THE THIRTEEN BOOKS
OF

EUCLID’S ELEMENTS






THE THIRTEEN BOOKS OF
EUCLID’S ELEMENTS

TRANSLATED FROM THE TEXT OF HEIBERG

WITH INTRODUCTION AND COMMENTARY

BY
Sir THOMAS L. HEATH,

K.C.B, K.CV.0, F.RS,

SC.D. CAMB., HON. D.sC. OXFORD
HONORARY FELLOW (SOMETIME ‘FELLOW) OF TRINITY COLLEGE CAMERIDGE

SECOND EDITION
REVISED WITH ADDITIONS

VOLUME II
BOOKS III—-IX

DOVER PUBLICATIONS, INC.
NEW YORK



This new edition, first published in 1956, is an
unabridged and unaltered republication of the

second edition. It is published through special
arrangement with Cambridge University Press.

Library of Congress Catalog Card Number: 56-4336

Manufactured in the United States of America

Dover Publications, Inc.
180 Varick Street
New York 14, N. Y.



CONTENTS OF VOLUME IL

PAGE

Book III. DEFINITIONS . : . . . . . . 1
PRroPOSITIONS . 2 3 . P : § i 6
Book IV. DEFINITIONS . . ! ! . . : ! 78
PropOSITIONS . . . : > 4 ‘ . 80
Book V. INTRODUCTORY NOTE . . . . : . 112
DEFINITIONS . . ; ¥ i . A . 113
PROPOSITIONS . . . ‘ . . . . 138
Book VI. INTRODUCTORY NOTE : : ; : : : 187
DEFINITIONS . . . ’ . ! . . 188
PROPOSITIONS . . ; ; : ; . ; 191
Book VII. DEFINITIONS . . . . . . . ' 277
PROPOSITIONS . . ; . . : . ; 296
Book VIII. " ’ : y . . ; . ; : 345
Book IX. . : : : . 3 . 3 g . 384
Greek InpeEx T0 Vor. II. . g P . s wif A

EncrisH INpEx TO Vor. IL : : i : ; 4 7 431






BOOK III.

DEFINITIONS.

1. Equal circles are those the diameters of which are
equal, or the radii of which are equal.

2. A straight line is said to touch a circle which,
meeting the circle and being produced, does not cut the
circle,

3. Circles are said to touch one another which,
meeting one another, do not cut one another.

4. In a circle straight lines are said to be equally
distant from the centre when the perpendiculars drawn
to them from the centre are equal.

5. And that straight line is said to be at a greater
distance on which the greater perpendicular falls.

6. A segment of a circle is the figure contained by a
straight line and a circumference of a circle,

7. An angle of a segment is that contained by a
straight line and a circumference of a circle.

8. An angle in a segment is the angle which, when
a point is taken on the circumference of the segment and
straight lines are joined from it to the extremities of the
straight line which is the base of the segment, is contained
by the straight lines so joined.

9. And, when the straight lines containing the angle cut
off a circumference, the angle is said to stand upon that
circumference.



2 BOOK 111 [111. DEFF.

10. A sector of a circle is the figure which, when an
angle is constructed at the centre of the circle, is contained by
the straight lines containing the angle and the circumference
cut off by them.

11. Similar segments of circles are those which
admit equal angles, or in which the angles are equal to one
another.

DEFINITION 1.

*Iool xixdot elalv, dv al Sudperpo ioar eloiv, 4 dv al ¢k Tév kévtpuy loar eoiv,

Many editors have held that this should not have been included among
definitions. Some, e.g. Tartaglia, would call it a postulate; others, e.g. Borelli
and Playfair, would call it an axiom ; others again, as Billingsley and Clavius,
while admitting it as a definition, add explanations based on the mode of
constructing a circle; Simson and Pfleiderer hold that it is a theorem. 1
think however that Euclid would have maintained that it is a definition in
the proper sense of the term ; and certainly it satisfies Aristotle’s requirement
that a ‘““definitional statement” (8piorixds Adyos) should not only state the
Jact (v6 o) but should indicate the cause as well (De anmima 11. 2, 413 a
13). The equality or circles with equal radii can of course be proved by
superposition, but, as we have seen, Euclid avoided this method wherever he
could, and there is nothing technically wrong in saying * By egual circles 1
mean circles with equal radii.” No flaw is thereby introduced into the system
of the Elements ; for the definition could only be objected to if it could be
proved that the equality predicated of the two circles in the definition was
not the same thing as the equality predicated of other equal figures in the
Elements on the basis of the Congruence-Axiom, and, needless to say, this
cannot be proved because it is not true. The exisfence of equal circles (in
the sense of the definition) follows from the existence of equal straight lines
and 1. Post. 3.

The Greeks had no distinct word for radius, which is with them, as here,
the (straight line drawn) from the centre v & tob xévrpov (ebfeia); and so
definitely was the expression appropriated to the radius that éx To¥ xévrpov
was used without the article as a predicate, just as if it were one word. Thus,
e.g., in 1L 1 éx xévrpov ydp means “for they are radii”: cf. Archimedes, On
the Sphere and Cylinder 11. 2, 1 BE éx Tob xévrpov éoti Tob...xvkhov, BE is a
radius of the circle.

DEFINITION 2.

Ebfela xixdov épdmrreafar Aéyerar, s drropém Tod xikAov xai éxBallopéry
ob Téuver 7oV xixAov.

Euclid’s phraseology here shows the regular distinction between drrecfa:
and its compound {¢dnrecfar, the former meaning “to meet” and the latter
“to fouch” The distinction was generally observed. by Greek geometers
from Euclid onwards. There are however exceptions so far as dwrecfau is
concerned ; thus it means “to fowck” in Eucl 1v. Def. 5 and sometimes in
Archimedes. On the other hand, é¢pdnrecfar is used by Aristotle in certain
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cases where the orthodox geometrical term would be dwrecfar. Thus in
Meteorologica 111, 5 (376 b 9) he says a certain circle will pass through all the
angles (dmaodv épaperar Tdv yondv), and (376 a 6) M will lie on a g

(circular) circumference (8cdopems wepipepelas épderar 76 M). We shall find
arreofa used in these senses in Book 1v. Deff. 2, 6 and Deff. 1, 3 respectively.
The latter of the two expressions quoted from Aristotle means that #ke Jocus
of M is a given circle, just as in Pappus dyjerar 0 anueiov Qéorer Sedopévms
ebfelas means that 2ke /ocus of the point is a straight line given ‘in position.

DEFINITION 3.

KixAot épdmrreacfar dAAjAwy Aéyovrar olrves drrdpevor dAMjAwy ob Téuvovoww

Todhunter remarks that different opinions have been held as to what is,
or should be, included in this definition, one opinion being that it only means
that the circles do not cut in the neighbourhood of the point of contact,
and that it must be shown that they do not cut elsewhere, while another
opinion is that the definition means that the circles do not cut at all
Todhunter thinks the latter opinion correct. I do not think this is proved ;
and I prefer to read the definition as meaning simply that the circles meet
at a point but do not cut af that point. 1 think this interpretation
preferable for the reason that, although Euclid does practically assume in
L 11—i13, without stating, the theorem that circles touching at one point
do not intersect anywhere else, he has given us, before reaching that
point in the Book, means for proving for ourselves the truth of that
statement. In particular, he has given us the propositions 11 7, 8 which,
taken as a whole, give us more information as to the general nature of a
circle than any other propositions that have preceded, and which can be used,
as will be seen in the sequel, to solve any doubts arising out of Euclid’s
unproved assumptions. Now, as a matter of fact, the propositions are not used
in any of the genuine proofs of the cheorems in Book mr. ; 11 8 is required
for the second proof of 111. g which Simson selected in preference to the first
proof, but the first proof only is regarded by Heiberg as genuine. Hence it
would not be easy to account for the appearance of 11 7, 8 at all unless as
affording means of answering possible odjections (cf. Proclus’ explanation of
Euclid’s reason for inserting the second part of 1. 5).

External and dnternal contact are not distinguished in Euclid until 111
11, 12, though the figure of 11, 6 (not the enunciation in the original text)
represents the case of internal contact only. But the definition of touching
circles here given must be taken to imply so much about infernal and external
contact respectively as that (a) a circle touching another internally must,
immediately before “meeting” it, have passed through points witkin the
circle that it touches, and (4) a circle touching another externally must,
immediately before meeting it, have passed through points oufside the circle
which it touches. These facts must indeed be admitted if imfernal and
external are to have any meaning at all in this connexion, and they constitute
a minimum admission necessary to the proof of 11. 6.

DEFINITION 4.

'Ev xixhg loov ((:rixuv amwd Tob kévrpov ebfeiar Aéyovrar, drav al awd Tob
xévrpov ér' avras xdferor dydpevar loar daw.
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DEFINITION 5.

Meifov 8¢ dmwéyewv Aéyeray, ¢’ ijv 1) pelfwv xdferos wimra

DEFINITION 6,

Tujpa xikhov dori 76 mepiexopevor oxnua vmé Te ebbelas kal xvkAov
wepipepeias.

DEFINITION 7.

Twijparos 8¢ yuwvia éotiv 7} weprexopdvn vmo Te ebfelas xal xixhov wepipepelas.

This definition is only interesting historically. The angle of a segment,
being the “angle ” formed by a straight line and a “ circumference,” is of the
kind described by Proclus as *“ mixed.” A particular “angle” of this sort is
the “angle of a semicircle,” which we meet with again in 11 16, along with
the so-called “horn-like angle” (xeparoedrs), the supposed “angle ” between
a tangent to a circle and the circle itself. The “angle of a semicircle ” occurs
once in Pappus (viI. p. 670, 19), but it there means scarcely more than the
corner of a semicircle regarded as a point to which a straight line is directed.
Heron does not give the definition of the angle of a segment, and we may
conclude that the mention of it and of the angle of a semicircle in Euclid is a
survival from earlier text-books rather than an indication that Euclid considered
either to be of importance in elementary geometry (cf. the note on 11 16
below).

We have however, in the note on 1. 5 above (Vol. 1. pp. 252—3), seen evi-
dence that the angle of a segment had played some part in geometrical proofs up
to Euclid’s time. It would appear from the passage of Aristotle there quoted
(Anal. prior. 1. 24, 41 b 13 5qq.) that the theorem of 1. 5 was, in the text-books
immediately preceding Euclid, proved by means of the equality of the two
“angles of” any one segment. This latter property must therefore have been
regarded as more elementary (for whatever reascn) than the theorem of 1. 5;
indeed the definition as given by Euclid practically implies the same thing,
since it speaks of only one “angle of a segment,” namely “#%e angle contained
by a straight line and a circumference of a circle.” Euclid abandoned the
actual use of the “angle” in question, but no doubt thought it unnecessary
to break with tradition so far as to strike the definition out also.

DEFINITION 8.

"Ev rpijpare 8¢ ywvia doriv, Srav émi Tis wepupepelas Tob Tpjparos Andby 1

anpeiov xai dx’ abrod émrl 14 wépara mis edfelus, 3 dore Bdows Tob Tuijpatos,
émfevyBiow ebfeiat, 7 meprexopdvy yuvia vro oy émfevxfeaady ebfadv.

DEFINITION 0.

"Orav 8¢ ai wepiéxovoar Ty ywviay eblciar dmrodapfdvawsl Twva weppépear,
&' éxelvns Aéyerar BeBnxévac ) ywvia.
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DEFINITION 10.

Touevs 8¢ xikhov doriv, orav wpds 1§ xévrpw Tob xikhov gvoralf tawfu,
70 mepuexdpevov oxijpa vwd Te Tdv THY ywviav mepiexovody efadv xal Tis
drolapfavopiys vr alrdy wepupepelas.

A scholiast says that it was the shoemaker's knife, oxvroropuds ropevs,
which sug§ested the name ropeis for a sector of a circle. The derivation of
the name from a resemblance of shape is parallel to the use of dpByhos (also
a shoemaker’s knife) to denote the well known figure of the Book of Lemmas
partly attributed to Archimedes.

A wider definition of a sector than that given by Euclid is found in a
Greek scholiast (Heiberg’s Euclid, Vol. v. p. 260) and in an-Nairizi (ed. Curtze,
p- 112). “There are two varieties of sectors; the one kind have the angular
vertices at the centres, the other at the circumferences. Those others which
have their vertices neither at the circumferences nor at the centres, but at
some other points, are for that reason not called sectors but sector-like
figures (ropoudij oxijpara).” The exact agreement between the scholiast and
an-Nairizi suggests that Heron was the authority for this explanation.

The sector-like figure bounded by an arc of a circle and two lines drawn
from its extremities to meet at any point actually appears in Euclid’s book On
divisions (wepi Siaipéoewv) discovered in an Arabic Ms. and edited by
Woepcke (cf. Vol. 1. pp. 8—10 above). This treatise, alluded to by Proclus,
had for its object the division of figures such as triangles, trapezia,
quadrilaterals and circles, by means of straight lines, into parts equal or
in given ratios. One proposition e.g. is, 70 divide a triangle into two equal
parts by a straight line passing through a given point on one side. The
proposition (28) in which the guasi-sector occurs is, To divide such a figure by a
straight line into two equal parts. The solution in this case is given by Cantor
(Gesch. d. Math. 1,, pp. 287—8).

1f ABCD be the given figure, £ the middle point
of BD and EC at right angles to B.D, A
the broken line 4EC clearly divides the figure into
two equal parts.

Join AC, and draw EF parallel to it meeting
ABin F.

Join CF, when it is seen that CF divides the
figure into two equal parts,

F

DEFINITION 11.

"Opoa Tpijpara kikhev dori 7a Sexdpeva ywvias oas, 7 dv ols al ywvint loa
dAphass eloiv.

De Morgan remarks that the use of the word similar in “similar
segments” is an anticipation, and that similarity of form is meant. He adds

that the definition is a theorem, or would be if “similar ” had taken its final
meaning.
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ProrosITION 1.

To find the centre of a given circle.

Let ABC be the given circle;
thus it is required to find the centre of the circle 4 BC.

Let a straight line 48 be drawn
s through it at random, and let it be bisected
at the point D ;

from D let DC be drawn at right angles
to A8 and let it be drawn through to £;
let CE£ be bisected at 7';

o] say that F is the centre of the circle
ABC.

For suppose it is not, but, if possible,
let G be the centre,
and let G4, GD, GB be joined.
15 Then, since AD is equal to D25,
and DG is common,
the two sides 40D, DG are equal to the two sides
BD, DG respectively ;
and the base GA is equal to the base GB, for they are
20 radii ;
therefore the angle 4.DG is equal to the angle GD A, [1. 8]
But, when a straight line set up on a straight line makes
the adjacent angles equal to one another, each of the equal
angles is right; 1. Def. 10]
25 therefore the angle GD2 is right,
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But the angle #D2B is also right;

therefore the angle FDZB is equal to the angle GDB, the
greater to the less: which is impossible.

Therefore G is not the centre of the circle 4A5C.

s  Similarly we can prove that neither is any other point
except F.
Therefore the point F is the centre of the circle 4BC.

Porism. From this it is manifest that, if in a circle a
straight line cut a straight line into two equal parts and at
35 right angles, the centre of the circle is on the cutting straight

line.
Q. E. F,

12. For suppose it is not. This is expressed in the Greek by the two words M# ydp,
but such an elliptical phrase is impossible in English.

17. the two sides AD, DG are equal to the two sides BD, DG respectively.
As before observed, Euclid is not always careful to put the equals in corresponding order.
The text here has “ GD, DB."

'odhunter observes that, when, in the construction, DC is said to be
produced to E, it is assumed that D is within the circle, a fact which Euclid
first demonstratés in 1. 2. This is no doubt true, although the word dmxfo,
“let it be drawn through,” is used instead of éxBeBAnabu, “let it be produced.”
And, although it is not necessary to assume that D is within the circle, it is
necessary for the success of the construction that the straight line drawn
through D at right angles to 4.8 shall meet the circle it two points (and no
more): an assumption which we are not entitled to make on the basis of what
has gone before only.

Hence there is much to be said for the alternative procedure recommended
by De Morgan as preferable to that of Euclid. De Morgan would first prove
the fundamental theorem that “the line which bisects a chord perpendicularly
must contain the centre,” and then make 11 1, 111. 25 and 1v. § immediate
corollaries of it. The fundamental theorem is a direct consequence of the
theorem that, if P is any point equidistant from A4
and B, then 2 lies on the straight line bisecting 48
perpendicularly. We then take any two chords 4.8,
AC of the given circle and draw DO, EO bisecting
them perpendicularly. Unless B4, AC are in one
straight line, the straight lines 20, £0 must meet
in some point O (see note on 1v. 5 for possible
methods of proving this). And, since both DO,
EO must contain the centre, O must be the centre.

This method, which seems now to be generally
preferred to Euclid’s, has the advantage of showing )
that, in order to find the centre of a circle, it is sufficient to know three points
on the circumference. If therefore two circles have three points in common,
they must have the same centre and radius, so that two circles cannot have
three points in common without coinciding entirely. Also, as indicated by
De Morgan, the same construction enables us (1) to draw the complete circle
of which a segment or arc only is given (1. 25), and (2) to circumscribe a
circle to any triangle (1v. 5).
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But, if the Greeks had used this construction for finding the centre of a
circle, they would have considered it necessary to add a proof that no other
point than that obtained by the construction can be the centre, as is clear
both from the similar reductio ad absurdum in m1 1 and also from the fact
that Euclid thinks it necessary to prove as a separate theorem (111. g) that, if
a point within a circle be such that three straight lines (at least) drawn from it
to the circumference are equal, that point must be the centre. In fact,
however, the proof amounts to no more than the remark that the two
perpendicular bisectors can have no more than one point common.

And even in De Morgan’s method there is a yet unproved assumption.
In order that DO, E0O may meet, it is necessary that 4.8, 4C should not be
in one straight line or, in other words, that BC should not pass through 4.
This results from 111. 2, which therefore, strictly speaking, should e.

To return to Euclid’s own proposition 1i1. 1, it will be observed that the
demonstration only shows that the centre of the circle cannot lie on either
side of CD, so that it must lie on CD or C.D produced. It is however taken
for granted rather than proved that the centre must be the middle point of
CE. The proof of this by reductio ad absurdum is however so obvious as to
be scarcely worth giving. The same consideration which would prove it may
be used to show that a circle cannot have more than one centre, a proposition
which, if thought necessary, may be added to 1. 1 as a corollary.

Simson observed that the proof of 1. 1 could not but helzy reductio ad
absurdum. At the beginning of Book 111. we have nothing more to base the
proof upon than the definition of a circle, and this cannot be made use of
unless we assume some point to be the centre. We cannot however assume
that the point found by the construction is the centre, because that is the
thing to be proved. Nothing is therefore left to us but to assume that some
other point is the centre and then to prove that, whatever other point is
taken, an absurdity results; whence we can infer that the point found is
the centre.

The Porism to 1. 1 is inserted, as usual, parenthetically before the words
amep e worfjoar, which of course refer to the problem itself.

ProrosiTioN 2.

If on the circumference of a circle two points be taken at
random, the straight line joining the points will fall within
the civcle.

Let ABC be a circle, and let two points 4, Z be taken
at random on its circumference ;

I say that the straight line joined from
A to B will fall within the circle.

For suppose it does not, but, if
possible, let it fall outside, as 4 £5 ;
let the centre of the circle 4BC be
taken [m. 1], and let it be D; let DA,
DB be joined, and let DFE be drawn
through.
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Then, since DA is equal to DB,
the angle DAE is also equal to the angle DBE. [ 5]
And, since one side 4 £B of the triangle DAE is produced,
the angle DEB is greater than the angle DAE. (1. 16)
But the angle DAE is equal to the angle DBE;
therefore the angle DEB is greater than the angle DBE.
And the greater angle is subtended by the greater side ; [1. 19]
therefore DB is greater than DE.
But D2 is equal to DF;
therefore DF is greater than DE,
the less than the greater : which is impossible.

Therefore the straight line joined from A4 to B will not
fall outside the circle.

Similarly we can prove that neither will it fall on the
circumference itself ;

therefore it will fall within.

Therefore etc.
Q. E. D.

The reductio ad absurdum form of proof is not really necessary in this case,
and it has the additional disadvantage that it requires the destruction of two
hypotheses, namely that the chord is (1) outside, (2) on
the circle. To prove the proposition directly, we have
only to show that, if Z be any point on the straight line
AB between 4 and B, DE is less than the radius of the
circle. This may be done by the method shown above,
under 1. 24, for proving what is assumed in that
proposition, namely that, in the figure of the proposition, \
Ffalls below £G if DE is not greater than DF  The AB
assumption amounts to the following proposition, which
De Morgan would make to precede 1. 24: “Every
straight line drawn from the vertex of a triangle to the base is less than
the greater of the two sides, or than either if they be equal.” The case
here is that in which the two sides are equal; and, since the angle DARB is
equal to the angle DB A, while the exterior angle DEA is greater than the
interior and opposite angle DB4, it follows that the angle DEA is greater
than the angle DAE, whence DE must be less than DA or DB.

Camerer points out that we may add to this proposition the further
statement that all points on 4B produced in either direction are outside the
circle. This follows from the proposition (also proved by means of the
theorems that the exterior angle of a triangle is greater than either of the
interior and opposite angles and that the greater angle is subtended by
the greater side) which De Morgan proposes to introduce after 1. 21, namely,

“The perpendicular is the shortest straight line that can be drawn from a
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given point to a given straight line, and of others that which is nearer to the
perpendicular is less than the more remote, and the converse ; also not more
than two equal straight lines can be drawn from the point to the line, one on
each side of the perpendicular.”

The fact that not more than two equal straight lines can be drawn from a
given point to a given straight line not passing through it is proved by Proclus
on L 16 (see the note to that proposition) and can alternatively be proved by
means of 1. 7, as shown above in the note on 1. 12. It follows that

A straight line cannot cut a circle in more than two points

a proposition which De Morgan would introduce here after 111. 2. The proof
given does not apply to a straight line passing through the cenire; but that
such a line only cuts the circle in two points is self-evident.

ProrosiTION 3.

If in a civcle a straight line through the centre bisect a
straight line not through the centre, it also culs it atl right
angles ; and if it cut it at right angles, it also bisects it.

Let ABC be a circle, and in it let a straight line CD
through the centre bisect a straight line
AZB not through the centre at the point c
F;
I say that it also cuts it at right angles.
For let the centre of the circle ABC £
10 be taken, and let it be £; let £4, ES
be joined. A
Then, since AF is equal to FB,
and ~£ is common, D
two sides are equal to two sides;
15 and the base £4 is equal to the base £5;
therefore the angle 4 FE is equal to the angle BFE. [1.8]
But, when a straight line set up on a straight line makes
the adjacent angles equal to one another, each of the equal
angles is right; [1. Def. 10]
20 therefore each of the angles AFE, BFE is right.
Therefore CD, which is through the centre, and bisects
AB which is not through the centre, also cuts it at right
angles.
Again, let CD cut A7 at right angles ;
25 | say that it also bisects it. that is, that 4/ is equal to /5.

w
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For, with the same construction,
since £4 is equal to £5,
the angle £AF is also equal to the angle £5F. [r. 5]
But the right angle 4FE is equal to the right angle BFE,
s therefore £AF, EBF are two triangles having two angles
equal to two angles and one side equal to one side, namely
EF, which is common to them, and subtends one of the equal
angles ;
therefore they will also have the remaining sides equal to
35 the remaining sides; [1. 26)
therefore AF is equal to /1.
Therefore etc.
Q. E. D.
26. with the same construction, rdv airdv xarasxevasfdévrwy.

This proposition asserts the two par#ial converses (cf. note on 1. 6) of the
Porism to 11. 1. De Morgan would place it next to 111 1.

ProrosiTion 4.

If in a circle two straight lines cut one another whick are
not through the centre, they do not bisect one another.

Let ABCD be a circle, and in it let the two straight lines
AC, BD, which are not through the
centre, cut one another at £ ;

I say that they do not bisect one
another, D

For, if possible, let them bisect one
another, so that AZ£ is equal to £C, A
and BE to ED;

let the centre of the circle ABCD be
taken [ 1], and let it be 7'; let /7E be s
joined.
Then, since a straight line #£ through the centre bisects
a straight line 4C not through the centre,
it also cuts it at right angles ; [u. 3]
therefore the angle F£A is right.
Again, since a straight line #£ bisects a straight line B0,
it also cuts it at right angles ; [111. 3]
therefore the angle FEZ is right.
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But the angle #£.A was also proved right ;
therefore the angle F£A is equal to the angle F£B,
the less to the greater : which is impossible.
Therefore AC, BD do not bisect one another.

Therefore etc.
Q. E, D,

ProrosItTion s.

If two civcles cut one another, they will not have the same
centre.

For let the circles 48C, CDG cut one another at the
points 5, C;

1 say that they will not have the same
centre.

For, if possible, let it be £; let £C
be joined, and let £FG be drawn
through at random.

Then, since the point £ is the
centre of the circle ABC,

EC is equal to £F. [ Def. 15]

Again, since the point £ is the centre of the circle COG,

EC is equal to £G.
But £C was proved equal to £F also ;
therefore E£F is also equal to £G, the less to the
greater : which is impossible.

Therefore the point £ is not the centre of the circles
ABC, CDG.

Therefore etc.

Q. E. D,

The propositions m1. 5, 6 could be combined in one. It makes no
difference whether the circles cut, or meet without cutting, so long as they do
not coincide altogether; in either case they cannot have the same centre.
The two cases are covered by the enunciation : Jf the circumferences of two
circles meet at a point they cannot have the same centre. On the other hand, Jf
two circles have the same centre and one point in thesr circumferences common,
they must coincide altogether.
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ProrosiTIiON 6.

If two circles touck one another, they will not have the
same centre.

For let the two circles A BC, CDE touch one another
at the point C;

I say that they will not have the
same centre.

For, if possible, let it be /; let
FC be joined, and let F£B be drawn
through at random.

Then, since the point / is the
centre of the circle A5C,

FC is equal to FA.

Again, since the point # is the
centre of the circle CDE,

FC is equal to FE.
But #C was proved equal to 75 ;

therefore /£ is also equal to /5, the less to the greater:
which is impossible.

Therefore ' is not the centre of the circles ABC, CDE.

Therefore etc.
Q. E. D.

The English editions enunciate this proposition of circles touching
internally, but the word (évrds) is a mere interpolation, which was no doubt
made because Euclid’s figure showed only the case of infernal contact. The
fact is that, in his usual manner, he chose for demonstration the more difficult
case, and left the other case (that of exfernal contact) to the intelligence of
the reader. It is indeed sufficiently self-evident that circles touching externally
cannot have the same centre ; but Euclid’s proof can really be used for this
case too.

Camerer remarks that the proof of 11, 6 seems to assume tacitly that the
points £ and B cannot coincide, or that circles which touch internally at C
cannot meet in any other point, whereas this fact is not proved by Euclid till
. 13. But no such general assumption is necessary here; it is only
necessary that one line drawn from the assumed common centre should meet
the circles in different points; and the very notion of internal contact requires
that, before one circle meefs the other on its inner side, it must have passed
through points within the latter circle.
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ProrosiTiON 7,

If on the diameter of a circle a point be taken whick is not
the centre of the circle, and from the point straight lines fall
upon the circle, that will be grealest on which the centre is, the
remainder of the same diameler will be least, and of the rest

sthe nearer to the straight line through the centre is always
greater than the more vemote, and only two equal straight
lines will fall from the point on the circle, one on each side
of the least straight line.

Let ABCD be a circle, and let 40 be a diameter of it ;
1oon AD let a point / be taken which is not the centre of the
circle, let £ be the centre of the circle,
and from £ let straight lines 78, FC, G fall upon the circle
ABCD;
I say that F'A4 is greatest, 7D is least, and of the rest 7B is

15 greater than #C, and F#C than FG.

For let BE, CE, GE be joined. o
Then, since in any triangle two

sides are greater than the remaining

one, [1 20]

20 EB, EF are greater than BF,
But AE is equal to BE ;
therefore 4 is greater than BF.
Again, since BE is equal to CE,

and #£ is common,

25 the two sides BE, EF are equal to the two sides C£, £F.
But the angle BEF is also greater than the angle CEF;

therefore the base BZ is greater than the base C/. [r. 24]
For the same reason
CF is also greater than /G.
30 Again, since GF, FE are greater than £G,
and £G is equal to £D,
GF, FE are greater than £D.
Let £F be subtracted from each ;
therefore the remainder G/ is greater than the remainder

35 FD.

Therefore A is greatest, /D is least, and /25 is greater
than #C, and #C than /G.
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I say also that from the point # only two equal straight
lines will fall on the circle ABCD, one on each side of the
40 least ~.D.
For on the straight line £7, and at the point £ on it, let
the angle 7#£ / be constructed equal to the angle GEZF 1. 23],
and let 7~/ be joined.
Then, since G£ is equal to £/,

45 and £F is common,
the two sides GE, EF are equal to the two sides HE, EF;
and the angle GEF is equal to the angle ZEF;
therefore the base 7G is equal to the base F/4.  [1 4]

I say again that another straight line equal to #G will not
s fall on the circle from the point [g

For, if possible, let #X so fall.

Then, since 7K is equal to #G, and FH to FG,

FK is also equal to FH,

the nearer to the straight line through the centre being
ss thus equal to the more remote : which is impossible.

Therefore another straight line equal to G will not fall
from the point # upon the circle ;

therefore only one straight line will so fall.
Therefore etc.
Q E.D.

4 of the same diameter. I have inserted these words for clearness’ sake. The text
has simply éhaxlory 8¢ # Ao, *“ and the remaining (straight line) least.”

7, 39. one on each side. The word “one” is not in the Greek, but is necessary to
give the force of é¢' éxdrepa Tis éAaxlorys, literally ** on both sides,” or * on each of the two
sides, of the least.”

De Morgan points out that there is an unproved assumption in this
demonstration. We draw straight lines from 5, as FB, FC, such that the
angle DFB is greater than the angle DXC and then assume, with respect to
the straight lines drawn from the centre E to B, C, that
the angle DEZB is greater than the angle DEC. This
is most easily proved, I think, by means of the converse
of part of the theorem about the lengths of different
straight lines drawn to a given straight line from an
external point which was mentioned above in the note
on uL 2, This converse would be to the effect that, 7f
two unequal straight lines be drawn from a point to a
given straight line which are not perpendicular to the
straight line, the grealer of the two is the further from the perpendicular from the
point to the given straight line. This can either be proved from its converse by
reductio ad absurdum, or established directly by means of 1. 47. Thus, in the
accompanying figure, 78 must cut £C in some point A, since the angle BFE
is less than the angle CFE.

Therefore £AM is less than £C, and therefore than E5.
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Hence the point B in which #B meets the circie is further from the foot

of the perpendicular from £ on #25 than A is;
therefore the angle BEF is greater than the angle CEF,

Another way of enunciating the first part of the proposition is that of
Mr H. M. Taylor, viz. “ Of all straight lines drawn to a circle from an internal
point not the centre, the one which passes through the centre is the greatest,
and the one which when produced passes through the centre is the least; and
of any two others the one which sublends the greater angle at the centre is the
greater.” The substitution of the angle subtended at the centre as the criterion
no doubt has the effect of avoiding the necessity of dealing with the unproved
assumption in Euclid’s proof referred to above, and the similar substitution in
the enunciation of the first part of 111. 8 has the effect of avoiding the necessity
for dealing with like unproved assumptions in %uclid’s proof, as well as the
complication caused by the distinction in Euclid’s enunciation between lines
falling from an external point on the convex circumference and on the concave
circumference of a circle respectively, terms which are not defined but taken as
understood.

Mr Nixon (Zuclid Revised) similarly substitutes as the criterion the angle
subtended at the centre, but gives as his reason that the words “nearer” and
“more remote” in Euclid’s enunciation are scarcely clear enough without
some definition of the sense in which they are used, Smith and Bryant make
the substitution in 11 8, but follow Euclid in 11, 7.

On the whole, I think that Euclid’s plan of taking straight lines drawn from
the point which is not the centre direct to the circumference and making
greater or less angles af #Aat point with the straight line containing it and the
centre is the more instructive and useful of the two, since it is such lines
drawn in any manner to the circie from the point which are immediately useful
in the proofs of later propositions or in resolving difficulties connected with
those proofs.

Heron again (an-Nairizi, ed. Curtze, pp. 114—5) has a note on this
proposition which is curious. He first of all says that Euclid proves that lines
nearer the cenire are greater than those more remote from if. This is a
different view of the question from that taken in Euclid’s proposition as we
have it, in which the lines are not nearer to and more remote from the centre
but from #he line through the centre. Euclid takes lines inclined to the latter
line at a greater or less angle ; Heron introduces distance from the cenire in
the sense of Deff. 4, 5, i.e. in the sense of 2ke length of the perpendicular drawn
to the line from the centre, which Euclid does not use till n1. 14, 15. Heron
then observes that in Euclid’s proposition the lines compared are all drawn on
one side of the line through the centre, and sets himself to prove the same
truth of lines on gpposite sides which are more or less distant from the centre.
The new point of view necessitates a quite different line of proof, anticipating
the methods of later propositions.

The first case taken by Heron is that of two straight lines such that the
perpendiculars from the centre on them fall on the lines themselves and not
in either case on the line produced.

Let A be the given point, D the centre, and let
AE be nearer the centre than 4% so that the
perpendicular DG on AE is less than the perpen-
dicular DA on AF.

Then sgs. on DG, GE£ =sqs. on DH, HF,
and  sgs. on DG, GA =sqs. on DH, HA.

But sq. on DG <sq. on DH.
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Therefore sq. on GE >sq. on HF,
and sq. on GA >sq. on HA,
whence GE> HF,

GA > HA.

Therefore, by addition, 4E > AF.

The other case taken by Heron is that where
one perpendicular falls on the line produced, as in
the annexed figure. In this case we prove in like
manner that GE > HF,

and GA > AH.

Thus A is greater than the sum of HF, AH,
whence, a fortiori, AE is greater than the difference
of HF, AH, i.e. than AF.

Heron does not give the third possible case, that, namely, where dot/
perpendiculars fall on the lines produced, The fact
is that, in this case, the foregoing method breaks
down. Though AE be nearer to the centre than
AFin the sense that DG is less than DA,

AE is not greater but Jess than AF

Moreover this cannot be proved by the same
method as before.

For, while we can prove that

GE > HF,
GA > AF,
we cannot make any inference as to the comparative length of AE, AF.

To judge by Heron's corresponding note to 111. 8, he would, to prove this
case, practically prove 111. 35 first, i.e. prove that, if £4 be produced to X
and #4 to L,

rect. A, AL = rect. EA, AK,
from which he would infer that, since 4K > 4L by the first case,
AE < AF.

An excellent moral can, I think, be drawn from the note of Heron.
Having the appearance of supplementing, or giving an alternative for, Euclid’s
oposition, it cannot be said to do more than confuse the subject. Nor was
it necessary to find a new proof for the case where the two lines which are
compared are on ggposite sides of the diameter, since Euclid shows that for each
line from the point to the circumference on one side of the diameter there is
another of the same length equally inclined to it on the other side.

ProrosiTION 8.

If a point be taken outside a civcle and from the point
straight lines be drawn through to the circle, one of whick
is through the centre and the others arve drawn at random,
then, of the straight lines whick fall on the concave civcum-
Serence, that through the centre 1s greatest, while of the rest
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the nearer to that through the centre is always greater than
the morve remole, but, of the straight lines falling on the convex
civcumference, that between the point and the diameter is least,
while of the rest the neaver to the least is always less than the
more vemote, and only two equal straight lines will fall on the
circle from the point, one on each side of the least.

Let ABC be a circle, and let a point D be taken outside
ABC; let there be drawn through
from it straight lines DA, DE, DF,
DC, and let DA be through the centre;
I say that, of the straight lines falling
on the concave circumference 4 EFC,
the straight line DA through the centre
is greatest,
while DE is greater than DF and DF
than DC,;
but, of the straight lines falling on the
convex circumference HLKG, the
straight line DG between the point
and the diameter 4G is least; and
the nearer to the least DG is always
less than the more remote, namely DX
than DL, and DL than DH.

For let the centre of the circle 42C be taken [m. 1], and
let it be M ; let ME, MF, MC, MK, ML, MH be joined.

Then, since AM is equal to £M,
let MD be added to each ;

therefore A0 is equal to £M, MD.

But EM, MD are greater than £D; [r. 20]

therefore 40 is also greater than £D.

Again, since ME is equal to MF,

and MD is common,
therefore £M, MD are equal to FM, MD;

and the angle £MD is greater than the angle FMD ;

therefore the base £ is greater than the base #D.

[1. 24]
Similarly we can prove that 7D is greater than CD;

therefore DA is greatest, while DE is greater than DF,
and DF than DC.
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Next, since MK, KD are greater than M D, [1. 20]
and MG is equal to MK,

tGh%efore the remainder KD is greater than the remainder
so that GO is less than XD.

And, since on MD, one of the sides of the triangle /LD,
two straight lines /KX, KD were constructed meeting within
the triangle,
therefore MK, KD are less than ML, LD ; [1. 21]
and MK is equal to ML ;

_— therefore the remainder DX is less than the remainder

Similarly we can prove that DL is also less than D/ ;

therefore DG is least, while DX is less than DL, and
DL than DH.

I say also that only two equal straight lines will fall from
the point D on the circle, one on each side of the least DG.

On the straight line /D, and at the point M/ on it,
let the angle DMB be constructed equal to the angle KXMD,
and let D2 be joined.

Then, since MK is equal to M5B,
and MDD is common,

the two sides KM, MD are equal to the two sides B,
MD respectively ;
and the angle KMD is equal to the angle BMD ;

therefore the base DX is equal to the base DB.  [u 4]

I say that no other straight line equal to the straight line
DK will fall on the circle from the point D.

For, if possible, let a straight line so fall, and let it be DNV

Then, since DX is equal to DN,
while DX is equal to DB,
DB is also equal to DN,
that is, the nearer to the least DG equal to the more remote:
which was proved impossible.

Therefore no more than two equal straight lines will fall
on the circle 4BC from the point D, one on each side ot
DG the least.

Therefore etc.
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As De Morgan points out, there are here two assumptions similar to
that tacitly made in the proof of 1L 7, namely that
K falls within the triangle DLM and E outside
the triangle DFM. These facts can be proved
in the same way as the assumption in 1. 7. Let
DE meet FM in ¥ and LM in Z. Then, as
before, MZ is less than ML and therefore than
MK. Therefore K lies further than Z from
the foot of the perpendicular from A on DE.
Similarly £ lies further than ¥ from the foot of the
same perpendicular.

Heron deals with lines on gpposite sides of the
diameter through the external point in a manner similar to that adopted in
his previous note. ) A

For the case where E, F are the second points in
which 4E, AF meet the circle the method answers
well enough.

If AE is nearer the centre D than AF is,

sgs. on DG, GE =sqs. on DH, HF

and sqs. on DG, GA =sqs. on DH, HA,
whence, since DG < DH,
it follows that GE > HF,

and AG> AH,

so that, by addition, AE > AF-

But, if X, L be the points in which 4AE, AF first
meet the circle, the method fails, and Heron is reduced to proving, in the first
instance, the property usually deduced from 1. 36. He argues thus:

AKD being an obtuse angle,
sq. on AD =sum of sgs. on AKX, KD and twice rect. 4K, KG. [11. 12]
ALD is also an obtuse angle, and it follows that
sum of sgs. on 4K, KD and twice rect. 4K, KG is equal to
sum of sqs. on AL, LD and twice rect. AL, LH.
Therefore, the squares on XD, LD being equal,
sq on AKX and twice rect. 4K, XG=sq. on AL and twice rect. AL, LH,
or sq on AKX and rect. AKX, KE =sq. on AL and rect. AL, LF,

ie rect. AKX, AE =reci. AL, AF.
But, by the first part, AE> APF.
Therefore AK < AL,

1 7, 8 deal with the lengths of the several lines drawn to the circum-
ference of a circle (1) from a point within it, (2) from a point outside it; but a
similar proposition is true of straight lines drawn from a point on the
circumference itself: Jf any point be taken on the circumference of a circle,
then, of all the straight lines whick can be drawn from it to the circumference, the
greatest is that in which the centre is ; of any others that whick is nearer to the
straight line which passes through the centre is greater than one more remote ;
and from the same point there can be drawn lo the circumference two straight
lines, and only two, which are equal to one another, one on eack side of the
greatest line.
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The converses of 111. 7, 8 and of the proposition just given are also true
and can easily be proved by reductio ad absurdum. They could be employed
to throw light on such questions as that of internal contact, and the relative
position of the centres of circles so touching. This is clear when part of the
converses is stated : thus (1) if from any point in the plane of a circle a
number of straight lines be drawn to the circumference of the circle, and one
of these is greater than any other, the centre of the circle must lie on that one,
(2) if one of them is less than any other, then, (a) if the point is within the
circle, the centre is on the minimum straight line produced beyond the point,
() if the point is outside the circle, the centre is on the minimum straight line
produced beyond the point in whick it meets the circle.

ProrosiTiON qg.

If a point be taken within a civcle, and more than two
equal straight lines fall from the point on the circle, the point
taken is the centre of the circle.

Let ABC be a circle and D a point within it, and from
D let more than two equal straight
lines, namely DA, DB, DC, fall on L
the circle ABC;
I say that the point D is the centre
of the circle 4ABC.

For let AB, BC be joined and K g
bisected at the points £, /, and let
ED, FD be joined and drawn through
to the points G, K, H, L.

Then, since AF is equal to £5,
and £D is common,

the two sides 4 £, ED are equal to the two sides BE, ED ;
and the base DA is equal to the base DZ;

therefore the angle 4 £D is equal to the angle BED.

1. 8

Therefore each of the angles 4ED, BED is right; e

[1. Def. 10]

therefore GK cuts A8 into two equal parts and at right
angles.

And since, if in a circle a straight line cut a straight line

into two equal parts and at right angles, the centre of the

circle is on the cutting straight line, [u. 1, Por.)

the centre of the circle is on GX.
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For the same reason
the centre of the circle ABC is also on HL.

And the straight lines GX, AL have no other point
common but the point D ;

therefore the point D is the centre of the circle 48C.
Therefore etc. Q. E. D.

The result of this proposition is quoted by Aristotle, Meteorologica 1. 3,
3732 13—16 (cf. note on 1. 8).

1L g is, as De Morgan remarks, a /Jogical equivalent of part of mr. 7,
where it is proved that every non-central point is #of a point from which three
equal straight lines can be drawn to the circle. Thus 1. 7 says that every
not-A is not-B, and 11. g states the equivalent fact that every B is 4.
Mr H. M. Taylor does in effect make a /logical inference of the theorem that,
If from a point three equal straight lines can be drawn to a circle, that point is
the centre, by making it a corollary to his proposition which includes the part of
111, 7 referred to. Euclid does not allow himself these logical inferences, as we
shall have occasion to observe elsewhere also.

Of the two proofs of this proposition given in earlier texts of Euclid,
August and Hei regard that translated above as genuine, relegating the
other, which Simson gave alone, to a place in an Appendix. Camerer remarks
that the genuine proof should also have contemplated the case in which one
or other of the straight lines 4.5, BC passes through .D. This would however
have been a departure from Euclid’s manner of taking the most obscure case
for proof and leaving others to the reader.

The other proof, that selected by Simson, is as follows :

“For let a point D be taken within the circle 48C, and from D let more
than two equal straight lines, namely 4D, DB, DC,
fall on the circle 45C;

I say that the point D so taken is the centre of the
circle ABC.

For suppose it is not; but, if possible, let it be a
E, and let DE be joined and carried through to the ‘
points %, G.

Therefore FG is a diameter of the circle 4 BC. \

Since, then, on the diameter FG of the circle B
ABC a point has been taken which is not the centre
of the circle, namely D,

DG is greatest, and DC is greater than DB, and DB than DA.

But the latter are also equal : which is impossible

Therefore £ is not the centre of the circle.
Similarly we can prove that neither is any other point except D;
therefore the point D is the centre of the circle ABC.
Q. E. DV

On this Todhunter correctly points out that the point £ might be

supposed to fall within the angle ADC. It cannot then be shown that DC

is greater than DB and DB than D4, but only that either DC or DA is less
than D5 ; this however is sufficient for establishing the proposition.
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ProrosiTION 10.
A circle does not cut a cirvcle at more points than two.

For, if possible, let the circle ABC cut the circle DEF
at more points than two, namely
B, C FH;

let BH, BG be joined and
bisected at the points X, Z,
and from X, L let XC, LM be
drawn at right angles to B/,
BG and carried through to the
points 4, E.

Then, since in the circle
ABC a straight line AC cuts a
straight line 24 into two equal
parts and at right angles,

the centre of the circle 4BC is on AC. [1. 1, Por.]

Again, since in the same circle 4BC a straight line NO
cuts a straight line BG into two equal parts and at right
angles,

the centre of the circle A5C is on NO.

But it was also proved to be on 4C, and the straight
lines AC, NO meet at no point except at P;

therefore the point 7 is the centre of the circle 4BC.
Similarly we can prove that 2 is also the centre of the
citcle DEF;
therefore the two circles 48C, DEF which cut one
another have the same centre 2: which is impossible. [m. 5]

Therefore etc. Q. E. D.

1. The word circle (xix)os) is here employed in the unusual sense of the circumference
(wepupépeia) of a circle. Cf. note on 1. Def. 15.

There is nothing in the demonstration of this proposition which assumes
that the circles cuf one another; it proves that two circles cannot meef at more
than two points, whether they cut or meet without cutting, i.e. fouck one
another.

Here again, of two demonstrations given in the earlier texts, Simson chose
the second, which August and Eeiberg relegate to an Appendix and which is
as follows :

“ For again let the circle 48C cut the circle DEF at more points than
two, namely B, G, H, F;
let the centre X of the circle ABC be taken, and let XB, KG, KF be
joined.
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Since then a point X has been taken within the circle DEF,

and from X more than two straight lines, namely
KB, KF, KG, have fallen on the circle DEF, A

the point X is the centre of the circle DEF. [11. 9]
But X is also the centre of the circle A5C. (3

Therefore two circles cutting one another have
the same centre X : which is impossible. [11 5]

_ Therefore a circle does not cut a circle at more
points than two. » o]
Q. E. D.

This demonstration is claimed by Heron (see an-Nairizi, ed. Curtze,
pp- 120—1). It is incomplete because it assumes that the point X which is
taken as the centre of the circle ABC is within the circle DEF 1t can
however be completed by means of 111 8 and the corresponding proposition
with reference to a point on the circumference of a circle which was enunciated
in the note on 1. 8. For (1) if the point X is on the circumference of the
circle DEF, we obtain a contradiction of the latter proposition which asserts
that only fwo equal straight lines can be drawn from X to the circumference
of the circle DEF; (2) if the point X is outside the circle DEF, we obtain a
contradiction of the corresponding part of 11. 8.

Euclid’s proof contains an unproved assumption, namely that the lines
bisecting BG, BH at right angles wi// meet in a point £ For a discussion
of this assumption see note on 1v. 5.

ProrosiTION 11.

If two circles touch one another internally, and their centres
be taken, the straight line joining their centres, if it be also
produced, will fall on the point of contact of the circles.

For let the two circles 4ABC, ADE touch one another
internally at the point 4, and let
the centre 7 of the circle ABC, and H
the centre G of ADE, be taken ;

I say that the straight line joined
from G to F and produced will fall
on A.

For suppose it does not, but,
if possible, let it fall as FGH, and
let AF, AG be joined.

Then, since AG, GF are greater
than /A, that is, than FH,

let #G be subtracted from each;

therefore the remainder 4G is greater than the remainder
GH,

(4]
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But 4G is equal to GD ;
therefore GO is also greater than GA,
the less than the greater: which is impossible.

Therefore the straight line joined from # to G will not
fall outside ;

therefore it will fall at 4 on the point of contact.

Therefore etc.
Q. E. D.

2. the straight line joining their centres, literally **the straight line joined to their
centres " (7 éxl vd xévrpa abrdv émfevyvupdey edfein).
3. point of contact is here swags, and in the enunciation of the next proposition

Again August and Heiberg give in an Appendix the additional or
alternative proof, which however shows little or no variation from the genuine
proof and can therefore well be dispensed with.

The genuine proof is beset with difficulties in consequence of what it
tacitly assumes in the figure, on the ground, probably, of its being obvious to
the eye. Camerer has set out these difficulties in a most careful note, the
heads of which may be given as follows :

He observes, first, that the straight line joining the centres, when produced,
must necessarily (though this is not stated by Euclid) be produced in the
direction of the centre of the circle which touches the other infernally. (For
brevity, I shall call this circle the “inner circle,” though I shall imply nothing
by that term except that it is the circle which touches the other on the inner
side of the latter, and therefore that, in accordance with the definition of
fouching, points on it in the immediate neighbourhood of the point of contact
are necessarily within the circle which it touches.) Camerer then proceeds by
the following steps.

1. The two circles, touching at the given point, cannot infersect at any
point. _For, since points on the “inner” in the immediate neighbourhood of
the point of contact are within the “outer” circle, the inner circle, if it
intersects the other anywhere, must pass outside it and then return. This is
only Posmble (a) if it passes out at one point and returns at another point, or
(4)1f it passes out and returns through one and the same point. (a) is impossible
because it would require two circles to have #4re common points ; (4) would
require that the inner circle should have a mode at the point where it passes
outside the other, and this is proved to be impossible by drawing any radius
cutting both loops.

2. Since the circles cannot intersect, one must be enfirely within the
other.

3. Therefore the outer circle must be greater than the inner, and the
radius of the outer greater than that of the inner.

4. Now, if F be the centre of the greater and G of the inner circle, and
if FG produced beyond G does nor pass through A4, the given point of
contact, then there are three possible hypotheses.

(a) A may lie on GF produced beyond F.
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(6) A may lie outside the line #G altogether, in which case FG produced
beyond G must, in consequence of result z above, either

(i) meet the circles in a point common to both, or

(ii) meet the circles in two points, of which that which is on the inner
circle is nearer to G than the other is.
(a) is then proved to be impossible by means of the fact that the radius of the
inner circle is less than the radius of the outer.
() (ii) is Euclid’s case ; and his proof holds equally of (&) (i), the hypothesis,
namely, that D and A in the figure coincide.

Thus all alternative hypotheses are successively shown to be impossible,
and the proposition is completely established.

I think, however, that this procedure may be somewhat shortened in the
following manner.

In order to make Euclid’s proof absolutely conclusive we have only (1) to
take care to produce FG beyond G, the centre of the “inner ” circle, and then
(2) to prove that the point in which #G so produced meets the *“inner” circle
is not further from G than is the point in which it meets the other circle.
Euclid’s proof is equally valid whether the first point is nearer to G than the
second or the first point and the second coincide.

If FG produced beyond G does not pass through 4, there are two

b'e D
X

conceivable hypotheses: (a) 4 may lie on G/ produced beyond £ or (8) 4
may be outside FG produced either way. In either case, if G produced
meets the ‘“inner” circle in D and the other in /&, and if GD is greater than
GH, then the “inner” circle must cut the “outer” circle at some point
between 4 and D, say X.

But if two circles have a common point X lying on one side of the line of
centres, they must have another corresponding point on the other side of the
line of centres. This is clear from 111 7, 8; for the point is determined by
drawing from & and G, on the opposite side to that where X is, straight
lines /¥, GY making with 7D angles equal to the angles DFX, DGX
respectively.

Hence the two circles will have at least three points common: which is
impossible.

Therefore GO cannot be greater than G & ; accordingly G2 must be
either equal to, or less than, GA, and Euclid’s proof is valid.

The pamcula.r hypothesis in which #G is supposed to be in the same
straight line with 4 but G is on the side of #away from A is easily disposed
of, and would in any case have been left to the reader by Euclid.

For GD is either equal to or less than GH.

Therefore GD is less than #/, and therefore less than #4.

But GD is equal to G4, and therefore greater than FA4: which is
impossible.
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Subject to the same preliminary investigation as that required by Euclid’s
proof, the proposition can also be proved directly from 1. 7.

For, by 111. 7, GH is the shortest straight line that can be drawn from G
to the circle with centre F;

therefore GH is less than G4,
and therefore less than G.D : which is absurd.

This proposition is the crucial one as regards circles which touch internally;
and, when it is once established, the relative position of the circles can be
completely elucidated by means of itand the propositions which have preceded
it. Thus, in the annexed figure, if 7 be the centre
of the outer circle and & the centre of the inner,
and if any radius #Q of the outer circle meet the
two circles in @, £ respectively, it follows, from
uL 7, m. 8, or the corresponding theorem with
reference to a point on the circumference, that #4 ¢
is the maximum straight line from # to the circum-
ference of the inner circle, 7P is less than #4, Q
and FP diminishes in length as #Q moves round
from #A4 until FP reaches its minimum length
FB, Hence the circles do not meet at any other
point than 4, and the distance PQ cut off between them on any radius #Q
of the outer circle becomes greater and greater as #Q moves round from #4
to FC and is a maximum when FQ coincides with FC, after which it
diminishes again on the other side of #C.

The same consideration gives the partial converse of 1. r1 which forms
the 6th lemma of Pappus to the first book of the Zuactiones of Apollonius
(Pappus, vii. p. 826). This is to the effect that, if AB, AC are in one straight
line, and on one side of A, the circles described on AB, AC as diameters touch
(internally at the point A). Pappus concludes this from the fact that the
circles have a common tangent at 4 ; but the truth of it is clear from the fact
that FP diminishes as #Q moves away from FA4 on either side ; whence the
circles meet at 4 but do not cut ane another.

Pappus’ sth lemma (vir. p. 824) is another partial converse, namely that,
given two circles touching internally at A, and a line ABC drawn from A cutting
both, then, if the centre of the outer circle lies on ABC, so does the centre of the
inner. Pappus himself proves this, by means of the common tangent to the
circles at A4, in two ways. (1) The tangent is at right angles to AC and
therefore to 45 : therefore the centre of the inner circle lies on 45. (2) By
111 32, the angles in the alternate segments of both circles are right angles, so
that 48C is a diameter of both.

[PROPOSITION 12.

If two circles touch one another externally, the stvaight
line joining their centves will pass thvough the point of
contact.

For let the two circles ABC, ADE touch one another

s externally at the point 4, and let the centre #-of 4BC, and
the centre G of ADE, be taken ;
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I say that the straight line joined from F to G will pass
through the point of contact at 4.

For suppose it does not,
o but, if possible, let it pass as
FCDG, and let AF, AG be
joined.
Then, since the point 7 is
the centre of the circle 45C,
FA4 is equal to FC.
Again, since the point G is
the centre of the circle ADE,
GA is equal to GD.
But 74 was also proved equal to FC;
therefore /<4, AG are equal to FC, GD,
so that the whole 7G is greater than FA4, AG;
but it is also less [1. 20]: which is impossible.
Therefore the straight line joined from F to G will not
fail to pass through the point of contact at A4 ;
therefore it will pass through it.
Therefore etc. Q E. D.]

23. will not fail to pass. The Greek has the double negmve. obx dpa 9...elfea...
ol é\edoera, literally * the straight line... will not mof-pass. ..

Heron says on m1. 11: “Euclid in propusition 11 has supposed the two
circles to touch internally, made his proposition deal with this case and proved
what was sought in it. But [ will show how it is to be proved if the contact is
external.” He then gives substantially the proof and figure of . rz. It
seems clear that neither Heron nor an-Nairizi had 111. 12 in this place.

Campanus and the Arabic edition of Nasiraddin at-T'si have nothing more
of 1. 12 than the following addition to mnr r1. “In the case of external
contact the two lines a¢ and ¢b will be greater than a4, whence ad and & will
be greater than the whole a4, which is false.” (The points g, 4, ¢, 4, ¢ cor-
respond respectively to G, # C, D, 4 in the above figure.) It is most
probable that Theon or some other editor added Heron’s proof in his edition
and made Prop. 12 out of it (an-Nairizi, ed. Curtze, pp. 121—2). An-Nairizi
and Campanus, conformably with what has been said, number Prop. 13 of
Heiberg’s text Prop. 12, and so on through the Book.

What was said in the note on the last proposition applies, mufatis mutandis,
to this, Camerer proceeds in the same manner as before ; and we may use
the same alternative argument in this case also.

Euclid’s proof is valid provided only that, if #G, joining the assumed
centres, meets the circle with centre #in C and the other circle in D, C is
not within the circle 4DF and D is not within the circle A8C. (The proof
is equally valid whether C, .D coincide or the successive points are, as drawn
in the figure, in the order %, C, D, G.) Now, if C is within the circle 4DE
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and D within the circle 48C, the circles must have cut between 4 and C
and between 4 and D. Hence, as before, they must also have another
corresponding point common on the other side of C.D. That is, the circles
must have #hree common points : which is impossible.
Hence Euclid’s proof is valid if %, 4, G form a triangle, and the only
hypothesis which has still to be disproved is the
hypothesis which he would in any case have left to
the reader, namely that 4 does not lie on #G but
on FG produced in either direction. In this case, as
before, either C, D must coincide or C is nearer
Fthan Dis. Then the radius #C must be equal
to #4: which is impossible, since #C cannot be
greater than /D, and must therefore be /ess than
F4.
Given the same preliminaries, 111. 12 can be proved by means of 1. 8.
Again, when the proposition 111. 12 is once proved, 11. 8 helps us to prove
at once that the circles lie entirely outside each other and have no other
common point than the poinc of contact.

Among Pappus’ lemmas to Apollonius’ Zactiones are the two partial
converses of this proposition corresponding to those given in the last note.
Lemma 4 (viL. p. 824) is to the effect that, if AB, AC be in one straight line, B
and C being on opposite sides of A, the circles drawn on AB, AC as diamelers
touch externally at A. Lemma 3 (viL p. 822) states that, if fwe drcles touch
externally at A and BAC is drawn through A cutting both circles and containing
the centre of one, BAC will also contain the centre of the other. The proofs, as
before, use the common tangent at 4.

Mr H. M. Taylor gets over the difficulties involved by 111. 11, 12 in a
manner which is most ingenious but not Euclidean. He first proves that, f fwe
circles meet al a point not in the same straight line with their centres, the circles
intersect at that point ; this is very easily established by means of 111. 7, 8 and
the third similar theorem. Then he gives as a corollary the statement that,
two circles touch, the point of contact is in the same straight line with their
centres. It is not explained how this is inferred from the substantive
proposition ; it seems, however, to be a logical inference simply. By the
proposition, every A (circles meeting at a point not in the same straight line
with the centre) is B8 (circles which intersect); therefore every not-B is not-A,
i-e. circles which do not intersect do not meet at a point not in the same
straight line with the centres. Now non-intersecting circles may either meet
(i.e. touch) or not meet. In the former case they must meet oz the line of
centres : for, if they met at a point not in that line, they would intersect. But
such a purely /agical inference is foreign to Euclid’s manner. As De Morgan
says, “ Euclid may have been ignorant of the identity of ‘Every X is ¥’ and
¢ Every not- ¥ is not-X,’ for anything that appears in his writings ; he makes
the one follow from the other by a new proof each time” (quoted in Keynes’
Formal Logic, p. 81).

There is no difficulty in proving, by means of 1. 20, Mr Taylor’s next
proposition that, §f fwo circles meet at a point which lies in the same straight
line as their centres and is between the centres, the circles touck at that point, and
each circle lies without the other. But the similar proof, by means of 1 20, of
the corresponding theorem for internal contact seems to be open to the same
objection as Euclid’s proof of 11 11 in that it assumes without proof that the
circle which has its centre nearest to the point of meeting is the “inner”
circle. Lastly, in order to prove that, §f fwo circles have a point of contact, they
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do not meet at any other point, Mr Taylor uses the questionable corollary.
Therefore in any case his alternative procedure does not seem preferable to
Euclid’s.

The alternative to Eucl. 1. 11—13 which finds most favour in modern
continental text-books (e.g. Legendre, Baltzer, Henrici and Treutlein,
Veronese, Ingrami, Enriques and Amaldi) connects the number, position and
nature of the coincidences between points on two circles with the relation in
which the distance between their centres stands to the length of their radii.
Enriques and Amaldi, whose treatment of the different cases is typical, give
the following propositions (Veronese gives them in the converse form).

1. If the distance between the centres of two circles is greater than the sum
of the radii, the two circles have no point common and are external fo ome
another.

Let O, O be the centres of the circles (which we will call “the circles
0, 0'"), r, ¥ their radii respectively.

Since then OO0 > r + 7, a fortiori OO0 > r, and O is therefore exterior to
the circle O.

Next, the circumference of the circle O intersects OO’ in a point 4, and
since 00’ >r+r, A0 >r, and 4 is
external to the circle 0.

But 0’4 is less than any straight
line, as 0’5, drawn to the circum-
ference of the circle O [ 8] ; hence
all points, as B, on the circumference
(g' the circle O are external to the circle

Lastly, if C be any point internal
to the circle O, the sum of OC, O'Cis
greater than 'O, and a fortiori greater than » + '

g’:lut OC is less than 7: therefore O'C is greater than #, or C is external
to O.

Similarly we prove that any point on or within the circumference of the
vircle O is external to the circle O.

2. If the distance between the centres of two unequal circles is less than the
difference of the radsi, the two circumferences have no common point and the lesser
circle is entively within the greater.

I;’et 0, O be the centres of the two circles, 7, # their radii respectively
(r<#).

Since 00’ < ¥ — 7, a fortiori OO0’ <7, s0 that Ois
internal to the circle O'.

If 4, A’ be the points in which the straight line
OO intersects respectively the circumferences of the
circles 0, O, Al A

O'0 is less than 0’4’ — 04,
sothat OO0+ OA, or O A, is less than 0' 4,
and therefore 4 is internal to the circle 0"

But, of all the straight lines from O to the circumference of the circle O,
O A passing through the centre O is the greatest [111. 7] ;
whence all the points of the circumference of O are internal to the circle O

A similar argument to the preceding will show that all points within the
circle O are internal to the circle 0'.
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3. If the distance between the centres of two circles is equal to the sumi of the
radii, the two circumferences have one point common and one only, and that point
is on the line of centres. Each circle is external fo the other.

Let O, O be the centres, 7, # the radii of the circles, so that 00’ is equal
tor+7.

Thus OCQ is greater than r, so that O
is external to the circle O, and the circum-
ference of the circle O cuts OO in a
point A.

And, since OO’ is equal to »+#, and
OA to », it follows that 0’4 is equal to 7,
so that 4 belongs also to the circumference
of the circle O'.

The proof that all other points on, and
all points within, the circumference of the circle O are external to the circle O’
follows the similar proof of prop. 1 above. And similarly all points (except A)
on, and all points within, the circumference of the circle O are external to the
circle O.

The two circles, having one common point only, fonch at that point, which
lies, as shown, on the line of centres. And, since the circles are external to
one another, they touch externally.

4 df the distance between the cenires of two unequal circles is equal to the
difference between the radii, the two circumferences have one point and one only in
common, and thal point lies on the line of centres. The lesser civcle is within the
other.

The proof is that of prop. 2 above, mutatss mutandsis.

The circles here touch sfernally at the point on the line of centres.

. df the distance between the centres of two circles is less than the sum, and
greater than the difference, of the radii, the two circumferences have two common
points symmetrically situated with respect to the line of centres but not lying on
that line.

Let O, O be the centres of the two circles, #, #* their radii,  being the
greater, so that

r—r<00 <r+7.

It follows that in any case OO + r> 7/, so that, if OM be taken on O'0
produced equal to  (so that Af is on the circumference of the circle 0), M i
external to the circle 0.

We have to use the same Postulate as in Eucl. 1. 1 that

An are of a cirdle which has one extremity within and the other without a
given circle has one point common with the
latier and only ome ; from which it follows,
if we consider two such arcs making a
complete circumference, that, if a aroum-
Jerence of a circle passes through ome point
internal fto, and one point external o a
given circle, it culs the latter circle in two
points.

We have then to prove that the circle O,
besides having one point M of its circum-
ference external to the circle O’, has one other point of its circumference (L)
internal to the latter circle.
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Three cases have to be distinguished according as O’ is greater than, equal
to, or less than, the radius  of the lesser circle.

(1) OO >r. (See the preceding figure.)

Measure OL along OO’ equal to 7, so that
L lies on the circumference of the circle 0.

Then, since 00" <7+ #, O'L will be less
than #, so that Z is within the circle O

(z) 00 =r

In this case the circumference of the circle
O passes through @, or L coincides with O'.

(3) 00 <r.

If we measure OL along OO’ equal to 7, the point Z will lie on the
circumference of the circle O.

Then O'L=r- 00,
so that O'L <r, and a fortiori O'L <7, so that L
lies within the circle O

Thus, in all three cases, since the circumference
of O passes through one point () external to, and
one point (L) internal to, the circle O, the two
circumferences intersect in two points 4, B [Post.

And 4, B cannot lie on the line of centres 00/,
since this straight line intersects the circle O in
L, M only, and of these points one is inside, the other outside, the circle 0.

Since A8 is a common chord of both circles, the straight line bisecting it
at right angles passes through both centres, i.e. is identical with 00"

And again by means of 1. 7, 8 we prove that all points except 4, B on
the arc ALB lie within the circle @', and all points except 4, B on the arc
AMRB outside that circle ; and so on.

ProrosiTION 13.

A circle does not touck a circle at more points than one,
whether it touck it internally or externally.

For, if possible, let the circle 4B8DC touch the circle
EBFD, first internally, at more
5 points than one, namely 0, B.
Let the centre G of the circle
ABDC, and the centre A of
EBFD, be taken.
Therefore the straight line
10 joined from G to A will fall on
B, D, [ 11]
Let it so fall, as BGHD.
Then, since the point G is
the centre of the circle 48CD,
15 BG is equal to GD ;
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therefore BG is greater than /D ;
therefore B/ is much greater than ZD.

Again, since the point /7 is the centre of the circle
EBFD,
20 BH is equal to D ;

but it was also proved much greater than it: which is
impossible,

Therefore a circle does not touch a circle internally at
more points than one.

25 I say further that neither does it so touch it externally.
For, if possible, let the circle 4CK touch the circle
ABDC at more points than one, namely 4, C,
and let AC be joined.
Then, since on the circumference of each of the circles
1 ABDC, ACK two points A, C have been taken at random,
the straight line joining the points will fall within each
circle ; [m1. 2]
but it fell within the circle 4BCD and outside ACK
(1 Def. 3): which is absurd.

35 Therefore a circle does not touch a circle externally at
more points than one.
And it was proved that neither does it so touch it
internally.
Therefore etc. Q. E. D,

3, 7) 14, 27, 30, 33. ABDC, Euclid writes 48CD (here and in the next proposition),
notwithstanding the order in which the points are placed in the figure.

1§, 37. does it so touch it. It is necessary to supply these words which the Greek
(871 008 éxrés and ¥re o8 vrés) leaves to be understood.

The difficulties which have been felt in regard to the proofs of this
proposition need not trouble us now, because they have already been disposed
of in the discussion of the more crucial propositions nr. 11, 12,

Euclid's proof of the first part of the proposition differs from Simson’s ;
and we will deal with Euclid’s first. On this Camerer remarks that it is
assumed that the supposed second point of contact lies on the line of centres
produced beyond the centre of the “outer” circle, whereas all that is proved in
11 11 is that the line of centres produced beyond the centre of the * inner” circle
passes through a point of contact. But, by the same argument as that given
on 11I. 11, we show that the circles cannot have a point of contact, or even
any common point, outside the line of centres, because, if there were such a
point, there would be a corresponding common point on the other side of the
line, and the circles would have #Are¢ common points. Hence the only
hypothesis left is that the second point of contact may be o the line of
centres but in the direction of the centre of the ““oufer” circle; and Euclid’s
proof disposes of this hypothesis.
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Heron (in an-Nairizi, ed. Curtze, pp. 122—4), curiously enongh, does not
question Euclid’s assumption that the line of centres passes through both
points of contact (if double contact is possible) ; but he devotes some space to
proving that the centre of the “outer” circle must lie within the “inner” circle, a
fact which he represents Euclid as asserting (* sicut dixit Euclides”), though
there is no such assertion in our text. The proof of the fact is of course easy.
If the line of centres passes through Joz% points of contact, and the centre of
the “outer” circle lies either on or outside the ““inner” circle, the line of
centres must cut the “inner” circle in #4ree points in all: which is impossible,
as Heron shows by the lemma, which he places here (and proves by 1. 16),
that a straight line cannot cut the circumference of a circle in more points
than fwo.

Simson’s proof is as follows (there is no real need for giving two figures as
he does).

“If it be possible, let the circle £BF touch the circle 48C in more
points than one, and first on the inside, in the
points B, D; join BD, and draw GH bisecting
BD at right angles. A

Therefore, because the points B, D are in the E
circumference of each of the circles, the straight
line BD falls within each of them: And their G H
centres are in the straight line GA which bisects
BD at right angles :

Therefore GH passes through the point of ot
contact [1r. 11]; but it does not pass through it
because the points B, D are without the straight line G&: which is absurd.

Therefore one circle cannot touch another on the inside in more points
than one.”

On this Camerer remarks that, unless 111. 11.be more completely elucidated
than it is by Euclid’s demonstration, which Simson has, it is not sufficiently
clear that, besides the point of contact in which GA meets the circles, they
cannot have another point of contact either (1) on GH or (2) outside it.
Here again the latter supposition (z) is rendered impossible because in that
case there would be a third common point on the opposite side of G& ; and
the former supposition (1) is that which Euclid’s proof destroys.

Simson retains Euclid’s proof of the second part of the proposition, though
his own proof of the first part would apply to the second part also if a
reference to 111. 12 were substituted for the reference to 111. 11. Euclid might
also have proved the second part by the same method as that which he
employs for the first part.

ProrosiTioN 14.

In a circle equal straight lines arve equally distant from
the centre, and those which are equally distant from the centre
are equal to one another.

Let ABDC be a circle, and let A58, CD be equal straight
lines in it;

I say that A58, CD are equally distant from the centre.
For let the centre of the circle 4B8DC be taken [un 1],


http://11.be

m. 14] PROPOSITIONS 13, 14 35

and let it be £ ; from £ let £F, EG be drawn perpendicular
to AB, CD, and let AE, EC be joined.

Then, since a straight line Z# through D
the centre cuts a straight line 4 8 not through
the centre at right angles, it also bisects it.

[rmn. 3
Therefore AF is equal to FB; ] “‘
therefore A5 is double of AF. L

For the same reason
CD is also double of CG;
and 4B is equal to CD ;
therefore A is also equal to CG.
And, since AE is equal to £C,
the square on 4 £ is also equal to the square on £C.,
But the squares on AF, EF are equal to the square on AE,
for the angle at # is right ;
and the squares on £G, GC are equal to the square on £C,
for the angle at G is right ; [1. 47]
therefore the squares on AF, FE are equal to the
squares on CG, GE,
of which the square on 4F is equal to the square on CG,
for AF is equal to CG;
therefore the square on FZ£ which remains is equal to
the square on £G,
therefore £F is equal to £G.

But in a circle straight lines are said to be equally distant
from the centre when the perpendiculars drawn to them from
the centre are equal ; [111. Def. 4]

therefore A5, CD are equally distant from the centre.

Next, let the straight lines AB, CD be equally distant
from the centre; that is, let £/ be equal to £G.

I say that 42 is also equal to CD.

For, with the same construction, we can prove, similarly,
that A8 is double of AF, and CD of CG.

And, since AE is equal to CE,
the square on A £ is equal to the square on CE.

But the squares on £/, FA are equal to the square on AE,
and the squares on £G, GC equal to the square on CEZ. [ 47]
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Therefore the squares on £F, FA are equal to the
squares on £G, GC,
of which the square on £F is equal to the square on £G,
for EF is equal to £G;
therefore the square on AF which remains is equal to the
square on CG ;
therefore 4 F is equal to CG.
And ARB is double of 4F, and CD double of CG;
therefore 427 is equal to CD.
Therefore etc.
Q. E. D.

Heron (an-Nairizi, pp. 125—7) has an elaborate addition to this proposition
in which he proves, first by reductio ad absurdum, and then directly, that the
centre of the circle falls between the two chords.

ProrosITION 135,

Of straight lines in a circle the diameler is grealest,
and of the rest the nearer to the centre is always greater than
the more remote.

Let ABCD be a circle, let AD be its diameter and £
the centre; and let BC be nearer to the
diameter 4D, and G more remote ;

I say that 4D is greatest and BC
greater than FG.

For from the centre £ let £EH, EX
be drawn perpendicular to BC, FG.

Then, since BC is nearer to the
centre and FG more remote, £K is
greater than £/, [1. Def. 5]

Let £L be made equal to EH,
through L let LM be drawn at right
angles to £K and carried through to X, and let ME, EN,
FE, EG be joined.

Then, since £/ is equal to £L,

BC is also equal to MN. (11, 14)
Again, since A£ is equal to £M, and ED to EN,
AD is equal to ME, EN.
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But ME, EN are greater than M N, [1. 20]
and MAN is equal to BC;
therefore 4D is greater than BC.

And, since the two sides #E, EN are equal to the two
sides FE, EG,

and the angle MEN greater than the angle FEG,
therefore the base MV is greater than the base FG.  [1 24)

But MN was proved equal to BC.
Therefore the diameter 4D is greatest and BC greater
than FG.

Theretore etc. Q. E. D,

1. Of straight lines, The Greek leaves these words to be understood.
5. Nearer to the diameter AD. As BC, #G are not in general parallel to 4D
Euclid should have said ** nearer to the centre.”

It will be observed that Euclid’s proof differs from that given in our text-
books (which is Simson’s) in that Euclid introduces another line MV, which
is drawn so as to be equal to BZC but at nght angles to £X and therefore
parallel to #G. Simson dispenses with A//V and bases his proof on a similar
proof by Theodosius (Sphaerica 1. 6). He proves that the sum of the squares
on EH, HB is equal to the sum of the squares on £X, KF; whence he
infers that, since the square on E & is less than the square on £X] the square
on BH is greater than the square on FK. It may be that Euclid would have
regarded this as too complicated an inference to make without explanation or
without an increase in the number of his axioms. But, on the other hand,
Euclid himself assumes that the angle subtended at the centre by MWN is
greater ‘than the angle subtended by #G, or, in other words, that Af, /V both
fall outside the triangle FEG. This is a similar assumption to that made in
1L 7, 8, as already noticed; and its truth is obvious because £M, EN, being
radii of the circle, are greater than the distances from £ to the points in which
MN cuts EF, EG, and therefore the latter points are nearer than M, N are to
L, the foot of the perpendicular from E to MN.

Simson adds the converse of the proposition, proving it in the same way
as he proves the proposition itself.

ProrosITION 16.

The straight line drawn at right angles to the diameter
of a civcle from ils extvemity will fall outside the circle, and
tnto the space between the straight line and the circumference
another straight line cannot be interposed ; further the ar;gle
of the semicivcle is greater, and the vemaining angle less, than
any acule rectilineal angle.

Let ABC be a circle about D as centre and A5 as
diameter ;
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I say that the straight line drawn from A at right angles
to A8 from its extremity will fall
outside the circle. B

For suppose it does not, but,
if possible, let it fall within as CA4,
and let DC be joined.

Since DA is equal to DC, d
the angle DAC is also equal to ; Q
the angle ACD. [r 5] s ,

But the angle DAC is right;
therefore the angle ACD is also right:

thus, in the triangle ACD, the two angles DAC, ACD are

equal to two right angles : which is impossible. [r 17]

Therefore the straight line drawn from the point A4 at
right angles to B4 will not fall within the circle.

Similarly we can prove that neither will it fall on the
circumference ;

therefore it will fall outside.

Let it fall as AF;

I say next that into the space between the straight line 4 £
and the circumference C/ZA another straight line cannot be
interposed.

For, if possible, let another straight line be so interposed,
as ?ﬁ, and let DG be drawn from the point D perpendicular
to . ;

Then, since the an%le AGD is right,

and the angle DAG is less than a right angle,
AD is greater than DG. [r 19)

But DA is equal to DH ;

therefore DA is greater than DG, the less than the
greater : which is impossible.

Therefore another straight line cannot be interposed into
the space between the straight line and the circumference.

I say further that the angle of the semicircle contained by
the straight line 54 and the circumference CH A is greater
than any acute rectilineal angle,

and the remaining angle contained by the circumference CH A
and the straight line 4 £ is less than any acute rectilineal angle.

For, if there is any rectilineal angle greater than the
angle contained by the straight line Z4 and the circumference
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CHA, and any rectilineal angle less than the angle contained
by the circumference CH'A4 and the straight line AZ, then
into the space between the circumference and the straight line
AE a straight line will be interposed such as will make an
angle contained by straight lines which is greater than the
ar;gvle contained by the straight line 84 and the circumference
CHA, and another angle contained by straight lines which
is less than the angle contained by the circumference CHA4
and the straight line AZ.
But such a straight line cannot be interposed ;

therefore there will not be any acute angle contained by
straight lines which is greater than the angle contained by
the straight line B4 and the circumference CHA, nor yet
any acute angle contained by straight lines which is less than
the angle contained by the circumference CA.A and the
straight line 4£.—

Porism. . From this it is manifest that the straight line
drawn at right angles to the diameter of a circle from its

extremity touches the circle. 0. E. D.

4 cannot be interposed, literally * will not fall in between” (o0 wapeuwereirar).

This proposition is historically interesting because of the controversies to
which the last part of it gave rise from the 13th to the 17th centuries.
History was here repeating itself, for it is certain that, in ancient Greece, both
before and after Euclid’s time, there had been a great deal of the same sort
of contention about the nature of the ‘“angle of a semicircle” and the
“remaining angle” between the circumference of the semicircle and the
tangent at its extremity. As we have seen (note on 1. Def. 8), the latter angle
had a recognised name, xeparoedys ywvia, Aorn-like or cormicular angle;
though this term does not appear in Euclid, it is often used by Proclus,
evidently as a term well understood. While it is from Proclus that we get the
best idea of the ancient controversies on this subject, we may, I think, infer
their prevalence in Euclid’s time from this solitary appearance of the two
“angles” in the Elements. Along with the definition of the angle of a
segment, it seems to show that, although these angles are only mentioned to
be dropped again immediately, and are of no use in elementary geometry, or
even at all, Euclid thought that an allusion to them would be expected of
him ; it is as if he merely meant to guard himself against appearing to ignore
a subject which the geometers of his time regarded with interest. If this
conjecture is right, the mention of these angles would correspond to the
insertion of definitions of which he makes no use, e.g. those of a rhombus and
a rhomboid.

Proclus has no hesitation in speaking of the “angle of a semicircle” and
the “horn-like angle” as true amgles. Thus he says that “angles are contained
by 2 sr.rn.ight line and a circumference in two ways; for they are either
contained by a straight line and a convex circumference, like. that of the semi-
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circle, or by a straight line and a concave circumference, like the xeparoedys "
(p. 127, 11—14). “There are mixed lines, as spirals, and angles, as the angle
of a semicircle and the xeparoadis” (p. 104, 16—18). The diﬂiculty.wh.lc_h
the ancients felt arose from the very fact which Euclid embodies in this
proposition. ~ Since an angle can be divided by a line, it would seem to be a
magnitude; “but if it is a magnitude, and all homogeneous magnitudes which
are finite have a ratio to one another, then all homogeneous angles, or rather
all those on surfaces, will have a ratio to one another, so that the cornicular
will also have a ratio to the rectilineal. But things which have a ratio to one
another can, if multiplied, exceed one another. Therefore the cormicular
angle will also sometime exceed the rectilineal ; which is impossible, for it is
proved that the former is less than any rectilineal angle” (Proclus, p. 121,
24—122, 6). The nature of contact between straight lines and circles was
also involved in the question, and that this was the subject of controversy
before Euclid’s time is clear from the title of a work attributed to Democritus
(. 420—400 B.C.) Tepi Bacpopijs yrpovos 7 wepl Yavoros xikAov xai opaips,
On a difference in a gnomon or on contact of a circle and a sphere. There 1s,
however, another reading of the first words of this title as given by Diogenes
Laertius (1X. 47), namely mepl Scadpopijs yviuns. On a difference of opinion, etc.
May it not be that neither reading is correct, but that the words should be
mept Suapopijs yovins 4 mepl Yavouwos xixov xai odalpys, On a difference in an
angle or on contact with a drcle and a sphere? There would, of course,
hardly be any “angle” in connexion with the sphere ; but I do not think that
this constitutes any difficulty, because the sphere might easily be tacked on as
a kindred subject to the circle. A curiously similar collocation of words
appears in a passage of Proclus, though this may be an accident. He says
(- 59, 4) wis 8¢ yovidy Stadopis Aéyoper xal adéroeis abrdv ... and then, In
the next line but one, wds 8¢ ras dpas rdv xixdwv 4 rév ebfady, *“In what
sense do we speak of differences of angles and of increases of them ...and in
what sense of the comfacts (or meetings) of circles or of straight lines?”
I cannot help thinking that this subject of cornicular angles would have had
a fascination for Democritus as being akin to the question of infinitesimals,
and very much of the same character as the other question which Plutarch
(On Common Notions, XxX1X. 3) says that he raised, namely that of the
relation between the base of a cone and a section of it by a plane parallel to
the base and apparently, to judge by the context, infinitely near to it: “if
a cone were cut by a plane parallel to its base, what must we think of the
surfaces of the sections, that they are equal or unequal? For, if they are
unequal, they will make the cone irregular, as having many indentations like
steps, and unevennesses; but, if they are equal, the sections will be equal,
and the cone will appear to have the property of the cylinder, as being made
up of equal and not unequal circles, which is the height of absurdity.”

"I'he contributions by Democritus to such investigations are further attested
by a passage in the Method of Archimedes discovered by Heiberg in 1906
(Archimedes, ed. Heiberg, Vol. 11. 1913, p. 430; T. L. Heath, 7% Method
of Archimedes, 1912, p. 13), which says that, though Eudoxus was the first to
discover the scientific proof of the propositions (attributed to him) that the
cone and the pyramid are one-third of the cylinder and prism respectively
which have the same base and equal height, they were first sfafed, without
proof, by Democritus.

A full history of the later controversies about the cornicular “angle”
cannot be given here; more on the subject will be found in Camerer’s
Euclid (Excursus 1v. on 11 16) or in Cantor's Geschichle der Mathematik.
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Vol. 1. (see Contingenswinkel in the index). But the following short note
about the attitude of certain well-known mathematicians to the question will
perhaps not be out of place. Johannes Campanus, who edited Euclid in
the 13th century, inferred from 111. 16 that there was a flaw in the principle
that the transition from the less to the greater, or vice versd, takes place through
all intermediate quantities and therefore through the equal. 1f a diameter of a
circle, he says, be moved about its extremity until it takes the position of the
tangent to that circle, then, as long as it cuts the circle, it makes an acute
angle /ess than the “angle of a semicircle ” ; but the moment it ceases to cut,
it makes a right angle greafer than the same “angle of a semicircle.” The
rectilineal angle is never, during the transition, egua/ to the “angle of a semi-
circle.” There is therefore an apparent inconsistency with x. 1, and Campanus
could only observe (as he does on that proposition), in explanation of the
paradox, that “these are not angles in the same sense (univoce), for the
curved and the straight are not things of the same kind without qualification
(simpliciter).” The argument assumes, of course, that the right angle #s
greater than the “angle of a semicircle.”

Very similar is the statement of the paradox by Cardano (1501—1576),
who observed that @ guantity may continually increase without limit, and
another diminish without limit ; and yet the first, however increased, may be less
than the second, however diminished. The first quantity is of course the angle
of contact, as he calls it, which may be “increased” indefinitely by drawing
smaller and smaller circles touching the same straight line at the same point,
but will always be less than any acute rectilineal angle however small.

We next come to the French geometer, Peletier (Peletarius), who edited the
Elements in 1557,and whose views on this subject seem to mark a great advance.
Peletier’s opinions and arguments are most easily accessible in the account of
them given by Clavius (Christoph Klau[?], 1537—1612) in the 1607 edition of
his Euclid. The violence of the controversy between the two will be understood
from the fact that the arguments and counter-arguments (which sometimes run
into other matters than the particular question at issue) cover, in that book,
26 pages of small print.  Peletier held that the “angle of contact” was not an
angle at all, that the “ contact of two circles,” i.e. the “angle” between the
circumferences of two circles touching one another internally or externally, is
not a guantity, and that the ““contact of a straight line with a circle” is not a
guantity either; that angles contained by a diameter and a circumference
whether inside or outside the circle are »ight angles and equal to rectilineal
right angles, and that angles contained by a diameter and the circumference
in a/ circles are egual. The proof which Peletier gave of the latter pro-
position in a letter to Cardano is sufficiently ingenious. If a greater and
a less semicircle be placed with their diameters terminating at a common
point and lying in a straight line, then (1) the angle of the larger obviously
cannot be /ess than the angle of the smaller. Neither (2) can the former be
greater than the latter; for, if it were, we could obtain another angle of a
semicircle greater still by drawing a still larger semicircle, and so on, until we
should ultimately have an angie of a semicircle greater than a right angle: which
is impossible. Hence the angles of semicircles must all be egual/, and the dif-
ferences between them nothing. Having satisfied himself that all angles of
contact are not-angles, nof-quantities, and therefore nothings, Peletier holds the
difficulty about x. 1 to be at an end. He adds the interesting remark that
the essence of an angle is in cu#fing, not contact, and that a tangent is not
inclined to the circle at the point of contact but is, as it were, fmmersed in it at
that point, just as much as if the circle did not diverge from it on either side.
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The reply of Clavius need not detain us. He argues,’ evidently appealing
to the eye, that the angle of contact ¢an be divided by the arc of a circle
greater than the given one, that the angles of two semicircles of different sizes
cannot be equal, since they do not coincide if they are applied to one another,
that there is nothing to prevent angles of contact from being guantities, it being
only necessary, in view of X. 1, to admit that they are not of the same kind as
rectilineal angles; lastly that, if the angle of contact had been a nothing,
Euclid would not have given himself so much trouble to prove that it is less
than any acute angle. (The word is deswdasset, which is certainly an
exaggeration as applied to what is little more than an ebifer dictum in 11 16.)

Vieta (1540—1603) ranged himself on the side of Peletier, maintaining
that the angle of confact is no angle ; only he uses a new method of proof.
The circle, he says, may be regarded as a plane figure with an infinite number
of sides and angles ; but a straight line touching a straight line, however short
it may be, will cincide with that straight line and will not make an angle.
Never before, says Cantor (11,, p. 540), had it been so plainly declared what
exactly was to be understood by contact.

Galileo Galilei (1564—-1642) seems to have held the same view as Vieta
and to have supported it by a very similar argument derived from the com-
parison of the circle and an inscribed polygon with an infinite number of
sides.

The last writer on the question who must be mentioned is John Wallis
(1616—1703). He published in 1656 a paper entitled De angulo contactus et
semicirculi tractatus in which he also maintained that the so-called angle was
not a true angle, and was not a guantity. Vincent Leotaud (1595—1672)
took up the cudgels for Clavius in his Cyclomathia which appeared in 1663.
This brought a reply from Wallis in a letter to Leotaud dated 17 February,
1667, but not apparently published till it appeared in A defense of the treatise
of the angle of contact which, with a separate title-page, and date 1684, was
included in the English edition of his Algebra dated 1685. The essence of
Wallis' position may be put as follows. According to Euclid’s definition, a
plane angle is an snclination of two lines; therefore two lines forming an angle
must inc/ine to one another, and, if two lines meet without being inclined to
one another at the point of meeting (which is the case when a circumference
is touched by a straight line), the lines do not form an angle. The “angle of
contact ” is therefore no angle, because af the point of contact the straight line
is not inclined to the circle but lies on it dxAwds, or is coincident with it.
Again, as a point is not a line but a degrnning of a line, and a line is not a
surface but a deginning of a surface, so an angle is not the distance between
two lines, but their initial tendency towards separation: Angulus (seu gradus
divaricationis) Distantia non est sed Inceptivus distantiae. How far lines, which
at their point of meeting do not form an angle, separate ffom one another as
they pass on depends on the degree of curvature (gradus curvitatis), and it is
the latter which has to be compared in the case of two lines so meeting. The
arc of a smaller circle is more curved as having as much curvature in a lesser
length, and is therefore curved in a greater degree. Thus what Clavius called
angulus contactus becomes with Wallis gradus curvitatis, the use of which
expression shows that curvature and curvature can be compared according to
one and the same standard. A straight line has the least possible curvature ;
but of the “angle” made by it with a curve which it touches we cannot say that
it is greater or less than the “angle” which a second curve touching the same
straight line at the same point makes with the first curve; for in both cases
there is no true angle at all (cf. Cantor 11, p. 24).
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The words usually given as a part of the corollary ‘““and that a straight line
touches a circle at one point only, since in fact the straight line meeting it'in
two points was proved to fall within it” are omitted by Heiberg as being an
undoubted addition of Theon’s. It was Simson who added the further remark
that “it is evident that there can be but one straight line which touches the
circle at the same point.”

ProprosiTION 17.
From a given point to draw a straight line touching a
grven circle.

Let A4 be the given point, and BCD the given circle ;
thus it is required to draw from the point zg a straight line
touching the circle 2CD.

For let the centre £ of the circle A
be taken ; [u. 1]

let AE be joined, and with centre £
and distance £A let the circle AFG
be described ;

from D let DF be drawn at right
angles to £A4,

and let £F, AB be joined ;

[ say that A2 has been drawn from
the point A touching the cir¢le BCD.

For, since £ is the centre of the circles BCD, AFG,
EA is equal to £F, and ED to EB;

theretore the two sides AZ, £B are equal to the two sides
FE, ED:

and they contain a common angle, the angle at £;
therefore the base DF is equal to the base 425,
and the triangle DEF is equal to the triangle BEA4,
and the remaining angles to the remaining angles ; [r. 4]
therefore the angle £DF is equal to the angle £8A4.
But the angle £DF is right ;
therefore the angle £5A4 is also right.
Now Z£RB is a radius;
and the straight line drawn at right angles to the diameter
of a circle, from its extremity, touches the circle ; [ 16, Por.]
therefore A28 touches the circle ZCD.
Therefore from the given point A4 the straight line 45
has been drawn touching the circle BCD.
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The construction shows, of course, that two straight lines can be drawn
from a given external point to touch a gwen circle; and it is equally obvious
that these two straight lines are equal in length and equally inclined to the
straight line joining the external point to the centre of the given circle.
These facts are given by Heron (an-Nairizi, p. 130).

It is true that Euclid leaves out the case where the given point lies on the
circumference of the circle, doubtless because the construction is so directly
indicated by 111. 16, Por. as to be scarcely worth a separate statement.

An easier solutlon is of course possible as soon as we know (111. 31) that
the angle in a semicircle is a right angle; for we have only to describe a
circle on 4 as diameter, and this circle cuts the given circle in the two points
of contact.

ProrosiTiON 18.

If a straight line touck a circle, and a straight line be
Joined from the centre to the point of contact, the straight line
so joined will be perpendicular to the tangent.

For let a straight line DZ touch the circle 4BC at the
point C, let the centre 7 of the
circle ABC be taken, and let FC
be joined from #to C;

I say that #C is perpendicular to
DE.

For, if not, let #G be drawn
from F perpendicular to DE.
Then, since the angle FGC is
right,
the angle #CG is acute;[1 17]

and the greater angle is subtended
by the greater side ; [1. 19]

therefore #C is greater than FG.
But 7C is equal to FB;
therefore 72 is also greater than FG,
the less than the greater: which is impossible.
Therefore 7G is not perpendicular to DE.

Similarly we can prove that neither is any other straight
line except FC;

therefore ~C is perpendicular to DE.
Therefore etc.

Q. E. D.



. 18, 19] PROPOSITIONS 17—19 45

3. the tangent, # éparroud.

Just as 1. 3 contains two parfial converses of the Porism to 11 1, so
the present proposition and the next give :wo partial converses of the
corollary to n1L. 16. We may show their relation thus: suppose three things,
(1) a tangent at a point of a circle, (2) a straight line drawn from the centre to
the point of contact, (3) right angles made at the point of contact [with (1) or
(2) as the case may be]. Then the corollary to 111 16 asserts that (2) and (3)
together give (1), 111 18 that (1) and (2) give (3), and 1. 19 that (1) and (3)
give (2), Le. that the straight line drawn from the point of contact at right
angles to the tangent passes through the centre.

ProrosiTION 10.

If a straight line touck a circle, and from the point of
contact a straight line be drawn at right angles o the tangent,
the centre of the circle will be on the straight line so drawn.

For let a straight line DE touch the circle 48C at the
point C, and from C let CA be
drawn at right angles to DE;

I say that the centre of the circle
ison AC.

For su it is not, but, if
possible, lefp}sebe the centre, ¢
and let CF be joined.

Since a straight line D £ touches
the circle AB8C,
and FC has been joined from the © c E
centre to the point of contact,

FC is perpendicular to DE ; (1. 18]
therefore the angle #CE is right.

But the angle ACE is also right ;

therefore the angle FCE is equal to the angle ACE,

the less to the greater: which is impossible.

Therefore F is not the centre of the circle 4BC.

Similarly we can prove that neither is any other point
except a point on AC.

herefore etc.

Q. E. D,

We may also regard 1L 19 as a partial converse of ur 18. Thus suppose
(1) a straight line through the centre, (2) a straight line through the point of
contact, and suppose (3) to mean perpendicular to the tangent; then 111 18
asserts that (1) and (2) combined produce (3), and 1. 19 that (2) and (3)
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produce (1); while again we may enunciate a second partial converse of 111. 18,
corresponding to the statement that (1) and (3) produce (2), to the effect that
a straight line drawn through the centre perpendicular to the tangent passes
through the point of contact.

We may add at this point, or even after the Porism to 111. 16, the theorem
that fwo circles whick touch one another internally or externally have a common
langent al their point of contact. For the line joining their centres, produced
if necessary, passes through their point of contact, and a straight line drawn
through that point at right angles to the line of centres is a tangent to both
circles.

ProrosiTiON 20.

In a circle the angle at the centre is double of the angle
at the civcumference, when the angles have the same circum-
JSerence as base.

Let ABC be a circle, let the angle BEZC be an angle
sat its centre, and the angle BAC an
angle at the circumference, and let
them have the same circumference BC
as base;
I say that the angle BEC is double of a
10 the angle BA4C. c
For let AF be joined and drawn
through to 7.
Then, since £4 is equal to £25,
the angle £A4 B is also equal to the
15 angle £8A4 ; [r 5]
therefore the angles £48, EBA are double of the angle
EAB.
But the angle BEF is equal to the angles £4B, EBA;
(1. 32]
therefore the angle BEF is also double of the angle
20 EAB.
For the same reason
the angle /#£C is also double of the angle £A4C.

Therefore the whole angle BEC is double of the whole
angle BAC.
25 Again let another straight line be inflected, and let there
be another angle BDC; let DE be joined and produced
to G.
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Similarly then we can prove that the angle GEC is
double of the angle £DC,

30 of which the angle GE2B is double of the angle £D2B ;

therefore the angle ZEC which remains is double of the
angle BDC.

Therefore etc. Q. E. D.

* a5. let another straight line be inflected, xexhdofw 37 wdhww (without elfeia). The
verh kMdw (to dreak off ) was the regular technical term for drawing from a point a (broken)
straight line which hrst meets another straight line or curve and is then dent dack from it
to another point, or (in other words) for drawing straight lines from two points meeting at a

int on a curve or another straight line. wxexAdefla: is one of the geometrical terms the

efinition of which must according to Aristotle be assumed (Anal. Post, 1. 10, 76 b g).

The early editors, Tartaglia, Commandinus, Peletarius, Clavius and others,
gave the extension of this proposition to the case where the segment is less
than a semicircle, and where accordingly the “angle” corresponding to
Euclid’s “angle at the centre” is greater than two right angles. The
convenience of the extension is obvious, and the proof of it is the same as the
first part of Euclid’s proof. By means of the extension 111. 21 is demonstrated
without making two cases; 111 22 will follow immediately from the fact that
the sum of the “angles at the centre” for two segments making up a whole
circle is equal to four right angles; also 1. 31 follows immediately from the
extended proposition.

But all the editors referred to were forestalled in this matter by Heron, as
we now learn from the commentary of an-Nairizi (ed. Curtze, p. 131 sqq.).
Heron gives the extension of Euclid’s proposition which, he says, it had been
left for him to make, but which is necessary in order that the caviller may not
be able to say that the next proposition (about the equality of the angles
in any segment) is ndt established generally, i.e. in the case of a segment less
than a semicircle as well as in the case of a segment greater than a semicircle,
inasmuch as 111. 20, as given by Euclid, only enables us to prove it in the
latter case. Heron’s enunciation is important as showing how he describes
what we should now call an “angle” greater than two right angles. (The
language of Gherard’s translation is, in other respects, a little obscure; but
the meaning is made clear by what follows.)

“The angle,” Heron says, ‘“which is at the centre of any circle is double
of the angle which is at the circumference of it when one arc is the base of both
angles; and the remaining angles which are at the centre, and fill up the four
right angles, are double of the angle at the circumference of the atc which is
subtended by the [original] angle which is at the centre.”

Thus the *angle greater than two right angles” is for Heron the sum of
certain “angles ” in the Euclidean sense of angles less than two right angles.
The particular method of splitting up which Heron adopts will be seen from
his proof, which is in substance as follows.

Let CDZB be an angle at the centre, (4B that at the circumference.

Produce 8D, CD to F, G;

take any point £ on BC, and join BE, EC, ED.

Then any angle in the segment BAC is half of the angle BDC; and
the sum of the angles BDG, GDF, FDC is double of any angle in the
segmen! BEC.
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Proof. Since CD is equal to ED,
the angles DCE, DEC are equal.

Therefore the exterior angle GDE is equal to
twice the angle DEC.
Similarly the exterior angle FDE is equal to
twice the angle DEB.
By addition, the angles GDE, FDE are double
of the angle BEC.

But

the angle BDC is equal to the angle FDG,

therefore the sum of the angles BDG, GDF, FDC
is double of the angle BEC.

And Euclid has proved the first part of the
prolgoxiition, namely that the angle BDC is double
of the angle BAC.

Now, says Heron, BAC is any angle in the segment BAC, and therefore
any angle in the segment BAC is half of the angle BDC.

Therefore all the angles in the segment BAC are equal.

Again, BEC is any angle in the segment BEC and is equal to Aalf the
sum of the angles BDG, GDF, FDC.

Therefore all the angles in the segment BEC are equal.

Hence 111 21 is proved gemerally.

Lastly, says Heron,
since the sum of the angles BDG, GDF, FDC is double of the angle BEC,
and the angle BDC is double of the angle BAC,

therefore, by addition, the sum of four right angles is double of the sum of
the angles BAC, BEC.

Hence the angles BAC, BEC are together equal to two right angles, and
111 22 is proved.

The above notes of Heron show conclusively, if proof were wanted, that
Euclid had no idea of 11 zo applying in ferms (either as a matter of
enunciation or proof) to the case where the angle at the circumference, or the
angle in the segment, is odfuse. He would not have recognised the “angle”
greater than two right angles or the so-called “straight angle” as being an
angle at all. This is indeed clear from his definition of an angle as the
inclination x.7.&, and from the language used by other later Greek mathe-
maticians where there would be an opportunity for introducing the extension.
Thus Proclus’ notion of a “four-sided triangle” (cf. the note above on the
definition of a triangle) shows that he did not count a re-entrant angle as an
angle, and Zenodorus’ application to the same figure of the word *hollow-
angled ” shows that in that case it was the exterior angle only which he would
have called an angle. Further it would have been inconvenient to have
introduced at the beginning of the Elements an “angle” equal to or greater
than two right angles, because other definitions, e.g. that of a right angl,
would have needed a qualification. If an “angle” might be equal to two
right angles, one straight line in a straight line with another would have
satisfied Euclid’s definition of a right angle. This is noticed by Dodgson
(p. 160), but it is practically brought out by Proclus on 1. 13. “For he did
not merely say that ‘any straight line standing on a straight line either makes
two right angles or angles equal to two right angles’ but ‘if i make angles’
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If it stand on the straight line at its extremity and make one angle, is it
possible for this to be equal to two right angles? It is of course impossible ;
Jor every rectilineal angle is less than two right angles, as every solid angle is
less than four right angles (p. 292, 13—20).” [It is true that it has been
generally held that the meaning of “angle” is tacitly extended in vL 33, but
there is no real ground for this view. See the note on the proposition.

It will be observed that, following his usual habit, Euclid omits the
demonstration of the case which some editors, e.g. Clavius, have thought it
necessary to give separately, the case namely where one of the lines forming
the angle in the segment passes through the centre. Euclid’s proof gives so
obviously the means of proving this that it is properly left out.

Todhunter observes, what Clavius had also remarked, that there are two
assumptions in the proof of 111. 20, namely that, if A is double of B and C
double of D, then the sum, or difference, of 4 and C is equal to double the
sum, or difference, of B and D respectively, the assumptions being particular
cases of v. 1 and v. 5. But of course it is easy to satisfy ourselves of the
correctness of the assumption without any recourse to Book v.

ProrosiTiON 21.

In a civcle the angles in the same segment are equal to one
another.

Let ABCD be a circle, and let the angles 84D, BED
be angles in the same segment BAED;
I say that the angles 84D, BED are
equal to one another.
For let the centre of the circle
ABCD be taken, and let it be F; let
BF, FD be joined.
Now, since the angle BFD is at
the centre, o

and the angle BAD at the circum-
ference,
and they have the same circumference BCD as base,
therefore the angle BFD is double of the angle BAD. [u. 20]
For the same reason
the angle BFD is also double of the angle BED ;

therefore the angle BA4D is equal to the angle BED.
Therefore etc.
Q. E. D.

Under the restriction that the “angle at the centre” used in 111. 20 must
be less than two right angles, Euclid’s proof of this proposition only applies
to the case of a segment greater than a semicircle, and the case of a segment
equal to or less than a semicircle has to be considered separately. The
simplést proof, of many, seems to be that of Simson.
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“But, if the segment BAED be not greater than a semicircle, let BA4D,
BED be angles in it: these also are equal to one
another.

Draw 4F'to the centre, and produce it to C, and
join CE.

Therefore the segment BADC is greater than a
semicircle, and the angles in it B4 C, BEC are equal,
by the first case.

For the same reason, because CBED is greater
than a semicircle,

the angles CA.D, CE.D are equal.
Therefore the whole angle BA.D is equal to the whole angle BED.”

We can prove, by means of reductio ad absurdum, the important converse
of this proposition, namely that, if there be any two triangles on the same base
and on the same side of it, and with equal vertical angles, the drcle passing
through the extremilies of the base and the vertex of ome triangle will pass
through the wvertex of the other triangle also. That a circle can be thus
described about a triangle is clear from Euclid’s construction in 11 g, which
shows hew to draw a circle passing through any three points, though it is
in 1v. 5 only that we have the problem stated. Now,
suppose a circle BAC drawn through the angular D
points of a triangle BAC, and let BDC be another A
triangle with the same base BC and on the same side
of it, and having its vertical angle D equal to the
angle 4. Then shall the circle pass through D.

For, if it does not, it must pass through some point
E on BD or on BD produced. If then EC be
joined, the angle BEC is equal to the angle BAC,
by m1 21, and therefore equal to the angle BDC.

Therefore an exterior angle of a triangle is equal to
the interior and opposite angle: which is impossible, by 1. 16.

Therefore D lies on the circle BAC.

Similarly for any other triangle on the base BC and with vertical angle
equal to 4. Thus, §f any number of triangles be constructed on the same base
and on the same side of it, with equal vertical angles, the vertices will all lie on
the circumference of a segment of a cirdle.

A useful theorem derivable from nL 21 is given by Serenus (De sectione
coni, Props. 52, 53).

If ADB be any segment of a circle, and C be such a point on the
circumference that 4C is equal to CB, and if
there be described with C as centre and radius E
CA4 or CB the circle AHB, then, ADB being
any other angle in the segment 4CB5, and BD
being produced to meet the outer segment in
£, the sum of 4D, DB is equal to BE. E

If BC be produced to meet the outer
segment in &, and 74 be joined,

CA, CB, CF are by hypothesis equal.

Therefore the angle #AC is equal to the
angle AFC.
Also, by 11, 21, the angles 4CB, ADB are equal ;
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therefore their supplements, the angles 4CF, ADE, are equal
Further, by 11 21, the angles 4 £B, AFB are equal.
Hence in the triangles 4CF, 4 DE two angles are respectively equal ;
therefore the third angles £4.D, FA4C are equal.
Bult‘ g;) angle #4C is equal to the angle 4FC, and therefore equal to the
e .
Therefore the angles AED, EAD are equal, or the triangle DEA is
isosceles,

and 4D is equal to DE.

Adding BD to both, we see that
BE is equal to the sum of 4D and DBA.

Now, BF being a diameter of the circle of which the outer segment is

a part,
BF is greater than BE;

therefore AC, CB are together greater than 4D, DB.

And, generally, of all triangles on the same base and on the same side of st
which have equal vertical angles, the isosceles triangle is that which has the
grealest perimeler, and of the others that has the lesser perimeter which is
Surther from being isosceles.

The theorem of Serenus gives us the means of solving the following
problem given in, Todhunter’s Euclid, p. 324.

T find a point in the circumference of a given segment of a dircle such that
the straight lines whick join the point to the extremities of the siraight line on
whick the segment stands may be together equal to a given straight line (the
length of which is of course subject to limits).

Let ACB in the above figure be the given segment. Find, by bisecting
AR at right angles, a point C on it such that 4C is equal to C5.

Then with centre C and radius CA4 or CB describe the segment of a
circle AHB on the same side of AB.

Lastly, with 4 or B as centre and radius equal to the given straight line
describe a circle. ‘This circle will, if the given straight line be greater than
AR and less than twice 4 C, meet the outer segment in two points, and if we
join those points to the centre of the circle last drawn (whether A or B), the
joining straight lines will cut the inner segment in points satisfying the given
condition. If the given straight line be egua/ to twice 4C, C is of course
the required point. If the given straight line be greater than twice 4C, there
is no possible solution.

ProrosITiON 22.

The opposite angles of quadrilaterals in circles are equal
to two right angles.

Let ABCD be a circle, and let ABCD be a quadrilateral
in it;
| say that the opposite anglcs are equal to two right angles.

Let AC, BD be joined.

Then, since in any triangle the three angles are equal to
two right angles, [1. 32)
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the three angles CAB, ABC, BCA of the triangle 4BC
are equal to two right angles.

But the angle CAZB is equal to the
angle BDC, for they are in the same
segment BADC; (. 21]
and the angle ACA is equal to the angle
ADB, for they are in the same segment
ADCB;
therefore the whole angle 40C is equal
to the angles BAC, ACB.

Let the angle 45C be added to each ;
therefore the angles ABC, BAC, ACB are equal to the
angles 4BC, ADC.

But the angles 4B8C, BAC, ACB are equal to two right
angles;
therefore the angles AB8C, ADC are also equal to two right
angles,

Similarly we can prove that the angles 4D, DCB are
also equal to two right angles.

Therefore etc.

Q. E. D,

As Todhunter remarks, the converse of this proposition is true and very
important : if fwo opposite angles of a quadrilateral be fogether equal to two
right angles, a circle may be circumscribed about the quadrilateral. We can, by
the method of 11 g, or by 1v. 5, circumscribe a circle about the triangle
ABC; and we can then prove, by reductic ad absurdum, that the circle
passes through the fourth angular point D.

ProrosiTION 23.

On the same straight line there cannot be constructed two
similar and unequal segments of circles on the same side.

For, if possibie, on the same straight line 45 let two
similar and unequal segments of circles
ACB, ADB be constructed on the same 3
side ; <
let ACD be drawn through, and let CB, ZZ— ° ~\
DB be joined. “
Then, since the segment ACH is
similar to the segment ADB,
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and similar segments of circles are those which admit equal

angles, {nn. Def. 11]
the angle 4CAB is equal to the angle 4D 25, the exterior
to the interior : which is impossible. [r. 16]

Therefore etc.
Q. E. D.

1. cannot be constructed, od cvoraffcera, the same phrase as in 1. 7.

Clavius and the other early editors point out that, while the words “on
the same side” in the enunciation are necessary for Euclid’s proof, it is
equally true that neither can there be two similar and unequal segments on
opposite sides of the same straight line ; this is at once made clear by causing
one of the segments to revolve round the base till it is on the same side with
the other.

Simson observes with reason that, while Euclid in the following proposition,
11l. 24, thinks it necessary to dispose of the hypothesis that, if two similar
segments on equal bases are applied to one another with the bases coincident,
the segments cannot cut in any other point than the extremities of the base
(since otherwise two circles would cut one another in more points than two),
this remark is an equally necessary preliminary to 111. 23, in order that we
may be justified in drawing the segments as being one inside the other.
Simson accordingly begins his proof of 1. 23 thus:

“ Then, because the circle 4CB cuts the circle 4DB in the two points
A, B, they cannot cut one another in any other point :

One of the segments must therefore fall within the other.
Let ACB fall within 408 and draw the straight line 4CD, etc.”

Simson has also substituted “not coinciding with one another” for
“unequal” in Euclid’s enunciation.

Then in 11 24 Simson leaves out the words referring to the hypothesis
that the segment 4 %5 when applied to the other C#D may be * otherwise
placed as CGD”; in fact, after stating that 48 must coincide with CD, he
merely adds words quoting the result of 11 23: “Therefore, the straight line
A B coinciding with C.D, the segment 4£8 must coincide with the segment
CFD, and is therefore equal to it.”

PRroposITION 24,

Similar segments of circles on equal straight lines are equal
to one another.

For let AEB, CFD be similar segments of circles on
equal straight lines 47, CD ;
s I say that the segment 4AZ£25 is equal to the segment CFD.
For, if the segment 4A£2B be applied to CFD, and if the
point A4 be placed on C and the straight line 48 on CD,
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the point 2 will also coincide with the point D, because
ARB is equal to CD;

1o and, A8 coinciding with CD,
the segment A EZB will also coincide with CFD.

E F G
For, if the straight line 48 coincide with CD but the
segment 4 EZB do not coincide with CFD,

it will either fall within it, or outside it ;

15 or it will fall awry, as CGD, and a circle cuts a circle at more
points than two : which is impossible. (1. 10)

Therefore, if the straight line 453 be applied to CD, the
segment A £2 will not fail to coincide with CFD also ;
therefore it will coincide with it and will be equal to it.
2 Therefore etc.
Q. E. D.
15. fall awry, wapadhdfet, the same word as used in the like case in 1. 8. The word

implies that the lied figure will partly fall short of, and partly overlap, the figure to
which it is a.ppllesp

Compare the note on the last proposition. I have put a semicolon instead
of the comma which the Greek text has after ‘““outside it,” in order the better
to indicate that the inference ‘“‘and a circle cuts a circle in more points than
two” only refers to the third hypothesis that the applied segment is “otherwise
placed (wapaAAdfe) as CGD.” The first two hypotheses are disposed of by
a Zacit reference to the preceding proposition 111. 23.

ProrosiTION 25.
Given a segment of a civcle, to describe the complete circle
of whick it is a segment.
Let ABC be the given segment of a circle ;

thus it is required to describe the complete circle belonging
to the segment ABC, that is, of which it is a segment.

For let AC be bisected at D, let DB be drawn from the
point D at right angles to AC, and let 425 be joined ;
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the angle 48D is then greater than, equal to, or less
than the angle BAD.
First let it be greater;

and on the straight line B4, and at the point 4 on it, let
the angle BAE be constructed equal to
the angle A8D; let DB be drawn through A

to £, and let £C be joined.
Then, since the angle 4BE is equal to A
8 E

the angle BAE,

the straight line £8 is also equal to ‘V
EA. [r 6]

And, since AD is equal to DC,
and DE is common,
the two sides AD, DE are equal to the two sides CD, DE
respectively ;
a_m:}l1 the angle ADE is equal to the angle CDE, for each is
right ;
therefore the base 4 £ is equal to the base CE.
But AE was proved equal to BE ;
therefore BE is also equal to C£ ;
therefore the three straight lines 4 £, £B, EC are equal to
one another.

Therefore the circle drawn with centre £ and distance
one of the straight lines 4Z, £B, EC will also pass through
the remaining points and will have been completed. [1 9]

Therefore, given a segment of a circle, the complete circle
has been described.

And it is manifest that the segment 48C is less than a
semicircle, because the centre £ happens to be outside it.

Similarly, even if. the angle 48D be equal to the angle
BAD,

AD being equal to each of the two BD, DC,

the three straight lines D4, DB, DC will
be equal to one another,

D will be the centre of the completed circle,
and ABC will clearly be a semicircle.
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But, if the angle 48D be less than the angle BAD,

and if we construct, on the straight line B4
and at the point 4 on it, an angle equal to

the angle ABD, the centre will fall on DB A
within the segment 4BC, and the segment
ABC will clearly be greater than a semi- ® 9
circle.

Therefore, given a segment of a circle, g
the complete circle has been described.

Q E. F.
1. to describe the complete circle, rposaraypdiar rov xixhor, literally *to describe

the circle om fo it.’

It will be remembered that Simson takes first the case in which the angles
ABD, BAD are equal to one another, and then takes the other two cases
together, telling us to “produce B0, if necessary.” This is a little shorter
than Euclid’s procedure, though Euclid does not repeat the proof of the first
case in giving the third, but only refers to it as equally applicable.

Campanus, Peletarius and others give the solution of this problem in
which we take two chords not parallel and bisect each at right angles by
straight lines, which must meet in the centre, since each contains the centre
and they only intersect in one point. Clavius, Billingsley, Barrow and others
give the rather simpler solution in which the two chords have one extremity
common (cf. Euclid’s proofs of 111 9, 10). This method De Morgan favours,
and (as noted on mL 1 above) would make mr 1, this proposition, and
1v. 5 all corollaries of the theorem that “the line which bisects a chord
perpendicularly must contain the centre.” Mr H. M. Taylor practically
adopts this order and method, though he finds the centre of a circle by
means of any two non-parallel chords; but he finds #ke centre of the circle of
which a given arc is a par! (his proposition corresponding to 1i1. 25) by
bisecting at right angles first the base and then the chord joining one extremity
of the base to the point in which the line bisecting the base at right angles
meets the circumference of the segment. Under De Morgan’s alternative the
relation between Euclid 11. 1 and the Porism to it would be reversed, and
Euclid’s notion of a Porism or corellary would have to be considerably
extended.

If the problem is solved after the manner of 1v. s, it is still desirable to
state, as Euclid does, after proving 4E, EB, EC to be all equal, that “the
circle drawn with centre £ and distance one of the straight lines AE, EB,
EC will also pass through the remaining points of the segment” [111. 9], in
order to show that part of the circle described actually coincides with the

iven segment. This is not so clear if the centre is determined as the
intersection of the straight lines bisecting at right angles chords which join
pairs of four different points.

ProrosiTiON 26.

In equal circles equal angles stand on equal crrcumferences,
whether they stand at the centres or at the circumferences.
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Let ABC, DEF be equal circles, and in them let there
be equal angles, namely at the centres the angles BGC,
EHF, and at the circumferences the angles BAC, EDF;

I say that the circumference BXC is equal to the circum-
ference ELF.

For let BC, EF be joined.
Now, since the circles ABC, DEF are equal,

the radii are equal.
Thus the two straight lines BG, GC are equal to the
two straight lines £A4, AF;
and the angle at G is equal to the angle at /&;
therefore the base BC is equal to the base £F. [ 4]
And, since the angle at A is equal to the angle at D,
the segment BAC is similar to the segment EDF;
[11. Def. 11]
and they are upon equal straight lines.
But similar segments of circles on equal straight lines are
equal to one another ; [1m1. 24)
therefore the segment BAC is equal to £DF.

But the whole circle 48C is also equal to the whole circle
DEF;

therefore the circumference BKC which remains is equal to
the circumference £LF.

Therefore etc. Q. E. D.

As in 111, 21, if Euclid’s proof is to cover all cases, it requires us to take
coimmnce of “angles at the centre” which are equal to or greater than two
right angles. Otherwise we must deal separately with the cases where the
angle at the circumference is equal to or greater than a right angle. The
case of an obfuse angle at the circumference can of course be reduced by
means of I11. 22 to the case of an acute angle at the circumference; and, in
case the angle at the circumference is right, it is readily proved, by drawing
the radii to the vertex of the angle and to the other extremities of the lines
containing it, that the latter two radii are in a straight line, whence they make
equal bases in the two circles as in Euclid’s proof.



58 BOOK III [11. 26, 27

Lardner has another way of dealing with the right angle or obtuse angle
at the circumference. In either case, he says, “bisect them, and the halves
of them are equal, and it can be proved, as above, that the arcs upon which
these halves stand are equal, whence it follows that the arcs on which the
given angles stand are equal.”

ProrosiTiON 27.

In equal circles angles standing on equal circumferences
are equal to one another, whether they stand at the centres or
at the circumferences.

For in equal circles AB8C, DEF, on equal circumferences
BC, EF, let the angles BGC, EHF stand at the centres G,
H, and the angles BAC, EDF at the circumferences ;

I say that the angle BGC is equal to the angle £HF,
and the angle BZA4C is equal to the angle £EDF.

For, if the angle ZGC is unequal to the angle £/F,

one of them is greater.

Let the angle BGC be greater : and on the straight line ZG,
and at the point G on it, let the angle ZGK be constructed

equal to the angle £AHF. [1. 23]
Now equal angles stand on equal circumferences, when
they are at the centres ; [ 26]

therefore the circumference BX is equal to the circum-
ference EF.

But £F is equal to BC ;

therefore BK is also equal to BC, the less to the
greater : which is impossible.

Therefore the angle BGC is not unequal to the angle
EHF,
therefore it is equal to it.
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And the angle at A4 is half of the angle BGC,
and the angle at D half of the angle £EHF; (1. 20]
therefore the angle at A is also equal to the angle at D.
Therefore etc.
Q. E, D.

This proposition is the converse of the preceding one, and the remarks
about the method of treating the different cases apply here also.

ProrosiTioN 28.

I'n equal civcles equal straight lines cut off equal civcum-
Serences, the greater equal to the greater and the less lo the
less.

Let ABC, DEF be equal circles, and in the circles let
AB, DE be equal straight lines cutting off ACB, DFE as
greater circumferences and 4GB, DHE as lesser;

I say that the greater circumference 4CAB is equal to the
greater circumference JFE, and the less circumference 4GB

to DHE.

G

For let the centres X, L of the circles be taken, and let
AK, KB, DL, LE be joined.
Now, since the circles are equal,
the radii are also equal ;
therefore the two sides 4K, KB are equal to the two
sides DL, LE;
and the base 425 is equal to the base DE;
therefore the angle 4KXB is equal to the angle DLE.

[1. 8]
But equal angles stand on equal circumferences, when
they are at the centres; [111. 26]

therefore the circumference AGZA is equal to DHE.
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And the whole circle 4BC is also equal to the whole
circle DEF;
therefore the circumference 4CA which remains is also equal
to the circumference DFE which remains.

Therefore etc.
Q. E. D.

Euclid’s proof does not in terms cover the particular case in which the
chord in one circle passes through its centre; but indeed this was scarcely
worth giving, as the proof can easily be supplied. Since the chord in one
circle passes through its centre, the chord in the second circle must also be a
diameter of that c1rcle, for equal circles are those which have equal diameters,
and all other chords in any circle are less than its diameter [111. 15]; hence
the segments cut off in each circle are semicircles, and these must be equal
because the circles are equal.

ProrosiTiON 29,

In equal civcles equal circumferences are subtended by equal
straight lines.

Let ABC, DEF be equal circles, and in them let equal
circumferences BGC, EHF be cut off; and let the straight
lines BC, EF be joined ;

I say that BC is equal to £F.

For let the centres of the circles be taken, and let them
be X, L ; let BK, KC, EL, LF be joined.
Now, since the circumference BGC is equal to the
circumference £ HF,
the angle BKC is also equal to the angle: £LF. [ 27)
And, since the circles 48C, DEF are equal,
the radii are also equal ;
therefore the two sides BK, KC are equal to the two sides
EL, LF; and they contain equal angles;
therefore the base BC is equal to the base £/. [ 4]
Therefore etc.
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The particular case of this converse of 11 28 in which the given arcs are
arcs of semicircles is even easier than the corresponding case of 111. 28 itself.

The propositions 111, 26—29 are of course equally true if the same circle
is taken instead of fwe egual circles.

ProrosITION 30.
To bisect a given civcumference.

Let ADZB be the given circumference ;
thus it is required to bisect the circumference 405.
Let 4B be joined and bisected at

C; from the point C let CD be drawn D
at rifht angles to the straight line 425,
and let 4D, DB bejoine :
Then, since AC is equal to C25, A c 8

and CD is common,
the two sides AC, CD are equal to the two sides BC, CD;
and the angle ACD is equal to the angle BCD, for each is
right ;
therefore the base 4D is equal to the base DB. |1 4]

But equal straight lines cut off equal circumferences, the
greater equal to the greater, and the less to the less; [u. 28]

and each of the circumferences AD, DB is less than a
semicircle ;

therefore the circumference 40 is equal to the circum-
ference DA.

Therefore the given circumference has been bisected at
the point D.
Q. E. F.

ProrosiTION 31.

In a circle the angle in the semicivcle is right, that in a
greater segment less than a right angle, and that in a less
segment grealer than a right angle ; and further the angle of
the greater segment is greater than a right angle, and the angle
of the less segment less than a right angle.
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Let ABCD be a circle, let BC be its diameter, and £ its
centre, and let B4, AC, AD, DC
be joined ;
I say that the angle BAC in the )
semicircle BAC is right,
the angle A8C in the segment 48C
greater than the semicircle is less
than a right angle,
and the angle 4DC in the segment
ADC less than the semicircle is
greater than a right angle.
Let AE be joined, and let B4
be carried through to 7.
Then, since BE is equal to £4,
the angle 4 BE is also equal to the angle BAE, [ 5]
Again, since C£ is equal to £4,
the angle ACE is also equal to the angle CAE. [r 5]
Therefore the whole angle BA4C is equal to the two angles
ABC, ACB.
But the angle 74 C exterior to the triangle 4BC is also

equal to the two angles 48C, ACB; [r. 32
therefore the angle BA4C is also equal to the angle FAC;
therefore each is right; [1. Def. 10]

therefore the angle B4C in the semicircle BAC is right.

Next, since in the triangle ABC the two angles 458C,
BAC are less than two right angles, [r 17]
and the angle ZA4C is a right angle,

the angle 4 BC is less than a right angle ;

and it is the angle in the segment 4BC greater than the
semicircle.

Next, since 4B8CD is a quadrilateral in a circle,
and the opposite angles of quadrilaterals in circles are equal
to two right angles, (111. 22]
while the angle 48C is less than a right angle,
therefore the angle 4DC which remains is greater than a
right angle ;
a_nd] it is the angle in the segment ADC less than the semi-
circle.
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I say further that the angle of the greater segment, namely
that contained by the circumference ABC and the straight
line AC, is greater than a right angle ;
and the an ?eof the less segment, namely that contained by
the circumference 4 DC and the straight line 4C, is less than
a right angle.

This is at once manifest.

For, since the angle contained by the straight lines 84, AC
is right,

the angle contained by the circumference ABC and the
straight line 4C is greater than a right angle.

Again, since the angle contained by the straight lines
AC, AF is right,

the angle contained by the straight line CA4 and the
circumference ADC is less than a right angle.

Therefore etc. Q. E. D.

As already stated, this proposition is immediately deducible from n1. 2o if
that theorem is extended so as to include the case where the segment is equal
to or less than a semicircle, and where consequently the “ angle at the centre”
is equal to two right angles or greater than two right angles respectively.

There are indications in Aristotle that the proof of the first part of the
theorem in use before Euclid’s time proceeded on different lines. Two

ges of Aristotle refer to the proposition that the angle in a semicircle
1s a right angle. The first passage is 4nal. Post. 11. 11, 94 a 28: “Why is
the tmgle in a semicircle a right angle? Or what makes it a right angle?
(rivos dvros opbij;) Suppose A to be a right angle, B half of two right
angles, C the angle in a semicircle. Then B is the cause of 4, the right
angle, being an attribute of C, the angle in the semicircle. For B is equal to
A, and Cto B; for C is half of two right angles. Therefore it is in virtue of
B being half of two right angles that j is an attribute of C ; and the latter
means the fact that the angle in a semicircle is right.” Now this passage
by itself would be consistent with a proof like Euclid’s or the alternative
interpolated proof next to be mentioned. But the second passage throws a
different light on the subject. Thisis Mergpﬁ. 1051 a 26 : “Why is the angle
in a semicircle a right angle invariably (xafidhov)? Because, if there be three
straight lines, two forming the base, and the third set up at right angles at its
middle point, the fact is obvious by simple inspection to any one who knows
the property referred to” (éxeivo is the property that the angles of a triangle
are together equal to two right angles, mentioned two
lines before). That is to say, the angle af the middle
point of the circumference of the semicircle was taken
and proved, by means of the two isosceles right-angled
triangles, to be the sum of two angles each equal to [/
one-fourth of the sum of the angles of the large triangle
in the figure, or of two right angles; and the proof
must have been completed by means of the theorem of 1. 21 (that angles
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in the ees\‘:l.snne segment are equal), which Euclid’s more general proof does
not need.

In the Greek texts before that of August there is an alternative proof
that the angle ZAC (in a semicircle) is right. August and Heiberg relegate
it to an Appendix.

“ Since the angle AZC is double of the angle BAE (for it is equal to the
two interior and opposite angles), while the angle 4£2 is also double of the
angle £A4C,

the angles 4£8, AEC are double of the angle BAC.

But the angles A EB, AEC are equal to two right angles ;

therefore the angle B4 C is right.”

Lardner gives a slightly different proof of the second part of the theorem.
If ABC be a segment greater than a semicircle,
draw the diameter 4.0, and join CD, CA.
Then, in the triangle 4CD, the angle 4CD is right
(being the angle in a semicircle) ;
therefore the angle 4.DC is acute.
But the angle 4DC is equal to the angle 4BC in
the same segment ;
therefore the angle ABC is acute.

Euclid’s references in this proposition to the angle of a segment greater
or less than a semicircle respectively seem, like the part of 11. 16 relating to
the angle of a semicircle, to be a survival of ancient controversies and not to
be put in deliberately as being an essential part of elementary geometry. Cf.
the notes on 1. Def. 7 and 1. 16.

The corollary ordinarily attached to this proposition is omitted by Heiberg
as an interpolation of date later than Theon. It is to this effect: “ From
this it is manifest that, if one angle of a triangle be equal to the other two,
the first angle is right because the exterior angle to it is also equal to the
same angles, and if the adjacent angles be equal, they are right.” No doubt
the corollary is rightly suspected, because there is no neoaslty for it here, and
the words owep &« deifar come before it, not after it, as is usual with Euclid.
But, on the other hand, as the fact stated does appear in the proof of n1 31,
the Porism would be a Porism after the usual type, and I do not quite follow
Heiberg’s argument that, “if Euclid had wished to add it, he ought to have
placed it after 1. 32

It has already been mentioned above (p. 44) that this proposition supplies
us with an alternative construction for the Problem in 1L 17 of drawing the
two tangents to a circle from an external point.

Two theorems of some historical interest which follow directly from 1. 31
may be mentioned.

The first is a lemma of Pappus on *the
24th problem ” of the second Book of Apol-

lonius’ lost treatise on vedoeas (Pappus viL

p- 812) and is to this effect. If a circle, as ‘
DEF, pass through D, the centre of a circle /

A}JC' and if through %, the other point in

which the line of centres meets the circle A

DEF, any straight line be drawn (and produced

if nec&ssary) meeting the circle DEF in £ and the circle 48C in B, G,
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t!ien E is the middle Evoint of BG. For, if DE be joined, the angle DEF
(in a semicircle) is a right angle [u1. 31]; and DE, being at right angles to
the chord BG of the circle 4BC, also bisects it [11. 3].

The second is a proposition in the Liber Assumptorum, attributed (no
doubt erroneously as regards much of it) to Archimedes, which has reached
us through the Arabic (Archimedes, ed. Heiberg, 11. pp. 520—521).

If two chords AB, CD in a dircle intersect at right angles in a point O,
then the sum of the squares on AO, BO, CO, DO is egual to the square on the
diameter.

For draw the diameter CZ, and join AC, CB, AD, BE.

D E

Then the angle CAO is equal to the angle CEB. (This follows, in the
first figure, from 111. 21 and, in the second, from 1. 13 and 1. 22.) Also the
angle COA, being right, is equal to the angle CBE which, being the angle in a
semicircle, is also right 111 31].

Therefore the triangles 40C, EBC have two angles equal respectively ;
whence the third angles 4C0O, ECB are equal. (In the second figure the
angle ACO is, by 1. 13 and 11 22, equal to the angle 48D, and therefore
the angles 48D, ECB are equal.)

Therefore, in both figures, the arcs 4.0, BE, and consequently the chords
AD, BE subtended by them, are equal. ut. 26, 29]

Now the squares on 40, DO are equal to the square on 4D [1. 47), that
is, to the square on BE.

And the squares on CO, BO are equal to the square on BC.

Therefore, by addition, the squares on 40, BO, CO, DO are equal to the
squares on £B, BC, i.e. to the square on CE. [r. 47]

ProrosiTION 32,

If a straight line touch a circle, and from the point of
contact theve be drawn acvoss, in the circle, a straight line
cutting the circle, the angles which it makes with the tangent
will be equal to the angles in the alternate segments of the
circle.

For let a straight line £F touch the circle AB8CD at
the point B, and from the point 2 let there be drawn across,
in the circle ABCD, a straight line 2D cutting it;

I say that the angles which 20 makes with the tangent £/
will be equal to the angles in the alternate segments of the
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circle, that is, that the angle FBD is equal to the angle
constructed in the segment BAD, and the angle £BD is
equal to the angle constructed in the
segment DCB. A
For let BA be drawn from B at S
right angles to £F,
let a point C be taken at random on
the circumference BD,
and let 4D, DC, CB be joined.
Then, since a straight line £F
touches the circle ABCD at B, B
and B4 has been drawn from the point
of contact at right angles to the tangent,
the centre of the circle ABCD is on BA. (1. 19)
Therefore BA is a diameter of the circle ABCD ;
therefore the angle AD2B, being an angle in a semicircle,

is right. [n 31)
Therefore the remaining angles 84D, AB1) are equal to
one right angle. (1. 32)

But the angle ABF is also right;
therefore the angle 4B F is equal to the angles 84D, ABD.
Let the angle 48D be subtracted from each ;
therefore the angle DB F which remains is equal to the angle
BAD in the alternate segment of the circle.
Next, since ABCD is a quadrilateral in a circle,
its opposite angles are equal to two right angles. (1 22)
But the angles DBF, DBE are also equal to two right
angles;
therefore the angles DBF, DBE are equal to the angles
BAD, BCD,
of which the angle B4 was proved equal to the angle
DBF,
therefore the angle DBZE which remains is equal to the
angle DCBA in the alternate segment DCZB of the circle.
Therefore etc. Q. E. D.

The converse of this theorem is true, namely that, Jf a straight line
drawn through one extremity of a chord of a circle make with that chord
angles equal respectively to the angles in the alternate segments of the circle,
the straight line so drawn louches the circle.
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This can, as Camerer and Todhunter remark, be proved indirectly ; or we
may prove it, with Clavius, directly. Let B.D be the given chord, and let £F
be drawn through 2 so that it makes with B2 angles equal to the angles in
the alternate segments of the circle respectively.

. Let BA be the diameter through B, and let C be any point on the
%rz'umcfzrence of the segment DCB which does not contain 4. Join 4D,

Then, since, by hypothesis, the angle #BD is equal to the angle BAD,

let the angle 48D be added to both;
therefore the angle 4B Fis equal to the angles 48D, BAD.,

But the angle BD4, being the angle in a semicircle, is a right angle ;

therefore the remaining angles 48D, BRAD in the triangle 48D are
equal to a right angle.

Therefore the angle 4BFis right ;
hence, since B4 is the diameter through B,

EF touches the circle at B. [111. 16, Por.]

Pappus assumes in one place (1v. p. 196) the consequence of this
proposition that, Jf fwo circles touch, any straight line drawn through the point
of contact and ferminated by both circles cuts off segments in each whick are
respectively similar. Pappus also shows how to prove this (viL p. 826) by
drawing the common tangent at the point of contact and using this proposition,
1L 32.

ProrosiTION 33.

On a given straight line to describe a segment of a circle
admitting an angle equal to a given rectilineal angle.

Let A5 be the given straight line, and the angle at C the
given rectilineal angle ;
thus it is required to describe -

on the given straight line e
AB a segment of a ci:l'cle aﬁl—

mitting an angle equal to the

angle at C. A1:; G

The angle at C is then 8
acute, or right, or obtuse.
First let it be acute,

and, as in the first figure, on
the straight line 4.8, and at the point 4, let the angle 24D
be constructed equal to the angle at C;
therefore the angle BAD is also acute.
Let AE be drawn at right angles to DA, let AB be

-
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bisected at %, let /G be drawn from the point / at right
angles to 45, and let GZ be joined.

Then, since AF is equal to F2,
and FG is common,
the two sides AF, FG are equal to the two sides BF, FG;
and the angle AFG is equal to the angle BFG ;
therefore the base 4G is equal to the base BG. [u 4]

Therefore the circle described with centre G and distance
GA will pass through B also.
Let it be drawn, and let it be ABE ;

let £2 be joined.

Now, since AD is drawn from A, the extremity of the
diameter A4 E, at right angles to AE,

therefore 4D touches the circle ABE. [111. 16, Por.]
Since then a straight line 4D touches the circle 4BE,

and from the point of contact at 4 a straight line 45 is
drawn across in the circle 4 BE,

the angle DA 2B is equal to the angle 4 £2 in the alternate
segment of the circle. (1. 32]
But the angle DA B is equal to the angle at C;
therefore the angle at C'is also equal to the angle 4 £5.

Therefore on the given straight line 48 the segment
AERB of a circle has been described admitting the angle 4 £8
equal to the given angle, the angle at C.

Next let the angle at C be right;

D A

—J F
C &

B

and let it be again required to describe on 458 a segment
of a circle admitting an angle equal to the right angle at C.

Let the angle BAD be constructed equal to the right
angle at C, as is the case in the second figure ;
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let AP be bisected at /%, and with centre / and distance
either 74 or F2B let the circle A £ B be described.

Therefore the straight line 4D touches the circle ABE,
because the angle at A is right. (1. 16, Por.]
And the angle BAD is equal to the angle in the segment
AEB, for the latter too is itself a right angle, being an
angle in a semicircle. [ 31)
But the angle 24D is also equal to the angle at C.
Therefore the angle A£2Z is also equal to the angle at C.
Therefore again the segment AZZB of a circle has been
described on 48 admitting an angle equal to the angle at C.
Next, let the angle at C be obtuse;

A D
H

i A

c

E
and on the straight line 45, and at the point 4, let the
angle BAD be constructed equal to it, as is the case in the
third figure ;
let AE be drawn at right angles to 4D, let A5 be again
bisected at /, let FG be drawn at right angles to 45, and
let GZ be joined.
Then, since 4 F is again equal to F5,
and #G is common,
the two sides AF, FG are equal to the two sides BF, FG;
and the angle AFG is equal to the angle BFG;
therefore the base 4G is equal to the base BG. [ 4]
Therefore the circle described with centre G and distance
G A will pass through B also ; let it so pass, as A£B.
Now, since 4D is drawn at right angles to the diameter
AE from its extremity,
AD touches the circle AEB. [ut. 16, Por.]
And A2 has been drawn across from the point of contact
at A;
therefore the angle 24D is equal to the angle constructed
in the alternate segment 442 of the circle. [ 32)
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But the angle BAD is equal to the angle at C.

Therefore the angle in the segment A%B is also equal to
the angle at C:.

Therefore on the given straight line 42 the segment
AHB of a circle has been described admitting an angle equal
to the angle at C.

QEF

Simson remarks truly that the first and third cases, those namely in which
the given angle is acute and obtuse respectively, have exactly the same
construction and demonstration, so that there is no advantage in repeating
them. Accordingly he deals with the cases as one, merely drawing two
different figures. It is also true, as Simson says, that the demonstration of
the second case in which the given angle is a right angle “is done in a round-
about way,” whereas, as Clavius showed, the problem can be more easily
solved by merely bisecting A8 and describing a semicircle on it. A glance
at Euclid’s figure and proof will however show a more curious fact, namely
that he does not, in the proof of the second case, use the angle in the
alternate segment, as he does in the other two cases. He might have done so
after proving that 4D touches the circle; this would only have required his
point £ to be placed on the side of 4.8 opposite to D. Instead of this, he
uses 111 31, and proves that the angle 4£25 is equal to the angle C, because
the former is an angle in a semicircle, and is therefore a right angle as C is.

The difference of procedure is no doubt owing to the fact that he has not,
in 11 32, distinguished the case in which the cutting and touching straight
lines are at right angles, i.e. in which the two alternate segments are semicircles.
To prove this case would also have required 11. 31, so that nothing would
have been gained by stating it separately in 1. 32 and then quoting the
result as part of 1. 32, instead of referring directly to ni. 31.

It is assumed in Euclid’s proof of the first and third cases that A and
ﬁth\yill meet; but of course there is no difficulty in satisfying ourselves
of this,

ProrosiTION 34.

From a given civcle to cut off a segment admilting an angle
equal to a given rectilineal angle.

Let ABC be the given circle, and the angle at D the
given rectilineal angle;
thus it is required to cut off from the circle A8C a segment
admitting an angle equal to the given rectilineal ang%e, the
angle at D,

Let £F be drawn touching ABC at the point 5, and on
the straight line #3, and at t%e point B on it, let the angle
£FBC be constructed equal to the angle at D. [1. 23]

Then, since a straight line £7 touches the circle 458C,
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and BC has been drawn across from the point of contact
at 5,

the angle 7BC is equal to the angle constructed in the alternate
segment BAC. (1. 32]
c

B :
D
E A

But the angle ZBC is equal to the angle at D ;

therefore the angle in the segment BAC is equal to the
angle at D,

Therefore from the given circle 4B8C the segment BAC.
has been cut off admitting an angle equal to the given recti-
lineal angle, the angle at D.

Q. E. F.
An alternative construction here would be to make an “angle at the

centre” (in the extended sense, if necessary) double of the given angle ; and,
if the given angle is right, it is only necessary to draw a diameter of the circle.

ProrosiTION 35.

If in a circle two straight lines cut one another, the
rectangle conlained by the segments of the one is equal to the
rectangle contained by the segments of the other.

For in the circle ABCD let the two straight lines 4C,
BD cut one another at the point £ ;

I say that the rectangle contained by 4 Z,
EC is equal to the rectangle contained by 4
DE, EB.

If now AC, BD are through the centre,
so that £ is the centre of the circle ABCD,
it is manifest that, 4E, EC, DE, EB
being equal,
the rectangle contained by 4FE, EC is also equal to the
rectangle contained by DE, EB.
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Next let AC, DB not be through the centre ;
let the centre of ABCD be taken, and
let it be F';
from F let FG, FFH be drawn perpen-
dicular to the straight lines AC, DB,
and let 7B, FC, FE be joined.

Then, since a straight line GF
through the centre cuts a straight line
AC not through the centre at right
angles,

it also bisects it; [ 3)
therefore AG is equal to GC.

Since, then, the straight line AC has been cut into equal
parts at G and into unequal parts at £,
the rectangle contained by 4 £, EC together with the square
on £G is equal to the square on GC; (1. 5]

Let the square on G/ be added ;
therefore the rectangle AZ, EC together with the squares
on GE, GF is equal to the squares on CG, GF

But the square on £ is equal to the squares on £G, GF,
and the square on #C is equal to the squares on CG, G}['"; :

L 47]

therefore the rectangle 4 £, EC together with the square
on FE is equal to the square on FC.

And FC is equal to FB ;
therefore the rectangle 4 £, EC together with the square on
EF is equal to the square on FB.

For the same reason, also,
the rectangle DE, EB together with the square on FE is
equal to the square on F25.

But the rectangle AZ£, EC together with the square on
FE was also proved equal to the square on #23 ;
therefore the rectangle 4 £, £C together with the square on
FE is equal to the rectangle DE, EB together with the
square on /Z.

Let the square on /£ be subtracted from each ;
therefore the rectangle contained by 4, £C which remains
is equal to the rectangle contained by DE, EB.

Therefore etc.
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In addition to the two cases in Euclid’s text, Simson (following Campanus)
gives two intermediate cases, namely (1) that in which one chord passes through
the centre and bisects the other which does not pass through the centre at right
angles, and (2) that in which one passes through the centre and cuts the other
which does not pass through the centre but not at right angles. Simson then
reduces Euclid’s second case, the most general one, to the second of the two
intermediate cases by drawing the diameter through Z. His note is as
follows : ‘“As the 25th and 33rd propositions are divided into more cases,
so this 3sth is divided into fewer cases than are necessary. Nor can it be
supposed that Euclid omitted them because they are easy; as he has given
the case which by far is the easiest of them all, viz. that in which both the
straight lines pass through the centre: And in the following proposition he
separately demonstrates the case in which the straight line passes through the
centre, and that in which it does not pass through the centre: So that it
seems Theon, or some other, has thought them too long to insert: But cases
that require different demonstrations should not be left out in the Elements,
as was before taken notice of: These cases are in the translation from the
Arabic and are now put into the text.” Notwithstanding the ingenuity of the
argument based on the separate mention by Euclid of the simplest case of
all, I think the conclusion that Euclid himself gave four cases 1s unsafe; in
fact, in giving the simplest and most difficult cases only, he seems to be
following quite consistently his habit of avoiding /o great multiplicity of cases,
while not ignoring their existence.

The deduction from the next proposition (111. 36) which Simson, following
Clavius and others, gives as a corollary to it, namely that, Jf from any point
without a circle there be drawn two straight lines culling if, the rectangles
contained by the whole lines and the parts of them without the circle are equal to
one another, can of course be combined with 11 35 in one enunciation.

As remarked by Todhunter, a large portion of the proofs of 11 35, 36
amounts to proving the proposition, [f any point be taken on the base, or the
base produced, of an isosceles Iriangle, the rectangle contained by the segments of
the base (i.e. the respective distances of the ends of the base from the point) is
equal to the difference between the square on the straight line joining the point to
the vertex and the square on one of the equal sides of the triangle. This is of
course an immediate consequence of 1. 47 combined with 11. 5 or 11 6.

The converse of 111. 35 and Simson’s corollary to 111. 36 may be stated
thus. Jf fwo straight lines AB, CD, produced if necessary, intersect at O, and if
the rectangle AO, OB be equal to the rectangle CO, OD, the circumference of a
drele will pass through the four poinis A, B, C, D. The proof is indirect.
We describe a circle through three of the points, as 4, B, C (by the method
used in Euclid’s proofs of 111. 9, 10), and then we prove, by the aid of n1 35
and the corollary to 11 36, that the circle cannot but pass through D also.

ProrosiTION 36.

If a point be taken outside a circle and from it therve fall
on the circle two straight lines, and tf one of them cul the
circle and the other touch it, the rectangle contained by the
whole of the straight line which cuts the civcle and the straight
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line intercepled on it outside between the point and the convex
civcumference will be equal to the square on the tangent.

For let a point D be taken outside the circle 45C,
and from D let the two straight lines DC4,

DA fall on the circle ABC; let DCA cut A
the circle ABC and let BD touch it;

I say that the rectangle contained by 4D,
DC is equal to the square on DB5.

Then DCA is either through the centre
or not through the centre.

First let it be through the centre, and
let 7 be the centre of the circle A5C;
let 7B be joined ;

therefore the angle 78D is right. (1. 18]

And, since 4C has been bisected at 7, and C/2 is added
to it,
the rectangle AD, DC together with the square on FC is
equal to the square on ~D. [ 6]

But FC is equal to /5 ;
therefore the rectangle 4.0, DC together with the square on
FB is equal to the square on FD.

And the squares on 7B, BD are equal to the square on
FD; [r. 47]
therefore the rectangle 4D, DC together with the square on
FB is equal to the squares on /5, BD.

Let the square on FB be subtracted from each ;
therefore the rectangle 4D, DC which remains is equal to
the square on the tangent D2Z.

Again, let DCA not be through the centre of the circle
ABC;
let the centre £ be taken, and from £
let £F be drawn perpendicular to 4C;
let £B, EC, ED be joined.

Then the angle £8D is right. A

[m1. 18]

And, since a straight line £/~ © B
through the centre cuts a straight line
AC not through the centre at right angles,

it also bisects it ; [in. 3]
therefore AF is equal to FC.
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Now, since the straight line 4C has been bisected at the
point 7, and CD is added to it,
the rectangle contained by 4D, DC together with the square
on FC is equal to the square on FD. [1. 6]

Let the square on F£ be added to each ;
therefore the rectangle 4D, DC together with the squares
on CF, FE is equal to the squares on 7D, FE.

But the square on £C is equal to the squares on CF, FE,
for the angle £FC is right; [r. 47]
and the square on £D is equal to the squares on DF, FE;
therefore the rectangle 4D, DC together with the square on
EC is equal to the square on £D.

And £C is equal to £B;

therefore the rectangle 4D, DC together with the square on
EB is equal to the square on £D.

But the squares on £, BD are equal to the square on
ED, for the angle £BD is right; (1. 47
therefore the rectangle 40, DC together with the square on
EB is equal to the squares on £5, BD.

Let the square on £Z be subtracted from each ;
therefore the rectangle 40, DC which remains is equal to
the square on DB.

Therefore etc. Q. E. D.

Cf. note on the preceding proposition. Observe that, whereas it would
be natural with us to prove first that, if 4 is an external point, and two
straight lines 4£B, AFC cut the circle in £, B and £, C respectively, the
rectangle BA, AE is equal to the rectangle CA4, AF, and thence that, the
tangent from A4 being a straight line like AEB in ils limiting position when
E and B coincide, either rectangle is equal to the square on the tangent
(cf. Mr H. M. Taylor, p. 253), Euclid and the Greek geometers generally did
not allow themselves to infer the truth of a proposition in a /imiting case
directly from the general case including it, but preferred a separate proof of
the limiting case (cf. Apollonius of Perga, p. 40, 139—140). This accounts for
the form of 111. 36.

ProrosiTION 37.

If a point be taken outside a circle and from the point
there fall on the circle two straight lines, if one of them cut
the circle, and the other fall on it, and if further the rect-
angle contained by the whole of lhe straight line whick cuts
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the circle and the straight line intercepled on it oulside
between the point and the convex circumference be equal lo
the square on the stvaight line which falls on the circle, the
straight line whick falls on it will touch the civcle.

For let a point D be taken outside the circle A5C;
from D let the two straight lines
DCA, DB fall on the circle ACB; E
let DCA cut the circle and DB
fall on it ; and let the rectangle 4D,
DC be equal to the square on D25, F
I say that DB touches the circle
ABC. . A
For let DE be drawn touching
ABC; let the centre of the circle ABC be taken, and let it
be £7; let FE, FB, FD be joined.
Thus the angle FED is ri ght. [1m. 18]
Now, since gﬁ‘ touches the circle ABC, and DCA cuts it,
the rectangle 4D, DC is equal to the square on DE. [m. 36]
But the rectangle 4.0, DC was also equal to the square
on DB ;
therefore the square on D£ is equal to the square on DB ;
therefore DE is equal to DB,
And FE is equal to FB ;
therefore the two sides DE, EF are equal to the two sides
DB, BF;
and FD is the common base of the triangles ;
therefore the angle DEF is equal to the angle DAF.

L8
But the angle DEF is right ; b
therefore the angle DABF is also right.
And FB produced is a diameter;
and the straight line drawn at right angles to the diameter
of a circle, from its extremity, touches the circle; [u1 16, Por.]
therefore D25 touches the circle.
Similarly this can be proved to be the case even if the
centre be on AC.
Therefore etc. Q. E. D.

De Morgan observes that there is here the same defect as in 1. 48, i.e. an
apparent avoidance of indirect demonstration by drawing the tangent DE on
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the opposite side of DF from DB. The case is similar to the apparently
direct proof which Campanus gave. He drew the straight line from D
passing through the centre, and then (without drawing a second tangent)
proved by the aid of 11. 6 that the square on DF is equal to the sum of the
squares on DB, BF; whence (by 1. 48) the angle DBF is a nght angle.
But this proof uses 1. 48, the very proposition to which De Morgan’s ongmal
remark relates,

The undisguised indirect proof is easy. If DB does not touch the circle,
it must cut it if produced, and it follows that the square on DB must be
equal to the rectangle contained by 2.8 and a longer line: which is absurd.



BOOK 1V.

DEFINITIONS.

1. A rectilineal figure is said to be inscribed in a
rectilineal figure when the respective angles of the
inscribed figure lie on the respective sides of that in which
it is inscribed.

2. Similarly a figure is said to be circumscribed about
a figure when the respective sides of the circumscribed
figure pass through the respective angles of that about which
it is circumscribed.

3. A rectilineal figure is said to be inscribed in a
circle when each angle of the inscribed figure lies on the
circumference of the circle.

4. A rectilineal figure is said to be circumscribed
about a circle, when each side of the circumscribed figure
touches the circumference of the circle.

5. Similarly a circle is said to be inscribed in a figure
when the circumference of the circle touches each side of the
figure in which it is inscribed.

6. A circle is said to be circumscribed about a figure
when the circumference of the circle passes through each
angle of the figure about which it is circumscribed.

7. A straight line is said to be fitted into a circle when
its extremities are on the circumference of the circle.

DEFINITIONS 1—7.
I append, as usual, the Greek text of the definitions.

1. Zxipa dfiypappor ds oxipa biypappov dyypdpeobar Aéyerar, Srav
ixdory) tdv Tol dyypadopévov oxjparos ywwiy ékdorns wAevpds Tob, €ls &
dyypderar, drryran
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2. Zxjpa 8¢ dpolws mepl uxmm r¢typq¢(08ut h.qtﬂu, Srav éxdom) TAevpa
100 meprypadopivov ixdaTys ywrias Tol, mepi & weptypdderar, drryrar,

3. Zxijpa nﬁt:ypappw els xixhov éyypdpeabfar Aéyeray, Srav éxdom ywvia
Tov éyypagpopévov dwryrar Tis Tod KukAov wepiepeias.

4. Zxmpa 8 edfiypappov wepl mikhov wepypdpeatiar Aéyerar, Grav ixdory
wAevpd Tob meprypaopévoy ipdmtyrar Tijs Tob KUkAov Tepidepeias.

5. Kirhos 8 es oxijpa Bpocm lyypa¢wﬂm hqm:, éray 1) Tob xuxAov
wepupépaa ixdarys whevpds Tod, eds & dyypdderay dmrryran

6. Kvxlos 8t wepl a'xqpu npqapwﬁ(a'ﬂm Aéyeray, Grav 1 Tob kixhov Tepidpépera
ixdors yuvias Tob, wept & weptypderar, drmyrar.

7. Ebdfeia s xixhov dvappoleofar Aéyerar, Srav td mépara abris émi s
wepupepeias §f Tod kvkAov.

In the first two definitions an English translation, if it is to be clear, must
depart slightly from the exact words used in the Greek, where *each side” of
one figure is said to pass through *each angle ” of another, or “each angle”
(i.e. angular point) of one lies on “each side” of another (éxdory wAevpd,
ixdary ywvia).

It is also necessary, in the five definitions 1, 2, 3, 5 and 6, to translate
the same Greek word drryra: in three different ways. It was observed on
1. Def. 2 that the usual meaning of arreofar in Euclid is to mees, in contra-
distinction to é¢drreofar, which means to Zouck. Exceptionally, as in Def. s,
drrecfar has the meaning of fouck. But two new meanings of the word appear,
the first being to /ie on, as in Defl. 1 and 3, the second to pass through, as in
Deff. 2 and 6; “each angle” lies on (awrerat) a side or on a circle, and
“each side,” or a circle, passes through (awrerat) an angle or “each angle.”
The first meaning of Jying on is exemplified in the phrase of Pappus dyerat o
onpcov Béoer SeBopéims ebfelas, “ will lie on a straight line given in position”;
the meaning of passing through seems to be much rarer (I have not seen it in
Archimedes or Pappus), but, as pointed out on 111. Def. 2, Aristotle uses the
compound épdwrecfar in this sense.

Simson proposed to read dpdmwryra in the case (Def. 5) where drmra:
means fouches. He made the like suggestion as regards the Greek text of 1.
11, 12, 13, 18, 19; in the first four of these cases there seems to be Ms.
authority for the compound verb, and in the fifth Heiberg adopts Simson's
correction.
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Prorosition 1.

Into a given circle lo fil a straight line equal to a given
straight line whick is not greater than the diameter of the
circle.

Let ABC be the given circle, and D the given straight
line not greater than the diameter
of the circle ; D

thus it is required to fit into the
circle ABC a straight line equal
to the straight line D, B

Let a diameter BC of the
circle . ABC be drawn.
Then, if BC is equal to D, 2
that which was enjoined will have
been done ; for BC has been fitted into the circle A8C equal
to the straight line D.

But, if BC is greater than D,

let CE be made equal to D, and with centre C and distance
CE let the circle £A4F be described ;

let CA be joined.
Then, since the point C is the centre of the circle £AF,
CA is equal to CE.
But CE is equal to D ;
therefore D is also equal to CA.

Therefore into the given circle 4 ZC there has been fitted
CA equal to the given straight line 2.
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Of this problem as it stands there are of course an infinite number of
solutions ; and, if a particular point be chosen as one extremity of the chord
to be “fitted in,” there are two solutions. More difficult cases of “fitting
into” a circle a chord of given length are arrived at by adding some further
condition, e.g. (1) that the chord is to be parallel to a given straight line, or
(2) that the chord, produced if necessary, shall pass through a given point.
The former problem is solved by Pappus (111 p. 132); instead of drawing the
chord as a tangent to a circle concentric with the given circle and having as
radius a straight line the square on which is equal to the difference between
the squares on the radius of the given circle and on half the given length, he
merely draws the diameter of the circle which is parallel to the given direction,
measures from the centre along it in each direction a length equal to half the
given length, and then draws, on one side of the diameter, perpendiculars to it
through the two points so determined.

The second problem of drawing a chord of given length, being less than
the diameter of the circle, and passing through a given point, is more
important as having been one of the problems discussed by Apollonius in his
work entitled veies, now lost. Pappus states the problem thus (vir p. 670):
“A circle being given in position, to fit into it a straight line given in
magnitude and verging (vevoveay) towards a given (point).” To do this we
have only to place any chord ZK in the given
circle (with centre O) equal to the given length, K
take Z the middle point of it, with O as centre and
OL as radius describe a circle, and lastly through
the given point C draw a tangent to this circle
meeting the given circle in 4, B. AB is then one
of fwo chords which can be drawn satisfying the
given conditions, if C is outside the inner circle; if A
C is on the inner circle, there is one solution only ;
and, if C is within the inner circle, there is no
solution. Thus, if C is within the outer (given)
circle, besides the condition that the given length must not be greater than the
diameter of the circle, there is another necessary condition of the possibility
of a solution, viz. that the given length must not be /ess than double of the
straight line the square on which is equal to the difference between the squares
(1) on the radius of the given circle and (z) on the distance between its
centre and the given point.

ProposiTION 2.

In a given circle to inscribe a triangle equiangular with a
given triangle.

Let ABC be the given circle, and DEF the given
triangle ;
thus it is required to inscribe in the circle ABC a triangle
equiangular with the triangle DEF.

Let GA be drawn touching the circle ABC at A [ 16,Por.];
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on the straight line 4/, and at the point 4 on it, let the
angle 4 AC be constructed eaual to the angle DEF,

and on the straight line 4G, and at the point 4 on it, let
the angle GA B be constructed equal to the angle DFE;

[r. 23]
let BC be joined.

Then, since a straight line 44 touches the circle 48C,

and from the point of contact at A4 the straight line 4C is
drawn across in the circle,

therefore the angle Z/A4C is equal to the angle 4B8C in the
alternate segment of the circle. [u. 32)
But the angle /A C is equal to the angle DEF;
therefore the angle ABC is also equal to the angle DEF.
For the same reason
the angle ACB is also equal to the angle DFE ;
therefore the remaining angle BAC is also equal to the

remaining angle EDF. [t 32]
Therefore in the given circle there has been inscribed a
triangle equiangular with the given triangle. Q E. F.

Here again, since any point on the circle may be taken as an angular
point of the triangle, there are an infinite number of solutions. Even when a
particular point has been chosen to form one angular point, the required
triangle may be constructed in six ways. For any one of the three angles
may be placed at the point; and, whichever is placed there, the positions of
the two others relatively to it may be interchanged. The sides of the triangle
will, in all the different solutions, be of the same length respectively; only
their relative positions will be different.

This problem can of course be reduced (as it was by Borelli) to 111 34,
namely the problem of cutting off from a given circle a segment containing an
angle equal to a given angle. 1t can also be solved by the alternative method
applicable to 11. 34 of drawing “angles at the centre” equal to double the
angles of the given triangle respectively; and by this method we can easily
solve this problem, or 111. 34, with the further condition that one side of the
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required triangle, or the base of the required segment, respectively, shall be
parallel to a given straight line.

As a particular case, we can, by the method of this proposition, describe
an equilaferal triangle in any circle after we have first constructed any
equilateral triangle by the aid of 1. 1. The possibility of this is assumed in
1v. 16. It is of course equivalent to dividing the circumference of a circle
into threc equal parts. As De Morgan says, the idea of dividing a revolution
into equal parts should be kept prominent in _considering Book 1v.; this
aspect of the construction of regular polygons is obvious enough, and the
reason why the division of the circle into #4ree equal parts is not given by
Euclid is that it happens to be as easy to divide the circle into three parts
which aré in the ratio of the angles of any triangle as to divide it into three
equal parts.

ProrosiTiON 3.

About a given circle to circumscribe a triangle equiangular
with a given triangle.

Let ABC be the given circle, and DEF the given
triangle ;
ithus it is required to circumscribe about the circle 48C a
triangle equiangular with the triangle DEF.

L C N

Let £F be produced in both directions to the points
G} HD
let the centre X of the circle ABC be taken [ur 1], and let
10 the straight line AB be drawn across at random ;
on the straight line KB, and at the point X on it, let the
angle BK A be constructed equal to the angle DEG,

and the angle BKC equal to the angle DFH ; [1. 23]
and through the points 4, B, C let LAM, MBN, NCL be
15 drawn touchmg the circle A BC. [u 16, Por.)

Now, since LM, MN, NL touch the circle ABC at the
points 4, B, C,
and KA, KB, KC have been joined from the centre X to
the points 4, B, C,
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20 therefore the angles at the points 4, B, C are right. [ 18]

And, since the four angles of the quadrilateral AMBK
are equal to four right angles, inasmuch as AMBK is in fact
divisible into two triangles,

and the angles KXAM, KBM are right,

25 therefore the remaining angles 4 X8, AMB are equal to two
right angles.

But the angles DEG, DEF are also equal to two right
angles ; [ 13]
therefore the angles 4KXB, AMB are equal to the angles

% DEG, DEF.,

of which the angle 4K is equal to the angle DEG;

therefore the angle AMAB which remains is equal to the
angle D EF which remains.

Similarly it can be proved that the angle ZNZB is also
35 equal to the angle DFE;

therefore the remaining angle MLN is equal to the
angle EDF. [ 32]
Therefore the triangle ZMN is equiangular with the
triangle DEF; and it has been circumscribed about the
socircle ABC. :

Therefore about a given circle there has been circum-
scribed a triangle equiangular with the given triangle.
Q E. F.

10. at random, literally * as it may chance,” &z frvxer. The same expression is used
in 111, 1 and commonly.
22, is in fact divisible, xal diatpeiras, literally * is actually divided.”

The remarks as to the number of ways in which Prop. 2 can be solved
apply here also.

Euclid leaves us to satisfy ourselves that the three tangents 2/ meet and
form a triangle. This follows easily from the fact that each of the angles
AKB, BKC, CK4 is less than two right angles. The first two are so by
construction, being the supplements of two angles of the given triangle re-
spectively, and, since all three angles round X are together equal to four
nght angles, it follows that the third, the angle AXC, is equal to the sum
of the two angles £, F of the triangle, i.e. to the supplement of the angle D,
and is therefore less than two right angles.

Peletarius and Borelli gave an alternative solution, first inscribing a triangle
equiangular to the given triangle, by 1v. 2, and then drawing tangents to the
circle parallel to the sides of the inscribed triangle respectively. This method
will of course give two solutions, since two tangents can be drawn parallel to
each of the sides of the inscribed triangle.

If the three pairs of parallel tangents be drawn and produced far enough,
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they will form eight triangles, two of which are the triangles circumscribed to
the circle in the manner required in the proposition. The other six triangles
are so related to the circle that the circle touches two of the sides in each
produced, i.e. the circle is an escribed circle to each of the six triangles.

ProrosiTION 4.

In a given triangle to inscribe a civele.

Let ABC be the given triangle ;
thus it is required to inscribe a circle in the triangle 48C.
Let the angles ABC, ACB
s be bisected by the straight lines
BD, CD [1 9], and let these meet
one another at the point D ;
from D let DE, DF, DG be
drawn perpendicular tothestraight
10lines AB, BC, CA.
Now, since the angle AS8D
is equal to the angle CAD,
and the right angle BED is also equal to the right angle
BFD,

15 EBD, FBD are two triangles having two angles equal to two
angles and one side equal to one side, namely that subtending
one of the equal angles, which is BD common to the
triangles ;

therefore they will also have the remaining sides equal to
20 the remaining sides ; [t 26]
therefore DE is equal to DF.
For the same reason
DG is also equal to DF.
Therefore the three straight lines DE, DF, DG are equal

25 to one another ; g

therefore the circle described with centre 2 and distance
one of the straight lines DE, DF, DG will pass also
through the remaining points, and will touch the straight
lines A8, BC, CA, because the angles at the points £, F, G

s are right.

For, if it cuts them, the straight line drawn at right angles
to the diameter of the circle from its extremity will be found
to fall within the circle : which was proved absurd;  [ur 16]
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therefore the circle described with centre 2 and distance
ssone of the straight lines DE, DF, DG will not cut the
straight lines 48, BC, CA ;

therefore it will touch them, and will be the circle inscribed
in the triangle ABC. [1v. Def. 5]

Let it be inscribed, as FGE.
4  Therefore in the given triangle ABC the circle £FG has
been inscribed.

Q. E. F.

26, 34. and distance one of the (straight lines D)E, (D)F, (D)G. The words
and letters here shown in brackets are put in to fill out the rather careles: language of the
Greek. Here and in several other places in Book 1v. Euclid says literally ‘‘and with distance
one of the (points) £, 7, G” (xal Swsarhpari évl rdv E, Z, H) and the like. Inone case(1v.13)
he actually has ** with distance one of the points G, H, X, L, M" (qaoripar: évl 7év H, O,
K, A, M gqpelwr). Heiberg notes* Graecam locutionem satis miram et negligentem,” but,
in view of its frequent occurrence in good Mss., does not venture to correct it.

Euclid does not think it necessary to prove that B.D, CD will meet ; this
is indeed obvious, for the angles DBC, DCB are together half of the angles
ABC, ACB, which themselves are together less than two right angles, and
therefore the two bisectors of the angles B, C must meet, by Post. 5.

It follows from the proof of this proposition that, if the bisectors of two
angles B, C of a triangle meet in D, the line joining .2 to A also bisects the
third angle 4, or the bisectors of the three angles.of a’triangle meet in
a point.

PoIt will be observed that Euclid uses the indired form of proof when
showing that the circle touches the three sides of the triangle. Simson proves
it directly, and points out that Euclid does the same in 11 17, 33 and 37,
whereas in 1v. 8 and 13 as well as here he uses the indirect form. The
difference is unimportant, being one of form and not of substance; the
indirect proof refers back to 111 16, whereas the direct refers back to the
Porism to that proposition.

We may state this problem in the moie general form: 70 descride a circle
touching three given siraight lines which do not all meet in one point, and of
which not more than two are paralicl.

In the case (1) where two of the straight lines are parallel and the third
cuts them, two pairs of interior angles are formed, one on each side of the
third straight line. If we bisect each of the interior angles on one side, the
bisectors will meet in a point, and this point will be the centre of a circle
which can be drawn touching each of the three straight lines, its radius being
the perpendicular from the point on any one of the three. Since the alternate
angles are equal, two equal circles can be drawn in this manner satisfying the
given condition,

In the case (z) where the three straight lines form a triangle, suppose each
straight line produced indefinitely. Then each straight line will make two
pairs of interior angles with the other two, one pair forming two angles of the
triangle, and the other pair being their supplements. By bisecting each angle
of either pair we obtain, in the manner of the proposition, two circles
satisfying the conditions, one of them being the inscribed circle of the triangle
and the other being a circle escrsbed to it, 1.e. touching one side and the other
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two sides produced. Next, taking the pairs of interior angles formed by a
second side with the other two produced indefinitely, we get two circles
satisfying the conditions, one of which is the same inscribed circle that we had
before, while the other is a second escribed circle. Similarlg with the third side.
Hence we have the inscribed circle, and three escribed circles (one opposite
each angle of the triangle), i.e. four circles in all, satisfying the conditions of
the problem.

It may perhaps not be inappropriate to give at this point Heron’s elegant
proof of the formula for the area of a triangle in terms of the sides, which we

usually write thus :
a=Js(s—a)(s=8)(s-0),

although it requires the theory of proportions and uses some ungeometrical
expressions, e.g. the product of two areas and the ““side” of such a product,
where of course the areas are so many square units of length. The proof is
given in the Metrica, 1. 8, and in the Dioptra, 30 (Heron, Vol. 1L, Teubner,
1903, pp. 20—24 and pp. 280—4, or Heron, ed. Hultsch, pp. 235—7).
Suppose the sides of the triangle 4B C to be given in length.
Inscribe the circle DEF, and let G be its centre.

Join 4G, BG, CG, DG, EG, FG.

Then BC.EG=2.A BGC,
CA.FG=2.5ACG,
AB.DG=2.5 ABG.

Therefore, by addition,

p.EG=2.5 ABC,
where p is the perimeter.

Produce CB to H, so that BH=AD.

Then, since AD = AF, DB = BE, FC= CE,

CH=1p.

Hence CH.EG= A4 ABC.
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But CH.EG is the “side” of the product CH?.EG? that is
JCH  EG?;

therefore (A ABCyY= CH' EG*.

Draw GLZ at right angles to CG, and BL at right angles to C5, meeting
at L. Join CL.

Then, since each of the angles CGZ, CBL is right, CGBL is a quadri-
lateral in a circle.

Therefore the angles CG B, CLB are equal to two right angles.

Now the angles CGB, AGD are equal to two right angles, since 4G, BG,
CG bisect the angles at G, and the angles CGB, AGD are equal to the
angles 4G C, DG A, while the sum of all four is equal to four right angles.

Therefore the angles 4G D, CLB are equal.

So are the right angles 4.DG, CBL.

Therefore the triangles 4GD, CLRB are similar.

Hence BC:BL=A4D: DG
= BH: EG,
and, alternately, CB:BH=BL:EG
= BK:KE,
whence, componendo, CH: HB = BE : EK.
It follows that CH*:CH.HB=BE.EC:CE.EK
= BE, EC: EG’
Therefore

(AABCY=CH* . EG*=CH.HB.CE . ED
=3 (3p-BC)(}p-A4B)(}p-AC).

ProrosiTION 5.

About a given triangle to circumscribe a civcle.

Let ABC be the given triangle ;

thus it is reg_uired to circumscribe a circle about the given
triangle ABC.

: Oy
A
e Lt -

Let the straight lines 4B, AC be bisected at the points
D, E [1. 10], and from the points D, £ let DF, EF be drawn
at right angles to A8, AC;
they will then meet within the triangle 4BC, or on the
straight line BC, or outside BC.
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First let them meet within at &, and let 7B, FC, FA be
joined.
Then, since AD is equal to DB,
and DF is common and at right angles,
therefore the base 4F is equal to the base #25. [1. 4]
Similarly we can prove that
CF is also equal to AF;
so that 72 is also equal to FC;

therefore the three straight lines #A4, /B, FC are equal
to one another.

Therefore the circle described with centre # and distance
one of the straight lines /4, FB, FC will pass also through
the remaining points, and the circle will have been circum-
scribed about the triangle 458C.

Let it be circumscribed, as 4 5C.

Next, let DF, EF meet on the straight line BC at F,
as is the case in the second figure ; and let A7 be joined.

Then, similarly, we shall prove that the point / is the
centre of the circle circumscribed about the triangle 48C.

Again, let DF, EF meet outside the triangle 48C at F,
as is the case in the third figure, and let 45, BF, CF be
joined.

Then again, since 4D is equal to D25,
and DF is common and at right angles,
therefore the base 4 is equal to the base BF. [r 4]

Similarly we can prove that

CF is also equal to AF;
so that BF is also equal to #C;
therefore the circle described with centre /' and distance one
of the straight lines 74, FB, FC will pass also through
the remaining points, and will have been circumscribed about
the triangle 48C.

Therefore about the given triangle a circle has been
circumscribed.

Q. E. F.

And it is manifest that, when the centre of the circle falls
within the triangle, the angle BAC, being in a segment
greater than the semicircle, is less than a right angle;
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when the centre falls on the straight line BC, the angle BAC,
being in a semicircle, is right;

and when the centre of the circle falls outside the triangle,
the angle BZAC, being in a segment less than the semicircle,
is greater than a right angle. (1. 31]

Simson points out that Euclid does not prove that DF, EF will meet, and
he inserts in the text the following argument to supply the omission.

“DF, EF produced meet one another. For, if they do not meet, they
are parallel, wherefore 458, AC, which are at right angles to them, are
parallel [or, he should have added, in a straight line] : which is absurd.”

This assumes, of course, that straight lines which are at right angles to two
parallels are themselves parallel ; but this is an obvious deduction from 1. 28.

On the assumption that D/, ZF will meet Todhunter has this note: “It
has been proposed to show this in the following way: join DE; then the
angles EDF and DEF are together less than the angles A DFand AEF, that
is, they are together less than two right angles ; and therefore DF and E#
will meet, by Axiom 12 [Post. 5]. This assumes that ADE and AED are
acute angles ; it may, however, be easily shown that DE is parallel to BC, so
that the triangle ADE is equiangular to the triangle 48C; and we must
therefore select the two sides A8 and A4 C such that ABC and 4CB may be
acute angles.”

This is, however, unsatisfactory. Euclid makes no such selection in 111, ¢
and 111 10, where the same assumption is tacitly made ; and it is unnecessary,
because it is easy to prove that the straight lines DF, £ meet in a// cases,
by considering the different possibilities separately and drawing a separate
figure for each case.

Simson thinks that Euclid’s demonstration had been spoiled by some
unskilful hand both because of the omission to prove that the perpendicular
bisectors meet, and because * without any reason he divides the proposition
into three cases, whereas one and the same construction and demonstration
serves for them all, as Campanus has observed.” However, up to the usual
words émep ée movjoar there seems to be no doubt about the text. Heiberg
suggests that Euclid gave separately the case where F falls on BC because, in
that case, only 4/ needs to be drawn and not BF, CF as well.

The addition, though given in Simson and the text-books as a “corollary,”
has no heading mépiopa in the best Mss. ; it is an explanation like that which
is contained in the penultimate paragraph of 111, 25.

The Greek text has a further addition, which is rejected by Heiberg as not
genuine, “So that, further, when the given angle happens to be less than a
right angle, DF, EF will fall within the triangle, when it is right, on BC, and,
when it is greater than a right angle, outside BC'. (being) what it was required
to do.” Simson had already observed that the text here is vitiated * where
mention is made of a given angle, though there neither is, nor can be, any-
thing in the proposition relating to a given angle.”
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ProrosiTiON 6.

In a given circle to inscribe a square.

Let ABCD be the given circle ;
thus it is required to inscribe a square in the circle 48CD.

Let two diameters AC, BD of the
circle ABCD be drawn at right angles A
to one another, and let A8, BC, CD,
DA be joined.

Then, since BE is equal to £D, for
£ is the centre, B o
and £A4 is common and at right angles,
therefore the base 475 is equal to the
base AD. [ 4] c

For the same reason
each of the straight lines ZC, CD is also equal to each of
the straight lines 42, AD;

therefore the quadrilateral ABCD is equilateral.

I say next that it is also right-angled.

For, since the straight line B0 is a diameter of the circle
ABCD,
therefore BAD is a semicircle ;

therefore the angle 4D 1s right. (1. 31]

For the same reason
each of the angles 4B8C, BCD, CDA is also right ;

therefore the quadrilateral 4B8CD is right-angled.

But it was also proved equilateral ;
therefore it is a square ; [1. Def. 22]
and it has been inscribed in the circle 4 BCD.

Therefore in the given circle the square 48CD has been
inscribed.

Q E. F.

Euclid here proceeds to consider problems corresponding to those in
Props. 2—j5 with reference to figures of four or more sides, but with the
difference that, whereas he dealt with triangles of any form, he confines
himself henceforth to regular figures. It happened to be as easy to divide a
circle into #Aree parts which are in the ratio of the angles, or of the supplements
of the angles, of a triangle as into three egwa/ parts. But, when it is required to
inscribe in a circle a figure equiangular to a given guadrilateral, this can only be
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done provided that the quadrilateral has either pair of opposite angles equal
to two right angles. Moreover, in this case, the problem may be solved in the
same way as that of 1v. 2, i.e. by simply inscribing a triangle equiangular to one
of the triangles into which the quadrilateral is divided by either diagonal, and
then drawing on the side corresponding to the diagonal as base another
triangle equiangular to the other triangle contained in the quadrilateral. But
this is not the only solution; there are an infinite
number of other solutions in which the inscribed
quadrilateral will, unlike that found by this particular
method, not be of the same form as the given quadri-
lateral. For suppose ABCD to be the quadrilateral
inscribed in the circle by the method of 1v. 2. Take
any point B’ on AB, join AB, and then make the
angle DAD' (measured towards 4C) equal to the
angle BAB'. Join B'C, CD'. Then AB'CL is also
equiangular to the given quadrilateral, but not of the
same form. Hence the problem is indeterminate in the case of the general
quadrilateral. It is equally so if the given quadrilateral is a rectangle ; and it
is determinate only when the given quadrilateral is a square.

ProrosiTION 7.

About a given civcle to circumscribe a square.
Let ABCD be the given circle ;

thus it is required to circumscribe a square about the circle
ABCD.

Let two diameters AC, BD of the
circle ABCD be drawn at right angles G A

to one another, and through the points
A, B, C, D let FG, GH, HK, KF be
drawn touching the circle 4B8CD. E

[111. 16, Por.]
Then, since FG touches the circle \ /
ABCD,

H ) K

and £A has been joined from the centre
E to the point of contact at A4,

therefore the angles at A4 are right. [ 18]
For the same reason
the angles at the points B, C, D are also right.
Now, since the angle 4EZ5 is right,
and the angle £BG is also right,
therefore G/ is parallel to AC. (1. 28
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For the same reason
AC is also parallel to 7K,
so that G/ is also parallel to FK. [1. 30]
Similarly we can prove that
each of the straight lines GF, /K is parallel to BED.
Therefore GKX, GC, AK, FB, BK are parallelograms ;
therefore GF is equal to K, and GH to FK. [r 34]
And, since AC is equal to BD,
and AC is also equal to each of the straight lines G/, FK,
while BD is equal to each of the straight lines GF, HK,

(r 34]
therefore the quadrilateral FGHK is equilateral.

I say next that it is also right-angled.
For, since GBEA is a parallelogram,
and the angle A£ZB is right,
therefore the angle AG2A is also right. (1. 34]
Similarly we can prove that
the angles at /7, X, F are also right.
Therefore #GHK is right-angled.
But it was also proved equilateral ;
therefore it is a square ;
and it has been circumscribed about the circle AZCD,

Therefore about the given circle a square has been
circumscribed.

Q. E, F.

It is just as easy to describe about a given circle a polygon equiangular to
any given polygon as it is to describe a square about a given circle. We have
only to use the method of 1v. 3, ie. to take any radius of the circle, to
measure round the centre successive angles in one and the same direction
equal to the supplements of the successive angles of the given polygon and,
lastly, to draw tangents to the circle at the extremities of the several radii so
determined ; but agam the polygon would in general not be of the same form
as the given one ; it would only be so if the given l!‘u:»lygcm happened to be
such that a circle could be inscribed in it. To take the case of a guadrilateral
only: it is easy to prove that, if a quadrilateral be described about a circle,
the sum of one pair of opposite sides must be equal to the sum of the other
pair. It may be proved, conversely, that, if a quadrilateral has the sums of the
pairs of opposite sides equal, a circle can be inscribed in it. If then a given
quadrilateral has the sums of the pairs of opposite sides equal, a quadrilateral
can be described about any given circle not only equiangular with it but
having the same form or, in the words of Book v1., similar to it.
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ProrosiTion 8.

In a given square to inscribe a circle.

Let ABCD be the given square ;
thus it is required to inscribe a circle in the given square
ABCD. %

Let the straight lines 4D, 4B be A - ?

bisected at the points £, F respectivel
[r :oi:

through £ let £A be drawn parallel ¢

to either A8 or CD, and through \

F let FK be drawn parallel to either
AD or BC; [r 31]
therefore each of the figures 4 X, KB,
AH, HD, AG, GC, BG, GD is a parallelogram,

and their opposite sides are evidently equal. [r. 34]

Now, since 4D is equal to A5,
and AE is half of AD, and AF half of A5,

therefore A is equal to AF,
so that the opposite sides are also equal ;
therefore /G is equal to GE.

Similarly we can prove that each of the straight lines G4,
GK is equal to each of the straight lines #G, G£;

therefore the four straight lines GE, GF, GH, GK are
equal to one another.

Therefore the circle described with centre G and distance
one of the straight lines GE, GF, GH, GK will pass also
through the remaining points.

And it will touch the straight lines 48, BC, CD, DA,
because the angles at £, 7, A, K are right.

For, if the circle cuts 48, BC, CD, DA, the straight
line drawn at right angles to the diameter of the circle from
its extremity will fall within the circle: which was proved
absurd ; [1m. 16)
therefore the circle described with centre G and distance
one of the straight lines GE, GF, GH, GK will not cut
the straight lines 48, BC, CD, DA.

Therefore it will touch them, and will have been inscribed
in the square 4BCD.

Therefore in the given square a circle has been inscribed.

H [+
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As was remarked in the last note, a circle can be inscribed in any
guadrilateral which has the sum of one pair of opposite sides equal to the sum
of the other pair. In particular, it follows that a circle can be inscribed in a
square or a rhombus, but not in a rectangle or a rhomboid.

ProrosiTION 9.

About a given square to civcumscribe a circle.
Let ABCD be the given square ;

thus it is required to circumscribe a circle about the square
ABCD.

For let AC, BD be joined, and let them A
cut one another at £,

Then, since DA is equal to 45,
and AC is common, B 0
therefore the two sides DA, AC are equal
to the two sides B4, AC;
and the base DC is equal to the base BC; y

therefore the angle DAC is equal to
the angle BA4C, 1. 8]

Therefore the angle D A2 is bisected by AC.

Similarly we can prove that each of the angles 458C,
BCD, CDA is bisected by the straight lines AC, DB.

Now, since the angle DA B is equal to the angle 45C,
and the angle £4 23 is half the angle DA B,
and the angle £24 half the angle 45C,
therefore the angle £A4 2B is also equal to the angle £84 ;
so that the side £4 is also equal to £5. [1. 6]

Similarly we can prove that each of the straight lines
EA, EB is equal to each of the straight lines £C, £D.

Therefore the four straight lines £A4, £B, EC, ED are
equal to one another.

Therefore the circle described with centre £ and distance
one of the straight lines £4, EB, EC, ED will pass also
through the remaining points ;
and it will have been circumscribed about the square 48CL.

Let it be circumscribed, as A BCD.

Therefore about the given square a circle has been
circumscribed.
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PRroproSITION 10.

7o construct an tsosceles triangle having eack of the angles
at the base double of the remaining one.

Let any straight line 42 be set out, and let it be cut at
the point C so that the rectangle
contained by 48, BC is equal to

the square on CA4; [1. 11] 3
with centre 4 and distance AR5 let

the circle ZDE be described, D
and let there be fitted in the circle

BDE the straight line BD equal to *

the straight line AC which is not
greater than the diameter of the
circle BDE. [iv. 1]
Let AD, DC be joined, and let
the circle ACD be circumscribed about the triangle 4CD.

(1. 5]
Then, since the rectangle 48, BC is equal to the square

on AC,
and AC is equal to BD,
therefore the rectangle 4.8, BC is equal to the square on BD.

And, since a point B has been taken outside the circle
ACD,
and from 2 the two straight lines 24, BD have fallen on
the_circle ACD, and one of them cuts it, while the other falls
on it,
and the rectangle AB, BC is equal to the square on BD,
therefore BD touches the circle ACD. [ 37]

Since, then, BD touches it, and DC is drawn across
from the point of contact at D,

therefore the angle ZDC is equal to the angle DAC in the
alternate segment of the circle. [ur 32]

Since, then, the angle BDC is equal to the angle DAC,
let the angle CDA be added to each;

therefore the whole angle BDA is equal to the two angles
CDA, DAC.
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But the exterior angle BCD is equal to the angles CDA,
DAC; [r 32]
therefore the angle B0 A is also equal to the angle BCD.

But the angle BDA is equal to the angle CBD, since the
side AD is also equal to A5 ; [r 5]

so that the angle DB A is also equal to the angle BCD.

Therefore the three angles DA, DBA, BCD are equal

to one another.
And, since the angle DBC is equal to the angle BCD,

the side BD is also equal to the side DC. [1. 6]
But BD is by hypothesis equal to CA4 ;
therefore CA is also equal to CD,

so that the angle CDA is also equal to the angle DAC;
(1. 5]
therefore the angles CD A, DAC are double of the angle DAC.
But the angle BCD is equal to the angles CDA, DAC;

therefore the angle BCD is also double of the angle CAD.

But the angle BCD is equal to each of the angles BDA,
DBA;

therefore each of the angles BDA, DBA is also double of
the angle DAB.

Therefore the isosceles triangle 48D has been constructed
having each of the angles at the base DB double of the
remaining one.

Q E. F.

There is every reason to conclude that the connexion of the triangle
constructed in this proposition with the regular pentagon, and the construction
of the triangle itself, were the discovery of the Pythagoreans. In the first
place the Scholium 1v. No. z (Heiberg, Vol. v. p. 273) says “this Book is the
discovery of the Pythagoreans.” Secondly, the summary in Proclus (p. 65, 20)
says that Pythagoras discovered “the construction of the cosmic figures,” by
which must be understood the five regular solids. Thirdly, Iamblichus (V7Z.
Pyth, c. 18, 5. 88) quotes a story of Hippasus, * that he was one of the Pytha-
goreans but, owing to his being the first to publish and write down (the con-
struction of) the sphere arising from the twelve pentagons (rjv é 7dv dwdexa
wevtaydvwy), perished by shipwreck for bis impiety, having got credit for the
discovery all the same, whereas everything belonged to HIM (éxeivov ot dvdpas),
for it is thus that they refer to Pythagoras, and they do not call him by his
name.” Cantor has (13, pp. 176 5qq.) collected notices which help us to form
an idea how the discovery of the Euclidean construction for a regular pentagon
may have been arrived at by the Pythagoreans. :

Plato puts into th2 mouth of Timaeus a description of the formation from
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right-angled triangles of the figures which are the faces of the first four regular
solids. The face of the cube is the square which is formed from isosceles
right-angled triangles by placing four of these triangles contiguously so that
the four right angles are in contact at the cenwre. The
equilateral triangle, however, which is the form of the faces of
the tetrahedron, the octahedron and the icosahedron, cannot
be constructed from isosceles right-angled triangles, but is
constructed from a particular scalene right-angled triangle
which Timaeus (54 a, B) regards as the most beautiful of all
scalene right-angled triangles, namely that in which the square on one of the
sides about the right angle is three times the square on the other. This is, of
course, the triangle forming half of an equilateral triangle bisected by the
perpendicular from one angular point on the opposite side. The Platonic
Timaeus does not construct his equilateral triangle from two such triangles
but from six, by placing the latter contiguously round a

point so that the hypotenuses and the smaller of the sides

about the right angles respectively adjoin, and all of them

meet at the common centre, as shown in the figure

(Zimaeus, 54 », £.). ‘I'he probability that this exposition

was Pythagorean is confirmed by the independent testimony

of Proclus (pp. 304—s5), who attributes to the Pythagoreans

the theorem that six equilateral triangles, or three hexagons, or four squares,
placed contiguously with one angular point of each at a common point, will
just fill up the four right angles round that point, and that no other regular
polygons in any numbers have this property.

How then would it be proposed to split up into triangles, or to make up
out of triangles, the face of the remaining solid, the dodecahedron? It would
easily be seen that the pentagon could not be constructed by means of the
two right-angled triangles which were used for constructing the square and the
equilateral triangle respectively. But attempts would naturally be made to
split up the pentagon into elementary triangles, and traces of such attempts
are actually forthcoming. Plutarch has in two passages spoken of the division
of the faces of the dodecahedron into triangles, remarking in one place
(Quaest. Plafon. v. 1) that each of the twelve faces is made up of 3o elemen-

tary scalene triangles, so that, taken together, they give 360 such triangles,
and in another (De defectu oraculorum, c. 33) that the elementary triangle of
the dodecahedron must be different from that of the tetrahedron, octahedron
and icosahedron. Another writer of the 2nd cent., Alcinous, has, in his
introduction to the study of Plato (De doctrina Platonis, c. 11), spoken
similarly of the 360 elements which are produced when every one of the
pentagons is divided into 5 isosceles triangles, and each of the latter into
6 scalene triangles. Now, if we proceed to draw lines in a pentagon separating
it into this number of small triangles as shown in the above figure, the figure
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which stands out most prominently in the mass of lines is the ‘star-pentagon,”
as drawn separately, which then (if the consecutive corners be joined) suggests
the drawing, as part of a pentagon, of a triangle of a definite character. Now
we are expressly told by Lucian and the scholiast to the Clowds of Aristophanes
(see Bretschneider, pp. 85—86) that the triple interwoven triangle, the penta-
gram (76 tpurAoly Tpiywvoy, 76 8’ dAAjAwy, 16 wevrdypappov), was used by the
Pythagoreans as a symbol of recognition between the members of the same
school (euufBoly mpis Tobs dpoddfovs éxpdvro), and was ealled by them Health.
There seems to be therefore no room for doubt that the construction of a
pentagon by means of an isosceles triangle having each of its base angles
double of the vertical angle was due to the Pythagoreans.

The construction of this triangle depends upon 11 11, or the problem of
dividing a straight line so that the rectangle contained by the whole and one
of the parts is equal to the square on the other part. This problem of course
appears again in Eucl. vi. 30 as the problem of cutting a given straight line s
extreme and mean ralio, i.e. the problem of the golden section, which is ne
doubt “the section” referred to in the passage of the summary given by
Proclus (p. 67, 6) which says that Eudoxus “greatly added to the number
of the theorems which Plato originated regarding the section.” This idea that
Plato began the study of the ‘“golden section” as a subject in itself is not in
the least inconsistent with the supposition that the problem of Eucl. 11. 11 was
solved by the Pythagoreans. The very fact that Euclid places it among other
propositions which are clearly Pythagorean in origin is significanf, as is also
the fact that its solution is effected by “applying to a straight line a rectangle
equal to a given square and exceeding by a square,” while Proclus says plainly
(p. 419, 15) that, according to Eudemus, “the application of areas, their
exceeding and their falling short, are ancient and discoveries of the Muse of
the Pythagoreans.”

We may suppose the construction of 1v. 10 to have been arrived at by
analysis somewhat as follows (Todhunter’s Euclid, p. 325).

Suppose the problem solved, i.e. let 48D be an isosceles triangle having
each of its base angles double of the vertical angle.

Bisect the angle 4D B by the straight line DC meeting 48 in C. [1. 9]

Therefore the angle BDC is equal to the angle 540 ; and the angle
CDA is also equal to the angle BAD,

so that DC is equal to CA4.
Again, since, in the triangles BCD, BDA,
the angle BDC is equal to the angle BAD,
and the angle B is common,

the third angle BCD is equal to the third angle BDA, and therefore to
the angle DBC.

Therefore DC is equal to DB.

Now, if a circle be described about the triangle 4CD [1v. 5], since the
angle 5DC is equal to the angle in the segment CAD,

B.D must touch the circle [by the converse of 1. 32 easily proved from it
by reductio ad absurdum).

Hence [11. 36] the square on B0 and therefore the square on CD, or
AC, is equal to the rectangle 45, BC.

Thus the problem is reduced to that of cutting 458 at C so that the
rectangle 4B, BC is equal to the square on AC. [1n. 11]
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When this is done, we have only to draw a circle with eentre 4 and radius
AB and place in it a chord B.D equal in length to 4C. Bv. 1]

Since each of the angles 48D, AD2 is double of the angle BAD, the
latter is equal to one-fifth of the sum of all three, i.e. is one-fifth of two right
angles, or two-fifths of a right angle, and each of the base angles is four-fifths
of a right angle.

If we bisect the angle BA.D, we obtain an angle equal to one-fifth of a
right angle, so that the proposition enables us /o drvide a right angle into five
equal parts.

It will be observed that B.D is the side of a regular decagon inscribed in
the larger circle.

Proclus, as remarked above (Vol. 1. p. 130), gives 1v. 10 as an instance in
which two of the six formal divisions of a proposition, the se/fing-out and the
“definition,” are left out, and explains that they are unnecessary because
there is no dafum in the enunciation. This is however no more than formally
true, because Euclid does begin his proposition by se#ing out “any straight
line 4.B8,” and he constructs an isosceles triangle having 4.8 for one of its
equal sides, i.e. he does practically imply a datum in the enunciation, and a
corresponding seffing-out and * definition” in the proposition itself.

ProrosiTION 11.

In a given circle lo inscribe an equilateral and equiangular
pentagon.
Let ABCDE be the given circle ;

thus it is required to inscribe in the circle ABCDE an equi-
lateral and equiangular pentagon.

Let the isosceles triangle FGH

a F

be set out having each of the angles
at G, H double of the angle at 7; 8 E A

[1v. 10]
let there be inscribed in the circle
ABCDE the triangle ACD equi- v
angular with the triangle #G A, so
that the angle CAD is equal to the angle at 7 and the angles
at G, H respectively equal to the angles 4CD, CDA ; [w. 2]
therefore each of the angles 4CD, CDA is also double of the
angle CAD.

Now let the angles ACD, CDA be bisected respectively
by the straight lines CE, DB (1. 9), and let AB, BC, DE, EA
be joined.

Then, since each of the angles 4CD, CDA is double of
the angle CAD,

and they have been bisected by the straight lines CZ£, D5,
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therefore the five angles DAC, ACE, ECD, CDB, BDA
are equal to one another,

But equal angles stand on equal circumferences; [ur 26)

therefore the five circumferences A8, BC, CD, DE, EA are
equal to one another.

But equal circumferences are subtended by equal straight
lines ; [m. 29]

therefore the five straight lines 48, BC, CD, DE, EA are
equal to one another ;

therefore the pentagon 4BCDE is equilateral.

I say next that it is also equiangular.
For, since the circumference 428 is equal to the circum-
ference DE, let BCD be added to each;

therefore the whole circumference 4B8CD is equal to the
whole circumference £DCB.

And the angle AED stands on the circumference 4 8CD,
and the angle ZAE on the circumference £DCB ;

therefore the angle BAE is also equal to the angle 4£D.

[ 27]
For the same reason

each of the angles 4B8C, BCD, CDE is also equal to each
of the angles BAE, AED;

therefore the pentagon 4BCDE is equiangular.
But it was also proved equilateral ;

therefore in the given circle an equilateral and equi-
angular pentagon has been inscribed.
Q E. F.

De Morgan remarks that “the method of 1v. 11 is not so natural as
making a direct use of the angle obtained in the last.” On the other hand,
if we look at the figure and notice that it shows the whole of the penfagram-
star except one line (that connecting B and E), I think we shall conclude
that the method is nearer to that used by the Pythagoreans, and therefore of
much more historical interest.

Another method would of course be to use 1v. 10 to describe a decagon in
the circle, and then to join any vertex to the next alternate one, the latter to
the next alternate one, and so on.
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Mr H. M. Taylor gives “a complete geometrical construction for in-
scribing a regular decagon or pentagon in a given circle,” as follows.

“Find O the centre.

Draw two diameters 40C, BOD at right 8
angles to one another.

Bisect 0D in E.

Draw AE and cut of EF equal to OF.

Place round the circle ten chords equal
to AF.

These chords will be the sides of a regular
decagon. Draw the chords joining five alternate
vertices of the decagon ; they will be the sides
of a regular pentagon.”

The construction is of course only a com-
bination of those in 11. 11 and 1v. 1; and the
proof would have to follow that in 1v. 10.

ProrosiTION 12.

About a given circle lo civcumscribe an equilateral and
equiangular pentagon.

Let ABCDE be the given circle ;
thus it is required to circumscribe an equilateral and equi-
angular pentagon about the circle
ABCDE.

Let 4, B, C, D, E be conceived to
be the angular points of the inscribed
pentagon, so that the circumferences
AB, BC, CD, DE, EA are equal ;

[1v. 11]
through 4, B, C, D, E let GH, HK,
KL, LM, MG be drawn touching the
circle ; [m. 16, Por.]
let the centre F of the circle ABCDE be taken [m. 1], and
let FB, FK, FC, FL, FD be joined.

Then,since the straight line AL touches the circle A BCDE
at C,

and FC has been joined from the centre / to the point of
contact at C,

therefore /C is perpendicular to KL ; [1. 18]
therefore each of the angles at C is right.

For the same reason

the angles at the points 5, D are also right.
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And, since the angle FCK is right,

therefore the square on /X is equal to the squares on #C, CX.
For the same reason [r. 47]
the square on 7K is also equal to the squares on 7B, BK ;

so that the squares on FC, CK are equal to the squares
on FB, BK,

of which the square on #C is equal to the square on F5;

therefore the square on CA” which remains is equal to the
square on BK.

Therefore BK is equal to CK.
And, since 7B is equal to FC,
and /KX common,

the two sides BF, FK are equal to the two sides CF, FK ;
and the base BX equal to the base CK';

therefore the angle ZFK is equal to the angle KFC, [ 8]
and the angle BKF to the angle FKC.
Therefore the angle BFC is double of the angle K7C,
and the angle BKC of the angle FXC.
For the same reason
the angle CFD is also double of the angle CFL,
and the angle DLC of the angle FLC.
Now, since the circumference BC is equal to CD,
the angle BFC is also equal to the angle CFD. [ur 27]
And the angle BFC is double of the angle KXFC, and the
angle DFC of the angle LFC;
therefore the angle A7C is also equal to the angle LZFC.
But the angle FCK is also equal to the angle FCL ;
therefore FKC, FLC are two triangles having two angles
equal to two angles and one side equal to one side, namely
FC which is common to them ;
therefore they will also have the remaining sides equal to the
remaining sides, and the remaining angle to the remaining
angle ; [x. 26]
therefore the straight line XC is equal to CZ,
and the angle FKXC to the angle FLC,
And, since KC is equal to CL,
therefore AL is double of XC,
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For the same reason it can be proved that
HK is also double of BX.

And BK is equal to XC;

therefore /K is also equal to X'L.

Similarly each of the straight lines /G, GM, ML can
also be proved equal to each of the straight lines /X, KL ;

therefore the pentagon GHKLM is equilateral.

I say next that it is also equiangular.

For, since the angle #KC is equal to the angle FLC,
and the angle /7KL was proved double of the angle 7FXC,

and the angle XA'Z M double of the angle FLC,

therefore the angle ZXL is also equal to the angle KL M.

Similarly each of the angles K7 G, HGM, GML can also
be proved equal to each of the angles ZXL, KLM;
therefore the five angles GHK, HKL, KLM, LMG, MGH
are equal to one another.

Therefore the pentagon GA KL M is equiangular.
And it was also proved equilateral; and it has been
circumscribed about the circle 4BCDE.
Q E. F.

De Morgan remarks that 1v. 12, 13, 14 supply the place of the following :
Having given a regular polygon of any number of sides inscribed in a circle, to
describe the same about the circle; and, having given the polygon, to inscribe and
circumscribe a circle.  For the method can be applied generally, as indeed
Euclid practically says in the Porism to 1v. 15 about the regular hexagon and
in the remark appended to 1v. 16 about the regular fifteen-angled figure.

The conclusion of this proposition, * therefore about the given circle an
equilateral and equiangular pentagon has been circumscribed,” is omitted in
the mss.

ProrosITION 13.

In a given pentagon, which is equilateral and equiangular,
to inscribe a circle.

Let ABCDE be the given equilateral and equiangular
pentagon ;

thus it is required to inscribe a circle in the pentagon
ABCDE.

For let the angles BCD, CDE be bisected by the
straight lines CF, DF respectively ; and from the point 7, at



. 13] PROPOSITIONS 12, 13 10§

which the straight lines CF, DF meet one another, let the
straight lines }gﬁ', FA, FE be joined.

hen, since BC is equal to CD, A
and CF common, o M
the two sides BC, CF are equal to the
two sides DC, CF; B €
and the angle BCF is equal to the
angle DCF; H
therefore the base BF is equal
to the base DF, c K D
and the triangle BCF is equal to the
triangle DCF,
and the remaining angles will be equal to the remaining angles,
namely those which the equal sides subtend. [r 4]

Therefore the angle CBF is equal to the angle CDF.
And, since the angle CDE is double of the angle CDF,
and the angle CDZ is equal to the angle 45C,
while the angle CDF is equal to the angle CBF;
therefore the angle CBA is also double of the angle CBF;
therefore the angle ABF is equal to the angle FBC;
therefore the angle ABC has been bisected by the straight
line BF.
Similarly it can be proved that
the angles BA4 £, A ED have also been bisected by the straight
lines E‘A, FE respectively.
Now let FG, FH, FK, FL, FM be drawn from the point
F perpendicular to the straight lines 48, BC, CD, DE, EA.
Then, since the angle Z/CF is equal to the angle XCF,
and the right angle #/C is also equal to the angle FXC,
FHC, FKC are two triangles having two angles equal to two
angles and one side equal to one side, namely #C which is
common to them and subtends one of the equal angles ;
therefore they will also have the remaining sides equal to the
remaining sides ; [1. 26]
tﬁh‘ﬁefore the perpendicular 7/ is equal to the perpendicular
Similarly it can be proved that
each of the straight lines 7L, FM, FG is also equal to each
of the straight lines FH, FK ;
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therefore the five straight lines <G, FH, FK, FL, FM are
equal to one another.

Therefore the circle described with centre 7~ and distance
one of the straight lines /G, FH, FK, FL, FM will pass
also through the remaining points ;

and it will touch the straight lines 48, BC, CD, DE, EA,
because the angles at the points G, /, K, L, M are right.

For, if it does not touch them. but cuts them,

it will result that the straight line drawn at right angles to
the diameter of the circle from its extremity falls within the
circle : which was proved absurd. [111. 16)

Therefore the circle described with centre /# and distance
one of the straight lines /G, FH, FK, FL, FM will not
cut the straight lines AB, BC, CD, DE, EA;

therefore it will touch them.

Let it be described, as GHKLM.
Therefore in the given pentagon, which is equilateral and
equiangular, a circle has been inscribed.

Q. E. F.

ProrosITION 14.

About a given pentagon, whick is equilateval and equi-
angular, to civcumscribe a circle.

Let ABCDE be the given pentagon, which is equilateral
and equiangular ;
thus it is required to circumscribe a circle

about the pentagon ABCDE.

Let the angles ZCD, CDE be bisected
by the straight lines CF, DF respectively,
and from the point £, at which the straight
lines meet, let the straight lines 75, /4,
FE be joined to the points B, A4, E.

Then in manner similar to the pre-
ceding it can be proved that the angles
CBA, BAE, AED have also been bisected by the straight
lines B, FA, FE respectively.



Iv. 14, 15] PROPOSITIONS 13—15 107

Now, since the angle BCD is equal to the angle CDE,
and the angle #CD is half of the angle BCD,
and the angle COF half of the angle CDE,
therefore the angle #CD is also equal to the angle CDF,
so that the side /C is also equal to the side 7. [1. 6]
Similarly it can be proved that
each of the straight lines 7B, F 4, FE is also equal to each
of the straight lines #C, 7D ;
therefore the five straight lines 74, FB, FC, FD, FE are
equal to one another.

Therefore the circle described with centre / and distance
one of the straight lines 74, FB, FC, FD, FE will pass
also through the remaining points, and will have been
circumscribed.

Let it be circumscribed, and let it be ABCDE.

Therefore about the given pentagon, which is equilateral
and equiangular, a circle has been circumscribed.

Q. E. F.

PROPOSITION 15.

In a given civcle to inscribe an equilateral and equiangular
hexagon.

Let ABCDEF be the given circle ;
thus it is required to inscribe an equilateral and equiangular
hexagon in the circle ABCDEF.

Let the diameter A0 of the circle
ABCDEF be drawn;
let the centre G of the circle be taken, and
with centre 2 and distance DG let the
circle ZGCH be described ;
let £G, CG be joined and carried through
to the points 5, £,
and let AB, BC, CD, DE, EF, FA be
joined.

I say that the hexagon ABCDEF is ]
equilateral and equiangular.

For,since the point G is the centre of the circle A BCDEF,

GE is equal to GD.
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Again, since the point D is the centre of the circle GCH,
DE is equal to DG.
But GE was proved equal to GD ;
therefore G is also equal to £D;
therefore the triangle £GD is equilateral ;

and therefore its three angles £GD, GDE, DEG are equal
to one another, inasmuch as, in isosceles triangles, the angles

at the base are equal to one another. [r 5]
And the three angles of the triangle are equal to two
right angles; [1 32]

therefore the angle £GD is one-third of two right angles.

Similarly, the angle DGC can also be proved to be one-
third of two right angles.

And, since the straight line CG standing on £5 makes
the adjacent angles £GC, CGB equal to two right angles,

therefore the remaining angle CGA is also one-third of two
right angles.

Therefore the angles £GD, DGC, CGB are equal to one
another ;

so that the angles vertical to them, the angles BGA, AGF,
FGE are equal. [x. 15]

Therefore the six angles £GD, DGC, CGB, BGA, AGF,
FGE are equal to one another.

But equal angles stand on equal circumferences; [ 26]
therefore the six circumferences AB, BC, CD, DE, EF, FA
are equal to one another.

And equal circumferences are subtended by equal straight
lines ; [ 29]

therefore the six straight lines are equal to one another;
therefore the hexagon ABCDEF is equilateral.

I say next that it is also equiangular.

For, since the circumference 74 is equal to the circum-
ference ED,

let the circumference ABCLD be added to each;

therefore the whole FABCD is equal to the whole
EDCBA ;
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and the angle ZED stands on the circumference 4 BCD,
and the angle AFE on the circumference £DCBA ;
therefore the angle 4AFE is equal to the angle DEF.

[ 27]

Similarly it can be proved that the remaining angles of

the hexagon ABCDEF are also severally equal to each of
the angles AFE, FED ;

therefore the hexagon 4 BCDEF is equiangular.
But it was also proved equilateral ; '
and it has been inscribed in the circle ABCDEF.

Therefore in the given circle an equilateral and equiangular
hexagon has been inscribed. :
Q E. F.

Porism. From this it is manifest that the side of the
hexagon is equal to the radius of the circle.

And, in like manner as in the case of the pentagon, if
through the points of division on the circle we draw
tangents to the circle, there will be circumscribed about the
circle an equilateral and equiangular hexagon in conformity
with what was explained in the case of the pentagon.

And further by means similar to those explained in the
case of the pentagon we can both inscribe a circle in a given
hexagon and circumscribe one about it.

Q E. F.

Heiberg, I think with good reason, considers the Porism to this proposition
to be referred to in the instance which Proclus (p. 304, 2) gives of a porism
following a problem. As the text of Proclus stands, “the (porism) found
in the second Book (16 8& & 7¢ Sevrépy BifAiy xeipevov) is a porism to a
problem ”; but this is not true of the only porism that we find in the second
Book, namely the porism to 1. 4. Hence Heiberg thinks that for r§
8evrépy BiBAip should be read r¢ & BiBAiy, i.e. the fourth Book. Moreover
Proclus speaks of #fe porism in the particular Book, from which we gather
that there was only one porism in Book 1v. as he knew it, and therefore that
he did not regard as a gorism the addition to 1v. 5. Cf. note on that
proposition.

It appears that Theon substituted for the first words of the Porism to
1v. 15 “And in like manner as in the case of the pentagon” (opoiws 8t
rois émi rob woraywvov) the simple word “and” or “also” (xai), apparently
thinking that the words had the same meaning as the similar words lower
down. This is however not the case, the meaning being that “if, as in the
case of the pentagon, we draw tangents, we can prove, also as was done in
;‘he case of the pentagon, that the figure so formed is a circumscribed regular

exagon.”
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ProrosiTiON 16.

In a given circle to inscribe a fifteen-angled figure which
skall be both equilateral and equiangular. .

Let ABCD be the given circle ;
thus it is required to inscribe in the circle 48CD a fifteen-
angled figure which shall be
both equilateral and equi-
angular.

In the circle ABCD let
there be inscribed a side AC
of the equilateral triangle
inscribed in it, and a side A5
of an equilateral pentagon ;
therefore, of the equal seg-
ments of which there are
fifteen in the circle ABCD,
there will be five in the cir-
cumference ABC which is
one-third of the circle, and
there will be three in the cir-
cumference 48 which is one-fifth of the circle ;

therefore in the remainder BC there will be two of the
equal segments.

Let BC be bisected at £'; [mm. 30]
therefore each of the circumferences BE, EC is a fifteenth
of the circle ABCD.

If therefore we join BE, EC and fit into the circle ABCD
straight lines equal to them and in contiguity, a fifteen-angled
figure which is both equilateral and equiangular will have been
inscribed in it.

Q. E. F,

And, in like manner as in the case of the pentagon, if
through the points of division on the circle we draw
tangents to the circle, there will be circumscribed about the
circci a fifteen-angled figure which is equilateral and equi-

ar.

And further, by proofs similar to those in the case of the
pentagon, we can both inscribe a circle in the given fifteen-
angled figure and circumscribe one about it.
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Here, as in 11. 10, we have the term “circle” used by Euclid in its
exceptional sense of the circumference of a circle, instead of the “plane figure
contained by one line” of 1. Def. 15. CF. the note on that definition (Vol. 1.
Pp- 184—s). : _ s

Proclus (p. 269) refers to this proposition in illustration of his statement
that Euclid gave proofs of a number of propositions with an eye to their use
in astronomy. “‘ With regard to the last proposition in the fourth Book in
which he inscribes the side of the fifteen-angled figure in a circle, for what
object does anyone assert that he propounds it except for the reference of this

roblem to astronomy? For, when we have inscribed the fifteen-angled figure
in the circle through the poles, we have the distance from the poles both of
the equator and the zodiac, since they are distant from one another by the
side of the fifteen-angled figure.” This agrees with what we know from other
suurces, namely that up to the time of Eratosthenes (circa 284-—-204 B.C.) 24
was generally accepted as the correct measurement of the obliquity of the
ecliptic. This measurement, and the construction of the fifteen-angled figure,
were probably due to the Pythagoreans, though it would appear that the
former was not known to Oenopides of Chios (fl. circa 460 B.C.), as we learn
from Theon of Smyrna (pp. 198—g¢, ed. Hiller), who gives Dercyllldes as his
authority, that Eudemus (fl. cirea 320 B.C.) stated in his dorpoloyiac that,
while Oenopides discovered certain things, and Thales, Anaximander and
Anaximenes others, it was the rest (oi Aowrol) who added other discoveries
to these and, among them, that “ the axes of the fixed stars and of the planets
respectively are distant from one another by the side of a ﬁfteenangled ﬁgure e
Eratosthenes evaluated the angle to i3rds of 180° ie. about 23° 51" 20",
which measurement was apparently not improved upon in antiquity (cf. Ptolemy,
Syntaxis, ed. Heiberg, p. 68).

Euclid has now shown how to describe regular polygons with 3, 4, 5, €
and 15 sides. Now, when any regular polygon is given, we can construct a
regular polygon with twice the number of sides by first describing a circle
about the given polygon and then bisecting all the smaller arcs subtended by
the sides. Applying this process any number of times, we see that we can by
Euclid’s methods construct regular polygons with 3.2% 4.2" 5.2" 15.2" sides,
where # is zero or any positive integer.



BOOK V.

INTRODUCTORY NOTE.

The anonymous author of a scholium to Book v. (Euclid, ed. Heiberg,
Vol. v. p. 280), who is perhaps Proclus, tells us that “ some say” this Book,
containing the general theory of proportion which is equally applicable to
geometry, arithmetic, music, and all mathematical science, “is the discovery
of Eudoxus, the teacher of Plato.” Not that there had been no theory of
proportion developed before his time ; on the contrary, it is certain that the
Pythagoreans had worked out such a theory with regard to numbers, by which
must be understood commensurable and even whole numbers (a number
being a “multitude made up of units,” as defined in Eucl. vi1). Thus we
are told that the Pythagoreans distinguished three sorts of means, the
arithmetic, the geometric and the barmonic mean, the geometric mean

ing called proportion (dvaleyia) par excellence; and further Iamblichus
speaks of the “most perfect proportion consisting of four terms and specially
called karmonic,” in other words, the proportion

which was said to be a discovery of the Babylonians and to have been first
introduced into Greece by Pythagoras (Iamblichus, Comm. on Nicomachus,
p. 118). Now the principle of similitude is one which is ptesumsed by all
the arts of design from their very beginnings; it was certainly known to the
Egyptians, and 1t must certainly have been thoroughly familiar to Pythagoras
and his school. This consideration, together with the evidence of the
employment by him of the geometric proportion, makes it indubitable that the
Pythagoreans used the theory of proportion, in the form in which it was
known to them, i.e. as applicable to commensurables only, in their geometry.
But the discovery, also by the Pythagoreans, of the incommensurable would
of course be seen to render the proofs which depended on the theory of
proportion as then understood inconclusive; as Tannery observes (La
Géométrie grecgue, p. 98), “the discovery of incommensurability must have
caused a veritable logical scandal in geometry and, in order to avoid it, they
were obliged to restrict as far as possible the use of the principle of similitude,
pending the discovery of a means of establishing it on the basis of a theory of
proportion independent of commensurability.” The glory of the latter dis-
covery belongs then most probably to Eudoxus. Certain it is that the com-
plete theory was already familiar to Aristotle, as we shall see later.
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It seems probable, as indicated by Tannery (loc. cit.), that the theory
of proportions and the principle of similitude took, in the earliest Greek
geometry, an earlier place than they do in Euclid, but that, in consequence
of the discovery of the incommensurable, the treatment of the subject was
fundamentally remodelled in the period between Pythagoras and Eudoxus.
An indication of this is afforded g; the clever device used in Euclid 1 44
for applying to a given straight line a parallelogram equal to a given triangle ;
the equality of the “complements” in a parallelogram is there used for doing
what is practically finding a fourth proportional to three given straight lines.
Thus Euclid was no doubt following for the subject-matter of Books .—1v.
what had become the traditional method, and this is probably one of the
reasons why proportions and similitude are postponed till as late as Books
V., VL

It is a remarkable fact that the theory of proportions is twice treated in
Euclid, in Book v. with reference to magnitudes in general, and in Book vir.
with reference to the particular case of numbers. The latter exposition
referring only to commensurables may be taken to represent fairly the theory
of proportions at the stage which it had reached before the great extension of
it made by Eudoxus. The differences between the definitions etc. in Books v.
and vir. will appear as we go on; but the question naturally arises, why did
Euclid not save himself so much repetition and treat numbers merely as a
particular case of magnitude, referring back to the corresponding more
general propositions of Book v. instead of proving the same propositions
over again for numbers? It could not have escaped him that numbers
fall under the conception of magnitude. Aristotle had plainly indicated
that magnitudes may be numbers when he observed (A4nal post. 1 7,
75 b 4) that you cannot adapt the arithmetical method of proof to the

perties of magnitudes if the magnitudes are not numbers. Further
Aristotle had remarked (4#al. post. 1. 5, 74 a 17) that the proposition that
the terms of a proportion can be taken alternately was at one time proved
separately for numbers, lines, solids and times, though it was possible to prove
it for all by one demonstration; but, because there was no common name
comprehending them all, namely numbers, lengths, times and solids, and their
character was different, they were taken separately. Now however, he adds,
the proposition is proved generally. Yet Euclid says nothing to connect
the two theories of proportion even when he comes in x. § to a proportion
two terms of which are magnitudes and two are numbers (“Commensurable
magnitudes have to one another the ratio which a number has to a number”).
The probable explanation of the phenomenon is that Euclid simply followed
tradition and gave the two theories as he found them. This would square
with the remark in Pappus (viL p. 678) as to Euclid’s fairness to others and
his readiness to give them credit for their work.

DEFINITIONS.

1. A magnitude is a part of a magnitude, the less of
the greater, when it measures the greater.

2. The greater is a multiple of the less when it is
measured by the less.
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3. Aratio is a sort of relation in respect of size between
two magnitudes of the same kind.

4. Magnitudes are said to have a ratio to one another
which are capable, when multiplied, of exceeding one another.

5. Magnitudes are said to be in the same ratio, the
first to the second and the third to the fourth, when, if any
equimultiples whatever be taken of the first and third, and
any equimultiples whatever of the second and fourth, the
former equimultiples alike exceed, are alike equal to, or alike
fall short of, the latter equimultiples respectively taken in
corresponding order.

6. Let magnitudes which have the same ratio be called
proportional.

7. When, of the equimultiples, the multiple of the first
magnitude exceeds the multiple of the second, but the multiple
of the third does not exceed the multiple of the fourth, then
the first is said to have a greater ratio to the second than
the third has to the fourth.

8. A proportion in three terms is the least possible.

9. When three magnitudes are proportional, the first is
said to have to the third the duplicate ratio of that which
it has to the second.

10. When four magnitudes are < continuously > propor-
tional, the first is said to have to the fourth the triplicate
ratio of that which it has to the second, and so on con-
tinually, whatever be the proportion.

11. The term corresponding magnitudes is used of
antecedents in relation to antecedents, and of consequents in
relation to consequents.

12. Alternate ratio means taking the antecedent in
relation to the antecedent and the consequent in relation to
the consequent.

13. Inverse ratio means taking the consequent as
antecedent in relation to the antecedent as consequent.
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14. Composition of a ratio means taking the ante-
cedent together with the consequent as one in relation to
the consequent by itself.

15. Separation of a ratio means taking the excess
by which the antecedent exceeds the consequent in relation
to the consequent by itself.

16. Conversion of a ratio means taking the ante-
cedent in relation to the excess by which the antecedent
exceeds the consequent.

17. A ratio ex aequali arises when, there being several
magnitudes and another set equal to them in multitude which
taken two and two are in the same proportion, as the first is
to the last among the first magnitudes, so is the first to the
last among the second magnitudes ;

Or, in other words, it means taking the extreme terms
by virtue of the. removal of the intermediate terms.

18. A perturbed proportion arises when, there being
three magnitudes and another set equal to them in multitude,
as antecedent is to consequent among the first magnitudes,
so is antecedent to consequent among the second magnitudes,
while, as the consequent is to a third among the first
magnitudes, so is a third to the antecedent among the second
magnitudes.

DEFINITION I.
Mépos dori péyefos peyéfovs 18 dacgoov Tof pelfovos; érav xaraperpf) 7o
oV,

The word part (uépos) is here used in the restricted sense of a submultsple
or an aliguo? part as distinct from the more general sense in which it is used
in the Common Notion (5) which says that “the whole is greater than the
part.” It is used in theé same restricted sense in vi1. Def. 3, which is the same
definition as this with “number” (dpifpds) substituted for “magnitude.”
viL. Def. 4, keeping up the restriction, says that, when a number does not
measure another number, it is parfs (in the plural), not @ gar? of it. Thus,
1, 2, Or 3, is @ part of 6, but 4 is not a part of 6 but parts. The same
distinction between the restricted and the more general sense of the word
part appears in Aristotle, Metaph. 1023 b 12: “In one sense a is
that into which quantity (¢ woodv) can anyhow be divided ; for that which is
taken away from quantity, g»d quantity, is always called a ‘part’ of it, as
e.g. two is said to be in a sense a part of three. But in another sense a
‘part’ is only what measures (rd xaraperpovvra) such quantities. Thus two
is in one sense said to be a part of three, in the other not.”
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DEFINITION 2.

HoM\arAdowoy 8¢ 70 peilov Tob dAdrroves, drav karaperpijrar vmo Tod
&\drrovos,

DEFINITION 3.

Adyos dori 8vo peyeliv opoyevdy 1 xard myAwdmyra woud axéois.

The best explanation of the definitions of ra#ie and progortion that 1 have
seen is that of De Morgan, which will be found in the articles under those
titles in the Penny Cyclopaedia, Vol. x1x. (1841) ; and in the following notes
I shall draw largely from these articles. Very valuable also are the notes on
the definitions of Book v. given by Hankel (fragment on Euclid published as
an appendix to his work Zur Geschichte der Mathematik in Alerthum und
Mittelalter, 1874).

There has been controversy as to what is the proper translation of the
word myAwérgs in the definition. oxéois xard myhworyra has generally been
translated “relation in respect of guantity.” Upon this De Morgan remarks
that it makes nonsense of the definition; ‘“for magnitude has hardly a
different meaning from quantity, and a relation of magnitudes with respect to
quantity may give a clear idea to those who want a word to convey a notion
of architecture with respect to building or of battles with respect to fighting,
and to no others.” The true interpretation De Morgan, following Wallis and
Gregory, takes to be gwantuplicity, referring to the number of times one

itude is contained in the other. For, he says, we cannot describe
magnitude in language without quantuplicitative reference to other magni-
tude ; hence he supposes that the definition simply conveys the fact that the
mode of expressing quantity in terms of quantity 1s entirely based upon the
notion of quantuplicity or that relation of which we take izance when we
find how many times one is contained in the other. While all the rest of
De Morgan’s observations on the definition are admirable, it seems to me
that on this question of the proper translation of =nAwdrys he is in error. He
supports his view mainly by reference (1) to the definition of a compounded
ratio usually given as the 5th definition of Book vI., which speaks of the
myAworyres of two ratios being multiplied together, and (z) to the comments
of Eutocius and a scholiast on this definition. Eutocius says namely
(Archimedes, ed. Heiberg, 111. p. 120) that “the term mypAwdrys is evidently
used of the number from which the given ratio is called, as (among others)
Nicomachus says in his first book on music and Heron in his commentary
on the Introduction to Arithmetic.” But it now appears certain that this
definition is an interpolation ; it is never used, it is not found in Campanus,
and Peyrard’s ms. only has it in the margin. At the same time it is clear
that, if the definition is admitted at all, any commentator would be obliged to
explain it in the way that Eutocius does, whether the explanation was consistent
with the proper meaning of =pAworys or not. Hence we must look elsewhere
for the meaning of myAixes and mmAiérs. If we do this, I think we shall find
no case in which the words have the sense attributed to them by De Morgan.
The real meaning of myAikos is kow great. It is so used by Aristotle, e.g. in
Eth. M. v. 10, 1134 b 11, where he speaks of a man’s child being as it were
a part of him so long as he is of a certain age (fws dv §j myAikov). Again
Nicomachus, to whom Eutocius appeals, himself (1. 2, 5, p. 5, ed. Hoche)
distinguishes myAixos as referring to magnitude, while moods refers to multitude.
So does Iamblichus in his commentary on Nicomachus (p. 8, 3—s5); besides
which Iamblichus distinguishes myAikov as the subject of geometry, being con-



V. DEF. 3] NOTE ON DEFINITION 3 117

#inuous, and woodv as the subject of arithmetic, being discrefe, and speaks of a
point being the origin of mAixov as a unit is of wooov, and so on. Similarly,
Ptolemy (Synfaxis, ed. Heiberg, p. 31) speaks of the size (wmAuds) of the
chords in a circle (repi s mhxnﬂ;ros‘ Tov év 7§ kukAy ebfedv). Consequently
I think we can only translate mpAwdrys in the definition as size. This
corresponds to Hankel’s translation of it as * Gr&sse,” though he uses thls
same word for a concrete “ magmtude as well; size seems to me to give
the proper distinction between wyAworns and pry!aof. as size is the attribute,
and a magnifude (in its ordinary mathematical sense) is the thing which
possesses the attribute of size.

The view that “relation in respect of size” is meant by the words in the
text is also confirmed, I think, by a later remark of De Morgan himself,
namely that a synonym for the word rafie may be found in the more in-
telligible term relative magnitude. In fact oxéos in the definition corresponds
to relative and mhorns to magnifude. (By magnitude De Morgan here
means the attribute and not the thing possessing it.)

Of the definition as a whole Simson and Hankel express the opinion that
it is an interpolation. Hankel points to the fact that it is unnecessary and
moreover so vague as to be of no practical use, while the very use of the
expression xard mpAworyra seems to him suspicious, since the only other
place in which the word mpAwdrys occurs in Euclid is the 5th definition of
Book vr., which is admittedly not genuine. Yet the definition of rat:o appears
in all the MsS., the only variation being that some add the words mpés dAAyAa,
“to one ano'her, which are rejected by Heiberg as an interpolation of
Theon ; and on the whole there seems to be no sufficient ground for regarding
it as other than genuine. The true explanation of its presence would appear
to be substantially that given by Barrow (Zectiones Cantabrig., London, 1684,
Lect. 111, of 1666), namely that Euclid inserted it for completeness’ sake, more
for ornament than for use, intending to give the learner a general notion of
ratio by means of a metaphysical, rather than a mathematical definition ; “for
metaphysical it is and not, properly speaking, mathematical, since nothing
depends on it or is deduced from it by mathematicians, nor, as I think, can
anything be deduced.” This is confirmed by the fact that there is no
definition of Adyos in Book vir., and it could equally have been dispensed
with here. Similarly De Morgan observes that Euclid never attempts this
vague sort of definition except when, dealing with a well-known term of
common life, he wishes to bring it into geometry with something like an
expressed meaning which may aid the conception of the thing, though it does

not furnish a perfect criterion. Thus we may compare the definition with
that of a straight line, where Euclid merely calls the reader’s attention to the
well-known term ebfeia ypauuy, tries how far he can present the conception
which accompanies it in other words, and trusts for the correct use of the
term to the axioms (or postulates) which the universal conception of a straight
line makes self-evident.

We bave now to trace as clearly as possible the development of the
conception of Adyos, ratio, or relative magnitude. In its primitive sense
Aoyos was only used of a ratio between commensurab!es, i.e. a ratio which
could be expressed, and the manner of expressing it is indicated in the
proposition, Eucl. X. 5, which proves that commensurable magnitudes have to
one another the ratio whick a number has to a number. That this was the

rimitive meaning of Aoyos is proved by the use of the term d)oyos for the
incommensurable, which means srrafional in the sense of nof having a ratio
to something taken as rational (pyrds).
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Euclid himself shows us how we are to set about finding the ratio, or
relative magnitude, of two commensurable magnitudes. He gives, in X. 3,
practically ‘our ordinary method of finding the greatest common measure.
If 4, B be two magnitudes of which B is the less, we cut off from 4 a part
equal to B, from the remainder a part equal to 5, and so on, until we leave a
remainder less than B, say #£,. We measure off &£, frcm B in the same way
until a remainder &, is left which is less than &,. We repeat the process
with &,, R,, and so on, until we find a remainder which is contained in the
preceding remainder a certain number of times exactly. If account is taken
of the number of times each nagnitude is contained (with something over,
except at the last) in that upon which it is measured, we can calculate how
many times the last remainder is contained in 4 and how many times the
last remainder is contained in B ; and we can thus express the ratio of 4 to
B as the ratio of one number to another.

But it may happen that the two magnitudes have no common measure,
i.e. are incommensurable, in which case the process described would never
come to an end and the means of expression would fail ; the magnitudes
would then Aave no ratio in the primitive sense. But the word Adyos, ratio,
acquires in Euclid, Book v., a wider sense covering the relative magnitude of
incommensurables as well as commensurables; as stated in Euclid’s 4th
definition, “ magnitudes are said to have a ra#o to one another which can,
when multiplied, exceed one another,” and finite incommensurables have this
property as much as commensurables. De Morgan explains the manner of
transition from the narrower to the wider signification of rafio as follows.
“Since the relative magnitude of two quantities is always shown by the
quantuplicitative mode of expression, when that is possible, and since pro-
portional quantities (pairs which have the same relative magnitude) are pairs
which have the same mode (if possible) of expression by means of each other ;
in all such cases sameness of relative magnitude leads to sameness of mode of
expression ; or proportion is sameness of ratios (in the primitive sense). But
sameness of relative magnitude may exist where quantuplicitative expression
is impossible ; thus the diagonal of a larger square is the same compared with
its side as the diagonal of @ smaller square compared with ##s side. Itis an
easy transition to speak of sameness of ratio even in this case; that is, to use
the term ratio in the sense of relative magnitude, that word having originally
only a reference to the mode of expressing relative magnitude, in cases which
allow of a particular mode of expression. The word irrational (dAoyos) does
not make any corresponding change but continues to have its primitive
meaning, namely, incapable of quantuplicitative expression.”

It remains to consider how we are to describe the relative magnitude of
two incommensurables of the same kind. That they have a definite relation
is certain. Suppose, for precision, that S is the side of a square, D its
diagonal ; then, if S is given, any alteration in D or any error in D would
make the figure cease to be a square. At the same time, a person altogether
ignorant of the relative magnitude of D and S might say that drawing two
straight lines of length S so as to form a right angle and joining the ends by
a straight line, the length of which would accordingly be 2, does not help
him to realise the relative magnitude, but that he would like to know how
many diagonals make an exact number of sides. We should have to reply
that no number of diagonals whatever makes an exact number of sides ; but
that he may mention any fraction of the side, a hundredth, a thousandth or
a millionth, and that we will then express the diagonal with an error not so
great as that fraction. We then tell him that 1,000,000 diagonals exceed
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1,414,213 sides but fall short of 1 14145214 sides ; consequently the diagonal

lies between 1°414213 and 1°414214 times the stde. and these differ only by
one-millionth of the side, so that the error in the diagonal is less still. To
enable him to continue the process further, we show him how to perform the
arithmetical opemuon of apprommatmg to the value of /2. This gives the
means of carrying the approximation to any degree of accuracy that may be
desired. In the power, then, of carrying approximations of this kind as far as
we please lies that of expressing the ratio, so far as expression is possible, and
of comparing the ratio with others as accurately as if expression had been
possible.

Euclid was of course aware of this, as were probably others before him ;
though the actual approxlmanons to the values of ratios of incommensurables
of which we find record in the works of the great Greek geometers are very
few. The history of such approximations up to Archimedes is, so far as
material was available, sketched in Zhe Works of Archimedes (pp. Ixxvii and
following) ; and it is sufficient here to note the facts (1) that Plato, and even
the Pythagoreans, were familiar with { as an approximation to ,/z, (2) that
the method of finding any number of sucmsive approximations by the system
of side- and diagonal-numbers described by Theon of Smyrna was also
Pythagorean (cf. the note above on Euclid, 1. g, 10), (3) that Archimedes,
without a word of preliminary explanation, gives out that

> 3> 85,
gives approximate values for the square roots of several large numbers, and
proves that the ratio of the ctrcumference of a circle to its diameter is less
than 3} but greater than 33, (4) that the first approach to the rapidity with
which the decimal system embles us to approximate to the value of surds
was furnished by the method of sexagesimal fractions, which was almost as
convenient to work with as the method of decimals, and which appears fully
developed in Ptolemy’s ovvrafis. A number consisting of a whole number
and any fraction was under this system represented as so many units, so
many of the fractions which we should denote by 45, so many of those which
we should write ()% (55)’, and so on. Theon of Alexandria shows us how
to extract the square root of 4500 in this sexagesimal system, and, to show
how eﬁ'ectwe |t was, it is only necessary to mention that Ptolemy gives

16003 + == 55 *2 o, as an approximation to ,/3, which approximation is equivalent
to 1 733::509 in the ordinary decimal notation and is therefore correct to
6 places.

Between Def, 3 and Def. 4 two manusmpts and Campanus insert “ Pro-
portion is the sameness of ratios” (dva)oyia 8t 7j Tév Adywr radrérys), and even
the best Ms. has it in the margin. It would be altogether out of place, since
it is not till Def. 5 that it is explained what sameness of ratios is. The words
are an interpolation later than Theon (Heiberg, Vol. v. pp. xxxv, lxxxix),
and are no doubt taken from arithmetical works (cf. Nicomachus and Theon
of Smyrna.) It is true that Aristotle says similarly, * Proportion is equality
of ratios” (Eth. Nic. v. 6, 1131 a 31), and he appears to be quoting from
the Pythagoreans; but the reference is to numbers.

Similarly two Mss. (inferior) insert after Def. 7 “Proportion is the similarity
(Spowrns) of ratios.” Here too we have a mere interpolation.
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DEFINITION 4.

Adyov ¥ew mpds dAApla peyéfy Aéyera, & Sivarar mollamlacia{dpea
d\jAoy Smepfyew.

This definition supplements the last one. De Morgan says that it amounts
to saying that the magnitudes are of the same species. But this can hardly
be all; the definition seems rather to be meant, on the one hand, to exclude
the relation of a finite magnitude to a magnitude of the same kind which is
either infinitely great or infinitely small, and, even more, to emphasise the
fact that the term rafio, as defined in the preceding definition, and about to
be used throughout the book, includes the relation between any two sncom-
mensurable as well as between any two commensurable finite magnitudes of
the same kind. Hence, while De Morgan seems to regard the extension of
the meaning of rafio to include the relative magnitude of incommensurables
as, so to speak, taking place between Def. 3 and Def. 5, the 4th definition
appears to show that it is ratio in its extended sense that is being defined in
Def. 3.

DEFINITION §.

"Ev 1¢ alrg Mdyy peyéfy Méyerar elvar mpérov wpds Sevrepov al pirov mpos
réraprov, drav Td TOU mpurTov Kal Tpitov lodkis woldawAdowe Tév Tov Sevrépov
kai Terdprov lgdxis woAdamlaciwv xal Smowovely womrl«am;&av éxdrepor
éxarépov 7 dua tmepéxy ¥ dpa loa ) dua éelry Appblérra xardAApla.

In my translation of this definition I have compromised between an
attempted literal translation and the more expanded version of Simson. The
difficulty in the way of an exactly literal translation is due to the fact that the
words (kaf dmoiovolv moAhawAaciaoudv) signifying that the equimultiples in
eack case are any equimultiples whatever occur only once in the Greek, though
they apply botk to Ta...lodkis TolAarAdowa in the nominative and 7dv...lodxis
woMamAaciwy in the genitive. I have preferred “alike” to ““simultaneously”
as a translation of dua because “simultaneously ” might suggest that time was
of the essence of the matter, whereas what is meant is that any particular
comparison made between the equimultiples must be made between #4e same
equimultiples of the two pairs respectively, not that they need to be compared
al the same time.

Aristotle has an allusion to a definition of “the same ratio” in Zbpics
viL 3, 158 b 29: “In mathematics too some things appear to be not easy to
prove (ypdgeobar) for want of a definition, e.g. that the parallel to the side
which cuts a plane [a parallelogram] divides the straight line [the other side]
and the area similarly. But, when the definition is expressed, the said property
is immediately manifest ; for the areas and the straight lines kave the same
avravaipeais, and this is the definition of ‘the same ratio.’” Upon this
passage Alexander says similarly, “This is the definition of proportionals
which the ancients used: magnitudes are proportional to one another which
have (or show) the same avBudaipeois, and Aristotle has called the latter
dvravaipeais.” Heiberg (Mathematisches su Aristoteles, p. 22) thinks that
Aristotle is alluding to the fact that the proposition referred to could not be
rigorously proved so long as the Pythagorean definition applicable to com-
mensurable magnitudes only was adhered to, and is quoting the definition
belonging to the complete theory of Eudoxus; whence, in view of the positive
statement of Aristotle that the definition quoted #s the definition of “the same
ratio,” it would appear that the Euclidean definition (which Heiberg describes
as a careful and exact paraphrase of avravaipests) is Euclid’'s own. I do not




V. DEF. §) NOTES ON DEFINITIONS 4, 5 121

feel able to subscribe to this view, which seems to me to involve very grave
difficulties. The Euclidean definition is regularly appealed to in Book v. as
the criterion of magnitudes being in proportion, and the use of it would appear
to constitute the whole essence of the new general theory of proportion; if then
this theory is due to Eudoxus, it seems impossible to believe that the definition
was not also due to him. Certainly the definition given by Aristotle would
be no substitute for it; dvfvdaipesis and dvravaipesis are words almost as
vague and “ metaphysical ” (as Barrow would say) as the words used to define
ratio, and it is difficult to see how any mathematical facts could be deduced
from such a definition. Consider for a moment the etymology of the words.
dgaipeis or dvaipecis means “removal,” “taking away ” or “destruction” of
a thing; and the prefix dvri indicates that the “taking away” from one
magnitude answers fo, corresponds with, alternates with, the “taking away”
from the other. So far therefore as the etymology goes, the word seems
rather to suggest the “taking away ” of corresponding fractions, and therefore
to suit the old imperfect theory of proportion rather than the new one. Thus
Waitz (ad Joc.) paraphrases the definition as meaning that “as many parts as
are taken from one magnitude, so many are at the same time taken from the
other as well.” A possible explanation would seem to be that, though
Eudoxus had formulated the new definition, the old one was still current in
the text-books of Aristotle’s time, and was taken by him as being a good
enough illustration of what he wished to bring out in the passage of the
Topics referred to.

From the revival of learning in Europe onwards the Euclidean definition
of proportion was the subject of much criticism. Campanus had failed to
understand it, had in fact misinterpreted it altogether, and he may have
misled others such as Ramus (1515—72), always a violently hostile critic of
Euclid. Among the objectors to it was no less a person than Galileo. For

iculars of the controversies on the subject down to Thomas Simpson
Elem. of Geometry, Lond. 1800) the reader is referred to the Excursus at the
end of the second volume of Camerer’s Euclid (1825). For us it is interesting
to note that the unsoundness of the usual criticisms of the definition was
never better exposed thanm by Barrow. Some of the objections, he pointed out
(Zect. Cantabr.vi1.of 1666), are due to misconception on the part of their authors
as to the nature of a definition. Thus Euclid is required by these objectors
(e.g. Tacquet) to do the impossible and to show that what is predicated in the
definition is true of the thing defined, as if any one should be required to
show that the name “circle” was applicable to those figures alone which
have their radii all equal! As we are entitled to assign to such figures and
such figures only the name of “circle,” so Euclid is entitled (* quamvis non
temere nec imprudenter at certis de causis iustis illis et idoneis ”) to describe
a certain property which four magnitudes may have, and to call 1tudes
possessing that property magnitudes ‘‘in the same ratio.” Others ha
from the occurrence of the other definition of proportion in vi1. Def. 2o that
Euclid was dissatisfied with the present one ; Barrow pointed out that, on the
contrary, it was the fact that vii. Def. 20 was not adequate to cover the case
of incommensurables which made Euclid adopt the present definition here,
Lastly, he maintains, against those who descant on the ““obscurity” of v.
Def. 5, that the supposed obscurity is due, partly no doubt to the inherent
difficulty of the subject of incommensurables, but also to faulty translators,
and most of all to lack of effort in the learner to grasp thoroughly the meaning
of words which, in themselves, are as clearly expressed as they could be.

To come now to the merits of the case, the best defence and explanation
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of the definition that I have seen is that given by De Morgan. He first
translates it, observes that it applies equally to commensurable or incom-
mensurable quantities because no attempt is made to measure one by an
aliquot part of another, and then proceeds thus.

“The two questions which must be asked, and satisfactorily answered,
previously to its [the definition’s] reception, are as follows:

1. What right had Euclid, or any one else, to expect that the preceding
most prolix and unwieldy statement should be received by the beginner as
the definition of a relation the perception of which is one of the most common
acts of his mind, since it is performed on every occasion where similarity or
dissimilarity of figure is looked for or presents itself?

2. If the preceding question should be clearly answered, how can the
definition of proportion ever be used ; or how is it possible to compare every
one of the infinite number of multiples of 4 with every one of the multiples
of B?

To the first question we reply that not only is the test proposed by
Euclid tolerably simple, when more closely examined, but that it is, or might
be made to appear, an easy and natural consequence of those fundamental
perceptions with which it may at first seem difficult to compare it.”

To elucidate this De Morgan gives the following illustration.

Suppose there is a straight colonnade composed of equidistant columns
(which we will understand to mean the vertical lines forming the axes of the
columns respectively), the first of which is at a distance from a bounding wall
equal to the distance between consecutive columns. In front of the colonnade
let there be a straight row of equidistant railings (regarded as meaning their
axes), the first being at a distance from the bounding wall equal to the
distance between consecutive railings. Let the columns be numbered from
the wall, and also the railings. We suppose of course that the column distance
(say, C) and the railing distance (say, &) are different and that they may bear
to each other any ratio, commensurable or incommensurable ; i.e. that there
need not go any exact number of railings to any exact number of columns.

.

If the construction be supposed carried on to any extent, a spectator can,
by mere inspection, and without measurement, compare C with & to any
degree of accuracy. For example, since the 1oth railing falls between the 4th
and sth columns, 10k is greater than 4C and less than 5C, and therefore &
lies between y%ths of C and y%;ths of C. To get a more accurate notion, the
ten-thousandth railing may be taken ; suppose it falls between the 4674th and
4675th columns. Therefore 10,0002 lies between 4674 C and 4675C, or R lies
between yy'y's and yyygg of C. There is no limit to the degree of accuracy
thus obtainable ; and the ratio of & to C is determined when the order of
distribution of the railings among the columns is assigned ad infinitum ; or, in
other words, when the position of any giver railing can be found, as to the
numbers of the columns between which it lies. Any alteration, however
small, in the place of the first railing must at last affect the order of
distribution. Suppose e.g. that the first railing is moved from the wall by one
part in a thousand of the distance between the columns; then the second
railing is pushed forward by y¢%4C, the third by {%%C, and so on, so that
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the railings after the thousandth are pushed forward by more than C; i.e. the
order with respect to the columns is disarranged.

Now let it be proposed to make a model of the preceding construction in
which ¢ shall be the column distance and 7 the railing distance. It needs no
definition of proportlon, nor anything more than the conception which we
have of that term prior to definition (and with which we must show the agree-
ment of any definition that we may adopt), to assure us that C must be to &
in the same proportion as ¢ to 7 if the model be truly formed. Nor is it
drawing too largely on that conception of proportion to assert that the
distribution of the railings among the columns in the model must be every-
where the same as in the original ; for example, that the model would be ouf
of proportion if its 37th railing fell between the 18th and rgth columns, while
the 37th railing of the original fell between the 17th and 18th columns. Thus
the dependence of Euclid’s definition upon common notions is settled; for the
obvious relation between the construction and its model which has just been
described contains the collection of conditions, the fulfilment of which,
according to Euclid, constitutes proportion. According to Euclid, whenever
mC exceeds, equals, or falls short of #&, then mc must exceed, equal, or fall
short of #7; and, by the most obvious property of the constructions, according
as the mth column comes after, opposite to, or before the #th railing in the
original, the mth column must come after, opposite to, or before the #th
railing in the correct model.

Thus the test proposed by Euclid is necessary. It is also sufficient. For
admitting that, to a given original with a given column-distance in the model,
there is one correct model railing distance (which must therefore be that
which distributes the railings among the columns as in the original), we have
seen that any other railing distance, however slightly different, would at last
give a different distribution; that is, the correct distance, and the correct
distance only, satisfies all the conditions required by Euclid’s definition.

The use of the word distribution having been well learnt, says De Morgan,
the following way of stating the definition will be found easier than that of
Euclid. “Four magnitudes, 4 and B of one kind, and C and D of the same
or another kind, are proportional when all the multiples of 4 can be
distributed among the multiples of Z in the same intervals as the correspond-
ing multiples of C among those of D.” Or, whatever numbers », » may be,
if mA lies between 2.8 and (n + 1), mC lies between 2.0 and (n + 1).D.

It is important to note that, if the test be always satisfied from and after
any given multiples of A4 and C, it must be satisfied before those multiples. For
instance, let the test be always satisfied from and after 1004 and 100C; and
let 54 and 5C be instances for examination. Take any multiple of 5 which
will exceed 100, say 50 times five ; and let it be found on examination that
2504 lies between 6785 and 6793 then 250C lies between 6780 and
679.0. Divide by 50, and it follows that 54 lies between 13355 and 13335,
and a fortiori between 138 and 145. Similarly, 5C lies between 13350 and
13380, and therefore between 130 and 140. Or 54 lies in the same
interval among the multiples of B in which 5C lies among the multiples of D.
And so for any multiple of 4, C less than 1004, 100C.

There remains the second question relating to the infinite character of the
definition ; four magnitudes 4, B, C, D are not to be 