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PREFACE

THE methods of investigation adopted in this work are
in accordance with what may be called the modern school
of practical astronomy, or more distinctively the Ger-
man school, at the head of which stands the unrivalled
BesseL. In this school, the investigations both of the
general problems of Spherical Astronomy and of the Theory
of Astronomical Instruments are distinguished by the gene-
rality of their form and their mathematical rigor. When
approximative methods are employed for convenience in
practice, their degree of accuracy is carefully determined by
means of exact formule previously investigated ; the latter
being developed in converging series, and only such terms
of these series being neglected as can be shown to be insen-
gible in the cases to which the formulse are to be applied.
And it is an essential condition of all the methods of com-
putation from data furnished by observation, that the errors
of the computation shall always be practically insensible in
relation to the errors of observation: so that our results
shall be purely the legitimate deductions from the observa-
tions, and free from all avoidable error.

It is another characteristic feature of modern spherical
astronomy, that the final formula furnished to the practical
computer are so presented as seldom to require accompany-
ing verbal precepts to distinguish the species of the unknown
angles and arcs; and this results, in a great measure, from
the consideration of the general spherical triangle, or that in
which the six parts of the triangle are not subjected to the
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4 PREFACE.

condition that they shall each be less than 180°, but may
have any values less than 360°, all ambiguity as to their
species being removed by determining them, when necessary,
by two of their trigonometric functions, usually the sine and
the cosine. This feature is mainly due to GAuss, and was °
prominently exhibited in his Theoria Motus Corporum Cee-
lestium, published in 1809. The English and American
astronomers have been slow to adopt this manifest improve-
ment; in evidence of which I may remark that the general
spherical triangle was not treated of in any work in the
English language, so far as I know, prior to the publication
of my Treatise on Plane and Spherical Trigonometry, in the
year 1850. In the present work, I assume the reader to be
acquainted with this form of spherical trigonometry, and to
accept its fundamental equations in their utmost generality.

A third and eminently characteristic feature of modern
astronomy, is the use which it makes, in all its departments,
of the method of least squares, namely, that method of
combining observations which shall give the most probable
results, or which shall be exposed to the least probable errors.
This method is also due to GAuss, who (though anticipated
in the publication of one of its practical rules by LEGENDRE)
was the first to give a philosophical exposition of its princi-
ples. The direct effect of this improvement is not only that
the most probable result in each case is obtained, but also
that the relative degree of accuracy of that result is deter-
" mined, and thus the degree of confidence with which it may
be received and the weight which it may be allowed to have
in subsequent discussions. Judiciously employed, it serves
to indicate when a particular process has reached the limit
of accuracy which it can afford, thereby saves fruitless
labor, directs inquiry into new channels, and contributes
greatly to accelerate thesprogress of the science.

W hilst the scienice has been rapidly advancing in Europe,
we have in this country not been idle. Two of the most
important improvements in practical astronomy have had
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their origin in the United States,—the method of finding
differences of geographical longitude by the electric telegraph,
and that of finding the geographical latitude by the zenith
telescope. These are the direct offspring of our admirably
conducted Coast Survey, which, with the aid of these
methods, both of the greatest simplicity, has fixed the lati-
tudes and relative longitudes of a series of points on our
coast with a degree of accuracy wholly unapproached in any
previous work of this kind. This extreme accuracy will be
apparent to the reader who will refer to the examples here
given, which have been selected (almost at random) from
the records of the Survey.

It is perhaps necessary to say a few words here respect-
ing those portions of this treatise in which I have ventured
to substitute my own methods for those heretofore employed.
My method of reducing lunar distances, which was first
published in the American Ephemeris for 1855, is here re-
produced, together with the necessary tables for its applica-
tion. But I have first, for the sake of completeness, given
the usual rigorous solution, although this is confessedly too
laborious for ordinary use, and especially for use at sea. The
approximative methods heretofore proposed may be divided
into two classes: first, those based upon sufficiently precise
formulee, but such that the tables tequired in their applica-
tion are adapted only to a mean state of the atmosphere;
and second, those based upon incomplete formule. As to
the first class, the trouble of correcting the tabular numbers
for the barometer and thermometer would render the
methods as laborious as the rigorous method, and it is
therefore the usual practice, at sea, to disregard these correc-
tions altogether, thus introducing a greater error than would
follow from the use of the more incomplete formule of the
second class, if in the latter these corrections were taken
into account. But, as to the methods of the second class (of
which there are several in common use), it will be found
apon examination that the omitted terms of the formulxo
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are not so small as to be insensible even in relation to the
rather large errors of observation which are unavoidable ir
the use of the sextant. The defects of both classes are
supposed to be avoided in my new method ; for, first, I have
deduced a rigorous formula from which is derived an ap-
proximate one, practically perfect, representing the true cor-
rection of the lunar distance within one second of arc in
every case that can occur in practice; and, second, I have
arranged this formula so that it not only requires extremely
simple tables in its application, hut also the tabular numbera
require no correction for the barometer and thermometer, the
corrections for the state of these instruments being intro-
duced in a simple manner in forming the arguments of the
tables. In applying this method with logarithms of only
four decimal places, the true distance is usually obtained
within less than two seconds of arc, a degree of accuracy far
greater than is necessary in relation to our present means
of observing the distance. It is, in fact, quite as accurate
in practice as BESSEL’s theoretically exact method when the
latter is also carried out with four-place logarithms. I
think, therefore, that I may justly prefer my own method
not only to the imperfect approximative methods above
referred to, but also to BESSEL’S method, which requires an
extended Ephemeris wholly different from that now in use,
and is withal more laborious.

The Gaussian method of reducing circummeridian alti-
tudes of the sun by referring them to the instant of the
sun’s maximum altitude, is in this work rigorously investi-
gated, and a small term, overlooked or disregarded by Gauss,
has been added to the formula.

A new and brief approximative method of finding the
latitude by two altitudes near the meridian when the
time is not known, is given in Vol. I. Arts. 195 and 204, and
another by three altitudes near the meridian, in Art. 205,
which will probably be found useful as nautical methods.

The subject of Eclipses will be found treated with more
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than usual completeness. The fundamental formuls adopted
are those of BEsseL's theory, but the solutions of the various
problems relating to the prediction of solar eclipses for the
earth generally are mostly new. The rigorous solutions of
these problems given by BESSEL in his Analyse der Finster-
nesse are not required for the usual purposes of prediction,
however interesting they may be as specimens of refined
and elegant analysis. On the other hand, the approximate
solutions commonly given appear to be unnecessarily rude.
Those that I have substituted will be found to be very little
if at all more laborious than the latter, while they are almost
as precise as the former, and by a very little additional labor
(that is, by repeating only some parts of the computation
for a second or third approximation) may be rendered quite
exact.

So far as I can find, no one has heretofore treated distinct--
ively of the occultations of planets by the moon, and these:
phenomena have been dismissed as simple cases of the-
general theory of eclipses, in which both the occulting and’
the occulted body are spherical. But in almost every oc-
cultation of one of the principal planets, the planet will be
either a spheroidal body fully or partially illuminated by
the sun, or a spherical body partially illuminated : so that,
in the general case, we have to consider the disc of the oc--
culted body as bounded by an ellipse or by two different
gemi-ellipses. - I have discussed this general case at length,
and have adapted the theory to each planet specially. The
additional computations required to take into account the
true figure of the planet’s disc are sufficiently brief and
simple.. The case of the occultation of a cusp of Venus or
Mercury is included in the discussion, and also the occulta~
tion of Saturn’s rings.

The well known formula for predicting the transits of the
inferior planets over the sun’s disc, first given by LAGRANGE,
" is here rendered more accurate by introducing a considera-
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tion of the compression of the earth; and a new and simple
demonstration of the formula is given.

In the practical portions of the work, and especially in
the second volume, I have endeavored to give every import
ant precept for the guidance of observers, deduced from the
labors of others or suggested by my own experience. All
the principal methods are illustrated by examples from
actual observation.

I bhave taken especlal pains throughout the work to ex-
hibit the mode of discussing the probable errors of the results
obtained by observations, and have given numerous examples
of the application of the method of least squares. This
method is applicable in almost all the physical sciences
where numerical results are to be deduced, and, therefore,
does not necessarily form a part of a work on astronomy;
but, as I could not refer my reader to any work in the
English language for a sufficient account of the method, I
have prepared a concise treatise upon it, which forms the
Appendix. In this, I have confined myself chiefly to the
parts of the theory required in practical astronomy, and have
endeavored to present its principles in a simple yet rigorous
manner (so far as the subject allows), taking as a basis
known theorems of the calculus of probabilities, and follow-
ing principally the processes first proposed by Gauss.

In this Appendix I have treated .of PEIRCE’S Criterion for
the rejection of doubtful observations, which is already well
known to American astronomers, and is now constantly
applied in the discussion of observations upon our Coast
Survey. Objections have been made to the criterion, but
none that would not apply equally well to the method of
least squares itself. To those who have not been able to
follow PEIRCE’S investigation, the simple approximate cri-
terion which I have suggested at the end of the Appendix
may prove acceptable. It is derived directly from the fun-
damental formula of the method of least squares, and leads
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to the rejection of nearly the same observations as that of
PEIRCE.

The plates at the end of the work exhibit in minute
detail the instruments now chiefly employed by astronomers.
To have given more, with the necessary explanations, would
have led me too far into the mere history of the subject, and
would have occupied space which I thought it preferable to
fill with discussions relating to the leading instruments now
in use. The scale of these plates is purposely made quite
small; but the great precision with which they are executed
will enable the reader to measure from them the dimensions
of all the important parts of each of the principal instru-
ments. I am greatly indebted for the perfection of these
drawings to the engravers, the Messrs. ILLMAN BROTHERS, of
Philadelphia.

Such auxiliary tables as seemed to be necessary to the
reader in using these volumes have been given at the end
of Vol. II. Some of these are new. Most of those which
have been derived from other sources have been either re-
computed or tested by differences and corrected. To insure
their accuracy, they have also been tested by differences
after being in type.

For the very complete index to the whole work, I am
indebted to my friend, Prof. J. D. CrREHORE, of Washington
University. '

In conclusion, I desire to express my obligations to those
citizens of Saint Louis who, without solicitation, have gene-
rously assumed a share of the risk of publication. Their
liberal spirit has been met by a corresponding liberality on
the part of my publishers, who have spared no expense in
the typographical execution. I shall be content if their
expectations are not wholly disappointed, and the work
contributes in any degree to the advancement of the noblest
of the physical sciences.

WasaiNGTON UNIVERSITY,
8aint Louis, January 1, 1868.
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SPHERICAL ASTRONOMY.

CHAPTER I

THE CELESTIAL SPHERE—SPHERICAL AND RECTANGULAR
CO-ORDINATES.

1. Fron whatever point of space an observer be supposed to
view the heavenly bodies, they will appear to him as if situated
upon the surface of a sphere of which his eye is the centre. If]
without changing his position, he directs his eye successively to
the several bodies, he may learn their relative directions, but
cannot determine either their distances from himself or from
each other.

The position of an observer on the surface of the earth is,
however, constantly changing, in consequence, 1st, of the diur
nal motion, or the rotation of the earth on its axis; 2d, of the
annual motion, or the motion of the earth in its orbit around
the sun.

The changes produced by the diurnal motion, in the appa-
rent relative positions or directions of the heavenly bodies, are
difterent for observers on different parts of the earth's surface,
and can be subjected to computation only by introducing the
elements of the observer’s position, such as his latitude and
longitude.

But the changes resulting from the annual motion of the
earth, as well as from the proper motions of the celestial bodies
themselves, may be separately considered, and the directions
of all the known celestial bodies, as they would be seen from

the’ centre of the earth at any given time, may be computed
¢ Voul—2 17
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according to the laws which have been found to govern the
motions of these bodies, from data furnished by long series of
observations. The complete investigation of these changes and
their laws belongs to Physical Astronomy, and requires the consi-
deration of the distances and magnitudes as well as of the direc-
tions of the bodies composing the system.

Spherical Astronomy treats specially of the directions of the
heavenly bodies; and in this branch, therefore, these bodies are
at any given instant regarded as situated upon the surface of a
sphere of an indefinite radius described about an assumed
centre. It embraces, therefore, not only the problems which arise
from the diurnal motion, but also such as arise from the annual
motion so far as this affects the apparent positions of the hea-
venly bodies upon the celestial sphere, or their directions from
the assumed centre,

SPHERICAL CO-ORDINATES.

2. The direction of a point may be expressed by the angles
which a line drawn to it from the centre of the sphere, or point
of observation, makes with certain fixed lines of reference. But,
since such angles are directly measured by arcs on the surface
of the sphere, the simplest method is to assign the position in
which the point appears when projected upon the surface of the
sphere. For this purpose, a great circle of the sphere, supposed
to be given in position, is assumed as a primitive circle of refer-
ence, and all points of the surface are referred to this circle by a
system of secondaries or great circles perpendicular to the primi-
tive and, consequently, passing through its poles. The position
of a point on the surface will then be expressed by two spherical
co-ordinates: namely, 1st, the distance of the point from the pri-
mitive circle, measured on a secondary; 2d, the distance inter-
cepted on the primitive between this secondary and some given

_point of the primitive assumed as the origin of co-ordinates.

We shall have different systems of co-ordinates, according to
the circle adopted as a primitive circle and the point assumed as
the origin.

8. First system of co-ordinates.—Allitude and azimuth.—In this
system, the primitive circle is the horizon, which is that great
circle of the sphere whose plane touches the surface of the
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earth at the observer.* The plane of the horizon may be con-
ceived as that which sensibly coincides with the surface of a
fluid at rest.

The vertical line is a straight line perpendicular to the plane
of the horizon at the observer. It coincides with the direction
of the plumb line, or the simple pendulum at rest. The two
points in which this line, infinitely produced, meets the sphere,
are the zenith and nadir, the first above, the second below the
horizon.

The zenith and nadir are the poles of the horizon.

Becondaries to the horizon are vertical circles. ‘They all pass
through the zenith and nadir, and their planes, which are called
vertical planes, intersect in the vertical line.

Small circles parallel to the horizon are called almucantars, or
parallels of altitude.

The celestial meridian is that vertical circle whose plane passes
through the axis of the earth and, consequently, coincides with
the plane of the terrestrial meridian. The intersection of this
plane with the plane of the horizon is the meridian line, and the
points in which this line meets the sphere are the north and south
points of the horizon, being respectively north and south of the
plane of the equator.

The prime vertical is the vertical circle which is perpendicular
to the meridian. The line in which its plane intersects the
plane of the horizon is the east and west line, and the points in
which this line meets the sphere are the east and west points of
the horizon.

The north and south points of the horizon are the poles of the
prime vertical, and the east and west points are the poles of the
meridian.

# In this definition of the horizon we consider the plane tangent to the earth’s
surface as sensibly coinciding with n parallel plane passed through the centre; that
is, we consider the radius of the celestial sphere to be infinite, and the radius of the
earth to be relatively zero. In general, any number of parallel planes at finite dis-
tances must be regarded as marking out upon the infini‘e sphere the same great circle.
Indeed, since in the celestial sphere we ider only direction, abstraéted from dis-
tance, all lines or planes having the same direction—that is, all parallel lines or
planes—must be regarded as intersecting the surface of the sphere in the same
point or the same great circle. The point of the surface of the ephere in which a
number of parallel lines are conceived to meet is called the vanishing point of those
lines ; and, in like manner, the great circle in which a number of parallel planes are
conceived to ineet may be called the vanishing circle of those planes.
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The altitude of a point of the celestial sphere is its distance
from tl.e horizon measured on a vertical circle, and its azimuth is
the arc of the horizon intercepted between this vertical circle
and any point of the horizon assumed as an origin. The origin
from which azimuths are reckoned is arbitrary; so also is the
direction in which they are reckoned; but astronomers usually
take the south point of the horizon as the origin, and reckon
towards the right hand, from 0° to 860°; that is, completely
around the horizon in the direction expressed by writing the
cardinal points of the horizon in the order 8. W.N.E. We
may, therefore, also define azimuth as the angle which the
vertical plane makes with the plane of the meridian.

Navigators, however, usually reckon the azimuth from the
north or south points, according as they are in north or south
latitude, and towards the east or west, according as the point
of the sphere eonsidered is east or west of the meridian: so that
the azimuth never exceeds 180°. Thus, an azimuth which is
expressed according to the first method simply by 200° would
be expressed by a navigator in north latitude by N. 20° E., and
by a navigator in south latitude by 8. 160° E., the letter prefixed
denoting the origin, and the letter affixed denoting the direction
in which the azimuth is reckoned, or whether the point consi:
dered is east or west of the meridian.

When the point considered is in the horizonm, it is often
referred to the east or west points, and its distance from the
nearest of these points is called its amplitude. Thus, a point in
the horizon whose azimuth is 110° is said to have an amplitude
of W. 20°N.

Since by the diurnal motion the observer’s horizon is made
to change its position in the heavens, the co-ordinates, altitude
and azimuth, are continually changing. Their values, therefore,
will depend not only upon the observer’s position on the earth,
but upon the time reckoned at his meridian.

Instead of the altitude of a point, we frequently employ its
zenith distance, which is the arc of the vertical circle between the
point and the zenith. The altitude and zenith distance are,
therefore, complements of each other.

We shall hereafter denote altitude by &, zenith distance by ¢,
azimuth by 4. We shall have then

{=90°—h h=190°—¢
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The value of £ for a point below the horizon will be greater
than 90°, and the corresponding value of k, found by the for-
mula A= 90° — ¢, will be negative : so that a negative altitude
will express the depression of a point below the horizon. Thus,
a depression of 10° will be expressed by A= —10°, or { == 100°.

4. Second system of co-ordinates.— Declination and hour angle.—In
this system, the primitive circle is the celestial equator, or that
great circle of the sphere whose plane is perpendicular to the
axis of the earth and, consequently, coincides with the plane of
the terrestrial equator. This circle is also sometimes called the
equinoctial.

The diurnal motion of the earth does not change the position
of the plane of the equator. The axis of the earth produced to
the celestial sphere is called the aris of the heavens: the points
in which it meets the sphere are the north and south poles of
the equator, or the poles of the heavens.

Secondaries to the equator are called circles of declination, and
also hour circles. Since the plane of the celestial meridian
passes through the axis of the equator, it is also a secondary to
the equator, and therefore also a circle of declination.

FPurallels of declination are small circles parallel to the equator.

The declination of a point of the sphere is its distance from the
equator measured on a circle of declination, and its hour angle is
the angle at either pole between this circle of declination and the
meridian. The hour angle is measured by the arc of the equator
intercepted between the circle of declination and the meridian.
As the meridian and equator intersect in two points, it is neces-
sary to distinguish which of these points is taken as the origin
of hour angles, and also to know in what direction the arc which
measures the hour angle is reckoned. Astronomers reckon
from that point of the equator which is on the meridian above
the horizon, towards the west,—that is, in the direction of the
apparent diurnal motion of the celestial sphere,—and from 0° to
860°, or from 0* to 24*, allowing 15° to each hour.

Of these co-ordinates, the declination is not changed by the
diurnal motion, while the hour angle depends only on the time
at the meridian of the observer, or (which is the same thing) on
the position of his meridian in the celestial sphere. All the
observers on the same meridian at the same instant will, for the
same star, reckon the same declination and hour angle. We have
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thus introduced co-ordinates of which one is wholly independent
of the observer’s position and the other is independent of his
latitude.

We shall denote declination by 8, and north declination will
be distinguished by prefixing to its numerical value the sign +,
and south declination by the sign —.

We shall sometimes make use of the polar distance of a point,
or its distance from one of the poles of the equator. If we denote
it by P, the north polar distance will be found by the formula

P=90°—23
and the south polar distance by the formula
P=90° 43¢

The hour angle will generally be denoted by &. It is to be
observed that as the hour angle of a celestial body is continually
increasing in consequence of the diurnal motion, it may be con-
ceived as having values greater than 360°, or 24*, or greater than
any given multiple of 860°. Such an hour angle may be re-
. garded as expressing the time elapsed since some given passage
of the body over the meridian. But it is usual, when values
greater than 360° result from any calculation, to deduct 360°.
Again, since hour angles reckoned towards the west are always
positive, hour-angles reckoned towards the east must have the
negative sign : so that an hour angle of 800°, or 20*, may alsc be
expressed by —60°, or —4*,

5. Third system of co-ordinates.— Declination and right ascension.—
In this system, the primitive plane is still the equator, and the
first co-ordinate is the same as in the second system, namely, the
declination. The second co-ordinate is also measured on the
equator, but from an origin which is not affected by the diurnal
motion. Any point of the celestial equator might be assumed
as the origin; but that which is most naturally indicated is
the vernal equinox, to define which some preliminaries are
necessary.

The ecliptic is the great circle of the celestial sphere in which
" the sun appears to move in consequence of the earth’s motion in
its orbit. The position of the ecliptic is not absolutely fixed in
space; but, according to the definition just given, its position at
any instant coincides with that of the great circle in which the
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sun appears to be moving at that instant. Its annual change is,
however, very small, and its daily change altogether insensible.

The obliguity of the ecliptic is the angle which it makes with
the equator.

The points where the ecliptic and equator intersect are called
the equinoctial points, or the equinoxes; and that diameter of the
sphere in which their planes intersect is the line of equinoxes.

The vernal equinox is the point through which the sun ascends
from the southern to the northern side of the equator; and the
awlumnal equinor is that through which the sun descends from the
northern to the southern side of the equator.

The solstitial points, or solstices, are the points of the ecliptic
90° from the equinoxes. They are distinguished as the north-
ern and southern, or the summer and winter solstices.

The equinoctial colure is the circle of declination which passes
through the equinoxes. The solstitial colure is the circle of decli-
nation which passes through the solstices. The equinoxes are
the poles of the solstitial colure.

By the annual motion of the earth, its axis is carried very
nearly parallel to itself, so that the plane of the equator, which
is always at right angles to the ams, is very nearly a fixed plane
of the celestial sphere. The axis is, however, subject to small
changes of direction, the effect of which is to change the
position of the intersection of the equator and the ecliptic, and
hence, also, the position of the equinoxes. In expressing the
positions of stars, referred to the vernal equinox, at any given
instant, the actual position of the equinox at the instant is
understood, unless otherwise stated.

The right ascension of a point of the sphere is the arc of the
equator intercepted between its circle of declination and the
vernal equinox, and is reckoned from the vernal equinox east-
ward from 0° to 860°, or, in time, from 0* to 24*,

The point of observation being supposed at the centre of the
earth, neither the declination nor the right ascension will be
affected by the diurnal motion: so that these co-ordinates are
wholly independent of the observer’s position on the surface of
the earth. Their values, therefore, vary only with the time,
and are given in the ephemerides as functions of the time
reckoned at some assumed meridian.

‘We shall generally denote right ascension by . As its value
reckoned towards the east is positive, a negative value resulting
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from any calculation would be interpreted as signifying an arc
of the equator reckoned from the vernal equinox towards the’
west. Thus, a point whose right ascension is 300°, or 20*, may
also be regarded as in right ascension —60°, or —4*; but such
negative values are generally avoided by adding 860°, or 24,
Again, in continuing to reckon eastward we may arrive at
values of the right ascension greater than 24*, or greater than
48* ete.; but in such cases we have only to reject 24* 48*, etc.
to obtain values which express the same thing.

6. Fourth system of co-ordinates.— Celestial latitude and longi-
tude.—In this system the ecliptic is taken as the primitive circle,
and the secondaries by which points of the sphere are referred
to it are called circles of lutitude. Parallels of latitude are small
circles parallel to the ecliptiec.

The latitude of a point of the sphere is its distance from the
ecliptic measured on a circle of latitude, and its longitude is the
arc of the ecliptic intercepted between this circle of latitude and
the vernal equinox. The longitude is reckoned eastward from
0° to 860°. The longitude is sometimes expressed in signs,
degrees, &c., a sign being equal to 80°, or one-twelfth of the
ecliptic.

These co-ordinates are also independent of the diurnal motion.
It is evident, however, that the system of declination and right
ascension will be generally more convenient, since it is more
directly related to our first and second systems, which involve
the observer’s position.

‘We shall denote celestial latitude by §8; longitude by 4. Posi-
. tive values of § belong to points on the same side of the ecliptic
as the north pole; negative values, to those on the opposite side.

In connection with this system we may here define the nona-
gesimal, which is that point of the ecliptic which is at the greatest
altitude above the horizon at any given time. That vertical
circle of the observer which is perpendicular to the ecliptic meets
it in the nonagesimal ; and, being a secondary to the ecliptic, it
is also a circle of latitude: it is the great circle which passes
through the observer’s zenith and the pole of the ecliptic.

7. Co-ordinates of the observer's position.—We have next to ex-
press the position of the observer on the surface of the earth,
acoording to the different systems of co-ordinates. This will be
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done by referring his zenith to the primitive circle in the same
manner as in the case of any other point.

In the first system, the primitive circle being the horizon, of
which the zenith is the pole, the altitude of the zenith is always
90°, and its azimuth is indeterminate.

In the second system, the declination of the zenith is the same
as the terrestrial latitude of the observer, and its hour angle is
zero. The declination of the zenith of a place is called the
geographical latitude, or simply the latitude, and will be hereafter
denoted by ¢. North latitudes will have the sign +; south
latitudes, the sign —.

In the third system, the declination of the zenith is, as before,
the latitude of the observer, and its right ascension is the same
as the hour angle of the vernal equinox.

In the fourth system, the celestial latitude of the zenith is the
same as the zenith distance of the nonagesimal, and its celestial
longitude is the longitude of the nonagesimal.

It is evident, from the definitions which have been given, that
the problem of determining the latitude of a place by astro-
nomical observation is the same as that of determining the
declination of the zenith; and the problem of finding the lon-
gitude may be resolved into that of determining the right
ascension of the meridian at a time when that of the prime
meridian is also given, since the longitude is the arc of the
equator intercepted between the two meridians, and is, conse-
quently, the difference of their right ascensions.

8. The preceding definitions are exemplified in the following
tigures. '

Fig. 1 is a stereographic projection of F"; L
the sphere upon the plane of the horizon,
the projecting point being the nadir,- Since £ P
the planes of the equator and horizon are
both perpendicular to that of the meridian, # z ®
their intersection is also perpendicular to
it; and hence the equator WQE passes e
through the east and west points of the L

horizon. All vertical circles passing
through the projecting point will be projected into straight
lines, as the meridian NZS, the prime vertical WZE, and the
vertical circle ZOH drawn through any point O of the surface
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‘of the sphere. 'We have then, according to the notation adopted
in the first system of co-ordinates,

h = the altitude of the point O = OH,

{ = the zenith distance ¢« = 0Z,

A = the azimuth “« = SH,or
= the angle SZH,

If the declination circle POD be drawn, we have, in the second
system of co-ordinates,
= the declination of O = 0D,
P = the polar distance “ = PO,
t = the hourangle “ — ZPD, or = QD.

If Vis the vernal equinox, we have, in the third system of
co-ordinates, -
¢ = tho declination of O = 0D,
a = the right ascension = VD, or
= the angle VPD.

In this figure is also drawn the six hour circle EPW, or the
declination circle passing through the east and west points of the
horizon. The angle ZPW, or the arc Q W, being 90°, the hour
angle of a point on this circle is either -+ 6* or —6%, that is, either
6* or 18,

Fig. 2 is a repetition of the preceding figure, with the addi.
tion of the ecliptic and the circles related
to it. CVT represents the ecliptic, P’ its
pole, P’OL a circle of latitude. Hence we
¢ have, in our third system of co-ordinates,

g = the celestial latitude of 0 — OL,
A= “ longitude “ = VL,
= the angle VP'L.

We have also VP the equinoctial colure, P’ PAB the solstitial
colure, P’ZGF the vertical circle passiig through P’, which is
therefore perpendicular to the ecliptic at G." The point G is the
nonagesimal; ZG is its zenith distance, VG its longitude; or
ZG@' is the celestial latitude and VG the celestial longitude of the
zenith.

. Finally, we have, in both Fig. 1 and Fig. 2,

¢ = the geographical latitude of the observer
=2Q =90° — PZ= PN
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Hence the latitude of the observer is always equal to the alti-
tude of the north pole. For an observer in south latitude, the
north pole is below the horizon, and its altitude is a negative
quantity: so that the definition of latitude as the altitude of the
north pole is perfectly general if we give south latitudes the
negative sign. The south latitude of an observer considered
independently of its sign is equal to the altitude of the south
pole above his horizon, the elevation of one pole being always
equal to the depression of the other.

9. Numerical expression of hour angles.—The equator, upon
which hour angles are measured, may be conceived to be divided
into 24 equal parts, each of which. is the measure of one hour,
and is equivalent to & of 360°, or to 15°. The hour is divided
sexagesimally into minutes and seconds of"time, distinguished
from minutes and seconds of arc by the.letters ™ and ¢ instead
of the accents’ and’”. We shall have, then,

1» = 15° 1~ =1% 1' =15

To convert an angle expressed in time into its equivalent in
arc, multiply by 15 and change the denominations * ™ * into
° 7. and to convert arc into time, divide by 15 and change ° / "
into * » « The expert computer will readily find ways to
abridge these operations in practice. It is well to observe, for
this purpose, that from the above equalities we also have,

1° =4~ =4

and that we may therefore convert degrees and minutes of arc
into time by multiplying by 4 and changing °’/ into ™ *; and
reciprocally.

TRANSFORMATION OF SPHERICAL CO-ORDINATES.

10. Given the altitude (k) and azimuth (A) of a star, or of any point
of the sphere, and the latitude (¢) of the observer, to find the declina-
tion (8) and hour angle (!) of the star or the point. In other words,
to transform the co-ordinates of the first system into those of the
second.

This problem is solved by a direct application of the formule
of Spherical Trigonometry to the triangle POZ, Fig. 1, in which,
O being the given star or point, we have three parts given,
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namely, ZO the zenith distance or complement of the given

altitude, PZO the supplement of the given azimuth, and PZ the

complement of the given latitude; from which we can find PO

the polar distance or complement of the required declination,

and ZPO the required hour angle. But, to avoid the trouble of

taking complements and supplements, the formule are adapted

8o as to express the declination and hour angle directly in terms
of the altitude, azimuth, and latitude.

Fig. 3. To show as clearly as possible how the formulse

B of Spherical Trigonometry are thus converted into

. formul® of Spherical Astronomy, let us first con-

. sider a spherical triangle ABC, Fig. 8, in which

there are given the angle A, and the sides 4 and ¢, to

° °  find the angle B and the side a. The general rela-

N tions between these five quantities are [Sph. Trig.

Art. 114]*

08 a=co8 ¢ cos b+ sin ¢ sin b cos A
sin @ cos B =sin ¢ cos b— cos ¢ sin b cos A (©.9)
sin a 8sin B = sin b 8in A

Now, comparing the triangle ABC with the triangle PZO of
Fig. 1, we have

A=PZ0=180°— 4 a= P0O=90°—-2¢
b= Z0= 90°—h B=ZPO0=t
ce= PZ= 90°—¢

Substituting these values in the above equations, we obtain

8in 8 —==8in ¢ 8in A — cos8 ¢ cos h cos A ¢))
cos 3 cos { =cos ¢ 8in h 4 8in ¢ cos h cos 4 2
cos 8 sin ¢t = cos h sin A 3)

which are the required expressions of 8 and ¢ in terms of & and A.
If the zenith distance () of the star is given, the equations
will be

8in ¢ =sin ¢ cos { — cos ¢ 8in { cos 4 ©))
cos 3 cos { = o8 ¢ cos { 4 8in ¢ 8in 5 cos 4 )
cos ¢ sin t = sin { sin 4 6)

Since, in Spherical Astronomy, we consider arcs and angles
whose values may exceed 180°, it becomes necessary, in general,

* The references to Trigonometry are to the 6th edition of the author’s ¢ Trestise
on Plane and Spherical Trigonometry.”
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to determine such arcs and angles by both the sine and the
cosine, in order to fix the quadrant in which their values are to
be taken. It has been shown in Spherical Trigonometry that
when we consider the general triangle, or that in which values
are admitted greater than 180°, there are two solutions of the
triangle in every case, but that the ambiguity is removed and
one of these solutions excluded ¢ when, in addition to the other
data, the sign of the sine or cosine of one of the required parts is
given.” [Sph. Trig. Art. 113.] In our present problem the sign
of cos & is given, since it is necessarily positive ; for J is always
numerically less than 90°, that is, between the limits +90° and
—90°. Hence cos ¢ has the sign of the second member of (2) or
(5), and sin ¢ the sign of the second member of (3) or (6), and ¢
is to be taken in the quadraut required by these two signs. Since
h also falls between the limits +90° and —90°, or £ between 0¢
and 180°, cos A, or sin Z, is positive, and therefore by (8) or (6)
sin ¢ has the sign of sin A4; that is, when 4 < 180° we have ¢ <
180°, and when A > 180° we have ¢ > 180°,—conditions which
also follow directly from the nature of our problem, since the
star is west or east of the meridian according as A <180° or A
>180°. The formula (1) or (4) fully determines 8, which will
always be taken less than 90°, positive or negative according to
the sign of its sine.*

To adapt the equations (4), (5), and (6) for logarithmic compu-
tation, let m and M be assumed to satisfy the conditions [Pl.
Trig. Art. 174],

m sin M —sin { cos 4
m cos M = 008 { } O

the three equations may then be written as follows :

cos 8 cost—=m cos (¢ — M)

sind=m sin (p — M)
®
cos 88in t =—sin { 8sin 4

If we eliminate m from these equations, the solution takes the
following convenient form :

* There are, however, special problems in which it is convenient to depart from
this general method, and to admit declinations greater than 90°, as will be seen
hereafter.
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tan M —=tan { cos A
tan t =tan Asin M

cos (¢ — M)
tan & —tan (¢ — M) cost

)

in the use of which, we must observe to take t greater or less
than 180° according as A is greater or less than 180°, since the
hour angle and the azimuth must fall on the same side of the
meridian. '

ExampLE.—In the latitude ¢ = 38° 58’ 53’ there are given for
8 certain star { =69° 42’ 30/, 4 =300° 10’ 30"’ ; required & and ¢.
The computation by (9) may be arranged as follows :*

’ log tan { 0.4320966
¢=  88°058/ 63’/ logcos A 9.7012595 log tan 4 n0.2856026
M= 08 39 41.98 log tan X 0.1383561 log sin M 9.9060828
¢— M= —14 40 48.98 log tan (p—M) n9.4182633 log sec (p—M) 0.0144141
,t= 804 65 26.49 logcost - 9.7677677 log tan ¢ n0.1559995

= —8 81 46.66 log tan d n9.1760310

Converting the hour angle into time, we have /= 20* 19~ 41.766.

11. The angle POZ, Fig. 1, between the vertical circle and
the declination circle of a star, is frequently called the parallactic
angle, and will here be denoted by q. To find its value from the
data ¢, 4, and ¢, we have the equations

* cos 8 cos ¢ ==sin { sin ¢ } cos { cos ¢ cos A 10
cos & 8in ¢ = cos ¢ 8in A (10)
which may be solved in the following form :
f8in F=sin¢{ '
fcos F=cos { cos 4

cos 3 cos ¢ =f cos (p— F) an
cos § 8in ¢ =cos ¢ 8in 4
or in the following:
g sin G =sin ¢
g cos G=cos ¢ cos A (12)'

cos8 8 cos g =g cos ({— @)
cos & 8in ¢ =cos ¢ sin 4

or again in the following:

* In this work the letter n prefixed to a logarithm indicates that the number to
which it corresponds is to have the negative sign.
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tan G =tan ¢ sec 4
tan 4 cos @ ' 18)
ta =—

o cos (— @)
and, in the use of the last form, it is to be observed that g is to

be taken greater or less than 180° according as A is greater or
less than 180°, as is evident from the preceding forms.

12. If; in a given latitude, the azimuth of a star of known
declination is given, its hour angle and zenith distance may be
found as follows. We have

cos ¢ sin ¢ —8in ¢ cot A —cos ¢ tan ¢
cos £ 8in ¢ —sin ¢ cos ¢ cos 4 =sin &
The solution of the first of these is effected by the equations
b8in B=sin ¢
bcos B=cot 4

sin (B—)= 221800
and that of the second by
csin C=sin ¢
¢ cos C=cos g cos 4
sin (C— ¢) ="
¢
13. Finally, if from the given altitude and azimuth we wish to
find the declination, hour angle, and parallactic angle at the
same time, it will be convenient to use Gauss’s Equations, which
for the triangle ABC, Fig. 38, are
cos asin} (B4+C)=cos? (b—c)cost A
costacosi(B4+C)=cosd (b4c)sini A @
gin 4 a sin § (B— C)=sin 4 (b—c) cos # A )
sin § a cos § (B—C)=sin } (b4c)sin } A
which are to be solved in the usual manner [Sph. Trig. Art.
116] after substituting the values A =180° — 4, b={, c¢=
90° — ¢, a=90°—4, B=t, C=q.

14. Given the declination (8) and hour angle (t) of a star, and the
latitude (p), to find the zenith distance () and azimuth (A) of the star.
That is, to transform the co-ordinates of the second system into
those of the first.

‘We take the same general equations (&) of Spherical Trigo-
nometry which have been employed in the solution of the pre-
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.

cedmg problem, Art. 10; but we now suppose the letters A, B,
C, in Fig. 3, to represent respectively the pole, the zenith, and
the star, so that we substltute

A=t a=¢
b=00°—3¢ B=180°—4
c=90°—p

and the equations become

cos { =  sin ¢ 8in 3 4 cos ¢ cos & cos ¢
8in { cos A = — co8 ¢ sin & 4 8in ¢ cos & cos ¢ ¢ F)
sin { sin 4 = cos 3 sin ¢

which express ¢ and A4 directly in terms of the data.
Adapting these for logarithmic computation, we have

m sin M —gsin &
mcos M =cosd cos ¢
cos8 ; =m cos (p — M) 1"
8in { cos A =m sin (p — M)
8in { 8in A — cos & sin ¢

in which m is a positive number.
Eliminating m, we deduce the following simple and accurate
formulee :

\ tan 3 = 22¢
cos t
tant cos M
tan 4 = ———— 16
" sin (p — M) 19
tgn{:M)
cos A

where 4 is to be taken greater or less than 180° according as ¢
is greater or less than 180°.

ExampLe 1.—In latitude ¢ = 88° 58’ 53", there are given for
a certain star, § = — 8° 81/ 46/.56, ¢{=20* 19" 41°.766 ; ; required
4 and . By (16) we have:

log tan & n0.1760310
¢= 88°68/68// log cos ¢ 9.7577677 log tan ¢ n0.1669995
M=—14 40 48.98 log tan N #0.4182688 log cos A 9.9865859
¢—M-= 53 89 41.98 log tan(¢p— M) 0.1333561 log cosec (¢ — M) 0.0989172
A= 300 10 80 log cos 4 9.7012595 log tan 4 n0.2855026

{= 69 42 80 log tan { 0.4820066
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.For verification we can use the equation

g8in ¢ sin A = cos 4 sin ¢
-log sin ¢ 9.9721748 log cos 3 9.9951697
log sin 4 9.9367621 log sin t 9.9187672
9.9089369 9.9089369

ExampLe 2.—In latitude ¢ = —48° 82/, there are given for a
star, 6 =44° 6’ 0"/, t=17* 25 4*; required 4 and ¢.

We find A =241° 53’ 83".2, {=126° 25’ 67.6; the star is
below the horizon, and its negative altitude, or depresslon, is
h=—2386° 25’ 6".6.

If the zenith distance of the same star is to be frequently com-
puted on the same night at a given place, it will be most readily
done by the following method. In the first equation of (14)

substitute
cost=1—2sin* ¢
then we have
co8 £ =008 (¢~ &) —2 cos ¢ cos & 8in’ } ¢

where ¢~ 3 signifies either ¢ —3 or 8 — ¢, and if 3> ¢ the latier
form is to be used. Subtracting both members from unity, we
obtain
sin® } £ =sin® § (¢~ 38) 4 cos ¢ cos 3 8in® § ¢
Now let

m=1cos ¢ cos &

n==sin } (¢~93)
then we have (
misin’ § ¢

gin § {=n 14 -
n

and hence, by taking an auxiliary IV such that

tanN=%‘sin}t
we have an
sinit=_"_—_™
" cos N sin N

The second form for sin } ¢ will be more precise than the first
when sin IV is greater than cos N.

The quantities m and »n will be constant so long as the decli--
nation does not vary.

sin §¢

15. If the parallactic angle g (Art. 11) and the zenith distance
Vor. I.—3
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¢ are required from the data ¢, 8, and ¢, they may be found
from the equations
cos { =sin ¢ s8in & 4 cos ¢ cos & cos ¢
sin { cos ¢ =sin ¢ cos 3 — cos ¢ 8in & cos ¢ } (18)
sin { 8in ¢ = cos ¢ sin ¢
which are adapted for logarithms as follows :

n 8in N=cos ¢ cos ¢
n co8 N =sin ¢
cos { =nsin (84 N) 19)
gin { cos ¢ =n cos (34 N)
. sin { sin ¢—=cos ¢ sin ¢
or, eliminating n, thus:
tan N =—=cot ¢ cos ¢
tan ¢ sin N
sin (8 +XN)
tan {cos g =cot (34 V) '
When this last form is employed in the case of a star which
has been observed above the horizon, tan ¢ is known to be posi-
tive, and there is no ambiguity in the determination of ¢. This
form is, therefore, the most convenient in practice.
If {, 4, and g are all required from the data 4, ¢, and ¢, we
have, by Gauss’s equations,

gin § {sin § (44 ¢g)=sin } tcos § (p+ 9)
sin 4 {cost (A+¢g)=cositsini (p—29) 21
cos } {sin } (4 —gq) =sin § ¢ sin § (¢4 9) @én
cos §{cosd (A—g)=cositcos i (p—2)

tan { sin ¢ = 20)

16. When the altitude, azimuth, and parallactic angle of known
stars are to be frequently computed at the
Fig. 4. same place, the labor of computation is
much diminished by an auxiliary table pre-
pared for the latitude of the place accord-
ing to formule proposed by Gauss. A
[ E specimen of such a table computed for the
latitude of the Altona Observatory will be
found in “Schumacker's Hiilfstafeln, neu
] herausg. v. Warnstorfl.”” The requisite
formule are readily deduced as follows:
Let the declination circle through the object O, Fig. 4, be
produced to intersect the horizon in F. By the diurnal motion

L]
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the point P changes its position on the horizon with the time;
but its position depends only on the time or the hour angle
ZPO, and not upon the declination of 0. The elements of the
position of F may therefore be previously computed for succes-
give values of ¢

We have in the triangle PFS, right-angled at S, FPS=¢{,
PS=180° — ¢; and if we put

8=FS, B=PF-—9° ¢=180°— PFS
we find ‘
tan @ —singp tant, tan B=-cot ¢ cos ¢, coty — sin Btant

‘We have now in the triangle HOF, right-angled at H,

B43=OF, y = HFO, h = OH,
and if we put '
. u=HF=HS—FS=A—a,
we find
tan u=cosy tan (B 4 9) A=A +u
sin h=sin y sin (B4 9) or, tan A=—=tanysinu.

To find the parallactic angle g=PO0Z, we have in the triangle

HOF
tan ¢ = cot y sec (B 4 ¢)

In the Gaussian table for Altona as given in the «Hiilfstafeln”
we find five columns, which give for the argument ¢, the quan-
tities &, B, log cos 7, log sin r, log cot 7, the last three under
the names log C, log .D, and log E, respectively. With the aid
of this table, then, the labor of finding any one of the quan-
tities h, A, ¢ is reduced to the addition of two logarithms,
namely:

tan v = C'tan (B +9) gin A = D sin (B + 9)
A=A +u tan ¢ = K sec (B + 9)

The formule for the inverse problem (of Art. 10) may also be
found thus. Let G' be the intersection of the equator and the
vertical circle through O, and put B= HG, v = DG, A = QG,
r=2ZGQ; then we readily find

tan @ =—sin ¢ tan 4, tan B -—cot ¢ cos 4, cot y=—=sin Btan A

which are of the same form as those given above, with the ex-
change of A for {. Hence the same table givesalso the elements
of the point G, by entering with the argument “azimuth,” ex-
pressed in time, instead of the hour angle. We then have {=
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DQ, and if we here put u=DG =R —{, we have from the
triangle G.DO

sin 8 =siny sin (A — B) tan ¥ —cosy tan (A —B)
or, employing the notation of the table,

tan u = C tan (h — B) sin 8 = D sin (h— B)
t=8—u tan ¢ = E sec (h— B)

17. To find the zenith distance and azimuth of a star, when on the
8ix hour circle.—Since in this case t=6* = 90°, the triangle PZO,
Fig. 4, is right-angled at P, and gives immediately

cos Z0 =cos PZ cos PO cot PZ0 = sin PZ cot PO
or, since PZ0 =180° — 4, and cot PZO=— cot 4,

cos { —sin ¢ 8in & cot A—=—cosgptand

»

But if the star is on the six hour circle east of the meridiaa,
we must put {=18*=270° and PZ 0=A4 —180°; hence for this'

case
cot A =+ cos ¢ tan 8

A more general solution, however, is obtained from the equa-
txons (14), by putting cos { =0, sin ¢= =+ 1, whence

cos{ — sin ¢ 8in &
sin { co8 A — — cos ¢ 8in & } (22)

8in { sin A = + cos 3

the lower sign in the last equation being used when the star is
east of the meridian.

ExampLE.—Required the zenith distance and azimuth of S'm,
d = —16° 81’ 20”, when on the six hour circle east of the meri-
dla.n at the Cape of Good Hope, ¢ = — 33° 56’ 8”. We find

log (— cos 8) = log sin £ sin 4 — n9.9816870

log (— cos ? gin &) = log sin { cos 4 = 9.3728204
A = 288°49'84"9

log sin 4 = 9.9872802

log sin { = 9.9944568
log sin ¢ sin & = log cos ¢ = 9.2007309
¢ = 80°61'56"
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+ 18. To find the hour angle, azimuth, and zenith distance of a given
slar at its grealest elongation.—In this case the vertical circle
Z8, Fig. 5, is tangent to the diurnal circle,

SA, of the star, and is, therefore, perpendicular ¥is. o
to the declination circle PS. The right triangle
PZ8S gives, therefore, P |4
_tang -
08t = tan s
. cos &
sin 4 = o5 ¢ (28)
__sing
088 = Cind
z

If 8 and ¢ are.nearly equal, each of the quantities cos ¢, sin 4,
and cos ¢ will be nearly equal to unity, and a more accurate
solution for that case will then be as follows: ’

Subtract the square of each from unity; then we have

tan’d — tan’'p _ sin (3 4 ¢) sin (4 —9)

gin*t =

tan’s - cos’ ¢ 8in?d
cost A — cos® ¢ — cos?d — gin (8 + ¢) 8in (3 —¢)
cos? ¢ cos? ¢
gin® ¢ — sin? ¢ = sin’ ¢ _ sin (8 4 ¢? sin (8 —¢)
sin?d sin’d

Hence if we put

k = y/[sin (3 + ¢) sin (3 — ¢)]

we ghall have '
. k k . k
it = pemd 4Ty =@ @

19. To find the hour angle, zenith distance, and parallactic angle of
a given star on the prime vertical of a given place.

In this case, the point O in Fig. 1 being in the circle WZE,
the angle PZ0 is 90°, and the right triangle PZ0 gives

ot — tan &
cost = tan ¢
sin &
008C='ém (25)
o co8 g
N = Cos s



38 THE CELESTIAL SPHERE.

If & is but little less than ¢, the star will be near the zenith,
and, as in the preceding article, we shall obtain & more accurate
solution as follows :

Put ) )
k = y/[8in (9 + 2) sin (¢ — 9]
then .

We may also deduce the following convenient and accurate
formulee for the case where the star’s declination is nearly equal
to the latitude [see Sph. Trig. Arts. 60, 61, 62]:

sin (¢ — @)
wit = (@ Gs)
— .[(tand(p—9) @n
tand ¢ \/(tan}(y-[—r)))
tan (45° — } ¢) = y/[tan 4 (¢ + 9) tan § (p — 9)]
If 3 > ¢, these values become imaginary; that is, the star can-,
not cross the prime vertical.

ExamMpLE.—Required the hour angle and zenith distance of the
star 12 Canum Venaticorum (8 = + 39° 5’ 20"”) when on the prime
vertical of Cincinnati (¢ = + 89° 5’ 54").

g —3=0°0 34" bp—8= 00017
o+8= T81114 t(p—28) = 89587
log sin (¢ — &) 6.21705 log tan } (p — ) 591602
log sin (¢ 4 #) 9.99070 log tan & (¢ + ) 9.90982
2)6.22635 2)6.00620
logtan 4t  8.11318 g tan } ¢ 8.00810
§t=0°44 36"6 §c=0°34'37"38
t —1°29' 18".2 t=1° 914”6

= 04 5= 5688

20. To find the amplitude and hour angle of a given star when in
the horizon.—If the star is at H, Fig. 1, we have in the triangle
PHN, right-angled at N, PN=¢, HPN = 180° — {, PH =
90° — 8; and if the amplitude WH is denoted by a, we have
HN = 90° — a. This triangle gives, therefore,

8in a = sec ¢ 8in ¢ } (28)
cos t — — tan ¢ tan ¢
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21. Glven the hour angle (t) of a star, to find ils right ascension (a).
—Transformation from our second system of co-ordinates to the
third.

There must evidently be given also the position of the meridian
with reference to the origin of rlght ascensions. Suppose then
in Fig. 1 we know the right ascension of the meridian, or VQ
=0, then we have V.D = V@Q —DQ, that is,

a=—06 —t¢
Conversely, if @ and © are known, we have
t=06 —a

The methods of finding © at a given time will be considered
hereafter.

22. Given the zenith distance of a known star ai a given place, te
Jind the star’'s hour angle, azimuth, and parallactic angle.

In this case there are given in the triangle POZ, Fig. 1, the
three sides Z0 = {, PO = 90° — 3, PZ = 90° — ¢, to find
the angles ZP0O =1, PZ0 =180° — A, and POZ=g¢q. The
formula for computing an angle B of a spherical triangle ABC,
whose sides are a, b, ¢, is either

. _ sin (8 — a) sin (8 — ¢)
sm}B_\/( sin a 8in ¢

miB:\/(sinssin s—b))

sin a sin ¢

or tan;B=\/(sin(s—a)sin(s—c))

sin 8 8in (8 — b)

in which s =4 (@ + b + ¢). We have then only to suppose B
to represent one of the angles of our astronomical triangle, and
to substitute the above corresponding values of the sides, to ob-
tain the required solution.

This substitution will be carried out hereaftet in those cases
where the problem is practically applied.

28. Giwen the declination (3) and the right ascension (&) of a star,
and the obliquity of the ecliptic (¢), to find the latitude (B) and the longi-
tude (2) of the star.—Transformation from the third system of co-
ordinates to the fourth.

The solution of this problem is similar to that of Art. 10.
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The analogy of the two will be more apparent if we here repre-
sent the sphere projected on the plane of
the equator as in Fig. 6, where VBUCis
the equator, P its pole; VAU the ecliptic,
P’ its pole, and consequently CP’PB the
solstitial colure; POD, P’'OL, circles of

U declination and latitude drawn through the
star 0. Since the angle which two great
circles make with each other is equal to
the angular distance of their poles, we have
PP’ =¢; and since the angle P'PO is

measured by CD and PP’O by AL, we have in the triangle

PP'O

Fig. 6.
[+4

P'PO, PP'O, P'0O, PO, PP
80° 4 a, 90°—2, 90°—p8, 90°—34, ¢

which, substituted respectively for
A, B a, b, ¢,
in the general equations (&), Art. 10, give

sin # = cos ¢ 8in 8 — 8in ¢ cos 4 8in a
co8 £ 8in 2 = sin ¢ 8in & - cos ¢ cos & sin a (29)
cos fcos A = o8 & co8 a

which are the required formule of transformation. Adapting
for logarithmic computation, we have

m sin M = sin &
m cos M — cos & sin a
sin § = m sin (M — ) (80)
cos #8ind = m cos (M — ¢)
cos fcoBld = cos dcosa

in which m is a positive number.
A still more convenient form is obtained by substituting
__cos B

’
cos & K= m

k=

by which we find
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k sin M = tan &

k cos M = 8in a

Ksin A = cos (M — )

Kcos A = cos M cot a (1)
tan B = sin A tan (M —¢)

cos Ssind _ cos (M —«)
cosdsina  cos M

For verification :

ExaMpLE.—Given 3, a, and ¢ as below, to find § and A. Com-
- putation by (31).

d=—16°22'385"45 logsin A n8.0897286
a= 6 83 29 30 logtan (M —c¢) 1.4114658
e= 28 27 81.72 logtan§p n9.5011944
log tan 8 = log k sin M n9.4681562 8= —17° 8% 87".51
log 8in a = log k cos M  9.0577093
M — — 68° 45’ 41".87 Verification.
M—c¢=—92 13 13 .59 log cos 8 sin A n8.0689234

log cos ¢ sin a 9.0897224
log cos M 9.5590070 cos (M—c¢)
logcota 0.0804306 08 —oog gr 190202010
log K cos 2 0.4984460
logcos (M —¢) =log K sin 2 n8.5882080
A = 869° 17" 43".91

Tables for facilitating the above transformation, based upon
tre same method as that employed in Art. 16, are given in the
A merican Ephemeris* and Berlin Jahrbuch. The formulee there
v-ed may be obtain8d from Fig. 6, in which the points Fand G
are used precisely as in Fig. 4 of Art. 16.

24. If we denote the angle at the star, or P’OP, by 90° — E,
the solution of the preceding problem by Gauss’s Equations is

cos(45° — 4 8)sin } (E+ A)=sin[45° —} (¢ —3)]sin (45° 4 }q)
co8(45° — 3} B)cosd (E+2)=cos[45° — 4 (¢ 4 8)] co8(45° 4 } a) (82)
sin (45° — } 8)sin § (E—A) =sin [45° — } (¢ 4 3)] cos (45° + ¥ a)
8in (45° — 1 £) cos § (B —2A)=co8[45° — ¢ (¢ — 3)]8in (45° + } a)

25. If the angle at the star is required when the Gaussian
Equations have not been employed, we have from the triangle
POP/, Fig. 6, putting P'OP = 5y = 90° — K,

# Ip the vrlomer 1855-84 '
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cos 8 co8 7 = c08 ¢ 008 8 4 8in ¢ 8in 3 8in a
cos £ 8in 7 = 8in ¢ co8 a

or, adapted fox_' logarithms,

n 8in NV = sin ¢ sin a

7 cos N = cos ¢
cos 8 cos 7 = n cos (N — &)
cos 3 8in 5y = 8in ¢ cos a

(88)

26. Given the latitude (8) and longitude () of a star, and the
obliquity of the ecliptic (¢), to find the declination and right ascension
of the star.

By the process already employed, we derive from the triangle
PP’0, Fig. 6, for this case,

sin 3 = cosesin @ 4 sin ¢ cos B sin A }
cos 8 8in @ — —sin ¢ 8in § 4 cos ¢ cos S 8in 2 (62))
€08 3 €08 a == cos B cos 2

which, it will be observed, may be obtained from (29) by inter-

changing a with 4, and & with 8, and at the same time changing

the sign of ¢, that is, putting — ¢ for ¢, and, consequently, — sin ¢

for sin e.

For logarithmic computation, we have

m sin M = gin B
m cos M = cos B sin 1
sin  =msin (M +¢) - (85)
cos & 8ina =m cos (M + ¢)
€08 8 COo8 & = €08 S co8 A

or the following, analogous to (31):

k sin M — tan g

k cos M = sin 2

K 8in a = cos (M + ¢)

K cos a = cos M cot A (36)
tan ¢ = sin a tan (M + o)

cosdsina cos (M + ¢
cos fsin 2~ cos M

27. The angle at the star, POP’, being denoted, as in Art. 24,

For verification :
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by 90° — E, the solution of this problem by the Gaussian
Equations is

sin (45°— } 8) 8in } (E + @) =sin [45°— } (¢ 4 B)]sin (45°4- §2)

8in (45°— § 8) cos § (£ + a) = cos[45°— } (¢ — B)] 008 (45°+ § 1) @7

cos (45°— § ) sin } (B — a) = sin [45°— } (¢ — B)] cos (45°+ § 1)
co8(45°— § 8) cos § (E — a) = co8 [45°— # (¢ + 8)] sin (456°4- $ 1)

28. But if the angle » = 90° — E is required when the
Gaussian Equations have not been employed, we have directly

€08 3 co8 7 = co8 & cos § — 8in ¢ 8in § 8in A
co8 & 8in % — sin ¢ cos 4

or, adapted for logarithms,

n 8in V= sin ¢ 8in 2

n cos N—=cos ¢
o8 3 co8 7 = n cos (N + B) (38)
008 & 8in 7 = sin ¢ co8 A

29. For the sun, we may, except when extreme precision is
desired, put 8 = 0, and the preceding formule then assume very
simple forms. Thus, if in (34) we put sin § = 0, cos § =1, we
find

sin 8 = sin ¢ sin 2
c08 & sin a = co8 ¢ 8in 2
Co8 & cos8 a = 008 4

whence if any two of the four quantities 3, @, 4, ¢ are given, we
can deduce the other two.

RECTANGULAR CO-ORDINATES.

80. By means of spherical co-ordinates we have expressed
only a star’s direction. To define its position in space com-
pletely, another element is necessary, namely, its distance. In
Spherical Astronomy we consider this element of distance only
so far as may be necessary in determining the changes of
apparent direction of a star resulting from a change in the point
from which it is viewed. For this purpose the rectangular co-
ordinates of analytical geometry may be employed.

Three planes of reference are taken at right angles to each
other, their common intersection, or origin, being the point of
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observation; and the star's distances from these planes are
denoted by z, y, and z respectively. These co-ordinates are
respectively parallel to the three axes (or mutual intersections
of the planes, taken two and two), and hence these axes are
called, respectively, the axis of z, the axis of y, and the axis of z.
The planes are distinguished by the axes they contain, as “the
plane of zy,” the ‘“plane of zz,”” the “plane of yz.”" The co-
ordinates may be conceived te be measured on the axes to
which they belong, from the origin, in two opposite directions,
distinguished by the algebraic signs of plus and minus, so that
the numerical values of the co-ordinates of a star, together with
their algebraic signs, fully determine the position of the star in
space without ambiguity.

Of the eight solid angles formed by the planes of reference,
that in which a star is placed will always be known by the signs
of the three co-ordinates, and in one only of these angles will
the three signs all be plus. This angle is usually called the first
angle. To simplify the investigations of a problem, we may, if
we choose, assume all the points considered to lie in the first
angle, and then treat the equations obtained for this simplest
case as entirely general; for, by the principles of analytical
geometry, negative values of the co-ordinates which satisfy such
equations also satisfy a geometrical construction in which these
co-ordinates are drawn in the negative direction.

The polar co-ordinates of analytical geometry (of three dimen-
sions) when applied to astronomy are nothing more than the
spherical co-ordinates we have already treated of, combined
with the element distance; and the formule of transformation
fi >m rectangular to polar co-ordinates are nothing more than
the values of the rectangular co-ordinates in terms of the dis-
tance and the spherical co-ordinates. For the convenience of
reference, we shall here recapitulate these formule, with special
reference to our several systems of spherical co-ordinates.

81. We shall find it useful to premise the following

LeMMA.— The distance of a point in space from the plane of any
great circle of the celestial sphere is equal to its distance from the centre
.of the sphere multiplied by the cosine of ils angular distance from the
pole of that circle; and its distance from the axis of the circle is equal to
its distance from the centre of the sphere multiplied by the sine of ils
angular distance from the pole.
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For, let AB, Fig. 7, be the given great circle orthographi-
cally projected upon a plane passing through its axis OP and
the given point C; P its pole. The dis- Fig. 7.
tance of the point C from the plane of the 4
great circle is the perpendicular CD; CE
is its distance from the axis; CO its dis-
tance from the centre of the sphere; and
the angle COP the angular distance from
the pole. The truth of the Lemma is,
therefore, obvious from the figure.

B

82. The values of the rectangular co-ordinates in our several
systems may be found as follows:

First system.— Altitude and azimuth.—Let the primitive plane,
or that of the horizon, be the plane of zy; that of the meridian,
the plane of zz; that of the prime vertical, the plane of yz.
The meridian line is then the axis of z; the east and west line,
the axis of y; and the vertical line, the axis of 2. Positive z
will be reckoned from the origin towards the south, positive y
towards the west, and positive z towards the zenith. The first
angle, or angle of positive values, is therefore the southwest
quarter of the hemisphere above the plane of the horizon. "Let
Z, Fig. 8, be the zenith, S the south point, W the Fig. 8.
west point of the horizon. These points are
respectively the poles of the three great circles z
of reference; if, then, 4 is the position of a
star on the surface of the sphere as seen from
the centre of the earth, and if we put

h = altitude of the star = A H,
A = azimuth « = SH,
4 = its distance from the centre of the sphere

we have immediately, by the preceding Lemma,
x =4 cos AS, y=4dcos AW, z2=24co8 AZ,
which, by considering the right triangles A HS, A HW, become
x=24dcoshcos A
y=4coshsin 4 } (39)
z=4sinh

These equations determine the rectangular co-ordinates z, y, 2,
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when the polar co-ordinates 4, h, A are given. Conversely, if
z, ¥, and z are given, we may find 4, k, and 4 ; for the first two
equations give

tan A =

8w

and then we have
dsinh =2

doosh=_%_—_Y
cos A sin A

whencée 4 and k. Or, by adding the squares of“the first two
equations, we have

deosh=yZ + ¢
whence
P
= VEEH
and the sum of the squares of the three equations gives
d=y@+y+2)

Second system.— Declination and hour angle.—Let the plane of
the equator be the plane of zy; that of the meridian, the plane
of rz; that of the six hour circle, the plane of yz. In the pre-
ceding figure, let Z now denote the north pole, S that point of
the equator which is on the meridian above the horizon and
from which hour angles are reckoned, W the west point. Posi-
tive x will be reckoned towards S, positive y towards the west,
positive z towards the north. If then A is the place of a star on
the sphere as seen from the centre, and we put

¢ = the star’s declination — AH,

t= “«  hour angle = SH,
4= « distance from the centre,
and denote the rectangular co-ordinates in this case by z/,y’, 2/,
we have
2’ = 4 cos 8 cos ¢
y = 4 cos dsint } (40)
2 = 4ds8in

Third system.—Declination and right ascension.—Let the plane
of the equator be the plane of zy; that of the cquinoctial colure,
the plane of xz; that of the solstitial colure, the plane of yz.
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The axis of x is the intersection of the planes of the equator
and equinoctial colure, positive towards the vernal equinox; the
axis of y is the intersection of the planes of the equator and sol-
stitial colure, positive towards that point whose right. ascension
is +90°; and the axis of z is the axis of the equator, positive
towards the north. If then,in Fig. 8, Z is the north pole, W
the vernal equinox, 4 a star in the first angle, projected upon
the celestial sphere, and we put

8= declination of the star — A H,
a = right asconsion ¢ = WH,
4 = distance from the centre,

while z”, y'/, 2’’ denote the rectangular co-ordinates, we have
x'=4co8 AW, y'=4co8 A8, 2'= dcos AZ,

which become

2= 4 cos3cosa
Yy’ = 4 cos dsin a “n
Z'= d4sin ¢

Fourth system.— Celestial latitude and longitude.—Let the plane
of the ecliptic be the plane of xzy; the plane of the circle of
latitude passing through the equinoctial points, the plane of zz;
the plane of the circle of latitude passing through the solstitial
points, the plane of y2. The positive axis of z is here also the
straight line from the centre towards the vernal equinox; the
positive axis of y is the straight line from the centre towards the
north solstitial point, or that whose longitude is 490°; and the
positive axis of z is the straight line from the centre towards
the north pole of the ecliptic.

If then, in Fig. 8, Z now denotes the north pole of the ecliptic,
W the vernal equinox, A the star’s place on the sphere, and
we put

B = latitude of the star = AH,
4 = longitude of the star = WH,
4 = distance of the star from the centro,

and z'”, y''’, 2", denote the rectangular co-ordinates for this
gystem, we have

2" = 4 cos B cos 2

y" = 4 oo8 8 sin } 42)

2" = 4sinf
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TRANSFORMATION OF RECTANGULAR CO-ORDINATES.

33. For the purposes of Spherical Astronomy, only the most
simple cases of the general transformations treated of in analy-
tical geometry are necessary. We mostly consider but two cases:

First. Transformation of rectangular co-ordinates to a new origin,
without changing the system of spherical co-ordinates.

The general planes of reference which have been used in this
chapter may be supposed to be drawn through any point in space
without changing their directions, and therefore without changing
the great circles of the infinite celestial sphere which repre-
sent them. We thus repeat the same system of spherical co-ordi-
nates with various origins and different systems of rectangular
co-ordinates, the planes of reference, however, remaining always
parallel to the planes of the primitive system.

The transformation from one system of rectangular co-ordi-
nates to a parallel system is evidently eftected by the formula

r,=z,+4a
Yo=Yy +b } (48)
2, =2z,+¢

in which z,, g,, 2, are the co-ordinates of a point in the primitive
system ; Z,, ¥; 2, the co-ordinates of the same point in the new
system ; and a, b, ¢ are the co-ordinates of the new origin taken
in the hrst system.

As we have shown how to express the values of z,, yl, z, and
of 7,, Y5, 2, in terms of the spherical co-ordinates, we have only
to substitute these values in the preceding formule to obtain the
general relations between the spherical co-ordinates correspond-
ing to the two origins. This is, indeed, the most general method
of determining the effect of parallax, as will appear hereafter.

Fig. 9. Second. Transformation of rectangular co-

z z ordinales when the system of spherical co-ord:-

3 nates i changed but the origin is unchanged.
B 4 This amounts to changing the directions of
the axes. The cases which occur in practice
0 "" are chiefly those in which the two systems
¥ have one plane in common. Suppose this
plane is that of xz, and let O.X, 0Z, Fig. 9, be
the axes of x and 2 in the first system; 0X,,
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0Z, the axes of z, and 2, in the new system. Let 4 be the
projection of a point in space upon the common plane; and
let 1 = AB, 2= 0B, z,=AB,, 2,=0B,. The distance of the
point from the common plane being unchanged, we have
Y=Y

The axis of y may be regarded as an axis of revolution about
which the planes of yx and yz revolve in passing from the first to
the second system ; and if u denotes the angular measure of this
revolution, or u = XO0X, = Z0Z, = BAB,, we readily derive
from the figure the equation

T secu==x,—2, tan u
or, multiplying by cos u,
r=u1x, cO8 Y —2, 8in ¥
and
2=z tan 4 4 2, 8ec ¥
or, substituting in this the preceding value of z,
2=z, 80 u+2co8u
Thus, to pass from the first to the second system, we have the
formule
x =2, co8 4 —2, 8in ¥ S
y=y (44).
2=z 8inu-42z cosu

And to pass from the second to the first, we obtain with the same
ease,

r,= xTcosu-2sinu
h= ¥ (4%
2, = —ux sin u 4 zcos u

As an example, let us apply these to transforming from our
second system of spherical co-ordinates to the first; that is, from
declination and hour angle to altitade and azimuth. The meri.-
dian is the common plane; the axis of z in the system of declina--
tion and hour angle is the axis of the equator, and the axis of z,,
in the system of altitude and azimuth is the vertical line; the-
angle between these axes is the complement of the latitude, or-
u=90° —¢. Substituting this value of u in (44), and also the
values of z, y, 2, x,, ¥,, 2,, given by (39) and (40), we have, after

omitting the common factor 4,
Vou. IL.—4
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co8 h cos A —=sin ¢ cos & cos t — co8 ¢ 8in 3
cos h 8in A —=cos & sin ¢
8in h =cos ¢ cos 8 cos ¢t 4 sin ¢ sin &

which agree with (14). We see that when the element of dis-
tance is left out of view (as it must necessarily be when the
origin is not changed), the transformation by means of rectangu-
lar co-ordinates leads to the same forms as the direct application
of Spherical Trigonometry. With regard to the entire generality
of these formul® in their application to angles of all possible
magnitudes, see Sph. Trig. Chap. IV.

DIFFERENTIAL VARIATIONS OF CO-ORDINATES.

84. It is often necessary in practical astronomy to determine
what effect given variations of the data will produce in the quan-
tities computed from them. Where the formule of computa-
tion are derived directly from a spherical triangle, we can employ
for this purpose the equations of finite differences [Sph. Trig.
Chap. VL] if we wish to obtain rigorously exact relations, or
the simpler differential equations if the variations considered
are extremely small. As the latter case is very frequent, I shall
deduce here the most useful differential formule, assuming as
.well known the fundamental ones [Sph. Trig. Art. 153],

da — cos C db — cos B dc = sin b sin C dA
—cosC da + db — cos A d¢c = sin ¢ sin A dB (46)
—cos Bda — cos A db 4 de = 8in a 8in B dC

From these we obtain the following by eliminating da:

8in C db — cos a sin B d¢ = sin b cos C dA + sina dB }(47)
— cos a sin Cdb + sin B dc = sin ¢ cos B dA -} sin a dC

and by eliminating db from these:
sin a sin B dc = cos b dA + cos a dB 4 dC 48
If we eliminate dA from (47), we find
cos b sin C db — cos ¢ sin B dc = sin ¢ cos B dB — sin b cos C dC

the terms of which being divided either by sin b sin C, or by its
equivalent sin ¢ sin B, we obtain

cot b db — cot ¢ dec = cot BdB — cot C dC (49)
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85. As an example, take the spherical triangle formed by the
zenith, the pole, and a star, Art. 10, and put

A =180°— 4 a—=90°—¢
B=t b=¢
C=q¢ c=90°—¢

then the first equations of (46) and (47) give
d3 = — cos ¢ d% + singsin{ d4 + cost dy } (50)
cosddt — 8in gds 4 cosgsin{ dA4d 4 sin ésint dy
which determine the errors dé and dt¢ in the values of 8 and ¢
computed according to the formule (4), (5), and (6), when ¢, 4,
and ¢ are affected by the small errors dZ, d4, and dy respectively.
In a similar manner we obtain
d7 = — cos ¢ dé + sin ¢ cos 8 dt 4 cos Ady } (51)
sin{dAd=  sin g dé + cos q cos 8 dt — cos{sin Adg
which determine the errors dZ and d4 in the values of { and A4
computed by (14), when 4, {, and ¢ are affected by the small
errors dd, dt, and dyp respectively.

36. As a second example, take the triangle formed by the pole
of the equator, the pole of the ecliptic, and a star, Art. 23. De-
noting the angle at the star by 3, we find

df = cos 5 d3 — sin 3 cos & da — sin 2 de } 52)
cos § dA — sin % dé - cos 3 cos 3 da -} sin B cos A de (
and reciprocally,

dd =  cos y d3 +4 sin 5 cos § dA + sinadr} (58)
¢08 ¢ da = — sin 5 d3 4 cos 5 cos 3 di — 8in & co8 ade
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CHAPTER IIL

TIME—USE OF THE EPHEMERIS—INTERPOLATION—STAR
CATALOGUES.

87. TraNsiT.—The instant when any point of the celestial
sphere is on the meridian of an observer is designated as the
transit of that point over the meridian; also the meridian passage,
and culmination. In one complete revolution of the sphere
about its axis, every point of it is twice on the meridian, at
points which are 180° distant in right ascension. It is therefore
necessary to distinguish between the two transits. The meri-
dian is bisected at the poles of the equator: the transit over that
half of the meridian which contains the observer’s zenith is the
upper transit, or culmination; that over the half of the meri-
dian which contains the nadir is the lower transit, or culmina-
tion. At the upper transit of a point its hour angle is zero, or
0"; at the lower transit, its hour angle is 12,

38. The motion of the earth about its axis is perfectly uni-
form. If, then, the axis of the earth preserved precisely the
same direction in space, the apparent diurnal motion of the
ceiestial sphere would also be perfectly uniform, and the inter-
valg between the successive transits of any assumed point of the
sphere would be perfectly equal. The effect of changes in the
position of the earth’s axis upon the transit of stars is most per-
ceptible in the case of stars near the vanishing points of the
axis, that is, near the poles of the heavens. We obtain a measure
of time sensibly uniform by employing the successive transits of
a point of the equator. The point most naturally indicated is
the vernal equinox (also called the First point of Aries, and de-
noted by the symbol for Aries, 7).

39. A sidereal day is the interval of time between two succes-
give (upper) transits of the true vernal equinox over the same
meridian.

The effect of precession and nutation upon the time of transit



TIME. 53

of the vernal equinox is 8o nearly the same at two successive
transits, that sidereal days thus defined are sensibly equal. (See
Chapter XI. Art. 411.)

The sidereal time at any instant is the hour angle of the vernal
equinox at that instant, reckoned from the meridian westward
from 0* to 24*,

‘When 7 is on the meridian, the sidereal time is 0* 0™ 0*; and
this instant is sometimes called sidereal noon.

40. A solar day is the interval of time between two successive
upper transits of the sun over the same meridian.

The solar time at any instant is the hour angle of the sun at
that instant.

In consequence of the earth’s motion about the sun from west
to east, the sun appears to have a like motion among the stars,
or to be constantly increasing its right ascension; and hence a
solar day is longer than a sidereal day.

41. Apparent and mean solar time.—If the sun changed its right
ascension uniformly, solar days, though not equal to sidereal days,
would still be equal to each other. But the sun’s motion in right
ascension is not uniform, and this for two reasons: :

1st. The sun does not move in the equator, but in the ecliptic,
so that, even were the sun’s motion in the ecliptic uniform, its
equal changes of longitude would not produce equal changes of
right ascension; 2d. The sun’s motion in the ecliptic is not uni-
form.

To obtamn a uniform measure of time depending on the sun’s
motion, the following method is adopted. A fictitious sun, which
we shall call the first mean sun, is supposed to move uniformly at
such a rate as to return to the perigee at the same time with the
true sun. Another fictitious sun, which we shall call the second
mean sun (and which is often called simply the mean sun), is sup-
posed to move uniformly in the equator at the same rate as the
first mean sun in the ecliptic, and to return to the vernal equinox
at the same time with it. Then the time denoted by this second
mean sun is.perfectly uniform in its increase, and is called mean time.

The time which is denoted by the true sun is called the true
or, more commonly, the apparend time.

The instant of transit of the true sun is called apparent noon, and
the instant of transit of the second mean sun is called mean noon.
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The equation of time is the difference between apparent and
mean tinie; or, in other words, it is the difference between the
hour angles of the true sun and the second mean sun. The
greatest difference is about 16=

The equation of time is also the difference between the right
ascensions of the true sun and the second mean sun. The right
ascension of the second mean sun is, according to the preceding
definitions, equal to the longitude of the first mean sun, or, as it
is commonly called, the sun’s mean longitude. To compute the
equation of time, therefore, we must know how to find the longi-
tude of the first mean sun; and this is deduced from a knowledge
of the true sun’s apparent motion in the ecliptic, which belongs
to Physical Astronomy. Here it suffices us that its value is
given for each day of the year in the Ephemeris, or Nautical
Almanac.

42. Astronomical time.—The solar day (apparent or mean) is
conceived by astronomers to commence at noon (apparent or
mean), and is divided into twenty-four hours, numbered succes-
sively from 0 to 24.
~ Astronomical time (apparent or mean) is, then, the hour angle
of the sun (apparent or mean), reckoned on the equator west-
ward throughout its entire circumference from 0* to 24*.

43. Ciwil time.—For the common purposes of life, it is more
convenient to begin the day at midnight, that is, when the sun
is on the meridian at its lower transit

The civil day is divided into two periods of twelve hours each,
namely, from midnight to noon, marked A.M. (Ante Meridiem),
and from noon to midnight, marked P.M. (Post Meridiem)

44. To convert civil into astronomical time.—The civil day begins
12* before the astronomical day of the same date. This remark
is the only precept that need be given for the conversion of one
of these kinds of time into the other.

ExaMPLEs.

Ast. T. May 10, 15*= Civ. T. May 11, 8* A.M.
Ast. T. Jan. 3, 7*=Civ. T. Jan. 8, 7* P.M.
Ast. T. Aug. 31,20*=Civ. T. Sept. 1,8 AM.
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45. Time at different meridians.—The hour angle of the sun at
any meridian is called the local (solar) time at that meridian.

The hour angle of the sun at the Greenwich meridian at the
same instant is the corresponding Greenwich time. This time we
shall have constant occasion to use, both because longitudes
in this country and England are reckoned from the Greenwich
meridian, and because the American and British Nauticai
Almanacs are computed for Greenwich time.*

The difference between the local time at any meridian and the
Greenwich time is equal to the longitude of that meridian from
Greenwich, expressed in time, observing that 1* =15°.

The difterence between the local times of any two  Fig. 10.
meridians is equal to the difference of longitude of
those meridians.

In comparing the corresponding times at two dlf-
ferent meridians, the most easterly meridian may be
distinguished as that at which the time is greatest;
that is, latest.

If then PM, Fig. 10, is any meridian (referred to the celestial
sphere), PG the Greenwich meridian, PS the declmatlon circle
through the sun, and if we put

S MG N

T, = the Gréenwich time = GPS,
T = the local time = MPS,
L = the west longitude of the meridian PM — G'PM,
we have
L=T,—T
T,=T + L } (54)

If the given meridian were east of Greenwich, as PM’, we
should have its east longitude= T— T;; but we prefer to use
the general formula L = T, — T in all cases, observing that east
longitudes are to be regarded as negative.

In the formula (54), T, and T are supposed to be reckoned
always westward-from their respective meridians, and from 0* to
24*; that is, T, and T are the astronomical times, which should, of
course, be used in all astronomical computations.

As in almost every computation of practical astronomy we are
dependent for some of the data upon the ephemeris,—and these

* What we have to say respecting the Greenwich time is, however, equally appli-
cable to the time at any other meridian for which the ephemeris may be computed.
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are commonly given for Greenwich,—it is generally the first step
in such a computation to deduce an exact or, at least, an ap-
proximate value of the Greenwich astronomical time. It nced
hardly be added that the Greenwich time should never be other-
wise ‘expressed than astronomically.*

ExaMPLES.

1. In Longitude 76° 82’ W. the local time is 1856 April 1,
9 3 10* A.M.; what is the Greenwich time?

Local Ast. T. March 81, 21» 8= 10¢
Longitude + 5 6 8
Greenwich T. April1, 2 9 18

2. In Long. 105° 15’ E. the local time is August 21, 4* 8" P.M;
what is the Greenwich time ?

Local Ast. T. Aug. 21, 4* 8=
Longitude — 7 1

Greenwich T. Aug. 20, 21 2

3. Long. 175° 30’ W. Loc. T. Sept. 30, 8* 10~ AM.=G. T.
Sept. 30, T* 52m.,

4. Long. 165° 0’ E. Loc. T. Feb. 1, ™ 11» P.M.=G. T. Jan.
31, 20* 11, .

5. Long. 64° 30’ E. Loc. T. June 1, 0* M. (Noon) = G. T. May
81, 17" 17" b6".

46. In nautical practice the observer is provided with a chro-
nometer which is regulated to Greenwich time, before sailing,
at a place whose longitude is well known. Its error on Green-
wich time is carefully determined, as well as its daily gain or
loss, that is, its rate, so that at any subsequent time the Green-
wich time may be known from the indication of the chronometer
corrected for its error and the accumulated rate since the date
of sailing. As, however, thé chronometer has usually only 12*
marked on the dial, it is necessary to distinguish whether it
indicates A.M. or P.M. at Greenwich. This is always readily
done by means of the observer’s approximate longitude and local

* On this account, chronometers intended for nautical and astronomical purposes
should always be marked from 0* to 24*, instead of from 0* to 12* as is now usual.
1t is surprising that navigators have not insisted upon this point.

\J
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time. As this is a daily operation at sea, it map, be well to illus-
trate it by a few examples.

1. In the approximate longitude 5*-W. about 8* P.M. on Au-
gust 3, the Greenwich Chronometer marks 8" 11" 7%, and is fast
on G. T. 6" 10°; what is the Greenwich astronomical time ?

Approx. Local T. Aug. 8,3*  Gr. Chronom. 8 11~ 7
“  Longitude, + 5 Correction, — 6 10

Approx. G. T. Aug. 3, 8 Gr. Ast. T. Aug. 3, 8 4 57

2. In Long. 10* E. about 1* A.M. on Dec. 7, the Greenwich
Chronometer marks 3* 14™ 185, and is fast 25 18.7; what is
the G. T.?

Approx. Local T. Dec. 6, 18* Gr. Chronom. 3*14=13'5
“«  Long. —10 Correction, — 25 18.7
Approx. G. T. Dec. 6, 3 G. A. T. Dec. 6,2 48 54.8

8. In Long. 9 12 W. about 2* A.M. on Feb. 18, the Gr. Chron.
marks 10* 27 13-.3, and is slow 30~ 80~.3; what is the G. T.?

Approx. Local T. Feb. 12,14  Gr. Chronom. - 10* 87133
«“  Long. +9 Correction, + 30 30.3

Approx. G. T. Feb. 12, 23 G.A.T.Feb. 12,23 7 456

The computation of the approximate Greenwich time may, of
course, be performed mentally.

47. The formula (54), L= T;— T, is true not only when 7,
and T are solar times, but also when they are any kinds of time
whatever, or, in general, when Tj and 7 express the hour angles
of any point whatever of the sphere at the two meridians whose
difference of longitude is L. This is evident from Fig. 10, where
S may be any point of the sphere.

48. To convert the apparent time at a given meridian into the mean
time, or the mean into the apparent time.

If M — the mean time,
A = the corresponding apparcnt time,
E = the equation of time,

M—A+E
or A=M-—F

we have
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in which E is to be regarded as a positive quantity when it is
additive to apparent time. The value of E is to be taken from the
Nantical Almanac for the Greenwich instant corresponding to
the given local time. If apparent time is given, find the Gr.
apparent time and take E from page I of the month in the
Nautical Almanac; if mean time is given, find the Gr. mean
time and take E from page II of the month.

ExaMpiLE 1.—In longitude 60° W., 1856 May 24, 8* 12» 10
P.M., apparent time ; what is the mean time ?
‘We have first
Local time May 24,  8*12= 10°
Longitude, ' 4 0 0
Gr. app. time May 24, 7 12 10

We must, therefore, find E for the Gr. time, May 24, T 12»
10, or 7*.21. By the Nautical Almanac for 1856, we have E at
apparent Greenwich noon May 24 = — 3~ 25°.43, and the hourly
difference + 0°.224. Hence at the given time

E = —3=25.43 4 0.224 X 7.21 = — 3= 2381
and the required mean time is
M=3*12" 10 — 3= 23°.81 = 3* 8= 46°.19.

ExampLE 2.—In longitude 60° W., 1856 May 24, 8* 8= 46'.19
mean time ; what is the apparent time ?

Gr. mean time, May 24, 7* 8= 46°.19 (= 7>.15)

E at mean noon May 24 — — 3= 25'41 Hourly diff. = 0°.224
Correction for 7>.15 = 4+ 1.60 7.15
E=— 8 2381 1.60
and hence

M—3 8~ 4619
—E—=4 3 2381
A=3 12 10.00

As the equation of time is not a uniformly varying quantity, it
is not quite accurate to compute its correction as above, by mul-
tiplying the given hourly difference by the number-of hours in
the Greenwich time, for that process assumes that this hourly
difference is the same for each hour. The variations in the
hourly difference are, however, so small that it is only when
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extrcme precision is required that recourse must be had to the
more exact method of interpolation which will be given here-
after.

49. To determine the relative length of the solar and sidereal units
of time. :

According to BEsskL, the length of the tropical year (which is
the interval between two successive passages of the sun through
the mean vernal equinox) is 865.24222 mean solar days;* and
gince in this time the mean sun has described the whole arc of
the equator included between the two positions of the equinox,
it has made one transit less over any given meridian than the
vernal equinox; so that we have

866.24222 sidcreal days — 865.24222 mean solar days

whence we deduce

865.24222
1sid. day = ———— sol. = 0.99726957 sol. d
sid. day = 2o ons sol. day = 0.99726957 sol. day
or
24* sid. timo = 23* 56= 4°.091 solar time
Also,
866.24222 . .
1 sol. day = 36551222 sid. day = 1.00273791 sid. day
or
£4* sol. time = 24* 3= 56°.555 sid. time
If we put

_ 366.24222
"= 36324222

and denote by I an interval of mean solar time, by I’ the equiva-
lent interval of sidereal time, we always have

I'=pl=I4 (u—1)T = I+ .00278791 I
=% = I'—(1— )T = I'— 00273043 I } (55)

= 1.00273791

Tables are given in the Nautical Almanacs to save the labor of
computing these equations. In some of these tables, for each
solar interval I there is given the equivalent sidereal interval
I' = pI, and reciprocally: in others there are given the correc- -
tion to be added to I'to find I’ (i.e. the correction .00273791 I),

* The length of the tropical year is not absolutely constant. The value given in
the text is for the year 1800. Its decrease in 100 years is about 0.6 (Art. 407).
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and the correction to be subtracted from I’ to find I (i.e. the
correction .00278043 I’). The latter form is the most conve-
nient, and is adopted in the American Ephemeris. The correction
(2 —1) I is frequently called the acceleration of the fixed stars (re-
latively to the sun). The daily acceleration is 8" 56°.555.

50. To contert the mean solar time at a given meridian into the
corresponding sidereal time.
In Fig. 1, page 25, if PQ is the given meridian, VQ the equator,
‘D the mean sun, V the vernal equinox, and if we put
T == DQ = the mean solar time,
© = V Q= the sidercal time,

= the right ascension of the meridian,
¥V = the right ascension of the mean sun,

O=T+ 7V (56)

we have

The right ascension of the mean sun, or V, is given in the
American Ephemeris, on page II of the month, for each Green-
wich mean noon. It is, however, there called the *Sidereal
Time,” because at mean noon the second mean sun is on the
meridian, and its right ascension is also the right ascension of
the meridian, or the sidereal time. But this quantity V is uni-
formly increasing* at the rate of 3 56°.555 in 24 mean solar
hours, or of 9.8565 in one mean hour. To find its value'at the
given time 7, we may first find the Greenwich mean time 7j by
applying the longitude; then, if we put

V, = the value of ¥ at Gr. mean noon,
= the “gidereal time” in the ephemeris for the given date,

we have .
V=T, 9.8565 X T,

in which 7}, must be expressed in hours and decimal parts. It
is easily seen that 9.8565 is the acceleration of sidereal time on
solar time in one solar hour, and therefore the term 9°.8565 X T
is the correction to add to T, to reduce it from a solar to a side-
real interval. This term is identical with (x —1)7T, as given by

* The sidereal time at mean noon is equal to the true R.A. of the mean sun, or it
is the R.A. of the mean sun referred to the true equinox, and therefore involves the
nutation, so that its rate of increase is not, strictly, uniform. But it is sufficiently so
for 24 hours to be so regarded in all practical computations. See Chapter XI.
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the preceding article, if 7} in the latter expression is expressed
in seconds, since we have

9°.8565

—=0.0027891 —p — 1
3600 T A

We may then write (56) in the following form, putting L = the
west longitude of the given meridian, and 7y= T+ L:

O=T+ V4 @u—1)(T+IL) )

The term (z — 1) (T4 L) is given in the tables of the Amer-
ican Ephemeris for converting ‘“Mean into Sidereal Time,” and
may be found by entering the table with the argument 7"+ L,
or by entering successively with the arguments 7' and L and
adding the corrections found, observing to give the correction
for the longitude the negative sign when the longitude is east.
If no tables are at hand, the direct computation of this term will
be more convenient under the form 9.8565 X 7.

ExamrLE 1.—In Longitude 165° W. 1856 May 17, 4* A.M.;
what is the sidereal time ?

The Greenwich time is May 17, 8*; and the computation may
be arranged as follows:

Local Ast. Time T=16* 0= 0.

At Gr. Noon May 17, V,= 8 41 28.32

Correction of ¥V, for 3“} 29 57
=980 X8 ) _To o780

Exampie 2.—In Longitude 25° 17/ E. 1856 March 18, about
9* 30» P.M., an observation is noted by a Greenwich chronometer
which gives 7 51" 12.3 and is slow 8™ 13".4; what is the local
sidereal time ?

Gr. mean date, March 13, Tr b4m 2507
Longitude, 1 41 8 E.
T =9 85 83.7
March 13, vV, =23 25 12.26
Tabular corr. for 7* 54 25°.7 — 1 17 .94
0=90 2 390
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" Exaurie 3.—In Longitude 7* 25~ 12* E. 1856 March 13, 13* 15~
47°.8 mean local astronomical time; what is the sidereal time?

T =13*15~47.3
V,=23 25 12.26
Tabalar corr. for 13* 15~ 473 = + 2 10.78
Tab. corr. for long. — 7256 12.. = — 1 13.14

O =12 41 57.15

51. To convert the apparent solar time at a given meridian into the
sidereal time at that meridian.

Find the mean time by Art. 48, and then the sidereal time by
Art. 50.

Or, more directly, o the given apparent time add the rue sun's
right ascension. For if in Fig. 1 we take D as the true sun, we
have D@ = apparent solar time, V.D = R. A. of true sun, and
V@, the sidereal time, is the sum of these two.

The right ascension of the true sun is called in the Ephemeris
the “sun’s apparent right ascension,” and is there given for cach
apparent noon. It is not a uniformly increasing quantity; but
for many purposes it will be sufficiently accurate to consider the
hourly increase given in the Ephemeris as constant for 24*, and
to add to the app. R. A. of the Ephemeris the correction found
by multiplying the hourly difference by the number of hours in
the Greenwich time.

ExampLE.—In Longitude 98° W. 1856 June 3, 4* 10" P.M.
app. time ; what is the sidereal time ? "
Gr. app. dato June 3, 10* 42= (= 10*.7) Local app. t. = 4* 10~ 0.
©’s App. R. A. App. noon-Junc 3 =4 46 22 .04
Hourly diff. = 10°.271 Corr. = 10°.271 X 10.7 = 1 49 .90
Sidercal time = 8 58 11 .94

52. To convert the sidereal time al a given meridian into the mean
time at that meridian.

First method.—When the Greenwich mean time is also given,
as is frequently the case, we have only to find V" as in Art. 50
by adding to V, given in the Epbemeris the correction for the
Greenwich time taken from the table “Mean into Sidereal
Time,” and then we have, by transposing equation (56),

T=06-V
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ExamMpLe.—In Longitude 165° W., the Greenwich mean time
being 1856 May 17, 8*, the local sidereal time 19* 41 57°.89,
what is the local mean timé?

V, = 8 41= 2832

Corr. for 3* = 4 29.57
V = 8 41 57.89

O =19 41 57.89

O —_V=T=16 0 0.00

The longitude being 11* W, the local date is May 16.

Second method.—When the Greenwich mean time is not given,
we can find 7 from (57), all the other quantities in that equation
being known. We find

r_8=Vo+L_ ,
I
or, in a more convenient form for use,
T=6—V,,—(l._1)(e-—Vo+L) (53)
o

in which the term multiplied by 1 — 1 i6 the retardation of meen
7]

time on sidereal in the interval @ — V, + L, and is given in the
table “Sidereal into Mean Time.” It is convenient to enter the
table first with the argument © — V, and then with the argu-
ment L, and to subtract the two corrections from ©® — V, ob-

serving that the correction for the longitude becomes additive
" if the longitude is east.

ExamprLe.—In Longitude 165° W. 1856 May 16, the sidereal
time is 19* 41* 57°.89; what is the mean local time?

© = 19* 41= 5789

May 16, V,= 3 37 31.76

© _7,—=16 4 26.18

Table, “Sidereal into { Corr. for 16 4= 26.13 = — 2 38.00
Mean Time” “ «longitude 11* = — 1 48.13
T=16 0 0.00

58. The following method of converting the sidereal into the
mean time is preferred by some. In the last column of page IIT
of the month in the American Naut. Alm. is given the “Mean
Time of Sidereal 0*.” This quantity, which we may denote by
V7, is the number of hours the mean sun is west of the vernal
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equinox, and is merely the difference between 24* and the mean
sun’s right ascension. The hour angle of the mean sun at any
instant is then the hour angle of the vernal equinox increased
by the value of V’ at that instant. To find this value of V’, we
first reduce the Almanac value to the given meridian by cor-
recting it for the longitude by the table for converting sidereal
into mean time; then reduce it to the given sidereal time @
(which is the elapsed sidereal time since the transit of the vernal
equinox over the given meridian) by further correcting it by the
same table for this time ©. We then have the mean time 7 by
the formula

T=6+ V'

It is necessary to observe, however, that if ©® 4 V’ exceed
24* it will increase our date by one day; and in that case V'
should be taken from the Almanac for a date one day less than
the given date; that is, we must in every case take that value
which belongs to the Greenwich transit of the vernal equinox
immediately preceding that over the given meridian.

ExaMPLE.—Same as in Art. 52,

© = 19* 41~ 57°89

May 15, V) =20 23 3 .88

Corr. for long. 11* W. = —1 48.13
Corr. for 19* 4158 = —3 13 .64

T—=16 0 0.00

54. To find the hour angle of a star* at a given time at a given
meridian.
In Fig. 1, we have for the star at O, DQ = V@ — VD; that
is, if we put
© = the sidereal time,

a = the right ascension of the star,
t = the hour angle “ o« o«

then t=0©0 —a (59)
" If & exceeds O, this formula will give a negative value of ¢

which will express the hour angle east of the meridian: in that
case, if we increase © by 24* before subtracting a, we shall find

#* We shall use ¢“star,” for brevity, to denote any celestial body.
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the value of ¢ reckoned in the usual manner, west of the meri-
dian.

According to this formula, then, we have first to convert the
given time into the sidereal time, from which we then subtract
the right ascension of the star, increasing the sidereal time by
24* when necessary; the remainder is the required hour angle |
west of the meridian.

In the case of the sun, however, the -apparent time is at once
the required hour angle, and we only have to apply to the given
mean time the equation of time.

ExampLe.—In Longitude 165° W. 1856 May 16, 16* 0 0’ mean
time, find the hour angles of the sun, the moon, Jupiter, and
the star Fomalhaut.

The Greenwich mean date is 1856 May 17, 8* and the local
sidereal time is (see Example 1, Art. 50) © = 19* 41 57°.89.
For the Greenwich date we find from the Naut. Alm. the equa-~
tion of time FE, and the right ascensions & of the moon, Jupiter,
and Fomalhaut, as below:

T—16" 0~ 0 © —19* 41~ 5789
—E=+4 3 49.85 Ysa=13 50 21.35
©st=16 38 49.85 Yst= 5 51 86.54

© — 19* 41~ 57:.89 © — 19* 41= 5789

Y'sa= 0 7 57.52 Fomalh. a = 22 49 40.18
o'st =19 34 0.37 Fomalh. t =20 52 17.71

If the sidereal time had been given at first, we should have
found the hour angle of the sun by subtracting its apparent right
ascension a8 in the case of any other body.

55. Gliven the hour angle of a star at a given meridian on a given
day, to find the local mean time.
By transposing the formula (59), we have

O=t+4a (60)

8o that, the right ascension of the star being given, we have only
to add it to the given hour angle to obtain the local sidereal time,
whence the mean time is found by Art. 52. When the sum ¢ + a.
exceeds 24*, we must, of course, deduct 24*. If the body is the
sun, however, the given hour angle is at once the apparent time,.

whence the mean time as before. But if the body is the moon
Vou. L—5
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or a planet, its right ascension can be found from the Ephemeris
-only when we know the Greenwich time. If then the Green-
wich time is not given, we must find an approximate value of
the local time by formula (60), using for a a value taken for a
Greenwich time as nearly estimated as possible; from ‘this local
time deduce a more exact value of the Greenwich time, with
which a more exact value of @ may be found; and so repeating as
often as may be necessary to reach the required degree of precision.

ExaMpLE 1.—In Longitude 165° W. 1856 May 16, the hour angle
of Fomalhaut is 20* 562" 17°.71; what is the mean time ?

t = 20* 52~ 17-.71
May 16, Fomalh. a = 22 49 40.18

©—19 41 5789
whence the mean time is found to be 7'=16* 0= (.

ExampLE 2.—In Longitude 165° W. 1856 May 16, the moon’s
hour angle is 5* 51" 86°.54, and the Greenwich date is given May
17, 8*; what is the mean time ?

t = b5*51=36.54

For May 17,8, « =13 50 21.85
© =19 41 57.89

« May 17,8, V= 8 41 57.89

' T=16 0 0.00

Exampre 8.—In Longitude 80° E. 1856 August 10, the moon’s
hour angle is 4* 10~ 53'.2; what is the mean time ?

For a first approximation, we observe that the moon passes the
meridian on August 10 at about 7* mean time (Am. Eph. page
IV of the month), and when it is west of the meridian 4* the
mean time is about 4* later, or 11* from which subtracting the
longitude 2* we have, as a rough value of the Greenwich time
Aug. 10, 9*. We then have

t= 411~
For Aug. 10,9, a =16 29
© =20 40

“ Aug. 10,9, V= 9 18
1st approx. value 7'=11 22

Hence the more exact Greenwich date is Aug. 10, 9* 22=; and
with this we now repeat:
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t= 4*10~53.2

For Aug. 10,922 «a =16 29 26.8
0 =2040 20.0

u “ V= 918 8.1

2d approx. value T =11 22 11.9

A third approximation, setting out from this value of T, gives
us 7'= 11* 22= 12°.82.

56. The mean time of the meridian passage not only of the
moon but of each of the planets is given in'the Ephemeris.
This quantity is nothing more than the arc of the equator in-
tercepted between the mecan sun and the moon’s or planet’s
declination circle. If we denote it by M, we may regard M as
the equation between mean time and the lunar or planetary time,
these terms being used instead of ‘“hour angle of the moon” or
“hour angle of a planet,” just as we use “solar time" to signify
“hour angle of the sun.” This quantity M is given in the Ephe-
meris for the instant when the lunar or planetary time is 0*, and
its variation in 1* of such time is also given in the adjacent
column. If, then, when the moon’s or a planet’s hour angle at a
given meridian = ¢, we take out from the Almanac the value of
M for the corresponding Greenwich value of ¢, we shall find the
mean time 7 by simply adding M to ¢; that is,

T=t+M | (61)

This is, in fact, the direct solution of the problem of the pre-
eeding article, and neither requires a previous knowledge of the
«treenwich mean time nor introduces the sidereal time. But
the Almanac values of M are not given to seconds; and there-
fore we can use (61) only for making our first approximation to
T, after which we proceed as in the last article. The Green-
wich value of ¢ with which we take out M is equal to ¢ + L,
denoting by L the longitude of the given meridian (to be taken
with the negative sign when east), and the required value of M is
the Almanac value increased by the hourly diff. multiplied by
{t+ L)in hours. As the hourly diff. of M in the case of the moon
is itself variable, we should use that value of it which corresponds
to the middle of the interval { + L ; that is, we should first correct
the hourly diff. by the product of its hourly change into } (¢ + L)
in hours.
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ExampLE.—Same as Example 3, Art. 55. We have’

t 4. L = 210" 532 = 2*.18 t= 4210532
AtGr.trans. Hour. Diff. =217 AtGr.trans. Aug.10, M= 7 6 30
Variationof H.D.in1*5= .01 2=.18 X 2.18 = + 4 45
Corrected Hourly Diff. =2 .18 T=1122 8.2

which agrees within 4' with the true value. Taking it as a first
approximation, and proceeding as in Art. 55, a second approxima-
tion gives 7'= 11* 22" 12'.19.

THE EPHEMERIS, OR NAUTICAL ALMANAC.

57. We have already had occasion to refer to the Ephemeris;
but we propose here to treat more particularly of its arrange-
ment and use. _

The Astronomical Ephemeris expresses in numbers the actual
state of the celestial sphere at given instants of time; that is,
it gives for such instants the numerical values of the co-ordi-
nates of the principal celestial bodies, referred to circles whose
positions are independent of the diurnal motion of the earth,
as declination and right ascension, latitude and longitude;
together with the elements of position of the circles of re-
ference themselves. It also gives the effects of changes of posi-
~ tion of the observer upon the co-ordinates, or, rather, numbers
from which such changes can be readily computed (namely,
the parallax, which will be fully considered hereafter), the ap-
parent angular magnitude of the sun, moon, and planets, and,
in general, all those phenomena which depend on the time; that
is, which may be regarded simply as functions of the time.

The American Ephemeris is composed of two parts, the first
computed for the meridian of Greenwich, in conformity with the
British Nautical Almanae, especially for the use of navigators;
the second computed for the meridian of Washington for the
convenience of American astronomers. The French Ephemeris,
La Connaissance des Temps, is computed for the meridian of Paris;
the German, Berliner Astronomisches Jahrbuch, for the meridian
of Berlin. All these works are published annually several years
in advance.

58. In what follows, we assume the Ephemeris to be computed
for the Greenwich meridian, and, consequently, that it contains
the right ascensions, declinations, equation of time, &c. for given
equidistant instants of Greenwich time.
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Before we can find from it the values of any of these quanti-
ties for a given local time, we must find the corresponding Green-
wich time (Arts. 45, 46). When this time is exactly one of the
instants for which the required quantity is put down in the Ephe-
meris, nothing more is necessary than to transcribe the quantity
as there put down. But when, as is mostly the case, the time
fulls between two of the times in the Ephemeris, we must obtain
the required quantity by interpolation. To facilitate this inter-
polation, the Ephemeris contains the rate of change, or difference
of each of the quantities in some unit of time.

To use the difference columns with advantage, the Greenwich
time should be expressed in that unit of time for which the
difference is given: thus, when the difference is for one hour,
our time must be expressed in hours and decimal parts of an
hour; when the difference is for one minute, the time should be
expressed in minutes and decimal parts, &c.

59. Simple interpolation.—In the greater number of cases in
practice, it is sufliciently exact to obtain the required quantities
by simple interpolation; that is, by assuming that the differences
of the quantities are proportional to the differences of the times,
which is equivalent to assuming that the differences given in the
Ephemeris are constant. This, however, is never the case; but
the error arising from the assumption will be smaller the less
the interval between the times in the Ephemeris; hence, those
quantmes which vary most 1rregularly, as the moon’s right
ascension and declination, are given for every hour of Green-
wich time ; others, as the moon’s parallax and semidiameter, for
every twelfth hour, or for noon and midnight; others, as the
sun's right ascension, &c., for each noon; others, as the right
ascensions and declinations of the fixed stars, for every tenth day
of the year. Thus, for example, the grealest errors in the right
ascensions and declinations found from the American Ephe-
meris by simple interpolation are nearly as follows :—

Brrorin R A. Error in Decl.
Sun 0.1 8".5
Moon 0.1 1.5
Jupiter 0.1 a.6
Mars 0.4 2 4
Venus 0.% 5 4
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To illustrate simple interpolation when the Greenwich time is
given, we add the following

ExaMPLES.

For the Greenwich mean time 1856 March 30, 17* 11~ 12,
find the following quantities from the American Ephemeris:
the Equation of time, the Right Ascension, Declination, Hori-
zontal Parallax, and Semidiameter of the Sun, the Moon, and
Jupiter.

1. The Equation of time.—The Gr. T.= March 30, 17* 11=.2 — March
80, 17».187.

(Page IT) E at meannoon = + 4= 27°.11 HD.= —0.763
Corr. for 1719 = — 13.11 17.19
E= +4 14.00 — 1311

Norr.—Observe to mark K always with the sign which denotes how it is to be
applied to apparent time. If increasing, the H. D. (hourly difference) should have
the same sign a3 E; otherwise, the contrary sign.

2. Sun’s R. A. and Dec.

(P.IL) aat0*= 0 3640.78 H.D. 4 9094
Corr. for 17187 = + 2 86.29 17.187
a= 039 17.07 156.29

dat 0> = 4 8° 57’ 21".9 H.D. 4 58".15

Corr. for 17°187 = 4 16 39 4 17.187
8=14 14 13 999.4

8. Moon's R. A. and Dec.
aat 17 = 20* 18= 9-.80 Diff. 1~ + 2:.4975

Corr. for 112 = 4 27 .97 11.2
a= 20 18 37.77 27.97
dat17* = —25°8'10".9 . Diff. 1~ 4 8".275
Corr. for 112 = 4 1 32 .7 11.2
d=—251 88 .2 92.68
4. Moon’s Hor. Par. (= =) and Semid. (= S). .
= at 12» = 58’ 44".1 JH.D. 4+ 2717
Corr. for 5.2 = 4 11 .8 5.2

= =58 565 4 11.28
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Sat12*» =16’ 2".0 Diff. in 128 = + 7".1

Corr. for .2 = 4 8 .1

S=16 5.1

5. Jupiter's R. A. and Dec.

a at 0* = 23* 29~ 49:.95 H.D. 4 2.175
Corr. for 170187 = + 87.38 17.187
a=23 30 27.33 87.38
dat (* = — 4° 22’ 45”6 H.D. 4 18".74
Corr. for 17».187 = 4 8 66 .1 17.187
d=—4 1849 .5 . 236.1

6. Jupiter's Hor. Par. and Semid.—At the bottom of page 231, we
find for the nearest date March 31, without interpolation :

==1"5 S =157

Norr.—It may be observed that we mark hourly differences of declination plus,
when the body is moving northward, and minus when it is moving southward.

In the above we have carried the computation to the utmost
degree of precision ever pecessary in simple interpolation.

60. To find the right ascension and declination of the sun at the time
of ils transit over a given meridian, and also the equation of time at
the same instant.

When the sun is on a meridian in west longitude, the Green-
wich apparent time is precisely equal to the longitude, that is,
the Gr. App. T. is after the noon of the same date with the local
date, by a namber of hours equal to the longitude. When the
sun is on a meridian in east longitude, the Gr. App. T. is before
the noon of the same date as the local date, by a number of
hours equal to the longitude. Hence, to obtain the sun’s right
ascension and declination and the equation of time for apparent
noon at any meridian, take these quantities from the Ephemeris
(page I of the month) for Greenwich Apparent Noon of the
same date as the local date, and apply a correction equal to the
hourly difference multiplied by the number of hours in the lon-
gitude, observing to add or subtract this correction, according as
the numbers in the Ephemeris may indicate, for a time before or
after noon.
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ExampLe 1.—Longitude 167° 81’ W. 1856 March 20, App.
Noon, find @’s R. A., ©@'s Dec., and Eq. of T.

Longitude = + 11* 10 4* — 4 1117
aat App. = 0»0=20-94 H.D. 4 9.098

Corr. for 4 11*.17 =4 1 41.62 + 11.17
a= 02 2.56 ~+ 101.62

3at App. *= 4 0° 2'16”.5 H.D. 4 59".21

Corr. for + 11217 =4 11 1 4 + 1117
3=401317 9 + 661.4

E at App. 0= 4 7=81.57 H.D.— 0.759

Corr. for 4 11%.17 = — 8.48 + 1117
E=4 723.09 — 848

ExamprLe 2.—Longitude 167° 81’ E. 1856 March 20, App.
Noon, find @'s R.A., @'s Dec., and Eq. of T.

Longitude = — 11* 10= 4*= — 11%.17
aat App. 0* = 0* 0=20-.9¢ H.D. 4 9°.098

Corr. for — 11217 = — 1 41.62 — 1117
a=2358 8932 —101.62

dat App. 0= + 0° 216”5 H.D. 4 59".21
Corr.for —11417= —11 1 4 — 1117
*3=—0 844 9 — 6614
EatApp.0*= 4 7=81+57 H.D. — 0.759

Corr. for — 1117 = 4+ 8.48 — 1117
E= 47 40.05 + 848

61. To find the mean local time of the moon's or a planet’s transit
over a given meridian.

This is the same as the problem of Art. 55, in the special case
where the hour angle of the moon or planet at the given meri-
dian is 0>. We can, however, obtain the required time directly
from the Ephemeris, with sufficient accuracy for many purposes,

# In this example the sun crosses the equator between the times of its transits
over the local and the Greenwich meridians. The case must be noted, as it is a fre-
quent occasion of error among navigators. The same case can ocour on Beptember
22 or 28.
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by simple interpolation. On page IV of the month (Am. Ephem.
and British Naut. Alm.) we find the mean time of transit of the
moon over the Greenwich meridian on each day. This mean
time is nothing more than the hour angle of the mean sun at
the instant, or the difference of the right ascensions of the moon
and the mean sun; and if this difference did not change, the
mean local time of moon’s transit would be the same for all
meridians; but as the moon’s right ascension increases more
rapidly than the sun’s, the moon is apparently retarded from
transit to transit. The difference between two successive times
of transit given in the Ephemeris is the retardation of the moon
in passing over 24* of longitude, and the hourly difference given
ia the retardation in passing from the Greenwich meridian to
the meridian 1* from that of Greenwich. Hence, to find the
local time of the moon's transit on a given day, take the time of
meridian passage from the Ephemeris for the same date (astro-
nomical account) and apply a correction equal to the hourly
difference multiplied by the longitude in hours; adding the
correction when the longitude is west, subtracting it when east,
The same method applies to planets whose mean times of transit
are given in the Ephemeris as in the case of the moon.

ExamprLE.—Longitude 180° 25’ E. 1856 March 22; required
local time of moon’s transit.

Gr. Merid. Passage March 22, 13*. 27 H.D. 4 1=.59
Corr. for Long. — 887 = — 13.8 — 87

Local M. T. of tramsit = 12 48.9 — 138

62. To find the moon's or a planet's right ascension, declination,
&ec., at the time of transit over a given meridian.

Find the local time of transit by the preceding article, deduce
the Greenwich time, and take out the required quantities from
the Ephemeris for this time. This is the usual nautical method,
and is accurate enough even for the moon, as meridian observa-
tions of the moon at sea are not susceptible of great precision.
For greater precision, find the local time by Art. 55 for t = 0%,
and thence the Greenwich time. See also Moon Culmindtions,
Chapter VII.

63. INTERPOLATION BY SEOOND DIiFFERENCES.—The differences
between the successive values of the quantities given in the
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Ephemeris as functions of the time, are called the first differ-
ences; the differences between these successive differences are
called the second differences; the differences of the second differ-
ences are called the third differences, &c. In simple interpolation
we assume the function to vary uniformly; that is, we regard
the first difference as constant, neglecting the second difference,
which is, consequently, assumed to be zero. In interpolation
by second differences we take into account the variation in the
first difference, but we assume s variations to be constant;
that is, we assume the second differences to be constant and the
third differences to be zero. .

‘When the American Ephemeris is employed, we can take the
second differences into account in a very simple manner. In
this work, the difference given for a unit of time is always the
difference belonging to the instant of Greenwich time against
which it stands, and it expresses, therefore, the rate at which
the function is changing af that instant. This difference, which
we may here call the first difference, varies with the Greenwich
time, and (the second difference being constant) it varies umi-
formly, so that its value for any intermediate time may be found
by simple interpolation, using the second differences as first dif-
ferences. Now, in computing a correction for a given interval
of Greenwich time, we should employ the mean, or average
value, of the first difference for the interval, and this mean
value, when we regard the second differences as constant, is
that which belongs to the middle of the interval. Ience, to
take into account the second differences, we have only to observe
the very simple rule—employ that (interpolated) value of the first
difference which corresponds to the middle of the interval for which the
correction is to be computed.

ExaMpLE.—For the Greenwich time 1856 March 2, 12* 29= 36°,
find the moon's declination.

March 2, 12*(8) = —27°10'41".8 Diff. 1= =4 4".814 2d Diff. = 4-0".189
Corr. for 29™.6 4+ 228.9 Corr. for 2d diff. 4 .047 0.26
R 0= —27 817 .9 ' + 4.861 + 0.047

29.6

+ 143.89

Here the ¢ diff. for 1*"’ increases 07.189 in 1*; the half of the
interval for which the correction is to be computed is 14" 48' =~
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0%.25; we therefore find the value of the first difference at 12*
14~ 48", by adding to its value taken for 12* the quantity 0//.189
X 0.25, and then proceed as in simple interpolation. This exam-
ple suffices to illustrate the method in all cases where the first
difterence is given in the Ephemeris for the time against which
it stands. In using the British Nautical Almanac and other
works of the same kind, interpolation by second differences
may be performed by the general interpolation formula here-
after given. :

64. To find the G'reenwich time corresponding to a given right ascen-
sion of the moon on a given day.

Let T" = the Greenwich time corvesponding to the given right
ascension ao’,
T = the Greenwich hour preceding 7" and corresponding to
the right ascension a,
Aa = the diff. of R. A. in 1* at the time T,

then we have, approximately,

_r—_2—"°
Aa

To correct for second differences, we have now only to find

. 8,0 = diff. of R.A. in 1~ for the middle instant
of the interval T"—T,

and then we have, accurately,

’
, o —a
T—T= ia

These formule give 77 — T in minutes of time.

65. To find the distance of the moon from a given object atl a given
Gireenwich time.

In the American Ephemeris and the British Nautical Alma-
nac, the “lunar distances” are given at every 3d hour of Green-
wich time, together with the proportional logarithms of the differ
ences between the successive distances.

The proportional logarithm of an angle expressed in hours,
&c. is the logarithm of the quotient of 8* divided by the angle;
that of an angle expressed in degrees, &c. is the logarithm of
the quotient of 8° divided by the angle. Thus, if 4 is the angle,
in hours,
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A
P.L A=log %:log& —log 4
or, if 4 is in degrees,
o
P.L.A=log 32 —log3°—1log 4

The angle is always supposed to be reduced to seconds ; so that,
whether 4 is in seconds of time or of arc, we have

P. L. A=log 10800 —log 4

Tables of such logarithms are given in works on Navigation.

If now we wish to interpolate a value of a lunar distance for a
time 7'+ ¢ which falls between the two times of the Ephemens
Tand T+ 3, we are to compute the correction for the interval ¢
and apply it to the distance given for the time 7'; and if we put

4 =the difference of the distances in the Ephemeris,
4’ = the difference in the interval ¢,

we shall have, by simple interpolation,

t
A'::AX?—’—.

or, by logarithms,
» oy fogant ’ log 4’ =1log t 4 log 4 —log 8*

or, supposing 4, 4, and ¢ all reduced to seconds,
log 4 =logt—P.L. 4 62)
Subtracting both members of this from log 10800, we have

P.L.4/=PL t4+P.L 4 (63)

which is computed by the tables above mentioned. By (62),
however, only the common logarithmic table is required.

But the first differences of the lunar distance cannot be assumed
as constant when the intervals of time are as great as 8*. If
we put

PL4=2¢@Q

we observe that @ is variable, and the value given in the Ephe-
meris i8 to be regarded as its value at the middle instant of the
interval to which it belongs. If then

@ = the value of Q for the middle of the interval ¢,
AQ = the increase of @ in 3* (found from the successive values
in the Ephemecris),
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we have

¢ =e—(2)se (64

in which ¢ is in hours and decimal parts. ‘We find then, with
regard to second differences,

log 4/ =logt— Q'

ExaMpPLE.—Find the distance d of the moon’s centre from the
star Fomalhaut-at the Greenwich time 1856 March 80, 18* 20~
24,

Here T'=12*t =1*20=24* =1*34;

Ephemeris:

1.5 = it _ 0.28; and from the

March 80, 12* (d)  86°17' 53" @, .2998 aQ, +.0041

4 —0 40 28 — 0011 28

At13*20=24* d — 85 87 25 ¢, .2982 +.0011
logt, 3.6834
log &', 3.3852

66. To find the Greenwich time corresponding to a given lunar dis-
lance on a given day.

We find in the Ephemeris for the given day the two distances
between which the given one falls; and if 4’=difference be-
tween the first of these and the given one, 4=difference of the
distances in the Ephemeris, we find the interval ¢, to be added to
the preceding Greenwich time, by simple interpolation, from the
formula

4
=8 X —
X y

or
logt=log 4/'4+P.L.d=log 44 @ (65)

and, with regard to second differences, the true interval, ¢, by

the formula
log ¢ =log 4' + Q' (66)

where @’ has the value given in the preceding article.

But to find @’ by (64) we must first find an approximate value
of t. To avoid this double computation, it is usual to find ¢ by
(65), and to give a correction to reduce it to ¢ in a small table
which is computed as follows. We have from (64), (65), and (66)
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logt —logt= Q' — Q=—(P-5;“)AQ

By the theory of logarithms, we have, M being the modulus
of the common system,

oty | BE=HIE—D—iE—1 ]

logt'—logt_log—=M ——t—_ _t)+ ]

or, neglecting the square and hlgher powers of the small fraction

UV —t
]ogt’—logt:M(t'T_t)

This, substituted above, gives

4
b M5 —d0 ot D)
Mx 3 2Mx 8

by which a table is readily computed giving the value of ¢! —1
[or the correction of ¢ found by (65)], with the arguments aQ and &
In this formula ¢ and ¢ — ¢ are supposed to be expressed in hours;
and to obtain ¢ —¢ in seconds we must multiply the second
member by 8600 ; this will be effected if we multiply each of the
factors ¢ and 8* — ¢ by 60, that is, reduce them each to minutes,
8o that if we substitute the value of M =.434294 the formula
becomes
£ (180~ — t)

2.60576 sQ N

in which ¢ is expressed in minutes, and ¢ — ¢ in seconds.

—t=—

ExaMpLE.—1856 March 80, the distance of the moon and
Fomalhaut is 85° 87’ 25’ ; what is the Greenwich time?
March 30, 12* 0~ 0 (d)=386°17' 53" Q= .2993 AQ=+441
t—= 120 36 d =385 37 25 log 4'=38.3852
Ap. Gr. time =13 20 36 4’ 40 28 logt =38.6845
By (OT)*¢—t=_ —12
True Gr.time =13 20 24

* Or from the * Table showing the correction required on account of the sezond
differences of the moon’s motion in finding the Greenwich time corresponding to a
corrected lunar distance,” which is given in the American Ephemeris, and is also
included in the Tables for Correcting Lunar Distances given in Vol. IL of this work.
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INTERPOLATION BY DIFFERENCES OF ANY ORDER.

67. When the exact value of any quantity is required from the
Ephemeris, recourse must be had to the general interpolation
formulee which are demonstrated in analytical works. These
cnable us to determine intermediate values of a function from
tabulated values corresponding to equidistant values of the
variable on which they depend. In the Ephemeris the data are
in most cases to be regarded as functions of the time considered
as the variable or argument.

Let T, T+ w, T+ 2w, T+ 8w, &c., express equidistant values
of the variable; F, F', F', F'", &c., corresponding values of
the given function; and let the differences of the first, second,
and following orders be formed, as expressed in the following
table :—

Argument. | Function. | 1st Diff. | 2d Diff. | 3d Diff. | 4th Diff. | 6th Diff. | 6th Diff.
T F
a
T4+ w F b
a ¢
T+ 2w F" b’ d
a’ 4 e
T+8w| F” b a !
a" ¢! e
T + 4w F 14 a’
av "
T+5 | F- b
a'
T+6w| Fn

The differences are to be found by subtracting downwards, that
is, each number is subtracted from the number below it, and the
proper algebraic sign must be prefixed. The differences of any
order are formed from those of the preceding order in the same
manner as the first differences are formed from the given funec-
tions. The even differences (2d, 4th, &c.) fall in the same lines
with the argument and function; the odd differences (1st, 8d, &c.)
between the lines.

Now, denoting the value of the function corresponding to a
value of the argument 7'+ nw by F'™, we have, from algebra,

Fo—Fing D) p n(n—1)(n—=2)  n(n—1)(n—2)(n—8) ; o (a8
B O A U Y B v S A

in which the coefficients are those of the n* power of & binomial.
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In this formula the interpolation sets out from the first of the
given functions, and the differences used are the first of their
respective orders. If n be taken succeésively equal to 0, 1, 2, 3,
&c., we shall obtain the functions F, F’, F'’, F'’, &c., and in-
termediate values are found by using fractional values of n. We
usually apply the formula only to interpolating between the
function from which we set out and the next following oune, in
which case n is less than unity. To find the proper value of n
in each case, let 7'+ ¢ denote the value of the argument for which
we wish to interpolate a value of the function: then

nw ==t n=£
w

that is, n is the value of ¢ reduced to a fraction of the interval w.

ExamMpLE.—Suppose the moon’s right ascension had been
given in the Ephemeris for every twelfth hour as follows:

DB R. A, 1st. Diff. 2d Diff. 8d Diff. | 4th Diff. | 5th Diff.
1856 March 5, O* |21* 58 28739
+ 28m 47,04
« 5,12 |22 27 15.48 — 86497
28 10.07 + 4079
« 6 0 |22 65 26.50 82.18 +1.74
27 87.89 6.58 — 0~.66
« 6 12 |28 28 8.89 25. 65 1.08
27 12.24 7.61
« 7, 0 |28 650 15.68 18. 04
26 54.20
« 7,12 | 017 9.88

Required the moon’s right ascension for March 5, 6*.
Here T'=March 5, 0% =6 w=12*, n=%=%; and if we
denote the coefficients of a, b, ¢, d, e in (68) by 4, B, C, D, E,

we have
F = 21* 58= 2830

a=428" 4704, A =n = 1, Ada=+ 14 23.52
b——  86.97, B=A.“;1=—i, Bb =+ 4 .62
c=+ 4.9, C=B.";2—_-+T',, Cc—=+ 030
d=+ 174, D=0.n:3=_735,Dd=— 0.07
e=— 0.6 E=D.”;4=+§§,,Ee=— 0.02

Y’s R. A. 1856 March 5,6*............ Fod =22 12 56.74
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which agrees precisely with the value given in the American
Ephemeris.

68. The formula (68) may also be written as follows:

FoV=F 4

(a4 o+

8

n—38

”—2(c+ n—38
4

Thus, in the preceding example, we should have

— 75 X — 066

— § (+ 174 4 0.46)
— } (+ 479 —1-38)

— } (— 86,97 —1°71)

} (+ 284704 4 9.67) —

(e )

+ 0.46
—1.388
—1.71

+ 9.67

+ 14= 2835

and adding this last quantity, 14™ 2885, to 21* 58~ 28'.39, we
obtain the same value as before, or 22* 12" 56°.74.

69. A more convenient formula, for most purposes, may be:
deduced from (68), if we use not only values of the functions
following that from which we set out, but also preceding values;
that is, also values corresponding to the arguments 7' — w,
T — 2w, &c. We then form a table according to the following

schedule :

Argument.
T—3w

T—2w
T— w
T

T4+ w
T+ 2w
T 4 8w

Function.

F,

wm

F,

H

Fl
F
7
P
o

Vou. I.—6

1st Diff.

,
a"

2d Diff.

u

bl
b"

8d Diff.

4th Diff.

dl

5th Diff.

6th Diff.
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According to the formula (68), if we set out from the function
F, we employ the differences denoted in this table by a’, &', ¢/,
&c., and hence for the argument 7'+ nw we find the value of
F® by the formula

n (n—1) (n—2) c"-|-”(”-1) (n—2) (n—38) & + &o.
1.2.8 1.2.8.4

Fow=Fina4" (1"-21') b+

But we have

B =b+¢

= fd=¢ +d+¢

P=d " =d+e++f=d+ 2 +f
&e. &

in which ¥, ¢”, &c. are expressed in terms of the differences
that lie on each side of a horizontal line drawn in the table
immediately under the function from which we set out. These
values substituted in the formula give

Fw=1r+,w,+n (n—1) b+ ("+l)(n)("—l)d

1.2 1.2.8
r+DR)(rn—1)(n—2)
+ 1.2.8.4 4+ & (69)

in which the law of the coefficients is that one new factor is
introduced into the numerator alternately after and before the
other factors, observing always that the factors decrease by unity
from left to right. The new factor in the denominator, as in the
original formula (68), denotes the order of difference.

The interpolation by this formula is rendered somewhat more
accurate by using, instead of the last difference, the mean of the
two values that lie nearest the horizontal line drawn under the
middle function: thus, if we stop at the fourth difference, we
use & mean between d and d’ instead of d. We thus take into
account a part of the term involving the fifth difference.

ExaMpLE.—Find the moon’s right ascension for 1856 March 5,
6*, employing the values given in the Ephemeris for every
twelfth hour. This is the same as the example under Art. 67,
where it is worked by the primitive formula (68). But here we
take from the Ephemeris three values preceding that for March 5,
0, and three values following it, and form our table as follows:
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P'sR.A. 1st Diff. 24 Diff. 34 Diff. | 4th Diff. ; 6th Difr.
1856 March 8, 12 | 204 28 17-.88
: ‘ + 80= 8920 ~
« 4 0 (20 68 57.08 — 84027
80 4.93 —4.28
« 4,12 |21 29 2.01 88.56 + 8.49
29 26.88 —0.79 —00.33
« 5, 0|21 68 28.89 89.84 8.16
28 47.04 F2.87 — 0.4
« 5,12 |22 27 15.48 86.97 2.42
28 10.07 +4.79
« 6 0|22 55 25.50 82.18
27 87.89
« 6,12 (28 28 8.39

Drawing a horizontal line under the function from which we
set out, the differences required in the formula (69) stand next
to this line, alternately below and above it.

a =4 284704, A= n = 3 fa’ : i}. 51)2- gg.gg
b —— 8934 B=A. ”;1=— }, Bb =+ 4.92
d=4 281, 0=B.”'§1=—11¢, 0 ==— 0.5
d=+ 816 D=C. ":2_-1-,;,,, Dd=+ 007
d=— 0.4 E=D.”}‘;2_+,§,, B —— 001

P =22 12 56.74

Y’s R. A. 1856 March 5, 6*
69*. If in (69) we substitute the values

ad=a, +b
c’=c,-|—d
&e.
we find ,
F(“’=F+Ml+(n+1)nb+(n+l)(n)(n_l)c

1.2 1.2.3 !

r+2)(r+1m(®—1 -

+ 1.2.8.4 ¢+ bo. @0

in which the law of the coeflicients is that one new factor is

introduced into the numerator alternately before and after the

other factors, observing still that the factors decrease by unity

from left to right. The differences employed are those which lie

on each side of the horizontal line drawn immediately above
the function from which we set out.
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If in the preceding formule we employ a negative value of
n less than unity, we shall obtain a value of the function between
Fand F,, and in that case (70) is more convergent than (69). In
general, if we set out from that function which is nearest to the
required one, we shall always have values of » numerically less
than 3, and we should prefer (69) for values of n between 0 and
+ %, and (70) for values of n between 0 and — 3.

70. If we take the mean of the two formule (69) and (70),
and denote the means of the odd differences that lie above and
below the horizontal lines of the table, by letters without ac-
cents, that is, if we put

a=1%(a,+a), c=1t(c,+7)&e..
we have

F"’—F+na+ b+(n+1)2(n)3(n—]) +(”+l)(7;’).(: ])d+&c 7 1D

The quantities @, ¢, &e. may be inserted in the table, and will
thus complete the row of differences standing in the same line
with the function from which we set out.

The law of the coeflicients in (71) is that the coefficient of any
odd difference is obtained from that of the preceding odd dif-
ference by introducing two factors, one at the beginning and
the other at the end of the line of factors, observing as before
that these factors are respectively greater and less by unity than
those next to which they are placed; and the coeflicients of the
cven differences are obtained from the next preceding even
differences in the same manner. The factors in the denominator
follow the same law as in the other formul.

ExampLE.—Find the moon’s right ascension for 1856 March 5,
6*, from the values given in the Ephemeris for noon and mid-
night

The table will be as below:
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D's R A. 1st Diff. 2d Diff. |8d Diff. |4th Diff. |5th Diff.
Mar. 8, 1220*28=17+.88
+ 80~ 29:.20
« 4, 020 58 57.08|" —84+.27
30 4.93 —4°.28
« 4,12{21 29 2.01 . 88.55 +-8+.49
29 26.38 —0.79 —(*.33
« 6, 0|21 58 28.39| (+2 6 .71)| —39 84| (+0 191+ 8.16|(—0 .84
28 47.04 +2.87 —0.74
“ 5,12(22 27 15 .43 36 .97 2.42
28 10.07 +4.79 '
“« 6, 0|22 55 25.50 82.18
27 87.89
“« 6,12(23 23 8.99

Drawing two lines, one above and the other below the func-
tion from which we set out, and then filling the blanks by the
means of the odd differences above and below these lines (which
means are here inserted in brackets), we have presented in the
same line all the differences required in the formula (71); and
we then have

F= 21 58= 2839

a=+429" 67, A=n = 3, Aa=+ 14 88.36
b= — .39.34,B=§21 =44  Bb=— 4.92
¢c =4  0.79, 0=A.”’_';1=_T',, Co= — 0.05°
d=+ 816 D= B."'l;l:_,;g, Dd—=—  0.02
e=— 054 E=0C."2 4 4y Fe=— 0.01

-

Fod — 22 12 56.75

agreeing within 0401 with the value found in the preceding
article. IIANSEN has given a table for facilitating the use of this
formula. (See his Tables de la Lune).

71. Another form, considered by Bessel as more accurate than
any of the preceding, is found by employing the odd differences
that fall next below the horizontal line drawn below the function
from which we set out, and the means of the even differences
that fall next above and next below this line. Thus, if we put

=1 +b), d=1(+d) &
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aud combine these with the expressions

1O =3 —b), ¢ =i(d—d), &
we deduce
b=b,—14¢, d=d,—1ic,&e.

which substituted in (69) give

Fo—Fpnd+ a(n l)b _l_n(nI—I;(;;—!)c,_‘_(n+1)ln(n-—31)§n—2)d!
(n+1)n(n—1)(n—2) (n—1) ¢
1.2.3.4.5. the ()

To facilitate the application of this formula, draw a horizontal
line under the function from which the interpolation sets out,
and another over the next following function; these lines will
embrace the odd differences a’, ¢/, &c. If we then insert in the
blank spaces between these lines the means of the even differ-
ences that fall above and below them, we shall have presented
in a row all the differences to be employed in the formula.

ExampLEe.—Find the right ascension of the moon’s second
limb at the instant of its transit over the meridian whose longi-
tude is 4* 42" 19" west from Greenwich, on May 15, 1851.

The right ascensions of the moon’s bright limb at the instant
of its upper and lower transits over the Greenwich meridian, are
given in the Ephemeris, under the head of ¢ Moon Culminations.”
The argument in this case is the longitude, and the intervals of
the argument are 12*, The value for any meridian is therefore
to be obtained by interpolation, taking for » the quotient obtained
by dividing the given longitude (in hours) by 12*.

We take from the British Nautical Almanac the following
values:

R. A.D’s 2d limb. 1st Diff. 24 Dift. 3d Diff. | 4th Diff. | 6th Difr.

May 14, U. C. | 16% 12m 890,04
+ 28m 24037
“ 15, L.C.|16 41 8.41 +12211

28 86.48 —20.62
“ 15,U.C.|16 9 39.89 + 9.49 —12.568
_ 28 45.97| [+7.39) | —4.20| [—1.42]| 4083
¢ 16, L. C.|16 88 25.86 + 65.29 —1.26
28 61.26 —b5.46
¢ 16,U.C. |17 7 17.12 — 0.16
28 61.10

“ 17, L.C. |17 86 8.22 J
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For interpolation by formula (72) we draw a horizontal line
below the function from which we set out, and one above the
next following function. These lines enclose the odd differences
regularly occurring in the table. Inserting in the blanks in the
columns of even differences the means of the numbers above and
below, all the differences to be employed in the formula stand in
the same line, namely:

@' =+ 172597, by = + 7°.89, ¢ = —4:.20, d,— —1°42, ¢ = - (.33

As n is here not a simple fraction, the computation will be
most conveniently performed by logarithms, as follows:

4> 42= 19 — 16989° log 4.228887%

12» =43200 log 4.6354837

log A =log n = 9.5934041
n= 0.3921065 9.59340 9.5934 9.5934 9.5934
n—1=—0.60789 n9.78388| 1£9.7838| . 29.7838 n9.7838
n—3=—0.10789 n9.0330 n9.0330
n —2=-—1.6079 n0.2063 n0.2063
n4+1=41.3921 0.1437 0.1437
(3) 9.69897((}) 9.2218|(54) 8.6198|(145)7.9208
(4) 9.5934041/(B)n9.07620((C) 7.6320|(D) 8.3470|(E)n6.6810
(a") 8.2870332|(b,) 0.86864|(c')n0.6282|(d,)n0.1523|(¢) 9.5185
2.8304373 n9.94484| 28.2552 n8.4993 n6.1996

Ad = 11~ 16764

Bb, = — 0.879

cd = — 0.018

Ddy = — 0.082

E¢ = 0.000

Increase of R. A. = 11 15.885

R. A. Greenwich Culm. =- 16* 9= 39.890
R. A. on given meridian = 16* 20= 55°.725

The use of BesskL’s formula of interpolation is facilitated by »
table in which the values of the coefficients above denoted 1y
4, B, C, D, &c., and also their logarithms, are given with the
argument n.

72. Interpolation into the middle.—When a value of the functicn
is sought corresponding to a value of the argument which ie a
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~

mean between two values for which the function is given, that
is, when » =}, we have by (72), since n — } =0,

F® =F+4}a" —}b, + 13g do — 1dfaz fo + &e
or, since F'+ } o’ =} (F+ F'),
Foo— ) (F+ F)—§[by— 2 [do— & (fo—&e)]] (13

which is known as the formula for interpolating into the middle.

When the third differences are constant, d,, f,, &o. are zero,
and the rule for interpolating into the middle between two func-
tions is simply: From the mean of the two functions sublract one-
eighth the mean of the second differences which stand against the func-
tions. Interpolation by this rule is correct to third differences
inclusive.

The formula (73) is especially convenient in computing tables.
Values of the function to be tabulated are directly computed for
values of the argunient differing by 2"w; then interpolating a
value into the middle between each two of these, the arguments
now differ by 2"~'w ; again interpolating into the middle between
each two of the resulting series, we obtain a series with argu-
ments differing by 2~*w; and so on, until the interval of the
argument is reduced to 2"~"w or w.

ExampLE.—Find the moon’s right ascension for 1856 March
b, 6%, from the values of the Ephemeris for noon and midnight.

This is the same as the example of Art. 69; but, as 6* is the
middle instant between noon and midnight, the result will be
obtained by the formula (78) in the following simple manner.
We have from the table in Art. 69

by——288.16  }(F+ F')=22"12= 51-.91
dy=+279, — fydy=— 052  88.68%XJ= + 4.8
—38.68 Fo9—22 12 56.74

73. In case we have to interpolate between the last two values
.of a given series, we may consider the series in inverse order,
the arguments being 7, T'—w, T'— 2w, &c., T being the last
argument. The signs of the odd differences will then be changed,
and, taking the last differences in the several columns as , b, ¢, d,
&c., the interpolation will be effected by (68).



INTERPOLATION. ' 89

74. The interpolation formule arranged according to the powers of
the fractional part of the argument.

‘When several values of the function are to be inserted between
two of the given series, it is often convenient to employ the
formula arranged according to the powers of n. Performing the
maltiplications of the factors indicated in (68), and arranging the
terms, we obtain

MW=F+4n(a—}b+t+jc—3d+}e—&e)

G —ct Hd— e+ be)
n .
+ s =144 Fe—do)
N
tiz s @2t
nl
tiz s s
+& LT L L L La

where the difterences are obtained according to the schedule in
Art. 67.
Transforming (71) in the same manner, we have

FO=F+4n(@a—}c+ y5e—&e)
+-i—’.'—2(b—1l,d+&c.)

-|-l.';.8(c—}e+&.c.)
n.
Tz s @)
nl
125138 %)
()

where the differences q, ¢, ¢, are the mean interpolated odd dif-
ferences in the line of the function F of the schedule Art. 69.

75. Derivatives of a tabulated function.—When the analytical ex-
pression of a function is given, its derivatives may be directly
found by successive differentiation; but when this expression is
not known, or when it is very complicated, we may obtain values
of the derivatives, for particular values of the variable, from the
tabulated values of the functions by means of their differences.

Denoting the argument by I' 4 nw, its corresponding function



90 INTERPOLATION. ' '

by f (' 4+ nw), the successive derivatives of this function cor-
responding to the same value of the argument will be denoted

by f(T+ nw), f(T+ no), f"(T + nw), &c., and f(T),
J(T), f'"(T), &c., will denote the values of the function and
its derivatives corresponding to the argument T, or when n = 0.
Hence, if we regard nw as the variable, we shall have, by Mac-
laurin’s Theorem,

F(T + m0) = £(T) + £(T) w0 + F(DTZ + &

Comparing the coefficients of the several powers of n in this
formula with those in (74), we have

f(T)= %,—(a—ib+!c—id+,;e—&c.)
FAT)=— b —c+ Hd— e+ &)
FUT) = —4d+Fe—&o)
f"(T)=£‘-—(d—2e+&c.)

f(T):iT(e_&e.)
&e. &. . . . ... (76)

the differences being taken as in Art. 67.
Still more convenient expressions are found by comparing
Maclaurin’s Theorem with (75); namely:

Py = @ =+ dye— o)
F(Ty=r 6 — 15 d + &)
Py =5 ©— tet ko)
(D = @— &)

(T =IF (e — &)
&o. &o. an

the differences being found according to the schedule in Art. 69,
and the odd differences, a, ¢, ¢, &c., being interpolated means.
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The preceding formulee determine the derivatives for the value
T of the argument. To find them for any other value, we have,
by differentiating Maclaurin’s Formula with reference to nw,

F'(T + mo)y =f/(T) + f"(T) .m0 + 3 /7' (T). v + &o.  (T8)

in which we may substitute the values of f'(T), f'/(T), &ec. from
(76) or (7).

In like manner, by successive differentiations of (78) we ob-
tain

" (T4 a0)=f"(T)+f"(T). nw+ &} f* (T). n*w* + &e.
" (T + nw) =" (T) + f* (T). nw + &e.
&e. &e.

76. An immediate application of (76) or (77) is the compu-
tation of the differences in a unit of time of the functions in the
Ephemeris; for this difference is nothing more than the first
derivative, denoted above by the symbol f’.

ExampLE.—F'ind the difference of the moon’s right ascension
in one minute for 1856 March 5, 0*.

We have in Art. 70, for 77 = March 5, 0*, a = 29 671,
c=+ 0079, e = — 00.64, and w = 12* = T20". Hence, by the
first equation of (77),

F'(T) = 145 (297 6271 — 018 — 0+.02) — 2°.4258

On interpolation, consult also ExckE in the Jahrbuch for 1830
and 1837.

STAR CATALOGUES.

77. The Nautical Almanac gives the position of only a small
number of stars. The positions of others are to be found in
the Catalogues of stars. These are lists of stars arranged in
the order of their right ascensions, with the data from which
their apparent right ascensions and declinations may be ob-
tained for any given date.

The right ascension and declination of the so-called fired
stars are, in fact, ever changing: 1st, by precession, nutation,
and aberration (hereafter to be specially treated of), which are
not changes in the absolute position of the stars, but are either
changes in the circles to which the stars are referred by sphe-
rical co-ordinates (precession and nutation), or apparent changes
arising from the observer’s motion (aberration); 2d, by the
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proper motion of the stars themselves, which is a real change of
the star’s absolute position.

In the catalogues, the stars are referred to & mean equator
and a mean equinox at some assumed epoch. The place of a
star so referred at any.time is called its mean place at that time ;
that of a star referred to the true equator and true equinox,
its true place; that in which the star appears to the observer in
motion, its apparent place. The mean place at any time will be
found from that of the catalogue simply by applying the preces-
sion and the proper motion for the interval of time from the
epoch of the catalogue. The true place will then be found by
correcting the mean place for nutation; and finally the appa-
rent place will be found by correcting the true place for aber-
ration.

To facilitate the application of these corrections, BEsSEL pro-
posed the following very simple arrangement. e showed
that if

= the star’s mean right asc. and dec. at the beginning of the
year,
a, 3 = the apparent right asc. and dec. at a time = of that year,
7 = the timo from the beginning of the year expressed in decimal
parts of a year,
#, #/ = the annual proper motion of the star in right esc. and dec.
respectively,

a, 4,

then
’ a=a,+tu+ Aa 4+ Bb + Cc + Dd + E } a
3 =28, + '+ Ad’ + Bb' + C¢ + Dd' )

in which a, b, ¢, d, a’, b/, ¢', d’ are functions of the star's right
ascension and declination, and may, therefore, be computed for
each star and given with it in the catalogue; 4, B, C, D, B
are functions of the sun’s longitude, the moon’s longitude, the
longitude of the moon’s ascending node, and the obliquity of the
ecliptic, all of which depend on the time, so that 4, B, C, D, E
may be regarded simply as functions of the time, and given in
the Nautical Almanac for the given year and day; F is a
very small correction, usually neglectéd, as it can never ex-
ceed 0'7.05.

If the catalogue does not give the constants a, b, ¢, d, a’, V', ¢/,
d’, they may be computed, for the year 1850, by the following
formule (see Chap. XI. p. 648):
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a= 46”.077 + 20”.056 8in o tan & @’ = 20”.056 cos o

b= cosatan ¢ V = —sina
¢ =08 aseCd ¢ = tan ¢ cos 8 —8in a sin &
d = 8in a sec 3 d’ = cos a 8in &

am which e = obliquity of the ecliptic. Or we may resort to
what are usually called the independent constants, and dispense
with the a, b, ¢, d, &', ¥/, ¢/, d’ altogether, proceeding then by
the formula

a=a,+ tu +f +gsin(G+a)tana+hsin(H+a)secd}(80)
8=2¢,4 ' 4i cosd 4 g cos (G + a) —+ % cos (H + a)sin é

the independent constants f, g, G, h, H, i being given in the
Ephemeris, together with the value of r for the given date,
expressed decimally.

It should be observed that the constants a, b, ¢, d, a’, ¥’ ¢/, d’
are not absolutely constant, since they depend on the right
ascension and declination, which are slowly changing: unless,
therefore, the catalogue which contains them gives also their
variations, or unless the time to which we wish to reduce is not
very remote from the epoch of the catalogue, it may Le prefer-
able to-use the independent constants.

In forming the products Aa, Bb, &c., attention must of course
be paid to the algebraic signs of the factors. The signs of 4, B,
C, D are, in the Ephemerides, prefixed to their logarithms ; and
the signs of a, b, ¢, &c. are in some catalogues (as that of the
British Association) also prefixed to their logarithms; but I
shall here, as elsewhere in this work, mark only the logarithms
of negative factors, prefixing to them the letter .

It should be remarked, also, that the B. A. C.* gives the

* B. A. C.—British Association Catalogue, containing 8377 stars, distributed in all
parts of the heavens; a very ugeful work, but not of the highest degree of precision.
The Greenwich Catalogues, published from time to time, are more reliable, though
less comprehensive. For the places of certain fundamental stars, see BEsseL's
Tabulze Regiomontans and its continuation by WorLrers and ZxcH.

Lavaxpg’s Histoire Céleste containg nearly 50,000 stars, most of which are em-
braced in a catalogue published by the British Association, reduced, under the
direction of F. Baily, from the original work of Lalande. The Kéonigsberg Observa-
tions embrace the series known as BEessrL’s ZowEes, the most extensive series of
observations of small stars yet published. The original observations are given with
data for their reduction, but an important part of them is given in Wrissx’s Posi-
tiones Medias Stellarum fizarum in Zonis Regiomontanis a BEsseLIO infer —15° et 4-16°
declin. observat., containing nearly 82,000 stars.

Bee also STRUVE’S Caral. generalis, and the catalogues of ARGELANDER, RUNMKER,
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north polar distance instead of the declination, or == 90° — d,;
and, since = decreases when & increases, the corrections change
their sign.  This has been provided for by changing the signs of
s ay b ¢y d in the catalogue itself. Moreover, in this cata-
logue, @, b, a’, ' denote BESSEL'S ¢, d, ¢/, d’, and vice versa; and
to correspond with this, the 4, B, C, D of the British Almanac
denote Besser's C, D, A, B. The same inversion also exists in
the American Ephemeris prior to the year 1865, but in the volume,
for 1865 the original notation is restored.

ExampLE.—Find the apparent right ascension and declination
of @ Tauri for June 15, 1865, from Argelander’s Catalogue.
This star is Argel. 108; whence we take for

Jan. 1, 1830. Mean R. A. = 44 26™ 10.48 Mean Decl. = 4 16° 9’ 36".0
Ann, prec. =— - 8. 428 for 86 <+ 7".90 35
Prop. motion=+0.005} or &% yI8. ’ -0 .17} x %
=4 2 0.156 . = + 4 30.656
Jan. 1, 1865, a,—= 4 28 10.585 dg=+416 14 6.55
We next take the logarithms
from the Catal. logs. a 0.6852 b 17.8794 ¢ 8.4329 d 8.8068

from Am. Ephem. - - -
. 3 .9 .21 .
for June 16, 1865,} logs. 4 9.7877 B 0.9487 C n0.2125 D n1.3089

from the Catal. . logs. a’ 0.8934 b' n9.9607 ¢ 9.2019 & 9.0378
logs. Aa 0.8229  Bb 8.8231 (Cc n8.G454 Dd n0.1147
logs. Aa’' 0.6811  Bb’ n0.9044 Cc' n9.4144 Dd n0.3467

Corr. of ay, Ada = + 2108, Bb = 4 (.067, Cc — — (°.044, Dd = —1+.302
Corr. of J,, Aa’= + 4".80, BV =—8".02, C’=—0"26, Dd = —2".22

‘We have also from the catalogue g = + 0.005, o/ = — 0".17.
The fraction of a year for June 15, 1865, is ¢ = 0.46; and hence

Jan. 1, 1865, a, = 4* 28m 10°.585 b, = + 16° 14’ 6".65
Sum of corr. ofa, = + 0.824 8um of corr. of dy = - 5.70

w= 4 0.002 W= — 0.08
June 15, 1865 a=4 28 11.411 d=+4+16 14 0.77

78. When the greatest precision is required, we should con-
sider the change in the star’s place even in a fraction of a day,
and therefore also the change while the star is passing from oune
meridian to another; also the secular variation and the changes

Piazz1, 8ANTING ; and the published observations of the principal observatories. See
algo a list of catalogues in the introduction to the B. A. C.



THE EARTH. 96

in the precession and in the logarithms of the constants. Fur-
ther, it is to be observed that the annual precession of the cata-
logues is for a mean year of 865¢ 5*.8. But for a fuller consider-
ation of this subject see Chapter XI.

CHAPTER IIL

FIGCRE AND DIMENSIONS OF THE EARTH.

79. TuaE apparent positions of those heavenly bodies which are
within measurable distances from the earth are different for ob-
servers on different parts of the earth’s surface, and, therefore,
before we can compare observations taken in different places we
must have some knowledge of the form and dimensions of the
earth. I must refer the reader to geodetical works for the
methods by which the exact dimensions of the earth have been
obtained, and shall here assume such of the results as I shall
have occasion hereafter to apply.

The figure of the earth is very nearly that of an oblate spheroid,
that is, an ellipsoid generated by the revolution of an ellipse
about its minor axis. The section made by a plane through the
earth’s axis is nearly an ellipse, of which the major axis is the
equatorial and the minor axis the polar diameter of the earth.
Accurate geodetical measurements have shown that there are
small deviations from the regular ellipsoid; but it is sufficient
for the purposes of astronomy to assume all the meridians to be
ellipses with the mean dimensions deduced from all the measures
made in various parts of the earth.

80. Let EPQP’, Fig. 11, be one of the elliptical meridians of
the earth, £Q the diameter of the equator, PP’ the polar
diameter, or axis of the earth, (' the centre, ¥ a focus of the
ellipse. Let

a —the semi-major axis, or equatorial radius, = CE,
b = the semi-minor axis, or polar radius, = CP,
¢ = the compression of the earth,

¢ = the eccontricity of the meridian.
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By the compression is meant the difference of the eqaatorial
and polar radii expressed in parts

Fig. 11 of the equatorial radius as unity, or
cC= a— b = l —-b—
a a

The eccentricity of the meridian is
the distance of either focus from
the centre, also expressed in parts
of the equatorial radius, or, in
Fig. 11, :

But, since PF= CE, we have,
CF* PP _PC* Pc?

=1—-"2
CE*  CE? CE?
b'
e’:l—;:l—(l—c)’
or

e=1/20—c’ (81)

By a combination of all the most reliable measures, BEsseL
deduced the most probable form of the spheroid, or that which
most nearly represents all the observations that have been made
in different parts of the world. He found*

by, 2981528
a T 299.1528
or
1
T 209.1528
whence, by (81),
e = 0816967
log e = 8.912205 log /(1 — ee) — 9.9985458

* Astronomische Nachrichten, No. 438. See also Encke’s Tables of the dimensions
of the terrestrial spheroid in the Jahrbuch for 1862.
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The absolute lengths of the semi-axes, according fo BgrsseL, are,

a = 6377397.15 metres = 6974532.834 yds. = 8962.802 miles
b = 6356078.96 ¢« = 6951218.06 « = 8949.555 «

81. To find the reduction of the latitude for the compression of the
earth.

Let A4, Fig. 11, be a point on the surface of the earth; A7 the
tangent to the meridian at that point; 4O, perpendicular to A7,
the normal to the earth’s surface at A. A plane touching the
earth’s surface at A4 is the plane of the horizon at that point
(Art. 8), and therefore 4 O, which is perpendicular to that plane,
represents the vertical line of the observer at A. This vertical
line does not coincide with the radius, except at the equator and
the poles. . If we produce CE, OA4, and CA to meet the celestial
sphere in E’, Z, and Z’ respectively, the angle ZO’E’ is the
declination of the zenith, or (Art. 7) the geographical latitude, and
Z is the geographical zenith; the angle Z’'CE’ is the declination
of the geocentric zenith Z’, and is called the geocentric or reduced
latitude; and ZAZ' = CAO is called the reduction of the latitude.
It is evident that the geocentric is always less than the geogra-
phical latitude.

Now, if we take the axes of the ellipse as the axes of co-ordi-
nates, the centre being the origin, and denote by x the abscissa,
and by y the ordinate of any point of the curve, by a and b the
semi-major and semi-minor axes respectively, the equation of
the ellipse is

¥
ath=
If we put
¢ = the goographical latitude,
¢’ = the geocentric “

we have, since ¢ is the angle which the normal makes with the
axis of abscisse, '

tan =
9= dy
and from the triangle 4 CB,
tan ¢’ = y
z

Vou. I.—7
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Differentiating the equation of the ellipse, we have

y_ b dx
x dy
or
hng’:-gtanp:(l—c')tan, (82)

which determines the relation between ¢ and ¢'.

To find the difference ¢ — ¢/, or the reduction of the latitude,
we have recourse to the general development in series of am
equation of the form

tanzx =ptany
which [Pl Trig. Art. 254] is

z —y=g¢sin2y 4+ § ¢*sin 4y 4 &o.
p—1

=p+1
Applying this to the development of (82), we find, after divid-
ing by sin 17 to reduce the terms of the series to seconds,

in which

, q ¢ .
—_— = — 1 20 — 49 — &e.
it Chuk A re Tl Al
in which
_p—1_1l—e—1_ & !
1= 1  1—et1  2—e
Employing BesseL’s value of ¢, we find
q s
— =690". —_ = —1"

sin 1” 65 2 8in 1” 118
and, the subsequent terms being insensible,

¢ — ¢’ = 690".65 sin 2¢ — 17.16 sin 4¢ (83%)

by which ¢ — ¢’ is readily computed for given values of ¢. Its
value will be found in our Table IIL. Vol. IL. for any given
value of .

ExauPLE.—Find the reduced latitude when ¢ = 85°. We find
by (88), or Table IIL.,

¢ — ¢ = 648”.25 = 10’ 48".26
and hence the reduced or geocentric latitude
¢ = 34° 49 1175
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82. 7Y find the radius of the terrestrial spheroid for & given latiude.
Let
p = the radius for the Iatitude ¢ = AC.

‘We have
p=v2+y
To express z and y in terms of ¢, we have from the equation of
the ellipse and its differential equation, after substituting 1 — ¢
bl
for —

&
e il

Y _a-—
x_(l e?) tan ¢

from which by a simple elimination we find

_ a cos ¢
T Y/ — e sinty)
g = (A —¢)asipy
1/(1 — ¢ sin*g)
and hence ,
' _ 1 — 2 & sintg 4- ¢ sintyp
p=a \/[ 1 — ¢ sin'y ] el

by which the value of p may be computed. The logartthmr of
p, putting @ = 1, is given in our Table III. Vol. I

But the logarithm of p may be more conveniently found by a
series. If in (84) we substitute

e=1—s2
sineg = § (1 — cos 2¢)

we find, puttinga =1,

_ I+r+a—ry cos2¢]
”"\/[1 FP+ A —f)cos 2

_l+r [1+(%:).+2(1+ﬁ)°°°2"]
Y l+(1“f)+ (l+;)00529

Nc;w (Pl Trig. Art. 260) if we have an expression of the form.
X=1/( 4+ m* — 2m cos O) (4)
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we have, if M the modulus of the common system of loga-
rithms,

logX:—M(mcos 0+m cos 2C | w! cosa('!

) o

by which we may develop the logarithms of the numerator and
denominator of the above radical.
Hence we find

logp=logl+f +M((m m’)oos29—m’_m"cos49
m._mncos 6y — &c. )
in which we have put for brevity
1—-p w1—7
T 14 1471

Restoring the value of f = y/(1 — ¢®) and computing the
numerical values of the coefficients, we find

log p = 9.9992747 + 0.0007271 cos 2 — 0.0000018 cos 4 (85)

as given by ENckE in the Jahrbueh for 1852.

The values of p and ¢’ may also be determined under another
form which will hereafter be found useful.

‘We have in Fig. 11, p sin ¢’ =y, p cos ¢’ = z, or

a(l —e)sing

v (1 — e sin’y)
acos ¢ 38

V(1 = ¢ sin’y)

psin ¢ =

p 008 ¢ =

. which may be put under a simple form by introducing an auxi-
liary 4, so that

gin y —esing :
pdin ¢’ = a (1 — ¢ sin ¢ 860 ¥ 87
pcos ¢ —a cos ¢ sec ¢
’ ‘We can also deduce from these,
W . psin (p—¢) =t actsin 2p se0 ¥ }
pecos (p—¢)=acosy (88)
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Ience, also, the following:

p=4a \/( cos ¢/ :0?(,; —7) ) (39

88. To find the length of the normal terminating in the axis, for a
given latitude.

Putting

N = the normal = 40 (Fig. 11),

we have evidently

__pcosg a
N_.cosgp T y/(1 — etsint p) (%0

or, empioying the auxiliary 4 of the preceding article,
& = asec ¢

84. To fidd the distance from the centre to the inlersection of the
normal with the axis. )

Denoting this distance by ai (so that { denotes the distance
when ¢ = 1), we have in Fig. 11,

ai == CO
and, from the triangle 4 CO,

;— p8in(p —¢)
008 ¢

a
or, by (88),
aé* sin ¢

=1—/—m—¢)-,=ae'sin¢sec¢ (91)

ai
85. To find the radius of curvature of the terrestrial meridian for a

given latitude.—Denoting this radius by R, we have, from the dif-
ferential calculus,

§
_D+@y
R= Dly 1

where we employ the notation D,y, Dy to denote the first
and second differential coeflicients of y relatively to z. We
have from the equation of the ellipse
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whence

_G@y+pat
a'b

Observing that # = a* (1 — ¢%), we find, by substituting the values
of z and y in terms of ¢ (p. 99),

a(l—e?)

B=__—
! (1 — & sin? p)f

92)
ExamMpLE.—Find the radius of curvature for the latitude of
Greenwich, ¢ = 51° 28’ 88'".2, taking a = 6377397 metres. We

find
R = 6373850 metres.

86. Abnormal deviations of the plumb line. —Grantmg the geo-
metrical figure of the earth to be that of an ellipsoid of revolu-
tion whose dimensions, taking the mean level of the sea, are as
given in Art. 80, it must not be inferred that the direction of the
plumb line at any point of the surface always coincides precisely
with the normal of the ellipsoid. It would do so, indeed, if the
earth were an exact ellipsoid composed of perfectly homoge-
neous matter, or if, originally homogeneous and plastic, it has
assumed its present form solely under the influence of the
attraction of gravitation combined with the rotation on its axis.
But experience has shown* that the plamb line mostly deviates
from the normal to the regular ellipsoid, not only towards the
north or south, but also towards the east or west; so that the
apparent zenith as indicated by the plumb line ditfers from the
true zenith corresponding to the normal both in declination and
right ascension. These deviations are due to local irregularities
both in the figure and the density of the earth. Their amount is,
however, very small, seldom reaching more than 3’ of arc in
any direction.

In order to eliminate the influence of these deviations at a
given place, observations are made at a number of places as
nearly as possible symmetrically situated around it, and, as-
suming the dimensions of the general ellipsoid to be as we have
given them, the direction of the plumb line at the given place is
deduced from its direction at each of the assumed places (by

# .8. Coast Survey Report for 1863, p. 14*.
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the aid of the geodetic measures of its distance and direction
from each); or, which is the same thing, the latitude and longi.
tude of the place are deduced from those of each of the assumed
places: then the mean of all the resulting latitudes is the geodetie
latitude, and the mean of all the resulting longitudes is the geodeti
longitude, of the place. These quantities, then, correspond as
nearly as possible to the true normal of the regular ellipsoid ;
the geodetic latitude being the angle which this normal makes
with the plane of the equator, and the geodetic longitude being
the angle which the meridian plane containing this normal
makes with the plane of the first meridian. The geodetic lati-
tude is identical with the geographical latitude as we have defined
it in Art. 81. .

The astronomical latitude of a place is the declination of the
apparent zenith indicated by the actual plumb line; but, unless
when the contrary is stated, it will be hereafter understood to be
identical with the geographical or geodetic latitude.

It has recently been attempted to show that the earth differs
sensibly from an ellipsoid of revolution;* but no deduction of
this kind can be safely made until the anomalous deviations of
the plumb line above noticed have been eliminated from the
discussion.

CHAPTER 1IV. -
REDCCTION OF OBSERVATIONS TO THE CENTRE OF THE EARTH.

87. THE places of stars given in the Ephemerides are those in
which the stars would be seen by an observer at the centre of
the earth, and are called geocentric, or true, places. Those observed
from the surface of the earth are called observed, or apparent,
places. '

It must be remarked, however, that the geocentric places of
the Ephemeris are also called apparent places when it is intended

* See Astr. Nack. No. 1808.
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to distinguish them from mean places, a distinction which will
be considered hereafter (Chap. XI.).

It will also be noticed that we frequently use the terms true
and apparent as relative terms only; as, for example, in treating
of the effect of parallax, the place of a star as seen from the
centre of the earth may be called true, and that in which it
would be seen from the surface of the earth were there no
atmosphere, may in relation to the former be called apparent;
but in considering the effect of refraction, the star’s place as it
would be seen from the surface of the earth were there no atmo-
sphere may be called true, and the place as affected by the re-
fraction may in relation to the former be called apparent; and
eimilarly in other cases.

. PARALLAX.

88. The parallax of a star is, in general, the difference of the
directions of the straight lines drawn to the star from two different
points. The difference of direction of two straight lines Leing
simply the angle contained between them, we may also define
parallax as the angle at the star contained by the lines drawn to
the two points from which it is supposed to be viewed.

In astronomy we frequently use the term parallax to express
the difference of altitude or of zenith distance of a star seen
from the surface and the centre of the earth respectively;
and, in order to express parallax in respect to other co—orgi—
nates, proper qualifying terms are added, as ¢ parallax in decli-
nation,” &ec.

Assuming (at first) the earth to be a sphere, let 4, Fig. 12, be

the position of the observer on its surface,
Fig. 12. C the centre, CAZ the vertical line, and S a

f 7 star within a measurable distance CS from
the centre. AH’, a tangent to the surface
at A, and CH, parallel to it, drawn through

4 o the centre, may each be regarded as lying

in the plane of the celestial horizon (note,

H p.19). The true or geocentric altitude of

the star above the celestial horizon is then

: the angle SCH, and the apparent altitude is

the angle SAH’. In this case the directions of the star from C
and from A are compared with each other by referring them to two

. e
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lines which have a common direction, i.e. parallel lines. Buta
still more direct method of comparison is obtained by referring
them to one and the same straight line, as CAZ, Z being the
zenith. We then call ZCS the true and ZAS the apparent
zenith distance, and these are evidently the complements of the
true and apparent altitudes respectively.

In the figure we have at once

ZAS — 2C8=ASC

that is, the parallax in zenith distance or altitude is the angle
at the star subtended by the radius of the earth. When the star
is in the horizon, as at H’, the radius, being at right angles to
AH', subtends the greatest possible angle at the star for the same
distance, and this maximum angle is called the korizontal parallaz.
The equatorial horizontal parallax of a star is the maximum angle
subtended at the star by the equatorial radius of the earth.

89. To find the equatorial horizontal parallax of a star at a given
distance from the centre of the earth.

Let
= = the equatorial horizontal parallax,

4 = the given distance of the star from the earth’s centre,
a = the equatorial radius of the earth,

we have from the triangle CAH’ in Fig. 12, if CA is the
equatorial radius,

(93)

gin # =

NESY

The value of 7 given in the Ephemeris is always that which is
given by this formula when for 4 we employ the distance of the
star at the instant for which the parallax is given.

90. To find the parallaz in altitude or zenith distance, the earth being
regarded as a sphere. )
Let
¢ = the true zenith distance = ZC8 (Fig. 12),
¢’ = the apparent zenith distance — ZAS,
p = the parallax in alt. or 2. d. = CSA.
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The triangle SAC gives, observing that the angle SAC
= 180> — ¢,

ginp a4
or,
sinp —sin ({' —{) =sinxsin { {94)
If we put

h = the true altitude,
K = the apparent altitude,

then it follows also that
sin p = sin (A — k') = sin = cos A’ (95)

Except in the case of the moon, the parallax is so small that we
may consider = and p to be proportional to their sines [1’l. Trig.
Art. 55]; and then we have

p=rn8infy = xcos ¥ (96)

Since when ¢’ = 90° we have sin ¢’ = 1, and when ¢ = 0, sin

{’ =0, it follows that the parallax is & maximum when the star
is in the horizon, and zero when the star is in the zeuith.

ExaMpPLE.—Given the apparent zenith distance of Venus,
¢/ = 64° 43/, and the horizontal parallax z = 20".0; find the
geocentric zemth distance,

log = 1.3010
¢ =64° 43 070 ‘ log sin {' 9.9563
p= 18.1 logp 12578

{ =64 4241.9

When the true zenith distance is given, to compute the paral-
lax, we may first use this true zenith distance as the apparent,
and find an approximate value of p by the formula p = x sin ¢;
then, taking the approximate value of {’ = { — p, we compute a
more exact value of p by the formula (94) or (96). This second
approximation is unnecessary in all cases except that of the
moon, and the parallax of the moon is so great that it becomes
necessary to take into account the true figure of the earth, as in
the following more general investigation of the subject.

91. In consequence of the spheroidal figure of the earth, the
vertical line of the observer does not pass through the centre,
and therefore the geocentric zenith distance cannot be directly
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referred to this line. If, however, we refer it to the radius drawn .
from the place of observation (or CAZ’, Fig. 11), the zenith dis-
tance is that measured from the geocentric zenith of the place;
whereas it is desirable to use the geographical zenith. Hence
we shall here consider the geocentric zenith distance to be the
angle which the straight line drawn from the centre of the earth
to the star makes with the straight line drawn through the centre
of the earth parallel to the vertical line of the observer. These two
vertical lines are conceived to meet the celestial sphere in the
same point, namely, the geographical zenith, which is the
common vanishing point of all lines perpendicular to the plane
of the horizon. Thus both the true and the apparent zenith
distances will be measured upon the celestial sphere from the
pole of the horizon,

The azimuth of a star is, in general, the angle which a vertical
plane passing through the star makes with the plane of the meri-
dian. 'When such a vertical plane is drawn through the centre
of the earth, it does not coincide with that drawn at the place of
observation, since, by definition (Art. 8), the vertical plane passes
through the vertical line, and the vertical lines are not coincident.
IIence we shall have to consider a parallax in azimuth as well as
in zenith distance.

92. To find the parallax of a star in zenith distance and azimuth
when the geocentric zenith distance and azimuth are given, and the earth
is regarded as a spheroid.*

Let the star be referred to three co-ordinate planes at right
angles to each other: the first, the plane of the horizon of the
observer; the second, the plane of the meridian; the third, the
plane of the prime vertical. Let the axis of z be the meridian
line, or interseetion of the plane of the meridian and the plane
of the horizon; the axis of y, the east and west line; the axis
of z, the vertical line. Let the positive axis of z be towards the
south; the positive axis of y, towards the west; the positive
axis of 2, towards the zenith. Let

4 = the distance of the star from the origin, which is
the place of observation,
¢’ = the apparent zenith distance of the star,
A’ = the apparent azimuth ¢ “ «

* The investigation which follows is nearly the same as that of OLsxRS, to whom
the method itself is due.
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then, z’ y’, 2’ denoting the co-ordinates of the star in this system,
we have, by (39),

o= 4sinl cos 4’ .

¥ = 4 sin ¢ sin A’

Z =4 cos ¥

Again, let the star be referred by rectangular co-ordinates to
another system of planes parallel to the former, the origin now
being the centre of the earth. In the celestial sphere these
planes still represent the horizon, the meridian, and the prime
vertical. If then in this system we put

4 = the distance of tho star from the origin,
¢ == the truc zenith distance of the star,
A = the true azimuth u“ «

and denote the co-ordinates of the star in this system by z, y,
- and z, we have, as before,

x=4d8infcos A
= 4s8in{ sin 4
2=4dcos

Now, the co-ordinates of the place of observation in this last
system, being denoted by a, b, ¢, we have
a=psin(p—¢) b=0 ¢c=pcos (¢ —¢)
in which p = the earth’s radius for the latitude ¢ of the place of
observation, and ¢’ is the geocentric latitude, ¢ — ¢’ being the

reduction of the latitude, Art. 81; and the formule of transforma-
tion from this second system to the first are (Art. 33)

r =2 +a y=y +b z2=2+4c

or, =z —a y=y —b% 2=z —e¢

whence, substituting the above values of the co-ordinates,
4'sin ' cos A’ = dsin { cos A — p sin (¢ — ¢')
4 8inf sin A = ds8in{ sin 4 97)
4 cos ¥’ = dcos{ — pcos (p — ¢')

which are the general relations between the trne and apparent
zenith distances and azimuths. All the quantities in the second
members being given, the first two equations determine 4'sin {’,
and A’; and then from this value of 4’sin 7/, and that of 4’cos ¢’
given by the third equation, 4’ and ¢’ are determined.
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But it is convenient to introduce the horizontal parallax
instead of 4. For, if we put the equatorial radius of the earth
=1, we have

. 1
sSiln ®# =— —
4

and hence, if we divide the equations (97) by 4, and put
==
we have
J8in {’ cos A’ = sin {cos A — p sin = 8in (p — ¢')
S8in & 8in A’ =s8in {sin 4 } (9%)
feos? =co8{ — psinxcos (¢ — ¢)

To obtain expressions for the difference between ¢ and ¢’ and
between 4 and A’, that is, for the parallax in zenith distance
and azimuth, multiply the first equation of (98) by sin 4, the
second by cos A4, and subtract the first product from the second ;
again, multiply the first by cos 4, the second by sin 4, and add
the products: we find
fsmC'sm(A’—A)=psmxsm(¢—¢)smA 95
fsin ¢ cos (4’ — A) = 8in { — p sin x 8in (¢ —¢')cos 4 (99)

Multiplying the first of these by sin } (4’ — 4), the second by
cos } (A’ — A), and adding the products, we find, after dividing
the sum by cos } (4’ — 4),
cos § (4’ 4 A4)

fsinc'=sinC—psinnsin(qp—y’)cosi(A,___A)

which with the third equation of (98) will determine ¢’.

If we assume y such that e
tan y = tan (¢—¢'):-"—;:—i—%47_i_—‘4—;

we have the following equations for determining ¢’:

(100)

JS8in I = s8in { — p 8in x cos (¢ — ¢') tan y } 101
feosl = cos{ — psin x cos (p — ¢') (101)

which, by the process employed in deducing (99), give

fen(@—0= p sin = cos (p — ¢) 2= ‘5587 r (1'02)
Foos (¢ — &) =1— psin x cos (p — ¢) 22 =1

cos y
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By multiplying the first of these by sin } (£’ — ¢), the second
by cos } (' — ), and adding the products, we find, after dividing
by cos (' — )

f___l_psinxcos(qn—y')cos[}(c'+C)—r]
cosycos } (' —0)

or multiplying by 4,

. 0008(¢—¢)°°8[l(5’+6)-r]
4=4— cosycos § (&' —0) (108)

The equations (99) determine rigorously the parallax in
azimuth; then (100) and (102) determine the parallax in zenith
distance, and (103) the distance of the star from the observer.

The relation between 4 and 4’ may be expressed under a more
simple form. By multiplying the first of the equations (101) by
cos 7, the second by sin 7, the difference of the products gives

' __ s_ilg: _ 7’)
= & —r {164

98. The preceding formulse may be developed in seres.
Put
psin«mn (¢ —¢)
sin {

then (99) become

S 8in ¢’ sin (4’ — A) = m sin { sin 4
S 8in ¢’ cos (A' A) =s8in { (1 — m cos A)
whence

P A) = - —
tan (A ) 1—mecos 4 (103)

and therefore [Pl. Trig. Art. 258], A’ — A being in seconds,

r_ 4 _msind msin24 m'sin34
A—d= in1” T Zeinl” * Ben 17

+&.  (106)

To develop 7 in series, we take

cos [4 + & (4' — )]
cos § (4" — A)
=tan (¢ — ¢') [cos A — sin 4 tan } (4’ — 4)]

tan y = tan (¢ — ¢')

whence, by interchanging arcs and tangents according to the
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formule tan—'y =y — } * + &ec., tan 2 =z + } 2* + &e. [PL
Trig. Arts. 209, 218],
{p — ¢')tpsinzsin? Asin 1" .. (10
2sin ¢ + & (0D
where the second term of the series is multiplied by sin 1’
because y and ¢ — ¢’ are supposed to be expressed in seconds.
Again, if we put

r=(p—¢)cos 4 —

_psinzcos (p—¢)
cos y

n

we find from (102)

_ _nsin ($—7)
m(:'_o—-‘l—-ncos(t—-r) o

whence, {’ — { being in seconds,

_,_ns8in(T—y) n'sin2(l—y)  n'sin8(—yp) 109
S N P 8 sin 1” +&&$ )

Adding the squares of the equations (102), we have

f’=(;:)’=l—2noos(:—r)+n'

whence [equations (4) and (B), Art. 82]

|ogl=1og4-ﬂ(ncos(c-r)+’1:-°39—22—(5—:1?+&c.) (110)

where M = the modulus of common logarithms.

94. The second term of the series (107) is of wholly inappre-
ciable effect; so that we may consider as exact the formula

r=(p—¢)cos 4 111

and the rigorous formule (105) and (108) may be readily com-
puted under the following form :

Put
sind=m t:os.‘1=‘°°i"’“’in (p — ¢) cos 4
sin {
then ) 4 112)
tan(A’—A):sm 8 tan

I —sin 3 =tand tan (46° + § ) tan 4
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Put
8in 8/ = n cos (£ -7 =P8m*c°5(¢"‘¢') cos (E—7p)
cos y
then s,
4 ’
tan (f —¢) ="n & tan (€ —7)
1 —sin¢

= tan & tan (45° 4 § ¢')tan ({—7)

ExampLE.—In latitude ¢ = 88° 59/,given for the moon, 4 =
820° 18/, ¢ =29° 30/, and = = 58’ 87"".2, to find the parallax in
azimuth and zenith dlstance

We have (Table IIL) for ¢ = 88° 59, ¢ — ¢’ = 11' 15", log p
=9.999428: hence by (111) y =8’ 89"".8 and {—y=29° 21’
20".7; with which we proceed by (112) and (113) as follows:

log p sin 7 8.28118 log p sin 7 8.281179
log 8in (9 — ¢')  7.51488 log cos (¢ — ¢) 9.999998
log cosec { 0.30766 log sec y 0.000001
log cos A 9.88615 log cos ({ — 7) 9.940313
9 = 18", log sin ¢ 5.93987 &= 61'1".5, log sin & 8.171491
log tan ¢ 5.93987 log tan & 8.171539
log tan (46° 4 4 8) 0.00004 log tan (45° + § &) 0.006446
log tan 4 n9.91919 ) log tan ({ — y) 9.750087
log tan (A’ — A4) n5.85910 log tan (' — {) 7.928072
A — 4 =—14"901 ¢ —0=297.79

A’ = 820°17" 45".09 0 = 29° 69" 7*.79

It is evident that we may, without a sacrifice of accuracy,
omit the factors cos (p — ¢’) and cos y in the computation of sin &'.

If we neglect the compression of the earth in this example,
we find by (94) ¢’ — ¢ =29’ 17".9, which is 10" in error.

95. To find the parallax of a star in zenith distance and azimuth
when the apparent zenith distance and azimuth are given, the earth
being regarded as a spheroid.

If we mu]tlply the first of the equations (101) by cos ¢’ and the
second by sin ¢/, the difference of the products gives

sin (7' — g) = P80 7 €08 (¢c; q;') sin (2 —7)

for which, since cos (¢ — ¢’) and cos y are each nearly equal to
unity, we may take, without sensible error,

gin (§ —{)=p sin = 8in (' —y) 1iH
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in which y has the value found by (111), or, with sufficient accu-
racy,by the formula-
r=(r—¢)cos & (115)
Again, if we multiply the first of the equations (98) by sin 4’
and the second by cos A4’, the difference of the products gives

p 8in = sin (¢ — ¢') 8in A’

sin (4' —4)= s
sin {

(116)

to compute which, { must first be found by subtracting the value
of the parallax ¢’ — ¢, found by (114),from the given value of ¢'.

ExampLE.—In latitude ¢ = 38° 59, given for the moon A’ =
820° 17/ 45'.09, ' =29° 69’ T1''.79, = =158" 87".2, to find the
parallax in zenith distance and azimuth. .

We have, as in the example Art. 94, ¢ — ¢’ =11’ 15"/, log »
=9.999428, y = (¢ — ¢’) cos A’ =8’ 89'".3, {’ —r=29° 50’ 28".5;
and hence, by (114) and (116),

log p sin = 8.281179 log p sin = 8.23118
log sin (&' —y) 9.696879 log sin (¢ —¢’) T7.51488
log sin (&' —¢) 7.928058 log sin 4’ n9.80538
T—(=297"79 log cosec ¢ 0.30766
¢= 29°380'0" log sin (4" — 4)n5.85910
A'—4=—-14"91

A=320°18% 0"

agreeing. with the given values of Art. 94.

96. For the planets or the sun, the following formule are always
sufficiently precise :

T —¢ =p1r8in (:'—r)
A" — A = pr sin (¢ — ¢') sin 4’ cosec {’ }(117)

and in most cases we may take {’ —{ =m sin {’,and 4’ — 4 =0.
The quantity pz is frequently called the reduced parallax, and

7 — p= =(1 — p)x the reduction of the equatorial parallax for the
given latitude; and a table for this reduction is given in some
collections. This reduction is, indeed, sensibly the same as the
correction given in our Table XIIL, which will be explained
more particularly hereafter. Calling the tabular correction ax,
we shall have, with sufficient accuracy for most purposes,

. pR = =% — A%

Vor. I.—8
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97. The preceding methods of computing the parallax enable
us to pass directly from the geocentric to the apparent azimuth
and zenith distance. There is, however, an indirect method
-which is sometimes more convenient. This consists in reducing
both the geocentric and the apparent co-ordinates to the point in
which the vertical line of the observer intersects the axis of the earth. 1
ghall briefly designate this point as the point O (Fig. 11).

‘We may suppose the point O to be assumed as the centre of
the celestial sphere and at the same time as the centre of an
imaginary terrestrial sphere described with a radius equal to the
normal OA4 (Fig. 11). Since the point O is in the vertical line of
the observer, the azimuth at this point is the same as the appa-
rent azimuth. If, therefore, the geocentric co-ordinates are first
reduced to the point O, we shall then avoid the parallax in
azimuth, and the parallax in zenith distance will be found by the
simple formula for the earth regarded as a sphere, taking the
normal as radius.

Since the point O is in the axis of the celestial sphere, the
straight line drawn from it to the star lies in the plane of the
declination circle of the star; the place of the star, therefore, as
geen from the point O, differs from its geocentric place only in
declination, and not in right ascension. 'We have then only to
find the reduction of the declination and of the zenith distance
to the point O.

Fig. 13 1st. 7o reduce the declination to the point O.—Let

T PP’, Fig. 18, be the earth’s axis; C the centre;
O the point in which the vertical line or normal
of an observer in the given latitude ¢ meets the
axis; S the star. We have found for CO the
expression (Art. 84) '

CO=ai

5

in which a is the equatorial radius of the earth,
and

i ¢! sin ¢
YA — €' sin? 9)
Let
4 = the star’s geocentric distance = SC,
4, = the star’s distance from the point 0 = S0,
3 = the geocentric declination = 90° — PCS,

3, = the declination reduced to the point O = 90° — POS,
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then, drawing SB perpendicular to the axis, the right triangles
SCB and SOB give

4, 8in 3, = 4 8in 3 4 ai
A: cosa:=Aoosd , } (118)

which determine 4, and 3,, From these we deduce

4, sin (3, — 8) = ai cos 8 '
4,c08(3, — 8 = 4 + aisin 8 } - (119)

which determine 4, and the reduction of the declination. If we
divide these by 4, and put

4 a
f‘ = '—A‘ ] gin r = 7
in which 7 denotes, as before, the equatdrial horizontal parallax,
they become
i f.sin (8, — 8) =i sinx cos 3
Jycos (3, — &) =1 + ¢sin =gin 3

whence
i sin = cos &

tan (8, — 8) = —— 2087
@ —9 1 4 ¢sin x sin &

or in series [Pl. Trig. Art. 257],

isinwrcos 8 (isinn)'gin23d

8 — 3= - n
sin 1” 2 8in 1”

+ &e.

But since the second term of the series involves @ and conse-
quently ¢!, and this is further multiplied by the small factor sin? =,
the term is wholly inappreciable even for the moon; and, as
the first term cannot exceed 257 in any case, we shall obtain ex-
treme accuracy by the simple formula

8 —d=1ixocosd (120)

The value of 4, is found from (119), by the same process as -
was used in finding 4’ in (108), to be

sin } (3, + 9)

A‘=A{l+tsmﬂcos}(d‘—6)

or, on account of the small difference between 4, and 4,

4, = 4 (1 + isin « sin ) (121)



116 PARALLAX.

As 3, — 3 is so small, it may be accurately computed with
logarithms of four decimal places, and it will be convenient to
substitute for ¢ the form

. 1= Asin [
in which
e’
YA — & sin’ 9)
The value of log A may then be taken from the following
, table with the argument ¢ = the geographical latitude

A=

¢ log 4
0° 7.8244
10 7.8245
20 7.8246
30 7.8248
40 7.82560
50 7.8258
60 7.8256
70 7.82567
80 7.82568
90 7.8259

‘We shall then compute 3, — & and 4, under the following
forms:
8, —3=—A nsin pcosd
" 4,= 4 (1 + A sin = sin ¢ sin ) } 122)

If the value of 7, has been found as below, we may take
3, —d=¢n,8in ¢ cos d
2d. To find the parallax in zenith distance for the point O.—Let
ZAO, Fig. 14, be the vertical line of the observer at

A. The normal A0 terminating in the axis being
denoted by N, we have, by (90),

Fig. 14.

a

V({1 — ¢ sin’ g)

But if in (84) we write ¢ sin‘ ¢ for ¢* sin® ¢, we have
. p=ay/(1 —esin? p)

4 and this value is sufficiently accurate for the compu-

tation of the parallax in all cases. If then we put
° a =1, we have

- B 8 N=
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10=N=21
p

If now in the vertical plane passing through the line ZO and
the star S we draw SB perpendicular to 0Z, and put

¢, = the zenith distance at 0 = S0Z
¢’ = the apparent zenith dist. = SAZ

the triangles OSB, ASB give

l .
A‘ =A — —
cos I’ , cos , p } (128
4 sin { = 4, sin {,

Dividing these equations by 4,, and putting

4 .
% =f, sinm= oL
they become
Joco8 T = cos’{, — sin =,
Jy8in ¥ =sgin ¢{,
from which we deduce

J.8in (& —¢,) =sin =, sin {,
Jieos (& —¢&)=1—sinn cos {,

ey _ Sinmsin{, 124
tan (¢ — ) =T, wosc, az4)

" and in series,

__, _sinxsing  sin'x ein2¢
="t L e (125)
Or, rigorously,

sin 4 = gin =, cos {,
tan (¢ —¢,) = tan 8 tan (45° 4 § 6) tan ¢, } (126)

To find z, we have
1

sin = e—=
N =4 T p4(1+ Asinxein g sin 3)
. sin =
or sin =
b p(1 + A sin = sin ¢ sin 3) azn
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But this very precise expression of r, will seldom be required:
it will generally suffice to take

/

sin #
sin Ty == ———
‘ )
J
or ® = —
P

which will be found to give the correct value of =, even for the
moon, within 0’/.2 in every case. Where this degree of accu-
racy suffices, we may employ a table containing the correction
for reducing = to w,, computed by the formula

A:=x‘-n=x(l—l)
P

Table XIIL, Vol. IL, gives this correction with the arguments =
and the geographical latitude ¢. Taking the correction from
this table, therefore, we have

r,=n 4 Ax (128)

8d. To compute the parallax in zenith distance for the point O when
the apparent zenith distance is given.

Multiplying the first equation of (128) by sin ¢’, the second by
cos ¢’, and subtracting, we find

sin (' —¢,) = -lsin ¢
At
or 8in (§ — {,) =sin =, 8in {’ 129)

If we denote the appatrent altitude by A’ and the altitude
reduced to the point O by k,, this equation becomes

sin (h, — A") = 8in =, cos A’ (1380)

ExamprLE.—In Latitude ¢ = 38° 59, given the moon’s hour
angle ¢ = 841° 1’ 36’".85, geocentric declination & = + 14° 89’
24'7.54, and the equatorial horizontal parallax = = 58’ 87/".2, to
find the apparent zenith distance and azimuth.

The geocentric zenith distance and azimuth, computed from
these data by Art. 14, are ¢ = 29° 30’, 4 = 320° 18’, which are
the values employed in our example in Art. 94. To compute



PARALLAX. 119

by the method of the present article, we first reduce the declina
tion to the point O by (122), as follows:

For o =—88°59" log4 7.8250

= =238517"2 log = 3.5462

log sin ¢ 9.7987

3=14°389'24".564 logcosd 9.9856

8, — 3= © 14 81 log(e,—3) 1.1555
8, = 14° 39’ 38".85

With this value of 8, and ¢ = 841° 1’ 86””.85, the computation
of the zenith distance and azimuth by Art. 14 gives for the
point O

' ¢, = 29°-29 47".67 A, =320° 17 45".09

and this value of A4, is precisely the same as A’ found in Art. 94,
8s.it should be, since the azimuth at the point O and at the
. observer are identical.

We find from Table XIII. az =4''.6, and hencer,= 58’ 87'".2
+ 477.6 = 58’ 41"".8; and then, by (126),

log sin =, 8.28282

log cos ¢, 9.98971

8=51'5" log sin & 8.17208

' log tan ¥ 8.17208

log tan (46° + % #) 0.00645

¢, = 29° 20’ 47".67 log tan ¢, 9.75258

r—t = 2920.08 log tan (¢'—¢,) 7.08111
U=29°59 T7".70

agreeing with the value found in Art. 94 within 07,09, If we
had computed =, by (127), the agreement would have been exact.

98. To find the parallax of a star in right ascension and declination
when its geocentric right ascension and declination are given.

The investigation of this problem is similar to that of Art. 92.
Let the star be referred by rectangular co-ordinates to three
planes passing through the centre of the earth: the first, the
plane of the equator; the second, that of the equinoctial colure;
the third, that of the solstitial colure. Let the axis of x be the
straight line drawn through the equinoctial points, positive
towards the vernal equinox; the axis of y, the intersection of
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the plane of the solstitial colure and that of the equator, positive
towards that point of the equator whose right ascension is 90°;
the axis of z, the axis of the heavens, positive towards the north.
Let

o = tho star’s geocentric right ascension,
3= “ «“ declination,
4= “ “ distance,

then the co-ordinates of the star are

x=4cosdcosa
y=4dcosdsina
2= 4sin 8

Again, let the star be referred to another system of planes
parallel to the first, the origin being the observer. The vanish-
ing circles of these planes in the celestial sphere are. still the
equator, the equinoctial colure, and the solstitial colure. Let

o/ = the star’s observed right ascension,
&= “ “ declination,
4= «  distance from the observer,

where by observed right ascension and declination we now mean
the values which differ from the geocentric values by the paral-
lax depending on the position of the observer on the surface of
the earth. The co-ordinates of the star in this system will be

o’ = 4’ cos & cos o
y = 4' cos & sin o
2 =4 sin?
Now, if
© = the sidereal time — the right ascension of the observer’s
meridian at the instant of observation,
¢' = the reduced latitude of the place of observation,
p = the radius of the earth for this latitude,

then ©, ¢’, and p are the polar co-ordinates of the observer,
entirely analogous to @, 8, and 4 of the star, so that the rectan-
gular co-ordinates of the observer, taken in the first system, are

a = p cos ¢' cos©
b =pcos ¢'8in O
¢ =psin ¢’
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and for transformation from one system to the other we have

r=z—a, y=y—0, Z2=z—c
Hence

4’ cos & 8in o’ = 4 cos 3 sina — p co8 ¢’ 8in ©

4’ o8 & cos o' = 4 cos 3 cosa — p €08 ¢’ co8 O
(131)
4’ sin & = 4 8in ¢ — p sin ¢

or, dividing by 4, and putting as before

4 . 1
f=7 8N & =—-

J cos &' sin o' = cos & sin o — p sin x cos ¢’ 8in O

J cos & €08 o’ = co8 4 co8 a — p 8in = co8 ¢’ cos ©
} (182)
fsin & =sin ¢ — p 8in = sin ¢’

From the first two of these equations we deduce

Jcos & sin (o' — a) = p 8in = co8 ¢’ 8in (o — ©O)
Jcos & cos (o' — a) = cos & — p 8in = cos ¢’ co8 (a — ©) } (138)

Multiplying the first of these by sin } (@’ — a), the second by

cos } (@’ — a), and adding the products, we find, after dividing by

cos } (@’ — a), :

p 8in x cos ¢’ cos [ (o’ + o) — O]
cos § (¢’ — a)

fecos & =cos 3 —

Put
__ tang'cos } (¢/ — a)
BT = F o — 6] ash
then we have, for determining &,
Jsin & = sin 8 — p sin = sin ¢
J cos & = cos8 & — p sin = sin ¢’ cot } (135)
whence -
Fsin (# — 8) = p sin x sin ¢/ “‘L;‘;l_“_’)
foos (¥ —3) =1 . . ¢co:(6—r) (136)
=1—peinxsing —r =
_ 4 __sin(@—yp
I=F == (s7)

The equations (138) determine, rigorously, the parallax in right
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ascension,or &’ — & ; (186) the parallax in declination, or &’ —3;
and (137) determines 4'.

99. To obtain the developments in series; put

sin = cos
m = p8in=cos ¢

cos &
then from (188) we have
, ___msin(a — ©)
tan (o' — o) = i cos (a—9) as®
whence .
—a=™ lsme ig:l: o) i m' si; :i lgal: 9) + & (189)
Putting :
ne=2Pt gin = sin ¢
< sin y
we have from (186) ,
' _ nein(@—y)
tan (0 — )=y T (140)
whence
nein(d—y) , #'sin2 (3 —y)
¥—d=—pi t —zemi ¥ (41)

100. The quantity @ — © is the hour angle of the star east of
the meridian. According to the usual practice, we shall reckon
the hour angle towards the west, and denote it by ¢ or put

t=06 —a
and then we shall write (188) and (140) as follows:

msin t

tan (s — o) =y ooe ¥

_ nsin(y —9)
t"“("""')"1_nco;(,f__a)

The rigorous compptation will be conveniently performed by
the following formulee:
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p 8in = cos ¢’ cos ¢
cos 8
tan (o — a") = tan 4 tan (45° + § ) tan ¢
__tan ¢’ cos § (a — @)
BT = s [+ 3 (o — )]
p 8in x sin ¢’ co8 (y — 9)
sin y
tan (8 — &) = tan ¢ tan (45° + § &) tan (b — 9)

qin0=mcost=

(42)

gind =ncos(y — &) =

101. Except for the moon, the first-terms of the series (139)
and (141) will suffice, and we may use the following approxi-
nations :

, pmcosg¢ sint

e—e= cos ¢
tan
tanr:cos‘:, (143)
o, _
§_ypPreing fsin(r )
sin y

If the star is on the meridian, we have {=0, and hence
y = ¢, and
J—d’:pﬂ'ﬂin(#—‘)

Since in the meridian we have { = ¢ — ¢, it is easily seen
that ¢’ — ¢ found by (108) and 3’ — ¢ found by (140) will then
be numerically equal, or the parallax in zenith distance is numeri-
cally equal to the parallax in declination when the star is on the meri-
dian.

102. To find the parallax of a star in right ascension and declination,
when its observed right ascension and declination are given.

Multiplying the first equation of (182) by sin a’, the second
by cos a’, and subtracting one product from the other, we find

p 8in z cos ¢’ 8in (0 —a")
cos ¢

gin (G —n') =

In like manner, from (185) we deduce .
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sin(&—d’):'asmzsm? sin (y — &)

sin y
‘We have here © — a’ equal to the apparent or observed hour
angle; and hence, putting
=0 —d

the computation may be made under the following form:

p 8in = cos ¢’ 8in ¢’

8in (a — o) = P
__tan ¢’ cos } (o — a")
tanr = cos [t' — ¢ (a — a')] (144)
sin(a__",)_:psinﬂ-»in ¢ sin (y — &)

sin p

In the first computation of @ — @’ we employ 4’ for 8. The
value of @ — &’ thus found is sufficiently exact for the compu-
tation of y and 8 — &’. With the computed value of 3 — &' we

_ then find ¢ and correct the computation of @ — a'.

ExamMpLE.—Suppose that on a certain day at the Greenwich
Observatory the right ascension and declination of the moon
were observed to be

o’ = T* 41= 20486
& =156°50' 27".66

when the sidereal time was
© = 11* 17= 0-.02
and the moon’s equatorial horizontal parallax was
= = 56’ 57".5
Required the geocentric right ascension and declination. :

We have for Greenwich ¢ — 51° 28’ 38"”.2, and hence (Table III.)
¢ — ¢ =11'18".6, ¢' = 51° 17" 24".6, log p = 9.9991134. The com-
putation by (144) is then as follows:
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o (in arc) = 115° 20" G".54 log p sin 7 8.218877

@ ¢ =169 15 0.30 log cos ¢' 9.796142

¢= 63 54 68 .76 log sin ¢ 9.907489

$(e—a)= 14 55 .8 (1) 7.922008

/! —3}(o—a)= 53 89 68 log cos &’ 9.988186

log sec [¢' — § (o — a)] 0.227819 App. logsin (o — a’) 7.938823

log cos } (& — o) 9.999996 Approx.a — o' = 20’ 51".6

log tan ¢’ 0.096133 a . . 7.922008

log tan y 0.323448 log cos & 9.981835

’ y = 64° 85' 68" log sin (o — a') 7.940178

y—&= 48 456 80 o—a' = 4 2067.28

log p sin 7 8.218877 a =115° 60’ 8".77

log sin ¢/ 9.802276 = T4 43" 20r.251
log sin (y — &) 9.876181
log cosec y 0.044153
log sin (6 — &) 8.030986

§— &= + 865624
é= 16°27227.90 °

108. For all bodies except the moon, the second computation
will never affect the result in a sensible degree, and we may use

the following approximations :

,__pmcos ¢ sin?

P Y Y7
tan ¢’
ta; =
ny cos ¢ (145)
P ¥ — pnsin¢'.sin(r—d’)
siny

For the sun, planets, and comets, it is frequently more conve-
nient to use the geocentric distance of the body instead of the
parallax, or, at least, to deduce the parallax from the distance,
the latter being given. This distance is always expressed in
parts of the sun’s mean distance as unity. If we put

#, = the sun’s mean cquatorial horizontal parallax,
4, = the sun’s mean distance from the earth,

we have, whatever unit is employed in expressing 4, 4,, and q,

sin z = a sin =,
A 0

&la
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whence

gin 7 = —33lin z,
and when we take 4,=1,

LI Y- =2 (146)

8in x =

According to ENCKE’s determination
To— 87.57116 log g = 0.93804

ExaupLE.—DoNATI'S comet was observed by Mr. Janes FERr-
eusoN at Washington, 1858 Oct. 18, 6* 26 21°.1 mean time,
and its observed right ascension and declination when corrected
for refraction were

o/ = 236° 48" 0".5
¥ = —T° 36 52".8

The logarithm of the comet’s distance from the earth was log 4
=9.T444. Required the geocentric place.

We have for Washington ¢ = 38° 58’ 89’*.8, whence, by Table
II1., logpcos ¢’ = 9.8917, log psin ¢’ = 9.7955. Converting the
mean into sidereal time (Art. 50), we find @ =19* 55~ 16°.98.
Hence, by (145) and (146),

© — 298° 49'.2 log tan ¢' 9.9038
o = 236 48.0 log cos t' 9.6718
v = 62 12 log tan y 0.2325
log =, 0.9880 r = 59° 39'.2
log 4 9.7444 r—¥=267 16.1
log = 11886
log pm 008 ¢’ 1.0808 log pz sin ¢’ 0.9841
log sin ¢/ 9.9460 log sin (y — &) 9.9649
log soc &  0.0038 log cosec y 0.0640
log (a — &") 1.0301 log (8 — &) 1.0130
e —a =4 10"7 ¢ —¥=+10"8

Hence, for the geocentric place of the comet,
a = 286° 48’ 11".2 8= —1T°386"42".5

104. Parallax in latitude and longitude.—Formule similar to the
above obtain for the parallax in latitude and longitude. We
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have only to substitute for © and ¢’ (which are the right ascension
and declination of the geocentric zenith) the corresponding
longitude and latitude of the geocentric zenith (which will be
found by Art. 28), and put 2 and 8 in the place of @ and 8. Thus,
if I and b are the longitude and latitude of the geocentric zenith,
the equations (1438) give for all objects except the moon.

l_l,_pﬂcosbsin(l—l)
- cos 8
tan &
r=——m:
cos (I —2)
e p= 8in b sin (y — f)
,ﬁ F= sin y

Q47)

In the same manner, the equations (181) may be made to
express the general relations between the geocentric and the
apparent longitude and latitude, and for the moon we can
employ (142), observing to substitute respectively

. for o, 4, 3, ¥, O, 9’
the quantities 2, X%, B F. I b

In all the formulse, when we choose to neglect the compression
of the earth, we have only to put ¢ =¢’ and p=1.

REFRACTION.

105. General laws of refraction.—The path of a ray of light is a
straight line so long as the ray is passing through a medium of
uniform density, or through a vacuum. But when a ray passes
obliquely from one medium into another of different density, it
is bent or refracted. The ray before it enters the second medium

"is called the incident ray; after it enters the second medium it is
called the refracted ray; and the difference between the directions
of the incident and refracted rays is called the refraction.

If a normal is drawn to the surface of the refracting medium
at the point where the incident ray meets it, the angle which the
incident ray makes with this normal is called the angle of inci-
dence, the angle which the refracted ray makes with the normal
is the angle of refraction, and the refraction is the difference of
these two angles.
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Thus, if S84, Fig. 15, is an incident ray upon the surface BB’
of a refracting medium, AC the refracted
ray, MN the normal to the surface at A,
SAM is the angle of incidence, CAN is the
angle of refraction; and if CA be produced
backwards in the direction AS’, SAS’ is the
refraction. An observer whose eye is at
any point of the line AC will receive the
ray as if it had come directly to his eye
N without refraction in the direction S’AC,
which is therefore called the apparent

direction of the ray.

Now, it is shown in Optics that this refraction takes place
according to the following general laws:

1st. When a ray of light falls upon a surface (of any form)
which separates two media of different densities, the plane which
contains the incident ray and the normal drawn to the surface
at the point of incidence contains the refracted ray also.

2d. When the ray passes from a rarer to a denser medium, it
is in general refracted towards the normal, so that the angle of
refraction is less than the angle of incidence; and when the ray
passes from a denser to a rarer medium, it is refracted from the
normal, so that the angle of refraction is greater than the angle
of incidence.

3d. Whatever may be the angle of incidence, the sine of this
angle bears a constant ratio to the sine of the corresponding
angle of refraction, so long as the densities of the two media are
constant. If a ray passes out of a vacuum into a given medium,
the number expressing this constant ratio is called the index of
refraction for that medium. This index is always an improper
fraction, being equal to the sine of the angle of incidence divided
by the sine of the angle of refraction.

4th. When the ray passes from one medium into another, the
sines of the angles of incidence and refraction are reciprocally
proportional to the indices of refraction of the two media.

Fig. 15.
M

106. . Astronomical refraction.—The rays of light from a star in
coming to the observer must pass through the atmosphere which
surrounds the earth. If the space between the star and the
upper limit of the atmosphere be regarded as a vacuum, or as
filled with 2 medium which exerts no sensible effect upon the
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direction of a ray of light, the path of the ray will be at first a
straight line; but upon entering the atmosphere its direction
will be changed. According to the second law above stated, the
new medium being the denser, the ray will be bent towards the
normal, which in this case is a line drawn from the centre of the
earth to the surface of the atmosphere at the point of incidence.

The atmosphere, however, is not of uniform density, but is
most dense near the surface of the earth, and gradually decreases
in density to its upper limit, where it is supposed to be of such
extreme tenuity that its first effect upon a ray of light may be
considered as infinitesimal. The ray is therefore continually pass-
ing from a rarer into a denser medium, and hence its direction
is continually changed, so that its path becomes a curve which
is concave towards the earth.

The last direction of the ray, or that which it has when it
reaches the eye, is that of a tangent to its' curved path at this
point; and the difference of the direction of the ray before en-
tering the atmosphere and this last direction is called the astro-
nomical refraction, or simply the refraction.

Thus, Fig. 16, the ray Se from a star, entering the atmosphere
at ¢, is bent into the curve ecd
which reaches the observer at 4 in
. the direction of the tangent S’A
drawn to the curve at 4. If CAZ
is the vertical line of the observer,
or normal at 4, by the first law of
the preceding article, the vertical
plane of the observer which con-
tains the tangent AS’ must also
contain the whole curve Ae and
the incident ray Se. Hence refrac-
tion increases the apparent altitude
of a star, but does not affect its azi-
muth. ’

The angle S’AZ is the apparent ze-
nith distance of the star. The #rue zenith distance* is strictly the
angle which a straight line drawn from the star to the point 4

Fig. 16.

* By true zenith distance we here (and so long as we are considering only the
effect of refraction) mean that which differs from the apparent zenith distance only
by the refraction.

Vou. L.—9
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makes with the vertical line. Such a line would not coincide
with the ray Se; but in consequence of the small amount of the
refraction, if the line Se be produced it will meet the vertical
line 4Z at a point so little elevated above A that the angle
which this produced line will make with the vertical will difter
very little from the true zenith distance. Thus, if the produced
line Se be supposed to meet the vertical in &/, the difference
between the zenith distances measured at &’ and at 4 is the
parallax of the star for the height Ab’, and this difference can be
appreciable only in the case of the moon. It is therefore usual
to assume Se as identical with the ray that would come to the
observer directly from the star if there were no atmosphere.

The only case in which the error of this assumption is appre-
ciable will be considered in the Chapter on Eclipses.

107. Tables of Refraction.—For the eonvenience of the reader
who may wish to avail himself of the refraction tables without
regard to the theory by which they are computed, I shall first
explain the arrangement and use of those which are given at
the end of this work. .

Since the amount of the refraction depends upon the density
of the atmosphere, and this density varies with the pressure and
the temperature, which are indicated by the barometer and the .
thermometer, the tables give the refraction for a mean state of
the atmosphere ; and when the true refraction is required, supple-
mentary tables are employed which give the correction of the
mean refraction depending upon the observed height of the
barometer and thermometer.

TaBLE I. gives the refraction when the barometer stands at
80 inches and the thermometer (Fahrenheit’s) at 50°. If we
put .

r = the refraction,

z = the apparent genith distance,

¢ = the true zenith distance,
then

C=2z+4r

Where great accuracy is not required, it suffices to take r
directly from TaBLE I. and to add it to 2. (The resulting ¢ is
that zenith distance which we have heretofore denoted by ¢’ in
the discussion of parallax.) The argument of this table is the
apparent zenith distance 2.
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TaeLe II. is BrsseL’s Refraction Table,* which is generally
regarded as the most reliable of all the tables heretofore con-
structed. In Column A of this table the refraction is regarded
as a function of the apparent zenith distance z, and the adopted
form of this function is :

' r=af4rrtan 2z

in which a varies slowly with the zenith distance, and its loga-
rithm is therefore readily taken from the table with the argu-
ment z. The exponents 4 and 2 differ sensibly from unity only
for great zenith distances, and also vary slowly; their values are
therefore readily found from the table.

The factor 8 depends upon the barometer. The actual pres
sure indicated by the barometer depends not only upon the
height of the column, but also upon its temperature. It is
therefore, put under the form

8= BT

and log B and log T are given in the supplementary tables with
the arguments ¢ height of the barometer,” and ‘height of the
attached thermometer,” respectively ; so that we have

logd=1log B+ log T

Finally, log y is given directly in the supplementary table with
the argument ¢ external thermometer.” This thermometer must
be 8o exposed as to indicate truly the temperature of the atmo-
sphere at the place of observation.

In Column B of the table the refraction is reggrded as a
function of the true zenith distance { expressed under the form

r=a'84 X tan ¢ !

and log a’, A’, and %’ are given in the table with the argument ¢;
p and y being found as before.

Column A will be used when 2 is given to find ¢ ; and Column
B, when ¢ is given to find 2.
~ Column C is intended for the computation of differential re-
fraction, or the difference of refraction corresponding to smaib

* From his 4stronomische Untersuchungen, Vol. 1.
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!

differences of zenith distance, and will be explained hereafter
(Micrometric Observations, Vol. IL).

These tables extend only to 85° of zenith distance, beyond
which no refraction table can be relied upon. There occur at
times anomalous deviations of the refraction from the tabular
value at all zenith distances; and these are most sensible at
great zenith distances. Fortunately, almost all valuable astrono-
mical observations can be made at zenith distances less than
85°, and indeed less than 80°; and within this last limit we
are justified by experience in placing the greatest reliance in
BesseL's Table. In an extreme case, where an observation is
made within 5° of the horizon, we can compute an approximate
value of the refraction by the aid of the following supplement-
ary table, which is based upon actual observations made by
ARGELANDER.*

App. zen.
erce. log Refract. 4 A

86° ¢/ 2.76687 1.0127 1.1229
80 2.80590 1.0147 1.1408
86 0 2.84444 1.0172 1.1624
80 2.88555 1.0204 1.1888
87 0 2.93174 1.0244 1.2215
80 2.98269 1.0298 1.2624
8 0 3.03686 1.0368 1.3141
80 3.09723 1.0465 1.8797
8 0 8.16572 1.0593 1.4653
80 3.24142 1.0780 1.5789

If we call R the refraction whose logarithm is given in this
table, the refraction for a given state of the air will be found by

the formuld
! r— _Rﬂlrk

ExanpLE 1.—Given the apparent zenith distance z = T78°
80’ 0”’, Barom. 29.770 inches, Attached Therm. — 0°.4 F., Ex-
ternal Therm. — 2°.0 F.

We find from Table IL, Col. A, for 78° 30’,

log o = 1.74981 A = 1.0032 A =1.0328

and from the tables for barometer and thermometer,

# Tabulm Regiomontan, p. 539.
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log B = -+ 0.00258 log r = + 0.04545
log T= -+ 0.00127
log 3 = + 0.00880

Hence the refraction is computed as follows:

loga = 1.74981

A log g = log 84 = + 0.00881
Alog y = log y* = + 0.04694
log tanz =  0.691564

r=23810"58 =5'10".58 logr= 249210

The true zenith distance is, therefore, 78° 80’ 0" 4 5’ 10/.58 =
78° 85" 10'7.58.

ExaMPLE 2.—Given the true zenith distance { = 78° 85’
1077.58, Barom. 29.770 inches, Attached Therm. — 0°4 F.,

External Therm. — 2°.0 F.
We find from Table II., Col. B, for 78° 85’ 10",

log o/ = 1.74680 A’ = 0.9967 A = 1.0261
and from the tables for barometer and thermometer, as before,

log B = + 0.00253 log y = + 0.04545
log T'= + 0.00127
log # = + 0.00380

The refraction is then computed as follows:

logd =  1.74680

A'log 8 = log 34 = + 0.00379

A log y = log y¥ = + 0.04663

log tan { =  0.69489

r = 810”.563" = 5’ 10”.53 logr= 249211

and the apparent zenith distance is therefore 78° 80,

ExaMPLE 8.—Given z = 87° 30/, barometer and thermometer

as in the preceding examples.
By the supplementary table above given,

- log R — 298269
A =10208 log8 =+ 0.00380 log 34 = + 0.00391
1=1262¢ logy =+ 004545 logy* = + 0.05788

r—= 18'26"6 logr = 8.04398
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It is important in all cases where great precision is required
that the barometer and thermometer be carefully verified, to see
that they give true indications. The zero points of thermo-
meters are liable to change after a certain time, and inequalities
in the bore of the tube are not uncommon. A special investi-
gation of every thermometer is, therefore, necessary before it is
applied in any delicate research. If the capillarity of the baro-
meter has not been allowed for in adjusting the scale, it must be
taken into account by the observer in each reading.

We may obtain the true refraction for any state of the air
within 1”7 or 2, very expeditiously, by taking the mean refrac-
tion from Table I. and correcting it by Table XIV. A jand Table
XIV.B. The mode of using this table is obvious from its
arrangement. Thus, in Example 1 we find ‘

from Table I, Mean refr. = 4’ 38"9
«XIV. A, for Barom. 29.77, Corr. = — 2.
«XIV.B, ¢ Therm. —2° « =4 382.

True refr. = 5' 9”.

which agrees with Besser’s value within 1’7.5. For greater
accuracy, the height of the barometer should be reduced to the
temperature 82° F., which is the standard assumed in these
tables. The corrected height of the barometer in this example
is 29.85, and the corresponding correction of the refraction
would then be — 1”; consequently the true refraction would be
&’ 10”’, which is only 0’".5 in error.

These tables furnish good approximations even at great
zenith distances. Thus, we find by them, in Example 8, r =
18’ 24/,

108. INVESTIGATION OF THE REFRACTION FORMULA.—In this
investigation we may, without sensible error, consider the earth
as a sphere, and the atmosphere as composed of an infinite
number of concentric spherical strata, whose common centre is
the centre of the earth, each of which is of uniform density, and
within which the path of a ray of light is a straight line. Let C,
Fig. 16, be the centre of the earth, 4 a point of observation on
the surface; CAZ the vertical line; Aa’, a’¥’, b'c’, &e. the vertical
thicknesses of the concentric strata; Se a ray of light from a star
S, meeting the atmosphere at the point e, and successively re-
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fracted in the directions ed, de, &c. to the point A. The last
direction of the ray is a4, which, when the number of strata is
supposed to be infinite, becomes a tangent to the curve ecA at A4,
and consequently AaS’ is the apparent direction of the star. Let
the normals Ce, (d, &e. be drawn to the successive strata. The
angle Sef is the first angle of incidence, the angle Ced the first
angle of refraction. At any intermediate point between e and A4,
as ¢, we have Ced, the supplement of the angle of incidence, and
Ceb, the angle of refraction.
If now for any point, as ¢, in the path of the ray, we put

i = the angle of incidence,

J = the angle of refraction, _

p# = the index of refraction for the stratum above ¢,
Y= “ “ “  below ¢,

then, Art. 105, o #’
gin {
ey (148)
If we put
g = the normal Ce to tho upper of the two strata,
q’ —_— [ Cb “ lower &« &«
¥ = the angle of incidence in the lower stratum,
= 180° — Cbe,
the rectilinear triangle Cbe gives
. sin¥ ¢ .
sinf ¢

which, with the above proportion, gives
g p8ini =gy sin ¢

an equation which shows that the product of.the normal to any
stratum by its index of refraction and the sine of the angle of
incidence is the same for any two consecutive strata; that is, it
is a constant product for all the strata. If then we put

z = the apparent zenith distance,
a = the normal at the observer, or radius of the earth,
#,= the index of refraction of the air at the observer,

we have, since z is the angle of incidence at the observer,

gn8in i = ap, sin z ) (149
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in which the second member is constant for the same values of
z and g,
Now, we have from (148)

’
tani(i—f)=5"Ltani(i +7)
K +n
But { — f is the refraction of the ray in passing from one stratum
into the next; and supposing, as we do, that the densities of the
strata vary by infinitesimal increments, i — f is the differential of
the refraction; and we may, therefore, write  dr for tan } (i — 1)
and dp for p' — u; congequently, also, 2u for y’ + p, and tan i for
tan } (i +f): hence we have

dr = ‘%‘ tan i (150

which is the differential equation of the refraction.

But, as both x and ¢ are variable, we cannot integrate this
equation unless we can express i as a function of u. This
we could do by means of (149) if the relation between ¢ and
¢ were given, that is, if the law of the decrease of density of the
air for increasing heights above the surface of the earth were
known. This, however, is unknown, and we are obliged to
make an hypothesis respecting this law, and ultimately to test
the validity of the hypothesis by comparing the refractions com-
puted by the resulting formula with those obtained by direct
observation. I shall first consider the hypothesis of Bouaukr,
both on account of the simplicity of the resulting formula and
of its historical interest.*

109. First hypothesis.—Let it be assumed that the law of de-
crease of density is such that some constant power of the refrac-
tion index p is reciprocally proportional to the normal ¢, an
hypothesis expressed by the equation

# T shall consider but two hypotheses: the first, because it leads to the simple
formula of BrADLEY, which, though imperfect, is often useful as an approximate
expression of the refraction; the second, because the tables formed from it by
BesseL have thus far appeared to be the most correct and in greatest accordance with
observation, although on theoretical grounds even the bypothesis of BesseL is open
to objection. For a review of the labors of astronomers and physicists upon this
difficult subject, from the earliest times to the present, see Die Astronomische Strakien~
brechung in ihrer historischen Entwickelung dargestellt, von Dx. C. Bruuns. Leipzig,
1861.
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G-
which with (149) gives
sin i = (I‘i )‘ sin 2 ) (152)
or, logarithmically,

log sin it =n log u + log(s::.z)

where the last term is constant. By differentiation, therefore,

i
tani &
which with (150) gives
di
dr = —
n
and, integrating, .
r= % +C

To determine the constant C, the integral is to be taken from
the upper limit of the atmosphere to the surface of the earth.
At the upper limit r=0; and if we put ¢ = the value of ¢ at that
limit, we have

L

At the lower limit the value of r is the whole atmospheric
refraction, and i =2: hence '

(153)

To find 3, we have, by putting z =1 in (152), since the density
of the air at the upper limit is to be taken as zero,

sin 8 — 202 (154)
I‘n‘

Having then found g, at the surface of the earth and suitably
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determined n, we find # by (154), and then r by (158). The two
equations may be expressed in a single formula thus:

r— l[z — sin—'("i“)] (155)
n 7
which is known as SiMpsoN’s formula, but is in faet equivalent
to the formula first given by Bouauer in 1729 in a memoir on
refraction which gained the prize of the French Academy.
From (154) we find
sinz —sind _ ur—1
sinz 4 sind pr41

whence
tan 3Gz — ) =" "Lian § (2 4 8)
mt 1
and, reducing by (153),
w1 _r
tan2r_ﬂ‘.+ltan(z 2r) (156)

which is equivalent to BRADLEY’s formula. If we are content to
represent the refraction approximately by our formula, we can
write this in the form

r =g tan (2 — fr)

and we shall find, with BRADLEY, that for a mean state of the air
corresponding to the barometer 29.6 and thermometer 50° Fahr.
we can express the observed refractions, very nearly, by taking

g=>57"086, f=3.

110. But, as we wish our formula to represent, if possible, the
actual constitution of the atmosphere, let us endeavor to test the
hypothesis upon which it rests. In order to correspond with the
real state of nature, it is necessary that the constitution of the atmo-
sphere which the hypothesis involves should not only agree with the
observed refraction, but also with the height of the barometer, and with
the observed diminution of heat as the altitude of the observer above the
earth’s surface increases.

The discussion of the formula will be more simplg if we sub-
stitute the density of the air in the place of the index of refrac-
tion. Put

3, = the density of the air at the surface of the earth,
¢ — the donsity of the air at any point above the surface.
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The relation between & and g, according to Optics, is expressed by
w—1=4k (157)

in which 4% is a constant determined by experiment. Accord-
ing to the experiments of Bior,

4k = 0.000588768

Since £ is so small that its square will be inappreciable, we may
take

p=Q0+4k)} =14 242 (158)
and, consequently, _
By = 1 + 2’“’0
g =1+ 2nks,

and (156) becomes, still neglecting &,
tan % r = nks, tan ( z— % r) (159)

If we denote the horizontal refraction, or that for z = 90°, by r,,
this formula gives

tan % r, = nks, cot%r,

or tan %r, = y/nk3,
and, putting the small arc % r, for its tangent,
N L (160)

We can find 3, from the observed state of the barometer and
thermometer at the surface of the earth, so that in order to com-
pute the horizontal refraction by this formula, for the purpose
of comparing it with the observed horizontal refraction, we have
only to determine the value of n.
Let
x = the height of any assumed point in the atmosphere above
the surface of the earth,
3, p, g — the density and pressure of the air, and the force of grav-
ity, respectively, at that point,
3, Py g, = the same quantities at the earth’s surface.
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At an elevation greater than x by an infinitesimal distance dz,
the pressure p is diminished by dp. The weight of a column of
air whose height is dxr, density 8, and gravity g, is expressed by
gddz, and this is equal to the decrement of the pressure: hence

the equation

dp = — gadx
By the law of gravity, we have
a’
=ty
and hence
dzr
—_— 2
= g,ad d (a i x)

Now, in the hypothesis under consideration, we have

Fm (2] (e

144k,

or, neglecting the square of k,

a
Tie=1"te+ Dk -2
which gives
if—2—)=2 3
(a+x) (n + 1kd
Hence
dp =2ga(n + 1)kdds
Integrating,

p=ga(n+ 1)ks

no constant being necessary, since p and & vanish together.

To compare this with the observed pressure p,, let

(161)

(162)

I = the height of a column of air of the density 4, which acted
upon by the gravity g, will be in equilibrium with the pres-

sure p,;

in other words, let [ be the height of a homogeneous atmosphere
of the density 3, which would exert the pressure p, Then, by

this definition,
Py = 951

(163)
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which with (162) gives
£=(n+l)%.l% (184)
(] (]

At the surface of the earth, where p becomes p, and ¢ becomes
d,, this equation gives

1=(n+1) %.ka, (165)

whence

ﬂlcn-

n—= 1

ko,

and this reduces the expression of the horizontal refraction (160) to
2k3,

T VE=m]

Taking as the unit of density the value of 8, which corre.

sponds to the barometer 0.76 metres and thermometer 0° C.,
we have, according to Bror,

4ks, = 0.000588768

To (166)

The constant ! for this state of the air is the height of a homo-
geneous atmosphere which would produce the pressure 0.76 of
the barometer when the temperature is 0° C.; and this height is
to that of the barometric column as the density of mercury is to
that of the air. According to ReenauLt, for Barom. 0".76 and
Therm. 0° C., mercury is 10517.8 times as heavy as air: hence

we have
1 =076 %X 10517.3 = 7993=.15

For a we shall here use the mean radius of the earth, since we
have supposed the earth to be spherical, or

a = 6366738 metres
which gives

é = 0.00125545 Caen

Substituting these values in (166), we find, after dividing by
8in 1’/ to reduce to seconds,
r, = 1824" — 80’ 24"

But, according to ARGELANDER’S observations, we should have
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for Barom. 0=.76 and Therm. 0° C., r,=37’ 31’/; and the hypothesis
therefore gives the horizontal refraction too small by more than 7.

111. The hypothesis can be tested further by examining
whether it represents the law of decreasing temperatures for
increasing heights in the atmosphere. In the first place, we
observe that in this hypothesis the densities of the strata of the atmo-
sphere decrease in arithmetical progression when the altitudes increase
in arithmetical progression. For, since x is very small in compari-
son with a, we have very nearly

a _,_=
a4z a
and hence
z )
T2+ ka,,(l _3:)
or, by (165), ' :

x=2l(l—-::) (168)

which shows that equal increments of z correspond to equal
decrements of 8.

This last equation also gives for the upper limit of the atmo-
sphere, where 8 = 0, x = 2{; that is, in this hypothesis the height of
the atmosphere is double that of a homogencous atmosphere of the same
pressure.

Again, we have, by (164), (165), and (168),

?ﬂ'=:_=1—_ (169)

The function % expresses the law of heat of the strata of the

0
atmosphere. For let 7, be the temperature at the surface of the
earth, ¢ the temperature at the height z. If the temperature
were 7, in both cases, we should have

p_2
p (] 60
but when the temperature is changed from 7, to = the density is
diminished in the ratio 1+ s (r —r,): 1, ¢ being a constant which

(170)
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is known from experiment; so that the true relation between
the pressures and densities at different temperatures is expressed
by the known formula

P s e(r —
Ot —m)

whence

%=1+¢(f_f,) Qamny

which combined with (169) gives
r=2¢(ry,— 1)

and hence equal increments of x correspond to equal decrements
of r. Hence, in this hypothesis, the heat of the strata of the atmo-
sphere decreases as their densily in arithmetical progression. The
value of ¢, according to RupBERG and REGNAULT, is very nearly

-2%. Hence we must ascend to a height -2%
order to experience a decrease of temperature of 1° C. But,
according to the observations of Gay Lussac in his celebrated
balloon ascension at Paris (in the year 1804), the decrease of
temperature was 40°.25 C. for a height of 6980 metres, or 1° C.
for 178 metres, so that in the hypothesis under consideration
the height is altogether too small, or the decrease of temperature
is too rapid. This hypothesis, therefore, is not sustained either
by the observed refraction or by the observed law of the decrease
of temperature.

= 58.6 metres, in

112. Second hypothesis.—~Before proposing a mew hypothesis,
let us determine the relation between the height and the density
of the air at that height, when the atmosphere is assumed to be
throughout of the same temperature, in which case we should
have the condition (170). Resuming the differential equation
(161),

dp — g.add “)
p=gad( 2

put
a

a+x

=1—8
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in which s is a new variable very nearly proportional to . We
then have

dp = — g,adds

which with the supposition (170) gives »
dp _ _ g.bads
} 2 P

Integrating,
logp =— %’3@ +0C

in which the logarithm is Napierian. The constant being
determined so that p becomes p, when s = 0, we have -

lng = C ' -
and therefore ’
lo, £ = — g'-;‘. = — a_s
gPo Do as 4

where [ has the value (163). Hence, ¢ being the Napierian base,

? L.

E = 8_. =e (172)
which is the expression of the law of decreasing densities upon
the supposition of & uniform temperature. In our first hypo-
thesis the temperatures decrease, but nevertheless too rapidly.
We must, then, frame an hypothesis between that and the hypothesis of
a uniform temperature.

Now, in our first hypothesis we have by (169), within" terms
involving the second and higher powers of s,

Pl __y_ as
X 21

and in the hypothesis of a uniform femperature,

Ph_y
2%

The arithmetical mean between these would be

% as

=1--=

X R v
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but, as we have no reason for assuming exactly the arithmetical
mean, BEssEL proposes to take

. e;.I = +3l3) (178)
h being a new constant o be determined so as to satisfy the observed
refractions. This equation, which we shall adopt as our second
hypothesis, expresses the assumed law of decreasing tempe-
ratures, since, by (171), it amounts to assuming

»I18

l14e(r—1)=¢ 174)
and it follows that in this hypothesis the temperatures will not
decrease in arithmetical progression with increasing heights,
though they will do so very nearly for the smaller values of s,
* that is, near the earth’s surface.

Now, combining the supposition (178) with the equation

dp = — gadds
we have

:d—p= goaoachds———ehds
p 2 l

Integrating and determining the constant so that for s = 0, p
becomes p,, we have

a
P =e % (eh_'l)
y

which with (173) gives*
8=8.c—7"(37—1)+% ’

Inasmuch as the law of the densities thus expressed is still
hypothetical, we may simplify the exponent of e. For if A is
much greater than ! (as is afterwards shown), we may in this ex-

as . .
ponent put e’ —1 =%8 and we shall have as the expression

of our hypothesis

—a
d=2¢e Tt

|8
|
i

=24y h:' ‘: (175)‘

# Besszi. Fundamenta Astronomis, p. 28.
Vor. L.—10
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By comparing this with (172), we see that this new hypothesis
differs from that of a uniform temperature by the correction :—'
appl-led to the exponent of e.
Putting, for brevity,
h—1

a
p==="3 (176)

we have

=24, c-" (17)

in which B is constant. This expression of the density is to be
introduced into the differential equation of the refraction (150).
Now, by (149), in which ¢ = a + z, we have

.. ap, 8inz 1— sin
fn 3 = Ho —( 8)[1. z

@+2n »
whence
i Wi A—sns
Y (1 — sin%) \/ [:_:_.: — (1 —s) sin’z]
(1—3)sinz

=\/ [‘”’" —(1—5 )+ @s— o s z].

From the equatwn £#=1+ 4k we deduce

de _ 2kds
a1 4 4k

and if we¢ introduce as'a constant the quantity

249,
=14, a8y

(which for Barom. 0~.76 and Therm. 0° C. is a = 0.000284211)

We might neglect the-square of k, and consequently, also, that of
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a, with hardly..appreoia.ble error, and then this expression would

become simply @ ?, but for greater accuracy we can retain the
. Y% U

denominator, employing its mean value, as it varies within very
narrow limits. For its greatest value, when ¢ =4, is=1, -
and its least value, when ¢ =0, is = 1 — 2a, and the mean
between these values is 1 — @. Hence we shall take

__o'd'ﬂ

T 1—a ;3:

du
In

In the denominator of the value of tan ¢ we have also to sub-
stitute

PO 1 + 4ko,

# g l+4kd__,2;(1_%)., :
W

Therefore, substituting in (150), we have

asinz (1 —3) :—J
dr = 7 0 —1
@A —a)[cos* 2 —2¢(l - 3;)-1- (28 — 8" sin® z]
or) By (177),
ar —afsinz (1 —38) e Pds

T (— o) [costz —2a (1 — e~ Py + (24— &) smiZ] b

In the integration of this equation we may change the sign of
the: second member, since ounr’ object iz only to: obtain: the
numerical value of r. It is dpparent that if we put I for F— &
in the numerator of this expression, and also neglect the térni
#sin?z in the denominator, the error will be almost or quite
insensible ; but, not to reject terms without examination, let us
develop the expression into series. For this purpose, put tha
radical in the denominator under the form /% — #smiz,in-
which ,

y=[cos*z — % (1 — e~ P) 4 25 sin” z]*
Then .

I —¢ __ll—s(l_s’sin'i - 3
@r—ssintz)t Ty ¥ )

1—s8/, s'grin?z
= 1 3
. ( + 55 +&c)
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Hence, restoring the value of y, we have

_ a8 8in z e~ Pds
"~ (1 —o)[cos’z—2a (1 —e~P) 4 255int 2]}

afsin ze~*'sds [cos® 2 —- 2a (1 — e—#) 4 § s 8in’ 2]
(1 —a)[cos'z — 20 (1 — e—P) + 2ssin*z]}
—&. . . . . . .. ..o

‘We shall hereafter show that the second term of this develop-
ment is insensible.  Confining ourselves for the present to the
first term, let us, after the method of LAPLACE, introduce the new
variable 8’ such that

sin' z
then this term takes the form

of sin ze—P'ds

dr = (1 — a) [cos*z + 2¢' sin® 2]}

(181)

in which we have yet to reduce the numerator to a function of
the new variable 8’. Now, by Lagrange’s Theorem,* when

% See Pxizor's Curves and Functions, Vol. I. Art. 181. For the convenience of
the reader, however, I add the following demonstration of this theorem. It is pro-
posed to develop the function u =/fy in & series of asoending powers of z, zand y
being connected by the equation

y==t-+z¢y
and the functions fand ¢ being given. If from this equation y could be found as an

explicit function of z and substituted in the equation ¥ = fy, the development could
be effected at once by Maclaurin’s Theorem, according to which we should have

. 1
%=t + D + DMy 1 .o+ DI v.;—zi'—+&o
whero gy D%y, &0, denote the values of « and its successive derivatives when z = 0.
It is proposed to find the values of the derivatives without recourse to the elimination
of y, as this elimination is often impracticable. For brevity, put ¥ = ¢y; then the
derivatives of
y==t+4+2¥

relatively to z and ¢ are
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8=2¢4 aps
we have

fo=1e + -‘;— [6. D¢ ] + 5 D [(9).Df¢ ]

123

in which f and ¢ denote 9;ny functions whatever, and D, I?, &c.
the successive derivatives of the functions to which they are
prefixed. Hence, by putting

1—e™*
—e—B¢ —
s=e¢e =
7 pe sin? 2
this theorem gives
D,y =Y +2D,¥D,y Dy=1+zD,¥D,y
whenoce, eliminating z, '
D,y=YD,y
Multiplying this by Dy, it gives
D,u= YDy (a)

The derivative of this equation relatively to ¢ is
D,[D,u] = D,[YD,u].

This is a general theorem, whatever function  is of y, and consequently, also, what-
ever function D,u is of y. We may then substitute in it the function ¥*D,u for D,u,
and we shall have

D [Y*Du] = D,[Y*+1D,u] (%)

Now, the successive derivatives of (a) relatively to z are, by the suocessive appli-
cation of (5), making 8 =1, 2, 8, &o.,

D3u=D,[¥Dy]. = D,[VD,s]
D-u—D-,[Yw u] = D[ 7*D,u)

D u_D" I[Y'Du]
But when z = 0, we have y = ¢, ¥ = ¢, and hence
Uy =1, D,u',,=¢¢.Dﬂ, eer Dpuy= Dr—1[(gt)* D]

where the subseript letter of the D is omitted in the second members as unnecessary,
since ¢ is now the only variable. These values substituted in Maclaurin’s Theorem

give Lagrange’s Theorem :

M=A+9.0ft FHD[0. DAY, + .. + D= '[(f‘)“'”f']—l.zi..."'“
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e—PBt — e—Bs _ si‘:'gz [1 — ,—M'] e— B¢

. :
- 1.2“35;«"; D[~ emPye =]
al B

T 1.2.8sin'z

DA —e—bype—p]

— G'ﬁ -1 _ — B’ _”I
'1.2.3...nsi'n"zD. (@—etye ]

— & (182)
" But we have in the numerator of (181)
Be P ds = —de P

and hence, differentiating (182) and substituting the result in
(181), we find

afisin zds

dr=
(1 —a) [cos* z 4 24 sin 2]¢

{e —M'+ ﬂ; . D [(l_c—ﬂt’ e—ﬁc']

G’
—_—e—br —ps
+l.2sin‘z'D.[(l e~ ye ]
o® _.—". g
t 123 megmg D LA—e7H ]
+&e.} (188

To effect the differentiations expressed in the several terms of
this series, we take the general expression

A—e P e P =(—e™? L Ire—p"
— i(c—(n+1)pc'_ ne-npc'+ .(';_21) e—(a—l)pc'_&c.)
whers the upper sign is to be used when n is even, and the lower

sign when n is odd. Differentiating this n times successively,
we have

s IS (RS
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by means of which, making n=1.2.8... successively, we
reduce (183) to the following form:

dr — af 8in 2 ds’ {e‘"’
Pk

of ( 2e—2B8__ —po’)
(1 —a)[cos z 4 2 ¢ sin?

gin? 2

+5 2“51:1‘ (8re—%¢ —20.2e=28 f o—F")

o? $
} 3e—4Bs ___ g8 gpo—3B¢ } 98 3 e—3Bs __o—BY
1.2. }39111‘2(4e ¢ 3e ¢ )

+ &e. } ) (184):

We have now to integrate the terms of this series, after having
multiplied each by the factor without the brackets. The inte-
grals are to be taken from the surface of the earth, where s =0,
to the upper limit of the atmosphere; that is, ¢ being the nor-
mal to any stratum (Art. 108), they are to be taken between the
limits ¢ = a and ¢ = a + H, H being the hmght of the atmo-
sphere. Now, this height is not known ; but since at the upper
limit the density is zero and beyond thls limit the ray suffers
no refraction to infinity, we can without error take the integrals
between the limits ¢ =a and ¢ =0, ie. between 8 =0 and
s=1. But we may make the upper limit of s also equal to in-

finity. For, by (176), 8 will not differ greatly from ‘-; and conse-

quently will be a very large ‘number, nearly equal to 800, as we

find from (167); hence for s=1 we have in (172) 8 = (2—71"5—3;

which will be sensibly equal to zero, and eonsequently the same
as we should find by taking s = . Ilence the integrals may
. be taken between the limits s =0 and 8 = o ; consequently,

- also, according to (180), between the limits ¥ =0 and 8’ = .
Now, as every term of the series will be of the form

Bsinzdse—nAs' pdde—nps
[cos*z + 2 &'sint 2z}t [cotrz 4 257}

(185)
multiplied by constants, we have only to integrate this general
form. Let ¢ be a new variable, such that :

ootz + 28 = .2-.; (186)
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then (185) becomes
\’ dte_ coHts—et

the integral of which is to be taken from ¢ =

225 cotz="T (187)

to t = o, which are the limits given by (186) for s/ =0 and
8’ =o. If, therefore, we denote by 4 (n) a function such that

]
S aemim et ey

or
— ot T gee—tt ,
y(n)=e fr dte _ (188)
the integral of (185) will become
©  Ads’ sinze™"P¥ %5 (n) 189
j; [cos? 2428’ sin? z]* (189)

Bubstituting this value in (184), making successively n=1,2 8,
&c., we find the following expression of the refraction:

2w

r=

m, [24@) — 4]
+ o i@ -t 240 ++ )]

+ o (@ -3t sy ® + 2L 81 @4

+ae. ) 90)
Which, since we have in general

x x? x*
I—T"'Tz_l.z.s"'

e =e""
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can also be written as follows :*

e 4 (1)
2ap
+ 2 2 e
*yV'28 i ,
8 alft ep 191
"TISCN Tdee O) s
4‘ Eoﬂa __Sap
+1.2.3 sin® 2 e +(4)
+ &o.

118. The only remaining difficulty is to determine the func-
tion 4(n), (188). In the case of the horizontal refraction, where
cot z = 0 and therefore also 7'= 0, this function becomes
independent of (n), and reduces to the well-known integralt

S °"dte-“=l/2_” (192)
[

# LAPLAOR, Mécanique Céleste, Vol. IV. p. 188 (Bowpiton’s Translation); where,
however,f‘ stands in the place of the more general symbol 3 here employed. This

form of the refraction is due to Kraup, Analyse des réfractions astronomigques et ter-
restres, Strasbourg, 1799.
+ This useful definite integral may be readily obtained as follows. Put k =

j; ® dte—tt, Then, since the definite integral is independent of the variable, we

Q0
also have & =j; doe™ "%, and, multiplying these expressions together,

® ® ® ro
k= dt e dve—"® — dt dp e—(tt + 09)
S e, 5,
the order of integration being arbitrary. Let '
v =1tu; whenoe do =1t du

(for in integrating, regarding v as variable, ¢ is regarded as oonstant) : thea we have
B Ta @ u—earm="uf"a. w-2a+w
ovo [ )

® 1
=f° e = e et 0=7

whence

® Vv,
— —tt r
k_.j; dee—tt Y
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where 7 = 8.1415926.... The expression for the horizontal
refraction is therefore found at once by putting }y/x for ¢ (n)
in every term of (191), and sin z = 1, namely:

e-—-ﬂ

+2tage™f
t
8 —8a
fo= la < % + g Ve Bep (193)

a’ps et

2.3
\+ &e.

For amall walues .of 7, that is, for great zenith distances, we
may obtain the value of the integral in (188) by a series of
ascending powers of 7. We have

f:dte-“=j;°dte"“—j;]dte‘“ (199)

The first integral of the second member is given by (192). The
seeond is

r T t‘ t‘
-ttt ___ ¢ - 3
J;d“’ —J;d‘(l P+ 1z 1.2.3'””)

1 7 1
—_—— e ————— .~ } &o. 195
=T +1 2 6 1.2.8 7 + (%

Another development for the same case is obtained by the suc-
cessive application of the method of integration by parts, as
follows :*

fdte‘“ =te ¥ 4 2ﬁ’dte"‘“

2
=te "4 -g- e~ 4 %ft‘dtc—“

P

* By the formulaﬁdy = zy.—fydz, making always z = e—*, and dy succes’
sively = dt, t2d, t4dt, &o.
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whence, by introducing the limits,

—t__,— 2T (2T’) (ZTI)
fd“ e "T(l"' 55 135, 7+&°) (196)

As the denominators increase, these series finally become con-
vergent for all values of 7'; but they are convenient only for
small values.

For the greater values of T, a development according to the
descending powers may be obtained, also by the method of
integration by parts, as follows:* We have

1 a _,
—tt -t —tt
fdtl =—-——2t¢ —43 —t'c

—__l_ -t —tt 1. 3 _j‘_t_ -t
=Tut tweT TR

Hence

= o_y_e=( 1 1.8 1.85
frd” "zT{1 st ary @y T

+1.3.5...(2n—1)} 1.8.5..@nt D)= dt _y

(2 Tl)n 2n+1 p tints (197)

The sum of a numbper of comseeutive terms of this series is
alternately greater and less than the value of the integral. But
since the factors of the numerators increase, the series will at
last become divergent for any value of 7. Nevertheless, if we
stop at any term, the sum of all the remaining terms will be less than
this term; for if we take the sum of all the terms in the brackets,
the sum of the remaining terms is

~1.8.5...Cn+ 1> dt _,
-+ 2.+; r t’u-l-lc

*Bytheformul.fz dy =zy — [y dz, makung always dy = tdt ¢~ *, and z

sucoessively _1. 3 t" &o.
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The integral in this expression is evidently less than the product
of the integral

f~ at 1
r U3%+2 _(2n+1)T"'+‘

multiplied by the greatest valne of e—¢f between the limits 7"and
o, and this greatest value is e=77. llence the above remainder
is always numerically less than

1.8.5....2n—1) —or
2u+l T!I'l'l ¢

F

which expreseion is nothing more than. the last term of the series
(when multiplied by the factor without the brackets), taken with
a contrary sign. Ilence, if we do not continue the summation
until the terms begin to increase, but stop at some sufliciently
small term, the error of the result will always be less than this
term.

Finally, the integral may be developed in the form of a con-
tinued fraction, as was shown by LapracE. Putting for brevity

1 1, 1.8 1.3.5
Wy =1y,= 21‘( ~smtararp T Y ) (198)

and denoting the successive derivatives of u, relatively to T by
Uy, Uy, &c., we have first

1.8 1.8.5
h=—om

ery ery T {9

or
w, =2Tu, — 1 ' (200)

Differentiating this equation, successively, we have

u, = 2Tu, + 24,
u, = 2Tu, + 4y,
u, = 2Tu, 4 6y,
&e.
or, in general,
U1 = 2Tu 4 2nus_y

n having any value in the series 1.2.8.4... &e.
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Hence we derive

Us 2n
U1 o “:‘:l
or, putting _ 1
k=om (201)
t
Un—1 1—(’-‘)* Un 41
2 us
By (200) we have ; -
Uy = "
2T-—u—:
or
8T, = — 208
0 _1 _ E * ul ( )
-6 &

But from (202), by making n successively 1, 2, 8, &c., we have

2(’5‘)* “ 2.2(%‘)*

;‘“_:=.—.1 NN “n——l NS b
- (2) u, - (2) u,
which successively substituted in (208) give ‘
2Ty, = —l—l-‘
1+ 2k
1+
8k
- 14
143%
1+ &o. (204)

This can be employed for all values of 7, but when & exceeds }
it will be more convenient to employ (195) or (196).
The successive approximating fractions of (204) are

1 1 14 2k 1+ 5k 14 9%+ 8k

1 1354 148 146ktsk T+ 10k 4 10 %

and, in general, denoting the n* approximating fraction by Z—',
n
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Gy + (n — 1) kay__2
T bn_1 4 (n—1) kby_3

i
ba

By the preceding methods, then, the function +{n) can be
computed for any value of 7. A table containing the logarithm
of this function for all values of 7" from 0 to 10, is given by
BesseL (Fundamenta Astronomice, pp. 86, 87), being an extension
of that first constructed by Kramp. By the aid of this table the
computation of the refraction is greatly facilitated.

114. Let us now examine the second term of (179.) This term
will have its greatest value in the horizontal refraction, when
2=90°, in which case it reduces to

afle™ P sds [38—2& a-— e"“‘)]
(1—a)[25—2 1 —o~m]}

Moreover, the most sensible part of the integral corresponds to
smail values of s, and therefore, since @ is also very small, we
may put 2& (1 —e—P*)=2apgs. The integral thus becomes

. Gﬁ(3——4¢/§) “*d —Be
2?(1—.;)(1—;,9)*1; e

Now we have, by integrating by parts,

' 1,—a
fs* dse—F = — 2 ; +% s—tage=r

j;“s* dse— P — -;Ej;“s‘} dse—F

Putting fs == 23, this becomes, by (192),

and hence

T 1 jr
— d -—0 —_— — -
gde ° 28 \7
Hence the term becomes

___s(83—4ap) \/E
8(1—a)(1— aﬁ)i 28
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Taking BesseL’'s value of A = 116865.8 toises* = 227775.7
metres, and the value of ! =7T993.15 metres (p. 141), we tind by
(176) B ="T768.5T7. Substituting this and & = 0.000294211 (p. 146),
the value of the above expression, reduced to seconds of arc by
dividing by sin 17, is found to be only 0/".72, which in the hori-
zontal refraction is insignificant. This term, therefore, can be
neglected (and consequently also all the subsequent terms), and
the formula (191) may be regarded as the rigorous expression of
the refraction.

115. In order to compute the refraction by (191), it only re-
mains to determine the constants @ and B. The constant @
might be found from (178) by employing the value of k deter-
mined by Bror by direct experiment upon the refractive power
of atmospheric air, but in order that the formula may represent
a8 nearly as possible the observed refractions, BEssEL preferred
to determine both a and 8 from observations.t

Now, « depends upon the density of the air' at the place of
observation, and is, therefore, a function of the pressure and
temperature; and 3, which involves /, also depends upon the ther-
mometer, since by the definition of ! it must vary with the tem-
perature. The constants must, then, be determined for some
assumed normal state of the air, and we must have the means
of deducing their values for any other given state. Let

P, = the assumed normal pressure,

Tg= “ temperature,
p = the observed pressure,
= & o« temperature,

8, = tho normal density corresponding to p, and =,
8 == tho donsity corresponding to p and =;

#* Fundamenta Astronomiz, p. 40.
1 It should be observed that the assumed expression of the density (177) may
represent various hypotheses, aocording to the form given to 8. Thus, if we put

B= a-‘, we have the form (172) which expresses the hypothesis of & uniform tem-

perature. We n;ay therefore readily examine how far that hypothesis is in error in
the horizontal refraction; for by taking the reciprocal of (167) we have in this case
B = 796.53, and hence with a = 0.00029411 we find, by taking fifteen terms of the
series (193), ro = 89 54".6, which corresponds to Barom. 0. 76, and Therm. 0°C.
This is 2’ 28”.5 greater than the value given by ARGELANDRR’S Observations (p. 141).
Our first hypothesis gave a result too small by more than 7, and hence a true hypo-
thesis must be intermediate between these, as we have already shown from a con-
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then we have by (171)

d=—"° .g.
l+‘(7_,fo) D,

in which e is the coefficient of expansion of atmospheric air, or
the expansion for 1° of the thermometer. If the thermometer is
Centigrade, we have, according to BESSEL,*

¢ = 0.0036438

From (178) it follows that a is sensibly proportional to the
density, and hence if we put ‘

a, = the value of a for the normal density 4,
we have, for any given state of the air,

=% P 205
G 14+e(r—1) Po (205)
in which for p and p, we may use the heights of the barometric
column, provided these heights are reduced to the same tem-
perature of the mercury and of the scales.

Again, if
l, = the height of a homogencous atmosphero of the temperature
7,8nd any given pressure,

then the height ! for the same pressure, when the temperature
is 7, is
=114 ¢(r— )] (206)

The normal state of the air adopted by BessEL in the determi-
nation of the constants, so as to represent BRADLEY’S observa-
tions, made at the Greenwich Observatory in the years 1750-
1762, was a mean state corresponding to the barometer 29.6
inches, and thermometer 50° Fahrenheit = 10° Centigrade; and
for this state he found

a, = 0.000278953

sideration of the law of temperatures. At the same time, we see that the hypothesis
of a uniform temperature is nearer to the truth than the first hypotlesis, and we are
80 far justified in adhering to the form § = Jge — # with the modification of substi-
tuting a corrected value of 8.

# This value, determined by BxsszL, from the observations of stars, differs slightly
from the value y}y more recently determined by Rupsaza and Reoxaurr by direct
experiments upon the refractive power of the air.
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or, dividing by sin 17,
ag = 57".588

and
h = 116865.8 toises = 227775.7 metres.

For the constant /, at the normal temperature 50° F., BesseL
employed
1, = 4226.05 toises — 8286.78 metres.*

Since the strata of the atmosphere are supposed to be parallel tc
the earth’s surface, BEsseL employed for a the radius of curva-
ture of the meridian for the latitude of Greenwich (the observa-
tions of Bradley being taken in the meridian), and, in accordance

with the compression of the earth assumed at the time when
this investigation was made, he took

a = 6872970 metres.
Hence we have

h—1,
h

B= 8 — 745747
ly

These values of a, and j, being substituted for @ and 8 in
(198), the horizontal refraction is found to be only about 1’ toe
great, which is hardly greater than the probable error of the
observed horizontal refraction. At zenith distances less than
85°, however, BEssEL afterwards found that the refraction com-
puted with these values of the constants required to be multi-
plied by the factor 1.003282 in order to represent the Konigsberg
observations.

116. By the preceding formule, then, the values of the con-
stants & and 8 can be found for any state of the air, as given by
the barometer and thermometer at the place of observation, and
then the true refraction might be directly computed by (191)..
But, as this computation would be too troublesome in practice,.
the mean r¢fraction is computed for the assumed normal valaes:
of a and 3, and given in the refraction tables. From this mean

* According to the later determination of REaNAULT which we have used on p. 143,
we should have [, — 8286.1 metres. The difference does not affect the value of
BessrL's tables, which are constructed to represent actual observations.

Vou. L—11
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refraction we must deduce the true refraction in any case by
applying proper corrections depending upon the observed state
of the barometer and thermometer. For facility of logarithmic
computation, BEsseL adopted the form

=l et )

in which r, is the tabular refraction corresponding to p, and z,,
and r is the refraction corresponding to the observed p and 7.
Let us see what interpretation must be given to the exponents
A and 1. If the pressure remained p,, the refraction correspond-
ing to the temperature r would be

ar(r — o)

e 1.2 + &o.

-5 (7 - o) +
or, with sufficient precision,
{ 14 ]; d" - 70) }

In like manner, if the temperatare were constant, and the pres-
sure is increased by the quantity p — p,, the refraction would
become nearly

r.{1+— —(p—p.)}

ITence, when both pressure and temperature vary, we shall have,
very nearly,

r=n{14nZ - px {1+ ""(r—r,)} (208)

Now, puttmg in (207) under the form 1 + ,anddevelop-

ing by the bmomml theorem, we have
=t.{l +—(p—p.)+&o. } X {l-—lc(f-—f‘)-{-&e.}
2o .

Therefore, neglecting the smaller terms, we must have
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.to determine which we are now to find the derivatives of (191)
relatively to p and . Put

_ P y
€= oz (210)
and ¢, = (1), ¢, = 2h(2), ¢, = 84(3), &c., or in general
»-1
g, =n * ¥») (211)
then, if we also put
— @ N .
Q==zxe q, + '1-76 "I,..,..*mt q-+&°. (212)
the formula (191) becomes
1.—a) r=sin'z 4. - 218
( ) r=gin’z J; Q (213)

in which, since the variations of ——— in (191) are sensibly the

1—a
same as those of @, we may regard 1 —a as constant. Differen-
tiating this, observing that @ varies with both p and r, while 8
varies only with z, we have

dr 2
(1 —a)— =sin*z 4/2. ==
% g (214)

_Ndr 2 dQ r dg
Qa u)dr_slp'z E.E_(l_aﬁ.zf_

In differentiating @, it will be convenient to regard it as a fane-
tion of the two variables z and B, the guantities ¢,, ¢, &ec. vNy-
ing only with 8. 'We hgve, since 8 does not vary with p,

4@ _dQ dz @15

— Tl ¢ —

and since both z and 8 vary with r,

dQ_dQ dx_ g de o

dr dx dr df dr

From (212) we find
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dQ 1—=x
Pl Q' 217)
in which
R L At a5
U=ze gty o¢ Mt 53¢ 8¢, + &o. (218)
Also, v
a4Q _ ,.—=90 | #* -1 9 2190
=% pTiet as T (219)

in which we have generally, by (211),

dg, _ =5t d(m) 4T
dB aT ' dp

But by (200), in which %, = }{n), we have

\ n In—1

= dy(n) _ ==
n = =2T¢q, —n ?

and by (187) .

. dT_ T
%~
whence

d, T, T 3t
ag Bt 23

cot? z cot z
— M.
2 2y/28

Substit"tting the values of this expression for n =1, 2, 8, &ec. in
(219), we have

”-

A =

8Q _ootz( b L 2 2 e )

a2 (" Gtz Mt T ot e

,\"‘:" OOtZ —_— x’. -2 :C' —3c08 )
___2]/2_-5(:1” +r§e 2’+1.2.86 8 4 &e.

The first series in this expression = @. The second, when
¢—*, e—%, &c. are developed in ‘series, becomes

' xz
z+at ot bo=1—
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and hence :
d Q cot*z _, cot z x

=2 ¢ 2/25 T—z (220)
We have, further, from (210) and the values of a, ,and 8 in the
preceding article,

& =d &=y ’
de —

af——- [ ]

dr_z da  x df _ 2A—1

Fee Tt &=

Substltutmg these values in (215) and (216), and then subahtuung
in (214), we find*

. [2 41—z
(l—a)—=slnz\/l—9--Q-—p——
(l——a)—-— "m’z\lp Q'{——(l )+h—_l§eot’z}
a, A !
+ef{a—oryfiy It @21)

These formule are to be computed with the normal values of a,
B, , |, and p, and for the different zenith distances, after whlch
4 and 2 are computed by (209). The values of A and A thus

found are given in Table IL !
117. Finally, in tabulating the formula (207), BesseL puts

r,= o tan z (222)
P _ __ 1 :
E_p’ r_l-i-c(‘r—fo) {

¢
(where a and f no longer have the same signification as in the
preceding articles). Ca

# Bessxy, Fundamenta Astronomis, p. 84, o
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The true refraction then takes the form
f =B84y tanz . (228)

The qhantity here denoted by g is the ratio of the observed and
normal heights of the barometer, both being reduced to the same
temperature of the mercury and of their scales. First, to correct

. for the temperature of the scale, let b?, 6@, or 4™ denote the ob-
served reading of the barometer scale according as it is graduated
in Paris lines) English inches; or French metres. The standard
temperatures of the Paris line is 13° Réaumur, of the English inch
62° Fahrenheit, and of the French metre 0° Centigrade ; that is,
the graduations of the several scales indicate true heights only
when the attached thermometers indicate these temperatures
respectively. The expansion of brass from the freezing point to
the boiling point is .0018782 of its length at the freezing point.
If then the reading of the attached thermometer is denoted
either by r/, f/, or ¢/, according as it is Réaumur's, Fahrenheit's,
or the Centigrade, the true height observed will be (putting s =
0.0018782)

A}

142y 14 — (" — 82) 14 —.¢
, ;,(o.__f‘?___, 5. “”‘ , b, 100
‘ 14 518 14 5480
or
n 80 +r's y 180 + (f’ — 82)s (,)_IOQ-i—c'a
b 80 + 135’ o 180 4 80s b 100 &Y

tvlisre the taultipliets 1 + g'-or’, &e. evidently reduce the reading
to what it would have been if the observed temperature had been
that of freezing, and the divisors 1 4 8—'0 - 18, &c. further reduce

these to the respective temperatures of graduation, and conse-
§uently give the true heights.

This true height of the mercury will be proportional to the
pressure only when the temperature of the mercury is constant.
‘We must, therefore, reduce the height to what it would be if the
témperature wers equal to the adopted normal tempetature, which
i8 in our table 8° Réaumur =50° F.=10° C. Now, mercury

expands of its volume at the freezing point of water, when
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its tomporatare i raisod from that point to the boiling point of
5& P the above heights will be reduced

to the normal temperature by multiplying them respectively by
the factors ,

80 4- 8¢ 180 4 18¢ 100 4 10¢q
80 +r'qg 180 4 (f' — 82)q 100 + ¢'g

The normal height of the barometer adopted by Besser was 29.6
inches of Bradley’s instrament, or 3883.28 Paris lines ; but it after-
wards appeared that this instrument gave the heights too small
by 4 a Paris line, so that the normal height in the tables is 833.78
Paris lines, at the adopted normal temperature of 8° R. Reducing
this to the standard temperature of the Paris line = 138° R., we
have

water. Hence, putting ¢ =

(225)

80 -} 8s

by = 888.78 g

(226)
In comparing this with the observed heights, the 5¢ and ™ must
be reduced to lines by observing that one English inch = 11.2595
Paris lines, and one metre = 448.296 Paris lines. Making this

reduction, the value of f= £ 1s found by dividing the product

of (224) and (225) by (226) The result may then be separated
into twa factors, one of which depends upon the observed height
of the barometric column, and the other upon the atta(,hed ther-
mometer; so that if we put

b 80 4+ 8¢
= 83373 80 + 8s

_ o, 112595 80 4 135 180 4 18¢
838.78 80 4 8s 180 + 808

) 418.296 80 4 182 100 4 10¢g (227)
88378 80 -8z 100

= b™

and
80 +r's 180 4 (f'—82)s 100 4-¢'s
8¢ 4-r'g 180 4 (f'—32)q 100 4c'q

we shall have g== BT, or
log#=1logB 4 log T (228)

T=
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The quantity y would be cbmputed directly under the form

-1
T l4e(r—1)

if 7, were at once the freezing point and the normal temperature
of the tables; for ¢ is properly the expansion of the air for each
degree of the thermometer above the freezing point, the density
of the air at this point being taken as the unit of density. But
if the normal temperature is denoted by z,, that of the freezing
point by z,, the observed by z, we shall have

— l+C(?.—Q_
146¢(r —1)

an expression which, if we neglect the square of ¢, will be reduced
to the above more simple one by dividing the numerator and
denominator by 1+ ¢(r,— 7). BEsserL adopted for 7, the value
50° F. by BraDpLEY'S thermometer; but as this thermometer was
found to give 1°.25 too much, the normal value of the tables is
r,=48°.75F. Hence, if 1, f, or c denote the temperature indi-
cated by the external thermometer, according as it is Réaumur,
Fahr., or Cent., we have*

4

4

__ 180 4 16.75 X 0.36438
T 180 + $r X 0.36438

180 4 16.75 X 0.36488
T 180 + (f — 82) X 0.36488 (229)

_ 180 4 16.75 X 0.36438
T 180 4 §c X 0.36438

The tables constructed according to these formule give the
values of log B, log T, and log 7, with the arguments barometer,
attached thermometer, and external thermometer respectively,
and the computation of the true refraction is rendered extremely
simple. An example has already been given in Art. 107.

118. In the preceding discussion we have omitted any con-
gideration of the hygrometric state of the atmosphere. The

-

* Tabulee Regiomontans, p. LXIL
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refractive power of aqueous vapor is greater than that of at-
mospheric air of the same density, but under the same pressure
its density is less than that of air; and LapLace has shown that
‘“the greater refractive power of vapor is in a great degree com-
pensated by its diminished density.”*

119. Refraction table with the argument true zenith distance.—W hen
the true zenith distance ¢ is given, we may still find the refrac-
tion from the usual tables, or Col. A of Table IL, where the
apparent zenith distance z is the argument, by successive ap-
proximations. For, entering the table with { instead of 2, we
shall obtain an approximate value of r, which, subtracted from ¢,
will give an approximate value of z; with this a more exact
value of r can be found, and a second value of 2, and so on, until
the computed values of r and z exactly satisfy the equation z =
{ —r. But it is more convenient to obtain the refraction directly
with the argument . For this purpose Col. B of Table II. gives
the quantities @’, A’, 2, which are entirely analogous to the a, 4,
und 4, so that the refraction is computed under the form

r=ada'f4y¥Xtan ¢ (280
)

where g and y have the same values as before.

The values of a’, A/, and A are deduced from those of a, A4,
and 2 after the latter have been tabulated. They are to be so
determined as to satisfy the equations

afdyitanz = o' f4yXN tan ¢ (231
2={—adB4rNtan { (232)

and this for any values of 8 and 7. Let (2) denote the value of 2
which corresponds to { when =1, y=1; that is, when the
refraction is at its mean tabular value. The value of (z) may be
found by successive approximations from Col. A.,as above ex-
plained. Let (a), (4), (A), and (r) denote the corresponding
values of @, 4, 4, . We have '

(r)=(a)tan (z2) =o' tan¢
(?)=C¢—d tan¢

whence, by (282),

* Mée. C&. Book X.
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t=(2) — G'“ﬂC(P"r";l)
Baut, taking Napierian logarithms, we have
L4 ) =41+ X1y
and hence, ¢ being the Napierian base, ’
BLy¥ = e4W+¥r =1+ (414 X1r) + &e.

where, as g and y differ but little from unity, the higher powerr
of A'lp + Xly may be omitted. Hence

£=2(3)— () [4'I8 + ¥y])
Now, taking the logarithm of (281), we have
I(atanz) 4+ AIf + Ay =1(a tan ) + A'18 4+ Xy

The first member is a function of 2, which we may develop as a
function of (2); for, denoting this first member by fz, and putting

y=— )[4+ 2]

we have 2 =(z) + ¥, and hence

Fr=fI@) +¥1=f@ y%%, + &,

where we may also neglect the higher powers of y. But since
Jf(2) is what fz becomes when z = (2), and consequently 4 = (4),
4= (1), we have

(@) =1[(e) tan ()] + (4) I8+ D) by

dfE) _ dif(e) tan )] _ d[(@)ten(2)] _ 1 _d()
%) 16) @u@d@ 0 4@

Hence we have
f2=10G) tan @]+ (4 18 + W 1y — 50 (4184 217)
—1I[a'tan?] 4+ 4’18 4 X1y

or, since (@) tan (2) = a’ tan {,
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a , d(#) _ .
a{1+58 e+ {145Y )}lr—<A)tﬁ+(z)tr
BSince this is to be satisfled for indeterminate values of 8 and 7,
the coeflicients of [3 and ly in the two members must be equal;
and therefore
(4
=110
a@

r =95 (283)
-
1+3(—z%

and also
tan (2)
o =(a) —=~ @ant

All the quantities in the second members of these formule may
be found from Column A of Table IL, and thus Column B may
be formed.*

If we put
R =a B4 y¥
tre shall now find the refraction under the form
r=4Kk'tan ¢

120, To find the refraction of a star in right ascension and decki-
nation.

The declination & and hour angle ¢ of the star being given,
together with the latitude ¢ of the place of observation, we first
compute the true zenith distance { and the parallacti¢ angle ¢
by (20). The refraction will be expressed under the form

r=4ktan¢
in which
k' = o' B4 ¥
The latitude and azimuth being here constant (since refrac-
tion actd only in the vertical circle), we have from (50), by put-

# See also Bessxr, Astronomische Unlersuchungen, Vol. 1. p. 169.
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ting dp = 0, dA=0,d(;=r=k'tan { dt = — da, (@ = star’s
right ascension), :

déd=—k'tan{ cos ¢q

cos 3da = — k' tan { sin ¢ } @5

which are readily computed, since the logarithms of tan { cos ¢
and tan ¢ sin ¢ will already have been found in computing ¢ by
(20). The value of log A’ will be found from Table II. Column
B, with the argument ¢.

The values of dé and da thus found are those which are to be
algebraically added to the apparent declination and right ascen-
sion to free them from the effect of refraction.

The mean value of &’ is about 57", which may be employed
when a very precise result is not required.

DIP OF THE HORIZON.

121. The dip of the horizon is the angle of depression of the
visible sea horizon below the true horizon, arising from the ele-
vation of the eye of the observer above the level of the sea.

Let CZ, Fig. 17, be the vertical line of an observer at A4,

whose height above the level of the

Fig. 17. sea is AB. The plane of the true ho-

T rizon of the observer at 4 is a plane

at right angles to the vertical line

" 4 (Art. 8). Let a vertical plane be
1B passed through CZ, and let BTD be

the intersection of this plane with the

m earth’s surface regarded as a sphere,
o AH its intersection with the horizon-

tal plane. Draw A TH' in this plane,
tangent to the circular section of the
earth at 7. Disregarding for the pre-
sent the eftect of the atmosphere, 7" will
be the most distant point of the surface visible from 4. If we
now conceive the vertical plane to revolve about CZ as an axis,
AH will generate the plane of the celestial horizon, while AH’
will generate the surface of a cone touching the earth in the
small circle called the visible horizon; and the angle HAH'
will be the dip of the horizon.

D
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122. To find the dip of the horizon, neglecting the atmospheric refrac-
tion. Let

x = the height of the eye —= 4B,
a = the radius of the earth,
D = the dip of the horizon.

We have in the triangle CAT ACT = HAH' = D, and hence

AT
tan D=

By geometry, we have

AT =VAB X AD =V'z(2a + x)

whence

a

wnpVIEEF_ (T (Y

As z is always very small compared with a, the square of the
fraction % is altogether inappreciable: so that we may take

simply
tan D= |22 (285)

128. To find the dip of the horizon, having regard to the atmospheric
refraction. )

The curved path of a ray of light from the point 7, Fig. 18,
to the eye at A, is the same as that
of a ray from A4 to T'; and this is Fig. 18.
a portion of the whole path of a |
ray (a8 from a star S) which pasaes
through the point 4, and is tangent
to the earth’s surface at 7. The
direction in which the observer at =~
A sees the point 7' is that of the
tangent to the curved path at 4, or

AH'’; the true dip is therefore the ¢
angle HAH', and is less than that found in the preceding amcle
It is also ewdent that the most distant visible point of the earth’s
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surface is more remote from the observer than it would be if
the earth had no atmosphere.

Now, recurring to the investigation of the refraction in Art.
108, we observe that the angle HAH’ is the complement of
the angle of incidence of the ray at the point A, there denoted
by i; and it was there shown that if g, 4, and ¢ are respectively
the norma), the index of refraction, and the angle of incidence
for a point elevated above the earth’s surface, while a, x4, and 2
are the same quantities at the surface, we have

gusini{=ap,sin z
But in the present case we have z = 90°; and hence, putting

D' = the true dip = 90° — ¢
¢ =atz
we have

sin i = cos D' = £, L-—ﬁ-( .|..._)
Developing and negleeting the sqnare of = a8 before,
cos D' = *o (1 _)  (288)

which would suffice to determine D’ when Fo and ¢ have been
obtained from the observed densities of the sir at the observer
and at the level of the sea. But, as D’ is small, it is more con-
venient to determipe it from its sine; and we may also intro-
duce the density of the air directly into the formula by putting
(Art. 110),

m Lt 4k9,

u N1 4ké
Bubstituting the ¥alue of @ from (178), namely,

2k,
1+ 448,

o =

we may give this the form




DIF OF THR HORIZON, 175

iy

» 1-—2«(1—;.)
= AL
_{1—2a(1 a.}

which, by neglecting the equare of the second term, gives
He 3
;-==1+¢(l-——3-)

Hence, still neglecting the higher powers of a and s, as well as
their product, we have

tin D'y Tow e g [{ 2 20 (1-3)} a8

;Llit;{hxagrea with the formala given by LarPlLacE, Mé CX,

For an altitude of a few feet, the difference of pressure will
not sensibly affect the value of D’, and may be disregarded,
especially since 8 very precise determination of the dip is not
possible unless we know the density of the air at the visible hori-
zon, which cannot usually be observed. We may, however,
assume the temperature of the water to be that of the lowest
stratum of the air, and, denoting this by 7,, while r denotes the
temperature of the air at the height of the eye, we have [mak-
ing p = p, in (171)], approximately,

3 1

—=r————=1—a(r—1)

% l4e(r—m)
in which for Fahrenheit's thermometer ¢ = 0.002024. Ilence

sinD'=\l¥{ 1— ict(f —1,) }i

=sinD{l—M}

sin* D

where D is the dip, computed by (285), when the refraction is
neglected, the sine of so small an angle being put for its tan-

. gent. If we substitute the values @ = 0.00027895, sin D =
D sin 17, and & = 0.002024, this formula becomes
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, 24021 (r — 1)
D=D———~ 0
D
in which D is in seconds. If D is expressed in minutes in the
last term, it will be sufliciently accurate to take

T—1,

'—=D—4
D 00 X >

(238)

This will give D’ = D when r = 7, a8 it should do, since in
that case the atmosphere is supposed to be of uniform density
from the level of the sea to the height of the observer. If
t < 7, we have D’ > D. In extreme cases, where 7 is much
greater than 7, we may have D’ < 0, or negative, and the visible
horizon will appear above the level of the eye, a phenomenon
occasionally observed. I know of no observations sufficiently
Pprecise to determiiie whether this simple formula, deduced from
theoretical considerations, accurately represents the observed
dip in every case.

124. If, however, we wish to compute the value of D’ for a
mean state of the atmosphere without reference to the actually
observed temperatures, we may proceed as follows: In the equa-
tion above found,

a

a+tzx

COSD'=£'-
”

we may substitute the value

() ==

which is our first hypothesis as to the law of decrease of density
of the strata of the atmosphere, Art. 109. This hypothesis will
serve our present purpose, provided n is so determined as to
represent the actually observed mean horizontal refraction. We
have, then,

A L

and developing, neglecting the higher powers of %,
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n
oosD'=1— Z
n+1a

. n 2z n
san'=\/m.—;;mnD\/m
or '

, n
D = D \/n +1
To determine n, we have by (160), reducing r, to seconds,

4 ko,
N—=——i—r
(ro8in 1")?

where, for Barom. 0=.76, Therm. 10°C., which nearly represent
the mean state of the atmosphere at the surface of the earth, we
have 4kd, = 0.00056795, and r, = 84’ 80"’ (which is about the
mean of the determinations of the horizontal refraction by dif-
ferent astronomers); and hence we find

n = 5.689, \/n -?- ;= 0.9216 =1 — 0.0784

D'=D— 0784D (289)

The coeflicient .0784 agrees very nearly with DELAMBRE’S value

.07876, which was derived from a large number of observations

upon the terrestrial refraction at different seasons of the year.
To compute I directly, we have

' 09216 [2
r— 2 T
D sin 1”7 a X 1/_

If z is in feet, we must take a in feet. Taking the mean ‘value

a = 20888625 feet, and reducing the constant coefficient of 1/,
we have '

D' = 58".82 1/ in feet. (240)

Table XI., Vol. IL, is computed by this formula.
Vou. L—12
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125. To find the distance of the sea horizon, and the distance of an
object of known height just visible in the horizon.—The small portion
T4, Fig. 19, of the curved path of a ray of
Fig. 19. light, may be regarded as the arc of a circle;
and then the refraction elevates A as seen
from T as much as it elevates T as seen
from A. Drawing the tangent T'P, the ob-
server at T' would see the point 4 at P;
and if the chord 7’4 were drawn, the angle
PTA would be the refraction of 4. This
refraction, being the same as that of T as
seen from A, is, by (239), equal to .0784.D. In the triangle
TPA, TAP is so nearly a right angle (with the small elevations
of the eye here considered) that if we put

tf » by

c

T, = AP
we may take as a sufficient approximation
x,=TA X tan PTA = a tan D X .0784 tsn D

But we have a tan?.D = 2z, and hence

x, = 15682
Putting
d = the distance of the sea horizon,
we have :
PT = y/(2CB + PB) X PB
o nearly,

d =y 2a (z + x,) = V3.8186ax

If z is given in feet, we shall find d in statute miles by'dividing
this value by 5280. Taking a as in the preceding article, we
find

V238136a _ 441y
5280

and, therefore,
d (in statute miles) = 1.817 y/z in foet @4

If an observer at A’ at the height A’B’ = z’ sees the object
A, whose height is z, in the horizon, he must be in the curve de-
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scribed by the ray from A4 which touches the earth's surface at
T. The distance of A’ from 7 will be = 1.817 v/z’, and hence

the whole distance from 4 to A’ will be = 1.817 (Vx + V7).
The above is a rather rough approximation, but yet quite as
accurate as the nature of the problem requires; for the anoma-
lous variations of the horizontal refraction produce greater
errors than those resulting from the formula. By means of this
formula the navigator approaching the land may take advantage
of the first appearance of a mountain of known height, to deter-
mine the position of the ship. For this purpose the formula
(241) is tabulated with the argument «height of the object or
eye;” and the sum of the two distances given in the table, eor-
responding to the height of the object and of the eye respect-
ively, is the required distance of the object from the observer-.

126. To find the dip of the sea &t a giver distance from the observer.
—By the dip of the sea is here understood the apparent deprea-
sion of any point of the surface of the water nearer than the
visible horizon. Let 7, Fig. 20, be such a
point, and A the position of the observer. P
Let TA’ be a ray of light from 7, tangent ,
to the earth’s surfaee at 7, meeting the ver- %f-\
tical line of the observer in 4’. Put '

Fig. 20,

D' = the dip of T as scen from A4,

d = the distance of T in statute miles,

x = tho height of the obscrver’s eye in feet = 4B,
&' = A'B. '

We have, by (241), '

d L]
’J—(l.sn)

and the dip of T, as seen from 4/, is, therefore, by (240),
= 58".82 /17 = 44".66 d.

Now, supposing the ehords T'A, T'A’ to be drawn, the dip of 7
at A exceeds that at A’ by the angle AT'A’, very nearly; and
we have nearly

angle ATA' = A4 ! T — &

T4 X sin 1" — 5280 dsin 1"
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whence
—_ ’

D'=44"66d + ————M——
5280 d sin 1”

Substituting the value of 2’ in terms of d,

D’ =22"14 d + 39".07 % (x being in feet and d in statate
miles). (242)

If d is given in sea miles, we find, by exchangmg d for —-d,

D' = 25".65 d 4 88".78 d—(a: being in feet and d in sea
miles). (243

The value of D' is given in nautical works in a small table
with the drguments x and d. The formula (243) is very nearly
the same as that adopted by BowpircH in the Practical Navigalor.

127. At sea the altitude of a star is obtained by measuring its
angular distance above the visible horizon, which generally
appears as a well-defined line. The observed altitude then
exceeds the apparent altitude by the dip, remembering that by
apparent altitude we mean the altitude referred to the true
horizon, or the complement of the apparent zenith distance.
Thus, &’ being the observed altitude, 4 the apparent altitude,

h=K-DD

or, when the star has been referred to a point nearer than the
visible horizon,

h=n—-D"

SEMIDIAMETERS OF CELESTIAL BODIES.

128. In order to obtain by observation the position of the
centre of a celestial body which has a well-defined disc, we
observe the position of some point of the limb and deduce that
of the centre by a suitable application of the angular semi-
diameter of the body.

I shall here consider only the case of a spherical body. The
apparent outline of a planet, whether spherical or spheroidal,
and whether fully or partially illuminated by the sun, will be
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discussed in connection with the theory of occultations in
Chapter X.

The angular semidiameter of & spherical body is the angle
subtended at the place of observation by the radius of the disc.
I shall here call it simply the semidiameter, and distinguish the
linear semidiameter as the radius.

Let O, Fig. 21, be the centre of Fig. 21.
the earth, 4 the position of an ob-
server on its surface, M the centre b4
of the observed body; OB, AB/,
tangents to its surface, drawn from
O and A. The triangle OBM re-
volved about OM as an axis will de-
scribe a cone touching the spherical 4 -
body in the small circle described _ N
by the point B, and this circle 18 the :
disc whose angular semidiameter at
Ois MOB. Put

S = the geocentric semidiameter, MOB,
S’ = the apparent socmidiameter, MA B’,
4, 4" = tho distances of the centre of the body from the centre of
the earth and the place of observation respectively,
a = the oquatorial radius of the earth, '
@’ = tho radius of tho body,

then the right triangles OMB, AMB'’ give

’
sin §=2 sin 8’ = (249)
. 4 . 4’
But if
= = the equatorial horizontal parallax of the body,

we have, Art. 89,
sint = L
4
and hence
’

sin § =< sin x gin &' = 2 sin § (245)
a 4’

or, with sufficient precision in most cases,

8=%x g=249 (216)
a & ,
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The geocentric semidiameter and the horizontal parallax have

’

. a
therefore a constant ratio = e For the moon, we have

%' = 0.272056 (247)
as derived from the Greenwich observations and adopted by
1IaNSEN (Tables de la Lune, p. 39).

If the body is in the horizon of the observer, its distance from
him is nearly the same as from the centre of the earth, and hence
the geocentric is frequently called the horizontal semidiameter;
but this designation is not exact, as the latter is somewhat greater
than the former. In the case of the moon the difference is
botween 0.1 and 0’".2. See Table XII.

If the body is in the zenith, its distance from the observer is
less than its geocentric distance by a radius of the earth, and the
apparent semidiameter has then its greatest value. ‘

The apparent semidiameter at a given place on the earth’s
surface is computed by the second equation of (245) or (246), in

which the value of % is that found by (104); so that, putting z =

the true (geocentric) zenith distance of the body, {’ = the appa-
rent zenith distance (affected by parallax), 4 = its azimuth,
¢ — ¢’ the reduction of the latitude, we have, (by (111) and (104),

y=(— 9f) cos 4 :
sinS —sin S sin (3" —r) (248)
sin($ —p)

129. This last formula is rigorous, but an approximate formula
for computing the difference S’ — S will sometimes be convenient.
In (108) we may put '

cos (p —¢’) —
cos ycos } (5’ —¢)

without sensible error in computing the very small difference in
question ; we thus obtain
AI

F=l-—psinxcos[§(C'+C)—T]
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Putting
m=psinx cos [} (' + &) —7r] (249)

we have

and hence, since the third power of m is evidently insensible,
8 — 8= 8m + Smd (250)

which is practically as exact as (248). The value of ¢’ réquired
in (249) will be found with sufficient accuracy by (114), or

' —C=prsin({’' —y)

The quantity 8’ — 8 is usually called the augmeniation of the
semidiameter. It is appreciable only in the case of the moon.

130. If we neglect the compression of the earth, which will
not involve an error of more than 0”.05 even for the moon,* we
may develop (250) as follows. Putting p =1 and y =0 in (249),
we may take

m =sinx cos } (¢’ + 0)
=sinzcos [’ — (' —0)]
=sginzcos ¢’ + }8inzsin (' —{)sin¢
= 8in 7 c08 {’ 4 % sin*= sin*{’

which substituted in (260) gives, by neglecting powers of sin »
above the second,

8’ — 8 = Ssin = cos ¢’ + ¥ S sin*x sin’¢’ -+ S sin'x cos*l’
= Ssin z cos £’ 4 ¥ Ssin*x 4 § .S sin?x cos*¢’

But we have

* The greatest declination of the moon being less than 80°, it can reach great
altitudes only in low latitudes, where the compression is less sensible. A rigorous
investigation of the error produced by neglecting the compression shows that the
maxinum error is less than 07.08.
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and if we put

A= -‘;- gin1”,  logh = b5.2495

we have sin 7 = k.S, which substituted above gives the follow-
ing formula for computing the augmentation of the moon’s
semidiameter:

8" — 8="hS%o08 ¢ + § S+ ¥ b S cost ¢’ (251)

ExampLE.—Find the augmentation for ¢’ = 40°, S = 16’ 0/
= 960"/, :

log §*  5.9645 log S*  8.947 Ist term = 12".54
log h 5.2495 log $4*  0.198 2d ¢ = 0.14
log cos ¢’  9.8843 log 2d term 9.145 84 « = 0.08
log 1st term 1.0988 log cos*¢’  9.769 8 —8=12.76

log 8d term 8.914

The value of S’ — 8 may be taken directly from Table XII. with
the argument apparent altitude = 90° — ¢’.

181. If the geocentric hour angle (¢) and declination (d) are
given, we have, by substituting (187) in (245),

sin (' —r)

8in (3 — ) (262)

gin 8’ =3sin §

for which y and &’ are to be determined by (134) and (186), or
with sufficient accuracy for the present purpose by the formulse

tan ¢
tan y = cos ¢
¥ —3s __pxs8in ¢ sin (3 —y)

sin y

182. To find the contraction of the vertical semidiameter of the sun
or moon produced by atmospheric refraction.

Since the refraction increases with the zenith distance, the
refraction for the centre of the sun or the moon will be greater
than that for the upper limb, and that for the lower limb will be
greater than that for the centre. The apparent distance of the
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limbs is therefore diminished, and the whole dise, instead of
being circular, presents an oval figure, the vertical diameter of
which is the least, and the horizontal diameter the greatest.
The refraction increasing more and more rapidly as the zenith
distance increases, the lower half of the disc is somewhat more
contracted than the upper half.

The contraction of the vertical semidiameter may be found
directly from the refraction table, by taking the difterence of
the refractions for the centre and the limb.

ExampLE.—The true semidiameter of the moon being 16/ 0/,
and the apparent zenith distance of the centre 84°, find the con-
traction of the upper and lower semidiameters in a mean state
of the atmosphere (Barom. 80 inches, Therm. 50° ¥.). We find
from Table 1.

For apparent zen. dist. of centre, 84° (¢ Refr. =8 28".0
“ approx. “« upper limb, 83 44 “« =8 94
« “« “ lower ¢« 81 16 “« =8 48.1
IIence,

Approx. contraction upper semid. — 8’ 28”7.0 — 8 9".4=18".6
“ “«  lower ¢« —=848.1—-828.0=20.1

These results are but approximate, since we have supposed the
apparent zenith distance of the limb to differ from that of the
centre by the true semidiameter, whereas they difter only by the
apparent or contracted semidiameter. Hence we must repeat as
follows:

App. zen. dist. upper limb — 838° 44’ 18".6 Refr. =8 9.7
“« “ lower ¢ =84 1589 .9 “« =847 .7

Contraction of upper semid. — 8’ 28”.0 — 8 9".7 =18".3
“ lower « =8 47.7—828.0=19.7

Observations at great zenith distances, where this contraction
is most sensible, do not usually admit of great precision, on-
account of the imperfect definition of the limbs and the uncer-
tainty of the refraction itself. It is, therefore, sufficiently exact
to assume the contraction of either the upper or lower semi-
diameter to be equal to the mean of the two. In the above
example, which offers an extreme case, if we take the mean
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19’ 0 as the contraction for either semidiameter, the error will
be only 0”.7, which is quite within the limit of error of cbserva-
tions at such zenith distances.

183. To find the coniraction of any inclined semidiameter, produced
by refraction.

Let M, Fig. 22, be the apparent place of the sun's or the

moon’s centre; ACBD, a circle described

Fig, 2 with a radius M4 equal to the true semi-

5 diameter, will represent the disc as it would

o appear if the refraction were the same at

all points of the limb. The point 4, how-

Y D ever, being less refracted than M, will ap-

pear at A’, P at P’, &c.; while B, being

more refracted than M, appears at B’. The

contraction is sensible only at great zenith

distances, where we may assume that AM

and PP E, small portions of vertical circles drawn through 4
and P, ara sensibly parallel. If then we put

B

8 = the true vertical semidiameter — AM,
S, = the contracted vert. semid. = A'M,
S, = the contracted inclined semid. — MP”’, which makes an
angle ¢ with the vertical circle,
a8, = the contraction of tho vertical semid. = § — S,
aS,= the contraction of the inclined semid. = S — S,

we shall have

8, cos ¢ = P'E = the difference of the apparent zenith distances
of M and P’,
&S, = the difference of the app. zen. dist. of M and 4'.

Now, the difference of the refractions at M and A4’ is A4’, and
the difference of the refractions at M and P’ is PP’; and, since
‘these small differences are nearly proportional to the differences
of zenith distance, we have

8,:8,cosqg = AA': PP’
S, ¢
PP' = a8, -‘;"“_1
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The small triangle PFP’ may be regarded as rectilinear and
right-angled at F'; whence

FP'= PP’ X cosq
or
S, cos*q

S,

If we put 8, for S, in the second member, the resulting value of
48, will never be in error 0.2 for zenith distances less than 85°,
and it suffices to take '

48, = 48, cos’ q (258)

48, = 48,

This formula is sufficiently exact for all purposes to which we
shall have occasion to apply it.

184. To find the contraction of the horizonial semidiameter.—The
formula (253) for ¢ = 90° makes the contraction of the hori-
zontal semidiameter = 0. This results from our having assumed
that the portions of vertical circles drawn through the several
points of the limb are parallel, and this assumption de-
parts most from the truth in the case of the two ver-
tical circles drawn through the extremities of the
horizontal diameter. To investigate the error in this
case, let ZM, Fig. 28, be the vertical circle drawn
through the centre of the body, ZM’ that drawn
through the extremity of the horizontal semidiameter
MM’'. In consequence of the refraction, the points M
and M’ appear at N and N’. If we denote the zenith ¥
distances of M and N by ¢ and 2, those of M’ and N’
by & and 2/, the refraction MN may be expressed as a fune-
tion cither of z or of ¢, Art. 107, and we shall have

Fig. 28.
b4

X

r=ktanz=~R'tan ¢

where k and &’ are given by the refraction table with the argu-
ments z and {. The zenith distance of the point M’ differs so
little from that of M that the values of % and &’ will be sensibly
the same for both points, and we shall have for the refraction
M'N’

’ r"=ktanz' = k'tan {’
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These two equations give

tanz _ tan{
tan 2 tan ¢’

But if the triangle ZNN’ is right-angled at N, we have

tan 2
Z =
cos tan 2/
and hence, also,
co8 Z — tan ¢
tan g’

Therefore the triangle ZMM' is also right-angled, and it gives

__ tanS  tan§’
~ sin(z+r) " sinz

in which S= MM’ and S’ = NN'. Hence

tan Z

tan § _ sin(z4r) . ;
oS = anz =cos r 4 sin r cot 2

or, very nearly,

%' =14 rsin1"cotz=1 4 ksin1”
Hence the contraction of the horizontal semidiameter is ex-
pressed by the following formula:

S — 8" = 8"ksin 1"

In the zenith, the mean value of log & is 1.76156; at the zenith
distance 85°it is 1.71020. For S’ = 16/, therefore, the contrac-
tion found by this formula is 0’/.27 in the zenith, and 0/.24 for
85°. Thus, for all zenith distances less than 85° the contraction of
the horizontal semidiameter is very mearly constant and equal to one-
Jourth of a second.

When the body is in the horizon, we have k = rcot 2 =0,
and hence 8 — 8’ = 0, which follows also from the sensible
parallelism of the vertical circles at the horizon.
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REDUCTION OF OBSERVED ZENITH DISTANCES TO THE CENTRE OF
THE EARTH.

185. It is important to observe a proper order in the applica-
tion of the several corrections which have been treated of in this
chapter.

The zenith distance of any point of the heavens observed with
any instrument is generally affected with the index error and
other instrumental errors. These errors will be treated of in
the second volume; here we assume that they have been duly -
allowed for, and we shall call “observed” zenith distance that
which would be obtained with a perfect instrument, and shall
denote it by 2.

In all cases the first step in the reduction is to find the refrac-
tion r (=af4y*tan 2) with the argument z, and then z 4 r is the
zenith distance freed from refraction.

1st. In the case of a fixed star,

E=2z+4r

is at once the required geocentric zen. dist.

2d. In the case of the moon, the zenith distance observed is
that of the upper or lower limb. If S is the geocentric and S’
the augmented semidiameter found by Art. 128, 129, or 130,

U=z4r+8

is the apparent zenith distance of the moon’s centre freed from
refraction, and aftected only by parallax, and, consequently, it is
that which has been denoted by the same symbol in the discus-
sion of the parallax. With this, therefore, we compute the
parallax in’ zenith distance, {’ — ¢, by Art. 95, and then

E=0—@'—0

is the required geocentric zenith distance of the moon’s centre.
To compute S’ by (248), (250), or (251), we must first know {’;
‘but it will suffice to employ in these formule the approximate
value ' =z + r = 8.
We can, however, avoid the computation of S’, when extreme
precision is not required, by computing the parallax for the
zenith distance of the limb. Thus, putting {’ = z + r, and
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computing ¢’ — ¢ by Art. 95, the quantity {'=¢" — (' — ) is
the geocentric zenith distance of the limb; and therefore, ap-
plying the geocentric semidiameter, { = S is the required geo-
centric zenith distance of the moon's centre. This process
involves the error of assuming the horizontal parallax for the
limb to be the same as that for the moon’s centre. It can easily
be shown, however, that the error in the result will never amount
to 0/.2, whieh in most cases in practice is unimportant. The
exact amount will be investigated in the next article.

8d. In the case of the sun or a planet, when the limb has been
observed, the process of reduction is, theoretically, the same as
for the moon; but the parallax is so amall that the augmentation
of the semidiameter is insensible. 'We therefore take

(' '=2z4+rx8

and then, computing the parallax by Art. 96, or even by Art. 90,
{={" — (' — Q) is the true geocentric zenith distance.

If a point has been referred to the sea horizon and the
measured altitude is H, then, D being the dip of the horizon,
h'= H — D is properly the observed altitude, and z=90° — &’
the observed zenith distance, with which we proceed as above.

136. The process above given for reducing the observed zenith
distance of the moon’s limb to the geocentric zenith distance of
the moon’s centre, is that which is usually employed; but the
whole reduction, exclusive of refraction, may be directly and
rigorously computed as follows. Putting

¢’ =2 z 4 r == the appareat zenith distance of the moon’s limb
corrected for refraction,
¢ = the geocentric nemth distance of tbe moon’s centre}

then, 8’ being the augmented semidiameter, we must substitute
¢’ = 8’ for {’ in the formule for parallax, and, by (101), we
have

fein (¢’ 4 8y =sin{ — psinxcos (p — ¢') tan y
Jeos (%' = 8')=cos{ — psinxcos (¢ — ¢)

Multiplying the first of these by cos {’, the second by sin {’, and
subtracting, we have
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p 8in = cos (p — ')

+f8in 8 =—sin (¢’ —0) + o~
7

sin (¢ —7)

in which f= ‘{ By (245) we have also
f8in 8’ =sgin §

and hence the rigorous formula
sin ({' — {) = p ain = 8in (C’-—y)w:psinﬂ
cos y

for which, however, we may employ with equal accuracy in
practice

sin ({’' —{) =psinzsin (' —y) Fsin S (254)
in which, 4 being the moon's azimuth, we have
/ r=(y—¢)cos d
If we put (Art. 128)
k=2 — 0.272958
a
e have ain S= k sin m, and (254) may be written as follows:
sin (' — ) = [psin (' —p) Fk]sinx (255)

For convenience in computation, however, it will be better to
make the following transformation. Put

gin p = p sin x 8in (' — ) . (256)
then (254) becomes
8in (' — &) =sinp F 8in S
=sin (p = 8) + sin p (1 — co8 8) = sin 8 (1 —cos p)
=sin (p F+ 8) + 2s8inpsin* } S 2 sin Ssinip

where the last two terms never amount to 0’.2, and therefore the
formula may be considered exact under the form

sin(' — ) =sin(px 8) F¥(pF 8)sin1”ginpsin§
Since ¢’ — ¢ and p = S differ by so small a quantity, there will
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be no appreciable error in regarding them as proportional to
their sines; and hence we have

¢ —L=pF8F1(pFx S)sinpsinS - (257)

the upper signs being used for the upper limb and the lower
signs for the lower limb.

In this formula, p is the parallax computed for the zenith
distance of the limb, and the small term }(p 5 S)sin p sin S may
be regarded as the correction for the error of assuming the
parallax of the limb to be the same as that of the centre.

ExampLe.—In latitude ¢ = 88° 59’ N., given the observed zenith
distance of the moon’s lower limb, z = 47° 29’ §8'/, the azimuth
A =33° 0/, Barom. 30.25 inches, At. Therm. 65° F., Ext. Therm.
64° F., Eq. hor. par. 7 = 59" 107.20; tind the geocentric zenith
distance of the moon's centre : '

(Table IIL.) (p —¢)=11'15" z = 47°20'68".00
log (¢ — ¢) = 2.8293 (TableIL.) r = 1 2.27
log cos 4 9.9236 ) {'=47 31 0.27
log ¥ 2.7529 y =__ 926,
(Table IIL.) log p 9.990428 {'—y =47 2184.
log sin 7 8.235806
log sin ({' — ) 9.866652
log sin p 8.101886 p= 48 28".09
log sin = 8.235806 S= 16 9.00
(Art. 128) log (0.272956)  9.436098 i P+ 8= 59 87.09
log sin § 7.671899  §(p + S)sin psin S= 0.11
log sin p sin § 5.7789 ' == 59 37 .20
log (p + 8) 8.56535 )
- log } 9.6990 {=46°81'28".07

log § (» + S) sin p sin § 9.0264

It is hardly necessary to observe that if the geocentric zenith
distance of the centre of the moon or other body is given, the
apparvent zenith distance of the limb affected by parallax and
refraction will be deduced by reversing the order of the steps
above explained.

If altitudes are given, we may employ altitudes throughout
the computation, putting everywhere 90° — A, &c. for 2, &c., and
making the necessary obvious modifications in the formule.
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CHAPTER V.

FINDING THE TIME BY ASTRONOMICAL OBSERVATIONS.

137. Wk have seen, Art. 55, that the local time at any place
is readlly found when the hour angle of any known heavenly
body is given. This hour angle is obtained by observation, but,
a direct measure of it being in general impracticable, we must
have recourse to observations from which it can be deduced.

The observer is supposed to be provided with a clock, chre-
nometer, or watch, which is required to show the time, mean or
sidereal, either at his own or at some assumed meridian, such as
that of Greenwich.

The clock correction* is the quantity which must be added alge-
braically to the time shown by the clock to obtain the correct
time at the meridian for which the clock is regulated. If we put

T = the clock time,
T’ = the true time,
AT = the clock corroction,
we have
T =T + AT
or AT =T7'—-T (268)

and the clock eorrection will be positive or negative, according as
the clock is slow or fast. It is generally the immediate object of
an observation for time to determine this correction. At the
instant of the observation, the time 7' is noted by the clock,
and if this time agrees with the time 77 computed from the
observation, the clock is correct; otherwise the clock is in error,
and its correction is found by the equation a7= T" — T.

The clock rate is the daily or hourly increase of the clock cor-
rection. Thus, if

* For brevity, I shall use clock to denote any time-keeper.
Vor. L—13
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AT, = the clock correction at a time T,

AT = 113 “« {3 T’

8T = the clock rate in a unit of time,
we have

aT=aT, +3T(T— T) (259)

where T'— T, must be expressed in days, hours, &c., according
as 7 is the rate in one day, one hour, &ec.

‘When, therefore, the clock correction and rate have been
found at a certain instant T}, we can deduce the true time from
the clock indication T (or “clock face,” as it is often called)
at any other instant, by the equation

Tu=T+An+aTau_nj ©(260)

If the clock correction has been determined at two different
times 7, and 7, the rate is inferred by the equation
AT — aT,

o7 ="2"
T T,

(261)

But these equations are to be used only so long as we can
regard the rate as constant.

Since such uniformity of rate cannot be assumed for any great
length of time, even with the best clocks (although the perform-
ance of some of them is really surprising), it is proper to make
the interval between the observations for time so small that the
rate may be taken as constant for that interval. The length of
the interval will depend upon the character of the clock and the
degree of accuracy required.

ExaMPLE.—At noon, May 5, the correction of a mean time
clock is — 16" 47°.30 ; at noon, May 12, it is — 16" 18°.50 ; what is
the mean time on May 25, when the clock face is 11* 18" 12:.6,
supposing the rate to be uniform ?

May 5, corr. = — 16~ 47-.30
“ 12, « = _—16 13.50

Ratein 7days = | 83.80
3T= 4+ 4.829

Taking, then, as our starting point 7, = May 12, 0*, we have
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for the interval to 7= May 25, 11* 18~ 12:.6, T — T, = 18¢ 11
18" 12.6 = 18%.467. Hence we have

aT, = — 16 18-.50
3T(T—Ty=+ 1 5.08
aT=_15 847

T =11*18~12:.60
I"=1058 4.13

But in this example the rate is obtained for one true mean
day, while the unit of the interval 184467 is a mean day as
shown by the clock. The proper interval with which to com-
pute the rate in this case is 18¢ 10* 58~ 4'.18 = 18%.457 with
which we find

AT, = — 16~13-50
ITX1845T =+ 1 498
AT =— 15 8.2

T = 11* 13~ 1260
I"=10 58 4.08

This repetition will be rendered unnecessary by always giving
the rate in a wunit of the clock. Thus, suppose that on June 3,
at 4* 11 12-.35 by the clock, we have found the correction
+ 2" 10~.14; and on June 4, at 14* 17 49.82, we have found
the correction + 2™ 19°.89 ; the rate in one hour of the clock will be

o7 = T275 _ | 42858
811104

For practical details respecting the care of clocks and other
time-keepers, the methods of comparing their indications, &c.,
see Vol. IL ; see also Chapter VIL., « Longitude by Chronometer.”
I shall here confine myself to the methods of determining their
correction by astronomical observation.

Those methods, however, which involve details depending
upon the peculiar nature of the instrument with which the ob-
servation is made, will be treated very briefly in this chapter,
and their full discussion will be reserved for Vol. I
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FIRST METHOD.—BY TRANSITS. °

138. At the instant of a star’s passage over the meridian, note
the time 7' by the clock. The star’s hour angle at that instant
is = 0*, whence the local sidereal time 7" is (Art. 55)

T' = a = the star’s right ascension.

If the clock is regulated to the local sidereal time, we have,
therefore,

AT=a—T

But if the clock is regulated to the local mean time, we first con-
vert the sidereal time a into the corresponding mean time 7"
(Art. 52), and then we have

AT=T-—-T

This, then, is in theory the simplest and most direct method
possible. It is also practically the most precise when properly
carried out with the transit instrument. But, as the transit in-
strument is seldom, if ever, precisely adjusted in the meridian,
the clock time 7 of the true meridian transit of a star is itself
deduced from the observed time of the transit over the instru-
ment by applying proper corrections, the theory of which will
be fully discussed in Vol. II.

It will there be seen, also, that the time may be found from
transits over any vertical circle.

S8ECOND METHOD.—BY EQUAL ALTITUDES.

189. (A.) Equal altitudes of a fized star.—The time of the meri-
dian transit of a fixed star is the mecan between the two times
when it is at the same altitude east and west of the meridian; so
that the observation of these two times is a convenient substi-
tute for that of the meridian passage when a transit instrument
is not available. The observation is most frequently made with
the sextant and artificial horizon; but any instrument adapted to
the measurement of altitudes may be employed. Tt is, however,
not required that the instrument should indicate the true alti-
tude; it is sufficient if the altitude is the same at both observa-
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tions. If we use the same instrument, and take care not to
change any of its adjustments between the two observations, we
may generally assume that the same readings of its graduated
arc represent the same altitude. Small inequalities, however,
may still exist, which will be considered hereafter.*

The clock correction will be found directly by subtracting
the mean of the two clock times of observation from the com-
puted time of the star’s transit.

ExaupLe 1.—March 19, 1856; an altitude of Arcfurus east
of the meridian was noted at 11" 4= 51°.5 by a sidereal clock,
and the same altitude west of the meridian at 17* 21 80*.0; find
the clock correction.

East . 11* 4~ 515
West 17 21 80.0
Merid. transit by clock = ' =14 13 10.75
March 19, Arcturus RR.A — e =14 9 7.11
Clock correction =aT=— 4 38.64

This is the clock correction at the sidereal time 14* 9= 7¢.11 or
at the clock time 14* 13™ 10°.75.

ExaupLe 2.—March 15, 1856, at the Cape of Good Hope,
Latitude 33° 56’ 8., Longitude 1* 13~ 56* E.; equal altitudes of
Spica are observed wnth the sextant as below, the times being
noted by a chronometer regulated to mean Greenwich time.
The artificial horizon being employed, the altitudes recorded are
double altitudes.

East. 2 Alt. Spica. West.

10* 20~ 0.5 104° O - 2% 40~ 38-.
« 20 28. “« 10 “ 40 10.5

“« 20 55. « 20 “ 39 42.
Means 10 20 27 .83 2 40 10.17
10 20 27 .88

Merid. Transit. by Chronom. = 7'=12 80 19.00

The chronometer being regulated to Greenwich time, we
must compute the Greenwich mean time of the star’s transit at
the Cape (Art. 52). We have

* For the method of observing equal altitudes with the sextant, see Vol II.,
* Sextant.”
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Local sidereal time of transit — a =  138% 17= 37,92

Longitude =— 118 56.

Greenwich sidereal time = 12 8 41.92
March 15, sid. time of mean noon — 28 33 5.87
8id. interval from mean noon = 12 30 36.56
Reduction to mean time = — 2 2.97

Mean Gr. time of star’s
} =T = 12 28 83.58

local transit

Chronometer time of do. = = 12 80 19.00
Chronometer correction =—=A7==— 1 456.42

140. (B). Equal altitudes of the sun before and after noon.—If the
declination of the sun were the same at both observations, the
hour angles reckoned from the meridian east and west would be
equal when the altitudes were equal, and the mean of the two
clock times of observation would be the time by the clock at
the instant of apparent noon, and we should find the clock cor-
rection as in the case of a fixed star. To find the correction
for the change of declination, let

¢ = the latitude of the place of observation,
& = the sun’s declination at apparent (local) noon,
a3 = the increase of decclination from the meridian to the west
observation, or the decrease to the east observation,
h = the sun’s true altitude at cach observation,
T, = the mean of the clock times A. M. and P.M.,
AT, = the correction of this mean to reduce to the clock time
of apparent noon,
t = half tho clapsed time between the observations.

Then we have

t 4+ AT, = the hour angle at the A. M. observation reckoned
towards the east,

t — AT, = tho hour angle at the P.M. observation,

8 — a3 = the declination at the A.M. “

3 + A8 — “« {3 PM “«

and, by the first equation of (14) applied to each observation,

8in A = 8in ¢ 8in (8 — Ad) 4 cos p cos (8 — ad)cos (t + AT
sin b = sin ¢ sin (3 4 Ad) + cos ¢ cos (8 + ad) cos (t — A T)
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If we substitute

sin (6 &= Ad) =sin 8 cos A3 = cosdsin ad
cos (8 = A3) = cosdcos A8 = sin dsin A
cos(t =aT,)=costcosal,FsintsinaT,

and then subtract the first equation from the second, we shall
tind
0 = 2 sin ¢ cos & sin A3 — 2 cos ¢ &in 3 8in A cos ¢ cos A T,
+ 2 cos ¢ cos 38int cos adsinaT,

whence, by transposing and dividing by the coefficient of sin a T},

. t 3.t tan aé. 3
sinaT, = — an A, ne + an tan? cos aT,
sint tant

This is a rigorous expression of the required correction a7}, but
the change of declination is so small that we may put ad for its
tangent, aT; for its sine, and unity for cos a7, without any
appreciable error; and, since ad is expressed in seconds of are,
we shall obtain a7 in seconds of time by dividing the second
member by 15. We thus find the formula*

ad.tan g  Ad.tansd
AT;: - -—
15 sint 15 tant

(262)

The Ephemeris gives the hourly change of 3. If we take it for
the Greenwich instant corresponding to the local noon, and call
it a’3, and if ¢ is reduced to hours, we have

Ad=a'3.t
and our formula becomes
a's.ttan @ aA'd.ttand uation
AT = — [Eq ] 2
° 15 8in ¢ + 15 tan ¢ for noon. (263)

To facilitate the computation in practice, we put

t t
A=— B= —
15 sint i 15 tan ¢
a=—A.A%.tan ¢ b=DB.s'3.tan 3 (264)
then we have
AT,=a +

# As first given by Gavuss, Monatliche Correspondens, Vol. 28.
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The correction aTj is called the equation of equal altitudes. The
computation according to the above form is rendered extremely
simple by the aid of our Table IV., which gives the values of
log A and log B with the argument “elapsed time” (= 2¢).
Then a and b are computed as above, the algebraic signs of the
several factors being duly observed. When the sun iz moving
towards the north, give a’d the positive sign; and also when
¢ and & are north, give them the positive sign; in the opposite
cases they tuke the negative sign. The signs of 4 and B are
given in the table; A being negative only when ¢ < 12* and B
positive when { < 6* or > 18,

When we have applied a7 to the mean of the clock times (or
the “middle time”), we have the time

T=T,+ aT,

a8 shown by the clock at the instant of the sun’s meridian transit.
Then, computing the time 77, whether mean or sidereal, which
the clock is required to show at that instant, we have the clock
correction, as before,

AT=T—-T

ExamMprLE.—March 5, 1856, at the U. 8. Naval Academy, Lat.
88° 59’ N., Long. 5* 6~ 57*.5 W., the sun was observed at the
game altitude, A.M. and P.M,, by a chronometer regulated to
mean Greenwich time; the mean of the A.M. times was 1* 8~ 26°.6,
aud of the P.M. times 8* 45 41°.T; find the chronometer cor-
rection at noon.

We have first AM. Chro. Time = 1* 8~ 26.6
PM. « “ =845 41.7

Elapsed time 2t =17 87 15.1
Middle time T, =4 57 4.15

From the Ephemeris we find for the local apparent noon of
March 6, 1856,

= —5°46'22"5  Equation of time = 4 11= 85+.11
2’3 = 4 58".10

For the utmost precision, we reduce a’d to the instant of local
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noon. With these quantities and ¢ = 88° 59/, we proceed as
follows:

Arg. 7 37~ TableXV.log 4 n9.4804 log B 9.2151
loga's 17642 loga’s 1.7642
log tan ¢ 9.9081 log tané n9.0047
loga nl.1527 logb 'n9.9840

a=—1421 b= — 096

Middle Chro. time T, =457~ 4.15
aT,=a+b=  —1517
Chro. Time of app. noon 7' =4 56 48.98

This quantity is to be compared with the Greenwich time of the
local apparent noon, since the chronometer is regulated to
Greenwich time. We have

Mean local time of app. noon = 0*11= 8511
Longitude =5 b5 57.50
Mean Greenwich time «=T =5 17 82.61

AT=T —T = 4 20~ 4363

. A
If the correction of the chronometer to mean local time is
required, we have only to omit the application of the longitude.
Thus, we should have

Chro. time of app. noon = 4* 56= 48°.98
Equation of time =—11 35.11

Chro. time of mean noon — 4 45 13 .87

und since at mean noon a chronometer regulated to the local
time should give 0* 0= (*, it is here fast, and its correction to
local time is — 4* 45™ 13°.87.

141. (C.) Equal altitudes of the sun in the afternoon of one day and
the morning of the next following day ; i.e. before and after midnight.—
It is evident that when equal zenith distances are observed in
the latitude 4 ¢, their supplement to 180° may*bé considered as
equal zenith distances observed at the antipode in latitude — ¢
on the same meridian. Hence the formula (263) will give the
¢quation for noon at the antipode by substituting — ¢ for + ¢,
that is, by changing the sign of the first term; but this noon at
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the antipode is the same absolute instant as the midnight of the
observer, and hence

a'd.ttang a'3.ttansd uation for
AT = q ]
’ 15sin t 15 tan ¢ midnight. (265)

and this is computed with the aid of the logarithms of A and B
in Table IV. precisely as in (264), only changing the sign of A.
The sign for this case is given in the table.*

142. To find the correction for small inequalities in the altitudes.—
If from a change in the condition of the atmosphere the re-
fraction is different at the two observations, equal apparent alti-
tudes will not give equal true altitudes. To find the change at .
in the hour angle ¢ produced by a change ak in the altitude &,
we have only to differentiate the equation

sin A — sin ¢ 8in' 8 -} cos ¢ cos 3 cos ¢
regarding ¢ and & as constant; whence

cos h. aAh = — cos ¢ cos 8 sin ¢. 15at

where ak is in seconds of arc and af in seconds of time.

If the altitude at the west observation is the greater by ak, the
hour angle is increased by at, and the middle time is increased by
3 at.  The correction for the difference of altitudes is therefore
—- } at, and, denoting it by a’7T;, we have, by the ahove equation,

ak.cos h
80 cos ¢ cos 38in ¢

o'T, = (266)
This correction is to be added algebraically to the middle clock
time in any of the cases (A), (B), (C) of the preceding articles.

ExaMpLE.—Suppose that in Example 2, Art. 189, there had
been observed at the east observation Barom. 80.30 inches,
Therm. 85° F., but at the west observation Barom. 29.55 inches,
Therm. 52° F. We have for the altitude 52° 5’ or zenith dis-
tance 87° 55/, by Table I., the mean refraction 45””.4. By Table

* For an example and some practical remarks, see my ‘Improved method of
finding the error and rate of a chronometer by equal altitudes,” Appendix to the
American Ephemeris for 1856 and 1857.
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XIV.A and XIV.B, the corrections for the barometer and ther-
mometer are as follows, taking for greater accuracy one-eighth
of the corrections for 6:

East Obs. West Obs.
Barom. 30.30 4 0"”.5 Barom. 29.55 — 0.6
Therm. 85°. 4+ 1 4 Therm. 52°. — 0 .1
+19 . =07

The difference of these numbers gives ah = +- 2.6 as the excess
of the true altitude at the west observation. IHence, by the
formula (266),

ah =4 2"6 log ah 0.415

h= b2° ¥ log cos & 9.789

¢ ——33 56 log sec ¢ 0.081

3=—10 25 log sec ¢  0.007

t = } elapsed time = 2* 9= 51-. log cosect 0.270
log 4% 8.528

A'T, = + 012 log a'T, 9.085

- When, however, several altitudes have been observed, as in
this example, we may obtain this correction from the observa-
tions themselves; for we see that the double altitude of Spica
changed 20’ =1200" in about 55°, and hence we have the

proportion
1200” : 2.6 = 55 : A'T,

which gives a’Ty=+ 012 as before. By taking the change in
the double altitude, the fourth term is the value of } af, or &’ 7},

If this correction be applied, we find the corrected time of
transit = 12* 30" 19".12, and consequently the chronometer cor-
rection aT= — 1™ 45°.54.

The altitudes may differ from other causes besides a change in
the refraction; for instance, the second observation may be in-
terrupted by passing clouds, so that the precisely corresponding
altitude cannot be taken; but, rather than lose the whole ob-
servation, if we can observe an altitude differing but little from
the first, we may use it as an equal altitude, and compute the
correction for the difference by the formula (266).

143. Effect of errors in the latitude, declination, and altitude upon
the time found by equal altitudes.—The time found by equal altitudes
of a tixed star is wholly independent of errors in the latitude
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and declination, since these quantities do not enter into the com-
putation. In observations of the sun, an error in the latitude

affects the term
a—=Aa'dtan ¢

by differentiating which we find that an error dy produces in a
" the error da = A a'd . sec’ ¢ . dp, or, putting sin dp for dp,

da = Aa’d secy sindyp

In the same manner, we find that an error dé in the declination
produces in b the error
db = Ba’s sec? 3 8in d8

In the example of Art. 140, suppose the latitude and declina-
tion were each in error 1. We have

log 44’8 n1.2446 log Ba's 0.9798
log sect ¢ 0.2188 log sec? ¢ 0.0044
log sin 1 6.4637 log sin 1’ 6.4637
logda a7.9271 logddb  7.4474

da = —0.008 db=+0.008

If dp and dé had opposite signs, the whole error in this case would
be 01.008 + 0.003 = 0+.011. As the observer can always casily
obtain his latitude within 1’ and the declination (even when the
longitude is somewhat uncertain) within a few seconds, we may
regard the method as practically free from the effects of any
errors in these quantities. The accuracy of the result will there-
fore depend wholly upon the accuracy of the observations.

The accuracy of the observations depends in a measure upon
the constancy of the instrument, but chiefly upon the skill of the
observer. Each observer may determine the probable error of
his observations by discussing them by the method of least
squares. An example of such a discussion will be given in the
fullowing article.

The effect of an error in the altitude is given by (266). Since
we have, 4 being the azimuth of the object,
cos 3sint

gin 4 =
cos h
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. the formula may also be written

A’ 1; — _AZ‘._
80 cos ¢ sin 4

which will be least when the denominator is greatest, i.e. when
A =90° or 270°, or when the object is near the prime vertical.
From this we deduce the practical precept to lake the observations
when the object is nearly east or west. This rule, however, must not
be carried so far as to include observations at very low altitudes,
where anomalies in the refraction may produce unknown dif-
ferences in the altitudes. If the star’s declination is very nearly
equal to the latitude, it will be in the prime vertical only when
quite near to the meridian, and then both observations may be
obtained within a brief interval of time; and this circumstance
is favorable to accuracy, inasmuch as the instrument will be less
liable to changes in this short time.

144, Probable error of observation.—The error of observation is
composed of two errors, one arising from imperfect setting of
the index of the sextant, the other from ,imperfect noting of the
time; but these are inseparable, and can only be discussed as a
single error in the observed time. The individual observations
are also affected by any irregularity of graduation of the sextant,
but this error does not affect the mean of a pair of observations
on opposite sides of the meridian; and therefore the error of
observation proper will be shown by comparing the mean of
the several pairs with the mean of these means. If| then, the
mean of a pair of observed times be called @, the mean of all
these means a,, the probable error of a single pair, supposing all
to be of the same weight, is*"

f(a—a,y
q\/ n—1
in which # = the number of pairs, and ¢ = 0.6745 is the factor

to reduce mean to probable errors. The probable error of the

final mean «, is
e

o ="/n : .

* 82e Appendix, Least Squares.
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ExaMpLE.—At the U. 8. Naval Academy, June 18, 1849, the
following series of equal altitudes of the sun was observed.

Chro. A M. Chro. P.M. a a—ay (@ —app
04 43m 5%,  A4dm 5 6136825 4 On12 0.0144
4“4 19, 43 38. 68.60 4+ 0.37 .1869
4“4 45, 43 11.6 68.25 4 0.12 L0144
46 11. 42 46.3 58.65 4 0.52 2704
45 37. 42 19.7 68.85 4 0.22 0484
46 1.7 41 63.5 67.60 —0.58 2809
46 28.5 4 27, 67.75 —0.38 1444
46 55. 4 05" 67.75  —0.38 1444
47 19.7 40 36.5 68.10  —0.08 .0009
6,=5 18 6813 X (a—a)?= 1.0551

n=29 2 (a —a,)?
a—1=8 re=gyar = 02
r
— T = o082
To— ‘/n

A similar discussion of a number of sets of equal altitudes of
the sun taken by the same observer gave 07.23 as the probable
error of a single pair for that observer, and consequently the
probable error of the result of six observations on each side of
the meridian would be'only 023 + /6 = 0.094. This, how-
ever, expresses only the accidental ervor of observation, and does
not include the effect of changes in the state of the sextant be-
tween the morning and afternoon observations. Such changes
are not unfrequently produced by the changes of temperature to
which it is exposed in observations of the sun; it is important,
therefore, to guard the instrument from the sun’s rays as much
as possible, and to expose it only during the few minutes
required for each observation. The determination of the time
by stars is mostly free from difficulties of this kind, but the
observation is not otherwise so accurate as that of the sun, ex-
cept in the hands of very skilful observers.

THIRD METHOD.—BY A SINGLE ALTITUDE, OR ZENITH DISTANCE.

145. Let the altitude of any celestial body be observed with
the sextant or any altitude instrument, and the time noted by
the clock. For greater precision, observe several altitudes in
quick succession, noting the time of each, and take the mean of
the altitudes as corresponding to the mean of the times. But
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in taking the mean of several observations in this way, it must
not be forgotten that we assume that the altitude varies in pro-
portion to the time, which is theoretically true only in the
exceptional case where the observer is on the equator and the
star’s declination is zero. It is, however, practically true for an
interval of a few minutes when the star is not too near the
meridian. The observations themselves will generally show the.
limit beyond which it will not be safe to apply this rule. "When
the observations have been extended beyond this limit, a cor-
rection for the unequal change in altitude (i.e. for second differ-
ences) can be applied, which will be treated of below.

With the altitude and azimuth instrument we generally ob-
tain zenith distances directly. In all cases, however, we may
suppose the observation to give the zenith distance. Ilaving
then corrected the observation for instrumental errors, for re-
fraction, &c., Arts. 135, 136, let { be the resulting true or geo-
centric zemth distance. Let ¢ be the latitude of the place of
observation, & the star’s declination, ¢ the star’s hour angle.
The three sides of the spherical triangle formed by the zenith,
the pole, and the star may be denoted by a =90° — ¢, b=¢, ¢ =
90° — ¢, and the angle at the pole by B = ¢, and hence, Art. 22,
we deduce

sinit=\/(smi['+(¢—a)] sm&['-(gv—ﬁ)]) (267)

cos ¢ cos ¢

which gives ¢ by a very simple logarithmic computation. Krom
t we deduce, by Art. 55, the local time, which compared with
the observed clock time gives the clock correction required.

It is to be observed that the double sign belonging to the
radical in (267) gives two values of sin ¢ the positive corre-
sponding to a west and the negative to an east hour angle; since
any given zenith distance may be observed on either side of the
meridian. To distinguish the true solution, the observer must
of course note on which side of the meridian he has observed.

If the object observed is the sun, the moon, or a planet, its
declination is to be taken from the Ephemeris, for the time of
the observation (referred to the meridian of the Ephemeris); but,
as this time is itself to be found from the observation, we must
at first assume an approximate value of it, with which an approxi-
mate declination is found. With this declination a first compu-
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tation by the formula gives an approximate value of ¢, and hence
a more accurate value of the time, and a new value of the decli-
nation, with which a second computation by the formula gives a
still more accurate value of {. Thus it appears that the solution
of our problem is really indirect, and theoretically involves an
infinite series of successive approximations; in practice, how-
ever, the observer generally possesses a sufliciently precise value
of his clock correction for the purpose of taking out the declina-
tion of the sun or planets. The moon is never employed for
determining the local time except at sea, and when no other
object is available.*

ExaMpLe.—At the U. S. Naval Academy, in Latitude ¢ = 38°
58’ 53" N., Longitude 5" 5™ 57.5 W., December 9, 1851, the fol-
lowing double altitudes of the sun west of the meridian were
observed with a sextant and artificial horizon, the times being
noted by a Greenwich mean time chronometer: "

Chronometer. 20t
7* 85 1425 33° 30 Barom. 30.28 inches.
35 55. “« 20 Att. Therm. 55° F.
86 85.5 “ 10 Ext. Therm. 50° F.
87 15.5 « 0 Index correction of the
87 55. 82 50 soxtant — — 1’ 10"
Means 7 36 35.1 33 10

The approximate correction of the chronometer was assumed te
.be 4+ 9" 40*. Find its true correction.

With the assumed chronometer correction we obtain the ap
proximate Greenwich time = T7* 46 15, with which we take
from the Ephemeris

3 = — 22° 50’ 27" Sun’s semidiameter S = 16’ 17"
Eq.of time = — 72580 « hor. parallax == 8.7

We have then

# But the moon’s altitude and the hour angle deduced from it may be used in
finding the observer's longitude, as will be shown in the Chapter on Longitude.

t The symbol () is used for * observed altitude of the sun’s lower limb,” and 2 ()
for the double altitude from the artificial horizon. In a similar manner we use

Uv l’ -5
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Observed 2@ =83° 10 0”

Indexcorrr, =— 110
83 8 60

App. altitude =16 34 25
z2=178 25 85

(TableIL)yr =4 8 15
x8inz—p = — 8
S=— 16 17

=178 12 25

The computation by (267) is then as follows: ,
¢— 88°58 53" logsecp  0.109383

8= —22 50 27 log sec & -0.085464
¢g—3= 61 49 20 log sin } sum 9.965661
= 178 12 25 log sin } diff. 8.996455
tsum = 67 80 52.5 19.106963
¢ diff. = 5 41 82 .5 logsin § ¢ 9.5563482

$ ¢t = 20° 57’ 25”.6
Apparent time = ¢t = 2* 47~ 89°.4

Eq. of time =—1T7 258
Local mean time =2 40 136
Longitude =56 5 57.5

. TrueGr.Timoe=T"'=17 46 11.1
T=17 36 8.1

aT=4 9 386.0

agreeing 8o nearly with the assumed correction that a repetition
of the computation is unnecessary. .

146. If it is preferred to use the altitude instead of the zenith
distance, put the true altitude 2 = 90° — ¢, and the polar distance
of the star P = 90° — 4, then we have, in (267),

sin}[s— (¢ —3)]=s8in}(90° —h — ¢+ 90°— P)=cos } (h+ ¢+ P)
sin}[{+ ¢ —3]=sin$(90° —h + ¢ —90°+ P)=sin } (¢ + P—h).

If then we put
‘ =itk +¢+ P)
the formula becomes
cos 8 8in (8 — R)
sinit_\/( cos ¢ 8in P ) (268

Vor. I.—14



219 TIME.

In this form we may always take P = the distance from the eie-
vated pole, and regard the latitude as always positive, and then
no attention to the algebraic signs of the quantities in the second
member is required. Thus, in the precediag example, we should
proceed as follows:

App. alt. = 16° 34’ 25"

S= 16 17
h= 16 47 35
¢— 88 88 88 ..... log sec  0.109383
P=112 50 27 ..... log cosec 0.035464

23 =168 36 55
§= 84 18 2T 5..... log cos  8.996455
8—MA= 67 30 52 .5..... log sin  9.965661

19.106963
and the computation is finished as in the preceding article.

147. If we aim at the greatest degree of precision which the
logarithmic tables can afford, we should find the angle ¢ by its
tangent, since the logarithms of the tangent always vary more
rapidly than those of the other functions. For this purpose we
deduce

s=1(+¢+9
_ 8in (s — ¢) sin (s — 8) (269)
tan}t._\/( 008 8 608 (8 — {) )

or, if the altitude’is used,
s=1(h+9¢+ P)

. cos 8 sin (8 — &) (270)
t‘lm*t—\/(sin (s—-¢)eos(3—P))

148. If a number of observations of the same star at the same
place are to be individually computed, it will be most readily
done by the fundamental equation

cos { — sin ¢ 8in &
cos ¢ cos 3

co8 T —
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for the logarithms of sin ¢ sin & and eos ¢ cos ¢ will be constant,
and for each observation we shall only have to take from the
trigonometric table the log. of cos {; the logarithm of the nume-
rator will then be found by the aid of Zecr’s Addition -or Sub-
traction Table, which is included in IIiLsse’s edition of VEGA's
Tables. The addition or the subtraction table will be used ac-
cording as sin ¢ sin d is positive or negative.

149. Effect of errors in the data upon the time computed from an
altitade—We have from the difterential equation (51), Art. 85,
multiplying d¢ by 15 to reduce it to seconds of arc,

8in ¢ cos 8 (15dt) = d% — cos Adg + cos g ds

where dZ, dp, d3, may denote small errors of ¢, ¢, 8, and df the
corresponding error of {; A is the star’s azimuth, ¢ the parallactie
angle, or angle at the star.

If the zenith distance alone is erroneous, we have, by putting
de = 0, and dd = 0,

@& &

15dt = = -
8in:q cos &  cos ¢ 8in A

from which it follows that a given error in the zenith distance
will have the least effect upon the computed time when the
azimuth is 90° or 270°; that is, when the star is on the prime
vertical ; for we then have sin A = + 1, and the denominator
of this expression obtains its maximum numerical value. Also,
since cos ¢ is a maximum for ¢ = 0, it follows that observa-
tionus of zenith distances for determining the time give the
most accurate results when the place is on the equator. On the
other hand, the least favorable position of the star is when it is
ou the meridian, and the least favorable position of the observer
is at the pole.

By putting df = 0,dd = 0, sin ¢ cos & = cos ¢ sin 4 we have

dt=— %
cos ¢ tan 4’

by which we see that an error in the latitude also produces the
least eftect when the star is on the prime vertical, or when the
observer is on the equator. Indeed, when the star is exaectly im
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the prime vertical, a small error in ¢ has no appreciable effect:
since, then, tan 4 = oo, and hence when the latitude is uncertain,
we may still obtain good results by observing only stars near the
prime vertical.

By putting df = 0, d¢p = 0, we have

ds

15dt = ————
cos & tangq

which shows that the error in the declination of a given star
produces the least effect when the star is on the prime vertical ;*
and of difterent stars the most ehglble is that which is nearest
to the equator.

As very great zenith distances (greater than 80°) are; if pos~
sible, to be avoided on account of the uncertainty in the refraction,
the observer will often be obliged, especially in high latitudes,
to take his observations at some distance from the prime vertical,
in which case small errors of zenith distance, latitude, or declina-
tion may have an important effect upon-the computed clock cor-
rection. Nevertheless, constant errors in these quantities will
have no sensible effect upon the rate of the clock deduced from
zenith distances of the same star on different days, if the star is
observed at the same or nearly the same azimuth, on the same
side of the meridian; for all the clock corrections will be in-
creased or diminished by the same quantities, so that their
differences, and consequently the rate, will be the same as if
these errors did not exist. The errors of eccentricity and
graduation of the instrument are among the constant errors
which may thus be eliminated.

But if the same star is observed both east and west of the
meridian, and at the same distance from it, sin 4 or tan 4, and
tan ¢, will be positive at one observation and negative at the
other, and, having the same numerical value, constant errors
dyp, dd, and df will give the same numerical value of dt with
opposite signs. Ilence, while one of the deduced clock correc-
tions will be too great, the other will be too small, and their
mean will be the true correction at the time of the star’s transit

cos ¢

* From the equation sin g = sin 4, it follows that sin ¢ is a mazimum

(for constant values of ¢ and J) when sin 4 =1, and tan ¢ is & maxirium ir the
snme case,
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over the meridian. Hence, it follows again, as in Art. 148, that
small errors in the latitude and declination have no sensible
effect upon the time computed from equal altitudes.

150. To find the change of zenith distance of a star in a given in-
lerval of time, having regard to second differences.
The formula
d =cos ¢ sin A dt

is strictly true only when dZ and d¢ are infinitesimals. But the
complete expression of the finite difference aZ in terms of the
finite difference af involves the square and higher powers of at.
Let £ be expressed as a function of ¢ of the form

C=/st

then, to find any zenith distance 4 aZ corresponding to the
hour angle ¢ 4 at, we have, by TayLor’s Theorem,

. dft aft ar
I=f( )y =ft + —-at —4 ...
C+ al=f(+ a?) f‘+th+dt' 2-}
or, taking only second differences,
44 d®, ar

I =—1-at —_— e

S=uttt '
We have already found

%:cosysinA

which gives, since A4 varies with ¢, but ¢ is constant,

daz d4A
— =cospcos 4. —
dt dt

But from the second of equations (51) we have, since d¢ and dy
are here zero,

dA _cosgcosd cosgsind

at sin { sin ¢
whence
d*}  cos ¢ 8in A cos 4 cos ¢

E; sin ¢
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aud the expression for a becomes

cos g 8in 4 cos 4 cosg Al

A =oe8 g sin 4.4t + -
sin ¢ 2

Since af and at are here supposed to be expressed in parts of
the radius, if we wish to express them in seconds of arc and of
time respectively, we must substitute for them a¢ sin 1’/ and
154t sin 1’7, and the formula becomes

cospgindcos Acosq (15at)'sin1”

A% = cosgsin 4 (15at) + Tt 2
8in

(@11)

‘But in so small a term as the last we may put

(15at)?sin 1” - 2sin? §at
2 sin1”

the value of which is given in our Table V., and its logarithm
in Table VL. ; so that if we put also

a=co8 ¢gind, k= M
sin ¢
we shall have
A = 15aat + akm 272)

151. A number of zenith distances being observed at given clock
times, lo correct the mean of the zewith distances or of the clock times
Jfor second differences.—The first term of the above value of af
wvaries in proportion to af, but the second term varies in propor-
tion to af; and hence, when the interval is sufficiently great to
render this second term sensible, equal intervals of time corre-
spond to unequal differences of zenith distance, and vice versa:
in other words, we shall have second differences either of the
zenith distance or of the time. Two methods of correction
present themselves.

1st. Reduction of the mean of the zenith distances to the mean of the
times.—Let T, T, T, &c. be the observed clock times; {,, £ s
&c. the corresponding observed zenith distances; 7"the mean of
the times; {, the mean of the zenith distances; { the zenith
distance corresponding to 7. The change ¢, — ¢ corresponds to
the interval 7, — T, {, — { to T, — T, &c.; so that if we put

T—T=z, T,-- T=r, &
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we have, by (272),

6, ~¢=15a7 + alm,

€ — = 15at,+ akm,

L —C=15ar, 4 akm,
&o. &o.

in which m, = 295 tn  _ 28in'ic, oo orefound by Tab.V.

sin 17 ’ gin 17 ’

with the arguments r,, r,, &e¢. The mean of these equations,
observing that

Tl+f.+fo+&c'=0

gives :
' =t —ak. Tt et ™+ b
n :

in which n=the number of observations. Or, denoting the mean
of the values of m from the table by m,, that is, putting

m _m + m, 4 m, 4 &e.
o n

we have
¢ =¢, — akm, (278)
2d. Reduction of the mean of the times to the mean of the zenith
distances.—Let T, be the clock time corresponding to the mean
of the zenith distances, then £, — £ is the change of zenith dis-
tance in the interval 7; — 7, and, since this interval is very small,
we shall have sensibly
150’(1’0 -1 ={°—§=akm°
whence
T,=T+ {5km, (274)
‘We have, then,only to compute the true time 7}/ from the mean
of the zenith distances in the usual manner, and the clock cor-
rection will then be found, as in other cases, by the formula
aT=T' —T,
To compute %, we must either first find ¢ and A4, or, which is
preferable, express it by the known quantities. We have '
cos g co8 A — cos ¢t — sin ¢ sin 4 oos ¢
sin® ¢
sin?{

=cost — cos ¢ o8 8 cos ¢
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whence
sin ¢ cos ¢ cos 8

275
sin { tan ¢ (75)

T,=T+ Pym,cott — fym,

in which we employ for { and ¢ the mean zenith distance and _
the computed hour angle.

This mode of correction is evidently more simple and direct
than the first.

ExaMpLE.—In St. Louis, Lat. 88° 88’ 15" N., Long. 6* 1* "W,
tne following double altitudes of the sun were observed with a
Pistor and Martin prismatic sextant, the index correction of
which was 4 20”7, The assumed correction of the chronometer
to mean local time was + 2™ 12. Barom. 80.25 inches, Att.
Therm. 80°, Ext. Therm. 81°.

St. Louis, June 24, 1861.

20 Chronom. T [
125° 15’ 10”. 204 14m30n.5  6m42 88”.14
125 49 10 16 76 6 & 50 .78
126 23 0 17 46.0 8 26 28 .14
126 41 40 18 89.6 2 88 12 .76
127 82 80 21 65 0 6 0 .02
127 67 45 22 22. 110 2 .67
128 22 0 23 886 2 21 10 .84
128 51 50 . 2 1.2 8 49 28 .60
129 8 85 25 51.8 4 89 42 45
129 83 0 27 86 b 61 67 .19
Mean 127 33 28 T7=22 21 12.15 m, = 82 .65
+ 20 Correction for}=_ 1.67
127 38 48 d diff, * log m, 1.56189
Obed @ 63 46 b4 T, =22 21 10.48 :°8'1’8 8.8239
®r = — 272 Ty —22 28 22.94 logcott n0.3367
———— 478 a06i4
P= + 8.7 AT=4 2 12.46 —_—
§= 4 15646 .8 log gy m,  0.3878
hy= 64 216.8 logsin¢  »9.6215
{o= 26 b7 43 .2 logcosg  9.8927
¢= 88 8815. log cos & 9.9627
d= 232349.3 log cosec {, 0.8588
¢ =_m log cot {, 0.8125
=— 1»88m55.28 —8.06  1n0.4860
App. time = 22 21 4.77 —1.67

Eq.oftime = 4+ 2 18.17
T) = 22 23 22.94

*The refraction should here be the mean of the refractions computed for the
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The ccrrection for second differences is particularly useful in
reducing series of altitudes observed with the repeating circle ;*
for with this instrument we do not obtain the several altitudes,
but only their mean. (See Vol. IT.) When the several altitudes
are known, we can avoid the correction by computing each
observation, or by dividing the whole series into groups of such
extent that within the limits of each the second differences will
be insensible, and computing the time from the mean of each

group.

FOURTH METHOD.—BY THE DISAPPEARANCE OF A STAR BEHIND A
TERRESTRIAL OBJECT.

152. The rate of the clock may be found by this method with
considerable accuracy without the aid of astronomical instru-
ments. The terrestrial object should have a sharply defined
vertical edge, behind which the disappearance is to be observed
and the position of the eye of the observer should be preclsely
the same at all the observations. If the star’s right dscension
and declination are constant, the difference between the sidereal
clock times 7} and 7 of two disappearances is the rate 7"in the
interval, or

8T=1T,—T,

but if the right ascension & has increased in the interval by aa,
then the rate is
3T = T'l _ T, + Aa

To find the correction for a small change of declination = ad,

several altitudes or zenith distances, but for small zenith distances the difference
will be insensible. At great zenith distances we should compute the several refrac-
tions, but under 80° we may take the refraction r for the mean apparent zenith
distance z,, and correct it as follows: Take the difference between 2z, and each 3z, and
the mean m, of the values of

__2sin?} (z — z,)

- sin 17

from Table V. (converting the argument £ — z, into time); then the mean of the
refractions will be found by the formula
1o = r + 2m, sin r sec? z,

The difference z — 2z, should not much exceed 1°.
# This method was frequently practised in the geodetic survey of France. See
Nouvelle Description Géoméirique de la France (Puissant), Vol. 1. p. 96.
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we have, by the second equation of (§1), since the azimuth is here
constant as well as the latitude, so that dd = 0 and dp = 0,

A — — asdtan ¢
15 cos 8
and hence the rate in the interval will be
8 tan
T =T, —T,+ 20—~
: T e — 15 cos 8 (276)

The angle g will be found with sufficient precision from an
approximate value of ¢ by (19) or (20).

If we know the absolute azimuth of the object, we can find
the hour angle by Art. 12, and hence also the clock correction.

TIME OF RISING AND SBTTING OF THE STARS.
153. To find the time of true rising or setting,—that is, the instant
when the star is in the true horizon,—we have only to compute
the hour angle by the formula (28)

008 t.= — tan g tan &
and then deduce the local time by Art. 55.

154. To find the time of apparent rising or selting,—that is, the
instant when the star appears on the horizon of the observer,—we
must allow for the horizontal refraction. Denoting this refraction
by r,, the true zenith distance of the star at the time of apparent
rising or setting is 90° 4 r,, and, employing this value for ¢, we
compute the hour angle by (267).

Since the altitude A =90° — ¢, we have in this case k = — r,,
with which we can compute the hour angle by the formula (268).

In common life, by the time of sunrise or sunset is meant the
instant when the sun’s upper limb appears in the horizon. The
true zenith distance of the centre is, then, { =90°+ r,— 7z + S
(where = = the horizontal parallax and S = the semidiameter),
with which we compute the hour angle as before. The same
form is to be used for the moon.

TIME OF THE BEGINNING AND ENDING OF TWILIGHT.

155. Twilight begins in the morning or ends in the evening
when the sun is 18° below the horizon, and consequently the
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zenith distance is then { = 90° + 18°, or A = — 18°, with which
we can find the hour angle by (267) or (268).

Nore.—Methods of finding at once both the time and the latitude from observed
altitudes will be treated of under Latitude, in the next chapter.

FINDING THE TIME AT SEA. .
First Method.—By a Single Altitude.

156. This is the most common method among navigators, as
eltitudes from the sea horizon are observed with the greatest
facility with the sextant. Denoting the observed altitude cor-
rected for the index error of the sextant by H, the dip of the
horizon by D, we have the apparent altitude A’ = H — D; then,
taking the refraction r for the argument 4’, the true altitude of a
star is A = A’ — r, A planet is observed by bringing the esti-
mated centre of its reflected image upon the horizon, so that no
correction for the semidiameter is employed; the parallax is com-
puted by the simple formula (7 being the horizontal parallax)

p=mcosh
and hence for a planet
A=K —r4+zxcoshk

The moon and sun are observed by bringing the reflected
image of either the upper or the lower limb to touch the horizon.
As very great precision is neither possible nor necessary in these
observations, the compression of the earth is neglected, and the
parallax is computed by the formula

p==acos(W —r)
aand then, S being the semidiameter,
h=HK—r4+rncos(F —r)+ S

In nautical works, the whole correction of the moon'’s altitude
for parallax and refraction = x cos (A’ — r) — r is given in a table
with the arguments apparent altitude (') and horizontal parallax
(7). In the construction of this table the mean refraction is used,
but the corrections for the barometer and thermometer are given
in a very simple table, although they are not usually of sufficient
importance to be regarded in correcting altitudes of the moon
which are taken to determine the local time.
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The hour angle is usually found by (268).

It is important at sea, where the latitude is always in some
degree uncertain, to find the time by altitudes near the prime
vertical, where the error of latitude has little or no effect
(Art. 149).

157. The instant when the sun’s limb touches the sea horizon
may be observed, instead of measuring an altitude with the sex-
tant. In this case the refraction should be taken for the zenith
distance 90° 4+ D, but, on account of the uncertainty in the hori-
zontal refraction, great precision is not to be expected, and the
mean horizontal refraction r, may be used. We then have
£=90°+ D + r,— = = §, with which we proceed by (267). In
so rude a method, 7 may be neglected, and we may take 16’ as
the mean value of S, 36’ as the value of r, 4’ as the average
value of D from the deck of most vessels; then for the lower
limb we have £ = 90° 56/, and for the upper limb £ =90° 24’. If
both limbs have been observed and the mean of the times is
taken, the corresponding hour angle will be found by taking
¢ = 90° 40’

Second Method.— By Egqual Altitudes.

158. The method of equal altitudes as explained in Arts. 139
and 140 may be applied at sea by introducing a correction for
the ship's change of place between the two observations. If,
however, the ship sails due east or west between the observa-
tions, and thus without changing her latitude, no correction for
her change of place is necessary, for the middle time will evi-
dently correspond to the instant of transit of the star over the
middle meridian between the two meridians on which the equal
altitudes are observed, But, if the ship changes her latitude,
let

ag = the increase of latitude at the second observation;

then (Art. 149) the effect upon the second hour angle is

Ag

Al —m— —m———
15cos ¢ tan 4

which is the correction subtractive from the second olserved
time to reduce it to that which would have been observed if the
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ship had not changed her latitude or had run upon a parallel.
Ilence }at is to be subtracted from the mean of the chrono-
meter times to obtain the chronometer tlme of the star’s transit
over the middle meridian.

In this formula we must observe the sign of tan 4. It will
be more convenient in practice to disregard the signs, and to
apply the numerical value of the correction to the middle time
according to the following simple rule :—add the correction when
the ship has receded from the sun; subtract it when the ship has
approached the sun.

The azimuth may be found by the formula

sin ¢ cos &

gin 4 =
o - cosh

in which for ¢ we take one-half the elapsed time.

The sun being the only object which is employed in this way,
we should also apply the equation of equal altitudes, Art. 140;
but, as the greatest change of the sun’s declination in one hour
is about 1/, and the change of the ship’s latitude is generally
much greater, the equation is commonly neglected'as relatively
unimportant in a method which at sea is necessarily but ap-
proximate. But, if required, the equation may be computed
and applied precisely as if the ship had been at rest.

ExaMpLE.—At sea, March 20, 1856, the latitude at noon being
89° N, the same altitude was observed A.M. and P.M. as fol-
lows, by a chronometer regulated to mean Greenwich time:

Obsd. © 30° ¢ AM. Chro. time = 11* 89~ 33

Index corr. — 2 PM. « “« = 6 20 17
Dip — 4 Elapsed time =2t—= 6 40 44
Refraction — 2 Middle time = 2 59 55
Semidiam. 4 16 Chron.correction = — 2 12
h=380 8 Green. time of}= 2 57 43

noon

The ship changed her latitude between the two observations
by ap = — 20’ = — 1200””. For the Greenwich date March
20, 2* 58, the Ephemeris gives 8 = + 0° 4/, and we have ¢ =
8 20= 22¢ = 50° &’ 30", ¢ = 89° 0’. Hence
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log sin ¢t 9.8848 log 5% 85229
log cos 8 0.0000 log a9  8.0792
log sec A 0.0631 log sec ¢ 0.1095
log sin 4 9.9479 log cot 4 9.7165

log 26°.8 1.4281

The ship has approached the sun, and hence 26°.8 must be sub-
tracted from the middle time.

If we wish to apply the equation of equal altitudes, we have
further from the Ephemeris a’d = 4 59", and hence, by Art.
140,

log A 1n9.4628 log B 9.2698
log &’  1.7709 log &’  1.7709
log tan ¢ 9.9084 Jog tan ¢ 7.0658

= — 139 log a n1.1421 b=+ 0.0 log b 8.1065
Hence we have
Chro. middle time = 2% 59* 55.
Corr. for change of lat. = — 28.8
Equation of eq. alts. = — 18.9
"Chro. time app. noon =2 59 14.3

At sea, instead of using the observation to find the chrono-
meter correction, we use it to determine the ship’s longitude (as
will be fully shown hereafter); and therefore, to carry the opera-
tion out to the end, we shall have

Chro. time app. noon = 259~ 14°
Corr. of chronom. =— 2 12,
Green. mean time noon = 2 587 2
Equation of time =— 7 48

Greenwich app. time at thelocal noon = 2 49 14

which is the longitude of the middle meridian, or the longitude
of the ship at noon.

159. In low latitudes (as within the tropics) observations for
the time may be taken when the sun is very near the meridian,
for the condition that the sun should be near the prime vertical
may then be satisfied within a few minutes of noon; and in case
the ship’s latitude is ezactly equal to the declination, it will be
satisfied ondy when the sun is on the meridian in the zenith. In
such cases the two equal altitudes may be observed within a few
minutes of each other, and all corrections, whether for change
of latitude or change of declination, may be disregarded.
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CHAPTER VL

FINDING THE LATITUDE BY ASTRONOMICAL OBSERVATIONS.

160. By the definition, Art. 7, the latitude of a place on the
surface of the earth is the declination of the zenith. It was also
shown in Art. 8 to be equal to the altitude of the north pole above
the horizon of the place. In adopting the latter definition, it is
to be remembered that a depression below the horizon is a
negative altitude, and that south latitude is negative. The
south latitude of a place, considered numerically, or without
regard to its algebraic sign, is equal to the elevation of the
south pole. ’

It is to be remembered, also, that the latitude thus defined is
not an angle at the centre of the earth measured by an arc of
the meridian, as it would be if the earth were a sphere; but it
is the angle which the vertical line at the place makes with the
plane of the equator, Art. 81.

‘We have seen, Art. 86, that there are abnormal deviations of
the plumb line, which make it necessary to distinguish between
the geodetic and the astronomical latitude. We shall here treat ex-
clusively of the methods of determining the astronomical lati-
tude; for this depends only upon the actual position of the
plumb line, and is merely the declination of that point of the
heavens towards which the plumb line is directed.

FIRST METHOD.——BY MERIDIAN ALTITUDES8 OR ZENITH DISTANCES.

161. Let the altitude or zenith distance of a star of known
declination be observed at the instant when it is on the meridian.
Deduce the true geocentric zenith distance ¢, and let 8 be the
geocentric declination, ¢ the astronomical latitude.

Let the celestial sphere be projected on the plane of the
meridian, and let ZNZ’, Fig. 24, be the celestial meridian; C
the centre of the sphere coincident with that of the earth: PCP’
the axis of the sphere; P the north pole; and ECQ the projection
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of the plane of the equinoctial. Let CZ be parallel to the
vertical line of the observer; then the point Z of the celestial
sphere, being the vanishing point of all
lines parallel to CZ, is the astronomical
4 P zenith of the observer, and ZE = the astro-
E &  nomical latitude = ¢. If, then, 4 is the
position of the star on the meridian, north
o ~ of the equator but south of the zenith, we
d have ZA = ¢, AE = 3, and hence

Fig. 24.

- p=38+¢ @™

This equation may be treated as entirely general by attending
to the signs of & and ¢. Since in deducing it we supposed the
star to be north of the equator, it holds for the case where it is
south by giving the declination in that case the negative sign,
according to the established practice; and, since we supposed
the star to be south of the zenith, the equation will hold for the
case where it is north of the zenith by giving ¢ in that case the
negative sign. If the star is so far north of the zenith as to be
below the pole, or at its lower culmination, the equation will
still hold, provided we still understand by &8 thc star’s distance
north of the equator, measured from E through the zenith and
elevated pole, or the arc EA’. This arc is the supplement of the
declination; and we may here remark that, in general, any
formula deduced for the case of a star above the pole will
apply to the case where it is below the pole by employing the
_ supplement of the declination instead of the declination itself;
that is, by reckoning the declination over the pole.

The case of a star below the pole is, however, usually con-
sidered under the following simple form. Put

P — P4’ = the star’s polar distance,
h =NA' = ¢ true altitude,

then
¢ =P 4 h : (278)

in which for south latitude P must be the star’s south polar dis-
tance, and tho sum of £ and & is only the numerical value of ¢.
The dzclination is to be found for the instant of the meridian
transit by Art. 60 or 62.
In the observatory. instruments are employed which give
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directly the zenith distance, or its supplement, the nadir distance.
With a meridian circle perfectly adjusted in the meridian, the
instant of transit would be known without reference to the
clock, and the observation would be made at the instant the
star passed the middle thread of the reticule; but when the in-
strument is not exactly in the meridian, or when the observation
is not made on the middle thread, the observed zenith distance
must be reduced to the meridian, for which see Vol. II., Meridian
Circle.

‘With the sextant or other portable instruments the meridian
altitude of a fixed star may be distinguished as the greatest
altitude, and no reference to the time is necessary. But, as the
sun, moon, and planets constantly change their declination,
their greatest altitudes may be reached either before or after the
meridian passage ;* and in order to observe a strictly meridian
altitude the clock time of transit must be previously computed
and the altitude observed at that time.

ExampLe 1.—On March 1, 1856, in Long. 10* 5~ 82 E., suppose
the apparent meridian altitude of the sun’s lower limb, north of
the zenith, is 63° 49’ 50’/, Barom. 80. in., Ext. Therm. 50°; what
is the latitude ?

App. zen. dist. @ =  26° 10" 10”.

r — —+ 28 .7
p= _— 3.8
S= +1610.3
{ =—26 26 45 .2
3 =— 73 5238
¢ =—233 59 51.0

ExampLe 2.—July 20, 1856, suppose that at a certain place
the true zenith distances of a Aquile south of the zenith, and
a Cephei north of the zenith, have been obtained as follows:

a Aquilse o Cephei
¢ = 4 26° 3¢ 275 = —26° 54 28”3
d—=4 8 29 227 2= 461 5821.1
¢=+35 3502 ¢=+435 8528

The mean latitude obtained by the two stars is, therefore,
¢ = -+ 85° 8’ 51””.5. In this example, the stars being at nearly

* See Art. 172 for the method of finding the time of the sun's greatest altitude,
which may also be used for the moon or s planet.
Vor. L.—15
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the same zenith distance, but on opposite sides of the zenith, any
constant though unknown error of the instrument, peculiar to
. that zenith distance, is eliminated in taking the mean. Thus,
if the zenith distance in both cases had been 10’’ greater, we
should have found from a Aguile ¢ = 85° 4’ 0.2, but from
a Cephei ¢ = 85° 8’ 42”8, but the mean would still be ¢ = 85° 8’
51/7.5. :

It is evident, also, that errors in the refraction, whether due to
the tables or to constant errors of the barometer and thermo-
meter, or to any peculiar state of the air common to the two
observations, ‘are nearly or quite eliminated by thus combining a
pair of stars the mean of whose declinations is nearly equal to
the declination of the zenith. The advantages of such a com-
bination do not end here. If we select the two stars so that the
difference of their zenith distances is so small that it may be
measured with a micrometer attached to a telescope which is so
mounted that it may be successively directed upon the two stars
without disturbing the angle which it makes with the vertical
line, we can dispense altogether with a graduated circle, or, at
least, the result obtained will be altogether independent of its
indications. For, let { and ¢’ be the zenith distances, & and 4’
the declinations of the two stars, the second of which is north of
the zenith; then, if ¢’ denotes only the numerical value of the
zenith distance, we have

¢=20+4¢
! @ = &— C’
the mean of which is

py=1@+3)+ () (279)

so that the result depends only upon the given declinations and
the observed difference of zenith distance which is measured with
the micrometer. Such is the simple principle of the method first
introduced by Captain TALcoTT, and now extensively used in this
country. To give it full effect, the instrument formerly known.
a8 the Zenith Telescope in England has received several important
modifications from our Coast Survey. It will be fully treated of,
in its present improved form, in Vol. I, where also will be
found a discussion of TaLcoTT’s method in all its details.

162. Meridian altitudes of a circumpolar star observed both above
and below the pole.—Every star whose distance from the elevated
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. pole is less than the latitude may be observed at both its upper
and lower culminations. If we put

kb = the true altitude at the upper culmination,

h‘ — “« « “« lower «
p = tho star’s polar distance at the upper culmination,
p= ¢« (8 “« “« lower &«

we have, evidently,

L ¢=h +p,
the mean of which is

e=1CG+h)+ 3(p,—p) (280)

whence it appears that by this method the absolute values of p

. and p, are not required, but only their difference p, —p. The
change of a star’s declination by precession and nutation is so
small in 12* as usually to be neglected, but for extreme precision
ought to be allowed for. This method, then, is free from any
error in the declination of the star, and is, therefore, employed
in all fixed observatories.

t

ExaMpLE.—With the meridian circle of the Naval Academy
the upper and lower transits of Polaris were observed in 1853
Sept. 15 and 16, and the altitudes deduced were as below:

Upper Transit. Lower Transit.
Sept. 156, App. alt. 40°2825”.42 Sept. 186, 87°81'89”.76
Barom. 80.0056 * Barom.  80.146

Att. Therm. 65°.2 }Bef. 1 6.34 Att. Therm. 75° }Ref. 112 45
Ext. « 63 .8 Ext, « 74 .6

A=40 27 19 .08 A, = 87 80 27 .31
p=12826.04 = 12825.80

+  ¢=238 58 63 .04 ¢ = 88 58 53.17
« « 58 .04

Mean ¢ = 88 68 68 .11

" In order to compare the results, each observation is carried
out separately. By (280) we should have

}(h + b)) — 38° 58 53”.20

t(p,—p)= — 0.09
=388 58 53 .11

This method is still subject to the whole error in the refraction,
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which, however, in the present state of the tables, will usually be
very small.

If the latitude is greater than 45°, and the star’s declination
less than 45°, the upper transit occurs on the opposite side of the
zenith from the pole. In that case h must still represent the
distance of the star from the point of the horizon below the pole,
and will exceed 90°. Thus, among the Greenwich observations .
we find

1837 June 14, Capella 2, = 7° 18 7”.94
. A=0958 7 .91
¢ =51 28 37 .98

163. Meridian zenith distances of the sun observed near the summer
and winter solstices.—When the place of observation is near the
equator, the lower culminations of stars can no longer be ob-
served, and, consequently, the method of the preceding article
eannot be used. The latitude found from stars observed at their
upper culminations only is dependent upon the tabular declina-
tion, and is, therefore, subject to the error of this declination. If,
therefore, an observatory is established on or near the equator,
and its latitude is to be fixed independently of observations made
at other places, the meridian zenith distances of stars cannot be
employed. The only independent method is then by meridian
observations of the sun near the solstices.

Let us at first suppose that the observations can be obtained
exactly at the solstice, and the obliquity (¢) of the ecliptic is
constant. The deelination of the sun at ‘the summer solstice is
=+ ¢, and at the winter solstice it is = —¢; hence, from the
meridian zenith distances ¢ and ¢’ observed at these times, we
should have

g=0C +e¢

? — tl_. .
the mean of which is

p=31C+C)

a result dependent only upon the data furnished by the observa-
tions.

Now, the sun will not, in general, pass the meridian of the
observer at the instant of the solstice, or when the declination is
at its maximum value ¢; nor is the obliquity of the ecliptic con-
stant. But the changes of the declination near the solstices are
very small, and hence are very accurately obtained from the
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golar tables (or from the Ephemeris which is based on these
tables), notwithstanding small errors in the absolute value of the
obliquity. The small change in the obliquity between two
solstices is also very accurately known. If then ae¢ is the un-
known correction of the tabular obliquity, and the tabular values
at the two solstices are ¢ and ¢/, the true values are ¢ 4+ a¢ and
- ¢/ 4+ ac; and if the tabular declinations at two observations near
the solstices are ¢ —x and — (¢/ — z’), the true declinations will
be 3 =e+ ae —z and &’ = — (¢’ + ae — 2’), and by the formula
¢ = { + & we shall have for the two observations

=08 +¢ 4+ ae—2x
=0 —¢ —act+ 2

the mean of which is ,
=3+ F+tCc—¢)—t(x—2)

a result which depends upon the small changes ¢ — ¢’ and z — z/,
both of which are accurately known.

It is plain that, instead of computing these changes directly, it
suffices to deduce the latitude from a number of observations
near each solstice by employing the apparent declinations of the
solar tables or the Ephemeris; then, if ¢’ is the mean value of
the latitude found from all the observations at the northern
solstice, and ¢’’ the mean from all at the southern solstice, the
true latitude will be

p=1(¢'+¢")

Every observation should be the mean of the observed zenith
distances of both the upper and the lower limb of the sun, in
order to be independent of the tabular semidiameter and to
eliminate errors of observation as far as possible.

SECOND METHOD.—BY A SINGLE ALTITUDE AT A GIVEN TIME.

164.. At the instant when the altitude is observed, the time is
noted by the clock. The clock correction being known, we find
the true local time, and hence the star’s hour angle, by the
formula

t—0 —a

in which © is the sidereal time and « the star’s right ascension.
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It the sun is observed, ¢ is simply the apparent solar time. We
have, then, by the first equation of (14),

8in ¢ 8in 8 4 cos ¢ cos & cos ¢ — sin A

in which ¢ is the only unknown quantity. To determine it,
assume d and D to satisfy the conditions

d sin D =sin 8
dcos D = cos 8 cos ¢
then the above equation becomes
d cos (p — D) =sin h

which determines ¢ — D, and hence also ¢. For practical con-
venience, however, put

g—D==xy

then, by eliminating d, the solution may be put under the follow-
ing form:
tan D — tan dsec ¢

cos y = sin A sin D cosec & (281)

The first of these equations fully determines D, which'will be
taken numerically less than 90°, positive or negative according
to the sign of its tangent. As ¢ should always be less than 90°,
or 6* D will have the same sign as .

" The second equation is indeterminate as to the sign of j,
-since the cosine of 4+ y and — y are the same. Ilence we
obtain by the third equation two values of the latitude. Only
one of these values, however, is admissible when the other is
numerically greater than 90°, which is the maximum limit of
latituades. When both values are within the limits 4 90° and
— 90°, the true solution is to be distinguished as that which
agrees best with, the approximate latitude, which is always suffi-
ciently well known for this purpose, except in some peculiar
cases at sea.

ExaMpLE 1.—1856 March 27, in the assumed latitude 28° S.
and longitude 43° 14’ W., the double altitude of the sun’s lower
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limb observed with the sextant and artificial horizon was 114°
40’ 30’ at 4* 2115 by a Greenwich Chronometer, which was
fast 2= 80*. Index Correction of Sextant = — 1’ 12/, Barom.
29.72 inches, Att. Therm. 61°F., Ext. Therm. 61° F. Required
the true latitude.

Sextant reading = 114° 40’ 80" Chronometer 4+ 21~ 15
Index corr. = — 112 Correction — 2 80

114 39 18 Gr. date, March 27, 4 18 45

App. alt. © = 57 19 89 Longitude = 2 52 56
Semidiameter = -+ 16 38 Local meant. = 1 25 49
Ref. and par,. = — 31 Eq.of time = — 519
h= 57 8511 App. time,z = 1 20 30
4= 42 51 30 = 20° 7’ 80"
logsect  0.027360
log tan 8  8.698351
log tan D 8.725711 log cosec 8 1.302190
log sin D  8.725098
D=4 8°2 38 log sin A 9.926445
y= 255849 log cosy  9.953738

D—y=¢=—2256 11

ExaMpPLE 2.—1856 Aug. 22; suppose the true altitude of
Fomalhaut is found to be 29° 10’ 0’/ when the local sidereal time
is 21* 49= 44*; what is the latitude?

We have o =—22*49= 44*, whencet = —1*0= 0*; 6 = — 30° 22" 47".5;
D= —381°15 138",y = +60° 0’ 6”, p = + 28° 44’ 53”". The nega-
tive value of y here gives ¢ — — 91° 15’ 19”;'which is inadmissible.

165. The observation of equal altitudes east and west of the
meridian may be used not only for determining the time (Art.
139), but also the latitude. For the half elapsed sidereal time
between two such altitudes of a fixed star is at once the hour
angle required in the method of the preceding article. When
the sun is used in this way, the half difference between the
apparent times of the observations is the hofir angle, and the
declination must be taken for noon, or more strictly for the
mean of the times of observation. By thus employing the
mean of the A.M. and P.M. hour angles and the mean of the
corresponding declinations, we obtain sensibly the same result
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as by computing each observation separately with its proper
hour angle and declination and then taking the mean of the
two resulting latitudes; and an error in the clock correction
does not affect the final result. The clock rate, however, must
be known, as it affects the elapsed interval. See also Art. 182.

166. Effect of errors in the data upon the latitude computed from an
observed altitude.—From the first of the equations (51) we find

_ o az sin ¢ cos é cos ¢
A= osd ~ cosd toosd ¥
or, since h = 90° — ¢, dh = — d{, and sin ¢ cos 3 = cos ¢ sin 4,
dp — —ssecA.dh — cos ¢ tan A.dt 4 cos gsec A.d3

whence it appears that errors of altitude and time will have the
least effect when 4 = 0 or 180°, that is, when the observation is
in the meridian, and the greatest effect when the observation is
on the prime vertical. If the same star is observed on both
sides of the meridian and at equal distances from it, the coeffi-
cient of dt will have opposite signs at the two observations, and
hence a small error in the time will be wholly eliminated by
taking the mean of the values of the latitude found from two
such observations. It is advisable, therefore, in taking a series
of observations, to distribute them symmetrically with respect to
the meridian. When they are all taken very near to the meri-
dian, a special method of reduction is used, which will be
treated of below as our Third Method of finding the latitude.
The sign of sec A is different for stars north and south of
the zenith: hence errors of altitude will be at least partially
eliminated by taking the mean of the results found from stars
near the meridian, both north and south of the zenith. A
constant error of the instrument may thus be wholly eliminated.
As for the effect of the error dd, its coeflicient is zero only
when ¢ = 90° and sec 4 is not infinite. This occurs when a
gircumpolar star is observed at its elongation, where we have,
Art. 18,
) o8 ¢

VIsin 3+ ¢) sin G—9)]

which shows that sec 4 diminishes as ¢ increases. In order,
therefore, to reduce the effect of an error in the declination

sec 4 =
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at the same time with that of errors of altitade and time, we
should select a star as near the pole as possible, and observe it
at or near its greatest elongation, on cither side of the meridian.
The proximity of the star to the pole enables us to facilitate the
reduction of a series of observations, and we shall therefore
treat specially of this case as our Fourth Method below.

167. When several altitudes not very far from the meridian are
observed in succession, if we wish to use their mean as a single
altitude, the correction for second difterences (Art. 151) must be
applied. It is, however, preferable to incur the labor of a sepa-
rate reduction of each altitude, as we shall then be able to com-
pare the several results, and to discuse the probable errors of the
observations and of the final mean. When the observations are
very near to the meridian, this separate reduction is readily
effected, with but little additional labor, by the following method :

THIRD METHOD.—BY REDUCTION TO THE MERIDIAN WHEN THE
TIME IS GIVEN.

168. To reduce an altitude, observed at a given time, to the meridian.—
This is done in various ways.
(A.) If in the formula, employed in Art. 164,

8in ¢ 8in & 4 cos ¢ cos 3 cos t — sin A

we substitute
cost'=1— 2sin*}¢
it becomes

sin ¢ 8in & + cos ¢ c0s 3 — 2 cos g cos 86in* § t —=sin A
But
sin ¢ 8in & + cos ¢ cos & = cos (¢ — J) or cos (8 — ¢)

Hence, if we put
L=¢— 34 or{,=274—e¢
the above equation may be written
cos {, = sin A - cos ¢ cos & (2 sin? } ¢) (282)

If the star does not change its declination, ¢, is the zenith
distance of the star at its meridian passage; and, being found by
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this equatlon, we then have the latltnde as from a meridian
observation by the formula

g=28+4¢, or ¢=0—1

according as the zenith is north or south of the star.

When the star changes its declination, this method still holds
if we take 8 for the time of observation, as is evident from our
formule, in which 8 is the declination at the instant when the
true altitude is A.

To compute the second member, a previous knowledge of the
latitude is necessary. As the term cos ¢ cos d (2 sin® §¢) de-
creases with ¢ if the observations are not too far from the
meridian, the error produced by using an approximate value of
¢ will be relatively small, so that the latitude found will be a
closer approximation than the assumed one; and if the computa-
tion be repeated with the new value, a still closer approximation
may be made, and so on until the exact value is found.

This method is only convenient where the computer is pro-
vided with a table of natural sines and cosines, as well as a table
of log. versed sines, or the logarithmic values of 2 sin? § ¢.

ExaMpLE.—Same as Example 1, Art. 164. & = 57° 85’ 117,
¢=+2°51'80",t=1*20~80*. Approximate value of ¢ = — 23°.

log (2 sin? } t) 8.785726
log cos ¢ 9.964026
nat. sin & 0.844201 log cos ¢ 9.999459
nat.mo. 0.056132 . . . . . . . . log = 8.749211 -
nat. cos ¢, 0.900333
¢, = — 25° 47’ 54" (zenith south of sun.)
3 =+ 2 51 80
¢ = — 22 56 24

differing but 138” from the true value, although the assumed
latitude was in error nearly 4’. Repeating the computation with
—22° 56’ 24"’ as the approximate latitude, we find ¢ =— 22° 56 11"/,
exactly as in Art. 164.

169. (B.) We may also compute directly the reduction of the
observed altitude to the meridian altitude. Putting

k, = meridian altitude = 90° — ¢,
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the formula (282) gives

sin A, —'sin h = 2 cos gcos 38in*} ¢
But we have
sin A, — s8in A = 2 cos } (A, + A) sin § (A, — &)
and hence ' s sint 3 ¢
. co8 ¢ cos 4 sin'
sin $(h, — R) = s 1 G 1 B)

which gives the difference 2, — k, or the correction of 4 to reduce
it to A,; but it requires in the second member an approximate
value both of ¢ and of A, the latter being obtained from the
assumed value of ¢ by the equation h = 90° — (¢ — 4); or, if
the zenith is south of the star, by the equation &, = 90° — (3 — ¢).

(283)

ExaMPLE.—Same as the above.

d = 2°51'80” log sin’ ¢ ¢ 8.484696
Approx.. ¢ = —28 00 00 log cos ¢ 9.964026
“ ¢, = 25 51 30 log cos & 9.999459
“ hh= 64 830 log sec § (b, + A) 0.812573
“ }(ll:l + I’:) = 6?5 53}3 gg log sin } (h, — &) 8.760754
h = 578 11 3 = 2° 51’ 80”7
hh= 6411 44 §,=—25 48 18
¢ = —22 56 46

. This method does not approximate so rapidly as the preceding,
but the objection is of little weight when the observations are
very near the meridian. On the other hand, it has the great
advantage of not requiring the use of the table of natural sines.

170. (C.) Circummeridian altitudes.—When a number of altitudes
are observed very near the meridian,* they are called circum-
meridian altitudes. Each altitude reduced to the meridian gives
nearly as accurate a result as if the observation were taken on the .
meridian.

An approximate method of reducing such observations with
the greatest ease is found by regarding the small arc §(h, — k)
as sénsibly equal to its sine; that is, by putting-

sin § (h, — k) = }(h, — A) sin 1"

* How near to the meridian will be determined in Art. 175.
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and taking A, for ¢ (h, 4 k), from which it differs very little, so
that (283) may be put under the form

cosgpcosd 2sin*it

h—h= cos h, sin 1” (284)
The value in seconds of '
_ 2sin'dt
sin 1”

is given in Table V. with the argument t. If ¥’, '/, ¥’"’, &c. are
the observed altitudes (corrected for refraction, ete.); ¢, ¢, ¢/,
&c., the hour angles deduced from the observed clock times;
m’, m” m'”, &c., the values of m from the table; and we put the
constant factor

co8 ¢ co8 & __ Co8 ¢ cos L4

A=
©08 h, sin {;
we have h = h’ + Am’
h: —_— hll + Amll (286)
hl pu— hl” + Amlll
&e.

and the mean of all these equations gives

R4 R 4 K" 4 ete.
RS L L

m 4 m" + m'" 4 &o.
n

in which 7 is the number of observations; or
hy=h, + Am, (286)

in which A, denotes the mean of the observed altitudes corrected
for refraction, &c., and m, the mean of the values of m.
When A, has been thus found, the latitude is deducéd as from
any meridian altitude, only observing that for the sun the de-
- clination to be used is that which corresponds to the mean of
the times of observation, as has already been remarked in Art.
168. .

ExampLE.—At the U. 8. Naval Academy, 1849 June 22, cir-
cummeridian altitudes of 3 Ursae Minoris were observed with a
Troughton sextant from an artificial horizon, as in the following
table. Tbe times were noted by a sidereal chronometer which
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was fast 1™ 45.7. The index correction of the sextant was
— 14’ 58, Barometer, 30.81 inches, Att. Therm. 65° F., Ext.
Therm. 64° F.

The right ascension of the star was 14* 51= 140
Chronometer fast +1 45.7

Chronometer time of star’s transit 14 52 59.7

The hour angles in the column ¢ are found by taking the differ
ence between each observed chronometer time and this chro-
nometer time of transit.

2 Alt. %k Chronom. t m
108° 89 4¢# 14 46 47, ™12.7 1021
89 50 47 1. 5 68.7 70.2
40 40 48 54.56 4 5.2 82.8
41 0 51 29.6 1 80.2 4.4
41 O 54 86.56 1 86.8 5.1
40 80 56 22. 8 22.3 22.8
40 20 67 48. 4 43.3 48.8
40 0 58 47.6 5 47.8 66.0
40 0 16 0 17.5 7 17.8 104.6
89 20 2 10. . 9 10.8 165.1
Mean 108 40 14 m,= 61.68
Ind. corr. — 14 58
108 26 16 Assumed ¢ = 88° 59’ 0"
54 12 88 =74 46 86.9
Refr. —42.0 Approx. {,—86 47 86.9  logcos¢ 9.8906
Am, +21.6 log cos § 9.4198
h= 564 1217.6 log cosecy, 0.2329
{,=—85 47 42 .6 log A 9.5428
d = T4 46 88 .9 log m, 1.7898
¢ — 88 58 64 .4 log Am,  1.3326

Remark 1.—The reduction A, — A increases as the denominator
of A decreases, that is, as the meridian zenith distance decreases.
The preceding method, therefore, as it supposes the reduction to
be small, should not be employed when the star passes very near
the zenith, unless at the same time the observations are restricted
to very small hour angles. It can be shown, however, from the
more complete formule to be given presently, that so long as
the zenith distance is not less than 10°, the reduction computed
by this method may amount to 4’ 80"’ without being in error
more than 1”; and this degree of accuracy suffices for even the
best observations made with the sextant.
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Remarx 2.—If in (284) we put sin}¢=14 sin 1”.¢(¢ being in
seconds of time), we have

cos ¢ cos & 225
cos h,

h—h= sin 17. ¢! — at? (287)

in which a denotes the product of all the constant factors. It
follows from this formula that near the meridian the altitude varies
as the square of the hour angle, and not simply in proportion to the

time. Hence it is that near the meridian we cannot reduce a -

number of altitudes by taking their mean to correspond to the
mean of the times, as is done (in most cases without sensible
error) when the observations are remote from the meridian.
The method of reduction above exemplified amounts to sepa-
rately reducing each altitude and then taking the mean of all
the results.

171. (D.) Circummeridian altitudes more accurately reduced.—The
small correction which the preceding method requires will be
obtained by developing into series the rigorous equation (282).
This equation, when we put { = 90° — k. =true zenith distance
deduced from the observation, may be put under the form

cos T =cos {, — 2 cos ¢ cos 3 8in*} ¢

which developed in series* gives, neglecting sixth and higher
powers of sin }¢,

* If we put y = 2 cos ¢ cos d sin? § ¢, the equation to be developed is
cos{—=co8 {;, —¥ (a)

in which g; is constant and { may be regarded as a function of y; so that by Mac-
LAURIN'S Theorem

c=s=)+(5)o+4(5)r+ e ()

d)
in which (1), ( di ) &c. denote the values of fy and its differential coefficients when
Y

¢y = 0. The equation (a) gives, by differentiation,
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L=¢

_cospcosd 2sin’}t ('cos @ Co8 6)’. 2 cot {, sin* } ¢ (288)
sin ¢, gin 1” sin ¢, sin 1”

By this formula, first given by DEeLAMBRE, the reduction to
the meridian consists of two terms, the first of which is the same
as that employed in the preceding method, and the second is the
small correction which that method requires. These two terms
will be designated as the “1st Reduction” and ¢ 2d Reduction.”

Putting .
2 sin? }¢ 2 sint §¢
nmn————————+ nN——-
sin 1” sin 1”
A=cos.¢cosa' B = A cot ¢,
sin ¢,
we have
(,=¢—Am 4 Bn (289)

If a number of observations are taken, we have a number of
equations of this form, the mean of which will be

§, =¢, — Am, + Bn,

in which ¢, is the arithmetical mean of the observed zenith dis-
tances, m, and n, the arithmetical means of the values of m and
n corresponding to the values of &. The values of n are also
given in Table V. '

Having found {,, we have the latitude, as before, by the formula

g=0+4¢,

in which we must give {, the negative sign when the zenith is
south of the star, and it must be remembered that for the sun
~ (or any object whose proper motion is sensible) 8 must be the
mean of the declinations belonging to the several observations,

But when y = 0 we have, by (a), { = {;, so that (3) becomes

2 cot ¢
(=4 - n

¥
oy 2ain'(l.+*(l+3c°t,C‘)’|’T,——&c' (¢)

1

Restoring the value of y, this gives the development used in the text, observing that
a8  and {; are supposed to be in seconds of arc, the terms of the series are divided
by sin 1” to reduce them to the same unit.
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or, which is the same, the declination corresponding to the mean
of the times of observation.*

Finally, if the star is near the meridian below the pole, the
hour angles should be reckoned from the instant of the lower
transit. Reecurring to the formula

cos { — 8in ¢ 8in & } co8 ¢ cos S cos ¢

in which ¢ is the hour angle reckoned from the upper transit,
we observe that if this angle is reckoned from the lower transit
we must put 180° — ¢ instead of ¢, or — eos ¢ for + cos ¢, and then

we have
cos { = sin ¢ sin 8 — cos ¢ cos & cos?

and, substituting as before,
cost=1—2sin*}¢
this gives
co8 § = — ¢os (¢ 4 &) 4 2 cos ¢ cos & 8in® } ¢
or, since for lower culminations we have {, = 180° — (¢ + d)

and cos , = — cos (¢ + 3),

cos { =cos8 &, 4+ 2 cos ¢ cos 4 sin*}¢

which developed gives
t=C+ cospcosd 2s8in' it (cos @ cos 3\ ZcotZ,ein'}t
tT sin {, sin 1”7 sin ¢, ) sin 1”7
or
¢, = ¢ + Am + Bn (sub polo) (290)

which is computed by the same table, but botb first and second
reductions here have the same sign.

If a star is observed with a sidercal chronometer the daily
rate of which is so small as to be insensible during the time of

* To show that the mean declination is to be used, we may observe that for each
observation we have put {; — ¢ — J, and that if &, 8", &c., & ® the several declina-
tions, the several equations of the form (289) will give

¢$=26" 40" — Am' 4 Atcot (o'
¢=20"+ " — Am" 4 Arcot {; n"
&e.,
the mean of which, if § — mean of &', &”, &c., will be

6=108 +( —dmy 4 Arcot fing =484 ¢
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the observations, the hour angles ¢ are found by merely taking
the difference between each noted time and the chronometer
time of the star’s transit, as in the example of Article 170. But
if we wish to take account of the rate of the chronometer, it can
be done without separately correcting each hour angle, as fol
lows: Let 3T be the rate of the chronometer in 24* (37 being
positive for losing rate, Art. 137); then, if ¢ is the hour angle
given directly by the chronometer, and ¢ the true hour angle,
we have .

Uit = 24%: 24* — 0T = 86400°: 86400° — T

1
f'=t-[ _ﬂ'_]
T 86400

Instead of sin }¢ we must use sin 4t ; for which we shall have,
with all requisite precision,

whence

. . t . . 1Ay
sin $ ¢ = sin }t-;—,orsm’}t’:sm’}t.(t_)

=[]

86400

Hence, if we put

we shall have
k_cos;pcosa 2 sin? } ¢
sin £, sin 1”

Am =

go that if we compute 4 by the formula

A=k cos ¢ cos ¢
sin {,
2 sin? }¢ .
we can take m = i for the actual chronometer intervals,

and no further attention to the rate is required.
The factor k can be given in a small table with the argument
‘“rate,” in connection with the table for m, as in our Table V.
If a star is observed with a mean time chronometer, the inter-

vals are not only to be corrected for rate, but also to be reduced
Vou. L—16
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from mean to sidereal intervals by multiplying .them by a =
1.00278791 (Art. 49); so that for sin® } ¢ we must substitute £ sin?
(1. 4t), or, with sufficient precision, ks sin® § ¢.

If the sun is observed with a mean time chronometer, the in-
tervals are both to be corrected for rate and reduced from mean
solar to apparent solar intervals. The mean interval differs
from the apparent only by the change in the equation of time
during the interval, and this change may be combined with the
rate of the chronometer. Denoting by 8E the increase of the
equation of time in 24* (remembering that E is to be regarded
as positive when it is additive to apparent time), and by 3T the
rate of the chronometer on mean time, we may regard 67 — ¢ K
as the rate of the chronometer on apparent time. Instead of
the factor & we shall then have a factor &/, which is to be found

by the formula
3
=f—1 |-
, _ 9T—¢E
86400

which may be taken from the. table for k by taking 87— 3F as

the argument.
Finally, if the sun is observed with a sidereal chronometer,

we must multiply sin? } ¢ not only by &’ but by 1%'
Denoting 2 by ¢ and ’—}, by ¢, these rules may be collected, for
the comvenience of reference, as follows:
_cos ¢ cos é
sin {,

Star by mean time chron., A = ki.ﬂg;’:f%’-[logeo.oozam]
1

Star by sidereal chron., 4 =k

(291
cos ¢ cos &

sin {,
cos ¢ cos 3
sin {,

Sun by mean timechron., 4 =X'-

Sun by sidereal chron., A=K7 [log =9.997625]

for which log k will be taken from Table V. with the argument
rate of the chronometer = 87T'; and log &’ from the same table
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with the argument 37 — 3E = daily rate of the chronometer
diminished by the daily increase of the equation of time.

ExaMpLE.—1856 March 15, at a place assumed to be in lati-
tude 37° 49’ N. and longitude 122° 24’ W., suppose the fol-
lowing zenith distances of the sun’s lower limb to have been
observed with an Ertel universal instrument,* Barom. 29.85
inches, Att. Therm. 65° F., Ext. Therm. 63° F. The chrono-
meter, regulated to the local mean time, was, at noon, slow
11~ 20°.8, with a daily losing rate of 6'.6.

Obs’d zen. dist. Chronometer. ¢

m
40° & 40”.7 23»387=35.. —19~0568.8 788".3 ' 1749

40 216.5 42 8. —15 808 472 4 0 .54
89 5728.3 46 295 —11 4.3 240 .6 0.14
39 5417 .2 50 465 — 6 473 90 5 0 .02
39 52 38. 65 16. — 2 17.8 10 4 0 .00
39 528 .5 0 0 87.6 + 8 8.7 18 4 0 .00
‘89 5428 .6 5 13. 7 892 115 .0 0 .03
89 58 9.8 9 495 12 157 295 .1 0 .21
40 3 03 14 8. 16 812 538 9 0.7
40 9 36. 18 81. 20 57.2 861 4 1.80
Moans 39 59 18 .5 to=+ 0 29.1 my—2342 .60 n,—0 49

The equation of time at the local noon being + 8= 54°.6, we
have .

Mean time of app. noon = 0* 8= 54.0¢:
Chronometer slow = 11 20.8

Chr. time of app. noon =28 57 338.8

The difference between this and the observed chronometer -

times gives the hour angles ¢ as above.

The mean of the hour angles being + 29'.1, the declination is
to be taken for the local apparent time 0* 0 281, or for the
Greenwich mean time March 15, 8* 18~ 59°.7; whence

¢ =— 1°488"8
(Approximate) ¢ =— 4 37 49 0.
“« ¢,= 8937838

The increase of the equation of time in 24* is dE = — 174,

* Bee Vol. I1., Altitude and Azimuth Instrument, for the method of observing the
senith distances.
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and, the chronometer rate being 37" = + 6.6, we have 3T — ¢.E
= + 24'.0, with which as the argument ‘rate” in Table V. we
find log &’ = 0.00024.

The computation of the latitude is now carried out as follows:

logcos ¢ 9.89761  Mean observed zen. dist. @ = 89° 59’ 18”.5

log cos 8 9.99979 . r—p= + 41 .8
log cosec £, 0.19540  log A? 0.1861 §= — 16 6.5
log ¥ 0.00024  log cot ¢, 0.0821 Amg= — T 4 4
log A 0.09304 log B 0.2682 Bny= 4 0.9
log m, 2.58479  logn, 9.6902 ¢, = 89 36 50 .3
log Amy  2.62783  log Bn,  9.9584 0= —1 48 8 .8

o= 87 48 41 5

The assumed value of ¢ being in error, the value of A is not
quite correct; but a repetition of the computation with the value
of ¢ just found does not in this case change the result so much
as 0.1, )

172. (E.) Gauss's method of reducing circummeridian altitudes of
the sun.—The preceding method of reduction is both brief and
accurate, and the latitude found is the mean of all the values
that would be found by reducing each observation separately.
This separate reduction, however, is often preferred, notwith-
standing the increased labor, as it enables us to compare the
observations with each other, and to discuss the probable error
of the final result; and it is also a check against any gross error.
But, if we separately reduce the observations by the preceding
method, we must not only interpolate the refraction for each
altitude, but also the declination for each hour angle. Gauss
proposed a method by which the latter of these interpolations is
avoided. He showed that if we reckon the hour angles, not
from apparent noon, but from the instant when the sun reaches its
maximum altitude, we can compute the reduction by the method
above given, and use the meridian declination for all the observa-
tions. This method is, indeed, not quite so exact as the preced-
ing; but I shall show how it may be rendered quite perfect in
practice by the introduction of a small correction.

In the rigorous formula

cos { = sin ¢ 8in & 4 cos ¢ cos 3 cos ¢
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3 is the declination corresponding to the hour angle &. If then

a8 = the hourly increase of the declination, positive when
the sun is moving northward,
3, = the declination at noon,

and if ¢ is expressed in seconds of  time, we have

t.ad
d—0 12280 _,
d=d+ g0 nt?

where, since ad never exceeds 60", z will not exceed 80’ so long
as £ < 80=. Hence we may substitute, with great accuracy,

sin 8 = sin 8, 4 cos 4, sinz
cos 8 = cos &, — sin ¢, sinx

and the above formula becomes

cos { = sin ¢ s8in 3, 4 cos ¢ cos 3, cos ¢ + sin (¢ — 8)) sinz
+ 2 cos ¢ 8in 8 sin' } ¢ sin =

The last term is extremely small, rarely affecting the value of ¢
" by as much as 0”.1; and since z is proportional to the hour
angle, and therefore has opposite signs for observations on differ-
ent sides of the meridian, the effect of this term will nearly or
quite disappear from the mean of a series of observations pro-
perly distributed before and after the meridian passage. Now,
we have

tadsin1” 'Y
inx=-————=15¢sinl1".
TS "Tge00 < " 54000
Let
. asé  sin(p—3,)
4= .
o 54000 cos ¢ cos 3,
then, taking
15¢tsin 1" =sint 4 } sin’*¢
we have
. . . . Co8 ¢ co8 J
= t ¢ 4. ——— 1
sinz =(sin ¢ 4- } sin®¢) sin Y —

and the formula for cos { becomes, by omitting the last term,

cos { = sin ¢ sin 3, | cos ¢ cos 8, (cost + sintsin'O)
<+ } cos ¢ cos 8, sin*t sin &
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The last term involving sin® { multiplied by the small quantity
sin & is even less than the term above rejected. Like that, also,
it has opposite signs for observations on different sides of the
meridian, and will not affect the mean result of a properly
arranged series of observations. Rejecting it, therefore, our for-
mula becomes

cos { = sin ¢ 8in &, + cos ¢ cos J, cos (t — 9)
+ 2 cos ¢ cos &, sin?} &

The last term here must also be rejected if we wish to obtain the
method as proposed by Gauss ; but, as it is always a positive
term and affects all the observations alike, I shall retain it, espe-
cially as it can be taken into account in an extremely simple
manner.

The maximum value of cos ¢, which corresponds to the
maximum altitude, is given immediately by the above formula
by putting t = 0 Hence & is the hour angle of the maximum altitude.
Putting

t=t—¢
we have :
cos { = cos (¢ —.8,) — 2 cos ¢ cos &, sin? } ¢’
+ 2 cos ¢ cos 3, 8in* } 3
Let

cos g cos 8, 2sin*}d
sin (p —¢,) sin 1”

8 = 8‘ +
then our formula becomes

co8 ¢ = cos (¢ — ') ~— 2 cos ¢ cos &, sin*} ¢

This equation is of the same form as that from which (288) was
obtained, and therefore when developed gives

G=C—

cos ¢ cos 8, 2sin?}¢ (cos @ cos 3, )’ 2 cot ¢, sin* { ¢

sin {, sin 1” gin £, sin 1”

in which {, = ¢ — d’. Putting then, as before,

€08 ¢ cO8 3,

A= B = A cot ¢, (292)

sin ¢,

and taking m and n from Table V., or their logarithms from
Table VI., with the argument ¢, which is the hour angle reckoned
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from the instant the sun reaches its maximum altitude, we have
(,=C(— Am + Bn (293)

Since ¢, differs from the latitude by the constant quantity &, its
value found from each observation should be the same. Taking
its mean value, we have

p=_ + 4

The angle &, being very small, may be found with the utmost
precision by the formula

— 1 8 o454 (294)
810000 sin 17 4 A

which gives ¢ in seconds of the chronometer when 4 has been
computed by the formula (292).

The most simple method of finding the corrected hour angles
¢ will be to add & to the chronometer time of apparent noon,
and then take the difference between this corrected time and
each observed time.

If we put & =8, + y, we have

2 sint} e

=A4.
y sin 17

(295)

which requires only one new logarithm to be taken, namely, the
value of log m from Table VI. with the argument . We then
have, finally,

e=0L+4+y (296)

ExampLE.—The same as that of the preceding article. We
have there employed the assumed latitude 87° 49/ ; but, since even
a rough computation of two or three observations will give a
nearer value, let us suppose we have found as a first approxima-
tion ¢ = 87° 48’ 45””. 'With this and the meridian declination
3, = —1° 48’ 9.2, and log &’ = 0.00024 as before, we now find,
by (292),

log A = 0.09310 log B = 0.2688

We have also there found the chronometer time,of apparent
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noon = 23* 57 33'.8. We now take from the Ephemeris ad =
+ 59722, and hence, by (294),

log a8 1.7725
"~ ar.co. log 4 9.9069
const. log 9.4059

8= 4 12:2 log 8 1.0853

Hence the chronometer time of the maximum altitude is
28" 57~ 38'.8 + 12'.2 = 28* 5T 46*, which gives the hour angles
U as below:

v logm log Am logn log Ba
- 20~ 11-. 2.90274 2.99584 0.1900 0.4583
15 43. 2.685568 . 2.77868 9.75567 0.0240
11 18.5 2.39718 2.49028 9.1776 9.4459
6 59.5 1.98216 2.07526 8.3487 8.6170
— 2 30. 1.08891 1.18201
4+ 2 61.5 1.20525 1.29835
7 27. 2.03730 2.13040 8.4553 8.7236
12 3.5 2.45551 2.54861 9-2955 9.5638
16 22. 2.72077 2.81387 9.8260 0.0943
20 45. 2.92677 3.01987 0.2381 0.5064

The refraction may be computed from the tables first for a mean
zenith distance, and then with its variation in one minute (which
will be found with sufficient accuracy from the table 6f mean
refraction) its value for each zenith distance is readily found.
The parallax, which is here sensibly the same (= 5.54) for all
the observations, is subtracted from the refraction, and the results
are given in the column r —p of the following computation.
The numbers in the 3d and 4th columns are found from their
logarithms above; and the last column contains the several
values of the minimum zenith distance of the sun’s lower limb,
formed by adding together the numbers of the preceding columns.
To the mean of these we then apply the sun’s semidiameter, the
meridian declination, and the correction y, which are all constant
for the whole series of observations.
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Obs'd ¢ r—p Am Bn &
40° 840".7 442"1 —16'80"5 +2"9 89° 52'55".2

40 216 .5 41 .9 10 0.7 1.1 58 .8
39 5728 8 41 8 6 9.2 0.3 61 .2
89 54 17 .2 41 7 158.9 0.0 60 .0
39 52 83. 41 6 015 .2 0.0 59 4
39 5234 .5 41 6 019 .9 0.0 56 .2
39 5428 6 41 7 215 .0 0.1 55 4
39 58 9.8 41 8 553 .7 04 58 .3
40 3 0.3 - 41.9 10 51 4 1.2 52 .0
40 9 386 . 42 1 17 26 .8 8.2 54+ .5
(Lower limb) Mean £, = 89 52 57 .10

log 28in'33 ¢ 9090 Semidiameter = — 16 6 .49
gin 1” ,=—1 48 9 .20

log 4 0.0931 ¥y =+ 0 .10
log y 9.0021 ¢ = 87 48 41 51

This result agrees precisely with that found before. If we suppose
all the observations to be of the same weight, we can now deter-
mine the probable error of observation. Denoting the difference
between each value of ¢, and the mean of all by v, and the sum
of the squares of » by [tv], according to the notation used in the
method of least squares, we have

v 144
— 179 8.61
+1.7 . 2.89 Mean error of a single observa-
+4.1 16.81 . [vv]

tion = = 2".89
+2.9 8.41 n—
+23 5.29 Mean error of the final value of
—0.9 81
289

—1. 2.89 ==
+1.2 1.44
—5.1 26.01
—2 .6 _6.76

n =10, [vw] = 74.92

Probable error of a single obs. = 2"”.89 X 0.6745 = 1".95
“ “ ofg =0 .91 X 0.6745 =0 .61

It must not be forgotten that the probable error 1’/.95 here
represents the probable error of observation only: a constant error
of the instrument, affecting all the observations, will form no
part of this error; and the same is true of an error in the
refraction.
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178. For the most refined determinations of the latitude,
standard stars are to be preferred to the sun. Their declinations
are somewhat more precisely known ; the instrument is in night
observations less liable to the errors produced by changes of
temperature during the observations; constant instrumental
errors and errors of refraction may be eliminated to a great
extent by combining north and south stars; or errors of declina-
tion may be avoided by employing only circumpolar stars at or
near their upper and lower culminations. In general, errors of
circummeridian altitudes are eliminated under the same condi-
tions as those of meridian observations, since the former are
reduced to the meridian with the greatest precision. See the
next following article.

For a great number of nice determinations of the latitude by
circummeridian altitudes of stars north and south of the zenith
and of circumpolar stars, see Puissant, Nouvelle Description Géo-
métrique de la France.

174. Effect of errors of zenith distance, declination, and time, upon
the latitude found by circummeridian altitudes.—Difterentiating (289),
regarding A as constant, and neglecting the variations of the
last term, which is too small to be sensibly affected by small
errors of ¢, we have, since dp = d{, + dd,

Asint
de =d dé — ——— (16dt
¢ ¢+ sin 1” ( )

The errors df and dé affect the resulting latitude by their whole
amount. The coefficient of d¢ has opposite signs for east and
west hour arigles; and therefore, if the observations are so taken
as to consist of a number of pairs of equal zenith distances east
and west of the meridian, a small constant error in the hour
angles, arising from an imperfect clock correction, will be elimi-
nated in the mean. This condition is in practice nearly satistied
when the same number of observations are taken on each side
of the meridian, the intervals of time between the successive
observations being made as nearly equal as practicable.

An error in the assumed latitude which affects 4 is eliminated
by repeating the computation with the latitude found by the first
computation. An error in the declination which would affect 4
is not to be supposed.
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175. To determine the limits within which the preceding methods of
reducing circummeridian altitudes are applicable.—First. In the
method of Art. 170 we employ only the « first reduction” (= Am),
which is the first term of the more complete reduction expressed
by (288). The error of neglecting the ¢ second reduction” (= Bn)
increases with the hour angle, and if this method is to be used it
becomes necessary to determine the value of the hour angle at
which this reduction would be sensible. We have

Bn = 41 cot ¢, 28N HE
sin 1”

whence if we put b for Bn and

" FP=VTem T,

we derive

sin'$t — _if Vb (298)

Since ,=¢ — 3, F and A4 are but functions of ¢ and &; and
therefore by this formula we can compute the values of ¢ for
any assigned value of b, and for a series of values of ¢ and 8.
Table VII.A gives the values of ¢ in minutes computed by (298)
when b=1". That is, calling ¢ the tabular hour angle and ¢
the hour angle for any assigned limit of error 4, we have

sin’it,:-% sin® § ¢t = sin*}¢, /b

As the limits are not required with great precision, we may sub-
stitute for the last equation the following:

t=t, l‘/b

If we take b = 0’’.1, we have y/b = 0.56, or nearly % : hence the
limiting hour angle at which the second reduction amounts to 0'.1 is
about § the angle given in Table VILA.

ExampLE.—How far from the meridian may the observations
in the example p. 287 be extended before the error of the
method of reduction there employed amounts to 1”7? With
¢ = + 89° &= 4 756° Table VILLA gives {, = 80=. Hence
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the method is in that exaniple correct within 1’/ if the observa-
tions are taken within 80" of the meridian, and correct within
0’.1 if they are taken within 15 of the meridian.

Second.—In the more exact methods of reduction given in
Arts. 171 and 172, we have neglected the last term of the
development given in the note on page 239, which may be called
a ‘third reduction.” Denoting it by ¢, we have

3
c=i(%)‘4'sin‘}t
8 sin 1”

whence, if we put

s i sin 17
K= 1+ 3cot*¢, + 8cot?¢,
we deduce
. K,
sin*$t = 1 Ve (299)

Table VII.B gives the values of {, computed by this formula, for
¢ =1". Denoting the tabular value of ¢ by ¢,, we have

sin*}¢, = f sin*}¢ —sin' } ¢, p/e

or, with sufficient accuracy in most cases,
t=1t, Ve

For ¢ = 0.1 we have /¢ = 0.68, or nearly §; and hence the
limiting hour angle at which the third reduction (omitted in our
most exact methods) would amount to 0”’.1 is about § the angle
given in Table VILB.

ExampLe.—How far from the meridian may the observations
in the example p. 243 be extended before the error of the
method of reduction there employed amounts to 07.1? With
¢ = 88°, 8 = — 2°, Table VIL.B gives ¢, = 39", and § of this
is ¢ = 26™: so that the method is in that example correct within
1’ when the observations are taken within 39* of the meridian;
and it is correct within 0”7.1 when the observations are taken
within 26" of the meridian. '

The limiting hour angle for a given limit of error diminishes
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rapidly with the zenith distance; and hence in general very small
zenith distances are to be avoided. But the observations may be
extended somewhat beyond the limits of our tables, since the
errors which affect only the extreme observations are reduced in
taking the mean of a series. :

FOURTH METHOD.—BY THE POLE STAR.

176. The latitude may be deduced with accuracy from an alti-
tude of the pole star observed at any time whatever, when this
time is known. The computation may be performed by (281);
but when a number of successive observations are to be reduced,
the following methods are to be preferred. If we put

p = tke star's polar distance,
we have, by (14),

sin A — sin ¢ cos p 4 cos ¢ 8in p cos ¢

in which the hour angle ¢ and the altitude A are derived from
observation and ¢ is the required latitude. Now, p being small
(at present less than 1° 80’), we may develop ¢ in a series of
ascending powers of p, and then employ as many terms as we
need to attain any given degree of precision. The altitude
cannot differ from the latitude by more than p: if, then, we put

e=h—x

z will be a small correction of the same order of magmtude as -
‘We have*

sin p—=sin (A —x) =sin A —xcosh —J x*sin A 4 } 2*cos h 4 &ec.
cosg=co8(h—x)=cosh 4 zsinh — }x*cos h — } 2*sin h + &e.
ginp =p— }p* 4 &e.
cosp=1—}p*+ &e.

which substituted in the above formula for sin A give
sinh=sginh—x cosh+ pcostcosh —3J (2*—2xpcost+ p*)sin h + &e.

and from this we obtain the following general expression of the
correction :

#P1. Trig. (408) and (406).
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x=pcost—}(x*—2xpcost 4 p*)tank
+ i (@*—8x*pcost+ 8 xp*— p*cost)
+ (@ —4xpcost {6 xp*—4xplcost+ p*) tan h
— &e. (@)

For a first approximation, we take
r=pcost ' o

and, substituting this in the second term of (a), we find for a
second approximation, neglecting the third powers of p and z,

x=pcost — }p*sin’ttan A ©

Substituting this value in the second and third terms of (a), we
find, as a third approximation,

xr=pcost— }p*sin’t tan A 4 } p*cos ¢ sin?t (@))

This value, substituted in the second, third, and fourth terms of .
(a), gives, as a fourth approximation, .

x=pcost— }p*sintt tan h 4 § p*cos ¢ sin?*t — } p*sint¢ tan*h
+ At (4 — 9 sin’?) sint tan h ©

In these formule, to obtain z in seconds when p is given in
seconds, we must multiply the terms in p% p% and p* by sin 17,
sin? 1”7, sin® 1”/, respectively.

In order to determine the relative accuracy of these formule,
let us examine the several terms of the last, which embraces all
the others. The value of ¢, which makes the last term of (e) a
maximum, will be found by putting the differential coeflicient
of (4 — 9 sin’?) sin*¢ equal to zero; whence

4sintcost(2—9sin?t)=0

which is satisfied by ¢ = 0, ¢ = 90°, or sin? ¢ =}, the last of which
alone makes the second differential coeflicient negative. The
maximum value of the term is, then, & p*sin® 1”7 tan h, which
for p = 1° 80’ = 5400”” is 0"7.0018 tan h. This can amount to
0’7.01 only when £ is nearly 80°,—that is, when the latitude is
nearly 80°. This term, therefore, is wholly inappreciable in
every practical case.
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The term }p*sin®1’/ sin‘{tan® Ais a maximum for sin¢t =1,
in which case, for p = 5400”, it is 0’70121 tan®*Ah. This amounts
to 0.1 when A = 64°, and to 1. when h = T7°.

For the maximum of the term } p*sin®1’/ cos ¢ sin?¢ we have,
by putting the differential coeflicient of cos ¢ sin® ¢ equal to zero,

sint (2 — 8sin't) =0

which gives sin® ¢ = §, and consequently cos ¢ = /}; and hence
the maximum value of this term is §p*sin® 1’/ /} = 0//.475.
Since the maximum values of this and the following terms do
not occur for the same value of ¢, their aggregate will evidently
never amount to 1’/ in any practical case.

Hence, to find the latitude by the pole star within 1'’, we have the

formula
¢ =h —pcost+ }p'sin 1”sin?ttan A (800)

The hour angle ¢ is to be deduced from the sidereal time ©
. of the observation and the star's right ascemsion a, by the

formula ¢
. t—06 —a

To facilitate the computation of the formula (800), tables are
given in every volume of the British Nautical Almanac and the
Berlin Jahrbuch; but the formula is so simple that a direct
computation consumes very little more time than the use of
these tables, and it is certainly more accurate.

ExaMpLE.—(From the Nautical Almanac for 1861).—On March
6, 1861, in Longitude 87° W., at 7* 43" 85* mean time, suppose
the altitude of Polaris, when corrected for the error of the in-
strument, refraction, and dip of the horizon, to be 46° 17’/ 28"
required the latitude. '

Mean time 7 43= 85

Sid. time mean noon, March 6, 22 56 47.9
Reduction for 7* 43= 35 1 16.2
Reduction for Long. 2* 28 '24.8
Sidereal time 0= 642 84
March 6, p = 1° 25’ 82".7 e =1 7390

534 244

o~

83°36' ¢”
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Hence, by formula (300),

log p 8.71085 log p* 7.4207
log cos t 9.04704 log sin?t  9.9946
log 1st term 2.75739 log tan & 0.0196
' log §sin1” 4.3845
h = 46° 17’ 28" log 2d term 1.8194
Istterm = — 9 32 .0
2d ¢ = 1 6.0

=46 9 2.0
By the Tables in the Almanac, ¢ = 46° 9 1”

177. If we take all the terms of () except the last, which we
have shown to be insignificant, we have the formula

¢ =Rh—pecost4 }p*sin1”sin?t tan h
— §p*sin?1”cos t sin? ¢t 4 fp'sin®*1”sin‘ t tan* A (301)

which is exact within 0’.01 for all latitudes less than 75°, and
serves for the reduction of the most refined observations with
first-class instruments.

If we have taken a number of altitudes in succession, the
separate reduction of each by this formula will be very laborious.
To facilitate the operation, PETERSEN has computed very con-
venient tables, which are given in ScruMAcHER’s Hiilfstafeln,
edited by WarNsToRFF. These tables give the values of the
following quantities :

a=p,co8t -+ }psin*l” cos ¢ sin?¢
B == 4 p2sin 1” sin* ¢

A =} p(p*—p,)sin* 1" cos tsin*t
g = } p*sin*1” sin‘¢ tan® A

in which p, = 1° 80’ = 5400”’. Then, putting
A=2

log A —log p — 3.7323938

the formula (801) becomes

¢=h—(da+2) + A8 tan h +
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Putting then
= Aa 4 2
y=A%Btanh 4 pn

we have (302}
p=h—2x+y

or, when the zenith distance { is observed,

r = Aa 4 1

y=A%Bcotl+n }(303)
N —p=C+x—y

The first table gives a with the argument ¢; the second, g with

the argument ¢; the third, 2 with the arguments p and ¢; and

the fourth, 4 with the arguments y and ¢, ¢ being used for % in

go small a term.

To reduce a series of altitudes or zenith distances by these
tables, we take for A or ¢ the mean of the true altitudes or
zenith distances; for @ and 8 the means of the tabular numbers
corresponding to the several hour angles, with which we find
Aa and 4?3 cot {. The mean values of the very small quanti-
ties A and p are sensibly the same as the values corresponding te
the mean of the hour angles; so that 4 is taken out but once for
the arguments polar distance and mean hour angle, and u is
taken with the arguments ¢ and the approximate value of y =
A3 cot £. Illustrative examples are given in connection with
the tables.

FIFTH METHOD.—BY TWO ALTITUDES OF THE SAME STAR, OR DIF.
FERENT STARS, AND THE ELAPSED TIME BETWEEN THE OBSERVA-
TIONS. :

178. Let S and 8’, Fig. 25, be any two points of Fig.25.
the celestial sphere, Z the zenith of the observer,
Pthe pole. Suppose that the altitudes of stars seen
at § and S’, either at the same time or different
times, are observed, and that the observer has the
means of determining the angle SPS’; also that T
the right ascensions and declinations of the stars
are known. From these data we can find both the latitude and the
local time. A graphic solution (upon an artificial globe) is indeed
quite simple, and it will throw light upon the analytic solution.
‘With the known polar distances of the stars and the angle SPS’,

Vou. I.—17

S
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let the triangle SPS’ be constructed. From S and S’ as poles
describe small circles whose radii (on the surface of the sphere)
are the given zenith distances of Sand S’: these small circles inter-
sect in the zenith Z of the observer, and, consequently, determine
the distance PZ, or the co-latitude, and at the same time the hour
angles ZPS and ZPS’, from either of which with the star’s right
ascension we deduce the local time. This graphic solution shows
clearly that the problem has, in general; two solutions; for the
small circles described from S and S’ as poles intersect in two
points, and thus determine the zenith of another observer who
at the same instants of time might have observed the same alti-
tudes of the same stars. The analytic solution will, therefore,
also give two values of the latitude; but in practice the ob-
server always has an approximate knowledge of the latitude,
which generally suffices to distinguish the true value. -

Let us consider first the most general case.

(A.) Two different stars observed at different times.—Let

R, k' = the true altitudes, corrected for refraction, &c.,
T, T' = the clock times of observation,
AT, aT' = the corresponding corrections of the clock,
a, o’ = the right ascensions, and
3, 8’ = the decclinations of the stars at the times of the
observations respectively,
t, ¥ = the hour angles of the stars at the times of the
observations respectively,
= t' — t = the difference of the hour angles,
¢ = the latitude of the observer:

then we have, if the clock is sidereal,

t=T4+aT —a
=T+ aT—d
A=(T"—T)+ (AT’—AT)'—(G —a) (804)

a formula which does not require a knowledge of the absolute
values of a7 and a7", but only of their difference; that is, of
the rate of the clock in the interval between the two obser-
vations.

If the clock is regulated to mean time, the interval 7/ — T'+
aT'—aTis to be converted into a sidereal interval by adding
the acceleration, Art. 49.

‘We have next to obtain formule for determining ¢ and tort
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from the data h, 7, 3, ¢/, and A. I shall give two general solu-
tions, the first of which is the one commonly known:

First Solution.—Let the observed points S and S’ be joined
by an arc of a great circle S§’. In the triangle PSS’ there are
given the sides PS=90° — 3, PS’ = 90° — &, and the angle SPS’
=2, from which we find the third side SS’ = B, and the angle
PS'S= P, by the formule [& of Art. 10]

cos B — sin &’ 8in & 4 cos &' cos & cos 2
sin B cos P — cos &' sin 8 — sin 3’ cos 3 cos A
gin B sin P = cos ¢ sin 1

or, adapted for logarithmic computation,

m sin M — gin ¢
m cos M = cos & cos 2 ]
co8 B = m cos (M — 3) (805)
sin B cos P = m sin (M — &')
sin B sin P — cos 4 8in 2

In the triangle ZSS’ there are now known the three sides
ZS = 90° — h, Z8’ =90° — k', 8§’ = B, and hence the angle
Z8'S = @, by the formula employed in Art. 22:

sinm:\/(""“*("'*" + B sn i@ —h+ B ) (306)

.co8 A' 8sin B

Now, putting
z ¢g=P—2¢

there are known in the triangle PZS’ the sides PS’=90° — &,
ZS'=90° — I/, and the angle PS’Z =g, from which the slde
PZ =90° — ¢, and the angle S’ PZ =1, are found by the formulse

sin ¢ = sin ¢’ 8in A’ + cos &’ cos A’ cos ¢
cos ¢ cos t' — cos &' sin A’ — sin 8’ cos A’ cos ¢
cos ¢ 8in ¢’ = cos A’ sin ¢

or, adapted for logarithmic computation,

n 8in N = sin '
n cos N = cos &' cos ¢

sin ¢ = n cos (N — &8') (807)
cos ¢ cos ¢’ = n sin (N — ¢8) L
cos ¢ sin t' = cos A’ sin ¢
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The formule (805) and (307) leave no doubt as to the quadrant
in which the unknown quantities are to be taken. But we may
take the radical in (306) with either the positive or the negative
sign, and } Q, therefore, either in the first or fourth quadrant.
If we take } Q always in the first quadrant, the values of ¢ will be

and either value may be used in (307); whence two values of ¢
and . That value of ¢, however, which agrees best with the
known approximate latitude is to be taken as the true value.
There is also another method of distinguishing which value of ¢
will give the true solution; for, if A’ and A are the azimuths of
S’ and 8, we have in the triangle ZSS’ the angle SZS’ = A’— A4,

and
cos h

sin B

sin @ = sin (.A’ —4)

in which cos  and sin B are always positive. Hence Q is posi-
tive or negative according as A’ — A is less or greater than 180°.
The obeerver will generally be able to decide this: the only cases
of doubt will be those where A’ and A are very nearly equal or
where A’ — A is very nearly 180°; but, as we shall see hereafter,
these cases are very unfavorable for the determination of the
latitude, and are, therefore, always to be avoided in practice

If the great circle SS’ passes north of the zenith, we shall have
A’ — A negative, or greater than 180°: hence we have also this
criterion : we must take g = P — Q or ¢ = P + Q according as the
greal circle SS' passes south or north of the zenith.

Second Solution.—Bisect the arc SS’, Fig. 25, in T'; join PT
and Z7, and put

C =8T=48'T,

D = the deoclination of T'= 90° — PT,
H = the altitude of T'=90° — Z7T,

t = the hour angle of T'= ZPT,

P = the angle PT'S,

@ = the angle ZT'S,

g = the angle PTZ.

We have in the triangle PSS’ (Sph. Trig. (25)]

din’C:.sin’}(d—d') cos' A + cos*d (8 4 8') sin’¢ A
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or, adapted for logarithmic computation, by mtmducmg an
auxiliary angle E,

sin C'sin B —=sin § (4 —3") cos $2
8in Ccos E = cos % (8 4 ¢')sin. 44 ' } (308)

In the wiangle SPT we have the angle PTS= P, and there-
fore in the triangle S’ PT we have the angle PTS’ =180° — P,
the cosine of which will be = — cos P: hence, from these
triangles we have the equations

sin D cos C + cos D sin C cos P — sin 8
sin D cos C — cos D sin C cos P = sin &'
whenve

2 8in D cos C = sin & -} sin ¢’
2 cos D sin C cos P = sin 3 — sin &’

8in 3 (8 4 8")cos } (3 — d')_ :

cos C

sin D=

(309)
cos § (3 4 8')sin ¢ (6 — &)

P— ]
008 cos Dsin 0

which determine D and P after C has been found from (308).
In precisely the same manner we derive from the triangles
ZTS and ZTS'’ the equations

sin ¥ (A + A’) cos & (A — R)

H=
s von O

(810)
cos § (A + A’) sin } (A — &) )

cos @ = co8 H sin C

Then in the triangle PTZ we have the angle PTZ, by the
formula

g=P—Q
and henee the equations
sin ¢ = 8in D sin H + cos D eos H cos ¢

@08 ¢ 008 r == cos .D sin H — sin D cos H cos ¢
cos ¢ 8in T = cos H sin ¢
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To adapt these for logarithmic computation, let 3 and y be deter-
mined by the conditions*

co8 3 cos y = sin H

cos 8 sin y = cos H cos ¢
(811) -
sin § = cos H sin ¢

then ¢ and r are found by the equations

cos ¢ cos = cos f cos (D + )
cos ¢ 8in r = 8in @

8in ¢ = cos g 8in (D + r) .
} (812)
To find the hour angles ¢ and ¢, let'
 rx=t—3{ +0)
then, since } 1=} (¢ — ), we have

$14 =1 —t=the angle TPS,
. § A —x =1t —r=the angle TP§’,

and from the triangles P7S and PTS’ we have
‘sin(32+x) sinP i sin(}l—a:)_'_sinP

sin C cos ¢ sin C " cos 8¢

whence )
sin(444 x) —sin(}2—2x) cosd’ —cosd
sin(§44 ) 4+ sin(34—x)  cosd’ + cosd

and, consequently,
tanz=—tan 4 (¢ 4 &) tan §$ (3 — 3') tan 4 2 (313)

Hence, finally,

t=r—z—1#1
t=r—xz+42 } @19

As in the first solution, the value of ¢ will become = P+ Q
when the arc joining the observed places of the stars passes north
of the zenith.

ExamprLE.—1856 March 5, in the assumed Latitnde 89° 17’ N.
and Longitude 5* 6™ 86° W., suppose the following altitudes

* The equations (311) can always be satisfied, since the sum of their squares gives
the identical equation 1 =1.
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(already corrected for refraction) to have been obtained; the
time being noted by a mean solar chronometer whose daily rate
was 10°.32 losing. The star Arcturus was not far from the prime
vertical east of the meridian ; Spica was near the meridian.

Arcturus, h = 18° 6’ 30” Chronometer 7' = 9* 40 248

Spica, N = 40 4 48 « T =14 88 16.7

T"—T= 4 57 519

3 = 4 19° 55’ 44”48 Corr. for rate = + 21

3 =—10 24 39 5 Red. to sid. time = . 4 48.9

Sid. interval = 4 58 42.9

e = 14 9= 6-.79 a—ada = 0 51 20.1

o = 13 17 87.72 A= 6 60 12.0

= 87°83 0"

According to our first solution, we obtain,

by (805), B = 91° 15’ 52".5 P = 69° 57’ 64".7
and, by (806), ' Q=64 51 24 .8
whence g=56 6299

Then, by (807), we find

e=2389°17'20" ' =5°80"= 0220=12".
. o =18 17 87.72
Sidereal time of the observation of Spica — 13 37 49.72
Sidereal time at mean Greenwich noon =22 53 89 .88

14 44 9.89
Acceleration for-14* 44 989 — — 2 24.85
“ longitude =— 50 .28

Mean timo of the observation of Spica =14 40 54.81
Chronometer correction at that time, A7" = | 2=38-.11

According to the second solution, we prepare the quantities

$1=43°46'30" }(34 8")= 4°45'32".6 F(h+A)= 29° 5'36"5
1(3—23)=151012.1 }(h—h)=—10 59 6 5

with which we find, by (808), (309), and (310),

log tan E' = 9.437854 D= 6° 84’ 32".0
log sin C = 9.854225 P= 68 27 22.2
log cos C = 9.844639 Q= 108 38512.1
log sin H = 9.834176 g=—40 7499

log cos H = 9.868785
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(The auxiliaries C and H are not themselves required: we take
their cosines from the table, employing the sines as arguments.)
We now find, by (311), (312), (813), and (314),

log sin # = n9.673029 r = 322° 80’ 51”3
log cos 3 — 9.945532 r= 114 2138
y=2389°18 4.0 T— 2z =321 16 30
D4 y=45 52 86 .0 = 21* 25 6
p=239 17 20 . - jA= 2 55 6
t = 18 80 0
= 0 20 12

agreeing precisely with the results of the first solution.

179. In the observation of lunar distances, as we shall see
hereafter, the altitudes of the moon and a star are observed at
the same instant with the distance of the objects. The ob-
served distance is reduced to the true geocentric distance, which
is the arc B of the above first solution, or 2 C of the second. The
observation of a lunar distance with the altitudes of the objects
furnishes, therefore, the data for finding the latitude, the local
time, and the longitude.

180. (B.) A fixed star observed at two different times.—In this case
the declination is the same at both observations, and the general
formule of the preceding articles take much more simple forms.
The hour angle 1 is in this case merely the elapsed sidereal time
between the observations, the formula (304), since a=a/,
hecoming here

A=(T"—T)+ (aT'— aT) (315)

Putting &’ for ¢ in (808) and (809), we find £ =0, cos P=0,
P=90° and Cand D are found by the equations

gin 8 .

ginC=cos dsin42, sinD=
cos C

(316)

Bince we have g = P— @ = 90° — Q, the last two equations of
(811) give

8in 8 =cos Hcos @, cosy =sin Heeop
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which, by (810), become*

__co8 (k4 A)sin}(h—N)
- sin C

sin g

(317
=ein (A4 A)cosd (h—K) :

cos 2 cos C

cos y

Then ¢ and r are found by (312), or rather by the following:

8in ¢ = cos g sin (D + )
tan 8 sin B (318)

?=————— orsinr==
cos(D+7p) cos ¢

The hour angles at the two observations are

t=r— %12 .

Here 7, being determined by its cosine, may be either a posi-
tive or a negative angle, and we obtain two values of the latitude
by taking either D+ y or D —yin (318). The first value will
be taken when the great circle joining the two positions of the
star passes north of the senith; the second, when it passes south
of the zenith.

The solution may be slightly varied by finding D by the
formula ’

tan 3

tan D =
cos § 4

(320)

obtained directly from the triangle PTS (Fig. 25), which is right-
angled at 7 when the declinations are equal. We can then dis-
pense with C by writing the formule (317) as follows:

cos § (h 4 A" sin § (h — )

sinp: A
cos é8in ¢ 1

(321)
_sin¥ (h+A)cos}(h—H)sinD

cos y .
cos 8 8in ¢

# The formule (815), (316), and (817) are essentially the same as those first
given for this case by M. CarLrer in his Manuel du Nevigatesr, Nantes, 1818,
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181. (C.) The sun observed at two different times.—In this case
the hour angle 2 is the elapsed apparent solar time. If then the
times 7'and 7" are observed by a mean solar chronometer, and
the equation of time at the two observations is e and ¢’ (positive
‘when additive to apparent time), we have

A= (T'—T)+ (aT' — aT) — (¢'— €) (822)

Taking then the declinations 8 and &’ for the two times of obser-
vation, we can proceed by the general methods of Art. 178.
But, as the declinations differ very little, we can assume their
mean—i.e. the declination at the middle instant between the
observations—as a constant declination, and compute at least an
approximate value of the latitude by the simple formule for a
fixed star in the preceding article. We can, however, readily
correct the resulting latitude for the error of this assumption.
To obtain the correction, we recur to the rigorous formule of our
second solution in Art. 178. The change of the sun’s declination
being never greater than 1’ per hour, we may put cos (6 — &)
=1. Making this substitution in (308) and (309), and putting ¢
for 3 (8 + &’) so that 8 will signify the mean of the declinations,
and ad for } (8’ — 8) so that ad will signify one-half the increase
of the sun’s declination from the first to the second observation
(positive when the sun is moving northward), we shall have

83=—3@ =)
. gin A8
tan B = — cosd tan § 4
But ad diminishes with 2, so that E always remains a small
quantity of the same order as ad; and hence we may also put
cos E=1. Thus the second equation of (308) gives

. gin C = cos 3sin 42
and the first of (309)
sin &

inD=
sin cos C

which are the same as (316), as given for the case where the
declination is absolutely invariable. Hence no sensible error is
produced in the values of Cand D by the use of the mean de-
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clination. But by the second equation of (309) P will no longer
be exactly 90°: if then we put

P=90° 4 aP
we have, by that equation,

cos d8inad gin AS

in AP = =
sin & cos Dsin C cos Dsingld

or simply a8

~ cos Dsin ¢4
Then, since g =P — @, we have
| g=90°—Q+aP
The rigorous formula for the latitude is
sin ¢ = sin D sin H 4 cos D cos H cos ¢

in which when we use the mean declination we take ¢ = 90° —
Q: therefore, to find the correction of ¢ corresponding to a cor-
rection of ¢ = aP, we have by differentiating this equation, I
and H being invariable,

cos ¢.Ap = — co8 D cos H sin ¢.aP

_ Adcos Hcos @
sin$ad

‘We have found in the preceding article sin 8 = cos H cos @;
and hence

. adsin 8

b= cos ¢ sin § 1 (323)
In the case of the sun, therefore, we compute the approximate
latitude ¢ by the formule (316), (817), and (818), employing for &
the mean declination. We then find ap by (823) (which in-
volves very little additional labor, since the logarithms of sin 3
and sin }4 have already ‘occurred in the previous computation),

and then we have the true latitude

¢ =19+ ap

If we wish also to correct the hour angle = found by this
method, we have, from the second equation of (47) applied to
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the triangle PTZ (taking 4 and ¢ to denote the sides PT and
Z T, which are here constant),

=cosHeosA_AP
cos ¢

AT

in which 4 is the azimuth of the point 7. But we have in the
triangle PTZ

cochosA=sin¢coaDcosr—cos¢sipD
Substituting this and the value of a P, we have

as
sin 42

(tan ¢ cos r — tan D)

and, substituting the valae of tan .D (820),

as
sin 42l

AT =

tané)

(tan ¢ CO8 T —
cos$i

When this correction is added to r,"we have the value that would
be found by the rigorous formule, and we have then to apply
also the correction z according to (314). In the present case we
have, by (313),

xr— — adtan dtan §2

and the complete formulse for the hour angles ¢ and ¢ become

t =ct+ar—zx— %2
t’:‘r-}—Af—x-l-!l
Putting

y—ar—2=x

we find, by substituting the above values of ar and z,

tan pcost tan &8 )
= Aad. —_ 324
e ( gin § 2 tan 4 2 @24)

and then we have

£ =rt4y+ 12 } #2)

The corrections ap and y are computed with sufficient accu-
racy with four-place logarithms, and, therefore, add but little to
the labor of the computation. Nevertheless, when both latitude
and time are required with the greatest precision, it will be pre-
ferable to compute by the rigorous formuls.
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ExampLE.—~1856 March 10, in Lat. 24° N,, Long. 30° W,
suppose we obtain two altitudes of the sun as follows, all correc-
tions being applied : find the latitude.

At app. time 0* 30~ h =61°11' 38”3 (8)= — 8° 51’ 52".8
“ 4 30 K =18 46 85 8 ()=—38 47 57 4

A= 2» 0~ §(Ah+A)=389 59 7.1 4=—38 49 55.1
= 80° ¢ 3(A—A)=21 12381 .3 ad= 4 157"7

The following is the form of computation by the formule
(316), (317), and (318), employed by BowbpircH in his Practical
Navigator, the reciprocals of the equations (316) and of the
second of (817) being used to avoid taking arithmetical comple-
ments. This form is convenient when the tables give the cecants
and cosecants, as is usual in nautical works.

cosed § 2 0.801080

sec & 0000972 . . . . . . . .. . ... cosec n1.176024
cosec C 0.302002 cos 9.937854 . . . . . . . . ocos  9.937854
cos § (h + ') 9.884847 cose0 0.192085 D — — 4° 25'21”.3 cosec n1.112878
sin } (h — A’) 0.568428 sec 0.080459 —
sin 8 9.744777 . cos 9.919829 cos  9.919829

sec 0.080207 y= 83 45 88 .0
' D4+y= 29 2016.7 sin  9.690161
¢= 24° 228”2 gin  9.609990

If the approximate latitude had not been given, we might also
have taken D — y = — 88° 10’ 59//.8, and then we should have
had

cos # 9.919829
sin (D — r) n9.791118
¢ = —80°55 44”3  sin ¢ 19.71)942

To correct the first value of the latitude for the change of
declination, we have, by (328),

log a3 2.0708
gin g 9.7448
cosec § A 0.3010
mop 00834
ap = — 143”2 log a¢ n2.1560

and hence the true latitude is .
¢ = 24°228"2 — 223”2 =24° 0/ 0"
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which agrees exactly with the value computed by the rigorous
formulce. .

The approximate time is found by the last equation of (818)
with but one new logarithm: we have

sin 8 9.744777

cos ¢ 9.960596
T = 37° 28’ 23" sin ¢ 9.784181
By (324) and (825), we find
log a8~ 2.0708 log as 2.0708
cosec §2 0.3010 cot 4 0.2386
tang  9.6194 tan & 78.8259
cos T 9.8996 — 13".7 n1.18353 ..

+83".3 19208
y =4 88”8 — (—18".7) = + 97"

T4 y=237°30 0" =2*80~0
t= 0»30=0° t=4*30~0" .

which are perfectly exact.

182. (D.) Two equal altitudes of the same star, or of the sun.—This
case is a very useful one in practice with the sextant when equal
altitudes have been taken for determining the time by the method
of Art. 140. By putting A’ =5 in the formule (317), we find
sin =0, cos =1, and hence (818) gives sin ¢ =sin (D + y), or
¢ =D+ y. We have, therefore, for this case, by (820) and (321),
tan ¢ sin h sin D
co8y=—=—\w——
cos } A sin ¢ (326)

tan D =

which is the method of Art. 164 applied as proposed in Art. 165.
We give r the double sign, and obtain two values of the latitude,
for the reasons already stated.

The time will be most conveniently found by Art. 140. The
method there given is, however, embraced in the solution of the
present problem. For, since we here have sin 8 = 0, we also
have r =0, and the hour angles given by (325) become

t=y—1%2
t=y+4+ 12
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the mean of which gives

!(t+t’)—.y=0

that is, — y is the correction of the mean of the times of obser-
vation to obtain the time of apparent noon = 0*. This correction
was denoted in Art. 140 by a7; and since cos r = 0, the formula
(324) gives, when divided by 15 to reduce it to seconds of time,

ad tan ¢ ad tan 8

AT, = — — —
15 8in 44 15 tan § 2

which is identical with (262). Thus it appears that (262) is but a
particular case of the formula (824), which I suppose to be new.

The latitude found by (826) will require no correction, since
sin 8 =0, and therefore ap = 0.

Note.—The preceding solutions of the problem of finding the latitude and
time by two altitudes leave nothing to be desired on the score of completeness and
accuracy ; but some brief approximative methods, used only by navigators, will be
treated of among the methods of finding the latitude at sea, and in Chapter VIII.

183. I proceed to discuss the effect of errors in the data upon
the latitude and time determined by two altitudes, and hence
also the conditions most favorable to accuracy.

Errors of altitude.—Since the hour angles ¢ and ¢ are connected
by the relation # = + A, the errors of altitude produce the same
errors in both; for, A being correct, we have dt’ =dt; and for
either of these we may also put dr, since we have, in the second
general solution of Art. 178, r—zx=}({+ ), and = is not
affected by errors of altitude. Now, we have the general relations

sinh —sin ¢8in & 4 cos ¢ cos & cos ¢
sin A’ = 8in ¢ 8in 3’ 4 cos ¢ cos &'cos t’

-

: }(327)
which, by differentiation relatively to &, ¢, and ¢, give [see
equations (51)]

dh = — cos Adp — cos ¢ 8in Adr
dl = — cos8 A'dp — cos ¢ 8in A'dr

in which 4 and A4’ denote the azimuths of the two stars, or of
the same star at the two observations. .



272 LATITUBDE.

Eliminating dr and dyp successively, we find

sin A’ sin 4
dp = — dh aw’
¢ mnd —D " Twm@—a
@328
cos A’ cos A
dr = — an’
CBPI= @ —4) sin (4' — 4)

These equations show that, in order to reduce the effect of errore
of altitude as much as possible, we must make sin (4’ — A) as
great as possible, and hence A’ — A, the difference of the azi-
muths, should be as nearly 90° as possible.

If we suppose A’ — A =90°, we have

de = — sin A'dh + sin AdK
cos pdr =  cos A’dh — cos A d¥

and, under the same supposition, if one of the altitudes is near
the meridian the other will be near the prime vertical. If, then,
the altitude A is near the meridian, sin 4 will be small while
sin A’ is nearly unity, and the error dy will depend chiefly on
the term sin A’dh. At the same time, cos A will be nearly unity
and cos A’ small, so that the error dr will depend chiefly on the
term cos Adk’. Ience the accuracy of the resulting latitude will
depend chiefly upon that of the altitude near the meridian; and
the accuracy of the time chiefly upon that of the altitude near
the prime vertical.

If the observations are taken upon the same star observed at
equal distances from the meridian. we have 4’=— 4, and the
general expressions (328) become

dy-.:..M
2cos A

dh — dw

co8 pdr = — A

The most favorable condition for determining both latitude
and time from equal altitudes is sin 4 = cos A4, or 4 = 45°.

Errors in the observed clock times.—An error in the observed
time may be resolved into an error of altitude; for if we say that
dT is the error of T at the observation of the altitude A it
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amounts to saying either that the time I"— dT corresponds teo
the altitude A, or that T corresponds to the altitude A + dh, di
being the increase of altitude in the interval d7. We may,
therefore, consider the time 7' as correctly