circle cutting C5

in D. ¢ A_E——p 8
Then DB (or x) is found, and therefore °©

the required rectangle 44.
For the rectangle 4D, DB together with S

the square on CD is equal to the square on /

CB, [n. 5] o

i.e. to the square on 0D,

i.e. to the squares on OC, CD; [ 47]
whence the rectangle 4.0, DB is equal to the square on OC,
or ax - 2=,

It is of course a necessary condition of the possibility of a real solution
that »* must not be greater that (}a)*. This condition itself can easily be
obtained from Euclid’s proposition ; for, since the sum of the rectangle 4D,
DR and the square on CD is equal to the square on CB, which is constant,
it follows that, as C.D diminishes, i.e. as D moves nearer to C, the rectalgle
AD, DB increases and, when D actually coincides with C, so that CD
vanishes, the rectangle 40, DB becomes the rectangle AC, CB, ie. the
square on CAB, and is a maximum. It will be seen also that the geometrical
solution of the quadratic equation derived from Euclid does not differ from
our practice of solving a quadratic by completing the square on the side
containing the terms in 2* and x.

But, while in this case there are two geometrically real solutions (because
the circle described with OV as radius will not only cut CB in D but will
also cut AC in another point E), Euclid’s figure corresponds to one only of
the two solutions. Not that there is any doubt that Euclid was aware that the
method of solving the quadratic gives two solutions ; he could not fail to see
that x = BE satisfies the equation as well as x=250. If however he had
actually given us the solution of the equation, he would probably have
omitted to specify the solution x = BE because the rectangle found by means
of it, which would be a rectangle on the base 4E (equal to BD) and with
altitude £25 (equal to 4.D), is really an equal rectangle to that corresponding
to the other solution x = B.D ; there is therefore no real object in distinguishing
two solutions. This is easily understood when we regard the equation as a
statement of the problem of finding two magnitudes when their sum () and
product (4*) are given, i.e. as equivalent to the simultaneous equations

x+y=a,
xy =5
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These symmetrical equations have really only one solution, as the two apparent
solutions are simply the result of interchanging the values of x and y. This
form of the problem was known to Euclid, as appears from the Data, Prop.
85, which states that, Jf fwo straight lines contain a parallelogram given in
magnitude in a given angle, and if the sum of them be given, then shall eack
of them be given.

This proposition then enables us to solve the problem of finding a
rectangle the area and perimeter of which are both given; and it also enables
us to infer that, of all rectangles of given perimeter, the square has the
greatest area, while, the more unequal the sides are, the less is the area.

If in the figure of 1. 5 we suppose that 4D=a, BD=4, we find that
CB=(a+b)/« and CD=(a—4)/2, and we may state the result of the
proposition in the following algebra.ica.l form

(a + 5\? (d -
2
This way of stating it (which could hardly have escaped the Pythagoreans)
ives a ready means of obtaining the two rules, respectively attributed to the
oreans and Plato, for finding integral square numbers which are the
sum of two other integral square numbers. We have only to make a a

perfect square in the above formula. The simplest way in which this can be
done is to put @ =n? &=1, whence we have

w + 1\' /n'— 1\?
( 2 )'( 2 )'”!’
and in order that the first two squares may be integral % and therefore »,
must be odd. Hence the P?'r.hagorea.n rule.
Suppose next that a=2n" 5 =2, and we have
(3 + 1Y = (= 1y = 4,
whence Plato’s rule starting from an ezen numbér 2x.

ProrosiTION 6.

If a straight line be bisected and a straight line be added
to it in a straight line, the rectangle contained by the whole
with the added straight line and the added straight line together
with the square on the half is equal to the square on the
jtmz'g/st line made wp of the kalf and the added straight
ine.

For let a straight line 4.8 be bisected at the point C, and
let a straight line B0 be added to it in a strai 5&1: line ;

I say that the rectangle contained by 40, DB together
with the square on C2 is equal to the square on CD.

For let the square CEFD be described on CD, [x. 46)
and let D£ be joined ;
through the point B let G be drawn parallel to either £C or
DF,
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throu}h the point /A let KM be drawn parallel to either A8
or EF,

and further through A4 let AKX A 0 B_D
be drawn parallel to either CL 19
or DM, [r31] & C 4 H M
Then, since AC is equal Pr’
to CAB,
AL is also equal to CAH. [ 36]
But CH is equal to AF. [1 43] 3 G F

Therefore AL is also equal
to AF.

Let CM be added to each;
therefore the whole 44/ is equal to the gnomon NOP.
But AM is the rectangle AD, DB,
for DM is equal to DB ;

therefore the gnomon NOP is also equal to the rectangle
AD, DB.

Let LG, which is equal to the square on BC, be added
to each;

therefore the rectangle contained by 40, DA together
with the square on C2B is equal to the gnomon NOP and LG.

But the gnomon NOP and LG are the whole square
CEFD, which is described on CD ;

therefore the rectangle contained by 4D, DB together
with the square on C2Z is equal to the square on CD,

Therefore etc.
Q. E. D.

In this case the rectangle 4D, DB is “a rectangle applied to a given
straight line (45) but exceeding by a square (the side of which is equal to
BD)”; and the problem suggested by 11. 6 is to find a rectangle of this
description equal to a given area, which we will, for convenience, suppose to
be a square; ie, in the language of geometry, #0 agply to a given straight
line a reclangle whick shall be equal to a given square and shall exceed by a
square figure.

We su that in Euclid’s figure 48=4, BD=ux; then, if the given
square be 4’, the problem is to solve geométrically the equation
ax+x'=5.

The solution of a problem theoretically equivalent to the solution of a
quadratic equation of this kind is presupposed in the fragment of Hippocrates’
Quadrature of lunes preserved in a quotation by Simplicius (Comment. in
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Aristot. Phys. pp. 61—68, ed. Diels) from Eudemus’ Hislory of Geometry. In
this fragment Hippocrates (5th cent. B.C.) assumes the following construction.
A B being the diameter and O the centre of a semicircle, and C being the
middle point of OB and CD at right
angles to 4.5, a straight line of length E
such that its square is 1} times the square
on the radius (i.e. of length a./§, where
a is the radius) is to be so placed, as £F,
between CD and the circumference 4.0
chat it “verges towards B,” that is, EF
when produced through 5. A 5 S )
Now the right-angled triangles BFC,
BALE are similar, so that
BF: BC=BA : BE,
and therefore the rectangle BE, BF=rect. B4, BC
=sq. on BO.

In other words, £F (=a ,/§) being given in length, BF (=x, say) has
to be found such that
(VEa+x)x=d";

Jiax+at=a

or the quadratic equation

has to be solved.

A mght line of length a,/§ would easily be constructed, for, in the
figure, CI#=AC.CB=4%a" or 'D=1}a,/3, and a./} is the diagonal of
a square of which CD is the side.

There is no doubt that Hippocrates could have solved the equation by
the geometrical construction given below, but he may have contemplated, on
this occasion, the merely mechanical process of placing the straight line of the
length required between C.D and the circumference 4.0 and moving it until
E, F, B were in a straight line. Zeuthen (Dfe Lehre von den Kegelschnitten
im Altertum, pp. 270, 271) thinks this probable because, curiously enough,
the fragment speaks immediately afterwards of “joining B to /"

To solve the equation

ax + =5 Q
we have to find the rectangle 44, or the
l%"l.:lﬂtm:mn NNOP, which is equal in area to #and

one of the sides conta:ning the inner right
angle equal to CB or §a. Thus we know p c
(32)* and &, and we have to find, by 1. 47, |
a square equal to the sum of two given

s |m
]

N/

To do this Simson draws BQ at right
angles to 48 and equal to 5, joins CQ and,
with centre C and radius CQ, describes a
circle cutting 458 produced in D. Thus
BD, or x, is found.
Now the rectangle 4.D, DB together with the square on CB
is equal to the square on CD,
i.e. to the square on CQ,
i.e. to the squares on CB, BQ.
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Therefore the rectangle 4D, DB is equal to the square on B, that is,

ax+x0=8

From Euclid’s point of view there would only be one solution in this case.

This proposition enables us also to solve the equation
—ax=5

in a similar manner.

We have only to suppose that 4.8 =a, and 4.D (instead of BD)=x; then
a x*—ax =the gnomon.

To find the gnomon we have its area (5%) and the area, CB? or (}a), by

which the gnomon differs from CZ?% Thus we can find D (and therefore

AD or x) by the same construction as that just given.

Converse propositions to 11. 5, 6 are given by Pappus (viL. pp. 948—950)
among his lemmas to the Conics of Apollonius to the effect that,

(1) if D be a point dividing 4B unequally, and C another point on 45
such that the rectangle 4.D, DB together with the square on CD is
equal to the square on 4 C, then

AC is equal to CB;

(2) if D be a point on 4B produced, and C a point on 43 such that the
rectangle 4D, DB together with the square on CB is equal to the
square on CD, then

AC is equal to CB.

ProrosiTION 7.

If a strayght line be cut at random, the square on the
whole and that on one of the segments both together are equal
to twice the rectangle contained by the whole and the said
segment and the square on the remaining segment,

For let a straight line A8 be cut at random at the point C;

I say that the squares on 458, BC are equal to twice the
rectangle contained by 458, BC and the

square on CA.

For let the square ADEB be T o L 1
described on 425, [1. 46] ol |
and let the figure be drawn. - /1

Then, since 4G is equal to GE, [1. 43]
let CF be added to each ;

therefore the whole 4F is equal to
the whole CE. 5

Therefore A7, CE are double of ©° e

APF.
But AF, CE are the gnomon KLZM and the square CF;
therefore the gnomon A ZA/ and the square CF are double
of AF.
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But twice the rectangle 458, BC is also double of 4AF;
for BF is equal to BC;

therefore the gnomon A'Z M and the square CF are equal to
twice the rectangle 48, BC.

Let DG, which is the square on 4C, be added to each ;
therefore the gnomon XLZM and the squares BG, GD are
equal to twice the rectangle contained by 48, BC and the
square on AC.

But the gnomon K'Z M and the squares BG, GD are the
whole ADEB and CF,

which are squares described on 48, BC;

therefore the squares on 4B, BC are equal to twice the
rectangle contained by 45, BC together with the square on
AC.
Therefore etc.
Q. E. D.

An interesting variation of the form of this proposition may be obtained by
regarding 4.8, BC as two given straight lines of which 4.2 is the greater, and
AC as the difference between the two straight lines. Thus the proposition
shows that the squares on two straight lines are together equal to twice the
rectangle contained by them and the square on their difference. That is, #4e
square on the difference of two straight lines is equal to the sum of the squares on
the straight lines diminished by twice the rectangle contained by them. In other
words, just as II. 4 is the geometrical equivalent of the identity

(a+b)=a*+ 8 + 2ab,
50 IL. 7 proves that

(a—8)P=a*+ 8~ 2ab.
The addition and subtraction of these formulae give the algebraical equivalent
of the propositions 11. 9, 10 and 11. 8 respectively ; and we have accordingly
a suggestion of alternative methods of proving those propositions.

ProrosiTIiON 8.

If a straight line be cut at random, four times the rectangle
contained by the whole and one of the segments logether with
the square on the remaining segment is equal to the square
described on the whole and the aforesaid segment as on one
straight line.

For let a straight line 4.8 be cut at random at the point C;

I say that four times the rectangle contained by 48, BC
together with the square on 4C is equal to the square
described on 425, BC as on one straight line,
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For let [the straight ]ing BD be produced in a straight
line [with 48], and let BD be

made equal to C5; A e_B_p
let the square 4 £ 7D be described /" la X
on AD, and let the figure be ™ (Y
drawn double. ol | 4%
Then, since CB is equal to B.D, I,
while CB is equal to GX, and g
BD to KN,
therefore GX is also equal to KV,
For the same reason

QR is also equal to RP. -+ - AR
And, since BC is equal to 8D, and GK to KN,
therefore CX is also equal to KD, and GR to RN. 1. 36)
But CK is ei;.lal to RN, for they are complements of the

parallelogram C. [x 43)
therefore KD is also equal to GR ;

therefore the four areas DX, CK, GR, RN are equal to one
another.

Therefore the four are quadruple of CX.
Again, since CB is equal to BD;
while BD is equal to BX, that is CG,
and CB is equal to GX, that is GQ,
therefore CG is also equal to GQ.
And, since CG is equal to GQ, and QR to RP,
AG is also equal to MQ, and QL to RF. [r 36]

But MQ is equal to QL, for they are complements of the
parallelogram ML ; [r 43]

therefore 4G is also equal to RF;

therefore the four areas 4G, MQ, QL, RF are equal to one
another,

Therefore the four are quadruple of 4G.
But the four areas CKX, KD, GR, RN were proved to be
quadruple of CK;

therefore the eight areas, which contain the gnomon
S7TU, are quadruple of AKX.

Now, since AKX is the rectangle 48, BD, for BK is equal
to BD,
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Jtl;%efore four times the rectangle 48, BD is quadruple of
But the gnomon S7°U was also proved to be quadruple
of AK ;

therefore four times the rectangle 43, BD is equal to the
gnomon S7U.

Let OA, which is equal to the square on 4C, be added
to each;

therefore four times the rectangle 458, BD together with
the square on AC is equal to the gnomon S7°U and OA.

But the gnomon S7U and OA are the whole square
AEFD,
which is described on 4D -

therefore four times the rectangle 4B, BD together with
the square on 4C is equal to the square on 4D

But BD is equal to BC;

therefore four times the rectangle contained by 48, BC
together with the square on AC is equal to the square on

AD, that is to the square described on 458 and BC as on
one straight line.

Therefore etc. Q. E. D.

This proposition is quoted by Pappus (p. 428, ed. Hultsch) and is used
also by Euclid himself in the Data, Prop. 86. Further, it is of decided use
in proving the fundamental property of a parabola.

Two alternative proofs are worth giving.

The first is that suggested by the consideration mentioned in the last
note, though the proof is old enough, being given by Clavius and othérs. It
is of the semi-algebraical type.

Produce 45 to D (in the figure of the proo 5 5 G B
position), so that BD is equal to BC. *

By 11 4, the square on 4.0 is equal to the
squares on 4.8, BD and twice the rectangle 4.5, L [¢]
BD, ie. to the squares on A8, BC and twice
the rectangle 4.8, BC.

By 11. 7, the squares on 4.8, BC are equal to

twice the rectangle 4B, BC together with the K N
square on AC.

Therefore the square on 4D is equal to four [
times the rectangle 4B, BC together with the | H E
square on A4C.

The second proof is after the manner of Euclid but with a difference.
Produce BA to D so that 4D is equal to BC. On B.D construct the square
BEFD.
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Take BG, EH, FK each equal to BC or AD, and draw ALP, HNM
parallel to BE and GML, KPN parallel to BD. '

Then it can be shown that each of the rectangles BL, AKX, FN, EM is
equal to the rectangle 438, BC, and that P is equal to the square on 4C.

Therefore the square on BD is equal to four times the rectangle 4.5,
BC together with the square on AC.

PROPOSITION 0.

If a straight line be cut into equal and unequal segments,
the squares on the unequal segments of the whole arve double
of the square on the half and of the square on the straight line

tween the points of section.

For let a straight line 4B be cut into equal segments
at C, and into unequal segments at D ;

I say that the squares on 4D, DB are double of the
squares on AC, CD.

For let CE be drawn from

C at right angles to A5, .
and let it be made equal to
either AC or CB; a E

let £A4, EB be joined,
let DF be drawn through D
parallel to £C,
and FG through F parallel to
AB,
and let 4F be joined.
Then, since AC is equal to CE,
the angle £A4C is also equal to the angle 4 £C.
And, since the angle at C is right,
the remaining angles £4C, AEC are equal to one
right angle. [r. 32)
And they are equal ;
therefore each of the angles CEA4, CAE is half a right
angle.
For the same reason
each of the angles CEB, EBC is also half a right angle;
therefore the whole angle 4 E2 is right.
And, since the angle GEF is half a right angle.
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and the angle £GF is right, for it is equal to the interior and
opposite angle £C25, [ 20]
the remaining angle £FG is half a right angle; [ 32)
therefore the angle GEF is equal to the angle £FG,
so that the side £G is also equal to GF. [1. 6]
Again, since the angle at B is half a right angle,
and the angle DB is right, for it is again equal to the interior
and opposite angle £C5, [r 20]
the remaining angle BFD is half a right angle; [i 32]
therefore the angle at 2 is equal to the angle DF25,
so that the side 7D is also equal to the side DB. [ 6]
Now, since AC is equal to CE,
the square on 4C is also equal to the square on C£;

therefore the squares on AC, CE are double of the square
on AC.

But the square on £4 is equal to the squares on 4C, CE,
for the angle ACE is right; [x 47
therefore the square on £A4 is double of the square on 4C.
Again, since £G is equal to GF,
the square on £G is also equal to the square on GF;

therefore the squares on £G, GF are double of the square on
GF.

But the square on £/ is equal to the squares on £G, GF;
therefore the square on £F is double of the square on GF.
But GF is equal to CD; [ 34)
therefore the square on £F is double of the square on CD.
But the square on £4 is also double of the square on AC;

therefore the squares on AE, EF are double of the squares
on AC, CD.

And the square on 4 F is equal to the squares on AE, EF,
for the angle AEF is right ; [r 47]
therefore the square on AF is double of the squares on 4C,
CD. .

But the squares on 4D, DF are equal to the square on
AF, for the angle at D is right ; [ 47]

therefore the squares on 40D, DF are double of the squares
on AC, CD.
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And DF is equal to DB ;

therefore the squares on 4.0, DB are double of the squares
on AC, CD.

Therefore etc.
Q. E. D.

It is noteworthy that, while the first eight propositions of Book 11. are
proved independently of the Pythagorean theorem 1. 47, all the remaining
pro sitions beginning with the gth are proved by means of it. ~Aiso the gth

1oth propositions mark a new departure in another respect ; the method
of demonstration by showing in the ﬁﬂl:s the various rectnngles and squares
to which the theorems relate is here abandoned.

The gth and 1oth propositions are related to one another in the same way
as the sth and 6th; they really prove the same result which can, as in the
earlier case, be comprised in a single enunciation thus : e sum of the squares
on the sum and difference of two grven straight lines is equal lo twice the sum of
the squares on the lines.

The semi-algebraical proof of Prop. g is that suggested by the remark on
the algebraical formulae given at the end of the note on 1. 7. It applies
with a very slight modification to both 1. ¢ and 1. 10. We will put in
brackets the variations belonging to 11 1o0.

The first of the annexed lines is the figure 4 cC D B
for 11. 9 and the second for 11. 10. *

By 11. 4, the square on 4D is equal to A 8 Y
the squares on 4AC, CD and twice the A o s L

rectangle 4C, CD.
By 1. 7, the squares on CB, CD (CD, CB) are equal to
twice the rectangle CB, C.D together with the square on 8D,
By addition of these equals crosswise,
the squares on 4D, DB together with twice the rectangle CB, CD are
equal to the squares on AC, CD, CB, CD together with twice
the rectangle 4C, CD.
But AC, CB are equal, and therefore the rectangles 4C, CD and CB3,
CD are equal.
Taking away the equals, we see that
the squares on 4.D, DB are equal to the squares on AC, CD, CB, CD,
i.e. to twice the squares on 4C, CD.
To show also that the method of geometrical algebra illustrated by
1. 1—8 is still effective for the purpose of

proving 1L 9, 10, we will now prove 1. g in 4 c B
that manner.
Draw squares on 4D, DB respectively K H
as shown in the figure. Measure DA along P L
DE equal to CD, and HL along HE also N
equal to CD.
Draw HK, LNO parallel to EF, and
CNM parallel to DE.
Measure NP along NO equal to CD, B aME

and draw PQ parallel to DE.
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Now, since 4D, CD are respectively equal to DE, DH,
HE is equal to AC or CB;
and, since AL is equal to CD, LE is equal to DB.
Similarly, since each of the segments ZM, MQ is equal to CD,
FQ is equal to £L or BD.

Therefore OQ is equal to the square on D2B.

We have to prove that the squares on 4D, DB are equal to twice the
squares on AC, CD.

Now the square on 4D includes KAf (the square on 4C) and CH, HN
(that is, twice the square on CD).

Therefore we have to prove that what is left over of the square on 4D
together with the square on D25 is equal to the square on AC.

The parts left over are the rectangles CX and NVE, which are equal to
KN, PM respectively.

But the latter with the square on DB are equal to the rectangles XN,
PM and the square 0Q,

i.e. to the square XM, or the square on 4C.
Hence the required result follows.

ProrosiTION I0.

If a straight line be bisected, and a stvaight line be added
to it in a straight line, the square on the whole with the added
straight line and the square on the added straight line both
logether are double of the square on the half and of the square
described on the straight line made up of the half and the
added straight line as on ome straight line.

For let a straight line 48 be bisected at C, and let a
straight line BD be added to it in a straight line;

I say that the squares on 40D, DB are double of the
squares on AC, CD.

For let CE be drawn from
the point C at right angles to E F
AB [111], and let it be made
equal to either 4C or CB [1. 3];

let £A4, EB be joined ;

through £ let EF be drawn A o
parallel to 4D,

and through D let 7D be drawn “
parallel to CE. [r. 31]

Then, since a straight line £F falls on the parallel straight
lines £C, FD,
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the angles CEF, EFD are equal to two right angles; 1. 29]
therefore the angles FEB, EFD are less than two right
angles.

But straight lines produced from angles less than two
right angles meet ; [r. Post. 5]

therefore £B, FD, if produced in the direction B, D, will
meet.

Let them be produced and meet at G,
and let 4G be joined.

Then, since AC is equal to CZ,
the angle £A4C is also equal to the angle AEC; (1 5]
and the angle at C is right ;

therefore each of the angles £ZAC, AEC is half a right
angle. [r. 32]

For the same reason

each of the angles CEB, EBC is also half a right angle ;

therefore the angle 4 £2 is right.

And, since the angle £8C is half a right angle,
the angle DBG is also half a right angle. [r 15]

But the angle BDG is also right,
for it is equal to the angle DCE, they being alternate; [1 29]
therefore the remaining angle DG2 is half a right angle ;

(r 32]
therefore the angle DGZA is equal to the angle DBG,
so that the side B2 is also equal to the side GD. [u 6]
Again, since the angle £GF is half a right angle,

and the angle at F is right, for it is equal to the opposite
angle, the angle at C, [r. 34)

the remaining angle #£G is half a right angle ; (1 32)
therefore the angle £GF is equal to the angle FEG,
so that the side GF is also equal to the side £F. [u 6]
Now, since the square on £C is equal to the square on
CA,
the squares on £C, CA are double of the square on CA.
But the square on £A4 is equal to the squares on £C, CA4;

[r 47]
therefore the square on £4 is double of the square on 4C.
[C. N 1]
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Again, since FG is equal to £F,
the square on FG is also equal to the square on F£ ;

therefore the squares on GF, FE are double of the square on
EF.

But the square on £G is equal to the squares on GF, FE;

[1. 47]
therefore the square on £G is double of the square on £7.
And EF is equal to CD ; (1 34]

therefore the square on £G is double of the square on CD.

But the square on £4 was also proved double of the square
on AC;

therefore the squares on 4, EG are double of the squares
on AC, CD.

And the square on AG is equal to the squares on AZ,
EG; [x 47]

tchf)refore the square on 4G is double of the squares on 4C,

But the squares on 40D, DG are equal to the square on 4G ;

[r 47]
therefore the squares on 4D, DG are double of the squares
on AC, CD.

And DG is equal to DB ;

therefore the squares on 4D, DB are double of the squares
on AC, CD.

Therefore etc.
Q. E. D

The alternative proof of this proposition by means of the principles
exhibited in 1. 1—8 follows the lines of that .
which I have given for the preceding proposition. 5 c 8 D

It is at once obvious from the figure that the
square on 4.2 includes within it twice the square ]
on AC togetber with once the square on CD.
What is left over is the sum of the rectangles 4.4,
KE. These, which are equivalent to BH, GX,
make up the square on CD /ess the square on
BD. Adding therefore the square BG to each
side, we have the required t.

Another alternative proof of the theorem which 5
includes both 1L ¢ and 1o is worth giving. The E
theorem states that the sum of the squares on the
sum and difference of two given straight lines is equal to twice the sum of the
squares on the lines.

1=
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Let AD, DB be the two given straight lines (of which 4.D is the greater),
placed so as to be in one straight line. Make 4C equal to DB and com-
plete the figure as shown, each of the segments CG
and DH being equal to 4C or DB. A © b B

Now, 4D, DB being the given straight lines, 4.8
is their sum and CD is equal to their difference.

Also AD is equal to BC. a H

And AE is the square on 458, GK is equal to
the square on CD, AK or FH is the square on 4D,
and BL the square on CB, while each of the small L K
squares 4G, BH, EK, FL is equal to the square on
ACor DB.

We have to prove that twice the squares on 4D, F E
DB are equal to the squares on 4.5, CD.

Now twice the square on 4.D is the sum of the squares on 4D, C3,
which is equal to the sum of the squares BL, #H; and the figure shows
these to be equal to twice the inner square GX and once the remainder of
the large square 4E excluding the two squares 4G, KE, which latter squares
are e?lual to twice the square on 4C or D5.

Therefore twice the squares on 4D, DB are equal to twice the inner
square GX together with once the remainder of the large square 4E, that is,
to the sum of the squares AE, G X, which are the squares on 45, CD.

*“ Side"” and ‘* diagonal '’ numbers giving successive approxi-
mations to /2.
Zeuthen pointed out (Die Lehre von den Kegelschnitten im Altertum, 1886,
27, 28) that 11. g, 10 have great interest
in connexion with a problem of indeterminate & 5 5B
analysis which received much attention from
the ancient Greeks. If we take the straight line 45 divided at C and D as
in 11 g, and if we put CD=x, DB =y, the result obtained by Euclid, namely :

AD+ DB*=2AC* + 2CI?,
or AD?P - 2AC*=2CD* - DB,
becomes the formula

(2x+y)—2(x+y)=22"- A
If therefore x, ¥ be numbers which satisfy one of the two equations
2 -y =41,
the formula gives us two higher numbers, x + y and 2x +y, which satisfy the
other of the two equations.

Euclid’s propositions thus give a general proof of the very formula used
for the formation of the succession of what were called “side” and “ diagonal
numbers.”

As is well known, Theon of Smymna (pp. 43, 44, ed. Hiller) describes this
system of numbers. The unit, being the beginning of all things, must be
potentially both a side and a diameter. Consequently we begin with two units,
the one being the first side and the other the first diameter, and (@) from the
sum of them, (5) from the sum of twice the first unit and once the second, we

form two new numbers
I.1+1=2 2.1+1=3.
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Of these new numbers the first is a s5ide- and the second a diagonalnumber,
or (as we may say)

Gy =2, dy= 3
In the same way as these numbers were formed from @, = 1, 4, = 1, successive
pairs of numbers are formed from a4y, d,, and so on, according to the formula

Qpi1 =0y + du! dl&l =2a, + d“
Thus 4=2+3=5 d&=2.2+3=7
a=§5+7=12, d=2.5+7=17,
and so on.
Theon states, with reference to these numbers, the general proposition that
d,’ = 2a,’ +1,
and he observes (1) that the signs alternate as successive d’s and a’s are taken,
d\* - 24, being equal to - 1, f, 2a,? equal to + 1, d;* - 24" equal to  1,and
s0 on, (2) that the sum of the squares of a// the 2’s will be double of the sum
of the squares of a// the a’s. [If the number of successive terms in each
series is finite, it is of course necessary that the number should be even.]
The proof, no doubt omitted because it was well known, may be put
algebraically thus
dl' e Qﬂ,‘ - (’ai~‘.l + dn—l)' -2 (d._. + dl—i)'
= 28y" = dp’
== (dui' - 205")
=+ (dy_g® — 2a,-4"), in like manner,
ana so on, while 4, — 2¢*= - 1. Thus the theorem is established.

Euclid’s propositions enable us to establish the theorem geometrically;
and this fact might well be thought to confirm the conjecture that the
investigation of the indeterminate equation 2a*-»'=#*71 in the manner
explained by Theon was no new thing but began at a period long before
Euclid’s time. No one familiar with the truth of the proposition stated by
Theon could have failed to observe that, as the oorrespondmg side- and
dmgwd -numbers were successively formed, the value of 4,%/a," would

pproach more and more nearly to 2, and consequently that the successive
an would give nearer and nearer approximations to the value of
,Ja, vu.

ly clear at in the famous passage of Plato’s Repudlic (546 c)
1hout l.he “geometrical number” some such system of apPrommatlons is
hinted at. Plato there contrasts the “rational diameter of five” (pyry) Sudperpos
rijs wepwddos) with the “irrational” (diameter). This was certainly taken
from the Pythagorean theory of numbers (cf. the expresswn immediately
plecedlng,sq.ﬁB,Crmr P-m&wpécmw dmépnrvay, with the
g -rwd dM\ahos drepydlerar in the fragment of
hilolaus). The refercnoe of lato is to the following consideration. If the
square of side 5 be taken, the diagonal is Nz.25 or A/so. This is the
Pythagorean “irrational diameter” of 5; and the “rauonsl diameter ” was

the approximation A50—-1, or 7.

But the conjecture of Zeuthen, and the attribution of the whole theory of
side- and diagonal-numbers to the Pythugoreans, have now been fully confirmed
by the publication of Kroll’s edition of Procli Diadocks in Platonis rempublicam
commentarii (Teubner), Vol. 11, 1go1. The passages (cc. 23 and 27. PP- 24,
25 and 27—329) which there saw the light for the first time describe the same
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system of forming side- and diagonal/numbers and definitely attribute it, as
well as the distinction between the ‘“‘rational ” and “‘irrational diameter,” to
the Pythagoreans. Proclus further says (p. 27, 16—22) that the property of the
side- and diagonal-numbers “is proved gra hically (ypauumxds) in the second
book of the Elements by ‘Aim’ Fa’r‘ éxeivov). For, if a straight line be bisected
and a straight line be added to it, the square on the whole line including the
added straight line and the square on the latter alone are double of the square on
the half of the original straight line and of the square on the straight line made
up of the half and of the added straight line.” And this is simply Eucl. 1. o
Proclus then goes on to show specifically how this proposition was used to
prove that, with the notation above used, the diamefer corresponding to the
side a +dis 2a +d. Let AB be a side and BC equal to it, while CD is the
diameter corresponding to 4.5, i.e. a straight line such that the square on it is
double of the square on 4.5, (I use the figure supplied by Hultsch on p. 397
of Kroll’s Vol. 11.)

K|

T &

Then, by the l:heorem of Eucl. 11. 10, the squares on 4D, DC are double
of the squares on 4.5,

But the square on .DC (1.c. BE) is double of the square on 4.B; therefore,
by subtraction, the square on 4.0 is double of the square on BD.

And the square on DX, the diagonal corresponding to the side BD, is
double the square of B.D.

Therefore the square on .DF is equal to the square on 4D, so that DFis
equal to 4.D.

That is, while the side BD is, with our notation, a + 4, the corresponding
diagonal, being equal to 4D, is 2a + 4.

In the above reference by Proclus to 11. 10 dn" dxelvov “by Aim” must
apparently mean " EvxAeidov, “ by Euclid,” although Euclid’s name has not
been mentioned in the chapter; the phrase would be equivalent to saying
“in the second Book of the famous Elements.” But, when Proclus says ‘“this
is proved in the second Book of the Elements,” he does not imply that it had
not been proved before; on the contrary, it is clear that the theorem had
been proved by the Pythagoreans, and we have therefore here a confirmation
of the inference from the part played by the gnomon and by 1. 47 in Book 11
that the whole of the substance of that Book was Pythagorean. For further
detailed explanation of the passages of Proclus reference should be made to
Hultsch’s note in Kroll's Vol. 11. pp. 393—400, and to the separate article,
also by Hultsch, in the Bidliotheca Mathematica 1,, 1900, pp. 8—12.

P. Bergh has an ingenious suggestion (see Zestschrift fiir Math. u. Physik
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xxx1. Hist-litt. Abt. p. 135, and Cantor, Geschichte der Mathematik, 15, p. 437)
as to the way in which the formation of the successive

side- and diagonalnumbers may have been discovered, E

namely by ogerm:ion from a very simple geometrical

figure. Let 4BC be an isosceles triangle, right-angled at

A, with sides @,-,, an-, @y respectively. If now the c

two sides 48, AC about the right angle be leBgthened

by adding 4,-, to each, and the extremities D, £ be

joined, it is easily seen by means of the figure (in which

BF, CG are perpendicular to DE) that the new diagonal

d, is equal to 2a,_, +4,_,, while the equal sides a, are, by construction, equal
to Gy + dy-y- .

Important deductions from II. g, r0.

I. Pappus (vir. pp. 856—8) uses 11. 9, 10 for proving tne well-known
theorem that

The sum of the squares on two sides of a triangle is equal to twice the square
on half the base together with twice the square on the straight line joining the
middle point of the base to the opposite vertex.

Let ABC be the given triangle and .D the middle point of the base BC.
Join 4D, and draw A.E perpendicular to BC (produced if necessary),

A A
QL;[G B8 D CE

Now, by 11. g, 10,
the squares on BE, EC are equal to twice the squares on B.D, DE.
Add to each twice the square on 4AE.
Then, remembering that
the squares on BE, EA are equal to the square on 54,
the squares on 4E, EC are equal to the square on 4C,
and the squares on 4E, ED are equal to the square on 4.D,
we find that
the squares on B4, AC are equal to twice the squares on 4.0, B.D.
The ition is generall ved by means of 1. 12, 13, but not, I
think, sopor:mimﬂy ag by theympe“timd o?yl’appus. g i

II. The inference was early made by Gregory of St. Vincent (1584-1667)
and Viviani (1622-1703) that /n any parallelogram the squares on the diagonals
are together equal 1o the squares on the sides, or to twice the squares on adfacent
sides.

III. It appears that Leonhard Euler (1707-83) was the first to discover
the corresponding theorem with reference to any quadrilateral, namely that
In any guadrilateral the sum of the squares on the sides is equal to the sum of the
squares on the diagonals and four times the square on the line joining the middle
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points of the diagonals. Euler seems however to have proved the property
from the corresponding theorem for parallelograms just quoted (cf. Camerer’s
Euclid, Vol. 1. pp. 468, 469) and not from the property o(} the triangle, though
the latter brings out the result more easily.

ProPosITION 11.

To cut a given straight line so that the rectangle contained
by the whole and one of the segments is equal to the square on
the remaining segment.

Let A28 be the given straight line ;
thus it is required to cut 423 so that the rectangle contained
by the whole and one of the segments is
equal to the square on the remaining

segment. F ?
For let the square ABDC be described
on AB; [1. 46] H B

>

let AC be bisected at the point £, and let

BE be joined ; 17
let CA be drawn through to 7, and let £F
be made equal to BE£;

let the square 7/ be described on 4F, and ° "
let GAH be drawn through to X.

I say that 42 has been cut at / so as to make the
rectangle contained by 48, BH equal to the square on A/,

For, since the straight line 4C has been bisected at £,
and F4 is added to it,

the rectangle contained by CF, 74 together with the
square on 4 £ is equal to the square on £F, (1. 6]

But £F is equal to £5;

therefore the rectangle CF, F4 together with the square
on AE is equal to the square on £5.

But the squares on B4, AE are equal to the square on
EB, for the angle at 4 is right : (1 47]

therefore the rectangle CF, A together with the square
on AE is equal to the squares on BA4, AE.

Let the square on 4 £ be subtracted from each ;

therefore the rectangle CF, A which remains is equal to
the square on A25.




IL 11, 12] PROPOSITIONS 10—12 403

Now the rectangle CF, FA4 is FK, for AF is equal to
FG;

and the square on A8 is AD;
therefore 7K is equal to 4D.
Let AK be subtracted from each ;
therefore /A which remains is equal to /ZD.
B.DAnd HD is the rectangle 4B, BH, for AB is equal to
and FH is the square on 4/ ;

therefore the rectangle contained by 48, BH is equal
to the square on /4.

therefore the given straight line 48 has been cut at /A&
so as to make the rectangle contained by 48, BH equal to
the square on 4.

Q. E. F.

As the solution of this problem is necessary to that of inscribing a regular
pentagon in a circle (Eucl. 1v. 10, 11), we must necessarily conclude that it
was solved by the Pythagoreans, or, in other words, that they discovered the
geometrical solution of the quadratic equation

a(a-x)=x,
or Alrax=d

The solution in 11 11, too, exactly corresponds to the solution of the more
general equation

2 rax=5,

which, as shown above (pp. 387—8), Simson based upon 11. 6. Only Simson’s
solution, if applied here, gives us the point #on CA produced and does not
directly find the CPoint H. It takes £ the middle point of C4, draws 4.5 at
right angles to C4 and of length equal to C4, and then describes a circle
with £5 as radius cutting £4 produced in # The only difference between
the solution in this case and in the more general case is that 4B is here equal
to CA instead of being equal to another given straight line 4.

As in the more general case, there is, from Euclid’s point of view, only one
solution.

The construction shows that CF is also divided at 4 in the manner
described in the enunciation, since the rectangle CF, FA4 is equal to the
square on CA.

The problem in 11 11 reappears in VL 30 in the form of cutting a given
straight line in extreme and mean rafio.

ProrosiTION 12.

In obtuse-angled triangles the square on the side sublending
the obtuse angle is greater than the squares on the sides con-
taining the aftuse angle by twice the rectangle contained by one
of the sides about the obtuse angle, namely that on whick the
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perpendicular falls, and the straight line cut off outside by the
perpendicular towards the obtuse angle.

Let ABC be an obtuse-angled triangle having the angle
BAC obtuse, and let BD be drawn from the point B per-
pendicular to CA produced ;

I say that the square on BC is greater than the squares
on BA, AC by twice the rectangle con-
tained by CA4, 4D.

For, since the straight line CD has
been cut at random at the point A4,
the square on DC is equal to the
squares on CA, AD and twice the rect-
angle contained by CA, AD. [n4] &

Let the square on D2 be added to
each ;
therefore the squares on CD, DA are equal to the squares on
CA, AD, DB and twice the rectangle CA, AD.

But the square on C2B is equal to the squares on CD, DB,

for the angle at D is right; [x 47)
and the square on 4278 is equal to the squares on 4D,
DB; [r. 47)

therefore the square on CB is equal to the squareson CA, A8
and twice the rectangle contained by C4,-AD;

so that the square on CZ is greater than the squares on
CA, AB by twice the rectangle contained by CA, 4D.

Therefore etc. Q. E. D.

Since in this proposition and the next we have to do with the squares on
the sides of triangles, the particular form of graphic representation of areas
which we have had in Book 11 up to this point does not help us to visualise
the results of the propositions in the same way, and only two lines of proof
are possible, (1) by means of the resulfs of certain earlier propositions in
Book 11. combined with the resulf of 1. 47 and (2) by means of the procedure
in Euclid’s proof of 1. 47 itself. The alternative proofs of 11. 12, 13 after the
manner of Euclid’s proof of 1. 47 are therefore alone worth giving.

These proofs appear in certain modern text-books (e.g. Mehler, Henrici and
Treutlein, H. M. Taylor, Smith and Bryant). Smith and Bryant are not
correct in saying (p. 142) that they cannot be traced further back than
Lardner’s Euclid (1828); they are to be found in Gregory of St. Vincent’s
work (published in 1647) Opus geometricum quadraturae circuli et sectionum
cons, Book 1. Pt. 2, Props. 44, 45 (pPp. 31, 32).

To prove 11, 12, take an obtuse-angled triangle 4 BC in which the angle at
A is the obtuse angle :
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Describe squares on BC, CA, AB, as BCED, CAGF, ABKH,

Draw AL, BM, CN, perpendicular to BC, CA4, AB (produced if neces-
sary), and produce them to meet the further
sides of the squares on them in 7, Q, & re- R
spectively.

oin 4D, CK. 3
en, as in I 47, the triangles XBC, ABD ¥ (]
are equal in all respects; B
therefore their doubles, the parallelograms in 5
the same parallels respectively, are equal ; =
that is, the rectangle B2 is equal to the 8 L |C
rectangle BR.

Similarly the rectangle CP is equal to the
rectangle CQ.

Also, if BG, CH be joined, we see that

the triangles BAG, HAC are equal in
all respects ; D E
therefore their doubles, the rectangles 4Q, AR, are equal.

Now the square on BC is equal to the sum of the rectangles BP, CP,

i.e. to the sum of the rectangles BR, CQ,
i.e. to the sum of the squares BH, CG and
the rectangles 4K, AQ.

But the rectangles 4R, 4Q are equal, and they are respectively the
rectangle contained by BA, AV and the rectangle contained by C4, 4M.

Therefore the square on BC is equal to the squares on B4, AC together
with twice the rectangle B4, AN or CA, AM. ;

Incidentally this proof shows that the rectangle B4, 4V is equal to the
rectangle C4, AM: a result which will be seen later on to be a particular
case of the theorem in 1L 33.

Heron (in an-Nairizi, ed. Curtze, p. 109) gives a “converse” of 1L 12
related to it as L 48 is related to 1. 47. .

In any triangle, if the square on one of the sides is greater than the squares
on the other two sides, the angle contained by the latter is obtuse.

Let ABC be a triangle such that the square on BC is greater than the
squares on B4, AC.

Draw 4D at right angles to 4C and D
of length equal to 4.5.

Jomn DC.

Then, since DAC is a right angle,
the square on DC is equal to the squares
on DA, AC, a?[. 47]
i.e. to the squares on B4, 4AC. A [+]
But the square on BC is ter than
the squares on B4, AC; t ore the square on BC is greater than the

square on DC,
Therefore BC is greater than DC.
Thus, in the triangles B4C, DAC, *
the two sides B4, AC are equal to the two sides D4, 4 C respectively,
but the base BC is greater than the base DC.
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Therefore the a.r:gle BAC is greater than the angle DAC; [r. 25]
that is, the angle BAC is obtuse.

ProrosITION 13.

In acute-angled triangles the square on the side sublending
the acute angle is less than the squares on the sides containing
the acute angle by twice the rectangle contained by one of the
sides about the acute angle, namely that on whick the per-
pendicular falls, and the straight line cut off within by the
perpendicular towards the acutc angle.

Let ABC be an acute-angled triangle having the angle
at B acute, and let 4D be drawn from the point 4 perpen-
dicular to BC;

I say that the square on AC is less than the squares on
CB, BA by twice the rectangle contained
by CB, BD.

For, since the straight line CB has
been cut at random at [,

the squares on CB, BD are equal to
twice the rectangle contained by CB, BD
and the square on DC. [m. 7]

Let the square on DA be added to
each ;
therefore the squares on CB, BD, DA are equal to twice
tl};eC rectangle contained by CB, BD and the squares on 4D,

But the square on 4273 is equal to the squares on 5D,
DA, for the angle at D is right ; [ 47]
and the square on AC is equal to the squares on 4D, DC;

therefore the squares on CB, BA are equal to the square on
AC and twice the rectangle CB, BD,

so that the square on AC alone is less than the squares
on CB, BA by twice the rectangle contained by C5B, BD.
Therefore etc.

Q. E. D.

As the text stands, this proposition is unequivocally enunciated of acufe-
angled triangles ; and, as if to obviate any doubt as to whether the restriction
was fully intended, the enunciation speaks of the rectangle contained by one
of the sides containing the acute angle and the straight line intercepted
within by the pernendicular towards the acute angle. On the other hand, it
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is curious that it speaks of the square on the side subtending #% acute angle;
and again the seffing-out begins “let ABC be an acute-angled triangle Zaving
the angle at B acute,” though the last words have no point if all the angles of
the triangle are necessarily acute.

It was however very early noticed, not only by Isaacus Monachus,
Campanus, Peletarius, Clavius, Commandinus and the rest, but by the Greek
scholiast (Heiberg, Vol. v. p. 253), that the relation between the sides of a
triangle established by this theorem is true of the side opposite to, and the
sides about, an acute angle respectively in any sort of triangle whether acute-
angled, right-angled or omimse-angled The scholiast tries to explain away the
word “acute-angled” in the enunciation: “Since in the definitions he calls
acute-angled the triangle which has three acute angles, you must know that he
does not mean that here, but calls all triangles acute-angled because all have
an acute angle, one at least, if not all. The enunciation therefore is: ¢ In any
triangle the square on the side subtending the acute angle is less than the
squares on the sides containing the acute angle by twice the rectangle, etc.’”

We may judge too by Heron’s enunciation of his “converse” of the
proposition that he would have left the word ‘“acute-angled” out of the
enunciation. His converse is: Jn any triangle in whick the square on one of
the sides is less than the squares on the other two sides, the angle contained by the
latter sides is acute.

If the triangle that we take is a right-angled triangle, and the perpendicular
is drawn, not from the right angle, but from the acute angle
not referred to in the enunciation, the proposition reduces A
to 1. 47, and this case need not detain us.

The other cases can be proved, like 11. 12, after the
manner of 1. 47.

Let us take first the case where all the angles of the B c
triangle are acute.

D P E
As before, if we draw 4LP, BMQ, CNR perpendicular to BC, CA, AB
and meeting the further sides of the squares on BC, C4, AB in P, Q, R, and
if we join XC, AD, we have
the triangles XBC, ABD equal in all respects,
and consequently the rectangles B, BR equal to one another.
Similarly the rectangles CP, CQ are equal to one another.
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Next, by joining BG, CH, we prove in like manner that the rectangles 4R,
AQ are equal.
Now the square on BC is equal to the sum of the rectangles P, CP,
i.e. to the sum of the rectangles BR, CQ,

i.e. to the sum of the squares BH, CG diminished by the rectangles
AR, 4Q.
But the rectangles AR, 4Q are equal, and they are respectively the
rectangles contained by B4, AN and by C4, AM.
Therefore the square on BC is less than the squares on B4, AC by
twice the rectangle B4, AN or CA, AM.

Next suppose that we have to prove the theorem in the case where the
triangle has an obtuse angle at 4.
Take B as the acute angle under considera-
tion, so that 4 C is the side opposite to it.
Now the square on CA is equal to the
difference of the rectangles CQ, 4Q,
ie. to the difference between CZP and
i.e. to the difference between the square
BE and the sum of the rectangles
BP, 40,
i.e. to the difference between the square
BE and the sum of the rectangles
BP, AR,
i.e. to the difference between the sum of
the squares BE, BH and the sum
of the rectangles BP, BR

(since AR is the difference between BR and BH).

But BP, BR are equal, and they are respectively the rectangles CB, BL
and 4.8, BV,

Therefore the square on CA is less than the squares on 4B, BC by twice
the rectangle C5, BL or A58. BN.

Heron'’s proof of his converse proposition (an-Nairizi, ed. Curtze, p. 110),
which is also given by the Greek scholiast above quoted,
is of course simple. For let 4BC be a triangle in which
the square on 4 C is less than the squares on 45, BC.

Draw B.D at right angles to BC and of length equal
to BA.

oin DC.
since the angle CB.D is right,
the square on DC is eiml to the squares on D5, BC,
ie. to the squares on 4.8, BC. [1. 47]

Baut the square on AC is less than the squares on
AB, BC.

Therefore the square on AC is less than the square on DC,

Therefore AC is less, than DC.

Hence in the two triangles DBC, ABC the sides about the angles DBC,
ABC are respectively equal, but the base DC is greater than the base 4C.

D A
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Therefore the angle DBC (a right angle) is greater than the angle 48C
[1. 25), which latter is therefore acute.

It may be noted, lastly, that 1. 12, 13 are supplementary to 1. 47 and
complete the theory of the relations between the squares on the sides of any
triangle, whether right-angled or not.

ProrosiTION 14.

To construct a square equal to a given rectilineal figure.

Let A be the given rectilineal figure ;
thus it is required to construct a square equal to the rectilineal
figure 4.

B

c
s For let there be constructed the rectangular parallelogram
BD equal to the rectilineal figure 4. [ 45]

Then, if BE is equal to £D, that which was enjoined
will have been done; for a square B0 has been constructed
equal to the rectilineal figure 4.

10 But, if not, one of the straight lines BE, ED is greater.

Let BE be greater, and let it be produced to F;
let £F be made equal to £D, and let BF be bisected at G.

With centre G and distance one of the straight lines G5,
GF let the semicircle B/ F be described ; let D £ be produced

15to A, and let G/ be joined.

Then, since the straight line BF has been cut into equal
segments at G, and into unequal segments at £,

the rectangle contained by BE, EF together with the
square on £G is equal to the square on GF. [ 5]

20 But GFis equal to GH;
therefore the rectangle BE, EF together with the square on
GE is equal to the square on G/.
But the squares on £, EG are equal to the square on
GH; [x 47]
35 therefore the rectangle BE, EF together with the square on
GE is equal to the squares on HZ, EG.
Let the square on GZ£ be subtracted from each ;
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therefore the rectangle contained by BE, EF which
remains is equal to the square on £/.
3  But the rectangle BE, EF is BD, for EF is equal to £D;

therefore the parallelogram B0 is equal to the square on
HE.

And BD is equal to the rectilineal figure 4.

Therefore the rectilineal figure 4 is also equal to the square

3s which can be described on £4.

Therefore a square, namely that which can be described
on £/, has been constructed equal to the given rectilineal
figure A4. Q. E. F.

. that which was enjoined will have been done, literally *“ would have been

B i Eua e e b expessuod by the it passive participle, dva-
, 36. which can be desc , ex e future iciple,
mjfw ’3 s gor b P y pasticip ypagn

Heiberg (Mathematisches zu Aristoteles, p. 20) quotes as bearing on this
proposition Aristotle’s remark (De anima 11. 2, 413 a 19: cf. Metaph. 996 b 21)
that “squaring ” (rerpayonapuds) is better defined as the “finding of the mean
(proportional)” than as “the making of an equilateral rectangle equal to a
gziven oblong,” because the former definition states the cause, the latter the
onclusion only. This, Heiberg thinks, implies that in the text-books which were
in Aristotle’s hands the problem of 11. 14 was solved by means of proportions.
As a matter of fact, the actual construction is the same in 11. 14 as in VL 13;
and the change made by Euclid must have been confined to substituting in
the proof of the correctness of the construction an argument based on the
principles of Books 1. and 11. instead of Book v1.

As 1L 12, 13 are supplementary to 1. 47, so 1L. 14 completes the theory of
transformation of areasso far as it can be carried without the use of proportions.
As we have seen, the propositions 1. 42, 44, 45 enable us to construct a
parallelogram havinf a given side and angle, and equal to any given rectilineal
figure. The parallelogram can also be transformed into an equal triangle with
the same given side and angle by making the other side about the angle twice
the length. Thus we can, as a particular case, construct a rectangle on a
given base (or a right-angled triangle with one of the sides about the right
angle of given length) equal to a given square. Further, 1. 47 enables us
to make a square equal to the sum of any number of squares or to the
difference between any two squares. The problem still remaining unsolved is
to transform any rectangle (as representing an area equal to that of any
rectilineal figure) into a square of equal area. The solution of this problem,
given in 1L 14, is of course the equivalent of the extraction of the square root,
or of the solution of the pure quadratic equation

x'=ab.

Simson pointed out that, in the construction given by Euclid in this case,
it was not necessary to put in the words “.ZLef BE be greater,” since the
construction is not affected by the question whether BE or £D is the greater.
This is true, but after all the words do little harm, and perhaps Euclid may
have regarded it as conducive to clearness to have the points B, G, £, F in
the same relative positions as the corresponding points 4, C, D, B in the
figure of 1. 5 which he quotes in the proof.



EXCURSUS 1.

PYTHAGORAS AND THE PYTHAGOREANS.

The problem of determining how much of the Pythagorean discoveries in
mathematics can be attributed to Pythagoras himself is not only difficult; it
may be said to be insoluble. Tradition on the subject is very meagre and
uncertain, and further doubt is thrown upon it by the well-known tendency of
the later Pythagoreans to ascribe everything to the Master himself (adrés éa,
[pse dixit). Pythagoras himself left no written expnsition of his doctrines, nor
did any of his immediate successors, not even Hippasus, about whom the
different stories ran (1) that he was expelled from the school because he pub-
lished doctrines of Pythagoras, and (2) that he was drowned at sea for revealing
the construction of the dodecahedron in the sphere and claiming it as his own,
or (as others have it) for making known the discovery of the irrational or in-
commensurable. Nor is the absence of any written record of Pythagorean
doctrines down to the time of Philolaus to be put down to a pledge of secrecy
binding the school ; at all events this did not apply to their mathematics or
their physics; and it may be that the supposed secrecy was invented to
account for the absence of documents. The fact seems to be that oral com-
munication was the tradition of the school, while their doctrines would in the
main be too abstruse to be understood by the generality of people outside.
Even Aristotle felt the difficulty ; he evidently knew nothing for certain about
any ethical or physical doctrines going back to Pythagoras himself ; when he
speaks of the Pythagorean system, he always refers it to “the Pythagoreans.”
sometimes even to “the so-called Pythagoreans.”

Since my note on Eucl. 1. 47 was originally written the part of Pythagoras
in the Pythagorean mathematical discoveries has been further discussed and
every scrap of evidence closely, and even meticulously, examined in two long
articles by Heinrich Vogt, '“Die Geometrie des Pythagoras” (Bibliotheca
Mathematica 1X5, 1908/g, pp. 15—54) and “ Die Entstehungsgeschichte des
Irrationalen nach Plato und anderen Quellen des 4. Jahrhunderts” (Bzblio-
theca Mathematica X, 1910, pp. 97—155). These papers would not indeed
have enabled me to modify greatly what I have written regarding the supposed
discoveries of Pythagoras and the early Pythagoreans, because 1 have through-
out been careful to give the traditions on the subject for what they are worth
and no more, and not to build too much upon them. It is right however to
give, in a separate note, a few details of Vogt’s arguments.

G. Junge bhad, in his paper “Wann haben die Griechen das Irrationale
entdeckt ? ” mentioned above (p. 351), tried to prove that Pythagoras himself
could not have discovered the irrational; and the object of Vogt's papers is to
go further on the same lines and to show (1) that it was only the later
Pythagoreans who (before 410 B.C.) recognised the incommensurability of
the diagonal with the side of a square, (z) that the #keory of the irrational was
first discovered by Theodorus, to whom Plato refers (Z%eaetetus 147 p), and
(3) that Pythagoras himself could not have been the discoverer of any one of
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the things specifically attnibuted to him, namely (a) the theorem of Eucl. 1. 47,
(4) the construction of the five regular solids in the sense in which they are
respectively constructed in Eucl. xu, (¢) the application of an area in its
widest sense, equivalent to the solution of a quadratic equation in its most
general form.

Vogt’s main argument as regards (a) the theorem of 1. 47 is based ona
new translation which he gives of the well-known passage of Proclus’ note on
the propos:tlon (p- 426 6—-9), Tav pév & l.o"ropﬂv Ta dpxaia ﬂom\o,u:vwv mmmms
70 9¢wpm|.u fwro eis Ivfaydpay dvareumdvrav éoriv eipeiv kai BovBiryy Aeydvruy
alrov émi 1) epéoe. Vogt translates this as follows: “Unter denen, welche
das Altertum erforschen wollen, kann man einige finden, welche denen Gehér
geben, die dieses Theorem auf Pythagoras zuriickfilhren und ihn als Stier-
opferer bei dieser Gelegenheit bezeichnen,” “ Among those who have a taste
for research into antiquity, we can find some who give ear to those who refer
this theorem to Pythagoras and describe him as sacrificing an ox on the
strength of the discovery.” According to this version the words rav...
Bovdopévwv and the words dvamepmovrwy...xal...Aeydvrav refer respectively to
two different sets of persons, in fact two different generations; the latter are
older authorities who are supposed to be cited by the former ; the former are
a later generation, perhaps contemporaries of Proclus, some of whom accepted
the view of the older authorities while others did not. But this would have
required the article rov before avaweumdvrav, or some such expression as
aMov Twdv of avaréumovo instead of dvameuwdvrwv. Vogt's interpretation is
therefore quite inadmissible. The persons denoted by dvaweumovruv are some
of the persons denoted by tév Bovhopévev; hence Tannery’s translation, to
which mine (p. 350 above) is equivalent, is the only possible one, namely
“Si l'on écoute ceux qui veulent raconter l'histoire des anciens temps, on
peut en trouver qui attribuent ce théoréme A Pythagore et lui font sacrifier un
beeuf aprés sa découverte” (La Gdométrie grecque, p. 103). dxovovras agrees
with the assumed subject of epelv; dvareumdvrwv and Aeydvrwy should, strictly
speaking, have been dvaréumovras and Aéyovras agreeing with rwas (the direct
object of elpeiv) understond, but are simply attracted into the case of Bov-
Aopévav ; the construction is quite intelligible. I agree with Vogt that
Eudemus’ history contained nothing attributing the theorem to Pythagoras.
The words of Proclus imply this; but I do not think that they imply (as
Vogt maintains) any pronouncement by Proclus himself agasns¢ such attribution.
In my opinion, Proclus is simply determined not to commit himself to any
view ; his way of evading a decision is the sentence following, éyw 3¢ favpalw
pév xal Tovs mpwrous émaTdrras 17 Todde ot Bewprjparos dAnbely, pafovws 8t dyapar
TOv orotycwtv... ; the plural rovs mpurovs émordvras is, I hold, used for the
very purpose of making the statement as vague as possible ; he will not even
allow it to be inferred that he attributed the discovery to any single person.
Returning to 7 rdv dAdywy mpaypareia {Proclus, vg. 65, 1g), we may now
concede (l'o'llowm Diels) that we should read riv ava Adyov (““proportionals )
instead of rav d v (“irrationals”) and that the author intended to attribute
to Pythagoras a theory of proportion (the arithmetical theory applicable to
commensurable magnitudes only) rather than the theory of irrationals. But
I do not agree in Vogt’s contention that the theory of the irrational was first
discovered by Theodorus. It seems to me that we have evidence to the
contrary in the very passage of Plato referred to. Plato (Z%eactetus 147 D)
mentions /3, /5, ... up to #/17 as dealt with by Theodorus, but omsts /2.
This fact, along with Plato’s allusions elsewhere to the irrationality of ,/2, and
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to approximations to it, in the expressions dppyros and pyry Sudperpos Tis
wepmddos, as if those expressions had a well-known signification, implies that
the diseovery of the irrationality of ,/z had been made before the time of
Theodorus. The words 7 rdv dAdywv mpaypareia might well be used even
if the reference is only to ,/2, because the first step would be the most
difficult, and mpaypareia need not mean the establishment of a complete theory
or anything more than “investigation” of a subject.

Junge and Vogt hold that the theory of the irrational was not discovered
by the early Pythagoreans any more than Pythagoras because, if it had been
so discovered, an impossibly long period would intervene between the investi-
gation of the particular case of ,/z and the extension of the theory by
Theodorus to the cases of /3, »/5 etc. But might not this well be due to the
fact that in the meantime the minds of geometers were engrossed by other
problems of importance, namely the quadrature of the circle (Hippocrates of
Chios and his quadratures of lunes), the trisection of any angle (Hippias of Elis
and his curve, afterwards known as the guadratrix), and the doubling of the
cube (reduced by Hippocrates to the problem of finding two mean pro-
portionals in continued proportion between two given straight lines), the last
of which problems, which meant finding geometrically the equivalent of .}z,
would naturally follow the investigation of ,/2? Now Hippias was probably
born about 460 B.c., while Hippocrates seems to have been in Athens during
a considerable portion of the second half of the fifth century, perhaps from
about 450 to 430 B.c. Moreover Vogt has to get over the fact that Democritus
(born 470/469 B.c.) wrote a book wepi d\dywv ypappuiv kal vaoriv, On srrational
lines and solids (or atoms). This difficulty he seeks to overcome by maintaining
that dAoywr does not here mean “irrational” at all, but “without ratio”
(* verhéltnislos ”), in the sense that any two straight lines are “ without ratio ”
because they both contain an infinite number of the indivisible (or atomic)
lines, and therefore their ratio, being of the form oo /w0, is indeterminate.
But, if these were so, a// lines (including commensurable lines) would be
“without a ratio” to one another, whereas the title of Democritus’ work
clearly implies that aAoyot ypappal are a class or classes of lines distinguished
from other lines. The fact is that Democritus was too good a mathematician
to have anything to do with “indivisible lines.” This is confirmed by a
scholium to Aristotle’s De caelo (p. 469 b 14, Brandis) which implicitly
denies to Democritus any theory of indivisible lines: ‘“of those who have
maintained the existence of indivisibles, some, as for example Leucippus and
Democritus, believe in indivisible bodies, others, like Xenocrates, in indivisible
lines.” Moreover Simplicius tells us that, according to Democritus himself,
even the atoms were, in a mathematical sense, divisible further and in fact
ad infinitum.

Coming now to (#) the construction of the cosmic figures, 7 Tév xoopikdy
oxnpdrov averacs (Proclus, p. 65, 20), I agree with Vogt to the following
extent. It is unlikely that Pythagoras or even the early Pythagoreans “ con-
structed ” the five regular solids in the sense of a complete theoretical con-
struction such as we find, say, in Eucl. X111 ; and it is possible that Theaetetus
was the first to give these constructions, whether éypaye in Suidas’ notice,
wpiros 8¢ Td wévre xalovpeva oreped Eypayre, means “constructed ” or “ wrote
upon.” But cvoracis in the above phrase of Proclus may well mean something
less than the theoretical constructions and eroofs of Eucl. x111. ; it may mean,
as Vogt says, simply the * putting together” of the figures in the same way as
Plato puts them together in the Z¥masus, i.e. by bringing a certain number of
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angles of equilateral triangles and of regular pentagons together at one point.
There is no reason why the early Pythagoreans should r.ot have “ constructed ”
the five regular solids in this sense ; in fact the supposition that they did so
agrees well with what we know of their having put angles of certain regular
figures together round a point (in connexion with the theorem of Eucl. 1. 32) and
shown that only three kinds of such angles would fill up the space in one plane
round the point. But I do not agree in the apparent refusal of Vogt to credit
the Pythagoreans with the knowledge of the theoretical construction of the
regular pentagon as we find it in Eucl. 1v. 10, 11. I do not know of any
reason for rejecting the evidence of the Scholia 1v. Nos. z and 4 which say
categorically that *this Book” (Book 1v.) and “the whole of the theorems”
in it (including therefore Props. 10, 11) are discoveries of the Pythagoreans.
And the division of a straight line in extreme and mean ratio, on which the
construction of the regular pentagon depends, comes in Eucl. Book 1.
(Prop. 11), while we have sufficient grounds for regarding the whole of the
substance of Book 11. as Pythagorean.

I will permit myself one more criticism on Vogt's first paper. I think he
bases too much on the fact that it was left for Oenopides (in the period from,
say, 470 to 450 B.C.) to discover two elementary constructions (with ruler and
compasses only), namely that of a perpendicular to a straight line from an
external point (Eucl. 1. 12), and that of an angle equal to a given rectilineal
angle (Eucl. 1. 23). Vogt infers that geometry must have been in a very
rudimentary condition at the time. I do not think this follows ; the explana-
tion would seem to be rather that, the restriction of the instruments used
in constructions to the ruler and compasses not having been definitely estab-
lished before the time when Oenopides wrote, it had not previously occurred to
anyone to substitute new constructions based on that principle for others
previously in vogue. In the case of the perpendicular, for example, the con-
struction would no doubt, in earlier days, have been made by means of a set
square.



EXCURSUS IL

POPULAR NAMES FOR EUCLIDEAN PROPOSITIONS.

Although some of these time-honoured names are familiar to most educated
people, it seems to be impossible to trace them to their original sources, or to
say who applied them for the first time respectively. It may be that they were
handed down by oral tradition for long periods in each case before they found
their way into written documents.

We begin with

I 5.

1. This proposition is in this country universally known as the Pons
Asinorum, * Asses’ Bridge.” Even in this case opinion is not unanimous as
to the exact implication of the term. Perhaps the more general view is that
taken in the Stanford Dictionary of Anglicised Words and Phrases (by
C. A. M. Fennell) where the description is: ‘“Name of the fifth proposition
of the first Book of Euclid, suggested by the figure and the difficulties which
poor geometricians find in mastering it.” This is certainly the equivalent of
what I gathered, in my early days at school, from a former Fellow of St John's,
the Reverend Anthony Bower, who was a high Wrangler in 1846 and a friend
of Todhunter’s. The “ass” on this interpretation is a synonym for ‘“fool.”
But there is another view (as I have learnt ].ately) which is more complimentary
to the ass. It is that, the figure of the proposition being like that of a trestle-
bridge, with a ramp at each end which is the more practicable the flatter the
figure is drawn, the bridge is such that, while a horse could not surmount the
ramp, an ass could ; in other words, the term is meant to refer to the surefooted-
ness of the ass rather than to any want of intelligence on his part. (I ‘may
perhaps mention that Sir George Greenhill is a strong supporter of this view.)

An epigram of 1780 is the earliest reference to the term in Murray’s
English Dictionary :

“If this be rightly called the bridge of asses,

He's not the fool that sticks but he that passes.”
The writer'’s own view is not too clear. He seems to imply that, while the
inventor of the name meant that only the fool finds the bridge difficult to
pass, the more proper view would be that, since the ass can get over, and
“ass” is synonymous with “fool,” therefore it must be the fool who can get
over; in other words, he seems to object to the phrase as being a contradic-
tion in terms.

But we have also to take account of the fact that the French apply the
term to I. 47. Now in Euclid’s figure for 1. 47 there is no suggestion of a
bridge, and the reference can only be to the nature of the theorem, its diffi-
culty or otherwise. It is curious that the French dictionaries give two different
explanations of Ponf aux dnes. Littré makes it “ce que personne ne doit ni
ne peut ignorer ; ce qui est si facile que tout le monde doit y réussir.” Now
no intelligent person could have applied the name to Eucl. 1. 47 for this
reason, namely that it was so easy that even a fool could not help knowing it.
Larousse is better informed; there we find “Pont aux dnes, certaine difficulté,
certaine question qui n’arréte que les ignorants, et qui sert de critérium
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pour juger lintelligence de quelqu’un, et particuliérement d’un écolier. Clest
ainsi que, dans les classes 3 mathématiques, on ne manque jamais de dire
que le carré de I'hypoténuse est le pont aux dnes de la géométrie. La plupart
des dictionnaires entendent par ce mot une chose si -simple, si facile, que
personne ne doit l'ignorer : c’est une erreur évidente.” Larousse is clearly right.
But it will be observed that, so far as it goes, Larousse’s interpretation rather
supports the first of the two alternative explanations of the meaning of “Asses’
Bridge” as applied to 1. 5, namely that it is difficult for the fool (= “ass”) to
master.

In the Stanford Dictionary it is added that “in logic the term was in the
16 c. applied to the conversion of propositions by the aid of a difficult
diagram for finding middle terms”; and if the mathematicians borrowed the
term from logic, this again would be rather in favour of the first explanation
of its use for L 5.

If it is permitted desigere in loco, I would add for the benefit of future
generations (in the hope that they will still be able to appreciate the joke or,
in the alternative, will be tempted to discuss learnedly what could possibly
have been meant) a very topical allusion in a recent Punch (14 Oct. 1925):
“When they film Euclid, as is suggested, we shall no doubt see a very
thrilling rescue over the burning Pons Asinorum.”—And yet it is safe to
prophesy that the ‘“ Asses’ Bridge ” will outlive the *film " !

2. Elefuga.

This name for Eucl. 1. 5 is mentioned by Roger Bacon (about 1250), who
also gives an explanation of it (Opus Tertium, c. vi). He observes that in his
day people in general, finding no utility in any science such as geometry, for
example, recoiled from the idea of studying it unless they were boys forced to
it by the rod, so that they would hardly learn so much as three or four pro-

itions. Hence it is, he says, that the fifth proposition is called “ Elefuga,
id est, fuga mlserorum elegia enim Graece dicitur, Latine miseria ; et elegi
sunt miseri.” That is, accord:ng to Roger Bacon, Elefuga is “fii ht of the
miserable.” This explanation no doubt accounts for the verses about Du/-
carnon in Chaucer’s Troilus and Criseyde, 1, ll. 933-5:

“ Dulcarnon called is ‘ fleminge of wrecches’;
It seemeth hard, for wrecches wol not lere
For verray slouthe or othere wilful tecches”;
since “fleminge of wrecches,” “banishment of the miserable,” is a translation
of “fuga miserorum.” Only Dulcarnon is there wrongly taken to be the same
proposition as Elefuga, i.e. 1. 5, whereas, as we shall see, Dulcarnon was really
the name for the Pythagorean theorem 1. 47.

Etymologically, Roger Bacon’s explanation leaves something to be de-
sired. The word would really seem to be an attempt to compound the two
Greek words é\eos, pity (or the object of pity), and vy, flight (cf. note
ad loc. in Skeat’s edition of Chaucer). Notwithstanding the confusion of
tongues, the object seems to be a play upon the two words Elementa and
é\eos, which both begin with the same three letters, and the implication is that
“escape from the Elements " (which normally came when Prop. 5 was reached)
was equivalent to “escape from misery ” or “trouble.” A better form for the
word would perhaps be Eleufugg. and this form actually occurs in Alanus’
Anticlaudianus, 1, c. 6 (cited by Du Cange, Glossarium, s.v.). The word
also_occurs, according to Skeat’s note, in Richard of Bury's Philobidion,
c. xiii, where it was somewhat oddly translated by J. B. Inglis in 1832 “ How
many scholars has the Helleflight of Euclid repelled !”
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L. 47.

The Pythagorean proposition about the square on the hypotenuse has
taken even a deeper hold of the minds of men, and has been known by
a number of names.

1. The Theorem of the Bride (Qeipypa Tijs vipdns).

This name is found in a Ms. of Georgms Pachymeres (1242-1310) in the
Bibliothtque Nationale at Paris; there is a note to this effect by Tannery
(La Glométrie grecque, p. 105), but, as he says nothing more, it is probable
that the passage gives the mere name without any explanation of it. We
have, however, much earlier evidence of the supposed connexion of the pro-
position with marriage. Plutarch (born about 46 A.p.) says (De Jside et
Osiride 56, p. 373 F) ** We may imagine the Egyptians (thinking of) the most
beautiful of triangles (and) likening the nature of the All to this triangle most
particularly, for it is this same triangle which Plato is thought to have
employed in the Republic, when he put together the Nuptw.l Flgure (yapn.\mv
Suiypappa)”—ddypappa, though literally meamng “diagram ” or “figure,” was
commonly used in the sense of * proposition "—*and in that triangle the per-
pendicular side is 3, the base 4, and the hypotenuse, the square on which is
equal to the sum of the squares on the sides containing (the right angle), 5
We must, then, liken the perpendlcular to the male, the base to the female and
the hypotenuse to the offspring of both....For 3 is the first odd number and
is perfect, 4 is the square on an even su:le, 2, while the 5, partly resembles the
father and partly the mother, being the sum of 3 and 2.

Plato used the three numbers 3, 4, 5 of the Pythagorean triangle in the
formation of his famous Geometrical Number; but Plato himself does not call
the triangle the Nuptial Triangle nor the number the Nuptial Number. It is
later writers, Plutarch, Nicomachus and Iamblichus, who connect the
about the Geometrical Number with marriage ; Nicomachus (/z#rod. Ar., 11,
24, 11) merely alludes to * the passage in the Republic connected with the
so-called Marnage,” while Iamblichus (/# Nicom., p. 82, 20 Pistelli) only
speaks of “the Nuptial Number in the Republic.”

It would appear, then, that the name “ Nuptial Figure” or *“ Theorem of
the Bride ” was originally used of one particular right-angled triangle, namely
(3, 4, 5). A late Arabian writer Behd-ad-din (1547-1622) seems to have
applied the term “Figure of the Bride” to the same triangle; the Arabs
therefore seemingly followed the Greeks. The idea underlying the use of the
term, first for the triangle (3, 4, 5), and then for the general theorem of 1. 47,
seems to be roughly that of the two parties to a marriage becoming one, just
as the two squares on the sides containing the right angle become the one
square on the hypotenuse in the said theorem.

2. The “ Bride's Chair”

‘T'he origin of this name is more obscure. It must presumably have been
suggested by a supposed resemblance between the figure of the proposition
and such a chair. D. E. Smith (History of Mathematics, 1, pp. 289-90)
remarks that the “Bride's Chair” may be so-called “because the Euclid
figure is not unlike the chair which a slave carries on his back and in which
the Eastern bride is sometimes transported to the ceremony,” and he cites a
note from Edouard Lucas’ Réréations Mathématigues, 11, p. 130 : *“La démon-
stration que nous venons de donner du théoréme de Pythagore sur le carré
de I'hypoténuse ne différe pas essentialement de la démonstration hindoue,
connue sous le nom de la Chaise de la petite mariée, que l'on rencontre dans
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1 ouvrage de Bhascara (Bija-Ganita, § 146).” The figure of Bhaskara is not
that of Euclid but that shown at the top of p. 355 above; I have however
not been able to find the name * Bride’s Chair” in Colebrooke’s translation
of the work of Bhaskara.

Notwithstanding the apparent frivolity of the setting, I venture to suggest
that light may be thrown on the question by a very modern version of the
*“Bride’s Chair” which appeared during or since the War in La Vie Parisienne.
The illustration represents Euclid’s figure for 1. 47 and, drawn over it, as on
a frame, a pos/u in full fighting kit carrying on his back his bride and his house-
hold belongings. Roughly speaking, the soldier is standing (or rather walking)
in the middle of the large square, his head and shoulders are bending to the
right within the contour of one of the small squares, while the lady, with
mirror and powder-puff in action, is sitting with her back to him in the right
angle between the two smaller squares (A4 G in the figure on p. 349 above)’.
I am informed by Sir George Greenhill that there was also an earlier version
“showing the chair as it is in use to-day in Cairo and Egypt, the earliest
version of a taxi-chair, a pattern as early as Euclid and suggesting the nick-
name of the proposition.” This recalls to my mind the remark of a friend to
whom I mentioned the subject and showed the figure of the proposition ; he
observed at once on seeing it “But I should have said it was more like a sedan
chair,” the large square suggesting to him the actual chair and the two smaller
squares the two bearers.

3. Dulcarnon.

This name for 1. 47 appears, as above mentioned, in Chaucer’s Troilus
and Criseyde, 11, ll. 930-3, where Criseyde says :
‘I am, til God me bettre minde sende,
At dulcarnon, right at my wittes ende.’
Quod Pandarus, * ye, nece, wol ye here?
Dulcarnon called is * fleminge of wrecches.”"’
Billingsley, too, in his edition of Euclid (1570) observes of 1. 47 that *it hath
bene commonly called of barbarous writers of the latter time Dulcarnon.”
Dulcarnon (see Skeat’s note ad loc.) seems to represent the Persian and
Arabic du 'lkarnayn, lit. fwo-horned, from Pers. du, two, and karn, horn. The
name was applied to 1. 47 because the two smaller squares stick up like two
horns and, as the proposition is difficult, the word here takes the sense of
“puzzle” ; hence Criseyde was “at dulcarnon” because she was perplexed
and at her wit's end.

4 Francisci tunica=* Franciskaner Kutte,” * Franciscan's cowl.”

This name is quoted by Weissenborn (Dse Uebersetsungen des Euklid
durch Campano und Zamberti, p. 42) as given in a Geomelrie by one Kunze.
The name is quite appropriate, one of the squares representing the hood
thrown back.

IIL 7, 8.

I have already mentioned the names *“ Goose's Foot” (Pes anseris) and
“Peacock’s Tail” (Cauda pavonis) applied, suitably enough, to these pro-
positions respectively. They come from Luca Paciuolo’s edition of Euclid
published in 1509 (vide Weissenborn, #4id.).

! Old Cambridge men will recall a picture in some respects not unlike, though less
artistic than, the cartoon in La Fie Parisienne, 1 mean the painting of ** The Man ed
with Mischief” which used to be over the door of the former inn of that name on the
St Neots Road, a short distance from Cambridge.
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dydwiow, angle-less (figure) 187
dddvaror: 7 els 7d 43, dwaywydh, § Sk rob dd.
Beifis, 7 els 70 &8, Ayovoa dwbdedis 136
y barb-like 188
&hoyos, 1mt:om|1 wepl dbywy ypapudv xal
vagrdw, work by Democritus 413
dufheia (ywrla), obtuse (angle) 181
dufhvydrios, obtuse-angled 187
dpuepts, indivisible 41, 268
duplxohos (of curvilineal angles) 178
duglevpros 178
draypdgew dwb to describe on contraaxed with
to comstruct {a'Wﬂ}cuﬂ ) 3
drvahvbperos (rémwos), Treasury q’Am.’y.m 8,
10, 11, 138
dragrpoguxds (species of locus) 3
dvopotopepris, non-uniform 40, 1
drriorpod, conversion 156—7: J.’ma‘mgvmety.
# wpoyoupdrn or 4 xuplws, ibid.
dviwapros, non-existent 129
dbpearos, indeterminate: (of lines or curves)
160: (of problems) 129
a: 135: els 70 ddvvaror 136
dwepos, mﬁmte: 7 éx’ &w, éxSalhopérn of
line or curve e:tu‘uimﬁ without limit and
not *‘forming a figure 160-: éx’ dr. or
els dr. adverbial 190: éx’ dw. Buapeiofar
268: Aristotle on 7d dweipor 232-4
dxhols, simple: (of lines or curves) 161-2:
(of sl:lrfmes} 170
dxbddetss, proof (one of necessary divisions of
a proposition) 129, 130
dwreafai, to meet (occasionally fouck) 57
&ppyros, irrational : of Mryos 137: of diameter
(diagonal) 399
devpBaros, mcornpn.l:ble 129
dotprrwros, not-meeting, non-secant, asymp-
totic 40, 161, 203
datvberos, incomposite: (of lines) 160, 161:
(of surfaces) 170
draxros, unordered: (of problems) 128: (of
A lmuumls) 11§ Ay o
Topot ypaupal, "mdl\rm e lines” 2
airds Epa, Jpse dixit, referring to Pythagoras
411
dyls =segment of circle less than semicircle 187
Pdbos, depth 158-9
Pdas, base 248-9
youfhor Sidypappa, * Figure of Marriage”
(Plutarch), term for Pythagorean triangle
(3 42 5) 417
yeypddpduw 242
yropwe, see gnomon
ypauuf, line (or cur\re) ¢,
YPApLKDS
Sedoudvos g%:r:s, d:ﬂyetent senses 133-3:
Euclid’s dedouéva or Data,
Belyuara, illustrations, of Stl:m:s 319
8¢l &), ‘*thus it is required,” introducing
Siopioubs 293
Sidypappa = proposition (Aristotle) 252
Bialpeaus: point of division (Aristotle) 163,
170, 171: method of division (exhaustion)
285: Euclid’s weplSiaipéoewr B, g, 18,87, 110
Biaordoes, almost=dimensions 157, 158
Bworarbe extemded, i¢' ¥v ome way, éxl o

two ways, éxl Tpla three ways (of lines,
surfaces and soli ively) rgB. 170
admmm g dmt?:roe 166, I:)-,-, ;or (o udug_of
e) 1 anangle) = wergeuoel
Betodixds 9(gf a cll:sngof loci £
dux O, “let it be drawn th h"
duced) roug el
hopwpés [ 1) particular statement or defini-
tlou. one of the formal divisions of a
position 129: () statement of condition of
possibility 128, 129, 130, 131, 234, 243,293
eloaywyh dppovinth umrm to Harmony,
&::):‘ Cl:‘oni‘des 17 v
tépa dcarépg, meaning respectively 148,
éxfefhfofuwoar, use a!’,gaf iq
éxeivos = Euclid 400
ExBeous, setting-out, one of formal divisions of
proposition 1 D{g somenmes omissible 130
éxrds, xard 7o ( exterior angle in sense
of re-entrant) 263: % éxrds vywwla, the
exterior angle 280
é\xoedss, spiral-shaped 1
Bewpus, falling-short {\mh reference to
application of areas) 36, 343-5, 383—4
urds wpbfinua, a deficient (=indeter-
minate) problem 12
bu;)\:sde, alternately or faﬂju:tivally} alternate

Evvowa, molion, use of, 231
tvaraos, objection 135
lwbt,ur&r&orﬁbrét(-w-(u}ofmam
angle 263, 280: # érrds xal dwevarrior
~ywwla, the interior and oppmlte angle 280
dﬂfdx#ww (émfedyrups, join) 242
edov, plane in Euclid, for surface
I.lso in ‘Plato and Aristotle 169
dmiwpoateiy, éwimporler lbu. to stand in
front of (hiding from v:ew 165, 166
émupdrea, surface (Euclid) 1
érepbunnes, ohl 151, 183
eift, b, the n:néght 159: ebbeia (ypapud),

straight line
ebfirypaupos, rect:hnul 187 : neuter as sub-

stantive 346

dpdarreciar, to louch 57

dpappbler, to coincide, épapublecba, to be
applied to 168, 224-5, 149

dpexrixds (of a class of lo;:? 330

égetfis, “in order” 181: of adjacent angles

7

Oespmpa, theorem gw.: Bedpnua Tiis ¥iugns,
“ Theorem of the?Bnde," =Euel. 1. 47, 417

Bupebs (shield)=ellipse 165

trwov xédn (horse-fetter), name for a certain
curve 162-3, 17

loopérpuwr axnudrwy, wepl, on isometric figures
{Zeno:ig‘u;) 16, cv. 5 T

xdferos fw perpendicular 18¢-13,
371: “plnn? “sohd” 272

xabmymris 20

m:-m. curved (of lines) (5}

xaragkevs, construction, or mackinery, one of
divisions of a pmposition 129: sometimes

unnecessary I3o
Kararoun y Sectio ¢ s, attrik d to
Euclid 17
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welofw, “‘let it be made” 269

nnmln, bent (of lines) 159, «

xérrpov, centre 183, 184, 199: Héx 'roD xévrpov
=radius 1

xeparoadhs (ywvla), horm-like (angle) 177,

178, 182
k)i, to inflect or deflect, xexhdobas, xexhac-
159, 176, 178

péry, xrdows 118, 1

xMas, inclination, 17

xothoydwior, Mfmsgw figure (Zenodorus)
a7, 188

xowal $rvouar, Common Notions (=axioms)
231-2: called also r& xowd, rowal Sbfa
(Aristotle) 120, 231

xows) wpookelrfw, dpyphodw 276

xopugh, vertex : xard xopugni, vertical (angles)

278
L H
‘p‘m mg { mﬂiing assumed, Aap-

Mﬂh Mrﬁﬁhhrpq!ﬂﬂmkﬂrou
hdmml 190, 308, 333:

a7
““’, hgl’:zu ,49-9(‘* angle) 26, 201:

plrn'a,"mjled ‘}h'l::e P ) 161, 16
o ) [;; or curves) 161, 162:
pords wpoohafoboa Béaw, definition of a poins

I
frrm g “‘single-turn spiral” raa-
3:., 164-5: in Pappus=cylindrical helix
105

veboeis, inclinalions, a class of problems
150-1: vedew, to verge 118, 150

dpoerdfs, “‘of the same form"” 250

Suoiot, "dm:lu- (of numbers) 357: (of angles)
=equal (Thales, Aristotle) 253

Mmouqnis. uniform (of lines or curves) 40,

di:ﬁll(_-:wh}. acute (an.gl;} 181

acute-
xep Bu aueu (or ruﬂua) Q.l.D (or ud;
t- used of q

laterals - reclan, l 88—9

8pos, Spurpos deﬁmtlon 143 original mean
Y Sp;: l;aﬁsho:n?duyng;:‘mn 183

Byus, viaml ray 1
wdrry “taken together in
B

a areas
34 .{;d mh;‘ated;Eth e, ;
E\ewyus hort)

Mécmtmdwghcmkmys ’”:)
3A43 aplplluuon of terms to conics by
b{w ﬂhm 6 “the Treasury of Para-
reperdrray, Hfall beside” or “awry” 16
rrw, e” or “‘a 262
wapawMjpwpa, com, e

ﬂmm {of ”ﬁle). 4

d,uur (of rect-
angle), contained 370:

ls wepuexduevor,
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fwicethe rectangle contained 380: (of )
contained or bounded 183, 183, 184, 186,187
wepupdpaa, circumference 184
weppepls, circular 159
wepupepbypappos, contained bya circumference
of a eircle or by am of circles 183, 184
wAdros, breadth 15
rMa.ni;‘w (rpéﬂkm}, “¢(problem) in excess"”

129
wbéhos, a mathematical instrument 370
wohiwhevpor, many-sided ﬁgure 187
woploacfas, to “find” or ““furnish” 13§
wbpopa, porism g¢.v.
wpbfinua, problem g.v.
wponyoluevos, leading: (of conversion) =com-
iletelsﬁ—-; vayodmm{ﬂaﬁmm leading
Ly

theorem) contrasted with converse 257

wpbrags, enunciation 119-30
wpore “ ” 128
wplros, prime, two senses of, 146
1'700':!, case l34 o
13 pos Tis wep-

I.Ionl7] m:ur of 5”) 399
ﬂﬂﬂa' pomt 155-6
ordfun, a mathematical instrument 371
oreyuh, point 156
arocxeior, element 1146
orpoyythor, tb, round (circular), in Plato

159, 184: orpoyyvhérys, roundness 182

qupwépacpa, comclusion (of a pmpomtlon}

129, 130
otwleros, composite : (of lines or curves) 160:
(of surfaces) 170

olwvevais, convergence 38

owlorarfas, construct: 1 connotation
259, ‘21: with évrés 289: contrasted with
m w (ﬂ)ﬂr) m
ing (num'hen} by ﬁgnm of like shp: 359
axquarowowdoa or oxfiua wowloa, forming
figure (of a line or curve) 160~
Terayuévor (of a problem), "onhred ” 338

Terpaywniauls, sguaring, efinitions of 149~
50, 410
Terpdywror, square: sometimes (but not in
uclid) m‘;} four-angled ﬁ%ura 188
Aevpor, quadrilateral
mﬁ. section, -pway'mtiun 170, 171, 278

329
n'rn: locus 3:9-31 13 M.
place (where ﬂungl may be m)."'mu
réwos dvakvbperos8, 10: wapddofos réwos 339
Tépwos, instrument for drawing n circle 371
rp(r)wp» three-sided figure 18:
TUXdr onueior, a point af mn’am 252
M}l, i withnf:renne lomcthpd
of application of l.reus
iwé, in expressions for mn;?e(‘ ﬁ-BAI'
ool et
ecrat, is by 303, 312
iworelvew, subltend, ?&?m or Ihr% & and acc,
ol Yot determinate e
erms. e
“I’armingp?‘f‘igu 160 =i
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al-'Abbis b. Sa'id .l.|;|'
“ Abthiniathus” Anthi nn") 203
Abﬁ’l'Abhu Fluilb Hitim, see an-

Ahn 'Abdallih Mub. b. Mu'adh al-
R el ul.l u -Jayyani go
Abii "Alf al-Hasan bl Hasan b. al-Haitham

88,
Abii &’nﬂ Sulaimin b. 'Uqba 85, go
Abﬁ Jafu al-Khizin 77, 85
Abii Ja'far Muh. b. Muh. b. al-Hasan
Nagiraddin at-Thsi, see Nagiraddin
Abﬂ Muh. b. Abdalbiql al-Bagdadi al-Faradi

Abub{gnll:lmnb. "Ubaidallih b. Sulai-
min b, Wahb 87

Abii Nagr Gars al-Na'ma go

Abii Nagr Mansir b, "Ali b. 'Iriiq go

Abil Nasr Muh. b. Muh. b. Tarkhin b.
Uzlag al- Faribl 88

Abii Sahl Wijan b. Rustam al-Kiihi 88

Aba Sl‘ld Sinin b. Thabit b. Qurra 88

Abi 'Uthmin ad-Dimashql 25, 7

Abi 'l Wafi al- Bi.qin! 77, 85, &

Abii Yasuf Ya'qab b, Ishiq b. as-Sabbih al-
Kind! 86

Abi Yisuf Ya'qib b. Muh. ar-Razl 86
AW (dpetiis), mm 181
Aenaeas (or Aigeias) of Hierapolis 28, 311

27-8, 191
adb.all;!nsnnalAhwlﬂanlubSQ
b. 'Umar al-Karibisi 8
al- A.hwi.z[; : 4
Aigeias (?Aenaeas) of Hierapolis 28, 311
Alexander Aphloczmlenm 7:.? 19 :
Algebra, geometrical, 372—4: classical method
was that of Eucl. 1. (cf. Apollonius) 373:
grd'erlble to semi-algebraical method 377-
semi-algebraical method due to Heron
373, and favoured by Pappus 373: geome-
trical aqmnlenu of raical operations
&3 gebmlcnl equivalents of propositions

Al b. Abmad Abs 1 Qisim al-Antaki 86

Allman, G. J. :35:-., 318, 352

Alternate (angles

Alternative pmol's, interpolated, 58, 59

Amaldi 175, 179-80, 193, 201, 313, 328

Ambiguous case 306~7

Amphinomus 125, 128, 150m.

Amyclas of Heraclea 117

Analysis (and synthesis) 18: alternative
proofs of X111 1-5 by, 137: definitions of,

INDEX.

interpolated, 138: described Pasvpm
138-9 modern studies of Gi analysis
13 and problematical anal
33 Treasury of Mm (rhﬂ dradvd-
J“:’M] 8, 10, 11, 138: method of analysis
and precautions necessary to 130-40:
analysis and synthesis of problems ?.p-s

i i, S D

construct fration 141:
example from Pappus r141-2: analysis
also reveal diopiorpds {condinmaof

possibility) 142

Analytical method 36: supposed discovery
of, by Plato 134, 137

Anaximander 370

A.nchor-ring 163

12
le. Curvilineal and rectilineal, Euclid’s
efinition of, 176sq.: definition criticised

by Syrianus 176: Afistotle’s notion of
angle as xAdos 176: Apollonius’ view of,
arpmrfwrwu 176, 177: Plutarch and

us on, 177: to which category does it

? guantum, Plutarch, g:pll.l, “A-

gmls 177, Euclid 178; , Aristotle
and Eudemus 177-8: relation, Euclid 178:
Syrianus’ compromise 178 : treatise on fhe
Angle by Endemm 34. 38, 177-8: classifi-
cation of a.nq Geminus) 178-9: curvi-
lineal and mlxed" angles 26, 1789,
horn-like (xeparoedis) 177, 178, 183, sﬁ'i'
lune-like (unvoeidis) 26, 178-9, scra
(¢vorpoesdiis) 178: angle of a secment 253:
a semicircle 182, 253: definitions
of eclassnﬁod |z? recent Italian views
7 ; angle as cluster of straight lines
or nys Iso-l. defined by Veronese 180:
as part of a plané (“angular sector”) 179~
8o: flas angle (Veronese etc.) 180-1, 2 %9
three kinds of angles, which is prior
(Aristotle)? 181~2: adjacent angles 181:
aliernate 308 : similar (=equal) 178, 183,
252: verlical 278: exterior and dnterior
(to a figure) 263, 280: exterior when re-
entrant 263: interior and ite 180
construction by Apollonius of angle equal
toangle 296: angle in a semicircle, theorem
of, 317-19: mm:tion ofang‘le.hyomchmd

of Nicomedes uadratrix of
Hippias 266, by spml of Al&:.\meden
al-Antiki 86

Antiphon 7m., 35
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** Anthisathus” (or ‘* Abthiniathus”) 203
Apastamba-Sulba-Sutra 352 : evidence in, as
m early discovery of i‘.l.{cl 1. 47 and use
gnomon 360-4 Biirk's claim that
Indians had discovered the irrational 363-
4: approximation to ./2 and Thibaut’s
explanation 361, 363-4: inaccurate values
of = in, 364
Apollodorus **Logisticus ” 37, 319 351

Apollonius : d:sEangod in com-
parison with Euclid 3: snppggl; by some
Arabians to be author of the Elements 5:
a ““carpenter” 5: on elementary geometry
43: on the line 159: on the angle 176:

ion of i fer 325 tried to
pmve axioms 43, 62, 222-3: his “general
treatise” 42: constructions by, for bisection
of straight line 268, for a perpendicular
370, for an angle equal to an angle 296:
on parallel-axiom (?) 42-3: adaptation to
conics of theory of application of areas
3445 gaometncnl algegrsm. 373: Plane
Loci 14, 159. 330: Plane veboers 151: com-

ganaon hedron and i on
the cocklias 34, 42, 162 : on unordered
irrationals 42, 115: 138, 188, 221, 222, 246,

mﬁ‘?: 370, 3?3
3-5: contrasted
wltll sx:mﬁqg and )&lmgﬁ.ﬂiaﬂ 343:

complete method equivalent to geomemc
solution of mixed quadratic equation 344
i’sg—h 386-8: adaptation to conics (J\po

ius) 344~5: application contrasted with
construction (Proclus) 343

1] s

A%lan editors and commentators 75-go

Arabic numerals in scholia to Book x.,
1zth e, 71

Archibald, R. C. g#., 10

An:lumedes 20, 11, ::6 1423 "pos!ulates"
in, 120,123: )
known as l’ostulahe of An:hlmedu 134:
“Porisms” in, 11 ., 13: spiral of, 26, 267 :
on straight line 166: on plane 171-2: 225,
249, 370

Ar¢l 20

Areskong, M. E. 113

Arethas, Bishop of Caesarea 48: owned
Bodleian Ms. B} 7-8: had famous Plato
Ms. of Patmos Coz Clarkianus) written 48

Argyrus, Isaak 74

Anstaeus 138: on conics 3: Solid Laci 16,
& comptnson of five (regular solid)

res 6

Aristotelian Problems 166, 182, 187

Aristotle: on nature of elements 116: on
first principles 117 sqq. : on definitions 'II::‘

60: quotes Plato’s definition of straight
line 166: on definitions of surface 170:
on the angle 176-8: on priority as between
right and acute angles 181-2: on figure
and deﬁnition of 1Ba-3: definitions of
‘“*squaring” 149-50, 410: on parallels 1go-
2, 308-9: on gwomon, 351, 355, 359: on
attributes xard warrés and wplror xabfbhov
319, 320, 325: on the odjection 135: on
wrf.-'m 135: on mfncm ad M
136: on the infinite 3324 |ios-
tulate or axiom about ve.rgmt  lines tal
by Proclus from, 45, 307 : gives pre-Eucli-
ean proof of I. § 252—3: on theorem of
anglem a semicircle 149 : on sum of angles
of maggle 319-21: on sum of exterior
polygon 322: 38, 45, 117, 150%.,
|31. 184, 185, 187, 188, 195, 202, 203,
231, 221, 223, 216, 159, ‘16:—-,3. 283, 411
Arithmetical latwns in scholia to Bk. x.
0 74
al-Arjani, Ibn Rihawaihi 86
Ashkil at-ta'sis g
Ashraf Sh ddin as-S gandi, Muh. b.

5n., 39
Astaroff, Ivan 113
mptotic (non-secant) lmes 49, 161, 203
At el of Bath 78, 93~6

"Athenaeus 20, 351

Athenaeus of Cyzicus 117

August, E, F. 103

Austin, W. 103, 111

Autolycus, Ou the moving sphere 17

Avicenuad?u

Axioms, distinguished from l'ulates by
Aristotle 1 lB—q, by Proclus (Geminus and
‘“others”) 40, 121-3: Proclus on diffi-
culties in distinctions 123-4: distinguished
from hypotheses, by Aristotle 120-1, by
Proclus 121-2: indemonstrable 121: at-
tempt by Apol]omus [fo prove 3232-3:

common {tht:‘ﬂ or *‘common

opnnons in Arist 120, 221: common
to all sciences 119, 120: called *common
notions” in Euc' 121, 221: which are
genuine? 2215qq.: Proclus recognises five
222, Heron three 222 interpolated axioma
224, 233: Pappus’ additions to axioms
25, 223, 224, 232 : axioms of congruence,
f:) Euclid’s Common Notion 4, '"4-?-
2) modern” .(Pasch, V
Hilbert) 313—31 “axiom” with Sloma—
every simple declaratory statement 41, 221

Bacon, Roger g4, 416
Balbus, de mensuris g1
Barbarin 21

119-20, I43—4, 146—50: on distincti

tween hypotheses and definitions 119, 120,
between hypotheses and postulates 118,
119, between hypotheses and axioms 120:
on axioms I1g-21: axioms indemon-
strable 121: on definition by negation
156-7: on points 155-6, 165: on lines,
definitions of 158-9, classification of 159~

Barl .anlgnmeuu.l commentaryon Eucl. 11.
74
Barrow, 103, lo5. 110, 111
¢, meaning '3

Bmi dmo énmgw of Eucl. 100-1

medluym lllbl Sutm 360
Bayfius (Baif, Lazare} 100
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K. 174

m-dln 417
9

Besthorn and Heiberg, edition of al-Hajjij's
translation and an-NairizI's commentary
23, 27 M., QM.

B 'y oIl I 10,
l]-w

Bjirnbo, ?&el Anthon 17 ., 03
Boccaccio

Bodleian Ms. (B) 47, 48
Boeckh 351, 371
Boethius 91, 95, 184
Bolog'm us.

Bolyai,
Bolyai,

Bolzano
Bonmmpl.gm 7., 104 M.
Bonola, R. 102? 21
Borelli, G1mn{ ;u a\jﬁou;o 106, 194
M 1o, 1
Mkznhj:lm’fm R. .

Goulub Immanuel g7

Breitkopf,
lkop ir 136 1., 137, 295, 304, 344

net, Frangois 100
“ Bride, Thwmnffh"-‘Encl. 1. 47, 417-8
“ Bride's Chair,” name for 1. 47, 417-8
Briggs, Henry 102
Brit. M:s. palimpsest, 7th—8th c., 50

”.

Biirk, A. 353, 360—4
Burklen 179
Buteo (Borrel), Johannes 1o4

Cabasilas, Nicolaus and Theodorus 72

101
Cmnns. Joachim 101

J. G. 503. 293
S:‘.:""'L..

7 174—5. 219, 328
167

1§ ]
Johannes, 3, 78, 94~96, 104,
I 110, 407
la, Franciscus Flussates (Fr de

423

should investigate cause (Geminus), 45,
150 7.

Censorinus ¢

Centre, :én'pov 184-5

Ceria Aristotelica 35

Chasles on Porisms of Euclid 10, 11, 14, I5

Chaucer: Dulcarnon in 416-7, 418

Chinese, knowledge of triangle 3, 4, § 352
*“Chéu-pei” 355

Chou Kung 362

Chrysippus aso

Cicero 91, 3

Circle: deﬁmtwnof. 1835 : =round, oTpyy-

Aor  (Plato) 184: = wepgpepbypaspor

Aristotle) 184: a plane 1834
centre of, 184-5: pole of, 185: bisect I;y
diameter (Thales) 185, (Smchm) 185-
intersections with straight line 237-8,
273-4, with another circle 233-40, 242-3,

2934

Circumference, np:ﬂspeu 184

Cissoid 161, 164, 176, 330

Clairaut 328

Cllymnnsns, Joan. ror

Clavius (Christoph Klau?) 103, 105, 194,
233, 381, 391, 407

Cleonides, /niroduction to Hmly

Cochlias or cochlion (cylindrical helix) 163

Codex Leidensis 399, 1: 213, 27 ®., 79 m.

Coets, Hendrik 1og

Commandinus 4, 102, 103, 1045, 106, 110,

111, 407 : scholia included in translation
Ezenm: 15 edited (with Dee) De

110

cl. criticised by Proclus
19, 26,

ler:; ‘otions: =axioms 63,110—!.”:-4
which are gennine? 221 sq.: meaning ai
uppmpﬂllﬁofterm 221: called *“axioms”
by Proclus 231

Complement, mapax:
““about diameter

parallelograms 341:

areas 342-3
Comtc, aiwleros, (of lines) 160, (of sur-
Conchmds 160-1, 265-6, 330

pua s meaning of, 341:
341: not necessarily
use for application of

Foix, Coml.e de Candale) 3, 104, “rto

Cantor, Moritz 273, 304, 318, 330, 333,
353, 355, 357-8, 360. 401

Carduchi, L. 112

Carpus, on Astronomy 34, 43: 45, 127, 128,
1

Cazftechnienlwrm 134! cases interpolated

/i mrlmpm necessary part of a
propoamon 129-30: particular conclusion
immediately gmenl 131 : definition
merely conclusion 149

(ongruence-Axioms or Postulates: Common
Notion 4 in Euclid 224-5: modem systems
of (Pasch, Veronese, ﬁi bert), 118—-3:

58, 59
4%, 17 0.
Ctmodums. MIX:I‘I.I An.relnu 92
tonio 106

C a, l.l:tr::'bﬂled to Dl%ucl:d, probably
's 17 : Catoptrica of Heron 21, 25
“Cause”: consideration of, omitted b mn?-
mentators 19, deﬁmtl.on shoul
cause {An’stotleﬂ.;g: cause =middle term
(Aristotle) 149: question whether geometry

ng theorems for triangles, recapitula-
tion of,

5~6

Conies, of%nclid 3, 16: of Aristaeus 3, 16:
of Apollonius 3, 16: fundamental property
as proved by Apollonius equivalent tq
Cartesidn equation 344-5: focus-directrix
property proved by Pappu-s 15

Constantinus

Construct {mbw) contrasted with
describe on 348, with apply to 343 special
connotation 159, 289
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Construction, xaracxevi, one of formal di-
visions of a propommn 129 : sometimes
unnecessary 730: turns nominal into real
definition 146: mechanical 151, 387

Continuity, Principle of, 23459, 242,173, 204

Ce ; ical: distinct from logical

" and partial varieties 256-7,

Mattheus ¢
Cosmic figures {-ﬁve reg'ulu solids) 473~4
Cratistus 13
Crelle, on tie Plane 172-4
Ctesibius 30, 21, 89 #.
Cunn, Samuel 111
Cur;ze, Mmmgz’m. editor of an-Nairfzi 213,

' 92, 04y ”.

Cuim?c &iﬁmtiogrr of : see line
Cylindrical helix 161, 162, 329, 330
Czecha, Jo. 113

Duy'podms (Rauchfuss), Conn;; 73, 102
Data of “'d-ld 8, 132, 141, 385, 1
Deahna 17 >
Dec:;lu. Chu.de Frangois Milliet 106, 107,
108, 110
Dedeklnd 's Postulate, andapplications 235-40
lem 109, 110: discovered De divisi-

Definition, ig sense of ** closer statement ™
Swopspubs), one of formal divisions of a

ENGLISH INDEX

325: “‘rational” and “irrational ” diameter
of 5 (Plato) 399, taken from Pythagoreans

Dmtg-ﬁ»’ 413

Dsmm (cf. Siacrdoes) 157, 158: Aris-
totle’s view of, 158-9

Dinostraths 117, 266

Diocles 164

Diodorus 203

Diogenes Laertius 37, 305, 317, 351

Dionysius, friend of Heron, 21

Diophantus 86

Dwmlmu {Gwpwndt) (a) *definition”

ification,” a formal division of &

proposition 129 : (#) condition of possibility
128, determines how far solution pmble
and in how many wa g: 130-1, :43 dio-
rismi said to have been discovered by
Leon 116: revealed by analysis 142 in-
troduced by dei &4 293: first instances in
LElements 234, 293

Dippe 108

Direction, as primary notion, discussed 179 :
direction-theory of parallels 1g1-2

Distance, Sudarnpa : =radius 199 : in Aristotle
has usual general sense and =dimension 199

Division (method of), Plato’s 134

Divisions (of figures) by Euclid 8, 9: trans-
lated by Muhammad al-Bagdadi 8: found
(by Woepcke) in Arabic g, and (by Dee)
n} Laun translation 8, 9: 110

proposition 129: may be ¥ I
Definitions : Am%ocleon, 1y, 119, 120, .{;P
a clus uf Mm: (Aristotle) 120: distin-
theses 119, but confused
with by mclns 121-2: must be
assumed 117-9, but say nothing about
existence (except in the case a few

primary things) 119, 143 : terms for, Spos

and dpiopbs 143 : real and mominal defi-
nitions (real=nominal postulate or
proof), Mill anticipated by Aristotle, Sac-

cherl and Leibniz 143-5: Aristotle’s re-
&wments in, 146-50, exceptions 148:
Id state camse or middle term and be

genelic 149-50: Aristotle on unscientific

deﬁmuons (an?; wporépuw) 148-9: Euclid's

lly with Aristotle’s
doctrine 14 mtcrpolntod definitions 61,
62: definitions of technical terms in Aris-
totle and Heron, not in Euclid 150

De levi ot ponderoso, tract 18

Demetrius Cydonius 72

Democritus 38: treatise on irrationals 413

De Morgan 246, 260, 1269, 284, '39[. 298,
300, 3G 313, 314 315 369, 376

Dcm-a&c on (%u-ypdm dwé) contrasted with
construct 348

De Zolt 328

Dn@wd Buaydwios) 185

" numbers: see * Side-" and

a (awu:um)bﬂ? circl parallel

Diameter (Suaperpos), of circle or elo-
gram 185 : as applied to figures generally

D on in sphere 411
Dodgson, C. L. 194, 234, 261, 313
Dou, Jan Pieterszoon 108
Duhamel 139, 328
carnon, name for Eucl. 1. 47, 416, 418

ptians, knowledge of 32+ 4*=5% 352
, Thyra 11
Elefuga, name ?Ot Eucl. 1. 5, 416-7
Elements: pre-Euclidean Elements, by Hip-
pocrates of Chios, Leon 116, Theudius 117 :
contributions to, by Eudoxus 1, 37, Theae-
tetus 1, 37, Hermotimus of Colophon
117 : Euclid’s Elements, ultimate aims of 2,
115-6 : commentators on 19-45, Proclus
h?. 29-45 and ﬁ;s.m;s. Heronp:o-u, an-
airizl 21-2. 24, Pappus 24~
27, Slmphu:s -xsmpAe):zm {Algp?e;ns) 28:
Mss. of 46-51: Theon’s changes in text
54—58: means of comparing Theonine with
ante-Theonine text 51-53: Lntexpolwom
before Theon's time 58-63 : scholia 64—74:
external sources throwing light on text,
Heron, Taurus, Sextus Empincus, Proclus,
Iamblichus 62-3: Arabic translations (1)
by al- l‘:nﬂ” 75» 76, 79, 80, 83-4, (3) by
habit b. Qurra 7 -80 *83=4,
(3) Nasiraddin at-Tisi 77-8o, : Hebrew
translation by Moses b. Tibbon or Jakob
b. Machir 76: Arabian versions compared
with Greek text 79-83, with one another
83, 84: translation by Boethiua g2: old
translation of roth c., g1: translation by
Athelhard 93-6, G o! Cremona g3—4,



ENGLISH

Campunus 94-6, 97-110 etc., Zamberti
98-1?0? Co?rtmm 1;\15 104-5: introduc-
tion into England, mthc 95 : translation
by Billingsley 1 : Greek texts, editio

princeps 100-1, ry 's IO'I—3, Peyrard’s
103, August’s 103, im : trans-
lations and editions gene -113: on
e nature of elements {Pmn?us 114-6,
Menaechmus) 114, (Aristotle) 11 Prnclns
on advantages of Euclid’s Elements 115:
immediate recognition of, 116: first princi-
ples of, definitions, pnstuhtes. common
notmns (axioms) 117-24 : technical terms
in connexion with, 125—-42 : no definitions
of such technical terms 150: sections of
Book 1. 308

Elinuam

Enqcl andgaSlickel 219, 321

Enriques, F. 113, 157, 175, 193, 195, 201, 313

Enunciation (wpbragis), one of formal di-
visions of a proposition 129~30

Epicureans, objection to 1. 20 41, 287:
Savile on, 287

Equality, in sense different from that of
congruence (=‘‘equivalent,” Legendre)

27-8: two senses of equal (1) "dmsnb]y-
eg ual "’ SHllbe:t} or “‘equivalent b num
¢ ldl (a) ‘‘equal in content ” (

ﬂLy diffi ® {Amaldi
338 modern definition of, 228
enes I: contemporary with Archi-
medes 1, 2

EEmrd Jean, de Bar-le-Duc 108
rycinus 27, 290,

Euclid : aogouu?oof 3u? Pmclu: summary 1 :
date 1-2: allusi to in Archi
(according to Proclus) a Platonist 3 tnugl:t
at Alexandria 2: Pappus on personality

of, 3: story of (in Stobaeus) 3: not ““of
Megara ” 4 51 to have been
born at Gela 4: Arabian traditions nbout,

H5: of’fyl’e 40: “of Tis” 4, 5 ».
Arabian derivation of name (“key of
geomeg"} 6: Elements, ultimate aim of,
:,”:15 D::ther works, Conmics 16, Pseu-
@ 7, Data 8, :3:, 141, 385, 391, On
dfvisions (of ﬁgum} , Oy Porisms n;-u.
Surface-loci 15, 16, Phaenomena 16, 17,
ics 17, Elements of Music or Sectio
anonis 17: on “three- and four-line
Lm‘:ﬂua” 3: hmun list of works 17, 18:
ibliography g1-113
Eudemus 19 09 the Angle 34, 38, 177-8:
History of Geomeiry 34, 35-8, 278, 295,

304, 317, 320, 387, 412

Eudoxus 1, 37, 74, 116 discoverer of theory
pmporhon as expounded generally in
Bks. v., V1. 137, 351: on the golden
section 137 : founder of method of ex-
haostion 234 : inventor of a certain curve,

the Aij , horse-fetter 163: possibly
wrote ’¢ 17

Euler, Leonhard 401
Eutocius 15, 35, 39, 143, 161, 164, 259, 317,
379, 339 373

INDEX 425

Exterior and interior (of angles) 263, 280
Extremity, wépas 182, 183

Falk, H. 113

al- Fan.di B, go

Figure, as viewed by Plato 183, by Aristotle
183-3. by Euchd :83 acctmlmg to Pgm-

only 41, 183
figures bonndecl by two lines classified 187:
angle-less (awm.) figure 187

- es, printing of, 97
Fist 4 Py § P, 17, 21, 34, 35, 2
Euclid’s works u'f 17, 184' S

Finaeus, Orontius (Oronce Fine) 1o1, 104

Flauti, Vincenzo 107

Florence ms. Laurent. XXV1II. 3, (F) 47

Flussates, se¢ Candalla

Forcadel, Pierre 108

Fourier 1734

Francisci tunica, " Franciscan’s cowl,” name
for Eucl. 1. 47, 418

Frankland, W. B. 173, 1

Frischauf 174 i

list of

Gartz 17 .

Gauss 172, 193, 194, 202, 3 !9 321

Geminus: name 38-9: title of work (gho-
xakia) quoted from by Proclus 39: ele-
ments of astronomy 38: comm. on Posi-
donius 5?” Proclus’ obhgations to, 39-42:
on postulates and axioms 122-3: on theo-
rems and problems 128: two classifications,
of lines (or curves) 160-2: on homoeo-
meric (#niform) lines 162: on *mixed”
lines (curves) and surfaces 162: classifica~
tion of surfaces 170, of angles 178—9:
on parallels rgr: on Postulate 4, 200:
on stages of proof ofthcoremo?l 31,
317-30: 27-8, 37, 44 45, T4 1339,
203, 265, 330 3

Geometrical algebra 372-4: Euclid’s method
in Book 11. evidently the classical method
373: erable to semi-algebraical method
377

Georgius Pachymeres 417

Gherard of Cremona, trnnshtor of Elements
93—4: of an-Nairizi’s commentary 22, 27 ».,
g4: of tract De divisionibus g, 10n.

Giordano, Vitale 106, 176

Given, BeBopévos, different senses, 132-3

Gromon : liten]l)r" that ennhlmg [somethm;)
tD be & ” , 370

t mn&wof:unﬂul 18|. 185.111—

-z. uced into Greece by Anaximander

370, (2) carpenter’s square for drawi

s S ina ) Nees shor

m uare 351, 371

}n)dmnmof a:u:nz:llzl:u.'l:a'5 gﬁ'
4) use extend Euclid to parallel

371, (5) by Heron and Theuubosnya
71-2: Euclid’s method of denotmg in

re 383: arithmetica! use of, 358-6o,

71
"énomon-wise ” (kard yrdpova), old name
for perpendicular (xd@eros) 36, 181, 272
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Gdorland, A. 233, 234

*“Golden section”=section in extreme and
mean ratio 137 : connexion with theory of
irrationals 13 37

“Goose’s foot" (ges amseris), nmame for
Eucl. 111. 7, 99, 418

, James 135 7.

Gnc:]u, Stephanus 101-2

Grandi, Guido 107

Greenhill, Sir George 415, 418

B e e
regory t Vincent 401, 404

Gromatici g1 n., 95

Grynaeus 1001

al-Haitham 88,

al-Hajjdj b. Yiisuf b. Matar, translator of the
Llements 22, 75, 76, 79, 8o, 83, 84

Halifax, Willmm 108, 110

Eallli‘well
ankel 9, 141, 'm» 234> 344+ 354
Hammm olg Ptolemy, Comm. on, 17

Harmony, Introduction lo, not by Euclid 17

Harfin ar-Rashid 75

al-Hasan bh. 'Ubaidallih b. Sulaimin b.
Wahb 8

Hauff, J. F. 108
‘*Heavy and Light,” tract on, 18
H m

eiberg, L.

Helix, cyﬂndnmﬁl. 162, 319, 330

Helmholtz 226, 22

Henrici and ’I‘unt ein 313, 404

Hennon, Denis 1

H ne, Pierre loB

Herlin, Christian 100

Hermotimus of Colophon 1, 117

Herodotus 37 ., 370

"Hemmtd 158

Heron of Alexandria, mechanicus, date of
20-1: Heron and Vitruvius 20-1 : com-
mentary on Euclid’s Elements 20-4:
direct proof of I. 25, 301 : comparison of

areas of es tl'l I 24, 334-§° ndcl:i
tion to I. 47 3 s‘n:ll y originat
unn- 2 of proving theo-

Book 1. , 378: 137 ., 1
168, 170, l?lﬂ? :?6 lsflh. g
33, 189, 223, 223, 243, 253, 285, 18:.
299, 356, L3718, 405, 407, 408
Heron, us’ instructor 29
“Herundes” 156
Hieronymus of Rhodes 305
H:l:;rt 157, 193, 201, 228-31, 249, 313,

3
Hipparchus 4 n., 20, 30 m., 74 m.
Hippasus 411
Hippias of Elis 42, 265-6, 413
Hippocrates of Chios 8 m., 29, 35, 38, 116,
135, 136 m., 386-7, 413
; (trwou wédn), a certain curve used
Eudoxus 161-3. 176
H , Heinrich 107
Hoffmann, John Jos. I)Eu 108, 365
Holtzmann, Wdh.elm ( ’Ianderj 107
Homoeomeric (unifo lines 40, 161, 162

ENGLISH INDEX

Ha?ffk (angle), xeparoedfs 177, 178, 183,

2

Honiey. Samuel 106

Hotlel, J. 219

guldmn,h ohn 102
ultsch, F. 17 n., 32 .

Humun b. Ishiq alzi' P
y‘pothues. in Plato I’I’I' m Anltntle 118

: confused by Proclus with definitions

|1|-a geometer's hypotheses not false
(Aristotle) 119

Hypothetical construction 1

Hypsicles 5: author of Book x1v. 5, 6

Iamblichus 63, 83, 417

Ibn al-'Amid 86

Ibn al-Haitham 88, 89

Ibn al-Lubidi go

Ibn Rihawaihi al-Arjini 86
Ibn Sind (Aﬂcmna} 77, 89

“Iflaton”

Incomposite (n[ lines) 160~1, {of surfaces) 170

Indivisible lines (dropot ypapual), theory of,
rebutted 268

Infinite, Aristotle on the, 232-4: infinite
division not assumed, but proved, by geo-
meters 268

Infinity, parallels meeting at, 192-3

Ingrami, G. 175, 193, 195, 201, 237-8

Interior and exterior (of angles) 263, 280:
interior and e angle 280

Interpolations in t Ehmur:befom'l‘hm ]
time §8-63: by Theon 46, 55-6:

_ interpolated 338 g & \f‘l
iority

Irr 3 disc d with
351, 411, 412-3: claim of India to

of discovery 363—4: ‘‘irrational er

of 5” {Py and Plato) 399400,

413 ion to #1 by means of

"side and *d numbers 399—

wll.t?ihzdmum!ﬁn to Js 361,

74m
333-4 unordered irvationals ( lonius)
4':. it rrnlloulmio{&ppw ):37
onnchus Er 17

shlq b. Hunain Ishiq al-' Ibadi, Ahn
. qﬁb. translation of Elements by, 75-80,

}una ll b. Bulbul 88 ) 6 B
squnm (or isometric res : H
Zenodom on, 060,‘ 37.3"%33 -+ o

8

7 \.ll

188 umu:lu nght-nngled lm.ngb 352

akob b. Machir 76
an, C. 17
al-Jauhari, al-'Abbis b. Sa'id 85
nl-}nnrin‘l 9o
oannes Pediasimus 71-3
unge, G., on attribution of theorem of 1. 47
and discovery of irrationals to Pythagoras
351, 411, 413

Kiistner, A. G. 78, 97, 101
al-Karibisi 85
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yana Sulba-Sitra 360
John 105, 110~11

i(l;.lhng - Ahﬁ Ja'far ??—68,5
1 219, 22 235, 242, 172

al-Kindi %&6 . 5

Klamroth, M. 75-84

Klan Chmtoph Clum\u 105

Kluge 8. 212

Knesa, Jakob 112

Knoche 32 m., 33m., 73

Kroll, W. 399-400

al-Kihi 88

Lambert,
Lardner,

404 _
Constantinus 3
Leading theorems (as distinct from :m}
257 : leading variety of con n 256-7
Leeke, John 110
Leftvre, Jacques 100
dre, Adrien Marie 112, 169, 213-9
Leibniz 145, 169, 176, 194
Leiden Ms. 399, 1 of al-Hajjaj and an-
Nairizi 22
Lemma 114; meamng“a ? lemmas inter-
r0

Km

. H. 212-3
ionysius 112, 246, 250, 298,

polated 59-6o, espec m Pappus 67
Leodamas of Thasos 36, 134
Leon 116
Leonardo of Pisa g m., 10
Leucippus 413

Linderup, H. C. 113
Line : htomc deﬁmnon l58 oh;ectmn of

427

Pappus adds /inear problems 330: further

distinction in Pappus between (1) épextixol

(2) Bietodixol (J dragrpogurol Téwou 330:
Proclus locus in 1. 35, 111. 21, 31
as an area whu::i}ls locus of area (parallelo-
gram or triangle

Logical conversion, dlgtal.:ﬁ from geometrical

256
deductions 256, 284-5, 300: logical
equivalents 309, 314-5
Lorenz, J. F. 107-8
Loria, Gino 7 #., 1o ., 11 ., 12 9.
Luca Paciuolo 93-9. 100,-418
Lucas, Edomu'd 418
Lundgren, F. A. A. 113

Machir, g:lmb b. 76

Magni, menico 106

Magnitude : common definition vicious 148

al-Mihini 8

al-Ma’miin, %lliph 75

Manitius, C. 38

Mansion, P. 219

al-Mangiir, Caliph 75

Manuscripts of Efm;'nap 46-51 fo

** Marriage, Figure of” ( lnu.mh}, name for
Pythagorean triangle (3, 4, 5) 417

Maruo.nua Ca.pelh 91, 155

Martin, T. H. .f ., 30 s

Mas'iid b. al-Qass

Maximus Planudes, scholia and lectures on
Efm 73

E FGm

: story of M. and Alexander 1:

Aristotle 158: ex one
way” (Aristotle, “ He:omldes"’! 158:
‘*divisible or continuous one way (Am
totle) 158-9 : *‘flux of point” 159:

lonius on, 15¢: classification of Imes.

and Aristotle 159-60, Heron 159-60
Geminus, first classification 160~1, second
161 : straight (ebfeia), curved (xapwihy),
circular (wepupepris), spiml-shlped (éMaxo-
adfs), bent (mxmbq),l roken (rexha-
auéry), round (o Ghos) 159, composite
(otrBeros), |noompm {kﬁrﬂ?ﬂn} "l;::n

ing a figure”
[wpmdn), terminate (ddpioros) 160:
t (dodurrwros),
secant fw.uwwh} 161 : simple, *‘mixed”
161~2 1 Aomocomeric (uniform) 161-2:
Proclus on lines without extremities 165 :
loci on lines 319, 3!:
Linear, loci 3 lems 330
Lionardo da mm, proof of 1. 47 365-6
Lippert 88 ».
Lobachewsky, N. L. 174-5, 213, 219
Locus-theorems (rowixd fewpfipara) and Joci
I:;u) locus defined by Proclus 329:
likened by Chrysippus to Platonic
ideas 330~1: locus-theorems and loci (1) on
lines (a) loci (straight lines and
urc.lu) (b) sefid loci {conu:s! (2) o sur-

distinction be-
pamu and solid pmbl:m. to which

ncj:mmma}, determinate

onshm:l.r: 114: 117, 12§, 133%.
Menelaus 21, 23: direct proof of 1. 25 300
Me: H. 16 ., 17
Middle term, or cause, in geometry, illus-

trated by 111, 31 149
Mill, J. S. 144
*“Mixed” (lines) 161-2: (rurl'aoes) 162, 170:

different meanings of ** 162
Mocenigo, Prince 97-8
Mullwude. C. B. 108
Mondoré (Montaureus), Pierre 102
Moses b, Tibbon 76
Motion, in mmhemmcs 116 motion with-

out deformation 1 by Helmholtz

necessary to geometry 2267, but shown

Mtiller, J.

Miiller, J. W. 65‘

Muhammad {b Abdalbiqi) al-Bagdadi,
translator of De divisionibus 8 ., go. e

Muh. b. Ahmad Abi 'r-Raihin al-Biriini go

Muh. b. Ashraf Shamsaddin as-Samarqandi

Mﬁﬂ b. 'Isd Abi "Abdallih al- Mihi.nl 85

Munich Ms. of enunciations (R)

Misdi b. Muh. b. Mahmiid Qad
Riimi §»., go

Music, Elements of (Sectio Canonis), by
Euclid 17

al-Musta'sim, Caliph go
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al-Mutawakkil, Caliph 75

an-Nairizi, Abi 'l *Abbas al-Fadl b. Hatim,
a1-24, 85, 184, 190, 191, 195, 233, 233,
, 370, 185, 299, 303, 336, 364, 307,
309, 373, 405,
Napoleon 103
Nasiraddin at-Tisl 4, 57, 77, 84 89,

208-10
Nazif b. Yumn (YVaman) al- 6, 77, 8
Neide, J. G. C.{ 103 ) al-Quss 76, 77, 87

Nicomachus 92, 417

Nicomedes 43, 130—!. 265-6

Nipsus, Marcus Junius 303

Nominal and definitions: see Definitions

“ Nuptial Number” = Plato’s Geometrical
Number in Republic 417

(¢voradis), technical term, in
feo 135. 157, 260, 265: in logic
tot e] 135
long G2, 151, 188
Oenopudu of Chios 34, 36, 126, a71, 295,

Opﬁa of Encicl 17

Oresme, N. g7

Orontius Finaeus (Oronce Fine) 101, 104
Ozanam, Jaques 107, 108

Paciuolo, Luca ¢8-9, 100, 418
anphlle 317, 319
Pappus : contrasts Euclid and Apollonms 3:
on Euclid’s Porisms 10-14, Swrface-loci
;;5. 16, Data 8 : on Treasury of Analysis
10, 11, 138 : commentary on KElements
]:m't'a reserved in scholia 66:
e\n ence olia as to Pappus’ text
66-7: lemmas in Book X. interpolated
from, 67 : on Analysis and Synthesis 138-9,
141-2: additional axioms by, a5, 223, 234,

232: on converse of Post. 4 125, 201:
proof of 1. , 354 extension of 1. 47
366: semi: methods in 3 3.

378: on loci 32 o: on conchoids 1
266: on qudin%xa 3366 on |Iup|mmtnc

ENGLISH INDEX

Veronese's definition and pouull.te 194:
Parallel Postulate, se¢ P
Legendre’s attempt to establish theory or

ans-l?ss. of Elements, (p) 49: (g) 50

Pasch, M. 157, 228, 250

““ Peacock's tail,” name for 111. 8 g9, 418

Pediasimus, Joannes 73-3

Peet, T. Eric 352

Peithon 20

Peletarius (a]'acqw Peletier) 103, 104, 249,
407

Pena 104

Perpendicular (xdferos): definition
““plane” and “solid” a72:
and obliques 291

Perseus 42, 162-3

Pesch, J. G. van, De Procli fontibus 13 sqq.,
29 n.

Petrus Montaureus (Pierre Mondoré) 102
Peyrard and Vatican Ms. 1g9o (P) 46, 47,
103: 108

Pfleiderer, C. F. 168, 298
Phaenomena of Euclid 16, 17

Philippus of Medma 1, 1:6

Phillips, George 112

Philo nf Byzantium 20, 23: proof of 1. 8
2634

Philolaus 34, 351, 371, 399, 41I

Philoponus 45. 191-3

Pirckenstein, A. E. Burkh. von 107

Plane (or plane surﬁu] Plato’s definition
of, 171: Proclus’ and Simplicius' inter-
pretation of Euclid’s def 17r: posdble
origin of Euclid’s def. 171: Archimedes’
assumption 171, 172: other ancient defini-
tions of, in Proclus, Heron, Theon cf
Smyml, an-Nairizl 171-2: imson's "’
definition and Gauss on lm’l“
tract on, 172—4: other by
Fourier 173, Deahna 174, J. K. Becker
174, Leibniz 176, Beez 176: evolution of,
by Bolyai and Lobachewsky 174-5:
Enriques and Amaldi, Ingrami, Veronese
and Hilbert on, 175

“Plane loci” 339—30: Plane Loci of Apol-
lonius 14, 259, 330

‘“Plane problems” 319

181:
perpendicular

wﬁ. 27, 333: on parad of

nus 27, 290 290, 39, 133 7., 137,

181, 225, 388, 391, 401
Herculanensis No. 1061 5o, 18,

xrrhr;::u so: Fayim 51, 337, 33
¢

Paradoxes, in geometry 188: of Erycinus

a7, 2 29: an ancient * B t of
B, =i
Parallel 11

first mtrodnoe(d 325: rectnngnhr punllelg-

gram 3jo
Parallels: Aristotle on, 190, 191-2: defini-
minus 191.

nona. by “Aganu" 191, by
190: as equi-

190, S
dntams 1901, IN : direction- theory of,
191-3, 194 : definitions classified 192—4:

F des, Maximus 72

Plato: 1, 2, 3, 137, 155-6, D Is" 187,
203, 221, 411, 417 2 mgrmaj invention of
Amlysu by, 134: straight line 165~

6: def. of plane surface 171 ¢ generation of

cosmic figures by putting together triangles
226, 413: rule tl;r ng onal right-angled
tmnz!uasﬁ + 3571 359, 360 385: *'rational
diameter of B 5 399 413

“ Platonic™ figures 2, 413-4

Playfair, John 103’. 111 :  * Playfair's ”

iom 220 used to prove I. 29, 311 and
Eucl. Post. 5, 313: comparison of Axiom
with Post. 5, 313-4
Pliny 333
Plutarch 29, 37, 177) 343, 350, 417
Point: Pythagorean definition of, 155: inter-
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pretation of Euclid’s definition 155: Plato’s
view of, and Aristotle’s criticism 155-6:
attributes of, according to Aristotle 156:
terms for (oriyus, onueior) 156: other
definitions by *‘ Herundes,” Posidonius
156, Simplicius 157 : negative character of
Euclid’s def. 156: is it sufficient? 156:
motion of, produces line 157: an-Nairizi
on, 157: modern explanations by abstrac-
tion 157

Polybius 331

Polygon: sum of interior angles (lecIu.s'

} 322 : sum of exterior angles 322

- asinorum” 415-6: ** Pont aux dnes”

Porism : two senses 13 : (1)=corollary 134,
278-9 : interpolated Porisms (corollaries)
601, 381 : (2) as used in Porisms of Euclid,
distinguished from theorems and problems
10, 11: account of the Perisms given by
Pappus r1o-r13: modern restorations by
Simson and Chasles 14: views of Heiberg
11, 14, and Zeuthen 15

P?hyry 17 : commentary on Euclid 24:
ymm'.&a B4y 34 441 136, 277, 283, 287

Posidonius, the Stoic 20, 27, 28 n., 39, 189,

197 : book directed nst the Epicurean
Zenoo‘:?, 43:0n px:.lie]s 40, 19o: defini-
tion of fgure 41, 18
Postulate, distinguished from axiom, by
Aristotle 118-9, by Proclus (Geminus
and “others”) 121-3: from hypothesis,
by Aristotle 120-1, by Proclus 121-2:
ulates in Archimedes 120, 133:
uclid’s view of, reconcileable with
Aristotle’s 119-20, 124 : postulates do not
confine us to ruler and compasses 1_13:
Postulates 1, 2, significance of, 195-6:
famous *‘Postulate of Archimedes” 234
Postulate 4: significance of, 200 : proofs of,
resting on other postulates ao0-1, 231:
converse true only when angles rectilineal

(Pappus) 301

l’mﬁ:e 5: due to Euclid himself 202:
Proclus on, 202-3: attempts to prove,
Ptolemy 204~6, Proclus 206-8, Nagl‘;nft:itn
at-Tiisl 208-10, Wallis 210-1, eri
at1-2, Lambert 212-3: substitutes for,
“Playfair's” axiom (in Proclus) 230, others
am roclus 207, 220, Posidonius and

inus 220, Legendre 213, 214, 220,

Wallis 2120, Carnot, Laplac:. z,
W. Bolyai, Gauss, Worpitzky, Clairaut,
Veronese, Ingrami 220: Post. 5 proved

from, and compared with, ¢ Playfair's”
axiom 313-4: 1. 30 is logical equivalent
of, 220

Potts, Robert 112, 246

Prime (of numbers): two senses of, 146

Principles, First 117-124

Problem, distingui from theorem 124-8:
problems classified according to number of
solutions (a) one solution, ordered (reray-
péva) (8) a definite number, intermediate
(uéea) (c) an infinite number of solutions,

429

unordered (&raxra) 128: in widest sense
anyr.hinf propounded (possible or not) but
generally a comstruction which is possible
128-9: another classification (1) problem
in excess (wheowdfov), asking too much 119,
(2) deficient problem (éX\ewés rp@@lqm%,
giving too little 129

us : ils of career 2g-30: remarks
on earlier commentators 19, 33, 45 : com-
mentary on Eucl. 1, sources of, 29—45,
object and character of, 31-2: com-
mentary probably not continued, though
continuation intended 33-3: boo
quoted by name in, 34: famouns ‘‘sum-
mary” 37-8: list of writers quoted 44:
his own contributions 44-5: of
Ms. used by, 62, 63: on the nature of
elements and things elementary 114-6: on
advantages of Euclid’s Z. , and
their object 115-6: on first principles,
h eses, postulates, axioms I121-4: on
difficulties in three distinctions between
postulates and axioms 123: on theorems

and problems 124-g: attempt to prove
Postulate 5 206-8: on Eucl. 1. 47, 350,
412% on of five regular solids
413

: commentary on Plato’s Repudlic,
allusion in, to **side-" and “ di -
numbers in connexion with Eucl. 11. 9, 10

399-400
Proof (dwbdefis), necessary part of pro-
= i

on, visions of, 129-131
i’ro‘t':rchus 5 e
Psellus, Michael, scholjﬁ, 70, 71
Pseudaria of Euclid 7: Psendographemata 1n.
Pseudoboethius g2
Ptolemy I.: 1, 2: story of Euclid and

Ptolemy 1
Ptolemy II. Philadelphus 20
Ptolemy VII. (Euergetes II.), Physcon 2¢
Ptolemy, Claudius 21, 30m.: Harmonica of,

and commentary on 17: on Parallel-Pos-

tulate 28 m., 34, 43, 45: attempt to prove

it 2046
Punch on ** Pons Asinorum”' 416
Pythagoras 4., 36: supposed discoverer of

the irrational 351, 411, 413, of g; !

of areas 343—4, of L. 47 343~4

3504, 411, 412, of construction five

regular solids 413-4; story of sacrifice 37,

343 350d: o method of discovery of

I. 47 and proof of, 3525 : suggestions

Bretschneider and Hinkzl 354, by Zenthz

355-6: rule for forming right-angled tri-

angles in ntionslﬁnumbers 351, 356-9, 385

1 » 155, 188, 2 T1-414°
term for sur) cs{xpf:l) 169: i?l'gfu tr‘i-
angle equal to two right angles,

and proof 317-20 : three polygons which in

contact fill space round point 318: method

z{ui %&;’yﬁu of areas (iﬁuding exceeding
ng short) 343, 384, 403 : gwomon

Pythagorean 3jsr: “uﬁour‘;and “irs

rational diameter of 5" 399-400, 413
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Qidizide ar-Rimi 5»., go

Q.E.D. (or F.) 57

al-Qiftl 4., 04

Quadratic i
383-5, 380-8:
mtu'ssﬁ—y

guabun'x 265-6, 330
nadrature (rerpaywrioubs), definitions of,

I

uﬂrilatemls, varieties of, 188—go
uintilian 333

usti b. Ligid al-Ba'labakki, translator of
““Books x1v, xv"” 76, 87, 88

Radius, no Greek word for, 199

Ramus, Petrus (Pierre de la Ramée) 104

Ratdolt, Erhard 78, 97

Rational (pqrés) : (of ratios) 137 : *‘rational
diameter of 57 399400, 413: rational
right-angled triangles, sez right-angled
trian

Rauchfuss, se¢ Dasypodius
Rausenberger, O. ‘1:'57. 175, 13,'3
ar-Rizi, Abii Yisuf Ya'qub b. Muh. 86
Rectangle : =rectangular parallelogram 370:
‘‘rectangle contained by” 370
Rectilineal angle : definitions classified 179—
81 : rectilineal figure 187: *rectilineal
segment” 1 ;
Reductio ad absurdum 134: described by
Aristotle and Proclus 133: synonyms for,
in Aristotle 136: a variety of Anal
140 : by exhaustion 285, 293: nominal
avoidance of 369
Reduction (dwaywyf), technical term, ex-
i Aristotle and Proclus 135:
rst ““reduction” of a difficult construction
due to Hippocrates 135
Regiomontanus (Johannes Miiller of Konigs-
berg) 93, 96, 100
Reyher, Samuel 107
Rhaeticus 101
Rhind Pa s 304, 352
Rhomboid 62, 151, 189
Rhombus 62, 151, meaning and derivation
18
Riu:grdi. P. g6, 112, 202
Riemann, B. 219, 273, 274, 280 »
Right angle: definition 181: drawing straight

, geometrical solution of,
solution assumed by Hippo-
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Saccheri, Gerolamo 106, 144~5,
1%5—6, ;?4. 197-8, 200-1

2:.'1 b. Mas'id b. al- 90
thapatha-Brihmana

Savile, Henry 105, 163, 245, 250, 262

Scalene (oxakywés or oxadneds) 187-8: of-
numbers (=odd) 188 : of cone (Apollonius)
188

Schessler, Chr. 107

Scheubel, Joan. 101, 107

Schiaparelli, G. V. 163

Schmidt, Max C. P. 304, 319

Scholia to Elements and Mss. of, 64-74:
historical information in, 64: evidence in,
as to text 64-5, 66-7 : sometimes inter-
thted in text 67: classes of, *' Schol.
at.” 65-9, * Schol. Vind.” 6g-70: miscel-
laneous 71-4: ““Schol. Vat.” partlyderived
from Pappus’ commentary 66: many
scholia 6gar:ly extracted from Proclus on
Bk. 1. 66, 69, 72 : numerical illustrations
in, in Greek and Arabic numerals 71:
scholia by Psellus 70-1, by Maximus
Planudes 72, Joannes Pediasimus 72-3:
scholia in Latin published by G. Valla,
Commandinus, Conrad Dasypodius 73:
scholia on Eucl. 11. 13 407

Schooten, Franz van 108

Schopenhauer 227, 354

Schotten, H. 167, 174, 179, 192-3, 1202

Schumacher 331

Schur, F. 32

Schweikart, F. K. 219

Scipio Vegius g9

Sectio Canonis attributed to Euclid 17

Section (rousf) : = point of section 170, 171,
383: ":Jre sec:ilne‘n”= ‘l‘go?en section” ¢..

Segment of cir e of, 253 ent

than semin-irc?:gcalled d; 3’ ::?m

Semicircle 186: centre of, 186 : angle of,
183, 253
3

167-8,

304

Serenus of Antinoeia 303

Serle, George 110

Setting-out (ExOeois), one of formal divisions
of a proposition 129: may be omitted 130

Sexagesimal fractions in ncl{o!ia to Book x.
74

Sextus Empiricus 63, 63, 184

Sh ddin as-S

ine at right angles to another, Apoll
construction for, 270 : construction when
drawn at extremity of second line (Heron)

270
Riglt—mgled triangles, rational: rule for
nding, by Pythagoras 356—9. by Plato

356, 357, 359, 360, 385 : discovery of rules
by means of gnomons 358-60 : connexion
o¥ rules with Eucl. 11. 4, 8, 360: rational

ight-angled triangles in Apastamba 361,

3
Réth 357-8
Rouché and de Comberousse 313
Rudd, Capt. Thos. 110
Ruellius, Joan. (Jean Ruel) 100
Russell, Bertrand 227, 249

di 5.,

“Side-” and *‘diagonal-” nurnsben, ibed
398-400 : due to Pythagoreans 400: con-
nexion with Eucl. 11. 9, 10 398-400: use
for approximation to ,/2 399
. t?.:m{ 1) angles 18

¢ Similar” (=equal es 183, 2532: “simi-
lar” numberesq 3,-;,;1"ug .

Simosn, Max 108, 155, 157-8, 167, 203,
32

Simplicius : commentary on Euclid 27-8:
on lunes of Hi rates 29, 35, 386-7:
on Eudemus’ style 35, 38: on parallels
190-1: 23, 167, 171, 184, 185, 197, 203,
223, 224, 413

Simson, Robert: on Euclid's Porisms 14:
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on ** vitiations " in Elemerts due to Theon
46, 103, 104, 106, 111, 148: definition
of plane 172-3: Igs. 586. 255, 359, 287,
193, 296, 3212, 318, , 387,

Singsb. 9:11 3Abﬁ q;-’[‘au;yi 361 e

Smith, D. E. 363, 417

Smith and Bryant 404

* Solid loci” 329, 330: Solid Loci of Aris-

taeus 16, 329
“Solid problems” 329, 330
Speusippus 12

Sphaerica, early treatise on, 17
piral, "single’:tum” 123-3 ., 164-5: in
mpu.t;:cylindriul helix 163

Spiral of Archimedes 26, 267

Spire (tore) or Spiric surface 163, 170;
varieties of 163

Spiric curves or sections, discovered by
Perseus 161, 162-4

Steenstra, Pybo 109

Steiner, Jakob 193

Steinmetz, Moritz 101

Steinschneider, M. 8., 76 sqq.

Stephanus Gracilis 101-2

Ste Clericus 47

St 3

Stoic ““axioms” 41, 321 : illustrations (Sely-

wara) 319

Stolz, O. 328

Stone, E. 105

Stmight line : pre-Euclidean (Platonic) de-
finition 165-6: Archimedes' assumption
respecting, 166: Euclid’s definition, inter-
rreted by Proclus and Simplicius 166-7 :
anguage and construction of, 167, and

igin 168 : other defi-
nitions 1 , in Heron 168, by Leib-
niz 169, by ndre 169: two straight
lines cannot enclose a space 195-6, can-
not have a common segm.cat 196-9 : one
or two cannot make a figure 169, 183:
division of straight line into any number
of equal parts (an-Nairizi) 326

Stromer, en 113

Studemund, W. 92 .

St Vincent, Gregory of, 401, 404

Subtend, meaning and construction 249,
283, 350

Suidas 370

Sulaiman b. ‘Usma (or Ogba) 85, go

Superposition: Euclid’s dislike of method

conjecture as to

totleas legitimate 226 : used

431

posite, incomposite, simple, mixed 170:
spiric surfaces 163, 170: homocomeric
ﬁ‘niform) 170: spheroids 170: plane sur-
ace, see plane: foci on surfaces 329, 330
Surface-loci of Euclid 15, 16, 330: Pappus’
lemmas on, 15, 16
Suter, H. 8 m., 17 #., 18n., 25n, 78n.,

B
Su\ro:g;'. Pr. 113
Swinden, J. H. van 169
Synthesis, sec Analysis and Synthesis
Syrianus 30, 44, 176, 178

Tacquet, André 103, 105, 111

Tiittiriya-Samhitd 362

Tannery, P. 7 ., 37-40, 44, 160, 163, 221,
223, 224, 225, 333, 305 353 412, 417

Ta'rikk al-Hukamd 4 n.

Tartaglia, Niccold 3, 103, 106

Taurinus, F. A. 219

Taurus 62, 184

Taylor, H. M. 248, 377-8, 404

Taylor, Th. 259

Thabit b. Qurra, translator of Elemients
42, 75-80, 82, 84, 87, 94: proof of L
47 304~

Thales 36, 37, 185, 252, 253, 278, 317,
318, 319: on distance of ship from shore

Tl?m:ems 1, 37

Theodorus Antiochita 71

Theodorus Cabasilas 72

Theodorus Metochita 3

Theodorus of Cyrene 411, 412-3

Theognis 371

Theon of Alexandria: edition of Elements
46 : changes made by, 46: Simson on
‘“vitiations” by, 46: principles for detect-
ing his al y by ¢ i_:mmt:nf .
ancient papyri and * Theonine” Mss. 51~
3: character of changes by, 54-8

Theon of Smyma 172, 357, 358, 371, 308

Theorem and problem, distinguished by
Speusippus 125, Amphinomus 125, 118,

en mus 125, Zenodotus, Posidonius

126, Euclid 126, Carpus 127, 128:
views of Proclus 127-8, and of Geminus
128: **general” and * not-general” (or
partial) theorems (Proclus) 325

Theudius of Magnesia 117

Thibaut, B. F. 32

Thibaut, C.: On Sulvasiitras 360, 363-4

Thompson, Thomas Perronet 112

10NS.

of, 225, 249 : apparently mg:;\ed by Aris-
1 A It 3.

225: objected to by Peletarius 249: no use
theoretically, but merely furnishes practical
test of equality 227 : Bertrand Russell on,
217, 34

Surface : Pythagorean term for, xpoud ( =col-
our, or sl ingglﬁg: terms for, in Plato and
Aristotle 169: ¢mpdrea in Euclid }uot
éxlxedov) 169: alternative definition of, in
Aristotle 170: produced by motion of
line 170: divisions or sections of solids
are surfaces 170, 171: classifications of
surfaces by Heron and Geminus 170: com-

Thucydides 333
Tibbon, Moses b. 76
Tiraboschi 94 #.
Tittel, K. 38, 30

Todhunter, I. 112 189, 246, 258, 277,

183, 1293, 298, 307
Tonstall, Cathbert 100
Tore 163

Transformation of areas 346-7, 410

Trapezium : Euclid’s definition his own 189 :
further division into trapezia and trape-
zoids (Posidonius, Heron) 189-go: a
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theorem on area of parallel-trapezium

3389 L
Treasury of Analysis (dvakvbuevos Téwos)
iR TaeE <4 a8
140 7., 145, 149
Treutlein, Pfg358-60
iangle: seven species of, 188: *‘four-
sided” triangle, called also ‘‘barb-like”
(dxidoesdés) and (by Zenodorus) xohoyw-
»iwov 27, 188 : construction of isosceles and
scalene triangles 243
Trisection of an angle 265-7
at-Tisi, see Ni in

Unger, E. S. 108, 169

T

113

Vailati, G. 144 m., 1457

Valerits Maximus 3

Valla, G., De expetendis el fugiendis rebus

69
Vatican Ms. 190 (P) 46, 47
gm. Cl:ﬂm 20
‘erona palimpsest gt
Veronese, G. 157, 168, 175, 180, 1934,
198, 201, 330-7, 138, 249, 328
Vertical (angles) 278
Viennese Ms. (V) 48, 49
Vinci, Lionardo da 365-6
Vitali, G. 237 .
Vitruvius 352: Vitruvius and Heron 10,
21
Viviani. Vincenzo 107, 401
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Vogt, Heinrich 360, 364, 411-414
Vooght, C. J. 108

Wachsmuth, C. 32m., 73
Wallis, John 103: edited Comm. on Ptol-
emy's Harmonica 17: attempt to prove
Post. § 210-1
Weber (H.) and Wellstein (J.) 157
Weissenborn, H. 78 n., 91 m., 94 m., 95,
6, 97 n., 418
iston, W. 111
Williamson, James 111, 293
Witt, H. A. 113
Woepcke, F., discovered De divisionibus in
Arabic and published translation g: on
Pappus' commentary on Elements 15, 66,
77t 85m., 86, 87

Xenocrates 268, 413
Ximenes, Leonardo 107
Xylander 107

Vahya b, Khalid b. Barmak 75

Vi b, Muh. b. 'Abdin b. Abdalwahid
( al-Lubiidi) go

Yrinus=Heron 23

Yihanna b. Yisuf b. al-Harith b. el-Bitriq
al-Qass 76, 87

Zamberti, Bartolomeo g8-100, 101, 104, 106

Zeno the Epicurean 34, 196, 197, 199, 242

Zenodorus 26, 27, 188, 333

Zenodotus 136

Zeuthen, H. G. 15, 113, 139, 141, 146n.,
151, 355-6, 360, 363. 387, 398, 399
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